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Conception de Mesures de Risque Adaptables aux Données pour la Détection Précoce des Evénements Critiques Financiers Résumé: Dans l'univers financier moderne en évolution rapide, les périodes de crise représentent probablement les événements les plus marquants parmi tous les phénomènes extrêmes possibles, avec un impact et une fréquence qui varient dans le temps. D'autre part, le couple rendementrisque est la dualité incontournable qui sous-tend toutes les activités humaines, tandis que démêler la relation précise entre rendement et risque constitue l'une des questions non résolues les plus importantes en finance, qui est également liée à la survenance d'événements critiques. Il est donc d'une importance fondamentale que les gestionnaires et les investisseurs prennent des décisions fondées sur des mesures solides du risque. Les techniques actuelles de quantification des risques de pointe ne s'adaptent ni au processus sous-jacent de génération de données ni à l'existence d'interdépendances dans un domaine temps-fréquence commun. Dans cette thèse, nous développons et évaluons de nouvelles méthodologies algorithmiques basées sur les données pour quantifier le risque extrême et le risque systémique dans des classes d'actifs hétérogènes. À cette fin, nous tirons parti de la puissance du traitement statistique du signal et de l'apprentissage automatique pour la conception d'indicateurs de risque robustes basés sur des représentations temps-fréquence efficaces, qui permettent l'extraction d'informations très détaillées à partir de données de séries chronologiques, en conjonction avec des modèles prédictifs précis pour l'alerte précoce des événements financiers critiques.

Dans cette thèse, nous développons et évaluons de nouvelles méthodologies algorithmiques basées sur les données pour quantifier le risque extrême et le risque systémique dans des classes d'actifs hétérogènes. À cette fin, nous tirons parti de la puissance de l'analyse temps-fréquence, des modèles non gaussiens à queue lourde, du traitement de signaux sur graphes et de l'apprentissage automatique pour la conception de mesures de risque robustes, qui permettent l'extraction d'informations très détaillées à partir de données de séries chronologiques simultanément dans le domaine temporel et fréquentiel.

Plus précisément, cette thèse développe quatre directions de recherche distinctes:

(i) la réplication des actifs, (ii) la quantification du risque adaptative à l'horizon, (iii) l'échantillonnage optimal de données impulsives à haute fréquence, et (iv) la modélisation prédictive du risque systémique et extrême avec des mesures dynamiques de connectivité sur graphes.

La construction d'un portefeuille de réplication pour un actif donné est un problème fondamental en finance mathématique. Un tel portefeuille peut être utilisé comme proxy pour concevoir des stratégies de trading robustes pour l'actif donné. À cette fin, il est très important de saisir et de représenter avec précision les structures locales, généralement très variables, des actifs. Cependant, les méthodes précédentes reposent souvent sur la résolution de problèmes d'optimisation non linéaires complexes pour extraire des modèles locaux complexes, tandis que leurs performances peuvent se détériorer lorsqu'elles sont appliquées à des actifs avec un changement de régime rapide en termes de volatilité.

Pour surmonter ces limitations, la première direction de recherche se concentre sur la conception d'une nouvelle méthode de réplication d'un actif de référence via son codage de représentation parcimonieux sur un dictionnaire de motifs localisés de base appris à partir des actifs de réplication. L'évaluation de notre méthode proposée sur un ensemble d'actifs distincts démontre une grande précision de réplication, tout en supprimant le besoin d'une normalisation préalable (par exemple à une monnaie ou à une échelle commune).

Les exigences de capital pour les institutions financières sont basées sur la quantification précise du risque inhérent. À cette fin, le temps est le paramètre important pour toutes les mesures de risque bien établies, alors que les gestionnaires de risques ne font aucune distinction explicite entre les informations capturées par des modèles de contenu fréquentiel différent. En outre, les mesures traditionnelles du risque extrême sont basées soit sur des hypothèses allégées pour les distributions de rendements, soit sur la théorie des valeurs extrêmes. Néanmoins, lorsqu'il s'agit de s'adapter à des horizons d'investissement spécifiques et de tenir compte des frictions inhérentes à la microstructure, ces mesures peuvent s'avérer inappropriées. Motivé par ces limites, le deuxième axe de recherche propose de nouvelles méthodes de quantification des risques adaptées aux investissements en actifs lourds. À cette fin, nous tirons parti de l'efficacité des décompositions temps-fréquence avec la puissance des modèles alpha-stables pour dériver deux mesures de risque adaptatives à l'horizon, à savoir une mesure de risque basée sur l'énergie qui peut être couplée au risque basé sur les quantiles couramment utilisé des mesures 3.4 Amplitude probability density (APD) curves for the wavelet coefficients of S&P 500 daily returns; 3-level MODWT is applied using the 'fk8' wavelet;
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Introduction

During the last decade, we are experiencing a considerable growth in applications for signal processing and machine learning techniques in many enterprise and industrial settings. Advertising, real estate, healthcare, e-commerce, and many other industries have been radically transformed by new processes and practices relying on collecting and analyzing data about operations, customers, competitors, new opportunities, and other aspects of business. The financial industry has been one of the early adopters, with a long history of applying sophisticated methods and models to analyze relevant data and make intelligent decisions, including a quadratic programming formulation in Markowitz portfolio selection [START_REF] Markowitz | Portfolio selection[END_REF], stochastic differential equations for option pricing [START_REF] Black | The pricing of options and corporate liabilities[END_REF],

stochastic volatility models in risk management [START_REF] Robert | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF], [START_REF] Hull | The pricing of options on assets with stochastic volatilities[END_REF], factor analysis for equity modeling [START_REF] Fama | Common risk factors in the returns on stocks and bonds[END_REF], and reinforcement learning for optimal trade execution [START_REF] Bertsimas | Optimal control of execution costs[END_REF],

just to name a few examples.

While there is a significant overlap of techniques in signal processing, machine learning, and financial econometrics, historically, there has been rather limited awareness and slow diffusion of new ideas between these research areas. For instance, the ideas of stochastic volatility and copula modeling, which are well-established in financial econometrics, are less known in the signal processing community, and the concepts of sparse modeling and optimization, that have had a transformative impact on signal processing and statistics, have only recently started to penetrate into financial applications.

The aim of this thesis is to bridge the gap between (statistical) signal processing, machine learning, and computational finance, offering novel tools -with a special focus on risk quantification (a.k.a. risk measurement) -to the financial community.

The financial ecosystem and markets have been transformed radically with the advent of new technologies, where almost any financial product can be traded in the globally interconnected cyberspace of financial exchanges by anyone, anywhere, and anytime. This systemic change has placed real-time data acquisition and handling, high-performance processing and automated decision making at the core of such complex systems. Despite their different goals, all market participants (e.g. hedgers, investors, speculators, and market makers) try to balance the two main objectives in trading, namely, maximize future expected rewards (returns) and minimize the risk of potential losses. Naturally, one desires to buy a product at low price and sell it at a higher price in order to achieve the utmost goal of profiting from this trading activity. Therefore, the expected return of an investment over any holding period of time (a.k.a. horizon) is one of the two fundamental performance metrics of a trade. The complementary metric is its variation, the so-called investment risk or market risk, often measured as the standard deviation over a time window. Portfolio optimization involves balancing risk and reward to achieve investment objectives by optimally combining multiple financial instruments into a portfolio. Several mathematical formulations have been proposed in the field of portfolio management. All of them try to address various aspects ranging from the difficulty in estimating the risk and returns for large portfolios to the non-Gaussian nature of financial time series, and to more complex utility functions of investors.

On the other hand, statistical trading strategies (e.g. statistical arbitrage) try to identify patterns and correlations in historical trading data using machine learning methods and tools like factor models, and strive to exploit them aspiring that these relations will persist in the future. Some market inefficiencies may also arise due to unequal access to information, or the speed of dissemination of this information. The various sources of market inefficiencies give raise to trading strategies at different frequencies, from high-frequency traders who hold their positions on the order of milliseconds, to mid-frequency trading that ranges from intraday (holding no overnight position) to a span of a few days, and to long-term trading ranging from a few weeks to years.

Although the scope of financial signal processing and machine learning is very broad, in this thesis, we focus on the problem of risk quantification, which is at the core of many financial applications. A unifying challenge for many applications in signal processing and machine learning is the need to exploit the inherent structure in typically complex and high-dimensional data. The financial domain is no exception, with the thousands of domestic equities and tens of thousands of international equities and bonds, and even more options contracts providing a very rich source of heterogeneous data. Sparse modeling, which has been highly influential in signal processing, is based on the principle that in many settings with a large number of variables, only a small subset of them are active or important. The dimensionality of the problem can thus be reduced by focusing precisely on these variables, with the major challenge being to identify this subset of variables.

The derivation of the loss distribution is a critical component of risk quantification.

But in contrast to focusing on the mean, the median, or maximal value, the focus is on the so-called tail of the distribution. Of highest interest is the size of the tail, its shape, and its various conditional moments upon exceeding a threshold. This makes the problem most fascinating in that, by definition, time series models must be built upon a limited set of data and, therefore, robust procedures must be utilized. Motivated by this, another key aspect in this thesis is our focus on non-Gaussian heavy-tailed distributions, which are critical for realistic modeling of financial data. The risk measures based on variance (or standard deviation) have been widely used in finance due to their theoretical rigor and computational tractability. Nevertheless, there is a growing interest in developing computational and modeling approaches for more flexible risk measures, that are better capable of capturing extreme losses in the leftmost tail of the loss distribution.

Stylized Facts of Financial Time Series

Before proceeding to the details of risk quantification, it is useful to overview some stylized facts about the financial time series of returns, which will be exploited by our proposed methods. The first stylized fact is that returns show little serial correlation but absolute or squared returns show significant correlation. However, we avoid analyzing squared returns since financial time series tend to be modeled by processes with potentially infinite higher moments. While the serial correlations are insignificant, statistical tests on the absolute returns correlations, such as the Ljung-Box test, easily reject the strict white noise assumption. This is unwelcome, though, since much of the foundation of modern finance is based on modeling the returns process as Brownian motion, or a Weiner process. Thus from a signal processing perspective, we immediately face the challenge of designing an appropriate model, as unconditional approaches will have an inherent misspecification.

A question that arises naturally due to the presence of serial dependence in returns, is whether there is predictability in the returns series. But the second stylized fact, that is, that conditional expected returns are close to zero, restricts that. Simply stated, it is difficult, if not impossible, to predict the market in the long run based purely on historical prices. A result of the first two observations, namely, that returns are serially dependent but lack predictability, can be restated with another stylized fact that volatility (i.e., the standard deviation of returns) varies over time and appears to have a predictable component. Thus models that incorporate volatility dynamics are successful in analyzing financial time series.

The next set of stylized facts deals with the extreme values typically observed starting with the observation that returns are leptokurtic with heavy or fat tails particularly to the left of the loss distribution. Extreme outliers are often observed in returns series, and also the conditional mean, upon exceeding a threshold, grows with the threshold. This is a critical feature of financial time series and will drive the distributional assumptions used by our proposed methods. In particular, we will leverage the fact that distributions whose tails decay according to a power law, such as the alpha-stable models, are much more efficient in modeling financial data.

Another stylized fact of financial time series is that extreme values tend to cluster in time. To some extent, this is a consequence of the serial dependence and dynamic volatility of the data. If the data was really independent and identically distributed (i.i.d.), theory suggests that the largest values will tend to occur according to a homogeneous Poisson process with i.i.d. exponential inter-arrival times. It turns out that the Poisson assumption is reasonable but the arrival rate (or intensity) is not constant, which results in too many short inter-arrival times. Intuitively, when there is a large shock to the market leading to liquidations and a reduction in risk, the ability of the market to absorb subsequent shocks is diminished. In other words, the market gets fearful and volatility tends to persist.

Finally, a multivariate stylized fact is that correlations between series of financial data vary over time and exhibit tail dependency. The latter is a formal way of stating the old market slogan that everything is correlated when the market takes a dive. Two time series that appear to be locally uncorrelated for modest market moves can be highly correlated under market stress.

The Risk Quantification Problem

In finance, risk is the probability that actual results will differ from expected results. In the Capital Asset Pricing Model (CAPM), risk is defined as the volatility of returns. The concept of "risk and return" is that riskier assets should have higher expected returns to compensate investors for the higher volatility and increased risk.

Risk assessment is a general term used across many industries to determine the likelihood of loss on an asset, loan, or investment. Assessing risk is essential for determining how worthwhile a specific investment is and the best processes to mitigate risk. Risk assessment is important in order to determine the rate of return (i.e., the net gain or loss of an investment over a specified time period) an investor would need to earn to deem an investment worth the potential risk.

Risk analysis provides different approaches that investors can use to assess the risk of a potential investment opportunity. An investor can apply two distinct types of risk analysis when evaluating an investment, namely, qualitative and quantitative analysis. A qualitative analysis of risk is an analytical method that does not rely on numerical or mathematical analysis. Instead, it uses a person's subjective judgment and experience to build a theoretical model of risk for a given scenario. A quantitative analysis of risk focuses on building risk models and simulations that enable the user to assign numerical values to risk. In this thesis, it is the quantitative perspective of financial market risk that is of interest.

In a general sense, a measure is a procedure for quantifying something. A metric is that which is being quantified. In the context of risk measurement, a risk metric is the concept quantified by a risk measure. When choosing a risk metric, an investor is picking an aspect of perceived risk to investigate, such as volatility or probability of default. In other words, the method or formula to calculate a risk metric is called a risk measure.

For example, the volatility of a stock might be calculated in any one of the two following ways: (i) calculate the sample standard deviation of the stock's returns over the past 30 trading days; (ii) calculate the implied volatility of the stock from some specified call option on the stock. These are two distinct risk measures, with each one used to measure the risk metric volatility.

The ultimate goal of risk quantification is to summarize the loss distribution by a small set of metrics that can be used to constrain a portfolio, or trading unit, from being exposed to too much risk. An aftermath of this is to utilize the risk metrics to construct a portfolio such that it maximizes potential profit subject to risk controls. To this end, a risk metric should have certain desirable properties and define everyday losses and extreme losses, which could potentially put a financial institution at risk of bankruptcy.

The dilemma is that we can never be sure that the future will behave like the past and the act of risk quantification itself can actually induce risk.

While the usual statistics such as the sample moments are important, as they are in statistical signal processing, risk quantification is more focused on the left tail of the loss distribution. Several risk measures have been developed that provide a better picture of the leftmost tail [START_REF] Giesecke | Measuring the risk of large losses[END_REF]. Value-at-risk (VaR), which is defined as a quantile of the loss distribution, is probably the most widely used. One reason VaR is so popular is because of the ease of translation into tangible events. It has even been accepted as the standard risk measure for global banking regulators in the Basel accords1 .

Nevertheless, the problems with VaR are more fundamental and go beyond its mere interpretation [START_REF] Kuester | Value-at-risk prediction: A comparison of alternative strategies[END_REF]. Despite its computational tractability It can also be shown that ES is a coherent risk measure, which is important for portfolio diversification.

Nevertheless, in risk quantification we often need to make probabilistic statements about extreme losses. In order to capture the effect of market behavior under extreme events, extreme value theory (EVT) has been widely adopted in recent years, as an attractive methodology for extreme risk assessment. EVT methods are tractable for tail estimation since (i) they are based on rigorous statistical theory, and (ii) they provide a parametric form for the tails of a loss distribution. Several studies have demonstrated the empirical superiority of EVT for VaR and ES estimation [START_REF] Salih | Value at risk calculations, extreme events, and tail estimation[END_REF], [START_REF] André | Value-at-risk and extreme returns in Asian stock markets[END_REF], yet most of these studies focus on a one-day horizon, without being capable of adapting to a predetermined investment horizon, as well as they do not account for asymmetric returns.

Thesis Contributions

In this thesis, we develop and evaluate novel data-driven algorithmic methodologies for quantifying (extreme) tail risk and systemic risk in heterogeneous asset classes. To this end, we leverage the power of time-frequency representations, non-Gaussian heavy-tailed models, (graph) signal processing and machine learning for the design of robust risk measures, which enable the extraction of highly detailed information from time series data simultaneously in the time and frequency domains.

The main contributions of this thesis span four distinct research directions, namely, (i) asset replication, (ii) horizon-adaptive risk quantification, (iii) optimal sampling of impulsive high-frequency data, and (iv) predictive modeling of systemic and tail risk.

The key contributions per research direction are detailed below.

Asset replication

Construction of a replicating portfolio for a given asset is a fundamental problem in mathematical finance. Such a portfolio can be used as a proxy to design robust trading strategies for the given asset. To this end, capturing and representing accurately the, typically highly varying, local structures of the assets is of great importance. However, previous methods often rely on solving complex nonlinear optimization problems to extract complicated local patterns, whilst their performance may deteriorate when applied to assets with fast regime switching in volatility.

To overcome these limitations, we leverage the superior performance of sparse representations to develop a novel replicating portfolio method that simultaneously estimates the optimal subset of replicating assets and the weights of their linear combination in rolling windows. To this end, we extract proper low-dimensional structural patterns from a set of assets via efficient sparse coding over a jointly learned dictionary. Furthermore, we automatically account for potential correlations among the candidate assets, whilst abolishing the need for prior normalization (e.g. in a common currency).

Horizon-adaptive risk quantification

Capital requirements for financial institutions are based on the accurate quantification of the inherent risk. To this end, time is the important parameter for all the well-established risk measures, whereas risk managers make no explicit distinction between the information captured by patterns of different frequency content. Besides, traditional measures of tail risk are based either on light-tailed assumptions for the returns distributions or on extreme value theory. Nevertheless, when trying to adapt to specific investment horizons and also account for the inherent micro-structure frictions, these measures might be inappropriate.

Motivated by these limitations, we propose novel risk quantification methods tailored to investments in heavy-tailed assets. To this end, we leverage the effectiveness of timefrequency decompositions with the power of alpha-stable models to derive two horizonadaptive risk measures, namely, an energy-based risk measure that can be coupled with the commonly used quantile-based risk measures to enhance their performance, and a jointly dispersion-impulsiveness regularized conditional tail risk measure demonstrating increased robustness and accuracy in efficiently controlling extreme risk.

In the former case, we propose an empirical rule for selecting an optimal subset of time resolutions (or, equivalently, frequencies) that are the most relevant to a given investment horizon. Then, we introduce a method for the linear combination of summary statistics of the individual time series corresponding to the selected subset of time resolutions.

In the latter case, we introduce tail conditional expectation for alpha-stable mixture models, which also yields as a byproduct the decomposition of expected shortfall over multiple frequencies. Then, we propose a new risk measure that better captures extreme losses by jointly accounting for the variability and impulsiveness of asset returns. Our proposed extreme risk measure is further extended in a multiresolution framework to utilize only the most relevant subset of frequencies for a given investment horizon

Optimal sampling of impulsive high-frequency data

Optimal sampling period selection for high-frequency data is at the core of financial instruments based on algorithmic trading. The unique features of such data, absent in data measured at lower frequencies, raise significant challenges to their statistical analysis and econometric modeling, especially in the case of heavy-tailed data exhibiting outliers and rare events much more frequently. To address this problem, first we introduce the novel concept of the degree of impulsiveness (DoI) as an alternative source of information for characterizing a broad range of impulsive behaviors. Then, a DoI-based generalized volatility signature plot is defined, which is further employed for determining the optimal sampling period.

Predictive modeling of systemic and tail risk

Understanding the financial contagion and instability, especially during financial crises, is an important issue in risk management. Most importantly, the emergence of alternative, yet high-risk and speculative asset classes such as cryptocurrencies, makes it imperative to effectively monitor the financial connectivity between heterogeneous asset classes across time, in conjunction with the associated risk, in order to avoid a substantial breakdown of financial systems during a possible crisis period. To address this problem, we investigate the predictive capacity of dynamic graph connectivity structures between heterogeneous asset classes on their corresponding tail risk, as well as on well-established systemic risk indicators.

Specifically, we depart from the conventional correlation-based approach for inferring the time-varying graph topology of asset returns, by examining two additional methods, a statistical (Kolmogorov-Smirnov test) and a geometric one (generalized Euclidean distance). The predictive capacity of the extracted graph measures on the respective systemic and tail risk is evaluated through the generation of an appropriate predictive signal based on an exponentially weighted moving average model. Doing so, we quantify the effect of financial connectivity patterns simultaneously for global markets and individual assets.

Thesis Structure

The thesis contributions listed in Section 1.3 are fully developed in five technical chapters (Ch. 4-8), which are accompanied by two chapters (Ch. 2-3) including the necessary mathematical background. Finally, Ch. 9 summarizes the main outcomes and gives directions for future work. In particular, the thesis is organized as detailed below, whilst the Pert chart in Figure 1.1 shows the dependencies between the distinct chapters.

Chapter 1: This chapter introduces the generic framework of financial risk quantification, in conjunction with the main stylized facts of financial time series, which drive the design of efficient risk measures. The chapter also overviews the key contributions of the thesis, along with the structure and dependencies of the constituent chapters.

Chapter 2: This chapter overviews the main concepts and properties of time series transforms in the frequency domain, as well as the more powerful time-frequency decompositions, which are at the core of our horizon-adaptive risk measures.

Chapter 3: In this chapter, we review the basic theory regarding the family of alphastable distributions, which will be the fundamental statistical tool for developing our proposed (extreme) risk measures.

Chapter 4: This chapter elaborates on the problem of asset replication via sparse representation coding. Specifically, it proposes a novel static replicating portfolio method that simultaneously estimates the optimal subset of replicating assets and the weights of their linear combination in a rolling window fashion.

Chapter 5: In this chapter, we propose an investment horizon-adaptive risk quantification method based on the inherent time-varying energy distribution of returns series, which is expressed in terms of the squared magnitudes of wavelet coefficients. The method adapts directly to the returns data, while avoiding model misfitting errors. Chapter 6: This chapter proposes a generalized framework for jointly quantifying the inherent impulsiveness and estimating the optimal sampling period for mitigating the micro-structure effects in high-frequency financial data.

Chapter 7: This chapter fills the gap with respect to extreme risk quantification accounting for the heterogeneous and time-frequency dependent behaviors of investors in the case of highly impulsive data. To this end, it proposes a new risk measure that better captures extreme losses by jointly accounting for the variability and degree of impulsiveness of asset returns.

Chapter 8: In this chapter, we investigate the predictive capacity of time-varying graph connectivity measures on the tail risk of individual assets belonging to highly heterogeneous classes, as well as on well-established global market risk indicators.

Chapter 9: This chapter summarizes the key outcomes of the thesis and discusses future research avenues.

Chapter 2

Wavelet Analysis

Introduction

From an economic viewpoint, the heterogeneity of market participants (e.g. buyers, sellers, banks, federal governments, etc.) justifies the simultaneous use of several periodicities.

In fact, limiting the analysis to a single frequency (e.g. daily) would offer a very limited view of the market conditions. In a seminal work, [START_REF] Levy | Portfolio performance and the investment horizon[END_REF] highlights that more attention should be devoted to the process of choosing the basic unit of time. An empirical study based on a yearly rate of returns will yield different results from one which uses monthly rate of returns data. This difference is not the outcome of inconsistency or contradiction, but results from selecting an inappropriate division of the studied period.

Despite these findings, the majority of the well-established risk measures are solely based on the time-varying behavior of the original returns series, whilst ignoring completely the contribution of the individual intrinsic periodicities, or, equivalently, frequencies, that can be more relevant to a specific investment horizon. For instance, short-term risk managers are primarily more interested in risk assessment at higher frequencies, that is, short-term fluctuations. On the other hand, long-term risk managers focus on estimating risk at lower frequencies, that is, long-term fluctuations. Given this remark, enabling risk managers and investors to focus precisely only on those frequency components that contain the most relevant information for a given investment horizon, could result in better trading strategies.

In order to account for the distinction between short-and long-term risk management, several approaches have been introduced based on wavelet analysis. Wavelets are very efficient in providing a refined decomposition of a given time series, by identifying patterns that are well localized both in time and frequency (see [START_REF] Gençay | An Introduction to Wavelet and Other Filtering Methods in Finance and Economics[END_REF], [START_REF] Fan | Unit root tests with wavelets[END_REF], [START_REF] Sun | A new wavelet-based denoising algorithm for high-frequency financial data mining[END_REF], [START_REF] Kenan | Multiresolution analysis of S&P500 time series[END_REF],

[BFS20] and [START_REF] Wang | Short-and long-term interactions between Bitcoin and economic variables: Evidence from the US[END_REF], among others). [START_REF] Ramsey | Wavelets in economics and finance: Past and future[END_REF] and [START_REF] Patrick | A guide to wavelets for economists[END_REF] provide an overview about how wavelet analysis has been applied in economics and financial applications. The key advantage of wavelet-based methods is that they perform a multiresolution analysis, that is, an analysis of the original data at different scales (each one associated with a particular frequency, or, equivalently, time resolution) simultaneously. Doing so, wavelets can capture information in a single frequency range, as well as coherent structures across distinct scales.

This chapter introduces the main concepts and properties of wavelet analysis, and specifically the maximal overlap discrete wavelet transform (MODWT), which is at the core of our proposed risk measures. Before proceeding to the MODWT, first, we briefly overview the discrete Fourier transform (DFT) and discrete wavelet transform (DWT), which constitute the basis of MODWT.

Discrete Fourier Transform

In this thesis, the data we deal with is in the form of time series, that is, a series of data points indexed in time order. Most commonly, a time series is a sequence taken at successive, typically equally spaced, points in time. In the following, we denote a time series by x t , and

x = [x 1 , . . . , x N ] ∈ R N is a discrete time series of N samples observed at times {t 1 , . . . , t N }.
Intuitively, the discrete Fourier transform (DFT) [START_REF] Sanjit | Digital Signal Processing: A Computer-Based Approach[END_REF] is a mathematical tool that takes a time series and determines its frequency content. In other words, DFT aims to decompose a complicated time series into simpler parts. Many time series are best described as a sum of several individual frequency components instead of time domain samples. The purpose of DFT is to determine which frequencies a complicated time series is composed of.

For the input time series x its transformed version, that is, the discrete-time Fourier transform at equally spaced frequencies around the unit circle, is given by

X k+1 = N -1 n=0 x n+1 e -i2π N kn = N -1 n=0 x n+1 cos 2π N kn -i sin 2π N kn , k = 0, . . . , N -1 , (2.1) 
where i is the imaginary unit. From (2.1) we deduce that DFT computes how correlated (i.e., similar from a statistical perspective) a time series is with a sequence of cosine and sine waves of increasing frequency.

On the other hand, the inverse DFT takes the frequency-domain representation X and returns the input time series, as follows,

x n+1 = 1 N N -1 k=0 X k+1 e i2π N kn , n = 0, . . . , N -1 . (2.2)
Notice that, in the above equations, the series subscripts begin with 1 instead of 0 because of the vector indexing scheme of MATLAB ® environment, which is utilized for the numerical implementations throughout this thesis.

Most real-world frequency analysis tools display only the positive half of the frequency spectrum, since the spectrum of a real time series is symmetrical around the zero frequency. Thus the negative frequency information is redundant. To better visualize the frequency content of a time series, the single-sided amplitude spectrum is utilized, which is defined as the absolute value of the DFT over the non-negative frequencies f , as follows,

P (f ) = |X| , f ≥ 0 . (2.3)
Figure 2.1 illustrates the daily adjusted close prices and daily continuously compounded returns series of the S&P 500 index (in USD), along with their corresponding single-sided amplitude spectrum. We observe that for the prices series, most of the information content is concentrated at lower frequencies. The opposite holds for the S&P 500 returns, whose amplitude spectrum presents high spikes over a broad range of frequencies, due to the more noisy nature of the returns series. Note that the hertz (Hz) is used as the unit of frequency, defined as one cycle per unit time. For instance, in the case of daily prices, the frequency is equal to 1 Hz, since we acquire 1 sample per day.

Short-Time Fourier Transform

The DFT is primarily employed for stationary time series, that is, series whose properties do not depend on the time at which the series is observed. Nevertheless, in application domains such as finance, time series are typically non-stationary. This means that their frequency-domain representation (i.e., their spectrum) changes over time.

To overcome the above limitation of DFT, the short-time Fourier transform (STFT) [START_REF] Sanjit | Digital Signal Processing: A Computer-Based Approach[END_REF] was introduced to analyze how the frequency content of a non-stationary time series evolves in time. The STFT of a time series is calculated by sliding an analysis window of length T , g = [g 1 , . . . , g T ], over the time series and calculating the DFT of the windowed data. The window steps over the original time series at intervals of S samples. Most window functions vanish at the edges to avoid an effect known as spectral ringing. If a non-zero overlap length L is specified, overlap-adding the windowed segments compensates for the time series attenuation at the window edges.

To sum up, in practice, the procedure for computing the STFT is to divide a time series into shorter segments of equal length, T , and then compute the DFT separately in each shorter segment. The DFT of each windowed segment is added as a column to the STFT matrix that contains the spectral information for each point in time and frequency. The number of segments (or, equivalently, of columns in the matrix) is given by

J = ⌊ N -L T -L ⌋,
where N is the length of the original time series x and ⌊•⌋ denotes the floor function. The number of rows in the STFT matrix equals R = ⌊N/2⌋ + 1, since we consider the one-sided transform for the non-negative frequencies only. The STFT matrix is given by,

X(f ) = [X 1 (f ) X 2 (f ) • • • X J (f )] ∈ C R×J , such that the jth column of this matrix is X j (f ) = ∞ n=-∞ x n g n-jS e -i2πf n , (2.4) 
where g is the window function of length T , X j (f ) is the DFT of windowed data centered about time jS, and S is the step size between successive DFTs. The squared magnitude of the STFT, |X(f )| 2 , yields the spectrogram representation of a time series, which is a visual representation of the spectrum of frequencies of a time series as it varies with time.

The STFT is invertible, that is, the original time series can be recovered from the transform by the inverse STFT. In general, inverting STFT does not result in perfect reconstruction. If we want the output of inverse STFT to match the original input time series as closely as possible, the time series and the window must satisfy the following conditions: i) J must be an integer, ii) use window functions that are compliant with the constant overlap-add constraint, that is, ∞ j=-∞ g n-jS = 1, and iii) if the length of the input time series is such that the value of J is not an integer, zero-pad the time series before computing the STFT and then remove the extra zeros after its inversion. We emphasize again that such a time-frequency localization of the critical information content of a time series is not possible with the DFT. Note also that the colorbars of the two spectrograms depict the values in decibels (dB). This is a convention which is used often in signal processing. Given a variable y, the relationship between its magnitude and decibels is given by y dB = 20 log 10 y .

(2.5) Without going deep into mathematical details (the interested reader may refer to [START_REF] Percival | Wavelet Methods for Time Series Analysis[END_REF] and [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] for a thorough analysis), in the following we overview the main concepts of DWT. At the core of any wavelet transform is the use of a wavelet function, that is, a wave-like oscillation that is localized in time. Wavelet functions constitute bases of the square-integrable functions space L 2 (R). In contrast to the trigonometric functions, which provide a basis for the Fourier transform, wavelets typically posses properties such as compact support and exponential decay to zero, enabling a localized time-frequency analysis of a time series.

Discrete Wavelet Transform

Wavelets are characterized by two parameters, scale and location. Scale (or dilation), s, defines how "stretched" or "squished" a wavelet is. This parameter is related to frequency as defined for waves. Location, τ , defines where the wavelet is positioned in time (or space). In mathematical notation, the wavelets are generated from a so-called mother wavelet ψ(t) by scaling and shifting, as follows,

ψ s,τ (t) = 1 √ s ψ t -τ s . (2.6) 
The discrete wavelets, which are employed by the DWT, are defined as

ψ j,k (t) = 1 s j 0 ψ t -kτ 0 s j 0 s j 0 , (2.7) 
where j (scale parameter) and k (shift parameter) are integers, s 0 > 1 is a fixed dilation step and the shift factor τ 0 depends on the dilation step. Accordingly, scaling functions are defined in terms of a so-called father wavelet ϕ(t), as follows,

ϕ j,k (t) = 1 s j 0 ϕ t -kτ 0 s j 0 s j 0 . (2.8)
Given the wavelets and scaling functions, the sequences h = {h n } n∈Z and g = {g n } n∈Z are defined that satisfy the identities,

g n = ⟨ϕ 0,0 , ϕ -1,n ⟩ , h n = ⟨ψ 0,0 , ϕ -1,n ⟩ , (2.9) 
where ⟨ϕ(t), ψ(t)⟩ denotes the inner product between two functions, defined as ⟨ϕ(t), ψ(t)⟩ = b a ϕ(t)ψ(t)dt. From an implementation perspective, the DWT of a time series x is calculated by passing it through a series of filters. First, the samples are passed through a low-pass filter with impulse response g resulting in a convolution of the two

y n = (x * g) n = ∞ k=-∞ x k g n-k . (2.10)
The time series is also decomposed simultaneously using a high-pass filter with impulse response h. The outputs give the detail coefficients (from the high-pass filter) and approximation coefficients (from the low-pass filter). It is important that certain properties must be satisfied by the two filters (e.g. quadrature mirror filters), so as to be valid choices for the DWT (ref. [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF]).

However, since half the frequencies of the original time series have now been removed, half the samples can be discarded according to Nyquist's rule. The filter output of the low-pass filter g in Figure 2.4 is then subsampled by 2 and further processed by passing it again through a new low-pass filter g and a high-pass filter h with half the cut-off frequency of the previous one, that is,

y low,n = ∞ k=-∞ x k g 2n-k , y high,n = ∞ k=-∞ x k h 2n-k .
This decomposition is repeated to further increase the frequency resolution, by consecutively decomposing the approximation coefficients with high-and low-pass filters, and then downsampling. This multiresolution analysis is represented as a binary tree with each node corresponding to a subspace with a different time-frequency localization.

The tree is known as a filter bank. Figure 2.5 depicts a 3-level filter bank. Notice also that, due to the dyadic nature of the binary tree, given a time series x of length N , the DWT consists of at most log 2 N steps.

From a computational viewpoint, let h = [h 0 , . . . , h L-1 ] and g = [g 0 , . . . , g L-1 ] denote a filter bank of discrete wavelet and scaling filters, respectively, of length L (see [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] for their constructional details), and x ∈ R N be a time series of length N (which must be a power of two, N = 2 J , for some J ∈ N). Then, a J-level DWT is an orthogonal transform that decomposes x into J wavelet (a.k.a. detail) coefficient vectors d i ∈ R N/2 j , 1 ≤ j ≤ J, and one scaling (a.k.a. approximation) coefficient vector a J ∈ R N/2 J . Specifically, d j captures the short-term variations of x at a scale s j = 2 j-1 , while a J captures the smooth, longer-term, variations at scale s J+1 = 2 J . The pyramidal algorithm, introduced by [START_REF] Mallat | A theory for multiresolution signal decomposition: The wavelet representation[END_REF], is used for the efficient numerical implementation of DWT with a computational complexity at the order of O(N ).

DWT is an invertible transform. The inverse DWT reconstructs the original time series x based on the multilevel wavelet decomposition (detail and approximation co- 

Maximal Overlap Discrete Wavelet Transform

In this thesis, we rely on a variation of the traditional DWT, namely, the maximal overlap discrete wavelet transform (MODWT), to design our proposed risk quantification methods. Unlike the DWT, all wavelet and scaling coefficient vectors obtained by applying the MODWT on the input time series x ∈ R N are also in R N , for all sample sizes N . The reason for choosing the highly redundant MODWT over the conventional one-to-one DWT is due to the fact that the MODWT offers an increased resolution at coarser scales and it is invariant to shiftings. The shift-invariance property of the MODWT, which stems from the zero phase filters associated with this transform, guarantees that shifting the input time series x by a certain amount results in likewise shifted output coefficient vectors d i ∈ R N , 1 ≤ j ≤ J, and a J ∈ R N . This is a key feature of our risk quantification methods, which do not require a time synchronization of the given assets.

Since the accuracy of risk quantification methods depends highly on their capability to extract local structures in the various levels of a decomposed time series, the correct alignment of the coefficient vectors with the original time series x is critical. This alignment is achieved by circularly filtering x with the jth-level MODWT wavelet filter,

hj = h j /2 j/2 ∈ R L j , and scaling filter, gj = g j /2 j/2 ∈ R L j , respectively, where h j , g j are the corresponding filters of the DWT, and L j = (2 j -1)(L -1) + 1 is the length of the filters at level j. Due to the inherent redundancy of the MODWT, its advantages come at the cost of an increased computational complexity at the order of O(N log 2 N ) (the interested reader may refer to [PW06, Ch. 5] for more details). The final outcome of a J-level MODWT applied to x ∈ R N is a (J + 1) × N matrix, C, whose first J rows contain the detail coefficient vectors d j at scales 2 j-1 , j = 1, . . . , J, and the last, (J + 1)th, row contains the approximation coefficient vector a J at scale 2 J and beyond,

C = d T 1 d T 2 • • • d T J a T J T ∈ R (J+1)×N .
(2.11)

In our implementation, the circular filtering for computing the transform coefficients is performed using periodic boundary handling for the samples of x.

By construction, the MODWT of any time series results in zero-mean detail and approximation coefficients, that is, µ d j = 0, j = 1, . . . , J, and µ a J = 0 (see [START_REF] Percival | Wavelet Methods for Time Series Analysis[END_REF]Ch. 5] and [AAB09, Sec. II.C]). For demonstration purposes, and without loss of generality, Table 2.1 shows the mean values of the wavelet coefficients for three indexes, namely, S&P 500 (in USD), DAX (in EUR) and MSCI World (in USD), analyzed in J = 4 levels using the db8 wavelet filter. Clearly, as expected, the mean values of the detail and approximation coefficients can be considered practically equal to zero. Furthermore, the analysis of variance property of the MODWT yields the following scale-by-scale decomposition of variance for any time series (see [START_REF] Percival | Wavelet Methods for Time Series Analysis[END_REF] for a detailed proof),

σ 2 x = J j=1 σ 2 d j + σ 2 a J .
(2.12) Applying the inverse MODWT on each wavelet and scaling coefficient vector, a corresponding time-domain vector is reconstructed. This process, which is known as multiresolution analysis (MRA), yields an additive decomposition of the original time series x. In particular, for a J-level MODWT, an approximation (low-resolution) series

x A J ∈ R N is reconstructed from the Jth-level approximation coefficients a J , along with a set of J detail (higher-resolution) series x D j ∈ R N , j = 1, . . . , J, reconstructed from the corresponding detail coefficients d j , j = 1, . . . , J. The multiresolution analysis of x is represented by the matrix

R = x T D 1 x T D 2 • • • x T D J x T A J T ∈ R (J+1)×N , (2.13) 
while the original series x is recovered perfectly by linearly combining the J multiresolution analysis series, as follows, 

x = J j=1 x D j + x A J . ( 2 

Interpretation of scale

For conceptual simplicity, in the financial practice we use to interpret frequency in terms of time cycles, or, equivalently, time resolutions (e.g. daily, weekly, monthly, annually).

Hereafter, we adopt this interpretation for the decomposition scales of the MODWT.

Specifically, we consider that the wavelet scale s j = 2 j-1 corresponds to a time scale equal to 2 j . To make this clear, assume, for instance, that x ∈ R 250 is a series of daily prices over a one-year period. 

Selection of the wavelet filter

Depending on the purpose of data analysis and the behavior of a given time series, different wavelet filters can be suitable for matching the inherent features of the series.

In our implementation, the wavelet filter is selected based on the following properties: i) symmetry: symmetric filters are often preferred, since they ensure no phase shifts in the decomposed series. For the MODWT, though, symmetry is less crucial due to its inherent shift-invariant nature; ii) orthogonality: ensures the scale-by-scale analysis of variance of the time series; iii) degree of smoothness: typical financial time series, and especially the returns series, are highly varying, thus less smooth filters should be employed. A critical trade-off concerns the choice of a suitable filter with an appropriate length. In particular, increasing the filter's length yields improved data fitting performance, but also severely influences the boundary conditions during the circular filtering. Nevertheless, an automatic, data-adaptive, selection of the optimal wavelet filter is important and still an open research question.

Chapter 3

Alpha-Stable Models

Introduction

The majority of existing methods for financial data analysis, including risk quantification, rely primarily on the controversial use of second-order moments, or, equivalently, on light-tailed, finite-variance assumptions for the statistics of the data-generating processes.

However, despite the analytic tractability and practical appeal, these assumptions may be problematic when we analyze impulsive data, which give raise to heavy-tailed processes with possibly infinite variance. On the other hand, the presence of large-amplitude samples, which can be of infinite or very large variance, can mask the information content of a time series, especially in neighbouring time instants. Focusing on risk quantification, risk estimates are highly affected by the model assumption for the returns distribution, which has important implications for the assessment of large risks not yet sampled by historical time series [START_REF] Dowd | Measuring Market Risk, 2nd Edition[END_REF].

The above issues may degrade dramatically the accuracy of subsequent decision making, thus necessitating the design of novel data analysis techniques that are able to adapt to heavy-tailed financial data exhibiting outliers or rare events much more frequently than what a light-tailed distribution dictates. To alleviate this issue, in this thesis we rely on the efficiency of alpha-stable distributions and fractional lower-order moments [Nol20], [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance[END_REF], [START_REF] Nikias | Signal Processing with Alpha-Stable Distributions and Applications[END_REF], to accurately model the heavy-tailed, possibly infinite variance, time series data.

Focusing on examples in finance and economics, several studies [START_REF] Benoit | The variation of certain speculative prices[END_REF], [START_REF] Fama | The behavior of stock-market prices[END_REF],

[RS71], [START_REF] Mcculloch | Financial applications of stable distributions[END_REF], [START_REF] Rachev | Stable Paretian Models in Finance[END_REF] have shown that the associated data is poorly described by light-tailed models (e.g. Gaussian). Instead, alpha-stable distributions have proven very powerful in accurately modeling the information content of observations, e.g. in the form of time series, acquired in distinct economic and financial systems, which are characterized by an impulsive behavior. However, their intractability due to the lack of closed-form expressions for the density functions of all except for a few stable distributions (Gaussian, Cauchy and Lévy) has prevented their broad exploitation in computational finance. 

Univariate Alpha-Stable Distributions

A univariate alpha-stable (α-stable) distribution is determined by four parameters: i) index of stability (a.k.a. characteristic exponent) α ∈ (0, 2], which measures the heaviness of the tails, ii) skewness β ∈ [-1, 1], iii) scale (a.k.a. dispersion) γ > 0, and iv) location δ ∈ R. Nevertheless, the most concrete way to describe an α-stable distribution is through its characteristic function, for which several parameterizations have been proposed in the literature (ref. [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance[END_REF]). For numerical purposes, we calculate densities and distribution functions using the 1-parameterization as suggested by [START_REF] Nolan | Parameterizations and modes of stable distributions[END_REF]. This parameterization is jointly continuous in all four parameters, which makes the parameters more intuitively meaningful, allows for fast table-based interpolation of densities, and makes parameter estimation well-behaved over the entire parameter space.

We say that a random variable R follows an α-stable distribution (under the 1parameterization) with parameters (α, β, γ, δ), R ∼ S α (γ, β, δ), if its characteristic function is given by

E{exp(itR)} =    exp iδt -γ α |t| α 1 -iβ tan πα 2 sign(t) , α ̸ = 1 , exp iδt -γ|t| 1 + iβ 2 π sign(t) log(|t|) , α = 1 . (3.1)
In the special case when γ = 1 and δ = 0, then R is called standardized α-stable variable, whilst for β = 0 the random variable R is called symmetric α-stable. Two important properties of the α-stable distributions family are the stability property and the Generalized Central Limit Theorem, which are stated as follows:

Property 3.1 (Stability property). If R 1 , R 2 , . . . , R J are independent random variables following α-stable distributions with the same α, then, all linear combinations J j=1 w j R j , for arbitrary constants w j , are α-stable with the same α. Property 3.2 (Generalized Central Limit Theorem). The random variable R is α-stable if and only if it is the limit in distribution of sums of the form

R 1 + • • • + R J a J -b J ,
where R 1 , R 2 , . . . is a sequence of independent and identically distributed random variables and {a J }, {b J } are sequences of positive and real numbers, respectively.

Furthermore, the 1-parameterization has the following scale and location change properties:

Property 3.3 (Location change property). If R ∼ S α (γ, β, δ), then, for any b ∈ R, R + b ∼ S α (γ, β, δ + b).
Property 3.4 (Scale property). If R ∼ S α (γ, β, δ), then, for any a ̸ = 0, aR ∼ S α (|a|γ, sign(a)β, δ * ), where

δ * =    aδ , α ̸ = 1 , aδ + 2 π β log(1/a) , α = 1 . A direct implication of the above properties is that if R ∼ S α (γ, β, δ) with α ̸ = 1, then R-δ γ ∼ S α (1, β, 0), i.e.
, we derive a standardized α-stable random variable.

Let R be expressed as a linear combination of the random variables R j , j = 1, . . . , J,

R = J j=1 R j . (3.2) 
Assuming that R j ∼ S α j (γ j , β j , δ j ), the probability density function (pdf) of R is given by the following (univariate) J-component mixture distribution

f R (r; α, β, γ, δ, w) = J j=1 w j f R j (r; α j , β j , γ j , δ j ) , (3.3) 
where α = (α 1 , . . . , α J ) (similarly for β, γ and δ), w = (w 1 , . . . , w J ) with w j > 0 and J j=1 w j = 1, and f X (x; α, β, γ, δ) denotes an α-stable pdf with parameters (α, β, γ, δ). Accordingly, the cumulative distribution function (cdf) of R is given by

F R (r; α, β, γ, δ, w) = J j=1 w j F R j (r; α j , β j , γ j , δ j ) = J j=1 w j F R j r -δ j γ j ; α j , β j , 1, 0 , (3.4) 
where F X (x; α, β, γ, δ) denotes an α-stable cdf with parameters (α, β, γ, δ). Notice that the second line in (3.4) expresses the cdf of R in terms of the cdfs of standardized α-stable distributions. As detailed in [Nol97, Theorem 1], the cdf of a standardized α-stable random variable, F X x-δ γ ; α, β, 1, 0 , can be calculated in a computationally tractable and accurate way. In our implementation, we assume the equally weighted case, i.e., w j =1 J , j = 1, . . . , J (then, for simplicity, w is ignored from (3.3) and (3.4)). If not mentioned otherwise, the model parameters (α, β, γ, δ) are estimated from the given data using the consistent maximum likelihood method described in [START_REF] Nolan | Maximum likelihood estimation and diagnostics for stable distributions[END_REF], which gives reliable estimates and provides the tightest possible confidence intervals. In the case of data including many zero values, the empirical characteristic function based method, described in [START_REF] Kogon | Characteristic function based estimation of stable parameters[END_REF], is used instead to estimate the model parameters (α, β, γ, δ).

We note that MATLAB is utilized for the software implementation of the methodologies proposed in this thesis. Besides, all the numerical calculations involving α-stable density and distribution functions are performed using the MATLAB version of the purchased STABLE toolbox 1 .

Fractional Lower-Order Moments

Due to their algebraic tails, α-stable distributions lack finite second-order moments (except for the Gaussian case, α = 2). Instead, all moments of order p less than α do exist and are called the fractional lower-order moments (FLOMs). In particular, the FLOMs of an α-stable random variable R ∼ S α (γ, β, 0) under the 1-parameterization given by (3.1) are obtained in a similar way with the FLOMs of skewed stable distributions calculated in [START_REF] Kuruoglu | Density parameter estimation of skewed α-stable distributions[END_REF], as follows,

E{|R| p } = C p,α,β γ p , p ∈ (-1, α) , (3.5) 
where

C p,α,β = Γ 1 -p α Γ(1 -p) cos π 2 p • cos pθ α |cos(θ)| p/α , (3.6) 
and θ = arctan β tan απ

2

. Note that a shifting R -δ is applied to get a zero location parameter prior to the calculation of (3.5).

Optimal p selection

Notice the dependence of the above expressions on the parameter p, the order of the FLOM. It holds that all the FLOMs of a stable random variable are equivalent, in the sense that any two of the fractional lower-order moments differ by a fixed constant which is independent of the random variable itself (ref. [START_REF] Nikias | Signal Processing with Alpha-Stable Distributions and Applications[END_REF]). Although p is a free parameter, motivated by the equivalence property of FLOMs and in order to avoid a trial-and-error preprocessing step for setting p, in the following we select p as a function of α, which is estimated directly from the observed data based on a specific optimization criterion.

Several authors suggest the optimal p should be lower but as close as possible to α. However, the pth FLOM approaches infinity as p → α, since C p,α,β in (3.5) goes to infinity, so picking a p near alpha is numerically unstable. To address this problem, an alternative method for choosing the optimal p as a function of α has been proposed in [START_REF] Tzagkarakis | Rotation-invariant texture retrieval with Gaussianized steerable pyramids[END_REF]. Specifically, the optimal p is selected as the one that minimizes the standard deviation of a FLOM-based covariation estimator between two jointly α-stable random variables X ∼ S α (γ X , β X , 0) and Y ∼ S α (γ Y , β Y , 0), with α > 1, defined as follows,

c XY = N n=1 x n |y n | p-1 sign(y n ) N n=1 |y n | p γ α Y , (3.7) 
where

sign(y n ) =          -1 for y n < 0 0 for y n = 0 1 for y n > 0 .
The covariation, c XY , plays an analogous role for α-stable variables to the one played by covariance for light-tailed distributions. Notice that covariance is not defined for α-stable models with α < 2. This approach yields an almost linear relation between α and the optimal p, and specifically p ≲ α/2. In addition, if p < α/2 the FLOM estimator has a finite variance, which is desirable (ref. [START_REF] Nikias | Signal Processing with Alpha-Stable Distributions and Applications[END_REF]). This constraint for p also agrees with the remarks in [START_REF] Kuruoglu | Density parameter estimation of skewed α-stable distributions[END_REF]. In the following, we set the optimal value of p by linearly interpolating the entries of the lookup Table 3.1, generated in [START_REF] Tzagkarakis | Rotation-invariant texture retrieval with Gaussianized steerable pyramids[END_REF]. 

γ = E {|R| p } C p,α,β 1/p , (3.8) 
which can be employed to quantify the spread of the values of R around zero. Notice also that ℓ p (quasi-)norms (0 < p < 2) emerge naturally in the case of infinite variance time series modeled as α-stable random variables. Indeed, as we deduce from (3.8), an ℓ p (quasi-)norm based approximation of the dispersion of R can be obtained by replacing the FLOM, E {|R| p }, with an asymptotic approximation,

E {|R| p } ≃ lim N →∞ 1 N N t=1 |r t | p = lim N →∞ 1 N ∥r∥ p p .
(3.9)

Assessment of Heavy-Tailed Behavior

The first step in any statistical modeling approach is to assess whether the assumed distribution is capable of approximating the empirical distribution of the observed data.

For illustration purposes, we employ minute close prices of two major stock indexes worldwide and one cryptocurrency, namely, S&P 500 (in USD), DAX 30 (in EUR), and Bitcoin (in USD), spanning the period from January 2nd, 2016 to December 31st, 2018.

The two stock indexes have been downloaded from Google Finance, and the Bitcoin's prices from Bitstamp.

As a first qualitative assessment of the behavior of a given data set, a selection of summary statistics, such as the mean, standard deviation, skewness and (excess) kurtosis, are typically presented in financial applications. expected, whilst the α-stable model yields an excellent approximation to the empirical quantiles, thus underpinning our choice for this family of heavy-tailed distributions.

The development of risk quantification methods in a transform domain is based on the observation that often a linear invertible transform re-structures the original time series, resulting in a set of transform coefficients whose structure is "simpler" to model.

Focusing on financial time series, they are typically characterized by more or less abrupt changes, which can be identified accurately by the wavelet transform coefficients. The following properties of wavelet transforms (e.g. DWT, MODWT and their variants) justify the design of risk quantification methods in the wavelet domain:

• Locality: Each wavelet coefficient of a time series represents its information content localized in both time and frequency.

Figure 3.4: Amplitude probability density (APD) curves for the wavelet coefficients of S&P 500 daily returns; 3-level MODWT is applied using the 'fk8' wavelet; The empirical APD is compared against the APDs of the i) Gaussian, ii) generalized extreme value, and iii) α-stable models.

• Multiresolution: Wavelet transforms decompose a given time series at a nested set of scales (or, equivalently, frequencies). However, the above mentioned properties of wavelet transforms dictate that the set of wavelet coefficients of financial time series tends to be sparse, resulting in a large number of small-amplitude coefficients and a small number of large-amplitude coefficients. This property contradicts the Gaussian assumption and may degrade the performance of traditional risk measures.

For further stability diagnostics, we employ the amplitude probability density (APD) curves, P {|X| > x}, that give a good indication of whether a specific distribution matches the data near the mode and on the tails of the empirical distribution. the time series of the S&P 500 daily returns and Bitcoin's minute returns, respectively, along with the APD curves corresponding to the empirical, Gaussian, generalized extreme value (GEV), and α-stable distributions, at each decomposition scale of a 3-level MODWT using the 'fk8' wavelet. Clearly, the Gaussian model deviates significantly from the empirical distribution, whilst the α-stable model provides a closer approximation near the mode and on the tails of the empirical distribution, when compared with the other models, for both time series.

Chapter 4

Asset Replication via Sparse Representation Coding

Introduction

Before proceeding to the main subject of this thesis, namely, the development of novel data-driven risk quantification methods, this chapter elaborates on the problem of asset replication, which is closely related to risk quantification. Specifically, replication creates an asset (or portfolio) using a combination of other assets (or portfolios and/or derivatives). If the replication is accurate enough, then, the risk of a given asset can be monitored via the risk of its constituent assets.

As mentioned in Section 3.4, the set of wavelet coefficients of financial time series tends to be sparse, resulting in a large number of small-amplitude coefficients and a small number of large-amplitude coefficients. Consequently, we can closely approximate a time series by means of a small subset of large-amplitude wavelet coefficients. Motivated by the sparsity property of wavelet transforms, in this chapter, we propose an alternative method for asset replication based on the framework of sparse representation coding (SRC).

Traditional actuarial models can typically be developed to support the analysis of several business-management processes. However, the complexity of these models makes it difficult to link them with a real-time financial reporting process. The technique of replicating portfolios [START_REF] Schrager | Replicating portfolios for insurance liabilities[END_REF] emerged as an efficient alternative in modern financial systems.

A replicating portfolio for a given asset is a portfolio of assets with the same properties. This is perceived in two distinct ways, namely, i) static replication, where the portfolio has the same cash flows as the reference asset and no changes need to be made to maintain this, and ii) dynamic replication, where the portfolio does not have the same cash flows, but for small changes to underlying market parameters the price of the asset and the price of the portfolio change in the same way. In the following, we focus on the static case.

Replicating portfolios may enhance the value of traditional actuarial modeling, mostly because they allow portfolio market values to be calculated very rapidly after changes in market conditions. However, determination of replicating portfolios requires a significant number of calibration scenarios, specific knowledge about universal assets, and a robust optimization tool.

One of the key problems is to determine the optimal subset of replicating assets to be included in the portfolio from a set of candidate assets. The selected assets should reflect all the relevant features of the contingent cash flows, such as smoothing of returns and look-back features. In addition, large market shocks and abrupt behaviors should be replicated adequately. Among several applications, the framework of portfolio replication has also been applied successfully to risk minimization, accounting for the presence of noise in the observed financial time series [START_REF] Ciliberti | Risk minimization through portfolio replication[END_REF], which is another important factor that affects the replication accuracy.

Having determined the replicating assets, the portfolio is constructed as an appropriate linear combination. In general, the replicating portfolio framework allows to avoid the stochastic valuations, therefore reducing the computational complexity. Furthermore, if we can find a replicating portfolio for a given asset, which remains accurate and robust under any possible future state of the world, then, this portfolio can be used as a proxy to design efficient risk management and trading strategies for the given asset. Observations corresponding to the replicating assets, which have been obtained from previous days or weeks, are exploited to adapt our market strategic approaches for trading a given asset during the next days.

To this end, capturing and representing accurately the, typically highly varying, local structures is of great importance towards identifying the optimal subset of replicating assets. However, previous methods may yield a deteriorated performance, especially when they are applied to time series with fast regime switching in volatility and/or corrupted by noise, or they often rely on solving complex nonlinear and stochastic optimization problems [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF], [START_REF] Cvitanić | Super-replication in stochastic volatility models under portfolio constraints[END_REF].

An On the other hand, the framework of sparse representation coding [START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF] has revolutionized many application areas in the field of signal processing. According to this theory, a signal (e.g. a time series) can be expressed as a sparse linear combination of only a few elementary basic patterns, a.k.a. atoms, that constitute the columns of an appropriate matrix, the so-called dictionary. Sparsity provides faster and simpler processing, where few coefficients reveal the significant information content we are looking for in the assets. Moreover, a time series that admits a sparse representation is easily compressed or regularized, it is robust to noise corruption, and it can be recovered accurately from incomplete observations. In our proposed replicating portfolio method, the dictionary containing the basic patterns will be constructed from the full set of candidate assets. Then, the optimal subset of replicating assets will be estimated simultaneously with the weights of their linear combination to approximate accurately the given reference asset.

The majority of sparse representation coding methods are based on the assumption that the dictionary is known and fixed. However, sparse representations over redundant dictionaries typically yield enhanced representation capabilities, and thus an improved replication accuracy. Redundancy refers to the fact that the number of columns in such dictionaries is much larger than the size of the patterns constituting the columns. In addition, redundant dictionaries are specially designed to adapt to the inherent localized micro-structures of a given ensemble of time series. Following an adaptive approach, given a set of candidate assets, we seek a jointly learned dictionary that leads to the best sparse representation of the reference asset. We also emphasize that sparse representation coding of an asset over a jointly learned dictionary has two major advantages: i) it accounts for potential correlations between the candidate replicating assets, and ii) it is not affected by the underlying distribution and currency of the original assets. As such, our proposed method is equally efficient for Gaussian and non-Gaussian data, as well as it does not require any currency normalization.

Main contributions

Motivated by the superior performance of sparse representation coding over learned dictionaries in a wide range of signal processing applications, in this chapter, we propose a novel static replicating portfolio method that simultaneously estimates the optimal subset of replicating assets and the weights of their linear combination in a rolling window fashion. In particular, given a set of candidate assets and a reference asset, our method first constructs an appropriate dictionary and identifies a sparse subset of replicating basic patterns, along with their associated weights, the so-called sparse codes. Then, the learned dictionary and the corresponding sparse codes are used to approximate the values of the reference asset in a future time window of predetermined length.

Our contribution is threefold: i) we extract low-dimensional structural patterns from a set of assets by leveraging efficient sparse coding over a jointly learned dictionary; ii) we automatically account for potential correlations among the candidate assets, whilst abolishing the need to normalize in a common currency; and iii) we estimate simultaneously the optimal (i.e., sparsest) subset of replicating assets and their associated weights, demonstrating that our proposed method achieves increased prediction accuracy for distinct reference assets, especially over short time horizons. To the best of our knowledge, this is the first study that bridges the frameworks of replicating portfolios and sparse representation coding over jointly learned dictionaries.

Chapter organization

The rest of the chapter is organized as follows: Section 4.2 introduces the sparse representation coding of financial assets over jointly learned dictionaries, and demonstrates its performance in capturing informative localized patterns. In Section 4.3, our proposed asset replication method is described in detail. Section 4.4 evaluates the performance of our method for several distinct reference assets, in terms of prediction accuracy of their future values (prices). Finally, Section 4.5 summarizes the main outcomes and gives directions for future research.

Notation

In the following, we denote scalars and variables with non-boldface letters (e.g. x, X), row vectors with lower-case boldface letters (e.g. x), matrices with upper-case boldface letters (e.g. X), while calligraphic letters are used to denote sets (e.g. S). We use x i to denote the ith column of matrix X, x j to denote the jth element of vector x, and S i to denote a subset of a set S. An asset is viewed as a time series of N samples, that is, a set of pairs X = {(t 1 , x 1 ), . . . , (t N , x N )}, where x i ∈ R is the observed value at time t i . Notice that the set of time instants T = {t 1 , . . . , t N } can be non-uniform (unequally spaced) in the general case. For convenience, we ignore the time instants and we work directly with the observed values. Thus in the following, x = [x 1 , . . . , x N ] ∈ R N denotes a vector of N elements. Finally, we use x and x T to denote an approximation and the transpose of a vector x, respectively. Similar notations are used for the matrices. We also emphasize that our proposed asset replication method is applied to rolling windows of length T , which slide with a step size equal to s samples across the given time series.

Doing so, x i,T = [x i-T +1 , . . . , x i ] denotes a window of length T whose ending point is the ith sample of the original time series x.

Sparse Coding of Financial Assets over Learned Dictionaries

During the last decade, there has been a growing interest in the signal processing community with respect to the design of parsimonious, yet information-rich, representations for a variety of signals. Among the several methods that have been introduced in the literature for reducing the dimensionality of a signal, sparse representation coding has a prominent role. Hereafter, our signals will be financial assets in the form of time series.

We also note that the terms "signal" and "time series" will be used interchangeably.

The core idea of sparse representation coding is that, given a redundant dictionary

D = [d 1 , . . . , d K ] ∈ R N ×K with N < K, a time series x ∈ R N can
be represented as a sparse linear combination of the columns of D. The representation of x over D may be either exact, that is,

x = Dα , (4.1) 
or approximate,

x ≈ Dα with ∥x -Dα∥ p ≤ ε , (4.2) 
where ∥ • ∥ p denotes the ℓ p (pseudo-)norm. The vector α ∈ R K , which contains the weights of the linear combination is known as the sparse code of x. Typical norms for measuring the deviation are the ℓ p norms with p = 1, 2, and ∞. For convenience of implementation we usually rely on the Euclidean norm (p = 2). In this case, the threshold ε is related with the power of the noise that may corrupt the data.

Joint dictionary learning and sparse coding

The redundant nature of D, that is, the fact that it has more columns than rows (N < K), in conjunction with a full rank, yield an infinite number of solutions for the sparse representation problem. Hence, the sparsity constraint on the weight vector α serves as a means to limit the dimension of the solution space. The sparsity of α is expressed via its ℓ 0 pseudo-norm, ∥α∥ 0 , which is defined as the number of its non-zero elements.

Most of the sparse representation coding methods assume that the sparsifying dictionary D is known and fixed in advance. On the contrary, learning a dictionary directly from the available data yields a better adaptation to the inherent localized patterns, as well as to the sparsity model imposed, thus improving its sparse representation capabilities.

This property is important when working in a replicating portfolio framework, since an improved description of the most informative patterns of the candidate assets may yield a better selection of their optimal subset, which will approximate a reference asset more closely.

In the following, let y ∈ R N denote the reference asset and X = {x j } J j=1 , with x j ∈ R N , be a set of J candidate assets for the replicating portfolio. Given X, the dictionary D that generates these assets via sparse linear combinations of its columns, along with the corresponding sparse weight vectors α j , j = 1, . . . , J, are computed jointly by solving the following optimization problem min

D∈R N ×K , A∈R K×J ∥X -DA∥ 2 F s.t. ∥α j ∥ 0 ≤ τ, j = 1, . . . , J , (4.3) 
where ∥ • ∥ F denotes the matrix Frobenius norm, A ∈ R K×J is the matrix whose columns are the sparse codes α j , and τ is a predetermined sparsity level (maximum number of non-zero elements in each weight vector).

In our proposed method, K-SVD [START_REF] Aharon | K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF] is employed for the solution of (4.3). K-SVD is an iterative algorithm, which alternates between the computation of the optimal D and A. More specifically, first, D is kept fixed and we search for the best weight matrix A under the constraint of a predetermined number, τ , of non-zero elements in each column. Once the sparse codes (columns of A) have been computed, a second stage is performed to update the dictionary. This process updates one column d k at a time based on a singular value decomposition, while fixing the rest of the columns of D except for d k . Doing so, a new column d k is found, along with the new values for the associated weights, which reduce the most a mean squared error (MSE) criterion. Furthermore, by allowing the weights to change over time, while updating the dictionary columns, accelerates convergence, since the subsequent column updates will be based on more relevant weights.

Capturing localized patterns in the candidate assets

A common characteristic of financial assets is the presence of localized patterns with varying degree of volatility in small time windows. The accuracy of the learned dictionary in capturing the significant inherent structures depends on the representative capability of the candidate (or training) assets, which further affects the accuracy of our proposed replication method.

Given the ensemble X of candidate assets, our goal is to generate an appropriate dictionary D whose columns will be used to replicate the reference asset y via a sparse linear combination. Moreover, in order to better capture transient phenomena, we proceed in overlapping rolling windows. Specifically, the candidate assets' matrix X is partitioned into overlapping rolling windows of length T with a step size equal to s, X i,T = [x 1;i,T , . . . , x J;i,T ] ∈ R T ×J , where x j;i,T = [x j, i-T +1 , . . . , x j, i ] ∈ R T . We note again that the corresponding windows from all the candidate assets are augmented in a single data matrix X i,T so as to account for their potential correlations during the learning process of the joint dictionary D i,T for the current time window.

The joint dictionary D i,T in the current time window is computed by solving (4.3), that is,

min D i,T ∈R T ×K , A i,T ∈R K×J ∥X i,T -D i,T A i,T ∥ 2 F s.t. ∥α j;i,T ∥ 0 ≤ τ, j = 1, . . . , J . (4.4) 
Then, the associated sparse code α y;i,T for a window y i,T of the reference asset y is computed by solving an optimization problem of the form min

α y;i,T ∈R K ∥y i,T -D i,T α y;i,T ∥ 2 2 s.t. ∥α y;i,T ∥ 0 ≤ τ . (4.5) 
The above constrained least-squares optimization problem can be solved efficiently by applying a pursuit algorithm, such as the matching pursuit (MP) [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF] or the orthogonal matching pursuit (OMP) [START_REF] Cai | Orthogonal matching pursuit for sparse signal recovery with noise[END_REF] among many other existing algorithms. The sparsity level τ affects the maximum number of iterations for the recovery of the τ non-zero elements of the weight vectors. In each case, the algorithm terminates when a predefined maximum number of iterations has been reached, or when the approximation error falls below a given threshold ε.

The advantage of sparse representation coding against other dimensionality reduction techniques is that sparse representation coding is shown to be much more robust in the case of limited training data. In other words, even if the historical data are not representative enough to describe future observations, sparse representation coding over a jointly learned dictionary results in a set of elementary basic patterns, which are used for the representation of a whole window of observations. Besides, the joint learning promotes the exploitation of correlations between distinct assets and windows resulting in more representative dictionaries. As a consequence, in practice, the learned dictionary D i,T has to be updated less frequently in order to account for the potential variations as new data become available. 

Asset Replication From Sparse Codes

In this chapter, we aim at replicating a reference asset via the construction of an efficient replicating portfolio, that is, an appropriate subset of candidate assets along with their corresponding weights. In particular, we are interested in predicting accurately future values of the reference asset in a predetermined time horizon. We emphasize that one of the advantages of our proposed approach is that it can be applied either to asset prices directly, or to asset returns, without any modification. Furthermore, each asset can be expressed in a different currency, thus normalization as a preprocessing step is optional. The use of local currencies can be advantageous in terms of diversification of international portfolios, and does not affect the sparse representation, since the jointly learned dictionary adapts to the inherent localized patterns of each individual asset.

In the following, let the values of both the candidate assets X and the reference asset y be available in the same time interval up to the current time instant,

[t 0 , t c ].
The objective is to predict accurately the values of y in the next time interval of length s, [t c+1 , t c+s ], given the dictionary learned from the previous interval of length T ,

[t c-T +1 , t c ],
and the predicted observations of X in [t c+1 , t c+s ]. Notice that, in practice, the prediction is performed only for those candidate assets that have been identified as active (i.e., whose corresponding weight is non-zero) in the previous time window. We emphasize that forecasting is an independent block in our proposed processing pipeline, thus any of the well-established asset forecasting methods can be employed. In our implementation, we rely on the wavelet multiscale decomposition-based autoregressive approach introduced in [START_REF] Benaouda | Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting[END_REF]. We also note that the step size s of the rolling window coincides with the predetermined prediction horizon.

Let X c,T be the T × J matrix whose columns are the windowed candidate assets between the time instants t c-T +1 and t c . By solving (4.3), we obtain the associated jointly learned dictionary, D c,T , along with the matrix of sparse codes, A c,T , yielding the following approximation,

X c,T ≈ D c,T A c,T . (4.6) 
Then, given the dictionary D c,T and the corresponding most recent window of the reference asset, y c,T , the associated sparse code is computed by solving the following optimization problem (OMP is employed in our implementation),

min α y;c,T ∈R K ∥y c,T -D c,T α y;c,T ∥ 2 2 s.t. ∥α y;c,T ∥ 0 ≤ τ . (4.7)
Having estimated the sparse code α y;c,T for the interval [t c-T +1 , t c ], the reference series is approximated by

y c,T ≈ D c,T α y;c,T . (4.8)
Since the s values of the reference asset y in [t c+1 , t c+s ] are unknown, the associated sparse code α y;c+s,s cannot be computed at current time t c . On the other hand, as mentioned in Section 4.2.2, in practice, the learned dictionary D c,T has to be updated less frequently in order to account for the potential variations as new data become available.

Motivated by this, we assume that the sparse codes A c,T associated with D c,T in the interval [t c-T +1 , t c ] can be employed to approximate the values of the candidate assets in the future interval [t c+1 , t c+s ], that is,

X c+s,s ≈ D c+s,s A c,T , (4.9) 
where X c+s,s ∈ R s×J , D c+s,s ∈ R s×K , and A c,T ∈ R K×J . To further reduce the computational complexity, the updated dictionary D c+s,s is not learned by solving (4.3), but it is approximated via (4.9) as follows,

D c+s,s ≈ X c+s,s A + c,T , (4.10) 
where A + denotes the right pseudo-inverse of matrix A, which is defined by

A + = A T AA T -1 , (4.11) 
with A -1 denoting the inverse of matrix A.

Similarly, for the reference asset we make the assumption that the sparse code α y;c,T , which was computed from the reference values in [t c-T +1 , t c ], yields a close approximation of the sparse code in [t c+1 , t c+s ], for a relatively small time horizon s. That is, the s predicted replicated values of y in [t c+1 , t c+s ] are computed as follows, ŷc+s,s ≈ D c+s,s α y;c,T

(4.10) ≈ X c+s,s A + c,T α y;c,T , (4.12) 
where ŷc+s,s ∈ R s is the vector of the s replicated reference values and α y;c,T ∈ R K is the sparse code computed from the previous T reference values.

Finally, at time t c+s all the s new observations of the reference asset y have become available. Then, all the windows of length T for both the candidate assets X and the reference asset y slide by a step of s samples and the replication process is repeated. The steps of our proposed replication algorithm are summarized in Algorithm 1.

Empirical Evaluation

The performance of our proposed asset replication method is evaluated in terms of its prediction accuracy for the replicated values of a reference asset. Our data set consists of 52 assets grouped as follows: i) 23 futures indexes {ES1, NQ1, VG1, CF1, GX1, GI1, Z1, AI1, BZ1, SM1, AJ1, IB1, WI1, IS1, TP1, NK1, XP1, KM1, HI1, HU1, TW1, IK1, QZ1} (Index); ii) 19 commodities prices {TY1, G1, RX1, FB1, XM1, BJ1, KE1, ED1, Algorithm 1: Asset Replication from Sparse Codes Require: Candidate assets matrix X ∈ R N ×J , reference asset y ∈ R N , window size T , step size s, sparsity level τ , MaxIter or ε (to terminate K-SVD and OMP) Initialize: First candidate window X T,T , first reference window y T,T , initial dictionary D T,T , initial candidate sparse codes A T,T (using (4.3)) 1: while New observations for all assets are obtained do 2:

Learn dictionary D c,T and compute candidate sparse codes A c,T at time t c via (4.3)

3:

Compute reference sparse code α y;c,T at time t c via (4.7)

4:

Given the s predicted observations for the J candidate assets, X c+s,s , and the previous sparse codes, A c,T , update the dictionary using (4.10)

5:

Given the updated dictionary, D c+s,s , and the previous sparse code, α y;c,T , replicate the future s reference values via (4.12)

6:

Update reference asset y when all the s true observations will become available at time t c+s

7:

Slide all windows (candidate and reference) by s samples and repeat replication 8: end while Output:

1. Subset of candidate assets used for the replication 2. Corresponding weights of the selected assets 3. Final replicated reference asset ŷ L1, BA1, ER1, ES1, ZB1, IR1, YE1, GC1, CL1, SI1, PL1} (Comdty); iii) 10 currency prices {BP1, CD1, EC1, SF1, AD1, NV1, JY1, PE1, KNT1, KXA1} (Curncy).

Adjusted close prices at a daily frequency for all the above assets have been collected, expressed in local currencies. The covering period is between January 1999 and May 2014.

As emphasized in Section 4.3, the use of data in local currencies can be advantageous in terms of diversification of international portfolios. Most importantly, it does not affect the sparse representation coding process, since the jointly learned dictionary adapts to the specific localized patterns of each individual asset, while also extracting their potential correlations. During the selected time period, all markets had undergone through two main market crises, namely, the IT-bubble, and the subprimes and debt crises. Both crises are followed by a recovery period, thus offering a good paradigm to study the adaptivity of the jointly learned dictionary in capturing highly diverse, yet information-rich, local structures, and subsequently the accuracy in replicating a reference asset.

Concerning the replication quality, the accuracy of our proposed method is evaluated for both the assets prices series, as well as for their corresponding daily continuously compounded returns. Specifically, for a prices series p ∈ R N the corresponding series of

daily compounded returns r ∈ R N is defined by r = [r 1 , . . . , r N ] with r t = log p t p t-1 = log(p t ) -log(p t-1 ) , t = 2, . . . , N , (4.13) 
where log(•) is the natural logarithm. Notice that for computational reasons we set r 1 = NaN, since p t-1 does not exist for t = 1.

In the following, the ratio of the mean absolute deviation (MAD) over the mean (MAD/Mean Ratio (MMR)) is used to measure the prediction accuracy for the prices series, whereas the root mean squared error (RMSE) is used for the returns series. In particular, let y ∈ R N and ŷ ∈ R N denote the original and replicated reference asset, respectively. Then, the MMR and RMSE measures are defined as follows,

MMR(y, ŷ) = 1 N N t=1 |y t -ŷt | 1 N N t=1 |y t | , (4.14) RMSE(y, ŷ) = 1 N N t=1 |y t -ŷt | 2 . (4.15)
While the RMSE is fine for comparing the accuracy of different prediction outcomes referring to the same time series, it is less useful when comparing the accuracy between time series of different magnitude, as is the case with the prices series of the data set used herein. The MMR overcomes this limitation by dividing the MAD by the mean of the original prices series, to make it comparable across time series of varying magnitudes.

Furthermore, the MMR better suits time series with intermittent, as well as near-zero elements.

Parameters setting for sparse representation coding

Although the window size T and the step size s are key parameters affecting the overall performance of our proposed replication method, however, for demonstration purposes, in the subsequent evaluation we fix them at T = 10 and s = 5. Doing so, the joint dictionary is learned from the observations over a period of 10 days, while the weights (sparse codes) used for the replication of the reference asset are kept fixed for the next 5 days. Furthermore, the dictionary size is set to K = 51, and the maximum number of iterations for the K-SVD algorithm to I max = 300. The selected size of the dictionary, K = 51, is justified by the fact that, in our implementation, each one of the 52 assets plays sequentially the role of the reference asset, while the other 51 assets are employed to build the joint dictionary. Finally, the value of the sparsity level τ is set as a percentage of the dictionary size. In the subsequent evaluation, the replication performance of our method is tested for various sparsity levels τ = ⌊δ • K⌋, with δ ∈ {0.15, 0.25, 0.50}. We emphasize that the choice of the above parameters values is definitely sub-optimal, while the design of automatic rules for their optimal tuning is still an open question.

Analysis of replication performance

As a first illustration, we examine the replication accuracy of both prices and returns series, in terms of the MMR and RMSE measures, respectively, for four randomly selected assets from our data set. In particular, Figure 4.2 shows the original and replicated series for ES1 Index, TY1 Comdty, BP1 Curncy, and GI1 Index, for a fixed sparsity level τ = ⌊0.25 • 51⌋ = 12. The visual inspection of this figure reveals the high replication accuracy of our proposed method, which also agrees with the calculated values of the two performance measures. More specifically, the average MMR for the prices series of ES1 Index, TY1 Comdty and BP1 Curncy, is less than 2%, while for the GI1 Index is less than 5%. On the other hand, concerning the corresponding returns series, the average RMSE is within an order of 1% of the original returns values. Most importantly, the replicated returns are obtained without any prior normalization of the original assets or a transformation in a common currency. One of the advantages of our proposed asset replication method is that it estimates simultaneously a sparse subset of candidate assets to be included in the replicating portfolio, along with their corresponding weights, by varying the sparsity level τ = ⌊δ • K⌋.

(a) (b) (c) (d)
In order to study the effect of τ to the overall replication performance, the MMR and RMSE measures are calculated for each reference asset separately. As it can be seen, for the given data set the replication accuracy is quite robust to the selected sparsity level (a larger τ is equivalent to a reduced sparsity level). In practice, a larger value of δ may support a higher diversification of the replicating portfolio, since an increased number of candidate assets is selected, thus providing increased resilience in the case of missing information for some of the assets. we deduce that a higher replication accuracy is achieved for those assets with either a small volatility or a moderate skewness. This is an expected behavior, since the assets of low volatility or skewness are characterized by less varying localized patterns when compared with their high-volatility or high-skewness counterparts. Subsequently, the representation capability of the associated learned dictionary is improved, thus yielding a higher replication accuracy. In Figure 4.6, the MMR of the prices and the RMSE of the returns for the 52 assets are plotted versus the annual volatility of compounded returns, for a sparsity level of δ = 0.25. In general, we observe that our proposed replication method achieves a higher This can be attributed to the fact that a smaller volatility yields a more representative dictionary for a fixed number of basic patterns, since the learned dictionary has to capture smoother structures of lower variability. Interestingly, a clustering capability of our method is also revealed. Indeed, as it can be seen in this figure, the MMR and RMSE values for the prices and the returns series, respectively, form three rough clusters (solid ellipses for the Commodity, dotted ellipses for the Currency, and dashed ellipses for the Index assets). This stems from the intrinsic property of the jointly learned dictionary to exploit potential correlations between the inherent localized patterns which are similar among assets belonging to the same class (Indexes, Commodities, Currencies).

Conclusions and Future Work

In this chapter, a novel asset replication method was proposed for simultaneous selection of a subset of candidate assets and estimation of their corresponding weights. Our method exploited the efficiency of sparse representation coding over a jointly learned dictionary, in order to capture and represent with high accuracy the inherent localized structures of an ensemble of financial assets, while exploiting potential correlations between the individual time series.

The experimental evaluation on a set of 52 assets (futures indexes, commodities, and currencies), revealed a high performance of our proposed method in achieving accurate replication of a reference asset by employing a sparse subset of candidate assets. Besides, it was observed that the accuracy, in terms of the achieved MMR and RMSE values between the original and replicated time series, was also affected by the annual volatility and skewness of the corresponding assets (expressed either in prices or returns). However, the overall behavior can be considered robust enough, dictating that sparse representation coding over jointly learned dictionaries is capable of adapting to a higher variability of the original data.

The design of financial instruments for real-time monitoring and decision-making necessitates a computationally tractable way to update the learned dictionary without recalculating everything from scratch, as is the case in our current implementation.

Recent advances in incremental singular value decomposition could motivate the design of an analogous incremental approach for updating the dictionary in a fast online fashion, as new observations become available.

In addition, our proposed replication method employs equally-spaced time instants (uniform sampling) for all the assets. However, there are cases where different assets may be observed at unequally-spaced time instants (non-uniform sampling). To overcome this limitation, a potential solution is to extent the method proposed herein in order to learn the joint dictionary, whilst accounting for time synchronization issues between the individual assets. Finally, the power of sparse representation coding in embedding the inherent meaningful information in a low-dimensional space can be exploited in other tasks of financial interest, such as the discovery of significant patterns in a given time series ensemble with reduced computational complexity.

Chapter 5

Energy-based Measures for Long Run Horizon Risk Quantification

Introduction

In the financial world, risk management is a key process for the identification, analysis, and alleviation of uncertainty in investment decisions. The design of efficient methods for risk measurement thus plays a central role in the risk management pipeline of financial institutions, such as banks, investment funds, and insurance companies. Despite the importance of risk measurement in the financial industry, there is still no universally adopted definition of risk. Risk is typically measured in terms of probability distributions. However, it is more intuitive to express risk as a single number which can be interpreted as a capital amount. From this perspective, a risk measure can be seen as a mapping from loss distributions or random variables to capital amounts.

An extensive debate on desirable properties of regulatory risk measures, in particular the value-at-risk (VaR) and the expected shortfall (ES), as well as on the best risk measure for a given application, is summarized in [START_REF] Artzner | Coherent measures of risk[END_REF], [START_REF] Embrechts | An academic response to Basel 3.5[END_REF], [START_REF] Bellini | On elicitable risk measures[END_REF], [START_REF] Föllmer | The axiomatic approach to risk measures for capital determination[END_REF], [START_REF] Embrechts | Seven proofs for the subadditivity of expected shortfall[END_REF] and [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF]. See also [START_REF] Bcbs | Minimum capital requirements for Market Risk[END_REF] for a recent discussion concerning market risk under Basel III. The majority of existing risk measures, including the families of VaR and ES, depend on the usually unknown underlying distribution of the financial position to assess. Thus they can be estimated only from a sample of available data. Based on that, the robustness of risk measures to changes in the data behavior and to different estimation procedures is studied in [START_REF] Cont | Robustness and sensitivity analysis of risk measurement procedures[END_REF], [START_REF] Kou | External risk measures and Basel accords[END_REF] and [START_REF] Volker Krätschmer | Comparative and qualitative robustness for law-invariant risk measures[END_REF]. For recent progress on elicitability, which is closely related to risk measure forecasting, and backtesting of risk measures see [START_REF] Bellini | On elicitable risk measures[END_REF], [START_REF] Ziegel | Coherence and elicitability[END_REF] and [START_REF] Fissler | Higher order elicitability and Osband's principle[END_REF].

As mentioned in Chapter 2, from an economic viewpoint, the heterogeneity of market participants (e.g. buyers, sellers, banks, federal governments, etc.) justifies the simultaneous use of several periodicities. In fact, limiting the analysis to a single frequency (e.g. daily) would offer a very limited view of the market conditions. In a seminal work, [START_REF] Levy | Portfolio performance and the investment horizon[END_REF] highlights that more attention should be devoted to the process of choosing the basic unit of time. An empirical study based on a yearly rate of returns will yield different results from one which uses monthly rate of returns data. This difference is not the outcome of inconsistency or contradiction, but results from selecting an inappropriate division of the studied period. Despite these findings, the majority of the well-established risk measures are solely based on the time-varying behavior of the original returns series, whilst ignoring completely the contribution of the individual intrinsic periodicities, or, equivalently, frequencies, that can be more relevant to a predetermined investment horizon. For instance, short-term risk managers are primarily more interested in risk assessment at higher frequencies, that is, short-term fluctuations. On the other hand, long-term risk managers focus on estimating risk at lower frequencies, that is, long-term fluctuations. Given this remark, our proposed risk quantification method aims at enabling risk managers to focus precisely only on those frequency components that contain the most relevant information for a given investment horizon.

In order to account for the distinction between short-and long-term risk management, several approaches have been introduced based on wavelet analysis (ref. Chapter 2).

Wavelets are very efficient in providing a refined decomposition of a given time series, by identifying patterns that are well localized both in time and frequency (see [START_REF] Gençay | An Introduction to Wavelet and Other Filtering Methods in Finance and Economics[END_REF], [START_REF] Fan | Unit root tests with wavelets[END_REF], [START_REF] Sun | A new wavelet-based denoising algorithm for high-frequency financial data mining[END_REF], [START_REF] Kenan | Multiresolution analysis of S&P500 time series[END_REF] and [START_REF] Boukhatem | Bond market and macroeconomic stability in East Asia: a nonlinear causality analysis[END_REF], among others). [START_REF] Ramsey | Wavelets in economics and finance: Past and future[END_REF] and [START_REF] Patrick | A guide to wavelets for economists[END_REF] provide an overview about how wavelet analysis methods have been applied in economics and financial applications. The key advantage of wavelet-based methods is that they perform a multiresolution analysis, that is, an analysis of the original data at different scales (each one associated with a particular frequency, or, equivalently, time resolution) simultaneously. Doing so, wavelets can capture information in a single frequency range, as well as coherent structures across distinct scales.

In risk management, wavelet analysis has gained an increasing interest, since it enables capturing the time-varying features of risk, while unraveling the risk dynamics at distinct frequencies. Doing so, a risk manager is able to simultaneously measure the time-evolving risk exposure and distinguish the contributions of short-and long-term fluctuations to the overall risk. Studies applying wavelet methods on systematic risk estimation include [START_REF] Gençay | Multiscale systematic risk[END_REF], [START_REF] Fernandez | The international CAPM and a wavelet-based decomposition of value at risk[END_REF] and [START_REF] Conlon | Wavelet multiscale analysis for hedge funds: Scaling and strategies[END_REF], among others. A wavelet counterpart of beta is proposed in [START_REF] Rua | A wavelet-based assessment of market risk: The emerging markets case[END_REF] and [START_REF] Mcnevin | The beta heuristic from a time/frequency perspective: A wavelet analysis of the market risk of sectors[END_REF] as an alternative measure of market risk, while [START_REF] Conlon | Commodity futures hedging, risk aversion and the hedging horizon[END_REF] studies the interaction between expected returns, the hedging horizon and the degree of risk aversion based on a scale-by-scale analysis of variance (see (5.7)).

A combination of both continuous and discrete wavelet transforms with traditional financial models (e.g. DCC-EGARCH and copulas) is used in [START_REF] Aloui | Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach[END_REF] and [START_REF] Jammazi | Dependence and risk management in oil and stock markets. A wavelet-copula analysis[END_REF] to improve the accuracy of VaR and ES estimates of oil-exchange rates and oil-stock market portfolios. [START_REF] Jammazi | Estimating and forecasting portfolio's Value-at-Risk with wavelet-based extreme value theory: Evidence from crude oil prices and US exchange rates[END_REF] and [START_REF] Berger | Improving daily Value-at-Risk forecasts: The relevance of short-run volatility for regulatory quality assessment[END_REF] apply a wavelet decomposition on the returns series to VaR estimation and forecasting. [START_REF] Zhou | International stock market contagion: A CEEMDAN wavelet analysis[END_REF] analyzes stock markets contagion under time-varying frequencies, while a wavelet method is proposed in [START_REF] Gradojevic | A new wavelet-based ultra-high-frequency analysis of triangular currency arbitrage[END_REF] to characterize the dynamics of triangular arbitrage by relying on order book and market risk measures.

Despite the increased efficiency of previous wavelet-based risk measurement methods, their common characteristic is that they mainly rely on a scale-by-scale analysis of variance by considering all the decomposition scales. Then, the wavelet-based counterparts of VaR and ES are simply obtained by summing all the individual scale variances, or by appropriately clustering them in groups of low, medium, and high volatility of the corresponding wavelet coefficients. Doing so, these methods rather quantify the explanatory information (i.e., the percentage of the overall variance) conveyed by each scale, instead of providing a rigorous framework for selecting and combining the most relevant subset of scales (i.e., frequencies) for a given investment horizon.

Furthermore, the refined wavelet multiresolution analysis of the original time series (e.g. returns) is often not fully exploited. Instead, a preprocessing step is typically employed for smoothing (denoising) the wavelet coefficients via thresholding (see [START_REF] Jammazi | Dependence and risk management in oil and stock markets. A wavelet-copula analysis[END_REF]), which distorts the high-frequency information that is critical for accurate risk quantification. On the other hand, the need for estimating accurately model parameters (e.g. in GARCH-like models) or for choosing specific marginal distributions to accurately fit copulas, as is the case of wavelet-based statistical and probabilistic risk quantification methods (see, for example, [START_REF] Aloui | Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach[END_REF] and [START_REF] Jammazi | Dependence and risk management in oil and stock markets. A wavelet-copula analysis[END_REF]), entails the danger of inaccurate risk measurement due to imprecise parameters estimation or inferior fitting performance of the chosen marginal distributions.

To alleviate the drawbacks and limitations of previous wavelet-based risk measurement techniques, in this chapter we propose an investment horizon-adaptive risk quantification method based on the inherent time-varying energy distribution of returns series, which is expressed in terms of the squared magnitudes of the wavelet coefficients.

To this end, the relevance of each frequency component (i.e., time resolution) is quantified in terms of its contribution to the overall energy content of the returns series. In contrast to previous methods, we do not perform any smoothing of the wavelet coefficients, so as to preserve all the necessary information for a given investment horizon. Thus it adapts directly to the returns data, while avoiding model misfitting errors.

Arguably, the values obtained for risk measures such as VaR or ES are closely linked to the probability distribution used to model the underlying risks. [START_REF] Guegan | More accurate measurement for enhanced controls: VaR vs ES?[END_REF] provide empirical evidence that, given a confidence level, the choice of the probability distribution has a tremendous impact on the value of both VaR and ES. Their results show that, depending on the distribution used and the confidence level selected, the values of VaR can be higher than those of ES and conversely.

VaR and ES are also used as constraints on portfolio selection, see among others [START_REF] Gordon | A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model[END_REF] and more recently [START_REF] Geman | Tail risk constraints and maximum entropy[END_REF]. The latter authors adopt a framework of entropy maximization able to cope with the uncertainty of asset distributions. Contrasting with the standard setting in the finance literature, based on distributional and parametric certainties, their approach is totally in line with the real world where the "true" probability distributions of financial asset returns are definitely unknown.

We point out that the energy-based risk quantification method proposed in this chapter does not rely on any prior statistical or probabilistic model selection. Since it adapts directly to the returns, it is not required to deal with the acute issue of the probability distribution choice and the fitting to the information set. As a result, our energy-based risk framework should offer a more reliable computation of risk.

Main contributions

The main contributions of this chapter are threefold: i) we propose an empirical rule for selecting an optimal subset of wavelet scales that are the most relevant according to a given investment horizon; ii) we introduce a method for the linear combination of summary statistics, specifically the quantiles and variances, of the individual multiresolution series corresponding to the selected subset of frequencies. The combined statistics can then be coupled with any quantile-based risk measure to obtain its adaptive energy-based counterpart; iii) our energy-based modifications of the conventional VaR and ES risk measures preserve their corresponding properties (e.g. elicitability for VaR, coherence for ES), whilst outperforming well-established risk measures for long investment horizons and high confidence levels.

Chapter organization

The rest of the chapter is organized as follows: Section 5.2 elaborates on the conceptual interrelation between the financial risk and the energy content of a time-scale decomposed returns series, which is at the core of our methodology. In Section 5.3, our energybased VaR and ES quantification method is described in detail. Section 5.4 provides an overview of the backtesting methodology we adopt for VaR and ES, along with our proposed performance metric, while Section 5.5 evaluates the backtesting accuracy of our energy-based counterparts of VaR and ES on a set of real stock indexes for varying investment horizons and confidence levels. Finally, Section 5.6 summarizes the main outcomes and gives directions for further extensions.

Notation

In the following, we denote scalars and variables with non-boldface letters (e.g. x, X), row vectors with lower-case boldface letters (e.g. x), matrices with upper-case boldface letters (e.g. X), while calligraphic letters are used to denote sets (e.g. S). x i denotes the ith row of matrix X, x j is the jth element of vector x, and S i denotes a subset of a set S. X S is the submatrix formed by the rows {x i | i ∈ S}, whose indices belong to S. Similarly, x S is the subvector formed by the elements {x j | j ∈ S}, whose indices belong to S. In both cases, the order is preserved among the retained elements. With x = [x 1 , . . . , x N ] ∈ R N we denote a vector of N time series observations. Finally, we use x and x T to denote an approximation (reconstruction) and the transpose of a vector x, respectively. Similar notations are used for the matrices. We also emphasize that our proposed risk quantification method is applied on rolling windows of length T , which slide with a step size equal to s samples across the given time series. Doing so,

x i,T = [x i-T +1 , . . . , x i ] denotes a window of length T whose ending point is the ith sample of the original time series x.

The Interplay Between Risk and Energy of Returns

In this section, we elaborate on the interrelation between the concept of risk, as perceived by the financial experts, and the energy distribution of returns series, as defined in signal processing terms. This interplay constitutes the main building block of our risk quantification method. To this end, first we provide the link between risk and the physical definition of energy. Then, we leverage the concept of wavelet filtering, which decomposes a returns series into a set of transform coefficients, and define the energy in terms of the squared magnitudes of the wavelet coefficients.

In the following, we denote asset prices by p t , where, for convenience, we assume that the index t indicates a daily frequency. Subsequently, p = [p 1 , . . . , p N ] ∈ R N denotes a discrete time series of N prices observed at times {t 1 , . . . , t N }. Hereafter, our proposed risk quantification methodology employs continuously compounded returns, r t , over a time period of T p time units, which are defined as follows,

r t = log p t p t-Tp = log(p t ) -log(p t-Tp ) , t = T p + 1, . . . , N , (5.1) 
where log(•) is the natural logarithm. For instance, when T p = 1, r t corresponds to daily returns, whereas for T p = 5 and T p = 25, r t corresponds to weekly and monthly returns, respectively, computed from daily data. Without loss of generality, in the rest of the chapter we mainly rely on daily returns (i.e., T p = 1).

Translating energy into risk

To better understand the relation between the energy of a returns series and its risk, first we highlight the link between risk and the variance of returns. Indeed, the variance has been the most famous moment-based measure of total risk in segmented markets. The next step is to interpret variance in terms of the energy content of a returns series. To this end, we borrow the physical definition of kinetic energy, E k , of an object, which is defined as the energy that the object possesses due to its motion, and depends on the object's mass, m, and its speed, v,

E k = 1 2 mv 2 . (5.2)
Note that the analogue of mass for financial assets can be thought of as the value of an asset or a portfolio. Moreover, the notion of speed is related precisely to the price variation per time unit, or, in other words, to the returns. In turn, the square of returns is used as a proxy of volatility, thus giving a direct relation between the variance of returns (i.e., the square of volatility) with their energy.

From a digital signal processing perspective, the energy of any time series, and thus of a returns series r ∈ R N , is simply defined as its squared ℓ 2 norm (ref. [START_REF] Proakis | Digital Signal Processing: Principles, Algorithms, and Applications[END_REF]), that is,

E r = ∥r∥ 2 2 = N t=1 r 2 t . (5.3)
On the other hand, the unbiased estimator of the sample variance of r is given by

σ 2 r = 1 N -1 N t=1 (r t -µ r ) 2 = 1 N -1 N t=1 r 2 t + N t=1 µ 2 r -2µ r N t=1 r t (5.3) = 1 N -1 E r + N µ 2 r -2N µ 2 r = 1 N -1 E r -N µ 2 r , (5.4) 
where µ r is the sample mean of r. The above equation yields the relation between the energy (E r ), the volatility (σ r ) and the mean (µ r ) of a returns series, where the squared returns bridge those parameters.

In this chapter, we aim to highlight how energy -such as defined in signal processing -could be used for developing energy-based VaR and ES. It is common practice to explore time-scale properties of time series through the variance at different scales derived using wavelet methods, see e.g. [START_REF] Serroukh | Statistical properties and uses of the wavelet variance estimator for the scale analysis of time series[END_REF]. In the following, a J-level MODWT (ref. Section 2.5) is applied to r ∈ R N yielding a (J + 1) × N matrix, C, whose first J rows contain the detail coefficient vectors d j at scales 2 j-1 , j = 1, . . . , J, and the last, (J + 1)th, row contains the approximation coefficient vector a J at scale 2 J and beyond,

C = d T 1 d T 2 • • • d T J a T J T ∈ R (J+1)×N . (5.5) 
Then, similarly to (5.4), the corresponding energies and variances of the detail (d j ) and approximation (a J ) coefficient vectors are related as follows (the means of the coefficients are ignored since they are equal to zero),

σ 2 d j = 1 N -1 E d j , j = 1, . . . , J , and σ 2 a J = 1 N -1 E a J . (5.6)
Furthermore, the analysis-of-variance property of the MODWT (see (5.7)) yields the following scale-by-scale decomposition of variance for the returns series r,

σ 2 r = J j=1 σ 2 d j + σ 2 a J .
(5.7)

By combining (5.4), (5.6) and (5.7) we obtain the following scale-by-scale distribution of energy property, which is at the core of our horizon-adaptive risk quantification method,

E r = J j=1 E d j + E a J + N µ 2 r .
(5.8)

Applying the inverse MODWT on each wavelet and scaling coefficient vector, a corresponding time-domain vector is reconstructed. Specifically, the multiresolution analysis (MRA) of r is represented by the matrix

R = r T D 1 r T D 2 • • • r T D J r T A J T ∈ R (J+1)×N , (5.9) 
where r D j ∈ R N , j = 1, . . . , J, is a set of J detail (higher-resolution) series reconstructed from the corresponding detail coefficients d j , j = 1, . . . , J, and r A J ∈ R N is the approximation (low-resolution) series reconstructed from the Jth-level approximation coefficients a J . The original returns series r is recovered perfectly by linearly combining the J MRA series, as follows,

r = J j=1 r D j + r A J . (5.10) 
We emphasize that the energy preservation property, given by (5.8), does not hold for the MRA series of the MODWT, since, in general, ∥r

D j ∥ 2 2 ̸ = ∥d j ∥ 2 2 .
Instead, as it is analyzed in Section 5.3, our risk quantification method estimates and combines appropriate summary statistics of an optimal subset of MRA series. This subset of time resolutions is considered to be the most relevant to a given investment horizon, whereas the relative significance of each time resolution is quantified via the energy contribution of the corresponding MODWT coefficients.

Energy-based Risk Quantification

In the framework of risk management, there is no universal definition of what constitutes risk. In practice, the problem of estimating and comparing risk for distinct assets or trading strategies is highly non-trivial, since the underlying distribution of market prices and returns for the various assets is unknown. Furthermore, the task of forecasting risk is further complicated by the fact that financial risk cannot be measured directly. Instead, it has to be inferred from the behavior of observed market prices. This suggests that the use of distribution-free risk measures is the preferred way to forecast risk in most cases.

For convenience, yet without loss of generality, in this section we rely on the two most commonly used risk measures, namely, value-at-risk (VaR) and expected shortfall (ES), to demonstrate the efficiency of our proposed energy-based risk quantification method. We emphasize, though, that our methodology is generic and can be coupled with any of the existing risk measures that are expressed in terms of quantiles, in order to improve their adaptability to a specific investment horizon.

Benchmark risk measures

Given a random variable of compounded returns, r t , and a confidence level, c ∈ (0, 1), the α-level VaR and ES, with α = 1 -c, are used as benchmark risk measures, defined by

Pr (r t ≤ -VaR t (α)) = α ,
(5.11)

ES t (α) = -E [r t | r t ≤ -VaR t (α)] .
(5.12) The positive homogeneity condition states that the risk of a position is proportional to its size (if you double your position you will double your risk). In a significant advance, the authors in [START_REF] Carr | Pricing and hedging in incomplete markets[END_REF] demonstrate that the bid-ask spread for a derivative security is an increasing function of the scale of the transaction. Put in another way, the proportionality between the risk and the size of a position does not hold true. A major challenge in this chapter is to exploit the adaptivity of our energy-based risk measures to a given investment horizon. The investment horizon, also known as the holding period, is the time interval over which losses may occur. This is usually one day, but can be more or less depending on the particular needs of a risk manager. Those who actively trade their portfolios may use a one-day holding period, but longer holding periods are more realistic for institutional investors and non-financial corporations. Note that, by definition, the longer the holding period, the larger the VaR.

Holding periods and time scaling

Estimating VaR or ES over investment horizons exceeding one day is a demanding task.

The reason multi-day forecasting is more difficult than single-day forecasting is that we are estimating events that occur rarely. To address the time scaling of VaR and ES, when the time period T p , over which the returns are calculated, differs from the investment horizon T H , a commonly used method is the square-root-of-time rule. In particular, let σ Tp be the volatility estimated over T p time units and σ T H be the target volatility over an investment horizon of T H time units. Then, given that T p and T H are expressed in the same time unit, we have

σ T H = T H T p σ Tp .
(5.13)

For instance, assume that the annual volatility is equal to 15% and we are interested in estimating the volatility for an investment horizon of T H = 10 days. Since the time unit is days, then T p = 250 (i.e., 1 year corresponds to 250 days) and σ 250 = 15%. From (5.13), the 10-days volatility is equal to σ 10 = 10 250 15% = 3%. Notice that the square-root-oftime rule applies to volatility scaling regardless of the underlying distribution of the data, provided that returns are independent and identically distributed (i.i.d.). However, this assumption is restrictive in practical scenarios due to the presence of volatility clusters.

When applied to quantiles, and thus VaR, the square-root-of-time rule also requires normality for the distribution of returns. Under this assumption, given a confidence level c, the scaled α-level VaR is given by

VaR T H (α) = -z α T H T p σ Tp . (5.14)
Several modifications of this rule were introduced by [DZ06] and [START_REF] Wang | How accurate is the square-root-of-time rule in scaling tail risk: A global study[END_REF], in an attempt to correct for serial dependence and account for fat tails in the returns series.

Although the selection of an efficient scaling scheme may affect the accuracy of the estimated risk, it is beyond the scope of this chapter. As such, the square-root-of-time rule adopted in this work can be easily substituted by a more efficient rule, in order to improve the overall performance of our energy-based risk quantification method.

Horizon-adaptive energy-based risk quantification

At the core of our risk quantification method is the assumption that the time-evolving energy content of the wavelet transform coefficients of a returns series determines the amount of risk that is relevant to a given investment horizon. Recall also that the wavelet scale τ j = 2 j-1 corresponds to a time resolution between 2 j and 2 j+1 time units (e.g. days, weeks, months) due to the dyadic nature of the MODWT. Then, for a given investment horizon of T H time units, our empirical rule considers the subset {1, . . . , τ Jρ } of wavelet scales as the most relevant ones for estimating the risk. In particular, the maximum decomposition level J ρ , and accordingly the maximum wavelet scale τ Jρ = 2 Jρ-1 , which determines the optimal subset of time resolutions to be accounted for, is set according to the following proposition:

Proposition 5.1. For a given investment horizon of T H time units and a J-level MODWT, the maximum decomposition level J ρ (1 ≤ J ρ ≤ J) to account for estimating the risk is given by J ρ = ⌊log 2 (T H )⌋ + 1, where ⌊•⌋ denotes the floor function.

The intuition behind this empirical rule is that a risk manager is interested in assessing the risk associated with a subset of time resolutions (frequencies) determined by the specific investment horizon. Moreover, to account for the non-uniform size of the consecutive intervals, as the decomposition level increases (e.g. levels 1, 2, and 3 correspond to time resolution intervals of [2,4), [4,8), and [8, 16) time units, respectively),

we include an additional decomposition level, which contains information at the next lower time resolution from the one determined by the specific investment horizon.

Having determined the optimal subset S = {1, . . . , J ρ } of the relevant wavelet levels for a given investment horizon, the next step towards estimating risk using our horizonadapted energy-based method is to efficiently combine the statistics of the associated individual returns series in the MRA decomposition of r. These series constitute the lines of the submatrix R S , where R is given by (5.9). We note that, if J ρ < J, the matrix R S consists only of the first J ρ detail series, whereas

R S = R if J ρ = J.
The proposed energy-based risk quantification method, hereafter denoted by HAER, estimates the total volatility of the rows of R S via a weighted variance-covariance matrix formulation. Furthermore, by construction, HAER accounts also for correlations among the distinct MRA series at the different decomposition scales of MODWT.

Without loss of generality, in the following we consider that J ρ < J, thus omitting the incorporation of the approximation series r A J in the subsequent derivations. From (5.10), the original returns series can be approximated by

r ≈ Jρ j=1 r D j .
(5.15)

A straightforward extension is to consider a weighted version of this approximation, as follows,

rw = Jρ j=1 w j r D j , (5.16) 
for some weights w j ∈ R, j = 1, . . . , J ρ . This approximation allows us to account for the degree of contribution of each individual scale, as expressed by its relative energy over the overall energy of the returns series. Then, the variance of rw is given by

σ 2 rw = Jρ j=1 Jρ i=1 w j w i cov r D j , r D i , (5.17) 
where the sample covariance between two MRA returns series is given by

cov r D j , r D i = 1 N -1 N t=1 r D j ,t -µ r D j r D i ,t -µ r D i .
(5.18)

In our implementation, the weights are set equal to

w j = J ρ (N -1)E d j /E r , j = 1, . . . , J ρ .
In the following, the risk is estimated from the returns in rolling windows of length

T , [r t-T , r t ].
Having estimated the combined variance at time t, σ 2 rw,t , the α-level energy-based VaR using the HAER method is defined by

VaR E HAER t (α) = -z α σ rw,t , (5.19) 
where z α is the αth quantile of the standard normal distribution. Similarly, our proposed energy-based ES measure is defined by

ES E HAER t (α) = ϕ(z α ) α σ rw,t , (5.20) 
where ϕ(x) denotes the standard normal density function.

Conditional mean and variance modeling

In order to better adapt to the time-varying behavior of returns, a conditional parametric approach is employed. Specifically, following [START_REF] Sun | A new wavelet-based denoising algorithm for high-frequency financial data mining[END_REF] and [START_REF] Chen | Risk assessment with wavelet feature engineering for high-frequency portfolio trading[END_REF], an ARMA(2,1)-GARCH(1,1) model is utilized, which is applied to a rolling window of T time units (days in our case) preceding time t, and then predicting the estimated model's conditional mean and volatility at time t. Thus the conditional mean equation is an ARMA(2,1) process,

µ t = a 0 + 2 i=1 a i r t-i + b 1 ε t-1 , (5.21) 
while the time-varying conditional variance follows a GARCH(1,1) process,

σ 2 t = k + c 1 σ 2 t-1 + d 1 ε 2 t-1 . (5.22)
Here, ε t = σ t u t , where u t ∼ N (0, 1). The parameters in the models defined by (5.21), (5.22) are estimated by the quasi maximum likelihood estimator under the normal density assumption.

From the analysis in the previous sections, we observe that a time-varying conditional mean model can be incorporated in the calculation of the returns energy defined by (5.8), as well as in the calculation of the MRA-based variance given by (5.17) and (5.18).

As such, J ρ + 1 distinct ARMA(2,1)-GARCH(1,1) models are fitted, namely, i) one ARMA-GARCH on the original returns to model µ r in (5.8), and ii) J ρ models to fit each µ r D j , j = 1, . . . , J ρ , in (5.18) (and subsequently in (5.17)). Notice that for the ARMA-GARCH model associated with µ r D j , the parameters are estimated from the corresponding MRA series r D j .

Backtesting Methodology

To assess the predictive accuracy of the VaR and ES forecasts based on the different risk measures, when applied to distinct time series, we adopt well-established backtesting methods, along with a new one inspired by predictive accuracy evaluations in signal processing applications.

Backtesting VaR

Regarding VaR, when working in a non-parametric framework, the commonly adopted approach for examining its predictive accuracy is to count the number of observed violations, P V,obs ∈ R, defined by

P V,obs = N t=1 1 (r t ≤ -VaR t (α)) , (5.23) 
where 1 t = 1 (r t ≤ -VaR t (α)) denotes a VaR violation at time t, with 1(•) being the indicator function. Additionally we employ the binomial test [START_REF] Danielsson | Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab[END_REF], which is the simplest backtesting method to verify the accuracy of a VaR model, to assess whether the number of failures is consistent with the VaR confidence level, by assuming a normal approximation to the binomial distribution. Specifically, if the failures are independent, then the expected number of failures is equal to N • α, where N is the number of observations, and the test statistic for the binomial test is the z-score, defined as

TStatBin = (x -N α) N α(1 -α) , (5.24) 
where x is the number of failures. Accordingly, the p-value of the binomial test is the probability that a standard normal distribution exceeds the absolute value of the z-score,

PValueBin = 1 -F N (|TStatBin|) , (5.25) 
where F N is the standard normal cumulative distribution. As a third VaR backtesting method, the conditional predictive ability test described in [START_REF] Giacomini | Tests of conditional predictive ability[END_REF], hereafter denoted as GW test, is employed. The GW test examines the equal conditional predictive ability for the utilized VaR quantification methods against the benchmark model. In our case, we assume that the benchmark model yields the true return values. Concerning the VaR measures compared herein, the outperforming method is the one with the highest GW test value and the lower GW p-value, defined below. 

TStatGW = √ N E[d] NWHAC(d) , ( 5 
PValueGW = 1 -F χ 2 (TStatGW 2 ) , (5.27) 
where F χ 2 is the χ 2 cumulative distribution with one degree of freedom.

Backtesting ES

In the following, we backtest ES by employing two distinct performance indicators, i) the observed versus the actual α level, along with the expected versus the actual ES failures; ii) a non-parametric test (T 1 ES ) proposed by [START_REF] Acerbi | Backtesting expected shortfall[END_REF], which is free from assumptions on distribution, with greater ability to detect an effect than the VaR test, while also eliminating the need for Monte Carlo simulations for most practical cases. Furthermore, T 1 ES scales the losses by the corresponding ES value based on the unconditional relationship ES α,t = -E rt1t α . Then, the associated unconditional test statistic is given by

TStatZ 1 ES = 1 N α N t=1 r t 1 t ES α,t + 1 .
(5.28)

In case that the distributional assumptions for the returns are correct, it holds that

E[TStatZ 1 ES ] = 0.
Negative values of the test statistic indicate risk underestimation. The unconditional test is a one-sided test that rejects when there is evidence that the model underestimates risk. Furthermore, the test rejects the model when the p-value is less than 1 minus the test confidence level. Most importantly, TStatZ 1 ES turns out to be stable across a range of distributional assumptions for r t , from thin-tailed distributions such as the normal, to heavy-tailed distributions such as the Student's t with low degrees of freedom. In the following, we fit the returns using a t location-scale distribution, which is appropriate for modeling data distributions with heavier tails.

Envelope-based metric of predictive accuracy

Nevertheless, relying on the number of violations in order to evaluate the efficiency of a risk measure can be misleading. To illustrate this, Figure 5.2 shows the realized returns of an asset along with the VaR values estimated using two different methods, namely, Method A and Method B. Following the conventional approach, a risk manager should prefer Method B against Method A, since it yields fewer VaR violations. On the other This example highlights the necessity for achieving a trade-off between the number of violations and the proximity to the lower part of the returns curve. Motivated by this observation, we also evaluate the predictive accuracy of our energy-based VaR and ES measures by employing the distance from the negative returns part. To this end, our performance measure is based on the lower envelope of the returns series. More specifically, in signal processing, the envelope of an oscillating signal is a smooth curve outlining its extremes (see [START_REF] Johnson | Software receiver design: Build your own digital communication system in five easy steps[END_REF]). In our implementation, we rely on the method of peak envelope to compute the envelope of a returns series. The reason is that the occurrence of peaks in the returns series is critical for the subsequent estimation of VaR and ES, and as such the envelope should provide an accurate fit of them. Moreover, since we primarily focus on negative returns, we are interested in computing the lower envelope of a given returns series. To this end, the lower envelope is computed in two steps: i) the local minima separated by at least l samples are identified; ii) spline interpolation is used over the identified local minima. Parameter l affects the shape of the envelope, since it controls the number of smaller peaks to be ignored when they are in close proximity to a large local peak. Finally, if l env = [l env,1 , . . . , l env,N ] denotes the lower envelope of a returns series r, our performance measure is given by the Euclidean distance between l env and the estimated VaR or ES values, that is,

D V = N t=1 (l env,t -(-VaR t (α))) 2 (for VaR) , (5.29) 
D ES = N t=1 (l env,t -(-ES t (α))) 2 (for ES) .
(5.30)

In the above equations, VaR and ES denote either the conventional or our energy-based VaR and ES risk measures, respectively.

In summary, regarding the backtesting methodology of our energy-based VaR and ES as described in the previous sections, we emphasize that since our risk quantification framework is new, but still grounded on standard risk measures (VaR and ES), it makes sense to employ both conventional (e.g. binomial test) and more sophisticated (e.g.

Giacomini and White's test), as well as novel (our lower envelope-based approach) backtesting methods. Furthermore, by doing so we demonstrate that our energy-based risk measures are easy to backtest.

Empirical Evaluation

In this section, we evaluate the performance of our energy-based VaR and ES for measuring market risk especially over long-run horizons. Specifically, we compare our HAER method (ref. Section 5.3) against two well-estabished risk methods, namely, the historical-based (HS) and the expectiles-based (EXP) (see [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF]) ones. Daily adjusted close prices of three major stock indexes worldwide, namely, S&P 500, DAX, and MSCI World (MSCIW), are utilized. Our data covers the period from January 1st, 2007, to February 25th, 2019, including time periods of distinct market behavior. Table 5.1 reports the descriptive statistics for the corresponding daily compounded returns of the three indexes during the selected period. In general, the returns present different degrees of kurtosis, volatility and skewness, which provides an excellent ground to evaluate the efficiency of our risk measures under highly diverse conditions. For this, we vary the window size T according to the horizon, specifically, we choose According to [START_REF] Bcbs | Minimum capital requirements for Market Risk[END_REF], the VaR is estimated typically for an α level in {0.01, 0.025}. Analyzing the results in these tables, we observe that for a small investment horizon, T H = 5, the historical simulation (HS) and the expectiles (EXP) methods achieve similar performance, whilst outperforming our HAER VaR measure for the two α levels, in terms of better approximating the expected number of VaR violations. On the other hand, in terms of the conditional predictive ability, as expressed by the test statistics and p-values for the GW test (at 95% confidence level), our HAER method enables a higher predictive performance. Regarding the independence assumption for the VaR violations, as expressed by the binomial test, HS and EXP satisfy this hypothesis for all the cases except for the S&P 500 index at 2.5% VaR level, where HAER accepts the hypothesis. Furthermore, in contrast to HS and EXP, the HAER method results in the closest proximity to the lower envelope of the returns, as expressed by its smaller D V values for all the examined indexes and α levels, which means that HAER tends not to over-estimate risk for small horizons. This observation supports the statement that the widely used number of violations is not sufficient enough to characterize the accuracy of a VaR measure, whereas it may even yield misleading results.

As the investment horizon increases, namely, for T H = 25 (ref. Table 5.3), and for an 97.5% confidence level, all the three methods achieve a comparable performance for the S&P 500 index, in terms of the observed level, whilst HS is slightly more accurate for DAX and our HAER is better for the highly skewed and leptokurtic MSCI World index.

Regarding the proximity to the lower envelope of returns, all the three VaR quantification methods achieve a similar performance. As for the conditional predictive ability, the three methods are equivalent for S&P 500 and DAX, whilst HAER outperforms both HS and EXP for the MSCI World index. Furthermore, although the binomial test is rejected for MSCI World at α = 0.01 (i.e., the number of VaR failures is not consistent with the VaR confidence level), however, it achieves the highest conditional predictive ability compared with HS and EXP. Nevertheless, as the confidence level increases (α = 0.01), the HAER method significantly outperforms HS and EXP for all indexes, as well as in terms of all the performance measures, that is, estimation accuracy of the expected number of violations, proximity to the lower envelope of the returns, and GW test statistic values.

Overall, HAER yields the best performance for the three indexes.

For a long-run investment horizon (T H = 125), Table 5.4 shows the performance measures for the three methods and all the indexes and α levels. In particular, for α = 0.025, HAER and HS achieve a similar estimate of the observed level for S&P 500, whilst HS slightly outperforms the other two methods for DAX, and EXP is slightly better for MSCI World. The binomial test hypothesis is rejected in almost all cases, which verifies the difficulty in estimating a number of VaR failures that is consistent with the true VaR confidence level for long-run investment horizons. Concerning the conditional predictive ability, the three quantification methods are equivalent for S&P 500 and DAX, with our HAER method being slightly better for the MSCI World index.

Regarding the capability of the three VaR measures to approximate the lower envelope of returns, the calculated D V values reveal that they achieve a similar performance. As the confidence level increases to α = 0.01, our HAER method achieves a superior overall performance, when compared against HS and EXP, for the three examined indexes. In particular, HAER estimates more accurately the observed level for the S&P 500 and DAX, whilst it achieves the highest conditional predictive ability and proximity to the lower envelope of returns. These results demonstrate the improved efficiency of our energy-based framework in better adapting to medium-and long-run horizons. In the following, we backtest the three ES quantification measures by varying the investment horizon T H ∈ {5, 25, 125}. As in the VaR backtesting case, the window size T varies according to the horizon, specifically, we choose the following (T H , T ) pairs:

(5, 750), (25, 1000), and (125, 1500). The Fejér-Korovkin wavelet of order 6 (fk6) is chosen for the MODWT decomposition. According to [START_REF] Bcbs | Minimum capital requirements for Market Risk[END_REF], the ES α level should vary in {0.025, 0.05}. Note also that the corresponding VaR α level varies in {0.01, 0.025}. Table 5.5 shows the backtesting results for a small horizon of T H = 5 days. Specifically, for α = 0.025 our HAER method outperforms HS and EXP, in terms of a more accurate estimation of the realized number of violations. For the DAX index all the ES quantification methods achieve similar performance, whereas EXP is better for the MSCI World. Furthermore, the test statistic of the T 1 ES test shows that, at a test confidence level of 95%, our method underestimates ES in most of the cases. This is justified by the fact that the cutoff decomposition scale, given by Proposition 5.1, is too small when T H is small. Thus a significant percentage of the returns energy (i.e., frequency information) is ignored, when compared with the original returns series used by the other two methods. As the α level decreases to 0.01, HAER is more conservative, in the sense that it under-estimates ES in all cases. As before, this is attributed to the small number of cutoff decomposition scales for small investment horizons, with the selected subset of frequencies not conveying enough information for estimating accurately the tail risk.

Nevertheless, the situation changes as the investment horizon increases to one month (T H = 25). Indeed, as it can be seen in Table 5.6, the three ES measures perform similarly for S&P 500 and DAX when α = 0.025, in terms of the number of identified violations. For the MSCI World index, our HAER is better capable of capturing the tail risk, yielding a more accurate approximation of the true α level. Interestingly, although all the methods over-estimate ES at 97.5% confidence level for S&P 500 and DAX, HAER achieves the closest proximity to the lower envelope of returns, as dictated by the smaller D ES values. This is also the case for MSCI World, although HAER and HS slightly under-estimate ES. As the α level reduces to 0.01, HAER significantly outperforms HS and EXP for S&P 500 and DAX, both in terms of realized number of failures versus the expected ones and the closest proximity to the lower envelope of returns. Concerning the highly skewed and leptokurtic MSCI World index, HS and EXP result in a more accurate estimate of the true α level, whilst HAER under-estimates ES, but by approximating more closely the losses regime (i.e., the lower envelope of returns). Table 5.7 summarizes the results for a longer horizon of six months, T H = 125.

Specifically, for an ES level of 95% (i.e., VaR level of 97.5%) HAER significantly outperforms HS and EXP for S&P 500, in better estimating the true α level. On the other hand, HS is better for the DAX index, whilst the three ES measures perform equivalently for the MSCI World. As the ES confidence level increases to 97.5%, HAER improves the estimation accuracy of the true α level against HS and EXP for S&P 500 and DAX, whilst also approximating more closely the lower envelope of returns. This means that, although HAER over-estimates ES values, it is still better capable of following the lower envelope of returns (i.e., the losses) more closely than HS and EXP. In the case of MSCI World as well, HAER approximates more closely the lower envelope of returns, but at the cost of yielding more conservative ES estimates (i.e., more ES violations).

The above results validate the improved capabilities of our HAER method for ES quantification in the case of medium-and long-run investment horizons, which is also more realistic for institutional investors and non-financial corporations, yet dramatically more demanding since we are estimating events that occur rarely. Regarding the statistics of an index (e.g. skewness, kurtosis) as a potential factor that could affect the estimation performance of ES, the results do not indicate a clear connection between the two.

We emphasize that, although the selection of an appropriate window size T , for a given horizon T H , is important for obtaining accurate VaR and ES estimates, however, the value of T is set empirically in practical scenarios. An automatic selection of T , as a function of both T H and the statistics of a returns series, is beyond the scope of this work. Nevertheless, its thorough study is left as an open problem for future extensions.

When addressing risk measurement issues, the time horizon is of particular relevance since the value of a portfolio will be impacted by any change in the risk itself. To comply with the Basel regulatory framework, banks are required to use VaR and ES at a one or 10-day horizon, whereas most assets in most portfolios are held over a period of months or even years. These short-run risk measures are not designed for this task. In the words of [START_REF] Robert F Engle | The risk that risk will change[END_REF], they are not appropriate to cope with "the risk that risk will change" over a long-run horizon. In this chapter, we propose energy-based VaR and ES measures that provide a natural supplement to the standard short-run measures, so widely used.

In calculating long-term energy-based risk measures, there is a role for banks' capital requirements. Besides regulatory capital, computed according to a short-horizon 99%

VaR model, banks have to provide an estimate of economic capital, i.e., the amount of capital required to absorb unexpected losses over a certain time horizon. Typically, a 1-year horizon is used and such a capital buffer can thus be interpreted as a 1-year VaR of the bank's market exposure. Our energy-based method extends standard approaches to compute losses at a 1-year horizon and corollary economic capital. Mainly speaking, there are two broad classes of methods: obtaining a 1-year Profit & Loss (P&L) distribution through scenario generation of the risk factors, or using more sophisticated VaR-scaling methodology than the square-root-of-time rule.

Employing Monte Carlo methods is challenging, since the accuracy of the resulting 1-year P&L distribution is strongly dependent on the assumptions made on risk factors dynamics. On the other hand, applying a time scaling for extending market risk measures leads to the critical problem of the best fit to empirical returns or P&L distributions.

Our energy-based risk quantification methods developed in this chapter can by-pass the above-mentioned difficulties. 

Conclusions and Future Work

This chapter introduced a novel framework for estimating VaR and ES, based on the energy distribution of returns in an appropriate wavelet transform domain. Specifically, first, the optimal subset of scales (or, equivalently, time resolutions) was identified according to the marginal contribution to the overall energy of the returns series and the predetermined investment horizon. Then, the statistics, namely, the quantiles of the selected individual scales were combined in a nonlinear fashion using a weighted variancecovariance scheme that accounts for inter-scale correlations. The experimental evaluation on three distinct indexes, over a time period characterized by diverse market conditions, revealed the superior performance of our proposed risk quantification framework, in terms of achieving a better control of the under-and over-estimated VaR and ES values. Doing so, the proposed risk quantification methods are expected to further improve the accuracy of modeling, forecasting, risk management, and portfolio selection for mediumand long-run investment horizons and large confidence levels.

In the current implementation, the MODWT is applied by selecting a priori a fixed wavelet filter. However, we expect that the accuracy in capturing more complex patterns may increase by using an optimal transform. As a future extension, we propose to incorporate an adaptation mechanism for designing the optimal wavelet, which will better fit the structure of a given returns series, by solving a constrained optimization problem (see [START_REF] Cai | Data-driven tight frame construction and image denoising[END_REF]). Furthermore, we are interested in generalizing the empirical rule for selecting the subset of scales that are relevant to a given investment horizon, instead of employing only consecutive scales as we do now. Finally, we expect that the performance of our proposed methodology will improve by automatically setting the size of the rolling window as a function of the investment horizon T H and the complexity of a returns series.

Chapter 6

Taming Impulsiveness for Risk Quantification Using High-Frequency Data

Introduction

High-frequency financial data analysis has experienced an enormous and fast development over the recent years. At the core of modern financial instruments is the instantaneous collection of massive tick-by-tick data from financial markets. The availability of highfrequency data on transactions, quotes and order flow in electronic order-driven markets has revolutionized data processing and statistical modeling techniques for the design of advanced algorithmic trading systems, bringing up new theoretical and computational challenges. Most importantly, high-frequency financial data possesses a complicated structure due to irregularities and roughness caused by a large number of instantaneous changes of the markets and trading noises.

A fundamental question in algorithmic trading is how often one should sample, in order to account for the micro-structure effects. The authors in [START_REF] Ané | Order flow, transaction clock, and normality of asset returns[END_REF] employ stochastic time changes for generating virtually perfect normality in high-frequency asset returns, whilst allowing both the time-change and price processes to take the form of jump diffusions. In response to the increase in market fragmentation, due to the considerable changes of market micro-structure in recent years, [START_REF] Delaney | Investment in high-frequency trading technology: A real options approach[END_REF] proposed an optimal timing strategy to invest in high-frequency trading technologies. In the seminal work of [START_REF] Aït-Sahalia | How often to sample a continuous-time process in the presence of market microstructure noise[END_REF] it was shown that if micro-structure noise is present but unaccounted for, then the optimal sampling period is finite and can be derived in closed form. On the other hand, if the presence of noise is accounted for, modeling the noise term explicitly restores the first-order statistical effect that sampling as often as possible is optimal. A main limitation of their method is that it relies on a fully parametric framework, by assuming that the noise follows a Gaussian distribution. Sample moments of high-frequency returns data recorded at different frequencies were employed in [START_REF] Bandi | Separating microstructure noise from volatility[END_REF] to calculate the optimal sampling period, by minimizing a mean-squared error criterion on the realized variance estimator as a function of the sampling period. However, this method cannot be applied to financial time series modeled by a finite mixture model, whilst it does not fully consider the number of parameters involved in a model. To address this issue, [START_REF] Choi | Optimal sampling frequency for high frequency data using a finite mixture model[END_REF] proposed a finite mixture modeling scheme to calculate the optimal sampling period through a modified likelihood ratio test. However, a finite mixture model with only two components is considered, which may yield inaccurate fitting in the case of highly heavy-tailed returns data. Furthermore, estimation of model parameters is required by minimizing Akaike's information criterion, which may be computationally intractable as the order of the finite mixture model increases. Optimal sampling period for volatility models was estimated by [START_REF] Bhattacharyya | Optimal sampling frequency for volatility forecast models for the Indian stock markets[END_REF] via GARCH-based statistical modeling of high-frequency data. However, the method proposed therein is based on a normality assumption for the distribution of returns, without accounting for the potential occurrence of gross values in the returns data.

From the above, it becomes apparent that the optimal sampling period should be selected on the basis of satisfying a trade-off between accuracy and potential biases due to market micro-structure frictions. To this end, an alternative tool was introduced by [START_REF] Fang | Volatility modeling and estimation of high-frequency data with Gaussian noise[END_REF] and [START_REF] Torben | Great realizations[END_REF] to assess this trade-off, namely, the volatility signature plot.

This plot provides a simple graphical diagnostic for calculating the realized volatility of high-frequency financial returns, by characterizing different market micro-structures in terms of their volatility signatures. In particular, the patterns of bias injected in realized volatility are identified by sampling progressively more frequently the underlying returns.

Despite its computational efficiency, this tool is defined in terms of second-order moments by employing the so-called price variogram [START_REF] Haslett | On the sample variogram and the sample autocovariance for non-stationary time series[END_REF], as well as by assuming a Gaussian distribution for the noise term. Nevertheless, both assumptions are violated in the case of heavy-tailed data.

The majority of existing methods for high-frequency financial data analysis rely primarily on the controversial use of second-order moments, or equivalently on light-tailed, finite-variance assumptions for the statistics of the data-generating processes, in order to estimate volatility. However, despite the analytic tractability and practical appeal, these assumptions may be problematic when we analyze impulsive data, which give rise to heavy-tailed processes with possibly infinite variance. On the other hand, the presence of large-amplitude samples, which can be of infinite or very large variance, can mask the information content of the time series, especially in neighboring time instants. This may degrade dramatically the accuracy of subsequent decision making, thus necessitating the design of novel data analysis techniques that are able to adapt to heavy-tailed financial data exhibiting outliers or rare events much more frequently than what a light-tailed distribution dictates.

In this chapter, we propose a generalized framework for jointly quantifying the inherent impulsiveness and estimating the optimal sampling period for mitigating the micro-structure effects in high-frequency financial data. To this end, first we introduce the novel concept of the degree of impulsiveness (DoI), as an alternative key indicator of the variability of high-frequency data, which complements the well-established concept of volatility. Then, a DoI-based generalized price variogram is defined, which adapts to a broad range of impulsive behaviors (i.e., from light-tailed to highly impulsive data), along with the associated generalized volatility signature plot that is further used to estimate the optimal sampling period of high-frequency financial data. For this, we rely on the efficiency of alpha-stable distributions and fractional lower-order moments (FLOMs) (ref.

Chapter 3), to accurately model the heavy-tailed, possibly infinite-variance, time series data.

Notice that, from a practitioner's viewpoint, processes with infinite variance may sound counter-intuitive, since they give rise to infinite power that does not really exist in real-world data. Nevertheless, from a probabilistic perspective, variance is just a measure of how spread out a distribution is. Distributions with infinite variance present fat upper tails that decrease at an extremely slow rate. Intuitively, this means that the distribution will vanish for very large absolute values of the corresponding random variable. Actually, in theory, it never vanishes, and this is precisely the reason we say that the upper tail is "unbounded". The slow decay of probability in this area increases the odds of extreme values (outliers), and other surprising last-minute events at some point in the future. Although the model has infinite variance, this does not imply that the real-world phenomenon being modeled also extends to infinity. It just means that the model is a "good enough" fit to describe the behavior of the phenomenon under study.

Main contributions

The main contributions of this chapter are threefold: i) we define the novel concept of the degree of impulsiveness as an alternative indicator of the variability of financial data, which complements the well-established volatility; ii) we introduce a generalized price variogram, which adapts to a broad range of impulsive behaviors; iii) we define the generalized volatility signature plot that is further used to estimate the optimal sampling period of high-frequency financial data.

Chapter organization

The rest of the chapter is organized as follows: Section 6.2 describes the data utilized in this study, along with an assessment of its statistical behavior. Section 6.3 defines the degree of impulsiveness as an additional source of information to the well-established volatility. Section 6.4 analyzes our proposed method for optimal sampling period estimation tailored to high-frequency financial data. Section 6.5 evaluates the performance of our method on the problem of risk quantification with distinct high-frequency indexes. Finally, Section 6.6 summarizes the main outcomes and gives directions for further extensions.

Notation

Since most risk management and trading strategies rely on the returns of an asset, hereafter, we employ continuously compounded returns, r t , over an horizon of τ time units, defined by

r t = log v t v t-τ = log(v t ) -log(v t-τ ) , t = τ + 1, . . . , N , (6.1) 
where v t denotes an asset's price at time t and log(•) is the natural logarithm. For instance, when we operate with minute data, τ = 1 corresponds to minute returns, whereas τ = 60 corresponds to hourly returns computed from minute data. In any case, the time unit will be explicitly defined whenever needed, thus the interpretation of τ will be clear.

Data and Assessment of Heavy-Tailed Behavior

In As described in Section 3.4, two different approaches are commonly used in order to check whether our data is in the stable domain of attraction: i) Q-Q plots, which provide a visual diagnostic for the relationship between the empirical quantiles of a data set and the corresponding theoretical quantiles obtained under a specific distribution; ii) thickness of the tails of the density function, as expressed by the estimated characteristic exponent, α. Remark 6.1. Without loss of generality, in the subsequent analysis we restrict the index of stability to the range 1 < α ≤ 2, which is most frequently encountered in practical applications. The condition of α > 1 also yields that, whenever required in the subsequent derivations, the mean of the associated random variable is defined.

Remark 6.2. The model parameters (α, β, γ, δ) are estimated from the given data using the empirical characteristic function based method, described in [START_REF] Kogon | Characteristic function based estimation of stable parameters[END_REF], due to the occurrence of many near-zero values in the minute returns.

Degree of Impulsiveness as an Additional Source of Information

Volatility, that is, the standard deviation of asset returns, is a key input for several financial applications like risk management [START_REF] Mcgee | The risk premium that never was: A fair value explanation of the volatility spread[END_REF], option pricing [START_REF] Date | A fast calibrating volatility model for option pricing[END_REF] and portfolio decisions [START_REF] Staino | Nested Conditional Value-at-Risk portfolio selection: A model with temporal dependence driven by marketindex volatility[END_REF]. Nevertheless, volatility is, by definition, a measure of how spread the returns of a given security or market index are about the mean. As such, it does not provide any information regarding the rate of decay of a distribution, which is related to the probability of extreme values for the associated random variable. This is especially important in various financial applications, such as risk quantification and portfolio optimization. Specifically, heavy-tailed distributions possess heavier tails than an exponential distribution, tending to present outliers with very high values. The heavier the tail, the larger the probability that the associated random variable will get one or more disproportionate values in a sample.

To illustrate this, we employ a toy example, as shown in Figure 6.2(a). In particular, a random series ("Original") of length N = 1024 is generated first by drawing samples from a Gaussian distribution, which is then corrupted by random spikes at 5% of the samples ("Impulsive" series). Although the two series have an almost equal volatility (about 3), their empirical probability density function differs significantly, as shown in Figure 6.2(b). Clearly, the "Impulsive" series is characterized by heavy tails, decreasing at a much slower rate, when compared against the "Original" version. The slow decay of probability in this area increases the odds of very extreme values (outliers), abrupt changes in the distribution, and other unexpected events at some point in the future.

This justifies the quantification of impulsiveness, as an important additional source of information, that can complement the well-established volatility.

From physics, it is well known that the amount of energy carried by a wave is related to the amplitude of the wave, which is defined as the maximum amount of displacement from a rest position. In specific, the energy, E, transported by a wave is directly proportional to the square of the amplitude, A of the wave, that is, E ∝ A 2 . As a result, a high-energy wave is characterized by a high amplitude, whilst a low-energy wave is characterized by a low amplitude. Observing Figure 6.2(a), one can assert that the amplitude of a wave, i.e., a time series in our case, is related to the presence of large samples. Indeed, the amplitude of the "Impulsive" series is much higher than the amplitude of its "Original" counterpart. Thus there is a direct relation between the impulsiveness and the energy of a given time series.

In statistical signal processing terms, the probabilistic average energy of a random variable R is given by For a discrete time series of N samples, r ∈ R N , the above equation can be expressed in asymptotic form as follows,

E avg (R) = E{R 2 } . (6.2) (a) (b)
Ẽavg (r) = lim N →∞ 1 N N t=1 r 2 t , (6.3) 
or, in other words, the larger the number of samples N , the closer the average energy will be to the probabilistic average energy.

Nevertheless, (6.2), and consequently (6.3), which is expressed as a second-order moment, is not valid for heavy-tailed data modeled by α-stable distributions with α < 2.

A natural extension of the probabilistic average energy definition for α-stable random variables is as follows, Definition 6.3 (Probabilistic Average Energy for α-Stable Variables). Given an α-stable random variable R ∼ S α (γ, β, 0), its probabilistic average energy is defined by

E avg,p (R) = E {|R| p } . (6.4) 
Notice that (6.4) is precisely the definition of pth-order fractional lower-order moments of R (ref. Section 3.3). Similarly to (6.3), for a discrete time realization r ∈ R N of R ∼ S α (γ, β, 0), its asymptotic approximation of the average energy is given by Ẽavg,p (r) = lim

N →∞ 1 N N t=1 |r t | p . (6.5) 
In order to account for the differences in scale between two distinct time series, a normalization can be applied with respect to a "rest position". We define this position to be the average absolute signal, defined by

Z avg (R) = E {|R|} , (6.6) 
or, in discrete time form,

Zavg (r) = lim N →∞ 1 N N t=1 |r t | . (6.7)
From the above, our proposed degree of impulsiveness (DoI) of a random variable R ∼ S α (γ, β, 0), is defined as follows:

Definition 6.4 (Degree of Impulsiveness). Given a random variable R ∼ S α (γ, β, 0), its degree of impulsiveness is defined as the deviation of the probabilistic average energy from the rest position of R,

DoI p (R) = Z avg (R) (E avg,p (R)) 1/p (3.5),(6.4) = Z avg (R) (C p,α,β γ p ) 1/p , (6.8) 
where the exponent 1/p at the denominator of (6.8) is used to maintain the same unit of measurement as the variable R.

The corresponding asymptotic approximation of the DoI is given by substituting (6.5) and (6.7) to (6.8),

DoI p (r) = lim N →∞ 1 N N t=1 |r t | 1 N N t=1 |r t | p 1/p . (6.9)
In practice, when the length, N , of the given time series is "small" or when a relatively large number of zeros exist in the samples, then (6.9) should be preferred (ignoring the limit operator) from a computational perspective. In any other case, (6.8) is employed for the calculation of the DoI, where the parameters α, β, γ, and C p,α,β are estimated directly from the available data r, as described in Section 3.2. The value of p is selected as a function of α, following the process described in Section 3.3.1. Finally, adopting a convention that is commonly used in signal processing, the DoI p (R) (and its asymptotic approximation) is also expressed in decibels (dB), as follows, DoI p (R) dB = 20 log 10 (DoI p (R)) (similarly for DoI p (r)). Without loss of generality, in the following we employ the DoI definition in (6.8).

As an illustration of the validity of our proposed DoI indicator, we calculate its value for a set of synthetic signals with varying tail thickness (i.e., characteristic exponents).

Specifically, a baseline signal of length N = 2048 is generated by drawing samples from a standard Gaussian distribution. Then, a set of outliers drawn from a S α (γ, 0, 0) distribution corrupts the 10% of randomly chosen samples in the baseline signal. The dispersion is fixed at γ = 1.5 and the characteristic exponent varies in α ∈ {1, 1.2, 1.4, 1.6, 1.8}.

The simulation is repeated for 500 Monte Carlo runs, by keeping the same baseline signal and generating different corrupting outliers in each run. Finally, the average DoI is calculated for each α over all Monte Carlo runs. Figure 6.3(a) shows three instances of signals with varying tail thicknesses. As expected, the smaller the α, the more impulsive the signal is (i.e., more abrupt spikes occur), and the larger the DoI value should be.

Indeed, as shown in Figure 6.3(b), the degree of impulsiveness decreases as the tail thickness reduces, which is also consistent with the visual inspection of the three signals on top.

Thus far, we have illustrated the validity of α-stable distributions in accurately modeling the impulsive nature of high-frequency financial returns, and we defined the Remark 6.5. In order to avoid any misunderstanding in the subsequent analysis, we emphasize the difference between the original sampling period that generated the data and the optimal sampling period obtained by our proposed methodology. In particular, the original sampling period refers to the time interval between consecutive asset prices, as reported by a stock exchange. For instance, in the case of minute indexes, the original sampling period is equal to one minute. On the other hand, the optimal sampling period calculated by our method dictates an additional sampling that is applied to the original prices so as to improve the performance of a subsequent task (e.g. risk quantification).

For instance, if the original sampling period is equal to one minute and the optimal sampling period is calculated to be equal to 5, this means that the original price series is subsampled by maintaining 1 out of every 5 consecutive samples. This subsampled series is then employed to carry out the subsequent task.

Impulsiveness-Adaptive Optimal Sampling Period Estimation

Under the assumption that price changes have zero mean, then, the conventional price variogram is defined as a function of the returns horizon τ , as follows,

V (τ ) = E{(v t -v t-τ ) 2 } . (6.10)
To account for the generic case of mean and variance non-stationarity for the underlying generating processes of financial time series, [START_REF] Haslett | On the sample variogram and the sample autocovariance for non-stationary time series[END_REF] introduced the following price variogram estimator, whose bias is small and independent of the magnitude of a potential drift in the data,

Ṽ (τ ) = 1 2 1 (N -τ -1) N -τ t=1 (d t,τ -dτ ) 2 , (6.11) 
where d t,τ = v t -v t-τ , and dτ is the sample mean of d t,τ for t = 1, . . . , N -τ . Note that Ṽ (τ ) is simply the sample variance of τ -horizon price differences. An important implication is that the volatility observed by sampling price series at a given horizon τ is itself dependent on that horizon, as follows [START_REF] Hommes | Handbook of Computational Economics[END_REF],

σ2 (τ ) = Ṽ (τ ) v 2 0 • τ , (6.12) 
where v 0 is either the current price or some medium-term average. A plot of σ(τ ) versus τ is called a volatility signature plot (VSP). The case of an uncorrelated random walk results in a flat signature plot. Positive correlations, which correspond to trends, lead to an increase in σ(τ ) with increasing τ . Negative correlations, which correspond to mean reversion, lead to a decrease in σ(τ ) with increasing τ . [START_REF] Fang | Volatility modeling and estimation of high-frequency data with Gaussian noise[END_REF] and [And+99] further exploited the VSP to select the optimal sampling period for high-frequency returns.

Specifically, the optimal period is calculated heuristically by identifying the value of τ where the σ(τ ) curve begins to flatten out.

Nevertheless, both (6.10) and ( 6.12) are defined in terms of second-order moments of the price series, which may be infinite (undefined) in the case of α-stable distributed data. In order to address this drawback, we generalize the concepts of price variogram and volatility signature plot, so as to perfectly adapt to the underlying heavy-tailed data generating processes.

Generalized volatility signature plot

In order to adapt to the varying impulsiveness of distinct high-frequency returns series, a generalized price variogram, V g (τ ), is naturally defined as follows:

Definition 6.6 (Generalized Price Variogram). For a predetermined horizon τ and an exponent p, the generalized price variogram of a given price series v t is defined by

V g (τ ) = E{|v t -v t-τ | p } . (6.13)
By combining (6.8) with (6.13), a DoI-based expression is obtained for the generalized price variogram,

V g (τ ) = Z avg (d t,τ ) DoI p (d t,τ ) p , (6.14) 
where d t,τ = v t -v t-τ is the random variable of τ -horizon price differences. Note that all the parameters involved in the calculation of (6.14) (i.e., p, α, β, and γ) are estimated from d t,τ .

We also consider an alternative generalized price variogram estimator, defined as the sample central FLOM of price differences, d t,τ = v t -v t-τ , as follows: Definition 6.7 (FLOM-based Generalized Price Variogram). (6.5) ------→

Ṽg (τ ) = 1 (N -τ ) N -τ t=1 |d t,τ -dτ | p (3.5),
N →∞ C p, α, β γ p , (6.15)
where dτ is the sample mean of d t,τ for t = 1, . . . , N -τ .

Note that the sample mean is defined properly for the α-stable distributed returns due to our constraint of 1 < α ≤ 2 (ref. Remark 6.1). Furthermore, the parameters p, α, β and γ in the asymptotic expression of Ṽg (τ ) are estimated directly from the samples dt,τ = d t,τ -dτ , for t = 1, . . . , N -τ .

Remark 6.8. Notice that in the above definitions of the generalized price variogram (ref. (6.13)-(6.15)), the parameter p can either take a fixed predefined value, irrespectively of the returns horizon τ , or it can adapt to the statistics of the price differences d t,τ .

In the latter case, the α-stable model parameters (p, α, β and γ) depend on τ . In the subsequent implementation, we employ the second approach, that is, the model parameters are estimated from the price differences for each τ , yet, for simplicity, in the corresponding equations we omit their dependence on τ .

Without loss of generality, in the following analysis we employ the alternative generalized price variogram of (6.15), which is more robust to potential drift in the data. Nevertheless, similar expressions are obtained by replacing Ṽg (τ ) with V g (τ ) in the subsequent derivations.

Under the assumption that price changes have zero mean, which is a good approximation on short time scales, then, the generalized price variogram grows at a power law with the returns horizon τ , such that

Ṽg (τ ) = κ • τ m , m ∈ R . (6.16)
In our implementation, m is estimated from the corresponding Ṽg (τ ) versus τ (similarly for V g (τ ) versus τ ) curve via nonlinear regression model fitting.

The conventional price variogram is a special case corresponding to m = 1. Furthermore, given the prevalence of multiplicative models for price changes on longer time scales, it has become customary to define the volatility σ in relative terms, even for short timescales, as follows (ref. [START_REF] Hommes | Handbook of Computational Economics[END_REF]),

κ = σ 2 • v 2 0 .
(6.17)

In order to adapt to the heavy-tailed statistics of high-frequency returns, we define the variability of price changes by

κ = γα • v α 0 , (6.18)
where the dispersion is employed instead of volatility (which, from a statistical perspective, is undefined for α-stable models with α > 1), and the index of stability, α, is incorporated to account for the heaviness of the tails. By combining (6.16) and ( 6.18), and noticing that the dispersion γ depends on the returns horizon τ , we obtain the following equation,

γ(τ ) = Ṽg (τ ) v α 0 • τ m 1/α . (6.19)
Then, our proposed generalized volatility signature plot (gVSP) is defined as the plot of γ(τ ) versus τ .

Optimal sampling period estimation

Following the methodology of [START_REF] Fang | Volatility modeling and estimation of high-frequency data with Gaussian noise[END_REF] and [And+99], we calculate the optimal sampling period heuristically by identifying the horizon τ where the gVSP curve, γ(τ ) versus τ , begins to flatten out. In the following, we assume for convenience that v 0 = 1 for all indexes. Figure 6.5(a) shows the gVSP curves for the five indexes as a function of the horizon τ = 1, . . . , 120 minutes. From a visual inspection, all curves start to flatten beyond a specific horizon τ .

In order to automate the process of calculating the optimal sampling period as the point τ * where the gVSP curve, γ(τ ) versus τ , begins to flatten out, we apply a local standard deviation filtering scheme. Specifically, for τ = 1, . . . , T , let γ(τ ) be a given gVSP curve, and γf (τ ) be the corresponding filtered gVSP curve obtained by applying local standard deviation filtering on γ(τ ). The filtering is performed simply by calculating the standard deviation in neighborhoods of size K, that is, γf (τ ) = std{γ(τ -⌊K/2⌋), γ(τ -⌊K/2⌋ + 1), . . . , γ(τ + ⌊K/2⌋ -1), γ(τ + ⌊K/2⌋)}, τ = 1, . . . , T .

Finally, the optimal sampling period is determined as the point τ * for which γf (τ * ) ≤ σ thr , where σ thr is a predefined threshold standard deviation. In our implementation, we set K = 5 and σ thr = 0.001. Figure 6.5(b) illustrates the filtered gVSP curves, along with the threshold level and the corresponding optimal sampling periods identified for the S&P 500 (= 42 minutes) and EUROSTOXX 50 (= 39 minutes) indexes. Note that the optimal period depends on the threshold, nevertheless, our experimental evaluation showed that a threshold at the order of 10 -3 suffices to identify accurately the plateau's starting point for the five distinct indexes.

Empirical Evaluation in Risk Quantification

Since there is not a ground truth for the optimal sampling period, in this section, the performance of our proposed method is evaluated empirically by solving the problem of risk quantification for high-frequency financial indexes. In particular, the optimal sampling period is calculated first by means of i) the conventional and ii) our generalized volatility signature plot. Then, the original price series is subsampled according to the optimal sampling period and the corresponding risk is quantified by employing two well-established risk measures, namely, value-at-risk (VaR) and expected shortfall (ES).

We emphasize that this work does not intend to focus on the risk quantification problem, which is rather used as a test case to evaluate the performance of our methodology.

Given a random variable of returns r t , a confidence level c ∈ (0, 1), and a holding period T H (i.e., the time period over which losses may occur), the ϑ-level VaR and ES, with ϑ = 1 -c, are defined by

Pr (r t ≤ -VaR t (ϑ)) = ϑ , ES t (ϑ) = -E{r t | r t ≤ -VaR t (ϑ)} . (6.20)
Like VaR, ES is universal and can be applied to almost any instrument and underlying source of risk. The Basel Committee [START_REF] Bcbs | Fundamental review of the trading book: A revised market risk framework[END_REF] recommends to set c = 99% (equivalently, ϑ = 0.01) for VaR, and is now proposing to move towards ES with c = 97.5% (equivalently, ϑ = 0.025) since it theoretically captures better the information contained in the leftmost tail of returns distribution.

In the following, the exponentially weighted moving average (EWMA) method is used as a benchmark for the calculation of VaR and subsequently of ES. For convenience, an infinitely large estimation window is typically assumed to approximate the EWMA-based variance via a simple recurrence formula,

σ2 t ≈ (1 -λ) r 2 t-1 + ∞ i=2 λ i-1 r 2 t-i = (1 -λ)r 2 t-1 + λσ 2 t-1 . ( 6 

.21)

A value of the decay factor frequently used in practice, and adopted hereafter, is λ = 0.94 (ref. [START_REF] Morgan | RiskMetrics-Technical Document[END_REF]). Furthermore, both VaR and ES are calculated on a rolling window fashion.

In the following experimentation, the window size is fixed to w = 2880 (i.e., 48 hours) and the step size is equal to s = 1. To assess the predictive accuracy of the VaR and ES forecasts based on the optimal sampling periods calculated with the conventional and our generalized volatility signature plot, we adopt well-established backtesting methods, whose performance is compared against the naive approach, that is, no subsampling is applied to the original price series.

Regarding VaR, the number of observed violations (P V,obs ) is a commonly adopted performance metric. Additionally, we employ the binomial test [START_REF] Danielsson | Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab[END_REF], which assesses whether the number of failures is consistent with the VaR confidence level. The test statistic (TStatBin) and the corresponding p-value (PValueBin) of the binomial test are reported. As a third VaR backtesting method, the conditional predictive ability test introduced by [START_REF] Giacomini | Tests of conditional predictive ability[END_REF], hereafter denoted as GW test, is employed. The GW test examines the equal conditional predictive ability of the three distinct sampling strategies, i.e., (i) no subsampling, (ii) subsampling using the conventional VSP, and (iii) subsampling using our generalized VSP, for VaR quantification against the benchmark model. In our case, we assume that the benchmark model yields the true return values. Concerning the VaR measures compared herein, the outperforming method (i.e., sampling strategy) is the one with the highest GW test value and the lower GW p-value, defined below. where F χ 2 is the χ 2 cumulative distribution with one degree of freedom.

TStatGW = √ N E{E} NWHAC(E) , ( 6 
As for the ES, we backtest it by employing two distinct performance indicators:

(1) the observed versus the actual ϑ level, along with the expected versus the actual ES failures; (2) a non-parametric test (T 1 ES ) proposed by [START_REF] Acerbi | Backtesting expected shortfall[END_REF], which is free from assumptions on distribution, with greater ability to detect an effect than the VaR test, while also eliminating the need for Monte Carlo simulations for most practical cases. Furthermore, T 1 ES scales the losses by the corresponding ES value based on the unconditional relationship ES t (ϑ) = -E rt1t ϑ , and reports the associated unconditional test statistic, ES turns out to be stable across a range of distributional assumptions for r t , from thin-tailed up to heavy-tailed distributions.

TStatZ 1 ES = 1 N ϑ N t=1 r t 1 t ES t (ϑ) + 1 , ( 6 
As a first evaluation, we compare the performance of VaR quantification based on the (i) original minute indexes without subsampling (hereafter denoted by No-S), (ii) subsampled indexes using the optimal sampling period calculated via the conventional VSP (hereafter denoted by VSP-S), and (iii) subsampled indexes using the optimal sampling period calculated via our proposed generalized VSP (hereafter denoted by gVSP-S), by varying the holding period T H ∈ {360, 720} minutes. Tables 6.2 and 6.3 display the results of the VaR backtesting methods described above, for T H = 360 and T H = 720, respectively. As it can be seen, for the smaller holding period, T H = 360, our method (gVSP-S) achieves a superior performance for all indexes, with an observed level almost equal to the true VaR level. On the other hand, the conventional VSP-S overestimates risk for all indexes, whilst the no-subsampling strategy (No-S) significantly underestimates risk, as revealed by the extremely larger number of VaR violations for the majority of the indexes. The improved performance of our gVSP-S method is also verified through the binomial test, which explicitly accepts the hypothesis that the number of failures is consistent with the VaR confidence level for S&P 500, NIKKEI 225, and DAX 30 indexes. Regarding EUROSTOXX 50 and Bitcoin, although the binomial test rejects the null hypothesis for all the three sampling strategies, we observe that our method underestimates (positive TStatBin) or overestimates (negative TStatBin) VaR at a significantly lower degree than No-S and VSP-S. Furthermore, our proposed method is consistently closer to the corresponding benchmark model, as expressed by the smaller GW test value for all the five indexes.

Concerning the more challenging case of a larger holding period, T H = 720, the performance of the three sampling strategies deteriorates, as expected, since we are estimating events that occur rarely. Nevertheless, our gVSP-S method demonstrates an improved accuracy in quantifying VaR, when compared against No-S and VSP-S, as expressed by the ratio of the observed (P V,obs ) over the expected (P V,expected ) VaR violations, which is closer to one for all except for the EUROSTOXX 50 index. In this latter case, the No-S strategy is better than the other two alternatives. Regarding the binomial test, although it rejects the null hypothesis in the vast majority of indexes, however, gVSP-S outperforms the other two strategies, as revealed by the significantly smaller TStatBin values, which means that our method neither overestimates nor underestimates VaR so heavily as No-S and VSP-S. Most importantly, gVSP-S is capable of better estimating VaR even for extremely skewed and kurtotic indexes, such as DAX 30 and Bitcoin. Concerning the proximity to the corresponding benchmark model, gVSP-S is consistently outperforming No-S and VSP-S, as expressed by its smaller GW test value for all the five indexes. In Tables 6.2-6.3 the following notation is used: (i) No-S: original indexes are used without subsampling, (ii) gVSP-S: indexes are optimally subsampled using our proposed gVSP method, and (iii) VSP-S: indexes are optimally subsampled using the conventional VSP method. All test statistics and p-values correspond to a 95% test confidence level. In the following, we backtest ES for the three sampling strategies, for T H ∈ {360, 720} minutes. Tables 6.4 and 6.5 show the results of the ES backtesting methods described above, along with the p-value and the critical value of the T 1 ES test. Table 6.4 displays the backtesting performance for the smaller holding period of T H = 360 minutes. Clearly, our gVSP-S method outperforms significantly the other two sampling strategies, in terms of a more accurate estimation of the realised number of ES failures, for all indexes. Especially for the highly skewed and kurtotic indexes, namely, DAX 30, EUROSTOXX 50 and Bitcoin, the No-S and VSP-S methods deviate significantly from the expected number of violations by heavily underestimating and overestimating ES, respectively. On the contrary, our proposed gVSP-S method achieves a close approximation of the tail risk.

As for the larger holding period of T H = 720 minutes, Table 6.5 shows that the VSP-S method performs better for the S&P 500 index, in terms of the number of identified violations. Our gVSP-S method is the next best performing, whilst No-S significantly underestimates risk. For the EUROSTOXX 50 index, the strategy of no subsampling achieves a ratio of the observed over the expected number of ES violations that is closer to one, when compared against gVSP-S and VSP-S, both of which achieve a similar performance. These two methods yield an equal performance for the NIKKEI 225 index, with the No-S method heavily underestimating risk, whilst gVSP-S is slightly better in the case of DAX 30 index. Finally, regarding the highly skewed and kurtotic Bitcoin index, our gVSP-S method is better capable of capturing the tail risk, yielding a significantly more accurate approximation of the true ϑ level.

The above results demonstrate the improved capabilities of our proposed generalized method for optimal sampling period calculation in better adapting to a broad range of impulsive behaviors that are inherent to distinct market indexes. This yields a more accurate quantification of risk measures such as VaR and ES, which also achieves a better trade-off between under-/over-estimation of risk. Regarding the statistics of an index (e.g. skewness, kurtosis) as a potential factor that could affect the estimation performance of VaR and ES based on our proposed sampling strategy, the results do not indicate a clear connection between the two, thus revealing an increased robustness of our methodology. In Tables 6.4-6.5 the following notation is used: (i) No-S: original indexes are used without subsampling, (ii) gVSP-S: indexes are optimally subsampled using our proposed gVSP method, and (iii) VSP-S: indexes are optimally subsampled using the conventional VSP method. All test statistics and p-values correspond to a 95% test confidence level. 

Conclusions and Future Work

This chapter proposed a novel methodology for taming the impulsiveness that is inherent to high-frequency financial returns, via the calculation of a proper optimal sampling period. Our method is grounded on the new concept of the degree of impulsiveness (DoI), as an alternative source of information for characterizing the statistical behavior of such data. Then, a generalized volatility signature plot was defined based on the DoI, demonstrating a better adaptability to a broad range of impulsive behaviors in high-frequency returns. Finally, our generalized volatility signature plot was coupled with a local standard deviation filtering scheme to calculate the optimal sampling period.

An empirical evaluation of our method was performed in the framework of risk quantification. Specifically, a subsampling strategy was applied first to the price series of five distinct minute indexes, followed by the estimation of two well-established risk measures, namely, VaR and ES. Our proposed method for optimal sampling period calculation was compared against the no-subsampling alternative, as well as against the method that calculates the optimal sampling period based on the conventional volatility signature plot, which relies on second-order moments. The experimental results revealed the clear superiority of our proposed method, when compared against the two alternative sampling strategies.

The methodology developed in this chapter offers several open research avenues.

Linked with financial signal processing, it should be interesting to investigate the performance of our method in carrying out various challenging financial data processing tasks, such as denoising for high-frequency financial data mining or jump and volatility analysis.

Furthermore, an interesting question would be to formulate the problem of finding the optimal FLOM order, p, jointly with a risk (e.g. VaR or ES) minimization criterion, instead of the lookup table approach described in Section 3.3.1. Finally, our optimal sampling period calculation method could be meaningfully applied to risk parity portfolio construction and market co-integration analysis based on high-frequency financial data.

From an economic viewpoint, the heterogeneity of market participants (e.g. buyers, sellers, banks, etc.) justifies the simultaneous use of several periodicities. In fact, limiting the analysis to a single frequency (e.g. daily) would offer a very limited view of the market conditions. In a seminal work, [START_REF] Levy | Portfolio performance and the investment horizon[END_REF] highlights that more attention should be devoted to the process of choosing the basic unit of time. Extreme risk quantification based on a yearly rate of returns will yield different results from one which uses monthly rate of returns data. This difference is not the outcome of inconsistency or contradiction, but results from selecting an inappropriate division of the studied period.

Despite these findings, the majority of the well-established extreme risk measures are solely based on the time-varying behavior of the original returns series, whilst ignoring completely the contribution of the individual intrinsic periodicities, or, equivalently, frequencies, that can be more relevant to a specific investment horizon. For instance, short-term risk managers are primarily more interested in risk assessment at higher frequencies, that is, short-term fluctuations. On the other hand, long-term risk managers focus on estimating risk at lower frequencies, that is, long-term fluctuations. Furthermore, existing extreme risk measures rely only on the expected value and the variability of losses, whilst totally neglecting the impulsiveness of losses, which is associated with the degree and speed of abrupt changes between adjacent prices.

Given these remarks, our proposed extreme risk quantification method aims at enabling risk managers to focus precisely only on those frequency components that contain the most relevant information for a given investment horizon, whilst jointly penalizing the expected losses with their variability and degree of impulsiveness. To evaluate the performance of our proposed risk measure we focus on cryptocurrencies. This is because crypto-asset markets have already impacted significantly the modern financial and economic universe, attracting the interest of regulators, academic researchers and market participants, as well as the general public. Besides, recent studies provide strong evidence in favor of a highly speculative bubble behavior [START_REF] Hafner | Testing for bubbles in cryptocurrencies with time-varying volatility[END_REF], [START_REF] Kolokolov | Estimating jump activity using multipower variation[END_REF], and demonstrate that the dynamics of crypto assets is substantially different from traditional financial markets and fiat currencies [START_REF] Cheah | Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin[END_REF], [START_REF] Osterrieder | A statistical risk assessment of Bitcoin and its extreme tail behavior[END_REF], and [START_REF] Fry | Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets?[END_REF]. Consequently, the investigation of market risk attributed to fluctuations in cryptocurrencies exchange rates is an important issue of practical relevance, and provides an excellent application scenario for quantifying extreme risk.

In order to account for the distinction between short-and long-term risk management, several approaches have been introduced based on wavelet analysis (ref. Chapter 2). The key advantage of wavelet-based methods is that they perform a multiresolution analysis, that is, an analysis of the original data at different scales (each one associated with a particular frequency) simultaneously. Doing so, wavelets can capture information in a single frequency range, as well as coherent structures across distinct scales.

Wavelet analysis has gained an increasing interest in risk management, since it allows a risk manager to simultaneously measure the time-evolving risk exposure and distinguish the contributions of short-and long-term fluctuations to the overall risk.

Studies applying wavelet methods for (extreme) risk assessment include [START_REF] Chen | Risk assessment with wavelet feature engineering for high-frequency portfolio trading[END_REF], [START_REF] Rua | A wavelet-based assessment of market risk: The emerging markets case[END_REF] and [START_REF] Mcnevin | The beta heuristic from a time/frequency perspective: A wavelet analysis of the market risk of sectors[END_REF], among others. The authors in [START_REF] Zhou | International stock market contagion: A CEEMDAN wavelet analysis[END_REF] analyze stock markets contagion under time-varying frequencies, while in [START_REF] Anoop | Volatility spillover in cryptocurrency markets: Some evidences from GARCH and wavelet analysis[END_REF] they perform a wavelet analysis to study the dynamics of volatility spillover across major cryptocurrency returns.

Despite the increased efficiency of previous wavelet-based risk measures, they mainly rely on a scale-by-scale analysis of variance by considering all the decomposition scales.

Doing so, these methods rather quantify the explanatory information, i.e., the percentage of the overall variance, conveyed by each scale. To alleviate this issue, in this chapter we introduce an horizon-adaptive extreme risk measure, which utilizes only the most relevant subset of frequencies for a given investment horizon.

Although conventional VaR and ES measures have been employed to optimize the market risk of major cryptocurrencies [START_REF] Borri | Conditional tail-risk in cryptocurrency markets[END_REF], [START_REF] Kumar Pradhan | Optimizing the market-risk of major cryptocurrencies using CVaR measure and copula simulation[END_REF], such approaches convey all the limitations of VaR and ES. Nevertheless, the performance of an extreme risk measure also depends on the accuracy in fitting some salient statistical features of financial data such as asymmetry and heavy tails. To this end, the academic community focused primarily on extreme value theory utilizing, among others, the generalized extreme value and generalized Pareto distributions [START_REF] Salih | Value at risk calculations, extreme events, and tail estimation[END_REF], [START_REF] Kourouma | Extreme value at risk and expected shortfall during financial crisis[END_REF]. Extreme value theory has also been employed to evaluate the extreme characteristics of cryptocurrencies [START_REF] Feng | Can cryptocurrencies be a safe haven: a tail risk perspective analysis[END_REF], [START_REF] Gkillas | An application of extreme value theory to cryptocurrencies[END_REF]. GARCH-type models have been exploited to study the tail behavior of market risk in cryptocurrency returns [START_REF] Katsiampa | Volatility estimation for Bitcoin: A comparison of GARCH models[END_REF], [START_REF] Chu | GARCH modelling of cryptocurrencies[END_REF]. However, the conditional variance characterized by GARCH models is a symmetric risk measure, thus unsuitable for measuring the tail risk of skewed distributions. The authors in [START_REF] Nolde | Conditional extremes in asymmetric financial markets[END_REF] proposed a semi-parametric method for estimating conditional extremes in financial data. Although the method is tailored to heavy-tailed data, it relies on second-order statistics, which may deteriorate its performance in the case of highly impulsive data of possibly infinite variance, as it may be the case of extreme returns. Extreme quantiles and extreme expectiles methods were proposed for tail risk quantification by [START_REF] Li | Extreme quantile estimation for autoregressive models[END_REF], [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF] and [START_REF] Xu | Prediction of extremal expectile based on regression models With heteroscedastic extremes[END_REF]. Unfortunately, such methods are highly susceptible to the sample size for accurate estimation of the associated regression models. Besides, conditional tail moment was introduced by [MGG14] as a non-parametric method for extreme risk quantification based on conditional heavy-tailed distributions.

The presence of large-amplitude samples, which can be of infinite or very large variance, can mask the information content of a time series, especially in neighbouring time instants. This may degrade dramatically the accuracy of subsequent risk quantification, thus necessitating the design of improved data analysis techniques that are able to adapt to heavy-tailed financial data exhibiting outliers or rare events more frequently. To cope with the underlying degree of impulsiveness of extreme losses, we rely on the efficiency of alpha-stable distributions and fractional lower-order moments (ref.

Chapter 3), which has proven a powerful statistical tool for modeling impulsive data.

Main contributions

So far, the literature on extreme risk quantification accounting for the heterogeneous and time-frequency dependent behaviors of investors remains uncharted in the case of highly impulsive data, such as cryptocurrency returns. This chapter aims to fill in this gap. The main contributions of the chapter are threefold: i) we introduce tail conditional expectation for alpha-stable mixture models, which also yields as a byproduct the decomposition of expected shortfall over multiple frequencies; ii) we propose a new risk measure that better captures extreme losses by jointly accounting for the variability and degree of impulsiveness of asset returns; iii) the proposed extreme risk measure is further extended in a multiresolution framework to utilize only the most relevant subset of frequencies for a given investment horizon. Figure 7.1 summarizes the computational steps for the calculation of the proposed extreme risk measure (top row)

and its horizon-adaptive extension (bottom row). 

Chapter organization

The rest of the chapter is organized as follows: Section 7.2 derives the tail conditional expectation for alpha-stable mixture models, and deduces a decomposition of expected shortfall over multiple frequencies. Section 7.3 analyzes our proposed regularized tail conditional expectation measure for extreme risk quantification, along with its horizonadaptive extension. The mathematical definitions of the metrics utilized to measure the performance of the risk measures are given in Section 7.4. A thorough performance evaluation on cryptocurrency data is described in Section 7.5, whilst Section 7.6 summarizes the key remarks of the chapter along with directions for future research.

Notation

In the following, we denote scalars and variables with non-boldface letters (e.g. x, X), row vectors with lower-case boldface letters (e.g. x), matrices with upper-case boldface letters (e.g. X), while calligraphic letters are used to denote sets (e.g. S). x i denotes the ith row of matrix X, x j is the jth element of vector x, and S i denotes a subset of a set S. X S is the submatrix formed by the rows {x i | i ∈ S}, whose indices belong to S. Similarly, x S is the subvector formed by the elements {x j | j ∈ S}, whose indices belong to S. In both cases, the order is preserved among the retained elements. With

x = [x 1 , . . . , x N ] ∈ R N we denote a vector of N time series observations. Finally, we use

x and x T to denote an approximation (reconstruction) and the transpose of a vector x, respectively. Similar notations are used for the matrices. We also emphasize that our proposed method is applied on rolling windows of length w, which slide with a step size equal to s samples across the given time series. Doing so, x i,w = [x i-w+1 , . . . , x i ] denotes a window of length w whose ending point is the ith sample of the original time series x.

Tail Conditional Expectation of α-Stable Mixture Models

In the following, we denote asset prices by v t , and

v = [v 1 , . . . , v N ] ∈ R N is a discrete
time series of N prices observed at times {t 1 , . . . , t N }. Our proposed risk quantification method is applied to continuously compounded returns, r t , over a period of τ time units, defined by

r t = log(v t ) -log(v t-τ ) , t = τ + 1, . . . , N , (7.1) 
where log is the natural logarithm. If not otherwise specified, hereafter we rely on daily returns (i.e., τ = 1).

Nowadays, there is a wide-spread awareness that the statistical behavior of many asset classes is characterized by heavy tails. For the associated returns, non-Gaussian distribution models are required to accurately capture the tail behavior and compute probabilities of extreme returns (ref. Section 7.1). Among them, only alpha-stable (α-stable) distributions have attractive enough mathematical properties, namely, the stability property, the generalized central limit theorem, and the invariance principle for stable processes, to be a viable alternative to Gaussian distributions in risk management.

At the core of our risk quantification framework is the assumption that the empirical distribution of asset returns r ∈ R N is best approximated by an α-stable distribution. This is equivalent to assuming that the samples of a returns series r ∈ R N over a finite number, N , of time instants are independent realizations of a random variable R following a univariate α-stable distribution, R ∼ S α (γ, β, δ), with parameters (α, β, γ, δ)

(see Section 3.2).

Remark 7.1. In empirical studies, the modeling of financial returns is done typically with α-stable distributions by restricting the index of stability to the range 1 < α < 2.

We also follow this convention in the subsequent analysis, which means that returns data exhibit finite means but infinite variances.

Given a random variable R and a confidence level c ∈ (0, 1), the θ-level VaR and ES, with θ = 1 -c, are defined by

Pr (R ≤ -VaR θ (R)) = θ , (7.2) 
ES θ (R) = -E{R | R ≤ -VaR θ (R)} . (7.3) 
In other words, -VaR θ (R) is the θth quantile of the returns distribution, and ES θ (R) is the tail conditional expectation, which can be expressed in an equivalent form as follows,

ES θ (R) = - 1 θ -VaR θ (R) -∞ r f R (r; α, β, γ, δ) dr . (7.4) 
[Nol97] provides tractable integral expressions for the computation of the density, f R (r; α, β, 1, 0), and distribution, F R (r; α, β, 1, 0), functions of standardized α-stable random variables R ∼ S α (1, β, 0). Then, ES θ (R) is calculated via numerical integration of (7.4). In the following, let

I f R (u; α, β) = u -∞ rf R (r; α, β, 1, 0) dr , (7.5) 
denote the numerically calculated tail integral for R ∼ S α (1, β, 0). Notice that, having calculated ES θ (R) for a standardized random variable R, the tail conditional expectation can be easily derived for a generic α-stable distribution S α (γ, β, δ) as follows,

ES θ (γR + δ) = γES θ (R) -δ . (7.6) 
In order to account for the heterogeneous and time-frequency dependent behaviors of risk managers, let R be decomposed in terms of its multiresolution analysis components,

given by

R = J j=1 R D j + R A J . (7.7) 
R D j , j = 1, . . . , J, are associated with the higher-frequency components inherent to the returns series, and R A J is associated with a low-resolution approximation of the returns series, obtained by applying a J-level maximal overlap discrete wavelet transform (MODWT) on the original returns series (ref. Section 2.5).

Assuming that R D j ∼ S α D j (γ D j , β D j , δ D j ) and R A J ∼ S α A J (γ A J , β A J , δ A J ), from (3.3) 
and (3.4) the probability density function (pdf) and cumulative distribution function (cdf) of the associated α-stable mixture model are given by (7.8) and (7.9), respectively, with the assumption of equal weights w j = 1/(J + 1), j = 1, . . . , J + 1,

f R (r; α, β, γ, δ, w) = J j=1 w j f R D j (r; α D j , β D j , γ D j , δ D j ) + w J+1 f R A J (r; α A J , β A J , γ A J , δ A J ) , (7.8) 
F R (r; α, β, γ, δ, w) = J j=1 w j F R D j (r; α D j , β D j , γ D j , δ D j ) + w J+1 F R A J (r; α A J , β A J , γ A J , δ A J ) = J j=1 w j F R D j r -δ D j γ D j ; α D j , β D j , 1, 0 + w J+1 F R A J r -δ A J γ A J ; α A J , β A J , 1, 0 , (7.9) 
where α = (α D 1 , . . . , α D J , α A J ) (similarly for β, γ and δ), w = (w 1 , . . . , w J+1 ) with w j > 0 and J+1 j=1 w j = 1, f X (x; α, β, γ, δ) denotes an α-stable pdf with parameters (α, β, γ, δ), and F X (x; α, β, γ, δ) denotes an α-stable cdf with parameters (α, β, γ, δ).

First, the θ-quantile of R, q R,θ , can be found numerically as the root of the following nonlinear equation,

F R (q R,θ ; α, β, γ, δ) -θ = 0 . (7.10) Then, by definition, -VaR θ (R) = q R,θ . By setting u D j = q R,θ -δ D j γ D j (j = 1, . . . , J), u A J = q R,θ -δ A J γ A J
, and substituting (7.8) in (7.4), after some fundamental algebraic manipulation we get the following expression for a multiresolution version of ES,

ES M θ,J (R) = - 1 θ(J + 1) • J j=1 γ D j u D j -∞ rf R s D j (r; α D j , β D j , 1, 0) dr + δ D j u D j -∞ f R s D j (r; α D j , β D j , 1, 0) dr + γ A J u A J -∞ rf R s A J (r; α A J , β A J , 1, 0) dr + δ A J u A J -∞ f R s A J (r; α A J , β A J , 1 , 0) dr , (7.11) 
where f R s D j (r; α D j , β D j , 1, 0) and f R s A J
(r; α A J , β A J , 1, 0) denote the α-stable pdfs for the standardized detail and approximation multiresolution analysis series, respectively. By noticing that F R (u) = u -∞ f R (r) dr and substituting (7.5) in (7.11) we get

ES M θ,J (R) = - 1 θ(J + 1) J j=1 γ D j I f R s D j (u D j ; α D j , β D j ) + δ D j F R s D j (u D j ; α D j , β D j ) + γ A J I f R s A J (u A J ; α A J , β A J ) + δ A J F R s A J (u A J ; α A J , β A J ) . ( 7 
.12)

Multiresolution analysis of ES

Let ES M θ,J (R) be expressed as a linear combination of the individual contributions of the multiresolution analysis series, as follows,

ES M θ,J (R) = J j=1 λ j ES θ (R D j ) + λ J+1 ES θ (R A J ) . (7.13) 
By combining (7.12) with (7.13), we obtain

λ j = - 1 θ(J + 1) γ D j I f R s D j (u D j ; α D j , β D j ) + δ D j F R s D j (u D j ; α D j , β D j ) ES θ (R D j ) , (7.14) 
λ J+1 = - 1 θ(J + 1) γ A J I f R s A J (u A J ; α A J , β A J ) + δ A J F R s A J (u A J ; α A J , β A J ) ES θ (R A J ) , (7.15) 
for j = 1, . . . , J, where ES θ (R D j ) and ES θ (R A J ) are obtained via numerical calculation of the following integrals,

ES θ (R D j ) = - 1 θ ûD j -∞ rf R s D j (r; α D j , β D j , 1, 0) dr , j = 1, . . . , J , ES θ (R A J ) = - 1 θ ûA J -∞ rf R s A J (r; α A J , β A J , 1, 0) dr , with ûD j = q R D j ,θ -δ D j γ D j and ûA J = q R A J ,θ -δ A J γ A J
. The quantiles q R D j ,θ and q R A J ,θ are equal to the roots of the following nonlinear equations,

F R D j (q R D j ,θ ; α D j , β D j , γ D j , δ D j ) -θ = 0 , j = 1, . . . , J , F R A J (q R A J ,θ ; α A J , β A J , γ A J , δ A J ) -θ = 0 .
Then, by setting λ * j = λ j J+1 j=1 λ j (j = 1, . . . , J + 1), λ * j can be interpreted as the fraction of the expected shortfall attributed to the jth multiresolution analysis series, thus yielding a decomposition of ES over multiple frequency intervals.

Jointly Dispersion-Impulsiveness Regularized Expected Shortfall

When addressing risk quantification issues, the length of the investment horizon is, in general, commensurate with the amount of risk that an investor is willing to undertake.

To comply with the Basel regulatory framework1 , financial organizations are required to use ES at an 1-or 10-day horizon, whereas most assets in portfolio investments are held over longer periods of time. Estimating risk over horizons exceeding one day is a demanding task, since we are estimating extreme events that occur rarely. Based on the tail conditional expectation of α-stable mixture models introduced above and the degree of impulsiveness (ref. Section 6.3), this section elaborates on the design of our proposed extreme risk measure, which jointly accounts for the variability and impulsiveness of asset returns, as well as its horizon-adaptive extension, which is better capable of adapting to longer investment horizons by describing more accurately the extreme losses occurring in the leftmost tail of the returns distribution.

Before proceeding, we overview for completeness the definition of shortfall deviation risk proposed by [START_REF] Righi | Shortfall Deviation Risk: An Alternative for Risk Measurement[END_REF], which demonstrated greater protection than VaR and ES, especially in times of high market turbulence. Let (R) -= max{-R, 0} define a truncation operator for the negative part of a random variable R. Given a confidence level c ∈ (0, 1), the θ-level semi-deviation (SD) measure (with θ = 1 -c) is defined by

SD p,θ (R) = E{|(R + ES θ (R)) -| p } 1/p (3.9) ≃ 1 N ∥(R + ES θ (R)) -∥ p . (7.16) 
Then, the θ-level shortfall deviation risk (SDR) is defined by

SDR p,θ (R) = ES θ (R) + (1 -θ) κ SD p,θ (R) , κ ≥ 0 . (7.17) 
The factor (1 -θ) κ represents how much deviation should be considered as a penalty for ES, which may serve as a protection to extreme losses. Lower values of κ generate higher penalties, with the two extreme cases being (i) (1 -θ) κ = 0 for κ = ∞, and (ii)

(1 -θ) κ = 1 for κ = 0. In the former case, only the estimated ES is accounted for, whilst in the latter case, the full contribution of the θ-level semi-deviation is considered. Notice that the choice of κ depends on subjective issues, such as the degree of risk aversion of a trader or risk manager.

Despite the improved performance of shortfall deviation risk against VaR and ES, it relies on higher-order moments of extreme quantiles (i.e., p > 1) -specifically, [RC16] set p = 2 -which are undefined for α-stable models. Instead, the incorporation of fractional lower-order moments with 0 < p < 1 arises naturally in the case of α-stable distributed returns. In order to address this critical limitation of shortfall deviation risk, we propose two key improvements: (i) a generalized definition of the θ-level semi-deviation based on fractional lower-order moments, thus better adapting to a broad range of impulsive behaviors (from light-tailed up to extremely heavy-tailed), and (ii) the incorporation of the degree of impulsiveness (ref. Section 6.3) as an additional factor for controlling the resilience against extreme losses.

First, we introduce the θ-level truncated dispersion, which generalizes the θ-level semi-deviation in the α-stable case. To this end, we start with the remark that SD p,θ (R)

given by (7.16) is the ℓ p norm (p > 1) of a vector with zero elements except for the positions where the returns exceed the expected loss ES θ (R). In the case of α-stable distributed data, the dispersion γ, which is defined in terms of fractional lower-order moments with 0 < p < 1 (ref. (3.8)), quantifies the spread of the distribution around its location, thus yielding a natural measure of deviation adapted to heavy-tailed statistics.

In particular, [START_REF] Nolan | Truncated fractional moments of stable laws[END_REF] provides expressions for the truncated fractional lower-order moments of the positive and negative part of R ∼ S α (γ, β, δ) under the 1-parameterization given by (3.1). Specifically, given a shifting constant a ∈ R, the pth-order truncated fractional lower-order moment of the negative part of R is given by

E{|(R -a) -| p } = m p (α, -β, γ, -δ + a) (7.18) 
where, for 0 < p < min(1, α) that is our case given the constraint 1 < α < 2,

m p (α, β, γ, δ) = γ p Γ(p + 1) π sin pπ 2 Γ(1 -p α ) p -g -p (-δ; α, β) -cos pπ 2 g-p (-δ; α, β) , (7.19) 
with δ = δ/γ for α ̸ = 1. The functions g d (x; α, β) and gd (x; α, β) are defined as follows,

g d (x; α, β) =        ∞ 0 cos(xu + βη(u, α))u d-1 e -u α du , 0 < d < ∞ ∞ 0 [cos(xu + βη(u, α)) -1]u d-1 e -u α du , -2 min(1, α) < d ≤ 0 , (7.20) 
gd (x; α, β) =        ∞ 0 sin(xu + βη(u, α))u d-1 e -u α du , -min(1, α) < d < ∞ ∞ 0 [sin(xu + βη(u, α)) -xu]u d-1 e -u α du , α > 1, -α < d ≤ -1 , (7.21) η(u 
, α) = -sign(u) tan πα 2 |u| α , α ̸ = 1 , (7.22) 
and calculated via numerical integration. Finally, our proposed truncated dispersion is defined by: Definition 7.2 (Truncated Dispersion). Given a random variable R ∼ S α (γ, β, δ)

under the 1-parameterization (3.1), associated with the returns r ∈ R N , and a confidence level c ∈ (0, 1), the θ-level (θ = 1 -c) truncated dispersion is defined by

TD p,θ (R) = E{|(R + ES θ (R)) -| p } (7.18) = m p (α, -β, γ, -δ -ES θ (R)) , (7.23) 
where the α-stable model parameters (α, β, γ, δ) are estimated directly from r, and the optimal p is obtained by interpolating Table 3.1.

We emphasize that, although both the semi-deviation, SD p,θ (R), and the truncated dispersion, TD p,θ (R), are defined in terms of pth-order moments, however, our truncated dispersion adapts precisely to heavy-tailed statistics expressed via fractional lower-order moments with p < 1.

Similarly to SD p,θ (R), the θ-level truncated dispersion TD p,θ (R) resembles a measure of uncertainty for the associated expected shortfall ES θ (R). Nevertheless, in contrast to SD p,θ (R), our proposed TD p,θ (R) adapts to a broad range of impulsive behaviors of returns series. On the other hand, in statistics, calculating the expanded uncertainty establishes a confidence interval where our observations have a likelihood of occurring.

To accomplish this, one needs to determine a desired confidence interval along with the calculated combined uncertainty. Motivated by this, and since we are interested in quantifying extreme risk, in our proposed regularized ES risk measure, the degree of impulsiveness (6.8) is employed as an analogue to the confidence interval, whilst TD p,θ (R)

plays the role of combined uncertainty. Combining the above results in our proposed jointly dispersion-impulsiveness regularized expected shortfall (DIRS) risk measure, which is defined as follows: 

DIRS p,θ (R) = ES θ (R) + [(1 -θ) κ 1 TD p,θ (R)] (DoI p (R)) κ 2 , (7.24) 
where TD p,θ (R) and DoI p (R) are calculated via (7.23) and (6.8), respectively.

Lower values of κ 1 generate higher penalties for the truncated dispersion, with the two extreme cases being (i) κ 1 = ∞ for which (1 -θ) κ 1 = 0, and (ii) κ 1 = 0 for which

(1 -θ) κ 1 = 1.
Similarly, if κ 2 = 0, the contribution of the degree of impulsiveness is fully ignored, whilst if κ 2 = ±b, its full contribution is considered. Hereafter, we set b = 2.5 based on an empirical evaluation. Notice that the choice of κ 1 and κ 2 depends on subjective issues, such as the degree of risk aversion of a trader or risk manager. We emphasize that, in contrast to the shortfall deviation risk, SDR p,θ (R), our jointly dispersion-impulsiveness regularized ES measure, DIRS p,θ (R), (i) adapts precisely to a broad range of impulsive behaviors of the returns by incorporating their FLOM-based truncated dispersion TD p,θ (R), and (ii) enables the utilization of the degree of impulsiveness as a coverage factor of the expanded uncertainty associated with the likelihood of extreme returns.

Horizon-adaptive DIRS

In order to better adapt to longer investment horizons, the challenge is to describe more accurately the extreme losses occurring in the leftmost tail of the returns distribution. At the core of our horizon-adaptive extension of DIRS is the assumption that only a subset of time resolutions (i.e., frequencies) in the wavelet decomposition of a returns series determines the amount of risk that is relevant to a given investment horizon. Notice also that, as described in Section 2.5, due to the dyadic nature of the maximal overlap discrete wavelet transform (MODWT) utilized in this chapter, the wavelet scale s j = 2 j-1 corresponds to a time resolution between 2 j and 2 j+1 time units (days in this study).

Then, for a given investment horizon of T H time units, our empirical rule considers the subset {1, . . . , s Jρ } of wavelet scales as the most relevant ones for estimating the risk. In particular, the maximum decomposition level J ρ , and accordingly the maximum wavelet scale s Jρ = 2 Jρ-1 , which determines the optimal subset of time resolutions to be accounted for, is set according to the following proposition:

Proposition 7.1. For a given investment horizon of T H time units and a J-level maximal overlap discrete wavelet transform, the maximum decomposition level J ρ (1 ≤ J ρ ≤ J) to account for calculating the horizon-adaptive DIRS measure is given by

J ρ = ⌊log 2 (T H )⌋+1,
where ⌊•⌋ denotes the floor function.

The intuition behind this empirical rule is that a risk manager is interested in assessing the risk associated with a subset of time resolutions determined by the specific investment horizon. Moreover, to account for the non-uniform size of the consecutive intervals as the decomposition level increases (e.g. for daily data, the levels 1, 2, and 3 correspond to time resolution intervals of [2,4), [4,8), and [8, 16) days, respectively), we include an additional decomposition level, which contains information at the next lower time resolution from the one determined by the specific investment horizon.

Having determined the optimal subset {1, . . . , J ρ } of the relevant wavelet levels for a returns series r and a given investment horizon T H , the next step towards adapting to the given horizon is to employ only the first J ρ multiresolution analysis series of r, R D 1 ,...,R D Jρ . Given the linearity property of multiresolution analysis, as expressed by (7.7), this yields the following random variable associated with an approximation of the original returns,

R = Jρ j=1 R D j . (7.25) 
Notice that, if J ρ < J, the term R A J related with the approximation series is ignored, whereas if J ρ = J it is accounted for.

Doing so, our proposed horizon-adaptive DIRS measure is defined by: Definition 7.4 (Horizon-adaptive DIRS). Given a maximum decomposition level J ρ ,

a random variable R ∼ S α R (γ R, β R, δ R) under the 1-parameterization (3.1), associated with the approximated returns r = Jρ j=1 r D j ∈ R N (ref. (2.14)), two constants κ 1 ≥ 0 and κ 2 ∈ [-b, b]
, and a confidence level c ∈ (0, 1), the horizon-adaptive θ-level (θ = 1 -c) jointly dispersion-impulsiveness regularized expected shortfall is defined by

DIRS A p,θ,Jρ ( R) = ES M θ,Jρ ( R) + (1 -θ) κ 1 TD A p,θ,Jρ ( R) DoI A p,Jρ ( R) κ 2 . ( 7.26) 
As in (7.24), hereafter we set b = 2.5. ES M θ,Jρ ( R) is calculated via (7.12) by restricting the summation from j = 1 to J ρ . The multiresolution truncated dispersion is given by

TD A p,θ,Jρ ( R) = m p (α R, -β R, γ R, -δ R -ES M θ,Jρ ( R)) , (7.27) 
where the α-stable parameters (α R, β R, γ R, δ R) are estimated from the approximated returns r = Jρ j=1 r D j ∈ R N . Similarly, the multiresolution degree of impulsiveness is obtained by modifying (6.8) as follows,

DoI A p,Jρ ( R) = Z avg ( R) C p,α R,β R γ p R 1/p . (7.28) 
Remark 7.5. In the subsequent empirical evaluation, the Fejér-Korovkin wavelet of order N (fkN) (see [START_REF] Nielsen | On the construction and frequency localization of finite orthogonal quadrature filters[END_REF]) is chosen for the MODWT decomposition in the horizon-adaptive DIRS measure. This choice is motivated by the improved localization properties of the fkN wavelet family in the temporal and frequency domains. The optimal choice of the wavelet for a given asset is beyond the scope of this work and is left as a separate study.

Definitions of Performance Metrics

To quantify the performance of the risk measures compared hereafter, we employ the following distinct metrics: i) bias (i.e., the difference between the corresponding risk value and the empirical ES at the same level θ) and mean absolute bias (i.e., the average absolute bias over all assets); ii) distance from lower envelope; and iii) a non-parametric test proposed by [START_REF] Acerbi | Backtesting expected shortfall[END_REF], which is free from assumptions on distribution, while also eliminating the need for Monte Carlo simulations for most practical cases. Notice that i) and iii) are statistical approaches, while ii) is based on a geometric concept. The mathematical definitions of the above metrics are given below.

Bias and mean absolute bias

For each risk measure, its bias is defined as the difference between the calculated risk value and the empirical expected shortfall at the same level θ. For instance, for our DIRS measure we have

bias DIRS = DIRS p,θ (R) -ES θ (R) . (7.29) 
Similarly, the mean absolute bias (MAB) of each risk measure is defined as the average absolute bias over all assets. For example, if S is the number of assets, then, the mean absolute bias of our DIRS risk measure is given by

MAB DIRS = 1 S S s=1 |bias DIRS (s)| , (7.30) 
where bias DIRS (s) is the bias of DIRS for the s-th asset calculated via (7.29).

Distance from lower envelope

The envelope of an oscillating signal is a smooth curve outlining its extremes (ref. [START_REF] Johnson | Software receiver design: Build your own digital communication system in five easy steps[END_REF]).

In this work, we rely on the root-mean-square (RMS) method, which determines the envelope of a time series by calculating the root-mean-square value in rolling windows of length l samples. Parameter l affects the shape of the envelope, since it controls the number of samples that are smoothed via the root-mean-square operation. In our implementation, we set l = 5, and let l e = [l e,1 , . . . , l e,N ] denote the lower envelope of a returns series (see also Section 5.4.3).

Given a risk measure whose value at time t is equal to V t , and the lower envelope l e of a returns series r calculated in the interval [w + 1, N ], we define the ratio and infinite norm with respect to the lower envelope, as follows

Ratio(V, l e ) = 1 N -w N t=w+1 V t l e,t , (7.31) 
∥(V, l e )∥ ∞ = max t=w+1,...,N |-V t -l e,t | , (7.32) 
where V t is an estimate of the risk value at time t using the w most recent returns.

ES-based backtesting

Since the risk measures compared in this work are extended versions of ES, we backtest them by employing a non-parametric test (hereafter denoted by T 1 ES ) proposed by [START_REF] Acerbi | Backtesting expected shortfall[END_REF], which is free from assumptions on distribution, with greater ability to detect an effect than the VaR test, while also eliminating the need for Monte Carlo simulations for most practical cases. Furthermore, T 1 ES scales the losses by the corresponding conditional tail risk value based on the unconditional relationship ES t = -E rt1t θ , and reports the associated unconditional test statistic,

TStatZ 1 ES = 1 N θ N t=w+1 r t 1 t ES t + 1 , (7.33) 
where ES t = ES θ ([r t-1 , r t-2 , . . . , r t-w ]) is the ES estimated from the w most recent returns, and 1(•) is the indicator function. In case that the distributional assumptions for the returns are correct, it holds that E{TStatZ 1 ES } = 0. Negative values of the test statistic indicate risk underestimation. The unconditional test is a one-sided test that rejects when there is evidence that the model underestimates risk. Furthermore, the test rejects the model when the p-value is less than 1 minus the test confidence level. Most importantly, TStatZ 1 ES turns out to be stable across a range of distributional assumptions for r t , from thin-tailed up to heavy-tailed distributions.

Empirical Evaluation

In this section, we present an empirical evaluation of our proposed extreme risk measure, and its horizon-adaptive extension, on cryptocurrency assets. The reason for selecting this specific asset class as a representative test case is threefold: (i) cryptocurrencies have become fairly popular in the market, since they were first launched in the early 2000s, whilst an ever increasing number of monetary authorities worldwide is amenable to design digital currencies; (ii) they are unregulated by both governments and central banks, thus presenting distinct micro-structure effects when compared with traditional assets; and (iii) they demonstrate even larger volatility swings and extreme tail events than extreme events occurring in traditional financial markets and fiat currencies, giving rise to a broad range of impulsive behaviors for the associated returns. While crypto-asset returns often present volatility clustering that deserves special modeling, hereafter we ignore this aspect. Instead, we provide a compelling example of the difference between our proposed DIRS risk measure, as compared with well-established measures. Notice, though, that our focus is not on a thorough analysis of more technical issues, such as backtesting, or on the details of different financial applications, such as portfolio optimization, but on the behavior of our jointly dispersion-impulsiveness regularized ES measure when applied to highly impulsive financial data.

Data set description

In the subsequent evaluation, we employ daily close prices (in USD) of five top cryptocurrencies, along with the EUR/USD FX rate for comparison. Table 7.1 shows the corresponding time periods, number of observations and basic statistics for the compounded returns of the six assets, along with the average market cap (in billion USD) and average trading volume (in billions) of the five cryptocurrencies for the periods considered. Cryptocurrencies returns present a much higher variability than the returns of EUR/USD FX rate, along with a significantly increased kurtosis that implies an investor will experience occasional extreme returns (either positive or negative) much more frequently. Among the five cryptocurrencies, the Bitcoin and Ethereum present the largest market caps and trading volumes. Specifically, for SDR p,θ (R) we set p = 2 and κ = 1, whilst for CTM p,θ (R) we set the value of p as a function of the characteristic exponent, α, following the process described in Section 3.3. Furthermore, for uniformity purposes, if not mentioned explicitly, the θ-level value-at-risk, VaR θ (R), calculated using the historical simulation is employed for all methods compared herein whenever needed.

Evaluation process

To evaluate the performance of the compared risk measures, we proceed in two ways: 1) using simulated data with varying degrees of impulsiveness; 2) using real cryptocurrency assets combined with i) in-sample evaluation over the whole returns series for each asset, and ii) out-of-sample evaluation over a rolling window. In the former case, the simulated data is used to study the protection of our proposed risk measure against extreme observations of varying strength, when compared with well-established extreme risk measures. The bias and mean absolute bias are used as performance metrics. In the latter case, real data is employed to verify the superiority of our risk measures in real financial environments. In-sample evaluation over the whole returns series is performed as a first simple comparison between the distinct risk measures. The performance is evaluated using the bias and mean absolute bias metrics. As a more realistic test, out-of-sample evaluation is performed in rolling windows to investigate the predictive power of each risk measure. The performance is evaluated using the distance from lower envelope and the ES-based backtesting approach.

Performance evaluation on simulated data

As a first illustration, we investigate the efficiency of the risk measures compared herein on simulated data of varying impulsiveness. For this, K = 200 random vectors r of length N = 10 4 are drawn from an α-stable distribution S α (1, 0, 0) with α ∈ {1.1, 1.5, 1.9}, followed by the calculation of the risk measures listed in Section 7.5.2. Table 7.2 shows 

Performance evaluation on crypto-assets

In-sample evaluation of extreme risk estimates

In this section, we evaluate the efficiency of the top-five performing risk measures according to the results of Section 7.5.4 (i.e., empirical ES (ES emp), α-stable based ES (ES stbl), extreme expectiles-based ES (XES), shortfall deviation risk (SDR), and our proposed DIRS) by examining the bias and mean absolute bias between the corresponding 99%-level risk estimates and the empirical ES, calculated for the selected crypto-assets and EUR/USD FX rate. For the purpose of testing risk quantification methods, financial regulators typically rely on daily returns and an 1-day investment horizon, that is,

T H = τ = 1.
Hereafter we consider that, for all except for our horizon-adaptive DIRS measure, DIRS A p,θ,Jρ ( R) (7.26), the returns period τ coincides with the investment horizon T H . One of the advantages of DIRS A p,θ,Jρ ( R) stems from the fact that for T H > 1 the corresponding risk is calculated from the full time resolution (i.e., daily) returns, as opposed to its counterparts that are based on lower time resolution returns by subsampling every τ = T H > 1 samples.

At each time t, an estimate of the corresponding risk measure is obtained using the w most recent returns, r t-1 , r t-2 , . . . , r t-w . For instance, the time-varying estimate of DIRS p,θ (R) is given by DIRS t = DIRS p,θ ([r t-1 , r t-2 , . . . , r t-w ]). In the following experimentation, we set the window length w = N , i.e., equal to the entire sample of observations (hence, we do not indicate the present time t), and let the investment horizon vary in T H ∈ {1, 5, 15} days. The fk6 wavelet is employed for our horizon-adaptive risk measure, DIRS A , whilst we fix κ 1 = 1 and κ 2 = -1.5 for both DIRS and DIRS A . Table 7.3 shows the corresponding risk bias per asset, along with the mean absolute bias value for each risk measure. Notice that, by definition, our horizon-adaptive risk measure, DIRS A , is calculated for T H > 1, that is why the last column of the sub-table for T H = 1 is left empty.

First, we observe that the α-stable based ES results in the largest bias and tends to overestimate risk significantly, in most of the cases. As for the effect of the assets' statistics, the five risk measures yield a larger bias for those crypto-assets with the highest skewness and kurtosis, namely, Dogecoin, Litecoin and Ripple. Among them, our proposed DIRS measure and its horizon-adaptive counterpart, DIRS A , offer an improved protection when compared against the shortfall deviation risk measure. This is especially the case for the horizon-adaptive DIRS as the investment horizon increases, which results in a more balanced risk value lying between the two extremes, namely, the stable-based ES and shortfall deviation risk or DIRS. Overall, the ES based on an α-stable assumption for the distribution of returns results in highly conservative risk estimates at a 99% confidence level, with the extreme expectiles-based ES (XES) being at the other extreme resulting in the less conservative estimates (in fact, underestimates for a larger investment horizon) of conditional tail risk.

As for the other three risk measures, shortfall deviation risk (SDR) lies in between our DIRS and DIRS A in most of the cases. These results support the improved capabilities of our DIRS and horizon-adaptive DIRS measures for better controlling extreme risk in the case of medium-and long-run investment horizons, which is also more realistic for institutional investors and non-financial corporations, yet dramatically more demanding since we are estimating events that occur rarely.

The authors in [START_REF] Bertsimas | Shortfall as a risk measure: properties, optimization and applications[END_REF] computed the largest value that conditional tail risk may possibly achieve for any distribution to be equal to σ (1 -θ)/θ, where σ denotes the standard deviation of returns. Before proceeding to the out-of-sample evaluation of extreme risk estimates, Table 7.5

shows an example of multiresolution analysis of expected shortfall. Specifically, a 3-level MODWT using the fk6 wavelet is applied first to Bitcoin, Ripple and the EUR/USD FX rate. Then, the fraction of the 1%-level expected shortfall attributed to each decomposition level j = 1, 2, 3 is calculated as described in Section 7.2.1, for two investment horizons, T H ∈ {1, 15}. As it can be seen, for the small investment horizon, the highest portion of ES is expressed by the lower decomposition levels (i.e., the highfrequency MRA series). This is in full contrast for the large horizon, where the higher decomposition levels -especially the approximation MRA series -contribute the most to the ES decomposition. This result dictates that a future modification of the empirical rule presented in Proposition 7.1 for setting the maximum decomposition level, should account for the approximation MRA series in the case of large investment horizons. Out-of-sample evaluation of extreme risk estimates

In this section, we investigate the predictive power of our proposed DIRS and horizonadaptive DIRS risk measures, by comparing predicted risk with observed returns. The performance of our extreme risk measures is also compared against the empirical and stable-based ES, the extreme expectiles-based ES, and shortfall deviation risk measures.

As in the case of in-sample evaluation, at each time t, an estimate of the corresponding risk measure is obtained using the w most recent returns, r t-1 , r t-2 , . . . , r t-w . For the out-of-sample evaluation, we fix w = 1400 (i.e., approximately equal to four years) with the testing interval spanning the samples with indexes in [w + 1, N ], where N is the length of the asset. The fk6 wavelet is used for our horizon-adaptive risk measure, DIRS A , whilst we fix κ 1 = 1, κ 2 = -1.5 for both DIRS and DIRS A .

The number of exceedances over the testing interval, that is, the cases when actual losses exceed the predicted losses (e.g. for DIRS, r t < -DIRS t ), is one of the most commonly used performance indicators for a risk measure. Nevertheless, relying on the number of exceedances in order to evaluate the efficiency of a risk measure can be highly misleading. This is because of the necessity for achieving a trade-off between the number of exceedances of extreme losses and the proximity to moderate ones. Indeed, a risk measure offering increased protection to extreme losses, whilst simultaneously being able to follow closer the low and medium losses is more robust in terms of neither over-estimating nor under-estimating risk. Motivated by this observation, we also evaluate the predictive accuracy of the risk measures compared herein by employing the distance from the negative returns curve, which is approximated by the lower envelope (hereafter denoted by l e ) of the returns series, as defined in Section 7.4.2. Table 7.6 presents out-of-sample descriptive statistics of the mean, standard deviation, skewness, kurtosis, minimum and maximum for the risk measures and returns series averaged over all rolling windows of the six assets considered herein, at level θ = 0.01 and for investment horizons T H ∈ {1, 5, 15}. Furthermore, for each risk measure, the average ratio (7.31) and infinite norm (7.32) with respect to the lower envelopes of the assets are reported. These two performance metrics quantify the degree of protection against extreme risk. Specifically, the higher the average ratio and the lower the infinite norm, the higher the protection is against extreme losses. The ratio and infinite norm of an asset with respect to its own lower envelope are defined in a similar way, and the average values over all assets are also reported in Table 7.6.

Note that for T H = 1, the descriptive statistics, ratio and infinite norm values are not reported for the horizon-adaptive DIRS measure, which is defined for T H > 1.

The average mean value over all assets, which is dominated by the crypto-assets, differs from zero, which reflects more abrupt changes in their returns, when compared against traditional assets. All the risk measures exhibit higher absolute mean values at the θ = 1% level, since it represents more extreme losses. Notably, as the investment horizon increases, our horizon-adaptive measure, DIRS A , captures better the extreme losses, as expressed by its larger absolute mean value. The opposite behavior is observed for the average standard deviation, due to the fact that the risk measures are calculated for the left extreme of the returns distribution.

Regarding the skewness observed in the compared risk measures, in general, it presents moderate negative values indicating that major losses occur more frequently.

Concerning the kurtosis, asset returns are highly leptokurtic, which is an indication of heavy tails. On the other hand, the risk measures present mesokurtic and leptokurtic behaviors depending on the risk measure and the investment horizon. This difference in kurtosis is natural, since returns can assume any value within the empirical probability distribution, whereas the risk measures only consider the extreme quantiles.

With respect to the range (i.e., the difference between the maximum and minimum values), all risk measures achieve a comparable protection against extreme losses for T H = 1. However, as the investment horizon increases, our DIRS measure and especially its horizon-adaptive extension, provide a highly improved protection to extreme losses.

The higher protection of DIRS and DIRS A is also reflected in the average ratio and infinite norm values with respect to the lower envelopes, which are much larger than the other risk measures for the long-run investment horizon.

Finally, Table 7.7 and Table 7.8 display the results of the backtesting process described in Section 7.4.3, along with the p-value and the critical value of the T 1 ES test, for T H = 5 and T H = 15 days, respectively. A confidence level of 97.5% is used, as required by the Fundamental Review of the Trading Book regulation [START_REF] Bcbs | Minimum capital requirements for Market Risk[END_REF]. The unconditional test statistic of [START_REF] Acerbi | Backtesting expected shortfall[END_REF] is sensitive to both the severity of the VaR failures relative to the ES estimate, and also to the number of VaR failures (how many times the VaR is violated). A large loss on a day when the ES estimate is also large may not impact the test results as much as a large loss when the ES is smaller. The observed severity (ObsSev) column shows the average ratio of loss to VaR on periods when the VaR is violated, whilst the expected severity (ExpSev) column uses the average ratio of ES to VaR for the VaR violation periods. Furthermore, negative values of the test statistic, TStatZ 1 ES , indicate risk underestimation. The unconditional test is a one-sided test that rejects when there is evidence that the associated measure underestimates risk.

For a moderate investment horizon of T H = 5 days, as we observe in Table 7.7, our proposed horizon-adaptive risk measure, DIRS A , offers increased protection for all cryptocurrencies, as it is expressed by the higher expected severity and positive test statistic values. The stable-based ES follows next, whilst the remaining risk measures underestimate risk as indicated by the negative values of the test statistic and the lower expected severity values when compared against its observed counterpart.

As the investment horizon increases to T H = 15 days, which makes risk quantification a more challenging problem, we observe in Table 7.8 that our DIRS A measure still presents increased robustness in estimating extreme risk. In particular, DIRS A provides higher 

Conclusions and Future Work

This chapter proposed a novel methodology for extreme risk quantification of assets with highly varying heavy-tailed behavior, such as cryptocurrencies. Our method was grounded on the new concepts of truncated dispersion (TD) and degree of impulsiveness (DoI), as alternative sources of information for characterizing the statistical behavior of such data. Then, a jointly dispersion-impulsiveness regularized expected shortfall measure was proposed based on the TD and DoI, along with an horizon-adaptive extension, demonstrating a better adaptability to extreme losses for a broad range of impulsive behaviors in crypto-asset data and varying investment horizons.

Examination of the tail behavior of crypto-assets' returns is of utmost importance for both investors and policymakers. To this end, an empirical evaluation of our method was performed on a data set of distinct assets (5 cryptocurrencies, EUR/USD FX rate), and compared against well-established risk measures tailored to extreme losses estimation.

The experimental results revealed the clear superiority of our proposed method, when compared against its competitors, in achieving a higher protection to extreme losses. This has important implications to investors, providing them with a better understanding of which investment choices in the cryptocurrency market are more susceptible to losses, as well as of potential bubbles due to exceedingly high returns.

The methodology developed in this chapter offers several open research avenues.

First, a thorough theoretical study is required to examine the intuitively appealing coherent risk measure properties. Besides, it should be interesting to investigate the implications of our method in financial engineering (e.g. crypto-asset derivatives), as well as from a regulatory viewpoint. Furthermore, an interesting question would be to evaluate the attractiveness of our extreme risk quantification framework in portfolio optimization applications. Future research also needs to look at similarities and differences between cryptocurrencies and fiat currencies simultaneously. To this end, risk-based clustering of mixed data sets (i.e., including both traditional assets and cryptocurrencies) into groups of similar behavior according to an extreme risk criterion, could improve the diversification capabilities of mixed portfolios under extreme risk conditions.

Chapter 8

Predictive Modeling of Risk with Graph Connectivity Measures

Introduction

A key question for financial institutions and policymakers is how to limit the build-up of systemic risk, that is, the risk of a breakdown of an entire system rather than simply the failure of individual parts, and restrain economic crises events when they do happen.

The subprime mortgage crisis of 2008, and the recent financial market turmoil due to the 2022 global energy crisis, which began in the aftermath of the Covid-19 pandemic in 2021, reinforced the awareness of investors about the need for robust systemic risk measures for risk management. A primary source of systemic risk is attributed to financial contagion [START_REF] Allen | Financial contagion[END_REF], where financial risk can be transmitted from one country or market to another, thus causing severe effects [START_REF] Baur | Financial contagion and the real economy[END_REF].

Financial and credit risk spillovers, which showed their disruptive impact during the recent crises, originate from interconnections between companies, markets, and countries, acting as contagion channels to systemic risk. The interest in systemic risk and the way financial networks might affect contagion risk has been further stimulated by the digitalization of financial markets. The large growth of innovative financial technologies (e.g. P2P online lending), especially in the credit market, eliminates the use of intermediaries between borrowers and lenders, contributing to an increased interconnectivity with respect to the traditional banking system. Besides, in the financial markets, the usage of cryptocurrencies is widely spreading in the last few years, giving rise to new potential spillovers. Therefore, it is essential to understand the interrelations between, in general, heterogeneous classes of assets for achieving optimal risk management and subsequent investment decisions. This is also motivated by the findings of [START_REF] Raddant | Interconnectedness in the global financial market[END_REF], who revealed that heterogeneity of asset classes is a non-negligible aspect for understanding the volatile behavior of their interdependencies.

A natural approach to quantify and model such financial interrelations, and subsequently contagion and systemic risk, is by means of graph (a.k.a. network) analysis. Graph analysis has been applied to various domains, such as neuroscience [START_REF] Watts | Collective dynamics of 'smallworld' networks[END_REF], [START_REF] Wilke | Graph analysis of epileptogenic networks in human partial epilepsy[END_REF],

security [START_REF] Bum | The dropper effect: Insights into malware distribution with downloader graph analytics[END_REF], logistics and planning [START_REF] Huang | TrajGraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data[END_REF], and social sciences [START_REF] Michael | Discovering shared interests using graph analysis[END_REF], [START_REF] Khrabrov | Discovering influence in communication networks using dynamic graph analysis[END_REF],

just to name a few. The use of graph analysis to investigate financial contagion emerges as a feasible tool [START_REF] Summer | Financial contagion and network analysis[END_REF], [START_REF] Cabrales | Financial Contagion in Networks[END_REF], [START_REF] Constantin | Network linkages to predict bank distress[END_REF], [START_REF] Glasserman | How likely is contagion in financial networks?[END_REF]. The quantification of financial graph connectivity can be employed to estimate in an objective way the impact of financial contagion and systemic risk on financial markets.

Financial connectivity, as expressed by the graph structure of the financial entities involved in a risk management task, is considered to be one of the most useful indicators for quantifying systemic risk [START_REF] Baruník | Measuring the frequency dynamics of financial connectedness and systemic risk[END_REF], [START_REF] Yoon | Network connectedness and net spillover between financial and commodity markets[END_REF], [START_REF] Foglia | From me to you: Measuring connectedness between Eurozone financial institutions[END_REF]. During periods of market turbulence, the connectivity and interdependence among distinct financial entities, in conjunction with the global financial integration, causes risk to diffuse across various markets [START_REF] Acemoglu | Systemic risk and stability in financial networks[END_REF].

Such periods also unveil the interplay between risk, market connectivity, and financial stability.

Nevertheless, quantifying the degree of financial connectivity necessitates the identifi- 

Chapter organization

The rest of the chapter is organized as follows: Section 8.2 introduces the main concepts of graph-structured data processing, and analyzes the alternative rules proposed in this chapter for graph topology inference, along with the description of the utilized nodal and global graph connectivity measures. Section 8.3 defines the proposed predictive and ranking signals, whilst Section 8.4 presents the data set employed in this work, along with a statistical and visual analysis of the connectivity structure. A thorough empirical evaluation on real financial data is described in Section 8.5, whilst Section 8.6 summarizes

the key remarks of this study along with directions for future research.

Notation

In the following, we denote scalars and variables with non-boldface letters (e.g. x, X), row vectors with lower-case boldface letters (e.g. x), matrices with upper-case boldface letters (e.g. X), while calligraphic letters are used to denote sets (e.g. S). x i denotes the ith row of matrix X, x j is the jth element of vector x, and S i denotes a subset of a set S. X S is the submatrix formed by the rows {x i | i ∈ S}, whose indices belong to S. Similarly, x S is the subvector formed by the elements {x j | j ∈ S}, whose indices belong to S. In both cases, the order is preserved among the retained elements. With

x = [x 1 , . . . , x N ] ∈ R N we denote a vector of N time series observations. Finally, we use

x T to denote the transpose of a vector x. Similar notations are used for the matrices. We also emphasize that our proposed method is applied on rolling windows of length T , which slide with a step size equal to s samples across the given time series. Doing so, x i,T = [x i-T +1 , . . . , x i ] denotes a window of length T whose ending point is the ith sample of the original time series x.

Data Analysis Over Irregular Graph Domains

Since most risk management and trading strategies rely on the returns of an asset, hereafter, we employ continuously compounded returns, r t , over an horizon of τ time units, defined by

r t = log p t p t-τ = log(p t ) -log(p t-τ ) , t = τ + 1, . . . , N , (8.1) 
where p t denotes an asset's price at time t and log(•) is the natural logarithm. For instance, when we operate with daily data, τ = 1 corresponds to daily returns, whereas τ = 25 corresponds to monthly returns computed from daily data. In any case, the time unit will be explicitly defined whenever needed, thus the interpretation of τ will be clear.

Furthermore, prior to inferring the graph topology and calculating the corresponding connectivity measures, the asset returns are normalized to zero mean and unit variance.

For simplicity of notation, in the subsequent derivations, r t denotes normalized returns.

In this section, we introduce basic concepts and definitions for the analysis of data over irregular graph domains, a.k.a. graph signal processing (GSP) [START_REF] Ortega | Graph Signal Processing: Overview, Challenges, and Applications[END_REF]. Specifically, we are interested in analyzing time series data defined on an undirected, weighted graph G = (V, E, W), where V = {v 1 , v 2 , . . . , v n } is the node set with cardinality |V| = n and E = {e ij } is the edge set with cardinality |E| = m. An edge e ij connects nodes v i and v j if they are adjacent or neighbours. An alternative notation for adjacency is v i ∼ v j . W ∈ R n×n is a symmetric weighted adjacency matrix, whose element w ij indicates the strength of connectivity between the nodes v i and v j . A value w ij = 0 means that there is not an edge between the nodes v i and v j (which is also the case for i = j). The number of neighbours of a node v is called the degree of v and is denoted by d(v). Accordingly, the degree matrix of an undirected weighted graph is defined by D = diag(d(v 1 ), d(v 2 ), . . . , d(v n )) ∈ R n×n , where the diagonal elements are given by

d ii = d(v i ) = v i ∼v j w ij , i = 1, . . . , n.
Suppose that each node v i ∈ V observes a time series of length N , r i = [r i 1 , r i 2 , . . . , r i N ] T ∈ R N , for i = 1, . . . , n. A graph signal is a map x : V → R defined on the nodes of the graph. By assuming that all nodes are time-synchronized, a graph signal at time t can be represented as a vector x t ∈ R n , where the ith component of x t represents the signal value at the ith node in V, that is,

x t = [r 1 t , r 2 t , . . . , r n t ] T ∈ R n , t = 1, . . . , N . (8.2)

Dynamic graph topology inference

In this section, we elaborate on the methodology we developed to construct dynamic financial graphs, yielding time series of graph connectivity measures, and to quantify their predictive power on tail risk and market (systemic) risk indicators. In general, we anticipate that the graph structure of heterogeneous asset classes will change dynamically with time. In such graphs, the weights associated with edges also change dynamically over time, that is, the edges are activated by sequences of time-dependent elements. We emphasize again that our study investigates the predictive capacity of both global and nodal connectivity patterns to the respective risk metric, without accounting for the directionality of connectivity between pairs of nodes (i.e., we focus on undirected graphs).

In our setting, assuming that we work with a set of n assets, the ith node v i of the graph G observes the (normalized) compounded returns of the ith asset. In the time-dependent financial graph at time t, G t = (V t , E t , W t ), V t is the set of all nodes, referring to the assets being considered in the graph at time t. If some assets are not listed yet on the market at time t, we do not include them in V t . Accordingly, the time-varying edge set E t includes distinct pairs of assets satisfying some predetermined properties of interest. If, at time t, there is an edge among nodes v i,t and v j,t we set the value of the (i, j)th element of the weighted adjacency matrix equal to w ij,t . Note that w ij,t quantifies the strength of connectivity between v i,t and v j,t based on a predefined rule.

In this chapter, apart from the well-established Pearson's correlation, we define two alternative rules, namely, (i) the Kolmogorov-Smirnov test, and (ii) a generalization of the ℓ p (pseudo)norm for time series. Notice also that, in practice, the majority of previous works employ a thresholding step to reduce the complexity of the inferred graph topology drawn from the same distribution. Although, in the general case, the two data sets may be of different size, hereafter we consider that they posses an equal number of elements.

In particular, let F i and F j denote the observed cumulative distribution functions of two time series [r i 1 , r i 2 , . . . , r i N ] and [r j 1 , r j 2 , . . . , r j N ], respectively. The K-S test compares the null hypothesis H 0 : F i (z) = F j (z) against H 1 : F i (z) ̸ = F j (z), based on the statistics

D N ij = max z {|F i,N (z) -F j,N (z)|} , (8.4) 
where

F i,N (z) = N t=1 1(r i t ≤ z) N , F j,N (z) = N t=1 1(r j t ≤ z) N , (8.5) 
with 1(r t ≤ z) denoting the indicator function, which is equal to 1 if the condition in parentheses holds, otherwise it equals 0. The null hypothesis is rejected if the p-value is less than a significance level α. Hereafter, we set α = 0.05 that is typically used in practice.

In this work, we propose to use the K-S test as an alternative statistical method for inferring the topology of a graph. In particular, a distance measure is defined first for a pair of nodes (i.e., assets) i and j, as follows,

d KS (r i , r j ) = 1(pval ij ≥ α) • D N ij , (8.6) 
where pval ij and D N ij are the p-value and the statistics, respectively, of the K-S test applied to the (normalized) returns series of nodes i and j. Then, the weight assigned to edge e ij is given by w ij = 1/d KS (r i , r j ) if 1(pval ij ≥ α) = 1, and w ij = 0 otherwise. The final graph is obtained by applying a thresholding scheme, as described above.

Generalized L p distance

A commonly used method for quantifying the similarity between pairs of times series, is to calculate their distance in terms of the ℓ p vector (pseudo)norm. For two given time series r i , r j in R N their ℓ p distance is defined by

L p (r i , r j ) = N t=1 |r i t -r j t | p 1 p . (8.7)
In this work, we employ a generalized ℓ p norm introduced by [START_REF] Lee | Generalization of the L p norm for time series and its application to self-organizing maps[END_REF]. This approach better suits to time series data, as it accounts for their temporal structure. Its main difference from the conventional ℓ p (pseudo)norm is that the tth term of the sum involves the previous and next values of the tth difference (r i t -r j t ) instead of this difference only. The generalized ℓ p (pseudo)norm of two returns series is given by

L G p (r i , r j ) = N t=1 (A t-1 + A t+1 ) p 1 p , (8.8) 
coefficients of all nodes in the graph, as follows,

CC(G) = n i=1 CC(v i ) n .
(8.12)

The maximum number of possible triangles for a node v is given by 1 2 d(v)(d(v) -1). Intuitively, the clustering coefficient reflects the tendency of the graph's nodes to cluster together.

3. Modularity represents the degree to which a graph can be divided to communities. This measure, which provides useful information concerning the topology and connectivity of a graph, is defined by

Q(G) = 1 2m v i ,v j w ij - d(v i )d(v j ) 2m δ v i v j , (8.13) 
where the sum is over all pairs of nodes, m is the number of edges, and δ v i v j is equal to 1 if the nodes v i , v j belong to the same community and 0 otherwise. A high modularity is observed in graphs that consist of components (modules) with strong connectivity, but a few connections with the other modules. Graphs which approximate connected K n graphs are characterized by a low modularity.

Nodal measures:

1. Degree, d(v), of a node v is the number of its neighbours. Nodes with larger degrees present more connections and thus are more representative of the graph structure. If d(v) = 0, then, v is called an isolated node.

2. Betweenness centrality, denoted by BC(v k ), is a nodal measure quantifying the importance of a node v k . It is defined as the fraction of shortest paths that pass through that particular node. Let δ v i v j (v k ) denote the ratio of the shortest paths from v i to v j (or from v j to v i , since we consider undirected graphs) that pass through v k to the total number of shortest paths connecting v i and v j . Then, the betweenness centrality of node v k is defined by

BC(v k ) = v i ,v j i̸ =k̸ =j δ v i v j (v k ) , {v i , v j , v k } ∈ V . (8.14)
In a complex, large-scale financial graph, it is very important to identify the assets that are closely connected with the majority of the rest of the assets in the graph.

Thus measuring betweenness centrality can pinpoint the most informative and dominant nodes of the graph.

3.

Triangles is a nodal measure determined by the number of triangles a node is part of, that is, the number of its neighbours that are also neighbours of each other. For weighted graphs, the contribution of a triangle around a node is measured as the geometric average weight of edges in the triangle. The triangles measure is used to quantify the extent to which a node forms and participates in communities.

Design of Proposed Predictive Signal

This section elaborates on the design of our proposed predictive signal for quantifying and ranking the predictive power of time-varying graph connectivity measures on systemic risk indicators, as well on the tail risk of asset returns. It is important to emphasize that our proposed methodology is generic and can be combined with any connectivity measure and risk metric.

Let y t = (R 1 , . . . , R t ) denote the time series of a risk metric R until time t. R can represent systemic risk as expressed via global market indices (e.g. VIX, VSTOXX, VHSI), or tail risk (e.g. value-at-risk or expected shortfall) calculated for a specific asset i (in this latter case, the notation y i t will be used, with the superscript i indicating that the corresponding risk values are calculated from asset i). Let also

F t = [f 1,t • • • f M,t ] be
the t × M matrix whose mth column is the time series corresponding to the mth graph connectivity measure, with m = 1, . . . , M . Our objective is to quantify the predictive capacity of each connectivity measure f m,t on the risk y t .

Before proceeding, a preprocessing step is performed in order to suppress a (stochastic) mean trend from non-stationary series. To this end, a first-order differencing of all time series corresponding to the graph connectivity measures is performed as follows,

f ∆ m,t = f m,t -f m,t-1 , m = 1, . . . , M . (8.15)
Notice that for numerical reasons we set f ∆ m,1 = NaN, since f m,t-1 is not defined for t = 1. For convenience, in the following analysis the differencing operator will also be used to express (8.15),

diff(f m,t ) ≜ f ∆ m,t = f m,t -f m,t-1 , m = 1, . . . , M . (8.16) 
Next, since we are interested in quantifying the predictive capacity of graph connectivity measures with respect to the forecast of a given risk metric, the associated differenced time series of connectivity measures have to be shifted ahead before they are given as input to our model. For a given time series x t = (x 1 , . . . , x t ) a T h -step shifting ahead is defined as

x S,T h t = x t-T h , t > T h . (8.17)
For convenience, the T h -step shifting operator will also be used in the subsequent analysis to express (8.17),

shift(x t ; T h ) ≜ {x t-T h → x t } , t > T h . (8.18)
For illustration purposes, and without loss of generality, in the following we focus on a daily horizon, thus a one-step shifting of the differenced graph connectivity measures is performed by setting

T h = 1, shift(f ∆ m,t ; 1) = {f ∆ m,t-1 → f ∆ m,t } , t > 1 . (8.19)
To simplify the notation, shift(f ∆ m,t ) will be used instead of shift(f ∆ m,t ; 1).

Having suppressed the (stochastic) mean trend through the first-order differencing, followed by the shifting operation, an exponentially weighted moving average (EWMA) model is applied next. In brief, the EWMA model is defined by

EWMA (y 1 , . . . , y t-1 ) = y t-1 + λy t-2 + λ 2 y t-3 + • • • + λ t-2 y 1 1 + λ + λ 2 + • • • + λ t-2 , (8.20)
where λ is a constant (a.k.a. smoothing or decay constant), with 0 < λ < 1. By noticing that y t-1 is the most recent sample, whereas y 1 is the oldest one, and that λ k → 0 as k → ∞, since 0 < λ < 1, the EWMA model gives a negligible weight to the observations that are far in the past. Since 

1 + λ + λ 2 + • • • + λ t-2 ≈ (1 -λ) -1 as t → ∞,
) ≈ (1 -λ) ∞ i=1 λ i-1 y t-i . (8.21) 
An empirical relation is commonly used in practice, between the smoothing parameter, λ, and the window size, l. Specifically, the two parameters satisfy the following relation,

1 -λ = 2 l + 1 ⇒ λ = 1 - 2 l + 1 . (8.22)
From the above relation we deduce that the larger the window size l, the closer to 1 is the value of λ, which yields a slow response to newly acquired observations. On the other hand, when the window size takes its minimum value, that is, l = 1, then λ = 0. In our implementation, we set l = 32, which corresponds to a smoothing constant λ = 0.94 as suggested by RiskMetrics 2 .

Finally, to generate our predictive signal, the EWMA-based model of the shifted and differenced values of a given connectivity measure is compared against the firstorder difference of logarithms of the risk values y t , denoted by dlog(y t ). Our proposed predictive signal is defined as follows: In order to enable the ranking of a given set of connectivity measures, in terms of their predictive power, we also propose a modification of the predictive signal in (8.23).

Definition 8.1. Given a matrix F t = [f 1,t • • • f M,t ] ∈ R t×M ,
For this, we are motivated by the fact that, in practice, variance rates do tend to be mean reverting in the sense that the greater the deviation from the mean, the greater the probability that the next measured variate will deviate less far. In particular, we incorporate mean reversion to the EWMA model by taking the negative sign of the EWMA values, where the sign operator is defined as follows,

sign(x) =          -1, if x < 0, 0, if x = 0, 1, if x > 0 .
(8.24)

The use of the sign operator is also justified by the fact that it is much easier to forecast direction only than the forecast size itself. Then, the information ratio is employed as a criterion for ranking the predictive power of the given connectivity measures. Specifically, the larger the information ratio value, the higher the predictive power of a connectivity measure on the respective risk metric. Our proposed ranking rule is summarized by the following proposition: where T is the size of the rolling window. If IR m > IR n , the mth connectivity measure is characterized by higher performance (i.e., predictive capacity) than the nth connectivity measure on the selected risk metric.

Proposition 8.1. Given a matrix F t = [f 1,t • • • f M,t ] ∈ R t×M ,
The expression in (8.26) resembles a refined version of the Sharpe ratio proposed by [START_REF] Israelsen | Refining the Sharpe Ratio[END_REF], which addresses the case of negative average values for the ranking signals,

resulting in an intuitive ranking, where a smaller (more negative) information ratio dictates a less performant connectivity measure. In the following section, the financial dataset utilized in the subsequent empirical evaluation is described, accompanied by a sample statistical analysis.

Data and Sample Analysis

In the subsequent empirical analysis, we employ daily close prices of five heterogeneous asset classes, namely, Futures, Top Mutual Funds, Stocks, Top ETFs and Cryptocurrencies.

A balanced dataset is constructed by selecting about 15 assets (among the ones with the highest volume) per class, spanning the period from January 1st, 2016 to January 31st, 2022. The data for the first four classes have been downloaded from Yahoo Finance, and the cryptocurrencies data from Kaggle3 . The respective time series are processed over rolling windows of length T = 250. Due to the closing of the respective markets on holidays, some assets presented missing values on certain dates. For the sake of uniformity, hereafter we consider that the close price of an asset on days with no data is equal to its close price the previous day. Table 8.1 summarizes the ticker symbols for the utilized assets per class. Table 8.3 presents the sample mean, standard deviation and kurtosis, averaged over the assets of each class, for the two sub-periods of crisis. First, we observe that, on average, all asset classes present severe losses during the second sub-period, with much higher volatility, when compared against the first sub-period. During the first sub-period, the classes of Futures, Top Mutual Funds and Cryptocurrencies, are characterized by fatter tails than the remaining two classes. The returns distributions of all five classes are leptokurtic (i.e., kurtosis is greater than three) during both sub-periods, resulting in a greater chance of extreme positive or negative events. The Shapiro-Wilk test is also employed to check whether, and how much, our data deviates from a normal distribution. This test returns a test statistic and a corresponding p-value. If the p-value is below a certain significance level, then we have sufficient evidence that the sample data does not come from a normal distribution. In the following, we set the significance level equal to 0.05. Table 8.4 shows the test statistic for the compounded returns of the above five asset classes, averaged over the assets of each class, for the whole time period considered. From the output we can see that the test statistic values are quite large, and the corresponding p-values are significantly smaller, on average, than the selected significance level. As such, we have sufficient evidence that the sample data does not come from a normal distribution. This is also aligned with the remarks made by examining the summary statistics above. 

Graph visualization

For illustration purposes, this section presents visual examples of financial graphs constructed using the three connectivity criteria, as described in Section 8.2. For comparison, we infer the graph topology at two distinct dates, within the periods of major events, as mentioned above, namely, 15/11/2018 (cryptocurrency crash) and 31/03/2020 (covid-19 outburst). Furthermore, the larger the size of a circle (i.e., asset) the higher its degree, and the more gray the color of an edge the larger its weight.

The global connectivity measures for the three topology inference rules and the two In particular, the graphs for the cryptocurrency crash event are characterized by larger average degree and clustering coefficient values, which indicate denser connectivity and higher clustering tendency between the nodes. As for the covid-19 outburst event, a reduced modularity is observed for two out of the three global measures, which indicates the presence of clusters with both strong intra-and inter-class connectivity. From a qualitative perspective, this is in agreement with our expectation about side returns linkages between asset classes in periods of higher stress.

In the following section, an empirical study is carried out both from a quantitative and qualitative perspective, about the interrelation between the connectivity patterns, as expressed via the selected global and nodal graph measures, and their predictive capacity on systemic and tail risk metrics.

Empirical Evaluation

In this section, we evaluate empirically the performance of our proposed framework for quantifying the predictive capacity of global and nodal graph connectivity measures on a given risk metric. Specifically, both systemic (market) risk and tail (per asset) risk measures are utilized and tested. In the former case, we employ three widely-used market volatility indices, namely, VIX (USA), VSTOXX (Europe), and VHSI (Asia) as measures of systemic risk. Regarding the latter case, the tail risk of each asset is measured via the shortfall deviation risk (SDR), which outperforms the conventional value-at-risk and expected shortfall measures, by representing the expected loss that occurs with a certain probability penalized by the deviation of results that are worse than such an expectation.

Historical simulation in annual windows with a step size equal to one day is employed to calculate the SDR values. We emphasize, though, that our proposed methodology is generic and can be applied to any systemic and tail risk measures. Regarding the predictive power of the three global measures on the market risk indicators, the largest information ratio is achieved by the average degree for VIX and VHSI, and by the clustering coefficient for VSTOXX. However, this is not the case anymore when examining the predictive capacity of the three global measures on the tail risk of the individual assets. Table 8.5 shows the frequency of top performance for each one of the three global measures, i.e., the number of times each measure achieves the highest information ratio, per asset class, extracted by the graphs constructed using the Pearson's correlation method. Clearly, the modularity measure yields a superior predictive potential for the vast majority of asset classes, with the clustering coefficient achieving the second best performance. Specifically, for the Kolmogorov-Smirnov test the average degree yields the top predictive power, followed by the modularity. In the case of generalized Euclidean distance, modularity is again the best among the three global measures, with the average degree being the second most performant measure. From a qualitative perspective, the above results indicate that the connectivity between the components (modules) comprising a graph is characterized by superior explainability and predictive capacity of the underlying tail risk in the case of highly heterogeneous asset classes. In the following, we examine the predictive power of the three nodal measures, namely, the degree, betweenness centrality and triangles. Table 8.7 shows the frequency of top performance for each one of the three nodal measures, i.e., the number of times each measure achieves the highest information ratio, per asset class, extracted by the graphs constructed using the Pearson's correlation method. Clearly, the betweenness centrality measure yields a superior predictive potential for the vast majority of the asset classes, when compared against the degree and triangles, which achieve a similar performance. From a qualitative viewpoint, this reveals that the associated market and tail risk, as it is quantified via the three market risk indicators and SDR, respectively, is closely related to betweenness centrality, which pinpoints the most informative and dominant nodes of the graph. Or, in other words, that the dominance strength of an asset in a financial network is capable of better explaining the rare (extreme) losses in case of abnormal events. Similar results are obtained when using the Kolmogorov-Smirnov test and the generalized Euclidean distance for inferring the dynamic graph topology. As shown in Table 8.8, the betweenness centrality outperforms, in terms of predictive power, both the degree and triangles measures, with the latter ones achieving similar performance. In the case when the graph topology is estimated using the geometric approach, the degree measure is the second best, outperforming the triangles measure. From a qualitative perspective, this result indicates that the number of neighbours of a node is characterized by higher predictive capacity for the underlying tail risk when using a geometric graph construction method. This can be attributed to the fact that the more neighbours a node has, the higher the probability of being affected in turmoil periods, which typically yields higher tail risk. In general, what we observed is that, although the graphs become denser during turmoil periods, there is no obvious graph-subgraph relation among them. The existence of an edge in the graph of a specific year does not imply its occurrence the next years.

The interrelations of the heterogeneous assets we consider herein are affected by external factors, which, in general, cannot be predicted. Motivated by this, we examine the potential similarities among the densest subgraphs, generated using the method proposed by [START_REF] Boob | Flowless: Extracting densest subgraphs without flow computations[END_REF], of the graphs constructed for each year using the three graph inference methods of Section 8.2.1.

Table 8.9 shows the number of nodes in the corresponding densest subgraph per year, for the three graph topology inference methods. The interesting observation is that, despite the differences in the resulting graphs, the densest subgraphs include a significant number of common nodes in all cases. This indicates that the most dominant nodes preserve their importance regardless of the method employed to infer the dynamic graph As a final illustration, we investigate the time-varying dominating set of the dynamic graphs inferred using the Pearson's correlation method. A dominating set of a graph is a collection of nodes, such that every node of the graph either belongs to the set or it is connected to a member of it. Thus by defining such a set for a financial graph it is possible to detect nodes (i.e., assets) that are representative for the whole network.

In the following, we employ the method proposed by [START_REF] Gogas | A novel banking supervision method using a threshold-minimum dominating set[END_REF] for the estimation of a threshold-minimum dominating set (T-MDS). This method was first proposed for banking networks, however, it is applicable in a similar way to our heterogeneous asset classes.

Specifically, for a threshold varying in [0.2, 0.8], the annual correlation graphs (i.e., correlation graphs constructed over annual non-overlapping windows) are constructed such that a pair of nodes with correlation larger than the threshold is connected with an edge. For each one of the resulting graphs, an approximation of the minimum dominating set is determined. This set consists of all the isolated nodes and the core nodes. As the threshold increases, the number of edges decreases, indicating that the neighborhoods become smaller and smaller.

Figure 8.3 displays information about the graph neighborhoods structure over time, in order to examine the degree of variation as a function of the threshold level. First, as mentioned above, the number of edges decreases as the threshold value increases, which is an expected behaviour. Another key observation is that the number of edges is higher for the graphs associated with periods of crisis. This reveals that the financial graph becomes much denser, which, in turn, facilitates the quick spread of risk between an increased number of interconnected nodes. As for the T-MDS set, it follows the opposite trend than the number of edges, namely, the number of comprising nodes increases for an increasing threshold. Furthermore, the larger number of isolated nodes, on average, Linked with graph signal processing, it is of high interest to investigate the design of graph neural networks for predicting the connectivity structure of a financial graph. This is very important for the design of robust portfolio construction and systemic risk management strategies. Furthermore, an interesting question is to formulate the problem of risk propagation in the case of missing information. To this end, efficient graph completion methods could be developed for recovering the missing information by exploiting pairwise node connectivity. Finally, our predictive model based on dynamic graphs can be combined with multiresolution graph transformations for risk parity portfolio construction and market co-integration analysis at multiple spatial and temporal scales.

Chapter 9

Conclusions and Future Research Avenues

This thesis intended to shed new light in financial risk quantification, by bridging the scientific domains of finance, signal processing, and machine learning. At the core of our research endeavor was the development and implementation of novel risk measures, capable of better adapting to a predetermined investment horizon, whilst accounting for the inherent impulsiveness of returns series, as well as exploiting the connectivity structure between distinct assets classes. In this chapter, we summarize the key outcomes of this thesis, and discuss research avenues for future extensions.

General Conclusions

This section highlights the main outcomes for each one of the technical chapters. Relevant ideas for future extensions can be found in the last section of each chapter.

Chapter 4: This chapter proposed a novel asset replication method for simultaneous selection of a subset of candidate assets and estimation of their corresponding weights.

The method was grounded on the properties of sparse representation coding over jointly learned dictionaries, in order to capture and represent accurately the inherent local patterns of an ensemble of financial assets, while exploiting potential correlations between the individual assets. The empirical evaluation on a set of heterogeneous asset classes demonstrated a high performance of our method in achieving accurate replication of a reference asset by employing a sparse subset of candidate assets. The experimental results also dictated that sparse representation coding over jointly learned dictionaries is capable of adapting to a higher variability of the original data, without necessitating any prior normalization.

Chapter 5: In this chapter, we introduced a novel framework for estimating value-at-risk and expected shortfall by adapting to a predetermined investment horizon. To this end, first we elaborated on the equivalence between the kinetic energy, as defined in physics, and the concept of risk. Then, our proposed risk measure relied on the energy distribution of returns in an appropriate time-frequency domain. For this purpose, the maximal overlap discrete wavelet transform was employed in our implementation due to its high redundancy, which yields more accurate estimation of sample statistics, and shift invariance, which guarantees that shifting the input time series by a certain amount results in likewise shifted output transform coefficients. The empirical evaluation on a set of distinct market indexes, over a period of diverse market conditions, revealed the superior performance of our proposed risk measure, in terms of better controlling the under-and over-estimation of value-at-risk and expected shortfall. The proposed risk quantification methodology is expected to further improve the accuracy of modeling, forecasting, risk management, and portfolio selection for medium-and long-run investment horizons and large confidence levels.

Chapter 6: This chapter proposed a novel methodology for optimal sampling of highfrequency financial data, in order to account for the inherent micro-structure effects. To this end, we introduced a framework for taming the impulsiveness that is inherent to data observed at high frequency. At the core of this framework, was our newly defined concept of the degree of impulsiveness (DoI), as an alternative source of information for characterizing the statistical behavior of such data. A generalized volatility signature plot, which was further used to calculate the optimal sampling period, was defined based on the DoI, demonstrating a better adaptability to a broad range of impulsive behaviors in high-frequency returns. The comparison of our methodology against well-established subsampling strategies revealed the clear superiority of our method, in terms of an improved risk quantification performance.

Chapter 7: In this chapter, we proposed a novel methodology for extreme risk quantification of assets with highly varying heavy-tailed behavior. Our method was grounded on the new concepts of truncated dispersion (TD) and degree of impulsiveness (DoI), which we defined properly as alternative sources of information for characterizing the statistical behavior of such data. Then, a jointly dispersion-impulsiveness regularized expected shortfall risk measure was defined, which accounts not only for the deviation of returns in the leftmost tail of the loss distribution, but also for a confidence interval where extreme observations have a likelihood of occurring. The empirical evaluation on a set of distinct assets with impulsive returns demonstrated an improved performance of our method, when compared against well-established extreme risk measures, in achieving a higher protection to extreme losses.

Chapter 8: This chapter proposed a novel methodology for generating an efficient predictive signal towards quantifying the predictive capacity of dynamic graph connectivity measures on the systemic risk of markets and the tail risk of individual assets belonging to highly heterogeneous classes. Our method was grounded on both statistical and geometric techniques for inferring the time-varying graph topology. In all cases, the dynamic graphs were able to capture co-movement patterns between pairwise returns series, which probably cannot be explained by common market factors. The experimental evaluation on a set of heterogeneous asset classes, characterized by distinct behavior, provided new insights with respect to the best performing (i.e., with the highest predictive potential) global and nodal graph measures.

Future Research

At the time this thesis is written, the financial industry has already started witnessing dramatic advancements in information and communication technologies, with a huge potential to impact financial services. Traditional methodologies and tools are giving their position to technology-led innovation in products and services, which will be soon in full swing as businesses will leverage FinTech (Financial Technologies) to build new business models.

The regulatory and business environments have become more volatile and unpredictable than in previous years. New regulations have come in a period where institutions seek to reduce operating costs including risk management costs. Today, risk management is at a crossroads. Financial institutions need to decide if they will continue with business as usual or instead fundamentally rethink their approach to risk management. The new environment provides strong incentives for financial institutions to transform how they manage risk to become substantially more effective and efficient. This will require institutions to seize opportunities related to strategy, people, the three lines of defense model, and technology in a coordinated way. Institutions will need to embrace emerging technologies, such as robotic process automation, artificial and cognitive intelligence, natural language processing, and machine learning, that can reduce costs, while also offering foresight into emerging risk issues. These emerging trends in financial services will help banking, insurance, and other financial institutions implement security, improve accessibility, deliver convenience, and most importantly, build trust.

New digital tools will include cognitive agents scanning a wide range of signals in the internal and external environment to identify new risks, emerging threats, and potential bad actors. These digital tools will not only strengthen the risk function but provide additional insight to the business and to strategy and strategic execution. Big data analytics will be used to provide deeper insight into the interactions of risks and causal factors. Robotics and process optimization will restructure processes and automate many of the processes that remain to dramatically reduce both operational risk and also improve quality of risk management, including reviewing conduct and culture risks.

From the above, it is more than obvious that huge opportunities exist for future disruptive innovations in the field of risk management. Below we list the most imminent financial technology trends that we identified as promising enough to help financial institutions deal with both existing and new issues related to risk management. There is no single definition of AI, but broadly speaking, AI is the theory and development of computer systems able to perform tasks that normally require human intelligence. Notice though that AI is not a technology per se, but rather a collection of techniques that mimic human behavior. Some of the key techniques, which are currently relevant for financial services, including risk management, are: i) machine/deep learning, ii) natural language processing, and iii) visual recognition.

With its high computing and cognitive abilities, AI will help financial institutions manage risks, detect frauds, and identify data patterns that enable them to make decisions with minimal human intervention. One of the major research challenges, regarding the wide adoption of AI-enabled risk management systems, is the design of AI-based computational tools empowered with interpretability and explainability mechanisms.

2. Big Data Analytics: Data plays an elementary role in the financial industry and when mapped with technologies, such as big data analytics, it is sure to deliver business value. Big data analytics enables financial institutions to successfully process multi-modal multi-dimensional data and gain actionable insights that help in decision-making, risk management, fraud detection, product development, and more.

Several open challenges offer great opportunities for novel research at the intersection of data analytics and risk management: i) Collecting meaningful and real-time data: with so much data available, it is difficult to dig down and access the insights that are needed most. Developing end-to-end risk management systems able to automatically collect, organize and alert investors of abnormal events, is still at a very early stage; ii) Data from multiple sources: another issue is to analyze data across multiple, disjointed sources. The design of comprehensive and centralized data analytics systems will enable risk managers and investors to access all types of information in one location. Not only does this saves time spent accessing multiple sources, it also allows cross-comparisons and ensures data is complete; iii) Risk response and mitigation: an effective risk response must evaluate various available options and not only decide the best suitable alternative but also consider the consequential impacts emanating from the selected option. Addressing this problem necessitates novel AI and machine/deep learning models, scenario models, workflow and analytical tools, as well as efficient data visualization platforms.

3. Distributed Ledger Technology: Distributed ledger technology (DLT) refers to the technological infrastructure and protocols that allows simultaneous access, validation, and record updating in an immutable manner across a network that's spread across multiple entities or locations. DLT, more commonly known as the blockchain technology, was introduced by Bitcoin and is now a buzzword in the technology world, given its potential across industries and sectors. In simple words, the DLT is all about the idea of a decentralized network against the conventional centralized mechanism, and it is deemed to have far-reaching implications on sectors and entities that have long relied upon a trusted third-party.

In the framework of risk management, developing innovative solutions that combine blockchain with AI and automation can bring new value to financial processes that
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 11 Figure 1.1: Pert chart with the chapters' dependencies.

Figure 2 . 1 :

 21 Figure 2.1: Time series and single-sided amplitude spectrum (SSAS) for the prices and returns of S&P 500 (in USD) in the period 01/01/2007-25/02/2019; (a) daily adjusted close prices series, (b) SSAS of prices series, (c) daily continuously compounded returns, (d) SSAS of returns series.

Figure 2 .

 2 Figure 2.2 shows the daily adjusted close prices and daily continuously compounded returns series of the S&P 500 index, along with their corresponding spectrograms, in the period between January 1st, 2007 and February 25th, 2019. As it can be seen, for
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 22 Figure 2.2: Time series and spectrogram for the prices and returns of S&P 500 (in USD) in the period 01/01/2007-25/02/2019; (a) daily adjusted close prices series and spectrogram, (b) daily continuously compounded returns and spectrogram.
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 23 Figure 2.3: Comparison of time-frequency tiling for STFT and DWT.

Figure 2 . 4 :

 24 Figure 2.4: Block diagram of filter analysis for the DWT.

Figure 2 . 5 :

 25 Figure 2.5: 3-level filter bank.

  efficients) and the same wavelet function utilized by the DWT. To sum up, the key advantages of the DWT are twofold: i) DWT can extract local spectral and temporal information simultaneously, and ii) if we know what characteristic shape we are trying to extract from a time series, there is a wide variety of wavelets to choose from to best match that shape. Some commonly used wavelets are shown in Figure 2.6. Figure 2.7 illustrates the application of a 3-level DWT, using the Fejer-Korovkin wavelet of order 8 ('fk8'), on the daily prices and daily continuously compounded returns series of Bitcoin (in USD), in the period between April 29th, 2013 and July 6th, 2021.
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 26 Figure 2.6: Commonly used wavelet functions.

Figure 2 . 7 :

 27 Figure 2.7: 3-level DWT, using the 'fk8' wavelet, applied to the daily prices and daily continuously compounded returns series of Bitcoin, in the period 29/04/2013-06/07/2021.

Figure 2 .

 2 Figure 2.8: 3-level MODWT and MRA, using the 'fk8' wavelet, applied to the daily prices (a)-(c) and daily continuously compounded returns (d)-(f) series of Bitcoin, in the period 29/04/2013-06/07/2021.

Figure 3 . 1

 31 shows examples of standardized symmetric α-stable probability density functions for a varying characteristic exponent, α ∈ {0.5, 1, 1.5, 2}, including the special cases of Cauchy (α = 1) and Gaussian (α = 2) distributions. Notice that the smaller the value of α, the heavier the tails of the corresponding pdf (ref. small plot in upper right corner).

Figure 3 . 2 depicts

 32 examples of synthetic time series of length N = 2000, drawn from standardized symmetric α-stable distributions with α ∈ {0.5, 1, 1.5, 2}. As it can be seen, the time series corresponding to small α values are highly impulsive.

Figure 3 . 1 :

 31 Figure 3.1: Standardized symmetric α-stable probability density functions for a varying characteristic exponent, α ∈ {0.5, 1, 1.5, 2}.

Figure 3 . 2 :

 32 Figure 3.2: Synthetic time series drawn from standardized symmetric α-stable distributions with α ∈ {0.5, 1, 1.5, 2}.

Figure 3 . 3 :

 33 Figure 3.3: Q-Q plots of empirical quantiles against theoretical quantiles of i) normal, ii) generalized extreme value, and iii) α-stable distributions, for (a) S&P 500, (b) DAX 30, and (c) Bitcoin minute returns.

  Figures 3.4, 3.5 show 

Figure 3 . 5 :

 35 Figure3.5: Amplitude probability density (APD) curves for the wavelet coefficients of Bitcoin minute returns; 3-level MODWT is applied using the 'fk8' wavelet; The empirical APD is compared against the APDs of the i) Gaussian, ii) generalized extreme value, and iii) α-stable models.

  effective representation of the inherent structural information of a time series can be achieved by means of dimensionality reduction. Well-established methods are based on the discrete Fourier transform[START_REF] Agrawal | Efficient similarity search in sequence databases[END_REF], a multiresolution analysis via discrete wavelet transforms[START_REF] Chan | Efficient time series matching by wavelets[END_REF],[START_REF] Kahveci | Variable length queries for time series data[END_REF], singular value decomposition (SVD)[START_REF] Keogh | Dimensionality reduction for fast similarity search in large time series databases[END_REF],[START_REF] Wu | Efficient retrieval for browsing large image databases[END_REF], or piecewise aggregate approximations (PAA)[START_REF] Chakrabarti | Locally adaptive dimensionality reduction for indexing large time series databases[END_REF],[START_REF] Byoung | Fast time sequence indexing for arbitrary Lp norms[END_REF]. However, in all these cases, the choice of a suitable representation affects greatly the efficiency and accuracy of further time series processing and statistical inference.Focusing on financial time series, first we observe that they are typically characterized by a few critical points, whilst a multiresolution consideration is often necessary for long-term and short-term analysis. Thus the accurate identification of critical or extreme points, along with the efficient extraction of informative localized patterns, are critical steps towards designing robust replicating portfolios. Nevertheless, most of the existing methods for the extraction of localized patterns of reduced dimensionality suffer from a significant loss of information during the transformation of the original time series into a compact low-dimensional representation. Furthermore, they are often sensitive to the presence of noise or outliers, whilst a large amount of historical data is required to ensure increased representation capability of the range of values that will be observed in the future. All these factors may impede dramatically the selection of the optimal subset of replicating assets.

Figure 4 .

 4 1 shows the flow diagram for joint dictionary learning and sparse coding of the candidate and reference assets.

Figure 4 . 1 :

 41 Figure 4.1: Flow diagram for joint dictionary learning and sparse coding.

Figure 4 . 2 :

 42 Figure 4.2: Original and replicated prices and returns series for (a) ES1 Index, (b) TY1 Comdty, (c) BP1 Curncy, (d) GI1 Index, for δ = 0.25.

Figure 4 . 3

 43 shows the MMR value for each individual prices series and the RMSE for each corresponding returns series, considered sequentially as the reference asset, for δ ∈ {0.15, 0.25, 0.50}.

Figure 4 . 3 :

 43 Figure 4.3: Replication accuracy between the original and replicated series: (a) MMR for prices, (b) RMSE for returns, with δ ∈ {0.15, 0.25, 0.50} (bars are displayed in stacked form).

Figure 4 . 4 :

 44 Figure 4.4: Total volatility and skewness of the prices series in our data set.

Figure 4 .

 4 Figure 4.5 depicts the sparse codes for each prediction window of the randomly chosen BP1 Curncy asset, for the three sparsity levels. The upper row shows the sparse codes for the prices series, while the bottom row shows the sparse codes for the returns series. It is clear that the great majority of candidate assets are inactive (i.e., their corresponding weight is equal to zero) in each window, while only a sparse subset of them contributes to the replication of the reference asset. Moreover, the selected subset of candidate assets may vary in each window, which highlights the efficiency of our proposed method in adapting to the underlying localized structures of financial assets.Finally, it is also of interest to investigate the accuracy in replicating a reference asset in terms of statistical features, such as their annual volatility. In the following, we analyze the relation between the achieved replication performance (MMR and RMSE) and the annual volatility for both the prices series and their corresponding returns. The annual volatility of a series of continuously compounded returns r ∈ R N is defined by

Figure 4 . 5 :

 45 Figure 4.5: Sparse codes for the (a) prices and (b) returns series of the BP1 Curncy asset, with δ ∈ {0.15, 0.25, 0.50}.

Figure 4 . 6 :

 46 Figure 4.6: (a) MMR for the prices and (b) RMSE for the returns of the 52 assets, as a function of the annual volatility (δ = 0.25). A rough clustering capability of the proposed replication method is also revealed (solid ellipses for Commodity, dotted ellipses for Currency, and dashed ellipses for Index assets).

Figure 5 .

 5 Figure 5.1 gives a visual representation of VaR and ES. Like VaR, ES is universal and can be applied to almost any instrument and underlying source of risk. The Basel Committee imposed VaR and is now proposing to phase out VaR and to move towards ES, since it theoretically captures the information contained in the tail in a better fashion. In contrast to VaR, ES is a coherent risk measure, as defined by [Art+99], and fulfills the sub-additivity property. Despite the controversy surrounding the use of VaR or ES, the superiority of the latter as a measure of risk is well-documented in the literature.
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 51 Figure 5.1: Visual representation of VaR and ES.

  .26) where d = (e r -e b ) 2 with e r and e b denoting, respectively, the random variables representing the errors between the reference VaR measure and the true VaR values, and the benchmark VaR measure and the true VaR values. Herein we consider that e b = 0. The function NWHAC(d) denotes the Newey West HAC variance estimator. The associated p-value is defined by

Figure 5 . 2 :

 52 Figure 5.2: Illustration of misleading inference when using the number of VaR violations as a performance indicator.

Figure 5 .

 5 Figure 5.3 displays the daily returns of the three indexes over the whole time period considered herein. A volatility clustering feature can be observed for all indexes, with the returns being more volatile during the financial crises periods, especially for the S&P 500, which lost almost half of its value between July 2008 and the market bottom in March 2009. Furthermore, there are some volatile periods for the three indexes in 2011-2012, due to the great recession period between 2008 and 2012, and 2014-2015, due to the sharp devaluation of the Russian ruble beginning in the second half of 2014. First, we evaluate and compare the performance and robustness of the three VaR quantification methods by varying the investment horizon T H ∈ {5, 25, 125}. Notice that the larger the horizon the more past samples we need for an accurate risk quantification.
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 53 Figure 5.3: Daily compounded returns of S&P 500, DAX and MSCI World for the period 01/01/2007-25/02/2019.

Tables 5 . 2 - 5 . 4

 5254 display the values of the VaR backtesting performance indicators described in Sections 5.4.1 and 5.4.3, along with the test statistics and p-values of the binomial (Bin) and the Giacomini-White (GW) tests.

Tables 5 .

 5 5-5.7 show the values of the ES backtesting performance indicators described in Sections 5.4.2 and 5.4.3, along with the p-value and the critical value of the T 1 ES test.

Figure 3 .

 3 3 shows the Q-Q plots for the minute returns of S&P 500, DAX 30 and Bitcoin, which present highly distinct degrees of kurtosis (ref.Table 6.1). Clearly, the returns deviate significantly from a normal distribution, as expected, whilst the α-stable model yields an excellent approximation to the empirical quantiles, thus underpinning our choice for this family of heavy-tailed distributions. Similar behavior is observed for the NIKKEI 225 and EUROSTOXX 50 indexes.To further examine the thickness of the tails of the density function for the index returns considered herein, Figure6.1 shows the corresponding estimated characteristic exponent, α, as a function of the horizon τ (in minutes). Although the returns exhibit distinct statistical behaviors for different returns horizons τ , all indexes are characterized by a significantly high impulsiveness, as expressed by the corresponding characteristic exponent values, which are much smaller than 2.

Figure 6 . 1 :

 61 Figure 6.1: Estimated characteristic exponent, α, of the returns series for the five indexes, as a function of the horizon τ = 1, . . . , 60 minutes.

Figure 6 . 2 :

 62 Figure 6.2: Difference between volatility and impulsiveness. (a) Original data corrupted by randomly adding spikes; (b) corresponding empirical probability density functions.

Figure 6 . 3 :

 63 Figure 6.3: (a) Instances of signals with varying tail thickness; (b) Average DoI (in dB) over 500 Monte Carlo runs, as a function of α.

Figure 6 . 4 :

 64 Figure 6.4: Flow diagram of our proposed methodology for DoI-based optimal sampling period selection.

Figure 6 . 5 :

 65 Figure 6.5: (a) Generalized VSPs for the five indexes; (b) Optimal sampling period estimation via standard deviation filtering, for S&P 500 and EUROSTOXX 50 indexes, as a function of the returns horizon τ = 1, . . . , 120 minutes.

  .22) where N is the number of samples, E = (E r -E b ) 2 with E r and E b denoting, respectively, the random variables representing the errors between the reference VaR measure and the true VaR values, and the benchmark VaR measure and the true VaR values. Herein we consider that E b = 0. The function NWHAC(E) denotes the Newey West HAC variance estimator. The associated p-value is defined by PValueGW = 1 -F χ 2 (TStatGW 2 ) , (6.23)

  .24) with 1(•) being the indicator function. In case that the distributional assumptions for the returns are correct, it holds that E{TStatZ 1 ES } = 0. Negative values of the test statistic indicate risk underestimation. The unconditional test is a one-sided test that rejects when there is evidence that the model underestimates risk. Furthermore, the test rejects the model when the p-value is less than 1 minus the test confidence level. Most importantly, TStatZ 1

Figure 7 . 1 :

 71 Figure 7.1: Flow diagram for the calculation of the proposed extreme risk measure (top row) and its horizon-adaptive extension (bottom row).

Definition 7 . 3 (

 73 Jointly Dispersion-Impulsiveness Regularized ES). Given a random variable R ∼ S α (γ, β, δ) under the 1-parameterization (3.1), associated with the returns r ∈ R N , two constants κ 1 ≥ 0 and κ 2 ∈ [-b, b], and a confidence level c ∈ (0, 1), the θ-level (θ = 1 -c) jointly dispersion-impulsiveness regularized expected shortfall is defined by

  the corresponding risk values, along with their respective bias(7.29) and mean absolute bias(7.29) values, for θ = 0.01 (i.e., confidence level c = 99%), averaged over the K = 200 realizations of r. ES emp/norm/stbl correspond to the ES values estimated based on the empirical/normal/α-stable distributions, respectively. Regarding our DIRS risk measure defined by (7.24), we fix κ 1 = 1 and κ 2 = -1, whilst for the shortfall deviation risk (SDR) and conditional tail moment (CTM) the corresponding parameters are set according to Remark 7.6.First, we observe that, as the data statistics tend to the normal (i.e., α → 2), the risk value reduces for all risk measures. Our proposed DIRS measure generally results in the most accurate 99% ES estimates, as deduced by the significantly smaller bias and mean absolute bias (MAB) values, whilst still offering superior protection to the ES, as expressed by the positive bias value, which is preferred by financial institutions and regulators. Concerning the main competitor of DIRS, namely, the shortfall deviation risk measure, it yields a more optimistic extreme risk measurement for the whole range of impulsive behaviors, as shown by the much larger (positive) bias and mean absolute bias values for all α's. All the other risk measures underestimate ES on average, as revealed by their negative bias. Among them, conditional tail moment (CTM) is the most conservative one, followed by the ES based on the normal distribution. On the other hand, the extreme expectiles-based ES (XES) and the ES based on the α-stable model still underestimate ES, but they stay closer to the empirical 99% ES, when compared against CTM and the normal-based ES.To further demonstrate the behavior of our DIRS measure, Figure7.2 shows the evolution of the empirical ES, extreme expectiles-based ES, shortfall deviation risk, and our proposed DIRS, for different confidence levels c ∈ {95%, 97.5%, 99%, 99.9%} and for α ∈ {1.1, 1.5}. As expected, the larger the confidence level and the more impulsive the given data (i.e., with a smaller α), the higher the risk value for all risk measures due to the occurrence of very extreme observations. As before, the extreme expectiles-based ES measure is more conservative, yielding a smaller risk than ES, whilst the shortfall deviation risk measure overestimates empirical ES. On the other hand, our proposed DIRS measure is closer to the empirical ES, yet it offers an improved protection compared with ES.

Figure 7 . 2 :

 72 Figure 7.2: ES (empirical), XES, SDR, and DIRS calculated for simulated data drawn from α-stable distributions S α (1, 0, 0), as a function of c ∈ {95%, 97.5%, 99%, 99.9%}; (a) α = 1.1, (b) α = 1.5.

  Figure 8.1 displays the graphs 4 for the five classes considered herein (top row: 15/11/2018, bottom row: 31/03/2020). The color coding is as follows: Futures [orange], Top Mutual Funds [green], Stocks [red], Top ETFs [pink], and Cryptocurrencies [blue].

  dates have the following values: (i) 15/11/2018 -Pearson's correlation: average degree = 27.69, clustering coefficient = 0.83, modularity = 0.15; Kolmogorov-Smirnov test: average degree = 31.20, clustering coefficient = 0.73, modularity = 0.16; Generalized Euclidean distance: average degree = 35.04, clustering coefficient = 0.82, modularity = 0.18; (ii) 31/03/2020 -Pearson's correlation: average degree = 27.63, clustering coefficient = 0.81, modularity = 0.12; Kolmogorov-Smirnov test: average degree = 31.26, clustering coefficient = 0.77, modularity = 0.17; Generalized Euclidean distance: average degree = 34.59, clustering coefficient = 0.82, modularity = 0.15. By visual inspection of the graphs in Figure 8.1, we observe varying connectivity patterns, not only among the different dates for a given inference rule, but also between the three graph construction methods.For instance, a slightly denser connectivity appears during the cryptocurrency crash, whilst Pearson's correlation and the generalized Euclidean distance yield graphs, where

( a )Figure 8 . 1 :

 a81 Figure 8.1: Graph topologies inferred using the three connectivity criteria, at two distinct dates; top row: 15/11/2018, bottom row: 31/03/2020; color coding: Futures [orange], Top Mutual Funds [green], Stocks [red], Top ETFs [pink], and Cryptocurrencies [blue].

  As a first illustration, Figure 8.2 shows the predictive signals of the average degree and clustering coefficient, respectively, on a market volatility index, namely, VIX, and the tail risk (i.e., SDR) series of SMH. Notably, the predictive signals present spikes within the time intervals of the four critical events contained in the given dataset. Additional spikes appear as well, which are aligned with turning points occurring in the respective global connectivity measures, indicating the existence of potential critical events.
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 82 Figure 8.2: Predictive signals and global connectivity measures for (a) VIX and (b) SMH.

Figure 8 . 3 :

 83 Figure 8.3: Number of nodes in the threshold-minimum dominant set, and total number of edges, as a function of threshold, for six distinct years.

1 .

 1 Cognitive Technology: Artificial Intelligence (AI) covers multifarious aspects of the financial services business and probably, finds its best use cases in the industry.

Table 2 . 1 :

 21 Mean values of the wavelet coefficients of three indexes analyzed in J = 4 levels using the db8 wavelet.

				Coefficient vector		
	Index	d 1	d 2	d 3	d 4	a 4
	S&P 500 DAX MSCI World -7.690e-17 -7.691e-17 -7.696e-17 -7.691e-17 1.084e-04 -1.519e-16 -1.520e-16 -1.520e-16 -1.519e-16 2.141e-04 -1.244e-16 -1.245e-16 -1.245e-16 -1.246e-16 1.755e-04

  As in the case of DWT, the Fejer-Korovkin wavelet of order 8 ('fk8') is employed. Figures 2.8(b), 2.8(c) show the MODWT coefficients and MRA series, respectively, of Bitcoin's prices series. As it can be seen, the larger the decomposition level, the smoother the MODWT coefficients and the MRA series. Similar behavior is observed for the MODWT and MRA outputs of Bitcoin's returns series, as shown in

	.14)
	Figure 2.8 illustrates the application of a 3-level MODWT, and the corresponding
	MRA, to the daily prices and returns of Bitcoin in the period between April 29th, 2013
	and July 6th, 2021. Figures 2.8(e), 2.8(f).

  Then, a 4-level MODWT decomposition of x yields four detail coefficient vectors, d 1 , d 2 , d 3 , d 4 ∈ R 250 and one approximation coefficient vector a 4 ∈ R 250 . In particular, d j contains frequency information for a time resolution between [2 j , 2 j+1 ) days (e.g. d 1 is associated with a time resolution between [2, 4) days, while d 3 corresponds to [8, 16) days). Finally, a 4 captures the smooth variations of x for a time resolution of 16 days and beyond.

Table 3 .

 3 

	1: FLOM-based optimal p as a function of the characteristic exponent α.
	α	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
	p opt 0.52 0.56 0.58 0.61 0.64 0.69 0.72 0.76 0.81 0.88 0.98
	Furthermore, (3.5) yields the following expression for the dispersion of R in terms of
	the FLOMs,											

Table 3

 3 

	.2 shows these statistics for the

Table 5 . 1 :

 51 Descriptive statistics for the daily compounded returns of S&P 500, DAX and MSCI World during the period 01/01/2007-25/02/2019.

			Index	
	Variable	S&P500	DAX	MSCIW
	# samples	3171	3171	3171
	Mean (%)	0.0214 0.0175	0.0108
	Median (%)	0.0344 0.0429	0.0569
	Std (%) Skewness Kurtosis	1.2248 1.3657 -0.3602 -0.0102 14.1689 9.3505 12.3523 1.0481 -0.4995

Table 5 . 2 :

 52 VaR backtesting performance of HAER, HS and EXP, for T In Tables 5.2-5.4 the following notation is used: (i) HAER is our energy-based VaR measure, (ii) HS is the historical simulation method, and (iii) EXP is the expectiles-based VaR estimator. All the test statistics and p-values correspond to a 95% test confidence level.

	and T = 750.
	H = 5

*
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 53 VaR backtesting performance of HAER, HS and EXP, for T

	and T = 1000.
	H = 25

Table 5 . 4 :

 54 VaR backtesting performance of HAER, HS and EXP, for T

	and T = 1500.
	H = 125

Table 5 . 5 :

 55 ES backtesting performance of HAER, HS and EXP, for T In Tables 5.5-5.7 the following notation is used: (i) HAER is our energy-based ES measure, (ii) HS is the historical simulation method, and (iii) EXP is the expectiles-based ES estimator. All the test statistics and p-values correspond to a 95% test confidence level.

	and T = 750.
	H = 5

Table 5 . 6 :

 56 ES backtesting performance of HAER, HS and EXP, for T

	and T = 1000.
	H = 25

Table 5 . 7 :

 57 ES backtesting performance of HAER, HS and EXP, for T

	and T = 1500.
	H = 125

  the subsequent analysis, we employ minute close prices of four major stock indexes

	Table 6.1: Returns summary statistics for the selected five (minute) indexes in the
	period 02/01/2016-31/12/2018.				
		SPXUSD JPXJPY GRXEUR ETXEUR BTCUSD
	Mean (%) 2.537e-05 6.619e-06 1.216e-06 -9.602e-06	3.414e-04
	Std (%)	0.027	0.040	0.039	0.050	0.832
	Min (%)	-1.180	-3.606	-10.703	-13.250	-597.220
	Max (%)	1.402	2.297	2.153	2.742	596.405
	Skewness	0.080	-0.769	-34.381	-43.542	-1.344
	Kurtosis	71.099	137.630	9100	11186 4.980e+05

worldwide and one cryptocurrency, namely, S&P 500 (in USD) [SPXUSD], NIKKEI 225 (in JPY) [JPXJPY], DAX 30 (in EUR) [GRXEUR], EUROSTOXX 50 (in EUR) [ETXEUR], and Bitcoin (in USD) [BTCUSD], spanning the period from January 2nd, 2016 to December 31st, 2018. The four stock indexes have been downloaded from Google Finance, and the Bitcoin's prices from Bitstamp.

As a first qualitative assessment of the behavior of our data, a selection of summary statistics, such as the mean, standard deviation, skewness and (excess) kurtosis, are typically presented. Table

6

.1 shows these statistics for the compounded returns of the above five indexes. As it can be seen, their minute means are quite small, whilst minute volatility is similar for the four stock indexes, and an order of magnitude larger for the cryptocurrency. Concerning the lowest returns, S&P 500 reaches a minimum on 2016/01/20, whilst NIKKEI 225 and DAX 30 got the lowest return by mid February of 2016, for the period considered. Finally, both EUROSTOXX 50 and Bitcoin reach a minimum by mid June of 2016. Furthermore, the returns of S&P 500, NIKKEI 225 and Bitcoin present a relatively small skewness, whilst the returns of DAX 30 and EUROSTOXX 50 present a highly negative skewness. Most importantly, all five indexes possess a significantly high (excess) kurtosis, thus providing a strong, though not perfect, indication of fat tails in the returns distribution.
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 62 VaR backtesting for No-S, gVSP-S, and VSP-S, for T

	V,obs
	Method VaRLevel ObservedLevel P
	Index

H = 360.

Table 6 . 3
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	TStatBin PValueBin TStatGW PValueGW	144.290 0 6.329 2.464e-10	-5.189 1.052e-07 3.314 9.215e-04	-3.344 4e-04 4.371 1.236e-05	39.698 0 7.117 1.105e-12	-4.540 2.811e-06 3.353 7.988e-04	-8.665 0 3.762 1.688e-04	160.92 0 5.401 6.639e-08	-3.175 7e-04 3.065 0.002	-7.762 4.219e-15 3.667 2.458e-04	22.211 0 4.799 1.592e-06	-5.187 1.069e-07 3.0174 0.002	-8.440 0 3.466 5.278e-04	-69.019 0 7.222 5.090e-13	-0.640 0.260 2.725 0.006	-18.812 0 3.429 6.047e-04
	P V,expected Bin	8146 reject	163 reject	905 reject	7942 reject	139 reject	318 reject	6330 reject	117 reject	395 reject	4406 reject	110 reject	259 reject	10620 reject	93 accept	425 reject
	Index Method VaRLevel ObservedLevel P V,obs	S&P 500 No-S 0.99 0.974 21104	S&P 500 gVSP-S 0.99 0.994 97	S&P 500 VSP-S 0.99 0.991 805	NIKKEI 225 No-S 0.99 0.985 11462	NIKKEI 225 gVSP-S 0.99 0.994 86	NIKKEI 225 VSP-S 0.99 0.995 164	DAX 30 No-S 0.99 0.969 19068	DAX 30 gVSP-S 0.99 0.992 83	DAX 30 VSP-S 0.99 0.994 242	EUROSTOXX 50 No-S 0.99 0.987 5874	EUROSTOXX 50 gVSP-S 0.99 0.994 56	EUROSTOXX 50 VSP-S 0.99 0.995 124	Bitcoin No-S 0.99 0.996 3543	Bitcoin gVSP-S 0.99 0.991 87	Bitcoin VSP-S 0.99 0.999 39

: VaR backtesting for No-S, gVSP-S, and VSP-S, for T H = 720.

Table 6 . 4 :

 64 ES backtesting for No-S, gVSP-S, and VSP-S, for T

	Method VaRLevel ObservedLevel Failures Expected Unconditional PValueZ 1 ES
	Index

H = 360.

Table 6 . 5
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	CriticalValueZ ES	-3.793	-3.751	-3.955	-2.006	-3.375	-2.915	-6.466	-4.389	-4.214	-1.815	-3.087	-2.469	-1.316	-2.854	-2.956
	TStatZ ES	-2.168	0.407	0.078	-0.596	0.479	0.516	-2.583	0.341	0.339	-0.416	0.516	0.546	0.352	-0.114	0.889
	Index Method VaRLevel ObservedLevel Failures Expected Unconditional PValueZ ES	S&P 500 No-S 0.99 0.974 21104 8100 accept 0.800	S&P 500 gVSP-S 0.99 0.994 87 150 accept 1	S&P 500 VSP-S 0.99 0.991 805 900 accept 1	NIKKEI 225 No-S 0.99 0.986 11462 7900 accept 0.888	NIKKEI 225 gVSP-S 0.99 0.994 53 100 accept 1	NIKKEI 225 VSP-S 0.99 0.995 149 300 accept 1	DAX 30 No-S 0.99 0.969 19045 6300 accept 0.905	DAX 30 gVSP-S 0.99 0.993 68 100 accept 1	DAX 30 VSP-S 0.99 0.992 237 350 accept 1	EUROSTOXX 50 No-S 0.99 0.987 5874 4400 accept 0.902	EUROSTOXX 50 gVSP-S 0.99 0.995 48 100 accept 1	EUROSTOXX 50 VSP-S 0.99 0.995 117 250 accept 1	Bitcoin No-S 0.99 0.997 3543 10600 accept 0.933	Bitcoin gVSP-S 0.99 0.989 51 50 accept 1	Bitcoin VSP-S 0.99 0.999 44 400 accept 1

: ES backtesting for No-S, gVSP-S, and VSP-S, for T H = 720.
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 71 Daily returns summary statistics, average market cap (in billion USD) and trading volume (in billions) of the selected crypto-assets and daily returns summary statistics of EUR/USD FX rate for the periods considered. Regarding the parameters tuning for the above risk measures, in the subsequent analysis, we employ the parameter values proposed in the corresponding papers.

		Bitcoin Dogecoin Ethereum Litecoin	Ripple EUR/USD
	Period	[29/04/13, [16/12/13, [08/08/15, [29/04/13, [05/08/13, [29/04/13,
		06/07/21] 06/07/21] 06/07/21] 06/07/21] 06/07/21] 06/07/21]
	Symbol	BTC	DOGE	ETH	LTC	XRP EURUSD
	Num.Obs	2991	2760	2160	2991	2893	2137
	Mean (%)	0.18	0.26	0.37	0.12	0.17 -4.43e-03
	Std (%)	4.28	8.38	6.21	6.37	7.32	0.49
	Min (%)	-46.47	-58.11	-55.07	-51.46	-61.63	-2.81
	Max (%)	35.75	151.64	41.03	82.93	102.74	3.14
	Skewness	-0.54	3.85	0.01	1.20	1.60	0.03
	Kurtosis	14.13	64.31	10.67	26.56	29.32	6.61
	MarketCap (B$)	120.80	1.76	41.72	2.93	9.68	-
	TradingVol (B)	10.91	0.43	7.06	1.28	1.26	-
	7.5.2 Risk measures compared				
	Hereafter, we use the empirical method known as historical simulation, which is a non-
	parametric method that makes no assumptions about the data. The risk measures

Table 7 . 2 :

 72 Risk values and associated [bias, MAB] pairs, at θ = 0.01 level, averaged over K = 200 realizations of simulated time series r of length N = 10 4 drawn from α-stable distributions S α (1, 0, 0) with α ∈ {1.1, 1.5, 1.9}.

	α ES emp ES norm	ES stbl	XES	CTM	SDR	DIRS
	1.1	6.364 [-, -]	5.561 [-0.803, 0.802] [-0.143, 0.142] [-0.157, 0.156] [-1.284, 1.284] [0.244, 0.244] [0.011, 0.010] 6.221 4.987 5.079 6.607 6.374
	1.5	5.542 [-, -]	4.697 [-0.844, 0.845] [-0.048, 0.073] [-0.097, 0.099] [-1.304, 1.305] [0.225, 0.224] [0.013, 0.012] 5.494 4.341 4.237 5.766 5.554
	1.9	5.192 [-, -]	4.257 [-0.935, 0.934] [0.110, 0.115] [-0.055, 0.068] [-1.419, 1.420] [0.229, 0.230] [0.017, 0.016] 5.303 4.059 3.773 5.422 5.209

Table 7 . 3 :

 73 In-sample risk bias per asset and mean absolute bias (MAB) over all assets, at θ = 0.01 level, for the five crypto-assets and EUR/USD FX rate: window length w = length of each time series, investment horizon T H ∈ {1, 5, 15} (by definition, DIRS A measure is undefined for T H = 1).

				TH = 1			
	Asset	w	ES stbl XES SDR DIRS DIRS A
	BTC	2991	0.077	0.011 0.030	0.048	-
	DOGE	2760	0.171	0.060 0.055	0.147	-
	ETH	2160	0.081	0.034 0.049	0.060	-
	LTC	2991	0.138	0.038 0.059	0.091	-
	XRP	2893	0.158	0.067 0.052	0.166	-
	EURUSD 2137	-0.001	0.002 0.002	0.003	-
	MAB		0.104	0.035 0.041	0.085	-
				TH = 5			
	Asset	w	ES stbl	XES	SDR DIRS DIRS A
	BTC	2991	0.084	0.034	0.038	0.022	0.049
	DOGE	2760	0.129	-0.003 0.016	0.117	0.493
	ETH	2160	0.041	0	0.043	0.032	0.041
	LTC	2991	0.272	0.038	0.060	0.075	0.089
	XRP	2893	0.197	0.014	0.037	0.098	0.108
	EURUSD 2137	-0.001	0	0.002	0.004	0.007
	MAB		0.121	0.015	0.033	0.058	0.131
			TH = 15			
	Asset	w	ES stbl	XES	SDR DIRS DIRS A
	BTC	2991	0.025	-0.010 0.020	0.015	0.027
	DOGE	2760	0.526	0.024	0.057	0.083	0.319
	ETH	2160	-0.016	-0.016 0.019	0.006	0.038
	LTC	2991	0.082	-0.012 0.038	0.031	0.050
	XRP	2893	0.216	0.007	0.045	0.062	0.072
	EURUSD 2137	-0.003	-0.001 0.004	0.003	0.005
	MAB		0.144	0.012	0.031	0.033	0.085

Table 7

 7 .4 compares the in-sample risk values, averaged over all assets, of six risk measures with the largest possible risk, for two investment horizons T H ∈ {5, 15}. It is shown that, while for a risk level θ = 0.05 the maximum possible average conditional tail risk estimation is moderate, it increases significantly for smaller risk level θ = 0.001 and larger investment horizon. Among the six risk measures, the empirical ES and extreme expectiles-based ES underestimate shortfall the most, by a factor of up to 3.266/0.649 = 5.036 and 3.266/0.635 = 5.145, respectively. On the other hand, the proposed DIRS and horizon-adaptive DIRS measures result in better balanced (neither too highly, nor too low conservative) risk values, especially for small risk levels and large investment horizons, which is preferred by financial institutions and regulators.

Table 7 . 4 :

 74 In-sample risk and worst-case conditional tail risk (last column) averaged over all assets, at level θ ∈ {0.05, 0.01, 0.001}, for the five crypto-assets and EUR/USD FX rate: investment horizon T H ∈ {5, 15}.

				TH = 5			
	θ	ES emp ES stbl XES SDR DIRS DIRS A σ (1 -θ)/θ
	0.05	0.238	0.239	0.256 0.255	0.318	0.442	0.546
	0.01	0.376	0.497	0.390 0.409	0.434	0.508	1.247
	0.001	0.435	0.596	0.437 0.481	0.487	0.706	1.768
				TH = 15			
	θ	ES emp ES stbl XES SDR DIRS DIRS A σ (1 -θ)/θ
	0.05	0.388	0.388	0.404 0.410	0.434	0.713	1.009
	0.01	0.575	0.714	0.574 0.606	0.608	0.661	2.304
	0.001	0.649	0.831	0.635 0.693	0.679	0.865	3.266

Table 7 . 5 :

 75 Multiresolution analysis of 1%-level ES for Bitcoin, Ripple and EUR/USD FX rate, for an investment horizon T H ∈ {1, 15}; a 3-level MODWT using the fk6 wavelet is applied to each returns series.

		TH = 1	
	MRA Series Bitcoin Ripple EUR/USD
	D1	53.78%	43.92%	66.19%
	D2	23.53%	24.99%	16.42%
	D3	8.13%	12.47%	6.82%
	A3	14.56%	18.62%	10.56%
		TH = 15	
	MRA Series Bitcoin Ripple EUR/USD
	D1	3.25%	4.54%	1.52%
	D2	2.33%	4.63%	0.97%
	D3	3.02%	6.27%	2.54%
	A3	91.40%	84.56%	94.97%

Table 7 . 6 :

 76 Out-of-sample statistics and performance metrics of the risk measures averaged over all rolling windows of the six assets, at level θ = 0.01 for investment horizons T H ∈ {1, 5, 15}.

	TH θ = 1%	µ	σ	Skew. Kurt.	Min	Max	Ratio ∥ • ∥∞
		Assets	0.002	0.053	0.539	25.936 -0.426	0.518	-0.124	0.629
		ES emp -0.187 0.014	-1.063	5.404	-0.228 -0.171	5.539	0.203
		ES stbl	-0.310 0.038	-0.452	3.698	-0.395 -0.247	8.569	0.366
	1	XES	-0.212 0.022	-0.684	3.312	-0.269 -0.185	6.173	0.240
		SDR	-0.256 0.029	-0.348	3.344	-0.319 -0.215	7.341	0.291
		DIRS	-0.284 0.022	-0.598	4.070	-0.344 -0.246	8.045	0.315
		DIRS A	-	-	-	-	-	-	-	-
		Assets	0.010	0.121	0.679	10.609 -0.582	0.857	-0.297	0.926
		ES emp -0.342 0.024	0.107	3.754	-0.391 -0.307	4.848	0.338
		ES stbl	-0.439 0.052	-0.310	2.525	-0.552 -0.383	5.954	0.505
	5	XES	-0.351 0.034	-0.057	3.579	-0.419 -0.309	4.960	0.368
		SDR	-0.378 0.033	-0.119	3.353	-0.442 -0.335	5.361	0.389
		DIRS	-0.406 0.028	0.105	3.053	-0.468 -0.356	5.632	0.412
		DIRS A	-0.565 0.089	0.038	3.146	-0.756 -0.402	7.880	0.695
		Assets	0.029	0.219	0.829	6.323	-0.682	1.116	-0.380	1.238
		ES emp -0.536 0.038	0.131	4.356	-0.611 -0.463	4.547	0.516
		ES stbl	-0.628 0.068	-0.783	10.421 -0.804 -0.515	5.075	0.707
	15	XES	-0.529 0.041	-1.275	13.862 -0.615 -0.455	4.472	0.524
		SDR	-0.569 0.041	-0.605	8.680	-0.653 -0.492	4.818	0.559
		DIRS	-0.577 0.054	-0.922	4.621	-0.712 -0.502	4.931	0.609
		DIRS A	-1.028 0.146	0.036	2.982	-1.299 -0.763	8.465	1.189

Table 7 . 7 :

 77 Backtesting results for five risk measures and five cryptocurrencies, with T H = 5 days. All test statistics and p-values correspond to a 95% test confidence level.

	Asset	Method c%	ObsSev ExpSev p-value TStatZ 1 ES	CriticalVal
		ESemp	97.5	1.38	1.27	0.13	-0.17	-0.30
		ESstbl	97.5	1.38	1.70	0.11	0.09	0.01
	BTC	XES	97.5	1.38	1.34	0.10	-0.14	-0.22
		SDR	97.5	1.38	1.48	0.12	-0.01	-0.11
		DIRS A	97.5	1.38	3.43	0.19	0.56	0.48
		ESemp	97.5	1.28	1.27	0.01	-0.06	0.06
		ESstbl	97.5	1.28	1.64	0.01	0.18	0.27
	DOGE	XES	97.5	1.28	1.26	0.01	-0.07	0.06
		SDR	97.5	1.28	1.34	0.01	-0.05	0.11
		DIRS A	97.5	1.28	1.75	0.04	0.22	0.22
		ESemp	97.5	1.37	1.28	0.71	-0.15	-0.83
		ESstbl	97.5	1.37	1.36	0.70	-0.08	-0.71
	ETH	XES	97.5	1.37	1.32	0.71	-0.12	-0.79
		SDR	97.5	1.37	1.39	0.72	-0.06	-0.69
		DIRS A	97.5	1.37	2.23	0.70	0.34	-0.03
		ESemp	97.5	1.34	1.26	0.54	-0.24	-0.70
		ESstbl	97.5	1.34	2.03	0.37	0.18	-0.04
	LTC	XES	97.5	1.34	1.28	0.53	-0.23	-0.69
		SDR	97.5	1.34	1.50	0.52	-0.06	-0.43
		DIRS A	97.5	1.34	2.73	0.30	0.36	0.22
		ESemp	97.5	1.39	1.33	0.03	-0.19	-0.14
		ESstbl	97.5	1.39	1.89	0.06	0.15	0.13
	XRP	XES	97.5	1.39	1.40	0.03	-0.14	-0.09
		SDR	97.5	1.39	1.44	0.04	-0.11	-0.07
		DIRS A	97.5	1.39	1.70	0.02	0.03	0.10
	protection to extreme losses for all cryptocurrencies except for the Dogecoin. Overall,
	the shortfall deviation risk (SDR) and the stable-based ES (ESstbl) measures achieve
	the next best performance after our horizon-adaptive risk measure.	

Table 7 .

 7 8: Backtesting results for five risk measures and five cryptocurrencies, with T H = 15 days. All test statistics and p-values correspond to a 95% test confidence level.

	Asset	Method c%	ObsSev ExpSev p-value TStatZ 1 ES	CriticalVal
		ESemp	97.5	1.27	1.24	0.88	-0.82	-1.69
		ESstbl	97.5	1.27	1.31	0.77	-0.75	-1.44
	BTC	XES	97.5	1.27	1.24	0.89	-0.83	-1.70
		SDR	97.5	1.27	1.35	0.88	-0.67	-1.47
		DIRS A	97.5	1.27	6.17	0.97	0.62	0.36
		ESemp	97.5	1.26	1.33	0.44	0.17	-0.19
		ESstbl	97.5	1.26	1.87	0.49	0.41	0.11
	DOGE	XES	97.5	1.26	1.39	0.46	0.20	-0.17
		SDR	97.5	1.26	1.45	0.45	0.24	-0.11
		DIRS A	97.5	1.26	0.90	0.60	-0.24	-1.02
		ESemp	97.5	1.18	1.15	1	-0.25	-2.23
		ESstbl	97.5	1.18	1.15	1	-0.25	-2.19
	ETH	XES	97.5	1.18	1.09	1	-0.31	-2.42
		SDR	97.5	1.18	1.21	1	-0.18	-2.07
		DIRS A	97.5	1.18	2.60	1	0.45	-0.48
		ESemp	97.5	1.28	1.20	1	-0.62	-2.38
		ESstbl	97.5	1.28	1.49	0.99	-0.40	-1.68
	LTC	XES	97.5	1.28	1.18	1	-0.65	-2.42
		SDR	97.5	1.28	1.27	1	-0.53	-2.16
		DIRS A	97.5	1.28	3.28	0.99	0.35	-0.25
		ESemp	97.5	1.35	1.24	0.85	-0.55	-1.45
		ESstbl	97.5	1.35	1.69	0.81	-0.16	-0.77
	XRP	XES	97.5	1.35	1.28	0.80	-0.53	-1.32
		SDR	97.5	1.35	1.37	0.83	-0.42	-1.19
		DIRS A	97.5	1.35	1.47	0.84	-0.35	-1.12

  Previous studies focus primarily on expressing those dependencies in terms of statistical correlations, and then quantify the predictive capacity of appropriate graph connectivity measures on a global (i.e., systemic) risk metric. It is important to highlight that previous works ignore the potential relationship between market connectivity and tail risk of individual financial assets. This chapter fills this gap, by proposing a new methodology for quantifying the predictive capacity of financial connectivity on risk at multiple spatial and quantile regression models, respectively, to study the impact of network topology indicators on the market systemic risk.[START_REF] Foglia | Tail risk connectedness in clean energy and oil financial market[END_REF] infer the graph topology based on the level of risk tail spillover between pairs of firms, and study the predictive power of global connectivity measures by inspecting their time-varying behavior near market turmoil periods.[START_REF] Xu | Tail-risk spillovers in cryptocurrency markets[END_REF] focus on the tail-risk interconnectivity among cryptocurrencies by constructing a time-varying directed weighted risk contagion network to measure systemic risk contributions. The main drawback of the above methods is that they are constrained to the predetermined risk metric, without adapting to alternative risk measures. Specifically, as soon as the risk metric is decided, the risk network representation is constructed and kept fixed.To address the limitations of previous works, new rules for inferring the topology of dynamic financial graphs are introduced first, and their time evolution is explored, especially in periods of financial turbulence. Then, a set of well-established nodal and global connectivity measures is estimated across time. Finally, the proposed predictive signal is calculated from the multi-scale connectivity measures and local-to-global risk values, to rank the estimated graph connectivity measures in decreasing predictive power. A minimum dominating set detection method is also employed to track the community structure of the selected asset classes over time and study its consistency with the time evolution of the top predictive connectivity measures. An extensive empirical analysis shows a remarkable variability of the predictive potential for the distinct connectivity measures, and reveals its importance in designing alerting mechanisms for

	scales simultaneously, namely, from local (i.e., tail risk of individual assets) to global
	(i.e., market risk) level.
	Focusing on the predictive content of connectivity measures on (systemic) risk, two
	main groups of previous studies exist in the literature according to the overall approach
	they follow: (i) a set of connectivity measures (a.k.a. statistics) is calculated from
	static or dynamic graphs, followed by the detection of lead-lag relationships between the
	connectivity measures and the desired risk metrics via appropriate models (e.g. Granger
	causality tests or regression models); (ii) risk network representations are constructed
	directly (e.g. based on net pairwise spillovers estimates), followed by the identification of
	potential shock transmitters and receivers within the sample. Before proceeding, it is
	noted that the methodology proposed in this chapter belongs to the first group.
	logistic regression model to build an early warning signal for banking crises. [Bil+12] combined principal component analysis and Granger causality networks with univariate risk management.
	regressions to capture and predict systemic risk among the returns of hedge funds, banks, brokers and insurance companies based on correlation graph measures. [LWL19] combine 8.1.1 Main contributions
	nodal graph measures, calculated from correlation-based graphs, with a gradient boosting Contrary to previous works, this chapter aims to investigate the predictive capacity
	method to predict financial distress. [Dem+18] and [Bas+19] leverage Lasso and debiased of time-varying graph connectivity measures both on the tail risk of individual assets
	Apart from tracing systemic risk, understanding the risk caused by extreme events Lasso penalized vector autoregressive models, respectively, to shrink, select, and estimate belonging to highly heterogeneous classes and on global market risk indicators. The
	located in the tails of Profit and Loss distributions of individual assets is also a demanding the high-dimensional graph that links the utilized financial assets and then study the main contributions of the chapter are twofold: (i) we depart from the conventional
	task in financial systems. From a regulatory standpoint, the Basel III accord 1 suggested evolution of systemic risk (system-wide connectivity) dynamically. [Beg+18] quantify correlation-based approaches for inferring the dynamic graph topology of asset returns
	shifting the quantitative risk metrics to expected shortfall (ES) (a.k.a. conditional value-time-lagged dependencies in financial markets via non-parametric information-theoretic by defining two alternative methods, namely, the Kolmogorov-Smirnov test and the
	at-risk or mean excess loss), since it is better suited for quantifying tail-risk distributions measures such as normalized transfer entropy and mutual information, to timely indicate generalized Euclidean distance; (ii) a computationally tractable predictive signal is
	[Art+99]. Although the expected value of losses has become the primary focus of risk systemic risk and predict future market volatility via a linear regression model. In defined to quantify the predictive capacity of both global and nodal graph connectivity
	measures such as ES, however, the variability of extreme returns, which plays a key role [OB21], a multilayer network model is constructed based on bipartite graphs for credit measures on the respective risk metric. Doing so, we quantify the effect of financial
	in risk quantification, is disregarded in practice. To address this issue, shortfall deviation risk assessment, coupled with a personalized centrality measure for credit risk prediction. connectivity patterns simultaneously for global markets and individual assets, whilst
	risk (SDR) was introduced by [RC16] (ref. Section 7.3). Most of the above studies focus on either measuring connectivity or predicting systemic we enable the time-varying ranking of the various connectivity measures, in terms of
	Notably, financial graph analysis has solely been utilized to learn quantifiable risk. Furthermore, Granger causality tests, which are utilized by several prior works, fail decreasing predictive power.
	dependencies among financial entities and leverage them to detect any significant lead-to forecast when there is an interdependency between two or more variables.
	lag relationships between market connectivity and benchmark market risk indicators.

cation and measurement of proper connectivity patterns. To this end, graph analysis has been extensively used in financial applications

[START_REF] Mantegna | Hierarchical structure in financial markets[END_REF]

,

[START_REF] Billio | Econometric measures of connectedness and systemic risk in the finance and insurance sectors[END_REF]

,

[START_REF] Diebold | On the network topology of variance decompositions: Measuring the connectedness of financial firms[END_REF]

, and

[START_REF] Demirer | Estimating global bank network connectedness[END_REF]

.

A graph, consisting of individual nodes and edges connecting pairs of nodes, can best describe relationships between entities, and provides a general mechanism for modelling information diffusion in networked systems, both at global and local scale. The inherent structure of financial graphs can then interpret financial connectivity and systemic risk.

Volatility relates to systemic risk and has a potential to reinforce crises in financial markets

[START_REF] Mieg | Volatility as a transmitter of systemic risk: Is there a structural risk in finance?[END_REF]

. In particular, volatility indices such as VIX (US), VSTOXX (Europe), and VHSI (Asia), are widely-used indicators of market risk and premier barometers of investors' sentiment. In turmoil periods, financial connectivity may amplify shocks and transmit them in a financial system, thus increasing systemic risk. This signifies the existence of causality between financial connectivity and major risk indicators, which may further result in a predictive capacity of graph connectivity on market risk.

Regarding the former group,

[START_REF] Song | On the predictive power of network statistics for financial risk indicators[END_REF] 

employ dynamic global connectivity measures, in conjunction with conventional Granger causality tests, to determine whether they were significant leading indicators of changes in risk indices in the US, Asian, and European regions.

[START_REF] Billio | An entropy-based early warning indicator for systemic risk[END_REF] 

infer the graph topology from asset returns using Granger causality and utilize the in-out graph degree as the connectivity measure, which is then coupled with a Concerning the latter group,

[START_REF] Diebold | Better to give than to receive: Predictive directional measurement of volatility spillovers[END_REF] 

and

[START_REF] Restrepo | Financial risk network architecture of energy firms[END_REF] 

employ pairwise volatility spillovers estimates to construct risk network representations and predict the directional risk interaction among stock returns for days of abnormal behavior using vector autoregressive models.

[START_REF] Zhang | The stability of Chinese stock network and its mechanism[END_REF] 

and

[START_REF] Hautsch | Financial network systemic risk contributions[END_REF] 

build tail risk-based market graphs, combined with linear

  whose mth column is the time series of the mth graph connectivity measure, for m = 1, . . . , M , and a time series of risk values y t , the predictive capacity of the mth connectivity measure on the selected risk metric is quantified by the following signal,

s m,t = EWMA shift diff (f m,t ) • dlog(y t ) .

(8.23)

2 https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a.

Table 8 . 1 :

 81 Asset classes and ticker symbols per class, utilized in this study.Cryptocurrencies and Stocks present the highest losses on average, when compared against the other three classes. As for the highest returns, Cryptocurrencies and Stocks yield the highest profits. Furthermore, the returns of Futures, Top Mutual Funds and Stocks are moderately skewed on average, with all of them presenting returns a bit higher than the average return. Top ETFs present a high negative skewness, while Cryptocurrencies express a high positive skewness for the period considered. Most importantly, all five classes possess, on average, a significantly high kurtosis, thus providing a strong, though not perfect, indication of fat tails in the returns distribution. Table 8.2: Returns summary statistics (averaged for each class) for the five asset classes in the period 01/01/2016 -31/01/2022.

	Asset Class	Asset Ticker Symbols
	Futures	ZN=F, ZF=F, ES=F, NQ=F, ZT=F, CL=F, ZC=F, HG=F,
		SI=F, MGC=F, YM=F, SB=F, NG=F, NQ=F, ZB=F
	Top Mutual Funds ASHR, KBA, EWD, REMX, NANR, CHIQ, PICK, XSD, AFTY,
		EZA, SOXX, FXZ, SLX, CHIE, SMH
	Stocks	TWTR, NVDA, AUY, AAPL, PBR, AMZN, VALE, SQ, BABA,
		AMD, GFI, PYPL, GOOGL, TSLA, META, WBD
	Top ETFs	IXIC, GSPC, DJI, GSPTSE, MXX, KS11, BSESN, TA125.TA,
		MERV, IPSA, BVSP, TWII, NZ50, KLSE, JKSE
	Cryptocurrencies	BTC-USD, LTC-USD, NMC-USD, PPC-USD, ETH-USD,
		DOGE-USD, XRP-USD, XEM-USD, XMR-USD,USDT-USD,
		XLM-USD
	The selected time period contains two critical sub-periods: (1) from June 13th to
	June 30th in 2016, where the market undergone a panic caused by increased uncertainty
	in Europe due to the upcoming referendum for the Brexit, and had a great influence on
	the European market; (2) the circuit breaker crisis period from February 24th until March
	20th in 2020, which caused a long-term and large-scale impact on the world financial
	market. Furthermore, it contains four major events: (1) general election for Brexit vote,
	June 2017; (2) cryptocurrency crash, November 2018; (3) covid-19 outburst, March 2020;
	and (4) energy and supply chain crisis, February 2021.
	8.4.1 Summary statistics
	As a first qualitative assessment of the behavior of our data, a selection of summary
	statistics, such as the mean, standard deviation, skewness and kurtosis, are typically
	presented. Table 8.2 shows these statistics for the compounded returns of the above five

heterogeneous asset classes, averaged over the assets of each class, for the whole period from Jan. 1st, 2016 to Jan. 31st, 2022. As it can be seen, their daily means are quite small, whilst daily volatility is much higher for Cryptocurrencies. Concerning the lowest returns,

Table 8 . 3 :

 83 Returns summary statistics (averaged for each class) for the five asset classes in the two sub-periods of crisis: (i) 13/06/2016 -30/06/2016; (ii) 24/02/2020 -20/03/2020.

		1st sub-period: 13/06/2016 -30/06/2016	
		Futures Top Mut. Funds Stocks Top ETFs Cryptos
	Mean (%)	0.09	0.03	0.28	0.07	1.89
	Std (%)	1.47	2.32	2.93	1.17	9.13
	Kurtosis	5.23	5.67	3.98	4.22	5.57
		2nd sub-period: 24/02/2020 -20/03/2020	
		Futures Top Mut. Funds Stocks Top ETFs Cryptos
	Mean (%)	-1.05	-1.85	-2.33	-1.60	-2.32
	Std (%)	3.29	5.78	7.58	3.93	12.68
	Kurtosis	3.54	3.16	3.43	3.57	8.42

Table 8 . 4 :

 84 Shapiro-Wilk test statistic and p-value for the compounded returns of the five asset classes, averaged over the assets of each class (5% significance level).

	Asset Class	Test statistic p-value
	Futures	0.89	1.08e-13
	Top Mutual Funds 0.92	1.48e-17
	Stocks	0.91	5.55e-17
	Top ETFs	0.84	0
	Cryptocurrencies	0.82	0

Table 8 . 5 :

 85 Frequency of top performance (i.e., highest Information Ratio) for each one of the three global measures, per asset class. Graphs are constructed using the Pearson's correlation method.

	Asset Class	Average Degree Clustering Coefficient Modularity
	Futures	4	1	9
	Top Mutual Funds 0	0	15
	Stocks	3	6	7
	Top ETFs	1	1	13
	Cryptocurrencies	1	6	4
	Total	9	14	48

Table 8 .

 8 [START_REF] Tzagkarakis | Nonlinear manifold learning for financial markets integration[END_REF] shows the corresponding results for the other two graph inference methods.

Table 8 . 6 :

 86 Total frequency of top performance (i.e., highest Information Ratio) for each one of the three global measures. Graphs are constructed using the Kolmogorov-Smirnov test and the generalized L2 distance methods.

	Method	Average Degree Clustering Coefficient Modularity
	K-S test	48	7	16
	Gen. L2 distance 19	11	41

Table 8 . 7 :

 87 Frequency of top performance (i.e., highest Information Ratio) for each one of the three nodal measures, per asset class. Graphs are constructed using the Pearson's correlation method.

	Asset Class	Degree Betweenness Centrality Triangles
	Futures	3	9	2
	Top Mutual Funds 1	14	0
	Stocks	1	10	5
	Top ETFs	2	13	0
	Cryptocurrencies	3	4	4
	Total	10	50	11

Table 8 .

 8 8: Total frequency of top performance (i.e., highest Information Ratio) for each one of the three nodal measures. Graphs are constructed using the Kolmogorov-Smirnov test and the generalized L2 distance methods.

	Method	Degree Betweenness Centrality Triangles
	K-S test	19	33	19
	Gen. L2 distance 24	31	16

Basel II: Revised international capital framework; Available at http://www.bis.org/publ/bcbsca. htm.

Robust Analysis Inc., STABLE toolbox version 5.3 (http://www.robustanalysis.com).

Although volatility is undefined for α-stable models with α <

2, we use the term "generalized volatility" exceptionally, in order to be aligned with the conventional volatility signature plot definition.

Basel III: International regulatory framework for banks, https://www.bis.org/bcbs/basel3.htm

https://www.kaggle.com/sudalairajkumar/cryptocurrencypricehistory

Python's netgraph library is utilized (https://github.com/paulbrodersen/netgraph).
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Journals: Chapter 7 Horizon-Adaptive Extreme Risk Quantification

Introduction

Understanding and managing risk caused by extreme events located in the tails of Profit & Loss distributions is a challenging task in the field of financial risk management.

Despite the importance of extreme risk measurement in the financial industry, there is still no clear definition of risk quantifiers that reflect tails of returns distributions. An extensive debate on desirable properties of well-established regulatory risk measures, in particular the value-at-risk (VaR) and the expected shortfall (ES), is summarized in [START_REF] Artzner | Coherent measures of risk[END_REF], [START_REF] Bellini | On elicitable risk measures[END_REF], [START_REF] Föllmer | The axiomatic approach to risk measures for capital determination[END_REF], and [START_REF] Emmer | What is the best risk measure in practice? A comparison of standard measures[END_REF]. See also [START_REF] Bcbs | Minimum capital requirements for Market Risk[END_REF] for a recent discussion concerning market risk under Basel III.

The majority of existing risk measures, including the families of VaR and ES, are not suitable measures of extreme risk. For instance, VaR provides only a pointwise risk estimate without accounting for the potential size of losses that exceed it, whilst ES estimates are highly affected by the model assumption for the returns distribution, which has important implications for the assessment of large risks not yet sampled by historical time series [START_REF] Dowd | Measuring Market Risk, 2nd Edition[END_REF]. The robustness of risk measures to changes in the data behavior, as inferred from a sample of available data, and to different estimation procedures is studied in [START_REF] Cont | Robustness and sensitivity analysis of risk measurement procedures[END_REF], [START_REF] Kou | External risk measures and Basel accords[END_REF] and [START_REF] Volker Krätschmer | Comparative and qualitative robustness for law-invariant risk measures[END_REF].

Interestingly, the expected value of losses has become the primary focus of extreme risk measures. Nevertheless, it was shown by [START_REF] Tasche | Expected shortfall and beyond[END_REF] that random variables with lighttailed or heavy-tailed distributions may have the same VaR. This is an indication that the variability of extreme returns may play a key role in extreme risk quantification. However, variability is disregarded in practice. To address this problem, shortfall deviation risk (SDR) was introduced by [START_REF] Righi | Shortfall Deviation Risk: An Alternative for Risk Measurement[END_REF] to represent the expected loss that occurs with a certain probability penalized by the deviation of results that are worse than such an expectation. SDR demonstrated greater protection than VaR and ES, especially in times of high market turbulence. by maintaining the most "important" edges. In the subsequent analysis, we adopt the same approach. In particular, for a predetermined threshold ξ ρ,t > 0, if |w ij,t | ≥ ξ ρ,t the edge e ij,t connecting the nodes i and j at time t is maintained with weight w ij,t , otherwise e ij,t is discarded and w ij,t is set equal to 0. Clearly, the threshold value ξ ρ,t affects the inferred graph topology. Specifically, a high threshold tends to overlook existing relations, whereas a low threshold could favour the connectivity between assets that are unrelated in practice. To alleviate this issue, if not mentioned otherwise, we set the threshold value as follows, ξ ρ,t = η 1 n 2 |w ij,t |, with η ∈ (0, 1], i.e., the threshold is set equal to a percentage of the average absolute weight between all pairs of assets. In our implementation, we follow the rule of [START_REF] Zhang | The stability of Chinese stock network and its mechanism[END_REF] and set η = 1.

Hereafter, we proceed in a rolling-window fashion for observing the dynamic patterns of financial graphs. Similarly to [START_REF] Diebold | On the network topology of variance decompositions: Measuring the connectedness of financial firms[END_REF], who employed bootstrap rolling-window estimations to evaluate the estimation power of stock returns and economic indicators, we rely on recent observations prior to and at time t to define the time-varying weighted adjacency matrix W t . Letting T denote the window length, the financial graph topology at time t is inferred using the returns in the time interval [t -T + 1, t]. More details regarding the graph construction are described in the subsections below.

Pearson's correlation

Correlation is a well-established measure of connectivity between distinct entities. Pearson's correlation test gives two outputs, namely, Pearson's coefficient ρ ∈ [-1, 1], which expresses how strong the correlation is, and a p-value, which reflects the probability to obtain the specific result for ρ although there is in fact no correlation. For two given assets i and j, Pearson's correlation between their corresponding returns is defined by

where r denotes the average value of an asset's returns.

The associated graph is constructed by assigning to edge e ij the following weight,

The higher the (absolute) Pearson's correlation between assets i and j, the larger the corresponding weight w ij . Regarding the inference of graph's topology, all pairwise correlations are calculated first, followed by a thresholding scheme, as described above.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (K-S) test is a well-established statistical method for examining whether two samples are drawn from the same distribution or not. Specifically, given two data sets, the K-S test calculates, in terms of a p-value, the probability that they are identically distributed. The test's null hypothesis is that the samples are indeed where

(8.9)

and τ is the sampling period, which in our case is equal to 1.

In our implementation, the L G p with p = 2 (i.e, the generalized Euclidean distance) is applied to every pair of assets. A weight w ij = 1/L G 2 (r i , r j ) is assigned to edge e ij , followed by the thresholding process for constructing the graph, as described above. This distance-based approach for graph topology inference is geometric, as opposed to the previous ones that are statistical.

Graph connectivity measures

Given the inferred dynamic graphs, the next step is to calculate appropriate graph measures that will help us quantify important patterns of financial connectivity over time. The corresponding time series of graph measures summarize statistical and structural information of the financial returns, and characterize the degree of connectivity between assets.

Graph measures can be classified in two broad categories: (i) global measures, which refer to global properties of a graph and, therefore, consist of a single number for each graph; (ii) nodal measures, which refer to properties of the nodes of a graph and, therefore, consist of a vector of numbers (one for each node of the graph). In this work, we consider three global measures, namely, average degree, clustering coefficient, and modularity, and three nodal measures, namely, degree, betweenness centrality, and triangles, which are defined below (ref. [START_REF] Mijalkov | BRAPH: A graph theory software for the analysis of brain connectivity[END_REF], [START_REF] Linton | Centrality in social networks conceptual clarification[END_REF]).

Global measures:

1. Average degree is the simplest global connectivity measure. It is defined as the average of the degrees of all nodes of a graph G, as follows,

Intuitively, larger average degree values indicate more connections, that is, a denser graph.

2. Clustering coefficient of a node v, denoted by CC(v), is the number of triangles v is a part of divided by the total number of triangles that could be formed around v. A triangle is formed by three nodes, if they constitute a connected K 3 graph. As a global measure, the clustering coefficient is defined as the average of the clustering span multiple parties -removing friction, adding speed and increasing efficiency.

For example, AI models embedded in smart contracts executed on a blockchain can recommend risky assets and automatically construct the most sustainable portfolio over a predetermined investment horizon.

4. Conversational Chatbots: Chatbots existed for decades but lost their charm a few years back because of their inability to deliver human-like experiences. However, with advances in technology, AI-powered chatbots have once again gained popularity.

Financial institutions could rely on this technology in order to determine risk management maturity level and develop a set of recommendations for integrating risk management into decision-making and core business processes.

Designing new tools to meet the security and implementation challenges -such as end-to-end data encryption, critical data blocking, scarce training data -is crucial.

Apparently, endless opportunities exist for innovation in the field of risk management.

The digital revolution has increased the availability of data, degree of connectivity, and speed at which decisions are made. Those changes offer transformational promise but also come with the potential for large-scale failure and security breaches, together with a rapid cascading of consequences. In the near future, all financial organizations will certainly need to refresh and strengthen their approach to risk management to be better prepared for the next normal.