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Introduction to the thesis

Optics has long been a field of physics characterized by high-level instrumentation and
extremely sensitive experiments. While at the end of the 19th century most founding
experiments in thermodynamics or electromagnetism were performed with very basic
experimental setups, in 1887, Michelson and Morley refine the Michelson interferometer
to a sensitivity below an hundredth of an optical fringe putting an experimental end to
the ether controversy. Soon after, the invention of the Fabry-Perot interferometer greatly
increased the resolution of spectroscopic measurements.

But it is the invention of the laser in 1960 that definitely gives interferometry its unique
status. Even though the radiation sources available in the 1960s are still far from the
limits enforced by the quantum nature of light, laser interferometry appears as a natural
candidate to achieve a unique experimental challenge: the detection of gravitational waves
[1], which actually involves both a km-scale Michelson interferometer and Fabry-Perot
cavities inside the arms.

At first, the mirrors have only been dealt with as fixed objects reflecting light, but at
the end of the seventies, Carlton Caves starts to consider the mirrors as movable objects
sensitive to the radiation pressure force from the reflected light [2]. Taking into account
both phase and amplitude quantum fluctuations of the light beam, he demonstrates that
ultrasensitive interferometric measurements such as gravitational wave detection are lim-
ited by two fundamental noise sources: phase noise (also often referred to as quantum
shot noise, QSN) and quantum-radiation pressure noise (QRPN). As both noises have an
inverse dependence with laser power, this yields to a limit, the Standard Quantum Limit
(SQL), which is the smallest displacement measurable with a coherent laser field. As a
consequence, the mirrors upgrade their status. From mere reflecting systems, they turn
into real physical object of study, which move in reaction to radiation-pressure fluctuations
of the probe laser beam. Optomechanics is born, at least on theoretical grounds.

The existence of the SQL has been an important motivation for the generation of
squeezed light [3, 4, 5] as squeezed states allow to go beyond the SQL. It took more than
thirty years from the first demonstration of squeezing in 1985 [6] to routine operation of
squeezed light sources with graviational-wave interferometers (GWI) [7, 8], but squeezed
light now is an essential ingredient of the sensitivity of GWI and more progress is expected
soon, with frequency-dependent squeezing implemented both in LIGO and Virgo for the
4th LIGO-Virgo-KAGRA Observation Run, due to start in the spring of 2023.

In parallel, starting in the 1990s, tremendous progress made in parallel in ultrastable
laser sources, sensitive photodetectors, low-noise electronics, high-Q mechanics, low-loss

vii
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Fig. .1 The generic optomechanical system: a linear single-input Fabry-
Perot cavity, with an end mirror clamped to a vibrating object (represented here
by a spring). Image from [9].

optical coatings and micro-fabrication have enabled the field of table-top experimental
optomechanics to be born. The generic optomechanical physical system, very similar to
the systems actually investigated in this thesis, is quite simple: it consists of a linear
optical Fabry-Perot cavity where the end mirror is movable. Here, the spring represents
the displacement of the mirror, which can be either related to an internal degree of freedom
of the mirror substrate, or a mechanical resonator onto which the mirror is clamped. Such
systems have been instrumental in investigating quantum limits in simple systems.

As all vibrations modes of the mirrors can be described to a very good extent as
(quantum) harmonic oscillators, they display quantum fluctuations (of position, momen-
tum...) of their own. In analogy to the laser cooling of atoms and ions, radiation pressure
can be used to laser cool the motion of these macroscopic objects, possibly down to the
quantum ground state [10]. Such experiments, pioneered at LKB in the late 1990S [11]
and early 2000s, have been responsible for the popularity and tremendous growth of the
field of optomechanics ever since.

The experiments presented in this manuscript address a number of these experimen-
tal objectives: optomechanical cooling (with a technique known as feedback cooling) of
a µg-scale optomechanical resonator, generation of squeezed light, both to probe the dis-
placement of an optomechanical system in a table-top experiment, and to increase the
sensitivity of large-scale GWI.

In Chapter I, I will motivate the experiments I have conducted during my PhD by
presenting a general introduction to the optomechanics scene: quantum limits in contin-
uous position measurements and their applications to GWI, how to go beyond quantum
limits with squeezed light, radiation-pressure cooling...
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In Chapter II, I will first present the different physical concepts used to describe
the experiments I will present throughout the rest of the manuscript. This will first
include classical optics and its quantum counterpart, standard optical techniques and
tools, generation of squeezed light... I will also present the associated mechanical concepts:
vibration modes, Fluctuation-Dissipation Theorem (FDT) and thermal position noise,
QSN and QRPN, and the two techniques used to cool a mirror with radiation pressure.

The cooling experiments performed on a µg-scale optomechanical resonator will be
motivated and detailed in Chapter III. This will include a description of the mechanical,
optical and cryogenic systems designed, fabricated and operated to demonstrate cooling
of a macroscopic mechanical resonator down to a few tens of quanta.

Chapter IV will present a different experiment: the design, fabrication and initial op-
eration of a frequency-dependent squeezing source to demonstrate wideband sub-SQL
displacement measurements of a mechanical resonator. The detailed discussion will
include the laser source, the optical parametric oscillator used to generate frequency-
independent squeezing, and the rotation cavity designed to extend the squeezing to
frequency-dependent.

Chapter V will present the design and some experimental results I have obtained for
a next-generation cryogenic optomechanical system.

I will eventually conclude the manuscript by summarizing the experimental results I
have obtained and detail the next steps toward a wideband demonstration of sub-SQL
measurements.
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Chapter I
A panorama of optomechanics

Quantum limits in position measurements

Optical interferometers and Fabry-Perot cavities have long been been of great interest
to perform high-sensitivity displacement measurements with applications in mechanical
sensing, up to the challenge of gravitational-wave detection [1].

The gravitational waves detected on earth so far are caused by the coalescence of
binary systems of extreme high-mass objects (black holes or neutron stars), causing an
oscillation of space-time itself in the plane orthogonal to the propagation direction of
the wave. These oscillations are still very small and cause a strain h which typically
corresponds to an induced relative length change of only 10−21 or below. In a Michelson
interferometer, as the gravitational wave passes through, one of the arms will be elongated
while the other is compressed and vice versa as the oscillation goes (see Fig. I.1 (a)).
Michelson interferometers are therefore well suited for such a detection, as one can detect
a difference of optical path between the two arms. The longer the arms are, the larger
the fractional (relative) change will be: for technical and budget reasons, GWI have been
built with arms of kilometer length: 4 km for LIGO and 3 km for Virgo. To enhance the
optical length even further, Fabry-Perot cavities have been installed in each arm (see Fig.
I.1 (b)).

GWI and table-top optomechanics experiments therefore have a lot in common as in
both cases, displacement (or an effective displacement in the case of a gravitational wave)
is measured through the phase-shift light experiences inside the cavity, multiplied by the
number of round-trips of the light beam.

In both cases, the quantum nature of light is responsible for two noises that eventually
limit the measurement sensitivity as soon as classical (technical noise of the laser source,
thermal displacement noise of the mirror...) is negligible. The first noise is related to
the quantum phase noise of the light beam, i.e. field fluctuations perpendicular to the
mean field in the complex phase-space (see Fig. I.2). This noise term is historically called
quantum shot noise (QSN). This is direct measurement noise, that can be lowered by
increasing the strength of the measurement, i.e. the laser power. Indeed, as laser power
is increased, the fluctuation disk (of unit size, whatever the power is) gets further away
and the phase fluctuations ∆Φ (which correspond to the angle spread of the disk as seen
from the origin of phase-space) decrease as 1/

√
⟨N⟩, where ⟨N⟩ is the average flux, i.e.

1
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Fig. I.1 Principle of interferometric GW detection. A binary system
(typically neutron star or black holes) creates a gravitational wave that will
travel to earth were it will cause a variation of the optical path in the two arms
creating an oscillation on the amplitude measured by the photodiode. Figure
adapted from [12].

the number of photons per second in the beam.
Such a 1/

√
⟨N⟩ scaling law explains why advanced GWI, such as Advanced Virgo or

Advanced LIGO, are operated with extreme high power CW lasers, typically with 40 W
of input power for Advanced Virgo during O4, which will start next spring, and even
higher power for subsequent upgrades.

But, independently of the potential issues raised by high optical power (thermal ab-
sorption...), displacement sensitivity cannot be increased at will by a mere power increase
of the laser. Indeed, light also presents amplitude (and intensity) fluctuations (see Fig.
I.2), and these fluctuations are imprinted onto the mirror motion by radiation pressure.
Completely negligible for most experiments because of the weakness of radiation pressure
(with a mean force of amplitude ≃ 2ℏk⟨N⟩, where 2ℏk is the momentum impulsed to
the mirror by a single photon reflection, and fluctuations of amplitude ≃ 2ℏk

√
⟨N⟩), this

measurement back-action obviously increases with optical power and can become domi-
nant for extreme values of the laser power: in such a regime, motion is actually monitored
with extreme sensitivity but the detected motion is mostly representative of the intensity
fluctuations of the probe laser beam, which is of little interest for displacement or weak
force sensing.

To discuss this in more detail, we need to consider separately the cases of GWI and
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Fig. I.2 Representations of the quantum fluctuations of a light beam.
Left : Representation of a coherent state of light in the complex plane. The "ball"
represents the fluctuations of the amplitude and phase of the field. Right : The
flux of photons measured in short time intervals ∆T compared to the coherence
time of light are uncorrelated and can be treated as random, independent photon
events following a Poisson low, with an average value ⟨N⟩∆T and a standard
deviation

√
⟨N⟩∆T . Figure adapted from [12].

Fig. I.3 Quantum noise in high-sensitivity displacement measure-
ments. (a) Displacement noise for a GWI, for different optical powers. QRPN
dominates at low frequency while QSN does at high frequency. (b) Displacement
noise for an optomechanical resonator with a resonance frequency of 2 MHz and
a high quality factor. QRPN dominates close to the resonance while QSN does
far from the mechanical resonance. In both cases, increasing power lowers QSN
but increases QRPN. The dotted lines represent the SQL.
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table-top optomechanical systems. They indeed have different length and frequency scales,
which changes the exact features of quantum noise. Fig. I.3 (a) presents the quantum-
limited displacement noise spectrum of two such systems over a broad frequency range.
For a typical GWI, the moving mirror is a ≃ 40 kg mirror suspended by a complex
pendulum system, with a resonance frequency around 1 Hz. For all practical purpose,
in the envisioned detection frequency band (typically 10 Hz to 10 kHz), the mirror be-
haves as a free mass, with a mechanical response function (also known as the mechanical
susceptibility):

χ(Ω) = −1/MΩ2, (I.1)

where M is the mirror mass and Ω/2π the frequency at which the measurement is per-
formed. This explains the fall-off of QRPN for increasing frequency, which is the result of
the 1/Ω2 filtering of the intensity fluctuations (white noise) by the mechanical response.
As QSN only reproduces the quantum phase fluctuations (white noise as well), QRPN
dominates at low frequency while QSN does at high frequency, with a corner frequency
between both regimes (where the two noises have the same magnitude), where sensitivity
is optimum. As discussed above, increasing laser power lowers QSN at the expense of a
higher QRPN and the corner frequency is shifted to a lower frequency.

Overall, for a coherent laser field (which presents the standard quantum fluctuations,
evenly distributed on phase and amplitude (circular noise pattern, see Fig. I.2), the
sensitivity is never better than the Standard Quantum Limit (SQL):

δxSQL ≃
√
ℏχ ∝ 1/Ω (I.2)

for a GWI.
Quantum noise also limits the measurement sensitivity of micro-optomechanical sys-

tems, though in this case, experiments are usually performed close to the resonance fre-
quency. One then has to take into account the full expression of the mechanical suscep-
tibility:

χ(Ω) = 1
M
(
Ω2
M − Ω2 − iΩΩM/Q

) , (I.3)

where ΩM/2π is the resonance frequency and Q is the mechanical, quality factor.
Fig. I.3 (b) presents the quantum-limited displacement noise spectrum for such an

optomechanical system. Here, QRPN is peaked around the resonance frequency (as is
the mechanical response) while QSN is responsible for a noise floor observed at some dis-
tance of the resonance. As for the GWI case, changing the laser power lowers one noise
component while increasing the other and the corresponding compromise leads again to
the SQL, which is now peaked as well around the resonance frequency (as is the mechan-
ical susceptibility). Note there are two corner frequencies evenly distributed around the
resonance frequency in this case.

QSN has been rather easy to demonstrate with modern (ultrastable and low-noise)
laser sources, high-finesse cavities and high-Q mirrors: it is actually the most common
source for the noise floor observed far from the mechanical resonance in current optome-
chanics experiments. Though known on a theoretical basis since the early 1908s, QRPN
has however proven very challenging because it competes with thermal noise which usu-
ally dominates for micro-scale oscillators (typically with MHz resonance frequencies),
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even at cryogenic temperature. It took until 2013 for the group of C. Regal in Boul-
der to demonstrate QRPN for a macroscopic object (I.4) for the first time, using a very
light optical membrane (see V) and a combination of conventional cryogenic cooling and
radiation-pressure cooling (discussed below). Fig. I.4 presents their setup and results.
The observed calibrated position noise level displays a sharp peak around the mechanical
resonance frequency. For low optical power, displacement noise doesn’t depend on probe
power (blue spectrum and corresponding dot on the plot) as it only corresponds to ther-
mal noise (brown curve) but for P ≫ PSQL (where PSQL is the optical power required to
observe the SQL at the resonance frequency), the noise level follows a linear dependence
with P (black curve) as expected for QRPN. Note in this case, the SQL could not be
demonstrated because of the remaining thermal noise even at an effective temperature of
2 mK.

It is however possible to reduce QSN without increasing the optical power, by using
a light beam with lower phase fluctuations, called a squeezed state (see Chap. IV). In
such a beam, phase noise has been reduced by creating correlations between the photons.
However, reduced QSN means, by virtue of the Heisenberg inequality, increased ampli-
tude fluctuations, and hence of QRPN. Current GWI are not dominated by QRPN at low
frequency because of some excess classical noise, so it is possible to increase their sensi-
tivity at high frequency by using phase-squeezed states of light, as demonstrated by both
LIGO and Virgo in 2019 (I.5). Here, the black curve correspond to the GW observatory
sensitivity with coherent light. Using a squeezed phase state (red curve) allows to reduce
the observed noise by 3 dB above 200 Hz, where QSN is dominant. Noise is unaltered at
lower frequency, where classical noise dominates. The 3-dB number, only effective over
a part of the detection band, and not the most critical one for the current GW source

Fig. I.4 Experimental demonstration of of QRPN on a macroscopic
object. Left: experimental setup. The SiN membrane is inserted in a membrane-
in-the-middle cavity. Mirror is cooled by cryogenic cooling (down to 4 K) and
by radiation-pressure cooling (down to 2 mK). Insert shows the position of the
optical waist and the vibration nodes of the (2,2) mechanical mode used (dashed
blue lines). (Right) Dependence of the noise spectrum at resonance with normal-
ized optical power P/PSQL, with the thermal noise contribution (brown curve)
and the QRPN contribution (black curve). Insert shows 2 specific noise spectra.
Figure adapted from [13].
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Fig. I.5 Impact of squeezing on the strain noise of the Advanced Virgo
GWI. Strain noise for a coherent state (black curve), for a phase-squeezed state
(red curve) and for an amplitude-squeezed state (blue curve). Quantum noise
(QSN) only limits the sensitivity at high frequency (above 200 kHz), where the
sensitivity can be increased or lowered with squeezing. Figure from [14].

considered, may seem modest considering the experimental effort involved, but it still
increases the BNS (binary neutron stars) detection range by a few %. Future upgrades of
the GWI will clearly strongly increase this noise reduction and its impact over the BNS
range.

Using an amplitude-squeezed state (blue curve) actually increases QSN (in the same
frequency band as before) as expected. The observation that the noise level is not reduced
at low frequency with amplitude-squeezing confirms QRPN is mostly irrelevant for current
GWI. A careful analysis of the whole set of the three noise curves actually sheds light
on some QRPN, amplified by the phase-squeezed state (that displays increased intensity
fluctuations), even though it is still overwhelmed by excess classical noise[15, 14]. In
future observation runs, optical power will be further increased and excess classical noise
reduced so the GWI will be limited by QRPN at low frequency. We will see in Chapter
IV that it is actually possible to take advantage of the different frequency dependence of
these two quantum contributions to the sensitivity curve to reduce both QSN (at high
frequency) and QRPN (at low frequency) to increase the quantum-limited sensitivity of
GWI over a broad frequency range.

Optomechanics and the Quantum Ground State challenge

Optomechanics has been founded within the fields of ultrasensitive displacement measure-
ment or GW detection. In such contexts, mirror motion mostly appears as an additional
noise source (QRPN) but optomechanics also offers essential tools to demonstrate a long-
standing goal of experimental physics: demonstrating the quantum ground state (QGS)
of a macroscopic mechanical resonator.
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Two conditions have to be fulfilled for such an experiment:

• the mechanical resonator has to be in its QGS, which means its thermal energy has
to be negligible compared to the quantum of energy: kBT ≪ ℏΩM ,

• the experiment has to be sensitive enough to probe the corresponding position
fluctuations.

Optomechanics obviously meets the second requirement: typical table-top experiments
have demonstrated sensitivities at the level of 10−18 m/

√
Hz or better in the MHz range,

while for typical nm-scale resonators, the zero-point position fluctuations level can be as
high as 10−16 m/

√
Hz.

However, using optical sensing (especially in free space) usually sets a lower limit to
the size of the mechanical resonators under consideraton, and hence to their resonance
frequency. Optomechanical systems have long been limited to a few tens of MHz at most,
while, even at dilution fridge temperatures (≃ 10 mK), kBT ≪ ℏΩM implies a resonance
frequency in the GHz band. But optomechanics actually offers some alternatives, in
the form of at least two cooling mechanisms that have the ability to effectively cool a
mechanical resonator well below its environment temperature, and allow to meet the
temperature requirement.

A first technique, known as cold damping or feedback cooling uses the sensitivity of
optical interferometry to probe the resonator motion and use the displacement signal in
real-time to drive an additional force (for example through the amplitude modulation
of an additional feedback laser beam) to increase the mechanical damping of the res-
onator without any additional fluctuations. This process was first demonstrated in a
high-sensitivity experiment in the optomechanics team at LKB in 1999 [11], to cool the
vibration motion mode of the mirror from room temperature down to about 10 K (see
Fig. I.6).

Another technique only uses a single laser beam, in close analogy to atomic physics.
Indeed, the generic optomechanical system presented in the introduction (spring-loaded
mirror) presents some similarities with an atom pumped close to an atomic transition.
In some well-designed experimental conditions, a photon (with a frequency slightly lower
than the atomic resonance frequency) incident on an atom can absorb some kinetic energy
during the process. As a result of many such interactions, the mean kinetic energy of an
assembly of atoms, and their temperature, can be significantly lowered.

Similarly, a photon incident into the cavity with a frequency slightly lower than its
resonance frequency, can preferentially absorb phonons of the moving mirror to increase
its energy and reach the cavity resonance frequency. So "pumping" the cavity with "red-
detuned" light, may extract energy from the mirror motion and cool it. This technique is
known as sideband cooling, and was first demonstrated independently by the LKB group
[16] and by M. Aspelmeyers’ group in Vienna [17] in 2006.

These proof-of-concept experiments, both for feedback cooling and sideband cooling,
only demonstrated cooling from room temperature down to 10 K, but combining cryogenic
cooling (down to 100 mK or below for example, in a dilution fridge) with either feedback
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Fig. I.6 First feedback cooling experiment performed at LKB. Left:
Experimental setup. The field reflected by the cavity is used to probe the mirror
position. An auxiliary laser beam, reflected on the end mirror, is used to apply
a feedback force on the mirror and counter the Brownian noise. Right. Thermal
noise spectrum of the mirror without feedback (a) and with increasing feedback
gains (b) to (d).

Fig. I.7 First experimental demonstration of an optomechanical sys-
tem cooled close to its quantum ground state. Left: experimental setup
and effective electrical circuit. The resonator is a 15-µm-diameter aluminum
plate suspended 50 nm above a lower electrode. The microwave drive at ωd (green
carrier) is scattered to a Stokes band (red) and an anti-Stokes band (blue). The
detuning creates an imbalance between the two bands, which cools the drum res-
onator. Right: thermal noise spectrum as the drive power (nd) is increased. The
corresponding temperature is expressed in terms of mechanical phonons (nm).
Figure adapted from [10].
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or sideband cooling immediately appeared as a very promising idea to reach effective
temperatures in the µK range and demonstrate QGS cooling.

The first demonstration of QGS cooling was performed by J. Teufel and his collabo-
rators in 2011, with a 15-µm-diameter aluminum plate as optomechanical resonator [10].
The plate was suspended 50 nm above a lower electrode, with the drum motion mod-
ulating the capacitance of a LC circuit (visible on the bottom left of Fig. I.7). This
resonating circuit is equivalent to an optical cavity, but in the GHz range. For a detuned
resonator, the anti-Stokes sideband is favoured over the Stokes band, and the net effect
of the microwave drive is a damping and cooling effect, as can be seen on the experimen-
tal noise spectra: the thermal noise spectrum both widens and gets lower as the drive
power (expressed in terms of number nd of drive microwave photons) is increased. Such
a cooling experiment has now been performed with many different systems, and the QGS
has been characterized not only by a quantitative feature such as the position noise level,
but with striking qualitative aspects such as sideband asymmetry as well [18]. Quantum
mechanical motion has also been since then extended to other non-classical states such as
mechanical squeezed states, light-mechanics entangled states or entangled states between
two mechanical resonators.

Optomechanics, a field of its own
Optomechanics has experienced a tremendous growth for the past 15 years or so, with
Hundreds of research articles have been published, with a whole zoology of experimental
platforms (see Fig. I.8): micro-mirrors, micro-toroids, nano-membranes, photonic crys-
tals, microwave circuits, cold atoms, trapped nanoparticles... Optomechanical resonators
cover a huge range in mass, from fg for a silicon nanoparticle to 40 kg for a GWI sus-
pended mirror, and in frequency, from 1 Hz for the GWI pendulum motion to the GHz
band for photonic-crystal nanowires. Starting from quantum-limited displacement sens-
ing and the experimental quest for the QGS, the two topics I will cover in this thesis,
optomechanics now has applications in fields as diverse as weak measurement, GW detec-
tion, experimental stochastic thermodynamics (by probing thermal motion in real-time
and monitoring the fluctuations of thermodynamic quantities), biophysics (by monitor-
ing mechanical properties of specific resonators, which depend on a virus adsorption on
its surface...), quantum thermodynamics, quantum information (for microwave-to-optics
conversion of quantum states, or by taking advantage of the extreme values of Q for
quantum memory applications)...
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Fig. I.8 The zoology of optomechanical systems. Demonstrated optome-
chanical systems can be summarized in different geometries, such as micro-
mirrors [19, 20], micro-toroids [21], nano-membranes [22, 13, 23, 24, 25], photonic
crystals [26, 27, 28], microwave circuits [29, 30, 31], cold atoms [32, 33, 34, 35, 36],
trapped nano-particles [37, 38, 36]... The corresponding vibration modes are rep-
resented by the gray lines while the electromagnetic energy is represented in blue.
Figure adapted from [39].



Chapter II
Theory

In this chapter, I will introduce the fundamental theoretical notions needed to understand
and analyse the experiments presented in this thesis. The first 4 sections describe the
optical concepts and tools used throughout the manuscript: classical description of the
optical field, properties and characterization of Fabry-Perot cavities, quantum descrip-
tion of light, and the implementation of χ(2) nonlinear mechanisms required to generate
squeezed light.

In Section II.5, I introduce specific optomechanical concepts: radiation-pressure cou-
pling between the displacement and the optical field, the fluctuation-dissipation theorem
and thermal noise spectrum, quantum phase noise in continuous position measurement,
quantum radiation pressure noise (QRPN) and the corresponding standard quantum limit
(SQL).

Section II.6 deals with another aspect of tabletop optomechanics, which is the ability
to use the extreme sensitivity of optical sensing combined with radiation pressure to probe
the displacement of a mesoscopic mechanical resonator and to cool its thermal motion
by two techniques: sheer radiation pressure (self-)cooling using the probe beam inside
an optical cavity and (feedback) cooling using the probe beam to modulate the radiation
pressure of a second beam. Both techniques have been used to demonstrate cooling down
close to the quantum ground state with a number of experimental platforms, mostly
sub-µm and nm-scale optomechanical resonators.

II.1 Classical description of the optical field : the electric field
of a Gaussian beam

In this work, we will only consider TEM00 Gaussian modes of the electric field to represent
our laser beam. Higher-order transverse modes are, of course, present in the experiment,
but they mostly appear as mode-matching defects and optical losses, so we will not
describe them in detail, even though we obviously take them into account in the discussion.

We will also assume a monochromatic (at frequency ωL/2π, with the corresponding
wavevector k = ωL/c) and linearly polarized field, so we can write the complex field E⃗ as:

E⃗(x, y, z, t) = α(t)eiωLtE(x, y, z)p̂+ c.c, (II.1)

11
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where α(t) is the slow time-varying field envelope, p̂ is the unitary polarization vector
(orthogonal to the direction of propagation along the z-axis) and

E(x, y, z) = E0
w0
w(z)exp

(
−x2 + y2

w(z)2

)
exp

(
−ikz − ik

x2 + y2

2R(z) + iψG(z)
)

(II.2)

where E0 is the complex amplitude and the interesting geometric parameters of the Gaus-
sian beam are represented on Figure II.1:

• w(z) is the local waist of the laser beam

• w0 is the minimum waist (at the focus point)

• R(z) is the local radius of curvature

• ψG(z) is the Gouy phase.

Fig. II.1 Representation of a Gaussian beam with a waist w0. Figure from [40]

II.2 The Fabry-Perot cavity
During the course of my PhD work, optical cavities have been essential tools to probe
mechanical displacements of course, but also to stabilize and filter laser sources, generate
(frequency-doubled) green light and then create squeezed light by pumping an optical
parametric oscillator with green light.

II.2.1 Dynamics of the field
Let us a consider a simple linear Fabry-Perot cavity represented on the figure II.2 where
we represented the following optical fields:

• the incident field αin

• the intra-cavity field propagating from left to right α and the counter-propagating
field α′
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Fig. II.2 Representation of the various fields interacting with a Fabry-Perot
cavity

• the reflected field αref

• the transmitted field αout, which is non-zero only in the presence of a residual
transmission of the end mirror. In our cavity geometry, we are usually only able to
detect the reflected field, so we will use this field to model the optical losses.

• a possible additional field (incident from the right), that we will only take into
account as Vacuum fluctuations (see the following section II.3 on the quantum
description of the light beam) αvac

Let us note T and P the intensity transmission coefficients of the input mirror and
the end mirror. If we neglect the absorption in the mirrors, their reflection coefficients
can be written as 1 − T and 1 − P . We can write the following equations for the fields
at the input mirror position (x = 0) and at the output mirror position (x = Lcav) :

α(x = 0, t) =
√
Tαin(t) +

√
1 − Tα′(x = 0, t) (II.3)

αref (t) =
√
Tα′(x = 0, t) −

√
1 − Tαin(t) (II.4)

α′(x = Lcav, t) =
√
Pαvac(t) +

√
1 − Pα(x = Lcav, t) (II.5)

αout(t) =
√
Pα(x = Lcav, t) −

√
1 − Pαvac(t) (II.6)

We will write ψ(t) = 2kLcav(t) the phase-shift acquired by the optical field over a
single round-trip inside the cavity and τ = 2Lcav(t)/c the duration of such a round trip.
We can now write

α′(x = Lcav, t) = α′(x = 0, t+ τ/2)e−iψ2 (II.7)

α(x = Lcav, t) = α(x = 0, t− τ/2)ei
ψ
2 . (II.8)
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If we now consider a high-finesse cavity (T + P ≪ 1) close to the optical resonance
(ψ ≈ 2nπ, where n is an integer), we can make the following approximations:

e−iψ2 ≈ 1 − i
ψ

2 (II.9)

and

√
1 − T ≈ 1 − T

2 (II.10)
√

1 − P ≈ 1 − P

2 (II.11)
√

1 − T
√

1 − P ≈ 1 − T + P

2 . (II.12)

And we can write using II.3,II.5,II.8 and II.7.

α(t+ τ) − α(t)
τ

=
(
i
ψ

τ
− κ

2

)
α(t) +

√
κin
τ
αin(t) +

√
κ0
τ
αvac(t) (II.13)

with

κ = T + P

τ
(II.14)

η = T

T + P
(II.15)

κin = T

τ
= ηκ (II.16)

κ0 = P

τ
= (1 − η)κ (II.17)

(II.18)

where

• κ is the cavity bandwidth also known as the decay rate of the cavity and can be
seen as the inverse of the average lifetime of a photon inside the cavity.

• η is the quantum efficiency of the cavity i.e., the ratio of photons that have interacted
with the cavity and that are sent back to the reflected field and that you can actually
measure.

• κin is the coupling rate to the input field, and κ0 is the coupling rate to the output
vacuum. Note that κ = κin + κ0.

We can now approximate the left term of equation II.13 as the derivative of α(t) (which
is valid if the round-trip time τ is negligible compared to the time scale of the mirror
motion) and we get :

α̇(t) =
(

−κ

2 + iψ/τ

)
α(t) +

√
κin
τ
αin(t) +

√
κ0
τ
αvac(t). (II.19)
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II.2.2 The input-output relations
In the Fourier domain, equation II.19 becomes(

κ

2 − iψ/τ + iΩ
)
α[Ω] =

√
κin
τ
αin[Ω] +

√
κ0
τ
αvac[Ω], (II.20)

which is known as the input relation. It is also worth writing the output relation that
will be useful for future calculation :

αout[Ω] =
√
κ0τα[Ω] (1 + iψ/2 + iΩτ/2) − αvac[Ω]. (II.21)

If we now take again equation (II.19), and only consider the 0th order static term at
resonance, we get:

ᾱ = 2
κ

√
κin
τ
ᾱin (II.22)

ᾱout =
√
κ0τᾱ, (II.23)

which can be written in terms of laser intensity as

I = 4
κ2
κin
τ
Iin = 2

π
ηFIin (II.24)

Iout = 4η(1 − η)Iin. (II.25)

The average intracavity power is just the input intensity amplified by the finesse of the
cavity (η being usually around unity).

II.2.3 The reflection coefficient near resonance
We now want to compute the reflection coefficient r(Ω) = −αref/αin that corresponds
to the response of the optical cavity. From equation II.4 and II.5, neglecting the vacuum
fluctuations and in the high finesse approximation, we get

αref [Ω] =
√
κin
τ
α[Ω] − αin[Ω] (II.26)

=
(
κin
τ

1
κ/2 − i(ψ/τ − Ω) − 1

)
αin[Ω] (II.27)

in the Fourier domain. We now consider a cavity where the phase-shift is only due to a
constant detuning: ∆ω = ωL − ωcav = ψ/τ and we can now write r[Ω] as

r(Ω) = 1 − 2 − ϵ

1 + iξ(Ω) = ϵ− 1 + iξ(Ω)
1 + iξ(Ω) , (II.28)

where
ϵ = 2P

T + P
= 2κ0

κ
(II.29)

and
ξ(Ω) = Ω − ∆ω

κ/2 . (II.30)
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Fig. II.3 Amplitude and phase transfer functions of an optical cavity in reflec-
tion and transmission. Cavity parameters chosen are Lcav = 1 m, λ = 1 µm,
T = 0.005 and P = 0.04. (Courtesy of Sheon Chua).

We can now compute the magnitude of this transfer function and we get

|r(Ω)|2 = 1 − (2 − ϵ)ϵ
1 + ξ2(Ω) . (II.31)

We can see that, as we slowly sweep the cavity detuning (by sweeping either the
cavity length or the laser frequency), we will get a reflexion coefficient for the mean field
(corresponding to Ω = 0) with a Lorentzian dip of Full Width at Half Maximum (FWHM)
κ.

The simplified expression for the reflection coefficient will be particularly useful to
compute the effect of the rotation cavity on a squeezed state (see section II.5.5 of this
chapter). It can also be useful to note the value of the cavity reflection and transmission
coefficients at zero detuning and in terms of P and T :

Rres = (1 − ϵ)2 =
(
T − P

T + P

)2
(II.32)

and

Tres = 1 −Rres = 1 − (1 − ϵ)2 = ϵ(2 − ϵ) = 4PT
(T + P )2 . (II.33)

II.2.4 Filtering property of a cavity
It is also interesting to note that the transmission coefficient can be written as

|t(Ω)|2 = 1 − |r(Ω)|2 = (2 − ϵ)ϵ
1 + ξ2(Ω) , (II.34)

At resonance (zero-detuning: ∆ω = 0), the transmitted field of the cavity is low-pass
filtered with a cut-off frequency κ/2π. This property will be taken advantage of for the
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Fig. II.4 Reflection of a cavity as a function of frequency detuning.
The Free Spectral Range (FSR) corresponds to the frequency interval between
two peaks, the cavity bandwidth at the Full width at half maximum of the peak
and the finesse as the ration between the two. Here we have a cavity with
T = P = 0.2 and Lcav = 1 m, so νFSR = 150 MHz, κ = 2π × 9.5 MHz and
F = 15.7.

Mode Cleaner infrared cavity (MCIR) IV.3, a high-finesse cavity through which we send
the bright field delivered by the laser source to get rid of most of the classical noise of the
laser.

II.2.5 Optical characterization of a cavity

To actually measure the transmission coefficient of our cavity mirrors T and P, we can
measure the peak near resonance and extract κ = T+P

τ . If we know precisely our cavity
length, we can compute T +P = κ

c/(2L) and by measuring Rres we can get |T −P | = (T +
P )

√
Rres . This method doesn’t allow us to distinguish between T and P but we usually

have quite a good estimation of these values, which are provided by the manufacturer of
the coatings.

If we don’t know precisely the length, we can look at the reflection response of the
cavity as a function of the laser detuning for a quasi-static sweep (Ω = 0). We see
on figure II.4 equally separated resonance peaks corresponding to the cavity resonant
condition where Lcav = nλ/2 with n an integer and we can define νFSR = c

2L , the Free
Spectral Range (FSR) of the cavity as the frequency difference between two resonant
frequencies.
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We call F the cavity finesse:

F = ωFSR
κ

= 2π
T + P

≈ average lifetime of a photon inside the cavity
round trip duration . (II.35)

It is a unit-less number corresponding (up to a π factor) to the average number of round
trips made by a photon inside the cavity. If one is able to measure the reflection over a
few resonances, calibrating the horizontal axis in frequency is not required, as one just
needs the ratio between the distance between two consecutive resonances and their width
to compute the finesse.

Then you have, for P < T :

T = π(1 +
√
R0)

F
(II.36)

P = π(1 −
√
R0)

F
(II.37)

Note that these results assume a perfect mode matching of the cavity which can be difficult
to achieve, but they still give quite a good estimation of the transmission coefficients of the
mirrors. One also has to keep in mind that P accounts for the output mirror transmission
as well as for the losses inside the cavity, which can be caused by beam clipping, mirror
imperfections, etc... So comparing the measured value of P with the specified transmission
provides an estimation of the excess losses inside the cavity. This calculation also assumes
a High-Finesse cavity which is the case for all the cavity described in this PhD apart from
the OPO who has a measured finesse of 9 at 532 nm. In the general case, the finesse for
an optical cavity is given by

F = π(R1R2)
1
4

1 −
√
R1R2

(II.38)

where Ri is the power reflectivity of mirror number i. A complete characterization of the
optical cavities used in the experiments discussed in this manuscript can then be obtained
by performing a full set of measurements of the various coefficient presented in this section.
These characteristics are essential to properly fit and analyze the experimental spectra
and results presented in this manuscript.

II.3 Quantum description of the optical field
Continuous position sensing with a high-finesse optical cavity probed by a laser can reach
an extreme sensitivity, typically at the 10−18 m/

√
Hz level and below. Such a sensitivity

can be achieved with a low-noise highly stable laser source and is only limited by the
quantum fluctuations of the light beam.

This section presents the theoretical tools required to compute and manipulate quan-
tum noise in optics experiments. As even very low power lasers correspond to intense
beams in terms of the number of photons per second (typically, at 1064 nm, a very weak
beam of 1 µW already amounts to 3.1012 photons per second), the following model con-
siders and manipulates quantum fluctuations as classical stochastic variables (similar to
classical fluctuations, only their origin being quantum). Such a semi-classical formalism
is, however, well adapted to the experiments described here and allows a simple mapping
from the previous classical description of light to its quantum counterpart.
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II.3.1 Quantization of the optical field

If we set E0 =
√

2ℏωL
ϵ0cπw2

0
, and we compute the optical power carried by the time-average

of the field by integrating the Poynting vector over the (xy) plane, we get

P = ϵ0c

2

∫∫
⟨E⟩2dS = ϵ0c

2 E2
0 |α(t)|2 πw2

0 = ℏωL I(t), (II.39)

where I(t) = |α(t)|2. We can clearly see that I(t) corresponds to the average flux (number
of photons flowing through a surface per unit of time) of photons of energy ℏωL. From now
on we will only consider the dynamic of α(t), which contains all the useful information
about the beam. If we want to really look at the quantized field, we have to replace the
complex field amplitude α and its complex conjugate α∗ by the annihilation operator â
and its complex conjugate, the creation operator â†, with the commutations relations :

[â(t), â(t′)] = [â†(t), â†(t′)] = 0 and [â(t), â†(t′)] = δ(t− t′). (II.40)

II.3.2 Amplitude and phase modulations and their representations
To describe quantum fluctuations of the beam at an angular frequency Ω (≪ ωL), one has
to take into account quantum modes at ωL ± Ω. Here, I first recall some basic properties
of amplitude and phase modulations, that will be used for the quantum noise description
as well.

If one considers a classical field E(t) undergoing an amplitude modulation at a fre-
quency Ωm ≪ ωL:

E(t) = E0(1 +m cos(Ωmt))eiωLt = E0

[
1 + m

2 (eiΩmt + e−iΩmt)
]
eiωLt (II.41)

= E0

[
eiωLt + m

2 e
i(ωL+Ωm)t + m

2 e
i(ωL−Ωm)t

]
. (II.42)

We see that the resulting field is the sum of three waves : the carrier at the natural
frequency ωL and the two side bands at ωL ± Ωm. We can represent those three fields in
the "sideband diagram", but we can also represent α(t) = (1 +m cos Ωmt) on the "phasor
diagram" on the figure (II.5).

We can do the same thing for a phase-modulated field where we assume a small
modulation (m ≪ 1) and we can write :

E(t) = E0e
i[ωLt+m cos(Ωmt)] ≈ E0

[
1 + i

m

2 (eiΩmt + e−iΩmt)
]
eiωLt (II.43)

= E0

[
eiωLt + i

m

2 e
i(ωL+Ωm)t + i

m

2 e
i(ωL−Ωm)t

]
. (II.44)

We get more or less the same result but this time the sidebands are complex so
we now consider the sideband diagram as a 3D plot where the x-axis is the frequency
and for each of this frequency we construct a complex plane where we represent our



20 Chapter II. Theory

Fig. II.5 Modulations as beat notes between a carrier and sidebands.
(a) The classical "phasor diagram" where α is represented on the complex plane.
(b) The classical "sideband diagram" where the three fields are represented at
t = 0 for amplitude modulation (b1)(II.41) and phase modulation (b2) (II.43).
(c) Time evolution of the amplitude sideband modulation in the rotating frame:
the carrier is static but the two sidebands rotate at the same frequency but in
opposite directions (at ±ωm). On the right, we see the result in the phasor
diagram. (d) Time evolution of the phase-modulation sidebands and resulting
phasor evolution. The modulation effect has been exaggerated for clarity and we
see that the approximation that the amplitude remains constant starts to break.
Figure from [41].
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sidebands. The phasor diagram becomes the representation in the complex plane of α(t).
Any modulation or noise at frequency Ω can thus be represented as two sidebands at
±Ω and all the information about this noise is contained in their amplitudes and phase
relationships with the carrier.

II.3.3 One-photon formalism
If we now want to represent the actual vacuum quantum fluctuations of the light, we
will write the field amplitude as a sum over all frequencies Ω of the two sidebands at
±Ω. The expression of the time-varying part of the electromagnetic field E(t) displays
its audio-side band components around the carrier frequency ω0:

a(t) =
∫ +∞

0

dΩ
2π

[
a+[Ω]e−iΩt + a∗

−[Ω]eiΩt
]
, (II.45)

where a±(Ω) are the normalized amplitudes of the upper and lower side bands at fre-
quencies ωL ± Ω and are just a decomposition of the usual Fourier coefficients at positive
and negative frequencies. On the sideband diagram, we now have to imagine an infinite
number of sidebands and the phase diagram can be represented with the "ball on a stick
picture" where fluctuations are represented by a ball of radius unity on top of a stick
representing the mean value of the coherent field (see figure II.6)

II.3.4 Displaced frame
In the experiment described in this manuscript, we often deal with bright optical field
of at least a few nW, corresponding to a flux of photons of ≈ 1010 photons/sec. So
we will only use the quantum description of the field for the fluctuation part and write
â(t) = ā + δâ(t). The bandwidth of our detector being much smaller than ωL, what
we measure is the average over one or more cycles of the electromagnetic wave, so the
measurable intensity is :

< I(t) >∝< E(t)2 >= |ā+ δa(t)|2 ≈ |ā|2 + 2 Re[ā∗δa(t)], (II.46)

where we average to zero the terms oscillating at 2ωL and neglect the term in |δa(t)|2
since δa(t) ≪ ā. So the power fluctuations can be written as

δI(t) = 2 Re[ā∗δa(t)]. (II.47)

Now taking the Fourier transform we get :

δI[Ω] =
∫ +∞

−∞
2 Re[ā∗δa(t)]eiΩtdt (II.48)

=
∫ +∞

−∞
[ā∗δa(t) + āδa∗(t)]eiΩtdt (II.49)

= ā∗δa+[Ω] + āδa∗
−[Ω], (II.50)

where we used the definition of δa(t) to compute the Fourier transform in the final
step.
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Fig. II.6 Quantum noise as fluctuations of sideband modes. (a)The
quantum phasor diagram where â(t) = ā + δâ(t) is represented on the complex
plane as a constant classical field |a| with time-dependent fluctuations of average
variance unity for both quadratures and the sideband diagram where fluctua-
tions are represented as sideband of amplitude unity but with a time-varying
orientation. The quantum noise of the field can be represented by considering
all the sidebands for Ω ∈ R. Quantum sideband diagrams of a coherent state (b)
and a vacuum state (c). Figure from [41].
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II.3.5 Two-photon formalism

We now define the quadrature fields as the following linear combinations of the one-photon
fields :

a1 =
(δa+ + δa∗

−)√
2

and a2 =
(δa+ − δa∗

−)√
2i

. (II.51)

We can see that in the classical field representation, these quadratures correspond to
the real and imaginary parts of the field. This formalism was developed by Carlton Caves
in 1981 [5]. We can now express δI as

δI[Ω] = ((ā∗ + ā)a1[Ω] + i(ā∗ − ā)a∗
2[Ω]) (II.52)

=
√

2Re[ā]a1[Ω] +
√

2Im[ā]a∗
2[Ω]. (II.53)

Finally, we can express the mean value of the field as ā = |ā|eiϕ and δI becomes

δI[Ω] =
√

2|ā| (a1[Ω] cosϕ+ a2[Ω] sinϕ) (II.54)

We see that as we sweep the phase of the mean field we will be able to measure the
amplitude of our two quadrature fields directly by measuring the Fourier transform of the
field intensity which will always be the physical quantity we can actually measure. So the
amplitude and phase fluctuations of our field are characterised by its two quadratures a1
and a2 which for are usually called respectively the amplitude quadrature and the phase
quadrature. Indeed we can always choose the phase of the mean field to that they are
aligned this way.

II.3.6 The vacuum state

We now consider a field with a zero mean intensity and only fluctuations. If we compute
the mean fluctuations value of the two quadratures, we will find that ⟨|a1|2⟩ = ⟨|a2|2⟩ =
1/2 because of the commutation relations between â and â†. We will use the "quantum
phasor diagram" to represent this state by its Wigner function as a function of a1 and a2.
In this representation, the state fluctuations are represented by a round hill in the centre
of the phase space. We also see that, because of the circular symmetry, we can say that
∆a1 corresponds to amplitude fluctuations and ∆a2 to phase fluctuations. This state
is particularly useful combined with the displaced frame approximation discussed above.
We will represent our laser field by a coherent field, i.e. the sum of a classical bright
field and a vacuum state with amplitude fluctuations ⟨a2

1⟩ = 1/2 and phase fluctuations
⟨a2

2⟩ = 1/2.

II.3.7 Representation and calculation of quantum noise

If we now consider vacuum fluctuations of the electromagnetic field, these can be seen as
amplitude and phase modulations at every frequency Ω, so we can just consider a+[Ω]
and a−[Ω] as two incoherent complex random variables of unit amplitude. Switching to
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a1[Ω] and a2[Ω] just requires applying a unitary transformation, so a1 and a2 keep the
same properties and we can write

⟨|δI[Ω]|2⟩ = 2|ā|2
(
|a1 cosϕ|2 + |a2 sinϕ|2

)
= |ā|2. (II.55)

We retrieve the usual expression for shot noise: the intensity noise is a white noise pro-
portional to the beam intensity. Using matrix representation, we can also write the noise
power as

⟨|δI[Ω]|2⟩ =
∣∣∣∣∣|ā|

[
cosϕ sinϕ

] [1 0
0 1

]∣∣∣∣∣
2

= |bϕ · vin|2 (II.56)

where bϕ is the local oscillator state and vin embodies the input vacuum fluctuations with

vin = I. (II.57)

The point of this notation is that one can calculate the quantum noise at the output of
any optical system using

vout = T · vin
where T is the transfer matrix of the system. Output fluctuations can be measured by
mixing the field of interest with an additional bright beam (local oscillator) and we get
the noise power spectrum:

⟨|δI[Ω]|2⟩ = |bϕ · vout|2 = |bϕ · T · vin|2. (II.58)

Chaining multiple optical elements (optical cavity, optical circulators, etc...) just
requires chaining the corresponding transfer matrices to obtain the final output state.

II.3.8 Squeezed state representation
Vacuum or coherent states are obviously not the only available states of the quantum
optical field in the quantum optics toolbox. Among states of great theoretical and ex-
perimental interest are squeezed states, which display asymmetrical variances between a1
and a2. The generation of squeezed states will be discussed in the following section, and
dedicated experiments will be presented in a later chapter.

In the formalism presented above, the effect of a squeezer is represented by the fol-
lowing operator:

S(σ, ψ) = R(ψ)S(σ)R(−ψ) = Rψ SσR†
ψ =

[
cosψ − sinψ
sinψ cosψ

] [
eσ 0
0 e−σ

] [
cosψ sinψ

− sinψ cosψ

]
,

(II.59)

where ψ is the angle of the ellipse of squeezing and e−σ and eσ are the squeezing and anti-
squeezing coefficients. Conventionally, squeezing magnitudes are expressed in decibels
(dB), with σdB = σ × 20/ln(10) We can immediately see that the effect of this operator
on vacuum fluctuations will produce the following state:

vsqz = Rψ

[
eσ 0
0 e−σ

]
R†
ψ (II.60)
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Fig. II.7 Phase squeezed state and amplitude squeezed state representation on
the complex plane.

The point of the two-photon formalism is that it gives us an immediate representation of
a squeezed state and makes the link between the optical field and the actual signal mea-
sured with a photodetector. In the one-photon formalism, this can be seen as correlation
between the two sidebands at ±Ω (II.6) :

a+ = eσ + ie−σ
√

2
and a− = eσ − ie−σ

√
2

. (II.61)

We see that for high value of σ, a+ and a− have a similar orientation so when recombining
them to obtain the quadratures, their fluctuations will be suppressed along one axis and
amplified along the other.

II.3.9 One-photon transfer
Finally, if we want to obtain the effect of a linear optical element (i.e. an optical ele-
ment which doesn’t mix upper and lower sidebands), we can easily apply the following
conversion matrix

A2 = 1√
2

[
1 1

−i +i

]
(II.62)

to switch back to the one-photon formalism where the transfer matrix T is diagonal:

T = A2 ·
[
t+ 0
0 t∗−

]
· A−1

2 (II.63)

We will see in section II.5.5 part how to compute the coefficients t+(Ω) and t∗−(Ω) for a
Fabry-Perot cavity.

II.3.10 The effect of optical losses on a squeezed state
Squeezed state are particularly sensitive to optical losses that are experimentally unavoid-
able. It is then necessary to be able to characterize their effect on a squeezed state. The
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presence of loss on an optical field â is similar to the introduction of a partially reflective
mirror with a transmission ηl. The main issue is that on the other port of the mirror,
vacuum fluctuations couple to the exiting squeezed state that can then be written as

âout = √
ηlâ+

√
1 − ηlδâvac. (II.64)

(II.65)

The PSD of the output field can be computed and we find

Sout1 = ηlS
in
1 + (1 − ηl)Svac1 (II.66)

Sout1 = ηlS
in
1 + (1 − ηl) (II.67)

where we used on the second line that the PSD of the vacuum field is unity. We can see
that losses brings the squeezed state back to its coherent form as expected : you loose
correlation between the photons as you lose them. On figure II.8, we plot the squeezing
magnitude of the input field vs the output for different losses value. We can clearly see
the drastic effect on large squeezing magnitude. For this reason we won’t try to reach
extreme value of squeezing because they will immediately disappear as the field propagates
through the optics that all have losses. We will use the same model take in account the
efficiency of the photodetectors ηPD

II.3.11 The quantum Langevin equation

In the quantum description, the time-evolution equation of the field operator becomes:

˙̂a(t) =
(

−κ

2 + iψ/τ

)
â(t) +

√
κin
τ
âin(t) +

√
κ0
τ
âvac(t) (II.68)

where we just replaced α by its quantized version â in equation II.19. Note that in the
literature some people use â′ =

√
τ â, so that |â′|2 corresponds to the number of photons

inside the cavity which can then be seen as a harmonic oscillator coupled to an input
flux line âin and an output flux line âvac and then we get the proper quantum Langevin
equation derived in the full quantum description:

˙̂a′(t) = i∆ωâ′(t) − κ

2 â
′(t) +

√
κinâin(t) +

√
κ0âvac(t), (II.69)

where ∆ω = ωL − ωcav = ψ/τ is the frequency cavity detuning. The different terms
correspond to different physical mechanisms:

• the first term is the Hamiltonian evolution term. It corresponds to −i
ℏ [â′(t), H(t)],

i.e. the commutator of â′(t) with the Hamiltonian in the rotating frame H(t) =
−ℏ∆ωâ′†(t)â′(t)

• the second is a dissipation term (optical losses of the cavity)

• the two other terms are fluctuations induced by the two input and output flux lines.
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Fig. II.8 Impact of optical loss on measured squeezing magnitude, as a function
of input squeezing magnitude. Optical loss curves of 5%, 15%, 30% and 50% are
shown. Figure from [41]

II.3.12 Cavity with multiple output ports
The experiments discussed in this thesis also involve 3-mirror and 4-mirror cavities. For
the field in such cavities, the previous equation can easily be adapted by adding an escape
rate κi for each of the outputs. Equation II.20 becomes:(

κ

2 − iψ/τ + iΩ
)
α[Ω] =

√
κin
τ
αin[Ω] +

n∑
i=1

√
κi
τ
αivac[Ω], (II.70)

where n is the number of output ports, and αivac[Ω] are the vacuum fluctuations entering
each port with no correlations between each other. We now have

κ = κin +
n∑
i=1

κi. (II.71)

For the end mirror of a mode cleaner cavity, we can replace P by T2 + P , T2 being the
transmission of the end mirror and P representing the overall losses of the cavity. If by
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construction we choose T1 = T2, we get

Rres =
(

P

2T1 + P

)2
(II.72)

With T1 ≈ 500 ppm, it is easy to achieve losses P ≪ T1 and we still get a theoretical
finesse of F = 2π

2T1+P ≈ 6, 000 while having a reflection near zero at resonance, i.e. a
maximized transmission which is ideal for a mode cleaner: a cavity with a low bandwidth
(to filter out the noise) but still a high transmission (very little optical power lost).

II.3.13 Optical field detections

a) The Pound-Drever-Hall detection (PDH)

In order to keep cavity at resonance, the distance between the mirrors has to be stabilized
by a quantity of roughly λ/F but seismic vibrations are order of magnitudes above this
quantity. So in order to maintain cavity at resonance, one solution is to apply feedback
either on the cavity length or the laser frequency. To do so, an error signal is required
but as shown before the response function of a cavity as a zero-derivative at resonance so
the measured reflection (or transmission) of a cavity can’t be used as an error signal to
lock the cavity at resonance. It can however be used to lock the cavity next to resonance
using the non-zero derivative on the side of fringe. The idea proposed by Pound [42] and
applied by Drever and Hall [43] was to apply a small phase modulation to the field before
sending it to the cavity. The measured reflection of the cavity can now be written as

R [ψ +m cos(Ωmodt)] ≈ R(ψ) +m
∂R

∂ψ
cos(Ωmodt). (II.73)

If we now demodulate this signal at Ωmod, we obtain a signal proportional to the derivative
of the cavity response function which has a very high derivative at zero detuning and
therefore is a very good error signal to lock the cavity on resonance(II.9).

b) The homodyne detection

All of our interferometric measurement suppose that we are actually able to measure the
phase of the optical field. But when we make a measurement using a photo-diode, we
can only access a signal proportional to the average field intensity |α|2 such that we do
not get any information on the phase of the field. The most common way to access the
phase of the field is to make it interfere with a very bright coherent field aLO with a
controllable phase ϕ, called a Local Oscillator (LO). The signal field â and the LO are
spatially matched with an efficiency ηh, with the remaining LO field interacting with an
orthogonal higher-order spatial mode occupied by the vacuum field δâvac represented on
figure II.10.

Placing two photo-diodes and detecting the two output fields of the beam-splitter, we
obtain the fields :

c = 1√
2

[
(āLO + δâLO)eiϕ + √

ηh(ā+ δâ) +
√

1 − ηhδâvac
]

(II.74)

d = 1√
2

[
(āLO + δâLO)eiϕ − √

ηh(ā+ δâ) −
√

1 − ηhδâvac
]

(II.75)
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Fig. II.9 Cavity error signals. In blue, is the cavity reflection that has a zero-
derivative at resonance and in orange is the actual PDH signal with its high
derivative at resonance. The green curve is the derivative of the cavity reflection
rescaled to match the PDH amplitude. The parameters of the cavity are T1 =
0.02, T2 = 0.01, L = 1 m and the modulation frequency is at 6 MHz.

Fig. II.10 Homodyne detection with spatial mode mismatch, showing the mix-
ing of the LO oscillator aLO to the signal field â with an efficiency ηh and to the
higher-order mode vacuum state δâvac with an efficiency 1 − ηh. The two sides
of the beam splitter have opposite phase due to the conservation of energy.
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The subtracted current of the two photo-diodes signal i− = d†d− c†c can then be written
as

i− =2√
ηhāāLO cos(ϕ) (II.76)

+ āLO
[
(√ηha1 +

√
1 − ηha

vac
1 ) cos(ϕ) (II.77)

+(√ηha2 +
√

1 − ηha
vac
2 ) sin(ϕ)

]
(II.78)

By tuning the phase of the LO we can then measure the two quadrature of the field but we
see that, due to the spatial mismatch we are only going to detect them with an efficiency
ηh. In the same way that optical loss mixed vacuum fluctuations with our squeezed state,
spatial mode-mismatch mixed higher order mode vacuum fluctuations with the squeezed
state. Therefore the spatial mode matching of the squeezed field and the LO is important
for effective squeezing measurement.

To assess the spatial mode matching, the fringe visibility or contrast C is measured
by

C = Pmax − Pmin
Pmax + Pmin

(II.79)

where Pmax and Pmin are the maximum and minimum value of interference fringes optical
power on one of the detector and can be written as

Pmax = 1
2
[
(|āLO|2 + |ā|2 + 2

√
etah|āLOā

]
(II.80)

Pmin = 1
2
[
(|āLO|2 + |ā|2 − 2

√
etah|āLOā

]
(II.81)

So for equal optical power of the two beam (i.e |a| = |aLO|), we have C = √
ηh and so

the homodyne measurement efficiency can be measured with the fringe visibility, ηh = C2.

II.4 Generation of squeezed light with non-linear optics
In this section, I will briefly explain how non-linear processes inside a cavity can be
enhanced and used in our experiments to produce squeezed light. We will use α and â to
describe the field at 1064 nm and β and b̂ to describe the harmonic field at 2ωL and 532
nm.

The Hamiltonian for the non-linear interaction can be written as

HNL(t) = ϵ(b̂†ââ+ b̂â†â†). (II.82)

The two terms each corresponding to a different process:

• the first term corresponds to the annihilation of 2 photons at ωL to create a single
photon at 2ωL ("Second Harmonic Generation")

• the second term corresponds to the annihilation of a single photon at 2ωL to create
2 correlated photons at ωL ± Ω ("Parametric Down Conversion").
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We will first explain how we are able to generate a bright field at 532 nm using the
SHG process and then how this "pump" field allows us to generate squeezing using the
second process to create correlations. We will assume the cavity is kept at resonance
(∆ω = 0). If we consider the Langevin equation, the commutator terms are here:

[â(t), HNL(t)] = 2ϵâ†b̂ (II.83)
[b̂(t), HNL(t)] = ϵââ, (II.84)

so the quantum Langevin equations become:

˙̂a(t) = ϵâ†(t)b̂(t) − κa

2 â(t) +
n∑
i=1

√
κai
τ
âi(t) (II.85)

˙̂
b(t) = ϵ

2 â(t)â(t) − κb

2 b̂(t) +
n∑
i=1

√
κbi
τ
b̂i(t) (II.86)

II.4.1 Quasi-phase matching

The non-linear process occurs along the whole beam path in the crystal, meaning the
output field created at the front of the crystal via the non-linearity will propagate and
eventually interfere with the output field created at the back. For the SHG process for
instance, the conservation of energy yields

2ωIR = ωG, (II.87)

while, if we assume for instance that the input infrared and output green fields propagate
colinearly with each other, phase-matching requires:

2 kIR = kG. (II.88)

These two conditions require that the infrared and green fields must share the same value
of the optical index:

nIR = nG, (II.89)

which seems impossible to fulfill because of the natural material dispersion. A common
trick is to take advantage of the birefringent properties of the nonlinear crystals. If the
infrared and green fields do not have the same polarization, the optical index follows
two sets of curves for the ordinary and extraordinary optical index and it is possible to
achieve:

ne(1064 nm) = no(532 nm). (II.90)

In the case where the polarization trick is not sufficient to achieve this or when the infrared
and green fields share the same polarization, one may use quasi-phase matching. The idea
is to periodically invert the sign of non-linear coefficient by flipping the material crystal
domain structures. This technique called periodic poling allows for the phase of the newly
generated field to be quasi-phase matched with the existing generated field (II.11). It is
the one used for both of the non-linear crystal in our squeezing experiments.
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Fig. II.11 Effect of phase matching on the growth of second harmonic power
with nonlinear crystal length. A: perfect phase-matching in a uniformly poled
crystal; C: non-phase-matched interaction; B: Quasi-phase matching by flipping
the sign of the crystal polarization every coherence length of the interaction of
curve C. Curve from [44]

For a general nonlinear parametric process, we define the wavevector mismatch as

∆k =
∑
in

ki −
∑
out

kj . (II.91)

To fine tune the crystal to reach the quasi-phase matching condition ∆k = 0 for the
precise wavelength of the pump laser, one usually tunes the crystal temperature. The
expression for the generated output field power as a function of phase mismatch, derived
in [45] can be written as

P = Pmaxsinc2(∆kx/2). (II.92)

An example of such a tuning curve is given in the SHG section of Chap. IV.

II.4.2 Second Harmonic Generation (SHG)
For the SHG, we are only interested in the static value of the bright field so we can neglect
vacuum fluctuations and just consider the classical fields α and β. We pump the cavity
with a bright field αin at ωL and we want to create a bright field at 2ωL in reflection
(βref ). If we neglect the depletion of the pump α due to the non-linear process we have
from II.85:

κb

2 β = ϵ

2α
2 (II.93)

α = 2
κa

√
κain
τ
αin (II.94)
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Fig. II.12 Representation of the second harmonic non-linear process. A bright
field at ω0 pumps a non linear crystal to create frequency-doubled light at 2ω0.

Fig. II.13 Representation of the parametric down-conversion non-linear process.
A bright field at 2ω0 pumps a non linear crystal to create a pair of entangled
photons at ω0 + Ω and ω0 − Ω.

Using the input relation of the cavity (II.26), we can find

βref =

√
κbin
τ

ϵ

κb
α2 = 4

√
κbin
τ

κain
κb(κa)2 ϵα

2
in (II.95)

And we can simplify this awful expression to get the green light power:

Ibref = 2ϵκbin
(πκb)2τ

η2
aF2

a (Iain)2. (II.96)

To optimize the amount of optical power created at 532 nm, we need to have an over-
coupled cavity in the infrared where Ta > Pa while keeping a great finesse (i.e. Ta+Pa ≪
1). We also see that we need the output rate to dominate for the harmonic field so
the SHG cavity design will use a mirror with a low reflectivity at 532 nm and a high
reflectivity at 1064 nm to optimize the amount of green power delivered by the system.

II.4.3 The Optical Parametric Oscillator
The optical parametric oscillator (OPO) is the non-linear device that will actually produce
the squeezed field. It is pumped with a bright field at 532 nm this time and we will neglect
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again the depletion of the pump field, that is this time, the term ϵ
2a

2 in the pump field
cavity equation. We will first consider the classical behaviour of the OPO, that we will
use in experiments to characterize its efficiency.

a) Classical behaviour of the OPO

The quantum Langevin equation II.85 for the fundamental fields becomes

˙̂a = gâ† − κa
2 â+

√
κainâin, (II.97)

where we introduced the non-linear gain g = ϵβ. Using again the input-output relations
and assuming αin real, we can write the ratio between the transmitted output seed power
(Pout ∝ |αout|2) to the transmitted output seed power with no non-linear gain (P 0

out ∝
|αout(g = 0)|2) as

Pout
P 0
out

= (1 + x)2

(1 − |x|2)2 (II.98)

with x = 2g
κa

= 2ϵβ
κa

is the normalized pump parameter. We can see that depending on the
pump phase, we either have amplification (for real positive value of β) or deamplification
(for real negative value of β) of the seed power. We will only consider the extreme case
and write

P±
out

P 0
out

= (1 ± x)2

(1 − x2)2 (II.99)

where P+
out is the amplified value of the seed power and P−

out the deamplified value. We
see that P+

out diverges for x = 1 (Figure II.14), so we can define the threshold power of
the pump as

x =
√
P pump

P pumpthr

. (II.100)

This divergence comes from breaking down of the assumption of no pump depletion.
Above this threshold we can observe spontaneous emission of infrared light inside the
cavity. For squeezing purpose, we always want to be below that threshold so it’s important
to measure it precisely. It’s also a good way to make sure the OPO is functioning correctly
as it is easier to observe parametric amplification than squeezing.

b) The semiclassical behaviour of the OPO

We will now consider the Langevin equation including vacuum fluctuations with a bright
pump βin entering the cavity and no bright seed field. Using the one photon formalism,
we get

−iΩδâ+[Ω] = gδâ∗
−[Ω] − κa

2 δâ+[Ω] +
n∑
i=1

√
κai
τ
δâi+[Ω] (II.101)

−iΩδâ∗
−[Ω] = gδâ+[Ω] − κa

2 δâ
∗
−[Ω] +

n∑
i=1

√
κai
τ
δâi∗− [Ω], (II.102)
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Fig. II.14 OPO nonlinear gain curves as a function of x. We see that as x goes
to 1, the amplification curve diverges, as our assumption of no pump depletion
is no longer valid. Figure from [41]

where we assumed g real and positive. We clearly see in those equations that the non-
linearity has coupled the positive and negative sidebands. Going to Fourier space and
computing the two quadratures yields:

a1[Ω] =
n∑
i=1

√
κai a

i
1(t)

κa/2 − g − iΩ (II.103)

a2[Ω] =
n∑
i=1

√
κai a

i
2(t)

κa/2 + g − iΩ . (II.104)

Using the input-output relationship, we find

aout1 [Ω] =
√
κout

n−1∑
i=1

√
κai

κa/2 − g − iΩa
i
1 − κout − κa + g + iΩ

κa/2 − g − iΩ avac1 (II.105)

aout2 [Ω] =
√
κout

n−1∑
i=1

√
κai

κa/2 + g − iΩa
i
2 − κout − κa − g + iΩ

κa/2 + g − iΩ avac2 (II.106)
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Finally, we can compute the Power Spectral Density(PSD) Souti = aouti (aouti )†, assuming
all the input fluctuations are vacuum fluctuations from coherent field so that their PSD
are unity and we get:

Sout1 [Ω] = 1 + ηesc
4x

4Ω2/κ2
a + (1 − x)2 (II.107)

Sout2 [Ω] = 1 − ηesc
4x

4Ω2/κ2
a + (1 + x)2 , (II.108)

where ηesc = 2κaout/κa is the escape efficiency of the OPO. We can see that the first
quadrature is antisqueezed and the second one is squeezed. To maximize the amount of
squeezing, we need to make the escape efficiency as high as possible so that the transmis-
sion of the output port dominates over the total losses of the cavity. There is, however,
a trade-off to consider as a high output transmission increases P pumptrh , and one needs a
higher pump power to keep x constant. It is also worth noting that the squeezing created
by the OPO is not the perfect theoretical squeezed state presented in the theory section:

Sout1 [Ω] = e2σ (II.109)
Sout2 [Ω] = e−2σ. (II.110)

We, however, recover a perfectly squeezed quadrature close to the OPO threshold
(x → 1) at the condition of a very good escape efficiency (ηesc → 1) and for sideband
frequencies in the cavity bandwidth (Ω ≪ κa/2).

II.5 Optomechanics and continuous position measurement
In this section, I will introduce specific optomechanical concepts to describe continuous
optical sensing of a mirror position and the sensitivity limits related to the quantum
nature of light:

• radiation-pressure coupling between the displacement and the optical field

• the fluctuation-dissipation theorem and thermal noise spectrum

• quantum phase noise, quantum radiation pressure noise (QRPN) and the corre-
sponding standard quantum limit (SQL)

.

II.5.1 Radiation-pressure coupling
We now consider a cavity, represented on figure II.16 where the end mirror is supported
by a spring and can move along the propagation axis by a small quantity δx(t). The
cavity length now becomes

Lcav(t) = L0 + δx(t) (II.111)

and the dephasing
ψ(t) = 2k(L0 + x(t)) = ∆τ + 2kδx(t) (II.112)
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Fig. II.15 Output noise variance of an OPO cavity, showing the generation
of squeezing and anti-squeezing. Cavity parameters Lcav = 1 m; λ = 1 µm;
Tout = 0.1; x = 2g/κa = 0.45; Tin = 0.01 and Tl = 0.001. For the zero-loss case
Tin = Tl = 0. We see that losses affect squeezing more than antisqueezing. We
also see that we only have squeezing below the cavity bandwidth κa = 2π × 15
MHz.

Fig. II.16 Schematic of the optical fields interacting with a cavity where the
end mirror is attached by a spring and can move from its equilibrium position
by a small quantity δx.
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where ∆ = ωL −ωcav is the frequency detuning of the cavity. The equation of motion for
the mirror can be written as

meff

[
δẍ(t) + Γmδẋ(t) + Ω2

mδx(t)
]

= δFRP (t) + δFth(t), (II.113)

where we model our mirror on a spring as a harmonic oscillator of mass meff , resonance
frequency Ωm/2π and with a viscous damping rate Γm. In reality, the mechanical res-
onators used in the discussed experiments have numerous vibration modes, with different
displacement profiles, different effective masses, different resonance frequencies... We will
assume that their mechanical resonances are sufficiently separated in frequency that we
can neglect any coupling between them and just use the simple harmonic oscillator model
separately for each mode. Here, we will only focus on the main vibration, which is engi-
neered to have a maximum displacement of the mirror (and hence a minimum effective
mass meff ) for a given force, and minimal mechanical damping. FRP (t) represents the
force due to radiation pressure and can be written as:

FRP (t) = −2ℏkI(t) = −2ℏk
τ
ā2 − 2ℏk

τ
ā(δa(t) + δa∗(t)) = F̄RP + δFRP (t) (II.114)

i.e. the change of momentum of one photon reflected upon the mirror multiplied by the
flux of incident photons. We will neglect the static part of the force that is just changing
the equilibrium position of the resonator. In all of our experiment, we are tuning the
cavity length to the laser so we are not sensitive to such effect.

II.5.2 The Fluctuation-dissipation theorem
Any mechanical object in a thermal bath is subject to a random force δFth(t), called the
thermal Langevin force. We will just make the assumption that it has no memory, i.e.
that its correlation function is a Dirac distribution. So we can write the power spectral
density of Fth:

SthF [Ω] =
∫ +∞

−∞
< δF (t)δF (t+ t′) > eiΩt

′dt′ (II.115)

= δF 2
0

∫ +∞

−∞
δ(t− t′)eiΩt′dt′ (II.116)

SthF [Ω] clearly doesn’t depend on Ω: it is white noise, with SthF [Ω] = SthF [0]. We will also
make the assumptions that it dominates over the noise of the laser, so we can write, using
the properties of the power spectral density:

< δx2 > =
∫ +∞

−∞
Sxx[Ω]dΩ

2π =
∫ +∞

−∞
|χm(Ω)|2SthF

dΩ
2π (II.117)

= SthF

∫ +∞

−∞
|χm(Ω)|2 dΩ

2π , (II.118)

where χm(Ω) = 1/(meff

[
−Ω2 − iΩΓm + Ω2

m

]
) is the mechanical susceptibility of the

mechanical resonator. If we consider a high quality factor resonator (Γm ≪ Ωm), the
modulus of the response function is peaked around Ωm so we can compute the value of the
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integral by restricting ourselves to a small window ∆Ω around Ωm such that Ω = Ωm+∆Ω
with ∆Ω ≪ Ωm and the integral becomes a Lorentzian :∫ +∞

−∞
|χm(Ω)|2 dΩ

2π =
∫ +∞

−∞

1
m2
effΩ2

m((Ωm − Ω)2 + Γ2
m)

dΩ
2π = Γm

4m2
effΩ2

m

. (II.119)

Finally, we use the equipartition theorem to compute the variance of the displacement,

1
2meffΩ2

m < δx2 >= 1
2kBT (II.120)

We can replace both terms in equation (II.117) to obtain:

SthF = 4kBTΓmmeff = 4kBTγ, (II.121)

where γ = Γmmeff is the physical damping of the resonator which only depends on how
its geometry interacts with the thermal bath. We have demonstrated the fluctuation
dissipation theorem in the specific case of a high quality factor harmonic resonator but
this result can be extended for any mechanical system with a response function χm(Ω)
and would be written

SthF [Ω] = 4πkBT Im [χm(Ω)] . (II.122)

If we only take mechanical thermal noise into account, measuring the power spectral
density of the displacement will therefore display white noise filtered by the mechanical
response of the harmonic oscillator.

II.5.3 Quantum Phase Noise
But the quantum nature of the light field used to probe the displacement eventually adds
some additional noise to the measured signal. For a cavity at resonance, the quantum
Langevin equation at the first order becomes

δ̇â(t) = 2ikā
τ

x− κ

2 δâ(t) +
√
κinâin(t), (II.123)

where we the phase shift term is now only due to the back mirror’s motion. Computing
the two quadratures of the reflected field in Fourier space yields:

aout1 [Ω] = κ/2 + iΩ
κ/2 − iΩa

in
1 [Ω] (II.124)

aout2 [Ω] = κ/2 + iΩ
κ/2 − iΩa

in
2 [Ω] + 4āk

τ
√
κin(1 − 2iΩ/κ)x[Ω]. (II.125)

We see that at resonance, the mechanical motion of the end mirror has no effect on
the amplitude fluctuations of the field. If we now compute the power spectral density
Sout2 [Ω] = aout2 [Ω](aout2 [Ω])∗ of the phase fluctuations of the reflected field, we obtain:

Sout2 [Ω] = 1 + 256F2Iin
1 + (2Ω/κ)2

Sx[Ω]
λ2 . (II.126)

We see that the first term corresponds to the phase fluctuations of the field and the second
to the actual motion of the resonator enhanced by the cavity finesse and filtered by the
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cavity response. From this expression, we can derive SQSNx , the displacement noise power
spectral density that will create a phase noise equivalent to the quantum phase noise of
the field (referred to as Quantum Shot Noise, QSN) :

SQSNx [Ω] = 1 + (2Ω/κ)2

256F2Iin
λ2. (II.127)

For a displacement measurement close to the optical resonance (for mechanical frequencies
Ωm ≪ κ), this will add a constant background to the thermal peak previously mentioned
and will set a fundamental limit to the precision of the measurement (Fig. II.17). We
see that this noise power is inversely proportional to the input laser intensity expected,
which seems to imply that the measurement sensitivity can be increased at will simply
by cranking up the laser power (provided a high laser power is available, and thermal
absorption issues stay under control).

II.5.4 Quantum Radiation Pressure Noise
We will, however, see that the displacement sensitivity can not be increased at will
because of a back-action of the measurement: increasing the laser power does decrease
phase noise but amplifies the effect of amplitude fluctuations of the probe beam, which
are coupled to the mechanical motion by radiation pressure.

As discussed above, the fluctuating part of the radiation pressure force can be written
as

δFRP (t) = −2ℏk
τ
ā(δa(t) + δa∗(t)) (II.128)

which can be written in the Fourier space as

δFRP [Ω] = −2
√

2ℏk
τ

āa1[Ω]. (II.129)

We will write its power spectral density to compare it to the thermal noise and obtain:

SRPF = 64ℏ2F2

λ2 Iin (II.130)

using the input-output relations. We see that radiation pressure fluctuation are propor-
tional to the input laser intensity and will compete with thermal noise as a white noise
driving the motion of the harmonic oscillator. If we consider a case where radiation pres-
sure dominates over thermal noise, we can write the total power spectral density of the
displacement measurement as

Sx[Ω] = SQSNx [Ω] + |χm(Ω)|2SRPF = SQSNx [Ω] + SQRPNx [Ω]. (II.131)

Plotting this expression on figure II.18 as a function of the sideband frequency Ω (in the
limit where Ω ≪ κ) displays two contributions:

• a constant background due to phase noise (inversely proportional to the input optical
power)
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Fig. II.17 An oscillator dominated by thermal noise. Noises in the
position measurement of a macroscopic mechanical resonator with
Q = 1000, Ωm/2π = 2 MHz and meff = 100 µg. The orange curve
represents the displacement noise due to QRPN for an input optical
power of 10µW at 1064 nm, which is negligible compared to thermal
noise (blue curve) for an environment temperature of 1 K. The green
curve represents the QSN, which is an almost constant noise back-
ground. The red curve displays the total displacement noise.

• a peak corresponding to the mechanical resonance excited by the amplitude noise
of the laser (proportional to the input optical power).

Outside of the mechanical resonance, phase noise dominates while at resonance, am-
plitude noise dominates. Between these two regimes, there is a frequency band where
both noise sources have similar contributions (and a set of two frequencies where both
contributions are exactly equal).

We recover here a fundamental concept of quantum mechanics. The optical field used
to probe the system has some intrinsic noise from its quantum nature. We may decrease
the impact of this noise by increasing the strength of the measurement. But increasing
the strength means increasing the number of photons, which will disturb the system so
we reach a fundamental limit called the Standard Quantum Limit (SQL). We will call the
frequencies at which QSN and QRPN have equal contribution the SQL frequencies.

But as radiation pressure fluctuations are proportional to the amplitude quadrature
of the incoming field ain1 and quantum shot noise fluctuations are proportional to the
phase quadrature ain2 , sending an input field with reduced fluctuations in one of those
quadratures (such as the squeezed beam generated by a sub-threshold OPO) allows us to
perform a sub-SQL measurement (see Fig.II.19).
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Fig. II.18 An oscillator dominated by quantum noise. Noises in the
position measurement of a macroscopic mechanical resonator with Q =
106, Ωm/2π = 1 MHz and meff = 100 ng. The blue curve represents
the thermal displacement noise for an environment temperature of 10
mK, which is negligible compared to quantum radiation pressure noise
(orange curve) for input optical power of 10µW at 1064 nm. The green
curve represents QSN, which dominates below 750 kHz and above 1.25
MHz.

II.5.5 The rotation cavity transfer function
We have shown that the measurement of the resonators displacement can be limited by
the SQL if thermal noise can be neglected. We have also shown how a squeezed state of
light could be created by an OPO and how this state could allow a sub-SQL measurement
over a specific frequency range.

Here, I will show how using the phase response of an optical cavity we can rotate
the angle of the squeezing ellipse as a function of the mechanical frequency Ω. The
goal is to have amplitude squeezing at frequencies close to the mechanical resonance of
the oscillator (where QRPN dominates) and phase squeezing at frequencies far from the
resonance (where shot noise dominates). Full details on calculations can be found in [46]

Let’s consider a perfectly squeezed state represented by the following matrix:

vsqz = Rψ

[
eσ 0
0 e−σ

]
R†
ψ. (II.132)

We have shown in section II.3.9 that the effect of a cavity on such state can be written as

Trc = A2 ·
[
rrc(+Ω) 0

0 r∗
rc(−Ω)

]
· A−1

2 , (II.133)
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Fig. II.19 Noises in the position measurement of a macroscopic mechanical
resonator for a squeezed input field (7 dB of antisqueezing, 4 dB of squeezing).
For the blue curve, the phase quadrature is squeezed so QSN is reduced but
QRPN is increased, while for the orange curve, the amplitude quadrature is
squeezed: QRPN is reduced while QSN is increased.

with rrc(Ω) the frequency-dependent cavity transfer function:

rrc(Ω) = 1 − 2 − ϵ

1 + iξ(Ω) = ϵ− 1 + iξ(Ω)
1 + iξ(Ω) . (II.134)

To write things in a more comprehensible manner, we will define the amplitude and phase
of the response function as

ρrc(Ω) = |rrc(Ω)| =
√

1 − (2 − ϵ)ϵ
1 + ξ(Ω)2 (II.135)

and
αrc(Ω) = arg(rrc(Ω)) = arg(−1 + ϵ+ ξ2(Ω) + i(2 − ϵ)ξ(Ω)). (II.136)

We can now write the transfer matrix as

Trc = eiαmRαp(ρpI − iρmRπ/2), (II.137)

where

α± = αrc(±Ω), ρ± = ρrc(±Ω), (II.138)

αp
m

= α+ ± α−
2 and ρp

m
= ρ+ ± ρ−

2 . (II.139)
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Fig. II.20 Rotation angle αp of the squeezing ellipse for a lossless RC detuned
by 2 MHz (blue curve, with (Tin = 1, 000 ppm) and for a lossy cavity (orange
curve, additional losses Tout = 100 ppm).

For a lossless cavity, we have ϵ = 0 so ρp = 1 and ρm = 0, so the transfer matrix is just a
rotation operation by αp with the addition of an overall phase for both quadratures.

For a squeezed state, this operation consists of a rotation of the ellipse of squeezing
which is exactly what is required. However for a lossy cavity, the second term will mix
the quadratures of the squeezed state, adding antisqueezing to squeezing. The angle of
rotation of the ellipse can be written as

αp = atan
(

(2 − ϵ)γfc∆ωfc
(1 − ϵ)(κfc/2)2 − ∆ω2

fc + Ω2

)
, (II.140)

for small value of ϵ, i.e. low losses II.20. By carefully choosing the detuning of the cavity
such that it matches the resonance frequency of the mechanical resonator, we can switch
from phase squeezing outside of the mechanical resonance to amplitude squeezing close to
the resonance. Finally, if the RC bandwidth matches the SQL frequency interval between
the two frequencies at which QSN and QRPN have equal contributions, we can reduce the
quantum noise over the entire bandwidth of the measurement as shown on figure II.21.

II.6 Optomechanical cooling of a macroscopic mechanical res-
onator

Optomechanical coupling, combined with quantum fluctuations of the light field, enforces
quantum limits in continuous position measurements, which tends to lower the sensitivity
of these measurements in any given experimental configuration. But optomechanics can
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Fig. II.21 Noise displacement spectrum for a measurement performed on a
micro-resonator (Q = 106, meff = 100 ng, Ωm/2π = 2 MHz) with 10 µW
of input optical power at 1064 nm. In orange we see the effect of the two
quantum noises for a coherent field and in blue, we see the reduced noise for
a frequency-dependent squeezed field. The squeezed field is created by a per-
fectly frequency-independent squeezed state (6 dB of squeezing) filtered by a RC
with a bandwidth matching the SQL frequency interval of the optomechanical
system and a detuning matching the mechanical resonance frequency of the res-
onator. We see an overall reduction of noise over the whole spectrum.

also be useful in a different context. In an experimental situation where quantum limits
are negligible compared to the thermal noise level, it can be used to lower the effective
temperature of a mechanical system, either by direct coupling of the resonator to the
light field, which corresponds to an additional bath at zero or near-zero temperature,
or by taking advantage of the displacement sensitivity of the position measurement to
counteract in real time the driving of the resonator by the thermal bath. In this section,
I will present both mechanisms.

II.6.1 Radiation pressure cooling

We will see in this subsection how the radiation pressure of the intracavity field in a
detuned optical cavity can create an additional damping of the resonator.

Considering the first order of equation (II.68), we get :

δ ˙̂a(t) =
(
i∆ − κ

2

)
δâ(t) +

√
κinδâin(t) + 2ikāδx(t). (II.141)
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Using the one-photon formalism in Fourier space (and giving up the δ for notation sim-
plicity), we get:(

κ

2 + i(∆ − Ω)
)
â+[Ω] =

√
κinâ

∗
in+[Ω] + 2ikāx[Ω] (II.142)(

κ

2 − i(∆ + Ω)
)
â∗

−[Ω] =
√
κinâ

∗
in−[Ω] − 2ikāx[Ω] (II.143)

χm(Ω)−1x[Ω] = −2ℏk
τ
ā(â+[Ω] + â∗

−[Ω]) + FT [Ω]. (II.144)

We see from the first two equations that the optomechanical interaction creates two
sideband at frequencies ±Ωm on top of vacuum fluctuations of the input field that are
white noise present at all frequencies.

We can now write the radiation pressure fluctuations as :

δFRP [Ω] = −4ℏk2ā2

τ
i

( 1
κ/2 + i(∆ − Ω) − 1

κ/2 − i(∆ + Ω)

)
x[Ω] (II.145)

= −4ℏk2ā2

τ

( ∆ + Ω
(κ/2)2 + (∆ + Ω)2 + ∆ − Ω

(κ/2)2 + (∆ − Ω)2

)
x[Ω] (II.146)

+ i
4ℏk2ā2

τ

(
κ/2

(κ/2)2 + (∆ + Ω)2 − κ/2
(κ/2)2 + (∆ − Ω)2

)
x[Ω] (II.147)

Here, we are mainly interested in the effect of radiation pressure close to the mechanical
resonance frequency. Since we are dealing with a high quality factor resonator, we can
assume that radiation pressure force is constant and equal to δFRP [Ωm]. If we now sweep
the cavity detuning ∆, we will see two sideband added to the resonance peak at ±Ωm

corresponding to the optomechanical interactions. Those can be seen as photon-phonon
interaction process where a photon at ω0 absorbs a phonon from the oscillator creating
a photon at ω0 + Ωm, or emits a phonon in the oscillator creating a photon at ω0 − Ωm

(II.22).
In our experiments, the mechanical resonant frequency is in the MHz range while the

cavity bandwidth is in the 50 MHz range. This is the unresolved sideband regime (also
known as the bad cavity limit in quantum optics experiments with atoms), where the two
sidebands created by the motion of the mirror are within the cavity resonance linewidth.
We then have a force term with a real and complex part that can be seen as an "optical
spring" term and an "optical damping" term (II.23). The optical damping term can be
written as:

Γopt = −g2
0
P

ℏωL
4κκin∆Ωm

(∆2 + κ2/4)3 , (II.148)

Where g0 = Gxzpf is the reduced optomechanical coupling which is the product of the
optomechanical constant G = ∂ωcav

∂x (equal to 2k
τ for a linear Fabry-Perot cavity), and

xzpf =
√

ℏ
2meffΩm the zero-point displacement fluctuations of a quantum harmonic os-

cillator. Note the additional damping requires the cavity to be detuned: for a resonant
cavity indeed, thermal motion doesn’t create any modulation of the intracavity radiation
pressure and hence, the damping term cancels.
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Fig. II.22 a) Cavity response function represented with the two Stokes and anti-
Stokes band for a cavity at resonance. The two processes are present but have no
mechanical effect. b) For a detuned cavity, one of the processes is enhanced by
the cavity response and has a mechanical effect (here absorption of a mechanical
phonon). c) The resolved side-band regime where the cavity response is narrow
enough to select only one of the processes. This condition is required to reach
the ground state using this cooling principle and is not met for a macroscopical
resonator in a standard Fabry-Perot cavity. d) Feynman diagrams of the two
optomechanical processes.

Because of the additional damping term, the resonator is no longer at thermal equi-
librium and the equipartition theorem now becomes:

1
2meffΩ2

eff < δx2 >= 1
2kBTeff (II.149)

where Teff is the effective temperature of the resonator motion and Ωeff the optically-
shifted resonance frequency of the oscillator. As the thermal Langevin force is not affected
by the optical field, we write:

SthF = 4kBTenvmeffΓm (II.150)

where Tenv is the equilibrium temperature of the environment. If we use the relation
(II.117), we can relate the two temperatures and we get:

Teff = Tenv
Γm

Γm + Γopt
. (II.151)

The radiation pressure "cools" the motion of the resonator, as it adds dissipation to the
system and reduces the effective temperature of the motion for (at least) one specific
mode. The thermal peaks represented on figure II.23 gets lower as the temperature is
reduced and wider as the damping is increased. As the thermal energy of this mode is
reduced, it gets closer to its quantum-mechanical ground state. To quantify how close
it gets, it is useful to compare its thermal energy to the quantum scale of energy of a
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Fig. II.23 Right : Experimental Noise displacement spectra for a micro-pillar
for a detuned cavity. The different coloured curves correspond (from top to
bottom) to an incident optical power ranging from 0.2 to 25 µW. We can see as
we increase the optical power that the mechanical resonance peak becomes both
wider, due to the optical damping, and lower as we are reducing the effective
temperature of the mechanical mode. We also see that the resonant frequency
is shifted as expected from the optical spring effect. Figure from [19]. Left :
Conceptual scheme of side-band cooling. The phase modulation of the cavity
due to the mirror’s motion induces intensity fluctuations with some delay due to
the cavity response function. This delay causes the radiation pressure force to
act as a damping force.

quantum harmonic oscillator and write:
1
2kBTeff = nphℏΩeff , (II.152)

where nph is the "number of phonons" of the oscillator. This definition is not rigorous
and should mainly be seen as a way to measure how far the system is from its quantum
ground state.

It is easy to see on Eq. (II.148) that for a negative detuning, Γopt is positive so
the optical field adds dissipation to the mechanical resonator while adding negligible
fluctuations. So it can be used to cool the motion of the resonator. Optimal cooling is
reached for ∆ = −κ/2 and we then have

Γmaxopt = 16g2
0
P

ℏωL
κinΩm

κ4 , (II.153)

which gives us the maximum cooling rate for a given optical power. We will see in the
experimental setup description part that the amount of optical power we can inject into
the cavity is limited by the optical absorption of the mirrors: at one point, the temperature
of the resonator starts to increase with the optical power. I will now present a cooling
method with a better efficiency.

II.6.2 Feedback cooling
The calculation presented is this section are based on ref. [47]. The idea of this technique is
now to measure the displacement x(t) of the resonator in real time and use this information
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to apply a feedback force that acts as a damping term, by modulating the intensity of an
additional laser beam such that:

FRP (t) = −gmeffΓm
dx(t)

dt , (II.154)

where g is the feedback gain of the loop. This would be the ideal case but we have to
consider that our measurement is not ideal and some noise xn(t) is going to be added as
well when performing our measurement. In that case, the effective equation of motion is:

meff

[
ẍ(t) + (1 + g)Γmẋ(t) + Ω2

mx(t)
]

= Fth(t) − gmeff
dxn(t)

dt . (II.155)

If we now compute the power spectral density, we get:

Sxx[Ω] = 1
(Ω2

m − Ω2)2 + (1 + g)2Γ2
mΩ2

[
2kBTenv
meff

Γm + g2Γ2
mΩ2SNxx

]
, (II.156)

where SNxx is the power spectrum of the measurement noise and we used the Fluctuation-
Dissipation theorem to compute SFthxx . Here, we can safely assume from our measurements
that we are limited by quantum shot noise which is independent from Ω. So we have:

SNxx[Ω] = SQSNxx [Ω] = λ2

256F2(P/ℏωL) (II.157)

We can use the equipartition theorem to link Sxx and Teff , and we get:

Teff = Tenv
1 + g

+ meffΓmΩ2
m

4kB

(
g2

1 + g

)
SQSNxx (II.158)

Here, the parameter to optimize is no longer the detuning as it was for intracavity radia-
tion pressure cooling but the gain g of our feedback loop. The lowest effective temperature
is obtained for:

gopt = 2
√

kBTenv

meffΓmΩ2
mS

QSN
xx

(II.159)

and we get :

T fbcmin =

√
meffΓmΩ2

m

kB
SQSNxx Tenv = λ

16F

√
meffΓmΩ2

mTenv
kB(P/ℏωL) . (II.160)

We can now compare T fbcmin and T sbcmin as a function of the optical power for the character-
istics of the two resonators used in this work:

In chapter III, I will present experiments where the detected displacement noise is
strongly dominated by thermal noise and such a technique is applied to get closer to the
quantum ground state of the resonator.
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Fig. II.24 Comparison between the minimal achievable temperature using ra-
diation pressure cooling and feedback cooling as a function of the input optical
power. The following parameters are used: Tenv = 0.5 K, Ωm/2π = 3.6 MHz,
F = 79, 000, meff = 33.5µg, κ = 205 MHz, κin = 90 MHz and Q = 7 × 107.
We see that for 25 µW, we get, with sideband cooling, the same temperature of
3 mK that was experimentally measured in the group by Leonard Neuhaus [19].
For the same amount of optical power, we go to two orders of magnitude below
with feedback cooling assuming we are only limited by Quantum Shot Noise in
the measurement hence the motivation to go from sideband cooling to feedback
cooling.



Chapter III
Cooling a µg-scale optomechanical
resonator close to the quantum ground
state

In previous experiments performed at LKB, a 1-mm long quartz µ-pillar (resonance fre-
quency of 3.6 MHz and effective mass of 30 µg) was cooled down to 3 mK, which cor-
responds to a mode thermal occupancy of 20 phonons, using optomechanical sideband
cooling. In the course of Rémi Metzdorff’s PhD, the use of feedback cooling pushed this
number further down to 6 phonons. Unfortunately, this result was not reproducible so
we considered using a new kind of oscillator: a silicon wheel resonator, that I have char-
acterized and with which I have performed the feedback cooling experiments discussed in
this chapter. Silicon wheel resonators have much more reproducible mechanical properties
than quartz micro-pillars, so they are promising to reach the ground state for macroscopic
resonators.

I will begin this chapter by motivating such cooling experiments with µg-scale res-
onators. I will then describe the different parts of the experiments: the mechanical
resonators, the cryogenic moving mirror cavity, the full optical detection setup, and I will
eventually present the experimental results obtained.

III.1 Introduction and motivations

Optomechanics has been extremely successful to cool macroscopic (man-made) optome-
chanical systems but almost all experiments were performed with extremely tiny systems,
with mass in the ng range and below. Such systems are indeed very sensitive to radiation
pressure and motion is in the MHz band and above, which naturally isolates them from
many classical noise sources. Miniaturization is also natural for integrated systems, with
possible applications in quantum information.

On the fundamental physics front, a fascinating perspective is the investigation of the
decoherence of a quantum superposition of such a mechanical object under the effect of
gravity, which is however negligible for most resonators demonstrated in the QGS [10, 49].

If we consider a massive object in a quantum superposition of two states separated

51
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Fig. III.1 The Diosi-Penrose model for gravitational decoherence of
a quantum superposition of a mechanical resonator. (a) Probability
distribution of a cat state. The resonator is in a quantum superposition between
the two x positions, so time is not well defined in the superposition vicinity. (b)
For a resonator composed of N nuclei, the macroscopic superposition state can
be viewed as a quantum superposition of nuclei states, simultaneously displaced
up and down (c). Figure adapted from [48].

by a distance ∆x, there is an ambiguity on how time is defined in the vicinity of that
superposition. Indeed, as time is affected by the nearby mass distribution, it should also
be in some sort of a state superposition. In the model proposed by Diosi and Penrose
(see [48] for an illuminating elementary exposition and [50, 51] for the original papers),
the different local time scales give rise to a gravitational decoherence time:

tGR ≈ 3 × 10−15
(1 kg
m

)
s, (III.1)

that only depends on the effective mass m of the resonator. This is valid as soon as the
distance between the two states is larger than the diameter of the nuclei the resonator is
made of. This sets a size limit on the cat state (in terms of mean phonon number n):

n ≫
(

∆x
2xzpf

)2

. (III.2)

To create such a non-Gaussian state, QGS is only a starting point: one would also need to
couple the resonator to a highly non-linear system, ideally a qubit and such experiments
are also conducted at LKB with a nm-scale membrane coupled to a fluxonium qubit.

For a resonator in such a state, the coupling to the thermal bath will also induce
decoherence, with a characteristic time

tcoh = 1
2(2nth + 1)nγm

, (III.3)

where nth is the mean phonon number of the bath and γm is the mechanical damping
rate of the resonator. One may expect to see some gravitational decoherence effect if
the gravitational decoherence time tGR is shorter than the thermal time tcoh. Macro-
scopic resonators with a large effective mass are obviously good candidates. However, the
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Micro-pillar Micro-disk
Material quartz silicon

Effective mass 33 µg 120 µg
Resonance frequency 3.6 MHz 280 kHz
Quality factor at 1 K 3 × 106 106

Table III.1: Main mechanical characteristics of the resonators used during the PhD.

required size of the cat state will be large because of the very low value of their QGS
position fluctuations x2

zpf . Figure III.2 presents both decoherence times computed for a
representative set of optomechanical platforms. Despite its relatively low mass, the most
promising platform is by far the SiN nanomembrane because of the incredible success
recently obtained in designing ultra-high Q resonators. The µ-pillar is however one of the
few promising systems for such experiments as the ratio tGR/tcoh is favourable, at least
for the Q = 7.107 highest value demonstrated (see next section). For the wheel resonator,
we find a gravitational decoherence time of 23 ns and a thermal decoherence time of 36 ns
for a quality factor of 3 millions, to be compared to the common measured value around
1 million, though at a thermalization temperature of 100 mK. The big challenge for such
systems would be to create a cat state with a sufficient size, with n ≈ 105. The first
step on this experimental journey is however the demonstration of the QGS and I will
present in the following sections the progress made during my PhD using both cryogenic
and optomechanical cooling.

III.2 Description of the experiment
The experiments discussed in this chapter involve a number of systems. By order of
appearance on stage, I will successively describe the mechanical resonators, the high-
finesse optical cavity they are encapsulated in, the dilution cryostat where the cavity is
housed, the optical measurement schemes and the characterization steps of the whole
setup.

III.2.1 The mechanical resonators
I have studied two different geometries of optomechanical resonator, but both consist of
high mechanical quality factor resonators carved on thin wafer with decoupling shields
to protect them from clamping losses. They are also both eventually coated with very
high-reflectively coating (with a residual transmission ≃10 ppm) at 1064 nm. With the
input mirror, they constitute a cavity with an optical finesse of 60,000.

a) The micro-pillar resonator

The mm-long micro-pillar is fabricated in quartz, a material with very low intrinsic me-
chanical loss. An important issue is related to the required etching using hydrofluoric
acid (HF) which is not as clean as silicon etching by Deep Reactive Ion Etching (DRIE)
for example. The etching has been performed at ONERA and the coatings at LMA. The
triangular section of the pillar is imposed by the quartz crystalline structure.
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Fig. III.2 Optomechanical resonators (ordered by increasing resonance fre-
quency) and figures of merit for different applications: quantum memory, force
sensing and experimental test of gravitational decoherence. Besides the SiN
membrane, the µ-pillar is the only resonator to display a gravitational decoher-
ence time (91 ns) shorter than its thermal decoherence time (260 ns), due to its
very high effective mass. Value taken from [52, 53, 54, 55, 56, 57, 58, 59, 19, 29,
49, 60].
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Fig. III.3 The micro-pillar resonator. a) Finite-element simulation of the
fundamental elongation mode. Displacement is represented by the color scale.
Mechanical stress is minimized at the mirror location. b) Scanning Electron
Micrograph view of the pillar and its isolation frame. c) Optical view of the
mirror coated on the top face of the resonator. d) View of the resonator glued
on copper pieces coated with gold and ready to be mounted inside the cryostat.

The elongation mode (see Fig. III.3) of the pillar had the advantage of a high me-
chanical resonance frequency (typically 3.6 MHz for 1 mm) and a potentially ultra-high
mechanical Q. Indeed, this specific mode maximizes the displacement of the mirror coated
on the pillar end face, while minimizing the deformation of the mirror.This is ideal because
the materials used for the dielectric coating unfortunately have high intrinsic mechanical
losses: in this geometry, coated at a vibration antinode where stress is minimal, they only
have little impact on the effective damping of the resonator. The demonstrated Q value
indeed went up to 70 millions demonstrated, though only on a single sample. The samples
indeed had very different properties from one to the other, depending on the details of the
etching of the quartz wafer, which was not reproducible. Apart from this great sample,
most of the samples displayed medium quality factors (typically Q ≃ 100, 000) and bad
thermalization with the cryostat.

These resonators also displayed low-frequency modes (see Fig. III.4), which were
strongly coupled to the optical mode of interest, such that the optical power stored in
the cavity would easily start a photothermal parametric instability [61], preventing the
cavity locking and adding noise to the displacement spectrum.

Taking into account all these disadvantages, we decided not to re-fabricate such res-
onators but rather to try the wheel resonator designed by Francesco Marin at LENS,
made with a different material, taking advantage of another mechanical mode geometry
and benefiting from a standard microelectronics fabrication process.

b) The wheel resonator

The silicon wheel resonator has been adapted from the successive designs (see Fig. III.5)
in Francesco Marin’s group [62], with the highest possible frequency. For this purpose,
resonators five times smaller than the ones originally used have been fabricated, the main
limitation being the size of the mirror at the center which needs to be around 100 µm to
prevent beam clipping (see Fig. III.6).

The wheel resonators have been fabricated using DRIE, that allows flat etching angle
in silicon as opposed to potassium hydroxid (KOH) etching. The resonators have been de-
signed to limit the number and the effect of the parasitic low-frequency modes mentioned
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earlier and to maximize the displacement at the center of the wheel while minimizing
stress (see Fig. III.5).

Unfortunately, they do have a low resonating frequency by a factor of ten, meaning
that for the same temperature, the number of phonons is ten times higher. However, they
have much more reproducible properties, and among the 10 samples we have tested, all
had a quality factor around one million (see Table III.2). The two resonators that we
measured inside the dilution cryostat had the same thermalization temperature around 1
K. With these resonators, we could also inject higher optical power into the cavity, due
to the better thermalization.

We have performed ring-down measurement in a small circulation cryostat going down
to 5 K as a function of temperature and we were able to measure the quality factors of 10
of those samples. Unfortunately, we believe that this low-cost cryostat doesn’t thermalize
the sample at 5 K but more probably around 20 or 25 K. When measuring the quality
factor as a function of temperature, a maximum was reached at 125 K (see Fig. III.7).

Searching the literature for the value of the mechanical losses in silicon as a function of
temperature, I have found that it strongly depends on the thermal expansion coefficient
of silicon. At 125 K, there is a crystalline structure change in silicon and its thermal
expansion becomes negative [63]. So at this turning point, the thermal expansion is zero
and one can approach the losses that we would reach in a dilution cryostat. We used this
measurement to obtain a better estimate of the quality factor at dilution temperatures.

III.2.2 Optical Setup
We use a 1064 nm Nd:YAG laser from Coherent. To suppress the relaxation peak of the
laser around 1 MHz, we inject the laser through an optical mode cleaner in addition to
the built-in noise eater of the laser. The mode cleaner is a triangular Fabry-Perot cavity
with a round trip length of 84 cm and a finesse of 6,000, allowing for a low-pass cut-off
frequency of 56 kHz (a complete description of an exact replica of this mode cleaner is
given in section IV.3). This allows us to be limited only by quantum noise above 200 kHz.
The laser is then split along the two polarizations : one will be frequency-shifted and used
for PDH detection and the other is going through an amplitude modulator and used with

Fig. III.4 Finite-element simulations of the parasitic low-frequency modes of the
micro-pillar. For high optical power, vibrations at these frequencies drastically
increase and make the cavity impossible to properly lock at resonance.
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Fig. III.5 Design of the wheel resonators. a) FEM of the first design of
the wheel resonator: the mirror is supported by radial flexural springs and the
central part (mirror location) is strongly bent. b) FEM of the low deformation
design: the vertical displacement of the mirror is almost uniform thanks to the
structure made of alternated torsional and flexural springs. The main advantage
compared to the elongation mode of the pillar is the absence of tilting mode as
the one represented in the middle of the figure III.4. c) Optical view of the wheel
resonator before the optical coating step. Figure adapted from [62].

Fig. III.6 The LKB wheel resonator. a) Finite-element simulation of the
mechanical mode of interest. Displacements are represented by the color scale.
b) and c) Views of the resonator taken with an optical microscope for various
magnifications. d) View of the resonator glued on copper pieces coated with gold
and ready to be mounted inside the cryostat.

Sample name Q at 2 × 10−4 mbar Q at T = 125 K Q at Tcryo = 4.2 K
W1564N1 71 000 800 000 290 000
W1572N3 76 000 575 000 405 000
W1570N2 76 000 770 000 700 000
W1566N2 78 000 890 000 640 000
W1556N2 76 000 940 000 650 000
W1570N1 60 000 344 000 420 000

Table III.2: Measured quality factors of vibration mode under study, for various
wheel resonator samples. We use the fact that thermal expansion goes to zero at 125 K
to have a better estimate of the quality factor at dilution temperatures. The temperatures
indicated correspond to the one displayed by the cryostat thermometer and may differ
from that of the samples, particularly at very low temperatures.
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Fig. III.7 Variations of the mechanical quality factor of the wheel res-
onator with temperature. The maximum quality factor is reached around
125 K where the thermal expansion cancels. This measurement is performed in
a small circulation cryostat, that can quickly reach low temperatures, to get a
better idea of the quality factor vaue at dilution temperature. The temperature
reported on the plot is the one displayed by the cryostat thermometer, though
the resonator is most likely thermalised at a higher temperature.

a homodyne detection scheme to apply a feedback force to the resonator motion from the
displacement signal.

III.2.3 A resonator inside a high-finesse optical cavity

a) The input mirror

The moving mirror cavity is a 100-µm long plano-concave optical cavity. The input
mirror is a curved mirror (with a radius of curvature (ROC) ≃ 1 mm) carved in a 1-
mm thick Suprasil fused silica sample. The concave spot has a typical diameter of 100
µm, engineered by a pulsed CO2 laser (see Fig. III.9). It is then coated with a high-
reflectivity dielectric coating (with several λ/4 doublets) with a transmission of 80 ppm.
Such a mirror allows a 10-µm waist on the flat mirror of the cavity, compatible with the
small transverse size of the mechanical resonator. A short cavity also proves to be more
robust against misalignment and potential hybridization between the fundamental optical
mode of interest and higher-order transverse optical modes.

b) Mounting an optical cavity inside a cryostat

The cavity design has been developed by two former LKB PhD students: Rémi Metzdorff
and Leonhard Neuhaus. It is described in detail in their thesis but I give here a brief
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Fig. III.8 Simplified optical setup. The two beams for the homodyne detec-
tion and the PDH detection have orthogonal polarisations and the PDH field
is frequency-shifted by the acousto-optic modulator (AOM) to match the cav-
ity birefringence so that both laser beams are resonant with the cavity, each on
its own polarization axis. The beam of the homodyne detection is amplitude-
modulated to apply the feedback force while the PDH is not and serves as an
out-of-loop measurement.

Fig. III.9 Interferometric profile of a Suprasil sample before and after a CO2
laser shot of 90 ms. We have obtained a concave structure with a 60-µm diameter
and a radius of curvature of 1.3 mm.
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Fig. III.10 A schematic side view of the moving mirror (FPM) cavity (not to
scale).

summary.

The cavity assembly process starts by glueing the samples onto a small copper piece
that can be easily removed from the setup, in order to easily change sample. This is
particularly useful because the sample properties can vary quite significantly from one
to the other. We want to choose the resonator with the best quality factor and the
micro-ROC that makes the highest finesse cavity. We glue the micro ROC on the "µROC
support" (see Figs. III.10 and III.11) piece with black Stycast. For the wheel/pillar
resonator, we first glue a frame in silcon/quartz on the "resonator support" to ensure a
good thermalization of the sample before glueing the actual resonator also with black
Stycast. We then mount the three piezos (PD080.3x from PI ceramics) in the "cavity top"
piece using the "piezo alignment" piece to ensure that they are properly stacked. These
piezos are used to tune the cavity length to resonance. We need to stack three of them to
make sure we have at least more than one FSR when operating at dilution temperature
(temperature at which their mechanical behaviour and displacement is reduced by the
extreme temperature conditions).

We have found it is better to have them behind the mirror than behind the sample
in order to avoid any parasitic piezoelectric effect (particularly for the quartz resonator).
We then screw the "µROC support" on the "cavity top" and the "resonator support" on
the "cavity holder" using 4 M1.6 screws in brass (which has a slightly higher thermal
contraction coefficient than copper so it will keep the pieces tight when going to cryogenic
temperatures). The cavity top is attached to an XY translation mount from Thorlabs
connected to a cage system mounted on the cavity holder piece thanks to the "alignment"
piece which is in dural.



III.2 Description of the experiment 61

Cavity top
Resonator holder

Alignement

Cavity holder Cavity top

Fig. III.11 3D views of the mechanical parts of the cavity. The different parts
are not to scale from one to the other.

c) Alignment

This setup allows to move the micro RoC with respect to the resonator while injecting a
laser beam inside the cavity. In this way we can make sure that the two mirrors are on
top of each other and that we are maximizing the finesse of the cavity. When the finesse
is optimal, we can tighten the 4 long M2 screws that hold the cavity top with stainless
steel washers (see Fig. III.12). To make sure we keep the alignment and the cavity length
constant while going down in temperature, we place 137-µm thick Kapton spacers (seen
on Fig. III.3(d)) between the two mirrors. The Kapton will only very slightly deform
between room and cryogenic temperatures and will maintain the cavity aligned and the
length around 100 µm.

The three piezoelectric transducers (PZT) ensure a displacement up to roughly 4 free
spectral ranges (FSR) of the cavity at room temperature and just over 1 FSR at dilution
temperature. To make sure that the Kapton is not too tight, we first mount the cavity
without it and measure its length by measuring the FSR of the cavity. We aim for a length
just under 127 µm to make sure that the Kapton is just slightly tight. This system allows
us to have a cavity of finesse 60,000 inside the dilution fridge, with just 50 ppm of excess
optical loss, and ensures an easier locking of the cavity length by the PZT by reducing
the uncorrelated vibrations of the two mirrors. We end up with a cavity aligned with the
proper length, optimized finesse and properly tightened Kapton spacers. We can then
remove the XY translation mount to obtain a compact, high-finesse and dilution-robust
cavity that we can mount in the dilution cryostat (see Fig. III.13).

d) The Horizontal dilution cryostat

Description The horizontal dilution cryostat has been built by Cryoconcept with cus-
tom specifications planned by Aurélien Kuhn. More details on the specifications and the
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Fig. III.12 Alignment procedure. On the left, the cavity is misaligned: two
bright spots can be seen, which corresponds to the situation where the mirrors
are not on top of each other for both the micro-pillar and the wheel resonator
(see the picture below). The bottom part shows that the top part of the cavity
can be moved with respect to the bottom part thanks to the XY translation
mount. On the right, the cavity is "pre-aligned": the mirrors are visually on
top of each other. This is sufficient to see optical modes, required for further
alignment optimization.

Fig. III.13 Left : Picture of the cavity mounted in the cryostat with the mode-
matching lens on the Thorlabs mount. Right : Sectional view of the mounted
cavity, ready to be installed in the dilution cryostat.
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design of the cryostat can be found in [64]. A dilution cryostat uses a mixture of 3He/4He
to reach a temperature well below 4 K, the boiling point of liquid Helium.

To reach 4 K, the cryostat has a liquid 4He circulating circuit connected to a 20-l tank.
When in dilution operation, the tank needs to be refilled after 27 hours maximum. The
dilution circuit is a closed circuit that undergoes compression and decompression cycles
that takes heat from the sample part and cools it down to 100 mK. Usually, dilution fridges
are vertical to use gravity. In the LKB cryostat, an important constraint is to minimize
the effect of the vibrations due to the boiling helium. With an horizontal cryostat, such
vibrations are localized along the propagation axis of the beam inside the cavity. The
two cavity mirrors and the mode-matching lens are all attached to the sample part of the
cryostat (see Fig. III.13) so the vibrations affect as little as possible the beam position
inside the cavity. The cryostat has 5 shields isolating the different stages, respectively
at 300 K, 200 K, 100 K, 4 K and 100 mK (see Fig. III.14). The vacuum chamber has
to be pumped below 10−4 mbar before starting the cool-down. The cool-down usually
takes 14 hours to reach dilution temperature. While in dilution operation, the mixture is
constantly filtered through an active carbon trap kept in liquid nitrogen. This keeps the
mixture clean from impurity and parasitic gas, that will be liquefied in the trap, before
sending it to the dilution circuit. The trap is in a tank of liquid nitrogen that has to
be refilled every week. All the details on the dilution cryostat operation can be found in
Rémi Metzdorff’s thesis (in french) [65] and Leonhard Neuhaus’s thesis [66].

Issues The base temperature used to be below 100 mK, but it has increased in recent
runs. We are not sure yet if it comes from clogging of the dilution circuit or from losses of
mixture. There is most likely a leak in the dilution circuit because it systematically clogs
after one week of cryostat operation. But even after extensive leak tests we haven’t been
able to find it. I haven’t had the time to make this final test but by plugging the leak
detector to the vacuum chamber and letting the mixture circulate inside the cryostat, we
should immediately see if some helium of the mixture goes inside the vacuum tank and
is detected by the leak detector. The other possibility would be the presence of hydrogen
in the mixture that won’t be liquefied in the trap but that would liquefy in the dilution
circuit. If this is a the case, a solution would be to add a filter in the dilution circuit.
Another issue we faced was the clogging of the 4He circuit at the exit of the cryostat. This
happened randomly, made the liquid 4He transfer impossible and caused the pressure of
gaseous helium to rise inside the tank. After some leak test, we found several leaks in
the circuit that we fixed and we also added a check valve at the exit of the cryostat to
make sure that no impurities from the 4He provided by the Low Temperature service of
the university could enter in the cryostat circuit.

III.2.4 Temperature measurements and resonator characterization

a) Calibration of the data

To measure the effective temperature of the mechanical mode we send an optical beam
on the other polarization of the cavity. We use a PDH detection scheme to have another
phase sensitive measurement outside of the feedback loop. To ensure the absence of cross-
talk between the two beams, one beam is frequency shifted using AOMs. The frequency
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Fig. III.14 Left: Photograph of the dilution refrigerator with all heat shields
removed. Mounted on the square steel frame in the back, one can see the var-
ious plates on which the shields are fixed that are named after their nominal
temperatures: 200 K, 100 K, 4 K, 1 K and 100 mK. At the center of the mixing
chamber plate, a previous version of the Fabry-Perot cavity is mounted. Right:
Screenshot of the touchscreen interface of the cryostat controller. The upper
screen shows the controls of the 3He - 4He mixture circuit on which we can see
the mixture tank (DUMP K4) and the trap (PIEGE A CHARBON), the lower
screen the controls of the 4He circuit where a gauge tells us the tank of the
cryostat is filled here with 15.2 cm of liquid helium. A full 20-l tank corresponds
to a gauge at 15.7 cm while an empty one corresponds to a gauge at 2.3 cm.

shift matches the birefringence of the cavity due to asymmetry of the input mirror along
the two polarization axes. To calibrate the obtained spectrum we use a calibration tone
generated by a phase modulator whose Vπ has been calibrated beforehand. We can then
convert the measured voltage of the spectrum analyzer in a phase variation. Given that
we are using a linear Fabry-Perot cavity, we know that the amplitude δϕ of a phase
modulation at Ωmod is equivalent to a displacement δx :

δx = L

νL
Ωmδϕ. (III.4)

This relation depends on the cavity length that we need to measure precisely. To do so,
we use a laser with a tunable wavelength and a λ-meter to monitor precisely its frequency,
and record the value of the resonant frequencies of the cavity for four consecutive modes.
We can then deduce the FSR value from the slope of the curve and thus the length of the
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Fig. III.15 Left : Cavity length calibration. The points mark the values of four
consecutive resonance frequencies of the cavity. The slope yields an FSR of 1323
GHz corresponding to a cavity length of 113.4 µm. Right : Cavity bandwidth
measurement. The cavity resonance is scanned using a PZT while applying a
80-MHz phase modulation to the optical field. The modulation creates sidebands
at 80 MHz, allowing to calibrate the scan in frequency units and to measure the
resonance peak bandwidth.

cavity with a great precision (see Fig. III.15), which allows us to convert the spectrum in
m2/Hz. Using the fluctuation-dissipation Theorem we know that the area A under the
thermal peak is proportional to the temperature of the mode:

πAΓeff = 1
2kBT. (III.5)

b) The effective mass

The effective mass is calibrated at room temperature by doing the same process and as-
suming that the mechanical mode is at thermal equilibrium at room temperature. To
minimize radiation pressure effect, we perform the measurement at ambient pressure
where the quality factor is around 103, in such a way that the optical damping is neg-
ligible compared to the thermal damping (see Fig. III.16). We have performed such
measurements for different values of the input optical power, ranging from 0.2 µW to 5
µW, to make sure there is no correlation between the measured value of the mass and
the power injected into the cavity. The measured values are 112 ± 3 µg for the 1556N1
sample and 134±3 µg for the 1556N2 sample. The effective mass of the mode can also be
estimated using finite-element simulations, that yield a value of 110 µg, which matches
the value measured experimentally even though the large difference between the effective
mass value for the two different samples is a bit surprising.

c) The intrinsic quality factor

Even in the absence of feedback, as the cavity slightly shifts around the exact resonance,
there is some cooling/amplification optomechanical effect: the quality factor and the tem-
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Fig. III.16 Noise displacement spectrum of the mechanical mode at room tem-
perature and ambient pressure with 1.9 µW of input optical power (blue curve).
The Lorentzian fit (orange curve) corresponds to a mechanical quality factor
Q = 1360 and yields and effective mass of 134±3 µg.

perature measured by fitting the displacement spectrum are neither the intrinsic quality
factor of the resonator nor the real temperature of the sample inside the cryostat.

To measure the intrinsic quality factor, we have to perform a measurement with the
cavity unlocked: we sweep at low frequency the length of the cavity using the PZT and
we send a small additional modulation (at the resonance frequency of the resonator) onto
the PZT. Even though the PZT are behind the input mirror, this is sufficient to drive the
resonance of the resonator. The reflection peak oscillates at high frequency, mimicking a
larger peak for the optical resonance. By measuring the width of the peak as the drive
is turned off, we perform a ring-down measurement of the mechanical mode. We know
the curve is proportional to e−Γmt/2 = e−Ωmt/(2Q), so we can deduce a quality factor
of 1.6 million here. We estimate the error by repeating the measurement, we obtain
∆Q = 30, 000. By comparing the intrinsic quality factors obtained with the one deduced
from the spectra, we can measure how much the resonator is cooled and estimate the
environment temperature, i.e. the temperature of the thermal bath inside the cryostat.

d) The feedback loop

The feedback is performed using the homodyne detection signal as an error signal. It is
analogically filtered around the mechanical resonance using an LC filter then amplified and
phase detuned before being sent to the fibered amplitude modulator (III.8). If the phase is
not correctly tuned, we excite the resonator’s motion instead of cooling it. To fine tune it,
we add extra cable length l in our loop that phase shift the signal by ∆ϕ = c

2πΩm . Finally,
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Fig. III.17 Ringdown measurement of the wheel resonator at dilution
temperature. Top left: Cavity optical resonance peaks (blue curve) with a
drive of the oscillator. The width of the resonance peaks is directly related to
the amplitude of motion of the resonator, which allows to perform a ringdown
measurement. The orange curve is a down-sampled version of the blue curve.
Top right: zoom on one of the resonance peaks with the green and red point cor-
responding to numerical evaluation of the width of the resonance peak. Bottom:
width of the resonance peak as a function of time in linear (left) and logarithmic
scales (right). The oscillator motion is driven for about 2 seconds before per-
forming the measurement.
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to fine tune the feedback gain, we add attenuation blocks before the phase modulator.
We find the optimal phase by looking at the thermal peak’s height and frequency, the
optimal value is reached when the height is at a minimum and when there is no shift in
frequency when the feedback is applied. A shift in frequency, means a part of the force is
real and act as an optical spring and we want to have it purely imaginary. Once the phase
is optimised, we can start removing attenuation blocks. As we increase the feedback gain,
we are getting more unstable so this part has to be done carefully.

e) Experimental feedback cooling results

We can now measure the resonator’s effective temperature looking at the PDH detection
but it can be measured as well with the homodyne detection. Calibration is performed
in a similar manner as for the PDH scheme: we send a small modulation to the PZT of
the cavity at a frequency close to the resonance frequency, creating a phase modulation.
As the corresponding modulation peak can be monitored on both the PDH and the
homodyne spectrum, the calibration of the PDH spectrum can be used to calibrate the
phase modulation and the homodyne spectrum. This way we have two independent
measurements, one being extracted from the error signal of our feedback loop and the
other being the out-of-loop measurement.

We observe that for high feedback gains, the temperature of the environment, and the
effective temperature that we deduce from the measurements, start decreasing faster than
the temperature calculated with the out-of-loop measurement. This can be explained
by the fact that feedback is actually driven by measurement noise. Using the method
described in section II.6.2, we can take this effect into account and correct the value of
temperature. The different temperatures we measure with the PDH and the homodyne
detections are now in agreement. The results for the µ-pillar, which I have reanalyzed
based on Rémi Metzdorff’s measurements, are presented on Figure III.18: an effective
temperature of 1.1 ± 0.1 mK was reached, which corresponds to a residual number of
phonons of only 6.4 ± 0.8.

Similar results for the wheel resonator are presented on Figure III.19: a similar limit
temperature of 1.16±0.05 mK was reached, but because of the lower resonance frequency
of the resonator, this only corresponds to 87 ± 3 phonons.

f) Computing the uncertainties

To compute the uncertainties on our fitting parameters, we cannot use the covariance
method because our fitting function is non-linear. Instead we use the bootstrap method
([67]) where we generate artificial data-sets by doing a random sampling with replacements
on the points of our initial data-set. Using this method, we generate 5000 new data-sets
that will each contain a subset of the initial points with some of the points having an
extra "weight" if they have been sampled more than once and some of the points having
no weight at all if they haven’t been sampled. Average over all the 5000 data-sets each
points has the same weight. We then fit all the data-sets individually with the same
Lorentzian function, which yields 5000 values for each fit parameter. On each data-set,
depending on the weight of every point, the fit will be slightly different, giving an idea of
how sensitive the fit is to each of the measurements. We can now do statistics on each of
the values of the fit parameters and measure the standard deviation. We then define the
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Fig. III.18 Feedback cooling of the µ-pillar resonator. Top left: noise
spectra from the PDH detection. Top right: same from the homodyne detection.
Note that the sensitivity of the homodyne detection is much higher because it is
quantum limited even for low signal intensity, thanks to the high intensity of the
local oscillator beam. Bottom left: temperature curves extracted from the PDH
(blue), which corresponds to the out-of-loop measurement. Curves extracted
from the homodyne detection (green), taking into account the fact that it is
an in-loop measurement. The uncertainties are computed using a bootstrap
method on the fit parameters, detailed in section f). The solid line represents
the theoretical temperature expected for the amount of feedback attenuation in
the loop. Bottom right: feedback gain g extracted from the fitted curve as a
function of the attenuation in the loop.
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Fig. III.19 Feedback cooling of the wheel resonator. Top left: noise spec-
tra from the PDH detection. Top right: same from the homodyne detection.
Note that the sensitivity of the homodyne detection is much higher because it
is quantum limited even for low signal intensity, thanks to the high intensity
of the local oscillator beam. Bottom left: temperature curves extracted from
the PDH (blue), which corresponds to the out-of-loop measurement. Curves ex-
tracted from the homodyne detection (green), taking into account the fact that
it is an in-loop measurement. The uncertainties are computed using a bootstrap
method on the fit parameters, detailed in section f). The solid line represents
the theoretical temperature expected for the amount of feedback attenuation in
the loop. Bottom right: feedback gain g extracted from the fitted curve as a
function of the attenuation in the loop.
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Relative error ∆Γeff
Γeff

∆Lcav
Lcav

∆meff
meff

∆A
A

∆ωm
ωm

Value 2 % 0.8 % 2 % 3 % 0.0005 %

Table III.3: Typical value of the relative errors estimated from the fit using a bootstrap
method.

error as three times the value of this standard deviation in order to have 99.7 % chance
that the fit parameter is in the error interval, assuming it distribution follows a normal
law. The total error on the temperature measurements is then computed by taking the
quadratic sum of all the error sources:

Teff = ΓeffAπmeffΩ2
m

kB
, (III.6)

where A is the calibrated amplitude of the thermal peak (in m2/Hz). The total error is
then:

∆Teff =

√√√√(∂Teff
∂Γeff

∆Γeff

)2

+
(
∂Teff
∂A

∆A
)2

+
(
∂Teff
∂meff

∆meff

)2

+
(
∂Teff
∂ωm

∆ωm
)2
.

(III.7)
Typical value of the relative errors can be found in Table III.3.

III.2.5 Current limitations
It is clear on Figures III.19 and III.18 that for large feedback gains, the thermal peak is
fully suppressed and the environment temperature starts to increase, which means we are
adding noise to the measurement. So it is no longer the cooling method that limits the
experiment but rather the sensitivity floor of the detection. This floor gets lower with
increasing power (see Fig. III.21)but for high optical power, we start to see an increase of
the environment temperature due to optical absorption of the resonator (see Fig. III.21).
It is also worth noting that the feedback loop becomes unstable for high feedback gain,
causing the cavity to unlock. This is probably related to the excitation of low frequency
modes of the resonators or the input mirror.

III.3 Conclusion
Feedback cooling has clearly allowed to reach temperatures substantially lower than the
environment temperature and quite close to the QGS, but the experiment is now limited
by other technical difficulties. We believe that reproducing the micro-pillar geometry
in silicon using DRIE etching techniques would be the way to go, as the fabrication
process is better mastered with silicon, as demonstrated by the repeatability of the wheel
resonator characteristics. Silicon has roughly the same mechanical properties as quartz, so
frequencies in the MHz range but with constant high quality factors should be recovered
across different samples, as well as good thermalization.
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Fig. III.20 Temperature from the mode without feedback as a function of optical
power. For optical power above 1 µW, the temperature increases due to heat
absorption of the sample and possibly low-frequency mode excitation.

Fig. III.21 Noise floor of the detection as a function of optical power. Above 1
µW, the detection sensitivity leaves the shot-noise limited regime (that scales as
the inverse of the optical power) to reach a plateau. This is most certainly due to
the thermal noise of the input mirror or a low-frequency mode of the resonator.



Chapter IV
The squeezed light sources

In this chapter I will present in detail both the High Frequency (HF) squeezer developed
and operated at LKB and briefly its Low-Frequency (LF) counterpart, that is operated
at the CALVA 50-m long cavity at IJCLab in Orsay.

IV.1 General view of the HF squeezed light source
Our goal here was to design, assemble, characterize and operate a robust frequency-
dependent bright squeezed light source at 1064 nm, to demonstrate reduction of the
various types of quantum noise encountered in a continuous position measurement, and
ultimately to demonstrate a position measurement on a mechanical oscillator with a
resonant frequency in the MHz range, with a sensitivity better than the SQL over a
broad frequency range.

The bright squeezed light source consists of:

• a CW infrared laser source (at ω0), that is used to pump a Second Harmonic Gen-
erator

• a mode cleaner cavity in the infrared (MCIR), that is mainly used to suppress the
classical noise of the laser

• a Second Harmonic Generator (SHG), that delivers a bright green field (at 2ω0),
made of a nonlinear optical crystal embedded in a resonant cavity

• an Optical Parametric Oscillator (OPO), also made of a nonlinear crystal embedded
in a doubly-resonant cavity, which delivers a squeezed vacuum field at ω0 when
pumped below its threshold of oscillation

• a rotation cavity, that transforms the frequency-independent squeezed field delivered
by the OPO into a frequency-dependent squeezed state.

The optical setup also includes a number of polarization optical components to split
and recombine the different fields, various detectors both to monitor optical signals used
to tune and lock the different cavities and ultimately to detect the produced squeezing,
and modulators to create modulation sidebands also used to lock the different systems.

73
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Fig. IV.1 Schematic view of the main squeezer components. The squeezer is
designed such that it can output either a bright coherent field (red), a bright
frequency independent squeezed field (yellow) or a bright frequency independent
squeezed field (pink).

The setup is mounted on two optical breadboards so that it can easily be moved. At
first, it was supposed to be mounted on top of the cooling experiment optical table to be
injected directly in horizontal dilution cryostat. Eventually it was decided to bring it in
the new experiment room next to the new dry dilution cryostat on a dedicated optical
table. The squeezing would then be injected in a fiber and send to the fibered cavity
with a membrane at the edge, as described in the next chapter. I will now proceed to a
description of the different elements of the setup.

IV.2 The laser source

For stability reason, we use a Mephisto Nd:YAG laser from Coherent. This CW laser
delivers up to 2 W of optical power and is shot-noise limited at 4 MHz and above (see
Fig. IV.2). Around 1 MHz, the intensity noise spectrum of the free-running laser exhibits
a broad peak related to the relaxation oscillation of the laser. This noise peak can be
suppressed by a combination the noise eater system of the laser (with a feedback loop that
directly acts upon the internal pump diode power) and a mode-cleaner cavity (see Fig.
IV.3). The classical noise is then completely suppressed using an homodyne detection.

We use a New Focus resonant electro-optic phase modulator to generate a 20-MHz
phase modulation, which is used to perform Pound-Drever-Hall (PDH) locking schemes
for the SHG cavity and the MCIR cavity.
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Fig. IV.2 Amplitude noise of the laser measured by one of the detectors of the
homodyne detection (no subtraction is performed). The green curve shows the
amplitude noise for a 5 mW beam with the noise eater on and the red curve with
the noise eater off. the orange curve is the dark noise from the photodetector
and the blue curve is the noise floor from the spectrum analyzer.

Fig. IV.3 Schematic view of the triangular mode cleaner cavity.
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Fig. IV.4 Picture of the MCIR cavity

Cavity Parameter Symbol Value Units
Round-trip Length L 84 cm

Free Spectral Range FSR 357 MHz
Optical Bandwidth κ/2π 60 kHz

Finesse F 6000
Reflectivity at resonance R0 0.47

Curved Mirror’s Radius of Curvature RoC -2 m
Input Mirror’s Transmission Tin 475 ppm

Output Mirror’s Transmission Tout 475 ppm
Excess Loss P 718 ppm
Cavity waist w0 578 µm

Table IV.1: Parameters for the MCIR. The excess losses are computed using equation
II.72. This, however, assumes a perfect mode matching of the laser with the MCIR cavity.
The waist are computed using the formula in [68].

IV.3 The Mode Cleaner InfraRed cavity (MCIR)

This cavity has an isosceles triangular ring shape with a base of 3.2 cm composed of the
two input and output mirrors. The peak mirror is a 2 m curved mirror with a transmission
below 10 ppm. The input and output mirrors have a transmission of 475 ppm and are
mounted with a 45° angle. This gives us a cavity with an optical finesse designed to be
around 6,000 and a round-trip length of 84 cm, which corresponds to a linewidth of 60
kHz. As we saw in II.2.4, such an optical cavity acts as a low-pass filter with a cut-off
frequency given by its linewidth: it suppresses classical noise of the laser up by 30 dB
above 50 kHz as we can see on the figure IV.7.

The full parameters of the cavity (including additional optical losses) can be deduced
by a whole set of measurements of its optical properties, as seen in section II.2.5: free spec-
tral range, bandwidth, reflection at resonance... A sweep revealing the cavity resonances
which is a classical measurement is shown on figure IV.5 and the table IV.1 summarizes
its main characteristics.

Fig. IV.7 presents the intensity noise delivered by the full laser source, including the
internal noise eater and the MCIR cavity. The four upper curves show the intensity noise
of the beam that is available to the following stages of the squeezed light sources. We see
that we have no classical noise left and we check that the noise floor scales linearly with
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Fig. IV.5 Reflection signal of the MCIR cavity obtained upon scanning the
length of the cavity using the piezoelectric transducer glued to one mirror. We
can extract R0 using a Lorentzian fit of the data.
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Fig. IV.6 PDH signal of the MCIR for a 20-MHz modulation. The frequency
calibration of the curve takes advantage of the knowledge of the modulation
frequency. We extract then the optical bandwidth of the cavity. The FSR is
computed from the value of length of the cavity (known to a very good accuracy).
The finesse can then easily be deduced.
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Fig. IV.7 Shot noise of the laser source, measured with the homodyne detection
(with a subtraction of the two photocurrents). The four upper curves show the
amplitude shot noise with the noise eater turned on and after filtering of classical
noise by the MCIR. The purple curves correspond to the dark noise from the
photodetectors and the brown curve is the noise floor of the spectrum analyzer.

the power sent on the detector (noise floor increased by 3 dB when doubling the optical
power), which is characteristic of quantum shot noise.

IV.4 The Second Harmonic Generator (SHG)

Pumping our non-linear crystal to generate squeezing at 1064 nm requires a strong and
stable pump laser source at 532 nm. Commercial solutions exist but as they are very
expensive and lack flexibility, we opted for a homemade solution. The design was then
copied for the two SHGs used at the Calva cavity (see Section IV.11).

IV.4.1 The Non-linear crystal

The core of the SHG is a non-linear crystal. We use a commercial Magnesium Oxyde
doped Periodically poled Lithium Niobate (Mg0:PPLN) crystal from Covesion placed
inside an oven regulated by a temperature controller. In a PPLN crystal, the crystal
axis is regularly flipped to compensate for the fact that phase-matching between the
different fields at ω0 and 2ω0 is not achieved. The crystal used in our experiment is
actually composed of 5 different crystals with different phase-matching conditions for
various wavelengths. We use the second one which is supposed to have a phase matching
condition at 52°C (middle of the range of the temperature controller) for a 1064 nm pump.
We will see that this temperature condition is altered by the crystal’s pumping optical
power.
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Fig. IV.8 (a) The scheme of the PPLN crystal showing the 5 gratings that can
be used as Second Harmonic Generators.(not to scale) (b) Picture of a PPLN
crystals showing the gratings. Figure adapted from [69]

Fig. IV.9 Left is the quasi-phase matching curves for each of the gratings. The
pump wavelength is fixed by our main Nd:YAG laser at 1064 nm but we can
choose between the three gratings depending on the temperature at which we
prefer to operate. We chose 50°C which is not to close to room temperature but
not too far either so the temperature stabilization is easier. Right is green power
produced as a function of temperature using the 50°C grating, we recover the
sinus cardinal curve of the quasi-phase matching condition. Figure adapted from
[69]
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Cavity Parameter Symbol Value Units
Round-trip Length L 9 cm

Free Spectral Range FSR 3.3 GHz
Optical Bandwidth κ/2π 133 MHz

Finesse F 25
Curved Mirrors’ Radius of Curvature RoC -25 cm

Input Mirror’s Reflectivity at 1064 nm R1064
in 0.9

Input Mirror’s Reflectivity at 532 nm R532
in <0.01

Output Mirror’s Reflectivity at 1064 nm R1064
in 0.995

Output Mirror’s Reflectivity at 532 nm R532
in >0.999

Cavity waist at 532 nm w532
0 50 µm

Cavity waist at 1064 nm w1064
0 70 µm

Table IV.2: SHG’s parameter

IV.4.2 The optical cavity
To enhance the non-linear effect we use an optical cavity of finesse 50 at 1064 nm. It’s
composed of two 1/2-inch concave mirrors with a radius of curvature of 25 mm. The
front mirror has a reflectivity of 90 % at 1064 nm and below 1 % at 532 nm. The back
mirror of the cavity has a reflectivity of 99.9 % at both wavelengths and is mounted
on a piezoelectric transducer (PZT) used to lock the cavity at resonance, using a signal
monitored by a photodiode in transmission. Due to the different properties of the coatings
of the input mirror at 532 and 1064 nm, most of the green beam is reflected by the cavity
and ready to be sent to the OPO.

For stability reasons, the two mirrors are mounted on a 60-mm Thorlabs cage system
ensuring their solidarity. This mechanical arrangement leads to a very robust setup but
still allows fairly easy alignments. We start by aligning the cavity without the crystal,
maximizing the intensity peak in transmission while scanning the length of the cavity
using the back piezoelectric. When we have only a TEM00 mode, we remove the rod of
the cage system and place the crystal inside the cavity with the temperature set by the
controller around 52°C. Flashes of green light indicate that the crystal approaches a good
position and we tight it in place when the perfect position is reached. We then optimize
the signal using the two input mirrors of the cavity and the focusing lens right in front
of it. We can then lock the cavity and optimize the temperature of the crystal to get the
maximum amount of green output power. The intracavity power is quite high so the ideal
temperature will vary depending on the pump power sent inside the cavity. At the end
we get a 36-% green power conversion efficiency and up to 300 mW of green light. With
a greatly optimised setup, Zhou et al. have measured 52 % of conversion efficiency and a
maximal output power of 1.6 W [70].

IV.5 The Optical Parametric oscillator (OPO)
This is the main and most crucial part of the squeezer as it is where the squeezing is
created. The design was made by Sheon Chua and is an adaptation of the design he
did during his PhD thesis at Australian National University [41]. The goal was to have
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Fig. IV.10 Schematics of the SHG confocal cavity geometry and top view of
the SHG cavity

Fig. IV.11 Transmission signal of the SHG as we scan the length of the cavity
using the PZT. We can extract the finesse by measuring the ratio between the
width of the resonance peaks and the distance between them.
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Fig. IV.12 Green power conversion as a function of the IR pump
power. As a comparison, the Prometheus laser from Coherent can only pro-
vide a maximum output of 100 mW of green power.

Fig. IV.13 Optimal set-point temperature of the temperature con-
troller for non-linear gain as a function of the IR pump power. We
can see that as we increase the amount of IR power inside the cavity, we heat
up the crystal and we need to compensate with the temperature controller. We
observed that those values tend to also depend on the temperature of the room.
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Fig. IV.14 The OPO butterfly cavity at resonance with 200 mW of intra-cavity
power

a similar design as the OPO at Calva for the Low-Frequency squeezing experiments, so
some of the characteristics were adjusted here to avoid noise at low frequency even though
it should not affect us in the MHz range where we plan to use the squeezing produced.

IV.5.1 The Non-linear crystal
The crystal is here a Periodically-Poled Potassium Titanyl Phosphate (PPKTP). The
crystals are bought from Raicol, a company specialised in crystal growth. They have
been polished by Photon Laser Optik with a micro-roughness < 0,15 rms and finally
coated by Laser Optik Gmbh with an anti-reflective set of layers giving R<0.5 % at 532
nm and R<0.1% at 1064 nm. The crystals are created with an extra buffer of material,
with no non-linear property but the same index as the rest of the crystal, at the edge
(Fig.IV.15). The crystal is dispersive so the effective path for the pump (532 nm) and the
seed (1064 nm) is not guaranteed to be the same. But to enhance the non-linear effect we
need to ensure that the two wavelengths are both resonant inside the cavity so the buffer
is carved into a wedge. By laterally translating the crystal, we can adjust the length of
the crystal where the beams propagate and tune the cavity to achieve co-resonance at
532 and 1064 nm. This adjustment is sensitive and tricky because it also relies on the
temperature of the crystal which is tuned to achieve the best phase-matching condition
possible. As a consequence, these two parameters (crystal temperature and position) need
to be tuned together.

IV.5.2 The bow-tie cavity
The major feature of a bow-tie cavity in our case is to gain spatial separation of the inputs
and outputs of the cavity which is very useful, particularly for a doubly resonant cavity.
The other advantage is the fact that the resonant wave is travelling and not stationary,
which prevents coupling of back-scattered light into the cavity. This effect is particularly
problematic at low frequency so it’s more of an issue for squeezing in the Hz to kHz range,
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Fig. IV.15 Illustration of the OPO nonlinear crystal of PPKTP, with an angle-
polished wedge in a non-poled KTP material. Figure from [41].

but with the constrain of having similar experiments at LKB and Calva, we have chosen
to keep the same OPO design on the two squeezers. A detailed description of the cavity
design and back-scattering light effects is given in [41].

IV.5.3 OPO threshold

To test that the OPO is functioning well and in good condition to deliver squeezing, we
first check that we see amplification of the seed beam at 1064 nm. This can be first
observed by sending around 50 mW of 532 nm pump power inside the OPO and sweeping
the cavity length. We then send the seed beam inside the OPO via the fiber coupler. By
monitoring the cavity resonances simultaneously, we can tune the correspondence of the
cavity: when the two optical resonances (at 532 and 1064 nm) overlap, we see that the

Fig. IV.16 Schematics of the OPO bow-tie cavity geometry
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Fig. IV.17 Reflection and transmission signal of the OPO cavity at 1064 nm.
The transmission signal has been re-normalized neglecting internal losses (T +
R = 1). Lorentzian fit are in black. The slight irregularity in the peak’s spacing
is due to the piezo non-linearity. Here we see that despite our best effort the
mode matching is not perfect and we can see some higher order modes.

Fig. IV.18 Reflection and transmission signal of the OPO cavity at 532 nm. The
transmission signal has been re-normalized neglecting internal losses (T +R = 1)
.
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Cavity Parameter Symbol Value Units
Round-trip Length L 27.2 cm
Free Spectral range FSR 1.1 GHz

Curved Mirrors’Radius of Curvature RoC -38 mm
Input Mirror’s Reflectivity at 1064 nm R1064

in 0.84 (specs) vs 0.88 (meas)
Input Mirror’s Reflectivity at 532 nm R532

in 0.72 (specs) vs 0.54 (meas)
Output Mirror’s Reflectivity at 1064 nm R1064

out >0.9999
Output Mirror’s Reflectivity at 532 nm R532

out >0.9999
Excess Loss at 1064 nm P 1064 3 ppm
Excess Loss at 532 nm P 532 2.75 %

Finesse at 1064 nm F 1064 50
Finesse at 532 nm F 532 9

Bandwidth at 1064 nm κ1064/2π 22.4 MHz
Bandwidth at 532 nm κ532/2π 123 MHz

Reflectivity at resonance at 1064 nm R1064
0 0.99

Reflectivity at resonance at 532 nm R532
0 0.785

Escape efficiency ηesc 94 %
Waist at 1064 nm inside the crystal w1064

0 13 µm
Waist at 532 nm inside the crystal w532

0 9 µm
Waist at 1064 nm outside the crystal w1064

0 87 µm
Waist at 532 nm outside the crystal w532

0 62 µm

Table IV.3: OPO’s parameter. The input mirror’s reflectivity value measured (meas)
differ significantly from the specified value (specs). We are not entirely sure how to
explain this discrepancy but the changes don’t affect the squeezing so much as the finesse
at 532 nm is not very important its rather the escape efficiency that matters and this is still
sufficiently high. The finesse in the infra-red being higher than 36 which was specified is
surprising but not a problem in itself. The waists are computed using calculations specific
to the bow-tie geometries in [71].

seed resonance amplitude fluctuates as a function of the phase of the pump. In order to
see this phenomenon, the temperature of the crystal must be tuned at the phase-matching
value and the pump and the seed need to be vertically polarized. We then lock the OPO
at the co-resonance using a Redpitaya (see below). Once the OPO is locked, we scan the
phase of the pump using the piezo (Fig.IV.22) and we see on the infrared fringes where
we switch from amplification to de-amplification of the seed beam.

IV.6 The Rotation Cavity (RC)

The rotation cavity consists of a plano concave linear cavity of length X. It’s built in a
tube of Invar to ensure long-term thermal stability. The concave mirror has a radius of
curvature of 2 m and is mounted on a piezo to ensure its length control. It’s bandwidth
needs to be tuned depending on the SQL frequency of our measurement. For now on it’s
designed to loose as little squeezing as possible, so to have a minimal transmission.
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Fig. IV.19 OPO’s infrared amplification (g+ and de amplification g− gain as a
function of pump power Pp.We find a threshold of 85 mW for the amplification
curve and a threshold of 63 mW for the de-amplification curve but this could
be caused by a systematic error on the infrared power measurement (we are
measuring very low power).

Fig. IV.20 Transmission signal of the RC cavity. The transmission signal has
been re-normalized.
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Fig. IV.21 3D exploded view of the rotation cavity. The input mirror can
easily be switched to change it’s bandwidth and make sure it matches the SQL
frequency of our optomechanical system.

Cavity Parameter Symbol Value Units
Round-trip Length L 2× 49 cm
Free Spectral range FSR 306 MHz

Curved Mirrors’ Radius of Curvature RoC -2 m
Input Mirror’s Reflectivity Rin 99,993 %

Output Mirror’s transmission Tout <1 ppm
Finesse F 870

Bandwidth κ/2π 352 kHz
Cavity waist w0 540 µm

Table IV.4: RC’s parameter

IV.7 Cavity locking
The locks are all done using Redpitayas which are FPGA’s programmable boards with two
14 bits analog inputs and outputs clocked at 125 MHz. We then use a home-made Python
library Pyrpl, to control those boards. A complete description of Pyrpl’s architecture and
functioning can be found in [72].

For the SHG and the MCIR we use Pound-Drever-Hall (PDH) locking schemes : The
Redpitaya generates a phase modulation signal that is added to the laser thanks to a New
Focus IR 20 MHz resonant phase modulator. We then demodulate the reflection signal
from the MCIR and the transmission signal from the SHG to generate our two PDH error
signals. The two locks are performed on the same Redpitaya board so we use a bias-tee
on one of the outputs using the high frequency part to generate the 20 MHz modulation
and the low frequency part to apply feedback on the SHG’s cavity piezo. The Redpitaya’s
output signals are then amplified using High-Voltage amplifiers that were custom-made
by the LKB’s electronics workshop. To filter this High-voltage signal, we add a resistor
right before the piezo so that with its internal capacity we get a low pass RC-filter with
a cut-off frequency in the 100 Hz range (The piezo capacity being in the 100 nF range,
we typically use a resistor in the 10 kOhm range)

The OPO is locked with another PDH schemes. The phase modulator is also a New
focus 532 nm 20 MHz resonant phase modulator. It’s driven at 21 MHz to avoid any
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Fig. IV.22 Simplified optical setup with all the principal elements.
EOM stands for Electro-Optic Modulator. Those are used to generate phase
modulation for the PDH locks mentioned in section IV.7. The detuned coherent
control field is represented in blue, the vacuum squeezed field is represented in
dashed red and frequency dependent squeezing is represented in purple.

cross talk with some residual modulation. Because of the bow tie geometry we can access
both the reflected and the transmitted signal of the OPO at 532 nm but we found that
the transmitted signal gave a much cleaner PDH error signal.

The rotation cavity is for now locked on the side of a fringe using the transmitted
signal. On the long term, depending on the detuning we would need to achieve to ensure
proper rotation of the squeezing ellipse we might want to lock it on higher order modes
which would be easily doable using a Redpitaya.

IV.8 First squeezing measurement
Once we are sure that the OPO is functioning correctly, we can try to see vacuum squeez-
ing. For this we just lock the OPO at coresonance and mix the vacuum squeezing at
the output with the LO onto the homodyne detection while scanning the phase of the
pump. When looking at the high-frequency channel with a zero Hz span on the spectrum
analyzer, we obtain the arches on figure IV.24.

As we scan the phase of the pump, we are rotating the ellipse of vacuum squeezing
and so as we are recombining it with the LO, we are seeing amplitude noise squeezing
and anti-squeezing. In order to maximize the squeezing level, we need to make sure that
the LO and squeezing beams are mode-matched as best as possible and align on the same
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Fig. IV.23 Picture of the optical table The setup is mounted on two bread-
boards so that it can easily be moved.

polarization. To perform this optimization we use the seed beam which has the same
polarization and mode shape as the squeezing. When alignment and polarization are
optimized, we block the seed beam and measure the squeezing.

IV.9 Controlling the angle of squeezing
To perform an actual measurement with our squeezing we need to have bright squeezing
and to be able to control the angle of the ellipse of squeezing which we were scanning in
the previous measurement. To do this we use a coherent control scheme developed by
[73] and adapted in our case for bright squeezing. This method allows us to control the
angle of the squeezing ellipse without destroying the non-coherent state.

IV.9.1 Coherent control locking

a) Generating an auxiliary detuned field

To do this, we first need an auxiliary beam, i.e. an optical field detuned by a fixed and
controlled frequency Ω from our main laser frequency ω0. We first tried using an Acousto-
Optical Modulator (AOM) resonating at 40 MHz. Unfortunately, the shift in frequency
was too big compared to the OPO bandwidth and the shifted beam didn’t interact with
the OPO sufficiently to see any creation of the second side-band at −Ω. So we did a
second trial with a 20 MHz resonant AOM but when trying to demodulate the signal at
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Fig. IV.24 Here we scan the phase of the pump and we measure the laser
phase noise by looking at the high frequency output of the homodyne detector
at 500 kHz and 0 span on the spectrum analyzer. We see that we have 8 dB of
antisqueezing and 3 dB of squeezing.

2Ω we were actually seeing second order interaction from the main field with AOM that
we couldn’t filter out and that prevented us from seeing the actual error signal. So we
decided to use a second laser that we would lock with Phase Lock Loop (PLL) to the
MAIN laser (Fig. IV.25). It is a more expensive option but it is more flexible (you can
choose Ω as you like and you have plenty of spare power compared to an AOM which is
not very efficient) and this solution was also going to be implemented on the low frequency
squeezer at Calva so it was a good way to test it. So we bought a Mephisto S laser from
coherent which is exactly the same laser as the MAIN laser but with 200 mW of power.

b) The Phase Lock Loop

The AUX laser is directly injected inside a fiber and a small pick-up is sent to a mixer.
On the other part, we send a small pick-up of the fibered seed beam and we send the two
mixed beam on a photodiode (PLL PD). On this photodiode we get the beatnote signal
of the two beams. However, we need to extract a suitable error signal for the lock (Fig.
IV.26).

c) The error signal

We need this signal to be both precise (give a good estimation of the phase difference
when the lasers are at the same frequency) and robust (give a coherent error signal even
when the beating frequency between the two lasers is completely off). The first thing
we did was to send the beating signal to the RedPitaya and use the IQ module from
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Fig. IV.25 Coherent control scheme. (a) The AUX laser is detuned by a
frequency Ω from the MAIN laser frequency at ωc and can be viewed as a single
side-band (b) After the non-linear interaction in the OPO (which as we saw in
part b) creates correlation between the side band at +Ω and −Ω) , we see on
the reflected beam the other side band at −Ω being created or not depending
on the phase of the ellipse of squeezing. Demodulating this signal at 2Ω gives us
an error signal to lock the phase of the pump with the phase of the AUX field.
(c) In transmission of the OPO we have vacuum squeezing at ωc and the two
side-bands at ±Ω. (d) When recombining with the bright field, if we demodulate
at Ω we obtain an error signal to lock the phase of the bright field with the AUX
field. The later being locked in phase with the pump at (b) we have locked the
phase of the bright field with the phase of the ellipse of squeezing.

MAIN LASER

AUX LASER PLL PD

1% Pick-off

1% Pick-off

AUX LASER output

MAIN LASER output

Fig. IV.26 Schematics of the fiber-ed setup for the PLL. A small pick-off of each
laser is sent to the PLL photodiode to measure the beatnote frequency between
the two lasers
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Pyrpl that will give you the "In phase" component at a frequency f of your signal and
the "Quadrature" component by demodulating it with an internal reference. On the basic
Pyrpl there is a PFD (Phase Frequency difference) option in the IQ output that acts as an
integrator. The integrator is incremented by one bit when the internal reference changes
sign and is decremented by one bit when the input signal changes sign. This is actually
quite a good error signal because it’s very robust even if the two signals are very far in
frequency. The integrator is coded on 14 bits so if the two signals are separated by 10
kHz the integrator will increase by 10 000 every second and so it would take 1.6 seconds
to saturate the integrator. The only issue is when you are at the same frequency, you can
have a phase difference of π and your error signal would be oscillating by 1 bit so it’s not
very precise. If we just take the quadrature signal, we would have a very precise value
of the phase difference between the two but as soon as we are not at the same frequency
there is no way of distinguishing if our input signal is oscillating too fast or too slow.

So we had to build our own error signal that would be a combination of both : We use
the CORDIC (COrdinate Rotation Digital Computer) algorithm to compute the phase
between the input signal and the reference with a full 2π range. This algorithm uses a
type of dichotomy characterisation to find the angle so with only 9 steps of calculation
we are able to compute our angle with a precision of 0.1°. Its simplicity is very useful
to implement it on an FPGA board like the RedPitaya. This angle is then encoded on
the 12 least significant bits of our error signal while the number of turns is coded on the
two most significant bits. Compared with the PFD error signal that we had before it
saturates much quicker but it will still give the proper "direction" for the lock.

d) Controlling the laser frequency

The laser offers two ways of controlling the frequency : you can control the temperature
of the crystal which gives you a slow tuning over a few GHz and you can control the piezo
that acts on the crystal which gives you a fast tuning over 100 MHz. We use the two
digital output of the RedPitaya to do Pulse Width Modulation to control the temperature
and send a high-voltage signal (the RedPitaya output is amplified by a Tegam amplifier)
to the piezo. The high-voltage is low pass filtered at 10 Hz with a first order RC filter. To
do the fast fine-tuning we use one of the fast outputs of the RedPitaya (125 MHz sample
rate, 2 V range) that we plug directly on the floating mass of the piezo, the high voltage
being plugged on the positive port of the piezo. Then using the RedPitaya we perform
three locks simultaneously :

• The fast piezo out is locking the phase error signal to zero

• The slow piezo is using the fast piezo signal as an error signal and are locking it to
1 V i.e., the middle of their range so we can have robust and precise locking over a
100 MHz range.

• We use again the slow piezo signal as an error signal for the temperature output
so we can keep the high-voltage signal in the middle of its range. This last lock is
optional if you don’t have big temperature drifts while keeping the lock.
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e) Results

Using the techniques presented above, we were able to keep the lasers locked at 20 MHz
from each other over the course of a full weekend with an RMS error of 2°. The lock
was also implemented at Calva where they are an RMS error of 2°. The frequency can
be arbitrary chosen on the RedPitaya. On Fig. IV.27, we monitored the different error
and control signals during the lock acquisition. On (c) we see spectra of the beat note
signal between the two laser during lock acquisition. The two beams are initially detuned
by -5 MHz and after the lock sequence is switched on they are locked at +9 MHz in 0.4
s. On this measurement we are not able to differentiate positive and negative frequency
difference. (d) The error and output signals during the lock acquisition : initially, the
Cordic error is oscillating between -0.5 and -1 V because the phase is encrypted over 4
turns (from -4π to +4π) so when the phase difference between the actual beating and
the target frequency is greater than 4π turn counter bits are saturated. However, in post
process we can unwrap this signal and compute the actual phase difference as you can
see on (e) which is a time zoom of the actual lock moment. When the lock is switched
on, the fast piezo are the first to react but we see that they are immediately saturated,
this triggers the slow piezo that will counter-react to put the fast piezo in the middle of
their range and the cordic error at zero. The temperature slowly counteracts the slow
piezo fluctuations. After 10 second, we are changing the phase set-point to generate figure
(f) where we plotted the two quadrature values in the complex plane for various phases
set-point showcasing the phase precision of the lock.

f) Syncing multiple RedPitayas

Now that we have locked out AUX laser at a frequency Ω from the MAIN laser, comes
another difficulty : We need to demodulate the signal from two other photodiodes at the
same frequency and perform feedback on those error signal, but the RedPitaya we are
using only has one fast analog input available left. If we just use another RedPitaya,
we would have a slow frequency drift coming from the fact that their internal references
are not synced. To sync them, you can use the external clock input from the RedPitaya
which requires a soldering modification on the board IV.28.

We then need an external clock source, we use a VersaClock 6E Programmable Clock
Generator (5P49V60) mounted on a SparkFun board. The board is programmable via
I2C code using an Arduino library. After correction of the code, we were able to generate
four 125 MHz clock signals with LVDS level (the standard needed for the RedPitayas
clock signal). You then just have to connect the RedPitayas clock inputs to the board
and you can synchronize up to 4 RedPitayas ( In our case we only needed to synchronize
two). The last step is to make sure that the demodulation modules all start with the same
phase. Even if the clocks are synchronized, the relative phase between the IQ module
depends on the timing at which they were started. So we add a connector between two
digital Input/Output of the RedPitayas, and when one of the RedPitays starts its IQ
module it will send a signal to the other so that their internal reference at Ω always have
the same phase relationship.
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Fig. IV.27 (a) Schematic of the optical setup and the laser frequency controlled
by the RedPitaya : out1 is connected to the fast piezo output, out2 to the slow
piezo, and the analog output is connected to the crystal temperature controller.
The beating of the two lasers is acquired on the photodiode connected to in1.
(b) Schematic of the IQ module used to compute the phase difference between
the two lasers. The two quadratures are required to compute the angle via the
cordic phase estimator. The error signal is then sent to PID1 that will control
the fast piezo output. To ensure that we stay in the narrow tuning range of the
fast piezo this fast piezo output signal is used as an error signal for PID2 that
will control the slow piezo and ensure the fast piezo are always in the middle of
their range. Finally, we do the same trick again and use the slow piezo output
signal as a signal error for PID3 that will control the temperature of the laser
crystal and ensure that the slow piezo also stay in the middle of their range over
long duration.
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GND
Ext. CLK +

Ext. TRIG.
Ext. CLK -

Fig. IV.28 Two synced RedPitayas. The small red board generates the
external clock signal and the green cable between the two RPs ensure that the
IQ modules keep a constant phase relationship.
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Fig. IV.29 Level of phase noise as a function of the angle of the ellipse of
squeezing. From the fit we can extract a maximum squeezing magnitude of 1.5
dB and a maximum anti-squeezing magnitude of 5.7 dB. This measurement was
performed with 17 mW of pump power and the level of squeezing is measured
on a 10 kHz bandwidth around 500 kHz.

IV.9.2 Results

Once these technical problems were fixed, we can fully control our angle of squeezing using
the two synchronized RedPitayas. They are two lockboxes on each RedPitaya : One locks
the two lasers at a frequency Ω and performs the demodulation at 2Ω for the lock of the
pump with the AUX beam while the other performs the demodulation at Ω for the lock
of the bright field with the AUX beam and the lock of the homodyne detection (lock of
the phase of the bright field with the local oscillator). We then obtain this first graph
IV.29 where each point is taken separately because we can choose the phase relationship
with the ellipse of squeezing.

And finally we can look at the broadband spectrum of our squeezed light for different
values of the angle of squeezing on IV.30.

IV.10 Limitations and improvement

IV.10.1 Losses

As we saw in part II.3.10, optical losses degrade squeezing extremely quickly. The main
source of loss in our setup is the optical circulator composed of a Faraday rotator and a
PBS. Here is an estimation of the total loss on the optical path from the output of the
OPO to the homodyne detection :

• Bright Field Beam splitter : 2.5 % (measured)
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Fig. IV.30 Spectrum of the phase noise measured on the homodyne detection
for different values of the squeezing angle. At a null angle we have, in blue, a
phase squeezed state slightly below the shot noise, in blue. For an angle of 90°,
we see the anti-squeezed component of the field and at 45°, we see a mixture
of the two quadratures. We see that the noise is not exactly flat due to excess
phase noise.

• 8 HR mirrors : 8 x 0.1 % (theoretical)

• 1 small mirror not HR coated : 1 % (measured)

• 4 λ-plates : 4 x 0.1 % (theoretical)

• 3 lenses : 3 x 0.5 % (theoretical)

• PBS : 0.2 % (measured)

• Optical rotator : 10 % (measured)

• Rotation cavity : 0.1 % (theoretical)

This gives us a total of 16.5 % of losses over all the optical path which corresponds to
what we can measure. Most of these losses cannot be avoided but can be minimized by
keeping clean optics and making sure that the polarization of the beam is optimal when
hitting the bright field beam splitter (Reflectivity is very dependent on polarization) and
going through the optical circulator. We also optimised the homodyne fringe visibility
and reached C = 95%. The estimated escape efficiency from the OPO is 94% and the
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Fig. IV.31 Same figure as IV.30 but with an optimized amplifying circuit for
the photo-diode so we are shot noise limited from 300 kHz to 3 MHz which
corresponds to the bandwidth where the resonance of our oscillator will be. We
see that when we add the squeezed beam there are a lot of technical noise coming
from the coherent sideband locking field. We are working on eliminating them
but we do see 2 dB of squeezing around 500 kHz.

efficency of the photodiode of our homodyne detection are specified to be higher than
99%. So we can compute the total efficiency of our squeezer

ηtot = ηpropηhηPD = 0.71 (IV.1)

With this efficiency, using the formula II.107 we should see 5 dB of squeezing and 13 dB
of antisqueezing for x = 0.5. We were never able to see such level squeezing but we were
able to see such level of antisqueezing. So we suspect that we have parasitic phase noise
that artificially degrades our level of squeezing.

IV.10.2 Phase noise

If we consider a phase noise of amplitude δθ, the change in the measured quadrature can
be written

Sout1,2 = S1,2 cos2 δθ + S2,1 sin2 δθ (IV.2)

So for high level of antisqueezing, the squeezing is almost completely destroyed by the
antisqueezing. This correspond well to our situation where we have been able to record
high level on antisqueezing (up to 15 dB) but no more than 4 dB of antisqueezing. On
figure IV.32 we can see the effect of phase noise for the two quadratures. We are currently
investigating potential source of parasitic phase noise.
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Fig. IV.32 The effect of phase noise on squeezing. The squeez-
ing/antisqueezing magnitude is plotted for x =

√
Ppump/Pthr going from 0 to

0.8 (for values closer to unity, our formula is no longer exact since the assump-
tion of no pump depletion starts to break down). The blue curves are for a
phase noise of 1° rms, the pink ones for 5° rms and the yellow ones for 10° rms.
Antisqueezing is mostly unaffected and the corresponding curves appear super-
imposed. We see that for 10° rms, there is no more than 2 dB of squeezing,
which corresponds to our situation.

IV.10.3 Temperature stability

The amount of squeezing produced by the OPO is very dependent on the temperature
of the crystal. Right now we are using a Thorlabs TED 350 temperature controller
with a precision of 0.03 °K and a stability of 0.003 °K but in practice we see some slow
fluctuation of 0.02°K. Better tuning of the PID coefficients of the temperature controller
could help but we struggled to do better given the lack of precision in the tuning of
the coefficients (controlled by small knobs). We are considering using an homemade
temperature controller to improve the temperature stability.

IV.10.4 Phase tuning

To control the phase of the various optical field we use a mirror mounted on a piezo glued
on an aluminium piece. The error we made was to put the mirror at 45° so when the
phase drifts a lot and the piezo has to compensate by doing a large displacement we start
to deteriorate the beam alignment (moving the beam by a few microns). This effect starts
to be problematic for long-term lock. The solution would be to change the beam path and
have a much smaller angle of incidence on the moving mirror to limit beam displacement.
Because it required a compete realignment of half the optical table we didn’t take the
time to do this improvement.
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Fig. IV.33 The clean room at the CALVA facility. The red vacuum chamber
(called Ferrarix) houses the in-vacuum OPO, the homodyne detection and the
telescopes used to mode-match the squeezed beam to the 50-m cavity. The grey
vacuum chamber houses the input mirror suspension of the rotation cavity.

IV.11 The Low-Frequency squeezer

While still working on the High-Frequency squeezer, I have also collaborated with the
Virgo group at IJCLab in Orsay on a low-frequency frequency-dependent squeezer project,
for a possible application to Advanced Virgo.

Advanced Virgo already has a squeezer, built by the Albert Einstein Institute in
Hannover but it is frequency-independent. Indeed, for now, Advanced Virgo is only
limited by QSN at high frequency but for the next runs, optical power will be increased
and seismic noise further reduced, so it is expected that it will be limited (at least to some
extent) by QRPN at low frequency as well. Consequently, a full frequency-dependent
squeezer, including a 285-m long rotation cavity has been installed along the North arm
of Advanced Virgo and will be operational for O4. But the OPO at the core of this
squeezed light source is operated in air, and there are concerns that this will at some
point limit the performance of the system (light scattering...). The experiment in Orsay,
which takes advantage of the CALVA facility, a 50-m long cavity, uses an in-vacuum OPO
and is a prototype of what could be a frequency-dependent squeezer for Advanced Virgo in
a few years, after O5. Full details on this experiment can be found in Angélique Lartaux’s
thesis [69] but I will briefly present the setup and the current status of the project here.
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Fig. IV.34 Experimental setup. On the left is the in-air bench where we have
the main laser, the two SHGs and the Mach-Zender interferometer (not repre-
sented here). Then, under vacuum, we have the OPO, the homodyne detector
and the 50-m long rotation cavity. Maintaining the alignment of such a long
cavity requires extra-control fields and a quadrant photodiode detection.

IV.11.1 The experimental setup
The experimental setup is quite similar to the one for the HF squeezer presented in the
previous sections. The OPO, pumped by the green light produced by the SHG, creates
frequency-independent squeezing that becomes frequency-dependent after reflection on
the rotation cavity. The main differences are:

• The OPO and the detection photodiodes are in vacuum to reduce the beam path
fluctuations caused by air motion, which has a non negligible effect under 1 kHz.

• The green pump is stabilized in intensity using a Mach-Zender interferometer to
reduce very slow intensity fluctuations.

• It uses of modified coherent sideband locking instead of standard coherent sideband
locking, which produces an error signal of better quality to control the ellipse of
squeezing.

• And finally, it takes advantage of a 50-m rotation cavity with a bandwidth of 1 kHz
to match an SQL frequency of 1 kHz (still to high for Advanced Virgo where one
needs a bandwidth of 50 Hz, but this is a first step).

Apart from this, the SHGs are exact replicas from the one at LKB, and the OPO is
almost exactly identical. For now, for obvious tuning/optimizaton reasons, the OPO is
still operated in air.

a) Modified coherent sideband locking

The concept of Modified coherent sideband locking is explained in figure (IV.35). The
idea is similar to coherent sideband locking (Fig. IV.25), but this time the auxiliary laser
(AUX) field, detuned from the MAIN laser by a frequency Ω pumps a second SHG and
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Fig. IV.35 Modified coherent sideband locking. The auxiliary laser
(AUX) field, detuned from the MAIN laser by a frequency Ω pumps a second
SHG and generates a harmonic field at 2ω0 + 2Ω. After attenuation of the AUX,
the two fields will co-propagate towards the OPO (A). The Dichroic Beam Split-
ter (DBS) transmits green and reflects infrared. The beatnote between the pump
at 2ω0 and the AUX harmonic at 2ω0 +2Ω (B) is demodulated at 2Ω to maintain
the detuning between the MAIN and the AUX at Ω. The auxiliary field reflected
by the DBS now enters the OPO cavity via the input coupler.

generates a harmonic field at 2ω0 + 2Ω. After attenuation of the AUX, the two fields
will co-propagate towards the OPO (A). We insert a Dichroic Beam Splitter (DBS) right
before the OPO, that transmits green and reflects infrared. In the reflection, we get the
beatnote between the pump at 2ω0 and the AUX harmonic at 2ω0 + 2Ω (B). This signal
is demodulated at 2Ω to maintain the detuning between the MAIN and the AUX at Ω.
This also sets the phase relationship between the reflected auxiliary field and the pump
field (Here we save one phase lock compared to standard sideband locking using the phase
relation of the SHG process but at the cost of an extra SHG). The auxiliary field reflected
by the DBS now enters the OPO cavity via the input coupler and not a high reflectivity
coupler (as it was the case for standard coherent sideband locking). So the non-linear
interaction in the OPO is much stronger and all the error signals (that are now the same
as in standard coherent sideband locking) will be greater.

This scheme yields an error signal of better quality to control the angle of squeezing,
at the expense of an extra SHG. The PLL uses a RedPitaya and PyRPL, as the one at
LKB. We have obtained a stable lock over more than 10 hours with a 2° rms error of
phase between the two lasers. For now, we are still working on the alignment of the OPO
so the other loop has not been tested yet.

IV.11.2 Results

As mentioned previously, the OPO is still causing issues and we are investigating if the
crystal is working properly. But we have been able to send the LO field on the homodyne
photodiodes and characterize the dark noise and the shot noise. This measurement has
shown that the LO is shot-noise limited only above 1 kHz. Below, we see large peaks
dominant over shot noise, probably due to seismic noise or resonant mechanical motion
of optical components, driven by sound. These should be removed by vacuum operation.
(IV.36).
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Fig. IV.36 Noise spectrum of the homodyne detection.The signals are
band-pass filtered between 2Hz and 4 kHz. On the dark noise (purple curve),
notice a peak at 50 Hz and some peaks at higher frequency. Blue curve: noise
obtained for 2.5 mW of power on the LO. We see that from 1 kHz to 3.5 kHz, we
have a flat noise that corresponds to shot noise, but below 1 kHz, we see large
peaks, probably due to seismic noise or mechanical resonances of some optical
components.

IV.12 Conclusion and perspectives
The High-Frequency squeezer is producing controlled frequency independent squeezing,
meaning all parts of the experiment function, apart from the rotation cavity. However the
setup still requires improvement, as we should be able to see a higher level of squeezing
and reduce the amount of technical noise visible on the squeezing spectra. The different
cavities and phase locks work but still require otimization to reduce parasitic phase noise.
This is the main priority to improve the amount of squeezing measurable.

For the rotation cavity, we still have to figure out how to lock it with a detuning
matching the resonant frequency of the oscillator so roughly 1 MHz. Our main idea so
far would be to add a phase modulation at 1 MHz and use the sideband to lock the
cavity or use a higher order mode that would be detuned from the TEM00 mode from
1 MHz. The first solution requires to add a phase modulator at 1 MHz which is not so
simple. The second solution requires the rotation cavity to not be perfectly mode-match
which will add losses on the squeezing that can be characterized [46]. The best solution
would be to send a frequency shifted beam on the other port of the rotation cavity on
a separated polarization axis than the squeezing so there are no interaction between the
two. And then use the reflected beam to lock the cavity to the frequency shifted field. By
controlling the frequency of the shift, we could control the detuning of the cavity. But the
output port of the rotation cavity is highly reflective so there would be very little signal
to lock the cavity. This is still under discussion.

The low frequency squeezer is still under development but working at low frequen-
cies where vibrations noise are much more present adds a lot of complications for the
experiment. However we can already say that we should not have any issue observing
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and controlling squeezing above 1 kHz as we are already shot noise limited above this
frequency and the coherent control sideband locking all ready works at LKB.
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Chapter V
An optomechanical system dominated
by radiation pressure noise

As discussed in Chapter III, one of the main challenges in the field of optomechanics
has always been to design and fabricate a resonator with both optimum mechanical and
optical properties: high mechanical Q, low optical losses... in order to optimize the
coupling to the optical field. In this regard, µg-scale resonators with dielectric coatings
are not optimal. In this chapter, I will present the next-generation optomechanical system
with which sub-SQL will hopefully be performed in the group.

V.1 Context
In 2016, Sheon Chua started the design and assembly of the squeezer setup described in
the previous chapter. The idea at the time was to combine it with the cooling experiment
discussed in Chapter III, so the two experiments were developed side by side for 2 years
before I joined LKB. The squeezer was set-up on two breadboards to be easily installed
near the dilution cryostat. As we progressed with the cooling experiments, Thibaut
Jacqmin and Samuel Deléglise started to experiment with a new kind of optomechanical
resonator: a very thin and highly-stressed membrane of silicon nitride.

This resonator has very good quality factors that can go up to 109 using patterning
techniques described by Edouard Ivanov in his thesis. Its only downside it it has relatively
poor optical properties (a reflectivity around 40%). It also has a very small mass (typically
50 ng), so it appeared at the time not very interesting for the "macroscopic" cooling
experiments. However, to perform a displacement measurement below the SQL, having a
small mass is of course better because you increase the ratio between QRPN and thermal
noise. So it was decided we would use a membrane of which we master the fabrication
process, instead of a macroscopic resonator fabricated by Francesco’s Marin group.

In the last year of my PhD, the LKB group also bought a new "dry" dilution cryostat
from BlueFors, giving access to base temperatures below 10 mK. The old cryostat that we
had used for the macroscopic cooling experiments was causing a lot of issues at the time,
and still consumed lot of liquid helium liquid, of which the price has gone up recently.
Given the old cryostat performance we decided to use the new cryostat for the sub-SQL
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Parameter Symbol Optimistic value Pessimistic value
Optical power Pin 1 mW 1 µW

Mechanical quality factor Q 109 106

Optical Finesse F 30 000 4 000
Temperature T 10 mK 1 K

Resonance frequency Ωm/2π 1 MHz
Mass m 50 ng

Table V.1: Envisioned parameters for a QRPN-limited optomechanical system.

displacement measurement experiment as well. Adding an optical access to the cryostat
is doable but it would add quite a lot of technical difficulties and could affect affect its
cooling performance. This cryostat being now used for microwave experiments requiring
only electrical access, we decided to go with a fibered setup that would require minimal
modification of the squeezer setup and minimal disturbance to the other experiments
taking place in the cryostat.

As discussed below, the new design we have opted for involves a number of innovations
compared to our previous experiments:

• a nanomechanical membrane as mechanical resonator

• a phononic crystal design to increase the mechanical Q and isolate the resonator
from cryostat vibrations

• a new cryostat, with only a fiber access

• a membrane-in-the-middle optical setup...

• ... with an indirect bending-induced position-tuning of the membrane.

In this chapter, I will present these different steps and how we have started addressing
and characterizing them separately, to obtain a good working knowledge of each of them
to confidently consider building a full system that incorporates them all. The full design
will be presented in Sec. V.5.4.

V.2 Desired specifications
The goal of the experiment is to demonstrate sub-SQL position measurements with the
1064-nm squeezed light source discussed in Chap. IV. A required intermediate step is ob-
viously to perform a displacement measurement limited by QRPN. This requires classical
thermal noise to be lower than QRPN. As established in Sec. II.5, the ratio between the
two respective spectral densities is :

R = SRPF /SThF = 16ℏPinQF2

λcπkBTmΩm
. (V.1)
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Actually, for a silicon nitride membrane, the quality factor, the mass and the resonance
frequency are related to the size l of the membrane in such a way (Q ∝ l, Ωm ∝ l−1 and
m ∝ l2) that R is independent of l. From previous experience, we know that a resonator
in the MHz range greatly simplifies the experiment by avoiding classical noise. We can
easily control the amount of optical power injected into the cavity thanks to the squeezer
design, the only limitation being the sample heating caused by optical absorption which
is hard to determine.

Optimizing the finesse is still a work in progress: by design, our empty cavity finesse
can be up to 100, 000, but adding the membrane will bring extra-losses. From the litera-
ture, most groups have an optical finesse in the 10, 000 range. From previous experiments
with the macroscopic resonator and a study from Rémi Metzdorff during his PhD [65],
we know a short cavity (< 400µm) is best for a high finesse to avoid parasitic coupling
of the TEM00 fundamental mode to higher-order transverse modes. Another constraint
is that the waist of the optical beam must be smaller than the size of the membrane to
avoid optical loss and ensure a good optomechanical coupling.

V.3 The Silicon Nitride Membrane

These resonators are fabricated from a silicon wafer coated with a ≃ 100-nm thick film
of silicon nitride deposited with a very large pre-stress. The silicon is then etched in the
center using Potassium Hydroxide (KOH) to liberate the thin membrane. The pre-stress
allows to greatly increase the mechanical quality factor, the mechanical energy associated
with the out-of-plane vibrational modes being stored in the elongation of the film, rather
than in the bending. The main source of loss is now the clamping of the membrane at
the edge.

The boundary conditions impose a large bending of the membrane at the edge, causing
loss particularly for high-order mechanical modes with displacement extrema located near
the edge. To prevent this, the membrane can be patterned with a phononic crystal
composed of a regular array of holes (visible on Fig. V.1). A single defect is present in
the center of the phononic crystal allowing for at least one soft-clamped vibrational mode
to exist and to be localized in the center of the membrane.

The joint design of the crystal and of the defect sets the resonance frequency of the
defect mode inside a gap of the vibration mode density of the crystal (see Fig. V.1). As
a consequence, the mode profile quickly decreases far from the center of the membrane
and the corresponding vibration amplitude is completely negligible at the edge. This
soft-clamping technique allows to take full advantage of the mechanical dilution induced
by the mechanical stress of the membrane. More details on the fabrication and the
physics of these membranes can be found in [74]. The phononic crystal also ensures a
better isolation of the oscillator motion from parasitic vibrations inside the cryostat. In
the experiment presented in this chapter, I have only worked with a standard square
membrane for preliminary tests.
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Fig. V.1 A phononic-crystal SiN membrane as a high-Q optomechan-
ical system. Top Left: Optical view (false color) of a 2.5 mm × 2.5 mm × 100
nm membrane, with a phononic crystal and a defect. Bottom: Simulated profile
of the fundamental defect mode. Top right: Noise spectrum, with only a few
localized modes of the defect present in the frequency gap of the phononic crys-
tal. The mode A is the main mode of interest. Bottom right: Mechanical decay
measurement of the Q of the fundamental mode of a non-patterned membrane.
The Q value is here above 108 at ≃ 1 K, which makes us optimistic we can reach
109 with a patterned membrane in a dilution fridge.

V.4 The new dilution cryostat

The group recently bought a new dilution cryostat from Bluefors (Model BF-LD 250)
that can go down to 10 mK in less than 24 hours (see Fig. V.2). It is a dry cryostat that
doesn’t require liquid helium transfer. It does however have a pulse-tube that can cause
parasitic vibrations that could make optomechanics experiments particularly complicated.
We took the option to add an helium battery to the cryostat in order to be able to turn
off the pulse-tube for 2-3 hours. In case the vibrations are too problematic, this should
give us a small window of time to perform measurements. The cryostat is now mainly
used for the microwave experiments led by Samuel Deléglise and Thibaut Jacqmin. It has
no optical access but does have a fiber feed-through: the idea is to put a fibered cavity
inside and inject the squeezed beam via a fiber. If the fibers bring to much loss and make
the measurements impossible, there is still the possibility to add an optical access.

V.5 Cavity design

The idea is to adapt the micro-pillar/wheel resonator cavity design, described in Chap.
III, that has proved to be robust and flexible. It indeed allows to align the two mirrors
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Fig. V.2 The new LKB Bluefors cryostat. The pulse tube has been iso-
lated by building a small cabin around it. The wooden box is also for acoustic
isolation. We don’t know yet if this will have any effect for the vibrations disturb-
ing the sample, but we can already tell the difference for the acoustic vibrations
disturbing the PhD students.

of the cavity in front of each other with a good precision in terms of cavity length and
finesse, because we can measure both while aligning the cavity and then lock the cavity
in place once we are satisfied with the numbers. In the following sections, I will present
experiments from other group that we have used as inspirations to come up with this
design.

V.5.1 Membrane In the Middle (MIM) cavity
The first experiment discussed pioneered the field of membrane optomechanics.

a) Characteristics and results

In this paper [22], Jack Harris and his group designed a 6.7-cm long optical cavity con-
taining a 1-mm2 and 50-nm thick SiN membrane. They managed to reach a finesse of
15 000 for the optical cavity and a mechanical quality factor of 1.1 × 106. The cavity is
rigid and they tune the laser to resonance with an acousto-optic modulator (AOM). The
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Fig. V.3 The Membrane In the Middle experiment from Jack Har-
ris’ group. (a) and (b) display the classical optomechanical system vs. the
membrane-in-the-middle cavity setup (c) Photograph of a SiN membrane (1 mm
x 1 mm x 50 nm) on a silicon chip. (d) Design of the optical cavity. The Invar
support (A) is mounted inside the vacuum chamber. Alumina spheres (B) pro-
vide kinematic mounting between the support and the Invar cavity spacer (C).
The end mirrors (D) define the optical cavity. The membrane and piezoelectric
elements are mounted to the Invar arm (E) which is in turn mounted to the tilt
stage (F), which can be adjusted in situ by two actuators(G). Figure from [75].

membrane position and tilt are controlled with a 6-axis position stage, which appears
crucial to reach a high finesse. They were able to optically cool the membrane from room
temperature down to ≃ 7 mK.

b) Issues for our experiments

The first issue of this design for our experiment is its footprint. We want to put the
membrane in a dilution cryostat to be able to reach lower temperature and higher Q.
But putting a 6.7-cm long optical cavity in a dilution cryostat is impossible, which means
miniaturizing the whole design is necessary. The main constraint is the membrane posi-
tioning stage, that is fairly big and forces them to use a long cavity. Also, reducing the
cavity length is crucial to reach a high finesse as it reduces parasitic coupling between the
fundamental optical mode and higher-order modes. Another issue is the laser tuning. As
we want to perform a displacement measurement of the resonator with a bright squeezed
field, we cannot use an AOM to tune the laser frequency. As a consequence, we need to
be able to control the length of the cavity and the position of the membrane while keeping
a compact design.
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Fig. V.4 The MATE cavity experiment from Jack Sankey’s group. It
is made of an input mirror M1, 21-µm thick spacers, a membrane, piezo-actuated
pushers, and a “backstop” mirror (not to scale). The length L = 10 cm between
M1 and M2 is tuned with piezo actuators on M2. Figure from [24].

V.5.2 Membrane At The Edge (MATE) cavity

The group of Jack Sankey proposed an interesting alternative to the MIM cavity, by
putting the membrane very close to one of the mirrors instead of in the middle of the
cavity. To control the position of the membrane with respect to the mirrors, they use
both "spacers" and "pushers" (see Fig. V.4) to bend the membrane, effectively bringing
it closer to the mirror. This design is much more compact and easier to align, the silicon
frame of the membrane being fixed to one of the mirrors. It also gives access to larger
optomechanical couplings [24]. However, their experiment uses a 10-cm long cavity and
a tunable laser, so we still need to miniaturize it and add some way to tune the cavity
length.

V.5.3 Fiber Fabry-Perot cavity

The last source of inspiration for the design was the fibered Fabry-Perot cavity designed
by Jakob Reichel’s group [76]. They were able to use a CO2 laser to fabricate a concave,
ultralow-roughness surface at the end of the fiber. The fiber end is also coated with a
12-ppm coating, allowing them to reach a finesse of 130, 000. The fibered setup allows a
very compact cavity design, with a length of a few microns and an easy alignment setup.
Finally, the fiber is glued on a shear piezo to tune the length of the cavity.

Our idea is to have the membrane at the edge close to a flat mirror like in J. Sankey’s
experiment and use a carved fiber as an input mirror. This would give a compact setup
with full control of the length of both sub-cavities and an easy fibered access, via a fiber
port on the cryostat.
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Fig. V.5 Miniature mounts for a tunable Fiber Fabry-Perot Cavity by
Jakob Reichel’s group. Piezoelectric transducers are used to scan the cavity
length. All other alignment is done during assembly. Figure from [76].

V.5.4 LKB design

We have tried to make a design similar to the Fabry-Perot cavity already used in the
cooling experiments, that works fine for alignment and stability and is easily tunable.
We have kept the "cavity-top" part and just replaced the µ-RoC with a flat mirror (from
LaserOptik). We then put double-sided Kapton tape as "spacers" on the edge of the
mirror and place the membrane on top of it. We then mount the "cavity-top" part of the
"cavity holder" the same way as before. The three "pushers" (Thorlabs F2DSES8) are
screwed inside the cavity top with a fine thread and come to contact with the membrane.
When the pusher PZT move, the membrane bends and we can tune the length between
the flat mirror and the membrane. Until now, we haven’t placed a fiber on the setup yet
but the idea is to put it inside the ferrule and glue it on the shear piezo so the fiber can
move freely inside the ferrule and the cavity length can easily be tuned. The ferule will
just fit tightly inside the "cavity holder" part without any degree of freedom regarding
the angle. To align the cavity, we plan to use the same procedure as before but we have
added a thread inside the "cavity holder" to tune the angle with the "cavity top" if needed.

To just test how the membrane behaves when we bend it, we replace the input fiber
by a curved mirror of RoC 2.5 cm. The mirror is glued on a piezo and mounted on a
Thorlabs mount attached to the cavity via a cage system. We then build a 1.7-cm long
cavity, with an empty cavity finesse of 28, 000.

V.6 The modified optical field dynamics

The membrane placed between the two mirrors of the cavity will change the field dynamics.
In this section, I will derive the optomechanical coupling of the system and estimate the
decay rate of the cavity.
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Fig. V.6 Exploded view of the fiber MATE cavity design. The "cavity top"
and "mirror holder" parts are the same as before. The "cavity holder" has been
modified with extra threads for the "pushers", a hole to fit the ferrule and 2 extra
threads to put screws holding the "shear piezo holder". The shear piezo holder
has a hole in the middle for the pusher.

Fig. V.7 Schematic view of the pusher/spacer system with the preliminary
"membrane bending test" cavity.
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Fig. V.8 Optical resonances for a membrane-at-the-edge cavity. Top
right: schematic view of the cavity, in reality x ≪ L. Left: Dependence of
the cavity resonance detuning (normalized by the free spectral range (FSR)) on
membrane displacement x from the back mirror with rm values (from light to
dark) -0.4, -0.6, -0.8, -0.931, and -0.9977. The horizontal dashed lines represent
empty cavity resonance frequencies (rm = 0), and the vertical dashed lines repre-
sent the left and right sub-cavity resonances when tm = 0. Inserts qualitatively
show the field distribution of these modes. Bottom right: Dependence of the
cavity energy decay rate on membrane displacement, normalized by the empty
single port cavity decay rate (rm = 0, r2 = −1). Figure adapted from [24].

V.6.1 The optomechanical coupling

The field of optomechanics has taken advantage of a lot of different geometries to couple
an optical resonator to a mechanical resonator. Whatever the geometry is, standard
optomechanics equations such as the ones presented in Chap. II can always be used as
long as we assume a linear coupling between the resonator displacement and the resonance
frequency of the cavity. This coupling G = ∂ωcav

∂x is quite simply defined in the case of a
linear Fabry-Perot cavity as

G = ∂ωcav
∂x

= 1
τ

∂ψcav
∂x

= 2k
τ
. (V.2)

We use this value to calibrate the optical phase measurements into displacement mea-
surements. I will now compute it in the case of a partially reflective membrane in the
middle of a high-finesse cavity, based on calculations in [24].

We consider a cavity of length L, as represented on Fig. V.8. We will note α1 and α2
the field propagating from left to right in the left and right parts of the cavity and α′

1 and
α′

2 the counter-propagating fields. The membrane has a reflectivity rm and a transmission
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tm and is placed at a distance x from the back mirror. We can write

α2 = tmα1 + rmα
′
2 (V.3)

α′
1 = tmα

′
2 + rmα1. (V.4)

We assume a high-finesse cavity with mirror reflectivities r ≈ 1, so after a single round-trip
the fields are related by:

α1 = −α′
1e

2ik(L−x) (V.5)
α′

2 = −α2e
2ikx. (V.6)

Combining the previous equations, we get the following resonance condition:

(t2m − r2
m)eikL − eikL = 2|rm| cos(2kx− kL). (V.7)

From here we can solve the equation numerically for a lossy membrane, but if we make
the assumption that the membranes is lossless (such that |tm|2 + |rm|2 = 1), we can write

− cos(kL+ ϕr) = rm cos(2kx− kL), (V.8)

where ϕr is the phase of the membrane reflectivity. Expanding the cosine, we can find
the resonating cavity length :

L = 1
k

arctan
[cosϕr + |rm| cos(2kx)

sinϕr − |rm| sin(2kx)

]
. (V.9)

This expression will be particularly helpful as the cavity length is scanned to resonate
with the laser and not the other way around. We now want to compute the resonance
frequency. We will make the assumption that the length L of the cavity is large compared
to the wavelength λ, so the wavenumber occupying the cavity kN = πN/L is large and
the perturbation induced by the membrane is small. So we can write k = kN + δk with
δk ≪ kN . We also make the assumption that the membrane is positioned very close to
the end mirror and only performs small displacements compared to the cavity length,
such that x ≪ L. So the product kx now becomes

kx = kNδx, (V.10)

and from equation (V.9), we can compute the resonance frequencies of the cavity, repre-
sented on Fig. V.8 as a function of the membrane position:

ωMATE = kc = ωFSR

(
N + 1

π
arctan

[cosϕr + |rm| cos(2kNδx)
sinϕr − |rm| sin(2kNδx)

])
. (V.11)

Taking the derivative by δx we get the optomechanical coupling :

G = c
∂k

∂x
= 2kN

π
ωFSR

|rm|(|rm| + cos(2kNδx+ ϕr))
(|rm|2 + 2|rm| cos(2kNδx+ ϕr) + 1)2 (V.12)

= 2GFP
|rm|(|rm| + cos(2kNδx+ ϕr))

(|rm|2 + 2|rm| cos(2kNδx+ ϕr) + 1)2 (V.13)

where GFP is the optomechanical coupling of a standard Fabry-Perot.
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V.6.2 Cavity dissipation
The optomechanical coupling computed above depends on the membrane reflectivity. One
way to measure it is to measure the cavity reflection and transmission as a function of the
cavity detuning as has been done in Section II.2.5, and to measure the cavity decay rate
as a function of the membrane position. This decay rate can be computed by considering
the total energy stored in the cavity as the sum of the energy of the two sub-cavities, that
can be written as:

E = P1τ1 + P2τ2, (V.14)
where Pi is the power circulating in the sub-cavity i and τi is the sub-cavity’s lifetime
such that τ1 = 2(L − x)/c and τ2 = 2x/c. The energy leaks out of the two mirrors with
a rate:

∂E

∂t
= −P1T1 − P2T2 (V.15)

Using Eqs. (V.4) and (V.6), we can compute the ratio
P2
P1

=
∣∣∣∣α2
α′

1

∣∣∣∣2 = 1 + |rm|2 + 2|rm| cos(2kx+ ϕr)
1 − |rm|2

. (V.16)

and eliminate P2 from equation (V.14) to express P1 as

P1 = cE

2

(
(L− x) + x

1 + |rm|2 + 2|rm| cos(2kx+ ϕr)
1 − |rm|2

)−1

. (V.17)

The global leak rate κ such that
∂E

∂t
= −κE (V.18)

can be expressed as

κ = (1 −Rm)cT1 + (1 + 2|rm| cos(2kx+ ϕr) +Rm)cT2
2x(1 −Rm) + 2(L− x)(1 + 2|rm| cos(2kx+ ϕr) +Rm) , (V.19)

where Rm = |rm|2. For |rm| = 0, we retrieve the standard Fabry-Perot cavity decay rate
κ = (T1 +T2)/τ . This expression is valid for every cavity geometry but fairly complicated.

κ is plotted for T2 = 0 on Fig. V.8 and we get:

κ = (1 −Rm)cT1
2x(1 −Rm) + 2(L− x)(1 + 2|rm| cos(k(L− x) + ϕr) +Rm) . (V.20)

If we make the membrane-at-the-edge approximation, we get

κ = κ1
1 + |rm|2 + 2|rm| cos(2kx+ ϕr)

1 − |rm|2
, (V.21)

where κ1 = cT1/2L is the empty cavity decay rate. We see that the decay rate is the
empty cavity decay rate multiplied by the ratio P2/P1 . Indeed, if the majority of the
energy of the cavity is in the right part of the cavity (where there is no loss source),
then the global loss of the cavity will be small and vice-versa. We can also see that if
the majority of the energy of the cavity is in the right part of the cavity (which is very
short), the resonance frequency of the optical mode will be very sensitive to the membrane
displacement, hence the high slope in these regions (see Fig. V.8) and vice-versa: when
the majority of the power is in the left, the long cavity will barely be effected by the
membrane displacement, hence the small slope.
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V.7 Results

V.7.1 The optomechanical coupling
In the first experiments, we just wanted to make sure we were able to tune the membrane
position and see an effect on the frequency of the optical modes of the cavity. To do so, we
scanned the cavity length using the front piezo of the input curved mirror for different DC
values of the voltage applied to the back piezos acting on the membrane position. Doing
so, we see series of equally separated peaks corresponding to the cavity resonances. As we
change the membrane position for each scan, we see these frequencies shifting, according
to Eq. (V.11):

ωMATE ≈ ckMATE = c

2L(Nπ + arctan
[cos(ϕr) + |rm| cos(2kN∆x)

sin(ϕr) − |rm| sin(2kN∆x)

]
, (V.22)

where kN = πN/L is the N th resonant mode of the empty cavity, with N ≫ 1. The
frequency difference between two resonances is constant and still corresponds to the cavity
free spectral range, which we know by just measuring the length of the cavity. This allows
us to calibrate the scan in frequencies. For an empty cavity (rm = 0), we just have a
straight line with a constant slope because as we push the back mirror, we also sweep the
cavity length L → L + K∆x where K is a geometrical factor to take into account the
bending of the membrane. For a cavity with a membrane, we see a wave pattern starts
to appear on top of the straight line which is a clear sign we are moving the membrane
position inside the cavity (see Fig. V.9).

V.7.2 The cavity decay rate
For each scan, we can also measure the width of the resonances, which correspond to
the cavity decay rate κ. As the membrane goes through the nodes and antinodes of the
standing wave inside the cavity, it will increase or decrease the decay rate and we obtain
oscillations as a function of the membrane position, according to Eq. (V.21):

κ = (1 − |rm|2)c|t1|2 + (1 + 2|rm| cos(2kx+ ϕr) + |rm|2)c|t2|2

2L(1 + 2|rm| cos(2kx+ ϕr) + |rm|2) . (V.23)

By taking into account the piezo non-linearity (the voltage we apply to the back piezo
doesn’t transduce linearly in displacement), we can fit this function and obtain the mem-
brane reflectivity |rm|2. This formula assumes a perfectly reflective membrane and perfect
alignment of the membrane with the cavity mirrors. This explains the discrepancy be-
tween expected value and measured value. From the parameters of the fit, we can deduce
the values of T1 = 220 ppm, T2 = 1000 ppm and Rm = 0.36. This value matches very
well the theoretical value as silicon nitride has an optical index specified to be 2.01, which
gives a reflectivity of 0.34 [77]. We did a preliminary test with an empty cavity and found
T1 = 188 ppm and T2 = 36 ppm, and the specified values for the coatings done by LMA
are T1 = 100 ppm and T2 = 20 ppm. So we can conclude that T1 ≈ 200 ppm, that the
empty cavity has 20 ppm of extra losses and that the membrane adds 1000 ppm of losses.
We don’t know yet if these losses come from beam clipping by the membrane frame or
the membrane itself being dirty or tilted with respect to the back mirror. For now, the
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Fig. V.9 Transmission of the MATE cavity for a length scan using the cavity
front piezo for various back piezo voltage values. The bright lines correspond
to cavity resonances separated by one FSR. We see an upward trend due to
the cavity length being shortened as we sweep the back mirror position, and
superimposed oscillations due to the effective displacement of the membrane
being pushed by the back mirror.

highest finesse we have measured is F = 6, 700. From the measured value of Rm, we can
compute the maximal value of the mechanical coupling:

Gmax = 4ckN
L

1
|tm|2

= 4
|tm|2

GFP = 0.65 GHz
nm , (V.24)

for a cavity length of 17 mm. We see that the MATE cavity optomechanical coupling is
increased by a factor 6.25 compared to the standard Fabry-Perot optomechanical coupling.

V.8 Conclusion
So far, our design seems to work as planned, as we are able to control precisely the position
of the membrane. We were able to calibrate the membrane reflectivity, which matches
the value measured in literature [77] and to measure a cavity finesse of 6, 700. We now
need to investigate where the excess optical noise comes from by using different sizes of
membranes and putting an extra care on membrane cleanliness. We can also tune the
position of the pushers to try to control the tilt of the membrane with respect to the
back mirror. For now, other groups [22, 13, 23, 24, 25] have reported cavity finesse values
only around 10, 000 so it’s not sure we can do a lot better. The cavity has been installed
inside a vacuum chamber and the next step will be to measure the thermal noise of the
membrane at low pressure. This will be useful to characterize its mechanical properties
and have a better idea of what the SQL frequency will be. This will be crucial to choose
the rotation cavity characteristics II.5.5.
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Fig. V.10 Decay rate of MATE cavity as a function of the membrane
position. We see that as the membrane goes through the nodes and antinodes
of the standing wave inside the cavity, we increase or decrease the decay rate of
the cavity.

Fig. V.11 Membrane position as a function of the voltage applied to the back
piezoelectric transducer.
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Summary, conclusion and perspectives

After the introduction to this thesis and a quick panorama of the field of optomechan-
ics, I have briefly presented in Chapter II the theoretical elements required to discuss
and understand the experiments performed during this PhD work. I have shown how
the quantum nature of an optical field sets a fundamental limit, the Standard Quantum
Limit, to the sensitivity of interferometric continuous position measurement. I have then
introduced non-linear optics and presented how it allows to produce squeezed light and
actually to perform measurements beyond the SQL. Thermal position noise is still domi-
nant for most optomechanics experiments and I have shown how optomechanics provides
the tools to overcome this noise by reducing the effective temperature of a macroscopic
mechanical resonator well below its environment temperature.

In Chapter III, I have presented the results I have obtained cooling macroscopic res-
onators close to their quantum ground state. I have presented a first kind of mechanical
resonator, a mm-scale quartz µ-pillar. Such a resonator has long been designed, fabricated
and operated in the group but, despite some interesting samples, it’s been unfortunately
characterized by a very complex multi-step fabrication process and very low reproducibil-
ity of its mechanical properties from one sample to the other, particularly its mechanical
quality factor. I have recalled the experimental results obtained by Remi Metzdorff during
his PhD, with a cooling down to 6 phonons, and I have presented a thorough statistical
analysis I have performed to compute an uncertainty of ±0.4 on this number.

I have then presented and characterized a new kind of mechanical resonator, designed
and fabricated by the group of Francesco Marin, the wheel resonator, and discussed me-
chanical quality factor measurements from room temperature down to 4 K, that display
very consistent properties from one sample to the other. I have also presented and dis-
cussed the cooling results obtained for these resonators, down to a temperature similar as
the one demonstrated with the µ-pillar but due to their lower resonance frequency, this
still corresponds to a higher number of residual phonons, with nph = 87 ± 3.

To improve this result would require to improve the proper functioning of the di-
lution cryostat. During the second part of this thesis, the cryostat indeed displayed a
base temperature getting higher and higher at each of the last cool-downs, most likely
due to a small leak in the dilution circuit that we haven’t been able to find. A better
working cryostat would mean a lower thermalization temperature for the optomechanical
resonator, which would improve the results in two ways.

Firstly, a lower environment temperature would mean a higher mechanical quality
factor. During the last experimental runs, we indeed observed day-to-day variations
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of the quality factor as the cryostat struggled to stabilize at its base temperature. As
a higher mechanical Q means a stronger signal-to-noise (or noise-to-noise) ratio of the
thermal peak above the sensitivity floor, it implies lower temperatures achievable with
feedback cooling as the noise floor is the current limit of the experiment.

Secondly, if the temperature of the resonator is lower, we obviously need less optical
cooling to reach the quantum ground state. It should be noted that, other things being
equal, with our current setup, an increase by a factor 10 at most on the quality factor
and a decrease by a factor 10 of the thermalization temperature would be sufficient to
reach the ground state.

Another way to improve the results would be to try a new design of the resonator,
combining the best features of the two resonators:

• using an elongation mode, such as the one used for the pillar experiment, that gives
a very high resonance frequency, with minimal clamping losses...

• but fabricating it in silicon, using the same lithography technique as for the wheel
resonator, that proved to make highly reproducible samples, and optimising the
frame of the resonator to limit the negative impact of low frequency modes.

Once a lower phonon number is achieved, another interesting upgrade of this exper-
iment would be to characterize the quantum behaviour not only by the level of position
noise, a quantitative feature that requires a careful calibration procedure to compute the
phonon number, but by demonstrating a sheer qualitative feature such as sideband asym-
metry of the Stokes and anti-Stokes sidebands using a heterodyne detection. The idea
of such a measurement is to address and detect individually the two sidebands, which
scale respectively as nph and nph+1. Such a measurement was actually attempted during
Remi’s PhD, when the µ-pillar was cooled down to 6 phonons, but limited signal-to-noise
ratio with a very weak heterodyne probe beam prevented any conclusive result.

The next (much longer term) step would be to try to demonstrate a possible gravi-
tational decoherence effect. This would require to put the resonator into a non-Gaussian
state, for example a cat state, which is not possible using only linear optomechanical
effects (that can only map an input Gaussian state to another Gaussian state). The most
promising platform for such an experiment involves a SiN membrane, resonantly coupled
to a superconducting qubit, which provides the nonlinear interaction. At LKB, there is a
strong dedicated experimental effort led by Samuel Deléglise and Thibaut Jacqmin. The
photonic-crystal SiN nanomembrane is a moving electrode for a capacitor, embedded in
an LC circuit, with a resonance frequency depending on the membrane position. The
LC-circuit is coupled as well to the qubit. One of the notable experimental challenges
is to design and fabricate a superconducting qubit with a frequency that matches the
mechanical resonance frequency, typically in the MHz range (SiN mechanical resonators
at 5 MHz have been demonstrated recently by the team), to be compared with the usual
GHz frequency of such qubits.

In Chapter IV, I have described in great technical detail the design of the squeezed
light source developed at LKB. We have designed a SHG that is able to produce more
than 300 mW of power at 532 nm. We have then demonstrated that the OPO is able
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to produce up to 4 dB of squeezing. We have also set up a phase lock-loop between the
main laser and the coherent control laser, that keeps the laser at a stable detuning with
a typical rms error of 2° for more than 14 hours. We have also demonstrated the control
of the squeezing ellipse, but the simultaneous operation of all systems and control loops
only allowed the demonstration of controlled squeezing with a noise reduction between 1
and 2 dB.

This modest intermediate result most likely stems from uncontrolled phase noise due
to the various feedback loops being still not optimised. This is clearly the first issue to
address. Reducing optical losses is next on the to-do list. One may think of:

• improving the mode-matching of the homodyne detection.

• reducing propagation losses.

The mode-maching efficiency indeed scales quadratically with the fringe visibility. A
fringe visibility of 99 % should be attainable by putting the mode-matching lens on a
translation stage to finely tune the position of the beam waist. Propagation losses could
probably be reduced by optimising the loss due to the optical circulator, which is now
about 10%. We still do not know if this is an issue related to the polarization rotator
or to the polarizing beam splitter, but other experiments [78] have been able to reduce
this number down to 1 %. Using a triangular rotation cavity would also be a solution
as the input and output beams would be spatially separated and no circulator would be
required, but it does involve one extra mirror in the cavity, meaning higher cavity losses,
which are worse than propagation loss as they couple antisqueezing and not vacuum to
squeezing. There is also the issue of scattering to the counter-circulating optical mode
that should be characterized.

Once these issues are taken care of and the frequency-dependent squeezing has been
demonstrated with the addition of the rotation cavity, an improvement we started think-
ing about was to use a 3-mirror rotation cavity. In this configuration, the first two mirrors
form a sub-cavity that can be tuned around its resonance to work as an effective input
mirror with tunable optical reflectivity. This would make the bandwidth of the cavity
tunable to some extent, which will be useful on the long term to perform SQL-limited
measurements on a set of optomechanical resonators as the SQL frequency will depend on
the mechanical quality factor of the resonator and the intracavity power. Such character-
istics will indeed vary from one sample to the other so some tuning range on our rotation
cavity bandwidth will be an interesting feature of the final setup. The final challenge will
be to couple the squeezed light to an optomechanical cavity through an optical fiber while
keeping optical losses to a minimum. This will require great care in the coupling of the
squeezed field into the fiber.

Finally, in Chapter V, I have described the different steps of the progression toward the
design of an optomechanical system that will be limited by QRPN. To do so, I have first
given a summary of three different cavity designs demonstrated by other research groups
before actually presenting our own. I have then presented the results we obtained on a
preliminary design with a curved mirror instead of the input fiber mirror. These results
demonstrate that it is is indeed possible to effectively tune the membrane position inside
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the cavity with a sufficient sensitivity, and to obtain a maximal finesse of 6000. I eventually
derive some expected numbers for the future operation at cryogenics temperature.

Though it started already about 5 years ago, this research project is still quite far
from completion. We have so far only checked the optical properties of the system but the
membrane cavity is mounted in a vacuum chamber and we expect to be able to measure
thermal noise at low pressure, even with a basic optical setup and a modest displacement
sensitivity, quite soon. Such a measurement would already give the mode frequencies and
the corresponding mechanical quality factors, which should already be quite high. Other
groups have reported issues where the thermal motion of the membrane is so large that
the cavity cannot be kept at resonance [79].

Finally, operating the fiber mirror cavity in the cryogenic environment is foreseen to
be quite challenging. For examples, optical stability at the required level might be an
important issue to deal with. Indeed, the new dilution cryostat works with a pulse-tube,
which adds a lot of low-frequency vibrations. Hopefully, the soft clamping of the mem-
brane will however provide sufficient passive isolation. Thermalization of the membrane
in such a cryogenic cavity is also a matter of concern.

To address all these challenges, I’m happy to pass the torch to Pierre-Édouard who
started his PhD about a year ago, and to whom I wish the best as he embarks on this
fascinating but demanding (or demanding but fascinating?) journey.
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Sujet : Optomécanique et lumière comprimée

Résumé : Cette thèse porte sur l’étude des bruits fondamentaux qui limitent la sensibilité des
mesures interférométriques de position d’un résonateur optomécanique de haut facteur de qual-
ité mécanique, couplé dans un environnement cryogénique à une cavité Fabry-Perot de grande
finesse. Nous avons d’abord étudié le bruit thermique du résonateur et l’avons réduit pour nous
approcher de l’état quantique fondamental d’un résonateur mécanique macroscopique. Nous
présentons nos résultats expérimentaux, obtenus avec deux géométries différentes de résonateurs,
en détaillant leurs avantages et inconvénients respectifs. Dans un deuxième temps, nous étudions
les sources de bruit liées à la nature quantique de la lumière. Ces deux bruits, le bruit quantique
de phase et celui de pression de radiation, sont les limites les plus fondamentales aux mesures
interférométriques de position, et limitent déjà la sensibilité des interféromètres gravitationnels
sur une large plage de fonctionnement. Nous présentons tout d’abord le développement d’une
source de lumière comprimée, optimisée pour sonder les déplacements d’un oscillateur mécanique
résonnant dans la gamme du MHz. Cette source réduit aujourd’hui le bruit quantique d’un fac-
teur 2. Nous présentons ensuite succinctement le développement d’une source optimisée pour
un interféromètre gravitationnel, pour des fréquences inférieures à quelques kHz. Enfin nous
présentons la conception et la réalisation d’une nouvelle géométrie de cavité fibrée cryogénique,
couplée au mouvement d’une membrane nanométrique de SiN, qui permettra d’observer le bruit
quantique de pression de radiation et de mettre en évidence l’effet de la lumière comprimée sur
la mesure.

Mots clés : Optomecanique, Lumière comprimée, Cavité de grande Finesse, Interferométrie,
Bruit thermique, Bruit de grenaille quantique, Resonateur de grand facteur de Qualité , Inter-
féromètres pour la detection d’ondes gravitationnelles, Bruit de pression de radiation quantique

Subject : Optomechanics and squeezed light

Abstract: This thesis investigates the fundamental noise that limits the sensitivity of inter-
ferometric position measurements of a high mechanical quality factor optomechanical resonator
coupled in a cryogenic environment to a high finesse Fabry-Perot cavity. We first studied the
thermal noise of the resonator and reduced it to approach the fundamental quantum state of a
macroscopic mechanical resonator. We present our experimental results, obtained with two dif-
ferent resonator geometries, detailing their respective advantages and disadvantages. In a second
step, we study the sources of noise related to the quantum nature of light. These two noises,
the quantum phase noise and the radiation pressure noise, are the most fundamental limits to
interferometric position measurements, and already limit the sensitivity of gravitational interfer-
ometers over a wide operating range. We first present the development of a compressed light
source, optimised to probe the displacements of a resonant mechanical oscillator in the MHz
range. This source now reduces the quantum noise by a factor of 2. We then briefly present
the development of an optimised source for a gravitational interferometer, for frequencies below
a few kHz. Finally, we present the design and implementation of a new cryogenic fibre cavity
geometry, coupled to the movement of a nanometric SiN membrane, which will allow us to ob-
serve the radiation pressure quantum noise and to highlight the effect of compressed light on the
measurement.

Keywords : Optomechanics, Squeezing, High-Finesse cavity, Interferometry, Thermal Noise,
Quantum Shot Noise, High-Q Resonator, Gravitational wave Interferometer,Quantum Radiation
Pressure Noise
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