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Titre: Etude du transport électronique dans les états liés intra-gap au sein de supraconducteurs.
Mots clés: Supraconductivité; Etats liés; Transport quantique; Fermions de Majorana.

Résumé: Dès la fin des années soixante, il fut dé-
montré qu’un unique spin classique placé au sein
d’un supraconducteur conventionnel est capable de
générer un état lié, localisé, dont l’énergie se trouve
dans le gap BCS. Il s’agit d’un état lié de Yu-
Shiba-Rusinov (YSR), en l’honneur de ses décou-
vreurs. Pour une concentration finie d’impuretés
magnétiques, ces états s’hybrident et forment une
bande de Shiba dans le gap BCS. Récemment, il
a été théoriquement proposé qu’une chaîne uni-
dimensionnelle d’impuretés magnétiques déposées
sur un substrat supraconducteur en onde s puisse
réaliser un supraconducteur topologique supportant
des fermions de Majorana à ses extrémités. Cette
proposition a suscité un regain d’intérêt pour les
états liés de YSR, dans le but de les assembler en
structures plus complexes. Dans ce manuscrit, nous
revisitons le transport électronique dans les états de
YSR et montrons que les propriétés de transport,
mesurées par microscopie/spectroscopie à effet tun-
nel (STM/STS), contiennent des informations pré-
cieuses sur les propriétés de ces états.

Tout d’abord, nous montrons qu’une unique im-
pureté magnétique induit localement des corréla-
tions de paires non conventionnelles dites odd-
frequency, à l’emplacement de l’impureté. En
analysant les fonctions de Green locales, nous dé-
duirons que la partie imaginaire de cette fonction
d’appariement non-conventionnelle est proportion-
nelle à la composante paire de la densité d’état lo-
cale, directement mesurable par spectroscopie à ef-
fet tunnel standard. En utilisant ce résultat, nous
proposons une méthode pour extraire la fonction
d’appariement non conventionnelle des données
STS. Nous l’appliquons ensuite à des données STS
mesurées sur une mono-couche de Pb/Si(111) pour

prouver l’existence d’appariement odd-frequency
au voisinage des états de YSR.

Deuxièmement, motivés par le développement
récent de la spectroscopie à effet tunnel, nous avons
utilisé la technique de Keldysh pour calculer les
fluctuations du courant dans les états de YSR.
Nous montrons que ce bruit contient des signa-
tures claires des réflexions d’Andreev résonnantes
et des processus incohérents à une seule particule
dans les états de YSR. Nous comparons nos pré-
dictions théoriques avec les données expérimentales
mesurées par nos collègues du LPS et montrons que
notre modèle théorique, simple, capture correcte-
ment les caractéristiques importantes du bruit de
courant. De l’accord quantitatif entre théorie et ex-
périence, nous extrayons le taux de relaxation in-
trinsèque d’un l’état de YSR, inaccessible par spec-
troscopie de courant standard. De plus, nos résul-
tats indiquent clairement la présence concomitante
de réflexions d’Andreev et de processus à une seule
particule dans les états de YSR.

Enfin, nous étendons le modèle précédent pour
analyser le bruit de grenaille au voisinage de tous
types d’états liés supraconducteurs dans le gap,
couvrant ainsi les états de YSR, les états liés
d’Andreev mais aussi les fermions de Majorana
topologiques. En combinant des méthodes analy-
tiques et numériques, nous démontrons que la tomo-
graphie du bruit de courant au voisinage de fermions
triviaux et de fermions de Majorana présentent des
différences marquées permettant de distinguer ces
deux types d’états liés. Sur la base d’un modèle
effectif de basse énergie, nous montrons que ces
différences ont un caractère universel dont l’origine
n’est autre que la symétrie particule-trou intrinsèque
de la fonction d’onde de Majorana.
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Abstract: In the late sixties, it was shown that a
single classical spin immersed in a conventional su-
perconductor is able to generate a localized bound-
state inside the BCS of the superconducting sub-
strate. These states were named after their discov-
erers Yu-Shiba-Rusinov (YSR) bound states. For
a finite concentration of magnetic impurities, these
states hybridize and form Shiba bands inside the
BCS gap. Recently, it was theoretically proposed
that a one-dimensional chain of magnetic ad-atoms
deposited on an s-wave superconducting substrate
can realize a topological superconductor support-
ing Majorana edge modes at its ends. Since this
proposition, YSR bound-states have attracted re-
newed interest with an eye to building more com-
plex structures. In this manuscript, we will revisit
electronic transport in YSR states and show that
transport properties, measured by scanning tunnel-
ing microscopy/spectroscopy (STM/STS), contain
valuable insights into the properties of these states.

First, we shall show that a single mag-
netic impurity locally induces unconventional odd-
frequency pair correlations at the impurity location.
Analyzing the local Green’s functions, we show
that the imaginary part of the odd-frequency pair-
ing function is proportional to the even component
of the local density of state, directly measured in
standard tunneling spectroscopy. Using this result,
we propose a method to extract the unconventional
pairing function from STS data, apply it to STS data
measured on a Pb/Si(111) monolayer, and prove the
occurrence of odd-frequency pairing around YSR

states.

Second, motivated by the recent development of
scanning tunneling spectroscopy, we used Keldysh
techniques to calculate the current shot-noise in
YSR states. We show that the shot-noise con-
tains clear signatures of resonant Andreev reflec-
tions and incoherent single-particle tunneling pro-
cesses in YSR states. We compare our theoretical
predictions with experimental data measured by our
LPS colleagues and show that our simple theoreti-
cal model correctly captures the important features
of shot noise. From the quantitative agreement be-
tween theory and experiment, we extract the intrin-
sic relaxation rate of the YSR state, which is inac-
cessible by differential conductance spectroscopy.
Moreover, our results clearly indicate the concomi-
tant presence of Andreev and single-particle pro-
cesses in YSR states.

Finally, we extend the former model to ana-
lyze the scanning tunneling shot-noise in the vicin-
ity of any superconducting sub-gap states, includ-
ing YSR impurity states, Andreev bound-states, and
topological Majorana zero-modes. Combining an-
alytical and numerical methods, we demonstrate
that shot-noise tomography reveals key distinctive
features that allow one to distinguish trivial zero-
energy fermions from Majorana zero-modes. Based
on a low-energy effective model, we show that these
sharp differences have a universal character that is
rooted in the intrinsic particle-hole symmetry of the
MZM wavefunction.
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Synthèse:

La supraconductivité est une phase de la matière caractérisée par l’absence de résistance électrique et l’expulsion
parfaite des lignes de flux magnétiques de son intérieur. La découverte de la supraconductivité remonte à 1911,
lorsque H. Kammerlingh-Onnes et son équipe à Leyde observent que la résistance électrique d’un échantillon
de mercure s’annule de manière abrupte lorsque l’échantillon est refroidi en dessous de 4.2K [1]. La sec-
onde caractéristique de l’état supraconducteur, le diamagnétisme parfait, ne fut observé que vingt ans plus tard,
en 1933, par Meissner et Ochsenfeld [2]. Ce phénomène fut par la suite nommé effet Meissner-Ochsenfeld
en l’honneur de ses découvreurs. Les deux phénomènes précédents n’apparaissent qu’en dessous d’une cer-
taine température, nommée température critique, et qui dépend du matériau supraconducteur. Pour les métaux
purs étudiés jusqu’au milieu des années soixante-dix, la température critique est de l’ordre de quelques degrés
Kelvin, proche du zéro absolu (−273, 15°C).

Dès la découverte expérimentale de la supraconductivité, d’importants efforts ont été mis en oeuvre pour
comprendre l’origine de ce phénomène et établir une théorie de l’effet supraconducteur. Néanmoins, la supra-
conductivité est resté un casse-tête pour les théoriciens, et ce n’est qu’en 1957 que J. Bardeen, L. N. Cooper
et J. R. Schrieffer proposèrent la première théorie microscopique de la supraconductivité: la célèbre théorie
BCS [3, 4]. Dans cette théorie, la transition vers la phase supraconductrice est expliquée par la formation d’un
condensat de paires d’électrons dont l’énergie est proche du niveau de Fermi, appelées paires de Cooper. Ce
condensat de paires est bien séparé de ses états excités par une bande d’énergie interdite ou gap, noté ∆ et
appelé gap de BCS ou gap supraconducteur. De manière générale, ∆ est un nombre complexe et joue le rôle
du paramètre d’ordre supraconducteur au sens de la théorie des transitions de phase de Ginzburg-Landau [5].

Comme tous les matériaux, en réalité, les supraconducteurs ne sont pas parfaitement purs et contiennent des
impuretés dont la présence pourrait potentiellement modifier leurs propriétés électroniques de façon drastique.
C’est pourquoi, comprendre comment les impuretés sont susceptibles d’affecter les propriétés électroniques de
matériaux donnés est un sujet central de la physique de la matière condensée. En 1959, P.W. Anderson a montré
que la présence d’impuretés non-magnétiques, préservant la symétrie par renversement du temps, ne modifie
pas les propriétés des supraconducteurs conventionnels en onde s [6], un résultat aujourd’hui connu comme le
théorème d’Anderson. À contrario, la concurrence apparente entre la supraconductivité et le magnétisme, bien
illustrée par l’effet Meissner-Ochsenfeld, suggère que le désordre magnétique, qui brise la symétrie par ren-
versement du temps pourrait affecter l’état supraconducteur. En effet, dans un article pionnier, A. Abrikosov et
L. P. Gor’kov ont montré que la présence d’un désordre magnétique dans les supraconducteurs à ondes s réduit
la magnitude du gap supraconducteur ainsi que la température critique et pourrait à terme détruire la cohérence
de l’état supraconducteur pour des concentrations d’impuretés suffisamment importantes [7]. Quelques années
plus tard, L. Yu, H. Shiba et A. I. Rusinov démontrèrent, de manière indépendante, qu’un unique moment
magnétique classique, isolé, immergé dans un supraconducteur en onde s agit de manière effective comme
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un potentiel de brisure de paires et génère un unique état lié, localisé, dont l’énergie se trouve dans le gap
supraconducteur [8, 9, 10]. Ces états liés sont aujourd’hui nommés états de Yu-Shiba-Rusinov en l’honneur de
leurs découvreurs. En présence d’une concentration finie d’impuretés magnétiques, les états de YSR ayant un
recouvrement fini s’hybrident et donne naissance à une bande de Shiba dans le gap supraconducteur [9].

Bien que l’existence des états de Yu-Shiba-Rusinov ait été prédite dès la fin des années soixante, leur obser-
vation et caractérisation expérimentale resta longtemps balbutiante en raison, notamment, de la fine résolution
spatiale et spectrale requise. Ainsi, ce n’est qu’en 1997 que A. Yazdani et ses collaborateurs rapportent la pre-
mière observation expérimentale, directe, d’états de Yu-Shiba-Rusinov, par spectroscopie à effet tunnel [11].
Cette prouesse expérimentale fut permise par les récents progrès technologiques permettant la préparation de
surfaces supraconductrices propres et la déposition d’atomes magnétiques sous ultra-vide et à basse tempéra-
ture. Ainsi que par le développement de la spectroscopie à effet tunnel permettant l’étude de ses surfaces avec
un haut niveau de résolution spatiale et spectrale à des températures ultra-basses, bien en dessous de la tempéra-
ture critique. Plus récemment, le domaine a connu un regain d’intérêt, principalement motivé par la possibilité
de manipuler des chaînes d’états de Yu-Shiba-Rusinov pour induire une phase supraconductrice topologique
dans les bandes Shiba [12].

Pour être bref, la topologie est une branche des mathématiques qui s’intéresse aux propriétés d’objets
géométriques qui sont préservées lors de déformations continues de ces objets. De telles propriétés sont ap-
pelées invariants topologiques. En physique du solide, les matériaux topologiques sont caractérisés par la
présence de modes d’énergie nulle localisé au bords de l’echantillon. Ces derniers ne peuvent être éliminés
lors de déformations continues du système. L’exemple le plus célèbre de phase topologique en matière con-
densée est certainement l’effet Hall quantique entier [13], pour lequel la présence d’états de bord chiraux,
topologiquement protégés, donnent lieu à une conductance de Hall transverse quantifiée [14]. Dans le cas de
supraconducteurs topologiques, les modes de bord topologiques sont des quasiparticules de Majorana qui ont
la propriété particulière d’être leurs propres antiparticules. Ces quasiparticules possèdent des caractéristiques
avantageuses pour le calcul quantique. Premièrement, le caractère non-local de ces quasiparticules les rend
robustes à la présence de désordre local préservant le gap supraconducteur. De plus, les modes de bord de
Majorana possèdent une statistique d’échange non abélienne. De ce fait l’état quantique de qbits de Majorana
peut être manipulé en échangeant les modes de Majorana. Ces deux propriétés font des modes de Majorana des
candidats idéaux pour la réalisation de futurs ordinateurs quantiques topologiques tolérants aux erreurs [15].
Depuis leur prédiction théorique [16], les modes de Majorana sont devenus le Saint Graal de la physique de la
matière condensée et constitue l’un des thèmes de recherche les plus actifs du domaine. Au cours de la dernière
décennie, des travaux théoriques ont montré qu’une chaîne unidimensionnelle (1D) d’impuretés magnétiques
,déposées à la surface d’un supraconducteur conventionnel en onde s, possède une phase supraconductrice
topologique 1D abritant des modes de bord de Majorana à ses extrémités [12]. Néanmoins, afin de concevoir
de telles chaînes d’impuretés magnétiques, une compréhension profonde et détaillée des propriétés de la brique
de base, l’état de Yu-Shiba-Rusinov, est nécessaire. Ainsi, les états de Yu-Shiba-Rusinov ont suscité un engoue-
ment particulier durant la dernière décennie au sein de la communauté scientifique de la matière condensée [17].
Les propriétés spectrales ainsi que la dépendance spatiale des états de Yu-Shiba-Rusinov ont ainsi fait l’objet
d’une caractérisation expérimentale approfondie et sont aujourd’hui bien comprises [10, 18, 19]. Au contraire,
le temps de relaxation intrinsèque de ces états de Yu-Shiba-Rusinov, élément crucial pour la réalisation de
structures plus complexes telles que les chaînes, a reçu moins d’attention et reste encore difficile à caractériser
expérimentalement.
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C’est pourquoi, cette thèse a pour but de revisiter les propriétés de transport électronique des états de Yu-
Shiba-Rusinov et plus généralement des états liés intra-gap au sein de supraconducteurs. Afin d’établir un lien
direct avec les résultats expérimentaux, nous porterons une attention particulière aux observables locales qui
peuvent être mesurées par microscopie/spectroscopie à effet tunnel. En effet, grâce à sa haute résolution spa-
tiale et énergétique, cette technique expérimentale est largement utilisée pour caractériser les états liés localisés
intra-gap tels que les états de Yu-Shiba-Rusinov [17] ou les modes de Majorana topologiques [20]. Dans un
premier temps, nous montrerons que l’état de Yu-Shiba-Rusinov modifie localement l’état supraconducteur du
matériau hôte et induit des paires de Cooper non conventionnelles, dont l’état de spin est triplet et possèdent
une symétrie impaire en fréquence. De plus, nous verrons que la spectroscopie à effet tunnel convention-
nelle du coeur des états de Yu-Shiba-Rusinov contient des signatures de la présence d’appariement impaire en
fréquence au voisinage de l’impureté magnétique. Nous montrerons alors, de manière explicite, comment la
partie imaginaire de la fonction d’appariement impaire en fréquence peut être extraite directement du spectre
de conductance différentielle. Deuxièmement, motivés par le développement, très récent, de la spectroscopie
à effet tunnel du bruit de grenaille [21, 22], nous montrerons que l’analyse des fluctuations du courant tunnel
dans les états de Yu-Shiba-Rusinov fournit des informations précieuses sur la nature des processus de transfert
de charge sous-jacents. De plus, cette analyse permet d’estimer le temps de relaxation intrinsèque des états de
Yu-Shiba-Rusinov. Enfin, en étendant les résultats précédents au cas d’états liés supraconducteurs arbitraires,
nous montrons que la tomographie du bruit de grenaille, d’ores et déjà réalisable [21, 22], possède des carac-
téristiques bien distinctes déterminées par la nature de l’état lié sondé. Plus particulièrement, ces différences
qualitatives très prononcées permettent de distinguer des énergies nulles triviales états fermioniques des modes
zéro de Majorana. Le manuscrit présenté ici comprend cinq chapitres, deux chapitres introductifs suivis de trois
chapitres dédies aux résultats originaux obtenus pendant cette thèse. Ces chapitres sont organisés comme suit:

• Chapitre. 1: Théorie de champ moyen des supraconducteurs et topologie
Le but de ce premier chapitre introductif est de présenter le formalisme théorique qui sera utilisé tout
au long de le manuscrit pour décrire les propriétés électroniques des supraconducteurs à des tempéra-
tures bien inférieures à la température critique. Ce formalisme, connu sous le nom de formalisme de
Bogoliubov-de-Gennes, n’est autre qu’une description de champs moyen de la supraconductivité, qui
peut être vue comme une généralisation de la théorie de BCS. Nous commencerons ce chapitre par un
bref rappel de la théorie de champ moyen de BCS [3]. Ensuite, nous généraliserons cette théorie en
autorisant la présence de paires de Cooper de symétries arbitraires et présenterons ainsi le formalisme
de Bogoliubov-de-Gennes [23]. Enfin, nous discuterons la classification topologique des phases supra-
conductrices [24] ainsi que les propriétés des modes de Majorana qui apparaissent au bords de certains
supraconducteurs topologiques [25].

• Chapitre. 2: Introduction au formalisme des fonctions de Green hors-équilibre
Dans ce second chapitre introductif, nous introduirons le formalisme théorique des fonctions de Green
hors-équilibre sur le contour de Keldysh [26]. Cet outil théorique puissant est parfaitement adapté à
l’étude du transport électronique. Ainsi, il permet de décrire de manière pratique la microscopie/spectroscopie
à effet tunnel des états de sous-gap supraconducteurs et de comparer directement nos résultats aux don-
nées expérimentales. Tout d’abord, nous poserons les bases de la technique des fonction de Green
hors-équilibre et introduirons le concept de contour temporel, pierre angulaire du formalisme [27]. En-
suite, nous nous concentrerons sur le contour de Keldysh, un contour spécifiquement adapté à l’étude
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des régimes stationnaires [26]. Enfin, nous appliquerons le formalisme de Keldysh à la modélisation
des expériences de spectroscopie à effet tunnel, dans lesquelles une pointe métallique sonde un échan-
tillon supraconducteur présentant potentiellement un état lié intra-gap. Plus particulièrement nous mon-
trerons de manière explicite comment la conductance différentielle peut être calculée via la technique
de Keldysh. Aussi, nous appliquerons nos résultats au cas d’un supraconducteur conventionnel parfait,
pour lequel la conductance peut être calculée analytiquement et met en évidence le concept de réflexion
d’Andreev [28].

• Chapitre. 3: Appariement impaire en fréquence au voisinage d’impuretés magnétiques
Ce chapitre est le premier chapitre dédié aux résultats originaux obtenu lors de cette thèse. Ici, nous mon-
trerons qu’un état de Yu-Shiba-Rusinov convertit localement les paires de Cooper conventionnelles, en
onde s, singlets de spin et paires en fréquence, du matériau hôte en paires de Cooper non-conventionnelles,
en onde s, triplets de spin et impaires en fréquence. Tout d’abord, nous présenterons brièvement le con-
cept d’appariement impaire en fréquence [29]. Après un bref tour d’horizon historique de ce dernier
concept, nous passerons en revue les propriétés spectrales et spatiales bien connues des états Yu-Shiba-
Rusinov [10, 18, 17]. Ensuite, nous calculerons explicitement les fonctions d’appariement au cœur
de l’état de Yu-Shiba-Rusinov et montrerons que la densité électronique locale, directement mesurable
par spectroscopie à effet tunnel, est proportionnelle à la partie imaginaire de la fonction d’appariement
impaire en fréquence. En se basant sur ce dernier résultat, nous proposerons une méthode pour ex-
traire la partie imaginaire de la fonction d’appariemment impaire en fréquence à partir de spectres de
conductance différentielle expérimentaux, mesurés par spectroscopie à effet tunnel. Enfin, nous ap-
pliquerons notre méthode à un jeux de données mesurées par G. C. Ménard, et ses collaborateurs à
l’Institut des Nanosciences de Paris. Les résultats ainsi obtenus montrent des signatures expérimentales
de l’occurrence d’appariement impaire en fréquence au vosinage des états de Yu-Shiba-Rusinov. Ce
chapitre est basé sur l’article suivant : [30], paru dans Physical Review Letters.

• Chapitre. 4: Spectroscopie à effet tunnel du bruit de grenaille des états de Yu-Shiba-Rusinov
Dans ce chapitre, motivé par le développement récent de la spectroscopie à effet tunnel du bruit de
grenaille, nous nous baserons sur le formalisme de Keldysh pour construire un modèle théorique du
transport électronique dans les états de Yu-Shiba-Rusinov. Tout d’abord, nous décrirons le dispositif
expérimental considéré et construirons un modèle théorique simplifié décrivant le transport électronique
à basse énergie dans les états de Yu-Shiba-Rusinov situés dans le gap supraconducteur. Ensuite, nous
utiliserons le formalisme de Keldysh, introduit au Chapitre. 1, pour calculer le courant électronique
traversant la jonction tunnel ainsi que le bruit de grenaille associé aux fluctuations de courant. Du point
de vue théorique, il est aisé de montrer qu’en présence de relaxation, le courant tunnel au travers d’un état
de Yu-Shiba-Rusinov provient de deux types distincts de processus de transfert de charge microscopique:
des processus tunnel à une seule particule et des réflexions d’Andreev [31]. Récemment, M. Ruby et ses
collaborateurs ont mesuré le courant tunnel dans les états de Yu-Shiba-Rusinov grâce à un microscope
à effet tunnel sondant le coeur de l’impureté magnétique. Les résultats expérimentaux combinés à une
modélisation théorique suggèrent que le courant provient majoritairement des processus à une particule
pour de grandes distances pointe/échantillon. Au contraire, les processus d’Andreev deviennent majori-
taires lorsque la distance pointe approche l’échantillon [32]. Ces résultats suggèrent que les processus à
une particule et ceux d’Andreev opèrent de manière simultanée dans les états de Yu-Shiba-Rusinov [32],
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en accord avec les prédictions théoriques antérieures [31]. Néanmoins, cette conclusion est sujette à
interprétation et ne constitue pas une preuve irréfutable de la présence de processus d’Andreev. À ce
jour, la spectroscopie de courant standard ne nous a pas livré de signatures directes et non-ambiguës de
l’occurence de processus d’Andreev dans les états de Yu-Shiba-Rusinov. Ici, nous montrerons qu’au
contraire, la spectroscopie de bruit de grenaille fournit des preuves directes de la présence concomittante
de processus d’Andreev et des processus à un seule particule, dans les états de Yu-Shiba-Rusinov. Enfin,
en comparant nos prédictions théoriques aux mesures expérimentales du bruit de grenaille obtenues par
U. Thupakula et ses collaborateurs au LPS, nous montrerons que notre modèle capture correctement
les principales caractéristiques qualitatives du bruit de grenaille, oservées experimentalement dans les
états de Yu-Shiba-Rusinov. De plus, nous montrerons qu’il est possible d’atteindre un accord quantitatif
entre mesures et théorie en utilisant le taux de relaxation de l’état de Yu-Shiba-Rusinov comme seul
paramètre libre. Grâce à l’accord quantitatif ainsi obtenu, nous estimerons le taux de relaxation des états
de Yu-Shiba-Rusinov. Le taux de relaxation typique ainsi estimé est de l’ordre du microélectronvolt,
bien en dessous de l’énergie d’agitation thermique, de l’ordre de quelques centaines de microélectron-
volts. Ainsi, nos résultats montrent que la spectrocopie du bruit de grenaille permet d’accéder à des
échelle d’energie et de temps inaccessible par spectroscopie conventionnelle, dont la résolution est lim-
ité par l’élargissement thermique. Pour finir, notre analyse théorique des données expérimentales indique
clairement la présence concomitante de processus à une seule particule et de processus d’Andreev. Ce
chapitre est basé sur la publication suivante : [33], parue dans Physical Review Letters.

• Chapitre. 5 : Tomographie du bruit de grenaille, un nouvel outil pour identifier les modes de
Majorana
Dans ce chapitre, nous montrons que la tomographie à bruit de fond révèle des caractéristiques distinc-
tives clés qui permettent de distinguer les états fermioniques triviaux à énergie nulle, comme les états
YSR, des modes zéro de Majorana. Dans un premier temps, nous décrirons brièvement la plateforme ex-
périmentale la plus mature pour l’ingénieurie de phase supraconductrice topologique arborant des modes
de bord de Majorana: les nanofils de Rashba. Un nanofil de Rashba est une hétérostructure hybride con-
stituée d’un nanofil semiconducteur présentant un fort couplage spin-orbit intrinsèque, le pus souvent
de l’Indium ou l’Arsenide déposé à la surface d’un supraconducteur conventionnel, le plus souvent de
l’Aluminium. En présence d’un champ magnétique parallèle à l’axe du nanofil une phase supraconduc-
trice topologique est induite dans le nanofil, à condition que le champs soit suffisamment fort. La nature
topologique de la phase supraconductrice se traduit alors par la présence de deux modes de Majorana,
chacun localisé à une extrémité du nanofil. En combinant l’étude d’un modèle analytique effectif à basse
énergie et des simulations numériques exactes, nous montrerons que le facteur de Fano au voisinage
de modes de Majorana ne présente pas de dépendance spatiale et reste égal à un, indépendemment de
la position sondée. En revanche, le facteur de Fano au voisinage des états liés fermioniques triviaux
présente des oscillations spatiales bien marquées qui excédent largement un, pour certaines positions.
En construisant un modèle effectif à basse énergie, nous montrerons que ces différences marquées ont
un caractère universel trouvant son origine dans la symétrie particule-trou caractéristique de la fonction
d’onde d’un mode de Majorana isolé. Ce chapitre est basé sur la publication suivante: [34].

• Chapitre. 6 : Conclusion générale
Nous finirons ce manuscrit par un chapitre de conclusion générale où nous resumerons les principaux
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résultats, discuterons les limites de nos travaux ainsi que les perspectives possibles. Ci-dessous nous
donnons une traduction condensée de cette conclusion générale.

Dans cette thèse, nous avons revisité les propriétés de transport électronique des états liés intr-gap au sein
de supraconducteurs. Plus particulièrement, nous avons montré que la mesure du courant tunnel et du bruit de
grenaille associé, au moyen de microscopes à effet tunnel, fournit des informations précieuses sur les propriétés
des états sub-gap supraconducteurs et leurs propriétés. Ceci inclut la présence d’un appariement non conven-
tionnel, le temps de relaxation intrinsèque des états liés, ou encore l’asymétrie particule-trou de leur fonction
d’onde.

Premièrement nous avons montré que les états de Yu-Shiba-Rusinov induisent de manière locale un ap-
pariement non-conventionnel, impair en fréquence. De plus nous proposons un protocole permettant d’extraire
la partie imaginaire de la fonction d’appariement impaire en fréquence à partir du spectre de conductance dif-
férentielle mesurée au coeur de l’impureté et obtenons ainsi des signatures expérimentales de la présence de
correlation impaire en fréquence au voisinage d’impureté magnétiques [30]. Lors d’une collaboration avec F.
L. N. Santos et ses collaborateurs, que nous n’avons pas présenté dans ce manuscrit, nous avons pu étendre les
résultats précédents au cas d’une concentration finie d’impuretés magnétiques dans la limite diluée [35].

Dans un second temps nous nous sommes intéressés à la spectroscopie à effet tunnel de bruit de grenaille,
une technique expérimentale très récente et prometteuse [21, 22]. En utilisant le formalisme de Keldysh nous
avons pu montrer que la mesure du bruit de grenaille à l’échelle atomique montre de manière claire et direte
que le courant au travers d’états de Yu-Shiba-Rusinov provient à la fois de processus d’Andreev et de processus
à un seule particule opérant simultanément. De plus, cette technique permet d’estimer le taux de relaxation
intrinsèque des états de Yu-Shiba-Rusinov habituellement masqué par les effets thermiques.

Il est important de rappler que les résultats précédents sont basés sur un modèle classique de l’impureté
magnétique. Ainsi, il serait intéressant de comprendre dans quelles mesures les fluctuations quantiques du
spin de l’impureté magnétique affectent nos résultats. Ce point pourrait être abordé dans un futur proche,
mais nécessiterait l’utilisation d’outils théoriques pointus et sophistiqués, adaptés à la description d’électrons
fortement corrélés, tel que la théorie du champ moyen dynamique hors-équilibre [36].

Pour finir, en étendant notre moèdele théorique du bruit de grenaille au voisinnage des états de Yu-Shiba-
Rusinov à des états liés intra-gap de nature arbitraire, nous avons pu montré que la tomographie du bruit de
courant est un outil prometteur pour l’identification de mode de Majorana isolés et le développement de tech-
nologie quantique basées sur les qubits de Majorana. Sur la base d’un modèle effectif à basse énergie, nous
avons montré, de manière ananlytique, que dans le régime de couplage tunnel fort, où la contribution des pro-
cessus incohérents à une seule particule peut être négligée devant les réflexions d’Andreev, le facteur de Fano
est essentiellement déterminé par l’asymétrie locale particule-trou de la fonction d’onde de l’état lié. Ceci sug-
gère que la tomographie du facteur de Fano peut être utilisée pour distinguer les fermions triviaux des fermions
de Majorana. Nos simulations numériques de la tomographie du facteur de Fano nous a permis de confirmer
les résultats analytiques obtenus par l’approximation de basse énergie. Plus précisément, nous avons montré
qu’au voisinage d’un mode de Majorana spatialement isolé, le facteur de Fano ne présente pas de dépendance
spatiale significative, reste constant et égal à un. Ce comportement contraste fortement avec les fortes oscilla-
tions supérieures à un observées au voisinage d’états liés triviaux. De plus, les résultats analytiques obtenus
par l’approximation de basse énergie indiquent que ces fortes oscillations trouvent leur origine dans l’asymétrie
particule-trou locale (c’est-à-dire la charge locale) de l’état lié sondé. Ainsi, bien que la tomographie du fac-
teur de Fano est incapable de sonder directement nature topologique du coeur de l’échantillon, elle est sensible
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l’asymétrie particule-trou locale de l’état lié sondé et donc au recouvrement des fonctions d’onde de Majorana
le composant. Cette technique pourrait donc jouer un rôle clé dans le développement de technologies quan-
tiques basées sur les qubits de Majorana, motivant ainsi l’utilisation de la spectrocopie à effet tunnel de bruit
de grenaille pour l’étude des fermions de Majorana et, plus généralement, de la matière topologique.

Nous noterons en passant que notre étude numérique traite un modèle minimal des nanofils hybrides semi-
conducteurs/superconducteurs. Ce modèle minimal peu être raffinés afin d’obtenir un description plus réaliste
des nanofils. Par exemple l’effet du désordre, la présence de bandes mutliples ou encore l’environnement
électrostatique du nanofil peuvent être pris en compte et potentiellement modifié nos résultats. Néanmoins,
puisque la signature particulière des modes de Majorana isolé, observée dans la tomographie du facteur de Fano,
est ancrée dans la symétrie particule-trou intrinsèque de leur fonction d’onde, nos résultats ont un caractère
universel. Ainsi, il est raisonnable de supposer que nos résultats ne sont pas affecter significativement par
les détails microscopiques du modèle. Corrollairement, nos résultats peuvent être appliqués pour identifier
des modes de Majorana isolés dans des sytèmes différents des naofils de Rashba. Plus spécifiquement, nous
espérons que la tomographie du facteur de Fano soit un outil pertinent pour étudier les modes de Majorana
putatifs, localisés au cœur de vortex au sein des supraconducteurs à base de fer, qui font aujourd’hui l’objet
d’un examen expérimental intensif. Très récemment, le bruit de grenaille a été mesuré au cœur d’un vortex
dans le FeTe0,55Se0,45 [37], ouvrant ainsi la voie à la tomographie du bruit de fond au voisinage des cœurs
de vortex. Par conséquent, dans un avenir proche, il sera intéressant d’étendre nos travaux et d’étudier, par
des moyens numériques, les variations spatiales du facteur de Fano au voisinage de cœurs de vortex dans les
supraconducteurs à base de fer, en se basant sur des modèles multibandes réalistes. En effet, bien que de
récentes études théoriques ont étudié le courant et le bruit de grenailles au cœur du vortex [38], l’étude détaillée
et complète de la tomographie du facteur de Fano fait encore défaut.

En guise de remarque finale, il est important de souligner que ce manuscrit ne constitue pas une revue
exhaustive de tous les sujets abordés au cours des trois dernières années de cette thèse de doctorat. Bien que
ce manuscrit se concentre sur le transport électronique dans les états liés intra-gap, qui est déterminé par la
dynamique du transfert de charge à travers la jonction tunnel, une autre voie prometteuse pour étudier les
propriétés des états de Yu-Shiba-Rusinov est de sonder directement la dynamique du spin de l’impureté mag-
nétique. Ainsi, nous avons étudié la dynamique des ondes de spin dans une chaîne 1D d’atomes magnétiques
placée à la surface d’un supraconducteur conventionnel en présence d’un couplage spin-orbite. Un tel système
présente des modes de Majorana localisés à chacune de ses extrémités qui sont susceptibles d’affecter la dy-
namique des ondes de spin se propageant le long de la chaîne. Au moyen de la théorie des perturbations, nous
avons pu montré que l’absorption du mode uniforme d’onde de spin dépend de la parité du qubit de Majorana.
Ceci suggère ainsi que la spectrcopie des ondes de spin pourrait être utilisée comme une sonde de la parité des
Majoranas. Ces résultats préliminaires encourageant devront être approfondis dans un futur proche.

15





Contents

1 Mean-field theory of superconductors and topology 29
1.1 Standard BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1.1 The reduced BCS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.1.2 Mean-field treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.1.3 BCS groundstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.1.4 Critical temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.1.5 Limits of the standard BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2 Generalized mean-field theory of superconductors . . . . . . . . . . . . . . . . . . . . . . . . 36
1.2.1 Bogoliubov-de-Gennes (BdG) formalism . . . . . . . . . . . . . . . . . . . . . . . . 36
1.2.2 Constrained particle-hole symmetry of BdG Hamiltonians . . . . . . . . . . . . . . . 37
1.2.3 U(1) spin rotation symmetry and reduced BdG formalism . . . . . . . . . . . . . . . 39

1.3 Symmetry protected topological superconductors . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.1 A brief introduction to topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.2 The periodic table of topological superconductors and insulators . . . . . . . . . . . . 41
1.3.3 The Majorana fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3.4 Exotic properties of Majorana bound-states (MBS) . . . . . . . . . . . . . . . . . . . 46

1.4 The Kitaev chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.4.1 Model and symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.4.2 Closed Kitaev chain, topological invariant and phase diagram . . . . . . . . . . . . . 48
1.4.3 Majorana zero modes in the open Kitaev chain . . . . . . . . . . . . . . . . . . . . . 51

2 Introduction to non-equilibrium Green’s function (NEGF) 55
2.1 The time contour idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.1.2 Time evolution and the round-trip contour . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1.3 Initial correlations and the generalized contour . . . . . . . . . . . . . . . . . . . . . 59
2.1.4 Long-time asymptotic regime and the Keldysh contour . . . . . . . . . . . . . . . . . 61

2.2 NEGF on the Keldysh contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.1 Dyson equation on the contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.2 Real-time Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.3 The Langreth rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Application to scanning tunneling spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 65

17



2.3.1 Theoretical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.2 Superconducting NEGF and their Dyson equations . . . . . . . . . . . . . . . . . . . 67
2.3.3 Exact expression of the average current I . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.4 Tunneling regime and linear-response . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.5 Beyond the linear-response the BCS example . . . . . . . . . . . . . . . . . . . . . . 70

3 Odd-frequency pairing around magnetic impurities 75
3.1 Introduction to odd-ω pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Magnetic impurities and Yu-Shiba-Rusinov (YSR) states . . . . . . . . . . . . . . . . . . . . 77

3.2.1 A brief historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 The Yu-Shiba-Rusinov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.3 YSR sub-gap state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.4 Physical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Observation of odd-ω pairing around magnetic impurities in a superconductor . . . . . . . . . 84
3.3.1 Coexistence of odd-ω pairing and YSR state . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Evaluation of Co(E0) in the wide band limit . . . . . . . . . . . . . . . . . . . . . . 88
3.3.3 Efficient protocol to extract the odd-ω pairing from scannig tunneling spectrocopy

(STS) data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.4 Application to magnetic impurities in a Pb/Si(111) substrate . . . . . . . . . . . . . 90
3.3.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Scanning tunneling shot-noise spectroscopy of YSR states 95
4.1 Model and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 Description of the setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.2 Description of the transport observables within the Keldysh formalism . . . . . . . . . 97
4.1.3 Relevant tunneling processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.4 Simplified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Standard current spectroscopy : a brief review . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.1 Discussion of the average current I . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Discussion of the differential conductance G . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Physical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Shot-noise and Fano factor spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.1 Results in the absence of single-particle processes, Λ = 0 . . . . . . . . . . . . . . . 108
4.3.2 Results in the absence of Andreev reflections . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 Interplay between single-particle processes and Andreev reflections . . . . . . . . . . 115

4.4 Comparison with experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.1 Description of the experimental setup and data . . . . . . . . . . . . . . . . . . . . . 120
4.4.2 Quantitative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4.3 Limits of the model and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

18



5 Shot-noise tomography: a new tool to identify Majorana zero modes (MZM) 129
5.1 Superconducting Rashba nanowires: a solid-state platform supporting MZMs . . . . . . . . . 129

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.1.2 The Oreg-Lutchyn model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.1.3 Induced p-wave superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1.4 Topological properties of the nanowire . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1.5 Properties of the Majorana zero modes . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 Experimental signatures of MZMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.1 A brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.2 The challenging distinction between trivial bound-states and MBS . . . . . . . . . . . 141

5.3 Fano factor tomography of trivial zero-energy states and MZMs . . . . . . . . . . . . . . . . 142
5.3.1 System and model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.2 Theoretical description of the shot-noise tomography experiment . . . . . . . . . . . . 146
5.3.3 Insights from a low-energy effective theory . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.4 Numerical simulations of Fano factor tomography . . . . . . . . . . . . . . . . . . . 151
5.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 General Conclusion 161

19





List of Figures

1.1 Schematic illustration of the formation of a Cooper pair by phonon-mediated interactions . . . 30
1.2 Schematic quasiparticle spectrum of the original BCS model . . . . . . . . . . . . . . . . . . 32
1.3 Schematic illustration of the notion of symmetry-protected topology. . . . . . . . . . . . . . . 41
1.4 Topological properties of the closed Kitaev model. . . . . . . . . . . . . . . . . . . . . . . . 49
1.5 Quasiparticle spectrum of the Kitaev model with periodic boundary conditions. . . . . . . . . 50
1.6 Schematic illustration of an open Kitaev chain in the Majorana chain regimes. . . . . . . . . . 52
1.7 Quasiparticle spectrum of an open Kitaev chain. . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Schematic representation of the round-trip contour c. . . . . . . . . . . . . . . . . . . . . . . 57
2.2 Schematic representation of the Matsubara contour c′. . . . . . . . . . . . . . . . . . . . . . . 60
2.3 Schematic illustration of the generalized contour c∗. . . . . . . . . . . . . . . . . . . . . . . . 61
2.4 Schematic illustration of the Keldysh contour cK . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5 Schematic representation of the normal transmission and Andreev reflection processes . . . . 72

3.1 Energy of the YSR state and many-body spectrum. . . . . . . . . . . . . . . . . . . . . . . . 82
3.2 Experimental observation of YSR within STS/STM experiments. . . . . . . . . . . . . . . . . 83
3.3 Proof of the validity of (3.50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4 Typical YSR state studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5 Odd-frequency-pairing extracted from STS data . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Fundamental tunneling processes between the metallic tip and the YSR states . . . . . . . . . 100
4.2 Average current I in a YSR state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Differential conductance spectrum of a YSR state . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4 Noise and Fano factor spectroscopy of a YSR state, in the absence of single-particle processes 111
4.5 Fano factor spectroscopy of a YSR state in the absence of Andreev processes . . . . . . . . . 114
4.6 Shot-noise spectroscopy of a YSR state for finite relaxation rate. . . . . . . . . . . . . . . . . 117
4.7 Fano factor spectroscopy of a YSR state for finite relaxation rate. . . . . . . . . . . . . . . . . 119
4.8 YSR spatial profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.9 Noise on the YSR cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.10 Noise on the YSR tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.11 Normal-state conductance dependence of the YSR conductance peaks. . . . . . . . . . . . . . 124
4.12 Theory experiment comparison for Fano factor data measured on the top of the YSR tails. . . . 125
4.13 Theory experiment comparison for Fano factor data measured on the top of the YSR cores. . . 127

21



5.1 Schematic illustration of the superconducting Rashba nanowire set-up . . . . . . . . . . . . . 131
5.2 Schematic spectra of the normal-state Rashba nanowire ĥ0(k) at µ = 0. . . . . . . . . . . . . 132
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Introduction

Superconductivity is a state of matter characterized by a vanishing electrical resistance and the expulsion of
magnetic flux fields from its interior. The discovery of the superconducting state dates back to 1911 when
H. Kammerlingh-Onnes and its team in Leyde observed that the electrical resistance of solid mercury abruptly
vanishes when the temperature decreases below 4.2 K [1]. The second characteristic was observed twenty years
later, in 1933, by Meissner and Ochsenfeld [2], and was named after its discoverers, the Meissner-Ochsenfeld
effect. These two phenomena only occur below a given temperature, called the critical temperature, which
depends on the superconducting materials. For pure metals studied before the mid-seventies, the critical tem-
perature is of the order of a few Kelvins.

Great efforts have been made to understand the origin of superconductivity and construct a theory of su-
perconductivity. Nevertheless, it was only in 1957 that J. Bardeen, L.N. Cooper, and J. R. Schrieffer proposed
the first truly microscopic theory of superconductivity: the BCS theory [3]. In this theory, the superconducting
transition is understood as the formation of a condensate of pairs of electrons around the Fermi level, known
as Cooper pairs. This condensate is well-separated from its excited states by an energy gap named the BCS or
superconducting gap ∆. This plays the role of the superconducting order parameter in the Landau-Ginzburg
theory of phase transitions [5].

As any materials, realistic superconductors are not perfectly pure and do contain impurities that could po-
tentially modify their electronic properties dramatically. That is why understanding how impurities are likely to
affect the electronic properties of given materials has always been a central topic in condensed matter physics.
In 1959, P.W. Anderson showed that the presence of non-magnetic disorder preserving the time-reversal sym-
metry does not alter the properties of conventional s-wave superconductors [6], a result that is nowadays known
as the Anderson theorem. However, the apparent competition between superconductivity and magnetism, as
exemplified by the Meissner-Ochsenfeld effect, suggests that magnetic disorder, which breaks the time-reversal
symmetry, might affect the superconducting state. Indeed, in a seminal work, A. Abrikosov and L. P. Gor’kov
showed that the presence of magnetic disorder in s-wave superconductors reduces the superconducting gap and
critical temperature and could ultimately destroy the coherence of the superconducting state for a sufficiently
high concentration of impurities [7]. A few years later, L. Yu, H. Shiba, and A. I. Rusinov independently
showed that [8, 9, 10] an isolated classical spin immersed in an s-wave superconductor acts as a pair breaking
potential and generates a single localized bound-state inside he superconducting gap. These bound states are
known as Yu-Shiba-Rusinov (YSR) states. For finite concentrations of magnetic impurities, the YSR states
hybridize and form Shiba bands inside the superconducting gap [?].

Despite their early theoretical predictions in the late sixties, because of the high spatial and energy reso-
lution required, the first experimental observation of YSR states was reported thirty years later by A. Yazdani
et al. [11] thanks to scanning tunneling spectroscopy. More recently, the field experienced a renewed interest,
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mainly motivated by the possibility of engineering chains of YSR states to induce topological superconductivity
in the Shiba bands.

To be brief, topology is a branch of mathematics that study the characteristics of geometrical objects pre-
served by continuous deformations, called topological invariants. In solid-state physics, topological materials
are characterized by the presence of zero-energy edge modes that cannot be removed by continuous deforma-
tions of the system. The most famous example of a topological phase of matter is the Integer Quantum Hall
state [13], in which protected chiral edge states give rise to a quantized transverse Hall conductance [14]. In
topological superconductors, the topological edge modes are Majorana quasiparticles which are their own an-
tiparticles. Because they are topologically protected against local noise and exhibit exotic exchange statistics,
Majorana zero modes (MZMs) are ideal building blocks of forthcoming fault-tolerant topological quantum
computers [15].

Since their theoretical predictions [16], the search for Majorana zero modes is one of the most active
research topics in condensed matter physics. During the last decade, it was proposed that one-dimensional
(1D) chains of magnetic impurities placed on top of an s-wave superconductor could realize a 1D topological
superconductor exhibiting MZMs at its ends [12]. Therefore, before engineering such chains of magnetic
impurities, a complete and detailed understanding of their building block, the YSR state, is highly required.
Thus, the Yu-Shiba-Rusinov states have known a renewed during the last decade [17]. The spectral properties
as well as the spatial dependence of these bound-states have been thoroughly investigated by theoretical and
experimental means, and are nowadays rather well understood [10, 18, 39, 17]. On the contrary, the intrinsic
relaxation time of these Yu-Shiba-Rusinov states, a crucial element for the realization of structures such as
chains, has received less attention and its experimental characterization remains challenging.

That is why, in this thesis, we will revisit the electronic properties of YSR states. In order to make a direct
connection with experiments, we will pay special attention to local observables that can be measured by scan-
ning tunneling microscopy/spectroscopy (STM/STS). Indeed, because of its high spatial and energy resolution,
STM/STS is the most widely used experimental technique to study localized sub-gap states such as YSR [17]
or topological MZMs [20]. First, we will show that the YSR state locally modifies the superconducting state of
the host material and induces unconventional odd-frequency spin-triplet Cooper pairs. In addition, we shall see
that conventional tunneling spectroscopy of the YSR core allows one to show experimental evidence of the oc-
currence of the odd-frequency pairing in these systems and explicitly extract the pairing function from the data.
Second, motivated by the recent development of scanning tunneling shot-noise spectroscopy [22, 21], we will
show that the analysis of current fluctuations in YSR states provides valuable insight into the underlying charge
transfer processes and allows us to estimate the intrinsic relaxation time of YSR states. Finally, extending
the previous results to arbitrary superconducting sub-gap states, we show that shot-noise tomography, which
is currently feasible [22, 21], reveals key distinctive features that allow one to distinguish trivial zero-energy
fermionic states from Majorana zero modes. The present manuscript is constructed as follows:

• Chapter. 1: Mean-field theory of superconductors and topology
In this chapter, we introduce the generalized mean-field theory of superconductors that is used throughout
the manuscript to describe the electronic properties of superconducting systems. We start with a brief
reminder of the BCS theory [3]. Then we extend the standard BCS theory to include Cooper pairs with
arbitrary symmetry and present the so-called Bogoliubov-de-Gennes formalism [23]. Finally, we present
the topological classification of superconductors [24] and the properties of the topologically protected
Majorana edge modes [25].
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• Chapter. 2: Introduction to non-equilibrium Green’s functions technique
In this chapter, we present the non-equilibrium Green’s functions technique on the Keldysh contour
[26]. This powerful theoretical tool is perfectly suited to the study of electronic transport. Therefore,
it allows us to describe conveniently scanning tunneling microscopy/spectroscopy of superconducting
sub-gap states and directly compare our results to experimental data. First, we lay the foundations of
the non-equilibrium Green’s function technique and introduce the time-contour idea [27]. Then, we
focus on the Keldysh contour that is well-suited for the study of steady-state regimes [26]. Finally,
we focus on the modeling of scanning tunneling spectroscopy experiments where a metallic tip probes
a superconducting substrate that can exhibit sub-gap states and show how to compute the current and
differential conductance thanks to the Keldysh technique. We conclude this chapter with a concrete
application to the case of a clean BCS superconductor. In this case the differential conductance can be
computed analytically and allows us to introduce the concept of Andreev reflections [28].

• Chapter. 3: Odd-frequency pairing around magnetic impurities
In this chapter, we show how a YSR state locally converts the conventional even-frequency spin-singlet
s-wave Cooper pairs of the BCS substrate into unconventional odd-frequency spin-triplet s-wave Cooper
pairs. First, we briefly introduce the concept of odd-frequency pairing [29]. After a brief historical review
of the field, we review the well-known spectral and spatial properties of the YSR states [10, 18, 17].
Then, we explicitly compute the pairing functions at the YSR core and show that the local electronic
density of state, directly measured in STS experiments, is proportional to the imaginary part of the odd-
frequency pairing function. Using these results, we propose a method to extract the imaginary part of the
odd-frequency pairing function from STS data. Finally, we illustrate our method for STS data measured
by G. C. Ménard, et al. at the Institut des Nanosciences de Paris. Our results show experimental evidence
of the occurrence of the odd-frequency pairing around YSR states. This chapter is based on the following
publication: [30].

• Chapter. 4: Scanning tunneling shot-noise spectroscopy of Yu-Shiba-Rusinov states
In this chapter, motivated by the recent development of scanning tunneling shot-noise spectroscopy,
we use the Keldysh technique to analyze the electronic transport into YSR sub-gap states theoretically.
First, we describe the experimental set-up that we consider and construct a simplified model describing
the low-energy electronic transport into YSR sub-gap states. Second, we use the Keldysh technique to
compute the current across the STM junction and its shot-noise. It is already known that the current is
carried by single-particle tunneling and Andreev reflection processes [31]. Nevertheless, even if some
tantalizing signatures of a transition from single-electron dominated tunnelling to Andreev processes
have been reported [32], the standard current spectroscopy does not exhibit clear signatures of Andreev
processes. Here, we show that, on the contrary, the shot-noise spectroscopy provides direct evidences
for Andreev processes and single-particle processes. Finally, comparing our theoretical predictions to
experimental noise data measured by U. Thupakula et al., we show that our model correctly captures the
main features of the shot noise in YSR states. From the quantitative agreement between experiment and
theory, we can estimate the YSR relaxation rate, which is inaccessible by differential conductance spec-
troscopy, whose resolution is thermally limited. In addition, our theoretical analysis of the experimental
data clearly indicates the concomitant presence of single-particle and Andreev processes. This chapter
is based on the following publication: [33].
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• Chapter. 5: Shot-noise tomography: a new tool to identify Majorana zero modes
In this chapter, we show that shot-noise tomography reveals key distinctive features that allow one to
distinguish trivial zero-energy fermionic states, like YSR states, from Majorana zero modes. First, we
briefly describe the most promising solid-state platform exhibiting MZMs: the superconducting Rashba
nanowires. By employing numerical and analytical methods, we show that the Fano factor in the vicinity
of Majorana zero modes is spatially constant and equal to one. In sharp contrast, the Fano factor of trivial
fermionic bound-states is strongly spatially dependent and exceeds one. Based on a low-energy effective
model, we show that these sharp differences have a universal character that is rooted in the intrinsic
particle-hole symmetry of the MZM wavefunction. This chapter is based on the following publication:
[34]

• Chapter. 6: General conclusion In this chapter, we briefly summarize the original results obtained in
this thesis and draw a general conclusion.
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Chapter 1

Mean-field theory of superconductors and
topology

In this chapter, we introduce the theoretical framework that we used hereinafter to describe the electronic
properties of superconducting systems: the well-known Bogoliubov-de-Gennes formalism. This formalism is
nothing but a generalized version of the famous Bardeen-Cooper-Schrieffer theory [3, 4]. The standard BCS
theory, which might be interpreted as a mean-field theory of the superconducting state, successfully describes
many fundamental aspects of all the superconductors known before until the mid-seventies, named conven-
tional superconductors. However, in 1976, unconventional superconductors exhibiting a superconducting order
parameter with symmetries that are not allowed by the standard BCS theory, was experimentally observed.
This discovery motivated the extension of the BCS theory to superconducting order parameters with arbi-
trary symmetries. It gave rise to the generalized mean-field theory of the superconducting state, the so-called
Bogoliubov-de-Gennes (BdG) formalism.

The chapter is constructed as follows: In the first section, we briefly introduce the standard BCS theory,
then we extend the standard BCS theory to Cooper pairs of arbitrary symmetry and present the BdG formalism.
Finally, based on the symmetry properties of the single-particle BdG Hamiltonian, the topological classification
of superconductors is presented with an emphasis on the Majorana edge-states arising in finite-size topological
superconductors.

1.1 Standard BCS theory
In 1957, Bardeen Schrieffer and Cooper proposed the first truly microscopic theory for superconductivity[3, 4],
which is based on three key concepts. The first one is due to Cooper, who showed, in 1956, that in the presence
of a weak electronic attraction, a Fermi sea is unstable to the formation of a bound pair of electrons. This pair,
named a Cooper pair, is the central building block of the BCS theory.

However, electrons carry a negative charge, and they repel each other because of the Coulomb repulsion,
preventing them to form pairs. Even if screening effects render the Coulomb repulsion short-ranged in metals,
it remains repulsive. Hence it is necessary to elucidate how an electronic attraction can arise in metals. Here
comes the second cornerstone of the BCS theory. In a nutshell, BCS showed that the coupling of the electrons
with the displacements of the ion cores lattice, the well-known phonons, effectively generates an attractive
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Figure 1.1: Schematic illustration of phonon-mediated attraction and Cooper pair formation in the BCS theory.
(a) a first electron interacts with the surrounding positive ion cores, creating an excess positive charge. (b) The
excess positive charge attracts the second electron with opposite spin, moving in the opposite direction. The 2
electrons are locked together, forming a Cooper pair.

interaction between electrons. The physical idea is that a first electron polarizes the background medium by
attracting the positive ions. In turn, the excess positive charge created attracts a second electron resulting in an
effective electronic interaction as depicted in Fig.1.1. Using a jellium model, D. Pines concretely showed that
the phonon-mediated interaction is attractive in a narrow energy range of the order of the Debye energy ℏωD,
and has the same order of magnitude as the Coulomb repulsion [40]. Hence it seems reasonable to assume
that the phonon-mediated interaction overrides the Coulomb repulsion resulting in a net attractive interaction
between electrons providing a microscopic mechanism for Cooper formation [3, 4, 41].

Finally, since the Fermi sea is unstable against the formation of a Cooper pair when the net interaction is
attractive, one expects that these pairs will condense until a certain equilibrium where the binding energy of an
additional pair becomes zero. That is the last key idea of the BCS theory, where the groundstate of the system
is found to be a condensate of Cooper pairs.

Following the review by M. Sigrist [23], we will now briefly derive the main results of the BCS theory
starting from a simplified model introduced by BCS. Here, for convenience, we employ a mean-field technique
rather than the variational method originally used by BCS.
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1.1.1 The reduced BCS model
Because the Debye energy is much smaller than the Fermi energy in typical metals, the attractive interaction is
only present in a narrow energy window around the Fermi energy. Therefore, it seems reasonable to describe
the electronic properties of the normal metal within a low-energy model. Assuming that there is only one
conduction band crossing the Fermi level, the Hamiltonian describing the system reads,

H =
∑
k,σ

c†kσξ(k)ckσ +
∑
k,k′,q

1

2
V (q)c†k+qσc

†
k′−qσ′ck′σ′ckσ, (1.1)

with V (q) the net effective interaction resulting from the Coulomb repulsion and phonon-mediated interaction,
ξ(k) = ϵ(k) − µ, ϵ(k) the band dispersion of the metal, which we assume to be isotropic for simplicity, and
ckσ the operator annihilating an electron of spin σ and momentum ℏk.

Because of screening effects in metals, both the Coulomb repulsion and phonon-mediated attraction are
very short-ranged. Consequently, it seems legitimate to replace momentum dependent interaction V (q) by an
effective contact interaction Veff(q) = g. Therefore, following Bardeen, Cooper and Schrieffer, we consider
the reduced BCS model [42],

H =
∑
k,σ

c†kσξ(k)ckσ + g
∑
k,k′,q

c†k+q↑c
†
k′−q↓ck′↓ck↑, (1.2)

with g the strength of the effective contact interaction. Note that, since the interaction potential is a Dirac’s delta
in real space, the interaction term only involves pair of electrons with opposite spin, due to Pauli exclusion
principle. If the phonon-mediated interaction dominates the Coulomb repulsion g < 0, the interaction is
attractive and provides a pairing mechanism.

Based on phase-space argument, one can argue that the relevant scattering processes are the ones involving
pairs of electrons in the states |k ↑⟩ and |−k ↓⟩, possessing a zero total momentum and spin [4, 42]. Other
scattering processes can be treated as perturbation [4]. Thus it is legitimate to use the reduced Hamiltonian,

H =
∑
k,σ

c†kσξ(k)ckσ + g
∑
k,k′

c†k↑c
†
−k↓c−k′↓ck′↑. (1.3)

In their original paper, J. Bardeen L. N. Cooper and J. R. Schrieffer used a variational method to find the ground-
state of this Hamiltonian. Here, we will obtain the same results within a mean-field approach yielding directly
the spectrum of excitations of the superconductor known as Bogoliubov quasiparticle or simply bogoliubons.

1.1.2 Mean-field treatment
In the mean-field version of the BCS theory, it is assumed that the U(1) symmetry of H is spontaneously
broken. Therefore, the pair annihilation operators bk = c−k↓ck↑ can have a finite expectation value ⟨bk⟩, where
⟨...⟩ ≡ Tr[exp(−βH)...]/Tr[exp(−βH)] and β = 1/(kBT ). ⟨bk⟩ may be interpreted as the wavefunction of
Cooper pairs in momentum space. Writing bk = ⟨bk⟩+ δbk and neglecting terms ∝ δ2 the original interacting
Hamiltonian H becomes the quadratic mean-field Hamiltonian Hmf ,

Hmf =
∑
k

c†kσξ(k)ckσ +∆c†k↑c
†
−k↓ +∆∗c−k↓ck↑ −

|∆|2

g
, (1.4)
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where ∆ ≡ g⟨
∑

k′ bk′⟩ = |∆|eiφ is the superconducting order parameter (also called gap) and has to be
computed self-consistently. Then introducing the 2-component Nambu-spinor Ψ(k) ≡ (ck↑, c

†
k↓)

T , the Hamil-
tonian adopts a matrix form,

Hmf =
∑
k

Ψ†(k)HBCS(k)Ψ(k) +
∑
k

ξ(k)− |∆|2

g
, (1.5)

with HBCS(k) = exp
[
−iφ

2
τz

]
(ξ(k)τz + |∆|τx) exp

[
i
φ

2
τz

]
, (1.6)

where τi are Pauli matrices acting in particle-hole space. It is easy to show that

HBCS(k) = exp
{
i
φ

2
τz

}
exp

{
−iθk

2
τy

}
E(k)τz exp

{
i
θk
2
τy

}
exp
{
−iφ

2
τz

}
, (1.7)

where θk = arccos ξ(k)
E(k) and E(k) =

√
|∆|2 + ξ2(k). Thus, Hmf can be diagonalized by means of a Bogoli-

k

E

2

Figure 1.2: Schematic quasiparticle spectrum of ĤBCS(k). The solid lines correspond to the energy of
electron-like quasiparticlesE(k) and the energy of hole-like quasiparticles −E(k) for ∆ = 0.2EF withEF the
Fermi energy. The dashed lines represent the electron and hole energies, respectively, ξ(k) and −ξ(k), when
∆ = 0. When ∆ = 0, the electron and hole bands cross the zero energy at the kF . When ∆ ̸= 0 the bands
hybridize, opening a gap at kF .

ubov transformation,

Hmf =
∑
k

Ek(γ
†
k↑γk↑ + γ†k↓γk↓) + ξ(k)− E(k)− |∆|2

g
, (1.8)

ak↑ = ukck↑ − vkc
†
−k↓, (1.9)

a−k↓ = vkc
†
k↑ + ukc−k↓, (1.10)

with u(k) =
√

E(k)+ξ(k)
2E(k) , and v(k) =

√
E(k)−ξ(k)

2E(k) eiϕ. Since u2(k) + v2(k) = 1, the operators akσ are

fermionic operators satisfying the anticommutation relation, {a†kσ, ak′σ′} = δkk′δσσ′. These operators are
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linear superpositions of electron and hole operators, which annihilate a quasiparticle excitation named a bo-
goliubon with spin σ, momentum ℏk and energy E(k) > 0. The quasiparticle spectrum is gapped as a result of
the hybridization between electrons and holes (see Fig. 1.2). Note that the two quasiparticle energy branches
are degenerated due to the time-reversal symmetry of the BCS Hamiltonian. To conclude, within the BCS
theory, a superconductor is equivalent to a gas of free fermionic quasiparticles named bogoliubons, therefore
all electronic properties of a standard BCS superconductor are completely determined by the bogoliubons and
their energies.

1.1.3 BCS groundstate
With Hmf written in its diagonal form, given by (1.8), the groundstate |ψBCS⟩ is readily obtained as the vacuum
of bogoliubons,

γkσ |ψBCS⟩ = 0, ∀k, σ. (1.11)

It is convenient to express the BCS grounstate, |ψBCS⟩ from the vacuum of original fermions ck,σ , denoted
|vac⟩ here. After some algebra, one obtains [43, 42],

|ψBCS⟩ =
∏
k

(
uk + vkc

†
k↑c

†
−k,↓

)
|vac⟩ . (1.12)

The functions uk, and vk depends on ∆ which is self-consistently defined through, ∆ ≡ g⟨
∑

k′ bk′⟩. In the
T = 0 limit, inserting equations (1.9), and (1.10) into the self-consistent we obtain,

∆ = −g
∑
k

∆

2E(k)
. (1.13)

If g > 0 this equation only admits the trivial solution ∆ = 0. In that case, there is no superconductivity,
and the groundstate corresponds to the Fermi sea, |FS⟩. Indeed, in that case, uk = Θ(k − kF ) and vk =

eiϕ(1 − Θ(k − kF )), with Θ the Heaviside step-function, hence |ψBCS⟩ ∝
∏

k,k<kf
c†k↑c

†
−k,↓ |vac⟩ = |FS⟩.

Hereinafter we assume g < 0. In that case, the self-consistent equation admits a non-trivial solution ∆ ̸= 0

with minimal energy [42, 41]. In this case, uk is always non-zero, and we can write the groundstate as,

|ψBCS⟩ =
1

N
∏
k

exp

{
vk
uk
c†k↑c

†
−k↓

}
|vac⟩ , (1.14)

with N a normalization factor. Written in this form, it is obvious that the BCS groundstate is a coherent state of
Cooper pairs with a well-defined phase. In analogy with the Bose-Einstein condensation, the BCS groundstate
is therefore interpreted as a condensate of Cooper pairs where a macroscopic number of Cooper pairs condense
in the same state. Note that for non-trivial solutions, the self-consistent equation can be written as:

1 = −g
∑
k

1

2
√
|∆|2 + ξ(k)2

(1.15)

The phase, ϕ of the BCS gap ∆, does not appear in the equation, and an infinite number of solutions exist.
Therefore, the groundstate is not unique, and there exist infinitely many degenerate groundstates of Hmf (see
[43, 42] for a detailed discussion of it).
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1.1.4 Critical temperature
Let us briefly investigate the role of temperature in the BCS theory. Because the gap ∆ is self-consistently
determined, it depends on the temperature T . When T increases, ∆ decreases to zero. The critical temperature
corresponding to the transition from the superconducting to the normal metallic state, Tc, is thus defined as
∆(Tc) = 0. Again, inserting equations (1.9), and (1.10) into the self-consistent definition, ∆ ≡ g⟨

∑
k′ bk′⟩,

the gap equation at finite T , reads:

∆ = −g
∑
k

∆

2E(k)
tanh

βE(k)

2
⇒ 1 = −g

∑
k

1

2E(k)
tanh

βE(k)

2
, (1.16)

where β = 1/(kBT ). In principle, (1.16) has to be solved self-consistently by a numerical approach to obtain
the exact |∆|(T ). When T → T−

c it is legitimate to assume that |∆| → 0 and make a Taylor expansion of
(1.16) with respect to |∆| to obtain:

1 ≃ −g
∞∫

−∞

dξ
ν(ξ)

2ξ
tanh

ξ

2kBTc
, (1.17)

with ν(ξ) the normal-state density of states. The integral in the right member is diverging, and we need to
introduce a cut-off energy to regularize it. In other words, we shall remember that the attractive interaction is
only present in a narrow energy window around the Fermi energy. Recalling that the attractive interaction is
phonon-mediated, the Debye energy ℏωD is a natural energy cut-off for the interaction. It is assumed that ℏωD

is much smaller than the typical electronic energy scale, i.e. the Fermi energy EF . Hence, it seems legitimate
to employ the wide-band approximation, ν(ξ) ≃ ν(0) ≡ ν0. Within these approximations, the gap equation
can be solved analytically,

1 ≃ −gν0

ℏωD∫
0

dξ
1

ξ
tanh

ξ

2kBTc
= −gν0

ℏωD
kBTC∫
0

dx
1

x
tanh

x

2
≃ −gν0 ln

ℏωD1.13

kBTc
. (1.18)

Inverting the last equality, one obtains the critical temperature Tc,

Tc =
1.13ℏωD

kB
exp

(
1

gν0

)
. (1.19)

Note that the critical temperature is cut-off dependent.
The superconducting gap in the zero-temperature limit, |∆|(T = 0) ≡ ∆0 can be computed within the

same approximations. Using the self-consistent relation at T = 0, one obtains,

− 1

gν0
=

∫ ℏωD

0
dϵ

1√
∆2

0 + ϵ2
= sinh−1 ℏωD

∆0
. (1.20)

Assuming 0 < −gν0 ≪ 1 which corresponds to the weak-coupling limit, the previous equation reads:

∆0 = ℏωD exp

(
1

gν0

)
. (1.21)
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Therefore, the ratio ∆0
kBTc

is universal for the weak-coupling superconductors and satisfies,

∆0

kBTc
= 1.764. (1.22)

This is a signature of the weak-coupling approximation where physical quantities can be expressed indepen-
dently of the cut-off energy once Tc is known.

1.1.5 Limits of the standard BCS theory
The standard BCS theory successfully describes the low-Tc superconductors known before the mid-seventies.
In these superconductors, Cooper pairs are s-wave spin-singlet. This type of Cooper pair is named conventional.
But one can imagine different kinds of pairs, named unconventional pairs, which are beyond the scope of the
standard BCS theory.

Let us restrict our attention to Cooper pairs with zero center of mass momentum, which are pairs of degener-
ated electrons with opposite momentum ℏk and −ℏk and spin σ, and σ′. In absence of spin-orbit coupling, their
wavefunction in real space, ψ(r, σ; r′, σ′) can thus be decomposed as, ψ(r, σ; r′, σ′) = f(r − r′)χ(σ, σ′).
As electrons are fermions, the wavefunction has to satisfy, ψ(r, σ; r′, σ′) = −ψ(r′, σ′; r, σ). Assuming full
rotation invariance of the metal, f(r − r′) can be decomposed into a radial and angular part belonging to the
spherical harmonics, the irreducible representations of the group of orbital rotations, characterized by their an-
gular momentum L = 0, 1, 2, .... The behavior of ψ under the exchange of spatial coordinates of the electrons
is consequently dictated by the parity of L. To build a Cooper pair wavefunction, one combines a spherical har-
monic with one of the four basis states of two spin-1/2 systems: the antisymmetric singlet state with total spin
S = 0 and the 3 symmetric triplet states with S = 1, such that the total wavefunction is antisymmetric under
exchange of fermions coordinates. Therefore it is theoretically possible to form Cooper pairs with odd (re-
spectively even) angular momentum L in a spin-triplet state (respectively spin-singlet). Superconducting states
made of Cooper pairs with L ̸= 0 are thus named unconventional superconductors. For crystalline materials,
the previous statement remains valid if we replace the spherical harmonics with the irreducible representations
of the appropriate point symmetry group.

The discovery of superfluid 3He in 1976, where Cooper pairs have a L = 1 angular momentum, showed
that unconventional superconductors are not only theoretical speculations but do exist in nature. With this
discovery, the field of unconventional superconductivity boomed, shedding new light on superconductivity.
Because the conventional phonon-mediated attraction proposed in the standard BCS theory is short-range, the
attractive interaction is felt by electrons only if they have a finite probability of being found at the same spot.
Consequently, it inevitably leads to the formation of conventional s-wave Cooper pairs. Hence, unconventional
superconductors are due to microscopic pairing mechanisms different from the conventional phonon-mediated
interaction. Numerous alternative mechanisms were studied, including spin-fluctuation mediated interactions
or long-range Coulomb repulsion, to list a few. The microscopic origin of the pairing mechanism and its
consequence on the symmetry of the order parameter is beyond the scope of this thesis, and the interested
reader is invited to read the excellent review by Sigrist [44] for a pedagogical introduction.

As a last remark, we stress that both the BdG and standard BCS theories are mean-field approximations and
therefore fail to describe strongly-correlated materials such as the high-Tc cuprates. More advanced theoretical
tools, such as the famous Dynamical Mean-Field Theory, are required to correctly and quantitatively understand
the complex phase diagram of these materials.
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The present manuscript is focused on the electronic properties of hybrid heterostructures made of magnetic
or spin-active regions in contact with conventional superconductors, conveniently described by mean-field ap-
proximation. Consequently, the BdG formalism, detailed below, conveniently describes the electronic proper-
ties of the systems studied throughout this manuscript, and it will be employed everywhere in what follows.
Additionally, hereinafter, it is always assumed that the superconductor is sufficiently robust to be unaffected by
the other parts of the system and acts as a macroscopic reservoir of Cooper pairs. Therefore, the microscopic
origin of the superconductivity in the bulk superconductor is beyond the scope of the discussion.

At the interface between the superconducting and magnetic materials, superconductivity is induced by
proximity effects. In principle, the induced superconducting gap at the interface should be self-consistently
determined and requires the microscopic description of the coupling between the bulk superconductor and the
interface. However, this induced superconducting gap can be experimentally measured. Thus, hereinafter, we
will consider the induced gap as an adjustable input parameter of the model rather than a self-consistently
determined parameter.

1.2 Generalized mean-field theory of superconductors

1.2.1 Bogoliubov-de-Gennes (BdG) formalism
For the sake of simplicity, we consider a uniform electronic system and assume that the electrons have a single
internal degree of freedom, their spin1. Since we want to construct a generic mean-field theory, we do not
specify any particular pairing mechanism nor symmetry of the metal. Thus, our starting point is the generic
Hamiltonian, including an attractive electron-electron interaction,

H =
∑
k,σ

c†kσh
0
σ,σ′(k)ckσ′ +

1

2

∑
k,k′,q

σ1,σ2,σ3,σ4

Vσ1,σ2,σ3,σ4(k,k
′)c†kσ1

c†−k+qσ2
c−k′+qσ3

ck′σ4
. (1.23)

Next, assuming that the dominant superconducting instability corresponds to Cooper pairs with zero center
of mass momentum, the most relevant scattering processes are the ones connecting such pairs. Neglecting other
scattering processes, the Hamiltonian can be further simplified:

H =
∑
k,σ

c†kσh
0
σ,σ′(k)ckσ′ +

1

2

∑
k,k′

σ1,σ2,σ3,σ4

Vσ1,σ2,σ3,σ4(k,k
′)c†kσ1

c†−kσ2
c−k′σ3

ck′σ4
. (1.24)

Then using a mean-field approximation, the interaction can be decoupled in the Cooper channel to obtain a
quadratic Hamiltonian. Concretely, one introduce the pair annihilation operators, bk,σ,σ′ = c−k,σck,σ′ and
decompose them as bk,σ,σ′ = ⟨bk,σ,σ′⟩+ δbk,σ,σ′ . Inserting this definition in the Hamiltonian and neglecting all
terms ∝ δ2, we obtain the quadratic Hamiltonian,

Hmf =
∑
k

σ,σ′

c†kσh
0
σ,σ′(k)ckσ′ +

1

2

∑
k

σ,σ′

∆̃σ,σ′(k)c†kσc
†
−kσ′ +

[
∆̃σ,σ′(k)

]∗
c−kσ′ckσ +K, (1.25)

1including additional internal degrees of freedom such as orbital or band indices is straightforward and does not
introduce conceptual difficulties

36



where K is a constant. The gap functions ∆̃σ,σ′

k are self-consistently defined,

∆̃σ,σ′

k ≡
∑
k′

σ1,σ2

Vσ,σ′,σ1,σ4(k,k
′)⟨cσ1−k′cσ2k′⟩, (1.26)

and ⟨...⟩ denotes the thermal average with respect to Hmf . Since we are not interested in the ground-state
energy of the superconductor, the constant K can be ignored, and we neglect it hereinafter.

Hmf contains non-diagonal terms coupling the two spin sectors. Hence, to write it in a matrix form, it is
necessary to use a mathematical trick and describes electron and hole operators redundantly. Namely, we define
the four component Nambu-spinor ψk = [ck↑, ck↓, c

†
−k,↓,−c

†
−k↑]

T , which allow us to write:

Hmf =
1

2

∑
k

ψ†
k

[
ĥ0(k) ∆̂(k)

∆̂†(k) −σy
[
ĥ0(−k)

]∗
σy

]
ψk =

1

2

∑
k

ψ†
kĤ(k)ψk, (1.27)

where σi are Pauli matrices acting in spin space, and ∆̂k is a matrix in spin space defined as ∆̂(k) = −i∆̃(k)σy.
A straightforward diagonalization of the Bogoliubov-de-Gennes Hamiltonian, Ĥ(k), thus gives access to

the single-particle excitation energy of the superconductor and the corresponding quasiparticle. Therefore from
a mean-field perspective, a superconductor is equivalent to a gas of free particles, and the BdG Hamiltonian Ĥ
might be interpreted as a single-particle Hamiltonian.

However, because of the redundant description of electron and hole degrees of freedom, some special care
is needed to avoid double counting when interpreting the eigenstates and eigenvalues of Ĥ(k) in terms of
quasiparticle operators. This delicate point is the topic of the next subsection.

1.2.2 Constrained particle-hole symmetry of BdG Hamiltonians

The inherent redundancy of the BdG formalism, imposes the BdG Hamiltonian Ĥk to fulfill a particular rela-
tionship named particle-hole (PH) constraint, for reasons which will become clear in the next section of this
manuscript. To show it, we first remark the Nambu spinors ψk and ψ−k are not independent and obey the
relationship,

σyτyψk = (ψ†
−k)

T , (1.28)

highlighting the redundancy of the formalism. This relationship imposes a constraint on the BdG Hamiltonian:

Hmf =
1

2

∑
k

ψ†
kĤ(k)ψk,

=
1

2

∑
k

(σyτyψ−k)
T Ĥ(k)(ψ†

−kσyτy)
T ,

=
1

2

∑
k

ψT
−kσyτyĤ(k)τyσy(ψ

†
−k)

T ,

= −1

2

∑
k

ψ†
−k

[
σyτyĤ(k)τyσy

]T
ψ−k +

1

2

∑
k

trĤ(k),

= −1

2

∑
k

ψ†
−kσyτy

[
Ĥ(k)

]∗
τyσyψ−k, (1.29)
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where we used σyτy = τyσy = (σyτy)
T , Ĥ(k) = Ĥ†(k) and the fermionic anticommutation rules. Conse-

quently, the BdG Hamiltonian satisfies the following relationship,

C−1Ĥ(k)C = −Ĥ(−k), (1.30)

where C = τy ⊗ σyK, with K the complex conjugation operator. Since C is an anti-unitary operator that
anti-commutes with the BdG Hamiltonian, it corresponds to a PH symmetry defined in the next section(1.43).
It is important to notice that (1.30) is a built-in constraint of the BdG formalism and does not require any
physical symmetries of the system. Consequently, it will be named a constraint to contrast with the notion of
conventional symmetries, which are not imposed by formalism.

The particle-hole constraint has important consequences on the spectrum of the BdG Hamiltonian Ĥ(k).
Indeed, if an |ϕk⟩ is an eigenstate of Ĥ(k) with energy Ek,

∣∣ϕ̄k〉 = C |ϕk⟩ is an eigenstate of Ĥ(−k) with
energy −Ek. Hence, the energies and eigenvectors of Ĥ(k) and Ĥ(−k) are not independent. It directly follows
that Ĥ(k) can be written as:

Ĥk = Ukdiag [E+(k), E−(k),−E−(−k),−E+(−k)]U †
k, (1.31)

with, Uk =


uk↑+ uk↓+ vk↓+ −vk↑+
uk↑− uk↓− vk↓− −vk↑−
v∗−k↑− v∗−k↓− u∗−k↓− −u∗−k↑−
v∗−k↑+ v∗−k↓+ u∗−k↓+ −u∗−k↑+

 . (1.32)

Introducing the set of fermionic operators,[
ak+ ak− a†−k− a†−k+

]T
= U †

kψk, (1.33)

up to a constant shift, the mean-field Hamiltonian reads,

Hmf =
∑
k

Ek+a
†
k+ak+ + Ek−a

†
k−ak−. (1.34)

This equation clearly shows that, from a mean-field point of view, superconductors are equivalent to free
fermions gases, and their electronic properties are easily accessible. The above equation clearly shows that
the many-body Hamiltonian can be diagonalized using only the two energy bands E±(k) and their eigenstates
|ϕk±⟩. Thus, the band-structure of Ĥ(k), named the quasiparticle spectrum throughout this manuscript, con-
tains redundant information and is said doubled. Indeed a single fermionic degree of freedom described by the
operators aαk is associated with a pair of opposite energies in the qasiparticle spectrum.

To make it more clear, we introduce a new set of fermionic operators:

ãk± =

{
ak±, ifE±(k) ≥ 0

a†k±, ifE±(k) < 0
. (1.35)

With this definition, ãk± necessarily has a positive energy |E±(k| and thus corresponds to the annihilation
operator of a quasiparticle excitation. Hence only the positive energies and eigenstates of the quasiparticle
spectrum describe quasiparticle excitations above the groundstate. The negative energies are simply an artifact
due to the redundancy of the BdG formalism.
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1.2.3 U(1) spin rotation symmetry and reduced BdG formalism
In the mean-field theory of superconductors, the U(1) spin rotation symmetry along a given axis, chosen as
the spin-quantization axis ez , has a particularly important role. When this symmetry is present, the electronic
spin projection along ez , Ŝz , is conserved and the 4 × 4 BdG Hamiltonian Ĥ(k) is diagonal in spin space.
Therefore, one can take advantage of the block-diagonal form of Ĥ(k) and write the many-body Hamiltonian
Hmf as,

Hmf =
∑
k

Ψ†(k)Ĥ↑(k)Ψ(k), (1.36)

with Ψ(k) = (c↑(k), c
†
↓(−k))

T and Ĥ↑(k) the projection of Ĥ(k) in the ↑-spin sector. In fact, we already
encounter this situation in the standard BCS theory. In such situations, it is thus unnecessary to use the redun-
dant BdG formalism and we find it more convenient to work with the 2-component Nambu spinor Ψ(k) and
the reduced BdG Hamiltonian Ĥ↑(k) which is a 2× 2 matrix acting in particle-hole space.

It is important to note that the reduced formalism, is not particle-hole redundant. Indeed, all Nambu-
spinors Ψ(k) are independent one from each other and the reduced BdG Hamiltonian is not PH constrained.
As a consequence, the band-structure of Ĥ↑(k) is not a doubled spectrum and its eigenstates are in one to
one correspondence with bogoliubons. Denoting the 2 eigenvalues of Ĥ↑(k), E1(k), and E2(k) and their
respective eigenstates |u1k⟩, and |u2k⟩ we can diagonalize Hmf ,

Hmf =
∑
k

[
E1(k)a

†
1(k)a1(k) + E2(k)a

†
2(k)a2(k)

]
, (1.37)

where indices 1, 2 denotes the quasiparticle bands, and we introduced the new set of fermionic operators,

a1(k) = ⟨u1k|Ψ(k), (1.38)

a2(k) = ⟨u2k|Ψ(k). (1.39)

Note that E1(k) and E2(k) are not necessarily positive. Hence, operators a1(k), a2(k) corresponding to neg-
ative energies should be physically interpreted as creation (rather than annihilation) operators of quasiparticle
excitations. Hereinafter, we always use the reduced BdG formalism when U(1) spin-rotation symmetry is
present. Therefore, we will indifferently denote the 4-component and 2-component Nambu spinors by ψ(k).
Similarly, the 4× 4 full BdG Hamiltonian and the 2× 2 reduced one are both denoted Ĥ(k). This convention
avoids cumbersome notations without any confusion since the formalism used is clear from the context.

1.3 Symmetry protected topological superconductors

1.3.1 A brief introduction to topology
During the last decades, considerable progress has been made in understanding the topological phases of quan-
tum matter. Many phases of condensed matter, such as ferromagnetism or superconductivity, can be understood
from the Landau-Ginzburg framework of spontaneous symmetry breaking [45]. On the contrary, topological
phases can not be distinguished from topologically trivial ones in terms of their symmetries or based on a local
order parameter. Instead, nontrivial topological phases are characterized by the existence of robust edge states
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at their boundaries. These edge states arise due to a nontrivial quantum mechanical wavefunction topology2

that can be measured in terms of a quantized topological invariant, which might be observable. Therefore,
topological phases are of pure quantum nature.

The most famous example of a topologically nontrivial phase is the Integer Quantum Hall (IQH) state, in
which protected chiral edge states give rise to quantized transverse Hall conductance. The IQH state was first
discovered experimentally in 1980 when K. von Klitzing et al. measured quantized plateaus in the transverse
Hall conductance of a two-dimensional electron gas subjected to a strong magnetic field [13]. This discovery
earned K. von Klitzing the 1985 Nobel prize in physics. Soon after, it was theoretically understood that the
chiral edge states and the quantization of the transverse Hall conductance observed in the IQH state are due to a
non-trivial topology of the electronic band characterizing the bulk of the electron gas. This non-trivial topology
is characterized by a topological invariant, the Chern number, which is proportional to the Hall conductance
[46, 14, 47].

Since the discovery of the IQH state, it has been shown that topological phases of matter appear in elec-
tronic insulators and semi-metals, unconventional superconductors, and interacting bosonic or fermionic sys-
tems. An exhaustive review of the topic is beyond the scope of this thesis, and we restrict our attention to
topological phases of non-interacting fermionic matter with a spectral gap, including insulators and gapped
superconductors. In this context, the wavefunction topology is defined as follows: two phases are said topo-
logically equivalent if their wavefunctions can be deformed into one another via an adiabatic transformation
that preserves the bulk energy gap. Topological phases can thus be categorized into topological classes char-
acterized by a topological invariant. A change in the topological invariant requires a closing of the bulk gap.
Hence, topological phase transitions separating two unequivalent topological phase correspond to closings of
the bulk gap associated with a change in the topological invariant. The introduction of these new concepts,
among others, has been rewarded with the 2016 Nobel Prize in physics awarded to D. J. Thouless, D. Haldane,
and J. M. Kosterlitz.

Even if nontrivial topological phases can not be distinguished from trivial ones in terms of their symmetries,
symmetries play a central role in the study of topological phases of matter, but in a very different way than in the
Landau-Ginzburg framework. Indeed, symmetries may give rise to new topological phases. In the presence of
symmetries, the space of possible phases is restricted. Hence, some phases which were connected to the trivial
phase in the absence of the symmetries become disconnected from it, as illustrated in Fig. 1.3. In this case, the
topological properties of non-trivial phases are protected by the spectral gap and the presence of symmetries.
Thus these phases are named symmetry-protected topological phases (SPT).

Notice that since topological properties are unaffected by smooth deformation that preserves the bulk gap
(and the symmetries), a topological phase transition necessarily corresponds to a gap closing. Therefore, if
we consider a finite-size topological material, the boundaries of the material are interfaces that connect a triv-
ial topological phase,i.e., the vacuum, to a non-trivial one,i.e., the bulk of the topological material. Since two
equivalent phases can not be deformed into one another adiabatically, it directly follows that gapless edge states
should exist at the boundaries. This result is known as bulk-edge correspondence. In the case of topological
insulators (TIs), these edge states are electronic states. On the contrary, in topological superconductors (TSCs),
the edge modes are quasiparticle eigenmodes which are coherent superpositions of electron and hole excita-
tions. Most importantly, as we will show below, because of the particle-hole constraint of the BdG formalism,
gapless edge modes in topological superconductors contain equal parts of electrons and holes and are, there-

2The notion of wavefunction topology will be elucidated below.
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Figure 1.3: Schematic illustration of the notion of symmetry-protected topology. (a) The space of all possible
phases is represented by the black ellipse. Black lines denote obstruction in this space to smooth mappings.
Since all points of the space are connected to the others, all phases are topologically equivalent and trivial. (b)
Imposing a given set of symmetries, the space of possible phases is restricted. Some regions of the restricted
space become disconnected from the trivial phases (green shaded region), the other giving rise to non-trivial
topological classes (red and blue shaded regions).

fore, Majorana particles. These particles could be used as building blocks of topological quantum computers
[48], explaining why topological superconductors attracted intensive interest during the last decades.

Below, we will first present the topological classification of topological insulators and superconductors, the
famous ten-fold way, then we show how topologically protected Majorana modes arise in topological super-
conductors, and finally, we discuss their exotic properties.

1.3.2 The periodic table of topological superconductors and insulators
In this subsection, we provide a brief introduction to the ten-fold topological classification of fully gapped,
non-interacting fermionic systems, which includes TIs and fully gapped TSCs. Since we are interested in
symmetry-protected topology, we should first classify non-interacting systems according to their symmetries.
Here, we are interested in topological properties which are protected by non-spatial and global symmetries that
are called fundamental symmetries. As explained below, there exist three distinct fundamental symmetries: the
particle-hole (PH), time-reversal (TR), and chiral symmetries.

We recall that symmetries are transformations under which the many-body Hamiltonian describing the
system, H is invariant. According to the Wigner theorem, any symmetry transformation in quantum mechanics
can be represented at the many-body level by either a linear and unitary or anti-linear and anti-unitary operator
acting on the Hilbert space. Hence, symmetries are generally defined at the many-body level as transformations
acting on the many-body Hilbert space [24]. Nevertheless, for non-interacting systems, symmetries can be
represented at the single-particle level by a unitary or anti-unitary operator that commutes or anti-commutes
with the single-particle Hamiltonian of the system: Ĥ(written in a local basis) [24]3. Thus, since we only

3Notice that Ĥ designates the BdG Hamiltonian, which acts in Nmabu space for TSCs, or the single-particle, a.k.a,
first quantized Hamiltonian for TIs, which acts in the single-particle space.
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consider non-interacting systems, we directly define symmetries at the single-particle level by an operator
acting on Ĥ and a corresponding symmetry condition.

It is important to remark that unitary symmetries that commute with Ĥ allow us to bring it into a block di-
agonal form. Hence, we should only discuss the classification of these irreducible blocks, which do not possess
any unitary commuting symmetries. We are thus left with three distinct kinds of fundamental symmetries.

First, an anti-unitary operator C that anti-commutes with Ĥ defines a PH symmetry:

C−1ĤC = Ĥ, C = UCK, UCU
∗
C = ±1, (1.40)

Second, an anti-unitary operator T that commutes with Ĥ defines a TR symmetry :

T−1ĤT = Ĥ, T = UTK, UTU
∗
T = ±1, (1.41)

with UT a unitary matrix and K the complex conjugation operator.
Third and lastly, the product of the particle-hole and time-reversal symmetry operators: S = T.C defines a

unitary operator that commutes with Ĥ , called a chiral symmetry:

S−1ĤS = −Ĥ, S = US , U
2
S = 1, (1.42)

whereUS is a unitary matrix. Notice that with the above definitions, the PH and TR symmetries are not uniquely
defined, and correspond to generic symmetries, which do not necessarily coincide with the physical PH and TR
symmetries but can also correspond to effective symmetries. We will return to this point in Subsection. 5.1.4,
where we discuss the topological properties of hybrid semiconducting/superconducting nanowires.

When the system is homogeneous and translation invariant, it is more convenient to use the momentum
space representation of Ĥ: Ĥ(k). Since they are non-spatial symmetries, in momentum space, the PH, TR, and
chiral fundamental symmetries are defined by [24]:

C−1Ĥ(k)C = −Ĥ(−k), C = UCK, UCU
∗
C = ±1, (1.43)

T−1Ĥ(k)T = Ĥ(−k), T = UTK, UTU
∗
T = ±1, (1.44)

S−1Ĥ(k)S = −Ĥ(k), S = US , U
2
S = 1. (1.45)

Therefore, because of the redundant description of electron and hole degrees of freedom BdG Hamiltonians
that describe superconductors are necessarily PH symmetric as explicitly illustrated in Subsection. 1.2.2.

It can be shown that this set of three fundamental symmetries is exhaustive. Consequently, without loss of
generality, one can assume that there is only a single TR symmetry with operator T and a single PH symmetry
with operator C. A detailed discussion and proof of this statement can be found in the pedagogical review by C.
K. Chiu et al. [24]. Thus, there are only ten possible different symmetry classes describing how Ĥ transforms
under C, T , and S. First, if we consider T there is three possibilities:

(i) Ĥ is not TR symmetric, a case which is indicated by "T = 0" in Table. 1.1.

(ii) Ĥ is TR symmetric, and T squares to 1, a case which is indicated by "T = +".

(iii) Ĥ is TR symmetric, and T squares to −1, a case which is indicated by "T = −".
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Similarly, there is 3 possibility for the behavior of Ĥ under C, which we write "C = 0,+,−". Naively one can
think that there are thus 9 symmetry classes describing the behavior of Ĥ under TR and PH. However, in the
absence of both TR and PH symmetries, it is still possible for Ĥ to be chiral symmetric (denoted by "S = 1")
or not (denoted by "S = 0"). Hence, there exist ten different symmetry classes that are presented in Table. 1.1.
This ten-fold symmetry classification of non-interacting systems was first proposed by A. Altland, and M. R.
Zirnbauer in 1997 [49] and is nowadays known as the famous ten-fold way.

The ten symmetry classes of the ten-fold way are the basic ingredient of the topological classification of TIs
and gapped TSCs. Indeed, given the symmetry class and the dimensionality d of a single-particle Hamiltonian
Ĥ , it is possible to predict whether non-trivial SPT phases exist or not and when they exist, the nature of their
topological invariants (see [50, 51, 52, 53, 24] for detailed proof).

Symmetries Dimension
Class T C S 1 2 3

A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI + 0 0 0 0 0

BDI + + 1 Z 0 0
D 0 + 0 Z2 Z 0

DIII - + 1 Z2 Z2 Z
AII - 0 0 0 Z2 Z2

CII - - 1 2Z 0 Z2

C 0 - 1 0 2Z 0
CI + - 1 0 0 2Z

Table 1.1: The periodic table of topological insulators/superconductors. The left-most column indicates the ten
symmetry class of the ten-fold way. Each class corresponds to the absence or presence of TR (T ), PH (C), and
chiral (S) symmetries of different types, as indicated by the entries 0, ±1 in the three columns "Symmetries".
For a given symmetry class and a given dimensionality of the system, d, the entries "0", "Z", "2Z", and "Z2"
respectively denotes the absence/presence of non-trivial SPT phases and when they exist the nature of their
topological invariant. Adapted from [24].

This classification is presented in Table. 1.1. Cases, where non-trivial SPT phases do not exist are indicated
by "0" in Table. 1.1. When non-trivial SPT phases exist, the group of the topological invariant that classifies
them: Z, 2Z, or Z2 is indicated. However, the table does not explicitly indicate how the topological invariant
has to be computed.

Since its discovery, the above-mentioned topological classification has been enriched with spatial and crys-
talline symmetries. To contrast with the strong SPT presented here, SPT protected by spatial symmetries are
named weak SPT. Moreover, it is also possible to construct a classification for gapped SPT, which is presented
in [24].

As a last remark, we stress that the topological classification Table. 1.1 and the corresponding topological
invariants are formulated in terms of bulk topological. In finite-size systems, the non-trivial topology of the
bulk in dimension d is manifested by the existence of gapless edge modes in dimension d− 1, which are topo-
logically protected: they are stable against perturbations preserving the bulk gap and the symmetries. The close
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connection between bulk topology and gapless surface states is known as the bulk-edge correspondence. Re-
cently, Higher-order topological insulators (HOTIs) and Higher-order topological superconductors (HOTSCs)
were discovered, where gapless modes live in d−n dimension rather than d−1. A detailed study of all possible
gapless states arising at the boundaries (or topological defects) of TIs and TSCs according to their symmetry
class can be found in [24]. As already stated, for TSCs, the particle-hole constraint imposes that the topo-
logically protected gapless modes are coherent superpositions of electrons and holes with equal weight, hence
corresponding to Majorana quasiparticles, as discussed below.

1.3.3 The Majorana fermion
The Majorana particle was originally introduced in 1937 by Ettore Majorana in the context of high-energy
physics [54]. In its seminal article, Majorana showed that there exist solutions to the Dirac equation, which
describes relativistic fermions of spin-1/2, which are invariant under charge conjugation. Such solutions, there-
fore, have a neutral charge and correspond to particles being their own antiparticles. These particles was named
after their discoverer Majorana fermions. The Majorana operator γ annihilating a Majorana particle is a self-
conjugated operator, which satisfies the following relationships:

{γ, γ†} = 1, γ = γ†, γ2 = (γ†)2 = 1/2. (1.46)

It follows that creating two identical Majorana fermions is allowed but has no effect. Therefore, Majorana
fermions are exotic particles that are neither fermions nor bosons but non-Abelian anyons, which can exhibit
non-Abelian exchange statistics [15, 55]. To avoid any confusion with Dirac fermions, we try to avoid the
name Majorana fermions in this manuscript and instead use the term Majorana particles or simply Majoranas.
In addition, we will denote Majorana operators γi, with i, any relevant label, to distinguish them from the
original fermions ci and bogoliubons ai.

Using relativistic notations, the Dirac equation reads:

(iℏγµ∂µ −m)Ψ = 0, (1.47)

where Ψ is a Dirac bi-spinor field 4, γµ are Dirac matrices, m is the mass of the fermion, and summation over
repeated indices (µ, ν = 0, 1, 2, 3, 0 being time) is understood. The Dirac matrices satisfy the Clifford algebra,
{γµ, γν} = 1ηµν , where ηµν = diag(1,−1,−1,−1) is the metric of a flat spacetime in 3+1D. It is insightful
to right explicitly the Dirac equation in the chiral representation5,[

−m iℏ∂t − σ⃗.p⃗
iℏ∂t + σ⃗.p⃗ −m

] [
ψL

ψR

]
= 0, (1.48)

where ΨL, ΨR are respectively the two-components left and right Weyl spinors [25, 56]. Using the minimal
coupling prescription, one can show that, in the chiral representation, the charge conjugation acts on Ψ as

4Here, Ψ represents a single-particle wavefunction and is not an operator acting in a Fock space.
5In this representation the gamma matrices adopt a convenient form,

γ0 =

[
0 1
1 0

]
, γi =

[
0 σi

−σi 0

]
,

with σi the Pauli matrices.
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Ψ → Ψc = iγ2Ψ∗ [25, 56]. Therefore, a Majorana wavefunction ΨM should satisfy the pseudo-reality
condition

ΨM = iγ2ΨM . (1.49)

One can already remark that a strong connection exists between Majorana particles of high-energy physics
and the BdG formalism in condensed matter theory. First, the Dirac equation, (1.48) can be written,

iℏ∂tΨ(r, t) = ĤDiracΨ(r, t), ĤDirac =

[
−σ.p m
m σ.p

]
, (1.50)

and the single-particle Dirac Hamiltonian ĤDirac has the form of a single-particle BdG Hamiltonian, and the
mass term is equivalent to a BCS paring potential [57]. Therefore, the equation of motion governing the
dynamics of the Nambu spinor,

iℏ∂tψ(r, t) = Ĥψ(r, t) (1.51)

has the same form as the Dirac equation in its operator version. Second, the condition (1.28) is nothing but
an operator version of the pseudo-reality condition (1.49). Consequently, the Nambu spinor ψ(r, t) is nothing
but a Majorana quantum field. Nevertheless, we stress that the pseudo-reality condition (1.28) is satisfied by
the entire time-dependent field. On the contrary, as we show below, the stationary solutions of (1.51) ϕE
with well-defined energies E cannot satisfy the pseudo-reality condition (1.49), unless E = 0. Thus it raises
questions about the observability of the Majorana character of BdG quasiparticles since they are often probed
in the energy domain rather than in the time domain.

Stationary Majorana modes can only arise at zero energy. Indeed, because of the particle-hole constraint
(1.30) if ϕE is a stationary solution of (1.51) with well-defined energy E, the wavefunction CϕE is also a
stationary solution of (1.51) with energy −E, with C the particle-hole operator C = τyσyK. Hence, if E > 0

ϕE and CϕE belong to different eigenspace of Ĥ and are therefore orthogonal. It follows that ϕE ̸= CϕE .
Therefore, the stationary operator aE =

∫
drϕ†E(r)ψ(r) annihilating a quasiparticle of energy E in the mode

ϕE is not a self-conjugate aE ̸= a†E and is not a Majorana operator. On the contrary, if E = 0, ϕE and CϕE
are degenerate and not necessarily orthogonal. It follows that it is possible, but not mandatory, that ϕE = CϕE .
In this case, the wavefunction ϕE satisfies the pseudo-reality condition (1.28) and the operator aE is a self-
conjugate operator aE = a†E and describes a stationary Majorana particle with zero-energy. Consequently,
stationary Majorana modes can only emerge at zero energy in superconductors.

In fact, any zero-energy quasiparticle a can be viewed as a pair of Majorana eigenmodes, γA and γB:

a =
γA + iγB√

2
, with, γA =

a+ a†√
2
, γB = −ia− a†√

2
. (1.52)

Therefore a Majorana particle can be intuitively interpreted as half a Dirac fermion. It seems that the previ-
ous transformation is only a mathematical trick. However, it has profound physical consequences if the two
Majorana eigenmodes are spatially separated. Indeed, in this case, the single fermionic excitation a splits into
two spatially-independent Majorana modes that can be addressed and manipulated separately by local probes.
Therefore, the fermionic mode a is a nonlocal and chargeless fermionic mode that is immune to local noise.
This can be viewed as an example of fractionalization: the separation of an elementary excitation into distinct
emergent quasiparticles[58].
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Notice that Majorana fermions always come by pairs and that the perfect spatial separation of Majorana
modes can only be achieved in infinite-size systems. In realistic finite-size systems, Majorana modes separated
by a distance L hybridize due to the finite overlap of their wavefunctions and form a fermionic excitation with
finite energy. Nevertheless, for exponentially localized Majorana modes, this energy is exponentially small and
decreases with the L as e−L/ξM , with ξM the localization length of the Majorana modes. Thus, when L≫ ξM
the overlap between Majorana modes is negligible, and one can consider them as perfectly spatially-separated
modes.

To avoid any confusion, it is important to clearly specify the meaning of the terms Majorana zero mode
and Majorana bound-states. In this manuscript, we will name Majorana zero mode (MZM) any spatially
isolated 0D Majorana eigenmode and use the term Majorana bound-state (MBS) to designate any zero-
energy fermionic modes corresponding to the superposition of two unpaired MZMs.

If we consider a trivial superconductor, there is no a priori reason for MZMs to appear. However, in a 1D
topological superconductor of the D (or BDI) class, the bulk-boundary correspondence imposes the existence
of perfectly unpaired MZMs localized at each end of the system, provided that the length of the superconductor
L is much larger than the localization length of these modes ξM .

To show it, let us first consider the non-realistic case of a semi-infinite topological superconductor. Since the
vacuum is a trivial topological superconductor, the extremity of the superconductor separates two topologically
nonequivalent phases, which cannot be connected without closing the particle-hole gap. Consequently, there
must be a zero-energy mode localized at the extremity of the topological superconductor. This end mode
is necessarily a zero-energy Majorana mode. Indeed, let us consider a single end mode with energy E and
described by the wavefunction ϕ. Because of the particle-hole symmetry of the BdG Hamiltonian, C−1ĤC =

−Ĥ , the wavefunction Cϕ is an eigenmode of opposite energy, −E. However, since we assumed that there is
a single end mode, ϕ necessarily satisfies the pseudo-reality condition Cϕ = ϕ, and its energy must vanish:
E = 0. Thus the zero-energy end mode is described by a self-adjoint Majorana operator γ =

∫
dbdrϕ

†(r)ψ(r)

localized at the end of the superconductor.
Since a finite-size superconductor has two ends, there should be two Majorana modes γL and γR exponen-

tially localized at the left and right end, respectively. These two modes hybridize due to the finite overlap be-
tween their wavefunction and form a fermionic excitation with finite energy ∝ e−L/ξM . Thus, when L ≫ ξM ,
the overlap between the Majorana modes is negligible, and they do correspond to spatially-isolated MZMs.
Hence, the superposition of these two MZMs forms a nonlocal zero-energy fermion: a0 = (γL + iγR)/

√
2,

which realizes a MBS.

1.3.4 Exotic properties of Majorana bound-states (MBS)
Since a MBS is a zero-energy fermionic degree of freedom, the groundstate of a system hosting a MBS is
necessarily twofold degenerate, and the MBS can be used as a qubit, named a Majorana qubit. MBSs and
MZMs possess exotic properties which make Majorana qubit ideal building blocks for future fault-tolerant
quantum computers.

The first interesting property of MBSs that we want to discuss here is their non-locality. Indeed, since a
MBS is the superposition of two unpaired MZMs, it is necessarily a non-local object. Therefore, its quantum
state cannot be affected by any local perturbation that does not close the particle-hole gap. In other words, the
quantum information encoded by a MBs or a Majorana qubit is immune to local perturbations.
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Second, because they are Majorana particles, MZMs are nonabelian anyons, which exhibit nonabelian
exchange statistics. In other words, contrary to the case of bosons and fermions, the quantum many-body
ground-state obtained after the exchange of two or more Majorana modes depends on the order in which the
exchanges are performed. Therefore, the adiabatic exchange or braiding of Majorana modes is a non-abelian
operation equivalent to the multiplication of the many-body ground-state by a unitary matrix U acting in the
groundstate manifold. Indeed, a system of 2N MZMs possesses a groundstate manifold of dimension 2N .
The exchange operations of MZMs are described by braid groups [59]. It is thus possible to implement some
quantum gates (but not all) via braiding operations of MZMs [48]. Such quantum gates present the fundamental
advantage since they are topologically protected. Indeed, the results of braiding operations do not depend on
the precise details of the adiabatic evolution but only on the order in which MZMs are exchanged. Therefore,
Majorana qubit can be used to realize topological quantum computation. For a more detailed discussion of the
braiding properties of nonabelian anyons, see [48].

It was first proposed to realize braiding operations of MZMs by manipulating and braiding half-quantum
vortices in 2D topological superconductors [55]. Indeed, half-quantum vortices allowed in some spin-triplet
p-wave superconductors exhibit MZMs localized at their cores. Thus, the adiabatic exchange of such vortices
is equivalent to the adiabatic exchange of these MZMs [60, 61, 62]. The adiabatic manipulation of the vortices
can be realized thanks to a Josephson junction array by tuning fluxes.

However, braiding MZMs in 1D geometry is not possible because of the inevitable collision of the MZMs.
Hence, to realize the braiding of MZMs localized at the end of 1D TSC, it is necessary to use a network of 1D
wires. The most straightforward way to exchange MZMs in 1D TSC is to use a junction of three wires, named
a trijunction or T-junction[15]. In such a setup, the boundaries between topological and trivial regions, and
hence the MZMs, can be moved by locally tuning the gate voltage [15].

In summary, because of their non-locality and non-abelian braiding statistics, MBS are ideal candidates for
fault-tolerant topological quantum computation and constitutes the Holy Grail of condensed matter physics.

1.4 The Kitaev chain

1.4.1 Model and symmetries
From a pedagogical point of view, it is insightful to concretely illustrate the topological properties of a toy
model capturing the qualitative features of 1D TSCs in the BDI/D class, the famous Kitaev chain. This
simplified model was originally introduced by A. Kitaev in 2001 in its seminal paper [16]. It consists of a 1D
chain of spinless fermions with p-wave pairing, described by the Hamiltonian,

HK = −
N∑
j=1

µc†jcj +

N−1∑
j=1

−t(c†j+1cj + c†jcj+1) + ∆cjcj+1 +∆∗c†j+1c
†
j , (1.53)

where cj annihilates a fermion at site j, t is the hopping amplitude between neighboring sites and ∆ the pairing
potential, andN is the number of sites in the chain. Without loss of generality, we assume that ∆ ∈ R. Because
the fermions are spinless, it is mandatory for ∆ to be of the p-wave type. HK can be written in a BdG from,

HK = Ψ†ĤKΨ, (1.54)
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where we defined the Nambu spinor Ψ = (c1, c
†
1, ....cN , c

†
N )T and ĤK a 2N × 2N matrix acting in particle-

hole⊗position space.
Defining the TR, PH, and chiral operators, T, C, and S,

T = K, C = τxK, S = τx, (1.55)

one can readily check that,

T−1ĤKT = ĤK , C−1ĤKC = −ĤK , S−1ĤKS = −ĤK (1.56)

Consequently the Kitaev chain belongs to the BDI class of the ten fold way and might possess a non-trivial
topological phase.

However, the classification does not predict the parameter range where the Kitaev chain actually possesses
non-trivial topological properties. Thus, we should construct the topological phase diagram of the chain by
computing its topological invariant.

1.4.2 Closed Kitaev chain, topological invariant and phase diagram
First, let us focus on the bulk properties of the model and construct its topological phase diagram. To that end,
we study a closed chain and impose the periodic boundary condition, cN+1 = c1. Therefore the system enjoys
translation invariance, and HK is diagonal in momentum-space,

HK =
∑
k∈BZ

(−2t cos k − µ)c†kck + i∆sin k c−kck − i∆sin k c†kc
†
−k, (1.57)

where cj = 1√
N

∑
k∈BZ

eikjck, and BZ is the first Brillouin zone, BZ = {0, 2πN , ...,
2(N−1)π

N }. Introducing the

Nambu spinor ψk = (ck, c
†
−k)

T , HK can be written in a BdG form,

HK =
1

2

∑
k∈BZ

ψ†
kĤK(k)ψk − µN, (1.58)

ĤK(k) = h(k).τ = ξ(k)τz +∆(k)τy, (1.59)

where ξ(k) = −2t cos k− µ, ∆(k) = 2∆ sin(k), τ = (τx, τy, τz)
T and h(k) = (0,∆(k), ξ(k))T . The Kitaev

chain can be characterized by two dimensionless parameters, ∆/t, and µ/t. We can construct its phase diagram
in the (∆/t, µ/t) plane.
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Figure 1.4: Topological properties of the closed Kitaev model. (a) Topological phase diagram. Gapless regions
are indicated by the green lines and segments. The topological phase corresponds to the red-shaded area, while
trivial regions correspond to the blue-shaded ones. (b) Trajectory of h(k) in the zy-plane when k runs from −π
to π. The parameters are set to ∆ = t = 1, µ = 2.5t, t, −2.5t respectively for the blue, red, and blue dashed
lines.

According to the ten-fold way, the topological properties of the Kitaev chain are characterized by a Z
topological invariant. A brute-force way to obtain the phase diagram would be to compute this topological
invariant numerically for every parameter. Here we follow a more educated way. First, we determine the
gapless lines of the phase diagram, which might correspond to topological transitions. Second, among the
gapless lines, we identify topological phase transitions by computing the change in the topological invariant
across each of them.

The quasiparticle spectrum of Ĥk consists of two energy branches E(k) and −E(k), with:

E(k) =
√
(−2t cos(k)− µ)2 + |∆(k)|2. (1.60)

The corresponding eigenvectors ϕ±(k) are given by, ϕ+(k) = (u(k), v(k))T , and ϕ−(k) = Cϕ+(−k), where,

u(k) =
1√

2E(k)

√
E(k) + ξ(k), (1.61)

v(k) =
1√

2E(k)

∆(k)

|∆(k)|
√
E(k)− ξ(k). (1.62)

Introducing the fermionic operators ak = u∗kck + v∗kc
†
k, HK is equivalent to a free fermions gas,

HK =
∑
k∈BZ

Eka
†
kak (1.63)

Note that ak annihilates a bogoliubon of momentum k. Once the expression of E(k) is known, we can identify
the region of the phase diagram where Ĥ(k) is gapless. Let us first study the special case ∆ = 0. In this case,
the model is a metallic chain of spinless fermions with trivial topology. Its spectrum is gapless when |µ| ≤ 2t
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Figure 1.5: Quasiparticle spectrum of the Kitaev model with periodic boundary conditions: energies of ĤK(k),
±E(k), in units of t as a function of k for ∆ = t. (a): Blue, green and red lines correspond to µ/t =
−3, −2, −1, respectively. (b): Blue, green and red lines correspond to µ/t = 1, 2, 3, respectively.

and gapped |µ| > 2t. Since the sign of ∆ does not change the topological properties of the chain, the gapless
segment where ∆ = 0, and |µ| ≤ 2t, can not corresponds to a topological phase transition (TPT).

We now turn to the more interesting case, ∆ ̸= 0. In that case, we find two gapless lines. When µ = −2t,
E(k = 0) = 0 , while when µ = −2t, E(k = π) = 0, as illustrated in Fig. 1.5. These gapless lines and
segments are indicated by green lines in Fig. 1.4 (a).

Next, we show that these lines are indeed TPT associated with a change in the topological invariant. To that
end, we need to define the topological invariant of the Kitaev model. Topological invariants are generally based
on a mapping from the Brillouin Zone ((S1)d) to the space of eigenvectors of Ĥ(k). The detailed construction
of the different topological invariants is beyond the scope of this manuscript and can be found in [24]. For the
Kitaev chain, the topological invariant is based on the mapping from the Brillouin zone to the unit circle S1

defined by the unit vector n(k) = h(k)
|h(k)| (which entirely determines the eigenvectors),

n : S1 → S1 (1.64)

k → n(k). (1.65)

There exist topologically distinct mappings of this kind, classified by the homotopy group π1(S1) = Z. Topo-
logically distinct maps are characterized by the topological invariant ν, named the winding number [24]. It is
defined as:

ν =
1

2π

∮
C
dθ(k) =

1

2π

∫
BZ

∂kθ(k)dk. (1.66)

Where θ(k) = arg[nz(k) + iny(k)] and C the curve described by the arrow of n(k) when k runs over the
whole Brillouin zone. In other words, ν counts the number of times h(k) (or equivalently n(k)) encircles the
origin when k runs over the entire Brillouin zone, thus ν ∈ Z. In Fig. 1.4 (b), the trajectory of h(k) in the
yz-plane is plotted, for ∆ = 1 and µ = −2.5, 1, 2.5. From this figure, it is obvious that ν = 1 when µ < 2t and
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zero otherwise. Therefore, the red-shaded region of the phase diagram, Fig. 1.4 (a), is topologically non-trivial,
while the two other blue-shaded regions are trivial.

To finish, we stress that, like any quantum phase transition, each TPT corresponds to a change in the
ground-state |g⟩. Using (1.63), it is obvious that |g⟩ is the vacuum of bogoliubons. The k = 0 and k = π

points may be treated carefully. Indeed, c−0 = c0 and c−π = cπ, and the pairing potential is ineffective at these
points. Thus a0 = c0 if µ < −2t, a0 = c†0 otherwise, and aπ = cπ if µ < 2t, aπ = −c†π otherwise. Therefore,

|g⟩ ∝ (
∏

π>k>0

aka−k)



1, if µ < −2t

c†0, if −2t < µ < 2t

c†0c
†
π, if µ > 2t

 |0⟩ (1.67)

where |0⟩ is the vacuum of original fermions. The fermionic parity P̂ = (−1)
∑

j c
†
jcj is conserved by HK ,

therefore, |g⟩ has a well-defined fermionic parity. Notice that the TPTs are associated with a change in ground-
state fermionic parity. Indeed straightforward algebra yields,

⟨g| P̂ |g⟩ =

{
−1, if |µ| < 2t

+1, otherwise
. (1.68)

This link between fermionic parity and the presence of a non-trivial topological phase is, however, non-universal
and depends on the parity of N and the boundary conditions [63].

1.4.3 Majorana zero modes in the open Kitaev chain
According to the bulk-boundary correspondence, Majorana zero modes (MZMs) should be localized at the
extremities of an open Kitaev chain in the topological regime. Here, we illustrate the bulk-boundary corre-
spondence by explicitly showing that a non-trivial open Kitaev chain exhibits MZMs localized at its ends. In
addition, we will show that the presence of the MZMs.

Imposing open boundary conditions to the Kitaev chain (1.53), we introduce a Majorana representation of
HK . Introducing the new set of 2N Majorana operators, γAj , γ

B
j , such that,

cj =
γAj + iγBj√

2
, c†j =

γAj − iγBj√
2

. (1.69)

These operators satisfy the anticommutation relation,

{γAj , γBj′ } = 0, {γAj , γAj′} = {γBj , γBj′ } = δj,j′ . (1.70)

In this Majorana representation, HK becomes,

HK = i
N−1∑
j=1

(∆− t)γAj γ
B
j+1 + (∆+ t)γBj γ

A
j+1 − iµ

N∑
j=1

γAj γ
B
j . (1.71)

As already stated, the topological properties can not be changed by smooth local perturbations without closing
the gap. Therefore, we can illustrate the topological properties of the non-trivial and trivial phases at two well-
chosen points of the phase diagram. We choose the point ∆ = 0, t = 0 and µ ̸= 0 to illustrate the trivial
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Figure 1.6: Schematic illustration of an open Kitaev chain in the Majorana chain regimes. The grey boxes
indicate physical sites, while blue and red dots, respectively, indicate Majorana operators of type A and B.
(a): An open Kitaev chain for ∆ = t = 0, and µ ̸= 0. Majorana operators γAj , γ

B
j , belonging to the same

physical site, are paired together as indicated by the green dashed circle. Each on-site pair corresponds to the
original Dirac fermion operators cj .(b): An open Kitaev chain for ∆ = t ̸= 0, and µ = 0. Majorana operators
γBj , γ

A
j+1, belonging to adjacent physical sites, are paired together as indicated by the green dashed circle. Each

pair corresponds to the gapped Dirac fermion operators dj . The two Majorana operators at the left and right
edges are left unpaired and form a non-local zero-energy Dirac fermion d0. Figure inspired by [64].

phase and ∆ = t ̸= 0, µ = 0 to illustrate the topological phase. In each case, the Kitaev chain is conveniently
described by a chain of Majorana fermions, and we refer to these cases as the two Majorana chain regimes. In
the first Majorana chain regime, when ∆ = 0, t = 0 and µ ̸= 0, the Hamiltonian is reduced to,

HK = −iµ
N∑
j=1

γAj γ
B
j . (1.72)

As schematized in Fig. 1.6 (a), Majorana operators belonging to the same physical site are paired together, and
there are no Majoranas left unpaired. Consequently, all Majoranas are gapped, and there are no zero energy
modes, hence no MZMs. ∆ = t ̸= 0, µ = 0, HK becomes,

HK = 2it
N−1∑
j=1

γBj γ
A
j+1. (1.73)

In contrast to the previous case, Majoranas operators belonging to adjacent physical sites are paired together,

as depicted in Fig. 1.6 (b). Thus, introducing the new set of complex fermions, dj =
γB
j −iγA

j+1√
2

for 1 ≤ j < N ,
HK reads,

HK = 2t
N∑
j=1

(
d†jdj −

1

2

)
. (1.74)
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It is important to remark that the Majorana operators γA1 , γBN−1 are left unpaired. These Majorana operators do
not enter the Hamiltonian. Consequently, they are zero-energy modes. In addition, they are perfectly localized
at each end of the chain and thus correspond to MZMs localized at the edges of the chain. Since γA1 , γBN−1

are degenerated, we can construct a zero-energy non-local complex fermion d0 =
γB
N−iγA

1√
2

. Consequently, the
ground-state of the chain in the non-trivial regime is twofold degenerate. The construction of the two ground-
states |g0⟩ , |g1⟩ for any N is not trivial . Here we simply state the results without demonstration; the interested
reader can find a rigorous and detailed proof in [64].

|g0⟩ ∝
∏
j>0

dj |vac⟩ , |g1⟩ =

{
d†0 |g0⟩ , N is even
d0 |g0⟩ , N is odd

(1.75)

These two groundstates can be distinguished by their fermionic parity,

⟨g0| P̂ |g0⟩ = (−1)N+1, ⟨g1| P̂ |g1⟩ = (−1)N . (1.76)

Figure 1.7: Results from numerical diagonalization of a finite size Kitaev chain with N = 100 sites and
∆/t = 1.3. (a) Energy spectrum as a function of µ/t. For convenience, we plotted the two lowest energies in
red. As it can be observed, the quasiparticle closes and reopens at the two critical points µ = ±2t. (b) Square
amplitude |u(j)|2 + |v(j)|2 of the two Majorana wavefunctions ϕL and ϕR as a function of j for ∆/t = 1.3
and µ/t = 1.2 with t = 1.

The pair of MZMs cannot be removed by any local perturbation, which preserves the quasiparticle gap.
Therefore, a pair of MZMs should exist in the whole topological phase of the chain. However, away from
the analytically soluble point, ∆ = t, µ = 0, where the Majorana operators γA1 , γBN are exactly zero energy
eigenmodes, the eigenstates of the BdG Hamiltonian ĤK have to be found numerically. In the generic case,
the quasiparticle spectrum of ĤK closes and reopens at the critical points µ = ±2t, as observed in Fig. 1.7.
In the topological regime, |µ| < 2t, a single pair of eigenstates lies in the middle of the gap at zero energy.
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Because of the particle-hole symmetry of ĤK , we can always choose the two zero energy eigenstates ϕR, ϕL
as Majorana eigenmodes satisfying the pseudo-reality condition, CϕR/L = ϕR/L. These two zero-energy
Majorana eigenmodes describes two Majorana operators γL =

∑
j ϕ

†
A(j)ψ(j) and γR =

∑
j ϕ

†
A(j)ψ(j). As it

can be observed in Fig. 1.7. (b), ϕL is localized at the left edge of the nanowire while ϕR is localized at the right
edge, with the same localization length ξM . These two Majorana eigenmodes do not overlap and therefore do
correspond to a single pair of MZMs. Their superposition d0 = (γR − iγL)/

√
2 forms a nonlocal zero-energy

fermionic bound-state corresponding to a MBS, and the groundstate of the system remains twofold degenerate.
We stress that all the above arguments are only valid when the length of the chain is sufficiently long,

N ≫ ξM . Indeed, the Majorana modes decay exponentially towards the bulk |ϕL(j)| ∝ e−n/ξM , hence
their overlap scales as e−N/ξM . Because of this overlap, the MZMs hybridize, and the MBS acquire a small
energy EM ∝ e−N/ξM . Consequently, if N ≫ ξM , the energy EM is negligible, the overlap between the
MZMs is negligible, and the non-local fermion dM is a true MBS. On the contrary, when the size of the chain
becomes comparable to ξM , the MZMs have a finite overlap, and dM is no longer a true MBS but a fermionic
quasiparticle with finite energy. Notice that, when µ = 0, and ∆ = t, ξM = 0, and the operators γL, γB and
dM correspond to γA1 , γBN and d0 respectively.

In conclusion, we showed that the non-trivial topology of the bulk of a finite-size Kitaev chain is manifested
by the presence of two unpaired MZMs localized at the end of the chain, illustrating the bulk-edge correspon-
dence. The superposition of these MZMs forms a highly nonlocal zero-energy fermionic degree of freedom: a
MBS. This fermionic degree of freedom can be used as a qubit named Majorana qubit, which exhibits highly
desirable properties for topological quantum computation (see Subsection.1.3.4).
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Chapter 2

Introduction to non-equilibrium Green’s
function (NEGF)

Throughout this manuscript, we will be interested in the electronic transport through superconducting sub-gap
states. More specifically, we want to calculate observables that can be directly measured by means of scanning
tunneling microscopy/spectroscopy (STM/STS) techniques. In a typical STM/STS experiment (described in
more details in this chapter), the dc voltage bias applied between the tip of the microscope and the sample that
is studied maintains the system in an out-of-equilibrium state. Therefore, in order to make a direct connection
between our theoretical predictions and experimental data, we should use a theoretical framework that is well-
suited for the description of out-of-equilibrium quantum systems.

The non-equilibrium Green’s functions (NEGF) technique, a state-of-the-art tool adapted to the description
of out-of-equilibrium quantum many-body systems, seems particularly well suited for our purpose. Indeed, this
powerful and versatile technique is very well-suited for the study of quantum transport and is nowadays widely
used to calculate quantum transport properties in various mesoscopic devices.

The present chapter is dedicated to the introduction of this theoretical tool and is constructed as follows. In
the first section, we lay the foundation of the NEGF formalism and introduce its key ingredient, the time contour.
In the second section, we focus on the Keldysh contour, a well-suited contour for studying the long-time steady-
state regime. We derive the equations obeyed by Green’s functions on this contour and the relations relating
the different Green’s functions. Finally, in the third section, we focus on the theoretical modeling of STS
experiments and use the Keldysh technique to compute the electronic current and the differential conductance
spectrum.

2.1 The time contour idea

2.1.1 Context
Before entering into the details of the NEGF technique, it is important to define the problem we aim to solve
formally. We consider a macroscopic many-body electronic system S initially in equilibrium in the grand-
canonical ensemble at temperature T and chemical potential µ. At the time t0 an external perturbation V̂p(t),
eventually time-dependent, is applied to the system and drives it out of equilibrium. Our goal is to predict
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the results of the measurement of a physical observable Ô at later times, t > t0. For the sake of simplicity,
we first assume that the electronic system is not superconducting. We will generalize the NEGF technique to
superconducting systems described by BdG Hamiltonians in the last section of this chapter. Without loss of
generality, the dynamics of the electronic system in absence of the drive field is described by the many-body
Hamiltonian:

H = H0 +Hint, (2.1)

where H0 describes free particles and Hint the interactions between them. The NGEF formalism can treat
arbitrary initial conditions [65, 27]. Nevertheless, for simplicity, we focus on the case of initial equilibrium in
the grand-canonical ensemble at time t = t0. As a consequence, the initial density matrix reads:

ρ̂ =
e−βHM

Z
, Z = Tr[e−βHM ], (2.2)

where β = 1
kBT , HM = H0 + Hint − µN̂ , with N̂ the particle number operator in the system. For the sake

of convenience, the single-particle energies are measured from the chemical potential such that HM = H. For
time t > t0, the time-evolution of the system is governed by the time-dependent Hamiltonian,

H(t > t0) = H0 +Hint + V̂p(t) = H0 + V̂ (t), (2.3)

with V̂ (t) = Hint + V̂p(t) the perturbation.
For the present purpose, it is convenient to work with the Heisenberg picture. In this picture, the states

|Ψ(t)⟩ are time-independent, |ΨH(t)⟩ = |Ψ(t0)⟩, while the operators are time-dependent. The Heisenberg
representation ÔH(t) of an operator Ô(t) is defined by the following equation of motion and the associated
initial condition,

iℏ
dÔH(t)

dt
= [HH(t), ÔH(t)] + iℏ

∂ÔH(t)

∂t
, with ÔH(t0) = Ô(t0), (2.4)

where the subscriptH indicates the Heisenberg picture, and the partial derivative notation signifies that only the
derivative with respect to the explicit time dependence of Ô(t) must be taken. In this picture, the expectation
value at time t of an observable Ô(t) is given by:

⟨Ô(t)⟩ = Tr
{
ρ̂ÔH(t)

}
. (2.5)

Focusing on single-particle observable, the operator Ô(t) can be written as:

Ô(t) =

∫
drdr′

∑
σ,σ′

Oσ,σ′(r, r′, t)c†σ(r)cσ′(r′). (2.6)

Hence it is very convenient to introduce the so-called chronological time-ordered Green’s function,

GT
σ,σ′(t, r; t′, r′) = − i

ℏ
Tr
{
ρ̂T [cσ,H(r, t)c†σ′,H(r′, t′)]

}
= −i⟨T [cσ(r, t)c

†
σ′(r

′, t′)]⟩, (2.7)

with T the chronological time-ordering operator. The action of T is defined by,

T [Â(t)B̂(t′)] =

{
Â(t)B̂(t′), t > t′

±B̂(t′)Â(t), t ≤ t′
, (2.8)
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where the + and − apply for bosonic and fermionic operators, respectively. Obviously, with
GT

σ,σ′(t, r; t′, r′) in hands, one can compute any single-particle property as ℏGT
σ,σ′(t, r; t+0+, r′) = i⟨c†σ′(r′, t)cσ(t)⟩.

Consequently, our ultimate goal is to compute the time-ordered Green’s function. In order to achieve that,
it is tempting to follow the strategy of the perturbation technique proposed by Feynman[66] to compute the
Green’s function in the zero-temperature limit. Namely, we would like to expand GT

σ,σ′(t, r; t′, r′) in power of
the perturbation V̂p(t). Then we would like to use the famous Wick theorem to decompose the many-particle
correlation functions generated into a sum of products of one-particle correlations [67]. This theorem holds if
and only if the operators to be averaged evolve with respect to a non-interacting Hamiltonian and the initial
density matrix is a non-interacting one-particle density matrix [68]. Hence, if we want to apply the Wick
theorem to (2.7), we face two problems, first H contains interactions, and second, the initial density matrix in
(2.7) is a many-body density matrix. The next subsection is devoted to the solution to the first problem.

2.1.2 Time evolution and the round-trip contour
Let us first show how we can solve the first problem with the help of the interaction picture and the idea of a
closed-time contour. The idea is to use the interaction picture to replace operators evolving with respect to the
time-dependent many-body Hamiltonian H(t > t0) by operators evolving with respect to the non-interacting
and stationary Hamiltonian H0. Indeed, in the interaction picture, the operators evolve in time with respect to

Figure 2.1: Schematic representation of the round-trip contour c. The arrow indicates the time-ordering con-
vention on the contour. On the upper branch (+ branch), the time-ordering is chronological, whereas on the
lower branch (− branch) the time-ordering is anti-chronological. To be complete, we also indicate the initial
condition ρ̂(t0) = ρ̂, with ρ̂ the exact many-body density matrix (2.2).

H0, while the states |ΨI(t)⟩ evolves under the action of V̂I(t), where the subscript I indicates the interaction
picture. In other words, in the interaction picture, the states and operators obey the following equations of
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motion,

iℏ
dÔI(t)

dt
= [HI(t), ÔI(t)] + iℏ

∂ÔI(t)

∂t
, with ÔI(t0) = Ô(t0), (2.9)

iℏ
d |ΨI(t)⟩

dt
= V̂I(t) |ΨI(t)⟩ , with |ΨI(t0)⟩ = |Ψ(t0)⟩ . (2.10)

Note that (2.9) admits the solution,

ÔI(t) = eiH0
t−t0
ℏ Ô(t)e−iH0

t−t0
ℏ . (2.11)

Now, we should express the operators in the Heisenberg picture in the interaction picture. To do so, we
introduce the time-evolution operator Ŝ(t1, t2), defined by the equations,

ÔH(t) = Ŝ(t0, t)ÔI(t)Ŝ(t, t0), (2.12)

Ŝ(t1, t3)Ŝ(t3, t2) = Ŝ(t1, t2), (2.13)

Ŝ(t1, t1) = 1. (2.14)

It is straightforward to show that, Ŝ(t, t0) obeys the following equation of motion,

iℏ
dŜ(t, t0)

dt
= V̂I(t)Ŝ(t, t0). (2.15)

Hence, using the initial condition, (2.14) and the identity (2.13), we can formally write Ŝ(t1, t2) as,

Ŝ(t1, t2) =


T [e

− i
ℏ

t1∫
t2

V̂I(t)dt

], t1 > t2,

T̄ [e

i
ℏ

t2∫
t1

V̂I(t)dt

], t2 > t1

, (2.16)

with T the chronological time-ordering operator and T̄ the anti-chronological one defined as,

T̄ [Â(t)B̂(t′)] =

{
Â(t)B̂(t′), t < t′,

±B̂(t′)Â(t), t ≥ t′,
(2.17)

where the + and − sign corresponds to the cases of bosonic and fermionic operators, respectively. Defining the
round-trip time contour c represented on Fig. 2.1, the equation (2.12) adopts an elegant and compact form,

ÔH(t) = Tc[e−
i
ℏ
∫
c V̂I(z)dzÔI(t)], (2.18)

where the time-ordering operator Tc orders the operators along the round-trip contour c and z is a contour time
argument lying on c.

The c contour contains two branches. It runs on the upper branch ( the + branch) from t+0 = t0 to t and then
goes back to t−0 = t0 on the lower branch (the − branch). On the + branch, the time-ordering is chronological,
while on the − branch, it is anti-chronological. The vertical shift between the + and − branch in Fig. 2.1 is only
a graphical artifact used for the visibility of each branch. This shift should not confuse the reader, and we stress
that both branches lie on the real axis. Since, Ŝ(∞, t)Ŝ(t,∞) = 1, the contour can be expanded to t = +∞
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without additional difficulties (see Fig. 2.1). For convenience, we extend the definition of the time-evolution
operator to the contour c,

Sc(z2, z1) = Tc[e
− i

ℏ

z2∫
z1

V̂I(z)dz

], (2.19)

where z1 and z2 are contour-time arguments lying on c. With this definition, (2.18) becomes,

ÔH(t) = Tc[Sc(t−0 , t
+
0 )OI(t)]. (2.20)

Therefore, it is straightforward to show that the time-ordered Green’s function GT can be written as:

GT
σ,σ′(r, t; r′, t′) = − i

ℏ
Tr
{
ρ̂Tc[Sc(t−0 , t

+)cIσ(r, t
+)Sc(t

+, t′+)c†Iσ′(r
′, t′+)]Sc(t

′+, t+0 )
}

= Tr
{
ρ̂Tc[e−

i
ℏ
∫
c dzVI(z)cIσ(r, t

+)c†Iσ′(r
′, t′+)]

}
, (2.21)

where we used the fact that the operators inside Tc commute and Sc(t−0 , t
+)Sc(t

+, t′+)Sc(t
′+, t+0 ) = Sc(t

−
0 , t

+
0 ).

Nevertheless, (2.21) is not yet practically useful. Indeed, if we expand the exponential operator, we obtain
an infinite series of many-particle correlations involving non-interacting operators. However, in (2.21) the
average is performed with respect to the exact many-body density-matrix. Hence the Wick theorem can not be
applied. We solve this problem in the next subsection.

2.1.3 Initial correlations and the generalized contour
If we want to use the Wick theorem in (2.21), it is necessary to express the many-body density matrix ρ̂ from
the non-interacting density matrix ρ̂0,

ρ̂0 =
e−βH0

Z′
, Z′ = Tr[e−βH0 ]. (2.22)

First, we split off the single-particle density matrix ρ̂0 from ρ̂,

ρ̂ = ρ̂0
Z0

Z
eβH0e−βH. (2.23)

Then, we introduce the operator Ŝc′(t0 − iℏβ, t0),

Ŝc′(t0 − iℏβ, t0) = eβH0e−βH. (2.24)

With this definition, it is straightforward to show that,

Sc′(t0 − iℏβ, t0) = Tc′ [e
−i

∫ τ
t0

Hint,I(τ
′)dτ ′

], with, ÔI(τ) = eiH0(τ−t0)Ô(t0)e
−iH0(τ−t0), τ ∈ c′, (2.25)

where c′ is the Matsubara contour defined in Fig. 2.2, OI(τ) is the extension of interaction representation of
an operator Ô to complex time lying on c′, and Tc′ is the Matsubara time-ordering operator. Tc′ orders the
operators along c′ according to the direction of the arrow in Fig.2.2,

Tc′ [Â(τ)B̂(τ ′)] =

{
Â(τ)B̂(τ ′), τ > τ ′ in c′

±B̂(τ ′)Â(τ), τ ′ ≥ τ in c′
. (2.26)
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Figure 2.2: Schematic representation of the Matsubara contour c′. The red arrow indicates the time-ordering
on c′.

Therefore, we can expand ρ̂ in terms of ρ̂0,

ρ̂ =
ρ̂0Sc′(t0 − iℏβ, t0)

Tr{ρ̂0Sc′(t0 − iβℏ, t0)}
. (2.27)

Inserting the above equation into (2.21) we obtain,

GT
σσ′(r, t; r′, t′) =

Tr
{
ρ0Ŝc′(t0 − iβ, t0)Tc[Sc(t−0 , t

+
0 )cσI(r, t

+)c†σ′I(r
′, t′+)]

}
Tr
{
ρ0Ŝc′(t0 − iβ, t0)

} . (2.28)

Noticing the striking similarity between the treatment of the initial density matrix and the time-evolution
operator, both being exponential functions, we can combine the two expansions into a single one. To do so,
following Wagner[65], we first glue together the contour c and c′ and introduce the generalized contour c∗ = c′c

defined in Fig. 2.3. In addition, we define the time-ordering operator Tc∗ ,

Tc′ [Â(τ)B̂(τ ′)] =

{
Â(τ)B̂(τ ′), z > z′ in c∗

±B̂(τ ′)Â(τ), z′ ≥ z in c∗
, (2.29)

where the contour-times are ordered according to the red arrow in Fig. 2.3. Hence, points lying on c′ are always
later than the ones lying on c. Lastly, we extend the definition of the time-evolution operator to the c∗ contour,

Sc∗(t0 − iℏβ, t+0 ) = Sc′(t0 − iℏβ)Sc(t−0 , t
+
0 ) = Tc∗ [ei

∫
c∗ K̂I(z)dz], (2.30)

where K̂I(z) is the perturbation in the interaction picture defined as,

K̂I(z) =

{
VI(z), z ∈ c,

Hint,I(z), z ∈ c′
(2.31)
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Figure 2.3: Schematic illustration of the generalized contour c∗. The arrow indicates the time-ordering conven-
tion on the contour. To be complete, we also indicate the initial condition ρ̂(t0) = ρ̂0, with ρ̂0 the single-particle
density matrix in (2.22).

With all the previous definitions, we obtain the elegant and compact expression,

GT
σσ′(r, t; r′, t′) =− i

ℏ

Tr
{
ρ̂0Tc∗ [e−

i
ℏ
∫
c∗ K̂I(z)dzcσI(r, t

+)c†σ′I(r
′, t′+)]

}
Tr
{
ρ̂0Tc∗e−

i
ℏ
∫
c∗ dzVI(z)

} (2.32)

=− i

ℏ
⟨Tc∗ [e−i

∫
c∗ dzK̂(z)cσ(r, t

+)c†σ′(r′, t′+)]⟩0
⟨Tc∗ [e−i

∫
c∗ dzK̂(z)⟩0

, (2.33)

where we introduced the short-hand notation:

⟨Â1(z1)...Ân(zn)⟩0 = Tr
{
ρ̂0Â1,I(z1)...Ân,I(zn)

}
(2.34)

2.1.4 Long-time asymptotic regime and the Keldysh contour
So far we did not make any assumptions and (2.32) is exact on the generalized contour c∗. Using the generalized
contour c∗ one can take into account the initial correlations and describes the complete dynamics of the system
under drive field V̂p(t) from the early-time transient regime to the long-time asymptotic regime.

In this manuscript, we focus on the long-time steady-state regime reached by the system when a DC drive
is applied to it. Therefore, (2.32) and the generalized contour c∗ seems unnecessarily complicated for our
purpose. Fortunately, in 1964, L. V. Keldysh proposed a simplified contour allowing one to capture the long-
time steady-state regime with less computational effort [26]. The idea is that if Green’s functions decay rapidly
as a function of the difference in times, the system loses its memory of initial correlations after a long time.
Under this assumption, the Matsubara contour c′ can be neglected. Moreover, neglecting the transient regime,
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Figure 2.4: Schematic illustration of the Keldysh contour cK . cK is obtained from c∗ by neglecting the contour
c′ which is equivalent to neglecting initial correlations and, discarding the transient regime, setting t0 to −∞.

we can set t0 to the infinite past, t0 → −∞. We thus end up with the simplified contour defined in Fig. 2.4,
known as the Keldysh contour cK . Hence, we refer to this contour as the Keldysh contour. Using the identity
Tc[e

−i
ℏ

∫
C VI(z)dz] = Ŝ(−∞,∞)Ŝ(∞,−∞) = 1, and applying 2.32 to cK we obtain the simplified equation,

GT
σσ′(r, t; r′, t′) = − i

ℏ
⟨Tc[e

− i
ℏ
∫
cK

dzV (z)
cσ(r, t

+)c†σ′(r
′, t′+)]⟩0, (2.35)

where ⟨...⟩0 indicates that the operator evolves with respect to H0 and that the average is performed with respect
to ρ̂0. For non-interacting systems, because the perturbation K̂I(z) vanishes on c′, the Keldysh contour cK is
obviously equivalent to c∗ yielding the exact steady-state regime [65].

However, for interacting systems, the validity of the Keldysh contour relies on thermalization of the system
due to scattering processes. In other words, we expect that, because of the interactions, the initially uncorrelated
system has thermalized to a correlated state after a long time (see [27, 65] for a detailed discussion). In
most cases, this assumption is valid, and the Keldysh contour cK correctly captures the steady-state regime
of interacting systems. Nevertheless, there are some cases where this assumption fails and the steady-state
regime depends on the initial correlations. For example, it is the case when interaction can not be thought of as
local perturbation. This phenomena, called thermalization breakdown, has been recently investigated due its
experimental relevance [69, 70, 71, 72].

In this manuscript, we focus on non-interacting systems. Hence, for our purpose, the Keldysh contour
yields exact results. As a consequence, hereinafter, we strictly use the Keldysh contour cK and therefore omit
the index K to lighten the notations.

2.2 NEGF on the Keldysh contour

2.2.1 Dyson equation on the contour

Expanding the time-evolution operator e−
i
ℏ
∫
c dzV (z) in (2.35), and using Wick’s theorem, the exact time-

ordered Green’s function becomes an infinite geometrical serie of non-interacting Green’s functions. Obviously
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this serie do not only involve the bare time-ordered Green’s function gTσ,σ′(r, t; r′, t′) = − i
ℏ⟨Tc[cσ(r, t

+), cσ′(r′, t′+)⟩0
but also two-point correlations of the form ⟨Tc[cσ(r, z), cσ′(r′, z′)⟩0 with z = t± and z′ = t′± lying on the
Keldysh contour. It is then convenient to extend the definition of the Green’s function to the full contour,

Gc
σσ′(r, z; r′, z′) = − i

ℏ
⟨Tc[cσ(r, z), cσ′(r′, z′)]⟩ = − i

ℏ
⟨Tc[e−

i
ℏ
∫
C V (z)dzcσ(r, z), cσ′(r′, z′)]⟩0. (2.36)

Similarly to the zero-temperature case Gc can be formally obtained from a power expansion of e−i
∫
C VI(z)dz .

Using the Wick theorem, one obtains an infinite serie of products of bare Green’s function gc. Each term in the
serie can be conveniently represented by a diagram analogous to the Feynman diagrams in the zero-temperature
case[27]. Similarly to the zero-temperature case, the concept of self-energy Σc (defined on the Keldsyh contour)
naturally arises as the sum of all possible single-particle irreducible diagrams, and the contour-time Green’s
function obeys the Dyson equation[27],

Gc
σσ′(r, z; r′, z′) = gcσσ′(r, z; r′, z′) (2.37)

+
∑
γ,δ

∫
c
dr2dr3dz2dz3 g

c
σγ(r, z; r2, z2)Σ

c
γδ(r2, z2; r3, z3)G

c
δσ′(r3, z3; r

′, z′).

Using the short-hand notation for the arguments of the contour-time Green’s function, 1 ≡ {σ1, r1, z1},
eq.(2.37) adopts an elegant and compact form,

Gc(1, 1′) = gc(1, 1′) + gc(1, 2)Σc(2, 3)Gc(3, 1′), (2.38)

where integration over repeated indices is understood.
Nevertheless, physical information is encoded into real-time Green’s functions with both time arguments

lying on concrete branches of the contour. Hence, Gc is not practically useful, and we find it more convenient
to work directly in terms of the real-time Green’s functions defined in the next subsection.

2.2.2 Real-time Green’s functions
Since the Keldysh contour possesses two branches, there are four possible ways to choose the branch of the
two-time arguments of Gc. Consequently, the contour-ordered Green’s function corresponds to four different
real-time Green’s functions:

Gσ,σ′(r, z; r′, z′) =


GT

σ,σ′(r, t; r′, t′) = − i
ℏ⟨T [cσ(r, t)c

†
σ′(r′, t′)]⟩ if z = t+, z′ = t′+

GT̄
σ,σ′(r, t; r′, t′) = − i

ℏ⟨T̄ [cσ(r, t)c
†
σ′(r′, t′)]⟩ if z = t−, z′ = t′−

G>
σ,σ′(r, t; r′, t′) = − i

ℏ⟨cσ(r, t)c
†
σ′(r′, t′)⟩ if z = t−, z′ = t′+

G<
σ,σ′(r, t; r′, t′) =

i
ℏ⟨c

†
σ′(r′, t′)cσ(r, t)⟩ if z = t−, z′ = t′+

(2.39)

It is sometimes convenient to represent Gc in a matrix form Ĝ containing the four real-times functions, defined
as:

Ǧ(1, 1′) =

[
GT (1, 1′) G<(1, 1′)

G>(1, 1′) GT̄ (1, 1′)

]
. (2.40)

Similarly, we can define a matrix representation Â for any contour-time function Ac.
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It is important to note that the four real-time Green’s functions defined in (2.39) are not all independent,
namely,

GT +GT̄ = G< +G>, (2.41)

where we omitted the arguments to lighten the notations. The redundancy can be eliminated by a linear trans-
formation of Ǧ:

Ğ = L̂κ̂3ǦL̂
† =

[
Gr GK

0 Ga

]
, L̂ =

1√
2
(κ̂0 +−iκ̂2), (2.42)

where κi are the Pauli matrices acting in the space of the contour branch, also called Keldysh space (κ̂0 is the
identity). Ga, Gr, and GK are, respectively, the advanced, retarded, and Keldysh Green’s function,

Gr
σσ′(r, t; r′, t′) = − i

ℏ
θ(t− t′)⟨{cσ(r, t), c†σ′(r

′, t′)}⟩ (2.43)

Ga
σσ′(r, t; r′, t′) =

i

ℏ
θ(t′ − t)⟨{cσ(r, t), c†σ′(r

′, t′)}⟩ (2.44)

GK
σσ′(r, t; r′, t′) = − i

ℏ
⟨[cσ(r, t), c†σ′(r

′, t′)]⟩ (2.45)

Obviously, Gr(1, 1′) = Ga(1′, 1)∗, thus, only two Green’s function are independent. While Ga/r gives infor-
mation on the particle dynamics and the states of the system GK gives information about the non-equilibrium
occupation of those states.

2.2.3 The Langreth rules
As already mentioned, the Dyson equation (2.37) is not practically useful since it is written in terms of contour-
time Green’s functions. Hence, we would like to write it directly in terms of real-time Green’s functions. In
doing so, we need to specify how integrals on the Keldysh contour are translated into integrals on the real-time
axis. Let us first consider the convolution product, Cc(1, 1′) =

∫
c dz2A

c(1, 2)Bc(2, 1′). We start∫
c
dz2A(1, 2)B(2, 1′) =

∫ ∞

−∞
dt2A(1, 2

+)B(2+, 1′)−
∫ ∞

−∞
dt2A(1, 2

−)B(2−, 1′), (2.46)

which can be written in a compact form using the matrix representation,

Č(1, 1′) =

∫ ∞

−∞
dt2Ǎ(1, 2)κ̂zB̌(2, 1′), (2.47)

where κ̂z =
[
1 0
0 −1

]
is the third Pauli matrix acting in the Keldysh space. Equation (2.47) completely specifies

the rules to compute contour-time convolution products from real-time convolution products. These rules are
known as the Langreth rules. Using eq.(2.47), and equation (2.42), it is easy to obtains the Langreth rules for
the retarded, advanced and Keldysh components of C(1, 1′) ,

C̆(1, 1′) =

∫ ∞

−∞
dt2Ă(1, 2)B̆(2, 1′)

⇒ Cr/a(1, 1′) =

∫ ∞

−∞
dt2A

r/a(1, 2)Br/a(2, 1′) (2.48)

⇒ CK(1, 1′) =

∫ ∞

−∞
dt2A

K(1, 2)Ba(2, 1′) +Ar(1, 2)BK(2, 1′) (2.49)
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Applying Langreth’s rules to the Dyson equation equation (2.37) gives the following closed set of Dyson
equations on the real-time axis,

Gr/a = gr/a + gr/aΣr/aGr/a, (2.50)

GK = gK + grΣrGK + grΣKGa + gaΣaGa, (2.51)

where integration/summation over intermediate arguments is understood. It easy to show that the solution of
equation (2.51) is,

GK = (1 +GrΣr)gK(1 + ΣaGa) +GrΣKGa (2.52)

Thus we obtained a set of closed equations describing out-of-equilibrium states of quantum many-body systems.
Lastly, in electronic transport models, it is often convenient to work directly with the lesser and greater

Green’s functions directly. These Green’s functions functions obey relation similar to (2.52),

G< = (1 +GrΣr)g<(1 + ΣaGa) +GrΣ<Ga (2.53)

G> = (1 +GrΣr)g>(1 + ΣaGa) +GrΣ>Ga. (2.54)

In the case of an interacting system, the self-energy Σ is an infinite serie of one-particle irreducible diagrams
which, generally, can not be summed exactly. In the absence of interaction, and if the drive field Vp(t) is
quadratic in the electronic field operators, the self-energy is a finite sum of diagrams that can be computed
exactly. In that case, the Dyson equations can be solved exactly.

2.3 Application to scanning tunneling spectroscopy
In the previous sections, we presented the technical details of the Keldysh formalism and showed that the Dyson
equations could be solved exactly in the absence of interactions. Here, we apply the Keldysh NEGF technique
to describe electronic transport in a scanning tunneling spectroscopy (STS) experiment. In such an experiment,
a sample that has to be characterized is probed by a tip placed on top of it. Because of the quantum tunneling
effect, there is a finite probability for electrons to tunnel from the tip to the sample and vice-versa. In presence
of a bias voltage, a charge current flows between the tip and sample. By measuring this current as a function
of the applied voltage, one can extract the differential conductance, which, as we will show below, reflects the
spectral properties of the sample. Here we focus on STS experiments performed with normal metallic tips on
top of superconducting samples. Before applying the NEGF technique, we first have to define Hamiltonian
modeling for the STS experiment. This is the aim of the next subsection.

2.3.1 Theoretical modeling
First, it is important to stress that we are interested in biases, eV ∼ ∆0 with ∆0 the superconducting energy gap
in the sample, which is typically much smaller than the Fermi energy. Therefore, the relevant energy interval
for the transport properties, which we are interested in, is a narrow energy range around the Fermi energy.
Consequently, for our purpose, it is enough to work with a simplified low-energy model describing the tip, the
sample, and their coupling. For the sake of simplicity, we assume that the metallic tip and the normal-state
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sample have a single-conduction band crossing the Fermi level. Hence focusing on the low-energy physics
around the Fermi energy, we neglect orbital and/or band degrees of freedom. For the sake of simplicity, we
describe the STS junction as a tunneling junction connecting the single site at the apex of the tip ( denoted
ra) to the nearest site of the superconducting sample (denoted r0). Since the tunneling probability decreases
with the distance between the sites, this tunneling path is expected to be dominant, and it seems legitimate to
neglect other tunneling paths. Thus, the STS set-up is conveniently described by the following microscopic
Hamiltonian,

H = HS +HT + t
∑
σ

[
c†Tσ(ra)cSσ(r0) + c†Sσ(r0)cTσ(ra)

]
− µT N̂T − µSN̂S , (2.55)

where cTσ(r), cSσ(r) respectively annihilates an electron of spin σ at position r in the tip and sample.
HS , and HT are respectively the Hamiltonian describing the isolated sample and tip. N̂T , N̂S are, respec-
tively, the particle number operators in the tip and sample. µT , µS are respectively the electrostatic potential of
the tip and sample, and their difference account for the voltage bias applied to the STS junction, µT = µS+eV .
For convenience, we measure the single-particle energies with respect to µS , hence µS = 0. Lastly, t is the
hopping amplitude between the tip and sample, which, without loss of generality, is chosen real.

Remembering that the relevant energies for transport properties lie in a narrow window around the Fermi
energy, it seems legitimate to use low-energy effective continuum models to describe the tip and sample. Thus,
without loss of generality, the superconducting sample is conveniently described by the following BdG Hamil-
tonian,

HS =
1

2

∫
drψ†

S(r)ĤS(r)ψS(r), (2.56)

ĤS(r) =

[
ĥS(r) ∆̂(r)

∆̂†(r) −σyĥ∗S(r)σy

]
, (2.57)

where we defined the Nambu-spinor ψ†
S(r) = [c†S↑(r), c

†
S↓(r), cS↓(r),−c

†
S↑(r)], ĥS(r) describes the normal

metallic state, and ∆̂(r) describes the pairing potential. Note that (2.56) is not necessarily uniform and can
incorporate scattering potentials due to impurities. The precise geometry of the tip is not relevant in the low-
energy range we are interested in. Hence, neglecting geometrical effects, we describe the tip as a bulk metal,

HT =
∑
σ

∫
dk

(2π)d
ϵT (k)c

†
σT (k)cσT (k), (2.58)

with d the dimension of the tip, cσT (k) =
∫
dre−ik.rcσT (r) the operator annihilating an electron of the tip

with spin σ and momentum ℏk, ϵT (k) the energy-dispersion of the metallic tip. Because the tip is coupled to
the superconducting sample, we find it convenient to recast H in a BdG form,

H =
1

2

∫
drψ†

S(r)ĤS(r)ψS(r) +
1

2

∫
dk

(2π)d
ψ†
T (k) [ϵT (k)− eV ] τzψT (k) (2.59)

+
t

2
ψ†
T (ra)τzψS(r0) + h.c.
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We can now study electronic transport through the STS junction. We define the electronic current operator
through the STS junction Î(τ) = −edN̂T (τ)

dτ , with N̂T (τ) the particle number operator in the tip at time τ in
the Heisenberg representation. Within our model (2.59), Î(τ),

Î(τ) =
iet

2ℏ
[ψ†

T (ra, τ)ψS(r0, τ)− ψ†
S(r0, τ)ψT (ra, τ)]. (2.60)

In the steady-state regime, its average value ⟨Î(τ)⟩ is time-independent and,

I = ⟨Î(τ)⟩ = iet

2ℏ
[⟨ψ†

T (ra, τ)ψS(r0, τ)⟩ − ⟨ψ†
S(r0, τ)ψT (ra, τ)⟩], (2.61)

where ⟨...⟩ denotes the average value over non-equilibrium states of operators evolving with respect to the
Hamiltonian H.

To evaluate these non-equilibrium expectation values, it is convenient to use the Keldysh NEGF introduced
in the previous sections of this chapter. It is obvious to show that,

I =
et

ℏ
∑
σ

ℏ{G<
ST,σσ(r0τ, raτ

′)−G<
TS,σσ(ra, τ ; r0, τ)} = 2etRe

{
G<

ST,σσ(r0τ, raτ
′)
}
, (2.62)

where G<
αβ,σσ′(r, τ ; r′, τ ′) = −⟨Tc[cασ(r, τ+)cασ(r′, τ ′−)]⟩ is the lesser component of the electronic NEGF

on the Keldysh contour, Gc
αβ,σσ′(r, z; r′, z′) = −⟨Tc[cασ(r, z)cασ(r′, z′)]⟩. The indices α = S, T and β =

S, T indicates the sample or tip. In order to compute the Green’s functions entering I we consider the coupling
between the tip and sample as a perturbation and split the Hamiltonian H into an unperturbed Hamiltonian H0

a perturbation V̂p,

H = H0 + V̂p,

with H0 =
1

2

∫
drψ†

S(r)ĤS(r)ψS(r) +
1

2

∫
dk

(2π)d
ψ†
T (k) [ϵT (k)− eV ] τzψT (k), (2.63)

and V̂p =
t

2
ψ†
T (ra)τzψS(r0) + h.c. (2.64)

Then we can use the results of the previous sections and use the perturbative technique on the Keldysh contour.

2.3.2 Superconducting NEGF and their Dyson equations

Because of the pairing potential ∆̂(r) in the superconducting sample, it is easy to realize that the anomalous
Green’s function −i⟨Tc[cασ(r, z)cβσ(r′, z′)]⟩ are not necessarily vanishing and couple to the normal Green’s
function Gc

αβ,σσ′(r, z; r′, z′). An elegant way to circumvent this problem is to treat electrons and holes on an
equal footing and define the superconducting contour-ordered Green’s functions Ĝc

αβ , as well as their unper-
turbed counterpart ĝcαβ ,

Ĝc
αβ(r, z; r

′, z′) = − i

ℏ
⟨Tcψ†

α(r, z)⊗ ψβ(r
′, z′)⟩, (2.65)

ĝcαβ(r, z; r
′, z′) = − i

ℏ
⟨Tcψ†

α(r, z)⊗ ψβ(r
′, z′)⟩0, (2.66)
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where theˆsymbol indicates that these functions are 4× 4 matrices in the particle-hole⊗spin space, and α, β ∈
{S, T} indicates the sub-system where the Nambu field acts. We recall that the notation ⟨...⟩0, defined by
equation (2.34) indicates equilibrium average with respect to ρ̂0 = e−βH0/Tr

{
e−βH0

}
of operators evolving

with respect to H0. Since the tip and sample are not coupled by the unperturbed Hamiltonian,

ĝcαβ(r, z; r
′, z′) = δα,β ĝ

c
αα(r, z; r

′, z′) ≡ δα,β ĝ
c
α(r, z; r

′, z′) (2.67)

Using the perturbation technique ( or alternatively the equation of motion), it is straightforward to show
that Ĝc satisfies the following Dyson equations,

Ĝc
αβ(r, z; r

′, z′) =ĝcαβ(r, z; r
′, z′) + t

∫
c
dz1ĝ

c
αγ(r, z; rγ , z1).τz.Ĝ

c
γβ(rγ , z1; r

′, z′), γ ̸= α, (2.68)

with rγ = r0 if γ = S and rγ = ra if γ = T . (2.68) is a closed set of equations allowing one to determine
exactly Ĝc

αβ(r, z; r
′, z′) given the unperturbed Green’s functions ĝcαβ(r, z; r

′, z′).

2.3.3 Exact expression of the average current I
Let us now come back to the expression of the electronic current. With our definition of the Green’s functions,
it is easy to show that I can be written as

I = etRe
{
Tr
{
Ĝ<

ST (r0, τ ; ra, τ))(τz + τ0)
}}

, (2.69)

and only depends on Ĝ<
ST (r0, τ ; ra, τ). Therefore, for our purpose, it is not necessary to solve the whole set

of Dyson equations on the real-time contour, and as we show below, to compute I , it is enough to focus on a
reduced set of equations.

First, because H is time-independent, the real-time Green’s functions depend only on the relative time
difference, i.e. Ĝγ

αβ(r, τ ; r
′, τ ′) = Ĝγ

αβ(r, r
′, τ − τ ′), with γ ∈ {r, a,K,>,<}. Hence, it is convenient to use

the Fourier transform of Green’s functions,

Ĝγ
αβ(r, r

′, ω) =

∫
dτe

i
ℏωτ Ĝγ

αβ(r, r
′, τ), (2.70)

with γ ∈ {r, a,K,>,<}. Moreover, as we are interested in the expression of I we can restrict our attention
to the set of Green’s functions Ĝr/a/<

αβ (rα, t; rβ, t
′) and omit the spatial arguments hereinafter. Applying

Langreth’s rules to (2.68), it is straightforward to obtain the minimal set of equations determining the current,

Ĝ<
ST (ω) = t

[
Ĝ<

SS(ω)τzg
a
T (ω) + Ĝr

SS(ω)τzg
<
T (ω)

]
, (2.71)

Ĝ
r/a
SS (ω) = g

r/a
S (ω) + t2g

r/a
S (ω)τzg

r/a
T (ω)τzĜ

r/a
SS (ω), (2.72)

Ĝ<
SS(ω) = g<S (ω) + t2{g<S (ω)τzg

a
T (ω)τzĜ

a
SS(ω) (2.73)

+ grS(ω)τzg
a
<(ω)τzĜ

a
SS(ω) + grS(ω)τzg

r
T (ω)τzĜ

<
SS(ω)}. (2.74)

Thus, to determine the current, we only need the six unperturbed local Green’s functions, gr/a/<S (ω) and
g
r/a/<
T (ω). Noticing that, Ĝr

αβ(ω) = [Ĝa
βα(ω)]

†, we have the relations grS/T (ω) = [gaS/T (ω)]
†. Additionally,

the unperturbed tip and sample are in thermodynamic equilibrium, in the grand-canonical ensemble, at their
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respective chemical potential, µT , and µS . Therefore, the unperturbed Green’s functions satisfy the so-called
fluctuation-dissipation theorem,

g<S (ω) = f(ω) [gaS(ω)− grS(ω)] (2.75)

g<T (ω) = [gaT (ω)− grT (ω)] .f̂T (ω, eV ), (2.76)

with f̂T (ω, eV ) = f(ω − eV )
τ0 + τz

2
+ f(ω + eV )

τ0 − τz
2

, (2.77)

and f(ω) = 1/(1 + eβω) the Fermi-Dirac distribution. Consequently, once grT (ω) and grS(ω) specified, the
current I is completely determined.

In principle, grS(ω) and grT (ω) respectively depends on the Hamiltonians HS and HT . Nevertheless, re-
membering that we focus on a narrow energy window around the Fermi energy, it seems legitimate to neglect
the energy dependence of the density of states (DOS) of the tip. Thus, the Green’s functions of the uncoupled
metallic tip read,

grT (ω) = −iπνT τ0 ⊗ σ0, (2.78)

g<T (ω) = 2iπνTσ0 ⊗ f̂T (ω, eV ), (2.79)

with νT the DOS of the tip at the Fermi level. Within this wide-band approximation, the metallic tip is therefore
completely characterized by the single parameter νT . Injecting the previous equations into (2.71), (2.72) and
(2.73) we obtain,

I = −eΓ
2h

∫
dω Im

{
Tr
{
2Ĝr

SS(ω).f(ω − eV ).(τ0 + τz) + Ĝ<
SS(ω)(τ0 + τz)

}}
, (2.80)

Ĝr
SS(ω) = g

r/
S (ω)− i

Γ

2
grS(ω)Ĝ

r
SS(ω), (2.81)

Ĝ<
SS(ω) = g<S (ω) + i

Γ

2

[
g<S (ω)Ĝ

a
SS(ω) + 2grS(ω)f̂T (ω, eV )Ĝa

SS(ω)− grS(ω)Ĝ
<
SS(ω)

]
, (2.82)

with Γ = 2πνT t
2. Obviously, within our theoretical description, the current I is determined by the tunneling

rate Γ characterizing the STS junction and grS(ω), which locally characterize the spectral properties of the
sample. Therefore, the current I depends on the local spectral electronic properties of the sample encoded in
grS(ω), as we shall show in the next subsection.

2.3.4 Tunneling regime and linear-response
In the small tunneling rate limit Γ → 0, also known as the tunneling regime, it seems legitimate to expand
the current in powers of Γ and retain the lowest order term, the linear one. Following this procedure, it is
straightforward to show that the current becomes,

I ≃ −eΓ
2ℏ

∫
dω

2π
Im
{
Tr
{
2ĝrS(ω).f(ω − eV ).(τ0 + τz) + ĝ<S (ω)(τ0 + τz)

}}
≃ −eΓ

2ℏ

∫
dω

2π
Im{Tr{2ĝrS(ω).f(ω − eV ).(τ0 + τz)− 2ĝrS(ω)(τ0 + τz)f(ω)}}

≃ eΓ

ℏ

∫
dωρS(ω).[f(ω − eV )− f(ω)], (2.83)
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where we defined the local electronic density of states (LDOS) of the isolated sample

ρS(ω) = − 1

2π
Im{Tr{grS(ω)(τ0 + τz)}}. (2.84)

This result can also be derived from the Fermi golden rule or linear-response theory. Using equation (2.83) it is
straightforward to show that, in the tunneling regime, the differential conductance G = dI

dV is given by,

G =
e2Γ

ℏkBT

∫
dωρS(ω)

eβ(ω−eV )(
1 + eβ(ω−eV )

)2 ≃
T→0

e2Γ

ℏ
ρS(ω = eV ). (2.85)

Consequently, the differential conductance spectrum measured by STS at very low temperatures directly yields
the LDOS of the sample, provided that the experiment is performed in a tunneling regime. This result proves
that the STS technique is well-suited to study spectral electronic properties with good spatial and energy res-
olution. In practice, the energy resolution is limited by the experimental temperature. Indeed, the convolution
product of the LDOS with the Fermi-Dirac derivative in (2.85) broadens the LDOS. Note that this limitation
can, however, be circumvented if one uses a superconducting tip instead of a metallic one due to the sharp BCS
resonances [32].

2.3.5 Beyond the linear-response the BCS example
In the previous subsection, we show that the Keldysh NEGF technique reproduces the results of the linear
response theory in the tunneling regime. However, since the NEGF technique exactly describes non-equilibrium
states, it allows us to go beyond the tunneling limit and study non-linear effects. In this subsection, we illustrate
the efficiency of the Keldysh technique in the case of a clean BCS sample which allows for exact analytical
treatment. In that case, both the sample and the tip have a U(1) spin-rotation invariance. Hence it is convenient
to use the reduced BdG formalism and write,

H =

∫
dk

(2π)dS
ψ†
S(k) [ϵS(k)τz +∆τx]ψS(k) +

∫
dk

(2π)dT
ψ†
T (k)ϵT (k)τzψT (k) (2.86)

+tψ†
S(r0)ψT (ra) + h.c.,

with ψα(k) = [cα↑(k), c
†
α↓(k)]

T the Nambu spinor in the sub-system α, the operator annihilating an electron
of spin σ and momentum ℏk in the sub-system α, ψα(rα) =

∫
dk

(2π)dα
eik.rαψα(k) and dα the dimension of the

sub-system α. The sample is characterized by its dispersion relation ϵS(k) and the BCS gap ∆, which, without
loss of generality, is chosen as real and positive.

Because we work within the reduced BdG formalism, the contour-ordered superconducting Green’s func-
tions defined in (2.65) and (2.66) are, here, 2 × 2 matrices acting in the particle-hole space. It is easy to show
that this modified definition of the superconducting Green’s functions does not affect the Dyson equations and
that these reduced superconducting Green’s functions still obey (2.68). On the contrary, one can easily show
that the expression of the average current is modified by a factor 2:

I = 2
et

ℏ

∫
dω

2π
ReTr

{
G<

ST (ω)
}
. (2.87)
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Since the Dyson equations on the contour are unchanged, the current can be calculated thanks to the three
equations (2.71), (2.72), (2.73). The Green’s functions describing the isolated metallic tip are given by:

ĝrT (ω) = −iπνT τ0, (2.88)

ĝ<T (ω) = 2iπνT f̂T (ω, eV ), (2.89)

which corresponds to the projection of (2.88) and (2.89) on the spin-up sector. In order to evaluate the current,
we also need the local retarded Green’s function of the isolated sample ĝrS(ω). Using the equation of motion of
the Nambu spinor ψS(k), it is straightforward to show that1:

ĝrS(ω) =

∫
dk

(2π)dS
ω + ϵS(k)τz +∆τx
ω2 − ϵ2S(k)−∆2

=

∫
dϵν(ϵ)

ω + ϵτz +∆τx
ω2 − ϵ2 −∆2

, (2.90)

where in the last equality, we used the normal-state density of states of the BCS sample, ν(ϵ), and traded the
integral over momentum for an integral over energies. Recalling that the relevant energy range for transport
properties is a narrow energy window around the Fermi level. We can safely neglect the energy dependence
of ν(ϵ) and use the wide-band approximation: ν(ϵ) ≃ ν0 with ν0 the density of states at the Fermi energy.
Therefore, after straightforward algebra, one obtains:

ĝrS(ω) = −πν0
ω + iη +∆τx√
∆2 − (ω + iη)2

, (2.91)

with η a small phenomenological energy relaxation rate, accounting for the damping of quasiparticles due to
inelastic processes inside the BCS sample. Typical values for η in traditional BCS superconductors is η/∆ ∼
10−2 [73]. Thus, η can be viewed as the smallest energy scale of the problem and considered as zero.

Inserting the above-mentioned unperturbed Green’s functions into equations (2.71), (2.72), (2.73), one
obtains [28]:

I =
2e

h

∫
dωTN (ω) [f(ω − eV )− f(ω)] + 2RA(ω) [f(ω − eV )− f(ω + eV )] , (2.92)

with TN (ω) =


0 , if |ω| ≤ ∆

2α
α[1−∆2/ω2]+(2−α)

√
1−∆2/ω2[

α2+(2−α)
√

1−∆2/ω2
]2 , if |ω| ≥ ∆

, (2.93)

and RA(ω) =


α2

(2−α)2−4(1−α)ω2/∆2 , if |ω| ≤ ∆

α2[1−∆2/ω2]+(2−α)
√

1−∆2/ω2[
α2+(2−α)

√
1−∆2/ω2

]2 , if |ω| ≥ ∆
. (2.94)

Here α = 4t2π2νT ν0
[1+t2π2νT ν0]

2 is the normal-state transmission of the STM junction [28]. Let us now give a physical
interpretation of this expression. To do so, we inspect the elementary transmission processes that electrons can
undergo.

First, an occupied electron in the metallic tip at energy ω can be transmitted into unoccupied quasiparticle
states of the sample, transferring a charge equal to e across the junction, as illustrated in Fig. 2.5 (a). Occupied
quasiparticles in the sample undergo complementary processes transferring a charge −e across the junction.

1see the Supplementary Material of [30] for details
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Figure 2.5: Schematic representation of the normal transmission (a) and Andreev reflection (b) processes that
take place at the STM junction connecting the metallic tip to the superconducting sample. Notice that contrary
to Andreev reflections, which take place at any energy, normal transmission cannot occur at energies ω inside
the BCS gap, |ω| < ∆.

Such processes are nothing but normal transmissions that electrons undergo at the interface between normal
metals. Notice that these processes can not occur when |ω| < ∆, since no quasiparticles are available in this
energy range.

Second, due to the presence of a pair condensate in the superconducting sample, occupied electrons in the
metallic can be reflected into unoccupied hole states with opposite spin of the metallic tip, transferring a Cooper
pair into the condensate, as illustrated in Fig. 2.5 (b). Such a process, known as an Andreev reflection, transfers
a charge 2e across the sample. Holes undergo complementary processes. Such processes are present at any
energy.

Inspecting the occupation factors, one directly identifies the first term in (2.92) as the current produced
by normal transmissions and the second one as the current carried by Andreev reflections. Hence, TN (ω)

is nothing but the probability of normal transmission of electrons at energy ω and RA(ω) the probability of
Andreev reflections. Therefore, equation (2.92) simply tells us that current is the sum of the probabilities of
the different processes weighted by their corresponding charges. The factor 2 in (2.92) comes from the spin-
degeneracy.

In the zero-temperature limit, it is straightforward to show that (2.92) directly yields the differential con-
ductance G:

G(V ) =


4e2

h
α2

(2−α)2−4(1−α)(eV/∆)2
, if |eV | ≤ ∆,

4e2

h
α

α2+(2−α)
√

1−∆2/ω2
, if |eV | ≥ ∆.

(2.95)

This expression sharply contrasts with the results of the linear-response theory or tunneling theory that predicts
a conductance G(V ) proportional to the density of the BCS superconductor. Particularly, according to the
linear-response theory, G(V ) should vanish inside the BCS gap. This is due to the fact that Andreev reflections
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require the transfer of two charge carriers across the junction. Hence, their probability is ∝ α2 ∝ t4, which
cannot be captured by the linear response theory. It is also interesting to remark that for eV = ±∆, G(V )

is independent of the transmission α. As highlighted by J. C. Cuevas in his thesis [28], this result can not be
obtained by finite order perturbation theory with respect to tip-sample coupling and requires summing up all
processes up to infinite order. For example, the linear-response theory predicts a diverging conductance due
to the coherence peaks in the BCS density of states. Hence, the BCS example clearly shows that the Keldysh
theory is a powerful technique that allows one to describe quantum transport phenomena that are not accessible
by the standard linear-response, a.k.a tunneling theory.
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Chapter 3

Odd-frequency pairing around magnetic
impurities

The presence of magnetic impurities in a superconductor modifies the superconducting state of the substrate.
Hence, magnetic impurities can be used to engineer exotic superconducting phases that are originally absent
in the clean superconductor. In this chapter, we will show that a single classical spin immersed in a s-wave
superconductor locally breaks the time-reversal symmetry and locally induces unconventional s-wave spin-
triplet and odd-frequency pair correlations. This chapter is organized as follows: First, we briefly introduce the
concept of odd-frequency pairing. Second, after a brief historical review of the field, we discuss the well-known
spectral and spatial properties of the YSR states. Then, we explicitly compute the pairing functions at the YSR
core and show that the local electronic density of state, directly measured in STS experiments, is proportional
to the imaginary part of the odd-frequency pairing function. Using the former result, we propose a method
to extract the imaginary part of the odd-frequency pairing function from STS data. Finally, we illustrate our
method for STS data measured by G. C. Ménard, et al. at the Institut des Nanosciences de Paris. Our results
show experimental evidence of odd-frequency pairing around YSR states.

3.1 Introduction to odd-ω pairing
Pairing functions were originally introduced as the chronologically time-ordered anomalous Green’s functions,
fTσσ′,ab(r, t; r

′, t′) = −i
ℏ ⟨T [cσa(r, t)cσ′b(r

′, t′)]⟩, where a, b denote any orbital/band degree of freedom while
σ, σ′ are spin indices of the 2 fermions. Pairing functions describe how the electrons making up Cooper pairs
are correlated to each other. Because of the fermionic anti-commutation relation, any pairing function has to
fulfill the symmetry constraint,

fTσσ′,ab(r, t; r
′, t′) = −fTσ′σ,ba(r

′, t′; r, t). (3.1)

Introducing the spin, orbital, spatial coordinates and time coordinates permutation operator S, O, P ∗, and
T ∗, pairing functions must satisfied the relation SP ∗OT ∗fσσ′,ab(r, t; r

′, t′) = −fσσ′,ab(r, t; r
′, t′), which

is symbolically written SP ∗OT ∗ = −1 ([29]). This rule is often called the Berezinskii rule [74]. Since
S2 = O2 = (P ∗)2 = (T ∗)2 = 1, there exist 23 = 8 possible pairings, summarized in the 8-fold classification
of Table. 3.1. Odd-frequency (odd-ω) pairings refer to all possible pairings which are odd under time argument
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S P ∗ O T ∗ Total
-1 1 1 1 -1
1 -1 1 1 -1
1 1 1 -1 -1
-1 -1 1 -1 -1
1 1 -1 1 -1
-1 -1 -1 1 -1
-1 1 -1 -1 -1
1 -1 -1 -1 -1

Table 3.1: Berezinskii classification of the pairing function according to their symmetries properties (adapted
from [29]).

permutation T ∗. On the contrary, even-frequency pairing denotes any pairing function which is even under T ∗.
It is important to remark that the Berezinskii classification is based on the chronologically-ordered GF. It is
easy to show that the Matsubara pairing function fMσσ′,ab(r, τ ; r

′, τ ′) is subjected to the exact same Berezinskii
constraint than fTσσ′,ab(r, t; r

′, t′). However, the retarded and advanced pairing functions f rσσ′,ab(r, t; r
′, t′) and

faσσ′,ab(r, t; r
′, t′) obey a different constraint,

f rσσ′,ab(r, t; r
′, t′) = −faσ′σ,ba(r

′, t′; r, t). (3.2)

In conventional low-Tc BCS superconductors, the pairing function is spin-singlet, even under the exchange of
spatial coordinates and even under the exchange of time coordinates of the electrons, hence even-frequency.

Odd-ω pairing corresponds to non-local correlations in time, suggesting that electrons must avoid each
other in time as they are uncorrelated when their time coordinates are equal. This unconventional pairing
was first originally proposed by Berezinskii in 1974 [74], who suggested that the superfluid phase of He3 a
s-wave spin-triplet pairing state arises. In the early nineties, subsequent theoretical studies focused on intrinsic
odd-ω in superconductors and the underlying microscopic mechanisms. In 1992, Balatsky et al. proposed a
new class of spin-singlet odd-ω superconductors, enumerated their physical properties [75], and suggested that
the conventional electron-phonon interaction was sufficient to generate odd-ω. However, later studies showed
that renormalization effects prevent this [76, 77]. Instead, a generic spin- and frequency-dependent interaction
can produce odd-ω pairing states [76, 77]. Such spin-dependent terms might come from antiferromagnetic
interactions [76], and spin fluctuations mediated interaction was later proposed as a possible realization of
spin-singlet p-wave odd-ω pairing [78]. Odd-ω pairing can also appear in heavy fermion compounds described
by a Kondo lattice [79, 80, 81]. An exhaustive review of the possible scenarios realizing intrinsic odd-ω pairing
is beyond the scope of the present manuscript. The interested reader is invited to consult the excellent review
by J. Linder, and A. V. Balatsky [29].

After a less active period in the late nineties, the field boomed in 2001 when Bergeret et al. realized that
odd-ω could be engineered in heterostructures made of a conventional s-wave superconductor and a ferromag-
net [82, 83]. Oppositely to previous studies, here, the odd-ω pairing is not intrinsically present but originates
from the proximity effect of the ferromagnet converting spin-singlet Copper pairs to spin-triplet ones. Thanks
to this conversion, Cooper robustly propagates far away in the ferromagnetic, opening the exciting possibility
of achieving superconducting spintronics [84, 85]. In fact, odd-ω is rather ubiquitous in hybrid systems and
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appears in a wide range of systems as a result of a given symmetry breaking (see [29] and [86] for a compre-
hensive review). As an example, odd-ω pairing even occurs in the most simple hybrid system one can think of,
a junction between a ballistic metal and a conventional superconductor. Because the interface locally breaks
the spatial inversion symmetry, spin-singlet, even-ω, and s-wave Cooper pairs are converted into spin-singlet,
odd-ω, and p-wave ones. More recently, it was shown that Majorana zero modes in superconducting struc-
tures are inevitably accompanied by the presence of odd-ω pairings, establishing a strong relation between
them [87]. Nevertheless, there is not yet any direct, unambiguous evidence of odd-ω superconductivity, even if
spectroscopic signatures in the density of states were observed in Nb superconducting films coupled to Ho by
proximity effect [88].

In this chapter, we take a step forward in this direction. We focus on one of the simplest hybrid systems:
a single magnetic adatom immersed into a conventional s-wave spin-singlet superconductor. Because the im-
purity breaks both the time-reversal symmetry, it can convert s-wave spin-singlet Cooper pairs into s-wave
spin-triplet ones. Focusing on the local pairings at the impurity site, we will show that the locally broken time-
reversal symmetry efficiently converts s-wave spin-singlet Cooper pairs into s-wave spin-triplet, hence odd-ω,
ones. In addition, we will show that the odd-ω pairing is tightly linked to the existence of superconducting
sub-gap states known as Yu-Shiba-Rusinov (YSR) states. Finally, we will establish a proportionality relation
between the local density of states measured by STS experiments and the odd-ω pairing and provide experimen-
tal evidence for the existence of local odd-ω superconductivity. Before investigating odd-ω around magnetic
impurities, we briefly review the basic properties of magnetic impurities immersed in BCS superconductors.

3.2 Magnetic impurities and Yu-Shiba-Rusinov (YSR) states

3.2.1 A brief historical overview
Soon after the advent of the BCS theory, Anderson showed its famous theorem stipulating that time-reversal
symmetric perturbation does not alter a conventional BCS superconductor [6]. Hence, scalar impurities im-
mersed in a superconductor do not produce any sub-gap states. This result suggests that on the contrary mag-
netic impurities which break the time-reversal symmetry may strongly affect the superconducting state. Indeed,
Abrikosov and Gor’kov early showed that a finite concentration of magnetic impurities in a BCS superconduc-
tor is responsible for a decrease in the BCS gap and critical temperature TC . Later on, L. Yu [8], H. Shiba [9],
and A. I. Rusinov [10] independently demonstrated that an isolated classical magnetic impurities is responsi-
ble for a Cooper pair breaking potential and gives rise to low-energy excited states, named Yu-Shiba-Rusinov
states, lying inside the excitation gap of the superconductor. In a nutshell, these states correspond to quasiparti-
cle excitations which are fully spin-polarized and localized around the impurity [8, 9, 10]. Since a single YSR
state is a coherent superposition of electron- and hole-like states, it manifests itself in the LDOS as a pair of
sub-gap peaks localized at opposite energy with respect to the Fermi level.

While their theoretical prediction dates back to the sixties, the experimental observation of YSR states
remained in its infancy until recently, mainly because of the high spatial and energy resolution, at temperatures
well below Tc, required. Thanks to the development of in vacuo preparation techniques, deposition of magnetic
ad-atoms and scanning tunneling microscopy/spectroscopy YSR were first observed in 1997 by Yazdani et al.
[11].

Since their prediction, our theoretical understanding of the YSR states progressed considerably. Follow-
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ing [8, 9, 10], many subsequent theoretical studies focused on classical spin model for the impurity (see [89]
for a review). These addressed various interesting features of YSR states, including their spectral properties
[8, 9, 10, 90, 39], the spatial extent of their wavefunctions [8, 9, 10, 18], and the renormalization of the super-
conducting gap [90, 91, 92] to list a few. Magnetic impurities were also proposed as a probe of the underlying
superconductor [93]. Complexities due to crystal field splitting [94, 91], spin-orbit coupling [95, 93] and, very
recently, Fermi surface anisotropy also received attention [19, 96]. Theoretical investigations also predicted the
coupling of two impurities long before their experimental investigations [97, 98, 99, 92]. More recently, these
theoretical investigations were expanded to the coupling of multiple impurities in 1D chains. The hybridization
between YSR states leads to the formation of early predicted Shiba bands [9]. Majorana zero modes were pre-
dicted in chains of magnetic atoms with ferromagnetic [12, 100, 101, 102] and spiral [103, 104, 105, 106, 107]
magnetic order, as a result of the proximity induced p-wave superconductivity inside Shiba bands. It was also
proposed to engineer 2D p-wave topological superconducting phases thanks to 2D arrays of magnetic impurities
[108, 109].

It is important to stress that, all the previous results, obtained with classical spin models, are only valid
when the quantum dynamics of the impurity can be neglected, i.e., when Simp ≫ ℏ or in the presence of strong
magnetic anisotropy. Despite some early attempts using analytical methods, most of the studies focusing on
quantum impurity models appeared later because they require much more demanding calculations. Different
techniques were employed to tackle quantum models, such as mean-field approximations [110], perturbation
theory [111, 112], or numerical renormalization group theory [113, 114, 115, 116], giving valuable insights into
spectral properties around single impurities. Very recently, a simplified model based on the zero-bandwidth
approximation for the superconductor was proposed and showed good qualitative agreement with previous
results obtained via the numerical renormalization group. This simplified model already provided valuable
insights into the spectral properties of single impurities, dimers, and chains of quantum impurities with reduced
computational efforts [117, 118, 119].

Since this thesis focuses on the original YSR model of classical magnetic impurities [8, 9, 10], we do not
discuss the results of quantum models, which are reviewed in [89].

Motivated by the improved resolution of STM/STS techniques and the aspects in connection with topolog-
ical superconductors, the experimental characterization of YSR states experienced a renewed interest during
the last decades and remains an active field of research (see [17] for a detailed review of the field). A decade
after the pioneering experiment of Yazdani et al. [11], experiments at lower temperatures and the use of super-
conducting tips allowed a better energy resolution of YSR states, [120, 121, 122, 123, 32]. Before assembling
them in more complex structures, a detailed understanding of the properties of single YSR state is necessary.
That’s why several groups focused on resolving the spatial decay of the YSR wavefunction, and its peculiarities
[124, 125, 18], the orbital character of YSR multiplets [124, 125], or the tunneling processes into YSR states
[32, 126]. The proposal of building topological superconductors from YSR chains pushed the field even further.
Experimental characterization of YSR dimers [127, 128, 129] yields a better understanding of the interaction
between impurities. Very recently, the realization of YSR chains reported features suggesting the existence of
Majorana edge modes [130].

In the next subsection, we focus on the classical model for isolated magnetic impurities originally intro-
duced by L. Yu, H. Shiba, and A. I. Rusinov [8, 9, 10], following the method proposed by L. Yu and A. I.
Rusinov, we show the existence of the YSR states and discuss some of their spectral and spatial properties.
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3.2.2 The Yu-Shiba-Rusinov model
Let us consider a single isolated magnetic impurity with spin Simp immersed in a conventional s-wave su-
perconductor. Following [8, 9, 10], we assume that the spin of the magnetic impurity is large, Simp ≫ ℏ,
or is subjected to a strong magnetic anisotropy. It is thus legitimate to neglect the quantum fluctuations of the
impurity spin and to replace it with a classical magnetic moment. For simplicity, we also assume that the super-
conducting substrate is a single-band superconductor. Finally, we consider a point-like impurity corresponding
to Dirac’s delta scattering potential in real space. Consequently, the Hamiltonian of the system reads,

HYSR =

∫ ∑
σ

c†Sσ(r)[εS(k)− µ]cSσ +∆[c†S↑(r)c
†
S↓(r) + cS↓(r)cS↑(r)]dr (3.3)

+
∑
σ,σ′

cSσ(rimp)[−Jσ.
Simp

|Simp|
+ Uδσ,σ′ ]cSσ′(rimp),

where cS,σ(r) annihilates an electron of spin σ at the position r in the superconducting substrate. ∆ is the
BCS gap of the host material, which, without loss of generality, we assume to be real. εS(k) is the energy
dispersion of the normal electrons in the superconductor, ℏk ≡ −iℏ∇r the momentum operator. The electrons
are coupled to the impurity spin Simp by a magnetic exchange of strength J and a normal scattering term of
strength U .

In the absence of the impurity, the Hamiltonian of the clean superconductor is invariant under spatial trans-
lations and SU(2) spin-rotation. Thus, without loss of generality we can choose rimp = 0 and Simp = Sez to
point in the ez direction. Note that changing the sign of J is equivalent to exchanging the ↑ and ↓ spins. Hence,
without loss of generality, we can focus on the case of ferromagnetic coupling and assume J > 0. One can
easily notice that the HYSR enjoys a U(1) spin rotation symmetry along the impurity axis. Therefore, we use
the reduced BdG formalism,

HYSR =

∫
drψ†

S(r){[εS(k)− µ]τz +∆τx − δ(r − rimp)[−Jτ0 + Uτz]}ψS(r), (3.4)

=

∫
drψ†

S(r)ĤYSR(r)ψS(r), (3.5)

where ψS = (c↑(r), c
†
↓(r))

T .
In the next subsection, we show that, because the magnetic exchange induced by the impurity acts as a pair

breaking potential, ĤYSR possesses an eigenstate with energy E0 inside the superconducting gap: the YSR
bound-state. Depending on the sign of E0, the YSR state describes an excited or (spontaneously) occupied
Bogoliubov quasiparticle.

3.2.3 YSR sub-gap state
The Yu-Shiba-Rusinov bound-state can be found by the Green’s function method, as Shiba did in its seminal
paper, or by solving the Schrödinger equation governing the dynamics of the Nambu spinor. Here we chose to
use the second method and seek for the eigenstates ϕ(r) of ĤY SR with energy E inside the gap,

ĤYSR(r)ϕ(r) = Eϕ(r), (3.6)
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with |E| < ∆. Since the single-particle Hamiltonian ĤYSR is real, we can impose the eigenstates to be real
ϕ(r) ∈ R2 . After a Fourier transformation (3.6) reads

{(ϵ(k)− µ)τz +∆τx − Eτ0}ϕ(k) = −(−Jτ0 + Uτz)ϕ(r = 0) (3.7)

,⇒ ϕ(k) =
E + ξ(k)τz +∆τx
E2 − ξ(k)2 −∆2

(Uτz − Jτ0)ϕ(0), (3.8)

where ϕ(k) =
∫
dre−k.rϕ(r) and ξ(k) = ϵ(k)− µ. Therefore, integrating (3.8) over k, one obtains a closed

equation for ϕ(0),

ϕ(0) =

∫
dk

2πd
E + ξ(k)τz +∆τx
E2 − ξ(k)2 −∆2

(Uτz − Jτ0)ϕ(0), (3.9)

with d the dimension of the superconducting substrate. This equation possesses nontrivial solutions if and only
if

det

{
τ0 −

∫
dk

2πd
E + ξ(k)τz +∆τx
E2 − ξ(k)2 −∆2

(Uτz − Jτ0)

}
= 0. (3.10)

Then we trade the integral over momentum for an integral over energies:

det

{
τ0 −

∫ ∞

−µ
dξν(ξ)

E + ξτz +∆τx
E2 − ξ2 −∆2

(Uτz − Jτ0)

}
= 0. (3.11)

We stress that we are interested in energies |E| < ∆. Moreover, for usual BCS superconductors, ∆ is much
smaller than the Fermi energy, µ. Hence, we can safely assume ν(ξ) varies slowly on the energy scale ∆

around the Fermi level (i.e. ξ = 0), use the wide-band approximation: ν(ξ) ≃ ν(0) ≡ ν0, and send the
integration limits to infinity. With these approximations, the integral can be performed analytically and yields
the characteristic equation:

det

{
τ0 + πν0

E +∆τx√
∆2 − E2

(Uτz − Jτ0)

}
= 0, (3.12)

This equation has a single solution inside the gap:

E0 = ∆
1− α2 + β2√

4α2 + (1− α2 + β2)2
, (3.13)

with α ≡ πν0J , and β ≡ πν0U . E0 is the energy of the YSR bound-state. With E0 in hand, the associated
wavefunction ϕ0(r) is easily found. Using (3.9) we find,

u(0)

v(0)
=

(
1 + (α+ β)2

1 + (α− β)2

)1/2

. (3.14)

Imposing the normalization condition,
∫

dk
(2π)d

ϕ0(k)
†ϕ0(k) = 1, we obtain,

ϕ0(0) =

√
2πν0∆α(

4α2 + (1 + β2 + α2)2
)3/4

√1 + (β + α)2√
1 + (β − α)2

 . (3.15)
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Following Rusinov [10], we introduce the scattering phases δ±, defined by:

tan δ± ≡ β ± α, (3.16)

and finally obtain:

E0 = ∆
√

cos(δ+ − δ−), ϕ0(0) =

[
cos δ−

cos δ+

]√
2πν0∆α cos δ+ cos δ−. (3.17)

Therefore, injecting (3.15) into (3.8), and performing a Fourier transform, we obtain the complete spatial de-
pendence of the YSR wavefunction,

ϕ0(r) =

∫
dk

(2π)d
eik.r

E0 + ξ(k)τz +∆τx
E2

0 − ξ(k)2 −∆2
(Uτz − Jτ0).ϕ0(0). (3.18)

Consequently, to obtain the wavefunction in real space, we need to compute the two integrals:

f0(r) =

∫
dk

(2π)d
eik.r

1

E2
0 − ξ(k)2 −∆2

, f1(r) =

∫
dk

(2π)d
eik.r

ξ(k)

E2
0 − ξ(k)2 −∆2

(3.19)

These integrals can not be performed analytically exactly. Nevertheless, in the case of an isotropic dispersion,
their asymptotic limit when kF r ≫ 1 can be obtained analytically, with kF the Fermi wavevector and r = |r|.
The results depend on the dimensionality of the superconductor. In 3D, one obtains,

f0(r) =
−πν0√
∆2 − E2

0

exp{−kSr} sin kF r
kF r

, f1(r) = πν0
exp{−kSr} cos kF r

kF r
, (3.20)

with, kS ≡
√
∆2 − E2

0/(ℏvF ) = ∆| sin(δ+ − δ−)|/(ℏvF ), and vF the Fermi velocity. Hence, in 3D the YSR
wavefunction reads,

ϕ0,3D(r) ≃
[
sin(kF r + δ−)
sin(kF r + δ+)

]√
2πν0α cos δ− cos δ+

exp{−r/ξ| sin(δ+ − δ−)|}
kF r

, (3.21)

with ξ = ℏvF
∆ the coherence length of the superconductor. This result was obtained early by Rusinov in its

original article [10]. In the case of a 2D superconducting substrate, the integrals read:

f0(r) =
−πν0√
∆2 − E2

0

√
2

πkF r
cos
(
kF r −

π

4

)
exp{−kSr}, (3.22)

f1(r) = πν0

√
2

πkF r
sin
(
kF r −

π

4

)
exp{−kSr}. (3.23)

Therefore, the YSR wavefunction in 2D reads,

ϕ0,2D(r) ≃
[
sin
(
kF r +

π
4 − δ−

)
sin
(
kF r +

π
4 − δ+

)]√4ν0∆cos δ− cos δ+

kF r
exp
{
−r/ξ| sin

(
δ+ − δ−

)
|
}
. (3.24)

Contrary to the 3D case, the latter result was obtained recently by Guissart et al. [18, 131]. We remark
that, both in the 3D and 2D cases, the YSR wavefunction is localized around the impurity on a typical length
ξS = ℏvF√

∆2−E2
0

. However, the decay of the YSR wavefunction depends on the dimensionality of the host

superconductor. In 3D the wavefunction decays as 1
r , while in 2D, it decays as 1√

r
. Finally, the electronic and

hole components of the wavefunction oscillate with kF r but with different phase factors, δ±. Interestingly, the
relative phase δ+ − δ− is directly related to E0/∆ by the relation: E0/∆ = cos(δ+ − δ−).
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3.2.4 Physical interpretation
The formation of YSR states has a rather clear physical interpretation: The magnetic exchange tends to align the
spin of the electrons of Cooper pairs, hence decreasing their binding energy. The magnetic exchange, therefore,
acts as pair-breaking potential, which is the origin of the YSR bound-state. Let us now take a closer look at
the evolution of the YSR energy E0 with the dimensionless parameter α characterizing the magnetic exchange.
For α = αc ≡

√
1 + β2, the YSR energy vanishes and its sign changes, as observed in Fig. 3.1 (a). Indeed,

E0 > 0 when αc > α > 0, while E0 < 0 for higher magnetic exchange α > αc.
This sign inversion has profound physical consequences and signals the existence of a quantum phase

transition at α = αc. While the YSR bound-state has no dramatic effects on the superconducting groundstate
when α < αc, for higher values of α > αc, the system is unstable against spontaneous creation of a local
quasiparticle excitation in the YSR state. As a result, the superconductor undergoes a quantum transition which
corresponds to a change in the parity and spin polarization of the groundstate.

To explicitly show it let us write the many-body Hamiltonian HYSR in its diagonal form:

HYSR = E0a
†
0a0 +

∑
|En|≥∆

Ena
†
nan, (3.25)

Figure 3.1: Energy of the YSR state and many-body spectrum. (a): Energy of the YSR state E0/∆ as a
function of α/αc for β = 0. E0 vanishes at α = αc, and its sign changes, signaling a change in the many-body
groundstate of the system, i.e., a quantum phase transition. (b): Many-body-spectrum of the superconducting
electrons in presence of a classical magnetic impurity. Energies are measured with respect to the groundstate
energy EGS. The exchange coupling with the impurity J reduces the binding energy of Cooper pairs and
generates a low-lying state in the superconducting excitation gap. For α < αc the groundstate is unpolarized,
Sz = 0, and has even fermion parity. Adding a quasiparticle in the YSR state transfer the groundstate into
the first excited state, which has Sz = ℏ/2 and odd fermion parity. At α = αc, a quantum phase transition
occurs: the groundstate and first-excited state exchange their role. Higher energy states lie in the quasiparticle
continuum with energies E > EGS +∆.
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with a0 =
∫
drϕ†0(r)ψ(r) the operator annihilating a fermionic quasiparticle with energy E0 and spin ℏ/2 in

the YSR state, and an =
∫
drϕ†n(r)ψ(r) the operator annihilating a quasiparticle in the state ϕn, with energy

En outside the superconducting gap ,|En| > ∆, and wavefunction ϕn(r). From (3.25), it is obvious that the
groundstate of the system depends on the sign of E0. We stress that the many-body eigenstates of HYSR have
well-defined fermionic parity and spin projection along the z-axis (Sz) since these quantities are conserved by
HYSR.

Let us first focus on the case α < αc. In that case, the magnetic exchange is not strong enough to effectively
bind an electron and E0 > 0. Therefore, the YSR state is an excited state that is unoccupied in the groundstate
|g⟩. In that case, the first excited state, |e⟩ of the system corresponds to the occupied YSR state: |e⟩ = a†0 |g⟩.
Because there is no quantum phase transition for α < αc, the groundstate |g⟩ has the same spin projection Sz
and fermionic parity as the BCS groundstate. Therefore, |g⟩ has Sz = 0 and even fermion parity. Since the
YSR state is ↑-polarized along the z-axis, |e⟩ corresponds to Sz = ℏ/2, and odd fermion parity.

On the other hand, when α > αc, the YSR energy E0 decreases below the Fermi level, and the impurity
effectively binds an electron. In this case, the YSR state is occupied in the groundstate |g′⟩. Therefore, a
quantum phase transition occurs at the critical point αc, and the first-excited state and the groundstate exchange
their role: |e′⟩ = |g⟩ and |g′⟩ = |e⟩. Hence, the groundstate now corresponds to odd fermionic parity and
Sz = ℏ/2, while the excited state now corresponds to even fermionic parity and Sz = 0. All these results are
schematized in Fig. 3.1 (b).

Because the YSR state possesses electron and hole components, it manifests itself in STS experiments
performed in the tunneling regime as narrow conductance peaks. Indeed, we have already shown that the

Figure 3.2: Experimental observation of YSR within STS/STM experiments. (a): Experimental conductance
map taken at −0.13 meV. The a and b lines indicate the crystallographic axes of 2H–NbSe2, whereas the a∗

and b∗ lines indicate the directions in the reciprocal space. (b): Characteristic experimental spectra taken on
top of the impurity (red solid line), on the right branch, 4 nm from the center of the impurity (green solid line),
and far from the impurity (blue solid line). (c): Spatial and energy evolution of the experimental tunneling
conductance spectra, dI/dV (x, V ) along one branch of the star. The left side of the figure corresponds to the
center of the star and the right side to the top-right corner of the scanning area. The color conductance scale is
the same as that used in (a). (d): Conductance profiles of the electron- and hole-like YSR states as a function
of the distance to the impurity along the same line as for (c). Figure reproduced from [18].
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differential conductance measured by STS performed in the tunneling regime is proportional to the local elec-
tronic density of states (LDOS), ρ(ra, ω = eV ), at the position of the tip apex ra. Because the YSR state is the
only quasiparticle state lying inside the superconducting gap, for |ω| < ∆, the LDOS of the superconducting
electrons reads:

ρ(r, ω) = u2(r)δ(ω − E0) + v2(r)δ(ω + E0), |ω| < ∆. (3.26)

Here, u(r) and v(r) are the electron and hole component of the YSR wavefunction ϕ0, respectively. In other
words, ϕ0(r) = [u(r), v(r)]T . Therefore, G(eV = E0) ∝ u2(ra), while G(eV = −E0) ∝ v2(ra), and the
YSR state is manifested as two sub-gap conductance peaks as observed in Fig. 3.2 (b). Moreover, the spatial
decay and oscillations of the electron and hole-like component can be observed within STM experiments by
measuring the conductance tomography taken at eV = E0,−E0 respectively, as shown in Fig. 3.2 (c) and (d).
Fig. 3.2 (d) shows the out-of-phase nature of the oscillations of the electron and hole components, in agreement
with the theoretical predictions of Subsection. 3.2.3.

Lastly, we stress that the height asymmetry of the conductance peaks observed in Figs. 3.2 (b), (c) and (d)
is due to the dimensionless parameter β. Indeed, when β = 0, u20(0) = v20(0), and the conductance peaks,
measured on top of the impurity, are symmetric. On the contrary, when β > 0, u20(0) > v20(0) and the peak at
E0 is the most pronounced, while when β > 0, u20(0) < v20(0) and the peak at −E0 is the most pronounced.

3.3 Observation of odd-ω pairing around magnetic impurities in
a superconductor

In this section, we show that a single magnetic impurity converts even-frequency spin-singlet Cooper pairs to
spin-triplet odd-frequency ones. This conversion is a consequence of the time-reversal symmetry breaking at
the impurity site and is thus strongly linked to the existence of the YSR bound-state. Indeed, we will show
that an odd-frequency pairing function is generated as soon as a YSR state exists inside the gap. Second, we
demonstrate that the imaginary part of the odd-ω pairing is proportional to the even-ω component of the LDOS
at the impurity site. Finally, by approximating the YSR resonances by Lorentzian functions, we can estimate
the proportionality coefficient from the LDOS. Since the LDOS is directly measured in STS experiments, it
provides a straightforward method to extract the imaginary part of the odd-ω pairing from STS data. We
illustrate our method on STS data measured by our collaborators G. C. Ménard, C. Brun, and T. Cren at the
Institut des Nanosciences de Paris. Our results, published in Physical Review Letters [30], indicate a significant
odd-ω pairing component generated by the magnetic impurity.

3.3.1 Coexistence of odd-ω pairing and YSR state
First, we investigate the properties of the pairing functions around an isolated magnetic impurity in a conven-
tional s-wave superconductor. To do so, we use a generalized Yu-Shiba-Rusinov model whose Hamiltonian
reads:

HY SR =

∫
drψ†

S(r)

[
ϵ(k)− µ ∆(r)
∆∗(r) −ϵ(k) + µ

]
ψS(r) (3.27)

+ ψ†
S(0)(Uτz − Jτ0)ψS(0),
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where ψ†
S(r) = [c†↑(r), c↓(r)], ϵ(k) is the energy dispersion of the normal state substrate, ℏk = −iℏ∇r the

momentum operator, and ∆(r) the pairing potential of the substrate. In principle ∆(r) might depend on r
because of the magnetic ad-atom which locally renormalizes the gap. Hereinafter we neglect renormalization
effects and spatial dependence of ∆(r), as it was not observed in the experimental data studied below. It implies
that we can always choose ∆(r) = ∆ to be a real positive number without loss of generality.

Within this model, the set of possible pairing functions is reduced. First, (3.27), is a single-band model,
therefore O = 1. Additionally, the model enjoys a U(1) spin rotation symmetry. Hence equal spin pairing
functions vanish. Finally, focusing on the local pairing functions at the impurity site, only P ∗ = 1 pairings are
non-zero. As a consequence, there are only two possible types of local pairing functions:

1. f r↑↓(ω) = fa↑↓(−ω),Even-ω; spin-singlet, (3.28)

2. f r↑↓(ω) = −fa↑↓(−ω),Odd-ω; spin-triplet. (3.29)

Where we omit the spatial indices for brevity, i.e. f r/aσσ′ (ω) ≡ f
r/a
σσ′ (r = 0, r′ = 0, ω) Therefore, it is convenient

to decompose f r↑,↓(ω) into even-ω (spin-singlet) feven(ω) and odd-ω (spin-triplet) fodd(ω) components.
Treating the coupling with the impurity as a perturbation, it is easy to show that the local retarded Green’s

function of the substrate at the impurity site, ĝrS(ω) ≡ ĝrS(r = 0, r′ = 0, ω) obeys the following Dyson
equation:

ĝrS(ω) = [(ĝr0(ω))
−1 − (Uτz − Jτ0 − iΛτ0)]

−1, (3.30)

where ĝr0(ω) is the local retarded Green’s function of the substrate in the absence of the impurity (also called the
bare one). Note that, following [132], we also introduced a phenomenological Dynes broadening Λ accounting
for quasiparticle relaxation. This broadening is essential if one wants to establish a direct link with experimental
data. The advanced Green’s function in Nambu space obeys the adjoint equation:

ĝaS(ω) = (ĝa0(ω))
−1 − (Uτz − Jτ0 + iΛτ0)]

−1. (3.31)

Because of our gauge choice, ∆ ∈ R, the bare Green’s functions satisfy, ga0(ω) = gr0(ω)
∗. Hence, (3.31) is

the complex conjugate of (3.30) and, in presence of the impurity, the perturbed Green’s functions still satisfy
gaS(ω) = grS(ω)

∗. It directly follows that equations (3.28) and (3.29) become:

1. f r↑↓(ω) = f r↑↓(−ω)∗,Even-ω; spin-singlet, (3.32)

2. f r↑↓(ω) = −f r↑↓(−ω)∗,Odd-ω; spin-triplet. (3.33)

Hence, f reven(ω) = 1
2 (f↑↓(ω) + f↑↓(−ω)∗) and f rodd(ω) = 1

2

(
f r↑↓(ω)− f r↑↓(−ω)∗

)
. A non-zero f rodd(ω)

component is thus a fingerprint of odd-ω superconductivity.
The longstanding difficulty in proving the existence of odd-ω superconductivity relies in extracting the

pairing functions from spectral quantities experimentally measurable. Here, the goal is to show that f rodd(ω)
can be extracted from the local density of states (LDOS) measured with scanning tunneling spectroscopy (STS)
on top of the impurity. For this purpose, we first remark that ĝrS(ω) can be written as:

ĝrS(ω) =

[
gr↑(ω) f r↑↓(ω)

f r↓↑(ω) −gr↓(−ω)∗
]
, (3.34)
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where grσ(ω) are the local components of the normal retarded Green’s functions describing the propagation
of electrons with spin σ. Notice that we also used the fact that grS(ω) is symmetric because of fermionic
anticommutation relations. To compute grS(ω), we only need ĝr0(ω) and to solve the Dyson equation, (3.30).
Similarly to ĝrS(ω) the bare superconducting Green’s function gr0(ω) can be written as:

ĝr0(ω) =

[
g0↑(ω) f0↑↓(ω)

f0↑↓(ω) −g0↓(−ω)∗
]
, (3.35)

with g0σ(ω) the (local component) of the normal electronic Green’s functions and f r↑↓(ω) the pairing function
in the absence of the impurity. Note that (3.35) is valid for any single-band superconducting substrate where
spin is locally a good quantum number. Most importantly, our results remain valid in the presence of Rashba
spin-orbit coupling (see the Supplementary Material of [30]). Since the clean superconducting substrate is a
conventional superconductor, the bare pairing function, f0↑↓(ω) is spin-singlet and even-ω. Inserting (3.35) into
(3.30) we obtain the following set of equations:

gr↑(ω) =
1

D(ω)
{g0↑(ω)− (J + U + iΛ)

(
[f0↑ (ω)]

2 + g0↓(−ω)∗g0↑(ω)
)
}, (3.36)

gr↓(−ω)∗ =
1

D(ω)
{g0↓(−ω)∗ + (J − U + iΛ)

(
[f0↑ (ω)]

2 + g0↓(−ω)∗g0↑(ω)
)
}, (3.37)

f r↑↓(ω) =
1

D(ω)
f0↑↓(ω), (3.38)

with D(ω) = det{τ0 − Σgr0(ω)}. Typical YSR states observed in STS experiments exhibit a narrow intrinsic
energy-width [32]. It thus seems legitimate to assume that the Dynes broadening Λ is the smallest energy scale
in our problem. In the limit Λ → 0 the previous set of equations becomes:

gr↑(ω) ≃
1

D(ω)
{g0↑(ω)− (J + U)

(
[f0↑ (ω)]

2 + g0↓(−ω)∗g0↑(ω)
)
}, (3.39)

gr↓(ω)
∗ ≃ 1

D(−ω)
{g0↓(ω)∗ + (J − U)

(
[f0↑ (ω)]

2 + g0↓(ω)
∗g0↑(−ω)

)
}, (3.40)

f r↑↓(ω) ≃
1

D(ω)
f0↑↓(ω), (3.41)

D(ω) ≃1− (J2 − U2)[f0↑↓(ω)
2 + g0↓(−ω)∗g0↑(ω)] + J

(
g0↑(ω)− g0↓(ω)

∗)− U
(
g0↑(ω) + g0↓(ω)

∗) (3.42)

− iΛ{2J [f0↑↓(ω)2 + g0↓(−ω)∗g0↑(ω)]− g0(ω) + g0↓(−ω)∗}+O(Λ2).

Note that it is necessary to keep the first order in Λ term in D(ω) because the zeroth order one can vanish,
introducing a divergence. Hereinafter, we focus on sub-gap energies, |ω| < ∆. Because of our gauge choice,
the bare Green’s functions gr0(ω) and ga0(ω) are real in this regime, and we obtain:

ρ(ω) =− 1

π
Im

{
1

D(ω)

}
{g0↑(ω)− (J + U)[f0↑↓(ω)

2 + g0↓(−ω)g0↑(ω)]} (3.43)

+
1

π
Im

{
1

D(−ω)

}
{g0↓(ω) + (J − U)[f0↑↓(ω)

2 + g0↓(ω)g
0
↑(−ω)]},

Im
{
f r↑↓
}
(ω) = Im

{
1

D(ω)

}
f0↑↓(ω), (3.44)
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with ρ(ω) the LDOS, which is defined as: ρ(ω) = − 1
π Im

{
gr↑(ω) + gr↓(ω)

}
. In the Λ → 0 limit, Im{grS(ω)}

are narrow peaks located at the sub-gap poles of [D0(ω)]
−1, denoted En, with D0(ω) ≡ D(ω)|Λ=0. En are the

energies of the spin-polarized YSR sub-gap states. The experimental data analyzed below show a single YSR
resonance; hence we assume that D0(ω) possesses a single sub-gap pole E0. Nevertheless, the results of this
paragraph remain valid in the case of multiple YSR resonances, as long as they are well-separated in energy.
Consequently, if the three functions, f0↑↓, g0↑(ω), and g0↓(ω) vary slowly around ±E0 on the typical energy scale
Λ it is legitimate to simplify (3.43) and (3.44) as:

ρ(ω) ≃− 1

π
Im

{
1

D(ω)

}
{g0↑(E0)− (J + U)[f0↑↓(E0)

2 + g0↓(−ω)g0↑(E0)]} (3.45)

− 1

π
Im

{
1

D(−ω)

}
{g0↓(E0) + (J − U)[f0↑↓(E0)

2 + g0↓(−E0)g
0
↑(E0)]},

Im
{
f r↑↓
}
(ω) ≃ Im

{
1

D(ω)

}
f0↑↓(E0). (3.46)

It is therefore straightforward to write the LDOS as a linear combination of odd/even-ω pairings:

ρ(ω) ≃ Ce(E0) Im{f reven(ω}) + Co(E0) Im{f rodd(ω)}, (3.47)

with, Ce(E0) =
2V A(E0)− g0↑(E0)− g0↓(−E0)

πf0↑↓(E0)
, (3.48)

Co(E0) =
2JA(E0)− g0↑(E0) + g0↓(−E0)

πf0↑↓(E0)
, (3.49)

We stress that counterintuitively, Im{f rodd(ω)} is an even function of ω while Im{f rodd(ω)} is odd. Hence, the
even and odd component of ρ(ω), ρeven(ω) =

ρ(ω)+ρ(−ω)
2 and ρodd(ω) =

ρ(ω)−ρ(−ω)
2 satisfy:

ρeven(ω) = Co(E0) Im{f rodd(ω)}, ρodd(ω) = Ce(E0) Im{f reven(ω)}. (3.50)

Thus, we demonstrated that ρeven(ω) is proportional to Im{fodd(ω)} for |ω| < ∆. The LDOS being
a positive quantity, the existence of YSR resonances directly implies a non-zero ρeven(ω) and hence a non-
zero odd-ω pairing. In principle, (3.50) allows to extract Im{fodd(ω)} from the LDOS measured in STS
experiments. However, to obtain quantitative results, reliable knowledge of Co(E0) is required. Co(E0) is
not universal and depends on the microscopic properties of the clean superconductor but also on the impurity
parameters J and U , which can not be directly measured. In the next paragraph, we first show that in the
wide-band limit Co(E0) has a simple expression that only involves the superconducting gap ∆ and the normal
DOS at the Fermi level, ν0, two quantities that are easily accessible. However, even within this limit, Co(E0) is
still not universal and depends on the impurity parameters. Second, we also test the validity of the assumption
used to derive (3.50).

Lastly, we stress that (3.50) has the strong physical implication that as soon as there is a YSR sub-
gap state, odd-ω pairing exists locally at the impurity site. Both the YSR state and odd-ω pairing are
consequences of the magnetic impurity locally breaking the time-reversal symmetry.
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3.3.2 Evaluation of Co(E0) in the wide band limit
The main difficulty preventing us from estimating Co(E0) is the exact knowledge of ĝr0(ω) inside the gap. The
local retarded Green’s function describing the clean BCS superconductor reads:

ĝr0(ω) =

∫
dk

(2π)d
ω −∆τx − ξ(k)τz
ω2 − ξ(k)2 −∆2

, with |ω| < ∆. (3.51)

Introducing ν(ξ), the DOS of the normal-state superconductor, we can tade the integral over momentum-space
for an integral over energy-space:

ĝr0(ω) =

∫ ∞

−µ
ν(ξ)

ω −∆τx − ξτz
ω2 − ξ2 −∆2

, with |ω| < ∆. (3.52)

In principle, ν(ξ) is energy-dependent and the former integral depends on the detailed energy dispersion of the
normal-state substrate. Nevertheless, for most physically relevant cases, the Fermi energy is the largest energy
scale, and the normal DOS can be approximated by its value at the Fermi energy ν0. Hence, the integral can be
performed exactly, and one obtains,

ĝr0(ω) = −πν0(ω +∆τx)√
∆2 − ω2

, with |ω| < ∆. (3.53)

Therefore, the coefficient Co(E0) adopts a rather simple expression,

Co(E0) = − 2

∆

{
E0 + πν0J

√
∆2 − E2

0

}
. (3.54)

We have already computed E0 in the wide band limit and found,

E0 = ∆
1− α2 + β2√

4α2 + (1− α2 + β2)2
, (3.55)

with α ≡ πν0J Using the analytical expression of gr0(ω), we can compute exactly grS(ω) via the Dyson
equation. Hence, we can also verify the validity of our result (3.50) in the wide-band limit. Indeed, (3.50)
was obtained assuming that the components of the bare Green’s function, gr0(ω) vary slowly around E0 the
energy of the YSR state on the typical energy scale Λ governing the width of the YSR resonances. To check
the validity of this assumption, we computed the exact LDOS ρ(ω) and the odd-frequency pairing f rodd(ω).
Then we compare the exact ρ(ω) with the one obtained from (3.50). We repeat this operation for several
sets of impurity parameters. The results, presented in Fig. 3.3 show that for moderate Dynes broadening,
Λ < ∆/10, our approximation is in quantitative agreement with the exact results, as long as the YSR energy
E0 is well-separated from the gap edges (|E0 ± ∆| ≫ Λ), even if the peaks merges (|E0| ∼ 0). The typical
value of the Dynes broadening in conventional superconductors being Λ ≃ ∆/102 (see for example [73]), our
approximation is applicable in most physically relevant cases. In addition, we stress that in the case of a single
YSR state lying inside the gap, (3.50) is valid inside the whole superconducting gap and not only in the vicinity
of the YSR peaks. Nevertheless, even if we proved the validity of (3.50), the use of the wide-band limit is not
enough to extract Co(E0) directly from STS experiments. Indeed, it still depends on the impurity parameters J
and U , which are not directly accessible. In the next paragraph, we show how we can circumvent this problem
and extract Co(E0) from the differential conductance spectrum measured in STS experiments and apply our
method to concretely extract Im{f rodd(ω)} from experimental STS data.
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Figure 3.3: Validity of (3.50). In each panels, the solid lines show the exact Im{f rodd(ω)}, while the dashed
lines correspond to ρeven(ω)/Co(E0). The color indicates the value of α as indicated in the legend. The
upper panels correspond to β = 0 and Λ = 0.01, 0.1, and 0.5 respectively for (a),(b), and (c). The bottom
panels correspond to β = 0.5 and Λ = 0.01, 0.1, and 0.5 respectively for (d),(e), and (f).One can observe the
quantitative agreement between the solid and dashed lines up to Λ = 0.1∆, indicating the validity of (3.50) for
moderate Dynes broadening Λ ≲ ∆/10.

3.3.3 Efficient protocol to extract the odd-ω pairing from scannig tunneling
spectrocopy (STS) data

Let us now provide an efficient protocol to extract Im{f rodd(ω)} from local measurements of the differential
conductance spectrum, G = dI/dV , performed in the tunneling regime. In the tunneling regime, we have
already shown that G(V ) is proportional to the LDOS convoluted with the derivative of the Fermi-Dirac dis-
tribution at the experimental temperature (see equation (2.83)). Consequently, after a proper deconvolution,
the differential conductance spectrum provides us with the LDOS, ρ(ω), in arbitrary units. Since ρ(ω) ≈ ν0,
when ω ≫ ∆, we can normalize the data to 1 in the high-voltage limit to obtain ρ(ω) in units of ν0. Once the
normalized LDOS in hand, it is straightforward to obtain its even component, ρeven(ω). However, to extract
Im{fodd(ω)} we need to evaluate Co(E0). Since J , and U , can not be directly measured, an alternative way
to evaluate Co(E0) directly from the LDOS is required. The basic idea here is to remark that, provided that
Λ ≪ ∆ and E0 remain well separated from the gap edges, the imaginary part of grS(ω) is non-zero only when
ω ≈ E0. Therefore, following [32], we expand grS(ω) around E0. While the numerators and the imaginary
part of the denominator in gS(ω) can be evaluated at E0, the real part has to be evaluated at first order in
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δω = ω − E0, yielding,

grS(ω) ≃
1

ω + iη − E0
.

[
u2 uv
uv v2

]
, (3.56)

u2, v2 = 2πν0∆
1 + (α2 ± β2)√

(1− α2 + β2)2 + 4α23/2
, (3.57)

η = 4πν0∆Λα
1 + α2 + β2√

(1− α2 + β2)2 + 4α23/2
. (3.58)

Note that (u, v)T = ϕ0(0), with ϕ0(r) the YSR wavefunction in real space. Hence (3.56), is equivalent to
grS(ω) =

ϕ0(0)ϕ0(0)†

ω+iη−E0
which is nothing but the Green’s functions of a single YSR state with an intrinsic energy

width η. In other words, the approximation (3.56) is equivalent to retaining only the YSR contribution to the
Green’s function. The YSR state being the only state lying inside the gap, well-separated from the gap edges, it
seems legitimate to use (3.56) to compute ρ(ω) when |ω| < ∆. Using (3.56), it is straightforward to show that,

ρ(ω) =
ηu2/π

(ω − E0)2 + η2
+

ηv2/π

(ω + E0)2 + η2
, (3.59)

Im{f rodd(ω)} = −ηuv
2

{ 1

(ω − E0)2 + η2
+

1

(ω + E0)2 + η2
}, (3.60)

Co(E0) = −u
2 + v2

πuv
. (3.61)

Obviously, provided that E0 ≫ η, ρ(E0) =
u2

πη , ρ(−E0) =
v2

πη , and consequently,

Co(E0) =
ρ(E0) + ρ(−E0)

π
√
ρ(E0).ρ(−E0)

, (3.62)

We can use the last equation to evaluate Co(E0) directly from the experimental measurement of G, provided
the STS experiment is performed in the tunneling regime. Note that Co(E0) is invariant under the exchange
u ↔ v. Therefore, the sign of E0 is irrelevant for the present purpose, and we can always assume E0 to be
positive.
Two methods are thus possible to estimate Co(E0). We can either fit the measured LDOS with the expression
(3.59) to extract the parameters u, v an η and evaluate the coefficient Co(E0) from (3.61). Alternatively, if the
YSR resonances do not overlap, we can use (3.62) to directly estimate the coefficient and extract Im{f rodd(ω)}.
In the next subsection, we illustrate these methods on the differential conductance spectrum measured on top
of magnetic impurities immersed in a Pb/Si(111) substrate.

3.3.4 Application to magnetic impurities in a Pb/Si(111) substrate
Here we extract Im{f rodd(ω)} from the differential conductance on a magnetic impurity in a Pb/Si(111) sub-
strate. The clean Pb monolayer was shown to be superconducting below 1.8 K [133]. As expected for a
conventional s-wave superconductor, the system does not show any in-gap states in the presence of strong
non-magnetic disorder [134]. STM images of the Pb monolayer revealed the presence of magnetic impuri-
ties as it can be observed on Fig. 3.4 (a). The corresponding conductance map measured at the Fermi level
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by STS at 320 mK is shown on Fig. 3.4 (b). One can observe a red spot on top of the magnetic impurity,
indicating the presence of a strong YSR state. The speckles-like pattern surrounding the red spot originates
from the decaying YSR wavefunction scattered by the atomic disorder of the monolayer. The comparison

Figure 3.4: Typical YSR state studied. (a): Scanning tunneling microscopy image of the Pb monolayer where
a magnetic defect can be identified as the encircled triangular protrusion. (b): Corresponding conductance map
measured at the Fermi level by scanning tunneling spectroscopy at 320 mK.

between the differential conductance spectra measured on top of the impurity and far away from it confirms
the presence of a YSR state. As it can be observed in Fig. 3.5 (a) far away from the impurity, the differential
conductance spectrum does not show any in-gap peaks. The spectrum corresponds to a BCS gap of 0.38 meV

with a Dynes broadening of approximately 0.004 meV. On the contrary, the spectrum measured on top of
the impurity shows a single pair of strong YSR peaks inside the gap. For all the impurities studied, a single
pair of conductance peaks was always observed, indicating that only a single YSR state is present1. We stress
that because the Pb is a 2D superconductor, YSR states extend very far from the impurities, typically tens
of nanometers away. Nevertheless, here we focus on differential conductance spectra measured right on top
of the impurities. Following the above-mentioned protocol, we extract the normalized LDOS, ρ(ω) from the
differential conductance spectrum acquired on top of the impurity (Fig. 3.5 (a)). For consistency, we check
that the convolution of the obtained LDOS with the Fermi-Dirac derivative at temperature T = 320 mK re-
produces the conductance data, as it can be observed in Fig. 3.5 (a). Once the LDOS in hand, we normalize
it to ν0, and the results are presented in Fig. 3.5 (b). Then we extract Co(E0) from two different methods.
First, we measured the YSR energy, finding E0 ≃ 0.074 meV, fit the measured ρ(ω)/ν0 with (3.59) and find,
η = 0.013 meV, u2/ν0 = 0.30, v2/ν0 = 0.40, yielding Co(E0) ≈ 0.64. Second, we used (3.62) to estimate
the coefficient without any fitting procedure directly. We found Co(E0) ≈ 0.64 consistently with the fitting
method. Finally, using Co(E0) we are able to obtain explicit − Im{f rodd(ω)}/π from (3.50) and present the
results, on Fig. 3.5 (c). Note that, because of our gauge choice, Re{f rodd(ω)} is linked to Im{f rodd(ω)}. Hence,
− Im{f rodd(ω)}/π might be interpreted as the analog of the LDOS for the odd-ω pairing function. Fig. 3.5
(c), clearly shows that − Im{f rodd(ω)}/π has an amplitude comparable to the LDOS, indicating that the impu-
rity efficiently converts even-ω Cooper pairs into odd-ω one, and generates a significant amount of odd-ω pair

1or at least that the eventual multiple YSR states are degenerated up to the experimental resolution
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Figure 3.5: Odd-frequency-pairing extracted from STS data. (a): Differential conductance as a function
of the applied bias, measured on top of the impurity (blue dots), away from the impurity (black dots), and
obtained from the convolution of the extracted LDOS with the Fermi-Dirac derivative with a temperature
T = 320 mK (solid red line). (b): LDOS obtained after deconvolution taking into account the finite tem-
perature T = 320 mK (red dots), along with the LDOS fitted with (3.59) by using the parameter set:
E0 = 0.074 meV, η = 0.013 meV, u2/ν0 = 0.30, v2/ν0 = 0.40 (green curve). (c): − Im{f rodd(ω)/(πnu0)}
at the impurity site, extracted from (3.50) with Co(E0) = 0.64 obtained from the LDOS.

correlations.

3.3.5 Conclusion and perspectives
To conclude, in this chapter, we showed that an isolated magnetic impurity in an s-wave superconductor locally
breaks the time-reversal symmetry and induces local pairing correlations that are odd in frequency. Using
Green’s functions technique, we showed that, for energies inside the gap, the imaginary part of the odd-
frequency pairing function is proportional to the even component of the local density of states. This result
highlights the fact that odd-ω pairing and the YSR state are intimately linked and originate from the time-
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reversal symmetry breaking at the impurity site. In addition, since the LDOS is directly accessed in tunneling
spectroscopy, based on the former proportionality relation, we provided a protocol to extract these anomalous
pairing functions from STS measurements and apply it to data taken from a Pb/Si(111) monolayer with mag-
netic impurities. Our theoretical analysis of experimental data finally proves the occurrence of odd-ω pairing
in the simplest magnetic-superconductor hybrid system.

While finalizing our publication, [30], we learned about the theoretical work of D. Kuzmanovski et al.
[135], which has partial overlap with the present theoretical analysis. Nevertheless, we stress that, differently
from our work, their study mainly focuses on the spatial and frequency dependence on the spin-resolved LDOS
in relation to odd-ω pairing and that no proportionality relation was established.

Very recently, S. I. Suzuki et al. proposed an alternative physical picture to explain why the YSR state has
energy below the superconducting gap, and the sign of pair potential changes at the magnetic atom [136]. The
authors showed that the analytical expression of Green’s function suggests that the magnetic impurity converts
spin-singlet s-wave Cooper pairs into odd-frequency Cooper pairs rather than breaking them. In agreement
with our analysis, they found that the odd-frequency pairing correlations coexist with the YSR states below
the gap. Based on the self-consistent solution of the Eilenberger equation, they conclude that the sign change
of the pair potential happens only when the amplitudes of odd-frequency pairing correlations are dominant at
the magnetic impurity. These works corroborate our results and show a vivid interest in understanding odd-ω
pairing.

A question that naturally arises here is the following one: How these results obtained for a single isolated
magnetic atom generalize to the case of a finite concentration of impurity? In collaboration with F. L. N. Santos
et al. [35], we used a dynamical mean-field theory to tackle this problem. Thanks to a scaling of the YSR-
bands and pairing functions with the impurity concentration, we have shown how to extract an odd-frequency
component of superconductivity from the Shiba band forming within the bulk superconducting gap following
the same strategy as the single impurity case [35].
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Chapter 4

Scanning tunneling shot-noise spectroscopy
of YSR states

If one applies a constant voltage bias to a mesoscopic junction, between two electronic reservoirs, like in scan-
ning tunneling spectroscopy experiments, a stationary current will typically establish after a transient regime.
Nevertheless, after careful analysis, one will discover that the current exhibits time-dependent fluctuations
around the stationary average value. These fluctuations arise because of the discreteness of the electron charge
combined with the stochastic nature of the electron transport across the junction. For short-enough junctions,
as is the case for the STM junction studied throughout this manuscript, inelastic and dephasing effects can be
ignored, and the electronic transport through the junction is coherent and determined by elastic scattering of
the carriers through the junction.

In this situation, there are two distinct sources of randomness. First, because of thermal agitation, the
incident electrons on both sides of the junction occupy states with given energy with a probability given by the
Fermi-Dirac distribution. Second, the electronic transport through the junction has to be described quantum
mechanically. Hence, incident charge carriers have a finite probability of being transmitted across the junction
or reflected into their original reservoir. Notice that, in this case, the noise should also depend on the statistics
of the charge carriers. For fermions, the Pauli exclusion principle imposes that a transmitted charge carrier
cannot occupy the same state as another carrier incident from the opposite side, which has been reflected.

A common way to characterize the current fluctuations is to study the Fourier transform of the current-
current correlations, named the noise. The noise, therefore, carries information about the amplitude and fre-
quency of the current fluctuations.

The noise is particularly suited to study the electronic properties of mesoscopic systems and was intensively
investigated during the last decades (see [137] for a review). Indeed the noise is sensitive to both the charge of
the carriers q as well as the dynamics of the charge transfer processes.

More precisely, for uncorrelated charge carriers, in the tunneling limit, the shot-noise is Poissonian, i.e.,
proportional to the current magnitude |I|: S = 2q|I|. Hence, in the tunneling limit, the Fano factor F =

S/(2e|I|) can be used to determine the effective charge of uncorrelated carriers since F = q/e. This result
has been used to reveal the existence of fractional charges in fractional quantum hall states [138, 139] or the
charge doubling due to Andreev reflections in short normal-metal/superconductor junctions [140]. When the
transmission probability of charge carriers increases, the shot-noise is no longer Poissonian and depends on
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the probability distribution of the charge transfer processes [137]. For systems of independent fermions, the
shot-noise is reduced below its Poissonian limit and F < q/e, as observed in [141]. For correlated charge
carriers, the Fano factor also depends on the interactions and is a powerful tool to study electron correlation in
Kondo systems [142, 143] or Coulomb blockade regime [144, 145].

Recently, the development of scanning tunneling shot-noise techniques allowed for the measurement of the
shot-noise with atomic-scale resolution and at low currents (< 1 nA) [21, 22]. These recent improvements
allow for the experimental study of the shot-noise in YSR states. Nevertheless, to the best of our knowledge,
a theoretical description of the shot-noise in YSR states is still lacking. In this chapter, we will fill this gap
and show that the shot-noise spectroscopy reveals clear signatures of the resonant Andreev and single-particle
processes that carry the current via YSR states.

4.1 Model and methods

4.1.1 Description of the setup
Here we consider a typical STS/STM experiment where a YSR state, supported by a superconducting substrate,
is probed by a metallic tip. The tip and sample are coupled via the quantum tunneling effect, and a voltage bias
across the tunnel junction is applied, driving the system into an out-of-equilibrium state. The Hamiltonian
describing the complete set-up reads :

H = HS +HT + tψS(r0)τzψT (ra) + h.c., (4.1)

with ψα(r) = [cα↑(r), cα↓(r)]
T the two-component Nambu spinor in the sub-system α = S, T . Here cασ(r)

annihilates an electron of spin σ in the sub-system α = S, T at position r. HS describes the isolated super-
conducting sample, HT describes the isolated metallic tip and the last term describes tip-sample tunneling.
For simplicity, we only consider local direct tunneling between the tip apex ra and the substrate position r0
below it with a tunneling amplitude t and neglect any possible mechanical [146, 147, 129], multi-paths related
[148, 149, 150, 151], or spin-dependent [152] complications from direct tunneling into the impurity. This ap-
proximation is justified, provided that the STM tip probes the tails of the YSR state far away from the core
where the above-mentioned effects might be relevant.

The sample consists of an isolated magnetic impurity immersed into a superconducting substrate. We as-
sume that the spin of the magnetic impurity is large, Simp ≫ ℏ, or is subjected to a strong magnetic anisotropy.
Therefore quantum fluctuations of the impurity spin are negligible, and we describe it by a classical magnetic
moment. As already shown, the magnetic exchange with the spin impurity is responsible for the appearance of
a YSR bound-state lying inside the superconducting gap. For the sake of simplicity, we assume that the metal-
lic tip and the normal-state superconducting sample have a single conduction band crossing the Fermi level.
Therefore, focusing on the low-energy physics around the Fermi energy, the sample is conveniently described
by the single-band YSR model given by (3.27), and HS reads:

HS =

∫
dk

(2π)dS
ψ†
S(k)[ϵS(k)τz +∆τx]ψS(k) + ψ†

S(r = 0)(Uτz − J)]ψS(r = 0), (4.2)

with ψα(k) ≡
∫
dre−ikrψα(r), the momentum representation of Nambu spinor in the sample. dS denotes the

dimension of the superconducting substrate. ϵS(k) denotes the band dispersion of the normal-state substrate.
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∆ is the BCS order parameter of the substrate, which is chosen real, without loss of generality. U is the local
electrostatic potential created by the magnetic impurity, and J is the magnetic exchange coupling. Without loss
of generality, we choose the impurity position as the substrate coordinates’ origin. Lastly, τi (i = x, y, z) are
Pauli matrices acting in Nambu-space and τ0 the identity in Nambu-space.

Finally, since we are only interested in low voltage bias, |eV | < ∆, the relevant energy range for the
transport properties is a narrow window around the Fermi energy with width ∼ ∆. For conventional supercon-
ductors, ∆ is much smaller than the Fermi energy. Therefore we can safely neglect the energy dependence of
the normal-state DOS of the tip and sample. Within this wide-band approximation, the tip and normal-state
substrate are characterized by their densities of states at the Fermi level, denoted ν0 and νS , respectively.

4.1.2 Description of the transport observables within the Keldysh formalism

The central quantity of interest here is the charge current operator Î(t) = −e∂tN̂T (τ), with N̂T (τ) the particle
number operator in the tip in the Heisenberg picture. Using the equation motion, it is straightforward to show
that:

Î(τ) =
iet

ℏ
{⟨ψ†

T (τ)ψS(τ)− ψ†
S(τ)ψT (τ)}, (4.3)

where we introduced the short-hand notations ψS ≡ ψS(r0) and ψT ≡ ψT (ra). To evaluate the mean current
and its fluctuations, we use the non-equilibrium Green’s functions (NEGF) technique on the Keldysh contour
c, depicted in Fig. 2.4. Thus, we introduce the following set of contour-ordered Green’s functions,

Ĝc
αβ(z, z

′) = − i

ℏ
⟨Tc[ψα(z)⊗ ψ†

β(z
′)]⟩, (4.4)

and the corresponding retarded Ĝr
αβ(τ, τ

′), advanced Ĝa
αβ(τ, τ

′), lesser Ĝ<
αβ(τ, τ

′), and greater Ĝ>
αβ(τ, τ

′) real-
time NEGFs. Here α, β = S, T are sub-system index, ⟨...⟩ indicates the non-equilibrium average of operators
evolving in the Heisenberg picture, with respect to H, Tc is time-ordering operator along the Keldysh contour
c, finally z, and z′ are time arguments lying on c. Focusing our attention on the long-time DC regime, all
real-time Green’s functions depend only on the relative time difference:

Ĝγ
αβ(τ, τ

′) = Ĝγ
αβ(τ − τ ′), (4.5)

where γ is the index for the Keldysh sub-space i.e. γ = r, a,>,<. Thus, it is convenient to define their Fourier
transform:

Ĝγ
αβ(ω) ≡

∫
dτei

ωτ
ℏ Ĝγ

αβ(τ). (4.6)

With these definitions, the average charge current flowing from the tip apex, I(t) = ⟨Î(t)⟩, reads:

I =
et

h

∫
dωTr

{
G<

ST (ω)−G<
TS(ω)

}
, (4.7)

97



where the trace is performed over the Nambu space. The current shot-noise S(τ) is defined as the zero-
frequency limit of the time-symmetric current-current correlation, C(τ, τ ′),

C(τ, τ ′) = ⟨δÎ(τ)δÎ(τ ′) + δÎ(τ ′)δÎ(τ)⟩, (4.8)

S(τ) =

∞∫
−∞

dτ ′C(τ ′ + τ, τ), (4.9)

where δÎ(τ) ≡ Î(τ)−⟨Î(τ)⟩. Using the Wick theorem and a straightforward Fourier transform, we can express
S in terms of Keldysh NEGFs:

S =
2e2t2

h

∫
dωTr

{
G<

TT (ω)G
>
SS(ω)−G<

ST (ω).G
>
ST (ω)

}
+ (S ↔ T ). (4.10)

In order to compute the NEGFs entering S and I , we treat the tip-sample as a perturbation and use perturbative
expansion with respect to the tip-sample coupling. Using the results of Section. 2.3, and more particularly of
Subsection. 2.3.2, it is straightforward to show that the contour-ordered Green’s functions obey the following
equations:

Ĝc
αβ(z, z

′) = δαβ ĝ
c
α(z, z

′) + t

∫
c
dz1ĝα(z, z1)Ĝ

c
δβ(z1, z

′), δ ̸= α. (4.11)

Here, we introduced the unperturbed contour-ordered Green’s functions of the isolated tip and sample:

ĝcα(z, z
′) = − i

ℏ
⟨Tc[ψα(z)ψ

†
α(z

′)]⟩0, α = S, T. (4.12)

These contour-ordered Green’s function contains the retarded, ĝrα(z, z
′), advanced, ĝaα(z, z

′), lesser, ĝ<α (z, z
′),

and greater, ĝ>α (z, z
′) real-time unperturbed NEGFS describing the tip (α = T ) and sample (α = S). We recall

that the notation ⟨...⟩0 defined in (2.34) denotes equilibrium average with respect to the unperturbed density
matrix of operators evolving with respect to the unperturbed Hamiltonian H0. Using Langreth’s rules and after
a straightforward Fourier transformation, we obtain the following set of equations:

Ĝr/a
αα (ω) =ĝr/aα (ω) + t2ĝr/aα (ω)τz ĝ

r/a
δ (ω)τzĜ

r/a
αα (ω), δ ̸= α (4.13)

Ĝ</>
mm (ω) =g</>

m (ω) + t2{ĝ</>
α (ω)τz ĝ

a
δ (ω)τzĜ

a
αα(ω) + ĝrα(ω)τz ĝ

</>
δ (ω)τzĜ

a
αα(ω) (4.14)

+ ĝrα(ω)τz ĝ
r
δ(ω)τzĜ

</>
αα (ω), δ ̸= α

Ĝ
</>
ST (ω) =t{Ĝ</>

SS (ω)τz ĝ
a
T (ω) + Ĝr

SS(ω)τz ĝ
</>
T (ω)} (4.15)

Ĝ
</>
TS (ω) =t{ĝrT (ω)τzĜ</>

SS (ω) + ĝ
</>
T (ω)τzĜ

a
SS(ω)}. (4.16)

The above set of equations is a closed set that allows us to compute all Green’s functions entering (4.10) and
(4.7) from the sole knowledge of the unperturbed local Green’s functions ĝr/a/</>

α (ω) describing the isolated
tip (α = T ) and sample (α = S).

We recall that the isolated green’s functions satisfy the following relationships

gaT/S(ω) =
[
grT/S(ω)

]†
, (4.17)

g<T (ω) = f̂T (ω) · [ĝaT (ω)− ĝrT (ω)] , g
>
T (ω) = −

(
τ0 − f̂T (ω)

)
· [ĝaT (ω)− ĝrT (ω)] , (4.18)

g<S (ω) = −f(ω) · [ĝaS(ω)− ĝrS(ω)] , g
>
S (ω) = − (1− f(ω)) · [ĝaS(ω)− ĝrS(ω)] , (4.19)
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with f̂T (ω) defined by equation (2.77) and f(ω) the Fermi-Dirac distribution. Therefore, the isolated metallic
tip and superconducting substrate are completely characterized by the local retarded Green’s functions, grT (ω)
and grS(ω), respectively. Within our wide-band approximation grT (ω) reads:

grT (ω) = −iπνT τ0. (4.20)

Hence, grT (ω) is energy-independent and only involves the DOS of the metallic tip at the Fermi level, νT . It
follows that the transmission of the STM junction is characterized by an energy-independent tunneling rate
Γ = 2πνT t

2.
Let us now turn to the unperturbed Green’s function describing the superconducting sample. In realistic

systems, it is not possible to isolate the sample from its environment, and quasiparticles undergo relaxation
processes. These relaxation processes can have various origins, such as electron-phonon coupling, electron-
photon coupling, or quasiparticle poisoning. However, the details of the microscopic relaxation mechanisms
are not crucial for the transport properties we are interested in. Hence, for the present purpose, it is enough to
assume that the quasiparticle of the substrate can relax into an incoherent quasiparticle bath at equilibrium with
the superconducting substrate 1. In addition, since we are only interested in a narrow energy range of the order
∆ around the Fermi energy, we can safely neglect the energy dependence of the relaxation rate and replace it
by a constant. Thus, we introduce a phenomenological Dynes broadening, Λ0, which accounts for quasiparticle
relaxation and provides the quasiparticles of the substrate with a finite lifetime. Within this approximation,
grS(ω) obey the following Dyson equation:

ĝrS(ω) = ĝr0(r0, ω){[ĝr0(ω)]−1 − (Uτz − Jτ0 − iΛ0τ0)}−1ĝr0(r0, ω), (4.21)

where ĝr0(r − r′, ω) is the retarded Green’s function of the BCS substrate in the absence of the magnetic
impurity. ĝr0(ω) denotes the local Green’s function of a clean BCS superconductor ĝr0(0, ω). Using the wide-
band approximation this Green’s function reads: ĝr0(ω) = − πν0√

∆2−ω2
(ωτ0 + ∆τx), with ν0 the normal-state

density of state at the Fermi level.
In the absence of relaxation, i.e. Λ0 = 0, ĝrS(ω) possesses a single pole inside the gap at energy E0 =

∆ 1−α2+β2√
(1−α2+β2)2+4α2

signaling the existence of the YSR state of energyE0, with α = πν0J and β = πν0U . The

wavefunction ϕ0(r) = [u(r), v(r)]T of the YSR state and its properties have been studied in Subsection. 3.2.3.
In the presence of relaxation, because of the Dynes broadening Λ0, the YSR state becomes a resonance

with a finite energy-width Λ. In most superconductors, the Dynes broadening is typically much smaller than
the superconducting gap, Λ0 ≪ ∆, and one can relate the energy-width Λ to the Dynes broadening: Λ =

4πν0∆Λ0α
1+α2+β2

√
(1−α2+β2)2+4α2

3/2 , as shown in Subsection. 3.3.3.

Albeit exact, the retarded Green’s function ĝrS(ω), given by (4.21), is too complicated and does not yield
insightful results for the current and shot-noise. Nevertheless, we recall that we are only interested in the
sub-gap voltage (eV < ∆) and low-temperature regime (kBT ≪ ∆) regime. Fortunately, in this regime, for
weak enough tunnel coupling, resonant tunneling processes via the YSR state give the dominant contribution
to transport properties, as we will show below. Thus, ĝrS(ω) can be projected onto the YSR subspace. This
approximation significantly simplifies our model and allows for semi-analytical treatment.

1This incoherent bath can be the continuum of excited quasiparticles of the superconducting substrate in the case of in-
elastic relaxation mediated by phonons or photons [32], or a reservoir of gapless quasiparticles in the case of quasiparticle
poisoning [31].
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4.1.3 Relevant tunneling processes

Figure 4.1: Schematic illustration of the fundamental tunneling processes between the metallic tip and the
YSR state. The metallic tip and superconducting substrate are represented by their DOS. The vertical axis
corresponds to the energy of the states measured from the Fermi substrate level indicated by the horizontal
black dotted line. Occupied states are indicated by the grey-shaded region, and blank regions correspond to
unoccupied states. The YSR state gives rise to two resonances at ±E0. The electron-like resonance at E0,
proportional to u2, is indicated by the red solid line, while the hole-like resonance at −E0, proportional to v2,
is indicated by the red dashed line. We stress that a hole with energy E represents an unoccupied electronic
state at energy −E0. (a): Incoherent single quasiparticle process (IQPs): An electron from the occupied states
of the metallic tip tunnels into the electron-like YSR resonance at E0 with probability Γe = Γu2 (black solid
arrow). Subsequently, the YSR state relaxes into an incoherent quasiparticle bath, which might correspond to
the quasiparticle continuum of the substrate, with a probability ∝ Λ (green solid arrow). (b): Resonant Andreev
reflection via the YSR state (AR): An electron from the occupied levels of the tip virtually tunnels into the YSR
state via its electron-like component with probability ∝ Γe. Then it is converted into a hole, adding a Cooper
into the condensate of the substrate. This hole is finally reflected back into the metallic tip with probability
∝ Γh = Γv2. Both processes schematized in (a) and (b) are resonant process which become relevant for biases
eV ≳ E0. Analogous processes with electrons replaced by holes occur for eV ≲ −E0.

We should now discuss the fundamental tunneling processes that give rise to a continuous current flowing
between the tip and superconducting substrate supporting the magnetic impurity. To simplify the discussion we
assume a low-temperature regime E0 ≫ kBT and focus on the sub-gap regime |eV | < ∆.

First, when eV ≳ E0 the continuum of occupied electrons in the tip overlaps with E0, spin-up electrons
with energy ω ∼ E0 can tunnel into the YSR state, which subsequently relaxes into the unoccupied states
of the incoherent quasiparticle bath. This process corresponds to an incoherent single-particle process (IQP)
schematized in Fig. 4.1 (a). Notice that spin-down electrons cannot undergo similar processes since the YSR

100



state is spin-polarized. Similar processes, where spin-down holes at energy ω ∼ E0
2 from the tip can tunnel

into the unoccupied YSR state that subsequently relaxes occur when the continuum of unoccupied electrons in
the tip overlaps with the symmetric energy −E0, i.e., eV ≲ −E0.

Second, as in the case of a clean BCS superconductor, an incoming electron from, say, the tip can be
reflected as a hole in the tip, transferring a Cooper pair into the condensate of the superconducting substrate.
This tunneling process is nothing but an ordinary Andreev reflection (AR) studied in Subsection. 2.3.5 and
schematized in Fig. 2.5 (b). It is important to notice that such ordinary Andreev reflections do not involve the
YSR state. However, since an Andreev reflection requires the transfer of two charge carriers across the STM
junction, they become relevant only for strong tunnel coupling. Thus, ordinary Andreev reflections can be
safely neglected for weak tunnel coupling.

Third, because of the YSR state, an additional type of Andreev reflection is possible here. Indeed, when
eV ≳ E0, the continuum of occupied electrons in the tip overlaps E0. Thus, spin-up electrons from the tip can
virtually tunnel into the YSR state, reflect back as spin-up holes and resonantly transfer a Cooper pair into the
condensate, as illustrated in Fig. 4.1 (b). Such a process corresponds to a resonant Andreev reflection via the
YSR state, which transfers a charge 2e across the STM junction. Note that complementary Andreev processes,
where spin-up holes are resonantly reflected as electrons via the YSR state, occur when eV ≲ −E0. Contrary
to ordinary Andreev reflections, Andreev reflections via the YSR state are resonant processes. Hence, they are
resonantly enhanced at energies ω ∼ E0, and they may become relevant at much weaker tunnel coupling than
ordinary non-resonant Andreev reflections [32]. Thus, there is no a priori reasons to neglect, even for weak
tunnel coupling.

Finally, we stress that there exists an important difference between resonant ARs and IQPs via the YSR
state. Indeed, IQPs change the occupation of the YSR state. Hence, a continuous current supported by IQPs via
the YSR state requires relaxation of the YSR state and is necessarily an incoherent process. On the contrary,
in an AR, the YSR is an intermediate state that is virtually occupied, and ARs do not change the occupation of
the YSR. They are thus coherent processes that are present even in the ideal case of a perfectly isolated YSR.

4.1.4 Simplified model
Throughout this chapter, we assume the tunnel coupling to be weak enough such that we can safely neglect non-
resonant Andreev reflections at the superconducting substrate. In this regime, we can focus our attention on the
single-particle processes and resonant Andreev reflections via the YSR state, sketched in Fig. 4.1. Therefore,
following M. Ruby et al. [32], we project the unperturbed retarded Green’s function describing the isolated
sample, ĝrS(ω) onto the YSR subspace:

grS(ω) ≡ grS(r0, r0, ω) ∼
ϕ0(r0)ϕ

†
0(r0)

ω − E0 + iΛ/2
=

1

ω − E0 + iΛ/2

[
u2 uv
uv v2

]
, (4.22)

where the YSR components, u ≡ u(r0), v ≡ v(r0) depend implicitly on the tip location with respect to the
core of the impurity.

Within this simplified model, all tunneling processes are mediated by the YSR state. Since the YSR state
is only coupled to spin-up electrons and spin-down holes of the metallic tip, we will omit the spin indices

2Here, we use the following convention: an occupied hole with energy ω and spin σ is an unoccupied electron with
energy −ω and spin σ
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hereinafter. Hence, throughout the rest of this chapter, the term electron designates a spin-up electron of
energy ω while the term hole refers to a spin-down hole. By passing, we point out that within our simplified
model, tunneling into YSR states is equivalent to the scattering of spinless particles between three reservoirs
connected by a resonant level. The reservoirs correspond to spin-up electrons in the metallic tip, spin-down
holes in the metallic tip, and quasiparticles in the incoherent bath, while the resonant level represents the YSR
level. Thorough details about this equivalence can be found in the Supplementary Material of [33].

Inserting the low-energy approximation (4.22) in the aforementioned closed set of equations, we obtain
exact expressions for the current and shot-noise, which we analyze in the following sections.

4.2 Standard current spectroscopy : a brief review
Before discussing the shot noise spectroscopy in YSR states, which, to the best of our knowledge, was not
addressed before, we first briefly review the important features of the standard current and differential spec-
troscopy in YSR states. This topic has already been investigated in previous works, and a thorough discussion
of the differential conductance in YSR states measured with a metallic tip can be found in [31]. Notice that
the current and differential conductance has also been measured with a superconducting tip and theoretically
analyzed in [32].

4.2.1 Discussion of the average current I
After lengthy but straightforward algebra, we find that the average current passing through the YSR resonance
reads:

I =
e

h

∫
dω2

ΓeΓh

(ω − E0)2 + Γ2
t /4

[f(ω−)− f(ω+)] (4.23)

+
ΓeΛ

(ω − E0)2 + Γ2
t /4

[f(ω−)− f(ω)]

+
ΓhΛ

(ω − E0)2 + Γ2
t /4

[f(ω)− f(ω+)],

where we introduced the shorthand notation ω± = ω ± eV , and f denotes the Fermi-Dirac distribution. We
also defined the notations Γe ≡ Γu2, Γh ≡ Γv2 and Γt ≡ Λ+Γe +Γh. Here Γ ≡ 2πνT t

2, with νT the density
of states in the metallic tip, is the tunneling rate characterizing the transmission of the STM junction. In the
ideal zero-temperature limit, the integrals can be performed exactly and yield:

I =
2e

hΓt

{
2ΓeΓh

[
arctan

(
2
eV − E0

Γt

)
+ arctan

(
2
eV + E0

Γt

)]
(4.24)

+ ΓeΛ

[
arctan

(
2
eV − E0

Γt

)
+ arctan

(
2
E0

Γt

)]
+ ΓhΛ

[
arctan

(
2
eV + E0

Γt

)
− arctan

(
2
E0

Γt

)]}
.
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As observed in Fig.4.2, in the ideal T = 0 limit, far below the resonance, i.e. when |eV | ≪ E0, the current is
negligible3 and linear in V . Near the resonances, i.e. when |eV ± E0| ≲ Γt, I is non-linear in V and abruptly
increases. It rapidly saturated to finite values:

I+ = lim
eV≫E0

=
e

ℏ
2ΓeΓh + ΓeΛ

Γt
, (4.25)

I− = lim
eV≪−E0

= − e
ℏ
2ΓeΓh + ΓhΛ

Γt
, (4.26)

where we assumed E0 ≫ Γt. The staircase shape of the I − V characteristic is a direct consequence of the
resonant nature of the single-particle and Andreev processes producing the current. Indeed, these processes
become relevant only when there are available electrons or holes in the tip at energy E0 to tunnel into the YSR
resonance, which correspond to the condition eV ≳ E0 and eV ≲ E0, respectively. We stress that this result
could be anticipated since (4.23) was obtained by considering only the resonant tunneling processes via the
YSR state. It is interesting to remark that, inspecting (4.24), one immediately remark that when Λ = 0, |I| is
an even functions of V , regardless of the model parameters. For finite Λ, the shape of the I − V characteristic
is not voltage-symmetric unless u2 = v2. Interestingly, the asymmetry in the current magnitude |I| depends
on GN or equivalently Γ. Indeed, in the tunneling regime Γ(u2 + v2) ≪ Λ, the height ratio of the positive
and negative plateaus, |I+|/|I−| reflects the particle-hole ratio of the YSR wavefunction, I+/|I−| ≃ u2/v2, as
observed in Figs. 4.2 (a) and (d). Increasing the tunneling rate Γ the current magnitude |I|(V ) becomes more
and more symmetric but remains slightly asymmetric. Indeed, |I+| > |I−| if u2 > v2 and vice versa (see
Figs. 4.2 (b) and (e) ). In the strong tunnel coupling regime, Γ(u2 + v2) > Λ, the current magnitude |I|(V ) is
almost perfectly symmetric, independently of the particle-hole ratio u2/v2, as observed in Figs. 4.2 (c) and (f).
We will see later in this section that these features are due to the simultaneous presence of single-particle and
Andreev processes.

In the realistic finite-temperature case, the integrals entering equation (4.23) are no longer exact and have
to be evaluated numerically. In Fig. 4.2 we compare the numerical evaluation of I for a moderate temperature,
E0 ≫ kBT ≃ 0.06meV, corresponding to the typical electronic temperature in STM experiments ([33]) with
the above-mentioned zero-temperature limit. Fig. 4.2 clearly shows that finite temperature effects smooth the
abrupt steps at eV = ±E0 whose width is now of order ∼ kBT . Other qualitative features observed at T = 0

remain unchanged at finite T . More specifically, the values of the asymptotic limit, I± are unaffected by
temperature. Indeed, when E0 ≫ kBT ≫ Γt, as typically encountered in the experiment studied at the end of
this chapter (see [33]), I can be approximated by:

I ≃ e
ℏ

{
2ΓeΓh

Γt
[f(E−

0 )− f(E+
0 )] +

ΓeΛ

Γt
[f(E−

0 )]−
ΓhΛ

Γt
[f(E+

0 )]

}
, (4.27)

explicitly showing the above-mentioned statements.

3Indeed, in the weak tunnel coupling that we are interested in, below the resonance (|eV | ≪ E0), the current magnitude
is typically very weak (for example [33] reported |I| < 1pA below the resonances). Hence it is experimentally challenging
to measured it accurately.
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4.2.2 Discussion of the differential conductance G

Having discussed the qualitative feature of the current, we now turn to the differential conductance G = dI
dV .

In the T = 0 limit, the differential conductance adopts an elegant and compact analytical form that reads:

G =
G0

2

{
Γe(2Γh + Λ)

(ω − E0)2 + Γ2
t /4

+
Γh(2Γe + Λ)

(ω + E0)2 + Γ2
t /4

}
, (4.28)

with G0 = 2e2

h the quantum of conductance. Therefore, the differential conductance exhibits two sub-gap
peaks located at the resonances eV = ±E0, indicating the presence of the YSR sub-gap state. In the T = 0

limit, the width of the peaks is given by Γt. Notice that in absence of relaxation processes, Λ = 0, G is an even
function of V independently of the tunneling rate Γ. Therefore in the absence of relaxation processes, even for
weak tunneling rates, G is not proportional to the LDOS of the YSR state. On the contrary, for finite Λ, the
conductance becomes asymmetric, and its asymmetry depends on the tunneling rate Γ. In the tunneling regime,

Figure 4.2: Average current I in units of GN/e as a function of eV/∆ in the sub-gap regime for differ-
ent normal state conductance GN and temperature T . Panels (a),(b) and (c) corresponds to u2 = 0.09πν0,
v2 = 0.042πν0, and GN/G0 = 10−3, 10−2, 10−1 respectively. Panels (d),(e) and (f) corresponds to
u2 = 0.042πν0, v2 = 0.09πν0, and GN/G0 = 10−3, 10−2, and 10−1 respectively. In each panels, the
blue solid line corresponds to T = 0 while the red solid line corresponds to kBT = 0.06meV, which satisfies
kBT ≫ Γt in all cases.
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Λ ≫ Γe,Γh, the differential conductance is approximately given by

G ≃
Λ≫Γe,Γh

G0

2

{
Γe(Λ)

(ω − E0)2 + Λ2/4
+

Γh(Λ)

(ω + E0)2 + Λ2/4

}
. (4.29)

and G is proportional to the LDOS of the YSR state as expected in the tunneling regime. In this case, the
width of the conductance peaks directly yields the relaxation rate Λ. Moreover as long as E0 ≫ Λ the positive
and negative resonance does not overlap, and G+ = G(E0) ∝ u2 while G− = G(−E0) ∝ v2. Increasing
the tunneling rate Γ, the conductance becomes more and more symmetric, as observed in Fig. 4.3 (a). When
Γ(u2 + v2) ≫ Λ, the relaxation rate becomes negligible, and one recovers a perfect symmetry of G.

In the realistic finite-temperature case, the width of the differential conductance peaks is increased by
thermal broadening and is no longer directly related to Γt. Most importantly, when kBT ≫ Γt, which is the
case for the experimental data studied at the end of this chapter, the conductance is approximately given by:

G ≃
kBT≫Γt

G0

2kBT
{2ΓeΓh

Γt
[Φ(E0 − eV ) + Φ(E0 + eV )] (4.30)

+
ΓeΛ

Γt
Φ(E0 − eV ) +

ΓhΛ

Γt
Φ(E0 + eV )},

with, Φ(ω) =
eβω

[1 + eβω]
2 . (4.31)

Therefore, similarly to the T = 0 limit, when kBT ≫ Γt, the differential conductance spectrum exhibits
two peaks located at opposite energies ±E0. When E0 ≫ kBT , they do not overlap, and their width at half
maximum does not depend on Γ and is roughly given by 3.5kBT , as observed in Fig. 4.3 (b). We stress that, in
this regime, Λ is masked by thermal effects and can not be simply extracted from the width of the conductance
peaks at low tunneling rates. On the contrary, the heights of the conductance peaks depend on Γ and, provided
that E0 ≫ kBT ≫ Γt, read:

G+ ≃ G0

8kBT

[
Γe (2Γh + Λ)

Γt

]
, G− ≃ G0

8kBT

[
Γh (2Γe + Λ)

Γt

]
(4.32)

Thus, as in the T = 0 limit, the asymmetry of the conductance peaks depends on the tunneling rate Γ. For
weak tunneling rates, Γe,Γh ≪ Λ, the conductance peaks are approximately given by G+ ≃ G0Γe

8kBT , while
G− ≃ G0Γh

8kBT . Hence, their asymmetry reflects the particle-hole asymmetry of the YSR wavefunction, see the
green curve in Fig. 4.3 (b). Hence, the asymmetry of the conductance peaks reflects the particle-hole asymmetry
of the YSR wavefunction. Increasing the tunneling rate, the peaks become more and more symmetric, as
indicated by the blue curve in Fig. 4.3 (b). In the strong tunneling rate limit, Γe,Γh ≫ Λ, the peaks are roughly
symmetric independently of u2/v2 as observed from the red curve in Fig. 4.3 (b).

4.2.3 Physical interpretation
Let us now show that the above-mentioned feature of the average current and differential conductance result
from the competition between single-particle and Andreev processes, which produces the current. To that end,
we shall first interpret (4.23) in terms of Andreev reflections and IQPs.
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Figure 4.3: Differential conductance spectrum of a YSR state with parameters: u2 = 0.09πν0, v2 = 0.042πν0
and Λ = 10−3meV. (a) G as a function of eV in the zero-temperature limit, T = 0. The green, blue and red
solid lines correspond to GN/G0 = 10−3, 10−2, and 10−1 respectively. The green solid line corresponds to
the tunneling regime, Γu2/Λ ≪ 1. Therefore for the green curve, the width of the peaks is given by Λ, and the
peak height ratio G+/G− reflects the particle-hole ratio of the YSR wavefunction, G+/G− ≃ u2/v2. The red
solid line corresponds to a strong tunnel coupling regime Γu2 ≫ Λ. Hence, for the red curve, the relaxation rate
is almost negligible, and the width of the peaks is approximately given by tip-induced line-width Γ(u2 + v2).
Moreover, Andreev processes give the dominant contribution to the differential conductance, which is thus
almost voltage symmetric. The blue solid line corresponds to an in-between situation between the tunnel limit
and the strong tunneling coupling regime. (b) Same as in (a) but for a finite temperature kBT = 0.06 meV.
In this case, kBT ≫ Γt for the green, blue and red solid lines and the width of the conductance peaks is
∼ 3.5kBT , as indicated by the red arrow.

Let us start with the first term in (4.23). We immediately remark that the integrand in this has a numerator
proportional to ΓeΓh, indicating that this term is due to tunneling processes that require the coherent transfer of
two carriers through the STM junction. Moreover, the denominator selects electrons whose energy is resonant
with the YSR state. Thus, we interpret the first term in (4.23) as the current carried by resonant Andreev
reflections via the YSR, IA:

IA =
2e

h

∫
dωRA(ω)[f(ω

−)− f(ω+)], with, RA(ω) =
ΓeΓh

(ω − E0)2 + Γ2
t /4

. (4.33)

Here, RA(ω) corresponds to the probability for charge carriers of energy ω to be resonantly Andreev reflected
via the YSR level. Equation (4.33) has a clear physical interpretation. Indeed, there are two complementary
Andreev processes transferring charge in opposite direction:

(i) First, an occupied electron at energy ω in the metallic tip can be reflected into an unoccupied hole state
of the tip with probability RA(ω), transferring a charge 2e across the junction. Taking into account the
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occupation probabilities of electron and holes and summing over all possible energies these processes
gives a contribution 2e

h

∫
dωRA(ω)f(ω

−)[1− f(ω+)] to the average Andreev current IA.

(ii) An occupied hole with energy ω from the metallic tip has the same probability RA(ω) to be Andreev
reflected into an unoccupied electron state, transferring a charge −2e across the junction. Again, taking
into account the occupation probabilities of electron and holes and summing over all possible energies
these processes gives a contribution −2e

h

∫
dωRA(ω)f(ω

+)[1− f(ω−)] to the average Andreev current
IA.

Summing the contributions of the above mentioned processes one recovers equation (4.33).
The second and third terms are proportional to Λ and therefore involve relaxation of the YSR level. Hence,

these terms correspond to the quasiparticle (or single-particle) current IQP produced by IQPs:

IQP =
e

h

∫
dω

ΓeΛ

(ω − E0)2 + Γ2
t /4

[f(ω−)− f(ω)] +
ΓhΛ

(ω − E0)2 + Γ2
t /4

[f(ω)− f(ω+)]. (4.34)

The first term in IQP correspond to the tunneling of spin-up electrons between the tip and the YSR state via its
electron-like component u. The last term describes the single-particle tunneling of holes between the tip and
the YSR state via its hole-like component v. Therefore, we can write IQP as the sum of the single-electron and
single-hole currents, Ie, and Ih:

IQP = Ie + Ih, (4.35)

Ie =
e

h

∫
dωTe(ω)[f(ω

−)− f(ω)], with Te(ω) =
ΓeΛ

(ω − E0)2 + Γ2
t /4

(4.36)

Ih = − e

h

∫
dωTh(ω)[f(ω

+)− f(ω)], with Th(ω) =
ΓhΛ

(ω − E0)2 + Γ2
t /4

. (4.37)

Here Te(ω) and Th(ω) are the transmission probability of a single-electron and a single-hole via the YSR state
respectively. Like equation (4.33), equations (4.36) and (4.37) have clear physical interpretations in terms of
the single-particle processes that electrons and holes may undergo at STM junction. Let us focus on the single
electron which results from two complementary processes:

(i) An occupied electron at energy ω coming from the metallic tip can be transmitted into an unoccupied
quasiparticle state of the incoherent bath with a probability Te(ω), transferring a charge e across the
junction. Taking into account the occupation probability and summing other all energies, these processes
produce an average current e

ℏ
∫
dωTe(ω)f(ω − eV )[1− f(ω)].

(ii) The complementary processes where incoming quasiparticles from the incoherent are transmitted into
unoccupied electron states of the metallic tip to produce a current − e

ℏ
∫
dωTe(ω)f(ω)[1− f(ω − eV )].

Summing these two contributions, one directly recovers (4.36). A similar discussion holds for Ih, replacing
electrons by holes.

To finish, (4.33) obviously indicates that the magnitude of IA is an even function of V and that IA(V ) =

−IA(−V ). On the contrary, (4.34) indicates that the magnitude of the single-particle current |IQP | is not
voltage-symmetric in the presence of a finite particle-hole asymmetry of the YSR wavefunction, i.e., u2 ̸= v2.
Hence, in the weak tunnel coupling regime, Γu2,Γv2 ≪ Λ the single-particle current gives the dominant
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contribution to I , |I| and G are thus not voltage symmetric (except if u2 = v2). Increasing the tunnel coupling,
the contribution of Andreev current increases, and it follows that |I| and G become more and more symmetric.
In the opposite strong tunnel coupling regime, Γu2,Γv2 ≫ Λ the single-particle current is negligible in front
of the Andreev current; as a consequence, |I| and G are almost perfectly symmetric. Thus, the decrease in the
asymmetry of the current and differential conductance spectrum when the tunneling rate Γ, or equivalently the
normal-state conductance GN , increases results from the competition between the Andreev and single-particle
current.

4.3 Shot-noise and Fano factor spectroscopy
In this section, we shall demonstrate that the shot noise reveals direct signatures of the Andreev and single-
particle processes. To that end, we find it convenient to first discuss two ideal limits. First, we focus our
attention on the ideal case Λ = 0. In this case, the YSR state cannot relax, and single-particle processes are
forbidden. The current and shot-noise, therefore, uniquely originate from Andreev reflections via the YSR
state. Second, we analyze the opposite limit where Andreev reflections are absent. In that case, the current
and shot-noise uniquely originate from single-particle processes. Finally, we studied the realistic case where
Andreev reflections and single-particle are simultaneously present (i.e., Λ > 0).

In each case, we first discuss the ideal zero-temperature limit where current and shot-noise can be calculated
analytically, facilitating their analysis. Next, we analyze how this analysis is modified by thermal effects in the
realistic finite temperature case. The experimental data studied at the end of this chapter were measured at an
electronic temperature T ≃ 700 mK. At this temperature, the analysis of the differential conductance data
clearly indicates that the width of the YSR conductance peaks is dominated by thermal broadening. Hence,
kBT ≫ Γe,Γh,Λ for all tunneling strengths studied in the experiment. In addition, the YSR energies reported
in this experiment are ∼ 200− 400 µeV, hence, E0 ≫ kBT ∼ 60 µeV. Thus, hereinafter we will focus on the
experimentally relevant regime and assume thatE0 ≫ Γt and focus on temperature such thatE0 ≫ kBT ≫ Γt.

4.3.1 Results in the absence of single-particle processes, Λ = 0

To begin, let us focus on the ideal limit Λ = 0. In this case, the YSR state is isolated and cannot relax. Therefore,
single-particle processes are forbidden, and the current is solely carried by resonant Andreev reflections via the
YSR state. Consequently, the expression of S is significantly simplified and reads:

S =
2e2

h

∫
dω4R(ω) [1−R(ω)]

[
f(ω−)f(−ω+) + f(ω+)f(−ω−)

]
(4.38)

+4R2(ω)
[
f(ω−)f(−ω−) + f(ω+)f(ω−)

]
.

From this expression, one immediately remarks that, independently of the temperature, the shot-noise S is
an even function of the voltage bias V , as observed in Fig. 4.4. This feature was expected since the underlying
Andreev reflections do not depend on the direction of the voltage bias.

In the T = 0 limit, the last line of (4.38) vanishes, and S reads:

S =
2e2

h
sign(V )

eV∫
−eV

dω4R(ω) [1−R(ω)] . (4.39)
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The above expression has a clear-cut physical interpretation. Indeed, in the T = 0 limit, focusing on the case
of a positive bias V > 04, an occupied electron with energy |ω| < eV in the metallic tip can either be Andreev
reflected in an unoccupied hole state of the tip with a probability RA(ω) or normal reflected as an electron with
a probability 1−RA(ω). The first process transfers a charge 2e across the junction, while the second does not
produce any charge transfer. Because of the Pauli exclusion principle, other occupied carriers in the metallic
tip are normally reflected with a probability equal to 1 and do not participate in the charge transfer. Hence
the charge transferred by carriers of energy ω, g(ω), is distributed according to a binomial distribution when
|ω| < eV ,

g(ω) =

{
2e, with probability RA(ω) if |ω| < eV,

0, with probability 1−RA(ω) if |ω| < eV,
(4.40)

and certainly vanishes elsewhere. Thus, it is straightforward to obtain the mean-square deviation of g(ω),
⟨δg2(ω)⟩ = 4e2RA(ω)[1−RA(ω)]. The shot-noise produced by carriers of energy ω reads dS

dω = 2⟨δg2(ω)⟩/h.
Summing over all carriers’ energy, one directly recovers (4.39). According to this hand-waving argument, the
shot noise can be interpreted as the partition noise of Andreev reflections. We can perform the integral of (4.39)
analytically and, after straightforward algebra, finally obtain:

S =
2e2

h

4ΓeΓh

Γ3
t

sgn(V )

{[
2Γ2

t − 4ΓeΓh

]
· [A(eV − E0) +A(eV + E0)] (4.41)

−4ΓeΓh · [B(eV + E0) +B(eV − E0)]

}
,

with, A(ω) = arctan(2ω/Γt), and, B(ω) =
2ωΓt

4ω2 + Γ2
t

. (4.42)

Hence, like the current magnitude |I|, the shot-noise linearly vanishes with |V | far below the resonances, when
|eV | ≪ E0, exhibits abrupt non-linear steps near the resonances, when |eV ±E0| ≲ Γt and finally saturates at
finite values S+, S− when eV ≫ E0 and −eV ≫ E0, respectively. It is important to notice that the non-linear
step-like shape of S(V ) is a consequence of the resonant nature of the charge transfer via the YSR level and
does not depend on the precise type of resonant tunneling considered (i.e. Andreev processes, single-particle
processes or both). In the absence of single-particle processes, the shot-noise is an even function of V and
S+ = S−. It is straightforward to show that:

S+ = S− =
e2

ℏ
4Γu2v2

u2 + v2

[
1 +

(u2 − v2)2

(u2 + v2)2

]
. (4.43)

Thanks to equations (4.41) and (4.24), we can readily obtain the Fano factor, which reads:

F =
S

2e|I|
= 1 +

(u2 − v2)2

(u2 + v2)2
−
[
1− (u2 − v2)2

(u2 + v2)2

]
B(eV − E0) +B(eV + E0)

A(eV − E0) +A(eV − E0)
. (4.44)

After a straightforward Taylor expansion, we show that:

F0 = lim
|eV |/E0≪1

F (V ) = 2−
[
1− (u2 − v2)2

(u2 + v2)2

]
2Γ2

t

4E2
0 + Γ2

t

+O

([
eV

E0

]2)
. (4.45)

4In the case of a negative bias, the following arguments remain valid if one replaces electrons by holes.
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Therefore, using the hypothesis E0 ≫ Γt, the Fano factor saturates to 2 in the linear regime, |eV | ≪ E0:

F0 ≃
E0≫|eV |

2 +O

([
eV

E0

]2)
+O

([
Γt

E0

]2)
. (4.46)

These results could have been anticipated from (4.39). Indeed, since Andreev reflections are resonant processes
via the YSR state, their probability RA(ω) is a narrow peaked function centered around E0. Most importantly,
RA ≃

|ω−E0|≫Γt

Γ2u2v2/E2
0 ≪ 1, if |eV | ≪ E0. Therefore, when |eV | ≪ E0, and E0 ≫ Γt the terms

proportional to R2
A(ω) is negligible in front of RA(ω) in (4.39) and we obtain a Poissonian shot-noise, S =

2q|I|, with q = 2e the effective charge carried by Andreev reflections. As a consequence, the Fano factor F =

q/e gives the effective charge carried by an Andreev reflection, q, and F = 2, in this regime. Unfortunately, due
to the extremely weak current signal below the resonances, The Fano factor can not be accurately measured,
when |eV | < E0. Hnece the above-mentioned Poissonian regime can not be accessed by the experiment
studied at the end of this chapter. Thus, in order to make a direct comparison with experimental data we shift
our attention to the regime: |eV | > E0.

When |eV | ≫ E0 the integral in (4.39) contains contribution from energies ω ≃ E0. For such energies, An-
dreev reflections via the YSR state are resonantly enhanced. Most importantly, the probabilityRA(ω) reaches it
maximum when ω = E0, RA(E0) = 1− (u2−v2)2

(u2+v2)2
, which does not depend on the tunneling strength Γ and can

reach unity. Hence, the term proportional to R2
A(ω) in (4.39) is no longer negligible and reduces the shot-noise

below the Poissonian limit, S < 2.2e|I|. As a consequence F decreases below 2 and reads:

F+ = F− = lim
|eV |≫E0

F (V ) = 1 +
(u2 − v2)2

(u2 + v2)2
(4.47)

Therefore, when |eV | ≫ E0, F decreases below its Poissonian limit, 1 ≤ F ≤ 2, and only depends on u2/v2,
regardless of the tunneling rate Γ, as observed in Fig.4.4.

Near the resonances,i.e., when |eV ±E0| ≲ E0, F exhibits sharp nonlinearities which are non-monotonous.
As we will show below, these non-monotonous variations are washed out by thermal effects in the experimen-
tally relevant temperature regime. Hence, we do not discuss it further.

The experimental data studied at the end of this chapter were measured at an electronic temperature T ≃
700 mK. Hence E0 ≫ kBT , while kBT largely dominates the energy width of the YSR state Γt for all
tunneling strengths studied in the experiment. Therefore, it is necessary to understand how the above results,
obtained in the zero-temperature limit, are affected by thermal effects in the low-temperature regime: E0 ≫
kBT ≫ Γt. Since, temperature significantly modifies the Fermi-Dirac distribution f(ω) only in the energy
range |ω| ≲ 2kBT , finite-temperature effects are expected to significantly modify S and F only at small biases
|eV | ≲ 2kBT and near the resonances, |eV ± E0| ≲ 2kBT . To confirm this conjecture, we numerically
computed I , S, and F using expressions (4.33) and (4.38), and compare the results to the zero-temperature
limit in Fig.4.4.

As expected, Fig.4.4 shows that thermal effects significantly modifies S and F at small biases |eV | ≤ 2kBT

and near the resonances, |eV ± E0| < 2kBT . Indeed, because of thermal effects, S no longer vanishes in the
zero-bias limit. It directly follows that the Fano factor is diverging when eV → 0 as indicated by its rapid
increases above 2 when |eV | ≤ 2kBT in Fig.4.4. In the vicinity of the resonances, i.e., when eV = ±E0,
the sharp steps in S become smooth, and their width is of the order of kBT instead of Γt. Moreover, the non-
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Figure 4.4: Noise and Fano spectroscopy of a YSR state, in the absence of single-particle processes, Λ = 0.
The YSR energy is E0 = 0.34 meV and the superconducting gap is ∆ = 1.35 meV. (a): Shot-noise S as a
function of eV/∆ for GN = 10−3G0 u

2 = 0.09πν0, v2 = 0.042πν0 and various temperature T = 0 (blue
solid line), kBT = 0.03 meV (green solid line), and kBT = 0.06 meV (red solid line). (b) and (c): Same as in
(a) for higher normal-state conductances GN = 10−2G0 and GN = 2.10−1G0, respectively. (d), (e), and (f):
Fano factor F as a function of eV/∆. The parameters are the same as in (a), (b), and (c), respectively.

monotonous variations of F are replaced by smooth monotonous decreases, and F is a linear function of V
when |eV ± E0| < kBT .

Elsewhere, the thermal effects are negligible. Indeed, when |eV | > E0 + 2kBT , Fig. 4.4 shows that F
saturates and that the asymptotic limits, F+ andF− are not affected by finite temperature, as long asE0 ≫ kBT .
Similarly, when E0 − 2kbT > |eV | > 2kBT thermal effects are negligible, and one recover the Poissonian
behavior F = 2. Nevertheless, for strong temperatures, this behavior can not be observed (see the red solid line
in Figs. 4.4 (c), (d), and (e)). Notice that for |eV | > E0 the current signal is extremely weak, and F can not be
measured experimentally. Hence we will mainly focus on the asymptotic regime |eV | ≫ E0 hereinafter.

To be complete, let us finally show that the finite-temperature expression (4.38) can also be interpreted with
simple hand-waving arguments. To that end, we should investigate how the charge transferred by carriers of
energy ω, g(ω), is distributed. Only two possible processes produce a net charge transfer across the junction.
First, an electron of the metallic tip is Andreev reflected into an unoccupied hole state of the tip with probability
RA(ω)f(ω

−)[1 − f(ω+)]. This process produces a charge transfer g(ω) = 2e. Second, the reverse process,
where a hole is reflected as an electron with probability RA(ω)f(ω + eV )[1− f(ω − eV )], produces a charge
transfer g(ω) = −2e. All other processes do not produce any charge transfer. Therefore g(ω) is distributed as

111



follows:

g(ω) =


2e, with probability, RA(ω)f(ω

−)[1− f(ω+)]

−2e, with probability, RA(ω)f(ω
+)[1− f(ω−)],

−0, with probability, 1−RA(ω){f(ω+)[1− f(ω−)] + f(ω−)[1− f(ω+)]}.
(4.48)

Using S = 2
h

∫
dω⟨[g(ω)− ⟨g(ω)⟩]2⟩, one directly recovers (4.38).

4.3.2 Results in the absence of Andreev reflections
Let us now analyze the opposite limit and study the shot-noise and, most importantly, the Fano factor spec-
troscopy produced by only single-particle processes in the absence of Andreev reflections. To eliminate the
Andreev reflections, we suppress the off-diagonal terms in grS(ω), which mix the electron and hole sectors. The
YSR state is therefore replaced by two degenerate electron and hole states of energy E0, and grS(ω) reads:

grS(ω) =
1

ω − E0 + iΛ

[
u2 0
0 v2

]
. (4.49)

Notice that we assumed that the electron and hole states have the same relaxation rate for simplicity. In prin-
ciple, these two states can have different relaxation rates, but this does not modify the results discussed below.
After straightforward algebra, we obtain expressions for the current and shot-noise that read:

I =
e

h

∫
dωT̃e(ω) [f(ω − eV )− f(ω)] + T̃h(ω) [f(ω)− f(ω + eV )] , (4.50)

S =
2e2

h

∫
dωT̃e(ω)

[
1− T̃e(ω

] [
f(ω−)f(−ω) + f(ω)f(−ω−)

]
(4.51)

+T̃h(ω)
[
1− T̃h(ω

] [
f(ω+)f(−ω) + f(ω)f(−ω+)

]
+T̃ 2

e (ω)
[
f(ω−)f(−ω−) + f(ω)f(−ω)

]
+T̃ 2

h (ω)
[
f(ω+)f(−ω+) + f(ω)f(−ω)

]
with, T̃e/h(ω) =

Γe/hΛ

(ω − E0)2 + (Γe/h + Λ)2/4
(4.52)

The above expressions have a clear physical interpretation. To show it let us study the probability distribution
of the charge transferred across the junction by carriers of energy ω, g(ω). In the absence of Andreev pro-
cesses, holes and electrons are independent charge carriers. Hence, g(ω) is the sum of two independent random
variables ge(ω) and gh(ω) representing the charge transferred by electrons of energy ω and holes of energy ω,
respectively. Let us focus on ge(ω). There are only two different single-electron processes transferring charge
across the STM junction. First, an occupied electron of energy ω can tunnel into the electronic level that subse-
quently relaxes, transferring a charge e across the junction. This process has a probability T̃e(ω)f(ω−)f(−ω).
Second, the complementary process, where an electron from the incoherent bath is transmitted into an unoc-
cupied electron state with energy ω in the metallic tip, transfers a charge −e. This process, has a probability
T̃e(ω)f(−ω−)f(ω). Hence, ge(ω) is distributed according to:

ge(ω) =


e, with probability, T̃e(ω)f(ω−)f(−ω) ,
−e, with probability, T̃e(ω)f(−ω−)f(ω) ,

0, with probability, 1− T̃e(ω) [f(−ω−)f(ω) + f(ω−)f(−ω)] .
(4.53)
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Along the same line, one readily found that gh(ω) is distributed according to :

gh(ω) =


−e, with probability, T̃h(ω)f(ω+)f(−ω) ,
e, with probability, T̃h(ω)f(−ω+)f(ω) ,

0, with probability, 1− T̃h(ω) [f(−ω+)f(ω) + f(ω+)f(−ω)] .
(4.54)

Using I =
1

h

∫
dω⟨g(ω)⟩ and S =

1

h

∫
dω⟨[g(ω)− ⟨g(ω)⟩]2⟩ one recovers equations (4.50) and (4.51).

We first focus our attention on the ideal zero-temperature limit. In this limit, all integrals entering equations
(4.50) and (4.51) are exact, and we can obtain exact analytical expressions for I and S that read:

I =
2e

h

{
ΓeΛ

Γe + Λ

[
arctan

(
2
eV − E0

Γe + Λ

)
+ arctan

(
2

E0

Γe + Λ

)]
(4.55)

+
ΓhΛ

Γh + Λ

[
arctan

(
2
eV + E0

Γh + Λ

)
− arctan

(
2

E0

Γh + Λ

)]}

S =
2e2

h
sign(V)

{
ΓeΛ

(Γe + Λ)

[
1 +

(Γe − Λ)2

(Γe + Λ)2

] [
arctan

(
2
eV − E0

Γe + Λ

)
+ arctan

(
2

E0

Γe + Λ

)]
(4.56)

− ΓeΛ

(Γe + Λ)

[
1− (Γe − Λ)2

(Γe + Λ)2

] [
2(Γe + Λ)(eV − E0)

4(eV − E0)2 + (Γe + Λ)2
+

2(Γe + Λ)E0

4(E0)2 + (Γe + Λ)2

]
+

ΓhΛ

(Γh + Λ)

[
1 +

(Γh − Λ)2

(Γh + Λ)2

] [
arctan

(
2
eV + E0

Γh + Λ

)
− arctan

(
2

E0

Γh + Λ

)]
− ΓhΛ

(Γh + Λ)

[
1− (Γh − Λ)2

(Γh + Λ)2

] [
2(Γh + Λ)(eV + E0)

4(eV + E0)2 + (Γh + Λ)2
+

2(Γh + Λ)E0

4(E0)2 + (Γh + Λ)2

]}
.

Similarly to the current and shot-noise produced by Andreev reflections, here I and S are negligible for |eV | ≪
E0, rapidly increase around the resonances when eV ≃ ±E0 and saturate to finite values I+, S+, when
eV ≫ E0, and I−, S− when eV ≪ −E0 respectively. Since we assume E0 ≫ Γe,Γh,Λ throughout this
chapter, the asymptotic limits of the current and shot-noise are easily obtained and read:

I+ =
e

ℏ
ΓeΛ

Γe + Λ
, I− = − e

ℏ
ΓhΛ

Γh + Λ
, (4.57)

S+ = 2eI+

[
1− 2ΓeΛ

(Γe + Λ)2

]
, S− = 2e|I−|

[
1− 2ΓhΛ

(Γh + Λ)2

]
. (4.58)

Therefore, contrarily to the results obtained in the sole presence of Andreev reflections, here I± and S± are not
necessarily identical.

Thanks to the analytical expressions (4.57) and (4.58), it is straightforward to obtain the Fano factor ana-
lytically. Nevertheless, the resulting expression is lengthy and not insightful. Therefore, to gain insight into its
qualitative features, we evaluate F for different YSR parameters and normal-state conductance. The results are
presented in Fig. 4.5. Fig. 4.5 shows that F ≃ 1 when |eV | ≪ E0, exhibits sharp non-monotonous variations
around the resonances eV ≃ ±E0 and finally saturates to finite values F+ < 1 and F− < 1, when eV ≫ E0

and eV ≪ −E0, respectively.
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Figure 4.5: Fano factor spectroscopy of a YSR state in the absence of Andreev processes. The YSR energy
is E0 = 0.34 meV and the superconducting gap is ∆ = 1.35 meV. (a): Fano factor F as a function of
eV/∆ for GN = 10−3G0 u

2 = 0.09πν0, v2 = 0.042πν0 and various temperature T = 0 (blue solid line),
kBT = 0.03 meV (green solid line), and kBT = 0.06 meV (red solid line). (b) and (c): Same as in (a)
for higher normal state conductances GN = 10−2G0 and GN = 2.10−1G0, respectively. (d), (e), and (f):
Same as (a),(b), and (c) for perfectly mirrored particle-hole asymmetry of the YSR state: u2 = 0.042πν0, and
v2 = 0.09πν0.

When |eV | ≪ E0, the charge carriers transferred across the STM junction have energies ω ≪ E0. In

this energy range, T̃e(ω) ∼
ΓeΛ

E2
0

≪ 1 and T̃h(ω) ∼
ΓhΛ

E2
0

≪ 1. Hence, the terms proportional to T̃ 2
e (ω) and

T̃ 2
h (ω) in (4.51) can be neglected and the shot-noise is Poissonian, S ∼ 2q|I|, with q = e the effective charge

transferred by single-particle processes. It directly follows that F ≃ 1.
As already mentioned, the Fano factor can not be measured accurately when |eV | < E0, because of the

extremely weak current signal. Hence, we shift our attention on the regime eV ≫ E0. Using equations (4.57)
and (4.58), and after straightforward algebra, we obtain compact expressions of F+, and F− that read:

F+ = 1− 2ΓeΛ

(Γe + Λ)2
, F− = 1− 2ΓhΛ

(Γh + Λ)2
. (4.59)

Therefore, in sharp contrast with the Fano-factor produced by Andreev reflections, in the sole presence of
single-particle processes, F± < 1, and F+ ̸= F− if u2 ̸= v2. Moreover, F± depends on the tunneling rate Γ.

It is also interesting to remark that the order of the asymptotic limits, F+ and F− depends on the tunneling
rate Γ. Indeed, for weak tunneling rates Γe,Γh ≪ Λ, F± ≃ 1 − 2Γe/h

Λ . Hence, in this regime, F+ < F−, if
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u2 > v2 and vice versa. On the contrary, for strong tunneling rates, Γe,Γh ≫ Λ, F± ≃ 1− 2Λ
Γe/h

. Therefore, in

this regime, F+ > F−, if u2 > v2 and vice versa. The order inversion between F+ and F− occurs at the special
point Γ = Λ/

√
u2v2, where F+ = F−.

In the more realistic finite-temperature case, as mentioned previously, thermal effects significantly modify
the Fano factor spectroscopy only at small biases and near the resonances, as observed in Fig. 4.5. There-
fore, the asymptotic limits F± are unaffected by thermal effects, and equations (4.59) remain valid at finite
temperature, as long as kBT ≪ E0.

To conclude this subsection, in the absence of Andreev reflections, the asymptotic limits of the Fano factor
are always below 1 regardless of the temperature and the tunneling rate Γ. This result sharply contrasts with
2 ≥ F± ≥ 1 observed in the absence of single particle processes (see (4.47)).

4.3.3 Interplay between single-particle processes and Andreev reflections
In a realistic sample, one can not perfectly isolate the YSR state from its environment, and relaxation is in-
evitable. Hence both Andreev reflections and single-particle processes play a role in the transport via YSR
states. In this case, the Fano spectroscopy exhibits signatures of these two different processes, as shown below.
In the generic case, the shot-noise is given by:

S =
2e2

h

∫
dω

4ΓeΓh{(ω − E0)
2 + (Γe − Γh)

2/4}
{(ω − E0)2 + Γ2

t /4}2
[f(ω−)f(−ω+) + f(ω+)f(−ω−)] (4.60)

+
ΓeΛ{(ω − E0)

2 + (3Γh − Γe + Λ)2/4}
{(ω − E0)2 + Γ2

t /4}2
[f(ω−)f(−ω) + f(−ω−)f(ω)]

+
ΓhΛ{(ω − E0)

2 + (3Γe − Γh + Λ)2/4}
{(ω − E0)2 + Γ2

t /4}2
[f(ω)f(−ω+) + f(−ω)f(ω+)]

+
Γ2
e(Λ + 2Γh)

2f(ω−)f(−ω−) + Γ2
h(Λ + 2Γe)

2f(ω+)f(−ω+)

((ω − E0)2 + Γ2
t /4)

2

+
Λ2(Γe − Γh)

2f(ω)f(−ω)
((ω − E0)2 + Γ2

t /4)
2

.

Let us first focus on the zero-temperature limit. In this limit, the two last lines of equation (4.60) vanishes,
and S adopts an elegant form:

S =
2e2

h
sign(V )

{ eV∫
0

dω4R(ω)[1−R(ω)]− 4R(ω)Te(ω) + Te(ω)[1− Te(ω)] (4.61)

+

0∫
−eV

dω4R(ω)[1−R(ω)]− 4R(ω)Th(ω) + Th(ω)[1− Th(ω)]

}

To interpret the above equation, let us investigate the distribution probability of the transferred charge across
the junction by carriers of energy ω, g(ω). Focusing on the case of positive bias, there are only three different
processes transferring charge across the junction. First, an electron with energy |ω| < eV from the tip can
be Andreev reflected into an unoccupied hole state of the tip producing a charge transfer 2e. This process has
a probability RA(ω). Second, an electron from the tip with energy 0 < ω < eV can be transmitted to the
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substrate via an incoherent single-particle process, transferring a charge e across the junction. This process
occurs with a probability Te(ω). Third, occupied quasiparticles of the incoherent bath can be transmitted into
unoccupied holes states of the tip with energy 0 > ω > −eV , via an incoherent single-particle process,
transferring a charge −e across the junction. Such process has a probability Th(ω). Therefore, in the energy
range 0 < ω < eV , g(ω) is distributed according to:

g(ω) =


2e, with probability RA(ω),

e, with probability Te(ω),
0, with probability 1− {RA(ω)− Te(ω)}.

(4.62)

In the energy range −eV < ω < 0, g(ω) is distributed according to:

g(ω) =


2e, with probability RA(ω),

−e, with probability Th(ω),
0, with probability 1− {RA(ω)− Th(ω)},

(4.63)

and vanishes in the energy range |ω| > eV . Using S = 2
h

∫
dω⟨g2 −⟨g⟩2⟩, one finally recover equation (4.61).

It is also interesting to remark that the terms RA(ω)[1−RA(ω)], Te(ω)[1− Te(ω)] and Th(ω)[1− Th(ω)],
in the integrand of (4.61) could be interpreted as the auto-correlation of the Andreev, single-electron and single-
hole currents respectively. On the other hand, the terms −4RA(ω)Te(ω) and −4RA(ω)Th(ω) might be viewed
as the cross-correlations between the Andreev and single-electron current and the Andreev and single-hole
currents respectively. Notice that these terms give a negative contribution to S, indicating that Andreev and
single-particle currents are anti-correlated, due to the Pauli exclusion principle. To show it let us assume
V > 0. Then, Andreev reflections and single-electron processes have the same initial state: an occupied
electron in the tip at energy eV > ω > 0. Hence, when Andreev current increases, single-electron current
reduces and vice-versa. The anti-correlation between the Andreev and single-hole currents can be understood
with similar arguments, replacing electrons by holes and assuming V < 0.

The integrals entering (4.61) can be performed analytically, and we finally obtain an analytical expression
for S that reads:

S =
2e2

h
sign(V)

{
4ΓeΓh

Γ3
t

[
(Γh − Γe)

2 (C(eV − E0) + C(eV + E0)) + Γ2
t (D(eV + E0) +D(eV − E0))

]
(4.64)

+
ΓeΛ

Γ3
t

[
(3Γh − Γe + Λ)2 (C(eV − E0) + C(E0)) + Γ2

t (D(eV − E0) +D(E0))
]

+
ΓhΛ

Γ3
t

[
(3Γe − Γh + Λ)2 (C(eV + E0)− C(E0)) + Γ2

t (D(eV + E0)−D(E0))
]}
,

with, C(ω) = A(ω) +B(ω), and D(ω) = A(ω)−B(ω). (4.65)

As observed in Fig. 4.6, the shot-noise is negligible when E0 − |eV | ≫ Γt, and vanishes at zero-bias. When
|eV | ∼ E0, S rapidly increases and saturates to finite values S+ and S− when (eV − E0) ≫ Γt and (eV +

E0) ≪ −Γt, respectively. Hence, we mainly focus our attention on biases |eV | > E0.
Contrarily to the shot-noise produced only by Andreev reflections (see Subsection. 4.3.1), the shot-noise

is not an even function of the bias and S+ ̸= S−, unless u2 = v2. This feature is due to the presence of
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Figure 4.6: Shot-noise spectroscopy of a YSR state for finite relaxation rate Λ = 10−3 meV. The YSR
energy is E0 = 0.34 meV and the superconducting gap is ∆ = 1.35 meV. (a): Shot-noise S as a function
of eV/∆ for GN = 10−3G0 u

2 = 0.09πν0, v2 = 0.042πν0 and various temperature T = 0 (blue solid line),
kBT = 0.03 meV (green solid line), and kBT = 0.06 meV (red solid line). (b) and (c): Same as in (a)
for higher normal-state conductances GN = 10−2G0 and GN = 2.10−1G0, respectively. (d), (e), and (f):
Same as (a),(b), and (c) for perfectly mirrored particle-hole asymmetry of the YSR state: u2 = 0.042πν0, and
v2 = 0.09πν0.

single-particle processes. Moreover, the order of the asymptotic limits S+ and S− depends on the tunneling
rate Γ, as observed in Fig. 4.6. To understand this feature, we use E0 ≫ Γt and obtain simple expressions that
read:

S+ =
2e2

h

{
4ΓeΓh

Γt

[
1 +

(Γe − Γh)
2

Γ2
t

]
+

ΓeΛ

Γt

[
1 +

(3Γh − Γe + Λ)2

Γ2
t

]}
, (4.66)

S− =
2e2

h

{
4ΓeΓh

Γt

[
1 +

(Γe − Γh)
2

Γ2
t

]
+

ΓhΛ

Γt

[
1 +

(3Γe − Γh + Λ)2

Γ2
t

]}
. (4.67)

Therefore, when Γ(u2 + v2) ≪ Λ, single-particle process dominate Andreev reflections, and S+ ∼ 2e2

h
Γu2

Λ

while S− ∼ 2e2

h
Γv2

Λ . Hence, S+/S− ∼ u2

v2
, as observed in Figs. 4.6 (a) and (d). Increasing Γ, S+ approaches

S−, and the order of the asymptotic is inverted, as observed in Figs. 4.6(b) and (e). Finally, when Γu2,Γv2 ≫ Λ,
Andreev reflections are dominant, S+/S− → 1 and S tend to be symmetric, see Figs. 4.6 (c) and (f).
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Let us now turn to the Fano factor spectroscopy. Thanks to equations (4.61) and (4.24) we can readily obtain
the Fano factor F = S/(2e|I|) analytically. The analytical expression of F is not insightful. Hence, to gain
insight into the qualitative features of F we numerically evaluate it for different tunneling rates Γ and present
the results in Fig. 4.7. As observed in Fig. 4.7 F saturates to finite values F+ and F− when eV −E0 ≫ Γt and
eV + E0 ≪ −Γt respectively. When the bias approaches the positive and negative resonances, eV ∼ ±E0, F
exhibits abrupt non-monotonous variations. When |eV | −E0 ≪ Γt, F linearly depends on V and takes values
between 1 and 2. This sharply contrasts with F = 2 observed in the same regime for Andreev reflections or
F = 1 for single-particle processes. Naively one can interpret this feature as a result of the competition between
Andreev and single-particle processes. When |eV | ≪ E0, single-particle, and Andreev processes produce
Poissonian shot-noise. Hence, the Fano factor lies between 1 and 2 depending on the relative contribution of
single-particle and Andreev processes. Unfortunately, we recall that, this regime is not experimentally relevant
because of the weak current signal. Hence we shift our attention to the case |eV | > E0 and the asymptotic
limits F+ and F−.

Fig. 4.7 shows that, due to single-particle processes, F is not an even function of V , and F+ ̸= F−.
However, unlike in the absence of Andreev reflections, the order of the asymptotic limits does not depend on
the tunneling strength Γ. Namely, F+ < F− if u2 > v2 and vice versa, as observed in Fig. 4.7. Indeed, using
the hypothesis, E0 ≫ Γt, we obtain a simple analytical expression for the asymptotic limits F+ and F− that
read:

F+ ≃ 1− 2Γe

Γe + Γh + Λ
− 2Γe(Γh − Γe)

(Γe + Γh + Λ)2
+

2Γh

2Γh + Λ
, (4.68)

F− ≃ 1− 2Γh

Γe + Γh + Λ
− 2Γh(Γe − Γh)

(Γe + Γh + Λ)2
+

2Γe

2Γe + Λ
, (4.69)

and, F+ − F− ≃−
2Λ(Γe − Γh)(Γ

2
e + 4Λ(Γe + Γh) + 6ΓeΓh + Γ2

h + 2Λ2)

(2Γe + Λ)(2Γh + Λ)
. (4.70)

These equations directly prove that F+ > F− for v2 > u2 , while F− > F+ for u2 > v2. In other words, the
Fano factor is stronger for the weaker resonance.

In addition, because of the competition between Andreev and single-particle processes, F± strongly de-
pends on the tunneling rate Γ and, therefore, on GN . Indeed, for weak tunneling rates Γ(u2 + v2) ≪ Λ, the
single-particle processes dominate, and F± barely deviates from 1, see Figs. 4.7 (a) and (d). When Γ increases,
F+ increases above 1 while F− decreases below 1 if u > v2, and vice versa when v2 > u2, as observed
in Figs. 4.7 (b) and (e). In the opposite limit, Γ(u2 + v2) ≫ Λ, Andreev reflections dominate, F is almost
symmetric and F± ≃ 1 + (u2−v2)2

(u2+v2)2
, see Figs. 4.7 (c) and (f).

As expected, in the experimentally relevant temperature regime, E0 ≫ kBT ≫ Λ, thermal effects signifi-
cantly modify the shot-noise and Fano factor spectroscopy only for small biases and around the resonances, as
observed in Fig. 4.6 and Fig. 4.7. Most importantly, when kBT ≫ Γt, F rapidly increases when |eV | < 2kBT

and diverges at V = 0 and linearly depends on V in the vicinity of the resonances, when |eV ± E0| < kBT .
Namely, for |eV − E0| < kBT , F ≃ F (E0)− α+V , while for |eV + E0| < kBT F ≃ F (E0) + α−V , with:

α+ =
Γe(2Γh + Λ)

Γ2
t

, α− =
Γh(2Γe + Λ)

Γ2
t

. (4.71)

Hence, contrarily to the results obtained in the absence of single-particle processes (see Subsection. 4.3.1) the
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Figure 4.7: Fano factor spectroscopy of a YSR state for finite relaxation rate Λ = 10−3 meV. The YSR
energy is E0 = 0.34 meV and the superconducting gap is ∆ = 1.35 meV(a): Fano factor F as a function of
eV/∆ for GN = 10−3G0 u

2 = 0.09πν0, v2 = 0.042πν0 and various temperature T = 0 (blue solid line),
kBT = 0.03 meV (green solid line), and kBT = 0.06 meV (red solid line). (b) and (c): Same as in (a)
for higher normal-state conductances GN = 2.10−2G0 and GN = 2.10−1G0, respectively. (d), (e), and (f):
Same as (a),(b), and (c) for perfectly mirrored particle-hole asymmetry of the YSR state: u2 = 0.042πν0, and
v2 = 0.09πν0.
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slopes are not identical, α+ ̸= α−, except if u2 = v2. The strongest resonance is associated with the steepest
slope: α+ > α− is u2 > v2 and vice-versa.

Elsewhere, thermal effects do not modify the zero-temperature results. Most importantly, the asymptotic
limits F+ and F− are not affected by thermal effects and equations (4.68), (4.69), which constitute the central
results of our theoretical model and remains valid at finite temperature as long as kBT ≪ E0.

To conclude our discussion, we stress that equations (4.68), (4.69), and (4.70) allow us to draw important
conclusions that remain valid at finite temperatures5:

(i). When u2 ̸= v2, havingF+ = F− requires the absence of relaxation, i.e., Λ = 0. Consequently, a voltage-
asymmetric Fano factor F+ ̸= F−, clearly indicates the presence of single quasi-particle tunneling events
in the current.

(ii). F+ > F− for v2 > u2 , while F− > F+ for u2 > v2. In other words, the Fano factor is stronger for the
weaker resonance.

(iii). Independently of the relaxation rate Λ, max[F+, F−] ≥ 1. This is a consequence of the presence of
Andreev reflections (see Eqs. (4.59)). This proves that a Fano factor larger than 1 is a consequence of
Andreev processes.

4.4 Comparison with experimental data
Thanks to a recent collaboration with U. Thupakula, A. Palacio-Morales, L. Cario, M. Aprili, and F. Massee,
we were able to make a quantitative comparison between our theoretical model and experimental noise data. In
this work, U. Thupakula et al. used shot-noise scanning tunneling microscopy to study electron tunneling into
superconducting 2H-NbSe2 mediated by YSR states. Despite its simplicity, the theoretical model presented
above is able to quantitatively reproduce the Fano factor data measured experimentally by our colleagues. The
results of this fruitful collaboration were recently published in Physical Review Letters [33]. In this section, we
first briefly describe the experimental setup. Then, we present the method used to extract the model parameters
from the experimental data. Finally, we compare the experimental Fano factor data to the theoretical predictions
of our model and show the quantitative agreement between theory and experiment.

4.4.1 Description of the experimental setup and data
In their experiment, U. Thupakula et al. studied the electronic transport into YSR states in 2H-NbSe2. To that
end, the current noise was measured at the atomic scale thanks to a home-built scanning tunneling microscope
with cryogenic circuitry operating in the MHz regime [21]. Thorough details about the circuitry, its calibration,
and the fitting method used to measure the Fano factor can be found in [33]. An etched, atomically sharp, and
stable tungsten tip was used for all measurements.

2H-NbSe2 single crystals, grown using an iodine transport method, were unintentionally doped by a few
tens of ppm of magnetic species (Fe, Cr, Mn) contained in the Niobium precursor (see [18] for more details).
After a mechanical cleaving in a cryogenic vacuum at ∼ 20 K, these single crystals were directly inserted into
the head of the STM tip at 4.2 K.

5as long as E0 ≫ kBT
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Figure 4.8: YSR spatial profile. (a): Current map of the YSR with a large spatial extent recorded at negative
(left) and positive (right) bias. (b): Cuts along the red and blue lines in panel (a) , respectively, highlighting the
out-of-phase nature of the particle-hole asymmetry. (c) and (d): As (a) and (b) for a more compact but relatively
strong YSR located elsewhere on the same sample. Figure reproduced from [33].

Because of the magnetic impurities, the 2H-NbSe2 samples studied here exhibit YSR sub-gap states local-
ized around the impurities. Here we focus on two YSR states shown in Fig. 4.8. The precise spatial extent of
the in-gap resonances, as well as the particle-hole asymmetry of the core, can vary from impurity to impurity
as it depends on the impurity type and its location in the crystal structure [18, 153, 154]. Because of the 2D
superconductivity in 2H-NbSe2, the YSR wavefunctions have a large spatial extent away from the cores. The
electron and hole components oscillate as a function of the distance from the core and are out of phase one with
each other, as observed in Fig.4.8.

As we are interested in the tunneling processes through the YSR states, the shot-noise was first measured
on top of the impurity’s cores. To facilitate comparison, setup parameters were chosen such that they give
roughly the same YSR-current, i.e. the YSR peaks in differential conductance in Figs. 4.9 (a) and (c) have
approximately the same height. Consequently, since the noise is proportional to the current, the simultaneously
recorded current noise has a similar magnitude for the two cores, despite the rather different conditions outside
the gap, see Figs. 4.9.

It is important to stress that for every normal-state conductance studied experimentally, the current inside
the superconducting gap (i.e., for |eV | < ∆) vanishes when the tip probes the clean 2H-NbSe2, away from
impurities. This clearly indicates that the contribution of ordinary Andreev reflections to transport observables
is negligible. Therefore, the in-gap current solely originates from resonant tunneling via the YSR states, and
our low-energy approximation (4.22) is legitimate.

Fig. 4.9 clearly shows that the noise on the YSR cores does not follow F = 1. Indeed, for the dominant
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Figure 4.9: Noise on the YSR cores. (a): Differential conductance spectrum taken at the core of the YSR state
shown in Fig.4.8 (a). The set-up parameters are chosen such that GN ≃ 0.01G0. (b): Fano factor spectrum
measured at the same location. The black line indicates F = 1 and clearly shows that F deviates from 1 inside
the gap for positive and negative biases. Outside the gap, F converges to 1, as expected for elastic single-
particle tunneling in the quasiparticle continuum of the superconducting substrate. (c) and (d): The same as
(a) and (b) for a more compact, but relatively strong, YSR located elsewhere on the same sample and set-up
parameters such that GN ≃ 0.001G0.

resonance, i.e. positive bias for Fig. 4.9 (b) and negative bias for Fig. 4.9 (d) the noise is reduced (F < 1),
whereas for the weak resonance, i.e., negative biases for Fig. 4.9 (b) and positive biases for Fig. 4.9 (d), it
is enhanced (F > 1). Notice that, although the deviations in absolute numbers are relatively small, they are
larger than the experimental error bars due to the high signal-to-noise ratio and the accurate fitting procedure
(see Supplementary Information Section 1 of [33]). Thus the qualitative features of the experimental Fano
factor data reported here are well captured by our theoretical model. It suggests that, despite its simplicity, our
theoretical model contains the necessary ingredients to describe electronic transport into YSR states and can
be used to interpret the experimental data. Most importantly, the observation of F > 1 indicates the presence
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of Andreev processes, while the particle-hole asymmetry of the noise indicates a contribution from incoherent
single-particle processes, meaning both processes operate simultaneously.

Figure 4.10: Noise on the YSR tails. (a): Differential conductance G =
dI

dV
on two tail locations with

opposite particle-hole asymmetry. Set-up parameters are set such that the normal-state conductance is GN ≃
0.055G0. (b): Fano factor, F, extracted from the measured shot noise at the same tail locations. It clearly shows
deviations from F = 1 inside the gap where the current is dominated by the YSR. The points corresponding
to I < 10 pA have been omitted for clarity. For such small currents, since the fluctuations in the noise are the
same for all voltages, the associated error in F becomes relatively large. (c): Constant current image of the
2H-NbSe2 surface around the YSR core of Fig.4.8 (c). The location of the blue and red spectra in (a) and (b)
are indicated by the blue and red crosses, respectively. The black cross indicates the location of the YSR core.

To make a more quantitative comparison between the theoretical model described previously and ex-
perimental Fano factor data, we shift our attention to the YSR tails in order to avoid possible mechanical
[146, 147, 129], multi-paths related [148, 149, 150, 151], or spin-dependent [152] complications from direct
tunneling into the impurity, which were not included in our theory. Since the particle-hole asymmetry of the
YSR wavefunction oscillates as a function of distance from the core [18], one can probe locations where the
particle-hole asymmetry is nearly perfectly mirrored while all other experimental parameters remain identical.
Fig.4.10 (c) shows two such locations, both situated at a distance of several atoms from the core of the YSR
state presented in Fig. 4.8 (c), ensuring that direct tunneling into the impurity is negligible. Fig. 4.10 (b) shows
the noise recorded simultaneously with the differential conductance spectra of Fig. 4.10 (a). Fig. 4.10 (b) shows
that, as was the case for the spectra taken on the core (see Fig. 4.9), the noise is reduced, F < 1 for the domi-
nant resonance and enhanced, F > 1, for the weaker resonance. Notice that F is roughly equally enhanced as
it is suppressed and converges to F = 1 as soon as the current becomes dominated by the quasi-particles at the
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Figure 4.11: Normal-state conductance dependence of the YSR conductance peaks for the tail location indi-
cated by the blue cross in Fig.4.10 (c). (b): Same as in (a) for the location indicated by the red cross in Fig. 4.10
(c). A fit of the linear part of the curves at weak GN yields u2

πν0
and v2

πν0
for each location.

coherence peaks, |eV | ≥ ∆, as expected for quasi-particle tunneling following Poissonian statistics [155].

4.4.2 Quantitative comparison
Our theoretical model depends on five input parameters that are the electronic temperature, T , the YSR energy,
E0, the electron and hole tunneling rates Γe = Γu2 and Γh = Γv2, and finally the YSR relaxation rate, Λ.

The YSR energy can be directly measured from the position of the in-gap conductance peaks. The YSR
state in Fig. 3.2 (c), has an energy E0 ≃ 0.4meV, while the one in Fig. 3.2 (b) has an energy E0 ∼ 0.28 meV.
Although the base temperature of the STM is ∼ 0.3 K, the electron temperature, determined by noise thermom-
etry (see the Supplementary Material in [33]) is actually higher than that, and T ∼ 0.7 K. This is likely due to
limited thermal anchoring and filtering of the current line. Therefore, kBT ∼ 0.06meV and E0 ≫ kBT .

The dimensionless tunneling rate Γπν0 can be obtained from the experiment as it is directly related to the
normal-state conductance of the STM junction, GN , thanks to:

GN

G0
=

2Γπν0
(1 + Γπν0)2

, (4.72)

with G0 = 2e2/h the quantum of conductance.
In addition, for weak enough normal-state conductance, such that GN ≪ G0 and Γ(u2 + v2) ≪ Λ, the

conductance peaks are given by:

G+ ≃ G0
2Γπ2ν0
8kBT

u2

πν0
, G− ≃ G0

2Γπ2ν0
8kBT

v2

πν0
. (4.73)
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Figure 4.12: Theory experiment comparison for Fano factor data measured on the top of the YSR tails. (a):
Sub-gap F for the blue spectrum in Fig. 4.10 (b) (diamonds), compared with theoretical curves (solid lines)
for three different values of Λ as indicated in the legend. Theoretical curves in the sole presence of Andreev
reflection (AR, Λ = 0 µeV ) and inelastic quasi-particle tunneling (IQP, Λ = 1 µeV ) are also shown for
comparison. (b): Same as in (a) for the red data in Fig. 4.10 (b).

In this regime, since GN ≪ G0, GN ≃ 2Γπν0, and we finally obtain:

G+ ≃ πGN

8kBT

u2

πν0
, G− ≃ πGN

8kBT

v2

πν0
. (4.74)

Therefore,
u2

πν0
and

v2

πν0
can be extracted from the normal state conductance (GN ) dependence of the YSR

conductance peaks (G±), see Figs. 4.11 (a) and (b). Here, we fit the linear part at low conductance to determine
u2

πν0
and

v2

πν0
. Thus, equations (4.72) and (4.74) allow us to determine Γe and Γh directly from the experimental

conductance data. This enables us to calculate the noise with the YSR relaxation rate Λ, which is masked in
the experimental conductance data by thermal broadening.

In Fig. 4.12, we compare the experimental Fano factor data for biases, V , where the tunnelling current is
carried exclusively by the YSR states, i.e., |V | < 0.8 mV, with theoretical predictions obtained with our model
((4.60) and (4.23)) for several values of the relaxation rate Λ. Fig. 4.12 shows quantitative agreement between
theoretical curves and experimental data for Λ ∼ 1 µeV, for both measured tip locations, corresponding to
a relaxation time τ = ℏ/Λ ∼ 0.7 ns. It is worth noticing that we extracted u2 and v2 from the linear part
of Figs. 4.11 (a) and (b) while all experimental noise data was recorded in the non-linear part of Figs. 4.11
(a) and (b), highlighting the robustness of our results. We stress that increasing values of Λ, meaning shorter
relaxation times, incoherent single-particle tunneling increasingly dominates the tunneling process. Indeed, for
Λ = 10 µeV, the calculated Fano factor is already nearly F = 1, for all biases, presented in Fig. 4.12. This puts
a strong lower limit on the relaxation time extracted from the noise data. The sub-nanosecond relaxation time
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τ ∼ 0.7 ns at 0.7 K, extracted from the noise data, is similar to that reported for Mn atoms on a Pb(111) surface
[32] and not incompatible with the electron-phonon relaxation time in 2H-NbSe2 [156]. More importantly,
the energy scale of the relaxation that we extracted, Λ ∼ 1 µeV is much smaller than the electron tempera-
ture and masked by thermal broadening in the differential conductance spectroscopy. This clearly shows that
scanning tunneling shot-noise spectroscopy is a powerful technique that allows one to access energy/time scale
inaccessible to conventional spectroscopy techniques.

To be complete, we also included theoretical curves of the Fano factor produced by only Andreev reflection
(AR) or only incoherent single-particle processes (IQP). Both curves fail to reproduce the data for any Λ, as the
former always has F > 1 for both polarities and the latter F < 1.

4.4.3 Limits of the model and discussion
Let us now come back to the experimental data measured on the YSR cores and analyze the experimental
Fano factor data of Figs. 4.9 (b) and (d) using our theoretical model. As for the tail locations, we extract the
input parameters u2

πν0
and u2

πν0
from the linear part of G+(GN ) and G−(GN ) at low normal-state conductance,

respectively, see Figs. 4.13 (a) and (c). With these parameters in hand, we can readily calculate the Fano
factor for various relaxation rates Λ and compare the theoretical curves to the experimental data. The results
of this comparison are presented in Fig. 4.13 (b) and (d).Fig. 4.13 (b) and (d) show that, although still in
qualitative agreement, the theoretical curves slightly deviate quantitatively from the experimental points. The
slight quantitative inaccuracy of our model suggests that tip- or current-induced effects, which are not included
in our theory, do play a role when the current is measured directly on top of the YSR cores. The non-equilibrium
Green’s functions method being a versatile framework, these effects could be included in our theory and studied
in the next future. Despite the less accurate fit, the Fano factor measured on the YSR cores of Fig. 4.8 (a) and
(c) agree best with the theory curves that use a relaxation rate Λ ∼ 1 µeV, similar to that obtained on the
YSR tail. This highlights the simultaneous presence of Andreev processes and incoherent single-particle. This
suggests that for roughly equal YSR currents, the YSR lifetime in 2H-NbSe2 is independent of the particular
details of the magnetic impurity and the measurement location.

4.5 Conclusion and perspectives
To conclude, we presented a theoretical analysis of the electronic transport into YSR sub-gap states. Our
model includes a phenomenological relaxation rate of the YSR state Λ that allows for resonant single-particle
tunneling processes in addition to resonant Andreev processes via the YSR state. Using the Keldysh technique,
we extracted analytical expressions of the asymptotic values F+ and F− reached by the Fano factor in the
saturated regimes eV ≫ E0 and eV ≪ −E0, respectively (see (4.68) and (4.68)). These expressions allow us
to draw important conclusions:

(i). F+ ̸= F− clearly indicates the presence of incoherent single-particle processes.

(ii). F is stronger on the weaker resonance.

(iii). Independently of the relaxation rate, F > 1 for the weaker resonance, indicating the presence of Andreev
reflections.
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Figure 4.13: Theory experiment comparison for Fano factor data measured on the top of the YSR cores of
Fig.3.2 (a) and (c). (a): Normal-state conductance dependence of the YSR conductance peaks measured on top
of the YSR core shown in Fig.3.2 (a). A fit of the linear part of the curves at weak GN yields u2

πν0
and v2

πν0
.

Sub-gap F for the blue spectrum in Fig. 4.9 (b) (dots), compared with theoretical curves (solid lines) for three
different values of Λ as indicated in the legend. Theoretical curves in the sole presence of Andreev reflection
(AR, Λ = 0 µeV) and inelastic quasi-particle tunneling (IQP, Λ = 1 µeV) are also shown for comparison. (c)
and (d): Same as in (a) and (b) for the blue data in Fig. 4.9 (d).

Then, we used our theoretical model to analyze the experimental data measured by U. Thupakula et al.. The
theory/experiment comparison shows that our model correctly captures the main features of F . In agreement
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with our theoretical predictions, experimental data show the persistent enhancement of F above 1 for the
smaller of the two YSR resonances, which directly proves the presence of Andreev processes. The measured
asymmetry in F reveals the presence of single-particle processes. With Λ as the only adjustable parameter, we
are able to obtain a quantitative agreement between theory and experiment. From this quantitative agreement,
we extracted the relaxation rate Λ ∼ 1 µeV.

Although qualitatively still in agreement, the theoretical curves for the data taken on the cores Fig. 4.13
slightly deviate quantitatively. It suggests that tip and/or current induced effects, which are currently not in-
cluded in our theory, may indeed play a role when the STM tip is right on top of the YSR core. These effects
could be included in the theory and studied in the next future. Also, it would be interesting to understand
how the present results generalize to the case of a quantum spin impurity. This point could be addressed in
the next future, but would require state-of-the-art technique adapted to strongly-correlated systems with local
interactions, like non-equilibrium dynamical mean-field theory [36].

We stress that the YSR relaxation rate estimated from comparison with theoretical curves, Λ ∼ 1 µeV,
is much smaller than kBT = 0.7 K. Thus, shot-noise spectroscopy allows one to probe energy/time scales
inaccessible to conventional spectroscopy.

Although experimentally challenging, the measurements presented here show the feasibility of using atomic-
scale shot-noise to elucidate the transport dynamics through superconducting sub-gap states. Hence, it is le-
gitimate to wonder how the above-mentioned results could be generalized to other types of superconducting
sub-gap states, such as Andreev bound-states and/or topological Majorana zero modes. In the next chapter, we
will address this point and shows that shot-noise tomography can be used to distinguish trivial fermionic states
from Majorana zero modes [34].
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Chapter 5

Shot-noise tomography: a new tool to identify
Majorana zero modes (MZM)

In the precedent chapter, we have shown that the recently developed scanning tunneling shot-noise spectroscopy
is a powerful experimental technique that provides valuable insights into the properties of superconducting sub-
gap states. More especially, we showed that the Fano factor in the YSR state is sensitive to both their intrinsic
lifetime and particle-hole asymmetry. It seems, therefore, natural to wonder if the measurement of the current
fluctuations with an atomic-scale resolution could help us to distinguish highly desirable Majorana bound-
states from trivial zero-energy fermions. Indeed the unambiguous identification of MBS remains a difficult
issue because of the concomitant competition with other topologically trivial fermionic states, which poison
their detection in most spectroscopic probes. In this chapter, we will show that shot-noise tomography reveals
key distinctive features that allow one to distinguish trivial zero-energy fermionic states, like YSR states, from
Majorana zero modes.

This chapter is organized as follows: First, we briefly describe the most promising and mature solid-state
platform supporting MZMs: hybrid semiconductor/superconductor nanowires. Then, we briefly review the ex-
perimental signatures of MZMs and explain why the distinction between MBS and trivial zero-energy fermions
remains a difficult task. Finally, by employing numerical and analytical methods, we show that the Fano factor
in the vicinity of Majorana zero modes is spatially constant and equal to one. In sharp contrast, the Fano factor
of trivial fermionic bound-states is strongly spatially dependent and exceeds one. These sharp differences have
a universal character that is rooted in the intrinsic particle-hole symmetry of the MBS wavefunction and can be
used to as a key tool for discerning MBS from trivial fermionic bound-states.

5.1 Superconducting Rashba nanowires: a solid-state platform
supporting MZMs

5.1.1 Motivation
Non-degenerate Majorana zero-modes arise at the ends of one-dimensional (1D) spinless p-wave superconduc-
tors (described by the Kitaev chain) [16] or at the vortex cores of two-dimensional (2D) px + ipy superconduc-
tors [60, 61, 62]. However, these models are somewhat unrealistic for the following two reasons. First, they

129



consider spinless fermions while electrons are spinful. This first problem can be easily circumvented if the spin
degeneracy of the electrons is lifted such that the fermion doubling is effectively eliminated at low energy.

Second, spin-triplet p-wave superconductivity is rather rare in nature. Strontium ruthenate Sr2RuO4 have
long been the main candidate for intrinsic p-wave superconductor. Nevertheless, recent nuclear magnetic res-
onance (NMR) results call into question the existence of a spin-triplet order parameter. These results were
corroborated by recent theoretical studies and other experiments, suggesting the absence of p-wave supercon-
ductivity in this material. Besides Sr2RuO4, iron-based superconductors of the family FeTexSe1−x, and the
compound (Li0.84Fe0.16)OHFeSe which possibly exhibit MZMs localized at the core of vortices, motivating
further studies.

To circumvent this problem, a possibility would be to artificially engineer exotic p-wave superconductors by
fabricating appropriate heterostructures with abundant ordinary s-wave. It was early shown that a spin-triplet
p-wave pairing could be generated from the combination of s-wave superconductivity spin-orbit coupling and
magnetic fields [157, 158]. Following this idea, theoretical studies showed that MZMs arise in 1D and 2D het-
erostructures made of a spin-orbit coupled semiconductor, in contact with an ordinary s-wave superconductor
and subjected to a magnetic field [159, 15, 160, 161]. In 1D, MZMs do not require the presence of a vortex
and are thus simpler to produce. Therefore, in this manuscript, we focus on the 1D case. A detailed theoretical
study of the 2D case is provided in [159, 15]. In the 1D case, the proposed heterostructure, named the super-
conducting Rashba nanowire consists of a spin-orbit coupled nanowire (a Rashba nanowire) in contact with
a s-wave superconductor subjected to a magnetic field applied perpendicular to the direction of the spin-orbit
coupling. Theoretical studies showed that as the chemical potential or magnetic field is tuned, the supercon-
ducting Rashba nanowire undergoes a topological phase transition from a topological phase supporting MZMs
at the ends of the wire and a trivial superconducting phase with no MZMs [160, 161]. The superconducting
Rashba nanowire has the advantage of being a simple heterostructure that does not require any specialized
materials and is feasible in the lab. Thereby, the first experimental realization and characterization of super-
conducting Rashba nanowire came soon after their theoretical proposition[162]. In the next subsections, we
review the properties of the superconducting Rashba nanowire from the theoretical point of view.

5.1.2 The Oreg-Lutchyn model
Following Oreg and Lutchyn [161, 160], our starting point is an ideal single-channel semi-conducting nanowire
with parabolic dispersion and Rashba SOC characterized by a SOC vector αR = αRey pointing in the y-
direction, perpendicularly to the nanowire axis. Without loss of generality, we can assume αR > 0. We
choose the spin quantization axis as the z-axis. In addition, a magnetic field B is applied along the nanowire
and points in the x-direction, B = Bex. Finally, we assume that the nanowire is tunnel-contacted with a
s-superconductor, which induces s-wave superconductivity in the nanowire itself by proximity effects. The
induced superconductivity is characterized by the induced s-wave gap ∆, which, without loss of generality,
we choose to be real and positive. Therefore the system is described by the Oreg-Lutchyn minimal model
[161, 163],

H =
1

2

∫
dxψ†(x)Ĥψ(x), with Ĥ =

[
−ℏ2∂2x
2m∗ − µ− iαRσy∂x

]
τz +∆τx + VZσx, (5.1)

where we introduced the Nambu spinor ψ†(x) = [c†↑(x), c
†
↓(x), c↓(x),−c↑(x)], c

†
σ(x) is the operator creating

an electron of spin σ (along the z-axis) at position x in the nanowire, σi are the Pauli matrices acting in spin
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Figure 5.1: Schematic illustration of the superconducting Rashba nanowire set-up. A semi-conducting
nanowire (in orange) is deposited on a s-wave superconducting substrate (in blue). Because of the broken
inversion symmetry breaking at the semiconductor-superconductor interface and the intrinsically broken sym-
metry inversion of the semiconductor crystal lattice, a finite Rashba-type spin-orbit coupling is present in the
nanowire, characterized by the SOC vector α. A magnetic field, B, is applied along the nanowire axis and
breaks the time-reversal symmetry.

space, and τi are the Pauli matrices acting in particle-hole space. m∗ is the effective mass of the semiconducting
nanowire, µ its chemical potential, and VZ the Zeeman energy due to the magnetic field, given by VZ = gµBB.
Focusing on the bulk properties of the nanowire, we can define the Fourier transform ψ(x) =

∫
dk
2πe

ikxψ(x),
and obtain,

H =
1

2

∫
dk

2π
ψ†(k)Ĥ(k)ψ(k), with Ĥ(k) =

[
ℏ2k2

2m∗ − µ+ αRσyk

]
τz +∆τx + VZσx. (5.2)

For latter convenience, we parametrize the BdG Hamiltonian Ĥ(k) as,

Ĥ(k) =

[
ĥ0(k) ∆σ0
∆σ0 −σyĥ∗0(−k)σy

]
, with ĥ0(k) =

ℏ2k2

2m∗ − µ+ αRσyk + VZσx, (5.3)

where ĥ0(k) is the single-particle Hamiltonian describing the electrons in the normal-state nanowire.

5.1.3 Induced p-wave superconductivity
To understand how p-wave superconducting is effectively induced in the nanowire, it is insightful first to study
the effect of SOC and successively add the magnetic field and the proximity-induced superconductivity to the
model.

Hence, we first focus on the normal-state nanowire. In the absence of superconductivity, ∆ = 0, electron
and hole sectors are decoupled, and the BdG Hamiltonian Ĥ is block-diagonal. Hence we can focus on the
electronic sector described by ĥ0(k). The energies of the electrons are given by the spectrum of ĥ0(k), while
the energies of the holes are simply obtained via the particle-hole symmetry.

When VZ = 0, ĥ0(k) = ℏ2k2
2m∗ − µ + αRσyk, hence it is straightforward to diagonalize it and obtain its

eigenvalues E0
±(k) and the associated eigenvectors ϕ0±(k),

E0
±(k) =

ℏ2k2

2m∗ − µ± αRk, ϕ
0
±(k) =

[
1
±i

]
. (5.4)
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Figure 5.2: Schematic spectra of the normal-state Rashba nanowire ĥ0(k) at µ = 0. The red solid line
corresponds to E0

+(k) and the blue one to E0
−(k), given in (5.6). (a): Electronic bands in absence of Zeeman

energy (VZ = 0). In this case, the ± band corresponds to electrons with spin locked in the ±y-direction
respectively, as indicated by the arrows. (b): Electronic bands in presence of a Zeeman energy VZ > 0
dominated by SOC, ESO > VZ . (c): Electronic bands in presence of a dominant Zeeman energy VZ > ESO.
In these two cases, the +(−) band corresponds to electrons with spin aligned (anti-aligned) with the effective
field b(k), as indicated by the arrows. Increasing the Zeeman energy, the double-well structure of the − band
flattens.

Therefore, the electronic spectrum consists of two shifted parabolas crossing at k = 0 represented in Fig. 5.2
(a). The +/− band corresponds to states with spin locked in ±-y direction, respectively. The spin-orbit
coupling does not break the time-reversal symmetry, but spin is coupled to the momentum: electrons with the
same energy and opposite momenta have opposite spins as indicated in Fig. 5.2(a).

In the presence of a finite magnetic field B > 0, ĥ0(k) becomes,

ĥ0(k) =
ℏ2k2

2m∗ − µ+ b(k) · σ, (5.5)

where b(k) = VZex + αRkey is an effective magnetic field which is momentum-dependent. Intuitively we
expect that the spin of the electron of momentum k aligns with the effective magnetic field b(k). Defining
the unit vector, u(k) = b(k)

|b(k)| , the spin operator ŝ(k) = u(k) · σ̂ commutes with ĥ0(k). Therefore, the two
electronic bands are eigenfunctions of ŝ(k) with eigenvalues ±1,

E0
±(k) = ξ(k)±

√
V 2
Z + α2

Rk
2, ϕ0±(k) =

1√
2± 2uz(k)

[
1± uz(k)

±ux(k)± iuy(k)

]
, (5.6)

with ξ(k) =
ℏ2k2

2m∗ − µ. As it can be observed in Fig. 5.2 (b) and (c), the magnetic field completely lifts the
spin-degeneracy and opens a gap 2VZ at k = 0. Time-reversal symmetry is broken: electrons with the same
energy and opposite momenta have different spins, as indicated by the arrows in Fig. 5.2 (b) and (c). Each
band can be considered spinless, and by tuning the chemical potential inside the gap at k = 0, the system is
effectively spinless at low energies. Notice that the number of Fermi momenta depends on the different energy
scales set by the Zeeman energy.

In presence of the proximity-induced superconductivity (∆ > 0), the nanowire exhibits all ingredients
required to effectively realize a spinless p-wave topological superconductor, namely the presence of spin-orbit
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coupling, the absence of time-reversal symmetry and the presence of s-wave superconductivity. Thus we expect
that the superconducting gap ∆ induces p-superconductivity in the nanowire. Indeed,in the basis diagonalizing
the normal-state Hamiltonian ĥ0(k), the model (5.1) reads,

H =

∫
dk

2π

∑
ν=±

{
c†ν(k)E

0
ν(k)cν(k) +

1

2
(∆ν(k)c

†
ν(k)c

†
ν(−k) + h.c.)

}
(5.7)

+ (∆c(k)c
†
+(k)c

†
−(−k) + h.c.),

with, ∆ν(k) = ∆
iναRk

V 2
Z + α2

Rk
2
, ∆c(k) = −∆

VZ
V 2
Z + α2

Rk
2
, (5.8)

where we introduced the operator cν(k) annihilating an electron in the ν = ± band (5.6). The proximity-
induced superconductivity generates an interband s-wave pairing ∆c(k) and an intraband p-wave pairing
∆±(k).

Therefore, if we tune the chemical potential such that only the lower band is partially filled, the upper band
can be neglected at low energy, and the model (5.1) is equivalent to a spinless p-wave topological superconduc-
tor and can exhibit a non-trivial topological phase supporting MZMs. In addition, we remark that when k ∼ 0,
∆− ∼ ∆−iαRk

VZ
, hence the nanowire is equivalent to the Kitaev chain. As a last remark, ∆−(k ∼ 0) depends on

the Rashba SOC, the Zeeman energy, and the proximity-induced gap ∆, illustrating that these three ingredients
are indispensable for realizing a topological superconductor.

5.1.4 Topological properties of the nanowire
Since the nanowire is effectively equivalent to a spinless p-wave superconductor, it might realize a topolog-
ical phase supporting MZMs at its ends. Here, we rigorously prove that it is indeed the case and study the
topological properties of the superconducting Rashba nanowire (5.1).

The first step is to find the symmetry class of (5.1). At first sight, the model belongs to the D class. Indeed,
Ĥ possesses particle-hole symmetry,

C−1Ĥ(k)C = −Ĥ(−k), with C = σyτyK. (5.9)

However, the Zeeman energy breaks the physical time-reversal symmetry,

T−1VZσxT = −T−1VZσxT, with T = iσyK, (5.10)

hence Ĥ breaks the time-reversal symmetry, T−1Ĥ(k)T ̸= Ĥ(−k). Additionally, Ĥ also breaks the chiral
symmetry S = TC = iτy. Nevertheless, considering the symmetry classification of the ten-fold way, the
time-reversal symmetry is not necessarily the physical one, and any artificial time-reversal symmetry defined
by an anti-unitary operator T ′ has to be considered. Thus, remarking that Ĥ(k) is a real matrix, it possesses the
artificial time-reversal symmetry defined by the operator T ′ = K, and the artificial chiral symmetry defined by
S′ = τyσy,

T ′−1Ĥ(k)T ′ = Ĥ(−k), S′−1Ĥ(k)S′ = −Ĥ(k). (5.11)

Since, C2 = 1 and T ′2 = 1, the BdG Hamiltonian Ĥ belongs to the BDI class.
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Figure 5.3: Schematic quasiparticle spectra of the superconducting Rashba nanowire in different regimes.
The quasiparticle energy bands are colored according to the spin projection of the state along ex, ⟨σx⟩ =
ϕ†(k)σxϕ(k), with ϕ(k) the eigenvector of the relevant band. The central gap ∆0 is open at low Zeeman
energies, VZ < V c

Z =
√
µ2 +∆2 (a), closes at the critical point VZ = V c

Z (b), and reopens for large Zeeman
energy VZ > V c

Z (c). Notice that a band inversion occurs when the central gap closes.

Let us now construct the topological phase diagram of the nanowire in the (VZ , µ) plane. Reminding
that a topological phase transition requires the quasiparticle gap to close, we first investigate the quasiparticle
spectrum. The quasiparticle spectrum of Ĥ(k) consists of four dispersion bands: two positive energy bands
±E±(k). After straightforward algebra, we obtain,

E±(k) =

√
ξ2(k) + b2(k) + ∆2 ±

√
ξ2(k)b2(k) + ∆2V 2

Z . (5.12)

As it can be observed in Fig.5.3(a) and (c) the quasiparticle gap ∆ph(k) = 2E−(k) possess two local minima
one at finite k named ∆1 and another one at k = 0, named ∆0. The gap ∆1 never vanishes. On the contrary,
∆0 can vanish. Indeed,

∆0 = 2E−(0) = 2|VZ −
√
µ2 +∆2|, (5.13)

hence if VZ =
√
µ2 +∆2, ∆0 = 0 and the quasiparticle gap closes, allowing for a topological transition, as it

can be observed in Fig. 5.3 (b). Moreover, when V 2
Z > µ2 + ∆2, ∆0 is a spin gap due to the Zeeman energy,

while when V 2
Z < µ2+∆2, ∆0 is a superconducting gap. Therefore the gap closing of ∆0 for VZ =

√
µ2 +∆2

is associated with band inversion (see Fig. 5.3) that signals a quantum phase transition [161].
This quantum phase transition is a topological phase transition from a topologically trivial phase to a non-

trivial one supporting a single pair of MZMs localized at each end of the nanowire [161, 160, 164]. To prove it,
we show that the topological invariant characterizing the Oreg-Lutchyn model changes when the gap closes. In
principle, the Oreg-Lutchyn model belongs to the BDI class. Therefore it is characterized by a Z topological
invariant, the winding number ν, and can support 2ν MZMs.

However, in realistic systems, the artificial time-reversal symmetry is inevitably broken by magnetic dis-
order, misalignment of the magnetic field with the nanowire axis, or multi-band effects. In these cases, the
Oreg-Lutchyn model falls into the D symmetry class, and its topological properties are classified by the pfaf-
fian Z2. Thus, we discuss the topological properties of the model in the D class and use the pfaffian invariant.
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To define topological invariant, the momentum space has to be a smooth, compact manifold [165]. There-
fore, we discretize the continuum model given by (5.1) on a 1D lattice and obtain a tight-binding Hamiltonian
that reads:

H =
1

2

N−1∑
l=0

ψ†
l [(2t− µ+ VZσx]ψl +

1

2

N−2∑
l=0

ψ†
l+1[−tτz − iασyτz]ψl + h.c.,

where we defined the Nambu spinor ψl = [c↑l, c↓l, c
†
↓l,−c

†
↑l]

T , with cσl the operator annihilating an electron of

spin σ at site l of the chain, t = ℏ2
2ma2

the hopping parameter, α = αR
2a the spin-flip hopping parameter, a the

lattice constant of the discrete model andN the number of sites of the chain. Since the typical length scales (the
nanowire length, the superconducting coherence length ξ, the spin-orbit length lSO = k−1

SO) are much larger
than the atomic length scales, the lattice parameter a needs not to coincide with the microscopic atomic lattice
parameter. It is usually chosen to be much larger, allowing for efficient numerical simulations.

Imposing periodic boundary conditions, and defining the discrete Fourier transform:

ψl =
1√
N

∑
k

eiklaψk, (5.14)

where k belongs to the first Brillouin zone (k = 2mπ
Na , with m = 0, 1, ..N − 1), (5.14) becomes:

H =
∑
k

ψ†
kĤ(k)ψk, with Ĥ(k) = (ξ(k) + 2α sin(ka)σy)τz +∆τx + VZσx, (5.15)

where ξ(k) = 2t+ µ− 2t cos(ka) Analogously to the continuum case, the quasiparticle spectrum is therefore
given by (5.12), and the quasiparticle gap closes at k = 0 when VZ =

√
µ2 +∆2. It is important to note

that, contrary to the continuum case, in the discrete case, the quasiparticle gap closes at ka = π if V 2
Z =

(4t − µ)2 + ∆2, allowing for a topological transition. However, in the physically relevant regime where
t≫ µ, b, ∆, the gap at ka = π remains open. Hence we disregard this transition.

Since the Brillouin zone is now well-defined, we can now compute the Z2 pfaffian invariant (−1)ν of Ĥ(k),
which is defined as [165, 164]:

(−1)ν = sgn{pf
[
Ĥ(k = 0)σyτy

]
pf
[
Ĥ(k = π/a)σyτy

]
}. (5.16)

Note that the antisymmetry of Ĥ(k)σyτy at the real momenta ka = 0, π, is guaranteed by the particle-hole
symmetry. Straightforward algebra yields,

(−1)ν = sgn{
[
∆2 + µ2 − V 2

Z

] [
∆2 + (4t− µ)2 − V 2

Z

]
}. (5.17)

The second term is always positive in the physically relevant regime, t≫ µ, b, ∆. Consequently, we obtain:

(−1)ν =

{
1, if VZ <

√
µ2 +∆2,

−1, if VZ >
√
µ2 +∆2,

(5.18)

and the gap closing at VZ =
√
µ2 +∆2 is indeed a topological transition from a topologically trivial phase

when VZ <
√
µ2 +∆2 to a non-trivial phase when VZ >

√
µ2 +∆2 supporting MZMs. The corresponding

phase diagram is depicted in Fig. 5.4. As we will show in the next subsection, in the non-trivial phase, the
nanowire supports a single pair of MZMs localized at its end.
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Figure 5.4: Topological phase diagram of the Oreg-Lutchyn model given by (5.1) as a function of the Zee-
man energy VZ and chemical potential µ. The nanowire is in a trivial phase for weak Zeeman energy
VZ <

√
µ2 +∆2 (white region) and enters a nontrivial phase for strong Zeeman energy VZ >

√
µ2 +∆2

(orange region). The system is gapless at the topological transition VZ =
√
µ2 +∆2 (indicated by the red

solid line).

5.1.5 Properties of the Majorana zero modes
Let us now show how MZMs emerge in finite-size superconducting Rashba nanowires. To that end, we nu-
merically diagonalize the BdG Hamiltonian Ĥ given by (5.14). The results are presented in Fig. 5.5. As it
can be observed, when VZ crosses

√
µ2 +∆2 the quasiparticle gap closes and reopens, and a single pair of

particle-hole conjugated eigenstates ϕ+ and ϕ− = Cϕ+ sticks to zero energy. This pair corresponds to a single
fermionic operator a0 =

∑
j ϕ

†
+(j)ψ(j) that annihilates a zero-energy bogoliubon in the state ϕ+. Notice

that ϕ+ is non-zero at both sides of the wire, as observed in Fig. 5.5 (d). Therefore, a0 is a nonlocal operator
delocalized on both sides of the nanowire. As already mentioned, any zero-energy fermionic bound-state can
eb decomposed into a pair of Majorana modes γA = (a0+ a†0)/

√
2 and γB = −i(a0− a†0)/

√
2. The Majorana

wavefunctions describing these Majorana operators reads ϕA = (ϕ+ + ϕ−)/
√
2 and ϕB = −i(ϕ+ − ϕ−)/

√
2,

and are also zero-energy eigenstates of Ĥ . As it can be observed in Fig. 5.5 (g), ϕA is localized at one end of the
nanowire while ϕB is localized at the opposite end. Consequently, as expected from the bulk-edge correspon-
dence, the nonlocal quasiparticle a0 is a Majorana bound-state (MBS) which corresponds to the superposition
of two unpaired MZMs.

Nevertheless, the above statement is strictly valid for infinitely long wire, i.e., when L/ξM ≫ 1, with ξM
the typical localization length of the MZMs ϕA and ϕB . Indeed, the Majorana wavefunctions decay exponen-
tially towards the bulk with fast oscillations, ϕA/B(j) ∝ e−x/ξM e±IkMx, where x = ja. Therefore, when the
length of the nanowire is comparable to the localization of the MZMs, L ≥ ξM , the Majorana wavefunctions
ϕA and ϕB are partially overlapping (see Fig. 5.5 (b), (e), (g) and (c), (f), (i) ) and hybridize. As a consequence,
the Majorana wavefunctions are no longer exact eigenstates of the BdG Hamiltonian, and the non-local MBS
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Figure 5.5: Majorana bound-states in hybrid semiconductor/superconductor nanowires. (a): Quasiparticle
spectrum of a finite-size nanowire described by the Oreg-Lutchyn model (5.1) as a function of the Zeeman
energy VZ . The length of the nanowire is L = 3000 nm. (d): Majorana bound-state wavefunction weight
|ϕ(x)|2.L as a function of the position x for VZ = 1.5

√
µ2 +∆2. (g): Weights of the wavefunction of the

left (red solid line) and right (blue solid line) Majorana zero-mode as a function of the position x. (b), (e), (h):
Same as (a), (d), (g) for L = 1500 nm. (c), (f), (i): Same as (a), (d), (g) for L = 900 nm.

a0 acquire a finite energy EM , approximately given by:

EM =
ℏ2kF
mξM

| cos(kML)|eξM/L. (5.19)

Because kM depends on VZ and µ, the energy splitting 2EM oscillates as a function of VZ , as can be observed
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Figure 5.6: Realistic superconducting Rashba nanowires. (a) Schematic illustration of a superconducting
Rashba nanowire device. An InSb nanowire (light grey) is partially coated with a thin shell of superconducting
Al (green). The tunnel gates (red) are used to induce a tunnel barrier in the non-coated segment. A voltage bias
is applied across the tunnel junction thanks to the left electrical contact (yellow). The right electrical contact
is used as a current drain. (b) False-color STM image of a typical fabricated device. Figures extracted and
adapted from [166]

in Fig. 5.5 (c) and (d).

5.2 Experimental signatures of MZMs

5.2.1 A brief overview
A first indication of the presence of MZMs is the measurement of a zero-bias peak (ZBP) in the differential
conductance. Indeed, as we have already shown, at low temperatures and in the customary tunneling regime,
the differential conductance is given by:

G(V ) =
dI

dV
∝ ρ(ω), (5.20)

with I the dc current flowing through the system, V the applied bias, and ρ the electronic DOS of the analyzed
sample.

Soon after the theoretical proposition of Oreg and Lutchyn, ZBP has been observed in InAs and InSb

nanowires partially coated with the conventional superconductor Al subjected to a magnetic field, represented
in Fig. 5.6 [162, 167, 168]. Nanowires fully coated with Al have also been realized. In that case, the topological
phase emerges because of orbital effects. More recently, a new generation of nanowires has been fabricated
where the nanowire is partially coated with superconducting Al and ferromagnetic EuS. In these set-ups, the
presence of an external magnetic field is no longer necessary.

Even if the nanowire platform is currently the most mature and promising MZMs platform, numerous alter-
native platforms have been proposed and realized during the last decade. An exhaustive list of these platforms
is beyond the scope of this manuscript. Instead, we focus on two promising examples: phase-controlled 2D
Josephson junctions (see Fig. 5.7) and 1D chains of magnetic ad-atoms on top of s-wave superconducting
substrate (see Fig. 5.8).
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Figure 5.7: Planar Josephson junctions exhibiting MZMs. (a) Schematic illustration of a Planar Josephson
junction made of two epitaxial superconducting Al layers on top of a InAs 2D electron gas (2DEG) exhibiting
SOC. The 1D channel, defined in between the two superconducting leads, can be tuned into a topologically
non-trivial phase with MZMs (red crosses) by tuning the chemical potential, the parallel magnetic field B|| and
the phase difference φ. The MZMs can be probed by tunneling spectroscopy using a QPC located at one end
of the device. (b) False-colour STM image of the top part of a typical device. Figures extracted from [169]

Planar Josephson junctions have been recently fabricated, and ZBPs have been measured at the edge of the
junction suggesting the existence of MZMs [169, 170]. Because of the additional control parameter offered by
the superconducting phase-bias planar, Josephson junctions seem a promising alternative platform exhibiting
MZMs.

In 1D chains of magnetic atoms deposited on s-wave superconductors, the YSR states generated by each
atom hybridize and form a Shiba band inside the superconducting gap [9], which can be gapped. It has been the-
oretically proposed that topological superconductivity can be induced in ferromagnetic chains, in the presence
of spin-orbit coupling [12, 100, 101, 102], or in helical ordered chains [105, 171, 103, 104, 106, 172, 107]. Re-
cently, scanning tunneling spectroscopy on self-assembled or artificially constructed chains of magnetic atoms
on top of s-wave superconductors revealed the existence of ZBP spatially localized at the edge of these chains,
suggesting the presence of MZMs [20, 173, 174, 175].

Nevertheless, the presence of ZBP is not sufficient to claim the existence of MZMs in a system since any
zero-energy quasiparticle will also produce a ZBP. Hence, to confirm the existence of MZMs in a system,
additional experimental pieces of evidence have to be observed.

A first experimental signature of MZM is the quantization of the conductance peak at zero bias. Indeed, in
the presence of a MZM, the zero-bias conductance is quantized such that G(V = 0) = (2e2)/ℏ [176, 177, 178,
179, 180, 181]. Quantized zero-bias peaks have been observed in nanowires. However, because of the lack of
reproducibility, these measurements can not be interpreted as unambiguous proofs of MZMs [182, 183, 184].
Moreover, a quantized zero-bias peak is a necessary but not sufficient condition for the existence of MZMs, and
several other mechanisms can produce a nearly quantized zero-bias peak, such as trivial zero-energy bound-
states due to disorder or inhomogeneities [185, 186, 187]. Note that conductance tomography has also been
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Figure 5.8: MZMs signature in 1D chains of magnetic atoms deposited on conventional superconductors. (a)
Schematic picture of the ferromagnetic chain of magnetic atoms placed on top of a conventional superconductor
exhibiting SOC. The system is probed by a STM tip. (b) STM image of the ferromagnetic chain. (c) Differential
conductance spectra. The red solid line corresponds to differential conductance measured on top of position
1, indicated on (b), while the blue solid line corresponds to position 2. The red solid line exhibits a zero-bias
peak, interpreted as a sign of a MZM localized at the end of the chain. Figures extracted from [20].

proposed as a signature of MZMs since the conductance exhibits a quantized plateau in the case of MZMs
while spatial dependence is expected for trivial bound-states [181]. However, numerical simulations have
shown that the oscillations of the Majorana wavefunctions ultimately spoil the conductance plateau and that a
strong tunneling regime is required to recover a distinctive saturation plateau in the differential conductance
near a MZM [188].

Another experimental signature of MZMs is the so-called fractional Josephson effect. A Josephson junction
is a hybrid structure made of two superconducting regions separated by a thin non-superconducting region
(insulating, metallic, ferromagnetic,...). Let us focus on the case of an insulating central region. In the presence
of a superconducting phase difference, φ, between the two superconductors, a charge current flows through
the junction without voltage bias [42, 189, 190]. This phenomenon is known as the DC Josephson effect (see
[42, 191] for a review of the Josephson effect). For a trivial Josephson junction, i.e., between two trivial
superconductors, the Josephson current I(φ) is carried by Cooper pairs (charge 2e) and is described by the
Josephson equations,

I(φ) = Ic sin(φ), (5.21)

with Ic the so-called critical current. Therefore, the Josephson current is a 2π-periodic function of φ. On the
contrary, in a topological Josephson junction, i.e., between two non-trivial topological superconductors, the
Josephson current is carried by the MZMs localized at the junction. Consequently, the current-phase relation,
I(φ), is no longer 2π-periodic but 4π-periodic[16, 192]. The doubling of the current-phase periodicity can be
understood as an effect of fractionalization since MZMs can be interpreted as half a fermionic degree of free-
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dom. The 4π-periodic Josephson effect has been observed in Josephson junctions between InAs/Al [193] and
InSb/Nb [194] hybrid nanowires. Nevertheless, the 4π-periodic effect is not sufficient to claim the existence of
MZMs. Indeed, in a realistic set-up, the 4π-periodicity is hard to achieve because Coulomb energy, finite-size
effects, or quasiparticle poisoning can restore the 2π-periodic effect [195, 196, 197, 198, 199]. Therefore, in
order to observe the fractional Josephson effect, the current-phase relation should be performed by sweeping
the phase bias φ on time scales shorter than the quasiparticle poisoning time. However, sweeping the phase
rapidly can drive the junction out of equilibrium. In this case, Landau-Zener transitions into higher energy
levels can produce the 4π-periodicity even in absence of MZMs [198, 196, 200].

Many experiments focusing on zero-bias conductance peak and Josephson effects are consistent with the
existence of MZMs from topological origin. These signatures have been observed in a variety of experimen-
tal platforms, including nanowires-based set-ups, planar Josephson junctions, and magnetic chains, to list a
few. Despite the significant advances made in the fabrication techniques and the improved quality of the het-
erostructures studied, definitive proof of the existence of MZMs remains elusive. Indeed, so far, the observed
experimental signatures can have alternative origins to MZMs. In particular, trivial zero-energy bound-states
can be induced in the trivial phase by magnetic impurities, disorder, partial proximitization, or smooth poten-
tial. As we explain below, a smooth cross-over exists between topologically trivial zero-energy bound-state
and topological MZMs. Therefore, there exist trivial zero-energy bound-states with an almost perfect Majorana
character mimicking most of the experimental signatures of MZMs.

5.2.2 The challenging distinction between trivial bound-states and MBS
In the literature, the discussion of the experimental pieces of evidence for MZMs often opposes the term true
MBS, used to designate pair of MZMs induced by non-trivial bulk topology, to false MBS or trivial bound-
states, designating any kind of zero-energy bound-states induced in a superconductor with trivial bulk-topology.
Hence the term Majorana is nowadays often incorrectly used as a synonym of non-trivial bulk topology. Ac-
tually, a Majorana zero mode is defined as any spatially isolated self-conjugate zero-energy eigenmode, and a
MBS is nothing but a pair of MZMs. These two definitions are not at all related to the topological properties
of the underlying bulk system. Consequently, unambiguous proof of the existence of MBS (or MZMs) does
not constitute unambiguous proof of non-trivial bulk topology and vice-versa. Indeed, the MZMs localized at
the extremities of 1D topological superconductors have a finite overlap scaling as e−L/ξM , with L the length
of the system and ξM the localization length of the Majorana modes. Therefore, as already mentioned, the
zero-energy edge modes of topological origin do correspond to MZMs only when the system is sufficiently
large, L ≫ ξM . Otherwise, the edge modes have a finite overlap and do not exhibit the desired properties of
Majorana qubits.

Moreover, even if the bulk-edge correspondence guaranteed the existence of MZMs in large topological
superconductors, it is not impossible to find MZMs in trivial superconductors. Indeed, as already pointed out,
regardless of its origin, any zero-energy fermionic bound-state a0 can be formally decomposed into a pair of
Majorana modes γA and γB

a0 =
γA + iγB√

2
. (5.22)

The wavefunctions ϕA and ϕB describing the operator γA and γB , respectively are named the Majorana com-
ponents of the bound-state. If the underlying bulk system is topologically trivial, the operators γA and γB have
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no a priori reasons for being spatially separated. Hence, the zero-energy bound-state is not necessarily a per-
fect MBS formed by unpaired MZMs. The overlap of the Majorana components of a zero-energy bound-state
depends on the underlying mechanism at its origin. Consequently, it is necessary to understand the formation
and properties of zero-energy superconducting sub-gap states.

Focusing on semiconductor/superconductor hybrid nanowires, this includes conventional Andreev bound-
states (ABS) appearing at normal-superconducting (NS) interface or in superconducting-normal-superconducting
(SNS) junctions, zero-energy states induced by localized impurities such as Yu-Shiba Rusinov (YSR) bound-
states or zero-energy states induced by smooth confining potential, smooth inhomogeneities or smooth NS and
SNS junctions, to list a few (see [186] for a recent and comprehensive review of the topic).

In general, zero-energy ABS and impurity bound-states possess highly overlapping Majorana components.
On the contrary, zero-energy bound-states appearing in smoothly confined nanowires, or smooth NS and SNS
junctions, exhibits partially separated Majorana components [187, 186]. That is why they are named quasi-
Majorana states (QMS), partially-separated Majorana bound states (ps-MBS), or trivial Majorana-bound states
(trivial MBS), depending on the context. In fact, the mechanism at the origin of all these states is the same.
Hence, in this manuscript, we will indifferently name them quasi-Majorana states (QMS). The overlap of the
Majorana modes forming a QMS can be highly suppressed for sufficiently smooth potentials. In this case,
the QMS corresponds to a MBS, and exhibits a full Majorana[187] character despite its trivial origin. In
consequence, in non-uniform nanowires, a continuous crossover exists between MBS and QMS.

Lastly, we stress that the desired properties of perfect MBS (made of unpaired MZMs), like immunity
to local noise, and non-Abelian braiding, are rooted in their non-local nature and require an exponentially
suppressed Majorana overlap. In addition, some properties, like parametric non-Abelian braiding [187], only
require the Majorana modes to be partially separated. Hence QMS might be good enough for such kinds of
applications. Therefore, the absence of Majorana overlap seems to be the most relevant criterion for selecting
zero-energy bound-states that are good candidates for quantum computation. On the contrary, non-trivial bulk
topology does not guarantee the existence of truly unpaired MZMs.

In conclusion, since zero-energy states mimicking Majorana properties are ubiquitous in real nanowire-
based devices, the reported signatures of MZMs should be interpreted with caution, and experimental protocols
providing a clearer distinction between truly unpaired MZMs and partially overlapping ones are highly de-
sirable. It is important to stress that unpaired MZMs does not necessarily have a topological origin and that
edge-states of topological origin does not necessarily corresponds to true unpaired MZMs because of finite-size
effects. Hence, the identification of MBS and non-trivial bulk topology are two disconnected problems, and a
non-ambiguous proof of the bulk topology requires the use of non-local probes. In this respect, multi-terminal
conductance measurements seem a promising route [201, 202, 203].

5.3 Fano factor tomography of trivial zero-energy states and MZMs
Definitive unambiguous proof of the existence of perfectly isolated MZMs in solid-state platforms, therefore,
requires experimental protocols able to distinguish truly unpaired MZMs from overlapping ones is highly de-
sirable. In this respect, numerous protocols have been studied. For example, it has been proposed to use
conductance tomography since the zero-bias conductance peak associated with a perfectly isolated MZM is
quantized and does not depend on the position of the tip. Nevertheless, the quantized plateau is ultimately
spoiled by the oscillations of the Majorana wavefunctions in spin-orbit coupled nanowires [188]. Moreover,
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a strong tunneling regime is necessary to observe a distinctive conductance saturation plateau in the prox-
imity of a MZM [188]. Other theoretical predictions proposed to use non-trivial spin signatures of MZM
[204, 205, 206, 207, 208, 209] and spin-selective Andreev reflection [210, 211] as distinctive tools. Based on
those propositions, Jeon et al. used spin-polarized STS to identify MZM in self-assembled Fe chains on the sur-
face of Pb [212]. However, discerning some local excess of polarization over a magnetic background remains
a difficult task. Other theoretical studies proposed to use current shot-noise [177, 213, 214, 215], spin-resolved
shot-noise measurements [205, 216], finite-frequency current shot-noise [31], or time-resolved transport spec-
troscopy [217] to identify unpaired MZMs. All the above-mentioned protocols require more involved setups
than the usual local spectroscopic probes used in the lab. Here we show the current shot-noise spatial tomog-
raphy with a metallic tip, nowadays realized within scanning tunneling microscopy (STM) [21, 22, 33], can
distinguish unpaired MZMs from other zero-energy bound-states. More precisely, we prove below that in the
vicinity of a perfectly isolated MZM, the Fano factor is spatially constant and equals one, the Poissonian limit.
This result is a consequence of the local particle-hole symmetry of the Majorana wave function. However, for
trivial zero-energy bound states, like YSR or ABS, the overlap of the Majorana wavefunctions breaks the local
particle-hole symmetry of the wavefunction and implies a strongly spatially dependent Fano factor. Even for
the case of QMS, we shall show that the Fano factor oscillates above 1 in the superconducting part of the wire.
Even if our proposal is not able to determine whether MZMs have a topological origin [186], the spatially unity
Fano factor is a clear distinguishing signature of the Majorana wave function.

5.3.1 System and model
Here we focus on the most typical MZM platform, the Rashba nanowire set-up. The typical system we consider
consists of a semiconducting nanowire deposited on top of a conventional s-wave BCS superconductor in the
presence of spin-orbit coupling (SOC) and a magnetic field applied along the nanowire axis (see Fig. 5.9). As
shown above, for strong Zeeman energies, VZ >

√
µ2 +∆2, the system enters into a topologically nontrivial

phase supporting a MBS corresponding to unpaired MZMs. We compare the shot-noise tomography of such
MBS to three different types of zero-energy bound-state, used as reference cases. First, we study a zero-
energy Yu-Shiba-Rusinov (YSR) state induced by a magnetic impurity located at one end of the wire. Second,
we assume that the proximity-induced gap ∆ is not uniform and vanishes in a small portion of the nanowire
located at one of its extremities. This situation might happen if the extremity of the nanowire is in contact with
a normal substrate or if the nanowire is not coated with a superconductor on its entire length. In that case, a
normal-superconducting interface is present in the nanowire, and an Andreev bound-state (ABS), localized in
the normal region, can be induced. Lastly, in this situation, if an additional smooth potential barrier is present
at the interface, a quasi-Majorana bound-state (QMS) can be induced at the interface. All these situations are
conveniently described by the tight-binding BdG Hamiltonian HS , given by,

HS =
1

2

N−1∑
l=0

ψ†
l,S [(2w − µ+ V (l))τz +∆(l)τx + VZσx]ψl,S (5.23)

+
1

2

N−2∑
l=0

ψ†
l+1,S [−wτz − iασyτz]ψl,S + (h.c.)

−1

2
ψ†
0,SJσzψ0,S ,
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Figure 5.9: Schematic representation of the typical experimental setup considered here. (a): A semiconducting
nanowire placed on top of an s-wave superconductor, subject to an external Zeeman field VZ along the wire
ex axis. This system can host a pair of MZMs localized at its ends, as indicated by the red solid lines. (b): A
semiconducting nanowire terminated by a magnetic impurity on top of an s-wave superconductor. This system
hosts a YSR bound-state at its left end (red solid line). (c): Same as in (a), except that the left end of the
nanowire is in contact with a normal substrate. In that case, the system can host an ABS (red solid lines). In
each case, the fermionic bound-state is probed by a metallic tip via the tunneling effect of strength Γ.

with N = L/a the number of sites in the nanowire, L the physical length of the nanowire, and a the lattice

constant of the tight-binding model. We defined the Nambu spinor ψl,S =
[
c↑,l, c↓,l, c

†
↓,l,−c

†
↑,l

]T
, where the

operator cσ,l annihilates an electron of spin σ at site l of the nanowire. ∆(l) = Θ(l + 1 − NN ) is the pairing
potential induced by the superconducting substrate, with Θ the Heaviside step function and NNa the size

of the normal region in the nanowire. V (l) = V0 exp

(
(l −NN )2

2s2

)
is a smooth Gaussian potential barrier

centered at the NS interface. µ denotes the chemical potential of the nanowire and w the nearest-neighbor
hopping. VZ = gµBB, with g the gyromagnetic factor, is the Zeeman energy induced by a magnetic field
B = Bex applied along the nanowire axis. J is the exchange coupling induced by a magnetic impurity with
spin Simp = Simpez localized at the left end of the nanowire. Finally, σi and τi are Pauli matrices acting in
the spin and particle-hole space, respectively. This model is rather general. However, we focus on six different
physically relevant cases listed in Table. 5.1. In all cases, we consider a finite SOC, α > 0.

First, we focus on cases where the nanowire is entirely superconducting, NN = 0. In this case, when
J = 0 and V (l) = 0, the model is equivalent to the Oreg-Lutchyn model (5.14). Therefore it undergoes a
topological transition at VZ =

√
µ2 +∆2 from a trivial phase when VZ <

√
µ2 +∆2 to a topological phase
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Case µ w ∆ VZ α J N NN V0 s ∆eff

a MBS 1 0.5 10 1 2 1.2 0 80 0 0 X 0.63
b YSR 0.5 10 0.6 0 1.2 11.23 80 0 0 X 0.6
c MBS 2 0.5 10 1 1.4 2 0 100 20 0 X 0.31
d ABS 0.5 10 1 0.38 2 0 100 20 0 X 0.27
e MBS 3 1 10 2 3.2 3 0 100 20 4.5 5 0.27
f QMS 3 10 1 2.75 3 0 100 20 4.5 5 0.27

Table 5.1: Table summarizing 6 different parameter sets of experimentally relevant situations. ∆eff is the
effective gap separating the zero-energy bound-state from other states.

for VZ <
√
µ2 +∆2 (see Fig. 5.4). In the topological phase, the nanowire exhibits MZMs localized at its ends.

The superposition of these unpaired MZMs forms a perfect MBS. As a reference case, we compare this case
to a trivial zero-energy YSR bound-state localized at the left end of the wire. This state appears in the trivial
regime VZ <

√
µ2 +∆2 when J > 0 appears because of the exchange coupling with the impurity (case b).

Second, we consider a partially proximitized nanowire, NN > 0. In that case, the left part of the wire is in
the normal state. In the topological regime, VZ >

√
µ2 +∆2, because they are topologically protected, MZMs

are still present on each side of the wire (case c). On the contrary, in the trivial regime, VZ <
√
µ2 +∆2, the

presence of the NS interface induces a trivial ABS. This ABS is localized in the normal region and has zero
energy because of fine-tuning of the parameters (case d).

Finally, we consider the effect of a smooth potential barrier, V0 > 0, at the NS interface. Again, in the
topological phase, VZ >

√
µ2 +∆2, the MZMs can not be removed by local perturbation. hence, a pair of

MZMs remains localized at each side of the wire (case e). In the trivial regime, VZ <
√
µ2 +∆2, the smooth

potential partially separate the Majorana modes forming the ABS state which becomes a zero-energy QMS
(case f ) [187, 186].

In all cases mentioned above, a zero-energy bound-state does appear in the system. This state is well-
separated from the higher energy states by an energy gap ∆eff . This can be observed in the insets of Fig. 5.11,
where we plotted the LDOS at the left side of the wire as a function of energy. In addition, we explicitly check
that cases a, b, and c do correspond to perfect MBS with negligible Majorana overlap. To that end, we numer-
ically computed the eigenstates of the BdG Hamiltonian describing the system in each case of Table. 5.1. In

each case, the zero-energy bound-state a0 can be decomposed into two Majorana modes γA =
a0 + a†0√

2
and

γB = −ia0 − a†0√
2

described by the wavefunctions ϕA and ϕB respectively. The obtained Majorana wavefunc-

tions are presented in Fig. 5.10. As it can be observed in Figs. 5.10 (a), (c), and (d), all the MBS considered
indeed correspond to truly unpaired MZMs. On the contrary, the YSR bound-state, case b, corresponds to a pair
of perfectly overlapping Majorana eigenstates, as observed in Fig. 5.10 (b). Fig. 5.10 (e) shows that the ABS of
case d is composed of two Majorana modes with almost perfect overlap. Lastly, the QMS of case f corresponds
to two Majorana modes localized on each side of the smooth potential barrier, as observed in Fig. 5.10 (f).
Nevertheless, the overlap of these Majorana modes is not exponentially suppressed with the nanowire length
(since they are not localized at opposite sides), and a small overlap exists at the NS interface.
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Figure 5.10: Majorana modes composing the six zero-energy fermionic bound-states of Table.5.1.(a)-(f) The
square amplitude of the two Majorana modes associated with the zero-energy fermionic mode for case a-f of
Table. 5.1.

5.3.2 Theoretical description of the shot-noise tomography experiment
To model the STS tomography, we proceed along the same line as in Section. 2.3, and define the complete
Hamiltonian,

H = HS +HT + tψ†
S,jτzψT + (h.c.), (5.24)

where HS , given by (5.23), describes the isolated sample, HT describes the isolated metallic tip, and the
last term describes the coupling between tip and sample. Here we introduced the Nambu spinor ψT =

[d↑, d↓, d
†
↓,−d

†
↑]
T , with dσ the operator annihilating an electron with spin σ at the apex of the tip. For the

sake of simplicity, the tip-sample tunneling is assumed to be purely local. t is the tip-sample hopping am-
plitude, and j denotes the site of the wire coupled to the tip apex. Since we are considering a tomography
experiment, j can be varied.
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For simplicity, we assume that the metallic tip has a single conducting band. Therefore the Hamiltonian
describing the isolated tip reads:

HT =
∑
k

ψ†
T,k [ϵT (k)− µT τz]ψT,k, (5.25)

with ϵT (k) the energy dispersion characterizing the metallic tip and µT = µS + eV , the chemical potential of
the tip, with µS = µ the chemical potential of the sample. The chemical potential difference µT − µS = eV

takes into account the voltage bias across the junction.

The electronic current flowing through the STM junction is defined as Î(j, τ) = −edN̂T (τ)

dτ
, with N̂T (τ)

the particle number operator of the tip at time τ , evolving in the Heisenberg picture. Using the equation of
motion in the Heisenberg, we directly obtain:

Î(j, τ) =
iet

ℏ
{ψ†

T (τ)ψS,j(τ)− ψ†
S,j(τ)ψT (τ)}. (5.26)

The average current, I(j, τ), therefore reads:

I(j, τ) = ⟨Î(j, τ)⟩ = iet

2ℏ
⟨ψ†

T (τ)ψS,j(τ)− ψ†
S,j(τ)ψT (τ)⟩, (5.27)

where ⟨...⟩ denotes the non-equilibrium average of operators evolving in the Heisenberg picture with respect to
H.

We recall that the current shot-noise S(τ) is defined as the zero-frequency limit of the time-symmetric
current-current correlation, C(τ1, τ2),

C(τ1, τ2) = ⟨δÎ(τ1)δÎ(τ2) + δÎ(τ2)δÎ(τ1)⟩, (5.28)

S(τ) =

∞∫
−∞

dτ ′C(τ ′ + τ, τ), (5.29)

where δÎ(τ) ≡ Î(τ)− ⟨Î(τ)⟩.
To compute the current and shot-noise, we use the Keldysh formalism and introduce the set of local contour-

ordered Green’s functions,

Ĝc
S,S(z, z

′) = − i

ℏ
⟨Tc[ψS,j(z)⊗ ψ†

S,j(z
′)]⟩, (5.30)

Ĝc
S,T (z, z

′) = − i

ℏ
⟨Tc[ψS,j(z)⊗ ψ†

T (z
′)]⟩, (5.31)

Ĝc
T,S(z, z

′) = − i

ℏ
⟨Tc[ψT (z)⊗ ψ†

S,j(z
′)]⟩, (5.32)

Ĝc
T,T (z, z

′) = − i

ℏ
⟨Tc[ψT (z)⊗ ψ†

T (z
′)]⟩, (5.33)

and the corresponding retarded, advanced, and lesser Green’s functions. We stress that the above Green’s
functions are matrices 4× 4 matrices acting in the particle-hole⊗spin space. z and z′ are time arguments lying
on the Keldysh contour c (see Fig. 2.4) while τ and τ ′ time arguments lying on the real axis.
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It is then straightforward to show that the average current I(j, τ) reads,

I(j, τ) =
et

2

[
G<

S,T (τ, τ)−G<
T,S(τ, τ)

]
. (5.34)

Thanks to the Wick theorem and after straightforward algebra (see the Supplementary Materials in [34] for
details), the shot-noise is given by:

S(τ) =
e2t2

2

∫
dτ ′Tr

{
G<

T,T (τ, τ + τ ′)G>
S,S(τ + τ ′, τ)−G<

S,T (τ, τ + τ ′)G>
S,T (τ + τ ′, τ)

}
(5.35)

+ (S ↔ T ) + (τ ↔ τ + τ ′).

Focusing on the dc regime, the current and shot-noise are stationary, I(j, τ) = I(j), S(j, τ) = S(j) and all
Green’s functions depends only on the relative time difference τ − τ ′. Hence, we can define their Fourier
representation,

Gγ
α,β(ω) =

∫
dτe

i
ℏωτGγ

α,β(τ − τ ′), (5.36)

where γ ∈ a, r,>,< denotes the type of Green’s functions while α, β = S, T are the sub-system indices. After
a straightforward Fourier transformation of equations (5.34) and (5.35), the current and shot-noise are therefore
given by:

I(j, V ) =
et

2ℏ

∫
dω

2π
Tr
{
G<

S,T (ω)−G<
T,S(ω)

}
, (5.37)

S(j, V ) =
e2t2

ℏ

∫
dω

2π
Tr
{
G<

T,T (ω)G
>
S,S(ω)−G<

S,T (ω)G
>
S,T (ω)

}
+ (jS ↔ T ). (5.38)

Finally, we recall that the Fano factor F (j, V ) is defined by:

F (j, V ) =
S(j, V )

2e|I(e, V )|
. (5.39)

To compute the local Green’s functions entering S(j, V ) and I(j, V ), we use a perturbative expansion with
respect to the tip-sample coupling. Using the results of Section. 2.3, it is straightforward to show that Ĝc

αβ(z, z
′)

obeys the following Dyson equations:

Ĝc
αβ(z, z

′) = δαβ ĝ
c
α(z, z

′) + t

∫
c
dz1ĝαδ(z, z1)τzĜ

c
δβ(z1, z

′), with δ ̸= α, (5.40)

where we defined the local unperturbed contour-ordered Green’s functions describing the isolated tip and sam-
ple:

ĝcS(z, z
′) =− i

ℏ
⟨Tc
[
ψSj(z)⊗ ψ†

Sj(z
′)
]
⟩0, (5.41)

ĝcT (z, z
′) =− i

ℏ
⟨Tc
[
ψT (z)⊗ ψ†

T (z
′)
]
⟩0. (5.42)
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Here we used the notation ⟨...⟩0, which is defined in (2.34). Therefore, using Langreth’s rules and after a
straightforward Fourier transformation, we obtain the following set of equations on the real-time axis:

Ĝ
r/a
S,S(ω) =ĝ

r/a
S (ω) + t2ĝ

r/a
S (ω)τz ĝ

r/a
T (ω)τzĜ

r/a
S,S(ω), (5.43)

Ĝ
</>
S,S (ω) =t2ĝ

</>
S (ω)τz ĝ

a
T (ω)τzĜ

a
S,S(ω) (5.44)

+ t2ĝrS(ω)τz ĝ
</>
T (ω)τzĜ

a
jS,jS(ω) + t2ĝrS(ω)τz ĝ

r
T (ω)τzĜ

</>
S,S (ω),

Ĝ
</>
T,T (ω) =ĝ

</>
T (ω) + t2ĝ

</>
T (ω)τzĜ

a
S,S(ω)τz ĝ

a
T (ω) (5.45)

+ t2ĝrT (ω)τzĜ
</>
S,S (ω)τz ĝ

a
T (ω) + t2ĝrT (ω)τzĜ

r
S,S(ω)τz ĝ

</>
T (ω),

Ĝ
</>
S,T (ω) =tĜ

</>
S,S (ω)τz ĝ

A
T (ω) + tĜR

S,S(ω)τz ĝ
</>
T (ω), (5.46)

Ĝ
</>
T,S (ω) =tĝ

</>
T (ω)τzĜ

A
S,S(ω) + tĝ

</>
T (ω)τzĜ

A
S,S(ω). (5.47)

Here we introduced the retarded, ĝrS(τ, τ
′), ĝrT (τ, τ

′), advanced ĝaS(τ, τ
′), ĝaT (τ, τ

′) lesser ĝ<S (τ, τ
′), ĝ<T (τ, τ

′)

and greater ĝ>S (τ, τ
′), ĝ>T (τ, τ

′) unperturbed Green’s functions describing the isolated sample and tip respec-
tively. In the absence of the tip-sample coupling, the sub-systems are decoupled and at equilibrium at their
respective chemical potential. Hence, the unperturbed Green’s functions obey the fluctuation-dissipation theo-
rem:

g<S (ω) = f(ω) [gaS(ω)− grS(ω)] , (5.48)

g>S (ω) = (f(ω)− 1) [gaS(ω)− grS(ω)] , (5.49)

g<T (ω) = [gaT (ω)− grT (ω)] .f̂T (ω, eV ), (5.50)

g>T (ω) = [gaT (ω)− grT (ω)] .
[
f̂T (ω, eV )− 1

]
, (5.51)

with f̂T (ω, eV ) = f(ω − eV )
τ0 + τz

2
+ f(ω + eV )

τ0 − τz
2

, (5.52)

where f(ω) is the Fermi-Dirac distribution, which depends on the temperature T . Moreover, by definition, the
retarded and advanced Green’s functions are related one to each other according to ĝrα(ω) = ĝaα(ω). Conse-
quently, with the unperturbed retarded Green’s functions ĝrSj(ω) and ĝrT (ω) in hands, we can readily compute
the current I(j, V ), shot-noise S(j, V ) and Fano factor F (j, V ).

Hereinafter, we focus on the sub-gap voltage regime |eV | < ∆eff < ∆. Remembering that ∆ is typically
much weaker than the Fermi energy and the bandwidth, the relevant energy range for our purpose is a narrow
window around the Fermi energy. It is, therefore, legitimate to use the wide-band approximation to describe
the metallic tip. Within this approximation, the Green’s function of the tip reads:

grT (ω) = −iπνT τ0 ⊗ σ0, (5.53)

and the tunnel junction is characterized by the tunneling rate Γ = 2πνT t
2.

At this point, the only missing quantity to determine the current I(j, V ), shot-noise S(j, V ), and Fano
factor F (j, V ) is ĝrS(ω). In principle, ĝrS(ω) has to be computed numerically and depends on the details of ĤS ,
the BdG Hamiltonian of the isolated sample. Nevertheless, using a low-energy approximation for ĝrS(ω), we
are able to obtain an insightful analytical model describing the spatial dependence of the shot-noise and Fano
factor.
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5.3.3 Insights from a low-energy effective theory
Within our tight-binding BDG model, applied to a one-band Hamiltonian, a general zero-energy state, regard-
less of the bulk-topology, is associated to the 4 particle-hole component wave-function ϕ+(j) = [u↑(j), u↓(j), v↑(j),−v↓(j)]T
and its particle-hole partner ϕ−(j) = Cϕ+(j), where C = σyτyK, with K the complex conjugation. Since we
focus on the sub-gap voltage regime eV < ∆eff and low-temperature regime T ∼ 0, the dominant contribution
to transport properties stem from |ω| < eV < ∆eff . Because of the effective gap in the sample ∆eff , the zero-
energy state is the only state available in the above-mentioned energy range. Therefore, it seems legitimate to
neglect the higher-energy states in the sample and approximate the unperturbed retarded Green’s function by
the retarded Green’s function of a single zero-energy bound-state:

gRS (ω) ≈
ϕ+(j)ϕ

†
+(j) + ϕ−(j)ϕ

†
−(j)

ω + i0+
. (5.54)

Under the general assumption that the sample Hamiltonian is real 1, uσ(j) and vσ(j) can be safely chosen as real
numbers. Under this assumption, injecting (5.54) into our closed set of equations (5.43), (5.44), (5.45), (5.46),
and (5.47), and using (5.37) and (5.38), we are able to obtain an exact analytical expression of S(j, V ) and
I(j, V ). In the generic case of a finite temperature, the integrals entering these expressions can not be performed
analytically. Hence we focus on the T = 0 limit. Even in this limit, for finite voltage, the resulting expressions
turn out to be lengthy and not insightful and can be found in the Supplementary Material of [34]. However, in
the zero-temperature limit and saturated voltage regime, eV ≫ Γj , with Γj = Γ

∑
σ(|uσ(j)|2 + |vσ(j)|2), we

obtain

S(j) ≃ 8e2Γ
(
∑

σ u
2
σ)(
∑

σ v
2
σ)[(
∑

σ u
2
σ)

2 + (
∑

σ v
2
σ)

2]

(
∑

σ u
2
σ +

∑
σ v

2
σ)

3
, (5.55)

I(j) ≃ 2eΓ
(
∑

σ u
2
σ)(
∑

σ v
2
σ)

(
∑

σ u
2
σ +

∑
σ v

2
σ)
, (5.56)

F (j) ≃ 1 +

(∑
σ(|uσ|2 − |vσ|2)∑
σ(|uσ|2 + |vσ|2)

)2

= 1 + δ2ph(j), . (5.57)

Notice that δph(j) corresponds to the local electric charge of the bound-state normalized by its local square am-
plitude (also named intensity). Here we interpret this quantity as a local measure of the particle-hole asymmetry
of the bound-state. Consequently F (j) does not depend on the tunneling strength and 1 ≤ F (j). Furthermore,
and most importantly, we prove that F (j) − 1 is in direct correspondence with δph(j) and can thus display
strong spatial variations. Interestingly it was recently proposed to identify Majorana vortex modes using non-
local transport measurements [38]. The proposed protocol provides a spatial map of the quantity δph(j) (see
[38]). It suggests that our FFT protocol, based on local probes, might provide equivalent results to more so-
phisticated protocols based on non-local transport.

In sharp contrast, a perfectly isolated MZM is described by a Majorana wavefunction ϕM (j) satisfying
the pseudo-reality condition ϕM (j) = CϕM (j). Hence ϕM (j) is particle-hole symmetric for any position.
This imposes strong constraints on the spatial dependence of F (j). Indeed, neglecting the contribution of high
energy states above the gap, the unperturbed retarded Green’s function of the substrate can be approximated by

1We numerically check that our results remain valid for complex Hamiltonian, see Fig. 5.15
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the retarded Green’s function of a single perfectly isolated MZM,

gRS,j,j(ω) =
ϕM (j)ϕ†M (j)

ω + i0+
, (5.58)

with ϕM (j) = (u↑, u↓, u
∗
↓,−u∗↑)T . Focusing on the T = 0 limit, the shot-noise and current can be obtained

exactly (see Supplementary Material of [34] for details) and adopt a compact form even for finite voltage. The
resulting Fano factor reads:

F (j, eV ) = 1− Γj

arctan
(
eV
Γj

) eV

(eV )2 + Γ2
j

. (5.59)

Therefore, for sufficiently high voltage, eV ≫ Γj , the Fano factor saturates, F (j) ≈ 1, and does not depend on
j. Moreover, the leading order corrections in Γj

eV reads F (j) ≃ 1 − 2Γj

πeV . Thus, the Fano factor in the vicinity
of a MZM weakly decreases with increasing tunneling strength Γ, reaching values lower than the Poissonian
limit 1.

In fact, this result could have already been anticipated from equation (5.57). Notice that nonzero δph(j)
obviously requires finite overlap of Majorana wavefunctions describing the zero-energy fermion. Indeed, de-
composing ϕ+ into a linear superposition of two Majorana wavefunctions, ϕA = CϕA and ϕB = CϕB , with
ϕ+ = eiφ ϕA(j)+ϕB(j)√

2
, we readily obtain:

δph(j) = 2i
ϕ†A(j)τzϕB(j)

|ϕ†A(j)|2 + |ϕB(j)|2
⇒ F (j) = 1 + 4

 Im
{
ϕ†AτZϕB

}
|ϕ†A(j)|2 + |ϕB(j)|2

2

. (5.60)

In consequence, the FFT of a perfect MBS necessarily consists of a flat plateau F (j) = 1 over the entire extent
of the zero-energy bound-states. Equation (5.60) does not imply that the presence of a finite Majorana overlap
necessarily produces oscillations of F above one. Nevertheless, it seems unlikely that the presence of Majorana
overlap does not produce any local charge of the bound-state and could not be detected by FFT. Thus, we expect
F to be sensitive to Majorana overlap.

Consequently, even if our FFT protocol is not able to provide any direct signature of the topology of the
bulk substrate, it is of great practical interest to develop Majorana-based qubits. Indeed, FFT should be sensitive
to Majorana overlap and used to select zero-energy bound-states with suppressed Majorana overlap, which is
therefore resilient to local noise and good candidates for quantum computation [186].

As a last remark, we stress that all the above arguments are general and rely only on the existence of a
zero-energy bound state in an effective single-band Hamiltonian.

5.3.4 Numerical simulations of Fano factor tomography
In order to verify the validity of the previous results obtained from an effective low-energy theory, we nu-
merically calculated the FFT of the wire. To do so, we first numerically computed the eigenvalues En and
eigenvectors ϕn of ĤS , the BdG Hamiltonian of the sample. Second, we used Lehmann’s representation of
ĝrS(ω):

ĝrS(ω) =
∑
n

ϕn(j)ϕ
†
n(j)

ω − En + i0+
, (5.61)
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with ϕn(j) the wavefunction of ϕn in the Nambu basis at evaluated at site j. Then, we inserted ĝrSj(ω) in the set
of equations (5.43), (5.44), (5.45), (5.46), and (5.47). Finally, the obtained local non-equilibrium Green’s func-
tions are inserted into (5.37) and (5.38), and the integrals are performed numerically. We performed numerical
simulations of the FFT for different configurations of the sample indicated in Table I and many values of the
tunneling amplitude. Here we present results for Γ/∆eff = 0.1, 0.3, which corresponds to strong tunneling
strength. Since we are interested in the low-temperature quantum regime, we set kBT = ∆eff

200 . Typically, the
shot-noise increases with voltage and rapidly saturates to a finite value for higher voltage. Therefore, we set
eV = 0.7∆eff , which ensures that the signal has reached saturation. The results of our numerical simulation are
presented in Fig. 5.11. Figs. 5.11 (a), (b, (c), (d), (e), and (f) correspond to case a, b, c, d, e, and f respectively,
in Table. 5.1.

First, Figs. 5.11 (a), (c), and (e) show that in the vicinity of a MBS, F (j) does not significantly deviate
from the Poissonian limit, F = 1 and does not depend strongly on the tip position, j. In addition, the low-
energy approximation (5.59) is in quantitative agreement with the exact FFT. This behavior is observed for
any tunneling rate. Notice that for the first sites of the wire, j < 5, F (j) weakly decreases below one when
tunneling strength increases, as expected from the low-energy approximation (5.59).

In sharp contrast, Fig. 5.11(b) shows that in the vicinity of YSR bound-states, the Fano factor can reach
values significantly greater than 1, oscillating strongly as a function of the tip position, j. This behavior is again
observed for any tunneling regime and does not significantly depend on Γ. Those qualitative results are also
found in the vicinity of an ABS, as plotted in Fig. 5.11 (d). In the vicinity of the QMS, case (f) of Table. 5.1,
the FFT exhibits a flat plateau F = 1 extending over the whole normal part of the wire (j < 20) and starts
oscillating in the superconducting region, where the Majorana wavefunctions overlap. Therefore, the difference
with the FFT of an isolated MZM is less pronounced but still visible. Finally and most importantly, in all these
cases, our low-energy approximation (5.57) is in quantitative agreement with the exact FFT.

The analysis of the FFT in the vicinity of the QMS (Fig. 5.11 (f)) suggests that the FFT is sensitive to
Majorana overlap. This is indeed expected from equation (5.60). More precisely, (5.60) shows that F can
exceed one only in the presence of a finite Majorana overlap, and we expect that a finite Majorana overlap
produces F (j) > 1 in the FFT. To confirm it and further analyze the role of the Majorana overlap in the FFT
profile, we performed additional simulations of the FFT in the vicinity of imperfect MBS with overlapping
Majorana modes. In short nanowires, due to the finite length of the wire, the Majorana modes localized at
the edges of Rashba nanowires in the topological phase can overlap each other. Generally, the finite overlap
of Majorana wavefunctions leads to finite energy of the MBS. However, there exist fine-tuning points of the
Zeeman energy where a zero-energy bound-state exists with a strong Majorana overlap (see Fig. 5.12). We
computed the Fano factor F (j) as a function of the position of the tip, j, for a perfect MBS without Majorana
overlap and compared it to two of these fine-tuning points. The corresponding wire parameters are listed in
Table. 5.2. In each case, the nanowire is in the topologically non-trivial regime and harbors MZMs localized at
each end, as can be observed in Fig. 5.12. While case a corresponds to truly unpaired MZMs with negligible
overlap, as observed in Fig. 5.12 (a), in case b and c the Majorana localization length ξM increases because
of the increase in the Zeeman energy, as observed in Figs. 5.12 (b) and (c). Therefore, a substantial Majorana
overlap is observed even at the extremities of the nanowire. The results of the FFT in each case are presented
in Fig. 5.13.

Fig. 5.13 shows that the plateau F = 1, observed in the absence of overlap, disappears in the presence of
finite overlap, which is responsible for an increase in F above 1. Indeed, in case a, the absence of Majorana
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Figure 5.11: Fano factor tomography in the vicinity of trivial fermions and MBS. Dots: Fano factor as a
function of the tip position (j) at fixed voltage eV = 0.7∆eff for increasing tunneling strengths (Γ/∆eff =
0.1, 0.3) in the vicinity of various types of zero-energy bound-states: MBS 1 (a), YSR (b), MBS 2 (c), ABS (d),
MBS 3 (e), and QMS (f) (see Table. 5.1). In the vicinity of unpaired MZMs, cases (a), (c), and (e), a flat
plateau F (j) = 1 is observed in sharp contrast with trivial cases (b) and (d), where strong oscillations of F
well above 1 are obtained. In the vicinity of a QMS, case (f), F (j) = 1 in the whole metallic region, where
the Majorana wavefunctions do not overlap, however as they start overlapping in the SC region, 20 < j < 40,
(see Fig. 5.12 (f) ) spatial oscillations of F above one are found, allowing for a distinction with the MBS of
case (e). Dashed line: Analytical approximation obtained from the low-energy model, given by (5.57). The
low-energy approximation is in excellent agreement with numerical points. The green vertical line indicates
the NS interface when it exists. The three insets show the DOS for the six cases considered here.

overlap leads to the observation of a plateau F = 1 for the first sites of the wire where the MBS is localized
(j ≤ 10), as observed in Fig. 5.13 (a). For position further in the bulk, (j > 10), the Majorana wave-function
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Figure 5.12: Overlapping Majorana modes in short topological nanowires. (a), (b), (c): Square amplitude of
the Majorana wave-functions associated to the zero-energy fermionic states for VZ = 1.5, 3.05, and 3.65,
respectively. In case (a), the MBS overlap at the edges of the wire (j ≤ 10) is zero. In cases (b) and (c), the
Majorana wavefunctions are not confined to one edge of the wire, and a finite overlap exists at each end of
the wire. (d): Spectrum of the wire as a function of the Zeeman coupling VZ . The vertical lines indicate the
value of VZ corresponding to cases a, b, and c respectively in Table. 5.2. In all cases, the spectrum exhibits a
single pair of zero-energy eigenmodes corresponding to a single zero-energy fermion. Notice that in cases b
and c, due to the fine-tuning of the Zeeman energy, the overlapping Majorana end modes do not hybridize. In
all figures the other parameters are (µ = 0.5, w = 10,∆ = 1, α = 1.2, N = 60)

ϕA is weak (see Fig. 5.12 (a)) and non-universal contributions are responsible for the increase in F (j) above
1. Those effects are of two types. First, when ϕA is almost vanishing, it becomes comparable to ϕB . Hence
the quantity: δ2ph can take non-zero values, increasing F above one. Indeed, one can see from the dashed
dark line that δ2ph(j) is non-zero for such positions. Such contributions are then finite-size effects. Second,
due to the weak weight of the MBS wavefunctions ϕA and ϕB at positions j > 10, the non-resonant Andreev
reflections on bulk states, neglected in the low-energy approximation, become a relevant charge transfer process
and increase F . This is especially true for j = 13 where the Majorana wavefunctions are almost exactly
vanishing. However, the current at this position is also infinitesimally small, and then the Fano factor may not
be experimentally accessible here, and one should observe a plateau extending from j = 0 to j = 20.
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µ w ∆ VZ α N ∆eff

a 0.5 10 1 1.5 1.2 60 0.41
b 0.5 10 1 3.5 1.2 60 0.65
c 0.5 10 1 3.65 1.2 60 0.67

Table 5.2: Table summarizing the three sets of parameters used to study the effect of Majorana overlap on
the FFT. In each case, the nanowire is in the topological regime and exhibits a pair of Majorana edge modes.
While case a corresponds to non-overlapping Majorana modes realizing MZMs, cases b and c correspond to
overlapping Majorana-edge modes. These modes do not correspond to true MZMs and are not protected against
local noise. ∆eff denotes the effective gap separating the zero-energy fermionic bound-state from other states.

On the contrary, in cases b and c, the presence of a finite overlap of the MBS at the edges washes out the
Fano plateau F = 1, and MBS overlap is responsible for finite particle-hole asymmetry of the zero-energy states
(as it can observe from the dashed dark line), increasing F (j) above one even at the edges of the nanowire.
Therefore, (5.57), (5.60), and the above results suggest that the FFT is sensitive to Majorana overlap and might
be used to distinguish truly unpaired MZMs from partially overlapping ones.

In summary, we have shown that the recently developed STM shot-noise techniques can provide a key
discerning tool MBS from other zero-energy fermionic states. In particular, we evidenced that the Fano factor
strongly oscillates spatially for ABS and YSR bound states around the impurity location, greatly exceeding one,
i.e., the Poissonian limit. This must be sharply contrasted with the behavior of the MBS Fano factor, which
barely deviates from one. These sharp differences have a universal character that is rooted in the intrinsic
particle-hole symmetry of the wavefunction describing a single MZM. Such signature in the FFT in the vicinity
of a zero-bias conductance peak thus constitutes an additional necessary condition to identify true MBS. More-
over, a finite Majorana overlap is necessary to increase the Fano factor above one. In principle, it is possible that
an overlapping pair of Majorana modes does not produce a finite particle-hole asymmetry. Nevertheless, this
situation seems rather unlikely in realistic setups and is not observed in our simulations. Hence this suggests
that FFT is a promising tool to study and estimate the Majorana overlap of zero-bias peaks.

5.3.5 Discussion
To obtain the insightful result (5.57) from our low-energy effective model, we set T = 0 and additionally
assumed that the BdG Hamiltonian describing the hybrid sample is real. Moreover, the numerical simulations
were performed at a very low temperature kBT = ∆eff/200 and all the cases studied in Table. 5.1 correspond
to purely real BdG Hamiltonians. Therefore, it is legitimate to wonder how the above results are modified when
temperature increases and/or when the BdG Hamiltonian describing the sample contains complex terms.

First, we study the effect of temperature. To do so, we performed numerical simulations of the FFT in
the vicinity of the MBS, case a in Table. 5.1 and in the vicinity of the YSR, case b in Table. 5.1. Our results,
presented in Fig. 5.14, show that, independently of the tunneling rate Γ, the FFT is not significantly modified
by thermal effects for temperature kBT < 0.1∆eff . Most importantly, Fig. 5.14 shows that, as long as kBT <

0.1∆eff , the T = 0 limit of our low-energy model, (5.57), remains in good agreement with the exact FFT
obtained numerically.
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Figure 5.13: Fano factor F as a function of the tip position, j for VZ = 1.5(a), VZ = 3.05(b) and VZ = 3.5(c).
Other parameters are set to (µ = 0.5, tw = 10,∆ = 1, α = 1.2, N = 6). In case (a) the absence of Majorana
wave-functions overlap leads to the observation of a plateau F = 1 for the first sites of the wire where the MZM
is localized (j ≤ 10). In cases (b) and (c), the presence of a finite overlap of the MBS at the edges washes
out the Fano plateau F = 1, and the finite Majorana overlap is responsible for a finite particle-hole asymmetry
δph of the zero-energy states (as it can be observed from the dashed dark line), increasing F (j) above one
even at the edges (j ≤ 10). In all cases, the analytical approximation given by (5.57) (black dashed line) is in
quantitative agreement with the numerical results. For all cases, the voltage and temperature are eV = 0.7∆eff

and kBT = ∆eff/200.

For higher temperature, kBT ≥ 0.1∆eff , thermal contributions to shot-noise are responsible for an increase
of the factor which weakly spoils the Poissonian plateau in the vicinity of MBS. However, the qualitative
behavior of F (j) in the vicinity of the zero-energy state (j < 12) is still well described by our analytical
approximation given by (5.57) (black-dashed line) for all temperatures studied here. Temperature effects are
more pronounced in the tails of the zero-energy states where the pure quantum contributions (non-vanishing
at T = 0) to the shot-noise are weaker and more easily dominated by temperature contributions. Our results
suggest that as long as kBT ≪ ∆eff and kBT < eV − ∆eff , such that bulk contributions do not play a key
role, the low-temperature results are not modified, and the FFT is well captured by the simple model (5.57).
Consequently, the proposed Fano tomography could be performed in the current state-of-the-art experimental
setups based on hybrid semiconductor/superconductor nanowires. Indeed, as an example, in [167] authors
reported kBT ≃ 100mK and ∆eff ≃ 200µeV, leading to (kBT )/∆eff ≃ 0.05, where the low-temperature
regime is still valid.

Let us now investigate how complex terms in the BdG Hamiltonian describing the sample affect the FFT.
To derive (5.57) we assumed that the BdG Hamiltonian of the sample is purely real, up to a global gauge trans-
formation. In that case, the complex conjugation K plays the role of an artificial time-reversal symmetry, and
the system belongs to the BDI symmetry class of the ten-fold way. When the BdG Hamiltonian contains com-
plex terms, which can not be removed by a global gauge transformation, the artificial time-reversal symmetry
is broken, and the system falls into the D symmetry class. Moreover, the eigenvectors of the BdG Hamiltonian
can no longer be written exclusively with real numbers. Hence our derivation of (5.57) is no longer valid. Here
we show that the relation (5.57) is still valid for complex Hamiltonians. To that end, we performed numerical
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Figure 5.14: Effects of temperature on the FFT of zero-energy bound-states. (a), (b) and (c): F (j) as a
function of the tip position, j, for a nanowire in the configuration a of Table. 5.1 at various temperatures kBT

∆ =

0.03, 0.05, and, 0.1, respectively. The blue, green and red dots corresponds to kBT
∆ = 0.03, 0.05, and, 0.15,

respectively. The black dashed line indicates the low-energy approximation (5.57) obtained at T = 0. (e)-(g):
same as (a)-(c) for a nanowire in configuration a. The numerical simulation results (colors dots) and the T = 0
and low-energy approximation (5.57) (black dashed line) are in quantitative agreement up to kBT = 0.1∆eff ,
where weak quantitative deviations are observed. All simulations have been performed setting eV = 0.7∆eff .

simulations of the FFT for three additional cases, described by the following Hamiltonian,

HS =
1

2

N−1∑
l=0

ψ†
l,S [(2w − µ)τz +∆(l)τx + V Z .σ]ψl,S (5.62)

+
1

2

N−2∑
l=0

{ψ†
l+1,S [−wτz − iασyτz]ψl,S + h.c.} − 1

2
ψ†
0,SJσyψ0,S ,
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with V Z = VZ(cos θex+sin θey). We investigate 3 specific set of parameters(a, b,and c) detailed in Table. 5.3.
In all cases, the Hamiltonian contains complex terms and can not be made real. First, in case a we consider a

Configuration µ w ∆ VZ θ α J N NN ∆eff

a MBS 4 0.5 10 1 1.5 π/6 2 0 100 20 0.26
b ABS 2 0.5 10 1 0.26 π/6 2 0 100 20 0.27
c YSR 2 0.5 10 0.6 0 0 1.2 11.23 80 0 0.6

Table 5.3: Table summarizing the three additional sets of parameters studied here. In each case, the BdG
Hamiltonian describing the sample is not real, and the complex terms can not be removed by a global gauge
transformation. ∆eff denotes the effective gap separating the zero-energy fermionic bound-state from other
states.

partially-proximitized nanowire and suppose that the external magnetic field is not perfectly aligned with the
nanowire axis but tilted by an angle θ from ex. This case is particularly relevant since a perfect alignment can
not be achieved in realistic setups. In that case, the nanowire belongs to the D class, and we already showed
that when VZ >

√
µ2 +∆2 the nanowire is in the topological phase supporting a single pair of MZMs at its

ends. We compare this perfect MBS to two trivial zero-energy bound-states used as reference cases. In case
b, we assume that the nanowire is partially-proximitized. Due to fine-tuning of the parameter, a zero-energy
ABS localized in the normal part of the nanowire appears. In case c, we assume that a magnetic impurity is
localized at the left end of the wire. As the magnetic impurity points along the y axis, the BdG Hamiltonian
contains complex terms that cannot be removed because of the presence of SOC. In the absence of an external
magnetic field, a zero-energy YSR state appears localized at the left end of the nanowire due to the fine-tuning
of the exchange energy J . Again we numerically computed F (j) as a function of the tip’s position, j. The
results of the FFT are presented in Fig. 5.15. Fig. 5.15 (a), shows that even in the presence of complex terms
in the Hamiltonian, F (j) still shows a plateau F (j) = 1 in the vicinity of a MBS. This was expected since
equation (5.59) relies only on the form of MBS wavefunction without any other additional assumptions about
the Hamiltonian. Fig. 5.15 (b) shows that, even in the presence of complex terms in the Hamiltonian, equation
(5.57) obtained with the assumption of a real Hamiltonian, is still valid. Indeed, F obtained from equation
(5.57) (black dashed line) is in quantitative agreement with the numerical results (colored dots) for the first
sites of the wire. Moreover, F (j) still significantly exceeds one in the vicinity of trivial states.
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Figure 5.15: Numerical simulations of FFT for complex BdG Hamiltonians. (a), (b), and (c): Square amplitude
of the Majorana modes associated to the zero-energy bound-state in case a, b andc respectively in Table.5.3.
Insets: LDOS ρ(ω) in the vicinity of the zero-energy bound-states. (d), (e), and (f): (Dots) Fano factor (F ) as
a function of the tip position, j, at fixed voltage eV = 0.7∆eff and temperature kBT = ∆eff

200 for increasing
tunneling rates Γ/∆eff = 0.1, 0.3 and configuration a, b and c respectively in Table. 5.3. In the vicinity of a
MBS, case a, a flat plateau F (j) = 1 is observed in sharp contrast with trivial cases b and c, where strong
oscillations of F well above 1 are observed. (Dashed line) Analytical approximation obtained from the low-
energy model, given by (5.57). In each case, the low-energy approximation is in excellent agreement with
numerical points. The weak disagreement for j > 10 in panel (f) is due to the contribution of bulk states which
is neglected in (5.57) and becomes relevant when the tip moves away from the YSR location.
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5.4 Conclusion and perspectives
Majorana bound-states are promising building blocks for future fault-tolerant topological quantum computers.
However, the promising developments in using MBS for quantum computing are nowadays limited by the
difficulties in detecting and discerning MBS from other zero-energy bound-states. The desired properties of
MBS are rooted in their non-local nature. Hence experimental protocols able to quantify the Majorana overlap
of zero-energy bound-states are highly desirable. Here, we showed that recently developed scanning tunneling
shot-noise microscopy/spectroscopy techniques constitute relevant tools to identify perfect MBS.

In particular, we showed that:

(i) In the vicinity of a spatially isolated MZM, the Fano factor barely oscillates below one. This universal
feature is rooted in the intrinsic particle-hole symmetry of the wavefunction describing a single MZM.

(ii) On the contrary, in the vicinity of trivial zero-energy bound-states, the Fano factor can strongly oscillate
in space with amplitudes greatly exceeding one, the Poissonian limit. These strong oscillations are rooted
in the local particle-hole asymmetry (i.e the local charge) of trivial bound-states.

(iii) Finite Majorana overlap is necessary to produce oscillations of the Fano factor above one.

Therefore, the presence of quantized Fano plateau, F = 1, in the FFT constitutes an additional necessary
condition to identify MBS. In addition, it seems unlikely that a finite Majorana overlap does not produce a Fano
factor exceeding one, and we did not encounter such a case in all the numerical simulations performed. Hence,
the Fano factor seems a promising tool sensitive to the Majorana overlap, which might be used to identify MBS.
Thus, even if the proposed Fano factor tomography protocol is not able to directly access the bulk topology, it
should play a key role in the development of Majorana-based technologies. Indeed, we already stressed that the
definition of a MBS is directly related to its non-local character but not to bulk topology.

The FFT signature of MBS is rooted in the intrinsic particle-hole symmetry inherent to MZM. Hence
it should be universal. Our work, therefore, paves the way for additional theoretical studies of shot-noise
around MBS in alternative platforms such as 1D magnetic chains, planar Josephson junctions, or iron-based
superconductors. Indeed, even if recent studies investigated shot-noise in MBS localized at the core of vortices
[218], numerical simulations of the shot-noise tomography in these systems are still lacking. Finally, the present
results should foster further experimental developments of STM shot-noise experiments in the field of Majorana
fermions and, more generally, in the topological matter.
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Chapter 6

General Conclusion

In this thesis, we revisited electronic transport in superconducting sub-gap states. More particularly, we showed
that standard scanning tunneling spectroscopy and the recently developed scanning tunneling shot-noise spec-
troscopy techniques provide invaluable insights into the properties of superconducting sub-gap states and their
host materials. This includes the presence of unconventional pairing, the intrinsic lifetime of the bound-states,
or the particle-hole asymmetry of their wavefunction.

First, we have shown that a single classical spin, immersed in a conventional s-wave superconductor, locally
induces unconventional odd-frequency pair correlations at the impurity location. Analyzing the local Green’s
functions at the impurity site, we showed that the imaginary part of the odd-frequency pairing function is
proportional to the even component of the local density of state, a quantity directly measured in standard
tunneling spectroscopy. This result has the important physical consequence that as soon as a YSR state exists
inside the superconducting gap, odd-ω pairing is locally induced around the impurity. Based on the above-
mentioned proportionality relation, we proposed a method to extract the unconventional pairing function from
scanning tunneling spectroscopy data. Then we applied it to STS data measured on a Pb/Si(111) monolayer and
extracted the unconventional pairing function from the conductance data. The results of our analysis clearly
proved the occurrence of odd-frequency pairing around YSR states [30]. In collaboration with F. L. N. Santos
et al. we extended those results in presence of a finite impurity concentration and provided a method to extract
the imaginary part of the odd-frequency pairing function from the local density of states in the dilute limit [35].

Second, motivated by the recent development of scanning tunneling spectroscopy, we used the Keldysh
techniques to calculate the current shot-noise in YSR states. Based on a minimal model, we showed that the
shot-noise contains clear signatures of resonant Andreev reflections and incoherent single-particle tunneling
processes in YSR states. We compared our theoretical predictions with experimental data measured by our
LPS colleagues and showed that our simple theoretical model correctly captures the important features of shot
noise. From the quantitative agreement between theory and experiment, we extracted the intrinsic relaxation
rate of the YSR state, which is inaccessible by differential conductance spectroscopy. Using our theory, we also
showed that the persistent enhancement of the Fano factor above 1 on the weakest YSR resonance observed in
the experimental is a clear signature of resonant Andreev processes via the YSR state. On the other hand, the
measured asymmetry of the Fano factor indicates the presence of incoherent single-particle processes. Hence,
our results clearly show the concomitant presence of Andreev and single-particle processes in YSR states.

Lastly, we extend the former model to analyze the scanning tunneling shot-noise in the vicinity of any
superconducting sub-gap states, including YSR impurity states, Andreev bound-states, and topological Majo-
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rana zero-modes. Based on a low-energy model, we showed that in the strong tunnel coupling regime where
the contribution of incoherent single-particle processes can be neglected in front of Andreev reflections, we
showed that the Fano factor is essentially determined by the local particle-hole asymmetry of the bound-state
wavefunction. This encouraging result suggests that the Fano factor tomography can be used to distinguish
trivial fermions from Majorana zero modes. By means of numerical methods, we demonstrated that shot-noise
tomography indeed reveals key distinctive features that allow one to distinguish trivial zero-energy fermions
from Majorana zero-modes. More precisely, we showed that in the vicinity of a spatially isolated MZM, the
Fano factor barely oscillates below 1 in sharp contrast with the strong oscillations exceeding 1 observed in the
vicinity of trivial states. According to our low-energy model, strong oscillations are rooted in the local particle-
hole asymmetry (i.e the local charge) of trivial bound-states. Even if the proposed Fano factor tomography
protocol is not able to directly access the bulk topology, it is sensitive to the Majorana wavefunction overlap.
Thus, it could play a key role in the development of Majorana-based technologies and foster further experimen-
tal developments of STM shot-noise experiments in the field of Majorana fermions and, more generally, in the
topological matter.

Our numerical investigation was restricted to a minimal model describing hybrid semiconductor/superconductor
nanowires. Nevertheless, since the Fano factor tomography (FFT) signature of MBS is rooted in the intrinsic
particle-hole symmetry inherent to MZM wavefunctions, our results should not depend on the precise details
of the system and be applicable to any topological superconductors. More precisely, FFT should be relevant
to study the putative MZMs localized at the vortex cores in iron-based superconductors, which are intensively
scrutinized experimentally. Very recently, shot-noise has been measured at the vortex core in FeTe0.55Se0.45
[37], paving the way to shot-noise tomography around the vortex core. Hence, in the near future, it will be
interesting to perform numerical simulations of the Fano factor in the vicinity of MZMs localized at the vortex
cores in iron-based superconductors using realistic multi-band models. Indeed, while recent theoretical studies
studied the current and shot-noise in the vortex core [218], a detailed, comprehensive study of the shot-noise
tomography is still lacking.

As a final remark, I would like to mention that this manuscript does not constitute an exhaustive review
of all the topics I studied during the past three years of my PhD thesis. Although this manuscript focused on
electronic transport in sub-gap bound-states, which are determined by the dynamics of charge carriers, another
promising route to study the properties of YSR states would be to directly probe the spin dynamics of the
impurity. During the last months of my PhD I studied the spin-wave dynamics in a 1D chain of magnetic atoms
placed on top of a s-wave superconductor with spin-orbit coupling. Such a system exhibits MZMs localized at
its extremities that can influence the spin-wave dynamics of the magnetic moments. Using perturbation theory,
I showed that the absorption of the uniform spin-wave mode depends on the parity of the Majorana qubit and
might be used to determine it. These preliminary results motivate further investigations that can be pursued in
the next future.
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