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Abstract

Climate predictions and weather forecasting strongly rely on simulations of the Earth’s
oceans and atmosphere turbulent dynamics. But the simulation of turbulent processes is
so computationally expansive that it is only possible to resolve the largest physical scales.
The representation of unresolved scales in these simulations is therefore a key source
of uncertainty and its modeling is still an open problem. Recently, machine learning
techniques have been receiving growing attention for the design of parametrizations and
subgrid-scale models. In this thesis, we explore the impact of explicitly embedding law
invariances in neural networks trained to represent the small-scale dynamics of a scalar
quantity advected by a turbulent flow. We also propose a new training algorithm inspired
by the end-to-end approach applied to turbulence modeling, where the loss can be opti-
mized on so-called “a posteriori” metrics. While the strategy gives promising results, it
requires a differentiable numerical solver during the learning phase. We try to address
this limitation with an additional step during which we train a differentiable emulator of
the resolved dynamics. The error patterns in the emulator are shown to be propagated as
a correction bias in the subgrid-scale model, limiting its performance. However, regular-
izing the model loss enable stable simulations and brings “a posteriori” learning benefits
in non-differentiable solvers. Our results show that neural networks can respect physical
principles and outperform classical models in long-term stable simulations. Their imple-
mentation in realistic solvers is expected to improve climate understanding and turbulence
in general.

Keywords : subgrid modeling, machine learning, turbulence
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Résumé

Les prédictions climatiques et prévisions météorologiques reposent fortement sur des sim-
ulations de la dynamique turbulente des oceans et de l’atmosphere Terrestre. Mais la
simulation de ces processus turbulents est si coûteuse en calcul qu’il n’est possible que de
résoudre les plus grandes échelles physiques. La représentation des échelles non-résolues
dans ces simulations est donc une source d’incertitude majeure et sa modélisation est
encore un problème ouvert. Récemment, les techniques d’apprentissage automatique
ont reçu une attention grandissante pour la construction de paramétrisations et mod-
èles sous-maille. Dans cette thèse, nous explorons l’impact de l’incorporation explicite
de lois d’invariances dans des réseaux de neurones entrainés pour représenter la dy-
namique à petite échelle d’une quantité scalaire advectée par un écoulement turbulent.
Nous proposons aussi un nouvel algorithme d’apprentissage inspiré par l’approche bout-
à-bout appliqué à la modélisation de la turbulence, où la fonction de coût peut être
optimisée sur des métriques dites “a posteriori”. Si cette stratégie donne des résultats
prometteurs, elle requiert néanmoins un code numérique différentiable pendant la phase
d’apprentissage. Nous essayons d’adresser cette limitation avec une étape additionnelle
durant laquelle nous entrainons un émulateur différentiable de la dynamique résolue. Les
motifs d’erreur générés par l’émulateur se révèlent être propagés en tant que bias correctif
dans le modèle sous-maille, ce qui limite sa performance. Cependant, régulariser la fonc-
tion de coût du modèle permet d’effectuer des simulations stables et apporte les bénéfices
de l’apprentissage “a posteriori” dans des codes non-differentiables. Nos résultats mon-
trent que les réseaux de neurones peuvent respecter des principes physiques et surpasser
les modèles classiques dans des simulations stables de longue durée. Leur implémenta-
tion dans des codes réalistes devrait améliorer notre compréhension du climat et de la
turbulence en général.

Mots-clés : modélisation sous-maille, apprentissage automatique, turbulence
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Chapter 1

Introduction

The study of the climate system is an active field of research, especially in the con-
text of the ongoing anthropogenic impacts and the potential to cause substantial climate
changes during the coming decades and centuries (Houghton et al., 2001). Modern com-
putational approaches to understanding this complex system are based on a combination
of models and observations, both in-situ and satellite (see Fig. 1.1 for example). In
practice, observational data is used to correct the error made by numerical models, pri-
marily driven by the dynamics of the ocean, atmosphere, and their coupled interaction
(Bauer et al., 2015; Kharin and Zwiers, 2000). These corrections (Laloyaux et al., 2016)
can be partially regarded as taking into account factors that would not be captured by
a differential equation. Moreover, numerical simulations used for climate projections are
similar to weather forecast models, except that they are typically run on much larger
spatiotemporal scales. These global models are thus extremely expansive from a compu-
tational point-of-view and simplifications leading to larger sources of error are mandatory
(Stevens and Bony, 2013). Indeed, simulations at full resolution are not tractable with
the current computer resources yet and are likely to remain the case for the foreseeable
future (Raäisaänen, 2007; Schneider et al., 2017b; Wiens et al., 2009). Numerically, the
spatial domain is discretized onto a grid, for which local information is only known either
at the corners or centers of the grid cell. The required grid cell resolution should typi-
cally be in the order of the smallest dynamical structure, which goes all the way down to
the dissipative scale in turbulent flows. Global climate models are still far from reaching
this resolution since they are only able to resolve horizontal grid spacing ranging from
∼100–300 km (Eyring et al., 2016) with ∼10–50 vertical levels from top to bottom of the
ocean and atmosphere (Stewart et al., 2017). The dynamics happening in-between these
grid cells, also called subgrid-scale is not resolved but remains an essential component
of these models (Schneider et al., 2017a). Modeling the small-scale dynamics has also
been important in different applications, for example, to improve renewable energies or
to study astrophysical flows.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Ocean flows colored with sea surface temperature in the Gulf stream stretching
from the Gulf of Mexico towards Western Europe. The data was produced by the ECCO2
joint project at MIT/JPL and uses MITgcm with satellite and in-situ data of the global
ocean and sea-ice. Credits: NASA/Goddard Space Flight Center Scientific Visualization
Studio.

Models of unresolved turbulent motions are historically based on first principles, physics,
idealized experiments, and high-resolution observations. Their design involves a mixture
of empirical and process-based modeling. Process-based models are formulated, tested,
and calibrated with experiments performed in the field, in the laboratory, or with comput-
ers (Stensrud, 2009). On this basis, the actual model estimates a tendency term for the
target subgrid term from its resolved variables. The underlying conceptual framework
can rely on some ensemble averaging procedure, so that the model intends to capture
the statistical effect of unresolved processes, for instance for turbulence models (Mel-
lor, 1985). Alternatively, one may consider a spatial filtering procedure from which the
model can exploit the scale-invariant properties – or hypotheses – of turbulence, as in
Large Eddy Simulation (LES) (Lesieur et al., 2005). The advantage of this approach is
that only large-scale processes are resolved, which relaxes the grid resolution restrictions.
However, small-scale dynamics remain to be modeled from resolved quantities. This has
been an open challenge for a long time, as it mathematically translates to a high dimen-
sional non-linear inverse problem (Piomelli, 2014). Typical applications are found with
the incompressible Navier-Stokes equations which give an accurate representation of the
fluid motions that drive the oceans and the atmosphere’s dynamics (Fox-Kemper and
Menemenlis, 2008; Mason, 1989). In practice, the turbulent dynamics of these geophys-
ical processes is also driven by multiple factors, including thermodynamics, magnetism,
or chemical reactions. This makes the design of subgrid models highly convoluted with
complex interactions that can not always be analyzed individually. While process iso-
lation eliminates some difficulties, there are still numerical errors related to the spatial
discretization of the governing equations (Fornberg, 1990).
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In this thesis, we will be first interested in the subgrid process responsible for the mixing
of a passive scalar in a turbulent flow (e.g. a contaminant), and the evolution of quasi
two-dimensional geophysical fluid motions, separately. To further focus on the subgrid
modeling problem, we use pseudo-spectral methods, which reduce the numerical error at
the expanse of a limited geometry such as symmetric domains with periodic boundaries.
Studying turbulent flows in these idealized configurations is primordial to understanding
subgrid processes without interacting with other sources of error. These “theoretical”
applications are expected to provide a basis for complex processes and geometries.

Recently, the use of machine learning (ML) to improve subgrid models has gained mo-
mentum. Calibrating subgrid models against observations with ML and emulators is for
instance becoming common practice (Ollinaho et al., 2013). ML also provides new means
to design subgrid models from high-resolution simulations that resolve all the physical
scales in a restricted, smaller configuration (Gamahara and Hattori, 2017; Maulik et al.,
2019). In this context, ML may learn a mapping that predicts the tendency term due
to unresolved subgrid effects from resolved quantities available in a target model. These
methodologies have been applied to many types of flows, with applications to ocean
(Bolton and Zanna, 2019) and atmosphere (Rasp et al., 2018) dynamics. However, it is
important to remember that ML models are purely mathematical tools. Besides their
ability to universally represent non-linear functions, they are not constrained to follow
physical laws or invariances by design. Even if their performance on the specific task they
were training for is remarkable, they often lack generalization and break whenever they
are used in a different context. These models are thus difficult to interpret, which limits
their widespread among physicists. It has become quite clear (Battaglia et al., 2018) that
these models are powerful and could benefit from domain-specific knowledge to improve
both their interpretability and generalization performance. These recent ideas build on
the rise of scientific machine learning (SciML) (Innes et al., 2019) and its broad applica-
tion to physical sciences. SciML is an emerging field, which bridges scientific computing
and machine learning. Some recent key developments in the field have been motivated
both from physical insights and for their applications to physical sciences, especially in
fluid dynamics (Carleo et al., 2019). The conceptual research in ML motivated by appli-
cations to problems governed by partial differential equations (Long et al., 2018; Raissi
et al., 2019; Sirignano and Spiliopoulos, 2018) have for instance gradually freed ML from
its black-box reputation. It is also now possible to directly benefit from ML for system
identification and equation discovery (Brunton et al., 2016). At this state, first ideas are
emerging with applications in simple benchmark systems such as the Lorenz (Dueben and
Bauer, 2018). Moving to more complex dynamics in two and three dimensions is however
the next step towards the acceptability and usability of a new generation of ML-based
subgrid models in climate models.
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CHAPTER 1. INTRODUCTION

1.1 Thesis aims and structure

We are still a long way to solving the full range of dynamics in ocean and atmosphere
models. While recent efforts have made a lot of progress to the subgrid modeling problem,
in particular, using data-driven techniques, challenges remain. We will see in the next
chapter that existing data-driven models are not particularly using the previously estab-
lished understanding of the underlying dynamics. In order to see practical use in global
climate models (GCMs), these models need to get away from their “black-box” reputation,
gain some interpretability and significantly improve from existing alternatives.

From these observations, some questions naturally arise concerning the future of sub-
grid models using data-driven methods:

1. How to embed well-known analytical identities into modern machine learning models
to build an understood basis for subgrid modeling?

2. Can we formulate a learning strategy able to capture complex geophysical phenom-
ena with long-term stability?

3. Is it possible to train precise subgrid models from any numerical solver, even in the
presence of errors?

Thesis structure. The necessary background about the equations of motion that govern
fluid dynamics and the subgrid problem will be presented in Chapter 2 with an overview
of the existing literature. We also include an introduction to the machine learning models
used in this thesis, along with the numerical methods that solve the governing equations.

Investigating the above questions starts with Chapter 3, where we describe different
approaches to include law invariances in neural network architectures. Their application
to the subgrid modeling of advection-diffusion (transport) equations shows performance
and generability improvements.

Realizing the limitations of the previous chapter to properties based on group actions
such as invariances, we question the “static” nature of the training process used for current
data-driven models in Chapter 4 and propose a differentiable strategy to improve the long-
term stability in two-dimensional flows.

Building upon the results of the previous chapter, we explore in Chapter 5 a solution
to overcome the differentiability requirement using a temporary data-driven emulation of
the numerical solver.

This thesis ends with Chapter 6, where we summarize the results and discuss their
implications, together with future challenges that are yet to tackle.

Parts of the results have been published in the following journals:
Frezat et al. (2021). in Physical Review Fluids

Frezat et al. (2022). in Journal of Advances in Modeling Earth
Systems (JAMES)
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Chapter 2

Background

This chapter describes the necessary background used in the following content chapters.
First, we will introduce the partial differential equations (PDEs) governing the flow dy-
namics and the goal of this thesis, i.e. the subgrid modeling problem in a discrete numer-
ical perspective. Related to this, we will discuss some performance characteristics as well
as classical baseline subgrid-scale (SGS) models with their limitations. We will give the
basis of the numerical methods that are used throughout this thesis to solve the PDEs
introduced previously, with their advantages and drawbacks. Finally, the concept of data-
driven methods is outlined, and recent machine learning (ML) models are reviewed, with
a focus on state-of-the-art neural networks (NN) that will be used as the computational
basis of this thesis.

Here are the major references for each
subsection :

1.
2.
3.

Pope (2000)
Canuto et al. (2012)
Goodfellow et al. (2016)

Contents
2.1 Turbulent flows phenomenology . . . . . . . . . . . . . . . . . . 6

2.1.1 Turbulent scales . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Reduced-order modeling via filtering . . . . . . . . . . . . . . . 8
2.1.3 Instantaneous and statistical characterization . . . . . . . . . . 10
2.1.4 Existing models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Specific applications . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Scalar field modeling . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Advection-diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 The barotropic quasi-geostrophic approximation . . . . . . . . . 15

2.3 Numerical solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . 18
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CHAPTER 2. BACKGROUND

2.1 Turbulent flows phenomenology

The motion of continuous fluids encountered in oceans and atmospheres is governed by
the Navier-Stokes (NS) equations,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, ∇ · u = 0 (2.1)

where u is the velocity vector, p the pressure and ν the kinematic viscosity. In this study,
we will only consider “incompressible” flows, where density ρ is constant, i.e. ∂ρ/∂t = 0.
When studying flows governed by the NS equations, it has been long shown important to
adimensionalize the system in order to perform reproducible experiments. In a coordinate
system x at rest in an inertial frame, we can use characteristic length scale L and velocity
U to define,

x′ =
x

L
, U ′ =

u

U
, t′ =

tU

L
, P ′ =

p

ρu2
. (2.2)

From these quantities, the non-dimensional form of the NS and continuity equations (2.1)
can be obtained,

∂U ′i
∂t′

+ U ′j
∂U ′i
∂x′j

= −∂P
′

∂x′i
+

1

Re

∂2U ′i
∂x′2j

(2.3)

∂U ′i
∂x′i

= 0 (2.4)

with explicit partial derivatives w.r.t. spatial coordinates for simplicity. Now, the equation
is only parametrized by the Reynolds number Re and we can identify two types of flows
depending on their value. When Re is small, the non-linearities of the inertial effects can
be neglected and the flow is often said to be laminar. When Re is large, the flow is highly
affected by complex non-linear interactions, which creates a large range of structures and
chaotic motion, i.e. the flow is then said to be turbulent. We have,

Re =
UL

ν
. (2.5)

2.1.1 Turbulent scales

In this thesis, we will only be interested in homogeneous turbulence with high Reynold
numbers, such that Kolmogorov (1941)’s theory applies. In order to understand the
complexity of numerically solving the NS equations, we briefly introduce the turbulent
scales based on the Richardson (1922)’s energy cascade. First, let’s consider turbulence
to be composed of eddies of different sizes ` described by their characteristic,

τ(`)︸︷︷︸
timescale

= `/ u(`)︸︷︷︸
velocity

. (2.6)
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2.1. TURBULENT FLOWS PHENOMENOLOGY

L `EI `DI η

Production Dissipation ε

Energy-containing
range

Inertial subrange Dissipation
range

Forward energy
transfer

Figure 2.1: Sketch of the energy cascade at high Reynolds number with the various
lengthscales and ranges for an eddy size `.

We can by extension define the largest eddies by their lengthscale `0 which is comparable
to the flow scale L, and their characteristic velocity u0 = u(`0), again comparable to the
flow velocity U . In the energy cascade, large eddies tend to transfer their energy to smaller
eddies, which again undergo a similar break-up process transferring their energy down to
the smallest eddies. This process continues until Re(`) = u(`)`/ν is sufficiently small and
molecular viscosity is effective in dissipating the kinetic energy. Since these eddies have
energy of order u2

0 and timescale τ0 = `0/u0, their dissipation rate is supposed to scale as
ε ∼ u2

0/τ0 = u3
0/`0. Now, important hypotheses drawn by Kolmogorov (1962) states that

turbulent flows at sufficiently high Reynolds number have universal small-scale statistical
motions that are uniquely determined by ν and ε. It follows the Kolmogorov’s unique
length, velocity, and time scales,

η =
(
ν3/ε

)1/4
, uη = (εν)1/4 , τη = (ν/ε)1/2 . (2.7)

One can identify the universal equilibrium range ` < `EI ∼ 1
6
`0 as being splitted into two

subranges: the inertial subrange (`EI > ` > `DI) and the dissipation range (` < `DI ∼ 60η).
The various lengthscales and ranges are sketched in Fig. 2.1. From the scaling ε ∼ u3

0/`0,
we can determine the ratios between the largest and smallest scales in a flow at a certain
Re, we have,

η/`0 ∼ Re−3/4, (2.8)

uη/u0 ∼ Re−1/4, (2.9)

τη/τ0 ∼ Re−1/2. (2.10)

When solving the NS equations, direct numerical simulation (DNS) must resolve the entire
range of scales present in the flow, which goes from `0 to η. However, geophysical flows
span very large Reynolds numbers (e.g., ∼ 1011 in the Gulf Stream, ∼ 1012 for a tropical
cyclone) which lead to a tiny ratio η/`0. The numerical consequence is the requirement of
a fine grid such that the spacing ∆ between two grid points is in the order of the smallest
eddies η.

7



CHAPTER 2. BACKGROUND

2.1.2 Reduced-order modeling via filtering

In practice, DNS is not possible with the available computational resources. We know
however that most of the energy and anisotropy are contained in the larger scales of
motion, but nearly all of the computational effort in DNS is spent on the smallest and
dissipative motions. It is also accepted that eddies in their expected universal equilibrium
range can be statistically represented by a model. In a large-eddy simulation (LES),
the large-scale dynamics is explicitly resolved, while the influence of the smaller scales
is modeled. From an analytic modeling point-of-view, a filtering operation is defined to
perform this scale separation, i.e. to decompose a vector field y(x, t) into the sum of
a filtered (representing the large scales) component ȳ(x, t) and a residual (for the small
scales) y′(x, t), such that y(x, t) = ȳ(x, t)+y′(x, t). The numerical interest of the method
is that the filtered term ȳ(x, t) can be resolved on a coarser grid, compared to the initial,
high-resolution field y(x, t). On a coarser grid, the residual term y′(x, t) is now referred
to as the “subgrid”-scale (SGS) term. The gain in computational complexity comes both
from the smaller requirements on the grid and temporal spacing, i.e.,

∆̄� ∆ (2.11)

∆t� ∆t. (2.12)

These quantities are proportional to the filter width (or ratio) ∆′ = ∆̄/∆ which would,
ideally, be located close to the smallest energy-containing motions `EI. The (low-pass)
filtering operation (Leonard, 1975) over the entire domain is defined by,

ȳ(x, t) =

∫
G(r,x)y(x− r, t)d r (2.13)

where filter kernel G should satisfy some properties to be applicable to partial differential
equations (PDEs),

∂y

∂t
=
∂ȳ

∂t
, commutes with partial derivatives, (2.14)

c(y1 + y2) = cȳ1 + cȳ2, linearity, (2.15)

c̄ = c, conservation of constants. (2.16)

To better understand the grid coarsening operation, we have studied the filtered vector
fields in wavenumber space. Let us denote the Fourier transform of y(x) by,

ŷ(k) = F{y(x)}. (2.17)

We can expand the filtered field and kernel in wavenumber space, using Ĝ(k) = 2πF{G(x)}
and the convolution theorem,

ˆ̄y(k) = F{ȳ(x)}

= 2πF{G(x)}F{y(x)}

= Ĝ(k)ŷ(k). (2.18)
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2.1. TURBULENT FLOWS PHENOMENOLOGY

In this thesis, we consider a statistically homogeneous, periodic field y(x) in the interval
0 ≤ x ≤ L completely resolved on N nodes of a uniform grid of spacing ∆ = L/N . In
this context, y(x) can be written in the form of an inverse Fourier series,

y(x) =

1
2
N∑

n=1− 1
2
N

ŷ(kn)eiknx (2.19)

where kn is the nth wavenumber obtained from the exponential notation in the real
transform,

kn =
2πn

L
(2.20)

It is possible to provide a relationship between the grid spacing and the number of required
wavenumbers in spectral space,

∆ =
π

kmax

=
π

kN/2
. (2.21)

Now, the coarse grid resolution can be determined by choosing a cutoff wavenumber
kc < kmax, so that the number of nodes on the coarse grid is,

N̄ = ∆̄L =
π

kc
L. (2.22)

The filtered field can finally be reconstructed as an inverse Fourier series, we obtain values
on the coarse grid,

ȳ(x) =

1
2
N̄∑

n=1− 1
2
N̄

Ĝ(kn)ŷ(kn)eiknx. (2.23)

Cutoff kernel. Note that when G is a cutoff kernel, the operation of grid coarsening is
the same as the filtering operation. Indeed, the cutoff kernel is defined in spectral space
as Ĝ(k) = H(kc − |k|), i.e.

Ĝ(k)ŷ(k) =


ŷ(k), for |k| < kc

0, for |k| ≥ kc.

(2.24)

In this case, coarsening (2.23) can be applied directly to the original field without loss of
information,

ȳ(x) =

1
2
N̄∑

n=1− 1
2
N̄

ŷ(kn)eiknx. (2.25)

The impact of the kernel choice on the subgrid (residual) term will be briefly mentioned
in the following chapters.
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CHAPTER 2. BACKGROUND

2.1.3 Instantaneous and statistical characterization

While the filtered fields can be resolved on a coarse grid, the remaining objective of this
reduced-modeling approach is thus to model the SGS component y′(x). Going back to
the NS (2.4), applying the filtering operation gives,

∂Ūi
∂t

+ Ūj
∂Ūi
∂xj

= −∂P̄
∂xi

+ ν
∂2Ūi
∂x2

j

+
∂

∂xj

(
ŪiŪj − UiUj

)
+ FŪ (2.26)

∂Ūi
∂x̄i

= 0. (2.27)

Here, the residual term to be modeled (or equivalently the difference with the non-filtered
NS equation) appears as the divergence residual stress tensor τij,(

∂Ui
∂t

)′
=

∂

∂xj

(
ŪiŪj − UiUj

)
=

∂

∂xj
τij. (2.28)

Note that the same methodology can be applied to other differential equations, as we
will see with the barotropic quasi-geostrophic equation and the advection-diffusion of a
scalar field. The equations for Ū can thus be solved if a model for the residual term is
provided. In practice, most of the physical models are producing an approximation of the
residual stress tensor, since its divergence can be accurately computed from the spatial
discretization scheme, i.e., (

∂Ui
∂t

)′
≡ ∂

∂xj
Mij︸︷︷︸
≈τij

. (2.29)

In the machine learning community, however, this residual model M often directly ap-
proximates the divergence of the residual stress tensor as a function of filtered velocity
field Ū(x, t), coarse grid spacing ∆̄ and kernel operator G,(

∂Ui
∂t

)′
≡M(Ū(x, t), ∆̄, G)︸ ︷︷ ︸

≈ ∂
∂xj

τij

. (2.30)

The consensus in turbulence modeling is that there are two different ways to evaluate the
performance of a SGS modelM:

In the a priori tests, we measure the quality of the instantaneous prediction of the SGS
model when compared to τDNS

ij , the residual term extracted from a direct simulation.

In the a posteriori tests, the SGS model is used to perform a new simulation and the
subsequent quality of the model is defined by flow (spatiotemporal) statistics.

In general, while a priori tests are useful to first quantify the validity of the model, it
will only be useful if it performs well in a posteriori tests, by e.g. stability and invariants
conservation.

10



2.1. TURBULENT FLOWS PHENOMENOLOGY

2.1.4 Existing models

Designing subgrid models has been an important topic in turbulence modeling, and there
exists a strong theoretical basis behind state-of-the-art physical models, i.e., without
machine learning. Here, we only introduce well-known models that we use as baselines to
benchmark the performance of proposed ML alternatives. Depending on the objective,
models are commonly classified into two categories (Sagaut, 2006).

Structural modeling. The objective of structural models is to best reproduce the
subgrid term, without prior knowledge of the interactions between resolved and modeled
scales. A first category of developments was made from formal series expansions, trying
to approximate filtered terms in the NS equations. Those models are often based on
approximate deconvolution, which aims at reconstructing the unfiltered field from the
filtered one,

U ≡ G−1 ∗ Ū . (2.31)

Conversely, taking the Taylor series expansion of some filtered velocity field Ū at order δ,
we obtain,

Ū(x) ≈
δ∑
i=0

(−1)i

i!
∆̄iµi(x)

∂iU

∂xi
(x) (2.32)

where µi is the ith-order moment of the kernel G. Inverting (2.32) can be approximated by
an iterative deconvolution (Stolz and Adams, 1999) or by a truncated Taylor expansion.
We get,

U(x) ≈

(
δ∑
i=0

(−1)i

i!
∆̄iµi(x)

∂i

∂xi
(x)

)−1

Ū(x) (2.33)

=

(
1− 1

2
∆̄2µ2(x)

∂2

∂x2
+ · · ·

)
Ū(x). (2.34)

Now, applying this procedure to the subgrid term τij, we obtain the general form of the
Gradient model (Carati et al., 1999; Clark et al., 1979),

τij = ŪiŪj − UiUj =
∑
l,m=0

Clm(G)
∂lŪi
∂xl

∂mŪj
∂xm

(2.35)

for which the coefficients Clm(G) depend explicitly on the filter. In practice, an order
δ = 2, i.e. l = m = 2 expansion is used. We also mention non-linear models (Lund
and Novikov, 1993) which are based on the properties of the subgrid tensors and scale
similarity models (Bardina et al., 1980) based on the hypothesis that filtered terms have
the same statistical structure as those at the smallest resolved scales. ML-based models
can be also classified as structural since they minimize a mismatch in the subgrid term.
Overall, these structural models yield the best performance in a priori tests but are
known to be unstable in long-term evolution due to incorrect predictions of the subgrid
dissipation.
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CHAPTER 2. BACKGROUND

Functional modeling. The objective of functional models is to reproduce the action
of the subgrid term on the resolved fields. In this regard, these models depend on the
dynamics of the considered flows. Using hypotheses from energy transfer mechanisms in
turbulence, it is possible to derive some understanding of the interactions between scales
in the context of homogeneous isotropic turbulence, which is also the main focus of this
thesis. A large category of models is dedicated to the forward energy cascade process
appearing in three-dimensional NS equations as shown in Fig. 2.1. The energy transfer
from resolved to subgrid scales is known to be analogous to molecular diffusion, hence
a large category of models based on the concept of subgrid viscosity νsgs. This diffusion
term can be written as,

τij = νsgsS̄ij (2.36)

where S̄ij is the resolved strain rate tensor. Using resolved scales only, the objective
is to approximate the instantaneous energy flux ε̃ going through the cutoff, we have in
particular, ∫ kc

0

2k2E(k)dk = 〈2S̄ijS̄ij〉 = 〈|S̄|〉. (2.37)

Using the local equilibrium hypothesis in homogeneous turbulence, we arrive at an exact
expression for the average energy flux,

〈ε̃〉 = 〈−S̄ijτij〉 = 〈−S̄ijνsgsS̄ij〉. (2.38)

Reformulating this averaged relationship as a local one lead to the Smagorinsky model
(Smagorinsky, 1963),

νsgs = (CS∆̄)2|S̄|1/2 (2.39)

The constant CS, while theoretically evaluated at CS ≈ 0.148 has been subject to mod-
ifications that improved results in simulations. For e.g., (Métais and Lesieur, 1992)
used CS = 0.18 in isotropic homogeneous turbulence while (Deardorff, 1970) adjusted
to CS ≈ 0.1 for a channel flow and similarly (Meneveau, 1994) found CS ≈ 0.1 − 0.12.
Many other categories of models are based on spectral formulations of the energy spectrum
using results of the Eddy Damped Quasi-Normal Markovian (EDQNM) models (Chollet
and Lesieur, 1981). An effective viscosity νe can be determined from the shape of the
spectrum in the inertial range and the filtering kernel type and derived from the subgrid
transfer term,

Tsgs(k | kc) = −2k2E(k)νe(k | kc) (2.40)

with νe proportional to the asymptotics value of the effective viscosity at wavenumbers
k < kc and local variations of the effective viscosity around kc. Taking advantage of both
structural and functional modeling, some have proposed mixed models (Bardina, 1983).

12



2.1. TURBULENT FLOWS PHENOMENOLOGY

Dynamic procedure. In order to adapt the coefficient of SGS viscosity νsgs to the
local structure of the flow, Germano et al. (1991) proposed an algorithm that computes
a coefficient Csgs(x, t) which is local in space and time. The idea is to write the Germano
identity with a second filter of associated length ˜̄∆ so that ˜̄∆ > ∆̄. In practice, ˜̄∆ = 2∆̄

is often used,
Lij = Tij − τ̃ij (2.41)

where Tij is the SGS tensor corresponding to the second filter, obtained as

Tij = ˜̄Ui
˜̄Uj − ŨiUj. (2.42)

Now, assuming that both τ and T can be modeled by the same constant Csgs, we can use
the following relations,

τij = Csgsα
τ
ij, (2.43)

Tij = Csgsα
T
ij (2.44)

where ατ and αT correspond to a given model without its fixed coefficient evaluated from
the first and second filters, respectively. Assuming that Csgs is constant over the test filter
length, we can write the Germano identity as a linear system,

Lij = Csgsα
T
ij − C̃sgsατij = Csgsα

T
ij − Csgsα̃

τ
ij. (2.45)

However, the linear system is overconstrained (multiple equations for 1 unknown), and
Lilly (1992) proposed to solve for Csgs using the least-square formulation

Csgs =
MijLij
MijMij

=
(αTij − α̃τij)(Csgsα

T
ij − Csgsα̃

τ
ij)

(αTij − α̃τij)2
. (2.46)

In practice, however, the constant can locally take negative values and thus produce back-
ward energy transfers. This is known to create numerical instabilities in the simulations,
which can be mitigated by averaging the numerator and denominator of (2.46),

Csgs =
〈MijLij〉
〈MijMij〉

. (2.47)

ML perspective. Interestingly, only simple models are used in modern solvers since in-
cremental improvements have been limited to specific use cases and more complex models
often lead to robustness issues. ML-based models are expected to be universal approxima-
tions of the SGS term but we pointed out that structural -based models are often unstable
in simulations. They also suffer from a similar limitation, i.e., the lack of generalization
to conditions outside of the training data. Still, an interesting goal would be to combine
these parametric models with knowledge from functional modeling in order to improve
both numerical stability and capability to reproduce the transfers between subgrid and
resolved scales.
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2.2 Specific applications

It is important to remember that model universality is only a hypothesis. The intuition
motivating ML models is that we should be able to learn a “generalized” model that
performs relatively well under the same cascade hypothesis circumstances in the following
applications.

The NS equations are general equations used to describe fluid motion. In order to
study some particular phenomena, they are often coupled with other sets of PDEs that
may interact,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u +

←−
f (y1, · · · ,yn), ∇ · u = 0

∂y1

∂t
=
−→
f1(u,y1, · · · ,yn)

· · ·

∂yn
∂t

=
−→
fn(u,y1, · · · ,yn).

(2.48)

Some examples include thermal convection when coupled with an equation state, or mag-
netohydrodynamics (MHD) when coupled with Maxwell’s equations.

2.2.1 Scalar field modeling

In this thesis, both of the specific applications involve the evolution of a scalar quantity,
i.e., concentration C and vorticity ω. Their filtered form also involves a subgrid term,
which is identically defined for any scalar quantity y,(

∂y

∂t

)′
=

∂

∂xi

(
Ūiȳ − Uiy

)
(2.49)

=
∂

∂xi
τi. (2.50)

In this context, functional models have a slightly different form and rely on the gradient
of the considered scalar quantity,

τi = νsgs
∂ȳ

∂xi
. (2.51)

Now, the definition of νsgs depends on functional consideration, as described in section
2.1.4 depending on the transfer term,

Tsgs(ȳ) = ȳ
∂τi
∂xi

, (2.52)

Tsgs(Ū) = S̄ijτij. (2.53)

In general, the scaling is different between two-dimensional and three-dimensional turbu-
lent systems.
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2.2.2 Advection-diffusion

In this thesis, we study how a scalar field C, in particular concentrations of (bio)chemical
species, can be transported by a fluid. The quantity C is said to be passive if it does not
have any dynamical effect on the fluid motion itself. The dynamics of the passive scalar
field is governed by the advection-diffusion equation,

∂C

∂t
+ (u · ∇)C = κ∇2C + FC (2.54)

where κ is the diffusivity and FC again, an external force. Note that even if this equation
is linear in C, the evolution of a passive scalar by a turbulent field has been shown to be
a difficult problem. The dynamics produced by the passive scalar is subject to chaos and
a large range of scales, but also displays characteristics completely different from those of
the advecting velocity field. The non-dimensional version of the (2.54) using quantities
(2.2) is given by,

∂C

∂t′
+ (U ′ · ∇)C =

1

Pe
∇2C + FC (2.55)

where Pe = Sc Re is the Peclet number. Here, Re is a parameter of the NS equation, and
the advection-diffusion is controlled by the ratio of diffusive and viscous effects,

Sc =
ν

κ
. (2.56)

For more details about passive scalars, we refer the reader to the review book (Warhaft,
2000).

2.2.3 The barotropic quasi-geostrophic approximation

In general, the NS are studied in three-dimensional space, where u = (u, v, w) ∈ R3, but
the study of their two-dimensional counterpart is also of interest, primarily motivated by
the understanding of geophysical flows, for which the third dimension can be neglected.
Although they follow the same equations, two-dimensional and three-dimensional flows
are very different in nature. In particular, kinetic energy is transferred forward (from the
largest toward the smallest scales) in three dimensions, whereas it is transferred backward
(from the smallest towards the largest scales) in two dimensions. One consequence is that
the two-dimensional flow dynamics is dominated by large-scale coherent structures such
as vortices or jets, while the three-dimensional dynamics tends to transfer energy to the
viscous scale where it is dissipated as heat. It is particularly interesting to notice that
the curl of flow velocity, also referred to as the vorticity ω is a scalar quantity in two
dimensions, i.e. ω = ∇×u = ∂v/∂x−∂u/∂y. We can then reformulate the NS equations
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as a conservation law for the vorticity. Indeed, taking the curl of (2.1) gives

∂ω

∂t
+ (u · ∇)ω = ν∇2ω + Fω, (2.57)

u = ez ×∇ψ, (2.58)

ω = ∇2ψ (2.59)

where the velocity is expressed as the curl of a streamfunction ψ and the out-of-plane
unit vector ez = (0, 0, 1). Also note that for convenience, we can transform the non-linear
advection term on the left-hand side of (2.57) as the Jacobian determinant Nω of ω and
ψ,

(u · ∇)ω = (ez ×∇ψ · ∇)ω

= ∂xψ∂yω − ∂yψ∂xω

= Nω. (2.60)

The quasi-geostrophic equations describe a flow in a rotating frame but use the beta-
plane approximation and the geostrophic balance (Bouchet and Venaille, 2012) that are
acceptable when describing mid and high-latitude ocean and atmosphere flows. Here,
applying the simplifications gives,

∂q

∂t
+Nq = ν∇2q − µq − β∂xψ −

1

R2
ψ + Fq (2.61)

q = ∇2ψ − ψ/R2. (2.62)

where q is called potential vorticity, µ is a large-scale drag coefficient, β is the Earth
rotation vector approximation by beta-plane and R is the Rossby radius of deformation.
This coefficient plays a central role in geostrophic dynamics as it describes the length scale
at which rotational effects become important in the flow. However, we will here consider
purely barotropic dynamics, i.e., in the limit of an infinite Rossby radius of deformation
R = ∞. We finally arrive to the barotropic QG equations as a function of vorticity
q = ∇2ψ = ω,

∂ω

∂t
+Nω = ν∇2ω − µω − β∂xψ + Fω. (2.63)

Note also that two-dimensional systems can have multiple vertical layers (Shevchenko
and Berloff, 2015) corresponding for example to higher and lower parts of the ocean
or atmosphere, with different sets of parameters. In two-dimensional flows, functional
modeling has to take a different approach since the dynamics is quite different, i.e. we
have a forward enstrophy cascade. To account for this difference, the Leith model (Leith,
1996) is based on the local gradient of vorticity ω̄,

νsgs = (CL∆̄)3|∇ω̄| (2.64)

For more details about geophysical flows, we refer the reader to the review book (Majda
and Wang, 2006).
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2.3 Numerical solver

In order to run direct simulations (Orszag and Patterson Jr, 1972; Rogallo, 1981) of the
equations described above, we need a discretize the temporal and spatial variables. In
this thesis, we are interested in studying turbulence models in idealized configurations,
i.e. where the geometry is simple and the error related to discretizations is minimal. This
relaxed constraint allows us to use a pseudo-spectral method to discretize the space on a
grid. In all the simulations performed here, we use a Fourier discretization, from which
the domain boundaries are always periodic and grid spacing is uniform over the domain.
An advantage over the finite(-differences, volumes, elements) family of numerical methods
is that the precision when computing partial derivatives converge much faster w.r.t. the
grid resolution. In the pseudo-spectral method, trial functions are represented by infinitely
differentiable global functions, often as orthogonal polynomials. In this context, equations
are solved in spectral space, except for the non-linear terms. There exist many orthogonal
polynomials which all have specific constraints about domain boundaries and grid spacing.
Let us recall the Fourier transform of grid quantity,

ŷ(k) = F{y(x)}. (2.65)

In spectral space, computing a spatial derivative corresponds to a multiplication by a
wavenumber coefficients (2.20),

∂ŷ

∂x
= ikxŷ. (2.66)

A non-linear multiplication in spectral space involves a convolution, which is expansive in
practice and should be avoided. It is thus common to compute non-linear products yiyj
in physical space.

Dealiasing. This non-linear product in discrete space leads to an aliasing error for
unresolved values at high wavenumbers. In practice, it is possible to reduce this error by
truncating wavenumbers that are impacted by the aliasing, using the so-called “p/q” rule,

F{yiyj}(k) = 0, ∀|k| ≥ qkmax

p
. (2.67)

It is also possible to remove entirely the aliasing error by computing the non-linear product
on a grid containing “q/p” more wavenumbers. The most used region in the literature is
found at p, q = 2, 3 with p < q.

Time advancement. A PDE discretized with the pseudo-spectral method can be time-
stepped forward in spectral space as a composition of a linear L and non-linear N parts,

ŷ(n+1) = ŷ(n) + ∆t
(
L̂ŷ + N̂(ŷ)

)
. (2.68)

In practice, we use Runge Kutta (RK) schemes or exponential variants (Kassam and
Trefethen, 2005) of different orders.
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2.4 Data-driven models

Data-driven approaches, and particularly machine learning are now commonplace in the
scientific community (Rackauckas et al., 2020). The popularity of machine learning is
obviously related to the amount of available data (Zhou et al., 2017) and computational
resources (Waldrop, 2016) particularly from GPUs and derived TPUs (Tensor Processing
Units) (Wang et al., 2019). In this thesis, we will apply our methodologies to deep learning
(Goodfellow et al., 2016), which is also now widely understood as the state-of-the-art
approach for any computer vision, speech recognition, or natural language processing
tasks and gaining interest in the scientific community as well. The three types of machine
learning algorithms are reinforcement, unsupervised, and supervised. In reinforcement
learning, the model is constantly improving based on feedback from experiences. The
model can perform actions and receive a corresponding score that it will try to maximize.
In unsupervised learning, only inputs y are known, without any information about the
expected labels z. The goal of the algorithm is then to discover patterns from the data
classified into clusters (e.g. K-means clustering) or transformed using dimensionality
reduction (e.g. PCA). In supervised learning, inputs y and labels z are known and the
goal is thus to construct a function f that accurately maps y to z. The problem of SGS
modeling can be defined as a supervised learning algorithm if we know how to compute
the exact SGS term, or a reinforcement learning problem if this is not the case. In this
thesis, we will assume that direct simulations are possible and that we can indeed generate
data for labels z.

Regression. Learning to reproduce the SGS dynamics is equivalent to a regression
problem, i.e. the labels z and predictions z̊ are continuous real values with f : Rm → Rn.
To be trainable, the function f also belongs to a family of parametric functions, i.e. it is
built from independent variables called parameters, and denoted θ. We write a trainable
function as,

z̊ = f(y | θ). (2.69)

Now, to find the parameters θ, it is required to define a loss function L that quantifies
the mismatch between labels z and model prediction z̊. The mean-squared-error (MSE)
is a commonly used loss function for regression tasks,

L :=
S∑
i=1

(z(i) − z̊(i))2 (2.70)

over S samples from the training data, containing an ensemble of pairs (yi, zi). Learning
the parameters θ can be carried as a mathematical optimization problem, where the
objective is to minimize the loss function L,

arg min
θ
L(z, f(y | θ)). (2.71)
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In the general case, the function f is non-convex and it is not guaranteed to find a global
minimum. The list of optimized used in machine learning applications is large (Jain et al.,
2017), but most state-of-the-art algorithms are derived from gradient descent, from which
one step is given as,

θ(n+1) = θ(n) − η∇θL(z, f(y | θ)) = θ(n) − η 1

S

S∑
i=1

∂L(z(i), f(y(i) | θ))
∂θ

(2.72)

where η is the learning rate and n the current iteration of the algorithm. Trying to find
an optimal local minimum is often dealt with using stochastic gradient descent (SGD),
where the loss is computed on random subsets SSGD < S of the training data. Among
more involved variants, the Adam optimizer (Kingma and Ba, 2015) is the most popular
algorithm to train neural networks.

Building blocks. As mentioned above, the function f is a parametric function. To be
precise, f is often defined as successive operations, or building blocks that themselves
contain (trainable) parameters. For one-dimensional problems, it is common to define
trainable operations as dense matrix-vector multiplications,

Dense(y |Wθ, bθ) ≡ Wθy + bθ, y ∈ Rm (2.73)

with Wθ ∈ Rm×n is a weight matrix and bθ ∈ Rn is a bias vector. The architectures using
those blocks are called fully-connected neural networks. In multi-dimensional problems,
taking advantage of the spatial representation of the data is possible using convolutions,

Conv(y |Kθ, bθ) ≡ Kθ ∗ y + bθ, y ∈ Rm1×···×mD (2.74)

where ∗ is a discrete convolution operator. The neighborhood of the convolution is con-
trolled by the kernel Kθ. Now, functions built from dense matrix-vector multiplications
and convolutions are not able to reproduce non-linear maps, since these operations are
linear. To introduce non-linearity in the function, it is possible to combine the linear
basis functions with non-linear activation functions. One popular example introduced by
Rosenblatt (1958) is the rectified linear unit (Relu),

Relu(y) = max(0,y). (2.75)

Many more building blocks provide benefits in training generalization, performance, or
convergence speed, but we won’t discuss them in this thesis. Our goal here is really
to combine our knowledge from the physics to improve parametric functions f at equal
complexity, i.e. an equivalent number of trainable parameters and evaluation time.
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Chapter 3

Invariances for subgrid models with
machine learning

This chapter describes the application of different sets of assumptions (or inductive biases)
to the problem of a scalar concentration transported by a turbulent flow. Approximate
and exact methods are first discussed with existing applications to fluid dynamics prob-
lems. The unphysical behavior of a trained neural network is demonstrated when the
testing regime differs from the one used during training (for example by changing the
external forcing form). In addition to providing an interpretable framework, reducing
the dimensionality of the problem using physical knowledge is shown to improve the per-
formance and generalization of the trained model. Some unaddressed limitations and
possible future avenues, in particular to phenomena that can not be expressed as law
invariances are discussed at the end of the chapter.

The results presented in this chapter
have been published

in Frezat et al. (2021).
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CHAPTER 3. INVARIANCES FOR SUBGRID MODELS WITH MACHINE
LEARNING

3.1 Embedding physical knowledge in machine learning

models

Following the recent advances in deep learning for turbulence modeling (Duraisamy et al.,
2019), neural networks (NNs) are expected to be good candidates for formulating sub-
grid models and offer a promising alternative to physics-based models. Initial works in
this direction were initiated by the modeling of SGS momentum in both incompressible
(Gamahara and Hattori, 2017; Xie et al., 2020) and compressible (Xie et al., 2019) flows.
These data-driven approaches have also been shown to outperform classical models in
specific applications, for example in the estimation of the subgrid-scale reaction rates
(Lapeyre et al., 2019) or the subgrid modeling of ocean dynamics (Bolton and Zanna,
2019). However, these models do lack embedded physical laws and are often thought of
as “black-box” in which our comprehension is limited. This has two major implications
for the model; first, the subgrid model is only able to predict a narrow range of flows that
have been used during training and suffer from rather limited generalization (or extrap-
olation) capabilities. Then, and most importantly, the subgrid model will situationally
predict unrealistic terms that do not follow the expected behavior from well-known phys-
ical laws. Knowing that NNs are universal approximators (Hornik et al., 1989), we still
have to realize that this only means that we can represent a wide variety of functions but
we do not have any universal way to construct the weights that lead to this conclusion.
In this regard, one of the benefits of embedding physical knowledge in machine learning
models is to reduce the dimensionality of the inverse problem we are considering, which
has the additional potential to speed up the learning phase and reduce the quantity of
required training data. The first successful explicit embedding of known invariance has
shown great success when applied to Reynolds Averaged Navier Stokes (RANS) simula-
tions (Ling et al., 2016a,b). We describe in the following subsections different techniques
(see Table 3.1) to embed invariances in a machine learning framework.

Subsection Technique Nature Explicit examples
3.1.1 Data manipulation Both Bolton and Zanna (2019); Kim and Lee

(2020); Lapeyre et al. (2019)
3.1.2 Loss function Approx. Bode et al. (2021); Charalampopoulos and

Sapsis (2022)
3.1.3 Architecture Exact Beucler et al. (2021a); Ling et al.

(2016a,b); Mohan et al. (2020)

Table 3.1: Identified techniques for physical invariances embedding with explicit examples
of applications to subgrid modeling.
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3.1.1 Data manipulation

Pre-processing. The first applications with machine learning (ML) are using pointwise-
based architectures in which only local information is known. Careful choice of the input
parameters of the model is thus required because of the inherent non-local nature of the
considered PDEs. In a geometrical space G, inputs of the model are compositions f of
spatial derivatives of model states y (or filtered velocities u in the case of SGS momentum
models), such that {

f

(
∂yp
∂xp

)}
, xp ∈ Gp. (3.1)

Interestingly, providing gradients to the model is already exploiting some useful properties
of the input. For example, the gradient is linear for any vector field at a point a ∈ Rp for
any constant α,

∇(αy)(a) = α∇y(a). (3.2)

In practice, at most second-order partial derivatives are provided to the model in order
to avoid both computational complexity and extensive required memory storage.

Post-processing. While not tied to machine learning methods, post-processing the
output of the model is an efficient way to constrain the prediction distribution to be in
an acceptable range for subsequent use. For any trained modelM, it is possible to apply
a transformation h after training,

z′ = h(M(y)). (3.3)

It has been particularly useful to preserve momentum when predicting subgrid dynamics
(Bolton and Zanna, 2019) using separate models for each spatial direction. The authors
demonstrated that removing the spatial mean from the recombined predictions is indeed
enforcing global momentum conservation, drastically improving the performance of the
model without sacrificing accuracy.

Augmentation. If we want a model to reproduce a particular invariance, one option
would be to expose the corresponding data during the training process. The idea behind
data augmentation is to include new (input, output) pairs that verify some identities from
the initial data,

{y, ϕ(y)} → {z, ϕ′(z)} (3.4)

for which there exists an identity between ϕ and ϕ′ that we wish to learn with the model.
Also, note that data augmentation increases the amount of data which helps reduce
overfitting. This has been used in turbulence modeling for rotations (Lapeyre et al.,
2019) and for the statistical symmetry between (x, y, z) and (x, y,−z) in a channel flow
(Kim and Lee, 2020).
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3.1.2 Penalizing loss function

Machine learning models are trained by optimization algorithms that seek to minimize
a loss function. In the case of NNs, the employed optimization algorithm is based on
some form of gradient descent, for which the loss function is required to be scalar-valued
` : Rn → R, commonly chosen in regression problems to be defined as a norm between
the target and the model prediction. For example, to train a model to predict a quantity
z from inputs y, we would define a loss function of the form

`(z, z̊) := ||z− z̊||p =

(∑
i∈B

|zi − z̊i|p
)1/p

(3.5)

where z̊ =M(y) is a model prediction from given inputs andB is a finite set corresponding
to a training batch (i.e. a subset of the entire dataset). The problem with Lp norms can
tend towards zero and still break some symmetries about the trained functional. This
means that even if the optimization algorithm completes with ` = 0, the only guarantee
is given by the loss, which most of the time is not a direct quality indicator for the model
in terms of the underlying physics. In order to guide the training, it is common to have
multiple weighted terms in the loss function that directly corresponds to some identities
that we want to verify, for example,

`(z, z̊) := α1`1(z, z̊) + · · ·+ αn`n(z, z̊). (3.6)

The challenge with this type of composite loss is in the choice of the weights αn ∈ R, which
gives a sense of importance to the corresponding term. This can quickly get complicated
if the losses are defined as different types of norms and/or if they map to values that have
different orders of magnitude.

In practice. A 4-term loss function was used by Bode et al. (2021) to model the sub-
grid term in turbulent reactive flows. The architecture used in this work is known as
Generative Adversarial Network (GAN) and requires an adversarial term in the loss. Ad-
ditionally, authors have used the MSE of the subgrid term and its gradients with a L1

norm for the continuity part of the incompressible Navier Stokes equations that constrain
the divergence of the velocity field to be zero. It is also important to mention that all loss
weights αn were taken equivalent and non-dimensional, provided that the operators and
input fields are also non-dimensionalized.

Recently, a 2-term loss function was used by Charalampopoulos and Sapsis (2022)
in order to constrain the energy conservation property of the non-linear advection terms
for both momentum and inertial tracers in two-dimensional jets. The adoption of this
constraint was shown to not only increase the accuracy of the model but also to improve
its stability.
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Figure 3.1: Two-dimensional examples of structured (left) and unstructured (right) ge-
ometries. CNNs are particularly used to represent Cartesian geometries on structured
grids, while GNNs can represent complex shapes on unstructured meshes composed of
polygons (usually triangles or quadrilaterals).

3.1.3 Architecture embedding

Architecture families. Many studies have investigated Convolutional Neural Networks
(CNNs) to the application of the subgrid problem (Beck et al., 2019; Pawar et al., 2020).
Being based on convolutions kernels, they operate on spatial neighborhoods and are par-
ticularly suited for data having a geometrical extent in a two or three-dimensional space
represented as a structured grid (i.e. with equivalent spacing ∆xp between each grid point
and in every dimension (see Fig. 3.1, left). Using this type of architecture already guar-
antees translation equivariance, which is a desired property of any equations of motion.
More recently, Graph Neural Networks (GNNs) became quite popular, with a few appli-
cations in the context of turbulence modeling (Belbute-Peres et al., 2020). This family of
architecture opens the possibility for unstructured geometries (see Fig. 3.1, right) which
is in fact the standard type of geometry used in realistic solvers for both geophysical
and industrial flows. The graph layout also guarantees permutation invariance, i.e. the
outputs should depend on the set of inputs and not a specific ordering of its elements.

Functional blocks. Remember that neural networks are built from a series of (differen-
tiable) blocks that have trainable parameters. It is possible to combine these blocks with
operations that do not have trainable components but provide some identities. Typically,
one can describe a model

M(y | θ) := h1 ◦M1(θ1) ◦ · · · ◦ hn ◦Mn(θn) ◦ hn+1 (3.7)

where θ are the trainable parameters and h arbitrary differentiable operations that map
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the input of one layer to another. As a simple example, it is possible to guarantee that
our model outputs positive values if the last operation of the neural network is defined
as hn+1 : Rn → Rn

+. This approach is one of the most interpretable techniques to embed
direct identities into the trained model since the expected outcome is analytically encoded
and can be verified at machine precision.

Specific architectures in turbulence modeling. As mentioned in the introductory
part of this chapter, the use of specific functional blocks was first described by Ling et al.
(2016b) which proposed a new architecture that guarantees Galilean invariance through a
tensor basis multiplicative layer. Later, Mohan et al. (2020) was able to embed the notion
of incompressibility in a neural network for the task of coarse-graining turbulent velocity
fields using a Helmholtz decomposition of the flow. As a general method, Beucler et al.
(2021a) augments a predefined neural network with fixed conservation layers that sequen-
tially enforce the constraint expressed as a linear system. This last approach was applied
in the context of climate modeling, systematically reducing the error on the constrained
variables.

3.2 Symmetries in advection-diffusion equations

Recall that from (2.54) the dynamics of a scalar transported in a turbulent flow arise
as a key issue in many applications. We assume in this chapter that the Navier-Stokes
equations are completely resolved (using DNS) so that velocity fields can be obtained at
any time in both fine and coarse resolutions. The objective is now to model the evolution
of a scalar concentration C on a coarse grid Ω̄ (see Fig. 3.2), such that

∂C

∂t
+ (u · ∇)C = κ∇2C + FC , u, C ∈ Ω

∂C̄

∂t
+ (ū · ∇)C̄ = κ∇2C̄ + FC̄ +∇ ·

(
ūC̄ − uC

)︸ ︷︷ ︸
τC

, ū, C̄ ∈ Ω̄
(3.8)

where FC is a time-dependent forcing term and the projection from fine to coarse grid is
defined by a spatial operator T : Ω → Ω̄. On coarse grid Ω̄, the equation can be solved
except for τC which depends on fine grid variables u and C. This leads to the following
inverse problem,

τC ≈M(ū, C̄). (3.9)

In the particular setting of NNs, this comes to learning a model M that approximates
the SGS scalar term τC and has already been explored in (Portwood et al., 2021; Vollant
et al., 2017). However, as illustrated in 3.3.1, such NN models do not convey expected
physical properties (e.g., invariance properties), which greatly impact their actual range
of applicability. In this section, we choose four non-exhaustive physical relationships that
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Figure 3.2: Data slices of filtered scalar concentration C̄ and corresponding subgrid con-
tribution C ′ = C − C̄ at different grid ratios ∆′ = ∆/∆̄, filtered using a cut-off kernel.
Note that a value of ∆′ = 1 indicates DNS resolution, i.e. C = C̄ and C ′ = 0.

should be verified by any SGS scalar model and show how to include them within a NN
as exact and approximate constraints.

3.2.1 Frame symmetry

The first three constraints are based on frame symmetries (Berselli et al., 2006) that in-
volve translation, rotation, and Galilean invariances. These properties are directly related
to the NS equations by which the scalar concentration is transported. In particular, for
all solutions u, we say that gu is also a solution for any g ∈ G where G is the symmetry
group of transformations acting on space-time functions u(x, t) (Frisch and Kolmogorov,
1995). In the context of SGS modeling, we will refer to the invariant properties derived
by Oberlack (1997) using the symmetries of the original NS equations.

Translation invariance. Translation invariance states that the considered SGS model
shall not be location-dependent. In other words, model M shall satisfy the following
constraint,

∀δ ∈ R, M(Tδū, TδC̄) = TδM(ū, C̄) (3.10)

where Tδ is a translation operator for spatial displacement δ, such that Tδy(x) = y(x+δ).
We recall that in the deep learning literature, there exists a class of architecture called
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CNNs that are described by a combination of convolution layers. Since the convolution
commutes with translation, this type of architecture provides a built-in invariance to
spatial displacements, which approximates (3.10). Convolutional architectures also appear
as a natural choice when dealing with structure tensors (i.e. time, space, and space-time
processes) as they relate to local filtering operations with respect to tensor dimensions. For
instance, convolutional layers embed all discretized filtering operations, such as first-order
or higher-order derivatives of the considered variables. This may provide the basis for some
physical interpretations of CNN architectures. Importantly, CNNs greatly outperform
fully-connected architectures and are currently the state-of-the-art schemes for a wide
range of machine learning applications with one-dimensional (Ince et al., 2016), two-
dimensional (Krizhevsky et al., 2012) or three-dimensional (Kamnitsas et al., 2017) states.

Rotation invariance. The next invariance is related to reflections and rotations. The
coarse equation (3.8) holds under the rotation of the coordinate system and velocity
vector,

M(Aijūj, C̄) =M(ū, C̄) (3.11)

for any rotation matrix A with ATA = AAT = I in a rotated frame yi = Aijyj. Ensuring
rotation invariance in a NN is a difficult problem since convolutions kernels are not im-
posed but rather learned by the optimization algorithm. Some progress has been made
to exploit these symmetries (Cohen and Welling, 2016; Weiler et al., 2018) but are still
limited to finite subsets of rotations with a computational tradeoff between accuracy and
computational complexity. A common and flexible way to approximate this invariance is
to use data augmentation, i.e. extending the dataset with new rotated velocity fields ū

mapping to the same non-rotated SGS term τC . We used permutations of our initial data
that verify (3.11) with angles of 90 degrees.

Galilean invariance. The last fundamental frame invariance defines that turbulence
is required to be the same in all inertial frames of reference. This property has been
extensively discussed in the context of SGS modeling (Speziale, 1985). It writes easily for
our problem as

∀β ∈ R, M(ū + β, C̄) =M(ū, C̄). (3.12)

We propose to ensure this invariance by reducing the velocity to a standardized quantity,
i.e. with zero mean 〈(ū + β)〉 = 0 for each instantaneous sample. Let us denote the
standardized operator ·′, we have

(ū + β)′ = ū + β − 〈ū + β〉 (3.13)

= ū− 〈ū〉 (3.14)

= ū′. (3.15)
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Note that this assumption is true only if bias is removed from all convolution layers. We
include this standardization step directly on the inputs of the model.

3.2.2 Scalar concentration linearity

The invariances described previously directly relate to the NS equation for the transport
of scalar concentration. Now, the linearity of the advection-diffusion equations is a fun-
damental property that shall also be verified by the proposed SGS model. Formally, it
comes to verify the following constraint,

∀λ ∈ R, M(ū, λC̄) = λM(ū, C̄). (3.16)

This relationship can not be verified within a classical CNN since the model contains
non-linearities introduced by the activation functions. We propose to split the model into
two sub-models V and T that take as inputs the velocities and the transported scalar
concentration respectively. V involves a classic CNN architecture with activations. By
contrast, to conform to the linearity property, model T applies a single convolution layer
with no bias and non-linear functions. The resulting SGS model, called MSGTNN for
“SubGrid Transport Neural Network” is given by

MSGTNN(ū, C̄) = [V(ū)× T (C̄)] ◦ Conv+ (3.17)

where × is a term-by-term matrix product and Conv+ is the convolution kernel with
unitary width K = 1. We sketch the resulting architecture in Fig. 3.3. The common
pieces of the model are described in Sec. 3.3. Here, the particularities related to scalar
concentration linearity lie in the application in parallel of the operators V and T and the
concatenation of their 128 × 128 × 128 tensors outputs as a term-by-term product. The
last convolutional layer maps the 128-dimensional representation to a scalar field. We can
now show that (3.16) holds,

MSGTNN(ū, λC̄) =
d∑
i=1

V(ū)(i)λT (C̄)(i) ◦ Conv
(i)
+ = λ

d∑
i=1

V(u)(i)T (C̄)(i) ◦ Conv
(i)
+ (3.18)

where d is the input dimension of Conv+ (here d = 128) and linearity of T is implied
from its convolution. Finally,

MSGTNN(ū, λC̄) = λ([V(ū)× T (C̄)] ◦ Conv+) (3.19)

= λMSGTNN(ū, C̄) (3.20)

which validates that the architecture has a linear path on C̄.
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Figure 3.3: Sketch of the “SubGrid Transport Neural Network” architecture (SGTNN).
At the top, two non-learnable steps are applied; the periodic pad replicates boundaries
according to the width of convolution kernels and ū′ standardizes the velocities to ensure
Galilean invariance. Then, the two sub-models V (right) for the velocities and T (left) for
the scalar concentration are represented in dotted and dashed lines, respectively. Convo-
lutions are defined by kernel width K and number of features F , with last convolution
Conv+ ≡ ConvF=1

K=1 applied to the combined result of the sub-models.
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3.3 Numerical experiments

NN SGS models require the generation of a training dataset, usually coming from DNS,
from which model parameters are learned. This dataset should contain a range of dy-
namics that is expected to be reproduced by the SGS model. When dealing with SGS
scalar turbulence, we follow the hypothesis of Batchelor (1959), which states that the
small scales of a scalar concentration in a turbulent flow at a high Reynolds number are
statistically similar. Thus, the SGS dataset shall comprise all the scales up to the limit
between the inertial subrange and the energy-containing range. To be precise, in the
scalar-variance spectrum (Corrsin, 1951; Obukhov, 1970) given by

EC(k) = C∗χε
−1/3k−5/3 (3.21)

where C∗ is the Oboukou-Corrsin constant, χ and ε are the scalar variance and kinetic
energy dissipation rates respectively in spectral space at wavenumber k.

Data generation. The data used in this chapter are generated from a DNS of homo-
geneous isotropic turbulence. A classical pseudospectral code as described in 2.3 with
second-order explicit Runge Kutta time advancement is used to solve the equations (2.1)
and (2.54) in a triply periodic domain [0, 2π]3. The size of the computational domain is
larger than four times the integral length scale to ensure that the largest flow structures
are not affected, and the domain is discretized using 5123 grid points. The simulation
parameters are chosen such that kmaxηK > 1.5 and kmaxηB > 1.5, where kmax is the
maximum wavenumber in the domain, and ηK and ηB are the Kolmogorov and Batch-
elor scales, respectively. The Reynolds number based on the Taylor microscale Reλ is
around 160 and the turbulent molecular Schmidt number Sc is set to 0.7. The initial
random velocity fields are generated in Fourier space as a solenoidal isotropic field with
random phases and a prescribed energy spectrum as in (Rosales and Meneveau, 2005),
for example. The initial scalar concentration is constructed from a large-scale random
field according to the procedure described in (Eswaran and Pope, 1988). Statistical sta-
tionarity is obtained using a random forcing located at small wavenumbers kF ∈ [2, 3],
for both velocities (Alvelius, 1999) and scalar concentration (da Silva and Pereira, 2007)
fields. Applying the scalar spectral forcing only on the smallest wavenumbers allows us to
contain its effect on the resolved scales of the simulation. We extract the SGS term and
the non-residual input quantities (see Fig. 3.4) using spatial filtering described in 2.1.2,
i.e.,

{ūx, ūy, ūz, C̄} → τC . (3.22)

To avoid large correlations in the data, we ensure that every sample is separated by al-
most one large eddy turnover time tL ≈ L/U ≈ (L2/ε)1/3, with L the integral scale. We
construct a dataset from 80 equally-spaced samples taken from 40000 temporal integra-
tion. The learning dataset is then split into two parts so that the first 60 samples are
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Figure 3.4: Data slices extracted during the simulation for the training dataset. ū are the
velocities in each spatial directions, C̄ is the scalar concentration and τC is the SGS term.
The simulation was run with N = 512 grid points and filtered at N = 64, i.e. ∆′ = 8.
Note that the training dataset only contains statistically developed turbulence states.
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Figure 3.5: Evolution of the Reynolds number on the Taylor microscale (left) and scalar
variance (right). The flow is considered in an established turbulence regime at t ≈ 40.
After convergence, the first 60 samples are used for training and the remaining 20 samples
are used for validation.
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Figure 3.6: Evolution of the Reynolds number on the Taylor microscale (left) and scalar
variance (right) in different regimes (developed turbulence, transitional and scalar decay)
for the testing data.

dedicated to training and the remaining 20 samples are used to validate the model, which
is particularly useful to monitor the behavior of the learning phase. For the test dataset,
we follow the same methodology and extract three different flow regimes used for the a
priori evaluation; (1) a developed turbulence statistically similar to the training data,
where both velocity and scalar forcing terms are active; (2) a forced transitional regime
to turbulence with fields initialized at large scales and (3) a scalar decay driven by a
forced turbulent flow. Reynolds number and scalar variance evolution as well as data
separation from the datasets are shown in Figs. 3.5 and 3.6 for training, validation, and
testing, respectively.

NN architectures and learning schemes. In this chapter, we considered three differ-
ent types of NNs. First, we replicate the baseline NN SGS from Portwood et al. (2021),
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which relies on a Multilayer Perceptron (MLP) to predict the residual flux. This model
uses the gradients of grid quantities ū and C̄ as inputs and optimizes 8 dense layers
Dense composed of 64 neurons with Relu(x) = max(0, x) non-linear activation and a final
512−neurons dense layer before the output layer. The MLP model writes

MMLP(∇ū,∇C̄ | θ) := Dense(64)(θ1) ◦ Relu ◦ · · · ◦Dense(64)(θ6) ◦ Relu

◦Dense(512)(θ7) ◦ Relu (3.23)

◦Dense(3)(θ8).

Note that the last layer maps to three values, since the original model was trained to
predict SGS fluxes uC − ūC̄. We compute the divergence of this term exactly after
training. We also compared a classical CNN composed of six non-linear convolution units,
i.e. applying Relu after Conv with kernels K of size 3 × 3 × 3 and increasing number
of filters F from 8 to 128. Since our simulations are done in a periodic domain, we can
replicate periodically our input at the boundaries (PadP operator) without introducing
any error. This allows us to remove any padding inside the NN. The CNN model writes

MCNN(ū, C̄ | θ) := PadP ◦ ConvF=8
K=3(θ1) ◦ Relu ◦ · · · ◦ ConvF=128

K=3 (θ5) ◦ Relu

◦ ConvF=1
K=1(θ6). (3.24)

Finally, the transformation-invariant model MSGTNN has the same structure as MCNN

except for the symmetry specificities, as described in 3.2. The optimization problem is
formulated as the minimization of a loss function L which in our case will be defined as
a simple mean-squared-error (L2

2) on the SGS prediction. For a batch of S samples, we
have

L(M) :=
1

S

S∑
i=1

||τ (i)
C −M(ū(i), C̄(i))||22. (3.25)

Note that this loss is slightly different for the MLP since it has different input and output
quantities. In practice, the minimization is carried out using the Adam optimizer (Kingma
and Ba, 2015) for 1000 epochs. We use an adaptive step-based scheduler, which decreases
the learning rate from 1e−4 by a factor of ρ = 0.75 every 250 epoch. As a pre-processing
step, we normalize the input data to zero mean and unitary variance (or standardize),
which has been shown to improve the convergence speed of gradient descent steps (Ioffe
and Szegedy, 2015).

3.3.1 Unphysical behaviors across different forcing regimes

In practice, scalar concentration C is diffused over time, its dynamics can be controlled
by the forcing term FC . As shown in the temporal evolution in Figs. 3.5, the models
are trained on simulation data in a turbulent equilibrium state. To maintain this state,

34



3.3. NUMERICAL EXPERIMENTS

3 2 1 0 1 2 3
M

10-3

10-2

10-1

100

101

102

p
d
f(
M

)

MDNS = τC

MSGTNN

MCNN

MMLP

Figure 3.7: Data slices (top) and PDF (bottom) of the subgrid term τC and predictions
by the different NN-based models at the end of the decay t ≈ 60 when scalar variance is
almost zero.

energy is injected at large scale (or small wavenumbers kF ), i.e.,

FC(k) = 0, ∀k 6∈ kF (3.26)

Fu(k) = 0, ∀k 6∈ kF . (3.27)

Remember also that the subgrid term τC is representing unresolved dynamics, which cor-
responds to a range of wavenumbers in the inertial range of the spectrum. In order to be
independent of the effect of the source term, we must ensure that the unresolved dynamics
do not overlap with the forcing wavenumbers kF . In our experiments, DNS resolution is
set at 5123 and coarse resolution is downsampled on a 643 grid. In the wavenumber space,
our simulations are defined on |k| = N

2
+ 1 wavenumbers. The unresolved range in our

numerical setup is then kC̄ ∈ [33, 257], which does not contains the forcing wavenumber
kF ∈ [2, 3]. Now, since modeling the subgrid term is in direct correlation with the def-
inition of the forcing term, the models are expected to perform well in different forcing
regimes. However, as we can see in Figs. 3.7, models trained without physical invariances
(MMLP and MCNN) are predicting a non-zero subgrid term τC when the scalar concen-
tration has been completely diffused, which is not expected from a physical point of view.
The model with invariances MSGTNN on the other hand, is accurately reproducing the
correct behavior, mostly due to the scalar concentration linearity constraint (3.16).

Physical invariances impact. We can also look more closely at the a priori performance
of the different NN-based models exposed to the known invariances described in section
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MMLP MCNN MSGTNN

Invariance E[`rms] Var[`rms] E[`rms] Var[`rms] E[`rms] Var[`rms]
(3.10) 1.499 0.47 1.028 0.11 0.949 0.04
(3.11) 1.229 1.81× 10−8 0.873 1.45× 10−7 0.834 2.04× 10−8

(3.12) 1.229 0.00 0.922 1.42× 10−3 0.835 0.00
(3.16) 2.724 5.81 1.122 0.28 0.835 0.00

Table 3.2: a priori evaluation of the four physical invariances discussed in the chapter
on the testing developed turbulence data. We show the expectation and variance of the
NRMSE on the SGS term τC predicted by NN-based models for each invariance.

M(Tδū, TδC̄) M(AijTδūj, TδC̄) M(AijTδūj + β, TδC̄) M(AijTδūj + β, αTδC̄)
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Figure 3.8: Variance of the NRMSE as the different invariances are accumulated (from
left to right).

3.2. In Table 3.2, we evaluate the normalized root-mean-squared error (NRMSE, see 3.3.2)
`rms expectation and variance of τC with uniformly sampled values of δ, λ, β and the 6
possible permutations on the testing dataset. As expected, the translation equivariance
built-in convolutions lead to improved results for the related invariance, which has a
variance 4 times smaller for MCNN and 15 times smaller for MSGTNN compared to the
baselineMMLP. For the rotation invariance, data augmentation has helped by a relatively
small margin compared to the other models. Still, note that variance for MMLP is one
order of magnitude smaller than MCNN for the rotation invariance. Galilean invariance
is verified for bothMMLP using the gradients of input quantities andMSGTNN using the
standardization. Finally, scalar concentration linearity is only verified by MSGTNN, and
is not a property that can be implicitly discovered by the other models. We can see in
Fig. 3.8 that translation is the most penalizing invariance for the MSGTNN, and special
treatment beyond convolution equivariance would be beneficial.

3.3.2 Results

For benchmarking purposes, we consider two physical models in addition to the three
NN-based architectures. In particular, we chose a functionalMDynSmag and a structural
MDynRG model, adapted to SGS scalar turbulence from 2.1.4.
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The dynamic eddy diffusivity model (Moin et al., 1991) is an extension of the
Smagorinsky model (Germano et al., 1991) expressed as

MDynSmag := ∇ ·

CS∆̄2|S̄|∂C̄
∂xi︸ ︷︷ ︸

φDynSmag

 . (3.28)

This model is commonly used in practice because it is stable when CS ∈ R∗+, i.e. scalar
variance transfers are always from large to small scale (forward).

The dynamic regularized gradient model (Balarac et al., 2013) can also be ex-
tended in a similar manner,

MDynRG := ∇ ·

CG∆̄2S̄	
∂C̄

∂xi︸ ︷︷ ︸
φDynRG

 . (3.29)

This model is expected to be more stable than the simple gradient model since its strain-
rate component only contains forward energy transfers.

Metrics. Most a priori evaluations in the literature characterize the performance of a
model based on a structural metric which is defined by the error on the SGS term, and
a functional metric that operates on the SGS scalar residual flux φC . In particular, it is
common to define the a priori performance of a given model by its ability to reproduce
the distribution of SGS scalar dissipation, i.e. the transfer of energy between resolved
and subgrid scales, given by φC · ∇C̄. In this chapter however, we focus on the modeling
of the SGS term τC := ∇ · φC , and since the divergence operator is not invertible, our
proposed models do not have access to the residual flux φC . Therefore, we perform an ex-
tensive study of the predicted SGS term (or structural performance) statistical properties.
As discussed in (Meneveau and Katz, 2000), it is suggested that structural performance
describes the short-term time evolution of a model and is of most importance to the un-
derstanding of local and instantaneous errors in a model. In this study, we evaluate three
different types of metrics based on structural, statistical, and functional considerations.

Structural performance is measured using a normalized root-mean-squared error (NRMSE)
and correlation coefficient r(M) between the SGS term and the model prediction,

`rms(M) =

√〈
(τC −M)2〉
σ(τC)

, (3.30)

r(M) =

〈
(τ

(i)
C − 〈τC〉)(M(i) − 〈M〉)

〉
σ(τC)σ(M)

. (3.31)
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↓ `rms ↑ r ↓ DJS ↓ Iε
MDynSmag 0.940 0.360 0.289 0.177
MDynRG 0.875 0.497 0.354 0.062
MMLP 1.229 0.136 0.045 0.089
MCNN 0.872 0.560 0.090 0.101
MSGTNN 0.835 0.612 0.110 0.118

Table 3.3: A priori evaluation of the SGS term in developed turbulence regime using
testing data with the metrics described in 3.3.2.

Statistical performance evaluates how consistent the PDF of the prediction is w.r.t. the
true one. The Jensen-Shannon (JS) distance DJS (Endres and Schindelin, 2003) is a
metric that measures the similarity between two probability distributions defined on the
same probability space and built on the Kullback-Leiber (KL) divergence DKL, or relative
entropy,

DKL(PτC ||PM) =
N∑
i=1

P (i)
τC

ln

(
P

(i)
τC

P
(i)
M

,

)
(3.32)

DJS(PτC ||PM) =

√
1

2
DKL(PτC ||DA) +

1

2
DKL(PM||DA), (3.33)

DA =
1

2
(PτC + PM). (3.34)

Functional performance is systematically defined as the error on the integral dissipation
Iε, which can be obtained from the divergence of the SGS residual flux in a periodic
domain V as

Iε(M) = −
∫
φM · ∇C̄ dV +

∫
φC · ∇C̄ dV

= −
∫
C̄∇ · φM dV +

∫
C̄∇ · φC dV (3.35)

= −
∫
C̄M dV +

∫
C̄τC dV.

3.3.2.1 A priori – developed turbulence regime

We first perform the evaluation on the developed turbulence regime of the testing dataset
(see Fig. 3.6) which is the closest to the training data, and where NN-based models are
expected to perform the best. It is important to note that some metrics such as the
NRMSE and correlation coefficient strongly depend on the type of kernel used to filter
out the small scales features (Fabre and Balarac, 2011). In Table 3.3, we show the results
of the a priori metrics with the same range of values as the training data, i.e. δ = 0,
β = 0 and λ = 1. The invariant model MSGTNN gives the most consistent structural
results compared to the DNS. In particular, we observe a substantial improvement on
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Figure 3.9: Probability distribution function (left) and quantiles-quantiles (right) of the
SGS term in developed turbulence regime over the entire testing dataset.

`rms and r compared to MCNN. On the statistical metric, it is clear from the inset in
Fig. 3.9 thatMMLP is better at reproducing mean values (around τC = 0), which tends
to lead to smaller distance DJS. However, MSGTNN is more accurate on the tails of
the distribution compared to the other models. This is particularly emphasized by the
quantiles-quantiles (QQ) plot, which draws the theoretical quantiles from DNS on the
x-axis and the predicted ones on the y-axis. Again, it is found that MSGTNN is in best
agreement with the theoretical quantiles, for which a perfectly reproduced distribution
would fit a straight line. Recall that the scalar concentration linearity shows the most
noticeable impact on a priori performance. In this regime, scalar variance remains almost
constant, and NN-models are thus expected to perform optimally in terms of their loss
function L. We see however that MMLP has poor structural performance, which could
be explained by the fact that it is minimizing error on the residual flux rather than the
SGS term itself. The next two regimes will test the ability of the NN-based models to
generalize to flows that were not part of the training data.

3.3.2.2 A priori – transitional regime

In this regime, we look at a forced flow that transitions from a newly initialized to a
turbulent state (see Fig. 3.6). In the a priori tests, we consider both velocities and
scalar concentration in a transitional regime. Fig. 3.10 shows that `rms is large for the
first sample predictions of NN-based models but rapidly decreases to a similar magnitude
than in developed turbulence. The correlation given by r is also quite low during the first
iterations but quickly reaches the statistical mean at t ≈ 10, as well as metric DJS from
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Figure 3.10: Evaluation of the different metrics with respect to time in transitional regime.
NRMSE (top left), correlation coefficient (top right), Jensen-Shannon distance (bottom
left) and integral dissipation error (bottom right).

which a large distance is observed. The decrease in performance temporally coincides with
the unphysical spin-up phase, and the prediction error gradually improves as the regime
gets closer to the training one. We note that these models could benefit from a loss
regularization or constraint on the transfers, which would better capture the transitional
phases. e.g., Vollant et al. (2017) and Charalampopoulos and Sapsis (2022) proposed to
build a model based on multi-objective minimization, or regularization of the structural
term with a functional term based on scalar variance and energy transfers in three and
two dimensions, respectively.

3.3.2.3 A priori – decaying regime

In the last a priori regime, we remove the scalar forcing, i.e. FC = 0 while maintaining
the velocity field in turbulent motion (again, see Fig. 3.6). This results in a decay
of the scalar concentration within the domain. This regime is a difficult case for the
NN-based models presented in this chapter and asses their capacity to generalize to a
different dynamic of the flow, which has not been seen in the training data. BothMMLP
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Figure 3.11: Evaluation of the different metrics with respect to time in decaying regime.
NRMSE (top left), correlation coefficient (top right), Jensen-Shannon distance (bottom
left) and integral dissipation error (bottom right).

andMCNN see their structural and statistical performance drastically decreasing after a
short time, at t ≈ 40, as see in Fig. 3.11 for NRMSE `rms, correlation r and statistical
distance DJS. Interestingly, we observe thatMCNN is producing an error on the integral
dissipation which does not tend toward zero compared to the other models. Overall, when
comparing the NN-based models, we can say that the imposed invariances act as physical
regularizers since they help the generalization while ensuring short-time coherent behavior
across different regimes.

Simulations. We run new simulations using the NN-based models to compute the SGS
term at every iteration. These a posteriori tests are complementary to the a priori tests
because they show the behavior and time evolution of the SGS models in practice. In
the following tests, we use a hybrid DNS-LES approach in order to isolate the scalar
concentration modeling from other sources of error. To achieve this, we keep the velocity
fields at DNS resolution, i.e. 5123, while the scalar concentration fields of the different
models evolve at the same resolution as the filtered training data, i.e. 643. At every sub-
step in the time integration, the velocity fields are extrapolated from the DNS to the LES
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Figure 3.12: Integrated statistics of simulation in developed turbulence regime starting
from the training data: scalar variance (left) and resolved scalar enstrophy (right).

grid in spectral space using a cut-off filter. Note that only data on the LES grid are used
to obtain SGS term predictions from the different models. The advantage of this approach
is that there is no modeling error on the velocity field used in the scalar equation and SGS
prediction. Thus, when the modeled scalar concentrations are compared with the filtered
DNS, the difference will only be due to the SGS term. Now, we look at the temporal
evolution of different statistical metrics such as the filtered scalar variance 〈C̄2〉 − 〈C̄〉2

and the resolved scalar enstrophy 〈∇2C̄〉 which is particularly interesting to characterize
the energy transfers in the smallest scales (San et al., 2015), from which the SGS model
is the most important. For each regime, we also plot the scalar energy spectrum at the
intermediate and final simulation time.

3.3.2.4 A posteriori – developed turbulence regime

In the first two simulations, we start in a developed turbulence regime after 20000 temporal
iterations from the training data (see Fig. 3.5) and testing data (see Fig. 3.6) respectively
with the same velocity and scalar concentration forcing as those used in the datasets.
Using the same starting point as the training data is useful in order to consider the
accumulation of errors during the simulation since the models only learned from a finite
number of sub-samples of the exact simulation. We observe in Fig. 3.12 that the scalar
variance (left) produced byMSGTNN andMCNN are the closest to the DNS except after
long integration time at t ≈ 60 where MCNN starts accumulating error. The behavior
of the model on the smallest scales is shown by the resolved scalar enstrophy (right).
Here, MSGTNN and MMLP are the most consistent, while MDynSmag is too diffusive, as
expected. One can look more closely at the energy spectra in Fig. 3.13 that the model
with invariances is the most accurate on the smallest wavenumbers, which is particularly
visible at k ≥ 10. It is interesting to note that we can draw similar conclusions in this
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Figure 3.13: Scalar energy spectrum of simulation in developed turbulence regime starting
from the training data at t ≈ 50 (left) and t ≈ 65 (right).
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Figure 3.14: Integrated statistics of simulation in developed turbulence regime starting
from the testing data: scalar variance (left) and resolved scalar enstrophy (right).

evaluation compared to the a priori structural results, i.e. MSGTNN slightly improves
fromMCNN which also performs better thanMMLP. Now, the same conclusions can be
drawn in the developed turbulence regime with the testing data starting point, as depicted
in Figs. 3.14 and 3.15. We can already see that a CNN without physical constraints is
not able to reproduce the dynamics of the SGS term in statistically similar conditions to
those of the training data. Indeed, it still performs at the same accuracy for the scalar
variance but worse than some physical models for the resolved scalar enstrophy. The
effect of the physical invariances is shown to be important and gives the ability to get the
best performances from the model.
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Figure 3.15: Scalar energy spectrum of simulation in developed turbulence regime starting
from the testing data at t ≈ 50 (left) and t ≈ 65 (right).
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Figure 3.16: Integrated statistics of simulation in scalar transition regime starting from
the testing data: scalar variance (left) and resolved scalar enstrophy (right).

3.3.2.5 A posteriori – scalar transition regime

The transitional regime is already testing the extrapolation capabilities of the models.
In this regime, we start from a velocity field already in turbulent motion and a scalar
concentration initialized at large scales and forced with the previously described scheme.
The difficulty of this regime resides in the transition of the scalar field to turbulent ad-
vection, which then comes down to a developed regime after t ≈ 15. Both scalar variance
and scalar enstrophy are well reproduced by MSGTNN (see Fig. 3.16) during and after
the transition. The hypothesis drawn from the a priori evaluation of the similar regime
seems to correlate with the a posteriori statistics, where both MCNN and MMLP pro-
duce a relatively large error during the first transitional iterations, while the invariant
NN model is more consistent. Still, Fig. 3.17 indicates that the spectrum produced by
the baseline NN-based models maintained a performance similar to the previous regime.
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Figure 3.17: Scalar energy spectrum of simulation in scalar transition regime starting
from the testing data at t ≈ 6 (left) and t ≈ 25 (right).
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Figure 3.18: Integrated statistics of simulation in full decay regime starting from the
testing data: scalar variance (left) and resolved scalar enstrophy (right).

Interestingly, the mismatch does not increase a lot between the middle of the transition
and the end of the transition, which means that the models without invariances are still
able to generalize well to this regime.

3.3.2.6 A posteriori – full decay regime

In the a priori evaluation, it was clear that MSGTNN gave the best performance in the
scalar decay regime while the other NN-based models were not able to generalize. In
this a posteriori regime, we go one step further and completely remove the source terms
for both velocity and scalar concentration fields, which results in a full decay. Here, we
also observe in Fig. 3.18 that the scalar variance and resolved scalar enstrophy stopped
decreasing for MCNN and MMLP, which indicates that both models are still producing
energy when the scalar concentration is almost completely decayed. We also see in the
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Figure 3.19: Scalar energy spectrum of simulation in full decay regime starting from the
testing data at t ≈ 46 (left) and t ≈ 55 (right).

spectrum (Fig. 3.19) that the NN-based models without invariances are not able to
diffuse the small scales of the SGS term which incrementally lead to a simulation blowup
at t ≈ 55. MSGTNN however is stable and still in excellent agreement with the DNS and
out-performs significantly the physical models, even in this regime that has a different
dynamics not visible in the training data.

Generalization capabilities. The a posteriori regimes discussed above are statistically
different from the data used to train the NN-based models. To evaluate the robustness
of the models and their ability to extrapolate to different regimes, we compute a locally
normalized largest absolute error (`∞) of the a posteriori metrics, namely scalar variance
and resolved scalar enstrophy, during their time evolution,

`∞(m, m̊) = max
i

{∣∣∣∣ 1

mi

(mi − m̊i)

∣∣∣∣} (3.36)

where m and m̊ refer to metrics computed from the DNS and LES simulations, respec-
tively. The results are shown in Table 3.4 where we put the emphasis on the error increase
compared to the reference (or base) given by the developed turbulence regime starting
from training data for each model. The models without invariances show increasing er-
rors in scalar transition and full decay. This increase is particularly visible in the resolved
scalar enstrophy, for which the error ofMMLP increases to one order of magnitude higher
thanMCNN. MSGTNN is consistent across the different regimes, with an error than does
not increase more than 1.5 times compared to the base regime. Note that the scalar
variance error decreases in the scalar transition regime for MSGTNN and MCNN, which
can be explained by the fact that this regime does not exhibit complex dynamics at large
scale. The increase of scalar variance error is only visible in full decay, driven by the
small-scale numerical instabilities of the models, which are then propagated to the largest
scales. ForMSGTNN, the largest error increase of resolved scalar enstrophy occurs in the
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`∞ (base) `∞ `∞ `∞

〈C̄2〉 − 〈C̄〉2

MMLP 0.072 (×1) 0.084 (×1.168) 0.073 (×1.017) 2.598 (×36.146)
MCNN 0.040 (×1) 0.058 (×1.427) 0.039 (×0.959) 1.064 (×26.247)
MSGTNN 0.026 (×1) 0.027 (×1.009) 0.019 (×0.727) 0.038 (×1.440)
〈∇2C̄〉
MMLP 0.118 (×1) 0.127 (×1.077) 2.628 (×22.264) 17.968 (×152.239)
MCNN 0.175 (×1) 0.189 (×1.082) 0.494 (×2.827) 5.215 (×29.860)
MSGTNN 0.082 (×1) 0.091 (×1.104) 0.112 (×1.357) 0.093 (×1.127)

Developed (train) Developed (test) Scalar transition Full decay

Table 3.4: Locally normalized maximum absolute error `∞ on scalar variance (first three
rows) and resolved scalar enstrophy (last three rows) of the different NN-based models
in each a posteriori regime. Relative error compared to the base regime, i.e. developed
turbulence starting from training data is shown as `∞/`∞ (base).

scalar transition regime, which is not surprising and can be due to the unrealistic nature
of this regime.

3.4 Summary and discussion

In this chapter, we described a new NN-based SGS model that explicitly implements in-
variances for the advection-diffusion of a scalar concentration driven by an incompressible
turbulent flow. The model is shown to predict a realistic behavior w.r.t. different forc-
ing regimes, while classical NN-based models produce energy transfers when the scalar
concentration is completely diffused. In addition to the generalization capabilities, the
model also outperforms physical models and improves on NN-based models that do not
embed physical knowledge. Due to the small-scale statistical universality of turbulence
(Schumacher et al., 2014), it is quite important for a model to be independent of the
specific flow regime. We have demonstrated some degree of extrapolation to different
regimes, but limitations are likely to exist for regimes that drastically differ from the
training data. We can note for example domains with closed geometries such as wall-
bounded flows or regimes with different numerical parameters that impact the dynamics
of the flow. These directions have been explored, i.e. many have proposed generalization
schemes for different Reynolds numbers (Guan et al., 2022a; Zhu et al., 2021). While
this could be explored in future work, a more challenging application is related to active
scalars, such as temperature or reactive chemicals that directly interact with the momen-
tum equation, and should probably be modeled together. Numerically, the ideal setting
of spectral discretization is useful for planetary or stellar applications with spherical do-
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mains but has serious limitations with respect to the geometry of the domain. Moving
to stencil-based numerical methods such as finite volumes or finite differences constitutes
a natural next exploratory step that comes with difficulties related to the separation of
physical quantities and discretization errors introduced by the chosen scheme. We note
that most ML frameworks are developed in Python, while large-scale models are based
on high-performance languages such as Fortran or C. In this work, we used a simple
wrapper that compiles the Python code into a library that can be called directly from
its Foreign Function Interface (FFI). While this can be a temporary solution, the recent
trend in ML-based physics has led to the development of new architectures that bridge
the gap between ML models and HPC simulations (Partee et al., 2022). At this point, we
believe that NN-based SGS modeling has significantly improved over classical baselines,
and while data generation remains costly due to the complexity of DNS simulations, data
availability from community datasets and model generalizability are slowly proving that
this change in direction is possible.
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Chapter 4

A posteriori learning for subgrid
models

In this chapter, we describe a fully data-driven learning scheme that builds on the dy-
namical nature of differential equations, with an application to two-dimensional barotropic
quasi-geostrophic turbulence. While the inductive biases presented in the previous chap-
ter are powerful additions to NN-based models, the ability to formulate the invariance in
an analytical form is required. The scheme can, however, reproduce complex dynamics
that are not necessarily expressed explicitly. The trained models are shown to be long-
term stable and outperform state-of-the-art baselines. Still, some limitations currently
restrict their application to small solvers. These are discussed and potential solutions are
proposed.

Some results presented in this chapter
have been published

in Frezat et al. (2022).
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Figure 4.1: Energy spectrum in a direct numerical simulation of a two-dimensional flow
(left) exhibiting the dual cascade with characteristic slopes and corresponding energy flux
(right). Inverse energy flux is observed for wavenumbers smaller than the forcing scale
k < kF and a direct enstrophy flux at k > kF .

4.1 Representing complex dynamical phenomena

The physics that drives turbulent motion in oceans and atmospheres is complex. We
have had long-time observations of their behavior and already some knowledge is known
and can be explicitly expressed. For example, we have explored frame invariances in
chapter 3, which consists in properties that a flow is recognized to follow. While this is
important for a numerical model to always agree with analytical invariances, this does
not always result in the desired behavior of the model on a “higher level” point-of-view,
which is often either based on long-term or statistical metrics. In expansive numerical
simulations, it is important for a model to be stable, which is difficult to define as a
mathematical expression. It is possible to derive conditions for which models are found
to be stable, for example, turbulence models with positive eddy viscosities (Meneveau
et al., 1996; Trias et al., 2015) have been shown to fulfill this goal, at the cost of accuracy.
This trade-off has been pushed by incremental modifications to these models, while still
holding the stability condition, but they remain far from optimal, even when combined
with NNs (Sarghini et al., 2003). Again, with the recent advances in deep learning, new
turbulence models outperforming stable physical models have been designed (Vinuesa and
Brunton, 2022). However, in some conditions, these models are particularly unstable and
difficult to regularize. This phenomenon is stronger in two-dimensional flows (Maulik
et al., 2019) for which the inverse energy cascade is dominating, and affects the models
ability to reproduce transfers from small to large scales, also referred to as backscatter
(Carati et al., 1995).
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4.1.1 Backscatter in two-dimensional flows

In three-dimensional flows, the energy cascade hypothesis is directly related to the turbu-
lent kinetic energy generated at large-scale and transferred to smaller scales until molec-
ular viscous dissipation. While this is true in a statistical sense, the transfers are not
locally behaving in a unidirectional way. The turbulent dissipation at the smallest scales
is equivalent to the difference between forward-scatter, coinciding with the energy cas-
cade, and backscatter in which energy is transferred from the small scales back to the
large scales (Lesieur and Metais, 1996). Historically, developing SGS models that account
for backscatter is a challenging task (Liu et al., 2011; Piomelli et al., 1991; Schumann,
1995). Indeed, an overprediction of backscatter that can not be compensated by eddy-
viscosity will lead to an accumulation of small-scale energy causing simulations to become
numerically unstable. In two-dimensional flows, we observe a dual cascade composed of
“forward” enstrophy and “inverse” energy, again in a statistical sense (see Fig. 4.1). As
a consequence, a large number of subgrid models have been proposed in particular for
geophysical flows (see Danilov et al. (2019) for a review) with well-documented configura-
tions and performance metrics (Graham and Ringler, 2013). To study scale interactions
in the dual cascade regime, we can look at the temporal evolution of the enstrophy Z(k)

and kinetic energy E(k) spectrum in spectral space,

∂Z(k)

∂t
= Tω(k) + Fω(k)−Dω(k) (4.1)

∂E(k)

∂t
= Tu(k) + Fu(k)−Du(k) (4.2)

where and the different terms of the right-hand side are related to various effects: dissi-
pation D, external source F , and transfers between scales T . This first term writes

Tω(k) =

∫
|k|=k
<{ω̂∗(k)N̂ω(k)} dS(k) (4.3)

Tu(k) =

∫
|k|=k
<{û∗(k)N̂u(k)} dS(k) (4.4)

where forward and backward transfers are indicated by the sign of T and hold for both
enstrophy and kinetic energy (Boffetta and Ecke, 2012). We also define the enstrophy
and kinetic energy fluxes for a wavenumber sphere of radius ks,

Πω(ks) = −
∫ ks

0

Tω(k′) dk′ (4.5)

Πu(ks) = −
∫ ks

0

Tu(k′) dk′ (4.6)

with
dΠω(k)

dΠu(k)
= k2. (4.7)
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Again, were are interested in modeling the unresolved dynamics of the two-dimensional
NS equations on coarse grid Ω̄, defined in vorticity formulation such that

∂ω

∂t
+Nω = ν∇2ω + Fω, ω ∈ Ω

∂ω̄

∂t
+Nω̄ = ν∇2ω̄ + Fω̄ +Nω̄ − N̄ω︸ ︷︷ ︸

τω

, ω̄ ∈ Ω̄
(4.8)

where Fω is a time-dependent forcing term and the projection from fine to coarse grid is
defined by a spatial operator T : Ω → Ω̄. On coarse grid Ω̄, the equation can be solved
except for τω which depends on fine grid variables u and ω. Alternatively, the SGS term
τω can be expressed as the divergence of a flux,

τω = ∇ · (ū ω̄ − uω) (4.9)

Using (2.60) only involves reduced vorticity ω̄ and streamfunction ψ̄, since velocities can
be obtained from the latter. In this case, we are interested in the following inverse problem,

τω = ∂xψ̄∂yω̄ − ∂yψ̄∂xω̄ − ∂xψ∂yω + ∂yψ∂xω. (4.10)

Note that choosing to model the SGS term τω instead of the SGS flux divergence is
reducing the complexity of the NN prediction to a scalar field but it restricts the accessible
quantities. When we study the effect of the SGS model on scale interactions (also see Fig.
4.2), it is possible to decompose the transfers into a resolved and a modeled part, i.e.,

Tω(k) =

∫
|k|=k
<{ ˆ̄ω∗(k)N̂ω̄(k)︸ ︷︷ ︸

resolved

− ˆ̄ω∗(k)τ̂ω(k)︸ ︷︷ ︸
modeled

} dS(k). (4.11)

Equivalent quantities for the resolved enstrophy equilibrium in physical space can be
expressed as

∂Z(x)

∂t
= ω̄ν∇2ω̄ + ω̄Fω̄ − ω̄Nω̄ + ω̄τω. (4.12)

The last term can be further decomposed into a diffusion and a transfer term Tω(x), from
which the sign is also an indicator of forward and backward transfers. Using (4.9), it
writes

ω̄τω = ∇ · (ω̄(ū ω̄ − uω))︸ ︷︷ ︸
diffusion

− (ū ω̄ − uω) · ∇ω̄︸ ︷︷ ︸
transfersTω(x)

. (4.13)

While Tω(x) can not be computed using the modeling approach (4.10), it is still possible
to study its global effect, ∫

ω̄τω dS = −
∫
Tω dS (4.14)
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Figure 4.2: Enstrophy transfers in physical space (left) and spectral space (right) for
the modeled part (contributions from τω). Forward scatter corresponds to Tω < 0 and
backscatter is represented in Tω < 0.

4.1.2 Trade-off solutions

As discussed in the previous section, models that mispredict backscatter are often subject
to numerical instabilities by the accumulation of small-scale energy. The first example
is the spatial averaging performed on the dynamical procedure (Germano et al., 1991)
of physical models. Recall from 2.1.4 that this method can extract a scale-dependent
coefficient field Csgs ∈ R2 for two-dimensional flows. It is well known that using this
spatially-varying coefficient lead to significant portions of negative eddy viscosities, desta-
bilizing the simulations (Meneveau and Katz, 2000). Some form of spatial averaging is
thus required, reducing the dynamic model to a global coefficient Csgs ∈ R. Using 2.46,
positive clipping of the numerator can also be used in addition to spatial averaging,

〈LijMij〉+ =
1

2
(〈LijMij〉+ |〈LijMij〉|) . (4.15)

This approach, however, is only relevant when estimating the undetermined coefficient of a
given model. NN-based models on the other hand are commonly defined by their trainable
parameters, which are then fixed during evaluation. In this context, positive clipping has
been used as a post-processing step on the SGS term predicted by the NN-based model
M (Maulik et al., 2019), also removing negative eddy viscosities,

M = 0, ∀ ∂
2ω̄

∂x2
i

M < 0. (4.16)

The downside of performing this operation in post-processing is that the models are
optimally trained to also produce negative eddy viscosities, consequently impacting their
mean predictions. In practice, the resulting models are stable but also highly dissipative.
An alternative would be to directly define this constraint in the NN architecture and train
the model adequately.

53



CHAPTER 4. A POSTERIORI LEARNING FOR SUBGRID MODELS

Training distribution. Without restricting the NN-based model to positive eddy vis-
cosities, using more training data has also been shown to improve numerical stability
during simulations Guan et al. (2022a). This is an indirect consequence of sample size
and variance impact on performance metrics of machine learning models, which has been
known for a long time (Markham and Rakes, 1998). However, the motivation behind
reduced modeling being primarily the computational cost of high-resolution simulations,
generating data has a measurable limit. The problem is even more important since train-
ing algorithms are shown to converge better when the inter-sample correlation is low.
Since simulation data is obtained by taking tiny temporal steps, integrating on large
intervals and sub-sampling sparsingly is thus required to avoid highly correlated data.
The saturating dataset size also depends on the model architecture, e.g., local inputs to
train fully-connected architectures have been shown to require smaller datasets (Zhou
et al., 2019). Recently, it has been shown that incorporating physical constraints (Guan
et al., 2022b) using a similar approach described in chapter 3 promisingly improves the
numerical stability of the SGS model.

4.2 A turbulence equivalent to end-to-end learning

Let us generalize the inverse problem involved in the time evolution of variables y(t). We
assume an underlying differential equation to be known and defined by a direct operator
f(y). The aim is to solve an equivalent approximation for reduced variables ȳ(t) such
that 

∂y

∂t
= f(y), y ∈ Ω

∂ȳ

∂t
= g(ȳ) +M(ȳ), ȳ ∈ Ω̄

T (y) = ȳ

(4.17)

where Ω̄ ⊂ Ω, g a reduced-order operator, M a reduced model and T a projection that
maps direct variables to reduced ones. The objective in this inverse problem is to find an
operatorM such that the evolution of the reduced variables match the projection T (y)

of the direct variables y. In most situations, we have f = g with variables existing on
different spaces or dimensionalities. Note that this can be applied to any type of partial
differential equation without any loss of generality. Within a learning framework, one
states the identification of a general reduced term

τ(y) = T (f(y))− g(T (y)) ≈M(ȳ | θ) (4.18)

where θ are trainable model parameters. Under the assumption that T commutes with
partial derivatives, the classical approach comes to train a modelM(ȳ | θ) as a functional
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approximation of the missing term τ(y). This approach has been applied to SGS modeling,
as described in chapter 3 for advection-diffusion equations, but has also been widely
explored in the recent literature for NS equations (Beck and Kurz, 2021). It does not
however constrain the trained model to behave as expected when implemented in the
solver of the reduced-order system. In this respect, an end-to-end framework would appear
as an appealing approach to explicitly state the SGS problem according to the optimal
approximation of the projected direct variables. Such end-to-end approaches have shown
many advantages in the approximation of partial differential equations in general (Bakarji
and Tartakovsky, 2021; Chen et al., 2018; Fablet et al., 2021a). When applied to physical
problems, they are often referred to as differentiable physics (de Avila Belbute-Peres
et al., 2018; Holl et al., 2020; Um et al., 2020), since they require the gradient of all the
considered operators and solvers to be available for the optimization algorithm. Overall,
these two learning strategies differ in the space where the training is performed, similarly
to the definition of a priori and a posteriori metrics (Pope, 2000) that evaluates the
performance of SGS models. From now on, we will refer to a priori and a posteriori
learning strategies for the classical and end-to-end approaches, respectively.

4.2.0.1 a priori learning

The a priori learning strategy comes to learn a SGS model using training metrics defined
on instantaneous quantities, i.e. a direct measure of the accuracy of the model based on
the predicted SGS term τ(y). The a priori loss L< has the form

L<(M) := `(τ(y),M(ȳ | θ)) (4.19)

where M is a given SGS model to be evaluated. The most common a priori metrics
` found in the physics community are mean squared and absolute errors between exact
and predicted SGS terms. Training a NN-based SGS model according to the a priori
strategy then comes to building a representative ground-truth dataset D := {ȳ} → τ(y)

of paired reduced variables and SGS terms and solve the following minimization problem
w.r.t. model parameters θ,

arg min
θ
L<(M) ≡ arg min

θ
`(τ(y),M(ȳ | θ)), τ(y), ȳ ∈ D. (4.20)

Solving for (4.20) requires evaluating the partial derivatives of the a priori loss L< which
involves the gradient of the SGS modelM,

∂L<
∂θ

=
∂L<
∂τ

∂τ

∂θ
+
∂L<
∂M

∂M
∂θ

=
∂L<
∂M

∂M
∂θ

. (4.21)

In practice, a NN-based model is implemented using a differentiable framework and (4.21)
is automatically available.
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Remark. We may also emphasize that, by construction, the a priori learning strategy
shall lead to the optimal a priori results in the turbulence sense, which shall translate
into a good instantaneous prediction of the SGS term according to metrics L<.

4.2.0.2 a posteriori learning

With the a posteriori learning strategy, the SGS problem is stated as the approximation
of the temporal evolution projected direct variables w.r.t. some a posteriori metrics.
This is important since it is possible for a model to perform well a priori but poorly
in a posteriori, the most common factor being numerical instabilities. This is a direct
motivation of the backscatter issue observed in two-dimensional flows described in section
4.1.1. Let us denote by Φ the flow operator that advances the reduced variables in time,
i.e.,

Φt1
θ (ȳ(t0)) = ȳ(t0) +

∫ t1

t0

g(ȳ(t)) +M(ȳ(t) | θ) dt = ȳ(t1). (4.22)

Numerically-speaking, flow operator Φθ involves a time integration scheme from start to
end time t0 and t1, respectively. Following recent advances in neural integration schemes
(Finlay et al., 2020; Ouala et al., 2021; Yan et al., 2019), we may consider here both
explicit and adaptive schemes. The a posteriori loss L> is now time-dependent and has
the following form,

L>(M) := `({y(t)}t∈[t0,t1], {Φt
θ(ȳ(t0))}t∈[t0,t1]). (4.23)

Now, the a posteriori minimization problem involves the time integration of Φ starting
from ȳ(t0) = T (y(t0)) on sub-intervals [t0, t1]. This requires a dataset D built from
direct and reduced variables on continuous trajectories spanning temporal intervals, i.e.
D := {y(t)}t∈[0,T ]. Note that since storing direct variables can be difficult due to their
high resolution, one can instead precompute the reduced variables D := {T (y(t))}t∈[0,T ]

and use the reduced-form loss accordingly,

L>(M) := `({T (y(t))}t∈[t0,t1], {Φt
θ(ȳ(t0))}t∈[t0,t1]). (4.24)

The minimization problem is now defined for every sub-interval [t0, t1] ∈ [0, T ] from the
entire dataset,

arg min
θ
L> ≡ arg min

θ
`({T (y(t))}t∈[t0,t1], {Φt

θ(ȳ(t0))}t∈[t0,t1]), {y(t)}t∈[t0,t1] ∈ D.

(4.25)
Updating model parameters θ requires the flow partial derivatives, i.e. expanding from
(4.25) at t1 gives

∂L>
∂θ

=
∂L>
∂Φ

(∫ t1

t0

∂g(ȳ(t))

∂θ
+
∂M(ȳ(t) | θ)

∂θ
dt

)
. (4.26)
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This makes explicit that the gradient-based minimization of the a posteriori loss involves
the computation of the gradient w.r.t. all the components of the reduced operator g as
well as the considered integration scheme that discretizes Φ. The a posteriori learning
strategy significantly widens the range of metrics that can be considered to train the SGS
model. In the next section, we describe the specific points of the training algorithm along
with the different options related to data sampling and loss continuity.

Remark. We may point out that similar differentiable models have recently been explored
for temporally-developing plane turbulence jets (MacArt et al., 2021), mixed layer tur-
bulence from KH instability (Stachenfeld et al., 2021) and the short-term simulation of
two-dimensional flows (Kochkov et al., 2021). However, the behavior of the strategy on
long-term stability is not explored, and evaluation against state-of-the-art models is not
conducted.

4.2.1 Training algorithm

Following the continuous definition of the a posteriori strategy, we explain the discretiza-
tion steps for practical use. For simplicity, we consider direct variables y spatially dis-
cretized on regular square grids, i.e. with Nx = Ny = N ∈ R2 grid points. Reduced
variables ȳ are discretized on a coarser grid with N̄ < N , with reduced ratio ∆′ = ∆/∆̄,
also called filter size, such that ∆′N̄ = N . The temporal evolution of direct y and reduced
ȳ variables can be integrated by taking small timesteps ∆t and ∆t = ∆′∆t, respectively.
From spatial and temporal discretizations, we can define the discretized flow operator Φ,

Φt1
θ (ȳ(t0)) = ȳ(t0) +

M∑
i=1

∆tFt
[
g(ȳ(t0 + i∆t)) +M(ȳ(t0 + i∆t) | θ)

]
(4.27)

where Ft is an arbitrary temporal discretization scheme, either explicit or implicit, and
M the number of small steps required to integrate from t0 to t1, i.e. M∆t = t1 − t0. As
indicated in (4.24), we compare successive state variables in the loss using the recurrent
relation

Φ
(M)
θ = Φt0+M∆t

θ (ȳ(t0)) = Φ
(M−1)
θ + ∆tFt

[
g(Φ

(M−1)
θ +M(Φ

(M−1)
θ | θ)

]
. (4.28)

The sampling for the dataset is also arbitrary, one could skip γ samples to reduce the
inter-sample correlation between consecutive initial training states,

L>(M) := `({T (y(t))}t∈γ[t0,t1], {Φt
θ(ȳ(γt0))}t∈γ[t0,t1]). (4.29)

Also related to sampling, it is possible to only use independent sub-intervals that do not
overlap, further reducing inter-sample correlation, i.e.,

arg min
θ
L> ≡ arg min

θ
`({T (y(t))}t∈γ[t0,t1], {Φt

θ(ȳ(γt0))}t∈γ[t0,t1]), (4.30)

{y(t)}t∈γ[t0,t1] ∈ D,
⋂
d∈D

[t0, t1]d = ∅. (4.31)
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Algorithm 1 Training algorithm for SGS model M using the a posteriori strategy.
Direct variables y are sampled randomly from dataset D which is only required to contain
(reduced) direct states.
Require: dataset D := {T (y(t))}t∈[0,T ]

Require: reduced system g, training modelM(ȳ | θ)
Require: number of iterations temporal M , number of epochs ε, starting time t0
Require: loss function L>
1: for i← 1 to ε do
2: for all {T (y(t))}t∈[t0,t1] ∈ D do . Sample consecutive (reduced) direct states
3: ȳ0 ← T (y(t0)) . Define initial reduced state from direct states
4: for j ← 1 to M do
5: ȳj ← ∆tFt [(g(ȳj−1) +M(ȳj−1 | θ))] . Discrete temporal integration
6: end for
7: L← L>({T (y(t))}t∈[t0,t1] , {ȳ}[0 ···M ]) . Compute a posteriori loss

8: θ ← step
(
∂L

∂θ

)
. Optimize model parameters

9: end for
10: end for

The general algorithm to train a SGS modelM using the a posteriori learning strategy
is detailed in Algorithm 1.

Optimality limitations. In theory, one should expect optimal results if the training
integration steps M correspond to the evaluation temporal horizon (in the order of thou-
sands to millions of integration steps) since the SGS model would be optimized for the
entire trajectory. In practice, ML use backpropagation (Goodfellow et al., 2016) to com-
pute the gradient of the loss function L> w.r.t. the weights θ of the trained SGS model.
This algorithm is implemented using adjoint graphs, where the gradient of each opera-
tor is stored in reverse mode. The size of this graph can grow quickly to exceed GPU
memory. If our reduced system g, SGS model M and temporal integration scheme Ft
are composed of Og, OM and OFt operations, respectively, the graph size is defined as
OFtM(Og + OM). In practice, this has been the major limitation even for a simple toy
system, i.e. Og relatively small.

Convergence. The training process is required to perform some temporal integration of
reduced (dynamical) system g, which can be a source of well-known numerical instabilities.
If the reduced system g becomes unstable, the optimization algorithm will not be able
to converge to an optimal solution. Issues related to temporal integration and expansive
data generation may lead to practical difficulties. We consider additional key steps to
Algorithm 1:
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Algorithm 2 Discarding samples from unstable temporal integration, i.e. when CFL
is above some safe threshold. This step can be inserted (between Line 6 and 7) in the
general a posteriori learning Algorithm 1.
Require: Safety CFL threshold Cmax, similar to the one used in reduced solver g.
Require: Reduced candidate states ȳj from Algorithm 1 (Line 5).
1: if maxj CFL(ȳj) > Cmax then . Discard batch if stability is not obtained
2: continue
3: end if

Algorithm 3 Linearly incrementing the number of integration stepsM to avoid discarded
samples due to CFL condition not respected (Algorithm 2). This step can replace the
maximum M with a local number of integration steps Mlocal (Line 4) of the general a
posteriori learning Algorithm 1.
Require: Maximum number of integration steps M .
Require: Current epoch i and number of training epochs ε.
1: Mlocal ← i

⌈
M
ε

⌉
. Define a local number of iterations

1. Integration of the reduced system g must fulfill the Courant-Friedrichs-Lewy (CFL)
criteria, typically used in the numerical solver. Incorrect predictions from the SGS
model can impact the states of the simulation, creating numerical instabilities that
can lead to a numerical blowup of the system and consequently exploding gradient for
the minimization algorithm. The classical solution is to use an adaptative timestep
such that CFL is fixed. In this context however, it would require computation of
direct states on the fly in order to compare T (y(t)) and ȳj at the same temporalities,
which would be extremely expansive. As a stability condition, we decide to withdraw
samples with large CFL numbers, i.e. that do not guarantee numerical stability. Note
that using temporal integration schemes with cheap interpolation capabilities could be
an alternative to slightly adapt the timestep.

2. Large number of integration steps M may lead to more occurrences of large CFL
and too many discarded samples, which in turn lead to slow convergence. Since the
first SGS predictions are random guesses from model initialization, it is important to
start the training process with M small and slowly increase to the desired temporal
horizon as the model improves. In this chapter, we use a simple linear increment, but
any increasing heuristic should work as long as the first critical epochs take a small
number of iterations.

Stability and convergence steps 1. and 2. can be implemented using Algorithm 2 and 3,
respectively.

59



CHAPTER 4. A POSTERIORI LEARNING FOR SUBGRID MODELS

4.2.2 Application to barotropic quasi-geostrophic turbulence

Geophysical turbulence is widely acknowledged to involve energy backscatter. This is
caused by the relative dominance of the Coriolis force which creates vortical structures that
appear two-dimensional. SGS modeling is also a key issue for the simulation of ocean and
atmosphere dynamics because of the large range of motions involved (Frederiksen et al.,
2012; Jansen et al., 2015; Juricke et al., 2020, 2019). As a case study framework, we
consider barotropic QG flows. While providing an approximate yet representative model
for rotating stratified flows found in the atmosphere and ocean dynamics, it involves
relatively complex SGS features that make the learning problem non-trivial. As such,
QG flows are regarded as an ideal playground to explore and assess the relevance of the a
priori and a posteriori learning strategies for SGS models in geophysical turbulence. The
evolution of reduced vorticity ω̄ for the QG equations is similar to (4.8) with additional
terms related to various geophysical approximations already described in 2.2.3,

∂ω

∂t
+Nω = ν∇2ω − µω − β∂xψ + Fω, ω ∈ Ω

∂ω̄

∂t
+Nω̄ = ν∇2ω̄ − µω̄ − β∂xψ̄ + Fω̄ +Nω̄ − N̄ω︸ ︷︷ ︸

τω

, ω̄ ∈ Ω̄
(4.32)

and SGS term τω is equivalent to (4.10). In this formulation, the inverse problem can be
expressed as a functional of reduced vorticity and streamfunction, i.e.,

τω ≈M(ω̄, ψ̄). (4.33)

In order to study the a posteriori learning strategy, we solve equations (4.32) using a
differentiable pseudospectral code with full 3/2 dealiasing (Canuto et al., 2007) and a
classical fourth-order explicit Runge Kutta time advancement. The system is defined
in a squared domain Ω ∈ [−π, π]2, or domain length L = 2π discretized with a Fourier
basis, i.e. double-periodic boundary conditions ∂Ω on N grid points with uniform spacing
∆ = LN−1. We extract the SGS term and the non-residual input quantities using spatial
filtering described in 2.1.2, i.e.,

{ω̄, ψ̄} → τω. (4.34)

Note that τω is only required for the a priori learning strategy. To generate the corre-
sponding datasets, we subsample one direct state every ∆′ iteration performed by f so
that these states directly correspond to one iteration performed by g, we have,

D := {ω̄(i), ψ̄(i)} → τ (i)
ω = {ω̄(t), ψ̄(t)}t∈[0,T ] → τω(t)t∈[0,T ] (4.35)

(i∆t) ∈ [0, T ] (4.36)

t ∈ [0, T ] (4.37)

so that datasets for both a priori and a posteriori learning are equivalently composed of
the same samples.
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Decay Forced Beta-plane

Length of the domain L 2π 2π 2π

Linear drag µ 0 2× 10−2 2× 10−2

Kinematic viscosity ν 3.125× 10−5 1.025× 10−5 1.025× 10−5

Rossby parameter β 0 0 2.195× 102

Reynolds number Re 3.2× 104 2.2× 105 3.4× 105

Number of grid points N 2048 2048 2048
Timestep ∆t 10−4 10−4 10−4

Table 4.1: Parameters of the different DNS flow configurations. Note that reduced systems
use the same parameters, except for grid resolution N̄ and timestep ∆t, obtained from
the spatial filter ratio. The quantities are given in numerical (unitless) as directly used
in the solver for reproducibility.

Flow configurations. To evaluate the robustness of the training strategies, we design
numerical experiments for three different configurations of QG flows. The numerical
parameters of these configurations are detailed in Table 4.1.

Decay (see Fig. 4.3). We first study decaying turbulence and reproduce the configura-
tion described in previous works based on the a priori strategy (Guan et al., 2022a; Maulik
et al., 2019). This type of flow is particularly interesting because of its non-stationary
nature, i.e., the system’s invariants are temporally varying. The initial vorticity fields
are sampled randomly from a Gaussian distribution ω(t = 0) ∼ N (0, 1) at moderate
wavenumbers k ∈ [10, 32] and the system is integrated for 10000 iterations before reach-
ing spectrum self-similarity (Batchelor, 1969).

Forced (see Fig. 4.4). We then evaluate the SGS models on a more realistic wind-forced
configuration representative of mesoscale oceanic simulation (Fox-Kemper and Menemen-
lis, 2008; Graham and Ringler, 2013). To reproduce an equilibrium solution, we use a
linear drag µ > 0 and initiate turbulence from a slowly varying in time circular source at
large scale k = 4 with steady enstrophy rate injection 〈Fω(t)2〉 = 3 such that,

Fω(t) = cos(4y + π sin(1.4t))− cos(4x+ π sin(1.5t)). (4.38)

Stationary turbulent states are obtained from the same random initialization, but followed
by a 500000 iterations spin-up on a smaller grid (10242) and energy propagation to the
smallest scales of the direct grid (20482) in about 25000 iterations.

Beta-plane (see Fig. 4.5). Finally, we observe the impact of planetary rotation through
the beta-plane effect on a mid-latitude geophysical flow, which creates jet-like structures
typically seen in atmospheres. The initialization for this configuration is the same as the
previous one.
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Figure 4.3: DNS fields at start time (left) and stop time (right) for a trajectory simula-
tion in Decay QG turbulence. The simulation was run for 144000 temporal iterations,
corresponding to approximately 120 eddy turnover times.
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Figure 4.4: DNS fields at start time (left) and stop time (right) for a trajectory simulation
in Forced QG turbulence. The simulation was run for 288000 temporal iterations,
corresponding to approximately 60 eddy turnover times.
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Figure 4.5: DNS fields at start time (left) and stop time (right) for a trajectory simulation
in Beta-plane QG turbulence. The simulation was run for 288000 temporal iterations,
corresponding to approximately 120 eddy turnover times.
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{τ (1)ω } {T (ω̄(∆t))} {τ (i)ω } {T (ω̄(i∆t))}D

{M(ω̄(1))} {M(ω̄(i))}L<

{ω̄(0)} {ω̄(∆t)} {ω̄(i∆t)}
Ft

· · ·

L>

Figure 4.6: Loss generation for the a priori (bottom) and a posteriori (top) learning
strategies from dataset D.

NN architectures and learning schemes. The main focus of this chapter being the
impact of the a priori and a posteriori learning strategies, we consider the same NN-
based modelsM. We use a convolutional architecture, particularly relevant for spatially
structured problems, and already discussed in section 2.4. The architecture consists of 10
Conv layers with kernels K of size 5× 5× 5 and 64 filters F each, followed by non-linear
Relu activations. Again, input boundaries are replicated periodically given the geometry
of the domain. It writes,

M(ω̄, ψ̄ | θ) := PadP ◦ ConvF=64
K=5 (θ1) ◦ Relu ◦ · · · ◦ ConvF=64

K=5 (θ9) ◦ Relu

◦ ConvF=1
K=1(θ10). (4.39)

More involved architecture could further improve the overall performance and might be
interesting to explore. However, we may point out that the goal is not to design an
optimal NN-based architecture but rather to evaluate the training strategy at the same
computational cost. Regarding the learning phase, the training loss for the a priori
strategy (4.20) computes the MSE of the predicted term w.r.t. the SGS term produced
by the direct simulation, on a batch of B samples,

L<(M) :=
1

B

B∑
i=1

||τ (i)
ω −M(ω̄(i), ψ̄(i))||22. (4.40)

For the a posteriori strategy (4.25), the choice of the training loss is more flexible, since
we can explore spatiotemporal metrics for temporal batches of M = (t1− t0)/∆t discrete
integration steps. To illustrate the basics of the strategy, we use the MSE of the most
important state of the QG system, i.e. the vorticity,

L>(M) :=
1

M

M∑
i=1

||T (ω(i∆t))− ω̄(i∆t)||22. (4.41)

One may note that the losses are not computed on the same elements and corresponding
temporalities (see Fig. 4.6). For the a priori strategy, the loss function is computed over
batches of data B, randomly sampled from the dataset. For the a posteriori strategy,
however, the loss function is based onM states integrated from randomly sampled starting
fields ω̄(t0).
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Figure 4.7: Example of reduced vorticity ω̄, corresponding subgrid contributions ω′ =

ω − ω̄ and SGS term τω at different grid ratios ∆′ filtered using a cut-off kernel in the
Forced configuration. Note that a value of ∆′ = 1 indicates direct simulation, i.e.
ω = ω̄ and ω′ = τω = 0.

4.3 Results

In this section, we describe multiple experiments on the performance and applicability of
the described learning strategies to predict subgrid-scale quantities τω in reduced simula-
tions (see Fig. 4.7). One major concern is long-term stability, in particular for stationary
configurations. Reducing the amount of data used for training is also an important objec-
tive since direct simulations are extremely expensive, or even impossible. Through these
experiments, we will also describe some degrees of generalization, i.e., avoiding generat-
ing new data and training new models when the simulation description changes. The
models are trained with the Adam optimizer (Kingma and Ba, 2015) and simple learning
rate schedulers, having minimal impact on the final performance. Empirically, we noted
that 30 training epochs were necessary for the a priori strategy, while 5 are enough for
the a posteriori strategy. However, the latter is consequently more expansive due to the
solver steps involved in the training loop. As classical baselines, we also compare the
performance of the dynamic versions of the Smagorinsky and Leith models described in
2.1.4.
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Decay Forced Beta-plane

Direct grid size N 2048 2048 2048
Direct timestep ∆t 10−4 10−4 10−4

Filter size ∆′ 16 16 16
Reduced grid size N̄ 128 128 128
Reduced timestep ∆t 16× 10−4 16× 10−4 16× 10−4

a priori batch size B 25 25 25
a posteriori iterations M 25 25 25
Training sample skip γ 1 1 1
Training trajectories 10 10 10

Training samples 3000 3000 3000
Testing trajectories 5 5 5

a priori testing horizon 3000 3000 3000
a posteriori testing iterations 9000 18000 18000

Table 4.2: Training and testing setup for the long-term stability experiment. Direct data
fields are projected onto a reduced grid using a cut-off filter, i.e. coarse-graining in spectral
space (2.23). Training and testing samples as well as testing iterations are given for each
trajectory.

4.3.1 Long-term stability

In this first experiment, we train models for both learning strategies in each turbulent
configuration, i.e. three separate a priori and a posteriori models optimized from and
evaluated in Decay, Forced and Beta-plane flows. The datasets contain 10 inde-
pendent trajectories from simulations of 3000 snapshots reduced with ∆′ = 16 (see Fig.
4.7) each using different initial conditions, which gives datasets of 30000 samples. We take
consecutive samples separated by ∆t, i.e. without skipping γ = 1 (4.29) in order to em-
ulate large data availability at the expanse of a high inter-sample correlation (here ≈ 1).
To enable a fair comparison of the two learning strategies, we choose an a priori batch
size equal to the number of a posteriori iterations, i.e. B = M = 25 with non-overlapping
temporal intervals (4.31). To evaluate the long-term stability and generalization, the tem-
poral length of the evaluation is taken to be substantially larger than the training data,
with 3× longer in the Decay configuration, limited by the non-stationary nature of the
flow, and 6× longer for the Forced and Beta-plane stationary flows. Training and
evaluation parameters are summarized in Table. 4.2. Before delving into the detailed
analysis of both short-term a priori insights and long-term a posteriori simulation per-
formance, we can start by observing vorticity fields ω̄ at the end of a testing horizon and
a long-term trajectory (see Figs. 4.8 and 4.9).
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Figure 4.8: Reduced vorticity fields ω̄ at the end of a testing horizon from the direct
simulation (τω, top) and the different models for configurations described in Table 4.2.
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Figure 4.9: Reduced vorticity fields ω̄ at the end of a long-term trajectory from the direct
simulation (τω, top) and the different models for configurations described in Table 4.2.
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↑ r ↓ DJS ↓ Iε ↑ r ↓ DJS ↓ Iε ↑ r ↓ DJS ↓ Iε
Maposteriori 0.768 0.072 0.673 0.454 0.135 0.456 0.480 0.013 1.099
Mapriori 0.736 0.658 -2.940 0.821 0.691 -0.794 0.823 0.736 -0.982
MSmagorinsky 0.176 0.322 13.274 0.086 0.490 4.097 0.046 0.557 9.086
MLeith 0.145 0.467 6.863 0.077 0.583 2.408 0.033 0.677 3.662

Decay Forced Beta-plane

Table 4.3: Short-term performance of the considered SGS models in the three different
configurations.

4.3.1.1 Qualitative analysis

From those fields, it is clear that the a posteriori models lead to the closest results. In
particular, we expect to see vortex pairing and the emergence of larger structures in De-
cay, but physical models are incorrectly dissipating relevant small scales due to their
purely diffusive form. The NN-based model trained with the a priori strategy has accu-
mulated small-scale enstrophy and is thus perturbed with noise coming from numerical
instabilities. The model trained with the a posteriori strategy seems to be stable and re-
tain small-scale features, even outside of the training regime, which supports some degree
of generalization (or extrapolation), particularly difficult for non-stationary dynamics. In
the Forced configuration, we see both large vortices generated by wind-forcing and
small filaments in between. Overall, we draw similar conclusions, except that stability is
preserved for a larger temporal horizon for the a posteriori model, while instabilities are
exaggerated for the a priori model. Finally, Beta-plane has an important impact on
the topology of the dynamics, as it creates high-velocity longitudinal jets. Note however
that in this simple setting without topography (flat bottom layer), the system does not
go through state transitions and remains in statistical equilibrium. The strong vorticity
gradients between jets are predicted more accurately by the a posteriori model while the
a priori model exhibits faster instabilities, Leith seems to start accumulating small-scale
noise and Smagorinsky is still over-dissipating.

4.3.1.2 Short-term a priori performance

We first look at the performance of the different models on the same temporal horizon than
used in the training data, i.e., 3000 samples each separated by ∆t. Here, it is interesting
to quantify a priori performance in order to make potential connexions with long-term a
posteriori performance. We extract in Table 4.3 similar metrics than described in 3.3.2,
in particular structural correlation coefficient r, statistical Jensen-Shannon distance DJS

and functional error on the integral of the transfer term (4.14), Iε = −
∫
ω̄M dS +∫

Tω dS. Interestingly, the a priori model performs on-par or better on the structural
metric for each configuration, particularly in stationary flows for which the other models
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Figure 4.10: Probability distribution function (top) and quantiles-quantiles (bottom) of
the SGS term in Decay (left), forced (center) and Beta-plane (right) configura-
tions on the short-term testing dataset (3000 samples).

have correlation coefficients r < 0.5. We already know from the qualitative analysis that
the a priori model is not stable in a simulation, which tends to indicate that the structural
metric is not a good indicator of stability in a posteriori scenario. It may also point out
that the a priori model trained on the MSE of the SGS term, a purely structural metric,
can not be guaranteed to reach simulation stability. On the statistical metric, however,
the a priori model performs worst, while the a posteriori model clearly outperforms the
other models. To understand this large difference, we can look at the PDF of the SGS
term and predictions (see Fig. 4.10). In Decay configuration, we see a better prediction
of mean values for the a posteriori model while others are closer to a double-exponential,
but also a closer representation of the distribution tails for the a posteriori. In Forced
configuration, the a posteriori slightly underpredicts mean values and slightly overpredicts
intermediate values but still remains in best agreement with the SGS term. Finally, in
Beta-plane configuration, the a posteriori model is almost perfectly reproducing the
PDF of τω. This time, it is difficult to conclude about the relation between simulation
stability and statistical metrics. Indeed, even if the unstable a priori model is particularly
inefficient at reproducing the distribution of the predicted term, the physical models are
not the closest either, but they are known to be particularly stable in practice. For the
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Figure 4.11: Evolution of domain-averaged enstrophy budget (left) and modeled transfer
term (right) in Decay configuration for 3000 reduced temporal steps.

functional metric, we observe the smallest absolute value for the a posteriori model and
a large positive error for the physical models. On the other hand, the a priori model
is always producing negative errors, which corresponds to an over-prediction of global
enstrophy transfer compared to the SGS model. Here, it seems that models that do not
dissipate enough enstrophy might indicate potential simulation instabilities, while highly
dissipative physical models are known to be stable.

4.3.1.3 Long-term a posteriori performance

We now run new simulations for each configuration with the direct solver and the different
reduced models for several reduced iterations as described in Table 4.2. First, we want
to analyze the evolution of the transfer term on the same temporal horizon as in the
a priori evaluation. We can also look at the two-dimensional enstrophy budget (4.12),
which contains additional terms in QG equations,

∂Z(x)

∂t
= ω̄ν∇2ω̄︸ ︷︷ ︸

viscous

− ω̄Nω̄︸︷︷︸
resolved

+ ω̄τω︸︷︷︸
modeled

(4.42)

− ω̄µω̄︸︷︷︸
linear drag

(4.43)

− ω̄β∂xψ̄︸ ︷︷ ︸
beta-plane

(4.44)

+ ω̄Fω̄︸︷︷︸
external

. (4.45)

where resolved and modeled refer to non-linear terms. Then, we will discuss the evolution
of the quadratic invariants of the system and spectral statistics to evaluate their long-term
performance.
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Figure 4.12: Evolution of domain-averaged energy (left) and enstrophy(right) in Decay
configuration for 9000 reduced temporal steps.
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Figure 4.13: Final enstrophy spectrum (left) and time-averaged enstrophy flux (right) in
Decay configuration for 9000 reduced temporal steps.

Decay. In this configuration, linear drag (4.43), beta-plane (4.44), and external (4.45)
terms are equal to zero. We can see in Fig. 4.11 that the enstrophy budget is dominated
by the modeled transfer term. We observe large values for the physical models at the
beginning, which are effectively dissipating the small scales until none are left. The a
priori model produces smaller global transfers compared to the direct simulation, which
indeed was reflected by negative integral dissipation error Iε in the a priori evaluation.
On the other hand, modeled transfers are closely reproduced by the a posteriori model,
resulting in a correct enstrophy budget. The evolution of the quadratic invariants in Fig.
4.12 confirms these observations with a large decrease of energy and enstrophy for the
physical models due to excessive dissipation, while the a priori model correctly captures
the energy decay but dissipates enstrophy too slowly compared to the direct simulation.
The spectral statistics shown in Fig. 4.13 are also in close agreement with the direct
simulation for the a posteriori model, in particular for the large wavenumbers of the
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Figure 4.14: Evolution of domain-averaged total enstrophy budget (left) and modeled
transfer term (right) in Forced configuration for 3000 reduced temporal steps.
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Figure 4.15: Evolution of domain-averaged energy (left) and enstrophy(right) in Forced
configuration for 18000 reduced temporal steps.

enstrophy spectrum Z(k) = k2E(k) which particularly highlights the dynamics of the
smallest resolved scales. We note that the unstable behavior of the a priori model is
visible from large values in the enstrophy spectrum and small values in the enstrophy flux
at the largest wavenumbers k, typical of numerical noise accumulation.

Forced. In this configuration, only the beta-plane (4.44) term is equal to zero. The
resulting dynamics of the enstrophy budget is quite different from the one in the previous
configuration. The enstrophy budget in Fig. 4.14 is dominated by external forcing (not
shown here), which is visible by the oscillating behavior driven by the trigonometric
functions in (4.38). It is still easy to see that the a posteriori model is again the closest to
the enstrophy budget of the direct simulation. Now, the modeled transfers are expected
to remain constant in an equilibrium configuration, which is not the case for both physical
models and the a priori model due to the same reasons already pointed out in the previous
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Figure 4.16: Time-averaged enstrophy spectrum (left) and enstrophy flux (right) in
Forced configuration for 18000 reduced temporal steps.
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Figure 4.17: Evolution of domain-averaged total enstrophy budget (left) and modeled
transfer term (right) in Beta-plane configuration for 3000 reduced temporal steps.

configuration. Here, we run simulations for at least 3 times longer than the complete
decorrelation time of the system. We can indeed see large fluctuations of the quadratic
integrals in Fig. 4.15 due to the chaotic nature of the flow, but we expect those quantities
to remain approximately constant over time. This property is verified on the kinetic
energy for both NN-based models, but the enstrophy of the a priori model increases
over time, which indicates an unrealistic accumulation of enstrophy and may result in
a potential future blow-up of the simulation. Additionally, the time-averaged enstrophy
spectrum in Fig. 4.16 demonstrates the ability of the a posteriori model to reproduce
accurately both the small scales and the largest scales of the simulation compared to the
other models.

Beta-plane. In this configuration, all of the terms are non-zero and we now observe
jet-like dynamics. The enstrophy budget in Fig. 4.17 is now dominated by the beta-plane
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Figure 4.18: Evolution of domain-averaged energy (left) and enstrophy(right) in Beta-
plane configuration for 18000 reduced temporal steps.

100 101

k

10-2

10-1

100

101

Z
(k

) MDNS

MM= 25
aposteriori

Mapriori

MSmagorinsky

MLeith

100 101

k

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Π
ω
(k

)

MDNS

MM= 25
aposteriori

Mapriori

MSmagorinsky

MLeith

Figure 4.19: Time-averaged enstrophy spectrum (left) and enstrophy flux (right) in
Beta-plane configuration for 18000 reduced temporal steps.

effect (also not shown here). While not visible on the enstrophy budget due to its small
magnitude, the modeled transfers term is quickly increasing for the a priori model, which
is a strong instability indicator. The instabilities are indeed growing throughout time,
as seen for the energy and enstrophy in Fig. 4.18. On the other hand, the a posteriori
model performs extremely well on this long-term simulation and accurately reproduces
the jet fronts magnitude of the direct simulation. The enstrophy spectrum and flux in Fig.
4.19 are similar to those of the previous configuration, except that linear damping has a
stronger impact due to the relative increase in velocity from the beta-plane effect. Overall,
while the dynamics in this configuration is not dominated by the modeled effect, numerical
accumulation of small-scale enstrophy can still quickly lead to simulation blowup.

We summarize these results in Table 4.4 with the `rms and `∞ of the global modeled
enstrophy transfers and enstrophy fluxes between the direct simulation and the different
models for each configuration.
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`rms `∞ `rms `∞ `rms `∞

〈ω̄M〉
MM=25

aposteriori 0.093 0.107 0.956 0.532 0.877 0.964
Mapriori 1.549 0.921 6.526 0.912 11.071 4.111
MSmagorinsky 2.686 3.359 10.300 5.305 13.285 8.727
MLeith 1.738 1.738 7.153 3.475 6.522 3.667
Πω(k)

MM=25
aposteriori 0.050 0.504 0.018 0.125 0.134 0.099

Mapriori 0.227 0.993 0.349 0.194 3.816 2.643
MSmagorinsky 0.609 4.399 0.479 0.200 1.236 0.438
MLeith 0.521 3.579 0.159 0.263 0.726 0.365

Decay Forced Beta-plane

Table 4.4: `rms and `∞ on global modeled enstrophy transfers (first four rows) and enstro-
phy fluxes (last four rows) of the different models in each configuration.

4.3.2 Interpreting grid resolution

The described NN-based SGS models are trained and evaluated on a single grid resolution
N̄ = 128 in both x and y directions. In practice, it is often desired to run simulations
at multiple degrees of precision, represented by coarser or finer grids that corresponds to
different filter size ∆′ in SGS modeling. Here, we evaluate the ability of the a posteriori
model trained with ∆′ = ∆′train = 16 to generalize to larger and smaller filter sizes
∆′ = 4, 8, 32, 64 in the Forced configuration. We run 5 new short simulations on the
same temporal interval [0, 51200∆t]. Remember that the timestep of the reduced model
scales with the filter size, i.e. ∆t = ∆′∆t so that models reach the end of the simulation
with fewer iterations as ∆′ increases. The numerical parameters of the QG solver remain
identical. The results in Fig. 4.20 shows that the a posteriori is able to maintain good
performance for ∆′ < ∆′train. This is not surprising since small structures modeled on small
filter sizes are already visible at ∆′train, and the statistical structure of turbulence is thus
included in the model, w.r.t. to the enstrophy spectrum. Also, there are more resolved
structures on finer grids, which simplifies the SGS modeling problem. Still note that the
opposite is observed on the enstrophy fluxes for the physical models, where the increase
is due to more timesteps taken, leading to more dissipation. Now, when ∆′ > ∆′train, the
model is expected to extrapolate to a range of dynamics that have not been seen during
training. We can indeed see in the global enstrophy transfers that the error increases for
the a posteriori models, while physical baselines are able to maintain the same mismatch
independently of the filter size. It seems possible to use transfer learning (Subel et al.,
2021) to improve the generalization of the model to different grid resolutions without
re-training it entirely.
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Figure 4.20: `rms on global modeled enstrophy transfers (top) and enstrophy fluxes (bot-
tom) for different filter sizes ∆′ in Forced configuration.

Grid scaling hypothesis. The ability to scale to different filter sizes for baseline physical
models has been derived by dimensional analysis, explicitly depending on the grid spacing
∆. We take inspiration and propose to formulate a similar model based on the previously
trained a posteriori model,

Mhypothesis
grid (ω̄, ψ̄,∆) = ∆ϑ︸︷︷︸

grid scaling hypothesis

MM=25
aposteriori(ω̄, ψ̄) (4.46)

where exponent ϑ ∈ R is a trainable parameter. To make a connection with physical
models, we have ϑ = 2 for the Smagorinsky model and ϑ = 3 for the Leith model. Note
that the optimal correction for the base model will be ∆ϑ = 1, which is only possible if
ϑ = 0. Instead, we can use the filter ratio in the model formulation,

Mratio
grid (ω̄, ψ̄,∆) = ∆ϑ

rMM=25
aposteriori(ω̄, ψ̄) =

(
∆

∆train

)ϑ
MM=25

aposteriori(ω̄, ψ̄) (4.47)

so that if ∆ = ∆train, then ∆ϑ
r = 1 for any ϑ.

Arbitrary grid scaling. Since we do not know if the grid scaling hypothesis is valid in
the context of NN-based models, we also formulate a generic grid scaling that non-linearly
depends on the filter size. It writes,

Marbitrary
grid (ω̄, ψ̄,∆) =Mgrid(∆ | θ)MM=25

aposteriori(ω̄, ψ̄) (4.48)

Mgrid(∆ | θ) := Dense(32)(θ1) ◦ Relu ◦Dense(64)(θ2) ◦ Relu

◦Dense(1)(θ3).
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Figure 4.21: Evolution of the grid correction coefficient with respect to the number of
grid points N (left) with a zoom on the specific NN-based proposed models (right).

Now, we can use the a posteriori learning strategy to optimize the trainable parameters of
these three models. We used 3 trajectories from the difficult cases, i.e., coarse simulations
with ∆′ = 32 and 64 so that the base case is not included and extrapolation to finer grids
can be further verified. In each batch, we run the reduced models at different filter sizes
in parallel and compute the loss based on their states. Again, we use M = 25 temporal
steps during training and only 2 epochs were necessary for model convergence. The grid
coefficients produced by the described variants are shown in Fig. 4.21 along with baseline
physical models. Interestingly, the correction for NN-based models seems to converge
between 0.3 and 0.6 at coarse grid sizes N , which is orders of magnitude larger than the
scaling applied by physical models. Also, the contribution of the SGS model is expected to
decrease as N increases and gets closer to the direct simulation resolution limN→∞ τω = 0,
but the opposite behavior is observed for the model based on ∆r. While the constraint
is verified, i.e., C(∆) = 1 when ∆ = ∆train, this forced the exponent to be negative in
order to reach small values at a coarser grid resolution. We can see in Fig. 4.22 that
the grid models make a large improvement when run on a coarser grid compared to the
base a posteriori one. At ∆′ = 64, there is a slight advantage for the arbitrary model, for
which the grid coefficient C(∆) ≈ 0.38. On the other hand, the hypothesis model tends to
accumulate some energy and may not be stable over longer timescales. It is also important
to verify that these models are still stable and accurate on finer grids. As discussed above,
we have seen that the base model already performs very well when ∆′ < ∆′train and thus
expect the coefficient C(∆) predicted by the grid models to be close to 1. However, we
see in Fig. 4.21 that the unconstrained models (hypothesis and arbitrary) are producing
correction coefficients that are always smaller than 1. Surprisingly, Fig. 4.23 indicates
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Figure 4.22: Evolution of domain-averaged energy (top), enstrophy (middle) and total
enstrophy budget (bottom) on coarser grids ∆′ > ∆′train.

that C(∆) < 1 improves the performance of the models on the conservation of both
quadratic invariants. On the other hand, a larger coefficient as produced by the ratio
model is shown to be quite unstable, in particular on the finest grid at ∆′ = 4. These
results seem to indicate that a simple constant is effectively able to “correct” the SGS
dynamics already included in the base model. Also, and more importantly, extrapolation
to unseen dynamics corresponding to larger scales of the turbulent spectrum is indeed
possible, proportional to a corrective coefficient C(∆). The improvement on finer grids
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Figure 4.23: Evolution of domain-averaged energy (top), enstrophy (middle) and total
enstrophy budget (bottom) on finer grids ∆′ < ∆′train.

is still not well understood, but it is possible that the dynamics learned by the base
model was correcting resolved transfers. Having this information in training data, i.e.
including fields from different resolutions might be important to improve the quality of
the NN-based models. This experiment is also an empirical indicator that the dynamics
of turbulence seems to be universal across grid resolutions. We finally show statistical
metrics for the different grid models in Table 4.5, which further confirms that the grid
correction improves the performance on coarser and finer grids.
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`rms `rms `rms (base) `rms `rms

〈ω̄M〉
MM=25

aposteriori 2253.927 32.657 0.951 0.861 0.638
Mhypothesis

grid 6.067 0.864 0.812 1.095 2.390
Mratio

grid 2.461 1.532 0.951 0.715 39.156
Marbitrary

grid 0.715 0.916 0.815 1.004 1.732
Πω(k)

MM=25
aposteriori 0.878 0.511 0.052 0.088 0.014

Mhypothesis
grid 0.106 0.020 0.035 0.013 0.037

Mratio
grid 0.130 0.024 0.052 0.079 0.281

Marbitrary
grid 0.065 0.029 0.036 0.017 0.030

∆′ = 64 ∆′ = 32 ∆′train = 16 ∆′ = 8 ∆′ = 4

Table 4.5: `rms on global modeled enstrophy transfers (first four rows) and enstrophy
fluxes (last four rows) of the different NN-based models.

4.4 Summary and implications

In this chapter, we investigated different learning strategies to train subgrid-scale (SGS)
models for two-dimensional barotropic quasi-geostrophic turbulent flows. While the state-
of-the-art has mostly explored a priori learning schemes, our numerical experiments stress
the significant improvement brought by the a posteriori learning strategy to better repro-
duce small-scale dynamics on large temporal horizons with great accuracy. For all the flow
configurations considered in this chapter, SGS models trained according to an a posteriori
training loss clearly outperforms both physics-based and machine-learning baselines. The
a posteriori learning strategy introduced in the chapter opens the possibility to design sta-
ble SGS models with more flexibility than state-of-the-art ML-based approaches. Indeed,
we have here explored a relatively simple a posteriori training loss given by the vorticity
MSE, but the a posteriori learning scheme offers much greater flexibility for the exploita-
tion and combination of different a posteriori metrics during the learning phase. Losses
defined from classical performance metrics such as energy transfers and distributions seem
particularly appealing. One may also explore application-specific metrics including, e.g.,
in boundary layers, rotational or compressible flows. As the a posteriori learning strategy
results in improved stability of the trained SGS models, it may also offer means to explore
more complex neural architectures. Here, we considered a relatively simple ConvNet, but
state-of-the-art architectures including for instance ResNet, UNet, and transformer net-
works could also be worth exploring. Another interesting avenue is the joint training of a
posteriori models in the context of data assimilation such as described in (Bonavita and
Laloyaux, 2020) and (Farchi et al., 2021).
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Small-scale dynamics correction. An interesting connection can indeed be made be-
tween a posteriori learning and variational data assimilation techniques. Our a posteriori
learning algorithm formulates a variational problem that is formally equivalent to the
strong constraint 4D-Var scheme (Carrassi et al., 2018). In our case, however, the con-
trol vector is composed of the parameters of the neural network, and observations are
assumed to be perfect. The analogy between a posteriori learning and 4D-Var, therefore,
brings the question of whether models or more generally corrections to existing models,
could be learned directly from sparse and noisy observations (Schneider et al., 2017b). In
this sense, a posteriori learning is related to the bias correction methods that have been
proposed in data assimilation (Dee, 2005), and especially the schemes proposed to infer
state-dependent corrections to existing models (D’andrea and Vautard, 2000; Griffith and
Nichols, 2000). Interestingly, this field has received renewed attention over recent years
with several proposing to approach bias correction with ML. In this context, we stress
that our approach is very similar to the scheme introduced in (Farchi et al., 2021), with
the noticeable difference that we here learn a correction through the 4D-Var scheme itself,
and not from the increment of the assimilation scheme.

Short-term metrics imply long-term performance. By construction, learning from
the a posteriori strategy should improve the short-term forecasting capabilities of the
models. This is true in particular if the training loss is defined as the sum of forecasting
errors over a given temporal horizon as considered here. Interestingly, we noted that
for SGS models, this short-term forecasting performance translates into better long-term
stability and representation of long-term flow patterns where the long-term horizon is
several orders of magnitude greater than the temporal horizon considered in the training
loss (18000 vs 25 timesteps). While recent studies have explored neural models for the
short-term forecasting of realistic geophysical flows, especially for weather forecasting
applications (Schultz et al., 2021; Weyn et al., 2021), we believe our study opens new
avenues for the exploitation of learning-based components in climate-scale simulations,
which remain an open challenge (Rasp et al., 2018). In this respect, to account for the
chaotic nature of turbulent flows, a posteriori training losses could also benefit from
statistical metrics as opposed to synoptic ones as the MSE used in this work.

Solver differentiability. A strong requirement of the proposed framework lies in the
differentiability of the considered dynamical solver, which may question its practical ap-
plicability. Indeed, most large-scale forward solvers in earth system models (ESM) rely on
high-performance languages that do not embed automatic differentiation (AD) capabili-
ties. While it is generally recognized that adjoints models are very useful additional tools
for these solvers (Wunsch and Heimbach, 2013), adjoint operators are readily available
only for a small fraction of them (Heimbach et al., 2005; Vidard et al., 2015). However,
the emergence of a new generation of models written in differentiable programming lan-
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guages or libraries such as Python’s JAX (Häfner et al., 2018) or Julia’s Zygote.jl and
Enzyme.jl (Huang and Topping, 2021; Ramadhan et al., 2020; Sridhar et al., 2022) nat-
urally supports our contribution. Besides, differentiable emulators (Hatfield et al., 2021;
Kasim et al., 2021; Nonnenmacher and Greenberg, 2021) that learn a differentiable ap-
proximation of the non-differentiable forward solver or of its adjoint may also open new
avenues for the development of SGS models for state-of-the-art ESMs with a posteriori
learning strategies. This option will be explored in the next chapter.
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Chapter 5

Emulation-based a posteriori learning
of subgrid models in non-differentiable
numerical solvers

In this chapter, we address the technical limitations of the a posteriori learning strategy
described in chapter 4. While the method seems promising and outperforms physical
models and NN-based models trained directly on their SGS term, it requires differentiable
numerical solvers. We describe some technical solutions that try to solve this issue but
are either too costly to maintain or not efficient enough to be used in practice. Finally,
we propose to emulate the non-differentiable solver with a machine learning algorithm.
This emulator can then be used to train a SGS model using an a posteriori approach.
We show that while challenging, emulating large-scale dynamics with sufficient precision
is possible for relatively complex systems such as QG turbulence with topography.

The results presented in this chapter
will be submitted

Frezat et al. in prep.
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CHAPTER 5. EMULATION-BASED A POSTERIORI LEARNING OF SUBGRID
MODELS IN NON-DIFFERENTIABLE NUMERICAL SOLVERS

5.1 Differentiable solvers

As discussed in chapter 4, the availability of a differentiable solver is very beneficial in
the context of SGS modeling. Optimization based on the gradient of the numerical model
has also been successfully applied to parameter tuning (Lyu et al., 2018; Tsai et al., 2021)
and their related uncertainty quantification (Ge et al., 2018; Loose and Heimbach, 2021).
Recall that for a typical regression task, one would seek to minimize a cost between some
prediction z̊ = f(y | θ) and ground truth of the same input space z, i.e.

arg min
θ
L(z, f(y | θ)). (5.1)

During the training process, the parameters of f , θ are optimized in order to minimize L.
The minimization algorithm requires the computation of the gradient of the loss function
w.r.t. the trainable parameters θ,

∂L
∂θ

(z, f(y | θ)) =
∂f

∂θ
(y | θ)∂L

∂f
. (5.2)

In practice, f could be a simple operator from which the analytical gradient would be
computed beforehand and provided to the optimization process. However, in differentiable
solvers, we are interested in the temporal evolution of a system E(y) : Rn → Rn of a
vector-valued quantity of interest y(t). In a discretized formulation, the operator E is
typically defined by a sequence of operations,

y(t+ ∆t) = Em ◦ · · · ◦ E1(y(t)). (5.3)

Now, if f ≡ E, the partial derivative of the system is defined as a Jacobian in the
minimization formulation (5.2),

∂Ei
∂y

=


∂Ei,1
∂y1

· · · ∂Ei,1
∂yn

... . . . ...
∂Ei,n
∂y1

· · · ∂Ei,n
∂yn

 (5.4)

for a single step of the temporal evolution operator E. Composing the partial derivatives
of the sequences of operators in E can be done by applying the chain rule,

∂E

∂y
=
∂(Em ◦ · · · ◦ E1)

∂y
=

∂Em
∂Em−1

· · · ∂E2

∂E1

∂E1

∂y
(5.5)

The gradient of E can quickly become difficult to maintain by hand. Note that when
training NNs, it is required to have a scalar-valued loss function L, which means that its
derivative is a gradient instead of a Jacobian. The way partial derivatives are computed
is called reverse-mode differentiation (Baydin et al., 2018), which here consists of a series
of matrix-vector multiplications starting from

∂E1

∂y

∂L
∂f

: Rm×n → Rm. (5.6)
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5.1. DIFFERENTIABLE SOLVERS

5.1.1 Technical solutions

The modern solution to computing (5.5) is referred to as automatic differentiation (AD),
which gives the ability to compute numerical gradients from compositions of basic op-
erators automatically using differentiability rules. AD is mostly available from rather
high-level language libraries, such as Python or Julia. This has been a blocking factor
since low-level optimization and manual memory management is quite important when
implementing high-performance solvers. However, just-in-time (JIT) (Aycock, 2003) com-
pilation has improved the capacity of these languages to generate efficient binaries. Some
popular AD libraries include Python’s JAX (Bradbury et al., 2018) and Julia’s Zygote.jl
(Innes et al., 2019). One side advantage of implementing a solver supporting AD is that
it interfaces well with data-driven methods (Irrgang et al., 2021). Although it is now
possible to implement efficient numerical solvers in languages that expose support for
AD, most of the maintained codebases in geoscience remain in low-level languages, i.e.,
Fortran and C. Note that there is support for AD in these languages, e.g. (Bischof et al.,
1997; Utke et al., 2008) but the solutions either require a large amount of modification
in the original code, or generate memory inefficient gradient calculations (Margossian,
2019). When the solver is a large multi-year effort and using AD is not possible, due to
various reasons enumerated above, it is still possible to manually derive and implement
an adjoint solver, usually from a tangent linear model. This has been a common use for
numerical weather prediction, where gradient-based optimization is also required in data
assimilation schemes such as 4D-Var (Rabier et al., 1998). Manually deriving an adjoint
solver can lead to optimal performances, but also requires a considerable amount of hu-
man work, and must be maintained alongside the forward solver. Some tools have been
designed to analyze the forward code and generate an adequate adjoint code (Giering and
Kaminski, 1998; Hascoet and Pascual, 2013). While these have been successfully applied
to large solvers (Heimbach et al., 2002), they can generate code for hybrid (CPU and/or
GPU) architectures and do not interact well with modern ML tools. We summarize the
advantages and drawbacks of each of the different approaches in Table. 5.1.

5.1.2 a posteriori learning without a differentiable solver

Going back to the SGS modeling problem (4.18) and its a posteriori minimization for-
mulation (4.25), the temporal evolution of the system is a combination of a classical
numerical solver g and a trainable SGS modelM,

f(ȳ | θ) ≡ ȳ(t0) +

∫ t1

t0

g(ȳ(t)) +M(ȳ(t) | θ) dt = ȳ(t1). (5.7)

Here, g is a discretization of the considered dynamical equation with a spatial scheme
such as finite differences or a pseudo-spectral method, as used in chapter 4. Training
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Accuracy Efficiency Maintenance Migration Ecosystem

Manual (Moore et al.,

2004)

+ + − + ∼

Numerical − − + + ∼
Codegen (Aycock, 2003) + − + + ∼

AD (Bradbury

et al., 2018)

+ + + − +

Table 5.1: Summary of the different existing methods to compute a partial derivative
(adjoint). Note that AD often requires rewriting code in a corresponding framework, but
most of them live in a well-developed ML ecosystem.

for M involves the minimization problem (5.2) for the temporal evolution operator f .
This in turn requires the computation of a complex chain of Jacobians (5.5) that is
too complicated to maintain by hand. If we assume that in a NN framework, M is a
differentiable model, then the limitation is only caused by the numerical solver g, not
being differentiable. Expanding (5.2) with (5.7), we have

∂f

∂θ
(ȳ | θ)∂L

∂f
=

∫ t1

t0

∂g(ȳ(t))

∂θ︸ ︷︷ ︸
unknown

+
∂M(ȳ(t) | θ)

∂θ︸ ︷︷ ︸
known

dt

 ∂L
∂f

(5.8)

where g is the only missing part for allowing a posteriori learning. The goal of this
chapter is to explore NN-based alternatives to approximate the numerical solver g as a
differentiable emulator but also to understand how the emulator error for g will impact
the performance onM. We are trying to design,

E(ȳ) ≈ g(ȳ), s.t.
∂E
∂θ︸︷︷︸

known

(5.9)

which can also be defined as a trainable NN-based emulator, benefiting again from differ-
entiable capabilities from the NN framework,

E(ȳ |Θ) ≈ g(ȳ). (5.10)

The trainable weights Θ can be learned simultaneously with the weights of the SGS model
θ, but it would not be possible to ensure thatM is only accounting for the SGS term,

arg min
Θ,θ

`({T (y(t))}t∈[t0,t1], {ȳ(t0) +

∫ t

t0

E(ȳ(t′) |Θ) +M(ȳ(t′) | θ) dt′}t∈[t0,t1]), (5.11)

except if the loss function L correctly penalizes both terms separately,

L ≡ LE(E(ȳ |Θ)) + LM(M(ȳ | θ)). (5.12)
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5.2 Differentiable emulators for subgrid modeling

We emphasize the fact that we are looking for a differentiable emulator, but the final goal
is to effectively learn a SGS model that accounts for the unresolved scales in a simulation.
It has been demonstrated that the a posteriori learning strategy outperforms the common
a priori strategy and is remarkably stable over long-term simulations. To be usable in
practice, we would like to be able to train a SGS model using this strategy without having
to migrate an entire solver to an AD framework. The goal is thus to design a SGS model,

T (g(y))− g(T (y)) = τ ≈M(ȳ | θ). (5.13)

As explained above, a posteriori learning requires the temporal integration of the system
(5.7), but here g is replaced with an emulator E(ȳ) ≈ g(ȳ) such that

ȳ(t0) +

∫ t1

t0

E(ȳ(t)) +M(ȳ(t) | θ) dt ≈ f(ȳ | θ). (5.14)

It is clear from this equation that the performance of the SGS modelM is likely to depend
on how well the emulator E approximates the numerical solver g.

5.2.1 Numerical setup and required accuracy

We know that the a posteriori learning strategy is beneficial in turbulent systems where
backscatter has an important impact on the dynamics of the flow. Going one step further,
we may be interested in flows exhibiting forming, merging, and splitting jets as fixed by
topographical features. Such a system can be described by the quasi-geostrophic equations
with bottom topography η,

∂ω

∂t
+Nω+η = ν∇2ω − µω + Fω, ω ∈ Ω

∂ω̄

∂t
+Nω̄+η̄ = ν∇2ω̄ − µω̄ + Fω̄ +Nω̄+η̄ − N̄ω+η︸ ︷︷ ︸

τω+η

, ω̄ ∈ Ω̄
(5.15)

where Fω̄ is the wind-forcing described in (4.38) and η is made of unaligned sinusoidal
bumps as described in (Thompson, 2010),

η = 5(sin(3y) + cos(3x)). (5.16)

Note that wind and topography forcings are only applied at large scale k = 4 in order
to separate their effect from the SGS term τω+η. The corresponding terms for the solver
emulator and SGS model are thus,

E(ȳ) ≡ ν∇2ω − µω + Fω −Nω+η, (5.17)

M(ȳ) ≡ τω+η. (5.18)
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Applying the learning algorithms described in chapter 4 on this configuration results in
larger instabilities that occur rapidly for the a priori strategy, while the a posteriori
model remains stable on this temporal horizon (see Fig. 5.1). The flow produced in this
configuration has more complex dynamics with many interactions between the horizontal
jets. It is clear here that the a priori strategy without any special treatment will not
be applicable to realistic geophysical flows. Again, most of the weather and climate
solvers are developed using non-differentiable languages and thus won’t allow the direct
application of a posteriori learning. The challenge is thus to approach as close as possible
the results obtained by the a posteriori strategy without using solver differentiability.

Controled emulation error. Before trying to learn differentiable emulators, we want
to understand the precision required by the emulator to train a stable and accurate SGS
model with the a posteriori strategy. We know that convolutions, which will be used in
the emulator architectures can be seen as discrete partial derivative approximations on a
stencil corresponding to their kernel width. In the numerical solver, spatial derivatives are
computed using a spectral method, as described in 2.3 and might be challenging to repro-
duce with a NN (Li et al., 2020). Interestingly, it is possible to reproduce finite-difference
(FD) schemes by modifying the wavenumbers k in a Fourier spectral method (Kravchenko
and Moin, 1997). An error related to the discrete approximation of partial derivatives is
often called truncation error. These errors can be generated from modified wavenumbers
corresponding to a particular numerical scheme, e.g., for a FD approximation of the first
derivative of a differentiable function f(y(x)),

δ̂f

δx
= i k′(k)︸ ︷︷ ︸

truncation error

f̂ . (5.19)

We replace the partial derivatives calculations in the pseudo-spectral solver with modified
wavenumbers for three different FD schemes. We refer to the new solvers as δ2, δ4 and δ6

for a 2nd-order, 4th-order central FD schemes and a 6th-order Padé scheme, respectively.
During a posteriori training, the numerical solvers are integrated for M = 25 temporal
steps. Thus, the emulator is expected to reproduce an acceptable approximation of the
pseudo-spectral solver that holds for at least 25 steps. Here, we run reduced versions,
i.e. N̄ = 128 of the numerical solver and the FD emulators of different order without
SGS terms, τω+η = 0. We then compute the `rms between the reduced reference (pseudo-
spectral, δ∞) and the FD emulators, in addition to the SGS error between filtered direct
simulation and pseudo-spectral reference (see Fig. 5.2). The first important observation
is that the error on the velocity ū is smaller than the error on the vorticity ω̄ by one order
of magnitude. It is not surprising since the FD error is mostly located on the largest
wavenumbers, corresponding to small-scale features that are more visible in the vorticity
fields. After 25 iterations, the error of the 6th-order scheme is slightly larger than the SGS
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Figure 5.1: Reduced fields for vorticity ω̄ (left) and streamfunction ψ̄ (right) at the end
of a testing horizon (3000 temporal iterations) from the direct simulation (τω+η, top) and
the different models for the topography configuration.
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Figure 5.2: `rms normalized by the number of temporal integration stepsM for the vortic-
ity ω (left) and velocity u (right). FD emulators E are compared to the pseudo-spectral
δ∞ reference numerical solver. The error accounting for missing SGS term between δ∞

and filtered DNS is shown in dashed black for comparison.

error on the vorticity (≈ 0.26 against ≈ 0.19) while the error on the 2nd-order scheme is
much larger (≈ 0.52). We observe a large error difference in the velocity, already twice
as large for the 6th-order scheme compared to the SGS error contribution, up to 7 times
larger for the 2nd-order scheme. To better understand the spatial error distribution of the
FD emulators, we also show in Fig. 5.3 the difference between pseudo-spectral vorticity
fields ω̄, enstrophy Z = ω̄2 and kinetic energy E = ū2 + v̄2. The magnitude of the errors
is in agreement with the above discussion, but we can see here that the largest errors are
aligned with vorticity gradients.

Emulator error impact on the SGS model. Now that we have analyzed the FD
errors, we assess the impact of this emulation error on the ability to train a stable SGS
model using the a posteriori strategy. Assuming that the FD solvers are differentiable,
we can train SGS models using the same data and parameters as described in chapter 4.
Note that the models are expected to reproduce the unresolved dynamics but will also
inevitably try to correct the error of the emulator, i.e. spatial discretization in this case.
We can see in Fig. 5.4 that we SGS models can improve the discretization error and
almost reach pseudo-spectral performance on the vorticity. However, the larger mismatch
happening on the velocity is not improved by the SGS model. It might be interesting
to include a measure of the error between velocity fields in the loss function in order to
improve the large-scale predictions. We suspect that the trained models are learning a
different SGS term, i.e.

M(ω̄) ≈ τω+η + (g(ω̄)− E(ω̄)) (5.20)

where g(ω̄) − E(ω̄) is the bias between the pseudo-spectral reference solver and the FD
emulators. Depending on this error term, the SGS may compensate for an error that
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Figure 5.3: Difference between reduced pseudo-spectral reference and finite-difference
emulators for vorticity (top), enstrophy (middle), and kinetic energy (bottom) after M =

25 temporal steps.

does not exist anymore when it is run with the exact numerical solver. In practice,
the evolution of the quadratic invariants in Fig 5.5 draw some contradiction with respect
to the `rms plots and show that both kinetic energy and enstrophy increase at a similar
rate. We see that the stability of the SGS models is closely related to the order of the
FD emulator used for training, with stable behavior for the 6th-order scheme and blowup
due to instabilities for the 2nd-order scheme. The spectral statistics shown in Fig. 5.6 are
particularly satisfying for the 6th-order scheme. It is important to mention that most of
the error is located on the largest scales, which is in agreement with the potential velocity
error improvements discussed above. Note that these results already indicate that it is
possible to learn a stable SGS model from a deteriorated emulator using the a posteriori
strategy.

93



CHAPTER 5. EMULATION-BASED A POSTERIORI LEARNING OF SUBGRID
MODELS IN NON-DIFFERENTIABLE NUMERICAL SOLVERS

0 5 10 15 20 25
M

0.02

0.04

0.06

0.08

0.10

0.12

0.14
` r

m
s(
T(
ω
))
/
M

MM= 25
δ∞

MM= 25
δ 6

MM= 25
δ 4

MM= 25
δ 2

0 5 10 15 20 25
M

0.00

0.01

0.02

0.03

0.04

0.05

0.06

` r
m

s(
T(

u
))
/M

MM= 25
δ∞

MM= 25
δ 6

MM= 25
δ 4

MM= 25
δ 2

Figure 5.4: `rms normalized by the number of temporal integration steps M for the vor-
ticity ω (left) and velocity u (right). Simulations are run with pseudo-spectral δ∞ solver
or a finite-difference emulator and their respective SGS model so that they don’t include
the error bias (5.20).

5.2.2 An algorithm for trainable emulators

In the previous experiment that aims at understanding the emulator error and its impact
during the training phase of the SGS model, we used the modified differentiable pseudo-
spectral solver. Now, we want to learn a differentiable emulator representation from a
NN. Building on the successful application of the a posteriori strategy, we propose an
algorithm that trains both emulator and SGS model using an end-to-end approach. As
explained in (5.11), jointly training the E and M might lead to ambiguities except if
loss functions are penalizing each term separately. Using a single a posteriori loss, it is
possible to train E andM sequentially by applying the following iterative algorithm,

Iterative step 1 (emulator training) :

arg min
Θ

`({Φt(i)
Θ (ȳ(t0))}t∈[t0,t1], {ȳ(t) +Mi(ȳ(t))}t∈[t0,t1]), (5.21)

Iterative step 2 (subgrid-scale training) :

arg min
θ

`({Φt(i)
θ (ȳ(t0))}t∈[t0,t1], {T (y(t))}t∈[t0,t1]). (5.22)

where the flow operators Φ for emulator and SGS parameters Θ and θ are defined respec-
tively at iteration i,

Φ
t(i)
Θ (ȳ(t0)) = ȳ(t0) +

∫ t

t0

Ei+1(ȳ(t′) |Θ) +Mi(ȳ(t′)) dt′, (5.23)

Φ
t(i)
θ (ȳ(t0)) = ȳ(t0) +

∫ t

t0

Ei+1(ȳ(t′)) +Mi+1(ȳ(t′) | θ) dt′. (5.24)

Here, we can see that the right-hand side of (5.21) requires the current iteration of the SGS
modelMi, which cancels with the flow (5.23) and avoids learning a corrective bias in the
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Figure 5.5: Evolution of domain-averaged energy (left) and enstrophy(right) of the finite-
difference discretization models for 3000 reduced temporal steps.
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Figure 5.6: Time-averaged enstrophy spectrum (left) and enstrophy flux (right) of the
finite-difference discretization models for 3000 reduced temporal steps.

emulator. The iterative algorithm has to be initialized at iteration 1 with a differentiable
SGS modelM0. It is possible to start with a model trained using the a priori strategy
(4.20), or explicitly implement a differentiable physical SGS model, such as those described
in 2.1.4. The intuition behind this iterative algorithm is that the dynamics diversity might
gradually improve the performance of the emulator Ei, which in turn propagates to the
SGS model Mi. Note however that this is extremely expansive from a computational
point of view. In our experiments, we simplify the above two-step algorithm by removing
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the SGS term in the emulation training,

Direct step 1 (emulator training) :

arg min
Θ

`({ϕt(i)Θ (ȳ(t0))}t∈[t0,t1], {ȳ(t)}t∈[t0,t1]), (5.25)

Direct step 2 (subgrid-scale training) :

arg min
θ

`({ϕt(i)θ (ȳ(t0))}t∈[t0,t1], {T (y(t))}t∈[t0,t1]). (5.26)

where it is now clear that step 1 is dedicated to the emulator, and step 2 to the direct sys-
tem. One concern is that reduced simulations without SGS terms are likely to accumulate
small-scale energy and blowup, which limits the applicability of this algorithm to a small
number of temporal iterations. Still, we have seen previously that M = 25 is enough to
train a stable SGS model, which is in the stability range of a reduced solver run without
SGS model. The SGS flow operator ϕΘ is unchanged while changes are reflected in the
emulator flow ϕθ, only integrating E in isolation,

ϕ
t(i)
Θ (ȳ(t0)) = ȳ(t0) +

∫ t

t0

E(ȳ(t′) |Θ) dt′, (5.27)

ϕ
t(i)
θ (ȳ(t0)) = ȳ(t0) +

∫ t

t0

E(ȳ(t′)) +M(ȳ(t′) | θ) dt′. (5.28)

With this algorithm, we can train the differentiable emulator E once and then use it to
trainM. A second concern with this approach is that the optimization algorithm for the
emulator will only see data that tend towards numerical instabilities. Step 1 is similar
to approaches that have been explored to fully replace numerical schemes for turbulent
simulations with purely learned components. Several architectures have been successfully
applied such as multi-scale convolutional neural networks (Wang et al., 2020), graph
neural networks (Sanchez-Gonzalez et al., 2020), Fourier neural operators (Li et al., 2020)
or dilated residual networks (Stachenfeld et al., 2021). For the specific application to the
geophysical system (5.15), it is equivalent to substracting the SGS term τω+η from the
numerical solver g,

E(ω̄ |Θ) ≈ g(ω̄)− τω+η = ν∇2ω̄ − µω̄ + Fω −Nω̄+η̄, ω̄ ∈ Ω̄. (5.29)

Note that here we naturally chose the vorticity field as input of the emulator since we are
emulating the NS equations in vorticity formulation. Consequently, the SGS model can
not use streamfunction as input since the emulator does not know how to provide this
quantity. It is possible however to additionally train the emulator to predict the couple
(ω̄, ψ̄) but this might introduce new sources of error. Instead, a SGS model trained from
a differentiable emulator only uses vorticity fields,

M(ω̄ | θ) ≈ τω+η, ω̄ ∈ Ω̄. (5.30)
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Hyperparameters CNN DRN FNO
Trainable params. 616064 580704 102246977
Evaluation time 1.0 11.81 13.32

Kernel size 5 3 -
Latent size 64 48 32

Depth 7 7 6
Activation Relu Relu Relu

Convolution stack depth 7

Dilated block depth 7
Dilations (1, 2, 4, 8, 4, 2, 1)

Dilated blocks 4

Fourier layers 6
Modes 128, 65 (full)

Table 5.2: Model hyperparameters for the different neural architectures used for emulation
training.

NN architectures and learning schemes. To represent the large-scale dynamics
(5.29), we explore different neural architectures (see Table 5.2). We use a simple fully
convolutional architecture, as well as several baselines that have been used in different
PDE integration problems. Note that these neural models are “fully learned” without any
hard-coded physical components. For the SGS model (5.26), we use the same convolu-
tional architecture described (4.39) in the previous chapter.

Convolutional Neural Network (CNN). We simplify the fully convolutional architecture
(CNN) described in (4.39) to 7 convolutional blocks instead of 10.

Dilated Residual Network (DRN). We implement a state-of-the-art model that combines
residual networks with dilated convolutions, recently applied to different types of flows
(Stachenfeld et al., 2021). This architecture effectively combines the encode-process-
decode paradigm (Sanchez-Gonzalez et al., 2018) with dilated convolutions. In our ap-
plication, the input vorticity is encoded into a 48-feature tensor, processed by 4 residual
blocks each containing 7 dilated convolution blocks, and finally decoded back to a 1-
dimensional feature tensor.

Fourier Neural Operator (FNO). We also implement a state-of-the-art model that directly
learns the integral kernel in Fourier space recently applied to different fluid dynamics
PDEs (Li et al., 2020). In our application, we use all the modes of the input vorticity, i.e.
without truncation, and apply 6 Fourier layers.
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Figure 5.7: `rms normalized by the number of temporal integration steps M for the vor-
ticity ω (left) and velocity u (right). Reduced fields for trained differentiable emulators
E are compared to the pseudo-spectral δ∞ reference numerical solver.

5.3 Trained emulator performance

We first evaluate in Fig. 5.7 the performance of the trained emulator in isolation, i.e.
without SGS terms against the reference pseudo-spectral solver. We notice that the
emulators are able to learn an accurate representation of the reduced vorticity fields ω̄
and perform better than the FD emulators, even for the simple CNN. In particular, the
FNO produces an error that is smaller than the error related to the SGS term. However, we
also find that the trained emulators are performing particularly poorly on the predictions
of large scales where all three models produce a larger velocity error than the 2nd-order
FD emulator. While this is not surprising, we see in Fig. 5.8 that the error on the kinetic
energy is not located on strong vorticity gradients, which differs from the behavior of
the FD emulators. This is a mixed result since the emulators are both outperforming
the 6th-order FD emulator on the vorticity error and underperforming the 2nd-order FD
emulator on the velocity error. Again, improving on the velocity error is difficult since
the emulator only has access to vorticity.

5.3.1 Fully data-driven simulations

Now that we trained SGS models (5.26) from the previously trained emulators (5.25), we
first proceed as with the FD emulators and run simulations using both (trained) emulators
and trained SGS models. Even if we trained the emulator and SGS model separately, we
think that there is a substantial overlap between the two caused by the bias (5.20). In this
case, the evolution of the system is fully data-driven and does not contain any physical
components,

∂ω̄

∂t
= E(ω̄) +M(ω̄). (5.31)
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Figure 5.8: Difference between reduced pseudo-spectral reference and trained differen-
tiable emulators for vorticity (top), enstrophy (middle), and kinetic energy (bottom) after
M = 25 temporal steps.

Unfortunately, Fig. 5.9 shows that the produced error w.r.t the DNS is larger than the
unstable 2nd-order FD emulator-SGS couple for all three trained emulator architectures.
We believe that the large-scale error produced by the emulator is negatively impacting
the training of the SGS model. Longer simulation runs are not shown here because
they always quickly (< 500 temporal iterations) led to numerical instabilities and blow
up. Increasing the complexity of the emulator in this fully data-driven scenario is also
not an interesting solution, because the run-time computational cost of evaluation might
outweigh the benefits gained from running simulations in reduced resolution, i.e. we want
to avoid,

cost(E(ω̄)) + cost(M(ω̄)) > cost(f(ω)) (5.32)
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Figure 5.9: `rms normalized by the number of temporal integration steps M for the vor-
ticity ω (left) and velocity u (right). Simulations are run with pseudo-spectral δ∞ solver
or a trained emulator and their respective SGS model so that they don’t include the bias
(5.20).

5.3.2 Non-differentiable simulations

One of the motivations of the differentiable emulator approach is to get back to using the
non-differentiable solver once the SGS model is trained using the a posteriori strategy.
As discussed previously, we think that trained SGS models might learn an “emulator
bias” (5.20) that try to correct the error made by the emulator. However, when plugging
the trained SGS model back into the pseudo-spectral reference, this error does not exist
anymore, and the emulator bias now introduces a new error. Recall that when using the
a posteriori strategy, it is convenient to define the loss function on the trajectory state,
as described in (5.26),

` ≡ `state({ȳ(t)}t∈[t0,t1], {T (y(t))}t∈[t0,t1]) (5.33)

where elements of the left-hand side of the loss are clearly dependent on the previous
temporal iteration, i.e. extracting one timestep from (5.28) with t = t0 and t1 = t0 + 1

we have,
ȳ(t) = ȳ(t− 1) + E(ȳ(t− 1)) +M(ȳ(t− 1)). (5.34)

Hence, the loss function will evaluate both the (fixed) error from the emulator E and the
current error produced by the SGS modelM. As a conservative solution, we propose to
isolate the model in the loss function, removing any occurrence of the emulator. Here, we
do not increase the computational cost of the training step and only require changing the
loss function during (5.26), leaving (5.25) untouched. This “mixed” loss is thus directly
based on the SGS term τ ,

` ≡ `mixed({M(ȳ)(t)}t∈[t0,t1], {τ(t)}t∈[t0,t1]) (5.35)
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Figure 5.10: `rms normalized by the number of temporal integration steps M for the
vorticity ω (left) and velocity u (right). Simulations are run with pseudo-spectral δ∞

solver and SGS models trained from the different emulator architectures either using the
state-based (solid) or the mixed (dash-dot) loss function.

An obvious alternative would be to increase the complexity of the emulator architecture
to more accurately reproduce the large-scale dynamics and reduce the emulator bias since
the emulator is only temporarily used to train the SGS model. In this scenario, the cost
we would like to avoid is,

cost(g(ω̄)) + cost(M(ω̄)) > cost(f(ω)) (5.36)

with cost(g(ω̄))� cost(f(ω)) in practice. When run with the non-differentiable pseudo-
spectral solver, we can see in Fig. 5.10 that SGS models trained with `mixed perform
much better than models trained with `state. It is important to note here that `mixed is
less sensitive to the quality of the emulator, particularly on the vorticity error. Also sur-
prisingly, `state still performs better when run with the pseudo-spectral solver, indicating
that the emulator bias is not as large as the emulator error. However, we see in Fig.
5.11 that the models are unstable in longer simulations except for the DRN trained with
`mixed. Still, models trained with `state are generally accumulating energy and enstrophy
much faster than those trained with `mixed. Finally, Fig. 5.12 shows relatively satisfying
enstrophy spectrum and fluxes, with a majority of the mismatch located in the smallest
wavenumbers.

5.4 Discussion

In this chapter, we have explored emulation strategies to leverage the a posteriori learning
strategy in non-differentiable contexts. On a relatively small temporal horizon (M = 25

temporal iterations), errors caused by finite-difference schemes can be small enough to lead
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models trained from differentiable emulators for 3000 reduced temporal steps.
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Figure 5.12: Time-averaged enstrophy spectrum (left) and enstrophy flux (right) of the
SGS models trained from differentiable emulators for 3000 reduced temporal steps.

to a stable SGS model, except for low discretization order. However, we demonstrated
that training a differentiable emulator leading to a stable SGS model is a much more
challenging task. Indeed, FD schemes are mostly affected by small-scale error located on
the largest wavenumbers while trainable emulators are more robust at small scale due to
their loss function based on the vorticity. The trainable emulators are however highly
affected by large-scale errors, also due to their lack of penalization on these quantities,
e.g., velocities. In practice, this error is responsible for a bias that is partially corrected
in the SGS model and negatively affects the large-scale behavior of the simulation. We
demonstrated that changing the SGS loss to be constrained by the SGS term instead of
the state of the system can lead to stable simulations and limit the impact of the emulator
bias. While more expansive than the a priori approach, we have shown here that it is
possible to train a stable SGS model in a more realistic geophysical configuration without
physics-informed losses.
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Improving the emulator. The first obvious improvement would be to either increase
the complexity of the architecture and/or the dataset used in this context. We have
demonstrated that the DRN architecture was able to improve significantly from a simple
CNN architecture, which might indicate that larger gains are possible. We also note that
dynamics happening at large scale has a much larger turnover time compared to the SGS
dynamics and it could be interesting to train the emulator on a posteriori trajectories
longer than M = 25.

Improving the SGS model. In parallel, it might be possible to compute the emulator
bias during training and regularize the SGS loss function accordingly. If this error can be
completely compensated, it might be possible to learn an equivalent of the a posteriori
model trained from the pseudo-spectral reference, using relatively simple neural emulator
architectures.
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Chapter 6

Summary and discussion

During this thesis timespan, the field of scientific machine learning (SciML) has developed
substantially (Willard et al., 2020). This progress is a collective effort gathering multiple
research communities. While new ideas were starting to gain interest a few years ago, there
is now a large literature in the fluid dynamics community (Brunton, 2022; Brunton et al.,
2020; Vinuesa and Brunton, 2022). New projects are also transitioning from theoretical
to real-world applications in earth (Gettelman et al., 2022) and climate (Rolnick et al.,
2022) sciences.

In contrast with early exploratory works that consisted of direct applications of generic
algorithms developed by the computer science community, ML models applied to physical
problems are now using domain-specific knowledge –or physics-informed (Raissi et al.,
2019)– in order to gain interpretability and generalization capabilities. Obviously, large
progress has been inspired by theoretical work and collaborations at the intersection of
these fields. In particular, generalized approaches to constrain the structure of a NN for
a physical problem were proposed (Cranmer et al., 2020; Greydanus et al., 2019). Major
improvements were also targeted to embed invariant properties, such as general invariances
(Keriven and Peyré, 2019) or conservation laws (Alet et al., 2021). Applications to subgrid
models proved successful in two-dimensional turbulence (Pawar et al., 2023), wall-bounded
turbulence (Kim et al., 2022) or passive scalar advection-diffusion, to which we contributed
in (Frezat et al., 2021). In practice, these models are cost-free in the sense that there are
no negative impacts in specifying invariances in a NN. It simultaneously improves training
time, as the training space is reduced to only cover regions that fulfill the invariances,
it helps generalization since turbulent systems are expected to be governed by the same
set of invariances and most of the time improve the overall performance. Transfer to
larger systems has also started (Beucler et al., 2021b) but remains quite difficult due to
complex interactions, e.g. between fluid motions and thermodynamics that may not lead
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to a possible invariant description. In this context, having subgrid models dedicated to
specific processes with a clear definition and invariant properties might be more beneficial
than the “global” approach (Gentine et al., 2021) where a ML model is trained to represent
many subgrid processes.

Following the computer science and robotics communities, physicists started applying
end-to-end learning to systems of PDEs (Holl et al., 2020; Um et al., 2020) and varia-
tional systems (Fablet et al., 2021b). This technique has gained a lot of interest recently
in different areas of applications and is now referred to as differentiable physics (Qiao
et al., 2020; Schoenholz and Cubuk, 2020). Framing the learning problem in this frame-
work has been shown to improve performance for two-dimensional turbulent flows when
applied as a correction (Kochkov et al., 2021). In this context, we have demonstrated nu-
merous improvements in quasi-geostrophic subgrid modeling, including long-term stability
and universality to grid resolution within turbulence hypotheses (Frezat et al., 2022). A
particularly important advantage of this approach is that the learning problem can now
be described from quantities of interest, instead of unresolved terms. It is interesting to
note the connection between end-to-end learning and data assimilation schemes (Pawar
and San, 2021). A unified approach to realistic weather and climate models may thus be
possible and beneficial (Brajard et al., 2021). However, the application of such a learning
strategy to large-scale realistic solvers still requires solutions to the following challenges.
First, the cost of end-to-end learning is much larger than traditional “offline” approaches,
in particular when the integrated system is computationally expansive. Then, the solver
is required to be differentiable, which can be prohibitive for legacy numerical models con-
taining millions of lines of code in a non-differentiable language. Many paths could then
be explored, such as reinforcement learning (Novati et al., 2021) which alleviate differen-
tiability requirements, or deep differentiable emulators (Nonnenmacher and Greenberg,
2021) that approximate some system with a differentiable parametric function.

Training a differentiable emulator to temporarily reproduce the large-scale dynamics of
a turbulent system seems promising in order to enable end-to-end learning of a subgrid
model from non-differentiable solvers. In practice, however, the application to non-linear
PDEs is difficult and learning an accurate representation of the entire numerical system
composed of spatial and temporal discretization schemes is still an open problem. It
might be possible to define a very complex architecture that almost exactly reproduces
the numerical solver dynamics, at a considerable cost. If this cost is prohibitive, we can
just assume that the error in the emulator will then be propagated to the subgrid model, as
we have shown in the last chapter of this thesis. This corrective bias, due to the non-linear
term of the differential equation is often dominant at the largest scales for a turbulent flow.
Unfortunately, these scales are not supposed to have a significant impact in the subgrid
model, and will often lead to a simulation blowup due to energy accumulation. Isolating
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Figure 6.1: Vorticity in a turbulent quasi-geostrophic system with topography in a non-
rectangular periodic domain. The simulation was produced by a non-differentiable solver
and uses a subgrid model trained end-to-end by a NN-based emulator in a square domain.

the subgrid model in the loss function is a first-step solution to this issue and enabled
the first stable emulation-based simulations of complex quasi-geostrophic flows (see Fig.
6.1). Reaching the same level of accuracy on the subgrid model without a differentiable
solver would open new possibilities with realistic, large-scale numerical models. While
some have proposed NN-based discretization schemes (Ranade et al., 2021; Zhuang et al.,
2021), it might be possible to emulate numerical schemes to learn subgrid terms that
both account for unresolved scales and spatial discretization errors, as we explored using
a modified pseudo-spectral scheme.

The field of physics-based machine learning, together with applications to subgrid turbu-
lence modeling has evolved substantially in a short period. Three years ago, the field was
at a state where direct applications to idealized configurations using standard, i.e. not
physics-specific ML models were just emerging. Today, an entire dedicated field at the
intersection of physics and machine learning has emerged. It has already been provided
with many theoretical applications that remain to be applied to realistic scenarios, which
will certainly happen in the near future (Bauer et al., 2021; Irrgang et al., 2021; Sonnewald
et al., 2021). We can be confident in the idea that future ocean, atmosphere, and climate
models will use ML components. However, some challenges remain about the coupling
–or hybridization– of numerical modeling and artificial intelligence within these systems
(Reichstein et al., 2019). Whether modern workflows will use tools allowing a smooth
and efficient coupling (Mozaffari et al., 2022; Partee et al., 2022) or reimplement existing
numerical solvers in differentiable languages (Häfner et al., 2018; Sridhar et al., 2022) is
still an open question.
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Appendix A

Spectral decorrelation over learning
horizons for subgrid models

When learning a dynamical component, performance drastically increases when samples
are representing a diversified distribution of the target space. If data is extracted from
numerical simulations, it is possible to either start from many independent initial con-
ditions. However, startup time can be prohibitively expansive, in particular when the
system takes time to reach an equilibrium state and when the transitional regime should
not be seen in the training data. Using a single simulation, one must separate each sample
by a certain number of temporal iterations in order to avoid inter-sample correlation. In

Figure A.1: Spectral decorrelation coefficients over time at some wavenumber k for vor-
ticity fields in a quasi-geostrophic system with topography as described in (5.15). In
the dynamical system, the propagation to the smallest wavenumbers follows an inverse
exponential e−t.
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APPENDIX A. SPECTRAL DECORRELATION OVER LEARNING HORIZONS
FOR SUBGRID MODELS
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Figure A.2: Correlation coefficients between vorticity fields at a different time for the
largest (left) and smallest (right) scales corresponding to modeled and resolved dynamics
in a SGS formulation, respectively.

the SGS learning problem, it is possible to split the dynamics into resolved and mod-
eled dynamics containing the largest and smallest scales of the system, respectively. The
separation between resolved and modeled is based on the spectral representation of the
system, i.e. at some scale ∆′ we have,

kc =
kmax

∆′
(A.1)

where kmax is the largest wavenumber represented in some domain Ω. Now, the resolved
and modeled dynamics are contained in k < kc and k > kc, respectively. We show in Fig.
A.1 the correlation coefficients between the initial and temporally advanced fields in a
specific dynamical system. In this system, the resolved dynamics is decorrelating rapidly
compared to the modeled dynamics (see A.2). This is expected since large coherent
structures tend to live longer than small vortices. This type of correlation plot helps in
choosing the sampling strategy for a priori learning (4.20) and the maximum learning
temporal horizon for the a posteriori learning strategy (4.25). Depending on the scale
(or wavenumber span) of the learned dynamics, it is thus important to adapt either the
sampling strategy or the temporal integration horizon. In the SGS-emulation context, we
would ideally have (without considering technical limitations),

M(k) =
t

∆t
, s.t. r(ω(t), ω(t0) |k) ≈ 0, (A.2)

with Memu �Msgs.
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Learning sub-grid dynamics in 
idealized turbulent systems

Apprentissage de la dynamique sous-maille 
dans des systèmes turbulents idéalisés

Abstract

Climate  predictions  and  weather  forecasting  strongly  rely  on
simulations  of  the  Earth's  oceans  and  atmosphere  turbulent
dynamics.  But  the  simulation  of  turbulent  processes  is  so
computationally  expansive  that  it  is  only  possible  to  resolve  the
largest physical scales. The representation of unresolved scales in
these simulations is therefore a key source of uncertainty and its
modeling  is  still  an  open  problem.  Recently,  machine  learning
techniques have been receiving growing attention for the design of
parametrizations  and  subgrid-scale  models.  In  this  thesis,  we
explore the impact of explicitly embedding law invariances in neural
networks trained to represent the small-scale dynamics of a scalar
quantity  advected  by  a  turbulent  flow.  We  also  propose  a  new
training  algorithm inspired  by the  end-to-end approach applied  to
turbulence modeling, where the loss can be optimized on so-called
« a posteriori » metrics. While the strategy gives promising results, it
requires a differentiable numerical solver during the learning phase.
We try to address this limitation with an additional step during which
we  train  a  differentiable  emulator  of  the  resolved  dynamics.  The
error  patterns  in  the  emulator  are  shown to  be  propagated as  a
correction bias in the subgrid-scale model, limiting its performance.
However, regularizing the model loss enable stable simulations and
bring « a posteriori » learning benefits in non-differentiable solvers.
Our  results  show  that  neural  networks  can  respect  physical
principles  and  outperform  classical  models  in  long-term  stable
simulations. Their implementation in realistic solvers is expected to
improve climate understanding and turbulence in general.

Keywords : subgrid modeling, machine learning, turbulence


	Introduction
	Thesis aims and structure

	Background
	Turbulent flows phenomenology
	Turbulent scales
	Reduced-order modeling via filtering
	Instantaneous and statistical characterization
	Existing models

	Specific applications
	Scalar field modeling
	Advection-diffusion
	The barotropic quasi-geostrophic approximation

	Numerical solver
	Data-driven models

	Invariances for subgrid models with machine learning
	Embedding physical knowledge in machine learning models
	Data manipulation
	Penalizing loss function
	Architecture embedding

	Symmetries in advection-diffusion equations
	Frame symmetry
	Scalar concentration linearity

	Numerical experiments
	Unphysical behaviors across different forcing regimes
	Results

	Summary and discussion

	A posteriori learning for subgrid models
	Representing complex dynamical phenomena
	Backscatter in two-dimensional flows
	Trade-off solutions

	A turbulence equivalent to end-to-end learning
	Training algorithm
	Application to barotropic quasi-geostrophic turbulence

	Results
	Long-term stability
	Interpreting grid resolution

	Summary and implications

	Emulation-based a posteriori learning of subgrid models in non-differentiable numerical solvers
	Differentiable solvers
	Technical solutions
	a posteriori learning without a differentiable solver

	Differentiable emulators for subgrid modeling
	Numerical setup and required accuracy
	An algorithm for trainable emulators

	Trained emulator performance
	Fully data-driven simulations
	Non-differentiable simulations

	Discussion

	Summary and discussion
	Spectral decorrelation over learning horizons for subgrid models

