
HAL Id: tel-04027094
https://theses.hal.science/tel-04027094

Submitted on 13 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyperspectral texture metrology
Rui Jian Chu

To cite this version:
Rui Jian Chu. Hyperspectral texture metrology. Signal and Image Processing. Université de Poitiers,
2022. English. �NNT : 2022POIT2271�. �tel-04027094�

https://theses.hal.science/tel-04027094
https://hal.archives-ouvertes.fr


THÈSE

POUR L’OBTENTION DU GRADE DE

DOCTEUR DE L’UNIVERSITÉ DE POITIERS

FACULTÉ DES SCIENCES FONDAMENTALES ET APPLIQUÉES

DIPLÔME NATIONAL - ARRÊTÉ DU 25 MAI 2016

Ecole Doctorale : Sciences et Ingénierie des Systèmes, Mathématiques, Informatique - SISMI

Secteur de Recherche : Traitement du Signal et des Images

Présentée par:
Rui Jian CHU

Hyperspectral Texture Metrology

Directrice de Thèse:
Christine FERNANDEZ-MALOIGNE

Co-directeur de Thèse:
Noël RICHARD

Soutenue le 07 juillet 2022
Devant la Commission d’Examen

JURY

Yannick BERTHOUMIEU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rapporteur
Nicolas DOBIGEON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rapporteur
Christine ANDRAUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examinateur
Faouzi GHORBEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examinateur
Alamin MANSOURI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Examinateur
Christine FERNANDEZ-MALOIGNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directrice
Noël RICHARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Co-directeur
Jon Yngve HARDEBERG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Co-directeur





To the apple of my eye, Gao Yan.





Acknowledgements

First and foremost, I want to thank Noël for guiding me throughout these years. It has been a

long and tough journey, and I have not been the easiest student to deal with. I want to thank

him for having taught me so much, both in science and in life. He has been truly an inspiring

figure in my academic endeavour, and I shall benefit from this for a very long time. His

unconventional, yet revolutionary and visionary thoughts influence me a lot. His words still

linger in my head and I shall slowly but surely understand most of his wisdom one day.

On the other hand, I am also indebted to Christine and Jon who have been supervising me.

They have been instrumental in showing me the larger picture, sometimes beyond research.

Apart from their expertise in image processing, I also benefit from their networks which prove

tantamount to scientific achievements. I am equally indebted to the jury members especially

the rapporteurs who have provided me precious feedbacks. I benefit so much from their

instantaneous questioning during the defence as we exchanged insights and perspectives.

Last but not least, I want to thank my muse, Gao Yan who I dedicate this thesis to.

Though she is not always present physically, I depend on her mentally all the time. I admire

her strength and resourcefulness from which I derive my energy for daily tasks. She has been

with me through thick and thin, sometimes I wonder if one deserves such perfection. This

journey is impossible without her consistent companion, understanding, and love, which

make me a better, braver, and more aspiring person than I was. Obviously, my family

members also have been extremely supportive of my research which I am forever grateful for.

It is not without their blessings that I can venture so freely, knowing that I am loved.





Abstract

Sixty years since the proposal of the first Julesz conjecture, many texture feature extraction

methods have been published. However, few are developed for metrological purposes. Ac-

cording to metrology i.e. science of measurement, a feature must be developed in conjunction

with distance or similarity measurement. In the context of our work on hyperspectral texture

metrology, this requires the feature to be relatively independent of the sensor technology and

thus from the number of spectral bands, spectral range, etc. In other words, the developed

feature must be general with results strictly dependent only on the texture content.

In this Ph.D. manuscript, we began by defining texture as the joint distribution of spectral

and spatial properties. Whereas the former dictates the spectral diversity or distribution

of pixels, the latter refers to the spatial arrangement or interaction of pixels. Accordingly,

we developed fullband spectral analysis adapted to the continuous nature of spectrum. By

working in metric space, the need for dimensionality reduction e.g. principal component

analysis (PCA) is eliminated. Besides, the selection of spectral reference is fully automated

thanks to entropy maximization. An analogy between our approach and PCA is drawn, with

the former shown to be more robust and faithful to the physics of spectrum.

Taking inspiration from graylevel cooccurrence matrix (GLCM) and local binary pattern

(LBP), we next developed fullband spatial analysis adapted to images of any number of

spectral bands and spectral range. We took into account both the accuracy of GLCM

features and the efficiency of LBP similarity measure to propose the neighboring difference

histogram. We then related neighboring difference with the notion of image gradient to pursue
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a parameterless approach. Subsequently, we demonstrated a mathematical decomposition of

spectral gradient into chromatic and achromatic parts. Considering the scale space theory,

we also developed automatic scale selection to reflect the local structure size.

To validate our approach, we subjected our features to texture classification, retrieval,

and segmentation tasks. The results show that our features perform at comparable level

with state of the art including machine and deep learning approaches. More importantly, we

demonstrate the physical interpretability of our features facing a multitude of spectral-spatial

variations. Thanks to metrology, we testified to the efficiency of adapted pair of feature and

similarity measure without necessarily the need for sophisticated learning techniques.
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Notation Signification
RD Real number in D dimensions.
(e1,e2, . . .) Tuple of which the ordering of its elements ei matters.
{e1,e2, . . .} Set of which the ordering of its elements ei does not matter.
I Image defined in two spatial dimensions i.e. I :R2 →RL with L spectral

channels. I(x) denotes the pixel value at the given spatial location x. Ī
refers to normalized image such that each spectrum integrates to unity.

x Spatial location in R2 i.e. x = (x1,x2).
s Spectrum, defined as a continuous function. Capitalized as S = {s1, . . . ,sn}

if a set of n spectra is referred to.
s̄ Normalized spectrum such that s̄ = s/∥s∥. Capitalized as S̄ = {s̄1, . . . , s̄n}

if a set of n normalized spectra is referred to.
ŝ Spectral reference. Capitalized as Ŝ = {ŝ1, . . . , ŝR} if a set of R spectral

references is referred to.
S̃ An approximation of convex hull Conv(S̄) of the normalized spectral set S̄

with Z spectra such that S̃ = {s̃1, . . . , s̃Z} ≈ Conv(S̄).
G Spectral shape. ∆G referes to spectral shape difference.
W Spectral intensity. ∆W referes to spectral intensity difference.
λ Wavelength; λl denotes the lth wavelength. ∆λ refers to spectral resolution.
p Probability density function. Capitalized as P if referring to a probability

mass function. U denotes uniform probability distribution.
KLD(p, p′) Kullback-Leibler (KL) divergence; KLD(p, p′) = KL(p∥p′)+KL(p′∥p),

where KL(p∥p′) =
∫

p(y) log
(

p(y)
p′(y)

)
dy is the KL measure of information.

O Computational complexity.
s.t. Such that.
def
= Equal to by definition.
H(·) Shannon entropy, defined in discrete domain.
h(·) Differential entropy, defined in continuous domain.
N (µ,σ) Normal distribution of mean µ and standard deviation σ . N (µ,Σ) refers

to multivariate normal distribution of mean µ and covariance matrix Σ.
y ∼ p y is distributed as p.
⌊y⌋ Highest integer lower or equal than y.
Conv(S) Convex hull of set S.

J
(Ŝ)

1 (I) Spectral difference histogram of the given image I based on the set of
spectral references Ŝ.

J
(r,θ)

2 (I) Neigbouring difference histogram of the given image I such that the pixel
pairs are defined with distance r and direction θ .

D(I) Spectral gradient histogram of the given image I.⋂
Logical AND operation.

T Texture feature, defined by either RSDOM or GHOST in this work.
∥·∥p p-norm e.g. ∥·∥2 =

√∫
| · |2.
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2 Introduction

1.1 Motivation

There are a plethora of texture feature extraction methods in the literature. Few, however,

define what texture is. This results in numerous ad hoc approaches which correlate little

with metrology, despite attaining supreme accuracy in some specific tasks e.g. segmentation,

classification and image retrieval. Consequently, one often finds difficulty in applying them

for the metrology of industrial quality control or realtime remote sensing due to the lack of

training dataset, complications in pre-processing and intricacy of parameter tuning.

In contrast, a metrological approach seeks to first define the measurand before performing

the measurement. Under metrology, measurements are to be solely dependent on measurand

and dissociated from sensor. Correspondingly, the similarity between textures is to be

preserved regardless of the imaging sensor with discrepancy only in accuracy. Indeed, the

varying number of bands (L = 1 for grayscale, L = 3 for trichromatic, L ≫ 1 for spectral)

indicates only differences in the bandwidth or sampling frequency in spectral dimension

but not in the image content. Consequently, texture as measured from hyperspectral image

is more accurate than that from grayscale image though within similar range. Feature

interpretability is also of utmost importance for the establishment of a direct relationship

between the measurement (feature) and the measurand (texture). In contrast to data-driven

approach, metrological solutions allow the quantification of error, uncertainty, and bias for

traceability.

In this thesis, we aim to develop texture features which are metrological and fully

interpretable. We note that images are inherently continuous despite the post-acquisition

digital representation. As such, we choose to develop our assessment in hyperspectral context

with straightforward application in grayscale and colour domains. Hyperspectral imaging

(HSI) is closely related to the measurement of physical surface properties and material

composition. Thanks to the dense spectral sampling up to hundreds of bands, HSI is able to

provide rich information that allows rapid and nondestructive assessment. However, highly
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accurate acquisition does not warrant highly accurate results. The full exploitation of HSI

necessitates proper data interpretation and enforcement of metrological processing.

1.2 A critical analysis on the state of the art

1.2.1 Feature extraction

Existent texture feature extraction techniques can be mainly divided into four categories

[36, 79, 81]: statistical-, structural-, transform-, and model-based. In the following, some

major techniques will be reviewed to provide a general perspective of the state of the art.

Statistical-based features

Statistical-based features are formulated under the pretext of texture being generated from

stochastic processes. As the oldest attempt to characterise texture, autocorrelation function

tells about the size of the tonal primitives which serves as a measure of coarseness (or fineness)

and regularity of the texture [64]. Mathematically simple, the autocorrelation features are

nevertheless inefficient due to their lack of comprehensiveness. The graylevel cooccurrence

matrix (GLCM) captures the second-order statistic for a given spatial relationship [30],

whose rotational invariance is achieved by correlogram [33]. The graylevel run length matrix

(GRLM) records the “run” or connected length of a particular pixel in a given orientation

[26, 23]. However, both GLCM and GRLM suffer from matrix sparsity problems which

demand heavy image quantization. The six Tamura features are formulated in correspondence

to human visual perception: coarseness, contrast, directionality, line-likeness, regularity, and

roughness [76]. Although psychophysically meaningful, mathematically the features are

defined non-uniquely with an ad hoc sense.
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Structural-based features

The structural-based features are developed in the context of texture being a repetition of

its primitives or textons. The classic method involves the determination of the primitives

as well as its placement rules [85]. However, such approach proves too restrictive as it is

only applicable for regular texture. A more versatile approach can be found by identifying

microstructures instead. Local binary pattern (LBP) records the distribution of microtextons

as defined by thresholding the neighbourhood of each pixel [56]. Evidently, LBP loses out

on the first-order statistical information. The Leung-Malik (LM) [48], Schmid (S) [67], and

Maximum Response (MR) [84] filterbank approaches define texton dictionary by the cluster

centres in the filter response space. Whereas LM and MR filterbanks consist of multiscale

and multidirectional Gaussian derivatives of order up to two, S filterbank is rotationally

invariant with isotropic, “Gabor-like” filters. As with all optimization problems, the required

clustering operation presents a computational overhead and algorithm-dependent efficiency.

Transform-based features

The transform-based features are the ones generated by various mathematical transform

operations. The most straightforward operation is the Fourier transform which analyzes

the frequency content of texture [77]. However, it is a global operation defined on the

entire image with a complete loss of spatial information. To achieve joint spatial-frequency

localization, the Gabor transform has been designed to mimic the operation of simple cells

[14]. However, its efficiency is highly dependent on the filterbank design. With the advent

of multiresolution analysis, wavelet analysis has been proposed [53]. The basis consists

of dilations and translations of a single function called the mother wavelet whose optimal

choice e.g. Haar, Daubechies, and biorthogonal dependent on texture. Apart from its lack of

shift-invariance, the size of a given region determines its representative frequencies within

the transform. This latter property seems particularly restrictive given that there is no reason,
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in general, to assume that the frequency content of an image region should be related to its

size.

Model-based features

The model-based features are constructed based on a given model. The fractal model assumes

self-similarity of texture [59], but the feature i.e. the fractal dimension alone is not sufficient

to capture all textural properties. The Markov random field (MRF) model relies on the

assumption that the value of each pixel value is only dependent on that of neighbouring pixels

[16]. However, the calculation of MRF parameters is subjected to computationally intensive

optimization due to the nonlinearity of the likelihood function. The Weber local descriptor

(WLD) is inspired by a psychological law [12], but its construction is ad hoc as it lacks

physical or mathematical justification in relation to the texture (why consider differential

excitation and gradient orientation but not others?). More recently, a gravitational-based

model named pattern of local gravitational force (PLGF) has been developed [6]. Though

conceptually interesting, its improvised concatenation of histograms (of force magnitude and

of angle) is mathematically questionable (as opposed to joint histogram).

1.2.2 Similarity measurement

Facing the need for similarity measurement, some feature extraction techniques resort to

simplification or summarization of the originally sound formulation. This is sometimes done

without careful consideration of the underlying data distribution. Some features are also

developed without regarding the need for similarity measurement, hence the ad-hocness. In

the following, three common approaches for adapting the features for similarity measurement

are presented.
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p-norm measures with feature vectors

The first is expression by feature vector. For example, GLCM and GRLM are reduced into

moments e.g. entropy, homogeneity, and correlation for summarizing the matrix [30, 26].

These moments are then concatenated to form the feature vector before the application of

p-norm measures for similarity assessment. Although commonly employed in the literature,

such treatment lacks mathematical plausibility. For example, the usage of the Euclidean

norm assumes independence between the elements in the vector. However, it is well known

that the moments as extracted from GLCM and GLRM are highly correlated which clearly

violates the independence assumption. On the other hand, statistical moments e.g. mean and

standard deviation are also commonly used to summarize filter responses of Gabor [3] and

wavelet approaches. We remark that the usage of these statistical moments implicity assumes

the normal distribution of the data, which is a strong statement.

Statistical distances with histograms

The second is expression by distribution. For example, correlogram is expressed as a flattened

two-dimensional histogram; LBP is expressed as one-dimensional histogram of binary codes;

whereas the wavelet coefficients are modelled by generalized Gaussian mixture model.

Mathematically, such approach fares better than that of moments because it avoids making

assumptions about the data distribution. However, it also possesses several problems due

to the need for density estimation. Firstly, the feature efficiency is highly dependent on

the efficiency of the statistical modelling which itself also presents a computational burden.

A soundly formulated feature may perform poorly due to inaccurate statistical modelling.

Secondly, density estimation becomes tricky in the case of multidimensional space thanks

to the exponential increase of memory consumption and the curse of dimensionality. For

example, a one-dimensional histogram of 28 bins requires 256 bits, but a two-dimensional

and three-dimensional histogram of the same number of bins in each axis requires over 200
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and 60000 times respectively the memory and storage requirements of the one-dimensional

version. Furthermore, statistical modelling also tends to break down in high dimensional

space. For example, it is known that in the case of kNN most of the mass is concentrated at

the unit ellipsoid. These difficulties themselves lead to the reduced efficiency of otherwise

well-intended feature extraction.

Machine or deep learning

Facing the difficulty in expressing the feature in an efficient manner, some authors skip

the devising of similarity measurement altogether and opt for a classifier-based solution.

For example, sophisticated machine learning algorithms with the like of support vector

machine (SVM), random forest (RF), and autoencoders have been devised to tackle the

high dimensionality problem. Recently, deep learning approaches like convolutional neural

network (CNN), recurrent neural network (RNN), and graph convolutional network (GCN)

has been optimized to learn the relationship between the inputs and intended outputs. While

these algorithms can perform in a superman-like capacity, they represent a generation of

“black box” approaches whereby there exists no explanation of the functionality of the code.

This possesses difficulty in analyzing and interpreting the result which is of vital interest in

fields such as medical diagnosis and military application. Although society has since realized

such problem and shifted towards “explainable artificial intelligence” (XAI), such approach

still suffers from the need for a wealth of annotated data for the learning, not to mention the

expense of time and energy to perform the computation.

1.2.3 Adaptation in hyperspectral domain

In retrospect, most texture feature extraction is devised in the context of grayscale images.

Indeed, Indeed, it exists a school of thought that considers color and texture as separate enti-

ties. Whereas colour is measured globally according to the image histogram ignoring local
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neighbouring pixels, texture is typically characterized by the relationship of the intensities

of neighbouring pixels ignoring their colour. Thanks to the well-established methods for

accessing monovariate texture, the remaining work seemed to be on adapting the existing

methods on multivariate images. In the following, three common approaches for processing

hyperspectral texture are presented. Texture assessment in the hyperspectral domain repre-

sents a unique case due to the high dimensionality. Even if colour texture assessment is also

performed in a multivariate fashion, the number of spectral channels is only three compared

to possible hundreds and even thousands of spectral bands in the case of hyperspectral image.

Marginal processing

The first approach is to extract a representative image(s) from the hyperspectral image

from which texture features can be extracted. The common argument is that most of the

hyperspectral is highly redundant and can be compressed using dimensionality techniques.

For example, principal component analysis (PCA) [27, 28, 92, 22, 90, 22, 27, 28, 35, 91, 82,

45] and minimum noise fraction (MNF) [87, 13] have been widely used in the remote sensing

community which commonly deal with AVIRIS sensor images up to hundreds of spectral

bands. Following the dimensionality reduction, only the first few principal components (PCs)

are considered for the texture assessment. However, it exists no principled but empirical

approach to selecting the optimum set of PCs. The other problem arising from such approach

is the possible loss, alteration, or destruction of the geometrical properties in the image.

Furthermore, these techniques are also applied without considering the physics. For example,

PCA is defined for vectors, but it is well known that spectral values are highly correlated and

are by definition, functions. On the other hand, PCA is appropriate for capturing the structure

of data that are normally distributed, or in which the linear pairwise correlations are the

most important form of statistical dependence in the data. But natural scenes contain many

higher-order forms of statistical structure, and there is good reason to believe they form an
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extremely nongaussian distribution that is not at all well captured by orthogonal components

The approach of using the first few PCs as the representative image so that the texture features

can be extracted also is a misconception; it has been reported that this is not necessarily the

case. Another solution is to process the texture features on the panchromatic image. However,

this misses the opportunity provided by hyperspectral data which has provided a wealth of

spectral and spatial information for more accurate texture characterization.

Cross-channel processing

The second approach is cross-channel processing which is the direct extension of opponent

process in the hyperspectral domain. In particular, opponent features are obtained by the

differences between features derived from one spectral band and that from the other spectral

band. This has been applied in the context of hyperspectral texture feature extraction using

Gabor filter [70] and LBP [43]. Due to the manner in which the features are generated

(cross-channel processing), a final feature size of L2 −L is obtained which can be gigantic

depending on the number of spectral bands L. As such, dimensionality reduction is usually

performed before opponent feature extraction. Well-founded for processing of colour or

trichromatic texture (thanks to the opponent process in the human visual system), cross-

channel processing is, however, hardly justifiable in the case of hyperspectral texture. In fact,

it is a forced adaptation of the opponent process in the hyperspectral domain. Furthermore,

it exists no proper mathematical or physical justification for cross-channel processing. The

argument that such approach is devised for taking into account spatial correlation between

spectral bands is deemed weak due to the ad hoc nature.

Vectorial processing

The third approach is vectorial processing. Apart from the two-dimensional spatial dimen-

sions, the spectral bands are treated as the third dimension. Having established that, existing
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two-dimensional features defined for grayscale images can thus be adapted in three dimen-

sions. For example, GLCM is extended to graylevel cooccurrence tensor field (GLCTF) [80]

with the spatial relationship defined in a three-dimensional (3D) manner. Expressed as a

3D matrix, GLCTF records the cooccurrence of three graylevels within a 3D moving box.

In the case of LBP, it is extended to three-dimensional LBP (3D-LBP) [38] considering an

ellipsoidal neighbourhood instead of a circular one. To simplify the calculation, only P = 6

vertices are considered with “radius” of the octahedron fix at r = 1. Similarly, 3D-Gabor [3],

3D-wavelet [29], and 3D-MRF [61] have been defined by performing joint spectral-spatial

assessment. Although being mathematically plausible, the textural inferences derived from

vectorial processing are questionable. Indeed, the physical meanings of GLCM, LBP, Gabor,

wavelet, and MRF are originally defined in two (spatial) dimensions and may not be directly

extendable to higher dimensions. Physically it is insufficient to merely claiming spectral

information has been added on top of the originally defined spatial properties, for example

by claiming the LBP codes as of “spatiochromatic” textons, or the Gabor energies as of

“spatiochromatic” frequencies. Without proper interpretation of the third-order measures,

vectorial processing can only be seen as some sort of mathematical convenience without any

physical meaning in relation to the underlying texture complexity. On the other hand, the

choice of parameters also becomes less defined in the context of the hyperspectral application.

For example, what is the physical meaning of r in the spectral dimension in the case of

GLCTF (3D version of GLCM)? In the case of GLCM, the optimal choice of r is proportional

to texton size. Applying the same selection criterion in the spectral dimension, the optimal

r thus must be corresponding to the spectral variation. Accordingly, smaller r is required

for spectrally distinct pixel pairs whereas larger r is permissible for spectrally similar pairs.

Another complexity can be foreseen if one were to pursue in such direction: do the texture

features defined from these 3D measures biased towards the spatial or spectral variation?
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Indeed, many questions remained unanswered in vectorial processing and care must be

undertaken before applying them.

1.3 Towards texture metrology

A spatiochromatic definition

Julesz conjectured that preattentive texture discrimination is limited to differences up to

second-order statistics [41]. In other words, humans can only perceive texture differences

up to the degree to which a pair of points (separated at a distance) varies. Also directly

implied is that difference in first-order statistics e.g. intensity and colour also contributes

to the discrimination. Later, Julesz perfected his theory that texture discrimination is based

on first-order statistics of textons1 like line terminators, line crossings, and elongated blobs

of a certain colour, orientation, size etc. [42] These psychophysical findings point to an

important fact: spectral and spatial properties are different facets of texture, and that a

complete characterization requires joint description of both. On the other hand, scientific

studies into human vision have revealed that we are not equally sensitive to spatial variations

in brightness and colour [21]. In fact, while we are very good at picking up very fine details

in brightness (intensity), we are less sensitive to fine spatial changes of colour. As contrast is

highly related to texture perception, these facts further support a spatiochromatic definition

of texture.

A statistical treatment

Having said that, we propose to define texture as the joint distribution of spectral and spatial

properties. Intended to be as generic as possible, the said properties can include intensity,

colour, directionality etc. which can be defined later. Of particular interest should be the

1“The putative units of preattentive human texture perception”.
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used notion of distribution (specifically, a continuous one) which speaks aloud its intended

information-theoretic characterization. Indeed, information in the real world is anything but

deterministic. In the presence of noise as well as metrological constraints, uncertainty is the

only constant2. Furthermore, spatiochromatic properties associated with natural (non-man-

made) textures are clearly stochastic. Spectrally, this is obvious as the texture is a spatially

varying phenomenon. The same can also be spoken about its spatial properties, for example,

there can never be a texture with precisely defined directionality (directionalities) unless it is

artificially generated. At best, a natural texture can only exhibit main or major directionality

(directionalities) in the presence of other minor orientations. Therefore, the texture must

be modelled as a distribution which allows quantization of the minor variations. That

said, distribution can also efficiently encode major variations. For instance, a bichromatic

(or trichromatic, quadchromatic etc.) texture can be intuitively modelled using bimodal

distribution in the spectral dimension. Indeed, a distributional formulation also facilitates

feature interpretability which is one of the pillars of metrology.

Full-band processing or dimensionality reduction?

Evidently, the large number of spectral bands renders any attempt to construct an image

histogram out of a hyperspectral image impractical. Facing this problem, two approaches

were proposed to reduce the number of bands. The first is feature extraction. In particular,

principal component analysis (PCA) [58] has been extensively used for projecting spectral

data into lower subspace. PCA uses a linear transformation to translate and rotate multiband

data into a new coordinate system that maximizes the variance. The principal components

(PCs) associated with large eigenvalues contain most of the information, while the PCs

associated with small eigenvalues are dominated by noise. Thus, only the first few PCs can

be retained to obtain lower-dimensional data while preserving as much of the data’s variation

as possible. Other techniques which have been used for dimensionality reduction include
2In resonance with the saying: the only constant in life is change.
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independent component analysis (ICA) [15] and nonnegative matrix factorization (NMF)

[47]. A review of the dimensionality reduction techniques for hyperspectral image processing

may be found in [49].

However, the feature extraction techniques can be hardly justified in the context of

metrology as they are data dependent. For example, in the context of PCA, the PCs are

calculated based on the covariance matrix, which is in turn uniquely defined for each given

image. As a result, spectral information extracted this way could not be compared across

different images. In addition, there is no physical sense to the weighted sum of measurements

coming from different spectral ranges and physics e.g. visible vs. infrared region. Moreover,

PCA requires considering the spectrum as a Euclidean vector in L-dimensional space. This

is manifested in the calculation of the covariance matrix which uses 2-norm as distance

measures. The same requirement can also be found in ICA and NMF. This violates the physics

which requires to consider spectrum as a continuous function, rendering these dimensionality

reduction techniques unsuitable for metrological purposes from the beginning.

Another approach for reducing the number of spectral bands is feature selection, which

is also known as band selection. It aims to select a small subset of hyperspectral bands to

remove spectral redundancy and reduce computational costs while preserving the significant

spectral information of ground objects. A review of various band selection techniques for

hyperspectral images may be found in [74]. However, such approach seems ironic because,

why acquire images in tens to hundreds of spectral bands for spectral accuracy, only to

finally reduce them to a few bands for computational simplicity? Why not then just work

with colour or multispectral images in the first place? Indeed, the interest in working with

hyperspectral images is to obtain a more accurate spectral representation thanks to its dense

spectral sampling. Not taking advantage of such rich information may constitute a missed

opportunity while defying the whole purpose of hyperspectral imaging.
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In this chapter, we developed a metrological approach to characterize the spectral proper-

ties of hyperspectral image(s). In particular, we proposed methods to quantify spectral shapes

(chromatic parts) and spectral intensities (achromatic parts) based on fullband processing.

We also proposed an automatic spectral reference selection for operation in metric space.

2.1 Background

We begin by briefly recalling the physics of spectrum. Then, we review some common

measures of spectral difference in the hyperspectral community. Finally, we consider the

problem of constructing a histogram for hyperspectraimagesge facing the high number of

spectral channels.

Physics of spectrum

Physically, a spectrum s is a continuous function f of wavelength λ such that s = f (λ ). As

such, the (spectral) “space” of spectrum is infinite dimensional. However, the “space” of

a sampled (discretized) spectrum s =
(
s(λ1),s(λ2), . . . ,s(λL)

)
is finite dimensional. In this

case, the dimensionality of spectral space is given by the number of (spectral) samples s(λl)

acquired with L wavelengths. That said, not every point in the spectral space constitute the

valid spectra. A spectrum is strictly positive and thus only “lives” in the postive hyperoctant1.

In the literature, it is common to treat a spectrum acquired with L samples as a Euclidean

vector in L-dimensional space which then allows its manipulation using linear algebra.

However, such approach actually lacks physical plausibility. For the Euclidean vector repre-

sentation to be physically valid, the spectral samples must be independent (orthogonal) and

thus uncorrelated. Accordingly, they are considered to be of no particular order such that the

distance between two spectra remains unchanged with varying order of samples. Obviously,

these are not the case as neighbouring spectral samples are indeed highly correlated [63], one

1Analogous to first quadrant in the two-dimensional space
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reason being overlap of the spectral sensitivity functions. In this work, we shall adhere to

the fact that spectrum is a continuous function; not as a mere collection or list of samples.

Assessment of spectral difference

Treating spectra as Euclidean vectors, it is straightforward to employ Euclidean distance or

root mean square error (RMSE) for calculating the difference between two spectra s and s′:

RMSE(s,s′) =
√
(s− s′) · (s− s′). (2.1)

RMSE is adapted for assessing spectral intensity difference but not spectral shape difference.

This is because RMSE does not take into account the ordering of spectral samples.

On the other hand, spectral angle mapper (SAM) [88] defines spectral difference by

calculating the angle (in Euclidean vector space) between two spectra s and s′:

SAM(s,s′) =
s · s′

∥s∥2 ∥s′∥2
. (2.2)

Clearly, SAM is invariant to spectral intensity difference because the angle is independent of

the vectors’ length. Besides, SAM also does not take into account the ordering of samples.

To conform to physics, the spectral difference should be calculated based on the fact the

hat spectrum is a continuous function. A first step is taken in the work of spectral information

divergence (SID) [9] which treats spectra as subject of randomness and hence as probability

distributions. However, spectral normalization is required for transformation into probability

before calculating the spectral difference using Kullback-Leibler (KL) divergence:



18 Spectral Characterization of Texture

SID(s,s′) = KL(s̄∥s̄′)+KL(s̄′∥s̄,

s.t. KL(s̄∥s̄′) =
L

∑
l=1

s̄(λl) log
s̄(λl)

s̄′(λl)
,

s̄ = s
/ L

∑
l=1

s(λl),

(2.3)

where s̄ and s̄′ are the normalized spectra. Taking into account the order of samples, the

efficiency of SID in measuring spectral shape difference is superior to that of RMSE and

SAM [8, 9]. However, SID too is invariant to spectral intensity difference.

Contrary to SID, spectral normalization is not required for calculating Kullback-Leibler

pseudodivergence (KLPD) [62] which otherwise removes spectral intensity information.

Expressing spectrum s = ∥s∥1s̄ in terms of its spectral intensity ∥s∥1 and its normalized

version s̄, KLPD defines KL divergence between two (unnormalized) spectra s and s′ as:

KLPD(s,s′) = ∆G+∆W,

s.t. ∆G = ∥s∥1 KL(s̄∥s̄′+
∥∥s′
∥∥

1 KL(s̄′∥s̄,

∆W = (∥s∥1 −
∥∥s′
∥∥

1) log

(
∥s∥1
∥s′∥1

)
,

(2.4)

where ∆G and ∆W are termed spectral shape and intensity differences respectively.

Histogram of hyperspectral image

An image histogram depicts the distribution of pixel values (spectral2 distribution) in the

given image. In the context of monovariate image I : R2 → R, the image histogram is

given by the histogram of graylevels. Considering a typical 8-bits image quantization, the

2Not to be confused with spectral power distribution. In the context of our work, spectral distribution refers
to the generalization of graylevel and colour distribution in a given image with any number of channels.
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histogram then consists of 28 = 256 bins. If it is normalized such that its bins sum to unity,

the histogram dictates the probability of finding a particular graylevel at a given spatial

location.

In the context of multivariate image I :R2 →RL with L spectral channels, two approaches

exist for constructing the image histogram. The first is to construct a L-dimensional histogram

with each axis corresponding to a particular spectral channel. However, such multidimen-

sional histogram would be extremely sparse with large L as in the case of hyperspectral image.

Considering a typical 8 bits quantization for each of the spectral channels, the L-dimensional

histogram would then consist of (28)L bins which are computationally infeasible. The second

approach is to assume independence among the spectral channels, which then allows one to

consider just the marginal distribution of spectral samples. Accordingly, it is then sufficient to

just use L histograms of graylevels (one for each channel) to characterize the entire spectral

distribution. However, such assumption of independence actually never holds according to

the physics of the spectrum. To recall, this is because adjacent spectral channels are highly

correlated as they are contiguously sampled in the spectral dimension.

Meanwhile, a proposition has been made in [19] to employ spectral difference space as

the feature space. Accordingly, spectral variability is assessed by the distribution of spectral

differences with respect to a chosen spectral reference ŝ. Based on KLPD, the bidimensional

histogram of spectral difference (BHSD) dictates the probability of finding a particular pair

of spectral shape and intensity differences (∆G,∆W ) at a given spatial location x [62]:

BHSD(ŝ)(I) = p
(

KLPD
(
I(x), ŝ

)
= (∆G,∆W )

)
. (2.5)

Evidently, the distribution of spectral differences (and hence spectral discrimination) depends

on the chosen ŝ. For maximum discrimination, ŝ should be selected such that it lies on the

convex hull Conv(S) of the spectral set S = {s1, . . . ,sn} from the given image with n pixels

and L spectral channels [19]. As demonstration, consider an example in Fig. 2.1 concerning
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three choices of ŝ for an image with L = 2. Suppose that the pixels can be clustered into

three groups: A, B, and C. In Fig. 2.1 (a), ŝ is very far from Conv(S). Consequently, the

clusters are hardly distinguishable in the spectral difference space as KLPD saturates. In

Fig. 2.1 (b), ŝ is located inside Conv(S). As a result, some of the clusters (A and B) cannot

be completely discriminated as they are “equidistant” from ŝ. In Fig. 2.1 (c) whereby ŝ is

selected such that it lies on Conv(S), the clusters are clearly differentiated in the spectral

difference space. That said, such approach necessitates a prior computation of Conv(S) of

which the complexity is given by e.g. O(n⌊L/2⌋+1) based on the gift wrapping algorithm

[18]. Clearly, this is infeasible for hyperspectral images with L typically ranging from tens to

hundreds or even thousands.

(a) (b) (c)

Fig. 2.1 Three possible choices of spectral references (top row) concerning an image with
L = 2 spectral bands (channels), and their resulted representation of spectral clusters A, B,
and C in spectral difference space (bottom row). For maximum discrimination, the spectral
reference should be selected such that it lies on the convex hull of the spectral set as in (c).
Image adapted from [19].
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2.2 The proposed formulation

Having presented the problem of constructing histogram for hyperspectral image(s), in the

following we provide a solution by first devising spectral decomposition into shape and

intensity. Then, we address the representation of spectral shape in metric space. Finally, we

propose the spectral difference histogram complete with an assessment of spectral diversity.

2.2.1 Spectral decomposition into shape and intensity

In colour image processing, the description of a given colour can be divided into two parts:

luminance (alternatively termed brightness, lightness, value, etc.) and chromaticity (e.g. hue

and saturation in HSV colour space) [69]. For example, white is a brighter colour than gray

which is a darker version of that same white. Thus, the chromaticity of white and gray are

the same as their luminance differs. Similarly, two colours can have different chromaticities

but the same luminance. Indeed, luminance and chromaticity are independent of each other.

That said, we seek the same decomposition in the context of spectrum. Referring to

Fig. 2.2, we introduce the notion of spectral intensity W and spectral shape G which are

analogous to luminance and chromaticity respectively in colour science. Specifically, we

define spectral intensity W of a given spectrum s by its continuous integral regardless

of its shape [62]:

W def
=
∫
R

s(λ )dλ , (2.6)

whereby a discrete approximation can be obtained using e.g. trapezoidal rule:

∫
λL

λ1

sdλ ≈
L

∑
l=1

s(λl−1 + s(λl)

2
∆λl, (2.7)

where L refers to the number of spectral samples. Thanks to this metrological construction,

spectral resolution ∆λl only affects the accuracy of the discrete approximation but not the
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range of it. An alternative, but deemed less metrological approach is to define spectral

intensity using discrete sum as in the case of SID for spectral normalization [8]:

W =
L

∑
l=1

s(λl), (2.8)

which is clearly not invariant to spectral resolution. Evidently, spectral intensity defined this

way increases with the number of spectral bands. As such, spectra acquired from different

spectral sensors are not directly comparable and thus not adapted for metrology.

On the other hand, we define spectral shape G of a given spectrum s by its normalized

version s̄ regardless of its intensity. Integrating to unity, it is mathematically expressed as:

G def
= s̄ =

s
W

s.t.
∫
R

s̄(λ )dλ = 1. (2.9)

The handling and manipulation of spectral shape is, however, not as easy and straightforward

as spectral intensity e.g. in constructing the histogram of spectral shape. This is because the

spectral shape is by definition, a function in contrast to spectral intensity which is a scalar.

Fig. 2.2 The proposed decomposition of a given spectrum s in terms of spectral intensity W
(as defined using 1-norm ∥s∥1) and spectral shape G (expressed as normalized spectrum s̄).
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Inspired by BHSD [62], we propose to characterize spectral shape G by working in metric

space. Specifically, we represent spectral shape G of a given spectrum s by the spectral

shape difference ∆G between its normalized version s̄ and a chosen spectral reference ŝ:

G metric−−−→ KLD(s̄, ŝ) = ∆G, (2.10)

noting the discrepancy between ∆G defined here and the spectral shape difference as defined

for KLPD (see eqn. 2.4). To be precise, the spectral shape difference space is actually a

pseudometric space as KL divergence does not respect the triangle inequality [44].

To shed some insight into our approach, let us recall the operation of principal component

analysis (PCA). The goal of PCA is to project the original data Y = [y1,y2, . . . ,yn]
T in

L dimensions with n data points yi ∈ RL into a subspace which gives a more compact

representation of the L variables [58]. To do so, PCA finds the projection planes which

preserve, as much as possible, the distances between yn. These projection planes called

the principal components (PCs), are defined by the eigenvectors vl ∈ RL for l ∈ [1,L] of

the covariance matrix3 Y TY , and ranked according to its variance which is defined by

the corresponding eigenvalue. To project the original data onto the PCs, one calculates

Yv = YV where V = [v1,v2, . . . ,vL]. In other words, each of the original n data points can be

transformed into the new axes by the dot products yn · vl . For dimensionality reduction, one

calculates Ỹ = YṼ for L̃ < L, where Ṽ = [v1,v2, . . . ,vL̃] is the set of the top L̃ ranked PCs.

In retrospect, the spectral (shape) difference in eqn. 2.10 can be thought as a spectral

projection onto the spectral reference. Indeed, the calculation of spectral difference is

analagous to the dot product yn · vl in PCA which projects a given data point yn (analagous

to the given spectrum) onto the PC vl (analogous to spectral reference). We note that the

dot product can be written as yn · vl = ∥yn∥2 ∥vl∥2 cosφ , where φ is the angle between yn and

vl . In the case of ∥yn∥2 = 1 (analogous to normalized spectrum s̄) and ∥vl∥2 = 1, the dot

3Y should have zero mean to ensure that the first PC describes the direction of maximum variance, or
otherwise the first PC might instead correspond more or less to the mean of the data
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product is then given by the cosine similarity cosφ which is analogous to spectral difference.

Recalling the manner in which the PCs are defined (i.e. to maximize the variance of projected

data), it is also straighforward to devise a strategy to select spectral reference such that it

maximizes the spread4 of spectral differences in the metric space (see sec. 2.2.4).

2.2.2 Spectral difference histogram

Following our proposed spectral decomposition, we intend to construct a histogram that

jointly considers spectral shapes and spectral intensities of a given hyperspectral image

I :R2 →RL with L spectral channels. Preliminarily, we define spectral difference histogram

J
(ŝ)

1 (I) as the joint probability density function (PDF) of spectral shape difference ∆G (with

respect to spectral reference ŝ) and spectral intensity W at a given spatial location x:

J
(ŝ)

1 (I) = p


KLD

(
Ī(x), ŝ

)
= ∆G,

∥∥I(x)
∥∥

1 =W


s.t.

∥∥Ī(x)
∥∥

1 = ∥ŝ∥1 = 1.

(2.11)

Having established the conceptual equivalence between PCA and our spectral shape G

representation in metric space i.e. through spectral shape difference ∆G, it is straightforward

to represent G using multiple spectral references ŝr for r ∈ [1,R] where R is the number of

spectral references. Indeed, a single spectral reference might be insufficient to account for all

the spectral shape variability. This is because dissimilar spectral shapes may result in the

same spectral difference with respect to a single spectral reference. With multiple spectral

references (analogous to the projection of data by PCA in a subspace as defined using several

4The notion of variance is only defined in Euclidean vector space. As the metric (spectral difference) space
is not Euclidean, we shall not quantify the spread of spectral differences using variance (see ssec. ??).
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principal components), it is expected that the spectral shapes being more thoroughly defined.

That said, we expand the spectral shape representation in metric space (see eqn. 2.10) by:

G metric−−−→


KLD(s̄, ŝ1) = ∆G1

KLD(s̄, ŝ2) = ∆G2

...

(2.12)

Considering R spectral references Ŝ = {ŝ1, . . . , ŝR}, we define the spectral difference

histogram J
(Ŝ)

1 (I) as the joint PDF of R+1 random variables i.e. the spectral shape

differences {∆G1, . . . ,∆GR} and spectral intensity W at a given spatial location x:

J
(Ŝ)

1 (I) = p


R⋂

r=1

(
KLD

(
Ī(x), ŝr

)
= ∆Gr

)
,

∥∥I(x)
∥∥

1 =W


s.t.

∥∥Ī(x)
∥∥

1 = ∥ŝr∥1 = 1 ∀ r ∈ [1,R].

(2.13)

We demonstrate the calculation of spectral difference histogram J
(Ŝ)

1 (I) based on the

hyperspectral image Cloth4 (500 × 500 pixels) I with wavelengths ranging from 420 nm to

720 nm at 10 nm interval [54] as shown in Fig. 2.3 (a). Referring to the spectra (reflectances)

s as depicted in Fig. 2.3 (b), we can observe mainly five spectral groups of green, white, light

violet, blue, and red colours. Specifically, a large majority of the spectra are either green

or white, whereas much fewer are either light violet, blue, or red spectra. To characterize

the spectral shapes G, we first normalize the spectra as illustrated in Fig. 2.3 (c). Clearly,

the spectral shapes can now be observed effortlessly with the intensity information removed.

Then, we randomly choose a spectrum from the green and from the white spectra as the

spectral references Ŝ = {ŝ1, ŝ2}. Note that our colour description here is not exact and

only serves as reference (to be referred to easily in the following text). For example, the
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green spectra are not genuinely green per se as they actually have more bluish and reddish

components compared to true greens which theoretically peak around 550 nm. On the other

hand, the white spectra are also not genuinely white as they actually have less bluish and

more reddish components, thus leading to a warmer5 white appearance. A genuine white

spectrum is however, theoretically equinergy i.e. having constant energy throughout the

visible spectrum. Such is the interest of hyperspectral imaging as it allows us to see beyond

trichromatic colour and into the spectral power distribution of each pixel at each wavelength.

(a) (b) (c)

Fig. 2.3 (a) The hyperspectral image Cloth4 (500 × 500 pixels) with wavelengths λ ranging
from 420 nm to 720 nm at 10 nm interval, rendered in RGB for illustration; (b) all the (500
× 500 = 250000) spectra s of Cloth4; and (c) all the normalized spectra s̄ of Cloth4.

We illustrate the distribution of spectral shape differences ∆G1 and ∆G2 in Fig. 2.4 (a)

with a zoomed-in version in Fig. 2.4 (b). It can be seen that in general, the green spectra

have lower ∆G1 whereas the white spectra have lower ∆G2. This is expected because ŝ1

(associated with ∆G1) and ŝ2 (associated with ∆G2) are one of the green and white spectra

respectively. On the other hand, ∆G1 of the blue spectra are generally lower than their ∆G2.

This suggests the higher spectral shape similarity between the blue spectra and ŝ1 (green

spectrum) compared to ŝ2 (white spectrum) which is indeed the case as observable from

Fig. 2.3 (c). As for the red spectra, their ∆G1 is generally higher than their ∆G2 which is

5A warm white is yellowish, reminiscent of light coming from tungsten light bulbs; a cool white leans
towards bluish, resembling the white LED light.
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expected considering their higher spectral shape similarity with ŝ2. Concerning the light

violet spectra, their ∆G1 is comparable to ∆G2, indicating the same level of spectral shape

similarity (or dissimilarity) with both ŝ1 and ŝ2. Clearly, the spectral shape representation

in metric (spectral difference) space is compact and fully interpretable. In comparison, we

perform principal component analysis (PCA) of the normalized spectra s̄. We illustrate the

top two principal components (PCs) in Fig. 2.4 (c) which account for 96.5 % of explained

variance. In contrast to ŝ1 and ŝ2, the PCs carry little physical interpretation as they are not

real spectra but merely abstract algebraic constructs. Referring to the spectral distribution in

the transformed subspace corresponding to the top two PCs as depicted in Fig. 2.4 (d), no

physical interpretation too can be given except that the spectra are clustered according to their

spectral shape as in the case of our approach. Indeed, PCA can be a solution if clustering

is the only goal. However, our approach can be useful if physical interpretability is also

required as in the case of data analysis concerning remote sensing and health applications.
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(a) (b)

(c) (d)

Fig. 2.4 (a) A bidimensional scatter plot of spectral shape differences ∆G1 and ∆G2 of Cloth4
corresponding to the spectral references ŝ1 and ŝ2 respectively; (b) a zoomed in version of (a);
(c) the top two principal components (PCs) as obtained from principal component analysis
(PCA) of the normalized spectra s̄, ovelaid with ŝ1 and ŝ2; and (d) a bidimensional scatter
plot of s̄ in the subspace spanned by the top two PCs.

For comprehensive representation, we illustrate the joint distribution of spectral shape

differences ∆G1 and ∆G2 as well as spectral intensity W in Fig. 2.5 (a) with a zoomed-in

version in Fig. 2.5 (b). It can be seen that in general, the white spectra have the highest W , in

contrast to the red and blue spectra which have some of the lowest W . Such result agrees

with our visual observation that the white pixels are generally brighter than others as seen
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from Fig. 2.3 (a). Finally, we display the spectral difference histogram J
(Ŝ)

1 (I) in Fig. 2.5

(c) with a zoomed-in version in Fig. 2.5 (d). It can be seen that the green spectra are more

compact compared to the white spectra. This indicates that the variability of the green spectra

is lower compared to that of the white spectra. It is clear, then, information about spectral

shapes and intensities can be communicated clearly and compactly thanks to J
(Ŝ)

1 (I).
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(a) (b)

(c) (d)

Fig. 2.5 (a) A three-dimensional scatter plot of spectral shape differences ∆G1 and ∆G2
as well as spectral intensity W of Cloth4; (b) a zoomed in version of (a); (c) the spectral
difference histogram of Cloth4; and (d) a zoomed in version of (c).

2.2.3 Assessment of spectral diversity

Having defined the spectral difference histogram J
(Ŝ)

1 (I) to capture the spectral shape

(differences) and intensity information of a given hyperspectral image I based on the selected
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spectral references Ŝ, we are now interested in devising a measure to quantify spectral

diversity. As J
(Ŝ)

1 (I) is a probability distribution, we are naturally directed towards the

notion of entropy. In the field of information theory, the Shannon entropy H(Y ) of a discrete

random variable Y reflects the average amount of information or uncertainty it carries [68]:

H(Y ) =− ∑
y∈Y

P(y) logP(y), (2.14)

where P(y) is the probability mass function of the discrete random variable Y . To shed some

insight on the measure of information by H(Y ), consider the alternative definition H(Y ) =

E
[
I(y)

]
where E [·] denotes expectation and I(y) =− logP(y) refers to self-information or

“surprisal” of measuring Y as y. Clearly, an event that has 100 % probability i.e. P(y) = 1 is

unsurprising and carries no information as I(y) = 0. Conversely, an event that has a lower

probability is more suprising and carries more information. Accordingly, if there is only

one probable event, H(Y ) is zero regardless of what the event is; if all the events are equally

probable such that P(y) is a uniform distribution, H(Y ) is maximum. Analogous to variance

E
[
(Y −µ)2

]
which describes the spread of values around the mean µ in the Euclidean

vector space, H(Y ) can thus be understood as the spread of values in the probabilistic space.

That said, we are obliged to consider an evaluation in continuous domain because the

spectral difference histogram J
(Ŝ)

1 (I) is a probability density function (PDF) of spectral

shape differences and spectral intensity. A seemingly direct measure is the differential

entropy h(Y ) which replaces the discrete sum in eqn. 2.14 with continuous integral [68]:

h(Y ) =−
∫

p(y) log p(y)dy, (2.15)

where p(y) is the PDF of the continuous random variable Y . However, h(Y ) is not a good

measure of information e.g. h(Y ) can be negative since PDFs can be greater than 1. For

example, h(Y ) =
∫ 1/2

0 (−2log2)dy =− log2 for the uniform distribution U (0,1/2), which
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is unintelligible as information cannot be negative. Instead, the correct formula for assessing

entropy in continuous domain is given by the limiting density of discrete points (LDDP) [37]:

Hn(Y ) = logn−KL(p(y)∥U )

= logn−
∫

p(y) log
p(y)
U

dy

= logn−
(∫

p(y) log p(y)dy−
∫

p(y) logU dy
)

= logn+h(y)+
∫

p(y) logU dy,

(2.16)

where n is the number of data points and KL(p(y)∥U ) is the KL measure of information

from uniform distribution U to p(y). Suppose that y ∈ (a,b), then U = 1
b−a , giving:

Hn(Y ) = logn+h(y)+ log
1

b−a

∫
p(y)dy

= logn+h(y)− log(b−a)

∝ h(y).

(2.17)

Clearly, Hn(Y ) only differs from h(y) by a constant. To avoid dependency on n and (a,b),

which in the context of J
(Ŝ)

1 (I) refer to the size of image and dynamic range of pixel values

respectively, we define spectral diversity as being proportional to the joint differential

entropy of the spectral shape differences {∆G1, . . . ,∆GR} and spectral intensity W :
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spectral diversity ∝ h(∆G1, . . . ,∆GR,W )

=−
∫

. . .
∫ ∫ (

J
(Ŝ)

1 (I)
)

log
(

J
(Ŝ)

1 (I)
)

d(∆G1) . . .d(∆GR)dW

(2.18)

s.t. J
(Ŝ)

1 (I) = p(∆G1, . . . ,∆GR,W ) .

Depending on the chosen spectral references Ŝ, the distribution of {∆G1, . . . ,∆GR} would be

different. Thus, the proposed measure is only comparable within the context of the same Ŝ.

The interest in using entropy as the measure of spectral diversity is twofold. Thanks to its

consideration of probabilities instead of raw data values, it is metrologically valid to consider

the joint distribution of random variables of different physical properties as in the case of

spectral shape differences and spectral intensity. Secondly, unlike variance which is only

defined for normal distributions, entropy is a general measure applicable for any distributions.

This is particularly crucial in the case of the spectral difference histogram J
(Ŝ)

1 (I) which

can be multimodal, asymmetric, leptokurtic, etc. facing any form of spectral distribution.

Nevertheless, the true spectral difference histogram J
(Ŝ)

1 (I) which is a probability

density function (PDF) cannot be known a priori unless the image is artificially generated

with known parameters. Indeed, a digital image is just a realisation of the true scene which is

subjected to various noise, sensor limitations, etc. As a result, the PDF can only be estimated

based on the acquired spectra which can be thought of as the random samples from the

real population. Hence, we are faced with the need for density estimation of J
(Ŝ)

1 (I). A

normalized histogram is perhaps the most basic method. For simplicity, let us revert to the

continuous random variable Y . The histogram is constructed by first dividing the data points

into a series of intervals called “bins”, before counting how many data points fall into each
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bin. Then, the histogram is normalized by simply dividing each bin by the total number of

data points so that the bins sum to unity. Then, the differential entropy h(y) is calculated by:

h(Y ) =− ∑
y∈Y

P
(
Y ∈ [y,y+∆y)

)
logP

(
Y ∈ [y,y+∆y)

)
, (2.19)

where ∆y here refers to the bin width. One of the problems with such approach is, however,

the manner in which the bin width is chosen. Common methods such as Sturges’ formula

[72] and Freedman–Diaconis rule [25] are developed based on the assumption that the

values are normally distributed. This proves too restrictive for J
(Ŝ)

1 (I) which can be

multimodal, asymmetric, leptokurtic, etc. On the other hand, the multidimensionality of

J
(Ŝ)

1 (I) also poses problem for the histogram construction. Consider a typical 8-bits

quantization, the number of bins required would be (28)R+1 recalling that R is the number

of spectral references. Obviously, this renders the histogram computationally infeasible.

Furthermore, the multidimensional histogram would be extremely sparse which hinders any

statistical significance. The quantization of data due to binning also causes information loss.

In the literature, it exists another density estimation method which is based on k-nearest

neighbours (kNN) [46]. For each of the n data points in D dimensions, their distance

ω to their kth nearest neighbor is calculated. The kNN density estimation is then given

by p(y) = k/nVDωi for y ∈ Y , where VD = πD/2/Γ(D/2+ 1) is the volume of a unit D-

dimensional ball and Γ is the Gamma function. The differential entropy h(y) is given by:

h(y) = Γ(n)−Γ(k)+ logVD +
D
n

n

∑
i=1

logωi. (2.20)

The main interest of such approach is that it is operated directly on the data without any

binnings required. Hence, it does not suffer from any quantization, sparsity, and memory

issues as in the case of histogram. Thanks to its simplicity, it can be implemented very

efficiently with a complexity of O(Dn logn) based on k-d trees [5]. On the other hand, the

kNN based density estimation can be thought of as employing variable “bin” size adapted to
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the local density of data as exemplified in Fig. 2.6 concerning D = 2. Hence, it suffers less

from data heterogeneity which leads to a better balance between bias and variance. Although

k needs to be optimally chosen such that k → ∞ when n → ∞, in practice we note that its

selection does not affect much of its efficiency. That said, we shall employ k = 3 throughout

this work.

Fig. 2.6 An illustration of density estimation using k-NN, which can be thought of employing
variable “bin” size adapted to the local density of data.

2.2.4 Automatic selection of spectral reference

Having defined spectral diversity by the joint differential entropy h(∆G1, . . . ,∆GR,W ) of the

spectral shape differences {∆G1, . . . ,∆GR} and spectral intensity W , it is straightforward to

select the spectral references Ŝ which maximizes h(∆G1, . . . ,∆GR,W ). This is in accordance

with the principle of maximum entropy which states that the probability density function

(PDF) with the highest entropy is the one that is least biased; the one that best represents our

current knowledge [37]. Perhaps a more direct justification is to recall the fact that entropy is

the measure of information. By maximizing the entropy, the spectral information contained

in the metric space is also maximized, which is obviously the desired scenario.
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To explain further, let us recall the analogies we drew in sec. 2.2.1 between our spectral

shape representation in metric space and principal component analysis (PCA). To begin, both

project the original data in a subspace aiming to preserve the distance between the data points

as much as possible. Whereas PCA does so through several top-ranked principal components

(PCs), our approach requires to optimally defining a set of spectral references Ŝ that dictate

the spectral projections. We summarize their correspondence in Table 2.1. It is clear, then,

whereas PCA operates by maximizing data variance in the subspace spanned by the top PCs,

we should, on the other hand, select Ŝ such that the (joint differential) entropy in the metric

space (of the spectral shape differences {∆G1, . . . ,∆GR}) is maximized.

Our approach Comparison PCA

probability Operation in . . . space. vector

spectral reference . . . as direction of projection. principal component

entropy . . . as measure of spread. variance

spectral (shape) difference Projection as defined by . . .. dot product

Table 2.1 Analogies between our spectral shape representation in metric (spectral difference)
space and principal component analysis (PCA).

Suppose that R spectral references Ŝ = {ŝ1, ŝ2, . . . , ŝR} are to be chosen among the normal-

ized spectra of the image, we perform the automatic spectral reference selection by maxi-

mizing the joint differential entropy of the spectral shape differences {∆G1, . . . ,∆GR}:

Ŝ = argmax
s̄′r∈S̄

{
h(∆G1, . . . ,∆GR)

}
s.t. ∆Gr = KLD(s̄, s̄′r) ∀ r ∈ [1,R],

(2.21)
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where S̄ = {s̄1, . . . , s̄n} is the normalized spectral set from the image I with n pixels, and

s̄′r ∀ r ∈ [1,R] refers to any set of R normalized spectra from S̄. Note that here we have

dropped the spectral intensity W from the entropy calculation because it is independent of Ŝ.

To determine the optimal number R of spectral references, consider the solution to a

similar problem in PCA. While keeping all the PCs allows to retain 100 % of the data

variability, it is often the case that the few top-ranked PCs alone can already account for a

very large percentage of the variability that keeping extra PCs is of little interest. We note

that the same can also be envisioned in our approach which thus requires a way of ranking

spectral references. We propose to rank a spectral reference ahead of others when it

results in the highest increase of the joint differential entropy of the spectral shape

differences:

ŝr = argmax
s̄′r∈S̄

{
h(∆G1, . . . ,∆Gr)−h(∆G1, . . . ,∆Gr−1)

}
∀r > 1,

s.t. ∆Gr = KLD(s̄, s̄′r) ∀ r ∈ [1,R],

(2.22)

where ŝr refers to the rth-ranked spectral reference. Obviously, eqn. 2.22 can only be worked

out after determining the first-ranked spectral reference ŝ1, which is the normalized

spectrum which results in the largest differential entropy of spectral shape difference:

ŝ1 = argmax
s̄′∈S̄

{
h(∆G)

}
s.t. ∆G = KLD(s̄, s̄′).

(2.23)

One may wonder the reason for not applying a similar approach as in the case of ŝ1 for the

subsequent ranking, that is, by ranking spectral references based on the differential entropy

h(∆Gr) of their associated spectral shape difference ∆Gr (analogous to PCA’s PC ranking
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based on its variance). This is because whereas PCs are uncorrelated by construction, it is

rarely the case for spectral references. As a result, the spectral shape information as projected

by each spectral reference (in the form of spectral shape difference) is also not independent

from each other i.e. h(∆G1, . . . ,∆GR) ≤ ∑
R
r=1 h(∆Gr). Only if the spectral references are

independent i.e. h(∆G1, . . . ,∆GR) = ∑
R
r=1 h(∆Gr), they can be directly ranked using h(∆Gr).

With more spectral references being employed, we can expect the increase (but at a

decreasing rate) of the joint differential entropy of the resulted spectral shape differences.

Visually, the joint differential entropy is an increasing function which stabilizes or saturates

after the knee point, which we propose to take as the optimum number of spectral references.

In other words, the number of spectral references is selected such that the joint differen-

tial entropy of the resulted spectral shape differences is no longer increasing rapidly,

and is thus no longer worth the cost i.e. the further addition of spectral references.

In the continuous domain, it is straightforward to identify the knee point as the one having

the largest curvature [66]. However, the identification is not so direct in the discrete domain as

in our case as the number of spectral references is an integer. Indeed, discrete approximation

of curvature using finite differences can be used, but it is subjected to approximation errors

especially when there is no abundance of data points as in our case (we do not expect

the number of spectral references to be too high). One of the alternatives is the Menger

curvature [78] which defines the local curvature at a given point as the curvature of the circle

circumscribed about the given point and the two points immediately before and after it (so

three points in total). However, such approach is less robust as it is calculated locally while

ignoring the overall behaviour of the data points. In this work, we propose to identify the

knee point which corresponds to the optimum number of spectral references Ropt by:
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Ropt = argmax
R∈[1,Rmax]

{∣∣h(∆G1, . . . ,∆GR)−αR−β
∣∣

√
α2 +1

}

s.t. α =
h(∆G1, . . . ,∆GRmax)−h(∆G1)

Rmax −1

β = h(∆G1)−α,

(2.24)

where Rmax is the maximum number of spectral references selected to be “large enough”

such that the joint differential entropy of the resulted spectral shape differences stops varying

much. Note that eqn. 2.24 is adapted from the formula for calculating the distance from

a point to a line, whereas α and β refer to the gradient and y-intercept of the line respec-

tively. In this case, h(∆G1, . . . ,∆GR) = αR+ β is the straight line joining
(
1,h(∆G1)

)
and

(
Rmax,h(∆G1, . . . ,∆GRmax

)
as illustrated in Fig. 2.7. Accordingly, the knee point(

Ropt ,h(∆G1, . . . ,∆GRopt )
)

is simply given by the furthest point from the line.

Fig. 2.7 The joint differential entropy h(∆G1, . . . ,∆GR) of spectral shape differences corre-
sponding to the top R spectral references is an increasing function which saturates after the
knee point, which we propose to take as the optimum number of spectral references Ropt .

Up to now, the spectral references Ŝ = {ŝ1, . . . , ŝR} are to be chosen among the normalized

spectra set S̄ = {s̄1, . . . , s̄n} from the image I with n pixels to maximize h(∆G1, . . . ,∆GR):
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Ŝ = argmax
s̄′r∈S̄

{
h(∆G1, . . . ,∆GR)

}
s.t. ∆Gr = KLD(s̄, s̄′r) ∀ r ∈ [1,R],

(2.25)

as recalled from eqn. 2.21. This requires to loop through all possible sets of R normalized

spectra from S̄, thus resulting in a complexity of at least O
(
n(n−1)(n−2) . . .(n−R+1)

)
.

Suppose that R = 3 spectral references are to be chosen from an image (100×100 pixels)

with n = 10000, the sets of R normalized spectra to be considered is 999700020000 or about

1012 which is computationally infeasible. However, we note that in fact, not all sets of the R

normalized spectra need to be examined. Practically, we could limit the spectral reference

selection among spectra forming the convex hull of the normalized6 spectral set Conv(S̄)

[19]. By the popular rubber band analogy, the convex hull of a set of points is the smallest

convex set that contains it as illustrated in Fig. 2.11 concerning a two-dimensional case.

(a) (b)

Fig. 2.8 An illustration of convex hull concerning a set of data points y = (y1,y2) in two
dimensions using the rubber band analogy.

6Our proposition here is adapted from [19] concerning spectral reference selection in the spectral difference
space which also includes information from spectral intensity (in contrast to our spectral shape difference
space).
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We justify our proposition by first considering a set of normally distributed points

y ∼ N (0,1) as illustrated in Fig. 2.9 (a). Suppose that we want to represent each point

y ∈R in the metric space by its absolute7 distance ∆y ∈R to a given reference ŷ ∈R such

that y metric−−−→ |y− ŷ|= ∆y, what will be the optimal ŷ for maximum discriminability of y in

the metric space? Clearly, the extremum ŷ = min(y) or ŷ = max(y) makes the best choice

because then, each distinct point y is represented by an unique ∆y in the metric space as

depicted in Fig. 2.9 (b) and (h). As the distributions of ∆y too resembles N (0,1), also

notice that the differential entropy of ∆y is the same as that of y, reflecting the fact that the

information of y in well preserved by ∆y in the metric space. Meanwhile, the further the

reference is from max(y) or from min(y), the lower the discriminability of y as ∆y in the

metric space as shown in Fig. 2.9 (c) - (g) as the distributions of ∆y deviate from N (0,1). At

the same time, also notice the decrease of h(∆y) which reflects the loss of information in the

metric space. That said, ŷ = median(y) would be the worst choice8 because then, y which are

equidistant from median(y), regardless of them being larger than or smaller than median(y),

would be indiscriminate as ∆y in the metric space which is strictly positive (as induced by

the absolute distance |y− ŷ|). Referring to Fig. 2.9 (e), it can be seen that approximately half

of the originally normally distributed y is indistinguishable as ∆y in the metric space with

ŷ = median(y). As the distribution of ∆y resembles a half-normal distribution, its h(∆y) is

also the lowest i.e. about the half of h(y), indicating that almost half of the information has

been lost in the metric space representation. The same logic can also be applied in higher

dimensions by regarding each point of the convex hull as some kind of “extremum” with

the (geometric) median9 as the “origin” as illustrated in Fig. 2.10. By the same arguments,

the points of the convex hull are therefore the better choices of reference for maximum

discriminability in the metric space. Naturally, this suggests spectral reference selection
7Analagous to spectral difference e.g. SAM [88] and KLPD [62] which are positive by definition.
8Here we make use of the median because we want the reference to be one of the given points, as we

constrain our spectral reference to be, to avoid selecting a false spectrum. That said, in this example, the same
argument also holds in the case of using the mean i.e. the arithmetic average of the points as the reference.

9Defined as the point which has the lowest cumulative distance to all the other points [1].
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among normalized spectra forming the convex hull Conv(S̄). As Conv(S̄) is a much smaller

set than the entire normalized spectral set S̄, the process can thus be accelerated significantly.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.9 The probability density of (a) a set of normally distributed points y; (b) the same set
of points in metric (absolute distance) space as ∆y with the reference being either min(y); (c)
10th percentile; (d) 30th percentile; (e) median; (f) 60th percentile; (g) 80th percentile; or (h)
max(y). As written at the top of each plot is differential entropy as a measure of information.

We supplement our previous argument that the points of the convex hull can be thought

of as some kind of “extrema” with the median as the “origin” by considering a similar

problem i.e. endmember extraction. In linear spectral unmixing, endmembers are defined as

the pure spectra from which other (mixed) spectra are formed by a linear combination [7].

Geometrically, the endmembers occupy the vertices of a simplex which contains all the other

spectra [55]. Under this context, the points of the convex hull are thus the “extrema” such

that spectra nearing them are “purer”, whereas spectra nearing neither of them are “neutral”

like an “origin”. Recalling the analogy between PCA and our spectral shape representation in

metric space as summarized in Table 2.1, we reassert our view that spectral shape differences
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can be thought as a spectral projection onto the corresponding spectral reference. In other

words, our approach can also be seen as expressing a given normalized spectrum in terms of

spectral references. Indeed, our spectral reference selection is reminiscent of endmember

extraction but with a key difference. Whereas linear spectral unmixing is formulated in the

context of L-dimensional Euclidean vector space (with L spectral channels), our approach is

conceived by respecting the physics of spectrum as a continuous function.

Fig. 2.10 An illustration of convex hull concerning a set of points y = (y1,y2) in two
dimensions. The points of the convex hull can be thought as some kind of “extrema” with
the median as the “origin”.

Having presented the case of accelerating spectral reference selection among spectra

forming the convex hull Conv(S̄) of the normalized spectral set S̄, we are nevertheless, faced

with another computational intractability as posed by the calculation of Conv(S̄). Considering

n = 10000 spectra (e.g. image of 100× 100 pixels) with L wavelengths, the complexity

of calculating Conv(S̄) is given by e.g. O(n⌊L/2⌋+1) based on the gift wrapping algorithm
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[18]. In light of this, we propose a distance-based method to approximate Conv(S̄) by

S̃ = {s̃1, . . . , s̃Z} supposing that there are Z spectra forming Conv(S̄). We start by recognizing

the fact that the two points furthest apart are part of Conv(S̄). Accordingly, we identify the

normalized spectral pair which has the largest spectral (shape) difference as parts of S̃:

s̃1, s̃2 = argmax
s̄,s̄′∈S̄

KLD(s̄, s̄′). (2.26)

Then, we assume that the next point on Conv(S̄) is collectively far from the other previously

identified points. Accordingly, we identify the following part of S̃ by:

s̃z = argmax
s̄∈S̄

⋂
z′<z

KLD(s̄, s̃z′) ∀z > 2. (2.27)

For simplicity, we choose to define the collective difference using the additive operation:

s̃z = argmax
s̄∈S̄

∑
z′<z

KLD(s̄, s̃z′) ∀z > 2. (2.28)

An iterative procedure, the calculation will go on until all Z spectra have been identified.

Clearly, our proposition requires a prior definition of Z i.e. the number of spectra forming

Conv(S̄) which nevertheless, cannot be known a priori. In this work, we resort to selecting Z

such that it is “large enough”. We demonstrate the approximation of convex hull Conv(y)

by Ỹ = {ỹ1, . . . , ỹZ} with varying Z in Fig. 2.11 concerning a set of points y ∈ R2 in two

dimensions. Referring to Fig. 2.11 (a), it can be seen that there are mainly two clusters of

points, one more compact and the other more loosely distributed. The median, as marked in

red, is identified as the point that has the lowest cumulative distance to all the other points.

To study the quality of representation of each point y = (y1,y2) in the metric space by its

absolute Euclidean distance ∆y =
√

(y1 − ỹz,1)2 +(y2 − ỹz,2)2 to a given ỹz = (ỹz,1, ỹz,2) as

the reference, we calculate the differential entropy h(∆y) as a measure of information. It

can be seen that with median(y) as the reference, the information contained in the metric
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space is comparatively low as the distribution p(∆y) of ∆y appears unimodal. In other words,

the two clusters are less discriminable as they are equidistant from median(y) in accordance

to our previous argument that medians makes one of the worse10 choices of reference for

representation in metric space. Referring to Fig. 2.11 (b) and (c), ỹ1 and ỹ2 are identified

as the pair of points furthest apart. Subsequently, the following ỹz ∀ z > 2 are identified

iteratively as per eqn. 2.28 (with the spectral difference replaced by Euclidean distance) as

illustrated in Fig. 2.11 (d), (i) - (l), and Fig. 2.11 (a) - (d) . Referring to Fig. 2.12 (c), it can

be seen that Conv(y) is best approximated with Z = 10 beyond which the approximations get

worse. As such, from Z = 11 onwards we only illustrate the case for Z = 15,20,25 and 30

which results in bad Conv(y) approximation as in Fig. 2.12 (i) - (l). As for the representation

in metric space, the efficiency of each ỹz as reference varies: ỹ30 makes the best choice with

the highest h(∆y) = 5.77. Anyway, the efficiency of ỹ1 is very close (h(∆y) = 5.75) to ỹ30

which suggests that there is no need to identify up to Z = 30 to obtain good references. In

contrast, ỹ7 makes the worst choice with the lowest h(∆y) = 5.01 which is actually lower than

that of the median (h(∆y) = 5.21). This is due to its relatively higher degree of equidistance

to the majority of points compared to median, which suggests that not all points on the

convex hull necesssarily makes the better choices of references. To recall, the identification

of spectra forming the convex hull Conv(S̄) of the normalized spectral set S̄ is only a prior

step in our automatic spectral reference selection. Their selection will be refined further

through the maximization of joint differential entropy in the spectral shape difference space.

10In one-dimensional case, the median is the worst choice as exemplified in Fig. 2.9. However, this is not
necessarily the case in higher dimensions because depending on the distribution, some points of the convex hull
can be a worse choice than median due to their equidistance to majority of other points.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2.11 An illustration of convex hull approximation concerning a set of points in two di-
mensions with varying number of points Z forming the convex hull which must be predefined,
with the corresponding probability density of the same set of points in metric (Euclidean
distance) space as ∆y with the reference being one of the convex hull points. As written at the
top of each probability density plot is differential entropy of ∆y as a measure of information.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2.12 An illustration of convex hull approximation concerning a set of points in two
dimensions with varying number of points forming the convex hull which must be predefined,
with the corresponding probability density of the same set of points in metric (Euclidean
distance) space as ∆y with the reference being one of the convex hull points. As written at the
top of each probability density plot is differential entropy of ∆y as a measure of information.
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The novelty of our method lies in the fact that it is distance-based; only pairwise distances

of the points are required to approximate the convex hull. As a result, it is relatively low

cost. It is also general and gives consistent results in any dimension (number of spectral

bands), which is a key requirement in metrology. In fact, we have effectively discovered a

general method to approximate the convex hull in any dimensions subjected to adaptation

of the distance function for the concerned application. That said, its efficiency is obviously

dependent on the choice of distance measure on whether it is a true metric, which is not the

case for our spectral difference measure (KL divergence). With a spectral metric or distance

function, an improvement in the accuracy of identifying the convex hull can be expected.

Having detailed our automatic spectral reference selection from entropy maximization to

acceleration using convex hull, we demonstrate its entire operation using the hyperspectral

image11 ChartDC (860 × 1650 pixels) with wavelengths ranging from 420 nm to 720 nm

at 10 nm interval [54] as shown in Fig. 2.13 (a). Consisting of 162 chromatic (colourful)

patches and 15 achromatic (grayscale) patches, ChartDC can be thought of as having covered

all the possible colour spectra that are perceivable by human eyes as shown in Fig. 2.13

(c). To alleviate the huge processing cost of processing the entire spectral set, we randomly

select 0.1% of the pixels which amounts to 1341 spectra as displayed in Fig. 2.13 (b) for the

following calculations. Visually, it can be seen that the sampled spectra have accounted for

most of the spectral shape variation, suggesting its representativeness of the spectral set.

11As cropped from the original image [54] by removing the black frame as well as the 60 black and white
patches around the colourful patches to avoid dominance by equi-energy i.e. white, black, and gray spectra.
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(a)

(b)

(c)

Fig. 2.13 (a) The hyperspectral image ChartDC (860 × 1650 pixels) with wavelengths
ranging from 420 nm to 720 nm at 10 nm interval, rendered in RGB for illustration; (b) all
the (860 × 1650 = 1419000) spectra s of ChartDC; and (c) 0.1 % of the spectra as illustrated
in (b), sampled randomly from ChartDC.
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As per our proposition in this chapter, we start by decomposing the (sampled) spectra s

into two parts i.e. spectral shape G and spectral intensity W as shown in Fig. 2.14 (a) and (b)

respectively, calculated as per eqn. 2.6 and 2.9 considering wavelengths λ ∈ [420,720] nm:

G = s̄ =
s

W
,

W =
∫ 720

420
s(λ )dλ ,

where s̄ ∈ S̄ is the normalized spectrum. Then, we identify the “convex hull spectra” S̃ =

{s̃1, . . . , s̃Z} up to Z = 30 as shown in Fig. 2.15 (b) that approximate the convex hull Conv(S̄)

of the normalized spectral set s̄, calculated as per eqn. 2.26 and 2.28:

s̃1, s̃2 = argmax
s̄,s̄′∈S̄

KLD(s̄, s̄′),

s̃z = argmax
s̄∈S̄

∑
z′<z

KLD(s̄, s̃z′) ∀z > 2.

Finally, we rank s̃z ∀ z ∈ [1,Z] as shown in Fig. 2.15 (c), calculated as per eqn. 2.22 and 2.23:

ŝ1 = argmax
s̃z∈S̃

{
h(∆G)

}
,

ŝz = argmax
s̃z∈S̃

{
h(∆G1, . . . ,∆Gz)−h(∆G1, . . . ,∆Gz−1)

}
∀z > 1,

where ∆Gz = KLD(s̄, s̄′z) ∀ z ∈ [1,Z]. The optimum number of spectral reference Ropt = 3,

also shown in Fig. 2.15 (c), is identified as per eqn. 2.24 noting that here Rmax = Z:
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Ropt = argmax
R∈[1,Rmax]

{∣∣h(∆G1, . . . ,∆GR)−αR−β
∣∣

√
α2 +1

}

s.t. α =
h(∆G1, . . . ,∆GRmax)−h(∆G1)

Rmax −1

β = h(∆G1)−α,

The resulted choice of the three spectral references ŝ1, ŝ2, and ŝ3 as shown in Fig. 2.15

(a) and (b) correspond to some kind of red, blue, and green spectra respectively. This is

reminiscent of the three primary colours in colour addition theory i.e. red, green, and blue

that can be mixed in varying proportions to produce a gamut of colours. Thus, the selection

of ŝ1, ŝ2, and ŝ3 seems to be logical in case of ChartDC for the optimum representation

of spectral shape distribution in the metric space (by spectral shape differences). Thanks

to the correspondence between ŝ1, ŝ2, and ŝ3 with the three primary colours, our prior

assertion that the spectral shape difference of a given (normalized) spectrum can be thought

as a spectral projection onto the spectral reference is further strengthened. In other words,

the representation in metric space can be seen as expressing a given spectrum in terms of

spectral references. Based on the selected spectral references ŝ1, ŝ2, and ŝ3, we illustrate the

distribution of spectral shape differences ∆G1, ∆G2, and ∆G3 as well as spectral intensity W

in Fig. 2.16.
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(a) (b)

Fig. 2.14 The decomposition of the sampled spectra in (a) spectral shapes G (as normalized
spectra s̄) and spectral intensities W (depicted as probability distribution).
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(a) (b)

(c)

Fig. 2.15 (a) The normalized (sampled) spectra s̄; (b) the convex hull spectra s̃ and the
selected spectral references ŝ1, ŝ2, and ŝ3; and (c) the joint differential entropy of spectral
shape differences corresponding to the top R spectral references, as a way to rank the convex
hull spectra. The optimum number of spectral references is given by Ropt = 3.
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(a) (b)

Fig. 2.16 (a) The three-dimensional scatter plot of spectral shape differences ∆G1, ∆G2, and
∆G3 corresponding to the spectral references ŝ1, ŝ2, and ŝ3; and (b) the three-dimensional
scatter plot of ∆G1, ∆G2 and spectral intensity W of ChartDC.

2.3 Summary

At the end of Chapter 1, we have shown the need for spectral characterization for texture

description. In this chapter, we present our approach to achieving that objective. We started

by reviewing the physics and definition of spectrum, recalling some measures of spectral

differences, and presenting the state of the art for constructing the image histogram facing a

large number of spectral channels as in the case of hyperspectral image. Then, we proposed

our own approach by first decomposing the spectrum into spectral shape and intensity parts,

before resorting to representing the former in metric (spectral shape difference) space. Finally,

we proposed the formulation of spectral difference histogram as inspired by [19] and an

automatic spectral reference selection thanks to entropy maximization. We also presented a

way to accelerate the selection based on the convex hull of the spectral set and subsequently,

proposed a general method to approximate the convex hull in any dimensions.
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3.1 Background

Julesz conjecture

We begin by considering one of the earliest works in the psychophysics of texture. In 1962,

Julesz considered textures as generated by a stochastic process which is specifiable using

Nth-order statistic i.e. the probability of N selected points (pixels) having certain values. By

regarding human texture discrimination as a preattentive process, he asserted that “whereas

textures that differ in their first- and second-order statistics can be discriminated from each

other, those that differ in their third- or higher-order statistics usually cannot” [41]. Termed

the Julesz conjecture, it became the basis of many texture analytical tools [30, 26, 33].

In the context of digital images, the first-order statistic refers to the probability distribution

of pixels which can be graylevels, colours, spectra, etc. whereas the second-order statistic

refers to their joint probability. As such, the first- and second-order statistics are related to

the spectral and spatial distributions of pixels respectively. Consistent with our approach, the

Julesz conjecture thus implies the need for spatiochromatic characterization of texture.

Graylevel cooccurrence matrix (GLCM)

In 1973, Haralick et. al. developed graylevel cooccurrence matrix (GLCM) [30] which is an

operational definition of the second-order statistic in the Julesz conjecture. Formulated in

the context of grayscale image I :R2 →R in two (spatial) dimensions, GLCM records the

cooccurrence of pixels I(x) and I(x′) separated at distance r and direction θ . Accordingly,

GLCM p
(
I(x), I(x′)

)
is a two-dimensional matrix (histogram) of Q×Q elements (where Q

is the number of graylevels) from which several texture features can be defined e.g. contrast,

entropy, energy, and homogeneity. As summing along the row or column of GLCM gives the

graylevel histogram, GLCM also embeds the first-order statistic of image.

We note that feature extraction based on Nth-order statistics is limited to stationary

textures. If texture stationarity is not respected, the features extracted are less efficient. On
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the other hand, further image quantization is necessary prior to calculating GLCM to avoid

sparsity for statistical reliability. However, this comes at the expense of possible information

loss due to the smoothing of lower contrast textures. Furthermore, it exists no principled

approach but empirical means in choosing Q which is typically selected to be 8, 16, 32, etc.

Sum and difference histograms

Considering two random variables a and b, Unser showed in 1986 that the probabilities of

their sum p(a+b) and difference p(a−b) define the principal axes of their joint probability

p(a,b) [83] as shown in Fig. 3.1. That said, the formulation of GLCM p
(
I(x), I(x′)

)
can

thus be replaced by that of sum p
(
I(x)+ I(x′)

)
and neighbouring difference histograms

p
(
I(x)− I(x′)

)
. Considering a grayscale image with Q graylevels, the sizes of sum and

neighbouring difference histograms are both given by 2Q as:

range
(
I(x)+ I(x′)

)
= max

(
I(x)+ I(x′)

)
−min

(
I(x)+ I(x′)

)
= (Qmax +Qmax)− (Qmin +Qmin)

= 2Q,

range
(
I(x)− I(x′)

)
= max

(
I(x)− I(x′)

)
−min

(
I(x)− I(x′)

)
= (Qmax −Qmin)− (Qmin −Qmax)

= 2Q,

(3.1)

which is an order less than that of GLCM, thus translating to more efficient computations.

Like GLCM, the sum and difference histograms also embed the first- and second-order

statistics. However, they are not directly applicable for hyperspectral or any multivariate

image. This is because spectral addition and subtraction are not physically defined. In the

following, we shall show how to tackle this issue by slight modifications to their formulation.
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Fig. 3.1 Geometric representation of the sum and difference transformation, concerning two
random variables a and b.

3.2 The proposed formulation

3.2.1 Ideas from sum and difference histograms

Let us begin by considering the sum histogram p
(
I(x)+ I(x′)

)
. We first note that summing

neighbouring pixels is a (poor) way to blur the image e.g. the sum I(x)+ I(x′) averaged over

eight directions θ = 45°k ∀ k ∈ [0,7] with distance r = 1 can be expressed as:

I(x)+ I(x′) =
1
8


1 1 1

1 8 1

1 1 1

∗ I(x) = K
(r=1)
+ ∗ I(x), (3.2)

where K
(r=1)
+ is clearly a kind of blurring kernel (∗ denotes convolution). Fig. 3.2 shows the

equivalent kernels K+ for I(x)+ I(x′) averaged over θ = 45°k ∀ k ∈ [0,7] with r = 1,2,3.
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(a) (b) (c)

Fig. 3.2 Equivalent kernels K+K for sum I(x)+ I(x′) averaged over eight directions θ =
45°k ∀ k ∈ [0,7] with distance (a) r = 1; (b) r = 2; and (c) r = 3. For fair comparison, all
kernels are presented in the same size (7 × 7 pixels).

That said, we can thus expect that the sum histogram1 p
(

1
2

(
I(x)+ I(x′)

))
is similar to

the image histogram p
(
I(x)

)
with small r. We demonstrate this in Fig. 3.3 which shows

the sums averaged over eight directions θ = 45°k ∀ k ∈ [0,7] of the grayscale image Lena.

With r = 1, the sum is virtually indistinguishable from the original image; the corresponding

p
(

1
2

(
I(x)+ I(x′)

))
and p

(
I(x)

)
are also almost identical. With increasing r (blurring), the

dissimilarity between p
(

1
2

(
I(x)+ I(x′)

))
and p

(
I(x)

)
grows as expected.

1The sums are halved so that the ranges of the image and sum histograms are identical for fair comparison.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Fig. 3.3 (a) The grayscale image Lena (512 × 512 pixels); (b) KL divergence from image
histogram p

(
I(x)

)
to sum histograms p

(
1
2

(
I(x)+ I(x′)

))
for r ∈ [1,30] averaged over eight

directions θ = 45°k ∀ k ∈ [0,7]; the sum 1
2

(
I(x)+ I(x′)

)
for (c) r = 1; (d) r = 4; (e) r = 16;

absolute difference between I(x) and 1
2

(
I(x)+ I(x′)

)
for (f) r = 1; (g) r = 4; (h) r = 16;

comparison between p
(
I(x)

)
and p

(
1
2

(
I(x)+ I(x′)

))
for (i) r = 1; (j) r = 4; and (k) r = 16.
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Hence, we can approximate sum histogram by image histogram for small r. In case

of hyperspectral image, we can thus express the sum histogram by the spectral difference

histogram J
(Ŝ)

1 (I) as expressed in (2.11) with good approximation provided that r is small:

p
((

I(x)+ I(x′)
)) small r−−−−→ J

(Ŝ)
1 (I). (3.3)

Next, let us consider the difference histogram p
(
I(x)− I(x′)

)
in the context of hyperspec-

tral image. As spectral subtraction is physically undefined, we proposed to consider instead

spectral difference d
(
I(x), I(x′)

)
where d(·) is a spectral difference measure e.g. RMSE,

SAM, and KLPD. Hence, we can express the difference histogram by the neighbouring

(spectral) difference histogram J
(r,θ)

2 (I) of spectral differences ∆s:

p
((

I(x)− I(x′)
)) spectral−−−−→ J

(r,θ)
2 (I), (3.4)

where J
(r,θ)

2 (I) is defined for a given hyperspectral image I :R2 →RL with L bands by:

J
(r,θ)

2 (I) = p
(

d
(
I(x), I(x′)

)
= ∆s

)
. (3.5)

Employing Kullback-Leibler pseudodivergence (KLPD) as the spectral difference mea-

sure, we define J
(r,θ)

2 (I) as the joint probability density function (PDF) of spectral shape

difference ∆G and spectral intensity difference ∆W between pixels I(x) and I(x′) separated

at r and θ as:

J
(r,θ)

2 (I) = p
(

KLPD
(
I(x), I(x′)

)
= (∆G,∆W )

)
s.t. x′ = x+ r cosθ .

(3.6)

For rotational invariance, we can consider the following simplification:
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J
(r)

2 (I) = p

(
1

2π

∫ 2π

0
KLPD

(
I(x), I(x+ r cosθ)

)
dθ = (∆G,∆W )

)
, (3.7)

where ∆G and ∆W dictate the average spectral differences over θ .

We note that the formulation of J
(r,θ)

2 (I) is not new; an equivalent formulation for

grayscale images is the gray level difference histogram (GLDM) [86] which considers the

absolute graylevel difference of pixel pairs separated at a given distance and direction. For

texture discrimination, GLDM has been shown to archive similar performance to GLCM

[86]. This shows that most of the spatial information in GLCM is captured by the difference

histogram, which is understandable as the sum histogram is approximately the image his-

togram with little spatial information. We can thus also expect J
(r,θ)

2 (I) to work well for

hyperspectral image.

3.2.2 Edge sharpness, scale, and direction

Next, we shall demonstrate the relationship between the distribution of neighbouring spectral

difference KLPD
(
I(x), I(x′)

)
and the underlying spatial variation. Specifically, we show

how KLPD
(
I(x), I(x′)

)
varies with edge sharpness, directionality, and scale (of local spatial

variation). For this purpose, we make use of the hyperspectral image Chart3 (512 × 512

pixels) with wavelengths ranging from 420 nm to 720 nm at 10 nm interval [54] as shown in

Fig. 3.4 from which patches 1 - 16 (as bordered and numbered in red) are cropped for further

examination. We note that Chart3 is actually a binary image. However, due to imperfect

acquisition (noise, uneven illumination, limited spatial resolution, etc.) it appears in multiple

shades of gray.
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Fig. 3.4 The hyperspectral image Chart3 (512 × 512 pixels) with wavelengths ranging
from 420 nm to 720 nm at 10 nm interval, rendered in RGB for illustration. Bordered
and numbered in red are the 16 patches considered for neighbouring spectral difference
calculation as shown in Fig. 3.7, Fig. 3.8, and Fig. 3.10 - 3.13.

To interpret neigbouring spectral difference KLPD
(
I(x), I(x′)

)
, let us temporarily revert

to grayscale image I for simplicity. Considering the minimum distance r = 1, the difference

I(x)− I(x′) averaged over eight directions θ = 45°k ∀ k ∈ [0,7] can be expressed as:

I(x)− I(x′) =
1
8


−1 −1 −1

−1 8 −1

−1 −1 −1

∗ I(x) = K
(r=1)
− ∗ I(x), (3.8)
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where K
(r=1)
− is clearly a kind of Laplacian kernel. Fig. 3.5 shows the equivalent kernels

K− for I(x)− I(x′) averaged over θ = 45°k ∀ k ∈ [0,7] with r = 1,2,3. Therefore, we can

expect I(x)− I(x′) and thus KLPD
(
I(x), I(x′)

)
to act like an edge detector. We demonstrate

this in Fig. 3.6 which shows KLPD
(
I(x), I(x′)

)
of Chart3 calculated with r = 3 and different

θ . It can be seen that with θ = 0° (or with θ = 180°, not shown), KLPD
(
I(x), I(x′)

)
works

like a vertical edge detector, whereas with θ = 90° (or with θ = 270°, not shown) it works

like a horizontal edge detector. With KLPD
(
I(x), I(x′)

)
averaged over eight directions

θ = 45°k ∀ k ∈ [0,7], all edges (horizontal, vertical, diagonal, etc.) are visibly detected.

(a) (b) (c)

Fig. 3.5 Equivalent kernels K− for difference I(x)− I(x′) averaged over eight directions
θ = 45°k ∀ k ∈ [0,7] with distance (a) r = 1; (b) r = 2; and (c) r = 3. For fair comparison,
all kernels are presented in the same size (7 × 7 pixels).
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(a) (b) (c)

(d) (e) (f)

Fig. 3.6 Neighbouring spectral difference of Chart3 calculated with distance r = 3 and (a)
averaged over eight directions θ = 45°k ∀ k ∈ [0,7]; (b) θ = 0°; (c) θ = 45°; (d) θ = 90°;
and (e) θ = 135°.

Having established the relationship between neighbouring spectral difference KLPD
(
I(x), I(x′)

)
and edge detection, the interpretation of KLPD

(
I(x), I(x′)

)
becomes more straightforward.

Knowing the fact that Chart3 is a binary image acquired with limited spatial resolution, we

can expect that the regions with similar patterns e.g. patches 9 - 16 have decreasing edge

sharpness with increasing rate of spatial variation. To substantiate this, we plot the spectra

from each patch and observe that indeed, the spectral variation (overall difference between

the white and black spectra) decreases from patch 9 to 16 as shown in Fig. 3.7 and 3.8.

We proceed to calculating their KLPD
(
I(x), I(x′)

)
with r = 1 and θ = 0° (since there is

only horizontal spatial variation). It can be seen that KLPD
(
I(x), I(x′)

)
at the edges also

decrease from patches 9 to 16, thus confirming the role of neighbouring spectral difference

as a measure of edge sharpness.
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Fig. 3.7 The patches (20 × 20 pixels) rendered in RGB (top row), followed by the (20 ×
20 = 400) spectra of the corresponding patches (middle row) and the neighbouring spectral
difference KLPD

(
I(x), I(x′)

)
= ∆G+∆W calculated with r = 1 and θ = 0 (bottom row) for

patches 9 - 12 of Chart3.
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Fig. 3.8 The patches (20 × 20 pixels) rendered in RGB (top row), followed by the (20 ×
20 = 400) spectra of the corresponding patches (middle row) and the neighbouring spectral
difference KLPD

(
I(x), I(x′)

)
= ∆G+∆W calculated with r = 1 and θ = 0 (bottom row) for

patches 13 - 16 of Chart3.

The distribution of neighbouring spectral difference KLPD
(
I(x), I(x′)

)
also reveals

information about scale of the spatial variation. Specifically, KLPD
(
I(x), I(x′)

)
is mostly

high for smaller scale, whereas KLPD
(
I(x), I(x′)

)
is mostly low for larger scale. This

is because for smaller scale, there is a higher probability of the neighbouring pixels I(x)

and I(x′) being different. Conversely, for larger scale, the probability of I(x) and I(x′)

being similar is higher. We note that in this case the absolute value of KLPD
(
I(x), I(x′)

)
does not matter (which refers to edge sharpness); it is proportion of the higher values of

KLPD
(
I(x), I(x′)

)
relative to the lower values that reflects the scale. We demonstrate this in

Fig. 3.9 which shows binary images (40×40 pixels) of checkerboard pattern with increasing
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block size: 1×1, 2×2, 4×4, and 10×10. Consindering their neighbouring (absolute) pixel

difference |I(x)− I(x′)| (which can only be either 0 or 1) with r = 1 and θ = 0°, it can be

seen that |I(x)− I(x′)|= 1 ∀x,x′ ∈R2 in the case for 1×1 blocks. Naturally, this is because

all the neigbouring pixels I(x) and I(x′) are of different values i.e.
(
I(x), I(x′)

)
= (0,1) or

(1,0). As size of the blocks increases, the proportion of |I(x)− I(x′)| = 1 can be seen to

decrease. In the case for 10×10 blocks, |I(x)− I(x′)| is mostly zero because I(x) and I(x′)

are mostly of the same values i.e.
(
I(x), I(x′)

)
= (0,0) or (1,1). Verifying this with real

hyperspectral image, we refer to KLPD
(
I(x), I(x′)

)
of patches 9 - 16 as illustrated in Fig.

3.10 and 3.11. Indeed, we observe that the proportion of higher KLPD
(
I(x), I(x′)

)
increases

from patch 9 to 14 in accordance to their decreasing scale. However, the proportion of higher

KLPD
(
I(x), I(x′)

)
actually decreases in the case for patch 15 (and less so for patch 16) when

it is expected to increase further due to the even smaller scale. We attribute this to the varying

degree of blurring throughout patch 15 and 16 due to the limited spatial resolution. In this

case, scale interpretation from KLPD
(
I(x), I(x′)

)
becomes less straightforward.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.9 Binary images of checkerboard pattern with varying structure size (top row), followed
by their corresponding distribution of neighbouring (absolute) pixel difference as calculated
with r = 1 and θ = 0° (bottom row).
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Fig. 3.10 The patches (20 × 20 pixels) rendered in RGB (top row), followed by neighbouring
spectral difference KLPD

(
I(x), I(x′)

)
= ∆G+∆W calculated with r = 1 and θ = 0 (middle

row) and distribution of ∆G+∆W (bottom row) for patches 9 - 12 of Chart3.
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Fig. 3.11 The patches (20 × 20 pixels) rendered in RGB (top row), followed by neighbouring
spectral difference KLPD

(
I(x), I(x′)

)
= ∆G+∆W calculated with r = 1 and θ = 0 (middle

row) and distribution of ∆G+∆W (bottom row) for patches 13 - 16 of Chart3.

To obtain information about spatial directionality, we are obliged to calculate neighbour-

ing spectral difference KLPD
(
I(x), I(x′)

)
with multiple directions θ . Naturally, KLPD

(
I(x), I(x′)

)
is the highest when being calculated in the direction of the spatial variation. Conversely,

KLPD
(
I(x), I(x′)

)
is the lowest when being calculated in the direction perpendicular to

the spatial variation. If the spatial variation is isotropic, then KLPD
(
I(x), I(x′)

)
is similar

when being calculated with any θ . We demonstrate this in Fig. 3.12 and 3.13 which

show KLPD
(
I(x), I(x′)

)
of patches 1 - 8 calculated with distance r = 1,2,3 and θ =

0°,45°,90°,135°. Let us begin by considering the case for r = 3. It can be seen that

for both patches 1 (smaller blocks) and 2 (larger blocks), KLPD
(
I(x), I(x′)

)
is higher with
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both θ = 0° and θ = 90° in accordance to their dominant spatial variations in horizontal and

vertical directions. In contrary, KLPD
(
I(x), I(x′)

)
is lower with both θ = 45° and θ = 135°.

For patch 3 (vertical strip), 4 (diagonal strip), and 5 (horizontal strip), KLPD
(
I(x), I(x′)

)
are the highest (lowest) with θ = 0° (θ = 90°), θ = 45° (θ = 135°), and θ = 90° (θ = 0°)

respectively which corresponds to their direction of spatial variation. As for patches 6 - 8

which are isotropic, KLPD
(
I(x), I(x′)

)
is similar with θ = 0°,45°,90°, and 135° as expected.

In the cases for r = 1 and r = 2, however, it can be seen that neighbouring spectral

difference KLPD
(
I(x), I(x′)

)
is not necessarily the highest only in the direction of the spatial

variation. In some instances, KLPD
(
I(x), I(x′)

)
is similarly high with multiple directions

θ it is calculated (implying that the spatial variation is multidirectional) even though the

examined patch is monodirectional. For example, in the case for r = 1, KLPD
(
I(x), I(x′)

)
of patch 5 is identically high with θ = 45°, θ = 90°, and θ = 135° while it is supposedly the

highest only with θ = 90°. A similar scenario can be observed too with patches 3 (in the case

for r = 1) and 4 (in the case for r = 2). Concerning patches 1 and 2, the calculation result of

KLPD
(
I(x), I(x′)

)
in the case for r = 1 is even contradictory as it is higher with both θ = 45°

and θ = 135° while it is supposedly higher with both θ = 0° and θ = 90°. We note that

in these cases, the calculation of KLPD
(
I(x), I(x′)

)
with θ = 45° and 135° is the cause of

problems. Due to the discrete nature of digital image, the calculation of KLPD
(
I(x), I(x′)

)
other than with θ = 0° and θ = 90° can only be approximated. For example, in the case for

r = 1, the calculation of KLPD
(
I(x), I(x′)

)
with θ = 45° can only be approximated with

neigbouring pixel I(x′) at one pixel to the left of and one pixel above I(x) by referring to

Fig. 3.5. Meanwhile, it should have been done with I(x′) at “0.71 pixel” to the left of and

“0.71 pixel” above I(x). This explains the problematic calculation of KLPD
(
I(x), I(x′)

)
with

θ = 45°,135°, etc. in the case for r = 1 and r = 2. However, it can be seen that the problem

is relieved in the case for r = 3 as the approximation error decreases with increasing r. That
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said, care should be taken when choosing r for analyzing the spatial directionality with

KLPD
(
I(x), I(x′)

)
. The higher r is, the more accurate the analysis will be in general.

Fig. 3.12 The patches (20 × 20 pixels) rendered in RGB (top row), followed by distri-
bution of neigbouring spectral difference KLPD

(
I(x), I(x′)

)
= ∆G+∆W calculated with

θ = 0°,45°,90°,135° and r = 3 (second row), r = 2 (third row), or r = 1 (bottom row) for
patches 1 - 4 of Chart3.
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Fig. 3.13 The patches (20 × 20 pixels, except for patch 6 which measures 50 × 50 pixels)
rendered in RGB (top row), followed by distribution of neigbouring spectral difference
KLPD

(
I(x), I(x′)

)
= ∆G+∆W calculated with θ = 0°,45°,90°,135° and r = 3 (second

row), r = 2 (third row), or r = 1 (bottom row) for patches 5 - 8 of Chart3.

3.2.3 Relative spectral difference occurrence matrix (RSDOM)

Considering a hyperspectral image I, we have argued that the sum and difference histograms

can be expressed by spectral difference histogram J
(Ŝ)

1 (I) and neighbouring difference



3.2 The proposed formulation 75

histogram J
(r,θ)

2 (I) respectively in previous section. In the following, we define the texture

feature RSDOM (relative spectral difference occurrence matrix) which is expressed as

the joint construct between J
(Ŝ)

1 (I) and J
(r,θ)

2 (I). Considering R spectral references

Ŝ = {ŝ1, . . . , ŝR} and a spatial assessment with (r,θ), RSDOM is expressed as a joint PDF of

R+3 dimensions:

T (Ŝ,r,θ)(I) = J
(Ŝ)

1 (I) ∩ J
(r,θ)

2 (I)

= p(∆G1, . . . ,∆GR,W,∆G,∆W ),

(3.9)

where T is the texture feature as defined by RSDOM in this case. Recall that J
(Ŝ)

1 (I) (from

Chapter 2) is the joint PDF of R+ 1 random variables i.e. the spectral shape differences

{∆G1, . . . ,∆GR} and spectral intensity W at a given spatial location x:

J
(Ŝ)

1 (I) = p


R⋂

r=1

(
KLD

(
Ī(x), ŝr

)
= ∆Gr

)
,

∥∥I(x)
∥∥

1 =W


s.t.

∥∥Ī(x)
∥∥

1 = ∥ŝr∥1 = 1 ∀ r ∈ [1,R],

and that J
(r,θ)

2 (I) is the bivariate PDF of spectral shape difference ∆G and spectral intensity

difference ∆W between pixels I(x) and I(x′) separated at distance r and direction θ as:

J
(r,θ)

2 (I) = p
(

KLPD
(
I(x), I(x′)

)
= (∆G,∆W )

)
s.t. x′ = x+ r cosθ .
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The formulation of RSDOM as a joint PDF serves three advantages. First, the expression

is mathematically sound in contrast to other empirical means such as concatenation or addition

of the two statistics. Second, statistical distances can be naturally used for texture similarity

measurement thanks to the PDF expression. Third, the feature is highly discriminative thanks

to the dual texture representation in terms of spectral and spatial measures.

The expression of RSDOM in difference space has several desirable effects. First of all,

this allows the characterization of spectral and spatial properties in a continuous manner. As

the spectra are not explicitly modelled (but rather, the spectral differences), quantization is

unnecessary as in the case of cooccurrence matrix. Hence, information about the texture is

fully preserved. Furthermore, it allows full-band processing of RSDOM without the need

for dimensionality reduction e.g. PCA. Therefore, physical fidelity is preserved in line with

metrology. Besides, the feature calculation is independent of the sensor resolution. This

enables texture comparison across different datasets with varying spectral resolutions.

3.2.4 Similarity measurement and statistical modelling

Having performed feature extraction, texture is discriminated thanks to a feature similarity

or distance measure. We note that for the purpose of metrology, the similarity or distance

measure must be developed respecting the mathematical nature of the feature. In this regard,

the similarity measure must take into account the probabilistic nature of RSDOM.

For maximum discrimination, we decide not to impose any a priori assumptions but

to extract information directly from the feature. Given two PDFs, their similarity can

be measured using likelihood ratio test [24] (a nonparametric statistical test). It can be

shown that maximizing the log-likelihood ratio is equal to minimizing the KL measure of

information [20]. Hence, we can use KL divergence [44] for the similarity measurement

between RSDOMs:
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KLD
(
T (Ŝ,r,θ)(I),T (Ŝ,r,θ)(I′)

)
=KL

(
T (Ŝ,r,θ)(I)

∥∥T (Ŝ,r,θ)(I′)
)
+KL

(
T (Ŝ,r,θ)(I′)

∥∥T (Ŝ,r,θ)(I)
)
,

(3.10)

concerning two textures (images) I and I′ as assessed using the same set of spectral references

Ŝ as well as with the same spatial relationship between pixel pairs parametrized by distance r

and direction θ . Note that KL(·, ·) is the KL measure of information as defined by [44]:

KL
(
T (Ŝ,r,θ)(I)

∥∥T (Ŝ,r,θ)(I′)
)

=
∫

. . .
∫

p(∆G1, . . . ,∆GR,W,∆G,∆W ) log
(

p(∆G1, . . . ,∆GR,W,∆G,∆W )

p′(∆G1, . . . ,∆GR,W,∆G,∆W )

)
d(∆G1) . . .d(∆W ) ,

(3.11)

such that T (Ŝ,r,θ)(I)= p(∆G1, . . . ,∆GR,W,∆G,∆W ) and T (Ŝ,r,θ)(I′)= p′(∆G1, . . . ,∆GR,W,∆G,∆W ).

On our choice of KL divergence as the similarity measure, although it exists many other

alternatives [2] e.g. α-divergence and Bregman’s divergence as well as s-divergence [71],

the study of an optimal measure is beyond the focus of our work in this Ph.D. manuscript.

Due to the multidimensionality of RSDOM, it is impractical to process the KL divergence

directly on histogram features. Moreover, such approach requires the same PDF support

which can vary greatly depending on the texture. As a solution, we propose using the Gaussian

mixture model (GMM), a class of density estimation methods that is capable of modelling

any complex PDF given sufficient number of components. Using GMM, RSDOM can be

parameterized using just a few parameters with a feature size of M(1+D+D(D+ 1)/2)

where M is the number of GMM components and D is the dimensionality:

T (Ŝ,r,θ)(I)≈
M

∑
m=1

πmN (µm,Σm), (3.12)
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where πm is the mixture weight of the mth Gaussian or normal component N (µm,Σm) of

mean µm and covariance matrix Σm, such that ∑
M
m=1 πm = 1. Note that in case of RSDOM,

D is given by R+ 3. As there is no closed form solution for KL measure of information

between GMMs, we resort to using the variational approximation [32]:

KL
(
T (Ŝ,r,θ)(I)∥T (Ŝ,r,θ)(I′)

)
≈

M

∑
m=1

πm log
∑

M
m′=1 πm′e−KLD(N (µm,Σm)∥N (µm′ ,Σm′))

∑
M
m′′=1 π ′

m′′e
−KLD

(
N (µm,Σm)∥N (µ ′

m′′ ,Σ
′
m′′)
) ,
(3.13)

such that T (Ŝ,r,θ)(I) ≈ ∑
M
m=1 πmN (µm,Σm) and that T (Ŝ,r,θ)(I′) ≈ ∑

M
m=1 π ′

mN (µ ′
m,Σ

′
m).

Note that the KL measure of information between Gaussians is given analytically by [60]:

KL
(
N (µ,Σ)∥N (µ ′,Σ′)

)
=

1
2

(
log

∣∣Σ′∣∣
|Σ|

+ tr(
(
Σ
′)−1

Σ)−D+(µ ′−µ)T (
Σ
′)−1

(µ ′−µ)

)
.

(3.14)

As RSDOM is a joint PDF of positive measures, it is positively skewed and dense around

zero (leptokurtic). To increase compatibility for the GMM fitting, a diffeomorphism is

applied by taking the logarithm of each dimension. Such transformation has a desirable effect

of stretching the values close to zero while compressing those far from zero, thus reducing

the skewness and conforming the distribution towards normality.

3.3 Summary

In this chapter, we focussed on the spatial characterization of texture. We started by recalling

the first Julesz conjecture which lies the foundation for our work on describing texture

using first- and second-order statistics. We next turned to the formulation of the graylevel

cooccurrence matrix before studying its approximation using sum and difference histograms.
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Then, we proposed our own approach by first pointing out the correspondence between

sum histogram and image histogram, the latter we have accounted for in Chapter 2. Next,

we express the difference histogram by neighbouring difference histogram thanks to the

consideration of spectral difference between pixel pairs defined for a particular spatial

relationship. Subsequently, we analysed the distribution of neighbouring spectral differences

facing edge sharpness, scale, and direction of the underlying texture. Finally, we presented

our first spectral-spatial texture feature termed relative spectral difference occurrence matrix

(RSDOM) that combines the joint distribution of spectral differences (from Chapter 2) and

neighbouring differences. As part of the metrological consideration, we also proposed a

similarity measurement of RSDOM based on Kullback-Leibler divergence.
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4.1 Background

Relationship between derivative and neighbouring difference

In single-variable calculus, the difference quotient is given by.

f (x+h)− f (x)
h

, (4.1)

which when taken to the limit as h approaches 0 gives the derivative of the function f :

d f (x)
dx

= lim
h→0

f (x+h)− f (x)
h

. (4.2)

In case of digital image analysis which is defined in discrete domain, h are limited to

integers. Considering a monovariate image I :R2 →R with number of spectral bands L = 1,

one of the definitions of the partial image derivatives is given by:

∂ I(x)
∂x1

= I(x1 +1,x2)− I(x1,x2),

∂ I(x)
∂x2

= I(x1,x2 +1)− I(x1,x2),

(4.3)

obtained as per Robert cross operator with h = 1. Note that in this case, ∂ I(x)
∂x1

is equivalent

to, in the context of RSDOM, taking the difference between pixel pairs defined with r = 1

and θ = 0. Similarly, ∂ I(x)
∂x2

is equivalent to that with r = 1 and θ = π/2. Indeed, taking the

difference between neighboring pixels is a (poor) way to computing the image derivatives.

Having established the relationship between differences and derivatives, it is, therefore,

natural to expand the formulation of RSDOM with derivatives. Such approach presents

several interests. First, it enables the assessment of the image gradient which provides a

natural measure of directionality. Second, it allows the application of scale space theory the
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for determination of local structure size. Hence, the need for parameter selection in terms of

multiscale and multidirectional assessment, as in the cof for RSDOM, is eliminated elegantly.

Assessment of image gradient

For monovariate image with number of spectral bands L = 1, the gradient at x = (x1,x2) is a

vector of partial derivatives defined with respect to the two spatial dimensions:

∇I(x) =
[

∂ I(x)
∂x1

∂ I(x)
∂x2

]T

. (4.4)

As derivative is only defined for continuous functions, a low-pass filter is to be applied on

discrete images in conjunction with the gradient calculation. According to the scale-space

theory, a good choice for the filter would be the Gaussian kernel g [50]. The scale-dependent

∇I(x;σ) as calculated with g(x,σ) centered at x with standard deviation of σ is given by:

∇I(x;σ) =

∂(I(x)∗g(σ))
∂x1

∂(I(x)∗g(σ))
∂x2

T

. (4.5)

Thanks to the commutativity of convolution, ∇I(x;σ) can be equivalently expressed as:

∇I(x;σ) =

∂g(x,σ)
∂x1

∂g(x,σ)
∂x2

T

∗ I(x). (4.6)

Assessment of spectral gradient

For multivariate e.g. colour and hyperspectral image with L > 1, one is obliged to consider

the Jacobian matrix, JI(x) as the generalization of gradient for vector-valued functions:

JI(x;σ) =


∂ I1(x;σ)

∂x1

∂ I2(x;σ)
∂x1

· · · ∂ IL(x;σ)
∂x1

∂ I1(x;σ)
∂x2

∂ I2(x;σ)
∂x2

· · · ∂ IL(x;σ)
∂x2


T

. (4.7)
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Given the unit vector v(θ) = [cosθ sinθ ]T pointing in the direction θ on R2 (the spatial

dimensions), the Euclidean norm of the directional derivative JI(x;σ)v(θ) is given by:

∥JI(x;σ)v(θ)∥2 =

√(
JI(x;σ)v(θ)

)T G
(
JI(x;σ)v(θ)

)
=
√

v(θ)T Mv(θ), (4.8)

where G is the Gram matrix that takes into account the possible nonorthogonality of spectral

channels, defined using the scalar product for integrable functions [10]:

G =



∥∥C1
∥∥2

2

〈
C1,C2

〉
2

. . .
〈

C1,CL

〉
2〈

C2,C1

〉
2

∥∥C2
∥∥2

2 . . .
〈

C2,CL

〉
2

...
... . . . ...

〈
CL,C1

〉
2

. . .
〈

CL,CL−1

〉
2

∥∥CL
∥∥2

2


, (4.9)

where Cl is the spectral sensitivity function for the lth band. Note that for orthogonal bands,

G reduces to identity matrix. Meanwhile, M, termed spatial covariance matrix, is given by:

M =

M11 M12

M21 M22

= JI(x;σ)T GJI(x;σ),

s.t. Mii′ =

〈
∂ I(x;σ∗)

∂xi
,
∂ I(x;σ∗)

∂xi′

〉
2
,

(4.10)

where ∂ I(x;σ∗)
∂xi

is the vector of marginal image derivatives with respect to xi:

∂ I(x;σ∗)

∂xi
=

[
∂ I1(x;σ∗)

∂xi

∂ I2(x;σ∗)

∂xi
. . .

∂ IL(x;σ∗)

∂xi

]
∀ i ∈ [1,2], (4.11)
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where Il is the lth spectral channel. Note that
〈

∂ I(x;σ∗)
∂xi

, ∂ I(x;σ∗)
∂xi′

〉
2

is the scalar product

between ∂ I(x;σ∗)
∂xi

and ∂ I(x;σ∗)
∂xi′

defined as followed with possible nonzero cross terms:

〈
∂ I(x;σ∗)

∂xi
,
∂ I(x;σ∗)

∂xi′

〉
2
=

(
∂ I(x;σ∗)

∂xi

)T

G
(

∂ I(x;σ∗)

∂xi′

)
=

L

∑
l=1

L

∑
l′=1

〈
∂ Il(x;σ∗)

∂xi
,
∂ Il′(x;σ∗)

∂xi′

〉
2

∀ i, i′ ∈ [1,2],
(4.12)

As v(θ) is an unit vector, (4.8) is equivalent to the Rayleigh quotient. Therefore, the

extrema of (4.8) are defined by (square root of) the eigenvalues λ± of M as given by:

λ± =
1
2

(
tr(M)±

√
tr(M)2 −4|M|

)
. (4.13)

Accordingly, the (patial) directions θ± corresponding to the extrema λ± are given by [40]:

θ+ = sgn(M12)arcsin
(

λ+−M11

λ+−λ−

) 1
2

,

θ− = θ++
π

2
.

(4.14)

Termed full vector gradient (FVG) [11], the presented spectral gradient assessment will

form the basis for our following development of spatial characterization of texture.

4.2 The proposed formulation

4.2.1 Automatic scale selection

The scale with which the gradient is assessed is not trivial. A fine scale provides good

(spatial) localization but is susceptible to noise and spurious structures. A coarse scale

improves the signal to noise ratio, albeit with poorer localization and risk of distortion
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by neighbouring structures. An optimal scale is thus, a tradeoff between detection and

localization. To maximize the captured information, the chosen scale has to reflect the

local structure size. Whereas smaller structures are optimally assessed using lower scales,

larger structures necessitate higher scales for complete detection. However, in practice, the

local structure sizes (and thus the optimum scale) cannot be known a priori (unless they are

artificially generated with known dimensions). An automatic scale selection mechanism is

therefore necessary.

Scale space maximum

A heuristic principle for scale selection was proposed by Lindeberg: “in the absence of other

evidence, assume that a scale level, at which some (possibly non-linear) combination of

normalized derivatives assumes a local maximum over scales, can be treated as reflecting

a characteristic length of a corresponding structure in the data.” [52]. The need for scale

normalization arises because a derivative tells about the rate of change per pixel which tends

to decrease with increasing scale σ . The scale normalization is performed by [51]:

∂

∂x
scale−normalized−−−−−−−−−−→ σ

∂

∂x
(4.15)

In the following analysis, let us temporarily revert to grayscale image I : R2 → R for

simplicity. Accordingly, we define the (local) optimal scale σ∗(x) for I as the one which

results in the maximum (scale-normalized1) gradient magnitude at x over the scale space:

σ
∗(x) = argmax

σ

σ∥∇I(x;σ)∥. (4.16)

According to the scale-space theory [50], gradient magnitude is optimally calculated using

Gaussian derivatives:
1For brevity, in the following we shall refrain from explicitly using the term scale normalized when referring

to gradient magnitude. Hereafter, all gradient magnitudes are scale normalized unless stated otherwise.
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∥∇I(x;σ)∥=

∥∥∥∥∥
[

∂g(x,σ)
∂x1

∂g(x,σ)
∂x2

]T

∗ I(x)

∥∥∥∥∥
2

, (4.17)

where ∗ denotes convolution. Note that the Gaussian derivatives are given by:

∂g(x,σ)

∂xi
=

x′i − xi

σ2 g(x,σ) ∀i ∈ [1,2], (4.18)

where xi − xo is the displacement from xo in the direction of xi. Note that g(xo,σ) is a

two-dimensional Gaussian function centered at xo = (xo,1,xo,2) with standard deviation of σ :

g(x,σ) =
1

2πσ2 exp

(
−
(x′1 − x1)

2 +(x′2 − x2)
2

2σ2

)
. (4.19)

Relationship between scale and structure size

To derive the relationship between σ∗ and the structure size, suppose that there is a circular

structure centered at xo with radius r on I. Considering the scale space evolution of the

gradient magnitude at xo, the scale space maximum can be obtained by setting:

∂

∂σ

[
σ
∥∥∇I(xo;σ)

∥∥]= 0. (4.20)

Note that in case of circular structure, the image derivatives at xo are the same:

∂g(xo,σ)

∂x1
∗ I(xo) =

∂g(xo,σ)

∂x2
∗ I(xo). (4.21)

Therefore, (4.20) can be simplified by consideration in either direction xi for i = 1 or i = 2:

∂

∂σ

[
σ

∂g(xo,σ)

∂xi
∗ I(xo)

]
= 0 ∀i ∈ [1,2]. (4.22)

Substituting (4.18) into (4.22) and then working out the derivative give:
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−3σ2(xi − x0,i)+(xi − x0,i)[(x1 − x0,1)
2 +(x2 − xo,2)

2]

σ4 g(xo,σ)∗ I(xo) = 0. (4.23)

Knowing that g(xo,σ)∗ I(xo) ̸= 0 and noting that (x1 − xo,1)
2 +(x2 − xo,2)

2 = r2, we obtain:

σ
∗(xo) =

r√
3
, (4.24)

which relates the optimal scale for gradient assessment at xo and the radius r of the circular

structure centred at xo. However, the gradient magnitude at xo is actually null regardless of

scale because the Gaussian derivative is an odd function which is antisymmetric about xo

(compare: Gaussian is an even function which is symmetric about xo). As such, we modify

the relationship between σ∗ and r by proposing the following expression:

σ
∗(xε)≈

r√
3
, (4.25)

where xε = xo + ε is slightly displaced from xo for an extremely small displacement ε .

We demonstrate automatic scale selection in Fig. 4.1 with artificially generated structures.

Fig. 4.1 (a) depicts a binary image I (201 × 201 pixels) composed of a single circular structure

with radius r = 9 centered at xo = (100,100). Convolving I with Gaussian derivaritive filters

with 200 scales σ sampled uniformly from 0.1 to 20, we determine the scale space maximum

of gradient magnitude σ∥∇I(x;σ)∥ (illustrated in Fig. 4.1 (b)) along with the corresponding

scale σ∗ (illustrated in Fig. 4.1 (c)). To identify the maximum, we check for zero crossings

of the scale derivative ∂

∂σ
σ∥∇I(x;σ)∥. As the scale space evolution of σ∥∇I(x;σ)∥ may

not be smooth2 (as exemplified by the jagged scale derivative plotted in gray as illustrated in

Fig. 4.1 (e)), we perform polynomial fitting prior to calculating ∂

∂σ
σ∥∇I(x;σ)∥.

2The lack of smoothness is due to the limited precision of numerical calculations as well as the limited
spatial filter size of the Gaussian derivative (which theoretically should be infinite) used. Throughout our work,
we limit the filter size to (6σ +1)× (6σ +1). Note that 6σ is chosen in accordance to the three sigma rule.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.1 (a) A binary image I (201 × 201 pixels) depicting a circular structure of radius
r = 9 pixels centered at xo = (100,100), (b) scale space maximum of gradient magnitude
σ∗∥∇I(xε ;σ∗)∥ at xε = (100,101), (c) scales σ∗ of the scale space maximum, (d) scales σ∗

at x2 = 100 and x1 ∈ [0,200], and (e) absolute and relative errors of measured scale σ∗(xε)
at with respect to calculated value based on (4.25)) for circular structures of radius r ∈ [1,30].
Assessed with 200 scales sampled uniformly from 0.1 to 20.

Referring to Fig. 4.1 (c), it can be seen that σ∗ is the lowest near the edge. This is because

the area around the edge can be thought of being very small local “structure” (hence small σ∗).

Accordingly, σ∗ increases with distance from the edge because the local “structure” grows.

However, it can be observed that σ∗ stops increasing monotonically up to a certain distance

from xo. For example, at x2 = 100, σ∗ is fix at 20 for x1 ∈ [30,64] and x1 ∈ [135,169], before

taking random values for x1 ∈ [0,29] and x1 ∈ [170,200] as shown in Fig. 4.1 (d). We note

that such behaviour is not due to the structure but simply attributed to the fact that we only

process scales σ up to 20. If more scales are processed, σ∗ would have kept increasing.
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The fact that the scale σ∗ keeps increasing as it gets further from the edge is actually

undesirable. This is because then, edges as detected using image gradient will be smeared

(blurred; out of focus) as shown in Fig. 4.1 (b). However, we remind that the image as

illustrated in Fig. 4.1 (a) is artificially generated with absolutely zero noise and blurring. In

practice, however, acquired images are commonly subjected to noise, illumination variation,

the limited spatial resolution of the sensor, etc. As a result, minimal spatial variation can be

found in regions which visually appear isotropic. Therefore, the increase of σ∗ as a function

of distance from the edge will be suppressed as exemplified later in Fig. 4.6 which depicts

automatic scale selection in the context of an acquired hyperspectral image.

As explained, the gradient magnitude at the center xo of circular structure is null. As

such, it is more meaningful to examine scale σ∗ at xε which is minimally displaced from

xo. In the context of discrete image, the smallest possible displacement ε is given by (1,0)

or (0,1) i.e. one pixel away in the horizontal or vertical directions in case of two spatial

dimensions. As such, we resort to examining σ∗(xε) at xε = (101,100). Referring to Fig. 4.1

(e), it can be seen that the σ∗(xε) is measured to be 5.2, which is very close to the theoretical

value r√
3
= 5.196 as calculated using (4.25). Considering circular structures of varying

r ∈ [1,30], it can be seen as that the relative error of σ∗(xε) with respect to the theoretical

value decreases with increasing r as shown in Fig. 4.1 (f). This is because the generated

circular structure becomes more accurate (closer to a true circle) with increasing size (radius).

Thanks to the low relative errors (mostly ≤ 1%), our derivation in (4.25) is thus confirmed.

Scale space stationary (SSS) points

Previously, we have accounted for scale selection concerning single structure based on scale

space maximum of gradient magnitude σ∥∇I(x;σ)∥. However, the scale space evolution

of σ∥∇I(x;σ)∥ can be more complex in the presence of other structures. For example,

σ∥∇I(x;σ)∥ could have multiple maxima. Such scenario is akin to wave interference in
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physics as two waves combine to form a greater, lower, or equivalent wave. We demonstrate

this in Fig. 4.2 which depict three scenarios. Fig 4.2 (a) and (b) depict a circular structure

centered at (100,100) and (135,100) with radius r = 9 and r = 15 respectively, whereas Fig

4.2 (c) shows the two aforementioned structures neighbouring each other. In all cases, we are

interested in the scale space evolution of σ∥∇I(xε ;σ)∥ at xε = (101,100). Interestingly, it

can be seen that σ∥∇I(xε ;σ)∥ in Fig. 4.2 (f) is like a summation between that in Fig. 4.2 (d)

and (e). Whereas the scale selection in Fig. 4.2 (d) and (e) are unmistakenly based on the

(only) maximum, it is not so clear for the case of Fig. 4.2 (f) as there are two local maxima.

The question then arises: which scale to choose so as to reflect the local structure size at xε?

(a) (b) (c)

(d) (e) (f)

Fig. 4.2 Binary images (a) depicting a circular structure centered at (100,100) with radius
r = 9; (b) depicting a circular structure centered at (135,100) with radius r = 15; (c)
depicting two circular structures centered at (100,100) and (135,100) with radius r = 9 and
r = 15 respectively. The corresponding scale space evolution of (scale-normalized) gradient
magnitude at xε = (101,100) of (a), (b), (c) are depicted in (d), (e), and (f) respectively.
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In this case, the heuristic as proposed by Lindeberg is clear: choose the local maximum

as the optimal scale, which we interpret as selecting the first maximum. This is based on our

assumption that in the absence of noise3, only the first maximum refers to the local structure

size, whereas the other maxima are influences by neighbouring structures. We demonstrate

this in Fig. 4.3 which depicts pairs of the structure of different sizes and distances from each

other. For brevity, let us denote the circular structure (r = 9) centered at xo = (100,100) and

the neighbouring circular structure as S1 and S2 respectively. In Fig. 4.3 (a), S2 (r = 15)

is larger than S1, whereas in Fig. 4.3 (b), S2 (r = 9) is the same size as S1. By examining

the scale space evolution of gradient magnitude σ∥∇I(xε ;σ)∥ at xε , it can be seen that it

exists two local maxima. It can be seen that in both cases as illustrated in Fig. 4.3 (d) and (e),

the first maximum 5.2 corresponds to the local structure size (of S1) r√
3
= 5.196. Clearly,

5.2 should thus be taken as the scale σ∗(xε). However, having multiple structures does not

necessarily result in multiple local maxima. In 4.3 (c), S2 (r = 3) is smaller than S1, and

σ∥∇I(xε ;σ)∥ has only one maximum as shown in Fig. 4.3 (f). This is because the gradient

of S1 “overwhelms” that of S2 as S2 is smaller (and hence, has a weaker gradient) than S1.

3In the presence of noise; the first maximum would have been the “size” of noise which is in general, much
smaller than any structures’. A solution would be to ignore scales below some threshold set based on the noise.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3 Binary images depicting pairs of structure of different sizes and distances from
each other. In all cases, the structure on the left is centered at xo = (100,100) with radius
r = 9, whereas the structure on the right is of radius (a) r = 15, (b) r = 9, and (c) r = 3.
The corresponding scale space evolution of (scale-normalized) gradient magnitude at xε =
(101,100) of (a), (b), (c) are depicted in (d), (e), and (f) respectively.

Another complexity arises in the case of neighbouring structures being too close. In

this case, the maxima will also get closer and interact with each other. As a result, one

of the maxima might disappear, as a rising point of inflection takes shape nearby. We

demonstrate this in Fig. 4.4 wdepictsepict two circular structures of different sizes being

placed increasingly close. In all cases, the smaller structure (r = 9) is centered at (100,100),

whereas the larger structures (r = 15) is centered at (135,100), (130,100), and (128,100) in

Fig. 4.4 (a), (b), and (c) respectively. Again, we are interested in the scale space evolution

of σ∥∇I(xε ;σ)∥ at xε = (101,100). Referring to Fig. 4.4 (d) and (e), it can be seen that

the two maxima get closer as the distance between the two structures decreases before an

inflection point forms as shown in Fig. 4.4 (f). If Lindeberg’s heuristic were to be strictly
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followed, the scale selection based on the inflection point would have been dismissed as it

is not a local maximum. However, it is clear that the scale corresponding to the inflection

point is more representative of the local structure size at xε . Naturally, a wondering surface:

should we too consider the inflection point for scale selection apart from local maxima?

(a) (b) (c)

(d) (e) (f)

Fig. 4.4 Binary images depicting two circular structures of different sizes being placed
increasingly close. In all cases, the structure on the left is centered at xo = (100,100) with ra-
dius r = 9, whereas the structure on the right is centered at (a) (135,100), (b) (130,100), and
(c) (128,100) with r = 15. The corresponding scale space evolution of (scale-normalized)
gradient magnitude at xε = (101,100) of (a), (b), (c) are depicted in (d), (e), and (f) respec-
tively.

Modifying Lindeberg’s heuristic, we hereby propose to perform automatic scale selec-

tion (in the absence of noise) based on the scale space stationary4 (SSS) point i.e. the
4In fact, stationary points include the extrema (minima and maxima) as well as the rising and falling

inflection points. In our context, we are only referring to the maxima and rising inflection points.
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first local maximum or (rising) inflection point (whichever comes first) of the scale space

evolution of normalized gradient magnitude so as to reflect the local structure size:

σ
∗(x) = argstat

σ

(
σ∥∇I(x;σ)∥

)
, (4.26)

where σ∗ is the locally defined (optimal) scale and “argstat(·)” refers to the operation that

finds the argument i.e. σ that gives the SSS point. We demostrate this in Fig. 4.5 which

shows pairs of structure of different sizes being placed very close (one pixel apart). In

all cases, the smaller structure (r = 9) is centered at (100,100), whereas the neigbouring

structures are centered at (128,100), (120,100), and (114,100) with r = 15, r = 9, and r = 3

in Fig. 4.5 (a), (b), and (c) respectively. Again, we are interested in the scale space evolution

of σ∥∇I(xε ;σ)∥ at xε = (101,100). To identify the SSS points, we check for zero crossings

(for local maxima) or valleys which are above zero (for rising inflection point) of the scale

derivative ∂

∂σ
σ∥∇I(xε ;σ)∥. It can be seen that the scales selected based on the inflection

point for Fig. 4.5 (d) (σ∗(xε) = 5.8) and (e) (σ∗(xε) = 6.8) are indeed closer to the true scale

r√
3
= 5.2 based on the local structure size (r = 9). If the maxima were to be chosen (14.8

and 10.9 in Fig. 4.5 (d) and (e) respectively), they would have highly overestimated the local

structure size. In this case, the scales corresponding to the inflection points are clearly of

better choice. Referring to Fig. 4.5 (f), no inflection point but a local maximum can be found.

This is due to the stronger gradient of the larger structure which “overwhelms” that of the

smaller structure. However, the effect of the smaller structure can still be observed: the local

maximum has been slightly shifted to 5.4 in comparison to the true scale 5.2.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.5 Binary images depicting pairs of structure of different sizes being placed at one pixel
apart. In all cases, the structure on the left is centered at xo = (100,100) with radius r = 9,
whereas the structure on the right is centered at (a) (128,100) with r = 15, (b) (120,100)
with r = 9, and (114,100) with r = 3. The corresponding scale space evolution of (scale-
normalized) gradient magnitude at xε = (101,100) of (a), (b), (c) are depicted in (d), (e), and
(f) respectively.

Demonstration with hyperspectral image

Previously, we have considered scale selection in the context of monovariate, binary images

for ease of explainability. In the following, we demonstrate the validity of the developed

method with hyperspectral image in which the same rationale applies. For reasons that will

be apparent later5, we determine the (optimal) scale σ∗ based on the SSS point of
√

λ+(σ):

σ
∗ = argstat

σ

(
σ
√

λ+(σ)
)
, (4.27)

5Later, we shall show that
√

λ+ is the spectral gradient magnitude.
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where
√

λ+ is the larger eigenvalue of the spatial covariance matrix M as defined in (4.13).

We first consider a small patch as shown (rendered in RGB) in Fig. 4.6 (a) from a

hyperspectral image with wavelengths ranging from 420 nm to 720 nm at 10 nm intervals.

Specifically, we refer to the seven pixels (c) - (i) as bordered and labelled in black. They are

chosen such that those labelled by (c) - (e), (f) - (h), and (i) are representatives of edge, flat

(neither edge nor corner), and corner pixels respectively. Referring to Fig. 4.6 (c) - (h), it

can be seen that scale of the edge pixels (σ∗ ∈ [3.8,4.8]) are considerably higher than that

of the flat pixels (σ∗ ∈ [0.6,0.8]). This seems to be opposite to the case of Fig. 4.1 which

shows that the edge pixels have considerably lower σ∗ than the flat pixels. However, we note

that Fig. 4.1 (a) on which the gradients are calculated is artificially generated with absolutely

zero noise and blurring. Real images, however, as in the case oimagessge from which pixels

(c) - (i) are taken, are subjected to noise, sensor limitations, etc. As a result, minimal spatial

variation can be found in regions which visually appear isotropic. This explains the case

for the flat pixels (f) - (h) as their σ∗ actually refers to spatial variation due to noise. This,

however, is a “blessing” as it avoids the smearing of gradient magnitude (as the case in Fig.

4.1 (b)) at the edge. On the other hand, we note that the edge of a real image is unlikely to

be as sharp as artificially generated ones. Due to limited spatial resolution, the edge will

be manifested more like a smoothed step function. This is clearly the case for the edge

pixels (c) - (e) as their σ∗ is influenced by the level of edge diffusion. Indeed, a higher

scale is required for diffedgesedge compared to sharp ones to improve the signal (gradient

magnitude) to noise ratio. On the other hand, it can be seen that σ∗ = 8.7 of the corner pixel

is considerably higher than that of edge and flat pixels as depicted in Fig. 4.6 (i). We note

that this is due to the low spectral gradient coherence which will be explained further in the

coming subsections.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.6 Scale evolution of FVG magnitude σ
√

λ+ for the selected seven pixels in patch 3
from Character. Following the convention in Fig. 4.1, the solid plots in blue, red, green
are the FVG magnitude, FVG magnitude fitted using polynomials, and scale derivative (of
the FVG magnitude fitted using polynomials) ∂

∂σ
σ
√

λ+ respectively. The horizontal green
dotted line is ∂

∂σ
σ
√

λ+ = 0, whereas the vertical black dotted line is the FVG scale σ = σ∗.

Next, we examine the hyperspectral image Chart3 (512 × 512 pixels) with wavelengths

ranging from 420 nm to 720 nm at 10 nm interval [54] as shown in Fig. 4.7. It can be seen

that the scales σ∗ do reflect the local scale of variation. For example, σ∗ of patch 1 is lower
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than that of patch 2 because the former has smaller (block-like) structures. Clearly, σ∗ is

not affected by spatial directionality as σ∗ is the same for patches 3 - 5 which have the same

scale of variation. The same can be observed for patch 6 as σ∗ is independent of the local

edge directions. In the case of “flat” regions e.g. patches 7 and 8, σ∗ refers to the scale of

spatial variation due to noise which is in general small (hence σ∗ is also low).

Fig. 4.7 The hyperspectral image Chart3 (512 × 512 pixels) with wavelengths ranging
from 420 nm to 720 nm at 10 nm interval, rendered in RGB for illustration. Bordered and
numbered in red are the 16 patches partly considered for FVG calculation in Fig. 4.9.
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Fig. 4.8 FVG scale σ∗ of Chart3.

Referring to Fig. 4.9, it can be observed that in general, the scale σ∗ decreases from

patches 9 - 14 in accordance with their decreasing scale of spatial variation. Note that

to improve visibility, we have capped the maximum σ∗ at 2.5 which corresponds to the

maximum value of σ∗ among patches 9 - 16. However, it can be seen that σ∗ actually

increases in patch 15 (and less so in patch 16) when it is expected to decrease further as

their scale of spatial variation is even smaller. We attribute this to much-reduced contrast in

patches 15 and 16 due to the limited spatial resolution which results in σ∗ overestimation.

Such argument is supported by fact that σ∗ is observed to be irregularly distributed in patches

15 and 16 which have a regulapatternsrn. Meanwhile, referring to Fig. 4.10 which is taken
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from the top left corner of Chart3, it can be seen that the scale σ∗ varies continuously from

right to left as the strips deviate from each other. Note that to improve visibility, we have

capped the maximum σ∗ at 5. Indeed, the local spatial variation can be said to decrease as

the distance between the strips grows. This further validates our method for automatic scale

selection.

(a)

(b)

Fig. 4.9 The patches (20 × 20 pixels) rendered in RGB (top row), followed by the FVG scale
σ∗ (bottom row) for (a) patches 9 - 12; and (b) patches 13 - 16 of Chart3.
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Fig. 4.10 The patch as taken from the top left corner of Chart3 rendered in RGB (top row),
followed by the FVG scale σ∗ (bottom row). To improve visibility, the maximum σ∗ is
capped at 5.

4.2.2 Spectral gradient magnitude, direction, and coherence

Having developed automatic scale selection, we are now ready to calculate the gradient for

hyperspectral images. As detailed in t previous section, the expression of image gradient

∇I(x) is generalized by that of Jacobian matrix JI(x)the for the multivariate image. In the

following, we shall determine the measures for spectral gradient magnitude and direction

before exploiting them for texture characterization. On the other hand, we also shall explore

the notion of spectral gradient coherence which has no correspondence in monovariate

images.

Spectral gradient magnitude and direction

In the literature, it exists several definitions of spectral gradient magnitude based on the

eigenvalues λ± of the spatial covariance matrix M = JI(x)T GJI(x) as expressed in (4.13):
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λ+ =
1
2

(
tr(M)±

√
tr(M)2 −4|M|

)
, (4.28)

recalling that G is the Gram matrix. In particular, Di Zenzo designated
√

λ+ as the “maxi-

mum rate of change” or “edge strength” [89], an approach also echoed by Cumani [17]. On

the other hand, Sapiro argued for measures of λ+−λ− as edge “strength” for image contour

extraction [65], whereas Chatoux et. al. favored Frobenius norm λ++λ− of the Jacobian as

the “gradient magnitude” [10]. In the following, we shall clarify the meanings of λ± before

arriving at a suitable choice of spectral gradient magnitude and thus direction.

To recall,
√

λ± are the extrema of the directional derivative JI(x)v(θ)’s Euclidean norm

concerning a unit vector v(θ) pointing in the direction θ on R2 (the spatial dimensions):

√
λ+ = max

θ

∥JI(x;σ)v(θ)∥2 = ∥JI(x;σ)v(θ+)∥2,√
λ− = min

θ
∥JI(x;σ)v(θ)∥2 = ∥JI(x;σ)v(θ−)∥2,

(4.29)

where σ is the standard deviation of the Gaussian derivative by which the image derivatives

are calculated; θ+ and θ− are the (spatial) directions corresponding to the extrema of

∥JI(x;σ)v(θ)∥2 as defined in (4.14). Geometrically, ∥JI(x;σ)v(θ)∥2 is thus an ellipse with√
λ+,

√
λ−, and θ+ as its semi-major axis, semi-minor axis, and rotation angle respectively.

Hereafter, we shall denote measures evaluated with scale σ∗ with an asterisk ∗. For

example,
√

λ ∗
+ =

√
λ+(σ∗) is the larger eigenvalue as evaluated with σ∗, whereas θ ∗

+ is the

corresponding direction. For reasons that will be apparent later6, σ∗ is chosen by:

σ
∗ = argstat

σ

(
σ
√

λ+(σ)
)
, (4.30)

6In previous subsection, we propose to perform scale selection based on (scale-normalized) gradient
magnitude for monovariate image. Later, we shall show that

√
λ+ is the spectral gradient magnitude.
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where argstat
σ

(·) is the operation which finds the scale space stationary (SSS) point of

σ
√

λ+(σ) as detailed in previous subsection.

In the following, we shall consider a small patch as shown (rendered in RGB) in Fig. 4.11

(a) from a hyperspectral image with wavelengths ranging from 420 nm to 720 nm at 10 nm

interval. Specifically, we refer to the seven pixels (c) - (i) as bordered and labelled in black.

They are chosen such that those labelled by (c) - (e), (f) - (h), and (i) are representatives of

edge, flat (neither edge nor corner), and corner pixels respectively. As gradient analysis at a

given pixel location is impossible without referring to its neighbouring pixels, we consider

each of the seven pixels (c) - (i) within a 25×25 neighbourhood as shown in Fig. 4.11 (c) - (i).

For clarity, the seven pixels (as located at the center of the patches) are buldged like a big dot.

For visibility, we overlay the directional derivative’s Euclidean norm ∥JI(x;σ∗)v(θ)∥2 (with

axes ∥JI(x;σ∗)cosθ∥2 and ∥JI(x;σ∗)sinθ∥2) on top of the patches (with axes x1 and x2).

Referring to Fig. 4.11 (c) - (e), it is clear that ∥JI(x;σ∗)v(θ)∥2 are rotated in the direction of

the highest rate of pixel changes. However, it is arguably less clear in cases of Fig. 4.11 (d) -

(i) as ∥JI(x;σ∗)v(θ)∥2 have lower eccentricity. Referring to Fig. 4.11 (i), ∥JI(x;σ∗)v(θ)∥2

even appears like a circle which suggests similar rate of pixel change in all directions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.11 (a) Bordered and labelled in black are the seven pixels that will be considered for
the assessment of directional derivative’s Euclidean norm ∥JI(x;σ∗)v(θ)∥2 as illustrated in
(c) - (i). The corresponding legend can be found in (b).

To understand the behaviour of the directional derivative’s Euclidean norm ∥JI(x;σ∗)v(θ)∥2,

let us examine the marginal (band by band) gradients ∇Il(x;σ∗) as defined by:
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∇Il(x;σ
∗) =

[
∂ Il(x;σ∗)

∂x1

∂ Il(x;σ∗)
∂x2

]T

∀ l ∈ [1,L], (4.31)

where Il is the lth spectral channel and L is the number of spectral bands. The marginal

gradient magnitudes ∥∇Il(x;σ∗)∥2 and directions θ ∗
l are given by:

∥∇Il(x;σ
∗)∥2 =

√(
∂ Il(x;σ∗)

∂x1

)2

+

(
∂ Il(x;σ∗)

∂x2

)2

,

θ
∗
l = arctan

∂ Il(x;σ∗)

∂x2

/
∂ Il(x;σ∗)

∂x1

 ,

(4.32)

We illustrate the marginal gradients ∇Il(x;σ∗) (for 420 nm - 720 nm; 31 spectral channels

in total) in Fig. 4.12 - 4.18 which correspond to pixels (c) - (i) respectively. For visibility, we

overlay ∇Il(x;σ∗) (with axes ∂ Il(x;σ∗)
∂x1

and ∂ Il(x;σ∗)
∂x2

) on top of the patches (with axes x1 and

x2). Referring to Fig. 4.12 - 4.18, it can be seen that the spatial organization of pixels varies

with different wavelengths. Specifically, the red pixels are visible only from 590 nm to 720

nm, whereas the white pixels are visible with all wavelengths i.e. from 420 nm to 720 nm. In

contrast, the black pixels are invisible with all wavelengths. As a result, ∇Il(x;σ∗) also vary

as they point to the direction of highest variation which changes with the wavelengths.

We begin by examining the edge pixels (c) - (e) as dictated in Fig. 4.11 (a). Referring to

Fig. 4.12, it can be seen that the marginal gradient directions vary with θ ∗
l ∈ [49.1°,76.9°]

from 420 nm to 580 nm, and θ ∗
l ∈ [122.2°,154.5°] from 590 nm to 720 nm. However, the

marginal gradient magnitudes ∥∇Il(x;σ∗)∥2 from 420 nm to 580 nm are much lower than

that from 590 nm to 720 nm, and as a result the latter dominates. Consequently, the (overall)

directionality is strong with θ ∗
+ = 153.4° as there is little opposing gradients. The same can

also be observed in Fig. 4.13 as θ ∗
l ∈ [6.1°,7.1°] from 420 nm to 580 nm, θ ∗

l ∈ [9.1°,52.2°]

from 590 nm to 620 nm, and θ ∗
l ∈ [88.3°,113.4°] from 630 nm to 720 nm. As the marginal
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gradients ∇Il(x;σ∗) from 420 nm to 580 nm have much higher magnitudes, they thus

dominate. As a result, the directionality is also strong with θ ∗
+ = 7.0°. Next, Fig. 4.14 shows

that θ ∗
l are coherent with all wavelengths. This is due to the similar spatial organization of

pixels with all wavelengths: the black pixels are consistently absent whereas the white pixels

are always present. Thanks to the high coherence (little variation) of θ ∗
+ ∈ [85.1°,93.8°],

the directionality is even stronger with θ ∗
+ = 89.2°. Directionality is however, weak for the

flat and corner pixels (f) - (i) as shown in Fig. 4.15 - 4.18. Pointing in opposing directions,

∇Il(x;σ∗) have similar magnitudes. This results in overall, similar rate of pixel change in all

directions especially in case of pixel (i). As such, θ ∗
+ of pixels (f) - (i) should be taken lightly.
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Fig. 4.12 The marginal gradients for the pixel labelled as (c) in Fig. 4.11 (a).
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Fig. 4.13 The marginal gradients for the pixel labelled as (d) in Fig. 4.11 (a).
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Fig. 4.14 The marginal gradients for the pixel labelled as (e) in Fig. 4.11 (a).
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Fig. 4.15 The marginal gradients for the pixel labelled as (f) in Fig. 4.11 (a).
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Fig. 4.16 The marginal gradients for the pixel labelled as (g) in Fig. 4.11 (a).
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Fig. 4.17 The marginal gradients for the pixel labelled as (h) in Fig. 4.11 (a).
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Fig. 4.18 The marginal gradients for the pixel labelled as (i) in Fig. 4.11 (a).
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To analyze further, we display the marginal gradients ∇Il(x;σ∗) =
[

∂ Il(x;σ∗)
∂x1

∂ Il(x;σ∗)
∂x2

]T

together in the same plot. Referring to Fig. 4.19 (c) - (i), we note that in all cases the

major axis 2
√

λ ∗
+ is like the line of best fit for ∇Il(x;σ∗) i.e. it is directed at the highest

variation. This is akin to principal component analysis (PCA) from which the first principle

component is chosen such that it maximizes data variance in certain direction. Such similarity

is indeed expected as λ+ is the largest eigenvalue of the spatial covariance matrix M =

JI(x;σ∗)T GJI(x;σ∗), where JI(x) is the collection of ∇Il(x;σ∗). At this stage, we can thus

envision a correspondence between
√

λ ∗
+ and spectral gradient magnitude. To verify this, let

us consider M in case of single spectral channel (L = 1) in which JI(x;σ∗) = ∇I(x;σ∗)T :

M(L=1) = ∇I(x;σ
∗)∇I(x;σ

∗)T

=


(

∂ I(x;σ∗)
∂x1

)2 (
∂ I(x;σ∗)

∂x1

)(
∂ I(x;σ∗)

∂x2

)
(

∂ I(x;σ∗)
∂x1

)(
∂ I(x;σ∗)

∂x2

) (
∂ I(x;σ∗)

∂x2

)2

 . (4.33)

Evidently, λ ∗
+ = 1

2

(
tr(M)+

√
tr(M)2 −4|M|

)
=
(

∂ I(x;σ∗)
∂x1

)2
+
(

∂ I(x;σ∗)
∂x2

)2
= ∥∇I(x;σ∗)∥2

2.

It is clear, then,
√

λ ∗
+ is the spectral gradient magnitude which reduces to image gradient

magnitude ∥∇I(x;σ∗)∥2 when L = 1. Accordingly, θ+ is the spectral gradient direction.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.19 (a) Bordered and labelled in black are the seven pixels that will be considered for
the assessment of marginal gradients as illustrated in (c) - (i). The corresponding legend can
be found in (b).
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Demonstration with real hyperspectral image

Having defined the spectral gradient magnitude
√

λ ∗
+ and direction θ ∗

+, in the following we

demonstrate their calculation with a real hyperspectral image. For this purpose, we shall

again examine the hyperspectral image Chart3 (512 × 512 pixels) with wavelengths ranging

from 420 nm to 720 nm at 10 nm interval [54] as shown in Fig. 4.20. In particular, we shall

refer to the 16 patches as bordered and numbered in red (or black in Fig. 4.23) for further

discussion.

Fig. 4.20 The hyperspectral image Chart3 (512 × 512 pixels) with wavelengths ranging
from 420 nm to 720 nm at 10 nm interval, rendered in RGB for illustration. Bordered and
numbered in red are the 16 patches considered for FVG calculation in Fig. 4.22 and 4.24.
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Referring to Fig. 4.21, it can be seen that the edge information in Chart3 is readily

revealed thanks to the spectral gradient magnitude
√

λ ∗
+. As expected,

√
λ ∗
+ is strong at

the interface between black and white pixels, while being weak elsewhere. Overall, the

edges extracted are clean and well-connected. However, we do not observe the same
√

λ ∗
+

throughout the image;
√

λ ∗
+ varies in the image depending on the rate of spatial variation.

For example,
√

λ ∗
+ decreases from patch 9 to 16 in which the spatial variation increases. At

first, this seems suspicious because Chart3 is a binary image with supposedly identical edge

strength anywhere in the image. Nevertheless, due to imperfect acquisition (noise, uneven

illumination, limited spatial resolution, etc.) it actually appears in multiple shades of gray

(spectrum). We illustrate this in Fig. 4.22 which shows the spectra for patches 9 - 16. Clearly,

the variation of spectra decreases from patch 9 to 16 and as a result,
√

λ ∗
+ also decreases.

Such behaviour confirms the validity of
√

λ ∗
+ as the spectral gradient magnitude.



4.2 The proposed formulation 119

Fig. 4.21 FVG magnitude σ∗√λ ∗
+ of Chart3.
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(a)

(b)

Fig. 4.22 The patches (20 × 20 pixels) rendered in RGB (top row), followed by the (20 × 20
= 400) spectra of the corresponding patches (bottom row) for patches 9 - 12 of Chart3.

Referring to Fig. 4.23, it can be be seen that the spatial directionality of Chart3 is also

readily revealed thanks to the spectral gradient direction θ ∗
+. Indeed, θ ∗

+ appears coherent for

the unidirectional regions e.g. patches 3 - 5 and 9 - 16. For spatially isotropic regions e.g.

patches 7 and 8, θ ∗
+ is random. As for the block-like regions e.g. patches 1 and 2, θ ∗

+ takes
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predominantly two values (horizontal and vertical) whereas for the circular pattern in patch 6,

θ ∗
+ varies continuously according to local edge directions. Next, we illustrate the distribution

of θ ∗
+ (along with the spectral gradient magnitude

√
λ ∗
+ in the form of scatter plot) for

patches 1 - 8 in Fig. 4.24. Evidently, the distribution provides another means for interpreting

the spatial directionality of a given region. In particular, the number of peaks specifies the

number of dominant directions; the location of the peaks indicates the dominant direction;

the spread for a given peak (if any) refers to the dominance of the direction. For example, a

unimodal distribution of θ ∗
+ indicates unidirectionality as exemplified in the cof for patches 3

- 5. A bimodal distribution as in the case of patches 1 and 2 points to bidirectionality. By

looking closer, it can be seen that the bimodal distribution for patch 1 is more dispersed

compared to that for patch 2. This is because the blocks in patch 1 are smaller in size than

that in patch 2, and as a result, there are more corner pixels (which “point” in directions

further from the two dominant ones i.e. vertical and horizontal). In contrast, the blocks in

patch 2 are larger and as a result, there are more edge pixels (which “point” closer in the two

dominant directions). Hence, θ ∗
+ is less spread out. Meanwhile, a uniform distribution of

θ ∗
+ as in the case for patches 6 - 8 indicates that the spatial variation is isotropic i.e. has no

directionality.
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Fig. 4.23 FVG direction θ ∗ of Chart3.
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(a)

(b)

Fig. 4.24 The patches (20 × 20 pixels, except for patch 6 which measures 50 × 50 pixels)
rendered in RGB (top row), followed by the two-dimensional scatter plot of FVG direction
θ ∗
+ and FVG magnitude

√
λ ∗
+ for patches 1 - 8 of Chart3.

Spectral gradient coherence

Referring to Fig. 4.11 - 4.19, it can be observed that
√

λ ∗
− grows as the marginal gradient

directions θ ∗
l becomes increasingly incoherent. Furthermore, θ ∗

− which is associated with λ ∗
−

is defined to be orthogonal to the spectral gradient direction θ ∗
+ as dictated in (4.14). Thus,
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we can envision a relationship between
√

λ ∗
− and coherence of θ ∗

l . To verify this, let us

consider7 the following “system of equations”: λ ∗
+λ ∗

− = |M| and the definition of |M|:

|M|=
∣∣∣JI(x;σ

∗)T GJI(x;σ
∗)
∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣


〈

∂ I(x;σ∗)
∂x1

, ∂ I(x;σ∗)
∂x1

〉
2

〈
∂ I(x;σ∗)

∂x1
, ∂ I(x;σ∗)

∂x2

〉
2〈

∂ I(x;σ∗)
∂x1

, ∂ I(x;σ∗)
∂x2

〉
2

〈
∂ I(x;σ∗)

∂x2
, ∂ I(x;σ∗)

∂x2

〉
2



∣∣∣∣∣∣∣∣∣∣∣
=

∥∥∥∥∂ I(x;σ∗)

∂x1

∥∥∥∥2

2

∥∥∥∥∂ I(x;σ∗)

∂x2

∥∥∥∥2

2
−
〈

∂ I(x;σ∗)

∂x1
,
∂ I(x;σ∗)

∂x2

〉2

2
,

(4.34)

where ∂ I(x;σ∗)
∂xi

is the vector of marginal image derivatives with respect to xi. Considering the

geometric definition of scalar product of two Euclidean vectors:

〈
∂ I(x;σ∗)

∂x1
,
∂ I(x;σ∗)

∂x2

〉2

2
=

∥∥∥∥∂ I(x;σ∗)

∂x1

∥∥∥∥2

2

∥∥∥∥∂ I(x;σ∗)

∂x2

∥∥∥∥2

2
cos2

φ , (4.35)

where φ is the angle8 between ∂ I(x;σ∗)
∂x1

and ∂ I(x;σ∗)
∂x2

, (4.34) can be expressed further as:

|M|=
∥∥∥∥∂ I(x;σ∗)

∂x1

∥∥∥∥2

2

∥∥∥∥∂ I(x;σ∗)

∂x2

∥∥∥∥2

2

(
1− cos2

φ

)
=

∥∥∥∥∂ I(x;σ∗)

∂x1

∥∥∥∥2

2

∥∥∥∥∂ I(x;σ∗)

∂x2

∥∥∥∥2

2
sin2

φ ,

(4.36)

Substituting (4.36) into λ ∗
+λ ∗

− = |M| and rearranging gives:

λ
∗
− =

∥∥∥∂ I(x;σ∗)
∂x1

∥∥∥2

2

∥∥∥∂ I(x;σ∗)
∂x2

∥∥∥2

2
λ ∗
+

sin2
φ . (4.37)

7The product of the eigenvalues of matrix A is the same as the determinant of A.
8φ is not to be confused with θ in (4.29), as the latter refers to the angle on R2 (the spatial dimensions.)
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Thus, for λ ∗
− = 0 it requires that

∥∥∥∂ I(x;σ∗)
∂x1

∥∥∥
2
= 0 or

∥∥∥∂ I(x;σ∗)
∂x2

∥∥∥
2
= 0 or φ = 0. Note that∥∥∥∂ I(x;σ∗)

∂x1

∥∥∥
2
= 0 and

∥∥∥∂ I(x;σ∗)
∂x2

∥∥∥
2
= 0 imply that all the nonzero marginal gradients are pointing

at the direction of x2 and x1 respectively, and in both cases the marginal gradient directions

θ ∗
l are fully coherent. Meanwhile, φ (angle between ∂ I(x;σ∗)

∂x1
and ∂ I(x;σ∗)

∂x2
) being zero implies:

∂ Il(x;σ∗)

∂x2

/
∂ Il(x;σ∗)

∂x1

= constant ∀ l ∈ [1,L]

∴ arctan

∂ Il(x;σ∗)

∂x2

/
∂ Il(x;σ∗)

∂x1

= θ
∗
l = constant ∀ l ∈ [1,L].

(4.38)

Thus, φ = 0 implies that θ ∗
l are identical i.e. fully coherent. It is clear, then,

√
λ ∗
− is the

spectral gradient coherence. Accordingly, a low
√

λ ∗
− indicates high θ ∗

l coherence which

results in stronger spatial directionality as in the case of Fig. 4.11 (c) - (e). Conversely, a

high
√

λ ∗
− indicates low θ ∗

l coherence which results in weaker directionality as in the case

of Fig. 4.11 (f) - (i). When
√

λ ∗
− =

√
λ ∗
+, there is no directionality as the spatial variation is

isotropic. Considering the expression for the spectral gradient direction θ ∗
+ in (4.39) (recalled

from (4.14)), in this case θ ∗
+ would be undefined9 as the denominator λ ∗

+−λ ∗
− becomes zero:

θ
∗
+ = sgn(M12)arcsin

(
λ ∗
+−M11

λ ∗
+−λ ∗

−

) 1
2

s.t. Mii′ =

〈
∂ I(x;σ∗)

∂xi
,
∂ I(x;σ∗)

∂xi′

〉
2
.

(4.39)

Referring to the expression of M in (4.33) in case of single spectral channel (L = 1), it

is evident that λ− = 1
2

(
tr(M(L=1))−

√
tr
(

M(L=1)

)2
−4|M(L=1)|

)
= 0 as |M(L=1)|= 0. In

9Numerically, this is rarely the case for any acquired images due to noise and quantization. Nevertheless, a
large value of λ ∗

− comparable to that of λ ∗
+, does suggest some sort of θ ∗

+ indeterminacy.
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other words, λ− is always null for monovariate image. Indeed, this is because there is no

incoherence “among” the gradient direction (as there is only one spectral channel!).

4.2.3 Spectral shape and intensity gradients

Like spectral difference, spectral gradient too can be observed at either spectral shape or

intensity levels or both. To demonstrate the interest of such distinction in texture analysis,

consider a piece of plain paper without any pattern, line, or mark, the one which can be found

in any photocopy room. Under standard viewing conditions, we expect to perceive a texture

with negligible contrast (though under microscopic view, we expect to perceive a highly

fibrous texture, hence the interest in multiscale analysis). Now, if we were to crumple the

paper, we then expect to perceive a creased and wrinkled texture due to its physical surface’s

nonuniformity. Obviously, the contrast, in this case, would be registered only at the spectral

intensity level, whereas at the spectral shape level it is null. This illustrates the interest in

such distinction as it allows richer and more discriminative texture characterization.

That said, we propose to characterize contrast at two levels: spectral shape and intensity.

Before to do so, a selection of image normalization is required for the definition of image

norm ∥I(x)∥ and normalized image Ī(x) = I(x)/∥I(x)∥. As the formulation of gradient is

defined in the context of vector space, we resort to using 2-norm. Thus, ∥I(x)∥ is given by:

∥I(x)∥2 =
(

I(x)T GI(x)
) 1

2
, (4.40)

recalling that G is the Gram matrix which takes into account the possible non-orthogonality

of spectral channels. By taking the derivative of ∥I(x)∥2 ∈R, we obtain the spectral intensity

gradient, hereafter abbreviated as SIG. An application of the chain rule (from calculus) gives:
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∇∥I(x;σ)∥2 = ∇

(
I(x)T GI(x)

) 1
2

=
1
2

(
I(x)T GI(x)

)− 1
2
(

2I(x)T GJI(x;σ)
)

= Ī(x)T GJI(x;σ),

(4.41)

which is a vector in R2 (like image gradient ∇I(x;σ)) consisting of:

∇∥I(x;σ)∥2 =

[
∂∥I(x;σ)∥

∂x1

∂∥I(x;σ)∥
∂x2

]T

. (4.42)

Similarly, the spectral shape gradient (which is in fact, a Jacobian matrix), hereafter

abbreviated as SSG can be obtained by taking the Jacobian of Ī(x) ∈RL. An application of

the quotient rule, followed by the substitution of the SIG defintion from (4.41) give:

JĪ(x;σ) = J
(

I(x)
∥I(x)∥

)
=

∥I(x)∥JI(x;σ)− I(x)∇∥I(x;σ)∥
∥I(x)∥2

=
1L − Ī(x)GĪ(x)T

∥I(x)∥
GJI(x;σ),

(4.43)

which is a matrix in RL×2 consisting of:

JĪ(x;σ) =


∂ Ī1(x;σ)

∂x1

∂ Ī2(x;σ)
∂x1

· · · ∂ ĪL(x;σ)
∂x1

∂ Ī1(x;σ)
∂x2

∂ Ī2(x;σ)
∂x2

· · · ∂ ĪL(x;σ)
∂x2


T

. (4.44)

Accordingly, the SSG magnitude
√

λG+, coherence
√

λG−, and direction θG can be

defined in similar manner as the case for FVG:
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λG± =
1
2

(
tr(MG)±

√
tr(MG)2 −4|MG|

)
, (4.45)

θG = sgn(MG,12)arcsin
(

λG+−MG,11

λG+−λG−

) 1
2

, (4.46)

where MG = JĪ(x;σ)T GJĪ(x;σ). On the other hand, the SIG magnitude
√

λW and direction

θW can be defined in similar manner as the case for (monovariate) image gradient:

λW =

(
∂∥I(x;σ)∥

∂x1

)2

+

(
∂∥I(x;σ)∥

∂x2

)2

, (4.47)

θW = arctan

∂∥I(x;σ)∥
∂x2

/
∂∥I(x;σ)∥

∂x1

 . (4.48)

Having decomposed spectral gradient into spectral shape and intensity parts, it is straight-

forward to also perform scale selection separately based on SSG and SIG magnitudes:

σ
∗
G(x) = argstat

σ

(
σ
√

λG+(σ)
)
,

σ
∗
W (x) = argstat

σ

(
σ
√

λW (σ)
)
,

(4.49)

where argstat
σ

(·) is the operation which finds the scale space stationary (SSS) point of

σ
√

λG+(σ) in case of σ∗
G or that of σ

√
λW (σ) in case of σ∗

W .

We demonstrate the decompostion of FVG into SSG and SIG in Fig. 4.26 - 4.28 concern-

ing nine hyperspectal images with wavelengths ranging from 420 nm to 720 nm at 10 nm

interval. Each measures 500×500 pixels with the exception of Butterfly (512×512 pixels).

They are selected to illustrate advantages of the decomposition not limited to: separation

of chromatic and achromatic components (Colorchart, Character, Butterfly), sharper edge

detection by virtue of SSG (Cloth6, Fan, Tshirts2), and surpression of illumination effects
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(Cloth5, Party, Fan2). For joint representation, we shall employ the two dimensional col-

ormap as illustrated in Fig. 4.25 with the hue and transparency referring to the SSG / SIG /

FVG direction (ranges from −90° to 90°) and magnitude (scaled from 0 to 1) respectively.

Fig. 4.25 The two dimensional colormap as used for Fig. 4.26 - 4.28, with the hue and
transparency referring to the SSG / SIG / FVG direction (ranges from −90° to 90°) and
magnitude (scaled from 0 to 1) respectively.

Referring to the first image Colorchart in Fig. 4.26, it can be seen that the edges around

the grayscale patches (against the black backdrop) in are less visible with SSG. Indeed, SSG

is invariant to intensity by definition. On the contrary, they are detected by SIG accordingly

with the SIG magnitude around the white patch is the strongest compared to that around

gray and black patches. Edges around the colourful patches e.g. red, yellow, and blue are,

however, detected by both SSG and SIG due to simultaneous changes of spectral shape (from

black to coloured) and intensity (from dark to bright). As with FVG, it can be seen that

resulted edge detection is very similar to SIG’s. Referring to the second image Character, it

can be seen that the black (against the white backdrop) or white (against the black backdrop)

structures (including characters and numbers) are better detected (with higher visibility) by

SIG, whereas the colourful structures are better detected (with cleaner, sharper edges) by

SSG. This further demonstrates the interest in spectral gradient (FVG) decomposition into

SSG and SIG. On the other hand, the results of FVG (which detects both spectral shape

and intensity gradients, though the latter sometimes dominates) differ slightly from SIG.

Specifically, the word “ 7 colours” (and the Chinese characters) at the centre-right of the



130 Spectral-Spatial Characterization of Texture: Gradients-Based

image as well as the word “RED” are more visible in FVG compared to SIG. They are in

turn, less visible with SIG as their intensity difference with the background (red/dark pink) is

reduced compared to others. Referring to the third image Butterfly, it can be seen that the

edges around the butterfly specimens’ wings are neatly detected with SSG. This is in stark

contrast to SIG with also detects the edges resulting from the specimens’ shadow on top of

the wings’. On the other hand, the wordings (written in black against the white backdrop)

underneath each specimen are more visibly detected by SIG. The results of FVG are again

very similar to that of SIG, except around the yellow labels (on which the wordings are

written) The fact that they are detected by FVG (and SSG) but less so by SIG shows that they

are mainly due to spectral shape difference. Evidently, the distinction between chromatic

and achromatic edges is made possible thanks to SSG and SIG.
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(a) Colorchart (b) SSG (c) SIG (d) FVG

(e) Character (f) SSG (g) SIG (h) FVG

(i) Butterfly (j) SSG (k) SIG (l) FVG

Fig. 4.26 The FVG, SSG, and SIG magnitude and directions of Colorchart, Character, and
Butterfly. The used colourmap is illustrated in Fig. 4.25.

Next, referring to the first image Cloth6 in Fig. 4.27, it can be seen that the edges

as extracted with SSG are “cleaner” than that with SIG. This is because thanks to SSG’s

invariance to intensity, spatial variation due to intensity variation is suppressed. Furthermore,

the shadow on the pink fabric is also virtually invisible with SSG, which is otherwise detected

by SIG. Moreover, the edge between green and blue fabric is also well detected by SSG. It is,

however, not visibly detected by SIG due to similar intensity between the two fabrics which

is otherwise detected by FVG (though less so compared to SSG). Referring to the second

image Tshirts2, again the object edges as detected with SSG appear sharper and neater. In
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contrast, the object edges as detected with SIG are blurred by the shadows (around the beads)

and specular reflection (on the beads). The same can also be observed in the case of FVG.

Referring to the third image Fan, the same scenario can also be observed in which the object

edges are best detected with SSG. In comparison, the object edges as detected with SIG and

FVG are less clean due to local intensity variations. In all cases, the object edges detected

with SSG is noticeably sharper, cleaner, and neater. It is even more remarkable to note

that the detection is performed without undergoing any preprocessing or postprocessing

steps.

(a) Cloth6 (b) SSG (c) SIG (d) FVG

(e) Tshirts2 (f) SSG (g) SIG (h) FVG

(i) Fan (j) SSG (k) SIG (l) FVG

Fig. 4.27 The FVG, SSG, and SIG magnitude and directions of Cloth6, Tshirts2, and Fan.
The used colourmap is illustrated in Fig. 4.25.
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Finally, we demonstrate the robustness of edge detection with SSG facing various illumi-

nation effects in Fig. 4.28. Due to the blocking of light by the fabric on the right (presumably

part of a sock, scarf or shirt sleeve) which is laid on top of the red fabric, a long strip of

shadow can be seen at the centre of the first image Cloth5. Its edges are less visible with SSG

but are manifested clearly with SIG and FVG. On the other hand, two “lines” of specular

reflection can be seen on the party cone (with pink, green, blue, purple, red, orange, and

yellow strips). In this case, it can be observed that the object edge detection with SSG is less

affected by the specularities. As a result, the diagonal edges (between the colourful strips) on

the cone and the wordings “Glitter Glue” on the bottle is visible with SSG, which is not the

case with SIG and FVG. Lastly, the surface of Fan2 is clearly not flat due to the folding (it’s

a fan) which results in it being unevenly illuminated. The effect of the uneven illumination

is, however, not visible with SSG as the object edges are detected as if the surface is flat;

the edges share similar SSG magnitude throughout the image. In contrast, SIG and FVG

are clearly affected as the edges on the brighter surface are stronger compared to that on the

darker surface. Clearly, SSG is more robust facing the effects of shadow, specularities,

and uneven illumination.
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(a) Cloth5 (b) SSG (c) SIG (d) FVG

(e) Party (f) SSG (g) SIG (h) FVG

(i) Fan2 (j) SSG (k) SIG (l) FVG

Fig. 4.28 The FVG, SSG, and SIG magnitude and directions of Cloth5, Party, and Fan2. The
used colourmap is illustrated in Fig. 4.25.

Relationship between FVG, SSG, and SIG

The relationship between FVG, SSG, and SIG can be obtained by incorporating the image

normalization into JI(x;σ) and applying the product rule:

JI(x;σ) = J
(
∥I(x)∥Ī(x)

)
= ∥I(x)∥JĪ(x;σ)+ Ī(x)∇∥I(x;σ)∥.

. (4.50)
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In words, we can thus express that FVG is the sum of SSG and SIG which are “weighted”

by image norm ∥I(x)∥ and normalized image Ī(x) respectively. Considering the Frobenius

norm of FVG, λ±, λG±, and λW too can be related. We begin by substituting in the FVG

expression in terms of SSG and SIG from (4.50) into ∥JI(x;σ)∥F :

∥JI(x;σ)∥2
F =

∥∥∥∥∥I(x)∥JĪ(x;σ)+ Ī(x)∇∥I(x;σ)∥
∥∥∥∥2

F

= ∥I(x)∥2∥JĪ(x;σ)∥2
F +

∥∥∥∥Ī(x)∇∥I(x;σ)∥
∥∥∥∥2

F
+2
〈
∥I(x)∥JĪ(x;σ), Ī(x)∇∥I(x;σ)∥

〉
F
.

(4.51)

To process the Frobenius inner product, we invoke the fact that for two given matrices A and

B, ⟨A,B⟩F = tr(AT B). Substituting in the definition of SSG or of JĪ(x;σ) from (4.43) gives:

〈
∥I(x)∥JĪ(x;σ), Ī(x)∇∥I(x;σ)∥

〉
F
= tr

([
∥I(x)∥JĪ(x;σ)

]T GĪ(x)∇∥I(x;σ)∥
)

= tr

([(
1L − Ī(x)GĪ(x)T

)
GJI(x;σ)

]T

GĪ(x)∇∥I(x;σ)∥

)

= tr
(

JI(x;σ)T G
(

1L − Ī(x)T GĪ(x)
)

GĪ(x)∇∥I(x;σ)∥
)

= 0,

(4.52)

noting that Ī(x)T GĪ(x) = 1L. Invoking the fact that ∥A∥F =
√

tr(AT A), we can next process:

∥∥∥∥Ī(x)∇∥I(x;σ)∥
∥∥∥∥2

F
= tr

((
Ī(x)∇∥I(x;σ)∥

)T GĪ(x)∇∥I(x;σ)∥
)

= tr
(

∇∥I(x;σ)∥T Ī(x)T GĪ(x)∇∥I(x;σ)∥
)

= λW

(4.53)
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Finally, by substituting in (4.52) and (4.53) into (4.51) and again using the fact that ∥A∥F =√
tr(AT A) so that ∥JI(x)∥2

F = λ++λ− and that ∥JĪ(x;σ)∥2
F = λG++λG−, it can be shown

that:

λ++λ− = ∥I(x)∥2 (λG++λG−)+λW (4.54)

4.2.4 Gradient histogram of spectral texture (GHOST)

Considering a hyperspectral image I, in Chapter 3 we have defined the neighbouring dif-

ference histogram J
(r,θ)

2 (I) as the joint probability density function (PDF) of finding a

particular spectral shape difference and spectral intensity difference between pixel pairs

separated at distance r and direction θ . Now, having made the connection between gradient

and neighbouring difference as presented at the beginning of this chapter, we propose the

spectral gradient histogram D(I) as the joint PDF of spectral gradient magnitude, direction,

and coherence. As we also make the distinction between spectral shape gradient (SSG) and

spectral intensity gradient (SIG), we express D(I) as the joint PDF of seven dimensions as:

D(I) = p


JĪ(x) =

(√
λ ∗

G±,θ
∗
G ,σ∗

G

)
,

∇∥I(x)∥2 =
(√

λ ∗
W ,θ ∗

W ,σ∗
W

)


s.t.
∥∥Ī(x)

∥∥
2 = 1,

(4.55)

where
√

λ ∗
G+,

√
λ ∗

G−, and θ ∗
G are the SSG magnitude, coherence, and direction as evaluated

with its optimal scale σ∗
G, whereas

√
λ ∗

W and θ ∗
W are the SIG magnitude and direction as

evaluated with its optimal scale σ∗
W . In a similar fashion as RSDOM (in Chapter 3), we thus
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define the second texture feature, gradient histogram of spectral texture (GHOST) as the joint

construct between the spectral difference histogram J
(Ŝ)

1 (I) (from Chapter 2) and D(I):

T (Ŝ)(I) = J
(ŝ)

1 (I) ∩ D(I)

= p
(

∆G1, . . . ,∆GR,W,
√

λ ∗
G±,
√

λ ∗
W ,θ ∗

G,θ
∗
W ,σ∗

G,σ
∗
W

)
,

(4.56)

where T is the texture feature as defined by GHOST which is a joint PDF of R+8 dimensions.

Dictating the spectral distribution, recall that J
(Ŝ)

1 (I) is the joint PDF of R+ 1 random

variables i.e. the spectral shape differences {∆G1, . . . ,∆GR} (corresponding to the R spectral

references Ŝ = {ŝ1, . . . , ŝR}) and spectral intensity W at a given spatial location x:

J
(Ŝ)

1 (I) = p


R⋂

r=1

(
KLD

(
Ī(x), ŝr

)
= ∆Gr

)
,

∥∥I(x)
∥∥

1 =W


s.t.

∥∥Ī(x)
∥∥

1 = ∥ŝr∥1 = 1 ∀ r ∈ [1,R].

Also in a similar fashion as the case of RSDOM, the similarity measurement between

GHOSTs of two textures (images) I and I′ is assessed using Kullback-Leibler divergence:

KLD
(
T (Ŝ)(I),T (Ŝ)(I′)

)
= KL

(
T (Ŝ)(I)

∥∥T (Ŝ)(I′)
)
+KL

(
T (Ŝ)(I′)

∥∥T (Ŝ)(I)
)
, (4.57)

where KL(·, ·) is the KL measure of information. Similarly, the Gaussian mixture model

(GMM) is used to model GHOST. As GHOST is a joint PDF of positive measures, it is also

positively skewed and dense around zero as with RSDOM. To increase the compatibility to

GMM fitting, a diffeomorphism is applied by taking the logarithm of each dimension. This
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has a desirable effect of stretching the values close to zero while compressing those far from

zero, thus reducing the skewness and conforming the distribution towards normality.

4.3 Summary

In this chapter, we pointed out the relationship between gradient and neighbouring difference

and thus showed that the spatial characterization of texture could be carried out using image

gradients (apart from neighbouring differences as described in Chapter 3). We reviewed

the assessment of the image gradient using Gaussian derivative kernels before extending

the discussion within the context of the multivariate image with full vector gradient (FVG).

Then, we proposed our own approach by addressing the first issue i.e. the automatic scale

selection for image gradient assessment based on scale space theory. Particularly, we showed

the correspondence between scale space maximum and local structure size. Taking care of

the interaction of neighbouring structures, we improved Lindeberg’s heuristic by including

scale space stationary (SSS) points for the local optimal scale selection. Next, we clarified

the measures of spectral gradient magnitude, direction, and coherence. Another major part of

our contribution is the mathematical decomposition of spectral gradient into spectral shape

and intensity parts, which thus allows numerous applications which we strived to illustrate.

Finally, we proposed our second texture feature termed gradient histogram of spectral texture

(GHOST) that combines the joint distribution of spectral differences (from Chapter 2) and

gradient measures. Its similarity measurement is also given by Kullback-Leibler divergence.
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5.1 Texture classification on HyTexiLa

5.1.1 Dataset and classification scheme

Composed of 112 reflectance images, HyTexiLa is a dataset [43] of spectrally and spatially

high resolution texture from five categories i.e. food (10 images), stone (4 images), textile (65

images), vegetation (15 images), and wood (18 images) as illustrated in Fig. 5.1 - 5.6. Each

image measures 1024×1024 pixels with L = 186 spectral bands. Sampled at an interval of

3.19 nm, the wavelengths range from 405.37 nm to 995.83 nm while covering both visible

and near infrared regions.

Fig. 5.1 The images from HyTexiLa. Image adapted from [43].
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Fig. 5.2 (continued) The images from HyTexiLa. Image adapted from [43].

Fig. 5.3 (continued) The images from HyTexiLa. Image adapted from [43]
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Fig. 5.4 (continued) The images from HyTexiLa. Image adapted from [43]

Fig. 5.5 (continued) The images from HyTexiLa. Image adapted from [43]



5.1 Texture classification on HyTexiLa 143

Fig. 5.6 (continued) The images from HyTexiLa. Image adapted from [43]

For the classification, we employ the nearest neighbour (1-NN) search whereby the

classification is performed based on texture similarity alone. Such nonparametric approach

allows us to attribute the classification performance directly to the feature’s discriminability

instead of the classifier’s efficiency. Furthermore, this also enables us to deal with the issue

of nonstationarity as there is a versatility of texture representation from which each class

can be identified. Each image is separated into 25 patches without overlapping of which 12

and 13 of them are randomly selected for training and testing respectively. To reduce bias,

we repeat the classification 100 times and consider the average performance. We report the

accuracy (percentage correct classification) for both intercategorical (on the entire dataset)

and intracategorical classification.
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5.1.2 Feature computation

As per Chapter 2, we perform an analysis of the entire dataset and identify the optimal

number of spectral references R to be three. For RSDOM, we compute the neighbouring

spectral differences with three distances (scales) i.e. r = 1, 2, and 3 and eight directions

i.e. θ = 0°,45°,90°,135°,180°,225°,270°,315°. However, we average the computations

over the eight directions so as to produce a rotation invariant assessment. As a result,

the final RSDOM feature constitutes a joint probability density function (PDF) of three

spectral shape differences corresponding to the three spectral references + spectral intensity

+ (number of scales)(two neighbouring spectral differences i.e. of spectral shape and spectral

intensity) = 3+ 1+ 3(2) = 10 dimensions. To relieve the curse of dimensionality, which

from our experience is found to be affecting the performance of RSDOM, we approximate

the similarity measurement between RSDOMs by:

KLD
(
T (Ŝ,R)(I),T (Ŝ,R)(I′)

)
≈ KLD

(
J

(Ŝ)
1 (I),J (Ŝ)

1 (I′)
)
+KLD

(
J

(R)
2,G (I),J (R)

2,G (I′)
)
+KLD

(
J

(R)
2,W (I),J (R)

2,W (I′)
)
,

(5.1)

where T (Ŝ,R)(I) here is texture feature concerning texture (patch) I (I′ refers to another

texture) as defined by RSDOM. Note that J
(Ŝ)

1 (I) is a joint PDF of R+1 = 4 dimensions

referring to the spectral difference histogram (from Chapter 2) based on the set of (three)

spectral references Ŝ. On the other hand, J
(R)

2,G (I) and J
(R)

2,W (I) are both joint PDFs of three

dimensions referring to the neigbouring difference histogram (from Chapter 3) of I with

three scales R = {1,2,3} concerning only the spectral shape differences (hence the subscript

G) and only the spectral intensity differences (hence the subscript W ) respectively. Note that

KLD(·, ·) refers to Kullback-Leibler (KL) divergence.
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As for GHOST, we compute the spectral shape gradients (SSGs) and spectral intensity

gradients (SIGs) with 30 scales ranging from 0.333... to 10. As a result, the final GHOST

feature constitutes a joint PDF of three spectral shape differences corresponding to the three

spectral references + spectral intensity + SSG magnitude + SSG direction + SSG coherence

+ SSG scale + SIG magnitude + SIG direction + SIG scale = 3+ 1+ 7 = 11 dimensions.

Similarly, we approximate the similarity measurement between GHOSTs by:

KLD
(
T (Ŝ)(I),T (Ŝ)(I′)

)
≈ KLD

(
J

(Ŝ)
1 (I),J (Ŝ)

1 (I′)
)
+KLD

(
DG(I),DG(I′)

)
+KLD

(
DW (I),DW (I′)

)
,

(5.2)

where T (Ŝ)(I) here is texture feature concerning texture I as defined by GHOST. Note that

DG(I) is a joint PDF of four dimensions referring to the spectral gradient histogram (from

Chapter 4) concerning only the SSG measures (hence the subscript G), whereas DW (I) is a

joint PDF of three dimensions referring to the spectral gradient histogram concerning only

the SIG measures (hence the subscript W ). For both RSDOM and GHOST, the number of

Gaussian mixture model (GMM) components is selected such that the classification accuracy

is maximized.

In comparison, we also consider the following state-of-the-art:

• GLCM: Three spatial distances of r = 1,2,3 is used with 32 quantization levels.

As in [31, 80, 45], five Haralick features i.e. energy, entropy, contrast, correlation,

and homogeneity are considered. For feature similarity measurement, normalized

Euclidean distance [57] is used.

• Gabor filter: The frequency is set at 1√
2
, 2√

2
, and 4√

2
with a bandwidth of one octave.

For each spectral band, the Gabor energy is defined using 2-norm of the filter responses

[70]. Normalized Euclidean distance [57] is used.
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• LBP: A neighborhood of eight pixels (K = 8) with radius r = 1,2,3 is considered.

Histogram intersection [75] is used.

As with RSDOM, the GLCM features and Gabor energies are averaged over the eight

directions θ = 0°,45°,90°,135°,180°,225°,270°,315° for each scale. We consider only the

implementation of GLCM, Gabor filter, and LBP in marginal (m-) and cross-channel (cc-)

processing [57], [70] and [43] as their vectorial formulation are metrologically impractical

due to computational complexity. For dimensionality reduction, we employ band selection

with a uniform spectral spacing of 10 bands so that the interchannel correlation is at least 0.9.

The HyTexiLa images are thus spectrally downsampled to L′ = 18 bands for the computation

of GLCM, Gabor filter, and LBP. In contrast, both RSDOM and GHOST are processed in

full-band (L = 186).

5.1.3 Result analysis

Referring to Table 5.1 and 5.2, it can be seen that both RSDOM (99.2%) and GHOST

(99.1%) score comparatively good in the texture classification. They perform better than m-

GLCM (88.6%), m-Gabor (92.2%), m-LBP (89.6%), cc-GLCM (94.7%), cc-Gabor (95.3%),

and cc-LBP (98.3%). Compared to cc-LBP (98.3%), RSDOM (99.2%) performs slightly

better (+0.9%) but with a feature size of 1990 times smaller (125 scalars for RSDOM vs.

248832 for cc-LBP). GHOST (99.1%) also performs slightly better (+0.8%) than cc-LBP

(98.3%) but with a feature size 1345 times smaller (185 scalars). Dimensionality reduction

is also unnecessary for RSDOM and GHOST which is otherwise required for efficient

implementation of cc-LBP. Full-band processed, light, and performant, RSDOM and GHOST

are clearly adapted for the designated texture classification task based on HyTexiLa.

Instead of performing full directional analysis as in GHOST, RSDOM only assesses

spatial information in eight directions θ = 0°,45°,90°,135°,180°,225°,270°,315°. Besides,

RSDOM only assesses spatial information with three randomly chosen scales r = 1,2,3,
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in contrast to GHOST which performs automatic scale selection based on local structure

size. At this stage, we would expect GHOST to be more performant than RSDOM. However,

from Table 5.1 and 5.2 it can be observed that RSDOM actually performs slightly better than

GHOST. This may be attributed to the fact that the HyTexiLa is a relatively simple dataset

with reduced spatiochromatic complexity. As a result, the relative comprehensiveness of

GHOST is not fully taken advantage of.

Table 5.1 COMPARISONS OF ACCURACY FOR TEXTURE CLASSIFICATION ON HyTexiLa.
BOLD NUMBERS INDICATE THE BEST PERFORMANCE. RESULTS AVERAGED OVER 100
CLASSIFICATIONS. INDICATED IN BRACKETS ARE THE CORRESPONDING NUMBER OF

GMM COMPONENTS.

Full-band Marginal (m-)

Category No. class RSDOM GLCM Gabor LBP

Food 10 100.0±0.2 (2,2,7) 98.6±1.0 95.6±1.6 94.0±2.5
Stone 4 100.0±0.2 (1,1,2) 86.2±3.4 85.9±4.7 92.5±3.1
Textile 65 100.0±0.0 (5,2,1) 96.6±0.6 98.5±0.6 93.0±0.8

Vegetation 15 98.2 ±1.2 (9,4,2) 80.4±2.4 82.7±2.4 80.6±3.0
Wood 18 97.1 ±1.4 (5,2,9) 75.9±3.1 81.0±3.5 90.9±2.92

HyTexiLa 112 99.2±0.3 (5,3,2) 88.6±1.0 92.2±1.1 89.6±1.2

Table 5.2 COMPARISONS OF ACCURACY FOR TEXTURE CLASSIFICATION ON HyTexiLa.
BOLD NUMBERS INDICATE THE BEST PERFORMANCE. RESULTS AVERAGED OVER 100
CLASSIFICATIONS. INDICATED IN BRACKETS ARE THE CORRESPONDING NUMBER OF

GMM COMPONENTS.

Full-band Cross-channel (cc-)

Category No. class GHOST GLCM Gabor LBP

Food 10 100.0±0.2 ( 6,10, 2) 98.4±1.1 98.2±1.1 99.8±0.4
Stone 4 100.0±0.0 ( 2, 1, 5) 94.6±3.0 97.3±1.9 99.7±0.7
Textile 65 100.0±0.0 ( 5, 4, 1) 99.2±0.3 99.4±0.2 99.9±0.1

Vegetation 15 98.0 ±1.3 ( 8, 6, 3) 89.5±2.0 89.9±2.4 97.2±1.4
Wood 18 97.2 ±1.4 ( 4,10, 4) 84.1±2.8 85.2±3.0 93.8±2.4

HyTexiLa 112 99.1±0.4 (5,4,5) 94.7±0.7 95.3±0.7 98.3±0.5
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5.2 Texture retrieval on HSI-ICONES

5.2.1 Dataset and retrieval scheme

Composed of 486 radiance images, ICONES-HSI is a dataset [4] of remote sensing images

collected using AVIRIS sensor. The images are organized into nine classes i.e. agriculture

(50 images), cloud (29 images), desert (54 images), dense urban (73 images), forest (69

images), mountain (53 images), ocean (68 images), snow (55 images), and wetland (35

images) as illustrated in Fig. 5.7. Each image measures 300 × 300 pixels with L = 224

spectral bands ranging from 365 nm to 2497 nm, covering both visible and near-infrared

regions.

Fig. 5.7 Some of the images from ICONES-HSI. Image adapted from [4].

We assess the performance of RSDOM and GHOST in a content-based image retrieval

(CBIR) framework in which the candidate images are ranked according to their relevance to

the query image. The relevance is defined by the similarity measurement between features as

extracted from the images. In the case of RSDOM and GHOST, KL divergence is used for

the similarity measurement. In the end, we report the mean average precision (MAP).
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5.2.2 Feature computation

After performing analysis on the entire dataset, the optimal number of spectral references R

is also identified to be three. However, we disregard the spectral intensity information W as

it offers no help for scene recognition in this CBIR context. This is because the same scene

could exhibit different brightness depending on the time of acquisition e.g. brighter if taken

at the noon, or darker if acquired in the early morning or late evening. For the neighbouring

differences (in case of RSDOM) and gradients (in case of GHOST) computation, the same

parameters as in texture classification on HyTexiLa are employed. As for GLCM, Gabor filter

and LBP approaches, we consider their marginal processing (m-) as applied on the top three

principal components (PCs) in line with the common practice in the community [73, 39, 34].

For ICONES-HSI, this corresponds to an average (over all images) explained variance of

98.0%. Other than that, the same implementation and similarity measurement as in texture

classification on HyTexiLa are employed. Note that we do not calculate GLCM, Gabor, and

LBP features using cross-channel processing because PCs are décor-related by definition.

Hence, they are no interest to process cc-GLCM, cc-Gabor, and cc-LBP as they exist no

added information between the PCs.

5.2.3 Result analysis

Referring to Table 5.3, it can be seen that GHOST performs the best (63.2%) compared to

all the other approaches. On the other hand, RSDOM scores 62.1%, followed by Gabor

(43.6%), GLCM (37.4%), and LBP (37.3%). As expected, GHOST performs better (+1.1%)

than RSDOM due to its relative comprehensiveness of texture characterization. Indeed, the

directional assessment of GHOST covers all the possible directions thanks to the gradient

assessment. In comparison, RSDOM only assess spatial information in eight directions

θ = 0°,45°,90°,135°,180°,225°,270°,315°. Besides, the gradient calculation in GHOST is

based on optimal scales as chosen based on local structure size. In contrast, RSDOM only
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assess spatial information with three randomly chosen scales r = 1,2,3. Although RSDOM

actually slightly outperforms GHOST in texture classification on HyTexiLa, the performance

of GHOST surpasses that of RSDOM in texture retrieval on ICONES-HSI. This may be

attributed to the fact that the spatiochromatic complexity of ICONES-HSI is higher than that

of HyTexiLa. As a result, the relative comprehensiveness of GHOST is fully taken advantage

of.

To compare with deep learning approaches, we also include results from [4] concerning

convolutional neural network (CNN) that is pretrained from ResNet. It can be seen that

both RSDOM (62.1%) and GHOST (63.2%) outperform CNN (59.1%). In terms of feature

size, RSDOM (75 scalars) and GHOST (140 scalars) are also 27 times and 15 times smaller

respectively than the CNN features (2048 scalars). Furthermore, RSDOM and GHOST are

highly interpretable which is obviously not the case for CNN features. We have thus shown

that traditionally handcrafted features like RSDOM and GHOST can potentially outperform

deep learning approaches thanks to metrological considerations.

Table 5.3 COMPARISONS OF MEAN AVERAGE PRECISION (MAP) FOR CONTENT-BASED

IMAGE RETRIEVAL ON ICONES-HSI. BOLD NUMBERS INDICATE THE BEST PERFOR-
MANCE. INDICATED IN BRACKETS ARE THE CORRESPONDING NUMBER OF GMM
COMPONENTS.

Class No. img. RSDOM GHOST CNN GLCM Gabor LBP

Agriculture 50 58.2 ( 1, 1, 1) 59.3 ( 1, 4, 5) 48.9 45.9 35.0 26.8
Cloud 29 31.4 (10, 6, 5) 32.9 (10,10,10) 66.5 29.7 25.6 50.4
Desert 54 89.3 ( 1, 2, 2) 53.4 ( 1, 9, 6) 50.7 25.6 27.0 26.8

Dense urban 73 53.2 ( 1, 1, 9) 92.4 ( 1, 5, 5) 86.5 71.1 64.2 51.0
Forest 69 71.2 ( 1,10,10) 71.8 ( 1, 5, 5) 57.9 41.3 34.2 38.8

Mountain 53 44.5 ( 2,10, 5) 47.2 ( 2, 4, 4) 64.5 34.7 46.2 31.5
Ocean 68 78.3 (10, 1,10) 78.7 (10,10, 6) 83.1 20.6 79.6 43.4
Snow 55 65.5 ( 1, 1, 1) 65.4 ( 1,10, 7) 57.8 30.0 33.6 44.3

Wetland 35 35.5 ( 1, 1, 1) 35.4 ( 1, 1, 5) 23.9 20.0 14.3 11.6

ICONES-HSI 486 62.1 (1,1,5) 63.2 ( 1, 5, 5) 59.1 37.4 43.6 37.3



Chapter 6

Conclusion
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This Ph.D. manuscript is critical of the state of the art in visual texture analysis which

leads to its obligation to propose metrological and fully interpretable texture features which

are adapted for hyperspectral image analysis, hence the title Hyperspectral Texture Metrology.

Throughout this work, we are not interested in developing yet another texture feature. Instead,

we approached the problem from the metrological point of view. In line with the science

of measurement, we first defined the measurand i.e. what texture is. Then, we developed

features in strict accordance with the definition. Accordingly, the similarity measure was

designated by respecting the mathematics of the features. In the following, we shall briefly

review the six chapters of this manuscript with the emphasis being put on our contributions.

Naturally, our inspiration was drawn by reviewing the state of the art. In Chapter 1,

we considered the three major aspects of texture analysis: feature extraction, similarity

measurement, and adaptation in the hyperspectral domain. Whereas the first two components

are self-explanatory, the last component deserves some elaboration. In the literature, hyper-

spectral texture features are mainly formulated by adapting features originally developed for

monovariate applications in a multivariate context. As a result, they are at times constrained

by the initial feature construction which leads to numerous ad hoc adaptations. In our work,

we decided to free ourselves from such limitations by developing general features which are

applicable to any number of spectral channels. The trick is to work in metric space e.g. with

spectral differences and gradients which then allows fullband processing. Thanks to such

general construction, our features are applicable for both monovariate and multivariate (e.g.

hyperspectral) applications. Without the need for dimensionality reduction, we can thus take

full advantage of the wealth of information provided by hyperspectral images.

Our next endeavour is impossible without first setting a valid texture definition. Inspired

by psychophysical findings in human visual perception, we defined texture as the joint

distribution of spectral and spatial properties. Akin to the particle-wave duality, we argued

that spectral and spatial properties are intertwined; they are complementary aspects that make
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up a given texture. In other words, texture cannot be described by the spatial arrangement of

the texture primitives alone. The spectral characteristics of the texture primitives also play a

role in texture discrimination. Describing the spectral-spatial properties from a statistical

point of view, such texture definition must result in a probability distribution. This thus

allows the exploitation of various information-theoretic theories and measures in the feature

manipulation which we regard as being a less visited research territory as of now.

In Chapter 2, we proceeded to develop metrological approaches to characterizing the

spectral properties of hyperspectral images. Considering spectrum as a continuous function,

we first decomposed it into two parts: spectral shape and spectral intensity. Whereas the latter

is a scalar, the former is a function i.e. a normalized spectrum which renders its manipulation

trickier. Inspired by Hilda’s work [19], we approached the problem by representing the

normalized spectrum in metric (spectral difference) space thanks to spectral references.

Next, we constructed the spectral difference histogram which is really a joint probability

density function (PDF) of spectral (shape) differences and spectral intensity. Recognizing

its probabilistic nature, we then proposed a method to measure spectral diversity using

entropy. Taking benefit of the diversity measurement, we detailed the selection of optimal

spectral references based on entropy maximization. Drawing correspondences with principal

component analysis (PCA), we showed that our approach shares a similar spirit with PCA

but with an important caveat: that the physics of spectrum as function is respected.

In Chapter 3, we set out to develop metrological approaches to characterizing the spa-

tial properties of hyperspectral images. Inspired by Julesz’s [41], Haralick’s [30], and

Unser’s work [83], we proposed to capture spatial information by assessing the neighbouring

differences. Under the designated spatial relationship as parametrized by distance and direc-

tion, we assessed the probability distribution of spectral differences of pixel pairs, termed

neighbouring difference histogram. Then, we provided interpretations of the distribution of

neighbouring differences facing edge sharpness, scale, and directionality of the underlying
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texture. In its simplicity lies its efficiency as demonstrated later in Chapter 6. Next, we

proposed our first texture feature, termed relative spectral difference occurrence matrix (RS-

DOM) which is a joint construct between spectral difference histogram (from Chapter 2) and

neighbouring difference histogram. Finally, we presented Kullback-Leibler (KL) divergence

for its similarity measurement. To aid its storage and manipulation, we modelled RSDOM

using the Gaussian mixture model (GMM) which proved to be adequate and efficient.

Our motivation for Chapter 4 stemmed from our dissatisfaction with RSDOM which for

now necessitates parameter selection for optimal performance. Envisioning a parameterless

formulation, we showed the link between image gradient and neighbouring differences. The

usage of gradient is an interesting one because it allows a natural description of spatial

directionality as well as the application of scale space theory. We began our proposition

by first dictating automatic scale selection for gradient assessment originally based on

Lindeberg’s heuristic [50]. Then, we related the selected scales with the local structure

size which lends information to granulometry. Realizing the interaction of neighbouring

structures, we improve Lindeberg’s heuristic for scale selection by taking into account not

just the local maximum but also the inflection point of the scale space evolution of gradient

magnitude. Next, we clarified the measures of spectral gradient magnitude, direction, and

coherence based on Chatoux et. al.’s work [10]. Inspired by Richard’s work [62] with spectral

differences, we demonstrated a mathematical decomposition of spectral gradient into spectral

shape gradient (SSG) and spectral intensity gradient (SIG). Some of the applications include

separation of chromatic and achromatic components, sharper edge detection by virtue of SSG,

and suppression of illumination effects. Finally, we expressed the spectral gradient histogram

as the joint PDF of gradient magnitude, direction, and coherence at both SSG and SIG levels.

Accordingly, we proposed our second texture feature, termed gradient histogram of spectral

texture (GHOST) which is a joint construct between spectral difference histogram (from
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Chapter 2) and spectral gradient histogram. In a similar fashion as RSDOM, we presented

KL divergence for GHOST’s similarity measurement and GMM for its statistical modelling.

In Chapter 5, we very briefly presented two tasks to assess the performance of RSDOM

and GHOST in comparison to graylevel cooccurrence matrix (GLCM), Gabor filter, and

local binary pattern (LBP). In the first task, we made use of the HyTexiLa dataset on which

we performed texture classification of food, stone, textile, vegetation, and wood images. In

order to assess the efficiency of our features, we did not employ sophisticated classification

algorithms e.g. machine learning methods. Rather, we stuck with 1-nearest neighbour (1-NN)

which is highly dependent on the efficiency of feature and similarity measure. In the second

task, we made use of the HSI-ICONES dataset on which we performed texture retrieval on

remote sensing e.g. agriculture, wetland, and urban scenes. In both tasks, we demonstrated

the efficiency of RSDOM and GHOST compared to GLCM, Gabor filter, and LBP. For the

second task, their performance even exceeded that of the CNN-based approach. Thanks

to metrological considerations, we have thus shown that the performance of traditionally

handcrafted features can potentially be at the same level as deep learning approaches.

To conclude, we have developed two metrological texture features, RSDOM and GHOST

for hyperspectral image analysis. Their formulation is metrological, general, and independent

of spectral resolution thanks to their operation in spectral difference and gradient spaces.

Their application extends beyond hyperspectral images; with adapted difference or gradient

measures, their formulation can be readily extended to both monovariate (grayscale or

intensity) and multivariate (e.g. colour and magnetic resonance) images. As both RSDOM

and GHOST are processed in a fullband manner, they can take full benefit of the wealth of

spectral information. Furthermore, dimensionality reduction e.g. PCA is not required prior

to their calculation which could otherwise alter the semantic and physical meaning of data.

Thanks to their separate assessment of spectral and spatial properties of texture, RSDOM

and GHOST are also adaptive. Depending on the current application, their formulation can
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be altered e.g. by disregarding the spectral assessment in case of texture with known spectral

properties or dropping the directionality measures in case of isotropic texture. Finally, thanks

to the statistical modelling using GMM, RSDOM and GHOST are relatively light which

translates to lower manipulation and storage costs.

Evidently, a research never ends. Naturally, a lot of future works can be undertaken

based on our current construction. First of all, we have to admit that our work on similarity

measurement could have been given more attention than we had. In particular, we are in

search of true metrics as KL divergence does not respect triangle inequality. Furthermore,

the similarity measure that is less affected by the curse of dimensionality is also expected.

In contrast, KL divergence is subjected to density estimation which is less efficient in high

dimensions as with RSDOM and GHOST. On the other hand, we are also in search of

more advanced statistical modelling e.g. Generalized Gaussian mixture model which can

be executed efficiently. On the other hand, we envisioned an approach similar to GHOST’s

in performing automatic scale selection for RSDOM. For example, the distance between

pixel pairs could be selected such that their difference is maximized so as to reflect the local

structure size. As for GHOST, we settled for automatic scale selection within a predefined

set of scales. In future, we envisioned an automatic filterbank design i.e. with the minimum

and maximum scales as well as scale intervals adapted automatically to the texture content of

a given dataset. Furthermore, we also expect to develop further the automatic scale selection

in order to relate to granulometric analysis which has widespread applications.
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