
HAL Id: tel-04027735
https://theses.hal.science/tel-04027735

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation Algorithms and Sketches for Clustering
David Saulpic

To cite this version:
David Saulpic. Approximation Algorithms and Sketches for Clustering. Data Structures and Algo-
rithms [cs.DS]. Sorbonne Université, 2022. English. �NNT : 2022SORUS194�. �tel-04027735�

https://theses.hal.science/tel-04027735
https://hal.archives-ouvertes.fr

École Doctorale Informatique, Télécommunications et Électronique, Paris

Sorbonne Université, Laboratoire LIP6, équipe Recherche Opérationnelle

Approximation Algorithms and
Sketches for Clustering

David Saulpic

Thèse de doctorat en informatique
présentée et soutenue publiquement le 13 septembre 2022

Jury

Rapporteurs
Robert Krauthgamer Professeur, Weizmann Institute, Israël
Laurent Viennot Professeur, INRIA Paris, France

Examinatrices et Examinateur
Cristina Bazgan Professeure, Université Paris Dauphine, France
Monika Henzinger Professor, Universität Wien, Autriche
Chris Schwiegelshohn Assistant Professor, Aarhus University, Danemark

Encadrants
Vincent Cohen-Addad Research Scientist, Google, France
Christoph Dürr Professeur, Sorbonne Université, France

2

Contents

Acknowledgments 7

1 General Introduction 9

1.1 Beyond a Single Representative: k-means and k-median 11

1.2 Part I: Growing Roots and Going Through the Trees 14

1.3 Part II: Coping with Big Data . 16

1.4 Broad Background . 18

1.5 Our Contribution, Chapter by Chapter 21

1.6 How to Read this Thesis . 22

Publications of the Author 23

Preliminaries: Notations and Useful Results. 25

I Approximation Algorithm via Embeddings Into Tree-like Struc-
tures 27

2 Presentation of the Results and Challenges 29

2.1 Results Presented in the Part . 29

2.2 Using Ultrametrics for Squared Distances 31

3 Approximation Schemes for Clustering in Doubling Metrics 33

3.1 Introduction and Sketch of Proofs . 33

3.2 Preliminaries . 40

3.3 Near-Linear Time Approximation Scheme for Facility Location 44

3.4 The (k, z)-Clustering Problem . 55

Contents

3.5 Other Applications of the Framework 64

3.6 Conclusions . 69

3.7 Omitted Proofs . 70

4 Scalable Differentially Private Clustering via Quadtrees 77

4.1 Introduction . 77

4.2 Preliminaries . 80

4.3 Simple algorithm for Differentially Private k-Median 82

4.4 MPC Implementations . 86

4.5 Extension to k-Means . 90

4.6 Empirical Evaluation for k-Median . 97

4.7 Conclusion . 101

II Coreset and Sketches for Clustering 103

5 Presentation of our Results and Overview of the Techniques 105

5.1 Introduction . 105

5.2 Brief description of Chen’s Coreset . 112

5.3 VC-dimension: Coresets independent of the size of the input 113

5.4 Further Related Work . 115

6 A New Coreset Framework for Clustering 119

6.1 Overview of Our Techniques . 119

6.2 The Coreset Construction Algorithm, and Proof of Theorem 5.3 . . . 122

6.3 Sampling inside Groups: Proof of Lemma 6.4 128

6.4 Dealing with the Few Far points: Sampling from Outer Rings 144

6.5 Partitioning into Well Structured Groups: Proof of Lemma 6.7 152

6.6 A Coreset of Size k2ε−2 . 154

7 New Coreset Bounds for Various Metric Spaces 159

7.1 Overview of our Techniques . 159

7.2 Metrics with Bounded Doubling Dimension 164

7.3 Graphs with Bounded Treewidth . 166

4

Contents

7.4 Planar Graphs . 171

7.5 Minor-Excluded Graphs . 175

7.6 Euclidean Spaces . 181

8 Lower Bounds for Coreset 185

8.1 Introduction . 185

8.2 A subinstance for the case k = 1 . 189

8.3 Combining the subinstances . 192

9 Deterministic Sketches for Clustering 197

9.1 Introduction and Key Challenges . 198

9.2 Deterministic Coresets and Partition Coresets for (k, z)-Clustering . . 204

9.3 Derandomized Dimension Reduction 211

9.4 Deterministic Coreset via Uniform VC-Dimension 215

9.5 Witness Sets . 225

9.6 Computing Approximate Solutions . 227

9.7 Omitted Proofs . 229

10 Sublinear Algorithms for Power Mean in Euclidean Spaces 231

10.1 Introduction . 231

10.2 Sublinear Algorithm and Analysis . 236

10.3 Proof of Theorem 10.1 . 241

10.4 A Brief Note on the MPC Algorithm From Section 4.4.2 244

10.5 Probability Amplification . 244

10.6 Lower bound . 246

10.7 Experiments . 247

Conclusion and Open Questions 251

Bibliography 255

5

Contents

6

Acknowledgments

Firstly, I would like to thank Laurent Viennot and Robert Kraugthgamer, who ac-
cepted to review this long thesis and be part of the jury. For the discussions, the
accuracy of your comments, your patience and for your time: a thousand thanks.
I am also very grateful to the other committee members Cristina Bazgan, Monika
Henzinger and Chris Schwiegelshohn. It was a great honour for me.

During the three years of my PhD, I had the constant feeling of growing up, learning
new ways of reasoning, becoming more accurate in my thinking: this (and way more)
was fueled by the perfect guidance and ingenuity of Vincent Cohen-Addad. I cannot
thank you enough for all you brought me.

Christoph Dürr was also always available for answering my imprecise existential ques-
tions and providing his help: thank you in particular for sharing your views on theo-
retical research.

Chris could have been my third advisor: you shared so much with me, from your
passion of coresets and theory to post-deadline trashtalk about NBA. I hope you will
keep your enthusiasm, and that I will be able to still enjoy a part of it.

I was very lucky to benefit from the precise advice and recommendations of Claire
Mathieu at several crucial moments of my studies. Merci beaucoup, this is priceless. I
would like to express my gratitude towards Phil Klein, Giuseppe Italiano and Anupam
Gupta, who hosted me during several internships. Your passion for research and the
theory of algorithms was very communicative, and still has a great influence on me.

I also want to thank my academic family: Frederik Malmann-Trenn, who was like a
big brother from scratch, and Simon Mauras and Mathieu Mari, the nicest conference
roommates.

Mille merci à Adèle, Anne-Elisabeth, Kostas puis François, pour m’avoir supporté
dans le bureau (special thanks to Kostas, who supported my French during those long
3 years). C’était la belle vie sous la serre ! Et aux autres artistes du LIP6, pour les
illusions du Buet 2 et de Fontainebleau, et pour toutes les bières qu’on boira ensemble
!

Je ne peux pas parler du labo sans parler du CROUS, et tous les gens qui m’y ont
accompagné pendant ces quelques années - merci à Marvin, Margot, Parham, Nadjet,
Olivier, Thibaut, Nawal, Bruno, Fanny, Martin, Océane, Martin, Niklas. Ces beaux
repas vont me manquer. Merci en particulier à Gaspard, qui mérite largement le titre

Acknowledgments

de G.O. crous. Merci à Emmanuel pour les pauses vélos à moteur, et à Pierre et
Matthieu, pour avoir partagé une vision du métier de chercheur qui me porte encore
aujourd’hui.

Merci aux collègues de la Cité des sciences pour la bouffée d’oxygène que vous m’avez
apporté, pour tous les horoscopes, mots croisés et Contrario. Avec votre bonne
humeur, vous m’avez mis une timide bougie dans la main (pas facile celui là). Et
merci à Laetitia pour ton encadrement parfait, avoir partagé un peu de ta passion
pour la médiation (et beaucoup de chocolats !)

Finalement, merci aux copains qui font des maths sérieuses d’être toujours présents,
en haut du Ventoux ou autour d’une raclette. Merci Cyril, Jean, Marc, Remy, Séginus,
Simon, Thibaut et Ulysse. J’espère qu’on restera pas trop longtemps éparpillés sur le
globe et qu’on pourra vite se retrouver pour manger du fromage et faire des blagues
corses !

8

Chapter 1

General Introduction

Living at the pace of industrial applications, the field of Computer Science is in con-
stant evolution, with the regular apparition of new areas and paradigms. One of its
recent shifts is concerned about processing enormous datasets, containing billions of
points: this is the so-called “big data” era. Not only computer scientists are con-
cerned: other sciences, such as physics or biology, are now collecting massive amount
of data; companies are taking action driven by data; and big data is even becoming a
political hot topic on which governments are taking actions [84, 142].

The quantity of data collected and analyzed by numerical devices is indeed drastically
increasing. For data analysts, this raises a new challenge: how to actually understand
the structure of those endless flows of information, and extract the essential from
them? This, in turn, challenges the computer science community: processing manually
all that data is a mirage, and it is necessary to have automatic procedures – in other
words, algorithms – to treat it.

Those algorithms need to be specifically tailored to the big data paradigm: it is indeed
unrealistic to imagine algorithms using substantially more memory than that to store
the input data, or substantially more time than to simply read it. Sometimes, even
storing the whole data in memory may be impossible, and finding a summary of it
is necessary. By contrast, an algorithm that needs a processing time polynomial in
the time necessary to read the input was traditionally considered fast enough – as an
example, if the time to read the input is x seconds, an algorithm solving a problem
in x10 seconds was considered fast. Many such algorithms were developed in the past
decades, but they are out of scope for processing big data: the time to read a standard
big dataset is often larger than x = 10 seconds, and no one is willing to wait the result
of an algorithm for x10 = 1010 seconds – roughly 317 years. It is thus crucial to find
new algorithms, adapted to those new constraints, in order to process and analyze
data.

With the aim of both summarizing and gathering some structural information about
a dataset, one of the simplest pieces of information that exists is the mean. When
the dataset consists of points in Euclidean space, the algorithm to compute the mean
merely consists of taking the sum, coordinate by coordinate, of the input data, and

Chapter 1. General Introduction

normalize it by the number of input points. The mean is precisely this normalized
sum. If one cannot even read the full input, it is possible to compute a point close
to the mean by applying this algorithm to a small random subset of the input. This
algorithm is extremely fast, as it does not require more than reading a small random
subset of the input, and memory efficient, as one only needs to store the sum. Hence,
it answers perfectly the time and memory constraints of the big data paradigm.

In terms of information provided, the mean is sometimes considered as a good repre-
sentative of the full dataset: one can use it as a first approximation to describe the
dataset, as it is done for instance when talking about the mean salary of a country,
or the mean height of a population. However, as noted in the definition given by IN-
SEE1 [105], it is often not the best indicator, and the median may be more relevant.
For instance, they note that the mean is very impacted by outliers: in the case of the
salary, it is very impacted by few very high ones, and that furthermore uncertainty
on those high values is transferred to the mean – while the median escapes those two
shortcomings. One reason for which the mean is so vastly used despite those disad-
vantages may be the easiness of its computation [105]. This was a good reason when
data was processed by hand, but we now have computers and algorithms: they can be
of help to solve more complex problems, and to provide a more precise information.

For instance, a limitation of the mean (that the median suffers as well) is the following:
using the mean of a dataset, it is implicitly assumed that it is actually meaningful to
represent the whole data by a single point. This assumption is of course not always
satisfied, as illustrated by the example of Fig. 1.1. In such a case, finding a single
representative conceals diversity of the dataset. Using two representatives instead
would give a more accurate and faithful summary of it.

Figure 1.1: Distribution of sizes in France, that exhibits two peaks. This drawing is
artificial, based only on the estimated mean and standard deviation of the sizes of
French men and women.

The natural question is therefore: can we represent the data by more than a single
point? Easy to say, but harder to formalize: how to define two means, or two medians,
of a dataset? We present in the next section the common answer to this question, by

1INSEE is the French national institute for statistics and economical studies.

10

1.1. Beyond a Single Representative: k-means and k-median

defining a generalization of those notions to k points, namely k-means and k-median.

Then, the central question of this thesis is the following: how to compute those means
and medians, especially in the “big data” regime?

The remaining of this introduction consists of the introduction of the k-median and
k-means problem, followed by more specific introductions to the two main parts of
the thesis. We then give a broad overview of previous research, and present briefly
our contribution chapter by chapter. Finally, we present some preliminaries common
to the whole thesis.

1.1 Beyond a Single Representative: k-means and k-median

A natural generalization of the mean was introduced by Hugo Steinhaus in 1956 [152],
based on the following idea. In Euclidean spaces, the mean is the point minimizing
the variance, i.e. the point that minimizes the sum of squared distances to it. In
equation, given an input P ⊆ Rd, the mean is the point m minimizing∑

p∈P
dist(p,m)2, (1.1)

where dist(p,m) is the Euclidean distance between p and m.

Then, if instead one was looking for a set S of k “means” instead of the mean, it is
natural to minimize ∑

p∈P
min
s∈S

dist(p, s)2.

In words, each data point from P is assigned to its closest point in S (those are called
“centers”), and contributes the square of the distance to that center. The goal is to
find the set S that minimizes the sum of contribution. Note that this definition of
mean can be generalized to any metric space: instead of using the Euclidean distance,
one could use any other distance function. For instance, if data points consist of road
crossings in a road network, it may be better to use the travel time as a distance.
Hence, it is possible to define the mean with Eq. (1.1) for other spaces than the
Euclidean one.

Generalizing the notion of median is slightly harder. Its common definition for real
number is the middle point of the dataset: this is not clearly defined when the data
is instead from the Euclidean plane. For that reason, we will use an alternate way of
defining the median, similar to Eq. (1.1): when the dataset P consists of real numbers,
the median minimizes ∑

p∈P
|p−m|. (1.2)

To see this, imagine that the point m minimizing Eq. (1.2) has more input point
bigger than it, than input points smaller. Then, increasing slightly m decreases the

11

Chapter 1. General Introduction

equation, which contradict the minimality of m. Hence, Eq. (1.2) is minimal when
there are as many points bigger and smaller than m: this is precisely the definition of
median. Eq. (1.2) is therefore an alternate definition to the median, which it is also
valid when the data is from Euclidean plane or even higher dimensions. Analogously
to k-means, the median can be generalized to other spaces, and to a higher number
of “medians”: the k-median problem seeks to find a set S of size k that minimizes∑

p∈P
min
s∈S

dist(p, s).

To settle on a vocabulary, any set S of size k is a solution. The cost of a solution is∑
p∈P mins∈S dist(p, s) for k-median,

∑
p∈P mins∈S dist(p, s)2 for k-means. The points

of S are called centers, and the cluster induced by c ∈ S is the set of input points
closer to c than to any other center of S. In case where a point p is in c’s cluster, we
sometimes say that c is p’s center.

Why studying those problems? A brief data analysis motivation. One
motivation for those problems is that centers of a good solution can be used as rep-
resentatives for the dataset. More precisely, a center c be used in place of its cluster,
to find a compressed representation of the dataset. The question is how to assess the
quality of that representation.

In the k-median case, the objective is equivalent to minimizing the average distance
to the closest center. Hence, we can compare the cost of solution S to the average
pairwise distance in the dataset: when S is a good solution to k-median, we may be
able say that the average distance to the center is smaller compared to the average
distance of the dataset. The center are in that sense good representative of the dataset.

The k-means objective attracted a particular attention, maybe due to its closeness
with the standard mean. An optimal solution minimizes variance – another widely
used statistical quantity – within each cluster, and centers are representative according
to that notion. The k-means objective is appealing for another reason: a set of clusters
induced by an optimal (or near-optimal) solution may corresponds to a pre-existing
structure of the data. For instance, minimizing the k-means objective allows to recover
some ground-truth clusters, when those are well-separated2 [114]. Hence, under some
conditions the structure induced by a k-means solution is much more interesting than
the centers only.

Figure 1.2: A set of points with a clear clustering into 4 clusters, well separated. An
optimal k-means solution would recover those 4 ground-truth clusters.

2the condition roughly state that points in two separate clusters must be far away compared to
the variance within each cluster.

12

1.1. Beyond a Single Representative: k-means and k-median

Another motivation for k-means: quantization. Another motivation for k-
means is worth mentioning. A common problem in signal processing is to discretize
a continuous signal (s(t))t∈R, under the following constraint: the signal is observed
at discrete points t1, t2, ..., and the precise value s(ti) cannot be stored – maybe, due
to calibration constraint of the measure instruments. Instead, when s(t) is in some
range Qi, we can only store a value qi. For instance, if the signal is made of real
number, one way of discretizing is to use Qi = [i, i + 1) and qi = i: a real number x
is truncated to keep only its integer part. Quantization is used virtually in all digital
signal processing, as a digital representation must be discrete while most signal are
continuous. Similarly, it can also be used as means of compression.

The relation with our k-means problem is the following: suppose the Qi and qi are not
fixed, and one seeks to find the best partition into k sets Qi, and the best choice of qi
values for those sets. More precisely, the best partition in the following sense: the one
that minimizes the quantization error, which is the sum of the squared distance from
s(ti) to its corresponding qti . It turns out that those bests Qi and qi corresponds to
the optimal k-means clustering of the points s(t1), s(t2), ..., as the squared distances
from s(ti) to the center is precisely the quantization error.

For instance, in computer graphics, this may corresponds to the following task: given
an image, reduce the number of different colors to k – such as to find a compressed
representation of the image. The k colors can be chosen using k-means, to minimize
the quantization error. If one wants to minimize the average error instead, then k-
median is the right tool.

Hardness of the problems. The k-median and k-means problems are hard to solve
in most cases: it is NP-hard, i.e., under the common assumption P 6= NP it is not
possible to compute the optimal solution in time polynomial in the input size. This
hardness holds even when the data merely consists of points lying in the Euclidean
plane (see Mahajan, Nimbhorkar and Varadarajan [128] for k-means, Megiddo and
Supowit [135] for k-median), or when k = 2 (Dasgupta and Freund [61]).

This implies that it is necessary to go beyond worst case in order to get provably
good result, or to give up with the objective of computing the optimal solution. For
instance, one can try to find an approximate solution, instead of the optimal, namely
a solution that has cost within a small multiplicative factor to the optimal one – and
the goal is to have the smallest multiplicative factor possible. Another approach is to
focus on the case where there is a clear optimal clustering, making some assumption
on the input in order to recover the optimal solution. We describe in more details
both the hardness results and the way of bypassing them in Section 1.4. In short,
although the problem is hard in the general case, we have many different ways to deal
with it.

However, another source of difficulties that we have already mentioned comes from
the practical aspect of the problem: we seek algorithms that can be applied to gigan-
tic datasets. The standard polynomial time algorithms are not fast enough: we are
looking for algorithms that are at worst near-linear, but that could also run in dis-
tributed environment – where the dataset is so big that it cannot be stored in a single

13

Chapter 1. General Introduction

machine – or parallel environments – where the computation is carried simultaneously
by different machines.

Goal of this thesis. In this thesis, our broad objective is to present fast algorithms
with good provable guarantees for the k-median and k-means problem. For that,
we study and use different techniques to simplify our clustering problem, and be
able to solve it fast. The goal is to find ways of replacing the original complex and
enormous dataset by a simpler one, using compression schemes that provably preserve
the structure of the input.

Organization. In the first part, we show fast approximation algorithm constructed
by means of replacing the metric space by a tree-like structure. In the second one,
we present techniques to reduce drastically the number of distinct input point, and to
“turn big data into tiny data”.3

1.2 Part I: Growing Roots and Going Through the Trees

As mentioned previously, to deal with big data it is crucial to develop fast algorithm.
In the first part of the thesis, we consider therefore the following question:

I Question 1. Is there some metric space where it is possible to solve k-median
and k-means in near-linear time? J

Besides the big data motivation, this question is interesting in its own right, as un-
derstanding the complexity and the structure of the problems is an attractive mathe-
matical question.

A very simple class of metric spaces where this is doable is in spaces called ultrametrics,
which essentially are metric spaces induced by trees as follows. The set P consists of
leafs of a tree that has weights on vertices, and the distance between two points is
the weight of their lowest-common ancestor.4 In that case, our problem can easily be
solved via a very general technique called dynamic programming.

Hence, to solve a k-median or k-means problem, a natural attempt is to transform
the input metric space into an ultrametric. If one can find such a transformation that
does not distort too much the input, this approach may allow to compute a good
solution in near-linear time. Our goal is to apply this approach to Euclidean spaces.

In the Euclidean plane, the go-to method for that transformation is essentially the
following: find a box enclosing all the input points, and split it into four rectangles

3This catch phrase comes from Feldman, Schmidt and Sohler [78].
4For that to define a metric, the weights have to be monotonous, in the sense that the weight of a

node is smaller than the weight of its parent.

14

1.2. Part I: Growing Roots and Going Through the Trees

Figure 1.3: A hierarchical partitioning of an input in R2. The input is represented
by the inclined plane, and it is recursively partitioned by the grey dashed lines. The
corresponding tree nodes are in green, and the edges are the thick black lines. To
lighten the figure, we only recursively split one of the regions.

of roughly the same area. Create a root node for the enclosing box, and a children
for each of the rectangle. The weight of the root is set to be the diameter of the
input. The recursive application of that construction yields a hierarchical partitioning
of the input, which can be represented by a tree – see Fig. 1.3 for a illustration. The
ultrametric induced by this tree may be used to replace the original metric. When
replacing a metric by another one, we say that we embed the original metric into the
new one: here, we embed the Euclidean plane into an ultrametric.

It can be shown that this embedding preserves on average distances between the input
points, up to some small factor. Furthermore, it can be efficiently computed in near-
linear time. Hence, this allows to solve distance-based problems fast, using the tree
structure instead of the original metric, with only a constant factor loss: for instance,
the k-median problem can be dealt with using this approach. However, distances
squared may not be preserved as well as simple distances,5 and it is not clear how to
use the approach for the k-means problem. In the first part of this thesis, we study
the efficiency of that ultrametric embedding for clustering, in particular focusing on
application to k-means clustering.

More precisely, we study in Chapter 3 the performance of the aforementioned decom-
position for clustering in low-dimensional Euclidean spaces, and answer positively
Question 1 for those. While this low-dimensionality may seem far from the aforemen-
tioned “big data” motivations, where data is often very high-dimensional, studying

5This is due to the fact that distances are only preserved on average. If two points at distance 1
have probability 1/n to be at distance n in the split tree, and probability 1 − 1/n to be at distance
1, then their distance is on average 2 while their average squared distance is n+ 1 + 1/n.

15

Chapter 1. General Introduction

the problem with that angle allows us to get insight that can later be used in the large
scale, big data setting. We use them in particular to provide a scalable algorithm for
k-median and k-means that respect a notion of privacy of the input, in Chapter 4.

This is a key application: as data collection appears everywhere in our lives, people
and more generally democracies are concerned with the effect of data analysis can have
on privacy. Laws are now enforcing companies to respect some privacy principles while
collecting and analyzing data: hence, it becomes necessary to develop data analysis
algorithms that respect in some sense the privacy of users. This has been modeled
by the notion of Differential Privacy, that we will explore in Chapter 4: it turns out
that the embedding into ultrametrics and the techniques we introduce in Chapter 3 are
particularly suited to that model. Leveraging our techniques, we show and experiment
a practical private algorithm for clustering that enjoys provable guarantees.

1.3 Part II: Coping with Big Data

The other theme of this thesis is to find compression schemes for clustering. As
described before, datasets are in many practical cases too large to be processed con-
ventionally, as the data simply does not fit into one computer’s memory. Henceforth,
sketching, compression, and summarization techniques are at the heart of modern data
analysis. This has led to new algorithms operating in other models of computation
such as streaming, distributed computing or massively-parallel computation (MPC).
For these algorithms, finding good small-size representations – also called sketches –
of the input data is key.

We illustrate the notion of sketches in Fig. 1.4. The figure presents a very simple
sketch, in the case where the input lies in the unit ball of the 2-dimensional Euclidean
space. Its construction is as follows. Build a grid of the unit ball with granularity ε –
i.e., all points whose coordinates are multiples of ε –, and snap every input point to
the closest grid point. In place of the input, one can use the grid points, with weights
corresponding to the number of snapped points. This is quite a good representation
of the initial dataset: indeed, the grid ensures that the distance from any point to its
closest grid point is at most ε. Hence, the distance of an input point to any solution
S is the same, up to an additive ε, before and after snapping. In turn, the cost of the
solution S is the same for the sketch and the original input dataset, up to a tiny error
ε · n for k-median, where n is the number of input points.6 Furthermore, the number
of distinct points after snapping is the number of grid points, which is (1/ε)2: this is
independent of n and k, so we consider it to be a very good sketch.

In general, we will be looking for sketches with those properties: we want the sketch
to have roughly the same cost as the initial dataset for any k-median (or k-means)
solution, and we want the sketch to be as small as possible. Such sketches are known

6This additive error is actually too large, but we will consider it satisfactory for sake of simplicity
in this introduction.

16

1.3. Part II: Coping with Big Data

Figure 1.4: A sketch of the unit ball, based on a grid. Blue input points are mapped
to the closest grid intersection, in grey. Several input point can be mapped to the
same grid point, reducing the number of distinct points – hence sketching the input.

as coresets, and they are the central object of the second part of this thesis. In
this context, the quality of a sketch is usually quantified in terms of its size, i.e.: the
dependency on the number of input points n, the dimension d of the underlying metric
(when there is one), the number of centers k, and a precision parameter ε.

Coresets allow to turn big data into tiny data, with numerous advantages. First, re-
ducing the size of the input may allow to reinstate the “traditional” algorithms, that
are already well analyzed and understood. Second, coreset can be used in settings
where there are additional constraints on the memory usage of algorithms: for in-
stance, when the input cannot fit in a single machine and is distributed among several
of them, those can merely exchange coresets to communicate their data. This has
small size compared to the full input and consequently can be stored and processed
in a single machine, instead of the full dataset.

Going back to our example, the grid-based coreset of Fig. 1.4 is great for the Euclidean
plane, but unfortunately the size of a grid scales exponentially with the dimension:
in Rd, the size of the grid is ε−d, which gives a coreset of the same size. We want at
all cost to avoid such a dependency – in big data, the dimension d is often at least a
few hundreds, so the grid has enormous size, way larger than the number of atoms in
the universe and the initial size of the input. Snapping the input onto the grid would
therefore not reduce its size, and this sketching method is useless.

Thankfully, coresets are not doomed to have this exponential dependency in d: recent
efforts to design even smaller sketches have resulted in an impressive success story,
producing coresets of size independent both of the dimension and the number of input
points. Those coreset algorithms are very simple, and have high impact in practice.
However, it seems that the current set of techniques reached a barrier: they are
increasingly tedious to analyze, and for some cases coreset construction cannot be
improved using those.

In spite of the success of coreset constructions, our understanding of coreset lower
bound is limited. Hence, it is not clear whether the aforementioned difficulties are

17

Chapter 1. General Introduction

inherent to the techniques used, or to the problem itself. In the second part of this
thesis, we try to answer systematically the following broad questions:

I Question 2. What are the best coreset size possible, for k-median and k-
means? What particular structure on the metric space is useful to construct
small coreset? J

1.4 Broad Background

The k-median problem defined above seeks to minimize a sum of distances; the k-
means a sum of distances squared. There does not seem to be any particular reason
to not consider other powers of distances: hence, we define the common generalization
of k-median and k-means that is the main problem studied this thesis.

I Definition 1.1 ((k, z)-clustering problem). Given an ambient metric
space (X,dist), a set of points P ⊆ X (sometimes called clients), and positive
integers k and z, the goal of the (k, z)-clustering problem is to output a set S
of k centers (or facilities) chosen from X that minimizes

cost(P,S) :=
∑
p∈P

min
c∈S

(dist(p, c))z

J

Computing the optimum solution to (k, z)-clustering can easily be done by enumerat-
ing all the possible centers’ location and simply keeping the best. However, there are
|X|k many of them: the time required to perform the enumeration is completely im-
practical. Instead, we are looking for somewhat efficient algorithms, that only require
a computation time polynomial in the size of the input.

One of the most common use cases of (k, z)-clustering is when the metric space is a
Euclidean space, i.e., Rd equipped with the `2 norm. Most of the work of this thesis
is therefore dedicated to that particular case: the key parameters here are only the
size of the input set P , the dimension d of the space and, of course, the number of
clusters k. As the metric space is described implicitly, the size of the input is indeed
simply |P |d, to write the d coordinates of each input point. In other cases, the size
of the input is essentially the size of the metric space X. Note a huge difference: in
Euclidean spaces, the metric space is infinite, and it is not even possible to enumerate
all possible center’s location, hence for instance not obvious how to find the optimum
center for (1, z)-clustering. In contrast, when the size of the metric is finite, it is easy
to find this optimum center in |X| · |P | time.

As we mentioned, the (k, z)-clustering problem is a difficult one: it is not only NP-

18

1.4. Broad Background

Discrete Discrete Euclidean Euclidean
k-median k-means k-median k-means

Lower bound 1 + 2/e [90] 1 + 8/e [90] 1.06 [56] 1.015 [56]
Upper bound 2.675 [37] 6.36 [5] 2.41 [52] 5.96 [52]

Figure 1.5: Approximability of k-median and k-means. The lower-bounds are condi-
tioned on the assumption P 6= NP.

hard to compute the optimal solution, but also NP-hard to compute an approximate
one. NP-hardness is a conditional notion of difficulty: solving in polynomial time a
NP-hard problem would break a widely believed conjecture, namely P 6= NP. Fig. 1.5
summarizes the current state of our knowledge in terms of polynomial-time approx-
imability: we say that a solution S is an α-approximation if its cost is at most α times
the cost of the optimal solution.

Hence, if one wishes to have a polynomial-time algorithm with very good approxima-
tion guarantee for (k, z)-clustering, it is necessary to make some assumption on the
input data.

Beyond Worst Case The previous inapproximability results are worst-case, in the
sense that there exist instances where it is not possible to get a good approximation in
polynomial time. However, not all instances are equally hard: a line of work tried to
defined some natural conditions under which it is possible to recover the optimal (or
a near-optimal) solution in polynomial time. For instance, this is doable in discrete
metrics, when the optimal solution stays optimal even when all distances are perturbed
by a small factor [57]. A notion of stability has been defined by Ostrovski, Rabani,
Schulman and Swamy [148], inspired by the idea that one should try to solve (k, z)-
clustering when there are precisely k identifiable clusters: finding the optimal solution
is possible when it is significantly cheaper to cluster with k centers than with k − 1
centers [57]. As a last example, if the input consist of well separated cluster in a
Euclidean space, in the sense that the distance between points in two different cluster
is very large compared to the average cost of the optimal solution, then it is possible
to find those optimal clusters using k-means [114].

Restricting the metric space. Another way of bypassing the hardness results is to
restrict the input metric space, for instance by considering fixed-dimensional Euclidean
spaces. As mentioned, the problem is however already NP-hard in the Euclidean plane,
when d = 2 ([128], [135]). Nonetheless, it is possible to compute approximate solution
as precise as one wishes: for any fixed ε > 0, one can compute in polynomial time
a (1 + ε)-approximation to (k, z)-clustering (see Kolliopoulos and Rao [112], Cohen-
Addad, Klein, Mathieu [53] or Friggstad, Rezapour and Salavatipour [86]). Here, by
polynomial time we mean |P |f(d,ε) for any function f , as ε and d are considered to be
fixed.

A standard generalization of the Euclidean dimension of a space that abstracts out
a lot of the geometry and allows us to focus on the most crucial properties is called
the doubling dimension. The doubling dimension of a metric is the logarithm of the

19

Chapter 1. General Introduction

number of balls of radius R/2 necessary to cover any ball of radius R, for any R: this
indeed generalizes Euclidean space, as the space (Rd, `2) has doubling dimension d
(up to constant factors). In case of bounded doubling dimension, Friggstad, Rezapour
and Salvatipour [86] showed how to compute a (1 + ε)-approximation.

It is also possible to compute (1 + ε) approximations in planar graphs, and more
generally minor-excluding graphs [53].

Fast and Practical Algorithms The view practitioners have on the problem is
however slightly different: instead of looking for an algorithm with close to optimal
approximation guarantee, they are looking for fast algorithms that seem to provide
good result. Moreover, most of the practical work focuses on Euclidean spaces.

The most celebrated such algorithm is probably Lloyd’s heuristic [123] for k-means,
introduced in the context of quantization we mentioned above. This heuristic works
as follows: starting from a set of centers, one can define a clustering, by associating
each input point to its closest center. Now, for each cluster, the best possible center is
the mean of points in the cluster: this defines k new centers. It is possible to iterate
many times those two steps, to compute some solution to k-means. Unfortunately,
this algorithm may take exponential time to converge, even in two dimensions (see
Vattani [158]). Sadly, even when it has converged, this algorithm does not guarantee
to provide a good solution, as it is very sensitive to the initial choice of centers (see
the study of Milligan [138]). Consequently, finding good initialization method was
investigated: Lloyd’s algorithm can always be run as a post-processing step of an
algorithm, to improve the quality of the solution.

The k-means++ algorithm of Arthur and Vassilvitski [10] is the most common ini-
tialization, and is a perfect example of fast algorithm with not-so-good guarantees. It
runs in O(ndk) time – same as one iteration of Lloyd’s algorithm, and although its
approximation guarantee is only O(log k) it is used as a comparison baseline for most
of the k-means practical work.

The k-means++ algorithm is also extremely simple: it computes centers in rounds,
as follows. In the first round, an arbitrary input point is selected as a center; then,
at each step, one new center is selected with probability proportional to its squared
distance to the selected centers. After k rounds, this yields an O(log k) approximation.
Furthermore, to make this algorithm work for the more general (k, z)-clustering prob-
lem, one simply need to select centers with probability proportional to their distance
raised to the power z (see the analysis of Wei [160]).

A vast literature followed on the k-means++ algorithm, either trying to explain why
it seems to give solutions way better than the O(log k) approximation guaranteed, or
by modifying it in order to improve performances. For instance, Agarwal, Jaiswal and
Pal [2] showed improved guarantees when the instance verifies some form of stability
criterion. If one is willing to open slightly more centers, after O(k) rounds the cost
of the solution is within a constant of the optimal one that uses only k centers, as
shown in [3, 160, 130, 45]. A parallel version of this algorithm was introduced by
Bahmani, Moseley, Vattani, Kumar and Vassilvitskii [14], with the same guarantee
as the k-means++ algorithm. Bachem, Lucic, Hassani and Krause [11] showed how

20

1.5. Our Contribution, Chapter by Chapter

to approximate the k-means++ output distribution in sublinear time. Finally, Lat-
tanzi and Sohler [117] improved the approximation guarantee of the algorithm: they
combined k-means++ with another simple algorithm, Local Search, to get a constant
factor approximation.

1.5 Our Contribution, Chapter by Chapter

• Chapter 2 is a mere introduction to the approximation algorithm techniques that
are use in Part I. In this introductive chapter, we present the context of our work in
that part, and the challenges we address.

• Chapter 3 presents an approximation scheme for (k, z)-Clustering in Euclidean
spaces, namely an algorithm that computes a (1 + ε)-approximation to the prob-
lem. For any fixed ε and dimension, this algorithm runs in near-linear time: this gives
an answer to Question 1. This is based on a joint work with Vincent Cohen-Addad
and Andreas Feldmann [A4], that appeared in the Journal of the ACM.

• Chapter 4 applies the techniques developed in Chapter 3 to get a private algorithm
for k-median and k-means with provable approximation guarantee. This chapter is
more oriented towards practice: we present a scalable algorithm, able to run in a dis-
tributed setting. In particular, we implemented the algorithm and showed its practical
efficiency both in terms of speed and quality of the computed solution. This is based
on a collaboration with Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi,
Vahab Mirrokni, Andres Munoz, Chris Schwiegelshohn and Sergei Vassilvitskii, that
will be presented at the conference KDD 22 [A3]

• Chapter 5 is an extensive introduction to coreset and sketches, theme of Part II.
We present an overview of the techniques used in the subsequent chapters, as well as
a more precise description of the coreset literature.

• In Chapter 6, we present our main framework for coreset construction. The principal
contribution of that chapter is to reduce the construction of a coreset to showing
the existence of approximate centroid sets, that are somewhat the twin of coreset
for set of centers. In broad terms, a set C is an approximate centroid set if for
any possible candidate solution S, there is a set S̃ ∈ Ck such that for any point
p, dist(p,S) = (1 ± ε)dist(p, S̃). Hence, S̃ can be used in place of S. We present
an algorithm that builds coreset of size O(ε−2k log |C|), when the input admits an
approximate centroid set C. Crucially, this algorithm does not need to compute C:
its mere existence suffices. Hence, to construct small coresets, one only needs to show
the existence of small approximate centroid set, and apply our algorithm.

• In Chapter 7, we show the existence of approximate centroid sets for various metric
spaces, resulting in state of the art coreset construction. For discrete metrics, an
easy approximate centroid set is the full metric, of size n. This result in coreset of
size essentially O(ε−2k log n) For metrics of doubling dimension d, their existence is
a straightforward consequence of the existence of nets, which yield coreset of size
O(ε−2kd). The Euclidean space Rd is known to have doubling dimension Θ(d): the

21

Chapter 1. General Introduction

result carries over. It can be further improved using standard dimension reduction
techniques: it is possible to replace the dependency in d by O(ε−2 log k). We also
show that metrics induced by graphs with small separators have small centroid set:
namely, metric induced by graph of bounded treewidth or excluding a minor. This
chapter and the previous one are based on an article published at STOC 2021 with
Vincent Cohen-Addad and Chris Schwiegelshohn [A11]

• In Chapter 8, we show that our construction for discrete and doubling metrics are
tight: there exist a family of discrete metric space such that any coreset on those must
have size at least Ω(ε−2k log n). The proof is based on the optimality of Chernoff
bounds. This completes our understanding of coreset for those spaces: upper and
lower bounds are tight, and the proofs both rely heavily on Chernoff bounds, simple
properties on sum of independent random variables. This is part of a joint work with
Vincent Cohen-Addad, Kasper Green Larsen and Chris Schwiegelshohn [A8], that was
presented at STOC 2022.

• Chapter 9 presents a determinstic coreset construction. The previous coreset con-
structions are randomized, and succeed with probability 1 − δ. However, we do not
know how to verify that the outcome of a randomized coreset construction is indeed
a valid coreset: hence, determinism may be a desirable property. We present such
coresets construction for various metric spaces, as in Chapter 7.

In particular, to achieve deterministic bounds similar to the randomized one in Eu-
clidean spaces, one needs to remove any dependency on the dimension d: one of
the technical ingredients of the chapter is to show deterministic dimension reduction
for clustering. This is of independent interest, and provides another way of sketch-
ing Euclidean input. This is a collaboration with Vincent Cohen-Addad and Chris
Schwiegelshohn, currently under submission [A13].

• Finally, in Chapter 10 we use the coreset knowledge developed in the previous
chapters to show algorithms running in sublinear time to compute the median, the
mean and more generally an approximation to (1, z)-clustering. We show that it is
enough to consider a constant number of input point drawn uniformly at random to
compute this solution, and experiment our algorithm to show the practical speed-up it
allows. This chapter is based on a work that was presented as a spotlight at NeurIPS
2021, with Vincent Cohen-Addad and Chris Schwiegelshohn [A12].

1.6 How to Read this Thesis

The manuscript is written so that all chapters can be read independently, to allow
the reader to directly access a specific result of interest. However, it is recommended
to read the introduction of the corresponding part first: the introductory chapters of
each part present the problems addressed, and attempt to explain their significance.
They also give an overview of the techniques used in the subsequent chapters.

It is also recommended to read the next preliminary section, in which we present

22

1.6. How to Read this Thesis

notations and a couple of lemmas used all along the manuscript.

23

Chapter 1. General Introduction

24

Publications of the Author

[A1] Amariah Becker, Philip N. Klein, and David Saulpic. “A Quasi-Polynomial-Time Ap-
proximation Scheme for Vehicle Routing on Planar and Bounded-Genus Graphs”. In:
European Symposium on Algorithms, ESA. 2017.

[A2] Amariah Becker, Philip N Klein, and David Saulpic. “Polynomial-Time Approxima-
tion Schemes for k-center, k-median, and Capacitated Vehicle Routing in Bounded
Highway Dimension”. In: European Symposium on Algorithms, ESA. 2018.

[A3] Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Andres
Munoz, David Saulpic, Chris Schwiegelshohn, and Sergei Vassilvitskii. “Scalable Dif-
ferentially Private Clustering via Hierarchically Separated Trees”. In: To Appear at
the Conference on Knowledge Discovery and Data Mining (KDD). 2022.

[A4] Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. “Near-linear
Time Approximation Schemes for Clustering in Doubling Metrics”. In: J. ACM.
Vol. 68. 2021.

[A5] Vincent Cohen-Addad, Anupam Gupta, Lunjia Hu, Hoon Oh, and David Saulpic.
“An Improved Local Search Algorithm for k-Median”. In: Symposium on Discrete
Algorithms, SODA. 2022.

[A6] Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, and Chris
Schwiegelshohn. “Fully Dynamic Consistent Facility Location”. In: NeurIPS. 2019.

[A7] Vincent Cohen-Addad, Adrian Kosowski, Frederik Mallmann-Trenn, and David Saulpic.
“On the Power of Louvain in the Stochastic Block Model”. In: NeurIPS. 2020.

[A8] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn.
“Towards Optimal Lower Bounds for k-median and k-means Coresets”. In: STOC ’22.
2022.

[A9] Vincent Cohen-Addad, Frederik Mallmann-Trenn, and David Saulpic. “A Massively
Parallel Modularity-Maximizing Algorithm With Provable Guarantees”. In: Sympo-
sium on Principles of Distributed Computing (PODC). 2022.

[A10] Vincent Cohen-Addad, Frederik Mallmann-Trenn, and David Saulpic. “Community
Recovery in the Degree-Heterogeneous Stochastic Block Model”. In: Conference on
Learning Theory (COLT). 2022.

[A11] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. “A new coreset
framework for clustering”. In: Symposium on Theory of Computing (STOC). 2021.

[A12] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. “Improved Coresets
and Sublinear Algorithms for Power Means in Euclidean Spaces”. In: NeurIPS. 2021.

[A13] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. “On Deterministic
Clustering Sketches”. In: submitted.

Publications of the Author

[A14] Andreas Emil Feldmann and David Saulpic. “Polynomial time approximation schemes
for clustering in low highway dimension graphs”. In: J. Comput. Syst. Sci. Vol. 122.
2021.

[A15] Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic. “Domi-
nating Sets and Connected Dominating Sets in Dynamic Graphs”. In: International
Symposium on Theoretical Aspects of Computer Science, STACS. 2019.

26

Preliminaries: Notations and Use-
ful Results

To conclude this introduction, we introduce some notations used all along the thesis.
Given a point p and a set S, we define dist(p,S) = mins∈S dist(p, s), and cost(p,S) =
dist(p,S)z for (k, z)-clustering problem. Given a set of point P and a solution S, we
define cost(P,S) :=

∑
p∈P cost(p,S) and, in the case where P contains all the points

of the metric space, we define cost(S) := cost(P,S). In the case where P is weighted
with weight w : P → R+, then cost(P,S) :=

∑
p∈P w(p)cost(p,S).

To deal with powers of distances, we will need a variant of the triangle inequality,
stated as follows:

I Lemma 1.2 ([129]). Let a, b, c be arbitrary points in a metric space with
distance function dist, S be an arbitrary set of points in the same metric space,
and let z be a positive integer. Then for any ε > 0

dist(a, b)z ≤ (1 + ε)z−1dist(a, c)z +

(
1 + ε

ε

)z−1

dist(b, c)z

|dist(a,S)z − dist(b,S)z| ≤ ε · dist(a,S)z +

(
2z + ε

ε

)z−1

dist(a, b)z.

J

Proof. The proof of the first inequality is from Makarychev, Makarychev and Razen-
shteyn [129], Corollary A.2. We have, for two real number x, y and t := 1

1+ε :

(x+ y)z =
1

tz

(
tx+ (1− t)

(
ty

1− t

))z
The right hand side is a convex combination of x and ty

1−t , and the function x → xz

is convex (remember that z ≥ 1). Hence, using Jensen’s inequality, we get

(x+ y)z ≤ txz

tz
+

(1− t)
tz

·
(

ty

1− t

)z
≤ (1 + ε)z−1xz +

(
1

1− t

)z−1

yz

≤ (1 + ε)z−1xz +

(
1 + ε

ε

)z−1

yz.

Preliminaries: Notations and Useful Results.

Applying this with x = dist(a, b) and y = dist(b, c) and using the triangle inequality
concludes the first statement of the lemma.

For the second part, let S(a),S(b) be the closest point to a and b from S, and assume
that dist(b,S) ≤ dist(a,S). Then:

dist(a,S)z ≤ dist(a,S(b))z

≤
(

1 +
ε

2z

)z−1
· dist(b,S(b))z +

(
1 +

2z

ε

)z−1

· dist(a, b)z

≤ (1 + ε) · dist(b,S(b))z +

(
1 +

2z

ε

)z−1

· dist(a, b)z

≤ dist(b,S)z + ε · dist(a,S(a))z +

(
1 +

2z

ε

)z−1

· dist(a, b)z,

and so

|dist(a,S)z − dist(b,S)z| = dist(a,S)z−dist(b,S)z ≤ ε·dist(a,S)z+

(
2z + ε

ε

)z−1

dist(a, b)z.

In the other case, when dist(a,S) ≤ dist(b,S):

dist(b,S)z ≤ dist(b,S(a))z

≤
(

1 +
ε

2z

)z−1
· dist(a,S(a))z +

(
1 +

2z

ε

)z−1

· dist(a, b)z

≤ (1 + ε) · dist(a,S)z +

(
1 +

2z

ε

)z−1

· dist(a, b)z,

and so

|dist(a,S)z − dist(b,S)z| = dist(b,S)z−dist(a,S)z ≤ ε·dist(a,S)z+

(
2z + ε

ε

)z−1

dist(a, b)z.

All the algorithms presented in this thesis start by computing a constant-factor ap-
proximation to the solution. For that, our main tool is a fast algorithm due to Mettu
and Plaxton:

I Lemma 1.3. [Mettu and Plaxton, [136]] Given a metric space on n points
with oracle access to distances, there exists an algorithm running in time O(n ·
max(k, log n)) that computes, with constant probability, a O(2z)-approximation
to (k, z)-clustering. J

Although their theorem is stated only for k-median, the authors note (similarly as
[100]) that the proof directly translate to k-means and other powers, using Lemma 1.2
with ε = 1, losing a 2z factor in the approximation guarantee.

28

Part I

Approximation Algorithm via
Embeddings Into Tree-like

Structures

Chapter 2

Presentation of the Results and
Challenges

In this section, our primary goal is to show fast algorithms for (k, z)-clustering in
Euclidean space, and a generalization of them called doubling metrics,1 by leveraging
embedding into ultrametrics. Maybe the most natural way of constructing such an
embedding from the Euclidean Space is to separate the Euclidean input into two parts
by a axis-parallel hyperplane, do that again on each part to define four finer parts,
and continue recursively to obtain a series of partition of the input into a finer and
finer level of granularity, as illustrated in Fig. 1.3.

As we saw in the introduction, this decomposition naturally defines an embedding into
an ultrametric, where the distance between two points is the diameter of the smallest
part that contains both. While the introduction focused for simplicity on this simple
embedding, which is useful end of itself as we will see in Chapter 4, we will need to
use a slightly different embedding in order to compute very precise solutions. Indeed,
this one inherently yields a (large) constant distortion. In Chapter 3, we will leverage
the same recursive decomposition of the Euclidean plane to find a slightly different
embedding, allowing for fast and very precise algorithms for (k, z)-clustering.

2.1 Results Presented in the Part

A different viewpoint on the previous embedding is as follows. In each part of the
partition, there is a single portal placed at the center of the part. The Euclidean metric
is distorted: instead of straight lines, a path that connects two points is twisted such
that it can enter or exit a part only through portals. In Chapter 3, we use the standard

1The doubling dimension of a metric space is the logarithm of the number of balls of radius R/2
required to cover any ball of radius R, see Definition 3.8. In particular, d-dimensional Euclidean
Spaces have doubling dimension d (up to constants).

Chapter 2. Presentation of the Results and Challenges

idea of placing more than a single portal in each part: instead of distorting distances
by a large constant factor, this idea allows to preserve them up to an arbitrary small
precision; and preserving the hierarchical tree structure of the decomposition still
allows us to solve the problem fast.

Those portals are at the heart of previous results. There has been indeed a large body
of work to design good approximation for clustering in Euclidean Spaces of bounded
dimension, and more generally in metrics of fixed doubling dimension. In their sem-
inal work introducing the use of portals for k-median, Arora, Raghavan and Rao [9]
gave a polynomial time approximation scheme (PTAS) for k-Median in R2, namely
for any ε > 0, they show an algorithm that computes a (1 + ε)-approximation in
polynomial time.2 This generalizes to a quasi-polynomial time approximation scheme
(QPTAS) for inputs in Rd, with fixed d. This result was improved in two ways. First
by Talwar [155] who generalized the QPTAS to any metric space of fixed doubling
dimension. Second by Kolliopoulos and Rao [112] who obtained an f(ε, d) ·n logd+6 n
time algorithm for k-Median in d-dimensional Euclidean space. Unfortunately, Kol-
liopoulos and Rao’s algorithm relies on the Euclidean structure of the input and does
not immediately generalize to low dimensional doubling metric. Thus, using this
framework the only result known for k-Median in metrics of fixed doubling dimension
was only a QPTAS. Moreover, all those algorithms rely on the decomposition and the
expectation-based argument sketched above. As we will see shortly, those algorithms
cannot work for the k-Means problem, when distances are squared. Thus no efficient
algorithms were known for the k-Means problem, even in the plane.

Somewhat recently, Friggstad, Rezapour and Salavatipour [86] and Cohen-Addad,
Klein and Mathieu [53] moved away from this embedding framework, and showed that
the classic local search algorithm for the problems gives a (1 + ε)-approximation in

time nd/ε
O(d)

in metrics of doubling dimension d. More recently still, Cohen-Addad [50]
showed how to speed up the local search algorithm for Euclidean space to obtain a
running time nk(log n)(d/ε)O(d)

.

Nonetheless, obtaining an efficient approximation scheme (namely a (1 + ε)-
approximation algorithm running in time f(ε, d)poly(n)) for k-Median and k-Means
in metrics of doubling dimension d has remained a major challenge.

The main result of Chapter 3 is the following (informal) theorem:

I Informal Theorem (see Theorem 3.1 and Theorem 3.2). For any
0 < ε < 1/3, there exists a (1 + ε)-approximation algorithm for (k, z)-
clustering problem in metrics of doubling dimension d with running time
Oε,d,z(npolylogn). J

We also show similar results for several variants of the (k, z)-clustering problem, such
as Facility Location, k-center or clustering with outliers.

The ultrametric techniques we develop turn out to be useful for other setting, where it
is easier to deal with a tree structure than a Euclidean one. In particular, we present

2Note that ε is not part of the input: the complexity can be nf(ε).

32

2.2. Using Ultrametrics for Squared Distances

clustering algorithms that preserves some form of privacy in Chapter 4. As privacy
concerns are growing with the increasing amount of data collected, it is essential to
design algorithms that respect the privacy of individuals. Differential privacy is by
now the standard model of modeling privacy for algorithms: essentially an algorithm is
differentially private if its outcome does not change when a single input point changes.

In Chapter 4, we use the embedding into ultrametrics described above to design a
differentially private algorithm for (k, z)-clustering. Although many algorithms have
been proposed for differentially private clustering, none of them benefits from both
theoretical guarantees and practical efficiency. To fill this gap, we show a differentially
private algorithm that has provable approximation guarantee and is amenable to large-
scale implementation. We leverage for this the malleability of trees together with the
techniques developed in Chapter 3 to adapt the ultrametric embedding to (k, z)-
clustering and not simply k-median.

I Informal Theorem (see Theorem 4.2 and Theorem 4.12). There
exist differentially private algorithms for k-median (z = 1) and k-means (z = 2)
that compute a solution with cost polylog(n)OPT + kd2 log2 n · Λz, when all
input points have norm at most Λ. The running time of those algorithms is
Õ(ndk2). J

The privacy constraint forces us to have such an additive error: the solution computed
should be roughly the same when the dataset consists of n points at the origin, or
n− 1 at the origin and a single one at distance Λ. More details on that constraint are
given in the chapter.

The guarantees we obtain are somewhat far from the state-of-the art results for private
clustering, for which the multiplicative factor now matches the one of non-private
algorithms (See Ghazi, Kumar and Manurangsi [87]). However, those algorithms are
far from being practical and even hardly implementable. On the other hand, state-
of-the-art implementations either have no theoretical guarantees on the quality of the
solution obtained, or cannot be implemented in large-scale scenario where the data is
distributed. In contrast, we present a parallel implementation of the algorithm, and
we show experimentally that its performances are comparable to the best non-private
methods.

2.2 Using Ultrametrics for Squared Distances

We discuss in slightly more details how to work with the embeddings. For simplicity,
we limit our introduction here to the ultrametric embedding, instead of the more
intricate one with portals, as the general ideas are the same for both. Recall that
a hierarchical partitioning is constructed, represented by a tree, and the distance
between two points is defined to be the diameter of the smallest part containing both

33

Chapter 2. Presentation of the Results and Challenges

of them.

It is clear that in this ultra metric, distances can only be larger than in the Euclidean
space. Hence, any solution is cheaper in the original metric than in the ultrametric.
Therefore, a solution computed on the embedding that has a tiny cost compared to
the optimal one is a good solution in the original space as well. To be able to use the
ultrametric in place of the original one, one only needs to show that the converse is
true as well, and that distances in the ultrametric are not too large compared to the
original ones.

Of course, an embedding computed from an arbitrary tree may completely distort
distances, by separating early points that are very close. To avoid that issue, the trees
are build randomly: at each level, instead of picking a fixed separating hyperplane, it
is drawn at random. That way, two points that are close compared to the diameter
of the part are likely not to be separated. In turn, the expected distance in the tree
metric between the two points is similar to their original distance.

That approach however fails when distances are squared: in that case, the expected
squared distance in the ultrametric may be as large as n times larger than in the
original metric. Indeed, in a given part of diameter n, two points at distance 1 have
probability 1/n to be separated: in this case, their distance squared in the ultrametric
is n2. Hence, the expected distortion is at least n.

Our main contribution in this chapter is to show how to bypass this apparent impos-
sibility, and how to use those trees for squared distances. Instead of bounding the
expected distortion, as the argument mentioned above, we try to ensure a stronger
property, namely that the embedding preserves the distance between all pairs of points.
This is equivalent to the following: any pair of points is separated in the tree at a
level where parts have diameter comparable to their original distance.

If that were the case, then both distances and squared distances would be preserved
in the ultrametric, and solving k-means would henceforth be possible. This ideal case
does not happen: instead, we will be able to show the slightly weaker property that
most of input points are separated from any other point at a level comparable to their
distance. Hence, for all those points, the ultrametric can be used. The others pay an
extra cost, as their distances are not preserved.

We call those points the badly-cut points. We will show that any point has only a
tiny probability of being badly-cut. Very briefly, we will leverage this fact to show
the existence of a near-optimal solution in the embedding: since each point has a tiny
probability of being badly-cut, the expected cost of those in any solution is a tiny
fraction of the overall cost. In turn, we can afford a large error for them, and charge
it to the cost of the non badly-cut points.

Showing how to deal with the badly-cut points is the main technical contribution of
this part.

34

Chapter 3

Near-Linear Time Approximation
Schemes for Clustering in Dou-
bling Metrics

In this chapter, we consider the classic Facility Location, k-Median, and k-Means
problems in metric spaces of doubling dimension d. We give nearly linear-time ap-
proximation schemes for each problem, namely algorithm that for any ε > 0 computes
a (1 + ε)-approximation in time near linear in n. The precise complexity of our algo-

rithms is Õ(2(1/ε)O(d2)
n), making a significant improvement over the state-of-the-art

algorithms which run in time n(d/ε)O(d)
.

Moreover, we show how to extend the techniques used to get the first efficient ap-
proximation schemes for the problems of prize-collecting k-Median and k-Means, and
efficient bicriteria approximation schemes for k-Median with outliers, k-Means with
outliers and k-Center.

As the historical roots of the low dimension (k, z)-clustering problem are in Facil-
ity Locations types problems, we adopt the following terminology: input points are
clients, and they need to be served by a set of facilities, or centers.

3.1 Introduction and Sketch of Proofs

Formally, our two main theorems are the following.

I Theorem 3.1. For any 0 < ε < 1/3, there exists a randomized (1 + ε)-
approximation algorithm for k-Median in metrics of doubling dimension d with

running time 2(1/ε)O(d2)
n log4 n + 2O(d)n log9 n and success probability at least

1− 2ε. J

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

I Theorem 3.2. For any 0 < ε < 1/3, there exists a randomized (1 + ε)-
approximation algorithm for (k, z)-clustering in metrics of doubling dimension

d with running time 2(1/ε)O(d2)
n log5 n+2O(d)n log9 n and success probability at

least 1−O(ε). J

En route to proving those theorems, we consider the Facility Location problem, in
which no bound on the number of opened centers is given, but each center comes with
an opening cost. This difference allows us to design a simpler algorithm, which is a
nice illustration of our techniques.

I Theorem 3.3. For any 0 < ε < 1/3, there exists a randomized (1 + ε)-
approximation algorithm for Facility Location in metrics of doubling dimension

d with running time 2(1/ε)O(d2)
n + 2O(d)n log n and success probability at least

1− ε. J

In all these theorems, we make the common assumption to have access to the distances
of the metric in constant time, as, e.g., in [97, 58, 89]. It is possible to remove that
assumption using the algorithm of Bartal et al. [22], who showed how to construct in
near-linear time an oracle that computes distances up to a (1+ε)-multiplicative error.
This is key to our linear-time algorithm, as simply storing the distance matrix takes
O(n2) space.

Note that the double-exponential dependence on d is unavoidable unless P = NP,
since the problems are APX-hard in Euclidean space of dimension d = O(log n). For
Euclidean inputs, our algorithms for the k-Means and k-Median problems outperform
the ones of Cohen-Addad [50], removing in particular the dependence on k, and the one
of Kolliopoulos and Rao [112] when d > 3, by removing the dependence on logd+6 n.
Our algorithm is also more precise than the popular k-means++ algorithm, or the
one from Cohen-Addad et al. [54], which run in time Õ(n) but have an approximation
guarantee O(log k).

We also note that the success probability can be boosted to 1 − εδ by repeating the
algorithm log δ times and outputting the best solution encountered.

After proving the three theorems above, we will apply the techniques to related prob-
lems. We say an algorithm is an (α, β)-approximation for k-Median or k-Means with
Z outliers if its cost is within an α factor of the optimal one and the solution drops
βZ outliers. Similarly, an algorithm is an (α, β)-approximation for k-Center if its cost
is within an α factor of the optimal one and the solution opens βk centers. In the
prize-collecting versions of the problems, each client are either connected to a facility,
and pay there distance (or distance squared), or are not connected and pay some fixed
penalty.

36

3.1. Introduction and Sketch of Proofs

I Theorem 3.4. For any 0 < ε < 1/3, there exists a randomized (1 + ε)-
approximation algorithm for Prize-Collecting k-Median (resp. k-Means) in met-

rics of doubling dimension d with running time 2(1/ε)O(d2)
n log4 n+2O(d)n log9 n

and success probability at least 1− ε. J

I Theorem 3.5. For any 0 < ε < 1/3, there exists a randomized (1 + ε, 1 +
O(ε))-approximation algorithm for k-Median (resp. k-Means) with Z outliers in

metrics of doubling dimension d with running time 2(1/ε)O(d2)
n log6 n+T (n) and

success probability at least 1− ε, where T (n) is the running time to construct
a constant-factor approximation. J

We note as an aside that our proof of Theorem 3.5 could give an approximation where
at most Z outliers are dropped, but (1 + O(ε))k centers are opened. For simplicity,
we focused on the previous case only.

I Theorem 3.6. For any 0 < ε < 1/3, there exists a randomized (1 + ε, 1 +
O(ε))-approximation algorithm for k-Center in metrics of doubling dimension

d, with running time 2(1/ε)O(d2)
n log6 n+n log k and success probability at least

1− ε. J

As explained above, this bicriteria is necessary in order to get an efficient algorithm: it
is APX-hard to approximate the cost [74], and achieving the optimal cost with (1+ε)k
centers requires a complexity Ω(n1/

√
ε) [132]. To the best of our knowledge, this works

presents the first linear-time bicriteria approximation scheme for the problem of k-
center.

Techniques

To give a detailed insight on our techniques and our contribution we first need to
quickly review previous approaches for obtaining approximation schemes on bounded
doubling metrics. The general approach, due to Arora [8] and Mitchell [139], which
was generalized to doubling metrics by Talwar [155], is the following.

Previous Techniques

The approach consists in randomly partitioning the metric into a constant number
of regions, and applying this recursively to each region. The recursion stops when
the regions contain only a constant number of input points. This leads to what is
called a split-tree decomposition: a partition of the space into a finer and finer level
of granularity. In Euclidean spaces, this decomposition is often called a quad-tree
decomposition. A split-tree is the generalization to doubling metrics. The reader who
is not familiar with the split-tree decomposition may refer to Section 3.2.2 for a more

37

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

formal introduction.

Portals The approach then identifies a specific set of points for each region, called
portals, which allows to show that there exists a near-optimal solution such that
different regions “interplay” only through portals. For example, in the case of the
Traveling Salesperson (TSP) problem, it is possible to show that there exists a near-
optimal tour that enters and leaves a region only through its portals. In the case of
the k-Median problem a client located in a specific region can be assigned to a facility
in a different region only through a path that goes to a portal of the region. In other
words, clients can “leave” a region only through the portals.

Proving the existence of such a structured near-optimal solution relies on the fact
that the probability that two very close points end up in different regions of large
diameter is very unlikely. Hence the expected detour paid by going through a portal
of the region is small compared to the original distance between the two points, if the
portals are dense enough.

For the sake of argument, we provide a proof sketch of the standard proof of Arora [8].
We will use a refined version of this idea in later sections. The split-tree recursively
divides the input metric (X,dist) into parts of smaller and smaller diameter. The root
part consists of the entire point set and the parts at level i are of diameter roughly 2i.
The set of portals of a part of level i is an ε02i-net for some ε0, which is a small set such
that every point of the metric is at distance at most ε02i to it. Consider two points x, y
and let us bound the expected detour incurred by connecting w to y through portals.
This detour is determined by a path that starting from x at the lowest level, in each
step connects a point w to its closest net point of the part containing w on the next
higher level. This is done until the lowest-level part Rx,y (i.e., the part of smallest
diameter) is reached, which contains both x and y, from where a similar procedure
leads from this level through portals of smaller and smaller levels all the way down to
y. If the level of Rx,y is i then the detour, i.e., the difference between dist(x, y) and
the length of the path connecting x and y through portals, is O(ε02i) by the definition
of the net. Moreover, the proof shows that the probability that x and y are not in the
same part on level i is at most dist(x, y)/2i. Thus, the expected detour for connecting
x to y is

∑
level i Pr[Rx,y is at level i]·O(ε02i) =

∑
level iO(ε0dist(x, y)). Hence, setting

ε0 to be some ε divided by the number of levels yields that the expected detour is
O(εdist(x, y)).

Dynamic programming The portals now act as separators between different parts
and allows to apply a dynamic programming (DP) approach for solving the problems.
The DP consists of a DP-table entry for each part and for each configuration of
the portals of the part. Here a configuration is a potential way the near-optimal
solution interacts with the part. For example, in the case of TSP, a configuration is
the information at which portal the near-optimal tour enters and leaves and how it
connects the portals on the outside and inside of the part. For the k-Median problem,
a configuration stores how many clients outside (respectively inside) the part connect
through each portal and are served by a center located inside (respectively outside).
Then the dynamic program proceeds in a bottom-up fashion along the split-tree to fill

38

3.1. Introduction and Sketch of Proofs

up the DP table. The running time of the dynamic program depends exponentially
on the number of portals.

How many portals? The challenges that need to be overcome when applying this
approach, and in particular to clustering problems, are two-fold. First the “standard”
use of the split-tree requires O((logn

ε)d) portals per part in order to obtain a (1 + ε)-
approximation, coming from the fact that the number of levels can be assumed to
be logarithmic in the number of input points. This often implies quasi-polynomial
time approximation schemes since the running time of the dynamic program has ex-
ponential dependence on the number of portals. This is indeed the case in the original
paper by Talwar [155] and in the first result on clustering in Euclidean space by Arora
et al. [9]. However, in some cases, one can lower the number of portals per part
needed. In Euclidean space for example, the celebrated “patching lemma” [7] shows
that only a constant number (depending on ε) of portals are needed for TSP. Simi-
larly, Kolliopoulos and Rao [112] showed that for k-Median in Euclidean space only
a constant number of portal are needed, if one uses a slightly different decomposition
of the metric.

Surprisingly, obtaining such a result for doubling metrics is much more challenging.
To the best of our knowledge, this work is the first one to reduce the number of portals
to a constant.

A second challenge when working with split-tree decompositions and the k-Means
problem is that because the cost of assigning a point to a center is the squared distance,
the analysis of Arora, Mitchell, and Talwar does not apply. If two points are separated
at a high level of the split-tree, then making a detour to the closest portal may incur
an expected cost much higher than the cost of the optimal solution.

Our Contributions

Our contribution can be viewed as a “patching lemma” for clustering problems in
doubling metrics. Namely, an approach that allows to solve the problems mentioned
above: (1) it shows how to reduce the number of portals to a constant, (2) it works
for any clustering objective which is defined as the sum of distances to some constant
p (with k-Median and k-Means as prominent special cases), and (3) it works not only
for Euclidean but also for doubling metrics.

Our starting point is the notion of badly cut points of Cohen-Addad [51] for the
capacitated version of the above clustering problems. To provide some intuition on
the definition, let us focus on k-median and start with the following observation:
consider a center c of the optimal solution and a client p assigned to c. If the diameter
of the lowest-level part containing both c and p is of order dist(p, c) (say at most
dist(p, c)/ε2), then by taking a large enough but constant size net as a set of portals
in each part (say an ε32i-net for a part of level i), the total detour for the two points
is at most O(εdist(p, c)), which is acceptable.

The problematic scenario is when the lowest-level part containing c and p is of diameter
much larger than dist(p, c). In this case, it is impossible to afford a detour proportional

39

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Figure 3.1: Illustration of badly cut for clients. The black point is a client p, the gray
one is L(p), and the point q is arbitrary at distance d/ε from p. The dashed line is
the boundary of a part with ”large” diameter.

to the diameter of the part in the case of the k-Median and k-Means objectives. To
handle this case we first compute a constant approximation L and use it to guide us
towards a (1 + ε)-approximation.

Badly cut clients and facilities Consider a client p and the center L(p) serving
p in L (i.e., L(p) is closest to p among the centers in L), and call OPT(p) the facility
of an optimum solution OPT that serves p in OPT. Informally, we say that p is
badly cut if there is a point q in the ball centered at p of radius dist(p,L(p))/ε such
that the highest-level part containing p and not q is of diameter much larger than
dist(p,L(p))/ε (say greater than dist(p,L(p))/ε2). In other words, there is a point q
in this ball such that paying a detour through the portal to connect p to q yields a
detour larger than εdist(p, q) (see Figure 3.1).

Similarly, we say that a center c from the solution L is badly cut if there is a point
q in the ball centered at c of radius dist(c,OPT(c))/ε (where OPT(c) is the facility
of OPT that is the closest to c) such that the highest-level part containing c and not
q is of diameter dist(c,OPT(c))/ε2. The crucial property here is that any client p or
any facility c is badly cut with probability O(ε3), as we will show.

Using the notion of badly cut We now illustrate how this notion can help
us. Assume for simplicity that OPT(p) is in the ball centered at a client p of ra-
dius dist(p,L(p))/ε (if this is not the case then dist(p,OPT(p)) is much larger than
dist(p,L(p)), so this is a less problematic scenario and a simple idea can handle it). If
p is not badly cut, then the lowest-level part containing both p and OPT(p) is of diam-
eter not much larger than dist(p,L(p))/ε. Taking a sufficiently fine net for each part
(independent of the number of levels) allows to bound the detour through the portals
to reach OPT(p) from p by at most εdist(p,L(p)). Since L is an O(1)-approximation,
this is fine.

If p is badly cut, then we modify the instance by relocating p to L(p). That is, we will
work with the instance where there is no more client at p and there is an additional
client at L(p). We claim that any solution in the modified instance can be lifted to the

40

3.1. Introduction and Sketch of Proofs

original instance at an expected additional cost of O(ε3OPT). This comes from the
fact that the cost increase for a solution is, by the triangle inequality, at most the sum
of distances of the badly cut clients to their closest facility in the local solution. This
is at most O(ε3OPT) in expectation since each client is badly cut with probability at
most O(ε3) and L is an O(1)-approximation.

Here we should ask, what did we achieve by moving p to L(p)? Note that p should
now be assigned to facility f of OPT that is the closest to L(p). So we can make the
following observation: If L(p) is not badly cut, then the detour through the portals
when assigning p to f is fine (namely at most ε times the distance from L(p) to its
closest facility in OPT). Otherwise, if L(p) is also badly cut, then we simply argue
that there exists a near-optimal solution which contains L(p), in which case p is now
served optimally at a cost of 0 (in the new instance).

From bicriteria to opening exactly k centers Since L(p) is badly cut with
probability O(ε3), this leads to a solution opening (1 + O(ε3))k centers. At first, it
looks difficult to then reduce the number of centers to k without increasing the cost
of the solution by a factor larger than (1 + ε). However, and perhaps surprisingly, we
show in Lemma 3.24 that this can be avoided: we show that there exists a near-optimal
solution that contains the badly cut centers of L(p).

We can then conclude that a near-optimal solution can be computed by a simple
dynamic-programming procedure on the split-tree decomposition to identify the best
solution in the modified instance.

Our result on Facility Location in Section 3.3 provides a simple illustration of these
ideas — avoiding the bicriteria issue due to the hard bound on the number of opened
facilities for the k-Median and k-Means problems. Our main result on k-Median and
k-Means is described in Section 3.4. We discuss some extensions of the framework in
Section 3.5.

3.1.1 Related work

On clustering problems The clustering problems considered in this chapter are
known to be NP-hard, even restricted to inputs lying in the Euclidean plane (see Ma-
hajan et al. [128] or Dasgupta and Freund [61] for k-Means, Megiddo and Supowit [135]
for the problems with outliers, and Masuyama et al. [133] for k-Center). The problems
of Facility Location and k-Median have been studied since a long time in graphs, see
e.g. [109]. The current best approximation ratio for metric Facility Location is 1.488,
due to Li [119], whereas it is 2.67 for k-Median, due to Byrka et al. [37].

The problem of k-Means in general graphs also received a lot of attention (see e.g.,
Kanungo et al. [109]) and the best approximation ratio is 6.357, due to Ahmadian et
al. [5].

Clustering problems with outliers where first studied by Charikar et al. [41], who
devised an (O(1), (1 +O(ε))-approximation for k-Median with outliers and a constant

41

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

factor approximation for prize-collecting k-Median. More recently, Friggstad et al. [85]
showed that local search provides a bicriteria approximation, where the number of
centers is approximate instead of the number of outliers. However, the runtime is
nf(ε,d), and thus we provide a much faster algorithm. To the best of our knowledge,
we present the first approximation scheme that preserves the number of centers.

The k-Center problem is known to be NP-hard to approximate within any factor better
than 2, a bound that can be achieved by a greedy algorithm [74]. This is related to the
problem of covering points with a minimum number of disks (see e.g. [122, 132]). Marx

and Pilipczuk [132] proposed an exact algorithm running in time n
√
k+O(1) to find the

maximum number of points covered by k disks and showed a matching lower bound,
whereas Liao et al. [122] presented an algorithm running in time O(mnO(1/ε2 log2 1/ε))
to find a (1 + ε)-approximation to the minimal number of disks necessary to cover all
the points (where m is the total number of disks and n the number of points). This
problem is closely related to k-Center: the optimal value of k-Center on a set P is the
minimal number L such that there exist k disks of radius L centered on points of P
covering all points of P . Hence, the algorithm from [122] can be directly extended to
find a solution to k-Center with (1 + ε)k centers and optimal cost. The local search
algorithm of Cohen-Addad et al. [53] can be adapted to k-center and generalizes the
last result to any dimension d: in Rd, one can find a solution with optimal cost and
(1 + ε)k centers in time n1/εO(d)

. Losing on the approximation allows us to present a
much faster algorithm.

On doubling dimension Despite their hardness in general metrics, these problems
admit a PTAS when the input is restricted to a low dimensional metric space: Frig-
gstad et al. [86] showed that local search gives a (1 + ε)-approximation. However, the

running time of their algorithm is n(d/ε)O(d)
in metrics with doubling dimension d.

A long line of research exists on filling the gap between results for Euclidean spaces and
metrics with bounded doubling dimension. This started with the work of Talwar [155],
who gave QPTASs for a long list of problems. The complexity for some of these
problems was improved later on: for the Traveling Salesperson problem, Gottlieb [89]
gave a near-linear time approximation scheme, Chan et al. [39] gave a PTAS for
Steiner Forest, and Gottlieb [89] described an efficient spanner construction. Very
recently, Bartal and Gottlieb gave nearly-linear time algorithms for Steiner Tree and
Forest [21].

42

3.2. Preliminaries

3.2 Preliminaries

3.2.1 Definitions

Since we will transform an input instance of (k, z)-clustering into a tree-like structure,
we will need a more formal definition of an instance. An instance to the problem is a
4-tuple (P, F, dist, k), where (P ∪F,dist) is a metric space and k is a positive integer.
The goal is to find a set S ⊆ F such that |S| ≤ k and

∑
c∈P minf∈S(dist(c, f)z) is

minimized. We let n = |P ∪ F | be the total size of the metric space.

The Facility Location problem is a relaxation of the k-median problem: instead of
having a strict limitation on the number of facilities, one can pay for each opened
facilities. Formally:

I Definition 3.7 (Facility-location problem). Given a metric space
(X,dist), an instance for the facility location problem is set of clients P ⊂ X,
a set of facilities F ⊂ X and a cost wf ≥ 0 for all f ∈ F . The goal is to output
a subset of set facilities S ⊆ F that minimizes∑

f∈S
wf +

∑
p∈P

dist(p,S). J

For those clustering problems, it will also be convenient to name the center serving
a client. For a client p and a solution S, we denote S(p) the center closest to p, and
Sp := dist(p,S(p)) the distance to it.

Consider a metric space (X,dist). For a point p ∈ X and an integer r ≥ 0, we let
β(p, r) = {x ∈ X | dist(p, x) ≤ r} be the ball around p with radius r.

I Definition 3.8. The doubling dimension of a metric is the smallest integer
d such that any ball of radius 2r can be covered by 2d balls of radius r. J

We call ∆ the aspect-ratio (sometimes referred to as spread in the literature) of the
metric, i.e., the ratio between the largest and the smallest non-zero distance.

A crucial property of doubling metrics is the existence of small nets. A δ-net of P is a
set of points X ⊆ P such that for all p ∈ P there is an x ∈ X such that dist(p, x) ≤ δ,
and for all x, y ∈ X we have dist(x, y) > δ. A net is therefore a set of points not too
close to each other, such that every point of the metric is close to a net point. The
following lemma bounds the cardinality of a net in doubling metrics.

I Lemma 3.9 (from Gupta et. al [91]). Let (P,dist) by a metric space
with doubling dimension d and diameter D, and let X be a δ-net of V . Then
|X| ≤ 2d·dlog2(D/δ)e. J

43

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Another property of doubling metrics that will be useful for our purpose is the ex-
istence of low-stretch spanners with a linear number of edges. More precisely, Har-
Peled and Mendel [97] showed that one can find a graph (called a spanner) in the
input metric that has O(n) edges such that distances in the graph approximate the
original distances up to a constant factor. This construction takes time 2O(d)n. We
will make use of these spanners only for computing constant-factor approximations of
our problems: for this purpose, we will therefore assume that the number of edges is
m = 2O(d)n.

Lastly, the doubling metrics we consider in this chapter are discrete. Hence, this does
not strictly speaking generalize the Euclidean version of (k, z)-clustering, where the
centers can be placed everywhere. However, up to losing a polylogarithmic factor in
the running time, it is possible to reduce the continuous Euclidean problem to this
discrete setting by computing a set of candidate centers that approximate the best set
of centers in Rd [134]. Less formally, the only part where discreteness is important is
in the dynamic program: it is actually possible to deal directly with infinite Euclidean
Space without losing anything in the complexity, by slightly adapting the dynamic
program. We explain how to do that in the relevant section, and will consider for
simplicity that the input is discrete.

3.2.2 Decomposition of Metric Spaces

As pointed out in our techniques section, we will make use of hierarchical decomposi-
tions of the input metric. We define a hierarchical decomposition (sometimes simply
a decomposition) of a metric (X,dist) as a collection of partitions D = {B0, . . . ,B|D|}
that satisfies the following:

� each Bi is a partition of X,

� Bi is a refinement of Bi+1, namely for each part B ∈ Bi there exists a part
B′ ∈ Bi+1 that contains B,

� B0 contains a singleton set for each x ∈ X, while B|D| is a trivial partition that
contains only one set, namely X.

We define the ith level of the decomposition to be the partition Bi, and call B ∈ Bi a
level-i part. If B′ ∈ Bi−1 is such that B′ ⊂ B, we say that B′ is a subpart of B.

For a given decomposition D = {B0, . . . ,B|D|}, we say that a point x is cut from y at
level j if j is the maximum integer such that x is in some B ∈ Bj and y is in some
B′ ∈ Bj with B 6= B′. For a point x and radius r we say that the ball β(x, r) is cut
by D at level j if j is the maximum level for which some point of the ball is cut from
x at level j.

A key ingredient for our result is the following lemma, that introduces some proper-
ties of the hierarchical decomposition (sometimes referred to as split-tree) proposed
by Talwar [155] for low-doubling metrics. As mentioned in the introduction, this
decomposition generalizes the quad-tree decomposition to doubling metrics.

44

3.2. Preliminaries

I Lemma 3.10 (Reformulation of [155, 20]). For any metric (X,dist)
of doubling dimension d and any ρ > 0, there is a randomized hierarchical
decomposition D such that the diameter of a part B ∈ Bi is at most 2i+1,
|D| ≤ dlog2(diam(X))e, each part B ∈ Bi is refined in at most 2O(d) parts at
level i− 1, and:

1. Scaling probability: for any x ∈ X, radius r, and level i, we have

Pr[D cuts β(x, r) at a level i] ≤ 22d+2r/2i.

2. Portal set: every set B ∈ Bi where Bi ∈ D comes with a set of por-
tals PB ⊆ B that is

(a) concise: the size of the portal set is bounded by |PB| ≤ 1/ρd; and

(b) precise: for every point x ∈ B there is a portal p ∈ PB close-by,
i.e., dist(x, p) ≤ ρ2i+1; and

(c) nested: any portal of level i+ 1 that lies in B is also a portal of B,
i.e., for every p ∈ PB′ ∩B where B′ ∈ Bi+1 we have p ∈ PB.

Moreover, this decomposition can be found in time (1/ρ)O(d)n log ∆. J

3.2.3 Formal Definition of Badly Cut Points

As sketched in the introduction, the notion of badly cut lies at the heart of our
analysis. We define it formally here. We denote κ(ε, z) = ε2 z

(z+ε)z and τ(ε, d, z) =

2d+ 2 + log(1/κ(ε, z)), two parameters that are used throughout this chapter.

I Definition 3.11. Let (P∪F,dist) be a metric with doubling dimension d, let
D be a hierarchical decomposition of the metric (for any ρ > 0), and ε > 0. Let
also L be a solution to the instance for any of the problems Facility Location,
k-Median, or k-Means.
A client p ∈ P is badly cut w.r.t. D if the ball β(p, 3dist(p,L)/ε) is cut as
some level j greater than log(3dist(p,L)/ε) + τ(ε, d, z), where dist(p,L) is the
distance from p to the closest facility of L.
Similarly, a center f ∈ L is badly cut w.r.t. D if β(f, 3dist(f,OPT)) is cut at
some level j greater than log(3dist(f,OPT)) + τ(ε, d, z), where dist(f,OPT) is
the distance from f to the closest facility of OPT. J

In the following, when D is clear from the context we simply say badly cut. The
following lemma bounds the probability of being badly cut.

45

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

I Lemma 3.12. Let (P ∪ F,dist) be a metric, and D a random hierarchical
decomposition given by Lemma 3.10. Let p be any point in P ∪ F . The
probability that p is badly cut is at most κ(ε, z). J

Proof. Consider first a point p ∈ P . By Property 1, the probability that a ball
β(p, r) is cut at level at least j is at most 22d+2r/2j . Hence the probability that a
ball β(p, 3dist(p,L)/ε) is cut at a level j greater than log(3dist(p,L)/ε) + 2 + 2d +
log(1/κ(ε, z)) is at most κ(ε, z).

The proof for p ∈ F is identical.

3.2.4 Preprocessing

In the following, we will work with the slightly more general version of the clustering
problems where there is some demand on each input point: there is a function χ : P 7→
{0, . . . , n} and the goal is to minimize

∑
p∈P χ(p) ·minf∈S dist(p, f)+

∑
f∈S wf for the

Facility Location problem, or
∑

p∈P χ(p) · mins∈S dist(p, s)z for the (k, z)-clustering
problem. For simplicity, we will consider in the proof that the client set is actually a
multiset, where a client p appears χ(p) times.

We will preprocess the input instance to transform it into several instances of the
more general clustering problem, ensuring that the aspect-ratio ∆ of each instance is
polynomial. We defer this construction to Section 3.7.1.

3.3 A Near-Linear Time Approximation Scheme for Non-
Uniform Facility Location

To demonstrate the utility of the notion of badly cut, we show how to use it to get
a near-linear time approximation scheme for Facility Location in metrics of bounded
doubling dimension. In this context we refer to centers in the set F of the input as
facilities.

We first show a structural lemma that allows to focus on instances that do not contain
any badly cut client. For this, we essentially rely on Property 1 of Lemma 3.10, re-
gardless of the value of ρ chosen. Then, we use the second property of decomposition
to show that, for a particular choice of ρ, these instances have portal-respecting solu-
tions that are nearly optimal, and that can be computed with a dynamic program.
We conclude by providing a fast dynamic program, that takes advantage of all the
structure exhibited before.

46

3.3. Near-Linear Time Approximation Scheme for Facility Location

3.3.1 An instance with small distortion

Consider a metric space (P,dist) and an instance I of the Facility Location problem
on (P,dist). Here we generalize slightly, as explained in Section 3.2.4, and restrict the
set of candidate center to a subset of P . Our first step is to show that, given I, a
randomized decomposition D of (P,dist) (for any value of ρ > 0) and any solution L
for I on (P,dist), we can build an instance ID on the same metric (but different client
set) such that any solution S has a similar cost in I and in ID, and more importantly
ID does not contain any badly cut client with respect to D. Note that to ensure that
property, ID must depend on the randomness of D.

Let costI0(S) =
∑

p∈P minf∈S(dist(p, f))z be the cost incurred by only the distances
to the facilities in a solution S to an instance I0, and fix ε > 0 and a solution L. For
any instance ID on (P,dist), we let

νID = max
solution S

{
costI(S)− (1 + 2ε)costID(S), (1− 2ε)costID(S)− costI(S)

}
.

In the particular case of Facility Location, z = 1, but we allow the cost to be more
general in order to make the proof adjustable to k-Means. Let BD denotes the set
of badly cut facilities (w.r.t D) of the solution L. As explained above, our goal is to
construct an instance with the following small distortion property. We say that ID
has small distortion w.r.t. I if:

∑
f∈BD wf ≤ ε ·

∑
f∈Lwf , νID ≤ εcostI(L), and there

exists a solution S that contains BD with

costID(S) ≤ (1 +O(ε))costI(OPT) +O(ε)costI(L). (3.1)

When I is clear from the context we simply say that ID has small distortion. In
words, the first condition asks that only a tiny mass of the facilities of L is badly-cut,
the second one that the cost of any solution S is nearly the same in the instance ID
as in I and the third that there exists a solution that contains all badly cut clients
and that have, in ID, a small cost.

In particular, we will show that OPT′ = OPT∪BD (where OPT is the optimal solution
for the instance I) fulfills the condition of (3.1).

Construction of instance ID. In the following, we will always work with a partic-
ular ID constructed from I and L as follows: I is transformed such that every badly
cut client p is moved to L(p), namely, χ(L(p)) is increased by χ(p) after which we set
χ(p) = 0. Recall however that we treat the client set as a multiset, so that costI0(S)
counts the distance from p to the closest facility χ(p) times.

What we would like to prove is that the optimal solution in I can be transformed to
a solution in ID with a small additional cost, and vice versa. The intuition behind
this is the following: a client of the solution L is badly cut with probability κ(ε, z)
(from Lemma 3.12), hence every client contributes with κ(ε, z)dist(p,L) to transform
any solution S for the instance I to a solution for the instance ID, and vice versa.

However, we will need to convert a particular solution in ID (think of it as OPTID) to
a solution in I: this particular solution depends in the randomness of D, and this short

47

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

argument does not apply because of dependency issues. It is nevertheless possible to
prove that ID has a small distortion, as done in the following lemma.

I Lemma 3.13. Given an instance I of Facility Location, a randomized de-
composition D, an ε such that 0 < ε < 1/4 and a solution L, let ID be the
instance obtained from I by moving every badly cut client p to L(p) (as de-
scribed above). The probability that ID has small distortion is at least 1 − ε,
where the solution fulfilling (3.1) is OPT′ = OPT ∪BD. J

Proof. To show the lemma, we will show that E
[∑

f∈BD wf

]
≤ ε2

∑
f∈Lwf/2 and

E [νID] ≤ ε2cost(L)/2. Then, Markov’s inequality and a union bound over the prob-
abilities of failure yield that with probability 1 − ε,

∑
f∈BD wf ≤ ε ·

∑
f∈Lwf and

νID ≤ εcostI(L). Since OPT ⊆ OPT′ and (1 − 2ε)costID(OPT′) − costI(OPT′) ≤
νID ≤ εcostI(L), the cost incurred by connecting clients to facilities in OPT′ is

costID(OPT′) ≤ (1 +
2ε

1− 2ε
)(costI(OPT′) + εcostI(L)) (as νID ≤ εcostI(L))

< (1 + 4ε)(costI(OPT′) + εcostI(L)) (as ε < 1/4)

≤ (1 + 4ε)(costI(OPT) + εcostI(L)) (as OPT ⊆ OPT′),

which shows that ID has small distortion.

Note that E
[∑

f∈BD wf

]
=
∑

f∈L Pr[f badly cut] · wf ≤ ε2
∑

f∈Lwf/2 is immediate

from Lemma 3.12. It remains to show that E [νID] ≤ ε2cost(L)/2. For the sake of
lightening equations, we will denote by

∑
bcc. p

the sum over all badly cut clients p.

By definition, we have that for any solution S,

cost(S)− costID(S) ≤
∑

bcc. p

dist(p,S)z − dist(S,L(p))z

≤
∑

bcc. p

2ε · dist(S,L(p))z + (1 + z/ε)zdist(p,L(p))z

using the generalized triangle inequality from Lemma 1.2.

Subtracting
∑

bcc. p 2ε · dist(S,L(p))z ≤
∑

p∈P 2ε · dist(S,L(p))z from the right and
left side, respectively, yields

cost(S)− (1 + 2ε)costID(S) ≤
∑

bcc. c

(1 + z/ε)zdist(p,L(p))z

Similarly, we have that

costID(S)− cost(S) ≤
∑

bcc. p

dist(S,L(p))z − dist(p,S)z

≤
∑

bcc. p

2ε · dist(p,S)z + (1 + z/ε)zdist(p,L(p))z

48

3.3. Near-Linear Time Approximation Scheme for Facility Location

and we conclude

(1− 2ε)costID(S)− cost(S) ≤
∑

bcc. p

(1 + z/ε)zdist(p,L(p))z

Therefore,

νID ≤
∑

bcc. c

(1 + z/ε)zdist(p,L(p))z.

Taking expectation (over the random choice of D), we get:

E[νID] ≤
∑

client p

Pr[p badly cut] · (1 + z/ε)zdist(p,L(p))z.

Applying Lemma 3.12 and using κ(ε, z) = ε2(z
z+ε)

z, we conclude E[νID] ≤ ε2 ·cost(L).
The lemma follows for a sufficiently small ε.

3.3.2 Portal Respecting Solution

In the following, we fix an instance I, a decomposition D, and a solution L. By
Lemma 3.13, ID has small distortion with probability at least 1−ε and so we condition
on this event from now on.

We explore the structure that this conditioning can give to solutions. We will show
that in the solution OPT′ = OPT ∪ BD with small cost, each client p is cut from
its serving facility f at a level at most log(3dist(p,L)/ε+ 4dist(p,OPT))) + τ(ε, d, z).
This will allow us to consider portal-respecting solution, where every client to facility
path goes in and out parts of the decomposition only at designated portals. Indeed,
the detour incurred by using a portal-respecting path instead of a direct connection
depends on the level where its extremities are cut, as proven in Lemma 3.35. Hence,
ensuring that this level stays small implies that the detour made is small (in our
case, O(ε(dist(p,L) + dist(p,OPT))). Such a solution can be computed by a dynamic
program that we will present afterwards.

Recall that dist(p,L) and dist(p,OPT) are the distances from the original position
of p to L and OPT, although p may have been moved to L(p), and BD is the set of
badly cut facilities of L w.r.t D.

I Lemma 3.14. Let I be an instance of Facility Location with a randomized
decomposition D, ε < 1/4 and L be a solution for I, such that ID has small
distortion. Let OPT′ = OPT ∪BD, and for any client p in ID, let OPT′(p) be
the closest facility to p in OPT′. Then p and OPT′(p) are cut in D at level at
most log(3dist(p,L)/ε+ 4dist(p,OPT)) + τ(ε, d, z). J

Proof. Let p be a client. To find the level at which p and OPT′(p) are separated, we
distinguish between two cases: either p in I is badly cut w.r.t. D, or not.

If p is badly cut, then it is now located at L(p) in the instance ID. In that case, either:

49

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

1. L(p) is also badly cut, and therefore L(p) ∈ BD ⊆ OPT′ and so OPT′(p) = L(p).
Since p and L(p) are collocated, it follows that p and OPT′(p) are never cut.

2. L(p) is not badly cut: Definition 3.11 implies that L(p) and OPT(L(p)) are
cut at a level at most log(3dist(L(p),OPT)) + τ(ε, d, z). By triangle inequality,
dist(L(p),OPT) ≤ dist(p,L) + dist(p,OPT), and thus p (located at L(p) in ID)
and OPT′(p) are also cut at level at most log

(
3dist(p,L) + 3dist(p,OPT)

)
+

τ(ε, d, z).

We now turn to the case where p is not badly cut. In this case p is not moved to L(p)
and the ball β(c, 3dist(p,L)/ε) is cut at level at most log(3dist(p,L)/ε) + τ(ε, d, z).
We make a case distinction according to dist(p,OPT) and dist(p,L).

1. If dist(p,L) ≤ εdist(p,OPT), then we have the following. If L(p) is badly cut,
L(p) is open in OPT′ and therefore OPT′c = dist(p,L). Moreover, since p is
not badly cut the ball β(p,dist(p,L)) is cut at level at most log(3dist(p,L)/ε) +
τ(ε, d, z). Therefore p and OPT′(p) are cut at level at most log(3dist(p,L)/ε) +
τ(ε, d, z).

Now consider the case where L(p) is not badly cut. Both p and OPT′(p) lie
in the ball centered at L(p) and of diameter 2dist(L(p),OPT): indeed, we use
dist(p,L) ≤ εdist(p,OPT) to derive

dist(p,L(p)) ≤ εdist(p,OPT(p)) ≤ εdist(p,OPT(L(p)))

≤ εdist(p,L(p)) + εdist
(
L(p),OPT(L(p))

)
,

and therefore dist(p,L(p)) ≤ ε
1−εdist(L(p),OPT) ≤ 2dist(L(p),OPT), since ε ≤

1/4. On the other hand,

dist(OPT′(p),L(p)) ≤ dist(p,OPT′(p)) + dist(p,L(p))

≤ dist(p,OPT(p)) + dist(p,L(p))

≤ dist(p,OPT(L(p))) + dist(p,L(p))

≤ 2dist(p,L(p)) + dist(L(p),OPT(L(p)))

≤
(

1 +
2ε

1− ε

)
dist(L(p),OPT),

which is smaller than 2dist(L(p),OPT) for any ε ≤ 1/4. Hence we have
p,OPT′(p) ∈ β(L(p), 2dist(L(p),OPT)).

By definition of badly cut, p and OPT′(p) are therefore cut at level at most
log(3dist(L(p),OPT))+τ(ε, d, z). Since dist(L(p),OPT) ≤ dist(L(p),OPT(p)) ≤
dist(L(p), p) + dist(p,OPT(p)) ≤ (1 + ε)dist(p,OPT) as dist(p,L) ≤
εdist(p,OPT), we have that log(3dist(L(p),OPT)) ≤ log(4dist(p,OPT)).
Hence p and OPT′(p) are cut at level at most log(4dist(p,OPT)) + τ(ε, d, z).

2. If dist(p,OPT) ≤ dist(p,L)/ε, then since p is not badly cut the ball
β(p,dist(p,L)/ε) in which lies dist(p,OPT) is cut at level at most
log(3dist(p,L)/ε) + τ(ε, d, z).

50

3.3. Near-Linear Time Approximation Scheme for Facility Location

In all cases, p and L(p) are cut at level at most log(3dist(p,L)/ε + 4dist(p,OPT)) +
τ(ε, d, z). This concludes the proof.

We then aim at proving that there exists a near-optimal “portal-respecting” solution,
as we define below. A path between two points x and y is a sequence of points
w1, . . . , wk, where x = w1 and y = wk, and its length is

∑
dist(wj , wj+1). A solution

can be seen as a set of facilities, together with a path for each client that connects it
to a facility, and the cost of the solution is given by the sum over all path lengths.
We say that a path w1, . . . , wk is portal-respecting if for every pair wj , wj+1, whenever
wj and wj+1 lie in different parts B,B′ ∈ Bi of the decomposition D on some level
i, then these nodes are also portals at this level, i.e., wj , wj+1 ∈ PB ∪ PB′ . As
explained in Lemma 3.35, if two points x and y are cut at level i, then there exists
a portal-respecting path from x to y of length at most dist(u, v) + 16ρ2i. We define
a portal-respecting solution to be a solutions such that each path from a client to its
closest facility in the solution is portal-respecting. The cost of a portal-respecting
solution is the sum of the length of the path raised to the power z.

The dynamic program will a portal-respecting solution with optimal cost. Therefore,
we need to prove that the optimal portal-respecting solution is close to the optimal
solution. We actually show something slightly stronger. Given a solution S, we define
b(S) := (1 +z/ε)z−12z

∑
p,i: p and S(p) cut at level i

(
ε22−4−τ(ε,d,z) · 2i

)z
: one can see b(S) as

a budget, given by the fact that clients are not badly cut. Next we show a structural
lemma, that bounds the cost of a structured solution and of its budget.

I Lemma 3.15 (Structural lemma). Given an instance I, an ε such that

0 < ε ≤ 1/4 and a solution L, and ρ = ε2

128z2−τ(ε,d,z), it holds with probability
1 − ε (over a decomposition D with parameter ρ) that there exists a portal-
respecting solution S in ID such that costID(S)+b(S) = (1+O(ε))costI(OPT)+
O(εcostI(L)). J

Proof. From Lemma 3.13, with probability 1 − ε it holds that the instance ID has
small distortion, and costID(OPT′) ≤ (1 + 4ε)(costI(OPT) + εcostI(L)).

We now bound the cost of making OPT′ portal respecting by applying Lemma 3.14.
Since each client p of ID is cut from OPT′(p) at level at most log(3dist(p,L)/ε +
4dist(p,OPT)) + τ(ε, d, z), we have from Lemma 3.35 that the length of the portal-
respecting assignment of p to OPT′(p) is at most

O
(

dist(p,OPT′(p)) + 64ρ2τ(ε,d,z)(dist(p,L)/ε+ dist(p,OPT))
)
.

Raised to the power z to compute the cost of the path, this is at most (using
Lemma 1.2)

O
(

(1 + ε)cost(p,OPT′(p)) + (1 + z/ε)z−1
(

64ρ2τ(ε,d,z)(dist(p,L)/ε+ dist(p,OPT))
)z)

.

Choosing ρ = ε2

128z2−τ(ε,d,z) ensures that the portal-respecting cost of p is at most
(1 +O(ε))cost(p,OPT) +O(ε)cost(p,L). Summing over all clients p gives a total cost

51

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

of (1 +O(ε))costI(OPT) +O(ε)costI(L). The resulting portal respecting tour is the
solution S we are looking for.

We proceed the same way to bound b(OPT′):

b(OPT′) = (1 + z/ε)z−12z
∑
p

(
4ε22−4−τ(ε,d,z) · 2τ(ε,d,z)(dist(p,L)/ε+ dist(p,OPT))

)z
≤ (1 + z/ε)z−12z

∑
p

(ε/2)z(cost(p,L) + cost(p,OPT))

≤ ε(costI(L) + costI(OPT)).

Hence costID(S) + b(S) = (1 +O(ε))costI(OPT) +O(εcostI(L)).

3.3.3 The Algorithm

Our algorithm starts by computing a O(2d)-approximation L in time O(n log n), with
the procedure described in Section 3.7.3. Essentially, this procedure reduces the prob-
lem to solving Facility Location in a tree, which can be done with a simple dynamic
program.

The algorithm then computes a hierarchical decomposition D, as explained in the
Section 3.2.2, with parameter ρ = ε2

128z2−τ(ε,d,z).

Given L and the decomposition D, our algorithm finds all the badly cut clients as
follows. For each client p, to determine whether p is badly cut or not, the algo-
rithm checks whether the decomposition cuts β(p, 3dist(p,L)/ε) at a level higher than
log(3dist(p,L)/ε)+τ(ε, d, z), making p badly cut. This can be done efficiently, since p
is in exactly one part at each level, by verifying whether p is at distance smaller than
3dist(p,L)/ε to such a part of too high level. Thus, the algorithm finds all the badly
cut clients in near-linear time.

The next step of the algorithm is to compute instance ID by moving every badly cut
client p to its facility in L. This can be done in linear time.

A first attempt at a dynamic program. We now turn to the description of the
dynamic program (DP) for obtaining the best portal-respecting solution of ID. This
is the standard dynamic program for Facility Location and we only describe it for the
sake of completeness. The reader familiar with this can therefore skip to the analysis.

There is a table entry for each part of the decomposition, and two vectors of length |PB|,
where PB is the set of portals in the part B. We call such a triplet a configuration.
Each configuration given by a part B and vectors 〈`1, . . . , `|PB |〉 and 〈s1, . . . , s|PB |〉
(called the portal parameters), encodes a possible interface between part B and a
solution for which the ith portal has distance `i to the closest facility inside of B,
and distance si to its closest facility outside of B. The value stored for such a con-
figuration in a table entry is the minimal cost for a solution with facilities respecting
the constraints induced by the vectors on the distances between the solution and the

52

3.3. Near-Linear Time Approximation Scheme for Facility Location

portals inside the part (as described below).

To fill the table, we use a dynamic program following the lines of Arora et al. [9] or
Kolliopoulos and Rao [112]. If a part has no descendant (meaning the part contains a
single point), computing the solution given the configuration is straightforward: either
a center is opened on this point or not, and it is easy for both cases to check whether
they are consistent with the configuration, where only the distances to portals inside
the part need to be verified. At a higher level of the decomposition, a solution is
simply obtained by going over all the sets of parameter values for all the children
parts. It is immediate to see whether sets of parameter values for the children can
lead to a consistent solution:

� for each portal pi of the parent part, there must be one portal pj of a child
part such that the distance from pi to a center inside the parent part prescribed
by the configuration (given by the value `i for the parent part) corresponds to
dist(pi, pj) plus the distance from pj to a center inside the child part (given by
the value `j for the child part);

� for each portal pj of a child part there must exist either:

– a portal pi of the parent part such that the distance from pj to a center
outside its part prescribed by the configuration (given by the value sj of
the child part) is dist(pi, pj) plus the distance from pi to a center outside
of the part (given by the value si of the parent part), or

– a portal pi of another child part such that this distance given by the value
sj of the first child part is dist(pi, pj) plus the distance from pi to a center
inside the child part (given by the value `i of this child part).

The runtime of this algorithm depends on the number of possible distances determining
the number of possible portal parameters. Even if the aspect ratio is polynomial, there
can be a large number of possible distances, so that the number of configurations
might be exponential. Using the budget given by Lemma 3.15, one can approximate
the distances and obtain an efficient algorithm, as we show next.

A faster dynamic program. We now describe a faster dynamic program. Given
a facility location solution S and a part B, we define the internal cost of S as the
opening cost of the facilities in S ∩B plus the service cost of the clients in B.

Consider a level where the diameter of the parts is say D. A table entry of the dynamic
program is

T [B, `1, . . . , `|PB |, s1, . . . , s|PB |, f],

where

� B is a part;

� each of `i and si is a multiple of ε22−4−τ(ε,d,z)D in the range [0, D/ε+D], whose
intended meaning is to represent the portal parameters for B;

53

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

� f is a boolean value that is 1 if and only if the closest facility to any of the
portals of B is at distance larger than D/ε (in particular, there is no facility
within the part and the portal parameters are irrelevant).

The intended value of the table entry is

� if f = 1: the number of clients inside B, and

� if f = 0: the cost of a solution that abides by the portal parameters and that
has minimum internal cost.

A few remarks are in order. Since the diameter of the part is D we can afford a detour
of εD, and so we only need to store the approximate portal parameters.

In the case where f = 1, the diameter of the part B is D and every facility is at
distance at least OPT ≥ D/ε from any portal B, while any point of B is at distance
at most εD from a portal. Hence up to losing an additive D + εD ≤ O(εOPT) in
the cost of the computed solution, we may assume that all the points of the part
are assigned to the same facility. So the algorithm is not required to store the precise
distance to the closest facility outside the part, and it uses the flag f to reflect that it is
in this scenario. The algorithm then treats this whole part as a single client (weighted
by the number of clients inside the part and located at an arbitrary location inside
the part) to be considered at higher levels.

If on the other hand the closest facility to any portal of B is at distance less than
D/ε, we have that for any portal of the part the closest facility is at distance at most
D/ε+D (since D is the diameter of the part).

We now describe the recurrence relationship to populate the table entries. In the base
case, a part B contains at most one point and so at most |PB| + 1 distinct facilities
– one at each portal, and one on the point inside the region. It can thus be solved
by going over all 2|PB |+1 possibilities.1 Otherwise, a given table entry for a part B is
computed by considering the pre-computed solutions for the 2O(d) child parts of B.

If f = 1, then the value of the entry is simply the number of clients within B and should
be computed by summing up the entries of the child parts of B. In the remaining case
when f = 0, a set of table entries is said to be compatible with a table entry for B if
the set contains exactly one entry for any of the child parts of B and:

� for each portal pi of the parent part, there must be one portal pj of a child
part such that the distance from pi to a center inside the parent part prescribed
by the configuration (given by the value `i for the parent part) corresponds to
dist(pi, pj) plus the distance from pj to a center inside the child part (given by
the value `j for the child part);

� for each child part that has f = 0, and for each portal pj of that child part,
there must exist either:

1In the Euclidean case, one can discretize the region simply by taking an ε22−4−τ(ε,d,z)D-net,
which has size ε−22O(τ(ε,d,z)).

54

3.3. Near-Linear Time Approximation Scheme for Facility Location

– a portal pi of the parent part such that the distance from pj to a center
outside its part prescribed by the configuration (given by the value sj of
the child part) is dist(pi, pj) plus the distance from pi to a center outside
of the part (given by the value si of the parent part), or

– a portal pi of another child part such that this distance given by the value
sj of the first child part is dist(pi, pj) plus the distance from pi to a center
inside the child part (given by the value `i of this child part).

� for each child part that has f = 1 and diameter D, and for each portal pj of
that child part, there is no portal pi either of the parent part or another child
part such that: dist(pj , pi) plus the distance from pi to a center (given by values
`i or si) is less than D/ε.

Given such a set of table entries, its value is computed by summing up the values of
the entries where f = 0, and assigning the points of parts B′ that have f = 1 to their
closest facility outside B′ (since there is no facility within B′) according to the portal
parameters of the other parts. The value of the entry for B is the minimum value
over all compatible sets of table entries for child parts.

Analysis – Proof of Theorem 3.3. The following lemmas show that the solution
computed by this algorithm is a near-optimal one, and that the complexity is near-
linear: this proves Theorem 3.3. We first bound the connection cost in ID.

I Lemma 3.16. Let S be as in Lemma 3.15. The algorithm computes a
solution S∗ with cost at most costID(S∗) ≤ (1 +O(ε))costID(S) + b(S). J

Proof. We show that the solution S can be adapted to a configuration of the DP with
extra cost b(S). For this, let p be a client served by a facility S(p), and let w1, . . . , wk
be the portal-respecting path from p to S(p) with w1 = c and wk = S(p). The cost
contribution of p to S is therefore

∑k−1
i=1 cost(wi, wi+1). For each wi, let also li be the

level at which wi is a portal.

The distance between p and S(p) is approximated at several places of the DP. Consider
any node wi on the path from p to S(p):

� When dist(wi,S(p)) ≤ 2li/ε+ 2li , the distance between wi and S(p) is rounded
to the closest multiple of ε22−4−τ(ε,d,z)2li . Since the diameters of the parts are
geometrically increasing, the sum of all those errors is at most ε22−4−τ(ε,d,z)2lc ,
where lc is the level at which p and S(p) are cut.

� When dist(wi,S(p)) ≥ 2li/ε+ 2li , the whole part is contracted and served by a
single facility at distance at least 2li/ε. The difference for client p is therefore 2li .
This difference is only paid once, at the the highest level lj where dist(wj ,S(p)) ≥
2lj/ε + 2lj . This inequality implies that 2lj ≤ εcost(wj ,S(p)), which is smaller
than ε

∑
dist(wi, wi+1).

55

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Hence, the total rounding error induced by the evaluation of dist(c,S(p)) is
ε22−2−τ(ε,d,z)2lc + ε

∑
dist(wi, wi+1). Using Lemma 1.2, this implies a cost error of

(1 + z/ε)z−12z ·
(
ε2z2−4z−τ(ε,d,z)·z2z·lc + 2z·lj

)
.

The first term, summed over all clients p is precisely equal to the budget b(S). The
second one verifies, (1+z/ε)z−12z ·2z·lj ≤ (1+z/ε)z−12z ·εz (

∑
dist(wi, wi+1))z, which

is at most ε times the cost of p in the portal-respecting solution S.

Hence, summing over all clients, the additional cost incurred by the DP is at most
b(S) + 2zεzcostID(S). Since the DP computes a solution with minimal cost, it holds
that costID(S∗) ≤ (1 + 4ε)costID(S) + b(S).

Combining all previous result, we can now finally bound the connection cost in I of
the solution S∗ computed by the algorithm.

I Corollary 3.17. Let S∗ be the solution computed by the algorithm. With
probability 1−ε, it holds that costI(S

∗) = (1+O(ε))costI(OPT)+O(ε)costI(L).
J

Proof. Lemma 3.15 ensures that, with probability 1− ε, the cost of S in ID and b(S)
is at most (1 +O(ε))costI(OPT) +O(εcostI(L)). Using that ID has small distortion,
and combining this with Lemma 3.16 concludes the proof:

costI(S∗) ≤ (1 + 2ε)costID(S∗) + εcostI(L)

≤ (1 +O(ε))(costID(S) + b(S)) + εcostI(L)

≤ (1 +O(ε))costI(OPT) +O(ε)costI(L)

If ID has small distortion, the facility cost increase due to badly cut clients is bounded
by
∑

f∈BD wf ≤ ε
∑

f∈Lwf , since we have OPT′ = OPT ∪BD. This observation and
the previous corollary conclude the bound on the total cost of S∗, as required.

According to Appendix 3.7.3, we can compute a solution L with cost O(2d)costI(OPT)
in O(n log n) time. Due to the above corollary, we obtain a solution with cost (1 +
O(ε2d))costI(OPT), with probability 1− ε. The probability can be boosted to 1− εδ
by repeating the process δ times. In order to obtain a (1 + O(ε))-approximation, we
can bootstrap as in Bateni et al. [23], i.e., we repeat the process starting from the
computed solution instead of L. Repeating this N times yields a solution of cost
(1 +

∑N−1
i=1 O(εi) + O(εN2d))costI(OPT), with probability 1 − Nεδ. Taking N = d

and δ = log(d/ε)/ log(1/ε) ensures that, with probability at least 1 − ε, the solution
has cost (1 +O(ε))costI(OPT).

I Lemma 3.18. This algorithm runs in 2(1/ε)O(d2)
n+ 2O(d)n log n time. J

56

3.4. The (k, z)-Clustering Problem

Proof. The preprocessing step (computing L, the hierarchical decomposition D, and
the instance ID) has a running time O(n log n), as all the steps can be done with this
complexity: computing L takes time O(n log n) as described in Appendix 3.7.3, and
as explained earlier, the hierarchical decomposition D and the instance ID can also
be computed with this complexity. The decomposition can moreover be transformed
in order to remove part that do not contain any point, as well as degree 2 nodes. This
ensures to have O(n) part in total, since there are n leaves and a degree at least 3.

The DP has a linear time complexity: in a part of diameter D, the portal set is

an (ε2

128z2−τ(ε,d,z)D)-net, and hence has size 2O(d log(2τ(ε,d,z)/ε)) by Lemma 3.9. Since

τ(ε, d, z) = 2d+ 2 + log (z+ε)z

ε2zz
, this number can be simplified to 2O(d2+d log(1/ε)). Since

each portal stores a distance that can take only ε−222+τ(ε,d,z) values, there are at most

T = (ε−22τ(ε,d,z))2O(d2+d log(1/ε))
= 22O(d2+d log(1/ε))

possible table entries for a given part.

To fill the table, notice that a part has at most 2O(d) children, due to the properties of
the hierarchical decomposition. For any given part, going over all the sets of parame-

ter values for all the children parts therefore takes time T 2O(d)
= 22O(d2+d log(1/ε))

. This
dominates the complexity of computing all table entry for one part of the decomposi-
tion.

Since the hierarchical decomposition is a tree with n leaves (one per input point)
and without degree-one internal nodes (those can be compressed), there are at most
n parts in the decomposition: the complexity of the dynamic program is therefore

n · 22O(d2+d log(1/ε))
.

The bootstrapping increases that complexity by a factor log d, absorbed in the big-O
notation. The total complexity of the algorithm is thus

n · 22O(d2+d log(1/ε))
+ 2O(d)n log n

3.4 The (k, z)-Clustering Problem

We aim at using the same approach as for Facility Location, but in the case where
the number of opened facility is fixed to k. Again, we will work with the more general
version of (k, z)-Clustering as defined in Section 3.2.4, where the instance consists
of a set of clients P , a set of candidate centers F , an integer k, and a function
χ : P 7→ {1, . . . , n} and the goal is to minimize

∑
p∈P χ(p) · minf∈S dist(p, f)z. We

will consider in the proof that P is actually a multiset, instead of carrying along the
multiplicity χ.

The road-map is as for Facility Location: we show in Lemma 3.20 that an instance
ID has a small distortion with good probability, and then in Lemma 3.23 that if
an instance has small distortion then there exists a near-optimal portal-respecting
solution. We finally present a dynamic program that computes such a solution.

57

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Figure 3.2: Illustration of Step 1. There is a ray between each facility f of OPT and
L(f). Facilities in H are circled in grey; the removed facilities are crossed out in red.

A key ingredient of the proof for Facility Location was our ability to add all badly-cut
facilities to the solution OPT′. This is not directly possible in the case of k-Median
and k-Means, as the number of facilities is fixed. Hence, the first step of our proof is
to show that one can make some room in OPT, by removing a few centers without
increasing the cost by too much.

3.4.1 Towards a Structured Near-Optimal Solution

Let OPT be an optimal solution to I and L an approximate solution. We consider
the mapping of the facilities of OPT to L defined as follows: for any f ∈ OPT, let
L(f) denote the facility of L that is the closest to f . Recall that for a client p, L(p)
is the facility serving p in L.

For any facility ` of L, define ψ(`) to be the set of facilities of OPT that are mapped
to `, namely, ψ(`) = {f ∈ OPT | L(f) = `}. Define L1 to be the set of facilities ` of
L for which there exists a unique f ∈ OPT such that L(f) = `, namely L1 = {` ∈ L |
|ψ(`)| = 1}. Let L0 = {` ∈ L | |ψ(`)| = 0}, and L≥2 = L \ (L1 ∪L0). Similarly, define
OPT1 = {f ∈ OPT | L(f) ∈ L1} and OPT≥2 = {f ∈ OPT | L(f) ∈ L≥2}. Note that
|OPT≥2| = |L0|+ |L≥2|, since |OPT1| = |L1| and, w.l.o.g., |OPT| = |L| = k.

The construction of a structured near-optimal solution is made in 3 steps. The first
one defines a solution OPT′ as follows. Start with OPT′ = OPT.

� Step 1. For each facility ` ∈ L≥2, fix one in OPT≥2 that is closest to `, breaking
ties arbitrarily, and call it f`. Let H ⊆ OPT≥2 be the set of facilities of OPT≥2

that are not the closest to their corresponding facility in L≥2, i.e., f ∈ H if
and only if f ∈ ψ(`) and f 6= f` for some ` ∈ L≥2. Among the facilities of H,
remove from OPT′ the subset of size bε · |OPT≥2|/2c that yields the smallest
cost increase. Note that this subset is well-defined if ε ≤ 1.

This step, illustrated in Figure 3.2, makes room to add the badly cut facilities without
violating the constraint on the maximum number of centers, while at the same time
ensures near-optimal cost, as the following lemma shows.

58

3.4. The (k, z)-Clustering Problem

I Lemma 3.19. After Step 1, OPT′ has cost (1 + O(ε))cost(OPT) +
O(ε)cost(L) J

Proof. We claim that for a client p served by f ∈ H in the optimum solution OPT,
i.e., f = OPT(p), the detour entailed by the deletion of f is O(OPTp +Lp)). Indeed,
let f ′ be the facility of OPT that is closest to L(f), and recall that L(p) is the facility
that serves p in the solution L. Since f ′ /∈ H, the cost to serve p after the removal of f
is at most dist(p, f ′), which can be bounded by dist(p, f ′) ≤ dist(p, f)+dist(f,L(f))+
dist(L(f), f ′). But by definition of f ′, dist(f ′,L(f)) ≤ dist(L(f), f), and by definition
of the function L we have dist(L(f), f) ≤ dist(L(p), f), so that dist(p, f ′) ≤ dist(p, f)+
2dist(f,L(p)). Using the triangle inequality finally gives dist(p, f ′) ≤ 3dist(p, f) +
2dist(p,L(p)) which is O(dist(p,OPT)+dist(p,L)). For a facility f of OPT, we denote
by P (f) the set of clients served by f , i.e. P (f) = {p ∈ P | OPT(p) = f}. The total
cost incurred by the removal of f is then

∑
p∈P (f)O(2z(cost(p,OPT) + cost(p,L)),

and the cost of removing all of H is O(cost(OPT) + cost(L)).

Recall that in Step 1 we remove the set Ĥ of size bε|OPT≥2|/2c from H, such that Ĥ
minimizes the cost increase. We use an averaging argument to bound the cost increase:
the sum among all facilities f ∈ H of the cost of removing the facility f is less than
O(cost(OPT) + cost(L)), and |H| = O(1/ε) · bε|OPT≥2|c. Therefore removing Ĥ
increases the cost by at most O(ε)(cost(OPT) + cost(L)), so that Step 1 is not too
expensive.

We can therefore use this solution OPT′ as a proxy for the optimal solution, and
henceforth we will denote this solution by OPT. In particular, the badly cut facilities
are defined for this solution and not the original OPT.

3.4.2 An instance with small distortion

As in Section 3.3, the algorithm computes a randomized hierarchical decomposition
D, and transforms the instance of the problem: every badly cut client p is moved to
L(p), namely, there is no more client at p and we add an extra client at L(p). Again,
we let ID denote the resulting instance and note that ID is a random variable that
depends on the randomness of D.

Moreover, similar as for Facility Location, we let BD be the set of centers of L that are
badly cut from OPT, i.e., f ∈ BD if the ball β(f, 3dist(f,OPT)) is cut at some level
greater than log(3dist(f,OPT)) + τ(ε, d, z). We call costI(S) the cost of a solution S
in the original instance I, and costID(S) its cost in ID. We let

νID = max
solution S

{
costI(S)− (1 + 2ε)costID(S), (1− 2ε)costID(S)− costI(S)

}
.

We say that an instance ID has small distortion if νID ≤ εcostI(L), and there exists a
solution S that contains BD with costID(S) ≤ (1 +O(ε))costI(OPT) +O(ε)costI(L).
That is, the condition is the same as for Facility Location, except that we do not need

59

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Figure 3.3: Illustration of Steps 2 and 3. Badly-cut facilities are represented by
squares. Orange short-dashed arrows represent facilities that are exchanged at Step
2. Red long-dashed arrows represent facilities added to S∗ in Step 3.

a bound on the opening costs. In contrast to the Facility Location problem, here we
need to be more careful when identifying the solution fulfilling the latter inequality.

For this, we go on with the next two steps of our construction, defining a solution S∗.
Recall that we defined f` ∈ OPT≥2 to be the closest facility to ` ∈ L≥2, breaking ties
arbitrarily. For any ` ∈ L1, we also denote by f` ∈ OPT1 the unique facility closest
to `. We start with S∗ = OPT obtained from Step 1. Note that for every ` ∈ L1∪L≥2

the closest facility f` ∈ OPT is still present after Step 1, since only some of the other
facilities in H were removed.

� Step 2. For each badly-cut facility ` ∈ BD \ L0 (i.e., ψ(`) 6= ∅), replace f` by `
in S∗.

� Step 3. Add all badly cut facilities of L0 to S∗.

We show next that S∗ satisfies the conditions for ID to have small distortion with
good probability.

I Lemma 3.20. The probability that ID has small distortion is at least 1− ε,
if ε ≤ 1/4. J

Proof. The proof that νID ≤ εcostI(L) with probability at least 1 − ε/2 is identical
to the one in Lemma 3.13. We thus turn to bound the probability that solution S∗
satisfies the cardinality and cost requirements. Our goal is to show that this happens
with probability at least 1 − ε/2. Then, taking a union bound over the probabilities
of failure yields the proposition.

By Steps 2 and 3, we have that S∗ contains BD. We split the proof of the remaining
properties into the following claims.

I Claim 3.21. With probability at least 1−ε/4, the set S∗ is an admissible solution,
i.e., |S∗| ≤ k. J

Proof. We let b be the number of facilities of L0 that are badly cut. By Lemma 3.12,
we have that E [b] ≤ κ(ε, z)|L0| ≤ ε2|L0|/4. By Markov’s inequality, the probability

60

3.4. The (k, z)-Clustering Problem

that b > bε|L0|/2c is at most ε/2. Now, condition on the event that b ≤ bε|L0|/2c.
Since |L0| + |L≥2| = |OPT2|, we have that b ≤ bε|OPT≥2|/2c. Moreover, the three
steps converting OPT into S∗ ensure that |S∗| ≤ k + b − bε|OPT≥2|/2c, as Step 1
removes bε|OPT≥2|/2c facilities, while Step 2 only swaps facilities so their number
does not change, and Step 3 adds b facilities. Combining the two inequalities gives
|S∗| ≤ k.

I Claim 3.22. If ε < 1/4, then with probability at least 1 − ε/4, costID(S∗) ≤
(1 +O(ε))costI(OPT) +O(ε · costI(L)) J

Proof. We showed in Lemma 3.19 that the cost increase in I due to Step 1 is at most
O(ε)(costI(OPT) + costI(L)). We will prove below that this implies that also Step 2
leads to a cost increase of O(ε)(costI(OPT) + costI(L)) in I with good probability.
Step 3 can only decrease the cost. Hence we have costI(S∗) ≤ (1+O(ε))costI(OPT)+
O(ε · costI(L)). To bound the cost of S∗ in ID, we use that (1 − 2ε)costID(S∗) −
costI(S∗) ≤ νID ≤ εcostI(L). The cost incurred by connecting clients to facilities in
S∗ is

costID(S∗) ≤ (1 +
2ε

1− 2ε
)(costI(S∗) + ε · costI(L)) (as νID ≤ εcostI(L))

≤ (1 + 4ε)(costI(S∗) + ε · costI(L)) (as ε ≤ 1/4)

≤ (1 +O(ε))costI(OPT) +O(ε · costI(L)) (by above bound on costI(S∗)).

To bound the cost increase of Step 2, we first show that starting with OPT and replac-
ing every f` ∈ OPT by ` ∈ L1 ∪ L≥2 results in a solution S ′ of cost O(costI(OPT) +
costI(L)). For that, let p be a client that in OPT is served by a facility f` that is
closest to some ` ∈ L1∪L≥2. Recall that every facility of OPT that is closest to some
facility of L1 ∪ L≥2 is in OPT, as only some of those from H are removed in Step 1.
Hence if p is served by some `′ ∈ L1 ∪ L≥2 in the solution L, then this facility `′ is
in S ′ since it will replace the closest facility f`′ . Thus the cost of serving p in S ′ is
dist(p, `′) = dist(p,L). On the other hand, if p is served by a facility `0 of L0 in L,
then it is possible to serve it by the facility ` that replaces f`. The serving cost then is
cost(p, `) ≤ (dist(p, f`) + dist(f`, `))

z ≤ (dist(p, f`) + dist(f`, `0))z, using that f` is the
closest facility to ` in the last inequality. Using again the triangle inequality, this cost
is at most O(cost(p, f`) + cost(p, `0)). Moreover, any client served by a facility of H in
OPT, i.e., which is not the closest to a facility of L, can in S ′ be served by the same
facility as in OPT, with cost cost(p,OPT). Hence the cost of the obtained solution is
at most O(costI(OPT) + costI(L)) = O(costI(OPT) + costI(L)) by Lemma 3.19 and
assuming, say, ε ≤ 1.

The probability of replacing f` by ` ∈ L1 ∪ L≥2 in Step 2 is the probability that `
is badly cut. This is κ(ε, z) by Lemma 3.12. Finally, with linearity of expectation,
the expected cost to add the badly cut facilities ` ∈ L1 ∪ L≥2 instead of their closest
facility f` of OPT in Step 2 is O(κ(ε, z)(costI(OPT)+costI(L))). Markov’s inequality
thus implies that the cost of this step is at most O(ε)(costI(OPT) + costI(L)) with

probability 1− O(κ(ε,z))
ε ≥ 1− ε/4, since κ(ε, z) ≤ ε2/2.

Lemma 3.20 follows from taking a union bound over the probabilities of failure of

61

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Claim 3.21 and 3.22.

3.4.3 Portal respecting solution

We have to prove the same structural lemma as for Facility Location, to say that there
exists a portal-respecting solution in ID with cost close to cost(S∗) where S∗ is the
solution obtained from the three steps above. Recall that for any solution S and client
p, Sp is the distances from the original position of p to S in I, but p may have been
moved to L(p) in ID. Recall also that OPT is defined after removing some centers in
Step 1.

I Lemma 3.23. Let I be an instance of k-Median with a randomized decom-
position D (for any parameter ρ > 0), and L be a solution for I, such that ID
has small distortion. Let S∗ be the solution obtained by applying Steps 1, 2
and 3. Then, for any client p in ID, p and S∗(p) are cut at level at most
log(4dist(p,OPT) + 3dist(p,L)/ε) + τ(ε, d, z) in D, whenever ε ≤ 1/5, where
S∗(p) is the closest facility to p in S∗. J

Proof. The proof of this lemma is very similar to the one of Lemma 3.14. However,
since some facilities of OPT were removed in Step 2 to obtain S∗, we need to adapt the
proof carefully. In particular, we will use the following inequality. Let p be a client.
If OPT(p) was moved in Step 2, it was replaced by facility ` for which OPT(p) = f`
and dist(OPT(p), `) ≤ dist(OPT(p),L(p)), since f` is the closest facility to `. Using
the triangle inequality we obtain dist(OPT(p),L(p)) ≤ dist(p,OPT(p))+dist(p,L(p)).
On the other hand, as ` ∈ S∗ we get dist(p,S∗(p)) ≤ dist(p, `) ≤ dist(p,OPT(p)) +
dist(OPT(p), `), again applying the triangle inequality. Putting these inequalities
together we obtain

dist(p,S∗(p)) ≤ 2dist(p,OPT(p)) + dist(p,L(p)). (3.2)

Furthermore, if OPT(p) is not moved in Step 2 we have OPT(p) ∈ S∗, and so Inequal-
ity (3.2) holds trivially as dist(p,S∗(p)) ≤ dist(p,OPT(p)).

To find the level at which p and S∗(p) are cut, we distinguish between two cases:
either p in I is badly cut w.r.t. D, or not. If p is badly cut, then it is now located at
L(p) in the instance ID. In that case, either:

1. L(p) is also badly cut, i.e., L(p) ∈ BD ⊆ S∗, and so S∗(p) = L(p). It follows
that p and S∗(p) are collocated, thus they are never cut.

2. L(p) is not badly cut. Then, since p is now located at L(p), dist(p,S∗(p)) =
dist(L(p),S∗(L(p)). OPT(L(p)) is not necessarily in S∗: in that case, it was re-
placed by a facility f that is closer to OPT(L(p)) than L(p), and so dist(L(p), f) ≤
2dist(L(p),OPT(L(p)). Hence, either if OPT(L(p)) is in S∗ or not, it holds that
dist(L(p),S∗) ≤ 2dist(L(p),OPT).

62

3.4. The (k, z)-Clustering Problem

Since L(p) is not badly cut, the ball β(L(p), 3dist(L(p),OPT)) is cut at level at
most log(3dist(L(p),OPT))+τ(ε, d, z). By triangle inequality, dist(L(p),OPT) =
dist(L(p),OPT(L(p))) ≤ dist(p,L)+dist(p,OPT), and thus p and S∗(p) are also
separated at level at most log

(
3dist(p,L) + 3dist(p,OPT)

)
+ τ(ε, d, z).

In the other case where p is not badly cut, the ball β(p, 3dist(p,L)/ε) is cut at level at
most log(3dist(p,L)/ε) + τ(ε, d, z). We make a case distinction according to dist(p,L)
and dist(p,OPT).

1. If dist(p,L) ≤ εdist(p,OPT), then we have the following. If L(p) is badly cut,
L(p) ∈ BD ⊆ S∗ and therefore S∗p ≤ dist(p,L). Moreover, since p is not badly
cut the ball β(p,dist(p,L)) is cut at level at most log(3dist(p,L)/ε) + τ(ε, d, z).
Therefore p and S∗(p) are cut at a level below log(4dist(p,OPT)+3dist(p,L)/ε)+
τ(ε, d, z).

In the case where L(p) is not badly cut, both p and S∗(p) lie in the ball centered
at L(p) and of diameter 3dist(L(p),OPT), which can be seen as follows. We use
dist(p,L) ≤ εdist(p,OPT) to derive

dist(p,L(p)) ≤ εdist(p,OPT(p)) ≤ εdist(p,OPT(L(p)))

≤ εdist(p,L(p)) + εdist
(
L(p),OPT(L(p))

)
And therefore, since ε ≤ 1/4, dist(p,L(p)) ≤ ε

1−εdist(L(p),OPT) ≤
dist(L(p),OPT)/3. Using these inequalities we also get

dist(S∗(p),L(p)) ≤ dist(S∗(p), p) + dist(p,L(p))

≤ 2dist(p,OPT(p)) + 2dist(p,L(p)) (using Inequality (3.2))

≤ 2dist(p,OPT(L(p))) + 2dist(p,L(p))

≤ 4dist(p,L(p)) + 2dist(L(p),OPT(L(p)))

≤
(

2 +
4ε

1− ε

)
dist(L(p),OPT),

which is smaller than 3dist(L(p),OPT) for any ε ≤ 1/5. Hence we have p,S∗(p) ∈
β(L(p), 3dist(L(p),OPT)). Since L(p) is not badly cut, p and S∗(p) are cut at
level at most log(3dist(L(p),OPT)) + τ(ε, d, z). Since dist(L(p),OPT(L(p))) ≤
dist(L(p),OPT(p)) ≤ dist(L(p), p) + dist(p,OPT(p)) ≤ (1 + ε)dist(p,OPT), we
have that log(3dist(L(p),OPT)) + τ(ε, d, z) ≤ log(4dist(L(p),OPT)) + τ(ε, d, z).

2. If dist(p,OPT) ≤ dist(p,L)/ε, then 2dist(p,OPT) + dist(p,L) ≤ 3dist(p,L)/ε
and since p is not badly cut, the ball β(p, 2dist(p,OPT) + dist(p,L)) is cut at
level at most log(3dist(p,L)/ε) + τ(ε, d, z). Moreover, S∗(p) lies in this ball by
Inequality (3.2).

In all cases, p and S∗(p) are separated at level at most log(3dist(p,L)/ε+4OPT(p))+
τ(ε, d, z), which concludes the lemma.

63

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Equipped with these two lemmas, we can prove the following lemma, which concludes
the section. Note again, that the bounds are for OPT defined after removing some
centers in Step 1.

I Lemma 3.24. Condition on ID having small distortion, with ρ =
ε2

128z2−τ(ε,d,z). There exists a portal-respecting solution S in ID such that
costID(S) + b(S) ≤ (1 +O(ε))costI(OPT) +O(εcostI(L)). J

Proof. The proof follows exactly the one of Lemma 3.15, making S∗ portal-respecting,
and using Lemma 3.20 and Lemma 3.23 to prove that the resulting solution S in ID
has costID(S) + b(S) ≤ (1 +O(ε))costI(OPT) +O(εcostI(L)).

3.4.4 The Algorithm

The algorithm follows the lines of the one for Facility Location, in Section 3.3.3. It
first computes a constant-factor approximation L, then the hierarchical decomposition
D (with parameter ρ = ε2

128p2−τ(ε,d,z), as in Section 3.3) and constructs instance ID.
A dynamic program is then used to solve efficiently the problem, providing a solution
S of cost at most (1 + ε)costI(OPT) – conditioned on the event that the instance ID
has small distortion.

Dynamic programming. The algorithm proceeds bottom up along the levels of
the decomposition. We give an overview of the dynamic program which is a slightly
refined version of the one presented for Facility Location in Section 3.3.3. We make
use of two additional ideas.

To avoid the dependency on k we proceed as follows. In the standard approach, a
cell of the dynamic program is defined by a part of the decomposition D, the portal
parameters (as defined in Section 3.3.3), and a value k0 ∈ [k]. The value of an entry
in the table is then the cost of the best solution that uses k0 centers, given the portal
parameters.

For our dynamic program for the k-Median and k-Means problems, we define a cell of
the dynamic program by a part B, the portal parameters 〈`1, . . . , `np〉 and 〈s1, . . . , snp〉
and a value c0 in [cost(L)/n; (1 + ε)cost(L)]. The entry of the cell is equal to the
minimum number k0 of centers that need to be placed in part B in order to achieve
cost at most c0, given the portal parameters. Moreover, we only consider values for c0

that are powers of (1 + ε/ log n). The output of the algorithm is the minimum value
c0 such that the root cell has value at most k (i.e., the minimum value such that at
most k centers are needed to achieve it).

The DP table can be computed the following way. For the parts that have no descen-
dant, namely the base cases, computing the best clustering given a set of parameters
can be done easily: there is at most one client in the part, and verifying that the
parameter values for the centers inside the part are consistent can be done easily. At

64

3.4. The (k, z)-Clustering Problem

a higher level of the decomposition, a solution is obtained by going over all the sets
of parameter values for all the children parts. It is immediate to see whether sets of
parameter values for the children can lead to a consistent solution (similar to [112,

9]). Since there are at most 2O(d) children parts, this gives a running time of q2O(d)
,

where q is the total number of parameter values.

This strategy would lead to a running time of f(ε, d)n log2O(d)
n. We can however

treat the children in order, instead of naively testing all parameter values for them.
We use a classical transformation of the dynamic program, in which the first table is
filled using an auxiliary dynamic program. A cell of this auxiliary DP is a value c0 in
[cost(L)/n; (1 + ε)cost(L)], a part C, one of its children Ci, and the portal parameters
for the portals of C and all its children before Ci in the given order. The entry of
the cell is equal to the minimum number of centers k0 that need to be placed in the
children parts following Ci to achieve a cost of c0 given the portal parameters. To
fill this table, one can try all possible sets of parameters for the following children,
see whether they can lead to a consistent solution, and compute the minimum value
among them.

Analysis – proof of Theorem 3.1 and Theorem 3.2. We first show that the
solution computed by the algorithm gives a (1+O(ε))-approximation, and then prove
the claim on the complexity.

I Lemma 3.25. Let S∗ be the solution computed by the algorithm. With
probability 1 − 2ε, it holds that costI(S∗) = (1 + O(ε))costI(OPT) +
O(εcostI(L)) J

Proof. With probability 1 − 2ε, ID has small distortion (Lemma 3.20). Following
Lemma 3.24, let S be a portal-respecting solution such that costI(S) + b(S) ≤ (1 +
O(ε))costI(OPT) +O(εcostI(L)).

As in Lemma 3.16, S can be adapted to a configuration of the DP with a small extra
cost. The cost incurred to the rounding of distances can be charged either to b(S) or is
a O(ε)costID(S), as in Lemma 3.16. The cost to round the value c0 is a (1 + ε/ log n)
factor at every level of the decomposition. Since there are O(log n) of them, the total
factor is (1 + ε/ log n)O(logn) = 1 +O(ε). Hence, we have the following:

costI(S∗) = (1 +O(ε))costID(S∗) (as ID has small distortion)

= (1 +O(ε))(costID(S) + b(S)) (by previous paragraph)

≤ (1 +O(ε))costI(OPT) +O(εcostI(L)) (by definition of S)

I Lemma 3.26. The running time of the DP is 2(1/ε)O(d2) · n log4 n. J

65

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Proof. The number of cells in the auxiliary DP is given by the number of parts
(O(n)) , the number of children of a part (2O(d)), the number of portal parame-

ters ((1/ε)2O(d2)/ε) and the possible values for c0 (O(log2 n)): it is therefore n · 2O(d) ·
(1/ε)2O(d2)/ε · log2 n.

The complexity to fill the table adds a factor (1/ε)2O(d2)/ε · log2 n, to try all possible
combination of portal parameters and value of c0 . Hence, the overall running time of

the DP is n · (1/ε)2O(d2)/ε · log4 n = 2(1/ε)O(d2) · n log4 n.

The proof of Theorem 3.1 and Theorem 3.2 are completed by the following lemma,
which bounds the running time of the preprocessing steps.

I Lemma 3.27. For k-Median and (k, z)-clustering, the total running

time of the algorithms are respectively 2O(d)n log9 n + 2(1/ε)O(d2)
n log4 n and

2O(d)n log9 n+ 2(1/ε)O(d2)
n log5 n J

Proof. We need to bound the running time of three steps: computing an approxima-
tion, computing the hierarchical decomposition, and running the dynamic program.

For k-Median, a constant-factor approximation can be computed in O(m log9 n) =
2O(d)n log9 n time with Thorup’s algorithm [156]. The split-tree decomposition can
be found in 2O(d)n log n time as explained in Section 3.2. Moreover, as explained in

Lemma 3.26, the dynamic program runs in time 2(1/ε)O(d2)
n log4 n, ending the proof

of the Theorem 3.1.

Another step is required for higher powers. It is indeed not known how to find a
constant-factor approximation in near-linear time. However, one can notice that a
c-approximation for k-Median is an ncz-approximation for (k, z)-Clustering, using
Holder’s inequality. Moreover, notice that starting from a solution S, our algorithm
finds with probability 1 − ε a solution with cost (1 + O(ε))cost(OPT) + O(ε)cost(S)

in time 2(1/ε)O(d2)
n log4 n, as for k-Median. By repeating log log n times, the success

probability is boosted to 1− ε/ log n.

Repeating this algorithm N times, using in step i + 1 the solution given at step i,
gives thus a solution of cost (1 + O(ε))cost(OPT) + O(εN)cost(S), with probability
1 − Nε/ log n. Starting with cost(S) = O(n)cost(OPT) and taking N = O(log n)
ensures to find a solution for (k, z)-Clustering with cost (1 + O(ε))cost(OPT) with
probability 1 − ε. The complexity for (k, z)-Clustering is therefore the same as for
k-Median, with an additional log n · log log n factor for the dynamic program term.
This concludes the proof of Theorem 3.2.

66

3.5. Other Applications of the Framework

3.5 Other Applications of the Framework

Our techniques can be generalized to variants of the clustering problems where outliers
are taken into account. We consider here two of them: k-Median with Outliers and
its Lagrangian relaxation, Prize-Collecting k-Median. It can also be used to find a
bicreteria approximation to k-Center.

3.5.1 Prize-Collecting k-Median

In the “prize-collecting” version of the problems, it is possible not to serve a client p
by paying a penalty πp (these problems are also called clustering “with penalties”).
For a solution S, we call an outlier for S a client that is not served by S. Formally, an
instance is a quintuple (P, F, dist, π, k) where (P ∪ F,dist) is a metric, k is an integer
and π : P → R+ the penalty function, and the goal is to find S = (SF ,SO) with SF ⊆
F and SO ⊆ P such that |SF | = k and cost(S0,SF) =

∑
p∈P\SO dist(p,SF)+

∑
p∈SO πp

is minimized. cost(SF) denotes the cost of solution SF with the best choice of outliers
(which is easy to determine – SO consists of all clients that have πp ≤ cost(p,SF).)

Looking at the Prize-Collecting k-Median problem, we aim at applying the framework
from Section 3.4. Let L = (dist(p,L),LO) be an approximate solution. We define
badly cut for outliers as we did for centers: an outlier p of LO is badly cut w.r.t. D
if the ball β(p, 3dist(p,OPT)) is cut at some level j greater than i+ τ(ε, d, z), where
dist(p,OPT) is the distance from p to the closest facility of the optimum solution
OPT. Hence, Lemma 3.12 extends directly, and the probability that an outlier in LO
is badly cut is κ(ε, z). Note that in the case where p is an outlier both in L and in
OPT, there is no particular need of preserving any distance from p to another point:
in any solution we consider, p will pay the penalty πp rather than connecting to a
center.

We now turn to the previous framework, showing how to construct a near-optimal
solution containing all badly-cut centers of L. For that we transfer the definitions
of the mappings dist(p,L), ψ (dist(p,L) maps a client to its closest center of L, and
ψ(`) = {f ∈ OPT | L(f) = `}) and of the sets L0,L1,L≥2,OPT1, and OPT≥2. We will
show that this framework, with only a few modifications, leads to an approximation
scheme for Prize-Collecting k-Median. Let T = OPT. As in Section 3.4, we start
by removing a few centers from the optimal solution, without increasing the cost too
much:

� Step 1. Among the facilities of OPT≥2 that are not the closest of
their corresponding facility in L≥2, remove from T the subset Ĥ of size
bε · |OPT≥2|/2c that yields the smallest cost increase, i.e. the smallest value of∑

p∈P\LO:OPT(p)∈Ĥ dist(p, T \ Ĥ) +
∑

p∈LO:OPT(p)∈Ĥ πp.

The function minimized by Ĥ corresponds to redirecting all clients served in the

67

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

local solution to a center of T \ Ĥ and paying the penalty for clients p ∈ LO such
that OPT(p) ∈ Ĥ. Those clients are thus considered as outliers in the constructed
solution.

I Lemma 3.28. After step 1, T has cost (1 +O(ε))cost(OPT) +O(ε)cost(L).
J

Proof sketch. The proof is essentially the same as Lemma 3.19, with an averaging
argument: the only difference comes from the cost of removing a center from T . For
any client p, the cost of removing OPT(p) from T is O(cost(p,OPT) + cost(p, L)): if
p /∈ L0, the argument is the same as in Lemma 3.19, and if p ∈ LO the cost is πp,
which is what p pays in L. Hence the proof follows.

Again, we denote now by OPT this solution T and define the instance ID according to
this solution. Recall that BD is the set of badly cut centers of dist(p,L), and denote
OD the set of badly cut outliers of L. We say that an instance ID has small distortion
if νID ≤ εcost(L) and there exists a solution S that contains BD as centers and OD
as outliers with costI(S) ≤ (1 + ε)costI(OPT) + εcostI(L).

To deal with the badly cut centers, there is only one hurdle to be able to apply
the proof of Lemma 3.24. Indeed, when a center of OPT that serves a client p is
deleted during the construction, the cost of reassigning p is bounded in Lemma 3.24
by dist(p,S)z. However this is not possible to do when p is an outlier for S: there is
no control on dist(p,S), and hence one has to pay the penalty πp. It is thus necessary
to find a mechanism that ensures to pay this penalty only with a probability ε for
each client p. Similar to Section 3.4, this is achieved with the following three steps:

� Step 2. For each badly-cut facility f ∈ L for which ψ(f) 6= ∅, let f ′ ∈ ψ(f)
be the closest to f . Replace f ′ by f in T ∗. For all clients p ∈ LO such that
OPT(p) = f ′, add p as outliers.

� Step 3. Add all badly cut facility f ′ of L0 to T ∗

� Step 4. Add all badly cut outliers of L to the outliers of T ∗.

We show next that T ∗ satisfies the conditions for ID to have small distortion with
good probability.

I Lemma 3.29. The probability that ID has small distortion is at least 1 −
ε. J

Proof. When bounding the cost increase due to Step 2, it is necessary to add as
outliers all clients served by f ′ that are outliers in L. Since f ′ is deleted from T ∗ with
probability κ(ε, z), the expected cost due to this is

∑
p∈LO κ(ε, z)·πp ≤ κ(ε, z)costI(L).

Using Markov’s inequality, this is at most (ε/3)costI(L) with probability 1− ε/3.

68

3.5. Other Applications of the Framework

Step 3 does not involve outliers at all. Hence, Claim 3.21 and 3.22 are still valid.
Combined with the previous observation about Step 2, this proves that after Step 3,
T ∗ contains at most k centers — including the ones in BD — and has cost at most
(1 + ε)costI(OPT) + (ε/3)costI(L) with probability at least 1− ε/3.

Step 4 implies that all outliers in OD are also outliers in the constructed solution.
Since an outlier of L is badly cut with probability κ(ε, z), the expected cost increase
due to this step is at most κ(ε, z)costI(L). Using again Markov’s inequality, this cost
is at most (ε/3)costI(L) with probability 1− ε/3.

By union-bound, the solution T ∗ has cost at most (1+ε)costI(OPT)+εcostI(L) with
probability 1− ε. Hence, ID has small distortion with probability 1− ε.

Given an instance with low distortion, it is again possible to prove that there exists a
near optimal portal-respecting solution, and the same DP as for k-Median can find it.

Therefore, using the polynomial time algorithm of Charikar et al. [41] to compute a
constant-factor approximation, the algorithm presented in Section 3.4 can be straight-
forwardly adapted, concluding the proof of Theorem 3.4.

3.5.2 k-Median with Outliers

In the k-Median with Outliers problem, the number of outliers allowed is bounded by
some given integer Z. We do not manage to respect this bound together with having
at most k facilities and a near-optimal solution: we need to relax it a little bit, and
achieve a bicriteria approximation, with k facilities and (1+O(ε))Z outliers. For this,
our framework applies nearly without a change.

The first step in the previous construction does not apply directly: the “cost” of
removing a center is not well defined. In order to fix this part, Step 1 is randomized:
among the facilities of OPT≥2 that are not the closest of their corresponding facility
in L≥2, remove from T ∗ a random subset Ĥ of size bε · |OPT≥2|/2c.

I Lemma 3.30. After the randomized Step 1, T ∗ has expected cost (1 +
O(ε))cost(OPT) +O(ε)cost(L) J

Proof. Since there are at least |OPT≥2|/2 facilities of OPT≥2 that are not the closest
of their corresponding facility in L≥2, the probability to remove one of them is O(ε).
Hence, every outlier of L that is served in OPT must be added as an outlier in T ∗ with
probability O(ε) – when its serving center in OPT is deleted. Hence, the expected
number of outliers added is O(εZ).

Moreover, the proof of Lemma 3.19 shows that the sum of the cost of deleting all pos-
sible facilities is at most O(cost(OPT) + cost(L)) (adding a point as outlier whenever
it is necessary). Removing each one of them with probability O(ε) ensures that the
expected cost of T ∗ after step 1 is (1 +O(ε))cost(OPT) +O(ε)cost(L).

69

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

The three following steps are the same as in the previous section, and the proof
follows: with constant probability, the instance ID has small distortion (defined as for
k-Median with penalties), and one can use a dynamic program to solve the problem
on it. The DP is very similar to the one for k-Median. The only difference is the
addition of a number x to each table entry, which is a power of (1 + ε/ log(n/ε)), and
represents the (rounded) number of outliers allowed in the subproblem. This adds a
factor log2(n/ε)/ε to the complexity.

It is possible to compute a constant factor approximation S in polynomial time (using
Krishnaswamy et al. [113]). Hence, this algorithm is a polynomial time bicriteria
approximation scheme for k-Median with outliers. As in Section 3.4, this directly
extends to k-Means with outliers.

This concludes the proof of Theorem 3.5.

3.5.3 k-Center

In the k-Center problem, the goal is to place k centers such as to minimize the largest
distance from a point to its serving center. We propose a bicriteria approximation,
allowing the algorithm to open (1 +O(ε))k centers.

For this, we change slightly the definition of badly-cut. Given a solution L with cost
γ and a hierarchical decomposition D, a center f of L is badly cut w.r.t D if the ball
β(f, 2i) is cut at some level j greater than i+ τ(ε, d, z), for i such that 2i−1 ≤ 2γ < 2i.

Note that Lemma 3.12 still holds with this definition : a center f is badly cut with
probability at most κ(ε, z). Let BD be the set of badly cut centers. We assume in the
following that L is a 2-approximation, i.e. γ ≤ 2OPT.

We make the crucial following observation, using the doubling property of the metric.
Let f be a center of L. By definition of doubling dimension, the ball β(f, γ) can be
covered by 2d balls of radius γ/2 ≤ OPT. Let Cf be the set of centers of such balls,
such that β(f, γ) ⊆

⋃
f ′∈Cf

β(f ′, γ/2).

Given an instance I, we construct ID the following way: for each badly cut facility
f , force all the facilities in Cf to be opened in any solution on ID, and remove all the
clients in β(f, γ) from the instance. We let C =

⋃
f badly cut

Cf . The structural lemma

of this section is the following:

I Lemma 3.31. It holds that for all solution S of ID:

� costID(S) ≤ costI(S)

� costI(S ∪ C) ≤ max(costID(S),OPT) J

Proof. Since the instance ID contains a subset of clients of I, it holds that costID(S) ≤

70

3.6. Conclusions

costI(S).

Let S be a solution in ID. It serves all client in I but the one removed: these
ones are served by C at a cost γ/2 ≤ OPT. Hence, the cost of S ∪ C is at most
max(costID(S),OPT).

We now show, in a similar fashion as Lemma 3.14, that the clients in ID are cut from
their serving facility of OPT at a controlled level. Recall that OPT is defined for
instance I.

I Lemma 3.32. Let p be a client in ID and OPT(p) its serving facility in
OPT. p and OPT(p) are cut at level at most log(2γ) + τ(ε, d, z). J

Proof. Let p be a client, L(p) its serving center in L and OPT(p) its serving center
in OPT. If p is still a client in ID, it means that L(p) is not badly cut. Observe that
dist(L(p),OPT(p)) ≤ dist(p,L(p)) + dist(p,OPT(p)) ≤ γ + OPT ≤ 2γ

Let i such that 2i−1 ≤ 2γ ≤ 2i. Since L(p) is not badly cut, the ball β(L(p), 2i) is not
badly cut neither: hence, p and OPT(p) (that are in this ball) are cut at level at most
i+ τ(ε, d, z) ≤ log(2γ) + τ(ε, d, z).

This lemma is stronger than Lemma 3.14 and 3.23: it allows us to consider only levels
of the decomposition with diameter less than 21+τ(ε,d,z)γ.

Since the set C has expected size κ(ε, z)k, Markov’s inequality ensures that with prob-
ability 1− ε this set has size O(ε)k. If every part with diameter D of the hierarchical
decomposition is equipped with a ρD-net (for ρ = ε2−τ(ε,d,z)), Lemma 3.32 ensure
that there exists a portal-respecting solution S with cost costID(S) ≤ OPT+O(ε)γ =
(1 + O(ε))OPT. Lemma 3.31 ensures that lifting this solution back to I and adding
C as centers gives a near-optimal solution.

Using the same algorithm as for k-Median to compute a good portal-respecting solu-
tion, and computing a 2-approximation with a simple greedy algorithm (see e.g. [74]),
that runs in time O(n log k) concludes the proof of Theorem 3.6.

3.6 Conclusions

We demonstrated the usefulness of the notion of badly-cut nodes for clustering prob-
lems, in metrics with bounded doubling dimension. The techniques we developed
allow for near-linear time approximation schemes for many clustering problems, both
for Euclidean Spaces and the wider notion of metrics with bounded doubling dimen-
sion.

An interesting further question would be to improve our results in the special case

71

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

of Euclidean spaces of bounded dimension. By applying our techniques directly, one

could get an improved running time of 2(1/ε)O(d) · n · polylog(n) (instead of 2(1/ε)O(d2) ·
n · polylog(n)), by noting that in the Euclidean case the probability that a ball of
radius r is cut at some level i is only O(dr/2i), instead of O(2dr/2i) in Lemma 3.10.

However, we do not know how to get a better running time in terms of n. We leave
open the question whether it is possible to get a linear running time, matching the
result for the Traveling Salesperson problem by Bartal and Gottlieb [20].

72

3.7. Omitted Proofs

(a) The first step of the algorithm: the
metric is decomposed into regions. The
dots are Ylog(∆), and the numbers indicate
the order in which they are considered by
the algorithm.

(b) The algorithm recursively divides re-
gions. We illustrated it only for region Y .
The dots are Ylog(∆)−1 ∩ Y .

3.7 Omitted Proofs

3.7.1 Proofs for Section 3.2

We present now the construction of the hierarchical decomposition from Talwar [155]
– with a proof slightly adapted to our purposes.

Proof of Lemma 3.10. We present the algorithm constructing the hierarchical decom-
position, and prove the lemma as a second step.

Without loss of generality, assume that the smallest distance in the metric is 1: the
aspect-ratio ∆ is therefore the diameter of the metric. Start from a hierarchy of nets
Y0 := V, . . . , Ylog(∆) such that Yi is a 2i−2-net of Yi−1. Moreover, let τ be a random
number τ ∈ [1/2, 1). The hierarchical decomposition D is defined inductively, starting
from Bdlog ∆e = {P} as follows. To partition a part B at level i into subparts at level
i − 1, do the following: for each y ∈ Yi−1 ∩ B, define B ∩ β(y, τ2i−1) to be a part at
level i− 1 and remove B ∩ β(y, τ2i−1) from B.

The portals can be defined as follows, once the decomposition is given: for the largest
part {P}, the set of portals is a ρdiam(P)-net of P . Inductively, given the portals PB′
of a part B′ at level i+ 1, portals of a subpart B of B′ are defined to be a ρ2i+1 net
of B that contains B ∩ PB′ . This is possible, as all points of B ∩ PB′ are at distance
at least ρ2i+2 of each other – because PB′ is a ρ2i+2 net.

When we assume access to the distances through an oracle, it is possible to construct
this hierarchy and augment it with the desired set of portals in time (1/ρ)O(d)n log(∆)

73

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

[97, 58]. Their construction ensures the conciseness, preciseness and nestedness prop-
erties – essentially, those portals are nets of each part.

We prove now that this hierarchical decomposition has the required properties. The
construction ensures that a part B at level i− 1 is split in at most |B ∩ Yi−1| parts of
level i, which is 2O(d) following Property 3.9. Proving the scaling property requires a
bit more work. Let x ∈ X, r > 0 as in the statement.

The two ingredients needed for this part stem from the construction of the decompo-
sition: the diameter of any part at level i is at most 2i+1, and the minimum distance
between two points of Yi is bigger than 2i−2.

These two properties are enough in order to prove our lemma. Let i be a level such
that 2i ≤ r: then r/2i ≥ 1 so there is nothing to prove. Otherwise, we bound the
probability as follows: let y1, y2, ... be the elements of Yi in the order considered by
the algorithm. We say that β(x, r) is cut by y` if ∀j < `, β(x, r) ∩ β(yj , τ2i) = ∅ and
β(x, r)∩β(y`, τ2i) /∈ {∅, β(x, r)}. In words, β(x, r) is cut by y` when the part induced
by y` is the first one to include a portion of β(x, r). We have:

Pr[D cuts β(x, r) at a level i] ≤
∑
`

Pr [β(x, r) is cut by y`] .

We proceed in two steps. First, let us count the number of level i parts that could
possibly cut β(x, r). We will then bound the probability each of them actually cuts
β(x, r). Any level i part is included in a ball β(y, 2i+1) for some y ∈ Yi; therefore
if dist(x, y) > r + 2i+1 then y cannot cut β(x, r). So it is required that dist(x, y) ≤
r + 2i+1 ≤ 4 · 2i. But since the minimum distance between two points of Yi is 2i−2,
and Yi has doubling dimension d, we have |Yi ∩ β(x, 4 · 2i)| ≤ 2d log(2i+2/2i−2) = 24d.
Thus there is only a bounded number of parts to consider.

We prove for each of them that the probability that it cuts β(x, r) is O(r/2i). A
union-bound on all the possible parts is then enough to conclude. Let therefore y ∈
Yi ∩ β(x, 4 · 2i), and xm and xM be the respective closest and farthest point of β(x, r)
from y. A necessary condition for y’s part to cut β(x, r) is the following: the radius
τ2i+1 of the part has to be in the interval [d(y, xm), d(y, xM)). Indeed, if the closest
point from β(x, r) is not in B

(
y, τ2i+1

)
, then no point of β(x, r) can be. Similarly, if

the farthest point is in the ball, then all points are in the part induced by y, as β(x, r)
was not cut by any part before. Since xm, xM ∈ β(x, r) this interval has size 2r, and
the radius of the part is picked uniformly in [2i/2, 2i). Therefore the probability that
the radius of the part falls in (d(y, xm), d(y, xM)) is at most 4r/2i. And finally, the
probability that y’s part cuts β(x, r) is indeed 4r/2i.

By a union-bound over all the parts that could possibly cut β(x, r) we obtain the
claimed probability Pr[C cuts β(x, r) at a level i] = 22d+2r/2i.

I Lemma 3.33. Given an instance I for the (k, z)-clustering problem on a
metric (V,dist) with n points, ε > 0, and an α-approximation on I, there exists
a linear-time algorithm that outputs a set of instances I1, . . . , Im on metrics

74

3.7. Omitted Proofs

(V1,dist1), . . . , (Vm, distm), respectively, such that

� V1, . . . , Vm is a partition of V

� for all i, (Vi, disti) has aspect-ratio O
(
n4(α/ε)1/z

)
,

� if (V,dist′) is the metric where distances between points of the same part
Vi are given by disti while distances between points of different parts is
set to ∞, and OPT is the optimum solution to I, then

– there exists a solution on (V,dist′) with cost (1 + ε/n)cost(OPT),
and

– any solution on (V,dist′) of cost X induces a solution of cost at most
X + εcost(OPT)/n in I.

J

Proof. The cost of the constant-factor approximation is an estimate γ on the cost of the
optimum solution OPT: γ = αcost(OPT). It is then possible to replace all distances
longer than (2γ)1/z by ∞: distances longer than γ1/z will indeed never be used by a
solution with cost better than γ, so the cost of these solutions is preserved after this
transformation. The distance matrix do not respect the triangle inequality anymore:
thus we replace it with its metric closure. We say that two vertices are connected if
their distance is not∞, and call a connected component any maximal set of connected
vertices. The transformation ensures that any connected component has diameter at
most 2ncost(OPT)1/z, and that every cluster of OPT is contained inside a single
connected component. Moreover, any connected component has doubling dimension
2d: indeed, a subspace of a metric with doubling dimension d has a doubling dimension
at most 2d. Note also that this transformation can be made implicitly: every time
the algorithm queries an edge, it can replace the result by ∞ if necessary.

To identify the connected component, the algorithm builds a spanner with the algo-
rithm of [97]: the connected components of the spanner are exactly the ones of our
metric, and can be found in linear time.

Then, for the i-th connected component, the algorithm defines an instance Ii of the
more general version of the clustering problem by the following way. It first sets χ(v) =
1 for all vertex v. Then, it iterates over all edges, it contracts every edge (u, v) with
length less than 1/n3 · (εγ/α)1/z to form a new vertex w and sets χ(w) = χ(u) +χ(v).

Now, we aim at reconstructing a metric from this graph. We will do it in an approx-
imate way: for all connected points u, v of connected component i, we set disti(u, v)
to be 0 if u and v are merged in the graph, and otherwise dist(u, v). This ensures
that 1/n3 · (εγ/α)1/z ≤ disti(u, v) ≤ 2nγ1/z, hence the aspect-ratio of the instance Ii
is O

(
n4(α/ε)1/z

)
. Moreover, if u and v are not contracted, their distance is exactly

preserved. Otherwise, their distance in the new metric is 0. In the original metric,
their distance is at most n · 1/n3 · (εγ/α)1/z, as there are at most n edges on their
shortest-path, and each of them has been contracted. Hence, every distance is pre-
served up to an additive O(ε · cost(OPT)1/z/n2), and so each cost (distance raised to

75

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

the z) is preserved up to an additive O(εcost(OPT)/n2z).

Since every cluster of OPT is contained inside a single connected component, this en-
sures that OPT induces a solution of cost (1+ε/n2z−1)cost(OPT) on

⋃
Ii. Moreover,

lifting a solution in
⋃
Ii to I costs at most εcost(OPT)/n2z per pair (client, center)

and therefore εcost(OPT)/n2z−1 in total.

If the problem considered is Facility Location, it is easy to merge the solutions on
subinstances: since there is no cardinality constraint, the global solution is simply
the union of all the solutions. The hard constraint on k makes things a bit harder.
Note that the dynamic program presented in Section 3.4 naturally handles it without
any increase in its complexity: however, for completeness we present now a direct
reduction.

I Lemma 3.34. Given a set of instances (I1, dist1), . . ., (Im, distm)
for (k, z)-clustering problem given by Lemma 3.33 and an algorithm run-
ning in time ni(log ni)

αt(∆) to solve (k, z)-clustering on instances with ni
points and aspect-ratio ∆, there exists an algorithm that runs in time
O
(
n(log n)α+2t

(
O(n4 · (α/ε)1/z)

))
to solve the problem on

⋃
Ii. J

Proof. First, note that the optimal solution in
⋃
Ii has cost at most O

(
n5zα/ε

)
,

since the maximal distance in any of I1, . . . Im is O
(
n4(α/ε)1/z

)
. Using this fact,

we build a simple dynamic program to prove the lemma. For all i ≤ m and j ≤
log1+ε/ logn

(
n5zα/ε

)
, let ki,j be the minimal k′ such that the cost of P with k′ centers

in Ii is at most (1 + ε/ log n)j . ki,j can be computed with a simple binary search,
using the fact that the cost of a solution is decreasing with k′.

Given all the ki,j , a simple dynamic program can compute k≥i,j , the minimal number
of centers needed to have a cost at most (1 + ε)j on Ii, . . . Im (the ε/ log n becomes
a simple ε because of the accumulation of errors). The solution for our problem is
(1 + ε)j , where j is the minimal index such that k≥1,j ≤ k.

The complexity of computing ki,j is O(log k · ni(log n)αt(O(n4/ε))), hence the com-
plexity of computing all the ki,j is O(n(log n)α+2t(O(n4/ε)). The complexity of the
dynamic program computing k≥i,j is then simply O(m log n) = O(n log n), which con-
cludes the proof.

3.7.2 Portal Respecting Paths and Solutions

Recall that any part B ∈ Bi of the decomposition D = {B0, . . . ,B|D|} comes with a set
of portals PB with the properties listed in Lemma 3.10. In a portal-respecting solution,
every client connects to a facility by going in and out of parts of the decomposition
only at designated portals. More concretely, a path in a metric between two nodes
u and v is given by a sequence of nodes w1, . . . , wk, where u = w1, v = wk, and its
length is

∑k−1
j=1 dist(wj , wj+1). A solution can be seen as a set of facilities, together

76

3.7. Omitted Proofs

with a path for each client that connects it to a facility, and the cost of the solution is
given by the sum over all path lengths. We say a path w1, . . . , wk is portal-respecting
if for every pair wj , wj+1, whenever wj and wj+1 lie in different parts B,B′ ∈ Bi of
the decomposition D on some level i, then these nodes are also portals at this level,
i.e., wj , wj+1 ∈ PB ∪ PB′ . As explained in Lemma 3.35, if two vertices u and v are
cut at level i, then there exists a portal-respecting path from u to v of length at most
dist(u, v) + 16ρ2i. We define a portal-respecting solution to be a solution such that
each path from a client to its closest facility in the solution is portal-respecting.

I Lemma 3.35. If two vertices u and v are cut by a decomposition at level i,
there exists a portal-respecting path of length dist(u, v) + 16ρ2i that connects
u to v. J

Proof. If u and v are cut on level i, then they lie in the same part B ∈ Bi+1 on level
i + 1 of the decomposition D. As each part on level 0 of D is a singleton set, both
u and v are portals on that level. Now consider the path that starts in u = w1, and
for each j ≥ 1 connects wj to the closest portal wj+1 ∈ PB of the part B ∈ Bj on
the next level j, until level i + 1 is reached. This yields a portal-respecting path Pu,
as portals are nested, i.e., each wj is a portal on every level less than j. A similar
procedure finds a portal-respecting path Pv from the other endpoint v up to level i+1
through portals of levels below i+ 1. Since u and v lie in the same part on level i+ 1,
we may obtain a portal-respecting path from u to v by first following Pu up to level
i+ 1, then connecting to the endpoint of Pv that is a portals of level i+ 1, and then
following Pv all the way down to v. The length of this portal-respecting path is at
most dist(u, v) + 4

∑
j≤i+1 ρ2j+1 = dist(u, v) + 32ρ2i, due to the triangle inequality

and the preciseness property of the portals (cf. Lemma 3.10).

3.7.3 Computing a Constant-Factor Approximation to Facility Lo-
cation

We first explain how to compute the optimal value for Facility Location in a tree
metric. More precisely, the input is as follows: we are given a rooted tree T , whose
leaves are exactly the clients and candidate facilities (i.e., the leaf set is C ∪ F), and
each internal node has at least two children. For any internal vertex x, there is a label
dx. The labels are such that if y is a descendant of x, then dy ≤ dx. The distance
between two leaves u, v is dlca(u,v), where lca(u, v) is the lowest common ancestor of
u and v. For an internal node x, we let T (x) be the set of leaves that are descendant
of x.

In such metric, it is possible to compute the optimal solution with a dynamic program
using the following observation: for an internal node x, if there is a facility opened
in T (x), then all clients of T (x) are served by some facility in T (x). This is simply
because going to a facility outside of T (x) costs more than dx, while the distance to
any facility inside T (x) is at most dx.

77

Chapter 3. Approximation Schemes for Clustering in Doubling Metrics

Hence, if F (x) is the facility location cost of clients in T (x) when a facility is opened
in the set T (x), we have the following recurrence for a node x with two children x1

and x2:

F (x) = min{F (x1) + F (x2), F (x1) + dx · |T (x2) ∩ C|, F (x2) + dx · |T (x1) ∩ C|}

The first term corresponds to the case when there are facilities opened in T (x1) and
T (x2), the second one to when there is no facility opened in T (x2) and the third to
when there is no facility opened in T (x1). The base case is for a leaf: F (x) =∞ when
x /∈ F , F (x) = wx when x ∈ F .

Computing that DP table takes O(n) time, since there are O(n) vertices in the tree.

Using this algorithm, one can compute a constant factor approximation in doubling
metrics as follows. First compute a tree where leaves are input points, such that the
distances in the tree are the same as in the original input up to a factor 3n2, in time
O(n log n) using the algorithm described in Corollary 3.5 from Har-Peled and Mendel
[97]. Using that tree, it is possible to compute an O(n2)-approximate solution to
Facility Location, using the algorithm described above. Now, from Lemma 3.33 we
can assume that the aspect-ratio of the instance is O(n7/ε). Hence, it is possible to
compute a tree metric that preserves all distances by a factor 2O(d), using the same
construction as in the proof of Lemma 3.10 in Appendix 3.7.1 with parameter ρ = 1.
It is standard to transform that tree into a binary tree, to make it corresponds with
tree metrics as described above. Therefore, we can apply again the previous algorithm
to get a 2O(d)-approximation.

The total time needed by this approximation algorithm is O(n log n).

78

Chapter 4

Scalable Differentially Private Clus-
tering via Quadtrees

In this chapter, we study the private k-median and k-means clustering problem in d
dimensional Euclidean space. By leveraging the techniques introduced in the previous
chapter, we give a theoretically efficient and easy to implement algorithm. Although its
worst-case guarantee is worse than that of state of the art private clustering methods,
the algorithm we propose runs in time Õ(nkd) and scales to very large datasets. We
also show that our method is amenable to parallelization in large-scale distributed
computing environments. In particular, we show that our private algorithm can be
implemented in a logarithmic number of MPC rounds in the sublinear memory regime.

Finally, we complement our theoretical analysis with an empirical evaluation demon-
strating the algorithm’s efficiency and accuracy in comparison to other privacy clus-
tering baselines.

4.1 Introduction

As noted in a white paper about the interface between privacy and data collection [79],
“individual privacy is essential for the functioning of democratic society and for the
individuals who compose it”. This need for privacy is endangered by constant collection
and diffusion of highly detailed personal data, which is mostly unregulated yet. When
collecting and analyzing this data, it is desirable to use algorithms respecting some
form of privacy: for instance, algorithms whose outcome are not impacted by the
presence or absence of a particular data point. That way, sharing the result of the
algorithm may not harm individuals. Of course, a perfect privacy would lead to useless
algorithm, that would not depend at all on the input: there is therefore a trade-off
between the privacy ensured by an algorithm and the utility of its result.

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

The notion of Differential Privacy (DP) has emerged as a de facto standard to math-
ematically define this trade-off. It was introduced by Dwork, McSherry, Nissim and
Smith in 2006 [67], and is as follows. Differential Privacy is characterized by the no-
tion of neighboring datasets, X and X ′, generally assumed to be differing on a single
user’s data. An algorithm A is ε-differentially private if the probability of observ-
ing any particular outcome S when run on X vs X ′ is bounded: Pr[A(X) = S] ≤
eεPr[A(X ′) = S]. Hence, changing a single entry from the input dataset cannot change
too much the output distribution of a DP algorithm. This means that the outcome
of the algorithm cannot heavily depend too much on a single entry: in a sense, the
algorithm respect the privacy of each entry, as the outcome does not depend on the
presence or not of a given entry in the dataset. Note in particular that this notion of
privacy does not depend on the computational power of some adversary, or on some
conjectured hardness.

For an introduction, see the book by Dwork and Roth [68]. At a high level, DP forces
an algorithm to not focus on any individual training example, rather capturing global
trends present in the data.

Private Clustering As described in the introductory Chapter 1, clustering is a key
data-analysis routine, and releasing a clustering may leak privacy of the input. In
turn, differentially private clustering has been well studied, with a number of works
giving polynomial time approximately optimal algorithms for different versions of the
problem, including k-median and k-means [17, 146, 87, 40, 124]. From an analysis
standpoint, the quality of those algorithm is evaluated in term of their approximation
guarantees: an algorithm is an (α, β)-approximation if the cost of the solution is at
most αOPT + β.

This additive error is necessary, in contrast with the non-private setting: any ε-DP
algorithm for k-median must have an additive error Λkd

ε , where the input is guaranteed
to lie in a ball of diameter Λ. To see the reason of such an additive error, consider
the following collection of neighboring datasets: in each of them, there are n points at
the origin and a single one at distance Λ. The solution computed should be roughly
the same on all those, forcing to ignore the point at distance Λ. Hence, all centers
of the solutions should be at 0, leading to a solution with cost Λ – while the optimal
k-median on each of those dataset would have cost 0, as there are only two distinct
points on each of them. Analyzing formally this example, and generalizing it leads
to a lower bound on the additive error of Λkd

ε , as shown by Nguyen, Chaturvedi and
Xu [146].

All else being equal, we aim for algorithms that minimize α and β, and recent work
by Ghazi, Kumar and Manurangsi [87] has made a lot of progress in that direction.
However, in a push to minimize α and β, algorithms often pay in added complexity
and running time. In fact, all known differentially private clustering algorithms with
theoretical guarantees have this shortcoming: they have superlinear running times and
do not scale to large datasets. Hence there is a big gap between optimal algorithms
in theory and those that can be used in practice.

80

4.1. Introduction

Our Results and Techniques. In this chapter, we aim to address the above short-
comings, and design practical differentially private clustering algorithms, with prov-
able approximation guarantees, that are fast, and amenable to scale up via parallel
implementation. Toward this goal, we take an approach that has been successful in the
non-private clustering literature. While there are constant-approximate algorithms for
k-median and k-means, see [5, 109, 108], most practical implementations use the k-
means++ algorithm of [10], which has a Θ(log k) approximation ratio. The reason
for the success of k-means++ is two-fold. First, it is fast, running in linear time, and
second, it performs well empirically despite the logarithmic worst-case guarantee. The
methods we introduce in this work, while different from k-means++, have the same
characteristics: they are fast, and perform much better than their worst-case guaran-
tees, significantly outperforming all other implementations. In particular, they run in
near-linear time, are amenable to parallel implementation in logarithmic number of
rounds, and output high-quality private clusters in practice.

Our first contribution is an efficient and scalable algorithm for differentially private
k-median. Our starting point is an embedding of the input points into a tree using
a randomly-shifted quadtree.1 As we saw in previous chapter, such tree embeddings
can approximately preserve pairwise distances. Input points are mapped to leaf of the
embedding: one key property is that, in order to solve k-median on the tree embedding,
one only needs to know the number of point mapped to each leaf – and not which
point is mapped to it. Our key insight for using those embeddings in a private manner
is that it is possible to truncate the tree embedding, so that leaves represent sets of
points of large enough cardinality. That way, each input point is represented in the
tree embedding the same way as many other points: hence, a single point does not
contribute much to the structure of a solution. Using this insight and carefully adding
random noise to the cardinality of each leaf, we obtain our differentially private k-
median algorithm.

Our second contribution is a parallel implementation of our algorithm in the classic
massively parallel computing (MPC) model. This model is a theoretical abstraction
of real-world systems like MapReduce [62], Hadoop [161], Spark [162] and Dryad [106]
and it is the standard for analyzing algorithms for large-scale parallel computing [110,
88, 24]. Interestingly we show that our algorithm can be efficiently implemented using
a logarithmic number of MPC parallel rounds for k-median clustering. To the best
of our knowledge, our algorithms are the first differentially private algorithms for
k-median that can be efficiently parallelized.

Third, we complement our theoretical results with an in-depth experimental analysis
of the performance of our k-median algorithm. We demonstrate that not only our
algorithms scale to large datasets where, until now, differential private clustering with
provable guarantees remained elusive, but also we outperform other state-of-the-art
private clustering baselines in medium-sized datasets. In particular, we show that in
practice compared to prior work with theoretical guarantees such as [17], our parallel
algorithm can scale to more than 40 times larger datasets, improves the cost by up
to a factor of 2, and obtains solutions within small single digit constant factor of

1We note here that this technique has already been used in prior work for private clustering [17]
to find a Õ(n)-sized set of candidate centers, to then run a polynomial time local search algorithm.
In contrast, we use this structure to directly compute a solution.

81

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

non-private baselines.

Finally, we adapt those techniques to the k-means problem. This poses an additional
challenge because randomly-shifted quadtrees do not preserve squared distances accu-
rately and so we cannot apply our approach directly. For that, we adapt the technique
introduced in Chapter 3 to our setting. The key observation behind our approach is
that even if randomly-shifted quadtrees do not preserve well all the squared distances
they accurately preserve most of them.

Suppose that we are given in input some solution S for our problem (later will clarify
how to obtain it), then we show that for most centers in S it is true that the distances
to these centers are approximately preserved by the quadtree. So points living in the
clusters of these centers can be clustered using the tree embedding, and the remaining
points can be clustered using the few centers that are not preserved in the solution
S. Interestingly, we prove that we can use this approach iteratively starting with a
solution to the differentially private 1-means problem as S. In Section 4.5 we show
that this approach leads to an efficient differentially private algorithm for k-means.

4.2 Preliminaries

Notations. For two points p and q in Rd, we let dist(p, q) := ‖p−q‖ =
√∑d

i=1(pi − qi)2

be the Euclidean distance between p and q. Given r ≥ 0, we define β(x, r) = {y ∈
Rd| dist(x, y) ≤ r} as the closed ball around x of radius r. As we mentioned in the
introduction, it is necessary to assume that the input P is contained in the open ball
β(0,Λ).

We say that a solution C is (α, β)-approximate for (k, z)-clustering if the cost(P,C) ≤
αcost(P,OPT) + β. We will seek solutions where α is Õ(poly(log(n))) and β is
O(poly(k, d, log(n)) ·Λz). Such high values for β are unfortunately necessary, as shown
by Chaturvedi, Nguyen and Xu [146].

The goal of this chapter is to show private algorithms for k-median and k-means (z = 1
and z = 2) that are efficient easy to parallelize, where by efficient we mean time
Õ(n · poly(log(n), k, d, log(Λ))). Notice that celebrated k-means++ [10] satisfies all
the requirements with its O(nkd) running time and O(log(k)) approximation, except
that it is not private.

Differential privacy. Our formal definition of a private algorithm is the following:

I Definition 4.1. Let ε > 0 be a real number, and A be a randomized
algorithm, that takes a dataset D as input an output A(D).
A is ε-differentially private if for any pair of datasets D1, D2 that differ on a

82

4.2. Preliminaries

single element, and for all possible set S of outcomes of A,

Pr[A(D1) ∈ S] ≤ exp(ε) Pr[A(D2) ∈ S]. J

A standard differentially private algorithm is the Laplace Mechanism (see [68]). We say
that a random variable follows distribution Lap(b) if its probability density function is
1
2b exp

(
− |x|b

)
. With a slight abuse of notation, we use Lap(b) to denote a variable that

follows such a distribution. Example 3.1 in [68] shows that the following algorithm
for counting queries is ε-DP : A(X) = |X|+ Lap(1/ε).

Note that the notion of differential privacy is only a model, and our result should
not be used blindly to preserve privacy of users. We emphasize in particular that
the privacy notion is with respect to a single user’s data: hence, this model does not
necessarily ensure privacy for a group of people.

Composition properties. We will make use of standard composition properties
of differentially private algorithms, described in [68]. The algorithm A that applies
successively two algorithm A1 and A2 that are respectively ε1-DP and ε2-DP is itself
(ε1 + ε2)-DP. If the A1 and A2 run on two distinct parts of the dataset, then A is
max(ε1, ε2)-DP.

Lastly, if A : D1 ×D2 → Z satisfies that for all X ∈ D1, the algorithm A(X, ·) is ε1-
DP, and some algorithm B : D2 → D1 is ε2-DP, then the algorithm Y → A(B(Y), Y)
is (ε1 + ε2)-DP.

Randomly-shifted Quadtrees. A quadtree is a binary tree T , such that each
node x in the tree corresponds to a region T (x) of Rd. To distinguish from the
input, we call tree nodes cells. Each cell is a hyper-rectangle. For a cell c with
children c1, c2, the region spanned by c is the union of those spanned by c1 and c2,
i.e., T (c) = T (c1) ∪ T (c2).

A shifted quadtree is constructed as follows. Start from a root cell containing the
entire d-dimensional hypercube [−Λ,Λ]d at depth 0, and proceed recursively. Let c be
a cell at depth d · i+ j, with 0 ≤ j < d. The j-th coordinate of the region spanned by
c is comprised in [m,M]. The children of c are constructed as follows: let x be some
random number in [m+ M−m

3 ,M − M−m
3]. c1 comprises all points of c that have their

j-th coordinate at most x, and c2 the remaining points2. Note that the diameter of
cells is divided by at least 3/2 every d levels. Denote by diam(c) the diameter of cell
c.

A quadtree T induces a metric: for two points p, q, we define distT (p, q) = diam(c)
where c is the smallest cell that contains both p and q. We will frequently use that
the expected distortion between two points p and q in a shifted quadtree of depth
d · α, for any α, is ET [distT (p, q)] ≤ d3/2αdist(p, q). This property is similar to the

2Another standard way of defining quadtree is to have 2d-regular trees, and to split along the
d-dimensions at each step. We are more comfortable working with binary trees, which allows for a
simpler dynamic program.

83

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

scaling probability of the hierarchical decomposition of Lemma 3.10: it is only more
precise, as it is possible to use the geometry of Euclidean Spaces to get a polynomial
dependency in d instead of an exponential one, as in Lemma 3.10. For a proof, we
refer to Lemma 4.13. In our case, we stop the construction when reaching cells of
diameter Λ/n. Hence, α = log n and the expected distortion is O(d3/2 log n). Such
trees are often called Hierarchically Separated Trees (HST) in the literature.

Dimension Reduction. For clustering problems, it is possible to use the Johnson-
Lindenstrauss Lemma – which is oblivious to the data, hence private – to reduce the
dimension to O(log k) (see [129]). Hence, we can apply all our algorithm in such a
dimension, replacing dependency in d by log k. To compute centers in the original
space, we can extract the clusters from the low-dimensional solution and compute
privately the 1-median (or 1-mean) of the cluster in the original d-dimensional space.
This adds an additive error O(kd). This is not as simple in the MPC model, where even
finding the 1-median is not easy. For that model, we need additional guarantees on
the projected space to be able to recover centers in the original space. We managed to
show that those guarantees hold when projecting onto an O(log n)-dimensional space,
hence replacing dependencies in d by O(log n).

4.3 Simple algorithm for Differentially Private k-Median

4.3.1 Algorithm

A simple way of solving k-median is to embed the input points into an ultramet-
ric. Those are sufficiently simple as to admit a dynamic program for computing an
optimum. The approximation factor of this algorithm is therefore the distortion in-
curred by the embedding. We adapt this approach to incorporate privacy as follows.
First, we embed the input into a quadtree, which is a hierarchical decomposition of
Rd via axis-aligned hyperplanes. We then add noise on the quadtree to enforce pri-
vacy. Subsequently, we run the dynamic program on the quadtree. Unfortunately, a
naive implementation of the dynamic program on that noisy quadtree falls short of the
nearly linear time algorithm we are hoping for: indeed, due to the addition of noise,
the size of the quadtree cannot be bounded. In particular, there are many quadtree
cells that do not contain any point of P but that have a noisy weight bigger than zero:
the size of the noisy quadtree cannot be easily related to the input size. To cope with
that, we show it is possible to trim the noisy quadtree cells containing few points.

The trimmed and private quadtree is constructed by Algorithm 2. Then, the dynamic
program to solve k-median on the tree is presented in Algorithm 3. The combination
of those two gives Algorithm 1, which is our main algorithm:

84

4.3. Simple algorithm for Differentially Private k-Median

I Theorem 4.2. Algorithm 1 is ε-DP and computes a solution to k-median

with expected cost at most O(d3/2 log n) ·OPT + d2·log2 n·k
ε ·Λ. Furthermore, it

runs in time Õ(ndk2). J

Algorithm 1 DP-kMedian(P)

1: Compute a shifted quadtree T . Let r be the root of T .
2: w = MakePrivate(T, P).
3: Compute v, S =DynamicProgram-kMedian(T,w, r)
4: Return Sk

Algorithm 2 MakePrivate(T, P)

1: Input: a quadtree T , a set of points P
2: Output: for each cell c of T with diameter more than Λ/n, a private count of
|c ∩ P |.

3: let Q be a queue, initially containing only the root of T .
4: Let w : T → N, initiated with ∀c, w(c) = 0.
5: while Q is not empty do
6: Let c = Q.pop()
7: if diam(c) > Λ/n then
8: let w(c) = |T (c) ∩ P |+ Lap(d log n/ε)
9: if w(c) > 2d log n/ε then

10: Add c’s children to Q
11: end if
12: end if
13: end while
14: Return w

4.3.2 Analysis

I Lemma 4.3. Step 3 of Algorithm 1 computes a solution with expected cost
OPTT + k · d2 log2 n/ε · Λ, where OPTT is the optimal solution on the metric
induced by the tree T , and the expectation is taken over the realization of the
variables Lap. J

Proof. In a quadtree metric, we have the following property. For a cell c, three points
x, y ∈ T (c) and z /∈ T (c), it holds that dist(x, y) ≤ diam(T (c)) ≤ dist(x, z). Hence,
if there is a center in T (c), then all clients of T (c) can be served by some center in
T (c). Moreover, if there is no center in T (c), points in T (c) are at distance at least
diam(T (c)) of a center.

Let F (c, k′) be the expected cost of the value vk′ returned by ‘DynamicProgram-k-
Median(T, k′, c), where the probability is taken over the privacy randomness. and S

85

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

Algorithm 3 DynamicProgram-kMedian(T,w, c)

1: Input: A quadtree T , a weight function on T ’s node w, and a cell c.
2: Ouput: For each k′ ≤ k, a solution Sk′ for k′-median on T (c) and its value vk′ .
3: Set v0 ← w(c) · diam(c) and S0 ← ∅.
4: if w(c) < 2d logn

ε then
5: For all k′ ≥ 1, set vk′ ← 0 and Sk′ ← k′ copies of the center of c.
6: else
7: Let c1, c2 be the two children of cell c
8: Let vi, Si be the output of DynamicProgram-kMedian(T,w, ci).
9: for all k′, let (k1, k2) = argmink1,k2≥1:k1+k2=k′v

1
k1

+ v2
k2

, and do vk′ ← v1
k1

+ v2
k2

,
Sk′ ← S1

k1
∪ S2

k2
.

10: end if
11: Return v, S.

be any solution. We show by induction that for any cell c of height h in the tree with
T (c) ∩ S 6= ∅,

F (c, |S ∩ T (c)|) ≤ costT (T (c), S) +
d log n

ε
· Λ · |S ∩ T (c)| · h.

This is true by design of DynamicProgram-kMedian for any leaf that contains a center
of S.

For an internal node c with two children c1, c2 such that T (c1)∩S 6= ∅ and T (c2)∩S 6=
∅: it holds that F (c, S ∩ T (c)) ≤ F (c1, |S ∩ T (c1)|) + F (c2, |S ∩ T (c2)|). Hence, by
induction:

F (c, |S ∩ T (c)|) ≤ F (c1, |S ∩ T (c1)|) + F (c2, |S ∩ T (c2)|)

≤ costT (T (c1), S) +
d log n

ε
· Λ · |S ∩ T (c1)| · (h− 1)

+ costT (T (c2), S) +
d log n

ε
· Λ · |S ∩ T (c2)| · (h− 1)

≤ costT (T (c), S) +
d log n

ε
· Λ · |S ∩ T (c)| · h,

where the last lines uses cost(T (c), S) = cost(T (c1), S) + cost(T (c2), S).

The the last case is when S ∩ T (c1) = ∅, S ∩ T (c2) 6= ∅. Let h be the height of c. We
have S ∩ T (c2) = S ∩ T (c), and so:

F (c, |S ∩ T (c)|) ≤ F (c1, 0) + F (c2, |T (c2) ∩ S|)
≤ T (c1) · diam(c1) + E[Lap(ε/(d log n)) · diam(c1)]

+ costT (T (c2), S) +
d log n

ε
· Λ · |S ∩ T (c2)| · (h− 1)

≤ costT (T (c), S) +
d log n

ε
· |S ∩ T (c)| · Λ · h.

This shows that the value computed by the algorithm is at most costT (OPT)+ d2 log2 n
ε ·

Λ·k. Now, we need to show the converse: the value computed corresponds to an actual
solution.

86

4.3. Simple algorithm for Differentially Private k-Median

This is done inductively as well. For any k′ and cell c one can compute a solution
S for T (c) with k′ centers and expected cost at most F (c, k′) + d logn

ε · k′. For that,

the base cases are when k′ = 0, and then ∅ works, or when w(c) ≤ 2d logn
ε , where the

center of the cell works. Otherwise, it is enough to find k1, k2 such that k1 + k2 = k′

and F (c, k′) = F (c1, k1) + F (c2, k2). Let Si be the solution computed for T (ci) with
ki centers: the solution for T (c) is simply S1 ∪ S2. By induction, its cost is at most

F (c1, k1) + F (c2, k2) +
d log n

ε
· Λ · (k1 + k2) = F (c, k′) +

d log n

ε
· Λ · k′.

I Lemma 4.4. Algorithm 2 is ε-DP. J

Proof. We show by induction that for a tree T of depth h, MakePrivate(T, P) is(
ε

d logn · h
)

-DP.

When the root of the tree has diameter at most Λ/n, the algorithm returns the zero
function, which is 0-DP. Let T be a tree of depth h rooted at r with diam(r) > Λ/n),
and let r1, r2 be the two children of r. Computing w(r) is ε

d logn -DP, by property of
the Laplace Mechanism.

Now, by induction hypothesis, MakePrivate(T (r1), P) and MakePrivate(T (r2), P)

are
(

ε
d logn · (h− 1)

)
-DP. Since they are computed on two disjoint sets, the union

of the two results is
(

ε
d logn · (h− 1)

)
-DP as well. Notice that the algorithm

MakePrivate(T, P) boils down to computing w(r), MakePrivate(T (r1), P) and

MakePrivate(T (r2), P). Hence, by composition MakePrivate(T, P) is
(

ε
d logn · h

)
-DP.

Combining Lemmas 4.3, 4.4 and properties of quadtrees, we conclude the proof of
Theorem 4.2:

Proof of Theorem 4.2. We start by proving the approximation guarantee. For this,
note that the key property of quadtrees is that ET [distT (p, q)] ≤ O

(
d3/2 log n

)
dist(p, q),

where the expectation is taken on the tree randomness (see Lemma 4.13 in the ap-
pendix). Hence, the optimal k-median solution is only distorted by an O

(
d3/2 log n

)
factor: OPTT ≤ O

(
d3/2 log n

)
OPT.

Combined with Lemma 4.3, this shows the approximation guarantee of the whole
algorithm. Lemma 4.4 shows the privacy guarantee. What therefore remains is to
bound the running time.

Computing the cells of the quadtree containing some points of P can be done in a
top-down manner in time O(nd log n) as follows. Let c be a cell at depth d · i + j
with j < d, and c1, c2 be the two children of c. Given T (c) ∩ P , it is easy to compute
T (c1)∩P and T (c2)∩P in time O(|T (c)∩P |), by partitioning T (c)∩P according to

87

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

the value of their j-th coordinate. Since there are O(d log n) levels in the tree, this is
done in time O(nd log n).

Hence, the running time of Algorithm 2 is bounded by Õ(nd) plus the time to process
empty cells added to Q. There are at most nd log n empty cells with a non-empty
parent added – one per level of the tree and per point of P . Each of them gives
rise to a Galton-Watson process: each node adds its two children with probability
Pr[Lap(d log n/ε) > 2d log n/ε] = e−2 < 1/2. By standard properties of Galton-
Watson process, this goes on for a constant number of steps. Therefore, there are
at most Õ(nd) empty cells added to Q, which concludes the running time bound for
Algorithm 2.

Let N be the number of cells that have a non-zero value of w. We claim that N =
Õ(nd) and that the running time of Algorithm 3 is O(Nk2). For the first claim,
note that N is equal to the number of cells added to Q, which is Õ(nd) as explained
previously. For the second claim, notice that there are at most kN different calls to
DynamicProgram-kMedian, each being treated in time O(k). Hence, the complexity
of Algorithm 3 is O(Nk2) = Õ(ndk2). This concludes the proof.

4.4 MPC Implementations

Brief description of MPC We briefly summarize the MPC model [24]. The input
data has size N = nd, where n is the number of points, and d the dimension. We have
m machines, each with local memory s in terms of words (of O(log(ms)) bits). We
assume that each word can store one input point dimension. We work in the fully-
scalable MPC framework [6] where the memory is sublinear in N . More precisely,
the machine memory is s = Ω

(
N δ
)

for some constant δ ∈ (0, 1), and the number of
machines m is such that m · s = Ω

(
N1+γ

)
, for some γ > 0.

The communication between machines is as follows. At the beginning of the compu-
tation, the input data is distributed arbitrarily in the local memory of machines, the
computation proceeds in parallel rounds where each machine can send (and receive)
arbitrary messages to any machine, subject to the total messages space of the mes-
sages received (or sent) is less than s. In case some machine receives more than s
messages, the whole algorithm fails.

For our MPC algorithm we assume that k � s. This ensures that the final solution of
size kd fits in the memory of one machine, which is common for real world applications.

More formally we assume that there are m = Ω(n1−δ+γ) machines each with memory
s = Ω(nδd log(n)), and k ≤ nγ , with δ − γ > ε for some constant ε.

In that section, we first show the following low dimensional theorem:

88

4.4. MPC Implementations

I Theorem 4.5. Assuming k ≤ nγ , there exists a O(d log n) rounds MPC
algorithm using m = O(n1−δ+γ) machines each with memory s = O(nδd log(n))
that simulates exactly the private k-median from Theorems 4.2. J

This algorithm is suited for low dimensional spaces, as the number of rounds depends
on d. We show in Section 4.4.2 how to replace this dependency by a O(log k), both in
the number of rounds and in the approximation ratio.

We then show how to use dimension reduction, to replace dependencies in d by log k:

I Theorem 4.6. Assuming k ≤ nγ , there exists a O(log k ·log n) rounds MPC
algorithm using m = O(n1−δ+γ) machines each with memory s = O(nδd log(n))
that computes a solution to k-median with cost at most

O

(
log3/2 k log n ·OPT +

log3 k log3 n · k
ε

· Λ +
kd log k

ε
· Λ
)
. J

4.4.1 Algorithm for Low Dimensional Inputs

We now describe a high level view of our algorithm which as we can prove simulates
exactly (with high probability) our private k-median algorithm. The algorithm uses
a shared hash function h to compute the quadtree consistently over the machines.
Informally, first, each machine computes over the points stored, all the cells which the
points belong to in the tree at each level. To compute the total count of each cell, one
can use the algorithm from Andoni et al. [6] (section E.3 of the arxiv version), that
computes in a constant number of rounds the number of points in each cell. At the
end of that algorithm, the size of each cell is stored in some unspecified machine. To
organize the quadtree data in order to be able to process it, we use a shared function
r such that a machine r(c) is responsible for all computations related to cell c. We
will need care to ensure that no machine is responsible for more cell than what its
memory allows.

Then the computation proceeds bottom-up solving the dynamic programming problem
in O(d log n) rounds.3 Finally, the computation proceeds over the tree top-down in
other O(d log n) rounds to extract the solution.

3We note that a more careful and intricate implementation of the dynamic program that requires
only O(d) rounds can be achieved. We decided to chose simplicity rather than saving one log factor.

89

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

Algorithm 4 MPC-quadtree(P)

1: Each machine receives an arbitrary set of nδ points of P .
2: Each machine, for each point p received, computes, using hs, the quadtree cell
ci(p) in which the point p is at level i ∈ [d log(n)].

3: Compute the count of every cell.
4: Send the count of cell c to machine r(c), for all c.

Using the algorithm from Andoni et al. [6], one can compute in O(1) steps the count
for each cell of the quadtree. Hence, we have the following result:

I Fact 4.7. Algorithm 4 runs in O(1) many rounds. J

At the end of Algorithm 4, we are given a quadtree, represented as follows: each cell
c is represented by a machine r(c), which stores a count of input nodes in the cell
and pointers towards each children. r is a surjection from a set of O(nd log n) cells
to m machine: we chose it in order to ensure that for any machine M, |r−1(M)| ≤
O(nd logn)

m .

We now explain in more details how to implement the algorithm from Theorem 4.2,
given that representation of the quadtree.

First, it is straightforward to implement Algorithm 2 in 1 rounds – as each cell only
needs to compute the DP count of points in the cell. Next, Algorithm 3 is straight-
forwardly implemented in O(d log n) rounds, as computing the output vector v of the
dynamic program for a cell only requires knowing those of its children – and it is
therefore easy to simulate bottom-up the dynamic program.

What remains to be proven is that no machine gets responsible for more cell than it
can afford in memory. More precisely, every time a machine is responsible for a cell,
it stores O(k) memory words, for the simulation of the dynamic program. Hence, we
need to show that no machine is responsible for more than s/k many cells.

I Fact 4.8. No machine is responsible for more than s/k many cell. J

Proof. Our choice of m and mapping r ensures that a given machine gets responsible
for at most O(nd logn)

m = O
(
nδ−γd log n

)
. Similarly, our constraints on k and s ensures

s
k = Ω(nδ−γd log n), which concludes the proof.

Combining those two facts concludes Theorem 4.5.

90

4.4. MPC Implementations

4.4.2 k-Median in O(log n)-MPC rounds via dimension reduction

The goal of this section is to use standard dimension-reduction techniques to remove
the dependency in the dimension from Theorem 4.5 and show Theorem 4.6.

For that, one can use dimension reduction techniques to project the dataset onto
O(log k) dimensions, while preserving the cost of any clustering.

However, the output of our algorithm should be a set of centers in Rd, and not a
clustering: an additional step is therefore needed, once clusters have been computed
in RO(log k), to project back and find centers in the original space. For k-means, this
can easily be done using differentially-private mean [87]. We show in the following
how to do the equivalent for k-median.

We draw here a connection with the second part of the thesis, that develops and uses
coreset. More precisely, in Chapter 10, we show how to compute an approximate so-
lution to 1-median by only considering an uniform sample of constant size. Therefore,
in the MPC setting it is enough to sample a constant number of points from each
cluster computed in low dimension, and send them to a machine that can compute a
median for them in the original high dimensional space.

For that last step, we rely on the following result.

I Lemma 4.9 (Corollary 54 in [87]). For every ε > 0, there is an ε-DP
polynomial time algorithm for 1-median such that, with probability 1− β, the

additive error is O
(
dΛ
ε polylog

(
1
β

))
J

We consider the following algorithm, simplified variant of Algorithm 9.

Algorithm 5 Finding the median via uniform sampling

Input: A dataset P , an α-approximate median a for P with cost C, and parameters
t, dclose, rsmall.
1. Sample a set Ω of t points uniformly at random.
2. Remove from Ω all points at distance less than ∆ = dclose

α · C|P | , and add to Ω the
point a with multiplicity equal to the number of removed points.
3. Define rings Ri such that Ri∩Ω contains all the points at distance (2i ·∆, 2i+1 ·∆]
from a, for i ∈ {1, ..., log(|P |α/µ2)}. Let R0 be {a}, with multiplicity defined in
step 2.
4. If |Ri ∩ Ω| < rsmall · |Ω|+ Lap(1/ε), remove all points in Ri ∩ Ω from Ω.
5. Solve the problem on the set Ω, using algorithm given by Lemma 4.9 with
β = 1/k.

I Lemma 4.10. Algorithm Algorithm 5 is 2ε-DP. J

Proof. First, the set of rings selected at step 4 is ε-DP: the selection of one ring is
ε-DP, by Laplace mechanism, and since the rings are disjoint the composition of DP

91

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

mechanisms ensures that the full set of selected rings is ε-DP.

Now, given a selected set of rings, the set Ω varies by at most one point when the input
P varies by a single point. Since the algorithm used in step 5 is ε-DP, by composition,
the whole algorithm is 2ε-DP.

We will see in Section 10.4 that this algorithm computes an O(1)-approximation to
1-median on P , with t = polylog(|P |). Assuming this result for now (we defer the
proof to Section 10.4), we can easily use it to project back the centers, and conclude
the proof of Theorem 4.6.

Proof of Theorem 4.6. Using Johnshon-Lindenstrauss lemma, it is possible to project
the points onto a space of dimension d̃ = O(log k), preserving the cost of any clustering
up to a constant factor (see Makarychev et al. [129]). In that projected space, the
algorithm from Theorem 4.5 computes privately a solution with cost O(log3/2 k log n) ·
OPT+ log3 k log3 n·k

ε ·Λ, but centers are not points in Rd – they are nodes of the quadtree.

To compute good centers in Rd from the quadtree solution, we use Algorithm 5: in
each cluster induced by the quadtree solution, sample the set Ω. Since Ω has size
O(log3 k log2 n), it can be sent it to a centralizing machine, that in turn can run

Algorithm 5. The additional additive error is O
(
dΛ log k

ε

)
in any cluster, hence in

total O
(
kdΛ log k

ε

)
. To sample the set Ω, each machine can send to the centralizing

one the number of points it stores from P , and the centralizing computes the number
of points to be sampled in each machine.4

4.5 Extension to k-Means

The previous sections showed simple proofs in the case of k-Median. Here, we show
how to extend them in the case of k-Means, using some form of badly-cut clients and
facilities. We will not present MPC implementations of those algorithms, focusing for
simplicity on the standard computation model.

As we already saw in the previous chapter, although the quadtree decomposition
approximates distances well in expectation, it works poorly for squared distances.
Indeed, two points p, q have probability d·dist(p,q)

2i
to be cut at level i: hence, the

expected distance squared between p and q is d·dist(p, q)·
∑

i d2i (the squared distance
when cut at level i is d22i, as the diameter of a level i cell is

√
d2i), which means that

the distance squared can be distorted by an arbitrarily large factor in expectation.

However, observe that p and q have tiny probability to be cut at a level way higher

4For instance, the centralizing machine can sample as set R of µ1 points from {1, ..., |P |}. Then, if
machine i stores ni points from P , it computes a uniform sample R∩ (

∑
j<i ni,

∑
j≤i ni] many points.

The union of those sample is uniform.

92

4.5. Extension to k-Means

than log(d ·dist(p, q)). Hence, there is a tiny probability that points are cut from their
optimal center at a high-level. The question is then: what to do when this happens?
Here we want to avoid routing in the tree since the squared distance could be arbitrary
large and we may want to deal with such points in a different way. To do so, we use
a baseline solution L to guide our decisions on points for which the tree distance to
their closest center in the optimum solution badly approximates the true distance, let
call them badly cut points. Since we don’t know the optimum solution, we don’t know
the badly cut points and so we will use L as a proxy for finding the potential bad
points.

We show that the solution computed by our algorithm is good with respect to a
solution that contains all facilities of L for which the quadtree distances are not good
approximations of the true distances. We call those facilities badly-cut facilities. To
bound the cost of a client c, we distinguish three cases. Either the distance from a
point to optimal center is good in the tree, and we are happy because we can serve it
nicely in the tree. Or its closest center of L is not badly-cut, in which case we argue
that the distance to the optimal center cannot be too high compared to its optimal
cost. In the last case, where the closest center of L is badly-cut, we simply assign
the point to L since we are working with a solution containing all centers of L. This
happens with some tiny probability, and will not be too costly overall, i.e.: only a tiny
fraction of the cost of L. Using this reasoning, we show the following lemma:

I Lemma 4.11. Given an arbitrary solution L and α > 0, there exist an ε-
DP algorithm A that takes as input a set of points and computes a solution for
k-means with at most k + α

2 · |L| centers and, with probability 1 − π, costs at

most O(d9 log2 n)
α6π6 ·OPT + α · cost(L) + kd2 log2 n/ε · Λ2. J

Applying repeatedly this algorithm yields the following theorem:

I Theorem 4.12. For any α > 0, there exists an ε-DP algorithm A that
takes as input a set of points and computes a solution for k-means with at most
(1 + α)k centers and, with probability 3/4, costs at most poly(d, log n, 1/α) ·
OPT + kd2 log2 n/ε · Λ2. J

Proof. We consider the following algorithm:

Algorithm 6 k-means algorithm with extra centers

1: Input: A set of clients X.Output: A set of k-means centers C.
2: L← 0, ε′ ← ε/ log n
3: for log n steps do
4: L′ ← Solution computed by A as described by Lemma 4.11, setting π = 1

4 logn ,

with privacy parameter ε′.5

5: L← L′

6: end for
7: Return L

93

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

We argue that the above algorithm produces a solution satisfying the claims of Theo-
rem 4.12. We have that the initial solution has cost at most nΛ2. Then, by repeatedly
applying Lemma 4.11, we obtain solutions of geometrically decreasing cost. More
precisely, after i iterations, we claim that with probability 1 − i

4 logn , L has size at

most k ·
∑i

j=0 α
i, and the cost of L is at most poly(d, log n, 1/α) · OPT + αinΛ +

kd2 log2 n/ε′ · Λ2. This is true when i = 0, and the induction follows directly from
applying Lemma 4.11.

It follows that the final solution computed after logn steps has cost at most
poly(d, log n) times OPT plus additive kd2 log3 n/ε · Λ2. Moreover, since the ini-
tial solution L is fixed regardless of the input data (hence it is 0-DP), and since
ε′ = ε/ log n, the algorithm is by composition ε-DP. Finally, the number of centers is
at most k(1 + α) as desired.

Hence, the key is to prove Lemma 4.11. For that, we first show how to preprocess the
instance such as to be able to solve the problem via dynamic programming. We then
use that preprocessing to build an algorithm showing Lemma 4.11. Finally, we show
how to remove the extra αk centers by using the reverse greedy algorithm of Chrobak
et al. [46].

4.5.1 Preprocessing the Instance Using Badly-Cut

Before describing the ideas behind the extension to k-means, we introduce some nota-
tions. We say that two points p, q are cut at level i when their lowest common ancestor
in the tree is at level in (d · (i− 1), d · i], i.e., the diameter of that common ancestor is
in (
√
d · 2i−1,

√
d · 2i]. In that case, the distance in the quadtree metric between p and

q is at most
√
d2i. We say that a ball β(p, r) is cut at level i if i is the largest integer

such that there exists a point q with dist(p, q) ≤ r and p and q are cut at level i.

We have the following lemma:

I Lemma 4.13. [Reformulation of Lemma 11.3 [94]] For any i, radius r and
point p, we have that Pr[β(p, r) is cut at level i] = O

(
dr
2i

)
. J

Formalization Let P ⊆ Rd be an instance of the k-means problem in Rd. Let OPT
be an optimal solution to P and L be an arbitrary solution. For a given client c, we
let L(c) (resp. OPT(c)) denote the center of L (resp. OPT) that is the closest to c in
solutions L (resp. OPT).

Fix some αC and αF > 0, that will be specified later. For a quadtree decomposition
T , we say that a client c is badly-cut if the ball β(c,dist(c, OPT)) is cut at a level
higher than log(dist(c, OPT) · d/αC) – note that this is for the analysis only, since we
don’t know this algorithmically. We say that a center f ∈ L is badly-cut if for some

94

4.5. Extension to k-Means

i, the ball β(f, 2i) is cut at a level higher than i+ log(d log n/αF). 6 As L and T will
be fixed all along that section, we simply say that a point or a center is badly-cut.
Notice that we do not know which clients are badly-cut. It is however possible to
compute the badly-cut centers, since it depends only on L and T . It is explained
how to perform this step in time Õ(nd) in Section 3.3.3: essentially, for each center
f ∈ L, one can go up the tree and and at each level ` compute the distance D to the
separating hyperplane: if dlogDe+ log(d log n/αF) < `, then the ball β

(
f, 2dlogDe) is

badly cut. Otherwise, no ball is badly cut at that level.

Our algorithm computes a randomized quadtree T , and finds the badly-cut center
BT . It removes from the input each cluster associated with a center of BT . Let PT be
the remaining points. PT is a random variable that depends on the randomness of T .
Given a solution S for k-means on PT , the algorithm’s output is S ∪ BT .

We call cost(P, S) the cost of any solution S in the original input P , and cost(PT , S)
its cost in PT .

A key property for our analysis is a bound on the probability of being badly-cut, which
is the equivalent of Lemma 3.12:

I Lemma 4.14. Any client p has probability at most αC to be badly-cut.
Similarly, a center f ∈ L has probability at most αF to be badly-cut. J

Proof. Consider first a point p ∈ P . By Lemma 4.13, the probability that a ball
β(p, r) is cut at level at least j is at most dr/2j . Hence the probability that a ball
β(p,dist(p,OPT)) is cut at a level j greater than log(dist(p,OPT)) + log(d/αC) is at
most αC . The proof for f ∈ F is identical.

Using that lemma, one can bound the cost of the clusters of facilities from BT , as well
as the cost of badly-cut clients:

I Lemma 4.15. For any π ∈ (0, 1), it holds with probability 1− π that:∑
f∈BT

∑
p:L(p)=f

cost(p, f) ≤ 3/π · αF cost(P,L),

∑
p badly-cut

cost(p, L) ≤ 3/π · αCcost(P,L),

and |BT | ≤ 3/π · αF |L| J

Proof. Using Lemma 4.14, we have

E[
∑

f,p:L(p)=f

cost(p, f)] =
∑
p∈P

Pr[L(p) ∈ BT]cost(p, L) ≤ αF cost(P,L).

6Note that this definition of badly-cut is slightly different from that of Chapter 3.

95

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

Using Markov’s inequality, with probability 1 − π/3 the first bullet of the lemma
holds. For the same reason, the second bullet hold with probability 1 − π/3 as well.
Similarly, E[|BT |] =

∑
f∈L Pr[f ∈ BT] = αF |L|, so applying again Markov’s inequality

gives that the third bullet holds with probability 1 − π/3. A union-bound concludes
the proof.

I Lemma 4.16. When αF = πα
6 , αC = α3π3

144d3 log2 n
and Lemma 4.15 holds:

costT (PT ,OPT) ≤ α

2
cost(P,L) +

O(d9 log4 n)

α6π6
· cost(P,OPT). J

Proof. We start by showing different bounds for costT (c,OPT), according to whether
c is badly-cut or not.

When a client p is not badly-cut, we directly have that: distT (p,OPT) ≤ d
√
d·dist(p,OPT)

αC
,

since the lowest common ancestor of p and OPT(p) has diameter at most d
√
d·dist(p,OPT)

αC
.

In the case where p ∈ PT is badly-cut, we proceed differently. We use that
L(p) is not badly-cut as follows. Both p and OPT(p) are contained in the ball
β(L(p), dist(p, L) + dist(p,OPT)), since dist(L(p),OPT) ≤ dist(p, L) + dist(p,OPT).
Let i = dlog(dist(p, L) + dist(p,OPT))e. Since L(p) is not badly-cut, the ball
β(L(p), 2i) contains p and OPT(p) and is cut at level at most i + log(d log n/αF).

Hence, distT (p,OPT) ≤ d3/2 logn
αF

2i ≤ 2d3/2 logn
αF

· (dist(p, L) + dist(p,OPT)).

Since costT (p,OPT) = distT (p,OPT)2, this implies that

costT (p,OPT) ≤ 4d3 log2 n

α2
F

· (2cost(p, L) + 2cost(p,OPT))

≤ 8d3 log2 n

α2
F

· (cost(p, L) + cost(p,OPT))

Hence, we have that:

costT (PT ,OPT) =
∑

p∈PT :p badly-cut

costT (p,OPT) +
∑

p∈PT :p not badly-cut

costT (p,OPT)

≤
∑

p∈PT : badly-cut

8d3 log2 n

α2
F

· (cost(p,OPT) + cost(p, L))

+
∑

p∈PT :p not badly-cut

d3cost(p,OPT)

α2
C

≤
(

8d3 log2 n

α2
F

+
d3

α2
C

)
· cost(P,OPT) +

∑
p∈P : badly-cut

8d3 log2 n

α2
F

· cost(p, L).

96

4.5. Extension to k-Means

Using now Lemma 4.15, we get:

costT (PT ,OPT ∪ BT)

≤
(

8d3 log2 n

α2
F

+
d3

α2
C

)
· cost(P,OPT) +

8d3 log2 n

α2
F

· 3αC
π

cost(P,L)

≤α
2

cost(P,L) +
O(d9 log4 n)

α6π6
· cost(P,OPT).

4.5.2 The private k-means algorithm

That lemma shows that it is enough to compute the optimal solution on PT , and
add to it the centers of BT which can be done by an algorithm similar to the one for
k-Median:

Algorithm 7 DP-bicriteria-kMeans(P,L)

1: Compute a shifted quadtree T . Let r be the root of T .
2: Compute the instance PT , w = MakePrivate(T , PT).
3: Compute s = DynamicProgram-KMeans(T , w, k, r)
4: Use the dynamic program table to find a solution S with cost s
5: Return S ∪ BT

The algorithm DynamicProgram-KMeans is exactly the same as DynamicProgram-
KMedian (Algorithm 3), except that it returns w(c) · diam(c)2 at step 3, to fit the
k-means cost. We can now turn to the proof of Lemma 4.11, to show the guarantees
ensured by this algorithm.

Proof of Lemma 4.11. We start by showing the quality of approximation. As for k-
median, the solution S computed at step 5 of Algorithm 7 is optimal for PB in the
quadtree metric with the additional noise. Hence, its cost verifies cost(PT , S) ≤
costT (PT , S) ≤ costT (PT ,OPT) + kd2 log2 n

ε · Λ2.

Now, with probability 1− π Lemma 4.15 holds. In that case, using Lemma 4.16, the
cost of PT is at most

cost(PT , S) ≤ α

2
· cost(P,L) +

O(d9 log4 n)

α6π6
· cost(P,OPT) +

kd2 log2 n

ε
· Λ2.

Moreover, Lemma 4.15 ensures that
∑

f∈BT
∑

c:L(c)=f cost(c, f) ≤ α
2 cost(P,L). Hence,

combining those bounds concludes the lemma.

We now turn to the privacy guarantee. T is computed obliviously to the data. Hence,
when P changes by one point, PT changes by at most one point as well – depending
whether this point is served by a badly-cut center in L. As for k-median, Step 3 of
the algorithm therefore ensures that the solution computed at step 5 is ε-DP.

97

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

4.5.3 Going from (1 + α)k centers to k

In this last section, we show how to get a true solution to k-means, removing the extra
αk centers.

For that, we can use the reverse greedy algorithm of Chrobak et al. [46].7 This
algorithm starts from a set of centers, and iteratively removes the one leading to the
smallest cost increase, until there are k centers remaining. It can be implemented in a
private manner as follows: let S be a set of O(k) centers computed privately. For any
center s of S, let w(s) to be the size of S’s cluster, plus a Laplace noise Lap(1/ε). Let
PS be the resulting instance. Informally, any solution on PS induces a solution with
similar cost on P , with an additive error ± cost(P, S) + k · Λ2/ε – see Lemma 4.18.
Further, since S is private, PS is private as well – see Lemma 4.17.

On the weighted instance PS , the reverse greedy algorithm finds a solution with k
centers that is an O(log k)-approximation of the optimal solution A for that instance,
using that PS contains O(k) distinct points. This is Theorem 2.2 in [46].

Now, the optimal solution A on PS has cost in P at most OPT + cost(P, S) + kΛ2/ε,
by Lemma 4.18. Hence, combined with Theorem 4.12, A has cost cost(P,A) ≤
poly(d, log n, 1/α)·OPT+kd2 log2 n log k/ε2Λ2. The solution computed by the reversed
greedy has therefore cost at most poly(d, log n, 1/α) ·OPT + kd2 log2 n log2 k/ε2Λ2.

Before formalizing the argument, we show the two crucial lemmas.

I Lemma 4.17. If solution S is computed via an ε-DP algorithm, then the
algorithm computing PS is 2ε-DP. J

Proof. Fix some solution S. By properties of the Laplace mechanism (see 4.2), for any
center s of S the value of w(s) is computed on s’s cluster is ε-DP. Since all clusters
are disjoint, the instance PS is computed in an ε-DP way.

Now, S is not fixed but given privately to the algorithm. By composition, the algo-
rithm that computes PS is 2ε-DP.

I Lemma 4.18. Let S be any solution, and PS computed as described pre-
viously. With high probability, for any set of k centers T , |cost(P, T) −
cost(PS , T)| ≤ 1

2 · cost(PS , T) + 10cost(P, S) + k log nΛ2/ε. J

Proof. Without the addition of a Laplace noise, the cost difference between the two
solution can be bounded using Lemma 1.2.

For any point p ∈ P served by some center s ∈ S, we can apply Lemma 1.2 with

7Although the algorithm is stated only for k-median, its adaptation to k-means is straightforward
using Lemma 1.2.

98

4.6. Empirical Evaluation for k-Median

ε = 1/2 (and z = 2), to get:

|cost(p, T)− cost(s, T)| ≤ 1

2
· cost(s, T) + 10cost(p, s).

Moreover, w.h.p the total noise added is smaller than k log n/ε, hence contributes at
most k log nΛ2/ε to the cost. Summing over all p concludes the proof.

I Lemma 4.19. Let S be the solution computed by Theorem 4.12, and PS
the instance computed as described previously. Applying the reverse greedy
algorithm on instance PS is 2ε-DP and yields a solution with k centers and cost
at most poly(d, log n, 1/α) ·OPT + kd2 log2 n log2 k/ε2Λ2 J

Proof. First, the algorithm is 2ε-DP, as shown by Lemma 4.17.

Second, let A be the optimal solution on the instance PS , and OPT be the optimal
cost for the full set of points P . Applying Lemma 4.18, we get:

cost(PS ,A) ≤ cost(PS ,OPT)

≤ 2cost(P,OPT) + 20cost(P,S) + 2k log nΛ2/ε

= poly(d, log n, 1/α) ·OPT + kd2 log2 n log k/ε2Λ2.

We can now bound the cost of the solution computed by the reverse greedy algorithm.
As PS is made of O(k) many distinct points, the reverse greedy computes a solution
S̃ with cost at most cost(PS , S̃) = O(log k)cost(PS ,A). Applying again Lemma 4.18,
we get

cost(P, S̃) ≤ 3

2
· cost(PS , S̃) + 10cost(P,S) + k log nΛ2/ε

= poly(d, log n, 1/α) ·OPT + kd2 log2 n log k/ε2Λ2,

which concludes the proof.

4.6 Empirical Evaluation for k-Median

In this section, we present an empirical evaluation of our algorithm for the k-median
objective. To the best of our knowledge, this is the first comprehensive empirical
evaluation of private k-median algorithms as the majority of of experimental results
has previously focused on k-means. All datasets used here are publicly-available.

Datasets. We used the following well known, real-world datasets from the UCI Repos-
itory [66] that are standard in clustering experiments SKYNTYPE [27] (n = 245057, d =
4), SHUTTLE [66] (n = 58000, d = 9), COVERTYPE [28] (n = 581012, d = 54) and
HIGGS [19] (n = 11000000, d = 28). Finally, we use a publicly available synthetic
datasets SYNTHETIC (n = 5000, d = 2) [83] for visualizing clustering results.

99

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

0.6 0.8 1.0 1.2 1.4 1.6

0.2

0.4

0.6

0.8

1.0

1.2

1.4
=0.25

0.6 0.8 1.0 1.2 1.4 1.6

0.2

0.4

0.6

0.8

1.0

1.2

1.4
=1

(a) (b)

Figure 4.1: Visualization of our algorithm. Original dataset in green. Leaves of the
tree scaled by their weight in blue and centers found by our algorithm in red. (a)
ε = 0.25 and (b) ε = 1.0.

10 20 30 40

k

2

4

6

8

10

R
a
ti

o
 o

f
o
b
je

ct
iv

e
 o

v
e
r

b
e
st

Balcan et al

Quadtree

Private Lloyd

Coreset

kmed++

kvars

10 20 30 40

k

2

4

6

8

10

12

R
a
ti

o
 o

f
o
b
je

ct
iv

e
 o

v
e
r

b
e
st

Balcan et al

Quadtree

Private Lloyd

Coreset

kmed++

kvars

(a) (b)

Figure 4.2: Comparison of algorithms on (a) SKYNTYPE and (b) SHUTTLE, with ε = 0.5.

Experimental details To simplify the stopping condition of Algorithm 2 we pa-
rameterize our algorithm by a depth parameter α and weight parameter β. We grow
all of our trees to a max depth of αd and stop splitting the tree when w(c) < 10βd

ε
instead of 2d log n/ε. This threshold was chosen to decrease the chance of potentially
splitting empty cells multiple times and does not affect the privacy properties of the
mechanism. The implementation for building the tree embedding was done using
C++ in a large-scale distributed infrastructure. The dynamic program for solving the
optimization problem in the tree was done in a single machine.

For all algorithms we report the average of 10 runs. We varied the number of centers,
k, from 5 to 40, and the parameter ε from 0.25 to 1.

100

4.6. Empirical Evaluation for k-Median

Non-private baseline We compare the results of our algorithm against a non-
private implementation of k-median++ [10] (kmed++) with 10 iterations of Lloyd’s
algorithm. Each iteration was done by optimizing the k-median objective exactly
using Python’s BFGS optimizer.

Private baselines To the best of our knowledge all private baselines for clustering
algorithms have focused on the k-means problem. However, using a private 1-median
algorithm, it is possible to adapt some of the prior work to solve the private k-median
problem.

As a first step we implement a subroutine of the 1-median problem using the objective
perturbation framework of [107]. The algorithm described in [107] requires a smooth
loss function. We therefore modified the k-median objective to the 1

λ -smooth k-median

objective fλ : x 7→ ‖x‖+ 2λ log
(
(1 + e−

‖x‖
λ)/2

)
which converges to ‖x‖ as λ 7→ 0.

Given this tool we implemented the following algorithms.

� Quadtree : A version of Algorithm 4. After finding the centers using the
tree, we ran 4 iterations of the Lloyd algorithm using the private 1-median
implementation described above using at most 20k points from each cluster for
the optimization step to allow it to fit in memory. We split the privacy budget
ε uniformly: using ε/5 to build the tree and ε/5 per Lloyd’s iteration. We tune
the parameters α ∈ {10, 12, 14} and β ∈ {6, 8, 10}. The hyper-parameters for
the 1-median solver were set to λ = 0.2 and γ to 0.01 ∗

√
d/n (γ is a bound on

the gradient norm of the optimizer defined in [107]).

� Private Lloyd: a private implementation of Lloyd’s algorithm. This algorithm
has no approximation guarantee. The initial centers are chosen randomly in
the space, and at each iteration, each point is assigned to the nearest center,
and centers are recomputed using the private 1-median algorithm. We chose the
number of iteration to be 7, as a tradeoff between the quality of approximation
found and the privacy noise added. Here, the hyper-parameters for the 1-median
solver were λ = 1 and γ = 0.01

√
d/n.

� Balcan et al: the private algorithm of [17]. This algorithm finds a small set of
candidate center, and then runs a private local-search algorithm. To compute the
candidate centers, the algorithm essentially projects randomly onto a O(log n)-
dimensional subspace, and discretize the space by taking a fine-grained grid. The
solution computed has worst case cost at most log(n)3/2 ·OPT+poly(d, k, log n).
We modified the code available online [16] to adapt it to k-median, by using our
1-median implementation with λ = 1 and γ = 0.01

√
d/n.

� kvars: A private instantiation of the kvariates heuristic algorithm of [147], which
is a private generalization of the k-means++ algorithm [10]. The algorithm uses
a sub-routine that splits data into computation nodes. We hash each point using
SimHash [42] to assign them to one of 500 computation nodes.

� Coreset8: A heuristic algorithm for private k-means clustering that creates a

8https://ai.googleblog.com/2021/10/practical-differentially-private.html

101

https://ai.googleblog.com/2021/10/practical-differentially-private.html

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

5 10 15 20 25 30 35 40

k

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R
a
ti

o
 o

f
o
b
je

ct
iv

e
 o

v
e
r

b
e
st

Quadtree

Coreset

kmed++ kvars

5 10 15 20 25 30 35 40

k

1.0

1.1

1.2

1.3

1.4

1.5

R
a
ti

o
 o

f
o
b
je

ct
iv

e
 o

v
e
r

b
e
st

Quadtree Coreset kvars

(a) (b)

Figure 4.3: Objective function as a function of k datasets (a) COVERTYPE and (b)
HIGGS, for ε = 0.5.

coreset via recursive partitioning using locality sensitive hashing. We modified
the heuristic to handle k-median with our private 1-median implementation,
with λ = 0.2 and γ = 0.01

√
d/n.

Other baselines not evaluated We describe here other potential candidate base-
lines which we found not feasible to compare against. Since our work focuses on
scalability, we do not compare against algorithms with impractically large running
times like the algorithm of [153, 87] which have state-of-the-art theoretical approxi-
mations but that have not previously been implemented.9 We also did not compare
against [146], as it lacks guarantees for k-median and the baseline [17] showed compa-
rable performance with their algorithm. Finally, we do not compare with the heuristic
GUPT [140] as it does not provide an explicit aggregation procedure for k-median.

Results We begin by showing a visualization of our algorithm on the SYNTHETIC

dataset of 2 dimensions to give intuition on the effect of privacy on constructing
the tree embedding. Figure 4.1(a) shows the centers returned by our algorithm for
ε = 0.25 and ε = 1. This example illustrates that that as ε increases, our tree
embedding captures the geometry of the dataset more correctly.

We now discuss the quality of the clusterings returned by each algorithm. We be-
gin evaluating all baselines on the small datasets SKYNTYPE and SHUTTLE. Figure 4.2
shows the quality of each algorithm for ε = 0.5. The plots are normalized by the best
clustering objective. There are several points worth noting in this plot. First, the
performance of the Balcan et al. algorithm which has the best approximation guaran-
tees is consistently outperformed by our algorithm and the coreset algorithm. Second,
notice that on SKYNTYPE our algorithm achieves a performance that is essentially the

9Private communication with the authors of [87] confirmed that there is no practical implementa-
tion of this algorithm available.

102

4.7. Conclusion

same as the non-private baseline.

For the large datasets COVERTYPE and HIGGS, it was impossible for us to run the Balcan
et al. approach. On HIGGS, even the baseline kmed++ did not finish. Therefore, we
only compare our algorithm against the coreset and kvars baselines. Figure 4.3 shows
the results. Here we see that our algorithm has the strongest performances on HIGGS
while on COVERTYPE it is comparable to the coreset heuristic and slightly worse for
large k.

We compare only the quality of the solutions computed and not the running time,
as the parallel implementation has a large overhead and it never runs really fast.
However, our implementation does run and provide apparently good results on large
scale datasets on which other private algorithms do not terminate or give really poor
results – to the notable exception of the Coreset algorithm, which does not enjoy
theoretical guarantees.

In summary, our empirical evaluation confirms that our approach, which is the only
method that has both theoretical performance guarantees and can be made to scale
to large datasets, consistently performs well on a wide variety of examples, achieving
accuracy much higher than the worst case analysis would indicate.

4.7 Conclusion

We have presented practical and scalable differentially private algorithms for k-median
with worst case approximation guarantees. Although their worst-case performance is
worse than state of the art methods, they are parallelizable, easy to implement in
distributed settings, and empirically perform better than any other algorithm with
approximation guarantees. Furthermore, we have presented an extension of those
algorithms to the k-means objective, with a theoretical analysis. A natural open
question is to close this gap between theory and practice: finding scalable methods
that have even better worst-case guarantees.

103

Chapter 4. Scalable Differentially Private Clustering via Quadtrees

104

Part II

Coreset and Sketches for Clustering

Chapter 5

Presentation of our Results and
Overview of the Techniques

This chapter is an extensive introduction to the coresets results we show in this part of
the thesis. We first introduce the specific questions we consider, and then present our
results. Afterwards, we give a precise description of two types of coreset constructions:
the first one due to Chen [44], from which we draw much inspiration, the second to
Feldman and Langberg [76], which is the basis ingredient for much of (if not all) the
previous best coresets constructions. Finally, we will give a broader overview of the
history of coreset studies.

5.1 Introduction

Our main concern and tool in this part is coreset for (k, z)-clustering, small sketches
of the input for clustering. Formally:

I Definition 5.1. An ε-coreset for the (k, z)-clustering problem in a metric
space (X,dist) for clients P is a weighted subset Ω of P with weights w : Ω→
R+ such that, for any set S ⊂ X, |S| = k,

|
∑
p∈P

cost(p,S)−
∑
p∈Ω

w(p)cost(p,S)| ≤ ε ·
∑
p∈P

cost(p,S).

J

In words, an ε-coreset is a (weighted) set Ω that has same cost as the input P for any
possible solution S (up to a (1±ε) factor). As explained in Chapter 1, a small coreset
allows to “turn big data into tiny data”, which has numerous advantages: compressing

Chapter 5. Presentation of our Results and Overview of the Techniques

the input in order to be able to store it, or speeding-up any algorithm by running it
on the coreset rather than the full dataset.

The study of coreset for clustering started with the work of Har-Peled and Mazum-
dar [96]. They gave a construction based on snapping points to a grid – essentially
what we described in the introduction. This is specifically tailored to Euclidean spaces,
and has a prohibited exponential dependency in the dimension.

The first breakthrough in coreset history is due to Chen [44], who introduced sam-
pling in the coreset toolbox. The basic approach is to devise a non-uniform sam-
pling distribution that picks points according to their cost contribution in an arbi-
trary constant factor approximation. In a nutshell, the analysis shows that, for a
given set S of k centers, it happens with high probability that the sampled instance
Ω with appropriate weights has roughly the same cost as the original instance, i.e.
cost(Ω,S) ∈ (1 ± ε)cost(X,S). Then, to show that the set Ω is an ε-coreset, it is
necessary to take a union-bound over these events for all possible set of k centers. We
give more details on Chen’s work in Section 5.2.

All the current best analysis rely on those ideas: sample proportionate to the cost in
some solution, and use a union-bound to show that the sample preserves the cost of
any solution. Bounding the size of the union-bound is the main hurdle faced by this
approach: indeed, there may be infinitely many possible set of centers, as in Euclidean
spaces.

The state-of-the-art analysis relies on VC-dimension to overcome this hurdle. Infor-
mally, given a ground set X and a set R of subsets of X, the VC dimension of (X,R)
is a complexity measure that is directly related to how well a uniform sample of X
preserves relative size of sets from R. For coresets, we are looking to preserve the
number points whose closest center of S is at distance R, for any R: if a sample
preserves those, it is indeed a coreset. It is henceforth not surprising to see VC di-
mension helping in the design of coresets. In metric spaces where the VC dimension
of the aforementioned sets1 is D, it can be shown that taking Oε,z(k ·D log k) samples
yields a coreset [78], although tighter bounds are achievable in certain cases. For in-
stance, in d dimensional Euclidean spaces D is in O(kd log k) [12], which would yield
coresets of size Oε,z(k

2 ·d log2 k), but Huang and Vishnoi [100] and Braverman, Jiang,
Krauthgamer and Wu [34] showed the existence of a coreset with O(k · log2 k · ε−2z−2)
points.

This VC-dimension based analysis was proven powerful in various metric spaces, such
as doubling spaces by Huang, Jiang, Li and Wu [98], graphs of bounded treewidth by
Baker, Braverman, Huang, Jiang, Krauthgamer, Wu [15] or the shortest-path metric
of a graph excluding a fixed minor by Braverman et al. [34]. However, range spaces
of even heavily constrained metrics do not necessarily have small VC-dimension (e.g.
bounded doubling dimension does not imply bounded VC-dimension or vice versa [98,
120]), and applying previous techniques requires heavy additional machinery to adapt
the VC-dimension approach to them. Moreover, the bounds provided are far from the

1To be more precise, Feldman et al. [78] consider weighted distances: not simply points at distance
R to S, but the points whose weighted distance is at most R: {p : dist(p,S) ≤ wpR}. In Chapter 9,
we generalize their result to the case where the weights are 1.

108

5.1. Introduction

bound obtained for Euclidean spaces: their dependency in k is at least Ω(k2), leaving
a significant gap to the best lower bounds of Ω(k). We thus ask:

I Question 3. Is it possible to design coresets whose size are near-linear in
k, and with no dependency in |P |, for doubling metrics, minor-free metrics,
bounded-treewidth metrics? Are the current roadblocks specific to the analysis
through VC-dimension, or inherent to the problem? J

These questions are the subject of Chapter 6 and Chapter 7. To answer positively, we
present in Chapter 6 a new framework to analyze importance sampling. Its analysis
stems from first principles, and it can be applied in a black-box fashion to any metric
space that admits an approximate centroid set (see Definition 5.2) of bounded size.
We show in Chapter 7 that all previously mentioned spaces satisfy this condition, and
our construction improves on the best-known coreset size. More precisely, we recover
(and improve) all previous results for (k, z)-clustering such as Euclidean spaces, `p
spaces for p ∈ [1, 2), finite n-point metrics, while also giving the first coresets with
size near-linear in k and ε−z for a number of other metrics such as doubling spaces,
minor free metrics, and graphs with bounded treewidth.

One application of small coresets is the design sublinear algorithms, that do not have
access to the full input. If only allowing access to a few random input points, we
show in Chapter 10 how to compute a (1 + ε)-approximation to (1, z)-clustering –
the generalization of mean to arbitrary powers. It is well known that the mean of
1/ε2 points taken uniformly at random is a (1 + ε)-approximation to the mean of the
full input: we generalize this result to arbitrary powers. This is particularly helpful
in practice, as the running time of the algorithm does not depend on n at all. We
complement our theoretical study with experiments, showing that the quality of the
solution computed on our small sample is indeed good and that the running time is
way lower than standard algorithms.

Although numerous great work focused on improving the coreset construction or on
applying them, our understanding of coreset lower bounds is limited, and there is
a significant gap between the best upper and lower bounds on the possible coreset
size. For example, even for Euclidean k-means, nothing beyond the trivial Ω(k) lower
bound is known. We thus ask:

I Question 4. What is the best coreset size one could hope for? J

In Chapter 8, we settle the problem in general discrete metrics, by drawing a strong
tie between coreset and concentration inequalities for sum of random variables. Those
are already key to our coreset constructions: we complement those results by showing
that the tightness of Chernoff bounds implies that our upper bounds are actually
tight.

Interestingly – and somewhat frustratingly – all the state-of-the-art results are heav-
ily reliant on randomization, and the aforementioned concentration inequalities for
random variables. Concretely, to achieve a success probability 1 − π, coreset con-
structions require Ωk,ε(log(1/π)) points. In particular, to construct a coreset that

109

Chapter 5. Presentation of our Results and Overview of the Techniques

offers the desired guarantees with high probability (i.e., probability 1 − poly(1/n)),
the dependency in n strikes back. At the same time, we know from the randomized
constructions that there exist coresets with size independent on n. Designing deter-
ministic coreset is interesting from both practical and theoretical standpoints: from a
practical perspective, it makes sure that the results can be reproduced;2 from a the-
oretical standpoint, understanding the power of randomness in algorithms is a very
basic question and a recurring theme in theoretical computer science: at what cost
can we make an algorithm deterministic? We ask:

I Question 5. Is it possible to deterministically construct k-median and k-
means coreset of size matching the best randomized results? J

Finding deterministic coresets of small size is explicitly asked as an open question in
recent surveys on the coreset literature [75, 143].

To the best of our knowledge, no deterministic coreset construction has been claimed
for other spaces than Euclidean. The best determinstic constructions for Euclidean
k-median (and more generally, (k, z)-Clustering) yields coresets of size O(poly(k) ·
ε−(d+O(z))) [95], which compares very unfavourably to the best randomized result of
size Õ(kε−2−max(2,z)) we show in Chapter 7. A notable exception is for k-means, where
it is possible to leverage the algebraic structure of the problem to construct coresets
of size kε

−2 log(1/ε) [78]. Unfortunately, this construction is very specific to k-means,
requires additional effort to be implemented deterministically and cannot be used for
k-median, and importantly, is still very far from the best known randomized bounds.

Suppose we were to relax the problem of deterministically computing a coreset and
aim for a Las-Vegas algorithm.3 For closely related problems such as locality sensi-
tive hashing (see Ahle [4] and references therein), this is achievable. For clustering,
all known algorithms are Monte Carlo algorithms. The main barrier to obtaining
a Las Vegas algorithm (a challenging and interesting open problem as well) is that
we currently do not know how to verify that a candidate set of points is indeed a
valid coreset without evaluating all possible choices of k centers and verifying that
the cost of each set of k centers is preserved. This stands in stark contrast with other
related techniques for which derandomization techniques have been designed such as
the Johnson Lindenstrauss lemma [72], matrix approximation [31], or regression [149].

As a side result, we also present deterministic dimension reduction for (k, z)-Clustering
in Euclidean space. Dimension reduction is another important class of sketches: it
allows to avoid some curse of dimensionality, by reducing the ambient dimension
to O(ε−2 log k). Yet, those results are based on random projection (see Makarychev,
Makarychev and Razenshteyn [129] and Becchetti, Bury, Cohen-Addad, Grandoni and
Schwiegelshohn [25]). We present a deterministic procedure with similar guarantees
in Chapter 9.

2Obtaining similar probabilistic outcomes over different architectures, computers, programming
languages is a challenge.

3Recall that a Las Vegas algorithm returns a solution in expected polynomial time, whereas a
Monte Carlo algorithm only returns a solution with a small probability of failure.

110

5.1. Introduction

5.1.1 Results Presented in the Part

We now state more precisely our answers to the questions previously asked. First,
we present our framework for constructing coresets. It requires the existence of a
particular discretization of the set of possible centers, as described in the following
definition.

I Definition 5.2. Let (X,dist) be a metric space, P ⊆ X a set of clients and
two positive integers k and z. Let ε > 0 be a precision parameter. Given a set
of O(k) centers A, a set C is an A-approximate centroid set for (k, z)-clustering
on P if it satisfies the following property.
For every set of k centers S ∈ Xk, there exists S̃ ∈ Ck such that for all points p ∈
P that satisfies cost(p,S) ≤

(
8z
ε

)z
cost(p,A), or cost(p, S̃) ≤

(
8z
ε

)z
cost(p,A), it

holds

|cost(p,S)− cost(p, S̃)| ≤ ε

z log(z/ε)
(cost(p,S) + cost(p,A)) . J

This definition is slightly different from Matousek’s one [134], in that we seek to
preserve distances only for interesting points, and allow an error εcost(p,A). This
difference is crucial in some of our applications. Our main theorem is:

I Theorem 5.3. Let (X,dist) be a metric space, P ⊆ X a set of clients with
n distinct points and two positive integers k and z. Let ε > 0 be a precision
parameter, and π ∈ (0, 1). Let also A be a constant-factor approximation for
(k, z)-clustering on P .
Suppose there exists an A-approximate centroid set C for (k, z)-clustering on
P . Then, there exists an algorithm running in time O(n) that constructs with
probability at least 1− π a coreset of size

O

(
2O(z log z) · log4 1/ε

min(ε2, εz)
(k log |C|+ log log(1/ε) + log(1/π))

)

with positive weights for the (k, z)-clustering problem. J

When applying this theorem to particular metric spaces, the running time is domi-
nated by the construction of the constant-factor approximation A, which can be done
for instance in Õ(k|P |) given oracle access to the distances using Lemma 1.3.

If one wishes to trade a factor ε−z for a factor k, we also present coresets of size

k · 2O(z log z) log3(1/ε)
ε2

(k log |C|+ log(1/π)), as explained in Section 6.6.

Theorem 5.3 reduces the construction of coreset to showing the mere existence of an ap-
proximate centroid set – crucially, it is not necessary to compute the approximate cen-
troid set, only to know its existence. In Chapter 7, we illustrate the power of this the-
orem by applying it to several metric spaces, achieving the following (simplified) size
bounds (we ignore poly log(1/ε) and 2O(z log z) factors): let Γ = min(ε−2 + ε−z, kε−2).

111

Chapter 5. Presentation of our Results and Overview of the Techniques

� O (Γ · k log n), since general discrete metric spaces have an approximate centroid
set of size n (the full space). This improves on the bound from Feldman and
Langberg [76] O

(
ε−2zk log k log n

)
.

� O (Γ · k (d+ log k)) for metric spaces with doubling dimension d. This improves
over the O(k3dε−2) from Huang et al. [98]. See Corollary 7.6.

� O
(
Γ · kε−2 · log k

)
for Euclidean spaces, see Corollary 7.20. This improves on

the recent result from Huand and Vishnoi [100], who achieve O
(
ε−2z−2k log2 k

)
.

� O
(

Γ · k
(

log2 k + log k
ε4

))
for a family of graphs excluding a fixed minor, see

Corollary 7.15. This improves on Braverman et al. [34], whose coreset has size
Õ(k2/ε4).

� O
(

Γ · k
(

log2 k + log k
ε3

))
for Planar Graphs, which is a particular family ex-

cluding a fixed minor for which we can save a 1/ε factor and present a simpler,
instructive proof.

� O (Γ · k (t+ log k)) in graphs with treewidth t, see Corollary 7.9. This improves
upon the work of Baker et al. [15], that construct coreset with size Õ(k2t/ε2).

� O(kε−2z · min(d, ε−2 log k)) in Rd with `p distance, for p ∈ [1, 2), see Corol-
lary 7.21. This improves on Huang and Vishnoi [100], who presented a coreset
of size O(k log k · ε−4z ·min(d, ε−2 log k)).

In Chapter 8, we settle the complexity of the problem for several cases. First, for
finite n-point metrics, we prove the following theorem.

I Informal Theorem (See Theorem 8.2). For any 0 < ε < 1/2, k and n,
there exists a finite n point metric such that any ε-coreset for (k, z)-clustering
consists of at least Ω

(
k
ε2

log n
)

points.
For the k-median and k-means objective, this matches the upper bounds up to
polylog(1/ε) factors. J

Our result improves over the Ω(kε−1 log n) lower bound of Baker, Braverman, Huang,
Jiang, Krauthgamer, and Wu [15].

A simple corollary of that theorem is that our bounds for metrics with doubling
dimension D are tight as well:

I Informal Corollary (See Corollary 8.10). For any 0 < ε < 1/2, k
and D, there exists a metric space with doubling dimension D such that any
ε-coreset for (k, z)-clustering consists of at least Ω

(
kD
ε2

)
points.

For the k-median and k-means objective, this matches the upper bounds up to
log k and polylog(1/ε) factors. J

In Chapter 9, we answer Question 5 and present a deterministic implementation of
our framework for Euclidean spaces. We show the following theorem:

112

5.1. Introduction

I Informal Theorem (See Corollary 9.20 for a formal statement).
In the Euclidean space Rd, there exist a deterministic algorithm running in
deterministic time n2 · kk·ε−O(z)

+nε
−O(z)

that constructs an ε-coreset for (k, z)-
clustering of size k2 log2 k · ε−O(1). J

An interesting feature of our construction is that it works for any space where the
uniform VC-dimension of balls is bounded. Compared to the framework of Feldman
and Langberg, this simplifies a lot: they need to bound the VC-dimension of a set of
balls in a weighted metric, as we describe in Section 5.3. As mentioned e.g. in Baker
et al. [15], bounding the uniform VC-dimension is much easier than its weighted
counterpart. Hence, applying our techniques instead of Feldman and Langberg ones
(maybe with randomization if one wants a faster algorithm) may yield simpler coresets,
if one targets suboptimal size poly(k, ε−1). In particular, we apply our algorithm to
minor-excluded graphs, which yields a much simpler answer to Question 3 than the
one we provide in Chapter 7 (although with a worse size).

To show that result in Euclidean spaces, one of the crux is to reduce the dimension:
all the known techniques to reduce the dimension to Oε(k) or Oε(log k) heavily require
randomization. The only exception is for k-means, where principal component analysis
can be used to reduce to Oε(k) dimensions: unfortunately, this does not carry over
to other powers. Hence, our main technical contribution is to show the following
theorem.

I Informal Theorem (See Theorem 9.14 for a formal statement).
For (k, z)-clustering in Euclidean space, one can reduce the dimension to

O(ε−O(z) log k) in deterministic time O
(
nε
−O(z) · d

)
time. J

Finally, we apply coreset for (1, z)-clustering in order to compute very efficiently a near
optimal solution to (1, z)-clustering, that we call the power mean. More precisely, we
construct an algorithm that has low query complexity: instead of considering the
full input, our algorithm is only allowed to access a few number of random input
points. This number is the query complexity of the algorithm: the smaller, the less
information it needs about the input dataset.

I Informal Theorem (See Theorem 10.1 and Theorem 10.2 for
formal statements). There exists an algorithm with query complexity
Õ(ε−z−5 log2 1/δ) that computes a (1 + ε) approximate solution to the high
dimensional power mean problem with probability at least 1− δ.
Furthermore, any algorithm that computes with probability more than 4/5 a
(1 + ε)-approximation for a one-dimensional power mean has query complexity
Ω(ε−z+1). J

113

Chapter 5. Presentation of our Results and Overview of the Techniques

5.2 Brief description of Chen’s Coreset

It is enlightening to describe Chen’s algorithm and analysis [44] in greater details, as
it is our source of inspiration. The algorithm is stated for k-median in Algorithm 8.
In words, the algorithm computes a constant factor approximation, then places rings
around each center and takes as a coreset a uniform sample of each ring, with weight
for a point p inversely proportional to the probability of sampling p.

Algorithm 8 Ke Chen’s Coreset Algorithm

Compute a constant factor approximation A with centers c1, ..., ck and clusters
C1, ..., Ck.
Let ∆ := 1

|P |
∑

p∈P cost(p,A) be the average cost of the solution: for all j ∈
{1, ..., log(|P |/ε)}, let Ri,j :=

{
p ∈ Ci : dist(p, ci) ∈ [2jε∆, 2j+1ε∆)

}
. Let also

Ri,0 := {p ∈ Ci : dist(p, ci) < ε∆)}.
Let Ωi,j be a uniform sample of size δ := ε−2k log(2n) from Ri,j , with weights

|Ri,j |
δ .

return Ω =
⋃

Ωi,j

Let Ω be the outcome of Algorithm 8, and S be any solution: we wish to show that
|cost(P,S)−cost(Ω,S)| ≤ εcost(P,S) with high probability. For this, we proceed ring
by ring, and aim at bounding

|cost(Ri,j ,S)− cost(Ωi,j ,S)|. (5.1)

Since rings partition the input (by definition, there is no point that pays more than
|P | times the average cost), providing a guarantee for all rings will be enough to
conclude for the whole input. To deal with a ring, note that cost(Ωi,j ,S) is a sum of
independent random variable: for ` ∈ {1, ..., δ}, let X` be the distance from the `-th
sampled point to S. Then, we have

cost(Ωi,j ,S) =

δ∑
`=1

|Ri,j |
δ

X`,

E[cost(Ωi,j ,S)] = cost(Ri,j ,S).

Hence, Eq. (5.1) is the deviation between a sum of independent identically distributed
random variables and its expectation. The go-to tool to bound this type of expression
are Chernoff bounds and their variants. Without diving into details, here one can
note that since we focus on the ring Ri,j , triangle inequality ensures that all X`

have the same value, up to an additive ±2j+1ε∆: in that case, one can show that if
δ ≥ ε−2 log(2/λ), then it holds with probability 1− λ that

|cost(Ri,j ,S)− cost(Ωi,j ,S)| ≤ ε|Ri,j |2j+1ε∆ ≤ 2εcost(Ri,j , ci), (5.2)

where the last inequality holds because all points in Ri,j are at distance at least 2jε∆
to ci. With our choice of δ = ε−2k log(2n), the previous guarantee holds therefore
with probability 1− n−k.

114

5.3. VC-dimension: Coresets independent of the size of the input

Since rings partition the input, summing Eq. (5.2) over all rings concludes the ap-
proximation guarantee:

|cost(P,S)− cost(Ω,S)| ≤
k∑
i=1

∑
j

2εcost(Ri,j , ci)

≤ 2εcost(P,C) = O(ε)cost(P,S),

where the last inequality uses that A is a constant-factor approximation. Hence, for
a fixed solution S, the coreset guarantee holds with probability 1− n−k. As there are
nk many possible solutions S (consisting of k centers picked among a metric with n
points), a union-bound ensures that the coreset guarantee holds for any solution S
with constant probability.

Finally, the size of the coreset is equal to the number of rings times δ, i.e., O(k2ε−2 log2 n).
The running time is O(nk) plus the time to compute A.

The key ingredients of the proof are the following: group points such that each point
pays roughly the same in any solution, to allows the use of concentration inequality,
and union bound over all candidate solutions. In the discrete case, the union-bound
is trivial: it is not as easy for the Euclidean case, or in restricted metrics, when one
wishes to remove dependency in n.

Along this part, we will see several ideas to get rid on the dependency in n, by dealing
separately with rings with j > log(1/ε). We will also see how to deal with rings not
one-by-one but by groups, such as to limit the number of different uniform samples
necessary. Finally, we will present ways of limiting the number of candidate solutions,
such as to limit the lose incurred by the union-bound step.

5.3 VC-dimension: Coresets independent of the size of
the input

Since it is at the heart of virtually all modern coresets construction before ours, we
present briefly the sensitivity framework. We highlight here the key ideas, following
Feldman’s presentation [75]. This can be seen as a way to perform the previously
described union-bound over all solutions for Euclidean spaces and other metrics.

A powerful hammer to bound the number of samples required for a given task is
the notion of VC-dimension, that is a measure that is directly related to the size of a
uniform sample that satisfies some desirable property. In particular, one may consider
the following property – very similar to the coreset guarantee we are shooting for:

∀S,

∣∣∣∣∣∣
∑
p∈P

w(p)f(p,S)−
∑
q∈Ω

u(q)f(q,S)

∣∣∣∣∣∣ ≤ ε, (5.3)

where P is the input set and w a weight on each point, Ω is a subset of P , u are weights

115

Chapter 5. Presentation of our Results and Overview of the Techniques

on the sample, and f may be an arbitrary function. If f(p,S) = cost(p,S)∑
w(q)cost(q,S) , then

Eq. (5.3) is exactly a coreset guarantee.

The PAC learning theory [29, 121] provides a bound on the size of a uniform sample to
satisfy Eq. (5.3), in the case where the weights w are uniform. To satisfy the equation
with probability 1−π, the bound depends polynomially on the maximum contribution
of a point supp∈P,S |f(p,S)|, on the sum of weights

∑
p∈P w(p), 1/ε, log 1/π and on a

measure of complexity similar to the VC dimension.

Formulated that way, the bound the sample depends on is actually not satisfying,
as
∑

p∈P w(p) depends on |P |. The key hindsight from Feldman and Langberg [76]
is that one can save that factor by rescaling the weights and changing the func-
tions f . In particular, for any weight m(p), defining g(p,S) := w(p)f(x,S)

m(p) ensures

that
∑

p∈P m(p)g(p,S) =
∑

p∈P w(p)f(p,S), but the sample size now depends on
sup |g(p,S)| and

∑
m(p). Additionally, the sample is not uniform anymore, and the

sample distribution needs to be proportionate to m(p).

To jointly minimize them, the new weights are chosen in order to minimize the total
weight under the constraint sup |g(p,S)| = 1. That is, m(p) = w(p) supS |f(p,S)|.

In our case, this means that m(p) is w(p) supS
cost(p,S)∑
w(q)cost(q,S) . That is, a point is

sampled proportionate to its maximum relative contribution in any solution: this is
the sensitivity, or importance, of a point. Although it is hard to compute exactly,
some standard techniques exist to approximate the sensitivity. For sake of simplicity,
we will assume to have access to those sensitivity values.

Using this framework, the coreset size depends on two crucial values:

� the sum of sensitivities, which is often O(k) [78, 157, 34]. The size of the coreset
depends near-linearly in that quantity.

� The VC dimension of the scaled set of functions g(p,S). Without going into
details, the crux to apply the sensitivity framework is to compute that dimension.

As we already mentioned, the fact that the functions g(p,S) are scaled by a non-
uniform value makes it harder. For clustering problems, bounding the VC-dimension of
the set of functions f(p,S) boils down to bounding the dimension of ∪s{p : dist(p, s) ≥
r}, which is the simply the set of balls’ complement. Instead, for scaled function, the

set is ∪s{p : dist(p,s)
m(p) ≥ r}, which is harder to conceptualize and to work with. We

present in Chapter 9 a construction that only requires to bound the VC-dimension
when weights are uniforms.

This framework had been applied to a large variety of settings. For Euclidean k-
means and k-median, an upper bound of D ∈ O(kd log k) is implicit in the work
of [29] and Eisenstat and Angluin [69]. This bound was recently shown to be tight by
Csikos, Mustafa and Kupavskii [59]. The dependency on d may be replaced with a
dependency on log k [78, 151, 25, 100], using techniques that we explain in Section 7.6.
Thus O(k log2 k) is a natural barrier for known techniques in Euclidean spaces.

This VC dimension is also bounded in bounded-treewidth graph by Baker et al. [15],
in minor-free graphs by Braverman et al. [34], in the case where input points are lines

116

5.4. Further Related Work

by Marom and Feldman [131], for projective clustering by Feldman et al. [78], ...

As mentioned in introduction, this framework reached a limit in some cases. The VC
dimension of the scaled function may be actually unbounded. This is the case for
instance in doubling metrics, where heavy additional work has to be performed to
bound the dimension of a slightly perturbed metric, instead of the original one (see
Huang et al. [98]). Even so, the coreset obtained has size Õ(k3dε−2), still far from the
current best in Euclidean Spaces, and is tight for that technique. The VC dimension
also depends on the number of input points in the case of minor-free graph.

To conclude this introduction on the sensitivity framework, we mention the extension
of the framework presented by Braverman et al. [34]. This is based on the following
idea: many coreset construction have a dependency in log n, where n is the size of
the input. If the construction is applied to a coreset of size log n, then it should yield
a coreset of size log log n instead: iterating this procedure may remove entirely that
dependency.

Of course, things are not that simple, as the n may actually be the total weight of
the input – which does not decrease after computing a coreset. However, in some
cases such as Euclidean spaces or minor-free graphs, the dependency is actually in the
number of distinct input point, regardless of their weight: in those cases, constructing
iteratively coresets of coresets is an elegant way of removing dependency in n.

We note that this new idea is not specific to the sensitivity framework: we will also
make use of it in some of our coreset constructions.

5.4 Further Related Work

We already surveyed most of the relevant bounds for coresets for k-means and k-
median. A complete overview over all of these upper bounds is given in Table 5.1,
further pointers to coreset literature can be found in surveys [143, 75]. Lower bounds
are presented in Table 5.2. For the remainder of the section, we highlight differences
to previous techniques.

The early coreset results mainly considered input data embedded in constant dimen-
sional Euclidean spaces [82, 95, 93]. These coresets relied on low-dimensional geomet-
ric decompositions inducing coresets of sizes typically of order at least k · ε−d. These
techniques were replaced by importance sampling schemes, initiated by the seminal
work of Chen [44] described in Section 5.2. While the early coreset papers [95, 96]
were heavily reliant on the structure of Euclidean spaces, Chen gave the first coreset
of size O(k2ε−2 log2 n) for general n-point metrics.

The state of the art importance sampling techniques in Euclidean spaces are now
based on the framework described in Section 5.3. This applies as well to many other
metric, as described in Section 5.3.

117

Chapter 5. Presentation of our Results and Overview of the Techniques

Additional Euclidean Results. In collaboration with Cohen-Addad, Larsen and
Schwiegelshohn [A8], we showed specific results for Euclidean coresets, that are beyond
the scope of this manuscript. First, we prove a lower bound of Ω

(
kε−2

)
for (k, z)-

clustering coresets in Euclidean Spaces. Second, we improved our construction of
Chapter 6 in the special Euclidean case using chaining techniques, to get coreset of
size Õ

(
kε−3

)
for Euclidean k-median, and Õz

(
k2ε−2

)
for general powers z. This

improves respectively over the Õ
(
kε−4

)
and Õz

(
k2ε−2

)
of Corollary 7.20.

Related work beyond coresets. So far we only described works that aim at
giving better coreset construction for unconstrained k-median and k-means in some
metric space. Nevertheless, there is a rich literature on further related questions. As
a tool for data compression, coresets feature heavily in streaming literature. Some
papers consider a slightly weaker guarantee of summarizing the data set such that
a (1 + ε) approximation can be maintained and extracted. Such notions are often
referred to as weak coresets or streaming coresets, see [76, 77]. Further papers focus on
maintaining coresets with little overhead in various streaming and distributed models,
see [18, 32, 33, 82, 81]. Other related work considers generalizations of k-median
and k-means by either adding capacity constraints [55, 99, 150], or considering more
general objective functions [13, 35]. Coresets have also been studied for many other
problems: we cite non-comprehensively Determinant Maximization [103], Diversity
Maximization [38, 104] logistic regression [101, 144], dependency networks [141], or
low-rank approximation [126].

118

5.4. Further Related Work

Reference Size (Number of Points)

Euclidean space

Har-Peled, Mazumdar (STOC’04) [96] O(k · ε−d · log n)

Har-Peled, Kushal (DCG’07) [95] O(k3 · ε−(d+1))

Chen (Sicomp’09) [44] O(k2 · d · ε−2 log n)

Langberg, Schulman (SODA’10) [115] O(k3 · d2 · ε−2)

Feldman, Langberg (STOC’11) [76] O(k · d · log k · ε−2z)

Feldman, Schmidt, Sohler (Sicomp’20) [78] O(k3 · log k · ε−4)

Sohler and Woodruff (FOCS’18) [151] O(k2 · log k · ε−O(z))

Becchetti, Bury, Cohen-Addad, Grandoni,
O(k · log2 k · ε−8)

Schwiegelshohn (STOC’19) [25]

Huang, Vishnoi (STOC’20) [100] O(k · log2 k · ε−2−2z)

Braverman, Jiang,
Õ(k2 · ε−4)

Krauthgamer, Wu (SODA’21) [34]

Corollary 7.20 O
(
k · log k · ε−2−max(2,z)

)
Corollary 9.20 (deterministic) O

(
k2 · log2 k · ε−O(z)

)
General n-point metrics, ddim denotes the doubling dimension

Chen (Sicomp’09) [44] O(k2 · ε−2 · log2 n)

Feldman, Langberg (STOC’11) [76] O(k · log k · log n · ε−2z)

Huang, Jiang, Li, Wu (FOCS’18) [98] O(k3 · ddim · ε−2)

Corollary 7.6 O(k · (ddim+ log k) · ε−max(2,z))

Graph with n vertices, t denotes the treewidth

Baker, Braverman, Huang, Jiang,
Õ(k2 · t/ε2)

Krauthgamer, Wu (ICML’20) [15]

Corollary 7.9 O(k · (t+ log k) · ε−max(2,z))

Theorem 9.19 (deterministic) O
(
k2t log2 k · ε−5

)
Graph with n vertices, excluding a fixed minor H

Bravermann, Jian,
Õ|H|

(
k2 · ε−4

)
Krauthgamer, Wu (SODA’21) [34]

Corollary 7.15 O|H|

(
k · (log2 k + log k

ε4
) · ε−max(2,z)

)
Theorem 9.19 (deterministic) O

(
k2 · |H| · log2 k · ε−5

)
Table 5.1: Comparison of coreset sizes for (k, z)-Clustering in various metrics. Depen-
dencies on 2O(z) and polylogε−1 are omitted from all references. Additionally, we may
trade a factor ε−z+2 for a factor k in any construction with z > 2. [95, 96] only applies
to k-means and k-median, [25, 78] only applies to k-means. [151] runs in exponential
time, which has been addressed by Feng et al. [80]. Aside from [95, 96], the algo-
rithms are randomized and succeed with constant probability. Although the results
are claimed only for k-Median in [15], it seems that they can be generalized to any
power. The main difference is in the computation of a constant factor approximation.

119

Chapter 5. Presentation of our Results and Overview of the Techniques

Metric Space Best lower bound Our result

Discrete Metrics Ω(kε−1 log n)[15] Ω(kε−2 log n)* Theorem 8.2

doubling dimension D - Ω(kε−2D)* Corollary 8.10

Euclidean k-median Ω(kε−1/2) [15] Ω(kε−2)†

Euclidean k-means - Ω(kε−2))†

Euclidean Ω(k2z/100) [100] Ω(kε−2))†

Table 5.2: Lower bounds on coreset sizes. Results marked with * are tight.
Results marker with † are from a collaboration with Cohen-Addad, Larsen and
Schwiegelshohn [A8], beyond the scope of this thesis.

120

Chapter 6

A New Coreset Framework for Clus-
tering

In this chapter, we present how to compute a coreset of small size, provided the
existence of a small approximate centroid set: we show Theorem 5.3. The roadmap is
as follows: first, we proceed to a high-level description of our result. We then present
formally the algorithm in Section 6.2, and describe the construction of a coreset for
well structured instances in Section 6.3 and Section 6.4. Those are the bulk of the
chapter. We show how to reduce to a well structured instance in Section 6.5. Finally,
we complement this result in Section 6.6, showing how to construct a coreset with a
different tradeoff between k and ε.

6.1 Overview of Our Techniques

Our proof of Theorem 5.3 is arguably from first principles. We start with a quick
overview of its ingredients. The approach consists in first reducing to a well structured
instance, that consists of a set of centers A inducing k clusters, all having roughly the
same cost, and where every point is at the same distance of A, up to a factor 2. Then
we show it is enough to perform importance sampling on all these clusters.

Reducing to a structured instance. Like most coreset constructions, we initially
compute a constant factor approximation A to the problem. Instead of considering
mere rings as in Chen’s analysis presented in Section 5.2, we partition points into
groups such that the following conditions are satisfied, for a given group G:

� For all clusters, the cost of the intersection of the cluster with the group is at
least half the average; i.e. ∀Ci, cost(Ci ∩G,A) ≥ cost(G,A)

2k .

Chapter 6. A New Coreset Framework for Clustering

� In every cluster Ci, there exists a cost rG,i such that the points in the intersection
of the cluster with the group cost rG,i (up to constant factors), i.e. ∀p ∈ Ci ∩
G, rG,i ≤ cost(p,A) ≤ 2rGi .

As a comparison with Section 5.2, note that while the second condition is satisfied in
each ring, the first one is not, as a ring contains points of a single cluster. Instead, we
group several rings together, to reduce the number of uniform samples needed in the
algorithm from Ωε(k) to Oε(1).

We then compute coresets for each group and output the union. In some sense,
this preprocessing step identifies canonical instances for coresets; any algorithm that
produces improved coresets for instances satisfying the aforementioned regularity con-
dition can be combined with our preprocessing steps to produce improved coreset in
general.

Importance Sampling in Groups. The first technical challenge is to analyse the
importance sampling procedure for structured instances.

The arguably simplest way to attempt to analyse importance sampling is by first
showing that for any fixed solution S we need a set Ω of δ samples from G to show
that with good enough probability∑

p∈Ω

cost(p,S)
cost(G,A)

cost(p,A) · δ
= (1± ε) · cost(G,S), (6.1)

and then applying a union bound over the validity of Eq. (6.1) for all solutions S.
This union bound is typically achieved using VC-dimension techniques.

Using this simple estimator, most analyses of importance sampling procedures require
a sample size of at least k points to approximate the cost of a single given solution.
To illustrate this, consider an instance where a single cluster C is isolated from all the
others. Clearly, if S does not have a center close to C, the cost will be extremely large,
requiring some point of C to be contained in the sample. One way to remedy this is by

picking a point p′ proportionate to cost(p′,A)
cost(A) + 1

|Ci| rather than cost(p′,A)
cost(A) , where Ci is the

cluster to which p′ is assigned, see for instance Feldman et al. [78]. This analysis always
leads to coreset of size quadratic in k at best1. Our analysis of importance sampling
for structured instances will allow us to bypass both the quadratic dependency on k,
and the need to bound on the VC-dimension of the range space induced by balls in
the metric space.

Our high level idea is to use two union bounds. The first one will deal with clusters
that are very expensive compared to their cost in A. The second one will focus on
solutions in which clusters have roughly the same cost as they do in A. For the former
case, we observe that if a cluster Ci is served by a center in solution S that is very
far away, then we can easily bound its cost in S as long as our sample approximates
the size of every cluster. Specifically, assume that there exists a point p in Ci with

1A linear dependency on k can be achieved using a different analysis, see [76, 100] for examples.
This approach does not seem to generalize to arbitrary metrics.

122

6.1. Overview of Our Techniques

distance to S at least Ω(1)·ε−1 ·dist(p, ci). Then, since we are working with structured
instances, all points of Ci are roughly at the same distance of ci and that this distance
is negligible compared to dist(p,S), all points of Ci are nearly at the same distance
of S. Conditioned on the event E that the sample Ω preserves the size of all clusters,
the cost of Ci in solution S is preserved as well. Note that this event E is independent
of the solution S and thus we require no enumeration of solutions to preserve the
cost of expensive clusters. Proving that E holds is a straightforward application of
concentration bounds.

The second observation is that points with dist(p,S) ≤ ε ·dist(p,A) are so cheap that
their cost is preserved by the sampling with an error at most ε · cost(A). Indeed, their
cost in S cannot be more than ε · cost(A): it is easy to show that the same bound
holds for the coreset.

The intermediate cases, i.e. points p such that ε−1 · dist(p,A) > dist(p,S) > ε ·
dist(p,A), but not so far as to simply use event E to bound the cost, is the hardest
part of the analysis. We let I be the set of such points. With some basic calculations,
one can therefore show that the variance of the cost estimator Eq. (6.1) is of the order

1

δ

∑
p∈I

(
cost(p,S) · ε−z · cost(p,A) · cost(G,A)

cost(p,A)

)
∈ O(

ε−z

δ
) ·(cost(G,A)+cost(G,S))2.

Thus, standard concentration bounds give an additive error of ε · (cost(A) + cost(S))
when the number of samples in each group is δ = O(ε−2−z). We will present this
analysis in Section 6.3.5: although non-optimal, it gives a shorter, hopefully enlight-
ening proof. Moreover, it yields coresets of size Õ

(
kε−2−z), already improving the

state-of-the-art in many cases.

To improve this number of necessary samples to O(ε−max(2,z)), we use a different
estimator defined as follows. For every cluster Ci, let qi be the point of Ci that is the
closest to S. We then consider∑

p∈Ci∩Ω

(cost(p,S)− cost(qi,S)) · cost(G,A)

cost(p,A) · δ
(6.2)

+
∑

p∈Ci∩Ω

cost(qi,S) · cost(G,A)

cost(p,A) · δ
(6.3)

Conditioned on event E , the estimator in Equation 6.3 is always concentrated around
its expectation, as cost(qi,S) is fixed for S. The first estimator in Equation 6.2
now has a reduced variance. Specifically, the Estimator 6.2 has variance at most
ε−z+2cost(A)cost(S)

δ when z > 2, and cost(A)2

δ when z ∈ {1, 2}, which ultimately allows

us to show that O
(
ε−max(2,z)

)
samples are enough to achieve an additive error of ε ·

(cost(S) + cost(A)). This technique is somewhat related to (and inspired by) chaining
arguments (see e.g. Talagrand [154] for more on chaining). The key difference is while
chaining is generally applied to improve over basic union bounds, our estimator is
designed to reduce the variance.

Preserving the Cost of Points not in Well-Structured Groups Unfortunately,
it is not possible to decompose the entire point set into groups. Given an initial

123

Chapter 6. A New Coreset Framework for Clustering

solution A and a cluster C ∈ A with center c, this is possible for all the points at
distance at most ε−O(z) · cost(C,c)

|C| . The remaining points are now both far from their
respective center in A and only a small fraction of the point set – as there cannot be
many point really further away than the average distance. In the following, let Pfar
denote these points.

For any given subset of these far away points and a candidate solution S, one can
use that either the points pay at most what they do in A, or an increase in their
cost significantly increases the overall cost. In the former case, standard importance
sampling preserves the cost with a very small sample size. In the latter case, a
significant cost by a point p in Pfar also implies that all points close to the center c
have to significantly increase the cost. Since Pfar corresponds to only a tiny fraction
of the points in the cluster, it turns out to be possible to charge the error made for
points in Pfar to the total cluster.

A Union-bound to Preserve all Solutions As pictured in the previous para-
graphs, the cost of points with either very small or very large distance to S is preserved
for any solution S with high probability.

The guarantee we have for interesting points is weaker: their cost is preserved by the
coreset with high probability for any fixed solution S. Hence, for this to hold for any
solution, we need to take a union-bound over the probability of failure for all possible
solution S. However, the union-bound is necessary only for these interesting points
: this explains the introduction of the approximate centroid set in Definition 5.2.
Assuming the existence of a set C such as in Definition 5.2, one can take a union-
bound over the failure of the construction for all solution in Ck, to ensure that the
cost of interesting points is preserved for all these solutions. To extend this result to
any solution S, one can take the solution S̃ in C that approximates best S, and relate
the cost of interesting points in S to their cost in S̃ with a tiny error. Since the cost
of interesting points in S̃ is preserved in the coreset, the cost of these points in S is
preserved as well.

6.2 The Coreset Construction Algorithm, and Proof of
Theorem 5.3

6.2.1 Partitioning an Instance into Groups: Definitions

As sketched in the introductory chapter, the algorithm partitions the input points
into structured groups. We give here the useful definitions.

Fix a metric space I = (X,dist), positive integers k, z and a set of clients P . For a
solution S of (k, z)-clustering on P and a center c ∈ S, c’s cluster consists of all points
closer to c than to any other center of S.

124

6.2. The Coreset Construction Algorithm, and Proof of Theorem 5.3

Fix as well some ε > 0, and let A be any solution for (k, z)-clustering on P with k
centers. Let C1, ..., Ck be the clusters induced by the centers of A.

� the average cost of a cluster Ci is ∆Ci = cost(Ci,A)
|Ci|

� For all i, j, the ring Ri,j is the set of points p ∈ Ci such that

2j∆Ci ≤ cost(p,A) ≤ 2j+1∆Ci .

� The inner ring RI(Ci) := ∪j≤2z log(ε/z)Ri,j (resp. outer ring,
RO(Ci) := ∪j>2z log(z/ε)Ri,j) of a cluster Ci consists of the points of Ci with cost

at most (ε/z)2z ∆Ci (resp. at least (z/ε)2z ∆Ci). The main ring RM (Ci) consists
of all the other points of Ci. We let RAI (resp. RAO) be the union of inner (resp.
outer rings) of the clusters induced by A.

In words, a ring consist of points from a given cluster that have same cost, up to a
factor 2. The inner ring is the union of all points that have cost essentially negligible,
and the outer ring the points that are very expensive – but there must be few of them,
by Markov’s inequality.

Rings are gathered into groups, such that two rings in the same group have same cost
(again, up to a factor 2).

� for each j, Rj is defined to be ∪ki=1Ri,j .

� For each j, the main rings Ri,j are gathered into groups Gj,b defined as follows:

Gj,b :=
{
p | ∃i, p ∈ Ri,j and(ε

4z

)z
· cost(Rj ,A)

k
· 2b ≤ cost(Ri,j ,A) ≤

(ε
4z

)z
· 2b+1 · cost(Rj ,A)

k

}
.

� For any j, let Gj,min := ∪b≤0Gj,b be the union of the cheapest groups, and
Gj,max := ∪b≥z log 4z

ε
Gj,b be the union of the most expensive ones. The set of

interesting groups is made of Gj,min, Gj,max, and Gj,b for all 0 < b < z log 4z
ε .

� The set of outer rings is also partitioned into outer groups:

GOb =
{
p | ∃i, p ∈ RO(Ci), and(ε
4z

)z
·

cost(RAO ,A)

k
· 2b ≤ cost(RO(Ci),A) ≤

(ε
4z

)z
· 2b+1 ·

cost(RAO ,A)

k

}
.

� We let as well GOmin = ∪b≤0G
O
b and GOmax = ∪b≥z log 4z

ε
GOb . The interesting outer

groups are GOmin, G
O
max and all GOb with 0 < b < z log 4z

ε .

Intuitively, grouping points by groups is helpful, as all points in the same ring can
pay the same additive error. Since there are very few groups, it turns out possible
to construct a coreset for each group, and then take the union of the group’s coreset.
This is essentially the algorithm we propose.

We note few facts about the partitioning:

125

Chapter 6. A New Coreset Framework for Clustering

I Fact 6.1. There exist at most O(z log(z/ε)) many non-empty Rj that are
not included in inner or outer ring, i.e., not in RAI nor in RAO . J

The number of different non-empty interesting groups is bounded as well:

I Fact 6.2. There exists at most O(z2 log2(z/ε)) many interesting Gj,b. J

This is simply due to the fact that j can take only interesting values between 2z log(ε/z)
and 2z log(z/ε), and interesting b between 0 and z log(4z/ε).

Similarly, by the definition of the outer groups, we have also that

I Fact 6.3. There exists at most O(z log(z/ε)) many interesting outer groups.
J

For simplicity, we will drop mention of ”interesting” : when considering any group, it
will implicitly be an interesting group.

6.2.2 The algorithm

For an initial metric space (X,dist), set of clients P and ε > 0, our algorithm essen-
tially consists of the following steps: given a solution A, it processes the input in order
to reduce the number of different groups. Then, the algorithm computes a coreset of
the points inside each group using the following GroupSample procedure. The final
coreset is made of the union of the coresets for all groups.

The GroupSample procedure takes as input a group of points G as defined in Sec-
tion 6.2.1, a set of centers A inducing clusters C̃1, C̃2, ..., C̃k on G and an integer δ.
Note importantly that the definition of clusters C̃i says that they are only made of
points from the group G. The output of GroupSample is a set of weighted points,

computed as follows: a point p ∈ C̃i is sampled with probability δ·cost(C̃i,A)

|C̃i|·cost(G,A)
, and the

weight of any sampled point is rescaled by a factor |C̃i|·cost(G,A)

δcost(C̃i,A)
.2

The properties of the GroupSample procedure are captured by the following lemma.

I Lemma 6.4. Let (X,dist) be a metric space, k, z be two positive integers
and G be a group of clients and A be a solution to (k, z)-clustering on G with
k centers such that:

� for every cluster C̃ induced by A on G, all points of C̃ have the same cost
in A, up to a factor 2: ∀p, q ∈ C̃, cost(p,A) ≤ 2cost(q,A).

2Note that this is essentially importance sampling, as each point in a cluster C̃i have cost roughly
equal to the average. We chose this different distribution for simplicity in our proofs.

126

6.2. The Coreset Construction Algorithm, and Proof of Theorem 5.3

� for all clusters C̃ induced by A on G, it holds that cost(G,A)
2k ≤ cost(C̃,A).

Let C be a A-approximate centroid set for (k, z)-clustering on G.
Then, there exists an algorithm GroupSample, running in time O(|G|)
that constructs a set Ω of size δ such that, with probability 1 −
exp

(
k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

it holds that for all set S of k centers:

|cost(G,S)− cost(Ω,S)| = O(ε) (cost(G,S) + cost(G,A)) . J

We further require the SensitivitySample procedure, which we will apply to some of
the points not consider by the calls to GroupSample. From a group G, this procedure

merely picks δ points p with probability cost(p,A)
cost(G,A) . Each of the δ sampled points has a

weight cost(G,A)
δ·cost(p,A) .

The key property of SensitivitySample is given in the following lemma.

I Lemma 6.5. Let (X,dist) be a metric space, k, z be two positive integers,
P be a set of clients and A be a cA-approximate solution solution to (k, z)-
clustering on P .
Let G be either a group GOb or GOmax. Suppose moreover that there is a A-
approximate centroid set C for (k, z)-clustering on G .
Then, there exists an algorithm SensitivitySample running in time O(|G|)
that constructs a set Ω of size δ such that it holds with probability 1 −
exp

(
k log |C| − 2O(z log z) · ε2

log2 1/ε
· δ
)

that, for all sets S of k centers:

|cost(G,S)− cost(Ω,S)| = ε

z log z/ε
· (cost(S) + cost(A)) . J

An interesting feature of Lemma 6.5 is that the probability does not depend on ε−z,
as it does in Lemma 6.4. In particular, it matches the lower bound for Euclidean and
doubling metrics that was mentioned in Chapter 5.

Using the two algorithms GroupSample and SensitivitySample, we can formally
present the whole algorithm:

Input: A metric space (X,dist), a set P ⊆ X, k, z > 0, a solution A to (k, z)-
clustering on P , and ε such that 0 < ε < 1/3.
Output: A coreset. Namely, a set of points Ω ⊆ P ∪ A and a weight function
w : Ω 7→ R+ such that for any set of k centers S, cost(P,S) = (1± ε)cost(Ω,S).

1. Set the weights of all the centers of A to 0.

2. Partition the remaining instance into groups:

(a) For each cluster C of A with center c, remove RI(C) and increase the
weight of c by |RI(C)|.

(b) For each cluster C with center c in solution A , the algorithm discards also

127

Chapter 6. A New Coreset Framework for Clustering

all of C ∩∪jGj,min and RO(C)∩GOmin, and increases the weight of c by the
number of points discarded in cluster c.

(c) Let D be the set of points discarded at those steps, and P1 be the weighted
set of centers that have positive weights.

3. Sampling from well structured groups: For every j such that z log(ε/z) ≤
j ≤ 2z log(z/ε) and every group Gj,b /∈ Gj,min, compute a coreset Ωj,b of size

δ = O

(
2O(z log z) log2 1/ε

min(ε2, εz)
(k log |C|+ log log(1/ε) + log(1/π))

)
using the GroupSample procedure.

4. Sampling from the outer rings: From each group GO1 , ..., G
O
max, compute a

coreset ΩO
b of size

δ = O

(
2O(z log z) · log2(1/ε)

ε2
(k log |C|+ log log(1/ε) + log(1/π))

)
using the SensitivitySample procedure.

5. Output:

� A coreset consisting of A ∪j,b Ωj,b ∪i ΩO
i .

� Weights: weights for A defined throughout the algorithm, weights for Ωj,b

defined by the GroupSample procedure, weights for ΩO defined by the
SensitivitySample procedure.

I Remark 6.6. Instead of using the GroupSample procedure, one could use
any coreset construction tailored for the well structured group. Improving on
that step would improve the final coreset bound: if the size of the coreset
produced for a group is T , then the total coreset has size

Õ

(
T +

2O(z log z)

ε2
· k log |C|

)
J

6.2.3 Proof of the Main Theorem 5.3

As we prove in Section 6.5, the outcome of the partitioning step, D and P1, satisfies
the following lemma, that deals with the inner ring, and the groups Gj,min and GOmin:

I Lemma 6.7. Let (X,dist) be a metric space with a set of clients P , k, z be
two positive integers, and ε ∈ R∗+. For every solution S, it holds that

|cost(D,S)− cost(P1,S)| = O(ε)cost(S),

128

6.2. The Coreset Construction Algorithm, and Proof of Theorem 5.3

where D and P1 are defined in Step 2 of the algorithm. J

Combining properties of the partitioning procedure, Lemma 6.4, Lemma 6.5 and
Lemma 6.7 allows to prove Theorem 5.3:

Proof of Theorem 5.3. Let Ω be the output of the algorithm described above, and

δ = O
(

2O(z log z) log2 1/ε
min(ε2,εz)

(k log |C|+ log log(1/ε) + log(1/π))
)

as defined in step 3 of

the algorithm. Due to Fact 6.2 and Fact 6.3, Ω has size O(z2 log2(z/ε) · δ+ |A|), and
non-negative weights by construction.

We now turn to analysing the quality of the coreset. Any group Gj,b for b > 0 satisfies
Lemma 6.4: the cost of any point p ∈ Gj,b∩Ci satisfies 2j∆Ci ≤ cost(p,A) ≤ 2j+1∆Ci ,
and

� for b ∈
{

0, ..., z log 4z
ε

}
, the cost of all clusters induced by A on Gj,b are equal

up to a factor 2, hence for all i
cost(Gj,b,A)

2k ≤ cost(Ci ∩Gj,b,A)

� for b = max, it holds that
cost(Gj,max,A)

2k ≤ cost(Rj ,A)
2k ≤ cost(Ci ∩Gj,max,A).

Hence, Lemma 6.4 ensures that, with probability 1−exp
(
k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

,

the coreset Ωj,b constructed for Gj,b satisfies for any solution S

|cost(Gj,b,S)− cost(Ωj,b,S)| = O(ε) (cost(Gj,b,S) + cost(Gj,b,A)) .

Similarly, Lemma 6.5 ensures that, with probability 1−exp
(

log |C| − 2O(z log z) · ε2

log2 1/ε
· δ
)

,

the coreset ΩO
b constructed for GOb satisfies for any solution S

|cost(GOb ,S)− cost(ΩO
b ,S)| = ε

z log(z/ε)
(cost(S) + cost(A)) .

Taking a union-bound over the failure probability of Lemma 6.5 and of Lemma 6.4
applied to all groups Gj,b with z log(ε/z) ≤ j ≤ 2z log(z/ε) and all GOi implies that,
with probability

1− z2 log2(z/ε) exp

(
k log |C| − 2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)

−z log(z/ε) exp

(
log |C| − 2O(z log z) ε2

log2 1/ε
· δ
)

for any solution S,

|cost(S)− cost(Ω, S)|

≤ |cost(D,S)− cost(P1,S)|+
∑
j,b

|cost(Gj,b,S)− cost(Gj,b ∩ Ω,S)|

+
∑
i

|cost(GOb ,S)− cost(GOb ∩ Ω,S)|

≤ O(ε)cost(S) +O(ε)cost(A) ≤ O(ε)cost(S)

129

Chapter 6. A New Coreset Framework for Clustering

where the penultimate inequality uses Lemma 6.7, and the last one that A is a
constant-factor approximation.

For δ = 2O(z log z) log2 1/ε
min(ε2,εz)

(k log |C|+ log log(1/ε) + log(1/π)), this probability can be

simplified to

1− exp
(

2(log z + log log(z/ε)) + k log |C| − 2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)

= 1− π.

The complexity of this algorithm is:

� O(n) to compute the groups: given all distances from a client to its center,
computing the average cost of all clusters costs O(n), hence partitioning into Rj
cost O(n) as well, and then decomposing Rj into groups is also done in O(n)
time;

� plus the cost to compute the coreset in the groups, which is
∑

j,bO(|Gj,b|) +∑
iO(|GOb |) = O(n)

Hence, the total complexity is O(n).

6.3 Sampling inside Groups: Proof of Lemma 6.4

The goal of this section is to show the existence of an algorithm GroupSample that
satisfies Lemma 6.4, that we restate here for convenience:

I Lemma 6.4. Let (X,dist) be a metric space, k, z be two positive integers
and G be a group of clients and A be a solution to (k, z)-clustering on G with
k centers such that:

� for every cluster C̃ induced by A on G, all points of C̃ have the same cost
in A, up to a factor 2: ∀p, q ∈ C̃, cost(p,A) ≤ 2cost(q,A).

� for all clusters C̃ induced by A on G, it holds that cost(G,A)
2k ≤ cost(C̃,A).

Let C be a A-approximate centroid set for (k, z)-clustering on G.
Then, there exists an algorithm GroupSample, running in time O(|G|)
that constructs a set Ω of size δ such that, with probability 1 −
exp

(
k log |C| − 2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

it holds that for all set S of k centers:

|cost(G,S)− cost(Ω,S)| = O(ε) (cost(G,S) + cost(G,A)) . J

130

6.3. Sampling inside Groups: Proof of Lemma 6.4

6.3.1 Description of the GroupSample Algorithm

The GroupSample merely consists of importance sampling in rounds, i.e. there are δ
rounds in which one point of G is sampled. Let C̃1, C̃2, ... be the clusters induced by A
on G: the probability of sampling point p ∈ C̃i is cost(C̃i,A)

|C̃i|·cost(G,A)
– recall that all clusters

C̃i contain only points from the group G. The weight of any sampled point is rescaled

by a factor |C̃i|·cost(G,A)

δcost(C̃i,A)
. If there are m copies of a point, it is sampled in a round with

probability m·cost(C̃i,A)

|C̃i|·cost(G,A)
(which is equivalent to sampling each copy with probability

cost(C̃i,A)

|C̃i|·cost(G,A)
). In what follows, each copies will be considered independently.

I Definition 6.8. We denote f(p) := |C̃i|·cost(G,A)

δcost(C̃i,A)
the scaling factor of the

weight of a point p ∈ C̃i. J

6.3.2 Organization of the Proof

To analyze the sampling procedure of GroupSample, we consider different cost ranges
I`,S induced by a solution S as follows. A point p of G is in I`,S if 2` · cost(p,A) ≤
cost(p,S) ≤ 2`+1 · cost(p,A). We distinguish between the following cases.

� ` ≤ log ε/2. We call all I`,S in this range tiny. The union of all tiny I`,S is
denoted by Itiny,S .

� log ε/2 ≤ ` ≤ z log(8z/ε). We call all I`,S in this range interesting.

� ` ≥ z log(4z/ε). We call all I`,S in this range huge.

Note that interesting and huge ranges intersect. This is to give us some slack in
the proof: for a solution S, we will deal with huge ranges before relating S to its
representative S̃ from Ck. Due to the approximation, some non-huge range for S can
become huge for S̃: however, due to our definition, they stay in the interesting ranges.

A simple observation leads to the next fact.

I Fact 6.9. Given a solution S , there are at most O(z log z/ε) interesting
I`,S . J

Bounding the difference in cost of G ∩ I`,S requires different arguments depending on
the type of I`,S .

The two easy cases are tiny and huge, so we will first proceed to prove those. Prov-
ing the interesting case is arguably both the main challenge and our main technical
contribution.

131

Chapter 6. A New Coreset Framework for Clustering

Figure 6.1: Arrangement of Lemmas of Section 6.3 to prove Lemma 6.4.

For the proof, we will rely on Bernstein’s concentration inequality:

I Theorem 6.10 (Bernstein’s Inequality). Let X1, . . . Xδ be non-negative
independent random variables. Let S =

∑δ
i=1Xi. If there exists an almost-sure

upper bound M ≥ Xi, then

P [|S − E[S]| ≥ t] ≤ exp

(
− t2

2
∑δ

i=1

(
E[X2

i]−
∑

E[Xi]2
)

+ 2
3 ·M · t

)
.

J

In application of that bound, we will simply drop the E[Xi]
2 terms from the denomi-

nator, as it only improves the bound, and in our applications the second moment will
dominate in all important cases.

In what follows, we fix k, z, G and A, as in the assumptions of Lemma 6.4. Let
C̃1, ..., C̃k be the clusters induced by A on G. The assumptions imply the following
fact:

I Fact 6.11. For any p ∈ C̃i, cost(C̃i,A)

2|C̃i|
≤ cost(p,A) ≤ 2cost(C̃i,A)

|C̃i|
. J

We will start with the tiny type, as it is mostly divorced from the others. We will
then show that the weight of each cluster is preserved, which implies the cost huge
type is preserved as well.

132

6.3. Sampling inside Groups: Proof of Lemma 6.4

6.3.3 Dealing with Tiny Type

I Lemma 6.12. It holds that, for any solution S,

max

 ∑
p∈Itiny,S

cost(p,S),
∑

p∈Itiny,S∩Ω

f(p)cost(p,S)

 ≤ ε · cost(G,A). J

Proof. By definition of Itiny,S ,
∑

p∈Itiny,S cost(p,S) ≤
∑

p∈Itiny,S

ε
2 · cost(p,A) ≤ ε

2 ·

cost(G,A). Similarly, we have for the other term∑
p∈Itiny,S∩Ω

f(p) · cost(p,S) ≤
∑

p∈Itiny,S∩Ω

f(p)
ε

2
· cost(p,A)

≤ ε

2

k∑
i=1

∑
p∈C̃i∩Itiny,S∩Ω

|C̃i| · cost(G,A)

δcost(C̃i,A)
· 2 · cost(C̃i,A)

|C̃i|

≤ ε ·
|Itiny,S ∩ Ω|

δ
cost(G,A)

≤ ε · cost(G,A).

where the last inequality uses that Ω contains δ points.

6.3.4 Preserving the Weight of Clusters, and the Huge Type

We now consider the huge ranges. For this, we first show that, given we sampled
enough points, |C̃i| is well approximated for every cluster C̃i. This lemma will also
be used later for the interesting points. We define event E to be: For all cluster C̃i
induced by A on G, ∑

p∈C̃i∩Ω

|C̃i| · cost(G,A)

cost(C̃i,A) · δ
= (1± ε) · |C̃i|

I Lemma 6.13. We have that with probability at least 1 − k ·
z2 log2(z/ε) exp

(
−O(1) ε

2

k δ
)

, event E happens. J

Proof. Consider any cluster C̃i induced by A on G. The expected number of points
sampled from C̃i is then at least

µi :=
∑
p∈C̃i

δcost(C̃i,A)

|C̃i| · cost(G,A)
=
δcost(C̃i,A)

cost(G,A)
≥ δ

2k
,

133

Chapter 6. A New Coreset Framework for Clustering

where the inequality holds by assumption on G. Define the indicator variable of point
p from the sample being drawn from C̃i as Pi(p). Using Chernoff bounds, we therefore
have

P

∣∣∣∣∣∣
∑

p∈G∩Ω

Pi(p)− µi

∣∣∣∣∣∣ ≥ ε · µi
 ≤ exp

(
−ε

2 · µi
3

)
≤ exp

(
−ε

2δ

6k

)
. (6.4)

Now, rescaling Pi(p) by a factor |C̃i|·cost(G,A)

δcost(C̃i,A)
implies that approximating µi up to a

(1± ε) factor also approximates |C̃i| up to a (1± ε) factor.

The final result follows by applying a union bound for all clusters in all groups.

We now show that for any cluster C̃i with a non-empty huge range, Lemma 6.13
implies that the cost is well approximated – without the need of going through the
approximate solution S̃.

I Lemma 6.14. Condition on event E . Then, for any solution S, and any
i such that there exists ` ≥ z log(4z/ε) and a point p ∈ C̃i with cost(p,S) ≥
2`cost(p,A), we have:∣∣∣∣∣∣cost(C̃i,S)−

∑
p∈Ω∩Ci

f(p) · cost(p,S)

∣∣∣∣∣∣ ≤ 7ε · cost(C̃i,S). J

Proof. Let p ∈ C̃i as given in the statement. Using the structure of clusters in a group,
this implies for any q ∈ C̃i: cost(p, q) ≤ (dist(p,A) + dist(q,A))z ≤ 3z · cost(p,A) ≤
3z · 2(`−z log(4z/ε))cost(p,A) ≤ (3ε/4z)z · cost(p,S). By Lemma 1.2, we therefore have
for any point q ∈ C̃i

cost(p,S) ≤ (1 + ε/2z)z−1 cost(q,S) + (1 + 2z/ε)z−1 cost(p, q)

≤ (1 + ε) cost(q,S) + ε · cost(p,S)

⇒ cost(q,S) ≥ 1− ε
1 + ε

cost(p, S) ≥ (1− 2ε)cost(p,S)

By a similar calculation, we can also derive an upper bound of cost(q,S) ≤ cost(p,S) ·
(1 + 2ε). Hence, we have

∑
q∈Ω∩C̃i

|C̃i| · cost(G,A)

cost(C̃i,A) · δ
· cost(q,S) = (1± 2ε) · cost(p,S) ·

∑
q∈Ω∩C̃i

|C̃i| · cost(G,A)

cost(C̃i,A) · δ

= (1± 2ε) · cost(p,S) · (1± ε) · |C̃i| (Event E)

= (1± 2ε) · (1± ε) · (1± 2ε) · cost(C̃i,S)

= (1± 7ε) · cost(C̃i,S).

134

6.3. Sampling inside Groups: Proof of Lemma 6.4

6.3.5 Bounding Interesting I`,S: a Simple but Suboptimal Analysis.

Now we move onto the most involved case, presenting first a suboptimal analysis of
GroupSample for the interesting types. As explained in the introduction, our main
goal is to design a good estimator and apply Bernstein’s inequality to it.

Since the clusters intersecting a huge I`,S are dealt with by Lemma 6.14, we only need
to focus on the interesting clusters, namely clusters C̃ that satisfy

@p ∈ C̃ | cost(p,S) ≥
(

8z

ε

)z
· cost(p,A). (6.5)

In other words, a clustering is interesting only if it does not have any point in a huge
I`,S . This restriction will be crucial to our analysis. Let LS be a set of interesting
clusters (possibly not all of them).3 For simplicity, we will assimilate LS and the
points contained in the clusters of LS .

We present here a first attempt to show that the cost of interesting points is preserved.
Although suboptimal, it serves as a good warm-up for our improved bound.

In this first attempt, we will use the simple estimator E(LS) :=
∑

p∈LS∩Ω f(p)cost(p,S)
as an estimator of the cost for points in LS . Note that by choice of the weights f(p),
this estimator is unbiased: E[E(LS)] =

∑
p∈LS cost(p,S), precisely the quantity we

seek to estimate.

To show concentration, we rely on Bernstein’s inequality from Theorem 6.10. Hence,
the key part of our proof is to bound the variance of the estimator.

I Lemma 6.15. Let G be a group of points, and A be a solution. Let C be
an A-approximate centroid set, as in Definition 5.2. It holds with probability

1− exp

(
k log |C| − ε2+z

2O(z log z) log2 1/ε
· δ
)

that, for all solution S̃ ∈ Ck and any set of interesting clusters LS̃ induced by
A on G:

|E(LS)− E [E(LS)]| ≤ ε

z log z/ε
· cost(G,A)

J

Proof. First, we fix some solution S and some set of interesting clusters LS , verifying
Eq. (6.5). We express E(LS) as a sum of i.i.d variables : E(LS) =

∑δ
j=1Xj , where

Xj = f(Ωj)cost(Ωj ,S) when the j-th sampled point is Ωj ∈ LS , Xj = 0 otherwise.
Recall that, due to Fact 6.11, the probability that the j-th sampled point is p from

some cluster C̃ satisfies P[Ωj = p] = cost(C̃,A)

|C̃|·cost(G,A)
≤ 2cost(p,A)

cost(G,A) . From the same fact,

f(p) ≤ 2cost(G,A)
δcost(p,A) .

3We define LS to contain only huge clusters but not all of them in order to relate the cost of
solutions from the approximate centroid set C to the cost of any solution, as it will become clear in
Section 6.3.7.

135

Chapter 6. A New Coreset Framework for Clustering

We will rely on Bernstein’s inequality (Theorem 6.10). To do this, we need an upper
bound on the variance of E(LS), as well as an almost sure upper bound M on every
sample. We first bound E[X2

i]:

E[X2
i] = E

[
(f(Ωi)cost(Ωi,S))2

]
=

∑
p∈LS

(f(p)cost(p,S))2 Pr [Ωi = p]

≤
∑
p∈LS

cost(p,S) ·
(

4z

ε

)z
· cost(p,A) ·

(
2cost(G,A)

δcost(p,A)

)2 2cost(p,A)

cost(G,A)

≤
(

4z

ε

)z
· cost(G,A)

δ2

∑
p∈LS

cost(p,S)

≤
(

4z

ε

)z
· cost(G,A)cost(G,S)

δ2

≤
(

4z

ε

)z
· (cost(G,A) + cost(G,S))2

δ2

Where, in the third line, we upper bounded only one of the cost(p,S) by (4z/ε)zcost(p,A).

Hence, it holds that
∑δ

i=1 E[X2
i] ≤

(
4z
ε

)z · (cost(G,A)+cost(G,S))2

δ .

To apply Bernstein’s inequality, we also need an upper-bound on the value of Xi:
using cost(p,S) ≤

(
4z
ε

)z
cost(p,A) and f(p) ≤ 2cost(G,A)

δcost(p,A) we get

Xi ≤ M := 2O(z log z) · ε−z (cost(G,A) + cost(G,S))

δ

Applying Bernstein’s inequality with those bounds on the variance and the value of
the Xi, we then have:

P
[
|E(LS)− E[E(LS)]| > ε

z log z/ε
· (cost(G,A) + cost(G,S))

]

≤ exp

− ε2

z2 log2 z/ε
· (cost(G,A) + cost(G,S))2

2
∑δ

i=1 Var[Xi] + 1
3M ·

ε
z log z/ε · (cost(G,A) + cost(G,S))


≤ exp

(
− ε2+z

2O(z log z) log2 1/ε
· δ
)

Hence, for a fixed solution S and a fixed set of interesting clusters LS , it holds

with probability 1 − exp
(
− ε2+z

2O(z log z) log2 1/ε
· δ
)

that |E(LS) − E[E(LS)]| > ε
z log z/ε ·

(cost(G,A) + cost(G,S)).

Doing a union-bound over the Ck many solutions S and the 2k many sets of interesting

clusters concludes the lemma: it holds with probability 1−exp
(
k logC− ε2+z

2O(z log z) log2 1/ε
· δ
)

that, for any solution S ∈ Ck and any set of interesting clusters LS , |E(LS) −
E[E(LS)]| > ε

z log z/ε · (cost(G,A) + cost(G,S)).

136

6.3. Sampling inside Groups: Proof of Lemma 6.4

In order to apply Lemma 6.15, note that the quantity |E(LS)− E[E(LS)]| is equal
to |cost(LS ∩ Ω,S)− cost(LS ,S)|, namely the difference between the cost in the full
input and the cost in the coreset of points in LS .

This lemma is enough to conclude that the outcome of GroupSample is a coreset,
once combined with Lemmas 6.12 and 6.14. To see the end of the proof, one can jump
directly to the proof of Lemma 6.4 (in Section 6.3.7) and use use Lemma 6.15 instead of
Lemma 6.20. This would give a coreset of size Õ

(
kε−2−z), instead of Õ

(
kε−max(2,z)

)
.

6.3.6 Bounding Interesting I`,S: Improved Analysis

The shortcoming of the previous estimator is its huge variance, with dependency
in ε−z. We present an alternate estimator with small variance, allowing in turn to
increase the success probability of the algorithm.

As for the previous estimator, we only need to focus on some interesting clusters
LS , namely clusters that do not have any point in a huge I`,S and satisfy Eq. (6.5),
important enough to be recalled here: all clusters in LS verify

@p ∈ C̃ | cost(p,S) ≥
(

8z

ε

)z
· cost(p,A). (6.6)

Designing a Good Estimator: Reducing the Variance

Our first observation is that we can estimate the cost of points in I`,S ∩ LS , for each
` independently, instead of estimating directly the cost of LS as in previous section.
For them, we will use the following estimator:

I Definition 6.16. Let G be a group of points, and C̃i be the clusters induced
by a solution A on G. For a given set of interesting clusters LS , we let

E`,S(LS) :=
∑
C̃i∈LS

∑
p∈C̃i∩I`,S∩Ω

f(p)(cost(p,S)− cost(qi,S ,S)), (6.7)

where qi,S = argmin
p∈C̃i

cost(p,S). J

E`,S(LS) can be expressed differently:

137

Chapter 6. A New Coreset Framework for Clustering

E`,S(LS) =
∑
C̃i∈LS

∑
p∈C̃i∩I`,S∩Ω

f(p)(cost(p,S)− cost(qi,S ,S))

=
∑

p∈I`,S∩LS∩Ω

f(p)cost(p,S)− F`,S(LS), (6.8)

with F`,S(LS) :=
∑
C̃i∈LS

∑
p∈C̃i∩I`,S∩Ω

f(p)cost(qi,S ,S)

F`,S(LS) is a random variable whose value depends on the randomly sampled points
Ω (we will discuss F`,S(LS) in more detail later).

Note that the expectation of E`,S(LS) is

E [E`,S(LS)] =
∑

p∈I`,S∩LS

δcost(C̃i,A)

|C̃i|cost(G,A)
· f(p)cost(p, S)− E[F`,S(LS)]

=
∑

p∈I`,S∩LS

δcost(C̃i,A)

|C̃i|cost(G,A)
· |C̃i|cost(G,A)

δcost(C̃i,A)
· cost(p, S)− E[F`,S(LS)]

= cost(I`,S ∩ LS , S)− E[F`,S(LS)],

Now instead of attempting to show directly concentration of all cost(I`,S ∩LS ∩Ω,S),
we will instead show that:

1. E`,S(LS) is concentrated for all ` and S, and

2.
∑

` F`,S(LS) is concentrated around its expectation.

The reason for decoupling the two arguments is that E`,S(LS) has a very small vari-
ance, for which few samples are sufficient: each term of the sum has magnitude
cost(p,S) − cost(qi,S ,S) instead of simply cost(p,S). This difference is crucial to
our analysis. Furthermore, event E from Lemma 6.13 easily leads to a concentration
bound on FS(LS) =

∑
` F`,S(LS).

To establish the gain in variance obtained by subtracting cost(qi,S ,S), we have the
following lemma.

I Lemma 6.17. Let G be a group of points, and S be an arbitrary solution
and C̃i be a cluster induced A on G where all points have same cost, up to a
factor 2. Denote by qi,S = argmin

p∈C̃i
cost(p,S). Then for every interesting range

with ` ≥ log ε/2 and every point p ∈ C̃i ∩ I`,S ,

wp :=
cost(p,S)− cost(qi,S ,S)

cost(qi,S ,A)
∈
[
0, 2`(1−1/z) · 2O(z log z)

]
J

Proof. Let wp =
cost(p,S)−cost(qi,S ,S)

cost(qi,S ,A) . By choice of qi,S , wp ≥ 0, so we consider the

upper bound.

138

6.3. Sampling inside Groups: Proof of Lemma 6.4

We first show useful inequalities, relating the different solutions. Since p ∈ I`,S , we
have:

cost(qi,S ,S) ≤ cost(p,S) ≤ 2`+1cost(p,A)

≤ 2`+2cost(qi,S ,A),

where the last inequality holds since p and qi,S are in the same cluster and have
up to a factor 2 the same cost. We also have that cost(p, qi,S) ≤ 2z−1(cost(p,A) +
cost(qi,S ,A)) ≤ 3 · 2z−1cost(qi,S ,A).

Now, using Lemma 1.2, for any α ≤ 1,

cost(p,S) ≤ (1 + α/z)z−1cost(qi,S ,S) +
(

1 +
z

α

)z−1
cost(p, qi,S)

which after rearranging implies

cost(p,S)− cost(qi,S ,S) ≤ 2α · cost(qi,S ,S) +

(
2z

α

)z−1

cost(p, qi,S)

≤ α · 2`+3 · cost(qi,S ,A) +

(
2z

α

)z−1

· 3 · 2z−1cost(qi,S ,A)

≤ 2z+1 ·

(
α · 2`+3 +

(
2z

α

)z−1
)
· cost(qi,S ,A).

We optimize the final term with respect to α, which leads to α = 2−
`
z (ignoring

constants that depend on z) and hence an upper bound of

cost(p,S)− cost(qi,S ,S) ≤ 2O(z log z)2`(1−1/z) · cost(qi,S ,A).

Concentration of the Estimator E`,S(LS)

First, we show that every estimator E`,S(LS) is tightly concentrated. This follows the
lines of the proof of Lemma 6.15, incorporating carefully the result of Lemma 6.17.

I Lemma 6.18. Let G be a group of points, and A be a solution. Consider
an arbitrary solution S. Then for any set of interesting clusters LS induced by
A on G, and any estimator E`,S(LS) with ` ≤ z log 4z/ε, it holds that:

|E`,S(LS)− E[E`,S(LS)]| ≤ ε

z log z/ε
· (cost(G,A) + cost(I`,S ,S)) ,

with probability at least

1− exp

(
−2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)
. J

139

Chapter 6. A New Coreset Framework for Clustering

Proof. In order to simplify the notations, we drop mention of LS and define E`,S =
E`,S(LS).

Lemma 6.17 allows to write slightly differently E`,S :

E`,S =
∑
C̃i∈LS

∑
p∈C̃i∩I`,S∩Ω

f(p) · wpcost(qi,S ,S),

with all the weights wp are in [0, 2`(1−1/z) · 2O(z log z)].

We can also write E`,S as a sum of independent random variables: E`,S =
δ∑
j=1

Xj ,

where Xj = f(Ωj)·wΩjcost(qi,S ,A) when the j-th sampled point of G is Ωj ∈ C̃i∩I`,S∩
LS and Xj = 0 when Ωi /∈ I`,S∩LS . Recall that, due to Fact 6.11, the probability that

the j-th sampled point is p, where p ∈ C̃i satisfies P[Ωj = p] = cost(C̃i,A)

|C̃i|·cost(G,A)
≤ 2cost(p,A)

cost(G,A) .

From the same fact, f(p) ≤ 2cost(G,A)
δcost(p,A) .

We will rely on Bernstein’s inequality (Theorem 6.10). To do this, we need an upper
bound on the variance of E`,S , as well as an almost sure upper bound M on every
sample. We first bound E[X2

j]: in the second line, we use that Ωj consists of a single
point to move the square inside the sum.

E[X2
j] = E

[(
f(Ωj)cost(Ωj ,A) · wΩj ,S

)2]
=

∑
p∈I`,S∩LS

(f(p)cost(p,A) · wp,S)2 · Pr [Ωi = p]

≤
∑
p∈I`,S

(
2cost(G,A)

δcost(p,A)
· cost(p,A) · wp,S

)2

· Pr [Ωi = p]

≤
∑
p∈I`,S

22`(1−1/z) · 2O(z log z) · cost2(G,A)

δ2
· cost(p,A)

cost(G,A)

≤
∑
p∈I`,S

22`(1−1/z) · 2O(z log z) · cost(G,A)

δ2
· cost(p,A),

where the fourth line follows from using Lemma 6.17 to replace the value of wp,S .

To bound
∑

p∈I`,S cost(p,A), we need to deal with the cases z = 1 (i.e. k-median) and

z ≥ 2 (k-means and higher powers) separately. For the former, we have 22`(1−1/1) = 1,
so we can use

∑
p∈I`,S cost(p,A) ≤ cost(G,A) as an upper bound. For the latter, we

use
∑

p∈I`,S 2` · cost(p,A) ≤ cost(I`,S ,S) as an upper bound. Combining this with

Var[Xi] ≤ E[X2
i], we obtain for z = 1:

Var[Xi] ≤
cost(G,A)

δ2
· 2O(z log z) · cost(G,A), (6.9)

and for z > 1:

Var[Xi] ≤
cost(G,A)

δ2
· 2O(z log z)2`(1−2/z)cost(I`,S ,S). (6.10)

140

6.3. Sampling inside Groups: Proof of Lemma 6.4

The almost sure upper bound (for which no case distinction is required) can be derived

similarly , using Xi ≤ sup 2cost(G,A)
δcost(p,A) · cost(p,A) · wp,S :

Xi ≤ M := 2`(1−1/z) · 2O(z log z) · cost(G,A)

δ

≤ z

ε
· 2`(1−2/z) · 2O(z log z) · cost(G,A)

δ
, (6.11)

where the inequality holds due to ` ≤ z log(4z/ε). Applying Bernstein’s inequality
with Equations 6.9, 6.10, and 6.11, we then have

P
[
|E`,S − E[E`,S]| ≤ ε

z log z/ε
· (cost(G,A) + cost(I`,S ,S))

]

≤ exp

− ε2

z2 log2 z/ε
· (cost(G,A) + cost(I`,S ,S))2

2
∑δ

i=1 Var[Xi] + 1
3M ·

ε
z log z/ε · (cost(G,A) + cost(I`,S ,S))



≤ exp

−
ε2

z2 log2 z/ε
· δ

2O(z log z) ·

{
1 if z = 1

2`(1−2/z) if z ≥ 2


For z = 1 this becomes exp

(
− ε2·δ

2O(z log z) log2 1/ε

)
. For z = 2, we have 2`(1−2/z) = 1,

so the same bound as for z = 1. For z > 2, we use ` ≤ z log 4z/ε, which implies
ε2 · 2−`(1−2/z) ≥ ε2+z−z2/z · 2−O(z log z) = εz · 2−O(z log z). This yields our final desired
bound of

exp

(
− min(ε2, εz)

2O(z log z) log2 1/ε
· δ
)
.

Concentration of F`,S(LS)

We now turn our attention to bounding the random variable F`,S(LS). It turns out
that bounding

F`,S(LS) =
∑
C̃i∈LS

∑
p∈C̃i∩Ω∩I`,S

cost(qi,S ,S) · |C̃i| · cost(G,A)

δcost(C̃i,A)

is rather hard, and in fact no easier than bounding cost(I`,S ∩Ω,S). Fortunately, this
is not necessary, as it turns out that we can merely bound the sum of F`,S(LS). We
consider the random variable defined as follows:

FS(LS) =
∑

`≤z log(4z/ε)

F`,S(LS)

with expectation

E[FS(LS)] =
∑
C̃i∈LS

∑
p∈C̃i

cost(qi,S ,S) · |C̃i| · cost(G,A)

δcost(C̃i,A)
· Pr[p ∈ Ω]

141

Chapter 6. A New Coreset Framework for Clustering

Showing that FS(LS) is concentrated is now an almost direct consequence of event E
from Lemma 6.13, which says that

∑
p∈C̃i∩Ω

|C̃i|·cost(G,A)

δcost(C̃i,A)
= (1± ε)|C̃i|.

I Lemma 6.19. Let G be a group of points, and A be a solution. Conditioned
on event E , we have for all solutions S and all sets of interesting clusters LS
induced by A on G:

|FS(LS)− E[FS(LS)]| ≤ ε · cost(G,S). J

Proof. Given a solution S and any set of interesting clusters LS induced by A on G,
we have

E[FS(LS)] =
∑
C̃i∈LS

∑
p∈C̃i

cost(qi,S ,S) · |C̃i| · cost(G,A)

δcost(C̃i,A)
Pr[p ∈ Ω] =

∑
C̃i∈LS

|C̃i| · cost(qi,S ,S).

Event E ensures that the mass of each cluster is preserved in the coreset, i.e., that∑
p∈C̃i∩Ω

|C̃i|·cost(G,A)

δcost(C̃i,A)
= (1± ε) · |C̃i|, for every cluster C̃i ∈ LS . Hence

FS(LS) =
∑
C̃i∈LS

∑
p∈C̃i∩Ω

cost(qi,S ,S) · |C̃i| · cost(G,A)

δcost(C̃i,A)
= (1± ε) · E[FS(LS)].

Now finally observe that since qi,S was always the point of C̃i whose cost in S is the
smallest, we have E[FS(LS)] ≤ cost(LS ,S) ≤ cost(G,S).

6.3.7 Combining Them All

We can now show that the sample Ω indeed verifies Lemma 6.4. To do that, we
naturally follow the structure of previous lemmas, and decompose∣∣∣∣∣∣cost(G,S)−

∑
p∈Ω

f(p) · cost(p,S)

∣∣∣∣∣∣
into terms for which we can apply Lemmas 6.12, 6.14, 6.18, and 6.19.

First, we note that the probability of success of Lemma 6.18 is too small to take a
union-bound over its success for all S. To cope with that issue, we use the approximate
centroid set, in order to relate E`,S(LS) to E`,S̃(LS), where S̃ comes from a small set
on which union-bounding is possible.

I Lemma 6.20. Let G be a group of points, and A be a solution. Let C be

142

6.3. Sampling inside Groups: Proof of Lemma 6.4

an A-approximate centroid set, as in Definition 5.2. It holds with probability

1− exp

(
k log |C| − 2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)

that, for all solution S̃ ∈ Ck and any set of interesting clusters LS̃ induced by
A on G:∣∣∣cost(LS̃ , S̃)− cost(Ω ∩ LS̃ , S̃)

∣∣∣ ≤ ε(cost(G,A) + cost(LS̃ , S̃)
)
.J

Proof. Taking a union-bound over the success of Lemma 6.18 for all possible S̃ ∈ Ck,
all choice of interesting clusters LS̃ and all ` such that log(ε/2) ≤ ` ≤ z log(4z/ε), it

holds with probability 1− exp(k log |C|) exp
(
−2O(z log z) · min(ε2,εz)

log2 1/ε
· δ
)

that, for every

S̃ ∈ Ck, LS̃ and `,

|E`,S̃(LS̃)− E[E`,S̃(LS̃)]| ≤ ε

z log z/ε
·
(

cost(G,A) + cost(I`,S̃ , S̃)
)

(6.12)

For simplicity, we drop again the mention of LS̃ and write E`,S̃ = E`,S̃(LS̃), FS̃ =
FS̃(LS̃). We now condition on that event, together with event E . We write:

∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃) −
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃)− E[FS̃] + E[FS̃]− FS̃ + FS̃ −
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃)− E[FS̃] + FS̃ −
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣+ |E[FS̃]− FS̃ |

≤
∑

`<log ε/2

∣∣∣∣∣∣
∑

p∈I`,S̃∩LS̃

cost(p, S̃)− E[F`,S̃] + F`,S̃ −
∑

p∈I`,S̃∩LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ (6.13)

+

z log z/4ε∑
`=log ε/2

∣∣∣∣∣∣
∑

p∈I`,S̃∩LS̃

cost(p, S̃)− E[F`,S̃] + F`,S̃ −
∑

p∈I`,S̃∩LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ (6.14)

+|E[FS̃]− FS̃ |

We note that Equation 6.14 is
∑z log z/4ε

`=log ε/2 |E`,S̃ −E[E`,S̃]| and can be directly bounded
using Equation 6.12. To bound tiny points of Equation 6.13, we combine Lemma 6.12

143

Chapter 6. A New Coreset Framework for Clustering

with the observation that F`,S̃ ≤
∑

p∈I`,S̃∩Ω f(p)cost(p, S̃). This gives:

∑
`<log ε/2

∣∣∣∣∣∣
∑

p∈I`,S̃∩LS̃

cost(p, S̃)− E[F`,S̃] + F`,S̃ −
∑

p∈I`,S̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
≤

∑
`<log ε/2

 ∑
p∈I`,S̃

cost(p, S̃) + E[F`,S̃] + F`,S̃ +
∑

p∈I`,S̃∩Ω

f(p) · cost(p, S̃)


≤ 2

∑
`<log ε/2

 ∑
p∈I`,S̃

cost(p, S̃) +
∑

p∈I`,S̃∩Ω

f(p) · cost(p, S̃)


≤ 4εcost(G,A),

where the last equation uses Lemma 6.12. Plugging this result into the previous
inequality, we have:

∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃)−
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
≤ 4εcost(G,A) +

z log z/4ε∑
`=log ε/2

∣∣∣E[E`,S̃]− E`,S̃
∣∣∣+ |E[FS̃]− FS̃ |

≤ 4εcost(G,A) +

z log z/4ε∑
`=log ε/2

ε

z log z/ε
·
(

cost(G,A) + cost(I`,S̃ , S̃)
)

+ |E[FS̃]− FS̃ |

≤ 4εcost(G,A) + (z log(z/4ε)− log ε/2) · ε

z log z/ε
·
(

cost(G,A) + cost(LS̃ , S̃)
)

+ε · cost(G, S̃)

≤ O(ε) · (cost(G,A) + cost(LS̃ , S̃)),

where the second to last inequality used Lemma 6.19.

From the approximate centroid set to any solution. We can now finally turn
to the proof of Lemma 6.4: it combines the result we show previously for the huge
type, and the use of approximate centroid set with the Lemma 6.20 for the interesting
and tiny types.

Proof of Lemma 6.4. Let X, k, z,G and A as in the lemma statement. We condition
on event E happening. Let S be a set of k points, and S̃ ∈ Ck that approximates
best S, as given by the definition of C (see Definition 5.2). This ensures that for
all points p with dist(p,S) ≤ 8z

ε · dist(p,A) or dist(p, S̃) ≤ 8z
ε · dist(p,A) , we have

|cost(p,S)− cost(p, S̃)| ≤ ε
z log(z/ε)(cost(p,S) + cost(p,A)).

144

6.3. Sampling inside Groups: Proof of Lemma 6.4

Our first step is to deal with points that have dist(p,S) > 4z
ε · dist(p,A), using

Lemma 6.14. None of the remaining points is huge with respect to S̃: hence, they all
are in interesting clusters with respect to S̃. Let LS̃ be this set of cluster: it can be
handled with Lemma 6.20. The remaining of the proof formalizes the argument.

Let HS be the set of all clusters that are intersecting with some I`,S with ` >
z log(4z/ε). We also denote HS the points contained in those clusters. We decompose
the cost difference as follows:

∣∣∣∣∣∣cost(G,S)−
∑

p∈Ω∩G
f(p) · cost(p,S)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

p∈G\HS

cost(p,S)−
∑

p∈(G\HS)∩Ω

f(p) · cost(p,S)

∣∣∣∣∣∣ (6.15)

+

∣∣∣∣∣∣
∑
p∈HS

cost(p,S)−
∑

p∈HS∩Ω

f(p) · cost(p,S)

∣∣∣∣∣∣ (6.16)

Since we condition on event E , the term 6.16 is O(ε) · (cost(G,A) + cost(G,S)), using
Lemma 6.14. Now we take a closer look at term 6.15. By definition of S̃, it holds
for all points p ∈ G \ HS that |cost(p,S) − cost(p, S̃)| ≤ ε(cost(p,S) + cost(p,A)).
Therefore:∣∣∣∣∣∣

∑
p∈G\HS

cost(p,S) −
∑

p∈(G\HS)∩Ω

f(p) · cost(p,S)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

p∈G\HS

cost(p, S̃) −
∑

p∈(G\HS)∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
+ ε (cost(G,S) + cost(G,A) + cost(Ω,S) + cost(Ω,A)) .

This allows us to focus on bounding the cost difference to solution S̃ instead of S.

For the remaining points in G \HS , we aim at using Lemma 6.20: for that, we show
that LS̃ := G\HS contains only interesting clusters with respect to S̃. Indeed, for any

p ∈ LS̃ , we have |cost(p,S)−cost(p, S̃)| ≤ ε
z log z/ε(cost(p,S)+cost(p,A)) by definition

of S̃. Hence,

cost(p, S̃) ≤ cost(p,S) +
ε

z log z/ε
(cost(p,S) + cost(p,A))

≤
(

(1 + ε)

(
4ε

z

)z
+ ε

)
cost(p,A)

≤
(

8ε

z

)z
cost(p,A),

and p is indeed not huge with respect to S̃. Therefore, we can apply Lemma 6.20 to

145

Chapter 6. A New Coreset Framework for Clustering

get:∣∣∣∣∣∣
∑

p∈G\HS

cost(p, S̃)−
∑

p∈(G\HS)∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p∈LS̃

cost(p, S̃)−
∑

p∈LS̃∩Ω

f(p) · cost(p, S̃)

∣∣∣∣∣∣
≤ ε(cost(G,A) + cost(LS̃ , S̃))

= O(ε)(cost(LS̃ ,S) + cost(G,A))

Combining all the equations yields

|cost(G,S)− cost(Ω,S)| ≤ O(ε) · (cost(G,A) + cost(G,S) + cost(Ω,A) + cost(Ω,S)) .

To conclude the proof, it only remains to remove the term cost(Ω,A) + cost(Ω,S)
from the right-hand-side. Applying this inequality for S = A and using cost(Ω,A) ≤
cost(G,A) + |cost(G,A)− cost(Ω,A)| yields first

cost(Ω,A) = O(1) · cost(G,A).

Similarly, we can use cost(Ω,S) ≤ cost(G,S) + |cost(G,S)− cost(Ω,S)| to get

cost(Ω,S) = O(1) ·
(
cost(G,S) + cost(G,A)

)
.

Hence, we finally conclude:

|cost(G,S)− cost(Ω,S)| ≤ O(ε) · (cost(G,A) + cost(G,S)) .

The probability now follows from taking a union-bound over the failure probability of
Lemma 6.13 and Lemma 6.20. Specifically

1− exp

(
k log |C| − 2O(z log z) · min(ε2, εz)

log2 1/ε
· δ
)
− k · z2 log2(z/ε) exp

(
−O(1)

ε2

k
δ

)

In a given cluster C̃i induced by A on G, the complexity of the algorithm is O(|C̃i|):
it is both the cost of computing the scaling factor f(p) for all p ∈ C̃i, and the cost of
sampling δ points using reservoir sampling [159]. Hence, the cost of this algorithm for
all clusters is O(|G|).

6.4 Dealing with the Few Far points: Sampling from
Outer Rings

In this section we prove Lemma 6.5, that we recall here:

146

6.4. Dealing with the Few Far points: Sampling from Outer Rings

I Lemma 6.5. Let (X,dist) be a metric space, k, z be two positive integers,
P be a set of clients and A be a cA-approximate solution solution to (k, z)-
clustering on P .
Let G be either a group GOb or GOmax. Suppose moreover that there is a A-
approximate centroid set C for (k, z)-clustering on G .
Then, there exists an algorithm SensitivitySample running in time O(|G|)
that constructs a set Ω of size δ such that it holds with probability 1 −
exp

(
k log |C| − 2O(z log z) · ε2

log2 1/ε
· δ
)

that, for all sets S of k centers:

|cost(G,S)− cost(Ω,S)| = ε

z log z/ε
· (cost(S) + cost(A)) . J

Recall that the SensitivitySample procedure merely picks δ points p with probability
cost(p,A)
cost(G,A) . Each of the δ sampled points has a weight cost(G,A)

δ·cost(p,A) . The procedure runs

in time O(|G|).

The main steps of the proof are as follows.

� First, we consider the cost of the points in G such that cost(p,S) is at most
4z ·cost(p,A). For this case, we can (almost) directly apply Bernstein’s inequality
as in the previous section.

� Second, we consider the cost of the points in G such that cost(p,S) > 4z ·
cost(p,A). Denote this set by Gfar,S . For these points, we can afford to replace
their cost in S with the distance to the closest center c ∈ A plus the distance
from c to the closest center in S. The latter part can be charged to the remaining
points of the cluster from the original dataset (i.e., not restricted to group G)
which are in much larger number and already paying a similar value in S.

We first analyse the points not in Gfar,S . For that, we will go through the approximate
centroid set C to afford a union-bound: we show the following lemma.

I Lemma 6.21. Let S̃ ∈ Ck, and define Gclose,S̃ to be the set of points of G

such that cost(p, S̃) ≤ 5z · cost(p,A). It holds with probability

1− exp

(
−2−O(z)

(
ε

log 1/ε

)2

δ

)

that

|cost(Gclose,S̃ , S̃)−cost(Ω∩Gclose,S̃ , S̃)| ≤ ε

z log z/ε

(
cost(G,A) + cost(Gclose,S̃ , S̃)

)
J

Proof. We aim to use Bernstein’s Inequality. Let Eclose,S̃ =
∑δ

i=1Xi, where Xi =
cost(G,A)
δ·cost(p,A) · cost(p, S̃) if the i-th sampled point is p ∈ Gclose,S̃ and Xi = 0 the i-th

147

Chapter 6. A New Coreset Framework for Clustering

sampled point is p /∈ Gclose,S̃ . Recall that the probability that p is the i-th sampled

point is cost(p,A)
cost(G,A) . We consider the second moment E[X2

i]:

E[X2
i] =

∑
p∈Gclose,S̃

(
cost(G,A)

δ · cost(p,A)
· cost(p, S̃)

)2

· P[p ∈ Ω]

= cost(G,A) ·
∑

p∈Gclose,S̃

cost(p, S̃)

δ2 · cost(p,A)
· cost(p, S̃)

≤ cost(G,A) ·
∑

p∈Gclose,S̃

5z

δ2
· cost(p, S̃)

≤ 5z

δ2
· cost(G,A) · cost(Gclose,S̃ , S̃)

Furthermore, we have the following upper bound for the maximum value any of the
Xi:

Xi ≤M := max
p∈Gclose,S̃

cost(G,A)

δ · cost(p,A)
· cost(p, S̃) ≤ 5z

δ
· cost(G,A). (6.17)

Combining both bounds with Bernstein’s inequality now yields

P[|Eclose,S̃ − E[Eclose,S̃]| ≤ ε

z log z/ε
·
(

cost(G,A) + cost(Gclose,S̃ , S̃)
)

]

≤ exp

−
(

ε
z log z/ε

)2
·
(

cost(G,A) + cost(Gclose,S̃ , S̃)
)2

2
∑δ

i=1 V ar[Xi] + 1
3M · ε ·

(
cost(G,A) + cost(Gclose,S̃ , S̃)

)


≤ exp

−
(

ε
z log z/ε

)2
· δ ·

(
cost(G,A) + cost(Gclose,S̃ , S̃)

)2

24z · cost(G,A) · cost(Gclose,S̃ , S̃) + 4z · cost(G,A) · ε ·
(

cost(G,A) + cost(Gclose,S̃ , S̃)
)


≤ exp

(
−2−O(z) ·

(
ε

z log z/ε

)2

· δ

)

Noting that cost(Ω ∩Gclose,S̃ , S̃) = E[Eclose,S̃], concludes: we have with probability

1− exp

(
−2−O(z) ·

(
ε

log 1/ε

)2
· δ
)

that:

|cost(Gclose,S̃ , S̃)− cost(Ω ∩Gclose,S̃ , S̃)| ≤ ε

z log z/ε
·
(

cost(G,A) + cost(Gclose,S̃ , S̃)
)

Now we turn our attention to Gfar,S . For this, we analyse the following event Efar,
similar to E : For all cluster C of solution A such that C ∩G 6= ∅∑

p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
cost(p,A) = (1± ε) · cost(C ∩G,A)

148

6.4. Dealing with the Few Far points: Sampling from Outer Rings

I Lemma 6.22. Event Efar happens with probability at least

1− k exp

(
ε2

6k
· δ
)
. J

Proof. We aim to use Bernstein’s Inequality. Let EC =
∑δ

i=1Xi, where Xi =
cost(G,A)
δ·cost(p,A) · cost(p,A) if the i-th sampled point p ∈ C and Xi = 0 the i-th sampled

point p /∈ C. Recall that the probability that the i-th sampled point is p is cost(p,A)
cost(G,A) .

We consider the second moment E[X2
i]:

E[X2
i] =

∑
p∈C∩G

(
cost(G,A)

δ · cost(p,A)
· cost(p,A)

)2

· P[p is the i-th sampled point]

=
cost(G,A)

δ2
·
∑

p∈C∩G
cost(p,A)

=
cost(G,A)

δ2
cost(C ∩G,A)

≤ 2k

δ2
· cost2(C ∩G,A)

where the final inequality follows since every cluster has cost at least half the average.
Indeed, either the group considered is GOmax, and then any cluster verifies cost(C∩G) ≥
1
kcost(RAO ,A) ≥ 1

kcost(GOmax,A), or all the clusters in GOb have an equal cost, up to a
factor of 2 – hence none cost less than half of the average.

Furthermore, we have by the same argument the following upper bound for the max-
imum value any of the Xi:

Xi ≤M := max
p∈C∩G

cost(G,A)

δ · cost(p,A)
· cost(p,A) ≤ 2k

δ
· cost(C ∩G,A).

Combining both bounds with Bernstein’s inequality now yields

P[|cost(C ∩G ∩ Ω,A)− cost(C ∩G,A)| ≤ ε · cost(C ∩G,A)]

≤ exp

(
− ε2 · cost2(C ∩G,A)

2
∑δ

i=1 V ar[Xi] + 1
3M · ε · cost(C ∩G,A)

)
≤ exp

(
− ε

2

6k
· δ
)

Reformulating, we now have

∑
p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
cost(p,A) = (1± ε) · cost(C ∩G,A)

149

Chapter 6. A New Coreset Framework for Clustering

I Lemma 6.23. Let (X,dist) be a metric space, k, z be two positive integers.
Suppose G is either a group GOb or GOmax. Let Gfar,S ⊂ G be the set of all
clients such that cost(p,S) > 4z · cost(p,A). Condition on event Efar.
Then, the set Ω of size δ constructed by SensitivitySample verifies the fol-
lowing. It holds for all sets S of k centers that:

cost(Gfar,S ,S) + cost(Ω ∩Gfar,S ,S) ≤ 2ε

z log z/ε
· cost(S). J

Proof. Our aim will be to show that max (cost(Gfar,S ,S), cost(Ω ∩Gfar,S ,S)) ≤
ε

z log z/ε · cost(S). It is key here that we compare to the cost of the full input in S, and
not simply the cost of the group G.

First, we fix a cluster C ∈ A, and show that the total contribution of points of
C ∩ Gfar,S is very cheap compared to cost(C,S), i.e. that cost(Gfar,S ∩ C,S) ≤

ε
z log z/ε · cost(C,S).

For this, fix a point p ∈ Gfar,S ∩ C, and let c be the center of cluster C.

Let Cclose be the points of C with cost at most
(
z
ε

)z · cost(C,A)
|C| . Due to Markov’s

inequality, most of C’s points are in Cclose: |Cclose| ≥ (1− ε/z) · |C|.

Using that the point p is both in the outer ring of C and in Gfar,S , we can lower bound
the distance from c to S as follows. Triangle inequality and cost(p,S) > 4z · cost(p, c),
yield dist(c,S) ≥ dist(p,S) − dist(p, c) ≥ 4dist(p, c) − dist(p, c) ≥ 3dist(p, c). Since p

is from an outer group, it verifies cost(p, c) ≥
(
z
ε

)2z · cost(C,c)
|C| . Combining those two

observations yields: cost(c,S) ≥ 3zcost(p,A) ≥ 3z ·
(
z
ε

)2z · cost(C,c)
|C| .

Using this and Lemma 1.2, we now have for any q ∈ Cclose:

cost(c,S) ≤ (1 + ε/(2z))z−1 · cost(q,S) +

(
2z + ε

ε

)z−1

· cost(q, c)

≤ (1 + ε)cost(q,S) +

(
2z + ε

ε

)z−1

·
(z
ε

)z
· cost(C, c)

|C|

≤ (1 + ε)cost(q,S) + 3z−1 ·
(z
ε

)2z−1
· cost(C, c)

|C|

≤ (1 + ε)cost(q,S) +
ε

3z
· cost(c,S)

⇒ cost(q,S) ≥ 1− ε
1 + ε

· cost(c,S)

⇒ cost(C,S) ≥ cost(Cclose,S) ≥ |Cclose| ·
1− ε
1 + ε

· cost(c,S). (6.18)

Using additionally that |Cclose| ≥ (1− ε
z) · |C| and cost(c,S) ≥ 3z ·

(
z
ε

)2z · cost(C,c)
|C| , we

get:

cost(C,S) ≥ |Cclose| ·
1− ε
1 + ε

·3z ·
(z
ε

)2z
· cost(C,A)

|C|
≥ 3z ·

(z
ε

)2z−1
· cost(C,A). (6.19)

150

6.4. Dealing with the Few Far points: Sampling from Outer Rings

We are now equipped to show the first part of the lemma, namely cost(Gfar,S ,S) ≤
ε

z log z/ε · cost(S).

Since G ∩ C contains only points from the outer ring of C, with distance at least
(z/ε)2 times the average, Markov’s inequality implies that |G∩C| ≤

(
ε
z

)2 · |C|. Hence,

|Gfar,S ∩ C| ≤ 1
1−ε/z ·

(
ε
z

)2 · |Cclose|. This yields

cost(Gfar,S ∩ C,S) =
∑

p∈Gfar,S∩C
cost(p,S)

(Lem.1.2) ≤
∑

p∈Gfar,S∩C
(1 + ε/2z)z−1cost(c,S) +

(
2z + ε

ε

)z−1

· cost(p, c)

≤ |Gfar,S ∩ C| · (1 + ε) · cost(c,S)

+

(
2z + ε

ε

)z−1

· cost(Gfar,S ∩ C,A) (6.20)

≤ 1 + ε

1− ε/z
·
(ε
z

)2
· |Cclose|cost(c,S) +

(
2z + ε

ε

)z−1

cost(Gfar,S ∩ C,A)

(Eq. 6.18) ≤ (1 + ε)2

(1− ε)2
·
(ε
z

)2
· cost(C,S) +

(
2z + ε

ε

)z−1

· cost(Gfar,S ∩ C,A)

(Eq. 6.19) ≤ (1 + ε)2

(1− ε)2
·
(ε
z

)2
· cost(C,S)

+

(
2z + ε

ε

)z−1

· 1

3z
·
(ε
z

)2z−1
· cost(Gfar,S ∩ C,S) (6.21)

≤ ε

z log z/ε
· cost(C,S) (6.22)

Summing this up over all clusters C, we therefore have

cost(Gfar,S ,S) ≤ ε

z log z/ε
· cost(S) (6.23)

What is left to show is that, in the coreset, the weighted cost of the points in
Gfar,S ∩ Ω can be bounded similarly. For that, we use event Efar to show that∑

p∈Gfar,S∩C∩Ω
cost(G,A0)
cost(p,A0) ≈ |Gfar,S ∩ C|

In particular, event Efar implies that with probability 1− k′ · exp
(
−O(1) · ε2k′ · δ

)
for

all clusters C induced by A

∑
p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
·
(

2z

ε

)2z

· cost(C,A)

|C|
≤

∑
p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
cost(p,A)

≤ (1 + ε) · cost(C ∩G,A)

151

Chapter 6. A New Coreset Framework for Clustering

⇒
∑

p∈C∩G∩Ω

cost(G,A)

δ · cost(p,A)
≤ (1 + ε) ·

(ε
2z

)2z
· |C|cost(C ∩G,A)

cost(C,A)
(6.24)

≤ (1 + ε) ·
(ε

2z

)2z
· |C| (6.25)

Therefore, we have

cost(Gfar,S ∩ Ω ∩ C,S)

=
∑

p∈Gfar,S∩C

cost(G,A)

δ · cost(p,A)
· cost(p,S)

(Lem. 1.2) ≤
∑

p∈Gfar,S∩Ω∩C

cost(G,A)

δ · cost(p,A)
·
((

1 +
ε

2z

)z−1
cost(c,S)

+

(
2z + ε

ε

)z−1

· cost(p, c)

)

≤ (1 + ε) · cost(c,S) ·
∑

p∈Gfar,S∩Ω∩C

cost(G,A)

δ · cost(p,A)

(Efar) +

(
2z + ε

ε

)z−1

· (1 + ε) · cost(C ∩G,A)

(Eq. 6.25) ≤ (1 + ε)2cost(c,S) ·
(ε

2z

)2z
· |C|+

(
2z + ε

ε

)z−1

· (1 + ε) · cost(C ∩G,A)

≤ (1 + ε)2 ·
(ε

2z

)2z
· |C| · cost(c,S) +

(
2z + ε

ε

)z−1

· cost(C,A) (6.26)

≤ ε

z log z/ε
· cost(C,S)

where the steps following Equation 6.26 are identical to those used to derive Equa-
tion 6.22 from Equation 6.20. Again, summing over all clusters now yields

cost(Gfar,S ∩ Ω,S) ≤ ε

z log z/ε
· cost(S),

which yields the claim.

Combining far and close to show Lemma 6.5 The overall proof follows from
those lemmas.

Proof of Lemma 6.5. First, we condition on event Efar, and on the success of Lemma 6.21
for all solution in Ck. This happens with probability

1− k exp

(
ε2

k
· δ
)
− exp

(
k log |C| − 2−O(z)

(
ε

log 1/ε

)2

δ

)
.

152

6.4. Dealing with the Few Far points: Sampling from Outer Rings

Let S be a solution, and S̃ its corresponding solution in Ck. We break the cost of S
into two parts: points with cost(p, tildeS) ≤ 5z · cost(p,A), on which we can apply
Lemma 6.21, on the others, on which we will apply Lemma 6.23.

From Lemma 6.21, we directly get

|cost(Gclose,S̃ , S̃)− cost(Ω ∩Gclose,S̃ , S̃)| ≤ ε

z log z/ε
·
(

cost(G,A) + cost(G, S̃)
)
.

Since any point in Gclose,S̃ verifies |cost(p,S) − cost(p, S̃)| ≤ ε
z log z/ε(cost(p,S) +

cost(p,A)) we can relate this to cost(Gclose,S̃ ,S) as follows. First, this implies

cost(Gclose,S̃ , S̃) ≤ (1 + ε)cost(Gclose,S̃ ,S) + εcost(G,A). Hence:

|cost(Gclose,S̃ ,S)− cost(Ω ∩Gclose,S̃ ,S)|

≤ |cost(Gclose,S̃ , S̃)− cost(Ω ∩Gclose,S̃ , S̃)|

+
ε

z log z/ε
(cost(Gclose,S̃ ,S) + cost(Gclose,S̃ ,A))

+
ε

z log z/ε
(cost(Gclose,S̃ ∩ Ω,S) + cost(Gclose,S̃ ∩ Ω,A))

≤ O(ε)

z log z/ε
(cost(G,A) + cost(G,S))

+
ε

z log z/ε
(cost(Gclose,S̃ ∩ Ω,S) + cost(Gclose,S̃ ∩ Ω,A))

We now deal with the other far points. For this, note that G \ Gclose,S̃ ⊆ Gfar,S .

Indeed, any point p ∈ G \Gfar,S has its cost preserved by S̃, and therefore verifies

cost(p, S̃) ≤ (1 +
ε

z log z/ε
)cost(p,S) +

ε

z log z/ε
cost(p,A)

≤ (1 + ε) · 4zcost(p,A) + εcost(p,A) ≤ 5zcost(p,A).

Consequently, G \ Gfar,S ⊆ Gclose,S̃ , which implies G \ Gclose,S̃ ⊆ Gfar,S . Hence, we
can use Lemma 6.23:

|cost(G \Gclose,S̃ ,S)− cost(Ω ∩ (G \Gclose,S̃),S)|
≤ cost(G \Gclose,S̃ ,S) + cost(Ω ∩ (G \Gclose,S̃),S)

≤ cost(Gfar,S ,S) + cost(Ω ∩Gfar,S ,S)

≤ ε

z log z/ε
· cost(S).

Hence, adding the two inequalities gives that

|cost(G,S)− cost(Ω ∩G,S)|

≤ O(ε)

z log z/ε
· cost(S) +

ε

z log z/ε
(cost(G ∩ Ω,S) + cost(G ∩ Ω,A)).

153

Chapter 6. A New Coreset Framework for Clustering

To remove the terms depending on Ω from the right hand side, one can proceed as in
the end of Lemma 6.4, applying grossly the previous inequality to get cost(G∩Ω,S) =
O(1)cost(S) and cost(G ∩ Ω,A) = O(1)cost(A). This concludes the theorem:

|cost(G,S)− cost(Ω ∩G,S)| ≤ O(ε)

z log z/ε
· (cost(G,S) + cost(G,A)).

This concludes the coreset construction for the outer groups.

6.5 Partitioning into Well Structured Groups: Proof of
Lemma 6.7

In this section, we show that the outcome of the partitioning step satisfies Lemma 6.7,
which concludes the list of lemmas needed for Theorem 5.3. The main idea behind
that lemma is that the cost of the discarded points can be easily charged onto the
other points, either because they individually have a negligible cost (as for points in
the inner ring) or because their group has negligible cost (as for Gj,min and GOmin).
We recall the lemma for convenience:

I Lemma 6.7. Let (X,dist) be a metric space with a set of clients P , k, z be
two positive integers, and ε ∈ R∗+. For every solution S, it holds that

|cost(D,S)− cost(P1,S)| = O(ε)cost(S),

where D and P1 are defined in Step 2 of the algorithm. J

Recall that the inner ring RI(C) (resp. outer ring RO(C)) of a cluster C consists of
the points of C with cost at most (ε/z)2z ∆C (resp. at least (z/ε)2z ∆C). The main
ring RM (C) consist of all the other points of C.

Recall also that D contains all points that are either in some inner ring, in some group
Gj,min or in GOmin. P1 contains the centers of A, weighted by the number of points
from D in their clusters.

To prove Lemma 6.7, we treat separately the inner ring and the groups Gj,min and
GOmin in the next two lemmas. For all those lemmas, we fix a metric space, a set of
clients P , two positive integers k and z, and ε ∈ R∗+. We also fix A, a solution to
(k, z)-clustering on P with cost cost(A) ≤ cAcost(OPT).

I Lemma 6.24. For any solution S and any cluster C with center c of A,∣∣cost(RI(C),S)− |RI(C)| · cost(c,S)
∣∣ ≤ ε(cost(C,A) + cost(RI(C),S)).J

154

6.5. Partitioning into Well Structured Groups: Proof of Lemma 6.7

Proof. Let C be a cluster induced by A with center c, and p be a point in the inner
ring RI(C). We start by bounding |cost(p,S)− cost(c,S)|.

Using Lemma 1.2, we get

|cost(p,S)− cost(c,S)| ≤ ε · cost(p,S) + (1 + 2z/ε)z−1 · cost(c, p).

Since p is from the inner ring of its cluster, cost(c, p) ≤
(
ε
z

)2z
∆C , hence (1 +

2z/ε)z−1cost(c, p) ≤ (2 + ε)z−1 · (ε/z)z+1 ·∆C ≤ ε∆C , for small enough ε.

Summing this over all points of the inner ring yields

|cost(RI(C),S)− |RI(C)| · cost(c,S)| ≤
∑

p∈RI(C)

|cost(p,S)− cost(c,S)|

≤
∑

p∈RI(C)

εcost(p,S) + ε∆C

≤ εcost(RI(C),S) + ε|RI(C)|∆C

≤ εcost(RI(C),S) + εcost(C,A)

This implies

|cost(RI(C),S)− |RI(C)| · cost(c,S)| ≤ ε(cost(C,A) + cost(RI(C),S)).

I Lemma 6.25. For any solution S and any j,∣∣∣∣∣cost(Gj,min,S)−
k∑
i=1

|Ci ∩Gj,min| · cost(ci,S)

∣∣∣∣∣ ≤ ε · (cost(Rj ,S) + cost(Rj ,A)).

Moreover, for any solution S,∣∣∣∣∣cost(GOmin,S)−
k∑
i=1

|Ci ∩GOmin| · cost(ci,S)

∣∣∣∣∣ ≤ ε · (cost(S) + cost(A)).J

Proof. Using Lemma 1.2, for a point p in cluster Ci

|cost(ci,S)− cost(p,S)| ≤ εcost(p,S) +

(
1 +

2z

ε

)z−1

cost(p, ci).

Let G be a group, either Gj,min or GOmin. Summing for all cluster Ci and all p ∈ G∩Ci,

155

Chapter 6. A New Coreset Framework for Clustering

we now get ∣∣∣∣∣
k∑
i=1

|Ci ∩G| · cost(ci,S)− cost(G,S)

∣∣∣∣∣
≤ ε · cost(G,S) +

k∑
i=1

∑
p∈G∩Ci

(
1 +

2z

ε

)z−1

cost(p,A)

≤ ε · cost(G,S) +

k∑
i=1

(
3z

ε

)z−1

cost(Ci ∩G,A)

≤ ε · cost(G,S) +

(
3z

ε

)z−1

cost(G,A)

Now, either G = Gj,min for some j, and cost(G,A) ≤
(
ε
4z

)z ·cost(Rj ,A); or G = GOmin,
and cost(G,A) ≤

(
ε
4z

)z · cost(RO(A),A) ≤
(
ε
4z

)z · cost(A).

In both cases, the lemma follows.

The proof of Lemma 6.7 simply combines those lemmas.

Proof of Lemma 6.7. We decompose |cost(D,S)− cost(P1,S)| into terms correspond-
ing to the previous lemmas:

|cost(D,S)− cost(P1,S)| ≤
k∑
i=1

|cost(RI(Ci),S)− |RI(Ci)|cost(ci,S)|

+

2z log(z/ε)∑
j=2z log(ε/z)

∣∣∣∣∣cost(Gj,min,S)−
k∑
i=1

|Ci ∩Gj,min|cost(ci,S)

∣∣∣∣∣
+

∣∣∣∣∣cost(GOmin,S)−
k∑
i=1

|Ci ∩GOmin|cost(ci,S)

∣∣∣∣∣
≤

k∑
i=1

ε(cost(Ci,A) + cost(RI(Ci),S))

+ 2εcost(S) + 2εcost(A) + ε(cost(S) + cost(A))

≤ 8εcAcost(S),

where the second inequality uses Lemmas 6.24 and Lemma 6.25.

6.6 A Coreset of Size k2ε−2

In this section, we show how to trade a factor ε−z for a factor k in the coreset size.

156

6.6. A Coreset of Size k2ε−2

I Lemma 6.26. Let (X,dist) be a metric space, P be a set of points, k, z two
positive integers and A a set of O(k) centers such that each for each cluster
with center c induced by A, all points of the cluster are at distance between(
ε
z

)2
∆C and

(
z
ε

)2
∆C , for some ∆C .

Suppose there exists an A-approximate centroid set C for (k, z)-clustering on
P .
Then, there exists an algorithm running in time O(|P |) that constructs a set Ω

of size k · 2O(z) log3(1/ε)
ε2

(k log |C|+ log(1/π)) such that, with probability 1 − π,
for any set S of k centers,

|cost(S)− cost(Ω,S)| = O(ε)cost(S). J

We will essentially the framework of the previous parts, with a few adjustments to fit
with the new target size. Suppose we initially computed a set of k centers A. First,
we can apply SensitivitySample to the outer rings, as Lemma 6.5 already gives a
coreset size 2O(z log z) ε2

log2 1/ε
k log |C|.

For the others, we change slightly the definition of ring, to make them a bit more
precise. For every cluster Ci of A, we partition the points of Ci into rings Ri,j made

of points with cost [
(
ε
z

)2z
∆Ci · 2j ,

(
ε
z

)2z
∆Ci · 2j+1], for j ∈ {1, . . . 4z log(z/ε)}.

The algorithm is as follows: from every Ri,j , sample δ points uniformly at random (if
|Ri,j | ≤ δ, simply add the whole Ri,j).

The analysis of this algorithm follows the same line as the main one. Rings are divided
into tiny, interesting and huge types; tiny and huge are dealt with as in Lemmas 6.12
and 6.14, and interesting points slightly differently.

From the definition of Ri,j , we immediately get the following observation.

I Fact 6.27. For every cluster we have at most O(z · log z/ε) non-empty rings
in total. J

Given a solution S, we consider the type Ii,j,` ⊂ Ci consisting of the points of Ri,j

with cost(p,S)
cost(p,A) in [2`, 2`+1]. As before, we let cost(Ii,j,`,S) =

∑
p∈Ii,j,` cost(p,S) and

cost(Ij,`,S) =
∑k

i=1 cost(Ii,j,`,S).

Our analysis will distinguish between three cases:

1. ` ≤ − log(2/ε), in which case we say that Ii,j,` is tiny.

2. − log(2/ε) ≤ ` ≤ j + log(4z/ε), in which case we say Ii,j,` is interesting.

3. ` ≥ log(16z/ε), in which case we say Ii,j,` is huge.

We first consider the huge case. For this, an equivalent of Event E directly holds: by
design of the algorithm, the weight of each ring is preserved. This implies that the
huge groups are well approximated.

157

Chapter 6. A New Coreset Framework for Clustering

I Lemma 6.28. It holds that, for any Ri,j , and any solution S with at least
one point p ∈ Ri,j such that cost(p,S) ≥

(
4z
ε

)z
cost(p,A),∣∣∣∣∣∣cost(Ri,j ,S)−

∑
p∈Ω∩Ri,j

|Ri,j |
δ
· cost(p,S)

∣∣∣∣∣∣ ≤ 3ε · cost(Ri,j ,S). J

Proof. Fix a ring Ri,j and let p ∈ Ri,j such that cost(p,S) ≥
(

4z
ε

)z
cost(p,A). First,

the weight of Ri,j is preserved in Ω: since δ points are sampled from Ri,j , it holds that

∑
p∈Ω∩Ri,j

|Ri,j |
δ

= |Ri,j |

Now, let S be a solution. The condition on p implies, for any q ∈ Ri,j : cost(p, q) ≤
2zcost(p,A) ≤

(
ε
2z

)z · cost(p,S). By Lemma 1.2, we have therefore for any point
q ∈ Ri,j

cost(p,S) ≤ (1 + ε/2z)z−1 cost(q,S) + (1 + 2z/ε)z−1 cost(p, q)

≤ (1 + ε) cost(q,S) + ε · cost(p,S)

⇒ cost(q,S) ≥ 1− ε
1 + ε

cost(p, S) ≥ (1− 2ε)cost(p,S)

Moreover, by a similar calculation, we can also derive an upper bound of cost(q,S) ≤
cost(p,S) · (1 + 2ε). Hence, combined with

∑
p∈Ω∩Ri,j

|Ri,j |
δ = |Ri,j |, this is sufficient

to approximate cost(Ri,j ,S).

Therefore, the cost of Ri,j is well approximated for any solution S such that there is
at least one huge point.

Next, we consider the interesting cases. The main observation here is that there are
only O(log 1/ε) many rings per cluster, hence a coarser estimation using Bernstein’s
inequality is actually sufficient to bound the cost.

I Lemma 6.29. Consider an Ri,j and any solution S such that all huge Ii,j,`
are empty. It holds with probability at least 1− log(z/ε) exp(− ε2

2·16z log2 z/ε
· δ)

that, for all interesting Ii,j,`:∣∣∣∣∣∣cost(Ii,j,`,S)−
∑

p∈Ii,j,`∩Ω

cost(p,S) · |Ri,j |
δ

∣∣∣∣∣∣ ≤ ε

log(z/ε)
· (cost(Ri,j ,A) + cost(Ri,j ,S)) .

J

Proof. Let S as in the statement. Let R :=
(
ε
z

)2z
∆C · 2j , such that points in Ri,j

have cost to A between R and 2R, and let Ii,j,` be some non-empty type.

158

6.6. A Coreset of Size k2ε−2

We start by bounding |Ri,j | ·R · 2` in terms of cost(Ri,j ,S) + cost(Ri,j ,A): this gives
an helpful upper bound for cost(Ii,j,`,S).

Let p ∈ Ii,j,`. If ` ≥ 3z + 1, then we can use the triangle inequality to lower bound
the cost in S of any point q ∈ Ri,j :

cost(q,S) ≥ 2−z · cost(p,S)− cost(p, q)

≥ 2−z−1 · 2` · cost(p,A)− 2z ·R
≥ (2`−z−1 − 2z) ·R ≥ 2`−z−2 ·R.

Hence, |Ri,j | ·R · 2` ≤ cost(Ri,j ,S) · 2z+2.

If ` ≤ 3z, then |Ri,j | ·R · 2` ≤ |Ri,j | ·R · 23z ≤ cost(Ri,j ,A) · 8z. Putting both bounds
together, we have

|Ri,j | ·R · 2` ≤ 8z(cost(Ri,j ,S) + cost(Ri,j ,A)) (6.27)

Since we aim to apply Bernstein’s inequality, we now require a bound on the second
moment of our cost estimator. We have for a single randomly chosen point P :

E

 ∑
p∈Ii,j,`∩P

cost(p,S) · |Ri,j |

 = cost(Ii,j,`,S)

and, since |P | = 1:

E

[(∑
p∈Ii,j,`∩P

cost(p,S) · |Ri,j |

)2]
= E

 ∑
p∈Ii,j,`∩P

cost(p,S)2 · |Ri,j |2


=
∑

p∈Ii,j,`

cost(p,S)2 · |Ri,j |

≤|Ri,j | · |Ii,j,`| · 22`+2 ·R2

≤cost(Ii,j,`,S) · (cost(Ri,j ,S) + cost(Ri,j ,A)) · 16z (6.28)

where the final equation follows from |Ii,j,`| · 2` · R ≤ cost(Ii,j,`,S) and using Equa-
tion 6.27.

Furthermore, by the same reasoning and again using Equation 6.27, we have the upper
bound M on the (weighted) cost in S of every sampled point:

M ≤ R · 2`+1 · |Ri,j | ≤ (cost(Ri,j ,S) + cost(Ri,j ,A)) · 8z (6.29)

Applying Bernstein’s inequality and Equations 6.28 and 6.29, we now have (with r
being the number of non-empty interesting Ii,j,` for the ring Ri,j):

159

Chapter 6. A New Coreset Framework for Clustering

P

∣∣∣∣∣∣cost(Ii,j,`,S)−
∑

p∈Ii,j,`∩Ω

cost(p,S) · |Ri,j |
δ

∣∣∣∣∣∣ > ε

r
· (cost(Ri,j ,S) + cost(Ri,j ,A))


≤ exp

(
−

ε2·δ
r2 · (cost(Ri,j ,S) + cost(Ri,j ,A))

cost(Ii,j,`,S) · 16z + 4ε
3r · (cost(Ri,j ,S) + cost(Ri,j ,A)) · 8z

)

≤ exp

(
− ε2 · δ

2r216z

)
,

where the last line uses cost(Ii,j,`,S) ≤ cost(Ri,j ,S) ≤ cost(Ri,j ,S) + cost(Ri,j ,A).

Applying a union bound over all r = O(log z/ε) interesting sets Ii,j,`, we obtain the
above guarantee for all Ii,j,` simultaneously with probability

1− r · exp

(
− ε2 · δ

2r216z

)
.

Finally, we conclude:

Proof of Lemma 6.26. As in the proof of Lemma 6.4, we decompose |cost(P,S) −
cost(Ω,S)| into terms corresponding to points of tiny, interesting or huge groups. We
only sketch the proof here, the details are the same as for Lemma 6.4. Let S be a set
of k points, and S̃ ∈ Ck that approximates best S, as given by the definition of C (see
Definition 5.2). This ensures that for all points p with dist(p,S) ≤ 8z

ε · dist(p,A) or

dist(p, S̃) ≤ 8z
ε ·dist(p,A) , we have |cost(p,S)−cost(p, S̃)| ≤ ε(cost(p,S)+cost(p,A)).

Our first step is to deal with points that have dist(p,S) > 8z
ε · dist(p,A), using

Lemma 6.28. All other points have distance well approximated by S̃. Then, we
can apply Lemma 6.12 and Lemma 6.29 to the set LS̃ of remaining clusters, since all

points in LS̃ have cost(p, S̃) ≤ 4z
ε · dist(p,A), and so dist(p,S) ≤ 8z

ε · dist(p,A) and
were not removed by the previous step. This concludes the proof.

Combining this lemma and Lemma 6.7 gives an analogous to Theorem 5.3. Now, using
this lemma instead of Theorem 5.3 in all proofs of section Chapter 7 gives bound with
a factor k instead of a ε−z.

160

Chapter 7

Applications of the Framework:
New Coreset Bounds for Various
Metric Spaces

In this chapter, we apply the coreset framework to specific metric spaces. For each
of them, we show the existence of a small approximate centroid set, and apply Theo-
rem 5.3 to prove the existence of small coresets.

We recall the definition of a centroid set (Definition 5.2): given an instance of (k, z)-
clustering and a set of centers A, an A-approximate centroid set C is a set that
satisfies the following: for every solution S, there exists S̃ ∈ Ck such that for all
points p that verifies cost(p,S) ≤

(
8z
ε

)z
cost(p,A) or cost(p, S̃) ≤

(
8z
ε

)z
cost(p,A), it

holds |cost(p,S)− cost(p, S̃)| ≤ ε
z log(z/ε) (cost(p,S) + cost(p,A)).

Theorem 5.3 states that in case there is an A-approximate centroid set C, then there
is a linear-time algorithm that constructs with probability 1− π a coreset of size

2O(z log z) · log4 1/ε

min(ε2, εz)
(k log |C|+ log log(1/ε) + log(1/π)) .

7.1 Overview of our Techniques

We are looking to compute approximate centroid sets for various metric spaces. Recall
that points with dist(p,S) ≤ 8z

ε dist(p,A) are called interesting.

Discrete metric spaces: when the metric space consists of n points, an obvious
approximate centroid set is the full metric itself. This directly yields coresets of size
2O(z log z)·log4 1/ε

min(ε2,εz)
(k log n+ log log(1/ε) + log(1/π)) for discrete metric spaces, and we

Chapter 7. New Coreset Bounds for Various Metric Spaces

will show next chapter that it is optimal.

Metrics with doubling dimension d: C is simply constructed taking nets around
each input point. A γ-net of a metric space is a set of points that are at least at distance
γ from each other, and such that each point of the metric is at distance at most γ
from the net. The existence of γ-nets of small size is one of the key properties of
doubling metrics (see Lemma 7.4). For every point p, C contains an εcost(p,A)-net
of the points at distance at most 8z

ε · cost(p,A) from p. If p is an interesting point,
there is therefore a center of C close to its center in S.

However, this only shows that centers from the solution S̃ ∈ Ck are closer than those
of S. Showing that none gets too close is a different ballgame. We will see two ways
of achieving it. The first one, that we apply for the doubling, treewidth and planar
case, is based on the following observation: if a center s ∈ S is replaced by a center
s̃, that is way closer to a point p than s, then s can be discarded in the first place
and be replaced by the center serving p. This is formalized in Lemma 7.1. The other
way of ensuring that no center from S̃ gets too close to a point p is based on guessing
distances from points in S to input points. It can be applied more broadly than
Lemma 7.1, but yields larger centroid sets. We will use it only for minor-excluded
graphs, for which Lemma 7.1 cannot be applied.

Graphs with treewidth t: The construction of C is not as easy in graph metrics:
we use the existence of small-size separators, building on ideas from Baker et al. [15].
Fix a solution S, and suppose that all interesting points are in a region R of the graph,
such that the boundary B of R is made of a constant number of vertices. Fix a center
c ∈ S, and suppose c is not in R. Then, to preserve the cost of interesting points, it is
enough to have a center c′ at the same distance to all points in the boundary B as c.

C is therefore constructed as follows: for a point p, its distance tuple toB = {b1, ..., b|B|}
is the tuple (d1, ..., d|B|), where di = dist(p, bi) is the distance to bi. For every distance
tuple to B, C contains one point having approximately that distance tuple to B.

Let c̃ be the point of C having approximately the same distance tuple to B as c: this
ensures that ∀p, cost(p, c) ≈ cost(p, c̃).

It is however necessary to limit the size of C. For that, we approximate the distances
to B. This can be done for interesting points p as follows: since we have dist(p, c) ≤
ε−1dist(p,A), rouding the distances to their closest multiple of εdist(p,A) ensures
that there are only O(1/ε2) possibilities, and adds an error εcost(p,A). We show in
Section 7.3 how to make this argument formal, and how to remove the assumption
that all interesting points are in the same region.

In Minor-excluded graphs: this class of graphs, that includes planar graphs,
admits as well small-size shortest-path separators. A construction similar in spirit to
the one for treewidth is therefore possible, as presented in Section 7.5. This builds on
the work of Braverman et al. [34].

However, due to the nature of the separators – which are small sets of paths, and not

162

7.1. Overview of our Techniques

simply small sets of vertices – one cannot apply the idea of Lemma 7.1 to show that
no center gets too close. Instead, we will guess the distance from input points to any
point in S, allowing to construct S̃ with the same distances. Of course, this mere idea
requires way too many guesses to have a small set C: we see in Section 7.5 how to
make it work properly.

We start the section by showing two preprocessing lemmas: the first one is Lemma 7.1,
as described above. The second one allows to apply Theorem 5.3 in the case the input
set is weighted, so that we can assume the input has only poly(k, ε−1) many distinct
points, by first computing a non-optimal coreset.

7.1.1 Structural Property on Solutions

We also show a structural property on solutions, that we will use in order to show the
existence of small approximate centroid sets. Essentially, when replacing a center s
by a center in C we will make an error εcost(q,A) for some q that we can choose: it
is necessary to ensure this error is tiny compared to any cost(p, s) + cost(p,A).

Given a point q and a center s, we say that a point p is problematic with respect to q
and s when dist(p,A)+dist(p, s) ≤ ε2

8z2 (dist(q,A)+dist(q, s)). In that case, we cannot
bound the error dist(q,A) + dist(q, s) by some quantity depending on cost(p, s) +
cost(p,A). However, we show the following:

I Lemma 7.1. Let S be a solution, such that any input point p verifies
dist(p,S) ≤ 8z

ε · dist(p,A). There exists a solution S ′ ⊆ S such that

� for all p, it holds that |cost(p,S) − cost(p,S ′)| ≤ ε
z log z/ε(cost(p,S) +

cost(p,A)), and

� for any center s ∈ S ′, let q = argminp:dist(p,s)≤ 10z
ε

dist(p,A)dist(p,A) +

dist(p, s). There is no problematic point with respect to q and s.

J

Proof. First, we show that in case there is a problematic point p with respect to some
s and q, then we can serve the whole cluster of s by S(p), the point that serves p in
S. We work in this proof with particular solutions, where points are not necessarily
assigned to their closest center. This simplifies the proof, but needs particular care
at some moments. In particular, we will ensure that dist(p,S(p)) ≤ 10z

ε · dist(p,A) is
always verified. We will then remove inductively centers with problematic points to
construct S ′.

Removing a center that has a problematic point.
Let s ∈ S, and q = argminp:dist(p,s)≤ 10z

ε
dist(p,A)dist(p,A)+dist(p, s) as in the statement.

Assume furthermore that all points verify dist(p,S) ≤ 10z
ε · dist(p,A). Let p be a

problematic point with respect s and q, and S(p) its the center serving p in S. First,

163

Chapter 7. New Coreset Bounds for Various Metric Spaces

note that since p is problematic, it must be that dist(p,S(p)) ≤ dist(s, p): otherwise,
p would verify dist(p, s) ≤ 10z

ε dist(p,A), and the minimality of q would ensure that p
is not problematic. Thus, it holds that:

dist(s,S(p)) ≤ dist(s, p) + dist(p,S(p)) ≤ 2dist(s, p)

≤ 2(dist(s, p) + dist(p,A)) ≤ ε2

4z2
(dist(q,A) + dist(q, s)).

Now, let p′ be served by s. Using the triangle inequality, we immediately get:

dist(p′,S(p)) ≤ dist(p′, s) + dist(s,S(p)) ≤ dist(p′, s) +
ε2

4z2
(dist(q,A) + dist(q, s)).

Hence, removing the center s and serving s’s cluster by S(p) yields a cost increase of
ε2

4z2 (dist(q,A) + dist(q, s)). Additionally, it holds that

min
q′:dist(q′,S(p))≤ 10z

ε
dist(q′,A)

dist(q′,A) + dist(q′,S(p)) ≤ dist(p,S(p)) + dist(p,A)

≤ dist(s, p) + dist(p,A)

≤ ε2

8z2
(dist(q,A) + dist(q, s))

(7.1)

Hence, if S(p) is removed as well, the additional error for points served by s will be an
ε2

8z2 -fraction of the initial error. This implies that the total error will not accumulate,
as we will now see.

Constructing S ′. To construct S ′, we proceed iteratively: start with S ′ = S, and
as long as there exists a center s that have a problematic point p with respect to it,
remove s and reassign the whole cluster of s to S ′(p), the closest point to p in the
current solution. This process must end, as there is no problematic point when there
is a single center.

For a point p, let s1, ..., sj be the successive clusters it is reassigned to, with corre-
sponding q1, ..., qj . Using Eq. (7.1), it holds that dist(qi+1,A) + dist(qi+1, si+1) ≤
ε2

8z2 (dist(qi,A) + dist(qi, si)). Hence, the distance increase for p is geometric: using
that dist(q1,A) + dist(q1, s1) ≤ dist(p,A) + dist(p,S) (which holds by minimality of
q1), we get that at any given step i it holds that

dist(p, si) ≤ dist(p,S) + (dist(p,A) + dist(p,S))

i∑
`=1

(
ε2

8z2

)`
≤ dist(p,S) +

ε2

4z2
(dist(p,A) + dist(p,S)) (7.2)

≤ 8z

ε
· dist(p,A) +

ε2

4z2
· (1 +

8z

ε
)dist(p,A)

≤ 10z

ε
· dist(p,A),

as promised in order to remove centers: the argument of previous paragraph therefore
holds.

164

7.1. Overview of our Techniques

Last, we show that the first bullet of the lemma holds. We consider now the standard
assignment: p is assigned to its closest center of S ′, instead of sj . First, since we only
removed centers, it holds that cost(p,S) ≤ cost(p,S ′). Second, combining Lemma 1.2
with Eq. (7.2), we have for ε′ = ε

z log z/ε :

cost(p,S ′) ≤ cost(p, sj)

≤ (1 + ε′)cost(p,S) +

(
4z

ε′

)z−1

·
(
ε2

4z2

)z
· (dist(p,A) + dist(p,S))z

≤ (1 + ε′)cost(p,S) +
(ε
z

)z
· (2 log z/ε)z−1 · (cost(p,A) + cost(p,S))

≤ (1 + ε′)cost(p,S) + ε′(cost(p,A) + cost(p,S)),

where the last inequality holds when (ε′2 log2(z/ε))z−1 ≤ ε′, which is true for any
ε < 1/3. Hence, we conclude that∣∣cost(p,S ′)− cost(p,S)

∣∣ ≤ 2eps

z log z/ε
(cost(p,S) + cost(p,A)) .

Rescaling ε by 2 concludes the lemma.

7.1.2 From Weighted to Unweighted Inputs

We start by showing a simple reduction from weighted to unweighted inputs, that will
be convenient to apply recursively our constructions and remove the dependency in
|P |, as sketched in Section 5.3. Essentially, we convert a point with weight w to w
copies of the point. This is inspired by Feldman et al. [78], and yields the following
corollary of Theorem 5.3:

I Corollary 7.2. Let ε, π > 0. Let (X,dist) be a metric space, P a set of
clients with weights w : P → R+ and two positive integers k and z. Let also A
be a constant-factor approximation for (k, z)-clustering on P with weights.
Suppose there exists a A-approximate centroid set, denoted C. Then, there
exists an algorithm running in time O(|P |) that constructs with probability at
least 1− π a positively-weighted coreset of size

O

(
2O(z log z) · log4 1/ε

min(ε2, εz)
(k log |C|+ log log(1/ε) + log(1/π))

)

for the (k, z)-clustering problem on P with weights. J

Proof. We start by making all weights integers: let wmin = minp∈P w(p), and w̃(p) =⌊
2 w(p)
εwmin

⌋
. This definition ensures that

∀p, |w(p)− εwmin
2
· w̃(p)| ≤ ε

2
wmin ≤

ε

2
w(p).

165

Chapter 7. New Coreset Bounds for Various Metric Spaces

We denote P̃ the set of points P with weight w̃. First, we note that for any solution
S, ∣∣∣cost(P,S)− εwmincost(P̃ ,S)

∣∣∣ ≤ ε

2
cost(P,S).

Hence, it is enough to find an ε/2-coreset for P̃ , and then scale the coreset weights of
the coreset points by εwmin/2. We have that the weights in P̃ are integers: a weighted
point can therefore be considered as multiple copies of the same points.

By the previous equation, A is a constant-factor approximation for P̃ as well. The
definition of a centroid set does not depend on weights, so C is a A-centroid set for
P̃ as well. Hence, we can apply Theorem 5.3 on P̃ and scale the resulting coreset by
εwmin/2 to conclude the proof.

7.2 Metrics with Bounded Doubling Dimension

We start by defining the Doubling Dimension of a metric space, and stating a key
lemma.

Consider a metric space (X,dist). For a point p ∈ X and an integer r ≥ 0, we let
β(p, r) = {x ∈ X | dist(p, x) ≤ r} be the ball around p with radius r.

I Definition 7.3. The doubling dimension of a metric is the smallest integer
d such that any ball of radius 2r can be covered by 2d balls of radius r. J

Notably, the Euclidean space Rd has doubling dimension Θ(d).

A γ-net of V is a set of points X ⊆ V such that for all v ∈ V there is an x ∈ X such
that dist(v, x) ≤ γ, and for all x, y ∈ X we have dist(x, y) > γ. A net is therefore a
set of points not too close to each other, such that every point of the metric is close to
a net point. The following lemma bounds the cardinality of a net in doubling metrics.

I Lemma 7.4 (from Gupta et. al [91]). Let (V,dist) be a metric space
with doubling dimension d and, diameter D, and let X be a γ-net of V . Then
|X| ≤ 2d·dlog2(D/γ)e. J

The goal of this section is to prove the following lemma. Combined with Theorem 5.3,
it ensures the existence of small coreset in graphs with small doubling dimension.

I Lemma 7.5. Let M = (X,dist) be a metric space with doubling dimension
d, let P ⊂ X, let k and z be positive integers and let ε > 0. Further, let A be a
cA-approximate solution with at most k centers. There exists anA-approximate

166

7.2. Metrics with Bounded Doubling Dimension

centroid set for P of size

|P | ·
(z
ε

)O(d)
J

A direct corollary of that lemma is the existence of a coreset in Doubling Metrics, as it
is enough to show the mere existence of a small centroid set for applying Corollary 7.2.

I Corollary 7.6. Let M = (X,dist) be a metric space with doubling dimen-
sion d, and two positive integers k and z.
There exists an algorithm with running time Õ(nk) that constructs an ε-coreset
for (k, z)-clustering on P ⊆ X with size

2O(z log z) log5 1/ε

min(ε2, εz)
(kd+ k log k + log 1/π) . J

Proof. We first compute a coreset of size Õ(k3dε−2), in time O(nk) using the standard
sensitivity sampling algorithm [98]. Then, combining Corollary 7.2 to compute a
coreset of the coreset and Lemma 7.5 yields an algorithm constructing a coreset of
size

2O(z log z) log4 1/ε

min(ε2, εz)
(kd log 1/ε+ k log(kd/ε) + log 1/π) .

If log k > d then log(kd) = O(log k). If d > log k then kd+ k log(kd) = O(kd), hence
the claimed bound follows.

Proof of Lemma 7.5. For each point p ∈ P , let c be the center to which p was assigned
in A. Let β

(
p,
(

8z
ε

)
dist(p, c)

)
be the metric ball centered around p with radius

(
8z
ε

)
·

dist(p, c), and let Np be an
(
ε
4z

)
· dist(p,A)-net of that ball.

Due to Lemma 7.4, Np has size (ε/z)−O(d). Additionally, let sf be a point not in any
β(p,

(
10z
ε

)
dist(p,A)), if such a point exist.

Let C := {sf}
⋃
p∈Y Np. We claim that C is the desired approximate centroid set.

For a candidate solution S, apply first Lemma 7.1, so that we can assume that for
any center s ∈ S, and q = argminp:dist(p,s)≤ 10z

ε
dist(p,A)dist(p,A) + dist(p, s), there is no

problematic point with respect to q and s.

let S̃ be the solution obtained by replacing every center s ∈ S by s̃ ∈ C as follows: let
q = argminp:dist(p,s)≤ 10z

ε
dist(p,A)dist(p,A) + dist(p, s). Pick s̃ to be the closest point to

s in Nq. If such a q does not exist, pick s̃ = sf .

Now, let p be a point such that cost(p,S) ≤
(

8z
ε

)z · cost(p,A), let s be any center in S
and assume that q = argminp:dist(p,s)≤ 10z

ε
dist(p,A)dist(p,A) + dist(p, s) exists. Then, by

construction of S̃, there is a center s̃ with dist(s, s̃) ≤
(
ε
4z

)
dist(q,A) and therefore,

167

Chapter 7. New Coreset Bounds for Various Metric Spaces

using that p is not problematic with respect to s and q:

cost(p, S̃) ≤ cost(p, s̃) ≤ (1 + ε)cost(p, s) + (1 + z/ε)z−1cost(s, s̃)

≤ (1 + ε)cost(p, s) + (2z/ε)z−1
(ε

4z

)z
cost(q,A)

≤ (1 + ε)cost(p, s) + εcost(q,A)

≤ (1 + ε)cost(p, s) + εcost(p,A).

To show the other direction, for any point in S̃ different than sf , there is a center
s with dist(s, s̃) ≤

(
ε
4z

)
dist(q,A). Hence the previous equations apply as well, and

yield cost(p,S) ≤ (1 + ε)cost(p, s̃) + εcost(p,A).

When s (resp. s̃) being the closest point to p in S (resp. S̃), the q defined must exist
as by choice of p it holds that cost(p,S) ≤ cost(p,A). For the same reason, s̃ 6= sf .
Hence, using those equations with those s and s̃, we can conclude: for a point p such
that cost(p,S) ≤

(
8z
ε

)z · cost(p,A),

|cost(p,S)− cost(p, S̃)| ≤ ε(cost(p,S) + cost(p,A)).

Rescaling ε concludes the lemma: there is an A-approximate centroid set with size

|P |
(
z2 log z/ε

ε

)O(d)
= |P |

(
z
ε

)O(d)
.

7.3 Graphs with Bounded Treewidth

In this section, we show that for graphs with treewidth t, there exists a small approx-
imate centroid set. Hence, the main framework provides an algorithm computing a
small coreset. We first define the treewidth of a graph:

I Definition 7.7. A tree decomposition of a graph G = (V,E) is a tree T
where each node b (call a bag) is a subset of V and the following conditions
hold:

� The union of bags is V ,

� ∀v ∈ V , the nodes containing v in T form a connected subtree of T , and

� for all edge (u, v) ∈ E, there is one bag containing u and v.

The treewidth of a graph G is the smallest integer t such that their exists a tree
decomposition with maximum bag size t+ 1. J

168

7.3. Graphs with Bounded Treewidth

I Lemma 7.8. Let G = (V,E) be a graph with treewidth t, X ⊆ V and
k, z > 0. Furthermore, let A be a solution to (k, z)-clustering for X. Then,
there exists an A-approximate centroid set for (k, z)-clustering on X of size

poly(|X|)
(
z2 log z/ε

ε

)O(t)
. J

Applying this lemma with X yields the direct corollary:

I Corollary 7.9. Let G = (V,E) be a graph with treewidth t, X ⊆ V , k and
z > 0.
There exists an algorithm running time Õ(nk) that constructs an ε-coreset for
(k, z)-clustering on X, with size

2O(z log z) log5 1/ε

min(ε2, εz)
(k log k + kt+ log(1/π)) . J

Proof. LetX ⊆ V . We start by computing a (k, ε)-coresetX1 of sizeO(poly(k, 1/ε, t)),
using the algorithm from [15]

We now apply our framework to X1. Computing an approximation on X1 takes time
Õ(|X1|k), using Lemma 1.3.

Lemma 7.8 ensure the existence of an approximate centroid set for X1 with size

poly(|X1|)
(
z
ε

)O(t)
. Hence, Corollary 7.2 and the framework developed in the previous

sections gives an algorithm that computes an ε-coreset of X with size

O

(
log4 1/ε

2O(z log z) min(ε2, εz)
(k log |X1|+ kt log 1/ε+ log(1/π))

)
.

Using that |X1| = O(poly(k, ε, t)) yields a coreset of size

O

(
log5 1/ε

2O(z log z) min(ε2, εz)
(k log k + kt+ log(1/π))

)
.

Instead of using [15], one could apply our algorithm repeatedly as in Theorem 3.1 of
[34], to reduce iteratively the number of distinct point consider and to eventually get
the same coreset size. The number of repetition needed to achieve that size bound is
O(log∗ n), where log∗(x) is the number of times log is applied to x before the result is
at most 1; formally log∗(x) = 0 for x ≤ 1, and log∗(x) = 1 + log∗ log x for x > 1. The
complexity of this repetition is therefore Õ(nk), and the success probability 1− π, as
proven in [34].

For the proof of Lemma 7.8, we rely on the following structural lemma,1 that shows
the existence of a partition of the graph into parts that have small vertex-separators:

1In the statement of [15], the third item is slightly different. To recover our statement from theirs,
take PA = A when |A| = O(t).

169

Chapter 7. New Coreset Bounds for Various Metric Spaces

I Lemma 7.10 (Lemma 3.7 of [15]). Given a graph G = (V,E) of treewidth
t, and X ⊆ V , there exists a collection T of subsets of V such that:

1. ∪A∈T A = V ,

2. |T | = poly(|X|),

3. For each A ∈ T , |A∩X| = O(t), and there exists PA ⊆ V with |PA| = O(t)
such that there is no edge between A \ PA and V \ (A ∪ PA).

J

Our construction relies on the following simple observation. Let s be a possible center,
and p be a vertex such that cost(p, s) ≤

(
4z
ε

)z
cost(p,A). Let A ∈ T such that p ∈ A.

Then, either s ∈ A, or the path connecting p to s has to go through PA.

We use this observation as follows: it would be enough to replace a center s from
solution S by one that has approximately the same distance of all points of PA. The
main question is : how should we round the distances to PA? The goal is to classify
the potential centers into few classes, such that taking one representative per class
gives an approximate centroid set. The previous observation indicates that classifying
the centers according to their distances to points of PA is enough. However, there are
too many different classes: instead, we round those distances.

Ideally, this rounding would ensure that for any point p and any center s, all centers
in s’s class have same distance to p, up to an additive error ε(cost(p, s) + cost(p,A)).
This would mean rounding the distance from s to any point in PA by that amount –
for instance, rounding to the closest multiple of ε(cost(p, s)+cost(p,A)). Nonetheless,
this way of rounding depends on each point p: a rounding according to p may not
be suited for another point q. To cope with that, we will quite naturally round
distances according to the point p that minimizes cost(p, s)+cost(p,A). Additionally,
to ensure that the number of classes stays bounded, it is not enough to round to the
closest multiple of ε(cost(p, s) + cost(p,A)): we also show that distances bigger than
1
ε (cost(p, s)+cost(p,A)) can be trimmed down to 1

ε (cost(p, s)+cost(p,A)). That way,
for each point of PA there are only 1/ε2 many possible rounded distances.

Hence, a class is defined by a certain point p, a part A and by |PA| = t many rounded
distances: in total, that makes poly(|X|)ε−O(t) many classes. The approximate cen-
troid set contains one representative of each class: this would prove Lemma 7.8. We
now make the argument formal, in particular to show that the error incurred by the
trimming is affordable.

Proof of Lemma 7.8. Given a point s ∈ V and a set A ∈ T , we call a distance tuple to
A dA(s) := (dist(s, x) | ∀x ∈ X ∩A)+(dist(s, x) | ∀x ∈ PA). Let q ∈ X: the rounded

distance tuple of s with respect to q is d̃A,q(s) defined as follows:

1. For x ∈ X ∩ A or x = q, d̃(s, x) is the multiple of ε
z · dist(x,A) smaller than

10z
ε dist(x,A) closest to dist(s, x).

170

7.3. Graphs with Bounded Treewidth

2. For y ∈ PA, d̃(s, y) is the multiple of ε3

8z3 · dist(q,A) smaller than 200z3

ε3
dist(q,A)

closest to dist(s, y).

Now, for every A ∈ T , q ∈ X and every rounded distance tuple T to A with respect to
q such that ∃s : T = d̃A(s), C contains one point s ∈ A having that rounded distance
tuple.

Bounding the size of C. Fix some A ∈ T , and q ∈ X. A rounded distance tuple
to A is made of O(t) many distances. Each of them takes its value among poly(z/ε)

possible numbers, due to the rounding. Hence, there are at most
(
z
ε

)O(t)
possible

rounded distance tuple to A, and so at most that many points in C. Since there are

poly(|X|) different choices for A and q, the total size of C is poly(|X|)
(
z
ε

)O(t)
.

Bounding the error. We now bound the error induced by approximating a solution
S by a solution S̃ ⊆ C.

First, by applying Lemma 7.1, we can assume that for any center s ∈ S, and q =
argminp:dist(p,s)≤ 10z

ε
dist(p,A)dist(p,A) + dist(p, s), there is no problematic point with

respect to q and s.

Let A ∈ T such that s ∈ A, and q = argminp:dist(p,s)≤ 10z
ε

dist(p,A)dist(p,A) + dist(p, s).

s̃ is chosen to have the same rounded distance tuple to A with respect to q as s. S̃ is
the solution made of all such s̃, for s ∈ S.

As in the proof of Lemma 7.5, we first show that points close to s have cost preserved
in s̃. We will later show that points with large distance to s have also large distance
to s̃, to ensure that their distance to S̃ does not decrease.

Let p ∈ X be an input point. By Lemma 7.1, p is not problematic with respect to s
and q. Note that s is not necessarily the closest center to p. We aim at showing that
|cost(p, s)− cost(p, s̃)| ≤ ε(cost(p, s) + cost(p,A)).

First, when p /∈ X ∩A, we distinguish two subcases:

� either dist(p, s) ≤ 200z3

ε3
dist(q,A): in that case, let x ∈ pA that is on the shortest

path between p and s. We have dist(s, x) ≤ 200z3

ε3
dist(q,A), and so s and s̃ have

the same rounded distance to x. Hence,

dist(p, s̃) ≤ dist(p, x) + dist(x, s̃) ≤ dist(p, x) + dist(x, s) +
ε3

8z3
dist(q,A)

≤ dist(p, s) +
ε3

8z3
·
(

8z2

ε2

)
(dist(p,A) + dist(p, s))

≤
(

1 +
ε

z

)
dist(p, s) +

ε

z
dist(p,A),

The first line implies that dist(p, s̃) ≤ 200z3

ε3
dist(q,A) as well: we can therefore

repeat the argument, choosing x to be on the shortest path between p and s̃
instead, to show that dist(p, s) ≤

(
1 + ε

z

)
dist(p, s̃) + ε

zdist(p,A). This implies,
using Lemma 1.2, that |cost(p, s̃)− cost(p, s)| ≤ ε

z · (cost(p, s) + cost(p,A)).

171

Chapter 7. New Coreset Bounds for Various Metric Spaces

� Otherwise, dist(p, s) > 200z3

ε3
dist(q,A). In that case, we can argue that dist(s, s̃)

is negligible compared to dist(p, s). Recall that dist(q, s) ≤ 10z
ε dist(q,A).

The rounding ensures that the distance to q is preserved: dist(q, s̃) ≤ dist(q, s)+
ε
zdist(q,A). Hence, we get that

dist(s, s̃) ≤ 2dist(q, s) +
ε

z
dist(q,A)

≤
(

100z2

ε2
+
ε

z

)
· dist(q,A)

≤ 200z2

ε2
· ε3

200z3
· dist(p, s) ≤ ε

z
· dist(p, s).

Finally, using Lemma 1.2, we conclude again that |cost(p, s̃) − cost(p, s)| ≤
εcost(p, s) + εcost(p,A).

Now, in the other case where p ∈ X∩A, if dist(p, s) ≤ 10z
ε dist(p,A), then the choice of s̃

ensures that |dist(s̃, p)−dist(s, p)| ≤ ε
zdist(x,A) and therefore |cost(p, s)−cost(p, s̃)| ≤

εcost(p, s) + (1 + z/ε)z−1cost(s, s̃) ≤ εcost(p,S) + εcost(p,A). In the last case when
dist(p, s) > 10z

ε dist(p,A), then the rounding enforces dist(p, s̃) = 10z
ε dist(p,A).

Hence, in all possible cases, it holds that either dist(p, s) and dist(p, s̃) are bigger than
10z
ε dist(p,A), or:

|cost(p, s̃)− cost(p, s)| ≤ εcost(p, s) + εcost(p,A). (7.3)

To extend that result to the full solutions S and S̃ instead of a particular center, we
note that since p is interesting, dist(p,S) ≤ 8z

ε dist(p,A). Hence, we can apply Eq. (7.3)

with s being the closest point to p in S: cost(p, S̃) ≤ (1 + ε)cost(p,S) + εcost(p,A).

In particular, this implies that dist(p, s̃) ≤ 10z
ε dist(p,A). Choose now s̃ to be the

closest point to p in S̃ and s its corresponding center in S. Using Eq. (7.3) therefore
gives:

cost(p, s) ≤ cost(p, S̃) + ε(cost(p,A) + cost(p, s))

=⇒ cost(p, s) ≤ 1

1− ε
cost(p, S̃) +

ε

1− ε
cost(p,A)

≤ (1 + 2ε)cost(p, S̃) + 2εcost(p,A)

=⇒ cost(p,S) ≤ (1 + 2ε)cost(p, S̃) + 3εcost(p,A).

Hence, combining those two inequalities yields

|cost(p,S)− cost(p, S̃)| ≤ εcost(p,S) + 2εcost(p, S̃) + 4εcost(p,A).

To remove the dependency in cost(p, S̃) from the right hand side, one can upper bound

172

7.4. Planar Graphs

it with cost(p,S) + |cost(p,S)− cost(p, S̃)|, which yields the following:

|cost(p,S)− cost(p, S̃)| ≤ εcost(p,S) + 2ε
(

cost(p,S) + |cost(p,S)− cost(p, S̃)|
)

+ 4εcost(p,A)

⇐⇒ |cost(p,S)− cost(p, S̃)| ≤ 1

1− 2ε
(3εcost(p,S) + 4εcost(p,A))

≤ 9εcost(p,S) + 12εcost(p,A)

Finally, rescaling ε concludes.

7.4 Planar Graphs

The goal of this section is to prove the existence of small centroid sets for planar
graph, analogously to the treewidth case. This is the following lemma:

I Lemma 7.11. Let G = (V,E) be an edge-weighted planar graph, a set
X ⊆ V and two positive integers k and z. Furthermore, let A be a solution of
(k, z)-clustering of X.
Then, there exists an A-approximate centroid set for (k, z)-clustering on V of
size poly(|X|) · exp

(
O(z3ε−3 log z/ε)

)
.

J

As for treewidth, this lemma implies the following corollary:

I Corollary 7.12. Let G = (V,E) be an edge-weighted planar graph, a set
X ⊆ V , and two positive integers k and z .
There exists an algorithm with running time Õ(nk) that constructs an ε-coreset
for (k, z)-clustering on X with size

2O(z log z) log5 1/ε

min(ε2, εz)

(
k log2 k +

k log k

ε3
+ log 1/π

)
J

The big picture is the same as for treewidth. As in the treewidth case, planar graph
can be broken into poly(X) pieces, each containing at most 2 vertices of X. The
main difference is in the nature of the separators: while treewidth admit small vertex
separators, the region in the planar decomposition are bounded by a few number of
shortest paths instead. This makes the previous argument void: we cannot round
distances to all vertices in the boundary of a region. We show how to bypass this,
using the fact that separators are shortest paths: it is enough to round distances to a
well-chosen subset of the paths, as we will argue in the proof.

173

Chapter 7. New Coreset Bounds for Various Metric Spaces

Formally, the decomposition is as follows:

I Lemma 7.13 (Lemma 4.5 of [34], see also [70]). For every edge-
weighted planar graph G = (V,E) and subset X ⊆ V , there exists a collection
of subsets of V Π := {Vi} with |Π| = poly(|X|) and ∪Vi = V such that, for
every Vi ∈ Π:

� |Vi ∩X| = O(1), and

� there exists a collection of shortest paths Pi with |Pi| = O(1) such remov-
ing the vertices of all paths of Pi disconnects Vi from V \ Vi.

J

As for treewidth, we proceed as follows: given the decomposition of Lemma 7.13, for
any center s ∈ Vi, we identify a point q and round distances from s to Pi according
to dist(q,A). C contains one point s̃ with the same rounded distances as s, and we
will argue that s̃ can replace s. As mentioned, we cannot round distances to the
whole shortest-paths Pi. Instead, we show that it is enough to round distances from
s to points on the boundary of Vi that are close to q: since the boundary consists of
shortest path, it is possible to discretize that set.

Proof of Lemma 7.11. Let Π = {Vi} be the decomposition given by Lemma 7.13. For
any Vi and any q ∈ X, we define a set of landmarks Li,q as follows: for any P ∈ Pi,
let Li,q,P be a ε

z · dist(q,A)-net of P ∩ B
(
q, 90z2

ε2
· dist(q,A)

)
. Note that since P is a

shortest path, the total length of P∩B
(
q, 90z2

ε2
· dist(q,A)

)
is at most 180z2

ε2
·dist(q,A),

and so the net has size at most 180z3

ε3
. We define Li,q = (Vi ∩X) ∪P∈Pi Li,q,P .

Rounding the distances to Li,q We now describe how we round distances to land-
marks, and define C such that for each possible distance tuple, C contains a point
having that distance tuple. Formally, given a point s ∈ Vi and a point q ∈ X,
the distance tuple dq(s) of s is defined as dq(s) = (dist(s, x) | ∀ x ∈ X ∩ Vi) +
(dist(s, y) | ∀y ∈ Li,q,∀i). The rounded distance tuple d̃q(s) of s is defined as follows :

� For x ∈ X ∩ Vi or x = q, d̃(s, x) is the multiple of ε
zdist(x,A) smaller than

10z
ε dist(x,A) closest to dist(s, x).

� For y ∈ Li,q, d̃(s, y) is the multiple of ε
z · dist(q,A) smaller than 90z2

ε2
dist(q,A)

closest to dist(s, y).

The set C is constructed as follows: for every Vi and every q, for every rounded
distance tuple {d̃q(p)}, add to C a point that realizes this rounded distance tuple (if
such a point exists).

It remains to show both that C has size poly(|X|) exp
(
O(z3ε−3 log z/ε)

)
, and that C

contains good approximation of each center of any given solution.

174

7.4. Planar Graphs

Size analysis. For any given Vi and q, there are
(

90z3

ε3

)|Li,q |
possible rounded dis-

tances. As explained previously, |Li,q| = O(z3/ε3).

There are |V | choices of q, and Lemma 7.13 ensures that there are poly(|X|) choices
for Vi.

Hence, the total size of C is at most poly(|X|) · exp
(
O(z3ε−3 log z/ε)

)
.

Error analysis. We now show that for all solution S, every center can be approx-
imated by a point of C. First, by applying Lemma 7.1, we can assume that for any
center s ∈ S, and q = argminp:dist(p,s)≤ 10z

ε
dist(p,A)dist(p,A) + dist(p, s), there is no

problematic point with respect to q and s.

Let S be some cluster of S, with center s. As in Lemma 7.5 and 7.8, we aim at showing
how to find s̃ ∈ C such that, for every p ∈ X ∩ S with dist(p,S) ≤ 10z

ε · dist(p,A), we
have |cost(p, s)− cost(p, s̃)| ≤ 3ε (cost(p, s) + cost(p,A)).

For this, let Vi be a part of Π containing s, and Pi be the paths given by Lemma 7.13.
We let q := argminp∈X:dist(p,s)≤ 10z

ε
dist(p,A)dist(p, s) + dist(p,A). We define s̃ to be the

point of C that has the same rounded distance tuple to Li,q as s. Let S̃ be the solution
constructed from S that way. We show now that S̃ has the required properties.

First, if p /∈ Vi, then we show how to use that s and s̃ have the same rounded distances
to Li,q.

� If dist(p, s) > 21z2

ε2
· dist(q,A), we argue that d(s, s̃) is negligible. The argument

is exactly alike the one from Lemma 7.8, we repeat it for completeness.

The rounding ensures that the distance to q is preserved: dist(q, s̃) ≤ dist(q, s)+
ε
zdist(q,A), and therefore:

dist(s, s̃) ≤ 2dist(q, s) +
ε

z
· dist(q,A)

≤
(

20z

ε
+
ε

z

)
· dist(q,A)

≤ 21z

ε
· ε2

21z2
· dist(p, s) ≤ ε

z
· dist(p, s).

Hence, using the modified triangle inequality Lemma 1.2, we can conclude:
|cost(p, s̃)− cost(p, s)| ≤ εcost(p, s) + εcost(p,A).

� Otherwise, dist(p, s) ≤ 21z2

ε2
· dist(q,A) and we can make use of the landmarks.

Since p /∈ Vi the shortest-path p s and crosses Pi at some vertex x.

First, it holds that dist(x, q) ≤ dist(x, s) + dist(s, q) ≤ dist(p, s) + dist(s, q) ≤
(10z
ε + 8z2

ε2
)dist(q,A), hence x is in P ∩ B(q, 90z2

ε2
dist(q,A)). By choice of land-

marks, this implies that there is ` ∈ Li,q, with dist(x, `) ≤ ε
zdist(q,A). To show

that s and s̃ have the same distance to `, it is necessary to show that s is not

175

Chapter 7. New Coreset Bounds for Various Metric Spaces

too far away from `:

dist(s, `) ≤ dist(s, x) +
ε

z
· dist(q,A) ≤ dist(p, s) +

ε

z
dist(q,A)

≤ 21z2

ε2
· dist(q,A) +

ε

z
· dist(q,A)

Hence, s is close enough to ` to ensure that s̃ has the same rounded distance to
` as s, and we get:

dist(p, s̃) ≤ dist(p, `) + dist(`, s̃)

≤ dist(p, `) + dist(`, s) +
ε

z
· dist(q,A)

≤ dist(p, x) + dist(x, s) + 2dist(x, `) +
ε

z
· dist(q,A)

= dist(p, s) +
3ε

z
· dist(q,A)

First, this ensures that dist(p, s̃) ≤ 8z2

ε2
· dist(q,A), and so we can repeat the

argument switching roles of s and s̃, to get |dist(p, s̃)−dist(p, s)| ≤ 3ε
z ·dist(q,A)

Using that p is not problematic with respect to q and s, we can conclude that

|dist(p, s̃)− dist(p, s)| ≤ 3ε

z
· (dist(p,A) + dist(p, s)).

In turn, using Lemma 1.2, we conclude:

|cost(p, s̃)− cost(p, s)| ≤ ε · (cost(p,A) + cost(p, s)).

Finally, in the case where p ∈ Vi, then we get either |dist(p, s̃)−dist(p, s)| ≤ ε
zdist(p,A)

and we are done, or both dist(p, s̃) and dist(p, s) are bigger than 8z
ε dist(p,A).

We can now conclude, exactly as in the treewidth case: in all possible cases, it holds
that either dist(p, s) and dist(p, s̃) are bigger than 10z

ε dist(p,A), or:

|cost(p, s̃)− cost(p, s)| ≤ εcost(p, s) + εcost(p,A). (7.4)

To extend that result to the full solutions S and S̃ instead of a particular center, we
note that since p is interesting, dist(p,S) ≤ 8z

ε dist(p,A). Hence, we can apply Eq. (7.4)

with s being the closest point to p in S: cost(p, S̃) ≤ (1 + ε)cost(p,S) + εcost(p,A).

In particular, this implies that dist(p, s̃) ≤ 10z
ε dist(p,A). Chose now s̃ to be the closest

point to p in S̃ and s its corresponding center in S. Using Eq. (7.4) therefore gives:

cost(p,S) ≤ (1 + ε)cost(p, S̃) + εcost(p,A)

≤ (1 + ε)2cost(p,S) + ε(2 + ε)cost(p,A)

≤ (1 + 3ε)cost(p,S) + 3εcost(p,A).

Rescaling ε and combining the two inequality concludes.

176

7.5. Minor-Excluded Graphs

7.5 Minor-Excluded Graphs

A graph H is a minor of a graph G if it can be obtained from G by deleting edges
and vertices and contracting edges.

We are interested here in families of graph excluding a fixed minor H, i.e. none of the
graph in the family contains H as a minor. The graphs are weighted: we assume that
for each edge, its value is equal to shortest-path distance between its two endpoints.

The goal of this section is to prove the following lemma, analogous to Lemma 7.11.

I Lemma 7.14. Let G = (V,E) be an edge-weighted graph that excludes a
minor of fixed size, a set X ⊆ V and two positive integers k and z. Furthermore,
let A be a solution of (k, z)-clustering of X.
Then, there exists an A-approximate centroid set for (k, z)-clustering on V of
size exp(O(log2 |X|+ log |X|/ε4)). J

As for the bounded treewidth and planar cases, this lemma implies the following
corollary:

I Corollary 7.15. Let G = (V,E) be an edge-weighted graph that excludes
a fixed minor, and two positive integers k and z .
There exists an algorithm with running time Õ(nk) that constructs an ε-coreset
for (k, z)-clustering on V with size

2O(z log z) log5 1/ε

min(ε2, εz)

(
k log2 k log(1/ε) +

k log k

ε4
+ log 1/π

)
J

The big picture is the same as for planar graphs. Minor-free graphs have somewhat
nice separators, that we can use to select centers. However, those separators are not
shortest paths in the original graph, as described in the next structural lemma.

I Lemma 7.16 (Lemma 4.12 in [34], from Theorem 1 in [1]). For
every edge-weighted graph G = (V,E) excluding some fixed minor, and subset
X ⊆ V , there exists a collection of subsets of V Υ := {Πi} with |Υ| = poly(|X|)
and ∪Πi = V such that, for every Πi ∈ Υ:

� |Πi ∩X| = O(1), and

� there exists a group of paths {P ij}j with | ∪j P ij | = O(log |X|) such that
removing the vertices of all paths of Pi disconnects Πi from V \ Πi, and

such that paths in P ij are shortest-paths in the graphGij := G\
(
∪j′<jP ij′

)
.

J

The general sketch of the proof is as follows: we consider the boundary B of a region

177

Chapter 7. New Coreset Bounds for Various Metric Spaces

Πi, and enumerate all possible tuple of distances from a point inside the leaf to the
boundary. For each tuple, we include in C a point realizing it. Of course, this would
lead to a set C way too big: the boundary of each leaf consists of too many points,
and there are too many distances possible. For that, we show how to discretize the
boundary, and how to round distances from a point to the boundary.

Discretizing the boundary is not as easy as in the planar case, as the separating paths
are not shortest paths in the original graph G. A separating path P ∈ Pj , however,

is a shortest path in the graph Gij := G \
(
∪j′<jP ij′

)
.

As in the planar case, we therefore start from the point q closest to s in the graph
Gij . Note here that we cannot infer much on the distances in the original graph G:
for this reason, we are not able to apply Lemma 7.1, and we need to present a whole
different argument.

We will assume that we know D = distj(q, s), where distj is the distance in the graph
Gij . In that case, we can simply take an εD-net of P ∩Bj(q,D), where Bj(q,D) is the

ball centered at q and of radius D in Gij . This net has size O(1/ε2), as P is a shortest

path in Gij . Then, if s̃ has same distances to this net as s, we are able to show as in
the previous cases that for any point separated from s by P , dist(p, s̃) / dist(p, s);
and for any point separated from s̃ by P , dist(p, s) / dist(p, s̃).

To estimate disti(q, s), we proceed as follows: either disti(q, s) ≈ disti(q, q2) for some
q2 ∈ X, or not. In the first case, we can pick such a q2. In the second case, we will
need to ensure that when p is such that disti(p, q)� disti(q, s), then s̃ stays close to
q. When p is such that disti(q, p)� disti(q, s), then p and q are essentially located at
the same spot, and we ensure that s̃ stays far from q.

7.5.1 Construction of the centroid set.

From Lemma 7.16, we have a decomposition into regions Υ = {Πi}. In this argument,
we fix a region Πj ∈ Υ. Πj is bounded by O(log |X|) paths P1, ..., Pm and Pi is a

shortest path in some graph Gi, subgraph of G: if Pi ∈ Pj` , then Gi := Gj` . We change
the indexing for simplicity, and let Π = Πj . We let disti be the distances in the graph
Gi.

We consider two ways of rounding the distances. The first starts from a point q1 ∈ X,
and is useful when there is q2 ∈ X such that εdisti(q1, s) ≤ disti(q1, q2) ≤ 1

εdisti(q1, s).

Along each paths, we designate portals as follows. Consider a path Pi. For any pair
of vertices q1, q2 ∈ X, let D = disti(q1, q2) + dist(q2,A) and let Ni,q1,q2 be an ε2D-net
of Pi ∩Bi(q1,

D
ε2

), where Bi(q,
D
ε2

) is the ball centered at q and of radius D
ε2

in Gi.

For each possible q1, q2 and any point s ∈ Π, we consider the following distance
tuple: (disti(s, n), ∀n ∈ Ni,q1,q2) ∪ (disti(s, q1)) ∪ (disti(x, s), ∀x ∈ Π ∩X). We

define the rounded tuple d̃1(q1, q2) :=
(
d̃1(s, n), ∀n ∈ Ni,q1,q2

)
∪
(
d̃1(s, q1)

)
∪(

d̃1(x, s), ∀x ∈ Π ∩X
)

, where

178

7.5. Minor-Excluded Graphs

� d̃1(s, n) is the multiple of ε2D closest to min
(

3D
ε2
, disti(s, n)

)
.

� d̃1(s, q1) is the multiple of εD closest to disti(s, q1) and smaller than 3D
ε .

� for any x ∈ Π ∩ X, d̃1(x, s) is the closest multiple of εdist(x,A) to disti(x, s)
smaller than 1

ε · dist(x,A).

We also consider another rounding, which will be helpful when for all points , dist(p,A)+
disti(q, q1) /∈ [εdisti(q1, s),

1
εdisti(q1, s)].

For any q1, q3, and q4 in X, d̃2(q1, q3, q4) = > when 1
ε · (disti(q1, q4) + dist(q4,A)) <

disti(q1, s) < ε · (disti(q1, q3) + dist(q3,A)), and d̃2(q1, q3, q4) = ⊥ otherwise. q3 or q4

may be unspecified. In that case, the corresponding part of the inequality is dropped.2

To construct C, we proceed as follows: for any region Π ∈ Υ given by Lemma 7.16,
and for any path Pi in the boundary of Π, select a rounding d̃1

i (q
i
1, q

i
2) or d̃2

i (q
i
1, q

i
3, q

i
4).

If there is any, pick one point s achieving all those rounding distances, and add s to
C.

We will show Lemma 7.14 using this centroid set. For that, we break the proof into
two parts: first, the size of C is the desired one; then, C is indeed an approximate
centroid set.

7.5.2 C has Small Size

I Lemma 7.17. C constructed as previously has size
exp

(
O(log2 |X|+ log |X|/ε−4)

)
. J

Proof. Fix a region Π, a path Pi on Π’s boundary, and points q1, q2. There areO
(
1/ε4

)
points in the net Ni,q1,q2 , and O(1) in Π ∩X. For each of those points, there are at
most 3/ε4 many choices of distances.

For a fixed region Π, path Pi on Π’s boundary, and points q1, q2, q3, there only 2
possible different d̃2(q1, q2, q3).

Now, there are poly(|X|) many regions Π, and for each of them O(log |X|) many paths
Pi. For each path, there are at most |X|3 choices of qj for it, so in total |X|O(log |X|)

possible choices. Each choice gives rise to O(log |X|) ·O
(
1/ε4

)
many net points, each

having at most 3/ε4 many choices of distances.

So, in total, there are

|X|O(log |X|) · (1/ε)O(log |X|/ε4)

2When q3 is unspecified, d̃2(q1, q3, q4) = > when 1
ε
· (disti(q1, q4) + dist(q4,A)) < disti(q1, s),

and d̃2(q1, q3, q4) = ⊥ otherwise. When q4 is unspecified, d̃2(q1, q3, q4) = > when disti(q1, s) <
ε · (disti(q1, q3) + dist(q3,A)), and d̃2(q1, q3, q4) = ⊥ otherwise.

179

Chapter 7. New Coreset Bounds for Various Metric Spaces

many choices of rounded distances tuples. That upper bounds the size of C, as there
is at most one point per rounded distance tuple.

7.5.3 C is an Approximate Centroid Set

Construction of solution S̃. Now, for a point s ∈ S, we construct s̃ as follows,
using the rounded distance tuples. Let Π be a region of Υ that contains s. For each
path Pi in the boundary of Π, we define the tuple d̃i as follows. Let qi1 be the point
minimizing disti(p, s). Now, we distinguish two cases:

� either there is some qi2 such that εdisti(q
i
1, s) ≤ disti(q

i
1, q

i
2) + dist(qi2,A) ≤

1
εdisti(q

i
1, s). Then d̃i is the tuple d̃1(qi1, q

i
2).

� or there exists points q with disti(q
i
1, q) + dist(q,A) > 1

εdisti(q
i
1, s): let qi3 be

such a point, with smallest disti(q
i
1, q

i
3) + dist(qi3,A) value. If there are no such

points, qi3 is unspecified.

If there are points q with disti(q
i
1, q)+dist(q,A) < εdisti(q

i
1, s), then let qi4 be the

point with largest disti(q
i
1, q

i
4) + dist(qi4,A) value. Otherwise, qi4 is unspecified.

Note that since we are not in the first case, either qi3 are qi4 is specified.

Then d̃i is the tuple d̃2(qi1, q
i
3, q

i
4).

s̃ is chosen to be in C ∩ Π and to have the same rounded distance tuples as s, for all
the rounded tuples d̃i. S̃ is the union of all those s̃ for s ∈ S.

I Lemma 7.18. Let S be a solution, and s ∈ S. Let s̃ defined as previously.
For any point p ∈ X, either |cost(p, s) − cost(p, s̃)| ≤ ε(cost(p, s) + cost(p,A))

or both dist(p, s) and dist(p, s̃) are bigger than 10z·dist(p,A)
ε . J

Proof. Fix s ∈ S ∩ Π, and let s̃ be its corresponding point in S̃. Let s1 ∈ {s, s̃}, and
s2 the other choice: we will show that dist(p, s1) ≤ (1 + ε)dist(p, s2) + εdist(p,A).
This implies that the costs verify the same inequality, which will allow us to conclude,
switching the roles of s1 and s2.

First, in the case where p ∈ Π ∩ X, then the rounding directly ensures that either
dist(p, s) > 1/ε · dist(x,A), in which case it holds as well than dist(p, s̃) > 1/ε ·
dist(x,A), or |dist(p, s)− dist(p, s̃)| ≤ εdist(x,A)).

Otherwise, p is separated from s1 by some path among {P1, ..., Pm}. Let i be the
smallest integer such that Pi intersects the shortest path between p and s1. Our
argument depends on the type of tuple d̃i chosen for s. Since s and s̃ have the same
rounded distance tuples d̃1, d̃2, ..., they have in particular the same rounded distance
d̃i. Let qi1 be the point with smallest disti(q, s) value (importantly, the qi1, q

i
2, q

i
3 and

qi4 appearing in the proof are defined with respect to s, not to s1).

180

7.5. Minor-Excluded Graphs

If we can estimate disti(q
i
1, s). In the first case, there is a qi2 such that εdisti(q

i
1, s) ≤

disti(q
i
1, q

i
2) + dist(qi2,A) ≤ 1

εdisti(q
i
1, s). We let D := disti(q

i
1, q

i
2) + dist(qi2,A) our

(rough) estimate on the distance disti(q
i
1, s).

Then, our argument goes as follows. Let x be a point in the intersection of Pi and the
shortest path s1 p. We have the following properties: by choice of i, disti(p, s1) =
dist(p, s1) and disti(x, s1) = dist(x, s1). By choice of x, dist(p, x) + dist(x, s1) =

dist(p, s1). Last, by choice of qi1, disti(q
i
1, s) ≤ disti(p, s), and D ≤ disti(p,s)

ε .

� First, if disti(x, q
i
1) ≤ D

ε2
. Then there is a point n from Ni,qi1,q

i
2

with disti(n, x) ≤
ε2D. Furthermore, disti(s1, n) = disti(s2, n)± ε2D, as disti(s, n) ≤ disti(s, x) +
disti(x, q

i
1) + disti(q

i
1, s) ≤ 3D

ε2
and so n has same rounded distances to s1 and

s2. Hence, we get:

disti(p, s2) ≤ disti(p, x) + disti(x, n) + disti(n, s2)

≤ disti(p, x) + disti(x, n) + disti(n, s1) + ε2D

≤ disti(p, x) + disti(x, s1) + 2disti(x, n) + ε2D

≤ disti(p, s1) + 3ε2D

≤ dist(p, s1) + 3εdisti(p, s).

Now, two cases: either s = s1 and disti(p, s) = dist(p, s), and then we get
dist(p, s2) ≤ (1 + 3ε)dist(p, s1). Or s = s2, and we have (1 − 3ε)dist(p, s) ≤
dist(p, s̃) which implies dist(p, s2) ≤ (1 + 6ε)dist(p, s1).

� Otherwise, disti(x, q
i
1) > D

ε2
: we first show that dist(s, s̃) ≤ 3ε(disti(p, s) +

dist(p,A)), which will allow to conclude. It holds that disti(q
i
1, s) = disti(q

i
1, s̃)±

εD, as by definition of D, disti(q
i
1, s) ≤ D/ε. Hence,

disti(s, s̃) ≤ disti(s, q
i
1) + disti(s̃, q

i
1) ≤ 2disti(s, q

i
1) + εD

≤ 2 + ε2

ε
D ≤ 3εdisti(x, q

i
1)

≤ 3ε(disti(x, s1) + disti(s1, s2) + disti(s, q
i
1))

⇒ dist(s, s̃) ≤ 9ε(dist(p, s1) + disti(p, s)).

Hence,

disti(p, s2) ≤ disti(p, s1) + disti(s, s̃)

≤ dist(p, s1) + 9ε(dist(p, s1) + disti(p, s))

Similarly as in the previous case, either s1 = s and the right hand side is (1 +
18ε)dist(p, s1), or s2 = s and we infer dist(p, s2) ≤ (1 + 27ε)dist(p, s1).

When we can only overestimate or underestimate disti(q
i
1, s) In the sec-

ond case, qi3 is such that dist(qi3,A) + disti(q
i
1, q

i
3) > 1

εdisti(q
i
1, s), and has min-

imal disti(q
i
1, q

i
3) + dist(qi3,A) value among those. Similarly, qi4 is the point with

largest disti(q
i
1, q

i
4) + dist(qi4,A) value among those verifying disti(q

i
1, q) + dist(q,A) <

εdisti(q
i
1, s).

181

Chapter 7. New Coreset Bounds for Various Metric Spaces

By choice of qi3 and qi4, it must be that

1

ε
· (disti(q

i
1, q

i
4) + dist(qi4,A)) < disti(q

i
1, s) < ε · (disti(q

i
1, q

i
3) + dist(qi3,A)).

Hence, d̃2(qi1, q
i
3, q

i
4) = >, and s̃ is chosen such that

1

ε
· (disti(q

i
1, q

i
4) + dist(qi4,A)) < disti(q

i
1, s̃) < ε · (disti(q

i
1, q

i
3) + dist(qi3,A)).

Since we are not in the first case where we can estimate disti(q
i
1, s), p verifies either

dist(p,A) + disti(p, q
i
1) < εdisti(q

i
1, s) or dist(p,A) + disti(p, q

i
1) > 1

εdisti(q
i
1, s).

First, if disti(p, q
i
1) + dist(p,A) > 1

εdisti(q
i
1, s). Then we have, by choice of qi3:

disti(s, s̃) ≤ disti(s, q
i
1) + disti(s̃, q

i
1)

≤ 2ε(disti(q
i
1, q

i
3) + dist(qi3,A))

≤ 2ε(disti(q
i
1, p) + dist(p,A))

≤ 2ε(disti(p, s) + disti(q
i
1, s) + dist(p,A))

≤ 4ε(disti(p, s) + dist(p,A))

and therefore, we can conclude just as before (distinguishing whether s = s1 or s = s2)
that

dist(p, s2) ≤ (1 + 12ε)dist(p, s1) + 12εdist(p,A).

Lastly, in the case where disti(p, q
i
1)+dist(p,A) < εdisti(q

i
1, s), we use that disti(q

i
1, s1) >

1
ε · (disti(q

i
1, q

i
4) + dist(qi4,A)) (as both s and s̃ verifies this) to get:

dist(p, s1) = disti(p, s1) ≥ disti(q
i
1, s1)− disti(p, q

i
1)

≥ 1

ε
· (disti(q

i
1, q

i
4) + dist(qi4,A))− disti(p, q

i
1)

≥ 1

ε
· (disti(q

i
1, p) + dist(p,A))− disti(p, q

i
1)

≥ dist(p,A)

ε
.

Conclusion. Rescaling ε by 1/27z, the previous inequalities gives us that either

dist(p, s1) ≥ 27z·dist(p,A)
ε , or dist(p, s2) ≤ (1+ε/z)dist(p, s)+ε/z·dist(p,A). The second

inequality combined with Lemma 1.2 implies that cost(p, s2) ≤ (1 + ε)cost(p, s1) + ε ·
cost(p,A). Therefore, using this result with s1 = s, s2 = s̃ and then s1 = s̃, s2 = s
shows that:

� either dist(p, s) ≥ 27z·dist(p,A)
ε , or cost(p, s̃) ≤ (1 + ε)cost(p, s) + ε · cost(p,A)

� either dist(p, s̃) ≥ 27z·dist(p,A)
ε , or cost(p, s) ≤ (1 + ε)cost(p, s̃) + ε · cost(p,A).

182

7.6. Euclidean Spaces

Therefore, if p is such that dist(p, s) ≤ 5z·dist(p,A)
ε , then dist(p, s̃) ≤ 10z·dist(p,A)

ε , and

reciprocally when dist(p, s̃) ≤ 5z·dist(p,A)
ε , then dist(p, s) ≤ 10z·dist(p,A)

ε .

Thus we conclude: either both dist(p, s̃) and dist(p, s) are bigger than 10z·dist(p,A)
ε ,

and we are done. Or both are smaller than 20z·dist(p,A)
ε , and then using the previous

inequalities we get:

|cost(p, s)− cost(p, s̃)| ≤ 2ε(cost(p, s) + cost(p, s̃) + cost(p,A))

Which, using cost(p, s̃) ≤ cost(p, s) + |cost(p, s)− cost(p, s̃)|, yields

|cost(p, s)− cost(p, s̃)| ≤ 7ε(cost(p, s) + cost(p,A)).

Lemma 7.18 gives exactly the same guarantee as Eq. (7.3): hence, as in the proof
for treewidth, we can conclude from that inequality that for any solution S and any
interesting point p, |cost(p,S)− cost(p, S̃)| ≤ ε(cost(p,S) + cost(p,A)).

Combining the guarantees from Lemma 7.18 and Lemma 7.17 concludes the proof of
Lemma 7.14.

7.6 Euclidean Spaces

Lastly, we briefly want to survey the state of the art results for eliminating the de-
pendency on the dimension in Euclidean spaces.

In a nutshell, the frameworks by both Feldman and Langberg [76] and us only yield
coresets of size O(kdpoly(log k, ε−1)). To eliminate the dependency on the dimension,
we typically have to use some form of dimension reduction.

In a landmark paper, Feldman et al. [78] showed that one can replace the dependency
on d with a dependency on k/ε2 for the k-means problem, see also Cohen et al. [48]
for further improvements on this idea. Subsequently, Sohler and Woodruff [151] gave
a construction for arbitrary k-clustering objectives which lead to the first existence
proof of dimension independent coresets for these problems. More recently, the result
was made constructive in the work of Feng, Kacham and Woodruff [80]. Huang and
Vishnoi [100] showed that the mere existence of the Sohler-Woodruff construction was
enough to compute coresets of size poly(k/ε).

Having obtained a poly(k/ε)-sized coreset, one can now use a terminal embedding to
replace the dependency on d by a dependency ε−2 log k/ε. Terminal embeddings are
defined as follows:

183

Chapter 7. New Coreset Bounds for Various Metric Spaces

I Definition 7.19 (Terminal Embeddings). Let ε ∈ (0, 1) and let A ⊂ Rd
be an arbitrary set of n points. Define the Euclidean norm of a d-dimensional

vector ‖x‖ =
√∑d

i=1 x
2
i . Then a mapping f : Rd → Rm is a terminal embedding

if

∀x ∈ A, ∀y ∈ Rd, (1− ε) · ‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ (1 + ε) · ‖x− y‖.

J

Terminal embeddings were studied by [71, 127, 145], with Narayanan and Nelson
[145] achieving an optimal target dimension of O(ε−2 log n), where n is the number of
points3.

It was first observed by Becchetti et al. [25] how terminal embeddings can be combined
with the Feldman-Langberg [76] (or indeed our) framework. Specifically, given the
existence of a poly(k/ε)-sized coreset, applying a terminal embedding with n being
the number of distinct points in the coreset now allows us to further reduce the
dimension. At the time, the only problem with such a coreset bound was k-means.
The generalization to arbitrary k-clustering objectives is now immediate following the
results by Huang and Vishnoi [100] and Feng et al. [80].

It should be noted that more conventional Johnson-Lindenstrauss type embeddings
proposed in [25, 48, 129] do not (obviously) imply the same guarantee as terminal
embeddings. We appended a short proof showing that terminal embeddings are suf-
ficient at the end of this section. For a more in-depth discussion as to why normal
Johnson-Lindenstrauss transforms may not be sufficient, we refer to Huang and Vish-
noi [100].

Combining our O(k(d + log k) · ε−max(2,z)) bound for general Euclidean spaces with
either the Huang and Vishnoi [99] or the Feng et al. [80] constructions and terminal
embeddings now immediately imply the following corollary.

I Corollary 7.20. There exists a coreset of size

O
(
k log k ·

(
ε−2−max(2,z)

)
· 2O(z log z) · polylog(ε−1)

)
for (k, z)-clustering in Euclidean spaces. J

Huang and Vishnoi further considered clustering in `p metrics for p ∈ [1, 2), i.e. non-
Euclidean spaces. For this they reduced constructing a coreset for (k, z) clustering
in an `p space to constructing a constructing a coreset for (k, 2z) clustering in Eu-
clidean space. Plugging in our framework into their reduction then yields the following
corollary:

3See the paper by Larsen and Nelson for a matching lower bound [116]

184

7.6. Euclidean Spaces

I Corollary 7.21. There exists a coreset of size

O
(
k log k ·

(
ε−2−2z

)
· 2O(z log z) · polylog(ε−1)

)
for (k, z)-clustering in any `p space for p ∈ [1, 2). J

I Proposition 7.22. Suppose we have a (possibly weighted) point set A in
Rd. Let f : Rd → Rm with m ∈ O(ε−2 · z2 log n) be a terminal embedding for
A and let f(A) be the projected point set. Then if f(P) ⊂ f(A) is an ε-coreset
for f(A), P ⊂ A is an O(ε)-coreset for A. Conversely, if P ⊂ A is an ε-coreset
for A, then f(P) ⊂ f(A) is an O(ε)-coreset for f(A) J

Proof. We prove the result for the first direction, the other direction is analogous.
Consider an arbitrary solution S in Rd. We first notice that for any point p ∈ A, we
have

(1− ε/2z)z · cost(f(p), f(S)) ≤ (1− ε) · cost(f(p), f(S))

and
(1 + ε/2z)z · cost(f(p), f(S)) ≥ (1 + ε) · cost(f(p), f(S))

Therefore,

(1− ε) · cost(f(p), f(S)) ≤ cost(p,S) ≤ (1 + ε) · cost(f(p), f(S)). (7.5)

Now suppose f(P) is a coreset for f(A), which means for any set of k points f(S) ⊂ Rm∣∣∣∣∣∣
∑

p∈f(A)

wp · cost(p, f(S))−
∑

q∈f(P)

w′q · cost(q, f(S))

∣∣∣∣∣∣ ≤ ε ·
∑

p∈f(A)

wp · cost(p, f(S)),(7.6)

where w and w′ are the weights assigned to points in f(A) and f(P), respectively. Let
us now consider a solution S in the original d-dimensional space. Since P is a subset
of A, we have by combining Equations 7.5 and 7.6∣∣∣∣∣∣

∑
p∈A

wp · cost(p,S)−
∑
q∈P

w′q · cost(p,S)

∣∣∣∣∣∣
≤ ε ·

∑
p∈A

wp · cost(f(p), f(S)) + ε ·
∑
q∈P

w′q · cost(f(q), f(S))

+

∣∣∣∣∣∣
∑
p∈A

wp · cost(f(p), f(S))−
∑
q∈P

w′q · cost(f(q), f(S))

∣∣∣∣∣∣
≤ 2ε ·

∑
p∈A

wp · cost(f(p), f(S)) + ε ·
∑
q∈P

w′q · cost(f(q), f(S))

≤ (3 + ε)ε ·
∑
p∈A

wp · cost(f(p), f(S))

≤ (3 + 3ε)ε ·
∑
p∈A

wp · cost(p,S),

185

Chapter 7. New Coreset Bounds for Various Metric Spaces

where the second inequality uses Equation 7.6 and the triangle inequality and the last
inequality uses Equation 7.5.

186

Chapter 8

Lower Bounds for Coreset

While the previous chapters focused on coreset construction, we now turn to impos-
sibility result and answer Question 4 for the case of metric with bounded doubling
dimension, and general discrete metric spaces. This lower bound matches (up to
polylog(1/ε) factors) the constructions presented previously.

8.1 Introduction

We show in this chapter a lower bound for coreset in discrete metric spaces. This
lower bound is for a more general notion of coreset, that allows for having an offset
that encodes part of the cost:

I Definition 8.1. An ε-coreset with offset for (k, z)-clustering in a metric
space (X,dist) for clients P is a weighted subset Ω of P , with weights w : Ω→
R+, and an offset F , such that for any set S ⊂ X, |S| = k,∣∣∣∣∣∣

∑
p∈P

cost(p,S)−

∑
p∈Ω

w(p)cost(p,S) + F

∣∣∣∣∣∣ ≤ ε
∑
p∈P

cost(p,S) J

In the standard ε-coreset we used in the previous chapters, F = 0. This more general
definition was introduced by Feldman et al [78], and used thereafter by [48, 151]. This
is also the definition we will use in Chapter 9. In case Ω satisfies the definition with
offset F , we say Ω is an ε-coreset for (k, z)-clustering using offset F . The main result
of the present chapter is:

Chapter 8. Lower Bounds for Coreset

I Theorem 8.2. For any 0 < ε < 1/2, k and n ≥ 2kε−5, there exists a finite
n point metric with a set P of kε−2 log n client such that any ε-coreset for
(k, z)-clustering on P consists of at least Ω

(
k
ε2

log n
)

points. J

We start by giving a precise overview, before proving formally the lower bound.

8.1.1 Overview of the Lower Bound

The general idea behind our lower bound is to use the tight concentration and anti-
concentration bounds on the sum of random variables.

We first build an instance for k = 1, and combines several copies of it to obtain a lower
bound for any arbitrary k. Our instance for k = 1 has a set C of candidate centers
and is such that: (1) when |Ω| ≤ ε−2 log |C| there exists a center with cost(Ω, c) >
(1 + 100ε)cost(P, c), and (2): for any |Ω| > ε−2 log |C| there exists a center c with
cost(Ω, c) ∈ (1± ε)cost(P, c).

To show the existence of such an instance, we consider a complete bipartite graph
with nodes P ∪ C where there is an edge between each point of P and each point
of C, with length 1 with probability π = 1/4 and length 2 otherwise. The set of
clients is P . For simplicity, we will assume in this overview that the coreset weights
are uniform. Making the idea work for non-uniform weights requires several other
technical ingredients.

In that instance for k = 1, the cost of a solution (with a single center, c) is fully
determined by n1(c), the number of length 1 edges to c. Indeed, cost(P, c) = 2(|P | −
n1(c))+n1(c) = 2|P |−n1(c). Let us further assume that n1(c) is equal to its expecta-
tion, π|P |. For a fixed subset of points Ω, the cost of the solution for Ω with uniform

weights |P ||Ω| satisfies the same equation: it is 2|P | −n1(Ω, c) · |P ||Ω| , where n1(Ω, c) is the

number of length 1 edges from Ω to c. Note that E[n1(Ω, c)] = π|Ω|.

Using anti-concentration inequalities, we show that n1(Ω, c) > (1 + 200ε)E[n1(Ω, c)]
with probability at least exp(−αε2|Ω|), for some constant α. When this event happens,
then Ω does not preserve the cost of solution c: indeed,

2|P | − n1(Ω, c) · |P |
|Ω|

< 2|P | − (1 + 200ε)π|Ω| · |P |
|Ω|

= 2|P | − π|P | − 200επ|P | = (1− 200ε)(2|P | − n1(c)),

where we assumed n1(c) = π|P | for the last equality.

Since the edges are drawn independently, the coreset costs for all possible centers c
are independent. Hence, there exists one center with n1(Ω, c) > (1 + 200ε)π|Ω| with
probability at least 1−(1−exp(−αε2|Ω|))|C|. By doing a union-bound over all possible
subsets Ω, one can show the following: with positive (close to 1) probability, for any
|Ω| ≤ ε−2 log |C| there exists a center with cost(Ω, c) > (1 + 100ε)cost(P, c).

Using standard concentration inequality, one can show that with probability close to

188

8.1. Introduction

1, for any |Ω| > ε−2 log |C|, there exists a center c with cost(Ω, c) ∈ (1± ε)cost(P, c).
Since the probabilities are taken on the edges randomness, those two result ensure the
existence of a graph that verifies properties (1) and (2) desired for the k = 1 instance.

Now, the full instance is made of k distinct copies X1, ..., Xk of the k = 1 instance,
placed at infinite distance from each other. Let Pi be the set of clients of Xi: the
clients for the full instance are ∪Pi. Let Ω be a set of at most 1/100 · kε−2 log n
points: we show that Ω cannot be a coreset. By Markov’s inequality, there are at
least 99/100k copies that contain less than ε−2 log n points of Ω. We say those copies
are bad, the others are good. Consider now the solution S defined as follows: from
each Xi, take the center such that cost(Ω ∩ Pi, c) > (1 + 100ε)cost(Pi, c) when Xi is
bad, and the center such that cost(Ω ∩ Pi, c) ∈ (1 ± ε)cost(Pi, c) when Xi is good.
Observe also that by construction of the instance for k = 1, the cost in each copy
must lie in [|P |, 2|P |]. For that solution, we have:

cost(Ω,S) =
∑

cost(Ω ∩ Pi, si) =
∑
i bad

cost(Ω ∩ Pi, si) +
∑
i good

cost(Ω ∩ Pi, si)

>
∑
i bad

(1 + 100ε)cost(Pi, si) +
∑
i good

(1− ε)cost(Pi, si)

> cost(S) +
99k

100
· 100ε|P | − k

100
· ε2|P |

> cost(S) + 98kε|P | > (1 + ε)cost(S).

Hence, any Ω with |Ω| ≤ 1/100 ·kε−2 log n cannot be a coreset for our instance, which
concludes the proof.

8.1.2 Technical lemmas

Our proof relies on Corollary 8.4, which we prove using the following result from [73].

I Lemma 8.3 (Equation 2.11 in [73]). Let ξ1, ..., ξm be independent cen-
tered random variables, and ε̃ such that

∀i, k ≥ 3 |E[ξki]| ≤ 1

2
k!ε̃k−2E[ξ2

i].

Let σ2 =
∑

E[ξ2
i], and Sm =

∑m
i=1 ξi.

Then, for all 0 ≤ x ≤ 0.1σε̃ ,

Pr[Sm ≥ xσ] ≥
(

1− Φ

(
x(1− cx ε̃

σ

))
·
(

1− c(1 + x)
ε̃

σ

)
,

where c is an absolute positive constant and Φ is the standard normal distribu-
tion function. J

189

Chapter 8. Lower Bounds for Coreset

I Corollary 8.4. Let X1, ..., Xm be independent Bernouilli random variables
with expectation p = 1/4, ε > 0 and w1, ..., wm be some positive weights, such

that maxwi ≤ γ ·
∑
wi

εm , for some γ. Let µ = p ·
∑
wi. Then, there exists a

constant β such that

Pr
[∑

wiXi − µ > εµ
]
≥ exp(− β

γ2
ε2mp) J

Proof. Define ξi = wiXi − pwi. We show that the variables ξi verify the conditions of
Lemma 8.3. They are independent, centered, and:

E[ξ2
i] = p(wi − pwi)2 + (1− p)(pwi)2

= w2
i

(
p− 2p2 + p3 + p2 − p3

)
= w2

i (p− p2) ≥ w2
i

8
,

using p = 1/4. For k ≥ 3, the k-th moment verifies:∣∣∣E[ξki]
∣∣∣ = wki ·

(
p · (1− p)k + (1− p) · pk

)
≤ wki

8
= wk−2

i E[ξ2
i],

where the last line uses that the function k → p · (1− p)k + (1− p) · pk is decreasing,
and is equal to 15/128 ≤ ‘q1/8 for p = 1/4 and k = 3. Hence ξi verifies the condition
of Lemma 8.3 with ε̃ = maxiwi. As in the lemma, we let σ2 =

∑
E[ξ2

i]. We want to
apply that lemma to x of the order εµσ : therefore, we need to bound that quantity.
Note that

σ2 ≥ p

2

∑
w2
i ≥

p

2
· (
∑
wi)

2

m
, (8.1)

and so by the assumptions of the lemma σ
ε̃ ≥

ε
√
mp

γ
√

2
. Furthermore,

µ

σ
≤ p

∑
wi√

p
2m

∑
wi
≤
√

2mp (8.2)

Now, let x := ε
10γc

√
2
· µσ . Thus, x verifies x ≤ ε

10γc
√

2
·
√

2pm ≤ 0.1 σ
cε̃ and so applying

Lemma 8.3 we obtain:

Pr
[∑

wiXi − µ > εµ
]
≥
(

1− Φ

(
x(1− cx ε̃

σ
)

))
·
(

1− c(1 + x)
ε̃

σ

)
≥ (1− Φ (0.9x)) · 0.9
= 0.9 · Pr[N (0, 1) ≥ 0.9x]

≥ 0.9 · 1

2

(
1−

√
1− e−(0.9x)2

)
≥ exp(− β

γ2
ε2µ

2

σ2
)

≥ exp(− β

γ2
ε2mp),

where β is some absolute constant, and where the last line uses Eq. (8.2).

190

8.2. A subinstance for the case k = 1

Figure 8.1: Illustration of an instance Uπ. Dashed edges have length 21/z, black ones
have length 1.

8.2 A subinstance for the case k = 1

We now turn to proving a lower bound for the case where k = 1. This is going to be
our building block in the next section where we generalize the result to arbitrary k.
Let π = 1/4 be a parameter.

I Definition 8.5. A subinstance Uπ is defined as follows. Let C be a set of
candidate centers and P a set of of nU clients. The metric on the ground set
P ∪ C is defined according to the following probability distribution.
For each pair (p, c) ∈ P × C,

dist(p, c) =

{
1 with probability π

21/z otherwise
(8.3)

Distances between any pair of points p, p′ ∈ P or c, c′ ∈ C is set to 21/z.
Fig. 8.1 illustrates the definition. J

Since any complete graph with edge length only 1 or ` ≤ 2 defines a metric space, it
immediately follows that (P ∪ C,dist) is a metric space.

The important properties of the subinstance are summarized in the following lemma.
We say that a set of weights is ε-rounded if all weights are multiples of ε.

I Lemma 8.6. There exists a constant η and an instance Uπ = (P,C, dist)
with |P | = nU = ε−2 log |C|, π ≤ 1/4 and |C| ≥ ε−5, the following holds.
For any subset Ω ⊆ P with ε/2-rounded weights wx being such that

∑
wx ∈

(1± 1/2)nU , we have:

1. If |Ω| < ε−2η log |C|, there exists a center c̃ ∈ C such that∑
x∈Ω:dist(x,c̃)=1

wx > (1 + 200ε)πnU

and |x ∈ P : dist(x, c̃) = 1| ≤ dπnUe

191

Chapter 8. Lower Bounds for Coreset

2. If |Ω| ≥ ε−2η log |C|, there exists a center c∗ ∈ C such that∑
x∈Ω:dist(x,c∗)=1

wx ≥ (1− ε)πnU

and |x ∈ P : dist(x, c∗) = 1| ≤ dπnUe. J

Proof. We use the probabilistic method: we will show that, when Uπ is generated
according to the process defined above, the two properties of the lemma hold with
some positive probability. This is enough to ensure the existence of an instance Uπ
verifying them.

We start by proving the first item. Fix some arbitrary subset of clients Ω of size
at most ε−2η log |C|, with weight wx,∀x ∈ Ω and a candidate center c ∈ C. Let
w1(c,Ω) :=

∑
x∈Ω:dist(x,c)=1wx denote the (weighted) number of edges of length 1

from Ω to c. The expected value of w1(c,Ω) over the random choice of edges is π ·nU .
We aim at applying Corollary 8.4 on the variable w1(c,Ω). This cannot be done
directly, as we have no control on maxwx. Hence, we partition the points of Ω into
five groups:

� Ω1 := {x ∈ Ω : wx < ε}

� Ω2 := {x ∈ Ω : wx ∈ [ε, 1)}

� Ω3 := {x ∈ Ω : wx ∈ [1, ε−1)}

� Ω4 := {x ∈ Ω : wx ∈ [ε−1, 10 log(1/π) · ε−2)}

� Ω5 := {x ∈ Ω : wx ≥ 20 log(1/π) · ε−2}

We will show that, ∀i ∈ {2, ..., 5}, w1(c,Ωi) exceeds its expectation by a factor (1 +
205ε) with large probability, and that w1(c,Ω1) is negligible.

First, note that since
∑

x∈Ωwx ≤ (1 + 1/2)nU = 3
2ε
−2 log |C|, it must be that

|Ω5| ≤
log |C|

10 log(1/π)
.

Hence, c is connected with length 1 to all points of Ω5 with probability π|Ω5| ≥
exp (− log |C|/10) = |C|−1/10.

Now, on each group Ω2,Ω3,Ω4, the maximum weight cannot be more than 20 log(1/π)·
ε−1 times the average.

For i ∈ {2, 3, 4}, w1(c,Ωi) is the sum of m = |Ωi| ≤ ε−2η log |C| random variables
Xx, for x ∈ Ωi, with Xx = 0 with probability (1 − π) and Xx = wx with probability

π = 1/4. Due to the choice of the groups, maxx∈Ωi wx ≤ 10 log(1/π)

∑
y∈Ωi

wy

ε|Ωi| Hence,
Corollary 8.4 gives that:

192

8.2. A subinstance for the case k = 1

Pr [w1(c,Ωi) ≥ (1 + 205ε) · E[w1(c,Ωi)]] > exp(− β

log(1/π)2
ε2π|Ωi|)

≥ exp(− log |C|/10),

for some absolute constant β given by Corollary 8.4 and η ≤ log(1/π)2

10βπ .

Finally, to deal with Ω1, we note that E[w1(c,Ω1)] ≤ επnU . Hence,
∑5

i=2 E[w1(c,Ωi)] ≥
E[w1(c,Ω)]− επnU , and

5∑
i=2

w1(c,Ωi) ≥ (1 + 205ε)
5∑
i=2

E[w1(c,Ωi)] ⇒ w1(c,Ω) ≥ (1 + 200ε)πnU .

Since all groups are disjoint, the variables w1(c,Ωi) are independents and we can
combine the previous equations to get:

Pr

 ∑
x∈Ω:dist(x,c̃)=1

wx ≥ (1 + 200ε) · πnU

 > |C|−4/10.

Since the length of the edges are chosen independently, the probability that there
exists no center c̃ with

∑
x∈Ω:dist(x,c̃)=1wx ≥ (1 + 200ε) · πnU is at most(

1− |C|−4/10
)|C|

= exp
(
|C| log(1− |C|−4/10)

)
≤ exp(−|C|6/10).

And hence with probability at least 1 − exp(−|C|6/10) there is a center c̃ with∑
x∈Ω:dist(x,c̃)=1wx ≥ (1 + 200ε) · πnU .

To conclude the proof of the first bullet, it remains to do a union-bound over all
possible weighted subset Ω. Such an Ω consists of at most nU different points, with
ε/2-rounded weights in [0, (1 + 1/2)nU]. Hence, there are at most 4

εnU many different
weights.

Therefore, there are
(

4nU
ε

)nU many possible weighted subset Ω with ε/2-rounded
weights, i.e.,

exp
(
ε−2 log |C| · log

(
4ε−3 log |C|

))
.

We can conclude that there exists a center c̃ ∈ C with
∑

x∈Ω:dist(x,c̃)=1wx ≥ (1 +
200ε) · πnU with probability at least

1− exp
(
ε−2 log |C| · log

(
4ε−3 log |C|

))
· exp(−|C|6/10) ≥ 99

100

by our choice of |C| ≥ ε−5, and for ε small enough. Furthermore, Pr[|x ∈ P : dist(x, c̃) =
1| ≤ dπnUe] ≥ 1/2, because |x ∈ P : dist(x, c̃) = 1| follows a binomial law with me-
dian at most dπnUe. This concludes the proof of the first bullet.

193

Chapter 8. Lower Bounds for Coreset

We now turn to the second bullet of the claim, for which the proof is a more standard
application of Azuma inequality. Fix some coreset Ω of size at least ε−2η log |C|, and
a center c. We have,

Pr [w1(c,Ω) /∈ (1± ε) · πnU] ≤ exp(−2ε2π2 n2
U∑
w2
i

)

≤ exp(−2/4 · π2ε2)

≤ exp(−1/2 · π2ε2),

where the second inequality uses n2
U ≥ 1/4 (

∑
wi)

2 ≥ 1/4 ·
∑
w2
i .

Since those events are independent for different centers c, the probability that there
exists no center c ∈ C with w1(c,Ω) ∈ (1± ε) · πnU is at most exp(−1/2 · π2ε2|C|).

Hence, a union-bound over the
(

4nU
ε

)nU many possible weighted subset Ω ensures that

the following holds with probability at most 1−
(

4nU
ε

)nU ·exp(−1/2·π2ε2|C|) ≥ 99/100:
For any Ω there exists a center c with w1(c,Ω) ∈ (1± ε) · π|Ω| as desired.

8.3 Combining the subinstances

Figure 8.2: Illustration of a full instance, in the case z = 1. The subinstance are inside
squares, and there is an edge from a node to a square when the node is linked to every
point of the subinstance, with the distance written on the edge. D∞ is set to be nU ·k

ε .
The node c4·∞ is not represented.

194

8.3. Combining the subinstances

We now conclude the proof of the lower bound for the ε-coreset with offset for (k, z)-
clustering. We consider k copies of the subinstance given by Lemma 8.6, U1

π , . . . , U
k
π ,

where the set of clients in each subinstance has size nU and the set of candidate centers
has size |C|, such that |C| ≥ ε−5, nU = 10ε−2 log |C| and k(nU + |C|) = n. Using the
assumption that n ≥ 2k/ε5, this is possible, and we have the additional property that
log n = O(log |C|).

In total, there are k|C| many candidate centers, and knU many different clients. The
subinstances are numbered from 1 to k, and connected together in a star-graph metric
centered at an arbitrary point c∞, where all points are at distance nU ·k

ε of c∞. There

is some additional candidate centers: c4·∞, at distance 4 · nU ·kε of every client, and for

subinstance i there is a center c2
i , at distance 21/z from every client of the subinstance.

Fig. 8.2 illustrates that construction.

We can now turn to the proof of the theorem. For this, we start with three claims: The
first one shows that the total weight of the coreset must be very close to the number
of point in the instance. The second shows that the offset F must be negligible, and
the third that the coreset weight in each subinstance is close to nU , the number of
point in a subinstance.

I Claim 8.7. If Ω is an ε-coreset with offset F for the instance, then the total weight
verifies w(Ω) ∈ (1± 2ε)knU . J

Proof. Consider the solution consisting only of one center placed at c∞. Let D∞ =
nU ·k
ε . This solution has cost cost(c∞) = knU · Dz

∞, and cost(Ω, c∞) = w(Ω) · Dz
∞.

Hence,
F + w(Ω) ·Dz

∞ ∈ (1± ε)knU ·Dz
∞.

Similarly, considering the solution that places only one center at c4·∞ gives

F + w(Ω)4zDz
∞ ∈ (1± ε)knU · 4zDz

∞.

Substracting those two equations yields:

(4z − 1)w(Ω) ·Dz
∞ ∈ ((4z − 1)± (4z + 1)ε)knU ·Dz

∞,

and so w(Ω) ∈ (1± 2ε)knU .

I Claim 8.8. If Ω is an ε-coreset with offset F for the instance, then |F | ≤ 3εk ·
nU . J

Proof. Consider the solution S2 = {c2
i , ∀i}. We have cost(S2) = 2knU and

cost(Ω,S2) = 2w(Ω) ∈ (1 ± 2ε)cost(S2), using Claim 8.7. Since |F + cost(Ω,S2) −
cost(S2)| ≤ εcost(S2), it must be that |F | ≤ 3εcost(S2) = 3εknU .

I Claim 8.9. If Ω is an ε-coreset with offset F for the instance, then in every
subinstance, the sum of the coreset weights is in (1± 1/2)nU . J

195

Chapter 8. Lower Bounds for Coreset

Proof. Assume towards contradiction that, in some subinstance, say subinstance i,
the coreset mass is not in (1 ± 1/2)nU , and consider a solution S that places one
center in each subinstance but subinstance i. Suppose w.l.o.g. that the subinstance
is overweighted: the coreset places a total weight larger than 3/2 · nU in it. The cost
of the solution is a most

cost(S) ≤ 2(k − 1)nU︸ ︷︷ ︸
for subinstances that contain a center

+ nU ·
(
knUε

−1
)z︸ ︷︷ ︸

for the overweighted subinstance

≤ (1 + 2ε)nU
(
k · nUε−1

)z
,

while the cost in the coreset verifies (using Claim 8.8 and keeping only the cost of the
overweighted subinstance):

F + cost(Ω,S) > −3εknU + 3/2 · nU ·
(
knUε

−1
)z

≥ (−3ε2/nU + 3/2)‘nU
(
knUε

−1
)z

> (1 + ε) · (1 + 2ε)nU
(
k · nUε−1

)z
> (1 + ε)cost(S),

hence contradicting the fact that Ω is an ε-coreset with offset F .

The proof of the case where some subinstance is underweighted is done exactly alike.

Combining those claims allows to prove the main theorem of the chapter.

Proof of Theorem 8.2. Assume toward contradiction that there exists an ε-coreset
with offset F of size smaller than η

10 ·kε
−2 log |C|, where η is the constant of Lemma 8.6.

First, this implies the existence of an 2ε-coreset with ε-rounded weights, simply by
rounding each weight to the closest multiple of ε.

Using Claim 8.9, we can apply Lemma 8.6 on each subinstance. The total coreset size
is η

10 · kε
−2 log |C|: that means that there are at least 9k/10 subinstances for which

the coreset contains less than ηε−2 log |C| many different points. We refer to these
subinstances as the bad subinstances. Using Lemma 8.6, we construct a solution S by
taking the center given by bullet 1 for the bad subinstances, i.e.: center ĉ as per the
notation of Lemma 8.6, and bullet 2 for the others, i.e.: center c∗ as per the notation
of Lemma 8.6. The cost of that solution is n1 + 2(knU − n1) = 2knU − n1, where n1

the number of edges of length 1 from the clients to S. Similarly, the cost of S for the
coreset is 2 · w(Ω) − w1(S,Ω), where w(Ω) is the total coreset weight and w1(S,Ω)
the weighted number of length 1 edges from Ω to S. By construction of S, w1(S,Ω)
verifies

w1(S,Ω) ≥ 9k/10 · (1 + 200ε)πnU + k/10 · (1− ε)πnU > (1 + 150ε)π · knU

Furthermore, using properties of Lemma 8.6, n1 ≤ πknU : the cost of S for the full
point setP is large. Hence, the cost of S in the coreset satisfies

F + 2 · w(Ω)− w1(S,Ω) < 3εknU + 2 · (1 + 2ε)knU − (1 + 150ε)π · knU
≤ (2knU − n1) + εknU · (7− 150π) < (1− ε)(2knU − n1),

196

8.3. Combining the subinstances

where the last inequality uses π = 1/4, so that (150π − 7)knU ≥ 2knU . Therefore
the cost of the coreset for S is smaller than a (1 − ε) factor times the cost of S for
the points set P , a contradiction that concludes: any coreset must have size at least
η
10 · kε

−2 log |C|. Using the fact that log n = O(log |C|) concludes the proof.

A simple corollary of that proof is a lower bound for metric with bounded doubling
dimension. Since any n points metric has doubling dimension O(log n), the metric
constructed has doubling dimension D = O(log n), which implies the following:

I Corollary 8.10. For any ε, k,D such that D ≥ 5 log k/ε there exists a
graph with doubling dimension D on which any ε-coreset with offset for (k, z)-
clustering must have size Ω

(
kD
ε2

)
. J

197

Chapter 8. Lower Bounds for Coreset

198

Chapter 9

Deterministic Sketches for Clus-
tering

In this chapter, we present deterministic sketches for clustering, and put forth a dif-
ferent type of sketch than coreset, namely dimension reduction. This is another im-
portant tool dedicated to Euclidean spaces: the goal is to embed the input into a
lower-dimensional Euclidean space, in order to avoid any form of curse of dimension-
ality. The main technique for that is the Johnson Lindenstrauss lemma and variants,
which show in the case of (k, z)-clustering that the cost of any partition is preserved up
to an (1± ε) factor when projecting onto a randomly chosen O(ε−2 log k)-dimensional
subspace. More precisely, the dimension reduction results are as follows. For a set of
points C, denote φ(C) the optimal center. Dimension reduction seeks to preserve the
cost of any partition of the input: the goal is to find a mapping f : Rd → Rd′ , with
the following guarantee. For any partition of the input P into clusters C1, ..., Ck, it
holds that

k∑
i=1

∑
p∈Ci

cost(f(p), φ(f(Ci))) = (1± ε)
k∑
i=1

∑
p∈Ci

cost(p, φ(Ci)). (9.1)

Note that this guarantee is different than the coreset one: for coresets, we seek to
preserve the cost to any set of k fixed centers, which is not well defined in the case of
dimension reduction as the space changes. The standard way of circumventing this is
to preserve the cost of partitions instead. The main result for reducing dimension of
clustering problems is due to Makarychev et al. [129] (see also Becchetti et al. [25]): if
f is an orthogonal projection onto a random O

(
z4ε−2 log k

επ

)
-dimensional subspace,

it satisfies Eq. (9.1) with probability 1− π.

In this chapter, our goal is to present deterministic sketches, in order to answer Ques-
tion 5: we present deterministic constructions of both coresets and dimension reduc-
tion, that run in polynomial time for fixed ε.

As it is the case for coreset, derandomizing the dimension reduction construction using
standard techniques requires time Ω(kn/k!), as it is necessary to enumerate over all
possible partitions.

Chapter 9. Deterministic Sketches for Clustering

To reduce the number of possible partition, a natural attempt is to go through coreset,
and replace the dependency in n by one in k. However, as mentioned earlier, usual
coreset do not preserve the cost of any partition. henceforth, we start by presenting
deterministic construction of a particular coreset suited for dimension reduction, which
preserves the cost of any partition, and not only the cost of any solution made of k-
centers. This is done in Section 9.2.

Using this tool, we design a deterministic dimension reduction, in Section 9.3. Finally,
once points can be projected into a low dimensional space we are able to show im-
proved deterministic coreset constructions, in Section 9.4. This coreset construction
is interesting end-of-itself: it can be implemented faster using randomization, and
provides another framework to construct coreset, that allows to use VC-dimension of
functions with uniform scale – which allows to bypass some of the technical difficulties
mentioned in Section 5.3.

9.1 Introduction and Key Challenges

9.1.1 Deterministic Dimension Reduction

The result we aim for is the following:

I Informal Theorem (See Theorem 9.14 for a formal statement).
For (k, z)-clustering in Euclidean space, one can reduce the dimension to

O(ε−O(z) log k) in deterministic O
(
nε
−O(z) · d

)
time. J

There currently exist only two known methods that enable deterministic dimension
reduction. The first is principal component analysis and its generalizations to other
norms. Applying principal component analysis to k-means requires a target dimension
of Ω(k) [48] and thus fall short of the bounds we are aiming for.

The other option to derandomize dimension reduction is the conditional expectation
method for derandomizing Johnson Lindenstrauss transforms by [72]. At a high level,
this method fixes one by one the bits of a sketching matrix such that the number of
preserved distances is maximized.

When applying this idea naively to a candidate embedding for k-clustering, it is clear
that the running time is infeasible as there exist kn/k! many distinct clusterings. Thus,

our goal is to prove that there exists a set N of at most k′ ∈ kε−O(z)
points such that

preserving the distance from any input point to the points in N preserves the cost of
any clustering.

For this, our key contribution is to show that for any cluster, a (1 + ε) approximate
center lies in the convex hull of a subset of the cluster of size ε−O(1), that we call a

200

9.1. Introduction and Key Challenges

witness set. Using a careful discretization argument, we can show that it is possible
to enumerate over all candidate solutions in the convex hulls of such witness sets
and thereby also enumerating over all possible centers induced by any clustering.
Unfortunately, there are nε

−O(z)
many possible witness sets; hence, applying Johnson-

Lindenstrauss leads to a dimension reduction onto ε−O(z) log n dimensions.

To remove the log n dependency, the natural idea is reducing the number of distinct
point to poly(k). A coreset is the most natural idea here, however the guarantees
we typically require for coresets are not strong enough for our purposes: coresets
preserve the cost to any set of k centers, while our goal here is to preserve the cost of
any partition. In turn, we naturally introduce the notion of partition coreset, which
are small sets preserving cost of any partition. We show the existence of partition
coreset of size kε

−O(z)
; hence, we are able to reduce the dimension to ε−O(z) log k.

To show the existence of a partition coreset, a first attempt would be to use a k′

clustering such that the cost of the k′ clustering is at most an ε-fraction of the cost
of an optimal k-clustering. Unfortunately, such a set must have size at least ε−d.
Instead, we show – and this is our main technical contribution for this part – that
there exists a k′ clustering such that either the cost of this clustering is very cheap,
or its cost cannot decrease by adding additional centers. In the first case, the set
of centers directly give a partition coreset. The second case implies essentially that
the points in some cluster of the k′ clustering pay the same cost in any possible k-
clustering. Hence, we can simply replace those points by their center, and encode the
cost difference in the extension coordinate.

9.1.2 Coresets

It turns out that we can also use our construction of partition coreset to obtain small
coresets, to get the following informal result (in particular, we will define the “VC-
dimension of balls” in Section 9.4; as a first proxy, one can think of it as an intrinsic
dimension of the space, such as the Euclidean dimension, or the treewidth, or the size
of an excluded minor, ...)

I Informal Theorem (See Theorem 9.19). Let (X,dist) be a metric space
for which the VC-dimension of sets of k balls is D. There exist a deterministic
algorithm running in deterministic time Õ(|X| · |P | · k/ε) + k (D/ε)O(D) · |P |
that constructs an ε-coreset with offset for the set P , with size Õz

(
kDε−5

)
.

In the Euclidean Space Rd, the running time is |P |ε−O(z)
+k (D/ε)O(D) · |P |. J

The VC-dimension of set of k balls has been well studied, and there are bounds in
many different metric spaces. In all of those, we can apply our theorem: in Euclidean
Spaces, metric induced by a graph with bounded treewidth, excluding a minor [30],
metric on curves [65]... Hence, we show deterministic coreset for those class of graphs
as well. We note here that allowing randomization in our algorithm would yield
polynomial time construction (more precisely, running time poly(|X|, k, 1/ε), except

201

Chapter 9. Deterministic Sketches for Clustering

for curves.

In particular, our result simplify a lot the coreset constructions going through VC-
dimension: the usual construction have to deal with balls in a weighted metric (more
precisely, the scaled set of functions we described in Section 5.3), and as noted by
Baker et al. [15], this “introduces a significant technical challenge” compared to the
set of balls we work with.

Essentially, our construction is as follows. Building on the work of Chen [44], we show
that constructing a coreset reduces to sampling uniformly. For this, we compute a
bi-criteria approximation and partition points in exponential rings according to their
cost in the bi-criteria. There are O(k log n) rings, and Chen showed that uniform
sampling among them yield a coreset. Our key new ingredient here is to show how to
go from O(k log n) to only O(k) rings. To achieve this, we construct carefully a suited
bicriteria approximation, in the same spirit as what we did for the partition coreset:
we ensure that its cost cannot decrease by adding k more centers. In particular, this
implies that the cost of the ”far” points cannot be much different in any solution.
Hence, we can replace them by copies of the center, and encode their cost in an offset
F that is added to the cost of any solution in the coreset.

Next, we show that instead of sampling points, it is enough to build an ε-
set-approximation1 of a particular set system, formed by k balls. Those ε-set-
approximation are heavily related to the VC-dimension: if the VC-dimension of a set
system is D, then using a standard algorithm, one can compute ε-set-approximation
of size Õ(D

ε2
). As we will show that such an ε-set-approximation is a coreset for a

ring, this concludes our theorem.

For the particular case of Euclidean Spaces of dimension d, it is well known that the
VC-dimension of that set system is bounded by O(kd log k). Hence, the size of the
ε-set-approximation is merely Õ(kd log k

ε2
).

Unfortunately, the running time of these constructions is exponential in the VC di-
mension, which is k · d log k in the Euclidean case. To eliminate the dependency on d,
we first compute a coreset of size k′ ∈ kε−O(z)

– using our previous results – followed by
embedding it into low dimensional space via terminal embeddings. Terminal embed-
dings are commonly used as a coreset preserving dimension reduction, see Section 7.6
and [25, 34, 100] and the construction by Mahabadi, Makarychev, Makarychev and
Razenshteyn [127] can be made deterministic. Thus, we are able to obtain coresets of
size O(k2 · εO(1)) in time nO(ε−2 log 1/ε) + exp(poly(k, ε−1)).

9.1.3 Definitions

In this chapter, we will use matrix notations, as it is more convenient for dimension re-

duction. For a d-dimensional vector x, we define the `z norm ‖x‖z = z

√∑d
i=1 |xi|z. For

1In the VC-dimension literature, this is usually called an ε′-approximation, but we already use this
terminology for the cost of solutions.

202

9.1. Introduction and Key Challenges

an n×d matrix A, we define ‖A‖z,2 =

(∑n
i=1

(∑d
j=1A

2
i,j

)z/2)1/z

= (
∑n

i=1 ‖Ai‖z2)1/z.

The special case z = 2 corresponds to the Frobenius norm, i.e. ‖A‖F = ‖A‖2,2.

In matrix notations, given a set of points from Rd represented by a n × d matrix A
where each line is a point, the (k, z)-clustering objective consists of finding an n × d
matrix C with at most k distinct rows minimizing ‖A−C‖zz,2. With those notations,
the i-th row of C contains the coordinates of the center serving the i-th point.

We say that an n × (d + 1) matrix A′ is an extension matrix of an n × d matrix A
if the first d columns of A′ are equal to A. If the final column of A′ is the all-zero
vector, we say that A′ is the 0-extension of A.

We first define the dimension reduction guarantee we aim to satisfy, similar to that of
Sohler and Woodruff [151].

I Definition 9.1 (Cost Preserving Sketches for Powers). Let A be an
n×d matrix corresponding to a set of n points in Rd, and let B be an n×(m+1)
matrix corresponding to a set of n points in Rm with an additional extension
coordinate, let z be a positive integer and ε > 0 a precision parameter. Let
C = {C1, . . . , Ck} be a partition of the integers {1, . . . , n} into k sets, i.e. a
k-clustering of the rows of A and B. We define the matrices CA,C and CB,C as
follows. For a row index j such that the j ∈ Ci, the j-th row of CA,C is equal
to cAi := argmin

c∈Rd

∑
j∈Ci ‖Aj − c‖

z. Similarly, the j-th row of CB,C are equal to

cBi := argmin
c∈Rm+1

cm+1=0

∑
j∈Ci ‖Bj − c‖

z.

Then we say that B is an (k, z, ε)-cost preserving sketch if for every partition
C into k parts,∣∣‖A− CA,C‖zz,2 − ‖B − CB,C‖zz,2∣∣ ≤ ε‖A− CA,C‖zz,2

J

This definition captures the guarantee satisfied for (k, z)-clustering given by
Makarychev et al. [129], with the generalization of allowing B to have an extension.
Let us briefly compare this definition to cost preserving sketches for k-means. For
this, we first define clustering matrices: a clustering matrix corresponding to a
clustering C1, ..., Ck is an n by k matrix X, with

Xi,j =


1√
|Cj |

if Ai ∈ Cj

0 otherwise
.

A cost preserving sketch for k-means is then defined as follows:

I Definition 9.2 (Cost Preserving Sketches for k-means [48]). Let A
be an n by d matrix corresponding to a set of n points in Rd, and let B be
an n by m matrix corresponding to a set of n points in Rm. We say that B

203

Chapter 9. Deterministic Sketches for Clustering

is an (k, 2, ε)-cost preserving sketch with offset ∆ if for every n by k clustering
matrix X∣∣‖A−XXTA‖2F −

(
‖B −XXTB‖2F + ∆

)∣∣ ≤ ε · ‖A−XXTA‖2F . J

It turns out that those two definitions are equivalent, for z = 2: we can simplify
Definition 9.1 by requiring only the cost ‖A −XXTA‖2F to be approximated, where
X is n by k clustering matrix corresponding to the partitioning C1, ..., Ck.

Moreover, the offset ∆ used for k-means is a special case of adding an extension to B
and requiring the extension coordinate of the centers being set to 0 (i.e. cm+1 = 0).
Under this constraint we have for z = 2

k∑
i=1

∑
j∈Ci

‖Bj − cBi ‖2 =
k∑
i=1

∑
j∈Ci

m∑
`=1

‖(Bj)` − (cBi)`‖2 + ‖(Bj)m+1‖2.

Note that the contribution of the final coordinate is independent of the choice
of centers, under the constraint cm+1 = 0. Hence, the offset ∆ is equivalent to∑n

j=1 ‖(Bj)m+1‖2. Second, the choice of centers cAi and cBi for k-means is equivalent
to the mapping obtained by using clustering matrices.

In order to construct our cost preserving sketches, we will rely on partition coresets,
defined as follows:

I Definition 9.3 (Partition Coresets). An n × d matrix B is an (ε, k, z)-
partition coreset of A if for any matrix C with at most k distinct rows∣∣‖A− C‖zz,2 − ‖B − C‖zz,2∣∣ ≤ ε · ‖A− C‖zz,2.
B is an (ε, k, z)-extension partition coreset of A if there exists an extension B′

of B such that for any matrix C with at most k distinct rows and 0-extension
C ′ we have ∣∣‖A− C‖zz,2 − ‖B′ − C ′‖zz,2∣∣ ≤ ε · ‖A− C‖zz,2.
In both cases, we say that the size of the coreset is the number of distinct rows
of B. J

This definition is stronger from the commonly found definition that requires the cost
of an assignment

∑
p∈A min

c∈C
‖p−c‖z to be approximated for any set of k-centers C. For

partition coreset, the cost of any assignment to the centers is preserved. We crucially
need this fact for dimension reduction, as guarantees for cost preserving sketches are
related to partitions as well.

Finally, we recall the more standard coreset, that we will work with in section 9.4. The
definition of coreset we consider here allows for an offset, originally due to Feldman,
Schmidt and Sohler [78]. For other works using this definition, see [25, 48, 151]. This
is the one for which we showed lower bounds in Chapter 8.

204

9.1. Introduction and Key Challenges

I Definition 9.4. An (ε, k, z)-coreset with offset in a metric space (X,dist)
for clients P is a weighted subset Ω of P with weights w : Ω → R+ together
with a constant F such that, for any set S ⊂ X, |S| = k,

|
∑
p∈P

min
s∈S
‖p− s‖z −

(
F +

∑
p∈Ω

w(p) min
s∈S
‖p− s‖z

)
| ≤ ε

∑
p∈P

min
s∈S
‖p− s‖z

Using notations introduced in Section 1.6, this is

|cost(P,S)−
(
F + cost(Ω,S)

)
| ≤ εcost(P,S). J

As opposed to the previous sketches, those coresets preserve the cost of any set of
centers, instead of preserving the cost of any clustering. In particular, those centers
may not be the optimal one for the induced partition.

9.1.4 Useful Results

A (α, β) bicriteria algorithm for clustering produces a clustering with β ·k centers and
cost α ·OPT , where OPT denotes the cost of an optimal clustering with k centers. As
we need deterministic results, we cannot rely on the constant-factor algorithm from
Lemma 1.3. We use instead the following (slightly slower) procedure, from Gupta and
Tangwongsan [92]2

I Theorem 9.5 (Theorem 3.2 of [92]). Local-search gives a (10z)z-
approximation for (k, z)-clustering in general metric spaces. This algorithm
can be implemented in time nO(1)d. J

We also need an approximation ensuring a tiny error, as stated in the following lemma.
An (α, β)-bicriteria approximation is a set of βk centers that have cost at most α times
the optimal cost.

I Lemma 9.6 (Proved in Section 9.6.). There exist an algorithm running

in time nε
−O(z)

that gives a (1+ε, zO(z) log(1/ε)/ε)-bicriteria approximation for
(k, z)-clustering. J

Derandomizing Random Projections. The seminal Johnson-Lindenstrauss
lemma states that any n point set in d-dimensional Euclidean space can be (linearly)
embedded into a m ∈ O(ε−2 log n) dimensional space such that all pairwise distances
are preserved up to a (1 ± ε) factor. Most proofs show this guarantee by sampling a

2Gupta and Tangwongsan showed a 5z-approximation for the objective (
∑

dist(p, S)z)1/z where
there are at most n possible center locations. This leads to a (10z)z-approximation in our case,
enforcing centers to be located at input point, as moving a center to its closest input point at most
doubles the distance from a point to its closest center.

205

Chapter 9. Deterministic Sketches for Clustering

matrix from an appropriate distribution. We will use the following derandomization
based on the conditional expectation method.

I Theorem 9.7 ([72]). Let v1, . . . vn be a sequence of vectors in Rd and let
ε, F ∈ (0, 1]. Then we can compute in deterministic time O(nd(log nε−1)O(1))
a linear mapping S : Rd → Rm where m ∈ O(ε−2 log 1/F) such that

(1− ε) · ‖vi‖2 ≤ ‖viS‖2 ≤ (1 + ε)‖vi‖2

for at least a (1− F) fraction of the i’s. J

Note that setting F < 1/n implies that the guarantee holds for all vectors. Also,
we note that if we are given n points rather than n vectors and wish to preserve the
pairwise distances, the running time has a quadratic dependency on n as there are

(
n
2

)
many distance vectors. Since the running time is dominated by computing a bicriteria
approximation, we will omit it from the statement of our theorems.

9.2 Deterministic Coresets and Partition Coresets for (k, z)-
Clustering

9.2.1 Construction of the Partition Coreset

The main goal of this section is to prove the following theorem:

I Theorem 9.8. Let A be a set of points in Rd. We can compute in deter-
ministic time O(nε

−O(z)
) an (ε, k, z)-extension partition coreset of A with at

most kε
−O(z)

distinct rows. This coreset is also an (ε, k, z)-coreset with offset of
A. J

The key structural lemma we use in this case is as follows. Essentially, it states that
if the cost of clustering to a single center cannot be decreased by adding k centers,
then the center forms a partition coreset.

I Lemma 9.9. Let A be a set of points in Rd and let m be a (not necessarily
optimal) center for A. Define the n × d matrix M to contain m in every row
and let M ′ be the extension of M with Mi,d+1 = ‖Ai −m‖. Suppose that for
all set of k centers S,

cost(A, {m})− cost(A,S) < α · cost(A, {m}),

for α ≤ εz+6

401408·23z ·zz+6 .

206

9.2. Deterministic Coresets and Partition Coresets for (k, z)-Clustering

Then for any matrix C that contains exactly k distinct rows and its 0-extension
C ′, we have ∣∣‖A− C‖zz,2 − ‖M ′ − C ′‖zz,2∣∣ ≤ ε · ‖A− C‖zz,2. J

In other terms, the guaranty we have on matrix C is that∣∣∣∣∣∣
∑
p∈A
‖p− Cp‖z −

∑
p∈A

(‖p− Cp‖2 + ‖m− Cp‖2)z/2

∣∣∣∣∣∣ ≤ ε
∑
p∈A
‖p− Cp‖z.

Before proving this lemma, we will show why it implies the theorem.

Proof of Theorem 9.8. We will use the following algorithm. In the following, let β,
and γ be constants that will be specified later. One can think of β, γ = ε−O(z).

� Compute a 2O(z)-approximation for (k, z)-clustering with clusters C1, . . . Ck and
respective centers c1, ..., ck.

� Recursively compute a (1 +β, f(β))-approximation S for every cluster Ci, using
Lemma 9.6. With that algorithm, f(β) = zO(z) log(1/β)/β.

� If cost(Ci, {ci}) − cost(Ci,S) ≤ β · cost(Ci, {ci}), break and use the |Ci| × d
matrix Mj = ci with extension (cost((Ci)j , {ci})) as a partition coreset for Ci.

� If Ci is at depth γ, break and use the |Ci|×(d+1) matrix Mj = ci with extension
0 as a partition coreset for Ci.

We first argue the correctness of this algorithm, then that it can be implemented in
the desired (deterministic) time.

For correctness, we start by considering the first termination criterion, when
cost(Ci, {ci}) − cost(Ci,S) ≤ β · cost(Ci, {ci}). We use for this Lemma 9.9, setting

β = 1
2 ·

εz+6

401408·23z ·zz+6 (i.e.: equal to α/2 with α being specified in Lemma 9.9). By
choice of S, it holds that for any set of k centers K, cost(Ci,S) ≤ (1 + β)cost(Ci,K),
and therefore:

cost(Ci, {ci})− cost(Ci,K) ≤ cost(Ci, {ci})−
1

1 + β
· cost(Ci,S)

=
1

1 + β
(cost(Ci, {ci})− cost(Ci,S))

+
β

1 + β
· cost(Ci, {ci})

≤ β

1 + β
· cost(Ci, {ci})

+
β

1 + β
· cost(Ci, {ci})

=⇒ cost(Ci, {ci})− cost(Ci,K) ≤ 2β · cost(Ci, {ci}).

207

Chapter 9. Deterministic Sketches for Clustering

Using Lemma 9.9, this implies thatM with its extension is indeed an (ε, k, z)-extension
partition coreset for the points in Ci, and that ci with weight |Ci| is an (ε, k, z)-coreset
with offset for Ci (where the offset is 0).

Finally, we consider the other termination criteria, namely when we reach depth γ.
Let Γ be the union of all clusters at this level. In every step of the recursion, the cost
decreased by at least a factor 1 − β – as otherwise the recursion stops. Hence the
cost of union of clusters at depth γ is at most (1− β)γ times the initial cost, which is
2O(z) · (1− β)γ OPT, where OPT is the optimal cost for (k, z)-clustering. We choose γ

in such a way that 2O(z) · (1− β)γ ≤
(
ε
8z

)z
, which holds if γ = Ω

(
z log

(
ε

8z2

)
log(1/(1−β))

)
. With

β = Oz
(
εz+6

)
, we can therefore chose a γ ∈ Õz

(
ε−z−6

)
as desired. For each point

p ∈ Γ, let cp be the representing center in the partition coreset. Now we consider a
set of at most k centers K, and denote Kp the center to which p ∈ Γ is assigned. We
have

∣∣∣∣∣∣
∑
p∈Γ

‖p−Kp‖z − ‖cp −Kp‖z
∣∣∣∣∣∣

(Lem. 9.24) ≤
∑
p∈Γ

ε/2 · ‖p−Kp‖z +

(
4z + ε

ε

)z−1

· ‖p− cp‖z

(Cost of Γ) ≤ ε/2 · ‖A−K‖zz,2 +

(
4z + ε

ε

)z−1

·
(ε

8z

)z
· ‖A−K‖zz,2

≤ ε/2‖A−K‖zz,2 + ε/2 · ‖A−K‖zz,2 ≤ ε · ‖A−K‖zz,2,

which implies that the entire construction is an ε-extension partition coreset. The size
of that coreset is the number of clusters computed by the algorithm, which is at most
kε
−O(z)

by an easy induction: at each level, a cluster is divided into k·f(β) = k·ε−z−O(1)

subclusters, and there are γ ∈ ε−O(z) many levels.

Note that this also implies that the multiset of all {cp, p ∈ Γ} is an (ε, k, z)-coreset
with offset for Γ (again, with offset 0). The number of distinct points in that set is

also the number of clusters computed by the algorithm, namely kε
−O(z)

.

We now consider the running time. The initial 2O(z)-approximation can be derived
using the approximation algorithm of Theorem 9.5. For the bicriteria approximation,
we can use the algorithm of Lemma 9.6, that gives f(β) = zO(z) log(1/β)/β in time

nε
−O(z)

. This bicriteria algorithm is used once per cluster of each level, hence at most
(kf(β))γ = (kz/εz)O(γ) = (kz/εz)ε

−O(z)
many times before terminating, and therefore

a total complexity of nε
−O(z)

.

The remaining part of this section will now be devoted to proving Lemma 9.9.

208

9.2. Deterministic Coresets and Partition Coresets for (k, z)-Clustering

9.2.2 Proof of the Structural Lemma 9.9

We first require a bit of notation. Let {c1, . . . ck} be the distinct rows of C. Let
Aci = {Aj ∈ A | Cj = ci}, i.e. Aci are the subset of rows of A that are mapped to
the same row in C with coordinates ci. Equivalently, Aci is the set of points that are
assigned to the center ci in the assignment induced by C. For every Aci , we denote
by Qci the (multiset of) projections of the points in Aci onto the line through m and
ci; i.e. for p ∈ Aci , we have qp ∈ Qci and by the Pythagorean theorem

‖p− ci‖ =
√
‖p− qp‖2 + ‖qp − ci‖2.

Our goal is to show that, when clustering to the single point m is near-optimal (as
described in the statement of Lemma 9.9), then for “most” of the points p ∈ A one of
the following conditions hold.

Cond. 1 ‖p−m‖ ≥
(

4z
ε

)
· ‖m− ci‖ or ‖p−m‖ ≤

(
ε
4z

)
· ‖m− ci‖ (i.e. the conditions

of Lemma 9.10 below are met) or

Cond. 2 ‖qp −m‖ ≤ ε/(7z) · ‖p−m‖ (i.e. the conditions of Lemma 9.11 below are
met).

The following two lemmas show that if we can assume that one of these two cases
hold, then the row of the extension matrix M ′ corresponding to the point p is a good
proxy for ‖p− ci‖z.

I Lemma 9.10. If ‖p −m‖ ≥
(

4z
ε

)
· ‖m − ci‖ or ‖p −m‖ ≤

(
ε
4z

)
· ‖m − ci‖

(i.e., when condition 1 is met) then∣∣∣(‖p−m‖2 + ‖m− ci‖2
)z/2 − ‖p− ci‖z∣∣∣ ≤ ε · (‖p−m‖z + ‖p− ci‖z) .

J

Proof. We first bound ‖p−ci‖z in terms of max(‖p−m‖z, ‖m−ci‖z). Using Condition
1, we have min(‖p−m‖, ‖m− ci‖) ≤ ε/(4z) ·max(‖p−m‖, ‖m− ci‖), and therefore

max(‖p−m‖, ‖m− ci‖)−min(‖p−m‖, ‖m− ci‖)
≥ (1− ε/(4z)) ·max(‖p−m‖, ‖m− ci‖),

max(‖p−m‖, ‖m− ci‖) + min(‖p−m‖, ‖m− ci‖)
≤ (1 + ε/(4z)) ·max(‖p−m‖, ‖m− ci‖)

Using standard convex inequalities (more precisely, the Mercator series for the upper

209

Chapter 9. Deterministic Sketches for Clustering

bound and Bernoulli’s inequality for the lower bound), this now implies

‖p− ci‖z ≤ (1 + ε/(4z))z ·max(‖p−m‖z, ‖m− ci‖z)
= eln(1+ε/(4z))z ·max(‖p−m‖z, ‖m− ci‖z)
≤ eε/4 ·max(‖p−m‖z, ‖m− ci‖z)
≤ eln(1+ε/2) ·max(‖p−m‖z, ‖m− ci‖z)
= (1 + ε/2) ·max(‖p−m‖z, ‖m− ci‖z)

and

‖p− ci‖z ≥ (1− ε/(4z))z ·max(‖p−m‖z, ‖m− ci‖z)
≥ (1− ε/2) ·max(‖p−m‖z, ‖m− ci‖z).

Therefore, with the same application of convex inequalities, we obtain∣∣∣(‖p−m‖2 + ‖m− ci‖2
)z/2 − ‖p− ci‖z∣∣∣

=
∣∣∣((1± ε/(4z)) ·max(‖p−m‖2, ‖m− ci‖2)

)z/2
−(1± ε/2) · (max(‖p−m‖, ‖m− ci‖))z

∣∣∣
=

∣∣(1± ε/2) · (max(‖p−m‖, ‖m− ci‖))z − (1± ε/2) ·max(‖p−m‖, ‖m− ci‖))z
∣∣

= ±ε ·max(‖p−m‖z, ‖m− ci‖z)
≤ ε · (‖p−m‖z + ‖p− ci‖z)

I Lemma 9.11. Let p,m, ci ∈ Rd. Denote by qp the orthogonal projection of
p onto the line through m and ci. Then if for some 0 ≤ ε ≤ 1/2,

‖m− qp‖ ≤ ε/(7z) · ‖p−m‖

we have for any z ≥ 1:∣∣∣(‖p−m‖2 + ‖m− ci‖2
)z/2 − ‖p− ci‖z∣∣∣ ≤ ε · ‖p− ci‖z. J

Proof. We first require a lower bound on ‖p− ci‖ in terms of ‖p−m‖. We have, using
the assumption on ‖m− qp‖:

‖p− ci‖2 ≥ ‖p− qp‖2 ≥ ‖p−m‖2 − ‖qp −m‖2

≥ ‖p−m‖2 · (1− ε2/(49z2)) (9.2)

Using Lemma 1.2, the Pythagorean theorem and convex inequality (either the Mer-
cator series or Bernoulli’s inequality) in the last line, we have

210

9.2. Deterministic Coresets and Partition Coresets for (k, z)-Clustering

∣∣∣(‖p−m‖2 + ‖m− ci‖2
)z/2 − ‖p− ci‖z∣∣∣

=
∣∣∣(‖p− qp‖2 + ‖qp −m‖2 + ‖qp − ci‖2 − ‖qp − ci‖2 + ‖m− ci‖2

)z/2 − ‖p− ci‖z∣∣∣
=

∣∣∣∣∣
(
‖p− ci‖2 + ‖qp −m‖2 ±

(
ε

4z
· ‖qp − ci‖2 +

(
ε+ 4z

ε

)
‖qp −m‖2

))z/2
− ‖p− ci‖z

∣∣∣∣∣
=

∣∣∣∣∣
(
‖p− ci‖2 ±

(
ε

4z
· ‖qp − ci‖2 +

(
2ε+ 4z

ε

)
‖qp −m‖2

))z/2
− ‖p− ci‖z

∣∣∣∣∣
=

∣∣∣∣∣
(
‖p− ci‖2(1± ε/(4z))±

(
2ε+ 4z

ε

)
· ε2

49z2
· ‖p−m‖2

)z/2
− ‖p− ci‖z

∣∣∣∣∣
=

∣∣∣∣∣∣
(
‖p− ci‖2(1± ε/(4z))±

(
2ε+ 4z

ε

)
· ε2

49z2
· 1

1− ε2

49z2

· ‖p− ci‖2
)z/2

− ‖p− ci‖z
∣∣∣∣∣∣

=
∣∣∣(‖p− ci‖2(1± ε/(2z))

)z/2 − ‖p− ci‖z∣∣∣
= |‖p− ci‖z(1± ε)− ‖p− ci‖z| ≤ ε · ‖p− ci‖z,

where the third to last inequality uses Section 9.2.2, and the second to last uses
ε < 1

2 .

We now bound the cost of the remaining points. Let D be the set of points that satisfy
neither conditions, i.e. for every point p ∈ D we have(ε

4z

)
· ‖m− ci‖ ≤ ‖p−m‖ ≤

(
4z

ε

)
· ‖m− ci‖ (9.3)

and
‖qp −m‖ ≥ ε/(7z) · ‖p−m‖. (9.4)

The two conditions allow us to relate the cost of clustering the points to m and the
cost of clustering the points to the candidate solution C. We will show that the
contribution of the points in D to the clustering cost of m is small.

I Lemma 9.12. Let m be a point such that there exists no solution S with k
centers and cost(A, {m})− cost(A,S) ≤ α · cost(A, {m}).
Suppose C is a set of k centers and let D be the set of points that satisfy neither
condition (1) nor condition (2). It holds that

∑
p∈D
‖p−m‖z < α · 25088z6

ε6
·
∑
p∈A
‖p−m‖z. J

Proof. The high level idea of the proof is to show the existence of a set of k centers
T that decreases the cost of D significantly. This implies that the cost of D must be
small, as otherwise the overall cost of the solution could decrease significantly.

211

Chapter 9. Deterministic Sketches for Clustering

Consider a center ci ∈ C and let `i = m+ (m− ci) · ε2

28z2 and ri = m+ (m− ci) · ε2

28z2 .
Let B be union of all `i and ri. We assign each point p ∈ D ∩Aci to its closest center
bi ∈ {`i, ri}. Note that due to Equations 9.3 and 9.4 ‖qp − m‖ ≥ ε

7z · ‖p − m‖ ≥
ε2

28zz · ‖m− ci‖ = ‖bi −m‖. Using the Pythagorean theorem, we then have

‖p− bi‖z =
(
‖p− qp‖2 + ‖qp − bi‖2

)z/2
≤

(
‖p− qp‖2 + ‖qp −m‖2 − ‖bi −m‖2

)z/2
=

(
‖p−m‖2 −

(
ε2

28z2

)2

· ‖m− ci‖2
)z/2

(Eq. 9.3) ≤
(
‖p−m‖2 − ε6

12544z6
· ‖p−m‖2

)z/2
= ‖p−m‖z · (1− ε6

12544z6
)

Summing this over all points therefore leads to a cost decrease of at least∑
p∈D
‖p−m‖z −

∑
p∈D
‖p− bi‖z ≥

ε6

12544z6
·
∑
p∈D
‖p−m‖z.

Since B contains 2k centers, the average cost decrease per center is 1
2k ·

ε6

800z6 ·
∑

p∈D ‖p−
m‖z. We greedily pick the k centers with maximum cost decrease. Denote this set T
and denote the set of points with cost decrease by DT . By Markov’s inequality, we
therefore have∑

p∈DT

‖p−m‖z −
∑
p∈DT

‖p− bi‖z ≥
ε6

25088z6
·
∑
p∈D
‖p−m‖z.

Since we assumed that no clustering exists decreasing the cost by more than α ·∑
p∈A ‖p−m‖z, this implies

ε6

25088z6
·
∑
p∈D
‖p−m‖z ≤ α ·

∑
p∈A
‖p−m‖z

⇒
∑
p∈D
‖p−m‖z ≤ α · 25088z6

ε6
·
∑
p∈A
‖p−m‖z.

I Remark 9.13. The dependency on ε can be improved to at least ε−4, using
a more involved analysis to determine the cost of a cheaper clustering T . Since
the subsequent analysis incurs a dependency ε−z, we chose the simpler proof in
favour of optimizing lower order terms in the exponent of ε. J

212

9.3. Derandomized Dimension Reduction

We can now conclude the proof of Lemma 9.9. We have using the Pythagorean theorem∣∣‖A− C‖zz,2 − ‖M ′ − C ′‖zz,2∣∣
=

∣∣∣∣∣∣
k∑
i=1

∑
p∈Aci

‖p− ci‖z −
(
‖m− p‖2 + ‖m− ci‖2

)z/2∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑
i=1

∑
p∈Aci\D

‖p− ci‖z −
(
‖m− p‖2 + ‖m− ci‖2

)z/2∣∣∣∣∣∣ (9.5)

+

∣∣∣∣∣∣
k∑
i=1

∑
p∈Aci∩D

‖p− ci‖z −
(
‖m− p‖2 + ‖m− ci‖2

)z/2∣∣∣∣∣∣ . (9.6)

The term in Equation 9.5 can be bounded by
∑k

i=1

∑
p∈Aci\D ε · (‖p − ci‖z + ‖p −

m‖z) ≤ ε ·
(
‖A− C‖zz,2 + ‖A−M‖zz,2

)
using Lemmas 9.10 and 9.11. For the term in

Equation 9.6, we have ∣∣∣∣∣∣
k∑
i=1

∑
p∈Aci∩D

‖p− ci‖z −
(
‖m− p‖2 + ‖m− ci‖2

)z/2∣∣∣∣∣∣
≤ 2z+1

k∑
i=1

∑
p∈Aci∩D

max(‖p− ci‖z + ‖m− ci‖z)

(Eq. 9.3) ≤ 2z+1
∑
p∈D

(
1 +

(
4z

ε

)z)
· ‖p−m‖z

(Lem. 9.12) ≤ 2z+2 ·
(

4z

ε

)z
· α · 25088z6

ε6
·
∑
p∈A
‖p−m‖z (9.7)

Combining, we then obtain for ∣∣‖A− C‖zz,2 − ‖M ′ − C ′‖zz,2∣∣
(Lem. 9.10 and 9.11) ≤ ε ·

(
‖A− C‖zz,2 + ‖A−M‖zz,2

)
(Eq. 9.7) +2z+2 ·

(
4z

ε

)z
· α · 25088z6

ε6
· ‖A−M‖zz,2

(no cost decrease) ≤ 2 ·
(

2ε+ 2z+2 ·
(

4z

ε

)z
· α · 25088z6

ε6

)
‖A− C‖zz,2

The overall result now follows by our choice of α and rescaling ε.

9.3 Derandomized Dimension Reduction

In this section we will use the deterministic construction of partition coresets to obtain
a derandomized dimension reduction for (k, z)-clustering. The goal is to show that we

213

Chapter 9. Deterministic Sketches for Clustering

can obtain a cost preserving sketch with dimension at most O(ε−O(z) log k):

I Theorem 9.14. Let A be an n×d matrix. Suppose we are given an (ε, k, z)-

extension partition coreset of A with at most T = kε
−O(z)

distinct rows. Then
we can compute a (k, z, 4ε)-cost-preserving sketch of A with O(ε−O(z) log k)

columns in deterministic time O
(
nε
−O(z)

)
time. J

Combing this theorem with Theorem 9.8, now yields the following corollary.

I Corollary 9.15. Let A be an n×d matrix. We can compute an (k, z, ε)-cost
preserving sketch with target dimension O

(
ε−O(z) · log k

)
in deterministic time

O
(
nε
−O(z)

)
. J

Again, the first-thought approach would be to use the deterministic Johnson- Lin-
denstrauss transform of Engebretsen et al. [72] (Theorem 9.7). Unfortunately, merely
preserving pairwise distances is not sufficient to preserve the cost to an optimal (1, z)-
center, except for the special case z = 2. Instead, we introduce the following notion.

I Definition 9.16 (Witness Sets). Let A be a set of n points in Rd (with a
possible extension coordinate) and let c be the optimal (1, z)-center (under the

possible constraint that the extension coordinate is 0) and let ∆ =
∑n
i=1 ‖Ai−c‖z

n .
Then a (D,R, ε)-uniform witness set is a subset S ⊂ A such that

� A (1 + ε)-approximation of c (under the possible constraint that the ex-
tension coordinate is 0) is contained in the convex hull of S.

� The diameter of S is at most D · z
√

∆.

� The size of S is at most R. J

The first important result is proving that the existence of witness sets of small size
exist for a specific range of parameters.

I Theorem 9.17. There exists
(
O(z)
ε , ε−O(1) · 2O(z), ε

)
witness sets. J

We give a full proof of Theorem 9.17 in Section 9.5. The existence of small witness
sets is essentially a consequence of the existence of small coresets. Let us consider
how this existence of small witness sets combined with Theorem 9.8 implies that we
can deterministically construct a cost preserving sketch for powers.

The main idea is that the property of witness sets allows us to efficiently “discretize”
all candidate solutions in the convex hull of a witness set. We will show that the
dimension reduction preserves the property of a subset of points being a witness set.
Furthermore, because witness sets lie in low-dimensional spaces, we can guarantee that
the cost for every point in the convex hull of a witness is preserved. Specifically, we use

214

9.3. Derandomized Dimension Reduction

that linear projections preserve subspaces, and in particular the subspace spanned by
the points in the convex hull of the witness set. Hence, if the cost of every candidate
solution in a witness set stays the same, up to a (1 ± ε) factor, the clustering cost
overall also stays the same.

Proof of Theorem 9.14. Let B be an (ε, k, z)-extension partition coreset of A, with
extension B′. By definition of B′, any (ε, k, z)-cost preserving sketch for B′ is also one
for A. We focus henceforth on B and its extension B′.

In a first step, we enumerate over all witness sets of B′, under the condition that
the extension coordinate of the center is 0. This boils down to enumerating over all
witness sets of B: indeed, if S′ is a subsest of B′ such that an (1 + ε)-approximation
of c under the constraint that the coordinate extension is 0 is contained in the convex
hull of S′, then the (1+ε)-approximation is also contained in the convex hull of S ⊆ B
obtained from S′ by removing the coordinate extension. Hence, we can perform this
enumeration in brute-force way; there only exist T = kε

−O(z)
distinct entries of B,

hence there also only exist T ε
−O(z)

= kε
−O(z)

witness sets.

For each witness set S, we now construct an ε-cover of the candidate solutions in the
convex hull of S. First, observe that S lies in an |S| = ε−O(z)-dimensional space.

Hence, we can compute an ε′-cover of S of size at most

(
O(
√
|S|)

ε′

)|S|
in deterministic

polynomial time [43]3. We set ε′ = ε/(2z). Moreover, let V be an orthogonal basis
of the subspace spanned by S. We additionally compute a 1/2-cover of the unit
S-dimensional ball spanned by V .

Then the union N of all covers of all witness sets has size at most

T ε
−O(z) ·

(
O(
√
|S|) ·D
εz

)|S|
= kε

−O(z)
.

We now use Engebretsen et al. 9.7 to deterministically compute a mapping f : Rd →
Rm with m ∈ O(ε−O(z) log k) that embeds all pairwise distances between the points
corresponding to rows of B, as well as the points in N , up to a distortion factor

(1 ± ε/z). This can be done in time O
(
n · d · kε−O(z) · logO(1) n

)
. Denote the n by

m ∈ O(ε−O(z) log k) dimensional sketch of B by Π, and let Π′ be the extension of Π
obtained by appending the final column of B′.

In order to verify correctness, we now show that for any subset C of {1, ..., n}, the
cost of the optimal (1, z)-clustering is preserved, namely that

cost(B′C) :=
∑
j∈C
‖B′j − cB

′‖z = (1± ε)
∑
j∈C
‖Π′j − cΠ′‖z,

where B′C = {B′j , j ∈ C} and cB
′

is the optimal center for points B′C , under the

constraint that the extension coordinate is 0, and cΠ′ the equivalent for Π′C := {Π′j , j ∈
C}.

3Recall that a ε-cover of a set S is a set of points N such that for an x ∈ S, we have some y ∈ N
with ‖x− y‖ ≤ ε.

215

Chapter 9. Deterministic Sketches for Clustering

We first prove the somewhat easier direction which states that the cost does not
increase. Let S be a witness set for B′C . Denote by c∗ the point whose 0-extension is
the (1 + ε)-approximate solution to cB

′
guaranteed to lie in the convex hull of S, and

let c the point whose 0-extension is the closest cover point to (c∗, 0). By definition of
the cover and witness set S, we have

‖c∗ − c‖ ≤ ε′ · z
√

cost(BC)

|C|
(9.8)

Further, let f(c) be the embedding of c, and for simplicity let ∆C := cost(BC)
|C| . We

have, for a fixed point j:

‖Πj − f(c)‖
(Distortion of Embedding) ≤ (1 + ε/z) · ‖Bj − c‖

≤ (1 + ε/z) · (‖Bj − c∗‖+ ‖c∗ − c‖)

(Eq. 9.8) ≤ (1 + ε/z) ·
(
‖Bj − c∗‖+ ε′ · z

√
∆C

)

Hence, writing f ′(c) the 0-extension of f(c), we obtain

‖Π′j − f ′(c)‖z =
(
‖Πj − f(c)‖2 +B′j

2
)z/2

≤
(

(1 + ε/z) ·
(
‖Bj − c∗‖2 + ε′ · z/2

√
∆C

)
+B′j

2
)z/2

≤ (1 + ε/z)z/2 ·
(

(‖Bj − c∗‖2 +B′j
2
) + ε′ · z/2

√
∆C

)z/2
≤ (1 + ε/z)z/2

(
(1 + ε) · (‖Bj − c∗‖2 +B′j

2
)z/2 +

(
z + ε

ε

)z/2−1

ε′
z/2 ·∆C

)
≤ (1 + 2ε) · (‖Bj − c∗‖2 +B′j

2
)z/2 + ε ·∆C ,

where the last inequality holds by choice of ε′. Summing over all j ∈ C, we get that

cost(Π′C) ≤
∑
j∈C
‖Π′j − f ′(c)‖z ≤ (1 + 2ε)cost(B′C) + εcost(B′C)

≤ (1 +O(ε))cost(B′C). (9.9)

We now turn our attention to the somewhat more involved case of proving that the cost
does not decrease. The key difference is that the witness set SΠ for points {Π′j , j ∈ C}
may be different from the witness set S, and we cannot use the previous argument
verbatim. Assume that cost(Π′C) ≤ cost(B′C) (otherwise we are already done).

Let us consider the (D,R, ε)-witness set SΠ of Π′C , with D = O(z)/ε and R =
ε−O(1). By our assumption on cost(Π′C), we know that the diameter of SΠ is at
most D · z

√
cost(B′C)/|C|. We note two facts about the embedding f preserving dis-

tances between points of N and rows of B: it is a linear projection, hence surjective,
and the image of an ε′-cover is still an ε′-cover. Let f(s) be an arbitrary point in

216

9.4. Deterministic Coreset via Uniform VC-Dimension

the convex hull of SΠ in the projected space, and let f(c) be its closest point in the
projection of the cover.

Exactly as above, one can show that ‖Πj − f(s)‖ ≥ (1− ε/z)‖Bj − c‖− ε′ z
√

∆C , then

that ‖Π′j − f ′(s)‖z ≥ (1 + −ε) · (‖Bj − c∗‖2 + B′j
2)z/2 − ε · ∆C and conclude that∑

j∈C ‖Π′j − f ′(s)‖z ≥ (1−O(ε))cost(B′C). For completeness, we provide a thorough
proof in Section 9.7 Choosing s such that f ′(s) is the approximate optimal center
guaranteed by the definition of witness set, to get cost(Π′C) ≥ (1 − O(ε))cost(B′C).
Combined with Eq. (9.9), this concludes the proof of the theorem: the mapping g
preserves the cost of any cluster.

9.4 Improved Deterministic Coreset Construction via Uni-
form VC-dimension

We show in this section how to use ε-set-approximations of a particular set system to
build improved coresets deterministically.

Recall that an (ε, k, z)-coreset with offset for the (k, z)-Clustering problem in a metric
space (X,dist) with set of clients P is a weighted subset Ω of P with weights w : Ω→
R+ together with a constant F such that, for any set S ⊂ X, |S| = k,

|cost(P,S)−
(
F + cost(Ω,S)

)
| ≤ εcost(P,S).

To be consistent with the coreset literature we will go back to the notation cost(·, ·)
introduced in Section 1.6, instead of matrix notations. In this section, we will use
notions from VC-dimension literature, defined as follows:

I Definition 9.18. A tuple (X,R) is a range space when R = (R1, ..., Rm)
with Ri ⊆ X.
A set A is an ε-set-approximation for (X,R) if

∀R ∈ R,
∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ ε.
The VC-dimension of a range space is the size of the largest set Y such that
{Y ∩ R, R ∈ R} = 2|Y |, meaning that every subset of Y is of the form Y ∩ R
for some R ∈ R. J

The main result of the section is the following theorem. We relate the size of the coreset
to the VC dimension of the range space B formed by k balls, defined as follows: For
a point c ∈ X and r ∈ R≥0, let Hc,r = {p ∈ P | dist(p, c) ≥ r}. For k centers
C = {c1, c2, . . . , ck}, we similarly define HC,r = {p ∈ P | minc∈C dist(p, c) ≥ r}. We
let B :=

⋃
C

⋃
rHC,r.

217

Chapter 9. Deterministic Sketches for Clustering

I Theorem 9.19. Let (X,dist) be a metric space such that the VC dimension
of (P,B) is D. There exists a deterministic algorithm running in deterministic

time Õ(|X| · |P | ·k/ε)+k (D/ε)O(D) · |P | that constructs an ε-coreset with offset

for the set P , with size 2O(z log z) · kD log(D)polylog(1/ε)
ε5

.

In the Euclidean Space Rd, the running time is |P |ε−O(z) ·d+k (D/ε)O(D)·|P |. J

Application to Euclidean Spaces. Our prominent example is the Euclidean case.
It is well known from the coreset literature that the set system aforementioned has
VC-dimension O(kd log k) in Euclidean spaces of dimension d. This has been proven
for example Lemma 1 of [12] and Corollary 34 of [78] 4. This in particular leads to

ε′-set-approximation of size O
(
kd log k
ε′2 · log(kd log k/ε′)

)
.

In order to remove the dependency in d and match the best coreset result, we aim
at using a classical terminal embedding as in Section 7.6. In particular, we will start
from the coreset of size kε

−O(z)
from Theorem 9.8, and apply a deterministic terminal

embedding construction on it. As we saw in Section 7.6, this allows to consider that

the dimension is O
(

log
(
kε
−O(z)

))
, and yields the following corollary:

I Corollary 9.20. There exist a deterministic algorithm running in time
nε
−O(z) · d + (1/ε)ε

−O(z)k log3 k. that constructs an (ε, k, z)-coreset of size
k2 log2 k · ε−O(z) for input in the Euclidean space Rd. J

Proof. To reduce the dimension, we use our coreset construction combined with a
terminal embedding, as in Huang and Vishnoi [100] and Section 7.6. We sketch the
proof here and refer to Section 7.6 for more details.

We start by computing a (ε, k, z)-coreset of A of size kε
−O(z)

, using Theorem 9.8, in

time nε
−O(z)

. Then, we build a terminal embedding of that coreset onto a space with
dimension O(ε−O(z) log k): this can be done deterministically in time kε

−O(z)
using the

algorithm from Mahabadi et al. [127].

Now, we can compute a coreset of the embedding using Theorem 9.19. Since in
dimension O(ε−O(z) log k) the VC-dimension of (P,B) is at most ε−O(z)k log2 k, this
concludes the proof.

Application to Minor-Excluded Graphs, and Graphs with Bounded
Treewidth. Theorem 9.19 can also be applied to graphs excluding a minor H:
in that case, Bousquet and Thomassé [30] showed that the VC-dimension of (P,B)

4The bounds in the literature are often stated for a generalization known as the weighted function
space induced by k-clustering in Euclidean spaces, which is necessary for coreset constructions based
on importance sampling. In this chapter, we show how to use uniform sampling instead, which allows
us to use Theorem 9.21 as a black box.

218

9.4. Deterministic Coreset via Uniform VC-Dimension

is O(|H|k log k).5 Hence applying directly Theorem 9.19 yields a coreset of size

essentially k2|H| log2 k
ε5

. The result is somewhat simplified compared to Corollary 7.15,
at the price of losing a factor kε−1 (or ε−3). On the other hand, the dependency in
the size of the minor is greatly improved: we are not even able to specify it precisely
in Corollary 7.15, although it seems to be at least doubly exponential.

Since graphs with treewidth t exclude the complete graph with t vertices, the result

allows to construct coreset of size k2t log2 k
ε5

for those. As we will see, the running
time is dominated by the construction of an ε-set-approximation. Giving up on the
determinism, this can be made fast using random sampling (see Chazelle [43]): this
yields a running time Õ(|X| · |P | · k/ε).

Application to Clustering of Curves. Driemel, Nusser, Phillips, and Psarros
showed in [65] VC dimension bounds for clustering of curves, under the Fréchet and
Hausdorff distances. The input of that problem is a set of curves, each consisting of
m segments in Rd, and the centers are restricted to be curves consisting of ` segments
in Rd.

They consider two types of distances for curves: the Hausdorff distance between two
curves X and Y is defined as follows: let d ~H(X,Y) = supx∈X infy∈Y ‖x − y‖. The
Hausforff distance between X and Y is max(d ~H(X,Y), d ~H(Y,X)). The Fréchet dis-
tance is slightly more intricate: for that, we consider parametrized curves, namely
a curve is a function X : [0, 1] → Rd whose graph is made of ` consecutive seg-
ments. The Fréchet distance between two parametrized curves X and Y is defined
as minf :[0,1]→[0,1] maxt∈[0,1] ‖X(f(t))− Y (t)‖, where the function f is restricted to be
continuous, non decreasing and with f(0) = 0, f(1) = 1.

For both those distances, Driemel et al. [65] showed that the VC dimension of (P,B)
is bounded by O

(
kd2`2 log(d`m) log k

)
. Hence, Theorem 9.19 shows the existence of a

coreset of size k2d2`2 log(d`m) log2 k

εO(1) . This improves over [36], in particular removing the
dependency in the number of input curves, although our construction is not polynomial
time in that case.

A Sketch of the Construction As explained in the introduction (Section 9.1), our
construction is inspired by the one of Chen [44] and of Chapter 6. As both of those
result, we start by computing a constant-factor approximation, and placing rings of
exponential radius around each of its center.

We first use a careful preprocessing step to reduce the number of such rings from
O(k log n) as in [44] to O(k). This step is different to that of Chapter 6: in that
chapter, we used importance sampling in the outer rings, something that we do not
know how to do deterministically. Here, we instead use a particularly structured
constant-factor approximation, that allows us to simply discard the outer rings.

To build coresets in the remaining rings, both [44] and Chapter 6 use uniform sam-
pling. Instead, we show that building an ε′-set-approximation of the set system formed

5Formally, they show the result for k = 1. Braverman et al. [32] showed that extending the result
to any k loses a k log k factor.

219

Chapter 9. Deterministic Sketches for Clustering

by k balls is actually enough: this is doable deterministically, which concludes our al-
gorithm.

The size of an ε′-set-approximation can be bounded via the VC-dimension of the set
system: if the VC dimension is D, then an ε′-set-approximation has size Õ

(
Dε−2

)
(see more details in Theorem 9.21)

9.4.1 How to sample uniformly and deterministically

We start by explaining how to compute a set with properties similar to that of a
uniform sample. While we need to define the VC-dimension for that, the only property
we will need is that it is possible to compute ε-set-approximation of balls in Rd in
time essentially (kd/ε)Õ(kd).

The VC-dimension of a range-space helps bounding the size of ε-set-approximation,
as highlighted by the following theorem:

I Theorem 9.21 (Theorem 4.5 in Chazelle [43]). Let (X,R) be a
range space of VC-dimension d. Given any r > 0, an r-set-approximation
for (X,R) of size O

(
dr−2 log(d/r)

)
can be computed deterministically in time

dO(d)
(
r−2 log(d/r)

)d |X|. J

We will compute ε-set-approximation for the set system (P,B), where P is the set of
input points and B is defined in the opening paragraph.

9.4.2 The algorithm

As sketched, the algorithm partitions the input points into rings, and computes then
ε-set-approximation in each ring. We recall here useful definitions, similar to those of
Chapter 6.

Fix a metric space I = (X,dist), positive integers k, z and a set of clients P . For a
solution S of (k, z)-clustering on P and a center c ∈ S, c’s cluster consists of all points
closer to c than to any other center of S.

Fix as well some ε > 0, and let A be any solution for (k, z)-clustering on P with k
centers. Let C1, ..., Ck be the clusters induced by the centers of A.

� the average cost of a cluster Ci is ∆Ci = cost(Ci,A)
|Ci|

� For all i, j, the ring Ri,j is the set of points p ∈ Ci such that

2j∆Ci ≤ cost(p,A) ≤ 2j+1∆Ci .

� The inner ring RI(Ci) (resp. outer ring RO(Ci)) of a cluster Ci consists of
the points of Ci with cost at most (ε/z)z ∆Ci (resp. at least (z/ε)2z ∆Ci), i.e.,

220

9.4. Deterministic Coreset via Uniform VC-Dimension

RI(Ci) := ∪j≤z log(ε/z)Ri,j and RO(Ci) := ∪j>2z log(z/ε)Ri,j . The main ring

RM (Ci) consists of all the other points of Ci. For a solution S, we let RSI
and RSO be the union of inner and outer rings of the clusters induced by S.

The final algorithm is as follows:

Input: A metric space (X,dist), a set P ⊆ X, k, z > 0, ε such that 0 < ε < 1/3, and
ε′ ≤ ε.
Output: A coreset with offset. Namely, a set of points P ′ ⊆ X, a weight function
w : P ′ 7→ R+ and an offset value F such that for any set of k centers C, cost(P,C) =
(1± ε)cost(P ′, C) + F .

1. Greedy seeding:

(a) Compute a cA-approx A to the (k, z)-clustering problem for P .6

(b) Initialize G := A.

(c) While: cost(G) ≥ εcost(A)/cA and there is a candidate center c such that(
1− ε

k·cA

)
cost(G) ≥ cost(G ∪ {c}) do:

G ← G ∪ {c}.

2. If cost(G) ≤ εcost(A)/cA, then output the following coreset and stop: G and
w : G 7→ R+ where w(c) corresponds to the number of points served by center c
in G, and offset F = 0.

3. Let F := cost(RO(G),G) be the cost of the outer points of G.

4. Set the weights of all the centers of G to 0.

5. Reducing the number of rings::
For each cluster C with center c of G, remove all the points in RI(C) ∪ RO(C)
and increase the weight of c by the number of removed points. Let IG be the
instance created with those weights.

6. Sampling from the remaining rings: For every cluster Ci, and every j ,
compute an ε′-set-approximation Ωi,j of the set system (Ri,j ,B). Weight the

points of Ωi,j by
Ri,j
|Ωi,j | .

7. Output:

� An instance IG created at Step 5

� A coreset consisting of G ∪Ωi,j , with offset F defined at Step 3 and weights
for G defined throughout the algorithm, weights for Ωi,j defined by the
sampling procedure.

If the condition cost(G) ≤ εcost(A)/cA is met, then we say that G is low-cost ; other-
wise, we say it is locally stable.

6Any solution with O(k) clusters and cost O(OPT) can be actually used for this step, in order to
have a faster algorithm.

221

Chapter 9. Deterministic Sketches for Clustering

We will need to compare cost of solution in the original instance I, and in the one
computed by the algorithm: cost will denote the cost in I while costIG the one for
instance IG.

9.4.3 Proof of the Greedy Seeding

The outcome of the greedy seeding step, IG, satisfies the following lemma:

I Lemma 9.22. Suppose G is locally stable. Let F =
∑
C∈G

∑
p∈RO(C)

cost(p,G)

be the cost of points in outer rings. For every solution S, it holds that

|cost(S)− (costIG(S) + F)| ≤ εcost(S). J

Before proving Lemma 9.22, we show that the solution G has the following properties:

I Lemma 9.23. G contains at most O(k · z · log(1/ε)/ε) centers and, in
the case where G is locally stable, for any solution S and any subset Q ⊆ P ,
cost(X,G) ≤ cost(Q,S) + εOPT. J

Proof. Note that the cost of G is clearly at most the cost of A, whose cost is at most
cA times the cost of the best solution for the k-clustering problem.

Each center added by the greedy step decreases its cost by a factor (1− ε/cAk), and the
initial solution G has cost cost(G): since the algorithm stops if the cost drops below
εcost(A)/cA, the total number of centers added is at most cAk log(1/ε)/ε The total
number of centers is therefore at most cAk log(1/ε)/ε.

Note also that cost(A)/cA ≤ OPT: hence, the inequality (1− ε/cAk)cost(G) ≤ cost(G∪
{c}) implies cost(G) ≤ cost(G∪{c})+εOPT/k. Hence, since G is locally stable, there is
no candidate center c such that cost(G)−cost(G∪{c}) ≥ εOPT/k. Let S be a solution,
Q be a subset of clients, s be a center of the solution S and Cs be its cluster. Since the
improvement made by adding s is at least

∑
p∈Cs∩Q cost(p,G)−cost(p,S), it holds that∑

p∈Cs∩Q cost(p,G)− cost(p,S) ≤ cost(G)− cost(G ∪ {c}) ≤ εOPT/k. Summing over
the k centers of the solution S yields the inequality cost(Q,S) ≤ cost(Q,G) + εOPT,
concluding the lemma.

We can now turn to the proof of Lemma 9.22:

proof of Lemma 9.22. Fix a cluster C of G, with center c. We first want to show that
cost(C,S) ≤ costIG(C,S) + cost(RO(C),G) + εcost(C,S). First, this is equivalent to
cost(RO(C),S) ≤ |RO(C)|cost(c,S) + cost(RO(C),G) + εcost(C,S), as all points in
C \RO(C) have same cost in the original instance and in IG.

222

9.4. Deterministic Coreset via Uniform VC-Dimension

Using Lemma 1.2, we have

cost(RO(C),S) ≤ (1 + ε)cost(RO(C),G) + (1 + z/ε)z−1|RO(C)|cost(c,S).

Hence, one needs to bound |RO(C)|cost(c,S). For that, we show that the cost of
clients in RO(C) can be charged to clients of RI(C) ∪RM (C).

First note by Markov’s inequality, |RO(C)| ≤ (ε/z)2z |C|. Hence, one can partition
RI(C) ∪ RM (C) into parts of size at least s = (|C| − |RO(C)|)/|RO(C)|, and assign
every part to a point in RO(C) in a one-to-one correspondence.

For such a point p ∈ RO(C) consider the s points p1, . . . , ps of the part assigned to it.
We show how to charge cost(c,S) to the cost of those points. Let S(pj) be the center
serving pj in the solution S. It holds that cost(c,S) ≤ minj cost(c,S(pj)). Averaging,
this is at most 1

s

∑s
j=1 cost(c,S(pj)) which is due to Lemma 1.2 at most 1

s

∑s
j=1(1 +

ε)cost(pj ,G) + (1 + z/ε)z−1cost(pj ,S). Since 1/s ≤ 2|RO(C)|/|C| = 2 (ε/z)2z, we
conclude that (using 2

(
ε
z

)
(1 + ε) ≤ 1)

|RO(C)|cost(c,S) ≤ 2
(ε
z

)z+1
(1 + ε)

∑
p∈RI(C)∪RM (C)

cost(p,G) + cost(p,S)

≤
(ε
z

)z
(cost(C,G) + cost(C,S)). (9.10)

We apply this inequality to bound cost(RO(C),S):

cost(RO(C),S) ≤ (1 + ε)cost(RO(C),G) + (1 + z/ε)z−1|RO(C)|cost(c,S)

≤ cost(RO(C),G) + 2ε(cost(C,G) + cost(C,S))

Hence, summed over all cluster, this yields

cost(RO,S) ≤ cost(RO,G) + 2ε(cost(G) + cost(S)) (9.11)

We now turn to the other direction of the inequality. Using Lemma 9.23,

cost(RO,G) ≤ cost(RO,S) + εOPT

≤ cost(RO,S) + εcost(S)

Combined with Eq. (9.10), this yields

cost(RO,G) + costIG(RO,S)− cost(RO,S) ≤ 2ε(cost(S) + cost(G)). (9.12)

Combining Eq. (9.11) and Eq. (9.12), and using that all points not in RO have same
cost in the original instance and in IG concludes the lemma.

223

Chapter 9. Deterministic Sketches for Clustering

9.4.4 Computing Coresets via ε-set-approximation

We first show that an ε-set-approximation of the set system (Ri,j ,B) is indeed a coreset
for Ri,j . We will then bound the size of such an approximation. In this section, we
fix the cluster Ci and a ring Ri,j .

I Lemma 9.24. Let Ri,j be a ring, and Ω be an ε′-set-approximation for

(Ri,j ,B) with ε′ = 20 8zε2

log(4z/ε) . Then Ω with uniform weights |Ri,j |/|Ω| is an
ε-coreset for Ri,j . J

We use the same proof technique as in Section 6.3 to analyze the algorithm. More
precisely, we define as before ranges of clients: we let Ii,j,` to be the set of points from
Ri,j that pays roughly (1 + ε′)` is S, i.e., Ii,j,` := {p ∈ R : (1 + ε′′)` ≤ cost(p,S) <
(1 + ε′′)`+1}, where ε′′ will be set later.

This analysis distinguishes between three cases:

1. ` ≤ j + log1+ε′′ ε, in which case we say that I` is tiny. The union of all tiny
ranges is denoted Itiny,S .

2. j + log1+ε′′ ε ≤ ` ≤ j + log1+ε′′(4z/ε), in which case we say I` is interesting.

3. ` ≥ j + log1+ε′′(4z/ε), in which case we say I` is huge.

The very same proof as Lemma 6.12 shows that the cost the tiny ranges is preserved.
Event E holds trivially due to our choice of weights: hence, when the ringRi,j intersects
a huge range, Lemma 6.14 carries over to our setting. For completeness, we provide
the proof in the last section of the chapter.

Hence, the key here is to show that the remaining O(log(4z/ε)) interesting ranges are
preserved by the ε′-set-approximation.

I Lemma 9.25. Let Ri,j be a ring, and S be a solution such that all huge I`
are empty. Further, let Ω be an ε′-set-approximation for (R,B), and uniform

weights |R|/|Ω| for point in Ω. Then, if ε′′ = ε/10 and ε′ = 20 23zε2

log(4z/ε) , it holds

that cost(Ω, S) = (1± ε)cost(Ri,j , S). J

Proof. For simplicity, we drop the subscript i, j and let R := Ri,j , I` := Ii,j,`. Fix
some solution S.

To show that cost(S) ≈ cost(Ω,S), we will show the following stronger property: for
any `,

|cost(I`,S)− cost(I` ∩ Ω,S)| ≤ ε

log(4z/ε)
cost(I`,S).

Hence, we fix some integer `. Note that I` = HS,(1+ε′′)`+1 \HS,(1+ε′′)` , where HS,r =
{p ∈ P : dist(p,S) ≥ r} ∈ B. Since Ω is an ε′-set-approximation for (P,B), it holds

224

9.4. Deterministic Coreset via Uniform VC-Dimension

that ∣∣∣∣ |HS,(1+ε′′)`+1 |
|R|

−
|HS,(1+ε′′)`+1 ∩ Ω|

|Ω|

∣∣∣∣ ≤ ε′∣∣∣∣ |HS,(1+ε′′)` |
|R|

−
|HS,(1+ε′′)` ∩ Ω|

|Ω|

∣∣∣∣ ≤ ε′
Combining those two guarantees with triangle inequality ensure that∣∣∣∣ |I`||R| − |I` ∩ Ω|

|Ω|

∣∣∣∣ ≤ ∣∣∣∣ |HS,(1+ε′′)`+1 |
|R|

−
|HS,(1+ε′′)`+1 ∩ Ω|

|Ω|

∣∣∣∣+

∣∣∣∣ |HS,(1+ε′′)` |
|R|

−
|HS,(1+ε′′)` ∩ Ω|

|Ω|

∣∣∣∣
≤ 2ε′.

Furthermore, by definition of I`, |I`|·(1+ε′′)` ≤ cost(I`,S) < |I`|·(1+ε′′)`+1. Similarly,

due to the weighting of points in Ω, we have (1 + ε′′)` |R|·|I`∩R||Ω| ≤ cost(I` ∩ Ω,S)
Combining those equations, we get

cost(I`,S) ≤ |I`| · (1 + ε′′)`+1

≤ |I` ∩ Ω| · (1 + ε′′)`+1 · |R|
|Ω|

+ 2ε′ · |R|(1 + ε′′)`+1

≤ (1 + ε′′)cost(I` ∩ Ω,S) + 2ε′ · |R|(1 + ε′′)`+1.

To bound further the right hand side, we let q ∈ I`, so that (1 + ε′′)` ≤ cost(q,S):

|R|(1 + ε′′)` ≤
∑
p∈R

cost(q,S) ≤
∑
p∈R

2z−1cost(p, q) + 2z−1cost(p,S)

≤ 2z−1cost(R,S) + 2z−1
∑
p∈R

2z−1 (cost(p,G) + cost(q,G))

≤ 2zcost(R,S) + 23z−1cost(R,G),

where the last line uses cost(q,G) ≤ 2zcost(p,G), since p and q are in the same ring.

Combined with the previous inequality, this yields cost(I`,S) ≤ (1+ε′′)cost(I`∩Ω,S)+
23zε′ · (cost(R,S) + cost(R,G)).

Similarly, we get

cost(I` ∩ Ω,S) ≤ (1 + ε′′)cost(I`,S) + 23zε′(cost(R,S) + cost(R,G)).

Summing that over the log1+ε′′(4z/ε) interesting ranges and combining with Lemma 9.29
gives that:

|cost(I`,S)− cost(I` ∩ Ω,S)|
≤ log1+ε′′(4z/ε) · 23zε′ · (cost(R,S) + cost(R,G)) + ε′′cost(R ∩ Ω,S) + ε′′cost(R,S).

225

Chapter 9. Deterministic Sketches for Clustering

Hence, we have:

|cost(I`,S)− cost(I` ∩ Ω,S)| ≤ log1+ε′′(4z/ε) · 23zε′ · (cost(R,S) + cost(R,G))

+ ε′′cost(R ∩ Ω,S) + ε′′cost(R,S)

≤ log1+ε′′(4z/ε) · 23zε′ · (cost(R,S) + cost(R,G))

+ 2ε′′cost(R,S) + ε′′|cost(R,S)− cost(R ∩ Ω,S)|
≤
(
log1+ε′′(4z/ε) · 23zε′ + 2ε′′

)
· (cost(R,S) + cost(R,G))

+ ε′′|cost(R,S)− cost(R ∩ Ω,S)|,

which is equivalent to

|cost(R,S)− cost(R ∩ Ω,S)| ≤
log1+ε′′(4z/ε) · 23zε′ + 2ε′′

(1− ε′′)
(cost(R,S) + cost(R,G).

Chosing ε′′ such that 2ε′′

1−ε′′ ≤
ε
2 (e.g. ε′′ = ε/10) and ε′ such that

log1+ε′′ (4z/ε)·23zε′

1−ε′′ ≤ ε
2

(e.g. ε′ = 20 23zε2

log(4z/ε)) concludes the lemma.

Combining the results for tiny, interesting and huge ranges concludes the proof of
Lemma 9.24 and shows that Ωi,j is an ε-coreset of Ri,j . Combined with Lemma 9.22,
this concludes the coreset guarantee of Theorem 9.19. The size of the coreset for a
given ring is O

(
2O(z log z)Dε−4 log(D/ε)

)
from Theorem 9.21, and there are

O
(
2O(z log z)kε−1polylog(1/ε)

)
many rings. Hence, the total size of the coreset con-

structed is O
(
2O(z log z) · kDε−k log(D)polylog(1/ε)

)
It only remains to bound the time

complexity of the algorithm.

9.4.5 Complexity Analysis

Two steps dominate the running time of the algorithm: the greedy seeding, and
the computation of the ε′-set-approximation. For the latter, a direct combination
of Theorem 9.21 shows that all the ε′-set-approximation can be computed in time
k(D/ε)−O(d) · |X|.

Hence, it only remains to bound the running time of the greedy seeding.

In the discrete metric case, this is straightforward: each iteration costs O(|X| · |P | ·k),
and there are Õ(k/ε) many of them (see Lemma 9.23).

The Euclidean case requires more work, as it is not possible to enumerate over all
candidate center. However, as shown in Section 9.6, this can be performed in time
nε
−O(z)

. We defer the proof to that section.

226

9.5. Witness Sets

9.5 Witness Sets

The goal of that section is to prove the existence of small witness sets, namely Theo-
rem 9.17.

For that, we rely on the existence of small coreset for (1, z)-clustering, that we showed
in Corollary 7.20: we restate the result here for convenience.

I Lemma 9.26. [See Corollary 7.20] Let A be a set of n points in Rd. There
exists a set ΩA of size Õ(ε−22O(z)) and weights w : ΩA → R+ such that, for
every possible center c,∣∣∣∣∣

n∑
i=1

‖Ai − c‖z −
∑
i∈Ω

w(i)‖A− c‖z
∣∣∣∣∣ ≤ ε

n∑
i=1

‖Ai − c‖z. J

We use those coresets as follow. Let a ∈ A be a center inducing a 2z-approximation
for (1, z)-clustering on A, and let ∆a be the average cost for that solution (note that

∆ =
∑n
i=1 ‖A−c‖z

n ≤ 2z∆a). We use Lemma 9.26 to show that their exists a coreset ΩA

where all points are at distance at most z
ε · (∆a)

1/z of a. This is enough to conclude

the existence of (2z
ε , ε

−O(1) · 2O(z), ε)-uniform witness set: the optimal center for ΩA

must lie in the convex hull of ΩA, and the diameter of ΩA is at most 2z
ε ∆.

I Lemma 9.27. Let A be a set of n points in Rd, and a ∈ A be a center
inducing a 2z-approximation for (1, z)-clustering on A.
There exist a set ΩA of size O(ε−2z) and weights w : ΩA → R+ such that: every

point of ΩA is at distance at most 2z
ε ∆

1/z
a of a, and for every possible center c,∣∣∣∣∣∣

n∑
i=1

‖Ai − c‖z −
∑
i∈ΩA

w(i)‖A− c‖z
∣∣∣∣∣∣ ≤ ε

n∑
i=1

‖Ai − c‖z. J

Proof. Let OA be the set of points at distance more than
(
z
ε

)2
∆

1/z
a of a. Let p be any

point at distance
(
z
ε

)2
∆

1/z
a of a7. We start by showing that, for all center c,∣∣∣∣cost(A, c)−

(
cost(A \OA, c) +

cost(OA, a)

cost(p, a)
cost(p, c)

)∣∣∣∣ ≤ O(ε) (cost(A, c) + cost(A, a)) .

(9.13)

Proving this inequality would conclude the lemma. Indeed, since 2−zcost(A, a) ≤
cost(A, c), the right hand side can be upper-bounded by O(ε2z)cost(A, c). Hence,

adding the point p with weight w(p) := cost(OA,a)
cost(p,a) to an ε-coreset Ω1

A (with weights w)

of A \ OA provided by Lemma 9.26 gives a O(ε2z)-coreset for A. Rescaling ε by 2z

concludes.
7this distance is somewhat arbitrarily picked in order to simplify the proof.

227

Chapter 9. Deterministic Sketches for Clustering

To show Equation 9.13, we fix a center c. We start by bounding |OA|cost(a, c). For
that, we show that the cost of clients in OA can be charged to clients of A \OA. First

note that by averaging, |OA| ≤ (ε/z)2z |A| – otherwise cost(OA, a) ≥ |OA|
(
z
ε

)2z
∆a >

|A|∆a = cost(A, a). Hence, one can partition A \ OA into parts of size at least
s = (|A| − |OA|)/|OA|, and assign every part to a point in OA in a one-to-one corre-
spondence.

For such a point p ∈ OA consider the s points p1, . . . , ps of the part assigned to
it. We show how to charge cost(a, c) to the cost of those points. By the modified
triangle inequality, for all i cost(a, c) ≤ (1 + ε)cost(a, pi) + (1 + z/ε)z−1cost(pi, c).
Taking an average over all i gives that cost(a, c) is at most 1

s

∑s
j=1 εcost(pj , a) +

(1 + z/ε)z−1cost(pj , c). Since 1/s ≤ 2|OA|/|A| = 2 (ε/z)2z, we conclude that (using
2
(
ε
z

)
(1 + ε) ≤ 1)

|OA|cost(a, c) ≤ 2
(ε
z

)z+1
(1 + ε)

∑
p∈A\OA

cost(p, a) + cost(p, c)

≤
(ε
z

)z
(cost(A, a) + cost(A, c)) (9.14)

We now show how to use this inequality to show Equation 9.13, and start by showing
cost(OA,a)
cost(p,a) cost(p, c) ≤ (1 +O(ε))cost(OA, c) +O(ε)cost(A, c).

We proceed as follows: we decompose the left-hand-side using Lemma 1.2. Let p be
the point chosen to represent OA:

cost(OA, a)

cost(p, a)
cost(p, c) ≤ (1 + ε)cost(OA, a) + (1 + z/ε)z−1

(
cost(OA, a)

cost(p, a)

)
cost(a, c)

We bound separately the two terms. First,

cost(OA, a) ≤ (1 + ε)cost(OA, c) + (1 + z/ε)z−1|OA|cost(a, c)

≤ (1 + ε)cost(OA, c) + (1 + z/ε)z−1
(ε
z

)z
(cost(A, a) + cost(A, c))

≤ (1 + ε)cost(OA, c) + ε(cost(A, a) + cost(A, c)

≤ cost(OA, c) +O(ε)(cost(A, a) + cost(A, c).

Similarly, using cost(p, a) =
(
z
ε

)2z cost(A,a)
|A| ≥

(
z
ε

)2z cost(OA,a)
|A| :

(1 +
z

ε
)z−1

(
cost(OA, a)

cost(p, a)

)
cost(a, c) ≤ (1 +

z

ε
)z−1 ·

(ε
z

)2z
|A|cost(a, c)

≤
(ε
z

)z (
(1 + ε)cost(A, c) + (1 +

z

ε
)z−1cost(A, a)

)
= O(ε)(cost(A, c) + cost(A, a)). (*)

Hence,

cost(OA, a)

cost(p, a)
cost(p, c) ≤ cost(OA, c) +O(ε) (cost(A, c) + cost(A, a)) . (1)

228

9.6. Computing Approximate Solutions

We now turn to the other direction, namely

cost(OA, c) ≤ (1 + ε)
cost(OA, a)

cost(p, a)
cost(p, c) +O(ε) (cost(A, c) + cost(A, a)) .

We write

cost(OA, c) ≤ (1 + ε)cost(OA, a) + (1 + z/ε)z−1|OA|cost(a, c),

and bound here as well the two terms separately. First we have, using (*)

cost(OA, a) =
cost(OA, a)

cost(p, a)
cost(p, a)

≤ (1 + ε)
cost(OA, a)

cost(p, a)
cost(p, c) +

(z
ε

)z−1 cost(OA, a)

cost(p, a)
cost(a, c)

≤ (1 + ε)
cost(OA, a)

cost(p, a)
cost(p, c) +O(ε) (cost(A, c) + cost(A, a))

The second term is bounded by Equation 9.14:

(1 + z/ε)z−1|OA|cost(a, c) ≤ ε (cost(A, c) + cost(A, a)) .

Hence,

cost(OA, c) ≤ (1 + ε)
cost(OA, a)

cost(p, a)
cost(p, c) +O(ε)cost(A, c). (2)

Combining equations 1 and 2 yields:∣∣∣∣cost(OA, c)−
cost(OA, a)

cost(p, a)
cost(p, c)

∣∣∣∣ ≤ O(ε)

(
cost(OA, a)

cost(p, a)
cost(p, c) + cost(A, c)

)
.

Using cost(OA,a)
cost(p,a) cost(p, c) ≤ cost(OA, c)+

∣∣∣cost(OA, c)− cost(OA,a)
cost(p,a) cost(p, c)

∣∣∣ finally con-

cludes the proof of Equation 9.13, and hence the lemma.

9.6 Computing Approximate Solutions

In this section, we show how to compute a (1 + ε,O(1/ε))-approximation for (k, z)-

Clustering in time nε
−O(z)

. The algorithm is the following.

� Start computing an α-approximation S0 to (k, z)-clustering on A.

� As long as there exists a center c such that cost(Si ∪{c}) ≤ (1− ε
αk)cost(Si), do

Si+1 ← Si ∪ {c} and i← i+ 1.

� Stop this procedure when there is no such center c, or cost(Si) ≤ ε
αcost(S0), and

let S be the final solution.

229

Chapter 9. Deterministic Sketches for Clustering

I Lemma 9.28. S is a (1 + ε, α log(1/ε)/ε + 1)-bicriteria approximation for
(k, z)-clustering on A. J

Proof. Each center added decreases the cost by a factor (1− ε/αk), and the initial solu-
tion S0 has cost cost(S0): since the algorithm stops if the cost drops below εcost(S0)/α,
the total number of centers added is at most αk log(1/ε)/ε. The total number of cen-
ters is therefore at most αk log(1/ε)/ε+ k.

In the case where the procedure stops because cost(S) ≤ ε
αcost(S0), then S has cost

at most ε times the optimal cost, since S0 is an α-approximation. In that case, we are
done.

In the other case, we note that cost(S0)/α ≤ OPT: hence, the inequality (1 −
ε/αk)cost(S) ≤ cost(S ∪ {c}) holds for any candidate center c and implies cost(S) ≤
cost(S ∪ {c}) + εOPT/k. In particular, for any subset X of input points, it must be
that cost(X,S) ≤ cost(X,S ∪ {c}) + εOPT/k, as cost(P \X,S) ≥ cost(P \X,∪{c}).
Summing over the k centers of the optimal solution OPT (with X being their re-
spective clusters) yields the inequality cost(S) − cost(S ∪ OPT) ≤ εOPT, hence
cost(S) ≤ cost(S ∪ OPT) + εOPT and S is a (1 + ε)-approximation of OPT. This
concludes the lemma.

It remains to show how to implement that greedy procedure fast. For that, we dis-
cretize the set of candidate centers, to be able to check all of them. For that, we
enumerate all possible witness set S and take an εO(z) ·diam(S)-net of the convex hull
of S. Let C be the union of those nets.

Since there exists a (O(z)
ε , ε−O(z), ε) witness set (Theorem 9.17), there are nε

−O(z)
many

different set S. For each of them, the size of the net is εO(z)|S| = εε
−O(z)

, since the
convex hull of S lies in a space of dimension |S|.

Now, the existence of a witness set for every optimal cluster of the optimal solution
ensure that, for all cluster, there exists a point in C giving a (1 + ε)-approximation in
that cluster. Hence, there exists a (1 + ε)-approximation in Ck. Using this solution
in place of the optimal one in the final equation of Lemma 9.28 ensures that the
solution S given by the greedy algorithm restricted to pick centers in C yields a
(1 + ε)-approximation.

Using Theorem 9.5 for computing the constant-factor approximation gives α = zO(z):
the solution S is thus a (1+ε, zO(z) log(1/ε)/ε)-bicriteria approximation. The running

time of this greedy bicriteria algorithm is nε
−O(z) · εε−O(z)

= nε
−O(z)

.

230

9.7. Omitted Proofs

9.7 Omitted Proofs

I Lemma 9.29 (Equivalent of Lemma 6.12). It holds that

max

 ∑
p∈Itiny,S

cost(p,S),
∑

p∈Itiny,S∩Ω

|Ri,j |
δ

cost(p,S)

 ≤ ε · cost(Ri,j ,G).

J

Proof. By definition of Itiny,S ,
∑

p∈Itiny,S cost(p,S) ≤
∑

p∈Itiny,S

ε
2 · cost(p,G) ≤ ε

2 ·

cost(Ri,j ,G). Similarly, we have for the other term

∑
p∈Itiny,S∩Ω

|Ri,j |
δ
· cost(p,S) ≤

∑
p∈Itiny,S∩Ω

|Ri,j |
δ

ε

2
· cost(p,G)

≤ ε · |Ri,j |
δ

∑
p∈Ci∩Itiny,S∩Ω

2zcost(Ri,j ,G)

|Ri,j |

≤ ε ·
|Itiny,S ∩ Ω|

δ
cost(Ri,j ,G) ≤ ε · cost(G,G).

where we used that since each point of Ri,j have same cost up to a factor 2z, it holds

that ∀p ∈ Ri,j , cost(p,G) ≤ 2z
cost(Ri,j ,G)
|Ri,j | . The last inequality uses that Ω contains δ

points.

I Lemma 9.30 (Equivalent of Lemma 6.28). It holds that, for any Ri,j
and for all solutions S with at least one non-empty huge group Ii,j,`∣∣∣∣∣∣cost(Ri,j ,S)−

∑
p∈Ω∩Ri,j

|Ri,j |
δ
· cost(p,S)

∣∣∣∣∣∣ ≤ 3ε · cost(Ri,j ,S). J

Proof. Fix a ring Ri,j and let Ii,j,` be a huge group. First, the weight of Ri,j is
preserved in Ω: since the set Ω has size δ, it holds that

∑
p∈Ω∩Ri,j

|Ri,j |
δ

= |Ri,j |

Now, let S be a solution, and p ∈ Ii,j,` with Ii,j,` being huge. This implies, for any
q ∈ Ri,j : cost(p, q) ≤ (2 · ε · 2j+1)z ≤ 4z · εz · 2(`−log(4z/ε))z ≤ (ε/z)z · cost(p,S). By

231

Chapter 9. Deterministic Sketches for Clustering

Lemma 1.2, we have therefore for any point q ∈ Ri,j
cost(p,S) ≤ (1 + ε/z)z−1 cost(q,S) + (1 + z/ε)z−1 cost(p, q)

≤ (1 + ε) cost(q,S) + ε · cost(p,S)

⇒ cost(q,S) ≥ 1− ε
1 + ε

cost(p, S) ≥ (1− 2ε)cost(p,S)

Moreover, by a similar calculation, we can also derive an upper bound of cost(q,S) ≤
cost(p,S) · (1 + 2ε). Hence, combined with

∑
p∈Ω∩Ri,j

|Ri,j |
δ = |Ri,j |, this is sufficient

to approximate cost(Ri,j ,S).

Therefore, the cost of Ri,j is well approximated for any solution S such that there is
a non-empty huge group Ii,j,`.

We finally complete the proof of Theorem 9.14.

Proof of Theorem 9.14 completed. Recall the settings: SΠ is a (D,R, ε)-witness set of
Π′C , with D = O(z)/ε and R = ε−O(1). By our assumption cost(Π′C) ≤ cost(B′C),
we know that the diameter of SΠ is at most D · z

√
cost(B′C)/|C|. f(s) is an arbitrary

point in the convex hull of SΠ in the projected space, and f(c) is its closest point in
the projection of the cover.

Our goal here is to show that
∑

j∈C ‖Π′j − f ′(s)‖z ≥ (1−O(ε))cost(B′C).

We first require an upper bound on ‖f(c) − f(s)‖. By definition of the cover, this is
at most

‖f(c)− f(s)‖ ≤ ε′ · z
√

cost(B′C)/|C| = ε′∆C . (9.15)

Therefore, using triangle inequality, the distortion of embedding f and Section 9.7:

‖Πj − f(s)‖ ≥ ‖Πj − f(c)‖ − ‖f(c)− f(s)‖

≥ (1− ε/z)‖Bj − c‖ − ε′ z
√

∆C .

Writing again f ′(x) for the 0-extension of x, we have:

‖Π′j − f ′(s)‖z =
(
‖Πj − f(s)‖2 +B′j

2
)z/2

≥
(

(1− ε/z) ·
(
‖Bj − c‖2 − ε′ · z/2

√
∆C

)
+B′j

2
)z/2

≥ (1− ε/z)z/2 ·
(

(‖Bj − c∗‖2 +B′j
2
)− ε′ · z/2

√
∆C

)z/2
≥ (1− ε/z)z/2

(
(1− ε) · (‖Bj − c∗‖2 +B′j

2
)z/2 −

(
z + ε

ε

)z/2−1

ε′
z/2 ·∆C

)
(choice of ε′) ≥ (1− 2ε) · (‖Bj − c∗‖2 +B′j

2
)z/2 − ε ·∆C

Hence, summing over all points in cluster C, we get∑
j∈C
‖Π′j − f ′(s)‖z ≥ (1−O(ε))cost(B′C).

232

Chapter 10

Sublinear Algorithms for Power
Mean in Euclidean Spaces

10.1 Introduction

In this chapter, we leverage the coreset construction previously introduced in order to
get sublinear algorithms to compute some precise statistics on a dataset. By sublinear,
we mean that we design algorithms that do not need to read the entire dataset in order
to produce an accurate solution.

Except for trivial problems, deterministic time sublinear algorithms do not exist. Our
primary tool in designing sublinear algorithms is thus the following basic approach:

� Take a uniform sample of the input.
� Run an algorithm on the sample.

Hence, the performance of a sublinear algorithm is often measured in terms of its
query complexity, i.e. the number of samples required such that we can extract a
high quality solution in the second step above that generalizes to the entire input.
Sublinear algorithms have close ties to questions in learning theory and estimation
theory, where we are similarly interested in the tradeoff between quality and sample
size.

We notice a great resemblance between he sublinear approach and the coreset con-
struction presented in the previous chapter. In both cases, one attempts to sample a
summary from the input data to then be able to solve the problem by only looking at
the summary. The key difference, of course, is that the coreset sampling distribution
is not uniform.

In this chapter, we show how to use the coreset construction of Section 9.4 in order
to estimate the optimal solution of the (1, z)-clustering problem, that we dub z-power
means, in high dimensional Euclidean spaces. Specifically, given an arbitrary set of

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

points P , we wish to determine the number of uniform queries Ω such that we can
extract a z-power mean m with

cost(m) :=
∑
p∈P
‖p−m‖z ≤ (1 + ε) · min

µ

∑
p∈P
‖p− µ‖z,

where ‖p‖ denotes the Euclidean norm of a vector p.

The problem of estimating the z-power mean falls into the category of problems that
seek to efficiently estimate the parameters of a distribution. This is one of the fun-
damental problem in data analysis: for example, given a distribution D, how many
samples do we need to estimate the mean? Even such a simple and basic question has
surprisingly involved answers and are still subject to ongoing research ([125, 118]).

The z-power mean problem captures a number of important problems in computa-
tional geometry and multivariate statistics. For example, for z = 1, this corresponds
to the Fermat-Weber problem also known as the geometric median. For z = 2, the
problem is to determine the mean or centroid of the data set. Letting z →∞, we have
the Minimum Enclosing Ball (MEB), where one needs to find the Euclidean sphere
of smallest radius containing all input points.

For z > 2, the problem is not as well studied, but it still has many applications.
First, higher powers allow us to interpolate between z = 2 and z → ∞, which is
interesting as the latter admits no sublinear algorithms1. Skewness (a measure of
the asymmetry of the probability distribution of a real-valued random variable about
its mean) and kurtosis (a measure of the “tailedness” of the probability distribution)
are the centralized moments with respect to the three and the four norms and are
frequently used in statistics. The z-power mean is a way of estimating these values
for multivariate distributions.

Another application is when dealing with non-Euclidean distances, such as the Ham-
ming metric, coreset constructions for powers of z can be reduced to coreset construc-
tions for powers 2z. So for example if we want the mean in Hamming space, we can
reduce it to the z = 4 case in squared Euclidean spaces [100].

These problems are convex and thus can be approximated in the near-linear time
efficiently via convex optimization techniques. However, aside from the mean (z = 2),
doing so in a sublinear setting is challenging and to the best of our knowledge, only
the mean and the geometric median (z = 1) are currently known to admit nearly
linear time algorithms.

Our main result is:

I Theorem 10.1. There exists an algorithm that, with query complexity
O
(
ε−z−5 · polylog(ε−1) log2 1/δ

)
), computes a (1 + ε) approximate solution to

the high dimensional z-power mean problem with probability at least 1−δ. J

Our algorithm is based on coreset constructions. We showed in Chapter 7 the existence

1To see this, we place n−1 points at 0 and one point with probability 1/2 at 1 and with probability
1/2 at 0. Any 2− ε approximation can distinguish between the two cases, but this clearly requires us
to query Ω(n) points.

234

10.1. Introduction

of coresets of size Õ(ε−4 · 2O(z)) for (1, z)-clustering. Comparing with the bounds in
Theorem 10.1, one may question whether the exponential dependency in z is necessary
for computing an approximation, as it is not for computing a coreset. Unfortunately,
we show that the exponential dependency in the power is indeed necessary even in a
single dimension:

I Theorem 10.2. For any ε > 0 and z, any algorithm that computes with
probability more than 4/5 a (1 + ε)-approximation for a one-dimensional z-
power mean has query complexity Ω(ε−z+1). J

Hence, up to constants in the exponent, our sublinear algorithm is tight. Moreover,
the algorithm is very simple to implement and performs well empirically.

10.1.1 Techniques

While stochastic gradient descent has been used for a variety of center-based prob-
lems ([47, 49]), it is difficult to apply it for higher powers. Indeed, Cohen et al. [49]
remark in their paper that even for the mean2 (z = 2) their analysis does not work as
the objective function is neither Lipschitz, nor strictly convex.

Hence, one needs to use new tools. A natural starting point is to use techniques
from coresets, as they allow us to preserve most of the relevant information, using a
substantially smaller number of points. Unfortunately, coresets have a drawback: the
sampling distributions used to construct coresets is non-uniform and therefore difficult
to use in a sublinear setting. Thankfully, we showed in previous chapter how to design
coresets from uniform sampling: given a sufficiently good initial solution a, one can
partition the points into rings exponentially increasing radii such that the points cost
the same, up to constant factors. Thereafter, taking a uniform sample of size Õ(ε−4)
from each ring produces a coreset. Since there are at most O(log n) rings in the worst
case, this yields a coreset of size Õ(ε−4 · log n).

To realize these ideas in a sublinear setting, we are now faced with a number of
challenges. First, rings that are particularly far from a may contain very few points.
This makes is difficult for a sublinear algorithm to access them. Second, partitioning
the points into rings depends on the cost of a, and it is very simple to construct
examples where estimating the cost of an optimal power center requires Ω(n) many
queries. Finally, this very brief analysis loses a factor log n, which we aim to avoid.

We improve and extend this framework as follows. We show that it is sufficient to only
consider O(log ε−1) many rings, which, in of itself, already removes the dependency
on log n. Moreover, we show that it is possible to simply ignore any ring containing
too few points, i.e. any ring with less than εz+O(1) · n points may be discarded. The
intuition is that, while rings with few point may contribute significantly to the cost,
these points do not influence the position of the optimal center by much. Thus, using

2For the special case of the mean, Inaba et al. [102] observed that O(ε−2) samples are nevertheless
sufficient.

235

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

a number of carefully chosen pruning steps, we show how to reduce the problem of
obtaining a sublinear algorithm, as well as obtaining coresets, to sampling from few
selected rings containing many points.

10.1.2 Experimental Evaluation

While we can prove that the algorithm can compute a good solution in constant
time for every constant ε and z, even for moderately small ε (e.g. ε = 1/2) the
sampling complexity becomes quite large for even small values of z, as indeed our lower
bound shows is necessarily the case. Our experiments therefore aim at evaluating the
performance of the sublinear algorithm on realistic, not necessarily worst case data
sets.

As baseline algorithm, we implemented a simple version of a batched gradient descent.
Since all considered objectives are convex, we can expect such an algorithm to find a
good solution in a reasonable time. The sublinear algorithm runs Algorithm 9 before
calling the batched gradient descent. Note that our point is not to find a good solution,
but to compare a given algorithm ran on the full dataset or simply on the small set
of points generated by Algorithm 9.

We selected two data sets from the UCI repository [66], both of which are under
the Creative Commons license. The first data set is the 3D Road Network data set
from [111]. It consists of elevation information with the attributes longitude, latitude
and altitude. The total number of points is 434,874. For this data set, we considered
all powers from z = 3 to 7. The second data set is the USCensus data set, consisting of
the records from a 1990 census. The total size of the data set was 2,458,285 samples,
each with 68 attributes. For this data set, we considered the powers z = 3, 4, 5.

The results essentially confirmed that the sublinear algorithm succeeded in finding
a good candidate solution in a fraction of the time as batch gradient descent for
essentially all considered problems. We give more details in Section 10.7.

10.1.3 Related Work

Sublinear Approximation for Clustering: A number of sublinear algorithm are
known for clustering problems. For k-Median, under the constraint that the input
space has a small diameter, a constant factor approximation is known [60]. [26] pro-
posed a different set of conditions under which a sublinear algorithm for k-median and
k-means exists. Other approximations, with different constraint are also known: for
instance, [137] give an algorithm achieving a O(1)-approximation in time poly(k/ε) for
discrete metrics, when each cluster has size Ω(nε/k). For the 1-median problem, this
assumption is always satisfied, and their algorithm gives a constant factor approxima-
tion in constant running time. The algorithm by [49] produces a (1+ε)-approximation
in time min(nd log3(n/ε), d/ε2) for Euclidean spaces of dimension d. [63, 64] and [47]

236

10.1. Introduction

showed how to obtain sublinear algorithms for the minimum enclosing ball problem
assuming that either the algorithm is allowed to drop a fraction of the points, or with
an additive error. For the unconstrained version of the problem, no sublinear time
algorithm is possible. For the k-means problem, [11] showed how to approximate the
k-means++ algorithm in sublinear time. To our knowledge, no algorithm is known
for higher distance powers z.

10.1.4 Preliminaries

As always, for any set P and candidate solution c, we define cost(P, c) =
∑

p∈P ‖p−c‖z.
If the set is clear from context, we simply write cost(c).

To show that our sampled set verifies nice properties, we will rely on the notion of VC-
dimension. We defined it already in Definition 9.18, but we briefly recall the definition
here. Note however that we will never need to manipulate VC dimension directly: we
will only need Lemma 10.4, and a few classical bounds on the VC dimension of range
spaces.

I Definition 10.3. Let X be a ground set, and R ⊂ P(X). We say that
(X,R) is a range space.
The VC-dimension of a range space (X,R) is the largest d such that, for some
S ⊆ X with |S| = d, |{R ∩ S | R ∈ R}| = 2d. J

In this chapter, we will need a notion slightly more precise than the ε-set-approximation
defined in Chapter 9:

I Lemma 10.4 ([121]). Given a range space (X,R) with VC-dimension d,
constants ε, δ, η, and a uniform sample S ⊂ X of size at least O(1

η·ε−2 (d log 1/η+

log 1/δ)), we have for all ranges R ∈ R with |X ∩R| ≥ η · |X|∣∣∣∣ |X ∩R||X|
− |S ∩R|

|S|

∣∣∣∣ ≤ ε · |X ∩R||X|

and for all ranges R ∈ R with |X ∩R| ≤ η · |X|∣∣∣∣ |X ∩R||X|
− |S ∩R|

|S|

∣∣∣∣ ≤ ε · η
with probability at least 1− δ. J

This lemma gives stronger guarantees than ε-set-approximation, in particular for sets
with |X ∩R| ≤ η|X|: an ε-set-approximation of size Õ(d/ε2) preserves their size up to
an additive ε, compared to εη here. To get the same guarantee using Theorem 9.21,
one would need a sample size Õ

(
d/(εη)2

)
), instead of Õ

(
d/(ε2η)

)
) using Lemma 10.4.

The only range spaces we will consider are induced by Euclidean rings centered around

237

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

a few fixed point.

For instance, consider the range space induced by Euclidean rings centered around a
single point. The VC dimension induced of this range space is 3, which seems to be
a well known fact, although we could not find a reference. For completeness, we add
here a brief proof.

Let us consider the range space induced by Euclidean rings centered around a single
point p. A range R induced by ring of radius (r1, r2) is the set of all points at distance
between r1 and r2 from p, i.e. R = {q ∈ X | ‖p − q‖ ∈ [r1, r2]}. We show that for
any set of three points, we cannot generate all possible dichotomies, i.e. for any point
set S of size 3 we have |{R ∩ S | R ∈ R}| < 8. If two points have the same distance
from p, then it is not possible to define a range that contains one point and not the
other. If all points have different distance from p, it is not possible to define a range
that contains the furthest point and the closest one, without the third point. Hence,
the VC dimension of that range space is at most 3.

Instead of using our common definition of coreset, we will relax it as follows.

I Definition 10.5. Let P be a set of points in Rd. We say that Ω is a weak
ε-coreset if for some α ∈ [0, 1] any point satisfying

∑
p∈Ωwp · ‖p − c′‖z ≤

(1 + α · ε)argmin
c∈Rd

∑
p∈Ωwp · ‖p − c‖z also satisfies

∑
p∈P ‖p − c′‖z ≤ (1 +

ε)argmin
c∈Rd

∑
p∈P ‖p− c‖z. J

The difference between the two notions is that ε-coresets give a guarantee for all
candidate centers, whereas the weak coreset guarantee only applies for solutions close
to optimum. For our sublinear application, we will be satisfied with a weak coreset
guarantee only: this is enough to extract a (1 + ε)-approximation. To highlight the
difference between the two notions, we call ε-coreset strong coresets.

10.2 Sublinear Algorithm and Analysis

We first describe an algorithm that succeeds with constant probability. This proba-
bility can be amplified (non-trivially) using independent repetition, as we will see in
Section 10.5. In the following we will use parameters nring and η that depends on ε
which we will specify later, and δ such that the target success probability is 1− δ. α
is the approximation ratio of a. We let P be the set of input points.

Our goal is to show that the outcome Ω of Algorithm 9 satisfies a weak coreset guar-
antee. Specifically, we will show that Ω has the property that for all points P ′ ⊆ P
that are not too far from a (as defined in Lemma 10.7), the weight function defined
in Algorithm 9 is such that Ω is a strong coreset for P ′. We then show that a strong
coreset for P ′ is also weak coreset for P , i.e. we preserve the cost of all points in P ′,

238

10.2. Sublinear Algorithm and Analysis

Algorithm 9 Sublinear Algorithm for Power Means

1. Sample a random point a.
2. Sample a set Ω of T = O(αε−z−5 · polylog(ε−1δ−1)) points uniformly at random.
3. Compute the maximum distance ∆ such that there exist 2/3 · ε · η · |Ω| points
with distance at least ∆ from a. Discard all points at distance greater than ∆.
4. Define rings Ri such that Ri ∩ Ω contains all the points at distance (∆ · 2−i,∆ ·
2−i+1] from a, with i = {1, . . . , nring}.
5. If |Ri ∩ Ω| < εη · T , remove all points in Ri ∩ Ω from Ω.

6. Define R̂i = n · |Ri∩Ω|
|Ω| . Weight the points in Ri ∩ Ω by R̂i

|Ri∩Ω| = n
|Ω| .

7. Solve the problem on the (weighted) set Ω.

and we preserve the optimum for P .

Our key lemma is an equivalent to Lemma 9.24: in each ring that contain enough
points, the sample Ω is indeed a coreset with some good probability. Removing the
far points allows us to call that result on only few rings: in turn, the probability of
success of all the calls is high. We start by showing that key lemma – we will see later
that the assumptions on |Ω| are satisfied.

I Lemma 10.6. Let Ω be the output of Algorithm 9 such that |Ω| ≥ η−1 ·
ε−5 · log(nring/δ), and Ri be a ring such that |Ri ∩ Ω| ≥ εη|Ω|. Then, with
probability 1− δ/nring, it holds that Ω ∩Ri is a strong coreset for Ri: namely,∣∣∣∣∣∣
∑
p∈Ri

‖p− c‖z − |Ri|
|Ω ∩Ri|

∑
p∈Ω∩Ri

‖p− c‖z
∣∣∣∣∣∣ ≤ ε ·

∑
p∈Ri

‖p− c‖z + ‖p− a‖z

J

Before proving the lemma, note that the weights |Ri|
|Ω∩Ri| cannot be directly computed

in sublinear time, as we do not know |Ri|. We will show later that the weights R̂i
|Ω∩Ri|

used instead in the algorithm are a good enough approximation to them, and that the

points in Ω ∩Ri with weights R̂i
|Ω∩Ri| still form a coreset.

Proof of Lemma 10.6. By assumption of the lemma, we have that |Ri∩Ω| > ε−4 log(nring/δ).

As the algorithm only uses uniform sampling, projecting points or not does not change
the output’s distribution. Hence, we may assume that the points are in a O(ε−2)-
dimensional space, using results from Section 7.6. Let B be the set of balls in that
space. That way, standard results (for instance Appendix B of [12]) ensures the set
system (Ri,B) has VC-dimension at most O(ε−2).

Hence, by Lemma 10.4, Ω ∩ Ri is an ε-set-approximation for Ri with probability
1− δ/nring: applying Lemma 9.24 directly concludes.

239

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

Pruning Lemmas We give a brief explanation of the parameters: α is the approx-
imation factor of the initial solution, nring is such that points at distance closer than
2−nringdfar can be merged to the center (see Lemma 10.9), and η is such that rings
with less than an εη-fraction of the points can be discarded (see Lemma 10.8)

Before turning to the pruning lemmas, we explain briefly what is at stake. What
Lemma 10.7 essentially says is that points with ‖p − a‖z > dfar · 4z · 2α·OPT

n do not
really influence the position of the optimal center. Unfortunately, we are not given
a knowledge of OPT a priori: It is therefore not possible to merely discard those
points. This is why step 3 of Algorithm 9 computes a value ∆ that seeks to estimate
dfar · 4z · 2α·OPT

n .

The number of points at distance more than dfar · 4z · 2α·OPT
n from a is at most n/dfar.

Combining this observation with Lemma 10.4 ensures step 3 indeed discards all those
points. It may however discard slightly more: we show nonetheless in Lemma 10.8 that
we can safely discard a fraction of the input, without changing neither the position
of the optimal center. This fact is also helpful to deal with rings that do not contain
enough points to be well enough represented by the uniform sample.

Finally, to reduce still the number of rings, we show in 10.9 that all points that are very
close to a can also be discarded. We will combine those results to prove Theorem 10.1.

I Lemma 10.7. Suppose we are given an α-approximate center a. Let B(a, r)

be the ball centered at a with radius r = 4 ·
(

2α·OPT
n

)1/z
. Then the following

two statements hold.

1. Any α-approximate center is in B(a, r).

2. For any two points c, c′ ∈ B(a, r) and for any point p with ‖p − a‖z >
dfar · rz with dfar = ε−z · (12z)z, we have ‖p− c‖z ≤ (1 + ε) · ‖p− c′‖z.

J

Proof. For the first claim we consider a point c not in B(a, r) and show that c cannot
be an α-approximate center.

The average cost of the points when using a as a center is α · OPT
n . Hence, by Markov’s

inequality, at least half of the points of P lie in B(a, r/4). Furthermore, by choice
of c and the triangle inequality, we have ‖p − c‖ > 2 · ‖p − a‖ for any point p ∈
B(a, r/4). Hence, the cost of clustering all the points in P ∩B(a, r/4) to c is at least
n/2 · (2 · r)z ≥ α ·OPT.

For the second claim, let c, c′ ∈ B(a, r) and p with ‖p− a‖z ≥ dfar · rz. We first note

that ‖p − c′‖ ≥ ‖p − a‖ − ‖a − c′‖ ≥ d
1/z
far · r − 2r = (d

1/z
far − 2)r, which yields the

inequality

r ≤ ‖p− c′‖ · 1

d
1/z
far − 2

(10.1)

240

10.2. Sublinear Algorithm and Analysis

We then have

‖p− c‖z

(Lem. 1.2) ≤ (1 + ε/2z)z−1‖p− c′‖z +

(
ε+ 2z

ε

)z−1

· ‖c− c′‖z

≤ (1 + ε/2) · ‖p− c′‖z +

(
3z

ε

)z−1

(2r)z

(Eq. 10.1) ≤ (1 + ε/2) · ‖p− c′‖z +

(
3z

ε

)z−1

2z · ‖p− c′‖z
(

1

d
1/z
far − 2

)z

≤ (1 + ε/2) · ‖p− c′‖z +

(
3z

ε

)z−1

4z · ‖p− c′‖z · d−1
far

(Choice of dfar) ≤ (1 + ε/2) · ‖p− c′‖z + ε/2 · ‖p− c′‖z

≤ (1 + ε) · ‖p− c′‖z

To allow the removal of a small fraction of points, we have the following lemma.

I Lemma 10.8. Suppose that a that is an α-approximate solution. Let p ∈ P
with ‖p− a‖ ≤ 4(dfar · α·OPT

n)1/z, where dfar is given by Lemma 10.7. Then, for
any candidate solution c

‖p− c‖z ≤ 8z+1 · dfar · α ·
∑

p∈P ‖p− c‖z

n
.J

Proof. We first require a bound on ‖a− c‖z. Using Lemma 1.2, we have

n · ‖a− c‖z ≤ 2z
∑
p∈P
‖p− a‖z + ‖p− c‖z ≤ α · 2z+1 ·

∑
p∈P
‖p− c‖z

⇒ ‖a− c‖z ≤ α · 2z+1 ·
∑

p∈P ‖p− c‖z

n
(10.2)

Therefore with another application of Lemma 1.2

‖p− c‖z ≤ 2z · (‖p− a‖z + ‖a− c‖z)

(Eq. 10.2) ≤ 2z ·
(

4zdfar ·
α ·OPT

n
+ α · 2z+1 ·

∑
p∈P ‖p− c‖z

n

)
≤ α · dfar · 8z+1 ·

∑
p∈P ‖p− c‖z

n
.

Finally, the following lemma deals with the points that are very close to a.

241

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

I Lemma 10.9. Suppose that a is an α-approximate solution. Let Pnear ⊂ P
be a set of points with cost at most (ε/(α5z))z · OPT

n . Let P̂ such that P̂ ∈
(1± ε)|Pnear|. Then for any candidate solution c we have∣∣∣∣∣∣P̂ · ‖a− c‖z −

∑
p∈Pnear

‖p− c‖z
∣∣∣∣∣∣ ≤ ε/α ·

 ∑
p∈Pnear

‖p− c‖z + OPT

 .J

Proof. We first prove the result for P̂ = |Pnear|, the claim for an estimation of |Pnear|
is a simple corollary. We have, using Lemma 1.2:∣∣∣∣∣∣
∑

p∈Pnear

(‖p− c‖z − ‖a− c‖z)

∣∣∣∣∣∣ ≤
∑

p∈Pnear

|‖p− c‖z − ‖a− c‖z|

≤
∑

p∈Pnear

(
ε

2α
· ‖p− c‖z +

(
α5z

ε

)z−1

‖p− a‖z
)

≤
∑

p∈Pnear

(
ε

2α
· ‖p− c‖z +

(
α5z

ε

)z−1 (ε

α5z

)z OPT

n

)

≤ ε/α ·

 ∑
p∈Pnear

‖p− c‖z + OPT


For an approximation to |Pnear| we now merely add an additional additive error ε ·∑

p∈Pnear ‖p− c‖
z ≤ ε(ε/(5αz))zOPT to the difference of the two terms.

Finally, the next lemma is key to implement those idea in sublinear time: it shows
that the sample Ω can be used to estimate the number of points in any ring.

I Lemma 10.10. Let a be a point that is an α-approximation and let Ω be
a uniform sample consisting of O

(
α · η−1 · ε−5polylog(ε−1 · δ−1)

)
points. Then

with probability at least 1− δ for all rings Ri,

|Ri ∩ P | − ε ·max (n · η, |Ri ∩ P |) ≤
|Ri ∩ Ω|
|Ω|

· n

≤ |Ri ∩ P |+ ε ·max (n · η, |Ri ∩ P |) .

Furthermore, let ∆ as in the algorithm, i.e., such that 2
3 · ε · η · |Ω| ≤

∣∣Ω \
(B(a,∆) ∩ Ω)

∣∣. Then ∆ <
(
3(εη)−1 · α·OPT

n

)1/z
, and there are at most 5

3 · εηn
points in P at distance more than ∆ from a. J

Proof. We consider the range space induced by rings centered around a. This range
space has VC dimension at most 3, as explained previously. Hence for our choice of
|Ω|, Lemma 10.4 ensures that we have approximated the cardinality of all rings up to

242

10.3. Proof of Theorem 10.1

the additive error ε ·max(η · n, |Ri ∩ P |) with probability at least 1− δ, which proves
the first and last claims.

For the second claim, let ∆ as in the algorithm. By Lemma 10.4, we have
∣∣Ω \

(B(a,∆) ∩ Ω)
∣∣ · n|Ω| ≤ (1 + ε)

∣∣P \ (B(a,∆) ∩ P)
∣∣. Hence, we have

∣∣P \ (B(a,∆) ∩ P)
∣∣ ≥ 2

3
· ε · η · |Ω| · n

|Ω|(1 + ε)
≥ ε · η · n

3

Using Markov’s inequality, we now know that the number of points with cost 3(εη)−1 ·
α·OPT
n is at most ε·η·n

3 . This implies ∆ ≤
(
3(εη)−1 · α·OPT

n

)1/z
.

10.3 Proof of Theorem 10.1

We first conclude the proof of Theorem 10.1, with only a success probability of 9/10.
This somewhat low probability is due to the computation of a constant-factor approx-
imation, and we will show in Section 10.5 how to boost this probability.

Proof. We start by specifying our parameters: the approximation is set to be α = 20z.
To prune the far points, we set dfar = (12z/ε)z, as in Lemma 10.7. Finally, we pick
nring and η such that η = 1

8z+1α·nring·dfar
and 6 · 2−znring+z ≤ ε. This is possible for

nring = Oz(log(1/ε)) and η ∈ Oz(ε
z/log(1/ε)). With those choices, assumptions of

Lemma 10.6 are satisfied: eta−1 · ε−5 · log(nring/δ) = O
(
αε−z−5 · polylog(ε−1δ−1)

)
.

Let cOPT be the optimal (1, z)-center. We start by showing that the initial sampled
point a is an α-approximation with constant probability. Indeed, there are at most
n/10 points with cost more than 10OPT

n : hence, it holds with probability at least 9/10
that ‖a− cOPT‖z ≤ 10 · OPTn . In that case,∑

p∈P
‖p− a‖z ≤

∑
p∈P

2z(‖p− cOPT‖z + ‖cOPT − a‖z)

≤ 2z ·OPT + 2z · 10OPT ≤ 20zOPT,

which shows that a is an α-approximation.

Let Ω be the set of points sampled and pruned by the algorithm. We wish to show
that any (1 + ε)-approximation for Ω is also one for P . First, note that Lemma 10.7
shows that it is enough to compute an approximate solution for the set P ′ consisting

of points that are at distance less than 4
(

2αdfarOPT
n

)1/z
for a.

Recall that the ring Ri consists of points at distance (2−i∆, 2−i+1∆] from a. Addition-
ally, we group all remaining points in a single ring, and define Rnring to be the set of
points at distance less than 2−nring∆ from a, i.e., Rnring := {p ∈ Ω : ‖p−a‖ ≤ 2−nring∆}

243

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

We denote as in the algorithm R̂i either n·|Ri∩Ω|
|Ω| , if |Ri ∩ Ω| ≥ ε · η · |Ω| (which is a a

(1± ε)-estimate of the size of |Ri|), or we set R̂i = 0 if |Ri ∩ Ω| < ε · η · |Ω|.

We show aim at showing that for any candidate solution c′, we have∣∣∣∣∣ ∑
p∈P ′
‖p− c′‖z −

(∑
i≤nring−1

R̂i
|Ri ∩ Ω|

∑
p∈Ri∩Ω

‖p− c′‖z +
R̂nring

|Rnring ∩ Ω|
‖a− c′‖z

)∣∣∣∣∣
≤ ε ·

∑
p∈P ′
‖p− c′‖z.

(10.3)

Hence, computing a (1 + ε)-approximate solution on the set Ω will give (1 + ε)-
approximate solution for P ′, which is also one for P following Lemma 10.7. We will
formalize this after showing Eq. (10.3).

To prove Eq. (10.3), we proceed ring by ring.

Close points. First, for the points very close with i = nring. In the case where

R̂nring = 0, the number of points in P ′ ∩ Rnring is at most 2εηn. Furthermore, the
upper bound on ∆ from Lemma 10.10 ensures that the cost of points in Ri is at
most

(
2−nring+1∆

)z ≤ 2−znring+z 3
εη

OPT
n . Using the choice of nring, we conclude that∑

p∈P ′∩Rnring
‖p− c′‖z ≤ 6 · 2−znring+zOPT ≤ εOPT.

In the other case where R̂nring 6= 0, we can use Lemma 10.9 to bound∣∣∣∣∣∣
∑

p∈P ′∩Rnring

‖p− c′‖z − ˆRnring‖a− c′‖z
∣∣∣∣∣∣ ≤ ε/α ·

 ∑
p∈Pnear

‖p− c′‖z + OPT


≤ ε ·

∑
p∈P
‖p− c′‖z. (10.4)

Far points. Having dealt with the points close to a, we now deal with those far
away. Since P ′ results in the pruning of P , there is no point in P ′ at distance more
than 4(dfar · α·OPTn)1/z from a. On the other hand, in Ω, the points further away than

∆ from a are pruned away. Lemma 10.10 ensures that ∆ <
(
3(εη)−1 · α·OPT

n

)1/z ≤
4(dfar · α·OPTn)1/z. Hence, the contribution of points in P \P ′ to Equation 10.3 is zero.

We now deal with points moderately far away, namely point at distance between ∆
and 4(dfar · α·OPT

n)1/z from a. Since they are pruned away, contribution is zero in Ω.
Furthermore, by choice of ∆ and Lemma 10.10, we note there are at most 2ε · η · n of
those. Therefore, their contribution in P ′ is at most

2ε · η · n · 4zdfar ·
α ·OPT

n
≤ 2εOPT. (10.5)

Middle points. Finally, we turn our attention to the rings Ri with i ∈ {1, ..., nring−

244

10.3. Proof of Theorem 10.1

1}. In the case where R̂i = 0, we have, due to Lemma 10.8:

∑
p∈Ri∩P

‖p− c‖z ≤ |Ri ∩ P | · 8z+1 · α · dfar ·

(∑
p∈P ‖p− c‖z

)
n

≤ εη · 8z+1 · α · dfar ·
∑
p∈P
‖p− c‖z

≤ ε

nring
·
∑
p∈P
‖p− c‖z

Summing over all rings Rcheap that have R̂i = 0, we therefore obtain:∣∣∣∣∣∣
∑

p∈Rcheap∩P
‖p− c‖z − R̂i

|Ri ∩ Ω|
∑

p∈Ri∩Ω

‖p− c‖z
∣∣∣∣∣∣ ≤ ε

∑
p∈P
‖p− c‖z. (10.6)

Last, Lemma 10.6 ensures that with probability 1 − δ, for any rings with |Ri ∩ Ω| >
εη|Ω|, with i ∈ {1, ..., nring − 1},∣∣∣∣∣∣

∑
p∈Ri

‖p− c‖z − |Ri|
|Ri ∩ Ω|

∑
p∈Ri∩Ω

‖p− c‖z
∣∣∣∣∣∣ ≤ ε

∑
p∈Ri

‖p− c‖z + ‖p− a‖z


Using that R̂i = (1± ε)|Ri|, we get from the previous equation that∣∣∣∣∣∣
∑
p∈Ri

‖p− c‖z − |R̂i|
|Ri ∩ Ω|

∑
p∈Ri∩Ω

‖p− c‖z
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑
p∈Ri

‖p− c‖z − |Ri|
|Ri ∩ Ω|

∑
p∈Ri∩Ω

‖p− c‖z
∣∣∣∣∣∣+ ε

|Ri|
|Ri ∩ Ω|

∑
p∈Ri∩Ω

‖p− c‖z

≤ (1 + ε)

∣∣∣∣∣∣
∑
p∈Ri

‖p− c‖z − |Ri|
|Ri ∩ Ω|

∑
p∈Ri∩Ω

‖p− c‖z
∣∣∣∣∣∣+ ε

∑
p∈Ri

‖p− c‖z

≤ 2ε

∑
p∈Ri

‖p− c‖z + ‖p− a‖z
 (10.7)

Wrapping up. Summing up Equations 10.4, 10.5, 9 and 10.7 yields a total error of
O(ε) ·

∑
p∈P ′ ‖p − c‖z + ‖p − c′‖z ∈ O(ε)

∑
p∈P ′ ‖p − c′‖z, which concludes the proof

of Eq. (10.3).

Consequently, any solution c′ has the same cost on P ′ and on Ω, up to an additive
O(ε)

∑
p∈P ′ ‖p− c′‖z. Since we know by Lemma 10.7 that the optimal solution cOPT

is in the ball β(a, r), any (1 + ε)-approximation c for Ω restricted to lie inside that
ball verifies ∣∣∣∣∣∣

∑
p∈P ′
‖p− c‖z −

∑
p∈P ′
‖p− cOPT‖z

∣∣∣∣∣∣ ≤ O(ε)OPT.

245

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

Using the second claim of Lemma 10.7, we finally get that∣∣∣∣∣∣
∑
p∈P
‖p− c‖z −

∑
p∈P
‖p− cOPT‖z

∣∣∣∣∣∣ ≤ O(ε)OPT,

which concludes: to get a (1 + ε)-approximation, one can merely compute a (1 + ε)-

approximate solution on Ω, with weights R̂i
|Ri∩Ω| on points of Ri.

We note here that, conditioned on a being a constant-factor approximation, the al-
gorithm works with probability 1 − δ. Hence, the bottleneck for boosting success
probability is the computation of a constant factor approximation.

10.4 A Brief Note on the MPC Algorithm From Sec-
tion 4.4.2

Algorithm 5 is very similar to Algorithm 9. A huge difference however is that we are
given a center and a cost to cluster to that center. Hence, the close and far points
can be pruned without the need of estimating ∆ as in Algorithm 9. In turn, there
are nring = O(log n) rings, instead of a constant number – this can be removed, but
we use it to simplify the algorithm. Another difference is that the initial solution is
a O(polylogn)-approximation: hence, the size of the sample Ω must be of that order.
The parameters we chose for Algorithm 5 are actually the same as in Algorithm 9:
as we are looking for constant approximation for 1-median only, we can set ε = 1/2,
z = 1, α = polylog(n). Then, t is the size of Ω from Lemma 10.10, which is polylog(n),
dclose is 1/10 (to match Lemma 10.9), and rsmall is εη – which is O(1/ log(n)).

Furthermore, in Algorithm 9, the weights are uniform, and can be discarded in order
to compute a solution, as in Algorithm 5.

Then, the proof of Theorem 10.1 show that Algorithm 5 indeed computes a O(1)-
approximation to the median, using the parameters specified above.

10.5 Probability Amplification

While the aforementioned algorithm is guaranteed to produce a (1+ε)-approximation
with constant probability, amplifying this is non-trivial. Indeed, when running the
algorithm multiple times, it is not clear how to distinguish a successful run from an
unsuccessful one. The main issue in amplifying the probability lies in the initial solu-
tion a, as any invocation of Lemma 10.4 allows us to control the failure probability of

246

10.5. Probability Amplification

the remaining part of the algorithm. The simplest way to achieve a success probability
1− δ is to condition on ‖a− c‖z ≤ δ · OPT

n . Unfortunately, this makes ε dependent on
δ, which significantly increases the sampling complexity.

Instead, we use the following algorithm. We sample m ∈ O(log 1/δ) points a1, . . . am
uniformly at random. For each point, we additionally sample O(ε−2(log 1/ε+log 1/δ))
points Ωai . We claim that the point ai with smallest estimated median distance to it
is a 15z approximation.

I Lemma 10.11. Given query access to P , we can identify with probability
1−δ a 15z-approximate solution using O(ε−2(log 1/ε+log 1/δ) log 1/δ) samples.

J

To achieve an overall success probability of 1 − δ, we only need to sample from non-
cheap rings. Thereafter, a higher probability bound can be obtained by in Lemma 10.6
by simply increasing the sample size by constant factor – following the application of
Lemma 10.4.

Proof. Let c be the optimal center.

With probability at least 1/2, a random point ai satisfies

‖ai − c‖z ≤ 2z
OPT

n
.

Furthermore,

∑
p∈P
‖p− ai‖z ≤

∑
p∈P

2z−1 · (‖p− c‖z + ‖ai − c‖z) ≤ 2z ·OPT.

Therefore, when sampling log 1/δ points, we will have sampled a 2z approximate
solution with probability at least 1− δ.

Now since the range space induced by unit Euclidean balls centered around a has
VC dimension 3, we can estimate the number of points for any given radius up to
an additive error of n/10 with Lemma 10.4. Hence, with probability 1− δ, for every

2z-approximate solution ai, the estimated number of points in B(ai, 2
(
4OPT

n

)1/z
) will

be at least 3n/4− n/10, as there are at least 3n/4 points in that ball. In particular,

the estimated median distance to ai is at most 2
(
4OPT

n

)1/z
.

Conversely, if some point ai is not 15z approximate, we can show that the estimated

247

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

number of points in B(ai, 2
(
4OPT

n

)1/z
) is small. Indeed:

∑
p

‖p− ai‖z > 15z
∑
p

‖p− c‖z

⇒

(∑
p

‖p− ai‖z
)1/z

> 15

(∑
p

‖p− c‖z
)1/z

⇒

(∑
p

‖c− ai‖z
)1/z

> 14

(∑
p

‖p− c‖z
)1/z

⇒ ‖c− ai‖ > 14

(
OPT

n

)1/z

Hence, any point at distance at most 10
(

OPT
n

)1/z
from ai is at distance more than(

4OPT
n

)1/z
of c. Since at least 3n

4 points lie in B(c,
(
4OPT

n

)1/z
), the median distance

to ai is therefore at least 10
(

OPT
n

)1/z ≥ 2
(
5OPT

n

)1/z
. Hence, the estimated median

distance is strictly more than 2
(
4OPT

n

)1/z
with probability 1− δ.

Conditioned on having a 2z approximate solution in our sample, the point ai with
smallest estimated median distance to it is a 15z approximation.

10.6 Lower bound

The goal of that section is to prove Theorem 10.2, i.e., that any (1+ε)-approximation
algorithm must sample ε−z+1 points. For that, we analyze a very simple example
on the line, where many points are located at 0 and a tiny fraction located at 1
concentrates all the cost.

Proof of Theorem 10.2. Consider the instance I on the 1-dimensional line where n
points are located at 0 and εz−1n points are located at 1. Intuitively, we show that
any approximation algorithm on I must sample at least a point at 1, and so must
sample at least ε−z+1n points.

For simplicity, we rescale the instance so that n = 1. The optimal solution is OPTI =
inf xz+εz−1(1−x)z, and the optimal center is such that the derivative of the objective
function is zero:

∂

∂x

(
xz + εz−1(1− x)z

)
= (z − 1)

(
xz−1 − (ε− εx)z−1

)
so the optimal value is for xOPT such that (z−1)

(
xz−1

OPT − (ε− εxOPT)z−1
)

= 0, which

248

10.7. Experiments

is xOPT = ε
ε+1 . Hence,

OPT =

(
ε

ε+ 1

)z
+ εz−1

(
1− ε

ε+ 1

)z
=

εz−1

(ε+ 1)z
(ε+ 1) =

(
ε

1 + ε

)z−1

.

Since the cost of the solution having a center at 0 is εz−1, is it bigger than (1+ε)OPT:
indeed,

(1 + ε)

(
ε

1 + ε

)z−1

< εz−1. (10.8)

Now, consider the instance I and the instance I ′ that has n points located at 0.
let A be an algorithm that, with probability more than 4/5, computes a (1 + ε)-
approximation for (1, z)-clustering.

Assume by contradiction that A samples less than ε−z+1/10 points. Let X be the
random variable counting the number of points located at 1 in that sample: we have
Pr[X > 0] ≤ E[X] ≤ 1/10. So with probability at least 9/10, A samples only point
located at 0: even when that event occures, A must output a center at a position
different than 0 (following Equation 10.8) with some probability p.

Since A succeeds with probability 4/5 and X = 0 with probability at least 9/10, we
must have have 9

10p+ 1
10 ≥ 4/5, and so p ≥ 7

9 .

Hence, when A samples only points located at 0, it must output a center different from
0 with probability at least 7/9. In particular, on instance I ′, A fails with probability
at least 7/9, a contradiction.

So, any algorithm that computes a (1 + ε)-approximation for (1, z)-clustering with
probability more than 4/5 must sample more than ε−z+1/10 points.

10.7 Experiments

Implementation: We used a variant of Algorithm 9 which now describe. Instead of
specifying a desired accuracy, the algorithm has access to m samples picked uniformly
at random from the data set. As an α-approximate solution q, the algorithm merely
selects a random point. The number of rings considered is set to nring = 20.

We also estimate OPT
n , by sampling another point q′ and using ‖q − q′‖z as a

(coarse) estimate. We then apply the pruning procedures. Our algorithm chooses
{100, 200, . . . , 1000} samples. For each sample size, we repeated the algorithm 10
times and outputted the best center we could find.

Since the objective function is convex, we use a (simple) stochastic gradient descent
on both the sample and the full data set to compute a desired center. We iterated

249

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces

over the data set a total of 10 times. In every iteration, we partitioned the data
into random chunks of size min(m, 2000), and used chunk to perform a gradient step.
We did not attempt to optimize the stochastic gradient descent; as our focus is less
on solving the problem in the fastest way possible and more on showcasing how the
sublinear algorithm can be used to potentially speed up any baseline algorithm.

The algorithms were coded in Python and run on a Intel Core i7-8665U processor
with four 2 GHz cores and 32 GByte RAM.

Results Tables with exact figures are given below. Here, we report and interpret
the results.

On the Road Network data set, all samples sizes found a nearly optimal solution in
at least one of the 10 repetitions, with the largest deviation from the optimum of
4% occurring for 500 samples and the z = 4 problem. In addition, the sublinear
algorithms all required only a very small amount of time compared to the baseline
optimal solution (e.g. a factor of at least 400 quicker for the largest sample size). What
is notable is that starting with z = 5, the variance in cost of any given sample size
increased significantly. Since this occurred regardless of sample size, we attribute this
effect to quality of the seeding solution (q in Algorithm 9). The approximation factor
of q directly impacts the quality of the subsequent coreset construction, meaning that
even with large sample sizes, the algorithm has difficulty to recover. This means that
good seeding solution q, for example using Lemma 10.11 is essential.

Processing the USCensus data set was in its entirety was time consuming, running for
more than 90 minutes. Constructing the coreset and optimizing it never took more
than 14 seconds, however the algorithm did not compute near optimal solutions as
was the case for Road Networks data set. For z = 3 and z = 5 the approximation
was still rather small, and tightly concentrated. For an unclear reasons, there exists
a larger gap at z = 4. While a gap of that magnitude is consistent with the lower
bound, the data set does not seem to have a structure similar to said lower bound.

250

10.7. Experiments

z = 3 z = 4 z = 5
Samples Cost Time Cost Time Cost Time

Min Avg Avg Min Avg Avg Min Avg Avg
100 1,306 1,310 6,03 1,907 1,910 7,03 1,527 1,560 7,22
200 1,306 1,311 6,03 1,907 1,911 7,04 1,518 1,554 7,81
300 1,305 1,310 6,30 1,907 1,908 7,59 1,523 1,560 8,65
400 1,305 1,310 6,48 1,907 1,909 7,74 1,521 1,544 9,06
500 1,306 1,309 6,74 1,906 1,908 7,92 1,512 1,547 9,84
600 1,305 1,308 7,06 1,907 1,908 8,21 1,516 1,553 10,39
700 1,307 1,309 7,20 1,907 1,908 8,35 1,516 1,545 11,14
800 1,306 1,309 7,53 1,907 1,908 8,82 1,528 1,547 11,86
900 1,306 1,310 7,60 1,907 1,909 8,98 1,523 1,553 12,43
1k 1,307 1,312 8,04 1,906 1,909 9,6 1,526 1,550 13,26

OPT 1,125 - 5544 1,296 - 5586 1,499 - 5934

Figure 10.1: Overview of cost and running time for the sublinear algorithm on the
USCensus data set. Costs scaled by a factor 1012 for z = 3, 1014 for z = 4 and 1016

for z = 5. The variance was extremely small for all values (cost and running time), as
indicated by the small gaps between minimum and average. We therefore omitted it
from the table. The largest variance (relative to the squared cost) we encountered was
for z = 5 and 600 samples, where it was still below 0.0005. Running time is given in
seconds. The running for the sampling algorithms only considers the time required to
sample the points, prune the data set, and run the optimization, i.e. the time required
to evaluate the computed solution on the entire data set (which vastly exceeds the
given time bounds) is not included.

251

Chapter 10. Sublinear Algorithms for Power Mean in Euclidean Spaces
z

=
3

z
=

4
z

=
5

S
am

p
les

C
ost

T
im

e
C

ost
T

im
e

C
ost

T
im

e

M
in

A
v
g

V
a
r/

A
v
g

2
A

v
g

M
in

A
v
g

V
ar/A

v
g

2
A

v
g

M
in

A
v
g

V
ar/A

v
g

2
A

v
g

10
0

4
,9

0
6
,6

7
0
,0

8
0
,6

2
1,79

2,83
0,12

0,62
7,47

10,13
0,35

0,61
20

0
4
,8

0
6
,3

6
0
,0

5
1
,1

6
1,86

3,85
0,24

1,29
7,37

8,29
0,30

1,16
30

0
4
,7

9
7
,4

0
0
,2

1
1
,7

4
1,78

2,48
0,16

1,76
7,39

12,44
0,15

1,76
40

0
4
,8

6
6
,8

9
0
,1

1
2
,2

7
1,79

2,82
0,13

2,37
7,37

12,44
0,51

2,41
50

0
4
,9

5
7
,8

0
0
,0

4
2
,8

8
1,84

2,88
0,47

2,90
7,39

11,11
0,61

2,89
60

0
4
,8

4
1
0
,3

5
0,47

3
,4

2
1,78

2,91
0,76

3,46
7,55

21,52
0,23

3,48
70

0
4
,7

9
6
,6

7
0
,2

2
3
,9

7
1,80

3,12
0,31

4,10
7,37

16,22
0,60

4,06
80

0
4
,7

9
6
,9

2
0
,1

9
4
,6

0
1,78

6,20
0,67

4,62
7,38

15,89
0,57

4,71
90

0
4
,7

9
9
,2

7
0
,5

8
5
,1

2
1,78

3,43
0,69

5,23
7,37

25,93
0,20

5,26
1
k

4
,8

1
1
0
,9

7
0,30

5
,6

5
1,78

4,91
0,62

5,90
7,47

29,68
0,41

5,81
O

P
T

4
,7

9
-

-
8
7
1

1,78
-

-
875

7,37
-

-
877

z
=

6
z

=
7

S
am

p
les

C
ost

T
im

e
C

ost
T

im
e

M
in

A
v
g

V
a
r/

A
v
g

2
A

v
g

M
in

A
v
g

V
ar/A

v
g

2
A

v
g

10
0

3
,4

0
5
,3

8
0
,2

0
0
,6

3
1,59

2,28
0,32

0,61
20

0
3
,3

2
6
,2

2
0
,4

1
1
,2

0
1,60

2,72
0,46

1,19
30

0
3
,5

1
1
1
,4

7
0,91

1
,7

7
1,59

6,20
1,21

1,82
40

0
3
,3

5
6
,5

4
0
,7

1
2
,3

3
1,59

8,70
4,12

2,36
50

0
3
,5

4
8
,2

2
1
,4

3
2
,8

9
1,61

2,42
0,33

2,92
60

0
3
,3

2
6
,3

3
0
,8

5
3
,4

7
1,61

14,01
2,25

3,50
70

0
3
,3

2
7
,8

6
0
,9

3
4
,0

6
1,60

6,53
2,87

4,10
80

0
3
,3

5
1
1
,1

0
2,25

4
,6

3
1,61

5,06
0,76

4,70
90

0
3
,3

1
8
,4

6
0
,2

9
5
,2

1
1,59

7,49
0,54

5,28
1
k

3
,3

4
7
,8

9
0
,5

7
5
,9

8
1,59

2,35
0,16

5,78
O

P
T

3
,3

1
-

-
8
8
5

1,59
-

-
882

F
igu

re
10.2:

O
verv

iew
o
f

cost
an

d
ru

n
n

in
g

tim
e

for
th

e
su

b
lin

ear
algorith

m
on

th
e

R
oad

N
etw

ork
s

d
ata

set.
C

osts
scaled

b
y

a
factor

1
0

9
fo

r
z

=
3,

1
0

1
1

for
z

=
4

an
d
z

=
5
,

10
1
4

for
z

=
6

an
d

10
1
6

for
z

=
7.

T
h

e
varian

ce
w

as
ex

trem
ely

sm
all

for
ru

n
n

in
g

tim
es,

so
w

e
om

it
it.

R
u

n
n

in
g

tim
e

is
g
iven

in
seco

n
d

s.
T

h
e

ru
n

n
in

g
tim

e
for

th
e

sam
p

lin
g

algorith
m

s
on

ly
con

sid
ers

th
e

tim
e

req
u

ired
to

sam
p

le
th

e
p

oin
ts,

p
ru

n
e

th
e

d
a
ta

set,
a
n

d
ru

n
th

e
op

tim
ization

,
i.e.

th
e

tim
e

req
u

ired
to

evalu
ate

th
e

com
p

u
ted

solu
tion

on
th

e
en

tire
d

ata
set

is
n

o
t

in
clu

d
ed

.

252

Conclusion and Open Questions

During this thesis, we studied the (k, z)-Clustering problem under several aspects.

In the first part, we answered our initial Question 1 from the introduction: we pre-
sented an algorithm that runs in near linear time, and computes a very good ap-
proximation to the optimum in spaces with bounded doubling dimension. For this,
we developed techniques amenable to constrained version of the problem: we showed
how to use them to build a differentially private algorithm, that has provable guar-
antee and is very efficient in practice.

In particular, we presented and used the notion of badly cut vertices for clustering
problems. This allowed us to improve the standard quadtree and split-tree based
approach in two ways: first, we reduce the number of portals necessary to a constant,
and second, the approach can now work with squared distances. This raises the
following (somewhat informal) questions:

I Open Question 1. Could we use the notion of badly cut for other problems?
For instance, could we use it to get linear time approximation schemes for
Traveling Salesperson Problem, Steiner Tree or Steiner Forest? J

This would require a new way of dealing with the badly cut vertices, at it would be
necessary to connect them nicely with the solution – the equivalent of opening the
badly cut centers that we used in this thesis. There already exist near-linear time
algorithms for TSP from Gottlieb [89], and for Steiner Tree and Steiner Forest from
Bartal and Gottlieb [21]. Studying those through a notion of badly-cut may provide an
alternative view on those problems, where split trees are the key tool – as in Euclidean
spaces.

In the experiments of Chapter 4, we saw that the quadtree based approached worked
surprisingly well. Instead of losing the huge polylogn factor that is promised by the
theory, our algorithm is really competitive with the best (non-private) approach. The
algorithm is obtained by embedding the input into a quadtree. The worst-case analysis
of the distortion of that embedding is the source of the polylogn factor appearing in our
theoretical approximation guarantee, that we do not observe in practice. Therefore,
the quadtree seems to perform way better in real world instances than in the worst-
case, which yields the following question:

Conclusion and Open Questions

I Open Question 2. Is there a beyond worst case analysis of distortion of
the quadtree? J

In the second part of the thesis, we provided several answers to Question 2, and pre-
sented ways of reducing the size of the input without changing much the structure of
the problem – namely, all solution has cost preserved by our reductions. We present
two new ways of constructing coreset: the first and main one, in Chapter 6, allows to
construct coreset with near-optimal dependency in k, and in some cases in ε−1 as well.
Our construction applies in all spaces that admits small approximate centroid set (see
5.2), a geometric notion that express how much the set of candidate solutions can
be discretized. The second construction, presented in Chapter 9, allows to construct
coresets with a slightly suboptimal size. This construction can be used deterministi-
cally, and works in all spaces where the set of balls centered on k distinct points has
bounded VC-dimension. This simplifies a lot the previous construction described in
Section 5.3: it is not necessary anymore to bound the scaled VC-dimension.

Those two constructions are very related: they extend the work of Chen [44], con-
structing coreset on a structured subset of the input (a ring, or a group of rings)
instead of directly dealing with the full input, as in the work of Feldman and Lang-
berg [76]. This may be the key for future improved coreset construction: find even
more structured subset of the input, on which it is easier to sample a coreset.

As a second step, we show that the size of the coreset constructed in Chapter 7 is opti-
mal in doubling metrics and general discrete spaces. This optimality shows essentially
that the key part for constructing coreset is using concentration inequality for sums
of independent random variables, such as Hoeffding’s inequality or its generalizations.
Indeed, Hoeffding’s inequality is key in our coreset construction, and the lower bound
relies precisely on its optimality.

However, this optimality does not carry over to other spaces: in Euclidean spaces, we
presented a coreset of size Õ

(
kε−4

)
for k-median and k-means. With Vincent Cohen-

Addad, Kasper Green Larsen and Chris Schwiegelshohn, we showed in [A8] a different
tradeoff between k and ε−1, namely coresets of size Õ

(
k2ε−2

)
, and we complemented

this result with a lower bound of Ω
(
kε−2

)
. Put together, those result seems to show

that the best coreset size should be Θ̃
(
kε−2

)
.

I Open Question 3. In Euclidean spaces, is it possible to construct coresets
of size Õ

(
kε−2

)
? J

Answering this question would not only nicely close the problem of constructing core-
set in Euclidean space, but also extend the link between coreset constructions and
concentration inequalities: can we reduce Euclidean coreset to such inequalities, or is
the dimension playing a crucial role preventing us from reaching the same dependency
in ε as in doubling and general metrics?

254

The techniques presented in this thesis (in Chapter 6 and Chapter 9) fall short of
answering the question for the following reason. They proceed as follows: first con-
struct a coreset of size dependent on the dimension, and then use dimension reduction
techniques. It seems very unlikely to get coreset of size below Ω

(
kε−4

)
that way: one

should loose an ε−2 factor in the dimension reduction – as the dimension reduction
lemmas are tight – and another one in the coreset – as otherwise, it would likely
contradict the doubling dimension lower bound. Hence, it is probably necessary to
proceed in one shot, and to use carefully the dimension reduction during the coreset
construction (or at least, during the proof, as it is not necessary for the algorithm to
perform a dimension reduction).

The other coreset construction we present in Chapter 9 gives a different method for
constructing coreset. While the algorithm is efficient if allowing randomization, its
deterministic implementation has an exponential dependency in k and ε−1. This is
related to the construction of ε-nets and ε-set-approximation from the VC-dimension
literature, for which no construction faster than the one we use (i.e., with a subexpo-
nential dependency in the VC dimension) is yet imaginable. We thus ask:

I Open Question 4. Is it possible to show that any deterministic coreset
construction has running time exponential in k and ε−1? J

In the particular Euclidean case, the complexity has an additional nε
−O(z)

dependency,
due to the mere computation of a bicriteria solution, namely a solution with cost (1+ε)
time the optimal but using O(k) centers. It seems this complexity is due to our poor
understanding of the possible center’s location in high dimensional Euclidean spaces.
For instance, using a greedy algorithm that iteratively places a center at the best
location would give an (1 + ε)-approximation with O(k log(1/ε)) many centers – but
we actually do not know how to implement this simple algorithm fast. This raises the
question:

I Open Question 5. In Euclidean space, given a current solution S, is it
possible to find efficiently the best possible location of an additional new center?

J

Answering this question would probably help in other settings. For instance, under
the differential privacy constraint, one of the key part of current algorithms (ours from
Chapter 4, but also [17] and [87]) is to compute a set of candidate center, privately.
Understanding better the possible location of centers would therefore probably impact
our knowledge on differentially private clustering.

255

Conclusion and Open Questions

In the final chapter of this thesis, we studied algorithm for computing the power mean
of a dataset, namely the optimal center for (1, z)-clustering. This is motivated by
modeling questions: when is the median, or the mean, useful to analyze a dataset?
The same interrogations also apply for the power mean, k-median, k-means and (k, z)-
clustering: when are those objectives helpful to recover a ground-truth clustering of
the input dataset? We provided in the introduction tentative explanations, but those
objectives are not always perfectly suited. We therefore conclude this thesis with the
broad question:

I Open Question 6. Is it possible to characterize precisely instances where
the optimal (k, z)-clustering corresponds to a “natural” clustering of the
dataset? J

256

Bibliography

[1] Ittai Abraham and Cyril Gavoille. “Object location using path separators”. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006. Ed. by Eric Ruppert
and Dahlia Malkhi. ACM, 2006, pp. 188–197. doi: 10.1145/1146381.1146411. url:
https://doi.org/10.1145/1146381.1146411.

[2] Manu Agarwal, Ragesh Jaiswal, and Arindam Pal. “k-means++ under Approximation
Stability”. In: Theoretical Computer Science 588 (2015), pp. 37–51.

[3] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. “Adaptive Sampling for k-
Means Clustering”. In: Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, 12th International Workshop, APPROX 2009, and
13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23,
2009. Proceedings. Ed. by Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P.
Rolim. Vol. 5687. Lecture Notes in Computer Science. Springer, 2009, pp. 15–28. doi:
10.1007/978-3-642-03685-9_2. url: https://doi.org/10.1007/978-3-642-
03685-9_2.

[4] Thomas Dybdahl Ahle. “Optimal Las Vegas Locality Sensitive Data Structures”. In:
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017. Ed. by Chris Umans. IEEE Computer
Society, 2017, pp. 938–949. doi: 10.1109/FOCS.2017.91. url: https://doi.org/
10.1109/FOCS.2017.91.

[5] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. “Better guar-
antees for k-means and euclidean k-median by primal-dual algorithms”. In: Founda-
tions of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on. Ieee.
2017, pp. 61–72.

[6] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. “Paral-
lel graph connectivity in log diameter rounds”. In: 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS). IEEE. 2018, pp. 674–685.

[7] Sanjeev Arora. “Nearly linear time approximation schemes for Euclidean TSP and
other geometric problems”. In: Foundations of Computer Science, 1997. Proceedings.,
38th Annual Symposium on. IEEE. 1997, pp. 554–563.

[8] Sanjeev Arora. “Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems”. In: Journal of the ACM (JACM) 45.5 (1998),
pp. 753–782.

[9] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. “Approximation Schemes for
Euclidean K-medians and Related Problems”. In: Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing. STOC ’98. Dallas, Texas, USA: ACM,
1998, pp. 106–113. isbn: 0-89791-962-9. doi: 10.1145/276698.276718. url: http:
//doi.acm.org/10.1145/276698.276718.

https://doi.org/10.1145/1146381.1146411
https://doi.org/10.1145/1146381.1146411
https://doi.org/10.1007/978-3-642-03685-9_2
https://doi.org/10.1007/978-3-642-03685-9_2
https://doi.org/10.1007/978-3-642-03685-9_2
https://doi.org/10.1109/FOCS.2017.91
https://doi.org/10.1109/FOCS.2017.91
https://doi.org/10.1109/FOCS.2017.91
https://doi.org/10.1145/276698.276718
http://doi.acm.org/10.1145/276698.276718
http://doi.acm.org/10.1145/276698.276718

Bibliography

[10] David Arthur and Sergei Vassilvitskii. “k-means++: the advantages of careful seed-
ing”. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007. 2007,
pp. 1027–1035. url: http://dl.acm.org/citation.cfm?id=1283383.1283494.

[11] Olivier Bachem, Mario Lucic, S Hamed Hassani, and Andreas Krause. “Approximate
k-means++ in sublinear time”. In: Thirtieth AAAI conference on artificial intelli-
gence. 2016.

[12] Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. “Uniform
Deviation Bounds for k-Means Clustering”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, 2017, pp. 283–291. url: http://proceedings.mlr.

press/v70/bachem17a.html.

[13] Olivier Bachem, Mario Lucic, and Silvio Lattanzi. “One-shot Coresets: The Case of
k-Clustering”. In: International Conference on Artificial Intelligence and Statistics,
AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain.
2018, pp. 784–792. url: http://proceedings.mlr.press/v84/bachem18a.html.

[14] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vas-
silvitskii. “Scalable K-Means++”. In: Proc. VLDB Endow. 5.7 (2012), pp. 622–633.
doi: 10.14778/2180912.2180915. url: http://vldb.org/pvldb/vol5/p622\

_bahmanbahmani_vldb2012.pdf.

[15] Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H. C. Jiang, Robert
Krauthgamer, and Xuan Wu. Coresets for Clustering in Graphs of Bounded Treewidth.
2020.

[16] Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang
Zhang. Code of the algorithm described in Differentially Private Clustering in High-
Dimensional Euclidean Spaces. 2017. url: https://github.com/mouwenlong/dp-
clustering-icml17.

[17] Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang
Zhang. “Differentially Private Clustering in High-Dimensional Euclidean Spaces”. In:
Proceedings of the 34th International Conference on Machine Learning, ICML. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
PMLR, 2017, pp. 322–331.

[18] Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. “Distributed k-means and
k-median clustering on general communication topologies”. In: Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States. 2013, pp. 1995–2003. url: http://papers.nips.cc/
paper/5096-distributed-k-means-and-k-median-clustering-on-general-

topologies.

[19] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for exotic particles
in high-energy physics with deep learning”. In: Nature communications 5.1 (2014),
pp. 1–9.

[20] Yair Bartal and Lee-Ad Gottlieb. “A Linear Time Approximation Scheme for Eu-
clidean TSP”. In: 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS. 2013.

258

http://dl.acm.org/citation.cfm?id=1283383.1283494
http://proceedings.mlr.press/v70/bachem17a.html
http://proceedings.mlr.press/v70/bachem17a.html
http://proceedings.mlr.press/v84/bachem18a.html
https://doi.org/10.14778/2180912.2180915
http://vldb.org/pvldb/vol5/p622_bahmanbahmani_vldb2012.pdf
http://vldb.org/pvldb/vol5/p622_bahmanbahmani_vldb2012.pdf
https://github.com/mouwenlong/dp-clustering-icml17
https://github.com/mouwenlong/dp-clustering-icml17
http://papers.nips.cc/paper/5096-distributed-k-means-and-k-median-clustering-on-general-topologies
http://papers.nips.cc/paper/5096-distributed-k-means-and-k-median-clustering-on-general-topologies
http://papers.nips.cc/paper/5096-distributed-k-means-and-k-median-clustering-on-general-topologies

Bibliography

[21] Yair Bartal and Lee-Ad Gottlieb. “Near-linear time approximation schemes for Steiner
tree and forest in low-dimensional spaces”. In: STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by
Samir Khuller and Virginia Vassilevska Williams. ACM, 2021, pp. 1028–1041. doi:
10.1145/3406325.3451063.

[22] Yair Bartal, Lee-Ad Gottlieb, Tsvi Kopelowitz, Moshe Lewenstein, and Liam Roditty.
“Fast, precise and dynamic distance queries”. In: Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms. Society for Industrial and
Applied Mathematics. 2011, pp. 840–853.

[23] MohammadHossein Bateni, Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel
Marx. “A PTAS for planar group Steiner tree via spanner bootstrapping and prize
collecting”. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. ACM, 2016,
pp. 570–583. doi: 10.1145/2897518.2897549. url: https://doi.org/10.1145/
2897518.2897549.

[24] Paul Beame, Paraschos Koutris, and Dan Suciu. “Communication steps for parallel
query processing”. In: Journal of the ACM (JACM) 64.6 (2017), pp. 1–58.

[25] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris
Schwiegelshohn. “Oblivious dimension reduction for k -means: beyond subspaces and
the Johnson-Lindenstrauss lemma”. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019. 2019, pp. 1039–1050. doi: 10.1145/3313276.3316318. url: https://doi.
org/10.1145/3313276.3316318.

[26] Shai Ben-David. “A framework for statistical clustering with constant time approx-
imation algorithms for K -median and K -means clustering”. In: Mach. Learn. 66.2-3
(2007), pp. 243–257. doi: 10.1007/s10994-006-0587-3. url: https://doi.org/
10.1007/s10994-006-0587-3.

[27] Rajen Bhatt and Abhinav Dhall. 2009. url: https://archive.ics.uci.edu/ml/
datasets/Skin+Segmentation.

[28] Jock A Blackard and Denis J Dean. “Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from cartographic
variables”. In: Computers and electronics in agriculture 24.3 (1999), pp. 131–151.

[29] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
“Learnability and the Vapnik-Chervonenkis dimension”. In: J. ACM 36.4 (1989),
pp. 929–965. doi: 10.1145/76359.76371. url: https://doi.org/10.1145/76359.
76371.

[30] Nicolas Bousquet and Stéphan Thomassé. “VC-dimension and Erdős–Pósa property”.
In: Discrete Mathematics 338.12 (2015), pp. 2302–2317.

[31] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. “Near Optimal Column-
Based Matrix Reconstruction”. In: IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. Ed. by
Rafail Ostrovsky. IEEE Computer Society, 2011, pp. 305–314.

[32] Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus. “Streaming Core-
set Constructions for M-Estimators”. In: Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, Septem-
ber 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA. 2019,
62:1–62:15. doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.62. url: https://doi.
org/10.4230/LIPIcs.APPROX-RANDOM.2019.62.

259

https://doi.org/10.1145/3406325.3451063
https://doi.org/10.1145/2897518.2897549
https://doi.org/10.1145/2897518.2897549
https://doi.org/10.1145/2897518.2897549
https://doi.org/10.1145/3313276.3316318
https://doi.org/10.1145/3313276.3316318
https://doi.org/10.1145/3313276.3316318
https://doi.org/10.1007/s10994-006-0587-3
https://doi.org/10.1007/s10994-006-0587-3
https://doi.org/10.1007/s10994-006-0587-3
https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/76359.76371
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62

Bibliography

[33] Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang.
“Clustering High Dimensional Dynamic Data Streams”. In: Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017. 2017, pp. 576–585. url: http://proceedings.mlr.press/v70/
braverman17a.html.

[34] Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Xuan Wu.
“Coresets for Clustering in Excluded-minor Graphs and Beyond”. In: Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Con-
ference, January 10 - 13, 2021. Ed. by Dániel Marx. Consulted on arxiv on May 2022.
SIAM, 2021, pp. 2679–2696. url: https://doi.org/10.1137/1.9781611976465.
159.

[35] Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Xuan Wu.
“Coresets for Ordered Weighted Clustering”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. 2019, pp. 744–753. url: http://proceedings.mlr.press/v97/
braverman19a.html.

[36] Maike Buchin and Dennis Rohde. “Coresets for (k, l)-Median Clustering under the
Fréchet Distance”. In: (2021).

[37] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Srinivasan Aravind, and Khoa
Trinh. “An Improved Approximation for k -median, and Positive Correlation in Bud-
geted Optimization”. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015.
2015, pp. 737–756.

[38] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. “Fast coreset-based
diversity maximization under matroid constraints”. In: Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining. 2018, pp. 81–89.

[39] TH Hubert Chan, Shuguang Hu, and Shaofeng H-C Jiang. “A PTAS for the steiner
forest problem in doubling metrics”. In: Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on. IEEE. 2016, pp. 810–819.

[40] Alisa Chang, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. “Locally Private k-
Means in One Round”. In: CoRR abs/2104.09734 (2021). url: https://arxiv.org/
abs/2104.09734.

[41] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. “Algorithms
for facility location problems with outliers”. In: Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA. 2001,
pp. 642–651.

[42] Moses S Charikar. “Similarity estimation techniques from rounding algorithms”. In:
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing. 2002,
pp. 380–388.

[43] Bernard Chazelle. The discrepancy method - randomness and complexity. Cambridge
University Press, 2001. isbn: 978-0-521-00357-5.

[44] Ke Chen. “On Coresets for k-Median and k-Means Clustering in Metric and Euclidean
Spaces and Their Applications”. In: SIAM J. Comput. 39.3 (2009), pp. 923–947.

[45] Davin Choo, Christoph Grunau, Julian Portmann, and Václav Rozhon. “k-means++:
few more steps yield constant approximation”. In: International Conference on Ma-
chine Learning. PMLR. 2020, pp. 1909–1917.

[46] Marek Chrobak, Claire Kenyon, and Neal E. Young. “The reverse greedy algorithm
for the metric k -median problem”. In: Inf. Process. Lett. 97.2 (2006), pp. 68–72.

260

http://proceedings.mlr.press/v70/braverman17a.html
http://proceedings.mlr.press/v70/braverman17a.html
https://doi.org/10.1137/1.9781611976465.159
https://doi.org/10.1137/1.9781611976465.159
http://proceedings.mlr.press/v97/braverman19a.html
http://proceedings.mlr.press/v97/braverman19a.html
https://arxiv.org/abs/2104.09734
https://arxiv.org/abs/2104.09734

Bibliography

[47] Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff. “Sublinear optimization
for machine learning”. In: J. ACM 59.5 (2012), 23:1–23:49. doi: 10.1145/2371656.
2371658. url: https://doi.org/10.1145/2371656.2371658.

[48] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. “Dimensionality Reduction for k-Means Clustering and Low Rank Approxima-
tion”. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015. 2015, pp. 163–172.

[49] Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford.
“Geometric median in nearly linear time”. In: Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016. 2016, pp. 9–21. doi: 10.1145/2897518.2897647. url: http:

//doi.acm.org/10.1145/2897518.2897647.

[50] Vincent Cohen-Addad. “A Fast Approximation Scheme for Low-dimensional K-means”.
In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms. SODA ’18. New Orleans, Louisiana: Society for Industrial and Applied
Mathematics, 2018, pp. 430–440. isbn: 978-1-6119-7503-1. url: http://dl.acm.

org/citation.cfm?id=3174304.3175298.

[51] Vincent Cohen-Addad. “Approximation Schemes for Capacitated Clustering in Dou-
bling Metrics”. In: CoRR abs/1812.07721 (2018). url: http://arxiv.org/abs/
1812.07721.

[52] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan.
“Improved Approximations for Euclidean k-means and k-median, via Nested Quasi-
Independent Sets”. In: (2022).

[53] Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. “Local Search Yields Ap-
proximation Schemes for k-Means and k-Median in Euclidean and Minor-Free Met-
rics”. In: SIAM J. Comput. 48.2 (2019), pp. 644–667. doi: 10.1137/17M112717X.
url: https://doi.org/10.1137/17M112717X.

[54] Vincent Cohen-Addad, Silvio Lattanzi, Ashkan Norouzi-Fard, Christian Sohler, and
Ola Svensson. “Fast and Accurate k-means++ via Rejection Sampling”. In: Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed.
by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin. 2020.

[55] Vincent Cohen-Addad and Jason Li. “On the Fixed-Parameter Tractability of Capac-
itated Clustering”. In: 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. 2019, 41:1–41:14. url:
https://doi.org/10.4230/LIPIcs.ICALP.2019.41.

[56] Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. “Johnson Coverage Hypoth-
esis: Inapproximability of k-means and k-median in `p-metrics”. In: Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Confer-
ence / Alexandria, VA, USA, January 9 - 12, 2022. Ed. by Joseph (Seffi) Naor and
Niv Buchbinder. SIAM, 2022, pp. 1493–1530. doi: 10.1137/1.9781611977073.63.
url: https://doi.org/10.1137/1.9781611977073.63.

[57] Vincent Cohen-Addad and Chris Schwiegelshohn. “On the Local Structure of Stable
Clustering Instances”. In: 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. 2017, pp. 49–60. doi:
10.1109/FOCS.2017.14. url: https://doi.org/10.1109/FOCS.2017.14.

[58] Richard Cole and Lee-Ad Gottlieb. “Searching dynamic point sets in spaces with
bounded doubling dimension”. In: Proceedings of the thirty-eighth annual ACM sym-
posium on Theory of computing. ACM. 2006, pp. 574–583.

261

https://doi.org/10.1145/2371656.2371658
https://doi.org/10.1145/2371656.2371658
https://doi.org/10.1145/2371656.2371658
https://doi.org/10.1145/2897518.2897647
http://doi.acm.org/10.1145/2897518.2897647
http://doi.acm.org/10.1145/2897518.2897647
http://dl.acm.org/citation.cfm?id=3174304.3175298
http://dl.acm.org/citation.cfm?id=3174304.3175298
http://arxiv.org/abs/1812.07721
http://arxiv.org/abs/1812.07721
https://doi.org/10.1137/17M112717X
https://doi.org/10.1137/17M112717X
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.1137/1.9781611977073.63
https://doi.org/10.1137/1.9781611977073.63
https://doi.org/10.1109/FOCS.2017.14
https://doi.org/10.1109/FOCS.2017.14

Bibliography

[59] Mónika Csikós, Nabil H. Mustafa, and Andrey Kupavskii. “Tight Lower Bounds on
the VC-dimension of Geometric Set Systems”. In: J. Mach. Learn. Res. 20 (2019),
81:1–81:8. url: http://jmlr.org/papers/v20/18-719.html.

[60] Artur Czumaj and Christian Sohler. “Sublinear-time approximation algorithms for
clustering via random sampling”. In: Random Structures & Algorithms 30.1-2 (2007),
pp. 226–256.

[61] Sanjoy Dasgupta and Yoav Freund. “Random projection trees for vector quantiza-
tion”. In: IEEE Transactions on Information Theory 55.7 (2009), pp. 3229–3242.

[62] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[63] Hu Ding. “A Sub-Linear Time Framework for Geometric Optimization with Outliers
in High Dimensions”. In: 28th Annual European Symposium on Algorithms, ESA 2020,
September 7-9, 2020, Pisa, Italy (Virtual Conference). 2020, 38:1–38:21. doi: 10.

4230/LIPIcs.ESA.2020.38. url: https://doi.org/10.4230/LIPIcs.ESA.2020.
38.

[64] Hu Ding. “Stability Yields Sublinear Time Algorithms for Geometric Optimization in
Machine Learning”. In: 29th Annual European Symposium on Algorithms, ESA 2021,
September 6-8, 2021, Lisbon, Portugal (Virtual Conference). Ed. by Petra Mutzel,
Rasmus Pagh, and Grzegorz Herman. Vol. 204. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, 38:1–38:19.

[65] Anne Driemel, André Nusser, Jeff M Phillips, and Ioannis Psarros. “The VC dimension
of metric balls under Fréchet and Hausdorff distances”. In: Discrete & Computational
Geometry 66.4 (2021), pp. 1351–1381.

[66] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url: http:
//archive.ics.uci.edu/ml.

[67] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Calibrating Noise
to Sensitivity in Private Data Analysis”. In: Theory of Cryptography. Ed. by Shai
Halevi and Tal Rabin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 265–
284.

[68] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differential Pri-
vacy”. In: Found. Trends Theor. Comput. Sci. 9.3-4 (2014), pp. 211–407. doi: 10.
1561/0400000042. url: https://doi.org/10.1561/0400000042.

[69] David Eisenstat and Dana Angluin. “The VC dimension of k-fold union”. In: Inf.
Process. Lett. 101.5 (2007), pp. 181–184. doi: 10.1016/j.ipl.2006.10.004. url:
https://doi.org/10.1016/j.ipl.2006.10.004.

[70] David Eisenstat, Philip N. Klein, and Claire Mathieu. “Approximating k -center in
planar graphs”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014. Ed.
by Chandra Chekuri. SIAM, 2014, pp. 617–627. doi: 10.1137/1.9781611973402.47.
url: https://doi.org/10.1137/1.9781611973402.47.

[71] Michael Elkin, Arnold Filtser, and Ofer Neiman. “Terminal embeddings”. In: Theor.
Comput. Sci. 697 (2017), pp. 1–36. doi: 10.1016/j.tcs.2017.06.021. url: https:
//doi.org/10.1016/j.tcs.2017.06.021.

[72] Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. “Derandomized dimensionality
reduction with applications”. In: Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA.
2002, pp. 705–712. url: http://dl.acm.org/citation.cfm?id=545381.545476.

262

http://jmlr.org/papers/v20/18-719.html
https://doi.org/10.4230/LIPIcs.ESA.2020.38
https://doi.org/10.4230/LIPIcs.ESA.2020.38
https://doi.org/10.4230/LIPIcs.ESA.2020.38
https://doi.org/10.4230/LIPIcs.ESA.2020.38
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1016/j.ipl.2006.10.004
https://doi.org/10.1016/j.ipl.2006.10.004
https://doi.org/10.1137/1.9781611973402.47
https://doi.org/10.1137/1.9781611973402.47
https://doi.org/10.1016/j.tcs.2017.06.021
https://doi.org/10.1016/j.tcs.2017.06.021
https://doi.org/10.1016/j.tcs.2017.06.021
http://dl.acm.org/citation.cfm?id=545381.545476

Bibliography

[73] Xiequan Fan, Ion Grama, and Quansheng Liu. “Sharp large deviation results for
sums of independent random variables”. In: Science China Mathematics 58.9 (2015),
pp. 1939–1958.

[74] Tomás Feder and Daniel Greene. “Optimal algorithms for approximate clustering”.
In: Proceedings of the twentieth annual ACM symposium on Theory of computing.
ACM. 1988, pp. 434–444.

[75] Dan Feldman. Introduction to Core-sets: an Updated Survey. 2020. doi: 10.1002/
widm.1335. url: https://doi.org/10.1002/widm.1335.

[76] Dan Feldman and Michael Langberg. “A unified framework for approximating and
clustering data”. In: Proceedings of the 43rd ACM Symposium on Theory of Comput-
ing, STOC 2011, San Jose, CA, USA, 6-8 June 2011. 2011, pp. 569–578.

[77] Dan Feldman, Morteza Monemizadeh, and Christian Sohler. “A PTAS for k-means
clustering based on weak coresets”. In: Proceedings of the 23rd ACM Symposium on
Computational Geometry, Gyeongju, South Korea, June 6-8, 2007. 2007, pp. 11–18.

[78] Dan Feldman, Melanie Schmidt, and Christian Sohler. “Turning Big Data Into Tiny
Data: Constant-Size Coresets for k-Means, PCA, and Projective Clustering”. In: SIAM
J. Comput. 49.3 (2020), pp. 601–657. doi: 10.1137/18M1209854. url: https://doi.
org/10.1137/18M1209854.

[79] Vitaly Feldman, Konstantin Kakaes, Katrina Ligett, Kobbi Nissim, Aleksandra Slavkovic,
and Adam Smith. Differential Privacy: Issues for Policymakers. https://simons.
berkeley.edu/news/differential-privacy-issues-policymakers, consulted on
04/27/2022. 2020.

[80] Zhili Feng, Praneeth Kacham, and David P. Woodruff. “Strong Coresets for Subspace
Approximation and k-Median in Nearly Linear Time”. In: CoRR abs/1912.12003
(2019). arXiv: 1912.12003. url: http://arxiv.org/abs/1912.12003.

[81] Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, and Chris-
tian Sohler. “BICO: BIRCH Meets Coresets for k-Means Clustering”. In: Algorithms
- ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September
2-4, 2013. Proceedings. 2013, pp. 481–492.

[82] Gereon Frahling and Christian Sohler. “Coresets in dynamic geometric data streams”.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC).
2005, pp. 209–217.

[83] Pasi Fränti and Sami Sieranoja. K-means properties on six clustering benchmark
datasets. 2018. url: http://cs.uef.fi/sipu/datasets/.

[84] Gouvernement Français. Industrie du futur: Moderniser notre outil industriel, https:
//www.economie.gouv.fr/files/files/PDF/industrie- du- futur_dp.pdf,
consulted on 04/26/2022. 2015.

[85] Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R
Salavatipour. “Approximation schemes for clustering with outliers”. In: ACM Trans-
actions on Algorithms (TALG) 15.2 (2019), p. 26.

[86] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. “Local Search
Yields a PTAS for k-Means in Doubling Metrics”. In: SIAM J. Comput. 48.2 (2019),
pp. 452–480. doi: 10 . 1137 / 17M1127181. url: https : / / doi . org / 10 . 1137 /

17M1127181.

[87] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. “Differentially Private Clustering:
Tight Approximation Ratios”. In: Advances in Neural Information Processing Sys-
tems. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin. 2020.

263

https://doi.org/10.1002/widm.1335
https://doi.org/10.1002/widm.1335
https://doi.org/10.1002/widm.1335
https://doi.org/10.1137/18M1209854
https://doi.org/10.1137/18M1209854
https://doi.org/10.1137/18M1209854
https://simons.berkeley.edu/news/differential-privacy-issues-policymakers
https://simons.berkeley.edu/news/differential-privacy-issues-policymakers
https://arxiv.org/abs/1912.12003
http://arxiv.org/abs/1912.12003
http://cs.uef.fi/sipu/datasets/
https://www.economie.gouv.fr/files/files/PDF/industrie-du-futur_dp.pdf
https://www.economie.gouv.fr/files/files/PDF/industrie-du-futur_dp.pdf
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181

Bibliography

[88] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. “Sorting, searching, and
simulation in the mapreduce framework”. In: International Symposium on Algorithms
and Computation. Springer. 2011, pp. 374–383.

[89] Lee-Ad Gottlieb. “A Light Metric Spanner”. In: Symposium on Foundations of Com-
puter Science, FOCS. 2015.

[90] Sudipto Guha and Samir Khuller. “Greedy Strikes Back: Improved Facility Location
Algorithms”. In: J. Algorithms 31.1 (1999), pp. 228–248. doi: 10.1006/jagm.1998.
0993. url: http://dx.doi.org/10.1006/jagm.1998.0993.

[91] Anupam Gupta, Robert Krauthgamer, and James R. Lee. “Bounded Geometries,
Fractals, and Low-Distortion Embeddings”. In: Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science. FOCS ’03. 2003.

[92] Anupam Gupta and Kanat Tangwongsan. “Simpler Analyses of Local Search Algo-
rithms for Facility Location”. In: CoRR abs/0809.2554 (2008). url: http://arxiv.
org/abs/0809.2554.

[93] Pierre Hansen and Nenad Mladenovic. “J-MEANS: a new local search heuristic for
minimum sum of squares clustering”. In: Pattern Recognition 34.2 (2001), pp. 405–413.
doi: 10.1016/S0031-3203(99)00216-2. url: http://dx.doi.org/10.1016/S0031-
3203(99)00216-2.

[94] Sariel Har-Peled. Geometric approximation algorithms. 173. American Mathematical
Soc., 2011.

[95] Sariel Har-Peled and Akash Kushal. “Smaller Coresets for k-Median and k-Means
Clustering”. In: Discrete & Computational Geometry 37.1 (2007), pp. 3–19.

[96] Sariel Har-Peled and Soham Mazumdar. “On coresets for k-means and k-median clus-
tering”. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004. 2004, pp. 291–300.

[97] Sariel Har-Peled and Manor Mendel. “Fast construction of nets in low-dimensional
metrics and their applications”. In: SIAM Journal on Computing 35.5 (2006), pp. 1148–
1184.

[98] Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and Xuan Wu. “Epsilon-Coresets for
Clustering (with Outliers) in Doubling Metrics”. In: 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018.
2018, pp. 814–825. doi: 10.1109/FOCS.2018.00082. url: https://doi.org/10.
1109/FOCS.2018.00082.

[99] Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. “Coresets for Clus-
tering with Fairness Constraints”. In: Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada. 2019, pp. 7587–7598.
url: http://papers.nips.cc/paper/8976-coresets-for-clustering-with-
fairness-constraints.

[100] Lingxiao Huang and Nisheeth K. Vishnoi. “Coresets for clustering in Euclidean spaces:
importance sampling is nearly optimal”. In: Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June
22-26, 2020. Ed. by Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy. ACM, 2020, pp. 1416–1429. doi: 10.1145/
3357713.3384296. url: https://doi.org/10.1145/3357713.3384296.

[101] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. “Coresets for scalable
Bayesian logistic regression”. In: Advances in Neural Information Processing Systems.
2016, pp. 4080–4088.

264

https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1006/jagm.1998.0993
http://dx.doi.org/10.1006/jagm.1998.0993
http://arxiv.org/abs/0809.2554
http://arxiv.org/abs/0809.2554
https://doi.org/10.1016/S0031-3203(99)00216-2
http://dx.doi.org/10.1016/S0031-3203(99)00216-2
http://dx.doi.org/10.1016/S0031-3203(99)00216-2
https://doi.org/10.1109/FOCS.2018.00082
https://doi.org/10.1109/FOCS.2018.00082
https://doi.org/10.1109/FOCS.2018.00082
http://papers.nips.cc/paper/8976-coresets-for-clustering-with-fairness-constraints
http://papers.nips.cc/paper/8976-coresets-for-clustering-with-fairness-constraints
https://doi.org/10.1145/3357713.3384296
https://doi.org/10.1145/3357713.3384296
https://doi.org/10.1145/3357713.3384296

Bibliography

[102] Mary Inaba, Naoki Katoh, and Hiroshi Imai. “Applications of Weighted Voronoi Di-
agrams and Randomization to Variance-Based k -Clustering (Extended Abstract)”.
In: Proceedings of the Tenth Annual Symposium on Computational Geometry, Stony
Brook, New York, USA, June 6-8, 1994. 1994, pp. 332–339. doi: 10.1145/177424.
178042. url: https://doi.org/10.1145/177424.178042.

[103] Piotr Indyk, Sepideh Mahabadi, Shayan Oveis Gharan, and Alireza Rezaei. “Com-
posable Core-sets for Determinant Maximization Problems via Spectral Spanners”.
In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, Salt Lake City, UT, USA, January 5-8, 2020. Ed. by Shuchi Chawla. SIAM,
2020, pp. 1675–1694. doi: 10.1137/1.9781611975994.103. url: https://doi.org/
10.1137/1.9781611975994.103.

[104] Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab S. Mirrokni. “Com-
posable core-sets for diversity and coverage maximization”. In: Proceedings of the
33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS’14, Snowbird, UT, USA, June 22-27, 2014. Ed. by Richard Hull and
Martin Grohe. ACM, 2014, pp. 100–108. doi: 10.1145/2594538.2594560. url:
https://doi.org/10.1145/2594538.2594560.

[105] INSEE. Moyenne : définition. Institut National de la Statistique et des Études Économiques,
https : / / www . insee . fr / fr / metadonnees / definition / c1970, consulted on
04/25/2022.

[106] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. “Dryad:
distributed data-parallel programs from sequential building blocks”. In: ACM SIGOPS
operating systems review. Vol. 41. 3. ACM. 2007, pp. 59–72.

[107] Roger Iyengar, Joseph P. Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and
Lun Wang. “Towards Practical Differentially Private Convex Optimization”. In: 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019. IEEE, 2019, pp. 299–316.

[108] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V
Vazirani. “Greedy facility location algorithms analyzed using dual fitting with factor-
revealing LP”. In: Journal of the ACM (JACM) 50.6 (2003), pp. 795–824.

[109] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth
Silverman, and Angela Y Wu. “A local search approximation algorithm for k-means
clustering”. In: Computational Geometry 28.2-3 (2004), pp. 89–112.

[110] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. “A model of computation
for MapReduce”. In: Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms. SIAM. 2010, pp. 938–948.

[111] Manohar Kaul, Bin Yang, and Christian S. Jensen. “Building Accurate 3D Spatial
Networks to Enable Next Generation Intelligent Transportation Systems”. In: 2013
IEEE 14th International Conference on Mobile Data Management, Milan, Italy, June
3-6, 2013 - Volume 1. 2013, pp. 137–146. doi: 10.1109/MDM.2013.24. url: https:
//doi.org/10.1109/MDM.2013.24.

[112] Stavros G Kolliopoulos and Satish Rao. “A nearly linear-time approximation scheme
for the Euclidean k-median problem”. In: SIAM Journal on Computing 37.3 (2007),
pp. 757–782.

[113] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. “Constant approximation for k-
median and k-means with outliers via iterative rounding”. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing. ACM. 2018, pp. 646–
659.

265

https://doi.org/10.1145/177424.178042
https://doi.org/10.1145/177424.178042
https://doi.org/10.1145/177424.178042
https://doi.org/10.1137/1.9781611975994.103
https://doi.org/10.1137/1.9781611975994.103
https://doi.org/10.1137/1.9781611975994.103
https://doi.org/10.1145/2594538.2594560
https://doi.org/10.1145/2594538.2594560
https://www.insee.fr/fr/metadonnees/definition/c1970
https://doi.org/10.1109/MDM.2013.24
https://doi.org/10.1109/MDM.2013.24
https://doi.org/10.1109/MDM.2013.24

Bibliography

[114] Amit Kumar and Ravindran Kannan. “Clustering with Spectral Norm and the k-
Means Algorithm”. In: 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. 2010, pp. 299–
308. doi: 10.1109/FOCS.2010.35. url: http://dx.doi.org/10.1109/FOCS.2010.
35.

[115] Michael Langberg and Leonard J. Schulman. “Universal ε-approximators for Inte-
grals”. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010. 2010, pp. 598–
607.

[116] Kasper Green Larsen and Jelani Nelson. “Optimality of the Johnson-Lindenstrauss
Lemma”. In: 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. 2017, pp. 633–638. doi: 10.
1109/FOCS.2017.64. url: https://doi.org/10.1109/FOCS.2017.64.

[117] Silvio Lattanzi and Christian Sohler. “A better k-means++ algorithm via local search”.
In: International Conference on Machine Learning. PMLR. 2019, pp. 3662–3671.

[118] Jasper C. H. Lee and Paul Valiant. “Optimal Sub-Gaussian Mean Estimation in R”.
In: 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022. IEEE, 2021, pp. 672–683. url: https://
doi.org/10.1109/FOCS52979.2021.00071.

[119] Shi Li. “A 1.488 approximation algorithm for the uncapacitated facility location prob-
lem”. In: Inf. Comput. 222 (2013), pp. 45–58.

[120] Yi Li and Philip M. Long. “Learnability and the doubling dimension”. In: Advances
in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 4-7, 2006. 2006, pp. 889–896. url: http://papers.nips.cc/
paper/3068-learnability-and-the-doubling-dimension.

[121] Yi Li, Philip M. Long, and Aravind Srinivasan. “Improved Bounds on the Sample
Complexity of Learning”. In: J. Comput. Syst. Sci. 62.3 (2001), pp. 516–527. doi:
10.1006/jcss.2000.1741. url: https://doi.org/10.1006/jcss.2000.1741.

[122] Chen Liao and Shiyan Hu. “Polynomial time approximation schemes for minimum
disk cover problems”. In: Journal of combinatorial optimization 20.4 (2010), pp. 399–
412.

[123] Stuart Lloyd. “Least squares quantization in PCM”. In: IEEE transactions on infor-
mation theory 28.2 (1982), pp. 129–137.

[124] Zhigang Lu and Hong Shen. “Differentially Private k-Means Clustering with Guar-
anteed Convergence”. In: CoRR abs/2002.01043 (2020). url: https://arxiv.org/
abs/2002.01043.

[125] Gábor Lugosi and Shahar Mendelson. “Mean Estimation and Regression Under Heavy-
Tailed Distributions: A Survey”. In: Found. Comput. Math. 19.5 (2019), pp. 1145–
1190. doi: 10.1007/s10208- 019- 09427- x. url: https://doi.org/10.1007/

s10208-019-09427-x.

[126] Alaa Maalouf, Ibrahim Jubran, and Dan Feldman. “Fast and accurate least-mean-
squares solvers”. In: Advances in Neural Information Processing Systems. 2019, pp. 8307–
8318.

266

https://doi.org/10.1109/FOCS.2010.35
http://dx.doi.org/10.1109/FOCS.2010.35
http://dx.doi.org/10.1109/FOCS.2010.35
https://doi.org/10.1109/FOCS.2017.64
https://doi.org/10.1109/FOCS.2017.64
https://doi.org/10.1109/FOCS.2017.64
https://doi.org/10.1109/FOCS52979.2021.00071
https://doi.org/10.1109/FOCS52979.2021.00071
http://papers.nips.cc/paper/3068-learnability-and-the-doubling-dimension
http://papers.nips.cc/paper/3068-learnability-and-the-doubling-dimension
https://doi.org/10.1006/jcss.2000.1741
https://doi.org/10.1006/jcss.2000.1741
https://arxiv.org/abs/2002.01043
https://arxiv.org/abs/2002.01043
https://doi.org/10.1007/s10208-019-09427-x
https://doi.org/10.1007/s10208-019-09427-x
https://doi.org/10.1007/s10208-019-09427-x

Bibliography

[127] Sepideh Mahabadi, Konstantin Makarychev, Yury Makarychev, and Ilya P. Razen-
shteyn. “Nonlinear dimension reduction via outer Bi-Lipschitz extensions”. In: Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 2018, pp. 1088–1101. doi:
10 . 1145 / 3188745 . 3188828. url: http : / / doi . acm . org / 10 . 1145 / 3188745 .

3188828.

[128] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. “The planar
k-means problem is NP-hard”. In: Theor. Comput. Sci. 442 (2012), pp. 13–21.

[129] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. “Performance of
Johnson-Lindenstrauss transform for k -means and k -medians clustering”. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019. 2019, pp. 1027–1038. doi: 10.1145/
3313276.3316350. url: https://doi.org/10.1145/3313276.3316350.

[130] Konstantin Makarychev, Aravind Reddy, and Liren Shan. “Improved Guarantees for
k-means++ and k-means++ Parallel”. In: Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. 2020. url: https:
//proceedings.neurips.cc/paper/2020/hash/ba304f3809ed31d0ad97b5a2b5df2a39-

Abstract.html.

[131] Yair Marom and Dan Feldman. “k-Means Clustering of Lines for Big Data”. In: Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett. 2019, pp. 12797–12806. url:
https://proceedings.neurips.cc/paper/2019/hash/6084e82a08cb979cf75ae28aed37ecd4-

Abstract.html.

[132] Dániel Marx and Micha l Pilipczuk. “Optimal parameterized algorithms for planar fa-
cility location problems using Voronoi diagrams”. In: Algorithms-ESA 2015. Springer,
2015, pp. 865–877.

[133] Shigeru Masuyama, Toshihide Ibaraki, and Toshiharu Hasegawa. “The computational
complexity of the m-center problems on the plane”. In: IEICE TRANSACTIONS
(1976-1990) 64.2 (1981), pp. 57–64.

[134] Jiŕı Matousek. “On Approximate Geometric k-Clustering”. In: Discrete & Computa-
tional Geometry 24.1 (2000), pp. 61–84. doi: 10.1007/s004540010019. url: http:
//dx.doi.org/10.1007/s004540010019.

[135] Nimrod Megiddo and Kenneth J Supowit. “On the complexity of some common ge-
ometric location problems”. In: SIAM journal on computing 13.1 (1984), pp. 182–
196.

[136] Ramgopal R. Mettu and C. Greg Plaxton. “Optimal Time Bounds for Approximate
Clustering”. In: Mach. Learn. 56.1-3 (2004), pp. 35–60. doi: 10 . 1023 / B : MACH .

0000033114.18632.e0. url: https://doi.org/10.1023/B:MACH.0000033114.
18632.e0.

[137] Adam Meyerson, Liadan O’callaghan, and Serge Plotkin. “A k-median algorithm with
running time independent of data size”. In: Machine Learning 56.1 (2004), pp. 61–87.

[138] Glenn W Milligan. “An examination of the effect of six types of error perturbation
on fifteen clustering algorithms”. In: psychometrika 45.3 (1980), pp. 325–342.

[139] Joseph SB Mitchell. “Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems”. In: SIAM Journal on computing 28.4 (1999), pp. 1298–1309.

267

https://doi.org/10.1145/3188745.3188828
http://doi.acm.org/10.1145/3188745.3188828
http://doi.acm.org/10.1145/3188745.3188828
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1145/3313276.3316350
https://proceedings.neurips.cc/paper/2020/hash/ba304f3809ed31d0ad97b5a2b5df2a39-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ba304f3809ed31d0ad97b5a2b5df2a39-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ba304f3809ed31d0ad97b5a2b5df2a39-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6084e82a08cb979cf75ae28aed37ecd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6084e82a08cb979cf75ae28aed37ecd4-Abstract.html
https://doi.org/10.1007/s004540010019
http://dx.doi.org/10.1007/s004540010019
http://dx.doi.org/10.1007/s004540010019
https://doi.org/10.1023/B:MACH.0000033114.18632.e0
https://doi.org/10.1023/B:MACH.0000033114.18632.e0
https://doi.org/10.1023/B:MACH.0000033114.18632.e0
https://doi.org/10.1023/B:MACH.0000033114.18632.e0

Bibliography

[140] Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler.
“GUPT: privacy preserving data analysis made easy”. In: Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. 2012, pp. 349–
360.

[141] Alejandro Molina, Alexander Munteanu, and Kristian Kersting. “Core Dependency
Networks”. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-
ligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila A.
McIlraith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 3820–3827. url: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16847.

[142] Le Monde. Pour Emmanuel Macron, l’intelligence artificielle est aussi “une révolution
politique”. https : / / www . lemonde . fr / pixels / article / 2018 / 03 / 31 / pour -

emmanuel-macron-l-intelligence-artificielle-est-aussi-une-revolution-

politique_5279161_4408996.html, consulted on 04/26/2022.

[143] Alexander Munteanu and Chris Schwiegelshohn. “Coresets-Methods and History: A
Theoreticians Design Pattern for Approximation and Streaming Algorithms”. In:
Künstliche Intell. 32.1 (2018), pp. 37–53. doi: 10.1007/s13218-017-0519-3. url:
https://doi.org/10.1007/s13218-017-0519-3.

[144] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Woodruff.
“On Coresets for Logistic Regression”. In: Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio, Hanna
M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett. 2018, pp. 6562–6571.

[145] Shyam Narayanan and Jelani Nelson. “Optimal terminal dimensionality reduction
in Euclidean space”. In: Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. Ed.
by Moses Charikar and Edith Cohen. ACM, 2019, pp. 1064–1069. doi: 10.1145/

3313276.3316307. url: https://doi.org/10.1145/3313276.3316307.

[146] Huy L. Nguyen, Anamay Chaturvedi, and Eric Z. Xu. “Differentially Private k-Means
via Exponential Mechanism and Max Cover”. In: (2021), pp. 9101–9108. url: https:
//ojs.aaai.org/index.php/AAAI/article/view/17099.

[147] Richard Nock, Raphaël Canyasse, Roksana Boreli, and Frank Nielsen. “k-variates++:
more pluses in the k-means++”. In: Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. Ed.
by Maria-Florina Balcan and Kilian Q. Weinberger. Vol. 48. JMLR Workshop and
Conference Proceedings. JMLR.org, 2016, pp. 145–154.

[148] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. “The effectiveness of Lloyd-
type methods for the k-means problem”. In: J. ACM 59.6 (2012), p. 28. doi: 10.
1145/2395116.2395117. url: http://doi.acm.org/10.1145/2395116.2395117.

[149] Tamás Sarlós. “Improved Approximation Algorithms for Large Matrices via Random
Projections”. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 2006, pp. 143–152.

[150] Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. “Fair Coresets and
Streaming Algorithms for Fair k-means”. In: Approximation and Online Algorithms
- 17th International Workshop, WAOA 2019, Munich, Germany, September 12-13,
2019, Revised Selected Papers. 2019, pp. 232–251. doi: 10.1007/978-3-030-39479-
0_16. url: https://doi.org/10.1007/978-3-030-39479-0_16.

268

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16847
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16847
https://www.lemonde.fr/pixels/article/2018/03/31/pour-emmanuel-macron-l-intelligence-artificielle-est-aussi-une-revolution-politique_5279161_4408996.html
https://www.lemonde.fr/pixels/article/2018/03/31/pour-emmanuel-macron-l-intelligence-artificielle-est-aussi-une-revolution-politique_5279161_4408996.html
https://www.lemonde.fr/pixels/article/2018/03/31/pour-emmanuel-macron-l-intelligence-artificielle-est-aussi-une-revolution-politique_5279161_4408996.html
https://doi.org/10.1007/s13218-017-0519-3
https://doi.org/10.1007/s13218-017-0519-3
https://doi.org/10.1145/3313276.3316307
https://doi.org/10.1145/3313276.3316307
https://doi.org/10.1145/3313276.3316307
https://ojs.aaai.org/index.php/AAAI/article/view/17099
https://ojs.aaai.org/index.php/AAAI/article/view/17099
https://doi.org/10.1145/2395116.2395117
https://doi.org/10.1145/2395116.2395117
http://doi.acm.org/10.1145/2395116.2395117
https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.1007/978-3-030-39479-0_16
https://doi.org/10.1007/978-3-030-39479-0_16

Bibliography

[151] Christian Sohler and David P. Woodruff. “Strong Coresets for k-Median and Subspace
Approximation: Goodbye Dimension”. In: 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018. 2018,
pp. 802–813. doi: 10.1109/FOCS.2018.00081. url: https://doi.org/10.1109/
FOCS.2018.00081.

[152] Hugo Steinhaus. “Sur la division des corps matériels en parties”. In: Bull. Acad. Polon.
Sci. Cl. III. (1956), 801–804.

[153] Uri Stemmer and Haim Kaplan. “Differentially Private k-Means with Constant Mul-
tiplicative Error”. In: Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. 2018,
pp. 5436–5446. url: https : / / proceedings . neurips . cc / paper / 2018 / hash /

32b991e5d77ad140559ffb95522992d0-Abstract.html.

[154] Michel Talagrand et al. “Majorizing measures: the generic chaining”. In: The Annals
of Probability 24.3 (1996), pp. 1049–1103.

[155] K. Talwar. “Bypassing the embedding: algorithms for low dimensional metrics”. In:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing. ACM.
2004, pp. 281–290. doi: 10.1145/1007352.1007399.

[156] Mikkel Thorup. “Quick k-median, k-center, and facility location for sparse graphs”.
In: SIAM Journal on Computing 34.2 (2005), pp. 405–432.

[157] Kasturi Varadarajan and Xin Xiao. “On the Sensitivity of Shape Fitting Problems”.
In: IARCS Annual Conference on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS 2012). Ed. by Deepak D’Souza, Telikepalli Kavitha,
and Jaikumar Radhakrishnan. Vol. 18. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2012, pp. 486–497. isbn: 978-3-939897-47-7. doi: 10.4230/LIPIcs.FSTTCS.2012.486.
url: https://drops.dagstuhl.de/opus/volltexte/2012/3883.

[158] Andrea Vattani. “K-means requires exponentially many iterations even in the plane”.
In: Discrete & Computational Geometry 45.4 (2011), pp. 596–616.

[159] Jeffrey Scott Vitter. “Random Sampling with a Reservoir”. In: ACM Trans. Math.
Softw. 11.1 (1985), pp. 37–57. doi: 10.1145/3147.3165. url: https://doi.org/10.
1145/3147.3165.

[160] Dennis Wei. “A Constant-Factor Bi-Criteria Approximation Guarantee for k-means++”.
In: Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.
Ed. by Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett. 2016, pp. 604–612.

[161] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[162] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. “Spark: Cluster computing with working sets.” In: HotCloud 10.10-10 (2010),
p. 95.

269

https://doi.org/10.1109/FOCS.2018.00081
https://doi.org/10.1109/FOCS.2018.00081
https://doi.org/10.1109/FOCS.2018.00081
https://proceedings.neurips.cc/paper/2018/hash/32b991e5d77ad140559ffb95522992d0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/32b991e5d77ad140559ffb95522992d0-Abstract.html
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.486
https://drops.dagstuhl.de/opus/volltexte/2012/3883
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165

	Acknowledgments
	General Introduction
	Beyond a Single Representative: k-means and k-median
	part:1: Growing Roots and Going Through the Trees
	part:2: Coping with Big Data
	Broad Background
	Our Contribution, Chapter by Chapter
	How to Read this Thesis

	Publications of the Author
	Preliminaries: Notations and Useful Results.
	I Approximation Algorithm via Embeddings Into Tree-like Structures
	Presentation of the Results and Challenges
	Results Presented in the Part
	Using Ultrametrics for Squared Distances

	Approximation Schemes for Clustering in Doubling Metrics
	Introduction and Sketch of Proofs
	Preliminaries
	Near-Linear Time Approximation Scheme for Facility Location
	The (k, z)-Clustering Problem
	Other Applications of the Framework
	Conclusions
	Omitted Proofs

	Scalable Differentially Private Clustering via Quadtrees
	Introduction
	Preliminaries
	Simple algorithm for Differentially Private k-Median
	MPC Implementations
	Extension to k-Means
	Empirical Evaluation for k-Median
	Conclusion

	II Coreset and Sketches for Clustering
	Presentation of our Results and Overview of the Techniques
	Introduction
	Brief description of Chen's Coreset
	VC-dimension: Coresets independent of the size of the input
	Further Related Work

	A New Coreset Framework for Clustering
	Overview of Our Techniques
	The Coreset Construction Algorithm, and Proof of Theorem 5.3
	Sampling inside Groups: Proof of Lemma 6.4
	Dealing with the Few Far points: Sampling from Outer Rings
	Partitioning into Well Structured Groups: Proof of coresetub:lem:preprocess
	A Coreset of Size k2-2

	New Coreset Bounds for Various Metric Spaces
	Overview of our Techniques
	Metrics with Bounded Doubling Dimension
	Graphs with Bounded Treewidth
	Planar Graphs
	Minor-Excluded Graphs
	Euclidean Spaces

	Lower Bounds for Coreset
	Introduction
	A subinstance for the case k=1
	Combining the subinstances

	Deterministic Sketches for Clustering
	Introduction and Key Challenges
	Deterministic Coresets and Partition Coresets for (k,z)-Clustering
	Derandomized Dimension Reduction
	Deterministic Coreset via Uniform VC-Dimension
	Witness Sets
	Computing Approximate Solutions
	Omitted Proofs

	Sublinear Algorithms for Power Mean in Euclidean Spaces
	Introduction
	Sublinear Algorithm and Analysis
	Proof of sublinear:thm:main
	A Brief Note on the MPC Algorithm From sec:kmedMPC
	Probability Amplification
	Lower bound
	Experiments

	Conclusion and Open Questions
	Bibliography

