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Résumé

La blockchain peut être définie comme un système distribué qui doit syn-
chroniser létat actuel de la chaine ent re tous les nuds qui font partie du
réseau. Ce processus de réplication de la blockchain est résolu de différentes
manières selon le niveau danonymat utilisé par le système. Dans le cas de
Bitcoin, la blockchain la plus connue, cest un réseau dit «permissionless »qui
assure le complet anonymat de ses utilisateurs. Dans ce cadre, lalgorithme
proposé par Nakamoto utilise un nouveau mécanisme de consensus pour
faire la mise à jour de la blockchain basé sur un puzzle cryptographique
dit «Preuve de travail »( «Proof of Work »). Plusieurs propriétés de la
blockchain ont été développées et éprouvées comme le préfixe commun et la
qualité de la chaîne dans un réseau synchrone, la vivacité et la consistance
dans un réseau asynchrone ainsi que la prévention contre des attaques «sybil
». Cependant, il reste à mener un travail important de recherche sur la con-
fidentialité de données pour dautres architectures de la blockachain, comme
par exemple celle de : permissioned. En effet, la blockchain permissioned
noffre pas lanonymat offert par le Bitcoin. Ainsi, il manque des mécanismes
pour assurer la confidentialité de lidentité des utilisateurs. De plus, la tech-
nologie blockchain doit sadapter au nouveau règlement général européen sur
la protection des données (RGPD) imposant un nouveau cadre pour la gou-
vernance des données, pour que les propriétés de cette technologie, comme
limmuabilité, soient compatibles avec la nouvelle réglementation.

Bien que les défis liés à la confidentialité de l’utilisateur et à la gou-
vernance des données soient importants, les principaux cas d’usage de la
blockchain sont les crypto-investissements et la spéculation sur les actifs
numériques, et non les services impliquant des données personnelles. Même
dans le domaine des crypto-monnaies, il n’y a pas de travaux de recherche
étendus qui abordent les nouveaux problèmes économiques auxquels nous
sommes confrontés, qui permettraient le développement de crypto-monnaies
pour les économies locales ou circulaires.

Cette thèse aborde les problèmes de sécurité, de confidentialité et des
barrières économiques auxquels fait face la mise en uvre de la blockchain
pour assurer la confidentialité des utilisateurs, la gouvernance des données,
l’offuscation des logiciels et développer des modèles de crypto-monnaies pour
les économies circulaires. Après avoir introduit la blockchain et la cryptogra-
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phie moderne, ils se présentent trois principaux résultats de recherche : un
nouveau protocole de consensus qui préserve la confidentialité des utilisa-
teurs, un nouveau schéma de vote électronique confidentiel utilisant une
blockchain permissioned et un protocole doffuscation de graphiques de flux
de contrôle pour la confidentialité des logiciels. Enfin, la troisième partie de
la thèse comprend deux résultats de recherche appliquée avec deux proto-
types de systèmes blockchain répondant aux problématiques posées par la
gouvernance des données et les crypto-monnaies.

La première partie de cette thèse décrit un bref historique de la technolo-
gie autour de la blockchain et son évolution jusqu’à arriver à sa première
implémentation (le Bitcoin). Ensuite, sont introduits les principaux sujets
sur la cryptographie moderne utilisés dans cette thèse. La deuxième partie
commence par un nouvel algorithme de consensus qui préserve la confiden-
tialité pour la blockchain permissioned. La principale contribution de ce tra-
vail est une construction générale de signature aveugle pour la dissociation
des transactions intégrée à un consensus basé sur le BFT pour la validation
des transactions et des blocs. Le deuxième résultat correspond à un nouveau
schéma de vote électronique pour la blockchain permissioned. Ce travail a
propose un nouveau consensus de préservation de la confidentialité basé sur
la signature aveugle d’Okamoto-Schnorr pour la dissociation des transac-
tions et la courbe elliptique pour la confidentialité des votes. Enfin, il est
présenté un nouveau mécanisme d’offuscation de graphes de flux de contrôle
pour la confidentialité du source code des logiciels (par exemple, pour les
contrats intelligents). La troisième partie présente deux implémentations de
la blockchain. Le premier est une nouvelle implémentation de la norme de
jeton ERC20 et une marketplace sur Hyperledger Fabric pour les économies
circulaires supportées par le recyclage du plastique. Le second est un pro-
totype de blockchain pour la gouvernance des données dans l’échange de
données de santé selon le RGPD automatisé avec des contrats intelligents.



Abstract

Blockchain can be defined as a distributed system that synchronizes the
current state into all the nodes that are part of the network. This repli-
cation process of the blockchain is solved differently according to the level
of anonymity used by the system. In the case of Bitcoin, the best-known
blockchain implementation, it is configured as a Permissionless network that
assures the complete anonymity of its users. In this scenario, Nakamotos
algorithm presents a novel consensus mechanism to update the blockchain
based on a cryptographic puzzle or Proof of Work. Some properties of the
Bitcoin protocol have been studied and proved, such as the common pre-
fix and chain quality in a synchronous network, liveness and consistency in
an asynchronous network, and prevention against Sybil attacks. However,
research work on user and data privacy for other blockchain architecture,
i.e. permissionless, has not been addressed comprehensively. Moreover, in
Permissioned blockchain, the anonymity offered by Bitcoin does not exist.
Hence, there is a lack of privacy-preserving mechanisms to ensure the iden-
tity privacy of the user. In addition, blockchain has been confronted with
the new European General Data Protection Regulation (GDPR), which has
imposed a new framework for data governance, making it very difficult to
reconcile the new data regulation with blockchain’s most important features,
the immutability.

Although the challenges related to the user’s confidentiality and data
governance are significant, the most relevant use cases for blockchain are
the crypto-investment and assets speculation, and not services that involve
personal data. Nevertheless, even in the cryptocurrencies field, no compre-
hensive research work addresses the new economic problems we face, like
cryptocurrencies for local or circular economies.

This thesis addresses the security, privacy, and economic barriers to im-
plementing blockchain for user’s privacy, data governance, software obfus-
cation and cryptocurrencies models for circular economies. The first part
of this thesis covers the preliminaries about blockchain and modern cryp-
tography. The second part presents three main results concerning privacy-
preserving consensus, privacy in electronic voting with permissioned blockchain,
and control-flow graph obfuscation for software confidentiality. Finally, the
third part includes two results based on applied research work with two
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prototypes of blockchain systems for data governance and cryptocurrencies.
The first part of this thesis describes a brief history of the technology

around blockchain and its evolution until arriving at the first blockchain
implementation (Bitcoin). Then, the most relevant topics on Modern Cryp-
tography used in this thesis are introduced.

The second part begins with a new privacy-preserving consensus algo-
rithm for permissioned blockchain. The main contribution of this work is
a general construction of blind signature for transaction unlinkability in-
tegrated to a BFT-based consensus for transactions and blocks validation.
The second result corresponds to a new electronic voting scheme for permis-
sioned blockchain. This work proposed a new privacy-preserving consensus
based on Okamoto-Schnorr blind signature for transaction unlinkability and
elliptic curve for vote privacy. Finally, a new control-flow graph obfuscation
mechanism for software confidentially (e.i for smart contracts) is presented.

The third part presents two blockchain implementations. The first is a
novel implementation of the ERC20 token standard and a Marketplace on
Hyperledger Fabric for circular economies based on plastic recycling. The
second one is a blockchain prototype for data governance in healthcare data
exchange according to GDPR automatised using smart contracts.
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Blockchain technology can be defined as a distributed database that is
based on records organized as a chain of blocks. A peer-to-peer network
performs the management, updates, operation, and governance of this dis-
tributed database. One of the main characteristics of blockchain is its resis-
tance to malicious modifications. This high-security property is reached by
using block timestamp and hash pointers that link the last block of the chain
to the previous one and a strong mechanism to prevent malicious peers from
adding new blocks to the chain. The blockchain’s design implies that any
modification made to a block forces the regeneration of the next blocks at-
tached to the chain. This exhaustive process is extremely difficult to achieve.
The addition of new blocks in the chain corresponds to the replication of
system world state and ensures that the blockchain is continuously updated.
This process is called consensus, and a large number of algorithms based on
different cryptographic challenges or economic penalties are currently avail-
able. Consensus provides the certainty that only an honest node will update

15
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the main chain. The process for selecting the honest node that has the right
to add a new block will depend on the type of blockchain implementation.
The most popular consensus technique in the blockchain is Proof-of-Work,
which solves a cryptographic puzzle [Nak08]. Other consensus schemes
are based on the number of their assets, such as Proof-of-Stake [KN12] or
the agreement between the network peers in a democratic scheme such as
PBFT [CL99].

This chapter will cover a brief introduction of blockchain, starting from
its birth and its evolution until today, to then describe the main charac-
teristics and architecture of the permissionless (public) and permissioned
(private) blockchain.

1.1 The Birth of Blockchain

Distributed systems have been studied in the research field since long before
the blockchain arrival. For example, the idea of chaining blocks with a
cryptographic hash function for data immutability was proposed by Ralph
Merkle in his PhD dissertation, in 1978 [Mer79]. Merkle showed in this work
that the information could be linked efficently organising the data in a tree
structure. In the same year, David Chaum proposed that it is possible to
create a trustful system based on a network of peers who do not trust one
another [Cha79]. The building blocks of this system include physically secure
"vaults," existing cryptographic primitives (symmetric, asymmetric and hash
cryptographic functions), and a new primitive called Chaum-threshold secret
sharing. In this system, each vault is responsible for signing, recording and
broadcasting all the transaction processed by each one.

By the end of the 80s, Dwork, Lynch and Stockmeyer had shown the
capacity of solving consensus in a broad family of "partially synchronous"
systems [DLS88] in other to allow that a distributed system agreed on a
result or message. Then, in 1990 Haber and Stornetta proposed a practi-
cal solution for time-stamping digital documents so that they could not be
backdated, modified or damaged [HS90]. The system used a cryptographic
chain of blocks to store the time-stamped documents. Then, in 1992 they
added to the design the Merkle tree construction, making it more efficient by
enabling many documents to be gathered into one block [BHS93a]. Later,
In 1999, Castro and Liskov have proposed an efficient new data replication
algorithm capable of resisting Byzantine faults in an asynchronous environ-
ment [CL99].

In late 2008 a white paper called Bitcoin: A Peer-to-Peer Electronic Cash
System [Nak08] was published in a cryptography mailing list by a person or
group of users using the pseudonym Satoshi Nakamoto. This white paper
described an electronic cash system that allows online payments between
peers without needing a central authority for the settlement process. The
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white paper argues that the system is capable of solving double-spending
by using the peer-to-peer network protocol. The network timestamps each
transaction by hashing and keeping them in a chain of blocks generated by
using a Proof-of-Work (PoW) algorithm. This PoW is based on the Hash-
cash proof-of-work algorithm proposed in 1997 but formalised in a paper in
2002 [B+02]. The idea of this Proof-of-Work is that one individual peer con-
nected to the network can propose a new block with the transactions, and
the rest of them are responsible for validating it. Thus, the first peer that
calculates the Proof-of-Work is the one who wins the capacity to propose a
new block and be rewarded for this work.

On the 3rd of January 2009, the Bitcoin came alive after the first mined
block was appended to the chain. Satoshi Nakamoto mined the first block,
and he was rewarded with 50 bitcoins. The first Bitcoin recipient was Hal
Finney, who received ten bitcoins from Satoshi Nakamoto in the world’s first
bitcoin transaction on the 12th of January 2009.

In 2013, programmer and co-founder of the bitcoin magazine Vitalik Bu-
terin exposed the bitcoin community with the need for a scripting language
to build applications running on top of a blockchain network. After this, he
started with the Ethereum project for building a new distributed computing
system based on blockchain with the scripting functionality to create dis-
tributed applications, called smart contracts. In the beginning, the smart
contracts were distributed programs or scripts that were deployed and exe-
cuted on the Ethereum blockchain; they can be used to make a transaction
if certain conditions are met. Smart contracts are written in specific pro-
gramming languages and compiled into bytecode. These applications are
executed on top of the Ethereum Virtual Machine (EVM), a decentralized
Turing-complete virtual machine [Woo14]. Nowadays, we can see the use of
smart contracts in different blockchain platforms.

The main principle of the EVM is to allow developers to create and
publish applications that run inside Ethereum blockchain. These applica-
tions are also called decentralized applications or DApps. Nowadays, there
are more than hundreds of DApps running in the Ethereum blockchain,
including social media platforms, gambling applications, and financial ex-
changes. Additionally, Ethereum has its native cryptocurrency (like bitcoin)
called Ether. This cryptocurrency can be transferred between accounts and
is used to pay the fees for the computational power used when executing
smart contracts.

The history of blockchain is recent; however, the blockchain backbones
have been proposed long before Satoshi Nakamoto has published the Bitcoin
White paper. The Table 1.1 presents a timeline of the evolution of some
cryptographic discoveries until the first blockchains systems have disrupted
our technological ecosystem.

Today blockchain technology is gaining a lot of mainstream attention
and is already used in various applications, not limited to cryptocurrencies.
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Table 1.1: Timeline of the technological evolution of blockchain

1978 · · · · · ·• Merkle, Cryptographic
puzzles [Mer79].

1979 · · · · · ·• Chaum, Vaults and secret
sharing [Cha79].

1988 · · · · · ·• Dwork and Stockmeyer,
Soliving consensus [DLS88].

1990 · · · · · ·•
Haber and Stornetta ,
Time-stamping digital
documents [HS90].

1999 · · · · · ·• Castro and Liskov,
PBFT [CL99].

2002 · · · · · ·• Back, Hashcash [B+02].

2008 · · · · · ·• Nakamoto, Bitcoin [Nak08].

2015 · · · · · ·• Buterin, Ethereum[Woo14].
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Additionally, today there are several blockchain platforms based on different
architectures (permissionless and permissioned). The following sections of
this chapter cover the fundamental aspect of blockchain.

1.2 Blockchain Fundamentals
Blockchain is a secure and distributed ledger that sorts the transactions
records hierarchically into a growing chain of blocks. The blocks keep the
integrity of the records based on cryptographic hashes that link the list of
transactions (information) with the blocks appended to the same chain. In
addition to information about transaction records and their respective hash
value, each block will keep a hash value of the block itself and the hash of
the previous block (See Figure 1.1). This model allows maintaining a cryp-
tographic fingerprint of the block (hash of the block) and a cryptographic
pointer to the previous block (hash of the last block appended to the chain).

Figure 1.1: Blockchain structure

Each peer will commit the new blocks upon successful competition of
the decentralized consensus procedure in the blockchain. The consensus
algorithm can vary depending on the blockchain architecture. However,
their main goal is always to enforce the blockchain platform’s security rules
and business logic. The main controls that the consensus enforce are the
proposal of new blocks into the blockchain, the read protocol for secure
verification of the blockchain, and finally, the consistency of the data records
included in each local version of the blockchain kept by each node.

As a result, the blockchain ensures that once a transaction record is
added inside of a block. The transaction cannot be modified or tampered
with; after this block has been successfully proposed, validated, and commit-
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ted into the chain. Thus, the data consistency in each block of the blockchain
is guaranteed, and the blocks, once committed into the blockchain, cannot be
easily modified. Hence, blockchain technology proposes a suitable solution
for a secure and distributed ledger, which archives all transactions between
any two parties of an open networked system effectively, persistently, and in
a verifiable manner.

Finally, the blockchain is a network that combines, in an elegant way,
different cryptographic components like hashes and signatures, techniques
from distributed systems like the consensus algorithm, and in some of them,
a new layer of abstraction that allows running distributed programs called
smart contracts.

1.2.1 The hashes

The hashes are a fundamental brick of blockchain technology. There are used
to prove the integrity of the blocks and create a link between consecutive
blocks that built the chain. Hence, it is possible to exemplify the use of the
hashes as the digital fingerprint of each ledger page (the block) and the glue
that assembly each ledger page (the chain).

The hash pointers: are used for chaining consecutive block. They are
used to points to the location in which the data is stored (see Figure 1.1).
Therefore, a hash pointer can be used to check whether or not the data
has been tampered with. The chain of blocks is created by pointing to the
predecessor block. The hash pointer indicates the address where the data
of the predecessor block is stored. Additionally, the hash of the stored data
can be publicly verified by users to prove that the stored data has not been
modified.

If an adversary tries to modify the data in any block belonging to the
chain, the adversary must change the hash pointers of the previous blocks to
hide the tampering. Therefore, the adversary needs to change all pointers
just to the first block (genesis block), which is generated once the system
has been created. This implies that the adversary needs to invest a lot of
resources to succeed in his attack. Finally, the hash pointers force the adver-
sary to rebuild the chain to succeed in his attack; otherwise, the tampering
will be uncovered.

The Merkle Tree: is a hash tree corresponding to a binary search tree
with its tree nodes linked to one another using hash pointers. Every leaf
node is tagged with a hash of a data block in the tree, and every non-leaf
node is tagged with the hash of the tags of its child nodes (see Figure 1.2).

One of the main features of the Merkle tree is to prevent data tampering
by searching down through the hash pointers to any node in the tree. More
precisely, when an adversary tries to modify the data at a leaf node, it will
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Figure 1.2: The Merkle tree

produce a change in the hash value of its parent node. Hence, even if the
adversary continues to modify the upper node, he needs to change all nodes
on the path until the top. Using the Merkle tree, it is easy to detect if the
data has been tampered with, since the hash pointer of the root node does
not match with the hash pointer stored.

1.2.2 The permissionless and permissioned architecture

Blockchain technology has evolved rapidly in the last few years, and cur-
rently, it is possible to find different types of blockchain network architec-
tures. These new architectures were born due to the different use cases and
ecosystems where it is possible to implement services based on blockchain.
The first official blockchain network was Bitcoin, which was designed to be
fully open for users and peers. Hence, anyone in Bitcoin can be part of the
network as an address owner for cryptocurrency trading or as a miner to be
part of the peers that maintain the network updated and running. However,
after some years, blockchain implementations in private companies turns the
idea from the fully permissionless blockchain into a new kind of architecture
called permissioned blockchain. This network architecture keeps the decen-
tralization configuration of the system; however, it restricts access to the
services running on the blockchain; for example, to be part of the consensus
or to read and write in the blockchain.

The permissionless architecture allows us to have public blockchains;
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however, in permissioned architecture, we can build different configurations
according to specific needs. In this case, we can configure a blockchain
network with all the nodes fully controlled by one organisation. This config-
uration is called a private blockchain. On the other hand, it is also possible
to configure a blockchain where the nodes belong to different organisations
or stakeholders. This configuration is called consortium blockchain. Hence,
the main three blockchain network architecture identified are categorized as
follow:

Permissionless blockchain: is a public blockchain implementation that
anyone can query, write and be part of the mining. This scheme lets anyone
with an address in the network (there is no identity linked to the address)
execute transactions. It is also open to anyone that wants to be part of
the blockchain processing services by running consensus protocol with the
proper hardware or using their own stakes. This openness implies that the
written content is readable by any peer. Nowadays, the most widely used
permissionless blockchains are Bitcoin and Ethereum.

Private blockchain: is permissioned blockchain implementation where
each network user must be enrolled in a central authority before joining it.
Additionally, in this configuration, the nodes are controlled by one organisa-
tion. Hence the maintenance and running of the blockchain network depend
on one entity. Read permissions may be public or restricted to an arbitrary
extent. Likely applications include database management, auditing, etc.,
internal to a single company, and so public readability may not be necessary
in many cases. Even though, in other cases, public auditability is desired.
The most widely known instance of permissioned blockchains is Hyperledger
Fabric.

Consortium blockchain: is also known as public permissioned blockchain.
This ledger is a hybrid implementation between a Permissionless and a Pri-
vate ledger. At the consensus level, the nodes responsible for maintaining
the blockchain are pre-selected and belong to different organisations. At
the users level, it may be fully open or private (i.e. users may be enrolled
through an administrator or CA). This will depend on the type of services
implemented in the blockchain. The specific configuration of each consor-
tium chain; for example: which nodes can authorize transactions via the
consensus process, which can review the history of the chain, which can cre-
ate new transactions, and among others, it is a decision of each individual
consortium.
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1.2.3 Smart contracts

A smart contract can be defined as a computer program designed to exe-
cute automatically, control or document events according to the terms of the
contract or the business logic implemented on it. Although this definition
applies to smart contracts in several contexts, there is no single definition.
For example, Roger Wattenhofer defines the smart contract as an agreement
between two or more parties, encoded so that the correct execution is guar-
anteed by the blockchain [Wat17]. In Ethereum, the smart contracts are
defined as [Sol18]:

A contract [...] is a collection of code (its functions) and data
(its state) that resides at a specific address on the Ethereum
blockchain

According to Hyperledger Fabric [Fab20] :

A smart contract can, for example, be written to stipulate
the cost of shipping an item that changes depending on when it
arrives. With the terms agreed to by both parties and written
to the ledger, the appropriate funds change hands automatically
when the item is received

Although there are several definitions of smart contracts, in this the-
sis, the smart contract is defined as decentralized applications (Dapp) that
allow developers to create programs that run on a blockchain and use the
computing power of the nodes connected to the blockchain network.

1.2.4 Consistency and liveness

There are several properties to consider in blockchain technology depending
on the application and the network’s architecture. However, there are two
main properties transverse to any blockchain platform to ensure the proper
functioning of the distributed network. In this thesis, those properties are
called Consistency and Liveness.

Consistency: The consistency definition is not unique. Some authors de-
fine consistency as the property that ensures that all the nodes have exactly
the same ledger at the same time. In this thesis, the definition of consis-
tency is related to the capacity to ensure that the records stay immutable
meanwhile the blockchain is growing. This means that the blockchain must
ensure that once the peers have committed a block, it cannot be modified
after a minimum number of blocks have been added to the chain. As it was
explained before, one of the mechanisms to avoid malicious modification in
a block is the point hashes, meaning that if an adversary wants to alter data
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in the last block appended to the chain, he does not need to modify the
whole chain. However, if the adversary wants to modify a block generated
several rounds before, he will be forced to rebuild the chain after the block
he tampered with to hide the attack. Therefore, it is possible to define the
consistency of the data stored in the ledger according to the amount of block
added to the chain afterwards.

In this thesis, consistency is defined as follows:

Definition 1.1. A protocol P is T−consistent if a transaction tx generated
by an honest client ccb to execute a valid operation obc, it is confirmed and
stays immutable in the blockchain after T − round of new blocks.

Liveness: The liveness property is crucial in the blockchain. One of the
main advantages of any distributed system is keeping the uptime or the
service availability close to 100%. Hence, in this thesis, liveness means
that a consensus protocol ensures that if an honest user submits a valid
transaction, a new block will be appended to the chain with the transaction
in it. Hence, the protocol must ensure that the blockchain grows if valid
users generate valid transactions.

In this thesis, consistency is defined as follows:

Definition 1.2 (Liveness). A consensus protocol P ensures liveness for a
blockchain C if P ensures that after a period of time t, the new version of
the blockchain C ′ is C ′ > C, if a valid client cibc

has broadcasted a valid
transaction txi during the time t.

1.3 Consensus Protocols

1.3.1 Proof-of-Work

The most popular Proof of Work protocol used nowadays is Nakamotos con-
sensus, which is the backbone of Bitcoin. This algorithm is widely used in
permissionless blockchain. In this architecture, the miners are anonymous;
hence, there is no control over the identity and the access of network peers.
Therefore, democratic mechanisms for consensus like the Byzantine Agree-
ment are not suitable because an attacker can manipulate the system using
a Sybil attack. This attack consists of spawns multiple peers, controlled
by the attacker, and getting control of the majority of the network to ma-
nipulate the consensus result. The Proof-of-Work overcame this issue by
forcing each peer to win the right to propose a new block showing that they
are honest by winning a cryptographic challenge. Then the winner of the
challenge is rewarded for the services rendered to the blockchain network.

The protocol consists of each participant having its local version of the
blockchain. Each block consists of (h−1||µ||m), where || is the concatenation
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operator, h−1 is a hash pointer to the previous block in the chain, m are the
records of the blocks, and µ is the solution of the cryptographic challenge
(a.k.a. Proof of Work) derived from the hash of the previous block and the
records. The protocol is parametrized by a parameter p, which represents the
hardness of the challenge. The Proof of Work is solved once H(h−1||η||m) <
Dp, where H(·) is a hash function, η is a value selected by the miner (nonce),
and Dp is the difficulty of the puzzle set in order to the probability that an
input satisfies this relationship is less than p:

Pr(H(h||η||b) < Dp) ≤ p

According to Nakamoto’s Proof of Work, the world state replication
process proposes a new block to be committed by each node. Let’s say that
a block b = (h−1, η, m, h) is valid with respect to their predecessor block
b−1 = (h−1, µ′, m′, h′) if only if:

• h−1 = h′

• h = H(h−1||η||m)

• h < Dp

Additionally, the chain (b0, . . . , bj) is valid (block sequence states) if:

• b0 = (0, 0,⊥, H(0, 0,⊥)) is the genesis block

• For all i ∈ [j], bi is valid respect to bi−1

• The validity predicate V (·) of the records chain V (C(state)) = 1

Hence, each replication round proceeds as follow:

• All the incoming messages are read. If an incoming message state’ is
a valid sequence of blocks that is longer than its local version state,
replace state by state’

• Read the record m (transactions). If m is such that V (C(state)||m) 6=
1, proceed to the next block round. Otherwise, select a random η
and send a query h = H(h−1||eta||m). If h < Dp then add the newly
mined block to state (local chain) and broadcast the updated state.

In the case of Bitcoin, the PoW is based on Hashcash [B+02], which uses
exhaustive searching of a value that when is hashed (SHA-256) twice with
the block contents and a nonce, the result begins with a certain number
of zero bits (target). Then, the nonce is increased until obtaining result
compliance with the target. This challenge requires an average work that
increases exponentially with the numbers of zero bits necessary to reach
the target. This target is adjusted according to the network’s processing
performance to maintain the average time of new blocks in about 10 minutes.
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1.3.2 Proof-of-Stake

The Proof-of-Stake (PoS) is an alternative type of distributed consensus
protocols. It changes the view of proving honesty to get rewarded for secu-
rity by promoting economic penalties. Compared to PoW used in Bitcoin
and Ethereum, any blockchain network participant can participate in the
consensus protocol or mining to create new blocks by solving cryptograph-
ical puzzles. In Poof-of-Stake blockchains, the protocol set the constraint
on who can be chosen as miners. In PoS, only those participants who have
locked up their stakes can be selected as miners or validators.

In Proof-of-Stake, the selection process can be done by randomized block
selection or coin age-based selection. The first alternative randomizes the
process by a formula that uses the hash value (search the lowest value) and
the size of the stake. The second option combines a random process and
coin-age, which is a value calculated according to the number of coins and
the length of time they have been held.

PPCoin [KN12] was one of the first blockchain networks with Proof of
Stake as a consensus algorithm. This protocol defines a new type of trans-
action block called Coinstake. In this block, the owner consumes their coin
age (uses his own stake) in other to gain the privilege to propose a new
block. The first input of this new block is called Kernel. This input requires
to meet a hash target value similar to the Proof-of-Work, but the searching
process is done in a limited search space. The space in PPCoin is limited by
one hash per unspent wallet output. The hash target value is set according
to coin age spent in the Kernel. Thus, the more coin gain spent in the Ker-
nel, the target value is easier to meet. Once the block generation process is
done, this will be added to the main chain, corresponding to the one with
the highest total consumed coin age.

Another more recent Proof-of-Stake protocol is the launch with Ethere-
rum version 2 called Casper. The Casper Proof-of-Stake protocol corre-
sponds to a penalty-based PoS protocol. Once a new block is proposed
in this protocol, only the nodes that wish to add on to their blockchains
local version will place a bet (a portion of their stake) on it and become
a validator. The validators use a portion of their assets (ETHs) as stakes
for participating in the validation of the next blocks. The validators are
rewarded proportionally to their bets on the block only when the block is
committed into the blockchain. If a validator acts maliciously, it will be
punished by losing its stakes. In the Casper protocol, once a peer has a
malicious behaviour, it has something to lose; hence, the consequences of its
acts are high.
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1.3.3 Byzantine Fault Tolerance (BFT)

The Byzantine Fault Tolerance (BFT) corresponds to the capacity of a sys-
tem to tolerate failures against the Byzantine Generals Problem (BGP) [PSL80].
For example, consider an agreement scenario among a set of nodes where
each one holds a possibly different initial value. All the nodes must agree
on a single value by following a consensus protocol. Then, we consider a
system to be Byzantine Fault Tolerant if most nodes reach an agreement
even when a minority of the players are malicious and may diverge from the
protocol arbitrarily.

The first solution for BFT was introduced by Lamport, Shostak, and
Pease in 1982 [PSL80]. Since then, many Byzantine fault-tolerant algorithms
and protocols have proposed to help resolve many of the misconceptions
associated with Byzantine faults and the difficulties in preventing the prop-
agation of related faults. In 1999 Miguel Castro and Barabra Liskov [CL99]
showed that it is possible to implement a high-performance state machine
replication in an asynchronous environment based on BFT. This protocol
is called Practical Byzantine Fault Tolerance (PBFT) and achieves millisec-
ond increases in latency processing thousands of requests per second. The
algorithm organises nodes where the machine state replication will be held
in replicas identified as R = (0, . . . , |R| − 1). The number of replicas |R| is
equal to 3f + 1, where f is the maximum number of faulty replicas. Even
though it is possible to have more replicas, additional ones can generate a
downgrade in the system performance. The organisation of the replicas are
called the views. In a view, just one of the replicas is considered as the pri-
mary, and the rest are the backups. The primary of a view is the replica p
and is defined as p = v mod |R|, where v corresponds to the view number.
Views are changed when a failure in the primary is detected.

A general overview of the steps executed by the protocol is presented
below:

1. A client sends a request to invoke the primary

2. The primary p broadcast the request to the backups

3. Replicas execute the request and send a reply to the client

4. The client waits for f + 1 replies from different replicas that have the
same result

5. Once the f +1 is reached, the clients accept the result as correct (final
value)

All the replicas must to be deterministic and start in the same state in
order to ensure the protocol’s safety.
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One implementation of PBFT in Blockchain is the consensus protocol
called Sumeragi used by Iroha [Iro21]. The algorithm is based on BChain [DMPZ14]
and it uses 2f + 1 signatures to validate a transaction. The leader verifies
the transaction, puts it in a queue and then signs the transaction. After this
process is done, the leader sends the transaction to the remaining 2f+1 peers
for their validation. Finally, the consensus is reached once the transaction
has the 2f + 1 validations.

Another recent Byzantine consensus protocol is AlgoRAND [GHM+17].
This protocol has a novel property called player replaceability. This prop-
erty guarantees security in an adversarial environment. Instead of using all
the peers in the system, this protocol chooses a subset of peers by an algo-
rithm called cryptographic sortition, which is a random process of selecting
officials from a large set of eligible peers. Provided that honest users retain
a fraction greater than 2/3 of the stakes. Three of the main characteristics
of AlgoRAND:

• There are no forks that arise with an overwhelming probability.

• It only requires a minimal amount of computation.

• It reaches a consensus quickly.

1.3.4 Proof-of-Burn

In 2012, Iain Stewart proposed the first proof-of-burn model [Ste12]. It con-
sists of a mechanism for the irrevocable and provable destruction of cryp-
tocurrencies. In this type of algorithm, the miners show proof that they have
burned some coins - that is, they sent them to a verifiably un-spendable ad-
dress (e.g.. Slimcoin [P4T14]). This is expensive from its individual point
of view, as is Proof-of-Work, but it consumes no more resources than the
underlying asset burned. Currently, all proof of burn works by burning
proof-of-work-mined tokens, so the ultimate source of scarcity remains the
proof-of-work-mined "fuel". It can also be used to bootstrap one cryptocur-
rency from another.
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Cryptography is a discipline that has been part of our society since an-
tiquity. The earliest known use of cryptography is found in non-standard
hieroglyphs carved into the wall of a tomb from the Old Kingdom of Egypt
circa 1900 BC [Ltd06]. However, scientists think they meant to be for
amusement rather than message protection or secure communication. Later
in Mesopotamia, some clay tables dated near 1500 BC were found to en-
crypt a craftsman’s recipe for pottery glaze, presumably commercially valu-
able [Kah96]. In ancient Greece, the spartan military used the scytale trans-
position cipher [Coh95]. Moreover, during the Roman Empire, they also
used cryptographic techniques like the Caesar cipher [Kah96].
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The first evidence of modern cryptography has been found among the
Arabs, which documented the first cryptanalytic methods. The Book of
Cryptographic Messages, wrote by Al-Khali, contains the first use of combi-
nations and permutations for listing all the possible Arabic words with and
without vowels [Bro11]. In the 9th century, Al-Kindi invented the frequency
analysis technique to break mono-alphabetic substitutions ciphers mecha-
nisms. This invention was the most relevant contribution to the cryptana-
lytic field until World War II.

In England, between the end of the 8th and the 11th century, the cipher-
ing mechanism by substitution was frequently used by scribes to encipher
notes, solutions to riddles, and colophons. This period saw vital and sig-
nificant cryptographic experimentation in the West. In the 15th century,
Leon Battista Alberti formalised the polyalphabetic cipher. This ciphering
mechanism was tolerant to the cryptanalytic technique of frequency analysis
used by these days. During the Kingdom of Louis XIV, the cipher method
called "Great Cipher" developed by the family of French cryptographers, the
Rossignols, was used.

By the end of the 20th century, the way to conceive cryptography has
radically changed. It is the beginning of Modern cryptography that has
arisen based on a new rich mathematical background that enables the study
of cryptography as a science. This allows us to use cryptography for pur-
poses broader than secret communication. For example, thanks to modern
cryptography it is possible to do message authentication, digital signatures,
protocols for exchanging secret keys, authentication protocols, electronic
voting and digital cash.

This chapter covers the introduction to Modern Cryptography, start-
ing with the principles and main properties in Section 2.1 and then the
mathematical background that gives security to the modern cryptology in
Section 2.2. Then, it is introduced the cryptographic primitives used in
this thesis for Hashing (Section 2.3), Public Key Encryption and Digital
Signatures (Section 2.4).

2.1 The Principles
Modern cryptography relies on three main principles: Definitions, Schemes
and Proofs.

2.1.1 Definitions

The definitions are one of the key contributions of modern cryptography.
The formalisation of the security properties is crucial in designing, using,
and studying any cryptographic protocol. Once we are designing a protocol
that is not enough to construct a secure cryptographic protocol intuitively,
it is crucial to define the security properties that we want to achieve to
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evaluate the quality of our building. Having first formally what is needed
will lead us to create the right thing.

Definitions are also important regarding the usage. For example, we
use it embedded in a more extensive system wje, we build a cryptographic
protocol. Hence, it is possible to verify whether the definitions satisfied
by a given protocol are sufficient for the purpose of the system with clear
definitions.

The definitions will also help to study the protocols from the security
point of view. Based on the security definitions, we can analyse and compare
if a protocol is preferable rather than another one according to the specific
need of a larger system. Without security definition, the only analysis that
we can do is the performance, which is not enough for security applications.

The formal definitions must also specify the attack model. For example,
whether the attack used for an adversary will be a chosen-ciphertext attack
(CCA) or a chosen-plaintext attack (CPA). Therefore, to fully define the se-
curity of some cryptographic protocol, two distinct issues must be explicitly
addressed: the definition of break and the adversary’s power. Regarding the
break, an encryption scheme is considered broken if an adversary can learn
some information of the plaintext from a ciphertext. Concerning the power
of the adversary, this is related to the assumptions of the actions that the
adversary is assumed able to take, as well as the adversary’s computational
power.

Finally, Jonathan Katz and Yehuda Lindell propose that any security
definition must have the following structure [KL20]:

A cryptographic scheme for a given task is secure if no ad-
versary of a specified power can achieve a specified break.

2.1.2 Schemes

The security in most modern cryptographic constructions depends on the de-
sign of the schemes and the security assumptions. Hence, no protocol can be
unconditionally proven secure. This impossibility is because their existence
relies on problems of computational complexity that have not been answered
yet. Considering that security relies upon some assumptions; therefore, the
schemes must be designed according to a well-defined security assumption.

The security of the scheme depends on the assumption strength. Hence,
for having a strong assumption, it must be studied. To strengthen it, the
study must be done under a strong theoretical background; however, this is
possible if and only if the assumption is clearly formalised. If the assump-
tion relied on not precisely stated definitions, it could not be studied and
eventually refuted. Hence, a precondition to increase our confidence in an
assumption is having a precise statement of what exactly is assumed.
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The design of a scheme based on explicit and well-defined assumptions
will also help evaluate the security between different construction. Hence,
assuming both schemes are equally efficient, If one scheme is based on weaker
assumptions than the second one, then the first scheme is preferred since it
may turn out that the second assumption is false while the first assumption
is true. On the other hand, if the assumptions used by the two schemes are
incomparable. In that case, the general rule is to prefer the scheme based
on the better-studied assumption.

2.1.3 Proofs

In modern cryptography, a proof is done by using the reductionist approach.
For example, this mechanism is used to prove a theorem of the form [KL20]:

Given that assumption X is true, construction Y is secure
according to the given definition

This shows how to reduce the problem given by an assumption X to the
problem of breaking construction Y. The proof will typically establish (via
a constructive argument) how any adversary that breaks the construction Y
can be used as a subroutine to violate Assumption X.

2.2 Hard problems
As introduced in the previous section, clear and well-defined assumptions
are necessary for modern cryptography to define the scheme’s security. In
order to prove security, we will use complex mathematical problems applied
to cryptography as a basic building block for the scheme’s security.

This subsection will introduce the main cryptographic hard problems
used to prove security in the cryptographic primitives utilised in this thesis
for hashing, digital signatures and asymmetric encryption schemes.

2.2.1 One-way Functions and Permutations

The one-way function is a basic block for constructing cryptographic hash
functions and for secure signature schemes. A one-way function can be
defined informally as a function f that is "easy" to compute and "hard" to
invert. Thus, we can define a one-way function formally as follow:

Definition 2.1. A tuple Π = (Gen, Samp, f) of Probabilistic Polynomial
Time (PPT) algorithms is a function family if Π holds the following:

1. Gen: is a probabilistic algorithm that takes as an input a security
parameter 1k and outputs parameters I with |I| ≥ k. Each value of I
defines sets DI and RI that corresponds to the domain and range of
the function fI defined below.
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2. Samp: is a probabilistic algorithm that inputs the parameters I and
outputs an element of DI .

3. f : is a deterministic algorithm that takes as input parameters I and an
element x ∈ DI , and outputs an element y ∈ RI such that y := fI(x).

Definition 2.2. Π is a permutation family if holds Definition 2.1 and the
following:

1. For all I output by Gen, the distribution defined by the output of
Samp(I) is a uniform distribution on DI .

2. For all I output by Gen it holds DI = RI and the function fI is a
bijection.

If Π is a permutation family and there exists a polynomial p such that
DI = {0, 1}p(k) for all I output by Gen(1k), then we say that Π is a permu-
tation family over bit-strings.

Definition 2.3. A function or permutation family Π = (Gen, Samp, Eval)
is one-way if for all PPT algorithms A there is a negligible function ε(·)
such that:

Pr
[
I ← Gen(1k); x← Samp(I); y := fI(x);

x′ ← A(I, y) : fI(x′) = y
]

= ε(k)

Any one-way permutation family that satisfies with some additional con-
ditions can be transformed into a one-way permutation family over bit-
strings. Let Π be a one-way permutation family with DI ⊆ {0, 1}p(k) where
p is a polynomial and I is the output of Gen(1k). Moreover, the following
conditions must be held:

1. Given I, the set DI is efficiently recognizable

2. For all I, the set DI is dense in {0, 1}p(k). That means |DI |
2p(k) = 1

poly(k)

Now, let’s construct a permutation family Π′ = (Gen′, Samp′, f ′), where
Gen′ is the same algorithm as Gen, Samp′ is an algorithm that outputs a
random string of length p(k), and the function f ′

I : {0, 1}p(k) → {0, 1}p(k) is
defined as:

f ′
I(x) =

{
fI(x) x ∈ DI

x otherwise

We can note that Π′ is not one-way because f ′
I can be easily inverted

at any point where y /∈ DI ; however, it is difficult to invert in a fraction of
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its range. In other to overcome this limitation on the range, it is possible
to amplify it by using many copies en parallel of Π′. Hence, we can define
Π′ = (Gen′′, Samp′′, f ′′)′ where Gen′′ is the same algorithm as Gen, Samp′′

is an algorithm that outputs a random string of length l(k) · p(k) for an
appropriate polynomial l, and:

f ′′
I (x1|| . . . ||xl(k))

def= f ′
I(x1)|| . . . ||f ′

I(xl(k))

Now, using the construction Π′′ it is easy to show that the inversion is
hard as long as any of the xi ∈ DI .

2.2.2 Numbers Factorization

The number factorization problem is one of the most studied hard problems
in number theory. This problem can be easily explained as a one-way func-
tion. Therefore, we can define the function fmult(x, y) = xy as a candidate
for a one-way function. However, not just any factorization of numbers is
necessarily hard, so it is needed to restrict the inputs of the function fmult

to consider the factorization to be a hard problem.
We can overcome this problem by restricting x and y to a large prime of

equal length. We can define this using the same structure of Definition 2.1.
Hence, let’s define the family function (Gen, Samp, f) as follows:

1. Gen(1k): is an algorithm that outputs I = 1k and DI is the set of all
pairs of k-bit primes.

2. Samp(1k): is a randomized algorithm that outputs two random and
independently chosen k-bit primes.

3. f(p, q) is an algorithm that outputs the product pq.

To state that the number factorization is a hard problem, we use the
assumption that the family function (Gen, Samp, f) is a one-way function.

Additionally, for the random prime generation process in polynomial
time, we consider that the algorithm Samp follows:

1. The random number generation process will be executed until obtain-
ing, with high probability, a prime number.

2. There is a probabilistic polynomial-time algorithm that can determine
whether a given integer is prime.

Let’s define GenModulus as a polynomial-time algorithm with input 1k

and outputs (N, p, q) such that N = pq, p and q are k-bit primes. Then, we
can express the factoring assumption relative to the algorithm GenModulus
as:
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Definition 2.4. The number factorization is hard relative to GenModulus
if for all PPT algorithm A there is a negligible function ε(·) such as:

Pr
[
(N, p, q)← GenModulus(1k); (p, q)← A(N) : pq = N

]
= ε(k)

The number factorization assumption seems only to guarantee the exis-
tence of a one-way function. Hence, we will show that if factorize N is a
hard problem, the factorization of N2 is a one-way function.

2.2.3 Discrete Logarithm Problem

The discrete logarithm assumption is another hard problem used to build
cryptographic schemes. In general, we will consider only groups G of prime
order q. In such groups, all the elements belonging to these groups G (other
than the identity) are generators. So, let’s be g a generator of the group,
and h ∈ G be arbitrary, the discrete logarithm of h concerning g, logg(h), is
the smallest non-negative integer x such that gx = h. Thus, the problem is
to obtain x given g and a random group element h.

For certain classes of groups, the discrete logarithm problem is not hard
to solve. Hence, the hardness of the problem depends on how the elements
of the group are represented.

To formalise the discrete logarithm assumption, let G be a PPT algorithm
that on inputs 1k, outputs a cyclic group G with order q and a generator
g ∈ G.

Definition 2.5. The discrete logarithm problem is hard with respect to G if
for all PPT algorithm A there is a negligible function ε(k) such as:

Pr
[
(G, q, g)← G(1k); h← G; x← A(1k,G, q, g, h) : gx = h

]
From the definition of the discrete logarithm assumption, it is possible to

imply the existence of a one-way function family fG,q,g(x) that outputs gx.
The functions in this family are one-to-one if we take the domain of fG,q,g(x)
to be Zq. For certain groups G, we also obtain a one-way permutation
family; for example, the groups of the form Zq for p prime. In this case, the
mapping fG,q,g : Zp−1 → Z∗

p is one used above, where fG,q,g(x) = gx mod p.
Nevertheless, if we shift the domain, we get the function f ′

G,q,g : Z∗
p → Z∗

p:

f ′
G,q,g = gx−1 mod p

2.3 Hash Functions
Hash functions have a central role in the construction of secure crypto-
graphic schemes applied to message integrity, digital signatures, password
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verification, blockchain, among others. The construction of a hash func-
tion often is based on well-known mathematical assumptions; nevertheless,
we also have extremely efficient constructions (not based on any particular
hard cryptographic problem) that one can reasonably assume to be secure.
This subsection introduces the principal security definitions of a hash func-
tion and the Merkle-Damgard construction.

2.3.1 Definitions

Roughly speaking, a hash function can be described as a function that trans-
forms an input into its compressed version. The hash functions of our inter-
est are keyed, which means they have the form of Hs(·), where H is a hash
family, and s is the key generated uniformly at random. From the security
perspective, we are interested in two main properties: the collision-resistant
and the universal one-way. The collision-resistant means that it is hard to
distinct x and x′ for which Hs(x) = Hs(x′). On the other hand, the universal
one-way property means that it is hard to find a collision for a pre-specified
input x, chosen independently of the key s.

Let’s formally define the concepts introduced above:

Definition 2.6. A hash function is a pair of PPT algorithm (Gen, H) such
that:

1. Gen: is a probabilistic algorithm that on input 1k outputs a key s

2. There exists a polynomial l such that H on input key s and x ∈ {0, 1}∗,
outputs a string Hs(x) ∈ {0, 1}l(k)

Definition 2.7. A Hash function (Gen,H) is a collision-resistant if there
is a negligible function ε(k) such that:

Pr
[
s← Gen(1k); (x, x′)← A(1k, s) : x 6= x′ ∧Hs(x) = Hs(x′)

]
Definition 2.8. The pair (Gen,H) is universal one-way (second pre-image
resistant) if there is a negligible function ε(k) such that:

Pr
[
x← A(1k); s← Gen(1k); x′ ← A(1k, s) : x 6= x′ ∧Hs(x) = Hs(x′)

]
Hence, we can easily see that the collision-resistance property implies

universal one-way.

2.3.2 The Merkle-Damgåard Construction

The Merkle-Damgåard (MD) construction is one of the most used mecha-
nisms for building hash functions. It consists in transform a fixed-length has
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a function (Gen, H ′) into a collision-resistance hash function (Gen, H) that
accepts arbitrary length inputs.

To define the Merkle-Damgåard construction, we fist define the hash
function (Gen, H ′) with inputs 2l(k). Then, to construct the hash function
(Gen, H) the following must be held:

• The key generation algorithm Gen rest immutable

• Hs is defined for inputs of length at most 2l − 1.

Then, to compute Hs(x) using the MD construction, we must do:

1. Set L := |x| and B := dL
l e. Pad the input of x with zeros until its

length is an integer multiple of l, and parse the result as sequence of
l-bit blocks x1, . . . , xB. Set xB+1 := L, where L is encoded using l bits

2. Set z0 := 0l

3. For i = 1, . . . , B + 1, compute zi := H ′
s(zi−1

vert|xi)

4. Output ZB+1

2.4 Public Key Cryptography and Digital Signa-
ture

Public key cryptography enables parties to communicate privately without
agreeing on any secret information in advance (like in private-key cryptog-
raphy). Communication privacy is achieved thanks to public-key encryp-
tion, which is one instance of public-key cryptography. Nowadays, it is
used daily in different applications like client-server communication, emails,
among others. Moreover, it is possible to construct digital signature schemes
for messages and documents authentication based on public-key cryptogra-
phy.

This subsection will cover the basic principles and the main security
properties of public-key encryption and digital signatures.

2.4.1 Public Key Encryption Schemes

Using public-key cryptography, we can define schemes for data privacy using
a set-up based on a key pair (pk, sk), where pk is the public key, and sk is
the private key. Then, we can encrypt a message m using the public key
pk and thus obtain a ciphertext c to be shared with the message recipient,
who keeps the private secret sk. After receiving the message c, the recipient
decrypts c using the secret key sk to recover the original message.
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The formal definition of public-key encryption included security parame-
ter k that was not mentioned in the previous example. The security param-
eter k provides a way to study the asymptotic behaviour of a scheme. We
need our algorithms to run in time polynomial in k, and our schemes offer
protection against attacks that can be implemented in time polynomial in k.
Moreover, we measure the probability of an adversary succeed in any attack
in terms of k, and will require that any attack (that can be carried out in
polynomial time) be successful with probability at most negligible also in
k. Therefore we can consider the security parameter as an indication of the
level of security offered by the scheme.

Definition 2.9. A public-key encryption scheme consists of a tuple (Gen,
Enc, Dec) that satisfies:

1. Gen: is the key generation algorithm that inputs the security parameter
k and outputs a key pair (pk, sk), where pk is the public key and sk is
the private key.

2. Enc: is the encryption algorithm that takes as input the public key pk
and the message m and outputs a ciphertext c

3. Dec: is the deterministic decryption algorithm that takes as input the
private key sk and the ciphertext c and outputs the clear message m
or ⊥ in case of failure.

Moreover, the public-key encryption scheme (Gen, Enc, Dec) must sat-
isfy that for all security parameter k and all key pair (pk, sk) the following
equation:

m = Decsk(Encpk(m))

To consider the public key encryption scheme as secure, we need to define the
security properties to be evaluated. This section covers the indistinguishabil-
ity, security for multiple encryptions and security against chosen-chipertext
attacks.

Indistinguishability: A public-key encryption scheme Π = (Gen, Enc, Dec)
is secure in terms of indistinguishability if a computationally bounded ad-
versary (in polynomial time) can learn something about m with negligible
probability. We define this in terms of a game PubKeyind

A,Π(k), where there
is an adversary A such that:

1. (Gen(1k) is run to get the key pair (pk, sk) to then give the public
key pk to A. The adversary A also gets access to an encryption oracle
Encpk(·)
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2. A outputs two messages m0 and m1 of equal lengths.

3. A random bit b is chosen, and then the A request the ciphertext c←
Encpk(mb).

4. A outputs a bit b′, and then if b′ = b we say that A succeeds.

Definition 2.10. A public-key encryption scheme Π = (Gen, Enc, Dec) is
secure in the sense of indistinguishability if for all PPT adversary A there
is a negligible function ε(k) such that:

Pr
[
PubKeyind

A,Π(k) = 1
]
≤ 1

2 + ε(k)

where the probability is taken over the random coins used by A and the
random coins used to generate (pk, sk).

Security for multiple encryptions: A public-key encryption scheme
Π = (Gen, Enc, Dec) is secure in terms of multiple encryptions if an ad-
versary (computationally bounded in polynomial time) can learn something
about a message m after multiple encryption processes using the same key
with negligible probability. We define the game PubKeymult

A,Π (k), where there
is an adversary A such that:

1. (Gen(1k) is run to get the key pair (pk, sk) to then give the public
key pk to A. The adversary A also gets access to an encryption oracle
Encpk(·)

2. A outputs two arrays of messages M0 = (m0,1, . . . , m0,t) and M1 =
(m1,1, . . . , m1,t) with the messages m0,i and m1,i of equal lengths for
all i

3. A random bit b is chosen, and then A request the array of ciphertext
C = (Encpk(mb,1, . . . , Encpk(mb,t)

4. A outputs a bit b′, and then if b′ = b we say that A succeeds.

Definition 2.11. A public-key encryption scheme Π = (Gen, Enc, Dec) is
secure in the sense of multiple encryptions if for all PPT adversary A there
is a negligible function ε(k) such that:

Pr
[
PubKeymult

A,Π (k) = 1
]
≤ 1

2 + ε(k)
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Security for chosen-ciphertext attacks: The security under chose-
ciphertext attacks is relevant because, in this scenario, the adversary A
has an active position querying the decryption oracle with some chosen-
ciphertext c′, which may depend on the original ciphertext c, to learn
something about the original message m. Thus, a public-key encryption
scheme Π = (Gen, Enc, Dec) is secure against chosen-ciphertext attacks
if an adversary (computationally bounded in polynomial time) can learn
something about a message m after repetitively requesting decryption of
ciphertexts chosen by him with negligible probability. We define the game
PubKeycca

A,Π(k), where there is an adversary A such that:

1. (Gen(1k) is run to get the key pair (pk, sk) to then give the public key
pk to A. The adversary A also gets access to the encryption oracle
Encpk(·) and the decryption oracle Decsk(cdot).

2. A outputs two messages m0 and m1 of equal lengths.

3. A random bit b is chosen, and then the A request the ciphertext c←
Encpk(mb).

4. A can repeatedly request the decryption of any ciphertext c′ of its
choice (except for c), obtaining m′ ← Decsk(c′).

5. A outputs a bit b′, and then if b′ = b we say that A succeeds.

Definition 2.12. A public-key encryption scheme Π = (Gen, Enc, Dec) is
secure against chosen-ciphertext attacks if for all PPT adversary A there is
a negligible function ε(k) such that:

Pr
[
PubKeyccp

A,Π(k) = 1
]
≤ 1

2 + ε(k)

2.4.2 Digital Signature Schemes

Digital signatures are another application of public-key cryptography. Its
application is broad, and we can find it in message authentication, data in-
tegrity, among others. For example, we have a software vendor who has a
key pair (pk, sk). On the contrary to public-key encryption, the communi-
cation flow goes in the other way (from the vendor to a user). Specifically,
when the vendor wants to send a message m (i.e., a software update) in an
authenticated manner to the user. The vendor will use its secret key to sign
the message and compute a signature σ. Then the message and its signature
are transmitted to the user. Upon the user receives (m, σ), he can utilize
the vendors public key to verify that σ is a valid signature on m.

Let’s define a signature scheme as a tuple of (Gen, Sign, V er), where
Gen is the key generation algorithm with security parameter k, Sign the
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signature algorithm, and V er the algorithm to verify the signature. For-
mally, we can define this as:
Definition 2.13. A signature scheme is a tuple of PPT algorithm (Gen,
Sign, Ver) that satisfies:

• Gen: is the key generation algorithm inputs the security parameter k
and outputs a key pair (pk, sk), where pk is the public key and sk is
the private key.

• Sign: is the signing algorithm that takes as input a message m (from
an underlying message space that may depend on pk) and a private
key sk

• Ver: is a deterministic verification algorithm that takes as input a
message m, a signature σ and a public key pk. It output a bit b with
b = 1 if the signature is valid and b = 0 if it is invalid

Moreover, the signature scheme (Gen, Sign, V er) must satisfy that for
all security parameter k, all key pair (pk, sk) and all message m in the
appropriate underlying plaintext space, the following equation:

1 = V erpk(Signsk(m))

Security of the signature scheme: One of the most crucial security
properties for any digital signature scheme is the capacity to make extremely
difficult to forge a signature. Formally, given a public key pk generated by a
signer S, we say that a digital signature Π = (Gen, Sign, V er) is unforgeable
under an adaptive chosen-message attack if an adversary (computationally
bounded in polynomial time) can forge the digital signature of a message m
(that has not being signed by S) after repetitively requesting the signature
of many other messages chosen by him with negligible probability. We define
the game Sign− forgecma

A,Π(k), where there is an adversary A such that:

• (Gen(1k) is run to get the key pair (pk, sk) to then give the public key
pk to A. The adversary A also gets access to a signing oracle Signsk(·)

• A outputs (m, σ).

• Lt Q be the set of messages whose signatures were requested by A dur-
ing its execution. We say that A succeed if m /∈ Q and V erpk(m, σ) = 1

Definition 2.14. A public-key encryption scheme Π = (Gen, Sign, V er)
is existentially unforgeable under adaptive chosen-message attack if for all
PPT adversary A there is a negligible function ε(k) such that:

Pr
[
Sign− forgecma

A,Π(k)
]
≤ 1

2 + ε(k)
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Blockchains are becoming gradually more sought-after in many organ-
isations. Predominately because they allow organisations to overpass the
traditional limitations of public blockchains regarding energy consumption,
efficiency, and system control. However, such systems are in some ways los-
ing their blockchain essence, particularly their unique feature of not being
controlled by a central authority that governs many functionalities of the
chain, including user enrolment. Our main contribution in this work is to
propose a privacy-preserving user credential consensus algorithm for private
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blockchains, called BlindCons. The main security properties of our consen-
sus protocol BlindCons uses an abstract model for blind signatures schemes
and a Byzantine Fault Tolerance (BFT) consensus for the blockchain repli-
cation process. Our protocol guarantees the consistency of the data stored
on the blockchain, the system’s liveness, and users’ privacy by blinding their
signatures to keep the user’s identity private. In addition, BlindCons guar-
antees user-transaction unlinkability, which means that it is impossible to
link a transaction to a user using the data stored in the blockchain.

3.1 Introduction

Blockchain technology has gained enough popularity and was widely adopted
in many fields such as finance, health, logistics, eVoting, among others; this
is thanks to its immutability and transparency properties. However, Public
Blockchains cannot manage tailored business rules like special data access
restrictions and user profiling.

Many groups of companies have proposed Private Blockchains or Per-
missioned Blockchains, like for instance, the MyHealthMyData consor-
tium [Con16a], which aims to connect hospitals and research centers across
Europe to share medical data through a private Blockchain network. These
Blockchains aim to manage data storage on a few nodes controlled by
a company or a consortium in order to validate the transactions faster,
consume less energy and reduce minning cost. Another example is Plas-
ticTwis projectt [Con16b] which creates a new circular economy based on
an ERC20 token implemented on a Permissioned ledger to promote plas-
tic recycling in Europe. Moreover, Maersk and IBM have also developed
TradeLens [IBM16], a supply chain system supported by the Permissioned
Blockchain Hyperledger Fabric. S. Furthermore, blockchain use cases are
increasing due to the adoption of Blockchain in closed ecosystems and en-
terprise applications. As a result, the European Blockchain Observatory
and Forum has published a technical report [TL18] recommending private
or permissioned Blockchains for storing sensitive data.

Although Permissioned Blockchains have several features suitable for
sensitive data services, they have drawbacks related to transactions and user
linkability. We propose using blind signature schemes to sign the transac-
tions without linking user information to overcome this drawback. This
model allows validating transactions without exposing the users identifica-
tion, and thus maintaining his privacy.

Contributions: In this work, we aim at designing a new privacy-
preserving consensus algorithm that ensures the unlinkability between a
transaction recorded in a Permissioned Blockchain and the user that gener-
ated it. Our contributions are:
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• A privacy-preserving consensus mechanism called BlindCons for Per-
missioned Blockchains.

• The abstract models for the blind signature scheme and the consensus
algorithm.

• A consensus protocol that ensures the transaction unlinkability and
the Byzantine Fault Tolerance (BFT) algorithm for the generation
and commitment of new blocks.

Moreover, our construction is generic as it can be instanciated by any
blind signature that satisfies the classical properties of such primitives.

Related Work: Blockchain platforms such as Bitcoin [Nak08] and
Ethereum [Woo14] are popular because of the "anonymity" offered by their
cryptocurrencies. However, Bitcoin still exhibits problems of transaction
linkability and traceability. Over the past few years, some improvements
have been proposed to increase Bitcoin’s anonymity [SMD14], and cryp-
tocurrencies have also been developed to overcome these issues, such as
Zcash and Monero. For example, in Zcash [HBHW16], the protocol achieves
anonymity by using ZK-SNARKs as cryptographic proof. In the same
line, Bulletproofs [BBB+18] proposes a NIZKP protocol with short proofs
without relying on a trusted setup for confidential transactions or privacy-
preserving smart contracts. On the other hand, Monero is a protocol based
on the Cryptonote [VS13] that achieves unlinkability and untraceability by
using a one-time random address and ring signatures. Although all these
protocols aim to improve the privacy of the transactions, they are designed
for Permissionless Blockchains, where the transaction linkability differs from
permissioned architecture where the users are not anonymous. Hence, there
is a strong link between the transaction signature and the user who is trig-
gering it.

A different approach to ensure anonymity is the eCash [Cha82, CFN88]
model proposed for Bitcoin in [HBG16]. However, the idea to use a third
party to generate a blind voucher is not aligned with the principle of decen-
tralisation that Bitcoin or any other Permissionless Blockchains have.

lthough several papers have been published on Blockchain privacy for
permissionless ledgers, to the best of our knowledge, there is no formal pro-
tocol that addresses the transaction linkability issue in Permissioned ledgers.

Outline: In Section 3.2, we present an introduction of permissioned
blockchains, an abstraction for blind signature schemes and their security
notions. In Section 3.3, we introduce the BFT consensus mechanism. Then,
in Section 3.4, we describe our privacy-preserving consensus algorithm Blind-
Cons. In Section 3.5, we explicit the blockchain security properties of Blind-
Cons, and finally we conclude in Section 3.6.
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3.2 Preliminaries

We start by introducing permissioned blockchains, and then we present an
abstract model for blind signatures schemes and their security notions.

3.2.1 Permissioned Blockchain

Blockchain technology has evolved from the permissionless architecture for
cryptocurrencies implementation to permissioned models for business appli-
cations. Blockchain technology is particularly interesting for business pur-
poses such as supply chain, process traceability, secure logs, among others.
However, an open platform with anonymous users is not entirely suitable
for general business requirements. Hence, permissioned blockchains receive
attention from different industries, due to their distributed ledger capability
and user access restrictions.

Permissioned blockchain such as Tendermint [Inc20], Multichain [Sci20]
and Hyperledger [Fou19] rely on different consensus mechanisms than per-
missionless blockchain. TThese blockchain technologies’ machine state repli-
cation process is based on Byzantine Fault Tolerant (BFT) protocols rather
than expensive mechanisms to prove honesty like Proof-of-Work used in Bit-
coin and Ethereum. The protocols based on BFT use the assumption that
having 3f +1 nodes, where f is the number of faulty nodes, the network can
reach a consensus. The mechanism considers that each node validates and
votes for the new block proposals, and when there are enough valid answers
for the new block, the network considers the block as valid and appends
it to their local version of the blockchain. Considering that the network’s
reliability depends on the number of faulty nodes f , the users or the nodes
access to the network becomes crucial.

The user access is managed in different ways according to the permis-
sioned blockchain to be used. For example, Multichain uses administrators
to manage the user’s access [Gre15]. These administrators link and grant
the user credentials with specific privileges for transacting or mining within
the network. At the same time, the Hyperldger Fabric [ABB+18], uses cer-
tificate authorities across the network to enrol the users and a specific smart
contract or chaincode policies to restrict some users operations.

The advantages of permissioned architecture for a closed environment or
federated networks contribute to increasing the popularity of blockchain for
new applications. However, the strict user regulations (i.e., enrolment and
user privileges) produce a strong transaction-user linkability issue, which is
seen as a drawback from the identity privacy perspective.
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3.2.2 Blind Signature Model

A Blind Signature scheme allows a user U to obtain a blind signature of the
message M ∈ {0, 1}∗ issued by an authority (A).

Definition 3.1 (Blind Signature scheme [Cha83]). A blind signature scheme
is a Probabilistic Polynomial Time (PPT) algorithm, which consists of three
protocols organised as follows:

Key Generation: KeyGen(1k) is a probabilistic algorithm that uses as in-
put the security parameter k and it returns a key pair (pk,sk).

Blind signature: BlindSign(U(M ,pk),A(sk)) is a protocol run by the user
U and the authority A. U uses as input the message M and the public
key pk, and A gets the private key sk as input. After running the
protocol, we obtain an output σ, which corresponds to the signature of
M , or ⊥ if the protocol ended unsuccessfully.

Verification: VerifyBlindSign(M ,σ,pk) is a deterministic protocol that
given a message M ∈ {0, 1}∗, a signature σ, and a public key pk
returns 1 if σ is a valid signature of M with regards to pk, otherwise
it returns 0.

The blind signature model presented in this section is suitable for private
blockchain architecture due to the blinding process is performed by the same
authority responsible for the enrolment process, where the authority A blinds
the signature of the message proposed by the user U .

3.2.3 Security Notions for Blind Signature Schemes

A secure blind signature scheme must satisfy with three main properties:
Correctness, Unforgeability and Blindness.

Definition 3.2 (Correctness). A Blind Signature scheme is correct if for all
M ∈ {0, 1}∗, the user U and the authority A follows the protocol (pk,sk)←
KeyGen(1k) for all k ∈ N and σ ← BlindSign(U(M ,pk),A(sk)), and it holds
VerifyBlindSign(M ,σ,pk)=1.

Definition 3.3 (Unforgeability). A blind signature scheme is unforgeable
if for an honest authority A and adversary U∗, which has access to a PPT
algorithm U∗, there is a negligible1 function ε(·) such that:

Pr
[

(pk, sk)← KeyGen(1k) :
(M∗

i , σ∗
i )← U∗(BlindSign(·,A(sk))(pk), i ∈ [1, . . . , t])

M∗
i 6= M∗

j ∀i 6= j (i, j ∈ [1, . . . , t]) ∧ t > l ∧
VerifyBlindSign(M∗

i , σ∗
i , pk) = 1 ∀i ∈ [1, . . . , t]

]
= ε(k)

1A function f is negligible, if for every positive polynomial P , ∃K, ∀n > K, f(n) < 1
P (n) .
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Where l is the number of executions of signature requests made by the
adversary U∗ using the PPT algorithm U∗.

We use the blindness definition presented in the malicious signer
model [Oka06, FHS15, ANN06]. The adversary is a malicious authority
A∗ with access to a PPT algorithm A∗ and two honest user instances. Nev-
ertheless, before defining blindness, we will introduce the following game:

1. The adversary A∗ generates the public key pk and two messages M0
and M1.

2. We run a random selection of b ∈ {0, 1}.

3. The adversary A∗ runs two instances of the signing protocol using Mb,
Mb̄ and the PPT algorithm U∗, where b̄ = 1 − b and U∗ corresponds
to the user’s algorithm.

4. If we get σ0 =⊥ or σ1 =⊥ from the signing protocol, the adversary
then A∗ gets (⊥,⊥)← (σ0, σ1).

5. The adversary A∗ outputs b′ ∈ {0, 1}.

Definition 3.4 (Blindness). A Blind signature scheme is blind if for all
adversary A∗ with access to a PPT algorithm A∗ with access to two user
instances, there is a negligible function ε(·) such that:

Pr


b

$←− {0, 1} ,
(M0, M1, α, pk)← A∗(1k),
α← A∗

(
BlindSign(U(Mb,pk),·),(BlindSign(U(Mb̄,pk),·)

)
(α), : b∗ = b

If σ0 ==⊥ ∨σ1 ==⊥ then (σ0, σ1)← (⊥,⊥),
b∗ ← A∗(α, σ0, σ1)


− 1

2 ≤ ε(k)

Different constructions for blind signatures schemes satisfy these prop-
erties like the ones proposed by Chaum [Cha82], Schnorr [Sch91], Okamoto
[Oka92, Oka06], Fuchsbauer et al. [FHS15], among others. Therefore, the
user-transaction unlinkability model proposed in our protocol is generic, and
it can be implemented by using different signature schemes that satisfy the
security notions explained above.

3.3 Byzantine Fault Tolerant based Consensus for
Permissioned Blockchain Architecture

The blockchain is a decentralised database organised in blocks that are ap-
pended one behind the other by using a hash pointer. Each block contains



3.3. BFT CONSENSUS FOR PERMISSIONED BLOCKCHAIN ARCHITECTURE51

records that include the data to be stored in the chain. The blockchain
design makes it suitable for a distributed ledger, due to the record organisa-
tion inside a block (i.e., financial transactions) and the hash chain between
blocks that makes it resistant to malicious modifications. The blockchain
uses a consensus algorithm to replicate the chain in each node member of the
network. Nevertheless, the selection or design of the consensus algorithm
must be consistent with the blockchain architecture and the openness of the
system.

In permissioned blockchain architectures, every user must be enrolled
into the system through Certificate Authorities (CA) or user administrators
before joining the network. These authorities are responsible for generating
the user credential for each new client or peer. This model provides a base
of knowledge of the network members, making Practical Bizantine Fault
Tolerance (PBFT) [CL99] or BFT-Smart [BSA14] based algorithms suitable
for the blockchain replication process.

Our consensus approach for permissioned ledger has a different aim of the
permissionless replication protocol. The security of the consensus algorithm
in a permissionless architecture is achieved by proving the node’s honesty
by expending its resources (i.e., computing capacity, power consumption,
stakes, among others). In contrast, a BFT-based protocol reaches the con-
sensus accepting as valid the result proposed by the majority of the nodes.

Our consensus algorithm is based on BFT and the execute-order-validate
process used in Hyperledger Fabric [ABB+18] since version 1.0. In this
protocol, each transaction passes through these three stages.

1. The execution phase triggers the transaction and then it is validated
by the validating peers.

2. In the order phase, the transactions are organised into a block accord-
ing to the BFT consensus protocol.

3. Finally, the validation phase checks the security policies per operation
and application type.

In the case of our BFT-based consensus algorithms, we start with a
blockchain client cbc, which is also a node member of the network with a
local version of the blockchain. The client cbc sends a transaction proposal
with the instructions to be executed in the blockchain by the verifier peers
(verifiers) to verify and validate the transaction. This verification process
consists of the client signature authentication and the execution of the in-
struction that has been sent in the message. During the execution process,
the verifier peers verify that the transaction has a correct instruction to
be committed by the network. This process is analogous to the one exe-
cuted by the primary in the original PBFT algorithm [CL99], which sends
the message with the instructions to the backups to validate it. As for the
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transaction validation, the verifier peers vpbc send their responses to the
client, which collects them after the validation process is concluded. If the
transaction is valid, the client cbc sends the transaction to the consensus
peers conspbc (consensors) to add it into the new block that is committed
by the nodes’ members of the network. The consensors are responsible for
proposing and agreeing on the new block that shall be appended to the
chain. This process is also homologous to PBFT, where one consensor is the
leader, and the others are the backups. First, the consensor leader collects
a group of transactions and organises them by order inside of a new block.
Then the consensor leader sends a propose message with the block proposal
to the consensors’ backups to validate it. Each consensor backup validates
the block proposal and responds to the rest of the consensors with a pre-
pare message. Once the consensors have received enough valid prepare
responses, they submit a commit message to the consensor, client and the
nodes responsible for keeping a local version of the blockchain.

To exemplify this process, consider that we have a client cbc that wants
to execute an operation obc on our BFT-based blockchain protocol with
verifier peers vpbci

, where i = 1, ..., n, and n is the number of the verifiers;
and consensors peers conspbci

, where i = 1, ..., k, and k is the number of the
consensors. To process this request, we need to execute the following four
steps as presented in Figure 3.1:

1. Transaction Proposal,

2. Transaction Validation,

3. Broadcasting to Consensus,

4. Commitment.
Nevertheless, before we start describing the protocol, we introduce some
notations used in this work. The information passes through the peers
or nodes within the network in any distributed system by using messages.
Hence, we denote a message by using < ·, . . . , · >, where · corresponds to
the message arguments. Moreover, we use the notation (·, . . . , ·) to group
arguments inside a message.

1) Transaction Proposal: The client cbc generates a message to execute
specific operations obc to be resolved by the network. This message corre-
sponds to a transaction proposal message to be sent to the verifier peers.
The transaction proposal consists of invoking the operations obc and com-
puting the state update and version dependency denoted by stateUpdate and
verDep, respectively. The version dependencies relate the variables involve
in the transaction with the local version of the variable in the client’s node
and their respective operations. For example: if a client wants to read and
write in the blockchain, the version dependency is a tuple (readset, writeset)
where:
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Figure 3.1: BlindCons Transaction Flow.

• for every variable k read by the transaction, the pair (k, s(k).version)
is added to the readset,

• for every variable k modified by the transaction, the pair
(k, s(k).version) is added to the writeset.

Once the execution of the operations obc triggered by the client cbc is
completed, the client cbc generates the transaction proposal message and
then submits it to the verifier peers. The transaction proposal message is
defined as:

< proposal, transprop >, where:

• transprop := (cbc, obc, txPayload, stateUpdate, verDep, retryF lag, σc).

• cbc is the client ID,

• obc refers to the operations implemented in the distributed system,

• txPayload is the payload of the submitted transaction,

• retryF lag boolean variable to identify whether to retry the transaction
submission in case of the transaction fails,

• σc is the client signature.

2) Transaction Validation: The verifier peers (vpbci
) verifies the client

signature σc coming in the transaction proposal message. If the client sig-
nature is valid, the verifier simulates the transaction proposal by executing
the operation obc with the corresponding txPayload, and then validates
that the stateUpdate and verDep are correct. If the validation process is
successful, the verifier peer generates a transaction valid message to be sent
to the client cbc. The message has the following structure:
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< transaction-valid, txid, σvpi >, where:

• txid is the transaction identifier generated with the client ID and a
nonce,

• σvpi is the signature of the message signed by the verifier peer σvpi .

In the case of the simulation process ending unsuccessfully, the verifier
peer generates an transaction invalid message:

< transaction-invalid, txid, Error, σvpi >, where Error can be:

• incorrect-state, when the validator obtains a different state update than
the one coming in the transaction proposal,

• incorrect-version, when there is the newest version of the variable re-
ferred in the transaction proposal,

• rejected, for any other reason.

3) Broadcasting to Consensus: The client cbc waits then for the
response from the verifier peers. When it receives enough Transaction Valid
messages adequately signed, the client stores the valid signatures into a
package called validations. Once the transaction is considered validated,
the client invokes the consensus services by using broadcast(blob), where
blob:=(transprop, validations). Finally, the client cbc sends a message to
the consensor leader through thebroadcast service to trigger the consensus
process. The message has the following structure:

< consensus, transprop, V alidations >, where:

• V alidations is the array with the signatures of the verifier peers that
have validated the transaction.

The number of valid responses required to consider the transaction
proposal as validated depends on the configuration of the permissioned
blockchain. If the transaction has failed to collect enough validations, the
client abandons this transaction proposal. On the other hand, if there is a
problem with the verifier leader, the broadcast service submits the message
to the next verifier in the list become the new leader.

4) Commitment: Once the client cbc broadcasts the transaction properly
validated to consensus, the consensus services collect this transaction
and organise it into a block. The consensus process for the new block is
performed by the consensors based on a Byzantine Fault Tolerant process
(see Figure 3.2). The active consensors vote for the block validity and agrees
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on the new block based on the voting majority. The consensus service is
sorted in views, where each view represents how the consensors are arranged
for the consensus service. In each view, the consensor conspleader acts as the
primary or leader, and the rest of the consensors (conspbci

; i = 1, . . . , k− 1)
correspond to the backups. In the case that the primary is faulty or is
acting maliciously, the view changes and the next backup on the list turns
in the new leader. The consensus process begins when the consensor leader,
conspleader, collects enough transactions to create a new block. The new
block has the form: B = ([(tx1, validationstx1), (tx2, validationstx2), . . . ,
(txk, validationstxk

)], h), where h corresponds to the hash value of the
previous block. The leader proposes this new block to the backups by
sending a proposeblock message as follows:

< proposeblock, B, σconspleader
>, where:

• B is the new block to be validate by the consensors.

• σconspleader
is the signature of the proposeblock message sent by the

consensor leader.
Then, each backup validates the proposeblock and responds to the other

consensors of the service with the following message called prepareblock:

< prepareblock, B, σconspi >, where:

• σconspi is the signature of the prepareblock message sent by the consen-
sor conspbci

.

Once each backup has received enough valid prepareblock responses, it
will send a commitblock message, structured a < commitblock, B, σconspi >, to
the nodes connected to the network to confirm that the block has been vali-
dated successfully. Otherwise, the backups response with an invalid message
< block − invalid , B, error, σconspi >.

From the consensus services, we get a hash-chained sequence of blocks
with the valid transactions. The nodes receive the blocks from the consensus
services through a direct connection or by using a gossip protocol. The nodes
will wait until receiving (50%+1) valid responses from the consensus service
to consider that the block is ready to be committed. Once the peers have the
confirmation that the new block is correct, they check if the validations of
each transaction are valid according to the policy configured in the network.
The peers then verify the verDep in order to ensure there are no conflicts
between the operation obc; the variables involved in the transaction, and the
current blockchain state. If this process finishes successfully, the transactions
are then committed. On the other hand, if one of the validation fails, the
peers consider the transaction as invalid, and it is dropped. Finally, the
invalid transactions are informed to the client cbc, and according to the
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Figure 3.2: BlindCons consensus service

retryFlag, the client may retry the transaction.
The nodes can change the local state only when the transactions are

committed. Hence, each node connected to the network updates its local
version of the ledger once all the transactions in the block are committed.
Finally, the state update is done by appending the new block to their local
blockchain version.

3.4 Privacy Preserving BFT for Permissioned
Ledgers

Considering the permissioned BFT-based consensus protocol introduced in
Section 3.3, we use the digital signature as a user authentication method,
where each key pair used to sign a message is unique for each user. More-
over, each user is enrolled through one of the certificate authorities or user
administrators belonging to the network. This cause a strong linkability
issue between the users and the transactions, affecting the privacy level of
the blockchain network. In order to overcome this issue, we propose to blind
each user’s signature by using the certificate authorities or the user admin-
istrators available in the network. Thus, the protocol follows the following
steps:

1. Alice sends a newly signed transaction to one of the membership au-
thorities (A),

2. Alices signature is validated only by A,

3. A signs the transaction proposed by Alice and anonymises Alices iden-
tity,
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4. All the nodes member of the transactions’ validation process can val-
idate the A’s signature,

5. A signature cannot be forged.

Now, to keep the client’s and peers’ privacy involved in the transactional
process, we need to hide his ID and blind his signature. However, we do not
address the ID hiding process with any particular mechanism. Therefore, we
consider that the ID is replaced by a value corresponding to the anonymised
user ID, and this process can be performed by using different schemes.

To address the issue related to the digital signature, we replace the sign-
ing mechanism used in the original protocol with the abstract model for the
blind signature scheme introduced in Section 3.2.2. By recapitulating the
consensus protocol above mentioned, the transactional process consists of
the following steps:

1. Transaction Proposal: The client cbc generates a signed message to
execute an operation obc in the network.

2. Transaction Validation: The verifier peers vpbc validate the client
cbc signature and verify that the transaction is correct by performing a
simulation of the operation obc using his local version of the blockchain.
Then, each verifier peer generates a signed transaction with the result
of the validation process and sends it back to the client cbc.

3. Broadcasting to Consensus: The client cbc collects the validations
coming from the verifier peers connected to the network. Once cbc col-
lects enough valid answers from the verifiers, it broadcasts the trans-
action proposal with the validations to the consensus service.

4. Commitment: All the transactions are ordered within a block and
are validated with their own validations. The new block is then spread
through the network to be committed by the peers.

To maintain consistency and liveness, we keep the transactional flow.
However, the steps are modified to accept the new blind signature scheme
to authenticate the clients and the peers.

We use the signing function presented in Section 3.2.2 and a new func-
tion representing the operation execution inside the blockchain protocol.
Let a||b be the concatenation operation between a and b, BlindSign((U(M ,
pk),(A(sk)) and VerifyBlindSign(M ,σ,pk) be the functions to generate a blind
signature and to verify the blinded signature, respectively. Where M corre-
sponds to the message to be signed, σ to the blinded signature; and pk to
the public key. The result obtained from the function BlindSign corresponds
to the blinded signature σ. On the other hand, the function VerifyBlind-
Sign outputs a valid or invalid response with regards to M and pk. The
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third function corresponds to EXEC(o,Payload), and represents the exe-
cution process of the operation o on the Payload performed by the peer.
Additionally, we use the variables tid as the transaction ID, SecurityPolicies
to define the set of security parameters configured in the node for the oper-
ation obc (i.e., read and write rights), and TotVerPeers for the total number
of verifier peers in the network.

Now that the functions and the variables used in the protocol have been
defined, we need to integrate them inside of each step of the transactional
flow. The transactional process starts with the function Transaction Pro-
posal (see Algorithm 1). In this step, the client cbc executes the oper-
ation obc on the Payload and gets the verDep and stateUpdate. A ran-
dom number then replaces the user ID, and we concatenate the arguments
(crand, obc, Payload, verDep, stateUpdate, retryF lag) to be signed. The
signing process is presented in Figure 3.3). It is performed between the
client and the authority A (e.g., the user administrators or the CAs) us-
ing the functions KeyGen and BlindSign that generate the key pairs and the
blinded signature according to the protocol described in Section 3.2.2. This
process is performed off-chain, hence the blind signature is generated before
sending the transaction to the network. Moreover, the blind signature pro-
tocol can be executed by the client and multiple CAs or user administrators.
Therefore, the signing process does not rely on a single authority to perform
the blinding protocol. Finally, the client cbc generates the propose message
to be sent to the endorsing peers (see Figure 3.4).

AClient

(pk,sk) ← KeyGen
(
1k

)
σc ←BlindSign(U(M, pk),A(sk))

Figure 3.3: Interactions between the client and A.

Algorithm 1 TxProp(obc,Payload,retryF lag)

1: (verDep, stateUpdate)← EXEC(obc, Payload)
2: crandbc

r←− N
3: M ← (crandbc||obc||Payload||verDep||stateUpdate||retryF lag)
4: (pk, sk) r←− KeyGen(1k)
5: σ ← BlindSign((U(M, pk), (A(sk))
6: transprop ← (crandbc, obc, Payload, stateUpdate, verDep, retryF lag, σ)

7: return < propose, transprop >
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Verifier PeersClient

<propose, transprop >

Figure 3.4: Transaction Proposal.

The next step corresponds to the Transaction Validation detailed
in Algorithm 2. The verifier peer vpbci

starts the process validating the
blinded signature σ using the function VerifyBlindSign for the message M =
(crand||obc||Payload||verDep||stateUpdate ||retryF lag), and the public key
pk. If the verifier gets a valid response; he continues validating the verDep,
stateUpdate, and the securityPolicies. If verDep corresponds to the last
version that the verifier peer has locally, and the stateUpdate is the same
that its local state and the securityPolicies authorizes the instruction obc, the
peer validates the transaction as it is described in Figure 3.5). Otherwise, he
rejects as it is presented in Figure 3.6. For the transaction to be validated,
the verifier vpbci

uses the function BlindSign to sign the message transaction-
valid with his corresponding tid. Finally, once the transaction is validated,
the verifier peer vpbci

creates the transaction-valid message to be sent to the
client cbc.

Verifier PeersClient

< transaction− valid, txid, σvp >

Figure 3.5: Transaction Validation: Valid Transaction.

Verifier PeersClient

< transaction− invalid,

txid, Error, σvp >

Figure 3.6: Transaction Validation: Invalid Transaction.

The next step is the Broadcasting to Consensus. The client cbc then
receives the responses from the verifier peers. These responses are collected
inside of an array called validations. Once the client has collected enough
valid responses (σveri) in the validations array (at least 50% + 1), the client
sends the transaction to the consensors to be included in the next block by
using the function broadcast (see Algorithm 3 and Figure 3.7 for a detailed
presentation).
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Algorithm 2 TxEndors(transprop, securityPolicies, pk)

1: tid← transprop.Payload.tid
2: M ← (transprop.crandbc||transprop.obc||transprop.Payload
||transprop.verDep||transprop.stateUpdate||transprop.retryF lag)

3: σ ← transprop.σ
4: (pkveri

, skveri)← KeyGen(1k)
5: if VerifyBlindSign(M, σ, pk) == invalid then
6: result ← (transaction-invalid||tid||incorrect-signature)
7: σveri ← BlindSign((U(result, pkveri

), (A(skveri))
8: return <transaction-invalid,tid,incorrect-signature, σveri >
9: else

10: (verDepveri ,stateUpdateveri) ←
EXEC( transprop.obc, transprop.Payload)

11: if transprop.stateUpdate 6= stateUpdateveri then
12: result ← (transaction-invalid||tid||incorrect-state)
13: σveri ← BlindSign((U(result, pkveri

), (A(skveri))
14: return <transaction-invalid,tid,incorrect-state, σveri >
15: else if transprop.varDep 6= varDepveri then
16: result ← (transaction-invalid||tid||incorrect-version)
17: σveri ← BlindSign((U(result, pkveri

), (A(skveri))
18: return <transaction-invalid,tid,incorrect-version, σveri >
19: else if securityPolicies == invalid then
20: result ← (transaction-invalid||tid||rejected)
21: σveri ← BlindSign((U(result, pkveri

), (A(skveri))
22: return <transaction-invalid,tid,rejected, σveri >
23: else
24: result← (transaction-valid||tid)
25: σveri ← BlindSign((U(result, pkveri

), (A(skveri))
26: return < transaction-valid, tid, σveri >
27: end if
28: end if

Algorithm 3 TxBrodCons(transprop, σveri , validationstid)

1: validationstid[validationstid.length + 1] ← σveri

2: if (validationstid.length ≥ (T otV erP eers
2 + 1)) then

3: blob← (transprop, validationstid)
4: return < consensus, blob >
5: end if
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ConsensorsClient

< consensus, blob >

Figure 3.7: Broadcasting to consensus.

Finally, during the Commitment, described in Algorithm 6, the trans-
action is validated with its respective validations. If the verDep has not
changed during the validation process, and the validations are valid accord-
ing to the security policies for the operation obc; the transaction is added
into the new block. The NewBlock is an array where we store the new
transactions to be settled; and it is proposed by the consensor leader. Once
we have reached the maximum block size (BlockLengthMax) configured in
the network, the consensor leader spreads the new block in a proposeblock

message to the consensors backups according to the commitment process
described in Algorithm 4.

The backups, denoted by conspbci
for i = 1, . . . , k−1, where k is the total

number of backups, validate the proposeblock message. Then they respond
to the rest of the consensors with a prepareblock message as explained in
Algorithm 5.

Once each of the consensor receives enough valid prepareblock messages,
it means at least 50% + 1 of the total of the consensors, it notifies to the
nodes connected to the network that the validation process has finished suc-
cessfully, and he commits the block in their local version of the blockchain
by sending a commitblock message as described in Algorithm 6 and in Fig-
ure 3.8. In the case that the validation process fails, the transactions in the
block are rejected, and the retryFlag for those transactions are set to 1.

ConsensorsNodes

< commitblock, NewBlockBID, σconspi >

Figure 3.8: Commit Block.

3.5 Protocol Properties

We show that our blockchain BlindCons is consistent and ensures liveness.
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Algorithm 4 TxBrodCons(blob, SecurityPolicies)

1: M ← (blob.transprop.crandbc||blob.transprop.obc||
blob.transprop.Payload ||blob.transprop.verDep
||blob.transprop.stateUpdate ||blob.transprop.retryF lag)

2: σ ← blob.transprop.σ
3: (pkconspleader

, skconspleader
)← KeyGen(1k)

4: if VerifyBlindSign(M, σ, pk) == invalid then
5: result ← (prepareblock||NewBlockBID)||incorrect-signature)
6: σconspleader

← BlindSign((U(result, pkconspleader
) (A(skconspleader

))
7: return <transaction-invalid,tid,incorrect-signature, σconspleader

>
8: else
9: BID

r←− N
10: if (securityPolicies == invalid)|| (blob.transprop.V erDep 6= valid)

then
11: result ← (transaction-invalid||tid||invalid-sec-conditions)
12: σconspleader

← BlindSign((U(result, pkconspleader
), (A(skconspleader

))
13: return

<transaction-invalid,tid,invalid-sec-conditions,σconspleader
>

14: else
15: NewBlockBID[NewBlockBID.length + 1]← blob
16: else if NewBlockBID.length == BlockLengthMax then
17: result ← (proposeblock||NewBlockBID)
18: σconspleader

← BlindSign((U(result, pkconspleader
), (A(skconspleader

))
19: return < proposeblock, NewBlockBID, σconspleader

>
20: else
21: return wait-for-next-transaction
22: end if
23: end if

3.5.1 Consistency

A protocol is said to be consistent if it ensures that a transaction generated
by a valid user stays immutable in the blockchain.

Definition 3.5. A protocol P is T−consistent if a transaction tx generated
by an honest client ccb to execute a valid operation obc, it is confirmed and
stays immutable in the blockchain after T − round of new blocks.

Theorem 3.1. BlindCons protocol is 1-consistent.

Proof. The protocol described in Section 3.4 is a BFT based consensus al-
gorithm. Consistency is achieved by agreeing with the validity of the trans-
action through a Byzantine Agreement process. Hence, for a transaction tx
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Algorithm 5 Prepare(NewBlockBID, σconspleader
, SecurityPolicies)

1: (pkconspbci
, skconspbci

)← KeyGen(1k)
2: M ← (proposeblock||NewBlockBID)
3: if VerifyBlindSign(M, σconspleader

, pkconspleader
) == invalid then

4: result ← (block-invalid||NewBlockBID)||incorrect-signature)
5: σconspbci

←BlindSign((U(result, pkconspbci
), (A(skconspbci

))
6: return < block − invalid, NewBlockBID,

incorrect− signature, σconspbci
>

7: else
8: for all i = 0 to BlockLengthMax do
9: if (SecurityPolicies == invalid)||

(NewBlockBID [i] .transprop.verDep 6= valid) then
10: NewBlockBID [i]← (NewBlockBID [i] .transprop,

NewBlockBID [i] .validationstid, invalid)
11: invalidcount ← invalidcount + 1
12: end if
13: end for
14: if invalidcount 6= 0 then
15: result ← (block-invalid||NewBlockBID||invalid-transaction)
16: σconspbci

← BlindSign((U(result, pkconspbci
), (A(skconspbci

))
17: return < prepareblock, NewBlockBID,

invalid− transaction, σconspbci
>

18: else
19: result ← (prepareblock||NewBlockBID)
20: σconspbci

← BlindSign((U(result, pkconspbci
), (A(skconspbci

))
21: return < prepareblock, NewBlockBID, σconspbci

>
22: end if
23: end if

that has reached a majority of valid endorsements for an operation obc, the
probability of not settling it in a new block and having forks in the chain
is neglected if we have at most bn−1

3 c out of total n malicious peers, as it
has been shown in [CL99, LM07] under the terminology of safeness. It is
1-consistent because we do not have any fork; hence only one block is needed
to wait to have a transaction validated.

3.5.2 Liveness

The liveness property means that a consensus protocol ensures that if an
honest client submits a valid transaction, a new block will be appended to
the chain with the transaction in it. Hence, the protocol must ensure that
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Algorithm 6 BlockCom(NewBlockBID, securityPolicies, retryF lag)

1: M ← (prepareblock||NewBlockBID)
2: if VerifyBlindSign(M, σconspbci

, pkconspbci
) == invalid then

3: result ← (block-invalid||NewBlockBID)||incorrect-signature)
4: σconspbci

←BlindSign((U(result, pkconspbci
), (A(skconspbci

))
5: return < block − invalid, NewBlockBID,

incorrect− signature, σconspbci
>

6: else
7: countblockBID

← countblockBID
+ 1

8: if countblockBID
< CountMinForNewBlock then

9: return WAIT-FOR-NEXT-BLOCK
10: else
11: result ← (commitblock||NewBlockBID)
12: σconspbci

← BlindSign((U(result, pkconspbci
), (A(skconspbci

))
13: return < commitblock, NewBlockBID, σconspi >
14: end if
15: end if

the blockchain grows if valid clients generate valid transactions.

Definition 3.6 (Liveness). A consensus protocol P ensures liveness for a
blockchain C if P ensures that after a period of time t, the new version of
the blockchain C ′ is C ′ > C, if a valid client cibc

has broadcasted a valid
transaction txi during the time t.

Theorem 3.2. BlindCons achieves liveness.

Proof. BlindCons is a BTF-based consensus protocol. Thus, liveness is
achieved if after the transaction validation process, the ordering services
propose a new block B with the transactions broadcasted by the clients
during a period of time t. Hence, for valid transactions txi, where i ∈ N0,
issued by valid a client cibc

during a period of time t, the probability that
C ′ = C is neglected if we have at most bn−1

3 c out of total n malicious
peers [CL99].

3.6 Conclusion

We propose a new consensus algorithm for privacy-preserving user identity
using blind signatures scheme for transactions unlinkability. This algorithm
is based on an execute-order-validate process proposed in Hyperledger Fab-
ric. However, our construction uses a BFT algorithm to agree on the new
block instead of Kafka or Raft. Our protocol allows the users to issue a
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blinded signature that keeps their identity private during the Blockchain
transaction validation process and after the transaction is settled. The sign-
ing scheme is based on an abstract model that can be used with different
blind signature constructions like Okamoto-Schnorr blind signature [Oka92],
Chum’s blind signature [Cha82], Fuchsbauer et al. [FHS15], among others.
The protocol was designed to implement a blind signature scheme to achieve
transactions unlinkability by using the components that any Permissioned or
Private Blockchain architecture has. However, our construction uses a BFT
algorithm to agree on the new block instead of Kafka or Raft. Hence, our
algorithm performs the signature blinding process by using the membership
authorities or the user administrators that already exist in the Permissioned
scheme, making it efficient for these kinds of Blockchain architectures. More-
over, our protocol can be easily adapted in Permissioned Blockchains like
Hyperledger Fabric or Iroha.
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With the immutability property and decentralised architecture,
Blockchain technology is considered as a revolution for several topics. For ex-
ample, electronic voting, it can be used to ensure voter privacy, the integrity
of votes, and the verifiability of vote results. More precisely permissioned
Blockchains could be the solution for many of the e-voting issues. In this
work, we start by evaluating some of the existing Blockchain-based e-voting
systems and analyse their drawbacks. We then propose a fully-decentralised
e-voting system based on permissioned Blockchain. Called DABSTERS, our
protocol uses a blinded signature consensus algorithm to preserve voter’s
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privacy. This ensures several security properties and aims at achieving a
balance between voter privacy and election transparency. Furthermore, we
formally prove the security of our protocol by using the automated verifica-
tion tool, ProVerif, with the Applied Pi-Calculus modelling language.

4.1 Introduction

Voting is the cornerstone of a democratic country. The list of security prop-
erties that must respect a secure voting protocol includes the following fea-
tures. Eligibility: only registered voters can vote and only one vote per
voter is counted. If the voter is allowed to vote more than once, the most
recent ballot will be tallied and all others must be discarded. Individual
verifiability: the voter him/herself must be able to verify that his/her
ballot was cast as intended and counted as cast. Universal verifiability:
after the tallying process, the results are published and must be verifiable
by everybody. Vote-privacy: the connection between a voter and his/her
vote must not be reconstructable without his/her help. Receipt-freeness:
a voter cannot prove to a potential coercer that he/she voted in a particular
way. Coercion resistance: even when a voter interacts with a coercer dur-
ing the voting process, the coercer will be not sure whether the voter obeyed
their demand or not. Integrity: ballots are not altered or deleted during
any step of the election. Fairness: no partial results are published before
tallying has ended; otherwise voters may be influenced by these results and
vote differently. Robustness: the system should be able to tolerate some
faulty votes. Vote-and-go: a voter does not need to wait for the end of
the voting phase or trigger the tallying phase. Voting policy: specify if a
voter has the right to vote more than once or he/she has not the right to
change his/her opinion once he/she cast a vote.

Traditionally, during an election, the voter goes to a polling station and
makes his/her choice in an anonymously, without any external influence. To
perform the tally, we need to trust a central authority. From this comes
the risk of electoral fraud. The tallying authority has the possibility to
falsify votes and thus to elect a candidate who should not be elected. It is
also possible for the registration authority to allow ineligible voters to vote.
Hence, voting becomes useless and we notice a decrease in voter turnout
in elections. Decentralised systems can be a good alternative to traditional
voting since we need a secure, verifiable and privacy preserving e-voting
systems for our elections. Blockchain is a distributed ledger that operates
without the need to a trusted party. Expanding e-voting into Blockchain
technology could be the solution to alleviate the present issues in voting.

Due to the proliferation of Blockchain implementations, the European
Blockchain Observatory and Forum has published a technical report [TL18]
where it recommends the use of private or permissioned Blockchains for
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sensitive data storage, which is the architecture implemented in an e-voting
system. In this Blockchain architecture, the user credentials are generated
by a Certificate Authority (CA). Hence, the users must be enrolled into the
system through the CA before joining the network. This model is suitable for
an e-voting system because the user management can rely on the Blockchain
platform, due to their formal enrolling process. The advantage of having a
minimum level of trust through our knowing the participants is that we can
achieve security for the Blockchain replication process by using Byzantine
Agreement as a consensus mechanism. Although permissioned Blockchains
have several features suitable for services that involve sensitive data, such
as user’s personal information, they have drawbacks related to transactions
and user linkability. This is bceause each user credential, public key pair and
certificates, are issued for specific users that were previously enrolled in the
CA. In order to overcome this drawback, we use, in this work, the Okamoto-
Schnorr blind signature scheme to sign the transactions without linking the
user to it. This model allows validating transactions without exposing the
user’s identification, and therefore maintaining the votes’s privacy.
Related Work: In the last few decades, many Blockchain-based e-voting
protocols have been proposed to address the security issues of traditional
voting protocols. Due to the limitation on the number of pages, we give
a brief overview of some of these systems and evaluate their security in
Table 4.1, in which we use the following abbreviations1.

• Open Vote Network (OVN) [MSH17]: It is a self-tallying, boardroom
scale e-voting protocol implemented as a smart contract in Ethereum.
This protocol guarantees voter’s privacy and removes the need to trust
the tallying authorities whether to ensure the anonymity of voters or
to guarantee the verifiability of elections. However, it suffers from
several security issues. For example, it supports only elections with
two options (yes or no) and with a maximum of 50 voters due to the
mathematical tools used and to the gas limit for blocks imposed by
Ethereum. Additionally, this protocol does not provide any mechanism
to ensure coercion resistance and must trust the election administrator
to ensure voters’ eligibility. Open Vote Network is not resistant to
the misbehavior of a dishonest miner who can invalidate the election
by modifying voters’ transactions before storing them on blocks. A
dishonest voter can also invalidate the election by sending an invalid
vote or by abstaining during the voting phase.

• E-Voting with Blockchain: An E-Voting Protocol with Decentralization
and Voter Privacy (EVPDVP) [HAM18]: Implemented on a private
network that uses the Ethereum Blockchain API, this protocol uses the
blind signature to ensure voters privacy. It needs a central authority

1TCA: Trusted Central Authority; SV: Single Vote; MV: Multiple Votes.
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(CA) as a trusted party to ensure voters eligibility and allow voters
to change and update their votes. To ensure fairness, voters include
in their ballots a digital commitment of their choices instead of the
real identity of the chosen candidate. To tally ballots, voters must
broadcast to the network a ballot opening message during the counting
phase.

• Verify-Your-Vote: A Verifiable Blockchain-based Online Voting Proto-
col (VYV) [CYLR18]: An online e-voting protocol that uses Ethereum
Blockchain as a bulletin board. It is based on a variety of cryp-
tographic primitives, namely Elliptic Curve Cryptography [HM05],
pairings [Bon12, RS15] and Identity Based Encryption [BF03]. The
combination of security properties in this protocol has numerous ad-
vantages. First, it ensures voter’s privacy because the Blockchain is
characterized by the anonymity of its transactions. It also ensures
fairness, individual and universal verifiability because the ballot struc-
ture includes counter-values, which serve as receipts for voters, and
homomorphism of pairings. However, the registration phase of this
protocol is centralised. A unique authority, which is the registration
agent, is responsible for verifying the eligibility of voters and register-
ing them. A second problem is inherent in the use of Ethereum because
each transaction sent by the protocol entities in the Blockchain passes
through miners who validate it, put it in the current block and exe-
cute the consensus algorithm. Therefore, any dishonest miner in the
election Blockchain can modify transactions before storing them on
blocks. Additionally, this protocol is not coercion resistant.

• TIVI [Sma16]: It is a commercial online voting solution based on bio-
metric authentication, designed by the company Smartmatic. It checks
the elector’s identity via a selfie using facial recognition technology.
TIVI ensures the secrecy of votes so long as the encryption remains
uncompromised. It also provides voters’ privacy thanks to its mixing
phase. It offers the possibility to follow votes by the mean of a QR code
stored during the voting phase and checked later via a smartphone ap-
plication. However, this system does not provide any mechanism to
protect voters from coercion or to ensure receipt-freeness. Addition-
ally, TIVI uses the Ethereum Blockchain as a ballot box. Hence, it is
not resistant to misbehaving miners that could invalidate the election
by modifying votes before storing them on the election Blockchain.

• Follow My Vote (FMV) [Fol12]: It is a commercial online voting pro-
tocol that uses the Ethereum Blockchain as a ballot box. A trusted
authority authenticates eligible voters and provides them with pass-
phrases needed in case of changing their votes in the future. Voters can
watch the election progress in real-time as votes are cast. It includes
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an authentication phase that ensures voters’ eligibility. In addition,
it allows voters to locate their votes, and check that they are both
present and correct using their voters’ IDs. Nevertheless, this voting
system requires a trusted authority to ensure votes confidentiality and
hide the correspondence between the voters’ real identities and their
voting keys. If this authority is corrupted, votes are no longer anony-
mous. This system does not verify votes secrecy because votes are cast
without being encrypted. Moreover, the ability to change votes, cou-
pled with the ability to observe the election in real-time compromise
fairness property. This system is not coercion resistance and is not
universally verifiable because, we have no way to verify that the votes
present in the election final election result are cast by eligible voters.

• BitCongress [Inc]: A commercial online voting platform based on three
networks: Bitcoin, Counterparty (a decentralised asset creation system
and decentralised asset exchange) and a Smart Contract Blockchain.
It aims at preventing double voting by using the time stamp system
of the Bitcoin Blockchain. This platform does not ensure voters eligi-
bility because it allows any Bitcoin address to register for the election.
It performs the tally using, by default, a modified version of Borda
count and a Quota Borda system for large scale elections. It ensures
individual and universal verifiability but it is not coercion resistant.

• Platform-independent Secure Blockchain-based Voting System
(PSBVS) [YLS+18]: Implemented in the Hyperledger Fabric
Blockchain [ABB+18], this protocol uses Paillier cryptosystem [Pai11]
to encrypt votes before being cast, proof of knowledge to ensure
the correctness and consistency of votes, and Short Linkable Ring
Signature (SLRS) [ACST06] to guarantee voters privacy. On the other
hand, this protocol does not include a registration phase in which
we verify, physically or by using biometric techniques, the voter’s
eligibility. A voter can register him/herself by simply providing
his/her e-mail address, identity number or an invitation URL with
the desired password. However, these mechanisms are not sufficient
to verify a voter’s eligebility and information like e-mail address
or identity number can be known by people other than the voter
him/herself. Also, concerning the definition of coercion resistance
given by Juels et al. [JCJ10], this protocol is not coercion resistant. If
a voter gives his/her secret key to a coercer, the coercer can vote in
the place of the voter who cannot modify this vote later. We mention
here that the coerced voter cannot provide a fake secret key to the
coercer because the smart contract rejects a vote with a fake secret
key

Contributions: In this work, we aim at designing a secure online e-voting
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OVN EVPDVP VYV TIVI FMV BitCongress PSBVS DABSTERS
Eligibility TCA TCA TCA X TCA X X X

Individual verif X X X X X X X X
Universal verif X X X X X X X X
Vote-Privacy X X X X TCA X X X

Receipt-freeness X X X X X X X X
Coercion resistance X X X X X X X X

Fairness X X X X X X X X
Integrity X X X X X X X X

Robustness X X X X X X X X
Vote-and-go X X X X X X X X

Voting policy SV MV MV SV MV MV SV MV

Table 4.1: Security evaluation of OVN, EVPDVP, VYV, TIVI, FMV, Bit-
Congress, PSBVS and DABSTERS.

protocol that addresses the security issues mentioned in the related work
section by using the Blockchain technology and a variety of cryptographic
primitives. Called DABSTER, our protocol uses a new architecture based
on permissioned Blockchain and blind signature. It satisfies the following
security properties: eligibility, individual verifiability, universal verifiabil-
ity, vote-privacy, receipt-freeness, fairness, integrity and robustness. Our
contributions can be summarised as follows:

• A new architecture of trust for electronic voting systems. This archi-
tecture is based on permissioned Blockchain and on a blind consensus
which provides voter’s privacy and vote’s integrity.

• A secure and fully distributed electronic voting protocol based on our
propounded architecture.

• A detailed security evaluation of the protocol and a formal security
proof using the Applied Pi-Calculus modelling language and the au-
tomated verification tool ProVerif.

Outline: In the next section, we give an overview of the Byzantine Fault
Tolerance (BFT) with blind signature consensus algorithms. Then in Sec-
tion 4.3, we describe our proposed e-voting protocol, DABSTERS, and give
its different stakeholders and phases, and the structure of each voter’s bal-
lot. Finally, in Section 4.4, we evaluate our protocol’s security using Proverif
when possible. The conclusion is a summary of DABSTERS and a proposal
for ongoing evaluation of its performance.

4.2 Background

We define the Okamoto-Schnorr blind signature, before using it in a Byzan-
tine based consensus.



4.2. BACKGROUND 73

UserA

secret: (r, s) r←− Zq public: y = grhs

(t, u) r←− Zq

a = gthu

S = u− es mod q
R = t− er mod q

(β, γ, δ) r←− Zq

α = ag−βh−γyδ

ε = H(M, α)
e = ε− δ mod q

ρ = R− β mod q
σ = S − γ mod q

a

e

(S, R)

Figure 4.1: Okamoto-Schnorr blind signature diagram, where y
r←− Zq means

that y is randomly chosen in Zq.

4.2.1 Blind Signature

Let p and q be two large primes with q|p − 1. Let G be a cyclic group of
prime order q, and g and h be generators of G. Let H : {0, 1}∗ → Zq be a
cryptographic hash function.

Key Generation: Let (r, s) r←− Zq and y = grhs be the A’s private and
public key, respectively.

Blind signature protocol: 1. A chooses (t, u) r←− Zq, computes a =
gthu, and sends a to the user.

2. The user chooses (β, γ, δ) r←− Zq and computes the blind version of
a as α = ag−βh−γyδ, and ε = H(M, α). Then calculates e = ε−δ
mod q, and sends e to the A.

3. A computes S = u−es mod q and R = t−er mod q, sends (S, R)
to the user.

4. The user calculates ρ = R− β mod q and σ = S − γ mod q.

Verification: Given a message M ∈ {0, 1}∗ and a signature (ρ, σ, ε), we
have α = gρhσyε mod p.

The Okamoto-Schnorr blind signature scheme is suitable with a private
Blockchain architecture due to the blinding process that can be performed
by the same authority responsible of the enrollment process (see Figure 4.1,
where the authority A blindly signs a message for the user). We use Blind-
Sign(M,(β,σ, γ), y) and VerifyBlindSign(M,(ρ, δ, ε), y) to blind sign and to
verify the blinded signature, respectively using Okamoto-Schnorr, where M
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corresponds to the message to be signed, (β, σ, γ) to the secret values ran-
domly chosen, (ρ, δ, ε) to the blinded signature; and y to the RA’s public
key. The result obtained from the unction BlindSign corresponds to the
blinded signature (ρ, σ, ε). On the other hand, the function VerifyBlindSign
returns a response valid or invalid.

4.2.2 BFT based consensus algorithm

Considering a permissioned Byzantine Fault Tolerance (BFT) based consen-
sus protocol like the one introduced in Hyperledger Fabric [ABB+18]. In
this protocol, the digital signature is used as a user authentication method
without protecting the user privacy. Hence, for a privacy-preserving con-
sensus protocol, we need to add the following properties to the BFT based
consensus algorithm:

• Alice sends a newly signed transaction to the registration authority
(RA) which is responsible for the enrollment of Alice.

• Alice’s signature is validated only by the RA.

• The RA anonymises Alice’s identity.

• The RA signs the transaction sent by Alice to the network.

• All the node in the transactions validation process can validate the
RA’s signature.

• The RA signature cannot be duplicated.

Now, to keep the client’s and peers’ privacy involved in the transactional
process, we need to hide his ID and make his signature blind. However,
we do not address the ID hiding process with any particular mechanism.
Therefore, we consider that the ID is replaced by a value corresponding
to the anonymised user ID, and this process can be performed by using
different schemes. As presented in [KLMN18], to address the issue related to
the digital signature, we replace the signing mechanism used in the original
protocol with the Okamoto-Schnorr blind signature scheme [Oka92]. In
order to maintain the consistency and liveness that the protocol has, we
keep the transactional flow. However, the steps are modified to accept the
new blind signature scheme to authenticate the clients and peers.

The transactional process based on our BFT consensus algorithm with
Blind Signature consists of the following steps:

1. Initiating Transactions: The client cbc generates a message M to
execute an operation obc in the network with a blinded signature by
using BlindSign((M, β, σ, γ), y).
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2. Transaction Proposal: The submitting peer spbc receives the mes-
sage M coming from the client cbc, validates the client blinded signa-
ture by using VerifyBlindSign(M,(ρ, δ, ε), y) and proposes a transaction
with the client instruction obc.

3. Transaction Endorsement: The endorser peers epbc validate the
client blinded signature using VerifyBlindSign(M,(ρ, δ, ε), y) and verify
if the transaction is valid by simulating the operation obc using his local
version of the Blockchain. Then, the endorser peers generate signed
transactions with the result of the validation process and send it to
the submitting peer spbc.

4. Broadcasting to Consensus: The submitting peer spbc collects the
endorsement coming from the endorsing peers connected to the net-
work. Once spbc collects enough valid answers from the endorsing
peers, it broadcasts the transaction proposal with the endorsements
to the ordering service.

5. Commitment: All the transactions are ordered within a block, and
are validated with their respective endorsement. Then, the new block
is spread through the network to be committed by the peers.

4.3 Description of DABSTERS

Our protocol is implemented over a new architecture of trust. It is based
on a BFT-based consensus protocol [ABB+18] and on a blinded signature
consensus protocol, called BlindCons [KLMN18], presented in Section 4.2.
It eliminates the risk of invalidating the election because of dishonest miners
who modify the transactions before storing them on blocks. We also propose
a distributed enrollment phase to reduce the need to trust election agents
and impose the publication of the list of eligible registered voters at the end
of the enrollment phase. This list is auditable and verifiable by all parties.

Our scheme unfolds in 5 stages. It starts with an enrollment phase
in which registration authorities (RAs) verify the eligibility of voters by
verifying the existence of their names and their identity card numbers in
a list published beforehand and containing the names of all persons who
have the right to vote. Then, all eligible voters are registered and provided
with credentials. The enrollment phase is offline. At the end of this phase,
RAs construct a list containing the names of all registered eligible voters
and their ID card numbers. This list can be rejected or published on the
election Blockchain during the validation phase. Once the list is validated,
we move to the third stage which is the voting phase. Each eligible voter
(Vi) initiates a transaction in which he/she writes his/her encrypted vote,
signs the transaction using his/her credential and sends it to the RAs to
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check his/her signature and blind it. Then, the voter sends the transaction
with the blinded signature and his/her anonymous ID (his/her credential)
to the consensus peers to be validated and stored in the election Blockchain
anonymously. After validating and storing all votes in our Blockchain, tally-
ing authorities (TAs) read these encrypted votes from the network, decrypt
them, and proceed to the tally. The final stage is the verification phase.
During this phase, voters make sure that their votes have been considered
correctly and check the accuracy of the tally. The individual verifiability is
ensured due to the structure of our ballots and the universal verification is
ensured thanks to the homomorphism property of pairings. Except for the
enrollment phase, all the phases of our protocol are on-chain. Therefore,
we call the BFT based consensus protocol with each transaction initiated
by authorities and the BlindCons with each transaction initiated by eligible
voters because we do not need to hide the identity of our authorities. Still,
we need to ensure voter’s privacy. In the following, we give a detailed de-
scription of the role of our protocol stakeholders, the structure of our ballot,
the different protocol phases and the two consensus.

4.3.1 Protocol Stakeholders

DABSTERS involves three main entities:

• Registration authorities (RAs): they verify the eligibility of every per-
son wishing to register for the election and provide eligible voters with
their credentials which are constructed by cooperation between all
RAs.

• Eligible voters (V): every eligible voter (Vi) has the right to vote more
than once before the end of the voting phase and only his/her last vote
is counted. Voters can verify that their votes are cast as intended and
counted as cast during the verification phase. Also, they can check
the accuracy of the final election result, but they are not obliged to
participate in the verification phase (they can vote and go).

• Tallying authorities (TAs): the protocol includes as many tallying
authorities as candidates. Before the voting phase, they construct
n ballots, where n is the number of registered voters. Thus, every
voter has a unique ballot that is different from the other ballots. TAs
encrypt ballots and send them to voters during the voting phase. They
decrypt votes, calculate the final election result during the tallying
phase, and publish the different values that allow voters to check the
count’s accuracy during the verification phase.

DABSTERS also involves observers and election organisers who have the
right to host the Blockchain peers to ensure the correctness of the execution
of the protocol.
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4.3.2 Ballot Structure:

As illustrated in Figure 4.2, each ballot comprises a unique bulletin num-
ber BN calculated as follows: BN = {g, D}P KA

, where g is a generator
of an additive cyclic group G, D is a random number and PKA is the ad-
ministrator’s public key. It also contains a set of candidates’ names namej

and candidates’ pseudo IDs, denoted Cj , which are the candidates’s posi-
tion in the ballot, calculated from an initial order and an offset value. In
addition, each ballot includes a set of counter-values CVBN,namej ,k that are
receipts for each voter. They are calculated using the following formula:
CVBN,namej ,k = e(Qnamej , Sk ·QBN ); where e(., .) is the pairing function, Sk

is the secret key of the tallying authority TAk, Qnamej = H1(namej) and
QBN = H1(BN) are two points of the elliptic curve E.

Ballot number BN

Pseudo Candidate’s Choice Counter-value
"ID Cj" "name namej" "CVBN,namej ,k"

0 Paul � CVBN,name0,0
1 Nico � CVBN,name1,1
2 Joel � CVBN,name2,2

Table 4.2: Ballot structure[PUT07].

4.3.3 Protocol Stages

Our solution includes the following phases:

4.3.3.1 Enrollment Phase:

Every person who has the right to vote and desires to do so, physically
goes to the nearest registration station. He/she provides his/her national
identity card to the RAs, who verify his/her eligibility by checking if his/her
name and ID card number exist in a list, previously published, contains all
persons that can participate in the election. If he/she is an eligible voter, the
RAs save the number of his/her ID card and provide him with a credential
that allows him to participate in the voting process. Voters’ credentials are
calculated using elliptic curve cryptography and have this form:

CredentialVi = SM ·H1(IDVi) where:

• SM = S1 · S2 . . . , SR is a secret master key calculated by cooperation
between all RAs. Each registration authority participates with its
secret fragment Sr; r ∈ {1 . . . R},

• H1 is an hash function defined as follows: H1 : {0, 1}∗ → G1; G1 an
additive cyclic group of order prime number q,
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• IDVi is the number of the ID card of the voter Vi.

4.3.3.2 Validation Phase:

After registering all eligible voters, RAs create a list containing all registered
voter’s names and identity card numbers. This list should be viewable and
verifiable by voters, election organisers and observers. Thus, RAs send this
list in a transaction on our election Blockchain. This transaction passes
through the five steps of the BFT based consensus protocol to be validated
if the list is correct or rejected if the list contains names of ineligible voters.

• Step1: Transaction initiation. RAs generate the list of eligible
voters to be validated by the network. Then, the list is sent to a
submitter peer. In the case of an offline or misbehaving submitter
peer, RAs send the transaction to the next submitter peer. This step
is illustrated in Figure 4.2.

RAs SP

SUBMIT, IDRA, Write(List),
List, σRA, retryFlag

Figure 4.2: Step1: Transaction initiation.

– IDRA is the ID of the registration authorities,
– Write(List) is the operation invoked by the RAs to be executed

by the network. It consists of writing the list of eligible voters
and their ID card numbers in the Blockchain,

– List is the payload of the submitted transaction, which is the list
of registered voters to be published on the Blockchain,

– σRA is the signature of the registration authorities,
– retryF lag is a boolean variable to identify whether to retry the

transaction’s submission in case of the transaction fails.

• Step2: Transaction proposal. The submitter peer receives the
transaction and verifies the RAs signature. Then prepares a transac-
tion proposal to be sent to the endorsing peers. Endorsing peers are
composed of some voters, election organisers and observers who desire
to host the Blockchain peers. This step is described in Figure 4.3.

– mRA = (IDRA, Write(List), List, σRA)
– Transprop = (SP, Write(List), List, StateUpdate, V erDep):
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SP EP: Voters+Election
organizers + Observers

PROPOSAL, mRA,
T ransprop

Figure 4.3: Step2: Transaction proposal.

∗ StateUpdate corresponds to the state machine after simulat-
ing locally the operation coming in Write(List).

∗ VerDep is the version dependency associated with the vari-
able to be created or modified. It is used to keep the con-
sistency of the variables across the different machine state
versions.

• Step3: Transaction endorsement. Each endorser peer verifies the
signature of the registration authorities σRA coming in mRA and checks
that the list of eligible voters in mRA and Transprop is the same. Then,
each endorser verifies the eligibility of all names and ID card numbers
included in the list. If they are all valid, the endorser peer generates a
transaction valid message to be sent to the submitter peer (Figure 4.4).
But if the list includes names of ineligible voters, the endorser peer
generates a transaction invalid message (Figure 4.5).

SP EP: Voters+Election
organizers + Observers

TRANSACTION-VALID,
T xID, σEP

Figure 4.4: Step3: Transaction endorsement: valid transaction.

SP EP: Voters+Election
organizers + Observers

TRANSACTION-INVALID,
T xID, Error, InvalidList,

σEP

Figure 4.5: Step3: Transaction endorsement: invalid transaction.
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– TxID is the transaction ID,

– σEP is the signature of the endorser peer.

– Error message can have the following values:

∗ INCORRECT-STATE: when the endorser tries to vali-
date the transaction with a different local version of the
Blockchain than the one coming in the transaction proposal.

∗ INCORRECT-VERSION: when the version of the variable
where the list will be recorded differs from the one referred
in the transaction proposal.

∗ REJECTED: for any other reason.

– InvalidList: is the list of ineligible names that were included in
the list sent by the RAs.

• Step4: Broadcasting to Consensus. The submitter peer waits for
the response from the endorser peers. When it receives enough Trans-
action Valid messages adequately signed, the peer stores the endorsing
signatures into packaged called endorsement. Once the transaction is
considered endorsed, the peer invokes the consensus services by using
broadcast(blob), where blob = (Transprop, endorsement) (Figure4.6).

The number of responses and endorsements to consider the transaction
proposal as endorsed equals 50% + 1 of the total number of endorser
peers. If the transaction has failed to collect enough endorsements, it
abandons this transaction and notifies the RAs.

SP Or

Broadcast(Blob)

Figure 4.6: Step4: Broadcasting to consensus.

• Step5: Commitment. Once the submitter peer broadcasts the
transaction to consensus, the ordering services put it into the cur-
rent block, which will be sent to all peers once built. Finally, if the
transaction was not validated, the submitter peer SP informed the
registration authorities.

In the case of an invalid list, the registration authorities have to correct
the list and restart the validation phase. Thus, we move to the next phase
(which is the voting phase) only when obtaining a valid list of registered
voters.
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4.3.3.3 Voting Phase:

Two entities participate during this phase:

• The tallying authorities who have constructed ballots before the be-
ginning of the voting phase. To construct a ballot, TAs calculate,
locally, the unique ballot number BN = {g, D}P KT A

, the offset
value offset = H(g) mod m and the counter-values CVBN,namej ,k =
e(Qnamej , Sk · QBN ), where g is a generator of G an additive cyclic
group of order a prime number, D is a random number, PKT A is
TAs’ public key, m is the number of candidates, e(., .) is the pair-
ing function, Sk is the secret key of the tallying authority TAk,
Qnamej = H1(namej) and QBN = H1(BN) are two points of the
elliptic curve E. Then, TAs choose, randomly, a blank ballot for each
voter, encrypt it with the voter’s public key and transmit it to the
corresponding voter via the Blockchain. Ballots are sent encrypted
because they contain secret information like the BN , the offset and
counter-values. To send encrypted ballots to voters via the Blockchain,
TAs interact with the BFT consensus peers. These interactions unfold
in five steps, the same steps as those presented in Section 4.3.3.2, and
described in Figure 4.7.

TAs SP EP

SUBMIT, IDT A,
Write(Enc_Ballot),
TxPayload, σT A,

retryFlag

Or

PROPOSAL, mT A,
T ransprop

P

TRANSACTION
-VALID, T xid,σep

broadcast(blob)
B = ([T x1, T x2,

.., T xk], h)

B = ([T x1, T x2,

.., T xk], h)

Figure 4.7: Interaction between TAs and peers.

1. Transaction initiation. TAs initiate a transaction and send it
to a submitter peer SP. The transaction contains their ID (IDT A),
the list of encrypted ballots, the transaction payload, their sig-
nature (σT A) and the value of the variable retryFlag.

2. Transaction proposal. SP verifies the TAs signature
and prepares a transaction proposal Transprop = (SP,
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Write(Enc_Ballot), Enc_Ballot, stateUpdate, V erDep) to be
sent to the endorsing peer with the TAs message mT A = (IDT A,
Write(Enc_Ballot), Enc_Ballot, σT A)

3. Transaction endorsement. EP verifies the σT A coming in
mT A, simulates the transaction proposal and validates that the
stateUpdate and verDep are correct. If the validation process is
successful, the endorser peer generates a transaction valid mes-
sage to be sent to the submitter peer.

4. Broadcasting to consensus. When the SP receives a num-
ber of Transaction Valid message equals to 50% + 1 of the to-
tal number of endorser peers, adequately signed, he stores the
endorsing signatures into an endorsement package and invokes
the consensus services by using broadcast(blob); where blob =
(Transprop, endorsement).

5. Commitment. Ordering services (Or) add the transaction to
a block. Once they collect enough endorsed transactions, they
broadcast the new block to all other peers. A block has the
following form: B = ([tx1, tx2, . . . , txk]; h) where h corresponds
to the hash value of the previous block.

• Every eligible voter retrieves his/her ballot, decrypts it using his/her
secret key and encrypts his/her vote by voting then sends it in a trans-
action through the Blockchain. To encrypt his/her vote, the voter
uses the Identity Based Encryption [BF03] and encrypts his/her bal-
lot number BN with QCj = H1(Cj) where Cj is the pseudo ID of the
chosen candidate. Thus, each encrypted vote has the following form:
Enc_V ote = {BN}QCj

.
To be read from the Blockchain or be written on it, voters’ transactions
pass through the blinded signature consensus. We model in Figure 4.8
the steps through which a transaction of an eligible voter passes. First,
we take the example of a transaction containing an encrypted vote.
During the interactions between TAs and peers, we use the digital sig-
nature as a user authentication method without protecting the TAs
privacy because we do not need to hide the identity of our protocol au-
thorities. However, when it comes to interactions between voters and
peers, we need to preserve voters’ privacy by blinding their signatures.
The privacy-preserving consensus adds two steps:

i) The signature of each eligible voter is blinded au-
tomatically after the vote is cast by the function
BlindSign(M, (β, γ, δ), PKRA), where M = (CredentialVi ||
Write(Enc_V ote)||Enc_V ote||retryF lag) is the message to be
signed, (β, γ, δ) are secret values randomly chosen by the voter
and PKRA is the public key of the RAs.
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RAs V
BlindSign(M,

(β, γ, δ), y)

SP

(ρ, σ, ε)

EP

SUBMIT, CrandVi
,

Write({BN }QCj
),

TxPayload,
retryFlag, (ρ, σ, ε)

Or

PROPOSAL,
mVi

, transprop

P

TRANSACTION
-VALID, T xid,

σep

broadcast(blob)
B = ([T x1, T x2,

.., T xk], h)
B = ([T x1, T x2,

.., T xk], h)

Figure 4.8: Interactions between eligible voters and BlindCons peers.

ii) RAs blind the signature of each eligible voter by providing him
with the tuple (R, S), allowing the voter to construct his/her
blinded signature (ρ, σ, ε) to be used during his/her interactions
with the peers.

The other steps are the same as the BFT based consensus, but instead
of sending their signatures, the voters send their blinded signatures
provided by the RAs.

1. Initiating transaction:
<SUBMIT, CredentialVi , Write(Enc_V ote), Enc_vote,
retryFlag, (ρ, σ, ε) >

2. Transaction Proposal: <PROPOSAL,mVi , transprop >

3. Transaction Endorsement: < TRANSACTION-
VALID, Txid, σep >

4. Broadcasting to consensus: broadcast(blob)
5. Commitment: B = ([Tx1, Tx2, . . . , Txk], h)

The voters who intend to verify that their votes were properly counted must
memorise the counter-values corresponding to their chosen candidates.

4.3.3.4 Tallying Phase:

After all votes have been cast; TAs proceed to the tally. We have as many
TAs as candidates. Each tallying authority TAk is responsible for count-
ing the number of votes for a specific pseudo ID Cj : for example, the first
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tallying authority TA1 decrypts, with its secret key S1 · QC1 , all bulletins
that were encrypted with the public key QC1 (certainly these ballots con-
tain votes for candidates with Cj = 0). TAk starts by initiating a transac-
tion to read encrypted votes from the Blockchain. This transaction passes
through the five steps of the BFT based consensus. Then, it decrypts the
votes with its secret key Sk that were encrypted with QCj to reveal the
bulletin number BN . Then, it reconstructs the ballot, identifies the cho-
sen candidate, and added to the corresponding counter. At the end of
this phase, TAk publishes the count for each candidate using the follow-

ing formula: σk,namej
=

lj∑
i=1

Sk ·QBN i ; Where lj is the number of votes
received by the candidate j, Sk is the private key of the tallying author-
ity k, QBNi = H1(BNi) and BNi is the ballot number of the vote i that
corresponds to the candidate with name namej .

4.3.3.5 Verification Phase:

This phase allows voters to check that their votes were counted as cast and
that the election final result corresponds to the sum of all eligible votes. It
includes two sub-phases. During the first one, TAs calculate the list of chosen
counter-values from each ballot number and the chosen candidate’s name
and publish this list on the Blockchain. Each eligible voter can read this
list and verify the existence of his/her counter-value to be sure that his/her
vote was counted correctly. The second sub-phase uses the homomorphism
of pairings to check the accuracy of the tally. Using the published counts and
the reconstructed counter-values, we can verify that the announced result
corresponds to the sum of all eligible votes, as follows :

l∏
i=1

CVBNi =
m∏

k=1

m∏
j=1

lj∏
i=1

CVBNi,namej
,k =

m∏
k=1

m∏
j=1

lj∏
i=1

e(Qnamej , Sk ·QBNi)

=
m∏

k=1

m∏
j=1

e(Qnamej ,

lj∑
i=1

Sk ·QBNi) =
m∏

k=1

m∏
j=1

e(Qnamej , σk,namej
)(4.1)

Where l =
m∑

j=1
lj is the total number of votes. These equalities use the bilin-

ear property of pairing:
lj∏

i=1
e(Qnamej , Sk ·QBNi) = e(Qnamej ,

lj∑
i=1

Sk ·QBNi)

4.4 Security Evaluation of DABSTER

Thanks to the use of the BFT based consensus, the BlindCons and a variety
of cryptographic primitives, our protocol ensures several security properties.
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We discuss the security properties ensured by our protocol and prove, for-
mally, that our solution guarantees vote secrecy, vote privacy, and voter’s
authentication.

4.4.1 Informal Security Evaluation

We evaluate our protocol according to a list of security properties that must
respect a secure and practical voting system.

• Eligible voter: The registration and the validation phases of our pro-
tocol ensure that only eligible voters participate in the voting process.
During the registration phase, RAs verify the identity of each voter via
a face to face meeting and only eligible voters are provided with cre-
dentials. During the validation phase, RAs send the list of registered
voters to the consensus peers, which are composed of voters, election
organisers and observers, to verify the eligibility of all registered voters
and validate or reject this list.

• Individual verifiability: This property is ensured by our proto-
col because our ballot structure includes counter-values. These val-
ues serve as receipts for voters and enable them to verify that their
votes have been cast as intended without disclosing who they voted
for. In fact, counter-values are calculated using the following formula:
CVBN,namej ,k = e(Qnamej , Sk ·QBN ). Thus, we cannot get the candi-
date’s name from the value of CVBN,namej ,k.

• Universal verifiability: From the parameters published by the TAs
during the verification phase, everyone can verify the accuracy of the
final result by checking the equation (4.1).

• Vote-Privacy: This property is ensured thanks to the BlindCons.
Before interacting with the consensus peers, RAs blind the signature
of all eligible voters to hide their real identities. Voters’ transactions
are signed by the blind signature issued by the RAs and not with the
voter’s signature. Thus voters’ identities are kept private and no one
can link a vote to a voter.

• Receipt-freeness: In our case, a voter cannot find his/her vote
from the counter-value CVBN,namej ,k and the other public parame-
ters. He/she cannot therefore prove that he/she voted for a given
candidate.

• Coercion resistance: Our protocol is not resistant to coercion. A
coercer can force a voter to vote for a certain candidate and check
his/her submission later using the counter-value.
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• Integrity: The BFT based consensus and the blind signature algo-
rithm prevent votes from being altered while keeping the voter’s se-
crecy. Each transaction is stored in the Blockchain after being vali-
dated by 50% + 1 of the endorsing peers. This eliminates the risk of
modifying transactions before storing them. We mention here that the
BFT consensus is based on the assumption that 2/3 of the endorsing
peers are honest.

• Fairness: During the voting phase, each eligible voter encrypts
his/her ballot number BN with QCj = H1(Cj) where Cj is the pseudo-
ID of the desired candidate. Ballot numbers are secret and candidates’
pseudo-IDs do not reflect the real identities of candidates thanks to the
offset value, so that nobody can identify the chosen candidate from the
encrypted vote. Thus, we cannot get partial results before the official
count.

• Robustness: Our scheme is resistant to the misbehavior of dishonest
voters who cannot invalidate the election by casting an invalid vote or
by refusing to cast a vote.

• Vote-and-go: Our protocol does not need the voter to trigger the
tallying phase; they can cast their votes and quit before the voting
ends.

• Voting policy: DABSTERS allows the possibility to eligible voters
to vote more than once and only their last votes are counted. It means
that we have a maximum of one vote per voter in the final tally. Every
eligible voter has a unique valid credential which is sent with his/her
vote in the transaction.

4.4.2 Formal Security Evaluation

ProVerif is a fully automated and efficient tool to verify security proto-
cols. It is capable of proving reachability properties, correspondence as-
sertions, and observational equivalence. To perform an automated security
analysis using this verification tool, we model our protocol in the Applied
Pi-Calculus [ABF18] which is a language for modelling and analysing se-
curity protocols. It is a variant of the Pi-Calculus extended with equa-
tional theory over terms and functions and provides an intuitive syntax
for studying concurrency and process interaction. The Applied Pi-Calculus
allows us to describe several security goals and to determine whether the
protocol meets these goals or not. To describe our protocol with the
Applied Pi calculus, we need to define a set of names, a set of vari-
ables and a signature that consists of the function symbols used to de-
fine terms. These function symbols have arities and types. To repre-
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sent the encryption, decryption, signature, blind signature and hash opera-
tions, we use the following function symbols: pk(skey), aenc(x,pk(skey)),
adec(x,skey), spk(sskey), sign(x,sskey), checksign(x,spk(sskey)),
BlindSign(x,smkey), checkBlindSign(x, spk(smkey)), H1(x). In-
tuitively, the pk function generates the corresponding public key of
a given secret key, aenc and adec stand, respectively; for asym-
metric encryption and asymmetric decryption, aenc and adec fol-
low this equation: adec(aenc(x,y),pk(y))=x. The spk function
generates the corresponding public key of a given signature secret
key, sign and checksign provide, respectively, the signature of a
given message and the verification of the signature. They respect
the following equation: checksign(sign(x,y),spk(y))=x. BlindSign
and checkBlind- Sign stand, respectively, for blind sign and check
blinded signature, BlindSign and checkBlindSign follow the equation
checkBlindSign(BlindSign(x,y),spk(y))=x. We also assume the hash
operation which is denoted with the function H1.

Because of the limitation on the number of pages, we put all ProVerif
codes online2 and give only the queries, the results of executing these codes,
and the time it takes ProVerif to prove the properties in Table 4.3 (Execution
times are expressed in seconds).

Property to evaluate Description Result Exec time
To capture the value of a given vote, an attacker has to inter-

Vote secrecy cept the values of two parameters: the ballot number BN and Proved 0.012s
the pseudo ID of the chosen candidate Cj.

Voter’s We use correspondence assertion to prove this property. Proved 0.010s
Authentication

To express vote privacy we prove the observational equiva-
Vote privacy lence between two instances of our process that differ only in Proved 0.024s

the choice of candidates.

Table 4.3: ProVerif results and execution times.

4.4.3 Blockchain Security Evaluation

DABSTERS Blockchain protocol has the following security properties.

4.4.3.1 Consistency:

A Blockchain protocol achieves consistency if can ensure that each valid
transaction sent to the network will stay immutable in the Blockchain.
Definition 4.1 (Consistency). A Blockchain protocol P is T − consistent
if a valid transaction tx is confirmed and stays immutable in the Blockchain
after T − round of new blocks.

2http://sancy.univ-bpclermont.fr/~lafourcade/DABSTERS_FormalVerif/

http://sancy.univ-bpclermont.fr/~lafourcade/DABSTERS_FormalVerif/
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Theorem 4.1. DABSTERS Blockchain protocol is 1-consistent.

Proof. The consistency is achieved by agreeing on the validity of the trans-
action through a Byzantine Agreement process. Hence, the probability of
not settling it in a new block is negligible if the transaction has at least
50% + 1 of a valid endorsement and the network has at most ban−1

3 c out of
total n malicious peers, as it has been shown in [CL99] [LM07] under the
terminology of safeness. The protocol achieves consistency after a new block
is created (1-consistency) due to the chain is growing without forks.

4.4.3.2 Liveness:

A consensus protocol ensures liveness if an honest client submits a valid
transaction and a new block is generated with the transaction in it. Hence,
the protocol must ensure that the Blockchain grows if valid clients generate
valid transactions.

Definition 4.2 (Liveness). A consensus protocol P ensures liveness for a
Blockchain C if P ensures that after a period of time t, the new version of
the Blockchain C ′ is C ′ > C, if a valid client cibc

has broadcasted a valid
transaction txi during the time t.

Theorem 4.2. DABSTERS Blockchain protocol achieves liveness.

Proof. Our protocol is a BFT-based consensus. Thus, liveness is achieved
if after the transaction validation process, the network agrees in new block
B with the transactions broadcasted by the clients during a period of time
t. Hence, for valid transactions txi, where i ∈ N0, issued by valid a client
ci during a period of time t, the probability that C ′ = C is neglected if we
have at most bn−1

3 c out of total n malicious peers [CL99].

4.4.3.3 Blindness:

We use the definition of blindness defined by Schnorr in [Sch01]. A signa-
ture is properly blinded if the signer cannot get any information about the
signature if the receiver follows the protocol correctly.

Definition 4.3 (Blind signature). A signing scheme is blind if the signa-
ture (m, ρ, σ, ε) generated by following the protocol correctly, is statistically
independent of the interaction (a, e, R, S) with that provides the view to the
signer.

Theorem 4.3. Okamoto-Schnorr signature (m, ρ, δ, ε) is statistically inde-
pendent of the interaction (a, e, R, S) between the authority A and the user.

Proof. We recall how the protocol works. To generate a blind signature
(m, ρ, σ, ε) the user chooses randomly (β, γ, δ) ∈ Zq to respond to the com-
mitment a generated by A with the challenge e = H(m, agβhγyδ) − δ mod
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q. The authority A then sends (R, S) = (t− er, u− es) to finally obtain the
signature by calculating (ρ, σ) = (R − β, S − γ). Hence, for the constant
interaction (a, e, R, S) and a unique set (β, γ, δ) randomly chosen per signa-
ture, we generate a signature (m, ρ, δ, ε) = (m, R − β, S − γ, e + γ) that is
uniformly distributed over all the signatures of the message m due to the
random (β, γ, δ)← Zq [Sch01].

4.5 Conclusion
We proposed a fully decentralised electronic voting system that combines
several security properties. This protocol, called DABSTERS, uses a new
architecture that enhances the security of e-voting systems and guarantees
the trustworthiness required by voters and election organisers. DABSTERS
is designed to be implemented on private Blockchains and uses a new blinded
signature consensus algorithm to guarantee vote integrity and voter’s privacy
due to the blinded signature’s unlinkability property.
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One of the big challenges in program obfuscation consists in modify-
ing not only the program’s straight-line code (SLC) but also the program’s
control flow graph (CFG). Indeed, if only SLC is modified, the program’s
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CFG can be extracted and analyzed. Usually, the CFG leaks a considerable
amount of information on the program’s structure.

In this work we propose a method allowing to rewrite a code P into a
functionally equivalent code P ′ such that CFG(P ) and CFG(P ′) are radi-
cally different.

5.1 Introduction

In the white-box security model, adversaries have access to a program’s
internals - assembly code, memory, etc. This model captures real-world
attacks against low-end devices, as well as software disassembly and dynamic
analysis. Such attacks may allow the adversary to extract secrets from the
implementation, either in the form of tokens (passwords, etc.), intellectual
property (algorithms, etc.), or may help uncover design flaws that may later
be exploited. Reverse-engineering may also help the adversary recognize
some traits that the program shares with other programs, e.g. in the case
of malware analysis or intellectual property infringement. The general aim
of obfuscation is to prevent reverse-engineering, by defeating automated
methods and stave off human efforts to make sense of the code. Applications
of RE-evasion techniques are many, and constitute for instance an essential
building block of digital rights management (DRM) systems.

Historically, program identification focused on finding known code
chunks called signatures in the binary. While this technique is still widely
in used amongst intrusion and virus detection systems, such an approach
requires both extensive, and up-to-date, databases (to account for the ever-
growing corpus of threats) and a very efficient binary comparison method.
At the same time, widely used packagers with self-modifying code capacity,
now standard amongst virus designers, made the traditional signature-based
approach less and less effective.

Indeed, an increasing number of malicious programs rewrite their ex-
ecutable code not to feature any recognizable code of significant length.
In practice, it is unnecessary to resort to very complex rewriting mecha-
nisms: the malicious code can simply add (or remove) useless instructions
or instruction sequences (such as nop, and reversible register operations,
e.g. inc/dec) to thwart a trivial comparison. While such variations can
be accounted for, they require significantly more effort from the analyst,
especially when scanning a large number of files.

An alternative, and certainly complementary approach to malware de-
tection and analysis consists of running the program under a controlled envi-
ronment, or sandbox, Thus, every operation can be monitored and does not
impact the "real” underlying system. Sandboxes typically implement a form
of a virtualised environment, and monitor access to resources, secrets, and
peripherals to detect abnormal behaviour. Naturally, the term “abnormal”
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is application-dependent; hence, this approach assumes that characteris-
tic behavioural features are known and are sufficiently distinguishable from
those of uninfected software. Moreover, managing such a controlled envi-
ronment is demanding in terms of resources and time, limiting the interest
in sandboxing as a program identification tool.

Recent research focused on methods for comparing programs using
control-flow graph isomorphism [DR05, Fla04, KKM+05]. The rationale
is that the program’s flow graph (CFG) wouldn’t be altered significantly by
the adjunction or removal of useless "decoy” operations, the kind of which
thwarts direct comparison. CFG comparison techniques are also unaffected
by straight-line code obfuscation techniques, e.g. when each function’s code
is completely rewritten. CFGs can be extracted statically to a large ex-
tent, and therefore constitute an attractive and resource-frugal alternative
to full-blown virtualisation.

5.1.0.0.1 Defeating CFG analysis. In the malware-writing commu-
nity, a typical anti-reverse engineering technique is the trampoline. Instead
of using typical control flow instructions such as jmp or call, the pro-
gram makes heavy use of exception handling, that preempts the instruction
pointer and runs the exception handler, which redistributes control flow to
another program part (see e.g. [Dav15]). After execution, each program
part raises an exception, and falls back to an exception handler (hence the
name, trampoline). There can be several trampolines, which may be created
and moved at runtime, and code boundaries need not be rigid. This prevents
disassemblers from reliably cross-referencing information and makes it diffi-
cult to perform dynamic analysis as well, because it is typically impossible
to run such code within a debugger.

However, because there is no classical call hierarchy, trampolines must
emulate the stack, and an analyst that recognises the mechanism can easily
reconstruct the control flow graph by following this pseudo-stack. Therefore,
while trampolines slows down analysis, it is by no means an efficient method
anymore against trained reverse engineers, and the additional effort put into
designing such code is not worth the marginal gain.

Recent work tried to automate the process, which strives to achieve a
"flat” control flow graph, i.e. a graph with either a single central trampoline
that dispatches execution, or a program that is fully unrolled and appears
as a long straight-line code segment without internal structure [WHKD00,
CGJZ01, LD03, PDA07, LK09, CP10, SK11]. However not only are such
techniques not always applicable, but more importantly they tend to produce
code that has salient signatures while "flat”.

5.1.0.0.2 Our contribution. This work addresses the question of
rewriting a program in a way that hides its original control flow graph from
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static analysis (and, to a certain extent, from dynamic analysis as well),
while preserving functionality. Straight-line code (SLC) obfuscation tech-
niques can be used to destroy remaining signatures on top of our construc-
tion. Indeed, SLC obfuscators have already been described in the literature
and shown to defeat classic code analysis techniques effectively[SKK+16].
The rewriting is randomized, and produces different outputs every time.
Unlike the trampoline construction, whose heavy use of exception handling
is easily recognizable, and from there, traceable, our construction only uses
common instructions and relies on a specific routing mechanism along exe-
cution — which is much harder to detect.

More formally, given a program P , we show how to obtain a functionally
equivalent program P ′, such that the CFG of P ′ is essentially a random
graph. This transformation is automatic, and we show how to implement
a CFG-transcompiler for the x86-64 architecture, which is widely used and
furthermore makes our implementation easier.

5.2 Control Flow Graph Transcompilation

5.2.1 Prerequisites

The control flow graph of a program is a graphical representation, based on
nodes and edges, of the paths that the program might traverse during its
execution.

Definition 5.1 (Control Flow Graph). The (full) control flow graph of a
program P is the graph whose nodes are the program’s instructions and the
edges are control flow transitions. The restricted control flow graph of P
has for nodes straight-line blocks, i.e. a maximal sequence of code without
departure or arrival of static jumps, and there is an edge from node x to
node y (and we write x→ y) if either of the following conditions holds:

• The code of node y is located immediately after the node x, and a
conditional jump separates both.

• The last instruction of the node x is either a conditional or a static
jump, which is a call to the physical address of the beginning of the
node y.

In the following, unless specified otherwise, we always refer to the re-
stricted control flow graph. This construction does not include information
about dynamic jumps: In practice it is challenging to statically and reliably
resolve dynamic jumps. Therefore, the ret instruction, which we cannot
ignore since it is often used to implement function calls, will be dealt with
in a special way.
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However, other dynamic and indirect control flow modifications (e.g. by
direct alteration of the instruction pointer, or non-standard exception han-
dling) are not considered in this work. On the one hand, this is limitation
may prevent some programs from undergoing the transformation that we
propose. On the other hand, this may constitute an interesting countermea-
sure against code-reuse and hijack attacks that leverage such possibilities.

Let P be the program to be obfuscated. Then, we denote by G = (V, E)
the CFG of P , where V and E correspond respectively to the nodes and
edges of G. Let G′ = (V ′, E′) be a given “final” target CFG.

Example 5.1. Consider the following program, implementing a simple
double-and-add algorithm:

dbl_add (int , int ): ; Compute ab from integer arguments a and b
test esi , esi
mov eax , 0 ; tmp = 0
jle .end ; if b == 0, return tmp

.loop:
lea edx , [rax+rax] ; tmp2 = 2 tmp
add eax , edi ; tmp = tmp + a
test sil , 1
cmovne eax , edx ; if b even set tmp = tmp2
sar esi ; shift b to the right
jne .loop ; loop if b > 0
rep ret

.end:
rep ret

The CFG associated with this program is represented in 5.1, where the in-
structions’ arguments have been removed for clarity. The associated re-
stricted CFG is represented in 5.2.

test mov jle lea add test cmovne sar jne rep ret

Figure 5.1: Full CFG of the program of 5.1.

test + mov jle lea add · · · sar jne rep ret

Figure 5.2: Restricted CFG of the program of 5.1.
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5.2.2 Overview of our Approach

Our goal is to rewrite P into a program P ′ that achieves the same function-
ality as P , but whose CFG is G′ 6' G = (V, E) = CFG(P ). This is achieved
in successive steps, illustrated in 5.3, 5.4, 5.5 and 5.6.

5.2.2.0.1 Step 1: Relabeling. We start from a morphism π between
the two graphs, i.e. a function that is injective on nodes and preserves edges.
If we fail to find enough nodes or edges to perform this operation, which
happens with a very low probability when the target graph is large enough,
we simply start over with a new random graph G′. The process is illustrated
in 5.3.

CFG(P ) G′

π−−−−→

Figure 5.3: Illustration of Step 1: Relabeling. The original nodes and edges
from CFG(P ) are assigned different colors; other nodes are in gray.

5.2.2.0.2 Step 2: Breaking Edges. Then, additional nodes will be
added by transforming the graph. The idea is to replace simple edges by
paths in G′ = (V ′, E′), i.e. for each edge (a, b) ∈ E, corresponding to an edge
(π(a), π(b)) ∈ E′, we replace (π(a), π(b)) by a path (π(a), f((a, b)), π(b)),
where f is a prescribed function. Such a function f : E → List(V ′) must re-
turn paths already present in G′, i.e. assuming that f((a, b)) = (s1, . . . , sn),

• (π(a), s1) ∈ E′

• (sn, π(b)) ∈ E′

• ∀i ∈ {1, . . . , n− 1}, (si, si+1) ∈ E′

We keep track of which edges were originally present and which edges were
added at this step. The process is illustrated in 5.4.

5.2.2.0.3 Step 3: Identify Active and Passive Nodes. The pre-
vious step introduced “extra” operations between a and b. Since we wish
to preserve the original program’s functionality, we should make sure that
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a b
Step 1−−−−→

π(a) π(b)
Step 2−−−−→

π(a) π(b)
· · ·

s1 s2 sn

Figure 5.4: Illustration of Step 2: Breaking edges. The original path π(a)→
π(b) is extended by a path f((a, b)) = (s1, . . . , sn) of G′.

only the original endpoints, a and b, are executed, while all the interme-
diary nodes are without effect when executed. Thus, we call a and b the
active nodes, and the intermediary nodes (i.e. nodes that do not exist in
the original CFG) are called passive.

Remark 5.1. A node that is neither active nor passive in the control flow
graph G can be considered either active or passive in G′.

Depending on the execution path taken, some nodes may be active or
passive (e.g. 5.5). To decide whether a given node is active or passive, the
program (more precisely, the node itself) checks at runtime the value of a
routing variable (see below).

π(a)

π(b)

π(c)

π(d)

Step 3−−−−→

π(a)

π(b)

π(c)

π(d)

Figure 5.5: Illustration of Step 3: Identifying active and passive nodes. Here
two original sequences π(a) → π(b) and π(c) → π(d) cause some nodes to
be passive (empty circle), active (filled black circle), or active depending on
the execution path taken (grey circle).

5.2.2.0.4 Step 4: Routing. Finally, we transform each node so that
the execution of passive nodes is without side effects (a process we call
passivation), except continuing through the sequence of nodes until an active
node is attained. To that end we introduce an additional “routing” variable
that will be updated as the program is executed (e.g. 5.6).

Nodes consult the routing variable to know whether they are active or
not; if not, they simply hand over execution to the next node in sequence
(possibly after executing dummy instructions).
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m = 0s1

π(a)
m = 1

s2
m = 0

s3
m = 0

π(b)
m = 1

π(c)m = 1

s4
m = 0

Figure 5.6: Illustration of Step 4: The path is taken according to the routing
variable m. If the node is passive (m = 0), the path to be taken will be the
subsequent node. In the case of an active node (m = 1), the next node will
be defined by the current node

5.2.3 Contexts

During program execution, every node in the transformed program under-
goes the following procedure:

1. Determine whether the node is active or passive.

2. If active, restore the registers. Otherwise passivate itself.

3. Run the code.

4. Call the next node in the sequence.

To allow this series of operations, we introduce the concept of contexts.
A context is a set of variables that save the node’s state, in a way that

can later be restored. Thus, each traversed node is associated with a context
available just when the node is traversed.

Since passive nodes do not suffer side effects, they cannot in particular
find the next node to be called; hence the next node is part of the context.
On the other hand, if the node is active, it may ignore this part of the
context and branch itself to another destination.

5.2.4 Node Passivation

Node passivation requires us to cancel the instruction(s) being executed, or
compensate for their effects somehow. We do this by using both the registers
and the stack (it is not possible to rewrite registers that are in active mode),
leveraging the specificities of the x86-64 architecture.

5.2.4.0.1 Register operations. Any register operation can be dealt
with by using contexts, except for the stack registers.
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5.2.4.0.2 Stack operations. Stack operations are harder to compen-
sate: the following instructions affect the stack

PUSH, POP, PUSHA, POPA, PUSHAD, POPAD, PUSHF, POPF, PUSHFD,
POPFD

We control writing and reading in the stack by using a pointer to a “trash”
address, stored as a fixed value. If a passive node attempts to write some-
thing in the stack, we redirect the address to the trash, nullifying the in-
struction’s effects. The reading process is handled in the same way. If the
node is active, the real address is used.

The context m is used in the following way: after a PUSH, we perform
the following operation to the pointer to the top of the stack p:

p← p + (8 & m)

where

• m = 1 · · · 12 if the node is passive. In this case the operation will be
compensated and will not have any effect due to the top of the stack
not changing.

• m = 0 if the node is active. In this case the addition is useless and
the PUSH works as intended.

5.2.4.0.3 MOV instruction. mov instructions from one register to an-
other are already without effect, since register values are restored at the
beginning of each active node, and are stored in the environment. However,
mov instructions that involve a memory address require additional care, and
we use the same technique as for the stack: the address is rewritten to the
“bin” when the node is passive. The transformation follows this:

address = (address & (¬m))|(trash_address & m)

This technique also hides the addresses that are really used during program
execution.

5.2.4.0.4 Function calls. We will distinguish library function calls and
calls to internal functions, that are defined in the code.

5.2.4.0.5 Library calls. In the case of library function calls, each of
them is treated separately by using a specific context per function. Now,
considering that it is impossible to handle all the functions simultaneously,
we propose to call the functions by using parameters that make them inef-
fective.
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Example 5.2. In the following "Hello World" program, where we make
ineffective the function printf by loading to EAX the address of an empty
sentence (auxiliary parameter) and set the stack pointer to the address of
EAX.
extern _printf
global _main

section .data
param1 : db "Hello World " ,10,0
paramaux : db "" ,0 ; declaration of the empty sentence

section .text
_main:

push param1
lea eax , [ paramaux ] ; paramaux address placed in EAX
mov [esp], eax ; pointer to the empty sentence
call _printf
add esp ,4
ret

5.2.5 Jumps and Internal Calls

5.2.5.0.1 Internal calls. Recall that we distinguish between a call to
an address in a PUSH from a static jump. This makes the above transfor-
mation effective to handle these instructions. However, the RET instruction
corresponds to a dynamic jump and is subtler to handle.

Let n be a node with a RET instruction in G, and assume that in G′ the
corresponding node π(n) has two neighbors, f1 and f2. Their addresses are
fixed, so that one can place, on the top of the stack, the address of the node
that follows π(n) (either f1 or f2).

Example 5.3. In the following example, we print on the screen the result
returned by func1. In this case, we jump from func1 to func2, adding the
desired address on the top of the stack by using a push operation. As a
result, the program jumps to func2 instead of jumping back to the address
after the call.
extern _printf
global _main

section .data
num DD 2,3
format : dd "num: %d" , 10, 0

section .text

_main:
mov eax ,0 ; eax = 0
mov esi , [num] ; edi = 2
mov edi , [num +4] ; esi = 3
push esi ; pass param 3 to .func1
push edi ; pass param 2 to .func1
push eax ; pass param 1 to .func1
call .func1 ; jump to func1
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add esp ,12 ; pop edi , esi and eax from the stack

push eax
push dword format

call _printf ; print eax in the screen
add esp ,8 ; pop stack 2*4- byte

.func1 :
push ebp
mov ebp ,esp ; set stack base pointer
sub esp , 4 ; creates space for one 4-byte local variable
push edi ; Save the values of the register that the function will use
push esi
mov eax ,[ ebp +8] ; move param 1 to EAX
mov edi ,[ ebp +12] ; move param 2 to EDI
mov esi ,[ ebp +16] ; move param 3 to ESI

mov [ebp -4], edi ; var local = 2
add [ebp -4], esi ; var local = 5
mov eax , [ebp -4] ; EAX = 5

pop esi ; remove esi from the stack
pop edi ; remove edi from the stack
mov esp ,ebp
pop ebp ; takedown stack base pointer
lea ecx ,[ .func2 ]
push ecx ; push func2 address on the top of the stack
ret ; jump func2

.func2 :
push ebp
mov ebp ,esp ; set stack base pointer
sub esp , 4 ; creates space for one 4-byte local variable
push edi ; Save the values of the register that the function will use
mov edi ,[ num] ; edi = 2

mov [ebp -4], eax ; var local = 5
add [ebp -4], edi ; var local = 7
mov eax ,[ebp -4] ; EAX = 7

pop edi ; remove edi from the stack
mov esp ,ebp
pop ebp ; takedown stack base pointer
ret

5.2.6 Routing

Once we have passed through a passive node, without changing the environ-
ment, we must be capable of taking the next desired branch. As each node
is a maximum of two out-degree, all that we need is a boolean variable in
the environment that will indicate to which child we must to go.

In practice, it is enough to maintain a global routing variable r. This
allows the sequence of branches to follow (left or right) between two consec-
utive nodes. Hence, we modify r for each active node found and its i-th bit
gives the direction of the i-th branch of the current path. We will denote
by ri the i-th bit of r.
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Remark 5.2. Routing variables have a limited size if we use native types,
it is straightforward to extend them but additional arithmetic is needed.

5.2.6.0.1 JUMP instruction. First, we need to transform a conditional
jmp from P into a jmp that goes to the next node as determined by ri. For
simplicity, we assume that all conditional jumps test a “zero flag”, which is
set by a comparison just before the jump. For example, we have the node
A (with children B and C) and the following program:

cmp (...) ; comparison
je B ; conditional jump to B
C ; next node

We can save the routes in some constants A_to_B and A_to_C as we know
how to move from node A to node B or C in advance. For doing so, we use
the following code:

mov routing_variable , A_to_C ; set routing variable
cmp (...) ; comparison
cmove routing_variable , A_to_B ; set routing variable iif comparison succeeds

This program then jumps according to the first value of the routing variable.
Note that, for passive nodes, routing variables are set to the (masked)

trash address.

5.2.6.0.2 RET instruction. When a node is passive, we want to have
two possible branches as in the case of the jump instruction. To achieve
this, we also store the constants A_to_B and A_to_C, and we will use the
mask m as the context. We will go to node B if ri = 1 and to node C if
ri = 0.

We want to put at the top of the stack the address to which we want to
go. Hence, we just add the following line before the ret:

p← (p & m)|((r & A_to_B)|(¬r & A_to_C)) & ¬m

The transformation presented above allows us to modify the program’s con-
trol flow graph. Now, we can transform an arch into a path, and ensure
that the path’s execution is identical to the effect of running the arch in the
original graph.

5.3 Control Flow Graph Obfuscation

While the presented construction effectively transforms the program’s CFG,
the resulting construction has a strong signature, and it is easy to reverse the
process to obtain the initial graph. It is indeed enough to run the program
and identify nodes that change the routing variable. These nodes are the
active ones, and it is possible to reconstruct the original control flow graph.
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In this section we propose several ways to obfuscate the transformed
program and make this reconstruction harder. First, we will “force” the
program’s execution to recover the initial control flow graph successfully;
we then hide the nodes’ activity, including the operations on the routing
variable, which is a signature of an active node.

5.3.1 Forcing Execution

For now, we know that the routing variable suffices to determine the next
active node. Therefore, we will modify its definition and use it to hide the
control flow from static analysis. The routing variable is now maintained as
a sequence of bits (r1, . . . , rn).

Upon transitioning to node i, we apply to the routing bit ri a random
permutation fi of {0, 1}.

Example 5.4. For example, if one seeks to obtain at the end of the function
a bit equal to 1, the following operations can be used:

r ← 0 Null routing variable
a← rand() Introduce randomness
t← 5a
t← t + r × a
r′ ← t/a mod 2

At the end of the code execution we obtain r′ = 1. If we declare r = 1
instead, we get r′ = 0.

We can easily generate the random flips fi by using an arithmetic opera-
tion and its inverses. As determining the value of a variable is undecidable,
running the program is the most natural way to get information about the
execution paths taken.

5.3.2 Node Hiding

In the same way that routing bits are masked, we can hide the value of the
bit indicating whether a node is active or passive. However, by doing so,
the node i only hides the status of node i + 1. The mask’s value can also be
changed by choosing a random number between m and ¬m, and updating
the formula accordingly.

5.3.3 Route Hiding

Updates of the routing variable are crucial, as they immediately reveal ac-
tive nodes. To hide the information about the routing changes, we extend
each path beyond the active node, and introduce a weak form of “onion”
routing, where the next node is determined at runtime. The rationale is
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that determining whether a node is active or inactive will require recovering
the full route leading to this particular node.

We introduce two additional variables per node, called path and next
path. The next path variable is masked (XORed) with a value that depends
on the node. Upon execution of an active node, the values of these two new
variables are further modified.

If the next node is C, the route from B to C is stored in next path,
and masked by being XORed with the constants of every intermediary node
between A and B.

The number of hops is counted. Upon arriving at the final hop B of the
path from A to B, we swap the next path and path.

The route hiding process is illustrated in Figure 5.7.

Init node

Node A

Node B

Node D Node C

⊗
⊗

f(x)
x ← 0

a ← rand()
t ← t + x × a

x′ ← t/a mod 2

(r, m)A

(r, m)B

(r, m)C

next path

next path

Figure 5.7: Diagram of hiding process for nodes and routes

5.4 Security
Intuitively, the security of our construction depends on the hardness of iden-
tifying active nodes.

This can be formalized as an adversarial game, whereby a more precise
security notion can be given:

CFG-FullRecovery Game:

1. The challenger provides a program CFG G = (V, E)

2. The adversary chooses a set N ⊆ V

The adversary wins the game if the nodes in N are the active ones.

To get a grasp on how hard this game is, assume that we choose N at random
in V , where there are exactly |N | active nodes:

Pr [N is exactly the active nodes | N ⊆R V ] = 1(|V |
|N |

) = |N |!(|V | − |N |)!
|V |! .
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If one node out of two is active, and there are more than 42 × 2 nodes in
V , this probability is negligible. Thus, we may hope, for realistically large
programs, to resist adversaries for which there is no better way to choose N
than selecting a random subset of V .

However, in practice, adversaries may succeed in recovering smaller por-
tions of the CFG. This corresponds to the following game:

CFG-One Recovery Game:

1. The challenger provides a program CFG G = (V, E)

2. The adversary chooses a node n ∈ V

The adversary wins the game if n is active and n is not the first node of G
(which is always active).

The success probability if n is chosen at random is

Pr [n is active | n ∈R N ] = |N |
|V |

where again N is the set of (actually) active nodes. In the balanced case,
where 2|N | = |V | this probability is exactly one half. When that is the case,
and V is large enough, security in this second game implies security in the
first game.

As discussed above, static analysis cannot in general determine the vari-
ables’ values in a given node (by Rice’s theorem [Ric53]). Given that the
difference between active and passive nodes is only semantic; for a general
program determining whether a given node is active is undecidable.

Hence, our obfuscation scheme should be secure against static analysis,
for large enough values of N and few enough active nodes.

5.4.1 Security Against Dynamic Analysis

Dynamic analysis is performed by running and monitoring the program. As
mentioned previously, the first node is always active. Therefore, the second
node can be determined as follows: Execution continues until the next path
variable is updated. Thus, we know that there is an active node between
the current node B and the first node A.

The analyst then performs the following operation: For each node n
between A and B in the CFG, replace n by another operation, and run the
program up to B. Thus, there are at most |V | nodes to test. In addition, a
node is active if, when modified, the program’s state at B has changed.

As each test is required to continue running the program until B, which
can take up to |V | steps, it is then possible to determine the next active
node in O(|V |2). By running this procedure iteratively for all nodes, we
reconstruct the list of active nodes, i.e. the original CFG, in O(|V |3) oper-
ations.
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5.5 Implementation
Given as input a program CFG, we construct a “target” CFG to which the
original program is mapped.

1. Graph generation. We generate a random graph with n edge and max-
imum out-dregee two, using a variant of the Tarjan-Eswaran algorithm
[ET76, Rag05].

2. Linearisation. This graph is linearised, so that it corresponds to a
CFG. For this purpose, we use the scheme presented by Leroy for the
CompCert compiler [Ler15]. We then select a random morphism π
between the initial graph and the new graph that we are creating.

3. Transformation. We begin the transformation by identifying the ac-
tive and passive nodes. The edges for paths are then changed by
neutralizing (passivation) the instructions using: registers and stacks
operations, transforming the jumps and internal call, and defining the
route to follow according to the routing variable. Finally, we remove
the signature of the new graph hiding the routing variable and node’s
status (active or passive) by randomizing their values and adding the
variables path and next path. To mask the variable next path we XOR
it with the node’s values.

The source code of this implementation is available from the authors
upon request.

5.6 Conclusion
This work presents a control flow graph trans-compilation algorithm allowing
to transform a program into a new functionally equivalent program. This
algorithm uses common instructions such as register and stack operations,
and a random routing variable, such that the resulting CFG is entirely
different from the original one.
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In this work, we present an ERC20 compatible token based on a per-
missioned ledger, called PlasticToken. PlasticToken is a currency promoting
plastic reuse via the creation of a circular economy revolving around plastic
reuse and revaluation. This currency has been implemented on top of the
Hyperledger Fabric blockchain, fully supporting the ERC20 specifications.

After explaining the technical implementation, we expose how PlasticTo-
ken promotes local initiatives reducing plastic waste, and how coin genera-
tion is turned into a mechanism spreading awareness about plastic recycling.
Another contribution of this work is the introduction of a cash-in and cash-
out mechanism: it is possible to issue physical PlasticTokens, based on our
virtual currency, and trade them, and convert them back to virtual assets,
while maintaining the global security of the scheme.

PlasticToken is open-source, already operational, and is currently being
tested by a few pilots in several European countries. The source code is
open and accessible on Github (the link will be given after peer review).

6.1 Introduction

During the last years, the popularity of the blockchain and cryptocurrencies
has been increasing. As a result, it has reached important notoriety in scien-
tific and IT journals, and general public media. Moreover, the proliferation
of the cryptocurrencies and the "cryptomania" experienced in the trading
markets in 2017 has soared with the use of this technology for financial in-
vesting, reaching today a total market capitalisation of around $ 205 billion
spread over more than 2.300 cryptocurrencies [Coi19].

The blockchain is considered a foundational emerging technology of the
Fourth Industrial Revolution [HWW18] due to the capacity to enable assets
transfer between users in a distributed manner and without a third trusted
party. Therefore, blockchain technology democratises the financial market
allowing the users to be part of it as an investor or as a service provider
(e.g. miners). Nevertheless, blockchain can be implemented in several ways
to provide solutions in different sectors like in healthcare [Con16a] [Med19],
supply chain [IBM16], food quality control [Ibm19], among others. Although
we can find several blockchain applications, there are just few use cases using
blockchain to address environmental problems like carbon footprint or a new
sustainable circular economy based on reuse and revalue recycled materials
like plastic.

6.1.1 Plastic Reuse

Plastic use has skyrocketed over the last decades, and recently plastic
waste has become a societal problem, weighting on the well-being, econ-
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omy and environment. Hence, voices have emerged for a new plastic eco-
nomic movement [FF17]. In addition, recent reports explore the possibility
of a new economy in which used plastic is not a waste, but rather an asset
[FFC16, Eco19]. New products are made out of single-use plastic, or used
plastic components that would have otherwise been incinerated or buried, in
this new economic model. Far from being wishful thinking, plastic-centered
economics has gained wide acceptance by the public, as highlighted in Gart-
ner’s report [EARB16], citing numerous high-profile vendors committed to
zero waste goals.

In parallel, national and international institutions are also starting to
tackle the issue. This is, for instance, what the European Union is pushing
forward, through its "plastic in the circular economy" strategy and roadmap
[Com16]. On a much lower scale, many local initiatives have started to
reevaluate plastic in the local and circular economy, thus reducing the
amount of plastic waste, estimated to be around 25 million tons in the
EU-28 [Eur].

Due to these preoccupation, our project PlasticTwist aims to incentivise
citizens to reduce their plastic waste, by collecting plastic assets and re-
cycling or reusing them, for instance through fablabs or other innovation
centres. Furthermore, to foster the circular economy and keep the fidelity
of its user, PlasticTwist relies on an electronic token, called PlasticToken,
which this work focuses on.

6.1.2 Blockchain and Electronic Payments

The concept of electronic money can be traced back to 1983, when David
Chaum’s e-cash paper [Cha83] was published. Chaum’s paper assumed a
system in which a bank could digitally sign and allow transactions from any
user, using blind signatures as to keep the user identity private. However,
this scheme failed to gain traction as it required a constant access to the
Internet, which was far from possible at that time. While not a critical
caveat, the scheme still relies on a central authority - the bank.

In parallel, the first work on decentralised consensus –how different par-
ties, with possible failures in their communications can reach an agreement–
was published by Lamport in [LSP82]. In 2008, relying on these previous
works as well as some others such as [BHS93b, HS91, DN93], the anonymous
author(s) under the name of Satoshi Nakamoto invented the blockchain, a
network in which all parties agree on financial transactions, without the need
of a central authority which must be trusted by all parties [Nak08]. Based
on this paper, Nakamoto implemented the first cryptocurrency, Bitcoin.

Simply speaking, a blockchain is a decentralised database in which new
chunks of information (transactions) can be added, but none can be removed.
Hence, one can reconstruct the current state of the blockchain by operating
all the partial iterative transactions. Most of the time, new transactions
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are added by blocks, which are appended to the chain by miners: users
who spend time-solving a cryptographic puzzle (for the proof of work), then
publish the block so that other miners can acknowledge the result and mine
on top of this block. For their work, miners are rewarded with newly minted
coins, as well as the transaction fees, paid by the users asking the miners to
add their transaction in the newly mined block.

Because it forms a peer-to-peer system in which any user can join, and
mine, Bitcoin is the first decentralised currency: no central organisation is
in charge of securing the transactions; the entire network is. As a matter
of fact, an attacker willing to revert a transaction must control 51% of the
computing resources of the network–which, in September 2019, is estimated
to be around 1020 hashes per second [Dig]. However, this security comes at
a price: because all miners compete to add a new block to the blockchain,
much computational power is wasted to secure the blockchain. In June 2019,
it was estimated that the Bitcoin network consumes at least 37 TWh per
year, as much as the entire country of the Czech Republic [Dig]. This energy
consumption is unavoidable, as Bitcoin users are anonymous and as such,
not trustworthy: it is not possible, security-wise, to allow one user to append
blocks to the chain easily. Other blockchains with a lower hash rate have
been subject to a 51% attack over the last two years [Att19].

The energy consumption problem in Bitcoin is present in other public
blockchain technologies. The main issue for this blockchain architecture
is to achieve trust in an anonymous or pseudo-anonymous permissionless
network. Hence, the decentralised database replication must have a proof of
honesty. This can be achieved using proof of work (e.g. Bitcoin), where the
miners spend CPU resources, that consume energy, to prove that they are
honest. Or it can be used proof of stake, that consume less energy, where
the miners need to spend their own asset to prove their honesty. Therefore,
in a public blockchain architecture, the mechanism to achieve trust asks the
network members (e.g. miners) to prove that they are honest generating
inefficiencies, and making the transactional ecosystem more expensive.

This caveat has been solved by introducing consortium and private
blockchains, such as Hyperledger Fabric [Fou19], developed by IBM. In these
blockchains, only authenticated members can add transactions to the chain.
This additional authentication lowers the required amount of work miners
must provide; in fact, Hyperledger proposes several consensus algorithms
that do not rely on the proof of work, but rather, for instance, proof of
elapsed time or byzantine fault tolerance consensus.

The problem of energy consumption has also been tackled in some per-
missionless ledgers, who adopted other consensus modes, such as Proof of
Space [ABFG14], proof of stake (see for instance [KRDO17, BG17]). How-
ever, while they solve the issue of energy consumption, these consensuses
are not exempt from faults. For instance, proof of space replaces the race
for energy for a race of memory capacity, and proof of stake, while elegant
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on paper, is difficult to implement securely. For instance, Ethereum has
spent several years defining its proof of stake [BG17], which should soon be
implemented.

6.1.3 Related Work

The first concept of using a blockchain for currency purposes is obviously
Bitcoin [Nak08]. Furthermore, non-public ledgers have already been used
in several cryptocurrencies for good behaviour incentives, such as with Eco-
Coin [Eco18], where users can signal to an authority the eco-responsible
actions they made. After validation, they get a financial reward in the form
of crypto coins. However, this process is highly centralised, and every ac-
tion, happening off-chain, must be validated by an authority. Similarly, the
blockchain Quorum [Quo16] has implemented a permissioned blockchain re-
lying on Ethereum. Still, as far as we know, no ERC20 token has been
implemented on this blockchain, as it is usually more used for private busi-
nesses than public use and public awareness. Another blockchain project
based on a permissioned ledger for cryptographic token implementation is
the Social Plastic initiative [Ban19]. This project is promoted by the Plastic
Bank and the Cognition Foundry. The Social Plastic initiative uses a native
crypto token implemented on Hyperledger Fabric to be used as a rewarding
mechanism for plastic recycling. However, this native token implementation
restricts the capacity to be integrated the other token’s economies, reducing
the adoption rate due to the lack of flexibility and interoperability.

On the other side of the spectrum, alternative local currencies are getting
more popular in the last decade. For instance, in France, more than 80
alternative currencies are listed in [Cit], with at least 20 of them launched
in the last two years. Of course, these alternative currencies still remain
marginal (with less than 1000 users each), but most of them advocate for
more responsible use of one’s money: as the currencies are local, they are
only accepted by local shops, which in turn only buy from local producers.
Hence, alternative local currencies promote local economies, and somewhat
support a circular economy.

PlasticToken aims to offer a solution to both issues by merging them.
This currency aims to promote a local and circular economy, with the sup-
port, security, and functionalities offered by consortium ledger blockchains.

6.1.4 Economic Environment

As this project aims to promote a circular economy, we need to design a
place in which plastic can be exchanged and sold: currently, used plastic
is mostly considered as a waste, and there is no platform aiming to reduce
its disposal. The PlasticToken token is only a portion of the Plastic Twist
project. The other parts focused, among other things, on creating a platform
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for hosting a marketplace for plastic.
Hence, the Plastic Twist ecosystem comprises the following items.

• The Marketplace. This feature recreates a real marketplace in a vir-
tual space, where users can exhibit, auction and commercialize plastic
waste, where it can be monetized with the proposed PlasticTokens.

• The Monetization (PlasticToken). It serves as a support, connecting
the other items, and allowing users to reevaluate their plastic in a
circular economy.

• Gamification. Plastic Twist was built with gamification by design,
delivering rewarding and engaging experiences. It also supports a col-
laborative gamification mechanism, which is represented in the form
of PlasticToken crediting.

• Crowdsourcing tools. Crowdsourcing enables the generation of evolv-
ing plastic materials to reuse taxonomy and an open plastic reuse
machinery designs repository.

Hence, when users gather their used plastic, they can sell it on the mar-
ketplace to the nearest buyer. Once this transaction is completed, the user
will receive PlasticTokens, which they will be able to spend to buy reval-
orised plastic (for instance a set of shirt buttons made from recycled plastic).
If the user is not familiar with the plastic ecosystem, they can play with the
app to know more, and gain PlasticTokens in the process. If they are more
experience and want to recycle plastic in objects that people like, they can
use the crowdsourcing tools before selling the repurposed plastic on the
marketplace. In a nutshell, these four tools allow for the emergence and
sustainability of a circular economy model, hence ensuring the viability of
the money.

6.1.5 Outline

This work is organised as follows. First, we give the prerequisites that are
required to understand this work. Then, we give more details about the
practical implementation of our system, and expose its sustainability via
our novel economic model. In this section, we elaborate on the adoption
of the ERC20 requirements on a permissioned blockchain, as well as a few
other technical points. We also describe how we implemented our cash-in
and billing systems. Finally, we conclude our work, while remarking how
this work may easily be adapted for many other use cases.
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6.2 Prerequisites

6.2.1 Permissioned and Permissionless ledgers

In Bitcoin, the blockchain is permissionless: anyone can join, and anyone
can submit a new block without requiring permission from anyone. The
only methods to know whether two accounts belong to the same user are if
the user acknowledges possession of both accounts; or runs a careful statisti-
cal analysis of the exchanges between the two accounts [Mon15]. Naturally,
users can choose to identify themselves in a permissionless ledger, but this
is not a requirement. A cautious user may very well run two accounts
that cannot be linked one to another. A formal definition of permissionless
blockchain is that "the identity of the participants is pseudonymous or even
anonymous" [Swa15], where participants can be regular users or miners. On
the other hand, in a permissioned system, participants are whitelisted (or
blacklisted) by an authority, acting as a member provider service. In Hyper-
ledger Fabric [Fou19], the blockchain is permissioned: certificate authorities
(CAs) are in charge of determining which users are allowed, or disallowed,
in the network. More specifically, in Hyperledger Fabric each organization
being part of the consortium is allowed to run its own Member Service
Provider (MSP), which is an abstraction containing the organisation’s CA.
Hence, the accredited CAs are written in the network configuration stored
in the blockchain: the genesis block contains a list of accredited CAs. The
list can be updated in the future by updating the chaincode, using special
transactions.

Since members must obtain authentication from their CA, this implies
that all transactions can be linked to the identity of their sender, which is
a particularly desirable feature in several applications, such as commercial
transactions, where it is possible to verify that a transaction comes from the
right place.

6.2.2 ERC20 specifications

ERC20 is a set of specifications that have been designed by the Ethereum
community [Woo14], and was released in 2015 [VB15]. These specifications
define what a token on Ethereum should implement. A token is a virtual
manipulable and countable concept, and as such can represent many things,
material (e.g. real estate [reg19] or gun ownership [Hes17]), or immaterial
(e.g. basic attention [Sof18] or predictions [PK15]).

Tokens are a unit of data that can be distributed to any user of the
blockchain network. Their repartition is stored inside a smart contract,
which oversees keeping track of the account of all members. Users can inter-
act with the smart contract by sending it money, thus triggering one of the
smart contract’s functionalities. In Hyperledger Fabric, tokens are natively
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implemented by the concept of assets. Assets, as the Hyperledger consor-
tium defines it, ‘can range from the tangible (real estate and hardware) to
the intangible (contracts and intellectual property)’, enabling ‘the exchange
of almost anything with a monetary value over the network, from whole
foods to antique cars to currency futures.’

The great advantage of the ERC20 standard is the fact that ERC20
tokens are more reliable for interoperability, as they all implement a set of
fundamental functions regarding the tokens.

The ERC20 specifications are quite simple and specify the six functions
and two events that must be implemented. The functions are:

• totalSupply(), returning the total token supply

• balanceOf(_owner), returning _owner’s account balance

• transfer(_to, _value), sending _value tokens to the account _to,
returning a boolean of success/failure

• approve(_spender, _value), allowing the account _spender to
spend up to _value tokens from one’s own account, returning a
boolean of success/failure

• transferFrom(_from, _to, _value), where an allowed account
transfers money from the account they are approved to another ac-
count, returning a boolean of success/failure

• allowance(_owner, _spender), returning the amount that _spender
is still allowed to withdraw from the account _owner

And the events:

• Transfer(_from, _to, _value), triggered when a transfer occurs,
even when _value is zero.

• Approval(_owner, _spender, _value), triggered when the approve
function is called successfully.

However, in Hyperledger Fabric, there is no such thing as a smart con-
tract, or rather there is only one smart contract, called the chaincode.
The chaincode is occasionally updated by the consortium (and not by the
users) [ABB+18]. Hence, to be ported on Hyperledger Fabric, ERC20 tokens
must be coded by the consortium itself, as they are the only members able
to code smart contracts. Furthermore, in Ethereum, in ERC20 tokens are
usually obtained by depositing Ether on the related smart contract, which
cannot be done natively in Hyperledger Fabric.

Yet, because the chaincode can embed any kind of code, it is possible
to add the required logic for an ERC20-compliant token inside Hyperledger
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Fabric. Because functions of the chaincode can be triggered for no cost by
any user (unless specified otherwise by the function), we furthermore obtain
a more economical token, as there is no need of sending a commission for
each transaction to gain the right to use one’s tokens. Note that the costless
feature is obtained because in Hyperledger Fabric, it is assumed that nodes
have other incentives than mining for running the blockchain. Hence, this
property is not characteristic of Hyperledger Fabric, but rather

6.2.3 Preimage resistance

A hash function H is preimage-resistant if, given a hash h, it is
hard to find a preimage of h, i.e. a value x such that H(x) =
h. For instance, assuming that SHA-256 is preimage-resistant, given
the hash h =2dd00bd77e0222ced882665481a9c1d9f907309d16e05ed007a
1ea63928477a9, an attacker cannot find a document x whose hash is
SHA256(x) = h with better strategy than brute forcing on all possible
x.

More formally, we recall Rogaway and Shrimpton’s definition [RS04]:
let H : M → Y be a hash function, and let m be a number such that
{0, 1}m ⊆M. H is m-preimage-resistant if:

∀A, P r

[
x

$←− {0, 1}m; y ← H(x); x̂
$←− A(y) : H(x̂) = y

]
is not significantly bigger than random. Here, A denotes a probabilistic

polynomial (PPT) adversary, who, given a hash value y, outputs a tentative
preimage x̂. The affectation $←−means that the selection is randomly uniform
amongst the possibilities. In other words, when receiving a random challenge
hash y, a PPT attacker A cannot find a preimage x̂ of y with probability
significantly better than random.

6.3 PlasticToken Implementation

6.3.1 Assets Implementation in Hyperledger Fabric

In Hyperledger Fabric, the logical elements are coined as assets [Fou19]. One
asset can have several properties, and relations can be made among different
assets. There can be several instances of the same asset. If a comparison
with Object-Oriented Programming were to be made, an asset would be a
class. In Hyperledger, assets are stored as key-value pairs: the key being
the asset ID, and the value, the asset contents.

The attributes of an asset can be of a variety of types, such as the classical
unsigned ints, booleans or string but can also be pointers to another asset,
or even a map. A map is a typed collection of key => value items and is
Hyperledger’s implementation of a dictionary.
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Note that there is an important conceptual difference between the as-
sets and the tokens that can be granted in an Ethereum smart contract.
Assets are native to the blockchain and are the raw material that is ex-
changed in an Hyperledger blockchain. On the other hand, tokens are not
the native unit in Ethereum, rather than an abstraction implemented by
a smart contract: in Ethereum, the basic exchange material is Ether; it
can be used to activate smart contracts. These smart contracts can then
implement an ERC20 token, but Ethers (Ethereum base currency) are not
an ERC20 token themselves. Hence, our goal is to implement the ERC20
tokens on a more fundamental level than Ethereum; and we also do this on
a fully different blockchain, namely a private one. In a public blockchain
such as Ethereum, anyone can code their own ERC20 token; in a consortium
blockchain such as Hyperledger, the ERC20 specifications must be embed-
ded into the blockchain source code.

6.3.2 Plastic Twist ERC20

Consequently, we designed our blockchain so that it would be ERC20 com-
patible. In our implementation, we used one main asset for the support of
the ERC20 functions. This asset is called UserInfos, is instantiated once
per account, and has two attributes:

• Amount, an unsigned 64-bit integer (uint64)

• Allowances, a string => uint64 mapping.

The Amount property contains the amount of coins on the user’s account,
and the Allowances attribute is a mapping of who can withdraw from this
UserInfos instance and how much they can. The string key of Allowances
is a pointer to the authorized user, i.e., a pointer to the allowed UserInfo
instance.

We observe that an ERC20 token must be stateful, as there are two
data that must be saved. Namely, an ERC20 token must save each user’s
amount of tokens, and the list of allowances that this user has granted to
other people. Hence, UserInfos contains all the required state storage for
a given token, and we are assured that there is no need of another asset.

Then, we implemented the six ERC20 functions in the chaincode. These
functions can be called at any moment by any user, and the usual checks
are made before validating the transaction. Because these functions are part
of the chaincode, and because the blockchain is private (or at least hybrid,
i.e. anyone can join, but only after their identity has been verified), there is
no need to add a transaction commission; hence the cost associated to the
transaction is null. This is a fundamental difference with Ethereum, where
all transactions must include a commission fee for the miners, as well as, in
most cases, a commission fee for the smart contract itself.
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Finally, we also implemented support for the events. Hence, we created
a Events asset, comprising of four attributes:

• From: a string, pointer to the sender UserInfos’ ID

• To: a string, pointer to the recipient UserInfos’ ID

• Value: a uint64, the value of the transfer or of the allowance

• Details: a string, either approval or transfer.

Hence, one can grab all Approval events by filtering all Events(*, *,
*, approval), and similarly for all Transfer events.

The naive implementation of the logging system would be to create one
instance of Event for each event. However, because the logs are never
deleted, this would mean that a node will have to store an indefinitely grow-
ing number of logs in its state. Hence, the state of the blockchain would
grow linearly with the number of transactions, possibly leading to a memory
saturation of small nodes.

For this reason, we implemented the logs so that only one Event instance
would ever be created on the blockchain. Each time a new event must be
logged, the chaincode updates the Event instance to contain the new log.
Because of the way blockchain works, the previous logs are erased from the
state, but not from the history. Hence, anyone can look into past logs very
easily, by searching for them in the ledger. Yet, our implementation only
requires a constant state size, which is much more scalable for small nodes.

6.3.3 Example of the Internal Workflow

Assume Alice wants to send 10 tokens to Bob, using her allowance on Char-
lie’s account. The following events happen.

1. Alice invokes a transferFrom command on the blockchain. The invoke
is signed by Alice’s private key and associated to her public key. In
this case, the transferFrom command takes 4 arguments.

(a) _from: Charlie’s public key
(b) _amount: the amount of the transaction
(c) _to: Bob’s public key
(d) _user: Alice’s public key

2. The chaincode calls a function getTransferFromTx, which will check
that the _user variable contains the sender’s public key of the sender,
as the sender is the only person authorized to add an allowance for
someone else on their own account.
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3. getTransferFromTx parses the amount and the beneficiary, and fails
if an error is met (negative amount, non-existent beneficiary).

4. If everything is in order, then the chaincode falls back to the
transferFrom function. If nothing failed, then this function calls for
a change of state of Charlie’s account, by calling changeStateFrom.

5. changeStateFrom verifies that Charlie has enough money on his ac-
count and that Alice’s allowance allows her to withdraw that much
from Charlie’s account. If not, an error is raised. If everything is nom-
inal, then changeStateFrom removes coins from Charlie’s account and
terminates.

6. Then, transferFrom calls ChangeStateTo, which will credit Bob with
the corresponding amount of tokens. Finally, the Event asset is up-
dated, and is now containing the current Transfer event (as a re-
minder, the Allowance event is only triggered when a user allows
someone else to use their account, not when someone makes a legiti-
mate call to transferFrom)

6.3.4 Transfer Atomicity

As we saw in the previous section, the subtraction of one sender’s coin
from their wallet and the addition to the receiver’s wallet is done in two
distinct functions. Then, the obvious concern is the one of atomicity: in
case of failure, we must ensure that the net balance is not affected, and
ideally, the whole transaction is cancelled. This property is guaranteed
by Hyperledger code: when a user launches a transaction (in this case,
a transferFrom order), either the code is successful, or either the whole
transaction is canceled. Hence, as soon as one exception has risen, the
whole transaction is canceled, reverting to the before-transaction state.

6.3.5 Rewards and Minting

Contrarily to many blockchains, there is no reward associated with mining.
PlasticToken relies on a consortium blockchain, which means the nodes are
known in advance and controlled by the consortium. Moreover, in a con-
sortium ledger, the mining process is designed to be easy, and as such there
is no real need to reward the investment, as it is minimal. Plus, rewarding
miners would lead to a mining competition, thus being less ecological. This
is not acceptable as our blockchain promotes a more ecological behaviour.

Hence, new coins are minted via rewards, as a part of Plastic Twist’s
gamification module: by encouraging users to behave eco-responsibly inside
the Plastic Twist ecosystem, they will be rewarded with coins.

Rewards can be automatic (completing a task that triggers a smart con-
tract in the chaincode), authorized (many users are awarded a reward, given
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by one member of the consortium), or manual (one user signals that they
are eligible for a reward). The difference between authorized and manual is
light, but relies on the fact that, the user must bring their own proof of eli-
gibility. For instance, rewarding users participating in official events would
be authorized: users just need to give their wallet address to the organizer
when they arrive to the event. On the other hand, one can design a reward
for users who have obtained a given reach on social media. In this case,
users must bring a proof that their claim is valid.

This process is summed up in 6.1.
There are, for the moment, four ways of getting rewards. However, this

can evolve in the future; if the consortium discovers new opportunities.

• Bringing used plastic to a partner. Users are encouraged to do so, to
bring new plastics into the economic cycle. Partners can be fablabs,
artists or whoever reuses plastic.

• Answering quizzes and playing games on the gamification app

• Participating in official events

• Days streak on the gamification app

6.4 Additional Features

This section presents two additional features that we added to the Plastic-
Token blockchain to make its use as practical as possible.

6.4.1 Invoicing and Billing

For business purposes, keeping track of the spendings and acquisition is
critical. Especially, businesses must be able to emit invoices, and track
whenever they are paid.

For this, we used two new assets, Bill and Item. Bill contains a list of
items and an owner ID (the ID of the bill issuer). Similarly, Item contains a
description of the product, the amount of products bought, and its unitary
value. This relation is summed up in 6.2.

For instance, let us assume that user U wants to buy 3 items (with
different multiplicity) to the seller S. U contacts S and lets them know
about their inquiry. Then, S generates three Item descriptions (one for
each item i1, i2, i3, with their respective multiplicity), and one Bill listing
these three items. The bill is then published on the blockchain, and added
to S emitted bills in their UserInfos.

If U agrees to the bill and pays the bill, they emit a special transaction,
payBill. The function takes only one argument, the bill ID. Then, the
chaincode retrieves the corresponding bill, and the bill’s owner ID.
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(a) Automatic rewarding. The user
completes an action on the app (1),
which relays it to the app server
via a dedicated API (2). Then,
the server triggers the reward smart
contract (3 and 4). Only allowed
servers are allowed to do so.

(b) Authorized rewarding. Orga-
nizers scan the address of eligible
users (1), and trigger the reward
smart contract (2 and 3).

(c) Manual rewarding. User go to
an organizer to claim their reward
(1), then provide required proofs
(2). When the organizer is satis-
fied, they trigger the reward smart
contract (3 and 4).

Figure 6.1: Different rewarding modes

Figure 6.2: Entity relations for billing
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Then, the chaincode computes the required price to pay. For example,
assume that the bill contains three items item1, ..., item3, with multiplic-
ity mi and unitary price pi for each item. Then, the chaincode computes∑

i mi × pi as the bill’s price.
Finally, having retrieved the owner ID and the total price, the chaincode

calls the ERC20 function transfer(owner, total price) on behalf of the
payer. If the call succeeds, then the bill is paid, and deleted from the state.
Otherwise, the bill remains unchanged, and the transaction fails. These
steps are schematized in 6.3.

Figure 6.3: Chaincode steps for paying a bill. 1: user invokes the payBill
function. 2: the function retrieves the associated bill and its owner, and the
items linked to it. 3: The price is computed. 4: the chaincode tries to send
the total price from the user to the bill owner. 5: if successful, the bill is
deleted, and 6: the user receives a confirmation.

Furthermore, the asset UserInfos is upgraded, and contains a new prop-
erty: bills, which is a list of pointers to Bill instances: they are the bills
generated by a user.

Additional security can be added by limiting a bill payment to the user
it was issued to. While the adaptation is easy, it is left as future work.

6.4.2 Physical Coins for Punctual Events

Even though PlasticToken is a virtual currency, used for plastic reuse, there
is a need to print physical tokens. For instance, during dissemination events,
it may be useful to have physical tokens so that anyone can use the currency
even if they do not have downloaded the app. Furthermore, beta-testing
showed us that people were more likely to interact with the Plastic Twist
ecosystem if they could at first use physical tokens. Hence, we devised a way
to issue physical tokens in a punctual event securely: the physical tokens
only have a limited period, and can only be traded inside the event. We now
implement the scheme, which is quite simple and relies on one additional
asset.

We hence added the asset CashVoucher, which consists of two attributes:
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• Amount, the number of tokens committed in the voucher

• Hash, a preimage-resistant hash of a secret value.

For security reasons, only members of the blockchain consortium can
issue physical tokens, and they only can do so by locking tokens they own
on the blockchain: for each coin they physically print, they lock the corre-
sponding amount on the blockchain. Hence, any user converting their tokens
back to virtual will receive these committed tokens.

Hence, our protocol is as follows.

1. Commitment. When an organizer is preparing an event where they
need physical tokens, they first commit some PlasticTokens which
will be removed from the organizer’s balance, and place them in a
CashVoucher. While creating the CashVoucher, the organiser also
selects a random 256 bits secret s, and discloses H(s), where H is
a preimage-resistant hash function such as SHA-256. Hence, the
CashVoucher instance contains both the committed value and the hash
of the secret.

2. Printing. The secret s is printed, in the form of a QR code, on the
physical coin, and hidden behind a scratch card. The scratch cards can
be easily printed by organizers, with a minimal amount of material (for
instance, the DYI tutorial in [Fis17] only requires paint and dish soap).
The scratch card also contains the hash, and the number of coins they
are equivalent to, and can be traded by anyone. Once printed, the
secret s is discarded by the organizer.

3. Use. When receiving a coin, a user might fear that they are not
linked to a real commitment. Hence, by scanning the QR code of the
hash, they can verify that there is indeed a commitment of the correct
amount of tokens mapping to their hash. Furthermore, this scanning
will prove to the user that the physical coin has not been claimed yet.
A rational user should always scan the coins they receive; however,
given that they trust the organizer, and forging a malicious scratch
card in a limited amount of time (usually, such events last half a day
or one day) is tedious, they can decide not to.

4. Reclaiming. At the end of the event, or whenever the user wants,
they scratch the tickets they own and retrieve the associated QR code:
the QR code contains the secret value s linked to the physical token.
By claiming s to the related CashVoucher, the user retrieves the as-
sociated committed virtual coins in their wallet.

The process is summed up in 6.4. This scheme was already used by the
authors in another work describing the economic aspects of PlasticToken.
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(a) Cash-in mechanism. Secrets are randomly generated by the organizer, and the secret s
is discarded by the issuer after the card has been printed.

(b) Cash-out mechanism. If the secret has already been reclaimed, an error is returned.

Figure 6.4: 6.4a: How organizations print tickets. 6.4b: how individuals
claim their coins after scratching the secret key, at the end of the event.
Additional checks may be added to the cash-out mechanism.

Note that the user must trust the organizer in this context. As the
organizer is the one printing the tickets, they have access to all secrets.
Furthermore, they can also print several tickets linked to the same secret,
or print tickets not linked to any secret. While the user can detect the last
event, the previous one is more difficult to detect (as the user must own the
two tickets linked to the same commitment). Finally, there is no guarantee
that the organizer will effectively discard the secrets and not use them at the
end of the event to claim all the committed tokens. However, organizers can
be trusted on this fact, as they are the ones running the blockchain. Because
one already has to trust the consortium to run the blockchain smoothly, they
can also trust them when organising events.

We now give a brief proof of the system’s security, assuming the organizer
is honest (which can be assumed, given the discussion above).
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6.4.2.0.1 Security against coin stealing To steal a coin, one must
claim a commitment, whose associated physical token they do not own.
Hence, we assume that the attacker is trying to guess the secret s linked to
a hash H(s), without knowing s.Since the hash function we use is preimage
resistant, there is no better solution than to brute force all possible s, i.e., to
try all possible 2256 bits secrets. This attack would lead to a computational
cost of 256 bits, way above the recommended NIST standard of 112 bits of
security [BBB+07]. However, an attacker might not want to attack a specific
token, but rather any possible token (this is called an existential attack).
In this context, if the hash function is preimage-resistant, the best-known
attack relies on the birthday paradox, where the attacker finds a collision
after about 2128 tries, which is still bigger than the security standards.

6.4.2.0.2 Security against malicious forging Another attacker
might want to forge their coins, so that an unsuspecting user will believe
they hold a valid coin. There are two ways to do so. The first naive one
would be to choose a random secret s′, and print tickets containing the hash
H(s′). However, a user might scan this ticket and realise it is invalid (as an
attacker cannot create CashVouchers on the blockchain). However, a more
subtle attack can be carried. Remember that the CashVoucher are publicly
available on the blockchain; hence, the attacker learns which hashes have
been used for this event. Then, they can print tokens just like the organizer
did, but with a fake secret under the scratch section. The user will only
realise they have been fooled much later after exchanging with the attacker,
when they want to claim the virtual tokens back. While this attack seems
doable in theory, in practice we observe that events are punctual and that
attackers must exactly mimic the legitimate physical coins: type of paper,
design, display, type of scratch surface... Because events are limited in time,
it is not feasible for an attacker to carry the attack in such a limited time
slot. We observe that this security in practice is enough, as school fairs and
festivals rely on a similar assumption-that no one has the time to mimic the
physical tokens in a small amount of time.

6.5 Conclusion

In this work, we have presented the first system implementing ERC20 stan-
dards on a consortium blockchain, Hyperledger Fabric. This system offers a
novel currency, the PlasticTokens, which enables a local and circular econ-
omy for its user, in which everyone is encouraged to reduce their plastic
waste. The rewards incentivise this policy. The rewards are both an in-
centive for the user to adopt the desired behaviour, and a natural way of
dealing with the natural growth of the system, as users will progressively
subscribe. Furthermore, the marketplace, another piece of the Plastic Twist
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project, fosters the circular economy, thus ensuring the users will be able to
use the PlasticTokens in an intended way.

We also introduced a way of issuing bills and paying them. We also
introduced printing physical coins, with which users can physically trade
PlasticTokens for goods and services. Even though the implementation,
by nature, cannot be fully secured, it is secure enough to be used with
sufficient trust in a real-life event lasting one day, which is the maximum
event duration the Plastic Twist pilots have reported.

As this model has been specifically designed for reducing plastic waste
and incentivising plastic reuse, it is not immediately adaptable to other
business models. However, given that the code is not related to plastic in
any way, it is trivial to adapt our scheme to other circular economies to
reduce waste.

Finally, the whole source code is open-source and publicly available on
Github.
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We propose a new healthcare data exchange platform for research cen-
ters, hospitals and healthcare institutions. Our model is based on a feder-
ated blockchain network that interconnects the healthcare institutions and
orchestrates the data life cycle from the data publication to the data con-
sumption. The blockchain is responsible for keeping the traceability of the
whole process and we use a specially designed smart contract to control the
data sharing process. Moreover, we provide the means to enforce GDPR
and thus achieve a GDPR compliant model.

7.1 Introduction
In the health industry, it is of utmost importance to constantly research
about different topics. In this sense, the development of new techniques and
treatments on diseases and epidemics strongly relies on gathering data from
multiple sources and populations.

However, gathering data for research purposes can be an exhausting
and daunting job for researchers. Obtaining the correct data and of good
quality has high monetary costs and it is time-consuming. Moreover, data
gathering usually must also overcome ethical and methodological challenges,
which further complicate the scenario.

It is crucial then to provide the means to lower the costs and fasten the
process in a secure way in order to allow data exchange between research
institutions and medical organizations. However, data exchange brings a
wider range of challenges to the table.

From a socio-technical perspective, current data protection regulations
and standards apush forward more rigorous data management approaches.
Regulations such as the General Data Protection Regulation (GDPR) and
the Health Insurance Portability and Accountability Act of 1996 (HIPAA)
increases the responsibilities and accountability of data controllers and pro-
cessors when processing health data. For instance, under Article 9 of
the GDPR, "data concerning health” is defined as a special category, and
thus must be further protected than normal personal identifiable informa-
tion [Par16] which establish further responsibilities for the processing of
health-related data. Thus, exchanging data between actors cannot be tack-
led with a straightforward approach.

On the other hand, by not having a system that is properly designed
system for data management (particularly for data exchange), the business
can suffer huge consequences. For example, the average cost of a data breach
per capita in the healthcare sector is of 408 USD [Pon18]. Given that data
in the movement has a higher risk of being breached, this is indeed an
important number to consider. In addition, patients and data subjects have
certain expectations about the management of their health data. Thus, in
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the case of a data breaches, organisations that have suffered from them, can
also see their reputation and trust affected.

As a consequence of the above situation, gathering consent from the
patients to use their personal data has become more difficult. Therefore,
healthcare institutions need to improve their internal management processes
and in particular those related to data and consent management to overcome
this problem.

All in all, we have designed a model that can help in this direction, and
that would allow healthcare institutions to have access to data in a faster
whilst also sharing the data in a secure and trusted manner. Our design
seeks to make the data exchange process faster between the actors without
losing crucial properties like traceability and accountability. By improving
the whole process, our design contributes to a better data governance within
the healthcare data exchange. This work aims to explain our model, its
design and architectural decisions emphasizing on how they contribute to
achieving such goals.

7.2 Related work

In [BKMPK18], the authors propose a blockchain model that ensures GDPR
compliance and provides the means to carry out sensitive data sharing be-
tween network participants. This work generalizes work from [BKMPK18]
by clearly defining a compatible architecture and detailing its main compo-
nents. As a result we obtain a specification that has been instantiated in
the Horizon 2020 project MyHealthMyData[Con16a] but also that is of it
own interest to study.

To the best of our knowledge no other blockchain-based model for similar
purposes can ensure GDPR compliance as our model can. However, for
instance, Medicalchain [Med19] which uses blockchain technology to store
health records does not provide information on whether or not their solution
is GDPR compliant. The only reference to the GDPR in their whitepaper,
when referring to data structures that are being used, states that: “These
are subject to change depending upon different regulations and requirements
to make the Medicalchain platform HIPPA and GDPR compliant”.

7.3 On the applicability of a federated blockchain

This section we will argue on the applicability of using a federated blockchain
as the backbone of our model to enable trust in healthcare data exchange.
We will first introduce the main ideas behind a blockchain.

A blockchain is a type of data structure that is replicated, shared, and
synchronised between different participants that rely on a peer-to-peer net-
work to connect with each other.
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As a data structure, roughly speaking, it is an append-only ledger or-
ganised as a chain of blocks where any modification in a block compels the
regeneration of the following blocks in the chain, since the blocks in the chain
link to its predecessor by a hash pointer. In addition, blockchains usually
work with blocks timestamps to make it more difficult for an adversary to
modify the chain. By following this design, the modification or deletion of
any block can be extremely difficult to achieve.

It is replicated because participants hold their own local copy and it is
synchronized because participants rely on a consensus mechanism to govern
the management, updates and operations on the blockchain. As a result,
parties can agree to a specific state of the blockchain as the valid one in a
distributed manner (with no single entity in control).

With the above in mind, the following properties should be ensured.

• Persistence [GKL15]: Once an honest party reports a transaction
"deep enough”1 in the ledger, then all other honest players will report it
indefinitely whenever they are asked, and at exactly the same position
in the ledger. This property is usually referred as the immutability of
the blockchain.

• Liveness [GKL15]: Transactions from honest parties will be in-
cluded in the ledger of honest parties. This property roughly states
that the blockchain will be able to process transactions coming from
honest users.

It is worth clarifying what an honest party means in this context. To
do so, let us introduce a distinctive feature of a blockchain regarding the
management of participants in its network.

• Permissionless: Usually the most well-known type of blockchains,
where anyone can join and participate. The most famous examples are
Bitcoin and Ethereum. In these blockchains no assumptions should be
made at all regarding the honest behaviour of the parties. This means
that some parties may arbitrarily decide not to follow the protocol in
different ways to take advantage. In these scenarios, mechanisms to
reward honest behaviour need to be triggered as a way to discourage
malicious users from deviating from the protocol. This comes with a
cost that can be reflected as a considerable overhead to the system.

• Permissioned: Participants in these blockchains can be fully identifi-
able and thus access can be granted or denied to them. Also, since the

1If a transaction tx is committed in the block n + k that is contained in a blockchain
of n + k + t blocks, t can be seen as the deep of the transaction tx with respect to the
sate of the blockchain.
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participants can be identified, permissioned blockchains can use dif-
ferent consensus protocols that cannot be used in the permissionless
setting and benefit from it.

As the reader may find different terminology in the literature, such as
public or private blockchains, we would like to clarify a relevant aspect re-
lated to it. Public blockchains usually refer to permissionless blockchains,
whereas private may not be the analogous (permissioned). We consider
private blockchains as those that are manage privately within a given or-
ganization and thus prefer the term federated to talk about permissioned
blockchains that are not under the control of a single entity.

Thus, when we talk about federated blockchains, we refer to the fact
that the permissioned blockchain in question is not governed by a single
entity but rather by a federation or consortium of organizations. These
organizations, in agreement, define the policies for its access control layer
which will define which permissions are granted to which concerning the
blockchain.

It is also worth mentioning that the fact that participants in a permis-
sioned blockchain can be fully identified does not guarantee that all of them
will behave honestly. It says, at best, that there will be fewer incentives for
them in deviating from the protocol (as they can be caught if doing so).

In some scenarios where parties that are known to each other need to
cooperate or work together, but do not fully trust each other, a federated
blockchain can help. Moreover, when cooperation needs to follow a business
logic that cannot be afforded by the parties cannot afford to be public, a
federated blockchain may be more suitable.

The above scenario can be applied to sensible data exchange if we think
in a consortium or federation of organizations that are willing to cooperate
with each other but at the same time do not trust or cannot afford the cost
to trust in a single entity.

As an example we can mention projects like Hyperledger Fabric[oSN15]
which provide different tools within the Hyperledger framework to build and
deploy enterprise blockchain solutions for similar cases. Moreover, Hyper-
ledger Fabric works based on pluggable-consensus algorithms that can be
plug in and out accordingly to the needs of the solution.

7.4 Overall architecture goals

In section III we presented the applicability of a federated blockchain in
allowing participants of a network to agree and enforce a shared business
logic to rule the healthcare data exchange process. In this section we will
specify the main goals of our model, taking the federated blockchain as a
starting point to define such goals.
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7.4.1 Process automation

As stated in Section 1, a key aspect of being addressed is how to fasten the
process of the data exchange in a secure way. In addition, smart contracts
can be helpful when it comes to process automation, as we will discuss below.

First, let us recall that the idea of smart contracts is not new. Szabo
originally proposed in 1996 [Sza96] to allow two or more parties to agree
on a subject by delegating the management and enforcement of a contract
to an application. Nonetheless, it was not until the rise of blockchain and
decentralized applications that smart contract development flourished.

In 2015 Ethereum achieved for the first time the execution of Turing-
complete code using a blockchain to that end. This, in turn, made the
original idea of smart contracts possible in terms of "autonomy" and gave
rise to what we now call decentralized applications.

In brief, the main idea behind smart contracts is to program rules and
business logic to be later on enforced independently of the participants’ in-
terest. So once a smart-contract is deployed, it will run and take actions
solely based on the code that has been written to it. Ideally, under this
paradigm, participants in the network would invoke a given smart contract
by providing input and retrieving the output but would not be able to in-
terfere in the process. A party would not be able to convince another party
to accept an output that is different from the one defined by the smart
contract logic given a fixed input. It is worth mentioning that this poses
challenges when dealing with non-deterministic computations. We refer the
reader to [ABB+18] to further look into the perils of such a challenge.

With the above in mind, smart contracts are very appealing when it
comes to defining different business logic among participants that may have
a conflict of interest or that may try to take advantage of other participants
who also rely on the same logic.

Accordingly, the Hyperledger fabric documentation, “smart contracts
are not only a key mechanism for encapsulating information and keeping it
simple across the network, but they can also be written to allow participants
to execute certain aspects of transactions automatically.” [oSN15]

Since the smart contract will “play by the rules by default”, participants
can trust their execution and thus, all the parties can trust process automa-
tion. This is what drives our first goal: defining in a secure and trustful
manner a process automation to handle the data exchange process between
parties. We will explain in the next sections how this can be achieved by
using a smart contract.

7.4.2 Data traceability

We refer to data traceability as the process to know what type of data has
been in the system, when and who used it, and under which conditions/pur-
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poses.
This idea of data traceability helps to improve the model of data gover-

nance. Overall, we can understand data governance as the data management
and IT strategy by which organizations establish rules, policies, models and
management of the data [OBL16] [CNS15]. More specifically, NIST has
adopted the following definition for data governance:

“A set of processes that ensures that data assets are formally managed
throughout the enterprise. A data governance model establishes author-
ity and management and decision making parameters related to the data
produced or managed by the enterprise” [CNS15] [NT15].

To enable a proper data governance model, it is important to control data
throughout its lifecycle. This implies, among other things, that data owners
should know where the data is, who has used it, when and under which
conditions. This item is particularly important for data exchange or sharing.
In addition, organisations should record to whom data has been shared
to comply with regulations and enable data subject’s rights and security
measures. Thus, having a good set of policies, rules, frameworks and systems
that allows data owners to trace data, strength the data governance.

To accomplish this task, we introduce the following concepts:

• Proof of existence: It should be clear for any given data to be
exchanged what is the exact content and under which conditions it
can be shared. For healthcare data, the relation between the data and
the consent given to its usage need to be defined at the very early stage
of the process. Thus, it is important to be able to prove the existence
of such relation at any given time. This, in turn, helps to know what
type of data has been in the system.

• Proof of matching: To better provide the means to the when and
who used which data, we introduce the notion of proof of matching to
capture which and when the data has been used and by who. Proof
of matching then implies that the party sharing the data can prove no
only when that data has been used but also by whom.

7.4.3 Decentralization

One of the biggest challenges of data governance in a centralized way is that a
single entity carries out data the management. Therefore, there is a risk that
records can be tampered with or altered, either in a malicious or unintended
way. This entails that data subjects must rely on the organisation’s policies
and trust that they are being enforced. A direct consequence of this model
is that costs tend to be high due to all the work that needs to be done by
the entity in charge of the data management.

Also, data controllers may be reluctant to delegate the whole process of
data exchange to a single entity even though they could afford the cost of
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it.
Decentralization in this scenario allows every party to keep the control

of their own data and to participate in the decision-making process of data
exchange. Moreover, by distributing the responsibility of the process among
parties, there will be fewer chances for the information to be tampered with
if most of the participants remain honest.

7.4.4 Auditability and GDPR compliance

Auditability is a key component in data security which in turn can help to
achieve GDPR compliance. Given the traceability feature of the system,
it is possible to examine and systematically review the data management.
Even more, given the design of the network, it is possible to achieve the
desired granularity in the retrievable process, with the possibility of knowing
specifically where each data set has gone.

Due to the immutability principle of the blockchain, it is possible to audit
the data trails and data management with assurance that the database has
not been tampered with.

One of the interesting aspects of this design, is that the "right to ac-
cess” [Par16] enabled by the GDPR could be accomplished by the model.
If a given user wants to carry out its own right of knowing where its data
has been and with whom it was shared with, a positive answer should be
delivered to him. This is what we seek by setting this goal, to take the im-
mutability and decentralized properties of the system to ensure that every
node in the network can be able to trace its own data. Moreover, some other
rights such as the right to be forgotten should also be subject to exercise in
order to be fully GDPR compliant.

7.4.5 Enable trust

When designing such a system, one major concern is to provide a secure way
to transfer and exchange data between the parties. In this sense, to comply
with data protection regulations and possible malicious actors, it is crucial
to preserve the confidentiality and integrity of the data. The model should
also assure that entities are authenticated and part of the network to clearly
identify every action.

The properties above of the system are important for data exchange
for three main issues: data protection, regulatory compliance, and enabling
trust. The first two, data protection and regulatory compliance, are tightly
related, as we seen before when referring to the GDPR.

Furthermore, it is also important for any organisation handling personal
data to trust their data subjects. Given that health data is considered a
sensitive (or special category), special attention must be given to security
when data is in movement. If a data breach occurs, as it has been noted
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before, reputational harm can be done to the organisation. Thus, our goal
in this sense is to prevent as much as possible data leakages, which is also
another reason for enhancing data traceability.

7.5 Our model

Even though the federated blockchain is a central component in our model,
it is certainly not the only one. Therefore, in this section, we will dive into
each of the components explaining, their main functionalities and how these
contribute to achieving the previously defined goals.

Let us first start by saying that under this model different organizations
agree on participating together in the same network. As an example, one
can imagine a network composed of two research centers and one hospital.

Following this example, every organization will have their own users and
every user will be recognized as a valid one by other organizations. This
means that organizations have control over their own users and any other
network member recognizes credentials issued to them.

It is important to highlight that every organization runs at least one
node in the blockchain network and thus the governance of the federated
blockchain is distributed among the organizations.

Figure 7.1: Model representation

7.5.1 Central web server

We define a central web server as the users’ endpoint to communicate and
interact with the whole system. A user belonging to one of the organizations
will use this web server to carry out all its requests and interaction with the
network.

It is worth noticing that introducing a component of centralization in this
architecture does not prevent the goals we previously defined related to the
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decentralization since the web server will be an access point but will not hold
any sensitive data (other than information related to users authentication).

The idea of the central web server is to facilitate the interaction with
the system and with the central catalogue (which will be introduced next).

Since we have a federated blockchain network, authentication needs to
be handled differently.Therefore, we propose a single sign-on approach where
users authenticate with the web server specifying username, password and
organization so that the web server can validate these credentials with the
affiliated organization. This, in turn, means that if one of the organizations
experiences problems, only users from that organization will use the system.

7.5.2 Catalogues

To create a data request a user needs to know which data is available in the
system to ask for it. To manage the data available in the system, we use of
local catalogues held at every data controller and one central catalogue.

Local catalogues index the data that will be available to the network from
the data sources. This indexation process includes the normalization of the
data (the generation of metadata from the actual data) and the registration
of the metadata in the central catalogue.

The central catalogue is just an aggregated version of the available data,
enabling users in the system to browse for data in a consolidated way. We
rely on metadata to describe the available data to avoid direct links to the
actual data. We should stress that is also desirable to require data controllers
to perform at least one level of anonymization to the data before sharing it.

This way, when a user browses the metadata from the central catalogue
it will know which type of data is available but not who is providing it.

7.5.3 Certificate authorities

From the authentication point of view, every organization has its own Cer-
tificate Authority with an API (CA API) and a second API (Authentication
API) that is integrated with the web server to handle the authentication with
the users. The web server consumes this Authentication API to carry on
the single sign-on process and, in turn, will consume the CA API to perform
the right mapping between the user’s credentials and associated public keys.
This model can be easily deployed with Hyperledger Fabric for example.

By managing certificate authorities we can authenticate any action per-
formed in the system. As for the blockchain, every CA will generate certifi-
cates for its users and for the TLS communication between the nodes.

7.5.4 Network nodes

We define a network node by the following components:
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• A blockchain peer, eventually with more than one peer running in the
same node for performance purposes.

• A driver (backend application) which implements the main business
logic. It processes requests from the central web server and communi-
cates with the local peers to execute and process transactions.

• A local mapping database that is used to track of the references that
every data item has in the blockchain. It links a data item with every
data request in which it was used.

• A certificate authority (CA) responsible for issuing certificates within
the organization.

• An authentication API that communicates internally with the CA and
externally with the central web server. The idea behind this is that
the authentication API connects to the CA to generate a user and
store it locally. It then provides the means to the central web server
to authenticate users following the single sign-on approach.

Figure 7.2: Logic abstraction of the driver

Two operation modes for the driver are defined, with data sources and
without data sources. Organizations can process and request data, but
not necessarily every organization on the network will process data. This
means that some organizations may will only ask for data but never share
data. This is the case with pharmaceuticals, for example. In this case,
as the organization will not be sharing data, the driver does not need to
communicate with a local catalogue or data sources adapters. Depending
on the driver’s operation mode, a network node may have other services
running or not.

7.6 Data exchange flow

Our defined goal on process automation introduced the idea of delegating
the administration of the data exchange flow to a smart contract. This
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section we lists the steps that we defined for the data exchange flow and
how they interact with the logic established by a smart contract that we
called ExchangeFlow.

Like a smart contract, ExchangeFlow provides the following methods
that can be invoked and manage different assets.

• createDataRequest: This allows the user to define a new asset in the
system and record information on the blockchain regarding a new data
request.

• query: allows the user to query on the assets which exist on the system.

• registerData: This allows the user to define a new asset in the system
and record information on the blockchain regarding the new registra-
tion of data.

• registerResponse: allows the user to define a new asset that contains
a response for a data request that was previously defined in the sys-
tem. T. The data requestor later retrieves these assets to process the
request.

• updateDataRequest: This allows the user to update a data request
asset in order to reflect whether or not all the responses have been sent.
This facilitates the processing of closing the request and delivering the
results to the end-user.

To better explain the details of the step by step process, let us first stress
the following related to the actual way in which the exchange is performed. A
session key is generated every time that data items are shared. This session
key is used to encrypt those data items, so it needs to be shared with the
data requester. To share the session key, a public key (which we introduce in
step 2) is being used to encrypt it so that only the data requester can obtain
it. The data requester will download the data items (which are encrypted)
and will have to decrypt them with the corresponding session key.

We detail below the step by step process, which consists of the following
steps: 1) Data registration, 2) Data request, 3) Data fetch, and 4) Data
response.

7.6.1 Data registration

The driver is used to publish data to the network. This process, called data
registration, consists of several steps that we will describe in detail.

Recall that a driver has its own local catalogue and data sources
adapters. The adapters are used to fetch the data from the data sources.
As data can be heterogeneous and thus come from different sources, we de-
fine such adapters to achieve a modular design. Every datasource adapter
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implements the same interface. Thus, adding a new data source boils down
to implementing the datasource adapter interface for that datasource.

Different datasource adapters are handle ny a datasource manager who
communicates back and forth with the driver application.

When a datasource receives new data, its datasource adapter communi-
cates with the datasource manager, which in turn communicates with the
local catalogue to index the data.

Once data is indexed, it needs to be registered so it is available to the
network.

To register the data, the driver invokes ExchangeFlow.registerData,
which in turns creates an asset attesting the registration of the data in
the blockchain. This works as a proof of existence and allows the driver
to prove later that it had available data with a given consent by the time of
the registration.

Note that the consent must be specified to register the data, but most
importantly the consent will need to be checked before sharing data. In
this sense, the consent management is the process of checking that these
two steps are being done correctly (i.e. a consent is defined and properly
checked for every data item).

To register the data, the local mapping database is used. The content
of this database are pairs (key,value) where the key is a unique reference
for every data item, and value is a set of references from that data item to
the blockchain. In the value field, a tuple (blockchainTransactionId, offset,
consent, hash,hmac) is saved every time a data item is registered with a
consent. Below we explain the different fields for the tuples in value:

• blockchainTransactionId: indicates the transaction in the blockchain
where the data item has been registered.

• offset: is an integer assigned during the invoke of ExchangeFlow.reg-
isterData. A global counter is used to assign a unique value to every
data item.

• hash: is the cryptographic hash of the data item to make sure that
the data has not changed.

• hmac: is a key-hash message authentication code of the data item
hash, its unique id and the consent. This allows the driver to prove
data integrity and authentication for the data item and its consent.

It is important to recall that such mapping is entirely in the driver of the data
controller and thus only that party, which is the intended one, would be able
to respond in case of an audit. For the rest of the parties, the information
recorded on the blockchain will be useless without the references at the local
mapping.
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7.6.2 Data request

We now describe the data request process. First; a user logged into the sys-
tem can use the central web server to browse data available from the central
catalogue. At this point the user knows which type of data is available for
request but does not know who has such data. Thus, the user knows which
types of consents are compatible for the available data as this was previously
specified during the data registration process.

Once that the user-defined the type of data that he will request, the next
step is to communicate such a decision to the network. At this point, the
user-specified how he is going to use the data and for which purposes. Both
need to be compatible with the consents defined by the data registrants;
otherwise, they will not carry out the exchange.

With the above information the central web server communicates to the
driver who belongs to the user organization and forwards the request.

The driver processes the request by invoking ExchangeFlow.dataRequest
specifying the following information:

• dataRequestId: a unique id assigned globally to every dataRequest
when before creating the asset.

• dataRequestInfo: general information which includes the purpose of
the request as well as the requested consent.

• publicKey: a public key is created per data request to allow all the en-
tities to communicate with the requester when sending their responses
privately.

• status: a field indicating the status of the data request that will be
updated once that all the responses have been collected. This is field
is also used to notify the user in case if problems arise from the data
exchange process.

Finally, a corresponding transaction reflecting these changes is added to
the blockchain. This will allow all the networks nodes to be notified of a
new data request when reading the updates from the blockchain.

7.6.3 Data fetch

Upon notification of a data request, every driver checks internally if it has
available data to exchange. Then, as the data request specifies the conditions
on the data usage and the required consent, every driver can check and
decide weather to share the data.

If the answer is positive, the data needs to be fetched from the data
sources, and a data package needs to be built from the available data. We
call this process data fetch.
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7.6.4 Data response

Data responses can be positive or negative. To respond, an invocation to
ExchangeFlow.registerResponse must be made by specifying the following
fields to create the corresponding asset:

• dataRequestId: the id of the data request it is responding to.

• result: indicates if it is a positive answer or a negative answer. If it is
negative, the rest of the fields can be ignored.

• info: indicates general information on the response. For example,
the hashes of the data items to be shared so they can be checked
afterwards.

• privateField: a session key to decrypt the data items being exchanged
is encrypted with the publicKey obtained from the data request and
sent in this field.

• downloadLink: a link to download the data items.

• bitmapHash: the hash of the bitmap for the resultset (set of data items
to deliver). A data request would normally use fewer data items than
the ones that the driver registered. The driver calculates and stores a
compressed bitmap from the offset of the data items involved in the
request-response. Thus, bitmaps are used to establish the link between
data items that a data request has used for every data request. As a
proof of matching the driver will save the bitmap hash. This allows
it later to prove that a given set of data items have been used in a
given data request. It is worth noticing that since the bitmaps are
stored locally on each driver only the driver who stores the bitmap
can know where to check where the data items have been used.

It is important to notice that the actual data exchange is carried off-chain
and no direct information on the actual data is saved on the blockchain.

The data requestor will read the responses from the blockchain and pro-
cess them one by one downloading the data sets and decrypting them with
the corresponding session key. Finally it will invoke ExchangeFlow.update-
DataRequest to end the data request.

Information related to the whole process can be later checked and re-
trieved by invoking ExchangeFlow.query on the corresponding assets.

7.7 Conclusions and further work

In this work, we presented a novel approach to empower organizations in
the decision-making process of exchanging healthcare data while avoiding
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the need to rely on a third party. As said before, this can be expensive from
the monetary and data breaches point of views. Under this model, every
institution is responsible for its own data and the actions it takes with it and
thus can apply its own policies. Moreover, they can easily trace to whom
they deliver the data and under which conditions. From the data requester
perspective, they are forced to declare in advance such conditions, so that
the exchange rules remain transparent for the involved parties and auditing
the process becomes easier.

Process automation in this sense makes it also easier to gather data
faster, which in turns can boost its usage in fields like health data analysis
and mining.

Furthermore, our model is the first GDPR compliant blockchain-based
solution in the health data exchange domain to the best of our knowledge.

As future work, integration with novel approaches to enhance privacy
(e.g developing tprivacy preserving techniques in smart contracts, secure
multi-party computation and zero-knowledge) would allow the extension of
this model to different domains.



Conclusions

Summary of the contributions

The research work carried out in this thesis covers various subjects around
cryptography and blockchain, including theoretical and practical results on
privacy-preserving user identity protocols, software obfuscation, and a cryp-
tocurrency scheme for new economic models.

This thesis is organised into three parts. The first part covers a brief
story about blockchain and the main concepts of modern cryptography. The
second part includes the theoretical results on privacy-preserving consensus,
electronic voting on blockchain and control-flow graph obfuscation for soft-
ware protection (i.e. intellectual property). Finally, the third part includes
the applied research results proposing a management model on blockchain
for GDPR compliance and a new cryptocurrency scheme for a circular econ-
omy.

Privacy-Preserving protocols: Chapter 3 presents a new privacy-
preserving user identity consensus protocol using blind signatures schemes
for transactions unlinkability in the permissionless blockchain. The con-
struction proposed is based on a BFT algorithm for the transactions vali-
dations and for agreeing on the new block. The protocol is designed based
on a generalised construction of blind signatures to allow users to issue a
blinded signature to keep their identity private. Therefore, for practical uses,
the protocol can be implemented with different blind signature schemes like
Okamoto-Schnorr blind signature [Oka92], Chum’s blind signature [Cha82],
Fuchsbauer et al. [FHS15], among others. This protocol achieves transac-
tion unlinkability (using a blind signature scheme), consistency and liveness,
making it suitable for multiple blockchain implementations. Moreover, all
the components used in this protocol already exist in Permissioned or Pri-
vate Blockchain architecture. Hence, our algorithm performs the signature
blinding process by using the membership authorities or the user adminis-
trators that already exist in a Permissioned scheme, making it efficient for
these kinds of Blockchain architectures.

In Chapter 4 it is proposed a new decentralised electronic voting scheme.
This protocol is called DABSTERS, and uses a new architecture to en-
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hance the security level in eVoting and ensure the trustworthiness needed
in any electoral process. DABSTERS design uses private Blockchains with
a new privacy-preserving consensus algorithm based on Okamoto-schnorr
blind signature to guarantee vote integrity and voter’s privacy due to the
unlinkability property that the blinded signature has.

Chapter 7 covers an applied research result on blockchain and privacy-
preserving regarding the European General Data Protection Regulation
(GDPR). This work presents a novel approach for decentralised data gov-
ernance in healthcare data exchange. Each institution is a data controller,
and it is responsible for all the actions over the data and the data policies for
data exchange or data processing. The solution allows the data controller
to communicate with the other institutions through a federated blockchain
to demand access to pseudo-anonymised. Then, the system checks the con-
sent given by the data owner to each data controller. If the consent allows
the data exchange, the system will make available the data package, and it
will inform through the blockchain that the data package is ready and how
access to it. The communication process, consent management and data
availability are automatised using smart contracts.

Software obfuscation: This thesis includes the study of mechanisms to
protect the software’s source code for avoiding vulnerability exploitation (i.e.
the DAO attack in 2016) and intellectual property protection. This work
presents a construction of a control flow graph trans-compilation algorithm
that transforms a program into a new functionally equivalent program. This
algorithm uses standard instructions (i.e. register and stack operations) and
a random routing variable to construct a new control-flow graph. This result
can be used in addition to the classic software obfuscation techniques that
do not offer protection against getting information using the control-flow
graph while the application is running.

Cryptocurrency for new economic models: In this thesis, we pro-
posed the first ERC20 token on a consortium blockchain. This implemen-
tation was carried out on top of the Hyperledger Fabric blockchain. The
scheme offers the flexibility to create new types of cryptocurrencies or to-
kens, like the PlasticTokens, allowing communities to create new local or
circular economies based on blockchain. More precisely, this work addressed
the issue of plastic recycling in Europe. The platform encourages people to
participate in reducing their plastic waste by using rewards paid on Plastic-
Tokens. Moreover, PlasticToken can be used to sell or buy products made
from recycled plastic through a marketplace implemented on Hyperledger
Fabric. The ERC20 token and all the marketplace functionalities are devel-
oped in smart contracts, making it the first fully decentralised platform for
enabling circular economies.
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Open problems

There are several open problems in the blockchain field to address in other
to consider this technology as fully ready for cross-industry implementation.
The author of this work has selected the open problems presented in this
subsection as interesting problems to solve after his thesis.

One interesting open issue is network privacy. Today, there is a lack of
results addressing the user privacy vulnerability at the network level, and it
is a very sensitive issue to achieve anonymity. We know that unlinkability
does not ensure anonymity; hence, adding new mechanisms to hide the
source of a transaction could add the extra security layer required to achieve
anonymity.

Another open problem is blockchain performance. Today this has been
improved considerably in comparison to the first version of Bitcoin. How-
ever, this issue is still far to be solved to achieve the same performance
levels as a centralised system. The issue related to the performance has
different branches; nevertheless, one of the most important ones is the con-
sensus. Achieve performance in a distributed system means to optimise
the consensus algorithm. However, the solution is not simple because there
is a trade-off between performance and security that is hard to handle in
distributed architectures.

Finally, another interesting open problem is tokenomics. This thesis
addressed the technical issue to implement new economic models using
blockchain technology. Nevertheless, new economic models imply problems
much bigger than the implementation of a platform. For example, they
cover economic modelling, law, cultural aspects, among others. Hence, im-
plementing a new real circular or local economy model based on blockchain
is still an open issue that could be addressed as a multidisciplinary research
field.
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RÉSUMÉ

Cette thèse aborde les problèmes de sécurité, de confidentialité et des barrières économiques auxquels fait face la mise

en œuvre de la blockchain pour assurer la confidentialité des utilisateurs, la gouvernance des données, l'offuscation

des logiciels et développer des modèles de crypto-monnaies pour les économies circulaires. Après avoir introduit la

blockchain et la cryptographie moderne, sont présentés trois principaux résultats de recherche : un nouveau protocole de

consensus qui préserver la confidentialité des utilisateurs, un nouveau schéma de vote électronique confidentiel utilisant

une blockchain permissioned et un protocole d’offuscation de graphiques de flux de contrôle pour la confidentialité des

logiciels. Enfin, la troisième partie de la thèse comprend deux résultats de recherche appliquée avec deux prototypes de

systèmes blockchain répondant aux problématiques posées par la gouvernance des données et les crypto-monnaies.

La première partie de cette thèse décrit un bref historique de la technologie autour de la blockchain et son évolution

jusqu'à arriver à sa première implémentation (le Bitcoin). Ensuite, sont introduits les principaux sujets sur la cryptographie

moderne utilisés dans cette thèse. La deuxième partie commence par un nouvel algorithme de consensus qui préserve la

confidentialité pour la blockchain permissioned. La principale contribution de ce travail est une construction générale de

signature aveugle pour la dissociation des transactions intégrée à un consensus basé sur le BFT pour la validation des

transactions et des blocs. Le deuxième résultat correspond à un nouveau schéma de vote électronique pour la blockchain

permissioned. Ce travail a propose un nouveau consensus de préservation de la confidentialité basé sur la signature

aveugle d'Okamoto-Schnorr pour la dissociation des transactions et la courbe elliptique pour la confidentialité des votes.

Enfin, il est présenté un nouveau mécanisme d'offuscation de graphes de flux de contrôle pour la confidentialité du source

code des logiciels (par exemple, pour les contrats intelligents).La troisième partie présente deux implémentations de la

blockchain. Le premier est une nouvelle implémentation de la norme de jeton ERC20 et une marketplace sur Hyperledger

Fabric pour les économies circulaires supportées par le recyclage du plastique. Le second est un prototype de blockchain

pour la gouvernance des données dans l'échange de données de santé selon le RGPD automatisé avec des contrats

intelligents.

ABSTRACT

This thesis addresses the security, privacy, and economic barriers to implementing blockchain for user's privacy, data

governance, software obfuscation and cryptocurrencies models for circular economies. The first part of this thesis covers

the preliminaries about blockchain and modern cryptography. The second part presents three main results concerning

privacy-preserving consensus, privacy in electronic voting with permissioned blockchain, and control-flow graph obfus-

cation for software confidentiality. Finally, the third part includes two results based on applied research work with two

prototypes of blockchain systems for data governance and cryptocurrencies.

The first part of this thesis describes a brief history of the technology around blockchain and its evolution until arriving at

the first blockchain implementation (Bitcoin). Then, the most relevant topics on Modern Cryptography used in this thesis

are introduced.

The second part begins with a new privacy-preserving consensus algorithm for permissioned blockchain. The main con-

tribution of this work is a general construction of blind signature for transaction unlinkability integrated to a BFT-based

consensus for transactions and blocks validation. The second result corresponds to a new electronic voting scheme for

permissioned blockchain. This work proposed a new privacy-preserving consensus based on Okamoto-Schnorr blind

signature for transaction unlinkability and elliptic curve for vote privacy. Finally, a new control-flow graph obfuscation

mechanism for software confidentially (e.i for smart contracts) is presented.

The third part presents two blockchain implementations. The first is a novel implementation of the ERC20 token stan-

dard and a Marketplace on Hyperledger Fabric for circular economies based on plastic recycling. The second one is

a blockchain prototype for data governance in healthcare data exchange according to GDPR automatised using smart

contracts.

KEYWORDS

blockchain, distributed systemes, permissioned blockchain, blind signature, eVoting, Tokenomics, GDPR.
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