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Résumé : Les	larges	collections	de	séries	temporelles	deviennent	une	réalité	dans	un	grand	nombre	de	
domaines	 scientifiques	 et	 sociaux,	 comme	 la	 finance,	 les	 sciences	 de	 l’environnement,	 l’astrophysique,	 les	

neurosciences,	 l’ingénierie	ou	 les	métiers	du	numérique.	 Il	 y	a	donc	un	 intérêt	et	un	besoin	de	plus	en	plus	

importants	de	développer	des	 techniques	efficaces	pour	analyser	et	 traiter	ce	 type	de	données.	De	manière	

informelle,	une	série	temporelle	est	une	séquence	ordonnée	de	points	ou	de	valeurs.	Une	fois	les	séries	collectées	
et	 disponibles,	 les	 utilisateurs	 ont	 souvent	 besoin	 de	 les	 étudier	 pour	 en	 extraire	 de	 la	 valeur	 et	 de	 la	

connaissance.	 Ces	 analyses	 peuvent	 être	 simples,	 comme	 sélectionner	 des	 fenêtres	 temporelles,	mais	 aussi	

complexes,	comme	rechercher	des	similarités	entre	des	séries	ou	détecter	des	anomalies,	souvent	synonymes	

d’évolutions	soudaines	et	inhabituelles	possiblement	non	souhaitées,	voire	de	dysfonctionnements	du	système	

étudié.	Ce	dernier	type	d’analyse	représente	un	enjeu	crucial	pour	des	applications	dans	un	large	éventail	de	

domaines	partageant	tous	le	même	objectif	:	détecter	les	anomalies	le	plus	rapidement	possible	pour	éviter	la	
survenue	de	tout	événement	critique,	comme	par	exemple	de	prévenir	les	dégradations	et	donc	d’allonger	la	

durée	de	vie	des	systèmes.	Par	conséquent,	dans	ce	travail	de	thèse,	nous	traitons	les	trois	objectifs	suivants	:	

(i)	l’exploration	non-supervisée	de	séries	temporelles	pour	la	détection	rétrospective	d’anomalies	à	partir	d’une	

collection	 de	 séries	 temporelles.	 (ii)	 la	 détection	 non-supervisée	 d’anomalies	 en	 temps	 réel	 dans	 les	 séries	

temporelles.	 (iii)	 l’explication	 de	 la	 classification	 d’anomalies	 connues	 dans	 les	 séries	 temporelles,	 afin	

d’identifier	de	possibles	précurseurs.	Dans	ce	manuscrit,	nous	introduisons	d’abord	le	contexte	industriel	qui	a	

motivé	 la	thèse,	des	définitions	 fondamentales,	une	taxonomie	des	séries	temporelles	et	un	état	de	 l’art	des	
méthodes	de	détection	d’anomalies.	Nous	présentons	ensuite	nos	contributions	scientifiques	en	suivant	les	trois	

axes	mentionnés	précédemment.	Ainsi,	nous	décrivons	premièrement	deux	solutions	originales,	NormA	(basée	

sur	une	méthode	de	clustering	de	 sous-séquences	de	 la	 séries	 temporelles	à	analyser)	et	Series2Graph	(qui	

s’appuie	sur	une	transformation	de	la	séries	temporelle	en	un	réseau	orienté),	pour	la	tâche	de	détection	non	

supervisée	 de	 sous-séquences	 anormales	 dans	 les	 séries	 temporelles	 statiques	 (i.e.,	 n’évoluant	 pas	 dans	 le	

temps).	Nous	présentons	dans	un	deuxième	temps	la	méthode	SAND	(inspiré	du	fonctionnement	de	NormA)	
développée	pour	répondre	à	la	tâche	de	détection	non-supervisée	de	sous-séquences	anormales	dans	les	séries	

temporelles	évoluant	de	manière	continue	dans	le	temps.	Dans	une	troisième	phase,	nous	abordons	le	problème	

lié	à	l’identification	supervisée	des	précurseurs.	Nous	subdivisons	cette	tâche	en	deux	problèmes	génériques	:	

la	classification	supervisée	de	séries	temporelles	d’une	part,	l’explication	des	résultats	de	cette	classification	

par	 l’identification	 de	 sous-séquences	 discriminantes	 d’autre	 part.	 Enfin,	 nous	 illustrons	 l’applicabilité	 et	

l’intérêt	de	nos	développements	au	 travers	d’une	application	portant	 sur	 l’identification	de	précurseurs	de	

vibrations	 indésirables	 survenant	 sur	 des	 pompes	 d’alimentation	 en	 eau	 dans	 les	 centrales	 nucléaires	
françaises	d’EDF. 
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Abstract : Extensive	collections	of	data	series	are	becoming	a	reality	in	a	large	number	of	scientific	and	
social	domains.	There	is,	therefore,	a	growing	interest	and	need	to	elaborate	efficient	techniques	to	analyze	

and	process	these	data,	such	as	in	finance,	environmental	sciences,	astrophysics,	neurosciences,	engineering.	

Informally,	 a	 data	 series	 is	 an	 ordered	 sequence	 of	 points	 or	 values.	 Once	 these	 series	 are	 collected	 and	

available,	users	often	need	to	query	them.	These	queries	can	be	simple,	such	as	the	selection	of	time	interval,	

but	 also	 complex,	 such	 as	 the	 similarities	 search	 or	 the	 detection	 of	 anomalies,	 often	 synonymous	 with	

malfunctioning	of	the	system	under	study,	or	sudden	and	unusual	evolution	likely	undesired.	This	last	type	of	

analysis	 represents	 a	 crucial	 problem	 for	 applications	 in	 a	 wide	 range	 of	 domains,	 all	 sharing	 the	 same	
objective:	to	detect	anomalies	as	soon	as	possible	to	avoid	critical	events.	Therefore,	in	this	thesis,	we	address	

the	following	three	objectives:	(i)	retrospective	unsupervised	subsequence	anomaly	detection	in	data	series.	(ii)	

unsupervised	detection	of	anomalies	 in	data	streams.	(iii)	classification	explanation	of	known	anomalies	 in	

data	series	in	order	to	identify	possible	precursors.	This	manuscript	first	presents	the	industrial	context	that	

motivated	 this	 thesis,	 fundamental	 definitions,	 a	 taxonomy	 of	 data	 series,	 and	 state-of-the-art	 anomaly	

detection	methods.	We	then	present	our	contributions	along	the	three	axes	mentioned	above.	First,	we	describe	

two	original	solutions,	NormA	(that	aims	to	build	a	weighted	set	of	subsequences	that	represent	the	different	
behaviors	of	the	data	series)	and	Series2Graph	(that	transform	the	data	series	in	a	directed	graph),	for	the	task	

of	unsupervised	detection	of	anomalous	 subsequences	 in	 static	data	 series.	 Secondly,	we	present	 the	SAND	

(inspired	 from	 NormA)	 method	 for	 unsupervised	 detection	 of	 anomalous	 subsequences	 in	 data	 streams.	

Thirdly,	we	address	the	problem	of	the	supervised	identification	of	precursors.	We	subdivide	this	task	into	two	

generic	problems:	the	supervised	classification	of	time	series	and	the	explanation	of	this	classification’s	results	

by	 identifying	 discriminative	 subsequences.	 Finally,	 we	 illustrate	 the	 applicability	 and	 interest	 of	 our	
developments	 through	 an	 application	 concerning	 the	 identification	 of	 undesirable	 vibration	 precursors	

occurring	in	water	supply	pumps	in	the	French	nuclear	power	plants	of	EDF.	
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Les collections massives de séries temporelles deviennent une réalité dans un grand nombre

de domaines scienti�ques et sociaux. Il y a donc un besoin de plus en plus important par les

acteurs des domaines concernés de développer des techniques qui peuvent les analyser e�-

cacement. Par exemple, de tel domaines concernés qui impliquent des séries temporelles sont

: la �nance, les sciences de l’environnement, l’astrophysique, les neurosciences, l’ingénierie, le

multimédia. De manière informelle, une série temporelles, ou séquence de données, est une

séquence ordonnée de points ou de valeurs. Si la dimension ordonnant la séries est le temps, on

parle alors de séries temporelles, mais les séries peuvent être ordonnées par d’autres mesures.

Par exemple, de telles mesures peuvent être : l’angle dans les pro�ls radiaux astronomiques, la

fréquence dans la spectroscopie infrarouge, la masse dans la spectroscopie de masse, la position

dans les séquences de génome). Lorsque ces collections de séquences sont générées, les utilisa-

teurs peuvent avoir besoin de les analyser dès qu’elles sont disponibles. Ces analyses peuvent

être simples, comme la sélection de fenêtres temporelles ou le calcul de la moyenne, mais aussi

complexes, comme la recherche de similarités, le clustering, et la détection d’anomalies. La

détection d’anomalies dans les séries temporelles est un problème crucial avec des applications

dans un large éventail de domaines, qui partagent tous le même objectif: détecter les anomalies

le plus rapidement possible pour éviter tout événement critique. Des exemples de telles applica-

tions peuvent être pertinent dans les domaines de la biologie, de l’astronomie et de l’ingénierie.

Certains de ces domaines sont bien étudiés et théoriquement bien explorés. Les connaissances

acquises par les experts du domaine peuvent être utilisées pour construire un algorithme qui

vise à détecter e�cacement tout type de comportement qui dérive d’une potentielle normalité

bien dé�ni. Cependant, de tels algorithmes peuvent être compliqués à développer ou peuvent

avoir des di�cultés à s’adapter à des changements inconnus ou mal dé�nis dans le temps. D’un

autre côté, si les données disponibles sont su�samment représentatives pour illustrer correcte-

ment l’état de santé du système, une méthode s’adaptant et se basant automatiquement sur les

données pourrait o�rir plus de �exibilité. Par exemple, dans le cas de la détection des fraudes,

un modèle basé seulement sur la connaissance des experts ne peut reconnaitre que les fraudes

déjà connues. Au contraire, un modèle construit et évoluant en fonction des données collec-

tées pourrait être utile pour trouver de nouveaux type de fraude, ce qui est crucial puisque les

fraudes peuvent fréquemment changer et évoluer. En outre, dans le cas général de la détection

d’anomalies, il est donc important de savoir construire des modèles apprenant et s’adaptant en

fonction des données collectées. De plus, dans le cas spéci�que où les anomalies sont connues

et stockées dans une base de données, des méthodes se basant sur cette base de données peu-

vent être utilisées pour détecter les précurseurs de ces anomalies connues. Ces précurseurs (ou

symptômes) peuvent indiquer à l’utilisateur les dangers et les défaillances potentiels futurs et

prévenir les dommages critiques. Par conséquent, dans cette thèse, nous abordons les trois ob-

jectifs liés au problème général concernant la détection d’anomalies dans les séries temporelles.
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• Les séries de données étant stockées dans de grandes bases de données, le premier objec-

tif est de pouvoir identi�er les éventuelles anomalies survenues dans le passé. Une telle

analyse peut aider les experts à explorer les séries temporelles et à identi�er des com-

portements inhabituels. Les anomalies découvertes peuvent être utiles soit pour guider

l’expert dans l’analyse d’un événement spéci�que survenu dans le passé, soit pour �ltrer

les anomalies possibles dans les séries de données a�n de créer des ensembles de données

exempts d’anomalies pour les modèles d’apprentissage automatique supervisés. Voici un

exemple : Une augmentation inhabituelle de la température est remarquée à l’intérieur

d’un composant important d’une centrale hydroélectrique. Cette température augmente

lentement sans que l’on sache exactement pourquoi. Les experts décident alors d’analyser

les valeurs historiques des capteurs de la centrale, à la recherche d’explications possibles.

A cause de la faible occurence dans le passé de l’anomalie (augmentation de tempera-

ture), il est impossible de créer une base de données et d’entraîner un modèle supervisé

pour classer ces anomalies. Par conséquent, des méthodes non supervisées sont utilisées

pour détecter les événements inhabituels qui pourraient être corrélés à la lente augmen-

tation de la température.

• Le deuxième objectif est d’analyser les �ux de données (provenant de capteurs retour-

nant des valeurs en temps réel) et de déclencher des alarmes en temps réel lorsqu’un

comportement inhabituel se produit. Ces alarmes peuvent aider les experts à prévenir les

éventuelles pannes ou les coûts supplémentaires que le comportement inhabituel pourrait

impliquer. L’analyse en temps réel est fortement liée à l’analyse rétrospective (objectif

précédent). En e�et, un modèle en temps réel peut être construit e�cacement sur des

ensembles de données sans anomalie ou pour véri�er les comportements inhabituels qui

se sont déjà produits dans le passé. Voici un exemple : Les experts dé�nissent des carac-

téristiques limites qui pourraient impliquer l’arrêt de la centrale électrique. Par exemple,

des changements de température non désirés (atteignant une limite de sécurité) doivent

être détectés en temps réel pour alerter les experts. La détection de ces évolutions inhab-

ituelles (c’est-à-dire des sous-séquences inhabituelles) peut aider les experts à prendre la

bonne décision.

• Le troisième objectif est d’aider le diagnostic des experts en expliquant l’occurrence d’un

événement. Par exemple, cette explication peut correspondre à de sous-séquences spéci-

�ques dans les séries temporelles qui pourraient expliquer ou aider à prédire une anoma-

lie connue. Ces méthodes nécessitent une assistance humaine (en fournissant les événe-

ments ou anomalies connus). Voici un exemple : Grâce à un capteur booléen positionné

sur une pompe dans la centrale électrique, les experts ont remarqué que, parfois, cette

pompe vibre et bouge de quelques microns. Comme il n’y a pas d’explication claire

de l’origine de ces vibrations, on peut utiliser des modèles qui permettent à la fois à

reconnaître et à expliquer les vibrations. Par exemple, un modèle supervisé peut être en-

traîné sur une vaste collection de capteurs entourant la pompe. Ce dernier est entraîné à

classer les événements contenant une vibration (étiquetés par les experts) des événements

réguliers (sans aucune vibration). Une fois le modèle entraîné, on peut récupérer les car-

actéristiques discriminantes (c’est-à-dire les sous-sequences dans les séries temporelles

générées par des capteurs qui pourraient expliquer pourquoi la vibration se produit) et

les utiliser pour améliorer la compréhension des vibrations par les experts.

ii



Dans le premier chapitre, nous présentons la dé�nition de base, la taxonomie et le contexte

des séries temporelles et des méthodes de détection d’anomalies. Nous dé�nissons ensuite les

di�érentes tâches liées à la détection d’anomalies dans les séries temporelles. En�n, nous pas-

sons en revue les approches les plus récentes et leurs limites, qu’elles soient non-supervisées,

semi-supervisées ou supervisées. Dans le deuxième chapitre, nous abordons ensuite la tâche de

détection non supervisée de sous-séquences anormales dans les séries temporelles statiques (i.e.,

n’évoluant pas dans le temps). Nous discutons d’abord brièvement des limites des approches

actuelles de l’état de l’art. Nous présentons ensuite deux nouvelles approches adaptées à la dé-

tection d’anomalies sans contraintes liées au domaine d’application. Nous décrivons d’abord

NormA, une nouvelle approche basée sur une nouvelle primitive de séries temporelles, qui per-

met de détecter les anomalies en fonction de leur similarité (ou dissimilarité) avec un modèle

qui représente le comportement normal de la série temporelle initiale. Nous introduisons en-

suite Series2Graph, une approche basée sur une modélisation des séries temporelle en réseaux,

et qui vise plus précisément à intégrer les séries de données dans un graphe dirigé qui met en év-

idence les sous-séquences inhabituelles et potentiellement anormales. Nous présentons ensuite

une analyse expérimentale comparant la précision de la détection des anomalies et le temps

d’exécution de NormA et Series2Graph et des approches de l’état de l’art actuelles. Dans le

troisième chapitre, nous abordons la tâche de détection non-supervisée de sous-séquences anor-

males sur des séries temporelles évoluant de manière continue dans le temps. Nous présentons

tout d’abord les limites que les approches de l’état de l’art s’appliquant aux séries temporelles

statiques peuvent avoir lorsqu’elles sont utilisées pour des �ux de données continue. Nous

présentons ensuite SAND, une nouvelle méthode s’utilisant en temps réel et adaptée à la détec-

tion d’anomalies sans contraintes liées au domaine d’application. Cette dernière s’appuie sur

une nouvelle méthodologie de clustering pour mettre à jour de manière incrémental son mod-

èle. Ce dernier s’adapte donc aux changement de distribution et omet les données obsolètes.

Nous présentons en�n une analyse expérimentale qui compare SAND aux approches statiques

et streaming (i.e., évoluant en temps réel) de l’état de l’art sur une large base de données de

séries temporelles. Dans le quatrième chapitre, nous abordons le problème liée à l’identi�cation

supervisée des précurseurs. Cette tâche peut être résolue en considérant d’abord la tache précé-

dente comme un problème de classi�cation supervisée des séries temporelles, puis en analysant

le problème de l’explication de la classi�cation. Dans ce chapitre, nous nous concentrons sur

le problème de l’explication de la classi�cation. Nous discutons d’abord brièvement des limites

des approches actuelles. Nous présentons ensuite dCNN et dCAM, une nouvelle architecture de

réseau de neurones convolutif et profond et une nouvelle Class Activation Map pour chaque

dimension (i.e., chaque capteurs). Contrairement à la Class Activation Map proposée comme

telle, la méthode dCAM peut identi�er des caractéristiques discriminantes (ou sous-séquences)

dans toutes les dimensions. Nous présentons ensuite une analyse expérimentale dans laque-

lle nous comparons notre approche avec les approches existantes. Dans le cinquième et dernier

chapitre, nous illustrons l’applicabilité et l’intérêt de nos méthodes dans une application indus-

trielle proposée par le partenaire industriel de cette thèse : EDF R&D (département de recherche

et de développement d’EDF). Nous étudions les précurseurs de la détection des vibrations in-

désirables survenant dans les systèmes de pompes d’alimentation en eau dans les centrales

nucléaires françaises. Nous décrivons d’abord le jeu de données et le contexte industriel. Nous

explorons ensuite deux scénarios : nous abordons d’abord la tâche comme si les experts d’EDF

ne fournissaient aucune information sur les vibration à détectées. Dans ce premier scénario,

nous appliquons NormA et Series2Graph. Nous évaluons leur précision en utilisant les infor-

iii



mations fournis par les experts. Nous abordons ensuite la tâche comme un problème supervisé

(en utilisant les informations fournie par les experts) et appliquons dCNN/dCAM. Nous mon-

trons dans ce chapitre les béné�ces apporté par les méthodes supervisées comparé au méth-

odes non-supervisées. Nous démontrons ensuite l’intérêt de l’architecture dCNN et la méthode

d’explication dCAM pour l’explication de l’apparition de vibration. Pour cela, nous analysons

premièrement les capteurs les plus identi�é par la dCAM comme contribuant le plus à la classi-

�cation entant que « contenant une vibration ». Nous montrons que ces capteurs sont cohérent

avec leur positionnement structurel vis-à-vis de la pompe vibrante. Finalement, nous analysons

les formes des sous-séquences (de chaque capteur identi�é comme important) détectées par la

dCAM et les confrontons aux connaissances des experts du domaines.
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Extensive collections of data series are becoming a reality in a large number of scienti�c and so-

cial domains. There is, therefore, a growing interest and need to elaborate e�cient techniques

to analyze and process these data, such as in �nance, environmental sciences, astrophysics,

neurosciences, engineering. Informally, a data series is an ordered sequence of points or values.

Once these series are collected and available, users often need to query them. These queries

can be simple, such as the selection of time interval, but also complex, such as the similarities

search or the detection of anomalies, often synonymous with malfunctioning of the system

under study, or sudden and unusual evolution likely undesired. This last type of analysis rep-

resents a crucial problem for applications in a wide range of domains, all sharing the same

objective: to detect anomalies as soon as possible to avoid critical events. Therefore, in this

thesis, we address the following three objectives: (i) retrospective unsupervised subsequence

anomaly detection in data series. (ii) unsupervised detection of anomalies in data streams.

(iii) classi�cation explanation of known anomalies in data series in order to identify possi-

ble precursors. This manuscript �rst presents the industrial context that motivated this thesis,

fundamental de�nitions, a taxonomy of data series, and state-of-the-art anomaly detection

methods. We then present our contributions along the three axes mentioned above. First, we

describe two original solutions, NormA (that aims to build a weighted set of subsequences that

represent the di�erent behaviors of the data series) and Series2Graph (that transform the data

series in a directed graph), for the task of unsupervised detection of anomalous subsequences in

static data series. Secondly, we present the SAND (inspired from NormA) method for unsuper-

vised detection of anomalous subsequences in data streams. Thirdly, we address the problem of

the supervised identi�cation of precursors. We subdivide this task into two generic problems:

the supervised classi�cation of time series and the explanation of this classi�cation’s results by

identifying discriminative subsequences. Finally, we illustrate the applicability and interest of

our developments through an application concerning the identi�cation of undesirable vibra-

tion precursors occurring in water supply pumps in the French nuclear power plants of EDF.
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1.1 Introduction

Massive collections of data series are becoming a reality in virtually every scienti�c and
social domain, and there is an increasingly pressing need by relevant applications for devel-
oping techniques that can e�ciently analyze them [4, 91]. Examples of �elds that involve
data series are �nance, environmental sciences, astrophysics, neuroscience, engineering,
multimedia, etc. [90, 132, 91, 4]. Informally, a data series, or data sequence, is an ordered
sequence of data points. If the ordering dimension is time, then we talk about time series.
Though, series can be ordered over other measures (e.g., angle in astronomical radial pro-
�les, frequency in infrared spectroscopy, mass in mass spectroscopy, position in genome
sequences, etc). When these sequence collections are generated, users may need to query
and analyze them as soon as they become available. These queries can be simple, such as
range selection or mean computation, but can also be complex, such as similarity search,
clustering, and anomaly detection.

Data series anomaly detection is a crucial problem with application in a wide range of
domains [90] that all share the same well studied goal [8, 107, 124]: detecting anomalies the
fastest as possible to avoid any critical event to come. The knowledge acquired by experts
can be used to build an algorithm that aims to detect e�ciently any kind of behavior that
derives from a potential well-de�ned normality. However, such approaches can be com-
plicated to concretize and might have di�culty adapting to unknown or unclear changes
over time. On the other side, if the data available are representative enough to illustrate
the system’s health state correctly, a data-driven method could provide more �exibility.
For instance, in the case of fraud detection, a knowledge-based model looks for known
frauds, while a data-driven model might be helpful to �nd new patterns, which is crucial
since frauds can change frequently and dynamically. Furthermore, in the general case of
anomaly or outlier detection, the same statement can be made. Moreover, in the speci�c
case when anomalies are known and stored in a dedicated database, data-driven methods
can be used to detect precursors of these known anomalies. Such precursors (or symptoms)
might indicate the user of potential future danger and failures and prevent critical damages.

1.2 Motivation: Industrial Context

As mentioned above, the theoretical task of �nding anomalies meets real industrial needs.
The desire to analyze a large quantity of data e�ciently and being able to express complex
queries (i.e., anomalies discovery) can be crucial for industrial actors. EDF (one of the major
international electric utility) is one of these actors. One crucial goal for EDF is to improve
the safety and availability of its electrical power plants by detecting anomalies that could
occur. As massive gains are expected from reducing maintenance volumes, there is thus a
serious need to have accurate and e�cient algorithms to detect anomalies and understand
their origins. Moreover, EDF has been collecting sensor data in every nuclear power plant
for decades (at least more than 20 years). Knowing that one sensor can return one value
per two seconds, an entire history of values (i.e., a data series) can reach 315,000,000 points.
With a total of 58 nuclear power plants, with more than 2000 sensors per unit, it represents
a data series database of more than 33 trillion points. Considering that one value requires
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16 bits of storage, a rough estimation indicates that such a dataset corresponds to 500 Ter-
aBytes of data. Thus, to bene�t from the collected data of the past, one needs to have at
disposal an e�cient method to visualize and analyze subsequences, and more signi�cantly,
detect abnormal subsequences. In the following chapter, we describe and enumerate exist-
ing methods to solve subsequence anomaly detection by taking care of the applicability of
such approaches to EDF database context. Moreover, despite the extensive work done by
experts, anomaly annotations in data series are either non-existing or di�cult to handle by
hand or automatically by a computer code. Thus, one needs to present both supervised,
semi-supervised and unsupervised methods.

Finally, whereas we discussed the electricity production side in the previous paragraph,
EDF also collects a signi�cant amount of data series on the consumer side. For instance,
such data series can be either the electricity consumption in a private house or the global
electricity consumption of an entire country. For the �rst case, detecting abnormal electri-
cal consumption can help the consumer or EDF prevent an electric appliance from failing
before causing any damage or unwanted electrical cost. In the second case, detecting ab-
normal days in a country’s global consumption can help the experts adapt their production
plan and optimize the electricity cost.

1.2.1 General Objectives

Overall, as described in the previous section, the anomaly detection task in data series is
a large and challenging problem, �nding application in almost all the activities of a multi-
national electric utility. On EDF side, the anomaly detection task can be divided into three
main objectives:

1. Retrospective subsequence anomaly detection: As historical data series are
stored in large databases, the �rst objective is to be able to identify in the databases
possible anomalies that occurred in the past. Such analysis can help the expert to
explore the historical data series and identify unusual behaviors. The latter can be
helpful to either guide the expert analysis of a speci�c event that happened in the past
or �lter out possible anomalies from the data series to create anomaly-free datasets
for supervised machine learning models. Here is an example: An unusual tempera-
ture increase is noticed inside an important component in a hydropower plant. This
temperature is increasing slowly without any clear understanding. The experts then
decide to analyze the historical values of sensors in the plant, looking for clues. As
these events did not happen many times, one cannot create a database of similar
events and train a supervised model to classify such events. Therefore, unsupervised
methods are used to detect unusual events that might correlate with the slow tem-
perature increase.

2. Real-time analysis: The second objective is to analyze data stream (such as sensors
returning values in real-time) and raise alarms in real-time when an unusual behav-
ior occurs. Such alarms can help the experts to prevent possible failures, damages,
or extra costs that the unusual behavior could cause. Real-time analysis is strongly
linked to retrospective analysis. Indeed, a real-time model can be learned e�ciently
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on anomaly-free datasets (built through a retrospective analysis) or to check for un-
usual behaviors that already happened in the past. Here is an example: Experts set
levels of issues that might imply shutting down the power plant. For instance, Un-
wanted temperature changes (reaching a safety limit) need to be detected in real-time
to alert the experts. Detecting such unusual evolutions (i.e., unusual subsequences)
can help the expert make the right decision.

3. Anomaly explanation and understanding: The third objective is to assist experts’
diagnosis by explaining the occurrence of an event. For instance, such explanation
can be some speci�c subsequences in the data series generated by a sensor that could
explain or help to predict a known anomaly. Such methods require human assistance
(by providing the known events or anomalies) but can create a real-time model that
uses identi�ed subsequence to predict future known events or anomalies. Here is
an example: Thanks to a boolean sensor positioned on a speci�c water pump in the
power plant, experts noticed that this pump is sometimes vibrating and moving of
few microns. As there is no clear understanding and explanation of the origin of
these vibrations, one can use models that both learn to recognize and explain the vi-
brations. For example, a supervised model can be trained on an extensive collection
of sensors surrounding the pump. The latter is trained to classify the events contain-
ing a vibration (labeled by the experts) from regular events (without any vibration).
Once the model is trained, one can retrieve the discriminant features (i.e., the sections
in the sensors that might explain why the vibration occurs) and use them to improve
the expert understanding of the vibrations and prevent them in the future.

1.3 Contributions

Therefore, this thesis tackles the three objectives mentioned above. We �rst present the
related state-of-the-art approaches for each of these goals. We then present our contri-
butions in each of the three following topics: (i) We �rst tackle the case of unsupervised
subsequence anomaly detection in data series. This topic is strongly related to the retro-
spective analysis objectives illustrated in the previous section. (ii)We then consider the case
of streaming subsequence anomaly detection. The latter is closely related to the real-time
analysis objectives described in the previous section. (iii) We �nally deal with the super-
vised identi�cation of anomaly precursors by solving the classi�cation explanation task.
This case is closely related to the Explanation and understanding objectives introduced in
the previous section. We now describe in detail each contribution in each topic considered
in this thesis.

1.3.1 Unsupervised subsequence anomaly detection

We �rst start by introducing the contribution related to the unsupervised subsequence
anomaly detection task. In the speci�c context of sequences, which is the focus of this
thesis, we are interested in identifying anomalous subsequences, which means that the
outlier is not a single value but rather a sequence of values. This distinction is crucial
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for the following reason: even though all individual values in a subsequence look normal
when examined independently from one another, the sequence of these same values may
be anomalous (e.g., the trend or shape of the subsequence may not be normal). Therefore,
subsequence anomaly detection is a bene�cial and essential operation for many real-world
applications because it enables the early identi�cation of problems that would otherwise
remain undetected until too late [3].

1.3.1.1 Limitations of Current Approaches

Existing techniques either explicitly look for a set of pre-determined types of anomalies [44,
1], or identify as anomalies the subsequences with the largest distances to their nearest
neighbors (termed discords) [124, 104]. We observe that these approaches pose limitations
to the subsequence anomaly identi�cation task for several reasons, explained below.

First, anomalous behavior is not always known. Therefore, techniques that use speci�c
domain knowledge for mining anomalies (e.g., in cardiology [44], and engineering [3]) in-
volve several �nely-tuned parameters and do not generalize to new cases and domains. For
example, early detection of anomalies in bearings (rolling elements in rotating machines,
such as an aircraft engine) is of great importance for engine manufacturers.

Second, in the case of general, domain-agnostic techniques for subsequence anomaly
detection, the state-of-the-art algorithms (e.g., [124, 104]) have been developed for the case
of a single anomaly in the dataset, or multiple di�erent (from one another) anomalies. The
reason is that these algorithms are based on the distance of a subsequence to its nearest
neighbor in the dataset: the subsequence that has the farthest nearest neighbor is marked
as an anomaly.

Third, in order to remedy this situation, the mth discord approach has been pro-
posed [120]. This approach takes into account the multiplicity, m, of the anomalous sub-
sequences that are similar to one another and marks as anomalies all the subsequences in
the same group by computing the mth (instead of the 1st) nearest-neighbors for each sub-
sequence. Nevertheless, this approach assumes that we know the multiplicity m, which is
not true in practice (otherwise, we need to re-execute the algorithm for several di�erentm
values).

Fourth, another drawback of unsupervised methods for subsequence anomaly detection
is the non-stationarity of data series: the data characteristics (e.g., basic statistics and trends)
may change over time. These situations are hard to handle and confuse the discord andmth-
discord methods, since an anomalous subsequence may �nd a very near neighbor among
the subsequences of a latter part of the series that involves a di�erent set of normal (and
anomalous) patterns.

In this thesis, we address the aforementioned problems, and propose two novel methods
suitable for subsequence anomaly detection. The proposed approaches allow us to detect
anomalies based on their (dis)similarity to a model representing normal (expected) behav-
ior. These two methods are brie�y described in the following two sections, and detailed
presentations can be found in Chapter 3.
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1.3.1.2 NormA

First, we propose NormA, an unsupervised set-based approach. NormA starts by carefully
selecting some of the subsequences of the dataset based on a scoring mechanism. The
selected set of subsequences are then used to build the normal behaviormodel, which is a set
of sequences. This process is automatic (using the minimum description length principle),
without the need for user intervention, and is e�ective even when the dataset contains
multiple anomalies. We also propose a variant of NormA that is able to handle situations
where a single series exhibits multiple normal behaviors. The latter is essential in practice,
e.g., when the underlying data generation process changes among several normal states.
In the end, NormA detects subsequence anomalies by comparing candidate subsequences
to this normal behavior model. We note that NormA is unsupervised and computes the
normal behavior model based on the original (unlabeled) dataset, despite the presence of
anomalies in it. Our contributions can be summarized as follows.

• We summarize in Section 3.1, the state-of-the-art methods on subsequence anomaly
detection and discuss their practical shortcomings. We propose a new de�nition of
subsequence anomalies to overcome these problems, based on the distance to normal
behavior.

• In Section 3.3.1, we formalize the concept ofNormalModel, which is a set of data series
that represents the recurrent (normal) behavior in a sequence. The Normal Model can
be the basis for anomaly detection and can be instantiated in di�erent ways.

• In Section 3.3.2, we describe a new subsequence anomaly detection algorithm that au-
tomatically constructs the Normal Model series, based on the principles of frequency,
coverage and centrality. Subsequently, the algorithm uses the Normal Model in or-
der to identify anomalies in an unsupervised and domain-agnostic manner. We pro-
pose two variants of this algorithm: NormA-SJ that is based on full computation, and
NormA-smpl, based on sampling, which achieves almost the same accuracy but is
considerably faster.

• Finally, in Section 3.5, we conduct a large experimental evaluation using several large
and diverse datasets from various domains that demonstrates the strong accuracy and
the e�ciency of NormA.

1.3.1.3 Series2Graph

Second, we now present Series2Graph, a graph-based subsequence anomaly detection
method for data series. Our approach does not need labeled instances (like supervised
techniques do), or clean data that do not contain anomalies (like zero-positive learning
techniques require). It also allows the same model to be used for the detection of anomalies
of di�erent lengths.

Series2Graph is based on a graph representation of a novel low-dimensionality em-
bedding of subsequences. It starts by embedding subsequences into a vector space, where
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information related to their shapes is preserved. This space is then used to extract overlap-
ping trajectories that correspond to recurrent patterns in the data series. Subsequently, we
construct a graphwith nodes derived from the overlapping trajectories, and edges represent
transitions (among subsequences in di�erent nodes) in the original series.

Intuitively, this graph encodes all the subsequences of a (single or collection of) data
series and encodes the recurring patterns in these subsequences. The latter allows us to
di�erentiate between normal behavior, i.e., frequently occurring patterns, and anomalies,
i.e., subsequences that rarely occur in the data series.

Our contributions are the following.

• In Section 3.1, we propose a new formalization for the subsequence anomaly detection
problem, which overcomes the shortcomings of existing approaches. Our formaliza-
tion is based on the intuitive idea that anomalies are the subsequences that are not
similar to the common behavior, which we call normal.

• In Section 3.4.1, we describe a novel low-dimensionality embedding for subsequences
and use a graph representation for these embeddings. This representation leads to a
natural distinction between recurring subsequences that constitute normal behavior
and rarely occurring subsequences that correspond to anomalies.

• Based on this representation, in Section 3.4.2, we develop Series2Graph, an unsu-
pervised method for domain agnostic subsequence anomaly detection. Series2Graph
supports the identi�cation of previously unseen single and recurring anomalies and
can be used to �nd anomalies of di�erent lengths.

• Finally, in Section 3.5, we conduct an extensive evaluation using several large and
diverse datasets from various domains that demonstrates the e�ectiveness and e�-
ciency of Series2Graph.

1.3.2 Streaming Unsupervised subsequence anomaly detection

We now describe the contributions related to the streaming unsupervised subsequence
anomaly detection task. As mentioned in the previous section, anomaly, or outlier de-
tection is a well-studied problem [8, 107, 124] relevant to several scienti�c domains [91].
For the speci�c case of sequences and data series, we are also interested in identifying
anomalous subsequences, where outliers are not single values but rather a sequence of val-
ues. Moreover, datameasurements arriving continuously in several real-world cases require
anomaly detection to take place in real-time. Because drifts in data distribution are com-
mon, the detection needs to be independent of these changes. To illustrate this point, let
us consider a sensor measuring the acceleration on the x-axis of a device positioned on the
chest of a human performing di�erent actions [64]. One can observe that the data char-
acteristics corresponding to subsequences are di�erent for actions such as Nordic walking
and rope jumping. As changes of actions happen in real-time, the detection of abnormal
subsequences needs to be able to adapt to changes in the data generation process.
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1.3.2.1 Limitations of Current Approaches

In addition to the limitations enumerated in Section 1.3.1.1, the speci�c case of streaming
data series arises new limitations. Among all previous methods for subsequence anomaly
detection, only discords methods (such asMatrix Pro�le incremental implementation [124])
and tree-based methods [79] can be used. The remaining methods (including our proposed
approaches introduced in Section 1.3.1.2 and Section 1.3.1.3) cannot adapt to changes and
learn new data characteristics, both of which are required when dealing with data streams
due to their design. In such cases, the methods need to learn and modify their parameters
as new data arrive.

1.3.2.2 SAND

To address the problems mentioned above we propose SAND, a novel approach suitable for
subsequence anomaly detection in data streams. SAND builds a data set of subsequences
representing the di�erent behaviors of the data series. These subsequences are weighted
using statistical characteristics, such as their cardinality (i.e., how many times the subse-
quence occurred) and their temporality (i.e., the time di�erence this subsequence has been
detected for the last time). SAND enables this data structure to be updated from one batch
to another while computing an anomaly score at every timestamp. Thus, SAND proposes
a solution to the subsequences anomaly detection task on streaming data. SAND bene-
�ts from k-Shape [93], a state-of-the-art data-series clustering method, which we extend
to enable the clustering result to be updated without storing any of the previous subse-
quences. We demonstrate experimentally that our method outperforms the current (static
and streaming) state-of-the-art approaches. Our contributions, described in Chapter 4, are
as follows.

• We describe the concepts and ideas used by the state-of-the-art methods on subse-
quence anomaly detection (static and streaming) and discuss their practical short-
comings.

• We extend k-Shape for streaming scenarios by enabling batch updates of the cluster-
ing partition. Our approach avoids entirely the storage of the previous subsequences,
a critical step for operating over unbounded data series.

• We present SAND, our subsequence anomaly detection method speci�cally designed
for operation over streaming sequence data. SAND exploits our streaming k-Shape
to scale in memory and in execution time for unbounded streams. Furthermore, we
propose a new weighting scheme for clusters and an automatic cluster creation pro-
cedure to handle distribution drifts. We �nally propose a novel anomaly score com-
putation that adapts dynamically to the current batch and gives less importance to
old subsequences.

• We perform an experimental analysis using a large corpus of real datasets from dif-
ferent domains (including a ground truth of annotated anomalies). We evaluate both
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subtle changes in data characteristics (by concatenating datasets from the same do-
main) and drastic changes (by concatenating datasets from di�erent domains). We
empirically evaluate the in�uence of SAND’s parameters on accuracy and execution
time. Finally, we compare SAND with several SOTA approaches and show that our
method outperforms the strongest competitor up to 27% while executing one order
of magnitude faster.

1.3.3 Supervised identi�cation of anomaly precursors

We now describe the contributions related to the supervised identi�cation of anomaly pre-
cursors task. We treat the latter task as a classi�cation task in which the anomaly is one
speci�c class (the precursors are thus discriminant features of the anomaly class).

More generally, data series classi�cation is a crucial and challenging problem in data
science [119, 33]. To solve this issue, various data series classi�cation algorithms have been
proposed in the past few years [5], applied on a large number of use cases. Standard data
series classi�cation methods are based on distances to the instances’ nearest neighbors,
with k-NN classi�cation (using the Euclidean or Dynamic TimeWarping (DTW) distances)
being a popular baseline method [30]. Nevertheless, recent works have shown that ensem-
ble methods using more advanced classi�ers achieve better performance [6, 73]. Following
recent breakthroughs in the computer vision community, new studies successfully propose
deep learning methods for data series classi�cation [34, 28, 127, 126, 42, 112, 25], such as
Convolutional Neural Network (CNN), Residual Neural Network (ResNet) [114], and Incep-
tionTime [52].

While having a trained and accurate classi�cation model, �nding explanations of the
classi�cation result (i.e., �nding the discriminative features that made the model decide
which class to attribute to each instance) is a challenging but important problem, e.g., in
manufacturing for anomaly-based predictive maintenance [125], or in medicine for robot-
assisted surgeon training [51]. Such discriminant features can be based on patterns of inter-
est that occur in a subset of dimensions at di�erent timestamps or at the same timestamp.
For some CNN-based models, the Class Activation Map (CAM) [128] can be used as an ex-
planation for the classi�cation result. CAM has been used for highlighting the parts of an
image that contribute the most to a given class prediction and has also been adapted to data
series [34, 114].

1.3.3.1 Limitations of Current Approaches

Nevertheless, CAM for data series su�ers from one important limitation. Since CAM is a
univariate time series (of the same length as the input instances) with high values aligned
with the subsequences of the input that contribute the most for a given class identi�cation,
in the speci�c case of multivariate data series as input, no information can be retrieved
from CAM on the level of contribution of speci�c dimensions. Addressing this signi�cant
limitation is a sought-after challenge for several domains. For example, in a nuclear power
plant, we would like to determine both timestamp and sensors (i.e., the exact patterns) that
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could lead to a potential anomaly.

1.3.3.2 dCAM

In this thesis (see Chapter 5), we present a novel approach that �lls in the gap by addressing
this limitation. We propose a novel data organization and a new Class Activation Map
that highlights both the temporal and dimensional informations. Our contributions are as
follows.

• We �rst develop a new method that transforms convolutional-based neural network
architectures: whereas previous network architectures can only provide an expla-
nation for all the dimensions together, our transformation represents the only deep
learning solution that enables explanation in individual dimensions. Our approach
can be used with any deep network architecture with a Global Average Pooling layer.

• Wedemonstrate howwe can apply themethod to threemodern deep learning classi�-
cation architectures. We �rst describe dCNN (dimension-wise Convolutional Neural
Network), inspired from a traditional CNN (Convolutional Neural Network) archi-
tecture. We then describe how more advanced architectures, such as ResNet and In-
ceptionTime, can be transformed as well. We name these transformed architectures
dResNet and dInceptionTime.

• We introduce dCAM (dimension-wise Class Activation Map), a novel method that
(based on dCNN/dResNet/dInceptionTime) returns a multivariate CAM (Class Acti-
vation Map), which identi�es the important parts of the input series for each dimen-
sion.

• We experimentally demonstrate with several synthetic and real datasets that our
dimension-wise Class Activation Map is not only more accurate (in classi�cation)
than previous approaches but the only viable solution for discriminant feature discov-
ery and classi�cation explanation in multivariate time series using Class Activation
Map-based approaches.

1.3.4 Pump Vibration Case

We �nally illustrate the applicability and the interest of our proposed methods in a real-
world industrial application. We study the detection precursors of unwanted vibrations
occurring in turbine-driven feed-water pump systems inside EDF nuclear power plants.
We �rst describe the multivariate data series dataset and the industrial context. Next, we
describe the label used to collect the timestamp of unwanted vibrations. We �nally describe
the sensors chosen for this use case. We then explore the following two scenarios.
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1.3.4.1 Unsupervised Detection of Vibrations

We �rst tackle the task as if the experts had provided no label and apply NormA and Se-
ries2Graph. Then, we run in an unsupervised manner the two methods on the two classes
(i.e., multivariate data series containing a vibration or not). We then compute an anomaly
score for both classes. We �nally evaluate their accuracy using the labels of the experts.

1.3.4.2 Supervised Detection of Vibrations and Identi�cation of Precursors

We then tackle the task as a supervised problem (using the label provided by the experts)
and apply dCNN/dCAM. We �rst compare the accuracy of both unsupervised and super-
vised methods. For that matter, we compare the structural and temporal consistencies of
the three methods. We then investigate the precursors detected by dCAM. We depict the
recurrent subsequences that have been identi�ed as discriminant by dCAM for the most
relevant sensors. We discuss the validity of these results compared to expert knowledge.

1.4 Thesis Outline

In Chapter 2, we �rst introduce basic de�nitions, taxonomy, and context related to data
series and anomaly detection methods (from Section 2.1 to Section 2.3). We then de�ne the
di�erent tasks related to anomaly detection in data series (Section 2.4). We �nally review
state-of-the-art approaches and their related limitations to solve both unsupervised (Sec-
tion 2.5), semi-supervised (Section 2.6.1) and supervised (Section 2.6.2) anomaly detection
task in data series.

InChapter 3, we discuss the unsupervised subsequence anomaly detection task over static
data series. We �rst brie�y discuss the limitations of current state-of-the-art approaches.
We then introduce two new approaches suitable for domain-agnostic anomaly detection.
We �rst describe NormA (Section 3.3), a novel approach based on a new data series prim-
itive, which permits to detect anomalies based on their (dis)similarity to a model that rep-
resents normal behavior. We then introduce Series2Graph (Section 3.4), a graph-based ap-
proach that aims to embed the data series into a directed graph that emphasizes the un-
usual and potentially abnormal subsequences. We then present an experimental analysis
(Section 3.5) comparing both NormA and Series2Graph with current state-of-the-art ap-
proaches with regards to the anomaly detection accuracy and the execution time.

In Chapter 4, we discuss the unsupervised subsequence anomaly detection task over
streaming data series. We �rst present the limitation that current state-of-the-art ap-
proaches for static data series can have when applied to data streams. We then introduce
SAND (Section 4.2), a novel online method suitable for domain-agnostic anomaly detec-
tion. The latter relies on a novel streaming methodology to incrementally update its model,
which adapts to distribution drifts and omits obsolete data. We �nally present an experi-
mental analysis (Section 4.3) that compares SAND to both static and streaming state-of-the-
art approaches over a large corpus of datasets containing both data series with and without
variation of normal behaviors.
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In Chapter 5, we discuss the supervised identi�cation of precursors task. This task can
be solved by �rst considering the problem of supervised classi�cation of data series, and
then analyzing the problem of classi�cation explanation. In this chapter, we focus on the
classi�cation explanation problem. We �rst brie�y discuss the limitation of current classi�-
cation explanation approaches. We then introduce dCNN/dCAM (Section 5.3), a new deep
convolutional architecture and a new dimension-wise Class Activation Map. Contrary to
the usual Class ActivationMap, dCAM can identify discriminant features (or subsequences)
across every dimension. We then present an experimental analysis (Section 5.4.1) in which
we compare our approach with the state-of-the-art techniques.

In Chapter 6, we illustrate the applicability and the interest of our developed methods in
a real-world application. We study the detection precursors of unwanted vibration occur-
ring in turbine-driven feed-water pump systems inside EDF nuclear power plants. We �rst
describe the dataset and the industrial context. We then explore two scenarios: we �rst
tackle the task as if the experts had provided no label and apply NormA and Series2Graph.
We evaluate their accuracy using the labels of the experts. We then tackle the task as a
supervised problem (using the label provided by the experts) and apply dCNN/dCAM.
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Below we list the publications relevant to this thesis. The publications are sorted by publi-
cation dates (from the soonest to the oldest) and grouped by relevant chapter.
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ries2Graph, BDA, Paris, France (2020)

• Paul Boniol: Unsupervised Subsequence Anomaly Detection in Large Se-
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• Paul Boniol, Themis Palpanas: Series2Graph: Graph-based Subsequence
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In this chapter, we de�ne the relevant taxonomy related to data series and anomaly detec-

tion methods. We then formally de�ne the problem of subsequence anomaly detection in

data series tackled in this manuscript. We �nally study state-of-the-art methods to perform

unsupervised anomaly detection and supervised identi�cation of anomaly precursors in data

series. Thus, the chapter is structured as follows. We �rst underline the preliminary de�nitions

and the context of anomaly detection in data series. We describe the fundamental di�erences

between point and subsequence anomalies and argue our choice of subsequence anomalies as

our primary focus. We then formally describe the problem of subsequence anomaly detection

in data series. As previously outlined, we inferred two variants of the problem. On the one

hand, the anomalies are unknown, and a fully unsupervised framework has to be adopted. On

the other hand, anomalies are known, and precursors of these anomalies have to be found. We

�nally enumerate state-of-the-art methods that could solve the problems mentioned above.
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2.1 Anomaly Detection Primer

First of all, one should note that no single, universal, precise de�nition of outliers or anoma-
lies exists. In general, an anomaly is an observation that appears to deviate markedly from
other members of the sample in which it occurs. This fact may raise suspicions that the spe-
ci�c observationwas generated by a di�erent mechanism than the rest of the data (Hawkins
de�nition [47]). This mechanism may be an erroneous procedure of data measurement
and collection or an inherent variability in the domain of the data under inspection. Nev-
ertheless, such observations are interesting in both cases, and the analyst would like to
know about them. The above general de�nition can then take di�erent forms, according to
the speci�c problem and data characteristics. For example, in statistics, anomalies can be
termed the data points that are further than three standard deviations away from the mean
of known data distribution. This case implies that we need to perform extensive tests to
�nd the distribution (and its parameters) that best �ts the dataset. Nevertheless, in several
real-world problems, we do not know precisely the data distribution. Consequently, de�n-
ing and identifying anomalies using their distance from a mean value de�ned by experts is
sometimes hardly practical.

2.1.1 Point versus Subsequences

At this point, we are interested in �nding anomalies in data series. This goal can be tackled
by either looking at single values or a sequence of points. In the speci�c context of points,
we are interested in �nding points that are far from the normal distribution of values that
correspond to healthy states. In the speci�c context of sequences, we are interested in iden-
tifying anomalous subsequences that are, unlike an outlier, not a single abnormal value but
rather an abnormal evolution of values. In real-world applications, this distinction becomes
crucial for the following reason: even though every point individually picked seems nor-
mal, the shape generated by the sequence of these same values may be anomalous and could
lead to major issues that would have been undetected until too late. Figure 2.1 underlines
the aforementioned distinction between point and sequence outlier. In this work, we will
study the speci�c case of subsequence anomaly detection in data series.

2.2 Preliminaries on Data Series

We are interested in detecting abnormal subsequences in data series. For instance, such
data series can correspond to the evolution of points of one or several sensors on a �xed or
in�nite period. We now de�ne the di�erent categories of data series type as follows.

2.2.1 Univariate versusMultivariate

We de�ne a univariate data series as an ordered sequence of real values on a single di-
mension. For instance, a univariate data series corresponds to the history of values of one
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Figure 2.1: Synthetic examples where (a) a point outlier can be detected by looking at its

position in the distribution (for both univariate (a.1) and multivariate (a.2)). (b) a sequence

outlier is taking part of the normal range of values (by taking every point independently

without any temporal structure for both univariate (b.1) and multivariate (b.2)).

given sensor. In this case, a subsequence can be represented as a vector. Then, we de�ne
a multivariate data series as either a set of ordered sequences of real values (with each
ordered sequence having the same length) or an ordered sequence of vectors composed of
real values. For instance, amultivariate data series can be a set of sensors installed on the
same system. In this speci�c case, a subsequence is a matrix in which each line corresponds
to a subsequence of one single dimension.

2.2.2 Static versus Streaming

We now have de�ned the di�erence between univariate and multivariate data series. Nev-
ertheless, for data series ordered by time, a core characteristic is their evolution with time.
Therefore, we de�ne static data series as sequences that have a �xed length. In this case,
one does not expect any more values to be added and can analyze points or subsequences
all at once. For instance, analyzing a �xed period before a collection of events will consist
in analyzing a collection of static data series. On the opposite case, we de�ne streaming
data series as sequences with an in�nite length with new points or subsequences arriving
with a given acquisition rate (not always constant in time). In this case, one model needs to
be updatable dynamically as new points are arriving. For instance, monitoring sensors and
detecting abnormal subsequences in real-time requires analyzing streaming data series.

2.2.3 Discrete versus Continous

We de�ne a Discrete data series as a sequence of points with categorical values (ordered
or not). On the contrary, Continous data series are sequence of points with real values.
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For instance, boolean sensors (that returns only zero or one as possible values) generate
Discrete data series, and temperature sensors usually return Continous data series. The
latter two di�erent types of data series have to be handled with di�erent type of methods.
In this thesis, we analyze methods that deal with Continous data series.

2.2.4 Real-World constraints: Missing points and non-synchronized

data series

Real-world constraints implied by the data acquisition step can make the data series harder
to analyze. The �rst constraint is related to missing data points. Such constraint might
happen because of sensors issues returning wrong values or a speci�c acquisition protocol
(for instance, some sensors might return a value only when the measured value changes). It
results in data series with missing data points that need to be �lled. The second constraint
is related to non-synchronized multivariate data series. It is implied by the di�erence in
the acquisition rate of the di�erent sensors. In this case, one has to choose a �xed acqui-
sition rate and then either downsampling (i.e., losing data points and potential accuracy)
or upsampling (i.e., creating a missing data points constraint) the data series with a di�er-
ent acquisition rate. These two constraints are serious and typical for many real-world use
cases. Nevertheless, most of the subsequence anomaly detection methods proposed in the
literature do not tackle them.

2.2.5 Data Series Notations

We now introduce some formal notations related to data series. We de�ne a data series
T 2 R

n as a sequence of real-valued numbers Ti 2 R [T0, T2, ..., Tn�1], where n = |T | is
the length of T , and Ti is the ith point of T .

A multivariate, or D-dimensional data series T 2 R
(D,n) is a set of D univariate data

series of length n. We noteT = [T (0), ..., T (D�1)] and for j 2 [0, D], we note the univariate

data series T (j) = [T
(j)
0 , T

(j)
1 , ..., T

(j)
n�1]. A subsequence T (j)

i,` 2 R
` of the dimension T (j) of

the multivariate data series T is a subset of contiguous values from T (j) of length ` (usually

` ⌧ n) starting at position i; formally, T (j)
i,` = [T

(j)
i , T

(j)
i+1, ..., T

(j)
i+`�1]. The multivariate

subsequence is de�ned as Ti,` = [T
(0)
i,` , ..., T

(D)
i,` ]. For a given univariate data series T , the

set of all subsequences in T of length ` is de�ned as T` = {T0,`, T1,`, ..., T|T |�`,`}.

2.3 Preliminaries on Anomaly Detection Methods

In the previous section, we have de�ned the input type characteristics. We now de�ne
categories and taxonomy of methods commonly used in the literature [10, 23]. We �rst
de�ne method categories based on the output type returned. We then categorize methods
based on the input required.
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2.3.1 Unsupervised: No prior information

We de�ne Unsupervisedmethods as methods that only require the subsequences as input
and do not need any annotations as prior information. Such methods suit well the case
of anomaly discovery, visualization, and automatic annotation. Nevertheless, one should
note that such methods are, in general, less accurate than supervised and semi-supervised
methods.

2.3.2 Supervised: prior information

2.3.2.1 Semi supervised: Only normal subsequences annotated

We de�ne Semi supervised methods as methods that require annotated normal subse-
quences to learn to detect abnormal subsequences. The latter is the classical case for most
of the anomaly detection methods in the literature. One should note that this category
is often de�ned as Unsupervised. However, we consider it unfair to group such methods
with the categorymentioned above, knowing that they requiremuchmore prior knowledge
than the previous one.

2.3.2.2 fully Supervised: Both abnormal and normal subsequences annotated

We �nally de�ne Supervised methods as methods that need both normal and abnormal
subsequences annotations to learn to discriminate them together. Hence, such methods
can be seen as classi�ers.

In addition to that, one should note that any parameter can be tuned to �t a speci�c
objective. For example, if labels of normal or abnormal subsequences are provided, one can
tune parameters of unsupervised methods to maximize the objective of detecting the pro-
vided abnormal labels (or exclude the provided normal labels). Any unsupervised method
can be supervised. Nevertheless, the opposite is not valid. We formally de�ne in the coming
sections the issues associated with these categories in the paradigm of anomaly detection
in data series.

2.4 Problems Formulation

As mentioned in the previous section, we are interested in �nding abnormal subsequences
in the data series. This task can be divided into two cases: (i) knowledge experts do not
have precise (or not at all) information on what anomalies to detect. (ii) knowledge experts
have speci�c examples of which anomalies they have to detect (and have a collection of
known anomalies).
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Figure 2.2: Unsupervised subsequence anomaly detection task illustrated using a nuclear

power plant use case, in which (a) illustrates the sensors data series coming from (b) subsys-

tems of a given electrical power plant. The goal is to �nd unknown abnormal subsequences

in the sensors data series (illustrated by the red rectangle).

2.4.1 Unsupervised Subsequence Anomaly Detection

In the �rst case (i), one can decide to adopt a fully unsupervised method. These methods
bene�t from working without needing a large collection of known anomalies and auto-
matically detecting unknown abnormal behaviors. Such methods can be used either to
monitor the health state of a system or to mine the historical data series of a system (to
build a collection of abnormal behaviors that can then be used on a supervised framework).
Figure 2.2 illustrates the aforementioned task using an electrical power plant use case, in
which Figure 2.2(a) illustrates the sensors data series coming from Figure 2.2(b) subsystems
of a given electrical power plant. The goal is to �nd unknown abnormal subsequences in
the sensors data series (illustrated by the red rectangle in Figure 2.2(a)). We now propose a
formal de�nition of the above problem:

De�nition 1 (Unsupervised Detection Problem De�nition). Given a monitored systemM,

and a set of data series TM that represents the state ofM, the function f that takes as inputs

TM and returns s 2 {N ,A} has to be found (where N indicates that the data series corre-

sponds to a healthy state, whereasA indicates that the data series corresponds to an anomaly).

Thus, f can be written as follows:

f : TM ! {N ,A}

This de�nition has the bene�t of being simple. Nevertheless, it has to be joined with
several signi�cant constraints, listed as follows:

• Abnormality Formalization Constraint: The N and A categorization is most of the
time di�cult to infer. Thus, a di�erent variant of this problem can be considered. For
instance, a level of abnormality could be de�ned, which brings function f to return a

21



C������ 2

System 1

Steam Gen.

System 2

Steam Gen.

System 1

Prim. Cycle

System 2

Prim. Cycle

System 

Second. Cycle

Unknown anomaly

52000 1300 2600 3900 6500

Point index (time)

(b) Electrical Power Plant(a) Sensors data series

S
te

a
m

 

g
e

n
e

ra
to

r

Primary circuit

ARE

VVP

ASG

ADG

Condensor

GCT Turbine

Secondary circuit

Vape

P
re

ssu
rize

r

Symptom 1

Symptom 2

Nuclear Power Plant Use case: Supervised detection of anomaly symptoms.

Figure 2.3: Supervised detection of anomaly precursors task illustrated using a nuclear

power plant use case, in which (a) illustrates the sensors data series coming from (b) sub-

systems of a given electrical power plant. The goal is to �nd, from the known abnormal

subsequences in the sensors data series (illustrated by the red rectangle), the potential pre-

cursors of this anomaly (illustrated by the light red rectangles).

value p which should be proportional to the degree of abnormality, or can be seen as
p = P (s = A).

• Dataset Size Constraint: Given the fact that the size of the datasets to analyze has
increased signi�cantly for the last decades, and the detection should be as fast as possible
to let enough time to experts to �x the possible issues, the problem must be achieved using
algorithms that scale as good as possible with the dataset size.

• Subsequence Length Constraint: As we are focusing on subsequences anomaly de-
tection, a subsequence length has to be chosen. It can be chosen either by the user or
automatically by the algorithm. In practice, it is hard to compare and detect both anoma-
lies of very di�erent lengths. Unfortunately, we notice that �xing the subsequence length
automatically is impossible. Therefore, every method analyzed in this study will require a
user parameter subsequence length of the anomalies to detect.

• Streaming Constraint: Data measurements are arriving continuously in several real-
world cases. Thus, it requires anomaly detection to take place in real-time. Furthermore,
because drifts in data distribution are common, the detection needs to be independent of
these changes. Thus function f needs to be updated in real-time.

2.4.2 Supervised Detection of Anomaly: Identi�cation of their pre-

cursors

In the �rst case (i) described in the previous section, anomalies were considered unknown.
In the second case (ii), we consider that the expert precisely knows which event he wants to
detect and has a collection of data series corresponding to these anomalies. In that case, we
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have a database of anomalies at our disposal. As a consequence, one can decide to adopt
supervised methods. A question that naturally arises is the following one: is it possible
to detect subsequences that happened before the known anomaly that might lead to an
explanation of the anomaly (and potentially predict it). Such subsequences can be called
precursors of anomalies.

Detecting such subsequences might be signi�cantly valuable for knowledge experts to
prevent future anomalies from occurring or understanding why an anomaly occurred (or
facilitate its understanding). Thus, the task is to detect, in a supervised manner, known
anomalies and retrieve potential symptoms. Figure 2.3 illustrates the aforementioned task
using an electrical power plant use case, in which Figure 2.3(a) illustrates the sensors data
series coming from Figure 2.3(b) subsystems of a given nuclear power plant. The goal is to
�nd unknown precursors (T1 and T2) of abnormal subsequences in the sensors data series
(illustrated by the red rectangle in Figure 2.3(a)). We now propose a formal de�nition of
the problem mentioned above:

De�nition 2 (Precursors Detection ProblemDe�nition). Given amonitored systemM, a set

of data series TN
M that represents the healthy state ofM (healthy state labeledN ), a set of data

series TA
M that represents the state of M before an anomalous state (anomalous state labeled

A), we �rst have to �nd function f that takes as input TA
M and TN

M, and returns s 2 {N ,A}.

We then have to �nd function g that takes as input TA
M and f , and returns S ⇢ TA

M (S being

the ensemble of subsequences in TA
M precursors of the upcoming anomalies). Formally, f and

g can be written as follows:

f : TN
M, TA

M ! {N ,A}

g : TA
M, f ! S

As mentioned earlier, such de�nition has to be joined with several constraints, listed as
follows:

• Precursor Formalization Constraint: In this case, N and A categorization is well
de�ned (labels provided by the user). However, the binary categorization between subse-
quences belonging to S and others is hard to infer. Thus, a di�erent variant of this problem
can be considered. For instance, a precursor level could be de�ned, which brings function
g to return a value p for each subsequence sq 2 TA

M which should be proportional to the
precursor degree, or can be seen as p = P (sq 2 S).

• Dataset Size Constraint: Similarly to the previous dataset size constraint, scalable al-
gorithms are desirable for a very large database. In addition to that, the dataset size has
an impact on the accuracy of function f . A big enough database is required to train an
accurate function f . An inaccurate function f will lead naturally to an inaccurate function
g.
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2.5 Unsupervised Subsequences Anomaly Detection in

Data Series

Most unsupervised anomaly detection methods rely on similarity (or distance) measures
between sequences (or subsequences). The latter is a signi�cant feature to measure the
deviation, or the isolation of a sequence compare to the others. We thus start by formally
de�ning the standard distance measures for data series.

2.5.1 Data Series Distances De�nitions

Given two sequences (or univariate data series), A 2 R
` and B 2 R

`, of the same length,
`, we de�ne the distance between A and B as d(A,B) 2 R, such as d(A,B) = 0 when A
and B are the same. There exist di�erent de�nitions of d in the literature. We enumerate
the usual distance de�nition in the following sections.

2.5.1.1 Euclidean Distances

The �rst is to use the classical and widely used euclidian distance de�ned as follows:

ED(A,B) =

v

u

u

t

X̀

i

(Ai,1 � Bi,1)2

Nevertheless, using that distance, the similarity between subsequences is in�uenced by
theirmean. Two subsequences with the same shape but a di�erentmean will have a high
euclidian distance. To cope that issue, the Z-normalized Euclidean distance [26, 86, 113,
115, 122] can be used:

EDz(A,B) =

v

u

u

t

X̀

i

✓

Ai,1 � µA

�A
�

Bi,1 � µB

�B

◆2

In the above equation, µ and � represent the mean and standard deviation of the se-
quences. Moreover, the complexity is O(|A|) for the two Euclidian distance variants. Nev-
ertheless, Z-normalized distance requires computing the mean and the standard deviation
but remains from the same order of magnitude as the classical Euclidian distance.

2.5.1.2 Dynamic Time Wrapping

A major drawback of Euclidean distances is their lack of �exibility to time misalignments.
Moreover, previous distances cannot be used for subsequences of di�erent lengths. Thus
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Figure 2.4: Comparison between the alignment considered by Euclidian distance(a) and

DTW distance (b).

the Dynamic TimeWrapping (DTW) is commonly used to cope with these issues. Note that
DTW is not a distance as the triangular inequality does not hold. However, in the following
section, we will refer to it as DTW distance. Given i 2 [0,m] and j 2 [0, n] with m and n
the length of the sequences A and B, the DTW distance between A and B can be de�ned
as follows:

DTW (A,B) =
q

�(A0,m, B0,n)

with � recursively de�ned as follows:

�(A0,0, B0,0) = (A0 � B0)
2

�(A0,i, B0,j) = (Ai � Bj)
2 +min

⇢

�(A0,i�1,B0,j)
�(A0,i�1,B0,j�1)
�(A0,i,B0,j�1)

�

DTW distance corresponds to the distance betweenA andB considering the best align-
ment of points. Figure 2.4 depicts the di�erence between Euclidian and DTW distance for
subsequences. However, �nding the best alignment has a cost. The complexity in time
for DTW distance computation is O(|A||B|), which is one order of magnitude higher than
Euclidian distance. This version of DTW is di�cult to use for large sequences or a large
collection of subsequences in practice. In order to cope with that issue, one can bound the
maximal misalignment using a window lengthw to set a Sakoe-Chuba Band [98]. This win-
dow length will only allow alignment (i, j) such that |i � j| < w. Thus �w is recursively
de�ned as follows:

�w(A0,i, B0,j) = (Ai � Bj)
2 +min

⇢

�w(A0,max(i�1,j�w),B0,j)

�w(A0,i�1,B0,j�1)
�w(A0,i,B0,max(j�1,i�w))

�

From the latter formulation, the complexity becomes O(max(|A|, |B|)w) and can be
nearly linear for small w. However, the accuracy of the metric depends signi�cantly on
which w to choose. The other way to cope with the previous issue is to set an Itakura Par-
allelogram [53] that divides by two the Sakoe-Chuba Band number of possible alignment.
Nevertheless, the time complexity remains of the same order of magnitude.
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2.5.1.3 Shape Based Distance

Recently proposed for clustering purposes, Shape-Based Distance (SBD) has shown state-
of-the-art performance in data series clustering [93, 92]. SBD uses cross-correlation to �nd
the appropriate alignment between two sequences. Formally, givenA,B, two sequences of
length `, the SBD distance is de�ned as follows:

SBD(A,B) = 1�maxw

✓

Rw�`(A,B)
p

R0(A,A).R0(B,B)

◆

with: Rk(A,B) =

(

P`�k
i=1 Ai+k.Bi, k � 0

R�k(B,A), k < 0

As the cross-correlation is in practice computed using Fast Fourier Transform, the SBD
distance complexity is O(max(|A|, |B|) ⇤ log(max(|A|, |B|))). Thus for equal length se-
quences, SBD complexity (O(|A| ⇤ log(|A|))) is expensive but can be a decent compro-
mise between the linear complexity of ED (O(|A|)) and the quadratic complexity of DTW
(O(|A|2)).

2.5.2 Data-Series Clustering

Despite the proliferation of anomaly detection methods, a set of e�ective methods are those
that either determine anomalies by comparing subsequences to previous subsequences or
with an estimated normal behavior.

Clustering can summarize the underlying patterns in data and, therefore, can be used to
extract the recurring behavior in datasets for anomaly detection purposes. Formally, given
a set of observations (or subsequences which are the topic of this paper), clustering meth-
ods partition this set into k distinct clusters, such that the within-cluster sum of squared
distances is minimized. For a given set of subsequences T`, we note C = {C0, ..., Ck} the
optimal partition of k cluster Ci with 8Ci, Cj 2 C, Ci \ Cj = ;. We note C̄i the centroid of
cluster Ci.

2.5.2.1 k-means

The k-means algorithm solves this partitioning problem using the Z-normalized Euclidean
Distance. k-means centroids correspond to the arithmeticmean of the subsequences in their
corresponding clusters. Other algorithms based on Euclidean distance have been proposed
(such as hierarchical clustering). Moreover, it is easy to extend k-means to a streaming
context [43], since the centroids can be incrementally updated as new points arrive.
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2.5.2.2 k-Shape

Euclidean distance-based algorithms may miss some properties related to the alignment in
data series. Recently, k-Shape (clustering algorithm based on SBD) has shown strong per-
formance in data series clustering [93, 92]. The k-Shape centroid computation corresponds
to an optimization problem in which we are computing the minimizer (i.e., sequence) of
the sum of squared distances to all other sequences using the SBD distance. Formally, as
described in Equation 15 in [93], centroid C̄j is computed as follows:

C̄j  argmax
C̄j

(C̄j)
T .M.C̄j

(C̄j)T .C̄j

with: M = QT .Sj.Q, Q = I �
1

|C̄j|
O, and Sj =

X

A2Cj

A.AT
(2.1)

Note that C̄j is considered as a vector ((C̄j)T is its transpose) in the above equation. The
dot operator is the dot product between two matrices/vectors. Moreover, I is the identity
matrix, andO is a matrix with all ones. In practice, the centroid that maximizes Equation 2.1
corresponds to the eigenvector with the largest eigenvalue of the real symmetric matrixM .
Moreover, as depicted in Equation 2.1, the centroid computation requires all the sequences
A 2 Cj for every cluster Cj in memory and can be used for non-streaming data series only.

2.5.3 Density based Approaches

A �rst way to detect anomalies (or unusual subsequences) is to measure their isolation
from others. The notion of isolation or neighborhood density has been used in methods
unrelated to data series subsequences anomaly detection. These methods, usually called
density-based methods, aim to evaluate a subspace of the points (in our speci�c case, a
point is a subsequence) to identify either isolated subsequences or dense neighborhoods.
Even though these methods are not dedicated to detecting abnormal subsequences in data
series, they still bring interesting insight into abnormality detection and seem to bring
accurate results (even for data series).

2.5.3.1 Local Outlier Factor

Local Outlier Factor [20] is a degree of being an outlier assigned to each subsequence (of a
given length `). This degree depends on how the instance is isolated (in the distance) to the
surrounding neighborhood. First, given a data series T and two subsequences A,B 2 T`,
k-d(A) is the distance between A and its kth nearest neighbor (NNk(A) the set of these k
nearest neighbors). The Local Outlier Factor (LOF) is based on the following reachability
distance de�nition:

rdk(A,B) = max(k-d(B), d(A,B))
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Figure 2.5: (a) For a given data series T , illustration of the reachability distance between

A and B and then A and C for k = 4 (with A,B,C,D 2 T`). (b) Di�erence between

rdk(A,X), X 2 NNk(A), when A is an anomaly and B,C,D are regular subsequences in

data series T.

The central concept behind this distance de�nition is to stress the homogeneity of dis-
tances between instances within the k-neighborhood (i.e., the k-neighborhoodwill have the
same distance between each other). Thus the local reachability can be de�ned as follows:

lrdk(A) =
|NNk(A)|

P

B2NNk(A) rdk(A,B)

Given a subsequence, A 2 T`, lrdk(A) is the inverse of the averaged reachability of
A from its neighborhood, i.e., the averaged distance at which A can be reached from its
neighbors. Therefore, LOF is given by:

LOFk(A) =

P

B2Nk(A)
lrdk(B)
lrdk(A)

|Nk(A)|
=

P
B2Nk(A) lrdk(B)

|Nk(A)|

lrdk(A)

LOFk of an instance is thus the average of the local reachability density of the neigh-
bors divided by its reachability density. Therefore, if we set subsequences of length ` as
instances for which the ` points will be the features, this factor can be used as an anomaly
score. However, it highly depends on the parameter k to use. Figure 2.5 illustrate the reach-
ability distance and the local reachability density for k = 4. Figure 2.6 depicts LOFk on the
MBA(803) datasets (MIT-BIH Supra-ventricular Arrhythmia Database [40, 83], in which the
anomalies are 75 points long). The plot in the middle is LOFk computed using a small snip-
pet of 10,000 points and di�erent k (from 20 to 80), and the bottom plot using a large snip-
pet of 100,000 points. Logically, the small snippet contains signi�cantly fewer anomalies (3
supra-ventricular contractions) than the large snippet (62 supra-ventricular contractions).
Thus, for the small snippet, LOFk correctly identi�es the anomaly for k > 30. However,
due to many anomalies in the snippet, LOFk is failing to detect the anomaly regardless of
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MBA(803)

LOF for ! = 20, … , 80 , 10000 )*+,,-. /0 123(803)

LOF for ! = 20, … , 80 , 100000 )*+,,-. /0 123(803)

Figure 2.6: LOFk computed for k = 20, 30, 40, 50, 60, 70, 80 using a 10000 snippet (middle

plot) and 100000 snippet (bottom plot) of MBA(803). In the big snippet, due to the higher

number of anomaly, LOFk method is not able to detect them.

the k used.

Most of the time, it is nearly impossible to know the exact value of k to use for two
reasons: (i) knowing in advance the number of anomalies that compose the data series is,
in practice, impossible. (ii) several overlapping subsequences that refer to the same anomaly
increase the neighborhood size. Therefore, regarding the length of the anomaly, the value
of k can be even larger than the number of anomalies. It is the case in Figure 2.6 (bottom
plot) where LOF80 is not able to detect all anomalies of the same type that repeats 65 times.

2.5.3.2 Isolation Forest

Isolation Forest is a density-based method that, instead of modeling the dataset’s normal
distribution, tries to isolate the outlier from the rest [75]. The key idea remains on the fact
that, in a normal distribution, anomalies are more likely to be isolated (i.e., requiring fewer
random partitions to be isolated) than normal instances.

If we assume that the latter statement is true, one only has to produce a partitioning
process indicating the isolation degree (i.e., anomalous degree) of subsequences.

Let �rst de�ne the concept of Isolation Tree as stated in [75]. Let be Tr a binary where
each node has zero or two children and a test which consists of an attribute q and a split
p such that it divides data points into the two children based on the condition p < q. Tr
is built by dividing recursively T` randomly selecting p and q until the maximal depth of
the tree is reached, or the number of di�erent instances is equal to 1. Figure 2.7 depicts an
example of isolation trees. Using that kind of data structure, the length of the path into the
tree Tr to reach a subsequence A 2 T` is directly correlated to the anomaly degree of that
instances. Therefore, we can de�ne the anomaly score as follows:
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Figure 2.7: Set of isolation trees that randomly partition a dataset. In average, for a given

data series T , the subsequence N 2 T` has a longer path to the root than the subsequence

A 2 T`, thus A anomaly score will be higher.

S(A, n) = 2s

s =

P

Tr2T h(A, Tr)

|T |c(n)

c(n) = H(n� 1)�
2(n� 1)

n

In the above equation, h(x, Tr) the length of the path to reach x in tree Tr, T a set
of di�erent isolation trees built, n the number of instances in the training set and H the
harmonic number which can be estimated using the Euler constant.

2.5.3.3 Extended Methods on Similar concepts

Several studies have extended the concepts proposed by these density-basedmethods. First,
several approaches such as COF [109] have been proposed adding a "connectivity" concept
to the existing LOF method. Similarly, ILOF [95] and DILOF [87] have been proposed to
enable an incremental computation of LOF (which then can be used for streaming ap-
plications). Finally, extensions of Isolation Forest, such as Extended IForest [46], Hybrid
IForest [82], and IMondrian Forest [79] have been proposed and brought an extension that
(i) improves the accuracy when labels are provided [82], (ii) improves the splitting nodes
with linear combinations of the dimensions [46], (iii) changes the structure of the trees such
that they can be changed incrementally [79].

2.5.4 Subsequence Similarity-based Approaches

In this section, we highlight the di�erent methods for anomaly detection based on the sub-
sequences similarity principle. The problem addressed in the following work corresponds
to the identi�cation of anomalous subsequences (of a given length) within a long data se-
quence based on their similarity/distance measure.
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2.5.4.1 Discord De�nition

Similarly for density based techniques (LOF and IF), the state-of-the-art solutions for subse-
quences anomaly detection use a de�nition that characterizes the isolation of subsequences.
The latter de�nition, also called discords, is de�ned as follows:

De�nition 3 (Discord). [124, 104, 60, 76, 36, 22, 77] A subsequence Ti,` is a discord, if the

distance between its nearest neighbor (NN), namely Tj,`, is the largest among all the nearest

neighbors distances computed between subsequences of length ` in T . We require that Tj,` is

not a trivial match of Ti,`.

The latter is an intuitive de�nition: a subsequence is a discord if its nearest neighbor
(NN) is very far away. However, this de�nition fails when we have two neighboring dis-
cords, with a small distance to each other and a very large distance to all the remaining
subsequences. In order to capture these situations, themth-discord has been proposed:

De�nition 4 (mth Discord). [121] A subsequence Ti,` is a mth-discord, if the distance be-

tween itsmth nearest neighbor, namely Ti,`, is the largest among all themth nearest neighbors

distances computed between subsequences of length ` in T .

Naturally, in anomaly detection, we are not only interested in the most signi�cant
anomaly. Thus one can propose a de�nition that extends the previous two for the case
of the k most signi�cant anomalies:

De�nition 5 (Top-k mth-discord). A subsequence Ti,` is a Top-k mth-discord if it has the

kth largest distance to itsmth NN, among all subsequences of length ` of T .

Note that this de�nition subsumes the previous two: the simple discord (De�nition 3) is
equivalent to Top-1 1st-discord, and the mth-discord (De�nition 4) is equivalent to Top-1
mth-discord. Figure 2.8 illustrates these notions with an example, where for ease of exposi-
tion, we represent each subsequence as a point in 2-dimensional space. The �gure depicts
two 1st-discords (Figure 2.8(a)): the discord in the top (Top-1) has its 1-NN at a larger dis-
tance than the other subsequences. Nevertheless, a group of similar anomalies (light-red
points) is not correctly detected using Top-1 1st-discords. Figure 2.8(b) also shows a group
of three anomalous subsequences: using the Top-1-3rd-discord is enough to identify the
isolated point and the group of three anomalies. Nevertheless, the subsequences in the
group of �ve anomalies are not detected.

There exist several studies that have proposed fast and scalable discord discovery al-
gorithms in various settings [104, 60, 76, 36, 124, 22, 120, 77], including simple and mth-
discords1, in-memory and disk-aware techniques, exact and approximate algorithms, using
either SAX [60, 104] (Symbolic Aggregate approXimation) or Haar wavelets [22, 36]. In the
following sections, we present the state-of-the-art solutions to the subsequence anomaly
detection problem. Note that in this discussion we focus on the Top-k anomalies (using
instead a threshold ✏ to detect anomalies would be a straightforward modi�cation of the
solution).

1The authors of these papers de�ne the problem as kth-discord discovery.
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Figure 2.8: A dataset with 36 subsequences (of the same length `) depicted as points in 2-

dimensional space; 27 subsequences are normal (blue points), and 9 are anomalous (solid,

red points).

2.5.4.2 Disk Aware Discord Discovery

Disk Aware Discord Discovery method [120] (DAD) is a method that proposes a new ex-
act algorithm to discover discord requiring only two linear scans of the disk thought for
managing very large datasets. The algorithm uses the raw sequences directly. First, it ad-
dresses the more straightforward problem of detecting what is called range discord, and
then it generalizes the problem to detect the Top-k discord.

De�nition 6 (range discord). Given a data series T and a range value r, are retrieved all the

sub-sequences Ti,` at distance at least r from their nearest neighbor, among all subsequences

of length ` of T .

Providing the range rmay require some prior domain knowledge, but it can be obtained
by studying the nearest neighbor distance distribution of a uniformly random sample of the
overall dataset. DAD can be divided into two separate phases: candidate selection and dis-
cover re�nement phases. During the �rst phase, one linear scan through the database is
performed, and a set of candidates C that will contain all the discords with 1-NN larger
than r (eventually, some false positives) is created. Then, the set C is re�ned during the
re�nement phase by removing all the false positives, adopting an early abandoning proce-
dure. In the end, it is possible to re�ne the algorithm by ranking the obtained discords and
retrieving the Top-k discords.

2.5.4.3 GrammarViz

GrammarV iz [104] adopts a di�erent approach to �nd anomalies, based on the concept of
Kolmogorov complexity where the randomness in a sequence is a function of its algorithmic
incompressibility. An essential feature of this algorithm is the ability to �nd discords of
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di�erent lengths. The main idea is that it is possible to represent a data series as context-
free grammar, and the parts of data series that map with few rules of the grammar is the
anomalies. The algorithm can be divided into di�erent phases. First, the whole data series
is summarized using SAX (Symbolic Aggregate Approximation) to have discrete values and
not continuous. Then a numerosity reduction procedure is applied to limit the problem of
�nding trivial matches [129] (a trivial match of Ti,` is a subsequence Ta,`, where |i � a| <
`/2, i.e., the two subsequences overlap by more than half their length). Next, context-free
grammar is built using Sequitur, a linear space and time algorithm able to derive context-
free grammar from a string incrementally. Finally is built a rule density curve which is
the metadata that allows detecting anomalies. It is possible to obtain a rule density curve
by iterating over all grammar rules and incrementing a counter for each data series that
points to the rule spans. Once the rule density curve is obtained, it is possible to discover
approximate (considering the discord de�nition) anomalies by picking the minimum values
of the curve. Otherwise, by applying the algorithm RRA (Rare Rule Anomaly proposed
in [104]), it is possible to discover exact discords.

2.5.4.4 Matrix Pro�le

Matrix Pro�le [124, 129] proposes a metadata data series computed e�ciently, able to pro-
vide several useful information about the analyzed data series, among them the discords.
For simplicity, we can call this metadata series matrix pro�le, and we can de�ne it as fol-
lows:

De�nition 7 (Matrix Pro�le). A matrix pro�le MP of a data series T of length n is a data

series of length n � ` � 1 where the ith element of MP contains the Euclidean normalized

distance of the subsequence of length ` of T starting at i to its nearest neighbor.

However, the latter de�nition does not tell us where that neighbor is located. This
information is recorded in the matrix pro�le index:

De�nition 8 (Matrix Pro�le Index). A matrix pro�le index IMP is a vector of index where

IMP [i] = j and j is the index of the nearest neighbor of i.

Two general de�nitions of Join matrix computation can be inferred. The �rst called
selfJoin corresponds exactly to the matrix pro�le. The second called Join corresponds to
the same operation but for two di�erent data series. Formally we have:

De�nition 9 (Data Series Self-Join). Given a data series T , the self-join of T with subsequence

length `, denoted by T ./` T , is a metadata series, where: |T ./` T | = |T | � ` + 1 and

8i, 1  i  |T./` T |, (T./` T )i,1 = dist(Ti,`, 1
stNN of Ti,`).

De�nition 10 (Data Series Join). Given two data series A and B, and a subsequence

length `, the Join between A and B, denoted by (A ./` B), is a metadata series,

where: |A ./` B| = |B| � ` + 1 and 8i, 1  i  |A ./` B|, (A ./` B)i,1 =

min(dist(Bi,`, A1,`), ..., dist(Bi,`, A|A|�`+1,`)).
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Figure 2.9: (a) Matrix pro�le (a2) applied on the SED (Nasa disk failure datasets) data series

snippet (a1). The highest value in the matrix pro�le (a1) points to an anomaly of the SED

data series. (b) Matrix pro�le (b2) applied on a synthetic data series (b1). The smallest value

in the matrix pro�le (a1) points to a motif pair in the data series.
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Figure 2.10: (a) Synthetic data series generated with random noise with two similar random

subsequences injected (red). (b) Matrix pro�le of the data series in (a). (c) Two similar

random subsequences injected in (a).

These metadata are computed using Mueen’s ultra-fast Algorithm for Similarity Search
(MASS) [85] that requires just O(n ⇤ log(n)) time by exploiting the FFT (Fast Fourier
Transform) to calculate the dot products between the query and all the sub-sequences of
the data series. Once these metadata are generated, it is possible to retrieve the Top-k
discord by considering the maximum value of the Matrix Pro�le and order it, excluding the
trivial matches (overlapping subsequences). It is also possible to retrieve the subsequences
with the shortest distance to their nearest neighbor (called motifs). These subsequences
correspond to a recurrent motif in the data series and can, therefore, be helpful in the
anomaly search.

Figure 2.9 shows an example of the Matrix Pro�le metadata. On the one hand, Figure
2.9 (a) shows that the discord found corresponds to a very di�erent subsequence from the
regular cycles. On the other hand, Figure 2.9 (b) shows that the distinct shapes are well
identi�ed as motifs.

Figure 2.10 depicts another example of motifs search. In this case, two similar randomly
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Figure 2.11: Nearest neighbor euclidean distance (in green) computed using Matrix Pro�le

for (a) an electrocardiogram containing similar supra-ventricular contractions and (b) an

electrocardiogram containing similar premature heartbeats.

generated subsequences (same random subsequences combined with small random noise
shown in Figure 2.10(c)) are injected in a random noise synthetic data series (Figure 2.10(a)).
Therefore, the motifs are not straightforward to identify. Nevertheless, the smallest value
in the matrix pro�le points to the correct motifs.

However, if one anomaly occurs several times, the corresponding subsequences will be
similar and thus considered as motifs. Thus the identi�cation of multiple similar anoma-
lies is hard using matrix pro�le. Figure 2.11 illustrates this limitation with two examples.
Figure 2.11(a) corresponds to an electrocardiogram containing supra-ventricular contrac-
tions (in red) and Figure 2.11(b) corresponds to an electrocardiogram containing premature
heartbeat. In these two cases, the abnormal subsequences are similar to each other, and thus
the discord found using matrix pro�le does not correspond to the abnormal heartbeats.

2.5.4.5 Extended Methods on Similar concepts

The matrix pro�le algorithm has attracted much attention in the past few years, and sev-
eral extensions have been proposed. Extended methods such as STAMPI [124] proposes
an incremental implementation of the matrix pro�le algorithm permitting its usage for
streaming applications. VALMOD [71] has been proposed in order to permit the detection
of variable length motifs and discords. Finally, to accelerate the matrix pro�le computation,
SCRIMP [130] and SCAMP [131] have been proposed to either (i) e�ciently provide an ac-
curate approximate matrix pro�le at any time while the exact computation is still running
or (ii) modify matrix pro�le implementation in order to use GPUs.

2.5.5 New perspectives with graph-based approaches

The other way to detect anomalies in data series (and more generally detect any speci�c
pattern) is to map the data series into a complex network (graph). This idea is attractive
since this data structure bene�ts from rich and well-developed methods on complex net-
work and graph analysis for various tasks as community detections. In our speci�c case of
data series anomaly detection, the task would be to �nd a way to map the data series into
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a graph that would help us to highlight the community of interest (the anomalies in our
case).

More speci�cally, the graph should represent all the possible subsequence evolution as
paths, in which the edge’s weight could correspond to the number of times this evolution
occurred. Having this kind of information would give us a way to build indicators to detect
unusual subsequences. Secondly, the graph should be small to be used and analyzed easily,
moving the problem from big data series pattern mining to small graph mining tasks. This
compression has a cost and should be measured such as the best compromise is found
between the accuracy (reducing the loss of information) and the speed (keeping the size
such as classical graph algorithm are scalable to the anomaly detection task).

No such graph-based method has been proposed in the speci�c case of subsequence
anomaly detection in data series. Nevertheless, we analyze the di�erent methods to map a
data series into a graph in the following section.

We �rst de�ne some basic notions related to graph theory. We de�ne a Node Set N as
a set of unique integers (we set this type as default). Given a Node Set N , an Edge Set E
is then a set composed of tuples (xi, xj), where xi, xj 2 N ; w(xi, xj) is the weight of that
edge. Formally, we de�ne a graph as follows:

De�nition 11 (Graph). Given a Node SetN , an Edge Set E (pairs of nodes inN ), a GraphG

is an ordered pair G = (N , E).

In some speci�c cases, the directions of the edges matter. We thus de�ne a directed
graph as follows:

De�nition 12 (Directed Graph). A directed graph or digraph G is an ordered pair G =

(N , E) where N is a Node Set, and E is an ordered Edge Set.

2.5.5.1 Visibility Graph

Visibility Graph [65] is a way to model a data series into a complex network where each
data series point is a node. The main idea is to connect the nodes such as one node can "see"
the other one. This visibility criterion is formally de�ned as follows [65]: two arbitrary data
points Ti and Tj will have visibility and consequently will be connected by an edge if any
other point Tk placed between them (i < k < j) ful�lls:

Tk < Tj + (Ti � Tj)
j � k

j � i

Therefore, the resulted graph (also called Natural Visibility Graph) NV G = (N , E)
whereN = {T0, T1, ...., Tn}, and E are the edges (Ti, Tj) such as Ti and Tj satisfy the pre-
vious equation. This graph is illustrated in Figure 2.12 (a) (blue arrows without considering
the direction).

This simple formulation also provides us some strong guarantees about the inner struc-
ture of the graph and its construction invariance to some transformation. These guaranties
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are listed as follows: (i) Since each point is linked to at least its nearest neighbors in time
(left and right), the complete graph is connected. (ii) The complete graph is undirected and
allows us more freedom in which algorithm to use. (iii) The graph construction is invariant
under the a�ne transformation of the data series.

Nevertheless, this modeling manner has some severe drawbacks. Even though the time
complexity is somewhat limited (O(n ⇤ log(n)) in the worst case, in nearly linear in aver-
age), the memory complexity is more problematic. Since every point of the data series will
correspond to a node, this method does not �t the case of a very large data series. Moreover,
the number of edges being at least equal to the number of nodes (and orders of magnitude
more considerable on average), it becomes very challenging to deals with such a big graph
to perform any analysis like anomaly detection.

Horizontal Visibility Graph [78] (HVG) is a speci�c type and a subgraph of Natural
Visibility Graph. Both of them have the same set of nodes but do not share the same set of
edges. As regards HVG, two nodes are connected if one can draw a horizontal line without
crossing any other points. Formally, the visibility criterion can be de�ned as follows: two
arbitrary data points Ti and Tj will have visibility and consequently will be connected by
an edge if any other point Tk placed between them (i < k < j) ful�lls:

Ti > Tk and Tj > Tk

Therefore, the resulted graph (also called Horizontal Visibility Graph) HVG = (N , E)
where N = {T0, T1, ...., Tn}, and E are the edges (Ti, Tj) such as Ti and Tj satisfy the
previous equation. This graph is illustrated in Figure 2.12 (b) (both dotted line and red line
without considering the directions of the arrows). As one can see, the size of the produced
HVG is smaller and easier to use than the corresponding NVG underlined in Figure 2.12 (a).

In order to have more control, one can decide to parametrize the graph such as the
visibility is constrained in one direction. This direction can be seen as the angle between
two nodes (i.e. data series points), and the visibility criterion can be formally de�ned as
follows [9]: two arbitrary data points Ti and Tj will have visibility and consequently will
be connected together by an edge, if any other point Tk placed between them (i < k < j)
ful�lls:

Tk < Tj + (Ti � Tj)
j � k

j � i

↵min < arctan
�Tj � Ti

j � i

�

< ↵min

Therefore, the resulted graph (also called Parametric Visibility Graph) PV G = (N , E)
where N = {T0, T1, ...., Tn}, and E are the edges (Ti, Tj) such as Ti and Tj satisfy the
previous equation. This graph is illustrated in Figure 2.12 (a) and (b) (full blue and red
arrows). Note that whatever the data series, NVG and PVG using (↵min = �⇡

2
,↵max = ⇡

2
)

have the same edges. The only di�erence is that the edges are oriented from left to right.
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Figure 2.12: For a given data series T , (a) the corresponding Natural Visibility Graph (NVG),

and (b) the corresponding Horizontal Visibility Graph (HVG).

In the case when we have (↵min > �⇡
2
,↵max < ⇡

2
) (as illustrated in Figure 2.12 (b)), PVG

has less edges than NVG (and HVG in Figure 2.12 (b)).

2.5.5.2 Introduction to State-space reconstruction

State-space reconstruction is the foundation of nonlinear data series analysis [54, 19] �rst
proposed by Packard et al. [89]. In principle, it allows the reconstruction of the dynamics
and the behavior of a univariate data series. As claimed by Bradley et al. [19], these recon-
structions can be useful to �nd data series behaviors insight with guarantees to hold in the
original data series. The classical strategy for state-space reconstruction is time delay em-

bedding, where a data series value and its predecessors separated with a given delay is used
as a vector to embed the given data series value. Formally, given a data series T and a time
delay ⌧ , a m dimensional state-space reconstruction vector Ri can be de�ned as follows:

Ri =
⌦

Ti, Ti�⌧ , Ti�2⌧ , ..., Ti�m⌧

↵

As stated by Bradley et al. [19], mathematically, one can equivalently take forward de-
lays instead of backward ones, but for practical purposes, it is better to obey causality laws.
If ⌧ is very small, the coordinates in each of these vectors are strongly correlated. In the
particular case when ⌧ = 1, it becomes a simple subsequence embedding. As ⌧ is getting
larger, reconstruction unfolds o� the data series space domain and highlights some deeper
(i.e., long periods) features and insights.

The primary interrogation that remains is: how to pick ⌧ and the number of dimensions
m? Of course, this question is dependent on the task one wants to achieve. Nevertheless,
a commonly used technique called the C-C method has been de�ned to �nd the best de-
lay [61], and false nearest neighbors methods [56] appears to be very useful to determine
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m.

Regarding our application to anomaly detection, it is important to link these parameters
and the commonly used ones. Indeed the combination of the number of dimensionsm and
the time delay ⌧ can be compared to the subsequence length ` used by both supervised and
unsupervised methods previously enumerated. As mentioned earlier, given a dimensionm
and for the speci�c case when ⌧ = 1, the state space reconstruction vector is simply the
subsequence of length m. While ⌧ increases, the vector becomes a downsampling version
of the subsequence length ⌧ ⇤m.

2.5.5.3 Complex Network Analysis

Sharing the same motivation as Lacasa et al. [65], several other works also provide a way
to build a complex network from a data series. These methods are recurrent-based and
distance-based. We will develop these two types in the following sections.

Several works (Gao et al. [38, 39]) proposed to build the graph using the recurrence
matrix Rc. For a given data series T , R its state space reconstruction vectors, Rc is de�ned
as follows:

Rci,j = Θ(✏� ||Ri �Rj||), for i, j 2 [0, |T |]A = R� I

The functionΘ is the Heaviside function, and ✏ 2 R. Matrix R is then used to build the
adjacency matrix of the corresponding complex network. Matrix A is the adjacency matrix
of our future graph. Matrix I is the identity matrix. The recurrencematrix itself has become
a basic tool of nonlinear data series analysis and was �rst introduced by Eckmann et al. [32].
The constructed complex graph is supposed to store most of the helpful information that
the Rc matrix has.

2.6 Supervised Subsequences Anomaly Detection in

Data Series

Each method listed in the previous sections was fully unsupervised. However, one can
argue that the best way to detect anomalies is to learn what an anomaly should look like
from the past. It is possible if and only if the experts provide a large number of annotations.
(i) In this case, the anomaly detection task can be considered as a classi�cation class with
two classes: normal subsequences and abnormal subsequences. Nevertheless, (ii) in several
other cases, the construction of an abnormal subsequences class is impossible. Thus, the
only supervision possible is by using the normal subsequence class as labels. We discuss in
the following sections the solutions in the literature to handle cases (i) and (ii).
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2.6.1 Semi-Supervised Machine Learning Approaches

As mentioned earlier, it is sometimes easier to build a dataset composed of normal behavior
(real or simulated), and one can try to train a model to detect the normality and consider
as abnormal everything that the model cannot detect. In this case, we supervise the model
to learn the normality, but we complete the detection in an unsupervised way. We discuss
in the following section the various machine and deep learning methods that apply this
strategy. However, one should note that all the followingmethods have a serious advantage
(the training step) over the methods mentioned in the previous sections, and therefore,
should be compared very carefully.

2.6.1.1 Control Chart

Control Chart [27] is a proposed method that aims to measure the stability of a process
usually applied to control the quality and the deviation of a process (or a time series) to an
unwanted state. The deviation is measured by de�ning statistics of interest (such as mean,
median, standard deviation) and then by de�ning a range (using lower and upper bound
thresholds) in which these statistics should belong. These bounds can be set manually, but
then it requires a strong knowledge of the analyzed process.

2.6.1.2 Hidden Markov Model

Hidden Markov Model [24] (HMM) is a statistical Markov model in which we assume that
the system is a Markov process. Thus, such a model can be used for data series.

The latter aims to learn unobservable states (hidden states) from the data series. For the
speci�c case of anomaly detection, the hidden states are learned using data series without
any anomalies (provided by the expert). From the Hidden Markov Model, one can compute
the probability of any new sequence of points. Therefore, one can expect that the prob-
ability of an abnormal sequence will be lower than a regular sequence of points. Thus, a
threshold can be chosen in order to detect abnormal sequences.

2.6.1.3 One-class SVM

One-class Support VectorMachine (SVM) for novelty detection and anomaly discovery aims
to separate the instances from an origin and maximize the distance from the hyperplane
separation [101] or spherical separation [111]. This method is a variant of classical Support
Vector Machine for classi�cation tasks [48]. Originally, given `-dimensional training data
points x0, ...xn 2 X (in our case these points correspond to subsequences of length `),
a non linear function � that maps the feature space X to a dot product space F , a kernel
k(x, y) = (�(x),�(y)) (usually set to a Gaussian kernel k(x, y) = e�||x�y||2/c), the quadratic
program to solve using a hyperplane is the following:
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Figure 2.13: One class SVM illustration in which a point corresponds to a subsequence and

only the green point are provided for the training step.

min
!2F,⇠2R,⇢2R

1

2
||w||2 +

1

⌫`

X

i

⇠i � ⇢

subject to: (!.�(xi)) � ⇢� ⇠i,

⇠i � 0.

Figure 2.13 illustrates the principle of One-class SVM. For a given new instance x, by
deriving the dual problem, the decision function can be de�ned as follows:

f(x) = sgn(
X

i

↵ik(xi, x)� ⇢)

Note that the instances xi associated with non-zero ↵i are called the support vectors.
Their value can be found by solving the following dual problem:

min
↵

1

2

X

i,j

↵i↵jk(xi, xj)

subject to: 0  ↵i 
1

⌫`
,

X

i

↵i = 1.

The quadratic program to solve using a spherical separation, with a given center a (lin-
ear combination of the support vector for which the Lagrange multiplier is non-zero), a
radius R and a penalty parameter C is de�ned as the following:
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min
a2F,R2R

R2 + C
X

i

⇠i

subject to: ||xi � a||2 � R2 � ⇠i

⇠i � 0.

If we assume that such an optimization problem can be solved, we can use the decision
function as an anomaly score. To do so, one has to ensure to train the One-class SVMmodel
on a normal section of the data series only (those have to be annotated by a knowledge
expert and therefore require extra work to be used).

2.6.1.4 LSTM-based anomaly detection method

Long Short Term Memory (LSTM) [50] network has demonstrated to be particularly e�-
cient to learn inner features for subsequences classi�cation or data series forecasting. More-
over, such a model can also be used for anomalies detection purpose [81, 35].

The principle of the last paper is simple as follows. A stacked LSTM model is trained
on normal parts of the data series T . The objective is to predict the point Ti 2 T or the
subsequence Ti,` using the subsequence Ti�`,`. Consequently, the model will be trained to
forecast a healthy state of the data series, and therefore, will fail to forecast when it will
encounter an anomaly. A LSTM unit (composed of nh cells) is composed of 4 trainable
matrix tuple de�ned as (Wq, Uq, bq) 2 R

nh,D (with D = 1 if the input is a univariate data
series). The subscript q can be equal to f, j, o, c, which corresponds to the four gates in the
LSTM unit. Figure 2.15 depicts the components and interactions within a LSTM unit (in
blue the gates containing trainable weights). The various components are given by:

fi = �g(Wf ⇤ Ti + Uf ⇤ hi�1 + bf )

ji = �g(Wj ⇤ Ti + Ui ⇤ hi�1 + bj)

oi = �g(Wo ⇤ Ti + U0 ⇤ hi�1 + bo)

ci = fi � ci�1 + ji � �c(Wc ⇤ Ti + Uc ⇤ hi�1 + bc)

hi = oi � �h(ci)

In the latter equation, the operator � denotes the Hadamard product. By combining
a large number of cells (outlined in Figure 2.15), and stacking them [81], one can �t the
weights to forecast the data series in two di�erent ways described as follows: (i) the �rst
is to train the network using a �xed subsequence length [Ti�`, ..., Ti�1] to predict Ti, (ii)
or using the same input to predict the incoming sequence [Ti, ..., Ti+`0 ]. For the speci�c
purpose of anomaly detection, we will assume that such a model can be trained to achieve
both of the previously enumerated tasks. Then, this model has to be trained on the normal
section of the data series (a priori annotated by knowledge expertise), and the forecasting
error can be used as an anomaly score. Therefore, similarly to the one class SVM, one can
expect to obtain a more signi�cant forecasting error for a subsequence that the model has
never seen during its training (like an anomaly) rather than a usual subsequence.
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Figure 2.14: LSTM unit architecture.

2.6.1.5 GAN-based anomaly detection method

Generative Adversarial Network (GAN) is another network architecture that has attracted
some serious interest. It was initially proposed for image generation purposes [41] but can
be used to generate data series as well.

Let us �rst consider multilayer perceptrons. A GAN is composed of two networks. The
�rst one is called the generator G(z, ✓g) with ✓g its parameters. The second one is called
the discriminant D(x, ✓d) with ✓d its parameters and x a sequence of a given length `. The
output of G is the same shape as the input, and the output of D is a scalar D(x) that
represents the probability that x came from the original dataset, and therefore 1�D(x) is
the probability of x to have been generated by G. Formally G and D have to be optimized
such as the two-players min-max game with value function V (G,D) de�ned as follows:

min
G

min
D

V (G,D) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]

For T` the set of subsequences to train on, and Z the corresponding set of vectors from
the latent space, we have the following stochastic gradient descent:

Discriminant :r✓d

1

|T`|

X

(Ti,`,Z)2(T`,Z)

[�logD(Ti,`)� log(1�D(G(Z)))]

Generator :r✓g

1

|Z|

X

Z2Z

[1� log(1�D(G(Z)))]
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Figure 2.15: Illustration of GAN Network.

This architecture has been tried for the speci�c case of data series anomaly detection
[69]. Nevertheless, a sliding window method has been used to go deeper into the subse-
quences and adapt to anomaly detection within a data series. We describe in this section
the possible adaptation.

For the speci�c case of anomaly detection, the generator is trained to produce subse-
quences labeled as normal, and the discriminator is trained to discriminate the anomalies.
Thus training such a model requires having a training dataset with normal subsequences
only. However, subsequence anomaly detection is not required.

To detect the anomaly, one can use both the discriminator and the generator simultane-
ously. First, given that the discriminator has been trained to separate real (i.e., normal) from
fake (i.e., anomaly) subsequences, it can be used as a direct tool for anomaly detection. Nev-
ertheless, the generator can also be helpful. Given that the generator has been trained to
produce realistic subsequences, it will most probably fail to produce real anomalies. There-
fore, the Euclidian distance between the subsequences to evaluate and what would have
simulated the generator with the same latent input can be used to discriminate anomalies.

Formally, given a subsequence Ti,` (univariate or multivariate) in the data series T , a
trained generatorG, a distance function (in practice Euclidian, Mannathan, or covariance),
one has to �nd Z̃i such that:

Z̃i = min
Zi

distance(Ti,`, G(Zi))

Thus the residual error of Ti,` between its best latent mapping and itself is de�ned as
follows:
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Res(Ti,l) =
X̀

j=0

|Ti+j,1 �G(Z̃i)j,1|

Finally, given a subsequence Ti,`, a value � to tune based on the importance we give to
the generator and the discriminant, the anomaly score can be de�ned as a convex combi-
nation of the residual error and the answer of the discriminant:

LTi,`
= �Res(Ti,l) + (1� �)D(Ti,l)

This subsequence score is then combined with a cumulative sum to build a global score
for the data series instance [69]. However, in the speci�c case of subsequence anomaly
detection within a data series, which is the focus of this work, the latter subsequence score
is enough.

2.6.1.6 Autoencoder

Autoencoder is a type of arti�cial neural network used to learn to reconstruct the dataset
given as input using a smaller encoding size to avoid identity reconstruction. As general
idea, autoencoder will try to learn the best latent representation (also called encoding) using
a reconstruction loss. Therefore, it will learn to compress the dataset into a shorter code,
and then uncompress that code into a dataset that closely match the original. Formally,
given two transition functions � and  , respectively called encoder and decoder, the task
of an autoencoder is the following one:

� :T` ! Z

 :Z ! T`

�, =argmin
�, 

L(Ti,`, (�(Ti,`)))

L is a loss function that is usually set to the mean square error of the input and its re-
construction, formally written ||Ti,`� (�(Ti,`))||

2. Regarding subsequences in data series,
this loss �ts well the task since it coincides with the Euclidian distance.

For the speci�c task of anomaly detection, the reconstruction error can be used as an
anomalous score. The model trained on the non-anomalous subsequence of the data series
is optimized to reconstruct the normal subsequences. Therefore, all the subsequences far
from the training set will have a more considerable reconstruction error. Figure 2.16 depicts
the framework of autoencoder for data series anomaly detection task. Moreover, Figure 2.16
depicts the reconstructed subsequences using an autoencoder with encoder(Conv(64, 3)-
Relu()-Dense()-Tanh()), and decoder(DeConv(64, 3)-Relu()-Dense()-Tanh()). Figure
2.16, where the record 803 of the electro-cardiogram physiobank dataset is used as example,
illustrates the signi�cance of the reconstruction error in the anomaly found.
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Figure 2.16: Autoencoder architecture framework for data series subsequences anomaly

detection. The loss L is used to both train the model (on the non anomalous subsequences),

and score the new subsequences.

2.6.2 Supervised Machine Learning Approaches

As mentioned earlier, if annotations are available (for both normal and abnormal subse-
quences), one can consider the anomaly detection task as a classi�cation task. Data series
classi�cation is considered as a challenging problem in data mining and a well studied
task [119, 33]. To address the task mentioned above, various data series classi�cation al-
gorithms have been proposed in the past few years [5], applied in a large number of use
cases. Among them, one of the most popular and traditional data series classi�cation meth-
ods is based on distances to the instances nearest neighbors. While the Euclidian distance
seems to miss the similarity features needed to classify correctly, the Dynamic TimeWarp-
ing (DTW de�ned in Section 2.5.1) distance is a solid baseline [30]. Naturally, it has been
con�rmed that ensembling all the individual distance-based classi�ers outperforms all of
them separately. Nevertheless, recent works have shown that ensemble-based methods us-
ing other kinds of classi�ers than just distance-based methods are now state-of-the-art [6].
Finally, recent works have been conducted using a deep learning method for data series
classi�cation [34]. Most of the famous network architectures from the computer vision lit-
erature have been tried for data series classi�cation [114]. Some variants, including multi-
length and standard transformation steps, have also been proposed [28]. In this section, we
brie�y describe the methods mentioned above.

2.6.2.1 Distance-Based methods

One of the most popular and traditional data series classi�cation methods is based on dis-
tances to the instances nearest neighbors. It consists of computing for each instance the
distance to its nearest neighbor (or to its kth nearest neighbor) in a given training set. We
then attribute to the instance the class of its nearest neighbor. For that purpose, two dis-
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tance measures are commonly used: the Euclidian and the Dynamic Time Wrapping one.
The �rst distance seems to fail to catch the similarity features to classify correctly. On
the contrary, the Dynamic Time Warping (DTW) distance is accurate [30]. Moreover, even
though DTW computation is slow, DTW �rst Nearest Neighbor (DTW 1-NN) classi�er does
not require any training phase and represents an e�cient solution.

2.6.2.2 Heterogeneous Ensemble-based methods

Rather than simply using one classi�er to predict which class one instance belongs to, sev-
eral works have been proposed to use ensembling methods to improve the classi�cation
accuracy [73, 6]. Such methods either ensemble several distance-based methods [72], but
ensemble also dictionary-based [99], shapelet-based [49, 74, 84, 123], frequency-based and
other general transformed-based methods [73, 7]. Such methods have shown to be signif-
icantly more accurate than all the previous state-of-the-art classi�ers for data series. The
proposed Hierarchical Vote Collective of Transformation-Based Ensembles (HIVE-COTE)
remains until now the most accurate approach to classify data series. However, its execu-
tion time complexity and memory make it hardly usable in practice.

2.6.2.3 Deep Learning methods

Following the recent advances made for image analysis and classi�cation, deep learning
methods and neural networks have been used to classify univariate and multivariate data
series. Such methods have demonstrated solid results and are now considered to be solid
baselines. We now discuss how neural networks are used.

2.6.2.4 Neural Network Notations

We are interested in classifying data series using a neural network architecture model. We
now de�ne the essential components of neural networks.

Dense layer: The basic layer of neural network is a fully connected layer (also called
Dense layer) in which every input neuron is weighted and summed before passing through
an activation function. For univariate data series, given an input data series T 2 R

n, given
a vector of weights W 2 R

n and a vector B 2 R
n, we have:

h = fa

✓

X

Ti,wi,bi2(T,W,B)

wi ⇤ Ti + bi

◆

(2.2)

fa is called the activation function and is a non-linear function. The commonly used
activation function fa is the recti�ed linear unit (ReLU) [88] that prevents the saturation
of the gradient. Nevertheless, other activations are also used in the literature as Tanh,
Leaky ReLU [118] and many others. For the speci�c case of multivariate data series, all
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dimensions are concatenated to give input T,W 2 R
D⇤n. Finally, one can decide to have

several output neurons. In this case, each neuron is associated with a di�erent W and B,
and Equation 2.2 is executed independently.

Convolutional layer: Convolutional layer has shown signi�cant quality to detect
shape based and sub features in images [63, 68, 114], and recently in data series classi-
�cation [34]. In general, convolutional layers are used as feature extractors and stacked
together before being passed through a dense layer that plays the role of classi�er. For-
mally, for multivariate data series, given an input vector T 2 R

(D,n), and given matrices
weights W,B 2 R

(D,`), the output h 2 R
n of a convolutional layer can be seen as a uni-

variate data series. The tuple (W,B) is also called kernel, with (D, `) the size of the kernel.
Formally, for h = [h0, ..., hn], we have:

hi = fa

✓

X

T (j),W (j),B(j)
2

(T,W,B)

X

Tk,wk,bk2

(T
(j)

i�b `2c,i+b `2c
,W (j),B(j))

wk ⇤ Tk + bk

◆

(2.3)

In practice, we have several kernels of size (D, `). The result is a multivariate series with
dimensions equal to the number of kernels, nf . For a given input T 2 R

(D,n), we de�ne
A 2 R

(nf ,n) to be the output of a convolutional layer conv(nf , `). Am is thus a univariate
series corresponding to the output of themth kernel (also called �lter).

Global Average Pooling: Another type of layer, Pooling layers compute aver-
age/max/min operations. A speci�c type of pooling layer is Global Average Pooling (GAP).
This operation is averaging an entire output Am of themth kernel of a convolutional layer
into one value, thus providing invariance to the position of the discriminative features.
Formally, for a set of �lters Am 2 A, a Global Average Pooling (GAP) is de�ned as follows:

ym =
X

j2Am

X

i2Am

(Am)
(j)
i (2.4)

Learning Phase: The learning phase uses a loss functionL that measures the accuracy
of the model and optimizes the various weights. For the sake of simplicity, we note Ω the
set containing all weights (e.g., matricesW andB de�ned in the previous sections). Given
a set of data series T , we de�ne the average loss as:

J(Ω) =
1

|T |

X

T2T

L(T ) (2.5)

Then for a given learning rate ↵, the average loss is back-propagated to all the weights
in the various layers. Formally the back-propagation is de�ned as follows:
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Figure 2.17: Convolutional Neural Network architecture for multivariate data series.
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In the section, we will use the stochastic gradient descent using the ADAM opti-
mizer [62]. Our contribution aims to focus on which loss function to back-propagate and
what combination of the inputs should be applied to maximize the classi�cation accuracy.

2.6.2.5 Convolutional Neural Network Architecture

A classical deep learning architecture used to perform data series classi�cation is Convolu-
tional Neural Network Architecture [34, 114] (CNN). It corresponds to a concatenation of
convolutional layers (joined with the ReLU activation function, batch normalization, and
MaxPooling layer). The last convolutional layer is then connected with a Global Aver-
age Pooling layer and a dense layer. Unlike Multi-Layer Perceptron (MLP) architecture, the
same convolutions kernel (the weightw and the bias b) will be used for all the subsequences
in the data series. Thus, the features learned are invariant of the position in the data series.
Moreover, instances of multiple lengths can be used with the same network. Figure 2.17
depicts the CNN architectures (with a multivariate data series, for which each dimension
is stacked in one channel) with three convolutional layers and a GAP layer.

2.6.2.6 Residual Neural Network Architecture

A second classical neural network architecture is Residual Neural Network architecture [34,
114] (ResNet). This architecture is based on the classical CNN, to which we add residual
connexions between successive blocks of convolutional layers. These connections prevent
the gradient from exploding or vanishing during the learning phase and allow experts to
use deeper (i.e., a high number of layers) architecture. Figure 2.18 illustrates the ResNet
architecture.

2.6.2.7 Advanced variant Architectures

Other advanced methods have been proposed in the literature. Most of them are based on
the same components mentioned above (convolutional layers). A �rst approach proposed
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Figure 2.18: Residual Neural Network architecture for multivariate data series.

in the literature and mentioned in deep learning methods surveys [34, 114] is called En-
coder [105]. The latter is a hybrid deep CNN for which an attention layer replaces the GAP
layer. It enables the network to learn which parts of the data series (in the time domain)
are important for a certain classi�cation. However, this approach seems to be less accurate
than ResNet or CNN [34].

A second approach proposed is Multi-scale Convolutional Neural Network
(MCNN) [28]. This architecture is trained using identical input subsequences with
di�erent lengths (using either downsampling or smoothing operation). The goal is to learn
features of di�erent temporalities and to be able to detect patterns and trends of di�erent
lengths using only one architecture. Nevertheless, this approach seems to be less accurate
than ResNet or CNN [34].

A third variant approach is Multi-Channel Deep Convolutional Neural Network (MCD-
CNN) [127], which was originally proposed for multivariate data series. The main di�er-
ence between this architecture and the classical convolutional neural network architecture
is that the convolutions are computed independently for each dimension.

Moreover, Time LeNet [42] is another variant architecture proposed inspired by the
LeNet architecture from document recognition task [67]. This architecture is very simi-
lar to the classical CNN architecture (concatenation of convolutional layers) but contains
MaxPooling operations between the convolutional layers. It enables the network to learn
general features that are invariant to small perturbations. The last di�erence between CNN
and Time-CNN remains in the usage of a fully connected dense layer (connected to every
neuron of the last convolutional layer) instead of a GAP layer. Thus, due to the very high
number of weights on the last dense layer, this architecture is signi�cantly slower to train.
Moreover, this approach seems to be less accurate than the other proposed methods [34].

InceptionTime [52] is a recently proposed architecture as an equivalent of AlexNet for
time series. InceptionTime is an ensemble of �ve deep learning models, and each one is
created using multiple Inception modules [108]. Each individual model has the same archi-
tecture. The core idea of an Inception module is to use multiple �lters simultaneously to
an input time series. The module includes kernels of varying lengths, which permits the
network to learn relevant features of variable lengths.

Finally, other architectures have been proposed like TimeWarping Invariant Echo State
Network (TWIESN) [110] (a recurrent architecture originally proposed for data series fore-
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casting) tested and implemented for data series in [34], and Time Convolutional Neural
Network (Time-CNN) [126], an architecture that uses MSE instead of the classical cross-
entropy loss function. However, these architectures seem to have signi�cantlyworse results
than the classical architectures [34].

2.6.3 Finding Precursors of Abnormal Subsequences

The previously mentioned supervised methods have two signi�cant bene�ts: (i) as anno-
tations and supervision have been provided, these methods are naturally more accurate
than unsupervised and semi-supervised approaches, (ii) the anomaly investigation can be
further extended in order to identify precursors or symptoms of the classi�ed anomaly. The
latter can be seen as discriminant features or subsequences characterizing the abnormal
class. We now discuss methods that identify such discriminant features.

2.6.3.1 Discriminant features identi�cation

In order to identify discriminant features, one needs to interpret the decision made by the
model and identify which section of the input data is used to make this decision. One re-
quirement is to have a trained model with a high enough accuracy. If the accuracy is low,
the discriminant features will be irrelevant. Moreover, the discriminant features might not
be one entire dimension or one point for the speci�c case of data series but might be a
subsequence within a speci�c dimension. For that purpose, discriminant features identi�-
cation can be seen as object detection in a picture, where the object is a subsequence, and
the picture is a data series.

51



C������ 2

2.6.3.2 Class Activation Map for Univariate Data Series

Class ActivationMap [128] (CAM) has been proposed to highlight the parts of an image that
contributed the most for a given class identi�cation. The latter has been adapted and ex-
perimented on data series [34, 114] (univariate and multivariate). This method explains the
classi�cation of a certain deep learning model by highlighting the subsequences that con-
tributed the most to a certain classi�cation. One should note that the Class Activation Map
method can only be used if and only if a Global Average Pooling layer has been used before
the softmax classi�er. Thus, only the classical architecture CNN and ResNet proposed in
the literature can bene�t from the Class Activation Map. As mentioned in [34, 114] one
should note that this is a very novel research area (especially for data series classi�cation)
which is most of the time considered secondary for improving accuracy. As mentioned ear-
lier, only 2 out of the 9 data series classi�cation approaches listed above provide a method
that explains the decision taken. We now elaborate on the mathematical formulation of the
Class Activation Map method. Formally, let A be the result of the last convolutional layer
conv(nf , `), which is a multivariate data series with nf dimensions and of length n. Am is
the univariate time series for the dimensionm 2 [1, nf ] corresponding to the mth kernel.

Let w
Cj
m be the weight between the mth kernel and the output neuron of class Cj 2 C.

Since a Global Average Pooling layer is used, then the input to the neuron of class Cj can
be expressed by the following equation:

zCj =
X

m

wCj
m

X

(AM )i2Am

(AM)i

The second sum represents the averaged time series over the whole time dimension.

Note that weightw
Cj
m is independent of index i (thanks to the Global Average pooling layer).

Thus, zCj can also be written by the following equation:

zCj =
X

(AM )i2Am

X

m

wCj
m (AM)i

Finally, CAMCj = [CAMCj ,0, ..., CAMCj ,n] that underlines the discriminative features
of class Cj is de�ned as follows:

8i 2 [0, n], CAMCj ,i =
X

m

wCj
m (AM)i

As a consequence, CAMCj is a univariate data series where each element at index i
indicates the signi�cance of index i (regardless of the dimensions) for the classi�cation as
class Cj . Figure 2.19 illustrates the process of computing the Class Activation Map and
identifying the signi�cant subsequences in the initial data series.
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Method name unsup. semi-sup. sup. univ. multiv. static streaming complexity

Density-based

Local Outlier Factor (Section 2.5.3.1) 7 7 O(|T |2)

Isolation Forest (Section 2.5.3.2) 7 7 O(↵|T |log(|T |))

IMondrian Forest (Section 2.5.3.3) 7 O(↵|T |log(|T |))

Distance-based

STOMP (Section 2.5.4.4) 7 7 O(|T |2)

STAMPI (Section 2.5.4.4) 7 O(|T |2)

GrammarViz (Section 2.5.4.3) 7 7 O(↵|T |)

DAD (Section 2.5.4.2) 7 7 O(↵|T |)

Graph-based

Visibility Graph (Section 2.5.5.1) 7 7 O(|T |log(|T |))

Complex Network (Section 2.5.5.3) 7 7 O(|T |2)

Machine and Deep learning-based

Control Chart (Section 2.6.1.1) 7 -

Hidden Markov Model (Section 2.6.1.2) 7 -

OCSVM (Section 2.6.1.3) 7 -

LSTM (Section 2.6.1.4) 7 7 -

GAN (Section 2.6.1.5) 7 7 -

AE (Section 2.6.1.6) 7 7 -

CNN (Section 2.6.2.5) 7 7 7 -

ResNet (Section 2.6.2.6) 7 7 7 -

InceptionTime (Section 2.6.2.7) 7 7 7 -

Table 2.1: Summary and taxonomy of methods listed in this chapter. Note that none of these

approaches can handle missing data points and unsynchronized data series. Preprocessing

steps are thus needed.

2.6.3.3 Limitation of Class Activation Map for Multivariate Data Series

As mentioned earlier, a CAM that highlights the discriminative subsequences of class Cj ,
CAMCj , is a univariate data series. The information provided byCAMCj is su�cient for the
case of univariate series classi�cation. Nevertheless, the explanation provided by CAMCj

is de�cient in the speci�c case of multivariate data series classi�cation. For example, even
though the signi�cant temporal index is correctly highlighted, no information can be re-
trieved on which dimension is signi�cant or not. Solving this severe limitation is a signi�-
cant challenge for several domains.

2.7 Summary

Table 2.1 depicts a summary of all themethods listed in this chapter and their characteristics
and taxonomy described in the previous section. We included graph-based approaches,
even though these methods were not introduced explicitly for anomaly detection purposes.
We denote byComplex Network the methods that are trying to build a graph based on the
phase space of the data series. Finally, we report in Table 2.1 the execution time complexity
to the data series length that we note |T | (↵ is used to embed the di�erent parameters and
inner components of the methods that have a signi�cant impact on the execution time).
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Unsupervised subsequence anomaly (or outlier) detection in long sequences is an important

problem with applications in many domains. However, the approaches that have been pro-

posed so far in the literature have severe limitations: they either require prior domain knowl-

edge or become cumbersome and expensive to use in situations with recurrent anomalies of

the same type. This chapter addresses these problems and proposes two generic approaches,

NormA and Series2Graph, two novel approaches suitable for domain-agnostic anomaly de-

tection. NormA is based on a new data series primitive, which permits to detect anomalies

based on their (dis)similarity to a model that represents normal behavior. Series2Graph aims

to embed the data series into a directed graph that emphasizes the unusual and potentially ab-

normal subsequences. The experimental results on several real datasets demonstrate that the

proposed approaches correctly identify both single and recurrent anomalies of various types,

with no prior knowledge of the characteristics of these anomalies (except for their length).

Moreover, it outperforms the current state-of-the-art algorithms in terms of accuracy while

being faster in execution time.
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3.1 Limitations of Current Approaches

Anomaly, or outlier detection is an old problem, �nding applications in a wide range of
domains. In the speci�c context of sequences, we are interested in identifying anomalous
subsequences. That is, the outlier is not a single value but rather a sequence of values.
As described in the previous chapter, existing techniques either explicitly look for a set of
pre-determined types of anomalies [44, 1], or identify as anomalies the subsequences with
the largest distances to their nearest neighbors [124, 104]. We observed and illustrated in
the previous chapter that these approaches pose limitations to the subsequence anomaly
identi�cation task for several reasons. We summarize below these limitations.

First, anomalous behaviors are not always known. Therefore, techniques that use spe-
ci�c domain knowledge for mining anomalies (e.g., in cardiology [44], and engineering [3])
involve several �nely-tuned parameters and do not generalize to new cases and domains.
Second, in the case of general, domain-agnostic techniques for subsequence anomaly de-
tection, the state-of-the-art algorithms (e.g., see Section 2.5.4.3 and Section 2.5.4.4) have
been developed for the case of a single anomaly in the dataset, or multiple di�erent (from
one another) anomalies. The reason is that these algorithms are based on the distance of
a subsequence to its Nearest-Neighbor (NN) in the dataset: the subsequence that has the
farthest NN is marked as an anomaly. Third, in order to remedy this situation, themth dis-

cord approach has been proposed (see Section 2.5.4.2). This approach takes into account the
multiplicity, m, of the anomalous subsequences that are similar to one another and marks
as anomalies all the subsequences in the same group by computing themth (instead of the
1st) NNs for each subsequence. Nevertheless, this approach assumes that we know the mul-
tiplicitym, which is not valid in practice (otherwise, we need to re-execute the algorithms
for several di�erentm values).

Finally, another drawback of existing unsupervised methods for subsequence anomaly
detection is the execution time complexity. Discord-basedmethods and Local Outlier Factor
methods usually require a high execution time. As unsupervised methods are commonly
used for exploratory purposes, the execution time can be a signi�cant limitation for users.

In the following section, we address the problems mentioned above and propose two
generic approaches. Then, we empirically demonstrate their advantages for the speci�c
task of unsupervised subsequence anomaly detection in accuracy and execution time.

3.2 Proposed Approaches: a Generic idea

In this section, we describe our proposed approaches to the problems of unsupervised sub-
sequence anomaly detection in data series (as de�ned in Problem 1). The generic idea of
our proposed approaches is to focus on the construction of a data structure that summa-
rizes the normal behaviors of a targeted data series [11]. We abstractly de�ne the normal
behavior of the data series as follows:

De�nition 13 (Normal Behavior, NB). Given a data series T , NB is a model that represents

the normal (i.e., not anomalous) trends and patterns in T .
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Figure 3.1: Illustration of the two subsequence anomaly de�nitions proposed approaches:

(a) NormA; (b) Series2Graph.

The above de�nition is not precise on purpose: it allows several interpretations, leading
to di�erent kinds of models. Nevertheless, subsequence anomalies can then be de�ned uni-
formly: anomalies are the subsequences with the largest distances to the expected, normal
behavior, NB (or their distance is above a set threshold). Therefore, both of the proposed
approaches will de�ne their data structure to represent NB , as well as their distance mea-
sure.

Overall, the problem (derived from Problem 1) we solve in this chapter is de�ned as
follows.

Problem 1 (Subseq. Anom. Detection). Given a data series T , and a targeted anomaly

subsequence length `, propose a function f : T ! {N ,A} decomposed into two di�erent

functions: (i) f1 : T ! NB and (ii) dNB
: T ! {N ,A}. Overall, f returns A, a set

containing the ⌘ most abnormal subsequences of length `.

In the following sections, we describe the two proposed approach that introduce a spe-
ci�c data structure that enables fast and accurate detection. Figure 3.1(a) is an illustration of
the data structure used by NormA (called Normal Model and de�ned in Section 3.3) and Fig-
ure 3.1(b) illustrates the graph data structure used by Series2Graph (de�ned in Section 3.4).

3.3 NormA: Set-based modeling of the data series

3.3.1 Normal Model De�nition

We now present NormA. We propose a formalization for NB , called the Normal Model,
denoted NM , and de�ned as follows [18, 13]:

De�nition 14 (Normal Model, NM ). NM is de�ned as the following set of sequences:

NM = {(N0
M , w0), (N1

M , w1), ..., (Nn
M , wn)}
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whereN i
M is a subsequence of length `NM

(the same for allN i
M ) that corresponds to a recurring

behavior in the data series T , and wi is its normality score (the higher this score is, the more

usual the behavior represented by N i
M is).

In other words, this model averages (with proper weights) the di�erent recurrent be-
haviors observed in the data, such that all the normal behaviors of the data series will be
represented in the normal model, while unusual behaviors will not (or will have a very low
weight).

Figure 3.1(a) is an illustration of a Normal Model. As depicted, the Normal Model NM

is a weighted combination of a set of subsequences (points within the dotted circles). The
combination of these subsequences and their relatedweights returns distances di, dj , dk that
are high enough to be di�erentiated from the normal points/subsequences. These distances
can be seen as the distance between subsequences and a weighted barycenter B (in green)
that represents NM . Note that we do not actually compute this barycenter; we illustrate it
in Figure 3.1(a) for visualization purposes. Moreover, we choose `NM

> ` in order to make
sure that we do not miss useful subsequences, i.e., subsequences with a large overlap with
an anomalous subsequence. For instance, for a given subsequence of length `, a normal
model of length `NM

= 2` will also contain the subsequences overlapping with the �rst
and last half of the anomalous subsequence.

As we have de�ned the data structure NM that represents the normal behavior of a
given data series T , we now de�ne the distance to NM which is used as anomaly score:

De�nition 15 (Subsequence Anomaly Score: Distance to NM ). Assume a data series T ,

the set T` of all its subsequences of length `, and the Normal Model NM of T . Then, the

subsequence Tj,` 2 T` with anomaly score, i.e., distance to NM , dNM
(Tj,`) =

P

N i
M
wi ⇤

minx2[0,`NM
�`]

�

d(Tj,`, N
i
Mx,`

)
 

is an anomaly if dNM
(Tj,`) is in the ⌘ largest distances among

all subsequences in T`, or dNM
(Tj,`) > ✏, where ✏ 2 R>0 is a threshold.

Note that the only essential input parameter is the length ` of the anomaly (which is
also one of the inputs in all relevant algorithms in the literature listed in Table 2.1). The
parameter ⌘ (or ✏) is not essential, as long as the algorithm can rank the anomalies. We stress
that in practice, experts start by examining the most anomalous pattern and then move
down in the ranked list since there is (in general) no rigid threshold separating anomalous
from non-anomalous behaviors [8].

As we mentioned above and will detail later on, we choose to de�ne NM as a set of
sequences that summarizes normality in T by representing the average behavior of a set
of normal sequences. Intuitively, NM is the set of data series which tries to minimize the
sum of distances (distance function d in De�nition 15) between itself and some of the sub-
sequences in T . The Normal Model and subsequence anomaly de�nition are illustrated in
Figure 3.2. Last but not least, we need to computeNM in an unsupervised way, i.e., without
having normal and abnormal labels for the subsequences in T`.

Observe that this de�nition of NM implies the following challenge: even though NM

summarizes the normal behavior only, it needs to be computed based on T , which may
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of all subsequences of T :

subsequence Tj,` is normal (low score), while T 0

j,` is an anomaly (high score).

Symbol Description

NM Normal Model of T

N i
M the ith sequence of Normal Model of T

wi Normality score of N i
M

`NM
length of Normal Model NM

N i
M./` T join between N i

M and T with subsequence length `

T./` T self-join of T with subsequence length `NM

S a subset of subsequences of T , of length `NM

C a set of clusters of subsequences of length `NM

c one cluster in C

Center(c) the centroid of cluster c

Table 3.1: NormA table of symbols

include (several) anomalies. We address these challenges by taking advantage of the fact
that anomalies are a minority class. Table 3.1 summarizes the symbols we use to describe
NormA (and its computational steps) in the following sections.

3.3.2 Computational Steps

We now de�ne the computational steps involved to build automatically the Normal Model
NM and the anomaly score computation based on NM . Recall that NM should capture
(summarize) the normal behavior of the data. It may not be tough to do for a sequenceT that
does not contain any anomalous subsequences. In practice, however, wewould like to apply
the NormA approach in an unsupervised way on any sequence, which may contain several
anomalies. The challenge is then how to computeNM based on a sequence T that contains
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anomalies, without user intervention and prior knowledge of the anomalies (except for
their length), and then identify the anomalous subsequences in this same sequence T .

Note that the NM length, `NM
, is larger than the anomaly length `, so that we do not

miss subsequences that have a large overlap with an anomalous subsequence: given a sub-
sequence of length `, if we choose a normal model of length `NM

= 2`, it will contain the
subsequences overlapping with the �rst and last half of the anomalous subsequence, which
is desirable.

NormA approach (NM extraction and anomaly score computation) is thus composed of
the following four steps.

1. Sampling of Subsequences: We extract the subsequences, which can serve as can-
didates for building the NM (blue subsequences in Figure 3.2(b)).

2. Subsequences Clustering: We group these subsequences according to their simi-
larity, adopting a hierarchical clustering strategy, augmented by automated identi-
�cation of the right number of clusters, based on the Minimum Description Length
principle (the centroids of the resulting clustering are illustrated by the black data
series in Figure 3.2(b)).

3. Cluster Scoring: We then score the clusters computed in the previous step. Finally,
we set the Normal model NM = {(N0

M , w0), (N1
M , w1)..., (Nn

M , wn)}, with N i
M the

centroid of the ith cluster, and wi its score.

4. Anomaly Score Computation: We �nally score each subsequence in the data series
(illustrated in Figure 3.2(c)) and extract the most anomalous subsequences (illustrated
as the red subsequences T 0

j,` in Figure 3.2).

We now elaborate on these NM computational steps and the anomaly score computa-
tion.

3.3.2.1 Sampling of Subsequences

Remember that we are interested in describing the normal behavior of a system. Hence, we
need to identify the subsequences (of the data series in which we wish to detect anomalies)
that occur approximately the same along with the data series. These subsequences are a
form of recurrent patterns and should represent the normal behavior. Good candidate sub-
sequences are those that satisfy the following properties: (i) they are similar to one another
(normal behavior repeats approximately the same); (ii) they cover a large percentage of the
data (not all extracted from the same part of the series); and (iii) they have high cardinality
(appear frequently in the series).

In order to discover groups of recurrent patterns we adopt a strategy that groups similar
subsequences without knowing beforehand their range and frequency. Since subsequence
clustering has high time and memory complexity, considering every possible subsequence
of a large input data series would not be a suitable solution, both in execution time e�ciency
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and in accuracy [58]. We thus decide to ignore some subsequences [96] and select only a
subset of them in the original data series.

We describe two variations of our candidate subsequence selection strategy, one motif-
based strategy and one random selection strategy. In the �rst strategy, we select subse-
quences from T that have high similarity to T (excluding overlapping subsequences). To
that extent, we sort the subsequences of T according to the distances to their 1stNN in T .
We can achieve this with the self-join (de�ned in Section 2.5.4.4). For each position i in the
data series T , the self-join sequence contains the nearest neighbor distance of the subse-
quence Ti,` (an example is shown in Figure 2.9). Given the self-join of T , we can discard
the isolated occurrences, namely, the subsequences that do not have a close match and thus
have the highest self-join values.

Given an input data series T and its self-join (T./` T ), we de�ne the set of the clustering
candidate patterns (subsequences), Sselfjoin, selected by means of the self-join:

De�nition 16 (Motif Set: Sselfjoin). Given a data series T and a subsequence length `, we

de�ne Sselfjoin as:

S
selfjoin = {Ti,`NM

|1  i  |T |� `NM
+ 1 ^ (T./` T )i < ✏} (3.1)

where ✏ 2 R
+. Moreover, if Ti,`NM

, Tj,`NM
2 S

selfjoin =) |i� j| � `NM
.

The S
selfjoin set contains non-overlapping subsequences of T which are not isolated

occurrences.

In the second selection strategy, we use a random sampling strategy. Even though ran-
dommotif selection could be performed [70], we decide to use uniform random sampling as
a �rst baseline. We sample from T a subset of non-overlapping subsequences, generating
the candidate set as follows:

De�nition 17 (Random Set: Ssample). Given a data series T , a subsequence length `NM
, and

a sampling rate 0 < r < 1, we de�ne Ssample as:

S
sample = {Ti,`NM

|0  i  |T � `NM
+ 1|} (3.2)

such that |Ssample| < r⇤|T`NM
|/`NM

. Moreover, if Ti,`NM
, Tj,`NM

2 S
sample =) |i�j| �

`NM
.

In S
sample, we place the subsequences that are randomly chosen until we reach the

maximum size of |Ssample| that respects the constraint in De�nition 17. Thanks to the uni-
form distribution of the random sampling, the subsequences in S

sample also cover the entire
length of the data series T .

Note that in the optimal case, where T is a periodic data series, we know that there are at
most |T`NM

|/`NM
non-overlapping recurrent patterns, assuming that `NM

is the length of
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the period. We thus consider this value as an upper bound for the Sselfjoin cardinality. This
value also represents the maximum number of �xed length cycles occurring in an aperiodic

data series. Among the datasets we consider in the empirical evaluation the maximum
value of |T`NM

|/`NM
corresponds to the 1.3% of |T`NM

|. Moreover, we notice that setting

the threshold ✏ = µ(T./` T ) in S
selfjoin always allows to �lter isolated subsequences in T .

3.3.2.2 Clustering Step

At this point, we are ready to present the adopted clustering technique to group subse-
quences in S (Sselfjoin, or Ssample). In that regard, we consider their complete-linkage (den-
drogram), resulting from the agglomerative hierarchical clustering [21]. Following previ-
ous work, we select a dendrogram cut by applying the Minimum Description Length prin-
ciple [97, 96].

We de�ne description length as the total number of bits used to represent a subsequence,
namely its entropy. Given a data series T , we measure its entropy H(T ) as:

H(T ) = �

|T |
X

i=1

P (T = Ti,1)log2P (T = Ti,1) (3.3)

The notation P (T = Ti,1), denotes the probability of �nding the value Ti,1 in T . The
description length DL of T is then de�ned as DL(T ) = |T | ⇤ H(T ), and quanti�es the
storage requirement of a sequence. It is minimized, when a data series contains the highest
number of repeated values. In this case, bits compression reduces the space.

Once the subsequences are grouped, we can represent them by using their distances
to the cluster centers. If the clustering is optimal, we expect the sequences to have high
similarity to their cluster centers. We consider the subsequences at the clustering stage in
their SAX form (Symbolic Aggregate approXimation), where each real value is assigned a
discrete label [106].

We introduce the conditional description length of a data series T (that quanti�es the
bits needed to store it), when knowing its cluster center sequence C:

DL(T |C̄) = DL(T � C̄) (3.4)

Given a cluster of subsequences, C (with the centroid C̄), we compute the conditional cluster
description length DLC , namely the number of bits used to encode the cluster using its
center:

DLC(C|C̄) = DL(C̄) +
X

T2C

(DL(T |C̄)) (3.5)

where the non-conditional DLC(C) =
P

T2C(DL(T )). Given a set of clusters C, in order
to quantify the compression achieved by C, we compare the bits needed to store all the
subsequences, with and without knowing C̄. We thus apply the bitsave measure:

bitsave(C) =
X

C2C

DLC(C)�DLC(C|C̄) (3.6)

63



C������ 3

Algorithm 1: Subsequences Clustering

input : subsequences set S

output: a cluster set C

1 Dendrogram CompleteLinkage(S);

2 C ;;

3 lastBitsave �1;

4 foreach cut in Dendrogram in top-down order do

5 C
0 get subsequences clusters from cut;

6 if bitsave(C0) > lastBitsave then

7 C C
0;

8 lastBitsave bitsave(C0);

9 else

10 break;

11 end

12 end

In Algorithm 1, we report the clustering procedure, which selects and outputs the clus-
ters of a dendrogram cut. The subsequences linkage is computed in Line 1. Subsequently,
we iterate over the cuts in a top-down manner (Line 4). Therefore, we start by consider-
ing the cuts that produce the least number of clusters. We expect that the highest bitsave
is attained by grouping subsequences in the smallest amount of groups if cluster intra-
similarity is maximized. Hence, we iterate the cuts until their clusters bitsave stops to
increase (Line 6). We thus pick the clusters resulting from the last encountered cluster.
This permits to group the subsequences, maximizing their similarity and frequency.

3.3.2.3 Weights Computations

Each clusterwe compute inAlgorithm 1 becomes the candidate group of subsequences (can-
didate cluster) that are considered to build the Normal Model. We now propose a scoring
function, which permits to compute wi (that can be seen as the normality degree) for each
candidate cluster i. Intuitively, the cluster and subsequences with the top score are the most
representative of the di�erent, recurring patterns in the entire data series; the next cluster
is less representative (but still contains subsequences that are close to normal behavior).

Let S ✓ T`NM
be a subset of subsequences in T of length `NM

. We can then compute
the coverage of S, Coverage(S) = MaxOffset(S)�MinOffset(S), which measures the
distance between the maximum and minimum o�sets in T (of two S subsequences), and
corresponds to the span of T from where the subsequences in S were extracted. We will
also refer to the frequency of S, Frequency(S) = |S| (equal to the cardinality of S).

Moreover, we want to consider an inter-clustering property, namely the centrality. We
borrow this de�nition from the graph analysis literature [117], which states that the most
central node in a graph denotes its in�uence. Given a cluster set C and a cluster C 2 C, we
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de�ne centrality as:

Centrality(C,C) =
1

P

Ci2C
d(C̄, C̄i)

(3.7)

Recall that a cluster of subsequences, denoted by C, formally coincides with a set of
subsequences S. The Center function we adopt in our work is the centroid, which is the
arithmetic mean vector of the subsequences in a cluster c.

Intuitively, to set the weights wi for all clusters i, we need to consider the subsequences
that most often occur along the largest part of the data. It translates to identifying the
cluster with the highest frequency and the broadest coverage. In order to account for the
most recurrent subsequence, we also adopt the centrality measure. If a subsequence is the
most recurrent, we expect that all its occurrences are grouped in the cluster with the highest
centrality.

We are now ready to score the candidate clusters, taking into account the frequency and
coverage of the subsequences in each cluster, and its centrality as well. After normalizing
Frequency(C), Coverage(C), and Centrality(C) so that each lies in the [1, 2] interval for
all C 2 C (normalization is needed so that all three criteria have equal weight), the score
we assign to a cluster C, given also the complete clusters set C, is the following:

Norm(C,C) = Frequency(C)2 ⇥ Coverage(C)⇥ Centrality(C,C) (3.8)

The Norm function provides an index with regards to the Normal Model properties
we take into consideration. Since high coverage values might erroneously be assigned to
clusters with low frequency, we favor clusters that have high frequency. For this reason, it
appears squared in Equation 3.8.

3.3.2.4 Normal Model Extraction

In Figure 3.3(a), we report the cluster scores we obtain for the MBA ECG recordings (pa-
tient 803). In the plot, we report each cluster Norm score (the size of the red point is
proportional to Frequency(C)) coupled with their coverage (blue line), which starts and
ends respectively at the smallest and largest o�set of the cluster subsequences. In the
right part of Figure 3.3, we depict the subsequences in each cluster. The x-axis value as-
signed to each red point is the arithmetic mean of its subsequences o�sets in the corre-
sponding cluster. This set of clusters C = {C0, ..., Cn} will be used in the Normal Model
NM = {(N0

M , w0), ...(Nn
M , wn)}, with N i

M = Center(Ci) and wi = Norm(Ci,C).

In this example, the subsequences in the cluster with the highest Norm score repre-
sent correct Heartbeat Ventricles contracts. The centroid of this cluster will be the most
in�uential in NM . On the other hand, clusters with low scores contain subsequences that
do not represent any known features (they may be noise or even repeated anomalies) and,
therefore, will not have a real in�uence in NM .
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Figure 3.3: (a)Norm cluster scoring ofMBAECG recordings (patient 803); (b)Norm cluster

scoring of the concatenation of two MBA ECG recordings (patient 803 and 805).

3.3.2.5 Anomaly Score Computation

We now discuss the problem of how to identify the anomalous subsequences
in a series T , assuming that we have computed the Normal Model NM =
{(N0

M , w0), (N1
M , w1)..., (Nn

M , wn)}. Remember that NM (ideally) represents the expected,
normal behavior of the data. Intuitively, the anomalous subsequences are the ones that are
far away from most of the subsequences in NM .

Our technique starts by considering the pairwise distances between each subsequence
of length ` in T to subsequences of the same length in each of N i

M in NM . For each subse-
quence N i

M in NM , this operation results in a meta-sequence, N i
M./` T (the join sequence

de�ned in De�nition 10), that contains at position j the nearest neighbor distance between
subsequence Tj,` and any subsequence of the same length, `, in NM .

We compute all the join sequences N i
M./` T (with (N i

M , wi) 2 NM ), which contain the
distances between each subsequence of T and their nearest neighbor in N i

M . As described
in De�nition 15, we then compute the anomaly score for each subsequence. This score
corresponds to the nearest neighbor distance between the subsequence to score and all
the subsequences in each N i

M in NM . Given a subsequence Tj,`, we retrieve the nearest
neighbor distance between Tj,` and every N i

M 2 NM , (N i
M ./` T )j . We then weigh these

distances with wi and sum them. Formally, for each subsequence in Ti,j , the anomaly score
is computed as:

dNM
(Tj,`) =

X

(N i
M ,wi)2NM

wi(N i
M./` T )j (3.9)

These scores represent the degree of abnormality: the larger the score is, the more
abnormal the subsequence is. We then have to extract the k subsequences of length `,
which have the highest scores and rank them.
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Algorithm 2: NormA

input : data series T , Normal Model length `NM
, subsequence length `

output: Normal Model NM and list for Anomalies

// Compute the Normal Model NM

1 compute Sselfjoin (or Ssample) from T ;
// compute the set of subsequences clusters in T (C)

2 C SubsequencesClustering(S, `NM
);

3 NM  {} ;

4 for C in C do

5 add (centroid(C), Norm(C,C)) in NM ;

6 end

// Compute the anomaly score for each subsequence in T

7 allJoin [];

8 foreach (N i
M , wi) in NM do

9 allJoin N i
M./` T ;

10 end

11 AnomalyScore d [];

12 foreach j 2 [0, |T |� `] do

13 d 
P

(N i
M ,wi)2NM

wijoin[j] ;

14 end

15 Anomalies subsequences with top-k d values;

16 Anomalies sort subsequences in Anomalies in order of decreasing values in d

3.3.3 Overall Algorithm and Complexity Analysis

The overall procedure for computing the Normal Model is then structured as shown in
Algorithm 2. In Line 1, we select a subset of subsequences, S, applying one of the two
strategies we discussed earlier (i.e., Sselfjoin, or Ssample), which take into consideration sev-
eral desired characteristics of the correct (non-anomalous) part of the data. Subsequently,
we cluster them in Line 2. In Line 4, we iterate each cluster that is assigned to the Norm
score (Line 5) and then added to the Normal Model as a tuple composed of its centroid and
its score. The assigned score quanti�es how much a group of similar subsequences (clus-
ter) supports the properties we de�ne over correct data. We use NormA-SJ to refer to the
algorithm that uses Sselfjoin, and NormA-smpl for the variation with S

sample.

3.3.3.1 Normal Model construction complexity

The complexity of the �rst section of Algorithm 2 depends on the choice of the subsequence
selection strategy performed in the initial part. We can compute Sselfjoin, using the state-
of-the art algorithm Stomp [129] in O(|T |2) time. On the other hand, computing S

sample

takes linear time in the worst case (O(|T |)). In the experimental evaluation, we test the
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two selection strategies in isolation to assess their accuracy separately. Subsequently, the
subsequences linkage computation takes O(`NM

⇤ |S|2).

It is important to note that the space of |S| is in general two orders of magnitude smaller
than the original space of T . In turn, selecting a dendrogram cut has a worst-case time
complexity of O(`NM

⇤ |S|2), when all the cuts need to be evaluated. As we show in the
experimental evaluation, the number of cuts considered in Algorithm 2 is very small in
practice.

3.3.3.2 Score computation complexity

The complexity of the second section of Algorithm 2 is de�ned by the computation ofN i
M./`

T , which is bounded byO(|T |⇤`NM
⇤ |NM |), where |NM | is the number of subsequences in

NM (remember that |NM | << |T |). Therefore, the anomalies extraction step is negligible,
and the complexity is O(|T | ⇤ `NM

⇤ |NM |).

3.3.3.3 Overall complexity

To conclude the overall complexity in the worst case is O(`NM
(|S|2 + |T | ⇤ |NM |)) for

NormA-smpl and O(|T | ⇤ 2) for NormA-SJ. As one can notice, the complexity of NormA-SJ
is signi�cantly worse than NormA-smpl. We will demonstrate the advantage in execution
time of NormA-smpl in Section 3.5.8.

3.4 Series2Graph: Graph-basedmodeling of the data se-

ries

We now present an alternative data structure to represent the subsequences normal behav-
iors of the data series. The previous normal model was a set of subsequences that aimed to
store both normal and abnormal subsequences in the same set, associated with weights that
rank them based on their normality. One can argue that ordering information is missing
from this data structure representation. We thus formulate an approach for subsequence
anomaly detection based on the data series representation into a Graph, in which edges
encode the ordering information [12]. Figure 3.1(b) illustrates the Graph data structure.

3.4.1 Subsequence Graph De�nition

We now provide a new formulation for subsequence anomaly detection. The idea is that
a data series is transformed into a sequence of abstract states (corresponding to di�erent
subsequence patterns), represented by nodes N in a directed graph, G(N , E), where the
edges E encode the number of times one state occurred after another. Thus, normality can
be characterized by (i) the edge weight, which indicates the number of times two subse-
quences occurred one after the other in the original sequence, and (ii) the node degree, the
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Figure 3.4: 3-Normality, 2-Normality, 1-Normality, and 3-Anomaly, 2-Anomaly for two

given graphs ((a),(b) and (c),(d)) representing the simpli�ed model of two data series. Edge

weights and node degrees are used to de�ne the ✓-Normality and ✓-Anomaly subgraphs.

number of edges adjacent to the node, which indicates the proximity of the subsequences
in that node to other subsequences. Note that G is a connected graph (there exists a path
between every pair of nodes), and thus, the degree of each node is at least equal to 1.

Under this formulation, paths in the graph composed of high-weight edges and high-
degree nodes correspond to normal behavior. As a consequence, the normality of a data
series can be de�ned as follows.

De�nition 18 (✓-Normality). Let a node set be de�ned as N = {N1, N2, ..., Nm}. Let

also a data series T be represented as a sequence of nodes hN (1), N (2), ..., N (n)i with 8i 2

[0, n], N (i) 2 N andm  n. The ✓-Normality of T is the subgraph G⌫
✓(N⌫ , E⌫) of G(N , E)

with E = {(N (i), N (i+1))}i2[0,n�1], such that: N⌫ ⇢ N and:

8(N (i), N (i+1)) 2 E⌫ , w((N
(i), N (i+1))).(deg(N (i))� 1) � ✓ (3.10)

An example of ✓-Normality subgraph is shown in Figures 3.4(a) and (c). In Figure 3.4(a),
the subgraph composed of nodes N1, N2, N5, has edges with weights larger than 3, and a
minimum node degree of 2. Therefore, it is a 3-Normality subgraph. In Figure 3.4(c), the
subgraph composed of nodesN1, N2, N5, has edges of weight 1, but does not have any node
with a degree under 4. Therefore, it is a 3-Normality subgraph. Similarly, we de�ne an
anomaly as follows.

De�nition 19 (✓-Anomaly). Let a node set be de�ned as N = {N1, N2, ..., Nm}. Let a data

series T be represented as a sequence of nodes hN (1), N (2), ..., N (n)i with 8i 2 [0, n], N (i) 2

N and m  n. The ✓-Anomaly of T is the subgraph G↵
✓ (N↵, E↵) of G(N , E)with E =

{(N (i), N (i+1))}i2[0,n�1], such that:

G⌫
✓(N⌫ , E⌫) \G↵

✓ (N↵, E↵) = ; (3.11)

69



C������ 3

!"

#$%&

m() * ∗ ,ℓ./
!0

!0

min * ∗ ,ℓ./!"

#$%&

!⃗"
!⃗0

45
6

4578
6
4578
8

ℐ5

ℐ578

:ℓ(<, ℰ)
W1 = n1

W2 = n2

45
6

4578
6

4578
8

(b) First Step: Subsequence embedding (c) Second Step: Node creation (d) Third Step: Edge creation

100000 2500 5000 7500

*@

*8 *A

*A*8 *@

(a) Data 
series T

Figure 3.5: Series2Graph steps in order to build the graph from a data series (a): embed the

subsequences (b), create the nodes (c), and extract the edges (d).

An example of ✓-Anomaly subgraph is outlined in Figures 3.4(b) and (d). In Fig-
ure 3.4(b), the nodes that do not belong to the 3-Normality subgraph constitute the 3-
Anomaly subgraph. The 2-Anomaly subgraph is included in the 3-Anomaly subgraph,
and the intersection of the 2-Anomaly and 2-Normality subgraphs is empty. Similar ob-
servations hold for Figure 3.4(d). We now de�ne the membership criteria of a subsequence
to a ✓-Normality subgraph.

De�nition 20 (✓-Normality Membership). Given a data series T represented as a

sequence of abstract states hN (1), N (2), ..., N (n)i, a subsequence Ti,`, represented by

hN (i), N (i+1), ..., N (i+`)i, belongs to the ✓-Normality of T if and only if 8j 2 [i, i +

`], (N (j), N (j+1)) 2 ✓-Normality(T ). On the contrary, Ti,` belongs to the ✓-Anomaly of

T if and only if:

9j 2 [i, i+ `], (N (j), N (j+1)) /2 ✓-Normality(T ) (3.12)

Based on the above de�nitions, using ✓-Normality subgraphs naturally leads to a rank-
ing of subsequences based on their "normality". For practical reasons, this ranking can be
transformed into a score, where each rank can be seen as a threshold in that score. We
elaborate on this equivalence in the following section. Observe also that the subsequence
length is not involved in the de�nition of normal/abnormal, which renders this approach
more general and �exible. Note that given the existence of graph G, the above de�nitions
imply a way for identifying the anomalous subsequences. The problem is now how to con-
struct this graph. Table 3.2 summarizes the symbols we use in this paper.

3.4.2 Computational Steps

In this section, we describe Series2Graph, one of our two unsupervised solution to the sub-
sequence anomaly detection problem. For a given data series T , the overall Series2Graph
process is divided into four main steps as follows:
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Symbol Description

`G Graph subsequence length

N , E set of nodes and edges

G(N , E) directed graph corresponding to T

✓ density layer (for normality/anomaly)

✓-Normality subgraph of G (also called G⌫
✓ )

✓-Anomaly subgraph of G (also called G↵
✓ )

N⌫ , E⌫ set of nodes and edges of ✓-Normality

N↵, E↵ set of nodes and edges of ✓-Anomaly

w(e) weight of edge e 2 E

deg(Ni) degree of node Ni 2 N

Proj set of all embedded subsequences

Projr reduced set Proj of three dimensions

SProj rotated Projr
 angle

Ψ angle set

I radius set of angle  

N node set in I 

Table 3.2: Series2Graph table of symbols.

1. Subsequence Embedding: Project all the subsequences (of a given length `G) of
T in a two-dimensional space, where shape similarity is preserved (as illustrated in
Figure 3.5(a)).

2. Node Creation: Create a node for each one of the densest parts of the above two-
dimensional space. These nodes can be seen as a summarization of all the major
patterns of length ` that occurred in T (as illustrated in Figure 3.5(b)).

3. Edge Creation: Retrieve all transitions between pairs of subsequences represented
by two di�erent nodes: each transition corresponds to a pair of subsequences, where
one occurs immediately after the other in the input data series T . We represent tran-
sitions with an edge between the corresponding nodes. The weights of the edges are
set to the number of times the corresponding pair of subsequences was observed in
T (as illustrated in Figure 3.5(c)).

4. Subsequence Scoring: Compute the normality (or anomaly) score of a subsequence
of length ` � `G (within or outside of T ), based on the previously computed
edges/nodes and their weights/degrees.

We note that the length `G required in the �rst step of the method is user-de�ned but is
independent of the length of the subsequences that we want to detect as anomalies, which
can have di�erent lengths. For a targeted anomaly length `, we set by default `G = 2/3 ⇤ `
(we evaluate this choice in Section 3.5.6). Below, we describe in detail each one of the above
steps.
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3.4.2.1 Subsequences Embedding

We �rst describe our approach for projecting a data series into a two-dimensional space. We
propose a new shape-based embedding, such that two subsequences similar in shape will be
geometrically close in the transformed space after the embedding. In order to achieve this,
we (i) extract all the subsequences and represent them as vectors, (ii) reduce the dimen-
sionality of these vectors to three dimensions (that we can visualize in a three-dimensional
space), (iii) rotate the space of these vectors (i.e., subsequences) such that two of the com-
ponents contain the shape related characteristic, and the last one the average value. As a
result, two subsequences with similar shapes but a very di�erent mean value (i.e., small
Z-normalized Euclidean distance, but large Euclidean distance) will have very close values
for the �rst two components but very di�erent for the third one.

We start by extracting subsequences using a sliding window that we slide by one point
at a time. Note that this is equivalent to using a time delay embedding [55] with a delay
⌧ = 1. We then apply a local convolution (of size � = `G/3) to each subsequence to reduce
noise and highlight the important shape information. Formally, for a given subsequence
length `G and local convolution size � = `G/3, we transform subsequence Ti,`G into a
vector (of size `G � �):

 i+�
X

k=i

Tk,

i+1+�
X

k=i+1

Tk, ...,

i+`G
X

k=i+`G��

Tk

�

(3.13)

We insert the vectors corresponding to all subsequences Ti,`G in matrix
Proj(T, `G,�) 2 M|T |,`G��(R), where M is the set of real-valued matrices with |T |
rows and `G � � columns.

In order to reduce the dimensionality of matrix Proj(T, `G,�), we apply a Principal
Component Analysis (PCA) transform. For the sake of simplicity, we keep only the �rst
three components (PCA3), and denote the reduced three-columnmatrix asProjr(T, `G,�).

We note that using the �rst three components was su�cient for our analysis. Consider
that for the 25 datasets used in our experimental evaluation (See Section 3.5), the three
most important components explain on average 95% of the total variance. Generalizing our
solution to a larger number of important components is considered as future works.

Since we are interested in subsequence anomalies, which correspond to anomalous
shapes (trends), we need to emphasize (out of the three components obtained by the afore-
mentioned reduced projection) the components that explain the most the shape of the sub-
sequences. Let min(T ) and max(T ) be the minimum and maximum values of the data

series T . We extract the vector ~vref =
�����!
OmnOmx, where Omn = PCA3(min(T ) ⇤ � ⇤ 1`��)

and Omx = PCA3(max(T ) ⇤ � ⇤ 1`��) (PCA3 returns the three most important com-
ponents using the trained PCA applied on Proj(T, `,�)). Intuitively, the vector ~vref de-
scribes the time dimension along which the values change (bounded by � ⇤ min(T ) and
�⇤max(T ), where the multiplication with � corresponds to a local convolution). The other
dimensions (orthogonal vectors of ~vref ) describe how the values change. Thus, overlap-
ping points/sequences in these other dimensions indicate recurrent behaviors, and isolated
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Figure 3.6: (a) Projr(T, `G,�) and (b) SProj(T, `G,�) of a data series T corresponding

to the movement of an actor’s hand that (c) takes a gun out of the holster and points to

a target (normal behavior); (d) the anomaly (red subsequence) corresponds to a moment

when the actor missed the holster [59]. We rotate (a) into (b) such that ~vref is invariant in

two dimensions.

points/sequences indicate possible anomalies. Given the unit vectors (~ux, ~uy, ~uz) that rep-
resent the axes of the cartesian coordinate system of the PCA, the angle �x = ∠~ux~vref ,
�y = ∠~uy~vref , �z = ∠~uz~vref and their corresponding rotation matrices Rux

(�x),Ruy
(�y)

and Ruz
(�z), we de�ne SProj(T, `,�) as follows:

SProj(T, `G,�) = Rux
(�x)Ruy

(�y)Ruz
(�z)Projr(T, `G,�)

T (3.14)

The matrix SProj(T, `G,�) is the reduced projection Projr(T, `G,�) rotated in order
to have the unit vector ~ux aligned with the o�set vector ~vref .

Figure 3.6 depicts the rotation procedure to transform Projr into SProj for an example
data series T that corresponds to the movement of an actor’s hand that takes a gun out of
the holster and points to a target (normal behavior). This rotation is using vector ~vref ,
de�ned by the minimal and maximal constant sequences mentioned earlier (marked with

the red dots in Figure 3.6(a)). The unit vectors of the rotated space are (
~vref

||~vref ||
,~ry,~rz), where

~ry and ~rz are the rotated vectors ~uy and ~uz .

What this rotation achieves is that (similarly to Z-normalization) subsequences with a
di�erent mean but the same shape in the space before the rotation (e.g., subsequences T1

and T2 in Figure 3.6(c)) will have very close ~ry and ~rz components in the new coordinate
system (as shown in Figures 3.6(a) and (b)). Therefore, subsequences with similar shapes
will appear close together, shapes that often repeat in the dataset will form dense clusters in
the space (like subsequences T1 and T2), and rare shapes (anomalies) will appear relatively
isolated (like subsequence T3). Figures 3.6(c) and (d) depict the normal (T1 and T2) and
abnormal (T3) subsequences. The anomaly (T3) corresponds to a case when the actor missed
the holster [59].

We observe that in the rotated space (see Figure 3.6(b)), the shape di�erences are easy
to distinguish, and the normal behavior (dense clusters of repeated patterns) and anomalies
(isolated patterns) are clearly separated.
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Algorithm 3: Pattern Embedding

input : Data series T , input length `G, �

output: 3-dimensional points sequence SProj

// Transform first subsequence

1 P  

✓

Pj+�
k=j Tk

◆

j2[0,`G��]

;

2 add P in Proj;

// Transform every other subsequences in T

3 foreach i 2 [1, |T |� `G] do

4 P [0 : `G � �� 1] P [1 : `G � �];

5 P [`G � �] 
Pi+`G

k=i+`G�� Tk;

6 add P in Proj;

7 end

// Reduce to three dimensions

8 pca PCA3.fit(Proj);

9 Proj  pca.transform(Proj);

// Get rotation characteristics

10 vref  pca.transform((max(T )�min(T )) ⇤ � ⇤ 1`G��);

11 �x,�y ,�z  getAngle((ux, uy, uz), vref );

12 Rux ,Ruy ,Ruz  GetRotationMatrices(�x,�y,�z);

// Rotate SProj

13 SProj  Rux .Ruy .Ruz .P rojT

In the rest of this section, SProj(T, `G,�) will refer to the 2-dimensional matrix keep-
ing only the ry and rz components. Algorithm 3 describes the computation of the pattern
embeddings. Finally, it is important to note that this embedding space is useful to detect
abnormal subsequences because of their shapes (which is due to the dropped component
~vref that contained the information in the mean values of the subsequences).

3.4.2.2 Node Creation

At this point, we are ready to extract shape-related information, as in Figure 3.6, where re-
current and isolated trajectories can be distinguished. The idea is to extract the most crossed
sections of the 2-dimensional space de�ned by the unit vector (~ry,~rz). These sections will
be the nodes in the graph we want to construct. First, we de�ne the radius subset.

De�nition 21 (Radius Set). Given a data series T and its projection matrix P =

SProj(T, `G,�), the radius set I is the set of intersection points between the vector ~u =

cos( )~ry + sin( )~rz and every segment [xi�1, xi], where xi�1, xi are two consecutive rows of

P:

I =
�

x
�

�(~u ⇥ ~x = ~0) ^ (���!xi�1x⇥
���!xi�1xi = ~0)

 

where ⇥ operator is the cross product.
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Figure 3.7: Node extraction from SProj(T, `G,�) by measuring the density of the inter-

sected trajectories to a given vector. The densest points are added to the Node Set N .

Figure 3.7 (a) displays two radius subsets (marked with the red points). We can now
de�ne the Pattern Node Set as follows.

De�nition 22 (Pattern Node Set). Given a data series T , its projection P = SProj(T, `G,�)

and a set of I ( 2 Ψ), the Pattern Node Set of T is:

N = [ 2ΨN 

N =
�

x
�

�9✏, 8y, |x� y| > ✏ =) fh(x, I ) > fh(y, I )
 

with fh(x, I ) =
1

nh
p

2⇡�(I )2

X

xi2I 

e
(x�xi�hµ(I ))2

2h�(I )2

(3.15)

In the above de�nition, f is a kernel density estimation function applied on a radius
subset using a Gaussian distribution. Then, nodes become the areas in the 2-dimensional
space, where the trajectories of the patterns are the most likely to pass through. In other
words, each node corresponds to a set of very similar patterns. The bandwidth parameter h
a�ects the granularity of the extraction. The smaller the h value is, the more local maxima,
and therefore the more nodes we will end up with. Moreover, the larger the h value is,
the fewer nodes the graph will have, and therefore the more general it will be. We de�ne
parameter r = |Ψ| as the number of angles thatwe use in order to extract the pattern node
set. In other words, this parameter is sampling the space (refer to Algorithm 4, Line 1). Once
again, many angleswill lead to high precision, but at the cost of increased computation time.

In practice, we observed that parameter r is not critical, and we thus set r = 50. We
demonstrate the latter statement in Section 3.5.6. Regarding the bandwidth parameter of
the density estimation, we set it following the Scott’s rule [102]: hscott = �(I ).|I |

�
1
5 . In

accordance with the use case, a better parametrization of h and r might di�er. However,
we observe that this �xed bandwidth returned strong results, and we empirically con�rm
its pseudo optimality in Section 3.5.6.
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Algorithm 4: Node Extraction

input : 2-dimensional point sequence SProj, rate r, bandwidth h

output: Node Set N

// Set the number of radius

1 Ψ 
�

i2⇡r
�

i2[0,r]
;

2 N  {};

3 foreach  2 Ψ do

4 I  [];

5 foreach i 2 [0, |SProj|� 1] do

// Find intersected points

6 radius maxx,y(SProji, SProji+1);

7 P  (radiusx.cos( ), radiusy.sin( ));

8 add Intersect((Ω, P ), (SProji, SProji+1)) in I ;

9 end

// Extract Nodes

10 N  argmaxx2I fh(x, I );

11 add N in N ;

12 end

Algorithm 4 outlines the above process for extracting the node set from SProj. For
example, in Lines 6-8, we compute for each radius subset I all intersection points between
a radius vector and the possible segments composed of two consecutive points in SProj.

3.4.2.3 Edge Creation

Once we identify the nodes, we need to compute the edges among them. Recall that the set
of extracted nodes corresponds to all the possible states, where subsequences of the data
series T can be. In order to compute the transitions among these nodes, we loop through the
entire projection SProj(T, `G,�) and we extract the sequence hN (0), N (1), ..., N (n)i of the
nodes Ni in N that the embedded subsequences (SProj(T, `G,�)0, ..., SProj(T, `G,�)n)
belong to. Intuitively, the above node sequence involves all the nodes in N (some of them
more than once) and represents the entire input data series. We use this sequence to identify
the edges of the graph G`G we want to construct. In practice, we extract the edges (all the
pairs of successive nodes in the above sequence) and set their weights to the number of
times the edge is observed in the sequence. Formally, the edges set E is de�ned as follows.

De�nition 23 (Pattern Edges Set). Given a data series T , its projectionP = SProj(T, `G,�)

and its Pattern Node Set N , the edges set E is equal to:

E =
��

S(Pi), S(Pi+1)
� 

i2[1,|P |�1]
, (3.16)

where function S �nds for a given projection point, the closest node in N . Formally:

S(x) = argminn2Nd(x, n) (3.17)

76



U����������� S��������� A������ D��������

Algorithm 5: Edge Extraction

input : 2-dimensional points sequence SProj, and a node set N

output: a Edge Set E

1 Ψ 
�

i2⇡r
�

i2[0,r]
;

2 NodeSeq [];

3 foreach i 2 [0, |SProj|� 1] do

// Get the two radius that bound SProji and SProji+1

4  i getAngle( ~ux, SProji);

5  i+1 getAngle( ~ux, SProji+1);

6 foreach ( 2 Ψ) ^ ( 2 [ i, i+1]) do

// Fill the sequence of node NodeSeq

7 radius maxx,y(SProji, SProji+1);

8 P  (radiusx.cos( ), radiusy.sin( ));

9 xint Intersect((Ω, P ), (SProji, SProji+1));

10 nint argminn2N (|xint � n|);

11 add nint in NodeSeq;

12 end

// Extract edges from NodeSeq

13 E  
�

(NodeSeqi, NodeSeqi+1)
 

i2[0,|fullPath|]
;

14 end

where x 2 P and d is the Euclidean distance.

Since the weight of each edge is equal to the cardinality of this edge in the edge set
E , this weight is proportional to the number of times two subsequences follow each other
in the input data series. For e�ciency, S(x) is computed as follows: for a given projection
point, we �rst �nd the node subsetN ofN (with  2 Ψ), such that |∠~x ~u | is minimal. We
then compute S(x) such as S(x) = argminn2N |x. ~u �n|, where ~x. ~u is the scalar product
between ~x and ~u . As depicted in Figures 3.7(a) and (b), a total of n1+n2 subsequences are
intersected by I and represented by node N0

 . At I +1, these subsequences are divided
between nodes N0

 +1 (n1 subsequences) and N1
 +1 (n2 subsequences). Therefore, we have

w(N0
 , N

0
 +1) = n1 and w(N0

 , N
1
 +1) = n2. Algorithm 5 outlines the steps we follow to

extract the edges among the nodes in N .

3.4.2.4 Anomaly Score Computation

We now describe how we can use the information in the graph to identify the normal and
anomalous behaviors.

We start with the conversion of a subsequence to a path in a given graph. For an
already computed graph G`G(N , E), we de�ne function T ime2Path(G`G , Ti,`) that con-
verts a subsequence Ti,` into a path (i.e., a sequence of nodes) in G`G , by (i) computing the
pattern embedding SP of Ti,` (using the PCA transformation and rotation matrices, com-
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puted in Lines 8 and 12, respectively, of Algorithm 3), and (ii) extracting the edges using
EdgeExtraction(SP,N ) (output of Algorithm 5) on the Node Set N of graph G`G .

We are now ready to measure normality. As mentioned earlier, modeling a data series
using a cyclic graph results in the graph encoding information based on the recurrence of
subsequences. Then, the path normality score function can be de�ned as follows.

De�nition 24 (Path Normality Score). Given a data series T and its graph G`G(N , E),

and a subsequence Ti,` of length ` � `G, the normality of a path Pth =

T ime2Path(G`G(N , E), Ti,`) = hN
(i), N (i+1), ..., N (i+`)i is equal to:

Norm(Pth) =
i+`�1
X

j=i

w(N (j), N (j+1))(deg(N (j))� 1)

`
(3.18)

We can thus infer a normality score for subsequences in T using the T ime2Path func-
tion de�ned earlier (the opposite of this normality score is the anomaly score). Formally,
the normality score is de�ned as follows.

De�nition 25 (Subsequence Normality Score). Given a data series T , its graph G`G(N , E)

and a subsequence Ti,` of length ` � `G, the Normality score Ti,` is equal to:

Normality(Ti,`) = Norm(T ime2Path(G`G(N , E), Ti,`)) (3.19)

Observe that the two previous de�nitions are consistent with the de�nition of ✓-
Normality, such that every Pth in ✓-Normal subgraph will have N(Pth) � ✓, and every
Pth that is exclusively in a lower normality level will have N(Pth)  ✓. As a matter of
fact, the rank generated by the normality score is similar to the ✓-Normality rank, and in
both rankings, the anomalies are found at the bottom of the ranking. The following lemma
formalizes this statement.

Lemma 1. Given a data series T , its graphG`G(N , E), a subsequence Ti,`, and its path Pth =

T ime2Path(G`G(N , E), Ti,`), we have: 8✓ 2 N>0, N(Pth) < ✓ =) Pth 2 ✓-Anomaly(T )

Proof. Consider a subsequence Ti,` corresponding to Pth = hN (i), N (i+1), ..., N (i+`)i. If

Pth 2 ✓-Normality(T ), then according to De�nition 20, we have:

8j 2 [i, i+ `� 1], (N (j), N (j+1)) 2 ✓-Normality(T )

=) 8j 2 [i, i+ `� 1], w(N (j), N (j+1)).(deg(N (j))� 1) � ✓

=)
i+`�1
X

j=i

w(N (j), N (j+1)).(deg(N (j))� 1)

`
� ✓

As a consequence, Pth /2 ✓-Normality(T ) and according to De�nition 20, Pth 2

✓-Anomaly(T ).
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Algorithm 6: Series2Graph

input : data series T , input length `G, subsequence length to analyze `

output: a data series NormaliltyScore

// Embedding step described in Alg. 3

1 SProj  PatternEmbedding(T, `G,�);

// Node creation step described in Alg. 4

2 N  NodeExtraction(SProj, r = 50, h = hopt);

// Edge creation step described in Alg. 5

3 E  EdgeExtraction(SProj,N );

4 G`G  Graph(N , E);

// Normality scores computation

5 NormalityScore [0]0,|T |�`;

// compute Normality score for all subsequences of length ` in T

6 foreach i 2 [1, |T |� `] do

7 NormalityScore[i] Norm(T ime2Path(G`G , Ti,`));

8 end

9 NormalityScore movingAverage(NormalityScore, `G)

Therefore, the subsequences of T with a low score are those that compose the ✓-
Anomaly subgraph, where the value of ✓ is low (close to one for the discords). We note
that this process identi�es both single anomalies (discords) and recurrent anomalies.

3.4.3 Overall Algorithm and Complexity Analysis

Algorithm 6 summarizes all the steps of our approach. In Lines 1-3, we compute the sub-
sequence embedding, the Node Set N and then the Edge Set E in order to build the graph
G`G . Line 7 computes the NormalityScore for all subsequences of the input data series:
we use a sliding window over the input data series to extract all subsequences, we score
each one of them and store the result in the vector NormalityScore, initialized in Line 5.
Finally, we apply a moving average �lter (of window length `G) on the NormalityScore
vector (Line 9). This �lter tries to rectify possible small inaccuracies of the scoring function
by ensuring that two highly overlapping subsequences will have similarNormalityScores
(as we would normally expect).

We now describe the time complexity of the di�erent computational steps. We refer in
this section to Algorithms 3, 4, and 5.

3.4.3.1 Embedding Step Complexity

Algorithm 3 describes the computation of the pattern embeddings. A naive solution is to
compute all the convolutions for all the subsequences of T , which leads to a complexity
of magnitude O(|T | ⇤ `G ⇤ �). Nevertheless, by using the previously computed convolu-
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tions (Line 4), the complexity is reduced to O(|T | ⇤ �). The PCA step of Algorithm 3 is
implemented with a randomized truncated Singular Value Decomposition (SVD), using the
method of Halko et al. [45] with time complexity ofO(|T |⇤(`G��)⇤|component|). The last
step consists of matrix multiplications, and therefore has a complexity ofO(|T |⇤ |Rux

|2). In
our case, the size of the rotation matrices are much smaller than �, which leads to a global
complexity of O(|T | ⇤ (3 ⇤ (`G � �))).

3.4.3.2 Node Creation step complexity

Algorithm 4 outlines the above process for extracting the node set from SProj. In Lines 6-
8, we compute for each radius subset I all intersection points between a radius vector and
the possible segments composed of two consecutive points in SProj. The complexity of
this operation is bounded byO(|SProj|⇤r) ' O(|T |⇤r). The time complexity of the kernel
density estimation isO(|I |) (since |I |  |SProj|). Actually, we experimentally observed
that |I | << |SProj|. Therefore, the overall time complexity is bounded by O(|T | ⇤ r).
We can improve this complexity using the following observation. Instead of checking the
intersection with every possible radius, we can select those that bound the position of the
points i and i+1 in SProj (only the radius with  between  i = ∠ ~ux. ~SProji and  i+1 =
∠ ~ux. ~SProji+1). Therefore, the worst case complexity becomes O(|T | ⇤ r), and the best
case complexity is reduced to O(|T |). We thus denote the complexity as O(|T | ⇤ ↵N ) with
↵N 2 [1, r].

3.4.3.3 Edge Creation step complexity

Algorithm 5 outlines the steps we follow to extract the edges among the nodes in N . For
each point in the input data series T , we identify the radius it belongs to, and we choose
the closest node. Therefore, the complexity is bounded by O(|T |) and varies based on the
number of radius we have to check and the number of nodes in each N . The former is
bounded by parameter r: on average, we have no more than |T |/r points per N . The
overall complexity is in the worst case O(|T |2), and in the best case, O(|T |). We note
that this worst-case corresponds to the situation where each subsequence in T belongs
to a di�erent node. It is not what we observe in practice: the overall complexity is close
to the best case for all our datasets. We thus denote the complexity as O(|T | ⇤ ↵E) with
↵E 2 [1, |T |].

3.4.3.4 Score computation complexity

Two elements are necessary to compute the score for a given subsequence of length `. We
�rst need to compute the degree of each node. The latter can be achieved in O(|N | + |E|)
and needs to be computed only once. As we observe in practice that both |N |, |E| are signif-
icantly smaller than |T |, this operation is negligible compared to the other computational
steps. Then we have two cases: (i) the subsequence to score is inside the data series used
to build the graph, or (ii) the subsequence is not in the data series.
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For the �rst case (i), we just need to �nd the sequence of nodes that corresponds to the
subsequence (we can store this sequence in-memory) and the computation of the score is
linear to the number of nodes in the corresponding path. For a given subsequence Ti,` of
T , we have 1 < |T ime2Path(G`G , Ti,`)| < ` � `G. Thus the complexity to score every
subsequence in T is bounded by O(|T | ⇤ (`� `G)).

For the second case (ii), we need to match �rst the new subsequence in the embedding
space. As we �rst need to compute the convolutions over the subsequence, this can be
achieved in O(` ⇤ �) (the PCA projection and the rotation is negligible compared to this
operation). We then need to match the points in the embedded space to existing nodes.
It can be achieved in O(`). Then the scoring of the corresponding path is bounded by
O(|T | ⇤ `), which is negligible compare to the previous operations. Thus the complexity to
score a new subsequence is O(` ⇤ �).

3.4.3.5 Overall complexity

In total, the construction of G`G and the subsequences scoring for a data series T can be
achieved in O(|T | ⇤ (3(`G � �) + ↵N + ↵E + (`� `G))). As mentioned earlier, ↵E is closer
from 1 than |T | and ↵N varies between 1 and r, the overall complexity depends mostly on
the size of the data series.

3.5 Experimental Evaluation

In this section, we empirically evaluate our proposed approaches compared to state-of-
the-art techniques on a benchmark composed of real and synthetic data series. We �rst
describe the details of the implementations of our proposed approaches. We then enumer-
ate the datasets used in this section (and also used in the following chapters). We also
de�ne the accuracy and execution time measure used to compare di�erent methods. We
then compare NormA and Series2Graph with state-of-the-art approaches for anomaly de-
tection accuracy. We demonstrate the shortcomings of discord-based approaches on data
series containing similar anomalies. Finally, we measure the execution time of NormA and
Series2Graph in comparison with state-of-the-art algorithms. Overall, we demonstrate that
NormA and Series2Graph outperform both execution time and accuracy of current state-
of-the-art approaches.

3.5.1 Implementation

3.5.1.1 Technical Details

We implemented our algorithms in C (for NormA), compiled with gcc 5.4.0, and Python 3.6
(for NormA and Series2Graph). The evaluation was conducted on a server with Intel Xeon
CPU E5-2650 2.20GHz and 250GB RAM.We implemented our twomethods as pip packages.
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Ϭ ϱϬ͕ϬϬϬ ϭϬϬ͕ϬϬϬϬ ϱϬ͕ϬϬϬ ϭϬϬ͕ϬϬϬ

Ϭ ϱϬ͕ϬϬϬ ϭϬϬ͕ϬϬϬϬ ϱϬ͕ϬϬϬ ϭϬϬ͕ϬϬϬ

Random ǁalk ƐeƌieƐ ϭ ;RW ϭͿ ƐinƵƐoid ǁiƚh RW ϭ ƚƌend н anomalǇ
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Figure 3.8: Synthetic datasets. (a) Random walk sequence (left), and sinusoid signal follow-

ing the same trend (right) with injected anomalies (red/bold subsequences). (b) A second

example, with 20% of Gaussian noise added on top.

3.5.2 Description of the datasets

We benchmark our approaches using real and synthetic datasets, for all of which a ground
truth of annotated anomalies is available (Table 3.3). Following previous work [103], we
use several synthetic datasets that contain sinusoid patterns at �xed frequency following a
randomwalk trend (Figure 3.8). We then randomly inject di�erent numbers of anomalies, in
the form of sinusoid waveforms with di�erent phases and higher than normal frequencies
(Figure 3.8(a)), and add various levels of Gaussian noise on top (Figure 3.8(b)). We refer
to those datasets using the label SRW-[# of anomalies]-[% of noise]-[length of anomaly]
and use them in order to test the performance of the algorithms under di�erent, controlled
conditions.

Our real datasets are the following. Simulated engine disks data (SED) from the NASA
Rotary Dynamics Laboratory [2] representing disk revolutions recorded over several runs
(3K rpm speed). MIT-BIH Supraventricular Arrhythmia Database (MBA) [40, 83], which
are electrocardiogram recordings from 5 patients, containing multiple instances of two dif-
ferent kinds of anomalies. Important information related to the aforementioned datasets
are listed in Table 3.3.

3.5.3 Description of the evaluation metrics

We use the precision-at-k (Precision@k or P@k) accuracy measure to evaluate the e�ec-
tiveness of the methods. The latter is the ratio of correctly identi�ed anomalies in the ⌘
subsequences corresponding to the ⌘ highest anomaly score. (This corresponds to preci-
sion on the anomaly class TPA/(TPA + FPA), where TPA is the number of detected true
anomalies, and FPA the number of false positives.) Note that this parameter ⌘ is only used
for evaluation purposes and is not required for practical usage. In our accuracy evaluation,
we set ⌘ to the number of anomalies in the sequence (⌘ = NA of Table 3.3). Recall that
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Datasets Length ` NA Field

Annotated

SED 100K 75 50 Electronic

MBA (803) 100K 75 62 Cardiology

MBA (805) 100K 75 66 Cardiology

MBA (806) 100K 75 27 Cardiology

MBA (820) 100K 75 76 Cardiology

MBA (14046) 100K 75 142 Cardiology

SRW-[20-100]-[0%]-[200] 100K 200 var. Synthetic

SRW-[60]-[5%-25%]-[200] 100K 200 60 Synthetic

SRW-[60]-[0%]-[100-1600] 100K var. 60 Synthetic

Table 3.3: List of dataset characteristics: series length, anomaly length (`), number of an-

notated anomalies (NA), �eld.

the annotated datasets we use in this work have all their anomalies annotated. We also
measure time in order to evaluate the e�ciency and scalability of the methods.

3.5.4 Description of the baselines

We compare NormA and Series2Graph to the current state-of-the-art algorithms for
anomaly detection in data series. We consider two techniques that enumerate Top-k 1st

discords, GrammarViz (named GV and described in Section 2.5.4.3) and STOMP (described
in Section 2.5.4.4). Moreover, we compare NormA against the Disk Aware Discord Dis-
covery algorithm (named DAD and described in Section 2.5.4.2), which �ndsmth discords.
We also compare to Local Outlier Factor (named LOF and described in Section 2.5.3.1) and
Isolation Forest (named IF and described in Section 2.5.3.2). These twomethods are not spe-
ci�c to subsequence anomaly detection but constitute strong baselines from the literature
on multi-dimensional data outlier detection. Finally, we include in our comparison LSTM-
AD (described in Section 2.6.1.4), a semi-supervised deep learning technique. Note that the
comparison to LSTM-AD is not fair to all the other techniques: LSTM-AD has to �rst train
on labeled normal data, which gives it an unfair advantage; all the other techniques are un-
supervised. We include it to indicate how the unsupervised techniques compare to a state-
of-the-art semi-supervised anomaly detection algorithm. In practice, we train LSTM-AD
on the longest subsequence without anomalies: 4109-10846 points (7000 on average).

3.5.5 NormA Parameters in�uences

In this section, we evaluate the sensitivity of the Normal Model NM , as a function of its
length `NM

and distance function d (relevant for NormA-SJ and NormA-smpl), and of the
sampling rate r (relevant for NormA-smpl).
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(a) NormA-smpl result for MBA(803) using SBD, DTW and Euclidean 
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(b) NormA-smpl accuracy on MBA datasets using SBD, DTW and Euclidean distances
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Figure 3.9: Distance measure impact experiment. (a) NormA-smpl accuracy score for

MBA(803) for sbd, DTW and Euclidean distances. (b) Overall accuracy for all the MBA

datasets.

3.5.5.1 Distance Functions d

We now evaluate the impact of the distance measure used in the NormA framework (we
use NormA-smpl as our baseline). As explained in Section 2.5.1, di�erent distance measures
can be used. For this purpose, we use as the d function of De�nition 15 the Euclidean dis-
tance (i.e., the default distance measure for our proposed method), the Shape-Based Distance
(SBD), and the Dynamic Time Warping (DTW ) distance (all de�ned in Section 2.5.1).

Figure 3.9(a) depicts the NormA-smpl score for the three distance measures for a 6000
points snippet of the MBA(803). In Figure 3.9(b), we depict the averaged accuracy (we
use Precision@k accuracy and de�ne it in Section 3.5.3) results from over ten di�erent
runs for the SED and all the MBA datasets (more details on these datasets are provided in
Section 3.5.2). The results show that the SBD, DTW , and Euclidean distances lead to
similar results (with no clear winner).

Overall, Euclidean distance provides accurate results. Moreover, through the use of
the MASS algorithm [124] it is signi�cantly faster than the other two distance measures.
For the remainder of our work, we thus use this distance as function d in De�nition 15.

3.5.5.2 Normal Model subsequences length `NM

We now measure the performance for Precision@k anomaly detection, setting k equal to
the number of anomalies contained in each one of our six real annotated datasets with
multiple anomalies, and we vary the length of the Normal Model (`NM

), using a multiplica-
tive factor ranging between 1.1-10 times the anomalous pattern length `. Figure 3.10(b,c)
shows Precision@k for each Normal Model length we tested using both NormA-smpl and
NormA-SJ (the results for NormA-smpl are averages over 10 runs).

We observe that the accuracy values become stable once the Normal Model length is at
least 2.5x larger than the anomaly length. Before a = 2, we observe, as intuitively explained
in Section 3.3.1, a signi�cant accuracy drop. We also note that this behavior is the same for
both NormA-SJ and NormA-smpl, and absolute accuracy values are in both cases almost

84



U����������� S��������� A������ D��������

12

14

16

18

20

22

24

1.1 3.1 5.1 7.1 9.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1 3.1 5.1 7.1 9.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1 3.1 5.1 7.1 9.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

MBA(803) MBA(805) MBA(806) MBA(820) MBA(14046) SED

!. 1 $!%& ' (. 1 )*'+,-./: ! (23%ℎ ℓ!! = ! ∗ ℓ) 9. 1 )*'+,-:+;<: ! (23%ℎ ℓ!! = ! ∗ ℓ)

=
'
&
9
3:
3*
>
@
@

=
'
&
9
3:
3*
>
@
@

=
'
&
9
3:
3*
>
@
@

' = 0.4 ! = 4 ! = 4

!. 2 $!%& ' (. 2 )*'+,-./: ! (23%ℎ ℓ!! = ! ∗ ℓ) 9. 2 )*'+,-:+;<: ! (23%ℎ ℓ!! = ! ∗ ℓ)

D
3+
&
(:
)

D
3+
&
(:
)

D
3+
&
:

0

1

2

3

4

5

6

7

8

1.1 3.1 5.1 7.1 9.1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Figure 3.10: Precision@k and execution time (in seconds) over MBA and NASA datasets (a)

when we vary r for NormA-smpl, when we vary lNM
(b) for NormA-SJ and (c) for NormA-

smpl.

the same. We then observe in Figures 3.10(b.2) and (c.2) that the execution time increases
slightly when `NM

increases. This is expected because the overall complexity of NormA
(both NormA-smpl and NormA-SJ) depends on `NM

(Section 3.3.3). We set the Normal
Model length to the default value of 4x the anomaly length in all following experiments in
Section 3.5.

3.5.5.3 Sampling rate r

We then compute accuracy aswe vary the sampling ratio r (see De�nition 17) for computing
the Normal Model for NormA-smpl. Figures 3.10(a.1) and (a.2) depict Precision@k and
execution time (in seconds) for MBA and NASA datasets when we vary the sampling ratio
r between 0.01 (1 percent of non-overlapping subsequences selected) and 1 (100 percent of
non-overlapping subsequences selected). Even though a small accuracy drop can be spotted
for r smaller than 0.05, we observe that this parameter does not have a strong in�uence
on accuracy. As r has a direct impact on |S| (which is, as explained in Section 3.3.1, an
important parameter in NormA complexity), the execution time increases when r increases.
In all following experiments in Section 3.5, we use the default value r = 0.4.

3.5.6 Series2Graph Parameters In�uences

In this section, we evaluate the sensitivity of the Series2Graph parameters. As we build the
graph on the entire data series (including the anomalies), we �rst evaluate the in�uence
of the cardinality of the anomalies. We then evaluate the in�uence of the local convolu-
tion window �, the number of radius subset r, the graph subsequence length `G, and the
bandwidth h. For that purpose, we vary one of the parameter and set all the others to their
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Figure 3.11: Precision@k and execution time (in seconds) over MBA and NASA datasets (a)

when we vary �/`G ratio, (b) when we vary the number of radius subset r (c) when we vary

the graph subsequence length `G (while keeping the same targeted subsequence length `

to score) (d) when we vary the bandwidth ratio h/�((I) ).

default values (i.e. h = h̄scott, � = `G/3, `G = 2/3 ⇤ ` and r = 50). Figure 3.11 depicts the
in�uences of these parameters on both accuracy (Precision@k) and execution time for all
MBA and NASA datasets. We discuss in detail the depicted results in the following sections.

3.5.6.1 Anomaly Cardinality in�uence

In this section, we evaluate ourmethod the detect rare and unusual subsequences in data se-
ries. Note that this represents the core hypothesis of our problem de�nition. We thus build
synthetic data series composed of two or three distinct patterns. We randomly place them
in the data series, and we vary their cardinality. We then compute the averaged anomaly
score for each patterns type. We expect our method to detect as anomalies the patterns
with small cardinalities. Figure 3.12 depicts the e�ect of the cardinality mentioned above
on Series2Graph anomaly score. Figure 3.12(a) corresponds to time series that have one
normal pattern that repeats over time (Pattern 1) and one anomaly that we inject (Pattern
2). We �rst measure the average anomaly score of these two patterns when we vary the
cardinality of Pattern 2 (bottom plots of Figure 3.12(a)). We then change the cardinality of
Pattern 2 that we inject (x-axis) by keeping the total sequence length constant. For each
cardinality of Pattern 2, we repeat the process ten times: we compute the anomaly scores
for ten di�erent data series, composed by concatenating Patterns 1 and 2 at a random order
(the cardinality of Patterns 1 and 2 remain constant). Figures 3.12(a.1) and 3.12(a.2) show
that, on average, the anomaly score of Pattern 2 (red line) reduces as its cardinality in the
data series increases. Similarly, the anomaly score of Pattern 1 increases as its cardinality
in the data series decreases. We observe the same when we have more than two patterns
(in Figure A(b), we added a third pattern with �xed cardinality of 5, which has its anomaly
score represented by the black line in the bottom graph). In both Figures, 3.12(a) and 3.12(b),
the crossing point between the red and blue line is approximatively when Pattern 2 becomes
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(a) Synthetic dataset composed of two kinds of patterns. We change the 

proportion of these patterns.

(b) Synthetic dataset composed of three kinds of patterns. We change the 

proportion of the two first patterns (and set the proportion to the third

pattern to 5%). 

120000 3000 6000 9000

(a.1) (top): data series (bottom): Label (0: Pattern 1, 1: Pattern 2)

Pattern 2

Pattern 1

Pattern 2

Pattern 3

1500 37 75 112

Pattern 1 Pattern 2

1500 37 75 112

120000 3000 6000 9000

Averaged anomaly

score of Pattern 2

Averaged anomaly

score of Pattern 1

Averaged

anomaly score 

of Pattern 3

Number of Pattern 2 in the data series for a total of 105 patterns (we set 

the cardinality of patterns 3 to 5)

1000 25 50 75

1

0

Averaged anomaly score 

of Pattern 1

Averaged anomaly

score of Pattern 2

Number of Pattern 2 in the data series for a total of 100 patterns
1000 25 50 75

1

0

0.5

(a.2) Averaged anomaly score when we vary the number of anomalies 

(Same cardinality for Pattern 1 and Pattern 2)
(b.2) Averaged anomaly score when we vary the number of anomalies (Same

cardinality for Pattern 1 and Pattern 2. Cardinality of Pattern 3 is 5)

Figure 3.12: E�ect of anomaly cardinality on Series2Graph detection accuracy

more frequent than Pattern 1. Assuming that, for long data series, anomalies are rare events,
this empirically demonstrates the ability of Series2Graph to detect abnormalities.

3.5.6.2 Convolution window �

We �rst analyze the in�uence of the convolution window � on the anomaly detection accu-
racy and the execution time. Figures 3.11(a.1) and (a.2) depict Precision@k and execution
time in seconds for all MBA and NASA datasets when we vary the ratio �/`G. We observe
a drop in accuracy for three of the six datasets when the ratio is greater than 0.5. It can be
explained by the fact that the convolutions hide some critical part of the anomalous sub-
sequences. We also observe an increase in the execution time when � increases. In theory,
as the complexity of the embedding step is O(3 ⇤ |T |(`G � �)), the execution time should
reduce when � increases. Nevertheless, the implementation of the �rst step (of complexity
O(|T | ⇤ �) which is in theory negligible) is less e�cient (because coded fully in Python)
than the second step (of higher complexity O(3 ⇤ |T |(`G � �)) but coded in C/C++). Thus
the increase in execution time is caused by the �rst step. We set by default � = `G/3.

3.5.6.3 Number of radius subsets r

We then analyze the in�uence of the number of radius subsets r on the anomaly detection
accuracy and the execution time. Figures 3.11(b.1) and (b.2) depict Precision@k and execu-
tion time in seconds for all MBA and NASA datasets when we vary r. For three datasets, we
notice a drop in accuracy for very small r. Nevertheless, the accuracy is stable for r > 10.
We also observe that the execution time increases with r. It is explained by the parameter
↵N which varies between 1 and r. We thus set by default r = 50. However, this parameter
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can be �ne-tuned to better suit a speci�c use case.

3.5.6.4 Graph Subsequence Length `G

We now evaluate the in�uence of the graph subsequence length `G. For that purpose, we
set as constant the anomaly subsequence length (`), and we vary the graph subsequence
length. Figures 3.11(c.1) and (c.2) depict Precision@k and execution time in seconds for all
MBA and NASA datasets. We observe that the accuracy increases when `G gets closer to `.
It is expected as too small subsequences to build the graph would lead to miss unusual tran-
sitions. Moreover, the execution time is signi�cantly higher for small `G. As the anomaly
score computation is of complexity O(|T | ⇤ (` � `G)), a small `G compared to ` increases
the computational time. For our benchmark datasets, we set by default `G = 50, which
corresponds to approximately two-thirds of the anomaly length.

3.5.6.5 Gaussian Kernel Bandwidth h

We �nally evaluate the impact of the kernel bandwidth hscott in fh(x, I) in the node ex-
traction step. We measure the accuracy for di�erent bandwidths. Figures 3.11(d.1)and (d.2)
display the Precision@k on all the MBA and NASA datasets as a function of h/�(I ) (log-
arithmic scale). As expected, a small bandwidth ratio breaks down too much the normal
pattern, and therefore reduces its Normality score, while a large bandwidth ratio (above
0.7) hinders some key nodes from detecting anomalies in two of the six datasets, namely
MBA(806) and MBA(820). The anomalies in these two datasets are close to the normal be-
havior. Thus the abnormal trajectories can be easily missed. In contrast, using the Scott
bandwidth ratio hscott (marked with the dotted line) leads to very good accuracy for all the
datasets we tested (we used the datasets with the same anomaly and pattern lengths so that
we can compare Scott bandwidth ratios). Moreover, we observe that the ratio h/�(I ) does
not have any impact on the execution time.

3.5.6.6 Anomaly Length �exibility

We now evaluate the in�uence of the anomaly subsequence length. For NormA, the sub-
sequences of length ` that the user want to evaluate can only be between 0 < ` < `NM

.
On the contrary, for Series2Graph, one user can evaluate subsequences of length ` between
`G < `. Thus, in theory, Series2Graph is more �exible than NormA. We already demon-
strated that Series2Graph is not strongly a�ected by the parameter `G, we now illustrate
and give an example on the �exibility of Series2Graph on the subsequence anomaly length.

Figure 3.13 depicts theG`(N , E) graphs for `G equals to 80, 100, 120, while the anoma-
lies length is 75 for Type S anomalies, and 120 for type V anomalies. The results show
that in all cases, irrespective of the length ` used to construct the graph, the anomaly tra-
jectories (Type V highlighted in red and Type S highlighted in blue) are distinct from the
highly-weighted trajectories (thick black) that correspond to normal behavior.
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Figure 3.13: G`(N , E) of the MBA(820) electrocardiogram data series for ` of 80, 100 and

120. In the three cases, the di�erent kinds of anomalies (S: blue, V: red) are well separable

with lower edges weights.
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Figure 3.14: On the MBA and SED datasets: (a) Precision@k of Series2Graph varying the

input and query length (2`/3 = `G) to build the graph G`G . (b) STOMP Precision@k vary-

ing the input length `G, (c) STOMP and Series2Graph in Precision@k average compared to

the input length `G.

In order to complement this observation, we conduct the following experiment. First,
we measure the Precision@k as the input length `G and the query length ` vary (using a
query length 2`/3 = `G, with the anomaly length `A = 80). Figure 3.14(a) demonstrates the
stable behavior of Series2Graph. Even though the Top-k accuracy varies for small lengths,
the performance remains relatively stable when the input lengths `G we use to construct
the graph are larger than the anomaly length `A. This means that simply selecting an `G
value larger than the expected anomaly length `A will lead to good performance.

In contrast, as Figure 3.14(b) demonstrates, the performance of STOMP (a discord-based
approach) varies widely. Thus, such approaches need careful tuning, requiring domain ex-
pertise and good knowledge of the possible anomaly lengths. Furthermore, even though
STOMP accuracy seems to converge to a stable value as the length is increasing, the Se-
ries2Graph accuracy stays signi�cantly higher and much more stable in average, as shown
in Figure 3.14(c).
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Datasets GV STOMP DAD LSTM-AD LOF IF NormA-smpl NormA-SJ Series2Graph

SED 0.46 0.57 0.44 0.10 0.65 0.65 (0.02) 0.92 (0.05) 0.91 1.00

MBA (803) 0.15 0.72 0.01 0.35 0.08 1.00 (0.00) 0.99 (0.01) 1.00 1.00

MBA (805) 0.09 0.10 0.03 0.85 0.42 0.99 (0.01) 0.99 (0.00) 0.99 0.99

MBA (806) 0.01 0.59 0.66 0.10 0.92 0.75 (0.06) 0.86 (0.02) 0.85 1.00

MBA (820) 0.05 0.90 0.04 0.09 0.42 0.92 (0.03) 0.98 (0.01) 0.98 0.91

MBA (14046) 0.09 0.54 0.71 1.00 0.64 0.99 (0.01) 0.95 (0.04) 0.93 0.95

SRW-[20]-[0%]-[200] 1.00 0.77 0.55 0.94 0.74 0.75 (0.05) 1.00 (0.00) 1.00 1.00

SRW-[40]-[0%]-[200] 0.97 1.0 0.05 1.00 0.89 0.92 (0.02) 0.97 (0.01) 0.97 1.00

SRW-[60]-[0%]-[200] 0.96 0.88 0.10 0.92 0.76 0.87 (0.02) 0.99 (0.01) 1.00 1.00

SRW-[80]-[0%]-[200] 0.96 0.43 0.14 0.95 0.82 0.86 (0.01) 0.98 (0.00) 0.98 1.00

SRW-[100]-[0%]-[200] 0.95 0.99 0.11 1.00 0.75 0.92 (0.02) 1.00 (0.00) 1.00 1.00

SRW-[60]-[5%]-[200] 1.0 0.73 0.21 0.96 0.88 0.89 (0.01) 1.00 (0.00) 1.00 1.00

SRW-[60]-[10%]-[200] 0.83 0.98 0.01 0.94 0.70 0.80 (0.01) 0.98 (0.00) 0.98 0.98

SRW-[60]-[15%]-[200] 0.76 0.62 0.17 0.94 0.66 0.82 (0.01) 0.99 (0.01) 1.00 0.98

SRW-[60]-[20%]-[200] 0.73 1.0 0.01 0.96 0.73 0.85 (0.02) 1.00 (0.00) 1.00 1.00

SRW-[60]-[25%]-[200] 0.63 0.64 0.09 0.83 0.67 0.80 (0.01) 0.99 (0.01) 0.94 0.98

SRW-[60]-[0%]-[100] 0.98 1.0 0.23 1.00 0.74 0.88 (0.02) 1.00 (0.00) 1.00 0.96

SRW-[60]-[0%]-[200] 0.96 0.60 0.19 1.00 0.85 0.83 (0.01) 1.00 (0.00) 1.00 0.98

SRW-[60]-[0%]-[400] 0.98 1.0 0.63 0.88 0.76 0.88 (0.01) 0.98 (0.01) 1.00 0.96

SRW-[60]-[0%]-[800] 0.91 0.86 - 0.76 0.69 0.87 (0.01) 0.97 (0.02) 0.98 0.98

SRW-[60]-[0%]-[1600] 1.0 1.0 - 0.90 0.52 0.64 (0.02) 0.92 (0.04) 0.97 0.94

average 0.62 0.73 0.24 0.78 0.68 0.85 0.97 0.98 0.98

Table 3.4: P@k accuracy for LOF, IF, DAD, STOMP, GV, LSTM-AD, NormA-smpl (standard

deviation over 100 runs shown in parenthesis), and NormA-SJ and Series2Graph. We set k

equal to the number of anomalies and ` to the length of the (annotated) anomalies.

3.5.7 Accuracy Evaluation

In this section, we report the anomaly detection accuracy results. In Table 3.4, we show the
P@k accuracy (correctly identi�ed anomalies among the k retrieved divided by k), with k
equal to the number of anomalies. These experiments test the capability of each method
to retrieve the k anomalous subsequences in each dataset correctly. For NormA, we simply
have to report the P@k anomalies that the algorithm produces. Similarly, we compute
accuracy for Isolation Forest and LOF, considering the k subsequences assigned with the
highest scores by these two approaches. For the discord based techniques, we have to
consider the Top-k 1st discord and themth discord (withm = k). Finally, LSTM-AD marks
as anomalies the subsequences that have the largest errors (distances) to the sequences that
the LSTM-AD algorithm predicts; we compute accuracy considering the subsequences with
the k largest errors.

In the �rst section of Table 3.4, we report the results of all techniques on the annotated
real datasets with multiple (diverse and similar) anomalies. We observe that both NormA
(NormA-SJ and NormA-smpl) and Series2Graph are outperforming the other state-of-the-
art approaches, except for MBA(14046), for which their performance is still very close to the
best performer. As expected, Top-k 1st discord techniques (GV and STOMP) achieve low
accuracy since anomalies do not correspond to rare subsequences (i.e., isolated discords).
We also observe that themth discord technique (DAD), which can detect groups ofm similar
anomalous subsequences, does not performwell, either. It is due to the many false positives
produced by the algorithm.

In the other three sections of Table 3.4, we report the accuracy of the evaluated methods
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Critical Diagram for NormA and Series2Graph

Series2Graph

NormA-SJ
NormA-smpl

Figure 3.15: Critical di�erence diagram (↵ = 0.05) for the data series of Table 3.4.

on all the synthetic datasets (where we vary the number of anomalies, the % of Gaussian
noise, and the anomaly subsequence length `). We note that the accuracy of the discord
discovery techniques substantially improves since, in this case, most anomalies correspond
to rare and isolated subsequences (i.e., di�erent from one another). Even in these cases,
NormA and Series2Graph are more accurate than other state-of-the-art approaches.

Regarding LSTM-AD,we note that, in general, it is more accurate than the discord-based
algorithms. Nevertheless, we stress that LSTM-AD only achieves this performance because
(contrary to the rest of the techniques) it bene�ts from a training phase on labeled data.
However, in order to train the LSTM model, we select the longest continuous sequence
without anomalies. As some of the datasets contain many anomalies, the longest sequence
without anomalies may not be long enough to �t the model correctly. As a matter of fact,
LSTM-AD cannot match the performance of NormA and Series2Graph. Since we would ex-
pect a semi-supervised algorithm to perform at least as good as an unsupervised algorithm,
these results suggest that supervised methods still have lots of potential for improvement.

Regarding LOF, we observe that it does not performwell in our context. Isolation Forest
achieves better performance but not as good as NormA and Series2Graph.

Overall, we observe that NormA and Series2Graph are more accurate than all competi-
tors (with very few exceptions, for which their performance is still very close to the best
one) in all the settings we used in our evaluation. Moreover, we observe that Series2Graph
and NormA-SJ have similar performances. Furthermore, we note that the performance of
NormA-smpl is in almost all cases equal to that of NormA-SJ and Series2Graph, or very
close to it. However, on average, it is slightly less accurate on our dataset corpus.

Finally, after rejecting the null hypothesis using the Friedman test, we use the pairwise
Post-Hoc Analysis using a Wilcoxon signed-rank test [116] to test and produce the critical
di�erence diagram for the algorithms and datasets of Table 3.4. The critical di�erence di-
agram with ↵ = 0.05 (Figure 3.15) shows that Series2Graph, NormA-SJ, and NormA-smpl
are the overall winners, with Series2Graph, NormA-SJ, andNormA-smpl being signi�cantly
better than all previous algorithms.

3.5.8 Execution Time Evaluation

We now present scalability tests (we do not consider LSTM-AD since supervised methods
have a completely di�erent way of operation and associated costs, e.g., data labeling and
model training)
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Figure 3.16: Execution time (in seconds) evaluation for the baselines and our two proposed

approaches NormA and Series2Graph when we vary (a) the data series length, (b) the num-

ber of anomalies, (c) the subsequence length `.

In Figure 3.16(a), we report the execution time (seconds in log scale) of NormA, Se-
ries2graph, and all the state-of-the-art approaches, when varying the data series length
(|T |). We use several pre�x snippets (50K, 100K, 500K, 1M, 2M points) of the real dataset
MBA(14406), and we set k equal to the number of anomalies that are annotated in each
snippet. We observe that NormA-smpl is 1-2 orders of magnitude faster than all the other
approaches and gracefully scales with the dataset size. It is because the number of distance
calculations performed by NormA-smpl in Algorithm 9 for each subsequence in the data
(computation of join sequence) is limited to the subsequences contained in NM . NormA
performs a limited number of distance calculations during subsequence clustering (Algo-
rithm 1), since only a small part of subsequences in the input data series are selected to
be clustered (Sselfjoin, or Ssample). Thus, NormA-SJ that uses the STOMP algorithm for
the Normal Model computation stage has a small additional time overhead (compared to
STOMP). GV, DAD, and LOF adopt di�erent pruning strategies to reduce the number of
Euclidean distance computations, proving to be less e�ective. DAD and LOF, in particular,
reach the time-out point (8 hours in our experiments) for datasets larger than one mil-
lion points. Moreover, we also notice that Series2Graph is the second-fastest approach. As
NormA-smpl is performing random sampling as preprocessing step, Series2Graph is slower
than NormA-smpl. However, Series2Graph still scales with the dataset size.

In the next set of experiments, we measure the execution time (seconds in log scale)
of the algorithms as we vary the number of anomalies; we use the MBA(14406) and in-
struct the algorithms to �nd 20, 40, 60, 80, and 142 anomalies (Figures 3.16(b)). We observe
that the time performance of NormA and Series2Graph is not in�uenced by the number of
anomalies, since for every subsequence in the dataset, we compute the distance anyway to
its nearest neighbor in the Normal Model (for NormA) and the corresponding path in the
graph (for Series2Graph). Similarly, STOMP, IF and LOF enumerate in quadratic time all
the Top-k 1st discords, always consuming the same amount of time. In contrast, the perfor-
mance of GV and DAD are negatively in�uenced by the number of anomalies. It con�rms
that the pruning strategies they use are in�uenced by the number of anomalies to discover.

Figure 3.16(d) depicts the time performance results as we vary the length of the anoma-
lies between 100-1600 points (SRW-[60]-[0%]-[100-1600] data series). The performance of
STOMP is constant because its complexity is not a�ected by the (anomaly) subsequence
length. NormA remains relatively stable since in Algorithms 2 the Euclidean distances are
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computed using the STOMP algorithm. In NormA, only the clustering operations are af-
fected by the length of the subsequences to consider (Algorithm 1), which in all experiments
we ran was always a very small number (⇠1-2% of all subsequences). We observe that the
execution time for NormA-SJ decreases as we move from anomaly length 100 to length
200. This decrease is explained by the reduction of the number of non-overlapping subse-
quences to cluster, which drops from 242 (anomaly length 100) to 128 (anomaly length 200).
Regarding NormA-smpl, we see a slight �uctuation in execution time, between 1.1-2.4 sec.
For Series2Graph, we observe that the execution time of Series2Graph increases slightly
for larger subsequence lengths. It is due to the scoring function (the last step of the algo-
rithm). This function sums up all the edge weights of the subsequences we are interested
in. Therefore, if the subsequence is large, the number of relevant edges is large as well,
which slightly a�ects the computation time. LOF and IF are computing distances using all
overlapping subsequences, and the computational time is therefore a�ected by their length.
As shown in Figure 3.16(d), both of these two methods perform orders of magnitude worse
than STOMP and NormA. GV and DAD do not scale with the anomaly length, either.

3.5.9 User Interfaces: Stand Alone Web Applications

We also proposed two user interfaces enabling the user to interact, visualize the detected
anomalies and the di�erent inner computational steps of NormA and Series2Graph illus-
trated by their mainframe screenshots in Figure 3.18 and Figure 3.17. Both of them are stand
alone web applications developed using Python 3.6 and the Dash framework [29].

3.5.9.1 GraphAn: Series2Graph User Interface

Themainframe of GraphAn [14] is shown in Figure 3.17. Once the user opens theweb appli-
cation, they can upload a dataset (as well as the anomaly annotations, if available) that will
appear as in Figure 3.17(a.1). The user can then change the values of `G and ` by clicking on
the Series2Graph dropdown in the navigation bar in the middle, and subsequently, visualize
and rotate/zoom in the embedding space (Figure 3.17(a.2)) and the resulted graphG`(N , E)
(Figure 3.17(a.3)). By clicking on the points in the embedding space, the user can visualize
the corresponding subsequences (Figure 3.17(a.2.1)). Similarly, the user can click on a node
in the graph in order to see which subsequences belong to it (Figure 3.17(a.3.1)). Once these
steps are performed, the user can perform the Series2Graph anomaly score computation,
which will be displayed under the uploaded data series (Figure 3.17(a.4)). The user can also
run other anomaly detection methods: STOMP (Section 2.5.4.4), Isolation Forest (IF, de�ned
in Section 2.5.3.2) and Local Outlier Factor (LOF, de�ned in Section 2.5.3.1). Their anomaly
scores will be shown together with the Series2Graph anomaly scores (Figure 3.17(a.4)).

3.5.9.2 SAD: NormA User Interface

The SAD GUI [15] allows users to directly interact with NormA framework and interface
across the entire range of steps of the algorithm that are executed under the hood. It �rst al-

93



C������ 3

(a.3)(a.2)

(a.1)

(a.4)

(a.2.1) (a.3.1)

Figure 3.17: Screenshots of user interfaces GraphAn, dedicated to Series2Graph.

lows users to import their own datasets via an upload tab (top right button in Figure 3.18).
The data series is then plotted in Figure 3.18(b.1) (synchronized with anomaly score of
NormA in Figure 3.18(b.2) ) If annotations (i.e., anomaly labels) are available, they can
also be uploaded to SAD, which will use them to highlight the anomalous subsequences
(red) in the time series plot. Accuracy and execution time measures are also provided (Fig-
ure 3.18(b.3)). The second functionality enables users to intervene andmodify the operation
of the NormA framework. SAD visualizes each step of the process (Subsequences selection,
Clustering, Normal Model selection) and allows users to change the internal parameters of
these steps of the algorithm. SAD displays the values for the internal parameters that were
automatically selected by NormA, along with NM and the subsequences that were used
to compute it. Thus, SAD enables users to understand better how NormA works. Finally,
the user can also run other anomaly detection methods such as STOMP (Section 2.5.4.4),
Isolation Forest (IF, de�ned in Section 2.5.3.2) and Local Outlier Factor (LOF, de�ned in Sec-
tion 2.5.3.1). Their anomaly scores will be shown together with the NormA anomaly scores
(Figure 3.18(b.2)).

94



U����������� S��������� A������ D��������

0

0.5

1

Precision@k

NormA STOMP

0

10

20

30

Exectution time

NormA STOMP

(b.1)

(b.2)

(b.3)
NormA

Figure 3.18: Screenshots of user interfaces SAD, dedicated to NormA.

3.6 Summary

In this chapter, we presented two new approaches, NormA and Series2Graph, that aim to
solve the task of unsupervised subsequence anomaly detection in data series. We described
in detail the computational steps of the two proposed algorithms. We then evaluated the pa-
rameter in�uences of the di�erent approaches. We �nally compare the anomaly detection
accuracy and the execution time of the two proposed techniques compared to the current
state-of-the-art methods. Both theoretically and empirically, we underlined the limitation
of the discord-based approaches and density-based approaches when it comes to large data
series that can contain several similar anomalies. We empirically demonstrated the supe-
riority of our two proposed approaches both in anomaly detection accuracy and execution
time.
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In the previous chapter, we tackled the unsupervised subsequence anomaly detection method

for static data series. However, with the increasing demand for real-time analytics and

decision-making, anomaly detection methods need to operate over streams of values and han-

dle drifts in data distribution. Moreover, subsequence anomaly detection methods usually re-

quire access to the entire dataset and are not able to learn and detect anomalies in streaming

settings. This chapter tackles the above-mentioned issues and proposes SAND, a novel on-

line method suitable for domain-agnostic anomaly detection. SAND aims to detect anomalies

based on their distance to a model that represents normal behavior. SAND relies on a novel

streaming methodology to incrementally update such a model, which adapts to distribution

drifts and omits obsolete data. The experimental results on several real-world and simulated

datasets demonstrate that SAND correctly identi�es single and recurrent anomalies without

prior knowledge of the characteristics of these anomalies.
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4.1 Limitations of Previous approaches for the Stream-

ing case

The previous chapter proposed two approaches that overcome state-of-the-art unsuper-
vised subsequence anomaly detection methods limitations for static data series. For several
use cases in which datameasurements are arriving continuously in several real-world cases,
it requires anomaly detection to take place in real-time. Because drifts in data distribution
are common, the detection needs to be independent of these changes.

Nevertheless, not all previous approaches (both existing and our proposed approaches)
can be adapted to the streaming case. In this case, among all previous methods for sub-
sequence anomaly detection, only discords methods (such as Matrix Pro�le incremental
implementation [124]) and tree-based methods [79] can be used. The remaining methods
cannot adapt to changes and learn new data characteristics, both of which are required
when dealing with data streams due to their design. In such cases, the methods need to
learn and modify their parameters as new data arrive.

4.2 Proposed approach: SAND

To address the problems mentioned above, we propose SAND [17], a novel approach suit-
able for subsequence anomaly detection in data streams. For this novel approach, we start
from the same data structure proposed in Section 3.3.1 and modify the computational steps
to enable streaming usage. SAND builds a data set of subsequences representing the dif-
ferent behaviors of the data series. These subsequences are weighted using statistical char-
acteristics such as their cardinality (i.e., how many times the subsequence occurred) and
their temporality (i.e., the time di�erence this subsequence has been detected for the last
time). SAND enables this data structure to be updated from one batch to another while
computing an anomaly score at every timestamp. Thus, SAND proposes a solution to the
subsequences anomaly detection task on streaming data. SAND bene�ts from k-Shape (de-
scribed in Section 2.5.2), a state-of-the-art data series clustering method, which we extend
to enable the clustering result to be updated without storing any of the previous subse-
quences. We demonstrate experimentally that our method outperforms the current (static
and streaming) state-of-the-art approaches. Our contributions are as follows.

• We describe the concepts and ideas used by the state-of-the-art methods on subse-
quence anomaly detection (static and streaming) and discuss their practical short-
comings.

• We extend k-Shape for streaming scenarios by enabling batch updates of the cluster-
ing partition. Our approach avoids entirely the storage of the previous subsequences,
a critical step for operating over unbounded data series.

• We present SAND, our subsequence anomaly detection method speci�cally designed
for operation over streaming sequence data. SAND exploits our streaming k-Shape
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Symbol Description

T a data series

|T | cardinality of T

` input subsequence length

Ti,` subsequence of T of length `, starting at index i

T
0
` initial batch of T of length bsize

T
t
` batch starting at timestamp t of T of length bsize

C partitioning of a clustering algorithm

Ci cluster in C

C̄i centroid of Ci
k number of clusters

Table 4.1: Table of symbols.

to scale in memory and in execution time for unbounded streams. We propose a new
weighting scheme for clusters and an automatic cluster creation procedure to handle
distribution drifts. We �nally propose a novel anomaly score computation that adapts
dynamically to the current batch and gives less importance to old subsequences.

• We perform an experimental analysis using a large data corpus of real datasets (in-
cluding a ground truth of annotated anomalies) from di�erent �elds. We evaluate
both subtle changes in data characteristics (by concatenating datasets from the same
domain) and drastic changes (by concatenating datasets from di�erent �elds). We
empirically evaluate the in�uence of SAND’s parameters on accuracy and execution
time. Finally, we compare SAND with several state-of-the-art approaches.

To conclude, the problem (derived from Problem 1 and adapted to the streaming case)
we solve in this chapter is de�ned as follows.

Problem 2 (Streaming Subseq. Anom. Detection). Given a data stream T , arriving in

batches Tt
` (with bsize the size of the batches) and a targeted anomaly subsequence length

`, propose a function f : Tt
` ! {N ,A} with A, a set containing the ⌘ most abnormal subse-

quences of length `.

In this work, we focus on the Top-k anomalies. Using a threshold ✏ instead to detect
anomalies is a straightforward extension. Table 4.1 summarizes the symbols we use in this
chapter.

4.2.1 Overview

In this section, we present SAND, our solution for unsupervised subsequence anomaly de-
tection in data streams.

Overall, we compute and update a weighted set of subsequences over time. The sum-
mary of the computation steps is as follows:
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Figure 4.1: SAND computation framework.

1. Model initialization: We start by computing our initial model on the initial batch.
We �rst select subsequence candidates and then perform the k-Shape clustering al-
gorithm. These clusters are then scored and stored in memory (Section 4.2.2).

2. ContinuousModel update: After each new batch, we compute a new clustering on
the newest batch. We then match the new cluster with the similar one in the current
model stored in memory. The matching procedure is based on a distance threshold
corresponding to the intra-cluster average distance for each existing cluster. If the
distance between an existing cluster and a new cluster is smaller than the threshold,
we merge the two clusters. Otherwise, we create a new cluster. This procedure is
described in Section 4.2.3.1.

3. Centroid update: We then propose a mechanism to compute the centroid of two
merged clusters without keeping in memory the raw subsequences of these two clus-
ters. This mechanism is a novel technical extension of k-Shape for streaming scenar-
ios. Thematching system and the centroid computation is summarized inAlgorithm 8
and in Section 4.2.3.2.

4. Weight update: We �nally update the weights for each cluster (new, merged, or
unchanged) based on their previous score. The update procedure is summarized in
Algorithm 9 and in Section 4.2.3.3.

5. Subsequence scoring: At any time, one can compute the anomaly score on the
current batch using the current model stored in memory. We incrementally learn the
mean and the standard deviation to compute the anomaly score such that the anomaly
detection is adapted to the current batch subsequences/behaviors (Section 4.2.4).

Figure 4.1 depicts the general framework of the approach. We now describe in detail
the di�erent steps of our methodology. Algorithm 7 summarizes the parameters, as well as
the update procedures of the set Θ. Next, we describe in detail the di�erent steps.
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Algorithm 7: SAND
input :

A data stream T : T should be composed of numerical values, evolving on a single dimension.

A subsequence length `Θ (with the condition `Θ > `): As empirically shown [18], for a given `,

`Θ = 3 ⇤ ` can be used as the default setting.

An initial number of clusters k: It will be used as the number of clusters for the k-Shape

algorithm for the initial clustering, and at each new batch. In practice, there is no restriction to use

a di�erent k for the initialization and the other steps. For the sake of simplicity, we use the same k.

An initial batch T
0
`Θ

(and a batch size bsize < |T |): bsize is also used to set the size of every new

batch T
t
`Θ
. In practice, one can use a di�erent batch size for the initial batch and the others. For the

sake of simplicity, we use the same batch size.

A real number ↵ 2 [0, 1]: A parameter conditioning the rate of change of the centroids, the

weights, the estimated mean, and standard deviation of the anomaly score.

output: A set Θ, a data series score

// Initialization

1 Θ,C0  {}, kShape(T0
`Θ
, k);

2 Θ updateCentroid(Θ,C0, init = True);

3 Θ updateParam(Θ,↵);

4 µ,�  0, 0;

// Online Update

5 foreach in coming batch T
t
`Θ

do

6 C
t  kShape(Tt

`Θ
, k);

7 Θ updateCentroid(Θ,Ct, init = False);

// see Alg. 8

8 Θ updateParam(Θ,↵);

// see Alg. 9

9 score, µ,�  computeScore(Θ,Tt
`Θ
,↵, µ,�);

// see Alg. 10

10 end

4.2.2 Model initialization

We start by describing the initialization step of the SAND. It step consists in building a set
of clusters paired with weights, denoted as Θ = {(C̄0, w0), (C̄1, w1)..., (C̄k, wk)} similarly
as described in Section 3.3.1 (note that, from a higher perspective, the previously discussed
Normal ModelNM has the same data structure asΘ). In the latter, C̄k is the centroid of clus-
ter Ck which is a sequence of length `Θ. Note that thisΘ set will be our main data structure
that will evolve through time. For simplicity purposes, in the remainder of this chapter, we
say that C̄i is in Θ if there exists the tuple (C̄i, wi) in Θ. We describe the initialization of
this set below.

We �rst select the subsequences in an initial batch before clustering them. Formally, for
a given data series T , and a batch of length bsize we de�ne T0

`Θ
= {T0,`Θ , ..., Tbsize�`Θ,`Θ}

as the set of all overlapping subsequences in the �rst initial batch. For e�ciency and accu-
racy matters, one can argue that only a subset of non-overlapping subsequences might be
selected. However, using an appropriate clustering algorithm (such as k-Shape clustering
algorithm), one can cluster highly overlapping subsequences. We then apply the k-Shape
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clustering algorithm. For the sake of simplicity, we de�ne k-Shape: T`Θ , k ! C, with k
being the number of clusters and C = {C0, ..., Ck} being the set of clusters. The number of
clusters k is a user de�ned parameter. We evaluate its in�uence in Section 4.2.6. Note that
the number of clusters k will imply the initial size of the set Θ. A cluster Ci is de�ned as
Ci ⇢ T

0
`Θ

and 8Ci, Cj 2 C, Ci \ Cj = ;. The initialization step is de�ned as follows:

{C0, ..., Ck} = kShape(T0
`Θ
, k)

8(C̄i, wi) 2 Θ,

8

<

:

w0

i = |Ci|2P
C̄j2Θ

sbd(C̄i,C̄j)
.

wi =
w0

iP
w0

j
w0

j

(4.1)

As described in the previous equation, we normalize the weights wi to have their sum
equal to 1. In Θ computation, k-Shape algorithm internally handles the realignment of the
sequences and thus permits to use a high number of subsequences of T without realigning
them beforehand. To be consistent with the SBD distance used in the k-Shape algorithm,
we use the SBD distance in the scoring step to measure the isolation of a given cluster from
the rest of the clusters. Theoretically, to be able to update sequences (i.e., centroids) inΘ, we
have to store in memory the subsequences that were used to compute them. As mentioned
earlier, we denote Ci the subsequences set, and C̄i its centroid. Nevertheless, storing Ci
implies an in�nite storage need for unlimited streams. Thus, in practice, we do not store
Ci, and we describe in Sections 4.2.3.2 how we update the sequences in Θ without storing
their corresponding set Ci. However, for the sake of simplicity, we still use Ci notation as
virtual sets corresponding to C̄i in Θ.

4.2.3 Continuous Model Update

Once the initialization is done, the model is ready to receive new subsequences. Let Tt
`Θ

be the set of subsequences (of size |Tt
`Θ
| = bsize) from the current batch arriving at time t.

The length of this batch is a user parameter. We evaluate the in�uence of this parameter
in Section 4.2.6. For every new batch, we perform a k-Shape clustering operation with k
clusters (same value of k used in the initialization step), and we note the clustering result
C

t.

4.2.3.1 Matching Strategy

We then match C
t with the sequences in Θ. In practice, we de�ne a threshold ⌧c,j for each

sequence C̄j in Θ. We then verify if the distance between a centroid of a new cluster in C
t

and an existing sequence C̄j 2 Θ is smaller than ⌧c,j . Formally, given a cluster Ct
i in the

clustering resultCt = {Ct
0, ..., C

t
k} on the current batch T

t
`Θ
,Θ, and a threshold ⌧c,j for each

sequence C̄j , the matching process is operated as follows:

• if 9(C̄j, wj) 2 Θ, SBD
�

C̄j, C̄t
i

�

< ⌧c,j : We consider that cluster Ct
i found in the current
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batch is similar to an existing sequence C̄j in Θ. We thus update the sequence C̄j and
its corresponding weight wj using the new cluster Ct

i .

• if 8(C̄j, wj) 2 Θ, SBD
�

C̄j, C̄t
i

�

> ⌧c,j : We consider that cluster Ct
i is not similar

enough with any of the existing sequences in Θ. Therefore, we include it as a new
sequence in setΘ. We then compute its corresponding score and centroid, and insert
it into Θ.

We assume that the cluster quality is a signi�cant property to guarantee an accurate
detection of anomalies, and the number of clusters directly impacts the execution time. As
underlined in the previous paragraph, threshold ⌧c,j has a direct impact on the number of
new clusters that will be created at each batch and on the cluster quality. On the one hand,
a high ⌧c,j will make the cluster creation rare but might harm the cluster quality. On the
other hand, a low ⌧c,j will imply a large number of clusters created at each batch. Therefore,
an optimal threshold that preserves the quality of the clusters without creating too many
clusters is di�cult to set for a user. Moreover, one threshold cannot be the same for every
cluster. Therefore, to set automatically a threshold that adapts to clusters, we use the intra-
cluster distance. For a given subsequence C̄j inΘ, we compute the intra-cluster distance as
follows:

⌧c,j =
X

Ti,`2Cj

SBD(Ti,`, C̄j) (4.2)

We then use ⌧c,j to decide if a new cluster should be created or not. In practice, we do
not store set Cj . If one cluster changes, we need to update the threshold dynamically. We
thus store the size of Θ clusters only. Formally, for a sequence C̄j in Θ and a given cluster
Ct
i to be merged, we update threshold ⌧ ⇤c,j as follows:

⌧ ⇤c,j  
|Cj| ⇤ ⌧c,j
|Cj|+ |Ct

i |
+

|Ct
i | ⇤

P

Tm,`2C
t
i
SBD(Tm,`, C̄t

i )

|Cj|+ |Ct
i |

(4.3)

Finally, the matching procedure is executed in Algorithm 8, and the threshold update is
executed in Algorithm 9.

4.2.3.2 Centroids Update

At this point we matched the arrival subsequences (in the current batch) with existing
sequences in Θ. Let consider that cluster Ct

i has been matched with sequence C̄j 2 Θ. We
update sequence C̄j as described in Equation 2.1. We note C̄j

⇤

the updated sequence C̄j .

As mentioned earlier, we do not store set Cj in memory. We thus need to compute the
shape update process dynamically. As described in Equation 2.1, the shape update process
is computed using matrix Sj (of size `2Θ). Sj is built by computing the dot product between
all subsequences in the merged cluster Cj [ Ct

i . Nevertheless, we can split the computation
as follows:
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Algorithm 8: Θ Centroids Update: computeCentroid

input : A set Θ, a clustering partition C
t on the batch T

t
`Θ
, a Boolean init.

output: A set Θ

1 foreach Ct
i 2 C

t do

2 newClusters {};

3 if (9(C̄j , Sj , ⌧c,j , wj , sj) 2 Θ, sbd
�

C̄j , C̄t
i

�

< ⌧c,j) ^ (init = False) then

// The new cluster Ct
i can be merged with the existing

cluster Cj
4 Sj  Sj +

P

Tj0,`Θ
∈Ct

i

Tj0,`Θ .T
T
j0,`Θ

;

5 C̄j  argmax
C̄j

(C̄j)
T .QT .Sj .Q.C̄j

(C̄j)T .C̄j
;

6 else

// The new cluster Ct
i cannot be merged with any existing

cluster

7 Si  
P

Tj,`Θ
∈Ci

Tj,`Θ .T
T
j,`Θ

;

8 C̄i  Centroid(Ci);

9 newClusters newClusters [ (C̄i, Si, None,None,None);

10 end

11 end

12 return Θ [ newClusters;

Sj =
X

Tm,`Θ
2Cj

Tm,`Θ .T
T
m,`Θ

+
X

Tm,`Θ
2Ct

i

Tm,`Θ .T
T
m,`Θ

(4.4)

The left part of the above sum is already computed from the previous batch. The only
new computation to be performed is the right part. Therefore, we just need to update
matrix Sj by adding the sum of the dot product of the subsequences of the cluster Ct

i to be
merged with C̄j . By doing so, updating the cluster shape does not require storing all the
subsequences in memory, but just matrix Sj . It results in a gain in memory space for large
data series and execution time. Formally, matrix Sj (and therefore C̄j) is updated as follows:

S⇤

j  Sj +
X

Tm,`Θ
2Ct

i

Tm,`Θ .T
T
m,`Θ

(4.5)

Note that we just need to compute the initial Sj for all initial clusters and store them in
memory. We then compute the update C̄j

⇤

using the updated S⇤

j at every new batch. The
centroids computation and update are executed in Algorithm 8.

4.2.3.3 Weights Update

Once the sequences C̄j are updated, we can update their corresponding weights wj . One
could decide to update the weights like in Equation 4.1 using their current statistics (cardi-
nality and distance to other sequences inΘ). On the speci�c case of data series without any
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Algorithm 9: Θ Parameters Update: computeParam
input : A set Θ, a �oat ↵.

output: A set Θ

1 foreach (C̄i, Si, ⌧c,i, wi, si) 2 Θ do

2 wt
i  

|Ci|
2

P
C̄j2Θ

sbd(C̄j ,C̄i)
;

3 if (C̄i, Si, ⌧c,i, wi, si) is a new cluster then

// Initialize the parameters for the new cluster Ci
4 wi, si  wt

i , |Ci|;

5 ⌧c,i  
P

Tm,`∈Ct
i
sbd(Tm,`, C̄t

i );

6 else

// update the parameters for the merged cluster Ci

7 wi  (1� ↵) ⇤ wi +
↵∗wt

i

max(1,Ai−bsize)
;

8 ⌧c,i  
si∗⌧c,i
|Ci|

+
(|Ci|−si)∗

P
Tm,`2Ci

sbd(Tm,`,C̄t
i
)

|Ci|
;

9 si  |Ci|;

10 end

11 end

12 return Θ;

changes of normal behaviors, this would be the good choice. However, if a new behavior
is detected, one should be able to forget the previous behaviors (or reduce its importance).
For that purpose, we dynamically update the weight using its previous value. We introduce
a user parameter ↵ with values between [0, 1], such that it represents the rate of change.
We note w⇤

i the updated weight and compute it as follows:

wt
i  

|Ci|
2

P

(Cj ,wj)2Θ
sbd(C̄j, C̄i)

w⇤

i  (1� ↵) ⇤ wi +
↵ ⇤ wt

i

max(1,Ai � bsize)

with: Ai = t� tlast,i

(4.6)

In the above de�nition, t is the time index of the current batch, and tlast,i is de�ned
as the temporal index of the latest (as regards to the time index) subsequence in cluster
Ci. Note that as previously expressed, Ci is not stored. However, it is trivial to count the
number of subsequences (|Ci|), and to compute tlast,i without storing Ci. Moreover, note
that, at each iteration, we normalize the weight to have their sum equal to 1. As one can
see, the new weight w⇤

i will be a weighted mean (by ↵) between its old value wi and its
value at the current time wt

i . If no new subsequence has been added to a cluster, then
wt

i = wt�bsize
i . However, it also means that this cluster might correspond to an old (and

potentially irrelevant now) behavior. It has to be taken into account, and we include a time
decay component in the weight computation (as described in Equation 4.6). We have two
di�erent cases:

• Ai  bsize: Cluster Ci contains at least one subsequence in the current batch. It
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means that the cluster is still active. Thusmax(1,Ai� bsize) = 1, and no time decay
is applied.

• Ai > bsize: Cluster Ci does not contain any subsequence from the current batch. It
means that the cluster might not be active anymore. We can thus start to apply some
decay by dividing the current weight wt

i by Ai � bsize.

Depending on the value of ↵, the score of the clusters without any new subsequences
will converge to zero, giving more importance to the currently activated clusters. In the
speci�c case when an old behavior starts again to happen, its corresponding weight will
increase faster (knowing that the cardinality of this cluster is already big). If one does not
expect any old behavior to happen again, one can decide to remove clusters with scores
approximately equal to zero. In practice, this is more e�cient in memory. Nevertheless,
for the remainder of this chapter, we do not remove any cluster. The weight update is
performed in Algorithm 9.

4.2.4 Subsequence Scoring

At this point, we can update the set Θ at every new batch. We now describe how we
compute the score for all the subsequences inside a given batch. For a given subsequence
Tj,` 2 T` in the current batch (of length ` < `Θ), we compute the following score:

dj =
X

C̄i

wi ⇤minx2[0,`Θ�`]

�

dist(Tj,`, (C̄i)x,`)
 

(4.7)

Even though the weights wi are adjusted depending on the activity of their related
clusters, a certain noise could be observed on the score. Based on C̄i shape and its possible
evolution, the score values distribution might evolve as well. We thus normalize the score
at each batch. For a subsequence Tj,` 2 T` in the current batch T

t
`Θ
, we compute the

normalization as d⇤j =
dj�µ⇤

t

�⇤

t
. We compute the estimated mean and standard deviation µ⇤

t

and �⇤

t as:

µ⇤

t  ↵ ⇤ µt + (1� ↵) ⇤ µt�bsize

�⇤

t  ↵ ⇤ �t + (1� ↵) ⇤ �t�bsize

(4.8)

In the latter equation, µt and �t are the mean and the standard deviation of dj over batch
T

t
`Θ
. At each batch, we use the previously updated mean and standard deviation to adapt

the distance to set Θ. Otherwise, in the unusual case when a batch contains a higher rate
of anomalies than the previous (and future) batches, the normalization (without using the
previous batch mean and standard deviation) may result in missing the anomalies in the
batch. The score computation procedure is performed in Algorithm 10.
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Algorithm 10: Score Computation: computeScore

input : A set Θ, a subsequence Tt
`Θ
, a �oat ↵, two �oats µ,�

output: A data series score, two �oats µ∗,�∗

1 score [] foreach Tj,` 2 T
t
`Θ

do

// For each subsequence in the batch

2 score[j] 
P

C̄i
wi ⇤minx∈[0,`Θ−`]

�

dist(Tj,`, (C̄i)x,`)
 

;

3 score[j] score[j]−µ

�
;

4 end

// Update mean and variance

5 µ∗  ↵ ⇤ µ(score) + (1� ↵) ⇤ µ;

6 �∗  ↵ ⇤ �(score) + (1� ↵) ⇤ �;

7 return score, µ∗,�∗;

4.2.5 Execution Time Complexity Analysis

In this section, we analyze the execution time complexity of the various steps of the SAND
framework. Note that the time complexity of the k-Shape algorithm is O(max(|Tt

`Θ
| ⇤ k ⇤

`Θ ⇤ log(`Θ), |T
0
`Θ
| ⇤ `2

Θ
, k ⇤ `3

Θ
)) per iteration, with |Tt

`Θ
| = bsize.

Initialisation Step: We study the time complexity of the di�erent steps separately. We
�rst analyze the theoretical execution time needed to perform the initialization. The latter is
composed of small computations related to theweights that theSBD distance uses between
sequence of length `Θ with complexity O(k2 ⇤ `Θlog(`Θ)). Thus, the complexity of the
initialization step has the k-Shape algorithm as a bottleneck.

Batch Execution Time Complexity Analysis: At each batch, one need to run the k-
Shape algorithm. Then at each step we need to compute the SBD distance between every
new cluster and every sequence in Θ. The SBD computation complexity is O(`Θlog(`Θ)).
Thus, the complexity of the �rst step is O(|Θ| ⇤ k ⇤ `Θlog(`Θ)). As explained in the initial-
ization section, the weight computation complexity is O(k2 ⇤ `Θlog(`Θ)). Nevertheless, we
always have k  |Θ|, thus the weights computation step is negligible.

Then for a given cluster Ci, the shape update process requires the computation of the
matrices Si and its eigendecomposition. Thus, the shape update operation has complexity
O(max(|Ci| ⇤ `

2
Θ
, `3

Θ
)) with |Ci| being the number of subsequences in the cluster we want

to extract the shape. We are storing previously computed matrices Si in memory and we
are computing the matrices Si corresponding to the new clusters Ct

i . For a given time index
t,
P

Ci2C
|Ci| = |Tt

`Θ
| = bsize. Moreover, knowing that only k new clusters need to be

merged, the shape update operation cannot be done more than k times. Thus the overall
complexity of the shape update is O(max(bsize ⇤ `

2
Θ
, k ⇤ `3

Θ
)). Therefore, this complexity

does not depend on the time evolution, and the execution time needed remains constant
for the entire stream.

Scoring Execution Time Complexity Analysis: The anomaly distance between subse-
quences of length ` and the setΘ computation is de�ned by the computation of Equation 4.7,
which is bounded by O((bsize � `+ 1) ⇤ `Θ ⇤ |Θ|) using the Fourier transform to compute
e�ciently the correlation and distances over overlapping subsequences.
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Overall complexity: We now analyze the overall complexity of the batch operation.
Note that some operations share the same complexity, so can be grouped. Overall, the time
complexity of the batch update operation is de�ned as follows:

SAND = max

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

bsize ⇤ k ⇤ `Θ ⇤ log(`Θ)

2 ⇤ bsize ⇤ `
2
Θ

2 ⇤ k ⇤ `3
Θ

|Θ| ⇤ k ⇤ `Θ ⇤ log(`Θ)

(bsize � `+ 1) ⇤ `Θ ⇤ |Θ|

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(4.9)

One should note that the only parameter that varies while time evolves is the size of the
set Θ (involved in the two last lines of Equation 4.9). Nevertheless, this evolution is most
likely to be slow. Thus, the overall complexity does not depend on the time evolution and
remains constant regardless of the increasing number of batches. The important parameters
on the execution time are the batch size bsize, the number clusters k and the length `Θ.
Moreover, we note that the complexity is linear to the size of the batch, which implies that
SAND scales gracefully to large batches.

4.2.6 Parameters In�uences

In this section, we evaluate and analyze in�uences of SAND parameters on accuracy and
execution time. Recall that there are only four main parameters (`Θ,k, bsize, and ↵) that may
a�ect the anomaly detection accuracy. Note that two parameters can jointly in�uence the
accuracy and, therefore, we vary two parameters simultaneously. We �rst start by analyz-
ing parameters in�uences independently. Figure 4.3 depicts the Precision@k (Fig. 4.3(1)),
the execution time in seconds to compute a batch (Fig. 4.3(2)) and the �nal number of clus-
ters created (Fig. 4.3(3)) with a color range between black and yellow (with black the lowest
and yellow the highest) for the double-normality datasets (results for single-normality fol-
low similar trends).

4.2.6.1 In�uence of the Centroids Length, `Θ

We �rst evaluate parameter `Θ as regards to parameter `. We de�ne `Θ = a ⇤ `. Fig-
ure 4.2 depicts the Precision@k and the execution time when a varies between 1 and 10 for
double normality datasets (results for single-normality datasets follow similar trends). For
accuracy purposes, `Θ should be greater than two times `. Above a > 2, the Precision@k
reaches its maximum value and stays constant. Thus, for a value of a above a given value,
the length of the centroids does not have a signi�cant impact on the accuracy. Moreover,
as explained in Section 4.2.5, the centroids length does have an impact on the execution
time. Thus, one needs to choose a large enough length to maximize the accuracy without
increasing signi�cantly the execution time. We pick `Θ = 4 ⇤ `.
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Figure 4.2: In�uence of a (a = `Θ/`) over all double normality datasets on Precision@k (a)

and execution time in sec (b).

4.2.6.2 In�uence of Initial Number of Clusters, k

We analyze the in�uence of the SAND initial number of clusters k (independently) on the
detection accuracy and the execution time per batch. The y-axis of Figure 4.3(b) depicts the
evolution of the accuracy and execution time per batch when we vary the initial number
of clusters k. Note that the other parameter is set to its default value (bsize = 5000). We
notice that parameter k does not have any impact on the detection accuracy. Nevertheless,
increasing k leads to a higher number of clusters after the �nal batch and a higher execution
time per batch (as theoretically explained in Section 4.2.5). Therefore, a low initial number
of clusters seems to be an optimal choice. In our experiments, we select k = 6.

4.2.6.3 In�uence of Batch Size

We then measure the in�uence of the batch size on accuracy and execution time. As de-
picted in Figure 4.3(c) We note that a bigger batch requires more execution time. Never-
theless, we show in Section 4.3.6 that throughput remains constant to this parameter. We
observe a drop in accuracy for small batches, but we also notice a slow reduction of accu-
racy while the batches increase. In this case, there is a change of normality in the middle
of the data series. Thus small batches are more able to adapt to this change. We select the
nearly optimal choice of bsize = 5000 for our experiments.

4.2.6.4 In�uence of ↵

Wemeasure the impact of↵ on accuracy and execution time (see Figure 4.3(b)). As expected,
↵ does not have an impact, neither on the number of clusters created nor on execution time.
However, when normality changes, the model needs to adapt fast enough. Thus, a high ↵
leads to a more accurate result (for the single normality datasets, the impact on accuracy
slowly decreases as ↵ increases, since no adaptation is needed for these datasets). In our
experiments, we use ↵ = 0.5, which provides good accuracy for both single and double
normality datasets.
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Figure 4.3: In�uence of batch size bsize, rate of change ↵, and initial number of clusters k

on accuracy (1st line), execution time (2nd line) and �nal number of clusters created (3rd

line), over all double normality datasets.

4.2.6.5 In�uence of Batch Size and ↵

Wenow evaluate the in�uence of the batch size joinedwith↵. As previously underlined, the
execution time and the number of clusters created are independent of ↵ but only dependent
on the batch size. We note that a high value of batch size joined with low values of ↵ implies
low accuracy for double normality datasets (Fig. 4.3(a.1)). On the contrary, we observe that
a high value of ↵ joined with a low value of batch size implies a lower accuracy for single
normality datasets. Overall, parameters that are on the diagonal (such as bsize = 5000 and
↵ = 0.5) are optimal.

4.2.6.6 In�uence of Initial Number of Clusters k and ↵

We then evaluate the initial number of clusters k joined with ↵ (Figure 4.3(b)). As men-
tioned earlier, the execution time and the number of clusters created are independent of ↵.
Moreover, for the double normality datasets, the initial number of clusters k does not have
any impact on accuracy, while ↵ does.
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4.2.6.7 In�uence of Batch Size and Initial Number of Clusters k

Finally, we measure the in�uence of batch size joined with the initial number of clusters
k (see Figure 4.3(c)). One can see that the combination of a small-batch size and a high k
leads to a signi�cant number of clusters, and large batch sizes combined with a high initial
number of clusters lead to a high execution time per batch. With regards to accuracy, only
the batch size has an impact.

4.3 Experimental Evaluation

In this section, we compare the performance of SAND with state-of-the-art subsequence
anomaly detection methods in terms of accuracy and e�ciency. We measure the ability of
SAND to detect abnormal subsequences in a benchmark of real datasets. Despite operating
in a streaming setting, we con�rm that SAND performs similarly to state-of-the-art (non-
streaming) subsequence anomaly detection methods that operate over the entire dataset.
We then demonstrate the shortcomings of the non-streaming methods, as well as the ability
of SAND to adapt to changes of normality. We compare the scalability of SAND to state-of-
the-art streaming methods for anomaly detection when we vary di�erent parameters and
show that SAND is an order of magnitude faster.

4.3.1 Implementation

4.3.1.1 Technical Details

We implemented our algorithms in C (compiled with gcc 5.4.0) and Python 3.6. The evalu-
ation was conducted on a server with Intel Xeon CPU E5-2650 2.20GHz and 250GB RAM.
We implemented our method as pip package.

4.3.2 Description of the evaluation metrics

We use the Precision@k as the accuracy measure. The latter is the ratio of correctly iden-
ti�ed anomalies in the ⌘ subsequences corresponding to the ⌘ highest anomaly score. We
set ⌘ as the number of anomalies in the datasets (as depicted in Table 3.3). Note that this
parameter ⌘ is only used for evaluation purposes and is not required for practical usage.
We then use the throughput metric and the execution time in seconds to evaluate the scal-
ability. The throughput is de�ned as the number of subsequences that can be handled in
one second and corresponds to an upper bound of the data acquisition speed of the method.
The higher the throughput, the better the model will handle high-frequency data streams.
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4.3.3 Description of the datasets

We benchmark our algorithm using real and synthetic datasets, for all of which a ground
truth of annotated anomalies is available. We simulate streams by selecting static data se-
ries. We carefully select two speci�c types of data series. We �rst select several real data
series. The �rst data series is a Simulated Engine Disks data (SED) from the NASA Rotary
Dynamics Laboratory [2] representing disk revolutions recorded over several runs (3K rpm
speed). We also include MIT-BIH Supraventricular Arrhythmia Database (MBA) [40, 83],
which are electrocardiogram recordings from four patients containingmultiple instances of
two di�erent kinds of anomalies (either supraventricular contractions or premature heart-
beats). All the previously enumerated datasets and their characteristics are grouped in
Table 3.3.

To evaluate the capacity of our method to adapt to changes over time, we create syn-
thetic datasets that contain more than one speci�c normality. We note them Double-
Normality, Triple-Normality, up until Sextuple-Normality. We build them by concate-
nating our real single normality datasets. We thus perform two kinds of concatenation.
We �rst concatenate di�erent datasets from the same domain (i.e., two Electro-Cardiogram
from two di�erent patients) to evaluate methods to adapt to subtle changes. We then con-
catenate datasets from di�erent domains (i.e., Electro-Cardiogram with SED) to evaluate
methods to adapt to drastic changes.

4.3.4 Description of the baselines

We �rst compare with four state-of-the-art static methods (i.e., methods that take as input
the entire data series): Isolation Forest (named IF and described in Section 2.5.3.2), NormA
(de�ned in Section 3.3), Series2Graph (named S2G and de�ned in Section 3.4), and STOMP
(described in Section 2.5.4.4); as detailed below, we use the parameters suggested in the
original papers. For IF, we use 100 trees as explained in [75]. For NormA, as described in
Section 3.3, we use the default parameters for sampling rate, r = 0.4, and subsequence
length, `NM

= 4 ⇤ `. For S2G, we use as parameters local convolution � = 1/3 ⇤ `G,
bandwidth h (set using Scott’s rule [102]), and number of angles r = 50 (as de�ned in
Section 3.4). We �nally compare SAND to NormA-mn, a variation of NormA, where we
adapted the computation of the anomaly score based on the average anomaly score in a
givenwindow length: we compute the anomaly score of a subsequence Ti,`, and we subtract
the average anomaly score of all subsequences within the interval [i � 2 ⇤ `Θ, i + 2 ⇤ `Θ].
This adaptation of the scoring step enables NormA to operate on multi-normality datasets.

We then compare SAND to dynamic methods (i.e., methods that receive subsequences
of the data series incrementally). We �rst build baselines from the state-of-the-art static
methods called NormA-batch and S2G-batch, which operate locally (and independently) on
each new arriving batch. We also compare SAND to two state-of-the-art dynamic methods:
IMondrian Forest(mentioned in Section 2.5.3.3) and STAMPI (mentioned in Section 2.5.4.5).
The �rst method is an alternative to Isolation Forest that uses a tree structure (called Mon-
drian tree, initially proposed for classi�cation purpose [66]) with the characteristic to be
incrementally modi�ed while new points (subsequences in our case) arrive. Similarly to
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Isolation Forest, we use 100 di�erent trees. Similar to STOMP, the second approach is us-
ing the nearest neighbor distance to identify abnormal points. On the contrary to STOMP,
this method has the speci�city of being updatable incrementally. One can either keep track
of all the previous points and update the distance pro�le until the end of the stream or
keep track of the distance pro�le over a �xed window length (called batch size in our case).
We consider using a �xed window length equal to the batch size for the following reason:
(i) keeping track of the entire distance pro�le requires a large amount of computation and
makes the latency increase quadratically. (ii) STAMPI (using the discord de�nition) can suf-
fer from the fact that similar anomalies can happen in a stream. Therefore, keeping the old
distance pro�le might lead to a higher false-negative rate than keeping only a �xed win-
dow length. The second point is con�rmed by Table 5.2. For SAND, we set the additional
parameters as follows: ↵ = 0.5, `Θ = 4 ⇤ ` and k = 6.

4.3.5 Accuracy Evaluation

4.3.5.1 Clustering accuracy evaluation

In this section, we evaluate the clustering accuracy of our extension of the k-Shape algo-
rithm. For that purpose, we use all the UCR datasets [30]. We run the original k-Shape
on the entire dataset, and we run our extended k-Shape on 1/10th of the dataset at each
new batch incrementally. Figure 4.4(a) depicts the rand score [93] accuracy comparison
between the original and our extended k-Shape algorithm. We observe that our algorithm
has a similar rand score on average as the usual k-Shape. Thus our technique provides a
way to use the original k-Shape for streaming scenarios with the same accuracy. Moreover,
Figure 4.4(b) depicts the average execution time (in seconds) for a simple solution for in-
cremental k-Shape (i.e., storing all subsequences to compute the centroids from scratch at
every new batch), and our proposed solution for incremental k-Shape (i.e., without stor-
ing all the subsequences). The results con�rm the bene�ts of our proposed solution for an
incremental k-Shape algorithm.

4.3.5.2 SAND accuracy evaluation

We now compare the Precision@k of our method with several other methods, both static
and dynamic. All methods share the subsequence length ` as the main parameter. For
each dataset, we set the subsequence length ` = `A as shown in Table 3.3. We use a batch
size of 5000 points for IMondrian Forest, STAMPI, and our approach. Table 5.2 depicts the
Precision@k accuracy of the aforementioned methods for our datasets corpus. One can
notice that for single normality datasets, static methods NormA, Isolation Forest, and Se-
ries2Graph (that are using the entire series to build their model), have good performances.
Nevertheless, online methods IMondrian Forest and SAND are still performing well by be-
ing slightly less accurate than the static methods. STAMPI has a medium Precision@k due
to the limitations caused by similar anomalies in the single normality datasets. However,
STAMPI has better performance than STOMP, which con�rms that using a �xed sliding
window limits the number of similar anomalies and provides better accuracy. Finally, we
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Static Streaming

Data Series NormA IF STOMP S2G NormA-mn NormA-batch S2G-batch IMondrian F STAMPI SAND

Single Normality (100,000 points)

MBA(803) 0.99(0.01) 1.00(0.00) 0.72 1.00 0.97(0.01) 0.70(0.07) 0.97 0.99(0.01) 0.46 0.97(0.02)

MBA(805) 0.99(0.00) 0.99(0.01) 0.10 0.99 0.99(0.00) 0.82(0.05) 0.90 0.96(0.02) 0.35 0.98(0.01)

MBA(806) 0.86(0.02) 0.75(0.06) 0.59 1.00 0.88(0.02) 0.74(0.07) 0.70 0.85(0.03) 0.66 0.80(0.03)

MBA(820) 0.98(0.01) 0.92(0.03) 0.90 0.91 0.97(0.00) 0.74(0.08) 0.71 0.95(0.02) 0.84 0.96(0.01)

SED 0.92(0.05) 0.65(0.02) 0.57 1.00 0.98(0.01) 0.80(0.06) 0.90 0.31(0.05) 0.87 0.96(0.00)

Average 0.95 0.86 0.58 0.98 0.96 0.76 0.84 0.81 0.64 0.93

Double Normality (200,000 points)

Same Domain

MBA(803 + 805) 0.91(0.10) 0.53(0.03) 0.32 0.99 0.95(0.02) 0.76(0.03) 0.94 0.97(0.01) 0.40 0.94(0.01)

MBA(803 + 806) 0.70(0.01) 0.75(0.00) 0.58 0.75 0.89(0.03) 0.68(0.02) 0.84 0.87(0.02) 0.52 0.96(0.02)

MBA(803 + 820) 0.83(0.27) 0.75(0.05) 0.78 0.76 0.92(0.01) 0.66(0.04) 0.81 0.93(0.01) 0.67 0.88(0.00)

MBA(805 + 806) 0.74(0.00) 0.68(0.04) 0.20 0.73 0.85(0.01) 0.76(0.06) 0.41 0.81(0.04) 0.44 0.95(0.01)

MBA(805 + 820) 0.76(0.03) 0.49(0.04) 0.51 0.51 0.97(0.01) 0.71(0.02) 0.71 0.94(0.01) 0.61 0.90(0.02)

MBA(806 + 820) 0.77(0.02) 0.78(0.00) 0.83 0.81 0.92(0.01) 0.75(0.02) 0.20 0.51(0.04) 0.79 0.93(0.01)

Average 0.78 0.66 0.54 0.76 0.92 0.72 0.65 0.84 0.57 0.93

Di�erent Domains

MBA(803) + SED 0.56(0.19) 0.45(0.00) 0.67 0.06 0.60(0.14) 0.72(0.02) 0.84 0.65(0.08) 0.64 0.96(0.01)

MBA(805) + SED 0.69(0.20) 0.37(0.01) 0.30 0.11 0.87(0.05) 0.84(0.03) 0.41 0.68(0.09) 0.57 0.95(0.02)

MBA(806) + SED 0.74(0.05) 0.57(0.01) 0.62 0.07 0.84(0.01) 0.79(0.02) 0.72 0.46(0.04) 0.79 0.80(0.03)

MBA(820 + SED 0.91(0.03) 0.38(0.01) 0.82 0.10 0.92(0.02) 0.72(0.06) 0.40 0.52(0.01) 0.85 0.88(0.00)

Average 0.72 0.44 0.60 0.09 0.81 0.77 0.59 0.58 0.71 0.90

Triple Normality (300,000 points)

Same Domain

MBA(803 + 805 + 806) 0.84(0.00) 0.43(0.02) 0.37 0.82 0.84(0.01) 0.71(0.04) 0.59 0.82(0.01) 0.44 0.92(0.03)

MBA(803 + 805 + 820) 0.60(0.23) 0.37(0.02) 0.54 0.63 0.86(0.06) 0.66(0.02) 0.79 0.95(0.00) 0.56 0.88(0.02)

MBA(803 + 806 + 820) 0.83(0.00) 0.68(0.05) 0.74 0.67 0.82(0.04) 0.67(0.06) 0.47 0.69(0.06) 0.66 0.91(0.01)

MBA(805 + 806 + 820) 0.60(0.12) 0.41(0.02) 0.53 0.44 0.85(0.02) 0.65(0.05) 0.25 0.70(0.02) 0.61 0.94(0.00)

Average 0.72 0.47 0.54 0.64 0.84 0.69 0.52 0.79 0.57 0.91

Di�erent Domains

MBA(803 + 805) + SED 0.60(0.13) 0.26(0.00) 0.41 0.10 0.60(0.12) 0.77(0.03) 0.52 0.75(0.02) 0.53 0.95(0.00)

MBA(803 + 806) + SED 0.67(0.14) 0.34(0.01) 0.62 0.06 0.67(0.04) 0.70(0.03) 0.73 0.67(0.05) 0.64 0.88(0.00)

MBA(803 + 820) + SED 0.60(0.12) 0.26(0.00) 0.75 0.10 0.64(0.02) 0.64(0.06) 0.52 0.66(0.01) 0.72 0.87(0.01)

MBA(805 + 806) + SED 0.75(0.11) 0.31(0.00) 0.35 0.09 0.79(0.02) 0.78(0.02) 0.40 0.66(0.05) 0.59 0.76(0.01)

MBA(805 + 820) + SED 0.62(0.06) 0.24(0.00) 0.54 0.09 0.94(0.01) 0.71(0.03) 0.26 0.73(0.01) 0.67 0.91(0.02)

MBA(806 + 820) + SED 0.37(0.11) 0.31(0.00) 0.78 0.10 0.82(0.02) 0.74(0.05) 0.39 0.40(0.08) 0.81 0.86(0.00)

Average 0.60 0.28 0.58 0.09 0.74 0.72 0.47 0.65 0.66 0.87

Quadruple Normality (400,000 points)

Same Domain

MBA(803 + 805 + 806 + 820) 0.86(0.01) 0.32(0.02) 0.53 0.57 0.86(0.03) 0.67(0.05) 0.42 0.70(0.01) 0.57 0.95(0.00)

Di�erent Domains

MBA(803 + 805 + 806) + SED 0.47(0.03) 0.23(0.00) 0.44 0.10 0.74(0.06) 0.74(0.01) 0.50 0.72(0.01) 0.55 0.91(0.01)

MBA(803 + 806 + 820) + SED 0.30(0.10) 0.23(0.00) 0.71 0.09 0.60(0.27) 0.67(0.04) 0.50 0.58(0.02) 0.71 0.85(0.04)

MBA(805 + 806 + 820) + SED 0.54(0.01) 0.21(0.00) 0.55 0.09 0.55(0.30) 0.66(0.03) 0.28 0.60(0.01) 0.67 0.90(0.02)

Average 0.43 0.22 0.57 0.09 0.63 0.69 0.43 0.63 0.64 0.89

Quintuple Normality (500,000 points)

Di�erent Domains

MBA(803 + 805 + 806 + 820) + SED 0.40(0.01) 0.16(0.05) 0.55 0.08 0.81(0.05) 0.67(0.04) 0.38 0.69(0.02) 0.62 0.90(0.00)

Table 4.2: Precision@k accuracy for NormA (and NormA-batch), Isolation Forest (IF),

STOMP, S2G (and S2G-batch), IMondrian Forest, STAMPI, and SAND applied to our

datasets corpus (including concatenations of di�erent datasets from same and di�erent do-

mains). The standard deviation of 10 runs is reported in parentheses.
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Figure 4.4: Comparison between the original and our extended k-Shape on rand score (a),

and execution time (b).

note that SAND outperforms both STAMPI and IMondrian Forest, and performs equal or
very close to Series2Graph and NormA. Moreover, one can notice that the online adapta-
tion of NormA and S2G (NormA-batch and S2G-batch) are not performing as well as their
respective static version for the single normality datasets.

Regarding double normality datasets, we observe that the static methods su�er from a
signi�cant drop in accuracy, while the onlinemethods have on average similar Precision@k
accuracy to the single normality datasets. However, we note that both NormA-batch and
S2G-batch perform better than NormA and S2G for double normality datasets from dif-
ferent domains, but not for datasets from the same domain. Only NormA-mn is robust to
multiple normality datasets, but SAND is still more accurate. Moreover, SAND outperforms
both IMondrian Forest and STAMPI. More precisely, SAND signi�cantly outperforms the
competitors (both static and online) for double normality datasets created by concatenated
datasets of di�erent domains. The latter underlines the superior adaptability of SAND, re-
gardless of the dataset composition.

The same observation can be made for triple, quadruple, and quintuple normality
datasets, for which the Precision@k contrast between SAND and the other state-of-the-art
methods is even stronger. More generally, one should underline that static methods (Isola-
tion Forest, Series2Graph, and NormA) see their Precision@k dropping while the number
of di�erent normality increases, in opposite to online methods (IMondrian Forest, STAMPI,
and SAND) that seem to be more stable. Only STOMP seems to have a stable accuracy while
the number of normality sections increases.

A careful look can be addressed to Series2Graph performance on multiple normality
datasets. Similar to NormA and Isolation Forest, one can notice an accuracy drop. Never-
theless, this drop is signi�cantly bigger for datasets concatenated from di�erent domains.
It underlines a limitation of Series2Graph to data series that have a strong heterogeneous
range of values through time. The embedding space needs to be changed to adapt to this
speci�c case.
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(a) Critical Diagram for SAND versus static methods (b) Critical Diagram for SAND versus streaming methods

Figure 4.5: Critical di�erence diagrams using a Wilkoxon pair-wised signed rank test (with

↵ = 0.05) on both single and multiple normality datasets.

To conclude, SAND has equivalent accuracy for single normality datasets with state-
of-the-art static methods and signi�cantly outperforms both static and online state-of-the-
art methods for datasets containing normality changes. To assess the signi�cance of these
di�erences, Figure 4.5 depicts a critical di�erence diagram computed using aWilcoxon pair-
wised signed-rank test (with ↵ = 0.05) on single and multiple normality datasets. Overall,
Figure 4.5(a) underlines that SAND achieves the highest rank of all methods and statistically
outperforms all previous static state-of-the-art methods (i.e., thick lines connect methods
performing similarly; SANDoutperformsmethodswith statistically signi�cant di�erences).
Similarly, Figure 4.5(b) con�rms that SAND outperforms state-of-the-art online methods as
well.

4.3.6 Time Performance Evaluation

In this section, we evaluate the scalability of our methods and the state-of-the-art stream-
ing method analyzed in the previous section. For that purpose, we �rst assess the global
execution time (in seconds) needed to perform the update operation of the model and the
subsequences scoring (in batch). We then measure the throughput when we vary di�erent
parameters.

We �rst evaluate the execution time needed for the model update and batch scoring.
Figure 4.6 presents results on the double normality datasets (results with single normality
datasets exhibit similar trends; we omit them for brevity). Figure 4.6(d) depicts the global
execution time for the model update and the batch scoring for SAND (in blue), IMondrian
Forest (in red), and STAMPI (in green). One should note that STAMPI performs both the
model update and the batch scoring at the same time. We thus report zero as the model
update execution time of STAMPI. Nevertheless, SAND is signi�cantly faster than IMon-
drian Forest for the model update operation, up to three orders of magnitude faster for the
batch scoring operation. Overall, the total execution time (represented by the dotted lines)
of SAND is signi�cantly lower than the two other methods.

We now measure the in�uence of the batch size on throughput (using a �xed subse-
quence length of 75). Figure 4.6(a) illustrates with the dotted lines the standard devia-
tion envelope over all the double normality datasets. SAND throughput remains stable as
the batch size increases. It con�rms our expectation (cf. Section 4.2.5). On the contrary,
STAMPI and IMondrian forest throughput decreases. Thus, SANDhas a signi�cantly higher
throughput for large batches (>5000 subsequences).

We then evaluate the in�uence of the subsequence length on the throughput (while
keeping an almost constant batch size of approximately 20,000 subsequences). The latter
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(c) Throughput versus batch last index

Figure 4.6: Throughput vs batch size (with �xed subsequence length ` = 75), subsequence

length (with �xed batch size bsize = 20000), and position in the stream (with ` = 75 and

bsize = 10000).

is illustrated in Figure 4.6(b). We notice that the throughput of SAND and IMondrian is
reducing when the subsequence length is increasing. The latter has been predicted by the
high importance of the length in Equation 4.9. On the contrary, STAMPI throughput is
constant, whatever the value of the subsequence length. We notice that the throughput
of IMondrian Forest is equivalent to the one of STAMPI for a subsequence length of 1000
points for double normality datasets. Overall, SAND throughput is signi�cantly higher for
small subsequence length (up to 200 points) and remains higher for subsequence length
up to 1000 points. We observe that most of the subsequence anomalies are of moderate
size (e.g., for cardiology datasets [40, 83], abnormal heartbeats are usually shorter than 200
points) and rarely measure up to 1000 points (e.g., electrical consumption datasets, patient
respiration, and Space Shuttle Marotta Valve [57, 103]).

We �nally investigate the evolution of throughput as the stream evolves (we use 10,000
as batch size and 75 as subsequence length). Figure 4.6(c) shows the throughput of SAND,
IMondrian Forest, and STAMPI at each batch (represented with its index in time on the x-
axis). Despite the variability between di�erent datasets (represented by the dotted line
envelope), we note that SAND throughput is relatively constant (this is true for both
multi-normality and single normality datasets). It con�rms the statement made in Sec-
tion 4.2.5, and proves empirically that the size evolution of |Θ| does not a�ect execution
time. Similarly, STAMPI throughput is constant over time. On the contrary, IMondrian For-

118



S�������� S��������� A������ D��������

Current Batchold Batches

C0 centroid

C1 centroid

C2 centroid

Execution Time per batch AUC F1 score Maximal F1 score

(a) Screenshot SAND system main frame (b) Screenshot when performance button is pressed

(a.1)

(a.4)

(a.2) (a.3)

(b.1) (b.2) (b.3)

(b.4) (b.5) (b.6)

Figure 4.7: Screenshots of the user interfaces of SAND.

est throughput reduces over time. We observe a perturbation on its throughput for double
normality datasets, taking place when the normality changes (at index 100,000). At that
point, the insertion of elements in the Mondrian trees is faster because these elements are
signi�cantly di�erent (larger distances) than current elements and, therefore, the IMon-
drian Forest throughput increases. Nevertheless, it starts rapidly to decrease on average.
Overall, SAND throughput is constantly one order of magnitude larger than the one of
IMondrian Forest and STAMPI.

4.3.7 User Interface: StandAlone Web Application

We also proposed a user interface enabling the user to interact, visualize the detected
anomalies and the di�erent inner computational steps of SAND [16]. The GUI is a stand-
alone web application developed using Python 3.6 and the Dash framework [29]. Figure 4.7
displays the di�erent frames of the GUI. The mainframe is shown in Figure 4.7(a). Once the
user opens the web application, he can upload a dataset (as well as the anomaly annota-
tions, if available). At �rst, only the initial batch is displayed. When new batches arrive, by
default, only the current and the three newest batches are displayed (as in Figure 4.7(a.1)).
Nevertheless, the user can navigate through older sections of the data series. Moreover, if
annotations are provided, they will be colored in red. The user can then change the val-
ues of ` and the batch size bsize by clicking on the SAND dropdown in the navigation bar.
Then, by clicking on the initialization button, the anomaly score on the initial batch will
be displayed under the data series plot. Moreover, model Θ (the centroids of the model)
is depicted in Figure 4.7(a.2). By clicking on one of the centroids, the user can visualize
the corresponding weight and the time distribution of the subsequences contained in the
selected centroid (Figure 4.7(a.4)). Once the model is initialized, it is ready to be updated
with new batches arriving. The user then may (i) decide to manually add the next batch (by
clicking on the "by batch" button) or (ii) have the system process batches continuously (by
clicking on the "continuous" button). When a new batch arrives, both the data series and
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the anomaly score plots are updated. The model is also updated, and the new clusters from
the current batch that need to be merged with an existing cluster will be aligned with it
(under the label "cluster to be merged" as in Figure 4.7(a.3)). The new clusters appear under
“clusters to create.”

The user can also run other anomaly detection methods: STAMPI (mentioned in Sec-
tion 2.5.4.5) and Isolation Mondrian Forest (named IMondrian and mentioned in Sec-
tion 2.5.3.3). Their anomaly scores will be shown together with the SAND anomaly scores
(Figure 4.7). If annotations are provided, performance analysis can be carried out by click-
ing on the performance button: a new frame will appear (Figure 4.7(b)) displaying accuracy
(Figures 4.7(b.1),(b.2) and (b.3)) and time execution evaluations (Figure 4.7(b.4)).

4.4 Summary

To conclude, we tackled in this chapter the speci�c case of unsupervised subsequence
anomaly detection for streaming data series. We �rst analyzed the limitation of state-
of-the-art approaches and our approaches described in Section 3.3 and Section 3.4. We
then introduced SAND, a novel unsupervised approach for subsequence anomaly detection
in streaming sequences. SAND is based on a set representation of the subsequences in a
data stream (inspired from NormA described in Section 3.3) and can detect both single and
recurrent anomalies. We proposed a user interface implementation of our approach that
simpli�es the usage and facilitates the comprehension of SAND. Finally, we conducted an
experimental analysis of several synthetic and real datasets. These experiments demon-
strate the bene�ts of our approach in terms of e�ciency and accuracy.
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In the previous chapter, anomalies were considered unknown. However, one can consider that

experts precisely know which event he wants to detect and has a collection of data series that

corresponds to these anomalies. In that case, we have a database of anomalies at our disposal.

As a consequence, one can decide to adopt supervised methods. A question that naturally

arises is the following one: is it possible to detect subsequences that happened before the known

anomaly that might lead to an explanation of the anomaly (and potentially predict it). If the

supervised model is trained to classify anomalies from normal data series, the features and

subsequences that discriminate the anomaly from the normal class can be seen as symptoms or

precursors (if these subsequences happened before the anomaly). Thus precursors detection for

known anomalies can be tackled as a discriminant features identi�cation for a classi�cation

model. For some Convolutional Neural Network-based models, the Class Activation Map

(CAM) can be used as an explanation for the classi�cation result. CAM has been used for

highlighting the parts of an image that contribute the most to a given class prediction, and

has also been adapted to data series. Nevertheless, CAM for data series su�ers from one

important limitation. Since CAM is a univariate time series with high values aligned with

the subsequences of the input that contribute the most for a given class identi�cation, in the

speci�c case of multivariate data series as input, no information can be retrieved from CAM

on the level of contribution of speci�c dimensions. In this chapter, we address the above-

mentioned limitations and propose a novel data organization and a new CAM that highlights

both the temporal and dimensional informations.
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5.1 Class Activation Map: an interesting tool for

anomaly precursor identi�cation

In this chapter, we assume that the user has a data series example of abnormal and normal
data series at his disposal. Thus, as already mentioned, one can train a convolutional neural
network (CNN, ResNet, or InceptionTime) to classify anomalies from normality and then
use Class Activation Map (CAM) to identify subsequences that can explain the anomalies.
Thus, such subsequences correspond to features that the model used to discriminate the
two classes (normal and anomaly). In the general case, it corresponds to tackle the task of
discriminant feature identi�cation for classi�cation models. Thus, we now formulate the
problem analyzed in this chapter as follows:

Problem 3 (Multivariate Data Series Classi�cation Explanation). Given a set T of multi-

variate data series T = {T (0), T (1), ..., T (D)} ofD dimensions belonging to classes Cj 2 C, and

a model f : T ! C, �nd a function g(T, f) that returns a multivariate series g(T, f, Cj) =

{T (0)0 , T (1)0 , ..., T (D)0}, in which T (i)0 is a series that has high values if the corresponding

subsequences in Ti discriminate T of belonging to another class than Cj .

5.1.1 Limitations for Multivariate Data Series anomaly detection

As mentioned earlier, a CAM that highlights the discriminative subsequences of class Cj ,
CAMCj(T ), is a univariate data series. The information provided byCAMCj(T ) is su�cient
for the case of univariate series classi�cation, but not for multivariate series classi�cation.
Even though the signi�cant temporal index may be correctly highlighted, no information
can be retrieved on which dimension is signi�cant or not. Therefore, we focus in this
chapter on proposing a method that solves the issue as mentioned above.

5.2 A �rst Baseline for Multivariate Data Series

A new solution would be to decide to use a 2D convolutional neural network with kernel
size (`, 1), such that each kernel slides on each dimension separately. Thus, for an input
data series T ,Am(T ) would become a multivariate data series for the variablem 2 [1, nf ],

and A
(d)
m (T ) 2 Am(T ) would be a univariate time series that would correspond to the

dimension d of the initial data series. Note that one can use similar kernels of size (`, `) as
those used for pictures. It implies that subsequences of length ` for ` dimensions will be
merged by one kernel. However, the ordering of dimensions in data series is not (most of
the time) important. Thus using kernels of size (`, `) will force the user to choose the most
meaningful order for the dimensions, which is very di�cult in practice.
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Symbol Description

T a data series

|T | length of T

T (i) ith dimension of T

D number of dimensions

C set of all classes

Cj one class of C

w
Cj
m weight of connecting the mth convolutional layer and class Cj neuron

Am(T ) output of the mth convolutional layer for input T

zCj(T ) output of Cj neuron for input T

CAMCj(T ) Class Activation Map for class Cj and input T

ΣT set of all possible permutations of T dimensions

Si
T T with one possible permutation of its dimensions (Si

T 2 ΣT )

k number of permutations

ng number of permutations that have been correctly classi�ed by the model

Table 5.1: dCAM Table of symbols.

5.2.1 cCNN: a �rst architecture

We call this solution cCNN, andwe use cCAM to refer to the corresponding Class Activation
Map. Figure 5.1 illustrates cCNN architecture and cCAM. This architecture is equivalent to
train one single CNN on each dimension independently. Note that any other architectures,
such as ResNet and InceptionTime, with a Global Average Pooling (GAP) can be used. We
denote these baselines as cResNet and cInceptionTime.

5.2.2 Limitations

New limitations arise from this solution. First, the dimensions are not compared together:
each kernel of the input layer will take as input only one of the dimensions at a time. Thus,
features depending on more than one dimension will not be detected. However, cCNN,
cResNet and cInceptionTime represent interesting �rst baselines to address the problem.
We further study and demonstrate the limitations of these baselines in the experimental
section. Table 5.1 summarizes the symbols we use in this chapter.

5.3 Proposed Approach: Dimension-wise Class Activa-

tion Map

In this chapter, we describe our proposed approach, dCAM (dimension-wise Class Activa-
tion Map). Based on a new architecture that we call dCNN (as well as the variant architec-
tures dResNet and dInceptionTime), dCAM aims to provide a multivariate CAM pointing
to the discriminant features within each dimension. Contrary to the previously described
baseline, one kernel on the �rst convolutional layer will take as input all the dimensions
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Figure 5.1: Illustration of Class Activation Map for cCNN architecture with three convolu-

tional layers (nf1, nf2, and nf3 di�erent kernels respectively of size all equal to `).

together with di�erent permutations. Thus, similarly to the standard CNN architecture,
features depending on more than one dimension will be detectable while still having a
multivariate CAM. Nevertheless, the latter has to be processed such that the signi�cant
subsequences are detected.

We �rst describe the proposed architecture dCNN that we need in order to provide a
dimension-wise Class Activation Map (dCAM), while still being able to extract multivariate
features. We then demonstrate that the transformation needed to change CNN to dCNN
can also be applied to other, more sophisticated architectures, such as ResNet and Incep-
tionTime, which we denote as dResNet and dInceptionTime. We demonstrate that using
permutations of the input dimensions makes the classi�cation more robust when impor-
tant features are localized into small subsequences within some speci�c dimensions.

We then present in detail how we compute dCAM (based on a
dCNN/dResNet/dInceptionTime architecture). Our solution bene�ts from the per-
mutations injected into the dCNN to identify the most discriminant subsequences used for
the classi�cation decision.

5.3.1 Dimension-wise Architecture

Asmentioned earlier, the classical CNN architecturemixes all dimensions in the �rst convo-
lutional layer. Thus, CAM is a univariate data series and does not provide any information
on which dimension is the discriminant one for the classi�cation. To address this issue,
we can use a two-dimensional CNN architecture by re-organizing the input (i.e., the cCNN
solution we described earlier). In this architecture, one kernel (of size (1, `, 1)) slides on
each dimension independently. Thus, for a given D-dimensional data series (T (0), ..., T (D))
of length n, the convolutional layers returns an array of three dimensions (nf , D, n), each
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Figure 5.2: dCNN architecture and application of the CAM.

rowm 2 [0, D] corresponding to the extracted features on dimensionm. Nevertheless, the
kernels (1, `, 1) get as input for each dimension independently. Evidently, such an archi-
tecture cannot learn features that depend on multiple dimensions.

5.3.1.1 dCNN: a �rst architecture

In order to have the best of both cases, we propose the dCNN architecture, where we trans-
form the input into a cube, in which each row contains a given combination of all dimen-
sions. One kernel (of size (D, `, 1)) slides on all dimensions D times. The latter allows
the architecture to learn features on multiple dimensions simultaneously. Moreover, the
resulting CAM is a multivariate data series. In this case, one row of the CAM corresponds
to a given combination of the dimensions. However, we still need to be able to retrieve
information for each dimension separately, as well. To do that, we make sure that each row
contains a di�erent permutation of the dimensions. As the weights of the kernels are at
�xed positions (for speci�c dimensions), a permutation of the dimensions will result in a
di�erent CAM. Formally, for a given data series T , we note C(T ) 2 R

(D,D,n) the input data
structure of dCNN, de�ned as follows:

C(T ) =

0

B

B

@

T (D) T (0) ... T (D�2) T (D�1)

: : ... : :
T (1) T (2) ... T (D) T (0)

T (0) T (1) ... T (D�1) T (D)

1

C

C

A

Note that each row and column of C(T ) contain all dimensions. Thus, a given dimen-
sion T (i) is never at the same position in C(T ) rows. It is a crucial property for the compu-
tation of dCAM. In practice, we guarantee the latter property by shifting by one position
the order of the dimensions. Thus T (0) in the �rst row is aligned with T (1) in the second
row. A di�erent order of T dimensions will thus generate a di�erent matrix C(T ).

Figure 5.2 depicts the dCNN architecture. The input C(T ) is forwarded into a classical
two-dimensional CNN. The rest of the architecture is independent of the input data struc-
ture. The latter means that any other two-dimensional architecture (containing a Global
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Average Pooling (GAP)) can be used by only adapting the input data structure. Similarly,
the training procedure can be freely chosen by the user. For the remainder of the chap-
ter, we will use the cross-entropy loss function and the ADAM optimizer (mentioned in
Section 2.6.2.4).

Observe that multiple permutations of the original multivariate series will be processed
by several convolutional layers, enabling the kernel to examine multiple di�erent combi-
nations of dimensions and subsequences. Note that the kernels of the dCNN will be sparse,
which has a signi�cant impact on over�tting.

5.3.1.2 Other architectures

As mentioned earlier, any architecture using a GAP layer after the last convolutional layer
can bene�t from dCAM. Thus, di�erent (and more sophisticated) architectures can be used
with our approach. To that e�ect, we propose two new architectures dResNet and dIncep-
tionTime, based on the state-of-the-art architectures ResNet [114] and InceptionTime [52].
The transformations that lead to dResNet and dInceptionTime are very similar to that from
CNN to dCNN, using C(T ) as input to the transformed networks. The convolutional layers
are transformed from 1D (as proposed in the original architecture [114, 52]) to 2D. Similarly,
for dCNN, the kernel sizes are (D, `, 1) and convolute over each row ofC(T ) independently.

We demonstrate in the experimental section that these architectures do not a�ect the
usage of our proposed approach dCAM, and we evaluate the choice of architecture on both
classi�cation and discriminant feature identi�cation. In the following sections, we describe
our methods assuming the dCNN architecture. Nevertheless, it works exactly the same for
the other two architectures.

5.3.2 Limitation of CAM for Dimension-wise Architecture

At this point, we have our network trained to classify instances among classes C0, C1, ..., Cp.
We now describe in detail how to compute dCAM that will identify discriminant features
within dimensions. We assume that the network has to be accurate enough in order to
provide a meaningful discriminant features identi�cation. We evaluate in the experimental
section the relation between the classi�cation accuracy of the network and the discriminant
features identi�cation accuracy.

At �rst glance, one can compute the regular Class Activation Map CAMCj(C(T )) =
P

m w
Cj
mAm(C(T )). However, a high value on the ith row at position t on CAMCj(C(T ))

does not mean that the subsequence at position t on the ith dimension is important for the
classi�cation. It rather means that the combination of dimensions at the ith row of C(T )
is important. Thus, one cannot use CAM as for cCNN. We thus describe how to compute
dCAM, which corresponds to the importance of one dimension only at each row.
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Figure 5.3: Example of Class Activation Map results for di�erent permutations.

5.3.3 Computation of dCAM

We now describe in detail to computation steps involved to produce dCAM from a network
dCNN.

5.3.3.1 Permutations of the Dimensions

Given those di�erent combinations of dimensions (i.e., one row of C(T )) produce di�erent
outputs (i.e., the same row in CAMCj(C(T ))), the positions of the dimensions within the
C(T ) rows have an impact on the Class Activation Map. Consequently, for a given com-
bination of dimensions, we can assume that at least one dimension at a given position is
responsible for the high value in the Class Activation Map row. For the remainder of the
chapter, we use ΣT for the set of all possible permutations of T dimensions, and Si

T 2 ΣT

for a single permutation of T . For instance, for a given data series T = {T (0), T (1), T (2)},
one possible permutation is Si

T = {T (1), T (0), T (2)}.

Figure 5.3 depicts an example of Class Activation Maps for di�erent permutations. In
this Figure, for three given permutations of T (i.e., S0

T , S
1
T and S2

T ), we notice that when
T (2) is in position two of the second row ofC(Si

T ), the Class ActivationMapCAM(C(Si
T ))

is greater than when T (2) is not in position two. We infer that the second dimension of T in
position two is responsible for the high value. Thus, we may examine di�erent dimension
combinations by keeping track of which dimension at which position is activating the Class
Activation Map the most. In the remainder of this section, we describe the steps necessary
to retrieve this information.

De�nition 26. For a given data series T = {T (0), T (1), ..., T (D)} of length n and its input

data structure C(T ), we de�ne function idx, such that idx(T (i), pj) returns the row indices in

C(T ) that contain the dimension T (i) at position pj .

We can now de�ne the following transformation M.
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Figure 5.4: TransformationM for a given data series T .

De�nition 27. For a given data series T = {T (0), T (1), ..., T (D)} of length n, a given class Cj
and Class Activation Map, we de�neM(CAMCj(C(T ))) 2 R

(D,D,n) (withCAMCj(C(T )) 2

R
(D,n) and CAMCj(C(T ))i its i

th row) as follows:

M(CAMCj(C(T ))) =
0

B

B

B

@

CAMCj(C(T ))idx(T (0),0) ... CAMCj(C(T ))idx(T (0),D)

CAMCj(C(T ))idx(T (1),0) ... CAMCj(C(T ))idx(T (1),D)

: ... :

CAMCj(C(T ))idx(T (D),0) ... CAMCj(C(T ))idx(T (D),D)

1

C

C

C

A

(5.1)

Figure 5.4 depicts theM transformation. As explained in De�nition 27, theM transfor-
mation enriches the Class Activation Map by adding the dimension position information.
Note that if we change the dimension order of T , theirM(CAMCj(C(T ))) changes as well.
Indeed, for a given dimension T (i) and position pj , idx(T (i), pj)will not have the same value
for two di�erent dimension orders of T . Thus, computing M(CAMCj(C(T ))) for di�er-
ent dimension orders of T will provide distinct information regarding the importance of
a given position (subsequence) in a given dimension. We expect that subsequences (of a
speci�c dimension) that discriminate one class from another will also be associated (most
of the time) with a high value in the Class Activation Map.

5.3.3.2 Merging CAM on a set of permutations

We computeM(CAMCj(C(ST ))) for di�erent ST 2 ΣT . Note that the total number of per-
mutations |ΣT | is enormous for high-dimensional data series. In practice, we only compute
M for a randomly selected subset of ΣT . We thus merge k = |ΣT | permutations Sk

T , by
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computing the averaged matrix M̄Cj(T ) of all theM transformations of the permutations.
Formally, M̄Cj(T ) is de�ned as follows:

M̄Cj (T ) =
1

|ΣT |

X

Sk
T2ΣT

M(CAMCj (C(Sk
T )))

Figure 5.6 illustrates the process of computing M̄Cj(T ) from the set of permutations of
T , ΣT . M̄Cj(T ) can be seen as a summarization of the importance of each dimension at
each position in C(T ), for all the computed permutations. Note that all permutations of
T are forwarded into the dCNN network without training it again. Thus, even though the
permutations of T generate radically di�erent inputs to the network, the network can still
classify most of the instances correctly. For k permutations, we use ng to denote the number
of permutations that the model has correctly classi�ed. We provide in the experimental
section an analysis of ng/k w.r.t the classi�cation accuracy of the model and the impact
that ng/k has on the discriminant features identi�cation accuracy.

Figure 5.5 illustrates one row of matrix M̄Cj(T ). In the illustrated heatmap, each row
is associated to a position and corresponds to the averaged Class Activation Map when
dimension D is in that position. We �rst observe that the averaged activation is not constant
for all time indexes. We also observe that the averaged activation is not constant for all
positions. In the following section, we use the latter information to retrieve the discriminant
dimensions.

5.3.3.3 dCAM Extraction

We can now use the previously computedM̄Cj to extract explanatory information onwhich
subsequences are considered important by the network. First, we note that each row of
C(T ) corresponds to the input format of the standard CNN architecture. Thus, we expect
that the result of a row of M̄Cj (one of the ten lines in Figure 5.6(b)) is similar to the stan-

dard CAM. Hence, we can assume that µ(M̄Cj(T )) =
P

d2D

P

p2D M̄d,p
Cj
(T )/(2 ⇤ |D|) is

equivalent to standard Class Activation Map CAMCj(T ) (this approximation is depicted in
Figure 5.6(d)).

Moreover, in addition to the temporal information, we can extract temporal information
per dimension. We know that for a given position p and a given dimension d, M̄d,p

Cj
(T ) rep-

resents the averaged activation for a given set of permutations. If the activation M̄d,p
Cj
(T )
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Figure 5.6: dCAM computation framework.

for a given dimension is constant (regardless of its value, or the position p), then the position
of dimension d is not important, and no subsequence in that dimension d is discriminant.
On the other hand, a high or low value at a speci�c position p means that the subsequence
at this speci�c position is discriminant. While it is intuitive to interpret a high value, in-
terpreting a low value is counter-intuitive. Usually, a subsequence at position p with a low
value should be regarded as non-discriminant. Nevertheless, if the activation is low for
p and high for other positions, then the subsequence at position p is the consequence of
the low value and is thus discriminant. We experimentally observe this situation, where
a non-discriminant dimension has a constant activation per position (e.g., see dotted red
rectangle in Figure 5.6(b): this pattern corresponds to a non-discriminant subsequence of
the dataset). On the contrary, for discriminant dimensions, we observe a strong variance
for the activation per position: either high values or low values (e.g., see solid red rectan-
gles in Figure 5.6(b): these patterns correspond to the (injected) discriminant subsequences
highlighted in red in Figure 5.6(e)). We thus can extract the signi�cant subsequences per
dimension by computing the variance of all positions of a given dimension. We can �lter
out the irrelevant temporal windows using the averaged µ(M̄Cj(T )) for all dimensions, and
use the variance to identify the important dimensions in the relevant temporal windows.
Formally, we de�ne dCAMCj(T ) as follows.

De�nition 28. For a given data series T and a given class Ci, dCAMCj(T ) is de�ned as:

dCAMCj(T ) =
0

B

B

B

@

�2(M̄d0
Cj
(T )t0) ⇤ µ(M̄Cj(T )t0) ... �2(M̄d0

Cj
(T )tn) ⇤ µ(M̄Cj(T )tn)

: ... :

�2(M̄
dD�1

Cj
(T )t0) ⇤ µ(M̄Cj(T )t0) ... �2(M̄

dD�1

Cj
(T )tn) ⇤ µ(M̄Cj(T )tn)

�2(M̄dD
Cj
(T )t0) ⇤ µ(M̄Cj(T )t0) ... �2(M̄dD

Cj
(T )tn) ⇤ µ(M̄Cj(T )tn)

1

C

C

C

A

(5.2)
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5.4 Experimental Evaluation

We now present the results of the experimental evaluation with several real datasets from
di�erent domains. Overall, the experimental section is organized as follows:

1. We �rst introduce in Section 5.4.1 the datasets, the baselines, and the evaluation met-
rics used to measure both classi�cation accuracy, discriminant feature identi�cation
accuracy, and execution time.

2. We evaluate in Section 5.4.3 our proposed approaches and the baselines on classi�-
cation accuracy on 28 publicly available multivariate data series datasets.

3. We evaluate in Section 5.4.4 our proposed approaches and the baselines on discrimi-
nant feature identi�cation accuracy on 20 synthetic multivariate data series datasets.

4. We analyze in Section 5.4.5 the relationship between classi�cation accuracy and the
discriminant feature identi�cation accuracy.

5. We report scalability experiments in Section 5.4.6, where we measure the execution
time needed by the baselines and our approaches for training and for identifying
discriminant features.

5.4.1 Experimental Setup

We implemented our algorithms in Python 3.5 using the PyTorch library [94]. The evalua-
tion was conducted on a server with Intel Core i7-8750H CPU 2.20GHz x 12, with 31.3GB
RAM, and Quadro P1000/PCle/SSE2 GPU with 4.2GB RAM, and on Jean Zay cluster with
Nvidia Tesla V100 SXM2 GPU with 32 GB RAM.

5.4.1.1 Datasets

We conduct our experimental evaluation using real datasets from the UCR/UEA archive [30]
to evaluate the classi�cation performance of our approaches compared to the state-of-the-
art methods.

To evaluate the discriminant features identi�cation, we conduct our experimental eval-
uation using real datasets injected with known discriminant patterns and a real use case
from the medical domain. We use the StarLightCurves (classes 2 and 3 only), ShapesAll
(classes 1 and 2 only), and Fish (class 1 and 2 only) datasets from the UCR archive [30], in
which we inject subsequences that will generate discriminant features. We build two types
of datasets to study the ability of the algorithms to identify the discriminant patterns guid-
ing the classi�cation decision, (1) when these patterns occur in a subset of the dimensions
at di�erent timestamps, and (2) when these patterns occur in a subset of the dimensions at
the same timestamp.
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Figure 5.7: Synthetic datasets: (a) Type 1, in which the discriminant subsequence is two

injected patterns from class 2 StarLightCurves dataset in random dimensions at random

positions, (b) Type 2, in which the discriminant factor is the fact that the two injected

patterns are injected at the same position.

1. For the Type 1 datasets, we build each dimension of Class 1 by concatenating random
instances from one class of one of our two UCR seed datasets. We build Class 2 by
injecting in the data series of the other class of our two UCR datasets a pattern in 2
random dimensions at a random position in the series.

2. For the Type 2 datasets, we build each dimension of Class 1 by concatenating random
instances from one of the classes of our two UCR datasets and injecting patterns from
the other class in x random dimensions and at di�erent positions. We build Class 2
by injecting patterns at the same positions of 2 random dimensions.

Examples of Type 1 and Type 2 5-dimensional datasets based on StarLightCurves are
depicted in Figures 5.7(a), and 5.7(b), respectively. In our experiments, we use 1000 such
datasets.

5.4.1.2 Evaluation Measures

We �rst evaluate the classi�cation accuracy, C-acc. This measure corresponds to the ratio
of correctly classi�ed instances among all instances in the test dataset.

We then evaluate the discriminant features accuracy, Dr-acc, for Class 1 (as depicted
in Figure 5.7). We de�ne Dr-acc as the Area Under the Precision versus Recall Curve (PR-
AUC) for CAM/cCAM/dCAM obtained from the models and the ground truth. The ground-
truth is a series that has 1 at the positions of discriminant features (the ground-truth of
the series depicted in Figure 5.7(a.2) contains 1 at the positions of the injected patterns,
marked with the red rectangles, and 0 otherwise). We motivate the choice of PR-AUC
(instead of the Area Under the Receiver Operating Characteristic Curve (ROC-AUC)) by
the fact that we are more interested in measuring the accuracy of identifying the injected
patterns (representing at max 0.02 percent of the dataset) than measuring the accuracy of
not detecting the non-injected patterns. In this very unbalanced case, PR-AUC is more
appropriate than ROC-AUC [31].
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We note that even though we are annotating each point of the injected subsequences as
discriminant, only some subparts of these sequences might be discriminant, thus leading to
Dr-acc less than 1. Finally, for CNN/ResNet/InceptionTime we compute theDr-acc scores
by assuming that their (univariate) CAM values are the same for all dimensions. We mark
their Dr-acc scores with a star in Table 5.2.

5.4.2 Baselines and Training Setup

We compare our model, dCNN,dResNet and dInceptionTime, to the classical CNN, ResNet
and InceptionTime model [51, 34, 114, 52], and the cCNN, cResNet and cInceptionTime
baseline introduced in Section 5.2. We are using the same architecture setup for all mod-
els. We then use CAM for CNN, ResNet, InceptionTime, cCAM for cCNN, cResNet and
cInceptionTime, and dCAM for dCNN, dResNet and dInceptionTime to identify discrim-
inant features. For CNN,cCNN and dCNN, we are using 5 convolutional layers with
(64, 128, 256, 256, 256) �lters respectively. We are using a kernel size of 3 and a padding
of 2. The depth of the convolutional-based networks are empirically chosen. For ResNet,
cResNet, and dResNet we use three blocks with three convolutional layers of 64 �lters (for
the �rst two blocks) and 128 layers (for the last block). For each block, we are using kernel
sizes equal to 8, 5, and 3 for three layers of the block. For InceptionTime, cInceptionTime
and dInceptionTime, we are using the same architecture as originally de�ned [52].

We split our dataset into training and validation sets with 80 and 20 percent of the total
dataset, respectively (equally balanced between the two classes). The training dataset is
used to train the model, and the validation dataset is used as a validation dataset during the
training phase. For synthetic datasets, we generate a fully new test dataset and to evaluate
C-acc andDr-acc. We train all models with a learning rate ↵ = 0.00001, a maximum batch
size of 16 instances (less if GPU memory cannot �t 16 instances), and a maximal number of
epochs equal to 1000 (we use early stopping and stop before 1000 epochs if the model starts
over�tting the test dataset). For dCAM, we use k = 100 (number of random permutations).
We can make the assumption that the number of permutations should be high when the
number of dimension is high. Nevertheless, k = 100 is a value that we empirically veri�ed
to be su�cient over our use cases and benchmark datasets.

5.4.3 Classi�cation Accuracy evaluation

We �rst evaluate the classi�cation performance of our proposed approaches (denoted as
c-Baselines and d-Baselines in Table 5.2) and the ones of the di�erent baselines (denoted
as Baselines in Table 5.2) over the UCR/UEA multivariate data series. We run each method
ten times and report the average C-acc.

We observe that ResNet-based architecture performs better than CNN-based and
InceptionTime-based architectures. Moreover, we note that, overall, dCNN and dResNet
have a better C-acc than CNN and ResNet, respectively. This observation con�rms that
our proposed architectures (dResNet, dCNN) do not result in any loss in accuracy; on the
contrary, they are slightly more accurate than usual architectures (ResNet, CNN). We no-
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Metadata C-acc (averaged on 10 runs)

Baselines c-Baselines d-Baselines

Datasets name Nb classes Data length Nb dimensions CNN ResNet InceptionTime cCNN cResNet cInceptionTime dCNN dResNet dInceptionTime

AtrialFibrillation 3 640 2 0.41 0.40 0.64 0.56 0.53 0.68 0.49 0.45 0.61

Libras 15 45 2 0.96 0.96 0.82 0.80 0.82 0.65 0.91 0.94 0.66

BasicMotions 4 100 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RacketSports 4 30 6 0.94 0.99 0.90 0.95 0.98 0.85 0.94 0.98 0.92

Epilepsy 4 206 3 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.99

StandWalkJump 3 2500 4 0.70 0.66 0.65 0.83 1.00 0.81 0.95 1.00 0.75

UWaveGestureLibrary 8 315 3 0.88 0.89 0.89 0.76 0.74 0.64 0.84 0.89 0.83

Handwriting 2 152 3 0.83 0.90 0.55 0.42 0.70 0.38 0.76 0.89 0.52

NATOPS 6 51 24 0.99 1.00 0.95 0.86 0.89 0.83 0.97 0.99 0.91

PenDigits 10 8 2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

FingerMovements 2 50 28 0.70 0.68 0.71 0.57 0.63 0.55 0.72 0.71 0.66

ArticularyWordRecognition 25 144 9 0.99 0.99 0.93 0.82 0.94 0.74 0.98 0.99 0.88

HandMovementDirection 4 400 10 0.44 0.42 0.51 0.34 0.35 0.40 0.45 0.44 0.33

Cricket 12 1197 6 1.00 1.00 0.98 0.94 0.97 0.87 1.00 1.00 0.98

LSST 14 36 6 0.62 0.66 0.4 0 0.56 0.59 0.49 0.62 0.66 0.51

EthanolConcentration 4 1751 3 0.35 0.36 0.34 0.36 0.36 0.36 0.35 0.39 0.34

SelfRegulationSCP1 2 896 6 0.86 0.83 0.87 0.88 0.84 0.88 0.86 0.86 0.88

SelfRegulationSCP2 2 1152 7 0.59 0.58 0.62 0.6 0 0.59 0.59 0.57 0.6 0 0.63

Heartbeat 2 405 61 0.83 0.86 0.83 0.76 0.76 0.76 0.84 0.86 0.83

PhonemeSpectra 39 217 39 0.31 0.37 0.27 0.31 0.33 0.28 0.33 0.40 0.32

EigenWorms 5 17984 6 0.9 0 0.92 0.82 0.71 0.92 0.73 0.92 0.92 0.81

MotorImagery 2 3000 64 0.58 0.57 0.56 0.56 0.57 0.56 0.65 0.68 0.66

FaceDetection 2 62 144 0.57 0.59 0.71 0.55 0.70 0.70 0.57 0.61 0.63

Mean 0.758 0.766 0.735 0.701 0.747 0.684 0.770 0.793 0.723

Rank 3.78 3.13 4.82 5.52 4.34 5.86 3.56 2.04 5.17

Table 5.2: C-acc averaged accuracy for 10 runs for CNN, ResNet, InceptionTime, cCNN,

cResNet, cInceptionTime, dCNN, dResNet, dInceptionTime over UCR/UEA datasets.

tice that dResNet is on averaged one rank higher than ResNet. Similar observations can be
made when comparing dCNN and CNN.

Moreover, Table 5.2 con�rms that using cCNN baselines (or cResNet and cInception-
Time) implies a drop in classi�cation accuracy. For instance, CNN architecture is 0.05 more
accurate than cCNN architecture. Thus, c-Baselines cannot guarantee at least equivalent
accuracy. Figure 5.8(a) depicts the comparison between dCNN C-acc (on the y-axis) and
CNN/cCNN C-acc (on the x-axis, with CNN illustrated with blue circle and cCNN with red
crosses). The dotted line corresponds to cases when both classi�ers have the same accuracy.
We observe that almost all cCNN C-acc (red crosses) are above the dotted line, showing
that dCNN is more accurate for most of the datasets. Similarly, we observe that most of
the CNN C-acc (blue circles) are above the dotted lines, which means that dCNN is more
accurate than CNN. The same observation can be made when examining Figure 5.8(b), in
which dResNet is compared with ResNet and cResNet.

However, the same observation is not true when comparing dInceptionTime with In-
ceptionTime and cInceptionTime. Even though in Figure 5.8(c) most of the red crosses are
above the dotted line, indicating that dInceptionTime is most of the time more accurate
than cInceptionTime, the blue circles are equally distributed above and under the dotted
line. Thus, dInceptionTime is not more accurate than InceptionTime. The results in Ta-
ble 5.2 also show that the averagedC-acc across all datasets (as well as the averaged rank) is
lower for dInceptionTime than for InceptionTime. Nevertheless, the results also show that
the performance of dInceptionTime is very close to that of InceptionTime. Thus, transform-
ing the original architecture into one that supports dCAM does not penalize classi�cation
performance.
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and ResNet, and (c) dInceptionTime with cInceptionTime and InceptionTime on UCR/UEA

datasets.

5.4.4 Discriminant Feature identi�cation evaluation

We now evaluate the classi�cation accuracy (C-acc) and the discriminant feature identi�-
cation accuracy (Dr-acc) on synthetically built datasets. Table 5.3 depicts both C-acc and
Dr-acc on Type 1 and 2 datasets, when varying the number of dimensions from 10 to 100.
In this experiment, we keep as baselines only ResNet and cResNet, which are the most
accurate methods among all other baselines.

We �rst notice that for low dimensional (D=10) datasets, ResNet, dResNet, dCNN, and
dInceptionTime are performing nearly perfect C-acc. Moreover, ResNet performs well for
low-dimensional data series but starts to fail for a larger number of dimensions. While the
drop is already signi�cant for the Type 1 dataset built from the StarLightCurve dataset, it is
even stronger for Type 2 datasets, for which ResNet fails to classify instanceswith a number
of dimensions D � 20. On the contrary, dCNN, dResNet, and dInceptionTime, which use
the random permutations in the input, are not sensitive to the number of dimensions and
have an almost perfect C-acc for most of Type 1 datasets. We observe a C-acc drop for
dCNN, dResNet and dInceptionTime as dimensions increase for Type 2 datasets. However,
this drop is signi�cantly less pronounced than that of ResNet. Overall, dCNN, dResNet,
and dInceptionTime, which have on average the three highest ranks, are the most accurate
methods.

Regarding cResNet, although it achieves a nearly perfect C-acc for Type 1 datasets,
we observe that it fails to classify correctly instances of Type 2 datasets. As explained
in Section 5.2.2, the input data structure is not rich enough to allow comparisons among
dimensions, which is the main way to �nd discriminant features between the two classes
of Type 2 datasets. Overall, Figure 5.9(a) shows that dCNN, dResNet and dInceptionTime
are equivalent to cResNet for Type 1 (Figure 5.9(a.1)), outperforming all the baselines for
Type 2 (Figure 5.9(a.2)), and in general are better than the baselines (ResNet and cResNet)
for both types (Figure 5.9(a.3) with F (Type 1, T ype 2) = 2⇤Cacc(Type 1)⇤Cacc(Type 2)

Cacc(Type 1)+Cacc(Type 2)
).
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Datasets C-acc (averaged on 10 runs) Dr-acc (averaged on 50 instances)

CAM cCAM dCAM

Dataset name Type Dimensions ResNet cResNet dCNN dResNet dInception ResNet cResNet dCNN dResNet dInception Random

StarLightCurve

Type 1

10 0.95 1.00 1.00 1.00 1.00 0.07* 0.92 0.46 0.38 0.21 0.02

20 0.71 1.00 1.00 1.00 0.98 0.02* 0.92 0.38 0.45 0.36 0.01

40 0.60 1.00 0.99 1.00 0.93 0.008* 0.94 0.28 0.42 0.39 0.005

60 0.57 1.00 0.98 0.99 0.91 0.004* 0.92 0.23 0.24 0.13 0.003

100 0.64 1.00 0.96 0.97 0.79 0.003* 0.92 0.2 0.26 0.10 0.002

Type 2

10 0.71 0.53 1.00 1.00 0.93 0.0256* 0.025 0.26 0.43 0.10 0.021

20 0.61 0.55 0.98 1.00 0.70 0.016* 0.01 0.28 0.43 0.05 0.01

40 0.58 0.51 0.88 0.58 0.56 0.0068* 0.006 0.20 0.05 0.03 0.005

60 0.55 0.53 0.64 0.59 0.55 0.0058* 0.005 0.01 0.003 0.009 0.003

100 0.59 0.5 0.59 0.56 0.60 0.0024* 0.002 0.003 0.004 0.02 0.002

ShapesAll

Type 1

10 1.00 1.00 1.00 1.00 1.00 0.09* 0.79 0.66 0.7 0.55 0.02

20 0.86 1.00 1.00 1.00 0.99 0.03* 0.74 0.56 0.66 0.51 0.011

40 0.65 1.00 1.00 1.00 1.00 0.008* 0.88 0.45 0.74 0.76 0.005

60 0.65 1.00 1.00 1.00 0.96 0.005* 0.65 0.44 0.72 0.79 0.003

100 0.57 1.00 0.98 1.00 0.85 0.003* 0.83 0.31 0.49 0.48 0.002

Type 2

10 0.82 0.54 1.00 1.00 0.93 0.0467* 0.04 0.63 0.50 0.32 0.02

20 0.57 0.52 1.00 1.00 0.89 0.0132* 0.013 0.50 0.73 0.40 0.01

40 0.60 0.52 0.90 0.72 0.73 0.005* 0.005 0.40 0.20 0.36 0.005

60 0.59 0.51 0.65 0.61 0.72 0.0037* 0.003 0.22 0.34 0.46 0.003

100 0.59 0.50 0.55 0.58 0.55 0.0027* 0.002 0.005 0.02 0.05 0.002

rank 3.9 3 1.65 1.6 2.85 4.45 3 2.6 2.15 2.75

Table 5.3: C-acc and Dr-acc averaged accuracy for 10 runs for ResNet, cResNet, dCNN,

dResNet, dInceptionTime over synthetic datasets.

We now compare the di�erent methods using the Dr-acc measure. We observe that
the baseline cCAM (computed with cCNN) is outperforming CAM (computed with ResNet)
and dCAM (all of dCNN, dResNet and dInceptionTime) for Type 1 datasets. The latter is
explained by the fact that such dataset classes can be discriminated by looking at each di-
mension independently. Thus, cCAM is naturally the best solution. Nevertheless, as Type
2 datasets require comparisons among dimensions to discriminate the classes, cCAM fails
on them, with aDr-acc very similar to the one of a random classi�er. It con�rms that such
a baseline cannot be considered as a general solution for multivariate data series classi�ca-
tion. We then compare CAM and dCAM (used with dCNN, dResNet and dInceptionTime).
We note that dCAM signi�cantly outperforms CAM. As depicted in Figure 5.9(b), we also
observe that Dr-acc reduces for all models as the number of dimensions increases. Never-
theless, Dr-acc of dCAM remains relatively high for both the Type 1 (Figure 5.9(b.1)) and
Type 2 (Figure 5.9(b.2)) datasets (for a number of dimensions under 60). The previous re-
sult demonstrates the superiority of dCAM over state-of-the-art methods. The superiority
of dCAM is also con�rmed by looking at the average ranks in Table 5.3, which indicates
that dCAM computed from ResNet has the highest rank of 2.15.

5.4.5 C-acc versus Dr-acc

In this section, we conduct three di�erent analyses. We �rst analyze the relation betweenC-
acc andDr-acc. We then evaluate the impact thatC-acc has on the number of permutations
that have been correctly classi�ed ng. We �nally evaluate the impact that ng has onDr-acc.
We perform these three analyses for dCNN, dResNet and dInceptionTime.

First, Figure 5.10(1) depicts the relation between C-acc and Dr-acc for dCNN (Fig-
ure 5.10(a.1)), dResNet (Figure 5.10(b.1)) and dInceptionTime (Figure 5.10(c.1)) for all the
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Figure 5.9: Evaluation of the in�uence of the number of dimensions on our approaches and

the baselines C-acc and Dr-acc.

synthetic datasets. We notice that all methods have a logarithmic relation (dotted red line)
between Dr-acc (on the x-axis) and C-acc (on the y-axis). It con�rms that the accuracy
of the trained model has a signi�cant impact on discriminant feature identi�cation. With
the lack of blue dot on the bottom right corners of Figure 5.10(a.1),(a.2), and (a.3), we can
conclude that an inaccurate model will most probably lead to an inaccurate discriminant
features identi�cation.

Figure 5.10(3) depicts on the y-axis the ratio of correctly classi�ed permutations (ng)
among all permutations (k) versus the C-acc (on the x-axis). In this case, for all of dCNN
(Figure 5.10(a.3)), dResNet (Figure 5.10(b.3)) and dInceptionTime (Figure 5.10(c.3)), we ob-
serve that there exists a linear relationship between ng/k and C-acc from 0.7 to 1. It means
that ng will be greater when the model is more accurate. Nevertheless, for C-acc between
0.5 and 0.7, we observe a high variance for ng/k. Thus, an inaccurate model may still lead
to a high ng.

Finally, Figure 5.10(2) depicts the relation between ng/k (on the y-axis) andDr-acc (on
the x-axis). We observe a similar relationship between C-acc and Dr-acc, which means
that a low ng may lead to inaccurate discriminant features identi�cation.

To conclude, as was mentioned in Section 5.3.1, the experimental results con�rm that an
inaccurate model (for all of dCNN, dResNet and dInceptionTime) cannot be used to identify
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Figure 5.10: Evaluation of C-acc, Dr-acc and the ratio between the number of permuta-

tions k and the number of permutations correctly classi�ed ng for dCNN, dResNet and

dInceptionTime.

discriminant features. Moreover, as it is not possible in practice to measure Dr-acc for a
real use case, we can use ng/k to estimate the discriminant feature identi�cation accuracy.
Even though Figure 5.10(2) demonstrates that a high ng/k does not always lead to a high
Dr-acc, in practice, we can safely assume that a low ng/k will most probably correspond
to a low Dr-acc.

5.4.6 Execution time evaluation

In this section, we evaluate the execution time of our proposed approaches and the
baselines. Figure 5.11(a) depicts the training execution time (for one epoch) when we
vary the data series length with a constant number of dimensions �xed to ten (Fig-
ure 5.11(a.1)), and when we vary the number of dimensions with a constant data series
length �xed to 100 (Figure 5.11(a.2)). We notice that overall, CNN-based and InceptionTime-
based architectures are faster than ResNet-based architectures. Moreover, the traditional
CNN, ResNet and InceptionTime are faster when the number of dimensions and the
data series length is increasing. Nevertheless, both dCNN/dResNet/dInceptionTime and
cCNN/cResNet/cInceptionTime (that are the only solutions that can provide a multivariate
Class Activation Map) require the same execution time for the training steps.
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Figure 5.11: Execution time (in second) for the (a) training computations when we vary (a.1)

the data series length and (a.2) the number of dimensions. (b) Execution time for dCAM

computation (using dCNN, dResNet and dInceptionTime) when we vary (b.1) the number

of dimensions, (b.2) the data series length, (b.3) the number of permutations k.

Moreover, we measure the execution time required to compute dCAM (for all of dCNN,
dResNet and dInceptionTime) when we vary the number of dimensions with a constant
data series length �xed to 400 (Figure 5.11(b.1)), when we vary the data series length with a
constant number of dimensions �xed to 10 (Figure 5.11(b.2)), and when we vary the number
of permutations (Figure 5.11(b.3)). Note that the dCAM execution times are very similar
for the three types of architectures. Moreover, the execution time increases super linearly
with the number of dimensions but is linear to the data series length and the number of
permutations k.

5.4.7 Use Case: Surgeon skills explanation

We now illustrate the applicability of our method to a real-world use case. In this use case,
we train our dCNN network on the JIGSAWS dataset [37] to identify novice surgeons, based
on kinematic data series when performing surgical suturing tasks (i.e., wound stitching)
using robotic arms and surgical grippers.
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(a) Suturing_B001: 76 kinematics sensors of a novice surgeon 

performing a suturing task using the Da Vinci Surgical System
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Figure 5.12: Example of the result of dCAM on a multivariate data series of the JIGSAWS

dataset. (a) the depicted data series corresponds to a novice surgeon performing a suture

operation (joined with the corresponding dCAM in (b)). General statistical results over the

entire novice class CN are depicted such as (c) box-plots of the maximal activation value

per sensor and (d) the averaged activation per sensor per gesture performed.
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5.4.7.1 Dataset

The data series are retrieved from the DaV inciSurgicalSystem. The multivariate data
series are composed of 76 dimensions (an example of multivariate data series is depicted
in Figure 5.12(a)). Each dimension corresponds to a sensor (with an acquisition rate of
30 Hz). The sensors are divided into four groups: patient-side manipulators (left and right
PSMs: green rectangle in Figure 5.12(a) top left), and left and right master tool manipulators
(left and right MTMs: blue rectangle in Figure 5.12(a) bottom left). Each group contains 19
sensors. These sensors are: (i) 3 variables for the Cartesian position of the manipulator, (ii)
9 variables for the rotation matrix, (iii) 6 variables for the linear and angular velocity of the
manipulator, and (iv) one variable for the gripper angle.

To perform a suture, the surgeons perform di�erent gestures (11 in total). For example,
G1 refers to reaching for the needle with the right hand, while G11 refers to dropping
the suture at the end and moving to end points. Each gesture corresponds to a speci�c
time segment of the dataset, involving all sensors. For example, the dotted red rectangle in
Figure 5.12(a) represents gesture G6: pulling the suture with the left hand. Surgeons that
reported having more than 100 hours of experience are considered experts, surgeons with
10-100 hours are considered intermediate, and surgeons with less than 10 hours are labeled
as novices. We have 19 multivariate data series in the novice class, denoted as CN , 10 in the
intermediate, Ci, 10 multivariate data series in the expert class, CE . More information on
this dataset can be found in [37].

5.4.7.2 Training

For the training procedure, we use 80% of the dataset (randomly selected from the three
classes) for training. The rest 20% of the dataset is used for validation and early stopping.
Since the instances do not have the same length, we use batches composed of one instance
when training the models in the GPU.

5.4.7.3 Evaluation

Similar to what has been reported in previous work [51], we achieve 100% accuracy on
the train and test datasets (for 10 di�erent randomly selected train and test sets). We pro-
ceed to compute the dCAMCN for every instance of the novice class CN . The dCAMCN

of the multivariate data series named Suturing_B001 (Figure 5.12(a)) is displayed in Fig-
ure 5.12(b). In the latter, the deep blue color indicates low activated subsequences (i.e.,
non-discriminant of belonging to the novice class CN ), while the yellow color is pointing
to highly activated subsequences. First, we note that some groups of sensors (dimensions)
are more activated than others. In Figure 5.12(b), the left and right "MTM gripper angles"
are the most activated sensors. Figure 5.12(c), which depicts the box-plot of the maximal
activated values per sensors, con�rms that in the general case, MTM gripper angles, as well
as the MTM and PSM tooltip rotation matrices (three of these sensors are highlighted in red
in Figure 5.12(a)), are the most discriminant sensors. On the contrary, linear and angular
speeds are not discriminant and hence cannot explain the novice class CN .
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Figure 5.12(d) depicts the averaged activation per sensor per gesture. Overall, dCAMCN

identi�es gestureG9 (using the right hand to help tighten the suture) as a discriminant ges-
ture, because of the discriminant subsequences present in the sensors "right MTM gripper
angle", "5th element", and "7th element" (marked with red ovals in Figure 5.12(d)). These
three identi�ed sensors (dimensions) are relevant to the right PSM tooltip rotation matrix
and are important for the suturing process. Similarly, we observe that gesture G6 (i.e.,
pulling suture with left hand) is discriminant, and activated the most by the "left NTM
gripper angle" sensor. This result is consistent with a previous study [51], which also iden-
ti�ed gesture G6 as a discriminant of belonging to the novice class. Nevertheless, dCAM
provides more accurate (and useful) information: it does not only identify the discriminant
gesture (that relates to all sensors), but also the discriminant sensors.

5.4.7.4 Results Conclusion

The application of the proposed dCAM approach in the robot-assisted surgeon training use
case demonstrated its e�ectiveness. Our approach was able to provide meaningful explana-
tions for the classi�cation decisions, based on speci�c gestures (subsequences), and speci�c
sensors (dimensions) that describe particular aspects of these gestures, i.e., the positioning
and rotation angles of the tip of the stitch gripper. Such explanations can help surgeons to
improve their skills.

5.5 Summary

Even though data series classi�cation using deep learning has attracted a lot of attention,
existing techniques for explaining the classi�cation decisions fail in the case of multivariate
data series. Moreover, simple extensions, such as cCNN, do not meet usual architectures’
performances, such as CNN. In this work, we described a novel approach, dCAM, based
on convolutional neural networks, enabling us to detect the discriminant subsequences
within individual dimensions of a multivariate data series. In order to apply dCAM, we
provided a transformation to the network architecture that we call dCNN (for the usual
CNN architecture) dResNet and dInceptionTime (for the ResNet and the InceptionTime
architectures). The experimental evaluation with synthetic and real datasets demonstrates
our approach’s bene�ts and superiority in discriminant feature discovery and classi�cation
explanation in multivariate time series. Moreover, we evaluated the in�uences between
several important parameters in order to give the user all the keys to estimate the accuracy
of dCNN and dCAM.
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In this chapter, we illustrate the applicability and the interest of our developed methods in a

real-world application. We study the detection precursors of unwanted vibrations occurring

in turbine-driven feed-water pump systems inside EDF nuclear power plants. We �rst describe

the dataset and the industrial context. We then explore two scenarios: we �rst tackle the task

as if the experts had provided no label and apply NormA and Series2Graph. We evaluate their

accuracy using the labels of the experts. We then tackle the task as a supervised problem (using

the label provided by the experts) and apply dCNN/dCAM. We �rst compare the accuracy of

both unsupervised and supervised methods. We then investigate the precursors detected by

dCAM and discuss the validity of these results compared to expert knowledge.
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Symbol Description

TPA Turbine-driven feed-water pump

TN
M Set of multivariate data series without any vibration

TA
M Set of multivariate data series containing a vibration

APP Turbine-driven feedwater pump system

AGR Feedwater pump turbine lubri�cation and control �uid system

MT Temperature measure

MD Flow measure

MP Pressure measure

MC Speed measure

Table 6.1: Table of symbols and acronyme related to the use case

6.1 Use Case: Precursors of Anomalous Vibration De-

tection in Nuclear Power Plants

We now illustrate the applicability and the interest of our developed methods in a real-
world application. This use case is about discovering possible precursors of unwanted vi-
brations happening in turbine-driven feed-water pump systems inside EDF nuclear power
plants. These pumps (two di�erent pumps noted TPA1 and TPA2) aim to increase the water
pressure (from 1 to 80 bar) before passing the water through the steam generator (with a
pressure of 80 bar). However, these vibrations are considered problematic when the posi-
tion of the pump varies by few microns, and a boolean sensor is activated when it happens.
Thus, knowledge experts are interested in �nding, if there exist, possible precursors of these
unwanted vibrations in other sensors surrounding the pump and discovering unusual pat-
terns that could explain why a pump is eventually vibrating or at least alert the imminent
occurrence of vibrations. Table 6.1 summarizes the symbols we use in this chapter.

6.1.1 Dataset and Use case description

At this point, we need to create our datasets of abnormal data series (i.e. vibrations) and
anomaly-free data series. Following the suggestion of expert knowledge, we selected 120
sensors inside 12 sub-systems of the nuclear power plant. Figure 6.1(a) summarizes the
sub-systems analyzed and the number of sensors collected. The experts observe that TPA
are vibrating of few micrometers. They classify these vibrations in two types: (i) Vibra-
tions between 70 and 90 micrometers, (ii) Vibrations above 90 micrometers. In this study,
we collected every unwanted vibration of type (ii) that happened in every French 1300MW
nuclear plant. In total, we have 444 vibrations. We then create our multivariate data series
by selecting every sensor’s measurement between 75 minutes before the vibrations and 5
minutes after. We set the sampling rate to 1 point every 6 seconds, and each multivariate
data series contains 96,000 points. We note the set of data series containing a vibration TA

M.
We then select 444 intervals of 80 minutes for which no vibration has been recorded (i.e.,
vibrations less than 70 micrometers) at least one day before and after. Finally, we note the
set of data series without any vibration TN

M. We also selected the non-vibration periods
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Figure 6.1: Simpli�ed schema of the secondary circuit of EDF 1300MWnuclear power plant.

We collect in total 120 sensors from 8 subsystems (solid black boxes) surrounding the feed-

water pumps (TPA). Blue arrows: water �ow. Red arrows: steam �ows.

corresponding to the same operating conditions as the vibration periods. Namely, when
the nuclear facility ramps up or down between 15% and 67% of maximum power. This
operating area, where the second feed-water pump is coupled, is conducive to vibrations.
The latter is a critical step and must be conducted thoroughly. Otherwise, the precursors
highlightedwould be already-known di�erences in operational conditions and solicitations.
In this case, we used the sensor related to the power regime: its distribution is the same
across both classes. We also took the same distribution of years for both classes to mini-
mize the in�uence of degradation due to aging. What we want to highlight are unexpected
solicitations that would have led to vibrations later. The latter will trigger immediate and
cost-e�ective corrective actions. We thus have, in total, 888 multivariate data series (for
which 444 of them correspond to unwanted vibrations) of dimensions D = 129. All the
sensors are returning continuous values. In total the datasets contains 85,248,000 points.
Formally, we de�ne the dataset as TM = TN

M [ TA
M, with TN

M, TA
M 2 R

(444,120,800).
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Overall, the task is to detect the vibration correctly and discover subsequences in one or
several sensors that happened before the vibration and could potentially explain it. For that
purpose, we tackle this task as de�ned in Problem 1 with NormA and Series2Graph (with
subsequence length of 2 minutes), and as de�ned in Problem 2 with dCNN/dCAM.We have
shown in Chapter 5 that dResNet is slightly more accurate than dCNN and dInception Time.
However, for the sake of simplicity, we used the most usual architecture dCNN as our base-
line for this use case. In the following two sections, we describe the experimental settings
of the unsupervised approaches (NormA and Series2Graph) and the supervised approach
(dCNN/dCAM). The general objective is to evaluate and compare both unsupervised and
supervised methods on a real industrial use case. In addition, we will measure the limit of
unsupervised methods and the gain that human labels can bring in consistency.

6.1.2 Unsupervised Approaches

First, we use NormA and Series2Graph score function as f : TM ! {N ,A} and A is
the set of subsequences (within each dimension of multivariate data series in TM) with a
score higher than a given threshold. In practice, as both NormA and Series2Graph are not
dedicated to multivariate data series, we train NormA and Series2Graph models on each
dimension independently (across every time series). We set the parameters as their default
values described in Section 3.5.5 and Section 3.5.6. We �rst build a model (NM for NormA,
and the directed graph G for Series2Graph) using all data series of a given dimension. In
total, we build one model per dimension. We then compute an anomaly score for each
data series (for each dimension). We then use this anomaly score to classify instances as an
anomaly or normal. We �nally analyze the anomaly score of each dimension independently.

6.1.3 Supervised Approaches

We then train dCNN to classify TA
M and TN

M. Formally, dCNN is de�ned as the function
f : TN

M, TA
M ! {N ,A}. We then use dCAM as the function g : TA

M, f ! S that return the
set S of subsequences that explain the classi�cation as the vibration class (as the red subse-
quences and rectangle depicted in Figure 6.1(b,c)). In practice dCAM returns a multivariate
data series score for each instance in TA

M (as depicted in Figure 6.1(b,c)).

6.2 Experimental Analysis

We now evaluate both unsupervised and supervised methods’ accuracy on the vibration
detection and prediction use case. We conduct two evaluations described as follows: (i)
We �rst evaluate the detection accuracy. We thus, measure the accuracy of the anomaly
score of NormA and Series2Graph when used to detect instances (i.e., entire multivariate
data series) containing a vibration. We also measure the classi�cation accuracy of dCNN.
(ii) We then measure the ability of dCAM (applied on the trained dCNN) to detect possible
precursors. We compare �rst the sensors considered necessary by NormA, Series2Graph,
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and dCNN/dCAM and verify if the results are consistent with expert information on the
power plant structure. We then evaluate the temporal position of the detected precursors
and verify temporal consistency based on expert knowledge. We �nally explore the group
of subsequences detected by dCAM and analyze them by their shapes. We conclude the
analysis by the expert validation of the complete analysis.

6.2.1 Vibration Detection Evaluation

We now evaluate the detection accuracy. We �rst measure the accuracy of the anomaly
scores of NormA and Series2Graph. We then measure the classi�cation accuracy of dCNN.
Note that the detection accuracy is not a challenging problem for the experts (with boolean
sensors positioned on the pumps that raise an alert if there are any vibrations). However,
this is a required step before tackling the precursors’ detection. We thus experimentally
evaluate the vibration detection as a validation.

6.2.1.1 Unsupervised Detection

We �rst start by analyzing how unsupervised approaches, such as NormA and Se-
ries2Graph, can detect data series with a vibration. As the methods are unsupervised, we
build the models on both data series with and without anomalies (without specifying which
data series belong to which class). We set the parameters as de�ned in Section 3.5.5 and Sec-
tion 3.5.6, and we use a subsequence length of 20 points. As the methods can only be used
for univariate data series, we build one model per dimension (i.e., sensor). We then com-
pute an anomaly score data series for each data series instance. We note ScoredNormA(T

(d))
(with |ScoredNormA(T

(d))| = |T (d)|) the anomaly score of data series T (d) using the NormA
model trained on dimension d (with 0  d < 129). Similarly, we note ScoredS2G(T

(d)) (with
|ScoredS2G(T

(d))| = |T (d)|) the anomaly score of T (d) using the Series2Graph model trained
on dimension d.

Figure 6.2 depicts six examples of ScoredS2G(T
(d)) with dimension d corresponding to

APP202MC� (speed sensor from the turbine-driven feedwater pump system with two
examples illustrated in Figure 6.2(a)), AGR412MT� (temperature sensor from the feed-
water pump turbine lubri�cation and control �uid system with two examples illustrated
in Figure 6.2(b)), and APP062MP� (pressure sensor from the turbine-driven feedwater
pump system with two examples illustrated in Figure 6.2(c)). In these six examples illus-
trated in Figure 6.2, we observe that the anomaly score highlights some speci�c patterns.
The latter patterns are either very close to the vibration timestamp represented by the solid
vertical red line (such as the top plot of Figure 6.2(a)) or largely earlier (such as the bottom
plot of Figure 6.2(a)). Both of these patterns can be relevant to detect vibration instances.

We thus compute the maximal value of ScoredS2G(T
(d)) and ScoredNormA(T

(d)) and use
it as a unique score for T (d). We thus expect that for two data series T, T 0 2 TN

M, TA
M,

there exist a dimension d such as max(ScoredNormA(T
(d))) > max(ScoredNormA(T

0(d)))
andmax(ScoredS2G(T

(d))) > max(ScoredS2G(T
0(d))). We now evaluate the last assumption.

Figure 6.3 and Figure 6.4 depicts for each sensor d the value distribution (histogram) of the
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(a) Sensor measuring speed in turbine-
driven feedwater pump system

(b) Sensor measuring temperature feedwater 
pump turbine lubrication and control fluid system

(c) Sensor measuring pressure in turbine-
driven feedwater pump system

Figure 6.2: Example of anomaly score produce by Series2Graph algorithm for time series

containing a vibration from three sensors.

max(ScoredNormA(T
(d))) and max(ScoredS2G(T

(d))) respectively. The histograms of each
sensor d are sorted by s(d) de�ned as follow:

For NormA:

s(d) =
X

bins>0



HistT∈TA
M

�

max(ScoredNormA(T
(d)))

�

�HistT∈TN
M

�

max(ScoredNormA(T
(d)))

�

�

(6.1)

For Series2Graph:

s(d) =
X

bins>0



HistT∈TA
M

�

max(ScoredS2G(T
(d)))

�

�HistT∈TN
M

�

max(ScoredS2G(T
(d)))

�

�

(6.2)

The latter value is high when the score distribution is shifted on the right compared
to the blue distribution. Thus, the plots at the bottom of Figure 6.3 and Figure 6.4 are the
sensor for which the data series with a vibration obtained a higher anomaly score than
the data series without any vibrations. The latter sorting equation is for visual purposes
only but provides a �rst approximate answer on which sensor could be helpful to detect
vibrations correctly.

In general, we observe that, for a large number of sensors, the distributions overlap
entirely. Thus data series with or without vibrations have a similar anomaly score. For
instance, as illustrated in Figure 6.4, we observe that some sensorAPP122MT� data series
belonging to the vibration class can be discriminated using the Series2Graph anomaly score.
Likewise, in Figure 6.3, the same observation can be done for NormA anomaly score on
sensor AGR418MT�.
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Figure 6.3: For each sensor, maximal NormA anomaly score distribution for time series with

a vibration (in red) and without any vibration (in blue). The distribution plots are sorted

based on the di�erence of the red and blue distribution (in that order) as depicted in the

title of each subplot.

152



U�� C���: P��� V�������� C���

Figure 6.4: For each sensor, maximal Series2Graph anomaly score distribution for time

series with a vibration (in red) and without any vibration (in blue). The distribution plots

are sorted based on the di�erence of the red and blue distribution (in that order) as depicted

in the title of each subplot.
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sensor separately and using the maximal anomaly score on the entire instance.
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This �rst analysis of NormA and Series2Graph anomaly scores distributions con�rms
that it is di�cult to discriminate instances from the vibration classes and instances from
the normal class for the vast majority of sensors. However, we observe that, for few sen-
sors, we can discriminate some of the vibration class instances from normal class instances.
Therefore, we now formally evaluate the accuracy of NormA and Series2Graph. For that
purpose, we use the following three accuracy measures:

• ROC curve and ROC-AUC: We compute the true positive rate (i.e., the number of
vibration instances correctly classi�ed as belonging to the vibration class divided by
the total number of instances in the vibration class) and the false positive rate (the
number of normal instances being wrongly classi�ed as belonging to the vibration
class divided by the number of instances in the normal class) for 100 di�erent thresh-
olds between the minimum and the maximum value of all scores. From the latter, we
obtain a curve called the ROC curve. We then use the area under this curve as an
accuracy measure. This measure is called ROC-AUC.

• Precision-Recall curve and PR-AUC: We use the Precision and the Recall as ac-
curacy measures. We compute the Precision and the Recall for a set of 100 di�erent
thresholds between the minimum and the maximum values of all the scores. We
thus obtain a curve called the PR curve. We then use the area under this curve as an
accuracy measure. This measure is called PR-AUC.

• Classi�cation accuracy curve: We de�ne the classi�cation accuracy as the number
of correctly classi�ed instances among all the instances. We thus use a threshold and
assign to the vibration class all the instances with a score higher than this threshold.
We compute the classi�cation accuracy for 100 di�erent thresholds between the min-
imum and maximum scores of all the scores. We obtain a curve, and we can extract
the maximal value on the curve. This maximal value corresponds to the maximal
classi�cation accuracy achievable with a threshold.

These three accuracy measures are depicted in Figure 6.5 and Figure 6.6. Figure 6.5(a)
depicts the Series2Graph ROC curve (Figure 6.5(a.1)), PR curve (Figure 6.5(a.2)), and accu-
racy curve (Figure 6.5(a.3)) for each sensor. Similarly, Figure 6.5(b) depicts the NormA ROC
curve (Figure 6.5(b.1)), PR curve (Figure 6.5(b.2)), and accuracy curve (Figure 6.5(b.3)) for
each sensor. Figure 6.5(c) depicts, for Series2Graph (in green) and Norma (in red), the sen-
sors providing the best ROC curve (Figure 6.5(c.1)), the best PR curve (Figure 6.5(c.2)) and
the best accuracy curve (Figure 6.5(c.3)).

We observe that, as inferred from Figure 6.3 and Figure 6.4, Series2Graph andNormA are
not accurate in detecting vibration using most of the sensors. This inaccuracy for both two
methods is expected as most of the sensors are not related to the vibrating pumps. However,
some sensors provide relatively higher accuracy. For example, the highest accuracy is ob-
tained with sensor AGR412MT� using series2Graph for both ROC-AUC (0.63), PR-AUC
(0.66), andmaximal achievable accuracy (0.63). For NormA, the highest accuracy is obtained
with di�erent sensors based on what accuracy measure we use. For example, NormAmaxi-
mal ROC-AUC (0.62) and accuracy (0.61) are obtained using sensorAGR438MT�, whereas
the maximal PR-AUC (0.57) is achieved with sensor AHP622MT�.
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Figure 6.7: Training phase of dCNN. Loss and accuracy evolution when the number of

epoch are increasing.

Overall, we observe that Series2Graph is more accurate than NormA, but both methods
are not performing a high accuracy. Figure 6.6 summarizes the accuracy measures obtained
using Series2Graph (in green) and NormA (in red) for every sensor. Moreover, Figure 6.6(c)
demonstrates that two groups of sensors are providing slightly better accuracy than the rest
of the sensors. The �rst group is the feed-water pump-turbine lubri�cation and control �uid
system (AGR), and the second group is the turbine-driven feed-water pump system (APP).
These two groups correspond to systems very close and dependent on the vibrating pump
and are con�rmed by the expert to be physically (i.e., containing functional information of
the pumps such as sealing temperatures and outlet pump �ow) and structurally consistent
with the vibration detection task.

6.2.1.2 Supervised Detection

We now evaluate vibration detection using a supervised model. We use the dCNN (de�ned
in Chapter 5) as our supervised model in this section. We train the dCNN model (using 5
convolutional layers with (64, 128, 256, 256, 256) �lters respectively; a kernel size of 3 and
a padding of 2) on 70% of each class (TN

M and TA
M) and we use the 30% left as a validation

set. We set the batch size to 8 instances. We stop the training phase when the loss on the
validation set does not reduce for the last 100 epochs. In total, we limit the training phase
to 1000 epochs.

Figure 6.7 depicts the evolution of the loss and the classi�cation accuracy (number of
instances correctly classi�ed divided by the total number of instances) as the number of
epochs increases. Overall, dCNN achieve 0.91 of accuracy on the training set and 0.89 of
accuracy on the validation set (whereas NormA and Series2Graph provide an accuracy of
0.63 and 0.61, respectively). We thus con�rm that a supervised model is signi�cantly more
accurate than an unsupervised model for the vibration detection case. The latter underlines
the bene�ts that can bring labels to model accuracy. As the dCNN accuracy is high, we can
now use dCAM to identify discriminant subsequences (i.e., possible vibration precursors).
Finally, the overall training step and dCAM computation require a full day in execution
time on a GPU NVIDIA V100.
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Figure 6.8: Example of dimension-wise Class Activation Map (dCAM) for one multivariate

data series instance from the vibration class (in blue: the non-activated parts of the data

series, in yellow: the activated, and thus discriminant, subsequences of the data series).

6.2.2 Precursors identi�cation Quantitative Evaluation

We concluded from the previous sections that supervised approaches outperform unsuper-
vised method in the context of our use case. We now evaluate the relevance of the sub-
sequences identi�ed by our proposed approach dCAM. We thus compute dCAM for every
instance belonging to the vibration class. Figure 6.8 illustrates an example of the dCAM (as
depicted in Figure 6.8(b)) for a given vibration class instance (as depicted in Figure 6.8(a)). In
the latter �gure, the blue section in the dCAM corresponds to sections of the data series that
the model (dCNN) did not consider useful to classify that data series as a vibration. On the
contrary, the yellow sections are the subsequences of the data series that are considered the
most discriminant and thus might explain why the vibration occurred. The subsequences
highlighted in yellow can thus be interpreted as potential precursors of the vibration.

We now conduct further analysis on dCAM results across the entire vibration class. We
conduct the following three analysis:
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Figure 6.9: Aggregated activation score for dCAM per sensors for every timestamps. In

red: the sensors names that are overall highly activated and that possibly contains one or

several precursors.

• We �rst start by measuring the consistency of the detection as regards the structural
information (i.e., are the sensors closely related to the vibrating system?). To min-
imize possible miss of information, we have arti�cially selected many sensors that
are not all directly related to the vibrating pump. Nevertheless, we expect that the
sensors that the model uses to classify instances are closely related to the vibrating
pump. We thus verify this expectation. We also compare the structural consistency
of dCAM with the temporal consistency of NormA and Series2Graph.

• We then continue by measuring the consistency of the detection (or activation) re-
garding temporality (i.e., are the subsequences detected close in time to the vibra-
tion?). Based on the experts’ opinions, the possible precursors are more likely to be
close to the vibration. We also compare the temporal consistency of dCAM with the
temporal consistency of NormA and Series2Graph.

6.2.2.1 Structural consistency

We �rst measure the average activation score per sensor for every timestamp. Figure 6.9 de-
picts activation score box plot for each sensor when using dCAM.We observe that the acti-
vation scores returned by dCAMvary signi�cantly between di�erent sensors. We can easily
distinguish nine sensors out of the 120. These sensors correspond to temperature measure-
ments inside the feed-water pumps (sealing temperatures noted AGR605MT, AGR615MT
for TPA1, and AGR606MT, AGR616MT for TPA2) and the outlet pump �ow and pressures
(noted APP011MD, APP061MP for TPA1, and APP012MD, APP062MP for TPA2). As high-
lighted in Figure 6.1(a), AGR and APP are sub-systems directly connected to the vibrating
pump. Moreover, pressure and �ow can directly in�uence the pump e�ciency, with low-
e�ciency areas known to be conducive to vibration events. Thus, the sensors highlighted
by our proposed approach dCAM are very consistent with the knowledge from experts and
the functional structure of the plant.

Moreover, we can compare Figure 6.9 with Figure 6.6(c) and compare the activated
sensors by dCAM with the sensors that provided the best accuracy for NormA and Se-
ries2Graph. We �rst observe that the same group of sensors is highlighted by NormA,
Series2Graph and dCAM (AGR and APP). This con�rms that both unsupervised and super-
vised methods are consistent. However, dCAM selects a smaller group of sensors (despite
the total number of sensors) that is con�rmed by the expert to be potentially related to the
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occurrence of vibrations.

6.2.2.2 Temporal consistency

We then measure the evolution of the average activation score (for all sensors) in time
obtained by dCAM (Figure 6.10(B)). Figure 6.10(B) depicts the quantiles values for each
timestamp. The solid red line is the median, while every dotted grey line corresponds to the
20-quantiles. We �rst observe that the average activation score is higher when the vibration
occurs (red vertical line in Figure 6.10). As it is unlikely to �nd precursors one hour before
the vibration, we can thus con�rm that dCAM results are consistent regarding temporality.
We then observe the average anomaly score for some speci�c sensors (highlighted in red
in Figure 6.9) that are the most activated across all vibration instances. We observe that, on
average, all these sensors see their activation increases approximately 10 minutes before
the vibrations. We thus explore in the following section the activated subsequences for
these nine sensors.

Moreover, Figure 6.10(A) depicts the average score across all sensors for NormA (Fig-
ure 6.10(A.1)) and Series2Graph (Figure 6.10(A.2)). We observe that, similarly to dCAM, the
score increases on average when we get closer to the vibration. Overall, we con�rm that
both unsupervised (NormA and Series2Graph) and supervised (dCAM) results are consis-
tent regarding temporality.

6.2.3 Precursor identi�cation Qualitative Evaluation

We now analyze the results returned by dCAM and discuss the information that the knowl-
edge experts can gain from it. We mainly focus our analysis on the nine most activated sen-
sors (i.e., sensors depicted in Figure 6.10(b)). We cluster (computed with the usual k-means
using Euclidean distance) the 15 minutes long subsequences with the highest activation
score for a vibration instance. The centroids of these clusters are thus representing the
di�erent shape categories within each sensor detected by dCAM. Therefore we can limit
our analysis on this reduced (but relevant) set of centroids. Figure 6.11 depicts the 15 min-
utes long subsequences clusters in the nine sensors mentioned above. For each cluster,
the time distribution histogram is displayed below. We �rst notice that the majority of
the subsequences (for all clusters) happened while the vibration is detected (such as, for
instance, the cluster depicted in Figure 6.11(b.2)). As understood by the experts, these sub-
sequences correspond to a speci�c action (such as an increase or decrease of the water �ow
through the feed-water pump to either increase or decrease the power generated by the
plant) that could lead to vibrations but that are not avoidable. Thus dCAM �rst permits
the expert to con�rm and visualize which subsequences are directly correlated to the vi-
bration. Then, several subsequences detected by dCAM are anterior to the vibration (such
as Figure 6.11(a.2),(a.3),(b.1),(c.1),(c.2),(e.1),(g.3)). These subsequences could correspond to
precursors of the vibration and would require to be carefully inspected by the experts. For
instance, knowledge experts conclude that clusters such as in Figure 6.11(e.1.1) correspond
to unusual variations of the sealing temperature of the pump and lead them to investigate
in detail speci�c examples. Overall, our proposed approach dCAM permits the experts to

160



U�� C���: P��� V�������� C���

!. 1 $%&'( )*+,)-+. /01,+ 21, )33 /+4/1,/ 21, 5
ℳ

" .)6) /+,7+/

(.166+. 374+/: 20 − =>)4673+/ 21, +)0ℎ 67@+/6)@A/)

!. 2 CD&EDFGH&IJK )*+,)-+. /01,+ 21, )33 /+4/1,/ 21, 5
ℳ

" .)6) /+,7+/

(.166+. 374+/: 20 − =>)4673+/ 21, +)0ℎ 67@+/6)@A/)

L. 1 MN(O )*+,)-+. /01,+ 21, )33 /+4/1,/ 21, 5
ℳ

" .)6) /+,7+/

(.166+. 374+/: 20 − =>)4673+/ 21, +)0ℎ 67@+/6)@A/)

! "#$%&'()%* *%+%,+(-.: 0123

4 5.)#$%&'()%* *%+%,+(-.: 67892, ;<8=<>?@8ABC

L. 2 MN(O )*+,)-+. /01,+ 21, /1@+ /A+07270 /+4/1,/ 21, 5
ℳ

" .)6) /+,7+/

Figure 6.10: Aggregated NormA (A.1), Series2Graph (A.2) and dCAM activation score for

all sensors (B.1). Aggregated dCAM activation scores for some speci�c sensors (B.2). Red

shades correspond to quantile interval (0.05-0.95,0.10-0.90,0.15-0.85, etc for (A and B.1) and

only 0.3-0.7, 0.4-0.6 for (B.2)). The solid red line is the median values for each timestamp.

161



C������ 6

! "#$%&%'(:*+,-+.!/0.+ 12314+ /ℎ+ -0,-

!. 1.1

!. 1.2

!. 2.1

!. 2.2

!. 3.1

!. 3.2

6 "778%9'7::!/+. -.+330.+ +;1/12< /ℎ+ -0,-

&. 1.1

&. 1.2

&. 2.1

&. 2.2

&. 3.1

&. 3.2

= "778&&'>::!/+. ?@AB +;1/12< /ℎ+ -0,-

'. 1.1

'. 1.2

'. 2.1

'. 2.2

'. 3.1

'. 3.2

4 "77989'C:*+,-+.!/0.+ 12314+ /ℎ+ -0,- + "#$%8D'(:*+,-+.!/0.+ 12314+ /ℎ+ -0,- ? "#$%8%'(:*+,-+.!/0.+ 12314+ /ℎ+ -0,-

< "#$%&D'(:*+,-+.!/0.+ 12314+ /ℎ+ -0,- ℎ "778%&'7::!/+. -.+330.+ +;1/12< /ℎ+ -0,- 1 "778&&'>::!/+. ?@AB +;1/12< /ℎ+ -0,-

(. 1.1

(. 1.2

(. 2.1

(. 2.2

(. 3.1

(. 3.2

). 1.1

). 1.2

). 2.1

). 2.2

). 3.1

). 3.2

*. 1.1

*. 1.2

*. 2.1

*. 2.2

*. 3.1

*. 3.2

ℎ. 1.1

ℎ. 1.2

ℎ. 2.1

ℎ. 2.2

ℎ. 3.1

ℎ. 3.2

,. 1.1

,. 1.2

,. 2.1

,. 2.2

,. 3.1

,. 3.2

-. 1.1

-. 1.2

-. 2.1

-. 2.2

-. 3.1

-. 3.2

Figure 6.11: Subsequences clusters (*.*.1) (and their time distribution compared to the vibra-

tion timestamps (*.*.2)) detected as precursors of vibration by dCAM for the 9 most activated

sensors.

build a dictionary of patterns related to a targeted anomaly. This dictionary can be used to
raise alarms and help the experts to avoid critical situations. Thus the investigation by the
expert could be signi�cantly reduced.

6.3 Summary and Conclusion

In this chapter, we described a real-industrial use case. The latter is related to the detection
of unwanted vibrations in turbine-driven feed-water pump systems inside French nuclear
power plants. We explored two possible ways: (i) the unsupervised detection of vibration,
(ii) the supervised classi�cation of vibrations, and the detection of their precursors. For the
�rst case, we applied the unsupervised methods NormA and Series2Graph de�ned in Chap-
ter 3. We evaluated the accuracy of these two methods using labels provided by the experts.
For the second case, we applied the supervised method dCNN/dCAM de�ned in Chapter 5.
We used the labels provided by the experts to train our model dCNN, and use dCAM to
detect discriminant subsequences (and possible precursors of the vibration) within every
dimension. This chapter demonstrated that supervised method dCNN/dCAM are signi�-
cantly more accurate than unsupervised methods, even though NormA and Series2Graph
provide interesting results consistent with expert knowledge. We then compared the results
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obtain by dCAMwith the expert knowledge. Finally, we con�rmed with the experts the va-
lidity and the accuracy of our proposed approach dCNN/dCAM. As future work, we plan
to explore in details the di�erences between unsupervised methods (such as Series2Graph)
and dCNN by extracting the subsequences that are highlighted by dCAM and not by the
unsupervised model.
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7.1 Contributions Summary

Data series is a very usual data type. Many scienti�c applications have now generated
extensive collections of data series that are required to be analyzed. Moreover, anomaly
detection is a crucial task for most scienti�c and industrial applications. This thesis tackled
this task with special care to constraints related to large collections of data series.

At �rst, we described in Chapter 2 the related works proposed in the literature, which
can be used to detect abnormal subsequences either in an unsupervised, semi-supervised
and supervised manner. After discussing their limitations, we presented in Chapter 3 two
new approaches, NormA and Series2Graph, that aim to detect on an unsupervised manner
subsequences anomalies in data series. We described in detail the computational steps of
these algorithms. The �rst method, NormA, extracts subsequences representing the data se-
ries’ recurrent behaviors and uses the distance to these subsequences as the anomaly score.
The second method, Series2Graph, aims to embed the data series into a directed graph, in
which, the nodes and the edges encode are used to detect abnormal subsequences. Theo-
retically and empirically, we underlined the limitation of the discord-based approaches and
density-based approaches for large data series that can contain several similar anomalies.
We then empirically demonstrated our two developed approaches’ superiority in terms of
anomaly detection accuracy and execution time. Finally, we developed two user interfaces
that depict the computational steps of NormA and Series2Graph, respectively.

In a second phase, we tackled in Chapter 4 the speci�c case of unsupervised subsequence
anomaly detection for streaming data series. We �rst analyzed the limitations of state-of-
the-art approaches, including NormA and Series2Graph, when applied to data streams. We
then introduced SAND, a novel unsupervised approach for subsequence anomaly detection
in streaming sequences. SAND is based on a set representation of the subsequences in a
data stream (inspired from NormA). We proposed a user interface implementation of our
approach that simpli�es the usage and facilitates the comprehension of SAND. Finally, we
conducted an experimental analysis of several synthetic and real datasets. The synthetic
datasets are speci�cally built in order to simulate changes in normality. These experiments
demonstrated the bene�ts of our approach in terms of e�ciency and accuracy.

In a third step, we study in Chapter 5 the speci�c case of supervised anomaly detection
with the �nal purpose of identifying precursors. Thus, we tackled this task as data series
classi�cation task in the general case. Even though data series classi�cation using deep
learning has attracted much attention, existing techniques for explaining the classi�cation
decisions fail in multivariate data series. Moreover, simple extensions, such as cCNN, do
not meet the usual CNN-based architectures’ performances. That is why we introduced
a novel approach, dCAM, based on convolutional neural networks, enabling us to detect
the discriminant subsequences within individual dimensions of a multivariate data series.
In order to apply dCAM, we provided a transformation to the network architecture that
we call dCNN (for the usual CNN architecture). Such extension can be applied to any
other convolutional-based architecture with a Global Average Pooling (GAP) layer. We
thus also introduced dResNet and dInceptionTime (for the ResNet and the InceptionTime
architectures). The experimental evaluation with synthetic and real datasets demonstrated
our approach’s bene�ts and superiority in discriminant feature discovery and classi�cation
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explanation for multivariate time series. Moreover, we evaluated the in�uences between
several important parameters to give the user some keys to assess the accuracy of dCNN
and dCAM.

Finally, we described in Chapter 6 a real-industrial use case. It is related to detecting
unwanted vibration in turbine-driven feed-water pump systems inside EDF French nuclear
power plants. We explored two possible tasks: (i) the unsupervised detection of vibrations,
(ii) the supervised classi�cation of vibrations, and the detection of their precursors. For
the �rst objective, we applied the unsupervised methods NormA and Series2Graph we de-
veloped. We evaluated the accuracy of these two algorithms using labels provided by the
experts. For the second task, we applied the supervised method dCNN/dCAM. We used
the labels provided by the experts to train our model dCNN, and used dCAM to detect dis-
criminant subsequences (and possible precursors of the vibration) within every dimension.
We demonstrated that the supervised method dCNN/dCAM is signi�cantly more accurate
than unsupervised methods, even though NormA and Series2Graph provided interesting
results consistent with expert knowledge. We then brie�y interpreted the results obtained
by dCAMwith respect to the expert knowledge. Finally, we con�rmed with the experts the
validity, practical, usefulness, and accuracy of our proposed approach dCNN/dCAM.

7.2 Open Research Directions

Our work raises new research questions and opens up several interesting research direc-
tions, which are discussed in the following sections.

7.2.1 Series2Graph and NormA for Multivariate Data Series

As described in Chapter 3, NormA and Series2Graph are proposed for univariate time series
only. A natural research direction is thus to provide modi�cations to these two methods
such that multivariate anomalies could be found. This objective requires to describe for-
mally what a multivariate abnormal subsequence is in the speci�c case of unsupervised
detection. For NormA, we need to de�ne a proper similarity measure between multivariate
subsequences, which remains the main challenge to upgrade NormA for multivariate data
series. For Series2Graph, the challenge is di�erent. A �rst research direction would be to
�nd a new projection function that can mapmultivariate data series into a two-dimensional
space. If such a method exists, the following steps would remain unchanged. A trivial
solution would be to consider the multivariate subsequences as a vector. However, such
representation would erase the structure of a multivariate data series.

7.2.2 Series2Graph for Streaming Data Series

We proposed a new method, inspired by NormA, in Chapter 4. However, a streaming
method using a subsequence graph, as for Series2Graph, is still an open problem. As de�ned
in Chapter 3, Series2Graph relies on a projection step that uses PCA transformation. The
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Figure 7.1: Local explanation with (b) dCAM over (a) a data series T . Open-research di-

rections aims to obtain (c) a causal-dCAM and (d) a global explanation aggregating all the

dCAM over the entire dataset.

�rst challenge would be to change this projection such that old subsequences are discarded
incrementally, and new subsequences corresponding to a new behavior would change the
projection while minimizing the throughput.

7.2.3 Distributed implementations

As the number of data series collected by several scienti�c applications increases, the ex-
ecution time is a serious criterion that needs to be studied. In this work, we addressed
the latter, and we proposed approaches that can scale for large databases. However, to
bene�t from all the available core and CPUs, distributed implementations of our proposed
method remain an open research direction. For example, a recent research paper has al-
ready proposed a distributed implementation of Series2Graph [100]. However, interesting
future works would be to propose a distributed implementation for NormA and SAND.

7.2.4 Non-linear projection for Series2Graph �rst step

As described in Chapter 3, Series2Graph relies on a linear projection step, which uses PCA
to reduce the subsequence length to 2 dimensions. This linear projection is su�cient on
our dataset corpus used in the experimental section. However, Series2Graph is not per-
forming well on some speci�c datasets (such as the multi-normality data series introduced
in Chapter 4). Changing the projection can be a solution to improve Series2Graph accu-
racy. For instance, studying the impact and the bene�t of non-linear projections (such as
AutoEncoders latent space, or t-SNE-based embedding [80]) on Series2Graph accuracy and
execution time is an interesting open-research direction.

7.2.5 Optimization of Memory and Execution Time Complexity for

dCAM

In Chapter 5, we proposed dCAM, which uses a data structure that duplicates several time
dimensions of the multivariate data series input. Thus, this duplication implies a more sig-
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ni�cant memory usage and execution time than the usual convolutional-based architecture.
This drawback is, therefore, a signi�cant research direction. At �rst sight, memory usage
can be solved by replacing information duplication with pointers. Moreover, the infor-
mation duplication might create duplicated operations. Investigating how such duplicated
operations can be removed is a challenging open-research direction.

7.2.6 From local to global explanation with dCAM

In Chapter 5, we proposed dCAM, a dimension-wise Class Activation Map that overcomes
the limitation of the usual Class Activation Map and provides a multivariate data series that
highlights, in each dimension, the discriminant features (or subsequences). Thus, for each
multivariate data series input, we obtain an explanation emphasizing the reasons for the
classi�cation as a given class. Nevertheless, the explanation brought by dCAM is local (i.e.,
corresponding to one input only). As illustrated in Figure 7.1(d), a global explanation would
require aggregating all the dCAMs computed over the entire dataset and retrieving global
discriminant features. In Chapter 6, we introduced a pipeline that clustered all the subse-
quences highlighted by dCAMs and extracted centroids. These are typical patterns that can
globally explain and describe a class and can be seen as Shapelets [123]. Bridging the local
explanation provided by dCAM to a global Shapelet-like explanation is a challenging open
research direction.

7.2.7 Adding temporal explanation to dCAM

For the speci�c multivariate data series classi�cation explanation, discriminant features
can be correlated or co-occurrent of speci�c patterns in di�erent dimensions. We proposed
dCAM in Chapter 5 to detect such discriminant features. However, as illustrated in Fig-
ure 7.1(c), discriminant features can also be related to causal links between two patterns
occurring one after the other in one or several dimensions. Such a link could be theoreti-
cally identi�ed with CNN-based approaches using kernels of considerable lengths (such as
Inception Time [52]). However, the resulting dCAM, as proposed in Chapter 5, does not
provide any causal link or, in general, any time-dependent information. Thus, this is an
important open-research direction.

7.2.8 Applicability to non-continuous data series

As described in the di�erent experimental evaluations and industrial use cases, we only
applied our methods to continuous data series. However, because of the input type (such
as boolean sensors) or discretization processes, the data series to analyze could be non-
continuous. This discontinuity brings new challenges. For instance, distances functions
de�ned in Chapter 2 might not be relevant for such type of data series. Therefore, adapting
our proposed approaches to non-continuous data series is an open-research direction.
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7.2.9 Exploration of other industrial use cases

We illustrated the applicability and interest of our developments through an industrial ap-
plication in Chapter 6. However, as mentioned in the introduction, EDF experts are study-
ing other related use cases in which our proposed approaches could be used. Thus, we plan
to evaluate and validate our proposed approaches over other industrial applications.

170



B�����������

[1] D. Abboud, M. Elbadaoui, W.A. Smith, and R.B. Randall. “Advanced bearing diag-

nostics: A comparative study of two powerful approaches”. In: Mechanical Systems

and Signal Processing 114 (2019), pp. 604–627 (cit. on pp. 5, 57).

[2] Ali Abdul-Aziz, Mark RWoike, Nikunj C Oza, Bryan L Matthews, and John D lekki.

“Rotor health monitoring combining spin tests and data-driven anomaly detection

methods”. In: Structural Health Monitoring (2012) (cit. on pp. 82, 113).

[3] Jérôme Antoni and Pietro Borghesani. “A statistical methodology for the design

of condition indicators”. In: Mechanical Systems and Signal Processing 114 (2019),

pp. 290–327 (cit. on pp. 5, 57).

[4] Anthony Bagnall, Richard L. Cole, Themis Palpanas, and Kostas Zoumpatianos.

“Data Series Management (Dagstuhl Seminar 19282)”. In: Dagstuhl Reports 9.7

(2019). Ed. by Anthony Bagnall, Richard L. Cole, Themis Palpanas, and Konstantinos

Zoumpatianos, pp. 24–39 (cit. on p. 2).

[5] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.

“The great time series classi�cation bake o�: a review and experimental evaluation

of recent algorithmic advances”. In: Data Mining and Knowledge Discovery 31 (Nov.

2017), 606–660 (cit. on pp. 9, 46).

[6] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. “Time-Series Classi-

�cation with COTE: The Collective of Transformation-Based Ensembles”. In: IEEE

Transactions on Knowledge and Data Engineering 27.9 (2015), pp. 2522–2535 (cit. on

pp. 9, 46, 47).

[7] Anthony Bagnall, Luke M Davis, Jon Hills, and Jason Lines. “Transformation Based

Ensembles for Time Series Classi�cation.” In: SDM. Vol. 12. SIAM. 2012, pp. 307–318

(cit. on p. 47).

[8] V. Barnet and T. Lewis. Outliers in Statistical Data. John Wiley and Sons, Inc., 1994

(cit. on pp. 2, 7, 59).

[9] I. V. Bezsudnov and A. A. Snarskii. “From the time series to the complex networks:

The parametric natural visibility graph”. In: Physica A Statistical Mechanics and its

Applications 414 (2014), pp. 53–60 (cit. on p. 37).

[10] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A. Lozano. “A Review on

Outlier/Anomaly Detection in Time Series Data”. In: ACM Comput. Surv. 54.3 (Apr.

2021) (cit. on p. 19).

[11] Paul Boniol. “Unsupervised Subsequence Anomaly Detection in Large Sequences”.

In: Proceedings of the VLDB 2020 PhDWorkshop co-located with the 46th International

Conference on Very Large Databases (VLDB 2020), ONLINE, August 31 - September 4,

2020. Ed. by Ziawasch Abedjan and Katja Hose. Vol. 2652. CEUR Workshop Pro-

ceedings. CEUR-WS.org, 2020 (cit. on p. 57).

171



C������ 7

[12] Paul Boniol and Themis Palpanas. “Series2Graph: Graph-Based Subsequence

Anomaly Detection for Time Series”. In: Proc. VLDB Endow. 13.12 (July 2020),

1821–1834 (cit. on p. 68).

[13] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. “Automated

Anomaly Detection in Large Sequences”. In: 2020 IEEE 36th International Conference

on Data Engineering (ICDE). 2020, pp. 1834–1837 (cit. on p. 58).

[14] Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy.

“GraphAn: Graph-Based Subsequence Anomaly Detection”. In: Proc. VLDB Endow.

13.12 (Aug. 2020), 2941–2944 (cit. on p. 93).

[15] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. “SAD: An

Unsupervised System for SubsequenceAnomalyDetection”. In: 2020 IEEE 36th Inter-

national Conference on Data Engineering (ICDE). 2020, pp. 1778–1781 (cit. on p. 93).

[16] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. “SAND in

Action: Subsequence Anomaly Detection for Streams”. In: Proc. VLDB Endow. 14.12

(2021), pp. 2867–2870 (cit. on p. 119).

[17] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. “SAND:

Streaming Subsequence Anomaly Detection”. In: Proc. VLDB Endow. 14.10 (2021),

pp. 1717–1729 (cit. on p. 99).

[18] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, MohammedMef-

tah, and Emmanuel Remy. “Unsupervised and scalable subsequence anomaly detec-

tion in large data series”. In: The VLDB Journal (2021) (cit. on pp. 58, 102).

[19] Elizabeth Bradley and Holger Kantz. “Nonlinear time-series analysis revisited”. In:

Chaos 25.9, 097610 (2015), p. 097610 (cit. on p. 38).

[20] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. “LOF:

Identifying Density-based Local Outliers”. In: Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data. SIGMOD ’00. New York, NY, USA:

ACM, 2000, pp. 93–104 (cit. on p. 27).

[21] Peter G. Bryant. “On the Minimum Description Length (MDL) Principle for Hier-

archical Classi�cations”. In: Data Science, Classi�cation, and Related Methods. Ed.

by Chikio Hayashi, Keiji Yajima, Hans-Hermann Bock, Noboru Ohsumi, Yutaka

Tanaka, and Yasumasa Baba. Tokyo: Springer Japan, 1998, pp. 182–186 (cit. on p. 63).

[22] Yingyi Bu, Oscar Tat-Wing Leung, AdaWai-Chee Fu, Eamonn J. Keogh, Jian Pei, and

Sam Meshkin. “WAT: Finding Top-K Discords in Time Series Database”. In: SDM.

2007 (cit. on p. 31).

[23] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A Sur-

vey”. In: ACM Comput. Surv. 41.3 (July 2009) (cit. on p. 19).

[24] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection for Dis-

crete Sequences: A Survey”. In: IEEE Transactions on Knowledge and Data Engineer-

ing 24.5 (2012), pp. 823–839 (cit. on p. 40).

172



BIBLIOGRAPHY

[25] Huanhuan Chen, Fengzhen Tang, Peter Tino, and Xin Yao. “Model-Based Kernel

for E�cient Time Series Analysis”. In: Proceedings of the 19th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. KDD ’13. Chicago,

Illinois, USA: Association for Computing Machinery, 2013, 392–400 (cit. on p. 9).

[26] Bill Chiu, Eamonn Keogh, and Stefano Lonardi. “Probabilistic Discovery of Time

Series Motifs”. In: Proceedings of the Ninth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. KDD ’03. Washington, D.C.: Association

for Computing Machinery, 2003, 493–498 (cit. on p. 24).

[27] Christophe Croux, Sarah Gelper, and Koen Mahieu. “Robust control chart for

time series data”. In: Katholieke Universiteit Leuven, Open Access publications from

Katholieke Universiteit Leuven 38 (Jan. 2010) (cit. on p. 40).

[28] Zhicheng Cui, Wenlin Chen, and Yixin Chen. “Multi-Scale Convolutional Neural

Networks for Time Series Classi�cation”. In: CoRR abs/1603.06995 (2016) (cit. on

pp. 9, 46, 50).

[29] Dash documentation (cit. on pp. 93, 119).

[30] Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan

Zhu, Shaghayegh Gharghabi, Chotirat Ratanamahatana, and Eamonn J. Keogh.

“The UCR time series archive”. In: IEEE/CAA Journal of Automatica Sinica 6 (2019),

pp. 1293–1305 (cit. on pp. 9, 46, 47, 114, 132).

[31] Jesse Davis and Mark Goadrich. “The Relationship between Precision-Recall and

ROC Curves”. In: Proceedings of the 23rd International Conference on Machine Learn-

ing. ICML ’06. New York, NY, USA: Association for Computing Machinery, 2006,

233–240 (cit. on p. 133).

[32] J.-P Eckmann, S. Oli�son Kamphorst, and D Ruelle. “Recurrence Plots of Dynamical

Systems”. In: Europhysics Letters (EPL) 4.9 (1987), pp. 973–977 (cit. on p. 39).

[33] Philippe Esling and Carlos Agon. “Time-series data mining”. In: ACM Computing

Surveys 45.1 (2012), p. 12 (cit. on pp. 9, 46).

[34] Hassan Ismail Fawaz, Germain Forestier, JonathanWeber, Lhassane Idoumghar, and

Pierre-Alain Muller. “Deep learning for time series classi�cation: a review”. In:Data

Mining and Knowledge Discovery 33 (2019), pp. 917–963 (cit. on pp. 9, 46, 48–52, 134).

[35] Pavel Filonov, Andrey Lavrentyev, and Artem Vorontsov. “Multivariate Industrial

Time Series with Cyber-Attack Simulation: Fault Detection Using an LSTM-based

Predictive Data Model”. In: CoRR abs/1612.06676 (2016) (cit. on p. 42).

[36] Ada Wai-chee Fu, Oscar Tat-Wing Leung, Eamonn Keogh, and Jessica Lin. “Finding

Time Series Discords Based on Haar Transform”. In: Proceedings of the Second In-

ternational Conference on Advanced Data Mining and Applications. ADMA’06. Xi’an,

China: Springer-Verlag, 2006, 31–41 (cit. on p. 31).

173



C������ 7

[37] Yixin Gao, S. Vedula, Carol E. Reiley, N. Ahmidi, B. Varadarajan, Henry C. Lin, L.

Tao, L. Zappella, B. Béjar, D. Yuh, C. C. Chen, R. Vidal, S. Khudanpur, and Gregory

Hager. “JHU-ISI Gesture and Skill Assessment Working Set ( JIGSAWS ) : A Surgical

Activity Dataset for Human Motion Modeling”. In: 2014 (cit. on pp. 140, 142).

[38] Zhong-Ke Gao and Ningde Jin. “Complex network from time series based on phase

space reconstruction”. In: Chaos (Woodbury, N.Y.) 19 (Sept. 2009), p. 033137 (cit. on

p. 39).

[39] Zhong-Ke Gao, Michael Small, and Juergen Kurths. “Complex network analysis of

time series”. In: EPL (Europhysics Letters) 116 (Dec. 2016), p. 50001 (cit. on p. 39).

[40] Ary L. Goldberger, Luis A. Nunes Amaral, L Glass, Je�rey M. Hausdor�, Plamen Ch.

Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and

Harry Eugene Stanley. “PhysioBank, PhysioToolkit, and PhysioNet: components of

a new research resource for complex physiologic signals.” In: Circulation 101.23

(2000), pp. 215–220 (cit. on pp. 28, 82, 113, 118).

[41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”.

In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani, M.

Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran Associates, Inc.,

2014, pp. 2672–2680 (cit. on p. 43).

[42] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. “Data Augmen-

tation for Time Series Classi�cation using Convolutional Neural Networks”. In:

ECML/PKDDWorkshop on Advanced Analytics and Learning on Temporal Data. 2016

(cit. on pp. 9, 50).

[43] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan

O’Callaghan. “Clustering Data Streams: Theory and Practice”. In: IEEE Trans. on

Knowl. and Data Eng. 15.3 (Mar. 2003), 515–528 (cit. on p. 26).

[44] Medina Hadjem, Farid Naït-Abdesselam, and Ashfaq Khokhar. “ST-segment and T-

wave anomalies prediction in an ECG data using RUSBoost”. In: 2016 IEEE 18th Inter-

national Conference on e-Health Networking, Applications and Services (Healthcom).

2016, pp. 1–6 (cit. on pp. 5, 57).

[45] N. Halko, P. Martinsson, and J. Tropp. “Finding Structure with Randomness: Prob-

abilistic Algorithms for Constructing Approximate Matrix Decompositions”. In:

SIAM Rev. 53 (2011), pp. 217–288 (cit. on p. 80).

[46] Sahand Hariri, Matias Carrasco Kind, and Robert J. Brunner. “Extended Isola-

tion Forest”. In: IEEE Transactions on Knowledge and Data Engineering 33.4 (2021),

pp. 1479–1489 (cit. on p. 30).

[47] Douglas M Hawkins. Identi�cation of Outliers. English. Springer Netherlands, 1980

(cit. on p. 17).

174



BIBLIOGRAPHY

[48] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. “Support vector

machines”. In: IEEE Intelligent Systems and their Applications 13.4 (1998), pp. 18–28

(cit. on p. 40).

[49] Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony Bagnall.

“Classi�cation of time series by shapelet transformation”. In: Data Mining and

Knowledge Discovery 28.4 (2014), pp. 851–881 (cit. on p. 47).

[50] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural

Comput. 9.8 (Nov. 1997), pp. 1735–1780 (cit. on p. 42).

[51] Hassan Ismail Fawaz, Germain Forestier, JonathanWeber, Lhassane Idoumghar, and

Pierre-Alain Muller. “Evaluating Surgical Skills from Kinematic Data Using Convo-

lutional Neural Networks”. In: MICCAI. 2018 (cit. on pp. 9, 134, 142, 143).

[52] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel

F. Schmidt, Jonathan Weber, Geo�rey I. Webb, Lhassane Idoumghar, Pierre Alain

Muller, and François Petitjean. “InceptionTime: �nding AlexNet for time series clas-

si�cation”. In: Data Mining and Knowledge Discovery 34 (Sept. 2020), 1936–1962 (cit.

on pp. 9, 50, 127, 134, 169).

[53] F. Itakura. “Minimum prediction residual principle applied to speech recognition”.

In: IEEE Transactions on Acoustics, Speech, and Signal Processing 23.1 (1975), pp. 67–

72 (cit. on p. 25).

[54] Holger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis. 2nd ed. Cam-

bridge University Press, 2003 (cit. on p. 38).

[55] Holger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis. New York, NY,

USA: Cambridge University Press, 2003 (cit. on p. 72).

[56] Matthew B. Kennel, Reggie Brown, and Henry D. I. Abarbanel. “Determining em-

bedding dimension for phase-space reconstruction using a geometrical construc-

tion”. In: Phys. Rev. A 45 (1992), pp. 3403–3411 (cit. on p. 38).

[57] E. Keogh, J. Lin, and A. Fu. “HOT SAX: e�ciently �nding the most unusual time se-

ries subsequence”. In: Fifth IEEE International Conference on Data Mining (ICDM’05).

2005, 8 pp.– (cit. on p. 118).

[58] Eamonn Keogh and Jessica Lin. “Clustering of time-series subsequences is mean-

ingless: implications for previous and future research”. In: KAIS 8.2 (Aug. 2004),

pp. 154–177 (cit. on p. 62).

[59] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. “Towards

Parameter-free Data Mining”. In: Proceedings of the Tenth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining. KDD ’04. New York,

NY, USA: ACM, 2004, pp. 206–215 (cit. on p. 73).

[60] Eamonn J. Keogh, Stefano Lonardi, Chotirat Ratanamahatana, Li Wei, Sanghee Lee,

and John C. Handley. “Compression-based data mining of sequential data”. In: Data

Mining and Knowledge Discovery 14 (2006), pp. 99–129 (cit. on p. 31).

175



C������ 7

[61] H. S. Kim, R. Eykholt, and J. D. Salas. “Nonlinear dynamics, delay times, and em-

bedding windows”. In: Physica D Nonlinear Phenomena 127 (Mar. 1999), pp. 48–60

(cit. on p. 38).

[62] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and

Yann LeCun. 2015 (cit. on p. 49).

[63] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. “ImageNet Classi�cation

with Deep Convolutional Neural Networks”. In: Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1. NIPS’12. USA: Cur-

ran Associates Inc., 2012, pp. 1097–1105 (cit. on p. 48).

[64] Dafne van Kuppevelt, Vincent van Hees, and Christiaan Meijer. PAMAP2 dataset

preprocessed v0.3.0. July 2017 (cit. on p. 7).

[65] Lucas Lacasa, Bartolo Luque, Fernando Ballesteros, Jordi Luque, and Juan Carlos

Nuño. “From time series to complex networks: The visibility graph”. In: Proceedings

of the National Academy of Science 105.13 (2008), pp. 4972–4975 (cit. on pp. 36, 39).

[66] Balaji Lakshminarayanan, Daniel M. Roy, and Yee Whye Teh. “Mondrian Forests:

E�cient Online Random Forests”. In: Proceedings of the 27th International Conference

on Neural Information Processing Systems - Volume 2. NIPS’14. Montreal, Canada:

MIT Press, 2014, 3140–3148 (cit. on p. 113).

[67] Y. Lecun, L. Bottou, Y. Bengio, and P. Ha�ner. “Gradient-based learning applied to

document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit.

on p. 50).

[68] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. “Deep learning”. English (US).

In: Nature 521.7553 (May 2015), pp. 436–444 (cit. on p. 48).

[69] Dan Li, Dacheng Chen, Jonathan Goh, and See-Kiong Ng. “Anomaly Detection

with Generative Adversarial Networks for Multivariate Time Series”. In: CoRR

abs/1809.04758 (2018) (cit. on pp. 44, 45).

[70] Xiaosheng Li and Jessica Lin. “Linear Time Motif Discovery in Time Series”. In:

Proceedings of the 2019 SIAM International Conference on Data Mining. SIAM. 2019,

pp. 136–144 (cit. on p. 62).

[71] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. “Matrix pro�le

goes MAD: variable-length motif and discord discovery in data series”. In: Data

Mining and Knowledge Discovery 34 (2020), pp. 1022–1071 (cit. on p. 35).

[72] Jason Lines and Anthony Bagnall. “Time series classi�cation with ensembles of

elastic distance measures”. In: Data Mining and Knowledge Discovery 29.3 (2014),

pp. 565–592 (cit. on p. 47).

176



BIBLIOGRAPHY

[73] Jason Lines, Sarah Taylor, and Anthony Bagnall. “HIVE-COTE: The Hierarchical

Vote Collective of Transformation-Based Ensembles for Time Series Classi�cation”.

In: 2016 IEEE 16th International Conference on Data Mining (ICDM). 2016, pp. 1041–

1046 (cit. on pp. 9, 47).

[74] Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. “A shapelet transform

for time series classi�cation”. In: Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM. 2012, pp. 289–297 (cit. on

p. 47).

[75] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest”. In: Proceedings

of the 2008 Eighth IEEE International Conference on Data Mining. ICDM ’08. Wash-

ington, DC, USA: IEEE Computer Society, 2008, pp. 413–422 (cit. on pp. 29, 113).

[76] Yubao Liu, Xiuwei Chen, and Fei Wang. “E�cient Detection of Discords for Time

Series Stream”. In: Advances in Data and Web Management (2009), pp. 629–634 (cit.

on p. 31).

[77] Wei Luo andMarcusGallagher. “Faster and Parameter-FreeDiscord Search inQuasi-

Periodic Time Series”. In: Proceedings of the 15th Paci�c-Asia Conference on Advances

in Knowledge Discovery and Data Mining - Volume Part II. PAKDD’11. Shenzhen,

China: Springer-Verlag, 2011, 135–148 (cit. on p. 31).

[78] Bartolo Luque, Lucas Lacasa, Fernando Ballesteros, and Jordi Luque. “Horizontal

visibility graphs: exact results for random time series.” In: Physical review. E, Statis-

tical, nonlinear, and soft matter physics 80 4 Pt 2 (2009), p. 046103 (cit. on p. 37).

[79] Haoran Ma, Benyamin Ghojogh, Maria N. Samad, Dongyu Zheng, and Mark Crow-

ley. “Isolation Mondrian Forest for Batch and Online Anomaly Detection”. In:

2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2020,

pp. 3051–3058 (cit. on pp. 8, 30, 99).

[80] Laurens van der Maaten and Geo�rey E. Hinton. “Visualizing High-Dimensional

Data Using t-SNE”. In: Journal of Machine Learning Research 9 (2008), pp. 2579–

2605 (cit. on p. 168).

[81] Pankaj Malhotra, Lovekesh Vig, Gautam Shro�, and Puneet Agarwal. “Long Short

Term Memory Networks for Anomaly Detection in Time Series”. In: (2015) (cit. on

p. 42).

[82] Pierre-François Marteau, Saeid Soheily-Khah, and Nicolas Béchet. Hybrid Isolation

Forest - Application to Intrusion Detection. May 10, 2017. (Visited on 11/05/2020) (cit.

on p. 30).

[83] G.B. Moody and R.G. Mark. “The impact of the MIT-BIH Arrhythmia Database”. In:

IEEE Engineering in Medicine and Biology Magazine 20.3 (2001), pp. 45–50 (cit. on

pp. 28, 82, 113, 118).

177



C������ 7

[84] Abdullah Mueen, Eamonn Keogh, and Neal Young. “Logical-shapelets: an ex-

pressive primitive for time series classi�cation”. In: Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM.

2011, pp. 1154–1162 (cit. on p. 47).

[85] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy

Viswanathan, Chetan Gupta, and Eamonn Keogh. The Fastest Similarity Search Al-

gorithm for Time Series Subsequences under Euclidean Distance. 2017 (cit. on p. 34).

[86] Abdullah Al Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney S. Cash, and M. Brandon

Westover. “Exact Discovery of Time Series Motifs”. In: Proceedings of the SIAM Inter-

national Conference on Data Mining. SIAM International Conference on Data Mining

2009 (2009), pp. 473–484 (cit. on p. 24).

[87] Gyoung S. Na, Donghyun Kim, and Hwanjo Yu. “DILOF: E�ective and Mem-

ory E�cient Local Outlier Detection in Data Streams”. In: Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

KDD ’18. London, United Kingdom: Association for Computing Machinery, 2018,

1993–2002 (cit. on p. 30).

[88] Vinod Nair and Geo�rey E. Hinton. “Recti�ed Linear Units Improve Restricted

Boltzmann Machines”. In: Proceedings of the 27th International Conference on Inter-

national Conference on Machine Learning. ICML’10. USA: Omnipress, 2010, pp. 807–

814 (cit. on p. 47).

[89] N. H. Packard, J. P. Crutch�eld, J. D. Farmer, and R. S. Shaw. “Geometry from a Time

Series”. In: Phys. Rev. Lett. 45 (1980), pp. 712–716 (cit. on p. 38).

[90] Themis Palpanas. “Data Series Management: The Road to Big Sequence Analytics”.

In: SIGMOD Rec. 44.2 (Aug. 2015), 47–52 (cit. on p. 2).

[91] Themis Palpanas and Volker Beckmann. “Report on the First and Second Interdisci-

plinary Time Series Analysis Workshop (ITISA)”. In: SIGMOD Rec. 48.3 (Dec. 2019),

36–40 (cit. on pp. 2, 7).

[92] John Paparrizos and Luis Gravano. “Fast and Accurate Time-Series Clustering”. In:

ACM Trans. Database Syst. 42.2 (June 2017) (cit. on pp. 26, 27).

[93] John Paparrizos and Luis Gravano. “K-Shape: E�cient and Accurate Clustering of

Time Series”. In: SIGMOD Rec. 45.1 (June 2016), 69–76 (cit. on pp. 8, 26, 27, 114).

[94] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-

jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:

NeurIPS. Vol. 32. 2019 (cit. on p. 132).

178



BIBLIOGRAPHY

[95] Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. “Incremental Lo-

cal Outlier Detection for Data Streams”. In: 2007 IEEE Symposium on Computational

Intelligence and Data Mining. 2007, pp. 504–515 (cit. on p. 30).

[96] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans. “Time Series Epenthesis:

Clustering Time Series Streams Requires Ignoring Some Data”. In: 2011 IEEE 11th

International Conference on Data Mining. 2011, pp. 547–556 (cit. on pp. 62, 63).

[97] J. Rissanen. “Modeling by shortest data description”. In: Automatica 14.5 (1978),

pp. 465–471 (cit. on p. 63).

[98] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for spoken

word recognition”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing

26.1 (1978), pp. 43–49 (cit. on p. 25).

[99] Patrick Schäfer. “The BOSS is Concernedwith Time Series Classi�cation in the Pres-

ence of Noise”. In:DataMining and Knowledge Discovery 29.6 (Nov. 2015), 1505–1530

(cit. on p. 47).

[100] Johannes Schneider, Phillip Wenig, and Thorsten Papenbrock. “Distributed detec-

tion of sequential anomalies in univariate time series”. In: VLDB Journal 30.4 (2021),

pp. 579–602 (cit. on p. 168).

[101] Bernhard Schölkopf, Robert C Williamson, Alex J. Smola, John Shawe-Taylor, and

JohnC. Platt. “Support VectorMethod for NoveltyDetection”. In:Advances in Neural

Information Processing Systems 12. Ed. by S. A. Solla, T. K. Leen, and K. Müller. MIT

Press, 2000, pp. 582–588 (cit. on p. 40).

[102] David W. Scott. Multivariate Density Estimation. Theory, Practice, and Visualization.

Wiley, 1992 (cit. on pp. 75, 113).

[103] Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi, Arnold P. Boedi-

hardjo, Crystal Chen, and Susan Frankenstein. “GrammarViz 3.0: Interactive Dis-

covery of Variable-Length Time Series Patterns”. In:ACMTrans. Knowl. Discov. Data

12.1 (Feb. 2018) (cit. on pp. 82, 118).

[104] Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi, Arnold P. Boedi-

hardjo, Crystal Chen, and Susan Frankenstein. “Time series anomaly discovery with

grammar-based compression”. In: EDBT. 2015 (cit. on pp. 5, 31–33, 57).

[105] Joan Serrà, Santiago Pascual, and Alexandros Karatzoglou. “Towards a universal

neural network encoder for time series”. In: CCIA. 2018 (cit. on p. 50).

[106] Jin Shieh and Eamonn J. Keogh. “iSAX: disk-aware mining and indexing of massive

time series datasets”. In: Data Mining and Knowledge Discovery 19 (2009), pp. 24–57

(cit. on p. 63).

[107] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos.

“Online Outlier Detection in Sensor Data Using Non-Parametric Models”. In: Pro-

ceedings of the 32nd International Conference on Very Large Data Bases. VLDB ’06.

Seoul, Korea: VLDB Endowment, 2006, 187–198 (cit. on pp. 2, 7).

179



C������ 7

[108] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going

deeper with convolutions”. In: 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2015, pp. 1–9 (cit. on p. 50).

[109] Jian Tang, Zhixiang Chen, AdaWai-Chee Fu, and DavidWai-Lok Cheung. “Enhanc-

ing E�ectiveness of Outlier Detections for Low Density Patterns”. In: PAKDD. 2002,

pp. 535–548 (cit. on p. 30).

[110] P. Tanisaro and G. Heidemann. “Time Series Classi�cation Using Time Warping

Invariant Echo State Networks”. In: 2016 15th IEEE International Conference on Ma-

chine Learning and Applications (ICMLA). 2016, pp. 831–836 (cit. on p. 50).

[111] David MJ Tax and Robert PW Duin. “Support vector data description”. In: Machine

learning 54.1 (2004), pp. 45–66 (cit. on p. 40).

[112] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. “Multilevel Wavelet Decom-

position Network for Interpretable Time Series Analysis”. In: Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

KDD ’18. London, United Kingdom: Association for Computing Machinery, 2018,

2437–2446 (cit. on p. 9).

[113] Jun Wang, Arvind Balasubramanian, Luis Mojica de La Vega, Jordan R. Green,

Ashok Samal, and B. Prabhakaran. “Word Recognition from Continuous Articula-

tory Movement Time-series Data using Symbolic Representations”. In: SLPAT. 2013

(cit. on p. 24).

[114] Zhiguang Wang, Weizhong Yan, and Tim Oates. “Time series classi�cation from

scratch with deep neural networks: A strong baseline”. In: 2017 International Joint

Conference on Neural Networks (IJCNN) (2017), pp. 1578–1585 (cit. on pp. 9, 46, 48–

50, 52, 127, 134).

[115] CW Whitney, DJ Gottlieb, S Redline, RG Norman, RR Dodge, E Shahar, S Surovec,

and FJ Nieto. “Reliability of scoring respiratory disturbance indices and sleep stag-

ing”. In: Sleep 21.7 (1998), pp. 749–57 (cit. on p. 24).

[116] FrankWilcoxon. “Individual Comparisons by RankingMethods”. In: Biometrics Bul-

letin 1.6 (1945), pp. 80–83 (cit. on p. 91).

[117] Qin Wu, Xingqin Qi, Eddie Fuller, and Cun-Quan Zhang. “Follow the Leader: A

Centrality Guided Clustering and Its Application to Social Network Analysis”. In:

The Scienti�c World Journal (2013) (cit. on p. 64).

[118] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. “Empirical Evaluation of Recti-

�ed Activations in Convolutional Network”. In: CoRR abs/1505.00853 (2015) (cit. on

p. 47).

[119] Qiang Yang and Xindong Wu. “10 Challenging Problems in Data Mining Research”.

In: International Journal of Information Technology and Decision Making (IJITDM)

05.04 (2006), pp. 597–604 (cit. on pp. 9, 46).

180



BIBLIOGRAPHY

[120] Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. “Disk Aware Discord

Discovery: Finding Unusual Time Series in Terabyte Sized Datasets”. In: Seventh

IEEE International Conference on Data Mining (ICDM 2007). 2007, pp. 381–390 (cit.

on pp. 5, 31, 32).

[121] Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. “Disk Aware Discord

Discovery: Finding Unusual Time Series in Terabyte Sized Datasets”. In: Seventh

IEEE International Conference on Data Mining (ICDM 2007). 2007, pp. 381–390 (cit.

on p. 31).

[122] Dragomir Yankov, Eamonn Keogh, Jose Medina, Bill Chiu, and Victor Zordan. “De-

tecting Time Series Motifs under Uniform Scaling”. In: Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD

’07. New York, NY, USA: Association for Computing Machinery, 2007, 844–853 (cit.

on p. 24).

[123] Lexiang Ye and Eamonn Keogh. “Time series shapelets: a new primitive for data

mining”. In: Proceedings of the 15th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. ACM. 2009, pp. 947–956 (cit. on pp. 47, 169).

[124] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. “Ma-

trix Pro�le I: All Pairs Similarity Joins for Time Series: A Unifying View That In-

cludes Motifs, Discords and Shapelets”. In: 2016 IEEE 16th International Conference

on Data Mining (ICDM). 2016, pp. 1317–1322 (cit. on pp. 2, 5, 7, 8, 31, 33, 35, 57, 84,

99).

[125] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu,

Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V. Chawla. “A Deep

Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivari-

ate Time Series Data”. In: Proceedings of the AAAI Conference on Arti�cial Intelligence

33.01 (2019), pp. 1409–1416 (cit. on p. 9).

[126] Bendong Zhao, Huan zhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu.

“Convolutional neural networks for time series classi�cation”. In: Journal of Systems

Engineering and Electronics 28 (2017), pp. 162–169 (cit. on pp. 9, 51).

[127] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J. Leon Zhao. “Time Series Classi�ca-

tion Using Multi-Channels Deep Convolutional Neural Networks”. In: WAIM. 2014

(cit. on pp. 9, 50).

[128] Bolei Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba. “Learning Deep Fea-

tures for Discriminative Localization”. In: 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (2016), pp. 2921–2929 (cit. on pp. 9, 52).

181



C������ 7

[129] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh,

Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. “Matrix Pro�le

II: Exploiting a Novel Algorithm and GPUs to Break the One Hundred Million Bar-

rier for Time Series Motifs and Joins”. In: 2016 IEEE 16th International Conference on

Data Mining (ICDM). 2016, pp. 739–748 (cit. on pp. 33, 67).

[130] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and Ea-

monn Keogh. “Matrix Pro�le XI: SCRIMP++: Time Series Motif Discovery at Inter-

active Speeds”. In: 2018 IEEE International Conference on Data Mining (ICDM). 2018,

pp. 837–846 (cit. on p. 35).

[131] Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari, Brian Crites,

Gareth Funning, Philip Brisk, and Eamonn Keogh. “Matrix Pro�le XIV: Scaling Time

Series Motif Discovery with GPUs to Break a Quintillion Pairwise Comparisons a

Day and Beyond”. In: Proceedings of the ACM Symposium on Cloud Computing. SoCC

’19. Santa Cruz, CA, USA: Association for Computing Machinery, 2019, 74–86 (cit.

on p. 35).

[132] Kostas Zoumpatianos and Themis Palpanas. “Data Series Management: Ful�lling

the Need for Big Sequence Analytics”. In: 2018 IEEE 34th International Conference

on Data Engineering (ICDE). 2018, pp. 1677–1678 (cit. on p. 2).

182


