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Résumé

Performance des réseaux de neurones à spikes sur
des données événementielles pour des applications
automobiles embarquées
Aujourd’hui, les voitures embarquent de plus en plus d’algorithmes intelligents,
appelés systèmes d’aides à la conduite (ADAS), qui cherchent à éviter l’apparition de
situations dangereuses pouvant mener à des accidents. Ces algorithmes embarqués
possèdent ainsi des contraintes très élevées en matière de latence, performance et
consommation d’énergie. Les réseaux de neurones, vaguement inspirés par le fonc-
tionnement des neurones biologiques, sont aujourd’hui les algorithmes d’intelligence
artificielle les plus performants. Ils sont capables de répondre aux critères de latence
et de performance demandés par les algorithmes embarqués automobiles, mais
leur implémentation sur des architectures conventionnelles (CPU/GPU) résulte en
une consommation énergétique élevée, accentuée par le fait qu’ils doivent tourner
en permanence.

Une solution à ce problème pourrait résider dans l’utilisation de réseaux de
neurones à spikes (SNNs), un type de réseau de neurones plus biologiquement plau-
sible où les couches communiquent entre elles uniquement par le biais d’impulsions
électriques appelées spikes, asynchrones et binaires. Grâce à ce fonctionnement, les
SNNs promettent une consommation d’énergie moins élevée sur des architectures
hardware spécialisées dites neuromorphiques. Ces architectures sont composées
d’unités de mémoire et d’unités de calcul parallélisées et distribuées, comme c’est
le cas dans notre cerveau. Ainsi, les besoins en énergie sont moindres car ils n’ont
qu’à traiter des valeurs binaires sparses.

Un obstacle important à l’utilisation des SNNs pour traiter des problèmes de
vision par ordinateur réside justement dans cette représentation de l’information
sous forme de spikes. Une piste prometteuse pour représenter l’information visuelle
sous forme de spikes est, encore une fois, de s’inspirer de la biologie. Un nouveau
type de caméra, appelée caméra événementielle, capture l’information visuelle en
utilisant des pixels photo-récepteurs détectant indépendamment les changements
de luminosité. La sortie de ce type de caméra prend donc la forme d’événements,
où chaque changement de luminosité est représenté par la position et le temps



(à la microseconde près) où il s’est produit et une valeur binaire indiquant si le
changement de luminosité est positif ou négatif. En pratique, les changements
de luminosité représentent le mouvement des objets, ainsi la caméra ne sort des
événements qu’aux endroits et aux moments où un mouvement s’est produit. Ces
événements sont binaires et extrêmement sparses, ils peuvent donc être vus comme
des spikes et représentent une entrée idéale pour les SNNs.

Ainsi, nous étudions dans cette thèse la performance des réseaux de neurones
à spikes pour le traitement de données événementielles, dans le but de construire
des algorithmes intelligents qui soient performants, rapides et peu consommateurs
d’énergie. Afin d’attaquer des problèmes de classification de données événementielles,
nous avons développé de nouvelles méthodes d’apprentissage de SNNs basés sur
des convolutions sparses et mis au point de nouvelles techniques qui permettent
l’entraînement de SNNs très profonds (plus de 100 couches), atteignant des résultats
à l’état de l’art en terme de précision et de sparsité. Nos résultats nous ont ensuite
permis de traiter un problème plus pertinent pour des applications automobiles
embarquées : la détection de voitures et de piétons sur des données événementielles,
pour la première fois résolue avec des SNNs. Nous montrons aussi que les SNNs sont
plus efficaces énergétiquement que des ANNs équivalents dans certaines conditions.

Les contributions de cette thèse en termes d’entraînement de SNNs, de modèles
de réseaux et de représentation des données événementielles permettent d’atteindre
de nouveaux sommets en matière de performances, rendant un peu plus réaliste
l’utilisation des SNNs et des caméras événementielles dans des applications automo-
biles embarquées réelles à faible consommation d’énergie.

Mots clés — intelligence artificielle, réseaux de neurones à spikes, calcul événe-
mentiel, caméras événementielles, réseaux de neurones, systèmes embarqués



Abstract

Performance of spiking neural networks on event
data for embedded automotive applications
Today, cars are increasingly equipped with intelligent algorithms, known as advanced
driver assistance systems (ADAS), which seek to avoid the occurrence of dangerous
situations that could lead to accidents. These embedded algorithms have very
high constraints in terms of latency, performance and energy consumption. Neural
networks, loosely inspired by the functioning of biological neurons, are today
the most powerful artificial intelligence algorithms. They are able to meet the
latency and performance requirements of automotive embedded algorithms, but
their implementation on conventional architectures (CPU/GPU) results in high
energy consumption, accentuated by the fact that they need to run continuously.

One solution to this problem may lie in the use of spiking neural networks (SNNs),
a more biologically plausible type of neural network in which artificial neurons
communicate with each other solely through asynchronous, binary electrical pulses
called spikes. Because of this operation, SNNs promise lower power consumption
on specialized hardware architectures, called neuromorphic architectures. These
architectures are composed of parallelized and distributed memory and computing
units, as it is the case in our brain. Thus, they require less energy as they only
have to process sparse binary values.

A major obstacle to the use of SNNs to address computer vision problems is
precisely this representation of information in the form of spikes, which is not the
representation used for images. A promising way to represent visual information in
the form of spikes is, once again, to draw inspiration from biology. A new type of
camera, called an event camera, captures visual information using photoreceptor
pixels that independently detect changes in brightness. The output of this type
of camera therefore takes the form of events, where each change in brightness
is represented by its position, time (to the microsecond precision) and a binary
value indicating whether the change in brightness is positive or negative. In
practice, the changes in brightness represent the movement of objects, so the
camera only outputs events at the locations and times a movement has occurred.
These events are binary and extremely sparse, so they can be seen as spikes and
represent an ideal input for SNNs.



In this thesis, we study the performance of spiking neural networks for event
data processing, with the objective of designing intelligent automotive algorithms
that are efficient, fast, and energy-efficient. To tackle event data classification
problems, we have developed new methods for training SNNs based on sparse
convolutions and have developed new techniques that allow the training of very
deep SNNs (more than 100 layers), achieving state-of-the-art results in terms of
accuracy and sparsity. Our results then allowed us to address a problem more
relevant to in-vehicle applications: the detection of cars and pedestrians on event
data, for the first time solved with SNNs. We also show that SNNs are more energy
efficient than equivalent ANNs under certain conditions.

The contributions of this thesis in terms of SNNs training, network models, and
event data representation achieve new heights in performance, making the use of
SNNs and event cameras in real-world, low-power automotive applications a bit
more realistic.

Keywords — artificial intelligence, spiking neural networks, event-based process-
ing, event cameras, neural networks, embedded systems
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1.1 Motivation

The human brain is the most formidable processing system, capable of processing,
integrating and coordinating the information it receives from the sensory organs
to determine the instructions sent to the rest of the body. Composed of 80 billion
neurons connected with over 150,000 kilometers of nerve fibers and 150 trillion
synapses, the brain has a massively parallel architecture that requires only 20 watts
to operate, an incredible efficiency that is a product of millions of years of evolution.
The brain is still largely misunderstood: while individual neurons and synapses
are considered well defined, it is still unclear how the exchange of simple electrical
potentials leads to the emergence of complex functions such as language or cognition.

Loosely inspired by biological neural networks, Artificial Neural Networks (ANNs)
are a family of artificial intelligence algorithms that have been very successful in
the last ten years. They have advanced the state of the art across multiple domains,
especially computer vision and Natural Language Processing (NLP). Today, the
most powerful ANNs are composed of millions of artificial neurons spread over
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2 1.1. Motivation

hundreds of layers, making their simulation on classical Von Neumann architectures
(CPUs and GPUs) energy intensive, making difficult their use in embedded systems.

Yet it is by being embedded that these powerful networks can have the biggest
impact. Cars, for example, are increasingly equipped with Advanced Driver
Assistance Systems (ADAS), intelligent algorithms designed to avoid the occurrence
of dangerous situations that could lead to accidents. The high performance of
neural networks on perception could improve their effectiveness, further lowering the
number of accidents and potentially save lives. ADAS are embedded in the vehicle,
and as such have very strong constraints in terms of performance, latency and
energy consumption. While ANNs are able to meet the latency and performance
requirements of automotive embedded algorithms, their implementation often
results in high energy consumption, accentuated by the fact that they need to
run continuously.

A possible solution would be the use of Spiking Neural Networks (SNNs),
a more biologically plausible type of neural network in which artificial neurons
communicate with each other solely through asynchronous, binary electrical pulses
called spikes. Because of this operation, SNNs promise lower power consumption
on specialized architectures, called neuromorphic architectures or neuromorphic
hardware. These architectures are composed of parallelized and distributed memory
and computing units, as it is the case in our brain. Moreover, they require less
energy as they only have to process sparse binary values, removing the need for
more energy-intensive multiplication operations.

Yet, a major obstacle to the use of SNNs to address computer vision problems
is precisely this representation of information in the form of spikes, which is not the
conventional representation used for images. Representing visual information in the
form of spikes is, however, something that is done by our eyes, and once again we
can draw inspiration from biology and design a new type of camera. Entitled event
cameras, these sensors capture visual information using photoreceptor pixels that
independently detect changes in brightness, a behavior close to what happens in our
eyes. The output of this type of camera takes the form of events, where each change
in brightness is represented by its position, its time (to the microsecond precision)
and a binary value indicating whether the change in brightness is positive or negative.
In practice, the changes in brightness represent the movement of objects, so the
camera only outputs events at the locations and times a movement has occurred.

Event cameras provide a lot of interesting properties for embedded automotive
applications. They have a high temporal resolution (1µs), enabling the capture
of very fast movements without motion blur. They are also high dynamic range
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(HDR) by design, which means it is very robust to extreme brightness conditions
(e.g. night-time, sun glares) and to abrupt brightness changes (e.g. tunnel exit).
On top of that, they are also low-power and output events only when the scene has
changed, minimizing useless processing. And since events are binary and extremely
sparse, they can be seen as spikes and represent an ideal input for SNNs.

In this thesis, we study how an end-to-end biologically-inspired approach
that processes event data with spiking neural networks can be used to design
intelligent embedded automotive algorithms that are high-performance, fast and
energy-efficient.

1.2 Objectives

In this thesis, we aim to increase the performance of spiking neural networks
for event data processing, in order to design intelligent automotive algorithms
that are efficient, fast, and energy-efficient. In particular, we want to take SNNs
to the next level, from processing toy examples with few-layers networks to the
tackling of real-word automotive use-cases. This requires the use of the latest
advances in terms of SNNs training methods, SNNs frameworks, available event
datasets ; and the development of new methods and architectures to tackle problems
previously out of the reach of SNNs.

Our quest for performance with SNNs on event data is coupled with the various
constraints imposed by embedded automotive applications, thus all our developments
are guided by embedded considerations such as the size of our networks, their
sparsity, and their energy consumption.

To illustrate the performance increase of SNNs on event data and prove their
usefulness, we will tackle real-world automotive use-cases that could, one day,
become part of an ADAS. Such a use-case, chosen as our main objective, is the
complex task of object detection, enabling the detection of dangers around the
car such as other vehicles and pedestrians.

1.3 Contributions

As a first step towards real-world complex use-cases, we tackled event data classifica-
tion problems, first on a simple gesture recognition problem. To do so, we developed
new methods for training SNNs based on sparse convolutions, leading to the design
of performing sparse SNNs, comparable in performance with ANNs. We then
tackled the classification of automotive event data, through the recognition of cars.
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More representative of a real use-case in terms of data size, this task required the
development of new techniques and architectures that allow the training of very deep
SNNs (more than 100 layers), achieving state-of-the-art results in terms of accuracy.

Having proved that complex SNNs architectures are able to learn complex
patterns on large event datasets, our results then allowed us to address a problem
more relevant to in-vehicle applications: the detection of cars and pedestrians on
event data, for the first time tackled with SNNs.

Based on these works, we then propose two lightweight, scalable SNN archi-
tectures, ST-VGG and ResCat-SNN, able to further improve our results both in
classification and object detection on event data, while being easier to embed
than our previous networks.

Finally, in order to demonstrate and quantify the energy efficiency of SNNs
compared to ANNs, we have developed an analytical estimation of the power
consumption of any SNN, independent of particular hardware implementation
choices. On three different tasks, keyword spotting, car recognition and image
classification, our SNNs reach comparable or better results than equivalent ANNs
while their estimated consumption is 6 to 8 times inferior.

Overall, the contributions of this thesis in terms of SNNs training, network
models, and event data representation achieve new heights in performance, making
the use of SNNs and event cameras in real-world, low-power automotive applications
a bit more realistic.

1.4 Outline

This manuscript is organized as follows. Chapter 2 presents in details the different
concepts and methods used in our work: ANNs, SNNs, event cameras, neuromorphic
hardware. Chapter 3 presents our work on the development of new methods and
new SNNs architectures to tackle the classification of event data, applied to gesture
recognition and car recognition. Based on our findings, we present in Chapter 4 how
we designed and trained the first spiking neural networks capable of doing object
detection on complex, real-world event data in an automotive context. In Chapter
5, we propose new SNN architectures named ST-VGG and ResCat-SNN, which,
along new training methods, reach new performance heights while being simpler to
implement on embedded real-time systems than our previous SNNs. In Chapter
6, we end our thesis work by discussing the embeddability of SNNs, providing an
analytical estimation of their energy efficiency compared to classical ANNs. Finally,
Chapter 7 concludes the manuscript and outlines future works enabled by our thesis.



2
State of the art

Contents
2.1 Artificial neural networks . . . . . . . . . . . . . . . . . 6
2.2 Spiking neural networks . . . . . . . . . . . . . . . . . . 8

2.2.1 Neuron models . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 SNN design and information encoding . . . . . . . . . . 11

2.3 Training of spiking neural networks . . . . . . . . . . . 13
2.3.1 Conversion ANN-SNN . . . . . . . . . . . . . . . . . . . 14
2.3.2 Spike-Timing Dependant Plasticity (STDP) . . . . . . . 14
2.3.3 Backpropagation on spikes . . . . . . . . . . . . . . . . 15
2.3.4 Spiking neural networks training frameworks . . . . . . 18

2.4 Event-based processing . . . . . . . . . . . . . . . . . . . 20
2.4.1 Event cameras . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Event data representation . . . . . . . . . . . . . . . . . 23
2.4.3 Event processing methods . . . . . . . . . . . . . . . . . 25

2.5 Neuromorphic hardware architectures . . . . . . . . . . 26
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 28

This chapter outlines the theoretical concepts and methods that serve as a
foundation for our work. In the first section, we briefly introduce traditional
Artificial Neural Networks (ANN) to better understand their differences with
Spiking Neural Networks (SNN) which are introduced in the second section. Third,
we explore the literature on the training of spiking neural networks and the available
frameworks for their development. Afterwards, we discuss event-based processing,
from event cameras to machine learning methods applied to event data. Finally,
we present the neuromorphic hardware architectures landscape.
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2.1 Artificial neural networks

Artificial Neural Networks (ANNs) are computing systems inspired by the biological
neural networks of animal brains. An ANN is a collection of connected units or nodes
called artificial neurons, loosely modeling the biological neurons. Each connection,
similarly to a biological synapse, can transmit a signal to other neurons, usually
a real number. The output of artificial neurons is computed by some non-linear
function of the sum of its inputs, such as sigmoid or Rectified Linear Unit (ReLU)
(see Equations 2.1 and 2.2). This non-linear function is called an activation function.

sigmoid(x) = 1
1 + exp −x

, (2.1)

ReLU(x) = max(0, x) (2.2)

The connections, or synapses, typically have a weight that increases or decreases
the strength of the signal at a connection. These weights can be learned by the
network itself: during a phase called training, examples are input to the network and
an error is computed between the network prediction and the expected result (the
target or label). The network then adjusts its parameters (weights) according to a
learning rule to minimize this error. After a sufficient number of these adjustments,
the network can be considered trained and is ready for doing prediction on unknown
data, a phase called inference. This training method is known as supervised learning.

ANNs are typically constructed by aggregating neurons into layers (see Fig. 2.1).

Figure 2.1: An Artificial Neural Network is an interconnected group of computational
units called artificial neurons.
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Neural networks computations were first modeled in (McCulloch and Pitts,
1943), and (Rosenblatt, 1958) designed the first artificial neural network called
the perceptron, composed of a single output layer. But it was quickly shown that
single-layer perceptrons are only capable of learning linearly separable patterns,
which reduced research interest in neural networks for several decades. In (Hornik,
Stinchcombe, and White, 1989), it has been shown that a Multi-Layer Perceptron
(MLP) of only two layers was sufficient to approximate any non-linear separable
function with an arbitrary precision. But the training of multi layered neural
networks has remained a challenge until (Rumelhart, Hinton, and Williams, 1986)
and (Rumelhart and McClelland, 1986) introduced the backpropagation algorithm
to compute efficiently the gradient of a loss function with respect to the weights
of the network for a single input–output example. The modern form of backprop-
agation learning algorithm for neural networks was presented in (Le Cun, 1987).
Backpropagation computes the gradient of the loss function with respect to each
weight using the chain rule, computing the gradient one layer at a time, iterating
backward from the last layer to avoid redundant calculations of intermediate terms
in the chain rule. It is coupled with gradient methods for training multilayer
networks, the most common being gradient descent or its stochastic approximation
the Stochastic Gradient Descent (SGD).

But multi-layer perceptron models require a high number of neurons and
connections to tackle complex classification tasks, especially for large input data such
as images. Inspired by the visual cortex of cats (Hubel and Wiesel, 1959), Kunihiko
Fukushima introduced the neocognitron (Fukushima, 1980), an ANN which use
convolutional layers (and not fully-connected (FC) layers as in a MLP). Using the
mathematical convolution operation, a convolutional layer (see Fig. 2.2) is composed
of units whose receptive fields cover a patch of the previous layer. The weights of
the convolution operation are shared across multiple neurons and are learned. This
leads to a lower number of parameters to train and better results on images.

The first proof of the performance of these so-called Convolutional Neural
Networks (CNNs) was showed in (Lecun et al., 1998) which introduced LeNet-5, a
pioneering 7-level convolutional network trained with backpropagation capable of
classifying hand-written digits digitized in 32x32 pixel images. The processing of
higher-resolution images requires deeper convolutional neural networks, CNNs have
therefore been limited for a long time by the computational resources available.
In the 2010s, with the availability of large amount of data and cheap efficient
computational resources (GPUs), CNNs and neural networks in general became
more powerful and efficient than most of their competitors. Over the years, the
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Figure 2.2: A convolutional layer uses learnable blocks of units (called filters, in blue)
that scan the input data and perform convolution operations.

training of networks with more and more layers, an approach now called deep
learning, has led to results that surpass traditional algorithms performance in many
areas: computer vision, speech recognition, natural language processing, and more.

The introduction of batch normalization (Ioffe and Szegedy, 2015) and residual
connections (K. He et al., 2016) have helped to mitigate the vanishing gradient
problem, which prevents networks with a large number of layers from being trained
correctly with backpropagation due to the gradient becoming vanishingly small in
the first layers of the network, thus hindering the update of their weights. This led to
the design of convolutional neural networks with hundreds of layers, with networks
like Inception-ResNet (Szegedy et al., 2017) and some years later EfficientNet (Tan
and Le, 2019) pushing ever higher the performances in various computer vision
tasks: image classification, object detection, image segmentation, etc.

However, the implementation of large neural networks on conventional hardware
(CPU/GPU) results in high power consumption, making their integration on
embedded systems difficult. We explore in this thesis a more hardware friendly and
energy efficient variant of neural networks called spiking neural networks.

2.2 Spiking neural networks

Spiking Neural Networks are a type of artificial neural networks that more closely
mimic biological neural networks. In addition to modeling neurons and synapses,
SNNs incorporate the concept of time into their operating model. Each neuron
of an SNN has a membrane potential representing its membrane electrical charge.
The input information charge the neuron potential, and when it reaches a specific
value, called the threshold, the neuron fires a spike to the neurons it is connected
to. Thus, SNNs do not transmit information at each propagation cycle as it is
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the case with traditional ANN, and the information transmitted, the spikes, are
binary and discrete in time.

2.2.1 Neuron models

Along the years, several neuron models have been proposed to model the biological
neurons. Hodgkin and Huxley (1952) proposed a mathematical model to explain
the mechanisms underlying the initiation and propagation of action potentials in
the squid giant axon. Their model, the Hodgkin-Huxley (HH) neuron model, is a set
of nonlinear differential equations that approximates the electrical characteristics
of neurons, perhaps the closest to the real functioning of biological neurons. But
the numerical integration of the equations is so computationally expensive that
simplifications of the HH neuron are most often used to model spike neural networks.

Several neuron models proposed along the years are compared in (Izhikevich,
2004), by considering their biological plausibility, based on a list of 20 neuro-
computational features, and their implementation cost expressed as the number of
Floating Point OPerations per Seconds (FLOPS) required to simulate the model
for 1 ms. The results of this comparison are illustrated in Fig. 2.3. The higher
the bio-plausibility of a neural model, the higher its implementation cost. As a
result, the simplest neuron models are often the most widely used for large-scale
simulations of spiking neural networks, especially for machine learning tasks as
they require thousands or even millions of neurons.

Figure 2.3: A comparison of the neuro-computational properties of several neuron
models, presented in (Izhikevich, 2004).

The Izhikevich neuron model has a good bio-plausibility while being efficient,
but in practice it is difficult to use in neural networks built for machine learning
tasks as it use a quadratic function for its membrane potential update.
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Therefore, for the design of our spiking neural network, we mainly used in
this thesis the Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neuron
models, introduced in 1907 by Lapicque (Abbott, 1999). In the IF model, a neuron
with a membrane capacity C is represented by its membrane voltage V which evolves
in time during stimulation with an input current I(t) according to Equation 2.3:

I(t) = C
dV (t)

dt
(2.3)

When an input current is applied, the membrane voltage increases with time
until it reaches a constant threshold Vth, at which point a spike is emitted and
the voltage is reset to its resting potential Vrest.

A slightly more biologically plausible version of the IF neuron is the Leaky
Integrate-and-Fire neuron, where the model includes a leak term in the membrane
potential equation, reflecting the leak current over time present in biological neurons’
membranes. The LIF neuron models the leak by a linear resistor R in parallel with
the membrane, we can thus define the dynamics of a LIF according to Equation 2.4:

I(t) = V (t) − Vrest

R
+ C

dV (t)
dt

(2.4)

If we introduce the membre time constant τm = RC and multiply Eq. 2.4 by
R, we obtain the standard form of a LIF neuron:

τm
dV (t)

dt
= −(V (t) − Vrest) + RI(t) (2.5)

The solution of this differential equation with an initial condition V (t0) =
Vrest + ∆u is given by Equation 2.6:

V (t) − Vrest = exp(−t − t0

τm

)∆u for t > t0 (2.6)

Thus, in the absence of input, the membrane potential decays exponentially to
its resting value, with τm the characteristic time of the decay, in seconds.

In order to use this LIF model in neural networks operating on discrete timesteps,
the previous equations can be discretized:

V [n] − Vrest = exp(−t − t0

τm

)V [n − 1] + S[n], (2.7)
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with S[n] the input spikes at timestep n.
An illustration of a LIF neuron is provided in Fig. 2.4. Spikes are input to the

neuron at different time and being summed in the internal membrane potential
of the LIF. The membrane potential over time is depicted in the center graph.
The membrane potential decreases over time when no spike is received. When
the potential reaches the threshold, the neuron emits one spike at this precise
time to every neuron it is connected to.

Figure 2.4: A Leaky Integrate-and-Fire neuron model.

2.2.2 SNN design and information encoding

Similar to ANNs, spiking neural networks are designed by stacking interconnected
layers of neurons. The neuron model, usually an IF or a LIF, acts as an activation
function: it either outputs 0 or 1 depending on the membrane potential value.
Therefore, each layer communicates with the following one using spikes. SNNs
layers are heavily inspired by those of ANNs: fully-connected layers, convolution
layers and pooling layers are often used as is or with slight modifications (e.g. adding
lateral connections to convolutional layers, as in Cheng et al., 2020). But in SNNs,
these layers operate on binary values, effectively eliminating the multiplication
operations between the input data and the learned weights, as these are the most
energy consuming operations in a neural network.

Another major difference of SNNs with ANNs is that they operate over time.
Usually, this is modeled using time steps. However, the vast majority of information
processed by neural networks, i.e. images or speech, can not be represented by
a train of spikes. In order to be usable by SNNs, information therefore needs to
be encoded. Encoding strategies can be broadly divided in three categories (Auge
et al., 2021): rate, temporal and direct encoding.
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Rate coding

As the name suggests, rate coding (Adrian and Zotterman, 1926) is based on the
spikes’ firing rates to represent information: a specific value is encoded by the
number of spikes emitted over a pre-specified time window. A common use-case
of rate coding is to convert each pixel value of images to spike trains of different
frequency, sampling spikes from a Poisson distribution. Thus, to accurately represent
N values we need at least N timesteps. Since the number of timesteps is directly
correlated to the precision of the possible values encoded, rate coding leads to the
generation of a lot of spikes over a large number of timesteps, which drastically
impacts computational and energy efficiency.

Despite its significant flaws, rate coding is nonetheless a popular encoding scheme
for SNNs as it is easy to implement on a variety of data, and can be used to convert
ANNs into SNNs with a low performance loss, as we will discuss in Section 2.3.1.

Temporal coding

Biological systems need to respond almost instantly to stimuli: for example, S.
Thorpe, Fize, and Marlot (1996) showed that the human brain needs less than 150
ms to process a complex visual task. This has led to the creation of information
encoding that uses the precise timing of spikes instead of their mean firing rates:
temporal coding. The most two common types of temporal coding are the Time To
First Spike (TTFS) coding and the rank order coding. The TTFS coding scheme
(Johansson and Birznieks, 2004) transmits information on the arrival of the first
spike, enabling a fast transmission speed. On the other hand, rank order coding
(Simon Thorpe and Gautrais, 1998) is based on the firing order of a population of
neurons, without considering their precise timing. Using either of these encodings
in SNNs can significantly reduce the number of spikes and improve inference speed
compared to rate coding (Rueckauer and S.-C. Liu, 2018, Park et al., 2020), but
it still requires tens of timesteps to attain good performance (Kheradpisheh and
Masquelier, 2020, W. Guo et al., 2021).

The difference between rate coding and temporal coding is illustrated in Fig. 2.5.

Direct coding

The supposed energy savings of SNNs due to the nature of their operations are
often counterbalanced by an increase of the processing time (Lemaire, 2022). Most
often, this is due to the large number of timesteps, which is a consequence of the
information coding chosen for a particular type of data. Direct coding aims to
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Figure 2.5: Difference between rate coding (left) and temporal TTFS coding (right)
when encoding pixel intensities. Illustration derived from (Lemaire, 2022).

solve this problem by having the network itself learn a spike encoding relevant to
the considered task on a fixed number of timesteps T . Therefore, the raw data is
repeatedly (T times) input to the first layer of the network, that will then outputs
spikes. The first layer is directly encoding the data as spike trains, which allows
the training of SSNs on a extremely low number of timesteps (as low as 2). The
downside of this approach is that the first layer of the network, often the most
expensive, has to compute multiplication operations since the input data is not
longer binary spikes. Recently, several works showed that direct coding provides
better performance and better energy efficiency both theoretically, as we will see
in Section 6, and experimentally (Y. Kim et al., 2022) than rate coding.

Native coding

Finally, the best possible spike encoding is the one that is unnecessary: if we can
train SNNs directly on data made up of spike trains, we can be sure that we will
not lose precision over the original data. Biological spike trains and event data,
whether from event cameras or silicon cochleas (Yang et al., 2016), are data types
naturally compatible with SNNs. In this thesis, we explore the processing of event
data directly with spiking neural networks, avoiding the use of specific encoding
that imposes a high number of timesteps or complicates the training.

2.3 Training of spiking neural networks

A major drawback of SNNs is the non-differentiable activation function, meaning
that backpropagation, the most widely used learning algorithm in ANNs, cannot
be directly employed with SNNs. This section presents the three main training
processes of spiking neural networks: converting a trained ANN, or directly training
an SNN using either local unsupervised learning (STDP) or global supervised
learning (spike-based backpropagation).



14 2.3. Training of spiking neural networks

2.3.1 Conversion ANN-SNN

The most commonly used method for creating an SNN is by converting an already
trained ANN into an SNN (Diehl et al., 2015). The main idea is to replace the
ReLU activation functions in the ANN by IF neurons, as they bear functional
equivalence. By keeping the same learned weights and using rate coding to encode
the input data, it is possible to approximate with spikes the analog values originally
generated by the ANN. Some constraints must be respected during the ANN
training to be able to do the conversion: the neurons generally have no biases (batch
normalization thus can not be used either) and a particular weight normalization
has to be used to help regulate firing rates. Converting an ANN into an SNN
induces a performance drop, although the most recent conversions have managed
to provide comparable performance with their ANN counterpart (Sengupta et al.,
2019), (Tavanaei et al., 2019), (Ding et al., 2021).

However, even if it is relatively simple to implement, designing SNNs by
conversion is for us the worst approach for multiple reasons. Since the input data is
deteriorated by rate coding, and that the converted layers only approximates the
original analog values, we are sure to be inferior to the equivalent ANN. This could
be acceptable if we could provide gains elsewhere, but the claimed energy-saving
benefits of SNNs are difficult to encounter when converted SNNs usually have a very
high number of timesteps, impacting its latency and thus its energy consumption.

Due to these limitations, the spiking community is now leaning more towards
direct training of SNNs, using either unsupervised rules such as STDP or variants
of the backpropagation learning rule adapted to SNNs.

2.3.2 Spike-Timing Dependant Plasticity (STDP)

Spike-Timing-Dependant Plasticity (STDP) (Song, Miller, and Abbott, 2000),
(Toyoizumi et al., 2004), is a bio-plausible unsupervised learning rule where weights
are changed based on the delay between the firing of the presynaptic and postsynaptic
neurons. On top of being unsupervised, STDP is also a local learning rule: an
update only requires information about the uphill and downhill neurons. Basically,
the principle of STDP learning is the following: if an output spike is generated
shortly after receiving an input spike, the connection is potentiated, and inversely
when an input spike does not cause an output spike, the connection is depreciated.
This principle is illustrated in Fig. 2.6.

The fact that the STDP rule is local makes it more hardware-friendly than
most supervised rules, especially since the computation itself is much simpler
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Figure 2.6: The STDP modification rule, potentiating or depreciating the connection
depending on the timing of the presynaptic and postsynaptic spikes, as described in (Song,
Miller, and Abbott, 2000).

that the computation of chained derivatives. But to date, SNNs trained with the
STDP rule are generally not competitive with supervised learning Srinivasan et al.,
2020, although recent progress in the training of convolutional SNNs with STDP
(Kheradpisheh, Ganjtabesh, et al., 2018) or reward-modulated STDP (Mozafari
et al., 2019) could close this gap in the future. It is however unlikely that STDP
could compete with supervised learning approaches when the task becomes more
difficult than classification on small images.

2.3.3 Backpropagation on spikes

Spikes are emitted following an Heaviside step function, which is nondifferentiable.
Indeed, its derivative is zero everywhere except at 0, where it is not defined. This
makes spiking neurons unsuitable for gradient-based optimization. Numerous works
have studied how to overcome this limitation and enable the training of SNNs
directly with gradient-based learning rules.

SpikeProp (Bohte, Kok, and La Poutré, 2002) was one of the first supervised
learning method for SNNs. Its general approach is to formulate SNNs in a
way that ensures well-behaved gradients, directly suitable for optimization with
backpropagation. To achieve this, they considered the outputs of spiking neurons
to be a set of firing times, corresponding to a temporal coding setting. They used a
feedforward multilayer SNN in which a connection between two neurons consists of a
defined number of sub-connections, each with a different delay and a trainable weight
(see Fig. 2.7). SpikeProp is then an error-backpropagation learning rule obtained
by linearizing the analytic expressions of firing times for hidden units, enabling
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the analytical approximation of hidden layer gradients. But the main limitation
of SpikeProp is that it requires each neuron to emit exactly one spike per trial, as
a non-spiking neuron would not have a firing time and thus prevent its gradient
calculation. This limits the learning capabilities of the network and goes against the
low-power approach of SNNs by having all its computing units constantly active.

Figure 2.7: (A) SNN architecture used in (Bohte, Kok, and La Poutré, 2002), (B)
connection consisting of multiple delayed synaptic terminals. Illustration adapted from
(Bohte, Kok, and La Poutré, 2002).

Another approach to have well-defined gradients in SNNs is to use a rate
coding scheme, and to consider that information is carried by the spike rate. For
some neuron models, notably the IF and LIF neurons, the firing rate depends
smoothly on the neuron input, and can be thus used for gradient-based learning.
This is the approach used in (Hunsberger and Eliasmith, 2015) and (E. O. Neftci,
Augustine, et al., 2017), attaining competitive performance on standard machine
learning benchmarks such as CIFAR10 (82.95% accuracy) and MNIST (98.27%).
But since these approaches are based on rate coding, they are as inefficient as
the SNNs designed by conversion. They usually require high firing rates and thus
a high number of timesteps to encode precise values, which once again reduces
the low-power appeal of SNNs.

Instead of changing the model definition in order to obtain well-defined gradi-
ents, a now popular approach to the direct training of SNNs is the surrogate
gradient learning rules.

To circumvent the non-differentiability of spikes in SNNs, the main idea of
surrogate gradient learning is to use two distinct functions in the forward and
backward passes: an Heaviside step function in the former, and a differentiable
approximation of the Heaviside in the latter, such as a sigmoid function (see Fig. 2.8).

This approximation is sufficient for updating the weights of the SNNs using
backpropagation. Indeed, (E. O. Neftci, Mostafa, and Zenke, 2019) demonstrated
that SNNs constitute a special case of Recurrent Neural Networks (RNNs), and as
such, can be trained using the same techniques. RNNs operate on a fixed number of
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Figure 2.8: Approximation of the Heaviside step function with a sigmoid function
with different σ, with the derivative approximations rescaled to have a maximum of 0.25.
Illustration taken from (Zimmer et al., 2019).

timesteps, and in order to be trained with backpropagation the recurrence is unrolled:
an auxiliary network is created by making copies of the original for each time step
(see Fig. 2.9). Therefore, the unrolled network is simply a deep network with shared
feedforward weights and recurrent weights, on which the standard backpropagation
can be applied. The process of applying backpropagation to an unrolled network
is known as backpropagation through time (BPTT). An important problem with
BPTT is that the higher the number of timesteps, the deeper the unrolled network
will be, which can make the training difficult (vanishing gradient problem) or
computationally expensive. For these reasons, the number of timesteps of SNNs
trained with surrogate gradient learning is generally lower than with other methods.

Figure 2.9: Unrolling of a recurrent net in order to train it with backpropagation through
time (BPTT).

Surrogate gradient learning has been implemented with different surrogate
functions in several works. Bohte, 2011 approximated the spiking neuron non-
linearity by using a truncated quadratic function, essentially using a ReLU function
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as the surrogate derivative. Years later, (Zenke and Ganguli, 2018) proposed
SuperSpike, a three factor learning rule to train multi-layer SNNs of LIF neurons
using a fast sigmoid as the surrogate function; while SLAYER (Shrestha and
Orchard, 2018) used an exponential function, reporting competitive performance
on a range of neuromorphic classification datasets (99.2% on NMNIST, 93.64% on
DVS Gesture). S2NET (Zimmer et al., 2019) is another work using a surrogate
gradient approach to train convolutional SNNs for speech recognition, using this
time a parametrized sigmoid function as the surrogate function (see Fig. 2.8).

In our opinion, surrogate gradient learning rule is the best way to train complex
and powerful SNNs. By providing an easy and customizable way of training SNNs
with backpropagation, surrogate gradient has enabled the SNNs to take a major
step forward. Formerly limited to toy problems and shallow networks, SNNs with
hundred of layers and millions of parameters are now trained quickly on more and
more complex problems, as we shall show in this thesis.

2.3.4 Spiking neural networks training frameworks

Frameworks for building and simulating large neuronal networks are vital to the
tackling of real-world tasks with SNNs. Initially, these frameworks were aimed at
the neuroscientific community, but in the last few years many frameworks based
on popular deep learning frameworks (PyTorch, TensorFlow) have emerged. We
briefly introduce the existing frameworks for SNNs in this section.

Simulators of spiking neural networks

Mainly used by neuroscientists, simulators of spiking neural networks provide an easy
way of designing complex networks of spiking neurons. Also called brain simulators,
their main features are computational performance, code simplicity for describing
neuron models and synapses, and the integration with parallel HPC platforms.
The most popular simulators are NEURON (Carnevale and Hines, 2006), NEST
(Gewaltig and Diesmann, 2007) and Brian (Stimberg, Brette, and Goodman, 2019).

They provide a multitude of neuron and synapse models, along with efficient
methods to define and connect large networks. Different neuron and synapse models
can coexist inside a network, and multiple connections with different properties
can link any two neurons. They usually implements learning by using variants of
STDP, and even let the possibility to implement new learning rules.

These simulators are written in C or C++, to benefit from their speed and
computational efficiency. However, they use Python as a second language for
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the description of neural networks as a matter of simplicity. This means that the
computational architecture is processed by an interpreter, implying that the network
structure does not change during simulation. As such, Davison et al. (2009) proposed
PyNN , a simulator-independent Python package for building spiking neuronal
networks models that would run without modification on any simulator supported
(NEURON, NEST and Brian). By providing a library of neurons, synapse and
synaptic plasticity models that work the same on all the supported simulators, PyNN
offers a powerful, high-level interface for the simulation of neuronal network models.

However, using these brain simulators for tackling complex machine learning
tasks is difficult, as organizing neurons in layers and using operations like convo-
lutions require some implementation efforts. Also, they generally do not propose
a supervised learning rule as they do not include an automatic differentiation
engine. For all these reasons, a different kind of SNNs simulators have emerged,
specialized in machine learning tasks.

Machine learning oriented SNN frameworks

With the widespread use of neural networks frameworks such as PyTorch and
TensorFlow, designing large neural networks with high computational efficiency on
CPUs and GPUs have never been easier. These frameworks provide a high-level
Python interface that can be simply used to define highly fast and efficient new layers
and learning rules. These frameworks provide an easy way to add new operations
and new layers, and as a result several SNN frameworks are now available.

BindsNET (Hazan et al., 2018) was the first spiking neural network framework
geared towards the development of biologically inspired algorithms for machine
learning. BindsNET uses PyTorch operations to construct SNNs with usual machine
learning operations (convolutions, pooling) that can run on GPU devices seamlessly.
The learning is done primarily with the STDP rule and its variants. Thanks to
the GPU acceleration, large networks (over several thousands of neurons) have a
lower simulation time using BindsNet than the popular brain simulators (Brian,
NEST), proving the importance of leveraging existing deep learning frameworks
for the construction of deep SNNs.

SlayerTorch (Shrestha and Orchard, 2018) is another PyTorch-based framework
that implements the Spike LAYer Error Reassignment (SLAYER) supervised rule
for training SNNs. It supports the learning of both synaptic weights and axonal
delays. The latest version, SLAYER 2.0, is now included in LAVA (Intel, 2022),
a more general framework for neuromorphic processing that targets in particular
the Intel Loihi neuromorphic hardware.
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Another notable frameworks are Norse (Pehle and Pedersen, 2021), a recent
SNN framework based on PyTorch that allows the training of SNNs with the
SuperSpike learning rule, and Nengo-DL (Rasmussen, 2019). Nengo-DL is based
on TensorFlow / Keras and extends the SNN simulator Nengo (Bekolay et al.,
2014) with machine learning operations and the rate-coding based backpropagation
proposed in (Hunsberger and Eliasmith, 2015). The main asset of Nengo is the
diversity of target hardwares, as multiple addons allow the implementation of Nengo
networks on FPGA or neuromorphic hardwares such as Loihi and SpiNNaker.

Finally, SpikingJelly (Fang, Y. Chen, et al., 2020) is yet another PyTorch-based
framework for training SNNs using the surrogate gradient learning rule that is
substantially faster than its competitors. Indeed, SpikingJelly contains neuron-
specific CUDA kernels, either generated with torch or with CuPy, making possible
the simulation of millions of LIF neurons in less than a second on GPU. SpikingJelly
represents for us the best framework for the design of large, complex SNNs over tens
of timesteps, making the training of SNNs almost as simple and fast as that of DNNs.

The Table 2.1 summarizes the different SNN frameworks learning rules and
target hardware. For now, LAVA and Nengo are the only frameworks capable of
porting an SNN network directly to neuromorphic hardware, but we are aware
that research is underway to port SNNs trained with SpikingJelly on Loihi and
other neuromorphic hardware.

Table 2.1: Comparison between the most popular machine learning oriented spiking
neural networks frameworks.

Frameworks Based on Learning rules Target hardware

BindsNet PyTorch STDP, Hebbian CPU/GPU
LAVA PyTorch SLAYER Loihi, CPU/GPU

Nengo-DL TF/Keras
Rate-coding BP,
Oja, BCM

Loihi, SpiNNaker,
FPGA, CPU/GPU

Norse PyTorch BP with SG, STDP CPU/GPU
snnTorch PyTorch BP with SG CPU/GPU
SpikingJelly PyTorch BP with SG, STDP CPU/GPU

2.4 Event-based processing
Event cameras, or event sensor or event-based sensor, are bio-inspired sensors that
differ from conventional frame cameras in the sense that they don’t capture images



2. State of the art 21

at a fixed rate. Instead, they output a stream of events, each event containing
the time, location and sign of a brightness change.

Events are binary, discrete in time and space: they can be seen as spikes. Event
data are therefore a type of data that is natively compatible with SNNs. But due
to their sparse nature, the literature is still struggling to process event data. We
present in this section a brief overview of event-based processing.

2.4.1 Event cameras

Traditional sensors acquire full images at a rate specified by an external clock
(e.g., 60 fps). Inspired by the spiking nature of biological visual pathways, event
cameras capture visual information through the means of a grid of independent
photoreceptive pixels, each outputting asynchronously an event when a bightness
(log intensity) variation is detected. The output of this kind of sensor compared
to a classical frame is depicted in Fig. 2.10

Figure 2.10: Output of an event sensor (on the right). To reconstruct this frame, events
have been accumulated over a fixed time window equivalent to the duration of a single
traditional frame (60ms), with blue and black events representing ON and OFF events
respectively. Figure taken from (Prophesee, 2021).

More precisely, each pixel of the event sensor memorizes the log intensity
each time it sends an event, and continuously monitors for a change of sufficient
magnitude from this memorized value. When the change exceeds a threshold, the
camera emits an event, which contains the x, y location, the time t and the 1-bit
polarity p of the change (brightness increase or decrease). The schematic of the
operation of a DVS pixel is illustrated in Fig. 2.11. The log intensity of the scene
changes in continuous time (upper graph), and each time it is greater than the
ON threshold, it produces an ON event and is then reset (lower graph). Similarly,
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Figure 2.11: Schematic of the operation of a DVS pixel, converting light into events.
Illustration from (Neil, 2017).

when the log intensity decreases until it reaches the OFF threshold, an OFF event
is produced and the log intensity is reset.

The camera outputs events using a shared digital output bus, most often using
address-event representation (AER) readout (Boahen, 2004). Event cameras output
depends on the amount of motion or brightness change in the scene, the faster the
motion, the more events per second are generated. The output bus can become
saturated, perturbing the times that events are sent. Available event cameras have
readout ranges ranging from 2MHz to 1200MHz, which is in direct correlation
with the resolution of the camera.

Due to their operation, event cameras offer attractive properties. They offer a
high temporal resolution, events are readout digitally with a 1MHz clock, meaning
that events are detected with a microsecond resolution. They can therefore capture
very fast motions, without suffering from motion blur. They are low latency, since
each pixel works independently it can output events in less than a millisecond in real
world scenes. Event cameras have by design a very High Dynamic Range (HDR)
of 140dB, notably higher than the 60dB of frame-based cameras. Therefore, they
are able to acquire information in the moonlight without problems, since the pixels
operate independently in logarithmic scale. Finally, they are low power, as power is
only used to process changing pixels. Most cameras use about 10mW, compared to
frame-based cameras that consume a hundred times more power (>1W).

The principal event cameras manufacturers are iniVation, Prophesee, Samsung
and CelePixel. IniVation released in 2008 the pioneering DVS128 (Lichtsteiner,
Posch, and Delbruck, 2008) with a resolution of 128×128 pixels. In 2011, Prophesee
presented their first event camera ATIS with a 304 × 240 resolution (Posch, Matolin,
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and Wohlgenannt, 2011). Over the years, the resolution of event cameras kept
increasing to attain 1 megapixel: the Prophesee GEN4 CD (Finateu et al., 2020),
the Samsung DVS-Gen4 (Suh et al., 2020) and the CelePixel CeleX-V (S. Chen and
M. Guo, 2019) all offer a resolution superior to 1280 × 720 pixels. The resolution
is limited by the pixel size, and it is still unclear if manufacturers will be able to
continue increasing the resolution of their event cameras, which is still much inferior
to that of the frame-based cameras. Another limitation of event sensors is that
they do not capture color, but recent advances have resulted in the development of
color event cameras such as the iniVation Color-DAVIS346 (Taverni et al., 2018),
although it has not yet been proven that color provides better results on event
data as it is the case with traditional frames.

Table 2.2: Comparison of principal characteristics of available commercial event cameras.
Values taken from (Gallego, Delbrück, et al., 2022).

Event Camera Year Resolution
(pixels)

Latency
(µs)

Dynamic
range (dB)

Power cons.
(mW)

CMOS tech.
(nm)

iniVation DVS128 2008 128 × 128 12 120 23 350

DAVIS346 2017 346 × 260 20 120 10-170 180

Prophesee ATIS 2011 304 × 240 3 143 50-175 180

GEN4 CD 2020 1280 × 720 20-150 >124 32-84 90

Samsung DVS-Gen4 2020 1280 × 960 150 100 130 65/28

CelePixel CeleX-V 2019 1280 × 800 8 120 400 65

A brief comparison of commercial event cameras is depicted in Table 2.2. In this
thesis, we mostly work with the Prophesee event cameras, the ATIS and the GEN4
CD, as they represent a good compromise between resolution, dynamic range and
power consumption. Moreover, Prophesee event cameras were already successfully
used to record automotive event data (N-CARS dataset, Sironi et al., 2018).

2.4.2 Event data representation

Processing the unconventional output of event cameras often requires the trans-
formation of microsecond events into alternative representations.

• The simplest way to use event data for supervised learning is to accumulate
events pixel-wise over a period of time, either by counting them or by
accumulating their polarities, essentially creating an event frame, also called
a 2D histogram (Maqueda et al., 2018). Having reconstructed an image,
algorithms designed for computer vision are able to work in spite of the
differences between event frames and natural images.
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• Time surfaces (Lagorce et al., 2017) are another way of representing events as
a frame, except that here each pixel stores a single time value, representing
the timestamp of the last event that occurred at those coordinates. Time
surfaces are therefore images where the highest values correspond to a more
recent motion. Since the pixels only keep the last timestamp, time surface
highly compress information, resulting in a degraded performance when a
high number of events are produced.

• Motion-compensated event frame, or image of warped events (IWE) (Gallego,
Rebecq, and Scaramuzza, 2018), are a representation that aims to reconstruct
an event image by realigning spatially group of events who are considered
to be part of the same movement. The realignment is done by optimizing
an objective function that measure the contrast of the histogram of warped
events. The resulting motion-compensated images have sharp edges, providing
a more intuitive representation of visual information than the events, which
is in turn more effectively processed by classical computer vision algorithms.

• Regarding representations that attempt to preserve the temporal information
of events, we can mention 3D point sets and voxel grids. 3D point sets
(Sekikawa, Hara, and Saito, 2019) simply consider the temporal dimension of
events as a spatial dimension, allowing their processing as a sparse 3D point
cloud. Voxel grids are a space-time histogram of events, where each voxel
represents a particular pixel and time interval. By avoiding the collapsing
of events on a single 2D frame, voxel grids better preserve the temporal
information of events. Events belonging to the same voxel are usually summed,
even if other accumulations are possible. Voxel grids allow the arbitrary
division of the sample duration in multiple timesteps, which makes it a
particularly suitable representation for algorithms operating over time, such as
spiking neural networks. We discuss voxel grids more in detail in Section 3.1.1.

All of these representations are represented in Fig. 2.12. In this thesis, as we
will process event data with spiking neural networks, we will mainly use voxel grids
and even propose a new event representation called voxel cube that will retain
as much temporal information as voxel grids while having a smaller number of
timesteps. Voxel cubes will be presented in Section 3.1.2.
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(a) Event frame (b) Time surface

(c) Motion-compensated event image (d) Voxel grid

Figure 2.12: Several event representations. (a) Event frame, (b) Time surface with last
timestamp per pixel (darker pixels indicate more recent time), (c) Motion-compensated
event image (Gallego, Rebecq, and Scaramuzza, 2018), (d) Voxel grid on 10 time bins,
dark and bright pixels indicate negative and positive events. Illustrations derived from
(Gallego, Delbrück, et al., 2022).

2.4.3 Event processing methods

Processing event-by-event data is typically addressed by deterministic and proba-
bilistic filters such as convolutions or Kalman filters. They have been successfully
used for feature extraction (Brosch, Tschechne, and Neumann, 2015) or in SLAM
systems (Weikersdorfer and Conradt, 2012). Filters have the advantages of handling
asynchronous data in low latency, while aggregating information from multiple
sources. But the best results for the event-by-event processing are achieved with
ANNs and SNNs, trained on event data. Usually, an ANN is trained with the dense
representations presented in Section 2.4.2, and is then converted to an SNN that
processes the data event-by-event (Rueckauer, Lungu, et al., 2017).

The overwhelming majority of event processing methods need to process several
events together to achieve sufficient performance. The different representations



26 2.5. Neuromorphic hardware architectures

for grouping events together have been presented in Section 2.4.2. Event frames
are therefore commonly used as input for image-based learning methods such as
Random Forests (H. Li, G. Li, and Shi, 2016), SVMs (Fleury, Vacher, and Noury,
2010) and DNNs (Maqueda et al., 2018). Time surfaces have been used in particular
to train CNNs for computing optical flow in (A. Zhu et al., 2018). Methods working
on voxel grids require in general more computations, but are able to provide better
results thanks to the better preserved temporal information. In (A. Z. Zhu et al.,
2019), voxel grids are used for the unsupervised learning of a DNN autoencoder
for optical flow, depth and egomotion estimation; while (Rebecq et al., 2019) use
voxel grids to train a deep CNN to generate real images from events.

The most performing processing methods today are based on deep neural
networks processing dense representations of events, which therefore do not benefit
from the main advantages of event cameras. Indeed, the high temporal resolution
and low latency are most often destroyed by the event representation and the
processing times. The low power consumption of event cameras is irrelevant if the
processing with DNNs is preponderant. In such a case, the only benefit of event
data remaining is the high dynamic range. But since the performances attained
with event data are still inferior to those attained with natural frames, it appears
difficult to see the point of using event data for computer vision applications.

In these conditions, we consider that spiking neural networks are the only
processing methods capable of taking advantage of event data, as they are natively
compatible with events and can be faster and more power efficient than their ANN
counterpart. We will present in Section 3.2 a literature review focused on the
usage of SNNs for the processing of event data.

2.5 Neuromorphic hardware architectures

The design of an end-to-end event based processing chain promises low latency and
low power consumption. But implementing this chain on traditional Von Neumann
hardware (CPUs and GPUs) does not provide these benefits.

Inspired by the mammal brain, researchers have designed neuromorphic hardware,
massively parallel hardware accelerators for SNNs. Neuromorphic processors are
composed of numerous interconnected physical computational units capable of
processing spikes, offering better locality than standard architectures, therefore
yielding low power and low latency. Neuromorphic hardware is still an emerging
research topic, although commercial products are beginning to appear.
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Neuromorphic architectures are generally divided into digital and mixed analog/dig-
ital implementations. Analog systems use the physical characteristics of electronic
devices as part of the computation of the system, while digital systems rely on
Boolean logic-based gates. As a consequence, analog systems operate asynchronously
on continuous values, and the digital systems usually rely on discrete values
synchronously, i.e. with a clock.

Although appealing, analog systems are significantly more noisy than digital
systems, and far less mature. Mixed analog/digital neuromorphic hardware include
SynSense DYNAP-SEL (Moradi et al., 2018) and Braindrop (Neckar et al., 2019).
Braindrop is a research chip packing 4k neurons with analog computations and
communications, resulting in an power consumption as low as 150 µW. SynSense’s
DYNAP-SEL features 1k analog neurons and up to 80k configurable synaptic
connections, while its power consumption depends on the firing rate of the neurons,
ranging from 200µW (0Hz) to 1mW (100Hz). The number of neurons still being
small, these analog neuromorphic have few results to their credit, but they remain
an promising research area to monitor in the coming years.

One of the first neuromorphic hardware was SpiNNaker (S. Furber et al., 2013),
a full custom digital, massively parallel system composed of many small integer
units (ARM cores). The intercommunication between the cores can handles a
large number of very small messages (spikes), and the processing unit are software-
defined, which allow the implementation of various neuron models at the cost
of a lower hardware acceleration.

In 2015, IBM presented TrueNorth (Akopyan et al., 2015), a pioneering neuro-
morphic hardware ASIC. Each TrueNorth chip is composed of 1M digital neurons
and 256M synapses distributed over 4096 cores. This heavily parallelized operation
leads to an impressive power consumption of only 70mW.

Some years later, Intel unveiled Loihi (Davies et al., 2018), a neuromorphic
research test chip composed of 128 cores capable of modeling 130k digital neurons and
130M synapses. Fabricated on Intel’s 14nm process, the chip consumes only 110mW
on a real keyword spotting use-case (Blouw et al., 2019), compared to 650mW
consumed by the inference stick Intel Movidius. Loihi chips can be connected
together to scale the number of neurons and synapses available, up to 100M neurons
and 100 billion synapses with 768 chips. A second version entitled Loihi 2 has
been released in 2021 (Orchard et al., 2021), providing 1M neurons per chip on
a smaller surface (31mm2 compared to 60mm2) while being ten times faster and
allowing programmable neurons and generalized spikes. The power consumption
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is expected to remain the same. Finally, Intel also distinguishes itself from other
neuromorphic chip manufacturers by offering a complete software framework named
Lava for porting algorithms to Loihi, as we discussed in Section 2.3.4.

The first neuromorphic processor IP was commercialized in 2019 by Brainchip.
Named Akida (Brainchip, 2020), it was presented as an hardware accelerator
for any artificial intelligence tasks. They propose an entire toolchain to convert
pretrained DNNs into SNNs with up to 4-bits activation spikes, reducing the loss
of accuracy coming from the conversion. Brainchip pretended in a promotional
video (Brainchip, 2021) that its Akida chip is able to run simultaneously three
deep SNNs for three different tasks while not consuming more than 31mW, but
the lack of peer reviewed papers using Akida makes the comparison with other
neuromorphic architectures difficult.

A brief comparison of these architectures capabilities and power consumption
is given in Table 2.3.

Table 2.3: Summary of the different neuromorphic hardware.

Neuromorphic hardware Type # neurons # synapses Power cons.

Braindrop Mixed 4k - 150µW

SynSense DYNAP-SEL Mixed 1k 80k 200µW

SpiNNaker Digital 1k 1M 1W

IBM TrueNorth Digital 1M 256M 70mW

Intel Loihi Digital 130k 130M 100mW

Intel Loihi 2 Digital 1M 120M 100mW

Brainchip Akida Digital 1.2M 100B 20mW

These different neuromorphic hardware represent exciting and promising leads
for the implementation of neuromorphic processing toolchains, and we hope that
this thesis, by improving the processing of event data by SNNs, will lead to the
implementation of real-world use-cases that take advantage of their benefits. In fact,
we are working closely with the people developing SPLEAT (Abderrahmane et al.,
2022), a neuromorphic architecture implemented on FPGA, so that the spiking neural
networks developed in this thesis can run on low-power neuromorphic hardware.

2.6 Conclusion

In this section, we presented a comprehensive overview of the works conducted on
spiking neural networks and event-based processing. Our literature review highlights



2. State of the art 29

that spiking neural networks are as much a processing problem as an information
coding problem. The data usually processed by digital systems is not directly
compatible with the spike paradigm, which limited for a long time the development
of SNNs. Recent advances in information encoding and training methods have
open up new possibilities for spiking neural networks. In particular, the supervised
training of SNNs with surrogate gradient now makes it possible to tackle more
complex problems with deeper networks. In the meantime, the most popular spike
encoding of data, rate coding, is showing its limitations: subpar performance and
a high number of timesteps that results in high processing times and high power
consumption, in contradiction with the promise of the SNNs.

On the other hand, event cameras have developed over the past ten years and are
now mature and available commercially. Event data encounter the same problem of
information encoding as SNNs, as few processing methods are capable of handling
the asynchronous and sparse binary output of event cameras. The majority of the
works was therefore focused on the representation of event data enabling the use
of the most performing methods, which most of the time involves the destruction
of its main benefits: sparsity, temporal resolution, binarity.

Finally, neuromorphic hardware have also experienced significant developments
in recent years, and although it is still too early to consider them mature, they
make a reality the promise of the SNNs to be low-power processing methods.
These tangible results are a motivation to develop and improve existing spiking
neural networks, because the energy gains provided will be proportional to the
task difficulty, as the existing methods (e.g. deep neural networks) still have
significant computational requirements.

In order to reach an efficient and performing end-to-end processing chain for
embedded automotive applications, we have therefore focused in this thesis on the
development of spiking neural networks to process event data, enabling their use
on real-world automotive problems such as classification or object detection. Our
contributions in terms of training, data representation and models have allowed
us to reach new heights in performance, making the low-power use of SNNs and
event cameras in real products, such as a car, a bit more realistic.
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Classification of unknown data is the most common problem addressed by neural
networks. Their ability to learn features from high-dimensional data (e.g. images)
using a large number of labels often makes them superior than other approaches.
Due to their very nature, event data are more difficult to process than simple images,
and they usually require tailor-made neural networks to achieve competitive results.
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In this chapter, we explore how to tackle the classification of event data using
spiking neural networks. Our main contributions are the introduction of sparse
spiking convolutions to obtain highly sparse SNNs, and the design of very deep SNNs
(more than 100 layers) using a new event representation, batch normalization layers
and concatenation-based residual connections. Our networks reach new heights
for SNNs, whether in terms of sparsity or accuracy.

This chapter is organized as follows: first, we discuss the different methods of
encoding event data we used to feed them into neural networks. Second, we present
the different models of spiking neural networks proposed for event data processing
in the literature. Third, we describe how we tackled the classification of event
data using sparse spiking convolutional neural networks. Finally, we present our
work on the classification of automotive event data, a more complex task which
served as a basis for our further work.

3.1 Event data representation

As we have already discussed in Section 2.4.2, multiple methods exist to transform
the highly temporal and sparse event data in a representation more suitable for
processing. We have also seen that SNNs are natively compatible with SNNs, as
event can be interpreted as spikes. However, in order to process event data in modern
deep learning models, we still need to convert them into a dense representation, as no
satisfactory method allows to maintaining the extremely fine temporal resolution of
event sensors (usually 1 microsecond). As stated in Section 2.4.2, the representation
that least damages the nature of the event data is the voxel grids, as we can easily
tune the number of timesteps and thus control the loss of temporal information.

We present in this section how we used voxel grids to represent event data
for our SNNs, and we introduce a new representation called voxel cubes which
aims to contain the same temporal information as the voxel grids while having
fewer timesteps.

3.1.1 Voxel grids

As a reminder, a voxel grid is a representation where microsecond events are
accumulated on larger time windows ∆t seconds while keeping the spatial resolution
unchanged. As such, each voxel represents a pixel and a time interval. For a
recording of events of duration d seconds, we have thus gathered the events on
d

∆t
= T timesteps. Usually, the events are stored in the form of a 4D CTHW

tensor, with C the number of channels, T the number of timesteps, H and W the
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height and width of the data. We can then use spiking neural networks directly
on event data, as they will now operate on T timesteps.

It is important to note that unlike other works, the voxel grids we use in this
thesis are constructed with a binary accumulation on time windows: we do not
sum the events nor save their precise timestamps, we only record if at least one
event has been emitted in the time window ∆t using an OR operation. This
constraint leads to a loss of information but we consider this approach to be the
most suitable for a real-time use case where the system would process the flow
of events on the fly. With this choice, it is as if we had modified the temporal
resolution of the event camera to be ∆t seconds.

3.1.2 Voxel cubes

In order to keep the high temporal resolution of event data, we need to have a large
number of timesteps T , which increases linearly the number of computations of
the SNN and thus the inference time and the energy consumed.

Inspired by event cubes (Prophesee, 2022), we proposed in (Cordone, Miramond,
and Thierion, 2022) a novel event representation called voxel cubes to mitigate this
issue. In voxel cubes, each time window ∆t is subdivided in n micro time bins
lasting therefore ∆t

n
seconds. Events belonging to a micro time bin will be stored in

the channels dimension, providing finer temporal information to the first layer of
the network than a voxel grid with the same number of timesteps. The number of
channels C is now equals to 2 × n, each polarity being stored in n channels.

Contrary to event cubes, each event contributes only to the time bin where
it falls into, and the accumulation of multiple events in the same micro time bin
is binary. This loss of information is justified by the need to keep binary inputs,
in order to leverage the energy efficiency of spiking neural networks running on
specialized hardware, even if the latest neuromorphic hardware no longer seem to
be limited by this constraint (see Akida and Loihi 2 in Section 2.5). An illustration
of this representation is proposed in Fig. 3.1.

3.2 SNNs models for event data in the literature

In the last few years, spiking neural networks models have evolved dramatically. As
the design of SNNs by conversion of pre-trained ANNs has shown its limitations,
direct training of spiking neural networks has become increasingly common. Besides
the various training methods developed, already discussed in Section 2.3, there has
also been a significant effort on how to design spiking neural networks, whether
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Figure 3.1: Binary voxel cube representation. Here, only one polarity is depicted. Voxel
cubes exploit the channel dimension to preserve as much temporal information as a large
number of timesteps would.

in terms of topologies or operations used. In this chapter, we review works that
have designed SNNs to process event data, although most of the models presented
here are also capable of processing static data.

3.2.1 Feedforward SNNs models

Spiking neural networks are built by replacing the non-linear activation functions
of an ANN, generally a ReLU, by a neuron model. The neurons now acts as an
activation layer, effectively generating spikes from input features. The first learning
rules for SNNs were not performing well, it is therefore logical that the first SNNs
have the same topologies as the first ANNs that appeared in the early 2000s. These
SNNs are feedforward networks using convolution layers or fully-connected layers,
with max pooling to reduce the size of the data throughout the network. At the
end, a flatten operation or a global average pooling is applied before the final
fully-connected layers. These networks rarely exceeds ten layers. This kind of
models, with different learning rules, are for instance present in (Shrestha and
Orchard, 2018) (8-layers CNN), (W. He et al., 2020) (2-layers MLP and 4-layers
CNN), (Kaiser, Mostafa, and E. Neftci, 2020) (3-layers CNN) and (Fang, Yu,
Y. Chen, Masquelier, et al., 2021) (6-layers CNN).
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3.2.2 Recurrent SNNs models

Although SNNs can already be considered as an recurrent neural network, some
works have tried to reproduce explicitly the recurrent operations used in ANNs
with spike operations.

In particular, (Xing, Di Caterina, and Soraghan, 2020) proposed a spiking variant
of a ConvLSTM cell named Spiking Convolutional Recurrent Neural Network cell
(SCRNN cell), illustrated in Fig. 3.2. In this cell, input feature map and the state
spiking feature map are combined to generate an output feature map and the next
state spiking feature map. Their network is composed of three SCRNN cells and a
final fully-connected layer. Unfortunately, the added complexity of this approach
doesn’t provide a gain in performance compared to previous works. Therefore, it
seems that recreating a memory and recurrence mechanism in addition to the ones
present in neuron potentials is not beneficial for classification tasks.

Figure 3.2: A single SCRNN cell proposed in (Xing, Di Caterina, and Soraghan, 2020).

3.2.3 Residual SNNs models

Advances in learning rules have recently made it possible to considerably increase
the size of the spiking neural networks considered, especially the surrogate gradient
learning rule detailed in Section 2.3.3. On top of that, the community followed the
path outlined by the ANNs and sought to implement residual connections in SNNs.
Residual connections solve the problem of vanishing gradient and allows an increase
in the number of layers of classical neural networks, but their implementation in
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SNNs are still an open research topic, as a simple addition between two spiking
feature maps does not preserve their binarity.

Zheng et al. (2021) was the first to propose directly-trained spiking ResNets
by introducing a pre-activation threshold dependent Batch Normalization (tdBN)
operation. Using tdBN, they are able to design and train spiking ResNets with a
very deep structure (50 layers), reaching high performance on both neuromorphic
(96.87% on DVS Gesture) and static datasets (67.05% on ImageNet).

Another approach called Spike-Element-Wise ResNets was proposed in (Fang,
Yu, Y. Chen, T. Huang, et al., 2021). The residuals blocks of a traditional ResNet,
a basic Spiking ResNet and a SEW ResNet are illustrated in Fig. 3.3. A basic block
in Spiking ResNet performs an addition between the output feature maps and the
identity before the spiking activation function, while the SEW block implements the
residual connection between the output spikes and the identity through a function
g. Authors show that the basic block is not able to achieve identity mapping for
all neuron models, and that it doesn’t solve vanishing/exploding gradient. The
SEW block solves these issues, using three different function g: ADD, AND and
IAND. The three variants achieve different results, with the SEW ResNet using
ADD performing significantly better: 69.26% on ImageNet with a SEW Resnet-152 ;
97.92% on DVS Gesture with a SEW ResNet-18 while the IAND and AND variants
respectively reach 95.49% and 70.49% accuracy. The ADD variant performing
better is not a surprise since the information transmitted between the layers is no
longer binary. These discrepancies show that the the manner of making residual
connections in spiking neural networks is still not clearly defined.

Based on these works, Na et al. (2022) proposed a spike-aware Neural Ar-
chitecture Search (NAS) framework called AutoSNN. They noticed that the SNN
architectures used in previous studies originated from conventional ANNs, and can be
divided in two blocks: the VGG-styled stacked convolutional layers and max pooling
layers, and ResNet-styled stacked residual blocks with skip connections. They
standardized these building blocks, naming them Spiking Convolution Block (SCB)
and Spiking Residual Block (SRB). They are both composed of two convolutional
layers with spiking neurons, and the SRB additionally includes a skip connection
before the spiking activation function (corresponding to diagram (b) in Fig. 3.3).
They fixed the global architecture of the network and let their NAS algorithm
choose between five candidate blocks: skip connection, SCB with kernel size of 3,
SCB with kernel size of 5, SRB with kernel size of 3 and SRB with kernel size of 5.
The best performing architectures are mostly composed of SRB with kernel size of 5.
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Figure 3.3: Residual blocks in ResNet, Spiking ResNet and SEW ResNet. Illustration
from (Fang, Yu, Y. Chen, T. Huang, et al., 2021).

These results support once again the importance of having efficient residual
connections in SNNs to obtain strong results.

Based on these different works, it seems clear to us that convolution blocks are
fundamental to achieve good performance on computer vision tasks with SNNs, as it
is the case for ANNs. Likewise, residual connections in SNNs often improve results,
but the multitude of proposals has rather led us to incorporate in our networks
residual connections based on concatenation, as we will discuss in Section 3.4.
Sparsity, a feature shared by both SNNs and event data is yet notably absent from
the literature. We rectify this oversight in the next section.

3.3 Event classification on IBM DVS128 Gesture

This section outlines the paper entitled "Learning from Event Cameras with Sparse
Spiking Convolutional Neural Networks" (Cordone, Miramond, and Ferrante, 2021)
that we presented at the International Joint Conference on Neural Networks in
2021. All of our code is available online 1.

In this work, we proposed a new method to train sparse spiking neural networks
on event data. We then evaluated the performance of SNNs and CNNs with and
without sparse operations in terms of accuracy, sparsity and training time on the
IBM DVS128 Gesture event dataset. The proposed sparse SNN reaches higher

1https://github.com/loiccordone/sparse-spiking-neural-networks

https://github.com/loiccordone/sparse-spiking-neural-networks
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accuracy while being more sparse, an important feature for the implementation
of SNNs on low-power neuromorphic hardware.

3.3.1 Sparse SNNs and the timestep-wise operating mode
Sparse convolutions

A well studied method to speedup inference and minimize memory footprint of a
neural network is to prune its weights, inducing sparsity in the model parameters.
However, input data and activations remain dense. It also exists sparse convolutional
networks that conserve the parameters dense but are able to process spatially sparse
data, generating sparse tensors throughout the network. The immediate benefit of
this approach is that the processing is done only on non-zero data, unlike dense
ANNs, which is particularly interesting for highly sparse data such as the output of
an event camera. Another benefit is that sparse convolutions (see Fig. 3.4) maintain
the sparsity of the input data across layers, resulting in a sparse network, as we
would see in Section 3.3.4. Sparse CNNs have been used primarily on LIDAR and
depth cameras data, but some works have used them with event data. Messikommer
et al. (2020) trained sparse CNNs on N-Caltech101 and N-CARS with similar
accuracy as the dense network with up to 20 times less computations per event.

Figure 3.4: Visualization of a convolution operation on a dense tensor and on a sparse
tensor. The number of operations and the results differ, as the convolution kernel only
centers itself on non-null data. More details can be found in (Choy, Gwak, and Savarese,
2019).

Two PyTorch-based libraries offer sparse convolutions with a GPU acceleration:
Facebook Research SparseConvNet (Graham, Engelcke, and Maaten, 2018) and
NVIDIA Minkowski Engine (Choy, Gwak, and Savarese, 2019). A benchmark
proposed by NVIDIA (Benchmark - Minkowski Engine 2022) shows that a single
Minkowski Engine sparse convolution is at least twice as fast as the one in
SparseConvNet, whether in the forward or in the backward pass. We therefore
chose to use Minkowski Engine for the desing of our sparse spiking convolutional
neural networks.
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Sparse spiking convolutional neural networks

To construct a sparse spiking convolutional layer, we stack a sparse convolutional
layer and spiking neurons. The sparse features output by the convolution update
the neurons potentials, generating spikes at all locations where the potential has
exceeded the firing threshold.

In terms of implementation, the membrane potentials are represented with
a dense PyTorch tensor. Storing the membrane potentials as a sparse tensor is
unfortunately very inefficient, as the addition between two sparse tensors is a very
expensive operation. Indeed, since sparse tensors simply consist of an unordered
list of positions and values, an addition between two sparse tensors require to
iterate all positions of both positions to add their values, or to append the new
position-value pair. As this addition occurs at each timestep in each layer, it
severely impacts the training time.

Instead, we implement a partial solution to this problem: the sparse activations
are converted to a dense representation before being added to the dense membrane
potentials, and the spikes output are in the form of a sparse tensor. Therefore, our
approach requires a sparse to dense conversion for the activations, and a dense to
sparse conversion for the output spikes. While this limitation produces a reasonable
overhead, it does not hinder the learning of the network while enabling the use of
sparse convolutions in SNNs.

To the best of our knowledge, we are the first to present sparse spiking
convolutional network that learns directly from spatio-temporal event data.

Timestep-wise operation

Another contribution of this work is the timestep-wise operation of our sparse
SNNs, detailed in Algorithm 1.

The main difference with a traditional SNN operation (e.g. in Zimmer et al.,
2019) comes from our timestep-wise approach: here the potentials are initialized and
updated at the model level rather than inside each layer. This makes the traversal of
the network possible timestep per timestep, and reduces the training time by a factor
of L, the number of convolutional layers. Our method is therefore totally independent
of the number of timesteps, since it only processes one timestep at a time.

At the time of this work, timestep-wise operation was not widespread in SNN
frameworks, as the more common approach was to iterate through all the timesteps
inside each layer (e.g. in Zimmer et al., 2019), an approach we call layer-wise. The
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Algorithm 1 Timestep-wise spiking neural network algorithm
Inputs: number of timesteps T , input event data X = {X0, ..., XT −1}, number

of convolutional layers L, spiking sparse convolutional layers {sc0,...,scL-1},
dropout layer d, linear layer fc

Outputs: prediction output Y
1: create layer potentials {mem0, ..., memL−1} initalized to 0, create an empty list

outs = {}
2: for t = 0 to T − 1 do
3: input Xt, mem0 to sc0, get outt, mem0
4: for i = 1 to L − 1 do
5: input outt, memi to sci, get outt, memi

6: end for
7: input outt to d, get outt

8: input outt to fc, get outt

9: append out to outs
10: end for
11: return Y the mean of outs

layer-wise operation forces each layer to wait until its preceding layer has gone
through all timesteps, which impacts the training by backpropagation through
time. Indeed, the unrolling of a layer-wise network make the first layers difficult
to train due to the vanishing gradient problem, which is all the more true when
the number of layers and the number of timesteps are high. In a timestep-wise
approach, the unrolled network repeats the whole network as many times as there
are timesteps, the weights of the first layers are therefore regularly reached and
updated by the optimizer. It is important to note that nowadays, this timestep-wise
approach has become common for training SNNs, and it is notably used by the
main frameworks (e.g. SpikingJelly, SLAYER, Norse).

3.3.2 Models

In order to evaluate the performance and the efficiency of our sparse SNNs, we used
four convolutional networks, noted A, B, C and D. We compared 3D convolutional
neural networks with 2D spiking neural networks, with and without sparse operations.
Sparse operations were implemented using Minkowski Engine (Choy, Gwak, and
Savarese, 2019). The architectures are detailed in Table 3.1 and the architecture
of our SNN for a single timestep is illustrated in Fig. 3.5.

The CNNs use 3D kernels of size 3 × 3 × 3 while the SNNs use 2D kernels
of size k × k with k = 5 for the first two convolutions and k = 3 for the last
two. Every convolutional layer has a stride of 2 × 2 on the spatial dimensions.
The time dimension is not strided and kept constant with padding for the CNNs.
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Table 3.1: Architectures of the four models studied.

Model Layer 1 Layer 2 Layer 3 Layer 4
A. CNN 4c3-bn 8c3-bn 8c3-bn 16c3-bn

B. Sparse CNN 4sc3-bn 8sc3-bn 8sc3-bn 16sc3-bn

C. SNN 4c5 8c5 8c3 16c3-do

D. Sparse SNN 4sc5 8sc5 8sc3 16sc3-do

Figure 3.5: SNN architecture. Each timestep of the input event data goes through the
network, updates the layers’ potentials and outputs one prediction.

The notation sc denotes the use of a sparse convolution, bn denotes the use of
a batch normalization layer and do denotes the use of a dropout layer with 0.5
probability. The activation functions for the CNNs and the SNNs are respectively
ReLU and LIF neurons, implemented using Heaviside step function. Each network
has a final fully-connected layer for classification.

3.3.3 Dataset

We evaluated our models on the IBM DVS128 Gesture Dataset (Amir et al., 2017),
a dataset published in 2017 which contains recordings of 29 subjects performing 11
hand gestures under 3 different illuminations. The gestures were recorded using a
DVS camera with a resolution of 128 × 128 pixels (see Fig. 3.6). Each gesture lasts
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up to 6 seconds, and are provided as raw events with a microsecond timestamp,
an x, y position and a polarity. Samples from the first 23 subjects are used for
training and samples from the last 6 subjects for testing.

Figure 3.6: Examples of gestures from the DVS128 Gesture Dataset, where green and
dark blue pixels correspond respectively to events that appear or disappear. This frame
representation is obtained by the accumulation of events over a period of 20ms. The
gestures depicted are a hand clap and an arm roll.

Following (Shrestha and Orchard, 2018), we provided only the first 1.5s of each
gesture to our network for both training and testing, with raw events accumulated
over T = 150 windows of ∆t = 10 ms. These samples are composed of one input
channel, the polarity, which is stored as either +1 or −1. The resulting voxel grid
of shape 1 × 150 × 128 × 128 (CTHW ) is stored as a sparse tensor for maximal
efficiency. Apart from this change in representation, no pre-processing is applied to
the events.

See Table 3.2 for a comparison of the temporal characteristics of our model
with other SNNs from the litterature. Our method offers a good compromise
between the duration of computations (less than 150 timesteps) and the respect
of the data temporality (timestep of 10ms). In particular, (Fang, Yu, Y. Chen,
Masquelier, et al., 2021) used a number of events to construct timesteps, which
is not compatible with data coming from an event camera in real-time, and also
prevents from taking advantage of data sparsity.

3.3.4 Results

The results of the training of our 4 models are presented in Table 3.3. The sparse
SNN achieves the best test accuracy, beating the CNNs by 1.5%. It is interesting to
note that CNNs with 3D kernels have obtained competitive results of around 90%
test accuracy, in only 10 epochs of training. CNNs overfitted very rapidly, in spite
of the use of high learning rate and weight decay, thus the batch normalization
layers have been essential for proper learning.
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Table 3.2: Comparison of the temporal characteristics with other SNNs.

Model
Timesteps
train/test

Timestep
duration

Sample duration
train/test

SLAYER (2018) 300 / 300 5ms 1.5s / 1.5s
SCRNN (2020) 20 / 20 50ms 1.0s / 1.0s

DECOLLE (2020) 500 / 1800 1ms 0.5s / 1.8s
PLIF SNN (2021) 20 / 20 10k events/ts 400k events

This work 150 / <150 10ms 1.5s / <1.5s

Table 3.3: Test accuracy, epochs, and training time of our four SNNs.

Model Accuracy Epochs Training time (per epoch)
A. CNN 90.28% 10 376s (38s)
B. Sparse CNN 90.63% 10 228s (23s)
C. SNN 90.28% 12 1232s (95s)
D. Sparse SNN 92.01% 31 2639s (85s)
SNN (2019) 87.50% 18 6332s (345s)

The SNN has approximately 2.5 times longer training time per epoch than
the CNN, due to its sequential processing. While the CNN process the whole
sequence in one go, the SNN has to process each timestep sequentially. The best
accuracies were achieved by the SNNs, demonstrating that taking advantage of
the temporal nature of the data leads to better results.

The sparse CNN and SNN both achieves better test accuracy than their dense
counterparts. For the CNNs, the training time is even divided by 2, showing a
great benefit of switching from dense operations to sparse operations. For the
SNNs, training one epoch is faster for the sparse SNN, but the training requires
more epochs leading to an overall longer training.

To validate our timestep-wise approach, we trained an additional SNN with the
same architecture and hyperparameters as our model C but using the layer-wise
approach used in (Zimmer et al., 2019). Our SNN accuracy was better and the
training was around 4 times faster per epoch, which we believe comes from our
implementation. Indeed, we hypothesize that since the training is performed on
GPU, the timestep-wise operation allows an automatic merging of CUDA kernel calls
for an entire network traversal, while in layer-wise this optimization is not possible.
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We also measured the activity (i.e. the non-zero activations) during inference
over 150 timesteps in each of the 4 convolutional layers, for each model. The
results are presented in Table 3.4.

Table 3.4: Averaged non-zero activations (activity) after each layer during inference on
the test set, over 150 timesteps.

Model Conv 1 Conv 2 Conv 3 Conv 4 Total
A 643k (26%) 357k (29%) 108k (35%) 49k (31%) 1,157k
B 58k (2.4%) 83k (7%) 40k (13%) 38k (25%) 219k
C 28k (1.1%) 26k (2.1%) 14k (4.6%) 13k (8.5%) 81k
D 53k (2.1%) 7.2k (0.6%) 5.5k (1.8%) 1.7k (1.1%) 67.4k

SNN (2019) 38k (1.5%) 61k (4.9%) 17k (5.5%) 16k (10.4%) 132k

Even with a convenient ReLU activation function that generates less non-zero
activations than other activation functions, the CNN has a sparsity of around 30%
across the network, leading to nearly 1,157 non-zero activations. For a 99% sparse
input data, this result shows that traditional convolutional layers damage the input
sparsity, making the use of CNNs to process event data unattractive.

Using sparse convolutions inside the CNN results in a significant improvement
in the network sparsity. The first layer is 10 times sparser, better preserving
the sparsity of the event data. The following layers also show an improvement,
resulting in a total of 219k non-zero activations, more than 5 times sparser than the
classical CNN. This result alone justifies the advantage of using sparse convolutional
networks for the processing of event data.

The SNNs achieve impressive sparsity: a maximum of 8.5% of the neurons
spike at each layer, a number that even goes down to 0.6% for some layers. This
results in a total number of spikes smaller than 81k, 3 times sparser than the
sparse CNN and 15 times sparser than the CNN. The sparse SNN generates an
even sparser network, with a reduction of 13k spikes compared to the dense SNN.
Both models generate twice as sparse networks as a SNN using the algorithm
presented in (Zimmer et al., 2019).

To the best of our knowledge, our method represents the state-of-the-art in
matter of sparsity for the DVS128 Gesture dataset.

Table 3.5 compares our Sparse SNN with SOTA SNNs from the literature. When
the number of parameters was unspecified, we assumed that the final output feature
map was of size 4 × 4, probably underestimating the real number of parameters.
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Table 3.5: Comparison with other SNNs.

Model #params Train iter. Acc.
Real-time

data
Simple

operations
SLAYER (2018) Unknown 270k 93.64% ✓ ×
SCRNN (2020) >662k 100 epochs 92.01% ✓ ×
DECOLLE (2020) >51k 160k 95.54% ✓ ✓

PLIF SNN (2021) >1,110k 74k 97.57% × ✓

This work 14k 1.3k 92.01% ✓ ✓

Although our model is not better in terms of accuracy, it is still competitive with
up to 100 times less parameters and training iterations (i.e. a backpropagation
pass). We reviewed if models are able to use event data coming directly coming
from event camera with minimal preprocessing, representing a real time situation.
Constructing frames by gathering a number of events, as done by (Fang, Yu, Y. Chen,
Masquelier, et al., 2021), is not compatible with a real time situation where the
number of events can vary greatly over time, and it even can prevent a prediction
if the number of events is insufficient. Even if others SNNs are capable of using
real-time event data, our model is the only one using binary event data. We also
reviewed if the operations used in the models are compatible with a low-power
neuromorphic implementation, i.e. if the operations are simple. Since our work
only uses convolutions, multiplication and addition, it remains easily the simplest
network to implement on neuromorphic hardware. Other works include the use of
mean/max pooling, special memory cells... We could not compare sparsity with
other SNNs since this work is the first to provide such a measurement.

3.3.5 Discussion on real-time inference

Because of its timestep by timestep functioning and the operations used, our method
represents a plausible implementation of a low-power event-based approach. Indeed,
spiking convolutions have successfully been implemented on low-power hardware
(Abderrahmane et al., 2022), and our model is able to process a continuous stream
of events directly coming from an event camera. As mentioned previously, our
method is able to output a final prediction after any defined timestep, representing
a realistic real-time inference.

We validate this claim by computing the test accuracy on DVS128 Gesture
of our sparse SNN with different number of timesteps, ranging from 5 to 300.
We are thus doing inference on samples lasting from 50ms to 3.0s. Results are
presented in Fig. 3.7.
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Figure 3.7: Test accuracy for samples of different duration. The network was trained
with samples lasting 1.5 seconds, reaching 92.01% test accuracy.

The accuracy of our model is quite robust to the duration of the samples, as it
achieves 86.46% test accuracy for 0.7s samples and even 82.64% for 0.5s samples.
Accuracy drops rapidly when the number of timesteps is inferior to 50. Increasing
the sample duration leads almost always to a better accuracy until the 1.5s mark,
then the accuracy stays relatively constant. Our model even achieves 93.40% test
accuracy for 2.3s samples. Therefore, it benefits from using more timesteps at
inference than during training. Furthermore, as the number of timesteps is directly
related to the number of operations performed, our work allows a trade-off between
accuracy, power consumption, latency and memory.

This behavior is noteworthy for an embedded real-time inference: intermediate
results can be obtained at the same rate as data is captured, and prediction can
either be continued or be stopped according to the confidence, enabling even more
energy savings without hindering the accuracy.

3.3.6 Conclusion

We presented a timestep-wise approach to build sparse spiking neural networks
learning directly from binary event data. Our method generates highly sparse
networks and is able to output a prediction at any timestep, two essential character-
istics for a real-time inference on neuromorphic low power hardware. We validated
our approach on the neuromorphic DVS128 Gesture dataset, achieving 93.40% test
accuracy with a sparse spiking convolutional network, where the whole network
does not generate more than 450 spikes per timestep.
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But the target application in this work was still quite simple: the event sensor
was still and in a controlled clean environment. It is not representative of real-word
automotive event data captured by a moving event sensor in the wild. For this
reason and in order to develop SNNs capable of processing more complex data, we
then sought to tackle the automotive event datasets proposed by Prophesee.

3.4 Automotive event classification on the Proph-
esee datasets

This section outlines a part of the paper entitled "Object Detection with Spiking
Neural Networks for Automotive Event Data" (Cordone, Miramond, and Thierion,
2022) that we presented at the International Joint Conference on Neural Networks
in 2022. All of our code is available online 2.

Taking advantage of the latest advancements in matter of spike backpropagation
- surrogate gradient learning, parametric LIF, SpikingJelly framework - and of our
proposed voxel cube event encoding, we trained three different SNNs based on
popular deep learning networks: VGG, MobileNet, and DenseNet. As a result, we
managed to increase the size and the complexity of SNNs usually considered in
the literature. We evaluated their performance on two automotive event datasets,
establishing new state-of-the-art classification results for spiking neural networks.

3.4.1 Spiking VGG, Spiking MobileNet and Spiking DenseNet

Inspired by popular CNNs topologies, we designed and trained three different spiking
neural networks using only strided convolutions, max pooling, batch normalization
and PLIF neurons (Fang, Yu, Y. Chen, Masquelier, et al., 2021). Convolutions
and max pooling have been used extensively with SNNs (Cordone, Miramond, and
Ferrante, 2021, Xiao et al., 2020). Since batch normalization layers can be merged
with a preceding or subsequent convolution layer at inference (see Section 5.1 for
more details), it is possible to use them to train SNNs as long as they are placed
before the PLIF neurons. We explore their importance in section 3.4.4.

In CNNs, the final layers used for classification need to be adapted to be
compatible with spikes. To this end, we propose a spiking classifier simply composed
of a layer of batch normalization, a 1 × 1 convolution outputting num_classes

channels and PLIF neurons. By using a 1D convolution, this classifier is able
to process feature maps of any size without requiring e.g. a layer of average

2https://github.com/loiccordone/object-detection-with-spiking-neural-networks

https://github.com/loiccordone/object-detection-with-spiking-neural-networks
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pooling, which would be incompatible with spikes operations. The final predictions
are obtained by summing all output spikes first in the spatial dimension, then
in the time dimension.

We propose spiking variants of VGG, MobileNet and DenseNet by replacing
their ReLU activation functions by PLIF neurons. All spiking neural networks use
the spiking classifier described above in lieu of their own classifier.

Spiking VGG

Introduced in (Simonyan and Zisserman, 2015), VGG is a convolutional neural
network composed of up to 19 convolutional layers followed by 3 fully-connected
layers. Our Spiking VGG replaced the final classifier but kept the same architecture,
with the addition of batch normalization before each spiking convolutional layer.

Spiking MobileNet

MobileNet (Howard et al., 2017) is a model designed to be used in mobile appli-
cations that use depthwise separable convolutions, requiring less parameters and
computations than normal convolutions. For our Spiking MobileNet, we dropped
the activation function between the depthwise and pointwise convolutions, and
moved all batch normalization layers before the convolutional layers. Removing
the activation function makes our network non-spike as the inputs of the pointwise
convolution are not spikes anymore. However, it can be shown that a depthwise
separable convolution is equivalent to a normal convolution with specific weights.
Thus, we used depthwise separable convolutions in the training of our spiking
MobileNets as it provided better results (see section 3.4.4), and we return to a
full-compatible SNN at inference by replacing them by their equivalent convolutions.
Our Spiking MobileNet contains only one of the five identical depthwise separable
layers near the end of the network. We have varied the number of filters of the first
layer to obtain networks of different sizes.

Spiking DenseNet

To promote gradient propagation, ResNets use element-wise addition, an operation
difficult to operate in the spike domain. Fang, Yu, Y. Chen, T. Huang, et al.
(2021) proposed Spiking ResNets with different residual connections, but the one
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based on an AND accumulation - in our opinion the only one compatible with an
implementation on specialized hardware - produces unsatisfactory results. DenseNet
(G. Huang et al., 2017) is an architecture that promotes gradient propagation
by using channel-wise concatenations, which is an operation preserving the spike
representation. We replaced the ReLU activations by PLIF neurons to obtain our
Spiking DenseNet. We have varied the depth and growth rate (determining the
number of channels) to obtain different versions of Spiking DenseNet.

3.4.2 Automotive event classification datasets

We evaluated our spiking neural networks on two automotive classification datasets:
Prophesee N-CARS and a new event dataset we called Prophesee GEN1 Automotive
Classification, generated from the object detection dataset Prophesee GEN1.

Prophesee N-CARS dataset

The Prophesee N-CARS dataset (Sironi et al., 2018) is a classification composed
of 24k samples of length 100ms captured with a Prophesee GEN1 event camera
mounted behind the windshield of a moving car. The samples represent either a
car or background. Samples have variable size as they are cropped from recordings
of resolution 304 × 240 pixels.

Prophesee GEN1 Classification dataset

We also generated a classification dataset from the Prophesee GEN1 Detection
dataset (Tournemire et al., 2020) by cropping each bounding box (car or pedestrian)
to form individual samples (see Fig. 3.8). As it is the case for N-CARS, each
sample represents 100ms of events preceding the ground truth bounding box. They
also have variable size since they are cropped from a 304 × 240 pixels resolution
camera. The main difference between this dataset and N-CARS lies in the presence
of a pedestrian class. Indeed, we believe that the features learned by a network
are more relevant if it is trained to classify two different classes rather than one
class vs. background. To avoid imbalance in the number of samples for each class,
we rebalanced the training set: we undersampled the cars and oversampled the
pedestrians by doing horizontal flip data augmentation. The code used to generate
this classification dataset is available online (Cordone, 2022).

For both tasks, we used samples of 100ms encoded as binary voxel cubes of 5
timesteps and 2 micro time bins, as it represented the best compromise between
performance and number of operations. The samples were resized to 64 × 64 pixels
using nearest-neighbor interpolation to keep the input events binary.



50 3.4. Automotive event classification on the Prophesee datasets

Figure 3.8: Examples of samples from the GEN1 Classification Dataset.

3.4.3 Results

The best accuracies obtained by our SNNs on the Prophesee N-CARS dataset are
compared with other state-of-the-art models in Table 3.6. All of our models beat
previous results for spiking neural networks and compete with the best neural
networks in the literature. Our spiking DenseNets, MobileNets and VGG are all
capable to exceed 90% test accuracy on N-CARS.

Table 3.6: Comparison with state-of-the-art models on Prophesee N-CARS.

Methods Representation Network N-CARS acc
HATS (2018) TimeSurface N/A 0.902
Gabor-SNN (2018) Spike SNN 0.789
HybridSNN (2021) VoxelGrid SNN 0.77
HybridSNN (2021) VoxelGrid SNN-CNN 0.906
YOLE (2019) VoxelGrid CNN 0.927
Asynet (2020) VoxelGrid CNN 0.944
EvS-S (2021) Graph GNN 0.931
VGG-11 (ours) VoxelCube SNN 0.933
MobileNet-64 (ours) VoxelCube SNN 0.922
DenseNet121-24 (ours) VoxelCube SNN 0.904

But assessing the performance of SNNs is not limited to its accuracy, as multiple
others features are needed to take advantage of their benefits when embedded in
specialized hardware. We consider along the accuracy the following metrics:

• Number of parameters: embedded systems have high constraints in term of
memory, therefore it is important to design networks with a low number of
parameters.
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• ACCs: spiking neural networks do not require multiplicative operations,
enabling substantial energy savings on specialized hardware (see Section 2.5).
Thus, we chose to report the number of operations of our SNNs by using
the number of accumulations operations (ACCs), to accentuate the potential
energy savings. Indeed, all spiking convolutions operations amount to ACCs,
and each PLIF neuron only requires 1 ACC per timestep to update their
potential. We did not count the ACCs in the batch normalization layers as
they can be fused with the convolutional layers.

• Activity: finally, we measured the number of spikes emitted after each
activation layer to represent the global activity of the network compared to a
fully dense equivalent DNN. Indeed, processing events with SNNs preserves
the data sparsity. On specialized hardware, computations are only performed
when there are spikes, therefore an highly sparse network would consume less
power than its dense counterpart. The activity is obtained by averaging the
number of spikes divided by the number of activations over the whole test set.
The sparsity is simply 1 minus the activity.

Table 3.7 provides extensive results of all our spiking neural networks on both
automotive classification datasets. Once again, we can only regret that the works
on SNNs in the literature do not systematically provide these metrics.

Our spiking VGG models provide the best accuracies for both datasets, while
maintaining a relatively low number of ACCs per timestep. But these architectures
have an high number of parameters, making it difficult to embed them. Spiking
MobileNets reach high accuracies but require high numbers of parameters and
ACCs per timestep, penalized by the replacement of their depthwise seperable
convolutions by normal convolutions. However, they are the only models for
which the accuracy increases as the model gets bigger. Finally, spiking DenseNets
reach competitive accuracies while requiring a low number of parameters and a
moderate amount of ACCs per timestep. Using the densely connected layers of
DenseNets, surrogate gradient method has no trouble learning across 100+ spiking
layers. The accuracy decreases however when the growth rate and the number
of layers are both high, but we believe that better results could be achieved on
these big networks with longer trainings.

For SNNs to be truly efficient, they require both low sparsity and a low number
of timesteps. All of our spiking neural networks have an activity inferior to 40% on
both datasets. As these SNNs operate on 5 timesteps, this means that they require
at most twice the number of operations of an equivalent dense ANN. The operations
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would however consume less power on a specialized hardware, as they are simple
ACCs (we would discuss this claim more in depth in Chapter 6). Furthermore,
these sparsity results could be improved by adding a regularization term to the loss
to constrain the number of spikes emitted, as it was done in (Zimmer et al., 2019).

3.4.4 Discussion
Influence of the number of timesteps and micro time bins

Spiking neural networks are recurrent neural network operating on a fixed number
of timesteps T . Encoding event data in a representation that keep their temporal
information can thus benefit SNNs. In section 3.1.2, we presented an event data
encoding called voxel cubes that preserve the temporal information of events
while minimizing the number of timesteps. Indeed, the number of computations
performed by SNNs increases linearly with the number of timesteps, it is thus
important to keep it small.

Fig. 3.9 plots the N-CARS accuracy of our SNNs on selected combinations of
number of timesteps and micro time bins. The number of timesteps remains the
most important parameter for obtaining good accuracies with SNNs. Indeed, better
results are achieved when the number of timesteps increases, but only until a certain
point as we achieved better results with 5 timesteps than with 10. Results obtained
with 1 timestep are significantly worse, even with a high number of micro time
bins, proving if necessary that SNNs need to operate on several timesteps to be
performant. Increasing the number of micro time bins do not always improve the
results, even if it seems to help when the number of timesteps is low.

Undoubtedly, these results depend on the samples duration and the data
temporality. In our case, for samples lasting 100ms, the best compromise between
number of timesteps, number of micro time bins and accuracy seems to be 5
timesteps and 2 micro time bins on N-CARS, which is the encoding format we
used for all models.

Influence of Batch Normalization and PLIF neurons

Batch Normalization layers seem to be vital to the training of complex SNNs:
as we can see in Table 3.8, removing them makes our networks significantly less
accurate or they do not learn at all. More surprisingly, the placement of the batch
normalization layers seems to also play a part in the efficiency of our networks, as
placing batch normalization layers before the convolutions produce better results
than placing them after. In DNNs, placing batch normalization layers before or
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Figure 3.9: Influence of the number of timesteps and micro time bins on N-CARS.
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Table 3.8: Influence of Batch Normalization when training SNNs on N-CARS (average
over 3 runs).

Models
Accuracy ↑

BN-CONV order CONV-BN order No BN
VGG-11 0.933 0.819 0.649
MobileNet-64 0.922 0.812 0.736
DenseNet121-24 0.904 0.808 0.698

after convolutions do not make a significant difference, as both placements provide
benefits in training speed and convergence.

In our case, we believe that batch normalization layers placed before convolutions
are effective in SNNs because they transform highly sparse feature maps of spikes
into a dense decimal representation. As a result, the weights learned by convolutions
are updated through backpropagation whether they have received spikes or not.
Without batch normalization, only the weights receiving spikes would have been
updated meaningfully, leading to slower convergence.

We restate that batch normalization can be used when training SNNs because
their parameters can be fused with the parameters of the subsequent convolutions.
We will detail this procedure in Section 5.1. In light of this, we believe our findings
on the placement of batch normalization layers in convolutional SNNs can make
a difference in the training of larger and more complex SNNs.

On the other hand, PLIF neurons introduced in (Fang, Yu, Y. Chen, Masquelier,
et al., 2021) also help during the training of our large spiking neural networks
as seen in Table 3.9.

Table 3.9: Influence of PLIF neurons when training SNNs on N-CARS.

Models
Accuracy ↑

PLIF LIF (τ = 2.0)
VGG-11 0.933 0.889
MobileNet-64 0.922 0.801
DenseNet121-24 0.904 0.836

Replacing PLIF neurons with simple LIF neurons (with a time constant τ = 2.0)
leads to poorer accuracies for all networks. Their presence is not as important as
batch normalization layers but the SNNs seem to benefit from learning different
time constants for each layer. It also reduces the number of hyperparameters to be
tuned, so we can only encourage their use for the training of SNNs on event data.



56 3.5. Conclusions and limits

Influence of depthwise separable convolutions

We used depthwise separable convolutions during the training of our spiking
MobileNets for two reasons: the smaller number of parameters made the trainings
faster and the larger networks were able attain better accuracies. As we can
see in Table 3.10, the 32 and 64 input channels variants of spiking MobileNets
using depthwise separable convolutions reach higher accuracies than their normal
convolution counterparts.

Table 3.10: Influence of depthwise separable convolutions when training spiking
MobileNets on N-CARS.

Models
Accuracy ↑

Dw sp conv Normal conv
MobileNet-16 0.842 0.906
MobileNet-32 0.902 0.898
MobileNet-64 0.922 0.807

We presume that the higher number of parameters induced by the normal
convolutions makes the training of the spiking neural networks with surrogate
gradient more difficult. As it is the case for the spiking VGGs, the accuracy actually
drops when adding parameters to the normal convolutions MobileNets, while it
increases for the MobileNets trained with depthwise separable convolutions.

However, the smaller variant seems to benefit from the added parameters as
the accuracy is 5% higher with normal convolutions than with depthwise separable
convolutions. We therefore recommend to use depthwise separable convolutions in
SNNs only as a second resort, when the accuracy achieved with normal convolutions
decreases as the networks get larger.

3.5 Conclusions and limits

In this chapter, we have outlined our steps to design SNNs directly trained on
event data that are powerful, compact and sparse.

Using the surrogate gradient learning method, we first designed and trained
a 4-layers convolutional SNNs on the DVS Gesture dataset by introducing sparse
spiking convolutions, reaching competitive accuracy with a small, highly sparse
network. Unfortunately, these sparse spiking convolutions suffer from a significant
computational overhead, making it difficult to use them on deeper SNNs. In addition
to this, we realized that sparse convolutions would require custom implementations
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to be run on low-power neuromorphic hardware, an important obstacle to their
democratization. For these reasons, we did not use sparse convolutions in the
rest of our work.

Second, we designed and trained three different spiking neural networks models
based on VGG, MobileNet and DenseNet, setting new state-of-the-art results on
two automotive classification event datasets with SNNs. All our SNNs perform
well without requiring an high number of timesteps thanks to our voxel cube event
encoding. These SNNs are bigger and more complex than the ones usually considered
in the literature, thanks to the use of batch normalization layers, concatenation-
based recurrent connections and parametric LIF.

In both works, we evaluated our performance using not only the accuracy
but also the size of the network (numbers of layers, number of parameters), the
activity of the network (whether in percent or in number of spikes) and the number
of operations (number of ACCs). We can only recommend that future works
on SNNs systematically provide these measures, as they are vital to justify the
spiking approach.

Results obtained in this chapter prove that spiking neural networks are now able
to reach competitive performance on event data, comparable with classical neural
networks. SNNs promise lower computational cost, yet they operate over multiple
timesteps. One of the benefit of using surrogate gradient learning for training
SNNs is that it provides us with the ability to control the number of timesteps,
and therefore, we are now able to train SNNs on very small numbers of timesteps,
while having the same or better performance than converted SNNs that operate
on hundreds of timesteps. Our proposed voxel cube encoding even retains a little
more temporal information for a given number of timesteps, slightly improving
performance without adding computational overhead.

The main focus of this chapter was to develop complex SNNs architectures that
are able to learn complex patterns on large event datasets, since it is a necessary
step in order to tackle more complex and real-world problems than classification.
Using most of our findings as a foundation, we study in the next chapter the use
of SNNs to perform object detection on event data.
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Although classification problems are of interest, embedded automotive applica-
tions require more complexity. In a car, one of the most critical functions is danger
detection. It requires low latency, reliability and must run in permanence. For
these reasons, the process of event data with spiking neural networks represents
a promising approach. We address this as an object detection problem, i.e.
determining where objects are located in a given image (object localization) and
which class each object belongs to (object recognition). Object detection on event
data is still a largely undeveloped area, and even more so if their processing is
done with spiking neural networks.
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In this chapter, we describe the design of the first spiking neural networks
capable of performing object detection on automotive real-world event data. We
will start by presenting the different frameworks used in the literature to solve
the task of object detection with classical neural networks. Then, we will interest
ourselves in the works that tackled the object detection task with spiking neural
networks. Finally, we will present our method to do object detection on event data
using spiking neural networks, and what still limits us.

4.1 Neural networks for object detection

Neural networks tackling the object detection task can be described as composed
of two parts: a backbone, extracting features from the input image, and an object
detector, classifying and localizing objects based on these features. In this section,
we present the most important neural networks detectors proposed in the literature.
Detectors can divided in those that operate in two stages, and their successors
that require only a single stage.

4.1.1 Two-stage detectors

A two-stage detector is a network that has a separate module to produce region
proposals. In the first stage, these models attempt to locate an arbitrary number
of objects proposals in an image, and in the second stage, they classify and locate
those objects. These systems typically are not real-time, have complex architectures,
and lack global context because they involve two distinct steps. They do, however,
provide a better understanding of the steps that led to the design of their successors,
the single-stage detectors.

R-CNN and Faster R-CNN

The Region-based Convolutional Neural Network (R-CNN) (Girshick et al., 2014)
demonstrated how a CNN could immensely improve object detection performance.
First, a region proposal module produce 2000 object candidates using Selective
Search (Uijlings et al., 2013). These candidates are then warped and propagated
through a CNN backbone to obtain a high dimensional feature vector for each
proposal. They use trained Support Vector Machines (SVMs) to obtain confidence
scores on all proposals, and they apply Non-Maximum Suppression (NMS) to
keep the most relevant scored regions. Once the class had been identified, the
model then predicts its bounding box using a trained bounding-box regressor. This
operation is illustrated in the Fig. 4.1.
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Figure 4.1: Architecture of R-CNN (Girshick et al., 2014).

R-CNN was a pioneer in the field of object detection, but it was slow (47 seconds
per image in 2013, due to the repeated traversals of CNNs on overlapping candidate
regions) and expensive to train. Thereafter, Ren et al. (2015) proposed Faster
R-CNN, where the region proposal module is implemented by a dedicated CNN
called Region Proposal Network (RPN). This RPN now outputs a set of candidate
windows, along an objectness score which determines the likelihood of an object
presence. RPN introduces the notion of anchor boxes, multiple manually defined
bounding boxes of different aspect ratios on which the network performs a regression
to position the predicted bounding boxes. The use of neural networks at every
stage of the object detection allows Faster R-CNN (see Fig. 4.2) to increase the
performance and to operate in near real time (5 frames per second).

Figure 4.2: Architecture of Faster R-CNN (Ren et al., 2015).

R-FCN

Region-based Fully Convolutional Network (Dai et al., 2016) uses a combination
of four convolutional neural networks to detect objects. First, a CNN backbone
extract features from the input image. An intermediate feature map is input to a
Region Proposal Network to identify the Region of Interest (RoI) proposals while
the final feature map is fed to a classifier and a bounding box regressor.
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This work brought us closer to a single neural network learning end-to-end to
tackle an object detection problem, what we present in the following subsection
as one-stage detectors.

4.1.2 One-stage detectors

Single-stage detectors classify and locate objects in a single shot. They employ
predefined boxes and keypoints of various scales and aspect ratio to localize objects.
Although they initially performed worse than the two-stage detectors, they are
now superior in every respect: they outperform them in real-time performance
and have a simpler design. These are the reasons of the widely usage of one-stage
detectors in embedded systems.

YOLO

While two-stage detectors address the object detection as a classification task, either
an object or background, YOLO or You Only Look Once (Redmon et al., 2016)
reframed it as a regression problem, directly predicting the image pixels as objects
and its bounding box attributes. In YOLO (see Fig. 4.3), the input image is divided
into a grid of cells, and each cell is responsible for predicting the objects’ center.
Thus, one grid cell predicts multiple bounding boxes.

Figure 4.3: Architecture of You Only Look Once (YOLO) Redmon et al., 2016.

At the time of its publication, YOLO outperformed its one-stage real-time
competitors by a wide margin in terms of accuracy and speed. It did, however,
have serious shortcomings: the restriction on the number of objects allowed in each
cell and poor localization accuracy for small or clustered objects. The subsequent
versions of YOLO addressed these issues.
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SSD

Single Shot MultiBox Detector (SSD) (W. Liu et al., 2016) use a CNN backbone
combined with auxiliary convolution layers added at the end of the model. Its
architecture is illustrated in Fig. 4.4. SSD recognizes smaller objects early in the
network using the large feature maps, while the deeper layers are in charge of the
offset of the anchor boxes and aspect ratios. During training, SSD match each
ground truth box to the anchor box with the best jaccard overlap (see Fig. 4.5) and
train the network accordingly. As SSD outputs thousands of predictions, the vast
majority is composed of background predictions. To help the training, SSD proposed
hard negative mining to compute the loss: instead of using all the wrong predictions,
they take only those with the highest confidence scores, so that they only keep a
maximum ratio of 3:1 between bad predictions of background and foreground objects.

At the time, SSD was much faster and more accurate than state-of-the-art
networks such as YOLO and Faster R-CNN, but it has trouble detecting small
objects. This this was somewhat mitigated afterwards by using better backbones,
e.g. ResNet, but the detection of small objects remains the main limitation of SSD.

Figure 4.4: Architecture of Single-Shot Multibox Detector (SSD) (W. Liu et al., 2016).

RetinaNet

To explain the difference of accuracies between single and two-stage detectors,
Lin, Goyal, et al. (2017) suggested that the "extreme foreground-background class
imbalance" is impairing the performance of single-stage detectors.

Based on the cross entropy loss, they proposed a new loss called focal loss (see
Fig. 4.6) to correct the imbalance. Object detection models output thousands
of predictions, with only tens corresponding to foreground objects. As such,
the overwhelming majority of predictions are background. With classical cross-
entropy loss, even the correctly classified (pt ≫ 0.5) background predictions
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Figure 4.5: Intersection over Union (IoU), or jaccard overlap, is calculated by dividing
the intersection of two elements by their union, as a way to measure their similarity.

Figure 4.6: Focal Loss as introduced in (Lin, Goyal, et al., 2017), with pt the probability
predicted by the model for a sample for a given class. Cross-Entropy loss is represented
by the blue line (γ = 0).

are still contributing to global loss, mitigating the contribution to the loss of
a wrongly predicted object foreground. On the other hand, focal loss reduces
the loss contribution of these simple samples while strongly penalizing the non-
localized foreground objects.

Using this loss, they proposed RetinaNet (see Fig. 4.7), an object detector
using ResNet and a Feature Pyramid Network (FPN) (Lin, Dollár, et al., 2017) as
backbones and two identical subnets as classification and bounding box regressor.
Each layer from the backbone is passed to the regressors, enabling the detection
of objects at various scales. RetinaNet is simple to train, converges fast and is
easy to implement, while reaching better performance in accuracy and run time
than all two stage detectors, YOLO and SSD. RetinaNet performance comes from
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the use of focal loss and from the pyramidal architecture, which significantly helps
in the detection of small objects.

Figure 4.7: Architecture of RetinaNet (Lin, Goyal, et al., 2017).

A summary of the performance of these one-stage detectors is presented in
Table 4.1. While RetinaNet has clearly the best results, but it features residual
connections throughout the network, a characteristic that we found difficult to
incorporate into a full SNN as we already discussed in Section 3.2.3. For its part,
YOLO does not easily allow the use of another backbone, in addition to having
a very large number of parameters. For these reasons, we will base our work on
object detection with SNNs on SSD, while also using the focal loss introduced
by RetinaNet to improve the results.

Table 4.1: Summary of the presented one-stage detectors. Values taken from (Zaidi
et al., 2022).

Model Year Backbone AP0.5:0.95 AP0.5 FPS
YOLO 2015 GoogLeNet - - 45
SSD 2016 VGG-16 23.20% 41.20% 46
YOLOv2 2016 DarkNet-19 21.60% 44.00% 81
RetinaNet 2018 ResNet-101-FPN 31.90% 49.50% 12
YOLOv3 2018 DarkNet-53 28.20% 51.50% 45

4.2 Object detection with spiking neural networks

While the object detection task is largely addressed by classical neural networks,
spiking neural networks capable of doing object detection are still rare. In this
section, we review the few attempts of using SNNs for object detection.
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4.2.1 Spiking-YOLO: a converted SNN applied to frames

In an effort to tackle more complex problems than the classification of simple
datasets (e.g. MNIST and CIFAR) with shallow SNNs, S. Kim et al. (2020)
presented a first spiked-based object detection model called Spiking-YOLO. It is
important to note that they design their spiking neural network by converting an
already trained equivalent classical neural network.

Authors state that previous works attempting to design SNNs detectors using
conventional DNN-to-SNN conversion methods suffer from severe performance
degradation and are unable to detect any objects. They outline two possible
reasons for this performance degradation after conversion: an extremely low
firing rate in numerous neurons and the lack of an efficient implementation of
Leaky-ReLU in SNNs.

By using channel-wise normalization, they managed to obtain higher firing rates,
leading to accurate information transmission in a short period of time. Indeed, the
majority of neurons generated a firing rate of up to 80% when using channel-norm,
while using traditional layer-norm results in most of the neurons generating a firing
rate between 0% and 3.5%. These values can be compared with the activity defined
in Section 3.4.3, but since here the network is designed by conversion, the number of
timesteps is radically different, leading to a vastly different number of spikes emitted.

To convert Leaky-ReLU in SNNs, they propose a signed neuron featuring
imbalanced threshold (IBT). IBT neurons can interpret both positive and negative
activations, and accurately and efficiently compensate for the leakage term in the
negative regions of Leaky-ReLU. The proposed method also retains the discrete
characteristics of the spikes by introducing a different threshold voltage for the
negative region.

To validate their contributions, they converted a real-time object detection
model, Tiny-YOLO, a variation of the YOLO model presented in Section 4.1.2
that is faster and more lightweight, at the cost of a lower accuracy. Using both of
their contributions, they manage to reach 98% of the performance of the non-spike
Tiny-YOLO on the frame datasets PASCAL VOC (Everingham et al., 2010) and
MS COCO (Lin, Maire, et al., 2014), illustrated in Fig. 4.8.

While impressive, these results highlight the major issue with the design of
SNNs by conversion: a very high number of timesteps. Indeed, as seen in Fig. 4.9,
the SNN requires more than 1,000 timesteps to have comparable performances
with the equivalent ANN, and the astonishing number of 8,000 timesteps to reach
the 98% performance of the non-spike network.
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Figure 4.8: Examples of samples from the PASCAL VOC 2012 (left) and MS COCO
2017 (right), the two most popular frame-based object detection datasets. PASCAL VOC
contains 20 different classes, and MS COCO 91 classes.

Figure 4.9: Experimental results of Spiking-YOLO on PASCAL VOC (left) and MS
COCO (right) as provided in the original paper (S. Kim et al., 2020). Networks that do
not use IBT neurons are represented in dotted lines, proving their importance.

For us, this number of timesteps is unsustainable for a real implementation of
spiking neural networks on neuromorphic hardware. Moreover, their work target
images, which do not take into account the temporal component of the SNNs as
event data would. It is for these two reasons that we find more relevant the use
of directly trained SNNs for object detection on event data.

4.2.2 Directly trained SNNs

We present here two works tackling object detection with spiking neural networks
directly trained with supervised learning rules presented in Section 2.3.3.

DCSNN

Barchid, Mennesson, and Djéraba (2021) introduced a Deep Spiking CNN (DSCNN)
to perform object localization of one object in grayscale images, as a first step
towards a functional object detection solution. As they are working on images, they
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need to encode the pixels as spikes. They used rate coding, which, as we discussed
multiple times, produces a large number of spikes over a large number of timesteps.

Figure 4.10: Architecture of DSCNN (Barchid, Mennesson, and Djéraba, 2021).

The architecture of DSCNN is illustrated in Fig. 4.10. Following an encoder-
decoder structure, the network is composed of 6 convolutional layers, using additive
residual connections. They evaluated their network on the Oxford-IIIT-Pet dataset,
a classification dataset. They generated a single bounding box for each sample
using the segmentation information provided in the dataset. Their network attain
63.2% mean Intersection over Union (IoU) between their predictions and the ground
truth, and has a hard time localizing pets in the background as the dataset is
essentially composed of close-up pictures.

This work claims to have proven the ability of SNNs trained with state-of-the-art
supervised algorithms to deal with modern computer vision tasks. We do not
share their opinion though, as we consider the tackled problem too trivial for being
considered object detection. Nonetheless, it outlines the different requirements
for the training of SNNs for object detection: an efficient spike encoding for
the input, a complex network architecture, a performing supervised learning rule
and a large labeled dataset.

Hybrid SNN-ANN

Recently, Kugele et al. (2021) presented Hybrid SNN-ANN (see Fig. 4.11), a
network composed of a SNN backbone and an ANN head for classification or object
detection task on event data. Using surrogate gradient learning, they train their
hybrid network in one pass, using a different head depending on the task.
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Figure 4.11: General architecture of Hybrid SNN-ANN (Kugele et al., 2021).

They used three different SNN backbones based on VGG, DenseNet and
DenseSep, a variant of DenseNet that uses depthwise separable convolutions. For
object detection, they combined their SNN with an ANN head composed of four
convolutions, all connected to SSD heads. They evaluated their 3 networks on
shapes_translation, a dataset representing 1356 images of 10 different shapes
pinned to a blank wall (see Fig. 4.12). They used the provided event version
of the images and manually labelled bounding boxes around each shape. They
reached very high mAP (around 0.875 mAP0.5) with the three networks, with the
DenseNet backbone providing the best results.

Figure 4.12: Samples from the shapes_translation dataset used in (Kugele et al.,
2021).

This work showed that directly training SNNs on event data for object detection
is possible, but they had to use ANN heads to reach these high results. Moreover,
the dataset used for object detection seems very simple, as only the shapes are
generating events since the event camera is fixed.
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In the next section, we prove that directly training SNNs on event data for object
detection on a more challenging, real-world dataset is possible without any ANN part.

4.3 Object Detection with SNNs on automotive
event data

This section outlines a part of the paper entitled "Object Detection with Spiking
Neural Networks for Automotive Event Data" (Cordone, Miramond, and Thierion,
2022) that we presented at the International Joint Conference on Neural Networks
in 2022. All of our code is available online 1.

As presented in Section 3.4, we took advantage of the latest advancements in
matter of spike backpropagation - surrogate gradient learning, parametric LIF,
SpikingJelly framework - and of our proposed voxel cube event encoding to train
three different SNNs based on popular deep learning networks: VGG, MobileNet,
and DenseNet. We combined these SNNs with SSD to propose the first spiking
neural networks capable of performing object detection on the complex GEN1
Automotive Detection event dataset.

4.3.1 Combining our SNN backbones with SSD

As presented in Section 4.1.2, the SSD object detection framework (W. Liu et al.,
2016) consists of a backbone and multiple predictor heads. The heads take as inputs
feature maps generated by the backbone at different scales to predict bounding
boxes and their associated classes. To obtain a complete spiking neural network
capable of doing object detection, we replaced the CNN backbone by the SNN
backbones designed for classification that we presented in Section 3.4. We used
spiking convolutions instead of normal convolutions in the extra layers. Therefore,
the feature maps fed to the SSD heads are spikes, and since each head consists
only of one convolution the whole network is indeed a SNN.

The spiking neural network operates on T timesteps, therefore the final bounding
boxes and classes predicted by the network are obtained by doing a sum over
the T timesteps. The output of the network still requires a post-processing to
filter predictions, but we assume that this step would be done on conventional
hardware outside the SNN scope.

One-shot object detectors such as SSD struggle with the class imbalance problem
due to the overwhelming number of predictions classified as background. Lin, Goyal,

1https://github.com/loiccordone/object-detection-with-spiking-neural-networks

https://github.com/loiccordone/object-detection-with-spiking-neural-networks
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et al. (2017) introduced focal loss, a modulation term applied to the cross-entropy
loss function that tremendously helps the learning of one-shot object detectors.
Thus, we trained our spiking neural networks with focal loss, as the hard negative
mining originally used by SSD did not achieved satisfying performances.

As in the original SSD architecture, we used three extra blocks of convolutions
to generate smaller feature maps after our spiking backbone. Each block consists of
a 1 × 1 spiking convolution to reduce the number of channels, followed by a 3 × 3
spiking convolution with a stride of 2. Once again, we used batch normalization
layers before each convolution and Parametric LIF neurons.

The anchors used by our network were generated with a minimum ratio of
0.05 and a maximum ratio of 0.8, accounting for the smaller objects present in
the object detection dataset we studied.

Figure 4.13: General architecture of our SNNs for object detection.

The general architecture of our spiking object detectors is shown in Fig. 4.13.
Increasingly smaller feature maps generated by the SNN backbone are fed to the
SSD heads, and the 3 extra blocks further reduce features maps size. We used
spiking VGG, spiking MobileNet and spiking DenseNet as SNN backbones. The
size of the feature maps transmitted to the SSD heads differ for each backbone,
as shown in Table 4.2.

For the VGG-11 backbone, we pass on the feature maps after each one of the Max
pooling layer. For Mobilenet-64, the feature maps are transmitted after the 4th, the
6th and the last depthwise separable convolution block. Finally, for the DenseNet-
121, we feed to the SSD heads the feature maps after the two first transition blocks,
and the final dense block. For all networks, the three extra layers use 640, 640
and 320 channels. As we can see, there are some difference between the size of
feature maps output and the original SSD model, for the simple reason that they
performed better. A more detailed visualization of the DenseNet architecture that
also highlights the temporal operation mode of our networks is shown on Fig. 4.14.
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Table 4.2: Size (NxHxW) of feature maps transmitted by each of our spiking model to
the SSD heads. A comparison with the original SSD model is also provided.

Models VGG-11 MobileNet-64 DenseNet121 Original SSD

Size of
feature maps
transmitted

to SSD heads

256x60x76 256x30x38 192x60x76 512x38x38
512x30x38 512x15x19 384x30x38 1024x19x19
512x7x9 1024x8x10 768x7x9 512x10x10∗

640x4x5∗ 640x4x5∗ 640x4x5∗ 256x5x5∗

320x2x3∗ 320x2x3∗ 320x2x3∗ 256x3x3∗

320x1x2∗ 320x1x2∗ 320x1x2∗ 256x1x1∗

∗ denotes the feature maps produced by extra layers.

4.3.2 Object detection event dataset: Prophesee GEN1

Composed of 39 hours of recording, the Prophesee GEN1 Automotive Detection
dataset Sironi et al., 2018 is the largest event-based dataset to date. Recorded
with a Prophesee GEN1 sensor mounted on a car dashboard, it contains over 255k
manually annotated bounding boxes of two classes: cars and pedestrians.

We chose to train our network only on the 100ms preceding annotated bounding
boxes. Thus, our SNN makes predictions based solely on these 100ms, the membrane
potentials being reset after each sample. The samples were encoded as binary voxel
cubes (see Section 3.1.2) of 5 timesteps and 2 micro time bins, as it represented
the best compromise between performance and number of operations on the
classification tasks.

4.3.3 Results

Our object detection models used an initial learning rate of 1e−3 and were trained
with a batch size of 64 over 200 epochs, using a cosine annealing learning rate
scheduler that gradually decrease the learning rate towards 0. All convolutions were
initialized using the Kaiming uniform method, and all batch normalization layers
were initialized with a weight of 1 and a bias of 0. The Parametric LIF neurons
all had an initial membrane time constant τ of 2, a membrane threshold of 1 and
the ATan function as the surrogate function. Norm of the gradient values were
clipped to a maximum of 1 to avoid exploding gradients.

All trainings were done with the SpikingJelly framework (Fang, Y. Chen, et al.,
2020) using 16-bit automatic mixed precision, running on a 48-GB NVidia RTX
A6000 and a 104-threads Intel Xeon Gold 6230R.
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Our models used as backbones the best variants of our SNNs on the NCARS
classification task: VGG-11, MobileNet-64, DenseNet121-24. We evaluated them
on the Prophesee GEN1 Detection test set after having filtered boxes with diagonal
smaller than 30 pixels as it is done in (Perot et al., 2020). The spiking backbones
were pre-trained on the NCARS dataset, the extra layers and SSD head were trained
from scratch. Our results are presented in Table 4.3.

Table 4.3: Comparison with state-of-the-art models on Prophesee GEN1. Our SNNs
operate on 5 timesteps.

Methods Type #Params ACCs/ts Activity ↓ mAP ↑
Asynet (2020) CNN 133M - - 0.15
MatrixLSTM (2020) CNN 65M - - 0.31
RED (2020) CNN 24M - - 0.40
VGG-11+SDD SNN 12.64M 11.07G 22.22% 0.174
MobileNet-64+SSD SNN 24.26M 4.34G 29.44% 0.147
DenseNet121-24+SSD SNN 8.2M 2.33G 37.20% 0.189

Our spiking models achieve competitive mAP with a small number of parameters
and ACCs per timestep. We reach 0.19 COCO mAP with our DenseNet121-24
+ SSD model, with only 8.2M parameters and 2.33G ACCs per timestep. Our
spiking models outperform a traditional neural network with over 5 times more
parameters. The three models show relatively similar performance, proving that
spiking backbones are able to provide meaningful spike feature maps to do object
detection on real-world event data.

Some qualitative results are illustrated in Fig. 4.15. A short video demonstration
is also available online 2. As we can see, the cars are accurately localized, as long as
they are not in the background. Even fast moving cars, which represent a problem
for traditional cameras, are correctly identified. Our models have more trouble
with pedestrians, as they often miss them or not as accurately localize them. It
could comes from the samples imbalance in the Prophesee GEN1 dataset, as there
are four times more cars than pedestrians in labels.

4.4 Conclusions and limits

We presented the first spiking neural networks capable of doing object detection on
the real-world event dataset Prophesee GEN1, achieving 0.19mAP with less than

2https://www.youtube.com/watch?v=1Wcqem6u91Y

https://www.youtube.com/watch?v=1Wcqem6u91Y


4. Object Detection on event data 75

Figure 4.15: Qualitative results of our DenseNet + SDD model. Cars are detected in
red and pedestrians in green.

10M parameters. All our SNNs perform well with a low number of timesteps thanks
to our voxel cube event encoding. These results highlight the rapid progression
of spiking neural networks in the last few years: for a long time restricted to
small datasets, spiking neural networks now show their strengths when trained
directly on temporal data.

But a significant performance gap still exists between our SNN approach and the
literature. We expose below the reasons that explain why we are not as performing,
and what we still need to improve to be competitive with classical neural networks
on real-world automotive datasets.

Prophesee network RED (Perot et al., 2020), the main source of inspiration for
our work, used a backbone composed of two parts: the first part is a classical CNN
to extract low level features on events and the second part is made of recurrent
ConvLSTM blocks to extract high-level spatio-temporal patterns, that are then
fed to the SSD heads. Their architecture is shown in Fig. 4.16.

In our work, we sought to replace the two parts by a single SNN, capable of
extracting both low and high-level spatio-temporal features using the convolutions
and the temporal recurrence of the neurons potentials. The possible computational
gains of SNNs compared to LSTM blocks are also significant.

Even if we consider that we have succeeded, the gap in performance is still very
present. We have identified two main reasons for that: the reset of the neurons’
potentials after each sample and the topologies of our SNNs not allowing the best
training, which lead to very high hardware resources requirements for the training
of SNNs on the huge Prophesee event datasets.
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Figure 4.16: Prophesee RED architecture for object detection (Perot et al., 2020).

4.4.1 Temporal reset of SNNs

Prophesee RED processes samples lasting 50ms as a single frame, thus outputting
a prediction every 50ms. The GEN1 dataset being composed of 60 seconds clips,
they thus train their network on 1200 samples per clip. They implement a temporal
recurrence using ConvLSTM, with memory cells initialized to 0 at the beginning of
the clip. Then, the memory cells are updated throughout the whole clip, providing
long-term temporal information for each prediction. Since ground truth bounding
boxes are only available every 250ms at best, they train their network using truncated
backpropagation through time when they encounter a ground truth label. This
operation mode allows them to detect objects even if no new event has occurred,
using the memory cells of ConvLSTM.

For comparison, our SNNs are trained on individuals samples of 50ms, further
subdivided in T timesteps. Each sample is associated to one or multiple ground
truth bounding boxes, there is no continuity between each sample. In order to
have a functional training, we must therefore reset the potentials of our SNNs
neurons between each sample since the samples are not connected, which prevents
long-term memory that could tremendously help the performance. Moreover, this is
not representative of a real time use, where the SNN will not be reset every 50ms.

Considering a learning without temporal reset requires to rethink the way data
are input to the SNNs and to implement a truncated backpropagation through time
learning algorithm for SNNs, as we will see in the Chapter 5.
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4.4.2 Towards a general architecture for processing event
data with SNNs

In this work, and in literature in general, we designed SNNs by reproducing popular
classical neural networks topologies. In an effort to not reinvent the wheel, we
reproduced in this chapter VGG, MobileNet and DenseNet. The SSD object
detection framework was designed to be applied on frames, not on temporal event
data, and we now believe that in order to get efficient processing of event data with
SNNs we need to develop new solutions. Using classical neural network topologies
had induced an important overhead in the training time of SNNs. Event data is
temporal, and thus requires multiple timesteps. The surrogate gradient learning
rule is an approximation, and needs to duplicate the network T timesteps times
to learn using backpropagation through time. Even with the most recent SNN
frameworks, this overhead is making difficult the training of performing SNNs. For
these reasons, we think it is not sustainable to use SNNs as large as in non-spike
networks, despite the fact that the performances reached by the SNNs are still
inferior. We must then develop new SNN architectures, lightweight and powerful
to tackle complex tasks such as object detection.

Based on our results, especially concerning the residual connections through
concatenation (DenseNet) and the batch normalization layers, we thus seek to
design a scalable, multi-purpose architecture capable of processing event data with
maximum performance and minimum computational cost.
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Previous chapters have shown that spiking neural networks are now able to
reach competitive performance on event data, on real-world computer vision tasks
such as classification and object detection. Enabled by the emergence of new
methods (surrogate gradient learning, PLIF) and frameworks (SpikingJelly), we
have developed and trained new SNN architectures by relying in part on classical
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ANN architectures. However, the resulting SNNs are still inferior in performance
and at the same time too big to be eventually embedded.

To solve these two problems, we propose in this chapter two new SNNs models,
ST-VGG and ResCat-SNN, and solutions to improve the training of our SNNs on
the object detection problem. As a result, we managed to improve our results on
all event datasets with lightweight and scalable SNNs.

This chapter is organized as follows. First, we will study more thoroughly the
importance of batch normalizations in SNNs, outlining reasons why the BN-CONV
order performs better and how to fuse these two layers at the inference phase
in order to remain in the spike domain. Second, we introduce new methods for
the design of high-performance SNNs: a "patchify" stem and concatenation-based
residual blocks, that we use to propose two new SNNs backbones, entitled ST-
VGG and ResCat-SNN, and their variants ST-VGG+SSD and ResCat-SNN+SSD
for object detection. Third, in order to improve our results on object detection
with SNNs, we present how we implemented a temporal continuity during the
training. Then, we validate our new high-performance SNNs on the automotive
event datasets encountered during this thesis, both for classification and object
detection. Finally, we discuss the influence of our contributions in the results
achieved, in particular the patchify stem, the training without temporal reset for
object detection and the voxel cube representation.

5.1 Batch normalization layers in SNNs

In Section 3.4.4, we found that Batch Normalization (BN) layers are vital to the
training of complex SNNs, as their removal made our networks significantly less
accurate on classification tasks. We also found out that the placement of the batch
normalization is important, as placing BN layers before convolutions consistently
produces better results than placing them after.

We investigate in this section the reasons of this improved performance, and our
method to fuse a learned batch normalization layer with its following convolution,
as it is surprisingly not available in the literature.

5.1.1 Importance of the BN-CONV order

In Section 3.4.4, we showed experimentally that batch normalization layers sig-
nificantly contribute to the performance of our proposed SNNs (spiking VGG-11,
spiking MobileNet-64 and spiking DenseNet121-24) on the event classification
dataset Prophesee N-CARS. We reproduce in Table 5.1 the results obtained.
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Table 5.1: Influence of Batch Normalization when training SNNs on N-CARS (average
over 3 runs).

Models
Accuracy ↑

BN-CONV order CONV-BN order No BN
VGG-11 0.933 0.819 0.649
MobileNet-64 0.922 0.812 0.736
DenseNet121-24 0.904 0.808 0.698

In order to prove that the presence and placement of BN layers enables a better
training of SNNs, we will measure the gradient flow of our spiking VGG-11 across all
timesteps for the same batch during the final training epoch, where the training is
almost complete and therefore the gradients are stable. The gradient flow (Mathew,
2022) is a representation of the average and maximum values of gradients in every
layer, where a correct gradient flow is represented by the average gradients of the
first layer being different from zero. If the average gradient values in some layers
are close to zero, the training of the network will be impacted, as these layers
will not be able to update their weights.

Furthermore, we will also measure the number of non-zero gradient values in
each layer. We hypothesized in Section 3.4.4 that placing batch normalization
layers before convolutions transform the sparse spikes into fully dense inputs, thus
generating fully dense gradient values. More non-zero gradient values lead to
more meaningful updates of the convolutions weights, leading to a better and/or
faster training.

No Batch Normalization The gradient flow and non-zero gradient values
percent for the spiking VGG-11 model without batch normalization layers are
represented in Fig. 5.1. As we can see, the majority of the convolution layers
have very low average gradient values and nearly half of all the gradient values
are equal to zero, corresponding to an absence of input spikes. We believe that
this low number of gradient combined with their low average values do not allow
our network to learn properly.

Batch Normalization after convolutions When adding batch normalization
after convolutions, the mean gradient values and percent of non-zero gradient are
much higher, as illustrated in Fig. 5.2. The majority of layers still have relatively
low gradient values and some layers have up to 40% of zero-valued gradients, which
we believe still impairs the training of our SNN.
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Figure 5.1: No BN. Gradient flow and percentage of non-zero gradient during the
training of our spiking VGG-11 without batch normalization layers on N-CARS.

Batch Normalization before convolutions Finally, we represent the gradient
flow and the percent of non-zero gradient values of our spiking VGG-11 with batch
normalization before convolutions in Fig. 5.3. The average gradients all have higher
values than in the CONV-BN order and the gradients are fully dense, leading to
weights updates with the maximum possible information.

By analyzing the gradient values on Spiking VGG-11, we provide intuitions
on the reasons why the BN-CONV order brings better performance: the gradient
values are higher and more numerous than in the CONV-BN, which leads to a
better and/or faster training. To draw more definitive conclusions, similar studies
should be conducted on a variety of datasets and networks, as our observations
could only be valid for event data for example.

5.1.2 Fusing a BN layer with a subsequent convolution

Batch normalization layers have the great advantage of being composed of linear
operations. As such, their weights can be fused together with the adjacent
convolutional layer weights, which allows for the complete removal of BN layers from
the network at the inference phase. This weights fusion is vital in SNNs using batch
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Figure 5.2: CONV-BN order. Gradient flow and percentage of non-zero gradient during
the training of our spiking VGG-11 with the CONV-BN order on N-CARS.

Figure 5.3: BN-CONV order. Gradient flow and percentage of non-zero gradient during
the training of our spiking VGG-11 with the BN-CONV order on N-CARS.
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normalization, otherwise multiplication operations between floating-point numbers
would be needed in the convolutions, ruining the benefits of spiking neural networks.

However, the fusion of the batch normalization layers weights with the adjacent
convolutional layer weights has only been shown with the CONV-BN order. In this
section, we will demonstrate that such a fusion is also possible for the BN-CONV,
with zero impact on the performance of the network as long as the padding is
placed before the BN layers and not in the convolutions.

In this section, we will focus only on 2D convolutions, although everything can
easily be generalized to N-dimensional convolutions.

We begin by restating the basic operation of batch normalization. Let xi be a
single element of a batch, a tensor of activations of shape Cin×Hin×Win that we want
to normalize. Inside a batch normalization layer, it will be normalized as follows:

x̂i = γ
xi − µb√

σ2
b + ϵ

+ β (5.1)

With µb and σ2
b representing the mean and the variance computed over a batch,

ϵ a small constant included for numerical stability, γ the scaling factor and β the
shift factor. During training, µ and σ are recomputed for each batch while the
parameters γ and β are learned during the network training. At inference, we use
the exponential moving average of µb and σb, denoted µ and σ. All µb, σb, µ, σ,
γ and β are vectors of size Cin, while ϵ is a scalar.

On the other hand, a convolution is composed of a sliding dot product (named
cross-correlation and noted ∗) between an input and a weight matrix W of shape
(Cout × Cin × Hkernel × Wkernel), summed with a bias vector b of size Cin. Thus, a
convolution operation following a BN layer can be expressed as follows:

yi = W ∗ x̂i + b,

yi = W ∗ (γ xi − µ√
σ2 + ϵ

+ β) + b
(5.2)

Therefore, we aim to compute the new weights W ′ and biases b′ such as:

yi = W ′ ∗ xi + b′ (5.3)

Let ϕ = γ√
σ2+ϵ

, a vector of size Cin. We note ϕ∗ a view of ϕ of shape (1 × Cin ×
1 × 1). Then, computing W ′ is simply the element-wise matrix multiplication (or
Hadamard product noted ⊙) product between W and ϕ∗:
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W ′ = W ⊙ ϕ∗ (5.4)

To compute b′, we cannot directly compute a cross-correlation between W of
shape (Cout × Cin × Hkernel × Wkernel) and (β − µϕ) of size Cin. For simplicity, we
note Φ = (β − µϕ). In order to obtain a Cout output, we introduce (β − µϕ)∗,
which has a shape of (1 × Cin × Hkernel × Wkernel). It is constructed by repeating
along the last two dimensions the (Cin × 1 × 1) view of (β − µϕ). As a result, the
cross-correlation between W and ϕ∗′ will result in a tensor of shape (1×Cout ×1×1),
which can be viewed as a Cout tensor. Therefore, the expression of b′ is as follows:

b′ = W ∗ (β − µϕ)∗ + b (5.5)

Alternatively, all the above equations can be expressed in PyTorch code:
1 def fuse_bn_conv_weights (conv_w , conv_b , bn_mu , bn_sigma , bn_eps ,

bn_gamma , bn_beta ):
2 phi = bn_gamma * torch.rsqrt( bn_sigma + bn_eps )
3
4 # W’ computation
5 w_prime = conv_w * phi.view (1,-1,1,1)
6
7 # b’ computation
8 big_phi = ( bn_beta - bn_mu * phi).view (1,-1,1,1)
9 big_phi = big_phi . repeat (1, conv_w .shape [2], conv_w .shape [3])

10 tmp_b = torch.nn. functional . conv2d (big_phi , weight = conv_w )
11 b_prime = tmp_b. squeeze () + conv_b
12
13 return w_prime , b_prime

Listing 5.1: Fusing BN and CONV weights in the BN-CONV order in PyTorch

This fusing was tested over 100 runs with random inputs, random shapes and
random weights, and the absolute element-wise difference between outputs computed
by the fused weights and those computed by the normal BN-CONV weights was
always inferior to 1e-6, proving their equivalence.

However, an important parameter of convolutions was not taken into account:
padding. If the convolution has padding, it will pad the input with the pad value
(generally 0) after the batch normalization layer. After the fusing, this behavior
will not longer be reproducible.

The simplest solution we found to use padding in our convolutions is to do
the padding before the batch normalization layers. As a result, the BN layers
parameters will be slightly erroneous but we did not notice any degradation in our
SNNs trainings. Moreover, fusing this extra layer is trivial as since we just need
to remove it and add equivalent padding in the fused convolution.
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Therefore, our spiking convolutional layers take the form of 4 successive layers: a
layer of constant padding (if necessary), a batch normalization layer, a convolution
with no padding and no bias, a layer of neurons. After fusing the BN parameters
and convolution weights, we simply get a convolution with padding and bias
followed by a layer of neurons.

5.2 Proposed SNNs: ST-VGG and ResCat-SNN

The SNNs developed in previous chapters have made it possible to achieve high
performances, at the cost of a large number of parameters and/or layers, making
their embeddability difficult. In order to embed high-performance SNNs, we present
in this section two new lightweight and powerful SNN backbones: SpikeThin-VGG
(ST-VGG), a feedforward architecture inspired by VGG-11 and ResCat-SNN, a
variant that include concatenation-based residual blocks. We will study their
performance on classification and object detection tasks in Section 5.4.

5.2.1 "Patchify" stem

Classical convolutional neural networks have been the dominant architecture for
vision tasks for many years, but recent experiments have shown that models based
on the Transformer architecture (Vaswani et al., 2017) may exceed their performance
in some settings. To process images, vision transformers use patch embeddings,
grouping together small regions of the image into single input features (see Fig. ??).

Figure 5.4: Architecture of a Vision Transformer (ViT). Since Transformers were
designed to process sequences, ViT divides an image as a sequence of small patches (patch
embeddings). Illustration taken from (Vaswani et al., 2017).
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Recently, Trockman and Kolter (2022) have studied whether the performance
of vision transformers does not come, at least in part, from this patching of the
input image. They state that patch embeddings allow all the downsampling to
happen at once, immediately decreasing the internal resolution and thus increasing
the effective receptive field size, making it easier to mix distant spatial information.
They also propose a simple way to implement it in CNNs: using a convolution
of size p and a stride p would be equivalent to using patch embeddings of size p.
Therefore, this first convolution is now usually named a "patchify" stem.

Shortly after, a high-performing CNN architecture named ConvNeXt was
proposed in (Z. Liu et al., 2022), also featuring a "patchify" stem. They made the
observation that a standard ResNet uses a stem composed of a 7 × 7 convolution
layer with stride 2, followed by a max pool, which results in a 4× downsampling of
the input images. Inspired by vision transformers, they replaced the ResNet-style
stem cell with a patchify layer implemented using a 4 × 4, stride 4 convolutional
layer. The accuracy of their network slightly improved, suggesting that the stem
cell in a ResNet may be substituted with a simpler “patchify” layer.

This approach is all the more attractive for SNNs: reducing quickly the spatial
dimensions of the input data reduces the number of membrane potentials kept
in memory and being able to do it in a single layer removes the need for max
pooling. Furthermore, it requires less parameters and computations. For these
reasons, we will now use a patchify stem for our SNNs, implemented with a 4 × 4,
stride 4 convolutional layer.

5.2.2 ST-VGG

Inspired by our work on Spiking VGG in Chapter 3, we now present Spiking-Thin
VGG (see Fig. 5.5): a lightweight 8-layers backbone that uses a patchify stem, BN-
CONV-PLIF spiking blocks and no pooling. The feature maps spatial dimensions
are reduced throughout the network using stride.

For classification tasks, the final layer of the network is a 1 × 1 convolution
without PLIF, removing the need for an average pooling layer to reduce the feature
maps size to 1 × 1. The final output of the network is obtained by summing
spatially and temporally these activations.

By modifying the number of channels C output by the patchify stem, multiple
variants can be designed. We will focus on three variants: 16-ST-VGG, 32-ST-
VGG and 64-ST-VGG.
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Figure 5.5: C-ST-VGG architecture. C denotes the number of channels after the patchify
stem, the final feature maps having 4C channels. The final layer is a 1 × 1 convolution
that outputs num_classes channels, the final prediction is obtained by summing spatially
and temporally this output.

5.2.3 ResCat-SNN: concatenation-based residual connec-
tions

Based on the better results attained by our Spiking DenseNet in Chapter 3,
we propose a variation of ST-VGG that include concatenation-based residual
connections named ResCat-SNN.

We propose a concatenation-based residual block composed of two spiking
convolutions and a single 1 × 1 spiking convolution as the residual connection (see
Fig. 5.6). Indeed, as the features are concatenated the number of channels will grow
rapidly, therefore the residual connection is using a 1 × 1 convolution to reduce
the number of output channels that will be concatenated.

Then, we incorporate these concatenation-based residual blocks in our ST-VGG
architecture to design a new architecture called ResCat-SNN, illustrated in Fig. 5.7.
To avoid an excessive number of parameters, we reduce by half the number of
channels output by the residual connection.

In the same way as for the ST-VGGs, we can construct variants of ResCat-SNN
by varying the number of channels C output by the patchify stem: ResCat-SNN-16,
ResCat-SNN-32, ResCat-SNN-64. We compare the number of parameters and
ACCs of all our proposed variants of ST-VGGs and ResCat-SNNs in Table 5.2.
Our ResCat-SNNs are slightly bigger than their equivalent ST-VGGs in parameters
count but close in number of operations, because of and thanks to the addition
of 1 × 1 convolutions.

5.2.4 Proposed networks for object detection

Similarly to what was done in Chapter 4, we can now propose new SNNs for
object detection by combining our new proposed SNNs backbones with SSD heads.
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BN
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Conv
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cat
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Conv
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Figure 5.6: A concatenation-based residual block. The residual connection is composed
of 1 × 1 convolution in order to reduce the number of channels and downsample the input
with stride if necessary. The output is purely composed of spikes, as the concatenation is
done along the channels dimension.
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Figure 5.7: ResCat-SNN-C architecture. C denotes the number of channels after
the patchify stem, the final feature maps having 6C channels. The residual block
outputs supplementary feature maps, half of the block output channels. The features are
concatenated and passed on to the rest of the network.

Compared to our previous models, we modify the extra layers to remove the 1 × 1
convolutions and we reduce their number of channels, in order to minimize both
the number of layers and the parameters count. Our ST-VGG+SSD is presented
in Fig. 5.8 and ResCat-SNN+SSD in Fig. 5.9.

Having introduced new backbones and new object detection models, we will
now present our approach to increase the performance achieved by our SNNs on
the object detection task, to finally dedicate Section 5.4 to the results achieved by
our networks on both classification and object detection tasks on event data.
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Table 5.2: Number of parameters and ACCs of our ST-VGG variants.

Model Number of parameters ACCs per timestep
16-ST-VGG 125k 105M
32-ST-VGG 499k 415M
64-ST-VGG 1.994M 1.651G

ResCat-SNN-16 216k 136M
ResCat-SNN-32 862k 541M
ResCat-SNN-64 3.442M 2.158G
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Figure 5.8: ST-VGG+SSD architecture.

5.3 Temporal continuity for object detection

We presented in Chapter 4 the first SNNs able to perform object detection on the
complex real-world event dataset Prophesee GEN1, achieving 0.19mAP, which is still
an important difference with conventional networks that can reach 0.40mAP. Our
SNNs were trained on individuals samples of 100ms, each one associated to one or
multiple ground truth bounding boxes, but without any temporal continuity between
samples. As a result, we had to reset the membrane potentials to zero between
each sample, preventing long-term memory that could tremendously improve the
performance and preventing the use of our networks in a real time setting.
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Figure 5.9: ResCat-SNN+SSD architecture.
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In this section, we now consider a training without temporal reset, which requires
a rethinking of the way data are input to the SNNs and to implement a truncated
Backpropagation Through Time learning algorithm for SNN.

5.3.1 Truncated Backpropagation Through Time
Principle of operation

As stated in Section 2.3.3, SNNs are recurrent neural networks and as such, can
be trained using Backpropagation Through Time (BPTT): an unrolled network
is created by making copies of the original for each timestep, on which standard
backpropagation can then be applied. An important problem with BPTT is that
the higher the number of timesteps, the deeper the unrolled network will be,
which can make the training difficult (vanishing gradient problem) or compu-
tationally expensive.

To train networks on long sequences, a modified version of the BPTT learn-
ing method has been proposed, called truncated BPTT. The main idea is il-
lustrated in Fig. 5.10.

Figure 5.10: (a) Backpropagation Through Time: the network is unrolled over the
entire duration of the sample (blue arrow), and gradients are computed over the whole
sample (red arrow). (b) Truncated Backpropagation Through Time: the sample is now
divided in a fixed number of parts, and gradients are now computed over each single part.

In classical BPTT, we first forward through the entire sample and then compute
the gradients during the backward pass over the whole sample, which can be
computationally and memory intensive when the duration (i.e. the number of
timesteps) of the data is high. Truncated BPTT, the forward and the backward
pass are applied on a truncated part of the sample, reducing the computational and
memory needs, while increasing the number of updates. However, truncation favors
short-term dependencies, as the weights updates depend only on nearby timesteps.

Additionally, more complex variants of Truncated BPTT exist. By defining k1,
the number of timesteps used in each forward pass and k2, the number of previous
timesteps used during the backward pass, exotic TBPTT methods with different
k1, k2 values can be used. Because of their difficult implementation, we will only
use the classical version where k1 = k2 in our works.
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Implementation of truncated BPTT in SNNs

In modern deep learning frameworks, truncated BPTT with k1 = k2 can easily
be implemented. Indeed, in PyTorch and TensorFlow, a computational graph
of operations is constructed during the forward pass on which gradients will be
computed during the backward pass. Truncated BPTT can therefore be implemented
by triggering the backward pass every k1 timesteps, which will compute the gradients
over the computational graph. To implement k1 = k2, the computational graph
must be emptied after each backward pass (i.e. every k2 timesteps) in order not
to influence the subsequent gradient calculations.

In SNNs, the membrane potentials serve as a memory between timesteps and thus
represent the only tensors that influence the gradient computations of subsequent
timesteps. Truncated BPTT is therefore implemented in SNNs by simply detaching,
or removing, these tensors from the operation graph after a backward pass. In
the case where Parametric LIF neurons are used, the learnable weight of PLIF
neurons must also be detached. We provide in Listing 5.2 our detach method,
called after each backward pass.

1 def detach (self):
2 last_seq = None
3 for m in self. modules ():
4 if isinstance (m, neuron . ParametricLIF ):
5 m.v. detach_ ()
6 m.w. detach_ ()
7 elif isinstance (m, nn. Sequential ):
8 last_seq = m

Listing 5.2: Method to detach all the PametricLIF neurons’ membrane potentials v and
learnable time constant w from the computational graph.

5.3.2 Continuous samples and batch construction

To remove the need for the temporal reset of our neurons’ membrane potentials, we
need to rethink the way we input data from the Prophesee GEN1 object detection
dataset into our SNNs. The dataset is composed of over a thousand 60-second clips of
event data, but ground truth bounding boxes are only available at best every 250ms.

Sample construction

Previously, we constructed our samples by taking the 100ms of event data preceding
the times when ground truth bounding boxes were present, without consideration
for the continuity inside the same 60-second clip. From now on, we will instead
tackle the dataset in a continuous manner: each sample now corresponds to a single
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60-second clip, divided in T = 60
∆t

timesteps. To be coherent with previous works
on this dataset (Perot et al., 2020), we consider ∆t = 50ms, therefore each sample
is composed of 1200 timesteps. Each timestep is composed of 50ms of event data
and ground truth bounding boxes present in the 50ms interval, and if there are
none, the timestep simply doesn’t have any ground truth target.

To train our SNNs on such a large number of timesteps, we use the above-
mentioned Truncated Backpropagation Through Time to compute a loss and trigger
a backward pass at every timestep at most, that would be equivalent to k1 = k2 = 1.
We use the term at most because an important point of this construction is that
a timestep not having ground truth targets does not mean that no objects are
present, as ground truth bounding boxes are only available at best every 250ms.
Thus, we must not train the network to predict that there are no objects when
there are no targets, as it may not be the case. This behavior is implemented by
computing a loss and doing a backward pass only when ground truth targets are
present. When no target is present, a normal forward pass is executed to update
the potentials, but no loss is calculated, as illustrated in Fig. 5.11a. But with
this approach, if no ground truth are present for an high number of timesteps,
the subsequent backward pass will have high computational and memory cost. To
avoid this situation, we define a maximum number of timesteps k2max included
in the computational graph, detaching the tensors when this number is exceeded.
This behavior is illustrated in Fig. 5.11b.

(a) Targets present systematically

detach

(b) Absence of targets for a certain number of timesteps

Figure 5.11: TBPTT applied to object detection. (a) The forward pass (blue arrow)
is executed at every timestep, while a backward pass is initiated only when ground
truth targets (green) are present. (b) If ground truth targets are absent for a fixed
number of timesteps (here 5 timesteps), we detach the tensors anyway to avoid exploding
computational and memory costs during the next backward pass.

In the end, the variant of truncated Backpropagation Through Time that we
use is equivalent to setting k1 = 1 and k2 ∈ {1, . . . , k2max}.
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Batch construction

Due to the nature of our samples and training, our networks will do at most T

backward passes for a single sample, one for each timestep. This poses a concern
for the generalization of our training, as the training will occur for a long period of
timesteps on a single clip. Since we cannot shuffle the timesteps inside a sample as
that would destroy the continuity, the only way to introduce variety during training
is to construct batches where n samples will be iterated sequentially together.

In the Prophesee GEN1 dataset, samples are labeled at a certain frequency, either
1, 2 or 4Hz (i.e. every 250, 500 or 1000ms), but not on synchronized timestamps.
One could be inclined to resynchronize all samples together, such that ground truth
bounding boxes occur consistently on the same timesteps. The problem with this
approach is that the neural networks will now learn to output predictions on these
particular timesteps, using the intermediate timesteps without ground truth labels
to construct a single meaningful prediction. This is not the behavior we expect to
train, since we want the network to learn to predict at each timestep.

For this reason, we choose to not resynchronize the samples, which raises another
problem. When considering a batch size of size n, ground truth bounding boxes can
occur at any timestep and be part of only some samples of the batch. Therefore,
we need to adapt our truncated backpropagation so that the training goes well
on a batch. At every forward pass, we check if any of the samples has ground
truth labels, and if it is the case, we compute a loss only on these samples, and
trigger a backward pass that will work in the same way as described in the previous
section. By computing a loss only on some samples, the network will not learn to
predict that there are no objects on the other samples, because, again, this might
not be the case. This behavior is illustrated in Fig. 5.12.

Due to the limitation of deep learning frameworks, the whole computational
graph is unfortunately reset after a backward pass: the samples that did not have
ground truth labels during a backward pass lose their history in the computational
graph, which will therefore not influence the next backward pass that concerns these
samples. An implementation capable of keeping different computational graph of
different depth for each sample would for sure provide a better training.

Finally, we notice that the batch size n now has an influence on the number
of backward passes executed. Indeed, a small batch size would generate backward
passes which may be several timesteps apart, and often run into the maximum
number of timesteps kept in memory k2max. On the other hand, a large batch
size would trigger backward passes on almost every timestep, since statistically
the ground truth labels can be present at any timestep. But one could argue that
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sample 1 

sample 2

sample 3

sample 4 

Figure 5.12: TBPTT with a batch size of 4. A backward pass (bold red arrows) is
initiated when ground truth bounding boxes are present in any sample, but only on those
samples (red arrows). The whole computational graph is reset after a backward pass,
even if only one sample was concerned.

a very high batch size leads to a great representativity, in the sense that many
samples will have ground truths at each timestep.

We are not able to quantify precisely how the batch size n impacts our training
with TBPTT, but our best results were obtained with a batch size of 32, while
batch sizes of 16 and 64 led to worse results. A batch size of 32 leads to about one
backward pass every 3 timesteps, with a large disparity between the number
of samples involved.

5.4 Results

In this section, we will now evaluate our new SNNs architectures on the automotive
event datasets studied in this thesis, both for classification and object detection tasks.

5.4.1 Classification on event data

We evaluate our new SNN backbones on the Prophesee automotive event datasets:
N-CARS and GEN1 Classif, already presented in Section 3.4.2. For both datasets,
we used samples of 100ms encoded as binary voxel cubes of 5 timesteps and 2
micro time bins. The samples were resized to 64 × 64 pixels using nearest-neighbor
interpolation to keep the input events binary. The networks were trained over 30
epochs, with a learning rate of 5e−3, as it was done in Section 3.4.2.

We compared the results achieved by our SNNs on Prophesee N-CARS with
state-of-the-art models in Table 5.3.



96 5.4. Results

Table 5.3: Comparison with state-of-the-art models on Prophesee N-CARS

Methods Representation Network N-CARS acc ↑
HATS (2018) TimeSurface N/A 0.902
Gabor-SNN (2018) Spike SNN 0.789
HybridSNN (2021) VoxelGrid SNN 0.77
HybridSNN (2021) VoxelGrid SNN-CNN 0.906
YOLE (2019) VoxelGrid CNN 0.927
Asynet (2020) VoxelGrid CNN 0.944
EvS-S (2021) Graph GNN 0.931
Ch.3 VGG-11 VoxelCube SNN 0.933
Ch.3 MobileNet-64 VoxelCube SNN 0.922
Ch.3 DenseNet121-24 VoxelCube SNN 0.904
16-ST-VGG VoxelCube SNN 0.917
32-ST-VGG VoxelCube SNN 0.941
64-ST-VGG VoxelCube SNN 0.925
ResCat-SNN-16 VoxelCube SNN 0.927
ResCat-SNN-32 VoxelCube SNN 0.935
ResCat-SNN-64 VoxelCube SNN 0.940

Our ST-VGGs and ResCat-SNNs reach excellent accuracies on the Prophesee
N-CARS datasets, over 91% for all models. The accuracy results are however not
linear, as a network too big seems to result in a slightly lower performance, surely a
consequence of overfitting. The ResCat-SNNs manage to reach higher accuracies
than the ST-VGGs thanks to their concatenation-based residual connections and
added parameters. Nonetheless, our best accuracy was obtained with a 32-ST-VGG,
reaching the new state-of-the-art result for SNNs of 94.1%.

Table 5.4 provides extensive results of all the spiking neural networks considered
in this thesis on both automotive classification datasets.

We notice that our proposed ST-VGGs and ResCat-SNNs reach state-of-the-art
accuracies on Prophesee N-CARS, with an activity usually inferior to 30%. These
SNNs reach better accuracies than our Ch. 3 SNNs while being around 10 times
smaller. However, the results are significantly lower on the Prophesee GEN1 Classif
dataset, which may indicate an implementation problem on this dataset as our
trainings have difficulties to converge. It could also comes from the lower parameters
count, or from the immediate downsampling in the first layer, which was not done
until the third layer in our Ch. 3 SNNs.
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Table 5.4: Comparison between our spiking models on the automotive event classification
datasets Prophesee N-CARS and Prophesee GEN1 Classif.

Models #Params ACCs/ts
N-CARS GEN1 Classif.

Acc ↑ Act ↓ Acc ↑ Act ↓
Ch.3 VGG-11 9.23M 0.61G 0.933 12.04% 0.969 14.69%
Ch.3 MobileNet-64 18.81M 4.20G 0.922 17.14% 0.966 30.60%
Ch.3 DenseNet121 3.93M 2.25G 0.904 33.59% 0.975 27.26%
16-ST-VGG 125k 6.01M 0.917 23.36% 0.897 24.30%
32-ST-VGG 499k 23.27M 0.941 22.64% 0.920 29.03%
64-ST-VGG 1.994M 93.06M 0.925 41.61% 0.906 34.85%
ResCat-SNN-16 216k 7.78M 0.927 28.73% 0.893 30.18%
ResCat-SNN-32 862k 30.59M 0.935 26.62% 0.917 33.25%
ResCat-SNN-64 3.442M 121.31M 0.940 36.05% 0.901 41.33%

5.4.2 Object Detection on Prophesee GEN1

We will now evaluate our proposed ST-VGG + SSD and ResCat-SNN + SSD models
trained without temporal reset as explained in Section 5.3.1. We used a learning rate
of 5e−3, a batch size of 32, and trained our networks over 50 epochs using a cosine
annealing learning rate scheduler that gradually decrease the learning rate towards
0. We used the Adam optimizer with a weight decay of 1e−2. All convolutions were
initialized using the Kaiming uniform method, and all batch normalization layers
were initialized with a weight of 1 and a bias of 0. The Parametric LIF neurons
all had an initial membrane time constant τ of 2, a membrane threshold of 1 and
the Sigmoid function as the surrogate function. Norm of the gradient values were
clipped to a maximum of 1 to avoid exploding gradients. All trainings were done
in the SpikingJelly framework using a 48GB NVIDIA A40 GPU.

As presented in Section 5.3.1, each sample represents a 60-second clip and is
composed of 1200 timesteps of 50ms, represented by a binary voxel. To avoid
the addition of an additional hyperparameter, we did not use our voxel cube
representation to add more temporal precision to each of these 50ms timesteps,
but we will briefly study their contribution in Section 5.5.3. The results reached
by our SNNs are presented Table 5.5.

Thanks to our training approach that does not require temporal resets, our
new spiking models are able to reach higher mAP with a much lower number of
parameters and ACCs per timestep. We reach 0.203 COCO mAP with our 64-ST-
VGG+SSD model that has only 2.8M parameters and requires 1.73G ACCs. A
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Table 5.5: Comparison with state-of-the-art models on Prophesee GEN1. Chapter 4
SNNs operate on 5 timesteps, while our ST-VGGs and ResCat-SNNs operate on a single
timestep.

Methods Type #Params ACCs/ts Activity ↓ mAP ↑
Asynet (2020) CNN 133M - - 0.15
MatrixLSTM (2020) CNN 65M - - 0.31
RED (2020) CNN 24M - - 0.40
Ch.4 VGG-11+SDD SNN 12.64M 11.07G 22.22% 0.174
Ch.4 MobileNet-64+SSD SNN 24.26M 4.34G 29.44% 0.147
Ch.4 DenseNet121+SSD SNN 8.20M 2.33G 37.20% 0.189
16-ST-VGG+SSD SNN 642k 125M 37.66% 0.135
32-ST-VGG+SSD SNN 1.14M 453M 36.24% 0.184
64-ST-VGG+SSD SNN 2.88M 1.73G 38.87% 0.203
ResCat-SNN-16+SSD SNN 795k 165M 33.71% 0.147
ResCat-SNN-32+SSD SNN 1.43M 596M 35.59% 0.192
ResCat-SNN-64+SSD SNN 4.57M 2.27G 45.14% 0.203

network as small as 642k parameters is able to reach 13.5 test mAP, a performance
comparable with a CNN of 133M parameters. The concatenation-based residual
connections also improve the results, as all our ResCat-SNN+SSD reach higher
or similar accuracies than their ST-VGGs counterpart. Our 64-ST-VGG+SSD
and ResCat-SNN-64+SSD both reach 20.3 test mAP, setting new state-of-the-
art results for SNNs.

5.5 Discussion

In this section, we briefly measure the influence of two of this chapter contributions
(patchify stem, training without temporal reset) and of our voxel cube representation
on the object detection task, using our 32-ST-VGG+SSD on the Prophesee GEN1
object detection dataset.

5.5.1 Influence of the patchify stem

We train a 32-ST-VGG+SSD with a more traditional stem, i.e. the one we used in
Chapter 4: a 3 × 3 convolution with a stride of 2, followed by a max pooling of size
3 and a stride of 2. The result of this training is depicted in Table 5.6.

As we can see, using a patchify stem or a traditional one provides a little
performance boost, accompanied by a lowered number of ACCs and the absence of
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Table 5.6: Comparison between a 32-ST-VGG+SSD using a patchify or a classical stem.

Model Stem #Params ACCs Activity ↓ mAP ↑
32-ST-VGG+SSD Patchify stem 1.14M 453M 36.24% 0.184
32-ST-VGG+SSD Conv + Pooling 1.14M 459M 34.70% 0.171

max pooling which are nice to haves when considering an embedded implementation.
While the network using a conventional stem has a lower activity, both networks
remain in the same order of magnitude. Therefore, we can only recommend the
use of the patchify stem in SNN models for object detection.

5.5.2 Importance of the training without temporal reset

To measure the importance of our new approach for the training of SNNs without
temporal reset for object detection, we train a 32-ST-VGG+SSD model with the
method used in Chapter 4. As a reminder, it involved the construction of a sample
by using the 100ms preceding a ground truth bounding box, and training the
network over 5 timesteps without any temporal continuity between the samples.
Consequently, the SNN required a reset of its membrane potentials before the start of
a prediction on a new sample, which is incompatible with a real-time operation. The
network without temporal reset was trained using the hyperparameters presented
in the previous section, over 50 epochs.

The comparison between the two training methods on Prophesee GEN1 can
be found in Table 5.7.

Table 5.7: Comparison between a 32-ST-VGG+SSD training with and without temporal
reset. The network trained without temporal reset operates on a single timestep while
the one trained with temporal reset operates on 5 timesteps.

Model Training approach #Params ACCs/ts Activity ↓ mAP ↑
32-ST-VGG+SSD w/o temporal reset 1.14M 453M 36.24% 0.184
32-ST-VGG+SSD w/ temporal reset 1.14M 453M 28.97% 0.123

The same network trained with our old training approach reaches 0.123mAP, 35%
lower than our 32-ST-VGG+SSD trained without temporal reset. This important
performance gap proves that preserving the temporal continuity between samples
enables a better training of SNNs. This also suggests that the larger networks used in
Chapter 4, which reached 0.18mAP with the old training approach, would also benefit
from this new training approach, perhaps reaching even higher than 0.203mAP, but
unfortunately we did not have the time nor the computing power to investigate it.
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5.5.3 Influence of the number of time bins

In order to avoid adding an additional hyperparameter to our trainings, we did
not use our voxel cube representation to train our object detection models. But
while our previous trainings in Chapter 4 were performed on 5 timesteps of 20ms
each, our trainings without temporal reset now occur on 1200 timesteps of 50ms
each for computational cost reasons. While our results have improved, we have
however lost temporal information in each timestep, which could be somewhat
retrieved using our voxel cube representation.

To verify this claim, we trained the same 32-ST-VGG+SSD with 1, 2 and 4
time bins on the Prophesee GEN1 dataset. The results are presented in Table 5.8.

Table 5.8: Comparison between a 32-ST-VGG+SSD trained with 1, 2 or 4 time bins.

Model # time bins mAP ↑
32-ST-VGG+SSD 1 0.184
32-ST-VGG+SSD 2 0.186
32-ST-VGG+SSD 4 0.192

As a matter of fact, our voxel cube representation provides better performance,
as the network is able to exploit more temporal information with multiple time
bins. Using 4 time bins allows the representation of 12.5ms of events in different
channels, which is closer to the temporal precision used in Chapter 4 (5 timesteps
of 20ms each with 2 time bins, i.e. a temporal precision of 10ms). This is another
demonstration that when the number of timesteps is constrained, we can use our
voxel cube representation to obtain better results, with a totally negligible cost
in terms of parameters and operations since only the number of input channels
of the first layer is impacted.

5.6 Conclusion

This chapter represents the culmination of our years of research in SNNs design and
training. We have addressed the reasons why our proposed BN-CONV order provides
better performance, and developed new powerful lightweight SNN architectures
entitled ST-VGG and ResCat-SNN. These architectures and their variants for object
detection, ST-VGG+SDD and ResCat-SNN+SSD, reach even higher results than
our previous SNNs, while being smaller and easier to embed.

In particular, a 500k parameters 32-ST-VGG reach 94.13% on Prophesee N-
CARS, a new state-of-the-art result for SNNs. Thanks to our new training approach
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without temporal reset, we were able to reach 20.3mAP on the complex real-world
Prophesee GEN1 object detection dataset with a network of only two million
parameters, a size much smaller than the networks usually considered.

These results prove once more that spiking neural networks trained directly
on event data are now able to tackle real-world problems with good performance,
with very few parameters and operations needed. Now that the performance
criteria is met, there is still a lot of work to be done to embed these networks and
verify their promise of low power consumption and low latency. As a first step
towards this end goal, we will study in the next chapter a method to analytically
estimate the energy consumption of an SNN, in order to provide new insights
into the energy efficiency of SNNs.
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As stated multiple times throughout this manuscript, spiking neural networks
are considered as a low-power alternative to classical neural networks due to their
sparse and binary operating function. But few works have proven these claims to
be true on real-world machine learning applications. The focus of this thesis has
been to develop the SNNs training methods and architectures in order to tackle
more complex real-world automotive tasks, all in order to implement in the future
these algorithms on embedded systems and leverage their energy efficiency.
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To finally be able to characterize to what extent SNNs are more energy efficient
than ANNs, we propose in this chapter an analytical estimation of the energy
consumption of SNNs. This was done by designing an hardware-independent
analytical metric relying not only on the synaptic operations, but also on the
memory accesses and addressing mechanisms, often neglected as they are unfavorable
to SNNs. This work is taken from the paper entitled "An Analytical Estimation
of Spiking Neural Networks Energy Efficiency" (Lemaire, Cordone, et al., 2022),
presented at the International Conference on Neural Information Processing in 2022.

This chapter is organized as follows: first, we discuss the comparisons of energy
efficiency between SNNs and ANNs available in the literature. Second, we introduce
our different metrics, leading to our energy consumption metric for SNNs and
ANNs. Third, we apply our metric on networks designed to solve three different
real-world classification tasks, showing that our SNNs are 6 to 8 times more efficient
than their ANN counterparts while providing comparable performance. Finally, we
conclude this chapter with guidelines on the design of efficient embedded SNNs
and on the remaining research areas to tackle.

6.1 Energy efficiency of SNNs in the literature

To estimate the energy efficiency of SNNs, several comparisons between SNNs and
ANNs have already been proposed in the literature. However, such comparisons are
hardly generalizable since they focus on specific applications or hardware targets.
Besides, the considered applications are often toy examples not representative of
real-world artificial intelligence tasks. Therefore, another approach is to produce
metrics to evaluate the energy consumption of both types of networks, based on
their respective synaptic operations and activities.

In this section, we will review these two types of comparisons between SNNs
and ANNs available in the literature, first those based on measurements and
then those based on metrics.

6.1.1 Comparisons based on measurements

In the literature, a few comparisons between SNNs and ANNs have been made
based on hardware measurements. Barchid, Mennesson, Eshraghian, et al. (2022)
showed competitive results for SNNs, highlighting the influence of the spike encoding
method on the accuracy and computational efficiency of the SNN. They compared
the spiking and classical networks through a Resnet-18 like architecture on two
classification frame-based datasets. They found that SNNs reached higher or
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equivalent accuracy and energy efficiency. Khacef, Abderrahmane, and Miramond
(2018) showed that an SNN that an SNN could reach twice the power and resource
efficiency of an ANN, with an MLP on MNIST dataset targeting ASIC. However,
those encouraging results are still very specific and thus hardly generalizable.

In a more holistic approach, Lemaire, Miramond, et al. (2022) performed an
exploration of the design space (including encoding, learning method, level of
parallelism) and showed that the benefits of SNNs depended on the considered case,
which makes it difficult to establish general rules. In (Rueckauer, Bybee, et al.,
2022), the authors demonstrated that SNNs running on a specialized hardware (Intel
Loihi) resulted in better energy efficiency than equivalent ANNs on conventional
hardware (CPU / GPU) for small topologies, but observed the opposite using larger
CNNs. Once more, the conclusions depended on the studied case and could not
be generalized. Albeit encouraging, those results are not sufficient to draw general
conclusions regarding the savings offered by the spike paradigm, since they depend
on the selected application, network hyperparameters and hardware targets.

Therefore, another approach consists in comparing the two types of neural
networks through estimation metrics, taking a step back to produce more gen-
eral conclusions.

6.1.2 Comparisons based on metrics

Most energy consumption metrics are based on the number of synaptic operations:
accumulations (ACC) in the SNN and multiplication-accumulations (MAC) in the
ANN. Those models have limitations: energy consumption is assimilated to the
energy consumption of synaptic operations (Kundu et al., 2021), thus other factors
(such as neuron addressing in multiplexed architecture or memory accesses) are often
neglected. Moreover, the models usually do not take into account some specific
mechanisms, like membrane potential leakage, reset and biases integration. In
(Barchid, Mennesson, Eshraghian, et al., 2022), the authors proposed a metric based
on synaptic operations only, and found great energy consumption savings for the SNN
(up to 126× more efficient than the ANN baseline). In (Lemaire, Miramond, et al.,
2022) the authors demonstrated that such simplistic metrics were not always coherent
with actual energy consumption of circuits on FPGA. When taking memory into
account, Deng et al. (2020) found equivalent energy consumption for SNNs and ANNs
using various topologies on CIFAR-10. Additionally, Davidson and S. B. Furber
(2021) measured a theoretical maximum spike rate of 1.72 to guarantee energy
savings in the SNN based on a detailed metric, accounting for synaptic operations,
memory accesses and activation broadcast. Those energy consumption models are
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enlightening, but still fail to settle whether event-based processing is sufficient to
increase energy efficiency. That is mostly because those metrics are too hardware
specific, or do not take all significant sources of energy consumption into account.

In the present work, we propose a metric intended to be independent from
low-level implementation choices, based on three types of operations encountered in
SNNs and ANNs: synaptic operations, memory accesses and addressing operations
for convolutions.

6.2 Proposed metrics

In this section, we will define a number of metrics enabling the count of accumulations
operations (noted ACC) and of multiply-and-accumulate operations (noted MAC).
These different metrics will serve as the basis of our final energy consumption
metric, relying on the number of ACC and MAC.

6.2.1 Operational cost

We will now define the operational cost of SNNs and ANNs as the number of ACC
and MAC resulting from the synaptic operations, handling separately convolutional
layers and fully-connected layers.

Convolutional layers

For a convolution layer, the number of filters is defined by Cout and their size
are noted Cin × Hkernel × Wkernel, where C, H and W stands for channel, height
and width. The input and output of the layer are composed of a set of feature
maps, with shapes (Cin × Hin × Win) and (Cout × Hout × Wout) respectively. In the
following we consider the padding mode “same” and 2D stride Sh, Sw. The equations
describing the number of MAC and ACC operations in ANNs for convolution layers
are summarised in Eq. 6.1.

MACANN
OpsConv = Cin × Hkernel × Wkernel × Cout × Hout × Wout

ACCANN
OpsConv = Cout × Hout × Wout

(6.1)

In ANNs, the integration of dense input matrices requires a MAC operation
for each element of the convolution kernels. That is described in the first row of
Eq. 6.1. Additionally, the integration of synaptic biases as ACC operations, since
it does not require multiplication with input activation. There is one bias per
output neuron as shown in the second row of Eq. 6.1.
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On the other hand, for an SNN the input activations are sparse binary matrices.
Eq. 6.2 characterizes the number of MAC and ACC operations in the convolutional
layers of SNNs, with the number of timesteps noted T .

MACSNN
OpsConv = T × Cout × Hout × Wout

ACCSNN
OpsConv = θin × ⌈Hkernel

Sh

⌉ × ⌈Wkernel

Sw

⌉ × Cout

+ T × Cout × Hout × Wout

+ θout

(6.2)

The number of operations of the layer L depends on its number of input and
output spikes, noted θin and θout. Since spikes are binary, they are integrated via
ACC operations in contrast to ANNs. Each input spike causes one ACC operation
per element of each filter, as shown in the first term of the second row of Eq.
6.2. The second term accounts for the bias added to each membrane potential
at each timestep. The third term accounts for the membrane potential reset in
the case neurons use soft reset, in which the threshold value is subtracted from
the membrane potentials whenever an output spike is generated. This term would
be equal to 0 if the neurons use hard reset, i.e the membrane potentials are reset
to the value 0 whenever a spike is emitted. Additionally, SNNs may involve a
membrane potential leakage (i.e. LIF neurons), which is modeled by additional
MAC operations for each output neuron, and is repeated at each timestep. This
is depicted in the first row of Eq. 6.2.

Fully-connected layers

The same reasoning is applied to fully-connected (FC) layers. For a given layer L

the number of input and output neurons is noted Nin and Nout respectively. The
equations for the number of MAC and ACC operations attributable to synaptic
operations in FC layers are summarized in Eq. 6.3.

MACANN
OpsFC = Nin × Nout

ACCANN
OpsFC = Nout

MACSNN
OpsFC = Nout × T

ACCSNN
OpsFC = θin × Nin × Nout + T × Nout

(6.3)
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6.2.2 Memory accesses cost

Data flowing from and to the memory is an important sink of energy, especially when
considering SNNs that have more memory accesses than ANNs due to the membrane
potentials and the sequential operation over multiple timesteps. In this subsection,
we will attempt to quantify the number of memory accesses of ANNs and SNNs.

In order to do that, multiple assumptions have to be made. Without these
assumptions, results could vastly vary between different unconstrained hardware
implementations. Each layer of the ANN is assumed to have its own local (non-
shared) memory. As a result, activations need to be kept in memory (i.e. I/O
buffers) for all layers. The data flow between layers of the SNN is assumed to
be sparse and asynchronous. Therefore, messages of incoming spikes must be
buffered in a FIFO queue for each layer. Additionally, the SNN must keep the
membrane potentials for all layers between timesteps. In both cases, we assume
that all the memory is akin to local SRAM, including weights in order to support
a reconfigurable architecture. Additionally, there is no local caching in a register
bank. Only registers for the operands and a local accumulator are present and are
excluded from this evaluation. All data is assumed to be represented with the same
number of bits, including the messages describing a spike.

Once these assumptions have been made, we can describe each read or write
operation for each layer of the two types of neural networks. Equations are provided
for a single input for the ANN and a single timestep for the SNN, as matter of
simplicity of notations. Each equation of the SNN must therefore be multiplied
by the number of timesteps T .

Inputs Read operations The number of read operations attributed to the inputs
of a layer of an ANN is computed in Eq. 6.4. For a convolutional layer, each output
position matches with read operations from all input channels and all positions
for which the kernel applies. For an FC layer, the number of read operations for
the input data is equal to the number of inputs Nin.

InReadANN
Conv = Cin × Cout × Hout × Wout × Wkernel × Hkernel

InReadANN
FC = Nin

(6.4)

For the SNN, the read operations in the queue directly depends on the number
of incoming spikes θin and must be measured during inference:

InReadSNN = θin (6.5)
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Parameters Read operations Additional read operations occur to access the
parameters of the network. For an ANN, their estimation is depicted in Eq. 6.6.
In a non-spiking convolutional layer, each output position matches with read
operations for all the weights in all filters associated to all input channels. The
biases generate additional reads for all output positions and all filters. For an
FC layer, every weight generates a read operation, corresponding to the product
between all output neurons Nout and all inputs neurons Nin. The biases cause
additional reads for all output neurons.

ParamReadANN
Conv = (Cin × Wkernel × Hkernel + 1) × Cout × Wout × Hout

ParamReadANN
FC = (θin + 1) × Nout

(6.6)

In a spiking convolutional layer, all received spikes θin will trigger a read for
all output filters and all associated output positions (i.e. of the dimensions of
the kernel). Biases for all output positions and filters must still be read. For
an FC layer, the number of read operations for parameters is similar to an ANN
except that weights are only read for all input spikes θin. Biases must still be
read for all output neurons Nout.

ParamReadSNN
Conv = θin × Cout × Wkernel × Hkernel

+ Cout × Wout × Hout

ParamReadSNN
FC = Nin × Nout + Nout

(6.7)

Membrane potentials Read operations There is no membrane potentials
to update in an ANN so there is no associated read operations. But spiking
neural networks need to access membrane potentials of each layer to determine
if neurons will spike.

In a spiking convolutional layer, the membrane potentials corresponding to all
output positions affected by each input (i.e. of the dimensions of the kernel) in all
filters must be read in order to update them. Biases need to be applied separately
and therefore generate an additional read operation at each timestep for all output
positions and all filters. For FC layers, the potentials of all output neurons are read
for each input. Biases are applied separately and therefore generate an additional
read operation at each timestep for all output neurons.

PotReadConv = θin × Cout × Wkernel × Hkernel

+ Cout × Hout × Wout

PotReadFC = (θin + 1) × Nout

(6.8)
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Outputs Write operations In a non-spiking convolutional layer, each output
position in all filters requires a write operation. For an FC layer, each output
neuron requires a write operation. In both cases, the output is assumed to be fully
computed in the local accumulator, including bias, before being written to RAM.

OutWriteANN
Conv = Cout × Hout × Wout

OutWriteANN
FC = Nout

(6.9)

For an SNN, the write operations to the queue directly depends on the number
of generated spikes θout and must be measured during inference:

OutWriteSNN = θout (6.10)

Membrane potentials Write operations Again, ANNs have no membrane
potentials therefore no associated write operations.

In an spiking convolutional layer, the membrane potentials corresponding to
all output positions affected by each input (i.e. of the dimensions of the kernel)
in all filters must be written to in order to update them. Additionally, the biases
must also be written separately to the potentials for all output positions and all
filters at each new timestep. For an FC layer, the potentials of all output neurons
must be written to for each input. Additionally, the biases must also be written
to the potentials for all output neurons separately at each new timestep.

PotWriteConv = θin × Cout × Wkernel × Hkernel

+ Cout × Hout × Wout

PotWriteFC = θin × Nout + Nout

(6.11)

6.2.3 Addressing cost

In this subsection, we evaluate the cost of addressing in ANNs and SNNs. The first
uses dense processing, in which all input synapses are stimulated at the same time.
On the other hand, the second uses sparse processing, in which synapses are sparsely
stimulated across time. Let us begin with convolution layers. In order to simplify the
following matter, we consider convolutions with a "same" padding (input and output
feature maps of same sizes) and a stride of S. In ANNs, a kernel scans all its possible
positions (depending on padding, stride...) on the input sample and generates a
dense output feature map. In such dense convolutions, computation is performed
sequentially and addresses can be computed by incrementing only an index (by 1
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or S) assuming the memory is contiguous and ordered the same way it is processed.
Thus, one index runs through the input, one index runs through the output and
one index runs through the weights. In SNNs, sparse convolutions are performed
asynchronously upon reception of input spikes, thus the kernel positions (i.e. output
neuron addresses) must be calculated each time a spike is received. In a sparse
representation, computation is performed non-sequentially with no prior knowledge
of which output position is affected by an incoming spike. Computing the initial
output position requires two multiplications. Thereafter, the computation of the
remaining positions are computed by incrementing an index assuming the memory
is contiguous and ordered as for ANNs. There is only one index running through
the kernel weights. The cost of addressing in number ACC and MAC operations in
spiking and formal convolution layer can then be summarized in Equations 6.12:

ACCANN
AddrConv = Cin × Hin × Win + Cout × Hout × Wout

+ Cout × Hkernel × Wkernel

MACSNN
AddrConv = θin × 2

ACCSNN
AddrConv = θin × Cout × Hkernel × Wkernel

(6.12)

The same reasoning is applied to fully-connected layers. In ANNs, one index runs
through the input, and another index runs through the output. In SNNs, one single
index runs through the output upon receiving an input spikes. This yields Eq. 6.13.

ACCANN
AddrFC = Nin + Nout

ACCSNN
AddrFC = θin × Nout

(6.13)

Where Nin and Nout are resepctively the number of input and output neurons.

6.2.4 Energy consumption metric

In this section, we combine the equations obtained for computation, memory accesses
and addressing in a global Energy evaluation metric. For this purpose, we multiply
the energy cost of each operation by its number of occurrences, according to the
metrics presented in the preceding sections. Our model can be summarized as follows:

E = Emem + Eops + Eaddr (6.14)
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Where Emem is the energy consumption of memory accesses, Eops that of synaptic
operations, and Eaddr that of addressing mechanisms.

Emem is detailed in Equation 6.15, with EReadRAM and EWriteRAM the energy
for a single read and a single write operation in RAM, respectively. In our future
computations, we will assume that EReadRAM = EWriteRAM for simplicity purpose.

EANN
mem = (InReadANN + ParamReadANN) × EReadRAM

+ OutWriteANN × EWriteRAM

ESNN
mem = (InReadSNN + ParamReadSNN + PotRead) × EReadRAM

+ (OutWriteSNN + PotWrite) × EWriteRAM

(6.15)

The energy consumption of the synaptic operations Eops and that of addressing
operations Eaddr are expressed by Equations 6.16 and 6.17, with EADD and EMUL

are the energy cost of single additions and multiplications respectively:

EANN
ops = (EADD + EMUL) × MACANN

ops + EADD × ACCANN
ops

ESNN
ops = (EADD + EMUL) × MACSNN

ops + EADD × ACCSNN
ops

(6.16)

EANN
addr = (EADD + EMUL) × MACANN

addr + EADD × ACCANN
addr

ESNN
addr = (EADD + EMUL) × MACSNN

addr + EADD × ACCSNN
addr

(6.17)

We draw the energy consumption of single operations (addition, multiplication
and memory accesses) from the literature (Jouppi et al., 2021), for 45nm CMOS
technology, other values for other technology could be used in the future. For
addition and multiplication with 32-bit integers, we use respectively 0.1pJ and
3.1pJ . For SRAM memory accesses, we compute a linear interpolation function based
on 3 particular values (taken from Jouppi et al., 2021): 8 kB (10pJ), 32 kB (20pJ)
and 1 MB (100pJ). This function enables to compute the energy cost of a memory
access knowing the memory size (i.e. knowing the network hyperparameters).
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6.3 Experiments and results

With our energy consumption metric now defined, we will now apply it on three
different datasets, each representative of a certain type of data to judge if SNNs are
more energy efficient than comparable ANNs on these real-world machine learning
tasks. To provide a fair comparison with ANNs, we will place the BN layers after
the convolutions even in our SNNs, even if we have shown in the previous chapter
that the BN-CONV order could further increases the performance of our SNNs.

6.3.1 Datasets and models
Static frame-based data: CIFAR-10

The CIFAR-10 dataset is made of 60000 32x32 RGB images representing 10 classes.
For the SNN, CIFAR-10 samples are repeated as input over T = 4 timesteps,
using direct encoding (Y. Kim et al., 2022), repeating the input as many times
as the number of timesteps.

For this task, we use a VGG-16 architecture described in (Simonyan and
Zisserman, 2015). We dropped the max pooling layers by using a stride of 2
in their preceding convolution and we added batch normalization layers after
each convolution. The ANN uses regular ReLU activation layers while the SNN
uses IF neurons.

Dynamic frame-based data: Google Speech Commands V2

The Google Speech Commands V2 dataset (GSC) is composed of audio signals
sampled at 16 kHz of 1-second recordings of 35 spoken keywords. We performed data
augmentation by randomly changing the speed of the raw audio signals, padding
or truncating the samples when necessary.

The raw spectograms are preprocessed to obtain images that can be fed to
CNNs. We used 10 MFC Coefficients, FFT of size 1024, a window size of 640 with
a hop of 320, and a padding of 320 on both sides. This results in a 48x10 image
interpreted as 1D vector of size 48 with 10 channels. For the SNN, we again used
direct encoding, but without the need of repeating the input as we divided this
temporal data in T = 2 timesteps, each of size 24.

To tackle this classification task, we designed a 4-layers CNN with the following
topology: 48c3 - 48c3 - 96c3 - 35c1. Each convolutional layer has a stride of 1
and was followed by a batch normalization layer.
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Event-based data: Prophesee N-CARS

The Prophesee N-CARS dataset (Sironi et al., 2018) is a classification dataset
composed of 24k samples of length 100ms captured with a Prophesee GEN1 event
camera mounted behind the windshield of a moving car. The samples represent
either a car or background. We resized all the samples to a size of 64 × 64 pixels
using nearest neighbor interpolation to keep our inputs binary. For SNNs, we
divided each sample in T = 5 timesteps, while all the events were summed into
a single frame for the CNN.

We designed Tiny VGG-11, a variant of the classical VGG-11 architecture that
uses 4 times fewer channels in each convolution layers, reducing the number of
parameters and calculations. We dropped the max pooling layers by using a stride
of 2 in their preceding convolution and we added batch normalization layers after
each convolution. Finally, we replaced the final 3 fully-connected layers by our
output layer described in the following Section 6.3.2.

6.3.2 Organization of the output layer

Both ANN and SNN use a traditional final fully-connected layer for static frame-
based data. On the other hand, our models for dynamic frame-based and event-based
data use a specific final classification layer as the feature maps are not sufficiently
reduced to be flattened before the final fully-connected layer.

Indeed, we followed the approach used in Chapter 3. The output layer of our
SNNs is simply composed of a 1 × 1 convolution outputting num_classes channels,
a batch normalization layer and a final layer of LIF neurons. The final predictions
are then obtained by summing all output spikes first in the spatial dimension and
time dimension. We therefore obtain a tensor with a spatial size of 1 × 1 with
num_classes channels, which is equivalent to the output of conventional fully-
connected layers. The 1D convolution in the final layer enables to avoid the use of
e.g. average pooling to reduce the spatial dimension as it would be incompatible
with spikes computations. We used the same approach for the equivalent ANNs
but without summation along the time axis since it does not exist.

6.3.3 Results

We trained our ANNs using PyTorch, and our SNNs using SpikingJelly (Fang,
Y. Chen, et al., 2020) with surrogate gradient learning. The models were trained
over 50 epochs for GSC and N-CARS, and 300 for CIFAR-10. All presented
results represent the average over 5 runs. The performance of our networks were



6. Towards efficient embedded SNNs 115

measured by their classification accuracy. We also measured the spike rate of
our SNNs, corresponding to the average number of spikes per synapse in the
network. Since computations are only performed when there is a spike, this has a
direct impact on the SNN energy consumption within our metric. These results
are summarized in Table 6.1.

Table 6.1: Accuracy and spike rate comparisons between our proposed SNNs and CNNs
on CIFAR-10, Google Speech Commands V2, and Prophesee N-CARS.

Dataset Network Network type #Params Acc. Spike Rate

CIFAR-10 VGG-16 ANN (ReLU) 15.2M 0.951 –
SNN (IF) 0.884 0.10

GSC 4-layers CNN ANN (ReLU) 29k 0.936 –
SNN (LIF) 0.918 0.14

N-CARS Tiny VGG-11 ANN (ReLU) 356k 0.934 –
SNN (LIF) 0.935 0.08

For dynamic and event data, SNNs are able to reach equivalent or close accuracies
to their ANN counterparts, a result rarely shown experimentally before on these
datasets. On the CIFAR-10 dataset, our SNN reaches lower accuracy than the
ANN. This is coherent with state of the art results, but should be improved in
future works. Still, all of our SNNs reach these performance while having a very
low spike rate, on average each neuron of a model spikes less than 0.14 times
per inference for the three datasets.

Using the metrics proposed in Section 6.2, we were able to precisely estimate
the energy consumption of our models. For the memory accesses, we consider that
the weights, biases and potentials are stored using 32-bits. In our model, I/O
buffers between SNN layers are FIFOs able to store 1000 32-bit elements. This
assumption has been validated through hardware simulation using the SPLEAT
architecture (Abderrahmane et al., 2022). On the other hand, the full feature
maps are stored in SRAMs between ANN layers. The results are illustrated in
Fig. 6.1 and detailed in Table 6.2.

As expected, the SNNs synaptic operations cost much less energy than those
of the ANNs since they are mainly composed of ACC operations. On the other
hand, addressing energy cost is a little higher in SNNs, as more computations
are needed to process sparse inputs.

But the total energy consumption is dominated by the cost of memory accesses,
which is yet unduly neglected in most metrics of the literature. While SNNs have
additional memory accesses for updating the neuron potentials, it requires fewer
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FNN SNN FNN SNN FNN SNN

CIFAR10 GSC NCARS

Figure 6.1: Estimation of energy consumption for 45nm CMOS technology.

Table 6.2: Energy consumption estimations of our SNNs and their equivalent FNNs on
the 3 datasets for 45nm CMOS technology.

CIFAR10 GSC NCARS
SNN FNN SNN FNN SNN FNN

Memory
Accesses

(nJ)

Potentials 1.12E+6 – 3.50E+3 – 2.69E+5 –
Weights 4.60E+5 5.59E+6 1.73E+3 1.46E+4 8.10E+4 1.11E+6

Bias 2.79E+2 6.97E+1 6.00E+0 3.00E+0 3.71E+1 7.43E+0
In/Out 7.65E+2 6.09E+6 3.90E+1 1.50E+4 2.88E+2 1.54E+6
Total 1.58E+6 1.17E+7 5.27E+3 2.96E+4 3.50E+5 2.64E+6

Synaptic Op. (nJ) 2.41E+3 1.29E+06 4.08E+1 3.53E+3 6.15E+3 2.67E+5
Addressing (nJ) 1.97E+2 4.94E+1 9.28E+0 1.93E+0 5.05E+1 7.65E+1

Total (nJ) 1.58E+6 1.24E+7 5.32E+3 3.32E+4 3.57E+5 2.86E+6
EFNN/ESNN 8.19 6.22 8.17

memory accesses for the weights and the I/O. Moreover, the size of I/O buffers are
often much smaller in SNNs than in ANNs, since the first only requires FIFOs of
1000 elements whereas the second requires storing the full feature maps.

In the end, the total energy consumption of our SNNs is between 6.22 and 8.19
times lower than their ANN counterparts, a promising result for the development
of embedded SNNs on specialized hardware.

6.4 Conclusion

Spiking neural networks are often presented as low-power alternatives to classical
ANNs. By proposing a generic and accurate energy estimation metric that is
independent from low-level implementation choices and hardware targets, we show
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that SNNs are roughly 8 times more energy-efficient than ANNs on three different
classification tasks, with comparable accuracies.

Furthermore, our analytical estimation also provides guidelines for the design of
efficient spiking neural networks and/or of neuromorphic hardware. As memory
accesses represent the majority of the energy consumption of an SNN, it is on this
essential point that both SNNs developers and manufacturers of neuromorphic
hardware should focus.

6.4.1 Number of timesteps

As all memory accesses have to be repeated every timestep, the most important
parameter for SNNs energy consumption is the number of timesteps T . As mentioned
several times in this manuscript, this is why we do not consider SNNs built by
conversion as a viable approach, as they require a large number of timesteps to
replicate good ANNs performances. The direct training of SNNs, enabled e.g. by
the surrogate gradient learning approach, is for us much more promising and flexible.
We have shown that we can directly train SNNs on a few number of timesteps on
temporal data, leading to low energy consumption estimations. Regarding frame-
based data, achieving state-of-the-art performance with a low number of timesteps
is still an active research area, but the direct encoding enabled once again by the
surrogate gradient learning method is promising, as long as we have the possibility
on the specialized hardware to do MAC operations on the first layer of the network.

6.4.2 Sparsity

The memory accesses in SNNs depend often on the activity of each layer, proving
that sparse spiking neural networks are important to achieve efficient SNNs. But
today, the sparsity in SNNs is not really controlled and is rather a side effect
measured at the end of a successful training. Decreasing the activity of an SNN
(i.e. its spike rate) yet allows substantial energy gains, and we can only encourage
researchers to study efficient ways of increasing SNNs sparsity while not penalizing
the already difficult learning process.

In this thesis, we have shown that processing event data, which is highly sparse
by nature, allows to preserve a low activity throughout the network. We also
hypothesize that the use of higher weight decay values will result in higher sparsity,
as the learned weights will have smaller values and will reach the potentials to emit
spikes less often. We can also mention the addition of the number of spikes emitted
directly in the network training loss, as proposed in (Zimmer et al., 2019), which
also seems to be an effective way to decrease the network activity.
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6.4.3 Quantization

Finally, an important aspect of the embedding of SNNs that we have not tackled
in this thesis is quantization. In SNNs, the activations don’t require quantization
as they are already binary, but the weights and the membrane potentials can be
quantized. Quantizing weights and potentials has a direct impact on the energy
consumption, as it would require less memory accesses than using full precision
weights. Quantized values also require less energy for addition and multiplication.
We know as a fact that some of the SNNs presented in this thesis can be quantized
on 16-bit values with a nearly lossless performance, but a lot of research still
has to be conducted to guarantee the performance of SNNs when targeting 8-
bit or lower representation.
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7.1 Conclusion

With the multiplication of artificial intelligence algorithms embedded in cars, it
becomes essential that they have a low energy consumption. To avoid accidents
and potentially save lives, they need to be high-performance while having a low
latency. In this thesis, we have studied how an end-to-end biologically-inspired
approach processing event data with spiking neural networks can be used to design
embedded automotive intelligence artificial algorithms that are high-performance,
fast and energy-efficient.

Spiking neural networks, usually presented as low-power alternatives to classical
neural networks, were however unable to compete with them in terms of performance
outside of toy examples. As their particular operation requires input data in the
form of spikes, the common approach to process visual information was to encode
classical images in spikes. Instead, we focused in this thesis on the processing of
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event data directly with spiking neural networks, as events can be interpreted as
spikes and thus represent an ideal input for SNNs.

The objective of this thesis have been to increase the performance of spiking
neural networks for event data processing, with the ambition to take SNNs to
the next level. Using the latest advances in the SNNs and event-based processing
fields, we have develop new training methods and new architectures for SNNs that
have enabled the tackling of real-world automotive computer vision tasks such as
object detection, previously unattainable by SNNs.

While the major focus of this thesis has been on the software side, this improved
performance of SNNs is only useful if we are able to implement them on embedded
systems and have a lower energy consumption than equivalent classical neural
networks. As a first step towards this end goal, we have provided an hardware-
independent analytical estimation of the energy consumption of any SNN, showing
that SNNs are now able to reach comparable or better results than equivalent ANNs
on three different machine learning while consuming 6 to 8 times less energy.

7.2 Future works

Our results, in terms of performance and of energy consumption, lay the groundwork
for a multitude of future works that could ultimately lead to the use of SNNs in
embedded automotive applications.

7.2.1 Short-term perspectives: further improving the per-
formance

The results obtained in Chapter 5 prove that SNNs are able to tackle object detection
problems, but there is still a significant performance gap with ANNs. Based on our
works, we can propose several leads that we believe will further improve our results:

• Training object detection models with TBPTT with a shorter time resolution,
e.g. 20ms. We used 50ms for computational reasons, and since we use binary
voxel grids / voxel cubes, a lot of information can be lost on long timesteps.
Furthermore, since bounding boxes ground truths are attached to a timestep
whatever the moment they occur in the interval could lead to slightly misplaced
ground truths that could impair the training, and this would also be solved
by the use of shorter timesteps.
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• Training bigger object detection models with TBPTT. Even though bigger
networks would be more difficult to embed, the neural networks field has
consistently used very large networks to improve performance on difficult
tasks, to then design reduced networks for embedded systems.

• Improve the TBPTT training algorithm. An already stated limitation of our
TBPTT training approach is that we have to detach the whole computational
graph even though we trained only on certain samples of a batch. This leads
to the forgetting of past states of samples that did not participate in the
backward pass. We believe that improving the TBPTT training algorithm to
only detach the past states on samples concerned by a backward pass would
dramatically improve the results achieved on object detection.

• Develop new SNNs architectures with residual connections. Residual con-
nections are essential to the performance of classical neural networks. We
proposed in this thesis to use concatenation-based residual connections,
providing performance boosts but also increasing the parameters count and
operational complexity. The several addition-based residual connections
in SNNs proposed in the literature have not yet been proven possible on
neuromorphic architectures, making their actual relevance uncertain.

• Tackle the object detection event dataset Prophesee 1MPX, which is larger in
terms of resolution, classes (7) and ground truth bounding boxes (100 times
more) than the Prophesee GEN1 one. With ground truth bounding boxes at
best every 16.66 ms (60Hz), the techniques implemented to learn on Prophesee
GEN1 with TBPTT will be even more effective.

7.2.2 Middle-term perspectives: other tasks and embedding
on neuromorphic hardware

In this thesis, we have focused on the object detection task, which represents a
good example of a complex automotive embedded application. But everything
that has been proposed in this manuscript to increase the performance of SNNs on
event data can be applied to other computer vision tasks, such as depth estimation,
segmentation, optical flow estimation, or even to other types of data as we did in
Chapter 6 by tackling a problem of keyword spotting with SNNs.

And once the performance of SNNs is deemed sufficient for real-world applica-
tions, it is time to embed them into specialized or neuromorphic hardware.
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A probably unavoidable step towards the embedding of SNNs is quantization,
mostly absent from our thesis work. While SNNs operate on binary spikes, they
still rely on floating point weights and potentials, and as we’ve seen in Chapter 6,
the number of bits on which they are encoded has a direct influence on the energy
consumption of the network, but also on the latency and on the size of the network
considered. While several post-quantization schemes for SNNs are already available
in the literature, we think that developing new Quantization-Aware Training (QAT)
methods for SNNs will bring better performance when considering the encoding of
floating point values on a low number of bits. This will ensure that the performance
achieved during training will be met in real-life conditions.

In the same vein, several software toolchains have to be developed to port SNNs
trained in modern deep learning frameworks into neuromorphic hardware. Each
hardware having its specificities, it will necessarily constrain the operations used,
the size of the networks considered and the resulting performance. The sooner these
toolchains are available, the sooner SNNs could be developed around these now
defined constraints. This is important as it will lead to SNNs results reproducible
on embedded hardware and not only in software simulation.

7.2.3 Long-term perspectives: automotive applications

Finally, the long-term perspectives depend mainly on the development and avail-
ability of cheap neuromorphic hardware and event cameras. Once the deployment
of powerful SNNs on neuromorphic hardware becomes a reality, a multitude of
intelligent low-power applications could emerge, particularly in cars.

Indeed, we already illustrated the object detection task with event cameras,
that could be used in cars to detect surrounding dangers faster than traditional
sensors, and in more difficult conditions. As it needs to run continuously at a high
rate, the energy gains would be substantial. Similarly, SNNs processing event data
could then be used for other perception tasks: lanes detection (lane keeping assist),
distance estimation (auto-pilot in traffic jams), blind spot dangers detection.

Another interesting use of event sensors could be in-cabin: EU legislations will
soon require an in-cabin camera to monitor the driver attention installed in all
new vehicles, and for privacy reasons some customers would be more comfortable
being filmed by an event camera rather than a traditional camera. An in-cabin
monitoring algorithm would be used to detect fatigue, inattention or even violent
conduct ; and must run continuously and at a high rate: the possible energy
gains could be, once again, significant.
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More generally, high-performance SNNs embedded on neuromorphic hardware
could become the go-to solution for embedded applications, enabling the introduction
of intelligent algorithms in a variety of everyday products at a low energy cost.
The next few years will show whether or not spiking neural networks can fulfill
their potential.
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