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Résumé : L’électrodynamique quantique
(QED) prédit que le vide doit être un milieu
optique non linéaire : la vitesse de la lumière
dans le vide devrait diminuer lorsque le vide
est soumis à des champs électromagnétiques in-
tenses. Cet effet optique, similaire à l’effet Kerr
optique dans les milieux matériels, n’a encore
jamais été observé.

L’expérience DeLLight (Deflection of Light
by Light) cherche à mesurer cet effet en utilisant
des impulsions laser femtosecondes intenses dé-
livrées par la plateforme LASERIX (E = 2.5 J,
30 fs, 10 Hz) à l’IJCLab (Université Paris-
Saclay). La méthode expérimentale consiste à
mesurer par interférométrie la réfraction d’une
impulsion laser (sonde) de basse énergie, induite
par le gradient d’indice du vide produit par une
impulsion externe (pompe) de haute intensité.
On utilise alors un interféromètre de Sagnac,
avec des impulsions pompe et sonde focalisées,
qui permet de mesurer en sortie sombre le dé-
calage transverse associé ∆y du profil d’inten-
sité grâce à une caméra CCD. L’avantage de la
méthode interférométrique est que ce décalage
transverse ∆y est amplifié, comparé au décalage
δy produit par la méthode standard de poin-
tée. Le facteur d’amplification A (égal à ∆y/δy)
est inversement proportionnel à la racine car-
rée du facteur d’extinction F , défini comme le
rapport de l’intensité en sortie sombre par l’in-
tensité du faisceau incident. La sensibilité de
l’expérience dépend essentiellement de trois pa-
ramètres : le facteur d’extinction, la résolution
spatiale et la qualité de la focalisation des impul-
sions pompe et sonde. L’objectif est d’atteindre
une extinction F = 4 × 10−6 (correspondant
à une amplification A = 250), une résolution
spatiale σy = 10 nm et une largeur des fais-
ceaux focalisés au foyer dans la zone d’interac-
tion w = 5 µm. Cela correspond à un signal
attendu ∆y = 0.015 nm, pouvant être observé à
5 sigma avec un mois de données collectées.

Deux prototypes successifs d’interféromètre

en régime femtoseconde ont été développés pen-
dant la thèse (avec/sans focalisation). Ils ont
permis de démontrer la faisabilité du projet
et de caractériser les paramètres critiques limi-
tant actuellement la sensibilité de l’expérience.
Premièrement, le prototype avec focalisation a
permis d’atteindre un facteur d’extinction de
F = 3 × 10−6, comme en était l’objectif. En-
suite, un banc de test dédié a permis de mesu-
rer la résolution ultime de la caméra CCD sélec-
tionnée qui correspond au bruit quantique : nous
avons mesuré σy = 13 nm. Par ailleurs, la me-
sure de la résolution spatiale du signal d’interfé-
rence en sortie sombre a permis de montrer que
les fluctuations de pointé du faisceau, mesurées
simultanément, sont supprimées de façon effec-
tive permettant ainsi d’atteindre le bruit quan-
tique avec un facteur d’amplification faible. En
revanche avec une forte amplification, la résolu-
tion reste pour l’instant limitée par le bruit de
phase, induit par le bruit mécanique de l’inter-
féromètre. Une méthode pour mesurer le bruit
de phase et le supprimer est en cours de test.

Finalement, nous avons pu valider la mé-
thode de mesure interférométrique de l’expé-
rience DeLLight en mesurant l’effet Kerr dans
un milieu matériel en utilisant une impulsion
pompe de faible énergie (µJ). Nous avons tout
d’abord mesuré l’effet Kerr dans une lame de
silice, sans focalisation des impulsions pompe
et sonde dans l’interféromètre. Puis, nous avons
mesuré l’effet Kerr dans l’air, avec focalisation
de la sonde et de la pompe, et avec une am-
plification de 25. Nous avons vérifié que le si-
gnal ∆y variait comme attendu en fonction de
quatre paramètres expérimentaux : l’énergie de
la pompe, le paramètre d’impact entre la pompe
et la sonde en zone d’interaction, la polarisation
relative pompe-sonde, et le délai de synchroni-
sation temporelle de la pompe avec la sonde. La
mesure dans l’air a été réalisée avec l’interféro-
mètre pilote qui sera utilisé prochainement pour
les premières mesures dans le vide.
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Abstract : Quantum electrodynamics predicts
that vacuum should be a non-linear optical me-
dium : the speed of light in vacuum should de-
crease when the vacuum is stressed by intense
electromagnetic fields. This optical phenomenon
is similar to the optical Kerr effect in a material
medium and has never been observed before.

The DeLLight (Deflection of Light by Light)
experiment aims at measuring this effect using
high intense femtosecond laser pulses delivered
by the LASERIX platform (E = 2.5 J, 30 fs,
10 Hz) located at IJCLab laboratory (Paris-
Saclay University). The experimental principle
uses interferometry to measure the refraction
of a low energy laser pulse (probe) on the va-
cuum index gradient induced by an external,
high energy pulse (pump). To this end, we use a
Sagnac interferometer with focalised probe and
pump pulses, in order to measure the trans-
verse shift ∆y of the intensity profile in the
dark output using a CCD camera. The benefit
of this interferometric technique is to amplify
the transverse shift ∆y, unlike the shift δy ob-
tained by the standard pointing measurement
method. The amplification factor A (equal to
the ratio ∆y/δy) is inversely proportional to the
square root of the extinction factor F , which
is defined by the ratio between the signal in-
tensity in the dark output of the interferometer
and the incident intensity. The experiment sen-
sitivity mainly depends on three parameters :
the extinction factor, the spatial resolution and
the focalisation quality of the probe and pump
pulses. The goal is to reach an extinction of
F = 4×10−6 (corresponding to an amplification
of A = 250), a spatial resolution of σy = 10 nm
and a waist at focus of the beams in the in-
teraction area of w = 5 µm. Thus, the expected
signal is ∆y = 0.015 nm, which can be measured
at 5 sigma with one month of data collection.

During this PhD thesis, two interferometer

prototypes in femtosecond regime were conse-
cutively developed (with and without focalisa-
tion). They proved the feasibility of the pro-
ject and the characterisation of critical parame-
ters limiting the sensitivity of the experiment.
First of all, we reached an extinction factor of
F = 3 × 10−6 using the prototype with focali-
sation, as was the goal. Then, a test bench was
developed to measure the ultimate CCD camera
resolution, which corresponds to the shot noise.
We measured σy = 13 nm. Additionally, the spa-
tial resolution measurement in the dark output
led to prove that beam pointing fluctuations (si-
multaneous measurement) are completely sup-
pressed, which allowed to reach the shot noise
with a low amplification factor. However, the
resolution is still limited by the phase noise in-
duced by mechanical noise of the interferometer,
with a high amplification factor. A technique to
measure and suppress the phase noise is cur-
rently being tested.

At last, the interferometric measurement
technique of the DeLLight experiment was vali-
dated by measuring the Kerr effect in a material
medium using a low energy probe pulse (µJ). We
first measured the Kerr effect in a silica slide, wi-
thout focalisation of the probe and pump pulses
in the interferometer. We then measured the
Kerr effect in air, with focalisation of the probe
and pump pulses, with an amplification of 25.
We checked that the shift ∆y fluctuated with
four experimental parameters as expected, na-
mely the pump energy, the impact parameter
between the probe and the pump in the interac-
tion area, the relative polarisation probe-pump,
and the temporal synchronisation delay of the
pump with the probe. The measurement in air
was conducted with the pilot interferometer that
will be used for the first measurements in va-
cuum in the near future.
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Introduction

The speed of light in vacuum is one of the most fundamental constants in physics. It
defines the unit of length and plays a major role in the definition of the unit of time. However,
in Quantum Electrodynamics (QED), vacuum is considered as a non-linear optical medium,
and the speed of light in vacuum should decrease when the vacuum is stressed by intense
electromagnetic fields. This optical phenomenon is similar to the optical Kerr effect in a
material medium, which is a non linear variation of the refraction index n of a medium with
the intensity I of the field it may encounter, such as: n ∝ I2. Such an effect has never been
observed in vacuum.

The goal of the DeLLight (Deflection of Light by Light) experiment is thus to measure
this effect using high intensity femtosecond laser pulses delivered by the LASERIX platform
(E = 2.5 J per pulse, 30 fs, 10 Hz repetition rate), located at IJCLab laboratory (Paris-Saclay
University, France). It is a probe-pump type experiment which uses interferometry to measure
the refraction of a low energy laser pulse (probe) on the vacuum index gradient induced by
an external, high energy pulse (pump) with peak intensities up to a few 1020 W/cm2 for a
pump waist at focus of 5 µm. At this intensity, the expected deflection angle is about a tenth
of picoradian. In order to measure such a small deflection, we use a Sagnac interferometer
(”closed” configuration) with focalised probe and pump pulses, and we measure with a CCD
camera the destructive interference of the refracted probe pulse with the unperturbed reference
pulse in the dark output of the interferometer. The signal of refraction corresponds to a
transverse vertical shift ∆y of the barycenter of the interference intensity profile in the dark
output. The benefit of the interferometric technique is to amplify the transverse shift, unlike the
shift obtained by the standard pointing measurement method. The higher the extinction in the
dark output of the interferometer, the more the deflection signal is amplified.

The sensitivity of the DeLLight experiment depends on three critical parameters: the
extinction factor F (defined as the ratio between the interference intensity in the dark output
of the interferometer and the incident intensity), the spatial resolution σy of the position
measurement of the interference intensity profile and the focusing quality of the probe and
pump pulses. The goal is to reach an extinction of F = 4 × 10−6 (corresponding to an
amplification factor of the deflection signal of A = 250), a spatial resolution σy = 10 nm,
limited by the shot noise of the available CCD cameras, and a waist at focus of the pump and
probe beams in the interaction area of w0 = 5 µm. Thus, the expected QED deflection signal is
∆y = 0.015 nm, which could be measured at 5 sigma with one month of data collection.

During this thesis, I actively participated to the experimental development of the DeLLight
experiment which was quite extensive, considering that these were only just starting when I
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started working on this project. With the help of my thesis supervisor, we developed several
prototypes of Sagnac interferometer, all of which are not all presented in this manuscript, going
from ”basic” experimental setups to the current imposing one (located in the LASERIX laser
clean room). The goal of these prototypes was to demonstrate the feasibility of the project and
to study and characterise the critical parameters which currently limit the sensitivity. The main
efforts were devoted to the improvement of the extinction quality of the Sagnac interferometer
and to the study and measurement of the spatial resolution of the interference intensity profile
in the dark output of the interferometer. The spatial resolution being limited by the inherent
shot noise of the CCD camera, by the beam pointing fluctuations, and by the mechanical
vibrations of the interferometer, we have studied in details these three critical parameters.
Finally, with the most advanced current prototype, we validated the DeLLight experimental
method by measuring the deflection signal in air with a low energy pump pulse. A relatively
high amplification of the signal has been reached thanks to the interferometric technique, which
constitutes an important achievement of the DeLLight project.

The overall experimental setup underwent a lot of changes over the years to optimise it, in
terms of optics quality or experimental efficiency and practicality. Moreover, I also worked on
different transverse projects for the DeLLight experiment, like for instance the beam pointing
MRC stabilisation system, which is not presented in this manuscript.

Another large part of my work consisted of the analysis of all data collected over the
years, which were essential to continue enhancing the experimental setup in order to reach the
expected DeLLight signal and spatial resolution. With the help of my colleagues, we improved
the analysis programs and methods to the well-oiled machine that it is today.

In this manuscript, we will first expose the optical non linearity in vacuum, with the
theoretical context and state of the art experiments in Quantum Electrodynamics (QED).
Secondly, we will thoroughly detail the DeLLight experiment, with its experimental principle
and expected sensitivity. Following, we will explain the data analysis method used to extract
the DeLLight signal. We will then present both Sagnac interferometer prototypes used in this
experiment. Afterwards, we will detail the measurement of the extinction factor in the dark
output of the interferometer, which is one of the crucial parameters of the DeLLight experiment.
The measurement of the shot noise resolution of the CCD cameras used on the experimental
setup will be next, followed by the spatial resolution measurements in the dark output, which is
another crucial parameter. Finally, we will thoroughly detail the Kerr measurement results in
silica with low energy pump pulses (Prototype 1), as well as the results in air (Prototype 2).
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Chapter 1

Optical non linearity in vacuum

1.1 Nonlinear Quantum Electrodynamics (QED)
The classical electromagnetic vacuum is described as a linear optical medium. The speed

of light c in vacuum, as well as the related vacuum permeability µ0 and permittivity ϵ0 are
universal constants. The Maxwell equations for the electromagnetic field (E,B) are linear and
the vacuum constants c, µ0 and ϵ0 do not depend on externally applied fields, such as:{

D = ϵ0 E
B = µ0 H and c =

1
√
ϵ0 µ0

(1.1)

where D is the electric displacement field and H is the magnetising field.

1.1.1 Nonlinear optics
In media, however, the dependence of the optical index on the electromagnetic field has

been known since the 19th century, first with Faraday’s discovery of circular birefringence
induced by an external magnetic field in the direction of propagation (Faraday effect) [1],
and then with Kerr’s discovery of birefringence induced by a transverse electric field (Kerr
effect) [2]. Both effects can be interpreted as polarisation-dependent changes of the refractive
index, and while the Faraday effect is linear in the magnetic field B, the Kerr effect is nonlinear
and proportional to the intensity I ∝ |E|2.

Thus, the general form of the nonlinear Maxwell equations is:{
D = ϵ0 E + P(E,B) = ϵ(E,B) E
B = µ0 H + µ0 M = µ(E,B) H and ν =

1√
ϵ(E,B) µ(E,B)

(1.2)

where P is the polarisation field, M is the magnetisation field, ν is the phase velocity, and ϵ and
µ are the permittivity and the permeability of the medium.

The nonlinear Kerr effect occurring in an optical medium is the optical Kerr effect, in which
the electric field responsible for the index change is due to light itself, has been extensively
studied and measured thanks to the availability of high-intensity lasers in the last twenty
years [3]. Thus, the index n0 of a given medium is modified by the intensity (in W/cm2) of the
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laser pulse it encounters, and the change of index δn = n − n0 is then proportional to the laser
intensity Ilaser, such as:

δn = n2 × Ilaser (1.3)

where n2 is the Kerr coefficient of the nonlinear refractive index of the medium (in cm2/W).

1.1.2 Vacuum as a nonlinear optical medium
By analogy with the case of media, we may wonder whether the vacuum also behaves like

a nonlinear optical medium, i.e. whether the vacuum index increases when stressed by intense
external fields. Born and Infeld [4] were the first to introduce nonlinear electrodynamics terms
in vacuum by assuming an absolute maximum of the electric field Eabs in order to regularise
the electromagnetic field of a point charge, and thus to obtain a finite electromagnetic mass of
the electron equal to its observed mass. The polarisation and magnetisation fields can then be
written as:

P =
ϵ0

2E2
abs

[
(E2 − c2B2)E + 2c2(E.B)B

]
(1.4)

M = −
ϵ0

2E2
abs

[
(E2 − c2B2)B − 2c2(E.B)E

]
(1.5)

where E and B are the amplitudes of the electromagnetic field.
Soon after, Euler, Kockel and Heisenberg [5] derived an effective nonlinear electromagnetic

field theory with nonlinear terms induced by the coupling of the fields with the electron-
positron virtual pairs in vacuum. This is described by the so-called Euler-Heisenberg nonlinear
Lagrangian, with the corresponding nonlinear Maxwell equations:

P = ξϵ2
0

[
2(E2 − c2B2)E + 7c2(E.B)B

]
M = −ξϵ2

0c2
[
2(E2 − c2B2)B − 7(E.B)E

]
(1.6)

ξ−1 =
45m4

ec5

4α2ℏ3 ≃ 3 × 1029 J/m3

where ξ−1 is a constant corresponding to an energy in volume unit (J/m3), α is the fine structure
constant, me is the electron mass, and ℏ is the reduced Planck constant.

The Euler-Heisenberg result was later reformulated by Schwinger as the photon-photon
scattering phenomenon (four-waves interactions) in nonlinear Quantum Electrodynamics (QED)
with strong fields. The equivalent Feynman diagram is illustrated in figure 1.1. Non-elastic
photon–photon scattering becomes possible when the combined energy is large enough to
create virtual electron–positron pairs spontaneously.

1.1.3 The Schwinger limit
In nonlinear QED, a critical field Ecr, named the Schwinger limit, is introduced, which

corresponds to the limit electrical field value over which virtual electron-positron pairs in
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Figure 1.1: Four waves Feynman diagram illustrating the photon–photon scattering phe-
nomenon.

vacuum become real and escape the vacuum. The critical electromagnetic fields are given by:

Ecr =
m2

ec3

eℏ
≈ 1.3 × 1018 V/m

Bcr =
Ecr

c
≈ 4.4 × 109 T (1.7)

The Schwinger field, Ecr, is the field required to extract a virtual electron-positron pair
from vacuum and make it real. It can be calculated classically as the electric field needed
to accelerate an electron charge e on a distance equal to its reduced Compton wavelength
oe = ℏ/(mec) and to reach the rest mass energy of the electron mec2. The equivalent electric
force is F = eEcr. The work, i.e. the energy transferred to the electron via the application of
the force F along the displacement oe, is then equal to the rest energy of the electron. It gives:

F × oe = e × Ecr ×
ℏ

mec
= mec2 (1.8)

corresponding to the Schwinger electric field given in equation 1.7.

1.2 Measurements of photon-photon scattering
The first observation of photon-photon scattering was obtained in 1997 at the Stanford

Linear Accelerator Center (SLAC) by measuring the collision and fusion between a high energy
(46.6 GeV) gamma and several laser photons at a wavelength of 527 nm (intensities of TW/cm2)
to produce an electron-positron pair (multi-photon Breit-Wheeler reaction) [6]. However, in
order to realise this reaction, the photon energy required would be an order of magnitude (at
527 nm) over the maximal photon energy the SLAC can produce. Therefore, the Breit-Wheeler
reaction became possible by using high intense laser photons, which were first back-scattered
to GeV energies by the electron beam. Then, the collision between the high-energy gamma and
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the laser photons produced the electron-positron pair. Thus, they managed to measure a signal
of about 100 positrons above background.

A new project (submitted in 2019), called the LUXE experiment (Laser Und XFEL Exper-
iment) [7], proposes to do same experiment with higher statistics, by using the high-quality
and high-energy electron beam delivered by the European X-Ray Free-Electron Laser Facility
(XFEL), as well as high-energy photons produced by Bremsstrahlung radiation, in order to
obtain stronger fields up to three times larger than the Schwinger critical field (see equation 1.7).
Their main focus is to study nonlinear Compton scattering and nonlinear Breit-Wheeler pair
production.

More recently, high energy gamma-gamma pair emission from virtual gamma-gamma
scattering in ultra peripheral Pb-Pb collisions has been observed by the ATLAS and CMS
detectors at the Large Hadron Collider (LHC) [8, 9]. Both cases involve inelastic high-energy
photon-photon scattering, described by a four-photons Feynman diagram shown in figure 1.1.

1.3 Search for optical nonlinearity in vacuum
In all the observations of the photon-photon scattering discussed in the previous section, the

vacuum appears in the exchange of an electron-positron virtual pair, which can even become
real in the case of the Breit-Wheeler process. However, in these scattering processes, there
is no modification of the optical properties of vacuum, i.e. no modification of the vacuum
electromagnetic constants c, ϵ0 and µ0.

Another approach is to search for a direct manifestation of a nonlinear optical effect in
vacuum, a coherent phenomenon corresponding to a pure undulatory process at large scale
and treated classically in the long-wavelength limit. This effect differs drastically from the
inelastic photon-photon scattering since it corresponds to a nonlinear modification of the
fundamental level of the electromagnetic vacuum, with a change of the speed of light in vacuum
at macroscopic scale.

1.3.1 Vacuum birefringence
Experimental efforts have mainly involved testing vacuum magnetic birefringence in the

presence of an external magnetic field of 2-30 Tesla [10, 11, 12, 13]. This process is predicted
by Euler-Heisenberg and often referred to as the Cotton-Mouton effect (in vacuum). Howerver,
it is worth noting that the vacuum birefringence is expected to be absent within the Born-Infeld
model.

As of yet, no signal has been observed. The best experimental sensitivity has been achieved
by the PVLAS experiment, for which the experimental uncertainty is about one order of mag-
nitude above the predicted QED value [10] [14]. The PVLAS experiment aims at measuring
the vacuum birefringence using an external magnetic field of B = 2.5 T. The expected birefrin-
gence predicted by QED is δnQED = 2.5 × 10−23. As shown on figure 1.2, the experimental
principle of the PVLAS polarimeter consists of sending a linearly polarised light beam through
a Fabry–Perot cavity, in which a magnetic field is generated using two rotating permanent
magnets at a frequency of 8 Hz and 8.5 Hz. The Fabry-Perot cavity is necessary to reach a long
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Figure 1.2: Experimental principle of the PVLAS polarimeter, as shown in [10].

optical path which allows to detect such small birefringence values, as is the case for vacuum.
Then, a time dependence of the beam polarisation rotation is generated and is measured in the
output using an analyser and photo-diodes. After about 100 days of collected data, no signal has
been observed. The corresponding current best limit on vacuum magnetic birefringence, at 1 σ
confidence level, is δnPVLAS = (12 ± 17) × 10−23, which is about a factor 7 above the predicted
QED value of δnQED = 2.5 × 10−23 at 2.5 T. It corresponds to an experimental sensitivity of
10−2σ ×

√
Tobs(days), where Tobs(days) is the number of days of collected data.

More recently, in 2018, they proposed a new experiment at CERN [15], called the
VMB@CERN experiment, which aims at measuring vacuum birefringence using a LHC
superconducting magnet to reach higher fields and higher rotating frequencies, as well as a
new polarisation modulation scheme for the polarimeter. An advanced technical study of the
proposed experiment was recently published in [16].

Several theoretical works considered the possibility of using high-intensity laser pulses to
increase the strength of the fields [17, 18, 19, 20].

A first theoretical study was proposed by Aleksandrov et al. in 1985 [17]. They studied the
scattering of light by light (i.e. photon-photon scattering), by calculating the polarisation of
interacting high intense laser beams based on the Euler-Heisenberg formalism. They showed
that, after such an interaction, a linearly polarised wave becomes elliptically polarised, and that
the ellipse axis is rotated by a certain angle relative to the direction of the initial polarisation.

Additionally, Heinzl et al. proposed in 2016 [18, 19] to observe vacuum birefringence
induced by intense laser fields. A high-intensity laser pulse is focused to a ultra-high intensity
and polarises the vacuum which then acts like a birefringent medium. The latter is probed by a
linearly polarised X-ray pulse, the rotation of the polarisation can thus be measured. In 2016,
Schlenvoigt, Heinzl et al. [20] proposed a similar experiment but using intense laser fields and
X-rays delivered by the European XFEL facility.

1.3.2 Change of the vacuum optical index

Alternatively, a complementary approach can be introduced, one that is independent of the
occurrence of birefringence, by directly exploiting the change of the refractive index induced
by the non linearity of vacuum. The refraction of a light beam in response to this index change
is thus expected.

A test of refraction due to nonlinear electrodynamical effects was last performed in 1960
by Jones [21, 22], who looked for the deviation of a light beam passing through a transverse
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static magnetic field of about 1 T, generated by a triangular coil, in order to illustrate the index
variation of vacuum (without considering the polarisation). Results indicated that the deflection
of the light beam was less than σnoise = 0.5 prad (r.m.s.), which was a remarkable angular
resolution. However, the deflection angle predicted by the Euler-Heisenberg model was about
12 orders of magnitude below this limit. Indeed, the expected signal can be derived from
equations 1.2 and 1.7, by considering E = 0 and B = 1 T:

B = µ0H + 2µ0 ξ ϵ
2
0 c4 B2 B = µ0H + 2 ξ ×

B2

µ0
B (1.9)

At first order, we have:

B ≃ µ0 (1 + 2 ξ ×
B2

µ0
) H (1.10)

which can be written as:

B ≃ µ0(1 + δ) H where: δ = 2 ξ ×
B2

µ0
(1.11)

The modified speed of light c̃, modified by the transverse magnetic field, is then equal to:

c̃ =
1√

ϵ0µ0(1 + δ)
≃ c (1 −

δ

2
) (1.12)

Thus, the index variation δn in vacuum caused by the magnetic field B is:

δn = δ/2 = ξ B2/µ0 (1.13)

and the expected signal for Jones’ experiment was δnQED ≃ 3 × 10−24. It corresponds to a
deflection angle of the order of δθQED ≈ δnQED ≈ 3 × 10−24 rad.

As for birefringence-based experiments, there are several theoretical works considering the
use of high-intensity laser pulses to achieve larger index changes and to measure it by studying
the scattering of a probe beam by an intense pump beam. The principle is as follows. At the
interaction area of the two laser pulses (pump and probe), the nonlinear quantum coupling of
the intense electromagnetic fields produces an increase of the vacuum refractive index. Then,
the optical index imprinted on the vacuum induces the scattering of the probe beam.

Several configurations have been studied. We can mention some examples: the diffraction of
a high-intensity laser pulse which crosses another counter propagating high-intensity laser pulse
with smaller diameter [23] [24], the diffraction of a probe beam by a standing electromagnetic
wave formed by two counter propagating intense laser pulses [25], and more recently the
reflection of a probe beam on the interaction area of pump laser pulses [26].

In all these proposals, the scattering of the laser pulse is similar to the classical diffraction
or reflection of a light beam by an optical aperture. Here, the optical aperture corresponds to
the vacuum area where the optical index is enhanced by the interaction of an intense laser pump
pulse with a lower energy probe pulse.
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The DeLLight (Deflection of Light by Light) project also proposes to use intense laser
pulses to measure a change of refractive index, independent of the occurrence of birefringence.
However, instead of measuring a diffraction or a reflection of the probe pulse, it proposes
to measure the refraction - the deflection - of the probe pulse, crossing a transverse index
gradient engendered by an energetic (Joule) and ultra-short (femtosecond) pump pulse. This is
formally similar to the induction of an index change by the optical Kerr effect in a medium.
Thus, the DeLLight project proposes a similar test to that of Jones, by using a much stronger
electromagnetic field (B ≈ 105 T) delivered by intense lasers. The DeLLight idea was first
proposed in 2016 [27], using a simplified theoretical model to calculate the expected signal and
a simplified experimental model to roughly estimate the sensitivity.
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Chapter 2

The DeLLight experiment

The DeLLight (Deflection of Light by Light) project proposes to test the optical Kerr effect
in vacuum by measuring the refraction of a probe pulse crossing an index gradient engendered
by an energetic (Joule) and ultra-short (femtosecond) laser pulse. The DeLLight idea was first
proposed in [27] using a simplified theoretical model to calculate the expected signal and a
simplified experimental model to roughly estimate the sensitivity.

2.1 Principle of the DeLLight experiment using high intense
laser pulses

The DeLLight experiment is installed in the LASERIX facility (IJCLab, Orsay), which
delivers ultra-high intense laser pulses with a repetition rate of 10 Hz. The energy is 1.5 J per
pulse with a duration of τ0 = 40 fs, which is measured at the Full Width at Half Maximum
(FWHM) in intensity (W/cm2). The laser will be upgraded in the coming years to reach 2.5 J
per pulse with a duration of τ0 = 30 fs, corresponding to an intensity of 3 × 1020 W/cm2 with a
minimum waist at focus of 5 µm, which is equivalent to a magnetic field at peak intensity of
B ∼ 105 T or an electric field of E ∼ 3 × 1013 V/m. The principle of the DeLLight experiment,
illustrated in figures 2.1 and 2.2, is to cross two counter-propagating ultra-short laser pulses
at their focus point. One pulse is very intense and is called the pump ; the other is of much
lower intensity and is called the probe. The pump engenders a propagating refractive index
profile δn = n2 Ipump, where Ipump is its intensity in W/cm2 (averaged over the rapid oscillations
of the carrier wave), and where the non-linear index n2 is given in the Euler-Heisenberg model
derived from QED [28]:

n2 = n2,max rpol cos4
(
θtilt

2

)
(2.1)

with
n2,max = n2,QED = 1.56.10−33 cm2/W. (2.2)

The factor rpol ∈
[

4
7 , 1

]
accounts for the birefringence of the model and its dependence on

the polarisation state of the pump. We shall here assume the optimised case rpol = 1, which
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occurs when the pump and probe are each linearly polarised, with their electric (or magnetic)
fields orthogonal to each other. Finally, θtilt is the tilt angle between the propagation directions
of the pump and the probe, defined to be zero when they are exactly counter-propagating (i.e.,
when the collision is "head-on"). The expected Euler-Heisenberg value of the vacuum Kerr
index n2,QED is orders of magnitude smaller than the Kerr index values measured in silica [29]
and in air [30]:

n2,Si ≃ 2 × 10−16 cm2/W
n2,air ≃ 3 × 10−19 cm2/W (2.3)

Once the weak probe pulse crosses the pump pulse, it will "see" and react to the refractive
index profile δn induced by the pump. In particular, in the interaction area where the pump
intensity is rather highly concentrated, which can be achieved by strong focusing, the index
profile δn will have a significant gradient in the transverse directions, which will tend to bend
the rays of the probe towards regions of higher index or intensity. Thus, the wave-fronts of
the probe pulse are rotated (refracted), as illustrated in figures 2.1 and 2.2, and the probe is
deflected by an angle ⟨δθy⟩.

Figure 2.1: Schematic view of the interaction between the probe pulse (in blue) and the counter-
propagating pump pulse (in red), seen from the side. The lines inside the probe pulse correspond
to the wave fronts, which are gradually rotated by the vacuum index gradient induced by the
pump. The axis of the pump beam is vertically (y-axis) shifted with respect to the axis of the
probe beam, thus engendering an impact parameter b so that the perturbation of the probe is
asymmetric and the refraction corresponds to a non-zero mean deflection along the vertical
y-axis.
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Figure 2.2: Same as figure 2.1 but from the top-view. In the horizontal plane (corresponding to
the Sagnac interferometer x − z plane), the axis of the pump beam is tilted by an angle θtilt with
respect to the axis of the probe beam. The perturbation of the probe is symmetric and the mean
deflection is zero along the horizontal x-axis.

The probe and pump pulses must be counter-propagating in order to maximise this deflection.
Indeed, the interaction is only possible when at least one of the Lorentz invariant field terms
"E.B" or "E2 − c2B2" in equation 1.7 is not null.

2.2 Expected deflection with Gaussian pulses
The deflection of the probe pulse on the index gradient δn caused by the pump pulse is

characterised by the mean deflection angle ⟨δθy⟩, which has been calculated by S. Robert-
son [31]. We consider a head-on collision which correspond to a tilt angle θtilt = 0° between
the orientations of the probe and the pump. For Gaussian pulses, we have:

⟨δθy⟩ = ⟨δθy⟩max
b

bopt
e

1
2

(
1−

(
b

bopt

)2
)

(2.4)

where b is the impact parameter between the probe and the pump in the focalisation area.
Its optimal value bopt corresponds to a pump/probe overlap giving the maximal deflection angle
⟨δθy⟩max, given the pump energy E and the pulse widths w0 and W0 of the probe and the pump
respectively. These two parameters are defined by:

bopt =
1
2

√
w2

0 +W2
0 (2.5)

and
⟨δθy⟩max = A

E

b3
opt
, A =

c n2,max

4π
√

e
= 2.25 prad µm3/J (2.6)
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For achievable pump energy E = 2.5 J with the LASERIX facility, and with minimum
waists at focus w0 = W0 = 5 µm, the average deflection angle is ⟨δθy⟩ = ⟨δθy⟩max = 0.13 prad
for a head-on collision.

This deflection is challengingly small, so the experimental setup of the DeLLight experiment
is designed such as to amplify the signal, bringing the deflection into an observable range,
by using a Sagnac interferometer which has a "closed" configuration, as will be explained in
section 2.4.

Measurements of the deflection of a laser beam through amplification with a Sagnac
interferometer have already been developed with continuous laser beams in the search for
gravitational anomalies at short distance, as well as angular deflections of a mirror down to the
sub-picoradian scale [32][33]. However, no refraction measurement has yet been performed
in femtosecond pulsed mode with a Sagnac interferometer, as is the case in the DeLLight
experiment.

On the other end, experimental constraints dictate that the tilt angle θtilt cannot be exactly
zero. Analytical calculations [31] show that the effect of the tilt angle is to introduce an overall
correction factor rtilt and the deflection angle ⟨δθy⟩ becomes:

⟨δθy⟩ = ⟨δθy⟩max
b

bopt
e

1
2

(
1−

(
b

bopt

)2
)
× rtilt (2.7)

where

rtilt =
cos3(θtilt/2)√

1 + (R2 − 1) sin2(θtilt/2)
, R2 =

w2
z +W2

z

w2
0 +W2

0

. (2.8)

Here wz and Wz are the longitudinal sizes of the probe and pump pulses respectively, defined
analogously to their transversal waists at focus w0 and W0. The parameter R measures the ratio
of the longitudinal to transverse sizes of the pulses. It is the only parameter that depends on
their longitudinal size. Turning to values achievable with the LASERIX facility with a pulse
duration of τ = 30 fs, which corresponds to a longitudinal size of wz = Wz = 7.6 µm, and a
minimum waist at focus of w0 = W0 = 5 µm, we find R = 1.5. For a experimentally realistic
example at θtilt = 30°, we find rtilt = 0.9. Thus, it represents only a slight reduction (10% only)
with respect to the case of a head-on collision.

2.3 Additional phase delay ⟨δψ⟩ caused by the DeLLight
effect in the Sagnac interferometer

In addition to a deflection, the perturbed probe is also characterised by a phase delay ⟨δψ⟩,
on account of the slower wave speed due to the index gradient δn induced by the pump in
the Sagnac interferometer. The mean delay ⟨δt⟩ accumulated at any point within the probe is
defined by:

⟨δt⟩ =
n2,max E

4π b2
opt

e−
1
2

(
b

bopt

)2

× rtilt (2.9)
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This leads to an average phase delay ⟨δψ⟩ = ω0 ⟨δt⟩, where ω0 is the carrier frequency of
the probe, and at b = 0 and θtilt = 0°, we have:

⟨δψ⟩ =
2c n2,max E

λ0 (w2
0 +W2

0 )
× rtilt (2.10)

where λ is the wavelength of the laser (λ = 815 nm at the LASERIX facility). For achievable
pump energy E = 2.5 J and minimum waists at focus w0 = W0 = 5 µm, and rtilt = 0.9, the
average phase delay caused by the DeLLight effect is ⟨δψ⟩ = 5 × 10−12.

NB: with the impact parameter b = bopt, the deflection ⟨δθy⟩ is maximised and the phase
delay is reduced by a factor

√
e.

2.4 Experimental setup of the DeLLight experiment using a
Sagnac interferometer

The deflection ⟨δθy⟩ caused by the DeLLight effect is measured using a Sagnac interfer-
ometer to amplify said deflection, which translates as a transverse vertical displacement ∆y
of the residual intensity profile in the dark output and is collected on a CCD camera. The
experimental setup of the DeLLight project is shown on figure 2.3. First of all, the pump pulse,
with a polarisation s, is focused by an off-axis parabolic mirror (OAP) in the interaction area.
Additionally, a much weaker pulse (few tens of µJ), with a perpendicular polarisation p, is sent
into a Sagnac interferometer via a 50/50 beamsplitter (BS-2), generating two daughter pulses
(Probe and Ref) that circulate in opposite directions in the interferometer. The interferometer is
in a right-angled isosceles triangle configuration, formed by the beamsplitter and two dielectric
mirrors (M1 and M2). Both counter-propagating pulses are then focused in the interaction area
via two optical lenses (L1 and L2) of focal length f inserted between the two mirrors. One
pulse (Probe) refers to the probe pulse that is counter-propagating with respect to the pump,
and a delay stage (Delay Stage Timing) ensures the time coincidence of the arrival of said
probe pulse with that of the pump pulse in the interaction area. The second pulse (Ref) is
not in time coincidence with either the probe or pump pulses and does not overlap with the
latter. This pulse is therefore unaffected by the pump and will be used as a reference pulse to
monitor the beam pointing fluctuations of the laser. The focus axis of the pump is transversally
and vertically shifted with respect to the focus axis of the probe, thus engendering an impact
parameter b so that the perturbation of the probe is asymmetric and the mean deflection is
non-zero, as illustrated on figure 2.1.

Furthermore, in the absence of the pump, the two counter-propagating probe and reference
pulses are phase-shifted by π in the dark output of the interferometer, where a CCD camera
measures the transverse position of the residual intensity profile, as will be explained in
section 2.5. However, when the pump pulse is present and interacts with the probe pulse at
focus, the wave fronts of the probe are refracted by the induced vacuum index gradient δn,
while those of the reference pulse are unaffected. The refracted probe pulse is then recollimated
using a lens (L1) of focal length f and is transversally and vertically shifted with respect to
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the unrefracted reference pulse by an average distance ⟨δy⟩ = ⟨δθy⟩ × f , where ⟨δθy⟩ is the
average deflection angle of the refracted probe pulse. Finally, the interference of the probe and
reference pulses in the output of the interferometer produces a transverse vertical displacement
∆y of the barycenter in the y-axis of the residual intensity profile, which is measured by the
CCD camera. This displacement ∆y corresponds to the final DeLLight spatial signal.

The DeLLight deflection signal is a differential measurement between interference intensity
profile measurements in the dark output of the interferometer with and without interaction
between the pump and probe pulses, which are respectively labelled "ON" (ION(2i)) and "OFF"
(IOFF(2i + 1)) measurements for successive laser shots i.

The advantage of the proposed interferometric method is an amplification of the measured
signal ∆y, as compared to the would-be signal ⟨δy⟩ when using a standard direct pointing
method (no interferometry). We will see, in the next section, that the amplification factor,
defined as A = ∆y/⟨δy⟩, scales as F −1/2 where F is the extinction factor of the Sagnac
interferometer, defined as F = Iout/Iin, where Iin is the incident intensity and Iout is the intensity
of the interference signal in the dark output of the interferometer.
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Figure 2.3: Schematic view of the DeLLight experimental setup

2.5 Calculation of the interference intensity profile: amplifi-
cation of the DeLLight signal

2.5.1 Notations
In the Sagnac interferometer used in the DeLLight experiment, two counter-propagating

laser pulses - the probe and the reference - travel the same optical path and interfere in the dark
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output thanks to their π phase-shift. The interference intensity profile in the dark output of the
Sagnac interferometer is written Iout(x, y). In order to compute the latter, we first need to define
the following parameters:

• r and t are the reflexion and transmission factors of the beam splitter in amplitude.

• δa represents the asymmetry between the reflexion and the transmission of the beam
splitter in intensity, such as: {

r2 = 1
2 (1 − δa)

t2 = 1
2 (1 + δa) (2.11)

• δϕ(x, y) is the phase noise between the probe and the reference in the dark output of the
Sagnac interferometer, with (x, y) the frame of reference of the CCD camera. This phase
delay is mostly due to the fact that both beams travel through slightly different optical
paths and thus don’t encounter the same imperfections on the optics (bump on a mirror
for example).

• δy is the un-amplified deflection signal of the probe caused by the interaction with the
pump and is written δy = f × δθ in the small angles approximation where f is the focal
length of the focalising lenses in the Sagnac interferometer and δθ is the deflection angle.

• δψ is the Kerr signal phase-shift of the probe due to the interaction with the pump which
corresponds to a phase delay of the probe with respect to the reference.

• Iin(x, y) is the transverse intensity profile of the input pulse entering the Sagnac interfer-
ometer.

2.5.2 Analytical calculation of the intensity profile of the interference
signal in the dark output of the interferometer

The electric fields of the probe and the reference in the dark output of the Sagnac interfer-
ometer are defined by: 

Eprobe = E0(y − δy)e−iδψ(1 − δa)/2 × e−iπ

Ere f = E0(y)e2iδϕ(1 + δa)/2 (2.12)

The electric field of the probe includes the effects of the Kerr signal deflection δy and
phase-shift δψ due to the interaction with the pump in the Sagnac interferometer. The reference
is unperturbed by the pump. The probe is reflected two times on the beam splitter on each
side of the beam splitting coating, hence the term in r2 = 1

2(1 − δa) whereas the reference is
transmitted two times (term in t2 = 1

2(1 + δa)). We arbitrarily chose to put the phase noise
term δϕ(x, y) in the electric field of the reference. The term "e−iπ" in Eprobe comes from the π
phase-sift between the probe and the reference, as is explained in details in appendix A.
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The intensity profile Iout(x, y) of the interference between the probe and the reference in the
dark output of the Sagnac interferometer is:

Iout = |Eprobe + Ere f |
2 = (Eprobe + Ere f ) × (Eprobe + Ere f )∗ (2.13)

In order to simplify the calculations, we will note the derivative of the initial electric field
E0(y) in amplitude such as: E′0(y) = ∂E0(y)

∂y . We develop equation 2.12:{
2Eprobe = (E0(y) − δyE′0(y))(1 − δa)e−iδψ × e−iπ

2Ere f = E0(y)(1 + δa)e2iδϕ (2.14)

Each term in equation 2.13 can be written as:{
2(Eprobe + Ere f ) = eiπ × (E0(y) − δyE′0(y))(1 − δa)e−iδψ + E0(y)(1 + δa)e2iδϕ

2(Eprobe + Ere f )∗ = e−iπ × (E0(y) − δyE′0(y))(1 − δa)eiδψ + E0(y)(1 + δa)e−2iδϕ (2.15)

Thus, the residual intensity profile Iout(x, y) is:

4 × Iout =[(E0(y) − δyE′0(y))(1 − δa)]2

+ [E0(y)(1 + δa)]2

− 2 cos (δψ + 2δϕ)E0(y)(E0(y) − δyE′0(y))(1 − (δa)2)

(2.16)

Considering the small angles approximation, the cosine term can be simplified:

cos (δψ + 2δϕ) ≈ 1 − (δψ + 2δϕ)2/2 (2.17)

Finally, the general expression of the residual intensity profile Iout in the dark output of the
Sagnac interferometer is:

4 × Iout =[(E0(y) − δyE′0(y))(1 − δa)]2

+ [E0(y)(1 + δa)]2

− 2E0(y)(E0(y) − δyE′0(y))[1 − (δψ + 2δϕ)2/2](1 − (δa)2)

(2.18)

The parameter δa corresponds to an asymmetry in amplitude between the probe and the
reference, while the parameters δψ and δϕ correspond to a phase difference. Hence, we separate
these two effects and define the amplified intensity profile Iampl

out in the dark output and the phase
term I phase

out , such as:
Iout = Iampl

out + I phase
out (2.19)

with

4 × Iampl
out =[(E0(y) − δyE′0(y))(1 − δa)]2 + [E0(y)(1 + δa)]2

− 2E0(y)(E0(y) − δyE′0(y))(1 − (δa)2)
(2.20)

4 × I phase
out = (δψ + 2δϕ)2E0(y)(E0(y) − δyE′0(y))(1 − (δa)2) (2.21)
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2.5.3 Interference dominated by the amplitude asymmetry δa

In this section, we assume that the phase terms δψ and δϕ are null (δψ = δϕ = 0) and
calculate the amplified intensity profile Iampl

out in the dark output due to the amplitude asymmetry
δa only. Equation 2.20 becomes:

4 × Iampl
out =(1 − δa)2(E0(y)2 + δy2E′0(y)2 − 2δyE0(y)E′0(y))

+ (1 + δa)2E0(y)2 − 2(E0(y)2 − δyE0(y)E′0(y))(1 − (δa)2)
(2.22)

4 × Iampl
out =4E0(y)2(δa)2 − 2δyE0(y)E′0(y)[(1 − δa)2 − (1 − (δa)2)]

+ (1 − δa)2δy2E′0(y)2 (2.23)

To simplify the computations, let’s note: Iin(y) = E0(y)2 ; I′in(y) = ∂Iin(y)
∂y = 2E0(y)E′0(y).

Thus, the amplified intensity profile Iampl
out in the dark output is:

Iampl
out = (δa)2 × Iin(y) −

δyI′in(y)
2

((δa)2 − δa)

= (δa)2 × (Iin(y) −
δyI′in(y)

2
(1 −

1
δa

))
(2.24)

Iampl
out = (δa)2 × Iin(y +

1 − δa
2δa

× δy) (2.25)

2.5.4 Interference dominated by the phase shift δΦ

We now consider a non-null phase-shift to calculate the phase term I phase
out and equation 2.21

becomes:

4 × I phase
out = (δψ + 2δϕ)2E0(y)(E0(y) − δyE′0(y))(1 − (δa)2)

= 4(δϕ + δψ/2)2(1 − (δa)2)(Iin(y) − δyI′in(y)/2)

= 4(δϕ + δψ/2)2(1 − (δa)2)Iin(y − δy/2)

(2.26)

By neglecting the term in (δψ)2, we can approximate the intensity phase term to:

I phase
out ≈ (1 − (δa)2) (δϕ)2 (1 + δψ/δϕ)Iin(y − δy/2) (2.27)

The phase noise term is thus shifted, but its barycenter isn’t amplified like it was for the
amplified profile in equation 2.25. However, it undergoes an attenuation factor of (1 − (δa)2).

Without any approximations, the phase intensity profile I phase
out is:

I phase
out = (δϕ + δψ/2)2(1 − (δa)2)Iin(y − δy/2) (2.28)
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2.5.5 Final expression of the interference intensity profile with and with-
out pump

The final expression of the residual intensity profile in the dark output of the Sagnac
interferometer is obtained by combining equation 2.25 and 2.28. It corresponds to the intensity
profile obtained when the probe interacts with the pump ("ON" measurement), so it will be
named ION(x, y):

ION(x, y) =(δa)2 × Iin

(
x, y +

1 − δa
2δa

× δy
)

+

(
δϕ(x, y) +

δψ

2

)2

×(1 − (δa)2) × Iin

(
x, y −

δy
2

) (2.29)

When the pump is OFF ("OFF" measurement), the phase shift δψ and the deflection signal
δy are null (δψ = δy = 0) and the "OFF" intensity profile, named IOFF(x, y), is:

IOFF(x, y) =
(
(δa)2 + (δϕ(x, y))2

)
× Iin(x, y) (2.30)

The extinction factor F of the Sagnac interferometer is defined by the intensity ratio
between the OFF profile IOFF(x, y) and the input intensity Iin(x, y) entering the interferometer,
such as:

F =
IOFF(x, y)
Iin(x, y)

= (δa)2 + (δϕ(x, y))2 (2.31)

2.5.6 Signal in barycenter position ∆y : Deflection of Light by Light

The DeLLight barycenter signal ∆y corresponds to the interference signal dominated by
the amplitude asymmetry δa of the Sagnac beamsplitter (δϕ(x, y) << δa). In this case, the
intensity profile ION(x, y) in the dark output of the interferometer for the ON measurement
(equation 2.29) becomes:

ION(x, y) = (δa)2 × Iin(x, y + ∆y) (2.32)

where the deflection signal amplified by interferometry is:

∆y = A× δy

A =
1 − δa

2δa

(2.33)

A is the amplification factor of the interferometer.
The intensity profile IOFF(x, y) in the dark output for the OFF measurement (equation 2.30

with δy = 0) becomes:
IOFF(x, y) = (δa)2 × Iin(x, y) (2.34)

with an extinction factor (equation 2.31) of F = (δa)2, which corresponds to an amplification
factor ofA = (1 −

√
F )/(2

√
F ). The amplification of the deflection signal δy is considered
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large when the term δa is small, which corresponds to a good extinction and a good reflec-
tion/transmission symmetry of the beamsplitter of the Sagnac interferometer. Thus, for a large
amplification, we would need an extinction factor of F << 1 (δa << 1) which corresponds to
an amplification factor of:

A =
1

2δa
= ±

1

2
√
F

(when δϕ(x, y) ≪ δa ≪ 1) (2.35)

On the contrary, the amplification is degraded when δa becomes too large.
The goal of the DeLLight experiment is to reach an extinction factor of F = 4× 10−6 which

corresponds to an amplification factor of A = 250. It is important to note that the sign of the
amplification depends on the sign of δa.

2.5.7 Signal in intensity ∆I/I : Deceleration of Light by Light

The DeLLight intensity signal ∆I/I corresponds to the interference signal dominated by
the phase shift δϕ(x, y) (δa << δϕ(x, y)). In this case, the intensity profile ION(x, y) in the dark
output of the interferometer for the ON measurement (equation 2.29) becomes:

ION(x, y) = (δϕ(x, y) + δψ/2)2 × Iin(y − δy/2) (2.36)

and the intensity profile IOFF(x, y) in the dark output for the OFF measurement (equation 2.30)
becomes:

IOFF(x, y) = (δϕ(x, y))2 × Iin(x, y) (2.37)

with an extinction factor (equation 2.31) of F = (δϕ(x, y))2.
The intensity signal ∆I/I is defined as the relative difference in intensity for successive ON

and OFF measurement:
∆I
I
=

ION − IOFF

IOFF
(2.38)

Using equations 2.36 and 2.37, the intensity signal ∆I/I becomes:

∆I
I
=

(δϕ(x, y) + δψ/2)2 × Iin(y − δy/2) − (δϕ(x, y))2 × Iin(x, y)
(δϕ(x, y))2 × Iin(x, y)

(2.39)

The Gaussian intensity profile Iin(y) does not change if it is shifted by a given value
"δy/2", namely between ON and OFF measurements. Thus, we can consider that both profiles
Iin(y − δy/2) and Iin(y) are equivalent and the previous equation becomes:

∆I
I
=

(δϕ(x, y) + δψ/2)2 − (δϕ(x, y))2

(δϕ(x, y))2 (2.40)

The final expression of the DeLLight intensity signal ∆I/I is:

∆I
I
=

(δψ)2

4(δϕ(x, y))2 +
δψ

δϕ(x, y)
(2.41)
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Since δψ ≪ δϕ(x, y), the linear term dominates in equation 2.41 and we finally obtain:

∆I
I
=

δψ

δϕ(x, y)
(2.42)

The intensity signal (the relative variation in intensity) is proportional to the QED phase
signal δψ and is amplified by an amplification factor A = 1/(δϕ(x, y)). Smaller the phase
δϕ(x, y) is, higher the intensity signal is (δϕ(x, y) for the intensity signal is equivalent to δa for
the barycenter signal).

2.6 Expected sensitivity of the DeLLight experiment

2.6.1 Deflection Signal
The DeLLight deflection signal is a differential measurement between interference intensity

profiles measurement in the dark output of the interferometer with and without interaction
between the pump and probe pulses, which are respectively labelled "ON" and "OFF" measure-
ments.

The deflection signal corresponds to a shift of the barycenter of these intensity profiles
in the dark output caused by the probe/pump interaction. We compute these barycenters for
successive ON and OFF measurements, which are respectively named ȳON(i) and ȳOFF(i). Thus,
the corresponding signal ∆y(i) of the ith "ON-OFF" measurement is given by:

∆y(i) = ȳON(i) − ȳOFF(i) (2.43)

The measured ∆y(i) have a certain distribution characterised by its mean value ∆y = ⟨∆y(i)⟩i
over all laser shots and its standard deviation σy. The mean value ∆y corresponds to the final
DeLLight deflection signal and the standard deviation σy corresponds to the spatial resolution.

The extraction and computation of the signal are explained in chapter 3. Study and
measurement of the spatial resolution are thoroughly detailed in chapter 6.

As mentioned in the section 2.5.6, since the amplification factor of the Sagnac interferometer
for the spatial signal is A = 1

2
√
F

, the expected theoretical QED spatial signal ∆yQED becomes:

∆yQED = A × δyQED =
f × δθQED

2
√
F

(2.44)

where f is the focal length of the lenses inside the interferometer, F is the extinction factor of
the interferometer and δθQED is the deflection signal in radian.

To estimate the sensitivity of the DeLLight experiment, we assume that the measured mean
signal ∆y is equal to the expected theoretical QED signal ∆yQED. The statistical error at one
standard deviation of the observed mean ∆y is equal to σy/

√
N, where N is the number of

”ON-OFF” measurements. Thus, the DeLLight signal is measured with a significance of Nstd

standard deviations, such as:

∆yQED = Nstd × σy/
√

N (2.45)
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where N = rlaser/2 × Tobs(s) = 43200 × rlaser × Tobs(days), with rlaser the repetition rate of the
laser (corresponding to a repetition rate of ”ON-OFF” measurements of rlaser/2) and Tobs the
total duration of the experiment in days.

Using equations 2.44 and 2.45, the number of standard deviations Nstd becomes:

Nstd =
f × δθQED

2
√

F
×

√
43200 × rlaser(Hz) × Tobs(days)

σy
(2.46)

Assuming that the impact parameter b between the probe and the pump at focus is optimised
(b = bopt), and using equations 2.6 and 2.7, the sensitivity of the experiment, in terms of number
of standard deviations becomes:

Nstd = 0.65 × rtilt (R, θtilt) × (2.47)
E(J) × f (mm) ×

√
rlaser(Hz) × Tobs(days)

(w2
0(µm) +W2

0 (µm))3/2 ×
√
F /10−5 × σy(nm)

where E is the pump energy ; rtilt (R, θtilt) is the correction factor due to the angle θtilt

between the probe and the reference at the interaction point in the interferometer (defined
in equation 2.8) ; R is the ratio of the longitudinal to transverse sizes of the pulses. For a
waist at focus of the probe and the pump of w0 = W0 = 5 µm and their longitudinal size of
wz = Wz = 7.6 µm (pulse duration of τ0 = 30 fs), the R parameter is R = 1.5 and the correction
factor is rtilt (R, θtilt) = 0.9 at θtilt = 30° which is more realistic in practice than θtilt = 0°. The
sensitivity Nstd becomes:

Nstd = 0.6 ×
E(J) × f (mm) ×

√
rlaser(Hz) × Tobs(days)

(w2
0(µm) +W2

0 (µm))3/2 ×
√
F /10−5 × σy(nm)

(2.48)

The energy E of the pump pulse and the repetition rate rlaser are today determined by the
LASERIX facility (2.5 J per pulse, 10 Hz). Therefore, from equation 2.48, three parameters are
crucial to reach a high measurement sensitivity:

• A high extinction of the interferometer, corresponding to a low extinction factor F ;

• A waist of the probe and pump beams at focus (in the interaction area), w0 and W0, as
small as possible, while using a relatively large focal length f for the probe;

• A good spatial resolution σy for the position measurement of the interference intensity
profile.

The goal is to reach the following parameters:

• An extinction F = 4 × 10−6, corresponding to an amplification factor A = 250. It
requires a residual phase noise lower to 10−6;
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• A minimum waist at focus w0 = W0 = 5µm for both the pump and the probe, with a
focal length as large as possible ( f = 500 mm corresponds to a waist w = 25 mm for the
collimated probe beam before focus);

• A spatial resolution σy = 10 nm, limited by the ultimate shot noise of the CCD cameras.

We will show in chapter 5 that F = 4 × 10−6 corresponds to the extinction measured in our
current DeLLight pilot experiment. We will show in chapter 6 that σy = 10 nm is the current
shot noise measured with our best sensitivity commercial CCD camera. However, as discussed
in chapter 7, the spatial resolution in the dark output of the interferometer is today limited by
the presence of a mechanical noise due to not suitable mechanical mounts and environment.
This noise must be reduced by almost two orders of magnitude. We will explain in chapter 7
the proposed experimental method to measure and suppress this noise, allowing to reach the
goal spatial resolution. Finally, focusing a pump pulse to a minimum waist of 5 µm is a realistic
value. However, reaching a small waist at focus for the probe, while keeping a large focal
length is an issue, as will be discussed in section 2.8.

With these goal values for the critical parameter, and with an energy of 2.5 J for the pump
pulses and a laser repetition rate of 10 Hz as delivered by the LASERIX facility, the expected
spatial DeLLight signal is ∆yQED = 14 pm at θtilt = 30° (∆yQED = 16 pm at θtilt = 0°) and the
number of standard deviations is Nstd =

√
Tobs(days). Thus, the QED signal could be observed

at a 5-sigma statistical confidence level with 25 days of collected data.
It is important to add that in the future, the DeLLight experiment could benefit from the

new generation of ultra-intense lasers with high repetition rate, as the HALPS laser (E > 30 J,
30 fs, 10 Hz) currently in commissioning at ELI Beamlines Centre (Czech Republic). With
this laser, the DeLLight signal would be increased by an order of magnitude with an expected
signal ∆yQED = 0.18 nm at 30 J.

2.6.2 Intensity Signal

The intensity signal ∆I
I (i) of the ith "ON-OFF" measurement is given by:

∆I
I

(i) =
ION(i) − IOFF(i + 1)

IOFF(i + 1)
(2.49)

(2.50)

The DeLLight intensity signal ∆I
I corresponds to the mean of the successive ON-OFF

measurements:

∆I
I
=

〈
∆I
I

(i)
〉

(2.51)

This distribution is characterised by its standard deviation σ∆I/I, which corresponds to the
intensity resolution. The extraction and computation of the signal are explained in chapter 3.
Study and measurement of the spatial resolution are thoroughly detailed in chapter 6.
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The expected QED intensity signal ∆I
I

∣∣∣
QED

at an impact parameter b = 0 (for which the
intensity signal is maximal) is:

∆I
I

∣∣∣∣∣
QED
=
⟨δψ⟩
√

F
=

2c n2,max E

λ0 (w2
0 +W2

0 )
√

F
× rtilt (2.52)

= 3.7 × 10−8 ×
E(J) × rtilt

(w2
0(µm) +W2

0 (µm)) ×
√
F /10−5

where λ is the wavelength of the laser and σ∆I/I is the intensity resolution in the dark output of
the interferometer.

Analogously to the spatial signal (previous section), the DeLLight intensity signal is
measured with a significance of Nstd standard deviations, such as:

∆I
I

∣∣∣∣∣
QED
= Nstd ×

σ∆I/I
√

N
(2.53)

Assuming that the impact parameter b between the probe and the pump at focus is optimised
(b = 0) and using equations 2.53 and 2.53, the sensitivity of the experiment, in terms of the
number of standard deviations Nstd, is:

Nstd = 7.9 × 10−6 ×
E(J) × rtilt ×

√
rlaser(Hz) × Tobs(days)

(w2
0(µm) +W2

0 (µm)) ×
√
F /10−5 × σ∆I/I

(2.54)

We want to reach the same sensitivity as the one obtained with the spatial deflection signal,
i.e. Nstd =

√
Tobs(days). Then, the needed intensity resolution is:

σ∆I/I = 7.9 × 10−6 ×
E(J) × rtilt ×

√
rlaser(Hz)

(w2
0(µm) +W2

0 (µm)) ×
√
F /10−5

(2.55)

Assuming the same experimental parameters as those assumed for the deflection signal in the
previous section 2.6.1 (F = 4 × 10−6, w0 = W0 = 5 µm, E = 2.5 J, and rlaser = 10 Hz), we
need to reach an intensity resolution of σ∆I/I = 1.8 × 10−6. This value includes the ON-OFF
subtraction (factor

√
2) and the beam pointing corrections (another factor

√
2). Therefore,

the requested intrinsic intensity resolution of the optical readout for a single spot intensity
measurement is σI = σ∆I/I/2 = 0.9× 10−6. This resolution is limited by the inherent shot noise,
which is equal to σI = 1/

√
Np.e., where Np.e. is the number of detected photo-electrons. Noting

QE the quantum efficiency, the requested number of photons reaching the optical readout in the
dark output of the interferometer is then:

Nout
γ =

Np.e.

QE
=

1
QE × σ2

I

= 1.4 × 1012 photons (2.56)

Taking into account the extinction factor F = 4 × 10−6, it corresponds to a number of photons
per incident laser pulse entering the Sagnac interferometer equal to N in

γ = Nout
γ /F = 3.5 ×

1017 photons. It corresponds to an incident energy of about 100 mJ per pulse which is relatively
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high. A way to reduce the needed incident energy is to reduce the waist of the pump and probe
beam at focus, using a shorter focal length, in order to increase the signal. However, reducing
the waist at focus of the probe is very challenging, as will be discussed in section 2.8. It also
becomes very challenging to maintain a good spatial overlap of the pump and the probe in
the interaction area with very small waists at focus. Last but not least, it will be measured on
the prototypes that the intensity resolution is much more sensitive to the phase noise of the
interferometer than for the spatial resolution (barycenter). Therefore, it is more difficult to
reach the shot noise resolution when measuring the interference signal intensity rather than the
barycenter.

In conclusion, the measurement of the deflection signal, i.e. the spatial signal in barycenter,
seems to be more sensitive than the measurement of the intensity signal.

2.7 Beam pointing fluctuations

It is essential to note that the presence of beam pointing fluctuations between successive
laser shots induces fluctuations of the position of the residual intensity profile in the dark output
of the interferometer of typical magnitude much larger than the expected displacement signal
⟨δy⟩. However, as illustrated in figure 2.4, an essential advantage of the Sagnac interferometer
is that the interference pattern and the extinction factor in the dark output do not change in the
presence of beam pointing fluctuations, assuming that the phase noise defined in section 2.5
is negligible. Fluctuations of the beam pointing produce a simple translation of the intensity
profile on the CCD camera, which can be measured and suppressed by monitoring the position
of the intensity profile with respect to the back-reflections from the rear side of the beamsplitter.
The analysis method to measure and suppress the beam pointing fluctuations is explained in
section 3.3.2.

Figure 2.5 shows a scheme of the back-reflections ray tracing. One back reflection, named
IAR,1, is the direct incident probe beam first reflected on the beamsplitter and then reflected on
its backside. It will be used as a reference in order to correct the beam pointing fluctuations
of the probe, as explained in section 3.3.2. The second back reflection, named IAR,2, is the
interference of four transmitted and reflected beams on the beamsplitter. Their intensities are:

IAR,1 = (rAR × r)2 × I0 (2.57)

IAR,2 =
(
−rAR × rt2 + rAR × rt2 + rAR × r(t2 − r2)

)2
× I0 (2.58)

where r and t are the reflection and transmission coefficient in amplitude of the beamsplitter as
defined in equation 2.11, rAR is the back-reflection coefficient in amplitude on the back side of
the beamsplitter, and I0 is the incident intensity.
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Figure 2.4: Schematic view of the Sagnac interferometer showing how the extinction in the
dark output of the Sagnac interferometer is insensitive to the beam pointing fluctuations. (Left)
The incident beam is tilted by a small angle. (Right) The beam, or equivalently a mirror, is
transversally shifted in the horizontal plane. In both cases, the extinction in the dark output
of the interferometer is maintained. Only the position of the intensity profile is transversally
shifted. This shift is measured and suppressed by monitoring online the same shift of the
back-reflections from the rear side of the beamsplitter.

Figure 2.5: Schematic view of the Sagnac interferometer and the ray tracing of the main
back-reflections on the rear side of the Sagnac beamsplitter.

Note that a third back reflection is superposed to the interference signal but is not in time
(delayed). Its intensity, equal to

IAR,3 = (r4
AR × t4) × I0 = 1/4 × R2

AR × I0 (2.59)

is added to the interference signal. It limits the extinction factor to Fmin = R2
AR/4. As discussed

in appendix B, for the beamsplitter used in the pilot DeLLight setup, the back reflection
coefficient (in intensity) is RAR = 10−3 and Fmin = 2.5 × 10−7.
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2.8 Minimum waist at focus w0

The minimum waist at focus of the pump and probe pulses in the interaction area is one
of the most critical parameter since the DeLLight expected signal is inversely proportional
to the cube w3

0 of the beam minimal waist at focus (from equations 2.45 and 2.48). The best
course of action would be to choose the smallest waist possible in order to maximise the signal.
Focusing the pump pulse to a minimum waist of 5 µm is realistic. Even smaller waists have
been achieved using large beam size before focalisation and expensive parabolic mirrors. It is
however more difficult for the probe beam. Indeed, for a Gaussian beam, the waist at focus w0

is proportional to the focal length f and inversely proportional to the waist w of the incident
collimated beam before focus, such as:

w0 =
λ × f
π × w

(2.60)

where λ is the wavelength of the laser. Thus, a small focal length is required to reach a small
waist at focus. However, we need to use a large focal length since the DeLLight signal is
directly proportional to said parameter (see equation 2.44). Therefore, reaching a small waist at
focus while keeping a large focal length requires to work with a large waist w for the collimated
beam before focus in the Sagnac interferometer.

The goal of the DeLLight experiment is to reach a waist at focus w0 = 5 µm with a focal
length f = 500 mm, which requires an incident collimated waist w = 25 mm and a beamsplitter
of thickness of about 75 mm in order to properly distinguish the interference signal from the
back-reflections in the dark output (see figure 2.5). In comparison, we are working at the
moment with a focal length f = 100 mm, a waist before focus w = 1 mm and a beamsplitter
thickness of 3 mm on the current DeLLight pilot experiment.

There are unfortunately two difficulties when using larger beam sizes in the interferometer.
Firstly, it requires more stringent constraints regarding the surface qualities of the optics over
larger transverse dimensions (low spatial frequency). Indeed, the phase noise increases when
the interference signal is integrated over a larger transverse dimension. This comes from
the fact that a perfect surface (a plan surface, for instance) is easier to ensure on a small
transverse dimension rather than on a large one. Secondly, a larger beam size requires a thicker
beamsplitter in order to separate the back-reflections from the interference signal in the dark
output.

A way to maintain a relatively small waist of the collimated probe beam in the interferometer
is to optimise the focal length. To this end, we calculate the expected DeLLight deflection
signal ∆y in the dark output as a function of the focal length f , for three different incident
collimated probe waist w (25, 12.5 and 7 mm), and with the pump waist at focus equal to its
nominal goal value W0 = 5 µm. These results are displayed on figure 2.6, for a wavelength
λ = 800 nm. The signal is maximal at ∆y = 14 ± 1 pm for a focal length corresponding to
a minimum probe waist at focus w0 ≃ 3.5 µm, and a collimated probe waist w = 12.5 mm
with a focal length f ≈ 150 − 200 mm. This signal is equivalent to the one obtained with the
DeLLight goal parameters w = 25 mm and f = 500 mm (except that the probe waist at focus is
slightly bigger than half the pump waist at focus in the first case). Therefore, it is preferable to
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work with a smaller focal length and a probe waist more or less equal to half the pump waist at
focus in the interaction area, in order to ensure a relatively small diameter of the collimated
beam inside the Sagnac interferometer, and thus reduce the integrated phase noise.

Moreover, another approach to maintain a small size of the collimated beam in the inter-
ferometer is to lower the probe wavelength from 800 nm to a 400 nm for instance, using the
frequency doubling technique by placing a thin, non-linear BBO crystal before the Sagnac
interferometer (with appropriate beamsplitter and optics for 400 nm). Figure 2.7 shows the
expected signal ∆y as a function of the focal length f with a wavelength of the probe beam equal
to 400 nm. By comparing figures 2.6 and 2.7, we see that we can reach the same DeLLight
sensitivity if we use a 800 nm probe beam with a beam size in the interferometer w = 25 mm,
a focal length f = 500 mm and a waist at focus w0 = 5µm (DeLLight goal parameters), as
if we use a 400 nm probe beam with w = 7 mm, f = 200 mm and w0 = 3.5µ m, which is
experimentally easier to set up and provides a lower phase noise value.

In summary, using a 400 nm probe beam and a focal length f = 200 mm in the interfer-
ometer allows to reach the DeLLight goal sensitivity with a collimated beam size of the probe
of only w = 7 mm, which is 4 times smaller than the initial goal value. However, along the
non-linearity effects within the beamsplitter at high energy (see section 2.9), a smaller beam
size will further limit the allowed incident energy of the probe in the interferometer because
the saturation per pixel on the CCD camera will be reached sooner.

Figure 2.6: Plot of the DeLLight signal ∆y (in nm) in the dark output of the interferometer
as a function of the focal length f for three different waists w (25 mm in blue, 12.5 mm in
orange and 7 mm in green) of the collimated probe beam in the interferometer, and for a pump
waist at focus W0 = 5µm. In dashed lines is plotted the signal ∆y depending on the focal length,
with the minimum waist w0 of the probe beam at focus fixed at 5 µm (red) and 3.5 µm (purple),
while w is a free parameter. The wavelength of the probe beam is 800 nm. The DeLLight
signal is ∆y = 14 ± 1 pm for either f ≈ 500 mm, w0 = 5 µm, w = 25 mm or f ≈ 150 mm,
w0 = 3.5 µm, w = 12.5 mm.
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Figure 2.7: Same as figure 2.6 but with a wavelength of the probe beam equal to 400 nm. The
DeLLight signal is ∆y = 14.5 ± 0.5 pm for either f ≈ 500 mm, w0 = 5 µm, w = 12.5 mm or
f ≈ 200 mm, w0 = 3.5 µm, w = 7 mm.

2.9 Input intensity limitation: non linearity in the beam
splitter

The DeLLight experiment requires a very low extinction factor F in the dark output of the
Sagnac interferometer in order to get a high amplification. Moreover, in order to reach a good
spatial resolution, the incident energy Ein in the interferometer must be high to be able to collect
a high number of photons on the CCD camera in the dark output. However, the intensity between
transmitted and reflected pulses on their respective first crossing through the beamsplitter (BS)
is different. Indeed, the reflected pulse travels through the whole interferometer before crossing
the BS for the first time, while the transmitted pulse crosses the BS before travelling through
the interferometer. Hence, both pulses have different intensity values because of the losses
caused by the reflections on the mirrors. Therefore, the intensity difference between transmitted
and reflected pulses can lead to nonlinear effects in the beamsplitter at high intensities, which
induces a phase-shift in intensity and in turns limits the extinction in the dark output. The
schematic of the interferometer is presented figure 2.8.

Moreover, the transverse sizes of both pulses are different due to their respective divergence,
which depends on the optical path travelled by each pulse. Indeed, the reflected pulse diverged
before crossing the BS for the first time, while the transmitted pulse did not. Hence, the
contrast of the interference signal in the dark output is degraded since both pulses have different
transverse sizes, which also degrades the extinction.
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Figure 2.8: Schematic of the Sagnac interferometer in triangle configuration with two focusing
lenses. I0 is the incident beam intensity ; Ir and It are the intensities of the reflected and trans-
mitted pulses respectively ; R, Rm and RAR,L are the reflection coefficients of the beamsplitter,
the mirrors and lenses respectively.

2.9.1 Phase-shift due to the intensity variation between reflected and
transmitted beams

The intensity difference between the transmitted It and reflected pulses Ir mostly comes
from energy losses on the two dielectric mirrors of the Sagnac interferometer (see figure 2.3), as
well as on the coating of the BS itself, for which the reflection R and transmission T coefficients
are defined equation 2.11. Therefore, on the first transmission through the BS (see figure 2.8),
the transmitted pulse sustains less intensity losses than the reflected pulse, such as:

It =
I0

2
× (1 + δa) (2.61)

Ir =
I0

2
× R2

m × (1 − RAR,L)4 × (1 − δa) (2.62)

≃
I0

2
× R2

m × (1 − 4RAR,L) × (1 − δa) (2.63)

where I0 is the input intensity entering the Sagnac interferometer, Rm is the reflection factor
of the mirrors and RAR,L is the reflection factor of the anti-reflective coating of the lenses. The
variation of intensity δI between the transmitted and reflected pulses is then:

δI = It − Ir =
I0

2

[
(1 + δa) − R2

m × (1 − 4RAR,L) × (1 − δa)
]

(2.64)

Moreover, this variation δI induces a relative change of the optical index in the BS due to
the optical Kerr effect in the silica substrate, such as δn = δI × n2 where n2 is the Kerr index in
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silica (n2 ≈ 2 × 10−16 cm2/W) and δn is the index variation between the transmitted and the
reflected pulses. This relative difference of index crossed by the two pulses during the first
transmission through the BS produces a phase shift δΦ equal to:

δΦ =
2πz
λ
× δn (2.65)

where λ = 815 nm is the wavelength of the laser, z = f (e) ≃ 1.25 × e is the travelled distance
by the beam in the BS and e is the width of the BS. If the phase shift becomes too high, the
extinction factor of the interferometer becomes dominated by this non linear phase. Then, we
have F = (δΦ)2 and:

δn =
λ

2πz
×
√
F (2.66)

Moreover, the maximal input energy Ein allowed to enter the Sagnac interferometer is
defined by:

Ein ≃ I0 × τ × w2 (2.67)

where τ is the pulse duration of the laser, w is the size of the collimated beam in the interferom-
eter (FWHM). Finally, using equations 2.64 to 2.66, the allowed energy becomes:

Ein =
λ τw2

n2 π z
×

√
F

(1 + δa) − R2
m × (1 − 4RAR,L) × (1 − δa)

(2.68)

Figure 2.9: Evolution of the maximal input energy Ein entering the Sagnac interferometer
depending on the factor 1 − Rm, where Rm is the reflection factor of the mirrors. This plot
corresponds to an extinction factor of F = 4 × 10−6, a waist of the collimated beam in the
interferometer of w = 1 mm (blue) and w = 7 mm (orange), and a laser pulse duration is chosen
at τ ≈ 70 fs.
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Figure 2.10: Evolution of the maximal input energy Ein entering the Sagnac interferometer as a
function of the beam size w, when Rm = 1 and RAR = 0, and taking into account only δa. The
laser pulse duration is chosen at τ ≈ 70 fs.

In figure 2.9, we calculated the maximal incident energy as a function of (1−Rm) (assuming
δa = RAR,L = 0), with an extinction factor F = 4 × 10−6 and for two different values of the
beam waist: w = 1 mm corresponds to the current beam size in the pilot experiment, and
w = 7 mm is the optimised goal waist for the DeLLight experiment in vacuum. We have
also assume that e = 3 × w as in the BS used in the pilot experiment (minimum thickness
in order to separate efficiently the signal from the back reflections). We will see in chapter
6 that the requested incident energy to reach the shot noise spatial resolution is about 8 mJ
with a beam size w = 7 mm. Therefore, from figure 2.9, a mirror reflectivity of R = 99.99%
(1−Rm = 10−4), as is the case for the current mirrors used in the pilot experiment, is appropriate.
Same calculation can be done with RAR and we also verify that RAR = 10−4 is needed in order
to avoid any non linear limitation.

We can also calculate the requirements on the parameter δa. We assume RAR = 1 − Rm = 0.
The extinction is now limited only by δa and we have F = (δa)2. Equation 2.68 becomes:

Ein =
λ τw2

2 n2 π z
(2.69)

The maximal incident energy is thus independent of δa and F . Its value depends only on the
beam size w and is plotted on figure 2.10. For a beam size of w = 7 mm, corresponding to the
target value (as discussed in the previous section), the maximal energy of the incident probe
pulse is of the order of 1 mJ. However, the incident energy that will be needed to reach the shot
noise spatial resolution of 10 nm (with F = 4 × 10−6) is 8 mJ for a beam-size w = 7 mm. We
conclude that the non linearity asymmetry in the beamsplitter induced by the δa asymmetry
(R/T asymmetry) is possibly a limiting effect to reach the ultimate shot noise spatial resolution.
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A way to get rid of it is either to work with a lower extinction, reducing the signal amplitude, or
to reduce the spot size in the dark output. This subject must be carefully studied in the future.

2.9.2 Phase-shift due to the natural divergence of the beams in the inter-
ferometer

The natural divergence of the transmitted and reflected pulses in the interferometer also
induces a phase-shift between them on the first transmission through the BS, and thus limits
the authorised input energy. Indeed, the reflected pulse travels on a longer optical path than the
transmitted pulse before going through the BS for the first time. Thus, the waist (FWHM) of
the collimated reflected pulse wr is larger than the waist of the collimated transmitted pulse wt

on the first transmission, such as:

wt ≈ win (2.70)

wr(L) = win

√
1 +

( Lλ
πw2

in

)
(2.71)

where win is the waist (FWHM) of the input pulse in the Sagnac interferometer and L is the
length travelled by the reflected pulse in the interferometer. It is approximately L ≈ 1 m.

With a similar reasoning as for the intensity phase-shift explained in the previous section,
we can calculate the index variation δn in the BS between the transmitted and reflected pulses:

nt,r = n2 × I0 = n2 ×
Ein

τw2
t,r

(2.72)

δn = nt − nr =
n2 Ein

τ
(

1
w2

t
−

1
w2

r
) (2.73)

Finally, using equations 2.66 and 2.73, we can calculate the evolution of the maximal input
energy Ein allowed in the interferometer, depending on the input waist win:

E0(win) =
τ δn
n2
×

1
( 1

w2
in
− 1

w2
r
)
=
τ λ
√

F
2 n2πz

×
1

( 1
w2

in
− 1

w2
r
)

(2.74)

The result is presented on figure 2.11. For a beam size w = 7 mm, corresponding to the
target value, the maximal energy of the incident probe pulse is of the order of 100 mJ which is
much higher than the requested energy. We conclude that the beam divergence is not an issue
for large beam size. However, this can be a limitation for small beam size as the one used in
the current pilot experiment (w = 1 mm) if the optical path length is too large.
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Figure 2.11: Evolution of the maximal input energy Ein entering the Sagnac interferometer as a
function of the beam size w, for an extinction factor F = 4 × 10−6 and taking into account the
divergence of the beam.

2.10 Residual gas

2.10.1 Contribution of residual gas

When trying to observe the DeLLight effect in vacuum, there ought to be some residual gas
inside the vacuum chamber with which the intense pump pulse might interact and produce an
artefact signal.

The optical Kerr effect in the residual gas is, at first sight, a nonlinear effect much stronger
than the corresponding effect in vacuum. For instance, the Kerr index in air at atmospheric
pressure (n2,air ≈ 10−19 cm2/W) is about 1014 times larger than the expected nonlinear index of
vacuum (n2,QED ≈ 1, 56.10−33 cm2/W). Since this value is proportional to the pressure, setting
a Kerr index n2 to lie an order of magnitude below the index of vacuum n2,QED requires a
residual pressure of about 10−12 mbar. However, this result is only true if the pump-probe
interaction volume V is large enough to contain a few atoms. For the DeLLight experiment,
the interaction volume is very small, of the order of V ≈ w2

0 ∆t c ≈ 225 µm3. The vacuum
chamber of the DeLLight experiment is designed to ensure a nominal pressure for the full
chamber below 10−6 mbar and a local pressure in the interaction area below 10−8 mbar. At this
local pressure, there is, on average, only 0.1 residual atom inside the pump-probe interaction
volume V . Therefore, at achievable pressures, we are already in a regime far below that of the
coherence required for a possible refraction effect, and where the notion of refractive index for
air can no longer be defined.

However, the Kerr effect in residual gas should not be an issue. Indeed, in the DeLLight
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setup at the LASERIX facility, the intensity of the pump in the interaction area is of the order
of 1020 W/cm2. At this intensity, the residual gas is completely ionised by the pump and all the
electrons are removed from the atoms. We thus have an electromagnetic wave crossing a pure
uniform relativistic plasma. Investigating the dynamics of this system will require numerical
simulations, but its effect on the DeLLight signal is expected to be negligible. Indeed, the
plasma density and the plasma index is transversely uniform in the pump-probe interaction
area, so that the perturbation of the probe phase is symmetric and the mean deflection ⟨δθy⟩

(DeLLight signal) is null. This is here an important feature of the Sagnac interferometry
measurement. While the residual plasma signal is expected to be null, let us estimate here the
plasma index for a residual gas at pressure p. The plasma index is np =

√
1 − ne/nc, where nc

is the critical density equal to:

nc =
ω2

0 × me

µ0 × c2 × e2 = 1.75 × 1027 m−3 (λ0 = 800 nm) (2.75)

and ne = 2.7 × 1022 × p(mbar) is the electron density. The change of the vacuum index 1 − np

due to the residual plasma is then equal to the QED change of vacuum index δnQED (I =
1020 W/cm2) when p = 10−8 mbar.

2.10.2 Experimental tests to distinguish between possible artefacts in-
duced by residual gas and the vacuum signal

Experimental tests which could distinguish between a possible artefact induced by the
residual gas and the vacuum signal are available.

The first test would be to delay the probe pulse with a delay of the order of 100 ps to ns,
in order for it to cross the interaction area after the pump pulse, but still crossing the residual
plasma (for which the lifetime is larger that the added delay). Then, the vacuum QED signal
would disappear since the probe is not in coincidence with the pump anymore, while an artefact
plasma signal would still be present. This is an important crosscheck.

The second possible test would be to invert the propagation directions of the probe and
reference pulses (i.e., moving from a counter-propagating pump-probe interaction to a co-
propagating one). Thus, any plasma signal should remain (and should even be increased since
the signal is integrated along the longitudinal interaction), while the vacuum signal would be
suppressed according to the correctional factor rtilt (equation 2.1).

Another possible test would be to decrease the intensity of the pump pulse by a factor of 10
in order to reduce the vacuum signal by the same factor, while any artefact due to the plasma
should be constant, since the intensity would still be high enough to completely ionise the
atoms.

Let us add that the Kerr effect in air will be used to calibrate and validate the DeLLight
experimental method. The measurement will be carried out with a relatively low pump intensity
(≈ 1011 W/cm2) in order to avoid generating a plasma via ionisation of air molecules, and the
optical Kerr effect will be measured as a function of the pressure in the interaction area. More
generally, the use of the Kerr or plasma signals can be used to monitor and control the spatial
and temporal overlap of the pump and probe pulses in the interaction area.
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2.11 Summary
In conclusion, with a waist at focus w0 = 5 for the pump and probe pulses and with an energy

of 2.5 J for the pump pulses as delivered by the LASERIX facility, the expected deflection
angle due to a QED change of the optical index of vacuum is about 0.1 prad. With an extinction
factor of the Sagnac interferometer of F = 4 × 10−6 (corresponding to an amplification factor
A = 1/(2

√
F ) = 250), it corresponds to a transverse shift of the interference intensity profile in

the dark output of ∆y = 0.015 nm. With a spatial resolution of σy = 10 nm, it can be observed
at a 5-sigma statistical confidence level with 25 days of collected data (1 sigma per square root
of number of days of collected data). With the HALPS laser (E > 30 J, 30 fs, 10 Hz) currently
in commissioning at ELI Beamlines Centre (Czech Republic), the expected signal would be an
order of magnitude higher, ∆y = 0.02 nm, and could be measured at 5-sigma with only 6 hours
of collected data.

Therefore, the sensitivity of the DeLLight experiment relies on three crucial parameters: the
quality of the focalisation, the extinction factor of the interferometer, and the spatial resolution.
The difficulties and limitations to reach a small waist of the probe at focus have been discussed
here. In chapters 5 and 7 respectively, we will show that the goal extinction factor and spatial
resolution are reachable.
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Chapter 3

Analysis method to extract the DeLLight
signal

The DeLLight signal consists of two distinct signals: the barycenter and the intensity
signals, as discussed in section 2.5.2. On one end, the barycenter signal corresponds to the
transversal shift of the intensity profile in the dark output of the interferometer due to the
DeLLight effect. We note ∆x and ∆y the barycenter signals along the horizontal x-axis and the
vertical y-axis respectively. On the other end, the intensity signal corresponds to the intensity
variation in the dark output caused by the DeLLight effect. We note ∆I

I the intensity signal
normalised by the reference intensity.

In this chapter, we describe the method to reconstruct both spatial and intensity signals.

3.1 Definition of the interference signal and the back reflec-
tions in the dark output of the interferometer

The intensity profile of the Dellight signal is recorded by a CCD camera in the dark output
of the interferometer and stored as Tagged Image File Format images (TIFF) at a repetition rate
of 10 Hz. Then, they are analysed using Python computation programs developed within the
DeLLight team. These TIFF images provides three distinct beam spots. A typical TIFF image,
here collected on December, the 20th (2021) with the DeLLight pilot experiment, is provided
on figure 3.1. The spot in the centre corresponds to the interference signal and both spots on
the outskirts correspond to the back-reflections of the incident beam on the back side of the
beamsplitter, as described in section 2.7.

3.2 Choice of the Region of Interest and efficiency

3.2.1 Definition of the Region of Interest
The first step of the analysis is to define the Region of Interest (RoI) of both the interference

signal and the reference (back reflection spot) from which the barycenter and intensity signals
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Figure 3.1: Raw CCD image of the signal (middle spot) and the reference (right spot) in the
dark output of the interferometer using a Basler CCD camera (acA1920-40gm) of pixel side
size 5.86 µm and a Pixel Bit Depth (ADU resolution) of 12 bits. The left spot is the other
back-reflection from the beamsplitter (unused in the analysis). The colour scale corresponds to
the ADU content of each pixel (dataset 6, collected on December, the 22th, 2021).

Figure 3.2: CCD images of the beam profiles of the reference (left) and the interference signal
(right) from the same image as figure 3.1. A 2-dimensional Gaussian fit delivers the beam
waists: wre f ≈ 745 µm and wsig ≈ 775 µm, which correspond to FWHMre f ≈ 875 µm and
FWHMsig ≈ 910 µm (dataset 6, collected on December, the 22th, 2021).

will be extracted. The coordinates of the centre of the RoI, (x0,sig, y0,sig) for the interference
signal and (x0,re f , y0,re f ) for the reference, are obtained by fitting a 2D Gaussian function of the
transverse intensity profile Isig(x, y) of the first image of the given data-set, with two main axes
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(horizontal x-axis and vertical y-axis). An example of these profiles is shown on figure 3.2.
Then we define a square RoI, of side length wRoI , centred around each of these positions.

The size wRoI of the RoI on which the analysis is performed is crucial in order to obtain
the best sensitivity possible. Indeed, choosing too large a RoI would degrade the spatial and
intensity resolutions (as will be explained thoroughly in chapter 6) because more noise is
integrated. Moreover, for even greater RoI, the tail distributions of the other two spots would
also be integrated which would skew the barycenter and the intensity values. On the opposite,
too small a RoI would truncate the signal and thus skew the barycenter and intensity values.

3.2.2 Influence of the RoI-size on the barycenter shift efficiency
The measured DeLLight signals along the horizontal x-axis, ∆xmes, and vertical y-axis,

∆ymes, depend on the size of the RoI wx and wy respectively, such as:

∆xmes =

∫ wx/2

−wx/2
x × Isig,y(x + ∆x) dx∫ wx/2

−wx/2
Isig,y(x + ∆x) dx

(3.1)

∆ymes =

∫ wy/2

−wy/2
y × Isig,x(y + ∆y) dy∫ wy/2

−wy/2
Isig,x(y + ∆y) dy

(3.2)

The efficiencies ϵx and ϵy to measure the DeLLight signals ∆x and ∆y respectively are
defined by:

ϵx = ∆xmes/∆x (3.3)
ϵy = ∆ymes/∆y (3.4)

We have ϵx = ϵy = 1 when wRoI = ∞.
We now calculate the efficiency ϵs as a function of the RoI-size wx and wy, in the case of a

Gaussian intensity profile for the interference signal defined as:

Isig,x(x) = exp

− (x − ∆x)2

2σ2
b,x


Isig,y(y) = exp

− (y − ∆y)2

2σ2
b,y

 (3.5)

Additionally, equation 3.5 can be linearized using the following mathematical approximation:

a exp−
(x − bσ2

a )2

2σ2 ≈ (a + bx) exp−
x2

2σ2 (3.6)

when bσ2

a << 1. Considering equations 3.5, these constants are: a = 1, ∆x =
bxσ

2
b,x

a << 1,

∆y =
byσ

2
b,y

a << 1, hence bx =
∆x
σ2

b,x
and by =

∆y
σ2

b,y
.
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Thus, the Gaussian intensity profiles can be written as:

Isig,x(x) = (1 + x
∆x
σ2

b,x

) exp (−
x2

2σ2
x,y

) (3.7)

Isig,y(y) = (1 + y
∆y
σ2

b,y

) exp (−
y2

2σ2
b,y

) (3.8)

By noting Ax =
wx

2
√

2×σb,x
and Ay =

wy

2
√

2×σb,y
, and by using Wolfram Alpha (computing

program), we obtain:

∆xmes = ∆x ×

√
2π × σb,x × erf(Ax) − wx exp (−A2

x)
√

2π × σb,x × erf(Ax)
(3.9)

∆ymes = ∆y ×

√
2π × σb,y × erf(Ay) − wy exp (−A2

y)
√

2π × σb,y × erf(Ay)
(3.10)

where erf is the error function defined by erf(x) = 2
√
π

∫ x

0
exp−t2 dt.

Finally, if we suppose the beam to be perfectly Gaussian in all directions, the efficiencies
ϵx and ϵy in both directions are equal, such as: ϵs = ϵx = ϵy. After further computations, the
efficiency ϵs for a squared RoI wRoI = wx × wy is:

ϵs =
∆ymes

∆y
= 1 −

wRoI × exp (−A2
y)

√
2π × σb,x × er f (Ay)

(3.11)

The theoretical efficiency ϵs is plotted in figure 3.3 (orange) as a function of the RoI-size
wRoI, normalised to the FWHM of the Gaussian beam profile. We have ϵs = 0.12 when
wRoI = 0.5 × FWHM and ϵs = 0.4 when wRoI = 1 × FWHM.

Additionally, we have measured the real efficiency (purple plot on figure 3.3) in order to
crosscheck it with the theoretical one. This measurement has been done by sending a direct
Gaussian beam on the CCD camera via a reflection on a mirror mounted on a micrometric
translation stage. The beam was translated horizontally by step of 50 µm and for each beam
position, we measured the horizontal shift ∆x while keeping a fixed RoI. When doing the
analysis process of DeLLight data images collected by the CCD camera in the dark output of
the interferometer, we can optimise the RoI-size accordingly in order to optimise the figure of
merit which is proportional to the efficiency over spatial resolution ratio ϵy/σy.

52



Figure 3.3: Evolution of the theoretical efficiency ϵs (orange) as a function of the RoI-size wRoI ,
normalised to the FWHM of the Gaussian beam profile. The measured efficiency is plotted in
purple.

3.3 Extraction of the DeLLight signal in the dark output
using the barycenter

3.3.1 Computation of the barycenter of the intensity profiles
The second step of the analysis consists of calculating the barycenter of the reference and

signal beams for successive laser shots 2i − 1 and 2i of a given dataset. The barycenter of the
signal along the horizontal x-axis x̄sig(i) is defined by:

x̄sig(i) =

∑wRoI
i, j=1 xk × Ii

x(xk, yk)∑wRoI
i, j=1 Ii

x(xk, yk)
(3.12)

where Ii
x(xk, yk) is the intensity profile along the horizontal x-axis of the pixel k in the given

RoI of an odd (2i − 1) or even (2i) image.
Similarly, we define the barycenter of the signal along the vertical y-axis:

ȳsig(i) =

∑wRoI
i, j=1 yk × Ii

y(xk, yk)∑wRoI
i, j=1 Ii

y(xk, yk)
(3.13)

and the barycenter of the reference (back-reflection) along the horizontal x-axis and vertical
y-axis respectively:

x̄ref(i) =

∑wRoI
i, j=1 xk × Ii

x(xk, yk)∑wRoI
i, j=1 Ii

x(xk, yk)
(3.14)
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ȳref(i) =

∑wRoI
i, j=1 yk × Ii

y(xk, yk)∑wRoI
i, j=1 Ii

y(xk, yk)
(3.15)

Once these barycenters are calculated, they are separated into ON and OFF barycenters
(corresponding to odd and even images) since we successively alternate laser shots with (ON)
and without (OFF) pump/probe interaction in the interferometer. The ON and OFF barycenters
are written x̄ON

sig (i), ȳON
sig (i), x̄OFF

sig (i) and ȳOFF
sig (i) for the interference signal, and x̄ON

ref (i), ȳON
ref (i),

x̄OFF
ref (i) and ȳOFF

ref (i) for the reference spot.

3.3.2 Suppression of the beam pointing fluctuations

The next step of the analysis is to suppress the beam pointing fluctuations of the laser,
using the back-reflection of the Sagnac interferometer beamsplitter, namely the reference.
Indeed, it directly corresponds to the incident beam entering the interferometer, and thus has
the same beam pointing fluctuations as the signal. So, for each ON and OFF measurements, we
suppress the beam pointing fluctuations using the correlation of the barycenters of the signal
(x̄sig(i),ȳsig(i)) and the reference (x̄ref(i),ȳref(i)). The corrected barycenters are then:

x̄OFF
corr (i) = x̄OFF

sig (i) −
(
aOFF

x × ȳOFF
ref (i) + bOFF

x

)
x̄ON

corr(i) = x̄ON
sig (i) −

(
aOFF

x × ȳON
ref (i) + bOFF

x

)
(3.16)

ȳOFF
corr (i) = ȳOFF

sig (i) −
(
aOFF

y × ȳOFF
ref (i) + bOFF

y

)
ȳON

corr(i) = ȳON
sig (i) −

(
aOFF

y × ȳON
ref (i) + bOFF

y

)
(3.17)

where aOFF
x , aOFF

y , bOFF
x and bOFF

y are constants obtained by fitting the linear correlation
between the signal and the reference, using only the OFF measurements.

3.3.3 Computation of the DeLLight barycenter signal

The DeLLight signals ∆x(i) and ∆y(i), along the x and y-axis respectively, are obtained by
applying the zero suppression (”ON-OFF”), and thus for the ith ”ON-OFF” measurement, we
have:

∆x(i) = x̄ON
corr(i) − x̄OFF

corr (i) (3.18)
∆y(i) = ȳON

corr(i) − ȳOFF
corr (i) (3.19)

Their average values ∆x = ⟨∆x(i)⟩ and ∆y = ⟨∆y(i)⟩, calculated over a set of ON-OFF
measurements, correspond to the final measured DeLLight signal in the horizontal and vertical
axis respectively.

In the absence of pump/probe interaction, there are only successive OFF measurements,
corresponding to a so-called ”OFF-OFF” measurement. In this case, the associated standard
deviations of ∆x(i) and ∆y(i) corresponds to the spatial resolutions σx and σy respectively.
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An example of dataset analysis of ”ON-OFF” measurements of the Kerr effect in air is
presented on figure 3.4, showing the suppression of the beam pointing fluctuation thanks to
the correlation between interference signal and reference, and the extraction of the ”ON-OFF”
DeLLight signal ∆y.

Figure 3.4: (Upper plots) Linear correlation of the barycenters in intensity of the interference
signal ȳsig(i) and the back-reflection ȳre f (i), calculated along the vertical axis y. The data are
shown as black points, for both OFF (left panel) and ON (right panel) measurements, while
the result of the linear fit obtained using the OFF data only is shown in both panels as a blue
line. (Lower plots) black points: ON-OFF raw signal ȳON

sig (i) − ȳOFF
sig (i) without beam pointing

correction; blue points: ON-OFF reconstructed signal ∆y(i) = ȳON
corr(i) − ȳOFF

corr (i) after beam
pointing correction. The signal ∆y(i) is clearly identifiable in the lower right plot with an
average value ∆y = ⟨∆y(i)⟩ = −172.5 ± 6.1 nm. In this example, data have been collected on
December, the 22th, 2022, dataset6.
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3.4 Calculation of the DeLLight intensity signal
The transverse shift of the intensity profile in the dark output of the Sagnac interferometer

caused by the DeLLight effect can also translate as an intensity differential between ON and
OFF measurements. The intensity in a chosen RoI corresponds to the sum of the quantity of
photo-electron received by each pixel of the RoI in ADU.

Similarly to the barycenter calculation method described in the previous section, the first
step of the intensity signal calculation method is to define a square RoI around the signal
and reference spots on the TIFF images collected by the CCD camera in the dark output of
the interferometer. For a given laser shot, the intensity of the signal is written Isig(i) and the
intensity of the reference is written Ire f (i).

The second step of the analysis is to separate ON and OFF intensity values which are
written ION

sig (i) and IOFF
sig (i) for the signal ; ION

ref (i) and IOFF
ref (i) for the reference. Moreover, the

reference intensities are used to normalise the signal intensities which is mandatory since the
beam intensity fluctuates over time and from laser shot to laser shot. The normalised ON and
OFF intensities are then:

ION
norm(i) =

ION
sig (i)

ION
ref (i)

(3.20)

IOFF
norm(i) =

IOFF
sig (i)

IOFF
ref (i)

(3.21)

Similarly to the barycenter analysis method, we can remove the slow drifts linked to low
frequencies to obtain the DeLLight signal δI(i) in intensity for the ith ”ON-OFF” measurement:

δI(i) = ION
norm(i) − IOFF

norm(i) (3.22)

The final normalised DeLLight signal ∆I
I for all laser shot is:

∆I
I
=

〈
∆I
I

(i)
〉
=

〈 ION
norm(i) − IOFF

norm(i)
IOFF
norm(i)

〉
(3.23)

The intensity resolution σ∆I/I corresponds to the standard deviation of ∆I
I .
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Chapter 4

Prototypes of Sagnac interferometers

The DeLLight experiment went through several stages of development with different
prototypes of Sagnac interforemeters. The first one consists of a rectangular configuration
composed of three mirrors, without focalisation of the probe beam. It was used to validate
the experimental and analysis methods by doing sensitivity and Kerr measurements in silica
(results presented in chapter 8). The second prototype is a triangular configuration composed
of two mirrors, with focalisation in the interaction area using two optical lenses. It was used to
refine the sensitivity of the experiment, in order to reach the final DeLLight goal parameters
described in chapter 2. Kerr measurements also have been conducted in air with this prototype
(results in chapter 9).

In this chapter, we thoroughly describe the experimental setups of these two prototypes.

4.1 Prototype 1: square configuration of the Sagnac interfer-
ometer (no focalisation)

4.1.1 Experimental setup
The goal of the first DeLLight prototype was to measure the extinction factor and the spatial

resolution of a Sagnac interferometer in femtosecond regime, using a simple square interferom-
eter with 3 mirrors and without focalisation of the probe beam inside the interferometer. This
prototype has then been used to validate measurement and analysis techniques by measuring
the non-linear Kerr effect in fused silica. This setup was developed in the LASERIX facility on
an optical table where air disturbances and mechanical vibrations were greater than it would
have been in a vacuum chamber.

The experimental setup of this square configuration is shown on figure 4.1 (photograph
on figure 4.2). This first prototype was initially developed at low energies, without the full
potential of the laser delivered by the LASERIX facility. The delivered energy per pulse is
Epulse ≈ 20 µJ, the pulse duration is τ = 70 fs, and the repetition rate is 10 Hz. The central
wavelength is λ0 = 815 nm, with a spectral width of ∆λ = 30 nm (measured at FWHM).
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Figure 4.1: Schematic of the DeLLight Prototype 1: square Sagnac interferometer, composed
of three mirrors and without any focalisation of the pump (blue) and probe (green).

Figure 4.2: Photograph of the experimental setup of the square Sagnac interferometer, composed
of three mirrors and without any focalisation of the pump (blue) and probe (red) beams. The
green beam is the incident beam before pump/probe division.

Before sending the laser beam inside the Sagnac interferometer, we use a confocal telescope
composed of two spherical lenses and a pinhole placed at the focal point to deliver a smooth
transverse intensity profile that is close to a Gaussian, with a transverse beam size of about 1
mm at FWHM.
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On this prototype, there is no need for distinct optical paths between the probe and the
pump because of the low energies involved, so the initial beam is split in half using a 50/50
beamsplitter (BS-1) to provide two distinct beams of energies E ≈ 10 µJ each. The reflected
beam is the probe, which will be used on its own to study the resolution (see chapter 6) and the
extinction factor (see chapter 5). The transmitted beam is the pump, which will be used in a
second step to validate the DeLLight measurement technique by measuring the Kerr effect in a
silica slide, as will be developed in chapter 8.

The probe goes through a polariser (Polar.), which selects the horizontally polarised (p-pol.)
component of the electric field and a neutral density filter (ND), which sets the suitable intensity
of the incident probe pulse in the interferometer. A delay stage (MDS-1) is used to temporally
synchronise later on the probe and the pump in the interaction area in the interferometer.
Finally, the probe enters the Sagnac interferometer via a beamsplitter (BS-2), which is a
50/50 commercial femtosecond p-pol. beamsplitter (Semrock FS01-BSTiS-5050P-25.5). Its
coating is produced by ion beam sputtering, which delivers uniform atomic layers on the
substrate’s surface. The theoretical reflection and transmission coefficients r2 and t2 (defined in
equation 2.11), specified by the manufacturer, are r2 = t2 ≃ 50 ± 3%, over a spectrum between
650 and 1100 nm. The phase factor δϕ of the BS is not characterised by the producer. Its
thickness is 3 mm and its group delay dispersion (GDD) is less than 30 fs2 for both reflection
and transmission. The reflection factor of the anti-reflective coating on the rear side specified
by the manufacturer is r2

AR ≃ 0.1% at 800 nm.
The mirrors inside the interferometer are standard femtosecond dielectric mirrors (Thorlabs

UM10-45A) with a low GDD value (less than 30 fs2) and standard laser grade surface qualities,
such as a flatness peak-to-valley under λ/6 at 633 nm, a quality 15-5 Scratch-Dig, and a
roughness with typical RMS < 5Å. The beamsplitter and one of the mirrors (M-3) are controlled
by kinematic mirror mounts with static piezoelectric adjusters (Polaris K1S2P Thorlabs) for
horizontal and vertical alignment with an angular resolution of 0.5 µrad for a 0.1 V step. The
lateral position of one mirror is controlled by a micrometric translation stage. A silica plate
(5 mm thickness), which corresponds to the interaction area where the pump will be focused
on the unfocused probe, is placed between M-1 and M-2 at roughly the same distance from
BS-2. The probe pulse corresponds to the reflected pulse. The reference pulse corresponds to
the transmitted pulse.

The dark output of the interferometer is read by a CCD camera (Basler acA1300-60gm)
containing 1024 × 1280 pixels, and externally triggered at 10 Hz (as will be the case for every
CCD cameras presented in this manuscript). The pixel dimension is 5.3 × 5.3 µm2 and the
maximum charge storage capacity before saturation (full well capacity) is about 104 electrons
per pixel. Additionally, an interferential multi-layer dielectric filter of spectral width ∆λ = 3 nm,
centred at 808 nm (Semrock), is placed in front of the CCD camera. Rotation of the incident
angle of the spectral filter allows us to select a wavelength from 808 to 800 nm and thereby
optimise the extinction factor in the dark output by minimising the r/t asymmetry coefficient δa
of the BS (defined in section 2.5). Since r2 and t2 also depend on the polarisation of the incident
beam, the deviation coefficient δa is also minimised by rotating the incident polarisation with a
half-wave plate (WP) installed just after the polariser before the Sagnac interferometer.

Meanwhile, the pump first goes through a variable neutral density (V-ND), which will
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be used to control the pump energy sent in the interaction area. Then, a shutter allows
for the successive interaction and non interaction of the probe with the pump (”ON-OFF”
measurements) at 5 Hz. Finally, a lens (L-1) of focal length f = 500 mm (Thorlabs LA1908-B),
placed at a distance f /2 from the interaction area, is used to reduce the waist of the pump in
the silica plate Si (3 mm thick NBK-7 window, Thorlabs WG10530-B) to reach half the waist
at focus of the probe.

4.1.2 Alignment and synchronisation of the probe and pump pulses
The alignments required before doing data collection are as follows. Let us note that all

throughout the setup, the beam is always aligned in the horizontal plane, at an incident angle
on each mirror of 45°. First, we adjust the polariser (Polar.) on the probe to only let the
p-polarisation component through. Same goes for the half-wave plate (WP). Moreover, the
BS-2 is properly aligned at an incident angle of 45° using the optical mount placed on a rotation
stage, thus allowing to switch the mirror angle from 0° to 45° to perform an auto-collimation
alignment. Finally, the extinction in the dark output is optimised on the CCD camera (without
the neutral density ND if necessary), using one of the Sagnac mirrors mounted on piezoelectric
motors first and the half-wave plate (WP) second. Additionally, we add neutral densities
before the Sagnac interferometer to adjust the intensity of the back-reflections in order to stay
below the saturation threshold of the pixels on the CCD camera (usually with an intensity
of ≈ 3000 ADU, the saturation being at 4096 ADU). Finally, we rotate the spectral filter if
necessary to optimise the extinction.

After aligning the probe, we proceed with the pump by first aligning the beam on the lens
(L-1), using the CCD camera placed far enough from it to reach a better pointing precision.
To perform the spatial synchronisation between the probe and the pump at focus, we place the
CCD camera as to have its sensor plane in place of the silica plane. Thus, we can control the
position of the pump using the mirror (M-4) and adjust the impact parameter b between probe
and pump at focus as desired. Moreover, we can adjust the temporal synchronisation by using
the delay stage (MDS-1) until interference fringes appear on the CCD camera, with the best
contrast possible which implies an optimal temporal synchronisation.

The last part of the alignment process consists of preparing the ”ON/OFF” measurements
by first turning the half-wave plate (WP) to see the interference signal and collect enough light
on the CCD camera in the dark output (same intensity as the back-reflections), even if the
extinction is degraded by doing so. This aspect will be detailed in chapter 5. Finally, we can
turn on the ON/OFF shutter and collect measurements.

4.2 Prototype 2: triangular configuration of the Sagnac in-
terferometer with focalisation

4.2.1 Experimental setup
The second prototype is a triangular Sagnac configuration composed of two mirrors, with

focalisation of the probe beam in the interaction area using two optical lenses. The goal of
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this setup, considered as the DeLLight pilot experiment, is to measure in a gas (here in air) the
DeLLight deflection signal induced by the optical Kerr effect. This setup was developed in
the main room of the LASERIX facility, in the final DeLLight vacuum chamber, and under a
laminar flow.

The experimental setup is very similar to the final DeLLight setup, which will be used
with intense pump pulses in the DeLLight vacuum chamber. However, for the measurements
in air, the energy of the pump pulse is small (less than 15 µJ) and the probe and pump are
co-propagating in order to integrate the Kerr deflection along the longitudinal overlap of the
two pulses.

Figure 4.3: Schematic of the DeLLight Prototype 2: triangular Sagnac interferometer config-
uration with focalisation of the pump (blue) and the probe (green), in the DeLLight vacuum
chamber. The red beam is the incident beam before pump/probe division.

The setup, displayed on figure 4.3, is installed on a devoted optical table composed of a
breadboard and the DeLLight vacuum chamber. The p-polarised input beam (pulse duration
τ0 = 70 fs ; energy E ≈ 50µJ) is first sent on the optical breadboard to a beam pointing
stabilisation system (produced by MRC company) composed of two actuators mirrors (Ac-
1 and Ac-2) and two position sensitive detectors (PSD-1 and PSD-2) used to stabilise the
incident beam both in the far field (angular stabilisation) and the near field (transverse position).
However, this stabilisation system is still in development and is not yet used for the deflection
measurements in air. For now, this system is only used to pre-align the beam by reading the
signals of both PSDs on an oscilloscope on which the "zero position" corresponds to the chosen

61



position of reference on the actuators.
The transverse waist of the incident beam is then reduced to 1 mm (FWHM) by an confocal

telescope composed of two lenses (Lt-1 and Lt-2) and a 150 µm diameter pinhole Ph-1 (spatial
filter) at focus to obtain an almost Gaussian transverse intensity profile. Additionally, we use
an iris (D-1) placed just before the telescope to better control the transverse beam size.

The next step consists of splitting the beam in half to obtain two distinct beams of equal
energy, the pump beam (in blue on figure 4.3) and the probe beam (in green), using a 50/50
beamsplitter (BS-2).

Before entering the vacuum chamber, the pump pulse first reflect on a cubic mirror mounted
on a delay motorised stage (MDS-1), which will be used to ensure the time coincidence of the
pump and probe in the interaction area in the Sagnac interferometer. The energy of the pump
can be chosen by the combination of a rotating half wave plate and a femtosecond polariser set
to p-polarisation, or by using a variable neutral density with constant optical path length. Then,
the pump goes into the vacuum chamber and is focused in the interaction area, using a best form
spherical lens (L-3) of focal length 100 mm (Thorlabs LBF254-100-B) and a D-shape mirror
(M-3) to adjust the spatial overlapping with the probe at focus. Additionally, the pump after
interaction is focalised on the CCD camera in the dark output in order to monitor the presence
of the pump on the CCD images (not shown on fig. 4.3 not to overcrowd the schematic). It is
called the ”optical counter”.

On the other hand, the probe beam is sent directly in the vacuum chamber after passing
through BS-2. The polarisation of the probe is precisely adjusted using a piezo motorised
half-wave plate rotation (λ/2 − 2) to select the desired extinction in the dark output of the
interferometer. The last mirror before the Sagnac interferometer is mounted on a piezo
motorised linear stage (MDS-2) and is used to translate horizontally the incident beam as
required in order to select the area on the optics of the interferometer which gives the minimum
phase noise. Then, the beam is splitted in half by a 50/50 femtosecond p-pol. beamsplitter
BS-3 (Semrock FS01-BSTiS-5050P-25.5, same as the one used in the first prototype): the
transmitted pulse corresponds to the reference (Ref) and the reflected pulse corresponds to the
probe (Probe). The interferometer has a right-angled isosceles triangle configuration, formed
by BS-3, two dielectric mirrors positioned at a 22.5° incident angle (M-1 and M-2), and two
best form spherical lenses (L-1 and L-2) of focal length 100 mm (Thorlabs LBF254-100-B),
which focalise both Probe and Ref in the interaction area so that the probe is co-propagating
with respect to the pump and is in time coincidence with it. The beamsplitter BS-3, the mirror
M-2 and the lens L-2 of the interferometer are controlled by static piezoelectric adjusters with
nanometric accuracy. The high reflective coating (R = 99.99 %) of M-1 and M-2 was produced
by the Laboratoire des Matériaux Avancés (LMA, IP2I-Lyon). Additionally, the Ref is not in
time coincidence with the pump and is therefore unaffected by it.

Finally, the DeLLight interference signal of the Probe and Ref is read in the dark output
of the interferometer by a CCD camera (Basler acA3088-16gm, pixel size 5.84 × 5.84 µm).
The spatial shot noise resolution of this CCD camera is studied and measured in chapter 6. An
interferential multi-layer dielectric filter (Semrock) of spectral width ∆λ = 3 nm, centred at 808
nm, is placed in front of the CCD camera. By rotating the incident angle of the filter, we can
select the wavelength from 808 to 800 nm to optimise the extinction factor in the dark output.
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The energy of both Probe and Ref in the Sagnac interferometer is of a few µJ per pulse and
the transverse beam size before focalisation is about 1 mm (FWHM). The energy of the pump
can vary from 0.4 to 15 µJ. The duration of the pump and probe pulse is about τ ≈ 70 fs in the
interaction area. It gets higher than that of the initial beam delivered by LASERIX because of
dispersion phenomena in all the optics it encounters before reaching the Sagnac interferometer.
The minimum waist at focus of the probe and the pulse beams in the interaction area varies
from 25 to 40 µm depending on the data campaigns.

4.2.2 Alignment and synchronisation of the probe and pump pulses
The alignment steps of this experimental setup are as follows:

• Pre-alignment of the incident beam, using the MRC stabilisation system, by reading the
signals of both PSDs (PSD-1 and PSD-2) on an oscilloscope on which the "zero position"
corresponds to the chosen position of reference on the actuators (Ac-1 and Ac-2);

• Alignment of the confocal telescope (Lt-1, Lt-2) placed before BS-2, by adjusting the
pinhole (Ph-1) and the iris (D-1) as needed to obtain a Gaussian transverse intensity
profile (around 1 mm at FWHM);

• Alignment of the incident beam in the Sagnac interferometer, using iris D-2 and D-3;

• Alignment of the interferometer, using the half-wave plate λ/2 − 2 and the lens L-2
(piezoelectric motor) to adjust the extinction. Thus, the spatial overlap of the pump and
probe pulses will remain unchanged when adjusting the alignment of the interferometer;

• Alignment of the rotation of the spectral filter ∆λ to maximise the extinction;

• Adjustment of the spatial overlap between the pump and the probe at focus in the
interaction area, by placing a mirror before focus and a CCD camera of pixel size 1.85 x
1.85 µm2 at focus;

• Adjustment of the time coincidence between the pump and the probe at focus in the
interaction area, using the same CCD camera at focus and the delay translation (MDS-1).
Both beams are synchronised when an interference fringe pattern appears, with the
highest contrast possible;

• Alignment of the optical counter on the corner of the CCD camera.

4.2.3 Advanced prototype 2 with spatial filter in the dark output and
CCD readout outside the vacuum chamber

An advanced version of the DeLLight Prototype 2 was developed. It consists of deporting
the CCD camera in the dark output of the interferometer outside of the vacuum chamber. A
spatial filtering stage is also placed in the dark output in front of the CCD in order to suppress
the interference phase noise induced by the diffusion on the surface defects of the optics inside
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the interferometer. The spatial filtering stage consists of a focusing best form optical lens (L-4)
of focal length f = 200 mm and a pinhole (Ph-2) of diameter 200 µm at focus. The CCD
camera is placed at exactly 2 f so as to have a magnification of 1.

Figure 4.4: Schematic of the DeLLight advanced Prototype 2: triangular Sagnac configuration
with pump (blue) and probe (green) focalisation, in the DeLLight vacuum chamber and with
the CCD readout and spatial filter in the dark output deported outside the DeLLight vacuum
chamber.
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Figure 4.5: Photograph of the DeLLight advanced prototype inside the vacuum chamber. The
spatial filter and the CCD readout in the dark output of the interferometer are outside the
vacuum chamber and therefore not shown in this photo. The probe path is in red and the pump
path is in yellow.

Figure 4.6: Photograph of the DeLLight vacuum chamber in the LASERIX laser clean room,
under laminar flux.
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Chapter 5

Measurement of the extinction in the dark
output of the Sagnac interferometer

The extinction in the dark output of the Sagnac interferometer is one of the critical parame-
ters to take into account in the DeLLight experiment, the other being the spatial and intensity
resolution, as will be developed in chapters 6 and 7. In this chapter will be thoroughly developed
the measurement of the extinction factor of the interferometer in the different stages of the
DeLLight experiment. As seen in chapter 4, the first prototype is a rectangular configuration
composed of three mirrors, without focalisation of the probe and pump beams. The second one
is a triangular configuration composed of two mirrors, with focalisation in the interaction area
using two optical lenses.

5.1 Measurement method of the extinction factor
The extinction factor F is defined as F = Isig/I0, where Isig is the intensity of the interfer-

ence signal in the dark output of the interferometer and I0 is the intensity of the incident beam
entering the interferometer. The DeLLight interferometer enables a very strong extinction,
corresponding to a very low extinction factor of the order of 10−5 to 10−6. Therefore, a direct
measurement cannot be carried out since it would require a very high dynamic range of the
detector.

To solve this issue, the extinction factor is calculated by measuring the intensity of the
interference signal in the dark output of the interferometer, relatively to the intensity IAR,1 of the
direct back-reflection on the rear side of the beamsplitter, which can be written (see section 2.7,
equation 2.58):

IAR,1 =
RAR

2
× I0 (5.1)

where RAR is the reflection factor of the anti-reflective coating of the beamsplitter.
The extinction factor of the interferometer then becomes:

F =
Isig

I0
=

Isig

IAR,1
×

RAR

2
(5.2)
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Therefore, we first need to measure precisely the coefficient RAR in order to measure the
extinction factor. Then, by recording a CCD image in the dark output of the interferometer at
maximal extinction (best alignment), we can estimate the extinction factor by calculating the
ratio ” Isig

IAR,1
” given in equation (5.2).

The measurement of the rear-side reflection factor RAR is detailed in appendix B. We have
measured:

RAR = (1.1 ± 0.1) × 10−3 (5.3)

which corresponds to the manufacturer’s approximate value. In the next section, we present the
measurement of the extinction factor for the two successive interferometer prototypes.

5.2 Measurement of the extinction factor
The extinction factor F is measured by recording a CCD image in the dark output of the

interferometer, at maximum extinction (best alignment). Using equations 5.2 and B.11, the
extinction factor F (i, j) for the pixel (i, j) contained in the selected Region of Interest (RoI), is
equal to:

F (i, j) =
Isig(i, j)

IAR,1(i, j)
× 5 × 10−4 (5.4)

where RAR
2 = 5 × 10−4, and Isig(i, j) and IAR,1(i, j) are the intensity profiles (in ADU unit) of

the interference signal and the direct back-reflection respectively, in the dark output of the
interferometer.

5.2.1 Extinction factor without spatial filter
First, we present the extinction for the two successive DeLLight prototypes, without spatial

filter in the dark output of the interferometer. In both prototypes, the beamsplitter of the Sagnac
interferometer is aligned at an incident angle of 45° to maximise the extinction. In both cases,
a pass-band spectral filter ∆λ, centred on λ0 = 808 nm with a bandwidth of 3 nm (FWHM) is
placed in the dark output in front of the CCD camera (see figures 4.1 and 4.3). The filter is
slightly rotated, which allows to reduce the central wavelength λ0 to the preferred value in order
to minimise the asymmetric (R/T ) coefficient δa of the beamsplitter, and therefore maximise
the extinction factor.

An example of CCD images collected in the dark output of the interferometer at maximal
extinction is shown figure 5.1 for the first prototype (rectangle interferometer without focusing),
using the setup presented on figure 4.1. On the left panel, the upper image corresponds to the
raw CCD image (colour scale in ADU content) where the interference signal Isig is in the centre
in the white dotted area corresponding to a RoI approximately equal to the width w (FWHM)
of the intensity profile (wRoI ≈ w). The edge spots correspond to the back-reflections IAR,1 and
IAR,2. The lower image is the same image, although with saturated back-reflections in order to
better visualise the residual intensity pattern.
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Figure 5.1: CCD images collected in the dark output of the interferometer at maximal extinction
of the interferometer for the Prototype-1 (rectangular interferometer without focusing), with a
colour scale in ADU content. (Left panel) Top image: raw image where the intensity profile
of the interference signal Isig is in the centre in the white dotted area corresponding to a
RoI wRoI equal to the beam width w (FWHM). Both spots on the edges correspond to the
intensity profiles of the back-reflections IAR,1 and IAR,2 ; Bottom image: same raw image but
with saturated back-reflections with respect to the colour scale in order to better visualise the
residual intensity pattern of the interference signal in the middle. (Right panel) Distribution
of the extinction factor in the same selected RoI as in the left panel. The maximal extinction
factor achieved is F ≈ 3 × 10−5 in the centre.

Two types of phase noise pattern can be distinguished: hot spots in the central area of
the expected intensity signal and interference rings with large transverse size (low spatial
frequency). The diffraction rings correspond to a surface defect (flatness) on the mirrors at
large scale (low spatial frequency), compatible with λ/10. The hot spots in the central area
correspond to small sized surface defects due to roughness defect (high spatial frequency).
Additionally, if we look at the distribution of the extinction factor F(i, j) in centre area (right
panel on figure 5.1), calculated using equation (5.4), we can see the influence of the phase
noise pattern on the extinction. The maximal extinction factor achieved for the rectangular
configuration of the Sagnac interferometer is:

Fmax(Prototype 1) = 3 × 10−5 (5.5)

NB: the gain of the CCD camera is uniform on the sensor, as will be thoroughly explained
in chapter 6, section 6.2. Thus, there is no additional factor on the extinction results described
in this chapter.
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An example of CCD images collected in the dark output of the interferometer at maximal
extinction is shown on figure 5.2 for the second prototype (triangle interferometer with focusing).
We use the experimental setup presented on figure 4.3. For this measurement, the incident
energy entering the Sagnac interferometer is Ein = 24 µJ, the beam width (FWHM) is w =
1 mm and the pulse duration (FWHM) is about 70 fs, corresponding to a peak intensity of
4 × 1010 W/cm2.

A similar extinction is observed, with a similar noise pattern. We measure the maximal
extinction:

Fmax(Prototype 2) = 3 × 10−5 (5.6)

Therefore, the optical lenses introduced in this prototype did not introduce much more additional
noise.

Figure 5.2: Same as figure 5.1, for the triangular Sagnac interferometer without spatial filter.
The maximal extinction factor achieved is F ≈ 3 × 10−5 in the centre.

5.2.2 Extinction factor with a spatial filter in the dark output
In this section, we use the second prototype (triangle interferometer with focusing), as

displayed on figure 4.4. The beamsplitter of the Sagnac interferometer is aligned at an incident
angle of 45° to maximise the extinction in the dark output.

The residual phase noise of the interference signal observed in the previous extinction
images seems to be induced by diffusion on surface defects on the optics in the interferometer
(mirrors, lenses and/or beamsplitter). In order to suppress that noise, we added a spatial filter in
the dark output of the interferometer, after the spectral filter and before the CCD readout camera,
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as shown on figure 4.4 for Prototype 2 (triangle Sagnac with focusing, with the interferometer
beamsplitter aligned at an incident angle of 45° to maximise the extinction.). The spatial
filtering stage consists of a focusing best form optical lens (L-4) of focal length f = 200 mm
and a pinhole of diameter 200 µm at focus. The CCD camera is placed at exactly 2 f in order to
have a magnification of 1.

Figure 5.3: Same as figure 5.2, but with the spatial and spectral filters placed after the triangular
Sagnac interferometer. The maximal extinction factor achieved is F ≈ 3 × 10−6 in the centre.

Figure 5.3 shows a typical CCD images recorded in the dark output of the interferometer,
at maximum extinction, with the spectral filter (λ0 = 808 nm, ∆λ = 3 nm) placed after the
interferometer. The spectral filter is also slightly rotated in order to maximise the extinction.
For this measurement, the incident energy entering the Sagnac interferometer is Ein = 24 µJ,
the beam width (FWHM) is w = 1 mm and the pulse duration (FWHM) is about 70 fs,
corresponding to a peak intensity of 4 × 1010 W/cm2.

We can see that the diffraction rings and the residual noise pattern of the interference signal
has been strongly suppressed by at least a factor 10. We now have a uniform residual signal
with a very low intensity compared to the Sagnac configuration without spatial filter in the dark
output. Thus, the spatial filter is able to get rid of all phase noise diffraction which were present
on figure 5.2. The extinction factor in the centre area is then equal to:

Fmax(Prototype 2 with spectral and spatial filter) = 3 × 10−6 (5.7)

However, we still observe a deterioration of the phase noise on the x-axis (horizontal plan). We
think that it is due to residual contribution of the intensity tails of the back-reflections.
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Figure 5.4: Same as figure 5.3, but with the spectral filter placed before the triangular Sagnac
interferometer. The maximal extinction factor achieved is F ≈ 3 × 10−6 in the centre.

If we now place the spectral filter before the Sagnac interferometer, we observe the same
quality of extinction, as shown on figure 5.4. In that case, the intensity of the incident pulse is
reduced by a factor around 100 (a factor 10 due to the transmission of the filter, and another
factor 10 due to the extension of the pulse duration), and is about 4 × 108 W/cm2. Therefore,
the extinction factor is unmodified whether the spectral filter is placed before or after the
interferometer, although it is slightly less symmetrical and homogeneous when the spectral
filter is placed after (figure 5.4). Thus, there is no non-linear effects caused by the energy of
the probe at focus in the Sagnac interferometer, which could have significantly degraded the
extinction in the centre.

5.2.3 Deterioration of the extinction with the full spectrum
In this section, we do the same measurements as the previous subsection with the exact

same conditions, except that the spectral filter (∆λ) is replaced by a set of three neutral densities
(ND) for which the attenuation is about 12 in order to match the attenuation provided by ∆λ.

Figure 5.5 and 5.6 are the same as figures 5.3 and 5.4, but with the neutral densities
instead of the spectral filter. The maximal extinction factor reached for this configuration is
F ≈ 6 × 10−5 when ND is placed after the interferometer and is slightly better at F ≈ 4 × 10−5

when ND is placed before. The residual pattern of the interference signal stays homogeneous
but the extinction is degraded by an order of magnitude compared to when we use the spectral
filter, which is expected since all the spectrum of the laser is used without it. Thus, the
refraction r2 and transmission t2 factors of the interferometer beamsplitter fluctuate depending
on the wavelength, which degrades the asymmetry coefficient δa, according to equation 2.11
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(section 2.5).

Figure 5.5: Same as figure 5.3, but with the neutral densities placed after the Sagnac interfer-
ometer instead of the spectral filter. The maximal extinction factor achieved is F ≈ 6 × 10−5 in
the centre.

Figure 5.6: Same as figure 5.5, but with the neutral densities placed before the Sagnac interfer-
ometer. The maximal extinction factor achieved is F ≈ 4 × 10−5 in the centre.
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5.3 Summary
The best extinction is achieved with a combination of a spectral filter and a spatial filter in

the dark output of the interferometer, which allows to reach the goal value of the extinction
factor F = 4 × 10−6, with an incident peak intensity of 4 × 1010 W/cm2 (incident energy
Ein = 24 µJ, waist w = 1 mm and duration τ = 70 fs). Moreover, there are no non-linearity
effects in the beamsplitter at this intensity.

Additionally, since the intensity tails of the back-reflections induce phase noise in the
horizontal x-direction, it could be attractive to used a thicker beamsplitter in order to better
separate the interference signal from the back-reflections.
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Chapter 6

Spatial resolution of the CCD camera: the
shot noise

The spatial resolution for the measurement of the barycenter of the intensity profile is one
of the critical parameter of the DeLLight experiment. A spatial resolution of the order of 10 nm
is requested to reach the requested sensitivity.

The spatial resolution is inherently limited by the intrinsic shot noise (or quantum noise)
related to the statistical fluctuations of the average number of photo-electrons Np.e. detected
by the CCD camera. Therefore the spatial resolution scales as w/

√
Np.e. where w is the beam

width (FWHM) on the CCD camera. In addition, if the beam width is increased, then the
energy of the incident pulse entering the Sagnac interferometer is adjusted to have the same
number of detected photon per pixel. It means that the number of detected photons Np.e. is
proportional to the square of the width. Therefore, when the spatial resolution is only limited
by the shot noise, it becomes independent of the beam width, which is an important feature of
the DeLLight experiment.

Moreover, if np.e. is the average number of photo-electrons per pixel, and dpix is the side
length of each square pixel, then the spatial resolution scales as:

σy ∝
dpix
√np.e.

(6.1)

Therefore, in order to achieve the best spatial resolution, we need the highest charge storage
capacity before saturation per unit surface of the optical readout. For a CCD camera, this is
referred to as the full well capacity Nc, which corresponds to the maximum number of stored
electrons per pixel before saturation.

The goal of this chapter is to measure the spatial and the intensity resolutions of the CCD
cameras used on the DeLLight experiment. We will thoroughly present the experimental
setup used to measure these resolutions. A spatial resolution of 13 nm is obtained with the
most suitable commercial CCD camera, in agreement with the expected shot noise resolution
calculated by Monte-Carlo simulations. We will show that the resolution is proportional to the
square root of the number of photo-electrons, as expected for the quantum noise.
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6.1 Experimental setup
In order to study the spatial resolution of each CCD camera used on the DeLLight experi-

ment, we assembled a small test bench (shown on figures 6.1 and 6.2) using a standard quality
laser diode of wavelength λ = 850 nm as the main light source. The transverse profile of the
laser diode however is non Gaussian and cannot be used in its initial state. Therefore, we use the
combination of an iris, a telescope with two focalising lenses of focal length f1 = 150 mm and
f2 = 100 mm, and a pinhole (PH) of diameter 75 µm in order to properly filter the transverse
intensity profile of the beam. Thus, we obtain a collimated Gaussian beam of width w ≈ 1.2 mm
(FWHM).

Figure 6.1: Schematic of the experimental setup to measure the spatial resolution. A telescope
composed of two lenses (focal length f1 = 150 mm and f2 = 100 mm) and a pinhole (PH) of
diameter 75 µm shape the incident beam profile coming from the laser diode.

Figure 6.2: Photograph of the experimental setup to measure the spatial resolution (from
figure 6.1).

Then, using a 50/50 beam splitter (BS), we split the collimated beam into two identical
secondary beams, which will act as a reference and a signal beam on the CCD cameras in order
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to monitor and subtract the beam pointing and intensity fluctuations, as explained in chapter 3.
Moreover, a variable neutral density with constant optical path length is placed before the
beamsplitter to vary the intensity of the signal and the reference beams on the CCD camera
in order to measure its spatial and intensity resolutions, depending on the number of detected
photons.

6.1.1 Choice of the CCD cameras

As mentioned before, we need a CCD camera with the highest charge storage capacity
before saturation per unit surface (np.e.) in order to achieve the smallest spatial resolution
possible. From the commercial Basler catalogue, we have selected two different CCD cameras:

• the CCD Basler acA1920-40gm is used in the current DeLLight pilot experiment in the
dark output of the Sagnac interferometer. It has a pixel side size of 5.86 µm.

• the CCD Basler acA4024-29um has a smaller pixel size (1.85 µm) and higher perfor-
mances. It will be used in the next stage of the DeLLight experiment.

The manufacturer specifications of these cameras are given in table 6.1.

CCD 1.85 CCD 5.86
(acA4024-29um) (acA1920-40gm)

Pixel size (µm) 1.85 5.86
Dark noise / pixel 3.3 e− 6.7 e−

Saturation / pixel 11000 e− 31900 e−

Theoretical gain 2.7 7.8
Pixel Bit Depth (Resolution ADU) (bits) 12 12

Table 6.1: Chart of the manufacturer specifications of the CCD cameras

6.1.2 Laser beam characterisation

Before studying the spatial resolution of each CCD camera, we need to characterise the
reference and signal beams. We first studied the transverse intensity profile of each beam which
is defined as a Gaussian intensity profile, such as:

I(xi, yi) = I(x0, y0) × exp
(
−

2(xi−x0)2

w2
x

)
× exp

(
−

2(yi−y0)2

w2
y

)
(6.2)

where I(xi, yi) and I(x0, y0) are the intensity profiles of the laser beam in (xi, yi) and (x0, y0)
position ; (x0, y0) are the centred coordinates on the RoI ; wx and wx are the minimal waists of
the laser beam in x and y-direction.
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Figure 6.3: CCD images of the beam profiles (dataset at highest intensity I1.85
re f ,max ≈ 3040 ADU)

: (top left) reference beam on the CCD 1.85 ; (top right) signal beam on the CCD 1.85 ; (bottom
left) reference beam on the CCD 5.86 ; (bottom right) signal beam on the CCD 5.86. The waist
of the probe and pump beam is wx ≈ wy ≈ 1.0 mm, which corresponds to FWHM ≈ 1.2 mm.

Figure 6.3 shows the intensity profiles of the probe and the pump for a CCD image collected
on the CCD 1.85. We used a 2-dimensional Gaussian fit to deliver the waist of the laser pointer
beam: wx ≈ wy ≈ 1.0 mm, which corresponds to FWHM ≈ 1.2 mm.

Secondly, we need to estimate the raw beam pointing fluctuations of the laser pointer, which
will be used later on in Monte-Carlo simulations to compare data and simulated resolutions (as
will be explained in section 6.3). To this end, we look at the evolution of the raw barycenters in
x and y-directions for the reference and signal beams on the CCD camera 1.85, as shown on
figure 6.4 (for an intensity in ADU: I1.85

re f ,max ≈ 3040 ADU). Let us note that we used a RoI-size
equal to double the beam size (wRoI = 2 × FWHM), not to be biased by the efficiency due to
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wRoI . The raw beam pointing fluctuations (r.m.s.) of the laser pointer correspond to the standard
deviation of the raw barycenter distribution, such as:{

σBP,x ≈ 0.03 µm
σBP,y ≈ 0.07 µm (6.3)

Moreover, we can see on figure 6.4 that the evolution of the raw barycenter in y-direction
includes beam pointing fluctuations and a systematic low drift of around 0.2 µm.

Figure 6.4: Evolution of the raw barycenter (without beam pointing corrections) of the reference
(right) and signal (left) beams for the CCD 1.85 (for 1000 events, wRoI = 2 × FWHM =
1400 pix). The standard deviations of these barycenter distributions correspond to the beam
pointing fluctuations of the laser pointer in x and y-directions: σBP,x ≈ 0.03 µm and σBP,y ≈

0.07 µm (dataset 12, collected on January, the 13th, 2022).

NB: in this chapter, we use the data analysis method described in chapter 3, expect that
the linear fit used for the correlation between the reference and signal raw barycenters is as
f̃ = x + b instead of f = ax + b.

6.2 Gain measurement
The gain G of a CCD pixel i is defined as:

Nγ.e(i) = Gi × NADU(i) (6.4)

where Nγ.e is the number of photo-electrons recorded in a pixel and NADU is the equivalent
Analogic Digital Unit (ADU) content.
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The uniformity of the gain per pixel of the CCD sensors is essential to ensure a good
spatial resolution. The value of the gain is also an important input required for Monte-Carlo
simulations to calculate the shot noise (as described in appendix D), since it defines the number
of detected photo electrons per pixel. It is therefore important to measure precisely the gain of
the CCD pixels of the two studied camera.

The gain of a pixel is obtained by measuring the statistical fluctuations of flat images. Let
us explain the method.

The standard deviations (r.m.s.) σγ.e and σADU of the number of photo-electrons per pixel
and the corresponding ADU content, respectively, are defined by:{

σγ.e =
√

Nγ.e

σADU =
σγ.e
G

(6.5)

Thus, we have:

σγ.e = G × σADU =
√

Nγ.e (6.6)

σADU =

√
Nγ.e

G
=

√
NADU

G
(6.7)

By compiling the ADU content of each pixel in a histogram, we obtain the average ADU
content value ⟨NADU⟩ and the r.m.s. value σADU for a given CCD camera. Their gain G is finally
written as:

G =
⟨NADU⟩

σ2
ADU

(6.8)

In order to experimentally measure the gain of the CCD cameras, we collect a set of what
we call "flat images" which corresponds to CCD images where the sensor is completely and
uniformly lit by an uniform intensity profile. This way, each pixel of the sensor receives the
same amount of photo-electrons in average which enables to check whether the gain per pixel
is uniform or not. Then, the measurement of the standard deviation σ2

ADU for each pixel gives
the value of the gain of that pixel, using equation 6.8.

Details of the gain measurements are given in appendix C. We have verified that the gain is
very uniform for the two studied cameras. The average values are:

⟨G5.86⟩ = 7.72 ± 0.02 for the CCD acA1920 − 40gm (6.9)
⟨G1.85⟩ = 2.79 ± 0.03 for the CCD acA4024 − 29um (6.10)

NB: Considering the manufacturer specifications given in table 6.1, we can estimate the
gain of the CCD cameras such as the ratio of the number of electrons at saturation divided
by the maximal ADU content. The maximal ADU content is Nmax

ADU = 4096 ADU, which is an
overestimation considering that we never work with ADU content so close to saturation: we
usually never work over 0.75 × Nmax

ADU ≈ 3000 ADU. Therefore, the gains are expected to be of
the order of G5.86 = 7.8 and G1.85 = 2.7, in agreement with our measurement.
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6.3 Numerical simulations of the expected shot noise of the
CCD camera

The expected spatial resolution, inherently limited by the intrinsic shot noise of the CCD
camera, is calculated by Monte-Carlo simulations. The later are described in appendix D
and include the shot noise, the beam pointing fluctuations and their corrections, and the ON-
OFF subtraction in order to calculate the spatial resolution σy of the DeLLight experiment.
Additionally, we can also extract the intensity resolution σ∆I/I (defined in section 2.6.2).

Simulations have been performed for the two selected CCD camera with the following
inputs:

• CCD 1.85 : gain G = 2.8 and pixel size dx × dy = 1.8 × 1.8 µm

• CCD 5.86 : gain G = 7.7 and pixel size dx × dy = 5.86 × 5.86 µm

The beam size at full width at half maximum is set to FWHM = 1200 µm . The analysis
window or "Region of Interest" (RoI) is set to : wRoI = 650 pixels for the CCD 1.85, and
wRoI = 200 pixel for the CCD 5.86, which correspond to the the FWHM of the beam. The
intensity fluctuations are approximately 2%. The simulated beam pointing fluctuations (r.m.s.)
in both directions are: σBP,x = 0.03 µm and σBP,y = 0.07 µm (from equation 6.3.

6.4 Measurement of the shot noise spatial resolution
We present in this section the experimental results of the spatial resolution measurements,

which are in good agreement with the expected shot noise of the CCD camera calculated by
Monte-Carlo simulations.

We first measure the spatial resolution of the two CCD cameras as a function of the intensity
of the pulses, i.e. as a function of the number of detected photo-electrons (in ADU content).
We use the variable neutral optical density (see section 6.1) to vary the intensity of the signal
and the reference beams on the CCD cameras.

Several data sets of N = 1000 events (i.e. CCD images) each are taken for different intensity
values and each are analysed following the method described in chapter 3, in order to extract
the spatial resolution. An example of analysed data for a RoI-size wRoI = FWHM and for the
highest intensity is shown on figure 6.5 for the CCD 5.86 (I5.86

re f ,max ≈ 2690 ADU) and figure 6.6
for the CCD 1.85 (I1.85

re f ,max ≈ 3040 ADU) with the measured values of the spatial resolution.
The results of the measured values of the spatial resolutions σx and σy are presented on

figure 6.7 as a function of the intensity of the pulse, for the two CCD cameras 5.86 and 1.85.
The intensity is given by the parameter Ire f ,max, the ADU content of the pixel at the maximum
of the intensity profile of the reference pulse. In the same figure, the measured values are
compared to the expected shot noise spatial resolution calculated by Monte-Carlo simulations
(see section 6.3). Data and Monte-Carlo simulations are in good agreement, especially for
relatively high intensity.
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Figure 6.5: Results of the data analysis (method in chapter 3) for the camera CCD 5.86: (Upper
plots) Linear correlation of the barycenters of the intensity profile of the signal ȳsig(i) versus
the reference ȳre f (i), calculated along the vertical y axis. The data are shown as black points,
for both even ("OFF", left panel) and odd ("ON", right panel) measurements. The result of
the linear fit obtained using the OFF data only is shown in both panels as a blue line. (Lower
plots) black points: ON-OFF raw signal ȳON

sig (i)− ȳOFF
sig (i) without beam pointing correction; blue

points: ON-OFF reconstructed signal ∆y(i) = ȳON
corr(i) − ȳOFF

corr (i) after beam pointing correction.
We verify that the signal is null as expected: ∆y(ON − OFF) = 0.2 ± 1.3 nm. The spatial
resolution is σy = 28.3 nm (dataset 1, collected on January, the 13th, 2022).

For a spatial resolution limited only by the shot noise of the CCD camera, we expect that
the spatial resolution must vary as the square root of the number of detected photo-electrons,
such as:

σy =
a√

Ire f ,max
(6.11)

with a a constant value. To test this, we fit this function with a as a free parameter, for the
data (purple line) and for the Monte-Carlo simulations (orange line). The later are in good
agreement with the fit result, as expected. However, an additional noise is clearly observed at

82



Figure 6.6: Same as Figure 6.5 but for the CCD camera 1.85. The signal is null as expected:
∆y(ON −OFF) = −0.2 ± 0.7 nm. The spatial resolution is σy = 15.2 nm (dataset 12, collected
on January, the 13th, 2022).

low energy for data. Adding a constant dark current b, and fitting the following function:

σy =

√
a2

Ire f ,max
+ b (6.12)

showed that the preferred value is b = 0, meaning that the dark current is negligible.
However, it is found that a noise inversely proportional to the intensity (c/Ire f ,max where c is

a constant) is preferred as shown on figure 6.7, where we plot in a dashed purple line the result
of the following fit:

σy =

√
a2

Ire f ,max
+

c2

I2
re f ,max

(6.13)

Therefore, the measured spatial resolution in the data corresponds to the shot noise of
the CCD camera when the ADU content of the pixel at maximal intensity profile (Ire f ,max) is
approximately above 1000 ADU.
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Figure 6.7: Spatial resolution σx (left panels) and σy (right panels), as a function of the intensity
of the pulses, given by the parameter Ire f ,max, the ADU content of the pixel at the maximum
of the intensity profile of the reference pulse. The results are given for the camera CCD 5.86
(upper panels) and CCD 1.85 (lower panels). The purples points correspond to the measured
values from data. The orange points correspond to the expected shot noise values calculated by
Monte-Carlo. The fitted orange line corresponds to the expected variation of the shot noise as a
function of the square root of the number of detected photo-electrons.
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Figure 6.8: Evolution the spatial resolution in both direction σx (left panels) and σy (right
panels), as a function of the RoI size over the spot size (FWHM) for both CCD cameras
at the highest intensity Ire f ,max (in ADU content) of the reference pulse. The results are
given for the CCD camera 5.86 with I5.86

re f ,max ≈ 2690 ADU (upper panels) and CCD 1.85 with
I1.85
re f ,max ≈ 3040 ADU (lower panels).

For an intensity Ire f ,max ≈ 3000 ADU (75% of the full capacity of charge), which corre-
sponds to the intensities used for DeLLight measurements to avoid saturation on the CCD
camera in the dark output of the Sagnac interferometer, the measured spatial resolutions (shot
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noise) are:

σdata
5.86 = 28 nm for the CCD camera 5.86 (6.14)

σdata
1.85 = 14 nm for the CCD camera 1.85 (6.15)

which correspond well to the simulated shot noise of the CCD cameras.

Additionally, we also study the influence of the RoI size on the spatial resolution σx and
σy of both CCD cameras. To this end, the data are analysed following the method described
in section 3.3 for different values of the RoI size. We analyse the datasets recorded at the
highest intensities: I1.85

re f ,max ≈ 3040 ADU for the CCD camera 1.85 (2022/01/13-dataset12,
N = 1000 events) and I5.86

re f ,max ≈ 2690 ADU for the CCD camera 5.86 (2022/01/13-dataset1,
N = 1000 events). The data are then compared to Monte-Carlo simulations. The results are
shown on figure 6.8 for each CCD camera. The measured spatial resolutions σx and σy (purple
plots on fig. 6.8) are compatible with Monte-Carlo simulations (orange plots) and are evolving
as expected, i.e. they are slightly degraded when the RoI-size becomes too large. This comes
from the fact that, for higher RoI-size, the spatial resolutions become too sensitive to the
residual phase noise integrated in the RoI.

6.5 Measurement of the intensity resolution

In this section, we do a similar analysis as for the spatial resolution in order to measure the
intensity resolution σ∆I/I (described in section 3.4) of the same data. We then compare it to the
intensity resolution calculated by Monte-Carlo simulations (see section 6.3). The results are
shown on figure 6.9.

Similarly as for the spatial resolution, data and Monte-Carlo intensity resolution results
are in good agreement, especially at high pulse intensity, given by the parameter Ire f ,max, the
ADU content of the pixel at the maximum of the intensity profile of the reference pulse
(Ire f ,max ≥ 1000 ADU). This is promising for the DeLLight measurements since we usually
work with intensities Ire f ,max ≃ 3000 ADU in the dark output of the interferometer.

As for the spatial resolution, the intensity resolution must vary as the square root of the
number of detected photo-electrons (see equation 6.11). We see on figure 6.9 that Monte-Carlo
simulations are in agreement with the fit result. However, we need to introduce a noise inversely
proportional to the intensity (see equation 6.13) to properly fit the data.

For an intensity Ire f ,max ≈ 3000 ADU (75% of the full capacity of charge), chosen to avoid
saturation on the CCD camera in the dark output of the interferometer, the measured intensity
resolutions for both CCD cameras are:

σ5.86
∆I/I = 10−4 for the CCD camera 5.86 (6.16)

σ1.85
∆I/I = 5 × 10−5 for the CCD camera 1.85 (6.17)

which correspond well to the simulated shot noise of the CCD cameras.
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Figure 6.9: Same as figure 6.7, but for the intensity resolution σ∆I/I for the CCD camera 5.86
(left) and CCD 1.85 (right).

Figure 6.10: Same as figure 6.8, but for the intensity resolution σ∆I/I for the CCD camera 5.86
(left) and CCD 1.85 (right).

However, as explained in section 2.6.2, the request intensity resolution to reach a sensitivity
(number of sigma) of Nstd =

√
Tobs(days), is σ∆I/I = 2 × 10−6. Since the intensity resolution

is inversely proportional to the square root of the number of detected photons in the dark
output, and for the goal extinction factor (F = 4× 10−6), it requires an incident energy entering
the interferometer of about 100 mJ per pulse, As discussed in section 2.9, this energy is two
orders of magnitude above the accepted incident intensity to avoid nonlinear phase noise in the
beamsplitter.

Additionally, we also studied the influence of the RoI-size on the intensity resolution
σ∆I/I for both CCD cameras, in the same way as previously described in section 6.4. The
results are shown on figure 6.10. As expected, the measured intensity resolutions are inversely
proportional to the RoI-size as previously explained. They are in good agreement with Monte-
Carlo simulations, expect at larger RoI-size (wRoI ≥ 1.5 × FWHM). This comes from the fact
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that the reference and signal beams are very close to each other on the CCD camera, so the
intensity distribution tails of the nearby spot are also integrated for larger RoI-sizes. Thus, the
resolution gets degraded for data but not Monte-Carlo simulations. However, since we usually
work with RoI-sizes close to the FWHM of the beam, this issue is not a concern at all.

6.6 Summary
For the CCD camera that will be used on the DeLLight experiment in vacuum (Basler

acA4024-29um, with a charge capacity of 104 electrons per pixel of size 1.8 × 1.8µm2), we
have successfully measured the spatial resolution σy and the intensity resolution σ∆I/I:

σy = 13 nm (6.18)
σ∆I/I = 5 × 10−5 (6.19)

It corresponds to the inherent limit due to the shot noise of the CCD camera, calculated by
Monte-Carlo simulations.

We underline that these spatial and intensity resolution values take into account the cor-
rections of the beam pointing and intensity fluctuations respectively, as well as the zero
subtraction ”ON-OFF” applied to the DeLLight measurements. Therefore, the intrinsic spatial
σCCD

y and intensity σCCD
I resolutions of the CCD camera for a single spot measurement are

σCCD
y = σy/2 = 6.5 nm and σCCD

I = σ∆I/I/2 = 2.5 × 10−5

The intensity resolution measured here must be improved by a factor 25 in order to reach
the requested intensity resolution σ∆I/I = 2 × 10−6 of the DeLLight project. This is done
by increasing the number of detected photons in the interference signal by a factor 625. As
discussed in sections 2.6.2 and 2.9.1, this implies that the incident energy entering the Sagnac
interferometer must be of 100 mJ, which is not acceptable (2 orders of magnitude too large)
because it would generate a phase noise and would degrade the extinction.

The achieved spatial resolution is almost equal to the requested spatial resolution of the
DeLLight project (10 nm). This is an important achievement. However, the spatial resolution
depends on the number of detected photo-electrons per pixel, and thus depends on the number
of ADU recorded per pixel, Nadu/pix, which scales as:

Nadu/pix ∝
Ein × F × d2

pix × QE

w2 ×G
(6.20)

where Ein is the incident pulse energy entering the interferometer, w is the width of the probe
beam, and QE is the quantum efficiency. The spatial resolution achieved in this measurement
has been obtained with an ADU content about 3/4 of the maximum charge saturation, corre-
sponding to the optimum running condition. In the current pilot experiment, with the BASLER
camera acA1920-40gm (dpix = 5.86 µm, G = 7.7 and QE ≃ 20%), with a waist w = 1 mm
and with a degraded extinction factor F = 4 × 10−4, this condition is verified when Ein ≃ 2 µJ,
as summarised in table 6.2. We can then calculate the required incident energy for the final
DeLLight project goal in order to have the same number of ADU per pixel, taking into account
the goal parameters summarised in 6.2 and assuming a quantum efficiency QE = 80%. We
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obtain a requested incident energy Ein ≈ 8 mJ. As calculated in section 2.9.1, this is a factor 8
above the maximal incident energy requested to avoid a phase noise induced by non linearity in
the beamsplitter. A dedicated study of parameter optimisation will have to be carried out in
order to maximise the signal while keeping a negligible non linearity phase noise.

Goal experiment Pilot experiment
CCD camera acA4024-29um acA1920-40gm

Pixel size dpix (µm2) 1.85 5.86
CCD gain G 2.8 7.7

Collimated beam waist w (mm) 7 1
Extinction factor F 4 × 10−6 4 × 10−4

CCD quantum efficiency QE (%) 80 20
Incident energy Ein 1 mJ 2 µJ

Table 6.2: Chart of the parameters of the goal and pilot experiments
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Chapter 7

Spatial resolution in the dark output of the
interferometer

In the previous chapter, we have verified experimentally that a spatial resolution of the order
of 10 nm is achieved with the most suitable commercial CCD camera, and that it corresponds
to the inherent quantum noise of the detected photo-electrons. This result has been obtained by
measuring a direct intensity profile of femtosecond laser pulses.

In this chapter, we will measure the spatial resolution of the interference signal in the dark
output of the Sagnac interferometer, which is now sensitive to the beam pointing fluctuations of
the incident laser beam, and is also limited by the mechanical noise of the interferometer. We
will show that the beam pointing fluctuations are well suppressed at the level of the requested
shot noise. However, we will see that the mechanical noise is the main limitation and must be
reduced by one to two orders of magnitude. A method to measure this noise online in order to
subtract it will finally be proposed.

7.1 Deterioration of the extinction in the dark output of the
interferometer

In order to measure and reach a good spatial resolution, high photons statistics in the
interference signal intensity is required. Thus, to maintain a high extinction factor, as measured
in our prototypes, we need to increase the intensity of the incident pulses entering the Sagnac
interferometer. However, the intensity of the back-reflections would then saturate the CCD
camera, as described in chapter 5. Additionally, the tail of the back-reflection intensity
distributions would pollute the interference signal. The development of new beamsplitters
including dedicated anti-reflective coating with lower back reflectivity coefficient, and with a
larger thickness is programmed in the near future to counteract this issue.

Therefore, the measurements presented in this chapter with the available beamsplitter were
achieved by degrading the extinction of the interferometer in order to obtain an interference
signal intensity equal to the back-reflection intensities, corresponding to an extinction factor
F = 5 × 10−4. We remind that the extinction factor is F = (δa)2 (neglecting the phase noise),
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where δa is the R/T asymmetry coefficient of the beamsplitter. So, to degrade the extinction,
we need to increase δa. We take advantage of the fact that δa depends on two parameters: the
polarisation and the incident angle of the incident beam. Thus, two configurations have been
proposed to degrade the extinction:

• Configuration 1: The polarisation of the incident laser pulse is slightly rotated (few tens
of mrad) with a half-wave plate placed on the probe path, just before the interferometer.

• Configuration 2: The beamsplitter of the interferometer is rotated (by about 1 degree) in
the horizontal plan, changing the incident angle of the laser pulse.

The first configuration has been applied for the measurements carried out with the first
prototype (rectangular interferometer without focus), described in section 4.1. However, it has
come to light later on that this method poses the disadvantage of reducing the amplification
factor A of the barycenter displacement in the dark output of the interferometer, as will be
explained in the next section. Therefore, the two configurations have been applied consecutively
for the second prototype (triangle interferometer with focalisation), described in section 4.2.

7.2 Low or high amplification, depending on the configura-
tion of the degraded extinction

In this section, we will see why the amplification of the interference signal is strongly
reduced for the first configuration, described in the previous section, for which the polarisation
of the incident beam is rotated before entering the interferometer.

7.2.1 Definition of the interference intensity profile in the dark output,
containing the noise

Before looking more closely into the effect of the polarisation of the beam, we first need
to define the intensity profile in the dark output of the Sagnac interferometer. We assume that
the residual noise is induced either by angular fluctuations of the mirrors and the beamsplitter,
or by lateral shift of the optical lenses inside the Sagnac interferometer. These fluctuations
generate, in the dark output of the interferometer, a relative lateral displacement δynoise and a
relative phase noise δΦnoise between the two counter-propagating probe and reference pulses,
without interaction with the pump.

Thus, using equation 2.32 in the y-axis, the intensity profile in the dark output for an OFF
measurements i (δψ = 0) can be written:

IOFF,i(y) = (δa)2
× Iin(y +A× δynoise,i)

+
(
δΦnoise,i(y)

)2 (1 − δa2) × Iin(y −
δynoise,i

2
) (7.1)

whereA is the amplification factor of the interferometer, such as:

A =
1 − δa

2δa
(7.2)
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7.2.2 Low amplification with rotated polarisation (Configuration 1)
Now, we look into the effect of the polarisation of the incident beam. When the extinction is

maximal in the dark output, there is no R/T asymmetry yet, and the incident pulse entering the
interferometer is only p polarised. The extinction factor is then: Fmax ≃ 3 × 10−6, as measured
in section 5.2.2 for the triangular configuration of the interferometer with spatial filter.

Then, when the extinction is degraded by slightly rotating the polarisation of the incident
probe beam by an angle β, a very small component of s polarisation appears. The degraded
extinction becomes Frot ≃ 5 × 10−4 (same as for the back-reflections). Thus, the electric field
E⃗in of the incident pulse can be split into two orthogonal p and s polarisation components:

E⃗in = E⃗in,p + E⃗in,s

|E⃗in,p| = |E⃗in| × cos(β) (7.3)

|E⃗in,s| = |E⃗in| × sin(β)

The corresponding incident intensities of the two polarisation component are thus:

Iin = |E⃗in|
2 = Iin,p + Iin,s

Iin,p = Iin × cos2(β) (7.4)
Iin,s = Iin × sin2(β)

For each polarisation components p and s, we associate a phase noise δΦp(y) et δΦs(y) and
an asymmetry coefficient δap and δas. On one hand, since the incident beam is p polarised at
maximal extinction, the maximal extinction factor is (from equation 2.31):

Fmax =
Iout

Iin
=

Iout,p

Iin,p
= (δΦp(y))2 + (δap)2 ≃ 3 × 10−6 (7.5)

On the other hand, when the polarisation of the incident beam is rotated, the degraded
extinction becomes dominated by the s component of the beam, due to a large value of the
asymmetry coefficient δas (although the probe beam is mostly p polarised). Indeed, this
coefficient has been calculated by measuring the transmission and the reflection coefficients in
intensity T and R of the beamsplitter with a pure s polarised incident beam: T = 77.5% and
R = 22.5%. Using equation 2.11, the asymmetry coefficient in s polarisation is thus δas = 0.55
and the degraded extinction in the dark output is:

Frot =
Iout

Iin
=

Iout,s

Iin
=

((δΦs(y))2 + (δas)2) × Iin,s

Iin
≃ (δas)2 × sin2(β) ≃ 5 × 10−4 (7.6)

The degraded extinction Frot is adjusted in order to be equal to the corresponding extinction of
the back reflections Frot = RAR/2 = 5 × 10−4 (from equation 5.4) when the rotation angle of the
polarisation planes of the incident beam is β ≃ 40 mrad, as illustrated on figure 7.1.

In summary, in the first configuration where the polarisation of the incident beam is rotated
by an angle β, the extinction in the dark output is strongly degraded, going from Fmax ≃ 3×10−6

93



(Prototype 2) to Frot ≃ 5 × 10−4. In this degraded state, the interference intensity in the dark
output (equation 7.1) is dominated by the s component of the incident beam (δa = δas = 0.55),
and the amplification factor of the interferometer (equation 7.2) is strongly reduced, such as:
A = (1 − δas)/(2δas) ≃ 1/2. Therefore, the relative displacement δynoise induced by the noise
is not amplified in the dark output, and the spatial resolution is only degraded by the phase
noise δΦnoise (equation 7.1).

Figure 7.1: CCD images of the intensity profiles of the interference and the reference (back-
reflection) in the dark output of the interferometer (Prototype 2 with spatial filter in the dark
output). (Top) Intensity profiles at maximal extinction of the interference signal in the white
dotted area, with Fmax ≃ 3 × 10−6. (Bottom) Intensity profiles for the first configuration where
the polarisation of the incident beam is rotated by an angle β ≃ 40 mrad, and the extinction of
the interference signal is degraded from Fmax ≃ 3 × 10−6 to Frot ≃ 5 × 10−4.

7.2.3 High Amplification with rotated beamsplitter (Configuration 2)

In this section, we will see how the DeLLight signal is amplified in the Sagnac interferometer
for the second configuration where the beamsplitter is slightly rotated. This configuration
was only used for the triangular interferometer with focusing (Prototype 2). In the resolution
measurements presented in section 7.4.2, the BS was rotated to an incident angle of 46°.

In this configuration, the polarisation of the beam is purely p, which leads to an extinction
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factor of:

F̃max =
Iout,p

Iin,p
= ( ˜δΦp(y))2 + (δ̃ap)2 (7.7)

However, since the BS is slightly rotated this time, there is a significant R/T asymmetry and
the corresponding asymmetry coefficient δ̃ap increases compared to the first configuration
at maximal extinction. For the BS rotated at 46°, the R and T coefficients in intensity were
measured in a similar way as in the previous section but with a pure p polarised incident beam:
R = 51% and T = 49%. Thus, the asymmetry coefficient is δ̃ap = 0.02, corresponding to an
extinction of F̃max ≃ (δ̃ap)2 ≃ 4 × 10−4. This result is compatible with the measured extinction
in this configuration where the interference signal has an intensity similar to the back-reflections
without rotating the polarisation planes of the incident beam (Frot = RAR/2 = 5 × 10−4), as will
be seen in section 7.4.2.

In summary, in the second configuration where the BS is rotated at 46°, the maximal
extinction reachable in the dark output is F̃max ≃ 4× 10−4. The interference intensity in the dark
output (equation 7.1) is dominated by the p component of the incident beam (δa = δ̃ap = 0.02),
and the amplification factor of the interferometer (equation 7.2) isA = (1 − δ̃ap)/(2δ̃ap) ≃ 24.
However, since the BS is slightly rotated this time, there is a significant R/T asymmetry and
the corresponding asymmetry coefficient δ̃ap increases compared to the first configuration
at maximal extinction. Therefore, the relative displacement δynoise induced by the noise is
amplified in the dark output, and the spatial resolution is dominated by the asymmetry ˜δap.

7.3 Numerical simulation of the spatial resolution
In this section, we describe the method to simulate the spatial resolution in the dark output

of the Sagnac interferometer in both low and high amplification configurations.
The principle is first to generate a given number of laser shots with similar properties

to the beam used on the DeLLight experiment (in term of intensity profile and size), using
the Monte-Carlo simulation as described in appendix D. It includes the shot noise and the
beam pointing fluctuations. Then, the same analysis method as for DeLLight data is used
to calculate the probe and reference barycenters of the simulated pulses and the "ON-OFF"
final measurement ∆y with the associated resolution σy which corresponds to the standard
deviation (r.m.s.) of the barycenter distribution over time, as described in chapter 3. More
specifically, since the pump is shut off for resolution measurement, "ON-OFF measurements"
are in fact "fake ON-OFF measurements" and actually correspond to "OFF-OFF measurements"
of consecutive laser shots.

7.3.1 Modelling of the residual phase noise δΦnoise

In order to simulate the spatial resolution in low and high amplification configurations, we
need to model a key parameter of a given OFF intensity profile in the dark output as seen in
equation 7.1: the phase noise δΦnoise. It is induced by angular fluctuations of the mirrors and

95



beamsplitter or by lateral shift of the optical lenses inside the Sagnac interferometer. Thus,
a rotation of an angle δθnoise (of a mirror for instance), along the y-axis, generates a relative
lateral displacement δynoise in the dark output of the interferometer of either the probe or the
reference, and by geometric considerations, we have:

δynoise = 2 × Lopt × δθnoise (7.8)

where Lopt is the average optical path length between the beamsplitter and the closest optical
lens. We have Lopt ≈ 35 cm in the experimental setup. Similarly, a translation of one of the
lens of focal length f in the interferometer also generates a lateral displacement δynoise in the
dark output, but since 2 f is of the same order as Lopt, we can assimilate a lateral displacement
of the lens to a rotation of a mirror.

Moreover, the rotation of a mirror of an angle δθnoise also produces a rotation of the wave
plans of the two counter-propagating pulses in the dark output. Thus, the relative angle of the
wave plans of the probe and the reference is then equal to 2 × δθnoise, and the phase between
both pulses is a function of the vertical coordinate y, equal to:

δΦnoise(y) =
2π
λ0
× 2δθnoise × y + δΦ0 =

4π
λ0
× δθnoise × y + δΦ0 (7.9)

where λ0 is the wavelength of the laser, and δΦ0 is the intrinsic phase generated by the
beamsplitter itself. It is constant and corresponds to a uniform phase in the ideal case of a
perfectly aligned Sagnac interferometer.

Finally, using equations 7.1, 7.8 and 7.9, the simulated intensity profile in the dark output
for an OFF measurement i is given by:

IOFF,i(y) = (δa)2
× Iin

(
y +

1 − δa
δa

× Lopt × δθnoise,i

)
+

(
4π δθnoise,i

λ0
× y + δΦ0

)2

(1 − δa2) × Iin(y − Lopt δθnoise,i) (7.10)

where the asymmetry coefficient is δa = δas for the low amplification configuration (noise
dominated by δΦnoise) and δa = δap for the high amplification configuration (noise dominated
by δynoise).

7.3.2 Simulation parameters
For each laser shot k, we generate an angular noise δθnoise,k, which induces a lateral dis-

placement δynoise,k in the dark output and a phase noise δΦnoise,k. The angular noise δθnoise,k is
generated as a Gaussian distribution of standard deviation σθ by Monte-Carlo simulations (it is
added to the Monte-Carlo intensity profile generation described in appendix D).

In summary, the input parameters of the spatial resolution simulations are:

• σθ depicts the angular fluctuations of the optical mounts in the interferometer ;

• δΦ0 is the intrinsic phase of the beamsplitter ;
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• Lopt is the optical path length between the beamsplitter and the closest optical lens, such
as: Lopt = 35 cm ;

• δa is the asymmetry coefficient of the beamsplitter in intensity.

The results of these simulations for Prototype 2 at low and high amplification will be
compared to the data resolution measurements.

7.4 Measurement of the spatial resolution at low amplifica-
tion

7.4.1 Square interferometer without focusing (Prototype 1)
The spatial resolution measurements for the rectangular Sagnac interferometer (no focusing)

(Prototype 1 presented in section 4.1) were only carried out with the first configuration where
the polarisation of the incident beam is slightly rotated using a half-wave plate before the
interferometer.

The spatial resolution has been measured by recording 8000 successive laser shots (at a
10 Hz repetition rate, corresponding to approximately 13 minutes), with no interaction between
pump and probe pulses (the pump beam was shut off). Measurements have been performed on
January, the 16th, 2020, dataset 7, using the CCD camera Basler acA1300-60gm (pixel size of
5.3 µm and saturation charge of 104 electrons per pixel). The expected shot noise, calculated
by Monte-Carlo simulation (see appendix D), is σy = 40 nm.

Data of successive odd (2i− 1) and even (2i) laser shots are arbitrarily separated into "OFF"
and "ON" data in order to define a fake ”ON-OFF” measurement i using two successive laser
shots (at a 5 Hz repetition rate). As explained in chapter 3, section 3.3, the beam pointing
fluctuations are suppressed for each ON and OFF measurement using the correlation of the
barycenters of the signal ȳsig(i) and the back-reflection ȳref(i). The corrected positions are then:

ȳOFF
corr (i) = ȳOFF

sig (i) −
(
aOFF × ȳOFF

ref (i) + bOFF

)
ȳON

corr(i) = ȳON
sig (i) −

(
aOFF × ȳON

ref (i) + bOFF

)
(7.11)

where aOFF and bOFF are constants, obtained by fitting the linear correlation between the signal
and reference barycenters, using only the OFF measurements. The signal ∆y(i) of the fake
”ON-OFF” measurement i is then:

∆y(i) = ȳON
corr(i) − ȳOFF

corr (i) (7.12)

Its average value ∆y = ⟨∆y(i)⟩ is expected to be zero since there is no interaction between pump
and probe pulses.

Figure 7.2 displays the result of such analysis, performed with a RoI-size wRoI equal to half
the FWHM of the intensity profile of the beam. Correlations of the barycenters of the signal
and the back-reflections are shown in the upper plots, for both OFF and ON data, with the
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result of the linear fit superposed (see legend of the figure for more details).

Figure 7.2: (Upper plots) Linear correlation of the barycenters in intensity of the interference
signal ȳsig(i) and the back-reflection ȳre f (i), calculated along the vertical axis y, in a given
RoI-size wRoI = w/2, with w the FWHM of the intensity profile of the beam. The data are
shown as black dots, for both OFF (left panel) and ON (right panel) measurements, while
the result of the linear fit obtained using the OFF data only is shown in both panels as a blue
line. (Lower plots) black dots: ON-OFF raw signal ȳON

sig (i) − ȳOFF
sig (i) without beam pointing

correction ; blue dots: ON-OFF reconstructed signal ∆y(i) = ȳON
corr(i) − ȳOFF

corr (i) after beam
pointing correction. The average signal is ∆y = ⟨∆y(i)⟩ = 0.5 ± 0.6 nm compatible with zero
(no pump). The spatial resolution σy = 40.2 ± 0.6 nm is equal to the shot noise of the CCD
camera 5.3 (Basler acA1300-60gm). These data have been collected on January, the 16th, 2020,
dataset 7.

The distribution of the raw barycenter position of the interference signal for the OFF data,
ȳOFF

sig (i), is presented on figure 7.3 (top left plot) as a function of the “ON-OFF” measurement
number i (effectively, as a function of time). Strong beam pointing fluctuations are clearly
observed and the spatial resolution is extremely large at about 2.9 µm. The frequency spectrum
of this distribution is also presented (top right plot). We can observe a typical 1/ν drift noise at
low frequency and three harmonic peaks at 1 Hz, 2 Hz and 2.4 Hz.

The middle plots display the ”ON-OFF” subtraction of the raw barycenter positions ȳON
sig (i)−

ȳOFF
sig (i), and its corresponding frequency spectrum. We can see this subtraction acts as a "lock-
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in" measurement, thus suppressing the low-frequency noise. However, the harmonic peaks are
still present and the beam pointing fluctuations are still large with a poor spatial resolution of
about 1.3 µm.

Finally, the bottom plot shows the distribution of the signal ∆y(i), after correction of the
beam pointing fluctuations. We can see that the latter are indeed well suppressed for each ON-
OFF measurements, leading to an excellent spatial resolution ofσy(wRoI = w/2) = 40.2±0.6 nm,
which is in agreement with the expected shot noise limit of 40 nm for the CCD 5.3 (Basler
acA1300-60gm). The average value of the transverse shift in the dark output over 4000 mea-
surements is then ∆y = ⟨∆y(i)⟩ = 540 ± 640 pm, which is compatible with the expected zero
value (no pump/probe interaction), with sub-nanometer accuracy. Moreover, the frequency
spectrum is completely flat, indicating that the residual noise is purely stochastic as expected
for the quantum shot noise of the CCD camera.

Figure 7.3: Measurement of the spatial resolution obtained with 8000 successive laser shots at
10 Hz (dataset 7, collected on January, the 16th, 2020). (Left) Distribution of the barycenters
in intensity of the interference signal as a function of the ON-OFF measurement i (with
wRoI = w/2). Upper plot: Raw barycenter position for the OFF data ȳOFF

sig (i) without any pointing
correction. Middle plot: ON-OFF subtraction of the raw barycenter positions ȳON

sig (i) − ȳOFF
sig (i).

Lower plot: corrected signal δy(i), after beam pointing correction. The achieved spatial
resolution is σy(wRoI = w/2) = 40.2 ± 0.6 nm and the average signal is ∆y = ⟨∆y(i)⟩ =
540 ± 640 pm, which is compatible with the expected zero value. (Right) Corresponding
frequency spectra.

In summary, we manage to reach the ultimate spatial resolution for the rectangular Sagnac
interferometer (no focusing), at low amplification, which corresponds to the shot noise of the
CCD camera. Moreover, the ”ON-OFF” measurement method is very efficient at suppressing
beam pointing fluctuations. However, we note that the ultimate shot noise resolution is achieved
for a relatively small RoI (wRoI = w/2) where the phase noise δϕnoise(y) is negligible. The
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dependence of the spatial resolution as a function of the phase noise, and thus as a function of
the RoI-size, is studied for the triangle interferometer with beam focus in the next sections.

7.4.2 Triangle interferometer with focusing and spatial filter (Prototype
2)

The spatial resolution measurements for the triangular Sagnac interferometer, namely with
focusing and the spatial filter in the dark output (Prototype 2 presented in section 4.2) were
carried out in the low and high amplification configuration. In this section is only presented the
spatial results with the first configuration where the polarisation of the incident beam is slightly
rotated using a half-wave plate before the interferometer. The second prototype configuration is
much more sensitive to mechanical noise, and therefore more sensitive to air turbulence inside
the laser clean room. It generates instabilities of the extinction pattern and thus disrupt the
spatial resolution. This induces fluctuations of the phase noise pattern which deteriorates the
spatial resolution (as previously discussed). That is why the resolution measurement presented
here were carried out while the air conditioning in the laser clean room was shut off to reduce
air turbulence, and also while the vacuum pumps close to the DeLLight vacuum chamber were
shut off to reduce vibrations of the optical table.

The spatial resolution has been measured by recording 4000 successive laser shots (at a
10 Hz repetition rate, corresponding to approximately 7 minutes), corresponding to 2000 "fake
ON-OFF measurements" with no interaction between pump and probe pulses. Measurements
has been performed on September, the 23rd, 2022, dataset 6, using the CCD camera Basler
acA1920-40gm (pixel size of 5.86 µm and saturation charge of 3 × 104 electrons per pixel).
The expected shot noise, calculated by Monte-Carlo simulation (see chapter 6), is σy ≃ 30 nm.

Results are presented on figures 7.4 and 7.5. Similarly to the previous results for the first
prototype, we can observe a typical 1/ν drift noise at low frequency for the raw barycenters
distribution ȳON

sig (i) (top plots on figure 7.5), but only one harmonic peak is visible at 2.4 Hz.
The peaks at 1 and 2 Hz were suppressed thanks to the vacuum pumps that were shut off, as
mentioned before. Moreover, the spatial resolution is rather large, at about 1.6 µm.

Then, just like in the previous section, the ”ON-OFF” subtraction of the raw barycenter
positions ȳON

sig (i) − ȳOFF
sig (i) nicely suppresses the low-frequency noise (middle plots). However,

the harmonic peak at 2.4 Hz is still present and the beam pointing fluctuations are significantly
reduced by a factor 10 compared to the raw signal, although with a spatial resolution equal to
1.4 µm, which is still more than an order of magnitude above the shot noise of the CCD camera.

Finally, the bottom plots show that the beam pointing fluctuations are well suppressed
for "ON-OFF" measurements, with an excellent spatial resolution of σy(wRoI = w/2) =
32.5 ± 0.7 nm, which is very close to the expected CCD shot noise limit of 28 nm measured
in section 6.4 for the CCD 5.86 (Basler acA1920-40gm). The average value of the transverse
shift in the dark output over 2000 measurements is then ∆y = ⟨∆y(i)⟩ = 0.89 ± 64 nm, which
is compatible with the expected zero value (no pump/probe interaction), with sub-nanometer
accuracy. Moreover, the flattened frequency spectrum indicates that the residual noise is purely
stochastic as expected for the quantum shot noise of the CCD camera. Similarly as before, the
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ultimate shot noise resolution is achieved for a relatively small region of interest (wRoI = w/2)
where the phase noise δϕnoise(y) is negligible.

Figure 7.4: Same as figure 7.2 for data collected on September, the 23rd, 2022, dataset 6 (4000
successive laser shots at 10 Hz). The average signal is ∆y = ⟨∆y(i)⟩ = 0.9 ± 0.7 nm compatible
with zero when the pump is switched OFF, and a spatial resolution σy = 32.5 ± 0.7 nm close to
the shot noise of the CCD camera 5.86 (acA1920-40gm).

On the other hand, we emphasise that the spatial resolution highly depends on the RoI-size
wRoI chosen for the analysis, as explained in section 2.8. Indeed, the bigger the RoI-size is, the
more noise is integrated, which then degrades the spatial resolution. If the RoI is too big, we
also start to integrate the distribution tails of the back-reflections, thus skewing the interference
signal barycenter measurements even further.

On figure 7.6, we present the spatial resolution σy as a function of the RoI-size wRoI. The
measured resolution is constant for a RoI-size wRoI < f whm/2 and equal to the expected
shot noise resolution calculated by Monte-Carlo simulation, assuming only the shot noise of
the CCD camera. For larger RoI-sizes, we observe a degradation of the spatial resolution.
This degradation is in good agreement with the expected spatial resolution calculated by
Monte-Carlo, where the mechanical noise has been added with the simulation parameters:
σθ = 53 nrad, δϕ0 = 200 mrad, Lopt = 35 cm and δa = δas = 0.55. The mechanical noise
parameter σθ = 53 nrad is here correlated with the intrinsic phase noise δΦ0. However, the
latter is constrained by its experimental estimation, using the fit of the Kerr measurements in
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air depending on the relative polarisation between the probe and the pump, as will be explained
in section 9.3.

The measurements presented here have been carried out with the closed vacuum chamber
but with air still inside at atmospheric pressure. Same results have been obtained for dedi-
cated measurements performed in vacuum, which confirms that the noise degrading the spatial
resolution is not induced by the presence of air in the interferometer, but by its mechanical noise.

In summary, the ultimate spatial resolution limited by the shot noise of the CCD camera has
been achieved for the triangular Sagnac interferometer with focalisation, at low amplification,
for relatively small RoI-size wRoI < FWHM/2. We observe a degradation of the spatial
resolution for larger RoI-size, due to mechanical fluctuations of the optical mounts of the
interferometer, for which the angular amplitude is about 50 nrad (r.m.s.).

Figure 7.5: Same as figure 7.3 for data collected on September, the 23rd, 2022, dataset 6
(4000 successive laser shots at 10 Hz). The achieved spatial resolution is σy(wRoI = w/2) =
32.5± 0.7 nm and the average signal is ∆y = ⟨∆y(i)⟩ = 890± 730 pm, which is compatible with
the expected zero value. (Right) Corresponding frequency spectra.
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Figure 7.6: Spatial resolution depending on the RoI-size wRoI (in FWHM w unit) for the
triangular Sagnac interferometer with a spatial filter in the dark output in Configuration 1 (low
amplification). (Blue plot) Spatial resolution in y-axis for data collected on September, the
23rd, 2022, dataset 6. (Red plot) Simulated spatial resolution with the following simulation
parameters: δϕ0 = 200 mrad, σθ = 53 nrad, Lopt = 35 cm and δa = 0.55. (Orange plot) Shot
noise of the CCD camera 5.86 (acA1920-40gm).

7.5 Measurement of the spatial resolution at high amplifica-
tion

In this section, we present the spatial resolution measurements in the same experimental
conditions as in the previous section, but with the second configuration at high amplification
(amplification factorA = 25) where the beamsplitter of the interferometer is rotated by about 1
degree in the horizontal plan, changing the incident angle of the laser pulse in the interferometer
to 46°.

The spatial resolution has been measured by only recording 400 successive laser shots
corresponding to 200 "fake ON-OFF measurements" with no interaction between pump and
probe pulses. Measurements have been performed on September, the 26th, 2022, dataset
46, using the CCD camera Basler acA1920-40gm. The analysis results, performed with
a RoI-size wRoI = f whm/2, are presented on figure 7.7. The average ON-OFF signal is
∆y = ⟨∆y(i)⟩ = 19.9 ± 13.1 nm , which is compatible with zero. However, the spatial resolution
is σy = 185 ± 13.1 nm, which is more than an order of magnitude above the shot noise of the
CCD camera (acA1920-40gm).

On figure 7.8, we present the spatial resolution σy as a function of the RoI-size wRoI for data,
and for Monte-Carlo simulations with the following parameters: σθ = 75 nrad, δϕnoise = 2 mrad,
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Lopt = 35 cm, δa = δ̃ap = 0.02. The value for δϕnoise has been chosen arbitrarily to a small
value (10−2) since its contribution is negligible at high amplification. Data and simulations
are in good agreement up to wRoI ≈ 1.25 × w (for a larger RoI, there is a saturation effect of
the spatial resolution of the data). We note that the noise is as expected amplified by a factor
of the order of 10 in this high amplification configuration, as compared to the previous low
amplification configuration.

Figure 7.7: Same as figure 7.4 for data collected on October, the 26th, 2022, dataset 46
(400 successive laser shots at 10 Hz). The average signal ∆y = ⟨∆y(i)⟩ = 19.9 ± 13.1 nm is
compatible with zero (no pump), and the spatial resolution σy = 185 ± 13.1 nm is more than an
order of magnitude above the shot noise of the CCD camera 5.86 (acA1920-40gm).

In order to reach the shot noise resolution, while using a large RoI-size (wRoI = 1.5 × w,
corresponding to an efficiency ϵs = 70%), the requested angular fluctuations must be of the
order of σθ ≈ 1 nrad, i.e. a reduction of the mechanical noise by a factor of approximately 100.
However, the current setup was not optimised to ensure low mechanical noise. We propose
here some improvements to be implemented on the experimental setup during the next months
to reduce the noise:

• To reduce vibrations on the Sagnac interferometer by isolating it from the optical table
(currently very noisy) by placing it on a better isolated marble table, decoupled from the
neighbouring devices around the DeLLight experimental setup in the LASERIX laser
room.
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• To reduce vibrations of the optical mounts of the beamsplitter and one of the interfer-
ometer mirrors. Indeed, they are currently mounted on Polaris piezo mounts (Thorlabs
POLARIS-K1S2P), which are very stable, but are powered using rigid cables which
vibrate and generate noise, thus would need to be mechanically isolated.

• To suppress electronic noise coming from the power supplies of these same Polaris piezo,
by using batteries instead which do not generate any electronic noise.

• To reduce mechanical noise caused by the lens in the interferometer by using a fixed
mount instead of a 2D piezo translation as is currently used for alignment purposes.

In summary, unlike the low amplification configuration, we cannot reach the shot noise
of the CCD camera yet at high amplification for the triangular Sagnac interferometer (with
focusing). Indeed, any mechanical noise is also amplified and is no longer negligible, thus
degrading the spatial resolution. We present in the next section a method to suppress this noise.

Figure 7.8: Same as figure 7.6 in Configuration 2 (high amplification), for data collected on
October, the 26th, 2022, dataset 46. The simulation parameters are: δϕ0 = 2 mrad, σθ = 75 nrad,
Lopt = 35 cm and δ̃ap = 0.02.

7.6 High frequency phase noise suppression
Inspired by the method of monitoring and suppression of the beam pointing fluctuations,

we propose here a similar way to monitor and suppress the phase noise which currently limits
the spatial resolution.

The principle, illustrated by the scheme on figure 7.9, is first to split the incident pulse
before entering the Sagnac interferometer into two identical daughter pulses. By injecting the
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second pulse in the interferometer with a delay of a few nanosecond, it will not be deflected by
the pump in the interaction area but will travel through the same optical path as the probe and
thus undergo the same phase noise. Indeed, a 10 ns delay corresponds to a noise frequency of
100 MHz. However, this second delayed pulse must be readout separately, on a second CCD
camera. To this end, we propose to use a Pockels cell and a polarised mirror to distinguish the
first interference signal (including the interaction with the pump) from the second interference
signal (without pump interaction, used only to monitor the interferometer phase noise).

Figure 7.9: Schematic of the experimental setup for phase noise monitoring, for an off-line
suppression. The incident pulse (black) is splitted by the beamsplitter (BS-1) into a first
unmodified pulse (blue) and a delayed one (green) by 10 ns. Both interference signals in
the dark output pass through a telescope (composed of lenses L3 and L4) with a spatial filter
(Pinhole) and a Pockels cell at focus. Each signal then pass through a polarised mirror to then
be collected by two CCD cameras: the first interference signal (interaction with the pump) is
collected on CCD-1 and the second delayed one is collected on CCD-2.

As illustrated on figure 7.9, the incident pulse is first splitted by a beamsplitter (BS-1) into
two secondary pulses (green and blue pulses in the figure). Both pulses are thus p-polarised.
The secondary pulse (green) is delayed by approximately 10 ns. Then, both pulses enter the
Sagnac interferometer but since the delayed pulse does not interact with the pump pulse, it
is therefore not refracted. We use a Pockels cell in the dark output in order to change the
polarisation of the delayed interference signal only. It is placed close to the pinhole of the
spatial filter in the Rayleigh range of the focalisation of the afocal telescope (composed of
lenses L3 and L4). Finally, a polarised mirror is placed after the lens L4, with total transmission
for p-polarised beam and total reflection for s-polarisation (a polarimeter can be added in order
to increase the efficiency). The Pockels cell is first adjusted for a p-polarisation output and the
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first interference signal (blue) is recorded by the camera CCD-1. Then, a high voltage is applied
to the Pockels cell for a half-wave rotation. Thus, the delayed interference signal (green),
unmodified by the pump, is rotated to s-polarisation and recorded by the camera CCD-2.

This on-line monitoring method of the phase noise is currently being developed on the
DeLLight experimental setup.

7.7 Summary
In summary, the ultimate spatial resolution limited by the shot noise of the CCD camera

has been achieved for the triangular Sagnac interferometer with focalisation but with the low
amplification configuration when a small s-polarisation is added in the probe pulse. However,
in the high amplification configuration (with pure p-polarisation), the spatial resolution is
degraded, due to the amplification of a phase noise induced by mechanical noise of the optical
mounts inside the interferometer. Monte-Carlo simulations show that this noise corresponds to
an angular fluctuation of the optical mounts of the order of σθ ≃ 50 nrad (r.m.s.). The vibration
isolation of the interferometer is currently of poor quality and can be improved in the future.
We also propose a high frequency phase noise monitoring method in order to suppress that
noise and to reach the ultimate shot noise spatial resolution.
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Chapter 8

Measurement of the optical Kerr signal in
silica with low energy pump pulses
(prototype 1)

The first DeLLight prototype, a rectangular interferometer without focalisation of the beam
(described in section 4.1), has been used to verify that we could detect a deflection signal due
to a change of index in a silica plate, induced by a low pump energy by optical Kerr effect. We
also wanted to verify that the measured signal is proportional to the pump energy.

The Kerr measurements in silica were fulfilled from April to December in 2019 in the
first stages of the experimental work, and were more difficult to achieve and less efficient in
terms of data collection, hence why so few statistics were collected. Moreover, the beam-
pointing fluctuations were rather high because of the experimental conditions (interferometer
far from the laser source and unstable optical table), thus exacerbating the alignment drifts and
un-reproductibility of the measurements.

In this chapter, we present the results of the Kerr measurements in a NBK-7 silica plate
(Thorlabs WG10530-B).

8.1 Probe and pump intensity profiles in the interaction area
Before performing Kerr measurements in silica, we first characterise the probe and pump

profiles in the interaction area in order to optimise their spatial and temporal overlap, and to
measure their transverse intensity profiles. In order to do that, the intensity of the incident beam
is strongly reduced using neutral densities, placed before the pump/probe splitting (BS-1 on
figure 4.1). Then, the intensity profiles are collected on a CCD camera (Basler acA1300-60gm,
pixel size: 5.3 × 5.3 µm2), placed instead of the silica slide (Si) in the interaction area. The
longitudinal position of the lens (L-1) used to focalise the pump beam is then adjusted to
minimise the transverse size of the intensity profile of the pump, using the mirror M-4.

On figure 8.1 are shown the intensity profiles of the probe and pump pulses in the interaction
area. Their profiles are fitted to Gaussian profiles (see equation 6.2), in a similar fashion as
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done in section 6.1.2. Their respective transverse vertical wy and horizontal wx waists are:

wx(pump) = 564.8 µm
wy(pump) = 509.3 µm
wx(probe) = 797.6 µm
wy(probe) = 751.2 µm (8.1)

which correspond to beam sizes at FWHM:

FWHMx(pump) = 663.6 µm
FWHMy(pump) = 598.4 µm
FWHMx(probe) = 937.2 µm
FWHMy(probe) = 882.7 µm (8.2)

As we can see, the probe size (FWHM) was chosen at approximately wprobe ≈ 1.5 × wpump.

Figure 8.1: CCD images of the intensity profiles of the probe (left) and the pump (right) in the
interaction area in the Sagnac interferometer. A 2-dimensional Gaussian fit delivers the beam
waists in x and y-direction (dataset 2, collected on April, the 26th, 2019).

8.2 Probe/pump synchronisation and alignment of the Sagnac
interferometer

The temporal synchronisation of the pump and probe is adjusted by using a delay line on
the probe (MDS-1 on figure 4.1) until apparition of interference fringes in the interaction area,
as described in more details in section 4.1.2.

The spatial overlap of the pump and probe is adjusted by using the mirror M-4, in order
to have an optimal impact parameter between the two as close to its optimal value bopt as
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possible, at which the Kerr signal is maximal. This optimal impact parameter is defined by (see
equation 2.5):

bopt =

√
w2

y(probe) + w2
y(pump)

2
(8.3)

Considering the transverse pump and probe sizes measured in the previous section, the
optimal impact parameter is bopt ≈ 454 µm, which is a little below the pump waist at focus.

Moreover, the alignment of the Sagnac interferometer in the rectangular configuration
is described in section 4.1.2, and the extinction is adjusted to its optimum (measurements
described in section 5.2). Then, before carrying out Kerr measurements, we turn the half-wave
plate (WP on figure 4.3) located on the probe path in order to reveal the interference signal in
the dark output, with approximately the same intensity as for the back-reflections (as described
in section 7.2.2).

8.3 Kerr measurements in silica
The data collection process consists of taking multiple datasets of CCD images (200 images

per dataset, i.e. 20 seconds of data collection) at different pump energy, using a variable neutral
density (V-ND on figure 4.1), to see the evolution of the Kerr signal ∆y in the vertical y-axis as
a function of the pump energy Epump. On the data presented in this section, the duration of the
pump and probe pulses is about 100 fs and the pump energy varies from Epump ≈ 0.1 to 2.2 µJ,
which corresponds to peak intensities around Ipump ≈ 5 × 108 to 1010 W/cm2 in the interaction
area, for a pulse duration of τ = 100 fs.

On figure 8.2 is shown a summary of a Kerr measurement in silica obtained for a pump
energy of Epump ≈ 2.2 µJ and a RoI equal to approximately wRoI ≈ wpump, using the analysis
method described in section 3.3.3. More specifically, the lower plot on the right shows
the distribution of the ON-OFF measurements, corresponding to a vertical shift in the dark
output due to the Kerr effect of ∆y = ⟨∆y(i)⟩ = 1471.8 ± 13.4 nm, with a statistical error of
σy = 133.9 nm (r.m.s.).

On figure 8.3 is displayed the evolution of the Kerr signal ∆y, as a function of the pump
energy in the interaction area. The linear correlation is as expected since the change of index
induced by the pump by optical Kerr effect is proportional to the intensity of the pump (∆nK =

n2,Si× Ipump), as seen in section 2.1. It is worth noting that a positive signal has been successfully
measured at very low energy (Epump = 100 nJ, Ipump ≈ 5 × 108 W/cm2). The corresponding
optical index change caused by the Kerr effect at this intensity is ∆nK = n2,Si × Ipump ≈ 10−7,
showing that our instrument is very sensitive. Moreover, we verify the absence of off-set or
artefact (caused by the diffusion of the pump light for instance) by measuring the deflection
signal with the pump pulse very delayed in time compared to the probe pulse. It was done by
inserting a silica plate in the pump beam before sending the pump pulse to the interaction area.
For this dedicated run, we measured ∆y ≈ −2.6 ± 11 nm, in agreement with a null signal as
expected.
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Figure 8.2: Summary of the data analysis, calculated along the vertical y-axis, for a Kerr mea-
surement with a pump energy of Epump ≈ 2.2 µJ. (Upper plots) Correlation of the barycenters
in intensity of the interference signal ȳsig(i) and the back-reflection ȳref(i). The data is shown as
black points, for both OFF (left panel) and ON (right panel) measurements, while the result of
the linear fit obtained using the OFF data only is shown in both panels as a blue line. (Lower
plot, Left) Distribution of the ON-OFF subtraction, in grey of the raw barycenter positions
ȳON

sig (i) − ȳOFF
sig (i), and in blue after beam pointing correction ∆y(i) = ȳON

corr(i) − ȳOFF
corr (i). (Lower

plot, Right) Distribution of the ON-OFF subtraction after beam pointing correction ∆y(i), for
which the mean value ∆y = ⟨∆y(i)⟩ = 1471.8 ± 13.4 nm corresponds to the DeLLight signal
and the standard deviation σy = 133.9 nm corresponds to the spatial resolution (dataset 14,
collected on May, the 15th, 2019).
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Figure 8.3: Evolution of the vertical displacement ∆y (nm) of the intensity profile of the
interference signal in the dark output of the Sagnac interferometer, for different pump energies
Epump (µJ). Data are in red and the linear fit is in orange.

8.4 Summary
In summary, we showed that, through interferometric measurements, we managed to

significantly detect the change of index induced by the pump by optical Kerr effect in silica
(∆nK ≈ 10−7 in 20 seconds of data collection for Ipump ≈ 5 × 108) at low and moderately high
pump intensities (pulse duration of 70 fs):

∆y = 1471.8 ± 13.4 nm for Ipump ≈ 1010 W/cm2

∆y = 100 ± 6 nm for Ipump ≈ 5 × 108 W/cm2 (8.4)

Thus, we managed to measure a significant transversal shift ∆y, even at low intensities, which
shows the good sensitivity of our instrument.
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Chapter 9

Measurement of the optical Kerr signal in
air with low energy pump pulses

The Kerr measurements in air, obtained with the triangular configuration of the Sagnac
interferometer with focalisation (Prototype 2), are essential to validate the experimental setup of
the DeLLight experiment, the measurement protocols and the ”ON-OFF” subtraction technique
used to obtain the DeLLight deflection signal.

In this chapter, we first present the measurement of the pump and probe intensity profiles
at focus in the interaction area. Secondly, we present the 3D numerical simulations used to
compute the expected DeLLight deflection signal. Then, we show the Kerr measurement results
obtained in the low amplification configuration of the interferometer (rotated polarisation of
the probe). Finally, we present the Kerr measurement results obtained in the high amplification
configuration (rotated interferometer beamsplitter), which constitutes a proof of concept of the
DeLLight experiment.

9.1 Probe and pump transverse intensity profiles at focus in
the interaction area

In this section, we characterise the probe and pump intensity profiles in the interaction
area. The goal is first to measure the transverse intensity profiles of both pulses at focus,
then to optimise their spatial and temporal overlap and measure the tilt angle θtilt between
the propagation axis of the pump and that of the probe (see figure 2.2). The relative position
fluctuations between the beams at focus and their longitudinal waist variations are also studied.

9.1.1 Measurement of the probe and pump transverse intensity profiles
at focus in the interaction area

In order to measure the probe and pump transverse intensity profiles at focus, the intensity
of the incident beam is first strongly reduced by neutral densities, before being splitted into
the pump and probe beams by the beamsplitter BS-2. A mirror, inserted between the focusing
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lens of the probe (L-1) and the interaction area at focus, reflects the probe and pump beams
before focalisation, which are then collected on an off-axis high resolution CCD camera with a
small pixel size (Basler acA3088-16gm, pixel dimension: 1.86 × 1.86 µm2). The CCD camera
is first placed at the focus point of the probe beam where the width of its transverse intensity
profile is minimum. The longitudinal position of the CCD camera is then referred to as the
position z = 0. The longitudinal position of the lens used to focalise the pump beam (L-3) is
then adjusted in order to minimise the width of the transverse intensity profile of the pump.
Finally, the intensity profiles of the probe and pump pulses are superposed.

Figure 9.1: CCD images of the intensity profiles in the interaction area of the probe (left) and
the pump (right) in the Sagnac interferometer. A 2-dimensional Gaussian fit delivers the beam
waists in x and y-direction (collected on December, the 22th, 2021).

Figure 9.1 shows an example of the pump and probe intensity profiles recorded at focus
at z = 0. For each pulse, a two-dimensional Gaussian profile (from equation 6.2) is fitted to
the data in order to measure the transverse horizontal wx and vertical wy waists at focus of
both pump and probe. The profiles at focus are well fitted by these Gaussian profiles and the
minimum waists at focus are:

wx(pump) = 26.3 µm
wy(pump) = 31.1 µm
wx(probe) = 29.3 µm
wy(probe) = 35.4 µm (9.1)

The width (FWHM) of each beam is then proportional to their waist w, such as: FWHM =
1.18 × w. In practice, for all measurements fulfilled with Prototype 2, the probe and pump sizes
range from approximately 25 to 36 µm at focus in the interaction area.
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9.1.2 Spatial overlap and time coincidence of the pump and probe pulses
and measurement of the tilt angle

Now that both pump and probe pulses are longitudinally positioned at focus (z = 0), we can
adjust their spatial overlap. The pump pulse is first vertically shifted with respect to the probe
pulse in order to adjust the impact parameter b as close to its optimal value bopt, at which the
DeLLight deflection signal is maximal. From equations 8.3 and 9.1, we have an optimal value
at bopt = 23.6 µm, where the experimental value is b = 23.9 µm. Thus, the data are collected
with the optimal impact parameter and the expected signal will be maximal.

Then, using the D-shaped mirror (M-3) placed on the pump path, we tilt the pump pulse in
the horizontal direction until reaching its spatial overlap with the probe pulse in the interaction
area (horizontal position difference null). Finally, the delay stage of the pump pulse (MDS-1) is
adjusted until measuring interference fringes with maximal contrast on the CCD camera, which
corresponds to the time coincidence between the probe and pump pulses. Figure 9.2 shows the
spatial overlap of both pulses in time coincidence, which is portrayed by the interference fringes.

Figure 9.2: (Left) CCD image of the resulting intensity profile of the pump and probe at focus
(z = 0) showing their space-time overlap, with the interference fringes. (Right) Corresponding
intensity profile in ADU content, as a function of the pixel number. Data are showed in black
dots and the result of the fit of the fringes is showed in grey line (collected on December, the
22th, 2021).

In order to calculate the tilt angle θtilt between the pump and probe pulses, the horizontal
intensity profile I(x, y = 0) of the interference fringes, shown on figure 9.2, is fitted by the
following function:

I(x, y = 0) = a ×
(
b + sin

(
2πx

i
+ ϕ

))2

× exp
(
−

2(x − x0)2

w2
x

)
(9.2)

The fitted value for the interfringe distance is i = 8.9 ± 0.5 µm. It corresponds to a tilt angle
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between the pump and probe beams of θtilt = λ/i = 5.2 ± 0.9 degrees. We also crosschecked
this value with a simple pointing measurement.

9.1.3 Fluctuations of the probe and pump positions at focus

The pump and probe pulses are delivered (via the beamsplitter BS-2) from the same incident
beam. Their beam pointing fluctuations are therefore correlated. As a consequence, the relative
position fluctuations of the pump and probe intensity profiles at focus must be negligible.
In order to test that out, we record a dedicated set of measurements of the pump and probe
intensity profiles at focus during 50 minutes (3000 events with an acquisition rate of 1 Hz).
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Figure 9.3: (Top left) Variation of the impact parameter bmes which corresponds to the relative
vertical positions of the probe (YProbe

g ) and pump (Y pump
g ) pulses at focus in the interaction area,

as a function of time: bmes = Y pump
g − YProbe

g ; (Top right) Variation of the relative radial distance

∆R =
√

(Xpump
g − XProbe

g )2 + (Y pump
g − YProbe

g )2 between pump and probe at focus, as a function
of time; (Bottom) Evolution of the FWHM of the probe (left) and pump (right) pulses at focus
over time, in the x (orange) and y-directions (blue), as a function of time.

Figure 9.3 shows the variation of the relative vertical positions of the two beams at focus
(i.e. the impact parameter), bmes = Y pump

g − YProbe
g , and the corresponding relative radial
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distance ∆R =
√

(Xpump
g − XProbe

g )2 + (Y pump
g − YProbe

g )2, as a function of time. A vertical drift
of the relative vertical position between pump and probe of about 750 nm is measured after
50 minutes of data collection, corresponding to approximately 3 µm after about 3 hours,
which is typically the duration of a measurement campaign for DeLLight measurements in
air. It is one order of magnitude smaller than the waist of the pulses at focus, which are
w0(pump) ≈ w0(probe) ≈ 25 − 36 µm (see section 9.1.1). This drift is therefore negligible. The
same goes for the 500 nm amplitude picks at 4 mHz that we can see on the first plot: they
are also completely negligible compared to the waists at focus. Moreover, the relative radial
distance ∆R between the pump and the probe is relatively stable with fluctuations of the order
of 500 nm (r.m.s.), which is also negligible. Finally, we verify on figure 9.3 (lower plots) that
the widths (FWHM) of the beams at focus are stable over time with fluctuations lower than
1 µm (r.m.s.).

In conclusion, we can consider that the spatial overlap of the pump and probe pulses
at focus is stable and cannot introduce any variation of the induced deflection signal in the
interferometer.

9.1.4 Longitudinal variation of the pump and probe waists around the
interaction area

In order to study the longitudinal variation of the pump and probe waists during their
interaction, the CCD camera is longitudinally translated (via a manual micrometric translation
stage) along the bisector of the two beams, forward and backward.

We note z the longitudinal position of the CCD camera, with z = 0 the position at focus.
For a waist at focus w0 ≈ w0(probe) ≈ w0(pump), the longitudinal distance zmax up to which
the pump and the probe pulses overlap transversely (at half of the waist) is of the order of
zmax ≃ w0/θtilt ≃ 330 µm, where the tilt angle θtilt has been calculated in section 9.1.2. Therefore,
we study the longitudinal variation of the pump and probe waists by moving the CCD camera
by steps of ∆z = 100 µm from −500 µm to +500 µm. For each z longitudinal position,
two independent two-dimensional Gaussian profiles (defined in equation 6.2) are fitted to the
data in order to measure the transverse horizontal wx and vertical wy waists of the pump and
probe pulses. Results of the measured waists as a function of the longitudinal position z are
displayed on figure 9.4. Their longitudinal variation is in relatively good agreement with the
expected longitudinal variation of the minimum waist for a Gaussian beam given by the relation
w(z) = w0

√
1 + (z/z0)2, where w0 is the minimum waist at focus and z0 = πw2

0/λ ≃ 3.5 mm is
the Rayleigh length. The difference between the measured and expected waist at focus is about
5% at most, which corresponds to a difference for the DeLLight signal of 15% since the latter
is inversely proportional to the waist cube (see equation 2.48). This 15% systematic error is
negligible as compared to the systematic error introduced by the phase noise uncertainty, as
discussed afterwards.

Moreover, we verify that the measured impact parameter bmes between the pump and probe
(defined in the previous section) is relatively constant along the longitudinal interaction area
(from z = −500 µm to z = +500 µm) and varies by less than ±2 µm, corresponding to a
variation of the deflection signal ⟨δθy⟩ lower than 10% which is negligible (see figure 4 in [31],
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showing ⟨δθy⟩ as a function of the impact parameter).

Figure 9.4: Evolution of the pump (top) and probe (bottom) waists at focus in x (left) and
y-directions (right), as a function of the longitudinal z position of the CCD camera used for
spatio-temporal synchronisation in the interaction area (with z = 0, the position at focus).
The dashed lines correspond to the expected waist at focus for an ideal Gaussian beam (data
collected on January, the 24th, 2022).

9.2 Numerical simulation of the expected signal in the dark
output of the interferometer

In this section, we calculate the expected DeLLight deflection signal in a gas with co-
propagating pump and probe pulses, using 3D numerical simulation developed by Scott
Robertson [34]. The simulation takes into account both the Kerr effect induced by the pump in
the interferometer and the contribution of the induced plasma index in the interaction area (see
section 2.10.1).

9.2.1 Maximal intensity of the pump pulse in the interaction area

The intensity profiles of the pump and probe pulses are described by a Gaussian profile,
given by:

I(x, y, t) = I0 exp
(
−

2x2

w2
x

)
exp

(
−

2y2

w2
y

)
cos2(ωt) exp

(
−

4 ln(2) t2

τ2

)
(9.3)
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where wx and wy are the transverse horizontal and vertical waists, and τ is the duration (FWHM)
of the pulse. Experimentally, we measure the total energy E of the pulse, defined by:

E =

∫ ∫ ∫ +∞

−∞

I(x, y, z) dxdydz =
π
√
π

8
√

ln 2
wxwyτ × I0 (9.4)

Thus, the maximal peak intensity for a Gaussian pulse is:

I0 =
8
√

ln 2
π
√
π

E

wxwyτ
= 1.2 ×

E

wxwyτ
(9.5)

For a pulse duration τ ≃ 100 fs, and a waist of the pump at focus in the interaction area
w0(pump) = 31.1 µm (see equation 9.1), the maximal pump peak intensity at focus is: I0 =

1.2 (TW/cm2) × E(µJ) (as we will see in section 9.3).

9.2.2 Contribution of the nonlinear Kerr index in air at higher orders
Up until now, we only treated the optical Kerr index ∆nK at first order, i.e. with ∆nK directly

proportional to the laser pulse intensity I (in W/cm2), such as: ∆nK = n2× I, with the Kerr index
n2 in cm2/W. However, it has been measured in various gas that, at higher intensities, a strong
negative contribution with a higher non linearity appears, which leads to an overall negative
nonlinear Kerr refractive index [30]. For instance in air, the Kerr index becomes negative for
intensities above 34 TW/cm2. Although not yet understood, this change of behaviour could be
recognised as a saturation effect at high intensity. To take into account this possible non linear
behaviour, the Kerr index is developed at higher order, such as:

∆nK = n2I + n4I2 + n6I3 + n8I4 + ... (9.6)

Therefore, in the numerical simulations of the expected signal, we use values of the
higher order indices up to n8, given in [30], where the first order Kerr index in air is n2 =

(1.2 ± 0.3) × 10−19 cm2/W.

9.2.3 Contribution of the plasma induced by the pump in the interaction
area

For the contribution of the plasma index, we consider the ionisation rate of oxygen and
nitrogen calculated by Couairon and Mysyrowicz [35], and computed from the full Keldysh-
PPT formulation with a determined pre-factor for diatomic molecules developed by Mishima
et al. [36]. The generalised Keldysh–PPT formula describes the ionisation rate of a gas in the
multi-photon regime (below ≃ 1013 W/cm2), and the tunnel regime (above ≃ 1014 W/cm2).

Figure 9.5 shows the ionisation rate of oxygen and nitrogen as a function of the pulse
intensity (from [35]). We can clearly see that the ionisation in gas is a highly non linear process.
Indeed, an increase of the laser pulse intensity by a factor 2 corresponds to an increase of
the ionisation rate, and equivalently to an increase of the plasma index, by approximately a
factor 102. This ionisation rate is introduced in the simulation. The electron density ne is
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Figure 9.5: Evolution of the ionisation rate W of oxygen and nitrogen, as a function of the laser
pulse intensity [35].

then calculated in the 3D simulation, during the propagation and interaction of the pump. At
each step of the propagation, it gives the plasma index np defined in section 2.10.1, such as:
np =

√
1 − ne/nc, where nc is the critical density given in equation 2.75.

9.2.4 Expected deflection signal induced by the pump in the interaction
area

The deflection angle ⟨δθy⟩ of the probe pulse in the interferometer, induced by its interaction
with the co-propagating pump pulse, is calculated via 3D numerical simulations [34], for various
energy of the pump pulse.

Considering Gaussian profiles for the pump and probe pulses, the input parameters of the
simulations are:

• a duration of the pump and probe pulses of 55 fs (FWHM);

• a minimum waist at focus equal to the measured values: w0(pump) = 31.1 µm and
w0(probe) = 35.4 µm (from equation 9.1);

• an energy of 5 µJ for the probe pulse, corresponding to a peak intensity at focus of
6 TW/cm2 (from equation 9.5);

• a pump energy E, corresponding to a peak intensity at focus of I0 = 1.2 (TW/cm2)×E(µJ)
(from equation 9.5);

• a tilt angle θtilt between the pump and probe beam of 7 degrees.

NB: for the Kerr measurements in air studied in this chapter, the contribution of the probe
pulse is not negligible when the pump intensity is relatively low (of the same order or below
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the probe intensity), as we will see in sections 9.3 and 9.4. In the simulations, the 3D electric
field at focus thus includes the sum (i.e. the interference) of the pump and probe fields, which
requires a long calculation time. This is also why there are so few statistics on the simulation
results.

Figure 9.6: Expected un-amplified vertical shift δy = f × ⟨δθy⟩ (in nm) of the barycenter of the
probe intensity profile after deflection by the pump pulse in the interferometer, as a function
of the pump peak intensity at focus (in TW/cm2), for a focal length in the interferometer
f = 100 mm and an efficiency ϵs = 1. The blue dots (with polynomial fit in dashed line)
correspond to the expected values for the optical Kerr effect with higher order indexes (from
equation 9.6). The green dots correspond to the expected values when the contribution of the
plasma index is added. This simulation takes into account the contribution of the probe peak
intensity at focus. The input parameters for Gaussian pulses are: minimum waists at focus
w0(pump) = 31.1 µm and w0(probe) = 35.4 µm; pulse duration 55 fs; probe energy 5 µJ.

The simulations first compute the deflection ⟨δθy⟩
simu as a function of the pump peak

intensity at focus (in TW/cm2). Then, we plot on figure 9.6 the expected direct deflection signal
δy = f × ⟨δθy⟩

simu, corresponding to the un-amplified vertical shift of the collimated probe
intensity profile, as a function of the pump peak intensity, while only assuming the optical Kerr
effect with high order indexes first (blue dots). For a pump peak intensity below 20 TW/cm2

approximately, the signal δy is proportional to the pump intensity. However, above this intensity
value, the signal decreases and even becomes negative, due to higher order negative indexes of
the optical Kerr effect.
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Now, by adding the contribution of the plasma index (green dots), we can also see a decrease
of the expected signal for a pump peak intensity approximately above 20 TW/cm2 as well, with
a relatively large systematic uncertainty for this plasma threshold because of the highly non
linear behaviour of the plasma ionisation rate.

In the next section, we will present the Kerr measurement results in air for pump energies
below 15 µJ (corresponding to approximately 18 TW/cm2 at focus), which is just around the
threshold where the contributions of the high order Kerr indexes and the plasma index become
non-negligible for the deflection signal δy. For measurements at energies lower than 15 µJ,
these contributions will not be an issue but the measurements at 15 µJ should be taken with a
grain of salt.

9.3 Kerr measurements in air with low amplification (rotated
polarisation)

In this section, we present the Kerr measurements in air with the low amplification configura-
tion, which corresponds to the Sagnac interferometer configuration where the polarisation of the
incident laser pulse is slightly rotated by a few tens of mrad before entering the interferometer
(as described in section 7.2.2).

Several run of measurements were done using Prototype 2 (see section 4.2) without spatial
filter in the dark output. The measured signal was then very sensitive to the phase noise pattern
containing hot spots. The data presented in this section have been collected on the 22nd of
December, 2021, which provided the most stable and less dispersed results. The experimental
parameters were the same as the simulation parameters described in section 9.2.4, and with
a probe energy inside the interferometer of about 5 µJ per pulse, which corresponds to a
maximum peak intensity at focus of Iprobe ≃ 6 TW/cm2.

The DeLLight signal ∆y was first measured as a function of the pump intensity. To this
end, several sets of Kerr measurements have been carried out at various energies of the pump
pulses, from 2 µJ to 15 µJ, corresponding to peak intensities at focus from Ipump ≃ 2 TW/cm2

up to Ipump ≃ 18 TW/cm2. As discussed in section 9.2.4, the Kerr signal is expected to be
proportional to the pump intensity below 20 TW/cm2, although we may expect a negative
contribution from the high order Kerr indexes and plasma index above this intensity value.

9.3.1 Control of the absence of signal when the pump pulse is ahead or
delayed in time

First of all, we crosschecked that the DeLLight signal is null when the pump is delayed or
in advance with respect to the probe at focus in the interferometer. To this end, the pump pulse
crosses the interaction area with a 300 fs delay, and thus the probe pulse is not deflected by
Kerr effect. This allows to effectively cancel the probe/pump interaction while also keeping
the same possible systematic induced by the pump pulse as would be the case in regular
measurements, such as possible light diffusion inside the vacuum chamber coming from the
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pump beam, mechanical noise induced by the ON/OFF pump shutter, or even other unknown
possible systematic.

Figure 9.7: Summary of the data analysis, calculated along the vertical axis y, for a measurement
with the pump delayed by -300 fs with respect to the probe in the interaction area. The pump
energy is the same as the probe: Epump = Eprobe ≃ 6 µJ. (Top) Correlation of the barycenters
in intensity of the interference signal ȳsig(i) and the back-reflection ȳref(i). The data is shown
as black points, for OFF (left) and ON (right) measurements, while the result of the linear
fit obtained using the OFF data only is shown in both panels as a blue line. (Lower left)
Distribution of the ON-OFF subtraction of the raw barycenter positions ȳON

sig (i) − ȳOFF
sig (i) in grey,

and in blue after beam pointing correction ∆y(i) = ȳON
corr(i)− ȳOFF

corr (i). (Lower right) Distribution of
the ON-OFF subtraction after beam pointing corrections, where the mean value corresponds to
the DeLLight signal ∆y = ⟨∆y(i)⟩ = 9.2 ± 4.7 nm, compatible with zero as expected (dataset32,
collected on the 22nd of December, 2021).

Figure 9.7 shows the result of the "ON-OFF" analysis for such data (with Epump ≃ Eprobe ≃

6 µJ) when the pump pulse is delayed by -300 fs with respect to the probe pulse in the interaction
area. The analysis is achieved using the method described in chapter 3. The vertical signal
measured in the dark output is then: ∆y = 9.2 ± 4.7 nm (with a dispersion σy = 115.4 nm),
which is compatible with zero as expected. Therefore, we have defined the "zero position" and
we are certain that the measured signal in the dark output of the interferometer is really due to
the Kerr effect and does not come from possible artefacts coming from the pump.

125



9.3.2 Deflection signal as a function of the pump peak intensity

After measuring the ”zero signal”, we measure the Kerr signal ∆y in air at different pump
intensities, in order to verify the expected linear relationship between the two. To this end,
several sets of measurements have been carried out at various pump energies, from 2 to 15 µJ
per pulse (corresponding to peak intensities from 2 to 18 TW/cm2). The energy of the pump
pulse is modified by the combination of a rotating half wave plate (λ/2 − 1 on figure 4.3)
followed by a femto-polariser (P) set to p−polarisation. This way, the pump energy is maximal
when the half wave plate is aligned with the polariser set in p−polarisation, and it decreases
when the half wave plate is rotated while still keeping a p−polarisation pump pulse in the
interaction area. Thus, the pump energy is minimal when the pump polarisation is completely
rotated to s−polarisation after the half wave plate. The advantage of this method is that it
maintains the time coincidence of the pump and probe pulses in the interaction area (i.e. there
is no stretching of the pump pulse duration since the pulse passes through the same optics).

Figure 9.8: Kerr measurement results in air, translated by the vertical shift ∆y (in nm) of the
barycenter of the interference intensity profile measured in the dark output of the interferometer,
as a function of the peak intensity of the pump pulse. This vertical shift corresponds to an
”ON-OFF” measurement, such as ∆y = ȳON

corr − ȳOFF
corr , where ȳON

corr and ȳOFF
corr are the corrected

barycenters of the ON (pump/probe interaction) and OFF (no interaction) intensity profiles in
the dark output. Theses signals were calculated with a RoI-size wRoI = 0.7 × FWHM. (Blue)
All Kerr signal values ∆y measured during the run presented here. (Orange) Averaged vertical
shift ∆y over several sets of measurements at the same pump peak intensities.

126



The duration of each measurements depends on the pump energy and therefore on the
expected signal amplitude. It varies from 40 seconds at maximal pump energy (15 µJ), up to
2 minutes at minimum pump energy (2 µJ), which will naturally influence the error on the signal
∆y accordingly. Moreover, between each set of measurements, the extinction of the Sagnac
interferometer is adjusted if necessary, as well as the position of the lens L-2 (focusing the
reference pulse). In order to check the repeatability of the results, we repeat the measurements
as a function of the pump energy up to three times.

The results of the Kerr measurements in air are presented on figure 9.8, where the vertical
shift ∆y measured in the dark output is plotted as a function of the pump peak intensity. A clear
correlation is observed: the signal increases with the pump intensity, as expected for the Kerr
effect with pump intensities below 20 TW/cm2, as explained in section 9.2.4. Moreover, the
dispersion of the results illustrates the repeatability of the measurement. However, we can see
a slight non linearity for pump intensities below 7 TW/cm2. In the next section, we will see
that this comes from the polarisation of the pump, which is not perfectly p-polarised but has a
small fraction of s-polarisation, thus degrading the signal in the dark output.

Figure 9.9: Same as figure 9.8, but for the deflection signal ∆x along the x-direction.

We also plotted the signal ∆x in the x-direction on figure 9.9. Since the pump pulse is
only vertically shifted with respect to the probe pulse at focus in the interaction area, there
should not be any horizontal deflection of the intensity profile in the dark output of the Sagnac
interferometer. However, we can clearly see a signal (though weak compared to ∆y) of about
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∆x = 300 nm for an intensity equal to 18 TW/cm2 (corresponding to a pump energy of 15 µJ).
This effect is possibly due to an asymmetry of the horizontal x-component of the phase noise
δϕ(x, y), which dominates at low amplification as seen in section 7.2.2. Further investigations
are still required to better understand this phenomenon.

9.3.3 Polarisation-dependent Kerr index
The Kerr index n2,air in the interaction area depends on the relative polarisation between

the pump and probe pulses. Indeed, it is maximal when both polarisations are parallel and is
theoretically divided by a factor 3 when the polarisations are perpendicular (we will see in
section 9.4.5 that the deflection signal might even be null when the polarisations of the pump
and the probe are perpendicular). However, we saw in the previous section that the polarisation
of the pump pulse is rotated from p to s when the pump energy is decreased from its maximal to
minimal value, using the half wave plate (λ/2− 1). Then, the inefficiency of the femto-polariser
(P) set in p-polarisation and placed right after allows the pump pulse to keep a s-polarisation
component as well as a p-component. Therefore, the polarisation of the pump is p when its
energy is maximal. However, when the pump energy decreases, the fraction of the s-component
increases. Finally, when the pump energy is minimal, its polarisation is only s.

Figure 9.10: Fraction of the s-polarisation of the pump pulse, as a function of its energy, after
crossing the combination of the half wave plate rotation followed by the femto-polariser set
to p-polarisation (method used to reduce the energy of the pump pulse without changing the
pump/probe time coincidence in the interaction area). The probe pulse is only p-polarised.

Figure 9.10 shows the fraction of the s-polarisation component of the pump as a function
of its energy, which evolves as expected. Therefore, the DeLLight signal ∆y, measured in the
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previous section, can be corrected by taking into account the variation of the polarisation of the
pump pulse. The corrected value ∆ycorr is then given by:

∆ycorr =
∆y

s
3 + p

=
∆y

1 − 2s
3

(9.7)

where the s-component comes from figure 9.10.

Figure 9.11: Same as figure 9.8, but after correction of the pump polarisation in the interaction
area. The corrected signal (blue) is then ∆ycorr = ∆y/(1 − 2s

3 ). The orange dots are the mean
signal values from figure 9.8.

The corrected value of the signal ∆ycorr, as a function of the peak intensity of the pump in
the interaction area, is shown on figure 9.11. The corrected signal is now almost proportional
to the peak intensity of the pump as expected, even at intensities below 7 TW/cm2.

In order to avoid the effect of the polarisation of the pump pulse in future measurements,
we will see in section 9.4 that another method to decrease the pump energy was used for Kerr
measurements in the high amplification configuration of the Sagnac interferometer.

9.3.4 Deflection signal as a function of the RoI-size
As explained in section 3.2.2, the amplitude of the measured signal ∆y depends on the

RoI-size wRoI chosen for the data analysis. Reducing the size of the RoI too much would
truncate the intensity profile in the dark output of the interferometer, thus skewing the measured
shift ∆y caused by the Kerr effect. However, as seen on figure 6.8 in section 6.4, the spatial
resolution σy is degraded for larger RoI-sizes because the signal to noise ratio then decreases
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and the phase noise dominates in the dark output.

Figure 9.12: Effect of the size of the region of interest (RoI) on the Kerr signal ∆y measured in
the dark output, for a set of measurements with a pump energy of 12 µJ (i.e. a peak intensity
of 14 TW/cm2). (Upper left plot) Amplitude of the measured signal ∆y as a function of the
RoI-size over the width (FWHM) of the transverse intensity profile. The orange curve is the
expected signal efficiency (defined in equation 3.11). (Upper right plot) Spatial resolution σy

as a function of the RoI-size over FWHM. (Lower Plot) Statistical confidence level (in number
of sigma) of the measured signal: C = ∆y/(σy/

√
Nmes), Nmes being the number of ”ON-OFF”

measurements, as a function of the RoI-size over FWHM.

Figure 9.12 first shows the signal ∆y measured in the dark output, as a function of wRoI/w,
where w is the width (FWHM) of the transverse intensity profile in the dark output. These
data correspond to a pump energy of 15 µJ, equivalent to a peak intensity of 18 TW/cm2. For
wRoI/w ≤ 0.6, the signal increases with the size of the RoI, according to the expected signal
efficiency defined in equation 3.11 (orange line on figure 9.12). However, for larger RoI-sizes,
the amplitude of the measured signal saturates around wRoI = w and then decreases over that
value. This is due to the contribution of the phase noise in the dark output which becomes
dominant and thus deteriorates the ”ON-OFF” signal reconstruction.

Secondly, the same figure also shows the spatial resolution σy as a function of wRoI/w.
We can see that, for wRoI/w ≤ 0.8, the spatial resolution is relatively stable. However, for
wRoI/w ≥ 0.8, it is rapidly degrading due to a decrease of the signal-to-noise ratio. As already
mentioned, the phase noise dominates for large RoI-sizes.
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Finally, we define the statistical confidence level C of the measured signal (in number of
sigma) by:

C =
∆y

σy/
√

Nmes
(9.8)

where Nmes is the number of ”ON-OFF” measurements. On figure 9.12, we plot this parameter
as a function of wRoI/w. It is maximal for wRoI/w ≃ 0.8, as expected from the other two plots
presented.

Figure 9.13: Same as figure 9.12, but for a pump energy of 2 µJ (i.e. an intensity of 2 TW/cm2).

Additionally, the same kind of study was performed for other sets of measurements with
different pump energy. Figure 9.13 shows the results for a pump energy of 2 µJ (corresponding
to a peak intensity of 2 TW/cm2.). Similar conclusions can be drawn. Thus, we remark that,
for very low pump energies, and therefore for very low signals, the noise contribution also
becomes important for large RoI-sizes and saturates sooner (at wRoI/w ≃ 0.6). The measured
signal can even change sign.

From this study, we conclude that the optimal RoI-size to maintain a stable and good spatial
resolution and to optimise the signal-to-noise ratio is wRoI/w = 0.7. That is why we have used
such value for the analysis presented in the previous sections.
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9.3.5 Contribution of the phases δϕ(y) and δψ to the measured deflection
signal

A major drawback of this low amplification configuration concerns the mix of p and s
polarisation component of the probe beam. This mixture renders the understanding of the
results presented here very complex and difficult to calculate. We explain here the reasons.

Let us consider the p and s-component of the interference intensity profile ION for an "ON"
measurement (with interaction with the pump) in the dark output of the interferometer. From
equations 2.29 and 7.5, we can write the intensity profile for an ON measurement as:

ION(y) = cos2(β) × ION,p(y) + sin2(β) × ION,s(y) (9.9)

where the p and s-components are:

ION,p(y) = (δap)2 × Iin

(
y +

1 − δap

2δap
× δyp

)
+

(
δϕp(y) +

δψp

2

)2

×(1 − (δap)2) × Iin

(
y −

δyp

2

) (9.10)

ION,s(y) = (δas)2 × Iin

(
y +

1 − δas

2δas
× δys

)
+

(
δϕs(y) +

δψs

2

)2

×(1 − (δas)2) × Iin

(
y −

δys

2

) (9.11)

and where the parameters involved have already been discussed. We remind that:

• the angle between the p and s-polarisation planes is very small: β ≪ 1 (from section 7.2.2:
β ≃ 4 mrad);

• the p-component of the asymmetry coefficient is: (δap)2 ≃ 3 × 10−6 (corresponding to
the maximal measured extinction from figure 5.3);

• the phase noise pattern (containing hot spots) is: (δϕp(y))2 ≃ 3 × 10−5 (measured in the
dark output without spatial filter, as seen on figure 5.2);

• the s-component of the asymmetry coefficient is: δas = 0.55 (from section 7.2.2);

which lead to a s-component extinction factor of:

• (δas)2 × sin2(β) = 5 × 10−4 = RAR/2 (from equation 7.6);

• δϕs ≃ 200 mrad, i.e. δϕs ≃ δas/3 (estimated from a study of the intensity signal as a
function of the polarisation, and not presented here);

• δys, δψs ≪ δyp, δψp (coming from the measurement of the deflection signal when the
relative polarisation between pump and probe is perpendicular, as will be seen in fig-
ure 9.18).
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Finally, the intensity profile of the ON measurement can be simplified as:

ION(y) = 3 × 10−6 × Iin

(
y + 290 × δyp

)
−→ 3 × 10−6

+

(
δϕp(y) + δψp

2

)2

×Iin

(
y − δyp

2

)
−→ 3 × 10−5

+ 5 × 10−4 × Iin

(
y + 0.5 × δys

)
−→ 5 × 10−4

+ 0.7 ×
(
δϕs(y) + δψs

2

)2

sin2(β) × Iin

(
y − δys

2

)
−→ 5 × 10−4

(9.12)

where we have indicated by an arrow the orders of magnitude of each intensity term. The
first term corresponds to a strongly amplified shift of the intensity profile, but with a relative
intensity two orders of magnitude smaller. The second term corresponds to a shift induced by
the coupling of the phase signal δψp with the phase noise δϕp with a relative intensity an order
of magnitude smaller. The two last terms are the dominant intensity terms with a shift relatively
smaller and mainly induced by the coupling of the phases ”δϕs(y) × δψs”.

Therefore, for this configuration with rotated polarisation of the probe, the shift of the
barycenter of the interference intensity profile measured in the dark output is actually a combina-
tion of all the different contribution depicted in equation 9.12, thus rendering the understanding
of the results presented here very complex. Since the measured signal is dominated by the
phase noise (which is not properly controlled), it is necessary to get rid of all s-components in
order to properly amplify the direct deflection δy. This is done in the next section 9.4.

In summary, the DeLLight measurements presented here for the low amplification config-
uration of the Sagnac interferometer are not very satisfying, with room for improvement by
using probe and pump pulses with parallel p-polarisations. However, these measurements were
a huge step to highly enhance the experimental setup (in terms of efficiency, practicality and
stability), as well as the measurement protocols and the ”ON-OFF” signal extraction method.
In the next section, we will discuss the Kerr measurements in air with high amplification by
interferometry, i.e. without the introduction of s-polarisation between the pump and probe
pulses.

9.4 Kerr measurements in air with high amplification (ro-
tated beamsplitter)

In this section, we present the Kerr measurements in air with the high amplification config-
uration, which corresponds to the Sagnac configuration where the interferometer beamsplitter
is slightly rotated by 1 degree on its horizontal plane in order to have an incident angle of 46°
for the pulse entering the interferometer (as described in section 7.2.3). This means that now
the probe beam is purely p-polarised in the interaction area.

The data presented in this section have been collected during Fall, 2022. These were fairly
new at time of writing this manuscript, thus the results are preliminary.
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The experimental setup is the same as the previous section (triangular interferometer with
focusing), but with the spatial filter in the dark output and without the spectral filter. The
experimental parameters are the following:

• The energy of the probe pulse inside the Sagnac interferometer is Eprobe = 1 µJ.

• The minimum waists at focus of the probe and pump are w0 ≃ 35 µm.

• The tilt angle between the pump and probe beams is θtilt ≃ 7°.

• The T/R asymmetry parameter of the beamsplitter is δa ≃ +2 × 10−2, with an extinction
factor of F = 4 × 10−4, corresponding to a negative amplification factor of

A = −
1

2δa
= −25 (9.13)

It means that the amplified interferometric deflection signal ∆y and the direct deflection
signal δy, related by ∆y = A× δy, have opposite signs.

In this configuration, the polarisation of the probe beam is purely p with δa = δap = 2×10−2.
Therefore, the interference intensity profile ION for the "ON" measurement (with interaction
with the pump) in the dark output of the interferometer is simply:

ION(y) = (δa)2 × Iin

(
y +

1
2 δa
× δy

)
+

(
δϕ(y) +

δψ

2

)2

×Iin

(
y −

δy
2

)
= (δa)2 × Iin

(
y −A × δy

)
+

(
δϕ(y) +

δψ

2

)2

×Iin

(
y −

δy
2

)
(9.14)

We have measured the DeLLight deflection signal ∆y as a function of four experimental
parameters:

• the time delay δt between the pump and the probe pulses at focus,

• the pump peak intensity,

• the impact parameter b,

• the polarisation of the pump, relative to the probe.

For the results presented below, the analysis have been done using a RoI-size of wRoI = w/2
where w is the width (FWHM) of the intensity profile in the dark output. This corresponds to
an efficiency to reconstruct the barycenter shift of ϵs = 0.12 (see section 3.2.2).
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9.4.1 Measurement of the direct deflection signal δy
For this new campaign of measurements, we used the direct back-reflection of the beamsplit-

ter (defined in section 2.7) to measure simultaneously the direct deflection signal δy = f × δθ
of the probe, and this in addition to the amplified interferometric deflection signal ∆y. We
remind that both signals are related by ∆y = A× δy,A being the amplification factor. There-
fore, measuring simultaneously δy and ∆y allows to quantify and to validate the effect of said
amplification through the Sagnac interferometer.

The position of the direct back-reflection of intensity IAR,1 (see figure 2.5) allows to measure
the direct deflection of the probe. Indeed, this back-reflection corresponds to the direct image
of the probe pulse after a single reflection on the backside of the beamsplitter. This pulse is
therefore also deflected by the pump pulse in the interaction area, but without being amplified
via interference with the probe pulse in the dark output. Moreover, the second back-reflection
of intensity IAR,2 (see figure 2.5) corresponds to the constructive interference of the two laterally
offset beams which are not in coincidence with the pump (delayed). Therefore this second back-
reflection is not affected by the pump and is used as a reference for beam-pointing correction,
in a similar way as done for the amplified signal ∆y (see chapter 3).

That way, we can simultaneously measure the direct deflection signal δy using the direct
back-reflection IAR,1 in reference to the second back reflection IAR,2, and the amplified deflection
signal ∆y using the interferometric signal in the dark output in reference to the second back-
reflection IAR,2.

9.4.2 Deflection signal as a function of the time delay δt between the pump
and probe pulses at focus

We first measured the deflection signal as a function of the time delay δt between the probe
and the pump pulses. To scan different delay values, we use a motorised piezo translation
stage (MDS-1), for which the steps are calibrated. However, the absolute position is unknown.
In order to avoid hysteresis on the absolute position, the scan on the delay time has been
performed starting with a pump in advance, relatively to the probe, then by delaying the pump
progressively. The measurements of the delay time scan have been done with an energy of
the pump pulse Epump = 2 µJ and a pulse duration of 70 fs (FWHM), corresponding to a peak
intensity at focus of about 3 TW/cm2.

The result of this time scan is shown on figure 9.14 (left panel). A positive time delay
corresponds to a pump pulse in advance while a negative time delay correspond to a delayed
pump. The measured profile of the amplified deflection signal ∆y as a function of the time delay
is in agreement with the expected longitudinal profile of the pump pulse, namely close to a
Gaussian profile where its maximum corresponds to the optimal time synchronisation between
the probe and pump pulses at focus. Moreover, when the delay between the probe and pump
pulses is about δt = −200 f s, the deflection signal is ∆y = 5.7 ± 6.8 nm, which is in agreement
with a null signal, as expected. This constitutes the "zero signal".

We also detect a small but significantly non null direct deflection signal δy which is maximal
at the time coincidence of the pump and probe pules. At δt = 0, we measure δy ≃ −20 nm
and ∆y ≃ 220 nm, which corresponds to an effective amplification factor A ≃ −11. It is a
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factor 2 smaller than the expected amplification factor. We will see in section 9.4.4 that the
amplification is reduced by the presence of the phase. We also verify here that δy and ∆y have
opposite sign, as expected.

Figure 9.14: (Blue) Measured DeLLight deflection signals, ∆ymes in the y-direction (left) and
∆xmes in the x-direction (right), as a function of the time delay δt between the pump and probe
pulses at focus. (Orange) Direct deflection signals, δymes (left) and δxmes (right), as a function
of the time delay δt. Measurements have been performed ob November, the 4th, 2022, with a
pump energy of 2 µJ and a pulse duration of 70 fs (FWHM), corresponding to a peak intensity
of the pump at focus of about 3 TW/cm2.

Additionally, figure 9.14 also shows, on the right panel, the measured deflection signal ∆x
(along the horizontal x-axis) as a function of the time delay δt of the pump pulse. At first order,
the expected deflection signal is null. However, we can see that a small signal could occur
when delaying the pump pulse, possibly due to a horizontal shift of the interference fringes
between the pump and the probe pulses. This effect is not well understood yet, so numerical
simulations are required to study it.

9.4.3 Deflection signal as a function of the pump intensity
We have measured the deflection signal ∆y as a function of the pump intensity at focus in

the interaction area. Similarly to section 9.3.2, we collect several data sets, at different pump
energies ranging from 1 to 13 µJ, with pulses duration of 70 fs (FWHM), which corresponds to
peak intensities from 1 to 14 TW/cm2. At such intensities, the Kerr signal is expected to be
proportional to the pump intensity (as shown on figure 9.6). Let us note that the pump energy
was decreased using a variable neutral density with constant optical path length in order to
avoid any experimental bias due to a possible rotation of the pump polarisation, as was the case
in section 9.3.3.

Figure 9.15 shows the result of the measurements of the direct deflection δy and amplified
deflection ∆y as a function of the pump peak intensity. A clear correlation is observed between
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the deflection signal ∆y and the pump intensity, as expected for the Kerr effect with pump
peak intensities below 15 TW/cm2. A small but significant direct deflection signal δy is also
measured. The measured amplification factor is thenA ≃ −23, in agreement with the expected
value of 25. We also verify that the amplification factor is negative as expected (δy and ∆y have
opposite signs).

Figure 9.15: Deflection signal as a function of the pump peak intensity at focus in the interaction
area. (Left) Direct deflection signal δy without amplification. The expected signal calculated
by numerical simulations is shown by the green star. (Right) Amplified deflection signal
∆y = A× δy with the fitted function (orange line) given by equation 9.16. The amplification
factorA ≃ −23 is in agreement with the expected value and is negative as expected. The fitted
function divided by the amplification factor has been superposed on the left figure (dashed
orange line) to verify the good agreement with the direct deflection signal.

The expected direct deflection signal δysimul has been calculated by numerical simulations
(described in section 9.2). For an energy of the pump of 5 µJ, a pulse duration of 70 fs (FWHM),
a minimum waist at focus of w0 = 40 µm (corresponding to a peak intensity of 5 TW/cm2), a tilt
angle of θtilt = 7° and an impact parameter of b = bopt, the expected value is δysimul = 250 nm.
Taking into account the efficiency to measure the signal ϵs = 0.12 (corresponding to a RoI-size
wRoI = FWHM/2), the expected measured value is δysimul

mes = 30 nm. This value, reported on
figure 9.15, is in good agreement with the measured direct deflection signal.

We note that the measured signal is not perfectly proportional to the peak intensity of the
pump. It is due to the interference of the pump with the probe at low intensity. Indeed, at low
energy, the pump energy is of the same order, or even smaller than the probe energy. Therefore,
the interference at focus of the amplitude of the electric fields of the probe Eprobe and the pump
Epump contribute to the resulting intensity at focus. The shift ∆y then becomes:

∆y ∝ (Epump + Eprobe)2 ∝ Ipump + Iprobe + 2|EpumpEprobe| (9.15)

where Ipump and Iprobe are the intensities of the pump and probe respectively. The term Iprobe

must be removed since the effect of the probe on itself is cancelled when applying the ON-
OFF subtraction. The energy of the probe pulse being constant during the measurements, the
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deflection signal becomes:
∆y = a × Ipump + b ×

√
Ipump (9.16)

where a and b are constants. This function has been fitted to the data of the amplified deflection
signal ∆y and a good agreement is obtained. The same function, divided by the measured
amplification factorA = −23, is superposed to the data of the measured direct deflection signal
δy. There is a good agreement, despite the large statistical errors.

9.4.4 Deflection signal as a function of the impact parameter
In this section, we present the results of the measurements of the deflection signal as a

function of the impact parameter b, for a pump energy of 6 µJ, a minimum waist at focus of
w0 = 35 µm, and a pulse duration of about 200 fs (corresponding to a peak intensity of about
3 TW/cm2). To this end, we first adjust the pump pulse position at focus to have the optimal
impact parameter b = bopt, using a dedicated CCD camera placed at focus (as explained in
section 9.1.2). Then, we vary the impact parameter value by vertically translating the pump
beam at focus, using a piezo-motorised mirror placed before the focusing lens (L-3) on the
pump path. However, the piezo-motor steps only provide the relative position of the pump (i.e.
the impact parameter) and the absolute position remains unknown. Therefore, we first shift the
pump upward (with respect to the probe at focus) to a large impact parameter value, at about
b = 3 × bopt where the deflection signal is almost null. Then, we shift the pump downward step
by step to the opposite impact parameter value.

The direct deflection signal δy varies as a function of the impact parameter b, such as (see
equation 2.7):

δy(b) = δymax
b

bopt
e

1
2

(
1−

(
b

bopt

)2
)

(9.17)

The direct deflection is null when the pump and probe pulses are completely overlapped in the
interaction area (b = 0), and is maximal and equal to δymax when b = ±bopt. This dependence
is used to calibrate the absolute value of b, namely its zero value b = 0 and its optimal value
b = bopt. Figure 9.16 (left panel) shows the measurements of the direct deflection signal
measured as a function of the impact parameter and the result of the fit of the function given in
equation 9.17.

On the other end, the amplified deflection signal ∆y is given by the ”ON-OFF” barycenter
measurement in the dark output of the interferometer, for which the intensity profiles ION(y)
and IOFF(y) of the ON and OFF barycenters respectively are defined by (from equations 9.14
and 2.30, with δa ≪ 1 for high amplification):

ION(y) = (δa)2 × Iin

(
y +A× δy(b)

)
+

(
δϕ(y) +

δψ(b)
2

)2

×Iin

(
y −

δy(b)
2

)
IOFF(y) =

(
(δa)2 + (δϕ(y))2

)
×Iin(y) (9.18)

where Iin is the input intensity entering the interferometer, δϕ(y) is the phase noise of the
interferometer which may vary along the vertical y coordinate, and δψ is the phase signal
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which is uniform but also depends on the impact parameter b, such as (see also equations 2.9
and 2.10):

δψ(b) = δψ0 e−
1
2

(
b

bopt

)2

(9.19)

It means that the phase signal δψ is maximal when b = 0.
Therefore, the amplified deflection signal ∆y is sensitive to both the direct deflection signal

δy(b) and the phase signal δψ(b), knowing that both vary differently as a function of the impact
parameter.

Figure 9.16: Measured deflection signal as a function of the impact parameter b of the
pump pulse in the interaction area over its optimal value bopt. (Left) Direct deflection sig-
nal δymes without amplification. We fit, in orange, that signal using the function: δy(b) =
δymax (b/bopt) exp((1 − (b/bopt)2)/2). (Right) Amplified deflection signal ∆ymes = A × δymes,
where the amplification factorA is negative as expected. In orange line is the result of the fit
taking into account the phase signal δψ(b) and the phase noise δϕ(y) = δϕ0 + δϕ1y (see text for
details).

Figure 9.16 (right panel) shows the measurements of the amplified deflection signal ∆ymes, as
a function of the impact parameter b of the pump pulse. Firstly, we verify that the amplification
is negative as expected: a positive un-amplified signal δymes will lead to a negative amplified
signal ∆ymes. Secondly, we can see that the amplified signal ∆ymes is not null at b = 0 and its
two maxima are not equal (i.e. asymmetric in amplitude). This is precisely due to the influence
of the phase noise δϕ(y) through the coupling term δϕ(y)×δψ(b), where δψ(b) varies differently
as a function of the impact parameter b. A numerical fit has been applied to the data. It is based
on equation 9.18 and takes into account the deflection signal δy(b), the phase signal δψ(b) and
the phase noise δϕ(y) which is modelled at first order as a linear dependence on y, such as:

δϕ(y) = δϕ0 + δϕ1 × y (9.20)

The fit is calculated with four free parameters: δymax, δψ0, δϕ0 and δϕ1. The result of the fit,
plotted on figure 9.16, is in remarkably good agreement with the data. The amplification factor
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is A ≃ −17 at b = −bopt, and A ≃ −11.5 at b = +bopt. This asymmetry is precisely due to
the presence of the phase noise which also reduce the amplification factor. To illustrate this
phenomenon, we plot on figure 9.17 the fitted function when the phase noise is null: δϕ0 =

δϕ1 = 0 (green dashed line). The expected deflection signal ∆y is now symmetrical in amplitude
and null when b = 0. More importantly, we also note that the maximal expected deflection
signal ∆ymax (when b = bopt) increases when the phase noise is null (the difference is marginal if
we also assume a null phase signal δψ0 = 0 which is physically not realistic, as shown in purple
dashed line). Thus, the phase noise reduces the amplitude of the amplified interferometric
deflection signal ∆y, which is a very important result. The value of the amplification factor is
biased by the presence of the vertical gradient of the phase noise. As of yet, the exact value
of the amplification factor is one of the main limitations, for which the measurement is not
completely mastered with all systematic involved. Finally, we also plot the expected signal
when the phase noise is uniform and independent of y (δϕ = δϕ0 and δϕ1 = 0). In that case,
the expected signal is even slightly smaller than the measured signal, meaning that the vertical
dependence of the phase noise (δϕ1 × y) tends to slightly increase the measured signal.

Figure 9.17: Measurement of the amplified interferometric deflection signal ∆y as a function of
the impact parameter b, normalised to bopt. In orange line is the result of the fit, taking into
account the phase signal δψ(b) and the phase noise δϕ(y) = δϕ0 + δϕ1y. In dashed line, the
same function is plotted but with different hypothesis for the phase noise and phase signal (see
text for details).

9.4.5 Deflection signal as a function of the polarisation of the pump
In this section, we present the results of the measurements of the amplified interferometric

deflection signal, as a function of the polarisation p of the pump in the interaction area, for a
pump energy of 6 µJ, a minimum waist at focus of w0 = 35 µm and a pulse duration of about
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200 fs (corresponding to a peak intensity of about 3 TW/cm2).
To this end, we vary the polarisation orientation of the pump pulse from p to s-polarisation,

by rotating the half wave plate (λ/2 − 1) placed on the pump optical path, mounted on a
piezo-motorised rotation in the vertical plane. Meanwhile, the probe pulse remains p-polarised.
Noting α the rotation angle of the half wave plate, the relative polarisation angle between the
pump and the probe is then θpol = 2α. The intensity of the pump is decomposed along its two
linear polarisations Ipump

p and Ipump
s , such as:

Ipump = Ipump
p × cos2(θpol) + Ipump

s × sin2(θpol) (9.21)

Figure 9.18 shows the result of the measurements of the amplified deflection signal ∆y
as a function of the relative polarisation angle θpol between the pump and probe pulses. Data
are in good agreement with the fitted function ∆y = ∆ymax × cos2(θpol) (in dashed line). The
signal is maximal when the relative polarisation angle is null, i.e. when the probe and pump
polarisations are parallel, and the signal is null when their polarisations are perpendicular. This
is an important result, which needs to be confirmed with better accuracy. Indeed, we can see
a slight asymmetry of the signal amplitude for relative polarisation angles of θpol = 0° and
θpol = 180°, which is probably due to the preferential polarisation axis of the half wave plate.
We also observe a small horizontal shift ∆x for θpol = 180°, while this signal is absent for the
symmetric angle θpol = 0°. This might come from a variable phase noise δψ(x, y) during data
collection. Indeed, this phase noise has a variable component in the horizontal x-direction, thus
generating a small deflection signal at θpol = 180°.

Figure 9.18: Amplified deflection signals ∆y (orange) and ∆x (blue), in y and x-directions,
as a function of the relative polarisation angle θpol between the pump and probe pulses in the
interaction area. The dotted curve corresponds to the expected signal ∆y ∝ cos2(θpol).
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9.4.6 Deflection signal as a function of the RoI-size

The variation of the deflection signal as a function of the RoI-size is an important test
to verify that the residual phase noise does not introduce any bias, as already discussed in
section 9.3.4. Figure 9.19 shows an example of the variation of the amplified interferometric
deflection signal ∆y, as a function of the RoI-size wRoI (normalised to the width w FWHM
of the transverse intensity profile), for a pump energy of 5 µJ, a minimum waist at focus of
w0 = 35 µm and a pulse duration of about 70 fs (corresponding to a peak intensity of about
7 TW/cm2). The variation of the signal amplitude is in remarkably good agreement with the
fitted expected signal efficiency (defined in equation 3.11) for wRoI/w ≤ 1.5.

Figure 9.19: Effect of the RoI-size (normalized to the width FWHM of the transverse intensity
profile) on the amplified deflection signal ∆y, for a set of measurements with a pump energy of
5 µJ and a pulse duration of 70 fs (FWHM), corresponding to a peak intensity of 7 TW/cm2.
(Upper left plot) Amplitude of the measured signal ∆ymes as a function of the RoI-size. The
orange curve is the expected signal efficiency (defined in equation 3.11). (Upper right plot)
Spatial resolution σy as a function of the RoI-size. (Lower Plot) Statistical confidence level
(in number of sigma) of the measured signal: C = ∆y/(σy/

√
Nmes), Nmes being the number of

”ON-OFF” measurements, as a function of the RoI-size.

In contrast to the result obtained in section 9.3.4, where the phase noise and its hot spots
strongly affected the signal amplitude for wRoI/w ≥ 0.5, here the phase noise affect the signal
only for a RoI-size wRoI/w ≥ 2 corresponding to an efficiency ϵs(wRoI/w = 2) ≃ 0.9.

Moreover, we also plot the spatial resolution σy as a function of wRoI/w (top right panel on
figure 9.19). As already studied and discussed in chapter 7, the spatial resolution is degraded
when the RoI-size increases due to the mechanical vibrations of the interferometer. Finally, we
plot the statistical confidence C (defined in equation 9.8), as a function of wRoI/w (lower panel
on figure 9.19). The statistical confidence is relatively constant, and is maximal for a RoI-size
wRoI/w ≈ 2.

In conclusion, unlike the measurements at low amplification without spatial filter where
the signal was biased by the phase noise, the amplified signal measured here with a pure
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p-polarised probe and with a spatial filter in the dark output of the interferometer varies as
the expected theoretical efficiency, showing that now the phase noise does not bias the signal
anymore when the RoI-size is increased.

9.5 Summary
In conclusion, these measurements in air are an important achievement of the DeLLight

project since they validate the DeLLight interferometric measurement of a deflection signal
induced by an index gradient produced by a pump pulse. The amplitude of the signal varies
as expected as a function of the experimental parameters, namely the intensity, the impact
parameter, the time delay and the polarisation of the pump. Moreover, these measurements
demonstrate the amplification of the deflection signal through the interferometric technique.
It also shows the role of the phase signal and the phase noise as a possible systematic bias.
Finally, we plan to measure in the next month the deflection signal as a function of the air
pressure inside the vacuum chamber.
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Conclusion and outlook

During this PhD thesis, we managed to prove the feasibility of the DeLLight project and
the characterisation of critical parameters limiting the sensitivity of the experiment, namely the
extinction factor F , the spatial resolution σy and the focalisation quality of the probe and pump
pulses at focus. To this end, we developped two interferometer prototypes in femtosecond
regime (with and without focalisation in the interaction area).

The best extinction factor we managed to reach is F = 3 × 10−6 using Prototype 2 (with
focalisation), as was the goal.

Then, we measured the ultimate shot noise resolution of the CCD cameras, using a dedicated
test bench, and we managed to reach σy = 13 nm.

Furthermore, the measurement of the spatial resolution in the dark output showed that beam
pointing fluctuations are completely suppressed (using the ”ON-OFF” subtraction method to
extract the signal), which allowed to reach the shot noise for the low amplification configu-
ration of the interferometer (rotated polarisation of the probe pulse). However, for the high
amplification configuration (rotated interferometer beamsplitter), the resolution is still limited
by the phase noise induced by mechanical noise coming from the optics of the interferometer.

At last, the interferometric measurement technique of the DeLLight experiment was vali-
dated by measuring the Kerr effect in a material medium using low energy (µJ) co-propagating
probe and pump pulses. We first measured the Kerr effect in a silica slide, without focalisation
of the probe and pump pulses in the interferometer (Prototype 1). We then measured the Kerr
effect in air, with focalisation of the probe and pump pulses (Prototype 2), with an amplification
of about 25 (obtained by comparing the amplified shift ∆y with the direct deflection signal δy).
Thus, we checked that the shift ∆y of the intensity profile in the dark output fluctuated with four
experimental parameters as expected, namely the pump energy, the impact parameter between
the probe and the pump in the interaction area, the relative polarisation probe-pump, and the
temporal synchronisation delay of the pump with the probe. Let us note that the measurements
in air were conducted with the pilot interferometer that will be used for the first measurements
in vacuum in the near future.

Several improvements and development prospects of the DeLLight project are planned.
One of the important experimental limitations as of now is the phase noise in the dark output
of the interferometer, induced by mechanical vibrations of the interferometer itself, which
degrades the spatial resolution and prevents us to reach the shot noise resolution. Indeed, the
current spatial resolution is an order of magnitude above the shot noise. An improvement of
the mechanical isolation is needed. It is also needed to develop the high frequency phase noise
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suppression technique which has been proposed in this dissertation, in order to measure and
suppress the phase noise. First tests are planned for the next months.

Let us note that all the measurements presented in this manuscript were fulfilled with
co-propagating pump and probe pulses in the interaction area. That is why, before moving
on to Kerr measurements in vacuum where counter-propagating pulses are mandatory, the
spatio-temporal synchronisation of counter-propagating pulses will have to be tested in air first.
This will be one of the main focus of next year. Stability and overlapping control of the probe
and pump pulses in the interaction area will need to be properly studied.

Finally, an important needed improvement is to reduce the minimum waist at focus of
the probe and pump pulses in the interaction area. Indeed, the DeLLight signal is inversely
proportional to the cube of the waists at focus, which are themselves inversely proportional to
the size of the collimated pulses before focus. The current waists at focus are approximately
30 µm while the goal is 5 µm. Focusing the pump pulse to a minimum waist of 5 µm is
realistic. It is however more difficult for the probe beam. Indeed, it requires larger beam sizes
in the interferometer, which encounter two difficulties. First, the phase noise will be increased.
Second, it will increase non linear effects in the interferometer beamsplitter because a larger
probe beam entails a thicker beamsplitter to properly separate the back-reflections from the
interference signal on the CCD camera. Another approach to reduce the waist at focus while
keeping a relative small size of the collimated beam in the interferometer is to lower the probe
wavelength from 800 nm to 400 nm. This also constitutes a planned upgrade in the DeLLight
project.

The journey is only just beginning for the DeLLight project, and I for one can not wait to
see what happens next ∼
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Appendix A

π-phase shift between the probe and the
reference in the dark output of the Sagnac
interferometer

In the output of the Sagnac interferometer, the probe and the reference interfere destructively,
thanks to the π phase-shift between them. Hence, an extinction occurs in what we call the
”dark output”. As illustrated in figure A.1, this phase-shift comes from the fact that the
electromagnetic field of a given pulse coming from a low index medium n1 (air) and reflected
on a higher index medium n2 (beamsplitter of the interferometer here) is shifted by π. The
contrary is not true, namely there is no phase-shift of the field for a pulse coming from a higher
(n2) to a lower (n1) index medium. Indeed, the continuity principle can be written:

r =
n1 − n2

n1 + n2
(A.1)

where r is the reflection coefficient of the beamsplitter in amplitude. Thus, the reflection
coefficient is negative (r < 0) for n1 < n2 and there is a π phase-shift. Similarly, we have r > 0
when n1 > n2 and there is no phase-shift.

Finally, for the beamsplitter of the interferometer with a coating on the input side, there is
a π phase-shift of the probe on the first reflexion and no phase-shift on the second reflexion.
Moreover, there are no phase-shifts for the reference which is transmitted two times. Thus, the
total phase-shift in the dark output is π.
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Figure A.1: Schematic showing: (Blue) the electromagnetic field of a beam coming from a
low index medium n1 (air) and reflected on a higher index medium n2 (beamsplitter of the
interferometer), which then induces a π phase-shift ; (Green) the electromagnetic field of a
beam coming from a high index medium n2 and reflected on a lower index medium n1, which
then induces a null phase-shift.
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Appendix B

Measurement of the anti-reflective coating
factor of the beamsplitter of the Sagnac
interferometer

B.1 Measurement method
The method to measure the anti-reflective coating factor RAR of the beamsplitter is schema-

tised on figure B.1.
The photo-diode in position 1 (left schematic) measures the intensity I1 of the reflected

pulse inside the Sagnac interferometer, with the incident beam attenuated by a set of low neutral
optical densities of total density D2, along with a stronger one of density D1. The detected
intensity is then:

I1 =
I0

2
× 10−D1−D2 (B.1)

for which the equivalent amplitude of the electrical signal recorded on an oscilloscope connected
to the photo-diode is V1.

The photo-diode in position 2 (right schematic) measures the intensity I2 of the back-
reflection (IAR,1) in the dark output of the interferometer, with the incident beam attenuated by
only the same set of low neutral optical densities of total density D2. The detected intensity is
then:

I2 =
I0

2
× 10−D2 × RAR (B.2)

for which the equivalent amplitude of the electrical signal is V2.
Thus, the reflection factor RAR of the anti-reflective coating of the beamsplitter is given by:

RAR =
V2

V1
× 10−D1 (B.3)
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Figure B.1: Schematic of the measurement method of the anti-reflective coating factor RAR

of the beamsplitter. (Left) The photo-diode measures the intensity I1 of the reflected pulse
inside the Sagnac interferometer. D2 and D1 are neutral optical densities used to attenuate the
incident beam of intensity I0 (D2 < D1). The electrical current measured by the photo-diode is
V1. (Right) The photo-diode measures the intensity I2 of the back-reflection in the dark output
of the interferometer, after spectral filtering (with the spectral filter S) and spatial filtering (with
the spatial filter PH positioned after the lens L). Only D2 attenuates the incident beam this time.
The electrical current measured by the photo-diode is V2.

B.2 Calibration of the neutral densities
First of all, we need to calibrate the neutral optical densities needed for the measurement,

using a calorimeter in the micro-joule range and measuring the energy of the laser pulse before
and after crossing each of the optical densities. To this end, we use the incident pulse before
before it separates into the probe and pump beams (i.e. before beamsplitter BS-2 on figure 4.4).
The incident energy per pulse is then E0,1 = 57 µJ. The duration of the pulse is about 70 fs and
its diameter (FWHM) is about 1 mm.

We first measure two low neutral optical densities for which the nominal density values of
the manufacturer are d1 = d2 = 0.3. The measured densities are then:

d1,mes = d2,mes = −log
(
28.5 µJ
57 µJ

)
= 0.3 (B.4)

which is in agreement with the nominal value.
Secondly, two stronger densities with unknown nominal values d3 and d4 are measured using

higher energy pulses at the output of the compressor (from figure 2.3), such as E0,4 = 192 µJ
(same duration and diameter of the beam). The measured densities are then:

d3,mes = −log
(
35.5 µJ
192 µJ

)
= 0.75 (B.5)

d4,mes = −log
(
0.59 µJ
192 µJ

)
= 2.5 (B.6)
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Moreover, we check that there is no saturation effect by measuring the four densities at an even
higher energy (620 µJ): the same density values are obtained.

Finally, according to the measurement experimental setup shown on figure B.1, D1 corre-
sponds to the high density d4 and D2 corresponds to the set of the 3 low densities d1, d2 and d3.
Thus, the final neutral densities used for this measurement are:

D1 = d4 = 2.5 (B.7)
D2 = d1 + d2 + d3 = 0.3 + 0.3 + 0.75 = 1.35 (B.8)

B.3 Measurement of RAR

Firstly, we measure the intensity of the beam inside the Sagnac interferometer by using the
photo-diode (Thorlabs). The experimental setup of the interferometer used for this measurement
is shown on figure 4.4. The interferometer is first adjusted at maximal extinction, with the
incidence beam arriving at 45° on the Sagnac beamsplitter. Then, the neutral optical densities
D1 + D2 measured before are added before the interferometer. To avoid background light from
diffusing external light, a black tube (around 4 cm long) is placed in front of the photo-diode
and the vacuum chamber is closed using a black cover. The photo-diode signal is readout by an
oscilloscope, so that we measure its amplitude V1. After checking that there is no signal offset
when the beam is blocked just before the interferometer beamsplitter (signal amplitude below 3
mV), we measure (after neutral densities D1 + D2 before the beamsplitter) then amplitude:

V1 = 3.6 Volts (B.9)

Secondly, we measure the intensity of the back-reflection by placing the photo-diode in
the dark output of the interferometer (as seen on figure B.1). After removing the high optical
density D1, we need to isolate the back-reflection spot in the dark output. To this end, we
record intensity profile in the dark output with the CCD camera which is placed after the spatial
filtering stage composed of the optical lens L and the pinhole PH at the focal point of the
lens (see figure B.1 and section 4.2.3). We then use a razor blade to block off the second
back-reflection and the interference signal. The latter has a very low intensity since we are
at maximal extinction. The possible diffraction generated by the blade edge is suppressed by
the spatial filter. Thus, we only record the direct back-reflection IAR,1 on the CCD camera.
Additionally, we place an iris (mounted on a black tube) in front of the CCD camera, centred
around the back-reflection.

Finally, we can remove the CCD camera and place the photo-diode behind the iris and
tube in order to measure the current amplitude V2 which is proportional to the back-reflection
intensity. We measure: V2 = 1.2 Volts. The signal reach a maximal value of V ′2 ≈ 1.5 Volts
when the iris in front of the photo-diode is further opened. It indicates the possible systematic
error on the measurement, so wee take the average value:

V2 = 1.35 ± 0.15 Volts (B.10)
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At last, using equation (B.3), we calculate the reflection factor of the anti-reflective coating of
the beamsplitter:

RAR =
V2

V1
× 10−D1 = (1.1 ± 0.1) × 10−3 (B.11)

which corresponds to the manufacturer’s approximate value.
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Appendix C

Measurement of the CCD gain

In order to experimentally measure the gain of the CCD cameras, we need to collect what
we call "flat images" which corresponds to CCD images where the sensor is completely and
uniformly lit by an uniform intensity profile. This way, each pixel of the sensor receives the
same amount of photo-electrons in average which enables to check whether the gain per pixel
is uniform or not.

Using the same test bench as described in section 6.1, we use a simple LED light and an
optical diffuser to uniformly light up the CCD camera. It is important to illuminate the sensor as
uniformly as possible, in order to avoid an intensity gradient that could skew the measurements.
On figure C.1 are shown flat images of the CCD 1.85 (left) and 5.86 (right). As we can see, the
flat image of the CCD 5.86 is even. However, the flat image of the CCD 1.85 seems to have an
intensity gradient in the vertical direction but this doesn’t come from the way the sensor was
lit. The CCD camera was uniformly lit but, because of the very high number of pixels for this
camera, its acquisition mode (called "Global Reset Release Shutter" which is a rolling shutter
mode) integrates the intensity from top to bottom with a certain latency, hence the difference in
intensity between the top and bottom of the sensor. We will verify in the next section that the
distribution of the reconstructed gains of each pixel is well uniform.

C.1 Analysis and gain measurement results

C.1.1 CCD 5.86
In this section, we want to measure the gain per pixel of the CCD 5.86. The data presented

here were collected on March, the 14th, 2022 (dataset 8 containing 600 flat images). A reminder
that the size of the sensor is 1920 x 1200 pixels.

The analysis method first consists of collecting the ADU content N i, j,k
ADU of each pixel (i, j),

for each image k of the dataset. Then, for each pixel (i, j), we calculate the mean ADU content
⟨N i, j

ADU⟩ over all the events and the associated standard deviation σi, j
ADU . Finally, we obtain the

gain per pixel: Gi, j =
⟨Ni, j

ADU ⟩

)σi, j
ADU )2 .

The distribution of the gain Gi, j per pixel is shown on figure C.2 and the corresponding
histogram on figure C.3. The mean value of the gains, averaged over all the pixels, is ⟨G⟩5.86 =
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Figure C.1: Flat CCD images of the CCD 1.85 (left) and the CCD 5.86 (right), obtained by
uniformly lighting up the CCD sensor using a LED light and an optical diffuser. The colour
scales are in ADU content.

7.68 ± 0.02 (standard deviation of σ5.86 = 0.45). The histogram distribution of the gains is also
in good agreement with the fitted Gaussian distribution of mean value of the fitted Gaussian
distribution is ⟨G⟩5.86

f it = 7.66 ± 0.02 (standard deviation of σ5.86
f it = 0.45).

Additionally, we show on figure C.4 the evolution of the intensity over all the events
which correspond to the sum of the ADU content of all pixels for each flat image. We clearly
notice two different pattern for the first 300 events and the last 300. Thus, we can make the
analysis again and plot a histogram for each pattern which will give an estimation of a possible
systematic error on the gain value per pixel. We obtain:{

first 300 events: ⟨G⟩5.86 = 7.72 (σ5.86 = 0.64) ; ⟨G⟩5.86
f it = 7.66 (σ5.86

f it = 0.63)
last 300 events: ⟨G⟩5.86 = 7.73 (σ5.86 = 0.64) ; ⟨G⟩5.86

f it = 7.68 (σ5.86
f it = 0.63) (C.1)

C.1.2 CCD 1.85
Using the same kind of analysis, we measured the gain per pixel of the CCD 1.85. The data

presented here were collected on March, the 11th, 2022 (dataset 1 containing 500 flat images).
The size of the sensor is 3000 x 4000 pixels but only a window of 1000 x 2000 pixels was used
for technical problems with Python’s memory storage capacity.

The gain per pixel Gi, j in colour scale is shown on figure C.5 and the histogram of the gain
per pixel Gi, j is shown on figure C.6, along with the Gaussian fit (purple). The gain of the CCD
camera 1.85 and the corresponding standard deviation are: The results are:{

⟨G⟩1.85 = ⟨G⟩1.85
f it = 2.79 ± 0.01

σ1.85 = σ1.85
f it = 0.19 (C.2)

Finally, we plot the evolution of the intensity for the CCD 1.85 on figure C.7. We can
distinguish two pattern (although less pronounced than for the CCD 5.86) for the first 340
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Figure C.2: Distribution of the calculated gain Gi, j per pixel (i, j) for the CCD camera 5.86
(dataset 8, collected on March, the 14th, 2022).

Figure C.3: (Orange) Histogram of the gain Gi, j of each pixel (i, j) for the CCD camera 5.86,
where the mean gain is ⟨G⟩5.86 = 7.68 ± 0.02 (standard deviation σ5.86 = 0.45) ; (Purple)
Gaussian fit of the histogram, where the mean gain is ⟨G⟩5.86

f it = 7.66 ± 0.02 (standard deviation
σ5.86

f it = 0.45) (dataset 8, collected on March, the 14th, 2022).

events and the last 160 events, which gives an idea of the errors on the gain values per pixel
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Figure C.4: Plot of the evolution of the integrated intensity per flat image (in ADU) over time
for the CCD camera 5.86 (dataset 8, collected on March, the 14th, 2022).

(for 500 events): {
error(⟨G⟩1.85) = 0.03
error(⟨G⟩1.85

f it ) = 0.01 (C.3)

Figure C.5: Distribution of the calculated gain Gi, j per pixel (i, j) for the CCD camera 1.85
(dataset 1, collected on March, the 11th, 2022).
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Figure C.6: (Orange) Histogram of the gain Gi, j of each pixel (i, j) for the CCD camera 1.85 ;
(Purple) Gaussian fit of the histogram. The mean gain is ⟨G⟩1.85 = ⟨G⟩1.85

f it = 2.79 ± 0.01, with
standard deviation σ1.85 = σ1.85

f it = 0.19 (dataset 1, collected on March, the 11th, 2022).

Figure C.7: Plot of the evolution of the integrated intensity per flat image (in ADU) over time
for the CCD camera 1.85 (dataset 1, collected on March, the 11th, 2022).
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Appendix D

Monte-Carlo Simulations of the shot noise
and the beam pointing fluctuations

We generate Nshot laser pulses by Monte-Carlo. For each pulse k we calculate a transverse
intensity profile for the signal I s

k(x, y) and the reference Ir
k(x, y) with a gaussian distribution.

For each pixel of size dx × dy, we calculate the number of photo-electrons Nγ.e.
k (xi, y j) given by:

Nγ.e.
k (xi, y j) = Nadu

0 ×Gccd × exp
(
−

(xi − x0,k)2 + (y j − y0,k)2

2σ2
xy

)
(D.1)

where

• Nadu
0 is the adu content of the pixel with maximal intensity,

• Gccd is the gain of the CCD,

• The width (fwhm) of the transverse intensity profile is ∆xy = 2
√

2 ln 2 × σxy

For each laser pulse k, we have introduced a random beam pointing fluctuation (x0,k, y0,k) with
a gaussian distribution of r.m.s. σbeam. This fluctuation is the same for the signal and the
reference profile since both beam are supposed to be correlated and altered by the same beam
pointing fluctuations.

We define an analysis window equivalent to the Region of Interest RoI with dimensions
Npix × Npix. The positions (xi, y j) of the pixels are defined as:

xi = (i − 1 − Npix/2) × dx, i = 1,Npix + 1 (D.2)
y j = ( j − 1 − Npix/2) × dx, j = 1,Npix + 1 (D.3)

(D.4)

In order to simulate the statistical fluctuation of the number of photo-electrons per pixel
Nγ.e.

k (xi, y j) (shot noise), we add for each pixel a statistical gaussian fluctuation of the number
of photo-electron of this pixel:

Nγ.e.
k (xi, y j) = Nγ.e.

k (xi, y j) + δNγ.e.
k (xi, y j) (D.5)
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where δNγ.e.
k (xi, y j) is calculated using a random gaussian sampling centered at 0, and with

sigma σ =
√

Nγ.e.
k (xi, y j).

The intensity profile Ik(xi, y j) (adu content per pixel) of the pulse k is obtained by dividing
the number of phto-electrons by the gain of the camera:

Ik(x, y) = Nk(xi, y j)/Gadc (D.6)

Finally, we analyse the simulated CCD image of the two pulses, the "signal" and the
"reference", as standard data using the same analysis method and same python analysis program
as the one used to analyse real data, and applying the analysis method to suppress the beam
pointing fluctuations. We obtain the simulated spatial and intensity resolutions σMC

x , σMC
y and

σMC
∆I/I .
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Appendix E

Synthèse

En électrodynamique classique, les équations de Maxwell sont linéaires dans le vide. La
vitesse de la lumière, la perméabilité et la permittivité du vide sont des constantes universelles.
L’indice optique ne dépend pas des champs électromagnétiques externes et est constant (n = 1).
En revanche, dans un milieu diélectrique, les équations de Maxwell ne sont plus linéaires : la
vitesse de phase n’est alors plus constante et l’indice optique dépend cette fois-ci des champs
externes appliqués sur ce milieu optique. Un effet non-linéaire bien connu et qui utilise des
champs lasers en tant que champs externes s’appelle l’effet Kerr optique. L’indice optique
vu par une impulsion laser dans le milieu considéré est modifié, ce qui induit une variation
d’indice δn proportionnelle à l’intensité laser Ilaser (W/cm2) telle que : δn = n2 × Ilaser, où n2

est appelé l’indice Kerr (cm2/W).
En 1936, Euler et Heisenberg montrent que le vide quantique devrait également être un

milieu optique non linéaire, dû aux couplages des champs électromagnétiques avec les pairs
électrons-positrons du vide. Leur description, purement ondulatoire, montre que l’indice
optique du vide devrait être augmenté, c’est-à-dire que la vitesse de la lumière devrait diminuer
lorsque le vide est soumis à des champs électromagnétiques externes intenses. Cette prédiction
théorique a été reformulée plus tard dans le formalisme de l’électrodynamique quantique (QED)
en tant que diffusion photon-photon. Cet effet optique non linéaire dans le vide, prédit par
Euler et Heisenberg, n’a encore jamais été observé.

L’expérience DeLLight (Deflection of Light by Light) cherche à mesurer cet effet en
utilisant des impulsions laser femtosecondes intenses délivrées par la plate-forme LASERIX
(E = 2.5 J, 30 fs, 10 Hz), situé au laboratoire IJCLab (Université Paris-Saclay). La méthode
expérimentale DeLLight ainsi que les paramètres critiques de l’expérience sont décrits dans le
chapitre 2. L’expérience DeLLight est de type pompe-sonde où une impulsion laser focalisée
de basse intensité (sonde) interagit de façon contre-propageante avec une impulsion externe
focalisée de haute intensité (pompe), décalée verticalement (selon l’axe y) par rapport à la
sonde. Le couplage des champs de ces deux impulsions induit alors un gradient d’indice dans le
vide, proportionnel au profil en intensité de la pompe, effet similaire à l’effet Kerr optique mais
dans le vide. La sonde se réfracte alors sur ce gradient d’indice, avec une rotation de ses plans
d’ondes produisant une deflection moyenne du faisceau sonde. En focalisant les impulsions
pompe de 2.5 Joules délivrées par LASERIX sur une largeur transverse de 5 µm, équivalent à
une intensité pic laser de Ilaser ≈ 1020 W/cm2 (B ≈ 105 T et E ≈ 3 × 1013 V/m), la variation
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d’indice optique attendue dans le vide est δn ≈ 1.6 × 10−13 et l’angle de déflection moyen du
faisceau sonde est ⟨δθ⟩y ≈ 0.1 prad.

Cette déflection étant trop faible pour être mesurée de façon directe, elle est amplifiée par
méthode interférométrique. L’interféromètre utilisé est un interféromètre de Sagnac qui possède
une configuration "fermée". Il est constitué d’une lame séparatrice 50/50, de deux miroirs et de
deux lentilles. Les deux faisceaux contre-propagants dans le Sagnac constituent alors la sonde
et la référence, tous deux focalisés par les lentilles. Ils sont déphasés de π en sortie sombre
et interfèrent ensuite destructivement. Ce profil en intensité résiduel, appelé l’extinction, est
mesuré en sortie par une caméra CCD. Le facteur d’extinction F est alors défini comme le
rapport de l’intensité en sortie sombre par l’intensité du faisceau incident.

Lorsque la pompe focalisée est envoyée dans le Sagnac, elle perturbe uniquement la sonde
puisque la référence n’est pas synchronisée temporellement avec la pompe. La déflection
angulaire ⟨δθ⟩y de la sonde se traduit par un déplacement spatial vertical δy direct après
recollimation tel que δy = f × ⟨δθ⟩y, où f est la longueur focale des lentilles. L’interférence
destructive des impulsions de sonde et de référence à la sortie de l’interféromètre produit un
déplacement vertical transversal ∆y du barycentre du profil d’intensité résiduelle, mesuré par
une caméra CCD. Ce déplacement ∆y est amplifié par rapport au déplacement direct δy. Le
facteur d’amplificationA, définit commeA = ∆y/δy, est inversement proportionnel à la racine
carrée du facteur d’extinction de l’interféromètre : A ∝ 1/F . Cette mesure est possible en
réalisant des mesures successives avec (ON) et sans (OFF) interaction avec la pompe (mesure
relative). On réalise ainsi une succession de mesures ”ON-OFF” pour obtenir de la statistique
et mesurer le signal moyen ⟨∆y⟩.

Le signal attendu ∆y est inversement proportionnel à la racine du facteur d’extinction et
inversement proportionnel au cube des largeurs de faisceaux au foyer, qui constituent donc les
paramètres critiques de l’expérience. L’objectif est d’atteindre une extinction de F = 4 × 10−6

(correspondant à une amplification A = 250) et des largeurs de faisceaux focalisés au foyer
dans la zone d’interaction de w = 5 µm. Le signal attendu est alors ∆y ≈ 15 pm. De plus,
un autre paramètre à prendre en compte pour la sensibilité de l’expérience est la résolution
spatiale, dont l’objectif est d’atteindre σy = 10 nm qui correspond au bruit quantique ultime
de la meilleure caméra CCD à notre disposition. Avec le taux de répétition de 10 Hz du
laser LASERIX, le signal attendu pourrait être observé à 5 sigma après 25 jours de données
collectées.

Le principe des méthodes d’analyses de données CCD pour l’extraction du signal ⟨∆y⟩
recherché et la suppression des fluctuations de pointé du faisceau laser est décrite au chapitre
3 de cette thèse. On montre que les fluctuations de pointés sont corrigées grâce à la mesure
simultanée de la position du faisceau donnée par la réflexion en face arrière. Tout d’abord,
on définit une taille de fenêtre d’analyse, ou Region of Interest (RoI), pour le calcul des
barycentres du profil en intensité du signal d’interférence d’une part, et de la réflexion en face
arrière d’autre part. On définit également l’efficacité de mesure du signal de déplacement du
barycentre comme le rapport entre le déplacement mesuré sur le déplacement réel. On calcule
alors comment cette efficacité dépend de la taille de la RoI. Plus la RoI est grande et plus le
déplacement mesuré est proche du déplacement réel.
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Pour mesurer les paramètres critiques de l’expérience, deux prototypes successifs d’interfé-
romètre de Sagnac en régime femtoseconde ont été développés (avec et sans focalisation
dans l’air) au cours de cette thèse, pour lesquels les setup expérimentaux et les méthodes
d’alignement sont présentés dans le chapitre 4. Ils ont permis de démontrer la faisabilité
du projet et de caractériser les paramètres critiques limitant actuellement la sensibilité de
l’expérience. Il est important de noter que ces prototypes utilisent des impulsions sonde et
pompe co-propagantes dans l’air, et non pas contre-propagantes comme l’expérience DeLLight
dans le vide.

Le premier paramètre étudié est l’extinction de l’interféromètre. Sa mesure est présentée
dans le chapitre 5. On montre que le prototype avec focalisation a permis d’atteindre un facteur
d’extinction de Fmax = 3 × 10−6, mesuré relativement par rapport aux réflections en face arrière
sur la séparatrice (et collectées sur la caméra) pour lesquels l’extinction est de FAR = 5 × 10−4.
L’objectif d’extinction maximal est finalement atteint. Cependant, pour réaliser des mesures
DeLLight de déplacement de profil en sortie sombre, il faudra plus d’intensité sur la caméra
CCD pour optimiser la résolution spatiale, ce qui n’est actuellement pas possible car les
réflections en face arrières sont trop intenses et trop proche de la zone du signal d’interférence.
Il faudra donc par la suite développer une nouvelle lame séparatrice ayant un coefficient de
réflexion en face arrière plus faible, et une lame plus épaisse pour éloigner les réflexions en
face arrière de la zone du signal d’interférence.

Le second paramètre étudié est la résolution spatiale de l’expérience, qui est limitée par le
bruit quantique des caméras CCD, les fluctuations de pointés du faisceau laser, et le bruit de
phase. Cette étude est présentée dans les chapitres 6 et 7.

Dans le chapitre 6, on présente les résultats de mesures du bruit quantique obtenus sur un
banc de test dédié pour deux caméra CCD sélectionnées. La méthode d’extraction numérique
du signal et de mesure de résolution spatiale est identique à celle utilisée pour l’expérience
DeLLight et décrite dans le chapitre 3. La mesure de bruit quantique a montré qu’on pouvait
atteindre une résolution spatiale de σy = 13 nm. Ainsi l’objectif initiale d’une résolution
spatiale de l’ordre de 10 nm limitée par le bruit quantique est atteint.

Le chapitre 7 présente la mesure de la résolution spatiale du signal d’interférence en sortie
sombre qui inclue cette fois-ci le bruit des fluctuations de pointé du faisceau et le bruit de phase
de l’interféromètre. Pour mener à bien ces mesures, il a fallu tout d’abord dégrader l’extinction
de l’interféromètre afin d’augmenter l’intensité en sortie sombre (on est en effet limité par les
réflexions en face arrière). Il existe pour cela deux méthodes : la basse et haute amplification.
Leur principe est comme suit :

• Basse amplification : on tourne légèrement la polarisation du faisceau incident dans
l’interféromètre grâce à une lame demi-onde. L’impulsion incidente étant polarisée p, on
introduit une petite composante s. De plus, la séparatrice étant optimisée en polarisation
p, on introduit une asymétrie en intensité entre le faisceau réfléchi et le transmis, ce qui
dégrade l’extinction en sortie sombre. Finalement, comme le facteur d’amplification
dépend de cette asymétrie en intensité en polarisation s, le facteur d’amplification devient
égale à 1, donc il n’y pas d’amplification par interférométrie.

• Haute amplification : cette fois-ci, on ne touche plus aux polarisations mais on tourne la
séparatrice sur son axe d’un degré. L’impulsion incidente arrive donc à 46° au lieu de
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45°, angle pour lequel la séparatrice est optimisée. Cela introduit donc à nouveau une
asymétrie en intensité et le facteur d’amplification attendu est de 25.

En utilisant les méthodes d’analyses décrites au chapitre 3, on montre qu’on arrive à
supprimer les fluctuations de pointés grâce à la mesure de la position de la réflexion en face
arrière. On montre alors qu’on peut atteindre le bruit quantique de la caméra CCD lorsque
l’interféromètre est réglé à faible amplification. En revanche à haute amplification, la résolution
reste pour l’instant limitée par le bruit de phase. Ce dernier est induit par le bruit mécanique de
l’interféromètre qui est actuellement mal isolé mécaniquement. On montre que la variation
du bruit en fonction de la taille de la RoI est en accord avec une simulation Monte-Carlo d’un
bruit mécanique correspondant à une rotation des optiques de l’interféromètre de l’ordre de
50 nrad (r.m.s.). Une méthode de mesure et de suppression du bruit de phase à haute fréquence
est proposée dans ce manuscrit.

Finalement, on a pu valider la méthode de mesure interférométrique de l’expérience DeL-
Light en mesurant l’effet Kerr dans un milieu matériel en utilisant une impulsion pompe de
faible énergie (µJ). Tout d’abord, comme développé dans le chapitre 8, on mesure l’effet Kerr
dans une lame de silice, avec le premier prototype d’interféromètre composé de 3 miroirs et
sans focalisation de l’impulsion sonde en zone d’interaction. L’objectif de ces mesures était de
voir si la mesure d’un déplacement ∆y du profil en intensité en sortie sombre était possible et
le cas échéant, de voir si ce signal variait de façon croissante comme attendu avec l’intensité
pic de la pompe. Ces mesures ont permis également d’identifier les sources de bruit pouvant
perturber le signal, ou encore d’affiner les méthodes d’analyses et de protocoles expérimentaux.

Dans un second temps, des mesures d’effet Kerr dans l’air ont été réalisées avec un
interféromètre focalisé à 2 miroirs, dans les deux configurations d’extinction dégradée, comme
développé dans le chapitre 9. A basse amplification, ces mesures n’étaient pas concluantes,
notamment à cause de biais de mesure non contrôlés. En effet, l’amplification du signal de
déflection étant faible, on était alors très sensible au biais lié au bruit de phase. En revanche,
ces mesures étaient primordiales à l’amélioration du setup expérimental : son optimisation,
son efficacité et sa practicalité. Les protocoles d’alignements, de mesures et d’analyses ont
également été fortement optimisés. Il est important de noter que l’obtention d’un signal robuste
et reproductible à basse amplification a été très complexe et a donc nécessité beaucoup de
temps.

Finalement, les mesures DeLLight dans l’air ont été réalisées à haute amplification. Le
principal objectif était de valider l’amplification de la mesure interférométrique DeLLight
(amplification attendue à A = 25). Pour cela, il a été possible de mesurer simultanément le
signal direct non amplifié δy et le signal amplifié ∆y, et ce grâce à une des réflections en face
arrière sur la séparatrice correspondant à la déflection directe δy. Le signal mesuré a été étudié
en fonction de différents paramètres : l’intensité pic de la pompe, le délai temporel entre la
pompe et la sonde, la polarisation relative entre la pompe et la sonde, et le paramètre d’impact
(distance transverse entre la pompe et la sonde au foyer). Nous avons tout d’abord vérifié
que le signal mesuré augmente comme attendu lorsque l’intensité de la pompe augmente. De
plus, le facteur d’amplification a été mesuré à 25, comme attendu. Ensuite, l’optimisation
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du délai pompe/sonde est très important pour obtenir le plus grand signal possible. Le signal
mesuré évolue comme attendu avec le délai pompe/sonde, autrement dit le signal est maximal
lorsque les deux impulsions sont parfaitement synchronisées et le signal est compatible avec
zéro lorsque la pompe est en retard de 200 fs. Par ailleurs, comme mentionné précédemment, la
polarisation relative pompe/sonde est essentielle pour optimiser le signal. La mesure a montré
une évolution également comme attendue : le signal est maximal lorsque les polarisations
pompe/sonde sont parallèles et minimal lorsqu’elles sont perpendiculaires. Finalement, un
autre paramètre important pour optimiser le signal est le paramètre d’impact qui correspond au
recouvrement spatial entre la pompe et la sonde au foyer. Le signal direct δy mesuré est alors
nul lorsque les impulsions sont superposées, ce qui est attendu car la perturbation de la sonde
par la pompe est symétrique et la déflection moyenne est nulle. Il y a ensuite deux optimums
de valeur du paramètre d’impact optimal, ce dernier étant défini comme la largeur de faisceau
au foyer divisé par la racine de 2. Cependant, la mesure du signal amplifié ∆y met en évidence
l’influence du bruit de phase généré par le désalignement résiduel de l’interféromètre. Ce
bruit de phase introduit une asymétrie en amplification entre les deux optimums du paramètre
d’impact, autrement dit les deux facteurs d’amplification sontA = 12 etA = 17. De plus, le
signal ne s’annule pas comme attendu lorsque les deux impulsions sont superposées. Ce bruit
de phase résiduel est actuellement le paramètre le plus limitant de l’expérience. Une méthode de
suppression du bruit de phase à haute fréquence est actuellement en court de développement. De
plus, le setup expérimental devra être mieux isolé mécaniquement pour réduire le bruit de phase.

Pour conclure, les deux principaux paramètres critiques limitant la sensibilité de l’expérience,
l’extinction et la résolution spatiale ont été mesurés. L’objective d’extinction a été atteint à
F = 3 × 10−6 et la résolution spatiale ultime, correspondant au bruit quantique de la meilleure
caméra CCD, a été atteint à σy = 13 nm. Cependant, la résolution spatiale mesurée en sortie
sombre de l’interféromètre a uniquement été atteinte dans la configuration à basse amplification.
En revanche, à haute amplification, le bruit de phase est actuellement trop important et dégrade
considérablement la résolution. Une méthode de suppression du bruit de phase a été proposée.

Par ailleurs, les mesures DeLLight réalisées dans l’air ont été essentielles pour démontrer
la faisabilité de l’expérience. Le signal DeLLight a été mesuré avec succès en fonction de
différents paramètres comme l’intensité pic de la pompe, le délai entre la pompe et la sonde,
la polarisation relative pompe/sonde au foyer, ainsi que le paramètre d’impact au foyer. Ces
mesures ont également montré l’efficacité de l’amplification du signal de déflection par méthode
interférométrique.
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