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Titre : Modèles d’embedding pour l’analyse de données relationnelles
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Résumé : L’analyse de données, par exemple
via des modèles d’apprentissage automatique, né-
céssite qu’elles soient regroupées dans une table
unique, où les entités étudiées sont décrites par un
nombre fixe d’attributs. En pratique cependant, les
données sont souvent irrégulières et éparpillées à
travers plusieurs sources (cf. bases de données re-
lationnelles). Il est alors nécessaire de les assembler
dans une seule table, ce qui requiert du temps et
de l’expertise.

Pour faciliter l’analyse de données non-
assemblées, nous étudions dans cette thèse le po-
tentiel des modèles d’embedding, qui calculent une
répresentation vectorielle pour chaque entité. Nous
nous intéressons particulièrement aux deux pro-
blèmes suivants : 1) l’appariement d’entités (par

ex. rattacher “Paris” et “Paris, FR”), lorsque les
sources de données ont différentes manières de re-
présenter la même entité ; et 2) l’agrégation et la
jointure de données non-assemblées.

Au travers de cette thèse, nous montrons que
les modèles d’embedding sont en effet des outils
prometteurs pour l’analyse de données : 1) utiliser
des représentations vectorielles adaptées peut rem-
placer l’appariement manuel des entités, sans com-
promettre la qualité des analyses en aval ; et 2) ces
représentations peuvent être apprises directement
sur de larges volumes de données non-assemblées
pour agréger l’information disponible sur les enti-
tés dans des vecteurs facilement réutilisables dans
de nombreuses applications.

Title : Embedding models for relational data analytics
Keywords : machine learning, vectorial embeddings, data analytics

Abstract : Data analysis, e.g. via machine lear-
ning models, requires data in a single table, where
the entities under study are described by a fixed
set of attributes. In practice however, data is often
irregular and scattered across multiple sources. It
must thus be assembled into a single table, which
requires time and expertise from the analyst.

As an alternative, we investigate in this thesis
the potential of embedding models to facilitate the
analysis of unassembled data. We especially consi-
der two problems : 1) entity matching (e.g. lin-
king "Paris" and "Paris, FR"), when data sources

have different ways of representing the same en-
tity ; and 2) the aggregation and joining of unas-
sembled data.

Throughout this thesis, we show that embed-
ding models are indeed promising tools for data
analytics : 1) adapted vectorial representations of
entities can replace manual entity matching wi-
thout hindering the quality of subsequent analyses ;
and 2) these representations can be learned di-
rectly over large databases to summarize the avai-
lable information on entities into vectors readily
usable in various downstream tasks.
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R É S U M É D É TA I L L É

L’analyse de données, par exemple via des modèles d’apprentis-
sage automatique, nécéssite qu’elles soient regroupées dans une table
unique, où les entités étudiées sont décrites par un nombre fixe d’at-
tributs. En pratique cependant, les données sont souvent irrégulières
et éparpillées à travers plusieurs sources (cf. bases de données rela-
tionnelles). Il est alors nécessaire de les assembler dans une seule
table, ce qui requiert du temps et de l’expertise.

Pour faciliter l’analyse de données non-assemblées, nous étudions
dans cette thèse le potentiel des modèles d’embedding, qui calculent
une répresentation vectorielle pour chaque entité. Nous nous intéres-
sons particulièrement à deux problèmes : 1) l’appariement d’entités,
et 2) la jointure de données non-assemblées.

Le premier problème survient lorsque les données analysées pro-
viennent de sources non-normalisées. Dans ce cas, une entité don-
née peut être représentée de différentes manières selon la source, par
exemple “Paris” et “Paris, FR”. Cela est problématique pour l’ana-
lyse des données, car les deux valeurs seront traitées indépendam-
ment, ce qui va entacher la qualité des résultats. Pour corriger cela,
une pratique courante est de rattacher à la main les deux valeurs, de
sorte qu’elle aient la même orthographe. Cependant, un tel procédé
demande généralement beaucoup de temps et d’effort de la part de
l’analyste.

À la place, nous proposons ici de simplement remplacer les entités
non-normalisées par des représentations vectorielles (ou embeddings)
qui capturent les similarités entre entités, de sorte que deux valeurs
qui désignent la même entité obtiennent des vecteurs proches. Au
travers d’une analyse des salaires au Texas, nous montrons empi-
riquement que des embeddings adaptés, couplés avec de puissants
modèles d’apprentissage statistique, peuvent se substituer à un net-
toyage manuel des données, sans entacher la qualité de l’analyse en
aval.

Le second problème survient quand il faut assembler les données
de plusieurs tables en une seule pour les analyser. Pour cela, une opé-
ration courante est la jointure, qui permet de prendre des colonnes
d’une table, pour les rajouter à une autre. Toutefois, une condition né-
cessaire à la jointure est d’avoir une relation 1-pour-1 entre les entités
d’intérêt et les valeurs à joindre. Par exemple, en partant d’une table
avec différentes villes, on peut facilement joindre leurs populations à
partir d’une autre table, car chaque ville est associée à une seule va-
leur de population. En pratique cependant, les données contiennent
souvent des relations 1-pour-plusieurs, où chaque entité (i.e. ville) est
associée à plusieurs valeurs, par exemple les salaires de leurs habi-
tants. Dans ce cas, il est nécessaire d’agréger au préalable ces valeurs
en un unique indicateur (par ex. le salaire moyen par ville), afin de
pouvoir faire la jointure.
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Sur de grandes bases de données, cette étape d’agrégation avant
jointure est difficile et coûteuse en temps. En effet, le nombre d’indi-
cateurs que l’on peut créer explose rapidement, notamment lorsque
l’on enchaîne les jointures à travers plusieurs tables. Même sans cal-
culer tous les indicateurs possibles, identifier lesquels sont pertinents
pour l’analyse en question est difficile.

Plutôt que de joindre les tables à la main, nous proposons d’utiliser
un modèle d’embedding directement sur les données non-assemblées,
afin d’obtenir un vecteur pour chaque entité. L’avantage de tels vec-
teurs est qu’ils agrègent implicitement toute l’information disponible
sur les entités, et qu’ils peuvent être directement joints à de nouvelles
tables, car il y a une relation 1-pour-1 entre une entité et son embed-
ding. En parallèle, une contribution clé de notre approche est la prise
en compte des valeurs numériques dans les modèle d’embeddings,
qui sont par défaut limités aux entités catégorielles.

Enfin, nous montrons à travers une série d’expériences la qualité
et la scalabilité de notre approche : les embeddings obtenus peuvent
être facilement réutilisés pour enrichir de nombreuses applications
avec de l’information externe.
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1
I N T R O D U C T I O N

The amount of information in the world is estimated to double
every two years. Data is now ubiquitous and collected in various
domains: business, industry, medicine, research; and under various
forms: text, images, tables, graphs... Following this trend, data analyt-
ics (Runkler, 2020), or related fields such as data mining and knowledge
discovery, have emerged as an ensemble of methods to generate in-
sights from data. In this chapter, we introduce the notion of data
analytics (Section 1.1), as well as the numerous data engineering chal-
lenges faced in practice by data analysts (Section 1.2). At last, we state
the focus and objective of this thesis: leveraging embedding models
to facilitate data analytics over relational data (Section 1.3), such as
tables or knowledge graphs. Importantly, we take care in this chapter
to connect different views of data, bridging those found in database
research with those from statistics.

1.1 data analytics : drawing valid conclusions from im-
perfect data

We introduce in this section what we mean by “data analytics”.
Starting from the classic database view, we move on to a more statis-
tical vision of data analytics that better accounts for imperfections in
real-world data. We then depart from typical analytic practices based
on queries in databases to more advanced analytical models, such as
statistical models used in machine learning.

1.1.1 The database view: querying facts from perfect data

The classic view for analytics in databases is to consider the data
as a true, noiseless description of reality, and to query it to produce
factual answers to analytical questions like “What is the annual salary
of a specific person?”, or “What is the average housing price in a given
city?” (see Figure 1.1). Importantly, the data must satisfy certain
properties to ensure the validity of the results obtained by querying
it. In particular, data must be:

1. exact, i.e. the values reported in the data (e.g. employee salaries
or housing prices) are correct and do not exhibit uncertainties
or errors.

2. instance-complete, meaning that all instances relevant to the
question at hand are present in the data, e.g. the employee of
interest or all houses in the considered city.

3. attribute-complete, meaning that all the attributes needed to
select the relevant instances are available in the data, such as
employee names or the cities in which houses are located.
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1.1 data analytics : drawing valid conclusions from imperfect data 2

Employee_ID Name Salary

1 John Doe 53,000$

2 Alice Pearce 61,000$

3 Bob Ross 39,000$

House_ID City Area Price

1 New York 70 m² 610,000$

2 Los Angeles 38 m² 350,000$

3 New York 45 m² 420,000$

SELECT Salary FROM Employees
WHERE Name = “John Doe” 

SELECT Price FROM Houses
WHERE City = “New York” 

Employees Houses

Figure 1.1 – Example of two analytical questions: What is the salary of John
Doe? (left), and What is the average housing price in New York?
(right). The classic “database” approach to answer these ques-
tions consists in data queries, illustrated here in SQL.

Obviously, whether or not a dataset satisfies these properties de-
pends on the analytical question at hand. It is often easy to ensure
for simple questions on individual instances (e.g. what is the salary
of John Doe?), but these notions are harder to define for questions on
large groups of instances (e.g. what is the average salary of a data
scientist?).

1.1.2 Imperfections in real-world data call for statistical estimation

We adopt here a database perspective of analytics, as introduced
above. However, while it is convenient to consider the data as perfect,
it is seldom verified in practice: due to many imperfections in real-
world data, we generally obtain estimates, rather than true values
for the analytical quantities of interest. First, data can be inexact
for various reasons: many quantities are hard to measure precisely
(e.g. the daily number of COVID cases) and often come with error
bars, as in experimental measurements. Even when quantities have a
well defined value (e.g. employee salaries), human errors in the data
management pipeline can lead to mistakes in the final values, such as
typos or unit conversion errors. Data can also be attribute-incomplete:
there may be no column “City” in our “Houses” table (Figure 1.1), or
it may contain missing values, as resulting from a join between two
tables.

Finally, the most important hurdle to data analysis is generally
instance-incompleteness. Indeed, most of the interesting analytical ques-
tions strive for generalization, i.e. building insights that are valid
outside of the data at hand. Therefore they often consider popula-
tions of instances rather than individual instances. In practice however,
we only have access to a small fraction –potentially unrepresentative–
of the population under study, e.g. employees of a certain company,
rather than all employees.
Importantly, the notion of “instance-completeness” stems from the
classic database stance which views data as finite. This departs from
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1.1 data analytics : drawing valid conclusions from imperfect data 3

the statistical view of data as samples of an underlying distribution, for
which we can never have all the data.

For all these reasons, we move away from the view of analytics
formulated in a database framing, and adopt instead a statistical
perspective: data queries return estimates, rather than true results.
In mathematical terms, an estimator f is a rule for calculating an esti-
mate θ̂ of a given quantity θ∗ (the estimand 1), based on observed data
D =

{
Xi

}
1⩽i⩽n

∈ Pn:

f : Pn −→ R (1.1){
Xi

}
1⩽i⩽n

7−→ θ̂

where Xi is a sample (e.g. a table row) describing the attributes of
the ith instance, and Pn is the set of all possible combinations of n

samples from the population P of interest.
We can measure the estimation error in a statistical sense by view-

ing the dataset D as a random variable over Pn, and computing the
mean squared error (MSE). Importantly, the mean squared error of any
estimator can be decomposed into a bias and variance term (Equa-
tion 1.2), with Bias

[
θ̂
]
= θ∗ − ED

[
θ̂
]

the deviation between the av-
erage estimate and the true value, and Var

[
θ̂
]

the variance of these
estimates.

MSE = ED

[(
θ∗ − θ̂

)2]
= Bias

[
θ̂
]2

+ Var
[
θ̂
]

(1.2)

1.1.3 From binning to shrinkage estimators

Statistical estimation in databases typically relies on binning, cre-
ating groups of instances from the population of interest via queries,
followed by an aggregation procedure (e.g. averaging) to estimate
the desired quantity. For example to study the distribution of ages
in a population, we can count the number of individuals with age 18,
19, etc... Although unbiased 2, such estimators may exhibit high vari-
ance, especially when the number of samples in each bin is small. To
reduce the variance of binning estimates, a common solution in statis-
tics is to smooth them with continuous models, e.g. using a Gaussian
kernel model to estimate the distribution of ages (Figure 1.2).

Following this idea, shrinkage estimators (Fourdrinier et al., 2018)
go further by biasing estimates towards some prior value, e.g. θ̂shrinkage =

(1− α) θ̂binning + α θ̂prior, with α ∈ [0, 1]. In our example of ages, the
prior is that of continuity: estimates for similar ages should be close.
The intuition is the following: after shrinkage, the distribution of
estimates θ̂shrinkage (across randomly sampled datasets D) is grouped
around the prior, having thus less variance but exhibiting a bias. With
a good prior and shrinkage factor α, the reduction in variance can
overcome the increase in bias, and overall decrease the mean squared

1. In practice the estimand may be not a scalar θ∗ ∈ R, but a vector θ∗ ∈ Rp.
This is the case when estimating jointly multiple parameters, e.g. the average housing
price in multiple cities.

2. Assuming no selection biases in the data.
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Figure 1.2 – Smoothing binning estimates with kernel models: When
studying the age distribution from a small number of individu-
als, binning estimates tend to exhibit a lot of variance. Instead,
kernel models can leverage samples in neighboring bins to pro-
vide less noisy and more accurate estimates.

error. A good example of this is the James-Stein estimator (James and
Stein, 1992), which always 3 achieves a lower error than the empirical
mean when estimating the mean value of several quantities simulta-
neously (e.g. the average housing price in multiple cities).

1.1.4 Beyond shrinkage: machine learning for statistical estimation

the framework of supervised learning Supervised learning
aims to learn to predict a target variable Y ∈ Y from inputs X ∈ X

(typically X = Rp), using pairs of examples (X, Y) sampled from
a distribution P. Formally, we want to find a function f : X → Y

that minimizes the expected risk E [l (f(X), Y)] given a cost function
l : Y× Y → R, called the loss. The best possible prediction function is
known as the Bayes rule, given by

f∗ = argmin
f : X→Y

E [l (f(X), Y)] (1.3)

In practice, we do not know the distribution P and thus cannot min-
imize the expected risk to obtain the Bayes rule f∗. Instead, learning
procedures such as random forests or neural networks minimize the
empirical risk to construct a prediction function f̂n from a set of train-
ing pairs Dn,train = {(Xi, Yi) , i = 1, ..., n}.

f̂n = argmin
f : X→Y

1

n

n∑
i=1

l (f(Xi, Yi)) (1.4)

Importantly, a learning procedure is consistent if it yields, given a
infinite amount of data, a function that achieves the same expected
risk as the Bayes rule f∗, i.e. E

[
l
(
f̂n(X), Y

)]
−−−−→
n→∞ E [l (f∗(X), Y)].

3. Assuming that the data follows a multivariate Gaussian distribution.
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machine learning for statistical estimation Many of the
quantities studied in data analyses can be viewed as conditional
aggregates, e.g. the average housing price in a city E [Price|City]. In-
deed, querying the data to select samples from the population of in-
terest amounts to conditioning on the corresponding attributes, such
as the city.

Interestingly, conditional aggregates can be estimated by machine
learning models if they are trained to minimize a well-chosen loss
function. For instance, with a squared error l(Y1, Y2) = (Y1 − Y2)

2,
the Bayes rule f∗ leads to conditional expectations f∗(X) = E [Y|X].
Likewise, using a quantile (or pinball) loss leads to conditional quan-
tiles f∗(X) = Qα (Y|X). With enough samples, consistent learning
procedures will eventually converge towards these conditional aggre-
gates.

leveraging similarities to refine estimates A drawback
of traditional estimators based on binning is that they only consider
samples from the population under study, which may be rare in the
data. Instead, machine learning models are able to leverage related
samples outside the population of interest to refine their estimates.
For instance, a simple K-nearest neighbors model can leverage data
from a similar city (e.g. with close populations or locations) to bet-
ter estimate housing prices in a city for which there are few samples.
While this is akin to kernel estimates and shrinkage methods, power-
ful machine learning models go much further than that. They offer
greater flexibility and can adapt to the specificities of the data, e.g.
with an adaptative notion of similarity or distance between samples.
For example, proximity to public transports may impact more hous-
ing prices in rural areas than in urban areas. Although these models
come with more parameters, they can easily be tuned to minimize a
test error (which serves as a measure for the estimation error) to pro-
vide accurate estimates and avoid overfitting. For all these reasons,
machine learning models are particularly suited for data analytics,
especially in complex questions where we only have a few represen-
tatives for the population of interest.

1.2 data engineering for data analytics

Although machine learning models are powerful tools for data an-
alytics, they typically require data in a single table containing the
features and target values (Xi, Yi) for each sample. In practice how-
ever, data is often scattered across multiple databases, posing data
integration challenges. Even in a single table, data quality issues may
impair the validity of subsequent analyses. To address this, many
data engineering steps are generally performed by the analyst. Yet
they are time-consuming, taking up to 80% of the effort in data anal-
yses (CrowdFlower, 2016; Dasu and Johnson, 2003). We give in this
section an overview of such data engineering problems.
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1.2.1 The data analysis pipeline

Following Nazabal et al., 2020, we decompose a typical data analy-
sis pipeline into the following steps:

1. Data organization aims to obtain a representation of the data
that is best suited for the task at hand. This usually involves:
identifying the structure of the raw data to read it properly (data
parsing), understanding the contents of the data (data dictionary),
and assembling data from multiple sources into a single table
(data integration).

2. After organizing data into the desired format, data quality aims
to fix imperfections that could hinder further analysis. It in-
cludes any process that modifies data values without changing
the structure of the data, such as standardization or repairing
missing and anomalous data.

3. Finally, data analysis is performed to extract insights from the
clean data, for instance via visualization, regression, classifica-
tion, clustering... An important part of the analysis then consists
in making sense of the results, e.g. through model interpretation
and evaluation.

Note that in practice, data analyses are often conducted iteratively
rather than linearly, with many back-and-forths between data engi-
neering and the actual analysis. In the following subsections, we
describe the issues arising from data organization and data quality,
that we summarize in Table 1.1.

1.2.2 Data organization

The initial step of a successful analysis is to organize the data into a
structure well suited for the task of interest and the analytical method,
e.g. a single table for machine-learning models.

1.2.2.1 Data parsing

Organizing raw data first requires to be able to read it, which poses
multiple challenges. Data may come in a variety of formats (e.g. CSV,
XML, RDF, JSON...), which must be loaded through different open
or proprietary softwares. Even when data comes in a single format,
it can be encoded in multiple ways. For instance, CSV files can ex-
hibit various delimiters, quote and escape characters which must be
carefully identified before loading the data. This led to several ap-
proaches for automating this tedious process (van den Burg et al.,
2019).

1.2.2.2 Data dictionary

An essential step after loading the data is to build a data dictionary
to understand its content, e.g. the meaning, type and unit of each
attribute in a table. This can be difficult in practice: if such metadata
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is not available or out of date, it must be inferred from the values
and may require domain-expertise. Metadata may also come under
different formats, such as text files, extra headers or additional CSV
files. It is thus common for a data scientist to go back and forth
between the data and the metadata to get an overview of its content.

The construction of such a data dictionary occurs at several levels:
tables, features and feature values. Starting at the tables level, the
goal is to get a global understanding of the data: how many tables?
what are they about? are they linked (as in relational databases)? how
many features and instances in each table?

The next step is to understand the meaning and type of each fea-
ture. This information is generally provided in the column names or
in separate files, but may be missing or imprecise. For instance, med-
ical data often contains acronyms or domain-specific terms, such as
DOB for Date Of Birth. Looking at the values is also often necessary
to feature understanding: a column Annual Salary may be categori-
cal (e.g. with bins “40k-50k”, “100k+”) when we expected numerical
values in the first place.

Finally, we must get an idea of the values contained in the fea-
tures: what do they mean? what is the number of unique values?
what is their range and unit? are there unexpected values? In some
cases, understanding feature values is difficult and requires domain-
expertise. For example, the U.S. bureau of labor statistics refers to a
math teacher in higher education with the job code “25-1022”.

1.2.2.3 Data integration

After loading and understanding the data, the analyst must inte-
grate it into a single structure for analysis. This process is generally
tedious, as data is often scattered across multiple sources, and may
take various forms (e.g. tables, graphs, text, times series...). In tables,
data integration mostly relies on two operations: joins to extend a
table with new features from other tables, and unions to extend it
with new rows (Figure 1.3)

table unioning and deduplication Table unioning consists
in aggregating together the rows of several tables. While it is in
theory a straightforward operation (no record linkage involved, un-
like joining), many imperfections in the data can hinder this process.
Features may be ordered differently across tables, or labeled with
different names that must be matched (a process known as schema
matching). Similarly, features present in certain tables may be absent
from others, leading to missing values if not removed. Finally, union-
ing may create duplicate records that must be identified and removed
from the data, a process called deduplication (Elmagarmid et al., 2007).

table joins and record linkage When joining two tables to
merge their features, a first challenge is to establish correspondences
between their rows or entities, which is the goal of record linkage
(Elmagarmid et al., 2007; Fellegi and Sunter, 1969). Unlike dedupli-

[ March 5, 2023 at 21:29 – classicthesis version 0.1 ]



1.2 data engineering for data analytics 8

City Population

Rome 2.9M

London 9M

Ville Population

Paris 2.2M

Londres 8.9M

Schema matching
City Population

Rome 2.9M

London 9M

Paris 2.2M

Londres 8.9M

Table union
Deduplication

City Population

Rome 2.9M

London 9M

Name City Salary

John 
Doe

London, UK 53,000$

Alice 
Pearce

London, UK 61,000$

Bob 
Ross

Rome, IT 39,000$

Record linkage
Table join

City Population
Mean 
salary

Rome 2.9M 39,000$

London 9M 57,000$

Feature engineering

Figure 1.3 – Two data assembling operations: Table unions allow to con-
catenate rows from two tables, but may require schema match-
ing or deduplication. Table joins allow to merge the columns of
two tables, but may call for record linkage or feature engineer-
ing.

cation, record linkage focuses on matching instances across, rather
than within tables, but relies on similar techniques. Although this
step is straightforward when clean primary keys exist in the data, they
often exhibit imperfections, as when dealing with data from non-
normalized sources. For instance, there may be mismatches between
the entries of the two tables, e.g. “Paris” and “Paris, FR”. Sometimes,
the entries may be ambiguous: “Paris” can be the capital or France,
or a city in Texas. To avoid wrongfully matching the two, we may
need to look at other attributes, such as the country. Even with clean
entries, the columns used for joining may have different names, e.g.
“City of residence” and “City”.

table joins and feature engineering Besides record linkage,
a more fundamental hurdle to table joining is the irregular nature
of data. Indeed, tabular data requires instances (e.g. cities) to be de-
scribed by a fixed set of features. In practice however, many features
come with a varying number of values across instances. For instance,
we may know the salary of each inhabitant in different cities, but
we cannot directly merge this information as each city comes with
a different number of inhabitants. Instead, the typical practice is to
aggregate the irregular information into a fixed number of hand-
crafted features, e.g. taking the mean, median, and standard deviation
of salaries. Engineering the right features from irregular data is usu-
ally difficult, as it depends on the task at hand and may require
domain-expertise. Further issues arise when dealing with different
data structures (e.g. time series, text, graphs or images) that must be
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transformed into a proper tabular format to enable information merg-
ing. Table joins are closely related to the concept of denormalization
in databases, which aims to integrate data scattered in several tables
into a single one to improve read performance.

1.2.3 Data quality

After organizing the raw data into a single table, the analyst must
identify and fix imperfections that may hinder further analysis. Un-
like data organization, data quality procedures focus on repairing
data values, rather than changing the structure of the data. We give
in this section an overview of common data quality issues, such as
non-standardized, missing, or anomalous data.

1.2.3.1 Data standardization

Data standardization (or normalization) includes any procedure
which converts entries that can have more than one possible rep-
resentation into a standard format. This typically occurs when the
data has been aggregated from sources with different data collection
protocols, e.g. employee data across different employers and coun-
tries.

entity matching Starting at the entity-level, a first form of stan-
dardization is entity matching, which aims to assign a common rep-
resentation for each unique entity of a categorical feature. For in-
stance, employee data may contain various entries denoting the same
job, such as “postdoctoral student” and “postdoc”. Although entity
matching is closely related to deduplication and record linkage, it
is different in that it focuses on matching entries in a feature (e.g. job
titles), rather than whole instances (e.g. employees), which often re-
quires to leverage multiple attributes (not only the job title, but also
the hiring date or the name).

feature standardization At the feature-level, standardization
aims to represent all the values of a feature with the same format.
For example, hiring dates in our employee dataset may be formatted
in various ways: “25 Mar 2020”, “25/03/20”, “2020-03-25”, etc... This
can often be solved via regular expressions that extract and reorga-
nize relevant parts in the entries, but require time and skill from the
analyst. Another common feature standardization step is to ensure
values are in the same unit, e.g. converting employee salaries in dol-
lars to euros.

detecting protocol changes In many cases, data analysts are
directly provided with a single dataset aggregated from multiple ta-
bles, with no knowledge of the original data sources. Yet this infor-
mation is useful to data standardization, as we want to look for vari-
ations across, rather than within sources. For instance, missing values
could be encoded with a “0” or a “NaN” depending on the source.
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With only the aggregated data, we may wrongly think that these val-
ues carry different meanings. Methods detecting sudden changes in
the data (e.g. no “NaN” values before and no “0” after a certain point)
are thus helpful to retrieve the original sources and avoid this confu-
sion.

In the end, the goal of data standardization is to obtain a table
where all entities are represented uniquely, and all features follow a
standard format.

1.2.3.2 Missing data

Missing values, emerging either from the raw data or as a side-
product of data organization (e.g. an incomplete table join), are chal-
lenging for machine-learning models which require complete data.
To address this, an analyst must typically go through the following
steps:

— Detection: How are missing values encoded in the data? While
entries such as “NULL”, “NaN” or “NA” are relatively easy to
identify, missing values can also be disguised as regular values,
e.g. a “-1” in a feature describing ages.

— Understanding: What is the missingness mechanism generat-
ing the data? The seminal work from Little and D. B. Ru-
bin, 1987 identifies three missingness patterns: 1) Missing Com-
pletely At Random (MCAR), 2) Missing At Random (MAR) and
3) Missing Not At Random (MNAR), based on whether miss-
ingness depends on observed or/and unobserved features, or
none.

— Handling: How should we deal with missing values? Standard
methods either remove or impute them with plausible values
(Van Buuren and Groothuis-Oudshoorn, 2011). However, re-
cent works suggest that flexible-enough supervised models can
directly learn with missing values without imputation (Josse et
al., 2020; Le Morvan et al., 2020).

1.2.3.3 Anomalies

Data is said anomalous when it does not follow a certain expected
“normal” behavior. Anomalies can arise from a myriad of reasons,
such as errors in the data collection pipeline or malicious activities
(e.g. fraud). They are generally harder to detect than missing values,
as they are not explicitly encoded in the data, and can be of various
nature: syntactical (e.g. a value whose type is different from other
values), semantical (e.g. a negative salary) or statistical (e.g. a value
whose probability is too low given the feature distribution). In some
cases, we may have to look at several features to identify anomalous
values, such as a hiring date that is inconsistent with the age of an
employee.

Anomalies are then typically handled through removal or imputa-
tion. When imputing, finding a meaningful value for replacement
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can be difficult, as the mechanisms leading to anomalies are often
complex. For example, fixing a typo in a zip code requires to look at
the reported city or state to ensure there are no inconsistencies. How-
ever, as with missing values, we may be able to learn directly over
anomalies with flexible-enough models.

We give in Table 1.1 a summary of all the data engineering issues
described above. In the following section, we precise the focus and
objective of this thesis: facilitating data assembling over relational
data via entity embeddings.

Table 1.1 – Summary of data engineering problems (adapted from
Nazabal et al., 2020). Highlighted issues are those that we
tackle in this thesis.

Data Organization
Data Parsing What is the original data format? How can it be read properly?

Data Dictionary

Table description Are there several tables in the data?

What are they about? What is their size?

Feature description What is the type and meaning of each feature?

Value description What is the meaning of feature values?

What is their range and unit? Are there unexpected values?

Data Integration

Table joining How do we detect common entities across tables?

How do we aggregate irregular data into a fixed set of features?

Table unioning Are the features consistent across tables?

How do we detect duplicate instances in the final table?

Data Quality
Data standardization

Entity matching Do some values in a feature denote the same concept?

How do we group them under a common representation?

Feature standardization Are feature values encoded in different formats or units?

How do we represent them with a standard format?

Protocol changes Is the data assembled from different sources?

Do the properties of the data change while exploring it sequentially?

Missing data

Detection Which values are used to represent missing data?

Understanding What it the underlying mechanism: MCAR, MAR or MNAR?

Handling Should we remove, impute, or leave missing values as such?

Anomalies

Detection How do we identify anomalous entries in the data?

Handling Should we remove, impute, or leave anomalous values as such?
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1.3 embedding models for relational data analytics

Our objective in this thesis is to leverage embedding models to fa-
cilitate data analysis over relational data. In the following sections,
we first precise what relational data is and the data engineering chal-
lenges it raises that we aim to tackle. We then briefly introduce statis-
tical relational learning, a parallel strand of research for learning over
relational data, and explain why we depart from it. Finally, we expose
how we can leverage entity embeddings to facilitate data assembling
over relational data.

1.3.1 Data assembling for relational data analysis

1.3.1.1 Relational versus propositional data

We first highlight the main differences between relational and propo-
sitional data, as we use the former concept throughout this thesis. In
the database literature, propositional data consists of a single table
describing entities of a certain type (e.g. cities) with the same fea-
tures or attributes. It is the standard input to most statistical learning
methods.

On the other hand, relational data describe entities of different
types and how they are related to each other. A good example are
relational databases, which use multiple tables to represent different
entities and their relationships, e.g a table for cities, another for states,
and a third table linking cities to the states they belong to. Another
common representation are multi-relational graphs 4 (or knowledge
graphs), which consist of a set of triples (h, r, t). Each triple indicates
a relationship r between entities (h, t), e.g. (Paris, locatedIn, France).

An asset of relational data is that it allows to inject more infor-
mation about entities via their relationships. For example, to better
predict housing prices in cities we may want to use information about
their states, taken from related tables or large knowledge graphs such
as YAGO (Mahdisoltani et al., 2013; Pellissier Tanon et al., 2020) and
DBPedia (Lehmann et al., 2015). In fact, most datasets come as rela-
tional data.

1.3.1.2 Data assembling is key to successful analyses

Although relational data contain rich information, it must first be
assembled into a single table for analysis, a process sometimes known
as propositionalization (Lachiche, 2017). In tables, propositionalization
relies on two operations: table joins and unions (Section 1.2.2.3).

Our goal here is to facilitate such data assembling because it is
often a time-consuming, yet crucial step for data analysis: by extend-
ing the pool of information available to downstream analyses, data

4. A common distinction between relational databases and knowledge graphs
lies in the closed versus open world assumption. In relational databases, every missing
fact is supposed to be false (closed world), whereas it is considered potentially true
in knowledge graphs (open world), due to their incompleteness.
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assembling is essential to the validity of their results. For exam-
ple, unioning tables from different sources (which may exhibit biases
when taken alone) leads to more diverse data from which we can
draw more general conclusions. Similarly, joining new features to
a table allows for more precise analyses, e.g. improving prediction
performance, or measuring the influence of a specific feature on the
target variable.

For all these reasons, we focus on relational data assembling, and
identify below two common problems that we aim to address.

1.3.1.3 Problem 1: entity matching in table unions

The first data assembling problem we consider is entity matching,
which typically occurs after a table union. Although table unioning is
not difficult in itself (as long as features are consistent across tables), it
often leads to data standardization issues when the tables come from
different sources (Section 1.2.3.1). Among them, entity matching is
generally the most tedious one, as it involves much more operations
(e.g. one per entity) than those needed at the feature-level. Our goal
is thus to avoid entity matching when doing data analysis over non-
normalized sources, which is the focus of Part 1.

1.3.1.4 Problem 2: feature engineering for table joins

The second problem we consider is feature engineering across re-
lational data to enable table joins. Indeed, joining several tables
into a single one is often difficult due to the irregular nature of the
data. For example a certain attribute (e.g. the population) may not
be available for all cities. A characteristic of relational data is also
the presence of one-to-many and many-to-many relationships, e.g.
a city linked to all the people that live in. Joining features through
such complex relationships calls for tedious feature engineering (Fig-
ure 1.2.2.3), which we address in Part 2.

1.3.2 Beyond feature vectors: statistical relational learning

While most statistical learning models expect data in the form of
points in a high-dimensional space, the field of statistical relational
learning aims to learn over complex relational structures directly. We
briefly introduce here this parallel strand of research, and explain
why we depart from it.

1.3.2.1 Learning with logic

One of the first methods for learning over relational data is induc-
tive logic programming (Cropper et al., 2022; Muggleton, 1991). Given
background knowledge (i.e. known facts about entities) and a set of
training examples, it learns a logic program (i.e. a combination of log-
ical rules) that captures a certain relationship between entities. For
instance, a model trained to determine whether a person A is the
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daughter of person B (given the relations PARENT and WOMAN as
background knowledge) will learn the following logic program:

PARENT(B,A)∧WOMAN(B) =⇒ DAUGHTER(A,B)

Compared to most machine-learning approaches, inductive logic pro-
gramming offers some attractive features. The expressiveness of logic
programs, alongside the possibility for the analyst to easily inject
relational inductive biases (e.g. constraints) as background knowl-
edge allows them to model complex relations that statistical methods
would struggle to learn from few examples. In addition, the learned
logic programs can be easily understood by humans. Unlike statisti-
cal models however, inductive logic programming cannot deal with
uncertainty arising from noise or missing information in the data.
Besides, it quickly becomes intractable on large datasets, due to its
combinatorial nature.

1.3.2.2 Dealing with uncertainty

To bridge the expressiveness of relational logic (as in inductive logic
programming) with probabilistic modeling (as in classic statistical
learning), the field of statistical relational learning has emerged. It
comprises many approaches which typically adopt a graph point of
view or a probabilistic version of logic. (Kimmig et al., 2012; Koller
et al., 2007; Sutton and McCallum, 2012).

A good example are Markov Logic Networks (Richardson and Domin-
gos, 2006), which aim to describe observed data through a set of
logical rules. Unlike traditional logic though, these rules act as soft
constraints on the set of possible observations, rather than hard con-
straints: an observation that does not follow a logic rule is not impos-
sible, but simply less likely. Each logical rule is associated to a weight
which encodes the strength of the soft constraint, and is learned on
the observed data. For instance, to describe cancer occurrence in a
population, we may use the rule SMOKER(X) =⇒ CANCER(X)

with a high weight to encode the fact that smokers are more likely to
develop cancer.

1.3.2.3 Limitations of relational models

Although these statistical models can be readily formulated on rela-
tional data, their biggest limitation is the computational complexity
of inference, which is often non-polynomial with regards to the size
of the database (Khosravi and Bina, 2010; Suciu et al., 2011). To avoid
this, approximate inference is generally performed, for instance via
Markov chain Monte Carlo methods in Markov Logic Networks. In
addition, statistical relational learning tools typically require tai-
lored models, whereas standard and efficient statistical models can
be readily used when provided with a tabular representation of the
relational data.

We thus depart from the statistical relational learning literature,
and instead aim to learn vectorial representations from relational
data, to serve as input to machine-learning models.

[ March 5, 2023 at 21:29 – classicthesis version 0.1 ]



1.3 embedding models for relational data analytics 15

1.3.3 Towards entity embeddings for relational data analytics

We aim in this thesis to show that vectorial representations (a.k.a.
embeddings) of entities can facilitate relational data analysis by al-
leviating the need for tedious data assembling. In the following
paragraphs, we detail how entity embedding models can be helpful
for the two data assembling problems we identified: entity matching
across non-normalized sources, and feature engineering over relational
data.

1.3.3.1 Embeddings to replace entity matching

When dealing with data assembled from non-normalized sources,
the typical practice is to match entries denoting the same concept. In-
stead, we argue that simply exposing similarities between entries
is often enough for analysis: given a vector representation for each
entry, we want those denoting the same entity to be close, but not nec-
essarily identical (as in exact matching). An analytical model can then
leverage these similarities to implicitly account for matching. For in-
stance, a nearest-neighbor model queried to estimate the salary of a
“postdoc” will use the salary of the closest category in the data (e.g. a
“postdoctoral student”) without explicit matching.

The main challenge is then to obtain “good” vector representations
that capture well similarities between entries. For this, embedding
models seem to be a promising solution. In natural language pro-
cessing, word embeddings which capture semantic or morphological
similarities (i.e. two words with similar meanings or spellings have
close vector representations) have led to breakthroughs in text anal-
yses (Bojanowski et al., 2016; Mikolov et al., 2013a). Following this
trend, we study in Part 1 whether embedding models are helpful for
data analysis over non-normalized sources, and show that they can
alleviate the need for manual entity matching.

1.3.3.2 Embeddings to join information across relational data

As we have seen, joining information over relational data often re-
quires difficult feature engineering. Most existing methods to auto-
mate this process greedily explore tables to generate and join many
features, as in a systematic denormalization (Kanter and Veeramacha-
neni, 2015; Lam et al., 2017). Yet their combinatorial nature raises
scalability issues: the number of created features quickly explodes on
large databases.

Instead, embedding models can be directly trained on such unassem-
bled data to provide compact, low-dimensional feature vectors for
each entity. Indeed, they typically input data in a format simple
and expressive enough to integrate information from various sources.
For example, word embedding models input pairs of words labeled
positively if they co-occur in a sentence, and negatively otherwise.
We can adapt this notion of co-occurrence to tabular data (e.g. two
entities co-occur if they appear in the same row) to easily integrate
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irregular information scattered across tables into a single list of en-
tity pairs. Entity embeddings can then be trained in a self-supervised
way to implicitly capture the information present in the data. Simi-
larly, knowledge graphs use an entity-attribute-value representation
to conveniently store information from heterogeneous sources, based
on triples (h, r, t) indicating relationships between entities.

In Part 2, we investigate whether knowledge graph embedding
models can be used to automatically join information across rela-
tional data, and show that they are efficient and scalable feature ex-
tractors.
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Part i

D ATA A N A LY T I C S A C R O S S
N O N - N O R M A L I Z E D S O U R C E S

Summary

Data analysis is increasingly performed over data assembled from
uncontrolled sources, facing inconsistencies that call for data integra-
tion. In this part (based on our study from Cvetkov-Iliev et al., 2022a),
we specifically consider the problem of entity matching, which strives
to assign a unique representation to entries that denote the same un-
derlying entity. We first present in Chapter 2 the typical practice
for analytics over non-normalized sources: creating “clean” data via
entity matching, and querying it to estimate analytical quantities of
interest. To illustrate this approach, we also introduce an experimen-
tal data analysis setup: a socio-economic study of salaries across 14

employee databases. We then detail in Chapter 3 our proposal: rather
than relying on tedious entity matching, leveraging machine-learning
models trained on “good” vector representations (i.e. embeddings)
of entries allows to estimate analytical quantities of interest without
cleaning (see Figure 3.1 for an overview of the analytical pipeline).
Finally, we evaluate in Chapter 4 whether analyses with less cleaning
are trustworthy. We answer this question on our study of employee
salaries, and compare the approaches based on machine learning and
embeddings to manual entity matching. It reveals that the former im-
proves results validity (i.e. smaller estimation errors) more than man-
ual cleaning, with considerably less human labor. While machine
learning is often combined with data management for the purpose
of cleaning, our study suggests that using it directly for analysis is
beneficial because it captures ambiguities hard to represent during
curation.
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2
S TA N D A R D P R A C T I C E : C L E A N I N G F O R
A N A LY T I C S A C R O S S S O U R C E S

2.1 introduction

We introduce in this section the subject of this first part: data anal-
ysis over non-normalized sources, which is based on the study we
conducted in Cvetkov-Iliev et al., 2022a. We start by presenting the
data integration problems arising from non-normalized data, with
a focus on entity matching. We then state our proposal: coupling
advanced statistical models with entity embeddings to answer ana-
lytical questions without cleaning; and also present our experimental
analysis setup for evaluation: a study of salaries across 14 employee
databases. Finally, we give an outline of the different chapters of this
part.

2.1.1 Standard analytical practices call for tedious entity matching

2.1.1.1 Data standardization issues in non-normalized data

Data analysis is increasingly performed across non-normalized sources,
facing data standardization challenges at several levels (Section 1.2.3.1).
Correspondences are first needed at the feature or schema level: simi-
lar columns may have different names or formats across tables, and in-
formation may be split differently across columns (Doan and Halevy,
2005). Bridging such mismatches is known as schema matching, and is
often required as a data-preparation step. However, it tends to bur-
den less the human operator as the number of operations to perform
is relatively low, e.g. a few per feature. At the entry level, a much
more challenging issue is entity matching, where entries representing
the same concept are written differently across sources, e.g. “pro-
fessor”, “prof”, or “professeur”. Indeed, the number of matches to
check (easily hundreds or even thousands) is generally much higher
than that of features. We thus focus on entity matching in the re-
mainder, though there are many other aspects to data quality (see
Section 1.2, Ilyas and Chu, 2019; Nazabal et al., 2020).

2.1.1.2 Entity matching: what is it and why is it needed?

Entity matching aims to assign a common representation to all en-
tries of a feature that denote the same underlying entity (see Fig-
ure 2.1). Importantly, this cleaning procedure is crucial to the validity
of data analyses, as standard analytic methodologies still heavily
rely on entity matching. To illustrate this, we list here a few ex-
amples from the literature: estimating product prices from web of-
fers requires to match those referring to the same product (Agrawal

[ March 5, 2023 at 21:29 – classicthesis version 0.1 ]



2.1 introduction 19

and Ieong, 2012); studying the influence of climate warming on plant
species must overcome variability in plant names (Bjorkman et al.,
2018; Nazabal et al., 2020); and early detection of acute kidney in-
juries faces the heterogeneous vocabulary of clinical notes (Li et al.,
2018).

2.1.1.3 Entity matching is difficult, can we do without?

Even though this curation process can be partly automated (Christophides
et al., 2015; Zhao and He, 2019), and despite the availability of ded-
icated data-integration softwares (Kandel et al., 2011; Stonebraker et
al., 2013; Verborgh and De Wilde, 2013), entity matching remains a
difficult task as it often involves domain expertise or faces the lack
of clear correspondences in entities across sources. We thus aim to
answer the following question: is such matching necessary to the
validity of the analysis, or can more complex analytical pipelines
do without?

2.1.1.4 Our experimental data analysis setup

To answer this question, we take as experimental setup a socio-
economic analysis of salaries across 14 employee databases. We
draw examples of analytical questions from studies of the determi-
nants of salary, in data journalism (Texas Tribune, 2021) or academia
(Blau and Kahn, 2017; Ciscel and Carroll, 1980; Xiao, 2002). In partic-
ular, we aim to answer three quantitative questions:

1. For a given job, how does salary evolve with experience?

2. For a given job, what is the 0.75-quantile of salaries?

3. What is the typical male-female pay gap?

Answering these questions from data assembled across different
employers must overcome the lack of correspondences in job titles:
as illustrated on Figure 2.1, the same job title appears with multiple
variants, such as senior research associate and sr research assoc.

2.1.2 Our claim: advanced statistical models can answer analytical ques-
tions without cleaning

In this part, we show that applying advanced statistical techniques
directly to non-normalized data can avoid labor-intensive data cu-

Figure 2.1 – Entity matching across two employee databases.
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Figure 2.2 – An analysis of salary as a function of experience for differ-
ent job types, considering variants of administrative assistant
and project manager, computed by matching & averaging, or em-
bedding & learning. Thick magenta lines are the most natural
query.

ration for many analytical questions. On our socio-economic study
of salaries across 14 employee databases, we benchmark whether re-
lying more on machine learning and less on manual data cleaning
compromises or not the validity of the analysis. To answer this im-
portant question, we formalize how many analyses boil down to es-
timating statistical quantities, and use various experiments that give
an unbiased measure of the corresponding estimation error.

The quantities needed for the analytical questions can be estimated
with machine-learning models applied to continuous embeddings of
entries that represent ambiguities. A suitably trained model can be
directly queried to give, for instance, the evolution of salary with ex-
perience for a given job, leading to a less noisy result than standard
techniques after best-effort manual cleaning (see Figure 2.2). Machine
learning is already increasingly used in data integration to create
more uniform data warehouses (Dong and Rekatsinas, 2018; Stone-
braker and Ilyas, 2018) or to clean their entries (Ilyas and Chu, 2019;
Krishnan et al., 2016). Instead, our study applies it directly to the
analytical question, as this can be easier than curating the data for
fundamental reasons. First, the analytic task provides supervision
(Berti-Equille, 2019; Krishnan et al., 2017, 2015), while cleaning needs
examples of curated data. Second, representing ambiguities in the
analysis often leads to more accurate results.

2.1.3 Chapters outline

We first present in Chapter 2 the standard practice for analytics
over non-normalized entries: creating “clean” data via entity match-
ing, and querying it to estimate analytical quantities of interest (Sec-
tion 2.2). To illustrate this approach, we also introduce our experi-
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mental data analysis setup: a socio-economic study of salaries across
14 employee databases. We then detail in Chapter 3 our proposal, and
show how many data-science questions can be formulated in terms
of machine learning on embeddings of entries (see Figure 3.1 for a
overview). Finally, we study in Chapter 4 the validity of the results:
on an analysis of wages across 14 data sources, we compare manual
data cleaning to a simple machine-learning approach using embed-
dings of entries. Qualitatively and quantitatively, analyzing the non-
normalized data gives better results. Finally, we discuss perspectives
on adapting data-analysis practices to rely less on cleaning.

2.2 the classic view : cleaning for analytics across sources

We introduce in this section the classic view for data analysis across
sources: cleaning the data and querying it to estimate analytical
quantities of interest. Starting with cleaning, we explain why and
how entity matching is done in practice, from manual to more sophis-
ticated methods. We then present the standard estimation technique:
“matching & averaging”, and its limitations.

2.2.1 Entity matching: why and how?

2.2.1.1 Answering conditional questions on non-normalized categories re-
quires matching

Fundamentally, the motivation to unite data sources is to establish
a more general result: in our example analysis, salaries or the male-
female pay gap may vary across employers. Yet, whether an analysis
across sources requires entity matching or not depends on the ana-
lytic question at hand.

When answering questions conditionally to a non-normalized cat-
egory, i.e. analyzing one quantity –such as the salary– while keeping
another –the job title– constant, matching entries to uncover the cate-
gory of interest is necessary to standard analytical procedures (Cerda
et al., 2018). Conversely, computing marginal quantities, such as the
overall distribution of salary, does not require entity matching as it
relies on aggregates of all the data (assuming that there are no dupli-
cates across the sources).

2.2.1.2 Entity matching procedures

Entity matching strives to match entries of a feature denoting the
same entity. Closely related problems include the deduplication of
duplicate records within a table (Elmagarmid et al., 2007), or record
linkage, matching records describing the same entity across two tables
(Winkler, 1999). Entity matching techniques traditionally rely on an
appropriate string similarity metric (e.g. Levensthein, Jaro-Winkler,
n-grams...) and a threshold to assign entries to the same entity. The
issue is that both the similarity and threshold must be tailored to do-
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main specificities and the resulting matches must often be manually
reviewed. The process is thus labor intensive.

Automating the match of entities is challenging because it is an
unsupervised-learning problem (Fellegi and Sunter, 1969), unless there
are known matches for supervision (Bilenko and Mooney, 2003; Mc-
Callum et al., 2005; Mudgal et al., 2018). Such matches must typically
be constructed manually by a user, though active learning can reduce
human intervention (Krishnan et al., 2016; Sarawagi and Bhamidipaty,
2002). Dedicated data-integration softwares, such as OpenRefine (Ver-
borgh and De Wilde, 2013), facilitate this process with a user interface.
The software searches for potential matches and enables users to tune
search parameters and match suggested entries in a semi-automated
way.

Automation tools can use techniques capturing natural language
semantics, which shares with entity matching the challenge of relat-
ing multiple forms that denote the same things. For instance, nat-
ural language processing tools such as fastText (Bojanowski et al.,
2017) provide word embeddings resilient to morphological variations.
Embeddings have led to many recent progresses in entity-matching
pipelines (Ebraheem et al., 2018; Kasai et al., 2019; Mudgal et al., 2018;
Zhao and He, 2019).

2.2.2 The standard analytical practice: “matching and averaging”

2.2.2.1 Matching and averaging

In general, analytic questions can be formalized as estimating a
quantity y for a population or group of instances who share a set of
attributes X, for instance the typical salary of a project manager with 3

years of experience. To that end, the standard procedure consists in
matching & averaging:

1. A query on X to match and select the relevant instances.

2. A procedure (typically a form of averaging) to aggregate the
results and estimate y.

Even when the entries in the data are normalized, a successful anal-
ysis may require to match them with the vocabulary used by the
analyst: for instance in some data the correct query for “project man-
ager” may be “mgr project” (Figure 2.2).

2.2.2.2 Beyond matching: leveraging similar entities for analysis

The underlying problem behind matching & averaging is that of
statistical estimation: computing the quantity that represents best the
complete population from the instances at hand. If the entity match-
ing is valid, matching & averaging estimates are unbiased from a sta-
tistical point of view. Yet they may exhibit high variance if the data
contain a small number of representatives for the category of interest.

A paradox of statistics is that the most accurate way of estimating
the mean of a population from a small sample may not be the sam-
ple average, but biasing estimates with other sources of information
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2.3 application to our example study of salaries 23

Table 2.1 – A few example rows of the employee data.

Job Title Hiring Date Sex Ethnicity Salary ($)

Police Officer 17/03/2005 M White 85 000

Security Manager 24/06/2017 F Asian 70 000

Energy Analyst 04/11/1998 F Black 105 000

Librarian 11/09/2011 M Hispanic 50 000

(see Stein’s paradox, Efron and Morris, 1977). For instance, estimat-
ing the typical salary of an associate professor may benefit from data
from similar populations: professor, lecturer. Aggregating information
across similar entities is related to the notion of semantic queries in
databases (Bordawekar and Shmueli, 2017), as opposed to exact value
matching, used in matching & averaging.

2.3 application to our example study of salaries

We illustrate here the analytical procedures described in the previ-
ous section on our example study of salaries (Section 2.1.1.4). After
briefly introducing the dataset, we detail how we performed entity
matching on the non-normalized job titles. We then show how the
analytical questions we consider can be seen as estimating certain
statistical quantities, and provide the corresponding matching & av-
eraging estimators.

2.3.1 The data: employee salaries across 14 employers

To answer our questions on salary, we consider data from a study
of salaries in Texas state institutions 1. The data consist of the union of
14 tables from different employers, and describe the salaries, job titles,
hiring dates, genders and ethnicities of 160 000 employees (Table 2.1).
The Job Title information is particularly challenging: without nor-
malization there are about 14 000 different job positions.

2.3.2 Matching job titles for analysis

We performed manual entity matching on the job titles using Open-
Refine. The first step was to clean common abbreviations as they are
the main hurdle to entity matching: string metrics struggle to capture
their similarities. Typical examples included sr/senior, asst/assistant
or mgr/manager, which we cleaned using complex regular expres-
sions. An issue was that some abbreviations had multiple meanings.
For instance tech was short for either technology, technician, or tech-
nical depending on the context. Similarly, some abbreviations had
complex meanings, e.g. CMC for Chemical, Manufacturing and Control.
Such manual cleaning is thus limited by the domain expertise of the
operator.

1. Data available at https://dx.doi.org/10.21227/wfjs-ya22.
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We then used OpenRefine to search and manually merge variants
across sources. Around 1000 job titles were paired in the process,
which took about 3 days (including the abbreviation cleaning). We
believe that a more thorough entity matching, especially on rare job
titles, could have been performed, but would have required intensive
human labor to bring minor improvements.

2.3.3 Analytic question 1: salary evolution with experience

Our goal here is to estimate the mean salary as a function of work
experience for a given job, which amounts to estimating the condi-
tional expectation τ = E[Salary | Job, Experience]. For this, the match-
ing & averaging procedure forms groups G(j, e) of employees with
job j and experience level e, and averages employee salaries yi in
each group.

τ̂matching(j, e) =
1

|G(j, e)|

∑
1⩽i⩽n
i∈G(j,e)

yi (2.1)

2.3.4 Analytic question 2: salary quantiles

We are also interested in the distribution of salaries among employ-
ees with job j. More precisely, we aim to estimate the 0.75-quantile, i.e.
the salary τ(j) so that 75% of employees with job j earn less than τ(j).
To that end, matching & averaging groups employees by their jobs,
and then computes the empirical 0.75-quantile of salaries τ̂matching(j)

for each group.

2.3.5 Analytic question 3: causal effect of gender on salary

Many of the advanced analyses and visualizations of rich data
sources pertain to understanding causes and effects. For instance,
when studying salaries, measuring and understanding the causes of
gender gap is a long-running question (Blau and Kahn, 2017; Blinder,
1973; Oaxaca, 1973).

Counterfactual analysis provides a good framework to address quan-
titatively the question of gender pay gap. A counterfactual is a thought
experiment measuring the effect on the outcome of interest —the
salary yi— of changing only the feature of interest Wi —here the
sex— for an individual i. Borrowing from clinical trials, Wi is called
the “treatment” in the literature. The outcome yi can take two poten-
tial values depending on Wi: yi(0) = yi(Wi = 0) or yi(1) = yi(Wi =

1) (1 for a man, 0 for a woman), though for each individual only one
of these is observed in the data.

The analytical quantity of interest is the typical gender pay gap,
known as the average treatment effect (ATE) τ = E[y(1) − y(0)]: the
average difference in outcome for the same individual under scenario
Wi = 1 and Wi = 0, i.e. that differ only by their sex (Imbens and D. B.
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Rubin, 2015; D. Rubin, 1974). If we had access to yi(1) and yi(0) for
each employee i ∈ {1, 2, ..., n}, we could easily estimate the ATE:

τ̂ =
1

n

n∑
i=1

yi(1) − yi(0) (2.2)

In practice though, we either observe yi = yi(1) or yi = yi(0)

in the data, but not both at the same time. In a randomized trial,
where the treatment W is assigned independently of the outcome
y, we could simply subtract the average salary of men from that of
women: E[y|W = 1] − E[y|W = 0] = τ̂. However, this is not appli-
cable in general: confounding factors could make the two distributions
(men and women salaries) not directly comparable and bias the re-
sults. For instance, due to maternity leave, women may have less
work experience than men in general, and thus lower wages as a
whole. Taking the difference in mean salaries would thus indicate an
ATE > 0, even though wages between men and women with the same
experience level could be identical (ATE = 0). To account for such
confounding factors and isolate the treatment effect, the potential out-
come framework (Table 2.2) uses covariates, extra information X on
each individual, such as the job title or the experience level, allowing
us to contrast salaries for men and women with the same covariates.

To infer the unobserved value yunobs
i = yi(1) or yi(0) in Equa-

tion 2.2, we can then leverage data from employees with similar pro-
files, i.e. covariates, but of opposite sex. For this, matching & aver-
aging considers the set Oi of employees with the same covariates as
employee i but of opposite sex (which requires matched job titles),
and take their average salary to estimate yunobs

i . Note however that
this is not always possible: some employees may have no counterpart
of the opposite sex in the data. In practice, we thus consider only the
set M of employees for which Oi is not empty, which may bias the
ATE estimate or increase its variance:

τ̂matching =
1

|M|

∑
i∈M

Wi(yi − ŷi
unobs) + (1−Wi)(ŷi

unobs −yi) (2.3)

with ŷi
unobs = 1

|Oi|

∑
k∈Oi

yk

Table 2.2 – Illustration of the potential outcome framework. The data con-
tains an observation of a male white firefighter with 15 years of
experience, but not a matching female employee; likewise with
an hispanic female post-doc with 2 years of experience. The chal-
lenge is to interpolate the missing data.

Covariates X Outcome

Job Title Experience Ethnicity

Treatment

W (sex) y(0) y(1)

Firefighter 15 White 1 NA 75000

Post-doc 2 Hispanic 0 60000 NA
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3
A N S W E R I N G A N A LY T I C A L Q U E S T I O N S W I T H
M A C H I N E L E A R N I N G

We describe in this chapter how machine learning models, when
trained on “good” vector representations of the entries, can answer
analytical questions without cleaning (see Figure 3.1 for an overview
of the pipeline). First, we show that these models can be used to esti-
mate various statistical quantities (Section 3.1). We then explain how
embeddings capturing relevant similarities between entries can re-
place matching, and detail our practical implementation (Section 3.2).
Finally, we briefly conclude on the potential of machine learning for
data analysis and integration (Section 3.3).

3.1 machine learning to estimate statistical quanti-
ties

3.1.1 Salary evolution and quantiles

As seen in section Section 2.3.3, matching & averaging methods
study the evolution of salary with experience by grouping employees
by job and experience level, and computing the mean salary in each
group. This quantity is an estimate of the conditional expectation
τ = E[Salary | Job, Experience].

Instead of averaging on groups of employees, a machine-learning
model trained to predict the salary given the job and experience level
can estimate this quantity. Indeed, modeling the salary as a function
fθ(Job, Experience) gives a consistent 1 estimate of the conditional ex-
pectation E[Salary | Job, Experience] if model parameters θ are opti-
mized on the data to minimize the mean squared error on the salary
(Bishop, 2006, section 1.5.5):

θ̂ = arg min
θ

(
1

n

n∑
i=1

(yi − fθ(ji, ei))
2

)
(3.1)

where yi, ji and ei are the salary, job title and experience level of
the ith employee. Once trained, we can directly query the model to
estimate the desired quantity: τ̂ learning(j, e) = fθ̂(j, e).

More generally, a model can be trained to estimate different sta-
tistical quantities by choosing the measure of error (loss) that it
minimizes (Gneiting, 2011). For instance, a model fθ(Job) trained
with a quantile loss estimates a quantile of the salary distribution for
a given job (Koenker and Bassett Jr, 1978):

1. A consistent statistical procedure converges to the population values with in-
creasing data size.

[ March 5, 2023 at 21:29 – classicthesis version 0.1 ]



3.1 machine learning to estimate statistical quantities 27

Job Title Experience (years) Salary

mgr project 2 100,000$

2128 project manager 5 110,000$

firefighter 10 75,000$

Q: How does the salary of a project manager evolve with experience ?

Job Title Experience (years) Salary

0.1   0.7  …  0.45 2 100,000$

0.1   0.65  …  0.5 5 110,000$

0.9   -0.3  …  0.1 10 75,000$

Machine-learning 
model

1) Represent job titles by embeddings capturing similarities

2) Train a machine-learning model to predict 
salaries from embeddings and experience

mgr project
2128 project manager

firefighter

3) Query the trained model to estimate the salary of a project 
manager at different experience levels, without matching job titles

project manager

4) With embeddings, the model implicitly matches
job titles to provide more accurate estimates

Job Title: “project manager”
Experience: 1, 2, … , 30

Non-normalized job titles

Figure 3.1 – Overview of our “embedding & learning” pipeline to answer
analytical questions on non-normalized data.

θ̂ = arg min
θ

(
1

n

n∑
i=1

ρα(yi − fθ(ji))

)
(3.2)

where ρα(x) =

{
−x (1−α), if x ⩽ 0

α x, otherwise
and α = 0.75

3.1.2 Pay gap across sex: counterfactual analysis

3.1.2.1 Outcome regression methods

To estimate the average treatment effect (ATE), modern causal in-
ference techniques often rely on estimates of the outcome given the
covariates and the treatment E[y|X,W], to be used in place of the un-
observed value yunobs

i = yi(1) or yi(0) in Equation 2.2. Instead of
estimating this quantity with matching & averaging, we can use a
machine-learning model f(y)θ trained to predict yi from the employee
covariates Xi with a mean squared error. The model outputs can then
be plugged in Equation 2.2 to estimate the ATE:

τ̂ =
1

n

n∑
i=1

[
Wi(yi − f

(y)

θ̂
(Xi,W = 0)) (3.3)

+ (1−Wi)(f
(y)

θ̂
(Xi,W = 1) − yi)

]
3.1.2.2 Inverse propensity weighting

Other approaches are based on inverse propensity weighting. They
rely on estimates of the propensity score e(Xi) = P(Wi = 1|Xi), i.e.
the probability of an individual with covariates Xi to be a man. For
this, we can use machine-learning models f

(w)
θ , when they are cali-

brated (Niculescu-Mizil and Caruana, 2005), to predict the gender of
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an employee from its covariates. We can then estimate the propensity
score f

(w)

θ̂
(Xi) = ê(Xi), and the ATE:

τ̂ =
1

n

n∑
i=1

Wi yi

ê(Xi)
−

(1−Wi)yi

1− ê(Xi)
(3.4)

3.1.2.3 Doubly-robust approaches

Finally, powerful causal-inference tools combine both estimates for
more robustness (Funk et al., 2011). State-of-the-art approaches al-
ready rely on machine-learning models to adapt to biases and noise
in the input data (Blakely et al., 2019; Chernozhukov et al., 2018).

τ̂ learning =
1

n

n∑
i=1

[
ŷi,1 − ŷi,0 (3.5)

+
Wi

êi
(yi − ŷi,1) −

1−Wi

1− êi
(yi − ŷi,0)

]
with salary estimates ŷi,0/1 = f

(y)

θ̂
(Xi,W = 0/1) and propensity-

score estimates êi = f
(w)

θ̂
(Xi).

A technical subtlety is that we use a cross-fitting procedure to esti-
mate salaries and propensity-scores (Chernozhukov et al., 2018). In-
stead of fitting machine-learning models on all the data and then
taking models output as estimates, we split samples in K folds and
obtain estimates for each fold using models fitted on the K− 1 remain-
ing folds. The appendix (Section A.1.2) details the exact models used
in our experiments to estimate the average treatment effect.

3.2 embeddings to replace entity matching

3.2.1 Embeddings capturing similarities implicitly account for matching

Unlike averaging, casting the analytic question into a machine-
learning task does not require matching. Rather than viewing each
job title j as a discrete category, we can represent it by a vector j ∈ Rp,
that will serve as features to train the machine-learning model fθ.

The crucial point here is that these vectors should capture simi-
larities between entries: related job titles (e.g. administrative assistant
and administrative asst) should have close representations. This allows
the machine-learning model to leverage salaries from related jobs to
refine its estimates and implicitly account for matching.

3.2.2 Implementation details

To illustrate our approach in a way that is not specific to our study
of salaries, but rather that could be applied in many applications,
we choose in our experiments simple and widely available machine-
learning tools.
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For the embeddings, we leverage pretrained fastText embeddings
(Bojanowski et al., 2017), which readily provide vector representa-
tions for strings that capture semantic and morphological similari-
ties. Other approaches to encode string similarities into vectors could
be used as well (Cerda and Varoquaux, 2019; Cerda et al., 2018). To
estimate the analytic quantities of interest, a wide variety of machine-
learning models can be used. For our experiments we rely on gradi-
ent boosted tree models from scikit-learn (Pedregosa et al., 2011), as
they generally perform well in prediction tasks.

3.3 a pattern : machine learning

Because machine learning can capture complex links in complex
data, it is increasingly used in data science to estimate quantities of
interest to the analyst, whether they are intermediate quantities, as
for counterfactual analysis (Section 3.1.2), or the direct answer to the
question of interest, as for conditional links (Section 3.1.1).

For data integration, this evolution brings exciting new opportuni-
ties: machine-learning models do not need to rely on averaging, and
hence do not need actual matching of entities across sources. Rather,
they can use vector representations that express, even indirectly, rele-
vant similarities between entities.

Besides avoiding tedious entity-matching, machine-learning mod-
els can form weakly-parametric estimators that are resilient to noise
and other imperfections in the data. For instance, imperfect corre-
spondences between schemas across the sources lead to missing val-
ues: some sources may not have all the information. Despite these
missing values, supervised learning can give optimal estimates with-
out relying on probabilistic modeling of the missing-data mechanism
(Josse et al., 2020; Le Morvan et al., 2020).
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L E A R N I N G V E R S U S C L E A N I N G

Using machine learning can be less labor-intensive, as it does not
require human-guided entity matching. But does it come at a cost
to the validity of the results? To answer this important question, we
conduct in this chapter an empirical benchmark of analytic methods
based on cleaning or learning (Section 4.1). We then discuss in length
the implications of these results for data analysis and data manage-
ment practices (Section 4.2).

4.1 empirical study

In this section, we empirically compare learning and matching-
based approaches on our three analytic questions of interest. 1. Start-
ing with a detailed description of our experimental setup, we then
present qualitative and quantitative results on the estimation errors
of the analytic methods under study.

4.1.1 Experimental details

measuring the estimation error How to compare estimators
of a quantity such as conditional expectation of salary given job title?
Even without entity-matching noise, the data at hand is limited and
its mean is an imperfect estimate of the unknown population quantity
y∗. We adapt a classic procedure of machine learning: we leave out
a test fraction of the databases, and use the rest of the data to derive
estimates ŷtrain. Applying a matching & averaging estimator on the
test data provides another estimate ŷtest, that is unbiased though noisy.
Importantly, as it has been estimated from different data than ŷtrain,
its estimation error is independent. We can thus use the difference
between ŷtrain and ŷtest over multiple splits (as in a cross-validation
loop) to quantify the estimation error of the procedure that we use to
compute ŷtrain.

analytical approaches studied We compare several approaches
to estimate the quantities relevant to our analytical questions:

1. Matching & averaging, as described in Section 2.2.2.

2. Embedding & learning: strategies of Chapter 3, relying only on
standard machine-learning tools. Gradient boosted tree mod-
els from scikit-learn (Pedregosa et al., 2011) are used with pre-
trained fastText embeddings (Bojanowski et al., 2017) to repre-
sent the job titles, capturing semantic and morphological simi-
larities.

1. The code and data to reproduce our experiments is available on Code Ocean:
https://codeocean.com/capsule/6435573/tree
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3. Embedding & fuzzy matching: the notion of continuous simi-
larities, as between embeddings, can also be exploited to define
weighted averages. We modify the matching & averaging pro-
cedure to use fuzzy matches and weights defined with a cosine
string similarity on the job title with an affine decay. See the
appendix (Section A.1.1) for a more detailed description.

Parameters such as the affine decay, or the hyper-parameters of
the machine-learning models are tuned in a nested cross-validation
procedure (see appendix). To study the effect of entity matching, we
apply these techniques on raw and manually matched entries.

counterfactual analysis To study the causal effect of gender
on salary, we use the following covariates: job title, experience level,
ethnicity and the type of employer (city, county, university, hospital).
Including these features allows to compare salaries between similar
employees and isolate the effect of gender.

Note that the ethnicity feature is also non-normalized: multiple
variants for each ethnicity exist in the data (e.g. “Black”, “BLK”,
“Black or African American”). When estimating the ATE with manual
or fuzzy matching techniques, we thus had to group similar ethnici-
ties into 7 categories. When using machine-learning models for esti-
mation, we simply encoded ethnicities into vectors of dimension 10,
using a Gamma-Poisson factorization 2 (Cerda and Varoquaux, 2019).
Importantly, these vectors expose nuances that would have been lost
in the matching process otherwise, for instance when grouping “Mex-
ican” with “Hispanic or Latino”.

estimation on unseen categories In our experiments, we com-
pute “ground-truth” values ŷtest for groups of employees in the test
set, that we then compare to our estimates ŷtrain based on the training
data. However, some groups of employees in the test set may have no
equivalent in the training data, which makes matching & averaging
estimation impossible, unlike fuzzy matching and machine-learning
pipelines which can leverage data from related groups to form esti-
mates. In these cases, we compute matching & averaging estimates
over all employees, regardless of their job titles.

4.1.2 Qualitative results: dispersion across variants

The curves of salary as a function of experience represented on
Fig. 2.2 are computed either with a matching-based or a learning-
based approach. Machine-learning estimates leverage job similarities
and have low dispersion across variants of project manager or adminis-
trative assistant. This robustness reduces the need for manual match-
ing: querying the model on any variant provides reliable estimates
that are representative of the whole population. It is more convenient
and reliable for an analyst to query the model for “project manager”

2. An implementation of this approach is available in the dirty-cat package:
https://dirty-cat.github.io/stable/ (see GapEncoder)
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Table 4.1 – Cross-validated errors for salary, quantile, and propensity-
score estimation. To be more precise in our analysis, we also
measure cross-validation errors on seen and unseen test entities
only (i.e. test entities for which we have, or do not have matches
in the training data), as matching & averaging estimation is done
differently in those cases.
We also report here estimates of the propensity-score P(W = 1|J)

conditionally to the job title, rather than on all covariates, as
matching-based estimates are very noisy in that case. RMSE =
Root Mean Square error. MAE = Mean Absolute Error.

Estimation method
Manual

matching

Salary

(RMSE)

Quantile

(MAE)

Propensity

(Brier score)

Evaluation on all test entities

Matching & averaging Yes 55634 31802 0.231

Embedding & Fuzzy matching No 52812 30955 0.195

Embedding & Fuzzy matching Yes 51506 28851 0.192

Embedding & Learning No 52683 28726 0.189

Embedding & Learning Yes 50614 26713 0.184

Evaluation on unseen test entities

Matching & averaging Yes 49612 33031 0.259

Embedding & fuzzy matching No 47232 28538 0.206

Embedding & fuzzy matching Yes 45762 26533 0.201

Embedding & learning No 44676 26909 0.197

Embedding & learning Yes 43300 25719 0.194

Evaluation on seen test entities

Matching & averaging Yes 69158 29731 0.183

Embedding & fuzzy matching No 65390 35028 0.176

Embedding & fuzzy matching Yes 64350 32757 0.176

Embedding & learning No 69653 31788 0.178

Embedding & learning Yes 66266 28388 0.169

or “administrative assistant” (thick magenta curves), than to search
the database for all variants and average them. Beyond the dispersion
across variants, matching & averaging curves appear more noisy; in
particular they fail to capture well the evolution of salary with expe-
rience. Finally, machine-learning estimates show plausible extrapola-
tions for queries where there is no data with exact matches, such as
project managers with more than 25 years of experience.

4.1.3 Quantitative results: cross-validated errors

To go beyond the face validity of Figure 2.2, we use cross-validation
(as detailed in Section 4.1.1) to quantify which approach best esti-
mates the population quantities. We consider here our three ana-
lytical tasks: 1) salary given job and experience, 2) 0.75-quantile of
salaries for a given job, and 3) a simplified version of the propensity-
score P(W = 1|J) (i.e. the proportion of men in a given job), used in
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causal analysis (Section 3.1.2). The 14 databases are randomly split
into two sets of 7 databases: one to compute estimates for salary,
quantile, and propensity-score; and the other to measure their er-
ror, reported in Table 4.1. Results show that for all three quantities
embeddings notably reduce the error compared to exact matching
and perform best when combined with learning. Adding manual
matching on top of embeddings improves further, but the benefit is
smaller than that brought by embeddings & learning. The residual
error is due to variance in individual salary that is not explained by
the attributes of the employees present in the databases, such as the
appreciation of the manager.

To push the analysis further, we distinguish in the rest of Table 4.1
cross-validated errors depending on whether they correspond to es-
timates on unseen categories (i.e. for which there are no matches
in the training data) or not. As expected, machine-learning models
based on embeddings significantly outperforms manual matching on
unseen categories. Indeed, the latter approach is not able to leverage
data from related jobs to come up with a reliable estimate. Machine-
learning models are thus much more adapted for estimation outside
of the original data. On seen categories however, we expect this gap
to shrink: with cleaning and enough samples per category, matching
& averaging estimates should converge to the true population values.
Still, embedding & learning remains overall competitive with man-
ual cleaning. Besides, the analytic tasks considered here are rather
simple: we study the quantities of interest at a broad level, only con-
ditioning on one or two attributes (e.g. job title and experience level).
This results in large groups of employees on which matching & av-
eraging provides good estimates. On more granular analyses (e.g.
estimating the causal effect of sex on salary), or more generally in
low-data regimes, we expect embedding & learning estimates to be
much more reliable. We investigate this in the next section.

4.1.4 Estimation of counterfactuals

How do the differences in estimation errors reported in Table 4.1
impact complex end-user analytical questions? We investigate their
impact on estimation of salary gap across sex. Figure 4.1 gives av-
erage treatment effects computed with statistical methods based on
embedding & learning approaches, as well as manual matching and
fuzzy-matching estimates. To force the need for analysis across the
databases, we create a sex imbalance by dropping randomly a frac-
tion of either men or women in each database, with 50/50 probabil-
ity. As a result, the estimation relies on employees of opposite sex
with matching covariates across databases. Importantly, embedding
& learning estimates are consistent with those obtained after best-
effort manual cleaning, but exhibit much less variance as fewer and
fewer employees with similar covariates but of opposite sex can be
matched. This low variance of machine-learning methods comes from
their implicit interpolation, visible on Figure 2.2: if a given employee
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Figure 4.1 – Salary gap: Average treatment effect computed with added sex
imbalance in individual databases, forcing the need for analysis
across databases. The error bars give the quartiles across ran-
dom deletion of men or women records.

lacks an opposite-sex with the same covariates, the model will use
information from similar profiles. On the other hand, fuzzy match-
ing introduces a sizeable bias: its estimates differs markedly from
matching & averaging.

4.2 discussion : how much can learning replace clean-
ing?

On the data-integration problem that we have studied, relying more
on learning rather than on cleaning facilitates the data analysis, and
actually improves the validity of the results without manual labor.
This result departs from classic data-management practices, and we
now discuss its interpretation and impact for analytical practices.

4.2.1 Cleaning is analysis

Studying the salary gap showcases the importance of analysis across
data sources: for the highest-payed positions, finding employees of
opposite sex requires considering multiple companies. Matching en-
tities faces the fundamental challenge that there might not be exact
correspondences: not every institution has a chief data officer (CDO)
and the nearest match may be chief technology officer (CTO). Omitting
companies without CDO will bias the analysis by excluding large
tech companies.

The notion of cleaning, to make data more uniform, carries in
itself analytical choices which may bias the results (Boumans and
Leonelli, 2020; Rawson and Muñoz, 2019). While vinaigrette is just
French for salad dressing, its use on an American’s restaurant menu
signals upper-scale clientele. Merging the two will lead to loss of in-
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formation. From an ontological point of view, the solution would be
to create a new category, posh salad dressing. But maintaining a com-
plete and consistent ontology, catering for all the edge cases, requires
manual work each time new data is integrated. Should the neces-
sity to merge entities be considered as a bug of analytic pipelines,
rather than a feature? New tools that do not require exact matches
can give more reliable analyses in the face of ambiguity, as illustrated
by the estimation of salary gap across databases with sex imbalance
(Figure 4.1).

Manually curating entity matching brings to the data a consistency
that is good practice in production settings. Yet, as illustrated in our
empirical study, favoring more advanced statistics down the line facil-
itates valid analysis. It can indeed be easier to pass on uncertainties to
the statistical analysis tools than to resolve them in a relational store.
The best data representation, clean or fuzzy, is tied to the analytic
question.

4.2.2 Supervision facilitates integrating data with ambiguities

Representing uncertainty in relational systems helps tackling am-
biguities (Bordawekar and Shmueli, 2017; Dong et al., 2009; Kimmig
et al., 2018) or curating data (Rekatsinas et al., 2017). However, ex-
tending relational data management to a general probabilistic frame-
work is intrinsically hard. Indeed, unlike with the relational alge-
bra, queries in a probabilistic database can suffer non-polynomial
complexity (Suciu et al., 2011). Approximate probabilities (Bach et
al., 2017; Domingos and Lowd, 2009) or fuzzy logic and similarities
(Petry, 2012) have better tractability. Yet how to weight similarities to
best capture ambiguities is often a challenge in itself.

Using supervised learning to answer a given statistical question al-
leviates the need for probabilistic models. In particular, many recent
success rely on discriminative modeling using empirical risk minimiza-
tion, as with deep learning (Goodfellow et al., 2016). It is crucial to
the success of our empirical study: optimizing the statistical mod-
els gives accurate estimates from non-probabilistic similarities –word
representations that were not tailored to the question at hand. Such
an approach goes much further than fuzzy matching (Figure 4.1), as
supervised learning can be seen as implicitly tuning scaling factors
and thresholds to combine information optimally while minimizing
noise.

embeddings to capture ambiguities Entity embeddings are
crucial to the success of our approach, to expose ambiguities to the
analysis step. Our proof of principle purposely used a very simple
implementation: a general-purpose machine-learning model applied
on off-the-shelf word embeddings. Yet, it leads to analyses on the
unaligned data more accurate than standard statistical approaches
on data cleaned with three days of manual labor using a dedicated
software (Table 4.1, Figure 4.1).

[ March 5, 2023 at 21:29 – classicthesis version 0.1 ]



4.2 discussion : how much can learning replace cleaning? 36

Importantly, the main requirement for our approach to work is that
entries denoting the same entity, and more generally entries that have
similar properties (e.g. jobs with similar salary distributions, or sim-
ilar men/women proportions) should have close vector representa-
tions. While in our example these similarities are mostly morpho-
logical (two jobs with similar titles are more likely to be the same or
to have similar properties) and can be captured with pretrained fast-
Text embeddings, other analytical studies may require different em-
bedding strategies. For instance data analytics across multi-lingual
sources would require embeddings that group together words with
similar meanings in different languages (X. Chen and Cardie, 2018).
Likewise, domain-specific entities for which general-purpose embed-
dings (e.g. fastText) are not adapted may require training them from
the data at hand to adapt to its specificities. Such training can be
done via the string forms of entities (Cerda and Varoquaux, 2019) or
their relations to other entities (Cappuzzo et al., 2020). This latter
point will be the focus of Part 2.

4.2.3 The road ahead: rethinking analytic pipelines

more complex data-integration pipelines The data-integration
problem studied in Chapter 3 is very simple: it consists in analyz-
ing the union of tables across sources. In relational algebra terms,
the machine-learning models replace a GroupBy followed by aggrega-
tions. However, data integration often calls for joins across tables of
different nature. Tackling these operations using machine learning on
embeddings will require exploring new tools, for instance adapting
similarity joins to merge information across tables (Silva et al., 2010;
Yu et al., 2016), logic inferences on top of entity embeddings (Qu and
Tang, 2019), or graph CNNs for relational data (Choi et al., 2019). We
will explore the problem of joining information across data sources
in Part 2.

back to the data scientist : opening up black boxes With-
out explicitly merging variants into a small number of human-recognizable
entities, data-analysis pipelines can be complicated to audit for the
human analyst. And yet, such human inspection of pipelines is of-
ten important for validation and debugging. Understanding ana-
lytic pipelines based on machine learning rather than cleaning will
need techniques from the growing field of black-box model explana-
tion in AI (Molnar, 2020): counterfactual reasoning can be applied to
understand how data-assembly pipeline transforms an input (Ghaz-
imatin et al., 2020); permutation importance can gauge how a given
attribute impacts the results by shuffling its values across instances
(Altmann et al., 2010); finally, entity embeddings can be crafted to
relate to human-comprehensible notions, for instance revealing latent
categories (Cerda and Varoquaux, 2019).
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4.2.4 Cleaning or learning? Two complementary tools

Replacing explicit cleaning by machine learning follows the trend
from “schema on write” to “schema on read”: it displaces the burden
from the data producer to the data consumer (Terrizzano et al., 2015).

Cleaning is difficult, but it comes with the hope that the efforts
will yield long-lasting benefits, useful for multiple usages of the data.
These hopes are certainly well-grounded. Yet cleaning never ends;
ambiguities in entity matching must be revisited given a new topic
of analysis, or a new data source to integrate (Chessell et al., 2014).
On the other hand, while variations may capture nuances –vinaigrette
being posh for salad dressing–, expressing the exact same entity in
two different ways is often an unnecessary hurdle to data integration.
Standard vocabularies, as the universal resource identifier (URI) de-
veloped for linked data (Bizer et al., 2011), address these hurdles. They
are complementary to a strategy based on embedding and learning,
and can be priceless to bridge data sources, even if only a fraction of
the entities can be expressed within the vocabulary. An analysis us-
ing machine learning to tackle ambiguities will be more successful if
there are only few of these ambiguities. If data is normalized enough,
data integration can leverage off-the-shelf embeddings, as fastText

used in our proof of concept. These continuous embeddings are com-
plementary to standard vocabularies.

4.3 conclusion : learning cuts human labor but keeps

valid results

Ambiguities often arise when analyzing data, for instance if it comes
from different sources with different conventions. The analysis then
faces a fundamental challenge of validity: has the data been merged
right, so as not to bias the results? The correct correspondence be-
tween entities across different data representations depends on the
goal of the analysis: when integrating a “CDO” –chief data officer–
into a employee directory that does not know such role, it could be
legitimate to convert “CDO” to “executive officer” to study salary, or
“data scientist” to study expertise.

The traditional view is that data cleaning is necessary to a valid
analysis: carefully establish correspondences, typically combining au-
tomated approaches with manual supervision and quality assurance.
Rather, our benchmark shows that valid answers to a given analytic
question can be assembled by exposing ambiguities to a machine-
learning pipeline. Indeed, many questions that do not explicitly call
for machine learning can be formulated using such models as flexible
estimators of the underlying quantities. Our empirical comparison
of a simple machine-learning approach to a labor-intensive manual
cleaning shows that learning improved the quality of the analysis as
much, if not more, than the cleaning. We hope that it can provide a
point of reference to future analysts, and justify saving time on man-
ual cleaning.
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Part ii

E N R I C H I N G D ATA A N A LY S E S W I T H
B A C K G R O U N D I N F O R M AT I O N

Summary

For many machine-learning tasks, augmenting the data table at
hand with features built from external sources is key to improving
performance. For instance, estimating housing prices benefits from
background information on the location, such as the population den-
sity or the average income. However, this information must often be
assembled across many tables, requiring time and expertise from the
data scientist.

In this part (based on our study from Cvetkov-Iliev et al., 2022b),
we aim to facilitate such feature engineering to enable information
joining over relational data. We first introduce in Chapter 5 the prob-
lematic under study, and describe in detail prior work on extracting
features from relational data. Importantly, existing methods for au-
tomatic feature engineering are combinatorial and thus do not scale
to large datasets. To overcome these limitations, we adopt in Chap-
ter 6 a very different approach: replacing human-crafted features by
vectorial representations of entities (e.g. cities) that capture the corre-
sponding information. For this, we represent the relational data on
the entities as a graph and adapt graph-embedding methods to create
feature vectors for each entity. In particular, we show that two techni-
cal ingredients are crucial: modeling well the different relationships
between entities, and capturing numerical attributes.

In Chapter 7, we thoroughly evaluate approaches to enrich features
with background information on 7 prediction tasks. We show that a
good embedding model coupled with KEN can perform better than
manually handcrafted features, while requiring much less human ef-
fort. It is also competitive with combinatorial feature engineering
methods, but much more scalable. Our approach can be applied to
huge databases, creating general-purpose feature vectors reusable in
various downstream tasks.
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5
B A C K G R O U N D : E X T R A C T I N G F E AT U R E S
F R O M R E L AT I O N A L D ATA

5.1 introduction

We introduce in this section the subject of this part, which is based
on the study we conducted in Cvetkov-Iliev et al., 2022b. We first
present the problem we address here: feature engineering, although
useful to enrich analyses with background information is difficult due
to the irregular nature of relational data. Furthermore, existing meth-
ods to automate this process are combinatorial in nature and thus
do not scale to large databases. As an alternative, we propose here
to leverage embedding models to learn low-dimensional (and hence
scalable) representations for entities directly from relational data. Im-
portantly, as most embedding models are designed for discrete enti-
ties, we extend them to numerical attributes, which are often useful
in downstream analyses.

5.1.1 Joining new information to data analyses requires tedious feature
engineering

For machine learning on data tables, a data scientist may encounter
columns with many different discrete entries or entities, for instance
cities in a housing price prediction setting (Figure 5.1a). These city
names can be encoded as a categorical variable, but generalizing to
housing in a new city is then impossible. A good solution for such
columns is often to use external sources to bring in information: the
GPS coordinates of the cities, the population, the average income (Fig-
ure 5.1b)... From a data-science perspective, this requires feature en-
gineering on relational data: merging and aggregating information
across data sources to create an enriched table with extra features
(Figure 5.1c). In practice however, such feature engineering is diffi-
cult and time consuming for the human analyst, because it requires
a good understanding of both the different data sources and the ap-
plication domain. For instance the number of wealthy people living
in a city may be important, but estimating it may require crossing
information across many tables to build a single somewhat abstract
indicator. In fact, it is often recognized that data preparation is one
of the biggest bottlenecks of data-science (CrowdFlower, 2016; Lam
et al., 2021).

5.1.2 A fundamental challenge: the irregular nature of data

A specificity of learning across a complex relational structure is that
different entries come with very different information. For instance,
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when collecting information on local wealth in Wikipedia –querying
DBpedia (Lehmann et al., 2015) or YAGO (Mahdisoltani et al., 2013)–,
a data scientist will find for San Francisco the GDP as well as many
known individuals and companies. But for the neighboring locality
Muir Beach, none of this is available. The data scientist may then
need to dig information at the county level, which has a different set
of attributes. The root of the challenge is that the original relational
information is fundamentally irregular and cannot be represented to
a learning algorithm as a fixed set of “features”.

5.1.3 Current automatic feature engineering methods do not scale

Our goal here is to make it very easy for the data scientist to en-
rich a feature with information from external data sources. Inspired
by word embeddings (Mikolov et al., 2013b) which brought a break-
through to text processing by their ease of use, we strive to associate
entities to general-purpose feature vectors that can be used in mul-
tiple downstream tasks. This requires a feature extraction method
that captures well entity attributes, and is scalable enough to be
used on large databases. For instance, a general-purpose knowledge-
base such as YAGO3 (Mahdisoltani et al., 2013) is a particularly use-

Features Target

City Area Price

San Francisco 30 m2 450,000$

San Diego 55 m2 ?

a) Base Table
Features Target

MEAN(City.
Inhabitant_ID.Salary)

City.State.
Poverty_Rate

City.
Population

Area Price

70,000$ 12.6% 0.87M 30 m2 450,000$

60,000$ 12.6% 1.4M 55 m2 ?

c) Enriched Table

b) External data

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

Feature engineering

Figure 5.1 – The classical pipeline of feature enrichment. A base table (a)
contains a target to predict and several features, including a
categorical feature with discrete entities (here cities). To boost
prediction performance, external data (b) about the entities of
interest is incorporated into the base table –usually via tedious
feature engineering– to obtain the enriched table (c). The ex-
ternal data (b) can come under various formats, e.g. tables or
multi-relational graphs.
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ful source of data, with information on 75,000 cities; but it is huge:
millions of entities and hundreds of attributes. Existing automatic
feature engineering methods, such as Deep Feature Synthesis (DFS)
(Kanter and Veeramachaneni, 2015), are combinatorial: they greed-
ily join and aggregate entity attributes across tables to create feature
vectors. Their combinatorial nature leads to tractability challenges:
running DFS on YAGO3 produces very high dimensional vectors (d ∼

10,000 – 140,000, see Table 7.2) which entail large storage costs and
computational hurdles in downstream machine-learning tasks.

5.1.4 Our proposal: embedding models that capture numbers

Instead, we propose to use embedding models that learn a static
vector representation for each entity. Indeed, they provide compact
representations that can encode knowledge about various entities into
a fixed, low-dimensional space (e.g. d = 200). We learn these vec-
tors from the external data, and add them to the base table as new
features to enhance prediction performance. A pioneering work in
this direction is RDF2vec (Ristoski and Paulheim, 2016a) and its vari-
ants, which have been used to learn entity embeddings from multi-
relational graphs for various downstream tasks (Egami et al., 2021;
Ristoski et al., 2019; Saeed and Prasanna, 2018; Sousa et al., 2020).
These works directly build on word-embedding tools developed for
natural language –namely word2vec (Mikolov et al., 2013b). As such,
they leverage contextual information: as San Francisco and California
are connected in the graph they are related. However, they do not
account for the nature of these relations, which requires modeling
the relational information: Wikipedia specifies that San Francisco is
in California, but Sacramento is the capital of California. We will see
that capturing well this information is important to generate feature
vectors for downstream analytic applications. Another, more general,
drawback of embedding methods is that they are designed for dis-
crete entities, and are not suited to capture numerical attributes. Yet
these attributes are often useful for the end task. For instance, densely
populated cities tend to exhibit high housing prices.

We propose here an approach that addresses these two limitations
and provide high-performance embeddings. To capture relational
information, we rely on knowledge graph embedding models (Q.
Wang et al., 2017), widely used for graph completion but not studied
for feature extraction purposes. In such models, embeddings are di-
rectly optimized to capture relationships between entities. We then
introduce KEN (Knowledge Embedding with Numbers), a module
that extends knowledge graph embedding models to numerical at-
tributes. Finally, we conduct a thorough empirical evaluation of our
approach, using entity embeddings to boost machine-learning perfor-
mance in multiple tasks, and show that:

— Feature vectors obtained via knowledge graph embedding mod-
els perform much better than RDF2vec embeddings.
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— Embeddings learned with KEN do capture numerical informa-
tion, which greatly improves prediction performance in down-
stream tasks.

— A good embedding model coupled with KEN outperforms man-
ually handcrafted features, while requiring much less human
effort. It is also competitive with Deep Feature Synthesis, but
is more scalable in terms of computation time, memory usage
and size of the created features.

— Although designed for multi-relational graphs, simple heuris-
tics allow our approach to be applied to tabular data, with good
performance.

5.1.5 Chapters outline

The rest of this part follows as such: Section 5.2 goes into depth
explaining related work on extracting features from relational data,
Chapter 6 details our contributed approach, and Chapter 7 gives a
thorough empirical study of approaches to create features from rela-
tional data.

5.2 related work : extracting features from relational

data

We focus here on two common data structures for data-science:
tabular data, as in relational databases, and multi-relational graphs
(a.k.a. knowledge graphs), the backbone of Linked Open Data (Bauer
and Kaltenböck, 2011). We broadly refer to both as relational data.
In this section we give an overview of various lines of work related
to creating vectors from relational data, drawing from a variety of
scientific communities.

5.2.1 The classic view: feature engineering

manual feature engineering Feature engineering across mul-
tiple tables traditionally relies on a human analyst crafting SQL queries
or dataframe operations, such as joins or aggregations, to build a sin-
gle feature matrix. The problem is the same with Linked Open Data
(Paulheim, 2013; Ristoski and Paulheim, 2016b): statistical studies
require features extracted from the data, here coming as knowledge
graphs rather than multiple tables. Propositionalization approaches
(Kramer et al., 2001) tackle this by creating for each entity (node) of
the graph a set of features, using statistical fingerprints and aggre-
gates of its neighbourhood (Paulheim and Fümkranz, 2012; Ristoski
and Paulheim, 2014). Here again, manual crafting is needed to cap-
ture specific information such as wealth.

Whether it is done on tables or knowledge graphs, feature engi-
neering is a time-consuming task: studies show that data scientists
spend 60% or more of their time transforming the data for analysis
(CrowdFlower, 2016). Indeed, designing the right features often re-
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City

Depth 0 Depth 1 Depth 2

City.
Population

City.
State

City.State.
Poverty_Rate

MEAN(City.
Inhabitant_ID.

Salary)

COUNT(City.
Inhabitant_ID)

COUNT(City.
State.City)

MEAN(City.
State.City.

Population)

San Francisco 0.87M California 12.6% 70,000$ 2 2 2.65M

San Diego 1.4M California 12.6% 60,000$ 1 2 2.65M

Reference
table

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000

A3 San Diego 60,000$

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Related tables

Deep Feature
Synthesis

Figure 5.2 – An example of Deep Feature Synthesis. Starting from a refer-
ence table with entities of interest (here cities), new features are
created by chaining joins to related tables, up to a certain depth
= 2. To aggregate values from one-to-many relations (e.g. city
inhabitants), we use the MEAN and COUNT operators, respectively
for numerical and categorical features. Colored arrows indicate
join paths across tables for each depth.

quires careful effort from the analyst: which information is relevant
for the task at hand? How to query it? This is particularly difficult on
large data sources. For instance, a knowledge graph representation of
Wikipedia leads to hundreds of entity classes described by thousands
of attributes in DBPedia (Lehmann et al., 2015). Exploring which joins
are best for a given analysis is difficult even for an expert: how to as-
semble indirect signals that capture information on the question at
hand, for instance estimating the distribution of wealth in a locality.

automated feature engineering A few approaches have been
proposed to automate the construction of queries for feature engineer-
ing on relational databases. A fundamental challenge is that assem-
bling such multi-table data transformations calls for discrete choices
–e.g. to join, or not to join? (Kumar et al., 2016) – with combinatorial
possibilities that explode on large databases. For instance, Deep Fea-
ture Synthesis (DFS) (Kanter and Veeramachaneni, 2015) is a greedy
approach that denormalizes a database by chaining joins from one
reference table to all related tables and aggregating one-to-many rela-
tions using combinations of a small base of functions (see Figure 5.2).
Typical aggregation functions include COUNT, MODE (most common) for
categorical features, and MEAN, MIN, MAX, STD for numerical features. A
crucial parameter of DFS is the depth, which limits how many times
joins can be chained to create new features. Higher depths capture
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a wider range of information and usually improve performance, but
quickly result in very large feature vectors and computation times,
as the number of possible join paths grows exponentially. This often
calls for post-processing techniques to remove unpredictive or redun-
dant features.

Subsequent works have improved over DFS by adding aggrega-
tion functions for other types of data (text, sequences) (Lam et al.,
2017), for instance via recurrent neural networks (Lam et al., 2019).
Although powerful feature extractors, all these methods remain com-
binatorial in nature, and do not scale to large databases. Even with
a limited depth, a large number of entities of different types leads to
increasingly wide feature matrices with many missing values, as the
different entities come with different sets of attributes. Finally, au-
tomated feature engineering methods present other drawbacks: the
created features often contain categorical or missing values that must
be encoded, and their interpretability (we can trace back the joins and
aggregations needed to compute each feature) is challenged as their
dimension quickly grows.

5.2.2 Entity embeddings in relational data

While entity embeddings come from a body of literature far from
that of feature engineering, they also create feature vectors from rela-
tional data (Lavrac et al., 2020).

5.2.2.1 Prelude: word embeddings

Many embedding methods for relational data take inspiration from
word embeddings. By injecting discrete entities (words) in vector
spaces, word embeddings have boosted statistical analyses of text.
They rely on the distributional semantics idea, which can be summa-
rized by Firth’s sentence: “a word is characterized by the company
it keeps”. A central model is Skip-Gram with Negative Sampling
(SGNS), used in word2vec (Mikolov et al., 2013b). Each word w is as-
sociated to an embedding w ∈ Rp 1. SGNS learns these embeddings
by optimizing similarities of pairs of words, using a scoring function:

Scoring function f(w,w ′) = w ·w′ (5.1)

Given a text corpus, embeddings are optimized so that a word w

is more similar to a word w ′ observed in the same context –e.g. the

1. To be precise, two embeddings wt,wc are learned for each word. Which one
is used in the scoring function depends if we view it as the context word or not. For
instance if w ′ ∈ context(w), then we maximize f(w,w ′) = wt ·w′

c, and vice-versa.
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same sentence–, than another word w† not in the context; minimizing
a cross-entropy loss 2:

SGNS L = −
∑

w, w ′∈context(w),

w† ̸∈context(w)

log(σ(f(w,w ′))) + log(1− σ(f(w,w†)))

(5.2)

After training, word embeddings capture contextual similarities: words
with the similar contexts (neighbors) end up close in the embedding
space.

5.2.2.2 Embedding entities in tables

Word embedding methods, such as SGNS, can be extended to other
data structures by defining a corresponding notion of context (Grohe,
2020). In tables, a common choice is to view rows as sentences: two
entities are in one another’s context if they appear in the same row.
This was for instance applied to enable semantic queries over tables
(Bordawekar and Shmueli, 2017) and for automatic table completion
and retrieval (Zhang et al., 2019). More recent work integrates intra-
row and intra-column information to learn richer representations.
Cappuzzo et al., 2020 link entries of a table to the row and column
nodes they belong to. Random walks through the resulting graph
generate “sentences” of tokens, then fed to a SGNS model.

5.2.2.3 Embedding entities in knowledge graphs

Knowledge graphs use a more general representation of relational
data than tables. They replace the notion of columns by that of rela-
tions, which enables a uniform representation over many tables, and
helps assembling information from multiple sources of data. Each
piece of information is encoded as a triple (h, r, t), indicating a cer-
tain relation r between the head and tail entities (h, t). Large knowl-
edge graphs, such as YAGO3 (Mahdisoltani et al., 2013) or DBPedia
(Lehmann et al., 2015) contain millions or even billions of triples – e.g.
(San Francisco, HasState, California) – and cover millions of entities.

Knowledge graph embedding models typically learn a vector for
each entity (node) and relation (edge) of the graph. They have been
mostly developed for two purposes, leading to two distinct lines of
research (Portisch et al., 2022):

1) Predicting new triples of the knowledge graph for completion
purposes, which has been the main application of knowledge
graph embeddings.

2) Providing feature vectors for downstream tasks outside the
knowledge graph, which received much less attention in the
literature, but is our focus here.

2. This is actually a simplified version of the loss optimized by word2vec, which
does not account for multiple negative examples.
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embeddings for downstream tasks RDF2vec (Ristoski and
Paulheim, 2016a) is a central work applying knowledge graph em-
beddings in external downstream tasks. It has been used to incorpo-
rate background information in various tasks: geospatial data anal-
ysis (Egami et al., 2021), recommender systems (Ristoski et al., 2019;
Saeed and Prasanna, 2018), or biomedical prediction tasks (Sousa et
al., 2020). Given a knowledge graph, RDF2vec generates sequences
of tokens by performing random walks on the graph, alternating be-
tween entities and relations (see Figure 5.3). These sequences are
then fed to a SGNS model to obtain embeddings for entities and rela-
tions. An important parameter is the depth, which limits the number
of hops in the random walk, and thus the range of information to
capture. Assuming that the window size of the SGNS model is set
accordingly, a depth of 1 captures relationships between entities and
their nearest neighbors in the graph, and so on... Similarly to Deep
Feature Synthesis, a challenge is that the number of possible walks
increases exponentially with depth. To avoid this, walks are often
computed for certain entities of interest only, with a limited number
of walks for each entity.

Since RDF2vec, most research efforts focused on the creation of
walks, for instance giving more weight to relations/entities based
on their frequency, PageRank or degree, removing rare entities, or
allowing teleportations between entities that share similar properties
(Cochez et al., 2017; Vandewiele et al., 2020b).

embeddings for graph completion Knowledge graph embed-
dings have been widely used for graph completion, either through
link prediction (predicting the missing entity in an incomplete triple
(h, r, ?)) or triple classification (predicting if a triple is True of False).
Similarly to SGNS, these models define a scoring function f(h, r, t)

SanFrancisco

California

0.87M

HasState

MayorOf

HasMember
HasPopulation

USA
LocatedIn

USF

LocatedIn

LondonBreed

DemocraticParty

Knowlege graph Text representation

“USF LocatedIn SanFrancisco
HasPopulation 0.87M”
“LondonBreed MayorOf
SanFrancisco HasState California”

“DemocraticParty HasMember
LondonBreed MayorOf SanFrancisco
HasState California LocatedIn USA”

Random walks

Depth 1

Depth 2

Figure 5.3 – Graph to text representation in RDF2vec. Random walks are
performed on the knowledge graph to generate sentences of
tokens. Often, walks are only computed for a subset of entities,
here San Francisco. The depth parameter limits the number of
hops in the random walk, either forward or backward.
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that represent the plausibility of a given triple (h, r, t). Embeddings
are then optimized so that observed triples obtain high scores, while
negative ones (typically sampled by corrupting the head or tail entity
in observed triples) obtain low scores.

Scoring functions typically model the different relations between
entities as geometrical operations in the embedding space. For in-
stance, the seminal TransE model (Bordes et al., 2013) represents a
relation r as a translation vector r ∈ Rp between entity embeddings
h and t:

TransE f(h, r, t) = −∥h+ r− t∥ (5.3)

with ∥.∥ a ℓ1 or ℓ2 norm. Given a knowledge graph G, embeddings
are trained to minimize a margin loss:

L =
∑

(h,r,t)∈G,
(h ′,t ′) s.t.(h ′,r,t ′) ̸∈G

with h ′=h or t=t ′

[f(h ′, r, t ′) − f(h, r, t) + γ]+ (5.4)

Many models that improve upon TransE (Q. Wang et al., 2017) fo-
cus on better modeling of one-to-many relationships and certain re-
lational patterns (e.g. symmetry/antisymmetry, inversion, composi-
tion) (Balazevic et al., 2019; Sun et al., 2019; Yang et al., 2015). For
link prediction in knowledge bases, one of the best performing meth-
ods (Ali et al., 2020) is MuRE, Multi-Relational Poincare graph em-
beddings (Balazevic et al., 2019). The key component of the method
is the model of the link between head and tail entity (homologous to
(5.3) for TransE):

MuRE f(h, r, t) = −d(ρr ⊙h, t+ rr)
2 + bh + bt (5.5)

where ⊙ is the element-wise multiplication, two vectors ρr, rr ∈ Rp

represent the relation r, and the head and tail entities are represented
by vectors h, t ∈ Rp and biases bh, bt ∈ R. d is the Euclidean dis-
tance 3. The model is optimized by sampling positive and negative
triples (as in (5.4), but using a logistic loss (5.2) instead).

structure of contextual vs relational embeddings Ap-
proaches based on SGNS such as RDF2vec only capture contextual
information, while much progress in knowledge graph embedding
has focused on modeling different types of relations separately. As a
consequence they induce very different neighborhood structures on
entity embeddings.

Contextual embeddings, as RDF2vec, are trained on “sentences” of
tokens, where each entity is surrounded by the relations and entities
it co-occurs with in triples (Figure 5.3). Two entities end up close in
the embedding space if they have similar contexts: 1) They may share
a relation, but not necessarily with the same entity, e.g. (San Francisco,
LocatedIn, California) and (Paris, LocatedIn, France). This tend to

3. MuRE can also use the Poincaré non-Euclidean geometry. However in practice
(Balazevic et al., 2019) the Euclidean version is an excellent performer, as good as
the non-Euclidean one for p ⩾ 150.
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(Facebook, FoundedIn, Massachussetts)
(Facebook, HeadquartersIn, California)
(MathWorks, FoundedIn, California)
(MathWorks, HeadquartersIn,
Massachussetts)
(Google, FoundedIn, California)
(Google, HeadquartersIn, California)
(Apple, FoundedIn, California)
(Apple, HeadquartesIn, California)

Input triples
a) Contextual: 

RDF2vec embeddings
b) Relational: knowledge

graph embeddings

Google

Apple

California

Massachussetts
Facebook

MathWorks

FoundedIn

H
ea

d
q

u
ar

te
rs

In

Google

Apple
FoundedIn

HeadquartersIn

MathWorks
Facebook

Massachussetts

California

Figure 5.4 – What drives entity neighborhoods in embedding space? a)
Contextual embeddings (as RDF2vec) ignore the nature of the
relation: given information on states in which companies have
been founded and have their headquarters, it cannot differen-
tiate Facebook (born in Massachussetts, moved to California),
from MathWorks (born in California, moved to Massachussetts).
b) Knowledge graph embeddings models can give rise to dif-
ferent geometric constraints for these two relations, separating
out the companies. For instance here a relation is encoded with
a projection.

group entities of the same type, since entities of different nature, like
people and cities, share few relations. 2) They may share a connec-
tion to a common entity, but not necessarily via the same relation, e.g.
(MathWorks, FoundedIn, California) and (Nevada, HasBorderWith,
California). Figure 5.4a gives a paradigmatic example: such contex-
tual information is blind to the difference between Facebook, founded
in Massachussetts but headquartered in California, and MathWorks,
founded in California but headquartered in Massachussetts.

Knowledge graph embeddings that use the relation type in the scor-
ing function between two entities create a very different structure in
the embedding space. As relations of different nature lead to differ-
ent transformations of the embedding space, they each “pull” entities
in different directions. In addition, modern models can learn trans-
formations that are not one-to-one (i.e.non bijective), better suited to
many-to-one relations, as when many cities are located in the same
state. As a result the different relations can be encoded separately
in entity embeddings, for instance along different coordinates (Fig-
ure 5.4b).

integrating numerical attributes in embeddings Numer-
ical attributes, such as city populations, are poorly handled by most
embedding methods. They are often simply dismissed, or at best
binned and treated as discrete entities (Cappuzzo et al., 2020), which
remains suboptimal as it does not capture the topology of numbers.

Recent knowledge graph embedding models address this issue (Gesese
et al., 2021). TransEA (Wu and Z. Wang, 2018) adds a loss to recon-
struct numerical values from embeddings with a linear model. Lit-
eralE (Kristiadi et al., 2019) is a state-of-the-art approach where each
entity i is represented by two vectors: ei ∈ Rp representing the en-
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tity itself, and li ∈ Rq, li containing each of its numerical attribute (0
if no value, and where q is the number of numerical relations in the
KG). When used in the scoring function, embeddings h and t are con-
structed with a function g that combines the two vectors into a single
one: h = g(eh, lh), and t = g(et, lt), both in Rp. LiteralE implements
g as a learnable mechanism similar to gated recurrent units:

LiteralE g(e, l) = z ⊙w+ (1− z)⊙ e (5.6)

with z = σ
(
W T

ze e+W T
zl l+ b

)
, w = tanh

(
W T

h [e, l]
)
,

and ⊙ is the pointwise multiplication, W T
h ∈ R(p+q)×p, W T

ze ∈ Rp×p,
W T

zl ∈ Rq×p and b ∈ Rp.
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6
M U LT I - R E L AT I O N A L E M B E D D I N G S T H AT
C A P T U R E N U M B E R S

We introduce in this chapter our approach to automatically extract
information from relational data, creating feature vectors that can be
used in downstream tasks. It relies on 3 key ingredients, that we
describe in the following sections:

1) Using knowledge graph embedding models designed for graph
completion, as opposed to RDF2vec, to capture well relational
information.

2) KEN (Knowledge Embedding with Numbers), a module that
extends knowledge graph embedding models to numerical at-
tributes.

3) Representing tables as knowledge graphs, to leverage them in
our approach.

Figure 6.1 summarizes our pipeline for automatic feature extraction
from relational data.

6.1 relational rather than contextual embeddings to

encode information

With our goal of creating embeddings as features for downstream
tasks, we motivate here the importance of using relational embed-
dings, originally designed for knowledge graph completion, rather
than contextual RDF2vec-like models, traditionally used to extract fea-
tures for downstream tasks.

From a big picture perspective, given an entity h of interest (e.g. a
city), we would like an embedding h that encodes as well as possible
the information related to h in the data. At the very least, it implies
representing well the various relationships h has to other entities (e.g.
its state), to make them available to the machine-learning model used
in the downstream task. Representing not only the related entity t but
also the nature of the relation r is often important: knowing whether
a person A is the mother, the sister, or the daughter of a person B
informs on the age difference.

In contextual embeddings such as RDF2vec, the presence of a link
between a entity h to another entity t is modeled somewhat inde-
pendently from the nature r of the link, i.e. the type of the relation.
Indeed, the scoring function used in SNGS (Equation 5.1) is only ap-
plied to pairs (h, t), (h, r) and (r, t). Structure between h, r, and t is
created indirectly as they appear in the same context.

In contrast, relational embeddings developed for knowledge graph
completion use a scoring function involving h, r, and t jointly. As
this scoring function is minimized for triples in the graph, it induces
algebraic relations between the corresponding embeddings: for TransE
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Input data

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

San Francisco

San Diego

California

0.87MState

1.4M
Population

City

A2A1

Salary

A3

65k$

60k$

75k$

Knowledge graph
representation Embeddings

San Francisco

San Diego

Population

0.87M

Population

Salary

KEN

Knowledge graph embedding

f(San Francisco, Population, 0.87M)

f(San Diego,   Population, 0.87M)

negative
sampling

Features Target

City Embedding Area Price

San Francisco 0.1   -0.3   …   0.7 30 m2 450,000$

San Diego 0.15   -0.2   …   0.8 55 m2 ?

Downstream task

Figure 6.1 – Our pipeline for automatic feature extraction from relational
data. 1) The input data, which may contain tables, is trans-
formed into a knowledge graph. 2) We use a knowledge graph
embedding model to learn a vector for each entity, and lever-
age numerical values by embedding them in the same space as
other entities with KEN. 3) After training, entity embeddings
can be easily added as new features in downstream tasks.

t ≈ h+ r, or for MuRE t ≈ ρr ⊙h− rr. These algebraic relations im-
ply that t captures the link to h in a way that is specific to r and
hence a downstream analysis model can recover this specific informa-
tion, e.g. selecting on the mother, and not all relatives.

Figure 5.4 illustrates the specificity of the link: for RDF2vec, rela-
tions are encoded as vectors which lie in the middle of entity embed-
dings, while knowledge graph embedding models encode relations
as transformations on entity embeddings (here, a projection). This
allows the latter to express the different relations on different vector
coordinates.

6.2 capturing numerical attributes with ken

6.2.1 Numerical attributes are valuable to data analyses, but hard to cap-
ture in feature vectors

Numerical attributes are omnipresent in relational data, and of-
ten contain precious information for downstream tasks, e.g. a city’s
wealth influences housing prices. While they are readily-available
as numbers, the irregular nature of the information prevents from
merely adding them as coordinates to the feature vectors. A first
challenge is that different entities have different numerical attributes.
A more serious one arises when aggregating numerical information
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across many-to-one relations: there are many ways of doing so. For
instance, to characterize wealth in a county from the GDP of its cities,
the mean, the Gini index, the percentiles, etc. are all useful aggre-
gates. As a result, Deep Feature Synthesis generates more than 2,000
features derived from numerical attributes for cities in YAGO3.

We aim for lower-dimensional representations, and thus strive to
capture numerical information in entity embeddings. However, em-
bedding methods are formulated in terms of discrete elements (Sec-
tion 5.2.2): words, entities. A naive way to adapt them to numerical
attributes would be to consider numbers as tokens and learn an inde-
pendent embedding for each value. Yet doing so discards the topol-
ogy underlying those numbers: close numerical values should have
similar representations. Binning values before embedding reduces
this effect, but remains suboptimal. To tackle this, we introduce here
KEN (Knowledge Embedding with Numbers), a module that adapts
embedding models to numerical attributes.

6.2.2 The KEN module

Entity-embedding approaches can be seen as relying on a linear
encoder to associate an entity h with its vector representation h ∈ Rp.
In this light, we propose to also inject numerical values in the same
vector space with an encoder, learning a function e : R → Rp that
maps numerical values to embeddings.

We use as function a single-layer neural network with a ReLU ac-
tivation to embed numerical values. To embed different types of at-
tribute separately (e.g. city populations and GPS coordinates), we
learn a function er for each attribute r:

er(x) = ReLU(xwr + br) (6.1)

with x ∈ R the numerical value to embed, and wr, br ∈ Rp the
weights and biases of the linear layer. Embeddings er(x) of numerical
values can then be used in place of tail embeddings t in the scoring
function f(h, r, t).

6.2.3 Comparison with other methods capturing numerical attributes

An asset of KEN is that it comes with no hyper-parameters to tune.
This is unlike TransEA (Wu and Z. Wang, 2018), where the impor-
tance of numerical attributes must be controlled, with the danger
that the optimal value might differ for each attribute. Another im-
portant difference with TransEA is that KEN can capture non-linear
interactions between entities and numerical attributes, thanks to the
ReLU activation. For instance, cities in California are associated to
latitudes between 32◦ N and 41◦ N which cannot be expressed by a
mere threshold on a linear representation.

Importantly, KEN uses numerical values x during training as new
triples (h, r, x) whose scores must be maximized, which forces entity
embeddings to capture these numerical attributes. This is different
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from LiteralE (Kristiadi et al., 2019), where numerical values are incor-
porated to entity embeddings to better predict non-numerical triples
(h, r, t). LiteralE therefore only captures the information in numeri-
cal values useful to triangulate other entities, and not the values in
themselves. In particular non discriminant numerical attributes can
be discarded by the gate mechanism. As an extreme example, an en-
tity linked to numerical attributes but not to other entities will not be
embedded in LiteralE, as there is no training data.

In contrast, KEN draws no major distinction between discrete en-
tities and numerical values: they are embedded in the same space.
Each type of numerical attribute is associated to a specific relation
and thus embedded on a specific line segment via Equation 6.1. An
analytic model for a downstream task can extract this information,
proceeding in a similar way as with discrete information (Section 6.1).
The numerical attributes that an entity has and its relations to other
entities may contribute to create similar neighborhood structures: a
city being locatedIn California is equivalent to its GPS coordinate tak-
ing specific value ranges.

6.2.4 Making the architecture robust to attribute distribution

One challenge of heterogeneous data is that different numerical
attributes have very different distributions. We thus normalize nu-
merical values x ∈ R to the interval [0, 1] before embedding them.
With neural networks, a common way to do so is “min-max" normal-
ization: x ′ = x−xmin

xmax−xmin
. However it is problematic when dealing

with heavy-tailed distributions, such as city populations. Indeed, af-
ter normalization, most values x ′ will be very close to zero and have
similar representations er(x

′) ≃ ReLU(br). This makes it difficult
for instance to distinguish a village with 1 000 inhabitants from a
medium-sized town of 10 000 people.

Ideally, we would like the values x ′ to be evenly distributed in
[0, 1], to separate as well as possible their embeddings. We achieve
this with quantile normalization, which maps numerical values to
their quantile in the attribute distribution, using an empirical estimate
of the cumulative distribution function: x ′ = CDF(x).

Figure 6.2 summarizes the complete picture of numerical value em-
bedding with KEN.

2.2M
Population

0.9

CDF(2.2M)

-0.3
-1.7
-0.8

wr

br

.00

1.7
0.8

ReLU

er(2.2M)

Figure 6.2 – Embedding numerical values with KEN.
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6.3 representing tables as knowledge graphs

To create embeddings with rich semantics, the source data must
contain as much detail as possible about the entities under study.
This often requires to leverage data from different sources, for in-
stance combining broad but shallow information (e.g. city popula-
tions) from large knowledge graphs with more granular data (e.g. re-
cent house prices at the neighbourhood-level) from domain-specific
tables. Although our approach inputs knowledge graphs, i.e. triples
(h, r, t), this representation is general enough to easily encode in-
formation from other data structures. We focus here on tabular data,
and explore a few strategies to represent tables as knowledge graphs.

The core idea to generate triples from tables is to link entities from
the same rows with different relations. For instance, an exhaustive
strategy consists in building all possible triples from the table, linking
all discrete entries to other entities or numerical values from the same
rows (Figure 6.3a). One asset of this method is that it produces good
embeddings for all entities, as they are directly connected to their
attributes in the graph. But it generates a large number of triples:
O(n2

cols nrows), which increases the training time of embeddings. If
we know beforehand the entities of interest, i.e. those used in the

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Anchorage 0.29M Alaska

Input table

b) Head entities = Cities 

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

California

Alaska

San Francisco

San Diego

Anchorage

Population

State

City-Population

State-Population

State-City

City-State

a) Head entities = All c) Head entities = Row IDs

Row IDs

R1

R2

R3

R1 0.87M

San Francisco

California

San Diego

1.4M

R2

R3

0.29M

Anchorage

Alaska

Population

City

State

Figure 6.3 – Representing tables with triples. For each row of the table, we
generate triples by linking its entries through different relations.
The methods we present here differ on their choice of head
entities when building triples: a) using all discrete entries as
heads b) using only the entities of interest (generally from the
same column) and c) introducing a “row id” entity for each row
and using it as head entity.
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City
Field of
activity

Number of 
companies

A Tech 10

A Retail 1

B Tech 1

B Retail 10

b) Head entities = Cities 

TechA
Row IDs

R1

R2

R3

R4

Retail

10
1

TechB
Retail

10
1

c) Head entities = Row IDs

A Tech
Retail

10
1B

R1

R2

R3

R4

a) Table with joint columns

Figure 6.4 – Capturing joint information across columns. a) A table de-
scribing cities with two joint attributes that must be considered
together to be meaningful. b) Using cities as head entities en-
codes the two attributes separately, hence we cannot differenti-
ate them from their triples. c) Introducing row entities allows
to capture all attributes jointly and distinguish the two cities.

end task (e.g. cities), we can instead build triples from these enti-
ties only (Figure 6.3b). This greatly reduces the number of triples
to (ncols − 1)nrows (these entities generally come from a single col-
umn) and returns embeddings tailored for the entities under study.
However, this approach neglects other entities: they are not directly
connected to the entries of the row and are thus likely to underper-
form in other applications. Finally, we consider a third heuristic that
assigns a row id to each row of the table, treats this row id as an
entity, and then links it to the various entries of the row (Figure 6.3c).
This method combines benefits of the previous methods: it does not
require any prior knowledge of the downstream application and gen-
erates a light graph with ncols ×nrows triples. Yet learning an addi-
tional embedding for each row may raises scalability issues if there
are much more rows than distinct entities to embed.

A desirable property of table-to-graph methods is their ability to
represent joint information across columns. For instance Figure 6.4a
considers two cities A,B with their number of companies in different
fields of activity. Taken alone, the two columns are not very informa-
tive: what matters here is the number of companies in a certain field
of activity, which requires to consider both columns jointly. Methods
that build triples from table entries such as cities encode the attributes
“field of activity” and “number of companies“ independently, and
thus cannot distinguish A and B from their triples (Figure 6.4b). In
contrast, introducing row entities allows to capture row data jointly
and differentiate the two cities (Figure 6.4c).

Finally, if missing data are present in the table, we encode them
with specific entities (one for each column).
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E M P I R I C A L S T U D Y A N D D I S C U S S I O N

In this chapter, we investigate whether knowledge graph embed-
ding models capturing numerical attributes can serve as efficient and
scalable feature extractors. For this, we first conduct in Section 7.1 a
thorough empirical evaluation of various feature engineering meth-
ods. We then discuss their performance and conclude on their poten-
tial in Section 7.2.

7.1 empirical evaluation

We compare our approach with automatic feature extraction tech-
niques, such as Deep Feature Synthesis (DFS) or RDF2vec, and focus
on two criteria:

— the quality of the extracted features: how well do they improve
performance in downstream tasks?

— the scalability of the approach: time and space complexity, size
of the feature vectors

7.1.1 Downstream tasks

We evaluate our approach on 7 prediction tasks on various types of
entities. In each task, we extract features for the entities of interest (i.e.
target entities) from a source dataset, and add them to a target dataset
containing the variable to predict. To showcase the versatility of our
method, we consider tables and knowledge graphs as source data.
More details about the downstream tasks and datasets are given in
the appendix, Section A.2.1.

tabular data We first consider two classification tasks: KDD14
(classification of educational crowdfunding projects) and KDD15 (stu-
dent dropout prediction in MOOCs). For these tasks the source data
consists of multiple tables describing the target entities. To leverage
this data in our approach, we represent it as a knowledge graph by
using target entities as head entities and linking them to other entries
from the same rows, similarly to Figure 6.3b.

knowledge graphs To support our claim that general-purpose
embeddings can be learned from large databases and used in various
end tasks, we consider a more challenging setup: enriching several
downstream tasks with background information from Wikipedia.
To that end, we leverage YAGO3, a knowledge graph representa-
tion of common knowledge, built from Wikipedia and other sources
(Mahdisoltani et al., 2013).
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Our version of YAGO3 contains 2.8 million entities, described by
7.2 million triples. We learn embeddings for various entities that are
common in data science problems (counties, cities, people, compa-
nies, movies...) and use them in 5 regression tasks on socio-economic
topics 1:

— Elections: predict the number of votes per party in 3000 US
counties.

— Housing prices: predict the average housing price in 23000 US
cities.

— Accidents: predict the number of accidents in 8500 US cities.

— Movie revenues: predict the box-office revenues of 4900 movies.

— Employees: predict the number of employees in 3000 companies.

Note that there exists a more recent version of YAGO (Pellissier
Tanon et al., 2020), with a much greater coverage of information: 64

million entities, with about 2 billion triples. However, we could not
include it in our empirical study as the DFS baseline was intractable
on such a large database.

7.1.2 Approaches considered for evaluation

We describe below the feature extraction approaches that we in-
clude in our empirical study.

our approach We implement KEN on top of 3 embedding algo-
rithms: TransE (Bordes et al., 2013), the seminal work that introduced
relations as translations of embeddings, DistMult (Yang et al., 2015),
with scoring function f(h, r, t) = h · (r ⊙ t), and MuRE (Balazevic et
al., 2019) because it emerged as a top-performing method in link pre-
diction (Ali et al., 2020). We learn 200-dimensional embeddings and
keep all hyper-parameters constant, except for the number of epochs
∈ [2, 4, 8, 16, 24, 32, 40] that we tune (see Section A.2.2 for the exact pa-
rameters used). We base our implementations on PyKEEN (Ali et al.,
2021), a Python library for learning knowledge graph embeddings. In
addition, PyKEEN implements a version of DistMult that leverages
numerical values with LiteralE (Kristiadi et al., 2019), which allows
for a comparison with KEN.

deep feature synthesis We compare our embedding approach
to Deep Feature Synthesis (DFS, see Figure 5.2). We use an imple-
mentation of DFS from the Python package featuretools and extract
features at depths (0, 1, 2, 3) with the default aggregation functions:
MEAN, MIN, MAX, STD, SKEW, SUM for numerical features, MODE, NUM_UNIQUE
for categorical features and COUNT for both. Categorical features are
one-hot encoded to their 10 most common categories. To apply DFS
on YAGO3, we convert it to tabular format by creating a table with
two columns (head, tail) for each forward/inverse relation.

1. Target entities for which we extract features from YAGO3 are underlined.
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manual feature engineering Besides DFS, we include man-
ual feature engineering to our empirical study. The objective is to
estimate how well an analyst would perform given a time budget of
1-2 hours per dataset. Results obviously depend on the analyst and
could be improved with more effort, but they provide a simple base-
line for a time-constrained analysis. See appendix (Section A.2.2) for
a description of the handcrafted features we used.

rdf2vec Finally, we also compare our approach to RDF2vec, tra-
ditionally used to extract features for downstream tasks. For each
entity under study, we generate all possible walks of depth 2, going
through forward and backward relations (as in Figure 5.3). However,
as the number of walks can be very high for certain entities (e.g. tens
of millions), we cap this number to 10000, and checked empirically
that this value is large enough to impact only a small fraction of enti-
ties. We then feed these sequences to a SGNS model with embedding
dimension = 200, window size = 4 (which allows to capture 1-hop
and 2-hop neighborhoods), and pick the epoch ∈ [1, 5, 10, 20] that
performs best. We used the pyRDF2Vec package (Vandewiele et al.,
2020a) to run the experiments.

7.1.3 Quality of the extracted features

methodology We first study how well feature vectors created from
a source database can improve performance in data-science tasks. For
this, we consider the prediction problems introduced in Section 7.1.1
and the feature extraction approaches presented in Section 7.1.2: TransE,
DistMult and MuRE with and without KEN; Deep Feature Synthesis;
manual feature engineering; and RDF2vec.

We measure performance with cross-validation scores, and only
use entity representations to predict the target values 2. For regression
and classification, we use two analytic models from the scikit-learn
library: k-nearest neighbors and gradient boosted trees, whose hyper-
parameters are tuned. We report in Table 7.1 5-fold cross-validation
scores, averaged over multiple seeds for splitting the data in train-test
and training the embedding models. See the appendix (Section A.2.3)
for a more detailed description of the experimental setup.

results When using entity-embeddings as feature vectors, Dist-
Mult and MuRE overall outperform RDF2vec by a wide margin
(except on the Employees dataset, where RDF2vec gets surprisingly
good results), with MuRE appearing as the best approach. We explain
this gap by their ability to capture well relational information. In par-
ticular, MuRE is more expressive than TransE and DistMult (their
scoring functions can be seen as special cases of MuRE) and thus bet-
ter model complex relations. In contrast, TransE does not model well
many-to-one relationships: if we have (h, r, t) and (h ′, r, t), then h

2. Except in the Elections dataset, where we also include the political party when
predicting the number of votes.
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Table 7.1 – Quality of the extracted features: Cross-validation scores on tar-
get datasets using either embeddings, deep feature synthesis, or
manually handcrafted vectors as features. The scoring metrics
are: average precision (KDD14), AUC (KDD15) and R2 for the
remaining datasets. Bold and underlined scores correspond to
the first and second best-performing approaches. Grayed cells
indicate when MuRE + KEN outperforms deep feature synthe-
sis. Results with standard deviations are given in the appendix
(Table A.5).

Feature enrichment

from domain-

specific tables

Feature enrichment from a

general-purpose

knowledge graph, YAGO3
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Advanced analytic models: gradient boosted trees

Feature vectors tailored for target entities
Manual feature

handcrafting
0.267 0.869 0.955 0.273 0.360 0.141 0.367

DFS, depth 0 0.158 0.584 0.836 0.165 0.162 0.016 0.126

DFS, depth 1 0.461 0.880 0.960 0.369 0.423 0.153 0.382

DFS, depth 2 0.463 0.880 0.964 0.605 0.570 0.163 0.384

DFS, depth 3 0.499 0.881 0.969 0.683 0.590 0.189 0.381

DFS, depth 3 + ontology 0.958 0.686 0.589 0.259 0.390

RDF2vec 0.173 0.849 0.873 0.355 0.236 0.074 0.380

General-purpose feature vectors
TransE 0.242 0.854 0.899 0.321 0.256 0.092 0.003

TransE + KEN 0.334 0.875 0.939 0.447 0.381 0.095 0.214

DistMult 0.264 0.859 0.916 0.525 0.454 0.145 0.117

DistMult + LiteralE 0.286 0.870 0.841 0.484 0.443 0.110 0.227

DistMult + KEN 0.386 0.879 0.921 0.542 0.486 0.162 0.242

MuRE 0.287 0.863 0.945 0.571 0.461 0.165 0.109

MuRE + KEN 0.443 0.883 0.966 0.604 0.524 0.175 0.313

MuRE + KEN + ontology 0.957 0.602 0.541 0.266 0.345

Simple analytic models: K-Nearest Neighbors

DFS, depth 0 0.078 0.504 0.742 0.004 0.130 -0.026 0.004

DFS, depth 1 0.110 0.821 0.715 0.297 0.320 0.121 0.144

DFS, depth 2 0.107 0.821 0.763 0.395 0.349 0.119 0.086

DFS, depth 3 0.142 0.816 0.618 0.503 0.361 0.043 0.025

MuRE + KEN 0.205 0.830 0.936 0.536 0.488 0.136 0.273
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and h ′ are forced to have very close embeddings h = h′ = t− r. Sim-
ilarly, the scoring function of DistMult is symmetrical, i.e. f(h, r, t)

= f(t, r, h), which is not suited for non symmetrical relations like lo-
catedIn. We can also see from Table 7.1 that leveraging numerical at-
tributes with KEN always improves performance in TransE, DistMult
and MuRE, and that it is superior to LiteralE in DistMult.

We now compare the performance of MuRE + KEN (the best em-
bedding approach) to manual and automatic feature engineering meth-
ods. When using powerful prediction models (gradient boosted trees),
MuRE + KEN does not consistently outperforms DFS, but is often
competitive for depths ⩽ 2, and almost always outperforms manual
feature engineering. However, when using simpler prediction mod-
els (K-Nearest Neighbors), MuRE + KEN significantly outperforms
DFS for all depths. Indeed, embeddings tend to be well structured
(as induced by the scoring function) and have homogeneous coeffi-
cients with similar distributions, which facilitates the downstream
learning. In contrast, DFS creates a huge number of heterogeneous
features, which even after scaling are hard to leverage by simple mod-
els.

We also study whether injecting taxonomic information into em-
bedding models improves performance. Following d’Amato et al.,
2021, we augment YAGO3 with triples describing its ontology, such
as entity types and their relations (subClassOf and disjointWith). We
apply MuRE + KEN on this augmented version of YAGO3 and ob-
serve that it generally improves prediction performance and reduces
the gap with DFS.

capturing entity types Finally, we investigate whether knowl-
edge graph embeddings capture entity types, for instance differenti-
ating cities from movies or counties. Such information can be useful
in certain tasks that we did not consider in our previous experiments,
e.g. clustering. To evaluate this, we take many entities of various
types (cities, counties, movies, companies) from our previous tasks
on YAGO3, and measure how well entity types can be predicted from
their MuRE + KEN embeddings. We use a simple K-Nearest Neigh-
bor model, whose number of neighbors is tuned and obtain a ROC
AUC score of 0.996, showing that knowledge graph embeddings in-
deed capture entity types. We detail the experimental setup in the
appendix (Section A.2.3).

7.1.4 Scalability concerns

Large databases, such as YAGO3, bear promises to provide general-
purpose feature enrichment. For this, the scalability of features ex-
traction methods is crucial. To that end, we compare in Table 7.2 the
scalability of various approaches: Deep Feature Synthesis (for 0 ⩽
depth ⩽ 3), RDF2vec and MuRE (with and without KEN).

[ March 5, 2023 at 21:29 – classicthesis version 0.1 ]



7.1 empirical evaluation 61

methodology We quantify computational scalability with several
metrics capturing:

1) the scalability of feature extraction: duration and RAM usage
when computing the feature vectors.

2) the scalability of feature usage: dimension of the feature vec-
tors, disk memory needed to store them, and duration of cross-
validated evaluation in prediction tasks (using gradient boosted
trees).

A benefit of knowledge graph embedding models is that they learn
representations for all entities at once (e.g. cities, counties, movies
in YAGO3). This is unlike DFS and RDF2vec which typically extracts
feature vectors for target entities only. Given our objective to provide
representations for many different entities, we thus benchmark DFS
and RDF2vec when extracting features for all entities.

In some cases (KDD14 with depth 3 and YAGO3 with depth 2/3),
DFS breaks the RAM capacity of our machine (400 GB) and does
not terminate, even when splitting entities into 1000 chunks to lower
the RAM usage. For these cases, we extrapolate the total duration
based on the duration for a subset of entities, and the disk memory
required to store features based on the memory it takes for a smaller
number of features.

Similarly, we were not able to learn RDF2vec embeddings for all
YAGO3 entities due to memory overflow. We tried limiting the num-
ber of walks to 100 per entity, and only generating them from the 1%
most frequent ones, but we still could not compute them in less than
a day, even with parallelization over 40 CPUs. We thus interrupted
the process, and measured the duration and RAM usage just before
stopping.

results We report in Table 7.2 the scalability metrics described
above. As expected, DFS quickly becomes intractable on large databases:
it requires huge amounts of time and RAM to run, and returns very
high-dimensional feature vectors that need a lot of memory to be
stored and a lot of time to be leveraged by machine-learning models.
Interestingly, we saw in Table 7.1 that DFS must be computed at a
depth of 2 or more to outperform MuRE + KEN (using powerful gra-
dient boosted tree models). Yet based on this scalability study, this is
already too deep to run DFS for all entities in YAGO3, due to mem-
ory issues. In the end, DFS produces high-performance features, but
its usage is limited to small databases, or when the downstream task
is known beforehand so as to extract features for a subset of entities
only. Unlike knowledge graph embedding models, it cannot be used
to create general-purpose feature vectors from large databases with
millions of entities.

We observe similar trends with RDF2vec: feature extraction for all
entities overall requires much more time and memory than MuRE.
Actually, creating feature vectors for target entities (rather than all
entities) with RDF2vec can take more time (e.g. 9300s for 23000 cities
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Table 7.2 – Scalability of feature extraction methods: Computational scal-
ability of embedding models versus deep feature synthesis.
Grayed-out cells indicate models which are less tractable than
MuRE + KEN. Red text indicates when DFS breaks the RAM
capacity of our machine (400 GB).

Scalability

metrics
Dataset

Deep Feature Synthesis
MuRE

MuRE

+ KEN

RDF

2vecDepth 1 Depth 2 Depth 3

Extracting feature vectors for all entities

Duration (s)

KDD14 1014 11123 ≃110K 2146 6708 52000

KDD15 170 489 5107 3023 3566 1710

YAGO3 690 ≃33K ≃8.5M 1108 1762 ⩾ 100K

RAM usage

(GB)

KDD14 10.5 48 ⩾400 13.2 18.6 240

KDD15 4.9 8.2 57.7 14.8 18.8 95

YAGO3 40.1 ⩾400 ⩾400 15.9 16.1 ⩾ 30

Using feature vectors in downstream tasks

Dimension of

feature vectors

KDD14 372 2202 19379 200 200 200

KDD15 163 277 1870 200 200 200

YAGO3 271 10281 141K 200 200 200

Disk memory

needed to store

features (GB)

YAGO3 2.8 107 1471 2.1 2.1 2.1

Duration of

cross-validated

evaluation (s)

KDD14 48 91 1684 103 103 103

KDD15 4 4 9.9 19 19 19

Elections 100 276 8989 176 176 176

Housing prices 89 330 11589 145 145 145

Accidents 92 317 11496 146 146 146

Movie revenues 56 356 14988 132 132 132

Employees 72 449 15762 88 88 88

in Housing prices) than applying MuRE to all YAGO3 entities, and
must be repeated for every new downstream task.

7.1.5 KEN helps embeddings capture numerical attributes

As visible on Figure 7.1, KEN provides embeddings that represent
in a much simpler way the numerical information associated with
entities. When embedding counties from YAGO3, the structure of
KEN embeddings reflects well the population density, with a direc-
tion grouping together metropolitan areas such as Chicago (Cook
county), Los Angeles (Orange County), Houston (Harris county), and
Phoenix (Maricopa county), well separated from rural counties. On
the other hand, this information is more diluted in standard MuRE
embeddings.

methodology To evaluate quantitatively the ability of embeddings
to capture numerical information, we compare the performance of
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Hardeman, Texas 4 432
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Calhoun, Illinois 5 087
Orange, California 3 010 232
Maricopa, Arizona 3 942 169
Harris, Texas 4 173 079
Cook, Illinois 5 206 862

Figure 7.1 – Embeddings of counties using only categorical attributes
(MuRE) or all attributes (KEN-E) from YAGO3: PCA projection
of the 200-dimension embeddings in 2D. The color represents
the county population and the symbols the state of the county.
We randomly draw high and low population counties in the
same state. Cook, Orange, Harris, and Maricopa counties cor-
respond to major cities: Chicago, Los Angeles, Houston, and
Phoenix. The global structure of MuRE + KEN embeddings
better reflects the population of the counties, in particular sep-
arating the rural counties from those related to major cities. A
simple linear projection of the MuRE + KEN embeddings suf-
fices to roughly capture the rural-urban gradients, while it is
less clear on MuRE embeddings.

simple supervised models to predict the numerical attributes of en-
tities (e.g. county populations) from their embeddings. In practice
we use K-Nearest Neighbors models (whose hyper-parameters are
tuned) and aim to predict statistics about donations to projects in
KDD14, students connections to MOOCs in KDD15 and county at-
tributes in YAGO3. We measure performance with cross-validation
scores. See the appendix (Section A.2.4) for the exact evaluation
setup.

Table 7.3 – Reconstructing numerical attributes - Cross-validation scores
(R2) of simple nearest-neighbour models predicting the numeri-
cal attributes associated to an entity from its embedding.

Target DistMult
DistMult

+ LiteralE

DistMult

+ KEN
MuRE

MuRE

+ KEN

Donation

amount

(KDD14)

Mean 0.20±0.05 0.58±0.14 0.62±0.12 0.22±0.06 0.66±0.12

1st quartile 0.34±0.05 0.46±0.05 0.67±0.10 0.34±0.06 0.72±0.12

3rd quartile 0.33±0.05 0.48±0.05 0.57±0.10 0.33±0.05 0.59±0.09

Connection

time

(KDD15)

Mean 0.09±0.01 0.33±0.01 0.92±0.01 0.10±0.02 0.97±0.01

1st quartile 0.15±0.01 0.27±0.01 0.78±0.01 0.15±0.01 0.82±0.01

3rd quartile 0.39±0.02 0.45±0.01 0.74±0.01 0.39±0.02 0.84±0.01

County

attributes

(YAGO3)

Population 0.73±0.17 0.71±0.22 0.73±0.15 0.32±0.08 0.51±0.16

Latitude 0.92±0.01 0.72±0.03 0.93±0.01 0.72±0.03 0.91±0.01

Longitude 0.83±0.07 0.72±0.05 0.90±0.07 0.64±0.06 0.81±0.06
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Table 7.4 – Ablation study - Drop in cross-validation scores of variants of
MuRE + KEN and binning, relatively to the original MuRE +
KEN. Scoring metrics are: average precision (KDD14), AUC
(KDD15) and R2 for other datasets.

Dataset Binning
Variants of MuRE + KEN

No quantile

normalization

No ReLU

activation

KDD14 -0.044 -0.068 -0.045

KDD15 -0.002 0 -0.001

Elections -0.008 -0.020 -0.004

Housing prices -0.091 -0.023 -0.021

Accidents -0.063 -0.037 -0.010

Movie revenues -0.015 -0.112 -0.030

Employees -0.011 -0.007 0.002

Average across datasets -0.038 -0.047 -0.016

results The scores reported in Table 7.3 confirms that adding KEN
significantly improves the ability to capture numerical information
related to the entities: in all settings adding KEN leads to better
reconstruction of numerical attributes, and also outperforms LiteralE
by a wide margin. In addition, results show that these embeddings
capture to some extent the whole distribution of numerical attributes:
their mean, but also their quantiles.

7.1.6 Ablation study

We study in this section the influence of two ingredients of KEN on
the quality of entity-embeddings: 1) the quantile normalization of nu-
merical values at the input, and 2) the presence of a ReLU activation
function at the output (Figure 6.2).

methodology We measure the drop in performance relative to the
original MuRE + KEN when: 1) replacing the quantile normalization
by a min-max normalization x ′ = x−xmin

xmax−xmin
and 2) removing the

ReLU activation. We also compare KEN to a standard binning prac-
tice, where numerical values are divided into bins and an embedding
is learned for each bin. In practice we use 20 bins and split values
evenly across bins to be robust to fat-tailed distributions: the first bin
corresponds to values in the top 5%, the second bin to values in the
range 5%-10%, and so on... We use gradient boosted tree models for
prediction, and the same setup as in Table 7.1.

results Table 7.4 shows that all ingredients of KEN are important,
especially the quantile normalization, and confirms that KEN leads
to markedly better features than binning.
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Table 7.5 – Embedding can capture deep features: Cross-validation scores
(R2) of gradient boosted tree models using as features either em-
beddings trained on the full YAGO3 dataset, or on a subset of
YAGO3 containing only the triples related to the target entities.

Dataset YAGO3 TransE
TransE

+ KEN
MuRE

MuRE

+ KEN

Elections
subset 0.846 0.854 0.837 0.926

full 0.899 0.939 0.945 0.966

Housing

prices

subset 0.079 0.203 0.231 0.338

full 0.321 0.447 0.571 0.604

Accidents
subset 0.117 0.170 0.243 0.345

full 0.256 0.381 0.461 0.524

Movie

revenues

subset -0.003 -0.004 0.052 0.064

full 0.092 0.095 0.165 0.175

Employees
subset -0.015 0.071 0.087 0.297

full 0.003 0.214 0.109 0.313

7.1.7 Capturing deep features with embeddings

methodology We want to determine if embeddings can capture
information deep in the knowledge graph, indirectly chaining rela-
tions as in Deep Feature Synthesis. For this purpose, we compare
in Table 7.5 cross-validation scores of gradient boosted tree models
with embeddings trained either on the full YAGO3 database, or on
a subset of YAGO3 containing only the triples related to the target
entities. For example, a subset with city-related triples would contain
direct information about cities (e.g. the state in which they belong),
but no information about the states themselves. Such “deep" infor-
mation can however be helpful for analytical tasks, and should be
captured by embeddings models. The evaluation setup is the same
as in Table 7.1.

results Table 7.5 shows that adding triples indirectly related to
the target entities improves the quality of their embeddings; hence
embedding models do capture deep information.

7.1.8 Influence of table representations

methodology When the source data consists of tables, it must be
represented as a knowledge graph to be leveraged by our approach.
We introduced in Section 6.3 three table-to-graph strategies, which
differ on which entities are used as heads when generating triples
(Figure 6.3). We either use: 1) all entities, 2) only target entities (which
require some prior knowledge of the downstream application) or 3)
row ids. We evaluate the performance of these strategies with cross-
validation scores on KDD14 and KDD15, using gradient boosted tree
models for prediction (as in Table 7.1). To show the importance of
choosing well the column with the target entities in the second ap-
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proach, we also evaluate a simple baseline taking entities from an-
other column.

results Based on Table 7.6, the top performing table-to-graph strat-
egy consists in generating triples from target entities. Indeed, the
resulting graph directly connects them to their attributes, which facil-
itates the learning of embeddings. This intuition is confirmed when
taking instead entities from another column, as we observe a sharp
drop in performance. Interestingly, using all entities or row ids as
head entities return embeddings that perform reasonably well with-
out being tailored for the specific task at hand. These methods can
provide general-purpose embeddings that perform well for various
entities and applications. However, they either increase the number
of triples (and thus the training time of embeddings) or the number
of entities.

7.2 discussion

7.2.1 Embeddings capturing numerical information can provide feature en-
richment

By relying on entity embeddings, our feature-synthesis pipeline
departs strongly from the standard approach of feature engineering
in databases. Our extensive experiments confirm that features created
via knowledge graph embedding do capture the information needed
for a statistical task. Embedding models coupled with KEN improve
over manual feature engineering on almost all tasks.

We observe clear trends in the experimental results: Table 7.1 re-
veals the importance of capturing well 1) the numerical attributes and
2) relational, rather than contextual information. Indeed, across all
analytic tasks and embedding methods explored, adding KEN leads
to features that better capture numerical attributes and improve the

Table 7.6 – Influence of table representations: Cross-validation scores
of different strategies to represent tables as a knowledge
graph. Scoring metrics are average precision (KDD14) and AUC
(KDD15). We also report the number of entities and triples (in
millions) in the graph from each method.

Head entities in

generated triples

KDD14 KDD15 # triples

(KDD14,

KDD15)

# entities

(KDD14,

KDD15)
MuRE

MuRE

+ KEN
MuRE

MuRE

+ KEN

Embeddings tailored for specific entities
Target entities 0.287 0.443 0.863 0.883 44, 33 0.94, 0.27

Entities from

another column
0.227 0.233 0.861 0.863 44, 33 0.94, 0.27

General-purpose embeddings
All entities 0.289 0.406 0.864 0.883 155, 66 0.94, 0.27

Row IDs 0.282 0.409 0.856 0.878 51, 41 8.4, 8.5
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downstream analytic task (Table 7.3 and Table 7.1). It also improves
over binning and LiteralE by a large margin. The ingredients that we
introduced in KEN, such as the quantile normalization to account for
the distribution of numerical attributes significantly improves perfor-
mance (Table 7.4). Improving models of relations makes a strong dif-
ference in how useful the resulting features are for downstream tasks:
there are notable improvements from RDF2vec –no explicit model of
the relation– to MuRE (Table 7.1).

7.2.2 Deep Feature Synthesis cannot go so deep

Automated feature-engineering methods like Deep Feature Synthe-
sis greatly reduce the human cost of manually handcrafting features
across tables, while achieving excellent results on all datasets. With
deep-enough features, DFS performs consistently better than manual
feature engineering and often slightly better that MuRE + KEN (Ta-
ble 7.1).

However this ability to generate good features comes at the price of
scalability. Since DFS combines aggregation functions and features at
each depth, the time and space complexity, as well as the number of
created features grow exponentially (Table 7.2). Even on relatively
small databases like KDD14 or YAGO3, building features for all enti-
ties with DFS at a depth of 2 or 3 becomes intractable, with the mem-
ory requirements greatly exceeding our machine capacity (400 GB).
Besides memory limitations, the number of features quickly reaches
tens or hundreds of thousands, making statistical models harder and
slower to train (e.g. 180x longer on Employees), and reducing feature
interpretability.

Yet, the databases that we have explored are smaller than the latest
repositories of general knowledge: YAGO3 is 50 times smaller than
YAGO4 (Pellissier Tanon et al., 2020). Progress in linked open data
is continuously increasing the amount of information available in a
consistent representation: DBPedia (Lehmann et al., 2015) currently
contains 900 millions triplets, and growth by a factor of 1.5 to 2 every
two years (DBPedia web page n.d.). For instance, we could not run
DFS, even with a depth of 1, on YAGO4. Even if it could run, it
would provide a huge number of features, hard to leverage.

Embeddings, on the opposite, readily provide low-dimension rep-
resentations (p = 200) which are able to capture “deep” information,
indirectly chaining relations (Table 7.5). Finally, knowledge graph em-
bedding methods are very scalable: embeddings are optimized with
stochastic gradient descent (O(#triplets)), and can be trained on huge
amounts of data. Further optimizations can make embedding tech-
niques 2− 5× faster than the implementations that we used (Zheng
et al., 2020).

Knowledge graph embedding models are also naturally suited to
capture complex relational patterns between discrete elements. This
is unlike DFS, which struggles to encode categorical features: ensem-
bles of discrete entities (e.g. the cities located in a county) are ag-
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gregated by their most common element and then one-hot encoded,
discarding a lot of information in the process.

7.2.3 Current limitations call for further work

interpretability The biggest drawback of automatic feature gen-
eration is that it leads to models harder to interpret. Indeed, features
are often manually crafted to capture a quantity of interest, such as
wealth of a locality. Data scientists can then reason about the role of
the corresponding quantity, for instance the impact of local wealth on
housing prices. A challenge to these interpretations is that the crafted
feature must represent well the quantity, but for this the burden is on
the analyst and not the tool. With automatically generated features,
the quantities of interest must be identified from the features. This
is typically hard: even in DFS where features are associated with
descriptive labels, we may have to distinguish between many partly
redundant features. This is even harder in embedding models, which
are black-box and do not associate human-understandable labels to
individual features.

matching out-of-vocabulary entities The target data may
come with different naming conventions than the source, for instance
county names in the Elections dataset are written differently than
in YAGO3. In such case, a form of matching must be performed
(e.g. Cook County → Cook, Illinois). This is often done manually using
domain-knowledge. Further work should explore automated tech-
niques, for instance using fuzzy or similarity joins (Mann et al., 2016;
Silva et al., 2010), or adapting NLP techniques used to create embed-
dings robust to out-of-vocabulary entities (Bojanowski et al., 2016;
L. Chen et al., 2022; Pinter et al., 2017).

scalability Even though knowledge graph embedding models
are much more scalable than combinatorial feature engineering meth-
ods like DFS, training them on very large databases can still be chal-
lenging. Indeed, they typically learn a separate embedding for each
entity, and may thus not fit in memory when there are a lot of them.
For instance, storing embeddings for the 64 millions of entities in
YAGO4 requires about 90GB of RAM, which is above the RAM ca-
pacity of most GPU devices. Several strategies have been explored
to improve the scalability of knowledge graph embedding models.
NodePiece (Galkin et al., 2022) combines embeddings from a small
number of anchor entities to form representations for other entities,
reducing the number of parameters to learn by 90-99%. Other ap-
proaches focus on graph partitioning, creating smaller, disjoint sub-
graphs whose entity embeddings can fit in memory and be trained
separately (Kochsiek and Gemulla, 2021).

complex and heterogeneous data So far, the knowledge graph
embedding models used in our approach only capture relationships
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between discrete entities, and numerical attributes (using KEN). Yet,
knowledge graphs and tables may come with complex or heteroge-
neous information that is relevant for downstream tasks. To cap-
ture them, several approaches have been proposed in the knowledge
graph embedding literature. For instance, diachronic embedding
(Goel et al., 2019) accounts for the temporal nature of the data by rep-
resenting each entity with a dynamic, rather than static embedding.
Other methods consider not only the structure of the graph to learn
entity embeddings, but also unstructured information that may come
with it, such as text or images (Gesese et al., 2021).

7.3 conclusion

We have shown how turn-key extraction of embeddings from rela-
tional data can distill valuable information from a database, synthe-
sizing feature vectors for data enrichment in downstream analytic
tasks. For these feature vectors to be most useful in the analytic
tasks, experiments show that embedding methods must model well
the different relations between entities, and capture their numerical
attributes. For this, we proposed to use knowledge graph embedding
models designed for link prediction, and extended them to numerical
attribute with KEN. Our extensive experiments show that these em-
beddings improve markedly upon manual feature engineering and
embedding methods traditionally used for feature extraction such as
RDF2vec. They are also competitive with automatic feature engineer-
ing methods based on systematic denormalizations like Deep Feature
Synthesis, but do not face the same scalability challenges.

a pipeline to minimize human effort Our pipeline is de-
signed to facilitate data preparation. Not only does it circumvent the
human labor of designing manual features, but also is minimizes data
integration and wrangling challenges. Operating on a triple repre-
sentation –sometimes automatically built from tables– removes many
tedious aspects of data input. For instance it works well on tables
in “long” or “wide” formats. It also allows to capture and mix infor-
mation from various data structures: tables, knowledge graphs... Yet,
richer representations may be useful in the long run to better capture
complex relationships within the data, such as temporal dependen-
cies (Arora and Bedathur, 2020).

towards general-purpose feature enrichment The scal-
ability of our approach enabled to easily extract embeddings from
YAGO3, capturing the corresponding information drawn from Wikipedia.
These could readily be used as feature enrichment to improve statis-
tical analysis on 5 different socio-economic datasets we investigated.
Our work thus opens a path to capturing the large and complex stores
of general information into feature vectors easy to integrate into any
analysis. As such it contributes a major step towards facilitating data
science with less manual data preparation.
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8.1 machine learning on embeddings enables data anal-
ysis without cleaning

In Part 1, we considered the problem of data analysis across non-
normalized sources. Although leveraging data from various sources
is useful to establish more general findings, standard analytic meth-
ods relying on data queries require prior entity matching to select
all instances from the population of interest. Despite dedicated soft-
wares and progress in automating entity matching, it remains a chal-
lenging task that often requires domain-expertise and manual super-
vision over a large number of entries.

As an alternative, we showed that machine learning models can be
used to estimate various statistical quantities involved in data analy-
ses. Importantly, these models do not rely on query aggregates, and
thus do not require exact correspondences between entities. Instead,
they can leverage vector representations that express similarities be-
tween entries: those which denote the same entity should have close
representations.

Our experimental results support these claims: on a socio-economic
study of salaries across 14 employee databases, approaches based on
simple machine learning models and embeddings obtain similar or
smaller estimation errors than those based on matching and queries,
while requiring much less human effort. These results have practical
implications for data analysis and management practices. Cleaning
faces discrete challenges, i.e. to match or not to match, that is not
suited to the ambiguities of real-world data and may thus bias anal-
yses. Instead, representing these uncertainties in embeddings and
passing them directly to a supervised model improves the quality of
analysis.

Finally, recent progresses in embedding models present opportu-
nities to better capture similarities between entities, such as state-of-
the-art transformer-based models (Devlin et al., 2018), multi-lingual
embeddings (X. Chen and Cardie, 2018), architectures robust to string
variations and out-of-vocabulary entities (L. Chen et al., 2022; Pinter
et al., 2017), or embedding models trained on the data at hand to
adapt to its specificities (Cappuzzo et al., 2020).

8.2 embeddings enable joins over relational data with-
out feature engineering

We then addressed in Part 2 the problem of joining information
across relational data. While joining new features to a table is often
helpful in data analyses, it usually requires tedious feature engineer-
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ing to assemble the information scattered across databases into a sin-
gle feature matrix. Automatic methods for feature engineering have
been proposed, but are generally combinatorial in nature and do not
scale to large databases.

Instead, we showed that by representing the relational data as a
knowledge graph, embedding models can be directly applied to the
unassembled data to provide feature vectors for the entities under
study. This approach offers multiple advantages: the triple repre-
sentation used in knowledge graphs allows to easily incorporate in-
formation from other sources (e.g. tables), which is then captured
in low-dimensional (hence scalable) embeddings. However, a major
drawback of embedding models is that they are typically designed for
discrete entities, but not for numerical values which are often infor-
mative. We thus introduced KEN, a module that extends knowledge
graph embedding models to numerical attributes.

We thoroughly evaluated the performance and scalability of our ap-
proach on multiple analytical tasks that we enriched with background
information from tables or knowledge graphs. Our results shows that
it is competitive with state-of-the-art automatic feature engineering
methods, while being much more scalable, and that it outperforms
manual feature engineering. They also demonstrate that capturing
numerical attributes with KEN leads to significant increases in perfor-
mance. Our approach thus contributes a major step towards analyt-
ics with less data assembling, and paves the way for general-purpose
entity embeddings to be used in various downstream applications.
Finally, a remaining challenge to fully enable joins over relational
data is to make embedding models robust to variations in the entity
names.

8.3 embedding models bring new opportunities to data

analysis

Beyond the specific problems that we addressed in this thesis, em-
bedding models bring many other opportunities to data analysis. Pre-
trained or data-specific embeddings have been successfully used in
various tasks such as record linkage (Cappuzzo et al., 2020; Ebra-
heem et al., 2018; Zhao and He, 2019), schema matching (Koutras
et al., 2020), table retrieval (Zhang et al., 2019) or more generally for
data curation (Thirumuruganathan et al., 2020).

Nowadays, bigger and bigger embedding models are being trained
on increasingly large amounts of data (Sharir et al., 2020). For ex-
ample, multi-modal embedding models are able to integrate alto-
gether data of various natures, such as tables, graphs, images or
text (Pezeshkpour et al., 2018; Yin et al., 2020). In natural language
processing, very large language models such as GPT-3 (Brown et
al., 2020) or T5 (Raffel et al., 2019) now encapsulate huge amounts
of human knowledge that can be harnessed in multiple tasks, such
as automating data wrangling operations (Jaimovitch-López et al.,
2023), or augmenting and curating knowledge bases (Razniewski et
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al., 2021). Similar opportunities exist beyond language models: large
knowledge bases such as YAGO4 (Pellissier Tanon et al., 2020) and
huge corpuses of tables (Cafarella et al., 2008; Hulsebos et al., 2021)
provide valuable information about millions of entities that has yet
to be captured in rich representations and leveraged in numerous
applications.

8.4 lessons i have learned

Throughout this thesis, a recurring and fundamental question that
I faced was: “How to learn rich, general-purpose representations of entities
that could be used in a myriad of different tasks?”. After three years of
research, two key elements have appeared to me as crucial in this re-
gard. The first ingredient towards good entity embeddings is the data
from which we learn: to induce representations with rich semantics,
data must be as exhaustive and diverse as possible, aggregating infor-
mation about entities from various and large sources. This observa-
tion has practical implications: we need embedding models that can
scale to large databases, and input information from diverse sources.
For this, knowledge graph embedding models naturally appeared as
a good solution.

The second ingredient towards good entity embeddings is the em-
bedding model itself, which must faithfully encapsulate the informa-
tion scattered in the data into the learned representations. Indeed,
even with the best training data, a model that is not expressive enough
to accurately represent it will result in poor embeddings (e.g. con-
textual, RDF2vec embeddings). However, the challenge is that there
are often multiple information of different natures that co-exist in
the data, and knowing which ones are relevant for a certain task or
which ones are actually captured by the model is not straightforward.
For example, knowledge graphs provide relational information about
entities, e.g. knowing that two entities h, t are linked through the re-
lation r. But they also contain information about the types of entities:
an entity h that appears in a relation livesIn is likely to be a person.
Yet it was unexpected to see that this information is captured as well
by knowledge graph embedding models (Section 7.1.3), even though
they were not primarily trained for that. Similarly, knowledge graphs
inform us about the “importance” of entities via the number of triples
in which they appear. And again, I was surprised to observe that em-
beddings implicitly capture the frequency of entities in the data.

In the end, I believe these observations call for more experiments
to determine when and how embedding models are able or fail to
capture certain patterns in the data, with the aim of learning better
representations.
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a.1 data analytics across non-normalized sources

We provide here the implementation details of the estimation meth-
ods presented in Part 1.3.3.2.

a.1.1 Embedding and fuzzy matching

Matching and averaging estimates can exhibit high variance, espe-
cially when the groups over which they are computed contain few
employees. To obtain more reliable estimates, fuzzy matching aver-
ages manual matching estimates τ̂matching(j

′, e) over several jobs j ′,
giving more weight to those that are similar to the job j of interest.
For instance, when estimating the mean salary given the job j and
experience level e, the fuzzy estimator is defined as follows:

τ̂ fuzzy(j, e) =

∑
j ′∈J

τ̂matching(j
′, e) · sim(j ′, j)∑

j ′∈J

sim(j ′, j)
(A.1)

with J the set of all job titles and sim(j ′, j) ⩾ 0 the string similarity
between the job j ′ and the job j of interest.

To define the string similarity sim(j1, j2) between job titles, we en-
code them into vectors j1, j2 using a pretrained fastText model 1 and
compute their cosine similarity:

c(j1, j2) =
j1 · j2

||j1|| ||j2||
∈ [−1, 1]

We finally obtain the similarity score by rescaling the cosine similarity
into [0, 1], based on a threshold t that we tune to minimize cross-
validation errors:

sim(j1, j2) =

{
c(j1,j2)−t

1−t if c(j1, j2) ⩾ t

0 otherwise

We follow the same procedure for all the tasks evaluated in Ta-
ble 4.1, and tune the threshold t ∈ {0.9, 0.8, 0.7, 0.6, 0.5} to minimize
cross-validation scores.

We follow a slightly different strategy when studying the causal
effect of gender on salary. When an employee i has counterparts of
the opposite sex in the data (i.e. Oi ̸= ∅), we keep the matching &
averaging estimates. However, if Oi = ∅, we consider instead the sets
O

(j)
i of employees with the same covariates, except for their job title

1. The fastText model for english words can be downloaded here:
https://fasttext.cc/docs/en/crawl-vectors.html.
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j ̸= ji, and of opposite sex. For each set O(j)
i we compute the average

salary ȳ(O
(j)
i ), and finally estimate yunobs

i as a weighted average over
the different ȳ(O(j)

i ), based on the similarity between j and ji.

τ̂ fuzzy =
1

n

n∑
i=1

Wi(yi − ŷi
unobs) + (1−Wi)(ŷi

unobs − yi) (A.2)

with

ŷi
unobs =



1
|Oi|

∑
k∈Oi

yk if Oi ̸= ∅

∑
j∈J

ȳ(O
(j)
i ) sim(j,ji)∑

j∈J

sim(j,ji)
otherwise

(A.3)

We use the same similarity score as before, with a threshold t = 0.8.

a.1.2 Embedding and learning

For regression and classification tasks, we use gradient boosted
trees 2 as machine-learning model fθ. We also use vector representa-
tions ji of the job titles as features (obtained from a pretrained fastText
model) to implicitly account for entity-matching.

For the tasks evaluated in Table 4.1, we tune the learning rate α ∈
{0.01, 0.03, 0.1, 0.3} of the models to minimize cross-validation errors.
When doing causal analysis (Figure 4.1), we tune their learning rates
∈ [0.1, 0.3, 0.5] and maximum depths ∈ [8, 12, None].

2. See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
HistGradientBoostingRegressor.html and https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.HistGradientBoostingClassifier.html
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a.2 enriching data analyses with background informa-
tion

a.2.1 Downstream tasks

tabular data

— The KDD14 competition aims to predict “exciting” educational
projects on a crowdfunding platform (binary target). The source
data consists of three tables describing the projects, the dona-
tions they received, and the resources they need. The exact
columns used in our experiments are described in Table A.1.
Since embedding models with KEN are designed for discrete
entities or numerical values, we perform minimal preprocess-
ing on a few columns with different data types. For instance, we
encode donations_message (free text) by their length. Temporal
data, such as donation_timestamp are converted to a number of
days after the project posting date. We also convert date_posted
to a number of days after an arbitrary reference date. For a
fair comparison, we use the same preprocessed features when
running DFS.

— The KDD15 challenge aims to predict student dropout predic-
tion in MOOCs (binary target), using as source data 4 tables
that contain information about the courses and how often stu-
dents interacted with them (see Table A.2). To account for the
temporal information in KDD15, we replace logs times (date) by
numbers in [0, 1], describing when they occur relatively to the
courses start/end dates. We also replace the courses starting
dates by a number of days after a reference date, and drop the
ending dates as all courses have the same duration (29 days),
making this feature uninformative.

datasets augmented with yago3 embeddings

— Elections - We consider voting statistics in the 2020 presidential
election, and aim to predict the number of votes per party in
3000 US counties. As the original data (Lab, 2018) come with
no general information about counties, we enrich them with
county embeddings learned on YAGO3

— Housing prices - We want to predict the typical housing price
in 23000 US cities using their YAGO3 embeddings. We take
target estimates from the Zillow group (Zillow, 2021).

— Accidents - We aim to predict the number of accidents in 8500

US cities between 2016 and 2020 using their YAGO3 embed-
dings. We use data described in (Moosavi et al., 2019).

— Movie revenues - We aim to predict the box-office revenues of
4900 movies using their YAGO3 embeddings. We used data
from: https://www.kaggle.com/
rounakbanik/the-movies-dataset.
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— Employees - We aim to predict the number of employees in 3000

companies using their YAGO3 embeddings. We used data from:
https://www.kaggle.com/
peopledatalabssf/free-7-million-company-dataset

Since all these targets span over several orders of magnitude. We
predict log(target) instead of the target in our experiments.

statistics on source datasets We give in Table A.3 the num-
ber of entities, relations and triples in the knowledge graph represen-
tations of the source data used to learn entity-embeddings.

a.2.2 Approaches considered for evaluation

our approach When training embedding models (MuRE, Dist-
Mult and TransE), we do not tune hyper-parameters and use the fol-
lowing values in all experiments:

— embedding dimension = 200

— distance in scoring function: ℓ2 norm for MuRE, ℓ1 norm for
TransE and DistMult

— batch size = 105

— optimizer: Adam with learning rate = 10−3.

Table A.1 – Description of the KDD14 dataset. The outcomes table contains
the target entities project_id for which we want to create feature
vectors, and the binary value to predict is_exciting. We always
use project_id as the head column when building the graph.

outcomes projects

project_id (str) project_id (str)

is_exciting (target) teacher_id (str)

school_id (str)

donations school_city (str)

project_id (str) school_state (str)

donor_city (str) primary_focus_subject (str)

donor_state (str) primary_focus_area (str)

is_teacher_acct (bool) secondary_focus_subject (str)

donation_timestamp (date) secondary_focus_area (str)

donation_to_project (float) resource_type (str)

donation_optional_support (float) poverty_level (str)

donation_message (text) grade_level (str)

eligible_double_your_impact_match (bool)

resources eligible_almost_home_match (bool)

project_id (str) total_price_excluding_optional_support (float)

project_resource_type (str) total_price_including_optional_support (float)

item_unit_price (float) students_reached (float)

item_quantity (int) date_posted (date)
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Table A.2 – Description of the KDD15 dataset. The outcomes table contains
the target entities enrollment_id for which we want to create fea-
ture vectors, and the binary value to predict dropout. We use the
first column of each table as head column when building the
graph.

outcomes objects (course modules)

enrollment_id (str) module_id (str) — A module of a course

dropout (target) course_id (str)

category (str)

enrollments

enrollment_id (str) logs (student interactions with courses)

student_id (str) enrollment_id (str)

course_id (str) event (str) — Type of interaction

source (str) — Event source

dates object (str) — Module being interacted with

course_id (str) time (date) — Time of the event

from (date) — Course starting date

to (date) — Course ending date

— loss function: margin loss with γ = 4 in TransE, and a softplus
loss for MuRE and DistMult

— negative sampling: for each positive triple (h, r, t), we generate
10 negative samples by replacing the head h by a random entity
h ′ that co-occurs with the relation r. Doing so provides harder
negative triples and improves the results.

We then train each model for 40 epochs, and pick the epoch ∈ [2, 4, 8, 16, 24, 32, 40]

that leads to the best cross-validation scores in downstream tasks.
A technical subtlety with MuRE is that we must define biases bt(x)

for numerical values x. We do so by learning a constant bias br for
each numerical attribute r: ∀x, bt(x) = br.

manual feature engineering We describe below the typical
feature engineering steps that we performed. See Table A.4 for the
exact list of handcrafted features.

— identifying relevant features

— building features using joins and simple aggregation functions
(mean, counts)

Table A.3 – Statistics of the knowledge graphs representations for the data
used to train embeddings in our experiments. Numbers in
parenthesis describe the part of numerical relations and triplets
in the total.

Source data Entities Relations Triples

KDD14 945k 27 (10) 44M (22.3M)

KDD15 227k 9 (2) 33M (8.2M)

YAGO3 2.8M 58 (21) 7.2M (1.6M)
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Table A.4 – Manually handcrafted features for each dataset.

Dataset Handcrafted features

Numerical Categorical (one-hot encoded)

KDD14

– donation_to_project (mean, counts)

– length_donation_message (mean)

– students_reached

– total_price_excluding_optional_support

– total_price_including_optional_support

– eligible_double_your_impact_match

– eligible_almost_home_match

– primary_focus_subject

– primary_focus_area

– resource_type

– poverty_level

– grade_level

KDD15

– # of interactions (events) with courses

– mean event time (relative to the course

starting/ending dates)

– course starting date

– # of modules per course

– course_id

Elections
county population, latitude, longitude,

area, population density

Housing prices
city population, latitude, longitude,

area, population density

Accidents
city population, latitude, longitude,

area, population density

Movie revenues
– duration of the movie

– number of actors, creators,

editors, directors, music writers

– country of production

Employees

– mean value of all numerical attributes

that exist for at least 5% of the companies

– counts of all non-numerical attributes

that exist for at least 5% of the companies

— one-hot encoding of low-cardinality categorical features

— removing irrelevant, redundant, or hard to encode features (e.g.
with high cardinality)

a.2.3 Quality of the extracted features

When using gradient boosted tree models (which offer native sup-
port for missing values), we use the default parameters from sklearn,
except on the smaller datasets using YAGO3 embeddings. For these
datasets, we tune the following model parameters with a cross-validated
grid search: max_depth ∈ [2, 4, 6, None] and min_samples_leaf ∈ [4, 6,
10, 20].
When using KNNs, we tune the number of neighbors ∈ [1, 3, 5, 10,
30], except on KDD14/15. We also impute missing values (common
in DFS) with the median of each feature, and then normalize feature
values between 0 and 1 with min-max scaling.
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We report in Table 7.1 5-fold cross-validation scores, averaged across
5 random shuffles of the data (3 for KDD14/15) and over 3 different
seeds for training the RDF2vec and knowledge graph embeddings (1
for KDD14/15). We also provide in Table the standard deviations
across train-test splits associated to these scores.

To evaluate the ability of knowledge graph embedding models
to capture entity types, we sample 1000 entities from the following
datasets: Elections (counties), Housing prices (cities), Movie revenues
(movies), Employees (companies), for a total of 4000 entities. When
then measure with cross-validation how well MuRE + KEN embed-
dings predict entity types, using a simple KNN model whose number
of neighbors ∈ [1, 3, 5, 10, 30] is tuned. The cross-validation parame-
ters are the same as above.

a.2.4 KEN helps embeddings capture numerical attributes

We obtain the results from Table 7.3 by predicting certain numerical
attributes of entities from their embeddings, using simple K-Nearest
Neighbors models. For the embeddings, we kept those from Ta-
ble 7.1. We also tuned the hyper-parameters of nearest neighbors
models to maximize prediction performance, using a cross-validated
grid search over the following parameters:

— number of neighbors ∈ [1, 2, 3, 4, 8, 16]

— distance: ℓ1 or ℓ2 norm

— weighting of the neighbors: uniform or proportional to the dis-
tance with the target entity

The final scores are then obtained with 5-fold cross-validation, aver-
aged over 5 repeats.
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