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Résumé 

Un meilleur phénotypage des patients obèses ou diabétiques à risque pourrait éviter 

de nombreux décès dus aux complications cardiométaboliques. La graisse joue un rôle 

central dans les maladies métaboliques et sonder la graisse cardiaque suscite donc un 

intérêt croissant pour détecter et prévenir les complications cardiovasculaires. Plus 

précisément, le tissu adipeux épicardique (EAT), dépôt de graisse attaché au cœur, dont 

l'accumulation anormale a été liée à une augmentation du risque cardiovasculaire. 

Récemment, il a été montré que l’activité métabolique de l’EAT amplifie ou réduit la 

dégradation cardiovasculaire. 

L'imagerie par résonance magnétique (IRM) cardiaque permet de visualiser l’EAT 

même sur un protocole standard, mais celui-ci a souvent été négligé ou même atténué. 

Inversement, l'objectif de cette thèse était de développer l'imagerie de l’EAT en IRM 

cardiaque afin de quantifier son accumulation et de caractériser ce tissu à l'aide de 

métriques innovantes. 

Nous avons implémenté une segmentation automatique par apprentissage profond de 

l’accumulation de l’EAT sur des images cardiaques standards. Cet outil permettrait une 

détection rapide de la surcharge d’EAT chez les patients à risque et a montré une 

confiance de 71% pour le bon classement de cette quantité dans son quartile d’EAT. 

Ensuite, nous avons développé l'imagerie eau-graisse pour analyser l’EAT grâce à la 

fraction de graisse en densité de proton (PDFF) et la vitesse de relaxation transversale 

effective (R2*). Ces métriques permettent d'identifier la couleur caractéristique de la 

graisse (blanche, brune), renseignant ainsi sur son activité métabolique. Cependant, le 

mouvement cardio-respiratoire, l'accumulation rapide de phases entre la graisse et l'eau 

à haut champ (3T) sont autant d'obstacles à la mesure précise et hautement résolue de 

ces paramètres quantitatifs. Ainsi, l'ensemble du pipeline d'imagerie eau-graisse 

(également appelé Dixon) a été revu. 

Les algorithmes Dixon estimant les cartes quantitatives PDFF et R2* ont été comparés 

de façon standardisée grâce à une infrastructure programmé en deux languages. Cela a 

permis de sélectionner l'algorithme le plus fiable et précis qui s'est avéré être la méthode 
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IDEAL-CE (Iterative Decomposition of water and fat with Echo Asymmetry and Least 

square estimation with constrained extension). 

Cette étude a aussi révélé que le mauvais calibrage du spectre de graisse multi-pics 

utilisé dans le modèle de Dixon induisait un biais de PDFF et R2*. Dans une étude 

préliminaire, nous avons exploré la composition en acides gras d'échantillons ex-vivo 

d’EAT humains en utilisant la spectroscopie par résonance magnétique. Une fois cette 

étude terminée, un étalonnage plus fiable du spectre d’EAT pourrait être fourni pour 

l'imagerie eau-graisse. 

Pour surmonter le mouvement cardio-respiratoire, le Free-Running, approche à haute 

résolution auto-navigués dans les cycles cardio-respiratoires, combinée à une 

reconstruction multidimensionnelle de type Compressed Sensing, a été adapté à 

l'imagerie eau-graisse multi-échos. 

En multi-échos, le gradient bipolaire, plus efficace que le monopolaire, s'est révélé être 

très sensible à l'erreur de phase due aux imperfections spécifiques du système. La 

correction de la trajectoire dans l'espace k grâce à la fonction de réponse impulsionnelle 

du gradient a été intégrée pour en permettre son utilisation. Elle a permis de restaurer la 

qualité de l'image et d'obtenir une précision de PDFF de 1,23%. 

En réunissant ces avancées techniques dans un pipeline complet de Dixon, une 

quantification précise et hautement résolue du PDFF et du R2* a été obtenue. Ainsi, dans 

notre cohorte de sujets sains, l’EAT avait une fraction graisseuse plus faible 

(80,36±7,10%) que la graisse sous-cutanée (92,49±4,25%). 

Cette thèse ouvre la voie à l'imagerie quantitative de l’EAT, se présentant comme un 

outil prometteur pour la caractérisation in-vivo de l’EAT afin de mieux comprendre son 

rôle dans les complications cardiovasculaires. 

 

Mots clés : tissu adipeux épicardique, séparation eau/graisse, imagerie Free-Running 

Dixon, segmentation par apprentissage profond, spectre de graisse. 
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Abstract 

In the last decades, our society has seen an increased prevalence of obesity and 

diabetes, linked with a rising concern for cardiometabolic complications. Fat is central in 

metabolic diseases and probing cardiac fat has thus received a growing interest to detect 

and prevent cardiovascular complications. Specifically, epicardial adipose tissue (EAT), 

fat depot attached to the heart, abnormal accumulation has been linked to an increase of 

cardiovascular risk. Recently, evidence also showed that depending on its metabolic 

activity could either amplify or reduce cardiovascular degradation. 

Cardiac Magnetic Resonance Imaging (MRI) is up to quantify and characterize in-vivo 

EAT throughout its evolution. However, even if EAT is visible on standard cardiac MRI 

protocol, it has often been overlooked or even purposedly dimmed. Inversely, the aim of 

this thesis was to develop epicardial fat imaging in cardiac MRI to quantify its 

accumulation and characterize this tissue using innovative metrics.  

We developed a rapid automatic segmentation of EAT overload on standard cardiac 

images. Using deep learning method, EAT area is quantified on four chamber cine 

acquired in clinical routine. This tool would provide a rapid detection of overload EAT in 

at-risk patient and showed a confidence of 71% to correctly classify it in its EAT quartile 

quantity.  

When it is relevant, we aimed at proposing a specific acquisition to investigate more in 

depth this fat. Chemical shift imaging enables to characterize fat with Proton Density Fat 

Fraction (PDFF), biomarker of adiposity and effective transverse relaxation rate (R2*) 

biomarker of iron overload. These metrics showed to identify color features of fat (white, 

brown), which informs about its metabolic activity. However, cardio-respiratory motion, 

rapid phase accrual between fat and water at high field strength (3T) are all obstacles for 

high-resolution and precise measurement of these quantitative parameters. Thus, the 

entire fat-water imaging (also called Dixon) pipeline has been reviewed to overcome 

these technical barriers.  

 First, fat-water signal separation algorithms that estimate PDFF and R2* quantitative 

maps from acquired images were benchmarked using a bi-language toolbox. This 

standardized comparison helped to select the most reliable and precise algorithm which 
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proved to be the Iterative Decomposition of water and fat with Echo Asymmetry and Least 

square estimation method with constrained extension.  

Second, it also revealed that the miscalibration of the a priori known multi-peaks fat 

spectrum used in the Dixon model induced PDFF and R2* bias. Therefore, in a preliminary 

study, we explored the fatty acid composition of human EAT samples using ex-vivo 

Magnetic Resonance Spectroscopy. After completion of this study, a more reliable EAT 

spectrum calibration could be provided for fat-water imaging. 

Third, to overcome cardio-respiratory motion, the Free-Running framework, a high-

end approach for high-resolution cardiac imaging with fully cardio-respiratory self-

gating, combined with a multidimensional Compressed Sensing reconstruction, was 

adapted for multi-echo fat-water imaging. However, the bipolar gradient multi-echo 

mode, more efficient than the monopolar mode, proved to be highly sensitive to phase 

error due to system-specific imperfections. 

Fourth, the k-space trajectory correction using Gradient Impulse Response Function 

was integrated to enable bipolar readout gradient mode. It restored image quality and 

enabled a PDFF precision of 1.23%. 

Finally, by bringing together those technical advancements in a complete Dixon 

pipeline, high resolution precise PDFF and R2* quantification was achieved. Thus, in our 

healthy cohort, epicardial fat had a lower fat fraction (80.36±7.10%) than the 

subcutaneous fat (92.49±4.25%). 

This thesis lays ground to EAT quantitative imaging, standing as a promising tool for 

in-vivo characterization of EAT to better understand its role in cardiovascular 

degradation.  

 

Keywords : epicardial adipose tissue, water/fat imaging, Free-Running chemical shift 

Dixon imaging, deep learning segmentation, fat spectrum 



8 

 

Table of Contents 

Affidavit 1 

Liste de publications et participation aux conférences 2 

Résumé 4 

Abstract 6 

Table of Contents 8 

Résumé détaillé 12 

A. Evaluation quantitative de l’accumulation de graisse épicardique sur des images 

de routine d’IRM cardiaque 15 

B. Imagerie de précision de la graisses grâce à l'imagerie eau-graisse 18 

C. Caractérisation ex vivo du TAE par RMN 22 

D. Caractérisation in vivo du TAE par imagerie DIXON 24 

Introduction 28 

Chapter 1 : Clinical and scientific context of epicardial adipose tissue 30 

1.1 Epicardial adipose tissue 30 

1.1.1 Anatomy and Physiology 30 

1.1.2 Epicardial fat composition 31 

1.1.3 Role of epicardial adipose tissue in cardiovascular diseases 32 

1.2 Epicardial fat characterization 33 

1.2.1 Molecular and Cellular characteristics 33 

1.2.2 Gas Chromatography 34 

1.2.3 Magnetic Resonance Spectroscopy 36 

1.3 Epicardial fat in Radiology 39 

1.3.1 Epicardial fat quantification in cardiac MRI 39 

1.3.2 Model-based water/fat separation by chemical shift imaging 41 

1.3.3 Chemical-shift encoded imaging acquisition strategies 46 

1.4 Artificial intelligence dedicated to epicardial fat segmentation 47 

Chapter 2 : Quantitative evaluation of epicardial fat overload from routine 

cardiac MRI 50 

2.1 Synthesis 50 



9 

 

2.2 Introduction 53 

2.3 Materials and Methods 55 

2.3.1 Study Population 55 

2.3.2 MRI acquisition 56 

2.3.3 EAT segmentation 56 

2.3.4 Network architecture 57 

2.3.5 Training 58 

2.3.6 Evaluation metrics 59 

2.3.7 Statistical analysis 60 

2.4 Results 60 

2.5 Discussion 66 

2.5.1 Four-chamber-view intrapericardial fat area is a relevant measure of EAT

 66 

2.5.2 A specific database with possible extensions 67 

2.5.3 The challenge of EAT segmentation 68 

2.5.4 Comparing FCNs performances 68 

2.5.5 Performances across quartiles 69 

2.6 Conclusions 69 

2.7 Supportive Information 70 

Chapter 3 : Fat precision imaging using CSE imaging 72 

3.1 Synthesis 72 

3.2 Introduction 76 

3.1 Materials and Methods 77 

3.1.1 Open-source algorithms 77 

3.1.2 Algorithm standardization 78 

3.1.3 Monte Carlo simulation 80 

3.1.4 Acquisition parameter: echo spacing 80 

3.1.5 Fat spectrum library 81 

3.1.6 In vitro: fat-water phantom 81 

3.1.7 In vivo imaging 82 

3.1.8 Evaluation metrics and statistical analysis 83 

3.2 Results 83 

3.2.1 Numerical simulations 83 



10 

 

3.2.2 In vitro experiments 87 

3.2.3 In vivo experiments 89 

3.2.4 Influence of the spectrum model 90 

3.3 Discussion 92 

3.3.1 Open-source framework and reproducibility research 92 

3.3.2 Numerical simulations 92 

3.3.3 In vitro experiments 93 

3.3.4 In vivo experiments 93 

3.3.5 Influence of the spectrum model 94 

3.3.6 Algorithms running time 94 

3.3.7 Choices of open-source algorithms 94 

3.3.8 Possible extensions and new challenges 95 

3.4 Conclusions 95 

3.5 Supportive Information 96 

Chapter 4 : Ex Vivo EAT characterization using MRS 101 

4.1 Synthesis 101 

4.2 Introduction 103 

4.3 Methods 103 

4.3.1 Ex vivo Human samples 103 

4.3.2 MR and MRS protocol 103 

4.3.3 MRS data processing 104 

4.4 Results 105 

4.5 Discussion 108 

4.6 Conclusions 108 

Chapter 5 : In vivo EAT characterization using CSE imaging 110 

5.1 Synthesis 110 

5.2 Introduction 113 

5.3 Materials and Methods 114 

5.3.1 MRI acquisition 114 

5.3.2 In vitro: fat water phantom 114 

5.3.3 Numerical Simulation 115 

5.3.4 Study Population 115 

5.3.1 GIRF measurement 115 



11 

 

5.3.2 Image Reconstruction and Quantitative fat-water mapping 116 

5.3.3 Evaluation metrics and statistical analysis 118 

5.4 Results 118 

5.4.1 GIRF measurement results 118 

5.4.2 Echo spacing scheme 119 

5.4.3 Numerical simulations 119 

5.4.4 In-vitro experiments 122 

5.4.1 In-vivo experiments 122 

5.5 Discussion 127 

5.6 Conclusions 129 

General Conclusion and Discussion 130 

Bibliography 135 

List of Abbreviations and Symbols 156 

List of Figures 159 

List of Tables 164 

 

 



12 

 

Résumé détaillé 

Au cours des dernières décennies, notre société a connu une prévalence accrue de 

l'obésité et du diabète, liée à une préoccupation croissante pour les complications cardio-

métaboliques. La graisse joue un rôle central dans les maladies métaboliques et le 

sondage de la graisse cardiaque a donc reçu un intérêt croissant pour détecter et prévenir 

les complications cardiovasculaires. La communauté scientifique et clinique s’est 

intéressée plus particulièrement au tissu adipeux épicardique (EAT) qui est une graisse 

viscérale située entre le cœur et le péricarde, en contact direct avec le myocarde.  

L’EAT a un rôle multifacette dans la physiologie cardiaque, prévenant de la 

lipotoxicité cardiaque, il sert à la fois de réservoir à énergie ou de thermorégulateur. Aussi 

l’EAT est dit “beige”, phénotype intermédiaire entre les deux familles de graisses, graisses 

de stockage blanches et graisses de thermogénèse brunes ; la ‘couleur’ de l’EAT pouvant 

varier selon des facteurs génétiques ou environnementaux. Cependant, dans des 

conditions pathologiques, l’EAT passe d’un rôle cardio-protecteur à un substrat 

inflammatoire, favorisant le développement de maladies cardiovasculaires telles que la 

maladie coronarienne, la fibrillation atriale et l'insuffisance cardiaque.  

Différentes modalités d'imagerie ont été identifiées pour quantifier la surcharge 

en EAT puisque son accumulation anormale a été liée à une augmentation du risque 

cardiovasculaire. L'échocardiographie transthoracique, modalité de premier plan en 

cardiologie, a été utilisée pour mesurer l'épaisseur de l'EAT sur la paroi du ventricule 

droit. Cependant, cette mesure seulement de distance a été utilisée pour estimer le 

volume de l’EAT ce qui limite fortement la précision de cette méthode car l’EAT est 

distribué de manière irrégulière autour du cœur. L'imagerie par tomodensitométrie 

(TDM) cardiaque est devenue la méthode d’imagerie de référence pour la quantification 

du volume de l’EAT. Dans des études plus récentes, des méthodes semi-automatiques et 

d’apprentissage profond ont été développées pour réaliser la segmentation de cette 

graisse. Cependant, l'exigence d'une TDM cardiaque à haute résolution spatiale a conduit 

à l'utilisation de doses élevées de rayonnements ionisants, ce qui pourrait constituer un 

risque pour le suivi longitudinal des patients. 
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L'imagerie par résonance magnétique (IRM) cardiaque est un outil polyvalent qui 

permet de mesurer la fonction cardiaque, la morphologie, la perfusion en un seul examen. 

Cette modalité est également très sensible à la graisse cardiaque mais son observation 

reste souvent négligée ou même volontairement atténuée puisque l’EAT a longtemps été 

considéré comme un obstacle à la visualisation du myocarde et des artères coronaires. 

Lors d’un protocole standard, le volume de l’EAT peut être mesuré à partir d'une pile 

d'images ciné orientées en petit axe et couvrant l’ensemble du cœur. Cependant cette 

quantification est effectuée manuellement, ce qui est une opération longue et fastidieuse. 

En effet, le péricarde qui sépare l’EAT de la graisse paracardique n'est pas clairement 

visible sur les coupes petit-axe. Il se réduit souvent à une fine ligne qui peut être floutée à 

cause d’effets de volume partiels, surtout à l'apex. Au contraire, sur les vues en 4 cavités 

(4Ch), le péricarde est généralement moins affecté par ces effets de volume partiels, ce 

qui en permet une meilleure visualisation. Au début de cette thèse, seulement deux 

méthodes de segmentation automatique, ou semi-automatique, de l’EAT sur l'IRM 

cardiaque ont été présentées lors de conférences. Cependant, les deux études ont été 

démontrées sur moins de 15 sujets chacune et ne sont basées que sur une seule image 

ciné n’exploitant pas l’information temporel utile à la visualisation du péricarde. 

Pour sonder plus spécifiquement la graisse en IRM, on peut utiliser une technique 

d'acquisition dédiée appelé Dixon. Celle-ci exploite les différences de fréquences de 

précession de l'eau et de la graisse afin de les identifier à une haute résolution spatiale. 

Elle nécessite l'acquisition de plusieurs images à différents temps d'écho (TE), pour que 

les signaux de la graisse et de l'eau accumulent différentes valeurs de phase, en fonction 

de leurs fréquences de précession. Les images de l’eau et de la graisse sont ensuite 

séparées grâce à des algorithmes avancés qui utilisent un modèle bio-physique avec 

comme a priori la connaissance du spectre RMN de la graisse. La fraction graisseuse en 

densité de protons (PDFF), rapport entre les protons de la graisse sur les protons de l'eau 

et de la graisse indicateur d’adiposité ou la vitesse de relaxation transversale effective 

(R2*) informant de la surcharge de fer sont des biomarqueurs quantitatifs issus de cette 

technique. La précision de ces mesures est essentielle pour une utilisation en clinique de 

ces paramètres. Cependant une grande diversité d’algorithmes les calculant est apparue 

cette dernière décennie. Le dernier benchmark pour en évaluer leurs performances, un 

défi international, date déjà de 10 ans, et était uniquement basé sur des images en in-vivo. 

L'IRM cardiaque DIXON est un défi en raison des mouvements cardiaques et respiratoires, 
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avec en plus à 3T, une accumulation rapide et concomitante de phase entre l'eau et la 

graisse. Ces verrous techniques en empêchent son utilisation en routine clinique. En 

recherche, l'IRM cardiaque DIXON a déjà été développée afin d’obtenir une imagerie haute 

résolution de l’EAT mais au prix d'une précision insuffisante pour la quantification du 

PDFF et du R2*. 

Le modèle DIXON nécessite une connaissance a priori de la nature des tissus 

graisseux. La chromatographie gazeuse est la technique de référence afin de connaitre la 

composition et le profile en acides gras composants les triglycérides du tissu adipeux 

(saturés (SFA), insaturés (UFA), monoinsaturés (MUFA), polyinsaturés (PUFA)). La 

chromatographie étant invasive, celle-ci est moins adaptée à une étude longitudinale en 

in-vivo. Comme alternative non invasive, des approches par spectroscopie par résonance 

magnétique (SRM) ont été utilisées pour la quantification de ces catégories d’acides gras 

dans divers tissues adipeux mais jamais sur l’EAT. En effet, les acides gras peuvent être 

estimés par résonance magnétique car chaque proton d'hydrogène de la molécule de 

triglycéride contribue au signal SRM, ou RMN. La position de ces protons au sein de la 

molécule de triglycéride donne lieu à différentes fréquences de résonance dans le spectre 

RMN. Le modèle de ce spectre RMN a été simplifié en décrivant l'amplitude théorique de 

chaque pic des triglycérides avec seulement trois paramètres : le nombre de doubles 

liaisons (ndb), le nombre de doubles liaisons interrompues par du méthylène (nmidb) et 

la longueur de la chaîne (cl). La connaissance du spectre RMN de l’EAT apporterait des 

connaissances précieuses sur la composition de l’EAT, tant pour la physiologie que pour 

l’imagerie par IRM-DIXON. 

Cette thèse a donc pour but de développer l’imagerie de la graisse épicardique en 

IRM cardiaque et s’articule autour d’un double objectif : 1/ le développement d’une 

évaluation rapide de l’EAT sur des images IRM standards afin de promouvoir cette graisse 

comme un élément diagnostique dans les complications cardiovasculaires ; 2/développer 

l’IRM cardiaque DIXON afin de sonder plus en profondeur cette graisse en assurant une 

haute résolution d’imagerie tout en renforçant la précision des paramètres quantitatifs 

calculés. 
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A. Evaluation quantitative de l’accumulation de 

graisse épicardique sur des images de routine 

d’IRM cardiaque  

Contexte et motivation 

Ces dernières années, l’EAT est de plus en plus reconnu comme un biomarqueur 

du risque de complication cardiovasculaire dans de multiples pathologies, notamment 

dans le diabète et l'obésité. Cependant, en IRM cardiaque, sa caractérisation reste 

fastidieuse et impraticable en clinique en raison de la résolution spatiale limitée pour 

l’identifier. Par conséquent, les méthodes de quantification de l’EAT par IRM n'en sont 

encore qu'à leur début par rapport à l'imagerie par tomodensitométrie cardiaque où des 

approches automatiques basées sur l'apprentissage profond ont déjà été bien 

développées. Afin de réduire cette lacune et de faciliter l'analyse de l’EAT en IRM, cette 

étude propose une quantification automatique de l'aire de l’EAT en 4 cavités en utilisant 

des réseaux auto-encodeurs (AE) multi-phases en ciné.  

Méthodes et résultats 

Une base de données rétrospective mono-centrique de 100 sujets (comprenant des 

sujets sains, des patients diabétiques de type 2 et des patients obèses non diabétiques), 

qui ont fait un examen d'IRM cardiaque à 3T incluant des images multi-coupes petit axe 

et un plan axial 4 cavités, a permis d’évaluer la performance des réseaux AE et la 

corrélation entre le volume total d’EAT et son aire en 4 cavités. U-Net et le réseau AE 

développé par Bai (noté FCNB) ont été optimisés par validation croisée à 4 blocs (n=80) 

et évalués sur une base de données indépendantes (n=20).  

Notre base de données a montré une corrélation modérée entre le volume d’EAT et 

l’aire en 4 cavités (r = 0,77 et 0,74 pour la phase systolique et diastolique respectivement). 

Sur les données test, la performance des réseaux était équivalente au biais inter-

observateurs (pour l’EAT : DSCInter = 0,76, DSCU-Net = 0,77, DSCFCNB = 0,76) comme le 

montre la Figure 0-1. U-Net était mieux adapté à l'estimation de l’aire de l’EAT comparé 

au FCNB. 
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Figure 0-1 Résultats représentatifs de la segmentation pour chaque population 

définie par quartile d’EAT. Les flèches blanches indiquent les divergences entre les 

segmentations manuelle et automatique. 

Conclusion, limites et perspectives 

Ces travaux ont été acceptés comme article, s’intitulant Deep-Learning 

Segmentation of Epicardial Adipose Tissue Using Four-Chamber Cardiac Magnetic 

Resonance Imaging et publié dans Diagnostics le 29 décembre 2021. En plus de la 

publication, nous avons décidé de fournir une segmentation automatique open-source de 

l’aire de l’EAT qui offre la possibilité de l’évaluer quantitativement durant un protocole 

d’imagerie IRM cardiaque standard, permettant ainsi son investigation sur des études 

prospectives ou rétrospectives. Cependant, ces réseaux AE ont été entrainés et testés 

uniquement sur une base de données mono-centrique, ce qui a limité leur généralisation 
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à d'autres scanners et pathologies. De plus, ces approches ont montré des limites et 

l'aspect dynamique des images n'a pas été suffisamment exploité. Le développement de 

nouveaux types de réseaux AE basés sur des modules temporels tels que les 

« Convolutional Long Short Term Memory » (ConvLSTM) pourrait améliorer la précision 

de la segmentation automatique de cette graisse épicardique et être entraîné sur une base 

de données plus généralisée telle que la UK biobank. Afin de renforcer les modèles pour 

la routine clinique, l'augmentation des données basée sur des artefacts IRM réels et l’auto-

évaluation automatique de la précision de ces réseaux via un score de qualité prédictif 

sont également des extensions importantes envisageable. 

Après la détection de patients à risque, il serait intéressant de sonder le profil des 

acides gras de l’EAT grâce à une acquisition spécifique, car il a était constaté que ces 

profils lipidiques étaient différents entre des patients diabétiques et non diabétiques. 

Contributions personnelles 

Avant d'avoir utilisé les approches d'apprentissage profond montrées dans cette étude, 

j'ai d'abord exploré des algorithmes non supervisés basés sur le contour actif pour 

segmenter la graisse épicardique et paracardique. Cependant, cette approche n'a pas 

abouti en raison de résultats insatisfaisants et de trop nombreux paramètres à configurer. 

C'est pourquoi j'ai décidé d'étudier les réseaux AE en les entraînant et optimisant sur une 

base de données rétrospective que j'ai organisée pour faciliter le processus. J'ai effectué 

un examen approfondi de la littérature sur l’ apprentissage profond. En parallèle, j'ai suivi 

une formation en ligne (MOOC, Stanford machine learning class) pour renforcer mes 

connaissances et être à jour en matière d’apprentissage profond. Une fois ma formation 

terminée, j'ai conçu les réseaux dédiés à cette étude, et j'ai utilisé la même base de données 

que celle que j'avais recueillie lors des expériences précédentes avec les contours actifs 

pour entraîner les deux réseaux AE sélectionnés. J'ai également effectué l'analyse 

statistique, préparé toutes les figures et rédigé l'article. 

Enfin, une fois l'étude terminée et le manuscrit prêt à être soumis, j'ai intégré le U-Net 

optimisé dans un plugin FSLeyes pour faciliter sa mise à disposition à la communauté.  
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B. Imagerie de précision de la graisses grâce à 

l'imagerie eau-graisse 

 

Contexte et motivation 

La fraction graisseuse en densité de protons (PDFF) est un biomarqueur non invasif 

pour évaluer l'adiposité des tissus. Pour obtenir ce biomarqueur quantitatif, de nombreux 

algorithmes de séparation du signal eau-graisse ont été développés avec une diversité de 

méthodes et implémentés dans différents langages de programmation. Nous avions 

besoin de sélectionner l'un d'entre eux avec des critères basés sur la précision et la 

fiabilité pour traiter nos données IRM. Cependant, une décennie s'est écoulée depuis le 

dernier benchmark de ces algorithmes. En effet, lors du congrès « ISMRM Fat-Water MRI » 

en 2012, un défi a été organisé pour comparer ces algorithmes sur une multitude de jeux 

de données in-vivo et une boîte à outils MATLAB a été développée pour faciliter les 

comparaisons futures. Cependant, il était nécessaire de renouveler cette comparaison 

avec l'état de l'art des algorithmes open-source en utilisant des simulations numériques 

afin de les explorer, évaluer et valider. De plus, il y un besoin d’extension de cette boîte à 

outils pour qu’elle tienne en compte d'autres langages de programmation mais aussi la 

diversité des modèles de spectres de graisse. Ainsi, en accord avec les travaux portant sur 

la standardisation du PDFF, le but de cette étude était d'implémenter une boîte à outils 

numérique multi-langage pour aborder la performance dès l'algorithmes de séparation 

eau-graisse open-source. 

Méthodes et résultats 

Une boîte à outils open-source implémentée en MATLAB et Python a été développée 

pour évaluer les performances des méthodes récentes de séparation du signal eau-

graisse. Des volumes synthétiques d'IRM eau-graisse ont été simulés avec l’entièreté de la 

gamme de PDFF (0- 100%), une large gamme de B0 et variant selon le nombre de temps 

d’echos, leurs instants et le SNR. Pour la validation in vitro, un fantôme d'eau-graisse, 

façonné au laboratoire, a été acquis à 3T avec les mêmes paramètres d'acquisition que la 

simulation. Des données in-vivo challengeantes en termes de grande variation d’ 

inhomogénéités du champ B0, d'inter-écho important et de faible SNR ont également été 

acquises pour illustrer les performances des algorithmes.  
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La simulation Monte-Carlo et les expériences in-vitro ont mis en évidence que les 

algorithmes se sont avérés robustes contre les permutations eau/graisse et face aux 

grandes inhomogénéités du champ B0 uniquement avec 5 échos et plus. Cependant, pour 

la quantification du PDFF avec 7 échos et un SNR=50, deux méthodes se sont révélées 

inexactes, tandis que deux autres ont fourni une précision du PDFF qui dépendait du 

schéma d'espacement des échos (P<0,05) et les quatre autres ont fourni des 

performances similaires avec un biais <0,15 comme le montre la Figure 0-2. Par ailleurs, 

Le choix du modèle de spectre de graisse a influencé la quantification du PDFF et 

sévèrement celle du R2*. 
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Figure 0-2 : Comparaison du biais PDFF (A) et R2*. (B) de chaque algorithme sur 

des volumes synthétiques d'IRM-CSE avec NTE=7 et SNR=100. GOOSE et B0-NICE (en 

carré rouge) n'ont pas été étudiés plus avant en raison de résultats très biaisés. 
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 Conclusion, limites et perspectives 

Ce benchmark utilisant une boîte à outils open-source bi-langage offre la possibilité de 

mieux apprécier la précision et l'exactitude des algorithmes récents de séparation du 

signal eau-graisse pour la quantification du PDFF et du R2*. Il pourrait également 

permettre d'optimiser les paramètres d'acquisition en prédisant les marges d'erreurs des 

algorithmes. Il aurait été intéressant d'avoir une plus grande diversité de méthodes qui 

soit basée sur les algorithmes commerciales, sur l’amplitude ou des algorithmes utilisant 

l’'intelligence artificielle car ils sont de plus en plus présents dans ce domaine. Cette boîte 

à outils pourrait être grandement améliorée par des données in-vitro, in-vivo, multi-

vendeurs et multi-champs afin de mieux valider les algorithmes. En outre, les algorithmes 

ont commencé à inclure le modèle de signal DIXON-MRI raffiné, conçu pour l’imagerie 

quantitative de paramètres liés à la composition lipidiques des tissus. Cette boîte à outils 

pourrait être donc étendue pour explorer la précision et la fiabilité de l'estimation de ces 

paramètres. 

Contributions personnelles 

À partir du benchmark organisé lors du congrès ISMRM Fat-Water MRI en 2012, j'ai 

donc réalisé une revue approfondie des algorithmes de séparation du signal eau-graisse. 

En parallèle, j'ai suivi un MOOC sur la recherche reproductible qui m’a sensibilisé sur les 

aspects avantageux de la recherche reproductible (processus de validation, métriques de 

comparaison, disponibilité du code) dans notre quête d'utilisation de l'algorithme 

"optimal". La diversité des processus de validation et des paramètres d'évaluation des 

performances des méthodes m'a encouragé à repenser et à développer un cadre pour une 

comparaison standardisée entre ces algorithmes. Inspiré par le format et la boîte à outils 

MATLAB de l'ISMRM 2012 utilisés pour le défi, j'ai mis en place une boîte à outils bi-

langage (Python et MATLAB) open-source. Compte tenu de la variété des applications de 

l'imagerie eau-graisse, et de mes propres besoins en IRM de la graisse épicardique, j'ai 

inclus une bibliothèque exhaustive de spectres de graisse pour faciliter la calibration du 

modèle du signal. Pour une évaluation fiable et complète des algorithmes, j'ai réalisé les 

simulations numériques, participé à l'élaboration des échantillons in-vitro (deux lots, le 

1er n'étant pas satisfaisant), acquis les données d'imagerie et de spectroscopie de ces 

échantillons, ainsi que les données in-vivo. Enfin, j'ai effectué l'analyse statistique, 

préparé toutes les figures et rédigé l'article qui a été soumis à Magnetic Resonance in 

Medicine. Il fut rejeté mais avec cependant des commentaires de revues encourageantes 
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qui nous invite à revoir la structure de l’étude en incluant plus d’algorithmes 

commerciaux ou basés seulement sur l’amplitude. 

 

C. Caractérisation ex vivo de l’EAT par RMN 

Contexte et motivation 

Le benchmark des algorithmes de séparation d’eau-graisse a aussi révélé que la 

quantification du PDFF et du R2* pourrait être biaisée en raison d'une mauvaise 

calibration du spectre multi-pic de graisse qui est modélisé dans le signal eau-graisse. 

Même si une diversité de spectres RMN de graisses humaines a été évaluée, le spectre 

RMN de l’EAT n'a pas encore été caractérisé dans la littérature. Ainsi, l'objectif de cette 

étude était d'explorer la signature RMN et le profil des acides gras de l’EAT dans des 

échantillons humains ex-vivo.  

Méthodes et résultats 

Neuf échantillons de tissu adipeux ex-vivo provenant de patients décédés ayant fait 

don de leur corps à la science (3 EAT, 4 VAT, 2 SAT) ont été acquis à 11,75T en utilisant la 

séquence STEAM. Les paramètres du modèle triglycéride (ndb, nmidb, cl) et la 

composition en acides gras (SFA, MUFA, PUFA) ont été calculés à l'aide d'un logiciel 

Python issu de notre laboratoire après quantification de la concentration relative des pics 

lipidiques (Figure 0-3). 

Les résultats préliminaires sur la composition en acides gras suggèrent que les graisses 

épicardiques ont une teneur en SFA plus faible (31,57±12,61) et une teneur en MUFA plus 

élevée (54,97±14,03) par rapport à la graisse blanche commune : SAT (SFA: 49,34±4,96, 

MUFA 43,24±2,01 et VAT (SFA: 40,14±9,33, MUFA 43,49±7,74). 
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Figure 0-3: Exemples de spectres obtenus du même sujet avec la graisse sous-

cutanée thoracique et la graisse épicardique. Les courbes noires représentent les 

spectres acquis avec la séquence STEAM. Le courbe d'ajustement (rouge) a été conçu 

pour quantifier l'eau (4,7 ppm) et le modèle des lipides. Le signal résiduel (gris) permet 

d'évaluer l'adéquation du modèle. 

 

Conclusion, limites et perspectives 

Dans cette étude sur des échantillons ex-vivo de graisses humaines, la signature RMN 

du tissu adipeux épicardique a été évaluée. Ces résultats préliminaires en termes de 

modèle de triglycérides et de composition en acides gras doivent être approfondis avec 

un échantillon de taille plus importante. Une confrontation de ces mesures avec l'analyse 

par chromatographie en phase gazeuse pourrait également apporter une perspective plus 
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claire à ces résultats. Cependant, après la réalisation complète de cette étude, une 

calibration plus fiable du spectre du tissu adipeux épicardique pourrait être fournie pour 

l'imagerie eau-graisse et ainsi réduire les biais de quantification PDFF et R2* pour cette 

graisse spécifique. 

Contributions personnelles 

J'ai effectué un revue de littérature approfondie des caractérisations établies des tissus 

adipeux par chromatographie en phase gazeuse et par RMN. Cette étude a été vraiment 

menée grâce à un grand travail d'équipe: la collaboration avec le service d'endocrinologie 

de l'AP-HM pour la collection des échantillons ex-vivo qui a été cruciale, la préparation 

des échantillons, l'optimisation du protocole et des acquisitions à 11,75T ont toutes été 

réalisées avec l'aide de Joevin Sourdon et les interactions avec Tangi Roussel, qui a 

développé le logiciel Python, pour développer et mettre au point le traitement des 

spectres. J'ai participé à toutes ces étapes une fois les échantillons collectés et congelés 

par l'équipe d'endocrinologues : j'ai suivi toutes les expériences, j'ai ensuite réalisé le 

traitement des données de RMN, y compris les adaptations du code Python pour obtenir 

les paramètres souhaités, et j'ai préparé les tableaux et les figures correspondantes. 

 

D. Caractérisation in vivo de l’EAT par imagerie 

DIXON 

Contexte et motivation 

L'IRM cardiaque DIXON a le potentiel de sonder l’accumulation et l'altération de la 

graisse cardiaque en cartographiant le PDFF et le R2* L'imagerie DIXON 3D haute 

résolution est nécessaire pour détecter le péricarde, couche séparant la graisse 

épicardique de la graisse paracardique, qui est mieux visualisée au moment de la systole. 

L'IRM cardiaque DIXON est un défi en raison des mouvements cardiaques et respiratoires, 

avec en plus à 3T, une accumulation rapide de phase entre l'eau et la graisse concomitante 

avec un B0 inhomogène. Pour surmonter cet obstacle, nous avons entamé une 

collaboration avec l'équipe de Matthias Stuber au CIBM CHUV-UNIL qui a développé une 

séquence « Free-Running » en respiration libre et auto-naviguée pour l'imagerie 

cardiaque à haute résolution, combinée à une reconstruction multidimensionnelle par 

« Compressed Sensing » à 1,5T.  
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Le but est d'obtenir une cartographie du PDFF et R2* précise et fiable résolue au cours 

des cycles cardio-respiratoires. Durant le mouvement respiratoire et cardiaque, seuls les 

échos bipolaires permettaient d'obtenir un inter-écho suffisamment court mais 

souffraient de distorsions entre les échos pairs et impairs en raison des imperfections des 

gradients. L'objectif de ce travail était donc de proposer une IRM cardiaque DIXON à 3T à 

haute résolution pour la quantification du PDFF et du R2*, en corrigeant la trajectoire dans 

l'espace k en utilisant la fonction de réponse impulsionnelle du gradient (GIRF)  

Méthodes et résultats 

L'IRM cardiaque Dixon en mode bipolaire avec 13 échos (TE1/ΔTE = 1,12/1,07ms) et 

en mode monopolaire avec 8 échos (TE1/ΔTE = 1,16/1,96ms) ont toutes les deux été 

acquises à 3T sur un fantôme eau/graisse, 10 volontaires sains et un patient diabétique. 

Les Dixon cardiaques bipolaires en mode Free-Running ont été reconstruites avec ou sans 

correction GIRF et ont été comparés aux Dixon monopolaires en in-vitro et in-vivo dans 

différentes régions d'intérêt.  

Sans correction GIRF sur les Dixon bipolaires, des effets de flou et de halo sont apparus 

sur les échos pairs entraînant un biais de PDFF non négligeable de 4,90% in-vitro et de 

23,49% dans les ventricules gauches de sujets sains alors qu'avec la correction GIRF, ces 

artefacts ont disparu avec une quantification précise du PDFF in vitro avec un biais moyen 

de 0,03% et plus réaliste in vivo avec des PDFF moyens de 0,78% et 0,84% dans les 

ventricules gauche et droit. En mode monopolaire, en raison d'un inter-écho important, 

des échanges eau-graisse étaient présents in-vitro et in-vivo avec une quantification 

moins précise avec des PDFF moyens de 2,35% et 2,53% dans les ventricules gauche et 

droit. Enfin, dans la cohorte de volontaires sains, la graisse épicardique avait une fraction 

graisseuse significativement (P <0,0001) plus faible (80,36±7,10%) que la graisse sous-

cutanée (92,49±4,25%). 
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Figure 0-4 Au cours des différents états respiratoires, les cartes quantitatives de 

PDFF et R2*, B0 hors-résonance en vue coronale résultant de la correction 

monopolaire, bipolaire avec ou sans GIRF. La ligne blanche pointillée représente le 

niveau du diaphragme à l'état d'expiration. 
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Conclusion, limites et perspectives 

Pour permettre un PDFF et un R2* précis et à haute résolution, le Free-Running 

cardiaque Dixon à 3T s'est avéré nécessiter des échos bipolaires avec une correction de 

trajectoire de l'espace k réalisée avec le GIRF spécifique au système. Il aurait été 

intéressant d'explorer plus en détail la correction de trajectoire de l'espace k en ajoutant 

la valeur de correction des effets de gradient concomitants, comme cela est déjà fait à 

faible champ, mais aussi de l'appliquer à l'IRM monopolaire Free-Running Dixon. En 

outre, cette preuve de concept offre la possibilité d'étudier le PDFF et le R2* du tissu 

adipeux épicardique ou, en outre, avec des temps d'écho suffisants, de caractériser la 

composition en acides gras dans les maladies métaboliques résolues dans les cycles 

cardiaques et respiratoires complets. En outre, il faciliterait l'émergence d'approches de 

quantification volumétrique automatique de la graisse cardiaque.  

Contributions personnelles 

Pour réaliser ce travail, nous avons commencé pendant ma thèse une collaboration 

avec l'équipe de Matthias Stuber au CIBM CHUV-UNIL. A cette fin, Davide Piccini nous a 

fourni la séquence WIP Free-Running qui permet d'acquérir des données multi-échos GRE 

free-running. Adele L.C Mackowiack a partagé son code de reconstruction d'images multi-

échos en free-running (MATLAB). Ce pipeline de reconstruction devait être mis à jour 

avec l'ossature du code de reconstruction plus récent fourni par Jérôme Yerly, qui n'était 

pas adapté à la séquence multi-échos. J'ai fusionné, adapté et optimisé l'ensemble du 

pipeline de reconstruction Free-Running multi-écho pour répondre aux contraintes de 

mémoire de notre matériel et améliorer la qualité des images reconstruites. Pour la 

correction GIRF, nous avons également collaboré avec Josef Pfeuffer, de Siemens, grâce au 

soutien de Thomas Troalen. Josef a fourni la séquence de calibration, pour mesurer le 

GIRF de notre scanner, et le code MATLAB pour appliquer le GIRF dans une reconstruction 

spirale 2D. J'ai adapté ce code pour l'appliquer à des trajectoires 3D non cartésiennes et 

j'ai intégré la correction GIRF dans le pipeline de reconstruction. Cette intégration a 

représenté un certain temps puisque nous avons dû faire de la rétro-ingénierie de la 

simulation des gradient réalisés par la séquence. J'ai également acquis et reconstruit l'IRM 

DIXON in-vitro et in-vivo, effectué l'analyse statistique et préparé toutes les figures. 
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Introduction 

Obesity and diabetes have become a scourge in our society. Mostly related to 

cardiac complications, many deaths of diabetic patients could be prevented by a better 

phenotyping of at-risk patients. The measurement of cardiac fat by MRI presents an 

emerging and promising diagnosis ahead of cardio-diabetic complications.  

 

More than a decade of collaboration between the CRMBM and the endocrinology 

department of the AP-HM has shown that cardiac lipids accumulation is a major factor 

contributing to the development of cardiac complications. These findings have been 

confirmed and extended by a manifold of research worldwide. More specifically, 

epicardial adipose tissue (EAT), a fine deposit of fat on the surface of the heart muscle, 

secretes pro-inflammatory and prothrombotic adipocytokines that increase the risk of 

coronary heart disease(CHD). Abnormal accumulation of epicardial fat is a prognostic 

element but its evaluation, and even less its characterization, remain tedious and 

impractical in the clinics. 

 

This thesis is deeply rooted in this collaboration and is very timely, as a renewed 

interest in imaging epicardial fat is emerging thanks to novel tools such as machine 

learning and high-resolution low-dose computed tomography. The primary hypothesis of 

this thesis is that the use of novel MRI techniques would allow to bring down these 

barriers that hamper the consideration of EAT in the clinics and exploit MRI for a refine 

analysis of cardiac fat accumulation.  

 

This thesis, funded by the Mission for Transversal and Interdisciplinary Initiatives 

(MITI) program support by CNRS, was conducted at “Centre de Résonance Magnétique et 

Biologique et Médicale” (Aix-Marseille Univ, CNRS, CRMBM, Marseille, France) in the 

“cardiovascular system” team. 

 

The manuscript is organized in five chapters. The first chapter introduces the basic 

knowledge of EAT physiology, imaging, characterization, and artificial intelligence 
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segmentation essential to the understanding of the original work done during this thesis 

which is described in the following chapters. The second chapter presents an automatic 

segmentation of epicardial adipose tissue on standard cardiac images leveraged using 

Fully Convolutional Networks (FCN). The 3rd, 4th and 5th summarize the different steps to 

achieve a precise and reliable Proton Density Fat Fraction (PDFF) and the effective 

transverse magnetization rate (R2*) quantification of EAT. The third one then assesses 

precision performance of open-source fat-water signal separation algorithms using a bi-

language toolbox developed to standardize the comparison. The fourth chapter explores 

the NMR signature of EAT for reducing PDFF and 𝑅2
∗ quantification bias in fat-water 

imaging. Finally, the fifth chapter demonstrates a proof-of-concept of bipolar Free-

Running Dixon MRI with precise PDFF and R2* quantification leveraged by trajectory 

correction using gradient impulse response function (GIRF) method.  
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Chapter 1 : Clinical and scientific context of 

epicardial adipose tissue  

1.1 Epicardial adipose tissue 

1.1.1 Anatomy and Physiology  

Epicardial adipose tissue (EAT) is a beige adipose tissue located between the heart and 

the visceral pericardium, in direct contact with the myocardium. It should be 

distinguished from the paracardial adipose tissue (PAT), which is external to the parietal 

pericardium. Thus, only EAT has access to the myocardium and its coronary circulation, 

potentially impacting the cardiac health. The pericardial fat is the combination of EAT and 

PAT, considering all fat surrounding the heart. It contributes up to 20% of the whole 

cardiac mass(1,2) but represents only 1% of the total fat mass(3). 

 

Figure 1-1 : The anatomy of epicardial adipose tissue (EAT). Epicardial fat, or EAT, 

is the only adipose tissue that has access to the myocardium. Since it is a metabolically 

active organ, it can deposit deleterious hormones in the coronary arteries. The separation 

between epicardial and paracardial fat is very subtle. 
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EAT has a multifaceted role in cardiac physiology (Figure 1-2). It acts as a local energy 

storage for the heart, but also protects against exposure to high levels of free fatty acids 

(FFA) and subsequent risks of lipotoxicity(4). Besides, EAT has a higher rate of lipogenesis 

and lipolysis compared to other fat depots(5). Its mechanical functions include protecting 

the coronary arteries against torsion induced by arterial pulse wave and cardiac 

contraction(6). Its beige features suggest that EAT can protect the heart against 

hypothermia(7). It is also an endocrine organ that secretes adiponectin which protects 

coronary circulation, inhibits oxidative stress and regulating inflammatory stimuli. 

 

 

Figure 1-2 : The classic concepts about the role of epicardial adipose tissue in 

heart physiology. Adapted from (8) 

1.1.2 Epicardial fat composition 

Human adipose tissues, namely body fat, can be subdivided into two main types: white 

or brown adipose tissue. The primary function of white adipose tissue (WAT) is to be an 

energy storage, and hence, its adipocytes consist of a single large lipid droplet of 

triglycerides. WAT is widely distributed over all the body and depending on its location, 

it can be categorized as subcutaneous (SAT) or visceral fat (VAT). In addition to its lipid 

storage function, WAT is also an endocrine organ(9), secreting hormones, adipokines that 

impact whole-body metabolism.  

  

In contrast, brown adipose tissue (BAT) main function is heat production through 

energy consumption. This non-shivering thermogenesis is achieved thanks to the 

uncoupling protein-1(UCP-1) (10), which is expressed in mitochondria of BAT.  

 



32 

 

In this context, epicardial adipose tissue is deemed beige (or brite) adipose tissue 

(BeAT)(11). BeAT is an intermediate phenotype with features of both WAT and BAT. 

Indeed, BeAT cells originate from WAT through a process called ‘browning’. Eventually, 

they share classical characteristics of BAT such as high mitochondrial content and 

multilocular lipid droplets. The processes of browning or whitening remain a topic of 

active research, in particular for the browning of EAT(12). 

 

Figure 1-3 : Type of adipose tissue. Epicardial adipose tissue is deemed beige fat, 

with its characteristics varying between a predominant white or brown fat. 

1.1.3 Role of epicardial adipose tissue in cardiovascular 

diseases 

Under pathological conditions, EAT shifts from its cardio-protective role to an 

inflammatory substrate, promoting the development of cardiovascular diseases (CVD) 

such as coronary artery disease(13,14), atrial fibrillation(15,16) and heart failure(17).  

 

Indeed, EAT directly contributes to the development and progression of CVD not only 

because of its anatomical proximity with the heart and coronary arteries but mainly due 

its quantity and activity(18).  

The multifaceted complex mechanisms induced by EAT in these diseases include: 

- inflammation(19) by the secretion of pro-inflammatory cytokines (such as 

interleukin (IL)-6, tumor necrosis factors (TNF) and downregulation of anti-

inflammatory adiponectin  

- fibrosis (20) by production of profibrotic mediators 
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- fatty infiltration(21) 

- glucotoxicity(22) 

Moreover, EAT inflammation or accumulation have also been observed in patients with 

type 2 diabetes(23) (T2D) and obese(24,25). Thus, EAT is a well-established risk factor 

CVD and its accumulation has been defined as a biomarker(26).  

1.2 Epicardial fat characterization  

1.2.1 Molecular and Cellular characteristics 

 

The main component of the lipid droplets stored in adipocytes is triglycerides(27). 

Triglycerides consist of three fatty acids (FA) esterified to the three hydroxyl groups of 

glycerol. FA consist of a hydrocarbon aliphatic chain terminated by a carboxylic acid 

group. The nomenclature of its chemical structure is (X : YnZ) : with the chain length (X), 

the number of double bonds (Y) and position of the first double bond starting from the 

terminal methyl group of their chain (Z).  

Some FA contain double bonds, which induces a bend in the molecular structure. Fatty 

acids without it are called saturated fatty acids (SFA) whereas the others are called 

unsaturated fatty acids (UFA). Those UFA could be described more precisely as 

monounsaturated fatty acids (MUFA) if they have only one double bond or as 

polyunsaturated fatty acid(PUFA) otherwise. PUFA could be categorized into three main 

families according to the position of the first double bond (3rd, 6th, 9th carbon atom) 

starting from the terminal methyl group of their chain: ω -3, ω -6, ω -9.  

Linoleic acid (18:3n-6) and α-linoleic acid (18:3n-3) are considered essential to human 

because we are unable to synthesize it and can only be obtain through diet. 

The fatty acid profile of an adipose tissue can also be described in terms of mean values 

per triglyceride of number of double bonds (ndb), number of methylene-interrupted 

double bonds (nmidb) and the chain length (cl). This triglyceride model profile(28) is 

mostly used in-vivo in Magnetic Resonance Spectroscopy (MRS) or Magnetic Resonance 

Imaging (MRI) quantification.  
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Figure 1-4 : Schematic example of a triglyceride molecule structure. From top to 

bottom, it consists of a palmitic acid (16:0), an oleic acid (18:1n-9) and an α-linoleic acid 

(18:3n-3). Its triglyceride model profile is ndb=4, nmidb=2 and cl=17.33. Extracted from 

Wikipedia. 

1.2.2 Gas Chromatography 

 

Gas chromatography (GC) is the gold standard technique to evaluate the relative 

abundance of each fatty acid (QFA) in a sample. The process separates molecules from a 

mixture by injecting it at the entrance of a column containing a solid or liquid active 

substance called stationary phase, then passing through it using a carrier gas and 

depending of each molecule affinity with the stationary phase, they eluted and are 

detected at different time.  

Fatty acid profiles from various adipose tissues including EAT have been identified 

using GC and were summarized in Table 1-1. Indeed, EAT had a superior proportion of 

SFA compared to subcutaneous adipose tissue in advanced Coronary Artery Disease 

(CAD) population(29). Diabetic disease modified the fatty acids profile of EAT with a 

diminution of PUFA percentage(30).  
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Table 1-1 : Summary of fatty acids composition and triglyceride model parameters of different human adipose tissue 

estimated using gas chromatography.  

Study Subject Number 
Adipose 

tissue 
UFA SFA MUFA PUFA cl ndb nmidb Year 

Field et al.(31) healthy 20 SAT 73.77 26.23 58.84 14.93 17.39 2.74 0.52 1985 

Garaulet et al.(32) 
Obese 

overweight 

76 SAT 72.61 27.39 54.59 18.02 17.45 2.85 0.67 

2006 57 Perivisceral 69.19 30.81 51.66 17.53 17.42 2.72 0.65 

24 Omental 74.37 25.63 55.81 18.57 17.49 2.91 0.68 

Hodson et al.(27) healthy 7354 SAT 70.50 29.50 53.99 16.51 17.29 2.69 0.58 2008 

Pezeshkian et al.(29) CAD 42 
EAT 64.20 35.80 48.26 15.94 17.17 2.49 0.57 

2009 
SAT 72.42 27.58 54.86 17.56 17.25 2.79 0.62 

Lundbom et al.(33) healthy 10 SAT 70.64 29.36 58.29 12.35 17.39 2.60 0.48 2010 

Pezeskhian et al.(30) 

Diabetic 28 
SAT 68.49 31.51 53.15 15.34 17.19 2.58 0.52 

2013 
EAT 64.89 35.11 50.86 14.03 17.22 2.46 0.51 

No Diabetic 40 
SAT 72.23 27.77 54.84 17.38 17.26 2.78 0.61 

EAT 63.30 36.70 46.94 16.36 17.16 2.51 0.61 

Hjelmgaard et al.(34) 
At time elective cardiac 

surgery 
49 

EAT 64.60 35.40 51.93 12.67 17.40 2.48 0.54 

2018 PAT 65.06 34.94 52.39 12.67 17.39 2.46 0.51 

SAT 65.85 34.15 53.02 12.83 17.40 2.49 0.51 

Nemeth et al.(35) 
Healthy 

overweight 
13 SAT 61.90 38.10 49.77 12.12 17.10 2.25 0.40 2019 

Trinh et al.(36) Lymphedema patients 18 SAT 72.50 27.50 60.20 12.30 17.31 2.63 0.46 2020 
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1.2.3 Magnetic Resonance Spectroscopy 

The invasive nature of GC is less suitable for longitudinal, in-vivo study. As an non-

invasive alternative, MRS or MRI approaches have been used for FAC quantification(36–

42). 

FAC of an adipose tissue can be estimated using Magnetic Resonance (MR) since each 

hydrogen proton of the triglyceride molecule contributes to the MR signal(43). The 

position of those protons within the triglyceride molecule result in different resonance 

frequencies in the NMR spectrum ( Figure 1-5 and Table 1-2). The chemical composition 

of the adipose tissue is estimated by calculating the amplitude of those peaks which 

depending of the field strength can vary up to 10 different peaks resolution (Table 1-2). 

Hamilton(28) simplified the NMR triglyceride spectrum model by describing the 

theoretical amplitude of each peak with only three parameters: the number of double 

bonds (ndb), the number of methylene-interrupted double bonds (nmidb) and the chain 

length (cl).  

 

 

Figure 1-5 : Schematic illustration of a triglyceride molecule (top) and the 

corresponding MR spectrum (bottom). The letters refer to the peak assignments in 

Table 1-2. 
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Table 1-2 : Peak assignments and their corresponding chemical shift and 

theoretical amplitude expressed using the triglyceride model parameters (number 

of double bonds (ndb), number of methylene-interrupted double bonds (nmidb) 

and the chain length (cl)). The hydrogen atoms of interest are written in bold text. 

 

 

The MR-estimated parameters ndb and nmidb can be translated to SFA, MUFA, and 

PUFA according to the following set of equations: 

𝑆𝐹𝐴 = 1 −
𝑛𝑑𝑏 − 𝑛𝑚𝑖𝑑𝑏

3
   ;    𝑈𝐹𝐴 =

𝑛𝑑𝑏 − 𝑛𝑚𝑖𝑑𝑏

3
 

 

𝑀𝑈𝐹𝐴 =
𝑛𝑑𝑏 − 2𝑛𝑚𝑖𝑑𝑏

3
 + 𝑇𝑟𝑖𝑈𝐹𝐴    ;     𝑃𝑈𝐹𝐴 =

𝑛𝑚𝑖𝑑𝑏

3
 − 𝑇𝑟𝑖𝑈𝐹𝐴 

 

The fraction of triunsaturated fatty acids (𝑇𝑟𝑖𝑈𝐹𝐴) can either be ignored 𝑇𝑟𝑖𝑈𝐹𝐴=0 

(38) or be approximated by a fixed value of 2% (44). 

 

Fatty acid profiles and triglyceride model from various human adipose tissues have 

been identified using MRS and were summarized in Table 1-3. To our knowledge, there 

were no human EAT NMR spectrum documented in the literature at the time of this 

thesis.  

Peak Chemical shift(ppm) Type Proton Position Theoretical Amplitude 

A 0.90 Methyl -CH2 -CH3 9 

B 1.30 Methylene -(CH2)n-  6(cl-4)-8ndb+2nmidb 

C 1.59 β-Carboxyl -CH2 -CH2-COO 6 

D 2.03 α- Olefin -CH2 -CH=CH- 4(ndb-nmidb) 

E 2.25 α- Carboxyl -CH2 -CH2-COO 6 

F 2.77 Diacyl -CH=CH-CH2-CH=CH- 2nmidb 

G 4.10 Glycerol -CH2-O-CO 2 

H 4.30 Glycerol -CH2-O-CO 2 

I 5.21 Glycerol -CH-O-CO- 1 

J 5.31 Olefin -CH=CH- 2ndb 
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Table 1-3 : Summary of fatty acids composition and triglyceride model parameters of different human adipose tissue 

estimated using MRS.  

Study B0 Method Subject Number 
Adipose 

tissue 
SFA MUFA PUFA cl ndb nmidb Year 

Ren et 

al.(38) 
7T STEAM 

Healthy 

volunteers 
20 SAT 29.1(3.5) 49.4(4.8) 24.5(3.1)    2008 

Lundbom et 

al. (37) 
1.5T PRESS NAFLD patients 17 SAT   37.6(4.3)    2010 

Peterson et 

al.(39) 
3T STEAM 

Healthy 

volunteer 
1 SAT    17.9(0.4) 3.52(0.18) 0.71(0.05) 2013 

Hamilton et 

al.(40) 
3T STEAM 

NAFLD and 

obese subjects 
340 

VAT    17.51 2.72(0.19) 0.69(0.14) 

2017 dSAT    17.51 2.80(0.17) 0.75(0.13) 

vSAT    17.51 2.83(0.20) 0.74(0.15) 

Nemeth et 

al.(35) 
3T STEAM 

Male 

volunteers, 

sedentary 

21 

SAT     2.48(0.06) 0.58(0.03) 

2019 

VAT     1.90(0.16) 0.37(0.06) 

Trinh et 

al.(36) 
3T STEAM 

Lymphedema 

patients 
19 SAT 

4.3(4.3) 64.4(4.9) 31.3(5.6) 17.792 3.86(0.24) 1.02(0.11) 

2020 

5.1(4.3) 61.1(0.8) 33.9(3.5) 17.192 2.28(0.17) 0.173(0.08) 

Ouwerkerk 

et al.(42) 
3T PRESS 

Healthy 

volunteers 

17 WAT   48(23)    

2021 

16 BAT   30(22)    

cl : 1Fixed, 2expressed as ndb, nmidb : 3expressed as ndb
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1.3 Epicardial fat in Radiology 

Different imaging modalities have been identified to visualize and quantify EAT. 

Strengths and limitations of each of them have been summarized in Table 1-4. In a single 

exam, compared to Echocardiography and Cardiac Computed Tomography (CCT), cardiac 

MRI may offer a high-resolution volumetric quantification of EAT burden with 

measurement of heart function, morphology, perfusion.  

Table 1-4 : Imaging modalities to quantify epicardial adipose tissue. 

Imaging Modality Strengths Limitations 

Echocardiography 
Widely Available 

Low cost 

Moderately reproducible 

Only thickness quantification 

Cardiac Computed 

Tomography (CCT) 

Highly reproducible 

Volumetric quantification  

Automatic segmentation 

Density/attenuation 

quantification 

Radiation exposure 

Lack of myocardial 

characterization  

Cardiovascular 

Magnetic Resonance 

(CMR) 

Highly reproducible 

Volumetric quantification 

Fat characterization  

Coupled with complete 

cardiovascular 

characterization 

High cost, low availability 

Medium resolution 

Tedious manual segmentation 

 

1.3.1 Epicardial fat quantification in cardiac MRI 

Epicardial fat is visible on many routine cardiac MRI examinations. Indeed, in a 

standard protocol, the heart with its surrounding cardiac fat is mostly imaged along three 

anatomical views: short axis view (Figure 1-6.A), four-chamber view (Figure 1-6.B) and 

2-chamber view (Figure 1-6.C). However, the cardiac fat has long been considered as an 

obstacle in MRI: it is source of artifacts due to its hyperintensity, chemical shifted and 

partial volume effect, hiding epicardium and/or coronary arteries. Fat suppressed 
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imaging (Figure 1-6.D) using a fat saturation pulse remains often employed in routine 

and it is still a topic of research(45). 

 

 

Figure 1-6 : Epicardial fat imaging during a standard cardiac exam. On short-axis 

(A.), four chamber (B.),and two-chamber (C.) cine sequence. EAT appears as 

hyperintense whereas on Short-TI Inversion Recovery (STIR), it is hided. 

EAT evaluation using MRI is an emerging topic of research and its measurement is 

mostly performed manually whether on stack of short-axis cine(46–48) or in four-

chamber cine(49–51) for volumetric or area quantification respectively. The distinct 

segmentation of EAT from PAT using MRI is difficult since the pericardial fascia is not 

clearly visible, in particular on short axis views (Figure 1-7). However, cine temporal 

information often helps experts in this tedious task. 
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Figure 1-7 : Epicardial fat imaging during a cardiac cycle using short-axis cine (A) 

or four-chamber cine (B).  

At the time of the start of this thesis, only two methods (52,53) for automatic, or semi-

automatic, MRI-based EAT segmentation had been submitted in conferences. However, 

both studies had been demonstrated on very small sample sizes: less than 15 subjects 

each. Cristobal-Huerta et al. (52) developed an automatic pipeline including active 

contour and Law texture to segment EAT from a single cropped cine frame whereas 

Fulton et al. (53) provided a semi-automatic process using landmarks to unroll images 

into polar coordinates before using a neural network for segmentation of EAT, from a 

single cine frame as well. 

1.3.2 Model-based water/fat separation by chemical 

shift imaging 

Chemical shift encoded (CSE) MRI techniques exploit the differences in precession 

frequencies of water and fat tissues to identify them and even characterize fat tissues on 

a voxel level, at a high spatial resolution(54). CSE-MRI requires the acquisition of multiple 

images at different echo times (TEs), for the fat and water signals to accumulate different 

phase values, depending on their precession frequencies.  

Using a simplified model which assumes that the spectral peak(s) are known a priori 

(calibrated by MRS experiments), fat and water images are then separated.  
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1.3.2.a Simplified Model 

The original CSE-MRI method for fat water imaging was introduced by Dixon(55), 

based on a simplified model of the signal y(t) given by: 

𝑦(𝑡) = 𝑊 + 𝐹𝑒𝑖𝜔𝐵𝑡  Eq. 1-1 

where W and F are the water and fat signals and 𝜔𝐵 the difference of resonance 

frequencies of fat and water. In this model, the fat spectrum is assumed to be depicted 

with only one peak (B) corresponding to a chemical shift of 3.4 ppm relative to water. 

 

 In the original technique called two-point Dixon, specific echo times tIP and tOOP 

corresponding to Water and Fat signal to be in-phase or out-of-phase respectively are 

chosen to easily solve for Water and Fat image:  

 

𝑦(𝑡𝐼𝑃)  = 𝑊 + 𝐹           𝑦(𝑡𝑂𝑂𝑃) =  𝑊 −  𝐹 

 

𝑊 =
𝑦(𝑡𝐼𝑃) + 𝑦(𝑡𝑂𝑂𝑃)

2
      𝐹 =

𝑦(𝑡𝐼𝑃)  −  𝑦(𝑡𝑂𝑂𝑃)

2
 

 

However, this model (  Eq. 1-1) neglects the B0 field inhomogeneity, T2* relaxation 

time, initial phase error and also considered only one fat resonance which does not 

represent the complexity of the triglyceride spectrum (Figure 1-5). 

1.3.2.b Multi-peaks Model 

An iterative method based on the Iterative Decomposition of water and fat with Echo 

Asymmetry and Least-squares estimation algorithm (IDEAL)(56) has been developed to 

solve more general and realistic model signal given by: 

 

𝑦 = (𝑊 + 𝐹 ∑ 𝛼𝑚𝑒𝑖𝜔𝑚𝑡

𝑚

𝑚=1

) 𝑒(𝑖(𝜔0+𝜑0)−𝑅2∗)𝑡  

with W and F corresponding to water and fat absolute signal, 𝜔0 the off-resonance, 

𝜑0𝑡he initial phase, R2* the transversal decay and 𝛼𝑚, 𝑒𝑖𝜔𝑚  the relative amplitude and 

frequency offset of a fat spectrum respectively. 
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Since the development of IDEAL method, a diversity of advanced methods has emerged 

for the separation of fat and water signal. Whether utilizing magnitude or complex data 

fitting, algorithms can be based on voxel-wise(39,57–61), cluster(62,63), region(64–71), 

graph-cut(72–79) and more recently, deep learning(80–84) approaches. (Table 1-5). 

Magnitude-based approaches are more insensitive to phase errors and avoid the 

estimation of the challenging 𝜔0 field map but have a lower SNR performance(85) for fat-

water signal separation. Advanced complex-based approaches had a higher SNR 

performance but could suffer from fat/water swaps in the presence of highly 

inhomogeneous 𝐵0 field. The last benchmark of fat-water separation algorithms was 

organized during the 2012 ISMRM fat-water MRI Workshop on a multitude of in-vivo 

datasets(86).  
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Table 1-5 : Summary of fat and water signal separation algorithms published since 2012 ISMRM fat-water MRI Workshop. 

Approach Selected Work Description /Originality Validation Year 

Deep Learning Liu et al.(84) Multi-echo bidirectional convolutional residual network  V,C 2021  

Jafari et al.(83) U-net with unsupervised training V 2021  

Goldfarb et al.(82) U-net with water,fat, R2*and field-inhomogeneties output maps V 2019 

Andersson et al(81) U-net with water and fat output maps V 2019  

Cho et al.(80) 
Simple CNN and synthetic field inhomogeneity data augmentation 

method 

V 
2019  

Graph Cut 
Boehm et al.(79) 

Single-min-cut method with variable layer graph enabling irregular 

field-map spacing sampled  N,P,V 

2021  

Andersson et al.(78) 
Quadratic pseudo-boolean optimization multi-scale approach with 

spatial smoothing term 

C 2018  

Cui et al.(77) 
Single-min-cut method restricting field-map candidates to its local 

minima voxel-wise estimation (rGOOSE) 

C 2018 

Diefenbach et al.(76) Incorporation of a priori information of the magnetic field distortions  N,V 2018 

Berglund et al.(75) Quadratic pseudo-Boolean optimization multi-scale graph-cut C 2017  

Stinson et al.(74) graph-cut with constrained phase model on dual echo P,V,C 2017 

Cui et al(73) Single-min-cut method (GOOSE)  C 2015  

Berglund et al.(72) Quadratic pseudo-boolean optimization graph cut V 2012 

Region Based 
Peng et al.(71) 

Region growing extension based on extraction of fat-water transition 

region instead of seed pixels 
N,V,C 

2020 

Bydder et al.(70) IDEAL method with constrained parameters  N,V 2020 

Cheng et al.(69) 
Self‐feeding phasor estimation with multi-level resolution region‐

growing 

C 2017 

Zhang et al.(68) Binary quadratic optimization on dual-echo Dixon  V 2017 

Wang et al.(67) Region growing dedicated to spiral 3 point Dixon method N,V 2016 
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N: Numerical, P :Phantom, V: In-vivo, C :ISMRM Challenge 2012 

NLSQ : Non Linear Least Squares

Approach Selected Work Description /Originality Validation Year 

Region Based 
Liu et al.(66) 

Method based on pixel wise magnitude fitting in parallel to region 

based field map estimation  

C 2015 

Soliman et al.(65) Region-based labeling  V 2014 

Yu et al.(64) 

fat likelihood analysis by identifying fat- and water-dominant pixels by 

exploiting the fitting residuals of two different signal models as 

complementary information 

V 2012  

Tsao et al.(87) Hierarchical IDEAL 2D multi-resolution optimization  P,V 2012 

Cluster Based Siracusano et al.(63) K-means clustering for addressing spatial variation of fat spectra V,C 2018 

Romu et al.(62) 
Fat-water separation pipeline with tissue magnitude based clustering, 

phase unwrapping on dual echo Dixon  

V 2017 

Voxel-wise 
Bagur et al.(61) 

NLSQ magnitude fitting using the multistart Levenberg–Marquardt 

algorithm  

N,P,V 2019  

Leporq et al.(60) NLSQ fitting using the multistart Levenberg–Marquardt algorithm P,V 2015 

Leporq et al.(59) Multi-step fitting approach  N,P,V 2014 

Zhong et al.(58) 
Multi-step magnitude NLSQ fitting approach using Levenberg–

Marquardt algorithm 

N,V 2014 

Leporq et al. (57) Magnitude based method with a signal model with T2* and T1 effect P,V 2013 

Peterson et al.(39) 
Iterative method to solve a signal model with an additive phase and 

amplitude errors due to magnetic field distortions 

N,P,V 2013 
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1.3.3 Chemical-shift encoded imaging acquisition 

strategies 

An important consideration for the acquisition strategy is the choice of echo times. 

Indeed, depending on the algorithms used, the acquisition scheme can be required to have 

a fixed number of echoes(67,80–84), equidistant echo time spacing(75,78) or specific 

echo times such as in/out-of phase(55,62). CSE-MRI sequences based on gradient echo or 

spin echo have been used to acquire data at multiple echoes times with whether single 

echo acquisitions repeated multiple times at different TEs or multi-echo acquisitions 

where multiple echo TEs are successively acquired for each TR (Figure 1-8).  

 

Figure 1-8: Multi-echo gradient echo (GRE) MRI sequence diagram using 

monopolar(A) and bipolar (B) readout gradients. RF: radiofrequency, α: flip angle, 

Gslice : slice select gradient, Gphase : phase encoding gradient, Greadout : frequency encoding 
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gradient, TE1: first echo time, ΔTE: echo time spacing, TR: repetition time. MR sequence 

diagrams were generated using the mrsd toolkit(88). 

The multi-echo acquisitions, more commonly used nowadays due to shorter scan time, 

can be categorized into monopolar or bipolar depending on the gradient readout. In 

monopolar mode, k-space trajectory is acquired in one way and there is a pause in data 

acquisition during the fly-back gradient. In comparison, in bipolar mode, k-space 

trajectory is acquired in two way thanks to alternative readout polarity allowing shorter 

echo spacing and therefore a shorter acquisition time. Bipolar readouts are more efficient 

than monopolar readouts but also more sensitive to inconsistent phase errors (89) due to 

system imperfections and eddy currents and require phase correction techniques. For 

more flexibility in the choice of echo times, interleaved multi-echo acquisitions could also 

be used. 

1.4 Artificial intelligence dedicated to 

epicardial fat segmentation 

In radiology for automatized the quantification of epicardial adipose tissue, different 

algorithms have been explored using atlas-based(90,91), active contours(52) and more 

recently deep learning approaches(53,92–94).  

In this chapter, I will thus introduce basic notion of deep artificial neural networks by 

analyze in depth the most popular 2D segmentation for biomedical images(U-Net(95)) 

which is often the fundamental component of many state-of-the art segmentation cardiac 

MRI approaches. 

U-Net is a fully convolutional neural network (FCN)(96), designs with an encoder-

decoder structure (Figure 1-9). Given an input image, it learns high level feature 

representation though the encoder part. In the decoder part, it interprets those feature 

maps, gradually recovers spatial details back to the image space to produce k-class pixel-

wise probabilistic map (layer in yellow) and assigns each pixel with the class of the 

highest probability to finally obtain the segmented mask. In the figure, the network would 

predict four regions: epicardial fat in blue, paracardial fat in green, heart ventricles in red 

and the background.  
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Figure 1-9 : Architecture of the Fully Convolutional Network U-Net. 

The U-Net consists of a stack of functional layers including convolutional layer (in 

blue), down-sampling layer (in orange), up-sampling layer (in-green). The particularity of 

its network is to employ skip connections (black arrows) between the encoder and 

decoder to recover spatial information lost in down-sampling layers, resulting in a more 

precise segmentation. 

As shown in Figure 1-10, a convolutional layer contains n convolution kernels which 

is followed usually by a normalization layer like batch normalization(97) (not shown 

here) and a non-linear activation function (e.g. ReLU) to extract n feature maps. The 

down-sampling layer decreases the size of those features maps, for multi-resolution 

features whereas the up-sampling layer (e.g transposed convolution) aims to increase the 

size of the output to reach back the size of the input image. 
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Figure 1-10: Outline of the different functional layers present in the U-net : the 

convolutional layer with activation function (A), the down-sampling layer(B), the 

up-sampling layer (C). Highlighted regions show the calculation process of each layer.  

For supervised approaches, the neural network requires to be trained before it can be 

used it for its specific task (e.g. semantic segmentation). The standard training process 

requires to divide your dataset into 3 parts: training, validation, and test sets, that all 

contain paired images and manually segmented mask (ground truth labels). During the 

training, at each iteration, a loss function (e.g. cross-entropy loss) calculates the network’s 

prediction error. This error is then used by an optimizer (e.g., stochastic gradient descent, 

Adam method(98)) to update network parameters (e.g. kernel weights) through 

backpropagation(99). The training’s goal is to find optimal values that minimize the loss 

function but also avoid over-fitting (loss of generalization) of your training dataset.  
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Chapter 2 : Quantitative evaluation of 

epicardial fat overload from routine cardiac 

MRI 

2.1 Synthesis 

Context & motivation 

In recent years, EAT is increasingly being recognized as a biomarker of risk of 

cardiovascular complication in multiple pathologies, most notably in diabetes and 

obesity. However, in cardiac MRI, EAT has often been overseen in diagnosis due to the 

limited spatial resolution to identify EAT and the corresponding time-consuming manual 

segmentation. Consequently, EAT quantification methods using MRI are still in their 

infancy compared to using Cardiac Computed Tomography (CCT) imaging where semi-

automatic, deep-learning based approaches have already been well developed. To reduce 

the gap and facilitate analysis of EAT in MRI, this study proposed an automatic four-

chamber area quantification using cine multi-frame Fully Convolutional Networks (FCN). 

  

Methods & results 

A retrospective mono-centric database with 100 subjects (including healthy controls, 

type-2 diabetic patients and non-diabetic obese patients), who underwent a CMR exam at 

3T including full stack short-axis cine and four-chamber cine (4-Ch cine), was gathered to 

evaluate FCNs performance and the correlation between total EAT volume and 4-Ch cine 

EAT area. U-Net and FCN developed by Bai (noted FCNB) were optimized using 4-fold 

cross-validation (n=80) and evaluated on an independent dataset (n=20).  

Our database showed a moderate correlation between EAT volume and four-chamber 

area (r = 0.77 and 0.74 in systolic and diastolic frame respectively). On the test dataset, 

networks performance was equivalent to inter-observers' bias (for EAT: DSCInter = 0.76, 

DSCU-Net = 0.77, DSCFCNB = 0.76). U-Net was better suited to provide EAT area 

estimation compared to FCNB. 
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Conclusion, limits & perspectives 

The following chapter has been accepted as a full paper untitled Deep-Learning 

Segmentation of Epicardial Adipose Tissue Using Four-Chamber Cardiac Magnetic 

Resonance Imaging to Diagnostics on 29 December 2021. Beyond the publication, we 

decided to provide a publicly automatic EAT area segmentation that offers the possibility 

to quantitatively evaluate EAT on standard cardiac imaging, in both retrospective and 

prospective cardiac studies. However, those FCNs were trained and assessed only on a 

mono-centric database which limited its generalization across scanners, pathologies. 

Moreover, those approaches have shown limitations and the dynamic aspect of images 

has not been sufficiently exploited. The development of new kinds of FCNs based on 

temporal modules such as Convolutional Long Short-Term Memory (ConvLSTM)(100) 

could improve the accuracy of the automatic segmentation of this epicardial fat and be 

trained over a more generalized database such as the UK biobank(101). To strengthen 

models to clinical routine, data augmentation based on real MRI artifacts(102) and 

automatic evaluations of the network accuracy with a predicted quality score(103) is also 

important extension to this work. 

After detection of patient at risk, it would be of interest to probe fatty acid profile EAT 

with a specific acquisition as EAT has been found to differ in composition between 

diabetic and non-diabetic patients(30). 

 

Personal contributions 

Before the deep-learning approaches investigation of this study, I have first explored 

non-supervised algorithms based on active contour to segment epicardial and paracardial 

fat. However, this approach did not succeed due to unsatisfying results and too many 

parameters to configure. That is why, I decided to study FCNs by training and optimizing 

over a retrospective database that I organized for facilitating the process. I performed a 

thorough review of FCN literature. In parallel, I followed on-line training (MOOC, Stanford 

machine learning class records) to reinforce my knowledge and be up to date in Deep-

Learning. Upon completion of my training, I designed the networks dedicated to this 

study, and harvested the same database I had gathered from the previous experiments 

with active contours to train the two elected FCNs. I also conducted the statistical analysis, 

prepared all the figures, and drafted the paper. 
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Finally, once the study was complete and the manuscript was ready to be submitted, I 

integrated the optimized U-Net in FSLeyes plugin to facilitate its availability to the 

community.  
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2.2 Introduction 

Epicardial adipose tissue (EAT) is a visceral fat depot surrounding the heart between 

the myocardium and the pericardium (18). Its volume quantification holds potential as a 

novel biomarker for risks of Coronary Heart Disease (CHD) (104). Pericardial fat, merging 

EAT and paracardial (PAT) fat, has been studied in the past in association with 

atherosclerotic disease (105) but these results have since been heavily criticized (106). 

The inclusion of two fats depots as one single entity may not reflect the separate functions 

and clinical implications of each adipose tissue. Indeed, recent studies focusing on 

separating EAT and PAT concluded that EAT alone was involved in the corresponding 

disease (107,108). Indeed, EAT is a metabolically active adipose tissue (18) compared to 

PAT. Its accumulation and subsequent inflammation add to cardiovascular risks, 

potentially impacting left ventricle (LV) diastolic dysfunction (8,109). Even more recently, 

EAT overload has raised concern as a risk factor in generalized inflammation from COVID-

19 (110,111). It is now recognized that the amount of EAT is prospectively and 

independently associated with the number of coronary events in at-risk populations 

(112). Consequently, reproducibly quantifying EAT is a major public health objective 

aiming at a better identification of patients at high cardiovascular risk. EAT can indeed be 

visualized from standard cardiac Magnetic Resonance Imaging (MRI) images, but its 

analysis is currently not performed in clinical routine, because the necessary manual 

image segmentation is extremely time-consuming, and its measurement is not sufficiently 

standardized. 

Different imaging modalities have been proposed to quantify EAT burden. 

Transthoracic echocardiography, forefront modality in cardiology, was used to measured 

EAT thickness on the free wall of the right ventricle (113). However only a single distance 

measurement was used to estimate EAT volume, strongly limiting the precision of this 

method because EAT is irregularly distributed around the heart. Cardiac Computed 

Tomography (CCT) imaging has become the gold standard for the quantification of EAT 

volume (114). In more recent studies, semi-automatic and deep learning methods have 

been implemented to achieve the EAT segmentation (93,115). However, the requirement 

of high spatial resolution CCT led to the use of elevated ionizing radiation doses, which 

could be a risk for patients’ follow-up.  
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Cardiac MRI is a versatile tool than can measure cardiac function, morphology, 

perfusion and characterizes myocardial tissue in a single exam (116). Cardiac MRI is also 

highly sensitive to fat, which has long been considered as an obstacle for myocardial 

visualization. Cardiac fat remains under-appreciated as a diagnostic feature of cardiac 

MRI. To specifically probe fat around the beating heart with MRI, one can use a dedicated 

acquisition technique such as water-suppressed MRI (117) or Dixon MRI (3D) (118,119). 

Alternatively EAT volume may also be measured from a routine stack of short-axis cine 

images (46). EAT quantification is usually performed manually, which is a time-

consuming and tedious task subjected to inter-observer variability. To help observers, 

first the cine temporal information could ease distinguishing EAT from paracardial fat. 

Indeed, EAT is attached to the myocardium and moves at pace with cardiac contraction 

and torsion, whereas PAT is only moderately pulled by the cardiac contraction and 

expansion. Second, while the pericardial fascia is not clearly visible on short axis views, 

which often reduced to a thin line that may be blurred by partial volume effects, on four-

chamber (4Ch) views, the pericardium is generally less affected by partial volume effects 

resulting in better visualization. As such, the four-chamber view is recommended for 

evaluating pericarditis (120) and is a frequent choice of orientation to quantify EAT, PAT 

and pericardial fat(49–51,121–123). Consequently, the EAT analysis in this study were 

based on quantification of its 2D area representation in 4Ch long-axis cine MRI views. To 

address specifically this kind of segmentation challenges, deep learning approaches have 

recently bloomed. Indeed, fully automated methods applied on routine images, such as 

cine MRI, could be rapidly translated to the clinics. Bard et al.(121) developed a deep 

learning method to quantify pericardial fat in 4Ch long-axis cine MRI and evaluated it on 

the UK BioBank dataset. However, the segmentation of pericardial fat (EAT +PAT) limits 

the evaluation of the distinct roles and clinical implications of epicardial fat compared to 

paracardial fat. 

Thus, we propose here to segment the thin EAT area on 4Ch cine MRI multi-frame 

images using state-of-the-art Fully Convolutional Networks (FCNs) for cardiac image 

segmentation, that were adapted to segment EAT, PAT and cardiac ventricles. A specific 

database of 4Ch cine MRI spanning diabetic, obese and healthy subjects was leveraged to 

train, validate, and evaluate proposed FCN networks. 
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2.3 Materials and Methods 

2.3.1 Study Population 

A retrospective mono-centric database was defined totaling 153 subjects, out of which 

100 exams could be exploited. The 100 enrolled subjects including healthy controls, type-

2 diabetic patients and non-diabetic obese were selected based on 4Ch orientation and 

the absence of severe artifacts as shown in Figure 2-1. 

 

Figure 2-1.Overview of the study design 

 

Patients were defined as having type 2 diabetes mellitus if they fulfilled any of the WHO 

criteria: HbA1c ≥ 6.5%, FBG level ≥ 7.0mmol/L, oral glucose tolerance test result ≥ 

11.1mmol/L, or current treatment with antidiabetic agents. Obese non-diabetic patients 

were defined as the absence of any WHO criteria and a BMI ≥ 30 kg/m2. All enrolled 

subjects had normal left ventricular function, no history of heart failure or coronary heart 

disease.  
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2.3.2 MRI acquisition 

All subjects underwent cardiac MRI including the acquisition of a full stack of short-

axis slices and a single slice four-chamber cine on a 3-T Siemens Verio system (Siemens 

Healthineers, Erlangen, Germany) with a dedicated cardiac 32-channel coil array (Invivo, 

Gainesville, FL, USA). The cine series were acquired with a retrospectively ECG-gated 

balanced steady-state free precession (bSSFP) sequence with in-plane image resolution 

varying from 1.3x1.3 mm2 to 1.8x1.8 mm2 (depending on subjects), slice thickness of 

6mm, TE/TR=1.2/3.2ms, GRAPPA 2 (24 auto-calibration signal lines), temporal 

resolution of 28-35ms, with 25 frames reconstructed. Further details of the cardiac MRI 

protocols were previously described (46–48,124,125). N4 bias field correction (126) was 

applied to all image series before further processing. 

2.3.3 EAT segmentation 

For reference, EAT volume was segmented by expert readers provided with full stack 

short-axis series using Argus viewer (Siemens Medical Solutions, Erlangen, Germany). In 

an independent session, two expert readers were provided with full 4Ch series and 

performed blinded segmentation of 3 labels using the FSLeyes(127) viewer: heart 

ventricles (HV) (including both ventricle muscles and blood pools), epicardial (EAT) and 

paracardial (PAT) adipose tissues. EAT was defined as hyperintense signal within the 

pericardium around the ventricles. Peri-atrial fat was not included as it has been shown 

that peri-ventricle EAT alone had a stronger correlation with coronary diseases than total 

EAT(50). All isles of periventricular fat were included to form EAT area. PAT was defined 

as fat adjacent but outside the pericardium. Segmentations were performed on 3 cardiac 

phases determined by readers having the entire series at their disposal: first phase, peak 

systole and late diastole. The three segmented masks were propagated to the remaining 

frames using an automatic label propagation algorithm based on non-linear registrations, 

as previously described (128) resulting in 25 images segmented per subjects. Series in the 

test dataset were segmented by both readers, and reader 1 repeated blinded 

segmentations 6 weeks later. 
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2.3.4 Network architecture 

Two different Fully Convolutional Networks (FCNs) were investigated: U-Net(95) with 

48 filters for the first layer and FCN developed by Bai et al.(129) with 48 filters for the 

first layer, later referenced as FCNB. These networks are based on an encoder-decoder 

structure but differ in their decoder structure. The encoder part processes an image of 

arbitrary size as input and applies convolutional layers for extracting image features 

while the decoder upsamples and combines low-resolution featured map to the original 

input resolution. The absence of a dense layer allows these networks to process images of 

various sizes. 

The U-Net(95) has been the most popular 2D segmentation network for biomedical 

images and a fundamental component of many state-of-the-art cardiac image 

segmentation approaches(130–132). The specificity of the U-Net is to employ skip 

connections between encoder and decoder to recover spatial information lost in 

downsampling layers as shown in Figure 2-2. 

The second network investigated is the FCN developed by Bai et al.(129), later referred 

to as FCNB. FCNB has demonstrated excellent segmentation performances on the largest 

available cardiac MR dataset (UK-Biobank). Its specificity is based on the decoder that 

only consists of the concatenation of all featured maps, upsampled to the original 

resolution, as shown in Figure 2-2. 
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Figure 2-2. Networks’ optimized architecture. The two networks evaluated in this 

study: U-Net and fully-convolutional network (FCNB) architectures included a first 3D 

convolution layer to allow multiple cardiac frames as input. Following 2D convolution 

layers encoded images from 48 features up to 768 features. Eventually, the decoder 

targeted 3 labels for segmentation in the central input frame: epicardial adipose tissue 

(EAT), paracardial adipose tissue (PAT) and heart ventricles (HV) 

 

In their original papers, the cross-entropy loss was used to train those networks. 

However, this loss has shown limits to address class imbalance. In our study, regions of 

interest (ROI) were sparsely represented compared to the background and cross-entropy 

loss is inadequate to handle it. Thus, the loss function was defined as the mean dice 

between the probabilistic label map without background and the manually annotated 

label map. 

2.3.5 Training 

Specifically, optimized FCNB and U-Net were trained on 3 consecutive cine frames for 

segmentation of the central frame, providing a crucial temporal information often 
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necessary for the experts to segment EAT. Input images were normalized to the range of 

[0,1] with fixed size (256x192x3), mask zero-padding or cropping was applied when 

needed. 

For each batch (N=30), on-the-fly data augmentation was performed using rotational 

transformation and/or image scaling before feeding them to the network. Both data 

augmentation were set using a random clipped normal distribution spanning from -

30°/0.4 up to 30°/1.6 for rotational transformation and image scaling respectively. The 

Adam optimization(98) was used for minimizing the dice loss function with a constant 

learning rate of 1e-3. It took approximatively 35 minutes to train either the U-Net or FCNB 

on a Graphics Processing Unit (GPU) (NVidia Tesla K80). 

The networks investigated were implemented using Python within the TensorFlow 2 

framework. The FCNB model was adapted from the original implementation(133), 

whereas U-Net was custom-designed. To adapt to the proposed multi-frame approach, 

both 2D networks were modified to accept 2D+t inputs, considering the cardiac time 

dimension as a 3rd dimension with limited horizon. Thus, the first convolution layer of 

each network was replaced with a 3D convolution layer with valid padding. The following 

layers were kept identical, processing extracted features independently of the input 

dimensions. 

To perform a robust evaluation, networks were trained using cross-validation and 

evaluated on an independent dataset: the database was split in 5 subsets (500 images / 

20 subjects each reflecting our database populations distribution: 4 healthy controls, 13 

type 2-diabetics, 3 nondiabetic obese patients). One subset (500 images) was used as a 

test set whereas the 4 other subsets were used for stratified cross-validation training, 

resulting in a 4-fold cross-validation. Thus, a single subset is retained as validation (500 

images) whereas the 3 others (1500 images) are used for training, ensuring that 

validation and training dataset reflects the database population distribution. 

2.3.6 Evaluation metrics 

Segmentation performances were evaluated for accuracy, propinquity, and surface 

estimation error. Dice similarity coefficient (DSC) measured segmentation accuracy from 

the overlap between the manual and automatic segmented surfaces (SM and SA), defined 

as:  
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𝐷𝑆𝐶 = 2 
𝑆𝑀 ∩ 𝑆𝐴

𝑆𝑀 + 𝑆𝐴
 

The Mean Surface Distance (MSD) calculated the propinquity between segmentations 

as is the mean distance (in mm) between segmented contours, defined as:  

𝑀𝑆𝐷 =
1

𝑛𝑀 + 𝑛𝐴
((∑ 𝑑(𝑘, 𝑆𝐴)

𝑛𝑀

𝑘=1

)) + (∑ 𝑑(𝑘, 𝑆𝑀)

𝑛𝐴

𝑘=1

)) 

To evaluate the clinical final purpose, which is the quantitative measurement of EAT 

area, Absolute Relative Surface Error (RSE) was utilized, defined as: 

𝑅𝑆𝐸 =
|𝑆𝑀 − 𝑆𝐴|

𝑆𝑀
 

 

To further assess accuracy, positive predicted value (PPV) which is an indicator of 

over-segmentation (PPV << 1) was calculated on the entire database, defined as: 

𝑃𝑃𝑉 =
𝑆𝑀 ∩ 𝑆𝐴 

𝑆𝐴 
 

2.3.7 Statistical analysis 

Statistical analysis was conducted using R (version 3.6.3) (134). Analysis of linear 

regression was used to study the correlation between manually evaluated EAT volume 

and 4Ch area. The metrics’ distribution normality was assessed using the Shapiro-Wilk 

test. Wilcoxon signed rank and Wilcoxon rank sum tests were used to investigate 

significant differences for each metrics between intra-inter observers and FCNs. To 

account for segmentation difficulty and clinical relevance (26) that scale with the quantity 

of EAT, networks’ performances were assessed per quartile of manually segmented EAT 

area ( Q1< 8.22 cm2 ≤ Q2 < 12.70 cm2 ≤ Q3 < 15.55 cm2 ≤ Q4). 

2.4 Results 

The selected 100 subjects were divided into three groups (21 healthy controls, 67 type-

2 diabetic patients and 12 non-diabetic obese patients) as detailed in Table 2-1. 

 

Table 2-1. Study population clinical characteristics. 
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  Healthy Non-diabetic 

obese 

Type-2-diabetic 

Clinical characteristics    

 Number of participants 21 12 67 

 Age, years 25 ± 10 41 ± 13 53 ± 10 

 Gender: female, n (%) 11 (52) 10 (83) 41 (61) 

 BMI, kg/m² 21.9 ± 2.6 40.8 ± 5.9 35.6 ± 6.8 

T2D    

 Duration of diabetes, years   8±6 

Cardiovascular risk factors, n (%)    

 Hypertension 6 (29) 1 (8) 32 (48) 

 Dyslipidaemia 2 (10) 1 (8) 36 (54) 

 Current Smoker, n (%) 3 (14) 1 (8) 8 (12) 

 

In studied database, EAT volumes spanned a wide range from 29 to 376 cm3, defining 

quartiles by: Q1< 77.8 cm3 ≤ Q2 < 94.6 cm3 ≤ Q3 < 114.3 cm3 ≤ Q4. 

Corresponding EAT areas as measured on 4Ch views correlated well with total EAT 

volume measured from the stack of short-axis cine (Figure 2-3) with a slightly higher 

correlation in systole (Pearson r = 0.77) than in diastole (Pearson r = 0.74). Thus, a wide 

range of EAT 4Ch areas was available from 1.2 cm2 to 37.2 cm2, with a lower range for 

healthy subjects from 2.5 to 13.7 cm2, from 1.2 cm2 to 23.2 cm2 for non-diabetic obese 

subjects and from 5.3 cm2 to 37.2cm2 for type 2 diabetic patients. 
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Figure 2-3. Comparison of reference total epicardial fat volume and proposed 

EAT area measured on four-chamber cine. EAT area was measured in end-systolic or 

end-diastolic frame across the 100 subjects’ database. The three cohorts merged for the 

database were identified by markers color. 

 

As shown in Table 2-2, intra and inter-observer DSC confirmed excellent 

reproducibility for HV segmentation (DSCIntra= 0.98 and DSCInter= 0.96 resp.). EAT and PAT 

differed between the two observers (DSCInter= 0.76 and 0.78 for EAT and PAT resp.), 

although segmentations performed twice by the same observer proved to be more 

reproducible (DSCIntra=0.83 and 0.85 for EAT and PAT resp.). Intra-observer DSC and MSD 

were significatively lower (p<0.05) concerning EAT segmentation in the diastolic frame 

compared to the segmentation in the systolic frame. For inter-observer bias, differences 

in DSC, MSD or RSE metrics were not statistically significant between diastolic and systolic 

frames. 

FCNB and U-Net segmentations performance measured by DSC, were significantly 

lower (p<0.05) than intra-observer bias for all labels (for EAT: DSCIntra = 0.83, DSCU-Net = 

0.77, DSCFCNB = 0.76). Both networks provided equivalent DSC, MSD and RSE performance 

than inter-observer bias for all labels (for instance PAT: DSCInter = 0.78, DSCU-Net = 0.80, 

DSCFCNB = 0.78).  
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Table 2-2 : Mean values and standard deviations of segmentation results on the 

test set. 

 
DSC MSD (mm) RSE (%) 

Intra Inter U-Net FCNB Intra Inter U-Net FCNB Intra Inter U-Net FCNB 

PAT 
0.85 

±0.06 

0.8 

±0.09 

0.80 

±0.08 

0.78 

±0.10 

1.15 

±0.63 

2.08 

±1.49 

2.38 

±1.78 

2.29 

±1.47 

11.78 

±8.09 

20.43 

±18.77 

14.29 

±10.44 

17.43 

±17.50 

EAT 
0.83 

±0.07 

0.76 

±0.10 

0.77 

±0.07 

0.76 

±0.07 

1.53 

±1.32 

2.65 

±2.98 

1.71 

±1.06 

2.06 

±1.96 

13.02 

14.59 

17.67 

±15.07 

20.33 

±15.70 

20.97 

±15.66 

EAT+PAT 
0.90 

±0.04 

0.88 

0.05 

0.88 

±0.06 

0.88 

±0.06 

1.12 

±0.66 

1.55 

±0.07 

1.36 

±0.90 

1.60 

±1.28 

6.92 

±7.16 

9.20 

±6.80 

7.36 

±9.40 

8.92 

±12.97 

 HV 
0.98 

±0.01 

0.96 

0.02 

0.97 

±0.02 

0.96 

±0.03 

0.96 

±0.5 

1.88 

±2.24 

1.33 

±0.79 

1.42 

±0.89 

2.33 

±2.20 

3.69 

±3.18 

3.88 

±4.46 

4.22 

±5.80 

Metrics are reported as mean values ± standard deviation.  

Systole and diastole segmentations were not differentiated in these metrics.  

PAT : Paracardial Fat, EAT : Epicardial Fat, EAT+PAT: Pericardial Fat, HV : Heart ventricles 

DSC : Dice similarity coefficient, MSD :Mean Surface Distance RSE : Absolute Relative 

Surface Error 

 

Across the 4 quartiles of data defined by equally populated ranges of EAT areas, both 

networks provided reliable segmentation of the heart ventricles (HV, FCNB: DSCQ1-Q4 = 

0.97-0.96, U-Net: DSCQ1-Q4 = 0.97) as shown in Table 2-3. Interestingly, the network 

performances to segment EAT strongly depended on the population quartile. Indeed, U-

Net DSC was significantly higher (p<0.001) for upper quartiles as observed using U-Net: 

DSCQ4 = 0.83 > DSCQ3 = 0.80 > DSCQ2 = 0.76 > DSCQ1 = 0.69 as illustrated in Figure 2-4. DSC 

and RSE metrics demonstrated a gap of segmentation quality between the lower two 

quartiles and the upper two quartiles for both PAT and EAT segmentation (for EAT FCN: 

RSEQ4 = 15.60, RSEQ3 = 15.87 < RSEQ2 = 21.91 < RSEQ1 = 27.98). Across all quartiles, both 

networks had more difficulty separating PAT from EAT than identifying total pericardial 

fat (EAT+ PAT) in the image (with U-Net, RSEEAT+PAT << RSEEAT or RSEPAT for all quartiles). 

Over the database and for all labels, U-net outperformed (p<0.0001) FCNB for 

segmenting accurately (DSC), nearer to the ground truth (MSD) and thus providing a more 

reliable (i.e. accurate) measurement (RSE). 
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Table 2-3. DSC, MSD, RSE metrics evaluated per quartile (Q1-Q4) of EAT area for 

U-Net and FCNB. 

Q1 

 

DSC MSD (mm) RSE (%) 

U-Net FCNB U-Net FCNB U-Net FCNB 

Paracardial Fat (PAT) 0.55 0.53 5.82 5.69 36.21 38.54 

Epicardial Fat (EAT) 0.69 0.67 2.14 2.21 22.15 27.98 

Pericardial Fat (EAT+PAT) 0.78 0.77 1.60 1.78 2.08 2.65 

Heart ventricles (HV) 0.97 0.97 1.12 1.35 12.59 16.19 

Q2 

 

DSC MSD (mm) RSE (%) 

U-Net FCNB U-Net FCNB U-Net FCNB 

Paracardial Fat (PAT) 0.76 0.75 2.68 2.82 17.29 20.83 

Epicardial Fat (EAT) 0.76 0.74 1.22 1.53 17.85 21.91 

Pericardial Fat (EAT+PAT) 0.87 0.87 1.16 1.35 7.55 8.60 

Heart ventricles (HV) 0.97 0.97 1.11 1.65 2.57 3.04 

Q3 DSC MSD (mm) RSE (%) 

 U-Net FCNB U-Net FCNB U-Net FCNB 

Paracardial Fat (PAT) 0.82 0.82 2.26 1.99 12.72 12.14 

Epicardial Fat (EAT) 0.80 0.79 1.30 1.47 13.49 15.87 

Pericardial Fat (EAT+PAT) 0.90 0.90 1.37 1.43 5.86 5.28 

Heart ventricles (HV) 0.97 0.97 1.08 1.50 2.54 3.07 

Q4 DSC MSD (mm) RSE (%) 

 U-Net FCNB U-Net FCNB U-Net FCNB 

Paracardial Fat (PAT) 0.80 0.78 2.46 3.12 13.65 16.72 

Epicardial Fat (EAT) 0.83 0.79 1.40 2.06 11.72 15.60 

Pericardial Fat (EAT+PAT) 0.91 0.90 1.40 1.84 5.64 6.43 

Heart ventricles (HV) 0.97 0.96 1.31 2.60 3.20 4.52 
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Figure 2-4. Representative segmentation results for each population defined by 

quartile of EAT area. Images were cropped around the heart for visualization. White 

arrows point out discrepancies between manual and automatic segmentations. As 

detailed in the methods, only periventricular EAT was segmented.  

 

FCNB and U-net performed significantly better (p<0.05) for segmenting EAT area on 

the systolic frame compared to the diastolic frame (DSCUNet-diastole = 0.76 DSCUNet-systole = 

0.80). These differences were not significant in PAT (see Supportive Information Figure 

S 2-1). 

Classification of our database split by quartile of EAT burden was observed by 

confusion matrices. From Figure 2-5, the confusion matrices diagonal (in green) gave a 

measure of correct classification (66 % for FCNB and 71% for U-Net), whereas the 

subdiagonal and the superdiagonal (in yellow) allowed evaluating a misclassification by 
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one quartile (32% for FCNB and 27% U-Net) and the 2nd subdiagonal and superdiagonal 

(in red) gave an estimate of a misclassification by two quartiles (2 % for FCNB 2% for U-

Net). As shown by subdiagonal confusion matrices and confirmed by PPV, FCNB 

significantly over-estimated EAT area compared to U-Net (PPVFCNB = 0.73 < PPVU-Net = 

0.75, p<0.0001). 

 

Figure 2-5. Quartile classification results from EAT area estimated from 

networks segmentation against classification from manual EAT area. Only 

segmentations from preferred systolic frames were shown here. 

2.5 Discussion  

This study aimed at providing a rapid and fully integrable evaluation of epicardial fat 

burden. To achieve this evaluation, automated segmentation of the EAT layer was 

performed on four-chamber cine MRI series using Deep Learning approaches. 

2.5.1 Four-chamber-view intrapericardial fat area is a 

relevant measure of EAT 

Confirming previous literature (49,122), the correlation found in this work between 

EAT area and volume across a wide range of EAT volumes (from 29 to 376 cm3) comforted 

the relevant use of four-chamber EAT area as a rapid but realistic measure of EAT burden. 

Already in past studies, the 2D EAT area has been linked to left ventricular diastolic 
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dysfunction (50,51), hypertension and severity of insulin resistance (122) and non-

alcoholic fatty liver disease patients (123). Thus, four-chamber view holds potential as a 

surrogate to quantify EAT in routine clinical practice. Moreover, in four-chamber view, 

the pericardium beyond the apex of the heart could be visualized with more reliability. 

However, our database gathered retrospective studies in which EAT volume 

segmentation had been measured in short-axis views by different investigators over the 

years, which could lead to unaccounted volume imprecision. Ideally, the gold standard 

CCT EAT volume quantification would have been preferred but this examination is not 

commonly indicated for metabolic patients. 

 

2.5.2 A specific database with possible extensions  

This work leverages a unique database that combines a population spanning a large 

range of EAT quantity and manual segmentation of EAT on cine series. The strength of our 

dedicated database stands in its diversity in BMI, sex, age, health condition across many 

subjects (n=100) (Table 2-1). Despite a large diversity of subjects, a disparity of age 

remains between younger healthy subjects and diabetic and/or obese patients. The 

addition of data from older healthy subjects, as well as elderly subjects (>65 years) would 

benefit the current database to reinforce our network training as elderly have been shown 

to be significantly more EAT burdened than younger individuals (135). Our database 

could also be extended by including image sets from different MRI scanner types. 

Currently, this is a monocentric study and database. As a result, the trained models might 

not adapt well on datasets from scanners of different vendors and field strengths. 

Nevertheless, the database was made up of multiple protocols acquired over a decade, 

which already featured a variety of acquisition parameters and image quality levels. To 

further leverage the number of annotated data (2500 ground-truth, 25 images segmented 

per subject), Generative Adversarial Network could be explored to extend beyond 

proposed data augmentation (136). Another challenge are recurrent artifacts (aliasing, 

dark bands, flux artifacts) commonly observed in 3T bSSFP cine-MRI images, particularly 

pronounced in obese patients. This might preclude EAT segmentation and disturb 

networks accuracy. Training networks on artifacted images is another important addition 

to strengthen models for them to be ready for the clinic. 
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2.5.3 The challenge of EAT segmentation  

Experts and networks provided excellent results on large structures such as Heart 

Ventricles (DSC ≥ 0.96) and pericardial fat (DSC ≥ 0.88). But one major challenge for the 

segmentation of EAT on cine MRI is to distinguish between burdening EAT and its extra-

pericardial neighbor PAT. The pericardial fascia that separates those two fat 

compartments is about 2 mm thick (137,138) which is of the same order of magnitude as 

the image resolution (1.3-1.8 mm). This explains why both networks were able to 

segment combined EAT+PAT pericardial fat with appreciable precision, but the 

identification of individual fat was less satisfying. Nevertheless, FCNs networks provided 

segmentation results on par with experts’ precision. Also, since cardiac contraction pulls 

onto the pericardium, its visualization improves in peak-systole(51), making this frame 

more suitable for the measurement of EAT when compared to diastole 

(pintra(DSCdia/DSCsys)= 0.0282).  

One novelty has been to input multiple cardiac frames from the cardiac cycle to 

networks using a 3D first convolutional layer. It could be interesting in future work to 

enhance temporal information which is essential to detect the pericardial fascia. A map of 

cardiac deformations could enhance input images to be supplied to the network. It would 

be also interesting to investigate other network architectures such as Recurrent Neural 

Network that could memorize information from adjacent slices to improve inter-slices 

coherence (139), but these extensions fall outside the scope of this work. 

 

2.5.4 Comparing FCNs performances  

Specific complementary metrics (DSC, MSD and RSE) have been chosen to evaluate EAT 

area segmentation and quantification. Alternatively, the Hausdorff distance metric is a 

common choice to evaluate segmentation performance(140), measuring the maximal 

pixel distance error between segmentations. However, EAT region is sparsely distributed 

around the heart, thus the Hausdorff distance was not considered in this work since it 

might range rapidly high, even when comparing two segmentations with similar areas.  

From chosen metrics, U-Net outperformed FCNB for all labels, thus appearing 

preferrable to quantify EAT 4Ch area. Alternative semi- and fully automatic methods have 

been proposed for the EAT quantification on MRI-cine. Cristobal-Huerta et al. (52) 
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developed an automatic pipeline composed of Law texture filters, snakes and K-cosine 

curvature analysis to partially quantify EAT volume, albeit on 10 subjects only. In a semi-

automatic processing, Fulton et al. (53) applied landmarks on short-axis images from 12 

subjects to unroll images into polar coordinates before employing a neural network for 

detection of epicardial fat contours. We were unable to compare our results with those 

previous works as segmentation metrics (e.g., DSC metric or Jaccard similarity index) 

were not provided. Recently, automatic total pericardial fat quantification has been 

developed in 4Ch cine MRI. Bard, Raisi-Estabragh et al. (121) obtained segmentation 

performances (DSCEAT+PAT = 0.8) very similar to ours (DSCEAT+PAT = 0.88) on their 

respective test-set. In their study, only the end-diastolic frame had been segmented while 

we segmented the full 4Ch cine MRI and trained on 3 consecutive cine frames to leverage 

cine temporal information. Finally, the optimized multi-frame U-Net was integrated in a 

FSLeyes plugin made available to the community (https://github.com/pdaude/fsleyes-

plugin-epicseg) allowing comparison with further work and providing clinicians with a 

rapid EAT area segmentation (see Supportive Information Figure S 2-2). 

2.5.5 Performances across quartiles  

Splitting the database in quartiles of EAT enabled to differentiate segmentation 

performances depending on EAT area. Indeed, segmentations quality from FCNs proved 

to be degraded in group Q1, in which EAT (as well as PAT) was thin and sparse as 

illustrated in Figure 2-4. However, EAT segmentations were on a par with inter-

observers’ manual segmentation for the three upper quartiles and remained relevant for 

identifying patient at risk (Q2, Q3, Q4 ≥ 8.22 cm2) by measuring their EAT burden within 

14% and 18% precision for U-Net and FCNB respectively.  

 

2.6 Conclusions 

This study provides a methodology for fully automated segmentation of epicardial fat 

on multi-frame cardiac cine MRI, demonstrated across one hundred subjects exhibiting 

low to high EAT quantities. EAT is often overseen in diagnosis but has received increasing 

attention as a relevant biomarker of cardiac risk. Automatic EAT evaluation could help to 

identify patients at risk, especially for diabetic patients. The comparison with EAT volume 

https://github.com/pdaude/fsleyes-plugin-epicseg
https://github.com/pdaude/fsleyes-plugin-epicseg
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supports the potential of four-chamber cine EAT area as a surrogate for clinical 

evaluation, with higher segmentation robustness in systolic frame. Between the two FCNs 

investigated, the optimized U-Net was better suited to provide EAT area estimation with 

a 14.2 % precision for the clinically-relevant upper three quarters of targeted EAT range. 

EAT evaluation on cine, leveraging multi-frame information, could be further integrated 

to explore both retrospective and prospective cardiac studies without the need of a 

specific acquisition thanks to publicly provided automatic EAT area segmentation. 

 

2.7 Supportive Information 

 

Supportive Information Figure S 2-1: FCNs DSC performance varies along the 

cardiac cine frames with a maximum mean Dice and minimum standard deviation 

in systole. 
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Supportive Information Figure S 2-2 : FSLeyes plugin interface for epicardial and 

paracardial segmentation will facilitate reproducibility of proposed methods. 
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Chapter 3 : Fat precision imaging using CSE 

imaging 

3.1 Synthesis 

Context & motivation 

Proton density fat fraction (PDFF) is non-invasive biomarker to assess tissue 

adiposity. To obtain this quantitative biomarker, numerous fat water signal separation 

algorithms have been developed with a diversity of methods and implemented in different 

programming language. We needed to select one of them with criteria based on precision 

and reliability to process our CSE-MRI data. However, it has been a decade since the last 

benchmark of those algorithms. Indeed, during 2012 ISMRM Fat-Water MRI Workshop, a 

challenge has been organized to compare state of the art algorithms on a multitude of in-

vivo datasets and a MATLAB toolbox has been developed for facilitate future comparison. 

It was necessary to renew this comparison with the state of the art open-source 

algorithms with numerical simulations to have an extensive exploration, evaluation and 

validation and extend the toolbox considering other programming language and the 

diversity of fat spectrum model. Thus, in accordance with this PDFF standardization, the 

purpose of this study was to implement a multilanguage numerical toolbox for addressing 

the performance of open-source fat-water separation algorithm. 

 

Methods & results 

An open-source toolbox implemented in MATLAB and Python was developed to assess 

performance of recent fat-water separation methods. Synthetic CSE-MRI volumes were 

simulated with a full range of PDFF, a large range of B0 varying in terms of echo times, 

echo spacings and SNR. For in vitro validation, homemade fat water phantom was 

acquired at 3T with the same acquisition parameters as simulation. Challenging in-vivo 

data in terms of large variation of B0 inhomogeneities, large echo-spacing and low SNR 

was also acquired to illustrate performance of the algorithms.  

Monte-Carlo simulation and in-vitro experiments highlighted that algorithms proved 

to be robust fat/water swaps and 𝐵0 offset only with 5 echoes and more. However, for 
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PDFF quantification with 7 echoes and SNR=50, two methods proved to still be inaccurate 

whereas two others provided PDFF precision dependent of the echo spacing scheme 

(P<0.05) and the remaining 4 ones provided similar performance with a bias <0.15. The 

choice of fat spectrum model influenced PDFF and severely 𝑅2
∗ quantification. 

 

Conclusion, limits & perspectives 

This benchmarking using a bi-language open-source toolbox offers the possibility to 

better appreciate recent fat-water separation algorithms precision and accuracy for PDFF 

and  𝑅2
∗ quantification. It could also allow to optimize acquisition parameters by 

predicting margins of errors of algorithms. It would have been of interest to have a larger 

diversity of method which is based on MRI vendors algorithms, magnitude based model 

or artificial intelligence algorithms, as they are becoming increasingly present in this field. 

This toolbox will greatly improve from in-vitro, in-vivo multi-vendor, multi-field data in 

order to better validate algorithms. Moreover, algorithms have started to include refined 

Dixon-MRI signal model, designed for quantitative fatty acid composition parameter 

mapping(36,59). This toolbox could be extended to explore precision and reliability of 

estimation of those parameters using extensive in-silico acquisition parameter set. 

Indeed, synthetic magnitude Dixon-MRI signal with realistic variations of triglyceride 

parameters (CL, ndb, nmidb) which are linked to fatty acid composition revealed 

influence on the signal at specific echo times (Figure 3-1).  
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Figure 3-1 : Influence of triglyceride parameters (Cl, ndb, nmidb) on synthetic 

magnitude CSE-MRI signal at PDFF 90% and 𝑻𝟐
∗ =20 ms at 3T. Synthetic magnitude 

CSE-MRI were synthesized based on SAT fat spectrum (Cl=17.29, nmidb=0.58, ndb=2.69) 

with realistic variation of one parameter (A. Cl, B. nmidb, C. ndb) while the others are 

fixed. 

 

Personal contributions 

Starting from the water-fat algorithms benchmarking organized at the 2012 ISMRM 

Fat-Water MRI Workshop, I conducted a thorough review of fat-water signal separation 

algorithms in the literature ( Table 1-5 ). In parallel, I followed a MOOC on Reproducible 

Research that sensitized my perspective to the benefits of reproducible research 

(validation process, comparison metrics, code availability) in our quest to utilize the 

‘optimal’ algorithm. The diversity of validation process and metrics of grading the 

methods’ performances encouraged me to re-think, and develop, a framework for a 

standardized comparison between these algorithms, both past and recent. Inspired by the 

2012 ISMRM MATLAB format and toolbox used for the challenge, I implemented an open-
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source bi-language (Python and MATLAB) toolbox. Accounting for the variety of 

applications of fat-water imaging, and considering my own needs for epicardial fat MRI, I 

included an exhaustive fat spectrum library to facilitate the fat spectrum model 

calibration. For a reliable and complete assessment of algorithms, I conducted the 

numerical simulations, participated at the elaboration of in-vitro samples (two batches, 

the 1st one was not satisfying), acquired imaging and spectroscopy data from these 

samples, along with in-vivo data. Finally, I performed the statistical analysis, prepared all 

the figures, and drafted the paper. 

 

Submission status 

The following chapter has been submitted as a full paper entitled Comparative Review of 

Algorithms and Methods for proton-density fat fraction (PDFF) quantification to Magnetic 

Resonance in Medicine. It was rejected, but with encouraging comments to revise the 

structure of the study, include a comparison with more algorithms: commercial 

algorithms or magnitude-based algorithms. We planned to improve this work on the 

following aspects: 

- Modifying the introduction to link and distinguish better this work from the 

ISMRM Challenge 2012 toolbox 

- Describing in greater details how the toolbox is structured 

- Extending the comparison to open-source based magnitude algorithms 

- Separating the analysis of fat-water swaps from the considerations of PDFF 

bias 
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3.2 Introduction 

Chemical shift encoded MRI (CSE-MRI) techniques have become the reference for 

quantitative in vivo evaluation of fatty depots. Chemical shift between fat and water 

signals allows fat accumulation quantification and characterization. The original CSE-MRI, 

often referred to as Dixon techniques(55), acquire images at multiple echo times when 

fat/water signals are alternatively in-phase and in opposition of phase. The estimated 

proton-density fat fraction (PDFF), which is the ratio between fat protons over water and 

fat protons, derives from these images.  

Mapping the PDFF has been established as refined non-invasive biomarker(141) to 

assess tissue adiposity in the liver(142), bone marrow(143) and other organs(144). Each 

application holds a specific range of PDFF but also a different type of fat composition. 

Complementary to PDFF and using the same multi-echo acquisition, the quantification of 

R2
∗  decay is another biomarker of interest to further probe iron overload(145) and 

hemorrhage(146). The accuracy and precision of PDFF and R2
∗  evaluation can be 

demanding, whereas the versatility of the methods remains fundamental to probe organs 

of varied sizes, positions and even under motion. 

Nowadays, to obtain these quantitative biomarkers, advanced methods of fat-water 

signal separation have been developed. This abundance of methods raises the question of 

scientific standards for grading the methods’ performances in the context of reproducible 

research(147). 

Relevantly, over the past decade, multiple initiatives have been proposed to 

standardize PDFF as a quantitative imaging biomarker, starting with the 2012 ISMRM fat-

water MRI Workshop. Gathered algorithms were benchmarked on a multitude of in-vivo 

datasets(86) and a MATLAB algorithm toolbox was developed and disseminated. It 

provided standardization for the input/output formats of algorithms and facilitated their 

comparison. More recently, groups of experts such as the PDFF Quantitative Imaging 

Biomarkers Assessment (QIBA) group and the ISMRM Quantitative MR Study group 

provided consensus guidelines to assess the development and validation of new 

quantitative MR methods(148,149). In the QIBA multi-site study(150), a fat/water 

phantom traveled to assess the precision of PDFF measurements across various MRI 

vendors’ solutions. PDFF was demonstrated to be reproducible across sites and 

acquisition schemes using the same fat-water separation algorithm. However, 
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complementary to in-vitro validation which offers a limited evaluation, numerical 

simulations enable to extensively explore, validate, and compare methods in many more 

scenarios. For instance, a python open-source framework(151) was developed to explore 

optimal acquisition parameters according to the number of peaks resolved in water-fat 

signal model. However, this framework considered only a single algorithm, and focused 

only on acquisition parameters. 

To use PDFF as a quantitative imaging biomarker, algorithms that calculate the 

quantitative maps have to be precise, reliable and comparable with others from the 

literature. However, numerous algorithms have emerged with a diversity of methods to 

solve fat-water signal separation. Whether utilizing magnitude or complex data fitting, 

algorithms can be based on graph-cut(72,73,75,78,79,152), region growing(66,69,71) 

and, more recently, deep learning(80,81,83,84) approaches. To elect optimal CSE-MRI 

algorithms, a numerical toolbox that fairly compares them in an extensive acquisition 

parameter set is needed. Indeed, renewed comparison of these algorithms has not been 

undertaken since a decade. Moreover, this framework should remain open source for 

facilitating comparison with new methods and its evolution to new challenges. Therefore, 

the purpose of this work was to develop a multilanguage numerical toolbox and address 

the performances of open-source state-of-the-art fat-water reconstruction methods for 

PDFF and R2
∗  quantification. 

3.1 Materials and Methods 

3.1.1 Open-source algorithms 

An open-source toolbox available both in Python and MATLAB 

(https://github.com/pdaude/CREAM_PDFF) was implemented to assess and numerically 

compare the performances of recent and novel open-source fat-water separation 

algorithms (Table 3-1). The already available algorithms include: Hernando et al(152)’s 

original graph-cut method (Hernando-GC), the ISMRM challenge winner leveraging 

quadratic pseudo-Boolean optimization graph-cut (Fatty-Riot-GC(72)), the multi-scale 

approach graph-cut (MSGCA-B(75)), enhanced later with spatial smoothing (MSGCA-

A(78)), the globally optimal surface estimation (GOOSE(73)), the Variable Layer graph-

cut (VLGCA(79)), a region-based approach (B0-NICE(66)) and an IDEAL constrained 

estimation (IDEAL-CE(70)). 

https://github.com/pdaude/CREAM_PDFF


78 

 

3.1.2 Algorithm standardization 

Algorithms were standardized, building upon ISMRM fat-water toolbox input 

structure, with the addition of the voxel dimension. Towards generalization of 

applications, all algorithms were adapted to accommodate an input fat spectrum in their 

models. Output structure from algorithms comprised of algorithms’ parameters, 

employed model fat spectrum, and maps of Fat, Water, R2
∗ , B0, PDFF and the voxel-wise 

sum of square error. For all graph-cut algorithms, the discretization of B0 fields was set at 

2Hz-steps. 
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Table 3-1 : Summary of evaluated state-of-the-art open-source Fat-Water reconstruction algorithms with specific features, 

corresponding references and code repository links. 

Reference Referred as Method Code 
2D/

3D 

Spectrum 

choice 

Echo 

spacing 

Code 

acceleration 
Year 

Code repository (If not specified,it 

is on github.com) 

Boehm et 

al. (79) 
VLGCA Graph-cut MATLAB 2D Free Uniform 

Parallel 

computing 
2021 

gitlab.com/christofboehm/fieldmap-graph-

cut  

Bydder et 

al. (70) 
IDEAL-CE IDEAL MATLAB 3D 

Model 

Constrained 
Free 

GPU 

computing 
2020 marcsous/pdff 

Andersson 

et al. (78) 
MSGCA-A Graph-cut MATLAB 3D Free Uniform No 2018 Snubben-B/FW-Recon-Spatial-Smoothing  

Cui et 

al.(73)  
GOOSE Graph-cut MATLAB 2D Fixeda 

Uniform 

/ Free 
No 2015 

https://research.engineering.uiowa.edu/cbig

/content/goose 

Berglund 

et al.(75) 
MSGCA-B Graph-cut Python 3D Free Uniform No 2017 bretglun/fwqpbo  

Liu et al. 

(66) 
B0-NICE 

Region-

based 
MATLAB 3D Fixedb Uniform No 2015 

https://www.mathworks.com/MATLABcentr

al/fileexchange/48313-b0-mapping-b0-nice 

Berglund 

et al.(72) 
Fatty-Riot-GC Graph-cut MATLAB 3D Free Uniform No 2012 

welcheb/fw_i3cm1i_3pluspoint_berglund_

QPBO welcheb/FattyRiot 

Hernando 

et al. (152) 
Hernando-GC Graph-cut MATLAB 2D Free 

Uniform 

/ Free 
No 2012 

ISMRM Workshop on Fat-Water Separation: 

Insights, Applications & Progress in MRI 

a. ISMRM challenge spectrum 

b. own spectrum 

https://gitlab.com/christofboehm/fieldmap-graph-cut
https://gitlab.com/christofboehm/fieldmap-graph-cut
https://github.com/marcsous/pdff
https://github.com/Snubben-B/FW-Recon-Spatial-Smoothing
https://research.engineering.uiowa.edu/cbig/content/goose
https://research.engineering.uiowa.edu/cbig/content/goose
https://github.com/bretglun/fwqpbo
https://www.ismrm.org/workshops/FatWater12/data.htm
https://www.ismrm.org/workshops/FatWater12/data.htm
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3.1.3 Monte Carlo simulation 

To numerically evaluate the algorithms’ performances, synthetic CSE-MRI volumes 

were modeled as : 

𝑦 = (𝑊 + 𝐹 ∑ 𝛼𝑚𝑒𝑖𝜔𝑚𝑡

𝑚

𝑚=1

) 𝑒(𝑖(𝜔0+𝜑0)−𝑅2
∗)𝑡  +  𝑁(𝑡) 

Eq 3-1 

with W=(1-PDFF) and F=PDFF corresponding to normalized water and fat absolute 

signal, 𝜔0 the off-resonance, 𝜑0 = 30° the initial phase, 𝑅2
∗=50 s-1 the transversal decay, 

N(t) the complex gaussian noise and 𝛼𝑚, 𝑒𝑖𝜔𝑚  the relative amplitude and frequency offset 

of a subcutaneous fat spectrum respectively. Considering a 3T scanner field strength, 

virtual CSE-MRI volumes were synthesized as follows: along the x-axis, PDFF varied from 

0 to 100% with 1% step, along the y-axis, 𝐵0 was uniformly distributed from -300Hz to 

300Hz(153) with 6Hz step, in z-axis consist in 100 repetitions. Gaussian noise N(t) was 

added to obtain SNR=10, 50, 100. Synthetic volumes were normalized based on 99% of 

the maximum of the first echo. To avoid border effects due to spatial regularization, a five 

pixels padding was added for each CSE-MRI volume. Different numbers of echo times 

(NTE=3, 5, 7, 9) and echo spacing schemes were considered.  

3.1.4 Acquisition parameter: echo spacing 

Multiple echo time sampling schemes were explored through numerical evaluations of 

the algorithms’ sensitivity, with the aim to optimize the precision of targeted parameter, 

such as PDFF or R2
∗ . Acquisition constraints (minimum TE and echo-spacing due to field 

strength and acquisition parameters, including dwell time and resolution) also influence 

echo-times sampling. Finally, most of the compared algorithms were constrained by 

uniform echo spacing CSE MRI. Thus, in this toolbox a function was developed to 

automatically calculate echo time schemes based on acquisition constraints for any 

number of echoes. The uniform IDEAL echo-shift formulated by Pineda(154) was 

generalized to offer realistic IDEAL echo spacing, abiding to both acquisition constraints 

and the following criteria:  

∆𝜃𝑘,𝑗 =
2k

N
𝜋 + 2𝑗𝜋 𝑤𝑖𝑡ℎ 𝑘 ∈ [ 1, 𝑁[ 𝑎𝑛𝑑 gcd(𝑘, 𝑁) = 1, 𝑗 ∈ ℕ. 
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Eq 3-2 

Demonstration of this functionality is detailed in Supportive Information S 3-1. 

In this context, considering the minimum echo spacing constraint, prime or odd 

number of echoes offered more solutions in Eq 2 and were then, more permissive to 

obtain realistic IDEAL TE (3, 5, 7, 9) for the Monte-Carlo simulation. The chosen echo 

spacing schemes were realistic minimal IDEAL and in-/out of phase with echo times 

calculated when considering hardware constraints at 3T (TEmin=0.98ms and 

ΔTEmin=1.68ms). 

3.1.5 Fat spectrum library 

The CSE-MRI signal model (Eq 3-1) relies on a multi peak fat spectrum model with 

established relative amplitudes and chemical shifts corresponding to 

triglycerides(155,156). The choice of fat spectrum has been shown to reduce PDFF bias 

estimation compared to single fat peak spectrum model(157) but remains highly variable 

in the implementations. Contrary to the ISMRM challenge which benchmarked algorithms 

with a single human fat spectrum, the algorithms’ sensitivity to the diversity of human fat 

NMR spectra(158) was explored in this study. Moreover, using a generic triglyceride 

model(28), fat NMR spectra could be described with only three parameters: number of 

double bonds (ndb), number of interrupted methylene double bonds (nmidb) and chain 

length (CL). Thus, an extensible human fat spectrum(28,38,59) library was implemented 

in the toolbox. Additionally, this simplified model enables us to translate gas-

chromatography measurements of fatty acids composition to NMR spectrum signal. Thus, 

any spectrum could easily be integrated within each algorithm. Synthetic CSE volume was 

modeled with the subcutaneous fat spectrum (CL=17.29, ndb=2.69, nmidb=0.58). To 

probe spectra influence, synthetic signals (NTE=9) were simulated with a peanut oil 

spectrum and processed with either the same calibrated peanut oil spectrum or with the 

ISMRM challenge spectrum.  

3.1.6 In vitro: fat-water phantom  

Eight fat-water phantoms of 50mL were prepared with different fat fraction of peanut 

oil. Recipes and protocols from Hines et al(159) and Bush et al(160) were followed 

scrupulously to obtain stable and homogeneous samples. A water solution was prepared 
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containing deionized water, 15 mM sodium dodecyl sulfate (Sigma Aldrich, St Louis, MO), 

3.75 mM of sodium azide (Sigma Aldrich, St Louis, MO), 0.185mM of MgCl2 (Sigma Aldrich, 

St Louis, MO) to shorten 𝑇1
𝐻2𝑂

 and 1.0% w/v agarose (Sigma Aldrich, St Louis, MO). The 

volume percentages of oil in the phantoms were targeted at 0, 10, 20, 40, 60, 80, 90 and 

100% and were calculated with MRS reference at 0, 8.50, 20.01, 37.03, 63.19, 85.40, 92.14, 

100% (Supportive Information Figure S 3-1).  

Imaging and spectroscopy data were acquired in a 3T MRI system (Magnetom Vida, 

Siemens Healthcare, Erlangen Germany) using a 20-channel head coil. Phantoms vials 

were aligned along the static magnetic field direction, and iterative shimming was 

performed prior to the acquisitions. Using a monopolar 3D spoiled gradient echo 

sequence, 1.8x1.8x2.5 mm, FOV=172x288x140mm, FA=6°, BW=1563 Hz/px and echo 

times similar to the Monte Carlo simulation (realistic minimal: TE1/ΔTE=0.98/1.68 ms, 

in-out-of-phase: TE1/ΔTE=1.19/3.58 ms, IDEAL: TE1=0.98 ms, ΔTE=3.18, 1.91, 1.70, 1.86 

ms for 3, 5, 7 and 9 echoes respectively) with a maximum scan time of 2 min. Spectroscopy 

data were acquired using a non-localized FID with TR=8000ms for each phantoms vials. 

Fitting of spectroscopy data was performed using a Linear Combination model 

implemented in FSL-MRS(161) version 1.1.10, part of FSL (FMRIB’s Software Library, 

www.fmrib.ox.ac.uk/fsl). Briefly, basis spectra were fitted to the complex valued 

spectrum in frequency domain. The basis spectra were shifted and broadened with 

parameters fitted to the data grouped in 2 metabolites groups (water and lipids). A 

complex polynomial baseline was also concurrently fitted (order=3). Model fitting was 

performed using the Metropolis Hasting algorithm. 

3.1.7 In vivo imaging 

For practical demonstration purposes, leading algorithms’ discrepancies were 

evaluated on challenging in vivo datasets. Three healthy volunteers were recruited after 

informed consent. MR images were acquired with the same MR system using a dedicated 

cardiac 18-channel coil array and the spine coil. Supraclavicular body fat, that contains 

brown fat, bone marrow fat in the sacrum region and liver were considered challenging 

applications due to a large range of 𝐵0 inhomogeneity, low SNR and subtly varying fat 

content.  

http://www.fmrib.ox.ac.uk/fsl
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Two supraclavicular CSE-MRI data sets were acquired using a coronal 3D spoiled 

gradient echo sequence, with 1. a spatial resolution of 1.88x1.88x3 mm3, 9 echoes 

(TE1/ΔTE=0.73/1.44 ms), FOV=360x247x192mm3, FA=6°, BW=1532 Hz/px for all 

echoes and 2. a spatial resolution of 1.67x1.67x3 mm3 6 echoes (TE1/ΔTE=1.23/1.23 ms), 

FOV=319x319x192 mm3, FA=6°, BW=1240 Hz/px for all echoes. Sacrum CSE-MRI was 

also acquired using 2D spoiled gradient echo sequence with in-plane resolution of 1.8x1.8 

mm², 7 echoes (TE1/ΔTE=1.2/1.54 ms), FOV=287x287 mm2, slice thickness 6mm, FA=8°, 

BW=744 Hz/px for all echoes. Finally, liver CSE-MRI was acquired using a transversal 3D 

spoiled gradient echo sequence with a spatial resolution of 2.25x2.25x2.3 mm3 7 echoes 

(TE1/ΔTE=0.93/1.53 ms), FOV=360x288x147mm3, FA=5°, BW=1563 Hz/px for all 

echoes, CAIPIRINHA(162) 4 (2x2). 

3.1.8 Evaluation metrics and statistical analysis 

The comparison followed the guidelines provided by the Quantitative Imaging 

Biomarkers Assessment(148). From Monte-Carlo simulation, algorithms results were 

evaluated based on their bias, precision, and limits of agreement (LOA) for each model 

parameters (PDFF, B0, R2
∗ ). As an indication, the computational times of the algorithms 

were recorded and reported as seconds per slice. Computations were performed in 

MATLAB R2019b and Python v3.7.5 with a computer equipped with a GPU (Nvidia Quadro 

P5000, 16Gb) and 40 CPUs (Intel Xeon e5-2630 v4, 2.20Ghz,). Statistical analysis was 

conducted using R (version 3.6.3) (134).  

3.2 Results 

3.2.1 Numerical simulations 

Expectedly, the echo number and spacing schemes affected the performance of the 

algorithms (Figure 3-2). Several pitfalls were noticeable for NTE=3: fat/water swaps 

were present when processing with Fatty-Riot-GC and B0-NICE. PDFF measured with 

Hernando-GC was influenced by B0 inhomogeneity (NTE=3 IN/OPP & IDEAL). GOOSE led 

to a significant global bias (>15%). Thus, with only 3 echo times, only MSGCA-A/B, IDEAL-

CE and VLGCA gave more robust results compared to the other algorithms.  
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For NTE ≥ 5, B0-NICE and GOOSE proved to be still highly biased and were not further 

compared, whereas the other algorithms demonstrated robustness to B0 and fat/water 

swaps. In addition to B0-NICE and GOOSE, VLGCA and Hernando-GC, were still influenced 

by echo spacing for PDFF quantification (VLGCA: P <0.0001, Hernando-GC (P <0.05).  

Increasing the number of TE (NTE=7 and 9) improved PDFF precision, absolute bias 

decreased significantly (P <0.0001) for all algorithms (Supportive Information Figure S 

3-2). Individually considering the best echo spacing for PDFF measurement at SNR 50, 

algorithms provided similar PDFF bias (bias<0.15 LOA<2.6 %) (Figure 3-3). However, 

extrema PDFF (<10% or >90%) remained challenging for most algorithms and 

differentiated their performances: for NTE=7, LOA in extrema PDFF were 0.3% for IDEAL-

CE and were greater than 1.1% for the other algorithms.  

As shown in Figure 3-3, algorithms provided a low R2
∗  mean bias (<0.15 s-1) but with 

large LOA depending on echo times (LOAIN/OUT-OF-PHASE=5.8 s-1, LOAIDEAL=9.3 s-1, 

LOAMINIMAL=9.6 s-1). Increasing the number of TE decreased significantly (P <0.0001) the 

LOA for all algorithms. 

Computation times for processing one slice with NTE=7 ranged from TB0-

NICE=1.81±0.24s, TIDEAL-CE=1.95±0.02s, to TFatty-Riot-GC=51.34±18.04s and 

TGOOSE=5455.18±7122.50s. 
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Figure 3-2 : PDFF was measured by Fatty-Riot-GC and Hernando-GC over 

synthetic CSE-MRI volumes with SNR=50 at 3 and 7 echoes. PDFF maps were averaged 

along repetition axis and separated according to the echo spacing scheme (IDEAL, IN-

/OUT-OF-PHASE, MINIMAL). Fat-water swaps were visible at 3T with Fatty-Riot-GC while 

bias appeared on the PDFF map processed by Hernando-GC due to 𝐵0 inhomogeneities. 

With 7 echoes, both algorithms provided more reliable quantitative maps. 
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Figure 3-3 : Comparison of PDFF (A) and 𝑹𝟐
∗  (B) bias of each algorithm over 

synthetic CSE-MRI volumes with NTE=7 and SNR=100. Mean and standard deviation 

PDFF and 𝑅2
∗ bias were averaged along the 𝐵0 off-resonance and repetition axes and 
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separated (in color) according to the echo spacing schemes. GOOSE and B0-NICE (in red 

square) where not further investigated due to highly bias results. 

3.2.2 In vitro experiments 

Experimental SNR varied across vials with a minimum of 50 and a maximum of 190. 

Confirming simulation results, the algorithms proved robust to fat/water swaps and 𝐵0 

offset with NTE ≥ 5. Indeed, at 3T, with NTE=3, Fatty-Riot-GC was influenced by 𝐵0 

inhomogeneity which varied from –220 Hz to 150 Hz through the phantom volume 

whereas MSGCA-B produced a fat-water swaps in the 60% oil vial (Figure 3-4). For PDFF 

quantification, GOOSE, VLGCA, Fatty-Riot-GC and MSGCA-A were significantly influenced 

(p <0.05) by echo spacing with NTE=7. Indeed, the mean variation of bias between 

realistic minimal and IDEAL echo spacing scheme was of 0.1% for VLGCA, Fatty-Riot-GC 

and MSGCA-A and 1.2% for GOOSE respectively. The mean variation of bias between 

IN/OPP and IDEAL echo spacing scheme was of 1.5% for VLGCA and 1.9% for GOOSE. 

Using NTE=7, apart from GOOSE and B0-Nice, all algorithms provided mean PDFF 

absolute bias below 3%. 
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Figure 3-4 : A. PDFF measurement from in-vitro experiments using MSGCA-A, 

Fatty-Riot-GC and IDEAL-CE with NTE=3 and NTE=7 and in-/out-of-phase echo 

spacing. B. Comparison of PDFF bias of each algorithm in phantoms. Mean and 

standard deviation PDFF bias were averaged along the 𝐵0 off-resonance and repetition 

axes and separated according to the echo spacing schemes (in colour) and echo number 

(in line style). For clarity, only standard deviation of PDFF bias for NTE=7 have been 

plotted. 
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3.2.3 In vivo experiments 

The in vivo experiments were challenging due to large 𝐵0 inhomogeneity variations 

measured by frequency offset up to ΔB0=500 Hz and 350 Hz for supraclavicular and 

sacrum regions respectively. As shown in Figure 3-5, algorithms that were comparable 

in silico (IDEAL-CE, MSGCA-A and Fatty-Riot-GC) demonstrated significant PDFF 

discrepancies in vivo: graph-cuts algorithms were misled by the strong B0 gradient and 

resulted, as initially observed in Figure 3-2, to fat-water swaps or B0-dependent PDFF 

values. Eventually, these algorithms overestimated fat content in tissues with negligible 

expected adiposity (in the bladder: PDFFIDEAL-CE=0.45% ± 0.81, PDFFMSGCA-A=18.24±10.20, 

PDFFFatty-Riot-GC=90.87±2.68%). However, for liver CSE-MRI challenging due to low 

SNR=14, the three algorithms provided similar performance with a standard deviation in 

the liver (SDIDEAL-CE=2.45% / 10.26 s-1, SDMSGCA-A=2.46% / 10.25 s-1, SDFatty-Riot-GC=2.35% / 

10.25 s-1) for PDFF and R2
∗  respectively, confirming equivalent, and very acceptable, noise 

propagation in these algorithms. 

 

Figure 3-5 : PDFF and 𝑹𝟐
∗  quantification of Fatty-Riot-GC,IDEAL-CE and MSGCA-A 

over challenging in-vivo datasets at 3T. PDFF overestimation was observed using 

MSGCA-A and Fatty-Riot-GC as shown by white arrows where fat is not expected inside 

the bladder or the neck. 
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3.2.4 Influence of the spectrum model 

As shown in Figure 3-6-A, the synthetic magnitude CSE signal decay depends on the 

fat spectrum model chosen. Processing data with a different spectrum (ISMRM challenge) 

than the one employed for simulation (peanut oil) revealed a significant bias in PDFF 

quantification (P <0.0001) and 𝑅2
∗ (P <0.0001) with a maximum bias of 2.35% and 20.66 

s-1, respectively, at NTE=9 and SNR=100 (Figure 3-6-B). In vitro (Figure 3-6-C) and in 

vivo (Figure 3-6-D) experiments revealed similar values with mean PDFF and 𝑅2
∗ 

differences of 1.22% and 12.22 s-1 respectively in supra-clavicular adipose tissue.  
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Figure 3-6 : Influence of fat spectrum models on PDFF and 𝑹𝟐
∗  quantification with 

IDEAL-CE, MSGCA-A : A. Synthetic magnitude CSE-MRI signal at PDFF 100% and 

𝑻𝟐
∗ =20 ms with different spectrum depicted in the literature or acquired for this 

study.B. PDFF and 𝑹𝟐
∗  bias when synthetic CSE-volume are processed with either the 

same spectrum (peanut oil) or with the ISMRM challenge one at 3T with 9 echoes 

and realistic minimal echo-spacing. PDFF, 𝑹𝟐
∗  measurement when in vitro 
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experiment (.C) or in in vivo (.D) were processed with peanut oil spectrum at 3T 

with 9 echoes with a minimal echo spacing scheme and the difference ΔPDFF, 𝜟𝑹𝟐
∗  

resulted when those data were processed with the ISMRM challenge spectrum. 

3.3 Discussion 

In keeping with standardization of MRI body fat quantification, an open-source toolbox 

was implemented to evaluate fat-water separation algorithms, offering the possibility to 

better appreciate the precision and accuracy of recently proposed algorithms. This 

benchmarking also allows the optimization of acquisition parameters (echo number and 

spacing) to obtain more accurate quantitative maps.  

3.3.1 Open-source framework and reproducibility 

research  

The proposed toolbox was developed in both Python and MATLAB programming 

languages to facilitate benchmarking of fat-water separation algorithms. It can be 

considered as an extension of the ISMRM fat-water toolbox that currently allows to 

compare MATLAB algorithms only. Another addition is the capability to operate with an 

exhaustive fat spectrum library. This framework was made open-source 

(https://github.com/pdaude/CREAM_PDFF) to ease comparison with new methods.  

3.3.2 Numerical simulations 

Provided with synthesized data using only 3 echoes, most algorithms suffered from fat-

water swaps or bias due to 𝐵0 inhomogeneities (Figure 3-2) while 5 or 7 echoes provided 

a significant improvement in reliability and precision in PDFF measurement. Even when 

using 5 echoes, the precision of PDFF for VLGCA, Hernando-GC, B0-NICE and GOOSE was 

still greatly dependent on the echo spacing. In contrast, MSGCA-A, MSGCA-B, IDEAL-CE, 

Fatty-Riot-GC proved robust to echo-spacing and provided similar results, all suitable for 

a reliable PDFF quantification (Figure 3-3-A). 

Considering the latter algorithms, echo spacing still influenced the precision of the R2
∗  

quantification (Figure 3-3-B).With a fixed number of echo times, R2
∗  precision depended 

on the longest echo time. Therefore, to quantify R2
∗  with a given number of echoes, in-

https://github.com/pdaude/CREAM_PDFF
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phase/out-of-phase schemes should be preferred to IDEAL or minimal echo spacing. 

However, with a fixed TR, minimal echo spacing, potentially allowing fitting more echoes, 

should be preferred to the other echo spacing schemes for R2
∗  accuracy. 

In addition to help in choosing optimal set of parameters (echo scheme, number of 

echoes) for a specific acquisition, this toolbox also provides an estimate of precision in 

parameter quantification by predicting margins of error for a given SNR. 

3.3.3 In vitro experiments 

The in vitro experiments enabled us to validate the numerical findings. Notably, 

experimental results confirmed the necessity to acquire at least 5 echoes to avoid fat-

water swaps and bias due to B0 inhomogeneities with most algorithms (Figure 3-4). It 

also showed that the echo-spacing scheme can influence PDFF quantification even with 7 

echoes: the mean variation of bias between IN/OPP and IDEAL was 1.5% for VLGCA and 

1.9% for GOOSE. Using spectroscopy as a reference measurement, PDFF bias was higher 

than in the corresponding simulation for all algorithms and in particular for vials with 

40% and 60% fat. This discrepancy could be due to the model assumption of a common 

single R2
∗  value for fat and water when a dual R2

∗  would have been more relevant(163). As 

the majority of algorithms make this assumption, separate R2
∗  has not been investigated 

in this study, but they would be a valuable extension for double-𝑅2
∗ fat-water algorithms. 

3.3.4 In vivo experiments 

Challenging in vivo data surprisingly revealed disparities between numerically 

comparable algorithms (IDEAL-CE, MSGCA-B, Fatty-Riot). These may be due to rapid and 

large variations of 𝐵0 which breaks the stringent constraint of a smooth field map 

assumed by these algorithms (Figure 3-5). However, algorithms provided similar 

performance and showed to be highly resilient to to challenging low SNR in-vivo data 

(SNR=14) with PDFF and R2
∗  measurements standard deviation in liver of 2.4% and 11 s-

1 which was verified by simulation (Supportive Information Figure S 3-3). 
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3.3.5 Influence of the spectrum model 

Interestingly, processing data with a different spectrum from the simulation led to a 

non-negligible bias in PDFF and 𝑅2
∗ (Figure 3-6). The in vitro and in vivo experiments 

confirmed this difference, as shown in Figure 3-6.C and Figure 3-6.D thus electing a 

relevant spectrum remains essential for characterizing fat deposits with different fatty 

acid composition. This consideration might be even more important in applications such 

as CSE-MRI of bone marrow. The sensitivity of PDFF quantification alone to multi peak fat 

spectrum calibration has been previously explored(157) using synthetic CSE data with 

low PDFF (<=40%), 6 echoes and a graph-cut algorithm. Within this range, the choice of 

the number of spectrum peaks was found not to significantly impact PDFF. Our results 

extend these findings, demonstrating that with enough echoes (NTE=9) and high SNR, 

there can be a small bias (<2%) for PDFF within the PDFF range of 20-80% depending on 

the selected fat spectra. But more importantly, the choice of spectra significantly 

influenced the 𝑅2
∗ bias, which can alter the evaluation of iron content in organs such as 

liver or bone marrow. 

3.3.6 Algorithms running time 

Apart from GOOSE, the algorithms’ running times on the system used were within 

seconds to minutes of processing time per slice. Considering the limited computational 

optimization of open-source implementations (in MATLAB or Python), the 8 remaining 

algorithms are all potentially suitable for a clinical routine PDFF quantification upon code 

optimization. We noted that algorithms developed after the 2012 ISMRM challenge 

(MSGCA-A/B, IDEAL-CE, B0-NICE, VLGCA) were faster than the earlier ones ( Hernando-

GC, Fatty-Riot-GC). 

3.3.7 Choices of open-source algorithms  

Some of the current state of the art open-source algorithms, were not investigated 

within our comparison study. Indeed, new approaches for solving the fat-water 

separation problem based on deep learning have emerged(82–84). However, all currently 

available algorithms are based on a fixed number of echoes or need a specific training 

strategy and network modification to be compatible with our benchmark. Moreover, all 
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algorithms in this study are based on the complex signal model, and it would be 

interesting to include those using only the magnitude signal model as they have been 

developed to be more robust to phase errors and avoid field map estimation. However, to 

our knowledge, there were no open-source algorithms of this type documented in the 

literature at the time of this study.  

3.3.8 Possible extensions and new challenges 

This open-source toolbox was designed to be evolutive to tackle new challenges, 

leaving room for multiple extensions that were beyond the scope of this study. First, more 

diversified validation data(150) with multi-site, multi-vendor, multi-field in-vivo and 

phantom data certainly reinforce the evaluation of Fat-Water separation methods, albeit 

in a less extensive and controlled set-up than in silico studies allow for. Evidently, 

numerical simulations are also limited, as proven by our experimental phantoms results 

that hinted at a bias from the single 𝑇2
∗-relaxation signal model. Nevertheless, algorithms 

extensions based on 𝐵0 field map initialisation are also of interest as new methods have 

incorporated a priori information of the scanner magnetic field distribution(76,164). 

Recently, algorithms have started to include refined complex signal MR models, designed 

for quantitative fatty acid composition parameter mapping(36,59). A standard evaluation 

of such advanced algorithms performance will definitely hold interest. Finally, as it has 

already been done for Quantitative Susceptibility Mapping (QSM) processing pipelines 

with the SEPIA(165) package, a graphical user interface for this framework could also 

benefit from a user’s perspective. 

3.4 Conclusions 

In accordance with standardization of MRI body fat quantification, an open-source bi-

language toolbox was developed to evaluate eight state-of-the-art open-source 

algorithms for fat-water separation. Numerical simulations showed that bias and limits of 

agreement revealed disparities between algorithms depending on the number of echoes 

and spacing schemes, confirmed by in-vitro experiments. To obtain reliable PDFF 

quantification, it seems that all algorithms tested required more than 3 echoes. Among 

the eight algorithms, two proved to be inaccurate whereas the other provided comparable 

performances. Extrema PDFF remained challenging for accurate estimation, impacting 
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certain in-vivo applications. The choice of the fat spectrum model influenced PDFF 

quantification and, more severely, the 𝑅2
∗ measurements. This benchmark also allows to 

optimize acquisition parameters (echo number and spacing) by predicting margin of 

errors of algorithms to obtain more accurate quantitative maps. 

3.5 Supportive Information 

Supportive Information S 3-1: IDEAL TE values computation for arbitrary numbers 

of TE 

According to information theory, a parameter-specific mathematical optimization can 

be proposed that maximizes the corresponding Fisher matrix. Here the fat fraction 

precision can be optimized by choosing optimal echo times (TE). In the Dixon model, 

Pineda et al(154) demonstrated by minimizing the Cramer-Rao lower bound, that the 

optimal estimation of fat and water magnitude is obtained by distributing N echo time 

sampling (TE) at regular intervals referred commonly as IDEAL TE: 

𝑇𝐸(𝑘) =

𝜋
2 +

2k
N 𝜋

𝛾𝐵0𝐶𝑆𝐹𝑊
+ 2𝑗𝜋 

𝑤𝑖𝑡ℎ 𝑘 ∈ [ 1, 𝑁[ , 𝑗 ∈ ℕ, 𝐵0 the static magnetic field and 𝐶𝑆𝐹𝑊 the fat-water chemical 

shift, N the number of echoes. 

Those intervals ∆𝜃 assured that the echo times are equally spaced over the unit circle 

as 

 ∆θj =
2

N
π + 2jπ with j ∈ ℕ,  N the number of echoes  Eq. S3 

Due to hardware constraints, the smallest ∆𝑇𝐸, referred as ∆𝑇𝐸𝑚𝑖𝑛 = 
∆𝜃0

𝛾𝐵0𝐶𝑆𝐹𝑊
 is often 

impossible to be reached. ∆𝜃1 imposed an additional 2𝜋 interval which could be 

deleterious in organs for which there is rapid signal decay due to susceptibility. Thus, we 

studied if it was possible to define other echo times spacing 
2k

N
𝜋, given N the number of 

echo times, which respect equally distributed echo-times over the unit cercle. As a 

prerequisite, each 
2k

N
𝜋 step has to satisfy that one of its multiples is equal to 

2𝜋

𝑁
, modulo 

2𝜋. As such, 𝑘 verifies:  
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Let N ∈ ℕ∗ , 𝑘 ∈ [ 1 , 𝑁[ , 𝑗 ∈ ℕ 𝑎𝑛𝑑 𝛼 ∈

[ 1 , 𝑁[ , 𝑡ℎ𝑢𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑘 𝑤ℎ𝑖𝑐ℎ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝛼 ∗
2k

N
𝜋 =

2𝜋

𝑁
+ 𝑗 ∗ 2𝜋 <=> 𝛼 ∗ k = 1 + 𝑗 ∗

𝑁 𝑎𝑟𝑒 gcd(𝑘, 𝑁) = 1  

The latest equation is demonstrated thanks to Bachet Bezout theorem. Thus, we 

extended Pineda equation (Eq. S1) with  

 ∆𝜃𝑘,𝑗 =
2k

N
𝜋 + 2𝑗𝜋 𝑤𝑖𝑡ℎ 𝑘 ∈ [ 1 , 𝑁[ 𝑎𝑛𝑑 gcd(𝑘, 𝑁) = 1 , 𝑗 ∈ ℕ. 
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Supportive Information Figure S 3-1 : Spectra reference for the quantification of 

proton-density fat fraction (PDFF) of the phantoms using non-localized FID of 

individual vials. Targeted and measured PDFF values are reported for each spectrum. 

They were acquired using a non-localized FID with 2048 points, TR=8000ms, 4 averaging, 

bandwidth=10 kHz for each phantom vials. 
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Supportive Information Figure S 3-2 : Absolute error for the PDFF quantification 

of simulated datasets, averaged over repetitions, the whole range of B0 values and 

with SNR=50 and realistic minimal echo spacing. 
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Supportive Information Figure S 3-3 : PDFF bias for the six selected algorithms 

depending on the input SNR of the simulated datasets with NTE=5 and realistic 

minimal echo spacing. All algorithms proved highly resilient to low SNR (SNR=10), with 

limited noise propagation in the eventual PDFF quantification. 
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Chapter 4 : Ex Vivo EAT characterization 

using MRS 

4.1 Synthesis 

Context & motivation 

As shown in the previous chapter, the PDFF and R2* quantification, with a stronger 

sensitivity from the R2* values, could be biased due to miscalibration of the a priori multi 

peak spectrum that models the CSE-MRI signal. Even if a diversity of human fat NMR 

spectra has been evaluated, the EAT NMR spectrum has not yet been characterized. Thus, 

the purpose of this study was to explore the NMR signature and fatty acid profile of EAT 

in ex-vivo human samples.  

 

Methods & results 

Nine ex-vivo adipose tissue samples from deceased patients who donated their body 

to science (3 EAT, 4 VAT, 2 SAT) were acquired at 11.75T using STEAM sequence. 

Triglyceride model parameters (ndb, nmidb, cl) and fatty acid composition (SFA, MUFA, 

PUFA) were performed using a homemade Python software after quantification of lipid's 

peaks relative concentration. 

The preliminary results on fatty acid composition suggested that EAT had a lower SFA 

(31.57±12.61) and higher MUFA (54.97±14.03) compared to common white fat: SAT 

(SFA: 49.34±4.96, MUFA 43.24±2.01 and VAT (SFA: 40.14±9.33, MUFA 43.49±7.74). 

 

Conclusion, limits & perspectives 

In this human ex-vivo study, NMR signature of epicardial adipose tissue has been 

evaluated. Those preliminary results in terms of triglyceride model and fatty acid 

composition need further investigation with a higher sample size. A confrontation of these 

measurements against gas chromatography analysis could also bring a clearer 

perspective to these results. However, after complete achievement of this study, a more 

reliable epicardial adipose tissue spectrum calibration could be provided for fat-water 

imaging and may reduce PDFF and 𝑅2
∗ quantification bias for this specific fat. 
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Personal contributions 

I conducted a thorough review of established adipose tissues characterizations using 

gas chromatography (Table 1-1) and MRS (Table 1-3). This study was very much a 

teamwork, with multiple aspects: the collaboration with endocrinology department of the 

AP-HM who collected the ex-vivo samples was crucial, the samples preparation, the 

protocol optimization and the acquisitions at 11.75T were all performed with the help of 

Joevin Sourdon and the interactions with Tangi Roussel, who developed the Python 

software, to develop and tune the spectra processing. I participated in all these steps once 

the samples were collected and frozen by the endocrinologists' team: I followed all 

experiments, I then conducted the MRS data processing, including the adaptations of the 

Python code to obtain desired parameters, and I prepared the tables and corresponding 

figures. 
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4.2 Introduction 

 

The CSE-MRI signal model relies on a calibrated multi peak fat spectrum model with 

known a priori relative amplitudes and chemical shifts corresponding to triglycerides. 

Our work showed that the selection of fat spectrum reduces PDFF bias estimation and 

mainly R2* bias estimation. A diversity of human fat NMR spectra was explored such as 

subcutaneous(36,37,39,41), bone marrow(38), liver(28,37), brown adipose tissue(42). 

However, to our knowledge, the epicardial adipose tissue spectra has not been yet 

characterized in human at the time of this study. The adipose tissue NMR spectrum can 

be described using a triglyceride model(28) based on only three parameters: number of 

double bonds (ndb), number of interrupted methylene double bonds (nmidb) and chain 

length(cl). Fatty acid profile (SFA, PUFA, MUFA) can be calculated from those parameters. 

  Therefore, the purpose of this study is to explore NMR signature and fatty acid 

profile of epicardial adipose in a heterogeneous population in order to improve fat 

spectrum calibration of CSE-MRI signal model. 

 

4.3  Methods 

4.3.1 Ex vivo Human samples 

Through the collaboration with endocrinologists, instant-frozen adiposes tissues 

samples were excised from three deceased subjects who donated their body to science. 

Two were type 2 diabetics (age: 64±4 years; BMI: 31.2±5.5 kg/m2; male\female:1\2). 

From each subject, fat samples included a total of four visceral fat (VAT), two 

subcutaneous fat (SAT) and three epicardial fat (EAT) samples. All samples were instantly 

frozen upon excision to avoid fat oxidation. 

 

4.3.2 MR and MRS protocol 

Spectroscopic measurements were performed on a preclinical 11.75T scanner (Bruker 

Avance 500 MHz/89 mm wide bore vertical imager, Ettlingen, Germany) using a 5mm 

diameter coil. Prior to MRS acquisition, the protocol included spatial localizers in at least 
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2 perpendicular plane cutting through the center of voxel of interest for identification of 

homogeneous fat volumes within samples in order to avoid air traps and incisions within 

tissue and an iterative voxel-targeted shimming procedure with the FASTEST-MAP 

sequence. Single-voxel MRS was performed using the STEAM sequence with voxel size 1 

mm3, TE=6, 10, 20, 30, 40, 50 ms. STEAM mixing time (TM) was 20 ms, TR=1.5 s and 20 

averages. It also included an outer volume suppression (OVS) preparation with six 1.5 

mm-thick saturation bands. 

4.3.3 MRS data processing 

A home-made Python software(166) was used to post-process raw MRS data. The 

signal processing included: automatic channel-by-channel signal zero and first order 

phasing, Single Value Decomposition (SVD) channel recombination, individual spectra 

frequency realignment and a 5 Hz-damping apodization.  

Then, the processed MRS data were quantified using a time-domain fitting 

algorithm(166) consisting of linear of combination of numerically computed metabolite 

groups (lipids and water) spectra. The pyGAMMA simulation library(167) was employed 

to simulate water (4.7 ppm) and lipids modeled with ten gaussian components with their 

corresponding chemical shifts (Table 1-2) using a spin-echo acquisition. The MRS model 

was fitted to the data using a non-linear least squares optimization algorithm resulting in 

relative concentration and frequency shift estimation for each peak, and a global 

linewidth damping and phase shift for each metabolic group. Cramér-Rao Lower Bounds 

(CRLB) were also estimated considering a noise level measured on the unprocessed 

unfiltered raw data.  

T2 was estimated for each peak of the metabolic groups on each ex-vivo samples using 

STEAM spectra at TE= 6, 10, 20, 30, 40, 50 ms. The following equation was used for T2 

correction: 

Sk’ = Sk× exp(TE/T2k) 

 

where Sk is the relative concentration estimate in the VOI for either water or lipids and Sk’ 

for the corrected relative concentration for a given biomolecule. 

After T2 correction of the lipid's peaks relative concentration, the triglyceride model 

(ndb, nmidb, CL) was estimated using the following constraints: chain length was fixed at 

cl=17.29 (Hodson et al.(27), Table 1-1) and only the 6 most intense lipids peaks 
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A,B,C,D,E,F were considered for improved robustness. The ndb and nmidb quantified 

were then translated to fatty acids composition (SFA, UFA MUFA, PUFA). 

4.4 Results 

Representative spectra with the fitting model of thoracic subcutaneous fat and 

epicardial fat are shown in Figure 4-1. For both spectrum, the ten lipids' peaks are 

resolved but in epicardial fat there is also a water peak which is broadened compared to 

lipids group. 

 

Figure 4-1: Examples of spectra obtained on thoracic subcutaneous fat and 

epicardial fat of the same subject. Black curves represent the spectra acquired using 

STEAM sequence. The fitting processing (red) was designed to quantify water (4.7 ppm) 
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and the lipids model (Table 1-2). Residual signal (grey) enables to evaluate the adequacy 

of the model. 

As expected, and shown in Table 4-1, the mean T2 value depends on the lipid peaks 

but due to insufficient fitting correlation (r2 <0.90) mean T2 of G and I lipid peaks were 

not estimated. 
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Table 4-1 : Mean and standard deviation of T2 measured for each lipid peak. Only 

good fitting correlation (r2 <0.90) are reported. 

 

Constraint triglyceride model (ndb, nmidb) and fatty acid composition after T2 

correction are summarized in Table 4-2 for each ex-vivo fat samples. For a same subject, 

there is large variation of estimation triglyceride parameters among the adipose tissue 

samples ( ndbsubject 2 = 2.37±0.21, nmidb subject 2=0.51±0.04, ndbsubject 2 = 1.88±0.29, nmidb 

subject 2=0.25±0.18). The fatty acid composition may vary according to the type of adipose 

tissue (EAT, VAT, SAT). Meanwhile, preliminary results suggested that EAT had a lower 

SFA (31.57±12.61), higher MUFA (54.97±14.03) compared to the other type of adipose 

tissues (SAT SFA: 49.34±4.96, MUFA 43.24±2.01 and (VAT SFA: 40.14±9.33, MUFA 

43.49±7.74) whereas PUFA from EAT (13.45±7.91) ranged between SAT one (7.42±6.97) 

and VAT one (16.37±1.73). 

Table 4-2 : Summary of triglyceride model parameters and fatty acid 

composition measurements. For stability of the estimation of those parameters, fitting 

was constrained with cl=17.29 and only A, B, C, D, E and F lipid peaks were considered. 

Subject Adipose tissue ndb nmidb SFA UFA MUFA PUFA 

1 

VAT 2.6 0.53 31.13 68.87 51.16 17.71 

VAT (perirenal) 2.2 0.46 42.07 57.93 42.66 15.28 

VAT (thoracic) 2.49 0.54 34.98 65.02 47.04 17.98 

EAT 2.19 0.51 44.05 55.95 38.79 17.16 

2 

VAT 1.86 0.44 52.37 47.63 33.11 14.52 

SAT (abdominal) 2.0 0.37 45.83 54.17 41.82 12.35 

SAT (thoracic) 1.49 0.07 52.85 47.15 44.66 2.49 

EAT 2.18 0.13 31.83 68.17 63.82 4.36 

3 EAT 3.0 0.57 18.84 81.16 62.31 18.84 

 

Peak LipA LipB LipC LipD LipE LipF LipG LipH LipI LipJ 

T2 (ms) 
mean 43.71 30.51 14.91 25.09 29.31 33.88  9.47  26.49 

sd 8.70 4.86 4.24 3.66 6.69 11.08    2.67 

N samples (%) 9/9 9/9 5/9 9/9 9/9 5/9 0/9 1/9 0/9 4/9 
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4.5 Discussion  

In this ex-vivo study, the MR properties of the human epicardial adipose tissue were 

explored and compared to visceral and subcutaneous ones. 

As shown in Figure 4-1, the fitting procedure showed some limitations which could be 

due the a priori Gaussian lineshape instead of Lorentzian or Voigt one. This may lead to 

insufficient fitting correlation for T2 estimation (Table 4-1).  

For robustness in the estimation of triglyceride model and fatty acid composition, 

constraints were added with fixed chain length (cl) and limited peak analysis (only six 

peaks) due to the inconsistency of the results otherwise. Further work must be done for 

improving the fitting of those triglyceride parameters. A lead would be not to express one 

parameter in function of the others(168) as it had shown to potentially bias the estimation 

and hide relevant physiological information(41). Instead, one could impose realistic 

constrained such as nmidb ≤ ndb and CL, ndb, nmidb are limited in the range of realistic 

gas chromatography adipose tissue parameter values. 

The preliminary results on fatty acid composition suggested that EAT had a lower SFA 

and higher MUFA compared to SAT and VAT. However, the sample size needs to be 

extended in order to verify this hypothesis and confirmed with gold-standard gas 

chromatography evaluation. Another perspective to this work is to characterize adipocyte 

size of EAT using diffusion weighted MRS(169,170). It has shown to discriminate ex-vivo 

murine brown from white adipose tissues(171), and it has also been developed for human 

in-vivo fat characterization at 3T(172). 

4.6 Conclusions 

In this human ex-vivo study, NMR signature of epicardial adipose tissue has been 

explored. To the best of our knowledge, this is the first MRS analysis of human epicardial 

adipose tissue. Those preliminary results in terms of T2 estimation, triglyceride model and 

fatty acid composition need further investigation with a higher sample size, and they need 

to be confronted against gas chromatography analysis. After achievement of this study, a 

more reliable epicardial adipose tissue spectrum calibration could be provided for fat-

water imaging. It may reduce PDFF and 𝑅2
∗ quantification bias for this unique adipose 

tissue. 
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Chapter 5 : In vivo EAT characterization using 

CSE imaging 

5.1 Synthesis 

Context & motivation 

Cardiac Dixon MRI has the potential to probe cardiac fat overload and alteration by 

mapping PDFF and R2*. High-resolution 3D CSE-imaging is required to detect the 

pericardial fascia, layer separating epicardial fat from paracardial fat, which is better 

visualize at systolic time. Cardiac Dixon MRI is a challenging due to cardiac and 

respiratory motion, with in addition at 3T, a rapid phase accrual between water and fat 

concomitant with inhomogeneous B0. To overcome this hurdle, we started a collaboration 

with Matthias Stuber’s team at CIBM CHUV-UNIL who have developed a Free-Running 

framework for high-resolution cardiac imaging with fully respiratory and cardiac self-

gating, combined with a multidimensional Compressed Sensing reconstruction at 1.5T. 

Aiming for a precise and reliable high-resolution motion and cardiac resolved PDFF 

and R2* mapping, only bipolar echoes achieved short enough echo spacing but suffered 

from distortions between even and odd echoes due to gradients imperfections. Thus, the 

purpose of this work was to propose a high resolution Free-running cardiac Dixon-MRI at 

3T leveraging k-space trajectory correction by gradient impulse response function (GIRF) 

correction for PDFF and R2* quantification. 

 

Methods & results 

Free-Running cardiac Dixon with 13 echoes (TE1/ΔTE = 1.12/1.07ms) in bipolar mode 

and 8 echoes (TE1/ΔTE = 1.16/1.96ms) in monopolar mode were acquired at 3T on a 

fat/water phantom and 10 healthy volunteers and one diabetic patient. Bipolar Free-

Running cardiac Dixon were reconstructed with or without GIRF-correction and were 

compared to monopolar ones in-vitro and in-vivo in different regions of interests.  

Without GIRF correction on bipolar Dixon-MRI, blurring and halo effect appeared on 

even echoes resulting in a non negligeable PDFF bias of 4.90% in-vitro and 23.49% in left 

ventricles of healthy subjects whereas with GIRF correction, those artifacts disappeared 
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with a precise PDFF quantification in vitro with mean bias 0.03% and more realistic one 

in vivo with mean PDFF of 0.78% and 0.84% in left and right ventricles. In monopolar 

mode, due to large inter-echo, fat-water swaps were present in-vitro and in-vivo with a 

less precise quantification with mean PDFF of 2.35% and 2.53% in left and right 

ventricles. Finally, in the healthy volunteers cohort, epicardial fat had a significantly (P 

<0.0001) lower fat fraction (80.36±7.10%) than the subcutaneous fat (92.49±4.25%). 

 

Conclusion, limits & perspectives 

To enable precise high-resolution PDFF and R2*, Free-Running cardiac Dixon at 3T 

proved to require bipolar echoes with k-space trajectory correction achieved with the 

system-specific GIRF. It would have been of interest to explore more in details the k-space 

trajectory correction by adding the value to correct concomitant gradient effects as it is already 

done at low-field(173) but also applied it on monopolar Free-Running Dixon MRI. Moreover, 

this proof-of-concept offers the possibility to investigate epicardial adipose tissue PDFF 

and R2* or furthermore, with sufficient echo times, fatty acid composition 

characterization in metabolic diseases resolved within the full cardiac and respiratory 

cycles. Moreover, it would facilitate the emergence of automatic volumetric quantification 

approaches of the cardiac fat. 

 

Personal contributions 

To achieve this work, we started during my thesis a collaboration with Matthias 

Stuber’s team at CIBM CHUV-UNIL. To this end, Davide Piccini provided us the Free-

Running WIP sequence that could acquire multi-echo spoiled GRE free-running data. 

Adele L.C Mackowiack shared her multi-echo free-running image reconstruction code 

(MATLAB). This reconstruction pipeline needed to be updated with the backbone of the 

more recent reconstruction code provided by Jérôme Yerly, that was not adapted for the 

multi-echo sequence. I merged, adapted and optimized the overall multi-echo Free-

Running reconstruction pipeline to meet our hardware memory constraints and improve 

the quality of reconstructed images. For the GIRF correction, we also collaborated with 

Josef Pfeuffer, from Siemens thanks to the support from Thomas Troalen. Josef supplied 

the calibration sequence, to measure our scanner’s GIRF, and the MATLAB code to apply 

GIRF into a 2D spiral reconstruction. I adapted this code to be applied on 3D non cartesian 

trajectories and integrated the GIRF correction in the reconstruction pipeline. This 
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integration represented quite some time since we had to retro-engineer the simulation of 

the gradient waveforms performed by the sequence. I also acquired and reconstructed in-

vitro and in-vivo Free-Running CSE-MRI, conducted the statistical analysis, prepared all 

the figures.  

Submission status 

The following chapter is a draft article in preparation for submission in in Journal of 

Cardiovascular Magnetic Resonance. Before submission, we planned to improve this work 

on the following aspects : 

- Extending the cohort study with more diabetic patients 

- Extending the analysis (PDFF/R2*) between paracardial and epicardial fat 

- Exploring cardiac-respiratory status with quantitative maps ( R2*, B0)  
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5.2 Introduction 

There is a growing interest in probing epicardial adipose tissue (EAT), a metabolic fat 

surrounding the heart, which has been shown to influence pathophysiological pathways 

towards cardiovascular degradation in metabolic diseases(18). Chemical shift-encoded 

(CSE) MRI enables high resolution mapping of fatty depots(141) as well as the 

quantification of T2* decay. Proton Density Fat Fraction (PDFF) measurements in cardiac 

MRI help to identify myocardial fatty infiltration and lipomas(174). Meanwhile, T2* 

mapping received increasing interest in community and consensus statements(175,176) 

for assessment of hemorrhage(177) and iron deposition(178). 

However, 3D CSE-MRI, also referred to as Dixon-MRI, is challenging in the heart due to 

cardiac and respiratory motion. Most 3D approaches(118,179) have been limited to a 

motion-free cardiac phase (end-diastole) to minimize cardiac motion artifacts, while 

navigator gating is used to reduce respiratory motion artifacts. Recently at 1.5T, cine 3D 

Dixon(119) has been developed with navigator gating. It allowed to facilitate epicardial 

border delineation. While benefiting from increased field-strength at 3T to boost SNR and 

fat sensitivity, CSE-MRI remains challenging due to rapid phase accrual between water 

and fat and the concomitant inhomogeneous B0 field(180) in the heart. Thus, only single 

phase CSE-MRI(181) has been proposed at 3T, with a limitation to fat imaging without 

PDFF quantification due to the use of fewer echo times.  

The Free-Running framework is a recent approach for high-resolution cardiac imaging 

acquiring 3D radial samples with complete respiratory and cardiac self-gating and 

combined with a multidimensional Compressed Sensing reconstruction(182). It 

circumvents the need for respiratory navigation by using a self-gated superior-inferior 

projection, which can also be employed for cardiac-gating. This framework has 

demonstrated its capacity for motion-resolved high-resolution cardiac MRI, particularly 

to target demanding coronary imaging(45) or 5D-Flow MRI(183). Considering the 

preference for the visualization of epicardial fat in systole(184), due to the myocardium 

pulling the thin fat layer away from the pericardium sack, thus enhancing EAT delineation, 

we hypothesized that the Free-Running framework lays ground for high-resolution 

quantitative cardiac Dixon-MRI at 3T. We demonstrate that, at 3T, accurate PDFF 

quantification of the fat surrounding the heart can only be achieved with bipolar multi-
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echo times compared to monopolar echo times. However, bipolar Free-Running Dixon 

suffered from distortions between odd and even echoes due to gradient imperfections.  

Gradient imperfections-related distortions stand as a well-known hurdle in MRI, and 

in particular in non-Cartesian MRI. Recently, correction using the gradient impulse 

response function (GIRF)(185,186), which fully characterizes the gradient system 

temporal response, has emerged and demonstrated its value to correct all kinds of non-

Cartesian k-space trajectories(187).  

Thus, the Free-Running cardiac Dixon image reconstruction was extended with k-space 

trajectory correction using GIRF, which enabled high-resolution quantitative cardiac 

Dixon at 3T. 

5.3 Materials and Methods 

5.3.1 MRI acquisition 

A custom-written prototype 3D radial spoiled gradient echo sequence was 

implemented with multiple echoes and a phyllotaxis trajectory for integration with the 

Free-Running framework(182). CSE-MRI data were acquired on a 3T MRI system 

(Magnetom Vida, equipped with XE gradients, Siemens Healthcare, Erlangen Germany) 

with the spine coil array and an 18-channel body coil array.  

Aiming for a TR of 15ms, which has been shown to suffice for quantitative 

characterization of abdominal fat, including an accurate T2* value(188), 13 echoes 

(TE1/ΔTE = 1.12/1.07ms) in bipolar mode and 8 echoes (TE1/ΔTE = 1.16/1.96ms) in 

monopolar mode were acquired with the following parameters. For a precisely 10 min 

38s acquisition, 40014 radial views per echo (13 segments, 3078 Shots) were acquired 

with FOV=(220mm)3 at isotropic (1.5mm) 3 resolution, FA=5°, BW=1510 Hz/px for all 

echoes. 

5.3.2 In vitro: fat water phantom  

A homemade fat-water phantom consisting of eight 50mL vials with different fat 

fractions of peanut oil (0, 8.50, 20.01, 37.03, 63.19, 85.40, 92.14, 100%) was acquired 

using a 20-channel head coil to validate the methods quantification. The targeted volume 

percentages of oil were corrected with magnetic resonance spectroscopy, with exact 
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values of 0, 8.50, 20.01, 37.03, 63.19, 85.40, 92.14, 100%. Spectroscopy data were 

acquired on a 3T MRI system using a non-localized FID with TR=8000ms for each 

phantoms vials. 

Phantoms vials were aligned along the static magnetic field direction, and iterative 

shimming was performed prior to the acquisitions. SNR was measured in the vials over a 

3D region of interest and defined as the mean signal divided by the standard deviation. 

5.3.3 Numerical Simulation 

Given chosen acquisition parameters (MONOPOLAR: NTE/TE1/ΔTE= 

8/1.16ms/1.96ms, BIPOLAR : NTE/TE1/ΔTE =13/1.12/1.07ms), PDFF and R2* 

quantification precisions were evaluated by feeding synthetic CSE-MRI data y to the fat-

water separation algorithm modeled as: 

𝑦 = (𝑊 + 𝐹 ∑ 𝛼𝑚𝑒𝑖𝜔𝑚𝑡

𝑚

𝑚=1

) 𝑒(𝑖(𝜔0+𝜑0)−𝑅2∗)𝑡  +  𝑁(𝑡) 

with W=(1-PDFF) and F=PDFF corresponding to normalized water and fat absolute 

signal, 𝜔0 the off-resonance, 𝜑0 =  30° the initial phase, R2* = 50 s-1 the transversal decay, 

N(t) the complex gaussian noise (with SNR=10 or 50) and 𝛼𝑚, 𝑒𝑖𝜔𝑚  the relative 

amplitudes and frequency offsets of a subcutaneous fat spectrum respectively. The virtual 

CSE-MRI data were synthesized as volumes using an open-source toolbox(ref) with: along 

the x-axis, PDFF 0:1:100%, along the y-axis, uniformly distributed B0 -200:4:200Hz, and 

the z-axis consisted in 100 repetitions. Synthetic volumes were normalized based on 99% 

of the maximum of the first echo. To avoid border effects due to spatial regularization, a 

five pixels padding was added for each CSE-MRI volume.  

5.3.4 Study Population 

Ten healthy volunteers (age: 36±12 years; BMI: 22.9±1.7 kg/m2; male\female: 8\2) 

along with one diabetic patient (age=60;BMI=38.05 kg/m2 male\female: 0\1) were 

recruited in this study after informed consent. 

5.3.1 GIRF measurement 

The system-specific Gradient system Impulse Response Function (GIRF) was measured 

using the 2-offcentered slices method on a spherical phantom placed at isocenter 
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(189,190). The Free-Running sequence gradients waveforms (Figure 5-1.A) were 

corrected using multiplication in the frequency domain between the GIRF. Temporal 

integration provided the actual k-space trajectory(Figure 5-1.B).  

5.3.2  Image Reconstruction and Quantitative fat-water 

mapping 

Cardiac and respiratory motion signals were extracted from the first echo of the 

superior-inferior projections(182). Data were binned in 4 respiratory phases and 100ms-

wide cardiac phases. The 6D binned k-space data were reconstructed using the Free-

Running compressed sensing framework(182). Based on 3D radial Nyquist criteria, 

individual Free-Running Dixon data were accelerated by a factor R=26 for 8 cardiac 

phases and 4 respiratory state. 

Complex images from each bin were processed for fat-water separation using Iterative 

Decomposition of water and fat with Echo Asymmetry and Least square Estimation 

(IDEAL) method with constrained extension(70). Computations were performed in 

MATLAB R2019b with a computer equipped with a GPUs (Nvidia Quadro RTX 6000, 

24Gb) and 48 CPUs (Intel Xeon Gold 5220R, 2.20Ghz). 
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Figure 5-1 : Trajectory correction using system-specific gradient impulse 

response function (GIRF) : (A) Measurement of the GIRF and the magnitude of its 

Fourier transform (GFRF) ; (B) K-space trajectory correction pipeline (C) applied 

for the first four echoes in bipolar mode. (D) Converting distorted gradients into k-
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space trajectory showed up a mean shift superior to 1 for even echoes. GIRF-

corrected trajectory prevents this error at the image reconstruction level. 

5.3.3 Evaluation metrics and statistical analysis 

Difference between monopolar and bipolar acquisitions were evaluated in-silico and 

in-vitro using standard metrics (bias, precision) on PDFF maps. For in-vivo evaluation of 

the performances of the proposed correction, different regions of interests (ROI) were 

manually segmented on CSE-MRI using im3Dtools v3.0(191) in MATLAB: Right(RV) and 

Left(LV) ventricles, septum, liver, bone marrow, subcutaneous (SAT), epicardial and 

paracardial (PAT) adipose tissue.  

Statistical analysis was conducted using R (version 3.6.3) (134). The metrics’ 

distribution normality was assessed using the Shapiro-Wilk test. Paired Wilcoxon signed 

rank and Wilcoxon rank sum tests were used to investigate significant differences for each 

quantitative parameters between monopolar mode and bipolar one with or without 

correction. 

5.4 Results 

5.4.1 GIRF measurement results 

Figure 5-1.A depicts the GIRF and the magnitude of its Fourier transform ( Gradient 

Frequency Response Function) at low-frequency in all three axes. The magnitude GFRF 

revealed the mechanical resonances of the gradients coils between 3.3khz and 4kHz and 

a decreasing loss transfer function at high frequencies for all axes, impeding fast gradients 

switching such as in bipolar echo mode. Moreover, gradient response function is also 

depending of the axis. Indeed, the GIRF reveals a 2.5 µs delay in z direction whereas in 

frequency domain x,y gradient direction had a lower transfer function than the z one, 

indicating anisotropic eddy-current effects.  

The GIRF correction revealed subtle oscillations on gradient waveforms (Figure 5-1.C) 

and a mean shift of sampled point in k-space trajectory of 1.28 and -0.34 for even echoes 

and odd ones respectively (Figure 5-1.D). Odd echoes were less impacted thanks to a 

sequence-level calibration for the 1st echo and balanced errors between odd and even 

gradients. 
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5.4.2 Echo spacing scheme 

At 3T, despite a high bandwidth and modest matrix size, monopolar echoes (n=8) were 

unable to reach an echo spacing (ΔTE=1.96ms) shorter than the required in-phase/out-

of-phase 1.24ms delay (green markers in Figure 5-2). Only bipolar echoes (n=13) 

achieved short-enough echo spacing (ΔTE=1.07ms).  

However, in bipolar mode without correction strong artifacts, including strong signal 

modulation over the image and signal losses in certain regions as well as blurring of 

details, appeared between odd and even echoes (Figure 5-2). After GIRF trajectory 

correction, artifacts disappeared on CSE-MRI images, providing consistent visualization 

throughout echo times. 

5.4.3 Numerical simulations 

As shown in Error! Reference source not found..A, with a SNR=50, PDFF and R2* q

uantification is accurate with both 13 echo times or 8 echo times, with a mean PDFF and 

R2* bias less than 0.01% and 0.01 s-1 respectively. However, with a lower SNR of 10, fat-

water swaps are present for PDFF>85% in monopolar mode whereas PDFF quantification 

is still precise for bipolar mode with a mean PDFF bias of 0.03%. Expectedly, PDFF 

absolute error significantly (P <0.0001) decreased with 13 echoes compare to 8 echoes 

from 0.7 % to 0.49% and from 3.84 % to 2.38% for SNR=50 and 10 respectively. 

Meanwhile, Error! Reference source not found..B revealed that R2* quantification was d

ependent of PDFF with more imprecision in the 50% to 80% range with a maximum 

absolute error of 3.95 /19.81 s-1 with 8 echoes compared to 2.47/12.39 s-1 with 13 echoes 

at SNR=50/10 respectively. 
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Figure 5-2 : Free-running Dixon-MRI echo times repartition depending on the 

multi-echo scheme, before and after GIRF correction. Monopolar echo spacing was 

longer than the fat-water in-phase/out-of-phase delay at 3T. In bipolar mode without 

correction, strong artifacts appeared on even echo images but after GIRF correction image 

quality was restored. 
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Figure 5-3 : Comparison of PDFF (A.) and R2* (B.) bias and absolute error 

between 8 echoes in monopolar compared to 13 echoes in bipolar over synthetic 

CSE-MRI volumes with SNR=50 and 10. Mean and standard deviation PDFF and R2* bias 

and absolute error were averaged along the 𝐵0 off-resonance and repetition axes. 
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5.4.4 In-vitro experiments 

Experimental SNR measured in the phantom varied across vials between a minimum 

of 10 and a maximum of 50. Confirming simulation results, fat/water swaps are presents 

in vials with PDFF > 85% for monopolar mode. Corrected bipolar mode provided more 

reliable results with a mean bias of -0.36±1.90% compared to monopolar mode with -

5.25±13.07%. Without correction, bipolar mode PDFF maps suffered from non 

negligeable bias (4.90±4.36%). 

 

Figure 5-4: PDFF (A.) and B0 off-resonance (B.) measurements from in-vitro 

experiments with monopolar and bipolar with or without GIRF correction.  

5.4.1 In-vivo experiments 

Without GIRF correction, in vivo fat and water images were incorrectly reconstructed 

with blurring at the apex and around the atria, massive swaps between fat and water 

(Figure 5-5). It would resulted in non-realistic quantitative maps (B0 offset, R2* and 

PDFF) all along the cardiac (Figure 5-6) and respiratory cycle (Figure 5-7). On contrary 

with GIRF correction, fat water swaps disappeared and fat content is not overestimated 

in the heart no matter the cardiac and respiratory states. Besides, quantitative maps 
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obtained with the monopolar acquisition still suffered of non-realistic values causing bias 

in PDFF and R2* quantification. 

 

Figure 5-5 : Impact of GIRF correction on free-running bipolar Dixon-MRI on in-

vivo data. Artifacted even echoes (2nd echo presented only) are highlighted in red. Radial 

artifacts were reduced in GIRF-corrected images, corresponding to an almost in-phase 

image in vivo. 
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Figure 5-6 : Across the different phases of the cardiac, quantitative PDFF and R2*, 

B0 off-resonance maps in axial view resulting from monopolar, bipolar with or 

without GIRF correction. Inadequate monopolar echo spacing as well as uncorrected 

bipolar data led to spurious PDFF overestimation with fat-water swaps.  
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Figure 5-7 : Across the different respiratory states, Quantitative PDFF and R2*, B0 

off-resonance maps in coronal view resulting from monopolar, bipolar with or 

without GIRF correction. The dotted white line represents the diaphragm level at 

expiration state. 
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Therefore, for instance with non-corrected bipolar, fat content is overestimated in 

tissues with negligible expected adiposity: mean PDFF of 23.49% and 17.52% was 

measured in the left and right ventricles respectively (Figure 5-8). On contrary with 

correction, mean PDFF in those ROIs were more realistic with a PDFF lower than 1% (LV: 

0.78% RV : 0.84%) whereas in monopolar mode it was superior to 2% (LV:2.35 RV:2.53).  

In the healthy population, epicardial fat have a significantly(P <0.0001) lower fat 

fraction than the subcutaneous fat (PDFF EAT : 80.36±7.10% and PDFF 

SAT=92.49±4.25% in bipolar). Only present within two healthy volunteers, paracardial 

fat PDFF (92.49±3.34%) tended to be superior to EAT PDFF. Bipolar GIRF corrected PDFF 

values are more precise and homogenous across cardiac and respiratory cycle compared 

to the monopolar one with a significantly(P <0.0001) lower standard deviation ( sd 

PDFF=1.23%, sd PDFF=2.70% monopolar).  

The preliminary results with the diabetic patient suggested that she had also a lower 

fat fraction of EAT (86.35±5.00%) compared to the subcutaneous fat (96.34±3.06%) or 

paracardial fat (92.48±2.90%) (Figure 5-9).  

 

Figure 5-8: PDFF measurements over different regions of interests across the 

volunteers resulting from bipolar with or without GIRF correction and monopolar 
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echoes. Boxplots showed the consistency of PDFF measurements along cardiac and 

respiratory cycle. 

 

Figure 5-9 : PDFF, R2*, B0 off resonance measurements in epicardial and 

paracardial fat across patients and healthy volunteers.  

5.5 Discussion 

We demonstrated in this study the value of Free-Running cardiac Dixon at 3T for high-

resolution high-precision 3D quantitative cardiac fat and water imaging. However, the full 

potential of Free-Running Dixon at 3T could only be achieved with bipolar echoes, which 

required a correction with the system-specific GIRF to prevent radial-trajectory image 

artifacts.  

In monopolar mode, large inter-echo times (1.96ms), superior to in/out phase echo 

spacing, led to fat-water swaps in low SNR regions in-silico, which were confirmed in-

vitro in vials superior to 85% of fat fraction. As shown in Figure 5-4.B, B0 field map 

estimation error could cause those swaps. In contrary, with thirteen bipolar echoes 

obtained in a 15ms single TR with ΔTE=1.07ms, reliable PDFF measurement were 

obtained in simulation and in vitro. 

Epicardial adipose tissue overload has been established as a biomarker of Coronary 

Heart Disease (CHD). Its volumetric quantification using high resolution 3D Dixon has 

been already proposed in the past at 1.5T(119) and 7T(192). Our approach distinguished 

from those works by targeting a precise PDFF quantification of EAT leveraging 13 echoes, 

allowing a differentiation of this unique adipose tissue from its neighbour paracardial 

fat(Figure 5-9). Quantitative PDFF might offers refine insights in the characterization of 
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EAT, possibly determining EAT ‘colour’ of adipose tissue (between brown, beige or white) 

as brown adipose tissue has been shown to have a lower PDFF than white adipose 

tissue(193,194). Further investigation leveraging the 13 echoes could also provide 

valuable FAC characterization(36,195).  

Free-Running cardiac Dixon also provides with the full cardiac and respiratory cycles, 

which offers multiple benefits: 1/ to study epicardial fat, systole is often preferred since 

pericardium is thicker and better separate EAT from paracardial fat, 2/ the respiratory 

phase with minimal B0 inhomogeneity can be chosen for analysis, limiting local signal loss 

and phase accumulation and 3/ variations of R2* along the cardiac cycle hold interest, in 

the myocardium to detect ischemia(196), but also between right and left ventricular 

blood pools to probe cardio-respiratory status(197). 

While high resolution 3D Dixon acquisition are not included in routine cardiovascular 

MRI protocols, this particular acquisition might be motivated in several applications as 

stated above. For example, a rapid automatic 2D evaluation of EAT on routine MRI cardiac 

images has already been proposed(198) and could inform of EAT overload to motivate a 

finer 3D quantitative PDFF assessment in certain cardio-metabolic diseases.  

Although different strategies could have been used for correcting k-space 

trajectory(89,199), starting simply with constant and linear corrective factors, we opted 

for the GIRF method(187) which have proved to provide a more robust and precise 

correction. Beyond gradient imperfections, non-Cartesian k-space trajectories are also 

sensitive to gradient concomitant field effects and static field inhomogeneities. 

Concomitant fields were considered minor at 3T, but they could be corrected in addition 

to GIRF(173). And due to the very short individual readout duration (~1ms), static field 

inhomogeneities have a minor impact on the trajectory, although a correction(200) 

embedded in the non-uniform FFT could also be integrated in the Free-Running 

framework. 

A major limitation of this work remains the elongated reconstruction time. Indeed, due 

to large amount of data (more than 20Gb) for each acquisition, each echo has been 

reconstructed independently with a computation time of 3h 20 min per echo using GPU. 

Fortunately, technical advances in image reconstruction hold hope for massively reducing 

this time. 

Due to high susceptibility-induced field of the lung, B0 inhomogeneities field map had 

large variations influencing R2* quantification (Figure 5-6,Figure 5-7,Figure 5-9). To 
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compensate this confounding factor, it would be of interest to integrate a priori 

information of the scanner magnetic field distribution(76,164) to improve the robustness 

of the B0 field map estimation and correct R2* quantification(201). 

5.6 Conclusions 

This study aims at providing precise high-resolution PDFF and R2* quantification, 

achieved using Free-Running cardiac Dixon at 3T. Bipolar echoes proved to significantly 

outperform monopolar echo mode, but required k-space trajectory correction using the 

gradient system specific GIRF characterization. It enabled to investigate epicardial 

adipose tissue PDFF and R2*, showing a significantly lower fat fraction (80.36±7.10%) 

compared to subcutaneous fat (92.49±4.25%) in the healthy cohort.  
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General Conclusion and Discussion 

Motivated by the growing interest of epicardial fat imaging to assess its role in 
cardiovascular degradation in metabolic diseases, the problematic of this thesis was to 

develop epicardial fat MRI to quantify and characterize this unique adipose tissue. Indeed, 

while epicardial adipose tissue plays a cardio-protective role in healthy subjects, it shifts 

towards an inflammatory substrate under pathophysiological conditions, notably in 

diabetes, promoting the development of cardiovascular diseases. Therefore, the ability to 

access in-vivo information of epicardial fat has the potential to bring fundamental value 

to the diagnosis of cardio-metabolic risks.  

Cardiac MRI appears as a method of choice owing to its evaluation of heart’s anatomy 

and function, generation of different contrasts with quantitative information, and non-

invasive feature allowing multiple explorations. However, epicardial adipose tissue is 

often overlooked in cardiac MRI. 

In this context, this thesis was built upon three pillars: 1/ the understanding of the 

needs from clinicians to include EAT in their diagnosis, 2/ the acknowledgement of 

technical and practical hurdles to be lifted to facilitate the consideration of EAT in cardiac 

MRI and 3/ the push for innovative metrics to further probe EAT, leveraging cardiac MRI.  

1/ First, I conducted a thorough review on epicardial adipose tissue fat from the 

perspective of its physiology, acknowledging its features as a fatty tissue and its 

implications in cardiovascular risks. Upon the identification of biomarkers of EAT 

(quantity and color feature) regarding its pathophysiological role in cardiovascular 

diseases, I investigated in depth how EAT can be imaged in radiology and how these 

biomarkers are characterized and analyzed.  

Second, we considered the evaluation of accumulation of EAT to be essential in routine 

cardiac MRI. That is why we developed, using deep learning approaches, a rapid and 

automatic quantification of EAT on standard cardiac images (four-chamber cine). To be 

clinically relevant, this tool was validated over a heterogeneous database including 

healthy subjects, type-2 diabetic patients and non-diabetic obese patients. And to 

facilitate its integration, we implemented the network as a ‘one-click’ plugin in an open-
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source software FSLeyes. Although we showed this area measurement enables to 

relatively detect overload of EAT, a precise volumetric quantification remains desired. 

Third, the proof of concept of 1.5 mm3 isotropic Free-Running Dixon-MRI was 

developed and evaluated during this thesis, allowing to meet these expectations. This new 

acquisition lays ground to automatic 3D quantification of EAT in cardiac MRI, albeit at the 

cost of a 10-min long dedicated acquisition. Moreover, the recent clinical literature points 

towards the EAT quantity not being the sole biomarkers of interest, but also the EAT 

endocrine activity (pro-inflammatory, pro-fibrosis) that contributes to the development 

of cardiovascular risk. From a macroscopic view, the color feature (white, beige, brown) 

and the fatty acid composition of EAT may also inform of the healthiness of subjects. 

Quantitative biomarkers of adiposity (PDFF) and iron overload (R2*) have been shown to 

discriminate, in supraclavicular zone, brown from white adipose tissues(193,194). As 

EAT is a unique adipose tissue of varying “color”, the high precision imaging of those 

quantitative biomarkers was our guiding principle in order to detect subtitle 

modifications. For this reason, we have worked for a high-resolution, precise and reliable 

quantitative maps (PDFF and R2*) resolved along cardiac and respiratory cycles to probe 

EAT. In addition, we developed a bi-language (MATLAB and Python) open-source toolbox 

during this thesis to standardize the comparison between the state-of-the-art of fat-water 

signal separation algorithms, eventually to elect the optimal algorithm(70) that ensure 

clinical precision. 

Recently, in-vivo MRI based methods that estimated fatty acid composition had raised 

interests from the research and clinical community. Indeed, it may offer a better 

understanding of the role of EAT FAC in CVD. Thus, in collaboration with the 

endocrinology department of the AP-HM, we began an analysis of ex-vivo human EAT 

samples to explore its NMR signature and fatty acids composition profile. Moreover, the 

thirteen echoes of our Free-Running Dixon offer the possibility of further characterization 

of EAT with imaging of fatty acid composition. 

In perspective of fully clinical integration, this work would greatly benefit from an 

online reconstruction and direct evaluation on the scanner, using Siemens’ WIP FIRE for 

instance or to be adapted in a Free-Running multi-tasking framework(202). 

2/ We believe the first obstacle for EAT imaging and quantification is the requirement 

of high spatial resolution due to anatomical constraints. Indeed, EAT is irregularly 

distributed around the heart with a sinuous curvature and it is separated from its 
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neighbor paracardial fat only by the ~2mm thick pericardial fascia. Thereby, in cardiac 

MRI, none of the current approaches for a rapid and automatic quantification are really 

specific to EAT, measuring only cardiac fat as any bulk fat tissue. In contrary, we tackled 

the challenge by considering the better visualization of pericardium, which is less affected 

by partial volume effects, on four-chamber cine and using the temporal information to 

provide a rapid and automatic quantification of EAT area leveraging deep learning 

approaches. Our study also confirmed that the peak-systole provided a more robust 

visualization and segmentation of EAT.  

To allow refine MRI of EAT, technical barriers were then to achieve high resolution, 3D 

and quantitative imaging that is also robust to cardiac/respiratory motion and, 

preferably, can be resolved during the peak-systole. However, a thorough review on Dixon 

techniques had shown that most acquisitions were triggered in end-diastolic frame and 

compromised between resolution and number of echoes times, which directly influenced 

precision of quantitative biomarkers. To overcome these barriers, we started a 

collaboration Matthias Stuber’s team at CIBM CHUV-UNIL for adapting the Free-Running 

bSSFP framework towards Free-Running Dixon, enabling high-resolution images, fully 

cardiac and respiratory resolved. Together, we demonstrated this proof-of concept by 

achieving high-resolution (1.5 mm3 isotropic) PDFF and R2* mapping. Arguably, some 

might think that the full stack short-axis cine, included in a standard cardiac MRI protocol, 

would have been a simpler alternative for volumetric quantification, as it has been already 

used previously(47,48,124). However, with a slice thickness superior to 5 mm, and the 

partial volume effect in the short axis view that penalizes pericardial fascia visualization, 

standard cine appeared to us that it was less suitable for a robust high-resolution 

automatic and precise quantification, even considering super-resolution images 

processing(203). 

In addition to high-spatial resolution necessity, the second obstacle for EAT imaging 

and characterization is the requirement of precise measurement which is essential for 

reliability, reproducible research and clinical integration. The difficulty to overcome these 

combined hurdles had led EAT imaging in cardiac MRI to be only focus on the quantity 

measurement. Indeed, as mentioned above Dixon methods may obtain high resolution 

EAT imaging but at the cost of insufficient precision for PDFF and R2* quantification. In 

this thesis, we went beyond to achieve a high-spatial resolution precise and reliable PDFF 

and R2* quantification of EAT. Several steps were needed to reach this goal : 
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- the election of the ‘optimal’ fat-water separation algorithm 

- assessment of PDFF and R2* bias due to fat spectrum model miscalibration 

- Identification and exploration of ex-vivo epicardial adipose tissue 

- sufficient echo numbers (13) and short echo spacing (ΔTE = 1.07ms) only 

achievable using bipolar acquisition leveraging by GIRF correction  

3/ To leverage these technical barriers, original and innovative tracks were followed 

throughout this thesis. Indeed, in cardiac MRI, segmentation algorithms of EAT are only 

based on a single-frame(52,53) whereas our deep learning approach thanks to 3D 

convolution layer took into account the temporal information which is a key indication 

used by the expert for manual segmentation. 

We also looked at innovative metrics to probe EAT. Indeed, PDFF and R2* biomarkers 

have shown to distinguish BAT from WAT(193,194) and could be a measurement to 

identify color feature of adipose tissue. Then, we focused our research to permit a precise 

measurement of those parameters. Instead of selecting a random state of the art fat-water 

algorithm which would have been sufficient to obtain those quantitative maps, we 

conducted a standardized benchmark of those methods, which have not been done since 

a decade, to elect the most precise and reliable approach. We went further by assessing 

the influence of the choice of multi-peak fat spectrum inherent to fat-water model on 

PDFF and R2* quantification.  

Even with the optimal fat/water separation algorithm and the most adapted fat 

spectrum model, Dixon-MRI acquisition and reconstruction still have to be optimized to 

tackle the challenge of cardiac and respiratory motion, rapid phase accrual between fat 

and water. Only high-spatial resolution bipolar Free-Running Dixon framework overcome 

those technical barriers. Using an innovative trajectory correction based on gradient 

impulse response function (GIRF), bipolar Free-Running cardiac Dixon has proved to 

provide reliable and precise PDFF and R2* quantification. 

We also began to explore in-vivo fatty acid composition of EAT as possible new metrics 

for EAT analysis by providing a Free-Running bipolar acquisition with possibly a 

sufficient number of echoes (13) and short enough echo spacing (ΔTE = 1.07ms) as FAC 

imaging has been already done in similar conditions (36,59,188,204). 
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New emerging biomarkers could complete the evaluation of EAT in terms of adipocyte 

size using diffusion weighted MRS(172) or microstructure with intermolecular multiple 

quantum coherences(205,206). 

To conclude, MRI EAT quantitative imaging represents a real potential for in-vivo 

characterization of the physio-pathological processes induced by EAT in cardiovascular 

diseases and offers the possibility to assess EAT as a therapeutic target. Indeed, the non-

invasive evaluation of EAT browning (12) after therapeutic or nutritional intervention is 

an emerging topic of research. 
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