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Modélisation mathématique et contrôle de phytopathogènes de plantes pérennes

Résumé Les maladies fongiques causent d'importants dégâts dans les cultures et menacent la sécurité alimentaire mondiale. Les fongicides chimiques sont couramment utilisés, mais ils sont nocifs pour l'environnement, la santé humaine et peuvent entraîner des résistances des pathogènes. Il est donc nécessaire de développer des méthodes de contrôle plus durables. Pour aborder cette question, nous avons développé des modèles mathématiques représentant l'interaction plante-champignon, afin de proposer des méthodes alternatives. Nous avons obtenu des résultats qualitatifs génériques, qui ont été appliqués à la rouille orangée du caféier causée par Hemileia vastatrix, une importante maladie du café. Cette culture de rente faisant vivre de nombreux petits producteurs et leurs familles, le contrôle de cette maladie est un enjeu socio-économique majeur. Tout d'abord, nous avons développé un modèle représentant l'interaction plante-champignon en utilisant des équations différentielles ordinaires. Comme dans les modèles épidémiologiques classiques, la population hôte a été subdivisée par état de santé, l'individu étant la feuille de la plante. L'infection étant transmise par les spores libérées par le champignon, leur dynamique a également été incluse. De plus, les feuilles jeunes et matures ont été différenciées, pour tenir compte de variations d'agressivité du champignon selon l'âge de l'hôte. Nous avons calculé le taux de reproduction de base R 0 , qui détermine classiquement la stabilité de l'équilibre sans maladie. Ce modèle a exhibé des propriétés asymptotiques complexes, différentes des modèles classiques : R 0 < 1 ne suffisait pas à obtenir la stabilité de l'équilibre sans maladie, un équilibre endémique stable pouvant exister ; R 0 > 1 ne garantissait pas l'existence et la stabilité d'un équilibre endémique, car de fortes valeurs de R 0 pouvaient conduire à la destruction de la plantation.

Puis, les spores de champignons tels que H. vastatrix étant dispersées par le vent, nous avons considéré un modèle spatio-temporel décrivant la propagation de la maladie dans une plantation pendant la saison des pluies et la saison sèche, à base d'équations aux derivées partielles. Nous avons calculé deux seuils, les taux de reproduction de base en saison des pluies et saison sèche, qui caractérisent la stabilité des équilibres des sous-systèmes saisonniers. Pour illustrer ces résultats théoriques, des simulations numériques ont été réalisées, en utilisant une méthode non-standard de différences finies pour intégrer le modèle. Nous avons également étudié numériquement l'impact d'un agent de biocontrôle qui réduit la reproduction du champignon. Nous avons déterminé son seuil d'efficacité afin d'assurer l'éradication de la maladie.

Enfin, nous avons développé un modèle multi-saison, avec des dynamiques continues pour l'hôte et le champignon en saisons des pluies et des événements discrets pour les dynamiques plus simples des saisons sèches. En outre, nous avons implémenté une stratégie de biocontrôle fondée sur des hyperparasites se nourrissant de spores, dont la dynamique a été explicitement représentée. Les hyperparasites étaient lâchés une ou plusieurs fois pendant les saisons des pluies. Des études analytiques et semi-numériques ont été réalisées afin de déterminer la quantité et la fréquence des lâchers nécessaires pour contrôler efficacement la maladie. Nous avons montré que la meilleure stratégie dépendait de la mortalité des hyperparasites : les parasites à faible mortalité ne devaient être introduits qu'une fois par an, tandis que les parasites avec une mortalité élevée devaient l'être plus fréquemment afin d'assurer leur persistance dans la plantation.

Grâce à la modélisation mathématique, ce travail fournit des bases qualitatives et quantitatives pour la compréhension des interactions plante-champignon, ainsi que pour la mise en place d'alternatives aux fongicides chimiques afin de lutter contre les maladies fongiques de cultures pérennes.
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Modélisation mathématique et contrôle de phytopathogènes de plantes pérennes

Résumé grand public Les maladies fongiques causent d'importants dégâts dans les cultures et menacent ainsi la sécurité alimentaire mondiale. Les fongicides sont largement utilisés, malgré leur impact négatif sur l'environnement et la santé humaine. En outre, ils induisent des résistances qui limitent leur utilisation à long terme. Des méthodes de lutte alternatives et durables doivent donc être développées. Cette thèse contribue à cet enjeu par une approche de modélisation mathématique. Les modèles représentent les dynamiques saisonnières des interactions plantechampignon et intègrent une méthode de lutte biologique par des lâchers d'hyperparasites. Les résultats obtenus ont permis de déterminer la quantité et la fréquence de lâchers nécessaires pour contrôler la maladie. Ils ont été appliqués à la rouille orangée du caféier, une importante maladie du café. Cette culture de rente faisant vivre de nombreux petits producteurs, le contrôle de cette maladie est un enjeu socio-économique majeur.

Mathematical modelling and control of perennial plant phytopathogens

Lay summary Fungal diseases cause significant damages in crops and thus threaten global food security. Fungicides are widely used, despite their negative impact on the environment and human health. In addition, they induce resistance that limits their long-term use. Alternative and sustainable control methods therefore need to be developed. This thesis contributes to this issue through a mathematical modelling approach. The models represent the seasonal dynamics of plant-fungus interactions and integrate a biological control method using hyperparasite releases.

The results obtained allowed to determine the quantity and frequency of releases necessary to control the disease. These results were applied to coffee leaf rust, a major coffee disease. Coffee being an important cash crop which provides a living for numerous small producers, controlling coffee leaf rust is a major socio-economic issue. 1.1 Context
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Socio-economic impact of crop pests and diseases

Agriculture plays a key role in reducing poverty, raising incomes and improving food security [START_REF] Mondiale | Agriculture et alimentation[END_REF]. The rapid growth of global population raises the need for agricultural production while simultaneously increasing the need for agricultural land. As agriculture struggles to feed this growing population, climate change, pest and crop diseases reduce quantity and quality of crop production [START_REF] Mondiale | Agriculture et alimentation[END_REF][START_REF] Fróna | The challenge of feeding the world[END_REF][START_REF] Agrios | Plant Pathology[END_REF]. According to FAO estimates, up to 40% of the world crop production is lost each year due to pests, and plant diseases cost the global economy more than $220 billion yearly [START_REF]Climate change fans spread of pests and threatens plants and crops, new fao study[END_REF]. Global yield losses for crops that dominate the world in production, such as rice, wheat, barley, maize, potatoes, soybeans, cotton, and coffee in various regions and countries range from 20% to 40% [START_REF] Oerke | Crop losses to pests[END_REF]. Due to the intricate interactions between social and economic issues, the primary problem facing agriculture is ensuring food security while increasing production and reducing environmental cost [START_REF] Rahman | Climate, environment and socio-economic drivers of global agricultural productivity growth[END_REF]. In order to boost productivity, it is necessary to manage pests and plant diseases, but due to the resilience of them, these efforts are not only expensive but also incredibly difficult. Consequently, it is necessary to continuously develop the control methods.

Control of crop diseases and pests is a major issue, particularly in African countries such as Cameroon, where agriculture is a very important sector in terms of income and employment. More precisely, Cameroon's tropical climate is very favourable to agriculture. With 21% of agricultural land, this sector represents 30% of the country export revenues and 14% of its GDP [START_REF]FAOSTAT: Cameroon, agricultural land[END_REF][START_REF]Economic Complexity (OEC). Historical data[END_REF]. It employs almost 62% of the working population. The main export crops are cocoa (4 th largest producing country in 2016, 15% of exports), bananas and plantains (7.2%), cotton (4.2%) and coffee (1.5%). Food crops include bananas and plantains, cassava, yam, maize, sorghum, millet, etc. Amount these crops, coffee is an economically important crop in the tropics and subtropics. Globally, more than 50 countries across Latin America, Africa, Asia and Oceania grow coffee on a commercial scale [START_REF] Prakash | Chapter 8 -coffee industry in india: Production to consumption-a sustainable enterprise[END_REF]. Coffee exports are a significant source of income for developing countries, and the worldwide green coffee market is expected to increase from $35.40 billion in 2021 to $47.22 billion in 2028 [START_REF]Gree coffee market size, share & covid-19 impact analysis[END_REF]. However, the production of coffee was attacked by many pests and pathogens.

Coffee pests and diseases

Coffee is grown in practically every tropical country [START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF]. Optimal coffee-growing conditions include cold to warm tropical climates, rich soils, and theses optimal conditions favour pests or diseases. The world coffee belt spans the globe along the equator, with cultivation in North, Central, and South America; the Caribbean; Africa; the Middle East; and Asia. Brazil is now the world largest coffee-producing country, accounting for one-third of all the coffee produced worldwide [START_REF] Waller | World coffee production[END_REF]. The climate change increased intense heat waves, drought, and excessive rainfall in some coffee cultivation areas which make more difficult to grow coffee, and increase the pathogens and pests that affect it. The list provided here does not include all of the diseases and pests that are damaging coffee farms around the world, but it does represent a significant portion of them. We classify two category, coffee pests and diseases [START_REF] Waller | Control of coffee diseases[END_REF].

Coffee pests

• The coffee berry borer (CBB), whose scientific name is Hypothenemus Hampei, is an insect of the Scolytidae family that feeds and grows at the expense of the berries. According to historical records, this insect pest was originally identified in Gabon in Central Africa in 1901. But this pest currently presents a risk to every coffee plantation in the world, starting in Africa [START_REF] Jaramillo | Some like it hot: the influence and implications of climate change on coffee berry borer (hypothenemus hampei) and coffee production in east africa[END_REF]. Accidental introductions of CBB in coffee plantations have led to its rapid geographical expansion worldwide. This insect can adapt to a variety of environmental circumstances and defy a variety of eradication programmes implemented by coffee growers since it spends the most of its life inside a berry [START_REF] Fotso | Modelling, analysis and control of coffee berry borer. Theses, Université de Dschang (Cameroun)[END_REF][START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF].

• Root knot nematodes (Meloidogyne spp.) develop inside the roots of plants, their impact reduce the ability of the coffee tree to absorb water and nutrients. This is in turn reflected in a decline in the general health and vigour of the tree and hence yield and bean quality [START_REF] Shiksha | Diseases of coffee[END_REF][START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF].

• Nursery disease, caused by Rhizoctonia solani, occurs on seedlings of 1-3 months age in the nursery if the conditions are favourable for the fungus growth [START_REF] Shiksha | Diseases of coffee[END_REF].

• Monochamus leuconotus, commonly named white coffee stem borer, is a pest whose larvae, by feeding on the bark and tunnelling into the wood, cause serious damage to the tree.

CONTEXT

This pest is endemic to Africa and has been reported in many coffee-growing countries [START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF].

• Coccus viridis, named green scale, is an important widespread coffee scale present in most coffee-producing countries. It affects plants during any stage of their growth, whether vegetative, flowering, fruiting, or post-harvest [START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF].

• Pseudococcus coffeae, named coffee root mealybug, is a tiny insect that consumes plants by draining the sap from their roots. Mealybugs can multiply rapidly, especially in dry weather. Root mealybugs have been known to cause severe damage to the crop, especially in Kenya [START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF].

Coffee diseases

• Coffee berry disease (CBD) is a disease caused by fungus Colletotrichum kahawae that produces areas of black necrosis and premature dropping of the green coffee berries. High humidity, relatively warm temperatures, and high altitude are ideal for disease formation [START_REF] Manuel | Characterization of colletotrichum kahawae isolates causing coffee berry disease in angola[END_REF]. The first report of CBD dates back to 1922 in western Kenya, where it led to the destruction of coffee plantations [START_REF] Mcdonald | A preliminary account of a disease of green coffee berries in kenya colony[END_REF]. It has only been found to date in African production zones, as in the west of Cameroon [START_REF] Bedimo | Effect of shade on arabica coffee berry disease development: Toward an agroforestry system to reduce disease impact[END_REF], and it can lead to 60% harvest losses [START_REF] Masaba | Coffee berry disease: the current status. Coffee berry disease: the current status[END_REF].

• Coffee leaf rust (CLR) is a disease caused by an obligate fungus, Hemileia vastatrix, which attacks leaves and reduces the photosynthesis rate by either defoliating the plant or covering a portion of the leaf surface area. It has an impact on yield because berry production is correlated with the amount of foliage [START_REF] Kushalappa | Coffee rust: Epidemiology, resistance and management[END_REF]. It was first reported by an English explorer on wild Coffea species in the Lake Victoria region of East Africa in 1861 [START_REF] Waller | World coffee production[END_REF]. Since this initial report, CLR has continued to cause significant economic losses. As of 1990, CLR has become endemic in all major coffee-producing countries [START_REF] Waller | World coffee production[END_REF]. In 2012, ten nations in Latin America and the Caribbean experienced a severe CLR outbreak. The disease spread rapidly, and the consequent crop losses caused the supply to drop significantly. Between 2012 and 2014, CLR damaged over $1 billion and impacted over 2 million people in Latin America [START_REF] Valencia | Smallholder response to environmental change: Impacts of coffee leaf rust in a forest frontier in mexico[END_REF]. During this period in Honduras, 80,000 hectares of coffee farms were infected [START_REF] Ward | Ecological resilience to coffee rust: Varietal adaptations of coffee farmers in copán, honduras[END_REF]. Coffee crops in Guatemala were ruined and a state of emergency was declared in February 2013 [START_REF]Guatemala's coffee rust 'emergency' devastates crops[END_REF]. Sanitary emergency was also declared in Peru by the government. In the Hawaiian Islands, coffee leaf rust was reported in January 2021 [START_REF]Board of agriculture expands coffee quarantine to o'ahu and lana'i[END_REF].

• There are four different root diseases that affect coffee plants: brown root disease, red root disease (by Poria hypolateritia), black root disease (by Rosellinia bunodes) and Santavery root disease (by Fusarium oxysporum). These diseases damage the tree roots: they stop the trunk supply of nutrients and water, which kills the tree [START_REF] Shiksha | Diseases of coffee[END_REF].

• The soil-borne fungus Fusarium stilbioides, which causes coffee bark disease, only seems to affect Coffea arabica. It was initially identified in Tanzania in 1932, then later in Malawi, where it significantly damaged the economy of the country [START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF].

• Coffee wilt disease, also known as "fusarium wilt", is a vascular disease caused by fungus Fusarium xylarioides. The fungus blocks the xylem system, causing host reactions that progressively lead to plant death [START_REF] Flood | Coffee wilt disease[END_REF]. Coffee wilt disease was first observed in the Central PhD Thesis 3 C. Djuikem
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African Republic in 1928 where it developed slowly and went on to cause two epidemics between the 1930s and the 1960s [START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF].

• American leaf spot of coffee is a disease caused by gemmiferous fungus Mycena citricolor [START_REF] Avelino | Topography and crop management are key factors for the development of american leaf spot epidemics on coffee in costa rica[END_REF].

• The coffee brown-eye spot, a disease caused by the fungus Cercospora coffeicola, has been reported in all coffee-growing countries. The disease is usually a problem when coffee plants are not growing well, because of poor nutrition or too little shade. In nurseries, it can cause leaf fall of seedlings and, in severe cases, stem dieback. Generally, it is less important on mature plants, although epidemics may occur on well-maintained trees [START_REF] Shiksha | Diseases of coffee[END_REF].

• Powdery rust of coffee is a disease caused by fungus Hemileia coffeicola. It was first recorded on Coffea arabica in Cameroon in 1932. Infected leaves eventually turn yellow and are desiccated [START_REF] Maublanc | Une nouvelle rouille du caféier au Cameroun[END_REF].

In contrast to other harmful coffee diseases like coffee berry disease, which is more common in Africa, CLR affects all coffee plantations worldwide. Moreover, new epidemics still happen nowadays, as was the case in Hawaii in 2021 [START_REF]Board of agriculture expands coffee quarantine to o'ahu and lana'i[END_REF]. A major epidemic like the one that struck America in 2012 could occur at any time and bring about the collapse of the coffee industry, in addition to the losses that the disease continues to cause today. Estimates of yield loss due to CLR vary by country and might be as high as 80% [START_REF] Waller | World coffee production[END_REF]. The costs of controlling the disease are also high. They are largely due to the reliance on fungicides, which are estimated, globally, between US$1 billion and US$3 billion per year [START_REF] Rutherford | Pests and diseases of coffee in eastern africa: A technical and advisory manual[END_REF]. This is why we chose to concentrate on CLR.

Biology of coffee leaf rust (CLR)

Coffee development

The coffee tree is a tropical perennial plant of the Rubiaceae genus. There are around 100 species of this plant. The two main species of coffee tree cultivated worldwide are Coffea arabica (arabica) and Coffea canephora (robusta) [START_REF] Charrier | [END_REF]. Less cultivated species include Coffea liberica and Coffea excelsa, which are mainly restricted to West Africa and Asia, and account for only 1-2% of the global production [START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF]. The taxonomic classification has become increasingly complex due to the discovery of several new species during the twentieth century in West Africa, Central Africa, Madagascar, and East Africa [START_REF] Charrier | [END_REF]. The growth of a coffee plant from seed to first flowering and fruit production takes around five years. The fruit of the coffee tree is called a cherry or berry. The beans that grow within the berry are used to make roast and grind coffee, soluble coffee powders, coffee liquor, etc. The economic lifespan of a coffee plantation is rarely more than 30 years, although a well-managed coffee tree can be productive for 80 years or more, but fruit production decreases over time [START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF]. There are two main periods in the life cycle of a coffee tree, described below.

• Growth period: from the germination of the seed until adulthood. The coffee bean may be seeded fast and can germinate right away after harvest. After germination it takes around three to seven years to become an adult plant [START_REF] Champéroux | Manuel du planteur de café laotien[END_REF]. The coffee tree often has an upright 1.2. BIOLOGY OF COFFEE LEAF RUST (CLR)

Figure 1.1: Coffee maturation, from flower to ripe frui -from [START_REF] Torres Castillo | Impact of climate change and early development of coffee rust -an overview of control strategies to preserve organic cultivars in mexico[END_REF].

main shoot (trunk) with lateral branches that are classified as primary, secondary, and tertiary. On the sides of the main stem and branches of the coffee tree, leaves develop on petioles in opposing pairs [START_REF] Clifford | Coffee: botany, biochemistry and production of beans and beverage[END_REF].

• Productivity period: from the time the coffee tree initially flowers until it dies. The flowers begin to form in the axils of the leaves at the age of three. There are 15 to 50 blossoms at each node, which consists of two leaves [START_REF] Champéroux | Manuel du planteur de café laotien[END_REF][START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF]. After pollination, 65% of flowers will produce fruit. However, this proportion varies among species and trees, ranging from 3 to 91% [START_REF] Clifford | Coffee: botany, biochemistry and production of beans and beverage[END_REF][START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF]. Figure 1.1 shows the fruiting period, which ranges from flowering to fruit maturity, for a single season of coffee production.

Usually, the number of fruits is higher for arabica than robusta, due to the fact that the former is self-fertile, while the latter is self-sterile [START_REF] Champéroux | Manuel du planteur de café laotien[END_REF]. Varieties of coffee differ in the size and shape of the coffee bean (seed) but, on average, beans are approximately 10 mm long and 6 mm wide. The weight of a seed is 0.45-0.50 g for arabica and 0.37-0.40 g for robusta [START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF].

Fungus Hemileia vastatrix

Coffee leaf rust (CLR) is caused by the fungus known scientifically as Hemileia vastatrix. This fungus is an obligate parasite of coffee, meaning that it can only complete its life cycle on plants of the Coffea genus.

History of Hemileia vastatrix

After the first report in 1861, CLR was detected in 1867 on the Island of Ceylon (now Sri Lanka), where it decimated all coffee trees [START_REF] Arneson | The Plant Health Instructor[END_REF]. In Figure 1.2, which depicts the progression of CLR worldwide since its first report until 2014, we can see that practically all of the nations that produce coffee have been affected. production declined in many nations in 2012 as a result of the serious CLR outbreak in Central America. El Salvador, the nation most affected, reported a 70% decrease in coffee yields, and Honduras, whose production had reached a record level in 2012, saw a 23% decrease between 2012 and 2013. In Guatemala, production dropped by 18% between 2012 and 2014, while Nicaragua, the country least affected, met an 11% decline between 2012 and 2014 [START_REF] Avelino | The coffee rust crises in colombia and central america (2008-2013): impacts, plausible causes and proposed solutions[END_REF]. The first CLR reports in Hawaii appeared in 2020 [START_REF]Board of agriculture expands coffee quarantine to o'ahu and lana'i[END_REF][START_REF] Aristizábal | Monitoring coffee leaf rust (hemileia vastatrix) on commercial coffee farms in hawaii: Early insights from the first year of disease incursion[END_REF]. Figure 1.3 presents the timeline of CLR since its discovery.

Life cycle of Hemileia vastatrix

The life cycle of fungus H. vastatrix involves several steps, presented in Figure 1.4.

Step 1: Uredospore dispersal is generally caused by wind, rain, human impact, or a combination of these factors [START_REF] Talhinhas | The coffee leaf rust pathogen hemileia vastatrix: one and a half centuries around the tropics[END_REF].

Step 2: Under favourable conditions uredospores germinate. Although temperature and moisture are key factors for infection, dispersal, and colonisation, plant resistance is also important in determining whether H. vastatrix will penetrate the leaves [START_REF] Talhinhas | The coffee leaf rust pathogen hemileia vastatrix: one and a half centuries around the tropics[END_REF].

Step 3: The germinal tubes of the uredospores penetrate the open stomata, which are present only on the underside of the leaves. In order to create a biotrophic connection, the fungus colonises the leaf through an intercellular mycelium 1 growth hypha 2 that forms haustoria 3 within the host cells [START_REF] Talhinhas | The coffee leaf rust pathogen hemileia vastatrix: one and a half centuries around the tropics[END_REF].

Step 4: Within 24-48 hours, infection is completed. A successful infection will cause yellow lesions to appear on the leaf within 2-3 weeks, and these lesions will colonise and produce spores. Each lesion is made up of multiple pustules that will continue to develop for several months [START_REF] Kushalappa | Coffee rust: Epidemiology, resistance and management[END_REF].

Step 5: Fungus H. vastatrix produces uredospores asexually and teliospores sexually. However, because teliospores do not infect coffee leaves and have no known hosts, there is no evidence for an active sexual reproductive cycle [START_REF] Rodrigues | Coffee rusts: history, taxonomy, morphology, distribution and host resistance[END_REF].

Impact of coffee leaf rust

Coffee leaf rust has direct and indirect economic impacts on coffee production. Direct impacts include decreased quantity and quality of yield produced by the diseased plants. Indeed, CLR cause:

• premature defoliation of leaves, which reduces the plant ability to derive energy through photosynthesis [START_REF] Kushalappa | Coffee rust: Epidemiology, resistance and management[END_REF];

• abortion of flowers and fruits at the premature stage, which decreases their quantity and quality, and which ultimately reduces the beverage quality [START_REF] Pereira | Genetic and chemical control of coffee rust (hemileia vastatrix b erk et b r.): impacts on coffee (coffea arabica l.) quality[END_REF];

• desiccation of young shoots and branches, which reduces the production for the following years [START_REF] Avelino | The coffee rust crises in colombia and central america (2008-2013): impacts, plausible causes and proposed solutions[END_REF].

Indirect impacts include increased costs to control the disease [START_REF] Mccook | The big rust and the red queen: Long-term perspectives on coffee rust research[END_REF].

CLR control methods

Farmers use integrated pest management to reduce the spread of rust. Integrated pest management is a combination of biological, biotechnological, chemical, physical, cultural methods, as well as the use of resistant cultivars [START_REF] Sharvelle | Plant disease control[END_REF]. CLR control methods can be classified into five categories.

Quarantine During more than a century, strict quarantine measures prevented coffee rust from invading the Americas. In Central America, new infections were removed by spraying diseased coffee plants as well as asymptomatic plants within 30 metres with a herbicide mixed with diesel fuel [START_REF] Arneson | The Plant Health Instructor[END_REF]. The downside is that coffee plant take several years to produce. Thus, removing infected plants implies to wait at least three years before the replacement plants start producing coffee.

Chemical control Among the chemical fungicides available, the ones usually used against CLR are copper fungicides and dithiocarbamate, which must be present on the leaves before the infection occurs [START_REF] Capucho | Chemical control of coffee leaf rust in coffea canephora cv. conilon[END_REF]. One disadvantage of using fungicides, beside the cost, is that the copper accumulates in the soil, particularly in the organic matter, and can reach levels toxic to plants and to other organisms in the environment [START_REF] Arneson | The Plant Health Instructor[END_REF]. Furthermore, the application of fungicides leads to resistance of fungi over time, which considerably limits their effectiveness and disqualifies them as sustainable control methods [START_REF] Lucas | The evolution of fungicide resistance[END_REF][START_REF] Monaco | Consequences of the introduction of coffee rust into brazil. The genetic basis of epidemics in agriculture[END_REF].

Cultural practices Although cultural practices are crucial, there are no clear-cut guidelines to follow. Nutrition is an important aspect in CLR management, since the susceptibility to rust is associated with the nutritional status of the plant. Fertilisation with nitrogen and phosphorus tends to reduce susceptibility to rust, but excessive potassium increases susceptibility [START_REF] Arneson | The Plant Health Instructor[END_REF]. One of the key cultural management decisions is to produce coffee either in full sun or with some degree of shade [START_REF] Liebig | Interactive effects of altitude, microclimate and shading system on coffee leaf rust[END_REF]. This decision is often more sociopolitical than agronomic. Some say that rust is easier to control on properly spaced plants in full sun, since they dry faster and, therefore, have shorter periods of leaf wetness. Others argue that coffee in the shade has less rust because the closed canopy prevents the formation of dew on coffee leaves and thus reduces the infection. Sun may hinder the development of the pathogen, but it increases the plant productivity. The plant then needs an extra input of nutrients, particularly nitrogen. Furthermore, a higher production may provide more scope to the spread of CLR [START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF].

Biological control

It is an approach that employs natural pest enemies. Several biological agents have been tested to control CLR, among which various bacteria. Antagonist bacteria Bacillus subtilis isolated from the rhizosphere of coffee crops significantly decreased uredospore development (up to 68%) in vitro [START_REF] Daivasikamani | Biological control of coffee leaf rust pathogen, hemileia vastatrix berkeley and broome using bacillus subtilis and pseudomonas fluorescens[END_REF]. In greenhouse and field conditions, antagonist bacteria Pseudomonas putida (P286) and Bacillus thuringiensis (B157) completely inhibited uredospore germination; electron microscopy revealed that the B157 isolate prevented the production of germination tubes. An investigation done in Ervália in 2007 revealed that isolate B157 decreased rust intensity as efficiently as copper hydroxide. As a result, it is being investigated as a possible biocontrol agent for coffee rust in organic agricultural systems in Brazil [START_REF] Haddad | Antifungal compounds as a mechanism to control Hemileia vastatrix by antagonistic bacteria[END_REF]. Forty endophytic bacteria isolates were tested for their capacity to inhibit H. vastatrix uredospore germination, among which twenty three reduced more than 40% of the germination; in general, the endophytes were more effective when applied before the inoculation of H. vastatrix uredospores [START_REF] Shiomi | Bioprospecting endophytic bacteria for biological control of coffee leaf rust[END_REF].

Other investigations on biocontrol focused on hyperparasites, which are parasites whose host, often an insect, is also a parasite. Several potential hyperparasites emerged to be natural enemies of fungus H. vastatrix, among which Verticillium psalliotae, shown to reduce the germination of uredospores [START_REF] Mahfud | In vitro and in vivo tests for parasitism of verticillium psalliotae treschow on hemileia vastatrix berk. and br[END_REF][START_REF] Lim | Mycoparasitism of the coffee rust pathogen, hemileia vastatrix, by verticillium psalliotae in malaysia[END_REF], and fungus Cladosporium hemileiae, which inhibits the evolution of H. vastatrix mycelium [START_REF] Steyaert | Cladosporium hemileiae n. spec. un parasite de l'hemileia vastatrix berk. et br[END_REF]. Fungus Lecanicillium lecanii (previously called Verticillium lecanii) affects the viability of H. vastatrix uredospores and was reported as a promising biocontrol agent in several studies [START_REF] Vandermeer | Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web[END_REF][START_REF] Jackson | Indirect biological control of the coffee leaf rust, hemileia vastatrix, by the entomogenous fungus lecanicillium lecanii in a complex coffee agroecosystem[END_REF][START_REF] Eskes | Laboratory and field studies on parasitism of hemileia vastatrix with verticillium lecanii and v. leptobactrum[END_REF]. In southern Ethiopia, investigations conducted during the dry and wet seasons for three consecutive years at 60 showed that L. lecanii inhibits the rust growth when the seasons change from wet to dry [START_REF] Zewdie | Temporal dynamics and biocontrol potential of a hyperparasite on coffee leaf rust across a landscape in arabica coffee's native range[END_REF]. Finally, the larvae of some Mycodiplosis insect species can feed on spores of rust fungus H. vastatrix and can therefore be considered as rust spore predators [START_REF] Santiago-Elena | Interaction between mycodiplosis and hemileia vastatrix in three scenarios of coffee crop management (coffea arabica)[END_REF][START_REF] Hajian-Forooshani | Impact of regionally distinct agroecosystem communities on the potential for autonomous control of the coffee leaf rust[END_REF][START_REF] Henk | Mycodiplosis (diptera) infestation of rust fungi is frequent, wide spread and possibly host specific[END_REF].

Resistant cultivars Recent biotechnology advances made it possible to detect and choose the best cultivars for coffee farming that should be resistant to fungus H. vastatrix [START_REF] Sharvelle | Plant disease control[END_REF] and to other fungi [START_REF] Saubin | Impact of ploidy and pathogen life cycle on resistance durability[END_REF]. Combining CLR resistance with desirable agronomic traits and high calibre coffee is a problem for breeders. The next issue is to use these resistance genes such that new strains of H. vastatrix do not quickly overcome them. The Major resistant cultivars were developed from hybridisation between C. arabica and C. canephora or their descendants [START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF]. There are several types of resistant coffee, with varying degrees of CLR resistance (high, moderate, or low) [START_REF] Sera | Coffee leaf rust in brazil: Historical events, current situation, and control measures[END_REF]. Some resistant cultivars are cited below.

• Hibrido de Timor is the result of natural hybridisation between C. arabica and C. canephora [START_REF] Rodrigues | Races of the pathogen and resistance to coffee rust[END_REF] and grown widely on the island of Timor. It is the most important progenitor for resistance to coffee leaf rust.

• S288, S333, S795 and BA selections of the Balehonnur Coffee Research Station in India are resistant to many rust races and are believed to have originated from a natural hybrid between C. arabica and C. canephora [START_REF] Clifford | Coffee: botany, biochemistry and production of beans and beverage[END_REF].

• Icatú is a backcross4 between C. canephora and Bourbon Vermelho. Its has a resistance genes to many rust races of H. vastatrix [START_REF] Eskes | Incomplete resistance to coffee leaf rust (Hemileia vastatrix)[END_REF].

• Sarchimor is a cross between the Timor Hybrid and Costa Rican Villa Sarchi that is commonly cultivated in both Costa Rica and India [START_REF] Sera | Coffee leaf rust in brazil: Historical events, current situation, and control measures[END_REF].

• Catimor is a cross between the Caturra and the Timor Hybrid. The ideal combination of high yields, excellent disease resistance, and tiny plant size was discovered by scientists in Portugal in 1959. In Brazil, Catimor was initially introduced in 1970 [START_REF] Clifford | Coffee: botany, biochemistry and production of beans and beverage[END_REF].

It is important to remember that the disease has a probability of getting past even these defences. For long-lasting resistance, it is advised to combine several resistance genes in a single cultivar. There are signs that H. vastatrix is sometimes unable to combine certain virulence components; when the rust is still able to overcome resistance based on multiple genes, the resulting virulence is anticipated to be modest [START_REF] Eskes | Incomplete resistance to coffee leaf rust (Hemileia vastatrix)[END_REF][START_REF] Clifford | Coffee: botany, biochemistry and production of beans and beverage[END_REF].

Mathematical models for fungal disease propagation

Models for fungal crop diseases

Due to the increased spread of fungal diseases, researchers have developed several mathematical models to understand the dynamics of these pathogens, but also to propose control strategies against these diseases. Plant pathogens can be generally divided into two main groups: the necrotrophs which kill their host and feed on their content, and the biotrophs which establish a long term feeding relationship with the living cells of the host [START_REF] Moore | 21st Century Guidebook to Fungi[END_REF]. During the infection stage, the penetrating necrotrophic fungi release a group of fungal enzymes which disrupt the cell integrity of the host tissue, causing the cell death which thereby constitutes the food supply. In contrast biotrophic fungi form specialised physiological and morphological adaptations to the living host to ensure the supply of nutrients [START_REF] Struck | Infection strategies of plant parasitic fungi[END_REF]. Biotrophic fungi also require a living host to complete their life cycle. The existing mathematical models are based on the life cycle of pathogens and their interactions with their host (cf. Section 1.2.2.2). Many of these models are rooted in the epidemic SIR models developed by pioneers Hamer [START_REF] Hamer | Epidemic disease in England: the evidence of variability and of persistency of type[END_REF], Ross [START_REF] Ross | The prevention of malaria[END_REF], and Kermack and McKendrick [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF] as the disease is transmitted by spores produced on infected plants and carried by wind, water, insects, human and impact currents and deposited on new susceptible host plants.

The first models describing the temporal progress of a plant disease epidemic was developed by Van der Plank in the 1960s [START_REF] Van Der Plank | Chapter 7 -analysis of epidemics[END_REF][START_REF] Van Der Plank | Dynamics of epidemics of plant disease: Population bursts of fungi, bacteria, or viruses in field and forest make an interesting dynamical study[END_REF]. Since then, mathematical models of fungal diseases have received a lot of attention from researchers. For instance, Van den Bosch et al. developed a framework for modelling the continental spread of focal plant disease. Therefore, they restricted their first attempt at modelling pandemic spread to simple parameter-sparse submodels. The authors conclude that the simple analytically tractable models, are useful tools to gain qualitative C. Djuikem CHAPTER 1. INTRODUCTION insight. But they have also been able to conclude that a parameter-rich models is difficult to study due to parameter dependence of the velocity of pandemic spread [START_REF] Van Den Bosch | Pandemics of focal plant disease, a model[END_REF]. Fleming used a mathematical model to prove that a complex of polyphagous non-synchronised predators and parasites is likely to control only low-density cereal rust populations. He also prove that control at low rust density can delay epidemic development and thus substantially reduce yield losses. However, the model only describes the dynamics of pathogen and it is not possible to estimate the impact on the cereal production [START_REF] Fleming | The potential for control of cereal rust by natural enemies[END_REF]. Pivonia et al. studied the seasonal appearance of rusts in the United States, in particular soybean rust. The authors used the mathematical models developed by Gumpert et al. [START_REF] Gumpert | A mathematical model of the epidemics in homogeneous and heterogeneous host stands/ein mathematisches modell für epidemien in homogenen und heterogenen wirtsbeständen[END_REF] and Van der Plank's [START_REF] Van Der Plank | Chapter 7 -analysis of epidemics[END_REF] to proved the existence of the potential lag period which favours a development of different rusts over a time [START_REF] Pivonia | Relating epidemic progress from a general disease model to seasonal appearance time of rusts in the united states: Implications for soybean rust[END_REF]. Ravigné et al. looked at the impact of sexual and asexual reproduction on the epidemiological dynamics of fungal plant parasites and showed that they could induce cyclic persistence of the disease, which can occur with Sigatoka diseases of banana [START_REF] Ravigné | Mate limitation in fungal plant parasites can lead to cyclic epidemics in perennial host populations[END_REF].

Among the models that have focused on airborne spread of these fungal diseases, one can cite the DDAL framework developed by Papaïx et al. that focuses on the deployment of susceptible and resistant crop hosts in an agricultural landscape. The authors proposed a modelling approach for landscape epidemiology that takes advantage of theoretical results developed in the metapopulation context while considering realistic landscape structures [START_REF] Papaïx | Pathogen population dynamics in agricultural landscapes: The Ddal modelling framework[END_REF]. Burie et al. developed two models coupling host and pathogen dynamics for mildew infestation in a vineyard. First, they investigated the structure of travelling waves of the PDE [START_REF] Burie | Singular perturbation analysis of travelling waves for a model in phytopathology[END_REF]. In a second instance, the authors proved the existence of solutions of their model, the stability of the disease free equilibrium and showed numerically that the disease establishes [START_REF] Burie | Modeling of the invasion of a fungal disease over a vineyard[END_REF]. Based on this last work, Mammeri et al. studied the impact of spatial heterogeneities on the spread and control of grapevine powdery mildew, but only during a cropping season [START_REF] Mammeri | How changes in the dynamic of crop susceptibility and cultural practices can be used to better control the spread of a fungal pathogen at the plot scale?[END_REF]. Burie et al. proposed a field scale model for the spread of a powdery mildew epidemic over a large vineyard and showed the well-posedness of the asymptotic model and obtained a convergence result confirmed by numerical simulations [START_REF] Burie | A field scale model for the spread of fungal diseases in crops: the example of a powdery mildew epidemic over a large vineyard[END_REF]. Sapoukhina et al. developed a model to simulate the propagation of a fungal disease in a 2D field, including a reaction-diffusion model for short-distance disease dispersal, and a stochastic model for long-distance dispersal. The authors demonstrated that the spatial arrangement of the mixture components in both agro-ecosystems and forestry has to accord with the modes of pathogen dispersal if the efficacy of crop diversification is to be maximized [START_REF] Sapoukhina | Spatially mixed crops to control the stratified dispersal of airborne fungal diseases[END_REF]. Mustapha et al. proposed and analysed a mathematical model for describing the dispersal by wind of fungal pathogens in plant populations. The authors modelled the dispersal of pathogen spores using a non-local diffusion equation which took into account variations in wind velocity components [START_REF] Jarroudi | Mathematical modelling of non-local spore dispersion of wind-borne pathogens causing fungal diseases[END_REF] Plant growth and disease spread may be affected by seasonal patterns, which then need to be included in epidemiological models. Among these models, one can cite Rimbaud et al. who investigated how the spatial deployment of resistant cultivars affects the resistance efficiency and durability, using a demogenetic model, for a seasonal crop infected by a fungal-like pathogen [START_REF] Rimbaud | Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance?[END_REF]. Desprez-Loustau et al. developed a seasonal eco-evolutionary model of oak powdery mildew in Europe, based on a within-season and between-season transmission trade-off, which captures the main features of the disease, that is seasonality and pathogen species coexistence [START_REF] Desprez-Loustau | The ecological and evolutionary trajectory of oak powdery mildew in Europe[END_REF]. Maupetit et al. tested which of these factors have a dominant effect on the pathogens development and applied to the particular case of poplar rust [START_REF] Maupetit | Defense compounds rather than nutrient availability shape aggressiveness trait variation along a leaf maturity gradient in a biotrophic plant pathogen[END_REF]. For the crops cultivated in temperate climates or tropical regions that alternate dry and rainy seasons, the pathogens dynamics can substantially differ between the seasons with possibly rapid transitions. Impulsive or semi-discrete models have
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been developed for several plant fungal diseases. Among these models, one can also cite Nembot et al. who built a model of cocoa black pod rot disease, caused by Phytophthora megakarya, and showed the impact of periodic impulsive sanitary harvests on the disease dynamics [START_REF] Nembot | Modeling the temporal evolution of cocoa black pod rot disease caused by phytophthora megakarya[END_REF]. Blériot Tchienkou-Tchiengang et al. build two multi-seasonal mathematical models to show the impact of Maize Stalk Borer (Busseola fusca) on maize tissues [START_REF] Tchienkou-Tchiengang | Multi-seasonal modelling of the african maize stalk borer with assessment of crop residue management[END_REF]. Tankam-Chedjou et al. developed a model to describe and control the dynamics of a banana soilborne pest in a multi-seasonal framework, optimising the fallow period durations between cropping seasons [START_REF] Tankam-Chedjou | Optimal and sustainable management of a soilborne banana pest[END_REF]. Periodic patterns are not necessarily linked to seasonality and can also be due to impulsive control strategies introduced in the epidemiological models. For instance, in the biological control framework, Nundloll et al. studied the periodic release of predators, natural enemies of the plant pest of interest, and determined the minimal predator rate required to eradicate the pest [START_REF] Nundloll | Two models of interfering predators in impulsive biological control[END_REF]. Xinzhu et al. formulated and analysed a model with continuous cultural control and with impulsive cultural control strategies such as replanting and/or removing diseased plants; they concluded that impulsive removing of diseased plants is more efficient and more economic than continuous removing [START_REF] Meng | The dynamics of plant disease models with continuous and impulsive cultural control strategies[END_REF].

Among these models presented in this subsection, we have detailed three cases, which represent the modelling approaches that we have considered in the different chapters of the thesis.

A cereal rust model

Fleming proposed a simple model that describes the dynamics of the population densities of the cereal rust (in pustules/area) [START_REF] Fleming | The potential for control of cereal rust by natural enemies[END_REF]. The model considers low-density rust dynamics in an aerobiological zone, then the population density of the cereal rust N (in pustules/area) is described as

dN dT = G(N ) -L(N )
where G(N ) and L(N ) are the rates per unit area at which the rust population gains and loses pustules, respectively. Time is represented by T .

The rate at which the rust population gains is defined by

G(N ) = B • f (N ) • T L + IT I ,
where B, T L and T I are, respectively, the rate of spore production per pustule, the transmission factors for local and immigrant spores. Author suppose that f (N ) = N is the effective number of pustules per unit area. I is the density-independent rate of spore immigration per unit area.

The density-dependent loss rate is defined by

L(N ) = f D (N ) + f E (N ) + f P (N ),
where f D (N ) = DN is the sum of losses due to natural host deaths and D is the intrinsic rate of natural rust mortality. f B (N ) = EN is the sum of losses due to the essentially passive and wind-mediated process of emigration and E is the instantaneous rate of emigration. The function f P (N ) = AN (Z +N ) -1 is a sum of losses of the rust fungi to the complex of background predators and parasites, A is the maximum attack rate (pustules/time) and Z is the rust density at which the rate of losses to the complex of background predators and parasites is A/2.
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Finally the model is given

dN dT = (BT L -D -E) N + IT I -AN (Z + N ) -1 (1.1)
Fleming used this mathematical model to prove that a complex of polyphagous nonsynchronised predators and parasites is likely to control only low-density cereal rust populations. However, the model only describes the dynamics of the pathogen and it is not possible to estimate the impact on the cereal production. This model can be adapted to the dynamics of the uredospores of fungus H. vastatrix but we still need to couple it with the dynamics of coffee tree development.

A model of mildew in a vineyard

Burie et al. proposed a model of the dynamics of mildew in a vineyard [START_REF] Burie | Modeling of the invasion of a fungal disease over a vineyard[END_REF]. Their modelling hypotheses are that, when spores fall upon the plant tissue, they may create a new colony which will produce spores after some latency period and during some sporulating period. They assumed for simplicity that the time variation of the surface of a colony can be neglected.

The authors proposed a SEIR model in which the total density N of sites than can host a colony of fungus at location x and time t is divided into four categories: healthy H, latent L, sporulating I, and removed (postinfectious) R. The total spore density is separated into two categories according to the range of dispersal: short range S 1 (x, t) and longer range S 2 (x, t). A sporulating colony produces them at a rate of r p > 0, and they can spread over short distances with a probability of F ∈ [0, 1] and over longer distances with a probability of (1 -F ). The authors assumed that the spores disperse according to a diffusion process with Fickian diffusion coefficient D 1 > 0 (short range) or D 2 > D 1 > 0 (long range). Spores fall upon the vineyard with some deposition rate δ 1 > 0 or δ 2 > 0 (δ 1 = δ 2 in numerical simulations). The authors thus obtain the equations that describe the production of spores by the colonies and their dispersal:

∂S 1 ∂t (x, t) = ∇ • (D 1 ∇S 1 (x, t)) -δ 1 S 1 (x, t) + r p F I(x, t) ∂S 2 ∂t (x, t) = ∇ • (D 2 ∇S 2 (x, t)) -δ 2 S 2 (x, t) + r p (1 -F )I(x, t)
for x ∈ Ω,a regular spatial domain and t > 0.

Moreover, they assumed that no spores come from outside the vineyard, so that they imposed Dirichlet conditions on the boundary: S 1 (x, t) = S 2 (x, t) = 0 for x ∈ ∂Ω and t > 0 with non-negative initial conditions:

S 1 (x, 0) = S 0 1 (x) ≥ 0, S 2 (x, 0) = S 0 2 (x) ≥ 0 for x ∈ Ω
The set Ω r ⊂ Ω denotes the area covered by the vine rows. They devised their model in such a way that for all t > 0 and x ∈ Ω, N (x, t) equals 0 if x / ∈ Ω r .

According to the authors, the host development is unaffected by the powdery mildew outbreak. New places become accessible for colonisation as a result of this increase. They examined the epidemic over the period of a single season and made the assumption that the logistic rule governs the variation in time of the total number of colony sites inside the rows.

∂N ∂t (x, t) = rN (x, t) 1 - N (x, t) K , for x ∈ Ω r
where r > 0 is the growth rate and K > 0 the carrying capacity. The local evolution of the disease at some point x ∈ Ω r (inside a row) then obeys the classical SEIR model, whereas we set N (x, t) = L(x, t) = I(x, t) = R(x, t) = 0 for t ≥ 0 if x / ∈ Ω r . Let p and i denote the mean duration of the latency and infectious period respectively. Let E be the inoculum effectiveness (probability for the spores succeed in creating a new colony upon a site). The second set of equations of the model for x ∈ Ω r is then

           ∂H ∂t (x, t) = -E (δ 1 S 1 (x, t) + δ 2 S 2 (x, t)) H(x,t) N (x,t) + rN (x, t) 1 -N (x,t) K ∂L ∂t (x, t) = +E (δ 1 S 1 (x, t) + δ 2 S 2 (x, t)) H(x,t) N (x,t) -1 p L(x, t) ∂I ∂t (x, t) = + 1 p L(x, t) -1 i I(x, t) ∂R ∂t (x, t) = + 1 i I(x, t)
supplemented with non-negative initial conditions

H(x, 0) = H 0 (x) ≥ 0, L(x, 0) = L 0 (x) ≥ 0 I(x, 0) = I 0 (x) ≥ 0, R(x, 0) = R 0 (x) ≥ 0 for x ∈ Ω r
Burie et al. proved the existence of solutions of the full model, computed the basic reproduction number and concluded about the stability of the disease free equilibrium. The model would probably be a good starting point for CLR dynamics modelling, but the authors only showed numerically that the epidemic reach a maximal rate of infection. Their model has to be reduced for the global mathematical analysis because it is difficult, especially with the Fickian diffusion.

A multi-seasonal model

Madden and Van den Bosch developed a coupled differential equation model for the multiseasonal dynamics of plant disease for annual crops in the early 2000s [START_REF] Madden | A population-dynamics approach to assess the threat of plant pathogens as biological weapons against annual crops: Using a coupled differential-equation model, we show the conditions necessary for long-term persistence of a plant disease after a pathogenic microorganism is introduced into a susceptible annual crop[END_REF]. Their model is a semidiscrete SEIR model of a plant disease introduced in an annual cropping system. They looked at the possibility of using plant infections as biological weapons and described the circumstances in which they may endure from season to season. Naming S the disease free plant individuals, E the latent infected individuals, I the infectious individuals, such that Y = E + I + R is the total diseased individual, and naming P the abundance of pathogen inoculum, the model of Madden and Van den Bosch is given by the following equation :

               dS dt = -νSP -βSI dE dt = νSP + βSI -σE dI dt = σE -γI dR dt = γI dP dt = -µ g + ν P (1.2)
where P (0) = P 0 , S(0) = S 0 . The constant ν is the primary infection rate parameter, such that νSP is the rate of occurrence of new infections, and νS is the mean number of new infected plant individuals produced per unit of inoculum per time. Infectious plants are first in latent state and become infectious at rate σ. Infectious plants become post-infectious or remove from the epidemic at the rate γ. New infection occurs from infectious plants at a rate βSI, with β being the secondary infection rate parameter. Thus, βS is the mean number of new infected individuals per infected individual per time.

The inoculum decays exponentially at a natural mortality rate µ g P and a depletion rate ν P . In the latter expression, µ = µ because each unit of inoculum that produces a plant infecting is one less unit of inoculum available for infecting another plant.

In this model, an epidemic ends at t = T g , the time of crop harvest. All abundances are set to 0 immediately after T g :

E T + g = I T + g = R T + g = S T + g = 0;
where the "+" and the "-" superscript represent the instant after the end of the season and the instant before the end of the season, respectively.

Diseased individuals E, I and R produce each an amount of pathogen inoculum at the end of the growing season. If θ E , θ I , θ R represent the amount of pathogen inoculum produced per diseased individuals, then

k E = θ E E T - g , k I = θ I I T - g , k R = θ R R T - g
represent the total amount of inoculum at t = T + g from latent, infectious and removed diseased individuals at time t = T - g . Hence, P T

+ g = k P + k E + k I + k R ; k p = P 0 exp -(ν + µ g ) T - g ,
where k p is the inoculum from the beginning of the season left at the end of the season.

Between growing seasons, P decays exponentially with the rate µ b (ε). This correspond to dP/dt = -µ b (ε)P . As a result, the single-season model (1.2) is extended to account for several seasons, with initial susceptible individuals set to S 0 and new inoculum of the growing season provided by the inoculum that survived from the previous season.

Madden and Van den Bosch determined the basic reproduction number and the infection persistence thresholds using this model. This model, that covers multiple seasons, can be adapted to CLR but would not be sufficient as it does not contain a spore compartment.

CLR models

Coffee leaf rust epidemics are based on a seemingly simple infection cycle, but develop polycyclic epidemics in a season and polyetic epidemics over successive seasons. To study these outbreaks, several authors have published results of their investigations about the germination of the uredospores of H. vastatrix, the propagation of CLR in the whole plantation and many other approaches in order to understand the dynamics of the pathogen and to control it.

Modelling coffee rust epidemics necessitates a variety of approaches, thus CLR models in the literature represent a range of scales, from the individual coffee bush to the country or even the continent. Kushalappa developed a method to quantify the rate of CLR development using a linear model. Stepwise regression identified combination of biological and meteorological variables that explained significant variation in the rate of CLR development [START_REF] Kushalappa | Linear models applied to variation in the rate of coffee rust development[END_REF]. Kashalappa et al. used equations for predicting the rate of coffee rust development based on net survival ratio for monocyclic process of Hemileia vastatrix [START_REF] Kushalappa | Equations for predicting the rate of coffee rust development based on net survival ratio for monocyclic process of hemileia vastatrix Coffea arabica. Fitopatologia Brasileira[END_REF]. Later, they analysed the development of CLR in the field and using the proportion of infected leaves, pustules/leaf and percentage of infected area to determine the intensity of H. vastatrix [START_REF] Kushalappa | An analysis of the development of coffee rust in the field[END_REF]. Avelino et al. used multivariate analysis to show that CLR development is linked to three sets of factors: the environment, plant growth and development, and grower's practices. The authors used a statistical segmentation technique to define some recommendation domains to control CLR in Honduras, based on these three sets of factors [START_REF] Avelino | The intensity of a coffee rust epidemic is dependent on production situations[END_REF]. Avelino et al. also sowed how other trees affect CLR at the field and landscape scales. The authors identified several canopy characteristics and leaf traits that can help manage coffee leaf rust at the plot scale: namely, thin canopies with high openness, short base height, horizontal branching, and small, dentate leaves [START_REF] Avelino | Tree effects on coffee leaf rust at field and landscape scales[END_REF]. Bebber et al. developed a model of germination and infection risk, and drove this model using estimates of leaf wetness duration and canopy temperature. They modelled germination and infection as Weibull functions with different temperature optima, based upon existing experimental data. They found that the germination and infection risks do not depend on the climate in Colombia and neighbouring countries. They concluded that biological modelling need to improve using spatial resolution and accuracy of climate reanalyses [START_REF] Bebber | Modelling coffee leaf rust risk in Colombia with climate reanalysis data[END_REF]. Beasley et al. developed a probabilistic model to simulate within-patch and between-patch transmission using a random walk with spore movement inhibited by canopy cover. The authors concluded that increasing the spacing between coffee farms and reducing forest fragmentation in coffee-growing regions can benefit biodiversity conservation and reduce the economic impacts of coffee rust [START_REF] Beasley | Spatially explicit models predict coffee rust spread in fragmented landscapes[END_REF]. Merle et al. statistically identified the complex combinations of microclimatic variables responsible for changes in lesion status to construct three models predicting lesion emergence probability, lesion sporulation probability and growth of its infectious area [START_REF] Merle | Forecast models of coffee leaf rust symptoms and signs based on identified microclimatic combinations in coffee-based agroforestry systems in costa rica[END_REF]. Vandermeer et al. studied the interaction between the regional and local dynamics of CLR model by representing the evolution of the proportion of infected bushes and farms. The model suggested that it could be the larger ecological structure of the agro-ecosystem, both local and regional aspects, that needs to be considered [START_REF] Vandermeer | The interaction of regional and local in the dynamics of the coffee rust disease[END_REF]. Vandermeer et al. also represented the CLR dynamics in a coffee farm in Chiapas using an SI epidemiological model of the host. They showed that the network approach can be a useful way of gaining qualitative insight on spatial disease dynamics [START_REF] Vandermeer | The dynamics of the coffee rust disease: an epidemiological approach using network theory[END_REF].

Several researchers were intrigued by the incorporation of integrated crop management methods into coffee rust models. A survey conducted in Honduras illustrated how crop management, different combinations of shade, coffee tree density, fertilisation and pruning may strongly influence coffee rust epidemics [START_REF] Avelino | Effects of crop management patterns on coffee rust epidemics[END_REF]. Hannah et al. used Gompertz growth model to describe CLR epidemics. Their forecast system showed to be promising for recommending sprays for coffee plantations in Brazil; but authors argue that more field trials are essential to evaluate its performance in other coffee regions and under different fungicide management situations [START_REF] Hinnah | Performance of a weather-based forecast system for chemical control of coffee leaf rust[END_REF]. To study biological control of CLR using hyperpasites, Vandermeer et King used a basic Lotka-Volterra model, with a consumer depending on two resources, one fixed, another renewable [START_REF] Vandermeer | Consequential classes of resources: Subtle global bifurcation with dramatic ecological consequences in a simple population model[END_REF]. They applied the model to the particular case of the fungus H. vastatrix, coffee green scales and a mycoparasite Lecanicillium lecanii which predates the former two [START_REF] Vandermeer | Qualitative dynamics of the coffee rust epidemic: educating intuition with theoretical ecology[END_REF]. Arroyo et al. developed a stochastic model based on [START_REF] Vandermeer | Consequential classes of resources: Subtle global bifurcation with dramatic ecological consequences in a simple population model[END_REF] that considers the interactions between bacteria B. thuringiensis B157 and fungus H. vastatrix. They studied the effect of the spatial distribution of the disease and its spread on the overall dynamics of the disease. The authors found that at equilibrium, the proportion of tree leaves infected with coffee rust is directly proportional to how much the coffee rust both grows and spreads inside the coffee plantation, and inversely proportional to how much bacteria population is present in each tree [START_REF] Arroyo-Esquivel | Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds[END_REF]. Zewdie et al. studied CLR dynamics in the presence of hyperparasites during the dry and wet seasons for three consecutive years at 60 sites across the southwestern Ethiopia. Their findings highlight the potential of the hyperparasite to suppress the rust growth rate from the wet season to dry season transition when the rust severity could otherwise be at its peak. However, they argue that more detailed knowledge is needed on the interaction of these species to assess its importance for reducing rust induced yield losses or the risk of rust outbreaks [START_REF] Zewdie | Temporal dynamics and biocontrol potential of a hyperparasite on coffee leaf rust across a landscape in arabica coffee's native range[END_REF]. C. Djuikem

CHAPTER 1. INTRODUCTION

All these existing CLR models do not explicitly incorporate coffee plant development. In particular, the differences between young and mature leaves are not considered while they clearly have an impact on the severity of infection. In fact, the mature leaves become infected more quickly than the young ones and it is only the latter that produce the coffee berries [START_REF] Pellegrin | La rouille orangée du caféier Arabica en Nouvelle Calédonie : historique et épidémiologie[END_REF][START_REF] Merle | Effets du microclimat sur le développement de l'épidémie de rouille orangée du caféier Arabica (Hemileia vastatrix-Coffea arabica) dans une gamme de situations de production[END_REF].

Objectives

World agriculture is still affected by serious fungal diseases. Even though several studies have been conducted and a variety of management strategies have been developed, crop losses caused by these diseases are still quite severe. Sometimes the pathogen dynamics are poorly understood and they also become more resistant over time to the chemical fungicides that are still widely used, which makes the disease control more challenging. As a result, the focus of this thesis is to employ mathematical techniques to understand and manage fungal diseases.

The initial goal of the thesis is to develop rigorous mathematical model of plant-pathogen interactions. The models range from ordinary differential equations, which represent the global dynamics of plants and pathogens, to partial differential equations which study aerial dispersal and to hybrid models with discrete jumps, which represent (almost) instantaneous events like harvesting, the introduction of biocontrol agents or seasonality. The qualitative analysis of these models helps to understand their asymptotic behaviour. Additionally, numerical simulations of the models illustrate these theoretical findings and help to better understand the disease transient phases.

The thesis ultimate goal is to develop efficient and long-lasting control strategies that reduce the fungal development and preserve the yield. We favour biological control methods, which are less harmful for the environment and human health than chemical fungicides.

In this thesis, we examine the specific case of coffe leaf rust. Indeed, due to the economic importance of coffee, particularly for developing countries like Cameroon, managing this rust is still a major problem. Latin America and the Caribbean suffered from a major outbreak in 2012 despite the many management measures implemented. The emergency rust summit meeting held in Guatemala in April 2013 compiled a comprehensive list of shortcomings, among which a lack of resources to combat CLR and inefficient fungicide application methods [START_REF]Guatemala's coffee rust 'emergency' devastates crops[END_REF]. In this thesis, we will explore alternative control approaches such as the release of hyperparasites. Different hyperparasites have been identified for CLR: for instance fungus Lecanicillium lecanii [START_REF] Zewdie | Temporal dynamics and biocontrol potential of a hyperparasite on coffee leaf rust across a landscape in arabica coffee's native range[END_REF] and insect Mycodiplosis [START_REF] Henk | Mycodiplosis (diptera) infestation of rust fungi is frequent, wide spread and possibly host specific[END_REF], which feed on CLR spores.

Thesis structure

The thesis is divided into 5 chapters:

• Introduction 1 reviews the impact of fungal diseases and pests in agriculture, and presents different existing fungal disease models. It also describes the biological background on coffee leaf rust, paying special attention to recent developments and CLR modelling.

• Chapter 2 presents some major mathematical tools that were used in the thesis.

• In Chapter 3, we built our baseline model, an ODE model in which the host population is subdivided by health status, considering the crop leaf as an individual. The infection being mediated by fungus spores released in the plantation, their dynamics were also included. Moreover, this model differentiated between young and mature leaves, to take into account variations in fungus aggressiveness according to host development. We then studied analytically the existence and the stability of the equilibria. We also explored numerically the disappearance or persistence of CLR in the plantation, or the whole destruction of the coffee plantation by CLR.

• Chapter 4 is based on the ODE model of Chapter 3, which was simplified by combining young and mature leaves into branches. We introduced spore dispersal and we took into account the seasonality which is important factor of coffee production by distinguishing between dry and rainy seasons. The well-posedness of the PDE model with seasonality obtained was addressed. We studied analytically the existence and the stability of the equilibria. We investigated the CLR control by varying a parameter which reduces spore production.

• In Chapter 5, we presented a seasonal model which does not distinguish between young and mature leaves. The dynamics are continuous during the rainy seasons and represented by discrete events during the rainy seasons. For the biological control of the disease, we included the dynamics of hyperparasites which feed on uredospores. We used Floquet theory to analyse the stability of the periodic disease free solution. We used semi-numerical analysis to find the frequency and quantity of predators to release to control the disease.

• Chapter 6 presents the main results and the perspectives resulting from this work. In this chapter, we present the main mathematical tools that are used in this thesis. As evidenced by the table of content, they are at the crossing point between mathematical epidemiology, dynamical systems and partial differential equations.

Stability of epidemiological models

The transmission of diseases in animal (underlay humans) or plants, such as fungi, can be described using epidemiological models. Once the model is established, we can investigate the behaviour of the disease using mathematical analysis.

Computation of the basic reproduction number

The basic reproduction number is computed in classical epidemiological models to determine whether the disease will disappear or establish itself. Here we present a method of Van den Driessche et Watmough [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF] to compute that number.

Let us note x = (x 1 , ..., x n ) t , with each x i ≥ 0, be the number of individuals in each compartment. Let us define the domain

X s = {x ≥ 0|x i = 0, i = 1, ..., m}
where the disease is not present.

Let us consider the following epidemiological model with a non-negative initial conditions

ẋi = f i (x) = F i (x) -V i (x), i = 1, ..., n, (2.1) 
where F i (x) is the rate of appearance of new infections in compartment i, and

V i = V - i -V + i with V + i (x)
is the rate of transfer of individuals into compartment i by all other means, and V - i (x) is the rate of transfer of individuals out of compartment i. It is assumed that each function is continuously differentiable at least twice in each variable.

Let us suppose the following assumptions

(A 1 ) -(A 5 ) (A 1 ) if x ≥ 0, then F i (x), V + i , V - i ≥ 0 for i = 1, ..., n. (A 2 ) if x i = 0 then V - i = 0. In particular, if x ∈ X s then V - i = 0 for i = 1, ..., m. (A 3 ) F i = 0 if i > m. (A 4 ) if x ∈ X s then V + i = 0 for i = 1, ..., m. (A 5 ) If F(x)
is set to zero, then all eigenvalues of Df (x 0 ) have negative real parts. where Df (x 0 ) is the Jacobian matrix ∂f i ∂x j evaluated at a disease free equilibrium (DFE) x 0 .

Lemma 2.1. [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF] If x 0 is a DFE of equation (2.1) and f i (x) satisfies assumptions (A 1 )-(A 5 ), then the Jacobian matrices DF(x 0 ) and DV(x 0 ) are partitioned as

DF(x 0 ) = F 0 0 0 and DV(x 0 ) = V 0 J 3 J 4
where F and V are the m × m matrices defined by

F = ∂F i ∂x j (x 0 ) and V = ∂V i ∂x j (x 0 ) , with 1 ≤ i, j ≤ m.
Further, F is non-negative, V is a non-singular M -matrix and all eigenvalues of J 4 have a positive real part.

From these elements, the basic reproduction number is defined: Definition 2.1. The basic reproduction number, denoted R 0 , is the expected number of secondary cases produced, in a completely susceptible population, by a typical infective individual. R 0 is computed as the spectral radius of matrix F V -1 :

R 0 = ρ(F V -1 ) (2.2)
where F V -1 is called the next generation matrix for model (2.1).

We have the following theorem about the local stability of the disease free equilibrium Theorem 2.1 (Local stability of a DFE). Consider the disease transmission model given by (2.1)

with f (x) satisfying conditions (A 1 ) -(A 5 ). If x 0 is a DFE of the model, then x 0 is locally asymptotically stable if R 0 < 1, and unstable if R 0 > 1.

Bifurcation analysis

The Castillo-Chavez and Song theorem [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF] allows for the analysis of the different types of bifurcations that the epidemiological model exhibits, giving then the stability of the disease free and endemic equilibria.

Theorem 2.2. Consider the following ordinary differential equations, with a parameter ψ:

dx dt = f (x, ψ), f : R n × R n R n and f ∈ C 2 (R n × R). (2.3)
Without loss of generality, it is assumed that 0 is an equilibrium for system (2.3) for all values of the parameter ψ, that is f (0, ψ) ≡ 0 for all ψ. Assume

A 1 : A = D x f (0, 0) = ( ∂f i ∂x j (0, 0)) is the linearisation matrix of system (2.
3) around the equilibrium 0 with ψ evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;

A 2 : Matrix A has a nonnegative right eigenvector u and a left eigenvector v corresponding to the zero eigenvalue. Let f k be the k th component of f and

a = n k,i,j=1 v k u i u j ∂ 2 f k ∂z i ∂z j (0, 0), and b = n k,i=1 v k u i ∂ 2 f k ∂z i ∂ψ (0, 0).
The local dynamics of (2.3) around 0 are totally determined by a and b.

1. a > 0, b > 0. When ψ < 0 with ψ 1, 0 is locally asymptotically stable, and there exists a positive unstable equilibrium; when 0 < ψ 1, 0 is unstable and there exists a negative and locally asymptotically stable equilibrium; 2. a < 0, b < 0. When ψ < 0 with ψ 1, 0 is unstable; when 0 < ψ 1, 0 is locally asymptotically stable, and there exists a positive unstable equilibrium; 3. a > 0, b < 0. When ψ < 0 with ψ 1, 0 is unstable, and there exists a locally asymptotically stable negative equilibrium; when 0 < ψ 1, 0 is stable, and a positive unstable equilibrium appears; 4. a < 0, b > 0. When ψ changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

Stability of semi-discrete models

In the present manuscript, semi-discrete models are developed to model the phenomena related to seasonality or the introduction of hyperparasites to control fungal diseases in crop. For example, plant development and plant-pathogen interactions during the wet season may be modelled using continuous dynamics, whereas simpler dynamics during the dry season allow for their modelling as a discrete event. In this work, we consider semi-discrete models in which impulses occur at fixed times, so that they can be described as follows [START_REF] Bainov | Impulsive differential equations: periodic solutions and applications[END_REF]:

         dx(t) dt = f (t, x), t = t k , ∆x = I k (x(t)), t = t k , for k ∈ Z.
x(t + 0 ) = x 0 , t 0 ≥ 0.

(2.4)

where ∆x = x(t + k ) -x(t k ) with t + k denoting the instant just after t = t k so that x(t + k ) = lim h-→0 + = x(t k + h). f is locally Lipschitz continuous on R × Ω, with Ω an open set of R n , I k : Ω -→ Ω.
In the particular case where t k = kT define regularly spaced discrete events, we define a periodic solution for such a system (2.4) as a map x : R + -→ R n is said to be a periodic solution of equation (2.4) with period

T if it satisfies x(t + T ) = x(t) for t = t k and x(t k + T + ) = x(t + k ), for k ∈ Z.

Floquet theory

We apply Floquet's theory to study semi-discrete models. Floquet theory, in general, is a branch of the theory of ordinary differential equations that deals with solutions to periodic linear differential equations. These can arise from semi-discrete systems like (2.4) when f is T -periodic in t and the t k+q = t k + T for a fixed q. Let us consider the following linear impulsive differential system associated with non-linear model (2.4):

         dx(t) dt = A(t)x(t), t = t k , x(t + k ) = x(t k ) + B k x(t k ), t = t k , t k < t k+1 , k ∈ Z, x(t + 0 ) = x 0 , t 0 ≥ 0. (2.5) 
where A(t) and B are n × n matrices. These equations are obtained by linearising system (2.4) around one of its periodic solutions, in order to consider the stability of the periodic solution (the x of (2.5) is then the difference between the x of (2.4) and the periodic solution).

Let us consider the following hypotheses :

H 1 : A(.) ∈ P C(R, M n ) and A(t + T ) = A(t), where M n is the set of (n × n)-matrices H 2 : B k ∈ M n and det(I + B k ) = 0, k ∈ Z H 3 : there exists q ∈ N such that B k+q = B k and t k+q = t k + T , k ∈ Z.
where P C(R, M n ) denotes the set of functions h : R -→ M n that are continuous ∀t ∈ R, t = t k , and admitting jump discontinuities at t k .

Theorem 2.3 (Fundamental matrix [START_REF] Bainov | Impulsive differential equations: periodic solutions and applications[END_REF]). Suppose that condition (H 1 ) -(H 3 ) hold. Then each fundamental matrix of equation (2.5) can be represented in the form X(t) = φ(t)e Λt , (t ∈ R) for a non-singular, T-periodic matrix φ(.

) ∈ P C 1 (R, M n (C)) and a constant matrix Λ ∈ M n (C).
Definition 2.2 (Monodromy matrix [START_REF] Bainov | Impulsive differential equations: periodic solutions and applications[END_REF]). Let X(t) be a fundamental matrix of equation (2.5).

Then the matrix X(t + T ) is also fundamental, and there corresponds a unique non-singular matrix M ∈ M n (C) such that

X(t + T ) = X(t)M,
for all t ∈ R. Here, M is called monodromy matrix of (2.5) corresponding to the fundamental matrix X(t). All monodromy matrices of equation (2.5) are similar and have the same eigenvalues. Their eigenvalues λ 1 , . . . , λ n are called Floquet multipliers.

In the order to calculate the Floquet multipliers of (2.5), we have to choose an arbitrary fundamental matrix X(t) and calculate the eigenvalues of the matrix M = X (t 0 + T )X -1 (t 0 ) where t 0 ∈ R is fixed.

If X(0) = I (or X (0 + ) = I), then we can choose M = X(T ) (or M = X (T + )) as the monodromy matrix. It follows that for any monodromy matrix M of (2.5), we have by [START_REF] Bainov | Impulsive differential equations: periodic solutions and applications[END_REF] 

det M = λ 1 • λ 2 . . . .λ n = Π q k=1 det (I + B k ) exp T 0 Tr A(s)ds .
Under these hypotheses, the following stability result holds.

Theorem 2.4 (Stability [START_REF] Bainov | Impulsive differential equations: periodic solutions and applications[END_REF]). Suppose that the conditions (H 1 ) -(H 3 ) hold. Then the linear T-periodic impulsive equation (2.5) is:

(1) stable if and only if all Floquet multipliers λ j , (j = 1, . . . , n) of equation (2.5) satisfy |λ j | ≤ 1 and moreover, to those λ j for which |λ k | = 1, there corresponds a simple elementary divisor.

(2) asymptotically stable if and only if all Floquet multipliers λ j , (j = 1, . . . , n) of the equation (2.5) satisfy the inequality |λ j | < 1.

(3) unstable if there is a Floquet multiplier λ j , (j = 1, . . . , n) such that |λ j | > 1.

Jury conditions

Through Floquet theory and the computation of the monodromy matrix, the stability study often requires the analysis of a discrete-time system, corresponding to the map from time kT + to time (k + 1)T + . To achieve that in dimension 2, we will need a simple tool that circumvent the computation of the eigenvalues, that is the Jury condition. Let A a 2 × 2-monodromy matrix for which we are not able to compute explicitly the Floquet multiplications. The conditions for these multipliers to stay in the unit circle can be established using the Jury criteria.

Defining A as

A = a 11 a 12 a 21 a 22
the Jury conditions [START_REF] Wang | Mathematical modeling I-preliminary[END_REF] guarantees that the eigenvalues of matrix A stay inside the unit circle if and only if

       -Tr(A) -det(A) < 1, det(A) < 1, Tr(A) -det(A) < 1, (2.6) 
where

Tr(A) = a 11 + a 22 , det(A) = a 11 a 22 -a 12 a 21 .

Semi-numerical analysis

In order to analyse system (2.5) when it is not possible to compute analytically the Floquet multipliers. For that, we consider the simplified situation where B k = B and t k = kT . The monodromy matrix associated with system (2.5) is evaluted in two steps: we first compute the state transition matrix of system ẋ = A(t)x by numerically solving the linear system (2.5) using the initial conditions x(0) = e i with e i the elements of the orthonormal basis. The n solutions evaluated at time T , which is a period, are then put together to obtain the fundamental matrix Φ(T ). Then we use the impulsive condition to obtain the monodromy matrix. We name this method "semi-numerical" as it requires numerical computations, but not extensive simulations of the system [START_REF] Ghosh | Natural enemies deployment in patchy environments for augmentative biological control[END_REF].

The algorithm is given by the following steps:

• Matrix A(t) is a n × n-matrix • The fundamental matrix verifies dΦ(t) dt = A(t)Φ(t)
• We use initial conditions Φ(0) = I to compute numerically the fundamental matrix Φ(T )

• The monodromy matrix associated with system (2.5) is then

x((k + 1)T + ) = (I + B)Φ(T )x(kT + )
• We compute R, the spectral radius of this monodromy matrix

• R < 1 implies stability of the zero solution

The monodromy matrix associated with x is

M = (I + B)Φ(T ).

Some results for the analysis and simulation of reactiondiffusion partial differential equations

For the positivity of PDE systemen, we use the following Lemma defined by [START_REF] Pao | Nonlinear parabolic and elliptic equations[END_REF] and given as follow:

Lemma 2.2. Suppose w ∈ C([0, T ] × Ω) ∩ C 1,2 ((0, T ] × Ω) that satisfies:      w t -D∆w ≥ -c(t, x)w(t, x), x ∈ Ω, 0 < t T , ∂w ∂η ≥ 0, on ∂Ω, w(0, x) ≥ 0, x ∈ Ω, where c(t, x) is any bounded function in [0, T ] × Ω. Then, w(t, x) ≥ 0 on [0, T ] × Ω. Moreover, w(t, x) > 0 or w ≡ 0 in (0, T ] × Ω.

Existence of solution

In this section we defined the initial value problem and the existence of solution for the abstract problem following the approach described by Pazy [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. Let 1 < p < ∞ and let Ω be a bounded domain with smooth boundary ∂Ω in R n . Consider the initial value problem:

         ∂u ∂t + A(t, x, D) = f (t, x), in Ω × [0, T ], D α u(t, x) = 0, |α| < m, on ∂Ω × [0, T ], u(0, x) = u 0 (x) in Ω (2.7)
where

A(t, x, D) = |α|≤2m a α (t, x)D α (2.8)
Let us define the following assumptions:

(H 1 )
The operator A(t, x, D), t ≥ 0 are uniformly strongly elliptic in Ω.

(H 2 ) The coefficients a α (t, x) are smooth functions of the variables x ∈ Ω for every 0 ≤ t ≤ T and satisfy for some constants

C 1 > 0 and 0 < β ≤ 1 |a α (t, x) -a α (s, x)| ≤ C 1 |t -s| β for x ∈ Ω, 0 ≤ s, t ≤ T and |α| ≤ 2m
With the family A(t, x, D), t ∈ [0, T ], of strongly elliptic operators, we associate a family of linear operators A p (t), t ∈ [0, T ], in L p (Ω), 1 < p < ∞. This is done as follows:

D(A p (t)) = D = W 2m,p (Ω) ∩ W m,p 0 (Ω) and A p (t)u = A(t, x, D)u for u ∈ D. If u 0 ∈ L p (Ω) and f (t, x) ∈ L p (Ω) for every 0 ≤ t ≤ T then a classical solution u of the following abstract initial value problem    du dt + A p (t)u = f, u(0) = u 0 (2.9)
in L p (Ω) is defined to be a generalized solution of the initial value problem (2.7).

Theorem 2.5 (Existence of solution [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Let the family A(t, x, D), 0 ≤ t ≤ T , satisfy the conditions (H 1 ) and (H 2 ) and let

f (t, x) ∈ L p (Ω) for 0 ≤ t ≤ T satisfy Ω |f (t, x) -f (s, x)| p dx 1 p ≤ C|t -s| γ (2.10)
for some constants C > 0 and 0 ≤ γ < 1. Then for every u 0 (x) ∈ L p (Ω) the evolution equation (2.7) possesses a unique generalized solution u ∈ D.

Nonstandard finite difference scheme for parabolic equations

Here, we present a finite difference scheme for a particular class of reaction-diffusion partial differential equations (PDEs) in dimension one [START_REF] Mickens | Nonstandard finite difference schemes for reaction-diffusion equations[END_REF]. Consider the following equation

∂u i ∂t = D i ∂ 2 u i ∂x 2 -f i (u 1 , u 2 , ..., u n )u i + g i (u 1 , u 2 , ..., u n )u i + Λ i , i = 1, 2, ..., n, (2.11) 
where D i are nonnegative diffusion coefficients, and the f i and g i are polynomial or rational functions of (u 1 , u 2 , ..., u n ) with positive coefficients. With Neumann boundary condition

∂u i ∂x = 0 (2.12)
We suppose that,

u i (x, 0) ≥ 0 =⇒ u i (x, t) ≥ 0.
Let us introduce the notation:

t → t k = ψ(∆t)k, x → x m = φ(∆x)m,
where k is a non-negative integer, m is an integer; ψ(∆t) and φ(∆x) are, respectively, the time and space step-sizes, with ψ and φ satisfying

ψ(h) = h + O(h 2 ) φ(h) = h 2 + O(h 4 ). (2.13) 
The discrete approximations to the dependent variables are

u i (x, t) = [u i ] k m , i = 1, 2, . . . , n.
A positivity preserving finite difference scheme is one for which

[u i ] k m ≥ 0 ⇒ [u i ] k+1 m ≥ 0, i = 1, 2, . . . , n.
One consequence of this requirement is that it can hold only if a functional relation exists between the time and space step-sizes. In particular, for the PDE system given by equation (2.11), the following relation holds:

ψ(∆t) ≤ α(φ(∆x)) 2 , (2.14)
where α is a constant determined by the diffusion coefficients

(D 1 , D 2 , . . . , D n ).
The discrete forms for the first-order time derivative and the second-order space derivative are given, respectively, by the usual forward Euler and central difference is given by :

∂u i ∂t = [u i ] k+1 m -[u i ] k m ψ(∆t) + O(ψ(∆t)) ∂ 2 u i ∂x 2 = [u i ] k m+1 -2 [u i ] k m + [u i ] k m-1 (φ(∆x)) 2 + O((φ(∆x)) 2 ).
A non-standard finite difference scheme for the PDE system of equation (2.7) is obtained by making the substitutions of the above expressions. Doing this gives (i = 1, 2, . . . , n)

[u i ] k+1 m -[u i ] k m ψ(∆t) = D i [u i ] k m+1 -2 [u i ] k m + [u i ] k m-1 (φ(∆x)) 2 -f i ([u] k m ) [u i ] k+1 m + g i ([u] k m ) [u i ] k m + Λ i , (2.15)
where

[u] k m = ([u 1 ] k m , [u 2 ] k m , . . . , [u n ] k m ) represent u evaluated at t = t k and x = x m , If R i is defined as R i ≡ D i ψ(∆t) (φ(∆x)) 2
then equation (2.15) can be written as

1 + ψ(∆t)f i ([u] k m ) [u i ] k+1 m = R i [u i ] k m+1 + [u i ] k m-1 + (1 -2R i ) [u i ] k m + ψ(∆t)Λ i + ψ(∆t)g i ([u] k m ) [u i ] k m .
(2.16)

Inspection of the second term in equation (2.16) shows that the positivity condition

[u i ] k m ≥ 0 ⇒ [u i ] k+1 m ≥ 0 is satisfied, provided that Dψ(∆t) (φ(∆x)) 2 ≤ 1 2 , D = Max (D 1 , D 2 , . . . , D n ) (2.17)
Then the time-step size should be selected such that the condition given in equation (2.17) holds and the non-standard scheme is (conditionally) stable. However, in general, the solutions of this condition do not satisfy this principle. The imposing of this min-max principle on the solutions to equation (2.17) gives the conditional stability requirement.

Consider Neuman condition in equation (2.12), the discrete form is given by:

         ∂u i ∂x | m=0 = [u i ] k m+1 -[u i ] k m (φ(∆x)) 2 = 0 =⇒ [u i ] k 1 = [u i ] k 0 ∂u i ∂x | m=Nx = [u i ] k m+1 -[u i ] k m (φ(∆x)) 2 = 0 =⇒ [u i ] k Nx+1 = [u i ] k Nx
where N x is the number of space point. Replacing the above Neumann condition in equation (2.16), we obtain

(1 + ψ(∆t)f i ([u] k 0 )) [u i ] k+1 0 = [u i ] k 0 + ψ(∆t)(Λ i + g i ([u] k 0 )) [u i ] k 0 , (1 + ψ(∆t)f i ([u] k Nx )) [u i ] k+1 Nx = [u i ] k Nx + ψ(∆t)(Λ i + g i ([u] k Nx )) [u i ] k Nx .
(2.18)

Combining equations (2.16) and (2.18), we obtain a non-standard schemes for a reactiondiffusion partial differential equations with Neumann boundary condition.

Chapter 3

Bifurcation analysis in an epidemiological model of fungal crop disease

In this chapter, we develop an epidemiological host-pathogen model that describes the propagation of a fungal disease, applied to CLR, using the following hypotheses.

H 1 : The model is based on a classical epidemiological model, in which the host population is subdivided by health status (susceptible leaves S, latent leaves L, infectious leaves I and dry leaves R), considering the crop leaf as an individual. This model differentiates between young and mature leaves, to take into account variations in fungus aggressiveness according to host development. The model includes crop production (berries B) by mature leaves. The infection being mediated by fungus spores (uredospores U ) released in the plantation, their dynamics are also included.

H 2 : The model takes into account the non-constant recruitment of young susceptible leaves, which are generated by mature leaves. Due to competition, the dynamics of young leaves are negatively impacted by mature leaves.

H 3 : Although the germination rate (which determines the infection success) differs between young and mature leaves, both face the same force of infection. The latter is proportional to the number of uredospores and inversely proportional to the total number of leaves. Thus, the force of infection is density-dependent.

H 4 : The model does not take seasonality into account.

H 5 : Space is not explicitly taken into account in this model, uredospores are homogeneously distributed on young and mature leaves. Based on these hypotheses we obtain a complex ODE model with nine compartments. We use it to understand the dynamics of fungal diseases applied to the particular case of CLR. We study the model behaviour for different values of parameters and initial states of the pathogen. Abstract: Most crops are subject to many pests and pathogens, which reduce their yield. In this paper, we develop an SEIR-U epidemiological model for a fungal crop disease, where U stands for spores. The originality of this model is a differentiation between young and mature leaves, that takes into account the impact of host development on the aggressiveness of the pathogen. This is motivated by the particular case of coffee leaf rust (CLR), which can drastically reduce coffee berry production. We compute the basic reproduction number R 0 , which classically determines the stability of the disease-free equilibrium (DFE), and identify two bifurcation cases at its threshold value 1. The first classical case corresponds to a forward bifurcation. Above the threshold, the DFE becomes unstable and a stable endemic equilibrium (EE) appears. In the second case, there is backward bifurcation. Below the threshold, there are two EE, one stable and one unstable, and a stable DFE. Above the threshold, the DFE becomes unstable, one EE disappears and the other EE remains stable. In both cases, when R 0 is notably larger than 1, either the EE persists and remains stable or it disappears and the trivial equilibrium becomes stable. This model hence exhibits complex asymptotic properties: R 0 < 1 is not sufficient to eradicate the disease, as a stable EE may exist; moreover, high R 0 values may lead to the destruction of the coffee plantation.

Keywords: Epidemiological model, Host age classes, Coffee leaf rust, Basic reproduction number, Stability, Backward bifurcation MSC Classification: 92D30, 37N25, 34D20, 34C23, 34C60

3.1. INTRODUCTION

Introduction

Plant pest and pathogens account for up to 40% of yield loss worldwide [START_REF] Boonekamp | Are plant diseases too much ignored in the climate change debate?[END_REF]. In the current context of ever growing population and climate change, this problem needs to be tackled at scale. Hence, the interactions between pest/pathogens and their hosts need to be better understood. Mathematical models of fungal diseases have received a lot of attention from researchers. For instance, [START_REF] Fleming | The potential for control of cereal rust by natural enemies[END_REF] used a mathematical model to describe the transition of a cereal rust population from endemic to epidemic densities and prove that natural enemies are likely to control only low-density cereal rust populations. [START_REF] Pivonia | Relating epidemic progress from a general disease model to seasonal appearance time of rusts in the united states: Implications for soybean rust[END_REF] studied the seasonal appearance of rusts in the United States, in particular soybean rust, thanks to a general disease model. [START_REF] Rimbaud | Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance?[END_REF] investigated how the spatial deployment of resistant cultivars affected the resistance efficiency and durability, using a demogenetic model, for a seasonal crop infected by a fungal-like pathogen.

There are fewer models of fungal diseases that target perennial hosts. For instance, [START_REF] Burie | Modeling of the invasion of a fungal disease over a vineyard[END_REF] explored the dynamical behaviour of mildew in a vineyard, while [START_REF] Mammeri | How changes in the dynamic of crop susceptibility and cultural practices can be used to better control the spread of a fungal pathogen at the plot scale?[END_REF] studied the impact of spatial heterogeneities on its spread and control during a cropping season. [START_REF] Sapoukhina | Spatially mixed crops to control the stratified dispersal of airborne fungal diseases[END_REF] studied susceptible and resistant crop mixtures for a fungal disease propagated by airborne spores in a field. [START_REF] Desprez-Loustau | The ecological and evolutionary trajectory of oak powdery mildew in Europe[END_REF] developed a seasonal eco-evolutionary model of oak powdery mildew in Europe, based on a within-season and between-season transmission trade-off, which captures the main features of the disease, that is seasonality and pathogen species coexistence. [START_REF] Ravigné | Mate limitation in fungal plant parasites can lead to cyclic epidemics in perennial host populations[END_REF] looked at the impact of sexual and asexual reproduction on the epidemiological dynamics of fungal plant parasites and showed that they could induce cyclic persistence of the disease, which can occur with Sigatoka diseases of banana.

In this paper, we develop an epidemiological model to describe the spread of a fungal disease on a perennial plant in an agriculture context. The originality of this model is that it is structured to represent host developmental stages, as they often impact the aggressiveness of the pathogen, stemming from nutrient availability [START_REF] Coleman | Leaf development and leaf stress: increased susceptibility associated with sink-source transition[END_REF] or presence of different defense compounds [START_REF] Maupetit | Defense compounds rather than nutrient availability shape aggressiveness trait variation along a leaf maturity gradient in a biotrophic plant pathogen[END_REF] in the host.

The present work is motivated by the particular case of coffee leaf rust (CLR) on the coffee tree, which is a perennial plant that is exploited commercially for about 30 years [START_REF] Wintgens | Coffee: Growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers[END_REF]. CLR has a major impact on coffee production [START_REF] Zambolim | Current status and management of coffee leaf rust in brazil[END_REF]. However, our study can be applied to other fungal diseases that target perennial hosts since most fungal diseases present the same type of life cycle, going through spore dispersion for asexual and/or sexual reproduction. CLR is caused by a basidiomycete fungus, Hemileia vastatrix, which infects coffee leaves of all stages, and dries them up before they fall down. The life cycle of H. vastatrix starts with the dispersion of uredospores, which land on the leaves. They germinate and penetrate the leaf, the infection process requires 48 hours to 10 days [START_REF] Nutman | Studies on the biology of hemileia vastatrix berk. & br[END_REF] depending of the age of the leaf and the climatic conditions [START_REF] Razafindramamba | Biologie de la rouille du caféier[END_REF]. Two to three weeks after the infection, yellow spots appear on the leaves. They grow and sporulate for two weeks to several months to produce two types of spores: uredospores for asexual reproduction and teliospores for sexual reproduction [START_REF] Waller | Coffee rust-epidemiology and control[END_REF]. As the teliospore part of the cycle is not well known, except that these spores do not infect coffee leaves and might even be a dead end [START_REF] Koutouleas | On the hunt for the alternate host of Hemileia vastatrix[END_REF], it is not included in our model. For other rusts such as poplar rust, this part of the cycle is crucial for overwintering [START_REF] Hacquard | The poplar-poplar rust interaction: insights from genomics and transcriptomics[END_REF].

Mathematical models have been developed to study the epidemiology of CLR. [START_REF] Avelino | The intensity of a coffee rust epidemic is dependent on production situations[END_REF] investigated the factors (coffee tree characteristics, crop management patterns, environment) that affect CLR intensity in several plots in Honduras. They showed that coffee rust development is linked to three sets of factors: the environment, plant growth and development, and grower practices. [START_REF] Bebber | Modelling coffee leaf rust risk in Colombia with climate reanalysis data[END_REF] determined the germination and infection risk depending on the climate in Colombia and neighbouring countries, based upon existing experimental data. [START_REF] Vandermeer | The dynamics of the coffee rust disease: an epidemiological approach using network theory[END_REF] represented the CLR dynamics in a coffee farm in Chiapas using an SI epidemiological model of the host. They showed that the network approach can be a useful way of gaining qualitative insight on spatial disease dynamics. They also showed in their study that coffee rust pattern suggests something other than random dispersal of spores. [START_REF] Djuikem | Modelling coffee leaf rust dynamics to control its spread[END_REF] studied the dynamics of CLR in a coffee plantation. However, existing models do not explicitly incorporate coffee plant development. In particular, in these models the differences between young and mature leaves are not considered while they clearly have an impact on the severity of infection. In fact, the mature leaves become infected more quickly than the young ones and it is only the latter that produce the coffee berries [START_REF] Pellegrin | La rouille orangée du caféier Arabica en Nouvelle Calédonie : historique et épidémiologie[END_REF][START_REF] Merle | Effets du microclimat sur le développement de l'épidémie de rouille orangée du caféier Arabica (Hemileia vastatrix-Coffea arabica) dans une gamme de situations de production[END_REF].

Our aim is hence first to build a mathematical model describing the interactions between a fungal pathogen and a perennial plant, taking into account the development stages of the host and the epidemiological status of the leaves. It is based on the SEIR-U epidemiological model, where U stands for uredospores, presented in [START_REF] Djuikem | Modelling coffee leaf rust dynamics to control its spread[END_REF]. Compared to this previous work, this new model does not include the spatially-explicit spore dispersal, but it differentiates young and mature leaves and the young leaves grow logistically. We explicitly include a berry compartment to study the impact of CLR on crop production. Secondly, we analyse the equilibria of this complex ODE model and their stability.

This paper is organized as follows. Section 3.2 is devoted to the formulation of the model and derive its basic properties. In Section 3.3, we compute the disease free equilibrium and the basic reproduction number which determines its stability. In Section 3.4, we prove the existence of endemic equilibria and study their stability. We also presents different types of bifurcations that occurs in the model. Finally, we conclude the paper and propose several perspectives for future work.

Model formulation and basic properties

Formulation of the CLR model

Herein, we formulate a mathematical model for the CLR in the coffee plantation. To do so, we propose an ODE coffee-CLR interaction model that take into account a logistic growth of young leaves, the different stages of development of a leaf and the production of uredospores by all types of leaves. More precisely, we consider that in a coffee plantation we can find: susceptible young and mature leaves (J S and M S ), that have not (yet) been affected, latent young and mature leaves (J L and M L ), that are infected but not (yet) infectious, infectious young and mature leaves (J I and M I ), dry leaves (M R ), uredospores (U ), which the fungus H. vastatrix uses for its asexual reproduction, and berries (B).

Figure 3.1 gives the compartmental representation of the corresponding ODE model. The process begins with a logistic-like production of susceptible young leaves at rate r 0 M 1r 1 M J S . In the first term, M 1 = M S + M L + ε(M I + M R ) and ε < 1, since all mature leaves can produce young ones, with the infectious and dry leaves producing less due to infection. The second term represents the competition between susceptible young leaves and all mature leaves with M = M S + M L + M I + M R . All young leaves become mature at rate β. Uredospores land on leaves of all leaves at deposition rate ν, with fractions J S J+M and M S J+M on susceptible young and mature leaves, respectively, with J = J S + J L + J I . Uredospores germinate at rates ω 1 and ω 2 , respectively. Young and mature latent leaves become infectious at rate θ, where 1/θ corresponds to the average latency period. Infectious leaves sporulate over on average period 1/α; young leaves then die, while mature ones become dry. All young and mature leaves undergo natural mortality with baseline rate µ J and µ M , respectively. Dry leaves have an additional mortality rate d. Uredospores are produced by infectious young and mature leaves at rate γ 1 and γ 2 , respectively, and lose their infection ability at rate µ U . Berries are produced by all types of mature leaves at rates δ S ≥ δ L ≥ δ I ≥ δ R and die at rate µ B . Table 3.1 summarises the parameter definitions and values of system (3.1).

From the compartmental model in Figure 3.1, we have the following system of ordinary differential equations:

                                 JS = r 0 M 1 -r 1 M J S -ω 1 νU J+M J S -(β + µ J )J S , JL = ω 1 νU J+M J S -(β + θ + µ J )J L , JI = θJ L -(β + α + µ J )J I , ṀS = βJ S -ω 2 νU J+M M S -µ M M S , ṀL = βJ L + ω 2 νU J+M M S -(θ + µ M )M L , ṀI = βJ I + θM L -(α + µ M )M I , ṀR = αM I -(µ M + d)M R , U = γ 1 J I + γ 2 M I -(ν + µ U )U. Ḃ = δ 1 M S + δ 2 M L + δ 3 M I + δ 4 M R -µ B B, (3.1)
Since B is not present in the other equations of system (3.1), we do not consider this state variable in the mathematical analysis. With this in mind, system (3.1) reduces to 

                             JS = r 0 M 1 -r 1 M J S -ω 1 νU J+M J S -(β + µ J )J S , JL = ω 1 νU J+M J S -k 1 J L , JI = θJ L -k 2 J I , ṀS = βJ S -ω 2 νU J+M M S -µ M M S , ṀL = βJ L + ω 2 νU J+M M S -k 3 M L , ṀI = βJ I + θM L -k 4 M I , ṀR = αM I -k 5 M R , U = γ 1 J I + γ 2 M I -k 6 U. (3.2)
where

k 1 = β + θ + µ J , k 2 = β + α + µ J , k 3 = θ + µ M , k 4 = α + µ M , k 5 = µ M + d, k 6 = ν + µ U , System (3.2) is defined in Γ = R 8 + \ {(0, 0, 0, 0, 0, 0, 0, U ) with U ≥ 0}
where R + is the set of non-negative real numbers.

Basic properties

We obtain the following results for the positivity of solutions of system (3.2).

Lemma 3.1. For any initial condition in Γ, system (3.2) has a unique solution in Γ.

Proof of Lemma 3.1. Let x = (J S , J L , J I , M S , M L , M I ,M R , U ) and x(0) be an initial condition in Γ of system (3.2). Suppose that one of the variables, that we will denote x i is equal to 0 at some time, with all others being non-negative. A quick analysis shows that ẋi ≥ 0 so that x i cannot become negative. To ensure that any solution remains non-negative, we still need to prove that J + M cannot become negative in finite time.

Using system (3.2), we obtain

J + Ṁ = r 0 M 1 -r 1 M J S -µ J J -µ M M -αJ I -dM R , ≥ -r 1 M J S -µ J J -µ M M -αJ I -dM R .
Using the fact that J S < J < J + M , M < J + M , J I < J + M and M R < J + M , one has

˙ J + M ≥ -r 1 (J + M ) 2 -Υ(J + M ) (3.3)
where Υ = µ J + µ M + α + d. Using the comparison theorem to solve equation (3.3) yields

J(t) + M (t) ≥ Υ(J(0) + M (0)) Υe Υt + (J(0) + M (0))(e Υt -1)
.

The above expression proves that J(t) + M (t) cannot reach 0 in finite time. Therefore, the right hand-side of system (3.2) is Lipschitz continuous along all solutions, which implies that this system admits a unique solution that stays in Γ at all time.

We also obtain the following result about the boundedness of solutions of system (3.2).

Lemma 3.2. All solutions of system (3.2) are bounded.

Proof of Lemma 3.2.

(1) Firstly we will show that the compact region

Ω =      (J S , J L , J I , M S , M L , M I , M R , U ) ∈ R 8 + , J S ≤ J S , J L ≤ K J L √ U max , J I ≤ K J I √ U max , M S ≤ M S , M L ≤ K M L √ U max , M I ≤ K M I √ U max , M R ≤ K M R √ U max and U ≤ U max , with U max ≥ K U     
, is positively invariant for system (3.2), where

J S = max(J S (0), r 0 r 1 ), M S = max M S (0), β µ M J S , K J L = ω 1 νJ S k 1 , K J I = θK J L k 2 T 1 = β 2 K 2 J L + 4k 3 ω 2 νM S , K M L = βK J L + T 1 2k 3 , K M I = βK J L + θK M L k 4 , K M R = αK M I k 5 T 2 = γ 1 K J I + γ 2 K M I , and K U = T 2 2 k 2 6 .
Consider the first equation of system (3.2):

JS = r 0 M 1 -r 1 M J S - ω 1 νU J + M J S -(β + µ J )J S .
Using the fact that ω 1 νU J+M J S ≥ 0 and M 1 ≤ M , we obtain the following equation

JS ≤ r 0 M 1 - J S r 0 r 1 -(β + µ J )J S .
If J S ≥ r 0 r 1 , we obtain JS ≤ 0, this implies that ∀t ≥ 0, J S (t) ≤ J S . Similarly, let us consider the fourth equation of system (3.2).

ṀS = βJ S - ω 2 νU J + M M S -µ M M S ,
Using the fact that ω 2 νU J+M M S ≥ 0 and J S ≤ J S , we obtain

ṀS ≤ βJ S -µ M M S .
If M S ≥ β µ M J S , one has ṀS ≤ 0, this allows to conclude for all t ≥ 0 and M S (t) ≤ M S . Now for the boundness of the other variables, we use the hypothesis that ∀t ≥ 0 , U (t) ≤ U max whose validity will be confirmed later. Let us consider the second equation of system (3.2):

JL = ω 1 νU J + M J S -k 1 J L Using the fact that J S J+M ≤ J S J L and U ≤ U max , we obtain JL ≤ ω 1 νU max J S J L -k 1 J L . (3.4) If J L ≥ K J L √ U max in the equation (3.4) we obtain JL ≤ 0. This implies that, if J L (0) ≤ K J L √ U max , then J L (t) ≤ K J L √ U max , for all t ≥ 0.
Now, replacing the upper-bound value of J L into the third equation of system (3.2), gives

JI ≤ θK J L U max -k 2 J I . (3.5) 
In the equation (3.5), one can observe that if

J I ≥ K J I √ U max , we have JI ≤ 0 so that, when J I (0) ≤ K J I √ U max = θK J L k 2 √ U max , we obtain J I (t) ≤ K J I √ U max , for all t ≥ 0.
Replacing the upper-bound of J L and U into the fifth equation of system (3.2) and using the fact

M S J+M ≤ M S M L , yields ṀL ≤ βK J L U max + ω 2 νU max M S M L -(θ + µ M )M L = -k 3 M 2 L + βK J L √ U max M L + ω 2 νU max M S M L . (3.6)
The sign of the right-hand side of equation (3.6) is given by the sign of the second order equation of the numerator. Hence, it is negative when M L is larger than the largest of its two roots. This largest root is given by

K M L √ U max = βK J L +T 1 2k 3 √ U max . Then, one can conclude that when M L (0) ≤ K M L √ U max , one has M L (t) ≤ K M L √ U max for all t ≥ 0.
Replacing the upper-bound of J I and M L into sixth equation of system (3.2), gives

ṀI ≤ βK J L U max + θK M L U max -k 4 M I . (3.7)
In the equation (3.7), one can observe that if

M I ≥ K M I √ U max = βK J L +θK M L k 4 √ U max , we have ṀI ≤ 0 so that, when M I (0) ≤ K M I √ U max , we obtain M I (t) ≤ K M I √ U max , for all t ≥ 0.
Replacing the upper-bound value of M I into the seventh equation of system (3.2), yields

ṀR ≤ αK M I U max -k 5 M R . (3.8) Thus, if M R ≥ K M R √ U max = αK M I k 5 √ U max in the equation (3.8) we obtain ṀR ≤ 0, this implies, if M R (0) ≤ K M R √ U max , then M R (t) ≤ K M R √ U max , for all t ≥ 0.
Replacing the upper-bound value of J I and M I into the eighth equation of system (3.2), gives

U ≤ γ 1 K J I U max + γ 2 K M I U max -k 6 U. (3.9) Let T 3 = γ 1 K J I + γ 2 K M I , from the equation (3.9), one can observe that if U ≥ T 3 k 6 √ U max , we obtain U ≤ 0. Thus, if U max ≥ T 2 3 k 2 6
, we obtain U ≤ 0 for U = U max . Hence, the positive invariance of Ω is shown.

(2) Secondly, for any given initial conditions, one can choose U max large enough i.e

U max ≥ max J L (0) 2 K 2 J L , J I (0) 2 K 2 J I , M L (0) 2 K 2 M L , M I 0) 2 K 2 M I , M R (0) 2 K 2 M R , K U ,
such that the initial condition belongs to the corresponding positively invariant compact region Ω. Hence the solution initiated there is bounded.

Finally, using these two items one can conclude that all solutions are bounded. This achieves the proof.

Remark 3.1. System (3.2) is not defined for (J S , J L , J I , M S , M L , M I , M R ) = 0 R 7 but is extended
to the trivial equilibrium 0 R 8 which makes sense biologically. However, the stability of this trivial equilibrium cannot be analysed as the Jacobian matrix of system (3.2) is not defined at this point.

The disease free equilibrium and its stability

The disease free equilibrium (DFE) of system (3.2) occurs in the absence of CLR, so the DFE is

x 1 = (J 1 S , 0, 0, M 1 S , 0, 0, 0, 0)
where

J 1 S = r 0 β -µ M (β + µ J ) βr 1 and M 1 S = βJ 1 S µ M . (3.10)
The above expression shows that the DFE exists under the following condition:

r 0 β -µ M (β + µ J ) > 0. (3.11)
If condition (3.11) does not hold, the plantation of coffee cannot survive.

The basic reproduction number and the local stability of the DFE

To compute the basic reproduction number and the study local stability of the DFE of system (3.2), we use the standard method of the next generation matrix developed by [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]. In system (3.2), we consider only the variables in which the infection is in progression and uredospores, i.e. J L , J I , M L , M I , M R and U . The corresponding equations can be rewritten in the following way

dx I dt = F(x) -V(x)
,

where x I = (J L , J I , M L , M I , M R , U ), F i (x)
represents the rate of appearance of the new infections in compartment i and V (x) the transfer terms between compartments or the outside. We have

F(x)=           ω 1 νU J+M J S 0 ω 2 νU J+M M S 0 0 0           and V(x)=           k 1 J L -θJ L + k 2 J I -βJ L + k 3 M L -βJ I -θM L + k 4 M I -αM I + k 5 M R -γ 1 J I -γ 2 M I + k 6 U           .
The Jacobian matrices F of F and V of V evaluated at the DFE x 1 are respectively

F =            0 0 0 0 0 ω 1 νJ 1 S J 1 S +M 1 S 0 0 0 0 0 0 0 0 0 0 0 ω 2 νM 1 S J 1 S +M 1 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            and V =           k 1 0 0 0 0 0 -θ k 2 0 0 0 0 -β 0 k 3 0 0 0 0 -β -θ k 4 0 0 0 0 0 -α k 5 0 0 -γ 1 0 -γ 2 0 k 6           .
The basic reproduction number R 0 is obtained as the spectral radius of the positive matrix

F V -1 , that is R 0 = νθ [ω 1 µ M [βγ 2 (k 2 + k 3 ) + γ 1 k 3 k 4 ] + βω 2 γ 2 k 1 k 2 ] k 1 k 2 k 3 k 4 k 6 (β + µ M ) (3.12)
Moreover, we have the following result about the local stability of the DFE.

Lemma 3.3. The DFE x 1 of system (3.2) is locally asymptotically stable (LAS) in Γ when R 0 < 1, and unstable if R 0 > 1.

Global stability of DFE

Using a result obtained by Kamgang and Sallet [START_REF] Kamgang | Contribution à la stabilisation des systèmes mécaniques: contribution à l'étude de la stabilité des modèles épidémiologiques[END_REF], we have the following result about the global stability of the DFE.

Theorem 3.1. If R 0 ≤ ξ < 1, where ξ = µ M β + µ M 1 + νθω 2 γ 2 k 3 k 4 k 6 β µ M -1 ,
then the DFE x 1 of system (3.2) is globally asymptotically stable (GAS) in Γ.

Proof of Theorem 3.1. For the proof of this global stability, using the property of DFE, we rewrite system (3.2) in the following compact form

ẋS = G 11 (x S , x I )(x S -x 1 S ) -G 12 (x S , x I )x I ẋI = G 22 (x S , x I )x I (3.13)
where x S is the vector representing the state of different compartments of non-transmitting leaves (e.g. susceptible leaves) and the vector x I represents the state of compartments of different transmitting leaves (e.g. infected leaves). Here, we have

x S = (J S , M S ) T , x I = (J L , J I , M L , M I , M R , U ) T , x 1 S = (J 1 S , M 1 S ) T , x = (x S , x I ), G 11 (x S , x I ) = -r 1 M -(β + µ J ) r 0 -r 1 J 1 S β -µ M , G 12 (x S , x I ) = 0 0 r 0 -r 1 J 1 S εr 0 -r 1 J 1 S εr 0 -r 1 J 1 S -ω 1 νJ S J+M 0 0 0 0 0 -ω 2 νM S J+M and G 22 (x S , x I ) =           -k 1 0 0 0 0 ω 1 νJ S J+M θ -k 2 0 0 0 0 β 0 -k 3 0 0 ω 2 νM S J+M 0 β θ -k 4 0 0 0 0 0 α -k 5 0 0 γ 1 0 γ 2 0 -k 6           Let Ω ⊂ U = R 2 + × R 6 + .
The right-hand side of system (3.13) is of class C 1 on the open set U. Let us verify the following five hypotheses for the application of the Kamgang and Sallet's theorem.

H 1 : System (3.13) is defined on a positively invariant set Ω of the nonnegative orthant. Sys- tem (3.13) is dissipative on Ω H 2 : Subsystem ẋI = G 11 (x S , 0)(x S -x 1 S
) is globally asymptotically stable at the equilibrium

x 1 S = (J 1 S , M 1 S ) on the canonical projection D = Ω ∩ (R 2 + × {0 R 6 }) of Ω on R 2 +
Indeed, this subsystem can be written as 

dJ S (t) dt = r 0 M S -r 1 J S M S -(β + µ J )J S , dM S (t) dt = βJ S -µ M M S ( 3 
such that Ĝ22 = G 22 ( x), x ∈ R 2 + × {0}.
Indeed, consider the subsystem ẋI = G 22 (x S , x I )x I , on the matrix G 22 (x), we have J S J+M ≤ 1 and M S J+M ≤ 1, this implies that ẋI ≤ Ĝ22 x I , where Ĝ22 can be written as Ĝ22 = F -V , with V given above and

F =           0 0 0 0 0 ω 1 ν 0 0 0 0 0 0 0 0 0 0 0 ω 2 ν 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           . H 5 :
The spectral radius of the matrix Ĝ22 verify σ( Ĝ22 ) ≤ 0 Indeed, consider the following auxiliary problem:

dx I dt = ( F -V )x I (3.15) 
The matrix F and V verified the condition of Theorem 2 in [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF], then we have σ( Ĝ22 ) = σ( F -V ) < 0, which implies that R C = σ( F V -1 ) ≤ 1 , where σ( F -V ) represents the spectral radius of the matrix F -V (i.e. the largest real part of all the eigenvalues of this matrix) and F V -1 is the next generation matrix. The computation gives

R C = νθ [ω 1 [βγ 2 (k 2 + k 3 ) + γ 1 k 3 k 4 ] + ω 2 γ 2 k 1 k 2 ] k 1 k 2 k 3 k 4 k 6
Thus R C ≤ 1 ensures that all eigenvalues of Ĝ22 have a negative real parts. We have computed R C and we have seen that the hypotheses H 1 , H 2 , H 3 , H 4 and H 5 are satisfied. Then, by [START_REF] Kamgang | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (dfe)[END_REF], we have proven that the DFE x 1 for the system (3.2) is GAS if R C ≤ 1.

One can observe that

R 0 = µ M β + µ M R C + νθω 2 γ 2 k 3 k 4 k 6 β µ M -1 ,
and using the fact that R C ≤ 1 , we obtain

R 0 ≤ ξ, where ξ = µ M β + µ M 1 + νθω 2 γ 2 k 3 k 4 k 6 β µ M -1 < 1.
Then, Lemma 3.3 and hypothesis H 1 -H 5 allow to conclude that the DFE is GAS if R 0 ≤ ξ < 1, where ξ is given above. This completes the proof.

Endemic equilibria and their stability

Herein we prove the existence of endemic equilibria (EE) of system (3.2) and analysed their stability.

We denote by λ the force of infection given by

λ = νU J + M . (3.16) Let x * = (J * S , J * L , J * I , M * S , M * S , M * L , M * I , M * R , U *
) be an endemic equilibrium of system (3.2). Setting the right hand side of this system to 0 yields

                                                         0 = r 0 M * 1 -r 1 M * J * S -ω 1 λ * J * S -(β + µ J )J * S J * L = λ * ω 1 k 1 J * S , J * I = λ * θω 1 k 1 k 2 J * S , M * S = βJ * S (µ M + λ * ω 2 ) , M * L = λ * βω 1 k 1 k 3 J * S + ω 2 k 3 M * S , M * I = λ * βθω 1 (k 2 + k 3 ) k 1 k 2 k 3 k 4 J * S + θω 2 k 3 k 4 M * S , M * R = λ * βθαω 1 (k 2 + k 3 ) k 1 k 2 k 3 k 4 k 5 J * S + θαω 2 k 3 k 4 k 5 M * S , U * = λ * θω 1 (βγ 2 (k 2 + k 3 ) + γ 1 k 3 k 4 ) k 1 k 2 k 3 k 4 k 6 J * S + θγ 2 ω 2 k 3 k 4 k 6 M * S .
(3.17)

One can observe that there exists an endemic equilibrium x * if and only if λ * and J * S are positive.

Substituting the expressions of J * {L,I} and M * {S,L,I,R} into the first equation of system (3.17) and solving this equation for J * S , we obtain either J * S = 0 which corresponds to the trivial equilibrium or

J * S = b 2 (λ * ) 2 + b 1 λ * + b 0 βr 1 (c 2 (λ * ) 2 + c 1 λ * + c 0 ) , (3.18) 
where

                       b 2 = ω 1 ω 2 (βr 0 (θε(α + k 5 )(k 2 + k 3 ) + k 2 k 4 k 5 ) -k 1 k 2 k 3 k 4 k 5 ), b 1 = βr 0 k 2 [(k 5 (εθ + k 4 ) + εθα)(k 1 ω 2 + µ M ω 1 )] + βr 0 µ M θεω 1 k 3 (α + k 5 ), -k 1 k 2 k 3 k 4 k 5 (ω 2 (β + µ J ) + µ M ω 1 ), b 0 = (βr 0 -µ M (β + µ J ))k 1 k 2 k 3 k 4 k 5 , c 2 = ω 1 ω 2 [θ(k 2 + k 3 )(α + k 5 ) + k 2 k 4 k 5 ] , c 1 = k 2 (k 1 ω 2 + µ M ω 1 ) [k 5 (θ + k 4 ) + αθ] + µ M θω 1 k 3 (α + k 5 ), c 0 = k 1 k 2 k 3 k 4 k 5 .
Note that, in the equation (3.18) when λ * is positive, the sign of J * S is determined by it numerator in (3.18), as all c . are positive. 

λ * = νU * J * + M * ⇒ (J * + M * ) = νU * λ * ,
Replacing the expression of U * given in system (3.17), we obtain

J * + M * = νθ ω 1 [βγ 2 (k 2 + k 3 ) + γ 1 k 3 k 4 ] k 1 k 2 k 3 k 4 k 6 + βω 2 γ 2 k 3 k 4 k 6 (µ M + λ * ω 2 ) J * S .
As

J * + M * = J * S + J * L + J * I + M * S + M * L + M * I + M * R
, replacing the expressions given in equation (3.17) into the left-hand side of the above equation, we obtain either J * S = 0 or the following second degree polynomial governed by λ * :

P (λ * ) = m 2 (λ * ) 2 + m 1 λ * + m 0 (3.19)
where 

                 m 2 = ω 1 ω 2 θ+k 2 k 1 k 2 + β k 1 k 3 + βθ(k 2 +k 3 )(α+k 5 ) k 1 k 2 k 3 k 4 k 5 , m 1 = µ M a 2 ω 2 + ω 2 1 + β k 3 + βθ(α+k 5 ) k 3 k 4 k 5 -θω 1 ω 2 ν[βγ 2 (k 2 +k 3 )+γ 1 k 3 k 4 ] k 1 k 2 k 3 k 4 k 6 , m 0 = (β + µ M ) (1 -R 0 ) . Now,
+ + R 0 < 1 No solution + - + R 0 < 1 No or two solutions + + - R 0 > 1 One solution + - - R 0 > 1 One solution
A positive value for λ * is not sufficient to obtain an endemic equilibrium of system (3.2). We also need to verify if the corresponding value of J * S , determined from equation (3.18), is positive. If both λ * and J * S are positive, according to system (3.17), all state variables are positive, so it corresponds to an endemic equilibrium.

From the above proof we have the following Lemma Lemma 3.4. If R 0 > 1 and J * > 0, the system (3.2) has one endemic equilibrium

Bifurcation analysis

To study the stability of the endemic equilibria around R 0 , we use Theorem 2.2 given in Subsection 2.1.2. We first introduce a positive parameter η and set γ 2 = ηγ 1 . We then use γ 1 as bifurcation parameter, as its variations cover all R 0 values. Indeed,

R 0 γ 1 = νθ(ω 1 µ M (βη(k 2 + k 3 ) + k 3 k 4 ) + βω 2 ηk 1 k 2 ) k 1 k 2 k 3 k 4 k 6 (β + µ M ) := 1 ζ > 0. (3.20)
The linearisation of system (3.2) in the neighbourhood of DFE x 1 and around R 0 = 1, using expression in equation (3.20) 

setting γ 1 to ζ, yields dx(t) dt = J(x 1 )x(t), (3.21) 
where

J(x 1 ) =                -r 0 β µ M 0 0 µ M (β+µ J ) β µ M (β+µ J ) β Q Q -ω 1 νµ M β+µ M 0 -k 1 0 0 0 0 0 ω 1 νµ M β+µ M 0 θ -k 2 0 0 0 0 0 β 0 0 -µ M 0 0 0 -ω 2 νβ β+µ M 0 β 0 0 -k 3 0 0 ω 2 νβ β+µ M 0 0 β 0 θ -k 4 0 0 0 0 0 0 0 α -k 5 0 0 0 ζ 0 0 ηζ 0 -k 6               
,

where Q = µ M (β+µ J )+r 0 (ε-1)β β .
The matrix J(x 1 ) admits ρ = 0 as eigenvalue, the other eigenvalues still having a negative real part. Thereby, assumption A 1 of Theorem 4.3 is verified.

Let us now verify assumption A 2 . We need to compute the left and right eigenvectors of matrix J(x 1 ) associated to the eigenvalue ρ = 0. The left eigenvector, denoted by v = (v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 ), satisfies vJ(x 1 ) = 0 Solving the above equation, yields

                                         v 1 = 0, v 2 = ζθ[βη(k 2 + k 3 ) + k 3 k 4 ] k 1 k 2 k 3 k 4 v 8 , v 3 = ζ(βη + k 4 ) k 2 k 4 v 8 , v 4 = 0, v 5 = ηζθ k 3 k 4 v 8 , v 6 = ηζ k 4 v 8 , v 7 = 0, v 8 > 0.
Similarly, the right eigenvector of matrix J(x 1 ), denoted by u = (u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 , u 8 ) T , satisfies J(x 1 )u = 0, Solving the above equation, we obtain

                                                         u 1 = u 8 νµ M X (β + µ M )((β + µ M )µ M -r 0 β)k 1 k 2 k 3 k 4 k 5 , u 2 = ω 1 νµ M (β + µ M )k 1 u 8 , u 3 = θω 1 νµ M (β + µ M )k 1 k 2 u 8 , u 4 = β(-νω 2 u 8 + (β + µ M )u 1 ) (β + µ M )µ M u 5 = βν(µ M ω 1 + ω 2 k 1 ) (β + µ M )k 1 k 3 u 8 , u 6 = βνθ(µ M ω 1 (k 2 + k 3 ) + ω 2 k 1 k 2 ) (β + µ M )k 1 k 2 k 3 k 4 u 8 , u 7 = νθαβ(µ M ω 1 (k 2 + k 3 ) + ω 2 k 1 k 2 ) (β + µ M )k 1 k 2 k 3 k 4 k 5 u 8 , u 8 > 0.
where

                 X = X 1 + X 2 + X 3 + X 4 , X 1 = (β + µ J )ω 1 ((k 2 + k 3 )(α + k 5 )θ + k 2 k 4 k 5 )µ 2 M , X 2 = ((r 0 (ε -1)ω 1 + k 1 ω 2 )k 2 + ω 1 k 3 r 0 (ε -1))β + µ J ω 2 k 1 k 2 , X 3 = ((α + k 5 )θ + k 1 k 2 k 4 k 5 (βω 2 -k 3 ω 1 + µ J ω 2 ))µ M , X 4 = k 1 ω 2 k 2 (βr 0 (ε -1)(α + k 5 )θ -k 3 k 4 k 5 (β + µ J )).
The expression b defined in Assumption A 2 of Theorem 2.2 for system (3.2) is rewritten by

b = 8 k,i=1 v k u i ∂ 2 F k ∂x i ∂γ 1 (x 1 , ζ),
where F k = ẋk with k = 1, 2, ..., 8 corresponding to system (3.2).

The only term of partial derivative that is non-null corresponds to

v 8 ∂ 2 F 8 ∂x 3 ∂γ 1 (x 1 , ζ) = v 8 and v 8 ∂ 2 F 8 ∂x 6 ∂γ 1 (x 1 , ζ) = v 8 η.
Substituting the above expression into the expression of b, yields

b = v 8 u 3 ∂ 2 F 8 ∂x 3 ∂γ 1 (x 1 , ζ) + v 8 u 6 ∂ 2 F 8 ∂x 6 ∂γ 1 (x 1 , ζ) = v 8 (u 3 + u 6 η), Then b = v 8 (u 3 + u 6 η) > 0 (3.22)
Let us compute the expression of a, defined in Assumption A 2 of Theorem 2.2 for system (3.2), which is

a = 8 i,j,k=1 v k u i u j ∂ 2 F k ∂x i ∂x j (x 1 , ζ).
The only terms that are non-null correspond to

v 2 ∂ 2 F 2 ∂x 1 ∂x 8 (x 1 , ζ) = v 2 ∂ 2 F 2 ∂x 8 ∂x 1 (x 1 , ζ) = ω 1 νM 1 S (J 1 S + M 1 S ) 2 v 2 v 2 ∂ 2 F 2 ∂x i ∂x 8 (x 1 , ζ) = v 2 ∂ 2 F 2 ∂x 8 ∂x j (x 1 , ζ) = - ω 1 νJ 1 S (J 1 S + M 1 S ) 2 v 2 for i, j = 2, ..., 7. v 5 ∂ 2 F 5 ∂x 4 ∂x 8 (x 1 , ζ) = v 5 ∂ 2 F 5 ∂x 8 ∂x 4 (x 1 , ζ) = ω 2 νJ 1 S (J 1 S + M 1 S ) 2 v 5 v 2 ∂ 2 F 5 ∂x i ∂x 8 (x 1 , ζ) = v 5 ∂ 2 F 5 ∂x 8 ∂x j (x 1 , ζ) = - ω 2 νM 1 S (J 1 S + M 1 S ) 2 v 5 for i, j = 2, ..., 7.
Substituting these above expressions into the expression of a, yields

a = 2u 8   v 2 7 j=1 u j ∂ 2 F 2 ∂x j ∂x 8 (x 1 , ζ) + v 5 7 j=1 u j ∂ 2 F 5 ∂x j ∂x 8 (x 1 , ζ)   , = 2u 8 v 2 ω 1 νM 1 S (J 1 S + M 1 S ) 2 u 1 - ω 1 νJ 1 S (J 1 S + M 1 S ) 2 (u 2 + u 3 + u 4 + u 5 + u 6 + u 7 ) + 2u 8 v 5 ω 2 νJ 1 S (J 1 S + M 1 S ) 2 u 1 - ω 2 νM 1 S (J 1 S + M 1 S ) 2 (u 2 + u 3 + u 4 + u 5 + u 6 + u 7 ) .
Replace the values of J 1 S , M 1 S , v 2 and v 5 , we obtain

a = 2ζµ M r 1 ω 1 νβθu 8 v 8 (µ M 7 i=2 u i -βu 1 )(γ 1r k 4 k 3 + γ 2r β(k 2 + k 3 )) k 1 k 2 k 3 k 4 (β + µ M ) 2 ((β + µ J )µ M -βr 0 )) + 2r 1 θµ M ζβνω 2 u 8 v 8 γ 2r (β(u 1 + u 2 + u 3 + u 5 + u 6 + u 7 ) -µ M u 4 ) (β + µ M ) 2 ((β + µ J )µ M -βr 0 )k 3 k 4 .
(3.23)

The expression b given in equation (3.22) is always positive, then the direction of bifurcation depends on the sign of a given by (3.23). This means that we are in the cases 1 and 4 of Theorem 2.2. Then, the direction of the bifurcation is determined by the sign of parameter a defined in equation (3.23). Using parameter values in Table 3.1, with η = 7/5, lead to a < 0 which corresponds to a forward bifurcation.

Forward bifurcation and stability

Using Maple to calculate the solutions of the λ-polynomial in equation (3.19), we obtain Table 3.3.

From this table, one can conclude that system (3.2) has one endemic equilibrium when R 0 > 1 and that the DFE always exists.

According to the results in Section 3.4.1, when the bifurcation parameter changes from γ 1 < ζ to γ 1 > ζ, i.e. the basic reproduction number changes from R 0 < 1 to R 0 > 1, the DFE changes from LAS to unstable. Moreover, the endemic equilibrium J * S,1 in Table 3.3 appears and is locally asymptotically stable.

To complement this analytical result, Figure 3.2 shows the existence of equilibria and their R 0 = 0.8

J 0 S = 0 λ 0 = 0 J 1 S = 99.81 λ * 1 < 0 J * S,1 < 0 λ * 2 < 0 J * S,2 < 0 R 0 = 4 J 0 S = 0 λ 0 = 0 J 1 S = 99.81 λ * 1 = 1.27 J * S,1 = 81.94 λ * 2 < 0 J * S,2 < 0
stability. The initial conditions are chosen to be

x(0) = J S (0) = J 1 S , J L (0) = J I (0) = 0, M S (0) = M 1 S , M L (0) = M I (0) = M R (0) = 0, U (0) = U 0 > 0 , B(0) = 0 . (3.24)
They correspond to the DFE except for the initial presence of uredospores and absence of berries.

For R 0 = 0.8 < 1 (black curves), subplot (a) shows that system (3.1) has two equilibria, the DFE which is stable and the trivial equilibrium which we showed to be unstable numerically; subplot (b) shows the convergence of susceptible young leaves to their DFE value J 1 S . For R 0 = 4 > 1 (orange curves), subplot (a) shows that system (3.1) has three equilibria: the trivial equilibrium which is unstable, the DFE which is unstable and the endemic equilibrium which is stable; subplot (b) shows the convergence of susceptible young leaves to their endemic equilibrium value J * S,1 . Figure 3.3 shows the convergence of system (3.1), initially at the disease free equilibrium, towards the endemic equilibrium for different initial uredospore values. Susceptible leaves decrease over time. Infected leaves and uredospores overshoot their endemic steady state values. There are globally less leaves at the endemic equilibrium, compared to the initial disease free state. Compared to the DFE value (B 1 = 48929 berries), the number of berry at endemic equilibrium (B * = 8212 berries) is drastically reduced by 83%.

Figure 3.4 differentiates CLR impact between young and mature leaves. Young leaves are less susceptible to the disease and hence less affected. There are globally less young leaves, but more young susceptible leaves than mature susceptible leaves at the endemic equilibrium. Indeed, as there are less mature leaves, young leaves are less impacted by the competition with mature leaves.

Backward bifurcation and stability

In this subsection we study the behavior of system (3.1) when there is a backward bifurcation, corresponding to a > 0 in equation (3.23). We choose ad hoc parameters given in Table 3.4.

Firstly, using Maple to calculate the equilibria of system (3.2), we obtain Table 3.5. In this table, negative or complex values of λ * and/or J * S are included (text in gray), but they do not correspond to biological equilibria. Table 3.5: Force of infection λ and susceptible young leaves J S at equilibrium using parameter values in Table 3.4. All remaining parameters are given in Table 3.4, leading to ζ = 7.771 spores/leaf.day and initial conditions defined by (3.24) with U 0 = 100 (dashed curves) and U 0 = 1000 spores (solid curves).

R 0 Equilibrium values for: λ J S R 0 = 0.3 J 0 S = 0 λ 0 = 0 J 1 S = 104.76 λ * 1 complex J * S,1 complex λ * 2 complex J * S,2 complex R 0 = 0.8 J 0 S = 0 λ 0 = 0 J 1 S =
R 0 = 2 J 0 S = 0 λ * 0 = 0 J 1 S = 104.76 λ * 1 = 1.70 J * S,1 = 8.18 λ * 2 < 0 J * S,2 < 0 R 0 = 4 J 0 S = 0 λ 0 = 0 J 1 S = 104.76 λ * 1 = 3.92 J * S,1 = -6.46 λ * 2 < 0 J * S,2 < 0 0 1 2 3 
From this table, we conclude that system (3.2) has two endemic equilibria when R 0 < 1 and one endemic equilibrium when R 0 > 1.

When R 0 < 1, the DFE is stable. Moreover, according to the results in Section 3.4.1, when R 0 is close to one, there exist two endemic equilibria among which one is stable and the other unstable. When R 0 > 1, the DFE is unstable. Moreover, when R 0 is close to one, there is a unique endemic equilibrium, which is stable. For larger R 0 values, the endemic equilibrium disappears.

Figure 3.5 illustrates the existence of the endemic equilibria and their stability. The diagram in subplot (a) presents a sequence of three bifurcations: a saddle-node bifurcation in R 0 ≈ 0.7, a backward transcritical bifurcation in R 0 = 1 and an other transcritical bifurcation in R 0 ≈ 2.7. Subplot (b) presents the dynamics of susceptible young leaves J S for representative parameter values.

For R 0 = 0.3 (blue curves), subplot (a) shows that system (3.1) has two equilibria: the trivial equilibrium which we showed to be unstable numerically and the DFE which is stable; subplot (b) shows the convergence of susceptible young leaves to their DFE value J 1 S . For R 0 = 0.8 (black curves), subplot (a) shows that system (3.1) has four equilibria: the trivial equilibrium which is unstable, the DFE which is stable, the endemic equilibrium J * S,1 which is stable and the endemic equilibrium J * S,2 which is unstable; subplot (b) shows the convergence of susceptible young leaves to their DFE value J 1 S (for U 0 = 100 spores) and to their endemic equilibrium value J * S,1 (for U 0 = 1000 spores). For R 0 = 2 (orange curves), subplot (a) shows that system (3.1) has three equilibria: the trivial equilibrium which is unstable, the DFE which is unstable and the endemic equilibrium which is stable; subplot (b) shows the convergence of susceptible young leaves to their endemic equilibrium value J * S,1 . For R 0 = 4 (orange curves), subplot (a) shows that system (3.1) has three equilibria: the trivial equilibrium which is stable and the DFE is unstable; subplot (b) shows the convergence of susceptible young leaves to their value at trivial equilibrium.

For R 0 = 0.8, Figure 3.6 shows the convergence of system (3.1) towards the DFE and towards the stable endemic equilibrium for different initial uredospore values. For U 0 = 10 (blue curves) and U 0 = 100 spores (red curves), susceptible leaves decrease and then increase towards their DFE values. Simultaneously, the infected leaves and uredospores decrease towards zero and the berries increase. This convergence corresponds to the local stability of the DFE. For U 0 = 200 (yellow curves) and U (0) = 300 spores (purple curves), susceptible leaves decrease towards their endemic values. Infected leaves and uredospores first decrease, as for smaller initial uredospore values, and then increase towards their endemic values. Berries increase and then decrease towards their endemic values. This convergence corresponds to the local stability of one of the two endemic equilibria.

For R 0 = 4, Figure 3.7 shows the convergence of system (3.1) towards the trivial equilibrium for different initial uredospore values. Susceptible leaves decrease over time towards zero. Infected leaves, uredospores and berries first increase and then decrease towards zero. This shows the stability of the trivial equilibrium. This case corresponds to a very virulent pathogen that totally destroys the coffee plantation. Note that the dynamics does not depend on the initial conditions, except for the berries whose dynamics are amplified by the small differences 

Other types of bifurcation

Beside the forward and backward bifurcation diagrams presented in section 3.4. Figure 3.8 shows two different bifurcation diagrams. Subplot (a) presents a forward bifurcation, as in Figure 3.2, but where the endemic equilibrium disappears for large R 0 values while the trivial equilibrium becomes stable. Subplot (b) presents a backward bifurcation, as in Figure 3.5, but where the endemic equilibrium persists for large R 0 values.

Conclusion

In this paper, we proposed and analysed a mathematical model that describes the propagation of a fungal disease on a perennial plant. The originality of the model is the differentiation between young and mature leaves, to take into account the impact of host development on the aggressiveness of the pathogen. The model is applied to the particular case of coffee leaf rust in a coffee plantation. It is fairly generic and can be adapted to other fungal diseases for which the host age structure plays an important role. We computed the disease-free and endemic equilibria and we studied their stability as a function of the basic reproduction number. We identified different bifurcation diagrams. They showed two behaviours for the model when the basic reproduction number is close to one. The first case is a forward bifurcation which corresponds to a stable disease free equilibrium when the basic reproduction number is less than one, and a stable endemic equilibrium when it is greater than one. The second case is a backward bifurcation in which, on top of the stable disease free equilibrium, there is a stable endemic equilibrium when the basic reproduction number is less than one. This means that, disease may persist even in these unfavourable conditions. Moreover, when the basic reproduction number is notably larger than one, be it in the forward or backward bifurcation case, the endemic equilibrium may disappear and the trivial equilibrium then becomes stable, which corresponds to the destruction of the plantation.

All bifurcation cases allow to conclude that, when the basic reproduction number is greater that one, the disease can destroy the plantation and even when the basic reproduction number is less than one, the disease can persist. These results provide useful insights on the disease dynamics and its control. For instance, in order to eradicate a disease that spreads with basic reproduction number greater than one, it might not be sufficient to bring it below one, as an endemic state still persists. The basic reproduction number should be brought below the level of the saddle-node bifurcation to achieve effective disease control.

Chapter 4

Modelling coffee leaf rust dynamics to control its spread

In this chapter, we simplify the model in Chapter 3 by combining young and mature leaves into branches. Moreover, we distinguish between dry and rainy season and introduce spore dispersal. The model is obtained using the following hypotheses.

H 1 : The model is based on a classical epidemiological model, in which the host population is subdivided by health status (healthy branches S, latent branches L, infectious branches I and leafless branches J), considering the crop branch as an individual. The model includes crop production (berries B) by branches during the rainy season. The infection being mediated by fungus spores (uredospore U) released in the plantation, their dynamics are also included.

H 2 : The recruitment of healthy branches is constant.

H 3 :
The force of infection is density-dependent: it is proportional to the number of uredospores and inversely proportional to the total number of branches.

H 4 : The model alternates dry and rainy seasons. The same model is used during both seasons, but with different parameter values: crop development and disease progression are reduced during the dry seasons.

H 5 : Space is taken into account in this model. The branches are homogeneously distributed. The 1D dispersal of uredospores is considered.

H 6 :
The model uses a PDE formalism.

H 7 : A parameter which reduces spore production is added to control the disease.

We then obtain a PDE model with six compartments. The objective of this second study is to understand the impact of spore diffusion and seasonality on the dynamics of CLR.
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Coffee is one of the most widely consumed beverages in the world; its trade satisfies the regular consumption of more than two billion people and exceeds 10$ billion worldwide [START_REF] Toledo | Coffee and sustainability: the multiple values of traditional shaded coffee[END_REF]. Its cultivation is an important factor of social stability as it sustains the living of not less than twenty-five million small producers and their families worldwide by ICO [START_REF]Coffee production by exporting countries[END_REF]. The total production of all exporting countries in 2018 was more than 172 million 60-kilogram bags [START_REF]Coffee production by exporting countries[END_REF].

Coffee leaf rust (CLR) is a disease caused by a basidiomycete fungus, Hemileia vastatrix, that affects coffee trees. The fungus H. vastatrix is a compulsory parasite. In other words, it is a fungus that lives and develops only on coffee leaves. It attacks the lower leaves of the coffee tree and causes premature defoliation, which reduces the photosynthetic capacity and weakens the tree. Leaf fall causes abortion of a large part of the flowers and fruits, as well as desiccation of shoots. CLR is the most serious leaf disease of the coffee tree known to date [START_REF] Muller | [END_REF]. It has direct and indirect economic impacts on coffee production. Direct impacts include decreased quantity and quality of yield. In some cases, more than 70% of the coffee production is lost [START_REF] Grée | Epidemiology of coffee leaf rust in the Eastern Highlands[END_REF]. Indirect impacts include increased costs to control the disease. Control methods include fungicide application [START_REF] Capucho | Chemical control of coffee leaf rust in coffea canephora cv. conilon[END_REF], cultural practices [START_REF] Avelino | Effects of crop management patterns on coffee rust epidemics[END_REF] including stumping of diseased plants, the use of resistant cultivars [START_REF] Arneson | The Plant Health Instructor[END_REF], and biocontrol by fungal and bacterial parasites [START_REF] Vandermeer | Qualitative dynamics of the coffee rust epidemic: educating intuition with theoretical ecology[END_REF][START_REF] Arroyo-Esquivel | Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds[END_REF]. These methods induce significant labour and material costs and, in the case of stumping, a year-long decline in production. To better control this fungus, it is necessary to understand the disease propagation and what conditions favour its development and dispersal.

The spread of crop diseases, in particular airborne pathogens such as fungi, has received a lot of attention from researchers. Among models that represent the pathogen spatial dispersal, one can cite the DDAL framework that focuses on the deployment of susceptible and resistant crop hosts in an agricultural landscape [START_REF] Papaïx | Pathogen population dynamics in agricultural landscapes: The Ddal modelling framework[END_REF]. Fewer models represent the pathogen spread by a diffusion term in partial differential equations (PDE). For instance, Sapoukhina et al. also study susceptible and resistant crop mixtures for a fungal disease propagated by airborne spores in a field [START_REF] Sapoukhina | Spatially mixed crops to control the stratified dispersal of airborne fungal diseases[END_REF], while Burie et al. explore the dynamical behaviour of mildew in a vineyard [START_REF] Burie | Modeling of the invasion of a fungal disease over a vineyard[END_REF]. These disease dynamics are relevant for CLR modelling: they include a latency period, a sporulation period, spore dispersal and germination.

CLR models in the literature represent different scales, from the individual coffee bush to the country or even the continent. Avelino et al. investigate the factors (coffee tree characteristics, crop management patterns, environment) that affect CLR intensity in several plots in Honduras [START_REF] Avelino | The intensity of a coffee rust epidemic is dependent on production situations[END_REF]. Bebber et al. determine the germination and infection risk depending on the climate in Colombia and neighbouring countries [START_REF] Bebber | Modelling coffee leaf rust risk in Colombia with climate reanalysis data[END_REF]. In contrast to these static approaches, Vandermeer et al. study the interaction between the regional and local dynamics of CLR model by representing the evolution of the proportion of infected bushes and farms [START_REF] Vandermeer | The interaction of regional and local in the dynamics of the coffee rust disease[END_REF]. Vandermeer et al. also represent the CLR dynamics in a coffee farm in Chiapas using an SI epidemiological model of the host [START_REF] Vandermeer | The dynamics of the coffee rust disease: an epidemiological approach using network theory[END_REF]. In these two latter studies, the fungus life cycle is not represented. Some other models investigate CLR control. Vandermeer et al. look at the interaction between H. vastatrix and a mycoparasite Lecanicillium lecanii [START_REF] Vandermeer | Qualitative dynamics of the coffee rust epidemic: educating intuition with theoretical ecology[END_REF], while Arroyo et al. consider interactions with antifungal bacteria [START_REF] Arroyo-Esquivel | Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds[END_REF]. However, no existing CLR model considers H. vastatrix dynamics together with its interaction with the coffee host. In particular none considered the impact of CLR on berry production, which is the variable of agronomic interest.

Our aim is to understand the CLR propagation in a field and to propose a biocontrol solution PhD Thesis 61 C. Djuikem based on the Lecanicillium lecanii mycoparasite, by a mathematical modelling approach. Biocontrol methods are still in development but could provide ecologically friendly alternatives to fungicides, which can induce pest resistance. Moreover, biocontrol can be coupled with cultural practices and does not require host replacement as for resistant plant deployment. To achieve our goal, an original CLR model is needed, based on existing crop-fungus interaction models with diffusion [START_REF] Burie | Modeling of the invasion of a fungal disease over a vineyard[END_REF][START_REF] Sapoukhina | Spatially mixed crops to control the stratified dispersal of airborne fungal diseases[END_REF] and including berry production. As coffee growth is climate-dependent and harvest is seasonal, we have to develop a hybrid spatio-temporal PDE model. This paper is organized as follows. Section 4.2 is devoted to the biological background and the formulation of the spatio-temporal CLR propagation model with two seasons per year, the dry and rainy seasons. Section 4.3 presents the stability analysis of the subsystems during the two seasons. In Section 4.4, numerical simulations are performed to illustrate and validate theoretical results. We also present numerical results when mycoparasites are used to control CLR spread. Finally, we conclude the paper and propose several possible perspectives for future work.

Coffee leaf rust dynamics

Biological background

The coffee tree is a perennial plant, belonging to the Rubiaceae family, which has persistent leaves [START_REF] Bedimo | Effets des arbres d'ombrage sur les bioagresseurs de Coffea arabica[END_REF]. The productivity stage (flowers and fruits) begins after 3 years and lasts for 20 years on average. Flowers appear at the end of branches and require a lot of humidity for their development [START_REF] Champéroux | Manuel du planteur de café laotien[END_REF]. The annual productivity period lasts 7 to 11 months depending on coffee species and cultivars, as well as climate. In the case of Cameroon, with a single rainy period per year from April to November, there is a single harvest between November and December [START_REF] Suchel | Quelques remarques à propos de la répartition des pluies au Cameroun durant la période sèche 1969-1973[END_REF].

The life cycle of H. vastatrix in favourable humidity and temperature conditions lasts 5 weeks on average [START_REF] Waller | Coffee rust-epidemiology and control[END_REF]. Uredospores are dispersed by rain and wind. They germinate and penetrate through stomates on the underside of the leaf. This infection process requires 24 to 48 hours [START_REF] Nutman | Studies on the biology of hemileia vastatrix berk. & br[END_REF]. The first symptom is a pale yellow lesion that appears 1 to 3 weeks after infection. Sporulation, i.e. the production of Uredospores and teliospores, occurs 2 weeks to several months after infection [START_REF] Waller | Coffee rust-epidemiology and control[END_REF]. A single lesion produces 4 to 6 crops of spores, releasing 300,000 to 400,000 Uredospores over a period of 3 to 5 months [START_REF] Nutman | Studies on the biology of hemileia vastatrix berk. & br[END_REF].

As most rust fungi, H. vastatrix produces Uredospores for asexual reproduction and teliospores for sexual reproduction. Teliospores do not infect coffee leaves and have no known host [START_REF] Rodrigues | Coffee rusts: history, taxonomy, morphology, distribution and host resistance[END_REF], so it is not established that there is an effective sexual reproduction cycle.

During the dry season, H. vastatrix survives primarily as mycelium in the living tissues of the coffee leaves. As infected leaves drop prematurely during the dry months, a large amount of potential inoculum for the next rainy season disappears. However, a few green leaves always persist. Moreover, uredospores can survive about 6 weeks, so there is always some viable inoculum to infect the newly formed leaves at the start of the next rainy season [START_REF] Arneson | The Plant Health Instructor[END_REF].

Model formulation

Based on this biological knowledge, we propose a spatio-temporal coffee-CLR interaction model within a coffee plantation. We represent space and uredospore diffusion inside a bounded domain. At each point in space, we describe the evolution of the number of coffee branches, according to their epidemiological state, based on the CLR life cycle: healthy, latent with spores germinating or non sporulating lesions, infectious with sporulating lesions, and leafless at the end of the infection process. The infection of a branch corresponds to the infection of its leaves. We consider two periods: the rainy season during which berries are produced, and the dry season. This implies that most parameters are time-dependent, as they take two values according to the season.
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We obtain the following model, that is illustrated in Figure 4.1:

                                           ∂ t S(t, x) = Λ(t) -ω(t)νU (t,x) N (t,x) S(t, x) -µ(t)S(t, x), ∂ t L(t, x) = ω(t)νU (t,x) N (t,x) S(t, x) -(θ(t) + µ(t))L(t, x), ∂ t I(t, x) = θ(t)L(t, x) -(α(t) + µ(t) + d)I(t, x), ∂ t J(t, x) = α(t)I(t, x) -µ(t)J(t, x), ∂ t U (t, x) = ε∆U (t, x) + γ(t)I(t, x) -(ν + µ U )U (t, x), ∂ t B(t, x) = δ S (t)S(t, x) + δ L (t)L(t, x) + δ I (t)I(t, x) + δ J (t)J(t, x) -µ B B(t, x), (4.1) 
where S(t, x), L(t, x), I(t, x), J(t, x), U (t, x) and B(t, x) represent the densities of healthy branches, latent branches, infectious branches, leafless branches, Uredospores and berries respectively, at time t and location x defined in Ω, a simply connected bounded domain (of R or R 2 ) with smooth boundary ∂Ω. The densities are /m or /m 2 depending on the choice of Ω. The total density of branches is N (t, x) = S(t, x) + L(t, x) + I(t, x) + J(t, x).

The recruitment of healthy branches occurs at rate Λ(t). Uredospores are deposited on leaves of all branches at rate ν and a fraction S/N lands on healthy branches. These spore covered healthy branches become latent branches with rate ω(t), which represents the germination ef-ficacy, that is the number of healthy branches which become latent branches, per deposited spore. The latent branches become infectious at rate θ(t), where 1/θ(t) corresponds to the latency period, and in turn become leafless branches at rate α(t), where 1/α(t) corresponds to the sporulation period. All branches undergo natural mortality with baseline rate µ(t) and the infectious branches have an additional constant mortality rate d due to the disease. Uredospores are produced by infectious branches at rate γ(t) and lose their ability to infect coffee branches at constant rate µ U . Parameter ε is the uredospore diffusion coefficient. Berries are produced by all types of branches at different rates: δ S (t) ≥ δ L (t) ≥ δ I (t) ≥ δ J (t). They have a constant mortality rate µ B . All parameters are assumed to be non negative.

Having two seasons, let us consider T the yearly period and τ the duration of the dry season. We set the initial time t = 0 at the beginning of a dry season. Then, for n years, we assume that time-dependent parameters m(t), where m(t) ∈ {Λ(t), ω(t), θ(t), α(t), γ(t), µ(t)}, and δ i (t), with i ∈ {S, L, I, J}, are constant during each season and can be written as follows:

m(t) = m D for t ∈ [nT, nT + τ [, m R else, and δ i (t) = 0 for t ∈ [nT, nT + τ [, δi else, (4.2) 
where D represents the dry season and R the rainy season. Table 4.1 summarizes the biological meaning of parameter values for system (4.1). Initial conditions are (φ S (x), φ L (x), φ I (x), φ J (x), φ U (x)) ∈ L 2 (Ω) 5 where

S(0, x) = φ S (x) > 0, L(0, x) = φ L (x) ≥ 0, I(0, x) = φ I (x) ≥ 0, J(0, x) = φ J (x) ≥ 0, U (0, x) = φ U (x) ≥ 0, ∀x ∈ Ω. (4.3)
with B(0, x) = 0 ∀x ∈ Ω. We assume that the harvest occurs instantaneously at the end of each rainy season. Thus B(t, x) is brought back to 0 at t = nT , with other variables unchanged. We suppose that the domain Ω is isolated, which implies that spores do not get in or out and that there is no interaction with the outside environment. To ensure this property, we assume that there is a large enough buffer zone without coffee plants around the coffee plantation (hence around the domain Ω), so that no Uredospores are introduced from outside the plantation. Moreover, we neglect the spores that could potentially get out of the plantation. This absence of transfer is classically represented through the homogeneous Neumann boundary:

∂U ∂η = 0, on ∂Ω (4.4)
where η denotes the unit outward normal on ∂Ω.

Remark 4.1. When considered in one dimension, the space domain simply is an interval Ω = [x min , x max ], whose boundary as considered in (4.4) is the pair of points ∂Ω = {x min , x max }, and condition (4.4) becomes ∂U ∂x = 0 in x = x min and x = x max .

Mathematical analysis

Herein, we present the basic properties of the subsystems of system (4.1), defined over each season. For any parameter m, we denote by m p the seasonal constant value of the parameter m where p = R for the rainy season and p = D for the dry season. Replacing the value of every parameter m(t) of system (4.1), with the corresponding constant value m p with respect to the season, and removing the ∂ t B equation since B is not present in the other equations of system (4.1), we obtain:

                                     ∂ t S = Λ p - ω p νU N S -µ p S, ∂ t L = ω p νU N S -(θ p + µ p )L, ∂ t I = θ p L -(α p + µ p + d)I, ∂ t J = α p I -µ p J, ∂ t U -ε∆U = γ p I -(ν + µ U )U, ∂U ∂η = 0, on ∂Ω, S(0, x) = φ S , L(0, x) = φ L , I(0, x) = φ I , J(0, x) = φ J , U (0, x) = φ U , ∀x ∈ Ω.
(4.5)

Basic properties

In this section, we will first establish positivity of the solutions if they exist in Lemma 4.1, their boundedness in Lemma 4.2, and finally their existence and uniqueness in Lemma 4.4. Through these, we obtain positivity, boundedness and global existence of solutions of subsystem (4.5) in Theorem 4.1.

In order to show positivity, we will be using the Lemma 2.2 defined in section 2.3.

Since the initial values are non-negative and the growth functions on the right-hand side of system (4.5) are assumed to be sufficiently smooth in R 5 + , we have the following result over the positivity of a solution of subsystems (4.5), if it exists: For the positivity of S, L, I, J, let us define the supremum t 1 = sup {t > 0, S(t, x) > 0, L(t, x) > 0, I(t, x) > 0, J(t, x) > 0, U (t, x) > 0 ∀x ∈ Ω}, and suppose t 1 < T max .

Using the definition of supremum, there does not exist t ∈ [0, t 1 ) and x ∈ Ω such that any variable is equal to zero. Among S, L, I, J, U , let us first consider S to be the variable such that there exists x with S(t 1 , x) = 0, and let us define:

λ(t, x) = exp t 0 ω p νU (a, x) N (a, x) da + µ p t .
One has:

∂ t (λ(t, x)S(t, x)) = λ(t, x) ∂ t S(t, x) + ω p νU N S(t, x) + µ p S(t, x) = Λ p λ(t, x) > 0
where Λ p is obtained from the expression of ∂ t S(t, x) in subsystems (4.5). By integration of this expression over [0, t 1 ], we obtain:

S(t 1 , x)λ(t 1 , x) -φ S (x)λ(0, x) > 0.
Since λ(t 1 , x) > 0 and φ S (x)λ(0, x) > 0, we have S(t 1 , x) > 0, which contradicts the hypothesis that S(t 1 , x) = 0. Hence S(t, x) > 0 for all (t, x) ∈ [0, t 1 ] × Ω.

Also, the ∂ t L, ∂ t I and ∂ t J equations are linear scalar equations with forcing terms ωpνU N S, θ p L and α p I that are positive over the interval [0, t 1 ); hence L(t 1 , x), I(t 1 , x) and J(t 1 , x) are positive.

Hence, if t 1 < T max as we supposed, we must have, for some x, U (t 1 , x) = 0.

As I(t, x) > 0 over [0, t 1 ], the last equation of subsystems (4.5) then gives rise to the following inequality system :

     ∂ t U -ε∆U ≥ -(ν + µ U )U, (t, x) ∈ (0, t 1 ] × Ω ∂U ∂η ≥ 0 on ∂Ω, U (0, x) ≥ 0, ∀x ∈ Ω. (4.6) Since ν +µ U is bounded in [0, t 1 ]×Ω, it follows from Lemma 2.2 that U (t, x) > 0 in [0, t 1 ]×Ω.
This contradicts U (t 1 , x) = 0, and hence the assumption t 1 < T max . Therefore all variables are positive for all times smaller than T max . This achieves the proof.

Lemma 4.2. Let (S, L, I, J, U ) ∈ C 0 ([0, T max ) × Ω) ∩ C 1,2 ([0, T max ) × Ω)
5 be the solution of subsystems (4.5) with bounded initial conditions. Then this solution is bounded, T max = +∞, 0 < N (t, x) = S + L + I + J ≤ N m and 0 < U (t, x) ≤ U m , where:

N m = max Λ p µ p , φ ∞ and U m = max max{Λ p /µ p , φ ∞ } γ p (ν + µ U ) , φ U ∞ .
Proof of Lemma 4.2. Let φ(x) = φ S (x) + φ L (x) + φ I (x) + φ J (x). The N -dynamics then satisfy:

∂ t N Λ p -µ p N, (t, x) ∈ [0, T max ) × Ω N (0, x) = φ(x) φ ∞ = max x∈Ω φ(x). (4.7)
upon which we build the upper-bounding system

   dW 1 dt = Λ p -µ p W 1 , W 1 (0) = φ ∞ . (4.8)
The comparison principle then yields: ), one has that N (t, x) stays bounded and is hence defined for all times:

N (t, x) W 1 (t) = Λ p µ p + φ(x) - Λ p µ p e -µpt for all (t, x) ∈ [0, T max ) × Ω. Since W 1 (t) max{ Λp µp , φ ∞ } for t ∈ [0, ∞
0 < N (t, x) max Λ p µ p , φ ∞ = N m , ∀(t, x) ∈ [0, ∞) × Ω.
This upper-bound also holds for S, L, I and J which are integral parts of N .

From the upper-bound on I and the last equation of subsystems (4.5), we can deduce that:

         ∂ t U -ε∆U max{Λ p /µ p , φ ∞ }γ p -(ν + µ U )U, (t, x) ∈ [0, T max ) × Ω U (0, x) = φ U (x) φ U ∞ = max x∈Ω φ U (x), ∂U ∂η = 0, x ∈ ∂Ω, (4.9) 
and the upper-bounding system:

   dW 2 dt = max{Λ p /µ p , φ ∞ }γ p -(ν + µ U )W 2 , W 2 (0) = φ U ∞ . (4.10)
It then follows that for all (t, x) ∈ [0, T max ) × Ω:

U (t, x) W 2 (t) = max{Λ p /µ p , φ ∞ } γ p (ν + µ U ) + φ U (x) -max{Λ p /µ p , φ ∞ } γ p (ν + µ U ) e -(ν+µ U )t .
Hence, as was done for N , we have:

U (t, x) max max{Λ p /µ p , φ ∞ } γ p (ν + µ U ) , φ U ∞ = U m , ∀(t, x) ∈ [0, ∞) × Ω.
This completes the proof Now we prove existence and uniqueness of a local solution of subsystems [START_REF] Arneson | The Plant Health Instructor[END_REF]. The idea is to write the system in the abstract form on a suitable Hilbert space and then to use the use the Hille-Yosida Theorem to conclude We therefore introduce the linear space H = L 2 (Ω) 5 endowed with the usual inner product:

(y, z) H = 5 i=1 (y i , z i ) L 2 (Ω) , y = (y 1 , y 2 , y 3 , y 4 , y 5 ), z = (z 1 , z 2 , z 3 , z 4 , z 5 );
H is a Hilbert space. Now define on H the linear operator A such that:

Ay = (µ p y 1 , µ p y 2 , µ p y 3 , µ p y 4 , -ε∆y 5 ), (4.11)

with domain D(A) = L 2 (Ω) 4 × H 2 η (Ω)
, where

H 2 η (Ω) := {u ∈ H 1 (Ω), ∆u ∈ L 2 (Ω), ∂U ∂η = 0} Remark 4.2. For u ∈ H 2 η (Ω) the boundary condition ∂U ∂η = 0 implies that ∀v ∈ H 1 (Ω), Ω -∆u v dx = Ω ∇u • ∇v dx. (4.12)
We will need the following result. Then, the problem (4.13) has a unique solution u ∈ H 1 (Ω). Moreover u belongs to H 2 (Ω) and there exists a universal constant M > 0 that only depends on ε, N and Ω such that

u H 1 (Ω) M ( f L 2 (Ω) + g L 2 (∂Ω) ).
We have the following result about the existence of solution of subsystems (4.5).

Lemma 4.4. Assume that the initial conditions (4.3) holds, then there exists a unique local solution of problem (4.5) defined on [0, T max ) × Ω. More precisely:

(S, L, I, J, U ) ∈ C ((0, T max ); D(A)) ∩ C ([0, T max ); H) ∩ C 1 ((0, T max ); H) ; Moreover, (S, L, I, J, U ) ∈ C([0, T max ) × Ω) ∩ C 1,2 ((0, T max ) × Ω) 5 if (φ S , φ L , φ I , φ J , φ U ) ∈ (C(Ω)) 4 ×L 2 (Ω) .
Proof of Lemma 4.4. System (4.5)-( 4.3) can be written abstractly in the Hilbert space H in the following form:

y (t) = Ay(t) + F (y(t)), t ≥ 0, y(0) = y 0 ∈ D(A), (4.14) 
where y = (S, L, I, J, U ), y 0 = (φ S , φ L , φ I , φ J , φ U ), Ay is defined as in Equation (4.11) and:

F (y) = Λ p - ω p νU N S, ω p νU N S -θ p L, θ p L -(α p + d)I, α p I, γ p I -(ν + µ U )U .
Note that, since Ω is bounded, for y = (S, L, I, J, U ) ∈ H, one has F (y) ∈ H. Now let us show that the linear operator A is a maximal monotone operator on H.

• ∀ v ∈ D(A), (Av, v) = 4 i=1 v i 2 L 2 -ε Ω ∆u 5 u 5 dx. Since u 5 ∈ H 2 η (Ω)
, the identity (4.12) is satisfied with v = u 5 and one obtains that:

(Av, v) = 4 i=1 v i 2 L 2 + ε Ω |∇u 5 | 2 dx ≥ 0, which implies that A is monotone. • Now, let us show that ∀v ∈ D(A), ∃u ∈ H, u + Au = v. Let v = (v 1 , v 2 , v 3 , v 4 , v 5 ) ∈ D(A).
We are looking for u = (u 1 , u 2 , u 3 , u 4 , u 5 ) ∈ D(A), such that u + Au = v. With this is mind, one has:

u + Au = v ⇐⇒ (1 + µ p )u i = v i , i = 1, . . . , 4 and u 5 -ε∆ u 5 = v 5 in Ω, u 5 ∈ H 2 η (Ω).
Therefore, for i = 1, . . . , 4,

u i = 1 1+µ P v i ∈ L 2
(Ω) and one obtains u 5 by solving the following elliptic problem: According to Lemma 4.3, there exists a unique u 5 ∈ H 2 η (Ω) solution of (4.15) and A is maximal. By the Hille-Yosida theorem [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], we conclude that -A is the infinitesimal generator of a C 0 semigroup of contractions on H.

u 5 -ε∆ u 5 = v 5 in Ω,
• We now show that F is Lipschitz continuous in both variables. Let y = (S, L, I, J, U ), ỹ = ( S, L, Ĩ, J, Ũ ) ∈ H. Therefore, one has:

F (y) -F (ỹ) = ω p ν - U N S + Ũ Ñ S , ω p ν U N S - Ũ Ñ S -θ p (L -L), θ p (L -L) -(α P + d)(I -Ĩ), α P (I -Ĩ), γ p (I -Ĩ) -(ν + µ U )(U -Ũ ) . Since Ṅ = Λ p -µ p N -dI ≥ Λ p -µ p N -dN , we have N (t, x) ≥ min( Λp µp+d , φ(x)). Moreover, according to Lemma 4.2, Ũ is bounded. This implies that Ũ N is bounded. Similarly, Ũ Ñ is bounded. As S N ≤ 1, from the identity U N S -Ũ Ñ S = U - Ũ N S -Ũ Ñ ( S -S) + Ũ S N Ñ ( Ñ -N ), we obtain: F (y) -F (ỹ) H K y -ỹ H ,
where K is a constant that depends on the constant ω P , ν, θ [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] and conclude that system (4.14) has a unique local strong solution on [0, T max ) in the sense that (S, L, I, J, U ) ∈ C ((0, T max ); D(A)) ∩ C ([0, T max ); H)∩C 1 ((0, T max ); H), we can also use the method present in [START_REF] Yagi | Abstract parabolic evolution equations and their applications[END_REF] to conclude prove. This completes the proof.

Theorem 4.1. Subsystems (4.5), with initial conditions in H that verify

0 < φ S + φ L + φ I + φ J ≤ N m , 0 ≤ φ U ≤ U m for all x ∈ Ω, admit a unique global solution in C ((0, ∞); D(A)) ∩ C ([0, ∞); H) ∩ C 1 ((0, ∞); H) such that, for all (t, x) ∈ R + × Ω S(t, x) > 0, L(t, x) > 0, I(t, x) > 0, J(t, x) > 0, 0 < N (t, x) N m , 0 < U (t, x) U m
where 

N m = max Λp µp , φ ∞ and U m = max max{Λ p /µ p , φ ∞ } γp (ν+µ U ) , φ U ∞ Proof of

Equilibria and their stability

Here, we compute the equilibria of subsystems (4.5) with p = D or R and study their stability. Let R

(p) 0 = γ p (ν + µ U ) νω p (θ p + µ p ) θ p (α p + µ p + d)
The expression R 

. If R (p) 0 < 1 the disease-free equilibrium (DFE) Q 0 p =
Λp µp , 0, 0, 0, 0 is locally asymptotically stable (LAS).

If R (p)

0 > 1 and close to one, the DFE is unstable and there exists a unique positive endemic equilibrium

Q * p = (S * p , L * p , I * p , J * p , U * p )
, where

I * p = Λ p (ν + µ U )(R (p) 0 -1) γ p ω p ν -d(ν + µ U ) , S * p = Λ p -dI * p µ p R (p) 0 , L * p = (α p + µ p + d) θ p I * p , J * p = α p µ p I * p and U * p = γ p (ν + µ U ) I * p (4.16)
which is locally asymptotically stable.

Proof of Lemma 4.5. The proof is given in Appendix (Section 4.6).

Using Lyapunov theory and LaSalle's principle [START_REF] Lasalle | The stability of dynamical systems[END_REF], we prove the global stability of the DFE, which implies that the CLR will dwindle until extinction, whatever the initial number of Uredospores and infectious branches.

Theorem 4.2. If R (p) 0 < 1, the DFE Q 0 p of subsystems (4.5
) is globally asymptotically stable (GAS).

Proof of Theorem 4.2. Consider the function

V 1 = a 1 L + b 1 I + c 1 J + d 1 U. (4.17)
where a 1 , b 1 , c 1 and d 1 are positive constants to be chosen later. Consider then the following Lyapunov function candidate:

W 1 = Ω V 1 dx = Ω (a 1 L + b 1 I + c 1 J + d 1 U )dx, (4.18)
where Ω is the spatial domain defined above. Let us consider the set 4 . For any solution (L, I, J, U ) ∈ V of subsystems (4.5) with positive initial condition (φ L (x), . . . , φ U (x)), W 1 (L, ..., U ) is positive. Also, W 1 = 0 if and only if (L, I, J, U ) = (0, 0, 0, 0) on Ω.

V = C (0, ∞); L 2 (Ω) 3 × H 2 η (Ω) ∩ C [0, ∞); (L 2 (Ω)) 4 ∩ C 1 (0, ∞); (L 2 (Ω))
The time derivative of the Lyapunov function W 1 along the trajectories of subsystems (4.5) satisfies:

dW 1 dt = Ω V1 (L, I, J, U )dx. (4.19) 
From equation (4.17), one has that

V1 = a 1 ∂L ∂t + b 1 ∂I ∂t + c 1 ∂J ∂t + d 1 ∂U ∂t , = a 1 ( ω p νU N S -(θ p + µ p )L) + b 1 (θ p L -(α p + µ p + d)I) + c 1 (α p I -µ M J) + d 1 (γ p I -(ν + µ U )U ) + d 1 ε∆U. (4.20)
Now, using the fact that S N 1, equation (4.20) becomes:

V1 (-a 1 (θ p +µ p )+b 1 θ p )L+(-b 1 (α p +µ p +d)+c 1 α p +d 1 γ p )I+(-d(ν+µ U )+a 1 ω p ν)U -c 1 µ p J+d 1 ε∆U.
(4.21) Then, the positive constants a 1 , b 1 , c 1 and d 1 are chosen such that: Then equation (4.19) becomes:

     -a 1 (θ p + µ p ) + b 1 θ p = 0, -b 1 (α p + µ p + d) + c 1 α p + d 1 γ p = 0, -d 1 (ν + µ U ) + a 1 ω p ν = 0.
a 1 = θ p , b 1 = θ p + µ p , d 1 = θ p ω p ν ν + µ U and c 1 = (θ p + µ p )(α p + µ p + d) α p (1 -R (p) 0 ).

Note that R

dW 1 dt - Ω c 1 µ p Jdx + d 1 ε Ω ∆U dx.
From the Neumann bounded condition ∂U ∂η = 0, one has that:

Ω ∆U dx = ∂Ω ∂U ∂η = 0. (4.24) Thus, if R (p) 0 < 1 one has: dW 1 dt - Ω c 1 µ p Jdx. (4.25) Thus, R (p) 
0 < 1 ensures that dW 1 dt 0 for all L, I, J, U ≥ 0.

The domain Γ ρ = {(L, I, J, U ) ∈ V : W 1 (L, I, J, U ) ≤ ρ}, ρ > 0, is compact and includes the origin. Moreover, it is positively V-invariant with respect the last four equations of subsystems (4.5). In fact, if the initial condition (φ L , φ I , φ J , φ U ) ∈ Γ ρ , we have

dW 1 (L, I, J, U ) dt ≤ 0 ⇒ W 1 (L, I, J, U ) ≤ W 1 (φ L , φ I , φ J , φ U ) ≤ ρ
Also, dW 1 dt = 0 if and only if J = 0, which from subsystems (4.5) is satisfied over a time interval of non-zero length only if L = 0, I = 0 and U = 0. Then it is easy to see that the largest invariant set defined over E = {(L, I, J, U ) ∈ V : dW 1 (L,I,J,U ) dt = 0} is the singleton {(0, 0, 0, 0)}. Therefore, using LaSalle-Krasowski invariant principle [ [START_REF] Galbusera | Control schemes based on the wave equation for consensus in multi-agent systems with double-integrator dynamics[END_REF], Theorem 2] and the LAS in Lemma 4.5, one can conclude that (L, I, J, U ) = (0, 0, 0, 0) is GAS when R (p) 0 < 1. Similar proofs adapting Lasalle's principle for PDE can be found in [START_REF] Tadmon | Modeling and mathematical analysis of an initial boundary value problem for hepatitis b virus infection[END_REF][START_REF] Wang | Dynamics of a pde viral infection model incorporating cell-to-cell transmission[END_REF].

Replacing of the value U = 0 into the first equation of subsystems (4.5) yields:

Ṡ = Λ p -µ p S.
(4.26)

The above equation (4.26) has a unique equilibrium S 0 p = Λp µp , which is GAS. Hence, since the solutions of subsystems (4.5) are bounded, S(x, t) → S 0 p . Thus, one can conclude that the DFE Q 0 p = (S 0 p , 0, 0, 0, 0) is globally asymptotically stable for subsystems (4.5). This concludes the proof.

Comparison of the dynamics in the dry and rainy seasons

The objective of this section is to compare the dynamics of subsystems (4.5) during the rainy and dry seasons. To this end, we first compare the basic reproduction numbers R Simple biological hypotheses give the relation between the parameter values during the dry and rainy seasons. They mainly rely on the fact that some mechanims require humid conditions: coffee tree growth is faster during the rainy season (Λ D Λ R ), germination occurs mostly during the rainy season (ω D ω R ), the lesion progresses faster during the rainy season (θ D θ R ) and the mortality rate of the branches is higher during the dry season (as a consequence of harvest, which always damages some branches) i.e (µ R µ D ). Hence, we have:

Λ D Λ R , ω D ω R , θ D θ R , µ R µ D , γ D = γ R and α D = α R .
(4.27)

Comparison of the basic reproduction numbers

Herein we compare the basic reproduction numbers of the subsystems:

R (R) 0 = γ R (ν + µ U ) νθ R ω R (θ R + µ R )(α R + µ R + d) and R (D) 0 = γ D (ν + µ U ) νθ D ω D (θ D + µ D )(α D + µ D + d)
.

Using (4.27), one has: R

(D) 0 R (R) 0 . (4.28)
This means that the GAS of the DFE Q 0 R during the rainy season implies the GAS of the DFE Q 0 D during the dry season and the existence and local asymptotic stability of the endemic equilibrium Q * D during the dry season implies the existence and local asymptotic stability of the endemic equilibrium Q * R during the rainy season. Biologically speaking, if the disease is present during the dry season, it will be also present during the rainy season while, if the disease is absent during the rainy season, it will be also absent during the dry season.

Comparison of the infectious branches at the endemic level

To compare the disease at the endemic level, both basic reproduction numbers need to be greater than one, 1 < R (p) 0 for p = D and R. The expression of I * p depends on the parameters identified in (4.27). The partial derivatives of I * p with respect to parameters Λ p , ω p , θ p and µ p are:

∂I * p ∂Λ p = (ν + µ U )(R (p) 0 -1) γ p ω p ν -d(ν + µ U ) > 0, ∂I * p ∂ω p = γ p ν(θ p (α p + µ p ) + µ p (α p + µ p + d)) [γ p ω p ν -d(ν + µ U )](θ p + µ P )(α p + µ p + d) > 0, ∂I * p ∂θ p = γ p νω p µ p (ω p + µ p ) > 0, ∂I * p ∂µ p = - γ p νω p θ p (θ p + 2µ p + α p d) [γ p ω p ν -d(ν + µ U )](θ p + µ P )(α p + µ p + d) < 0.
This shows that I * p is an increasing function if Λ p , ω p , θ p and a decreasing function of µ p . Now, using (4.27), we can deduce that:

I * R > I * D . (4.29)
Therefore, if it reached equilibrium, the CLR would be more severe during the rainy season than during the dry season.

Numerical simulations

Herein, we present the results of numerical simulations of system (4.1) using a non standard finite difference method [START_REF] Mickens | Nonstandard finite difference schemes for reaction-diffusion equations[END_REF] presented in Appendix (Section 4.7). We take T = 365 days and τ = 120 days which correspond to the durations of the year and the dry season in Cameroon, respectively. We set Ω = [0, 100] meters. We consider that initially all branches are healthy, that Uredospores are concentrated in the middle of the plantation and that there are no berries, so the initial conditions are, ∀x ∈ Ω:

     S 0 (x) = 100, L 0 (x) = I 0 (x) = J 0 (x) = 0, U 0 (x) = 2000 sin 14 ( πx 100 ) B 0 (x) = 0.
(4.30) Table 4.1 summarizes the parameter values for system (4.1) used for numerical simulations. We suppose that γ p and α p have the same value during the dry and rainy seasons.

CLR dynamics

We first choose γ p = 1.5 for p = D and R, so that R are smaller than one, the disease should vanish during both the dry and rainy seasons; we see here that connecting both seasons preserves this property.

Then we choose γ p = 8 for p = D and R, so that R (R) 0 = 5.09 and R (D) 0 = 2.77. In this case, we have shown in Lemma 4.5 that the endemic equilibria exist and is locally asymptotically stable during both seasons. Numerical results are shown in Figure 4.3. One can observe that the peaks of the infectious branches and Uredospores flatten very quickly compared to the other variables. The convergence towards the endemic stationary solution is clear at the beginning of the third year (after 1000 days approximately). Oscillations are observed, as the endemic equilibrium is higher during the rainy season (subsystem (4.5) with p = R) than the dry season (subsystem (4.5) with p = D). Note that Uredospores hardly reach the edges of the plantation during the first year, so that healthy branches are produced in large quantity, contrary to the middle of the plantation where Uredospores directly infect branches, which limits growth. Hence, when the Uredospores reach the edges during the second year, there is a large infection peak at the edges, which contrasts with the middle of the plantation.

Figure 4.4 is a temporal representation of Figure 4.3 for three different values of x taken in the centre of the domain (x = 50m, yellow curve), on the border (x = 1m, blue curve) and inbetween (x = 25m, red curve). Convergence towards the stationary endemic solution can also be observed here, as all curves overlap for the three x values at the end of the third year and on. At the centre of the domain, the system very rapidly converges towards this stationary solution, but it takes a year for x = 25m. On the border of the domain, branches remain susceptible during almost two years. Then the number of latent L and infectious I branches peak, as Uredospores U , initially in the centre of the domain, reach its borders. These peaks occur during the second rainy season. However, no such peak is observed for leafless branches J. Indeed, the number of leafless branches starts to increase at the end of the second rainy season (around time t = 600 days), but the arrival of the dry season reduces the number of branches before it can peak very high. Solutions then oscillate between the endemic equilibria of the dry and rainy seasons (purple and green dashed lines, respectively). Infection has a negative impact on the production, which is reduced to less than a third of its value without disease.

These simulations allow to conclude that the dynamics of system (4.1), can be inferred from the dynamics of subsystems (4.5) during the dry and rainy seasons.

Control of CLR

Integrated pest management currently used for the control of CLR [START_REF] Agrios | Plant Pathology[END_REF] relies on the following methods:

• cultural practices, including stumping of diseased plants, shading, spore traps [START_REF] Arneson | The Plant Health Instructor[END_REF];

• chemical control by copper, triazole or dithiocarbamate fungicides [START_REF] Capucho | Chemical control of coffee leaf rust in coffea canephora cv. conilon[END_REF];

• genetic control based on wild rust-resistant Coffea species [START_REF] Arneson | The Plant Health Instructor[END_REF];

• biological control based on Hemileia vastatrix natural enemies, e.g. mycoparasites such as

Lecanicillium lecanii [START_REF] Carrion | Mycoparasites on the coffee rust in Mexico[END_REF][START_REF] Vandermeer | Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web[END_REF], or antagonistic bacteria such as Pseudomonas putida P286 and Bacillus thuringiensis B157 [START_REF] Haddad | Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil[END_REF][START_REF] Haddad | Antifungal compounds as a mechanism to control Hemileia vastatrix by antagonistic bacteria[END_REF]; it can also rely on natural allies of the crop such as benefic endophytes [START_REF] Silva | Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust[END_REF][START_REF] Shiomi | Bioprospecting endophytic bacteria for biological control of coffee leaf rust[END_REF].

Biological control is a potentially powerful tool for managing coffee leaf rust that allows organic certification. Therefore, we introduced in this study a mycoparasite (a parasitic fungus whose host is another fungus), Lecanicillium lecanii, known to hamper the reproduction of H. vastatrix. In our model, this biocontrol agent reduces the production of Uredospores by infectious = 2.77 (as in Figure 4.3). All other parameter values are given in Table 4. 1. x is chosen in the centre of the domain (yellow curve), on the border (blue curve) and in-between (red curve). Subplots represent healthy branches S, latent branches L, infectious branches I, leafless branches J, Uredospores U and berries B.

branches with an efficiency q. The production rate of Uredospores γ p hence becomes (1 -q)γ p and system (4.5) becomes:

               ∂ t S = Λ p - ωpνU N S -µ p S, ∂ t L = ωpνU N S -(θ p + µ p )L, ∂ t I = θ p L -(α p + µ p + d)I, ∂ t J = α p I -µ p J, ∂ t U = ε∆U + (1 -q)γ p I -(ν + µ U )U. (4.31)
The basic reproduction numbers of system (4.31), for p = D and R, are then:

R (p) 0 = (1 -q)γ p ν (ν + µ U ) θ p ω p (θ p + µ P )(α p + µ p + d) . (4.32) 
The higher the biocontrol efficiency q, the lower the reproduction numbers. So high enough values of q should allow to control the disease. We simulated system (4.31) for different values of biocontrol efficiency q over 8 years. Figure 4.5 presents the temporal evolution of the state variables (S, L, I, J, U, B) integrated over domain Ω. Table 4.2 provides the reproduction numbers defined in equation (4.32), as well as the berry production and production loss during the 8th year, the latter being computed by reference to the disease-free case q = 1.

• q = 0 corresponds to no control (red curves) and

R (R) 0 > R (D) 0
> 1, as in previous Section 4.4.1. The yield loss is as high as 80.1%.

• For a 50% efficiency (cyan curves), which still corresponds to

R (R) 0 > R (D) 0
> 1, the number of spores U drops as expected, as the mycoparasite hampers the production of spores. So the number of healthy branches S increases. However, the number of latent L, infectious I and leafless J branches, barely change. Indeed, the production of latent branches depends on the product SU . The production of berries B then increases, as it is mostly driven by the healthy branches, but the yield loss is still high at 68.2%.

• For a 70% efficiency (magenta curves), corresponding to

R (R) 0 > 1 > R (D)
0 , these observations are amplified: spores seriously drop; healthy branches and berries largely increase; latent, infectious and leafless branches decrease. The yield loss is 33.5%.

• For a 75% efficiency (black curves), also corresponding to

R (R) 0 > 1 > R (D)
0 , infection remains very low, leading to an acceptable 6.0% yield loss.

• An 76% efficiency (blue curves), still corresponding to

R (R) 0 > 1 > R (D)
0 , almost yields the same results as a perfect efficiency (q = 1). Infection is almost negligible, so the yield loss is as low as 1.8%.

• q = 1 (green curves) corresponds to a perfect (and unrealistic) efficiency, with R Hence a 75% biocontrol efficiency is enough to sustain the berry production in the plantation, with a negligible yield loss. Higher efficiencies, moreover, achieve disease eradication. 4.1. Subplots represent healthy branches S, latent branches L, infectious branches I, leafless branches J, Uredospores U and berries B, these variables being integrated over domain Ω.

Table 4.2: Impact of biocontrol efficiency q on reproduction numbers, defined in (4.32), and on berry production during the 8th and last year. Biocontrol efficiency q = 0 q = 0.5 q = 0.7 q = 0.75 q = 0.76 q = 1 R 

(D) 0 2.

Conclusion

In this paper, we have proposed and analysed a PDE model that describes the dispersal of CLR in a coffee plantation during the rainy and dry seasons and its behaviour over time. Furthermore, we computed the disease-free and endemic equilibria of the two subsystems defined during the rainy and dry seasons. We showed that the basic reproduction numbers during the two seasons can determine the dynamics of global model: when the basic reproduction number is less than one during the rainy season, then CLR globally decreases till extinction; when it is greater than one for the dry season, then CLR persists.

We implemented a biocontrol in our model, corresponding to a mycoparasite such as Lecanicillium lecanii, which hampers CLR reproduction at all times. This solution was tested in Mexico [START_REF] Carrion | Mycoparasites on the coffee rust in Mexico[END_REF] but is still under development. A rather high biocontrol efficiency (75% at least) is necessary in our model to control the disease, but lower efficiencies still improve coffee production notably. Moreover, the mycoparasite is applied all year round, so it is not easily implemented in practice and it involves important costs. It would be interesting to study when to deploy the mycoparasite in a cost-efficient way. An ideal mycoparasite should sustain the dry season and efficiently control CLR, so that the coffee plantation during the rainy season would suffer reasonable yield losses. In further work, we will also include cultural management and other biocontrol agents, in particular natural endophytes which are affordable for growers starting a new plantation.

Several extensions to this work are considered: (i) adding a stage structure on the coffee branches; (ii) simplifying the model, using an impulsive formalism for the dry season as in [START_REF] Mailleret | Global stability and optimisation of a general impulsive biological control model[END_REF][START_REF] Zhu | Global exponential stability of impulsive reaction-diffusion equation with variable delays[END_REF], in order to obtain analytical results on the global model behaviour; (iii) solving an optimal control problem, consisting in maximising coffee production while minimising the control costs.

Appendix: Mathematical analysis

Proof of Lemma 4.5

Local stability of the disease-free equilibrium

Let (S, L, I, J, U ) be a solution of subsystems (4.5). Then, according to Kiehöfer [START_REF] Kielhöfer | Stability and semilinear evolution equations in Hilbert space[END_REF], this solution can be written in the following form:

(S, L, I, R, U ) = Q 0 p + (W 1 , W 2 , W 3 , W 4 , W 5 ), x ∈ Ω, t > 0. (4.33) 
With this in mind, subsystems (4.5) can be written in the following compact form:

∂W ∂t = D∆W + F (W ), (4.34) 
where D = diag(0, 0, 0, 0, 0, ε). The linearisation of subsystems (4.34) in the neighbourhood of Q 0 p is:

∂W ∂t = D∆W + L(Q 0 p )W, (4.35) 
where L(Q 0 p ) is the Jacobian matrix at the DFE Q 0 p of subsystems (4.5) in the absence of diffusion, that is:

L(Q 0 p ) =         -µ p 0 0 0 -ω p ν 0 -(θ p + µ p ) 0 0 ω p ν 0 θ p -(α p + µ p + d) 0 0 0 0 α p -µ p 0 0 0 γ p 0 -(ν + µ U )         .
Let g j , j ∈ N, be the j th eigenfunction of operator -∆ with Neumann boundary conditions, so that:

     -∆g j = λ j g j in Ω, ∂g j ∂η | ∂Ω = 0 on ∂Ω, (4.36) 
where λ j are the associated eigenvalues verifying 0 = λ 0 < λ 1 < λ 2 < . . .

According to [START_REF] Kielhöfer | Stability and semilinear evolution equations in Hilbert space[END_REF], the expanded expression of W in equation (4.35) can be written as:

W = ∞ j=0 Y j (t)g j (x),
where each Y j (t) ∈ R 5 . Substituting this expression into equation (4.35) yields:

dY j dt = (L(Q 0 p ) -λ j D)Y j . (4.37) 
Thus, the DFE Q 0 p is stable if and only if each Y j (t) → 0 when t → ∞, that is, if and only if all the eigenvalues of matrix H j = L(Q 0 p ) -λ j D have negative real parts. Matrix H j can be written in the following form:

H j =         -µ p 0 0 0 -ω p ν 0 -(θ p + µ p ) 0 0 ω p ν 0 θ p -(α p + µ p + d) 0 0 0 0 α p -µ p 0 0 0 γ p 0 -(ν + µ U + ελ j )         .
The characteristic polynomial of matrix H j is given by

P 1 (X) = (X + µ p ) 2 (X 3 + a 2 X 2 + a 1 X + a 0 )
where

       a 2 = θ p + 2µ p + α p + d + ν + µ U + ελ j a 1 = (θ p + µ p )(α p + µ p + d + ν + µ U + ελ j ) + (α p + µ p + d)(ν + µ U + ελ j ) a 0 = (θ p + µ p )(α p + µ p + d)(ν + µ U + ελ j ) -γ p θ p ω p ν
Firstly one can observe that a 2 > 0, a 1 > 0 and

a 0 = (θ p + µ p )(α p + µ p + d)(ν + µ U + ελ j ) 1 - γ p θ p ω p ν (θ p + µ p )(α p + µ p + d)(ν + µ U + ελ j ) CHAPTER 4. MODELLING CLR DYNAMICS TO CONTROL ITS SPREAD Hence a 0 > 0 if γpθpωpν (θp+µp)(αp+µp+d)(ν+µ U +ελ j ) < 1,
which is satisfied for all (non negative) λ j if it is satisfied for λ 0 = 0. The condition a 0 > 0 then leads to:

R (p) 0 = γ p θ p ω p ν (θ p + µ p )(α p + µ p + d)(ν + µ U ) < 1. (4.38) 
Secondly, the expression

a 2 a 1 -a 0 = (α p + µ p + d + ν + µ U + ελ j )(θ p + µ p ) 2 + (θ p + µ p )(α p + µ p + d + ν + µ U + ελ j ) + (α p + µ p + d)(ν + µ U + ελ j )) + γ p θ p ω p ν > 0
Using the fact that a 2 > 0, a 1 > 0, a 0 > 0 and a 2 a 1 > a 0 , the Routh-Hurwitz stability criterion indicates that all the eigenvalues of matrix H j have negative real parts. Hence the DFE Q 0 p of subsystems (4.5) is LAS if and only R (p) 0 < 1.

Existence and local stability of the endemic equilibrium

Q * Suppose that R (p) 0 > 1.
The expression (4.16) of the endemic equilibrium can easily be established as the solution of a set of linear equations, derived from equating the right-hand side of equation (4.5) to zero. We first prove that I * p and S * p are positive. Recall that:

I * p = Λ p (ν + µ U )(R (p) 0 -1) γ p ω p ν -d(ν + µ U ) and S * p = Λ p (γ p ω p ν -d(ν + µ U )R (p) 0 ) µ p R (p) 0 (γ p ω p ν -d(ν + µ U )) . Note that: R (p) 0 > 1 ⇒ γ p ω p νθ p (ν + µ U )(θ p + µ p )(α + µ p + d) > 1, ⇒ d < γ p ω p νθ p (ν + µ U )(θ p + µ p ) -α p -µ p , ⇒ d < γ p ω p νθ p (ν + µ U )(θ p + µ p ) , ⇒ d(ν + µ U ) < γ p ω p νθ p (θ p + µ p ) < γ p ω p ν ⇒ γ p ω p ν -d(ν + µ U ) > 0, ⇒ I * p > 0.
Now using the fact that θpd (θp+µp)(αp+µp+d) < 1, one has:

γ p ω p νθ p d(ν + µ U ) (ν + µ U )(θ p + µ p )(α p + µ p + d) < γ p ω p ν ⇒ (ν + µ U )R (p) 0 < γ p ω p ν, ⇒ γ p ω p ν -d(ν + µ U )R (p) 0 > 0 ⇒ S * p > 0
This concludes the existence of the endemic equilibrium.

Second, we investigate the local stability of the endemic equilibrium, using the following theorem.

Theorem 4.3 (Castillo-Chavez and Song [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF]). Consider the following ordinary differential equations, with a parameter ψ:

dx dt = f (x, ψ), f : R n × R n R n and f ∈ C 2 (R n × R). (4.39) 
Without loss of generality, it is assumed that 0 is an equilibrium for system (4.39) for all values of the parameter ψ, that is f (0, ψ) ≡ 0 for all ψ. Assume A 1 : A = D x f (0, 0) = ( ∂f i ∂x j (0, 0)) is the linearization matrix of system (4.39) around the equilibrium 0 with ψ evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;

A 2 : Matrix A has a nonnegative right eigenvector u and a left eigenvector v corresponding to the zero eigenvalue. Let f k be the k th component of f and

a = n k,i,j=1 v k u i u j ∂ 2 f k ∂z i ∂z j (0, 0), and b = n k,i=1 v k u i ∂ 2 f k ∂z i ∂ψ (0, 0).
The local dynamics of (4.39) around 0 are totally determined by a and b.

(a) a > 0, b > 0. When ψ < 0 with ψ 1, 0 is locally asymptotically stable, and there exists a positive unstable equilibrium; when 0 < ψ 1, 0 is unstable and there exists a negative and locally asymptotically stable equilibrium;

(b) a < 0, b < 0. When ψ < 0 with ψ 1, 0 is unstable; when 0 < ψ 1, 0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

(c) a > 0, b < 0. When ψ < 0 with ψ 1, 0 is unstable, and there exists a locally asymptotically stable negative equilibrium; when 0 < ψ 1, 0 is stable, and a positive unstable equilibrium appears;

(d) a < 0, b > 0. When ψ changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

In order to apply this theorem, subsystems (4.5) can be written as follows, with z = (S, L, I, J, U ):

                               ∂ t z 1 ∂t = F 1 = Λ p -µ p z 1 - ω p νz 5 z 1 + z 2 + z 3 + z 4 , ∂ t z 2 ∂t = F 2 = ω p νz 5 z 1 + z 2 + z 3 + z 4 -(θ p + µ p )z 2 , ∂ t z 3 ∂t = F 3 = θ p z 2 -(α + µ p + d)z 3 , ∂ t z 4 ∂t = F 4 = α p z 3 -µ p z 4 , ∂ t z 5 ∂t -ε∆z 5 = F 5 = γ p z 3 -(ν + µ U )z 5 , (4.40) 
Solving R (p) 0 = 1, we obtain the following bifurcation value for parameter ω p :

ω * p = (µ p + θ)(α p + µ p + d)(ν + µ U ) νγ p θ p .
We linearise this system at the DFE Q 0 p , as previously in equation (4.37), setting ω p to ω * p . We need to determine the eigenvalues of matrix L ω * p -λ j D, where λ j is an eigenvalue of the Laplacian operator -∆ (simplified notation L ω * p is used instead of L ω * p (Q 0 p )). With λ j = λ 0 = 0, the matrix admits β 0 = 0 as eigenvalue, the other eigenvalues still having a negative real part. For the other λ j , all eigenvalues have negative real parts. So assumption A 1 of theorem 4.3 is verified.

Let us now verify assumption A 2 . We need to compute the left and right eigenvectors of matrix L ω * p -λ j D associated with the eigenvalue β. The left eigenvector, denoted by v = (v 1 , v 2 , v 3 , v 4 , v 5 ), satisfies the following equation:

v(L ω * p -λ j D -βI) = 0,
where I and 0 are the identity matrix and null vector of dimension 5, respectively. For β = β 0 = 0 one has:

v 1 v 2 v 3 v 4 v 5         -µ p 0 0 0 -ω * p ν 0 -(θ p + µ p ) 0 0 ω * p ν 0 θ p -(α p + µ p + d) 0 0 0 0 α p -µ p 0 0 0 γ p 0 -(ν + µ U + ελ j )         = 0 0 0 0 0 which gives:                          v 1 = 0, v 2 = γ p θ p (µ p + θ p )(α p + µ p + d) v 5 , v 3 = γ p (α p + µ p + d) v 5 , v 4 = 0, v 5 > 0.
Similarly the right eigenvector of matrix L ω * p -λ j D, denoted by u = (u 1 , u 2 , u 3 , u 4 , u 5 ) T , satisfies the following equation:

(L ω * p -λ j D -βI)u = 0.
For β = β 0 = 0, one has:

        -µ p 0 0 0 -ω * p ν 0 -(θ p + µ p ) 0 0 ω * p ν 0 θ p -(α p + µ p + d) 0 0 0 0 α p -µ p 0 0 0 γ p 0 -(ν + µ U + ελ j )                 u 1 u 2 u 3 u 4 u 5         =         0 0 0 0 0         , which gives:                                  u 1 = - ω * p ν µ u 5 , u 2 = ω * p ν µ + θ u 5 , u 3 = ω * p νθ (µ + θ)(α p + µ p + d) u 5 , u 4 = α p ω * p νθ p (µ p + θ p )(α p + µ p + d) u 5 , u 5 > 0.
Let us now compute a, defined in assumption A 2 of theorem 4.3, for system (4.40):

a = 5 i,j,k=1 v k u i u j ∂ 2 F k ∂z i ∂z j (Q 0 p , ω * p ).
The only terms that are non null correspond to:

∂ 2 F 2 ∂z i ∂z 5 (Q 0 p , ω * p ) = v 2 ∂ 2 F 2 ∂z 5 ∂z j (Q 0 p , ω * p ) = - ω p ν * S 0 for i, j = 2, 3, 4.
Substituting these terms into the expression of a, one obtains:

a = v 2 2u 2 u 5 ∂ 2 F 2 ∂z 2 ∂z 5 (Q 0 p , ω * p ) + 2u 3 u 5 ∂ 2 F 2 ∂z 3 ∂z 5 (Q 0 p , ω * p ) + 2u 4 u 5 ∂ 2 F 2 ∂z 4 ∂z 5 (Q 0 p , ω * p ) , = -v 2 u 5 (u 2 + u 3 + u 4 ) ω * p ν S 0 < 0.
Let us now compute b, defined in assumption A 2 of theorem 4.3, for system (4.40):

b = 5 k,i=1 v k u i ∂ 2 F k ∂z i ∂ω p (Q 0 p , ω * p ).
The only term that is non null corresponds to:

∂ 2 F 2 ∂z 5 ∂ω p (Q 0 p , ω * p ) = ν S 0 .
Substituting this term into the expression of b, one obtains:

b = v 2 u 5 ∂ 2 F 2 ∂z 5 ∂ω p (Q 0 p , ω * p ) = v 2 u 5 ν S 0 > 0.
Thus, a < 0 and b > 0. Using Theorem 4.3, we conclude that when bifurcation parameter changes from ω p < ω * p to ω * p < ω p , i.e. the basic reproduction number changes from

R (p) 0 < 1 to R (p)
0 > 1, the DFE changes from GAS to unstable. Moreover, when the basic reproduction number is close to one, the endemic equilibrium Q * P appears and is locally asymptotically stable. This completes the proof.

Appendix: Numerical scheme

Discretization of model system

Herein, we develop a non-standard finite difference scheme that is consitent with the dynamics of the continous PDE model system (3.1). To do so, model system (3.1) can be written in the following compact form

∂P ∂t = D ∂ 2 P ∂ 2 x -A 0 (P )P + A 1 , (4.41) 
where P = (S, L, I, R, B e , U ) T , D = diag(0, 0, 0, 0, 0, ε), A 1 = (Λ, 0, 0, 0, 0, 0) T , and

A 0 (P ) =             µ M + µ(t) + ωνU N 0 0 0 0 0 - ωνU N (1 -q)θ + µ M + µ(t) 0 0 0 0 0 -(1 -q)θ α + µ M + d + µ(t) 0 0 0 0 -α µ M + µ(t) 0 0 -δ 1 (t) -δ 2 (t) -δ 3 (t) -δ 4 (t) µ e 0 0 0 -γ 0 0 (ν + µ U )             .
For the temporal discretization, we replace the continous time variable t ∈ [0, ∞) by the discretes variables t n = ndt, n ∈ Z where dt is the temporal step size. Also, for the spatial discretiztion, the continous space variable x ∈ Ω is replaced by the discrete variables, x j = jdx, j ∈ Z where dx is the spatial step size. With this is mind, one has

∂P ∂t = P n+1 j -P n j ψ(dt) + o(ψ(dt)), (4.42) 
and

∂ 2 P ∂ 2 t = P n j+1 -2P n j + P n j-1 (dx) 2 + o(dx) 2 ). (4.43) 
Now, plugging Eqs.(4.42) and (4.43) in Eq. (4.41), gives

P n+1 j -P n j ψ(dt) = D P n j+1 -2P n j + P n j-1 (dx) 2 -A 0 (P n j )P n+1 j + A 1 (4.44) 
Which can be rewritten as follows:

P n+1 j = A -1 1 A 2 (P n j+1 + P n j-1 ) + A -1 1 A 3 P n j + A -1 1 A 1 , (4.45) 
where

A 1 =           C 1 0 0 0 0 0 O 1 C 2 0 0 0 0 0 O 2 C 3 0 0 0 0 0 O 3 C 4 0 0 O 4 O 5 O 6 0 7 C 5 0 0 0 O 8 0 0 C 6           , A 2 = diag(0, 0, 0, 0, 0, d U )
and

A 3 = diag(1, 1, 1, 1, 1, 1 -2d U ), with                                          C 1 = 1 + ψ(dt)[µ M + µ(t) + ωνU N ], C 2 = 1 + ψ(dt)((1 -q)θ + µ M + µ(t)), C 3 = 1 + ψ(dt)(α + µ M + d + µ(t)), C 4 = 1 + ψ(dt)(µ M + µ(t)), d U = εψ(dt) (dx) 2 , C 5 = 1 + ψ(dt)µ e , C 6 = 1 + ψ(dt)(ν + µ U ), O 1 = -ψ(dt) ωνU N , O 2 = -ψ(dt)(1 -q)θ, O 3 = -ψ(dt)α, O 4 = ψ(dt)δ 1 (t), O 5 = ψ(dt)δ 2 (t), O 6 = ψ(dt)δ 3 (t), O 7 = ψ(dt)δ 4 (t) and O 8 = ψ(dt)γ
Now, using the notation of P defined in Eq.(4.41), and after the calculation of A -1 , we obtain the following for model system (4.45) :

                                           S n+1 j = 1 C 1 S n j + Λ C 1 , L n+1 j = - O 1 C 1 C 2 S n j + 1 C 2 L n j - ΛO 1 C 1 C 2 , I n+1 j = O 1 O 2 C 1 C 2 C 3 S n j - O 2 C 2 C 3 L n j + 1 C 3 I n j + ΛO 1 O 2 C 1 C 2 C 3 , R n+1 j = - O 1 O 2 O 3 C 1 C 2 C 3 C 4 S n j + O 2 O 3 C 2 C 3 C 4 L n j - O 3 C 3 C 4 I n j + 1 C 4 R n j - ΛO 1 O 2 O 3 C 1 C 2 C 3 C 4 , B n+1 ej = ξ 1 S n j + ξ 2 L n j - (C 4 O 6 -O 3 O 7 ) C 3 C 4 C 5 I n j - O 7 C 4 C 5 R n j + 1 C 5 B n ej + ξ 1 Λ, U n+1 j = - O 1 O 2 O 8 C 1 C 2 C 3 C 6 S n j + O 2 O 8 C 2 C 3 C 6 L n j - O 8 C 3 C 6 I n j + 1 -2d U C 6 U n j + d C 6 (U n j-1 + U n j+1 ) - ΛO 1 O 2 O 8 C 1 C 2 C 3 C 6 , (4.46) 
where

ξ 1 = -C 4 O 4 C 2 C 3 + C 4 O 1 O 5 C 3 -C 4 O 1 O 2 O 6 -O 1 O 2 O 3 O 7 C 1 C 2 C 3 C 4 C 5 and ξ 2 = -C 3 C 4 O 5 + C 4 O 2 O 6 -O 2 O 3 O 7 C 2 C 3 C 4 C 5
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Discretization of boundary conditions

The discretization of the Neumann boundary conditions gives the following systems

         P n+1 1 -P n 1 ψ(dt) = D (dx) 2 (P n 2 -2P n 1 + P n 0 ), P n 2 = P n 0 , (4.47) 
and

       P n N e+1 -P n 1 ψ(dt) = D (dx) 2 (P n N e+2 -2P n N e+1 + P n N e ), P n N e+2 = P n N e , (4.48) 
Combining Eq.(4.47) and Eq.(4.48) yields

     P n+1 1 = (Id -2A 2 )P n 1 + 2A 2 P n 2 , P n+1 N e+1 = (Id -2A 2 )P n N e+1 + 2A 2 P n N e , (4.49) 
Using the notation of P defined in Eq.(4.41), Eq.4.49 can be writteen as follows:

         S n+1 1 = S n 1 , L n+1 1 = L n 1 , I n+1 1 = I n 1 , R n+1 1 = R n 1 , B n+1 e1 = B n e1 U n+1 1 = (1 -2d U )U n 1 + 2d U U n 2 , S n+1 N e+1 = S n N e+1 , L n+1 N e+1 = L n N e+1 , I n+1 N e+1 = I n N e+1 , R n+1 N e+1 = R n N e+1 , B n+1 eN e+1 = B n eN e+1 , U n+1 N e+1 = (1 -2d U )U n N e+1 + 2d U U n N e , (4.50) 

Consistence of scheme

The numerical scheme (4.46

) is consistent if d U ≤ 1 2 where d U = εψ(dt) (dx) 2 Taking ψ(dt) = e M t -1 M , M = max{µ M , µ M + (1 -q)θ, µ M + α + d, µ U + ν, µ
Be }, we have the result.

Chapter 5

Impulsive modelling of rust dynamics and hyperparasite releases for biocontrol

In this chapter, the model is seasonal, but does not distinguish between young and mature leaves. It includes the dynamics of a biocontrol agent with impulsive releases. The model is obtained using the following hypotheses.

H 1 : The model is based on a classical epidemiological model, in which the host population is subdivided by health status (healthy leaves S and infected leaves I), considering the crop leaf as an individual. The model includes crop production (flowers F and berries B) by leaves during the rainy season and harvest at the end of the season. The infection being mediated by fungus spores (uredospore U ) released in the plantation, their dynamics are also included.

H 2 : The recruitment of healthy leaves is constant.

H 3 :
The force of infection is density-dependent: it is proportional to the number of uredospores and inversely proportional to the total number of leaves.

H 4 : The model alternates dry and rainy seasons. The dynamics are continuous during the rainy seasons and represented by discrete events during the dry seasons.

H 5 : Space is not explicitly taken into account in this model, uredospores are homogeneously distributed on leaves.

H 6 : The model uses an impulsive differential equations (IDE) formalism.

H 7 : The model includes the dynamics of hyperparasites (P ) which feed on uredospores. Hyperparasites are released one or several times per rainy season.

We then obtain an IDE model with five compartments. The aim of this last study is to implement a biocontrol strategy of CLR based on hyperparasites.

The work presented in this chapter is based on preliminary results published in IFAC-PapersOnLine1 [START_REF] Djuikem | Mathematical modelling and optimal control of the seasonal coffee leaf rust propagation[END_REF] and presented in Appendix A.1. In this preliminary work the impact of control is represented by adding an extra negative term in the dynamics of uredospores. We then, use optimal control to maximise the yield and reduce the cost of control. Abstract: Fungal diseases cause serious damages in crop worldwide. In particular, coffee leaf rust (CLR), caused by fungus Hemileia vastatrix attacks coffee leaves and reduces coffee yield. This paper presents a multi-seasonal model of the CLR development in the coffee plantation with continuous dynamics during the rainy season and a discrete event to represent the simpler dynamics during the dry season. Biological control using hyperparasites through one or more discrete introduction events over the year is then added. Analytical and semi-numerical studies are performed to identify how much and how frequently hyperparasites need to be introduced through the definition of a threshold value, as a function of various parameters. We show that the best strategy to efficiently control the disease depends on the hyperparasite mortality: low mortality parasites need be released only once a year, while high mortality parasites should be released more frequently to ensure their persistence in the plantation. This work hence provides qualitative and quantitative bases for the deployment of hyperparasite-based biocontrol, a promising alternative to fungicides for rust control. 

Introduction

Many of the most serious crop diseases are caused by fungi such as rusts [START_REF] Agrios | Plant Pathology[END_REF]. Mathematical models of fungal diseases have received a lot of attention from researchers. For instance, Pivonia at al. studied the seasonal appearance of rusts in the United States, in particular soybean rust, thanks to a general disease model [START_REF] Pivonia | Relating epidemic progress from a general disease model to seasonal appearance time of rusts in the united states: Implications for soybean rust[END_REF]. Rimbaud et al. investigated how the spatial deployment of resistant cultivars affects the resistance efficiency and durability, using a demogenetic model, for a seasonal crop infected by a fungal-like pathogen [START_REF] Rimbaud | Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance?[END_REF]. Fleming used a mathematical model to prove that a complex of polyphagous non-synchronised predators and parasites is likely to control only low-density cereal rust populations, but the author also proved that control at low rust density can delay epidemic development and thus substantially reduce yield losses [START_REF] Fleming | The potential for control of cereal rust by natural enemies[END_REF]. Mammeri et al. studied the impact of spatial heterogeneities on the spread and control of grapevine powdery mildew [START_REF] Mammeri | How changes in the dynamic of crop susceptibility and cultural practices can be used to better control the spread of a fungal pathogen at the plot scale?[END_REF], but only during a cropping season. There are fewer models of fungal diseases that target perennial hosts. For instance, Ravigné et al. looked at the impact of sexual and asexual reproduction on the epidemiological dynamics and showed that they could induce cyclic persistence of the disease, as it can observed for banana Sigatoka diseases [START_REF] Ravigné | Mate limitation in fungal plant parasites can lead to cyclic epidemics in perennial host populations[END_REF]. Desprez-Loustau et al. developed a seasonal eco-evolutionary model of oak powdery mildew in Europe, based on a within-season and between-season transmission trade-off, which captures the main features of the disease, that is seasonality and pathogen species coexistence [START_REF] Desprez-Loustau | The ecological and evolutionary trajectory of oak powdery mildew in Europe[END_REF].

Plant growth and disease spread may be affected by seasonal patterns, which then need to be included in epidemiological models. It is the case of crops cultivated in temperate climates or tropical regions that alternate dry and rainy seasons. As the dynamics can substantially differ between the seasons with possibly rapid transitions, impulsive or semi-discrete models have been developed for several plant fungal diseases, as for oak powdery mildew in the study cited above. Among these models, one can also cite Tankam-Chedjou et al. who built a model to describe and control the dynamics of a banana soilborne pest in a multi-seasonal framework, optimising the fallow period durations between cropping seasons [START_REF] Tankam-Chedjou | Optimal and sustainable management of a soilborne banana pest[END_REF]. Periodic patterns are not necessarily linked to seasonality and can also be due to impulsive control strategies introduced in the epidemiological models. For instance, in the biological control framework, Nundloll et al. studied the periodic release of predators, natural enemies of the plant pest of interest, and determined the minimal predator rate required to eradicate the pest [START_REF] Nundloll | Two models of interfering predators in impulsive biological control[END_REF]. Xinzhu et al. formulated and analysed a model with continuous cultural control and with impulsive cultural control strategies such as replanting and/or removing diseased plants; they concluded that impulsive removing of diseased plants is more efficient and more economical than continuous removing [START_REF] Meng | The dynamics of plant disease models with continuous and impulsive cultural control strategies[END_REF]. Nembot et al. developed a model of cocoa black pod rot disease, caused by Phytophthora megakarya, and showed the impact of periodic impulsive sanitary harvests on the disease dynamics [START_REF] Nembot | Modeling the temporal evolution of cocoa black pod rot disease caused by phytophthora megakarya[END_REF]. Semidiscrete models are hence particularly appropriate for seasonal plant and pathogen dynamics, as well as impulsive control strategies.

Control methods used to fight fungal diseases include chemical fungicide application, cultural practices, and the use of resistant cultivars [START_REF] Sharvelle | Plant disease control[END_REF]. These methods induce significant labour and/or material costs. Moreover, chemical fungicides are harmful to the environment [START_REF] Komárek | Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects[END_REF], potentially also to farmers and consumers [START_REF] Hrelia | The genetic and non-genetic toxicity of the fungicide vinclozolin[END_REF]; in addition, they may affect non-target organisms and induce pest resistance [START_REF] Jeger | Adaptation to the cost of resistance in a haploid clonally reproducing organism: The role of mutation, migration and selection[END_REF]. Therefore, researchers are currently investigating alternative control methods such as biocontrol [START_REF] Jeger | A generic theoretical model for biological control of foliar plant diseases[END_REF][START_REF] Arroyo-Esquivel | Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds[END_REF]. Several biological agents have been tested to control fungal plant diseases, among which various bacteria. Antagonist bacteria such as Bacillus species make PhD Thesis 91 C. Djuikem plants more resistant to fungal infections [START_REF] Shafi | Bacillus species as versatile weapons for plant pathogens: a review[END_REF][START_REF] Heydari | A review on biological control of fungal plant pathogens using microbial antagonists[END_REF][START_REF] Singh | Bacillus subtilis as a control agent against fungal pathogens of citrus fruit[END_REF][START_REF] Daivasikamani | Biological control of coffee leaf rust pathogen, hemileia vastatrix berkeley and broome using bacillus subtilis and pseudomonas fluorescens[END_REF]. Other investigations on biocontrol focused on hyperparasites, which are parasites whose host is often an insect pest but can also be a fungus. For example, several insects such as Mycodiplosis (Diptera) [START_REF] Henk | Mycodiplosis (diptera) infestation of rust fungi is frequent, wide spread and possibly host specific[END_REF] and fungi such as Lecanicillium lecanii (previously called Verticillium lecanii) [START_REF] Mendgen | Growth of verticillium lecanii in pustules of stripe rust (puccinia striiformis)[END_REF][START_REF] Gams | Contribution to the taxonomy and pathogenicity of fungicolous verticillium species. i. taxonomy[END_REF] feed on rust spores. As a foundation for our model, we considered coffee leaf rust (CLR), which is caused by a fungus, Hemileia vastatrix. It attacks the lower leaves of the coffee tree and causes premature defoliation, which reduces the photosynthetic capacity and weakens the tree. Leaf fall causes abortion of a large part of the flowers and fruits, as well as desiccation of shoots. It has direct and indirect economic impacts on coffee production. Direct impacts include decreased quantity and quality of yield. In some cases, more than 70% of the coffee production is lost [START_REF] Grée | Epidemiology of coffee leaf rust in the Eastern Highlands[END_REF][START_REF] Avelino | The coffee rust crises in colombia and central america (2008-2013): impacts, plausible causes and proposed solutions[END_REF]. Indirect impacts include increased costs to control the disease.

The fungus Hemileia vastatrix is a basidiomycete, which, like most fungi, produces spores (used for reproduction). Its control is achieved similarly to that of other fungal diseases. For instance, the antagonist bacteria Bacillus subtilis, isolated from the rhizosphere of coffee crops, largely reduced the growth of CLR (up to 68%) under in vitro conditions [START_REF] Daivasikamani | Biological control of coffee leaf rust pathogen, hemileia vastatrix berkeley and broome using bacillus subtilis and pseudomonas fluorescens[END_REF]. The fungus Cladosporium hemileiae, inhibits the evolution of H. vastatrix mycelium [START_REF] Steyaert | Cladosporium hemileiae n. spec. un parasite de l'hemileia vastatrix berk. et br[END_REF]. The fungus Lecanicillium lecanii [START_REF] Vandermeer | Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web[END_REF] and the insect Mycodiplosis [START_REF] Santiago-Elena | Interaction between mycodiplosis and hemileia vastatrix in three scenarios of coffee crop management (coffea arabica)[END_REF][START_REF] Hajian-Forooshani | Impact of regionally distinct agroecosystem communities on the potential for autonomous control of the coffee leaf rust[END_REF] can feed on spores. In all these biocontrol studies, the dose and time of application of the bacteria or hyperparasites affected their effectiveness in controlling coffee leaf rust development. In this work, we chose to focus on a Mycodiplosis-like hyperparasite, which was reported as a promising biocontrol agent and paid special attention to the quantity and frequency of the releases. To this aim, mathematical modelling can help identifying when and how to release a biocontrol agent.

Our goal in this paper is to control a fungal disease in the field, by means of hyperparasite releases, using a mathematical modelling approach. To achieve this goal, we extend an original impulsive CLR model that we previously developed [START_REF] Djuikem | Mathematical modelling and optimal control of the seasonal coffee leaf rust propagation[END_REF]. In particular, we explicitly represent the hyperparasite dynamics, the latter acting as predators of spores. Moreover, we consider in this work discrete releases of the hyperparasite instead of a continuous control.

This paper is organised as follows. Section 5.2 is devoted to the formulation of the impulsive model of CLR, with continuous dynamics during the rainy seasons and discrete events for the dry seasons. It also presents the mathematical analysis of the model using Floquet theory and simulations of this impulsive model to illustrate the theoretical results. In Section 5.3, we introduce the biocontrol in the model, based on hyperparasite yearly releases. We semianalytically study the stability of the control model to obtain the stability regions as functions of parameter values. Section 5.4 presents the impact of multiple yearly releases of hyperparasites, with contrasting results according to the value of the hyperparasite mortality rate. The last Section 5.5 concludes the paper with a discussion of the main results and possible perspectives for future work.

Coffee leaf rust dynamics

Modelling of CLR

In this section, we formulate a mathematical model for the CLR in the coffee plantation. To do so, we consider the dynamics of fungus during the production season, which corresponds to the rainy season for some countries, through ordinary differential equations; while the non- production period, which is the dry season, is represented by impulses since the dynamics are simpler during that period. More precisely, we consider that in a coffee plantation we can find: susceptible leaves S, which are healthy leaves that have not (yet) been attacked, infected leaves I, uredospores U , which the fungus H. vastatrix uses for its asexual reproduction, flowers F and berries B.

During the production period with length T > 0 which represents the rainy season, the recruitment of healthy leaves occurs at rate Λ. Uredospores are deposited on leaves of all leaves at rate ν. When the conditions are favourable, they germinate with efficiency rate ω and the susceptible leaves become infected leaves. All leaves undergo natural mortality with baseline rate µ and the infected leaves have an additional mortality rate d due to the disease. Uredospores are produced by infected leaves at rate γ and lose their ability to infect coffee leaves at constant rate µ U . Susceptible and infected leaves produce the flowers with constant rate δ S and δ I respectively and δ S > δ I . The flowers become berries at rate θ. At the end of the production period, harvest occurs instantaneously and we consider that the dry season or non-production period can be summarised in a discrete time event due to the slow growth of leaves during the dry season. The impact of harvest and dry season reduces the number of susceptible leaves, infected leaves and uredospores with rates ϕ S , ϕ I and ϕ U respectively. Using the fact that uredospores lose their ability to infect quickly, we assume that ϕ U is very close to 0. The representation of this evolution in the coffee plantation over a multi-year period, gives the multi-seasonal model, given in 

                      Ṡ = Λ -ωνU S N -µS, İ = ωνU S N -(µ + d)I, U = γI -(ν + µ U )U, Ḟ = δ S S + δ I I -(θ + µ F )F, Ḃ = θF -µ B B;
Dry season:

                 S(nT + ) = ϕ s S(nT ), I(nT + ) = ϕ I I(nT ), U (nT + ) = ϕ U U (nT ), F (nT + ) = 0; B(nT + ) = 0.
(5.1)

where S(t), I(t), U (t), F (t), B(t) and N (t) = S(t) + I(t) represent the number of healthy leaves, infected leaves, uredospores, flowers, berries and total number of leaves, respectively, at time t; with 0 < ϕ S , ϕ I , ϕ U < 1 and ϕ U close to 0.

Mathematical analysis

Herein, we first presented basic properties of the model (5.1). Secondly, the periodic disease free solution is computed and its stability is proven. Finally, numerical simulations are performed to illustrate our mathematical results.

Basic properties of the model

Let R 5 + = {X ∈ R 5 , X ≥ 0}. Denote by f = (f 1 , f 2 , f 3 , f 4 , f 5
) the map given by the right-hand side of system (5.1) when t = nT , and consider the initial conditions (S(0), I(0), U (0), F (0), B(0)) ∈ R * + × R 4 + . The solutions of system (5.1) are non-negative. Indeed, suppose that one of the variables, that we will denote x, is equal to 0 at some instant, with all the others being non-negative. A quick analysis shows that ẋ ≥ 0, so that x cannot become negative. This implies that the solutions are non-negative.

By adding the first and second equations of system (5.1), we obtain the dynamics of total leaves which satisfies: The linearization of system (5.11) in the neighbourhood of 0 R 3 is

Ṅ = Λ -µN -dI, t = nT ; N (nT + ) ≤ ϕ S N (nT ).
Ẋ(t) = A X(t), t = nT ; X(nT + ) = diag(ϕ S , ϕ I , ϕ U ) X(nT );
(5.12)

where

A =    -µ 0 -ων 0 -(µ + d) ων 0 γ -(ν + µ U )    .
Solving the first equation of system (5.12) for t ∈ (0, T ] yields

X(t) = Φ A (t) X(0 + ), (5.13) 
where

Φ A (t) = e At =    e -µt * * 0 ψ 22 (t) ψ 23 (t) 0 ψ 32 (t) ψ 33 (t)    and                ψ 22 (t) = 1 2β (β + k 1 -k 2 )e λ 1 t + (β -k 1 + k 2 )e λ 2 t , ψ 23 (t) = νω β -e λ 1 t + e λ 2 t , ψ 32 (t) = γ β -e λ 1 t + e λ 2 t , ψ 33 (t) = 1 2β (β -k 1 + k 2 )e λ 1 t + (β + k 1 -k 2 )e λ 2 t , with          k 1 = µ + d, k 2 = ν + µ U , α = k 1 + k 2 , β = (k 1 -k 2 ) 2 + 4γων, λ 1 = - α 2 - β 2 and λ 2 = - α 2 + β 2 .
Using the impulsive conditions X(nT + ) = diag(ϕ S , ϕ I , ϕ U ) X(nT ), the solution given by equation (5.13) becomes

X(nT + ) = diag(ϕ S , ϕ I , ϕ U )Φ A (T ) X((n -1)T + ). (5.14) 
From the above equation, the monodromy matrix M = diag(ϕ S , ϕ I , ϕ U )Φ A (T ), i.e.

M =    ϕ S e -µT * * 0 ϕ I ψ 22 (T ) ϕ I ψ 23 (T ) 0 ϕ U ψ 32 (T ) ϕ U ψ 33 (T )    .
Due to the block-triangular form of monodromy matrix M , there is no need to calculate the exact form of ( * ) for the following analysis.

The Floquet multipliers of the monodromy matrix M are given by χ 1 = ϕ S e -µT < 1 and the eigenvalues of the sub-matrix

M 1 = ϕ I ψ 22 (T ) ϕ I ψ 23 (T ) ϕ U ψ 32 (T ) ϕ U ψ 33 (T ) . (5.15) 
Since U → 0 + , for any arbitrary positive ε U there exists t 0 > 0 such that for t ≥ t 0 , U (t) ≤ ε U . Using non-negativity of the solutions and the fact that S(t)/N (t) ≤ 1 into the first equation of system (5.6), one has :

Λ -ωνε U -µS(t) ≤ Ṡ(t) ≤ Λ -µS(t)
Applying the comparison principle on the above differential inequalities and using the impulsive condition, one has S 1 (t) ≤ S(t) ≤ S 2 (t), with S 1 (t) and S 2 (t) the solutions of the following impulsive differential equations respectively:

Ṡ1 = Λ -ωνε U -µS 1 , t = nT ; S 1 (nT + ) = ϕ S S 1 (nT ), and 
Ṡ2 = Λ -µS 2 , t = nT ; S 2 (nT + ) = ϕ S S 2 (nT ).
One can observe that S 1 (t) → S T ε U (t) and S 2 (t) → S T (t) asymptotically. This implies that

S T ε U (t) ≤ S(t) ≤ S T (t). (5.20) 
Since we can write ε U as small as we want using the fact that U (t) → 0, we obtain S T ε U (t) → S T (t) when ε U → 0. Finally, using (5.20), one has that S(t) → S T (t). Which implies that the PDFS is globally attractive. In other words, independently from the initial conditions (S 0 , I 0 , U 0 ), one has that (S(t), I(t), U (t)) → (S T (t), 0, 0)

This concludes the proof of global asymptotic stability.

Numerical simulations of CLR dynamics

Herein, we present the results of numerical simulations of system (5.1) using ode45 in Matlab to integrate the differential equations during the rainy seasons, with the impulses giving each year's initial conditions. We take T = 250 days, which is the length of rainy season in Cameroon [START_REF] Suchel | Quelques remarques à propos de la répartition des pluies au Cameroun durant la période sèche 1969-1973[END_REF] and also corresponds to the length of coffee production period. For the simulations, we suppose that all leaves are initially healthy, which means that I(0) = 0 leaf, with S(0) = 500 leaves.

Infection is initiated by uredospores, with U (0) = 3000 spores. There are no flowers and berries initially, F (0) = 0 flower and B(0) = 0 berry, because simulations start at the beginning of the production period. The initial conditions are then (S(0), I(0), U (0), F (0), B(0)) = (500, 0, 3000, 0, 0).

(5.21) Table 5.1 summarises the parameter definitions and values used in this paper and that this the calculation of the values of some parameters values.

-The maturation of flowers takes 180 days, which represents stage I + stage II + stage III presented by Torres Castillo et al [START_REF] Torres Castillo | Impact of climate change and early development of coffee rust -an overview of control strategies to preserve organic cultivars in mexico[END_REF], then the maturation rate is θ = 1/180 ≈ 0.0055/day.

-In the coffee tree, a node produces 30 flowers during the owering period ( [START_REF] Clifford | Coffee: botany, biochemistry and production of beans and beverage[END_REF], page 59). 

(t) = -(µ + d) ων γ -(ν + µ U ) -aP T (t) K .
One can observe that

G 1 (t) < B = -(µ + d) ων γ -(ν + µ U ) .
The monodromy matrix associated to matrix B is the matrix M 1 given in equation (5.15), which is stable if R < 1, where R is given in equation (5.17). Using the fact that system (5.27) is cooperative, we can conclude that, when R < 1, the cPDFS Y T (t) is globally asymptotically stable, which implies that CLR dwindles until extinction.

Semi-numerical analysis of the controlled model

In order to analyse system (5.22) when R > 1, we need to compute the monodromy matrix associated with matrix G 1 (t). This is done by numerically solving the linear system (5.27) using the initial conditions Ỹ1 (0 + ) = (1, 0) and Ỹ1 (0 + ) = (0, 1). The two solutions evaluated at time T are put together to obtain the fundamental matrix. Then we use the impulsive condition to obtain the monodromy matrix.

The monodromy matrix associated with Ỹ1 is

M G 1 = ϕ I 0 0 ϕ U Φ G 1 (T ).
We analyse the spectral radius R c of this matrix and check that it is smaller than one for the local stability of the cPDFS Y T (t) of system (5.22). We term this method "semi-numerical" as it requires numerical computations, but not extensive simulations of the system [START_REF] Ghosh | Natural enemies deployment in patchy environments for augmentative biological control[END_REF].

In Figure 5.3, we plot the threshold level of the spectral radius R c = 1 of controlled system (5.22) for parameter pairs (Λ P , a) (subplot (a)) and (ν, γ) (subplot (b)), as well as the threshold stability level R = 1 of uncontrolled system (5.1) for parameter pair (ν, γ). In subplot (a), the regions below and above the blue curve are, respectively, the unstable and stable regions of the cPDFS of controlled system (5.22). As expected, stability of the cPDFS is guaranteed for large values of the yearly quantity of predators released Λ P , and of the predator consumption rate a. Also, when the predator capacity to consume uredospores is higher, less predators are needed for the extinction of the disease, and vice versa. The blue dot corresponds to parameter values ensuring a stable cPDFS, values that are used for the blue curve in subplot (b).

In subplot (b), as in subplot (a), the blue curve separates the unstable and stable regions of the cPDFS of the controlled system; moreover, the black curve separates these two regions for the uncontrolled system. The parameter region between these two curves hence represents the gain obtained by adding the biocontrol: in this region, CLR goes extinct with biocontrol, but persists without. Subplot (b) shows that, in order to eliminate CLR through the proposed biocontrol effort, the sporulation and deposition rate should not be too large. 

Asymptotic behaviour for yearly releases

Herein, we investigate the asymptotic behaviour of system (5.22) when predators are released once a year at the beginning of each production period. To do so, we consider the parameter values given by the two dots in the stability regions of Figure 5.3. We point out that the gray dot in subplot (b) of Figure 5.3 is in the instability region of system (5.22) without control which means that the CLR would persist in the coffee plantation if unchecked. We consider the initial condition given in equation (5.21), adding the initial release of predators P (0 + ) = Λ P = 3000, which yields (S(0 + ), I(0 + ), U (0 + ), P (0 + ), F (0 + ), B(0 + )) = (500, 0, 3000, 3000, 0, 0).

(5.28)

Figure 5.4 compares the temporal dynamics of system (5.1) without control (black curves) and model (5.22) with control (blue curves). From this figure, one can observe that under the actions of biocontrol, the number of healthy leaves increases and becomes stationary (see Figure 5.4(a)), while the number of infectious leaves and uredospores dwindles until extinction (see Figures 5.4(b) and (c)). During the first year, the quantity of predators (hyperparasites) increases through uredospore consumption. From the second year on, the number of uredospores is very close to zero, so that the solution is close to the cPDFS. Biocontrol using hyperparasites reduces drastically CLR in the coffee plantation.

Multiple releases of hyperparasites per year

In this section, we suppose that the yearly quantity Λ P of hyperparasites is released at different times over the year: it is uniformly divided into m releases of size Λ P m , with release interval T m . We thus obtain an impulsive model with a new switching condition for the predator, given by Rainy season for t = nT :

                                 Ṡ = Λ -ωνU S N -µS; İ = ωνU S N -(µ + d)I; U = γI -(ν + µ U )U -aP U K + U ; Ṗ = eaP U K + U -µ P P, t = nT + j m T ; Ḟ = δ S S + δ I I -(θ + µ F )F Ḃ = θF -µ B B.
Predator releases for j ∈ {1, ..., m -1} :

P nT + j m T + = P nT + j m T + Λ P m ; Dry season:                            S(nT + ) = ϕ s S(nT ); I(nT + ) = ϕ I I(nT ); U (nT + ) = ϕ U U (nT ); P (nT + ) = ϕ P P (nT ) + Λ P m ; F (nT + ) = 0 B(nT + ) = 0.
(5.29) System (5.29) has the same properties as system (5.6) for the existence, uniqueness, nonnegativity, and boundedness of solution. We made the mathematical analysis of system (5.29) without Ḟ and Ḃ equations, since B is not present in other equations.

Multiple release controlled periodic disease free solution and its stability

To compute the multiple release controlled periodic disease free solution (m-cPDFS), we only consider the first year for readability purposes, which means that t ∈ (0, T ]. The m-cPDFS of biocontrol system (5.29) occurs when I = 0 and U = 0, so healthy leaf dynamics are unchanged compared to the PDFS and still satisfy (5.10); the hyperparasite dynamics are For j = 0 P T m

             Ṗ =
+ = P 0 + e -µ P T m + Λ P m .
For j = 1

P 2T m + = P 0 + e -µ P T m + Λ P m e -µ P T m + Λ P m ; = P 0 + e -µ P 2T m + Λ P m e -µ P T m + Λ P m .
For j = 2

P 3T m + = P 0 + e -µ P 3T m + Λ P m 2 i=0 e -µ P iT m .
Generally, for all j = 0, .. Using this latter expression and the third equation of (5.30), we obtain

P T + = ϕ P P 0 + e -µ P T + Λ P m e -µ P T m -e -µ P T 1 -e -µ P T m + Λ P m .
The value for which P (T + ) = P (0 + ) is

P 0 + = Λ P m   ϕ P e -µ P T m -e -µ P T + 1 -e -µ P T m (1 -ϕ P e -µ P T ) 1 -e -µ P T m   .
So we can conclude that, for t ∈] jT m , (j+1)T m ], the m-cPDFS is given by Z T (t) = (S T (t), 0, 0, P T m,j (t)), with S T (t) given by equation (5.10) and P T m,j (t) = P 0 + e -µ P jT m + Λ P m

1 -e -µ P jT m 1 -e -µ P T m e -µ P (t-jT m ) , (5.32) P (0 + ) being defined above.

Then, the m-cPDFS is Z T (t) = (S T (t), 0, 0, P T m,j (t)), for t ∈] jT m , (j+1)T m ], where S T (t) is given by (5.10) and P T m,j (t) by

P T m,j (t) = P 0 + e -µ P jT m + Λ P m 1 -e -µ P jT m 1 -e -µ P T m e -µ P (t-jT m ) , (5.33) 
with

P 0 + = Λ P m   ϕ P e -µ P T m -e -µ P T + 1 -e -µ P T m (1 -ϕ P e -µ P T ) 1 -e -µ P T m   .
(5.34)

Lemma 5.3. The m-cPDFS Z T (t) = (S T (t), 0, 0, P T m,j (t)) of controlled model with multiple releases, is globally asymptotically stable when R < 1

Proof of Lemma 5.3. The proof is similar to the proof of Lemma 5.2 which holds for one release per year.

To present the impact of the multiple release strategy on CLR control, we first compute a proxy of the control intensity over the season, namely the yearly average number of hyperparasites present in the plantation for the m-cPDFS. This quantity depends on m, the number of hyperparasite releases per year.

The yearly average number of hyperparasites for the m-cPDFS is computed over the interval [0, T ] as follows: Simplifying this expression, we finally obtain

g(m) = T 0 P T (t)dt = m-1 j=0 (j+1)T m jT m P T m,j ( 
g(m) = -Λ P (1 -ϕ P )(1 -e -µ P T ) µ P (1 -ϕ P e -µ P T ) 1 
m(e µ P T m -1)

+ Λ P µ P .
Then, g(m) = Differentiating g(m) with respect to m, one has

g (m) = Γe µ P T m e -µ P T m + µ P T m -1 m 2 (e µ P T m -1) 2
.

Since e -µ P T m is always larger than its first order approximation 1 -µ P T m for T m > 0, all factors are positive except Γ, so that g (m) < 0. This allows to conclude that the yearly average number of hyperparasites decreases with the number of releases per year, without CLR (quantity computed for the m-cPDFS). One might then think that spreading Λ P over several releases is less efficient than releasing everything at the beginning of the season. This is investigated below through simulation.

We use two contrasted predator mortality rates to simulate the solution P T m,j (t) in the m-cPDFS. Subplots (a) and (b) of Figure 5.5 present the simulation of P T m,j (t) for various release frequencies and for both mortality rates over three years; they illustrate the important impact these two factors on the m-cPDFS. 5.1 and initial conditions by (5.36).

Impact of release frequency on CLR control

Herein, we present the impact of the yearly hyperparasite release frequency on CLR control. This is first done using the semi-numerical analysis of the model with multiple releases, to show the (Λ p , a)-stability region of the m-cPDFS (as in Figure 5.3), for different values of the release number m. Secondly, we present simulations of the dynamic behaviour of system (5.29).

In all simulations, the epidemiological parameters are set to their value in Table 5.1. The only parameters that vary are the ones related to the hyperparasites: Λ p , a, µ p and m. As in Figure 5.5, we use two contrasted values for the predator mortality µ p , the low and high values representing respectively a favourable and unfavourable environment for the hyperparasites. Moreover, we consider that an initial hyperparasite release occurs at time 0 with the usual initial conditions (5.21) for the other variables, so that (S(0 + ), I(0 + ), U (0 + ), P (0 + ), F (0 + ), B(0 + )) = (500, 0, 3000, Λ P m , 0, 0) (5.36)

Impact on stability

Herein, we present the impact of the yearly release frequency on the m-cPDFS stability of controlled system (5.29), for the two contrasted predator mortality rates depicted in Figure 5.5.

Only two release frequencies are considered, m = 1 and m = 5 releases per year, as results obtained for m = 5 also hold for higher frequencies.

Case 1 -Less frequent is more effective (low mortality rate µ P = 0.003/day) In subplot (a) of Figure 5.6, R c,1 = 1 for m = 1 (blue curve) and R c,5 = 1 for m = 5 (magenta curve) separate the instability (below) and stability (above) regions of the m-cPDFS of controlled system (5.29), when parameters (Λ P , a) vary. The stability region is greater for m = 1 than for m = 5, that is when the yearly release frequency is lower. 5.1 and initial conditions by (5.36) Subplot (b) of Figure 5.6 illustrates the long term dynamics (over 12 years) of the infected leaves of system (5.29), with initial conditions (5.36), for parameter values Λ P = 3000 predators and a = 0.6 spores/predator.day, which correspond to the purple dot in subplot (a). As expected from subplot (a), CLR goes extinct for one release per year (blue curve), while it persists for five releases per year (magenta curve).

Therefore, if the hyperparasite mortality is very low, the best strategy for eradicating CLR is to release hyperparasites once a year at the beginning of the season, implying that releasing less frequently in larger quantity is the most effective. This is consistent with the control intensity proxy computed in equation (5.35), which is higher for lower frequencies.

Case 2 -More frequent is more effective (high mortality rate µ P = 0.1/day) Figure 5.7 is built as Figure 5.6, but for a high predator mortality. In subplot (a), as opposed to what is observed for low mortality, the stability region is greater for m = 5 than for m = 1, that is when the yearly release frequency is higher. Subplot (b) is plotted with parameter values Λ P = 30000 predators and a = 1.5 spores/predator.day, which correspond to the purple dot in subplot (a). As expected from subplot (a), CLR extinction is achieved for five releases per year but not for one release per year. Infected leaves I behave quite differently. For m = 1, I decrease at the beginning of each year and then increase sharply; indeed, the hyperparasite population is large at the beginning of the year, but declines sharply due to the high mortality rate (see Figure 5.5(b)), so that CLR is not kept in check. By contrast, for m = 5, hyperparasites do not stay close to 0 for long so that no large increase of I occurs.

For high predator mortality, the best strategy to control CLR is to release hyperparasites five times per year, meaning that more frequent releases are better. This conclusion was not obvious, considering that the control intensity proxy computed in equation ( 5 Remaining parameter values are given in Table 5.1 and initial conditions by (5.36).

Impact on transient dynamics

Herein, we still look at the impact of the yearly release frequency, for the same contrasted predator mortality rates, but we focus on the first years and assume that the m-cPDFS of controlled system (5.29). Four frequency values are considered, namely m = 1, 2, 5, 50 releases per year. ) and berries (subplot (c)), using initial conditions (5.36) and parameter values Λ P = 3000 predators and a = 0.8 spores/predator.day. These parameter values, which correspond to the purple dot in subplot (a), ensure that the m-CPDFS is stable for all four values of the release frequency m. In subplot (b), we can observe that the disease is driven to extinction for m = 1 (blue curve). For m = 5 (magenta curve) and m = 50 (light blue curve), the number of infected leaves after six years is still notably greater than zero (less notably so for m = 2, brown curve). However, if we increase the number of years, the extinction will be observed for all values of m. Subplot (c) shows that the number of berries at the end of each year decreases when m increases. This confirms our previous result: the best strategy for low hyperparasite mortality is 5.1 and initial conditions by (5.36).

to few releases per year.

Case 2 -Best strategy depends on the horizon (high mortality rate µ P = 0.1) As expected for high hyperparasite mortality, in subplot (a) of Figure 5.9, the R c,m = 1 curves, delimiting the stable and unstable regions of the m-cPDFS, are in reverse order compared to Figure 5.8(a). However, we should note that R c,5 = 1 (magenta curve) and R c,50 = 1 (light blue curve) are almost indistinguishable, implying that both strategies are almost equivalent in terms of eradication success.

Subplots (b) and (c) of Figure 5.9 are built using parameter values Λ P = 30000 predators and a = 2.5 spores/predator.day, which correspond to the purple dot in subplot (a)). In subplot (b), we observe CLR extinction in all cases but for m = 1, for which extinction takes longer. In the latter case, the high mortality rate drives the hyperparasite population to very small values very quickly so that it is absent for most of the season, which slows down the control process.

To better explain the impact of the high hyperparasite mortality on berries depicted in subplot (c), we consider the number of berries at the end of each season and thus we obtain Table 5.2. The majority of parameter values of the model are certainly assumed, but this qualitative study shows the effectiveness of the biocontrol of CLR using hyperparasite In terms of berry production, the best strategy from the first year to the second year is to release the hyperparasites once. From year 3 to year 4, the highest berry production occurs with m = 5 releases per year. From year 5 and on, the production increases with the release frequency, which is the result expected in the case of high predator mortality. However, except for m = 1, the berry production numbers are then almost all identical since CLR is nearly eradicated. Therefore, the best release strategy depends on the time horizon considered. From the four cases described above, we can conclude that the best hyperparasite release strategy, in terms of CLR control and berry production, strongly depends on hyperparasite characteristics, namely its mortality rate (µ P ) and its uredospore consumption rate (a). Both parameters determine the yearly released quantity of hyperparasites (Λ P ) needed to control CLR. Moreover, the mortality rate has an impact on the best hyperparasite release frequency (m). On the long run, more frequent is more effective for high hyperparasite mortality, and vice versa for low mortality.

On the shorter run however, less frequent may also be better for high mortality.

Discussion

In this work, we built an original impulsive model of coffee leaf rust dynamics in a coffee plantation, in which the non production (dry) season takes the form of an impulse, it is based in a previous study [START_REF] Djuikem | Modelling coffee leaf rust dynamics to control its spread[END_REF]. There are few CLR models in the literature and they represent different geographical scales, from the individual coffee bush to the country or even the continent. Bebber et al. determined the germination and infection risk depending on the climate in Colombia and neighbouring countries, based upon existing experimental data [START_REF] Bebber | Modelling coffee leaf rust risk in Colombia with climate reanalysis data[END_REF]. In contrast to these static approaches, Vandermeer et al. studied the interaction between the regional and local dynamics of CLR model by representing the evolution of the proportion of infected bushes and farms [START_REF] Vandermeer | The interaction of regional and local in the dynamics of the coffee rust disease[END_REF]. Vandermeer et al. also represented the CLR dynamics in a coffee farm in Chiapas using an SI (susceptible-infected) epidemiological model of the host and concluded that the network approach can be a useful way of gaining qualitative insight about disease dynamics in space [START_REF] Vandermeer | The dynamics of the coffee rust disease: an epidemiological approach using network theory[END_REF].

The originality of our model, compared to the dynamical approaches above, is the hybrid formalism that is particularly suited to describe the seasonality of coffee and rust dynamics, as well as impulsive biocontrol. Floquet theory was used to compute stability thresholds for the periodic disease free solution. The initial coffee leaf rust model was then coupled with the dynamics of predator-like hyperparasites, as recommended by Zambolin [START_REF] Zambolim | Current status and management of coffee leaf rust in brazil[END_REF] for alternative biocontrol methods; this resulted in a controlled impulsive model. The semi-numerical analysis of this controlled impulsive model allowed to conclude that hyperparasite-based biocontrol can drastically reduce coffee leaf rust. Moreover, we studied how successful biocontrol implementation depends on hyperparasite characteristics, in particular its mortality.

We set the study in a framework where the yearly released quantity of hyperparasites is fixed and only its release frequency varies. We deemed this comparison relevant since, whatever the release strategy, the same yearly budget may be allocated to biocontrol agents.

Low and high hyperparasite mortality rates were considered to represent different environmental situations and hyperparasite characteristics. High mortality occurs if the hyperparasite is a specialist parasite like Mycodiplosis [START_REF] Henk | Mycodiplosis (diptera) infestation of rust fungi is frequent, wide spread and possibly host specific[END_REF], which means that it only consumes CLR uredospores, or if it is a generalist hyperparasite whose alternate food sources are absent; in both cases, the hyperparasite quickly dies out in absence of CLR. Low mortality occurs for generalist hyperparasites in a rich environment. Most hyperparasites of H. vastatrix in the literature have alternative preys. For example, the Lecanicillium lecanii fungus is a CLR hyperparasite that could be used for biocontrol [START_REF] Vandermeer | Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web[END_REF][START_REF] Setiawati | Variability of lecanicillium spp. mycoparasite of coffee leaf rust pathogen (hemileia vastatrix) in indonesia[END_REF], and it is also a pathogen of plant-parasitic nematodes [START_REF] Goettel | Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases[END_REF]. Hence, both low and high mortality situations could occur in the field. For low mortality rates, the best strategy is to release the hyperparasites once a year at the beginning of the production season. This strategy is efficient because it is the one that ensures the largest average hyperparasite density over the year, hyperparasites being always present because of the low mortality rate. However, the cost of such a large release at the beginning of the production season, on top of all the actions that need to be taken for coffee farming at that same time (such as fertiliser and manure application, or trimming of dry or excess leaves), can put too large a financial burden on the coffee producer. This problematic represents a well-known trade-off between yield and affordability in farming practices. Another potential problem is that massively advising farmers to adopt these practices could cause an excessive increase in the local demand of hyperparasites, and consequently a shortage in the market. For both these reasons, a strategy considering two releases could be recommended, even though it is less cost-efficient.

When the hyperparasite mortality rate is high, the best strategy depends on the horizon. For the first year, the most efficient approach is to have a large release at the beginning of the season in order to have an immediate massive impact. For the subsequent years, 5 and then 50 releases per year are advocated in Table 5.2. However, there is little difference in berry production between 5 and 50 releases in years 5 and 6. Moreover, the eradication success is almost identical for both strategies in terms of yearly released quantity of hyperparasites needed to control CLR (see Figure 5.9(a)). Considering the burden and cost associated with having 50 interventions over the production season, five yearly releases should be preferred to 50. Releasing predators twice a year may appear slightly suboptimal in terms of eradication success. It is however fairly close to the berry production achieved when releases occur five times per year and it is less labour consuming. In terms of cost-effectiveness, two releases per year might then be a good compromise. This result is complementary to the results of Henk et al [START_REF] Henk | Mycodiplosis (diptera) infestation of rust fungi is frequent, wide spread and possibly host specific[END_REF], which shows that the larvae of some Mycodiplosis species can feed on spores of rust fungi and their frequency play an important role.

In the present work, we have focused our attention on one family of strategies: those that repeat themselves every year and are evenly spread over the production season, with a first release at the beginning of each year. Potential generalisations are numerous, but could not be considered here. One could for example choose to change strategy every year; this would seem to be a good idea if we look at Table 5.2, where we would choose to have a large single release the first year, and potentially five releases per year after that. One could also choose not to have a first release at the beginning of the year, but later in the season, or to have a larger release at the beginning of the year and then some smaller ones during the year. Finally, hyperparasites could be released in reaction to peaks of uredospore densities in the plantation, so as to maximise their impact; the latter approach however requires close monitoring of the disease in the plantation.
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In addition to them potentially being more efficient, these approaches have the advantage of not imposing the full burden of acquiring hyperparasites at the beginning of the season. The continuous part of our model contains most elements that we deem relevant, keeping it reasonably small and tractable. However, uredospore germination and mycelium formation depend on various environmental factors [START_REF] Avelino | Effects of crop management patterns on coffee rust epidemics[END_REF], such as temperature [START_REF] Jong | Temperature requirements for germination, germ tube growth and appressorium formation of urediospores of hemileia vastatrix[END_REF]. Introducing meteorological data in our model would allow for a better description of the day-to-day dynamics, but constant parameters gives a fairly good representation of the average dynamics for our purpose.

The hybrid model we developed is able to describe the dynamics of other fungal diseases that attack leaves of perennial plants. It appears as a promising tool to explore the efficiency of biocontrol strategies based on the impulsive release of hyperparasites. The impulsive component of the model presented in this work corresponds to plants that are harvested once a year; such is the case in temperate climate or in tropical climate with dry and rainy seasons. However, this model can be perfectly adapted to other countries without such contrasted seasons, where there are more than one harvest per year. In this case, several impulses can occur over the year, corresponding to partial harvests only, and not seasonality. The conclusions that we have drawn for CLR might not translate to other pathogen-plant pairs in other contexts, beyond our analytical results; a full semi-analytical study and numerical simulations should be performed for each case. 

Summary of main results

This thesis focused on the mathematical modelling and biocontrol of the dynamics of fungal diseases applied to the particular case of CLR and its impact on coffee production. The main objective was to develop rigorous mathematical models of plant-pathogen interactions, and also to develop an efficient and long-lasting control strategy that reduces the fungal development and preserves the yield. We reviewed literature about the impact of pest and fungal diseases, the biology of H. vastatrix and coffee tree in Chapter 1. This chapter also presents existing mathematical models of plant pathogens and particularly of CLR. In Chapter 2, we presented the mathematical tools used in the thesis. The main contributions of the work are found in Chapters 3, 4 and 5. Chapter 3 is based on a manuscript in revision in Journal of Mathematical Biology. Chapter 4 is built on a paper published in Mathematical Modelling of Natural Phenomena [START_REF] Djuikem | Modelling coffee leaf rust dynamics to control its spread[END_REF]. Chapter 5 is a manuscript in revision in Mathematical Biosciences, which is an extension of a paper published in IFAC-PapersOnLine [START_REF] Djuikem | Mathematical modelling and optimal control of the seasonal coffee leaf rust propagation[END_REF] and given in Appendix A.

In our first contribution, presented in Chapter 3, we proposed and analysed a mathematical model that describes the propagation of a fungal disease on a perennial plant using an ODE model. The model is based on classical epidemiological models and its originality is the differentiation between young and mature leaves. Our aim was to understand the host-pathogen interactions and study the impact of host development on the aggressiveness of the pathogen. We proved that the model exhibits complex asymptotic properties, that differ from classical epidemiological models: a basic reproduction number smaller than one is insufficient to eradicate the disease as it could persist even though it could not invade, and a basic reproduction number greater than one does not guarantee the persistence of the disease, as large values could result in the destruction of the plantation.

Our second contribution, presented in Chapter 4, consisted in proposing and analysing a PDE model describing the disease propagation in the plantation, differentiating the rainy and dry seasons. The main goal was to understand the impact of seasonality on the propagation of the fungal disease in order to propose a biocontrol solution, based on a hyperparasite that inhibits the fungus reproduction. We computed the equilibria of the two subsystems, defined during the rainy and dry seasons. We proved that the basic reproduction numbers during the two seasons could determine the dynamics of the full model: when the basic reproduction number is less than one during the rainy season, then CLR globally decreases until extinction; when it is greater than one for the dry season, then CLR persists. We showed that a rather high biocontrol efficiency (75% at least) is necessary in our model to control the disease, but lower efficiencies still improve coffee production notably.

In our last contribution, presented in Chapter 5, we developed a multi-seasonal model, alternating continuous crop-fungus dynamics during the rainy seasons and discrete events to represent the simpler dynamics during the dry seasons. The originality of our model, compared to the dynamical approaches above, is the hybrid formalism that is particularly suited to describe the seasonality of coffee and rust dynamics, as well as impulsive biocontrol. Our goal was to develop a biocontrol strategy based on the impulsive release of hyperparasites in the plantation. We used semi-numerical analysis to show that the best hyperparasite release strategy strongly depends on the hyperparasite characteristics, namely its mortality rate and its uredospore consumption rate. Both parameters determine the yearly released quantity of hyperparasites needed to control the disease. Moreover, we showed that the mortality rate has an impact on the best hyperparasite release frequency. On the long run, more frequent is more effective for high hyperparasite mortality, and vice versa for low mortality. On the shorter run however, less frequent may also be better for high mortality.

Perspectives

We identified two main extensions for this modelling work: the first one based on intra-guild predation and the second one on the deployment of resistant cultivars.

In this thesis, the biological control we proposed to control coffee leaf rust focused on the deployment of hyperparasites that prey on H. vastarix uredospores, such as fungus L. lecanii [START_REF] Vandermeer | Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web[END_REF] and Mycodiplosis insect [START_REF] Santiago-Elena | Interaction between mycodiplosis and hemileia vastatrix in three scenarios of coffee crop management (coffea arabica)[END_REF]. According to Chapter 5, the mortality rate of hyperparasites determines how often they need to be released in the plantation. The growth of L. lecanii is favoured by the same climatic conditions as H. vastatrix. Moreover L. lecanii is a generalist [START_REF] Fazeli-Dinan | Virulence of the entomopathogenic fungus lecanicillium longisporum against the greenhouse whitefly, trialeurodes vaporariorum and its parasitoid encarsia formosa[END_REF], so it can survive in the plantation in the absence of H. vastarix uredospores. Its mortality should hence be relatively low in a coffee plantation affected by coffee leaf rust. Based on our findings, it could then be released in the plantation at a low frequencies. However, because L. lecanii is a generalist, it may select other preys, such as green coffee scales [START_REF] Vandermeer | Qualitative dynamics of the coffee rust epidemic: educating intuition with theoretical ecology[END_REF], decreasing the effectiveness of the control. The Mycodiplosis larva is a specialist, that only feeds on H. vastarix uredospores [START_REF] Henk | Mycodiplosis (diptera) infestation of rust fungi is frequent, wide spread and possibly host specific[END_REF]. However, these larvae are eaten by the Azteca sericeasur ant [START_REF] Hajian-Forooshani | Impact of regionally distinct agroecosystem communities on the potential for autonomous control of the coffee leaf rust[END_REF][START_REF] Li | Disentangling endogenous versus exogenous pattern formation in spatial ecology: a case study of the ant azteca sericeasur in southern mexico[END_REF], so their mortality may be significant. In that case, according to our findings, they should be released fairly frequently. Based on field studies in Puerto Rico and Mexico, Hajian-Forooshani at al. suggested that the joint presence of both L. lecanii and Mycodiplosis may provide control for H. vastarix, with varying outcomes depending on the community composition. It would be interesting to extend our work and investigate intra-guild predation, including the dynamics of both predators in the coffee leaf rust model.

In this thesis, we did not make a difference between the coffee varieties arabica and robusta. The arabica variety represents 70% of the global production, while robusta accounts for less than 30%. Indeed arabica has a higher agronomic value, but it is more susceptible to CLR than robusta. Therefore, developing CLR resistant coffee varieties with a suitable agronomic value is a current challenge. Most resistant varieties are obtained by combining arabica and robusta varieties, some are listed in Subsection 1.2.3. Several genes providing resistance to strains of the fungus H. vastatrix were identified in several coffee varieties [START_REF] Ramiro | Identification of coffee wrky transcription factor genes and expression profiling in resistance responses to pathogens[END_REF][START_REF] Ramiro | Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner leucoptera coffeella[END_REF]. However, the fungus H. vastatrix, like many others, is adapting to these resistant varieties, necessitating the development of new resistant plants or management strategies that reduce or slow the resistance breakdown. Many modelling studies proposed control methods based on resistant plants, mixing or alternating resistant and susceptible plants in space and/or time to preserve the resistance efficiency on the long run [START_REF] Rimbaud | Models of plant resistance deployment[END_REF][START_REF] Fabre | An epievolutionary model for predicting the adaptation of spore-producing pathogens to quantitative resistance in heterogeneous environments[END_REF]. Indeed, the extensive use of resistant plants increases the selection pressure on virulent pathogens, that can overcome the plant resistance. However, reducing the use of resistant plants may face acceptability issues, as resistant plants provide better returns in the short term [START_REF] Nilusmas | Multi-seasonal modelling of plant-nematode interactions reveals efficient plant resistance deployment strategies[END_REF]. Moreover, strategies are better suited for annual crops. Replacing coffee plants is particularly challenging for farmers because it takes an average of four years to produce coffee. It is hence particularly interesting to gain some knowledge based on theoretical studies in the case of coffee leaf rust, to help the deployment of resistant varieties with mixtures of plants carrying different resistances the most promising approach for perennial plants..

A.1.1 Introduction

Coffee is one of the most widely consumed beverages in the world, with their consumption in 2019/20 being estimated at 168 million 60-kilogram bags [START_REF]World coffee consumption[END_REF]. Its cultivation is widespread in almost all the countries of the tropic and is an important factor of social stability as it supports no less than twenty-five million small producers and their families worldwide. However, due to the climate of these areas, multiple coffee diseases have persisted for several years. Among these pests, the Coffee Leaf Rust (CLR) is considered the most important leaf disease known to this day for being one of the most devastating pathogens. It is caused by the fungus Hemileia vastatrix, first discovered in Sri Lanka in 1869, and nowadays present in the majority of the coffeegrowing regions of the world. The pathogenic principle behind CLR is that it causes premature defoliation, which reduces the photosynthetic capacity of coffee leaves, inducing severe yield losses to the sector (up to 70%).

The dynamics of CLR is complex due to the multiple interactions between the plant host and the pathogen in the environment. A better understanding of such CLR dynamics can significantly improve the accuracy of the models, which can be then analyzed through theoretical studies and numerical simulations. Many efforts have been and are still being devoted to the modeling of the propagation of CLR [START_REF] Vandermeer | The dynamics of the coffee rust disease: an epidemiological approach using network theory[END_REF]. However, none of them take into account the impulsive effect in the dynamics. Considering discrete events in the model-such as harvesting-could allow for a more comprehensive representation of the plantation process, providing in turn a more precise framework for pest treatment. In this regard, several works have used ordinary impulsive differential equations for representing population dynamics in ecology and epidemiology in the recent years [START_REF] Mailleret | Global stability and optimisation of a general impulsive biological control model[END_REF][START_REF] Tamen | A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality[END_REF][START_REF] Tankam-Chedjou | Modelling and control of a banana soilborne pest in a multi-seasonal framework[END_REF][START_REF] Onofrio | Stability properties of pulse vaccination strategy in seir epidemic model[END_REF].

The capacity to accurately model the time evolution of coffee plantations allows not only to effectively predict trends in the process, but also to act on them. In this context, optimal control theory has proven to be a powerful tool for investigating potential control strategies in pest treatment [START_REF] Abbasi | Optimal control design of impulsive sqeiar epidemic models with application to covid-19[END_REF][START_REF] Wong | Optimal control of switched impulsive systems with time delay[END_REF][START_REF] Belbas | Optimal control of impulsive volterra equations with variable impulse times[END_REF]. Such approaches are commonly based on the well-known PMP (Pontryagin's maximum principle) [START_REF] Pontryagin | Mathematical theory of optimal processes[END_REF]: for a given cost function to maximize, this theory can provide necessary (and often sufficient) conditions for optimality of control strategies in systems of ordinary differential equations, partial differential equations and hybrid systems with given constraints [START_REF] Dmitruk | The hybrid maximum principle is a consequence of pontryagin maximum principle[END_REF].

The present contribution offers an impulsive perspective to the modeling of the propagation of CLR in a coffee plantation. We first formulate and analyze a non-controlled impulsive model for the propagation of CLR, for which we compute the periodic disease-free solution (PDFS) and a threshold parameter R. Then, we conduct an in-depth analysis of the global asymptotic stability of the PDFS when R < 1, and we perform numerical simulations to illustrate the theoretical results. Furthermore, we devise an extended model that considers a biological control for pest treatment, intended to maximize the coffee production while minimizing the damages undergone by the CLR. The latter objective is written as an Hybrid OCP (Optimal Control Problem), for which we propose an analogous problem in continuous form, which allows to obtain numerical solutions with Bocop [START_REF]BOCOP: an open source toolbox for optimal control[END_REF]. Later on, we provide a numerical solution of an optimal trajectory of the system for a relevant set of parameters and initial conditions. As a result, we show that a cost-effective inoculative biological control can successfully contain the damages on a coffee plantation.

Solving the system (A.12) yields X(t) = Φ(t) X(0), where Φ(0) = I with I being the identity matrix of dimension 3 and Φ(t) the fundamental matrix that satisfies dΦ(t) dt = AΦ(t). A calculation gives 

Φ(t) =    e -
k 1 = µ + d, k 2 = ν + µ U , α = k 1 + k 2 , β = (k 1 -k 2 ) 2 + 4γων, λ 1 = - α 2 - β 2 and λ 2 = - α 2 + β 2 .
(A.15)

Using the impulsive conditions, one obtains the impulsive matrix X(nT + ) = diag(ϕ S , ϕ S , ϕ U ) X(nT ). Finally, the solution of system (A.12) becomes X(t) = diag(ϕ S , ϕ I , ϕ U )Φ(t) X(0). is applied rather for an initial interval of the season, followed by a a decrease that takes the control to v ≡ 0. As a conclusion for the analyzed particular case, coffee producers should maximize the quantity of mycoparasitic (between given boundaries) roughly only during the beginning of the first year, while discontinuing the treatment in posterior seasons. Naturally, the instant at which the treatment should be turned off is strongly linked to the initial conditions, and so each case requires a specific analysis.

A.1.5 Conclusion

This paper presented a comprehensive, impulsive model for the transmission dynamics of the CLR within a coffee plantation. The model has been analyzed to gain insight into its qualitative dynamics. Using the Floquet theory, we have found that there exists a threshold parameter that determines the extinction and persistence of CLR in a coffee plantation. Later on, we presented a controlled model based on an inoculative biological control, for which we defined an OCP targeting the maximization of the net revenue of a coffee plantation. For such problem, we performed a numerical analysis for a relevant set of parameters and initial conditions, intended to provide guidance in how to control the damages caused by CLR. In a follow-up of this work, we will perform a more detailed pest treatment analysis by proposing different control strategies including the dynamics of the mycoparasite in the model.
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 12213 Figure 1.2: World distribution of coffee leaf rust. Source: Bionovelus, 2014.
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 1412 Figure 1.4: Life cycle of fungus H. vastatrix : (1) Dissemination, (2) germination, (3) intercellular mycelium, (4) yellow spots and (5) sporulation -adapted from [77].

H 6 :

 6 The model uses an ODE formalism.

H 7 :

 7 No control methods are implemented.
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Figure 3 . 1 :

 31 Figure 3.1: Diagram of the CLR propagation in the coffee plantation corresponding to system (3.1). State variables are: susceptible young and mature leaves (J S and M S ), latent young and mature leaves (J L and M L ), infectious young and mature leaves (J I and M I ), dry leaves (M R ), uredospores (U ) and berries (B).

Firstly

  , let us study the positivity of λ * . From equation (3.16) one has PhD Thesis 43 C. Djuikem CHAPTER 3. BIFURCATION ANALYSIS IN AN EPIDEMIOLOGICAL MODEL

Figure 3 . 2 :

 32 Figure 3.2: Bifurcation diagram and dynamics of susceptible young leaves for the forward bifurcation case. Subplot (a) presents the (R 0 , J S )-bifurcation diagram with stable (blue curve) and unstable (red curve) equilibria of system (3.1). Subplot (b) shows the dynamics of susceptible young leaves J S for parameter values R 0 = 0.8 (black curve) and R 0 = 4 (orange curve) corresponding to the dotted lines in subplot (a). Bifurcation parameter is γ 1 , R 0 = γ 1 /ζ and γ 2 = ηγ 1 , with ζ defined in equation (3.20) and η = 7/5. All remaining parameters are given in Table 3.1, leading to ζ = 1.185 spores/leaf.day and initial conditions defined by (3.24) with U 0 = 1000 spores.

Figure 3 . 3 :

 33 Figure 3.3: Persistence of CLR in the coffee plantation. Simulations of system (3.1) for R 0 = 4.218, using initial conditions (3.24) with U 0 = 10 (blue curves), U 0 = 100 (red curves), U 0 = 200 (yellow curves) and U (0) = 300 spores (purple curves): (a) susceptible leaves J S + M S , (b) infected leaves J L + J I + M L + M I + M R , (c) uredospores U and (d) berries B. All parameter values are given in Table3.1.

Figure 3 . 4 :

 34 Figure 3.4: CLR impact according to host development. Simulations of system (3.1) for R 0 = 4.218, using initial conditions (3.24) with U 0 = 300 : (a) susceptible young J S and mature M S leaves, (b) latent young J L and mature M L leaves, (c) infectious young J I , infectious M I and dry M R mature leaves, and (d) total young J = J S + J L + J I and mature M = M S + M L + M I + M R leaves. Leaves are represented in a log scale that preserves 0 ( log(1 + J S ) instead of J S ). All parameter values are given in Table 3.1.

Figure 3 . 5 :

 35 Figure 3.5: Bifurcation diagram and dynamics of susceptible young leaves for the backward bifurcation case. Subplot (a) presents the (R 0 , J S )-bifurcation diagram with stable (blue curve) and unstable (red curve) equilibria of system (3.1). Subplot (b) shows the dynamics of susceptible young leaves J S for parameter values R 0 = 0.3 (blue curves), R 0 = 0.8 (black curves), R 0 = 2 (purple curves) and R 0 = 4 (orange curves) corresponding to the dotted lines in subplot (a). The bifurcation parameter is γ 1 , R 0 = γ 1 /ζ and γ 2 = ηγ 1 , with ζ defined in equation (3.20).All remaining parameters are given in Table3.4, leading to ζ = 7.771 spores/leaf.day and initial conditions defined by (3.24) with U 0 = 100 (dashed curves) and U 0 = 1000 spores (solid curves).

Figure 3 . 6 :

 36 Figure 3.6: Extinction and persistence of CLR in the coffee plantation. Simulations of model (3.1) for R 0 = 0.8, using initial conditions (3.24) with U 0 = 10 (blue curves), U 0 = 100 (red curves), U 0 = 200 (yellow curves) and U (0) = 300 spores (purple curves): (a) susceptible leaves J S + M S , (b) infected leaves J L + J I + M L + M I + M R , (c) uredospores U and (d) berries B. All parameter values are given in Table3.4 except γ 1 = 6.2171 spores/leaf.day.
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 3738 Figure 3.7: Destruction of the plantation by CLR. Simulations of model (3.1) for R 0 = 4, using initial conditions (3.24) with U 0 = 10 (blue curves), U 0 = 100 (red curves), U 0 = 200 (yellow curves) and U (0) = 300 spores (purple curves): (a) susceptible leaves J S + M S , (b) infected leaves J L + J I + M L + M I + M R , (c) uredospores U and (d) berries B. All parameter values are given in Table 3.4 except γ 1 = 31.0856 spores/leaf.day.

Figure 4 . 1 :

 41 Figure 4.1: Diagram of the CLR propagation model in the coffee plantation corresponding to system (4.1). State variables are: healthy branches (S), latent branches (L), infectious branches (I), leafless branches (J), Uredospores (U) and berries (B). ε∆U corresponds to uredospore diffusion.

Lemma 4. 1 .

 1 Any solution(S(t, x), L(t, x), I(t, x), J(t, x), U (t, x))∈ C([0, T max ) × Ω) ∩ C 1,2 ((0, T max ) × Ω)5 of subsystems (4.5) is positive over [0, T max ), the largest interval over which the solution of subsystems (4.5) exists.

CHAPTER 4 .

 4 MODELLING CLR DYNAMICS TO CONTROL ITS SPREAD Proof of Lemma 4.1.

Lemma 4 . 3 (

 43 [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Let ε be a positive real number. Let f ∈ L 2 (Ω) and g the trace on ∂Ω of an element of H 1 (Ω). Assume that Ω is a bounded subset of R N , N = 1, 2 with smooth boundary and consider the following stationary boundary value problem: u -ε∆ u = f a.e. on Ω, ∂u ∂η = g a.e. on ∂Ω. (4.13)

∂u 5 ∂ν

 5 = 0 on ∂Ω.

  derived in (4.38) in the proof of the local stability of the disease free equilibrium. It corresponds to the basic reproduction number in the dry (p = D) or rainy (p = R) season, since (i) γp (ν+µ U ) represents the mean number of new Uredospores generated by a single infectious branch and (ii) νωp (θp+µp) θp (αp+µp+d) measures the average number of new infectious branches generated by a single uredospore introduced in a completely susceptible field. We prove the following results for the stability of equilibria of subsystems (4.5). Lemma 4.5.

1

 1 

( 4 . 22 )

 422 Solving the above system (4.22) yields:

1

 1 ensures that c 1 > 0. Replacing the above expressions of a 1 , b 1 , c 1 and d 1 into equation (4.21), yields: V1 -c 1 µ p J + d 1 ε∆U. (4.23)

  of infectious branches at the endemic equilibrium I * R and I * D . The former will indicate if and when CLR can persist within the coffee plantation, and the latter the intensity of the infection.

Figure 4 . 2 : 95 .

 4295 Figure 4.2: Spatio-temporal simulation of system (4.1,4.4,4.30) when γ D = γ R = 1.5, which leads to R (D) 0 = 0.52 and R (R) 0 = 0.95. All other parameter values are given in Table 4.1. Subplots represent healthy branches S, latent branches L, infectious branches I, leafless branches J, Uredospores U and berries B.

Figure 4

 4 .2 presents the spatio-temporal evolution of system (4.1) with these parameters in domain Ω during time interval [0, 1500] days. Uredospores are initially present in the middle of the Ω interval, which induces local CLR infection during the first year. Subsequently, the infection dies out, as L, I, J and U go to 0. The S and B variables regain their healthy levels, corresponding to the stationary periodic disease-free solution. This illustrates Theorem 4.2: since R

Figure 4 . 3 := 2 . 77 .

 43277 Figure 4.3: Spatio-temporal simulation of system (4.1,4.4,4.30) when γ D = γ R = 8, which leads to R (R) 0 = 5.09 and R (D) 0 = 2.77. All other parameter values are given in Table 4.1. Subplots represent healthy branches S, latent branches L, infectious branches I, leafless branches J, Uredospores U and berries B.

Figure 4 . 4 :

 44 Figure 4.4: Temporal simulation, for three values of x, of system (4.1,4.4,4.30) when γ D = γ R = 8, which leads to R (R) 0 = 5.09 and R (D) 0

  leading to the disease extinction and no yield loss.

Figure 4 . 5 :

 45 Figure 4.5: Temporal simulations, for various efficiencies q of the biocontrol mycoparasite, of controlled system (4.31,4.4,4.30) when γ D = γ R = 8. All other parameter values are given in Table4.1. Subplots represent healthy branches S, latent branches L, infectious branches I, leafless branches J, Uredospores U and berries B, these variables being integrated over domain Ω.
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  Original impulsive model of multi-seasonal fungal disease dynamics • Explicit dynamics of hyperparasites, acting as predators of spores • Hyperparasite-based biocontrol can drastically reduce disease impact on crop production • Hyperparasite release frequency modulates the control efficiency 5.1. INTRODUCTION

Figure 5 . 1 :

 51 Figure 5.1: Diagram of the CLR multi-seasonal model. Model equations are given in system (5.1). State variables are: healthy leaves (S), infectious leaves (I), uredospores (U), flowers (F) and berries (B). T corresponds to the length of rainy season and n the year number.

CHAPTER 5 .

 5 Figure 5.1, with the continuous dynamics during the rainy season and switching event for the dry season. Using flowchart in Figure 5.1, we can write the following impulsive differential system: IMPULSIVE MODELLING OF RUST AND BIOCONTROL Rainy season for t = nT : 

(5. 2 )

 2 From equation (5.2), and using the non-negativity of variable I, we obtain Λ -(µ + d)N ≤ Ṅ ≤ Λ -µN and N (nT + ) ≤ ϕ S N (nT ). It follows that min(Λ/(µ + d), N (0)) ≤ N (t) ≤ max(Λ/µ, N (0)) = Γ N , which implies that S, I ≤ Γ N . For Λ/(µ + d) < N (0) < Λ/µ,replacing S and I by this upper bound value in the uredospore and flower dynamics, we obtain the following PhD Thesis 94 C. Djuikem

Figure 5 . 2 :

 52 Figure 5.2: Impact of CLR on the production of coffee berries. The plots present the trajectories of impulsive differential system (5.6) when the PDFS is stable (dashed curve, γ = 1.6 spores/leaf.day ⇒ R = 0.27 < 1) and when the PDFS is unstable (solid curve, default value γ = 2 spores/leaf.day ⇒ R = 2.53 > 1). Subplots represent: (a) healthy leaves S, (b) infectious leaves I, (c) uredospores U and (d) berries B. Remaining parameter values are given in Table 5.1 and initial conditions by (5.21).

Figure 5 . 3 :

 53 Figure 5.3: Stability regions of periodic disease free solutions as functions of model parameters. Blue curves represent the threshold R C = 1 separating the stable and unstable regions of the model with predator (5.22), for different values of parameter pair (Λ P , a) in subplot (a) and (ν, γ) in subplot (b); moreover, the black curve R = 1 in subplot (b) separates the stable and unstable regions of the model without predator (5.1). The blue dot in subplot (a) corresponds to the (Λ P , a) values used for the blue curve in subplot (b). Similarly, the grey dot in subplot (b) corresponds to the default (ν, γ) values used for the blue curve in subplot (a). Remaining parameter values are given in Table 5.1.

Figure 5 . 4 :

 54 Figure 5.4: Impact of biocontrol on the system dynamics. 6-year simulations of model (5.1) without predator (black curve) and model (5.22) with predator (blue curve), using initial conditions (5.28): (a) healthy leaves S; (b) infected leaves I; (c) uredospores U and (d) predator (hyperparasites) P . All parameter values are given in Table 5.1 and correspond to R = 2.53 > 1.

,

  in particular for j = m -1, that isP (m -1)T m + = P 0 + e -µ P (m-1)T m + Λ P m 1 -e -µ P (m-1)T m 1 -e -µ P T m .

P 0 - 1 j=0P 0 ϕ( 1 -ϕ( 1 -ϕ( 1 -

 010111 t)dt. Replacing P T m,j (t) by its expression in equation (5.33), we obtain + e -µ P jT m + Λ P m 1 -e -µ P jT m 1 -e -µ P T m (j+1)T m jT m e -µ P (t-jT m ) (t)dt; = m+ e -µ P jT m + Λ P m 1 -e -µ P jT m 1 -e -µ P T m 1 -e -µ P T m µ P .Replacing P (0 + ) by its expression in equation (5.34), we obtain g(m) = P e -µ P T m -e -µ P T + 1 -e -µ P T m ϕ P e -µ P T ) 1 -e -µ P e -µ P T m -e -µ P T + 1 -e -µ P T m ϕ P e -µ P T ) e -µ P jT m + 1 -e -µ P jT m P e -µ P T m -e -µ P T + 1 -e -µ P T m ϕ P e -µ P T )  1 -e -µ P T 1 -e -µ P T m +m -1 -e -µ P T 1 -e -µ P T m , = Λ P mµ P (ϕ P -1)e -µ P T m(1 -ϕ P e -µ P T )1 -e -µ P T1 -e -µ P T m + m .

  (1 -ϕ P )(1 -e -µ P T ) µ P (1 -ϕ P e -µ P T ) .

Figure 5 . 5 :Figure 5 . 6 :

 5556 Figure 5.5: Impact of the predator mortality and its release frequency on its dynamics without CLR. The plots present the predator dynamics of the m-cPDFS (multiple release controlled periodic disease free solution) of system (5.29) for: (a) the default low mortality rate µ P = 0.003/day; and (b) a high mortality rate µ P = 0.1/day. Various release frequencies are plotted: m = 1 (blue curve), m = 2 (brown curve), m = 5 (magenta curve) and m = 50 (light blue curve) releases per year. Initial condition is P (0 + ) given in(5.34), so the solutions are periodic. The yearly released quantity is Λ P = 3000 predators. Remaining parameter values are given in Table5.1.

Figure 5 . 7 :

 57 Figure 5.7: Impact of release frequency on the stability for high predator mortality rate µ P = 0.1/day. Subplot (a) presents the stable and unstable regions of the m-cPDFS of system (5.29) according to parameter pair (Λ P , a). The regions separated by R c,m = 1 for m = 1 (blue curve) or m = 5 (magenta curve) releases/year. Subplot (b) shows the dynamics of infected leaves I for parameter values (Λ P = 30000 predators, a = 1.5 spores/predator.day) corresponding to the purple dot in subplot (a). Remaining parameter values are given in Table5.1 and initial conditions by(5.36) 

Figure 5 . 8 :

 58 Figure 5.8: Impact of release frequency on the transient dynamics with low predator mortality. Subplot (a) presents the stable and unstable regions of the m-cPDFS of system (5.29) according to parameter pair (Λ P , a). The regions are separated by R c,m = 1 for m = 1 (blue curve), m = 2 (brown curve), m = 5 (magenta curve) or m = 50 (light blue curve) releases/year. Subplots (b) and (c) show the dynamics of infected leaves I and berries B for parameter values (Λ P = 3000 predators, a = 0.8 spores/predator.day) corresponding to the purple dot in subplot (a).Remaining parameter values are given in Table5.1 and initial conditions by(5.36).

Case 1 -

 1 Less frequent is faster (low mortality rate µ P = 0.003/day) Just as Figure5.6(a), subplot (a) of Figure5.8 displays the instability (below) and stability (above) regions of the m-cPDFS of controlled system (5.29). These regions are separated by R c,1 = 1 for m = 1 release/year (blue curve), R c,2 = 1 for m = 2 releases/year (brown curve), R c,5 = 1 for m = 5 releases/year (magenta curve) and R c,50 = 1 for m = 50 releases/year (light blue curve). Subplot (a) confirms that for low hyperparasite mortality, the best strategy for controlling CLR is to release the hyperparasites once a year at the beginning of the season.

Figure 5 .

 5 Figure5.8 also shows the temporal evolution of infected leaves (subplot (b)) and berries (subplot (c)), using initial conditions(5.36) and parameter values Λ P = 3000 predators and a = 0.8 spores/predator.day. These parameter values, which correspond to the purple dot in subplot (a), ensure that the m-CPDFS is stable for all four values of the release frequency m. In subplot (b), we can observe that the disease is driven to extinction for m = 1 (blue curve). For m = 5 (magenta curve) and m = 50 (light blue curve), the number of infected leaves after six years is still notably greater than zero (less notably so for m = 2, brown curve). However, if we increase the number of years, the extinction will be observed for all values of m.

Figure 5 . 9 :

 59 Figure 5.9: Impact of release frequency on the transient dynamics with high predator mortality. Subplot (a) presents the stable and unstable regions of the m-cPDFS of system (5.29) according to parameter pair (Λ P , a). The regions are separated by R c,m = 1 for m = 1 (blue curve), m = 2 (brown curve), m = 5 (magenta curve) or m = 50 (light blue curve) releases/year. Subplots (b) and (c) show the dynamics of infected leaves I and berries B for parameter values (Λ P = 30000 predators, a = 2.5 spores/predator.day) corresponding to the purple dot in subplot (a). Remaining parameter values are given in Table5.1 and initial conditions by(5.36).
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 16253 Figure A.2: Trajectories of system (A.1) for different initial condition, when γ = 2.1 (so that R 0 = 5.7 > 1). All other parameter values are given in Table A.1.
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  Cameroon went through an epidemic from 1930 to 1935, Brazil in 1970, Costa Rica in 1989, Nicaragua in 1995, El Salvador from 2002 to 2003, Colombia from 2008 to 2013, Peru from 2008 to 2011, and Ecuador in 2013.

Table 3 .

 3 1: Description and values of parameters for system(3.1) 

	Symbol Biological meaning	Value	Source
	r 0	Production rate of J S	2 /day	Assumed
	r 1	Competition rate	0.02 /leaf.day	Assumed
	ε	Infection-related production ratio 0.06	Assumed
	ω 1	Germination rate on J S	0.055 leaves/spore	ref 1
	ω 2	Germination rate on M S	0.065 leaves/spore	ref 1
	γ 1	Sporulation rate by J I	5 spores/leaf.day	ref 2
	γ 2	Sporulation rate by M I	7 spores/leaf.day	ref 2
	ν	Deposition rate	0.09 /day	ref 2
	β	Maturation rate	0.05 /day	Assumed
	θ	1 / duration of latency period	0.033 /day	ref 3
	α	1 / duration of sporulation period 0.066 /day	Assumed
	µ J	Mortality rate of J	0.0054 /day	Assumed
	µ M	Mortality rate of M	0.0034 /day	Assumed
	µ U	Mortality rate of U	0.035 /day	ref 4
	d	Extra mortality rate of M R	0.056 /day	Assumed
	δ S	Berry production rate by M S	0.7 berries/leaf.day	ref 5
	δ L	Berry production rate by M L	0.5 berries/leaf.day	ref 5
	δ I	Berry production rate by M I	0.3 berries/leaf.day	ref 5
	δ R	Berry production rate by M R	0.05 berries/leaf.day ref 5
	µ B	Mortality rate of B	0.0021 /day	Assumed
		ref		

1 : [131], ref 2 : [19], ref 3 : [172], ref 4 : [180] and ref 5 : [29].

  3 : Matrix G 22 (x S , x I ) is Metzler and irreducible for any given x ∈ Ω.H 4 : There exists an upper-bound matrix Ĝ22 for M = {G 22 (x) ∈ M 6 (R)/x ∈ Ω} with the property that either Ĝ22 / ∈ M or if Ĝ22 ∈ M, (i.e., Ĝ22 = max Ω M), then for any x ∈ Ω

.14) System (3.14) has two equilibria: a trivial which is unstable and the DFE x 1 S = (J 1 S , M 1 S ), (where the values of J 1 S and M 1 S are giving above and exist under the condition (3.11)) which is globally asymptotically stable.

H

Table 3 .

 3 using the Descartes sign rules for λ-polynomial(3.19), the number of positive solutions is given in Table3.2. 2: Descartes rule for λ-polynomial(3.19).

	m 2 m 1 m 0	R 0	Number of positive solutions
	+		

Table 3 .

 3 3: Force of infection λ and susceptible young leaves J S at equilibrium using parameter values in Table3.1.

	R 0	Equilibrium values for: λ J S

Table 3 .

 3 4: Parameter values of system (3.1) chosen to obtain a backward bifurcation.

	Symbol Value	Symbol Value
	r 0	0.7094 /day	θ	0.2336 /day
	r 1	0.0065 /day	α	0.8261 /day
	ω 1	0.5092 leaves/spore	µ J	0.0114 /day
	ω 2	0.4709 leaves/spore	µ M	0.0236 /day
	η	0.0396	µ U	0.0931 /day
	ν	0.6269 /day	d	0.8961 /day
	β	0.0555 /day	ε	0.9953 /day

Table 3

 3 .4 except µ M = 0.1236/day leading to ζ = 3.676 spores/leaf.day. Subplot (b) shows the backward bifurcation using parameter values in Table 3.1 except d = 0.956/day and η = 0.3/20 spores/leaf.day leading to ζ = 59.306 spores/leaf.day.

in susceptible leaves.
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Table 4 .

 4 

	Symbol Biological meaning	Value Dry season (D) Rainy season (R)	Source
	Λ p	Recruitment rate	6 day -1	8 day -1	Assumed
	ω p	Inoculum effectiveness	4.5%	5.5%	[131]
	δS	Production rate of berries by S	0	0.7 day -1	[71, 29]
	δL	Production rate of berries by L	0	0.5 day -1	[71, 29]
	δI	Production rate of berries by I	0	0.3 day -1	[71, 29]
	δJ	Production rate of berries by J	0	0.05 day -1	[71, 29]
	1/θ p	Latency period duration	30 days	21 days	[172]
	µ p	Mortality of mature branches	0.0134 day -1	0.0034 day -1	Assumed
	1/α p	Sporulation period duration	150 days		[172]
	γ p	Production rate of Uredospores	∈ [0, 20] day -1	[19]
	µ B	Mortality rate of berries	0.0021 day -1	Assumed
	d	Mortality rate due to the disease	0.056 day -1	Assumed
	ε	Diffusion coefficient	5000 m 2 day -1	[23]
	ν	Deposition rate	0.09 day -1	[19]
	µ U	Mortality rate of Uredospores	0.015 day -1	[92]

1: Description of parameters for system (4.1) -numerical values are used in section 4.4.

  Theorem 4.1. Using Lemma 4.1, Lemma 4.2 and Lemma 4.4 we conclude the existence and uniqueness of bounded positive solution of subsystems (4.5) defined on [0, ∞) × Ω. we can conclude the proof of this theorem

Table 5 .

 5 1 and initial conditions by (5.21).
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Table 5 .

 5 2: Berry production at the end of each season, for different yearly release frequencies and high predator mortality. Production values correspond to subplot (c) of Figure5.9. The optimal production for each year is enhanced in bold.

			Releases per year	
		m = 1 m = 2 m = 5 m = 50
	year 1	5845	5554	5131	4717
	year 2	7906	7756	7600	7290
	year 3	8663	8866	8985	8897
	year 4	8987	9399	9568	9553
	year 5	9159	9657	9793	9796
	year 6	9270	9785	9876	9880
	5.4.2.3 Summary				

  µt ψ 12 (t) ψ 13 (t) 0ψ 22 (t) ψ 23 (t) 0 ψ 32 (t) ψ 33 (t) -k 2 )e λ 1 t + (β -k 1 + k 2 )e λ 2 t , ψ 23 (t) = νω β -e λ 1 t + e λ 2 t , ψ 32 (t) = γ β -e λ 1 t + e λ 2 t , -k 1 + k 2 )e λ 1 t + (β + k 1 -k 2 )e λ 2 t .

		
		  ,	(A.13)
	where	
	              	ψ 22 (t) = (β + k 1 ψ 33 (t) = 1 2β 1 2β (β (A.14)
	with	
		   
		   

Backcrossing aims at transferring one or two major genes.
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systems:

U (nT + ) = ϕ U U (nT );

(5.3)

F (nT + ) = 0.

(5.4)

Identifying the values where the upper bounds of (5.3) and (5.4) are equal to 0, one has U (t) ≤ max( γΛ µ(ν+µ U ) , U (0)) and F (t) ≤ max( Λ(δ S +δ I ) µ(θ+µ F ) , F (0)). Replace the upper bound of F in the berry dynamics, we obtain

B(nT + ) = 0.

(5.5)

Identifying the values where the upper bounds of (5.5) is equal to 0, one has B(t) ≤ max( Λθ(δ S +δ I ) µ(θ+µ F )µ B , B(0)). Hence, we have shown the boundedness of S, I, U , F and B. Also the region given by

is positively invariant for impulsive system (5.1).

The solutions of system (5.1) are piecewise continuous functions X : R + → R 4 + . The nonnull constant parameter Λ, allows to the variable N remain not close to zero and the smooth properties of the right side of system (5.1) guarantee the existence and uniqueness of positive solutions of system (5.1).

Since the berry state variables F and B is not present in the other equations of system (5.1), we do no need to consider F and B in the rest of the mathematical analysis. We then analyse this new system: (5.6)

Periodic disease free solution and its stability

The periodic disease free solution (PDFS) occurs when I = 0 and U = 0. Replacing these values in system (5.6), we obtain Ṡ = Λ -µS, t = nT ; S(nT + ) = ϕ S S(nT ).

Solving the above equation for t ∈ (nT, (n + 1)T ], yields

This implies that for t = (n + 1)T , one has

Using the impulsive condition S((n + 1)T + ) = ϕ S S((n + 1)T ) yields

(5.8)

The fixed point of equation (5.8) is given by S(nT + ) = Λϕ S (1 -e -µT ) µ(1 -ϕ S e -µT ) > 0.

(5.9)

Substituting the value of S(nT + ) into equation (5.7), for t ∈ (nT, (n + 1)T ], the solution is

e µT e µT -ϕ S e -µ(t-nT ) .

(5.10)

Finally, the PDFS is X T (t)=(S T (t), 0, 0), where S T (t) is defined above.

For the stability, we first study the local stability of the PDFS X T (t) using small amplitude perturbation methods. For that, let us denote X(t) = X(t) -X T (t), where X(t) = (S(t), I(t), U (t)) T and X(t) is understood to be small amplitude perturbations. Substituting the expression of X(t) in system (5.6) gives

( 5.11) where Ñ (t) = S(t) + Ĩ(t) and N T (t) = S T (t).

The PDFS X T (t) is locally asymptotically stable if the Floquet multipliers of the monodromy matrix M stay inside the unit circle, which is equivalent to the Floquet multipliers of sub-matrix M 1 staying inside the unit circle. To obtain this result, the submonodromy matrix M 1 needs to satisfy the following Jury conditions [START_REF] Wang | Mathematical modeling I-preliminary[END_REF]:

where

Using the hypothesis ϕ U → 0, conditions (5.16) hold if and only if R = ϕ I ψ 22 (T ) < 1. Finally, we obtain the following Lemma for local stability.

Lemma 5.1. The PDFS X T (t) is locally asymptotically stable provided that R < 1 and unstable else, where

(5.17)

Moreover, the following result about the global asymptotic stability of the PDFS X T (t) of system (5.6) holds.

Theorem 5.1. The PDFS X T (t) of system = (5.6) is globally asymptotically stable if R < 1 and unstable else.

Proof of Theorem 5.1. Let us prove the global attractivity of the PDFS X T (t). Consider the following subsystem:

(5.18)

The trivial solution of system (5.18) is (0, 0) and the system is cooperative because ∂I/∂U = ωνS N > 0, ∂U/∂I = γ > 0. As S(t)/N (t) < 1, one has that system (5.18) is upper bounded by the following cooperative system:

(5.19) Applying Kamke's theorem [START_REF] Coppel | Stability and asymptotic behavior of differential equations[END_REF], one has that I(t) ≤ I 1 (t), U (t) ≤ U 1 (t) when I 1 (0) = I(0) and U 1 (0) = U (0). When R < 1, using the previous result of local stability, (I 1 (t), U 1 (t)) → (0 + , 0 + ). Then, one has -In ( [START_REF] Clifford | Coffee: botany, biochemistry and production of beans and beverage[END_REF], page 28), on 100 flowers 65 set fruit after pollination. This implies e -180µ F = 0.65, computation gives µ F = 2.4 × 10 -3 /day. We suppose that the berries have the same mortality rate, then µ B = 2.4 × 10 -3 /day.

In Theorem 5.1, we show that when the spectral radius R is greater than one, the periodic disease free solution (PDFS) is unstable. In this case, CLR can establish itself, which is confirmed by the solid curve of Figure 5.2, drawn for R = 2.53 > 1.

The dashed curve of Figure 5.2, drawn for R = 0.27 < 1, shows that, for the initial conditions considered, the number of infected leaves and uredospores converges towards zero. The system then converges to the PDFS. We can observe in subplot (a) that, once the stationary regime is established, there are considerably less healthy leaves with endemic CLR (solid curve) than when CLR disappears (dashed curve). The same phenomenon can be observed in subplot (d), which represents the berry trajectories. At the end of the 6 th year, the number of berries is 9844 without disease (dashed curve) and 4290 with disease (solid curve), indicating a yield loss larger than 56% due to CLR.

Biocontrol of CLR using hyperparasites

To limit the impact of CLR on coffee berry production, we now introduce a biocontrol agent in the model, more specifically an hyperparasite such as Mycodiplosis, which consumes uredospores of H. vastatrix. The new model is then an extension of system (5.6), to which we add an equation for the hyperparasites (or predators) P , that prey on the uredospores with consumption rate a, biomass transformation rate e and mortality rate µ P . A proportion ϕ P survives the dry season. Our aim is to identify how many and when to release hyperparasites in order to control CLR. In this section, we assume that a quantity Λ P of hyperparasites is released once a year, at the start of the production season. This translates into a Λ P jump in the hyperparasite population at each switching moment. The model with biocontrol is then given by Rainy season for t = nT :

Dry season:

(5.22) System (5.22) has the same properties as system (5.6) for the existence, uniqueness, nonnegativity and boundedness of solutions. We pursue the mathematical analysis and simulations of system (5.22) without the Ḟ and Ḃ equations, since berry variable B is not present in the other equations.

Controlled periodic disease free solution and its stability

The controlled periodic disease free solution (cPDFS) occurs when I = 0 and U = 0. The healthy leaves dynamics are unchanged compared to the PDFS and still satisfy (5.10) while the hyperparasite dynamics are Ṗ = -µ P P, t = nT ; P (nT + ) = ϕ P P (nT ) + Λ P , t = nT.

(5.23) Solving equation (5.23) yields

Combined, the above equation and the impulsive condition give P ((n + 1)T + ) = ϕ P P (nT + )e -µ P T + Λ P .

Then, solving for the fixed point of the above discrete equation and using the dynamics of hyperparasites at the cPDFS yields P T (t) = Λ P 1 -ϕ P e -µpT e -µ P (t-nT ) .

(5.24)

Thus, the cPDFS for system (5.22) is Y T (t) = (S T (t), 0, 0, P T (t)), where S T (t) and P T (t) are given in equation (5.10) and (5.24), respectively. We have the following result for the global stability of cPDFS.

Lemma 5.2. The cPDFS Y T (t) = (S T (t), 0, 0, P T (t)) of system (5.22) is globally asymptotically stable when R < 1.

where Y (t) = (S(t), I(t), U (t), P (t)) and Ỹ (t) is understood as to be small amplitude perturbations. Substituting the expression of Ỹ (t) in the system (5.6) gives

(5.25)

where Ñ (t) = S(t) + Ĩ(t) and N T (t) = S T (t). The linearisation of system (5.25) around 0 R 4 is

where

where Φ G (0) = I. Re-ordering the variables as follows, ( S, P , Ĩ, Ũ ), we note that the system is block-triangular. The stability is then determined by considering separately ( S, P ) and the pair ( Ĩ, Ũ ). The Floquet multipliers for the first two are ϕ S e -µT and ϕ P e -µ P T , which are smaller than one. With this in mind, the stability of system (5.26) reduces to the stability of the following sub-system A.1 Optimal control of the impulsive model of the propagation of the coffee leaf rust

Abstract: This paper presents the dynamics and optimal control of the coffee leaf rust (CLR) over the coffee plantation with impulsive effect, which represents the non production period of coffee. Our aim is to estimate the damage cause by the CLR and the optimal control the propagation of the CLR during many years using the biological control. We show the existence of solution and prove using Floquet theory that there exist the threshold calling basic reproduction number, that determine the stability of solutions. Numerical simulations are performed to illustrate the theoretical results. This paper deals with the problem of modelling and optimal control of the coffee leaf rust (CLR) in a coffee plantation. We first formulate and analyze a mathematical model for the propagation of CLR with impulsive effect, which represents the non-production period of coffee. Then, the CLR control is formulated and solved as an optimal control, showing how a biological control strategy can be implemented in a coffee plantation to reduce the damage caused by CLR, therefore increasing the coffee production. Numerical simulations are performed to illustrate and validate the theoretical results.

Keywords: Epidemiological modeling; Impulsive system; Floquet theory; Stability; Optimal control, Hemileia vastatrix.

A.1.2 The model and its basic properties

Mathematical Modeling of coffee leaf rust

In this section, we formulate a mathematical model for the propagation of the CLR in the coffee plantation. To do so, we consider the dynamics of fungus during the production season-which corresponds to the rainy season for some countries-through ordinary differential equations; and during the non-production period-which is the dry season for some countries-represented by the impulsive effect. More precisely, we consider that in a coffee plantation we can find: susceptible branches S, infected branches I and urediniospores U . During the production period with length T > 0, the recruitment of healthy branches occurs at rate Λ. Urediniospores are deposited on leaves of all branches at rate ν, and a fraction S/N lands on susceptible branches. When the conditions are favorable, urediniospores germinate with efficiency rate ω and the susceptible branches becomes infected branches. All branches undergo natural mortality with baseline rate µ and the infected branches have an additional mortality rate d due to the disease. Urediniospores are produced by infected branches at rate γ and lose their ability to infect coffee branches at constant rate µ U . Susceptible and infected branches produce the berries with constant rate δ S and δ I , respectively. At the end of the production period, harvest occurs instantaneously and we consider that the dry season or non-production period corresponds to the time when the number of branches at the end of the production period switches, this switch due to the fact that harvesting reduces the number of susceptible branches, infected branches and urediniospores with rates ϕ S , ϕ I and ϕ U respectively. Using the fact that urediniospores lose their ability to infect fastly, we assume that ϕ U is very close to 0. The model is given by the following hybrid system:

where S(t), I(t), U (t) and N (t) = S(t) + I(t) represent the number of susceptible branches, infected branches, urediniospores and total branches, respectively at time t. With 0 < ϕ I ≤ ϕ S < 1 and ϕ U > 0 but close to 0.

Table A.1 summarizes the biological meaning and the values of parameter of model (A.1).

A.1.2.2 Basic properties of the model

) the map given by the right-hand side of system (A.1), and consider the initial conditions (S(0), I(0), U (0), B(0)) ∈ R The solutions of system (A.1) are positives. Indeed, suppose that one of the variables, that we will denote x, is equal to 0 at some instant, with all the others being non-negative. A quick analysis shows that ẋ ≥ 0 cannot become negative. This implies that x(t) ≥ 0. Then, the solutions are positive. The solutions of system (A.1) are piecewise continuous functions X : R + → R 4 + , X is continuous on (nT, (n + 1)T ], n ∈ N and X(nT + ) = lim t→nT + X(t). Clearly, the smooth properties of f guarantee the existence and uniqueness of positive solutions of system (A.1). By adding the first and second equations in system (A.1), we see that the dynamics of total branches satisfies

From the equation (A.3), and using the positivity of the variables of the model, we have Ṅ ≤ Λ -µN and N (nT + ) ≤ ϕ S N (nT ). It follows that 0 ≤ lim t→∞ N (t) ≤ Λ µ . Then, the following region

is positively invariant by system (A.1).

A.1.3 Mathematical analysis

Herein, we present the mathematical analysis of system (A.1). Since the state variable of berries B is not present in the other equations of system (A.1), we do not consider it in the mathematical analysis.

A.1.3.1 Periodic desease free solution and its stability

The periodic disease free solution (PDFS) occurs when I = 0 and U = 0. Replacing these values in the impulsive differential equation (IDE) (A.1), we obtain

The resolution of the first equation of system (A.5) gives:

For t ∈ (nT, (n + 1)T ]

This implies that

Using the impulsive condition S((n + 1)T + ) = ϕ S S((n + 1)T ) yields

The fixed point of the equation (A.8) is given by

Substituting the value of S(nT ) into the equation (A.6), for t ∈ (nT, (n + 1)T ] one has

Finally, the PDFS is X P (t)=(S P (t), 0, 0), where S P (t) is defined as in equation (A.10).

A.1.3.2 Stability of the PDFS

We first study the local stability of X P (t) using small amplitude pertubation methods. Let us denote X(t) = X(t)-X P (t) where X(t) = (S(t), I(t), U (t)) T and X(t) is understood to be small amplitude pertubations. Substituting the expression of X(t) in the system (A.1) gives

where Ñ (t) = S(t) + Ĩ(t) and N P (t) = S P (t). The linearization of system (A.11) gives

where

where

The conditions (A. [START_REF] Bock | Dispersal of uredospores of Hemileia vastatrix under field conditions[END_REF]) hold if ϕ U → 0 and ϕ I ψ 22 (T ) < 1. Finally, one has the following lemmama.

Lemma A.1. The PDFS X P (t) is locally asympototically stable provided that R < 1 where

We have the following result about the global stability of the PDFS of the system (A.1).

Theorem A.1. The PDFS X P (t) of the system (A.1) is globally asympototically stable in region G provided that R < 1 .

Proof of Theorem A.1. We will prove the global attractivity of the PDFS X P (t). Consider the subsystem following:

The trivial solution of system (A. 22) is (0, 0) and the solution (S(t), I(t), U (t)) ∈ G. The system (A.22) is cooperative because ( ∂I ∂U = ωνS N > 0, ∂U ∂I = γ > 0) and using the fact that S(t) N (t) < 1, one has the following cooperative system:

Applying the Kamke's theorem [START_REF] Coppel | Stability and asymptotic behavior of differential equations[END_REF], one has that I(t) ≤ I 1 (t), U (t) ≤ U 1 (t). The asymptotically, system (A.23) behaves like the system (A.22) [ [START_REF] Hale | Ordinary differential equations[END_REF]], when R 0 < 1. Then, one has

Since U → 0 + , for any arbitrary positive ε U there exists a t 0 > 0 such that for t ≥ t 0 , U (t) ≤ ε U .

Using the positivity of the solutions and the fact that S(t)/N (t) ≤ 1 into the first equation of system (A.1), one has :

Applying the comparison theorem on the above differential inequalities, one has S 1 (t) ≤ S(t) ≤ S 2 (t), where for t ∈]nT ; (n + 1)T ], with S 1 and S 2 the solutions of the following impulsive differential equations:

One can observe that S 2 (t) → S P (t) if ε U → 0 and S 2 (t) → S P (t), which implies that S(t) → S P (t) asympototically. In the orther words, independently from the initial value (S 0 , I 0 , U 0 ) ∈ G, one has that (S(t), I(t), U (t)) → (S P (t), 0, 0)

This concludes the proof.

Numerical results for the global stability of the PDFS and persistence are present in Figure A.1 and A.2 respectively. To do so, we consider the initial conditions (S 0 , U 0 ) ∈ [(500, 200), (1000, 400), (1500, 600), (2000, 800)], I 0 = 0 and B 0 = 0. Figure A.1 shows that, for different initial conditions, the number of infected branches and urediniospores converge towards zero, which is the state free disease. Additionally, we can observe that the trajectories of susceptible branches and berries becomes stationary after three seasons, as proved in Theorem A.1. Although the persistence has not be proved analytically, numerical results in Figure A.2 tend to show that the persistence of the CLR appears for system (A.1) when R 0 = 5.7 > 1. From Figures A.1 and A.2 one can deduce that, during the disease free period (when R 0 < 1), the number of berries is 378910, during the persistence of disease state (when R 0 > 1) the number of berries is 117698. Then, one can conclude that the yield lost due to the CLR is estimate at 68, 93%. Thus, one can ask the following question, how to reduce the damage caused by the CLR in coffee plantation.

A.1.4 Optimal control

A.1.4.1 Optimal problem

Many different methods are commonly used in CLR control, with varying levels of environmental impact. Herein, we choose the biological control, because it is a potentially powerful tool for managing coffee leaf rust that allows organic certification. This biological control uses natural enemies, e.g. mycoparasites such as Lecanicillium lecanii [START_REF] Carrion | Mycoparasites on the coffee rust in Mexico[END_REF][START_REF] Vandermeer | Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web[END_REF]. The goal is to introduce the mycoparasite in the plantation so that it will consume the urediniospores. This method represents the inoculative biological control and is denoted by v. The new system with control v(t) is the first system(A.1) where equation U changes to given by

where α B and α v are the market prices per coffee grain and per spore, respectively. By using the relation

which takes into account that B(jT + ) = 0, we can rewrite the cost function as with V being the set of admissible controllers, which are Lebesgue measurable real-valued functions defined on the interval [0, kT ] and satisfying the constraint v(t) ∈ [0, v max ]. We notice that v(t) appears linearly in the dynamics (A.30), and, since S = 0 is repulsive, S + I > 0 for any trajectory, which means that the dynamics cannot blow up in finite time (and so all trajectories remain in a compact set). An analytical computation of an hybrid optimal control can be derived through the Hybrid Maximum Principle [START_REF] Dmitruk | The hybrid maximum principle is a consequence of pontryagin maximum principle[END_REF], a generalization of the classical PMP (Pontryagin's Maximum Principle). For (HOCP), we define the state x = (S, I, U, B) and adjoint state p = (p S , p I , p U , p B ), and so the Hamiltonian is written as

where f 0 (x, v) = α B Ḃ -α v v, which corresponds to the integrand of the cost function J(v), f is the right-hand side of (A.30), and p 0 ≤ 0. According to the Maximum Principle, the optimal control v(t) should maximize the Hamiltonian along the optimal trajectory. Since H is linear in the control, the solution of (HOCP) becomes and v sing (t) is called a singular control. According to (A.37), any solution of (HOCP) is a concatenation of bangs and singular arcs. A singular arc occurs when the switching function φ vanishes over some subinterval of time, and can be obtained by successively differentiating φ until the control v can be computed explicitly in terms of the state and adjoint state. However, a more detailed description of the control law is often hard to obtain, due to the presence of the adjoint state p in the singular arc v sing and in the switching function φ(x, p). One way to help understand the structure of the optimal control is to simulate numerical trajectories using direct methods, by approximating the problem by a finite dimensional optimization problem. Nevertheless, the use of optimal control solvers is usually restricted to continuous systems. Thus, in order to be able to apply such methods, we rewrite (HOCP) in a continuous form.

A.1.4.2 Problem in continuous form

(HOCP) can be rewritten in the continuous form by defining k set of states x n = (S n , I n , U n , B n ) and k controls v n (t), with dynamics defined for t ∈ [0, T ] as

for n = 1, . . . , k, with boundary conditions

for n = 1, . . . , k -1. Then, the cost function becomes

and the resulting continuous optimal control problem is

subject to dynamics of system (A.39), boundary conditions (A.40), v n (•) ∈ V, for n = 1, . . . , k.

(COCP)

While this new OCP includes the boundary conditions relating the consecutive set of states x n , there are no terminal conditions on (HOCP) which means that the set of admissible controllers is not empty. Thus, existence of a solution for (COCP)-and therefore for (HOCP)-holds by Filippov's theorem [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF].

A.1.4.3 Numerical results

Figure A.3 presents the results of a numerical simulation performed with Bocop of the optimal control and the optimal trajectory for problem (HOCP). In this Figure , we compare an openloop strategy (v ≡ 0) with R 0 > 1, and the same initial conditions with the optimal control. For the latter case, the biological treatment succesfully erradicates the pest. The optimal strategy is characterized by a bang control v ≡ v max during an initial period of time in the first season, followed by a singular arc in which the use of the pest treatment is gradually reduced until no further control is applied. Indeed, the optimal control exploits the fact that both U and I are greatly reduced at the end of each season due to harvesting, to economize on pest treatment. After that, no further control is required. The latter pattern has also been observed for different set of parameters and initial conditions defined in the previous section. In general, the treatment 
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