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INTRODUCTION (ENGLISH VERSION)

1 Context

The ocean is the source of most atmospheric processes. Understanding these processes is
key to accurately predicting weather and climate patterns, not only over the ocean, but
also on land. Due to the difficulty of measuring meteorological conditions on the ocean
directly, spaceborne observations have been utilized for many years to monitor the ocean.
Various sensors are used to study the ocean, but this thesis focus on C-Band Synthetic
Aperture Radar (C-SAR). C-SAR is an active sensor (i.e. self-illuminated) whose signal
is not affected by the clouds, on the contrary, for example, to instruments operating in
the visible spectrum or infrared. It also has the advantage of providing a very high spatial
resolution and is therefore a particularly important oceanographic instrument. C-Band
radars are known to be able to observe various phenomena related to the winds [123, 223],
the waves [167], the precipitation [232], or various objects on the surface such as icebergs
[38], ships [184], biological slicks [185] -the agglomeration of organic matter forming a
linear shape and dampening the waves because of the higher viscosity-, or some species of
seaweed [170]. Dedicated systems have been developed to study each of these processes.

Various satellites have boarded C-SAR instruments. ERS-1 and ERS-2 [9], were launched
respectively in 1991 and 1995 have been operating until respectively 2000 and 2005. EN-
VISAT [122] also had a ten-year mission from 2002 to 2012. RADARSAT-1 [151] was
in operation from 1995 to 2013. Currently, SAR observations routinely acquired by the
Sentinel-1 mission of ESA’s Copernicus program [10]. Sentinel-1A was launched in 2014 is
still observing the Earth. Sentinel-1B, launched in 2016, experienced a technical anomaly
at the end of 2021 and stopped its recording, Sentinel-1C is expected to be launched in
2023. RADARSAT-2 [138] has been acquiring observations since 2007 and RADARSAT
Constellation [189] since 2019. Since SAR images have been accumulated for decades, the
quantity of available observations is extremely high. This stimulates the research of data-
driven algorithms able to automatically identify meteorological or ocean information from
the observations. Furthermore, the last ten years saw the rise of neural networks. Even
though they had existed for decades [226], their use has been driven by the conjunction of
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both the increasing capacities of GPUs [23] and the raised availability of large datasets.
They are now known for their capacity to achieve state-of-the-art performance in various
contexts, especially for image processing.

2 Scientific Issues

This thesis is written at the intersection of the three fields of oceanography, remote sensing
and machine learning. It aims at segmenting, i.e. computing a pixel-level information,
various meteorological and ocean processes (gathered under the adjective "metocean")
observed by a Synthetic Aperture Radar. More formally, the question that were trying to
answer are the following:

It is possible to segment metocean processes on Synthetic Aperture Radar
observations?

The bibliography shows that some information, such as the wind speed, can be com-
puted from the SAR observations at the pixel-level [70]. On the other hand, some infor-
mation, such as the metocean processes appearing in the observation, can only be resolved
at a scale of several dozen kilometres per pixel [207]. This resolution is too low to accu-
rately delimit some phenomena such as icebergs, fronts or rain cells. Furthermore, a single
patch can contain several phenomena since it extends for several dozen kilometres. The
convective cells containing rain signature and atmospheric fronts are a common example
of such co-occurrence. Being able to distinguish the different metocean processes would
therefore be beneficial to their understanding.

It is not entirely accurate to refer to the information as being at a "pixel-level" or a
"patch-level". In the case of the wind speed, the current computation is performed at a 1
km/px scale. This resolution is low in regards with the maximum resolution of the sensor
(a few metres per pixels). In this manuscript, we refer to "pixel-level" information which
has a resolution similar to the input used to compute it. To reduce the noise caused by the
radar process (particularly, speckle) and lighten the computational load, this information
is usually downscaled to a few hundred meters per pixel.

Is it possible to separate processes appearing on the same pixels?
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Similar to the co-occurrence of different metocean processes in the same areas, it is
possible to encounter them on the same pixels. Examples of such co-occurrence include
the appearance of wind-related features with non-wind features such as sea ice, biological
slicks, or rain. Understanding the contribution of each phenomenon to the total reflectivity
is important to ensure the accuracy of derived information, such as wind speed, which can
be difficult to obtain in cases of heterogeneous patterns [232]. It also allows for a better
understanding of the interactions between different elements in the environment. By being
able to accurately identify and differentiate processes, it is possible to gain insight into
their interactions.

Is segmentation achievable using current datasets?

Obtaining large datasets with annotated data is a time-consuming and costly process,
so we are exploring ways to minimize the cost associated with dataset building. There are
some methodologies available to learn pixel-level segmentation from image-level informa-
tion, but their effectiveness for our specific problems is still unknown. Therefore, we are
conducting experiments to determine which approach yields the best results. Additionally,
we are looking into automated solutions to accelerate the dataset building process and
reduce manual labor.

If existing datasets are insufficient to provide accurate segmentation, we are consid-
ering using collocation with other sensors (ground-stations, other satellites, buoys, etc.).
By combining these data sources, it may be possible to reduce the amount of manual an-
notation required, while also improving the accuracy of the segmentation. This approach
can also be used to increase the diversity of the dataset and to ensure that the segmen-
tation can be applied to a variety of conditions. Additionally, it can be used to gain a
deeper understanding of the underlying phenomena being observed by cross-referencing
and comparing data from multiple sources.

3 Organization of the manuscript

This manuscript is divided in three parts. In the first, we will describe the three main do-
mains aforementioned. Several satellite-based sensors are presented, putting a particular
focus on the SAR imagery. As it constitutes the basis of the model presented later, its
physical principles are detailed and examples of SAR-derived information are provided.
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Then, we introduce the machine learning framework, beginning by the multi-layer percep-
tron and continuing with the main components of deep learning models and the algorithm
necessary to train them. We also provide examples of current use cases of convolutional
neural network. This chapter will serve both as an introduction and as a handbook defin-
ing the terms and concepts used through the document.

The second part of the manuscript is dedicated to segmentation problems solved with
manually annotated datasets. The first subject, the segmentation of biological slicks,
presents the deep convolutional neural networks on a simple binary segmentation prob-
lem. It highlights the difficulties of collocating phenomena with secondary sensors, which
are themselves often indirect information rather than in situ measurements. Specifically,
the biological slicks are here estimated via both the segmentation of the Sentinel-1 ob-
servations and using the ocean colour from Sentinel-3 measurements. The second subject
justifies the necessity of pixel-level annotations by comparing the fully supervised frame-
works with weakly supervised ones, where only easy to obtain image-level information
are used. The dataset imbalance, a common difficulty of machine learning frameworks, is
also introduced. It designs the scarcity of some phenomena relatively to others. The last
chapter of this part dedicated to manual annotations addresses the multi-scale features
of some metocean processes, taking the example of the convective cells. As observations
are acquired at a very high resolution, it is sometimes necessary to use both low- and
high-resolutions to understand the metocean situation.

Massive collocations are performed in the third part. First, the retrieval of annotation
from the Norwegian Meteorological Institute enables the estimation of sea ice concentra-
tion. It highlights the complementarities between the categorical and regression aspects
of the segmentation losses. Rain rate estimations are performed in the second chapter
using collocations with the ground-based radars of the NEXRAD system. Results are val-
idated via a comparison with lightning activity, an indirect marker of rain available from
the geostationary satellite GOES-16. In the last chapter, SAR observations, SAR-based
wind speed, rain rate and an atmospheric model are used to build a dataset and train a
rain-invariant wind speed estimator. Though modelled wind speeds are used to train the
model, the performance is validated against in situ measurements from buoys.

Each chapter in the two last parts cover different challenges, but share a common
framework of dataset building, choice of the model configuration and validation through
ancillary data. They highlight the capacity of SAR imagery to observe and detect various
metocean phenomena.
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INTRODUCTION (VERSION FRANÇAISE)

1 Contexte

L’océan est à l’origine de la plupart des processus atmosphériques. La compréhension
de ces processus est essentielle pour prédire avec précision l’évolution des conditions
météorologiques et climatiques, non seulement au-dessus des mers, mais également sur la
terre ferme. En raison de la difficulté de mesurer directement les conditions météorologiques
sur l’océan, les observations spatiales sont utilisées depuis de nombreuses années pour
surveiller l’océan. Divers capteurs sont utilisés dans ce but, et cette thèse se concentre sur
les radars à synthèse d’ouverture en bande C (C-SAR). Les SAR sont des capteurs actifs,
c’est-à-dire auto-illuminés, dont le signal n’est pas affecté par la couverture nuageuse,
contrairement à d’autres instruments fonctionnant, par exemple, dans le domaine visible
ou l’infrarouge. Ils présentent également l’avantage de fournir une résolution spatiale très
fine et sont donc des instruments particulièrement intéressants pour l’océanographie. Les
radars en bande C sont capables d’observer une grande variété de phénomènes liés aux
vents [123, 223], aux vagues [167], aux précipitations [232] ou à divers objets flottants
tels que les icebergs [38], les navires [184], le film biologique [185] - une accumulation
de matière organique formant de longs filaments et atténuant les vagues en raison d’une
viscosité plus élevée - ou certaines espèces d’algues [170]. Des systèmes dédiés existent
pour étudier chacun de ces processus.

Divers satellites servent de plateformes pour des instruments SAR. ERS-1 et ERS-2
[9], lancés respectivement en 1991 et 1995, ont été en activité jusqu’en 2000 et 2005. EN-
VISAT [122] a également eu une mission de dix ans entre 2002 et 2012. RADARSAT-1
[151] était en opération de 1995 à 2013. Actuellement, les observations SAR sont acquises
de manière systématique par la mission Sentinel-1 du programme Copernicus de l’ESA
[10]. Sentinel-1A a été lancé en 2014 et est toujours en activité. Sentinel-1B, lancé en 2016,
a connu un dysfonctionnement à la fin de 2021 et a arrêté d’acquérir des données. Sentinel-
1C devrait être lancé en 2023. RADARSAT-2 [138] acquiert des observations depuis
2007 et RADARSAT Constellation [189] depuis 2019. L’accumulation des images SAR
depuis plusieurs décennies a entraîné la disponibilité d’une quantité extrêmement élevée
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d’observations. L’utilisation de méthodes d’apprentissage, capables d’identifier automa-
tiquement les informations météo-océaniques (c’est-à-dire météorologiques ou océaniques),
est ainsi particulièrement adaptée à ces applications. Par ailleurs, les dix dernières années
ont vu l’émergence de modèles d’apprentissage profond. Bien que les réseaux de neu-
rones existent depuis des décennies [226], leur utilisation a été favorisée par la conjonction
de l’augmentation des capacités de calcul des GPU [23] et d’une disponibilité accrue de
grands ensembles de données. Ces modèles sont désormais connus pour leur capacité à at-
teindre l’état de l’art dans différents contextes et démontrent leur versatilité, notamment
sur les problématiques de traitement d’image.

2 Problématiques scientifiques

Cette thèse se situe à l’intersection de trois domaines : l’océanographie, la télédétection
et l’apprentissage automatique. Elle vise à étudier des problèmes de segmentation, c’est-
à-dire à obtenir une information au niveau des pixels, sur différents processus météo-
océaniques observables par le SAR. De manière plus détaillée, les questions auxquelles
nous tentons de répondre sont les suivantes :

Est-il possible de segmenter les processus métoceaniques dans les observations
de radar à synthèse d’ouverture ?

La littérature indique que certaines informations, telles que la vitesse du vent [70],
peuvent être calculées au niveau des pixels. Actuellement, certaines informations, telles
que le type de processus météo-océanique apparaissant dans l’observation, ne peuvent
être calculées qu’à une échelle de plusieurs dizaines de kilomètres [207]. Cette résolution
est bien trop faible pour délimiter avec précision certains phénomènes tels que les ice-
bergs, les fronts (atmosphériques ou océaniques) ou les cellules de pluie. À ces échelles,
plusieurs phénomènes peuvent exister dans une même cellule de résolution. Les cellules
de convection sont une illustration de co-occurrence de processus métoceaniques car elles
contiennent simultanément des changements de régimes de vent et, bien que ce ne soit pas
systématique, des signatures de pluie. La capacité à distinguer les différents phénomènes
à une échelle spatiale plus précise serait donc bénéfique pour leur compréhension.
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Est-il possible de séparer les processus météo-océaniques apparaissant sur les
mêmes pixels ?

Tout comme les différents processus météo-océaniques peuvent apparaître dans un
voisinage restreint, ils peuvent également affecter les mêmes pixels. Des exemples de cette
co-occurrence comprennent l’apparition de caractéristiques liées au vent avec d’autres
indépendantes du vent et impactées par la banquise, des surfactants tels que les films
biologiques ou encore les précipitations. Comprendre la contribution de chaque phénomène
à la réflectivité totale est important pour assurer l’exactitude des informations dérivées
du SAR. La vitesse du vent peut ainsi être difficile à obtenir dans des cas d’hétérogénéités
fortes du signal réfléchi [232]. Résoudre ces co-occurrences permet également une meilleure
compréhension des interactions entre différents paramètres environnementaux puisque
l’identification précise des différents processus météo-océaniques en jeu rend possible une
meilleure compréhension de leurs interactions.

La segmentation est-elle réalisable avec les bases de données existantes ?

Puisque la construction de larges bases de données avec des données annotées est
chronophage et coûteuse, nous cherchons à minimiser le coût associé à leur création. Des
méthodologies existent pour entraîner des modèles de segmentation à partir d’informations
disponibles à des résolutions sous-résolues, mais leur efficacité sur les problématiques
spécifiques du SAR pour l’océanographie reste à déterminer. De plus, l’utilisation de
solutions automatisées pour accélérer la mise en place des bases de données est une piste
supplémentaire à explorer.

De plus, la colocalisation avec d’autres capteurs (stations au sol, instruments spatiaux,
bouées...) peut permettre de pallier à l’imprécision des segmentations des bases de don-
nées existantes. La combinaison de ces sources de données pourrait permettre de réduire la
quantité d’annotations manuelles requises et d’améliorer la résolution des modèles. Cette
approche peut également être utilisée pour augmenter la diversité de la base de données
et garantir que la segmentation puisse être appliquée à une diversité supérieure de condi-
tions météo-océaniques. Parallèlement, elle peut être utilisée pour mieux comprendre les
phénomènes sous-jacents en recoupant et en comparant les données provenant de plusieurs
sources, plusieurs capteurs ayant des caractéristiques différentes.

13



3 Organisation du manuscrit

Ce manuscrit est divisé en trois parties. Dans la première, nous décrivons les trois domaines
d’étude mentionnés précédemment. Plusieurs capteurs à bord de satellites sont présentés,
en mettant l’accent sur l’imagerie SAR qui constitue le cœur du domaine d’étude. Nous
décrivons les principes physiques de cette dernière avant de présenter différentes infor-
mations actuellement dérivées de ce type de capteur. Par la suite, nous introduisons le
cadre de l’apprentissage automatique en commençant par le perceptron multicouche et
en continuant avec les principaux composants des modèles d’apprentissage profond mod-
ernes ainsi que l’algorithme nécessaire pour les entraîner. Nous fournissons également des
exemples d’utilisation courante de réseaux de neurones convolutifs, lesquels sont parti-
culièrement adaptés pour le traitement d’informations spatialisées telles que les images.
Ce chapitre sert à la fois d’introduction et de guide définissant les termes et les concepts
utilisés tout au long du document.

La deuxième partie du manuscrit est consacrée aux problèmes de segmentation résolus
avec des bases de données manuellement annotées. Le premier sujet, la segmentation des
films biologiques, présente les réseaux de neurones convolutifs profonds sur un problème
de segmentation binaire simple. Il met en évidence les difficultés de la colocalisation de
phénomènes avec des capteurs secondaires, qui sont eux-mêmes souvent des informations
indirectes plutôt que des mesures in situ. Plus précisément, les films biologiques sont ici
estimés à la fois par la segmentation des observations Sentinel-1 et en utilisant la couleur
de l’eau obtenue par les mesures Sentinel-3. Le deuxième sujet de cette partie justifie la
nécessité d’obtenir des annotations au niveau des pixels en comparant des cadres d’étude
faiblement supervisés à des systèmes entièrement supervisés dont les informations sont de
plus grande qualité mais plus difficiles à obtenir. Le déséquilibre des bases de données,
difficulté courante des méthodes d’apprentissage automatique et ici induit par des dif-
férences de fréquences entre les phénomènes météo-océaniques, est également introduit.
Le dernier chapitre de cette partie, consacrée aux annotations manuelles, aborde les car-
actéristiques multi-échelles de certains processus, les illustrant par l’exemple des cellules
convectives. En effet, utiliser simultanément une grande résolution spatiale et une large
surface d’observation nécessite des modèles spécifiques qui ne sont pas nécessaires si l’une
ou l’autre de ces caractéristiques est superflue.

La troisième partie du manuscrit aborde les colocalisations massives. Dans un premier
temps, l’estimation de la concentration de glace de mer est effectuée en tirant parti des
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annotations massives mises à disposition par l’institut météorologique norvégien (MetNo).
Cette étude met en évidence les complémentarités entre les aspects de catégorisation et de
régression des fonctions de coût des méthodes de segmentation. Des estimations du taux
de précipitation sont réalisées dans le deuxième chapitre en utilisant des colocalisations
avec les radars au sol du système NEXRAD, qui disposent d’une portée suffisante pour
observer les zones côtières des États-Unis. Les résultats sont validés par une comparaison
avec l’activité électrique, marqueur indirect de la pluie disponible à partir du satellite
géostationnaire GOES-16. Dans le dernier chapitre, une base de données contenant des
observations SAR, la vitesse du vent, la segmentation des régimes de précipitation et
un modèle atmosphérique est construite pour entraîner un estimateur de vitesse de vent
invariant aux signatures induites par la pluie. Bien que le modèle résultant soit entraîné
sur des vitesses de vent issues d’un modèle atmosphérique (donc ayant une résolution
spatiale imprécise), ses performances sont validées par des mesures in situ provenant de
bouées.

Si chaque chapitre de ces deux dernières parties aborde des défis différents, ils partagent
cependant un cadre commun reposant sur la construction d’une base de données, de choix
de la configuration du modèle et de validation à travers l’utilisation de données auxiliaires.
Ils mettent ainsi en évidence la capacité de l’imagerie SAR à observer divers phénomènes
météorologiques et océaniques.
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Part I

Background
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As this thesis is located at the junction between the fields of Remote Sensing, Oceanog-
raphy and Machine Learning, it is necessary to present these subjects and the links that
bind them together. This first section will therefore be dedicated to an overview of remote
sensing and its use in an oceanographic context. We will particularly focus on the Syn-
thetic Aperture Radar in the second section. The last section of this chapter will introduce
the machine learning framework, explain the mechanisms of neural networks, and provide
examples of current use cases of this technology.

1.1 Oceanography and Remote Sensing

1.1.1 What is Earth Observation ?

Earth Observation refers to the various sensors used to study the Earth system, so as
to obtain information on meteorological information (e.g. temperature, wind speed), the
ocean (e.g. ocean currents or waves), ecosystems (e.g. chlorophyll concentration, canopy
height), and pollution (e.g. oil slicks, fine particles). They encompass mainly two kinds of
instruments: in situ and remote sensors. The former defines any kind of sensor providing
data in their immediate environment, such as thermometers, anemometers, seismographs.
For the ocean, these sensors can be built on buoys (either drifting or anchored) or on ships.
As an example, the National Data Buoy Center (NDBC) network contains 112 active
buoys, mainly in the United States coastal areas. They provide precious information on
wind speed, as in situ measurements are both closest to the real wind speed and acquired
with a high temporal resolution. However, the drawback is that they only provide punctual
data.

On the other hand, remote sensing instruments are able to acquire information in their
vicinity. One example of this family of sensor is the ground-based weather radar network
Next Generation Weather Radar (NEXRAD). This instrument, more detailed in Chapter
6, is a Doppler radar measuring the reflectivity of the air volume. At the lowest inclination
(5°), its measurement can be used up to three hundred kilometers away (with the altitude
and the resolution of the observation varying with the distance).

1.1.2 Satellite-based observation

One specificity of ground-based sensors is their immobility: they observe a fixed area.
This particularity is useful for providing continuous local observations and making the
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collocations easier, but it makes it impossible to provide global observations without an
extensive sensor network. In particular, it restricts the diversity of the observed scenes
as the topography and the bathymetry are often important components of the metocean
processes. Satellite-based sensors solve this issue by deploying their instruments in orbit.
Those in geostationary orbit (∼36 000 km), such as GOES-16 (used in Chapter 4 and 6)
and GOES-17 that host the Geostationnary Lightning Mapper (GLM) [61]. They observe
almost a full hemisphere continuously at the expense of lower resolution. In low orbit, the
platform is closer to the area it observes, meaning both a higher resolution and a better
revisit time (because of an increased orbital speed). GPM-core, which hosts the Dual-
frequency Precipitation Radar (GPM-DPR) [168], orbits at 407 km. It provides swaths of
245 km width with a spatial resolution of 5 km/px and a revisit time of 2.5 days.

It is also important to differentiate between active and passive sensors. Active sensors
have an emitter that sends the signal to be reflected. On the other hand, passive sensors
need the observed area to be illuminated by another source. In the case of optical imagery,
such as Sentinel-2’s sensors, the illumination is provided by the Sun. The observation
is therefore time-dependent. Besides, the different position between the source and the
receiver can induces shadows. One example is the dark area observed behind a cloud on
optical imagery. Some passive sensors, however, such as thermal infrared, measure the
signal emitted by the target itself, and are therefore less time-dependent.

Finally, we can differentiate between nadir and off-nadir instruments. Nadir instru-
ments observe directly at the vertical, such as GPM-DPR. When the target is observed
with a non-null angle with the vertical (meaning a non-null incidence angle), the obser-
vation is said to be off-nadir. Sentinel-1’s radars are examples of off-nadir instruments.

An overview of the different sensors used in this document is present in Table 1.1.
The core of this document is based on the Sentinel-1 missions, which characteristics are
indicated in section 1.2.2. However, before detailing its specifics, we will first present the
SAR process as to familiarize the reader with this particular imagery process.
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Instrument Elevation Swath width Wavelength Resolution

Sentinel-1 C-SAR 693 km 250 km (IW)
∼20 km (WV) 5.5 cm 50 m (IW GRDH)

∼5 m (WV SLC)
Sentinel-3 OLCI 814 km 1270 km 400 to 1020 nm 300 m

GPM-DPR 407 km 245 km 2.2 cm (Ku)
0.84 cm (Ka) 5 km

GOES-16/17
GLM 35790 km full-disk 777.4 nm 8 km (nadir) to

14 km
GOES-16/17

ABI’s band 14 35790 km full-disk 11.2 µm 2 km

Table 1.1: Main characteristics of the satellites used in this document.

1.2 Synthetic Aperture Radar - Physical Principles
& use for Ocean Studies

1.2.1 Physical Principles

To understand SAR observations, it is necessary to understand the physical principle
behind the SAR instruments. The goal here is not to delve deep into the physic (especially
since books already cover this subject [158, 199, 81]), but to provide insights into the
relationship between the radar observation of the ocean processes. First, we will explain
the SAR principles and the different processes that increase, or decrease, the received
signal. In a second part, we will clarify the terminology used to describe SAR products.
Lastly, existing information derived from SAR observations is presented.

Radar physic and implication on the ocean

Microwaves sensors, such as Sentinel-1’s C-band radars, are active sensors. They send a
pulse towards the surface and measure the signal reflected in their direction. The reflected
signal can be theoretically computed as in Eq. 1.1 [158].

Pout = Pin
(Gλ)2σ

(4π)4R4 (Eq. 1.1)

• Pin is the signal received by the target;

• Pout is the signal reflected to the sensor;

• G the antenna gain;

• λ the wavelength;
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• R the distance to the target;

• σ the scattering cross-section.

Eq. 1.1 does not take into account the attenuation of the signal during the propagation.
The signal of C-band radar is not attenuated by the gas in the atmosphere [78]. However,
some scatterers -objects scattering the radar signal, for example the hydrometeors- can
be present in the air column and disturb the signal during the observation [3]. This is
especially when the rain rate is very high, leading to the appearance of dark areas on the
observations (since the radar signal is absorbed) [35].

However, in most cases, the primary factor of the radar equation is the scattering
cross-section σ. Then, we will provide an example of SAR observation and analyse the
different ocean and atmospheric processes appearing on the scene.

Surface Scattering

The scattering cross-section is impacted by both surface and volume scattering. Surface
scattering happens on the interface of two homogeneous areas, such as the atmosphere
and the ocean. It can be divided into specular reflection (Fig. 1.1.a, b and d), which
follows the Snell’s law, and the Bragg scattering (Fig. 1.1.c). The latter happens when
the surface is irregular on a scale similar to that of the incident wavelength. The signal
will therefore be reflected in all directions.

The Snell’s law is recalled in Eq. 1.2:

θ1 = −θ2

sin(θ1)
sin(θ3)

= n1

n2
(Eq. 1.2)

Where:

• n1 is the refractive index of the medium 1;

• n2 is the refractive index of the medium 2;

• θ1 is the incident angle;

• θ2 is the reflection angle;
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• θ3 is the refraction angle;

Fig. 1.1: Examples of surface scattering. (a): reflection of the signal on a smooth surface.
(b): reflection on a wavy surface, smooth in relation to the emitted wavelength. (c): reflec-
tion on a surface rough in relation to the emitted wavelength λ. (d): Multiple reflections
caused by complex objects in the observed area. For simplicity, refraction is only indicated
in (a).

In the context of oceanography and C-band radars, low wind areas appear as dark
areas. As there is no perturbation on the sea surface in this case, most of the signal is in
the specular component. On the contrary, when the wind speed increases, the sea surface
roughness, along with backscattering, increases too [70].

The specular/Bragg scattering behaviour also explains the different appearance de-
pending on the viscosity of the surface layer. Oil surfactants, for example, have a higher
viscosity and dampen the small surface waves. They are therefore observed as dark slicks.
It can be noticed that the viscosity of the water depends on multiple factors such as the
salinity, the temperature or the pressure [156].

Icebergs, because of their irregular shape, generate multiple reflections in every direc-
tion, which explains why they appear as bright targets.

As depicted in Fig. 1.1.a, some of the radar signal is refracted in the observed surface.
As per the Fresnel equations, the amount of refracted signal decreases as the dielectric
permittivity of the target increases. This is especially true in the case of sea ice: upon
formation, first-year sea ice as a similar salinity as the ocean waters, and therefore a high
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dielectric permittivity. On the contrary, multi-year sea ice has a low salinity and absorb
a larger part of the signal.

Volume Scattering

Volume scattering is the dispersion of the emitted signal when passing a heterogeneous
medium. It is a well-known phenomenon in the context of meteorological observations as
it is used to estimate the distribution of raindrops with weather radars [129], especially
in the S-band. It can also be caused by vegetation [85], snow [158], or sea ice [81]. The
latter is typically characterized by the presence of gas bubbles embedded in the ice and
produces a high backscattering. Volume scattering in C-band also happens in the air
column, especially in the melting layer -i.e. the atmosphere layer where snow and ice
melt into droplets- which can cause misinterpretation of rainfall at the surface. Volume
scattering is depicted in Fig. 1.2.

Fig. 1.2: Volume scattering as the signal is transmitted in heterogeneous media.

Sigma nought

Knowing the emitted and received signal, it is possible to compute σ from Eq. 1.1.
However, this variable is affected not only by the geophysical processes on the observed
surface, but by the radar polarization and the incidence angle [108]. Therefore, various
calibrations are performed to obtain a Normalized Radar Cross Section (NRCS), also
called σ0.
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Real and Synthetic Aperture Geometry

The resolution of a real-aperture radar is given by two different processes. In terms of
range, radars work by sending several pulses. Therefore, the range resolution depends
on their pulse (spatial) period, which is the product of c, the speed of light, and τ , the
pulse duration. Since the range resolution is projected on the range/azimuth plan with
an incidence θ, it is computed as in Eq. 1.3.

rrange = cτ

2 sin θ
(Eq. 1.3)

On the other hand, the azimuth resolution depends on the horizontal antenna angular
resolution βreal and the distance R to the target. The latter is related to the incidence
angle while the former is limited by the diffraction of the optical system and therefore
is bounded by λ

L
. The azimuth resolution is given in Eq. 1.4. The geometry of the Real

Aperture Radar is depicted in Fig. 1.3.

razimuth,real = βrealR = λh

L cos θ
(Eq. 1.4)

However, two issues arise with real aperture radars. The first one is related to the
aperture size L. To achieve a resolution of 5 meters at an altitude of 693 km (the elevation
of the Sentinel-1 satellites), an antenna with a wavelength of 5 cm would need to be 6 km
long (Sentinel-1’s antenna is 12.3 m long). The second issue is that azimuth resolution
decreases with the incidence angle, while range resolution increases.

As the satellite moves in its orbit, every position in the measurement can be observed
during t = razimuth,real

v
, where v is the speed of the satellite. It is possible to coherently

sum all the measurements of each position to simulate an antenna array with aperture
razimuth. Therefore, the resolution of the synthetic aperture is indicated in Eq. 1.5.

razimuth,SAR = βSARR

= λ

2razimuth,real

·R [199]

= λ

2 λ
L

R
·R

= L

2 (Eq. 1.5)
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Fig. 1.3: Geometry of the Real Aperture Radar. h is the satellite elevation, L its aperture,
R the distance to the target, βreal the angular azimuth resolution, θ an incidence angle, c
the speed of light and τ the pulse duration.

Under this formulation, the azimuth resolution is independent of the incidence angle
and inversely proportional to the length of the antenna. However, it assumes that the
observed scene does not change during the integration time t, which is not strictly true
in the context of earth observation, especially in oceanography.

Observation Example

Fig. 1.4 is an example of a SAR observation. In this image, where σ0 has been thresholded
to highlight ocean processes rather than land, a large dark area can be observed to the
east of Corsica. It corresponds to a low-wind area. At the borders of this area, thin dark
lines can be seen spreading. These are biological slicks, oil-like surfactants produced by
plankton. They often reveal upwelling, as cold and nutrient-rich waters replace the warm
coastal waters under the action of either wind or coastal currents. They are visible because
the surfactant increases the viscosity of the water and decreases the Bragg scattering. If
the wind speed is too low, they can be difficult to separate from the background because
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of the smoothness of the sea surface. On the other hand, if the wind speed is high, the
slicks dissipate quickly without reaching a high enough concentration to be visible.

Some ships are visible, especially to the east of Cap Corse. Their high dielectric per-
mittivity, their irregular shapes allowing for multiple reflections (and especially reflections
in the direction of the radar), and their edges increasing the scattering, make them appear
as bright dots even though the resolution (in this case, 100 m/px) is lower than their size.

In the direction of the Strait of Bonifacio, the wind speed increases because of the
Venturi effect [55]. Gravity waves can be observed in this area because of they modulate
the wind speed [200]. Other orographic processes, in particular lee waves can be seen
behind Monte Argentario and the Giglio Island. They are caused by variations in elevation.
The wind direction can be estimated to be orthogonal to these gravity waves. On the other
hands, on the south of this area, wind streaks are caused by roll vortices in the atmospheric
boundary layer and are parallel to the wind direction [231].

1.2.2 SAR products from the Copernicus project

Copernicus is an Earth Observation program coordinating several remote sensing missions
[32]. In particular, it encompasses the different Sentinel satellites of which the Sentinel-1
constellation is a part.

The Sentinel-1 constellation is composed of two satellites (Sentinel-1A and Sentinel-
1B) launched respectively in April 2014 and April 2016. They are expected to be joined by
Sentinel-1C at the beginning of 2023 and by subsequent launches to ensure the continuity
of the mission. Each of these satellites follows a heliosynchronous dawn-dusk orbit at 693
km in altitude and carries a C-band synthetic-aperture radar. The orbital period is around
100 minutes, with a revisit time of 12 days (175 orbits). Unfortunately, Sentinel-1B has
been out of commission in December 2021 following a technical anomaly.

Product Levels

Several SAR products are created from the observations acquired by the Sentinel satellites.
Level-0 products are the raw data acquired by the satellite. Level-1 products are processed
products, after calibration and Doppler centroid estimation. Level-1 products can be either
Ground Range Detected (GRD), using multi-looks to reduce the impact of speckle (a
multiplicative noise) at the expanse of a smaller resolution. Single Look Complex (SLC)
preserves the full resolution and the phase information, but are more affected by the
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Fig. 1.4: SAR observation from the 07th of June 2021 at 17:14:15.
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speckle. Level-2 products are geophysical products derived from Level-1. They contain
various information than can be obtained from the SAR (e.g. the wind speed estimate
from a geophysical model function), collocation (e.g. the wind direction from ECMWF’s
atmospheric model) or metadata about the acquisition (e.g. the satellite heading).

Observation Modes

Sentinel-1 products also differ by their observation modes. Four different observation
modes exist:

• Interferometric Wideswath (IW) is the default observation mode over coastal areas.
It produces swaths of 250 km in range and several hundred kilometers in azimuth.
It is composed of three subswaths whose incidence angle ranges are respectively
[29.16°, 34.89], [34.77°, 40.15°] and [40.04°, 44.28°]. In Level-1 GRD product, IW
exists either at 10 m/px (GRDH, for high-resolution) or at 40 m/px (GRDM, for
medium resolution). GRDM is usually a merge of multiple consecutive GRDH to
produce a track of several thousand kilometers. The Equivalent Number of Looks
(ENL), which can be used to estimate the impact of the speckle, is respectively 4.4
and 81.8.

• Extra-Wide Swath (EW) is the default observation mode over polar areas. It pro-
duces swaths 410 km in range. It is composed of five subswaths which incidence an-
gle ranges are respectively [18.22°, 27.57°], [27.38°, 33.42°], [32.65°, 38.05°], [37.84°,
42.53°] and [42.08°, 45.16°]. In Level-1 GRD products, EW exists in GRDH at 25
m/px or in GRDM at 40 m/px. The ENL is 2.7 and 9.6, respectively.

• Wave Mode (WV) is the default observation mode over the open ocean. It produces
imagettes of 20x20 km. Wave Mode images are observed either in [21.68°, 23.22°]
(WV1) or in [34.88°, 36.13°] (WV2). Wave Mode only exists in SLC at a resolution
of 1.7x4.1 m/px (WV1) and 2.7x4.1 m/px (WV2).

• Stripmap is not routinely acquired. We omit this mode for simplicity.

We note that some observation modes have overlapping incidence angles, which indicates
that a method trained on a particular mode could be extended to another. As an example,
the third and fourth subswaths of EW are contained in IW’s incidence angle range, so are
the WV2. However, such extension is a study field in itself as other characteristics, e.g.
the ENL (and therefore the noise) are different.
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Polarization

The Sentinel-1 product also differs by its polarization channels. In polar areas, EW and
IW have a primary horizontal polarization. They are therefore denoted as either SH
(containing one HH channel) or DH (containing both HH and HV channels). At other
latitudes, EW and IW are observed with a vertical polarization. They are denoted as SV
(VV channel) or DV (VV and VH channels). WV is always observed in SV. As a side
note, it implies that methods relying on the cross-polarization cannot be used on WV
imagettes.

The geographical distributions of each observation mode, and each polarization, are
presented in Fig. 1.5.

1.2.3 Example of SAR-Derived Information

In this section, we will present some information derived from SAR observations.
SAR has been known for decades to be suitable for the problem of oil slick detection,

a form of pollution often left by ships cleaning their tanks in open sea. Observations as
early as ERS-1, launched in 1991, were used to build oil detection algorithms [12]. This
is especially true in the case of Sentinel-1, as the incidence angle that maximizes the
visibility of the slicks (between 20° and 45° [57]) is similar to that of the two satellites.
[197] found better categorization performance with C-band instruments, rather than L-
and X-band. The oil slick detection continues to be refined up to now [6].

SAR is also used to detect ships. They appear distinctly on the acquisitions, due to
both their angular shapes and the change in the dielectric permittivity of the observed
surface. Furthermore, the use of the Vessel Monitoring System (VMS) and the Automatic
Identification System (AIS) allows for the easy creation of datasets to evaluate detection
methods [121]. Deep learning architectures such as RCNN [109] or YOLOv2 [17] are also
being used to train ship detectors, with dedicated datasets regularly published [213, 184,
212]. Ship detection shares similarities with iceberg detection, which can also be performed
on SAR observations [38]. The discrimination between the two is also researched [76].

The study of the cryosphere, in particular, sea ice. The estimation of the sea ice
concentration is the subject of the dedicated section 5, but the elaboration of sea ice
charts primarily use SAR observations [82], along with other information such as visible
and infrared imagers, microwave radiometers, scatterometers, or altimeters [82].

Another main field using SAR observations is the estimation of wind characteristics.
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Fig. 1.5: Geographical distribution of Sentinel-1 observations between 2019-01-01 and
2021-31-12. From top to bottom IW-DV, IW-DH, EW-DV, EW-DH and WV-SV, based
on the L2-OCN products.

Notably, a range of C-band geophysical models have been developed to estimate the wind
speed from SAR observations (CMOD3 [119], CMOD4 [179], CMOD5 [69], CMOD5.N
[70], CMOD6 [47], CMOD7 [180], C_SARMOD2 [123]). The geophysical models rely
on a prior wind direction to estimate the speed. Thus, efforts have been made to also
estimate this prior from the SAR observation and it has been proved to be possible in
certain meteorological conditions, especially when atmospheric roll vortices are present
[44]. Vortices rolls can be observed if the wind speed is higher than 2.5 m/s [206, 231], but
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convection and rain signatures can hinder the direction retrieval. Deep learning methods
are also being explored to estimate the wind direction despite the lack of wind streaks
[223].

Surface waves have been a prominent subject of SAR studies as several of their char-
acteristics, such as the wave spectrum can be estimated from SAR observations [4, 220].
Their height [167] and their period [181] can be estimated even in complex situations
such as marginal sea ice areas [8] or cyclones [169]. Internal waves -often caused by tidal
currents [2] on contrary to surface winds generated by the wind- are also studied via SAR
observations [1]. As they propagate in the whole water column rather than the surface,
they impact different processes such as the turbulence exchange [94] and therefore the
development of biological slicks [172].

1.3 Machine Learning

1.3.1 Introduction to Neural Network and Classic Structure of
Convolutional Neural networks

Machine Learning has been rising since the end of the 20th century, particularly since 2012,
when AlexNet [95] won the ImageNet LSVRC-2012 challenge [164] outperforming other
challengers. In the case of neural networks, it mostly relies on three major components:

• a dataset of observations ;

• a model to compute information from the observations ;

• a loss function to estimate the quality of the model.

The specifics of these three points differs depending on the learning scheme used. We
can distinguish four learning schemes depending on the dataset characteristics:

• Fully-supervised learning relies on the association of a groundtruth to each obser-
vation. It is particularly suited for estimation of a continuous value (a regression)
or of an integer value (a class).

• Weakly-supervised learning also relies on groundtruths, but assume that their qual-
ity is low. Examples are wrong or imprecise labels.
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• Semi-supervised learning relies on both annotated and unannotated observations.
It aims at addressing the difficulties to build large annotated datasets. Sometimes,
semi-supervised is include as a weakly-supervised framework.

• Unsupervised learning does not use associated groundtruths. Examples of applica-
tions include clustering (grouping of similar data points into distinct categories),
anomaly detection, and dimensionality reduction. Self-supervised learning, under
which the truth is directly created from the observation, is a type unsupervised
learning and can be applied, for example, for noise reduction. Unconditional Gener-
ative Adversarial Networks are another example of a popular unsupervised method.

In the following, we will mainly spoke about fully-supervised methods.

When using a neural network, the idea is to optimize the parameters of the model
to minimize a cost function, also called a "loss." This can be done by following a back-
propagation algorithm. The neural network is composed of several layers that compute
a derivative function. For example, a fully connected layer, also called a "dense layer,"
computes the function described in Eq. 1.6.

ŷ = L(x1, ..., xn1) = f
(
b +

n1∑
i=1

xi · ai

)
(Eq. 1.6)

where y is the output of the layer, a vector of n2 elements, x its input, a vector
of n1 elements, a a weight matrix of shape (n1, n2) and b a vector of n2 elements, also
called "bias". a and b are the weights of the layer and adjusted during training. The f

function is called the "activation function". It is often chosen to be non-linear because of
the universal approximation theorems [34, 124]. Three common activation functions are
the sigmoid (Eq. 1.7) and ReLU (Eq. 1.8), and the linear function (Eq. 1.9).

sigmoid(x) = 1
1 + e−x

(Eq. 1.7)

relu(x) = max(0, x) (Eq. 1.8)

linear(x) = x (Eq. 1.9)

For the output layer, the rule of thumb is to use the sigmoid function on classification
or segmentation problems when the output needs to be in the [0, 1] interval. On regression
problems, the linear function allows for results in the ]−∞, +∞[ interval. However, if the
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Fig. 1.6: Architecture of a Multi Layer Perceptron with three inputs, one hidden layer
of two neurons, and one output.

interval is [0, +∞[, as with many geophysical parameters such as wind speed, the ReLU
function can also be used.

For the other layers, usually called hidden layers, the ReLU function is preferred as the
computation of its derivative is quick and not subject to the vanishing gradient problem
[150]. Vanishing gradient is an issue that occurs when several successive layers decrease
the gradient close to zero, preventing the model from learning anything. It happens with
the sigmoid function because its derivative is always lower than 1.

A simple neural network: the Multi Layer Perceptron

The architecture of a simple Multi Layer Perceptron is presented in Fig. 1.6. In this exam-
ple, it is composed of one input layer of dimension 3, one hidden (or intermediate) layer
with two neurons, and an output layer with a single neuron. Each neuron -or perceptron-
computes a weighted sum of its inputs, which include a bias, and applies an activation
function. The neurons of the same layer share the same activation function.

The orange and yellow neurons compute respectively the y1 and y2 values as described
in Eq. 1.10.

y1 = f1(x1 · w1,1,1 + x2 · w1,2,1 + x3 · w1,3,1 − b1,1)

y2 = f1(x1 · w1,1,2 + x2 · w1,2,2 + x3 · w1,3,2 − b1,2) (Eq. 1.10)
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Then, the output layer computes z as indicated in Eq. 1.11.

z = f2(y1 · w2,1,1 + y2 · w2,2,1 − b2,1) (Eq. 1.11)

Denoting i the index of the layer, k the index of the input of the layer i, and l the
index of the neuron in the layer i, the training consists in optimizing the bias bi,l and the
parameters wi,k,l to minimize the error between the output z and the ground truth.

Back propagation algorithm

The neural network is the composition of several layers, so that the output of the inter-
mediate layer i would be computed recursively as indicated in Eq. 1.12.

Mi(x) = Li ◦Mi−1(x) (Eq. 1.12)

In this equation, Mi(x) is the output, at the layer i, computed with an input x, and
Li is the function computed by the layer i itself.

The goal of the back propagation algorithm is to compute the gradient of the loss
function relatively to the last layer, and then propagate it to the previous layers. Com-
puting the loss of the last layer is easy. Denoting the error e = L(y,M(x)) (i.e. the result
of the loss function), the weight gradient is computed in Eq. 1.13.

δe

δw
= δe

δM(x)
δM(x)

w
(Eq. 1.13)

For an arbitrary layer, i, Ji denotes the set of layers that use the output of the layer i

as an input. Assuming δe
δMj(x) is known for any layer j in J , we can compute the gradient

for the weights wi of the layers i as indicated in Eq. 1.14.

δe

δwi

= δe

δMi(x)
δMi(x)

δw

= δMi(x)
δw

∑
j∈J

δe

δMj(x)
δMj(x)
δMi(x) (Eq. 1.14)

By recurring from the end of the network, it is therefore possible to compute the loss
gradient for each layer, and for each weight.
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Delta rule/weight update/optimizer

The last part of the back propagation algorithm is to apply to the delta rule (also called
optimizer) to adjust the weights using gradient descent, as expressed in Eq. 1.15.

wi,t+1 = wi,t − λ
δe

δwi,t

(Eq. 1.15)

Here, t is the index of the weight update. It expresses that the weights are iteratively
optimized until convergence of the error e.

In this manuscript, we will particularly use the RMSprop and the Adam (ADAptative
Momentum) [91] optimizers. Both include a normalization by the square of the gradient
to avoid it turning too big or too small. Adam use both the first and the second moment,
the former being used to accelerate the training while the slope is in the same direction.
RMSprop only use the second moment. In both cases, the moments are accumulated inline
with an exponential decay, meaning they are of the form xt = a · xt−1 + ft. The update
rule corresponding to RMSprop is indicated in Eq. 1.16, the update rule for Adam is Eq.
1.17.

vi,t = 0.9vi,t−1 + 0.1
( δe

δwi,t

)2

wi,t+1 = wi,t −
λ

ϵ +√vi,t

δe

δwi,t

(Eq. 1.16)

m̂i,t = 0.9mi,t1 + 0.1 δe

δwi,t

v̂i,t = 0.999vi,t−1 + 0.001
( δe

δwi,t

)2

wi,t+1 = wi,t −
λ

ϵ +
√

1000v̂i,t

10m̂i,t (Eq. 1.17)

Classic Layers of a CNN

With the dense layer, the loss function, the back propagation, the delta rule, and the
dataset, it is possible to design basic neural networks. More advanced networks use addi-
tional layers such as convolution layers, pooling or concatenation.
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Convolution Layer

Dense layers are often inadequate as they discard spatial information (the proxim-
ity between two pixels is not taken into account in Eq. 1.6) and the number of weights
-or parameters- increases as the product of both the input and the output length. Con-
volutional neural networks are neural networks that rely on convolution layers. On the
contrary, with dense layers, where the output of a neuron depends on every value of the
input, convolutional layers retain spatial coherence as these neurons only use the values
of the pixels in the neighborhood. This is done by applying the formula in Eq. 1.18:

yi,j(x) = f(
c∑

m=0

⌊ n
2 ⌋∑

k=⌈− n
2 ⌉

⌊ n
2 ⌋∑

l=⌈− n
2 ⌉

xi+k,j+l,c · wk,l,c) + b (Eq. 1.18)

where y is the output of the convolution layer, f is the activation function, b the bias,
x an image input with c channels, n the size of the convolution kernel, and w the weight
at position (i, j, k). Therefore, a single convolution defines c · n2 + 1 parameters, which is
significantly lower than the classic perceptron that would define c · I · J where I and J

are the width and height of x. One particularity of the convolutional layers is that their
weights do not depend on the input size (except for the number of channels), unlike dense
layers. This property can be used to run the model on images with various shapes.

Fig. 1.7 depicts a convolution layer with two convolution kernels running on an input
of shape (5, 5, 3). As such, each convolution kernel is composed of 27 weights plus a bias.
Following equation Eq. 1.18, the pixel y1,3,0 is given by equation Eq. 1.20.

35



y1,3,0(x) = f(
c∑

m=0

⌊ n
2 ⌋∑

k=⌈− n
2 ⌉

⌊ n
2 ⌋∑

l=⌈− n
2 ⌉

x1+k,3+l,c · wk,l,c) + b (Eq. 1.19)

= f(a0,0,0 · x0,2,0 + a0,1,0 · x0,3,0 + a0,2,0 · x0,4,0

+ a1,0,0 · x1,2,0 + a1,1,0 · x1,3,0 + a1,2,0 · x1,4,0

+ a2,0,0 · x2,2,0 + a2,1,0 · x2,3,0 + a2,2,0 · x2,4,0

+ a0,0,1 · x0,2,1 + a0,0,1 · x0,3,1 + a0,2,1 · x0,4,1

+ a1,0,1 · x1,2,1 + a1,0,1 · x1,3,1 + a1,2,1 · x1,4,1

+ a2,0,1 · x2,2,1 + a2,0,1 · x2,3,1 + a2,2,1 · x2,4,1

+ a0,0,2 · x0,2,2 + a0,0,2 · x0,3,2 + a0,2,2 · x0,4,2

+ a1,0,2 · x1,2,2 + a1,0,2 · x1,3,2 + a1,2,2 · x1,4,2

+ a2,0,2 · x2,2,2 + a2,0,2 · x2,3,2 + a2,2,2 · x2,4,2

+ ka) (Eq. 1.20)

The number of weights in a convolution layer, 56 in the case of Fig. 1.7, depends on
the size of the kernels, their number (which is the number of output channels), and the
number of input channels. In particular, and in contrast to "dense" layers composed of
perceptrons, it does not depend on the dimensions of the input. For comparison, an input
of shape (5, 5, 3) and an output of shape (5, 5, 2) would require the optimization of 3800
parameters.

Pooling

Pooling is a shrinking of the input vector space dimension. Given a stride s and a
function f whose domain has a higher dimension than its codomain, pooling consists of
applying f every s pixels. A maximum or a mean over a close neighborhood are common
choices for the pooling function. Pooling is often used to decrease the size of the activation
maps and increase the spatial range of the model (also known as its receptive field). A
so-called global average pooling can also be used in the categorization task to entirely pool
the spatial dimension and leave the activation as an array whose length is the number of
channels. However, to pool over the channels, it is often preferred to use a convolution
kernel which acts as a weighted mean.
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Fig. 1.7: A convolution layer with 2 kernels takes a 3-channel image of 5 by 5 pixels as
input and outputs two activation maps of 5 by 5 pixels. The yellow overlay represents the
values used to compute y1,3,0.

Concatenation

Sometimes, two layers of the model have to be combined within a single layer. This
typically occurs when one of the layers is passed through a pooling layer, then upscaled,
and combined with a layer that remained at the same resolution. This concatenation is
used to take a set of vectors as input and return a single vector whose length is equal to
the sum of the length of each input.

Transposed Convolution

Eq. 1.18 assumes a stride equal to one pixel, meaning that the convolution window,
from which the input pixels are multiplied by the kernels, moves by only one pixel. As a
result, it produces an output with the same spatial dimensions. However, the stride can
be greater than 1. In this case, the convolution is computed every s pixels, where s is
the stride, and the spatial dimensions are reduced. The stride can also be lower than 0.
Operatively, it can be done by padding in between the actual values [45] and artificially
inflating the input array. In this case, the spatial dimensions of the output are higher
than those of the input. This process, called "transposed convolution" or "deconvolution",
is used to upscale the activations map.
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1.3.2 Translation Equivariance & Receptive fields

Translation Equivariance

Eq. 1.18 implicates the property of translation equivariance since, if we note ẋ the
translation of x by the two integers α and β so that ẋi,j = xi+α,j+β, we have:

yi,j(ẋ) = f(
c∑

m=0

⌊ n
2 ⌋∑

k=⌈− n
2 ⌉

⌊ n
2 ⌋∑

l=⌈− n
2 ⌉

ẋi+k,j+l,c · kk,l,c) + b

= f(
c∑

m=0

⌊ n
2 ⌋∑

k=⌈− n
2 ⌉

⌊ n
2 ⌋∑

l=⌈− n
2 ⌉

xi+k+α,j+l+β,c · kk,l,c) + b

= yi+α,j+β(x) (Eq. 1.21)

Eq. 1.21 indicates that the translation of the input is equivalent to the translation of
the output1. This is not entirely true since both Eq. 1.18 and Eq. 1.21 ignore cases where
i + k (resp. j + l) is lower than 0 or higher than I (resp. J). In these cases, the missing
values need to be filled. This is commonly done by padding x with zeros. Other solutions
include reflecting the values from the images to obtain x−a,−b = xa,b.

Translation equivariance expresses the homogeneity of the model’s processing, as, with
border effects excluded, two areas in different positions will be computed with the same
weights.

Receptive Field and Border Effect

Previously, it was highlighted that the acquired images have thousands of pixels in both
directions. Due to limitations on GPU memory, it is not possible to feed the entire ob-
servations to the model. To overcome this, the inputs must be divided into tiles and the
model must be run on each tile. Fig. 1.8.b illustrates an example of this tiling, or mosaic.
The original image Fig. 1.8.a is divided into tiles of 128x128 pixels. However, the left eye
of the woman, located in the center of the original picture, is near the intersection of
the tiles. This means that the predictions of the pixels at each corner of the intersection

1. As a side note, CNNs that are not fully convolutionnal (meaning that they contain dense layers
in addition to convolutionnal layers) are often translation invariant as the use of a global pooling layer
averages the activation maps on all spatial dimensions. Thus, any translation of the input will result in
the same output.
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will be computed with different contextual information, leading to a loss of translation
equivariance demonstrated in the previous section. Furthermore, the lack of contextual
information in one or two directions will degrade the performance of the models. Fig. 1.8.c
shows tiles generated with a stride of 64 pixels. The left eye of the woman now appears
on four tiles, and is especially in the center of the center tile. In this example, one pixel
of the original image appears at more than 32 pixels from the border in at least one tile.

(a) (b) (c)

Fig. 1.8: Example of the creating of an overlapping mosaic. (a) is the original image of
256x256 pixels. (b) is a mosaic of tiles of 128x128 pixels build with a stride of 128 pixels.
(c) is a mosaic of tiles of 128x128 pixels build with a stride of 64 pixels.

Fig. 1.9 illustrates the propagation of information through a convolutional neural
network. The input for this illustration is an image with all pixels set to zero except for
the center pixel, which has a value of 1. Fig. 1.9.1 indicates the output of a CNN when fed
this almost-null input. Column (a) shows the output of a CNN when given this almost-null
input. In column (a), the model is randomly initialized with no bias. From Eq. 1.18, we
can see that if both the bias and the input are zero, the output will also be equal to zero.
Therefore, non-zero values indicate the range of information propagation from the center
pixel. Line (2) is the polar projection of line (1) and shows a propagation of around 30
pixels. The anisotropy observed is caused by the random initialization.

In columns (b) and (c), the model has been trained on a SAR dataset (from Chapter 6).
In column (b) and (c) the model is run on 128x128 pixels and 256x256 pixels respectively.
As it is a fully-convolution model, with only the weights of the convolution kernels and
their bias defined, this model can be used on inputs of different sizes. It can be observed
that the input center pixel has a larger impact on the output, extending up to around 80
pixels. The proximity of the border also has a significant impact on the output value, up
to more than 64 pixels, which is half the size of the image. In column (c), the border has
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the same extent, but the larger image dimensions result in more pixels having accurate
values. The differences between columns (a) and (c) suggest that the same architecture
can have a different spatial information propagation depending on the weights, making it
difficult to estimate this characteristic beforehand.

However, it is possible to compute a higher bound of this spatial information propa-
gation, also called the "receptive field" of the model. It can be computed iteratively on
simple models by considering the following rules:

• Convolution layers increase the local receptive field by ⌈k
2⌉ where k is the width of

their kernel. They divide the local resolution by their stride s.

• Dense layers do not change the local resolution but, as they discard spatial infor-
mation, they have an infinite receptive field.

• Pooling layers reduce the local resolution by dividing it by their stride s. They also
marginally impact the receptive field, as the local receptive field, after the pooling
operation is ⌈ ei−1

s
⌉.

The iterative formula for the receptive field at layer n, depending on the stride sn and
the kernel width kn, is indicated in Eq. 1.22.

en =



⌊
en−1

sn

⌋
if pooling⌊

en−1+kn

sn

⌋
if convolution

+∞ if dense

(Eq. 1.22)

Since transposed convolutions have a stride lower than 1, they are a major contributor
to the receptive field. A large number of pooling/transposed convolution increases the
size of the contextual information accessible to the network, but it can also lead to border
effects. The higher number of weights can also lead to overfitting, which is detrimental
to the model’s ability to generalize beyond its training set. It is therefore necessary to
balance the receptive field to retrieve enough spatial context without being hindered by
drawbacks. Some hints on how to solve this issue are presented in Chapter 4.

1.3.3 Convolutional Neural networks for Earth Observation

One of the strengths of the CNN is their ability to be used on a wide range of problems.
They have long been used in segmentation, as the estimation of the land use in optical
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(a) (b) (c)

(1)

(2)

Fig. 1.9: Output of a model using an image with every pixel at 0 except at the center.
The center pixel of the input is set at 1. The model is randomly initialized (a), trained
for images of 128x128 pixels (b) and transferred for images 256x256 pixels (c). (1) is the
output of the model, (2) the polar projection from the center of the output.

imagery is a popular research subject [86, 135] and benefit from the accumulation of data
through the years [58]. Segmenters can also be used with other sensors, for example on
SAR to delimit rivers [146], floods [142], or roads [68]. On multispectral observations, they
are used to segment clouds [43] or survey crops [145, 229, 90] among other applications.

Since the acquisitions are geo-referenced, it is possible to use multiple observations of
the same area to detect change. This problem is close to segmentation but differs by the
use of multiple inputs acquired at different times. It is particularly used to detect change
of buildings [152, 5, 53], forests [63, 79] or land cover in general [139].

Spatial observations and deep learning models have also been used to detect ships
[230, 216] in which case the output isn’t a segmentation but a set of coordinates, or to
classify thumbnails [75] by a single-vector outputs. In particular, the TenGeoP-SARwv
[208] is a dataset of ten metocean processes visible on SAR images.

Deep learning can also be used to enhance the observation, by reducing noises [103,
50] or reconstruct parts of the observation that could either be masked clouds [133, 225].
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It can be used to increase the resolution [51, 162, 102, 7], or to convert one observation
in the style of another sensor that could be in the same domain but different resolution
[126] or of a different kind [159]. Synthetic observations can also be generated [33] and
used for data augmentation. In this case, the model often uses a GAN framework [60] to
add an implicit regularization term in the loss function.
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Part II

Deep learning schemes for the
semantic segmentation of the ocean

surface from SAR observations
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FOREWORD

As raised in the previous chapter, deep learning models rely on groundtruth to learn the
transformation from the input manifold -in our case the space of the SAR observations- to
the desired segmentation. For some problems, the groundtruth can be obtained through
collocation with secondary instruments. This typically happens when data from one source
are available on one area, but can not be used globally. In such case, the observations
by this third-party instrument are collocated with Sentinel-1 observation to produce
groundtruths. Learning the transformation from the SAR image to the third-party sensor
allows to extend the area on each the collocated information is available.

However, this is not always possible. Some processes of interest need to be manually
annotated since remote information is difficult to obtain. It can also happens than only
punctual information is available, meaning that the information is not spacialized. If
an underlying implicit spacialized information can be infered from the punctual data, a
framework called Weakly-supervised learning can be used. Another solution is to manually
annotate the desired groundtruths. This process is particularly time-consuming, often
leading to a smaller (but cleaner) dataset.

Chapter 2 introduces the context and the difficulties of semantic segmentation. It focus
on the biological slicks. Chapter 3 is a study of ten different classes of meteorological and
ocean processes and a comparison of the the manual pixel-level supervised learning with
weakly-supervised frameworks using image-level information. It demonstrates the need of
manual annotations. Finally, Chapter 4 focus on the multiscale aspect of some metocean
processes, namely the convective cells, for which both high-resolution and large spatial
context are needed to obtain satisfactory segmentations.
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Chapter 2

CONTEXT AND CHALLENGE:
BIOLOGICAL SLICKS AS A CASE-STUDY

2.1 Introduction

In the previous chapter, we introduced some examples of machine learning applications
to SAR imagery. In the case of the TenGeoP-SARwv dataset, it could be summarized
by the question "What is the primary metocean process in this sample?" By design, we
assume that one image has only one associated class, but this is not always the case: one
image can have multiple labels. One example is the Biological Slicks. Biological Slicks are
large areas of the ocean surface that are covered with a thin film of living organisms.
They are usually created by the accumulation of phytoplankton that form the base of
the marine food web [77]. They are usually found in areas of upwelling, where currents
bring nutrient-rich waters to the surface. The waves, in areas covered by the slicks, are
damped by the high viscosity of the microfilm over the surface, leading to a decrease in
Sea Surface Roughness. As they provide an important source of food for marine animals,
fishing vessels can often be seen in their vicinity. As such, the corresponding observation
could correspond to either the "Bright Target" or the "Biological Slicks" classes. This
categorization only provides image-level information. It does not indicate the location of
the processes. Segmentation is akin to categorization since it provides binary information
about a class, but it is estimated at the pixel-level rather than the image-level.

The slicks have a biological interest as they are associated with a higher density of
fish (and plankton) [92], as such, they are searched by the fisheries. Their morphology can
help to locate sub-mesoscale marine eddies since their shape is impacted by the surface
currents [84]. Their dispersion is also affected by the wind speed [171] and by the Stokes
drift caused by the waves [22]. The shape of slicks can give clues about how they were
produced. For instance, annular-shaped slicks may point to coral spawn [83]. From a pure
image processing point of view, they often appear to be similar to oil spills, which is a
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similar problem on which SAR imagery has been applied [195].
This chapter aims to illustrate the methodology used to train a segmentation model.

To simplify the problem formulation, we follow a fully-supervised framework, meaning
that the annotated groundtruth is exactly what the model is expected to return. This
chapter also highlights the difficulty of interpreting a SAR observation with different
processes appearing with the same low-level features. Comparison with Sentinel-3 ocean
colour measurements are used to confirm the result by comparing the probability of slick
appearance with the estimate of the chlorophyll concentration.

2.2 Dataset

For this short introduction, seven manually annotated IW, acquired between June 02nd

2018 and June 11th 2021 are annotated at the pixel-level. These IW are selected indepen-
dently of their position through manual selection to maximize the appearance of the slicks.
Two IW were observed by Sentinel-1B, the remaining five were obtained by Sentinel-1A.
The small number of IW is explained by the small scale of the slicks and their extent on
the observations. It leads the annotation task to be particularly time-consuming (around
45 minutes per observation). The resolution of the observations, and their corresponding
groundtruth, is 100 m/px. Samples of these IW are depicted in Fig. 2.1. After the anno-
tation, 1032 patches of 25.6 x 25.6 km are extracted and divided into training, validation,
and test subsets. The split is performed at the IW-level rather than the patch-level to
avoid any risk of data leakage.

When wind speed is lower than 2 m/s, it is difficult to detect Biological Slicks due to
low backscattering. Though they are present, the contrast with the surrounding waters
is too low to make them visible. Additionally, at moderate or high wind speed, the slicks
are dispersed and disappear quickly. The annotated dataset reflects this distribution, as
shown in Fig. 2.2, with the wind speed range corresponding to the atmospheric conditions
restricted to an interval between 2 m/s and 5 m/s.

The trained model is also applied to observations of the Mediterranean and Black
Seas. In this case, as manual groundtruths are not required, it is possible to use a higher
number of images. For this analysis, 92422 IW acquired between 2015 and 2021 (both
included) are used.
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Fig. 2.1: Samples for the Biological Slick dataset. Observations were performed respec-
tively on September 24th 2018 at 05:45:47, March 05th 2019 at 18:25:40 and March 16th

2019 at 05:53:54. The first line is the SAR observation, the second line is the manual
segmentation.

2.3 Convolutional Deep Learning Model

From the training set, a U-Net [234] model is trained to minimize the Binary Cross Entropy
between the prediction from the model and the groundtruth. Though cross-entropy loss
would be standard for categorical segmentation (and binary segmentation in particular),
the MSE has the advantages of being symmetric, meaning that MSE(a, b) = MSE(b, a),
and of being less prone to numerical instability. The training used Adaptive Momentum,
a learning rate of 10−5 and is performed over 360 epochs.

The model architecture, presented in Fig. 2.3, is composed of an encoder and a de-
coder. The encoder, made up of connected convolution blocks, reduces the input size by
performing convolutions and shrinking the image. While the spatial dimensions are re-
duced, the spectral dimension is increased as the processed data progresses further into
the network. The second part of the architecture is a decoder. It retrieves the activation
maps generated by the encoder and increases their size through transposed convolutions.
The difference between U-Net and a classic autoencoder is the presence of transversal
connections between corresponding blocks rather than only at the lowest resolution. This
facilitates the preservation of finer details and reduces the likelihood of the "vanishing
gradient" issue that is often encountered with deep learning models.

After training, the model can be applied to other SAR observations. To process IW
products, the wide-swath image is divided into tiles of 20x20 km, each tile having overlap
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Fig. 2.2: Wind Speed distribution of the seven IW of the dataset, as obtained from the
ECMWF atmospheric model.

Fig. 2.3: Architecture of the U-Net model used to segment Biological Slicks using Sentinel-
1 ocean surface roughness.

with its neighbors. We can note that, since the segmentation model is fully convolutional,
it can be applied to larger images as long as the resolution stays at 100 m/px. However,
for simplicity’s sake (and to reduce the strain on the GPU memory), we often choose
to stay at the same resolution, even if this is detrimental to the segmentation quality
(mitigated by the overlap strategy) and the processing speed. For the latter, we recorded
a typical duration of a dozen seconds to process a full IW on a GTX 1050 Ti. With more
modern GPUs, the processing of the IW is mainly affected by the download of the L1
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GRD product and its preprocessing from 10 m/px to 100 m/px, effectively decreasing the
file from several hundred Mo to several Mo.

2.4 Results

To assess the validity of the deep learning model, the predictions on the test set are
compared to the groundtruths. The test set is made up of elements that were not used
for either training or validation. Validation refers to the evaluation of the model during
training to survey overfitting. As the test set is composed of data ignored during training,
it provides information on the model’s capacity to generalize beyond its training set. In
this study, due to the lack of annotated data, only one IW (134 patches) was used.

Due to the difficulty of obtaining data that has been manually annotated, predictions
are made on a large pool of data that has not been annotated, but whose metocean
context is known. First, the frequency of Biological Slick segmentation is compared to the
estimate of the chlorophyll using the ocean colour in the Alboran Sea, located at the East
of the Gibraltar Strait. Second, the capacity of the model to segment pollution -whose
SAR signature is similar to Biological Slicks- is assessed on the east coast of the Black
Sea, where oil is known to surface from the sea bed.

2.4.1 Results on the test set

Fig. 2.4 illustrates the result of the segmentation over the IW of the test set, which was
not used during either the training or the validation. On this observation, acquired in the
vicinity of the Mississippi Delta, several bright objects concentrate in an area of low wind
speed. In this area and the surrounding waters, Biological Slicks are being segmented by
the model. The manual annotation also indicates the presence of these slicks. The bright
targets (fishing vessels) are explained by the abundance of plankton that draws the fish
to it. The model reached a Binary Cross Entropy of 0.1919.

2.4.2 Seasonal biological activity in the Alboran Sea

As the Biological Slicks are indicators of plankton, they are expected to correlate with the
chlorophyll concentration [114]. The latter can be estimated from the ocean color [190].
Figure Fig. 2.5 demonstrates that ocean color and the detection of Biological Slicks are
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SAR Observation Manual Groundtruth Model Segmentation

Fig. 2.4: Segmentation of the IW of the test set, observed on the 11th of June 2021 at
00:10:00.

correlated, as the gradient of both reflects the same current patterns. The two observations
were separated by a 17-hour interval.

(a) (b) (c)

Fig. 2.5: SAR observation acquired on the 21st of February 2019 at 17:38:18(a). Segmen-
tation of the Biological Slicks (b). Chlorophyll concentration (mg/m3) estimated from
Sentinel-3 OLCI obtained on the 22nd of February 2019 at 10:24:14.

This correlation is visible in the Alboran Sea. Overall, the Alboran Sea is known to
be an area with particularly high primary production compared with other regions of the
Mediterranean Sea [198]. This sea, at the East of the Gibraltar Strait, is characterized by
a seasonal gyre -the Western Alboran Gyre- appearing during spring and stable during
summer [202]. As depicted in Fig. 2.6.b4, the chlorophyll concentration obtained from the
ocean colour is lower in the center of the gyre. These figures are obtained from the L2
products of the Ocean and Land Color Instrument (OLCI) sensor aboard the satellites of
the Sentinel-3 serie. The measurement period is from 2018 to 2021 (both included).

The Sentinel-1 SAR observations over the Alboran Sea are systematically segmented
for the period between 2018 and 2021 (to correspond to the availability of Sentinel-3 data).
They aggregated on a grid of 1

25 degree. Comparison with Sentinel-3 data highlights the
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correlation between the presence of the slicks and an higher chlorophyll concentration.
The Eastern Alboran Gyre is also visible in summer (Fig. 2.6.4) and autumn (Fig. 2.6.5).
To obtain these figures, observations with wind speed higher than 6 m/s were removed.
The wind speed information is obtained from ECMWF atmospheric model.

As a side note, we can observe a decrease of the estimated Biological Slicks distribution
on a line going approximately east-north-east from the Gibraltar Strait. One possible cause
for this is the wake generated by ships passing through the Gibraltar Strait, which can
dislocate the slicks and make them more difficult to see on SAR observations.

The same study can be performed on the entire Mediterranean Sea. To draw the maps
presented in Fig. 2.7, 92422 IW-GRD acquired from 2015 to 2021 (both included) are
processed to a resolution of 100 m/px and fed to the model. The aggregated maps are
mean-pooled to a resolution of 0.1°. The results are coherent with chlorophyll maps [13],
indicating a lower primary production on the eastern basin. It interesting to note that the
difference of ocean colour in the Black Sea and Azov Sea is not reflected in the estimate
from Sentinel-1 SAR measurements. We assume that the difference of salinity or/and
temperature are too important to allow a simple comparison. Further studies should
be conducted to better understand the discrepancies between Sentinel-1 and Sentinel-3
observations of biological activity.

2.4.3 Detection of cold seeps in Black Sea

Although the model is trained to recognize Biological Slicks, it may also return some
phenomena with similar features as biological slicks, such as oil spills. Most of the time, oil
spills are caused by ships cleaning their tanks. However, oil spills can also occur naturally,
such as through cold seeps in the Black Sea [104]. When oil emerges from a cold seep, it
can move depending on the wind and currents.

The area around the Kobuleti Ridge has been particularly studied because of the
Pechoti Mound and the Colkheti Seep, as both locations are known to leak oil [48, 157,
98]. Examples of observations from this area, along with the associated segmentation, are
presented in Fig. 2.8. In the first observation, the oil slick is easily visible on the SAR
image and is correctly segmented. The second example shows an often-occurring wind gust
descending from the Rioni River. The strong winds disperse the oil, making its signature
less visible. In the last two examples, Biological Slicks are present throughout the entire
area and highlight the presence of submesoscale currents. It is worth noting that, in Fig.
2.8, the coast appears on the the left despite being on the east side of the Black Sea. This
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(a) (b)

(1)

(2)

(3)

(4)

(5)

Fig. 2.6: Comparison of the probability of Biological Slick detection from the segmenta-
tion of Sentinel-1 IW (column a) and the chlorophyll concentration from Sentinel-3 OLCI
(column b). Line 1 is the sum of available IW. Line 3 to 6 are the seasonal mean to respec-
tively December to February, March to May, June to August and September to November,
computed for 2018 to 2021 (both included). Points hidden by clouds (for Sentinel-3) or
at wind speed higher than 6 m/s (for Sentinel-1) are removed.
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(a) (b)

(c) (d)

Fig. 2.7: Mean probability of Biological Slicks detection from SAR images over the
Mediterranean Sea between 2015 and 2021 (a). Number of IW used to compute the mean
(b). Mean chlorophyll concentration obtained from Sentinel-3 OLCI between 2018 and
2021 (c) and number of swath acquired by Sentinel-3 (d).

is because the observation is in sensor geometry, with the minimal incidence angle on left
side of the observation.

It can be observed that the oil associated with cold seeps has slightly different features
than Biological Slicks. In the fourth observation, it appears thicker and easier for a human
operator to detect as a similar phenomenon. It also seems more resistant to higher wind
speeds. When caused by the cleaning of a ship’s tank, the human origin of the oil pollution
can be inferred by the proximity of a ship. Therefore, it is important to consider the context
when identifying processes with similar low-level features.

In Fig. 2.9, the probability of Biological Slicks detection, computed over the year 2018
to 2021 indicates the mean segmentation of all available IW between January 2015 and
June 2022. A peak is visible at the position of the Pechoti Mound and Kolkheti Seep
(resp. 41.123E, 41.983N and 41.104E, 41.969N [48]). Oil leaks appear to be lower during
the winter, but this could be due to the higher mean wind speed during this time, which
can dislocate the slicks [144].
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Fig. 2.8: Observations and segmentation of the Kobuleti Ridge were acquired on April
20th 2018 at 03:24:33, November 05th 2019 at 03:24:48, April 23rd 2022 at 03:24:58 and
May 15th 2020 at 03:24:47
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.9: Probability of Biological Slicks detection over the Kobuleti Ridge. (a) is the
mean over the years 2015 to 2021 (both included). (b) is the number of IW used to
compute (a). (c) to (f) are the restriction to respectively December to February, March
to May, June to August and September to November.

2.5 Conclusion

Biological Slicks are oily surfactants floating on the ocean surface that dampen waves
due to their high viscosity. On SAR images, they appear as areas of low backscattering
because of the lower surface roughness.

The methodology presented in this section helps to discriminate Biological Slicks from
surrounding waters by using a deep learning model (U-Net) and manually annotated SAR
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observations from Sentinel-1. The results were found to be consistent with those obtained
from ocean color measurements using Sentinel-3. It is possible to identify ocean gyres by
the gradient of biological matter, which is lower in the center of the gyres and higher at
their borders. However, manual annotations are difficult to collect, resulting in datasets
with limited meteorological and oceanographic diversity.

This studies raise several perspective. First, the annotation of additionnal observation
is necessary for a more reliable quantitaive assessement of the model capacities. This a
time-consuming but necessary process. Second, as hydrocarbons from natural and anthro-
pogenic pollution can have similar signatures, it is necessary to be able to differentiate
them. In the case of human-related activity, this distinction is also usefull for pollution
surveillance and could be inferred from contextual information such as the presence of
ships. Finally, it would be beneficial to research the complementarity between Sentinel-1
and Sentinel-3 to understand the discrepancies in their estimates of biological activity.

Though this chapter exclusively used fully-supervised learning, it highlighted the diffi-
culty of acquiring segmentation datasets. Chapter 3 compare the fully-supervised frame-
work with weakly-supervised methods using image-level categorizations.

Part III use groundtruths provided by colocation with other sensors in order to auto-
matically build large datasets without the need of manual annotation.
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Chapter 3

SEMANTIC SEGMENTATION OF

METOCEAN PROCESSSES USING SAR
OBSERVATIONS AND DEEP LEARNING

The following section is the reproduction of [27] of the same author.

3.1 Introduction

Since neural-networks-based algorithms have become the state-of-the-art framework for
a wide range of image processing problems in the 2010s, the use of deep learning ap-
proaches has been extended to many kinds of remote sensing data, including for instance
infrared imagery [183], land applications of SAR [236] and SAR-optical fusion [165]. By
contrast, the segmentation of ocean processes from SAR images has been little addressed.
Synthetic Aperture Radar (SAR) imagery relies on physical basis very different from
optics. Operating in the microwave band, SAR images result from a complex physical
imaging process compared with optical imaging, which results in high resolution images
(typically few meters resolution). Over the oceans, the SAR imagery is sensitive to the
surface roughness which can be impacted by the wind, the waves, the presence of ships or
icebergs, a surface viscosity difference caused by oil or biological slicks, the precipitations
or by sea ice in polar regions [81]. Contrary to optical images, SAR can be acquired in
almost all conditions, especially over cloudy regions and at night. For these reasons, SAR
images can be processed into a wide variety of geophysical products such as wind maps,
wave spectra, surface currents, and its full potential still remains unexploited, especially
in terms of scientific and operational services [111]. Among the instruments in flight, the
C-band Sentinel-1 constellation operated by the European Space Agency (ESA) is one
of the main real-time providers of SAR images and products. The segmentation of ocean
processes from SAR has already been addressed, but on specific cases such as oil spills

57



[15], ships (though as a detection problem as they appear as ponctual bright areas) [36]
or sea-ice [54]. These studies found out that the Convolutional Neural Networks (CNN)
[163, 66] architecture is the most adapted. Especially, [15] found that they achieve better
results than other usual segmentation methods such as logistic regression or k-Means.

The present study aims to extend these previous works and more specifically to assess
whether deep learning approaches may address the joint semantic segmentation of a wide
range of metocean processes in SAR ocean images.

Deep learning for semantic segmentation tasks mainly relies on the fully-supervised
framework, that requires the manual segmentation of hundreds up to thousands of images
to build a representative training dataset. For SAR imaging over the ocean, the difficulty
to access ground-truthed data sets may partly explain the small amount of studies on
this topic. First, this task is quite complex and should be carefully performed by domain
experts. On the SAR observations, the signature of the geophysical phenomena is complex
and requires specific knowledges of both SAR imaging and of their impact on the sea-
surface roughness. Second, this is a time-consuming task. The Common Object in COntext
data set [115], also known as COCO, stated that drawing segmentations required 800 s per
object, while the categorization task at image-level requires only 30. A second hardship
was the high variance in the annotation, especially when multiple annotators were involved
in the data set creation. This problem was also raised by [147] in the context of sea ice
charts.

Fortunately, the first annotated SAR images data set for classification was released
by [208]. It consists in a collection of more than 37,000 20 × 20 km SAR imagettes for
10 categories of geophysical phenomena: Atmospheric Fronts, Biological Slicks, Icebergs,
Low Wind Area, Micro-convective Cells, ocean Fronts, Pure Ocean Waves, Rain Cells, Sea
Ice and Wind Streaks. It was later supplemented by another 10,000 images. In [207], deep
learning models trained from this dataset led to promising results with an excellent clas-
sification performance [206]. However, this effort could not generalize to imagettes with
at least two phenomena, and, as a categorization task, is inherently limited in resolution.
Still, even image-level annotation integrates implicit information on the represented fea-
tures, based on the annotator knowledge, and building up on this valuable effort would be
of great interest to train semantic segmentation models [67, 217]. This is referred as weak
supervision. Most of the works studying weak supervision are based on photographs and
make assumptions to leverage the segmentation, typically on image contrast and homo-
geneity [154], on boundary pixels [64] or on the object compacity [118]. Another possibility
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is to turn classifiers into segmenters [204, 224].
The general objective of this study is to evaluate whether deep learning models and

strategies may address the semantic segmentation of SAR ocean images in terms of meto-
cean processes. Specifically, we aim to assess the relevance for this task of both fully-
supervised and weakly-supervised schemes. The proposed approach combines a selection
of state-of-the-art deep learning frameworks, the creation of a reference ground-truthed
dataset of annotated SAR ocean images and the design of a benchmarking setting, based
on a reference ground-truthed dataset.

In this study, the SAR observations used as groundtruth will first be presented in Sec-
tion II. Then, the different algorithms able to obtain the segmentation will be presented
in Section III. The segmentation of metocean phenomena is addressed through both the
weakly supervised framework, using the 37k image-level (one label per image) annota-
tions of the TenGeoP-SARwv dataset, and a fully supervised of 1k manual annotated
groundtruth (2D annotations).

3.2 Data

The image-level dataset is built from the TenGeoP-SARwv dataset described in [208]. It
contains more than 37k Sentinel-1 Wave Mode (WM) acquisitions categorized at image-
level for ten metocean processes. Wave Mode observations are acquired on an area of
approximately 20 km by 20 km. Though initially at a resolution of 5 m per pixel, the
images are downsampled to 50 m per pixel to reduce the speckle and for computational
reasons. The resolution can be further decreased down to 100 m.px−1 without impeding the
accuracy of the categorization as shown in Table 3.1. However, it decreases the resolution
of the weakly supervised segmentation, as they commonly use a categorizer as a backbone
of the segmentation. The scenes are observed under two incidence angles of 23.8° and 36.8°
in co-polarization polarization. It has to be noted that the distribution of the classes in
the TenGeoP-SARwv dataset varies with the incidence angle. For example, 93% of the
Pure Ocean Waves observations were obtained at an incidence angle of 23.8° where 92% of
the Micro Convective Cells correspond to observations at 36.8°. Though these two classes
are the extreme cases, it indicates that the SAR signature of the phenomena can be more
visible at particular incidence angles.
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Table 3.1: Accuracy of the categorization task depending on the resolution.

Resolution Accuracy (Validation) Accuracy (Test)

50 m.px−1 99% 77%

100 m.px−1 98% 75%

200 m.px−1 93% 66%

340 m.px−1 88% 59%

Interferometric Wide Swath images (IW) are used for testing purpose only. In contrary
to WM, they cover large areas of hundred or thousand of kilometers high and a few
hundred of kilometers wide. The incidence angle varies between 32.9° and 43.1°. Also, if the
WM observations are acquired with a minimum coastal distance of hundreds kilometers,
IW product are obtained in coastal area. In this study, IW samples are preprocessed to
match the aspect of the WM images described before. The main preprocessing is the
computation of the normalized radar cross section and a de-trending to remove the effect
of the variable incidence [205].

The ten metocean processes studied are Atmospheric Fronts (AF), Biological Slicks
(BS), Icebergs (IB), Low Wind Areas (LWA), Micro-convective Cells (MCC), ocean Fronts
(OF), Pure Ocean Waves (POW), Rain Cells (RC), Sea Ice (SI) and Wind Streaks (WS).
Fig. 3.1 indicates the number of observation of these phenomena, over the globe, as de-
termined from the categorization labels from the TenGeoP-SARwv dataset.

For the fully suppervised method only, 100 manually annotated samples per class of
TenGeoP-SARwv’s are provided for the training set, and 10 per class for the validation
set. All algorithms are evaluated on an independant test set of 10 samples per class.
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These groundtruths were produced at the pixel-level by manually indicating the area
covered by each phenomena appearing in the observations. To account for the fuzziness
of the boundary of some phenomena and the difficulty to accurately delimit them, the
segmentations are at a resolution of 400 m.px−1. The SAR observation is downscaled to
100 m.px−1 following the results in Table 3.1 as using a resolution of 50 m.px−1 would
increase the time and memory consumption with a marginal performance increase. The
segmentation dataset is available on kaggle1.

To artificially increase the data, rotation of ±π
2 and symmetries (both vertical and

horizontal) are used. The quantity of input is thus multiplied by 8. This data augmentation
implicitly assumes that, on the scale of one observation, the variation of the incidence angle
has negligible effect against the meteorological state.

1. https://www.kaggle.com/rignak/sar-wv-semanticsegmentation
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Fig. 3.1: Number of TenGeoP-SARwv’s images for each phenomena, projected on grid
of 10° by 10°. These distributions are directly obtained from the groundtruth contained
in [208]. 62



3.3 Methodology

Five families of algorithms are tested. The first one is trained using the 1000 manual
segmentations under the fully supervised framework. The last four rely on the catego-
rization dataset, using the 37k pairs of SAR observation/classification to learn a pseudo-
segmentation in a weakly-supervised framework. Specifically:

A uses the small dataset of pixel-level segmentation in a fully supervised framework;

B calls a categorizer multiple times while masking a small part of the input;

C uses the constant model size property to run a categorizer on small portions of the
image and get partial categorizations;

D exploits the conservation of spatial information using the Class Activation Maps;

E considers the image-level annotation as a heavily noised pixel-level segmentation
and set constraints on spatial information propagation in the model.

The scripts used to train the categorizers and the segmenters are available on GitHub2.

3.3.1 Fully Supervised Segmentation

All the weakly-supervised methods use the full TenGeoP-SARwv dataset and its more
than 37k image-level annotations. However, some previous work stated that supervised
learning was successful in SAR imagery for segmentation. Ref. [15] found that the con-
volutional neural networks achieve better results than other usual segmentation methods
such as logistic regression or k-Means to segment pollution on acquisitions from Sentinel-1
and Envisat. Ref. [54] shows that the regression of the sea ice concentration, seen as a
segmentation problem with classes representing the concentration intervals, can be solved
with a model’s architecture similar to U-Net [163]. Ref. [223] used Residual Networks [66]
to regress the wind direction on tiles of 5 km by 5 km extracted from interferometric wide
swath products from Sentinel-1.

This method relies on the manually pixel-level annotated dataset containing one thou-
sand wave mode in the training set. The segmentation model follows the U-Net architec-
ture [163] with a four-story model but a cut-off of the decoder to get a output of 64x64

2. https://github.com/Rignak/DeepLearning/tree/oceanix
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pixels. The architecture is depicted in Fig. 3.2. The model is trained under the Weighted
Binary Cross Entropy function defined as:

WBCEc(yc, ỹc) = −KcC∑
K
·

[∑
yc

642 yc log(ỹc) + (1−
∑

yc

642 )(1− yc) log(1− ỹc)
]

(Eq. 3.1)

This loss is quite different as the one described in [73] as it uses the vector K which is
the inverse of the pixel-wise a priori probability of each phenomena to appear (computed
on the training set). C stands for the number of classes and is needed to conserve the same
learning rate. yc and ỹc are respectively the groundtruth and the predicted segmentation
for the class c.

K = (34.5, 11.8, 250.0, 14.1, 8.2, 71.4, 2.3, 50.0, 9.1, 8.3) (Eq. 3.2)

Fig. 3.2: Architecture of the fully-supervised model. It is a U-Net model [163] with a
input shape fourfold the output to account for the imprecision of the annotation.

3.3.2 Masking the Input (MASK)

This method, as suggested by [224], assumes that the class-output of a categorizer will
be affected negatively if a part of the researched object is hidden. Usually, this is done by
moving a square mask over the input. With X the input, the masked input X ′

c,a,b, where
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a and b denote the position of the mask, and c its size, is defined by:

X ′
c,a,b(x, y) =


X(x, y) if |x− a| > c

2 and |y − b| > c
2

v else,

(Eq. 3.3)

with v is the value taken by the input when the mask is over it. As one of the TenGeoP-
SARwv’s class, namely the Low Wind Area class, can be recognized by an overall low
intensity, setting v = 0 could lead to an increase of the categorization score for this class.
Incidentally, it introduces high spatial frequencies that could, a priori, be seen as either
an Atmospheric Front or an ocean Front. Setting v at the mean value of the image could
mitigate this behaviour.

Once the edited inputs are generated, the pseudo-probability of the phenomena i

to be depicted on the input X is denoted as M(X)i, with M a model trained on the
categorization problem. The pseudo-segmentation is defined by:

Y (x, y) = 1
#Ac(x) ·#Bc(y)

∑
a∈Ac(x)
b∈Bc(y)

max(0,M(X)(x, y)−M(X ′
c,a,b)(x, y)) (Eq. 3.4)

Ac(x) =
{

a ∈ N, |x− a| < c

2

}
(Eq. 3.5)

Bc(y) =
{

b ∈ N, |y − b| < c

2

}
(Eq. 3.6)

However, this computation has a complexity of O(h ·w)O(M). To decrease it and be
able to run it in an acceptable time, we use a stride s and compute Y ′(x, y) only when
both indices are multiples of s. Thus, the complexity is reduced to O(h·w

s2 )O(M).
In the experiments, c = 75 px (3.75 km) and s = 25 for a 512 × 512 px-wide input.

The resolution of the pseudo-segmentation is thus of 16x16px and required to run the
categorizer on 256 + 1 images of shape (512, 512).

3.3.3 Partial Categorization (PART)

Using partial categorization to build a pseudo-segmentation relies on the opposite paradigm.
Following [204], the categorizer runs on multiple locations and only take a small part of
the input at a time.
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Some categorizers (such as InceptionV3 [187]) have a number of weights independent of
the input size. Indeed, they do not include fully connected layers before a global pooling.
Therefore the number of weights is only defined by (1) the number and the shape of the
convolution kernels and (2) the number of classes, and of neurons of the fully connected
classes. This property enables a categorizer trained for a shape S1 to categorize inputs of
shape S2.

A minimal shape can be defined by the architecture of the network. In the case of
InceptionV3, the last activation map shrink to a single pixel for an input shape of (75, 75).
In other words, an InceptionV3 trained on (512, 512)-input can provide categorization
down to inputs of shape (75, 75) (given that the resolution does not change). Therefore,
it is possible to divide several tiles and obtain the categorization for each of them. The
pseudo-segmentation is therefore defined by:

Y (x, y) =M
(

X
[
x− S2

2 : x + S2

2 , y − S2

2 : y + S2

2

])
(Eq. 3.7)

Fully-convolutional categorizers also possess the property of translation invariance: if
the effect of the borders are considered as marginal, the output of the last convolutional
layer, the activation map, will be equivariant with the input. However, as a spatial global
average is computed after these convolutional layers, localized information will be lost
and the equivariance will become an invariance. In the context of searching the position
of a phenomenon, it means that running the categorizer on every possible location is
unnecessary: the result on an image after a translation of a few pixels will not change.

In the experiments, the tile shape S2 is either of 129 × 129 or 75 × 75, and the stride
of S2

3 . As with the previous algorithm, a categorizer has to be run on dozens or hundreds
of inputs (depending of the resolution) but these inputs are several times smaller than
the full observation.

3.3.4 Class Activation Maps (CAM)

Even without doing assumption on the scale, shape or intensity of the SAR signatures
of the metocean processes, it is possible to obtain a pseudo-segmentation. By essence,
a convolutionnal network keeps the localization properties of the input image through
its layers. The stride of the convolutions, the size of the kernel and the poolings build a
filter system that recognizes shapes [105] and textures [52] and returns activation maps,
i.e., the presence of the features recognized by the filters. However, a categorizer has to
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finally fuse the information of these activation map to obtain an image-level answer. This
is usually done using global pooling [186] or dense layers [95, 173, 65]. The localization
information is thus conserved until the last convolutional layer, whose outputs are called
Class Activation Maps (or CAM). After that point, localization information is discarded
by the use of either dense (also called fully connected) layers or by a global polling. It
has been shown that it was possible to use CAM, before the destruction of structural
information, to obtain the segmentation of the objects [233].

To get CAM from a categorizer, the global average pooling is removed from the net-
work. Then, the output of the last convolution layer -of shape (w, h, f)- is multiplied by
the weights of the dense layer -of shape (f, n)- to produce a (w, h, n) output, where w and
h are respectively the width and height of activation maps, f the number of filters and n

the number of classes. The biases are applied if available.
In SAR domain, CAM has been used for segmentation of crop areas under weak super-

vision on image-level labels [211]. To this end, a categorizer from U-Net architecture [163]
is built by adding a global pooling layer after the U-Net module and a dense layer to
translate the 32 channels of the output into a single value (the binary classification of the
input). This classifier is called U-CAM and achieve a categorization accuracy of around
98%. However, this study was done with low-resolution pictures (50 × 50 pixels, with 200k
samples at a resolution of 30 m.px−1) with only two classes. In contrast, the TenGeoP-
SARwv dataset contains images of 512 × 512 pixels, categorized in ten classes. Since the
categorization task is more complex, the attempts to train a U-Net classifier did not reach
satisfactory result (best accuracies at 40%).

However, since the shape of TenGeoP-SARwv’s images is higher than InceptionV3’s
minimal shape, it is possible to use this architecture to build CAM. Similarly to the U-
CAM network, this model ends with a global average pooling layer followed by a dense
layer. Thus, it is feasable to use the activation map of the ante-penultimate layer to
obtain segmentation of the metocean process. As it does not include unpooling layer,
the activation maps have a lower space resolution than the input. For an input of shape
(512, 512), the activation maps have a size of (14, 14), representing a spatial resolution of
approximately 1.8 km.px−1, whereas U-CAM could keep the same resolution as the input.

This algorithm remind those described in the previous section as it is based on the
output of a convolutional layer previously to a pooling phase. However, the spatial propa-
gation of information through the convolution is not clipped to the width of a tile. It can
be computed that it is equal to 1255

64 ≈ 19.6 pixels in the final activation map (superior to
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its own width on inputs of 512 × 512).

3.3.5 Image-Level Classes as Noisy Pixel-Level Segmentation
(IM2PX)

Neural networks have been proved to be able to train under very noisy datasets [161]. As
such, the image-level labels used in the weak-supervision can be interpreted as segmenta-
tions with heavy spatial noise. Under this paradigm, the (1, 10) label vector is converted
into an image of shape (h, w, 10), the value of the vector being used for each pixel. Then,
an image-to-image model is given the task to solve the segmentation problem.

Assuming that (1) the segmentation model respect constraints on the spatial infor-
mation propagation (the value of an output pixel is defined by the value of the input
pixels in a constrained neighbourhood), it is possible to infer implicit information on the
position of the phenomena. In layman’s term, if a pixel is located far from the features of
a class, the segmenter (whose work is to do a pixel-level categorization) won’t be able to
assign this class to the pixel, as no pixels of the neighbourhood should (2) give information
about it. Thus, if (3) the network has been trained without overfitting, the only pixels
with a significative value for the categorization will be those under the neighbourhood of
a phenomenon.

Condition (1) can be ensured by studying the model architecture. The spatial propa-
gation of a classic autoencoder is ρ = k

2 (2n(n + 4)− 2) with n the number of max pooling
layer and k the number of successive convolutional layer (of kernel size 3) at each stage.
This can be demonstrated by remarking that at the first layer of the stage i of the spatial
propagation is ρi = 2(ρi−1 + k

2 ), and that ρ0 = nk
2 + k (this is the spatial propagation

of the encoding network). To prevent ρ from rising, and for simplicity’s sake, an encoder
model was used with n = 3 and k = 3. Condition (2) depends on the comprehension of the
phenomena. It is not impossible that long-range correlation could provide information on
the main phenomena on the picture, but they are considered small enough to be marginal.
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3.4 Results

3.4.1 Quantitative Results on the Wave-Mode Test Set

Quantitative results are obtained by computing the Dice index (also known as F1-score)
over a test set of manually annotated segmentations. The Dice index is defined as:

D(xi, yi) = 1
#S

∑
e∈S

2 · xe,i · ye,i

xe,i + ye,i

(Eq. 3.8)

In this equation, S is the set of all the pixels, xe,i is the predicted segmentation of the
label i at the pixel e and ye,i the corresponding groundtruth. The Dice index gives values
between 0 and 1, the latter being obtained on perfect agreement between the groundtruth
and the prediction. Another (equivalent) formulation of the Dice index is as the harmonic
mean of the precision and recall, which increase when respectively the false positive and
false negative decrease. As such, the Dice index would always be equal to 0 in case of
non-detection whereas the range of a mean square error or a cross entropy would depend
on the surface covered by the phenomena.

These groundtruths are independent of the datasets used either in the weakly-supervised
framework or in the fully supervised one. SAR observations, used as inputs of this test
set, originate from a supplementary dataset to TenGeoP-SARwv and contains 100 manual
segmentations (with 10 observations from each class).

According to Table 3.2, the supervised framework outperforms all the other methods.
Compared with the other methods, it gives especially good results for the Rain Cells, the
Atmospheric Fronts, the ocean Fronts, the Pure Ocean Waves and the Icebergs, with a Dice
index of respectively 31.1%, 29.5%, 33.7%, 47.9% and 13.5% for four classes. Incidentally,
it has the lowest inference time, requiring only to run a U-Net model a single time.

However, other methods have their merits on specific phenomena. In particular, partial
categorizations are powerful to segment Wind Streaks and Sea Ice. Though not obtaining
higher performances than the fully-supervised framework, they produces good results
on Pure Ocean Waves with a 75 px-wide tile (40%). The Low Wind Area and Micro
Convective Cells requiring enough contextual information to be discriminated, 129 px-
wide tile is more adapted to phese phenomena, obtaining a Dice index of respectively
63.2% and 34.2%, the latter being the best segmentation over all methodologies.
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Table 3.2: Dice index for each algorithm and phenomena computed over the test set.
A Dice equal to 1 means perfect overlap between the truth and the prediction. Values
are given as mean and standard deviation over 10 trainings to account for the random
initialization and order of the groundtruths used in the epochs.

Method AF BS IC LWA MCC OF POW RC SI WS Mean

A -
Fully
su-

per-
vised

29.5%
[4.4%]

24.7%
[8.4%]

13.5%
[2.1%]

69.5%
[4.5%]

30.8%
[7.4%]

33.7%
[6.2%]

47.9%
[6.5%]

31.1%
[3.5%]

63.3%
[11%]

61.1%
[7.5%]

40.5%
[6.1%]

B -
MASK
(v =
µ)

9.6%
[2.1%]

16.1%
[2.9%]

4.9%
[0.9%]

15.2%
[2.8%]

20.6%
[3.7%]

18.9%
[1.5%]

9.6%
[2%]

13.1%
[2.3%]

17.2%
[4%]

27.2%
[8.8%]

15.2%
[3.1%]

B -
MASK
(v =

0)

10.4%
[1.1%]

17.2%
[1.6%]

1.2%
[0.5%]

5.9%
[1.7%]

3.28%
[5%]

1.3%
[1.2%]

14.8%
[2%]

8.2%
[1.6%]

19%
[8.2%]

51.7%
[11.1%]

17.4%
[3.4%]

C -
PART

(c =
75,
s =
25)

6.9%
[1.3%]

29%
[1.2%]

2%
[0%]

39.2%
[9.8%]

23.2%
[3.4%]

6.7%
[0.9%]

40%
[4.9%]

19%
[6.2%]

73.3%
[4%]

66.9%
[5.1%]

30.6%
[3.7%]

C -
PART

(c =
129,
s =
43)

14.6%
[1.7%]

28.9%
[0.9%]

2%
[0.2%]

63.2%
[2.6%]

34.2%
[6%]

11.8%
[1.5%]

19.2%
[4.4%]

23.5%
[0.6%]

77.5%
[3.5%]

70%
[4.8%]

34.5%
[2.6%]

D -
CAM

16.6%
[3.4%]

14.8%
[3.4%]

2.2%
[0.3%]

47.6%
[5.8%]

12%
[3.2%]

20.4%
[3.2%]

7.3%
[1%]

17.9%
[2.5%]

40%
[9.4%]

14.2%
[8%]

19.3%
[4%]

E -
IM2PX

12.1%
[1.9%]

26.9%
[1.8%]

1.9%
[0.5%]

69.6%
[1.5%]

26.5%
[5.2%]

10.9%
[1.1%]

17.5%
[1.5%]

18.8%
[3.7%]

69.8%
[12.5%]

27.7%
[5.6%]

28.2%
[3.5%]
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The noisy segmentation paradigm is competitive on Sea Ice. However, this particular
class was defined, in the TenGeoP-SARwv dataset by the presence of sea ice over the whole
observation, with no open water area. With this definition, the categorization annotation
is effectively the same as the segmentation. This paradigm also obtains the best result
for the segmentation of Low Wind Area but, given the standard deviation, should be
considered equivalent to the fully-supervised framework.

Mask-based methods and Class Activation Maps, on the other hand, are inefficient on
most classes. If we exclude the supervised framework, CAM perform well on ocean Front
and Atmospheric Fronts whereas the Masking method outperformed the other unsuper-
vised methods on Icebergs.

As the quality of the groundtruth in the fully supervised framework is higher, it is
possible to obtain better results with much less annotations if they are at pixel-level, as de-
picted in Fig. 3.3. Assuming the performance follows a power law [72], the fully supervised
framework could provide even better results. On the other hand, all the weakly super-
vised algorithms are converging to much higher loss values. An increase of the groundtruth
quantity would not lead to enhanced performances.
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Fig. 3.3: Evolution of the Dice index on the test set in regards with the quantity of avail-
able groundtruth. The error bars correspond to the standard deviation over ten models
(random initialization, random selection of groundtruths). The green doted curve corre-
spond to a modelisation following [72].

3.4.2 Visual Inspection of Wave-Mode Results

The visual inspection of the segmented wave mode images are given in Fig. 3.4. It con-
firms that the most promising method is the fully supervised trained U-Net model. The
segmentations are sharp enough to have a reliable accuracy on Icebergs, Oceanic and At-
mospheric Fronts while retaining the ability to segment global phenomena such as Pure
Ocean Waves and Micro Convective Cells. These observations are coherent with the Dice
index values.

On the contrary, the partial categorization methods suffer from high noise since the
area covered by the tiles are often too small to contain enough context. As visible in
the Fig. 3.4, some tiles, scattered over the image, are estimated as Wind Streaks. It also
generates confusion between the ocean Fronts (and the boundaries of the Rain Cells) and
ice leads (and thus the overestimation of the Sea Ice class).

The noisy segmentation paradigm, as per the results compiled in Table 3.2, was sup-
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posed to give good results on the segmentation of Sea Ice, though the result are not
especially good on the other phenomena (with the exception of Low Wind Area). How-
ever, the aforementioned examples show that this method leads to repeated overestimation
of the Sea Ice class, which mitigate the relevance of this method.

The algorithms relying on the Class Activation Maps show capabilities to segment some
phenomena, but are impacted by the high spatial propagation of data, as previously dis-
cussed. This lead to an overestimation of local phenomena (Icebergs, Atmospheric Fronts,
ocean Fronts). CAM are also enduring difficulties when multiple phenomena are present,
as the more prominent monopolize the activation. This explains the large black areas,
which are portions of the observations where the predictions are below a threshold.
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SAR observation
(enhanced
constrast)

Groundtruth

1 - U-Net

2 - MASK (+
mean intensity
normalization)

3 - PART
(c = 75, s = 25)

3 - PART
(c = 129, s = 43)

4 - CAM

5 - IM2PX

Fig. 3.4: Examples of output on elements of the test set for each segmentation method.
Pixels in black are below a decision threshold of 0.5 and left undecided.

3.5 Discussion and Perspectives

All previous results rely on TenGeoP-SARwv dataset and same mode segmentation groundtruth,
generated from the Sentinel-1 Wave Mode which is a 20x20 km acquisition mode. How-
ever, SAR observations can cover a much larger area whenever acquired in IW Mode,
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250 km wide. They cover a wider incidence angle range, from 29 to 46 degrees (w.r.t 23
and 36 for WV) and are acquired over coastal regions. Though they differ from the Wave
Mode images, Interferometric Wide Swath can be preprocessed in a similar way in terms
of pixel size reduction and incidence angle dependent normalization.

Even though the occurrence of observable classes highly depends on the incidence angle
[208], this information is not used in the segmentation process. The possibility to extend
the developed methodology to a wider range of incidence angles thus appears realistic.

To this end, Wide Swath observations are divided in tiles of 20 km by 20 km. These
mosaics are constructed by ensuring an overlap between each tile. With a construction
stride equal to the half of the tile width, a pixel on the border of a tile will be contained
in the central part of the next one. Taking advantage of the equivariant property of
the fully convolutionnal networks such as U-Net, reconstruction of the mosaic with the
central part of predicted tile provide continuity over the whole Wide Swath observation.
The segmentation of areas of several hundred kilometers wide can be computed in a few
seconds (depending of the available GPU) with the supervised method. However, weakly
supervised algorithms relying on multiple categorization for one tile cannot be realistically
used for such applications.

At first sight, Fig. 3.5, with a model trained under the fully supervised framework,
shows promising results for the segmentation of Wide Swaths, with most metocean pro-
cesses being well detected. The Rain Cells appearing in the south of the Tuscan Archipelago
(in the yellow rectangle) are correctly returned despite their small scale. An Atmospheric
Front can be observed at the south-east of Corsica (in the green rectangle). This front
delimit two areas of different wind speed and continue in the south-west of the island.
The area in the south, with more intense wind, contains Wind Streaks which are nicely
highlighted. Ships are also appearing in several places of the observation and are returned
as Iceberg as they have a similar signature. This behaviour reflect a contextual difference
between the wide swaths acquisition (which are taken in coastal areas) and the wave
modes -on which was trained the network- where the probability to have a ship is lower.

Other geographical differences include the orographic waves depicted in the east of
Sardigna. They are induced by the western winds and the upwind topography. These
orographic waves appear as large scale wind disturbances perpendicular to the wind flow.
Such coastal interactions are absent of the TenGeoP-SARwv dataset. Given their sim-
ilar aspect, they are mis-classified as successive atmospheric fronts. Their classification
as a separate new phenomenom would probably require their investigation at a larger
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scale than 20x20 km to identify several wave patterns and the coast vicinity. It can also
be noted that, in this area, orographic waves are co-occurring with Wind Streaks. This
raises concerns about the implicit segmentation assumption that, at pixel-level, metocean
processes are mutually exclusive.

The influence of the coast is also visible in the Gulf of Genoa. There, a different
regime with strong North-Eastern offshore winds is influenced by the rapidly changing
topography. It leads to a strong turbulent flow and some wind discontinuities aligned with
the flow. It is segmented as Rain Cells though the visual inspection does not highlight
precipitations.

Overall, even though the classes may not be adapted to all the phenomena met over
these coastal regions, the algorithms behaves well in its ability to find the closest one
among the possible choices. Introducing new classes, adding several scales of predictions
can probably leviate the identified issues.

76



Fig. 3.5: Interfermetric Wide-swath acquired the 20 November 2020 at 05:28 and its seg-
mentation with the fully-supervised method. To account for geographical considerations,
a model excluding the Sea Ice class is used.

3.6 Conclusions

Fully supervised and weakly supervised segmentation are two paradigms under which it
is possible to obtain segmentation of metocean processes. Fully supervised segmentation
needs pixel-level annotations that are more time consuming to produce than image-level
annotation used in weakly supervised frameworks. However, our experiments show that
the data quantity required to outperform weakly supervised techniques can be reduced to
a few dozens per class. More data leads to even better results. The extrapolation of our
results suggests that building a fully groundtruthed dataset of dozen thousands segmented
images may result in a significant gain in the segmentation performance.

The metocean phenomena studied in this work are open water processes contained in
the TenGeoP-SARwv dataset. They are thus restricted to the ten classes described and
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suffer from several limitations mainly linked to the representativity of the data. First,
as this dataset was created for categorization, the diversity of the phenomena are not as
high as they could be in reality. In fact, the Sea Ice class mostly contains images wholly
covered by ice, for which the categorization information is effectively equivalent to the
segmentation. Not only the diversity could increase with the introduction of the sea/ice
boudnary, but this class could also be divided in multiple subclasses [81] depending on
the development stage or ice concentration. In the same way, Rain Cells typically occur
with three components: a front, a down-burst area corresponding to the descending wind,
and a smaller splash area generated by the precipitation. A more detailed analysis of this
phenomena could be given by additional sources, for example weather radars.

The representativity of the ocean situation can be impeded by the instrument itself.
The area covered by Wave Mode being limited to 20 km by 20 km, some phenomena, such
as Wind Streaks with long wavelength are difficult to acquire. A multi-scale approach using
IW groundtruths is believed to be beneficial to the semantic segmentation. The extension
of the segmentation to coastal areas will also require the integration of new classes such a
orographic waves, offshore winds, sea/land breezes or internal waves that do not appear
on the Wave Mode acquisitions.

The categorization task assume that a wavemode can belong to only one class. The
segmentation decrease this constraint by considering multiple areas assigned to different
classes inside one image. Still, an assumption that the phenomena are mutually exclusive
at the pixel level is made. If this supposition holds on the standardized TenGeoP-SARwv
dataset, it becomes difficult to maintains it on Wide Swath observations as orographic
waves or internal waves can be superimposed with Wind Streaks. A multi-label estima-
tion (as opposed with “categorization”) would need a more precise delimitation of each
phenomenon.

- END OF THE ARTICLE -
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Chapter 4

THE PROBLEM OF VARIABLE SCALE

PHENOMENA. EXAMPLE OF THE COLD

POOLS

4.1 Introduction

Cold Pools are large convective systems (ranging from several kilometers to several dozen)
associated with descending winds, visible on SAR observations [99]. They are key elements
of moisture evolution [188, 100], inducing the generation of new cold pools on their borders
[196]. However, their dynamics are not well understood, leading to activities dedicated to
characterizing their associated wind speed, temperature difference, extent, and duration
[42, 97]. Convective systems are notably the subject of the EUREC4A campaign [178].

On SAR images, Cold Pools have distinctive signatures as the vertical component of
the wind speed is null at the sea surface. This causes the wind to radially disperse as
the altitude decreases, resulting in a change of the wind direction or a modification of
the wind speed. Interactions with the EUREC4A campaign [178] highlighted that the
semantic segmentation, initially developed for individual 20x20 km WV observations in
Chapter 3, was insufficient due to the difference in scale of the processes. In Fig. 4.1,
four Convective Cells ranging in size from 864 km2 to 12 km2 are highlighted. As shown
by the pink square, a model that uses the entire information in the 20x20 km area (i.e.
a maximum receptive field) would still only be able to provide partial observations of
the larger Convective Cells. Fig. 4.2 focuses on areas of 20x20 km and illustrates that
it is impossible to recognize a convective process using WV-like images. However, the
size of some Convective Cells, particularly the younger ones, can be small. Reducing the
resolution to enable the segmenter to run on wider images means losing the ability to
recognize the smallest Convective Cells.

Multiscale process is a known problem in the remote sensing domain and various
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Fig. 4.1: On October 23rd, 2021 at 17:07:49, convective cells were observed (as shown
on the left in the image). The corresponding segmentation is on the right. Cells A, B, C,
and D cover 864 km2, 221 km2, 82 km2, and 12 km2 respectively. The purple and orange
squares indicate the areas extracted in Fig. 4.2.

Fig. 4.2: 20x20 km tiles extracted from Fig. 4.1, centred on the top of Cell A (left) and
on Cell D (right).

architectures have been developed to tackle this issue. Among the techniques used to
enable a multiscale model, attention-based architectures [203] have been recently used
[18]. Atrous convolutions [19] are also used to increase the receptive field and limit the
number of weights [110]. Another method is to crop and resize to obtain samples of
same pixel size but different spatial resolution [227, 112, 237]. As large IW observations
(of several thousand pixels width at 100 m/px) are available from Sentinel-1 products,
we design a U-Net architecture [163] augmented by "crop and resize" modules. Using a
manually annotated convective dataset, the model is trained to segment both the content
and the border of the Convective Cells. The model is compared to the original U-Net
architecture at different scales. Collocations with IR sensors confirm its ability to detect
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cold pools at an early stage of development.

4.2 Dataset

The dataset is composed of 25 manually annotated IW at 100 m/px. Both the Convective
Cells and the associated Fronts are annotated. The Fronts are important information
as they help to differentiate Cells close to each other. However, as shown by Fig. 4.2,
these Fronts are sometimes too fuzzy to locate and are therefore left without annotation.
Out of the 25 acquisitions, 4 are used for testing, 4 for validation, and the remaining
17 images are left in the training set. The model only uses the VV-channel as input,
as higher dimensional data would increase the risk of overfitting. During the training,
patches of 20x20, 40x40, 80x80 and 160x160 km are extracted at random locations. The
IW is mirrored on its borders to ensure that the patches will contain data rather than
a fill value. Data augmentation is used by randomly applying vertical and/or horizontal
symmetry and/or rotation of π

4 , π
2 or 3π

4 radians. A second data augmentation consists in
a brightness adjustment by a random variable following the uniform distribution between
0.8 and 1.2. The brightness adjustment is only performed on the training set and does
not affect neither the validation nor the test.

The dataset is available on kaggle1.

4.3 Proposed Architecture

Since only IW and EW observation mode can be used to segment the Convective Cells,
it is possible to take advantage of the large area covered and adapt the tile extraction
scheme. Rather than extracting a single tile X of shape (w, h) at a resolution of r,
for each index i of the architecture level, one tile Xi of shape (w, h) is extracted at a
resolution r · 2i. These supplementary inputs pass convolution blocks and are cropped
to be concatenated to the regular path. In the decoder, those secondary inputs are used
to produce segmentation maps at each resolution. The activation maps before the final
segmentation are also cropped and forwarded to the regular path. The layer connected
to the secondary outputs but not to the regular path are discarded after the training
similarly to the auxiliary outputs used, for example, in the Inception model [187].

1. https://www.kaggle.com/datasets/rignak/convectivecells
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Under this scheme, the effective field of the model can be larger than the size of the
initial 20x20 km wide tile and conserve the continuity between adjacent tiles. The number
of levels in the architecture can also be increased, though it increases the risk of overfitting.
It should be noted that the continuity between the tiles is not explicitly enforced, but relies
on the assumption that the intermediary outputs will act as regularizers.

Since the annotated processes, the Fronts and Cells, have different extents on the
image, the loss function to minimize is balanced to their distribution. In particular, the
Fronts cover only 3% of the observations. We consider the balanced mean square error
described in Eq. 4.1.

MSEb(ŷ, y) = 0.5
(

y

k
+ 1− y

1− k

)
MSE(ŷ, y) (Eq. 4.1)

y is the ground truth segmentation, ŷ the corresponding output of the model, and
k the a priori probability of a pixel to be segmented, which is computed prior to the
training on the training set. L is balanced in a way that if a segmentation only concerns
a few pixels (typically in the case of Fronts), the weight of the MSE on these pixels will
be high.

During the training, the formulation of Eq. 4.1 changes to retrieve the real-world
distribution at the batch n, as indicated in Eq. 4.2. i is the index of the current batch,
and n is the batch after which L becomes equal to the MSE.

L = n−min(i, n)
n

MSEb + min(i, n)
n

MSE (Eq. 4.2)

Finally, as L is computed at different resolution levels, the overall loss is a weighted
mean of every loss, with the weights following a geometric progression of rate 0.5 so that
the sum of the weights below a resolution level k would be equal to the weight at the
resolution level k. The use of intermediary loss, for outputs discarded at inference time,
is known to facilitate the training of very deep models [187] or constrain the final output
layer [54].

4.4 Results

After training, the proposed multi-scale architecture is compared with single-scale U-Net
models using the training set. The results on wide-swaths from the test set are described
to qualitatively assess the segmentation and confirm lower border effects.
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Fig. 4.3: Architecture of a multiscale segmenter. The dotted lines indicate the additional
elements that turn a U-Net segmenter into a multiscale model. The numbers on the
convolutional blocks represent the input and output matrix sizes. For the cropped layers,
only the output size is indicated.

4.4.1 Quantitative comparison with single-scale models

The multi-scale CNN is compared with classical models of similar effective field, such as
U-Net architectures with 5, 4, and 3 levels and resolution of 100 m/px, 200 m/px and 400
m/px, respectively. Three functions are used for the comparison: the Mean Squared Error
MSE, the balanced MSE described in Eq. 4.1 and the F1-score. The F1-score is defined
by computing a threshold α defined in Eq. 4.3.

α = argmin
α̃

P (f(x) > α̃) < k (Eq. 4.3)

Since the segmentations are binarized, it is possible to compute the number of True
Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives (TN). The
F1-score is defined as in equation Eq. 4.4. The F1 score can also be considered as the
harmonic mean of the precision and the recall.

F1 = 2TP

2TP + (FP + FN) (Eq. 4.4)

The results of the tests are presented in Table 4.1. On the segmentation of the Cells,
the multiscale model (with inputs starting from 100 m/px) is able to outperform the
classical U-Net model at resolutions of 100 m/px, 200 m/px, or 400 m/px. The results are

83



coherent for both the MSE and the balanced MSE (both of which are to be minimized)
and the F1-score (which is to maximize). On the other hand, on Fronts, the performances
of the multiscale architecture are similar to that of the U-Net model at a resolution of 100
m/px, which has the same number of layers. This is consistent with the observation that
convective Fronts can be recognized without the need for extended contextual information.

Loss Dataset MS 100
m/px

U-Net 100
m/px

U-Net 200
m/px

U-Net 400
m/px

MSE
Cells ⋆ 0.089 ⋆ 0.096

(0.0079)
⋆ 0.103
(0.0061)

⋆ 0.106
(0.0045)

Fronts ⋆ 0.011 ⋆ 0.011
(0.00079)

⋆ 0.013
(0.00075)

⋆ 0.012
(0.00045)

MSEb

(Eq. 4.1)
Cells ⋆ 0.42 ⋆ 0.46

(0.054)
⋆ 0.50
(0.049)

⋆ 0.49
(0.0098)

Fronts ⋆ 0.36 ⋆ 0.36
(0.028)

⋆ 0.35
(0.014)

⋆ 0.37
(0.022)

F1-score
(Eq. 4.4)

Cells ⋆ 0.63 ⋆ 0.54
(0.055)

⋆ 0.51
(0.055)

⋆ 0.53
(0.029)

Fronts ⋆ 0.21 ⋆ 0.22
(0.0089)

⋆ 0.19
(0.0071)

⋆ 0.19
(0.0052)

Table 4.1: Quantitative results of the segmentation of convective processes. Results are
given as mean and standard deviation over 5 trainings except for the multiscale model
because of time consideration. ⋆ indicates the best method for each loss.

4.4.2 Qualitative comparison

The examples of the segmentations are presented in Fig. 4.4 (segmentation of the Cells)
and Fig. 4.5 (segmentation of the Fronts). The border effect is visible on the segmentations
from the U-Net model at 100 m/px as the prediction is subject to discontinuities at the
edges of the patches. This issue, though still ocurring on the segmentations from the
multiscale model, is mitigated. It can be noted that the segmentation of the Cells appears
to loose its precision as the wind speed decreases, as visible in the bottom-right quarter
of the observation from January 04th 2018.

4.4.3 Comparison with GOES measurements

Convective process can be observed with IR sensors such as the ABI aboard the GOES-16
and GOES-17 satellites [166, 106]. In particular, the 14th band, centred at 11.2 µm, [40]
is sensitive to both clouds and water vapour. The latter is particularly associated with
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Fig. 4.4: Results of the segmentation of the Convective Cells on IW from the test set.

convection since cold pools are generated by rainfall evaporation [191]. SAR observations,
and their subsequent segmentations as convective processes, have been co-located with
the GOES-16 and GOES-17 satellites. Examples are displayed in Fig. 4.6. The advantage
of such co-location is the possibility to observe the evolution of the Convective Cells since
GOES-16/17 observations are available with a time resolution of 10 minutes. The spatial
resolution for the 11.2 µm band is 2 km per pixel.

In Fig. 4.6.a, the correlation between the Convective Cells segmentation and a bright-
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Fig. 4.5: Results of the segmentation of the Fronts on IW from the test set.

ness temperature around 280 K in GOES-16/17 Band 14 can be observed. In particular,
Cells of various development stages are present. In the top-left corner, a large (and likely
old) Convective Cell is dissipating. Though being easily visible at T0 − 4, it has disap-
peared at T0 + 96. In the green square, two adjacent Cells with strong rain signatures
in their center are developing, reaching a maximum surface at T0 + 36 and still being
present at T0 + 136 though having been separated into two isolated Cells around T0 + 56.
Interestingly, they are aligned with other small-scale Cells containing rain signatures. It
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should be noted that intersecting cold pools are known to last longer and grow larger and
more intense than isolated ones [49]. In the orange square, a young Cell is developing
into a large cold pool at T0 + 136. Finally, the cyan square sees the birth of a strong Cell,
with a low brightness temperature at T0 + 76 in the trail of a Cell within which a rain
signature was present in its back. This collocation indicates that the SAR observation,
and its associated segmentation, can provide hints to determine the development of the
convective processes.

As shown in Fig. 4.6.b, the 11.2 µm band is limited when at least two layers of cloud
or water vapour are present. In this collocation, large cold pools are easily visible in the
SAR observation. They are segmented as convective processes though their size, and the
lack of gradient at the side opposed to the rain signatures, makes the model fail to delimit
their whole extent. On observations from ABI’s 14th band, these convective pools are
hidden by an upper cloud layer moving toward the top-left. However, the existence of the
second layer moving toward the top right is perceptible, especially at T0 + 40, T0 + 60 and
T0 + 80. It should be noted that the presence of rain signatures hinder the segmentation,
as the upper Cell is only partially delimited. Furthermore, in Fig. 4.6.a, the Cell at the
left of the blue square and those inside the green square, are not detected either. This is
likely to be a bias in the dataset as most of the groundtruth Cells does not contain rain
signatures. This model is also impacted by the lower wind speed of these two collocations
in comparison to the wind speed distribution of the dataset.

4.5 Conclusion

As SAR observations of ocean surfaces are sensitive to variations in the wind, both for
its direction and its speed, they can be used to study convective processes. The very
high resolution of Sentinel-1 sensors enable to image even fine-scale processes, though the
acquisitions used in this study are downscaled to a resolution of 100 m/px. With the
appropriate dataset, it is possible to train a deep learning to segment the cold pools, and
delimit their Fronts. However, the manual annotation is often difficult since the borders
of the Cells can be too fuzzy to be identified. Besides, the Cells have a wide range of
extent, notably depending on their age. To account for the specifics of these convective
processes, we proposed a multi-scale architecture able to segment large Convective Cells
without being subject to border effect or losing the ability to detect fine scale (younger)
Cells. The results of the segmentation are compared to the manually annotated test set
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(a)
T0=2021-09-16

09:44:17 T0 − 4 min T0 + 16 min T0 + 36 min T0 + 56 min

T0 + 76 min T0 + 96 min T0 + 116 min T0 + 136 min

(b)
T0=2021/12/30

09:20:14 T0 T0 + 20 min T0 + 40 min T0 + 60 min

T0 + 80 min T0 + 100 min T0 + 120 min T0 + 140 min

Fig. 4.6: In each box, the top-left image is the SAR observation. Bottom-left is the output
of the convective cell segmenter. The other observations are the Brightness Temperature
estimated from GOES-16 Advanced Baseline Imager (ABI) 14th band (11.2 µm), which
indicates water vapor in the atmosphere.

and compared to the observation from GOES-16 and GOES-17 IR Longwave Band. The
main limitation of the segmentation of the convective process appear to be the size of the
dataset, which is too small to represent the whole diversity of cold pools. In particular,
we identified lower performances at low wind speed and in presence of rain cells.
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FOREWORD

In the previous chapter, segmentation was performed to retrieve purely semantic pro-
cesses. Groundtruths were obtained through manual annotation, although the underlying
processes could be expressed with metocean properties, such as a wind direction disconti-
nuity for convective processes or a variation in surface viscosity for biological slicks. These
properties are difficult to retrieve automatically, leading to a need for manual annotations
and small datasets.

In the following chapter, groundtruths are obtained from third-party sources. In the
first section, sea ice concentration is studied. Data is manually annotated by the Norwegian
Meteorological Institute, but their sheer size dwarfs previous datasets. The other two sub-
jects are rainfall estimation, obtained through third-party sensors (NOAA’s NEXRAD)
and the estimation of wind speed when SAR observations are contaminated by rain signa-
tures. In this case, groundtruths are obtained by colocalizing with an atmospheric model.

Thanks to the difference in data quantity, collocated datasets contain more diverse
metocean situations, decreasing the risk of overfitting. It also makes it possible to study
the behavior of the models under several conditions, which is only possible if enough
samples are available for a specific metocean situation.

However, to ensure the representativeness of the dataset, one has to be careful to
correctly preprocess the data and especially avoid data contamination and balance the
training, validation, and test sets with care.
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Chapter 5

SEA ICE CONCENTRATION ESTIMATION

USING METNO/SENTINEL-1
COLLOCATIONS

This section is the reproduction of [54], in which the author of this manuscript was in-
volved as second author. His contributions were directed at enhancing the model to take
into account the specifics of the sea ice concentration estimation problem and, in partic-
ular, the relation between the class-oriented segmentation, justified by the groundtruth’s
format, and its translation as a continuous value of sea ice concentration. This led to the
formulation of both a regression and categorization loss and two different output layers
in the model architecture.

5.1 Introduction

In the context of climate change, the development of automated algorithms for ocean and
sea ice monitoring has become a main activity for the scientific community. Given the con-
tinuation of many Earth Observation (EO) programs as well as the proliferation of sensors
with increased capabilities, EO satellites are widely used to derive sea ice maps. Several
types of sensors are used to estimate sea ice information. First of all, visible and infrared
sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are often
used because of their ability to image details on sea ice and its albedo, which is important
for the study of energy exchanges between the ocean and the atmosphere [62]. However,
sunlight and meteorological conditions over the poles make the generation of continuous
observations from optical sensors very complicated. Thus, microwave sensors (both pas-
sive and active measurements) are used. Passive MicroWave radiometers (PMW) such
as the Special Sensor Microwave Imager / Sounder (SSMIS) or the Advanced Microwave
Scanning Radiometer (AMSR) have been the most extensive sources of information on sea
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ice since 1972 [30]. Therefore, it is generally integrated by sea ice services for automatic
sea ice chart generation [194]. Concerning active sensors, scatterometers like QuikSCAT
or ASCAT complement the data coming from passive microwave sensors. Indeed, scat-
terometers enable better precision on melting sea ice during spring and summer seasons
than passive microwave sensors [160]. However, the main drawback of radiometers and
scatterometers is their coarse spatial resolutions, in the order of tens of kilometers. Syn-
thetic Aperture Radar (SAR) sensors appear to be effective because of their high spatial
resolution (as of 2020, a few tens of meters for swaths of a few hundred kilometers), their
sensitivity to sea ice development stages, and finally their independence from cloud cover
or light conditions.

SAR is now commonly used for sea ice classification, being a primary information
source for operational sea ice services. Sea ice charts made by human analysts are the
results of the integration of SAR images combined with multiple information sources
at different scales. Because of the time required to manually analyze these images, the
profusion of images available from different sources, and the short-term prospect of con-
stellations of micro-satellites, many methodologies have been proposed to automate the
production of sea ice charts from SAR images. Most of them are based on the consensus
that dual-polarized HH/HV data provide the best classification capability [149, 74, 88].

Before the advent of Deep Learning (DL), SAR-based sea ice classifications were gener-
ally based on a two-step method: First, a feature extraction is made, and then a regression
or classification model is applied to retrieve sea ice information. The feature extraction
can be based on texture analysis with different methods such as Markov Random Fields
(MRFs) [143], Gabor filters, and Gray-Level Co-occurrence Matrices (GLCMs). From
[25, 24], the discrimination between different ice types seems to be better achieved with
GLCMs, then with Gabor filters and finally with MRFs. However, MRFs could also be
used as a model for image segmentation [37]. From these extracted features, various meth-
ods could be employed to retrieve information on sea ice: Support Vector Machine (SVM)
[107, 221], Multi-Layer Perceptron (MLP) [88, 87], Bayesian techniques, and regression
techniques are examples of such methods, among others [120]. These two-step methods
take a non-negligible time to develop as it requires "hand-crafted" features which are hard
to select and sometimes not optimal when the methodology to select them uses different
statistical properties than the classifier itself.

In the field of EO, the first use of DL with EO imagery dates back to 2012-2013 [201,
218], with a strong acceleration over the last years [235]. In [236], an exhaustive review
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of DL for SAR imagery is given with more than 200 references. Convolutional Neural
Network (CNN) is, for now, the most common DL architecture used in computer vision
and EO remote sensing

CNN methodologies can learn low- and high-level features from "raw" images. CNNs
consist of a stacking of convolution and pooling layers. Convolution layers are composed
of filters that move through the image to obtain convolved images. Each filter extracts
different features in the image. The number and size of filters are different depending on
the architecture. This convolution stage is an affine transformation. It is followed by an
activation function (also called detector stage) to introduce non-linearity into the model,
which enables the model to learn more complex functions [59]. Then, pooling layers aim
to down-sample convolved images in order to reduce redundancy and the resolution of
extracted features. Proceeding in the deepest part of the model, the feature extraction
is done at different scales and resolutions thanks to pooling layers. This alternation of
convolution and pooling layers performs as a feature extractor. This constitutes the so-
called "encoder phase". A fully connected layer is then used to assemble and classify these
different extracted features (so-called latent space).

Regarding sea ice applications, a set of studies have shown promising results using
deep CNNs over dual-polarization SAR data. In [210] and [209], Sea Ice Concentrations
(SIC) are estimated during the melting season using a CNN trained over 25 Radarsat-2
dual-pol (HH/HV) images. A patch size corresponding to 18 x 18 km ground distance is
used. In [14], a CNN methodology is applied to Sentinel-1 dual-polarized HH/HV data
for the classification of sea ice types in four classes (ice-free, young ice, first-year ice, and
old ice). Two CNNs are trained over two subsets of 44 and 255 SAR scenes acquired
in January-March 2018 and January-February 2020, respectively. The ground truth is
extracted from the sea ice charts provided by the National Ice Center (NIC). These studies
use an "encoder+classifier" approach, providing a 2-dimensional segmentation by locally
applying the classification to the entire SAR image with a given stride. It is shown that
a 2 x 2 km patch size provides better results than a 1 x 1 km patch.

In a Fully Convolution Network (FCN), the classical encoder step is followed by a de-
coder phase that up-samples the image to restore the spatial properties of the predictions
until it recovers the original input image size. These up-sample operations are done by
layers called deconvolutions. FCNs seem to surpass other methods for SAR image segmen-
tation for multiple applications [141, 68, 214]. A comparative study for the classification
of river ice [174] shows that FCN-like methods (DenseNet, U-net, DeepLab) provide very
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good results. U-Net [163] gives the best compromise between classification performance
and generalization capability. The use of more advanced FCN architectures (e.g. Unet++
[234] and DeepLab v3 [19]) is certainly of interest but is out of the scope of this study.

In Table 5.1, a comparative evaluation of recent studies about automatic sea ice map-
ping from SAR images is provided. In this study, dual-pol Sentinel-1 images are used to
estimate sea ice concentration with the use of an FCN technique. An adequate configu-
ration of the U-Net architecture and a specific study on loss functions are the primary
advances with respect to the other studies. We aim to provide a single but robust classifier
able to provide reliable SIC maps over the whole year thanks to an unprecedented and
massive database.

Table 5.1: An overview of recent studies on automatic sea ice mapping using SAR images
and Deep Learning framework

Study Sea ice Product
Spatial resolution ROI Time Dataset Methodology Accuracy Major contribution (+)

Major limitations (-) Perspectives

Wang et al. 2017 [209] SIC regression
400 m

Gulf of St. Lawrence
Canada 17 Jan. to 10 Feb. 2014. CIS sea ice charts

Dual-pol. RS2 (25 scenes)

CNN
input 18×18 km2

400 m pixel input
EL1 0.13 Ermse 0.22

First complete
DL methodology (+)
Limited database/ROI/time (-)

Add windspeed
information

Kruk et al. 2020 [96]
Sea Ice Type
classification
5 km

Hudson Bay
Canadian Territory June-Dec. 2018 CIS sea ice charts

Dual-pol. RS2 (350 scenes)

DenseNet-121
U-Net (encoder only)
input 5×5 km2

91.8% OA
3 classes - ice free,
New Ice, FYI

No conclusion on
summer melt period (-)

Up to 14 classes,
expand the ROI and
time of year

Cooke et al. 2019 [31] SIC regression
3.21 km

Canadian Arctic
Archipelago Jan. 2010 to Sept. 2011 SIC from AMSR-E

Dual-pol. RS2 (42 scenes)

CNN DenseNet
input 3.21×3.21 km2

with no overlap
EL1 from 0.2 to 0.3 Test scores over a

limited number of scenes (-)

Larger patch size
for better incorporation
of spatial context

Malmgren-Hansen
et al. 2020 [128]

SIC classification
2 km Greenland areas 2014-2017

over all months

DMI sea ice chart
Dual-pol. EW S-1 (912)
AMSR2

CNN
input 12×12 km2

2 km overlap

R2 0.8 - 0.89 with AMSR2
11 classes - ice free,
SIC with 10% increment

Add of AMSR2 (+)
Evaluation based on mean
prediction within each
of the test polygons (-)

Larger patch (higher
dilation rate in
pooling layer,
coarser input data),
noise correction

Boulze et al. 2020 [147]
Sea Ice Type
classification
2 km

From Canadian
Archipelago
to Franz Josef Land

Jan. - March 2018
Jan.-Feb. 2020

NIC sea ice chart
Dual-pol. EW S-1
(44 in 2018, 255 in 2020)

CNN
input 1×1 or 2× km2 (best)

90.5% OA in 2018,
91.6% OA in 2018
4 classes - ice free,
Young Ice, FYI, Old Ice

Sensitivity experiments (+)
Improved noise
correction [148] (+)
Limited dataset
Jan. - Mar.

This study SIC classification
200 m resolution

from Greenland Sea
to Kara Sea

June 2016 to May 2019
over all months

MET Norway sea ice chart
Dual-pol. EW S-1 (1320)
Wind speed

FCN
input 89.6 × 89.6 km2

200 m pixel input

78.2% OA
6 classes SIC

New auxiliary loss
large dataset
assessment for freezing
or melting periods
high resolution SIC products (+)
Heterogeneous dataset
with noise (-)

Improved noise
correction
homogeneous IPF for
S-1 data
Test advanced
architectures [19] [234]

Section 5.2 presents the area of interest, the SAR database and the collocated sea ice
charts. In Section 5.3, the employed methodology is described. A comprehensive evaluation
of the performances is shown in Section 5.4. The Conclusion appears in Section 5.5.

5.2 Study Area and Data

The study area covers some parts of the Arctic Ocean, extending from the Greenland Sea
to the Kara Sea (80◦W -80◦E ; 60◦N -85◦N). According to [153], these areas have a well-
defined annual cycle with a sinusoidal temporal evolution. The Barents and Greenland
Seas have an important ice cover dynamic between summer and winter, with potentially
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a completely open sea in summer. For the Kara Sea, freeze-up begins rapidly in late fall
and early winter for the entire region, with melting in early summer. North of Svalbard
or Franz Joseph islands, the area is almost completely frozen through the year. While
the Kara and Barents Seas are not covered with multi-year ice, the western part of the
Greenland Sea up to Fram Strait from 70◦N is covered with this ice type as early as
October (see products generated from [219]).

Our study is based on the regional sea ice products generated by the MET Norway
and made available as part of CMEMS Sea Ice Thematic Assembly Centre (SI TAC). As
mentioned in [39][82], sea ice concentration charts are generated from manual interpre-
tation of EO data, with since 2014 mainly Sentinel-1 SAR data co-analyzed with visible
and InfraRed (IR) data from NOAA VIIRS, MODIS and AVHRR. The Sentinel-1 mis-
sion provides C-band dual-polarized (HH and HV) SAR images. For the sake of coverage
optimization, all the scenes are acquired in the Extra Wide mode with a 410 km swath
width. As referred to in the previous Section, both channels are used by the analysts. Sea
ice charts are produced every weekday with the latest available EO scenes acquired in
the morning acquisition passes with a delivery in the early afternoon. These data actually
contain 6 concentration classes with the following intervals: fast ice 100%, very close drift
ice: 90 - 100%, close drift ice: 70-80%, open drift ice: 40-60%, very open drift Ice: 10-30%,
open water: < 10%. The full open water with SIC equal to 0 is also provided. For this
study, the first 2 classes are merged because 1) the objective is to provide the classifica-
tion of SIC and not of the sea ice type, and 2) the occurrence of the fast ice class is very
limited. This last point is discussed later. These ice charts are considered as ground truth
for the supervised learning in this study.

For the validation of the results, our estimates are compared to other data coming
from the Ocean and Sea Ice Satellite Application Facility (OSISAF) from the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The prod-
uct series has been operational since 2005 (version OSI-401-b since 26/05/2016). The
OSI-401-b sea ice concentration is retrieved from the SSMIS sensor and provided daily on
a 10 km polar stereographic grid. It is based on the combination of two algorithms [192]
based on brightness temperature at the 19 and 37 GHz frequency channels (T37v − T19v

for the Bootstrap algorithm [29]) and T37h − T37v − T19v for the Bristol algorithm [175].
The validation of OSI-401-b products against operational sea ice charts from the Danish
Meteorological Institute (DMI) for the Northern Hemisphere shows a total standard de-
viation of 15% (up to 20% during the summer season in June) and a negative bias of 5%
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(up to 10-20% from May to July) [193]. OSISAF ice concentrations is systematically lower
than the DMI ice charts especially at intermediate concentrations. The use of ARTIST
Sea Ice (ASI) sea ice concentration algorithm [177] with AMSR2 data [131] may represent
an alternative source of validation with higher resolution (3.125 km).

This study aims to obtain the most robust classification model for different ice condi-
tions from S-1 dual-polarized images. Indeed, the ice condition varies throughout the year
and its C-band radar backscattering ice may have a large variability from the ice growth
process up to the melting season. In this study, 1320 S-1 EW scenes are collected from
the Copernicus data hub over the area of interest from June 2016 to May 2019. These
data are evenly distributed over the 12 months of the year (110 images per month) and
cover at least some sea ice areas (based on OSISAF-based analysis). Among these images,
70 images per month are kept for the training phase. The remaining (40x12) is used for
the final assessment. The Ground Range Detected Medium resolution (GRDM) product
type is used: the pixel spacing of these products is 40 meters. For the EW acquisition,
the Terrain Observation by Progressive Scan (TOPS) mode operates with 5 sub-swaths
which have distinct properties in terms of radiometric calibration and thermal noise con-
tamination (measured by the Noise Equivalent Sigma Zero - NESZ). The incidence angle
ranges from 18.9o to 47o.

5.3 Methodology

The general methodology used in this experiment is presented in Fig. 5.1.

Fig. 5.1: General methodology for this study
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5.3.1 Data pre-processing

On the co- and cross-polarized SAR data With the ambition to mimic the work of
an analyst who does not necessarily use the highest possible resolution but speckle-noise
polluted information, the SAR products are degraded to a resolution of 200 meters. In
addition, FCN training is limited by available Graphics Processing Units (GPU) memory,
which depends on the batch size (with impact on the convergence of the training process)
and patch size. Reducing the resolution helps to maintain a sufficient batch size with patch
size representing a large area on the ground (here 448 × 448 pixels representing 89.6 ×
89.6 km2). Without this additional sub-sampling, the network would have a reduced patch
size of 19.2 × 19.2 km2. The general context in the order of several tens of kilometers can
be then used for a single patch. The training and validation sets are composed of 840 EW
observations divided in 38644 patches of 448 by 448 pixels. The patches are later selected
so that the percentage of data for each class would be more or less even, leaving 15495
samples in the training set, and 3851 in the validation set. The test set is composed of
480 EW observations.

A land mask based on the Global Self-consistent, Hierarchical, High-resolution Geog-
raphy (GSHHG) database is also applied to select only ocean pixels. A noise correction is
applied to the calibrated Normalized Radar Cross Section (NRCS) by simply subtracting
the NESZ. The data for the co- and cross-polarized channels are then converted into deci-
bels. As mentioned in Section 5.2, the methodology is built on a database of Level-1 EW
products acquired from 2016 to 2019, thus processed with various Instrument Processing
Facility (IPF) versions. Before the IPF version v2.9 [available from 16/01/2018], we note
the NESZ annotation is only dependent on the range position.

There is a noteworthy dependence of co-polarized NRCS (and to a lesser extent cross-
polarized NRCS) with respect to incidence angle for sea ice and open ocean (see Fig. 5.2).
At least three approaches remain possible:

(1) The FCN network could eventually manage to handle this dependence by itself solely
with radiometric information.

(2) The incidence angle could be ingested as an input layer with bi-dimensional informa-
tion of the same size as the input patches. This approach does not seem fully optimal
because the incidence angle does not contain any textural information potentially
extracted by the encoding phase. Hence, the incidence angle could be concatenated
between the encoding and decoding phases, thus at lower resolution.
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(3) Each NRCS input layer could be normalized (or “detrended”) with respect to its
averaged dependence of the incidence angle.

In this study, option (3) has been considered. This dependence is known to vary accord-
ing to sea ice condition (inter alia SIC or First/Multi Year Ice [127]). The corresponding
variation of σ0 = f(θ, 50%) with θ the incidence angle are thus calculated for both HH
and HV channels and for the reference/neutral SIC value of 50%, approximated using a
polynomial function (2nd order), and then subtracted from the data (see Fig. 5.2). For the
HV channel contaminated by residual effects at sub-swath borders (due to the errors of
NESZ estimation), only the pixels around the center of each sub-swath-center (±1◦) are
kept. Note that for the cross-polarized HV data, a calibration bias for the first subswath
(hereafter denoted by EW1) has been observed (see Fig. 5.2 top right - incidence angle
up to about 28◦): an histogram matching process with interpolation splines is applied to
correct this effect beforehand.

For each channel, a fixed clipping at 3-97 % determined over the “detrended” HV and
HH database is finally applied in order to scale the values between 0 and 1. This overall
approach helps to reduce the dynamic of the input data (see Fig. 5.2). As a consequence,
the quantification step size between 0 and 1 is increased, maximizing the extraction of
textural information. The impact of this pre-processing step has been assessed and found
essential (+7.3% for the Overall Accuracy with respect to option (1) above). It is expected
that option (2) would give similar overall performances to option (3). This analysis is left
to another study.

Fig. 5.2: Average NRCS values from the dataset for various SIC values: before (top) and
after (bottom) data normalization for HH (Left) and HV channels (Right)
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On the ancillary wind and sea ice data Over the open ocean, the NRCS primar-
ily depends on the incidence angle but also on the wind speed and its relative direction
with respect to the emitting electromagnetic waves (as modelled by the so-called Geo-
physical Model Function (GMF) or CMOD (C-band MODel) when applied to C-band
scatterometer (e.g. CMOD 4 [179], CMOD5n [70]). In the Marginal Ice Zone (MIZ), the
discrimination of ice and water can be made difficult depending on wind conditions [74,
56]. Some sea ice types such as frost flowers or pancake ice have NRCS values similar
to the wind roughened sea surface. In the ice pack, the detection of open leads may re-
main challenging for wind roughened ones. As a consequence, the SIC estimates may be
erroneous if the wind effect is not properly considered. In addition to the HH and HV
“detrended" NRCS, the wind speed is extracted from a Numerical Weather Prediction
(NWP) model, for instance from the model of the European Centre for Medium-Range
Weather Forecasts (ECMWF). This information is projected over the same 200 meter
spatial grid as the SAR data. The benefit of having this third layer is found negligible
over the entire test database (+0.5%). This solution is however kept as it presumably
brings some added-value for specific cases with radiometric ambiguities between sea ice
and open water (even if it is not statistically representative).

Finally, the ECWMF wind speed and the co- and cross-pol detrended data are col-
located on the 200 m spatial grid with OSISAF SIC products and MET Norway sea ice
charts.

5.3.2 FCN architecture

General information The chosen FCN architecture is inspired by the U-Net architec-
ture [163]. This model has a particular architecture in the shape of a U (see Fig. 5.3).
Composed of an encoder and a decoder, its main characteristic is the so-called skip con-
nections between the encoder and the decoder part. The depth of the model is determined
by the number of max pooling stages. The detector stage, that is to say the activation
phase to introduce non-linearity to the system is realized with a rectified linear activation
unit (ReLU). Within the framework of this study, there are no in-depth studies on the
hyperparameters of the model [14]. Instead, a set of tests has been conducted to properly
adapt the FCN architecture to the problem. The depth of the network, the filter size and
the loss function are specified in the following Subsections 5.3.2 and 5.3.2.
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Fig. 5.3: Proposed architecture based on U-Net. The number indicated above blocks
represents the number of filters or layer in each block. The numbers indicated beside
blocks indicate the patch and pixel sizes

On the architecture depth A depth of five for the architecture has been chosen. This
order of depth linked to the patch size has been decided to again try to mimic the human
interpretation by sea ice analyst. At the coarsest scale, the chosen depth and the pooling
factor of 2 induce a pixel spacing of 200 ∗ 25 = 6400 meters. This order of magnitude
seems relevant for the problem of SIC estimates, defined as the ratio of sea ice coverage
for a given area [238]. The size of convolution filters is set at 3 × 3, but some tests have
been carried out with a size of 5 × 5 for filters. No benefit to the performance has been
noticed.

On the loss functions As mentioned in Section 5.2, this study uses MET Norway ice
charts considered as categorical information. The loss function can be set as categori-
cal cross-entropy, which is a general configuration for multi-class classification. Here the
Sorensen-Dice loss function, i.e. the F1 score, which is the harmonic mean of the precision
and recall, is used to further increase the robustness to class imbalance [182] (hereafter
denoted by C). Denoting y the ground-truth and ŷ the prediction, this loss function is
defined as:

1−DICE(y, ŷ) = 1− 2 y · ŷ
y + ŷ

(Eq. 5.1)
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For the final SIC prediction, the class with the highest pseudo-probability is chosen.
However, this approach assumes that errors between all class pairs are equivalent. The
semantic distance between classes should be considered. To integrate this prior informa-
tion, the SIC estimation could be considered as a regression task [21] trained using the
Mean Square Error as the loss function (hereafter denoted by R), defined as:

MSE(y, ŷ) = (y − ŷ)2 (Eq. 5.2)

In this case, the output of the model is a single float value (between 0 and 1) rather than
a vector of six elements. To keep the categorization framework while taking the semantic
into account, a regression auxiliary loss is thus used. Auxiliary loss [228, 137] are additional
losses that push the network to solve secondary tasks. Here, the addition of a convolution
layer (either parallel [C // R], meaning taking the same inputs, or subsequent, taking
the categorization as input [C ->R] or vice versa [R ->C]) incentivizes the network to
learn the classification task. In inference, the regression output is discarded and only the
categorization output is kept. In the [R ->C] variant, the categorization layer is expected
to threshold the output of the regression layer (both with a minimum and maximum
value). As such the chosen activation function is the sine function to ensure that it is non-
monotonic and also has non-null derivatives almost everywhere. For the other variants,
the activation function is a sigmoid for regression layers and softmax for categorization
layers.

5.4 Results

From the data pre-processing mentioned in the previous Section (including pre-processing
on the incidence angle normalization and bias correction for EW1, with wind speed as a
third layer), the FCN architecture is then trained based on the training dataset, resulting
in a set of optimized weights for the various configurations (see Fig. 5.3 with different
loss settings). The optimizer is the Rectified Adam [117] with the default parameters
β1 = 0.9 and β2 = 0.999. With the exception of the output layers, all convolutional
layers use ReLu activation. No weight decay nor dropout is used. The learning rate is
γ = 10−4. The training phase is done by mini-batch Stochastic Gradient Descent (SGD).
Each batch contains 16 training patches. The number of epoch is defined by an early
stopping mechanism that stop the training when the network begins to overfit and only
keep the model with the lowest loss on the validation set. The training uses two Tesla M10
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Fig. 5.4: Normalized confusion matrix against MET Norway data for the C (left) and
R → C (right) configuration

GPU of 8 GB of RAM each. The analyses presented hereafter are based on the testing
dataset (480 independent SAR images).

5.4.1 On the optimal loss function

The following table shows the classification results for the four aforementioned configura-
tions.

Table 5.2: Overall Accuracy (AO) depending on the chosen loss functions

C C // R C → R R → C
OA (in %) 73.0 74.0 69.7 78.2

With the C configuration alone, the Overall Accuracy (OA) is 73.0% on the test
database. Adding the regression auxiliary loss function achieves a better performance,
reaching an OA of 78.2% when the regression is followed by the categorization. When
the layers are placed in parallel, the improvements are marginal (+1%). The OA is 69.7%
when the regression is placed after the categorization. The over-performance of theR → C
configuration over the classical C configuration is highlighted by the following confusion
matrices (see Fig. 5.4). Interestingly, this configuration helps to improve the performance
for high SIC values (from 68% with C to 82% with R → C). Overall, the errors for the C
configuration are still concentrated between adjacent classes, meaning that the semantic
distances between classes are generally learned without the need for an auxiliary loss.
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Fig. 5.5: Comparison between R → C classification and OSISAF SIC products which
provide continuous estimates

Fig. 5.6: User accuracy of R → C classification w.r.t MET Norway sea ice charts as a
function of incidence angle depending on SIC classes

5.4.2 Classification performance and robustness

Fig. 5.5 shows the performance of the R → C classification with respect to OSISAF
products. The estimates remain broadly similar between OSISAF and the model with a
bias or median close to the unit line. The model seems to slightly overestimate SIC values
for Very Open Drift Ice (20%), whereas this trend is reversed for higher concentrations
(> 50%). As indicated in [46], the observed trend is consistent with an overestimation
of MET Norway ice chart compared to OSISAF SIC. In the absence of massive in situ
data, this comparison does not prejudge the absolute quality of all these products [89].
Furthermore, the inherent variability of the manual annotation by sea ice experts at MET
Norway is mitigated by the capacity of neural networks to work with noisy data [161].

With the proposed methodology integrating the noise correction, the bias correction

103



for EW1 and the normalisation of the NRCS values w.r.t. the incidence angle, the clas-
sification performance is expected to be independent of that variable. In order to study
more precisely the robustness of the model, Fig. 5.6 shows the dependency of the classi-
fication as a function of the incidence angle. The incidence angle does not seem to have
a clear impact on the classification performance. The pre-processing carried out in the
proposed methodology seems to be sufficient. However, there is a drop in performance
at SIC of 95% for sub-swath EW1. The performance also fluctuates at the edges of each
subswath indicating some remaining impacts due to the noise correction. Note that a ho-
mogenisation of the input database with enhanced noise annotation (IPF versions newer
than v2.9 [available from 16/01/2018] with both range/azimuth noise dependency) would
be required, in addition to a proper calibration gain at Level-1 for subswath EW1. The
thermal noise removal as proposed in [148] is another alternative.

The radar backscattering from sea ice has a certain seasonal variability. A monthly
analysis has been performed to analyze the behavior of the FCN model throughout the
year. Fig. 5.7 represents the user accuracy for each SIC class and for each month. The
same pattern is observed for SIC between 20 and 75 %: sea ice from May to July exhibits
a slightly lower classification performance. For SIC of 5% and 95 %, the five first months
of the year have degraded performance. Fig. 5.7 also presents the averaged difference
between the model prediction and MET Norway ice chart. The overall bias is below 10%
with a general trend towards overestimation for medium SIC values. The bias is negligible
for the period from June to September. For sea ice concentration equal to 95% and above,
the bias is negative due to the bounded and discretized values of SIC. The bias is higher
during the summer season.

5.4.3 Case studies

Fig. 5.8 to Fig. 5.13 present some examples of the SIC estimates made by the FCN model.
The general sea ice conditions are globally well transcribed even in harder cases like in
Fig. 5.8, except for the last case in Fig. 5.13. The main differences with the MET Norway
ice chart are for medium-to-high SIC values. The FCN model tends to predict a SIC
of 75 % whereas the reference ice chart indicates a compact sea ice pack (see also Fig.
5.10). On the other hand, when there are no predominant sea ice fracture zones (see
Fig. 5.9), the algorithm is able to estimate sea ice at a concentration of 95 %. On the
right side of the study case of Fig. 5.10, the FCN models locally estimate SIC values
of 20 % whereas the reference products (OSISAF and MET Norway) estimate a higher
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Fig. 5.7: User accuracy (Top) and bias between the R → C FCN configuration and MET
Norway ice charts (Bottom) depending on Sea Ice Concentration classes, and for each
month of the year

SIC value. In the corresponding SAR images, these areas show indeed low backscattering
but spatially textured values in both co- and cross polarization channels. It certainly
corresponds to refrozen leads. The C configuration seems to be largely influenced by the
radiometric information of the input images. The R → C configuration provides a better
performance, penalizing the large distance between classes with low and high SIC values,
and hence being likely more sensitive to textural information. In the MIZ, the transition
between free water and ice with high concentration is generally well performed by the
FCN models.

From Fig. 5.11 to Fig. 5.13, some limitations of the current methodologies are shown.
In Fig. 5.11, even though the scalloping and the inter-swath banding effects in the EW1
sub-swath is correctly handled by the FCN models, additional Radio-Frequency Interfer-
ences (RFI) create some erroneous estimates of SIC over the open sea surface. This case
highlights also the need for a very accurate land mask and/or SAR image georeferenc-
ing. Some small islands in the Arctic regions may not well delineated (see land mask in
black overlaid with the SAR images with a small island appearing as bright). This arte-
fact results in erroneous estimates of SIC. The use of extra-large buffer to the GSHHG
information may be a solution (in the current version only 1 km buffer). However, this
will imply the impossibility to retrieve any sea ice information close to the coast. In Fig.
5.11, the R → C configuration provides a better performance for very compact ice pack
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Fig. 5.8: Case study from S-1B EW acquired on 2018/12/05 at 04:43 UTC (Top from
left to right) HH data, HV data, OSISAF SIC; (Bottom from left to right) MET Norway
ice chart, and results from the R → C and C FCN configurations. Land and not valid
data appear in white on sea ice charts.

compared to the C configuration. However, the R → C configuration fails in the area
with the inter-swath banding effects. A full reprocessing of the database with new IPF
version and enhanced noise correction would probably solve this issue. The case study in
Fig. 5.13 shows Micro Convective Cells (MCC) over open sea surface at the right of the
land area. This effect is mis-estimated by the FCN models as compact sea ice. As a fully
supervised technique, FCN model may provide inaccurate results for outlier cases. The
use of weakly-supervised or self-supervised techniques may provide interesting results. In
addition, the joint use of specific CNN models for open sea surface may be adequate.
Based on the initial work in [207, 205], the semantic segmentation of SAR scenes acquired
over open and coastal ocean surface is indeed a actual prospect.

For all these cases, the benefit of SAR-based SIC estimates with respect to OSISAF
products generated from coarse PMW data is clear. The time difference between aver-
aged PMW track data and snapshot of SAR image may also explain some discrepancies,
especially in the MIZ prone to rapid change (see Fig. 5.9 and Fig. 5.11).

5.5 Conclusion

This study uses an FCN inspired by the U-Net architecture to generate sea ice concentra-
tion maps from SAR images. Dual-polarized HH and HV Sentinel-1 data in EW Swath
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Fig. 5.9: Case study from S-1B EW acquired on 2019/02/04 at 03:46 UTC (Top from
left to right) HH data, HV data, OSISAF SIC; (Bottom from left to right) MET Norway
ice chart, and results from the R → C and C FCN configurations. Land and not valid
data appear in white on sea ice charts.

Fig. 5.10: Case study from S-1A EW acquired on 2019/04/05 at 07:53 UTC (Top from
left to right) HH data, HV data, OSISAF SIC; (Bottom from left to right) MET Norway
ice chart, and results from the R → C and C FCN configurations. Land and not valid
data appear in white on sea ice charts.

107



Fig. 5.11: Case study from S-1A EW acquired on 2018/12/05 at 05:33 UTC (Top from
left to right) HH data, HV data, OSISAF SIC; (Bottom from left to right) MET Norway
ice chart, and results from the R → C and C FCN configurations. Land and not valid
data appear in white on sea ice charts.

Fig. 5.12: Case study from S-1A EW acquired on 2019/04/05 at 02:58 UTC (Top from
left to right) HH data, HV data, OSISAF SIC; (Bottom from left to right) MET Norway
ice chart, and results from the R → C and C FCN configurations. Land and not valid
data appear in white on sea ice charts.
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Fig. 5.13: Case study from S-1B EW acquired on 2019/02/18 at 03:31 UTC (Top from
left to right) HH data, HV data, OSISAF SIC; (Bottom from left to right) MET Norway
ice chart, and results from the R → C and C FCN configurations. Land and not valid
data appear in white on sea ice charts.

mode are used to train the FCN model. The objective of this study is to produce sea ice
chart all over the year, even in freezing or melting periods. Several configurations of the
FCN architecture are tested. Our approach differs from other current studies: a FCN is
able to integrate a large field-of-view of 89.6 × 89.6 km2 and to produce SIC maps at 200
m resolution. The best results are obtained with pre-processed NRCS values corrected for
1) the bias induced by sub-swath mis-calibration and 2) the impact of incidence angle on
NRCS. The wind speed information is also added as a third input layer. Its contribution
in the global statistic assessment is not major although it certainly helps in specific cases.

The results are quite encouraging, with the principal confusions appearing between
neighbouring classes. SIC charts are generally in good agreement with reference data.
Thanks to the integration of an auxiliary regression loss, the performance of the FCN
model is improved and seems to be equally sensitive to backscattering levels and textural
information.

A comprehensive benchmark would be required to inter-compare all recently proposed
methodologies in line with this study. It is all the more required that each study encom-
passes a specific set of sea ice variable, region of interest, temporal period, evaluation
metric, and reference sea ice product prone to subjective analysis and uncertainties [20],
and likely hidden bias in the training/test dataset. A comprehensive validation against
various SIC products (e.g. ASI AMSR2 SIC products at 3.125) would represent an inter-
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esting perspective.

- END OF THE ARTICLE -

5.6 Afterword

To solve the sea ice concentration estimation, it was found beneficial to have both the
categorization and the regression loss. We believe that the reason the regression loss is
insufficient when used alone lies in the annotation process. As it divides the observation
in segmentation areas rather than associating values in a continuous interval [0,1], it is
intrinsically noisy. However, it is beneficial to the model as the categorization loss attribute
the same error if open ocean is categorized as 100% sea ice concentration and 25% of sea
ice.

Another factor of concern is the distribution of the sea ice concentration as a bimodal
distribution with modes at 0% and 100%. In the following section, we consider the case
of the rainfall estimation. This is also an initially continuous variable, though it only has
one mode (the probability of rainfall decreases with its intensity). However, uncertainty
with the ground truth led the direct regression difficult. Thus, similarly to the Sea Ice
Concentration problem, we opted for segmenting the rainfall based on thresholds of rain
rate rather than a direct regression.
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Chapter 6

RAIN RATE ESTIMATION THROUGH

SAR-TO-NEXRAD TRANSLATION

USING CONVOLUTIONAL NEURAL

NETWORKS

The following chapter is the reproduction of the preprint published in [28], in which the
author of the manuscript was the lead author. At the time of this manuscript publication,
the article is still being peer-reviewed.

6.1 Introduction

Precipitation monitoring and forecasting are major operational and scientific challenges.
In the context of climate change in particular, extreme precipitation events and floods
are expected to become more frequent [41]. The effect of these events can be mitigated
by warning systems if early detection of precipitation is available.

Ground-based weather radars provide high-resolution rainfall measurements that are
limited to coastal areas due to their range that spans only a few hundred kilometers. Their
spatial resolution decreases with distance from the station with an azimuthal resolution of
1°. Such radars measure the reflectivity of the air column at different inclinations. When
the beam encounters precipitation, part of the emitted signal is reflected back to the
sensor with an intensity that depends on both the size and density of the water droplets.
A direct relationship can then be derived between weather radar reflectivity and rainfall
rate [129]. In previous work, data assimilation schemes have been investigated in order to
reconstruct precipitation patterns from weather radar observation data [134].

Rain events can also be observed further from the coast using satellite instruments,
though at lower spatial resolution. For example, brightness temperatures measured by
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microwave radiometers [116], such as SSMI/S, can provide rain rate measurements. These
sensors are deployed on low-earth orbit satellites, thus providing coverage of the entire
globe at an extended temporal resolution (revisit period of several days). SSMIS’ along-
track and cross-track resolution is respectively 14 and 13 km/px. Rain events can also be
observed indirectly through potential associated lightning activity, as measured by near-
infrared optical transient sensors such as the Geostationary Lightning Mapper (GLM)
found aboard the Geostationary Operational Environmental Satellite (GOES-16).These
geostationary on-board sensors provide continuous observations over a large area, covering
almost an entire hemisphere in the case of the GLM. They do, however, lack in spatial
resolution (8 to 14 km).

Space-based synthetic aperture radar (SAR) observations measure the backscattered
radar signal at high resolution, typically 10 to 25 m for Sentinel-1, and thus provide image
of a wide variety of meteorological and atmospheric phenomena [80]. Among these, rain
signatures are often visible, appearing as light and/or dark spots. Studied for a long time
now, these signatures can be a combination of different contributions from the rough-
ness of the sea surface (increased or decreased surface scattering) or from the atmosphere
(volume scattering or attenuation by hydrometeors). Their impact on radar backscatter
varies as a function of many parameters such as incidence angle, wind conditions, signal
polarization and frequency, or precipitation rate; [132, 26, 113, 130]. The preparation and
analysis of well collocated Next Generation Weather Radar (NEXRAD) and Sentinel-1
measurements, both at high resolution, provide a unique opportunity to better character-
ize and detect rain signatures in SAR acquisitions.

Sentinel-1 satellites can operate in different acquisition modes. One such mode is the
Interferometric Wide Swath (IW) mode. It covers several hundred kilometers in range and
azimuth directions and extends over incidence angles between 29° and 46°. These products
are generally used to study coastal areas. In contrast, the open ocean is mainly observed
by the Wave (WV) acquisition mode, producing images of about 20x20 kilometers at two
possible incidence angles: 23° (WV1) and 37° (WV2). Although different studies have
addressed the categorization and segmentation of rain cells [205, 27], the calibration of
SAR-derived rainfall product remains a challenge. The lack of a SAR dataset with ground
reference rainfall data has certainly been a critical limitation. Earth observation systems,
such as the Sentinel-1 satellites, now allow for large-scale datasets of SAR observations
combined with rainfall data provided by weather radars, specifically NOAA’s NEXRAD
sensors [232].
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In this study, we examine how the availability of such a large-scale SAR-NEXRAD
dataset combined with deep learning approaches can lead to a breakthrough in SAR-
derived rainfall estimation. We focus specifically on vertical-vertical (VV) polarization,
available for both IW and WV modes. A key contribution lies in registration-based pre-
processing steps to implement state-of-the-art supervised deep learning schemes. We show
that a U-Net architecture far outperforms the filtering-based schemes previously suggested
[232]. Thus, this study opens new avenues towards SAR-derived global precipitation prod-
ucts.

In Section 2, we present our enhanced SAR-NEXRAD dataset and preprocessing
methodology. In Section 3, we describe the proposed deep learning approaches. In Section
4, we present a quantitative and qualitative evaluation of the SAR-derived precipitation
estimate and in Section 5, we discuss the main aspects and contributions of this study in
more detail.

6.2 Dataset

The Sentinel-1 mission consists of two satellites, Sentinel-1A and Sentinel-1B, whose syn-
thetic aperture radars (SAR) regularly acquire data at 5.4 GHz (C-band). In this study,
we used the IW acquisition mode. IW Ground Range Detected High Resolution (GRDH)
products were obtained with a pixel spacing of 10 x 10 meters and a spatial resolution of
approximately 20 x 22 meters. These products extended over a few hundred kilometers in
range (250 km) and in azimuth. Weather radar reflectivity was obtained from NEXRAD,
a network of 160 Doppler weather radars operating between 2.7 and 3 GHz. We used the
basic reflectivity with a resolution of 1 km in range and 1° in azimuth.

6.2.1 Sea surface wind fields

As explained above, in the absence of rainfall wind speed is the primary parameter gov-
erning variations in sea surface roughness. These variables, however, can be decorrelated
under heavy precipitation [207]. As such, it is necessary to collocate SAR observations
with the most reliable wind speed information.

Two sources of wind speed were considered: European Centre for Medium-Rande
Weather Forecast (ECMWF) model estimates and wind inversions from SAR observa-
tions.
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Fig. 6.1: Example of the discrepancies between ECMWF wind speed estimates and SAR
observation. Each line corresponds to a product acquired (from top to bottom) on Octo-
ber 7th 2020 at 00:16:15, on May 17th 2018 at 23:05:21, on August 27th 2019 at 22:19:26
(when hurricane Dorian was near Guadeloupe). The first column shows the SAR observa-
tion, the second shows the SAR inversion, the third shows the wind speed obtained from
the ECMWF in m/s. The SAR observations are shown in radar geometry, with the low
incidence angles on the left.

Atmospheric model data wind field Model estimates were obtained from sea surface
wind at a height of 10 m though the analysis of the ECMWF’s global model: the Integrated
Forecasting System (IFS); Were analyzed either 3-hourly or hourly forecasts operating at
resolutions of 0.125° or 0.1°, before or after August 2019 (respectively).

SAR-derived wind field The SAR-derived sea surface wind field is estimated using
CMOD5.N (a C-band geophysical model function) and auxiliary wind information from
the ECMWF in a Bayesian wind inversion [140].
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Wind field comparisons Significant differences between the SAR-derived and model-
derived wind fields can occur if the model is not well phased with respect to the actual
situation or if the difference between the analysis and observation times is too large. Other
significant differences can occur when the sea surface roughness is related not only to the
sea surface wind. Four physical processes contribute to the radar signature of rainfall
events [3]: 1) scattering of the radar signal from the sea surface, the roughness of which
is altered by both ring wave generation and wave damping due to turbulence caused by
raindrops hitting the sea surface, 2) increased sea surface roughness due to downdraft
winds often associated with rain cells, 3) scattering from splash products, i.e. craters,
stalks, crowns and rain drops bouncing upwards, and 4) scattering and attenuation of
the radar pulse by raindrops (hydrometeors) in the atmosphere (volume scattering and
attenuation) which can become non-negligible at very high rain rates. Direct interpretation
of the sea surface roughness as being a result of sea surface winds would lead to significant
errors. An incorrect a priori wind direction model can also lead to incorrect estimates
of SAR-derived wind speed and direction. This is generally the case for fast moving
phenomena such as hurricanes, or local structures not seen by modeled winds such as cold
pools, that are nonetheless related to the scattering mechanism.

Fig. 6.1 illustrates some discrepancies between the SAR inversion and the ECMWF
wind speed. On the first line, acquired on October 7th at 00:16:15, heavy precipitation
has produced a bright area that leads the SAR inversion to overestimate the wind while
the other parts of the IW show good concordance with the ECMWF product. The second
line, observed on May 17th at 23:05:21 shows an area of low sea surface roughness in the
lower half. The SAR inversion contradicts the ECMWF results by more than 5 m/s over
most of the IW. This discrepancy is related to a time difference of 55 minutes. The last
line, in which there is a time difference of 79 minutes (observations acquired on August
27th at 22:19:26), indicates a misalignment between the ECMWF wind speed and the
SAR inversion, as illustrated by the position of the eye of the cyclone.

In the following sections, analyses using wind speed were performed using the ECMWF
wind speed to ensure independence with the presence or absence of rain, despite occasional
errors.

6.2.2 SAR preprocessing

Unlike Stripmap, in which the SAR sensor observes the entire swath simultaneously, TOP-
SAR [222] divides its observations into three subswaths for the IW mode. The subswaths
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are themselves divided into several bursts in the azimuth direction. This technique, used
in both the IW and Extra Wide Swath (EW) modes, is intended to provide a uniform
signal-to-noise ratio over the entire observation. The calibration of each subswath (and
burst) is performed by calculating the theoretical gain of the SAR antenna.

In addition to the data calibration and noise correction, the radar signal strength is
also corrected for its dependence on the incidence angle. This reduces the signal dynamics
resulting from high or low signal reflectivity at low or high incidence angles, respectively.
The CMOD5.N geophysical model function (GMF) [71] is used assuming a wind speed of
10 m/s and a direction of 45° with the radar azimuth, providing the same SAR prepro-
cessing as applied by previous studies [205].

Residual variation (of about 20%) can still be observed in the data set. We chose not to
further normalize the sea surface roughness (e.g., by averaging over each incidence angle
or sub-band), as such normalization would be affected by the presence of meteo-ocean or
land phenomena and would vary from one SAR product to another.

6.2.3 Enhanced collocated Sentinel-1/NEXRAD dataset

Several imporvement steps, described below, were applied to the initial collocations from
[232] before their use in deep learning.

Reflectivity measured from weather radars can be affected by a multitude of factors
that degrade their quality. For example, since the minimum elevation angle of NEXRAD is
not zero (but 5°), the further the distance from the ground station, the higher the altitude
of the observed volume. Since SAR imagery observes the ocean surface, the concordance
between the meteorological-ocean (metoceanic) situation of the two observations decreases
as the distance from the ground station increases. This concordance is even more difficult
to qualify automatically since the altitude observed by the ground station depends not
only on the distance but also on the refractive index of the air, which is related to the
atmospheric temperature gradient. The bright rain signatures may also be due to strong
reflectivity from the melting layer (4th physical process aforementioned) [3], located typ-
ically at 3-4 km in altitude. Again, varying altitude levels seen by the ground Radar may
lead to slight geographical shifts with respect to the SAR signatures at this fixed alti-
tude. Other phenomena can hinder the radar’s ability to provide meaningful information.
Topography, for example, can mask rain signatures located behind an obstacle. Other
factors include moisture on the radom enclosing the weather radar [215], which affects
the observed reflectivity and is not corrected. These sources of discrepancy are difficult
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to quantify automatically and require manual verification.
The maximum time difference between the SAR and NEXRAD observations was lim-

ited to twenty minutes, in order to reduce the displacement and evolution of the rain
cell between the observation times of the two instruments. Collocations with imperfect
agreement between NEXRAD and Sentinel-1 were also removed manually. In addition,
to ensure similar SAR processing for all observations, the SAR data is limited to obser-
vations after March 2018. This corresponds to Sentinel-1 Instrument Processing Facility
version 2.90, which has improved noise correction and the associated signal-to-noise ratio
(SNR). In total, these three constraints reduced the number of available wide swath SAR
products from 1064 to 53.

Each of these IWs was divided into patches of approximately 25 x 25 kilometers and
256 x 256 pixels. Patches were extracted from the swaths with a step size of half their
width. This extraction ensures that a metocean situation occurring at the edge of one
patch is found in the center of the next patch. It also implies that each pixel is present in
four patches. Data leakage between the training, validation, and test sets is resolved by
splitting these subsets at the IW level rather than the patch level.

Patches were rejected if more than fifty percent of the area was covered by land, as this
could lead to land masking. In addition, patches were rejected if the maximum reflectivity
of NEXRAD was less than 25 dBZ (less than 1 mm/h according to the Z-R relationship
[215]). Rejecting patches without measured reflectivity ensures that the area is neither
out of radar range nor hidden behind an obstacle. Rejecting patches without rain also
mitigates the imbalance in the dataset caused by the overrepresentation of low reflectivity
measurements. Finally, to maximize the overlap of SAR and weather radar signatures, the
patches were aligned manually. This was carried out independently for each patch using
a constant translation of the NEXRAD measurement to overlap the SAR signatures. An
example of this operation is shown in Fig. 6.2. This geographic repositioning corrects for
remaining collocation problems that may be related to the displacement or evolution of
rain cells between NEXRAD and SAR observation times or to the different altitudes at
which the phenomena were observed.

Patches showing a low correlation between NEXRAD and Sentinel-1 observations were
rejected by visual inspection. After these operations, from the 9574 patches extracted from
the 53 IWs, 1570 remained. Patch locations, alongside the NEXRAD stations, are shown
in Fig. 6.3.

To determine why the collocations do not overlap perfectly, statistics were computed
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Fig. 6.2: Registration example. On the left, a patch (20 x 20 km) observed on May 5th

2018 at 23:05:20. In the center, the corresponding NEXRAD measurement. The cyan-
colored area does not overlap perfectly with the SAR signature (center), therefore, we
perform a manual registration (right).

on the realignment vectors. These showed a correlation between the distance to the nearest
ground station and the error (correlation coefficient R2 = 40.4%). However, no such
correlation was found for the direction of displacement (R2 = 3.4%), nor for the ECMWF
wind speed at 10 meters (R2 = 2.7%) which would have indicated displacement of the
rain cell by the wind.

After extraction, the patches were divided into training, validation and test sets. Spe-
cial attention was paid to their distribution. As explained in the previous section, patch
extraction leads to the co-occurrence of the same pixels in two adjacent patches. Even
without overlap between patches, two adjacent patches would be affected by the same
phenomenon, both from a meteorological and a sensor point of view, as we can assume
that they would share characteristics in measurement, collocation, etc. To avoid any kind
of leakage between the different sets, the division between the three subsets of data was
performed at the swath level. They were equalized on both the NEXRAD reflectivity, to
ensure a similar distribution of rainfall in each data subset, and on wind speed, which
presumably has an impact on rain rate prediction capabilities. This assumption is driven
by the known increase in sea surface roughness under the impact of rain and wind, as illus-
trated in Fig. 6.4. This figure also indicates that the NEXRAD reflectivity and Sentinel1
backscatter are decorrelated for reflectivities below 30 dBZ.

The resulting distributions for each subset of the data are detailed in Table 6.1. As
noted, the dataset suffers a lack of data at higher reflectivity and wind speeds. Indeed, as
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Fig. 6.3: Geographic distribution of patches in the dataset centered around Florida (a),
Guam (b), Hawaii (c), and California (d). NEXRAD stations are represented by a red
dot. Circles correspond to a 350 km range. Values are the number of observations over
the corresponding latitude/longitude.

an example, only two wide-swaths contain wind speeds above 12 m/s, and only one has
wind speeds above 16 m/s. It can also be noted that the standard deviation of the SAR
surface roughness is higher when wind speed is higher than 12 m/s.

The reflectivity is divided into four intervals: [0, 24.7], [24.7, 31.5], [31.5, 38.8] and
[38.8, +∞] dBZ. With the general NEXRAD radar formula [215], these intervals can be
approximated in terms of rainfall by [0, 1], [1, 3], [3, 10], and [10, +∞] mm/h. Therefore,
three segmentation masks are generated by thresholding at these values. The objective of
the precipitation estimation thus shifts from a continuous regression to the segmentation
of the following overlapping precipitation classes: ≥ 24.7 dBZ, ≥ 31.5 dBZ, and ≥ 38.8
dBZ. Reflectivities below 24.7 dBZ are considered to be rain-free. A direct approach,
to predict continuous reflectivity, proved difficult due to the rarity of the strongest rain
events and the poor correlation between the reflectivity value and the SAR signature.
The non-uniform distribution of NEXRAD reflectivity is also problematic because low
reflectivities are over-represented, as shown in Fig. 6.4.b. The 1570 patches, divided in
training, validation and test sets are available on kaggle1.

1. www.kaggle.com/rignak/sentinel1-nexrad
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(a) (b)

(c) (d)

Fig. 6.4: Evolution of sea surface roughness (and associated number of pixels) as a
function of NEXRAD reflectivity (a) or ECMWF wind speed (c) and their associated
number of pixels (b, d). The red, yellow and cyan vertical lines are the threshold values
used to separate the four precipitation classes. The blue area represents the standard
deviation around the mean at each point. The decrease in sea surface roughness at 11
m/s is due to a single IW (taken on May 17th 2018 at 23:05:21). Comparisons between
SAR-derived and the model wind speed and rain free regions confirms the model is over-
estimating the wind speed for this particular case.

GOES-16 Geostationary Lightning Mapper As illustrated in Table 6.1, the avail-
able collocated data are limited to wind speeds below 12 m/s. To investigate the ability
of the model to generalize to higher wind speeds, a collocated lightning data set was
constructed. It has been demonstrated that precipitation can be approximated by a lin-
ear function of the lightning frequency [176]. The quality of this approximation can be
very variable depending on the type of precipitation (convective/stratiform), the loca-
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Dataset Train
(39 IW)

Validation
(7 IW)

Test
(7 IW)

% of
the total

Reflectivity
& Rain Rate
(NEXRAD)

[0, 24.7[ dBZ
[0, 1[ mm/h 79.5 % 9.6 % 10.9 % 85.1 %

[24.7, 31.5[
dBZ

[1, 3[ mm/h
79.9 % 9.6 % 10.5 % 7.7 %

[31.5, 38.8[
dBZ

[3, 10[ mm/h
79.3 % 9.7 % 11.0 % 5.4 %

≥ 38.8 dBZ
≥ 10 mm/h 79.0 % 9.8 % 11.2 % 1.8 %

Wind Speed
(ECMWF)

[0, 4[ m/s 79.3 % 9.7 % 11.0 % 11.7 %

[4, 8[ m/s 79.1 % 9.7 % 11.1 % 69.7 %

[8, 12[ m/s 79.1 % 9.5 % 11.3 % 17.1 %

[12, 16[ m/s 100 % 0.0 % 0.0 % 1.5 %

≥ 16 m/s 100 % 0.0 % 0.0 % 0.1 %

Table 6.1: Per-pixel distribution of NEXRAD reflectivity and ECMWF wind speed for
the patches contained in each set.

tion (land/ocean) or the climate of the studied area (humid/arid). Still, the collocation
between weather radars and lightning activity was also explored in a data assimilation
framework by [101], described satisfactory concordance between higher reflectivity and
lightning events. The use of this lightning proxy to compare with bright rain signatures
on SAR images is further motivated by their relation with graupel and hail, typically met
in cumulonimbus clouds with strong lightning activity.

Thus, in this study, we used a binary segmentation mask of lightning presence or
absence as a proxy for a binary rain map. These collocations were obtained with the
GOES-16 GLM [61]. The GLM is a camera embedded on a satellite in geostationary orbit.
It records lightning at a spatial resolution between 8 km/px and 14 km/px (depending
on the latitude). With a temporal resolution of 20 seconds and coverage extending to
almost an entire hemisphere, it is possible to collocate a large amount of data between
the GLM and Sentinel-1. This allows us to search for extreme events (i.e. high wind speed,
high number of lightning events). Lightning events are defined as a single intensity peak
occurring in an image but are aggregated into clusters, defined as pixel-wise adjacent
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events, and flashes (groups with a pair of events less than 330 ms and 16.5 km apart).
In this study, only collocations less than 20 minutes from the SAR acquisition were used.
The objective was to study the concordance between our precipitation classification and
this proxy for different Sentinel-1 incidence angles and ECMWF wind speeds.

6.3 Proposed Deep learning framework

This section introduces the proposed deep learning schemes. Within a supervised training
framework, we explore two neural architectures: the first one derived from the state-of-
the-art processing based on Koch filters [93], the second one based on a U-Net architecture
[163].

6.3.1 Koch-filter-based architecture

Koch filters [93] are four different high-pass filters that each detect different patterns
thus allowing the detection of heterogeneous areas of ocean surface roughness. Their
original use was to identify areas where backscatter is caused by non-wind phenomena
(ships, rain, interference, tidal currents...), as this would exclude these areas from a wind
speed/direction estimate. Koch filters can be optimized to produce binary rainfall maps,
as precipitation is a major source of heterogeneity [232].

Specifically, Koch filters are defined as four different high-pass filters scaled by a linear
function and clipped to maintain the result between 0 and 1. The output of the filters
is the root mean square of these clippings. [232] estimated thresholds in order to derive
binary rain maps from this final value, depending on the resolution and polarization
of the input. We extended this framework to multi-threshold segmentation by rewriting
the Koch filters as a Convolutional Neural Network (CNN) defining the scaling function
parameters. The four high-pass filters were used on the input and left side as in the original
version. To guarantee a non-zero gradient, the clipping is replaced by the sigmoid function
σ(x) = [1 + exp(−a(x + b))]−1. We set a = 4 and b = 0.5 so that the inflection point is
at x=0.5, σ(0.5) = 0.5 and dσ

dx
(0.5) = 1. The change in activation affects the filter result,

but the relative difference from the original Koch filter is only 0.8% when initialized with
the same parameters. Fig. 6.5 illustrates this Koch filter incorporated into the CNN. This
formulation allows for segmentations for different rain thresholds, unlike the original rain
detection [232].
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Fig. 6.5: Architecture of the multi-threshold Koch filter as a convolutionnal neural net-
work. P V V,r

i is the output of the high-pass filter i at the resolution r, for the V V polar-
ization. σ is the sigmoid function defined as σ(x) = [1 + exp(−4(x + 0.5))]−1. Ki,V V,r

j and
Bi,V V,r

j are the scaling function parameters for each resolution r, polarization V V , filter j
and precipitation regime i. The results are fused along the filters by a quadratic mean.

The model is trained to minimize the mean square error with the Adam optimizer, a
learning rate of 10−3 over 200 epochs with a batch size of 32. As previously mentioned,
the convolution kernels were initialized following the original Koch filter formulation [93].

6.3.2 U-Net architecture

Among the variety of state-of-the-art neural architectures for image segmentation and
image-to-image translation problems, we consider here a U-Net architecture [163]. U-Net
is an auto-encoder model with "skip connections" that allow information to be propagated
horizontally from the encoder to the decoder, bypassing the central part of the network.
This architecture is well established and has already been used in SAR imagery for sea
ice concentration estimation [54] and semantic segmentation [27].

The specific model used is shown in Fig. 6.6. Compared to the original U-Net model,
it has one less stage to reduce the receptive field and ensure that, when applied to full
IW observations divided into overlapping tiles, the output mosaic has continuity between
adjacent tiles. The width of the theoretical receptive field is 140 pixels, but the effective
receptive field, which is smaller due to the contribution of neighboring pixels that de-
creases with distance [125], is small enough to ensure continuity. The number of weights,
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independent of input size and spatial resolution, was 3,117,731.

Fig. 6.6: Architecture of the U-Net model used to classify rainfall amount (from light to
heavy) using Sentinel-1 ocean surface roughness.

The model was trained to minimize the mean square error, using Adaptive Momentum
with a learning rate of 10−5, for 500 epochs. In all experiments, 500 epochs were sufficient
to achieve loss convergence. The batch size was 32, except at 100 m/px where GPU
memory constraints led to reducing the batch size to 16. The code used to train the
model is accessible on GitHub2.

6.4 Evaluation framework

Existing Koch filters are designed to produce binary maps of rain presence or absence.
To compare this framework with our multi-threshold models (i.e., the fine-tuned Koch
filter and U-Net), we computed the F1 score on the binary segmentation problem for each
threshold (1 mm/h, 3 mm/h, and 10 mm/h). The F1 score is defined as the harmonic
mean of recall and precision. Recall is the average diagonal value of the row-normalized
confusion matrix. It is also known as the producer’s accuracy. Precision is the diagonal
mean value of the column-normalized confusion matrix. It is also known as the user’s
accuracy. When evaluated on a binary segmentation problem (through a 2 x 2 confusion
matrix), we call it the "Binary F1-score". This value indicates the ability to separate rain-

2. https://github.com/CIA-Oceanix/SAR-Segmentation/tree/oceanix
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free observations from patches with rain. The F1 score is also used to evaluate the ability
to distinguish between different rain rates. In this case, the shape of the confusion matrix
is (4,4). This F1-score is indicated as the "Multiclass F1-score".

We therefore compare the Binary Koch filter, which is the baseline and state of the
art in rain detection, to the Fine-tuned Koch filter (the CNN-embedded multi-label Koch
filter), and the U-Net architecture. For the latter, results using a dataset without the
manual registration are also provided to justify the need for this particular operation.
To evaluate the performance of the segmentation as a function of incidence angle, wind
speed, and distance from the coast, the binary F1 score was also calculated by varying
these parameters. In this case, the groundtruth was not provided by the NEXRAD weather
radars, but by collocated lightning groups from GLM. These lightning clusters were used
as a proxy for a binary precipitation segmentation. The U-Net models were trained and
tested at resolutions of 100 m/px to 800 m/px. Because the receptive field of the Koch
filters is smaller, they were only used down to 200 m/px, in accordance previous works
[232]. Since some parts of the methodology were stochastic, such as the order of the images
provided to the network or the initialization of its weights, the results are given as the
mean and standard deviation over five training runs to decrease the chanceof a lucky
initialization [11].

6.5 Results and discussion

Table 6.2 compares the binary Koch filters, the fine-tuned multi-label Koch filters, and the
U-Net architectures for binary segmentation (for different precipitation thresholds) and
multi-class segmentation. The binary Koch filter performs worse on the binary F1 score
at each precipitation threshold than do both the fine-tuned Koch filter and the U-Net
architecture. The best binary segmentation is obtained at 200 m/px for each method, and
the U-Net architecture outperforms both variants of the Koch filter. Great variability is
observed in the results and can be explained by the difference in the number of parameters
(24 for the finely tuned Koch filter and over 3 000 000 for the U-Net model).

As the multi-class F1 score is not only influenced by its ability to detect precipitation
but also by its ability to distinguish the severity of precipitation, it indicates higher
performance at 400 m/px. Interestingly, this is also the best resolution obtained by [232],
although the results were computed on a different data set. This leads one to believe that
the increase in resolution, while giving more accurate information, is counterbalanced by
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Model Input
resolution

Binary
F1-score (> 1

mm/h)

Binary
F1-score (> 3

mm/h)

Binary
F1-score

(> 10 mm/h)

Multiclass
F1-score

Binary
Koch’s filter

200 m/px 44.3% 34.7% 22.8% N/A
400 m/px 37.3% 26.5% 15.1% N/A
800 m/px 32.9% 22.2% 11.1% N/A

Fine-tuned
Koch’s filter

200 m/px 45.9% (0.04%) 41.6%( 0.06%) 38.7% (2.09%) 34.8% (0.2%)
400 m/px 43.2% (0.15%) 40.9% (0.14%) 37.9% (0.58%) 35.9% (0.3%)
800 m/px 38.3% (0.05%) 37.2% (0.18%) 32.3% (1.65%) 35.2% (0%)

U-Net

100 m/px 53.7% (2.36%) 52.5% (2.03%) 55.6% (2.30%) 47.2% (1.9%)
200 m/px 50.5% (1.69%) 47.5% (1.72%) 48.0% (1.87%) 46.0% (3.0%)
400 m/px 51.2% (1.72%) 46.8% (1.75%) 47.2% (2.14%) 50.5% (2.8%)
800 m/px 45.4%(0.93%) 40.4%(1.26%) 40.2%(1.56%) 47.1% (0.9%)

U-Net
without

registration

100 m/px 51.6% (0.56%) 50.2% (0.42%) 25.8 %
(14.76%) 41.0% (1.2%)

200 m/px 50.1% (0.54%) 48.2% (1.32%) 42.7 % (9.24%) 36.1% (2.4%)
400 m/px 49.1% (0.93%) 47.6% (0.87%) 48.5 % (1.35%) 41.0% (1.2%)
800 m/px 44.2% (2.57%) 42.5% (3.06%) 43.8 % (2.41%) 41.5% (1.0%)

Table 6.2: Evaluation of the binary and fine-tuned Koch filters and U-Net model on the
test subset. Results are provided as a mean with standard deviation over five runs.

the decrease in contextual information. Since the architecture of the network does not
change, the receptive field is the same if measured in pixels, but is reduced if we consider
the area covered in km2 . The Koch filters are less affected by the change of context
because their effective field is defined by the low pass filters they use as input.

The confusion matrices, shown in Fig. 6.7, indicate that the U-Net architecture (right)
is more accurate than the fine-tuned Koch filters (left) for each threshold (11.9% vs. 31.0%,
10.6% vs. 26.2%, and 29.6% vs. 70.5% for the 1, 3, and 10 mm/h thresholds, respectively).
However, 31% of the [3, 10] mm/h class ramains unrecognized by the model as being rain.
A large standard deviation in the confusion matrix indicates instability in the training.
The U-Net performs particularly well in detecting heavy rainfall, as 93.7% of rainfall
above 10 mm/h was predicted to be above 3 mm/h. The refined Koch filter only achieved
64.4%. Without the manual registration (center), the deep learning model was still able
to differentiate rainfall from rain-free areas, but failed to assign a rainfall class.

Fig. 6.8 shows some examples of rainfall predictions using SAR data and either the
U-Net architecture or the fine-tuned Koch filters. Overall, the SAR rainfall predictions
appear to concord with the NEXRAD acquisitions over the ocean, with different sensi-
tivities. In the first case (line 1), the fine-tuned filter well detects the rainy regions but
indicate less or no rain within the largest rainy patches. This is mainly due by the direct
use of high-pass filters while the U-Net architecture is more general. Also, the fine-tuned
filter tends to detects smaller rain patches, not detected in NEXRAD. Three neighbouring
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Fig. 6.7: Normalized confusion matrices of the fine-tuned multi-class Koch filter (top-left),
the U-Net model without (top-right) and with the manually-registred dataset (bottom),
each at 400 m/px.

dots located on the right-hand side actually correspond to 3 ships. In the second case (line
2), the fine-tuned filter wrongly interprets gusts fronts as strong rain due to their strong
discontinuity with respect to the background radar signal. In the third case (line 3), we
illustrate limitations of the NEXRAD system as it is unable to detect the rain patches
located on top and on right-hand side, possibly due to masking by the topography.

Since the test set is quite small, due to both a lack of data and the requirement to
balance it over each wind regime, we use the GLM data as an auxiliary data source to
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(a) (b) (c) (d)

Fig. 6.8: Examples of SAR-derived rain rate estimation: Sentinel-1 SAR observations (a)
with U-Net-based estimation (b), the estimation using the trained Koch-based architec-
ture to 400 m/px (c), and the thresholded and collocated NEXRAD reflectivity. From top
to bottom, the observations were acquired on April 24th 2018 at 11:10:12, August 05th

2018 at 20:07:39, and August 18th 2018 at 23:19:09.

estimate the sensitivity to incidence angle, wind speed, and distance from shore. The
result of this analysis is compiled in Fig. 6.9. Figures Fig. 6.9.a and Fig. 6.9.b indicate
a negative impact of wind speed. This can be explained by both the low representation
of stronger wind regimes and their similar impact on the SAR observations, as wind
speed and precipitation can both increase the sea surface roughness and thus the rain
signature contrast. However, the models do not overestimate rainfall at stronger wind
regimes, except for the 1 mm/h threshold (Fig. 6.9.a). Thus, the decrease in performance
is thought to be due to the disappearance of the rain signature under high wind speed.
In contrast, the Koch filters show an overestimation (and thus lower performance) of the
rain rate at low wind speed. The incidence angle (Fig. 6.9.c) shows that the F1 scores
with the pseudo rain map are stable for the 1 mm/h and 3 mm/h thresholds, but that
the prediction of rainfall over 10 mm/h is negatively impacted by the low incidence angle.
The U-Net model is also less impacted by the coast (Fig. 6.9.d) and can thus be used up
to two kilometers off the coast while the Koch filter is affected up to six kilometers off the
coast.
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(a) (b)

(c) (d)

Fig. 6.9: Probability of rain detection as a function of wind speed (a) and distance to the
coast (b). F1-score as a function of incidence angle (c) and wind speed (d), using GLM as
a rain proxy. The blue, orange and green curve respectively correspond to rainfalls higher
than 1 mm/h, 3 mm/h and 10 mm/h. The purple curve correspond to the fine-tuned
Binary Koch’s filters.

Fig. 6.10 shows examples of collocations between the GLM and Sentinel-1 observations,
especially at high wind speeds. The first observation, made September 4th 2019 at 11:09:34
indicates a very close correlation between lightning detection and rainfall estimation from
the U-Net architecture, despite wind speeds above 15 m/s in most images. The second
observation, made on August 27th 2020 at 00:09:33 shows an even higher wind speed,
as it was acquired over Hurricane Laura. A smaller proportion of pixels are predicted to
indicate precipitation greater than 10 mm/h. In the lower left corner, where the wind
speed is highest, a series of 3 mm/h rainfall areas are detected although they were not
recorded on the lightning map.
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(a) (b) (c) (d)

Fig. 6.10: Collocation of Sentinel-1 SAR observations (a) with GOES-16 GLM lightning
clusters (b), U-Net-based NEXRAD emulation (c) and ECMWF wind speed (d) in meters
per second. The first line shows an observation from September 4th 2019. The second line
shows Hurricane Laura on August 27th at 00:09:33.

6.6 Conclusion

The monitoring of rain over the oceans is a key challenge for weather modeling and
forecasting. This is particularly important for flood mitigation in coastal areas. While
land-based sensors cannot monitor the open ocean, the satellite-derived retrieval of rain
rate remains a challenge, especially at high resolution, despite the variety of rain-impacted
and rain-measuring spaceborne instruments. In this respect, the effect of precipitation on
satellite SAR observations of the sea surface has been widely documented.

This study demonstrates that deep learning opens new avenues for the estimation of
sea surface rain rate at high resolution from satellite SAR observations. We exploit a
state-of-the-art image-to-image translation architecture, namely a U-Net. The training
scheme relies on a collocated dataset of NEXRAD weather radar data and Sentinel-1
SAR observations. We report an accurate segmentation of rainy areas at sea surface and
satisfactory ability to discriminate rain between 1 mm/h and 3 mm/h, 3 mm/h and 10
mm/h and above 10 mm/h. The proposed approach outperforms previous work based on
Koch filters and points out the importance of a registration-based preprocessing of the
training dataset.

We further assess the relevance of the retrieved rate rain estimation at sea surface with
respect to another proxy of local precipitation, namely the frequency of lightning events
detected by the GOES-16 GLM.

130



This analysis indicates an impact of incidence angle and wind speed, with performance
decreasing at low incidence angles and/or high wind speeds. Future work could therefore
benefit from the generalisation of the proposed approach to other SAR modes such as WV
modes which may involve other incidence angle ranges. It also supports a joint retrieval
of wind speed and rain rate at sea surface from Sentinel-1 SAR observations.

- END OF THE ARTICLE -
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Chapter 7

IMPROVING SAR-DERIVED WIND SPEED

ESTIMATION IN HEAVY RAIN CONDITIONS

WITH DEEP LEARNING

7.1 Introduction

Chapter 6, the negative impact of precipitation and wind on segmenting rainfall patterns
in Synthetic Aperture Radar (SAR) observations was addressed. It was shown that seg-
mentation was hindered at high wind speeds due to the disappearance of the rain signature
caused by saturation in the VV channel, and the lack of data for meteorological processes
that include both heavy rainfall and high winds.

Geophysical Model Functions (GMF) have been developed to estimate wind speeds
from SAR observations, including CMOD3 [119], CMOD4 [179], CMOD5 [69], CMOD5.N
[70], CMOD6 [47], CMOD7 [180], C_SARMOD2 [123]. Typically, GMFs use the copo-
larization channel (usually the VV channel on Sentinel-1 IW) and additional information
such as the incidence angle and a prior on the wind speed direction relative to the satellite
heading. This prior is typically provided by atmospheric models, but recent research has
shown the possibility of estimating it directly from SAR observations [223, 44]. While
GMFs have proven effective in estimating wind speeds in most conditions, they work at
the pixel level and are unable to capture contextual information. They also assume that
most of the backscattering is caused by wind, which leads to overestimating wind speeds
when hydrometeors impact the ocean surface and increase surface roughness. On the other
hand, Convolutional Neural Networks (CNN) have a non-null receptive field, as explained
in Section 1.3.2, and have been demonstrated to detect rainfall in Chapter 6. Thus, they
are able to use contextual information to estimate wind speeds despite the contamination
of rain signatures.

As discussed in earlier chapters, one of the difficulties of using deep learning models is
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the need for large datasets. This is particularly true for the current problem, as it would
require observations of various rain events under different wind speed conditions. However,
it is possible to collocate Synthetic Aperture Radar (SAR) observations with atmospheric
models, which are spatially available globally and independent of the SAR system. Using
the rain detector from Chapter 6, we demonstrate that it is therefore possible to build
a dataset of both rain and rainless situations associated with modeled wind speed. The
deep learning model proved to be closer to the ground truth (i.e., the modeled wind) both
at high and low rainfall. These results are confirmed by in-situ measurements from buoys,
which are used to measure the performance of the wind estimator in the real world.

7.2 Dataset

The SAR measurements used in the chapter originate from 19978 IW acquired globally
between the March 03th 2018 and the February 23th 2022. Each of these observations
covers approximately 44 000 km2. The resolution is set at 100 m/px, dowscaled from the
GRDH L1 products at 10 m/px.

All of these observations are segmented by the rainfall estimator built in 6. A previous
study conducted using a global Sentinel-1 dataset found only 2304 partial collocations
with the GPM-DPR out of 182153 IW. ’Partial collocations’ refers to instances where at
least 20x20 km of a swath is observed by the spaceborne weather radar 20 minutes before
or after the SAR observation. Acquiring global information on rain in large quantities is
therefore difficult. Additionally, misalignment that could be manually resolved on small-
scale datasets - such as the Sentinel-1/NEXRAD collocations considered in chapter 6 - is
difficult to correct on tens of thousands of patches. Therefore, SAR-based rain estimation
is preferred to maximize the number of available observations and simplify the collocation
process.

Ancillary information, such as the incidence angle, the wind speed derived from the
GMF and atmospheric model are retrieved from Sentinel-1 L2 products. In particular,
the atmospheric model contains both the wind speed used as groundtruth and the wind
direction, used as a prior. It has a spatial resolution of 0.25x0.25 degrees and a temporal
resolution of 3 hours.
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7.3 Methodology

The aim of this section is to present the methodology for building the rain-invariant wind
speed estimator. First, we will describe the deep learning architecture of the model. Next,
we will discuss the creation of the dataset, specifically designed to have a large number
of rain examples. Finally, we will describe the evaluation procedure.

7.3.1 Deep Learning Model

The architecture used in this chapter is the U-Net architecture [234] , which has already
been studied in previous chapters and is depicted in Fig. 2.3. U-Net is an auto-encoder
architecture that is fully convolutional, meaning it maintains the property of transla-
tion equivariance (the translation of the input results in the translation of the output).
Additionally, skip connections between the encoder and the decoder facilitate training,
particularly by reducing the [150]. The output of the model always contains a single con-
volution kernel, which is activated by the ReLU function to ensure that the prediction is
in the interval [0, +∞[. All the convolution kernels in the hidden layers are also activated
by ReLU functions. The model is set to take input of 256x256 pixels during training,
but since the weights only describe convolution kernels, it is possible to use the model in
inference on images of any shape if the input resolution is 100 m/px.

Variants of the model are trained with different numbers of input channels. The mod-
ifications to the architecture are limited to the first convolution kernel, which is defined
as a kernel of size (3, 3, n) with n being the number of input channels.

7.3.2 Training procedure

Particular attention is given to the creation of the dataset. In particular, we strive to
satisfy the following assumptions:

1. Accuracy: the output -in our case, the wind speed from the atmospheric model-
must be close to the real-world wind speed, which is unknown.

2. Representativeness: the patch distribution in the dataset must reflect the real-world
distribution.

3. The subset coherence: the training, validation and test sets follow the same distri-
bution.
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4. The balancing: the low representation of rain patches in the real-world distribution
should be corrected to ensure the model works regardless of the rain rate.

5. The isolation: no information is leaked between the training, validation and test set.

Each of these points is presented in the following subsections. It is important to note
that the definition of representativity (Assumption 2) is somewhat ambiguous, as the pa-
rameters that determine its distribution are not explicit. Furthermore, this concept con-
tradicts the idea of balancing (Assumption 4) as the latter implies an over-representation
of rain patches. In the following, the representativeness is only considered for the distri-
bution of wind speeds.

Restriction to a priori Accurate Model Wind Speeds

Despite its limitations in resolution (0.25x0.25 degree spatially, 3h temporally) and can
be unable to accurately depict the real wind field, the atmospheric model is available for
every SAR observation. We are therefore able to restrict the dataset to samples where we
estimate the atmospheric model to be accurate (Assumption 1).

The number of pixels contained in A− is denoted as #A− , and the discrepancy between
the geophysical model function and the atmospheric model on rain-free pixels is denoted
as ∆A− .

A+ = {x : Rainfall(x) >= 3mm/h} (Eq. 7.1)

A− = {x : Rainfall(x) < 3mm/h} (Eq. 7.2)

#A− is the number of pixels contained in A−. We then compute ∆A− the discrepancy
between the geophysical model function and the atmospheric model on rain-free pixels.

∆A− = #−1
A−

∑
(x,y)∈A−

(ECMWF (x, y)− CMOD5N(x, y))2 (Eq. 7.3)

In our experiments, the threshold for ∆A− was set at less than 1 m/s. All patches that
displayed a higher discrepancy between the two wind speed sources were discarded.
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Forced Over-representation of Rain Signatures

Since the dataset will be used to train a rain-invariant model, rain patches have to be fed
to the model during the training phase. However, rain only appears in a minority of the
patches, as shown in Fig. 7.1. To balance the dataset (Assumption 4), a second condition,
on the ratio r+ between the cardinals of A+ and A is added. A sample is selected and
added to the dataset if it contains significant rain signature. In the following, the terms
"rain patch" will be used if r+ > 5%, else the sample will be called "rainless patch".
Under this threshold, 105k rain patches are extracted from the wide swaths (out of 4347k
patches).

By construction, the dataset lacks diversity. Indeed, only the patches with predicted
rainfall stronger than 3 mm/h are put in it. Thus, the dataset is dependent on hypothetical
bias that could affect the rainfall source. Because of this selection bias, the dataset lacks
diversity, especially for phenomena that do not often occur with rainfall: biological slicks,
low wind areas, etc. To ensure as many meteocean scenes appear, the dataset is filled with
rainless patches. We denote:

• n+ the number of patches containing rain.

• n− the number of patches without rain.

• P + the wind speed distribution on n+.

• P − the wind speed distribution on n−.

• P the wind speed distribution on n− ∪ n+.

Dataset-Level and Bin-Level Balancing

Fig. 7.1 indicates, using collocation between GPM-DPR precipitation measurement and
ECMWF atmospheric model, the evolution of the wind speed distribution depending
on the rainfall intensity, demonstrating a low impact of the former. At very high rain
rates, the wind speeds appear to be usually lower, but this difference is marginal until 10
mm/h. Following Assumption 2 implies that P − and P + should be similar distributions.
The performance of the rainfall estimator, on the other hand, is not wind-invariant. The
assumption that P − and P + are close does not hold. To avoid bias to be introduced
in the model, especially toward the resulting distribution of wind speed, it is necessary
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Fig. 7.1: Distribution of ECMWF ERA interim wind speed collocated with surface rain
rate from GPM-DPR. The orange curve is the wind distribution regardless of the observed
rainfall and therefore correspond to the top-left histogram.

to balance the dataset to a distribution close to P . Considering the variable x and n+

(resp. n−) the amount of rain (resp. rain-free patches), two datasets balancing methods
are considered:

• The Dataset-level balancing ensures that:

∀x, P (x) = n+P +(x) + n−P −(x)
n+ + n−

(Eq. 7.4)

• The Bin-level balancing ensures that:

∀x, P (x) = P +(x) = P −(x) (Eq. 7.5)

For simplicity, we set n+ = n−.

137



Dataset-level balancing

Dataset-level balancing aims to select all rain samples and pad the dataset with rainless
patches to achieve the original distribution P .

By choosing n+ = n−, the equation Eq. 7.4 simplifies to P −(x) = 2P (x) − P +(x).
However, this choice can result in P −(x) being negative when P +(x) > 2P (x). To address
this, P − is rescaled through normalization in Eq. 7.6.

P̃ − = max(0, P −)∫
max(0, P −)dx

(Eq. 7.6)

To build the rainless dataset, random samples are extracted from all the rainless
patches. These random samples is selected in the dataset with a probability of acceptance
described in Eq. 7.7.

paccept(x) = (1− P (x)) · P̃ −(x) (Eq. 7.7)

As a result of this operation, the dataset contains 210k patches. The distribution of
these patches is shown in Fig. 7.2.a using the wind speed as the balancing parameter x.
A discrepancy between P ++P̃ −

2 and P is shown in Fig. 7.2.b. In this balancing scheme,
the MAE between P̃ −+P +

2 and P is equal to 8.8%. In Fig. 7.2.c shows that, since the
distribution P + and P̃ − are different, for a given wind speed, knowledge of the rain
signature contained in the patch gives information on the wind speed. As we saw in Fig.
7.1, this behavior is undesirable, as it arises from bias in the dataset rather than an actual
metocean process.

Bin-Level Balancing

The bin-level balancing consists in ensuring ∀w : P +(w) = P −(w) = P (w), whereas
the previous dataset-level balancing only states that P +(w)+P −(w)

2 = P (w). Since the num-
ber of samples that can be extracted to build P − is one magnitude higher than P +, we
assume than only rain patches are limited.

The number n∗(w) of samples of P + at wind speed w to be extracted must verify that
(1) it is lower than the amount of rain patches at this wind speed and (2) it preserves the
distribution P . These two conditions translate as:
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n∗(w) = P (w) · α < P +(w) · n+ (Eq. 7.8)

where α is:

α = n+ ·min
w

P +(w)
P (w) (Eq. 7.9)

α denote the ratio of selected data. In our experiment, α = 17.5%, meaning than five
out of six samples were removed.

(a) (b) (c)

Fig. 7.2: Distribution of the wind speed depending on the balancing method. In (a),
dataset is constraint to have equal proportion of rainless and rain patches at wind speed
level. In (b), constraint is applied at the dataset level. (c) indicates the trimming resulting
of the wind speed level constraint.

Theoretically, the balancing should be performed for any ancillary parameters, includ-
ing the incidence angle, the wind direction, the latitude, the longitude... This can be easily
done by denoting the joint variable x = (w, INC, WDIR, LAT, LON) and applying the
previous formula to x rather than w. However, it can be seen that the bin-level balanc-
ing on joint variables would severely decrease the number of samples since 82.5% of the
data were removed for balancing the wind speed only. Under the dataset-level balancing,
however, the difficulty arises when n+

n−
P +(X) > n++n−

n−
P (X) since it constrains all the

patches at the ancillary parameter combination X to contain rain. It also increases the
difference between P̃ −+P +

2 and P . In the case of wind speed balancing, the MAE between
these distributions was 8.8%.

Training, Validation and Test Set Division

Similarly to the previous segmentation tasks, training, validation and test sets are created.
The training set is used for the gradient descent. The validation set to prevent overfitting
and ensure the model is able to generalize out of the training set. The test set, not
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accessible during the training, is only used for the performance measurement. Therefore,
the test and validation set must avoid any kind of data leak between the patches that
would hide generalization issues, which is the Assumption 5. We consider two sources of
data leaks:

• During the initial patch extraction, the stride was smaller than the patch size. A
smaller stride has the advantage of ensuring that a rain signature in the corner of one
patch, which would otherwise be useless because of its proximity to a border, would
also appear in the centre of another patch. However, it means that two adjacent
patches have overlapping areas and should appear in the same subset.

• Non-adjacent patches from the same swath could contain similar content as the
process they observed would be caused by the same metocean phenomenon.

Because of both of these potential data leaks, the training, validation and test sets are
divided at the swath-level. This means that if a patch from one swath is in one subset,
all patches from the swath must belong to the same subset.

The second property that has to be verified at this step is the conservation of the
underlying metocean distribution, which derives from Assumption 3. Denoting Ptrain,
Pval and Ptest as the distribution of each subset, the respective errors etrain, eval and etest,
defined as eA = MAE(P, PA), must be minimized. This minimization problem is similar
to the 3-partition problem. To solve this optimization problem quickly, we implement the
stochastic brute forcing method describes in algorithm 1. Being of time complexity linear
with the number of swaths, it quickly selects candidate distribution for both the validation
and the test sets and minimize the harmonic mean of both MAE.

Fig. 7.3 indicates the result of Algorithm 1. Both the validation and the test sets
contain around 10% of the data. The remaining 80% are contained in the training set. The
test set produced for the bin-level balancing slightly diverges from the original distribution,
with less high wind speeds rain patches and more rainless patches at 5 m/s.

At the end of the building, the dataset-level balancing scheme return respectively
168349, 20944 and 21010 patches for respectively the train, test and validation subsets
for 14169, 1763 and 1763 IW. Under the bin-level balancing scheme, the train, test and
validation subsets contain respectively 30422, 3150 and 3282 patches from 10531, 1319
and 1319 IW.
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Algorithm 1: Stochastic brute forcing
input : The list L of all swath i and their patch distribution Pi.
output: Lval and Ltest, the list of the swaths contained in the validation and test

sets.

1 emin = +∞;
2 n1 = len(L)/10;
3 n2 = len(L)/3;
4 for i← 0 to 1000000 by 1 do
5 n = random.integer(min=n1, max=n2);
6 candidate = random.choice(L, size=n, replace=False);
7 cval = candidate[: n/2];
8 ctest = candidate[n/2 :];
9 eval = MAE(P +, P −

cval
) + MAE(P −, P −

cval
);

10 etest = MAE(P +, P +
ctest

) + MAE(P −, P −
cval

);
11 e = 2·eval· eetest

eval+etest
;

12 if e < emin then
13 Lval = cval;
14 Ltest = ctest;
15 emin = e;
16 end
17 end

(a) (b)

Fig. 7.3: The percentage of the whole dataset contained in the validation and test subsets,
for rainless patches (a) and rain patches (b). The train subset is not represented as it is
the complement of the validation and test subsets.
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Fig. 7.4: Observation from the November 11th 2018 at 04:56:47. From left to right: Copo-
larization SAR observation, GMF output, deep learning output and absolute difference
between the two.

7.3.3 Evaluation procedure

To assess the impact of each input channels, various variants of the model are trained:

1. I uses only the VV channel.

2. II uses the same inputs as the GMF: the VV channel, the incidence angle and the
a priori wind speed direction.

3. III uses the same inputs as II and the VH channel.

4. IV uses the same inputs as III and the wind speed prior.

5. V uses only the wind speed prior. We note that this variant implicitly use the VV
channel, though at a resolution of only 1 km/px.

Each architecture is trained five times to reduce the impact of a lucky initialization
on the result of the evaluation. The results are therefore recorded as the mean and the
standard deviation over these five independent training.

The results are compared using the Root Mean Square Error (RMSE) and the Pearson
correlation coefficient (PCC). The latter has the advantage of being a normalized mea-
surement of the covariance and not being affected by the bias. Results are computed both
the groundtruths from the atmospheric model, which has the advantage of providing a
large test set, and for collocations with buoys, which have a good temporal resolution and
are in-situ measurements.
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7.4 Results

7.4.1 Benchmarking experiments

The performances of the model against ECMWF are computed on the test subset for
input variant and baseline the GMF. Results of this analysis are contained in Table 7.1.
It seems that the most important input is the GMF itself, as both IV and V have better
results than the other variants. I, II and III aren’t able to obtain better results than the
GMF except under strong rainfall, even though II and III have access to all the channels
used by the GMF.

The choice of the balencing scheme appears to be secondary as the performances over
both datasets are similar, despite the difference of test set over which they were computed.

RMSE PCCMODEL AND
CHANNELS RAIN RATE Dataset-level

balancing
Bin-level
balancing

Dataset-level
balancing

Bin-level
balancing

[0, 1[mm/h ♢ 1.38 [0.016] ♢ 1.38 [0.008] ♢ 89.9% [0.19%] ♢ 89.9% [0.17%]
[1, 3[mm/h ♢ 1.64 [0.046] ♢ 1.29 [0.034] ♢ 92.7% [0.39%] ♢ 94.4% [0.28%]
[3, 10[mm/h ♢ 1.59 [0.038] ♢ 1.43 [0.077] ♢ 92.7% [0.38%] ♢ 94.7% [0.52%]

I
[VV]

≥ 10mm/h ♢ 2.12 [0.052] ♢ 2.01 [0.092] ♢ 81.7% [1.03%] ♢ 84.6% [1.24%]
[0, 1[mm/h ♢ 0.87 [0.009] ♢ 0.87 [0.005 ♢ 96.2% [0.06%]] ♢ 96.1% [0.04%]
[1, 3[mm/h ♢ 1.04 [0.086] ♢ 1.05 [0.093] ♢ 97.2% [0.47%] ♢ 96.2% [0.70%]
[3, 10[mm/h ♢ 1.19 [0.053] ♢ 1.24 [0.096] ♢ 96.2% [0.37%] ♢ 95.8% [0.64%]

II
[VV, INC, GMF]

≥ 10mm/h ♢ 2.27 [0.151] ♢ 1.74 [0.129] ♢ 81.7% [1.89%] ♢ 88.6% [1.27%]
[0, 1[mm/h ♢ 0.83 [0.002] ♢ 0.86 [0.013] ♢ 96.5% [0.02%] ♢ 96.2% [0.09%]
[1, 3[mm/h ♢ 0.93 [0.020] ♢ 0.92 [0.018] ♢ 97.7% [0.07%] ♢ 97.2% [0.09%]
[3, 10[mm/h ♢ 1.09 [0.022] ♢ 1.06 [0.033] ♢ 96.7% [0.07%] ♢ 97.0% [0.21%]

III
[VV, VH,

INC, WDIR] ≥ 10mm/h ♢ 2.13 [0.050] ♢ 1.70 [0.106] ♢ 83.9% [0.66%] ♢ 88.9% [1.34%]
[0, 1[mm/h ⋆ 0.64 [0.007] ⋆ 0.65 [0.006] ⋆ 97.9% [0.04%] ⋆ 97.9% [0.02%]
[1, 3[mm/h ⋆ 0.63 [0.015] ⋆ 0.65 [0.007] ⋆ 98.9% [0.03%] ⋆ 98.6% [0.03%]
[3, 10[mm/h ⋆ 0.78 [0.040] ⋆ 0.77 [0.005] ⋆ 98.4% [0.08%] ⋆ 98.4% [0.03%]

IV
[VV, VH, INC,
WDIR, GMF] ≥ 10mm/h ⋆ 1.63 [0.162] ⋆ 1.37 [0.078] ⋆ 90.9% [1.17%] ⋆ 93.7% [0.44%]

[0, 1[mm/h ♢ 0.67 [0.003] ♢ 0.69 [0.003] ♢ 97.7% [0.02%] ♢ 97.6% [0.01%]
[1, 3[mm/h ♢ 0.68 [0.005] ♢ 0.71 [0.005] ♢ 98.8% [0.01%] ♢ 98.3% [0.01%]
[3, 10[mm/h ♢ 0.88 [0.021] ♢ 0.86 [0.009] ♢ 98.0% [0.03%] ♢ 98.0% [0.03%]

V
[GMF]

≥ 10mm/h ♢ 1.94 [0.087] ♢ 1.56 [0.075] ♢ 87.9% [0.66%] ♢ 91.5% [0.51%]
[0, 1[mm/h 0.77 0.78 97.0% 96.9%
[1, 3[mm/h 0.84 0.91 98.1% 97.3%
[3, 10[mm/h 1.25 1.43 96.5% 95.2%GMF

≥ 10mm/h 4.65 5.32 52.5% 55.8%

Table 7.1: Comparison of the five variants of the model and the two datasets. RMSE
and PCC are computed on the respective test set and for five training with random
initialization. Results are given with mean and standard deviation. The best result for
each metric is indicated by ⋆. Results better than the baseline are indicated by ♢.
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7.4.2 Application to SAR observation with groundtruthed in
situ data

However, ECMWF wind speeds are reanalysis data and not in situ data. Those can be
obtained with anemometers aboard buoys. Using the dataset build in [136], 6030 IW were
collocated with 42 NDBC buoys. These data were collected and made freely available by
NOAA/NDBC. It resulted in 3614 collocation points. The rain prediction model predicted
3548 to be rainless, 66 to have been recorded during a rainfall higher than 1 mm/h and 13
at more than 3 mm/h. As the height of these measures varies (most are around between
3.8 m and 4.0 m above the ocean level). Following [136], the SAR inversion and the
deep learning prediction are both normalized to the altitude of the corresponding in situ
measurement using an exponential law [155]:

w(h) =
(10

h

)0.11
(Eq. 7.10)

Table 7.2 indicates that, on rainless patches the performances of the IV model are
similar to that of the GMF itself. For the model trained on the dataset A, the RMSE
decrease from 1.46 m/s to 1.38 m/s, and the PCC increases from 93.9% to 94.0% both
improvements are considered negligible. One important difference is contained in the bias
of the linear regression associated with the distribution: this bias indicates that the GMF
overestimates the wind speed by 0.31 m/s and reach 0.44 m/s for ΨA. This is believed to
be caused by both the low number of samples at wind speed lower than 1 m/s and by
the bias from ECMWF data. According to Table 7.2, the ECMWF atmospheric model
overestimate the wind speed given by the buoys by 1.17 m/s. However, for points with
rainfall higher than 1 mm/h, the RMSE and the bias increase dramatically for the GMF-
baseline but are mitigated with the deep learning models. Training the model on the
dataset A (dataset-level balancing) appear to be more efficient as ΨA have slightly better
metrics than ΨB (trained under the bin-level balancing scheme), especially on the PCC.

Here, we observe two cases where rainfall was detected on the buoy position at the
time of the observation.

2017-01-08 01:58:19 at NDBC 46054

The observation from 2017-01-08 01:58:19 covers the north of the Californian Channel
Islands (Fig. 7.5.a). Several meteorological buoys are dispersed over the channel, notably
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Number of
points IVA IVB GMF ECMWF

< 1mm/h 3548 ♢ 0.44 ♢ 0.47 ⋆ 0.31 ♢ 1.17
Bias ≥ 1mm/h 66 ⋆ 0.97 ♢ 0.98 ♢ 1.18 ♢ 1.10

≥ 3mm/h 13 ♢ 0.49 ⋆ 0.47 ♢ 2.78 ♢ 1.26
< 1mm/h 3548 ⋆ 1.39 ♢ 1.53 ♢ 1.46 ♢ 2.13

RMSE ≥ 1mm/h 66 ♢ 1.98 ⋆ 1.97 ♢ 2.56 ♢ 2.14
≥ 3mm/h 13 ⋆ 1.78 ♢ 1.89 ♢ 3.42 ♢ 2.23
< 1mm/h 3548 ⋆ 94.1% ♢ 93.6 % ♢ 94.0% ♢ 86.8%

PCC ≥ 1mm/h 66 ⋆ 95.9% ♢ 95.7% ♢ 92.8% ♢ 92.3%
≥ 3mm/h 13 ⋆ 95.6% ♢ 93.0% ♢ 89.6% ♢ 87.5%

Table 7.2: RMSE, PCC and bias of IV, the GMF and ECMWF against the buoys, for
each rain prediction. The best result for each metric is indicated by ⋆. Results better
than the baseline is indicated by ♢. IVA indicates the dataset-level balancing and IVB the
bin-level balancing.

NDBC 46054 and NDBC 46053, which are indicated as red dots. The wind speed over the
area is mostly around 6 m/s but a squall line appears at the position of NDBC 46054 and
span over dozen kilometres. Rain signature appears clearly on the southern -or upper, as
the image is in sensor-geometry- half of the front, which is detected by the rain detector
build in chapter 6 (Fig. 7.5.c). In the northern half, the backscattering is still high, but
the rain signature is difficult to read. The GMF indicates a very high wind speed, higher
than 20 m/s (Fig. 7.5.d), while the deep learning model attenuates this value to between
6 m/s and 8 m/s (Fig. 7.5.e). The southern half of the front, where rain signatures are
visible, is the most attenuated.

For NDBC 46054, only one measurement of wind speed and direction per hour is
available. It recorded a wind speed of 6.3 m/s eight minutes before the SAR observation.
The GMF and the deep learning estimated the wind at respectively 15.1 m/s and 5.9
m/s. Though the temporal resolution of NDBC 46054, NDBC 46053 is recording data
every ten minutes. Moreover, the gust front appears to be progressing toward the right
part of the observation. It appears on the time serie in Fig. 7.5 as a large variation of
the wind direction between 02:40:00 and 03:00:00. The variation of the wind speed seems
to precede the variation of the direction by first increasing then decreasing to a lower
wind regime. On NDBC 46053, the GMF and the deep learning model are in agreement
at 4.5 m/s, which is slightly lower than the in situ data at 5.4 m/s. Since the distance
between NDBC 46054 and NDBC 46053 is approximately 60 km, the progression of the
gust front can be estimated to be around 90 km/h. Its width being around 5 or 6 km, the
whole system is passing the buoys in three minutes. This means that even NDBC 46053
may not have been able to correctly estimate the wind speed due to the lack of temporal
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Fig. 7.5: Observation from the January 08th 2017 at 01:58:19 in VV channel (a), zoom
on an area of 35x35 km centred on the buoy NDBC 45054 (b), segmentation of the rain
rate (c), wind speed given by the GMF (d) and by the ΨA (e).

resolution. However, it has to be noted that even the gust speed at NDBC 46054, defined
as the maximum wind speed over height seconds, does not record a speed higher than 9
m/s.

SAR-20191006T232853 NDBC-41009

The observation from 2019-10-06 23:28:53 was recorded on the east-coast of Florida.
Though most of the swath cover the marshes around Orlando and Cap Canaveral rather
than the ocean, convective precipitation can be observed in the right part of the im-
age (Fig. 7.7.a). The cells are progressing downward (north-north-east) as indicated by
the stronger gradient of the convective front. As the wind from the convection opposed
the underlaying wind regime, an area of lower wind speed appears as an area of lower
backscatter. Then, rain signature is clearly visible south of NDBC 41009 (Fig. 7.7.b). The
GMF is impacted by this rain signature and estimate a local very high wind speed (Fig.
7.7.c). The deep learning model is less affected by the rain signature, but also appear to
blur the low wind speed area (Fig. 7.7.d).

The time serie from NDBC 41009 in Fig. 7.8 indicates that the lower backscattering
was indeed caused by a drop of the wind speed rather than a direction change, as the latter
does not significantly change over the passage of the convective cell (possibly because the
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(a) (b)

Fig. 7.6: Time series of the NDBC buoy wind measurements around January 08th 2017
01:58:19 for NDBC 46054 (a) and NDBC 46053 (b), and the estimation from the GMF
(indicated as owi), IVA (U-Net) and the atmospheric model (indicated as owiEcmwf).

Fig. 7.7: Observation from October 06th 2019 at 23:28:53 in VV channel (a), zoom on an
area of 35x35 km around the buoy NDBC 41009 (b), segmentation of the rain rate (c),
wind speed given by the GMF (d) and by ΨA (e).
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Fig. 7.8: Time series of the NDBC buoy wind measurements around October 06th 2019
at 23:28:53 for NDBC 41009, and the estimation from the GMF (indicated as owi), IVA

(U-Net) and the atmospheric model (indicated as owiEcmwf).

underlying wind regime is rather strong). It does record a sudden drop of the wind speed
to 7.5 m/s one minute after the SAR observation, whereas the GMF and the deep learning
were estimating respectively 13.7 m/s and 8.9 m/s.

7.5 Conclusion

The study in Chapter 6 highlighted that precise rain signatures could be extracted au-
tomatically from SAR observations. Heterogeneity masking was also conducted in [232].
However, it is possible to go further and estimate the wind speed hidden behind the SAR
signature, which is akin to in-painting. This can be done by relying on an architecture
similar to the other problems studied in this document. In particular, it does not rely on
a secondary input channel providing rain information as the ability to detect rain-induced
overestimation of the wind speed comes from the dataset rather than the architecture.
Once trained, it is therefore possible to use this wind speed estimator as a standalone
model.

148



Collocations with buoy in-situ measurement indicate that the model outperforms the
current Geophysical Model Function even on rainless areas, decreases the Root Mean
Square Error of 4.8%. The performance difference increases with the rain rate, where the
GMF is known to overestimate the wind speed. The RMSE decreases by 23% and 48%
for rain respectively higher than 1 mm/h and 3 mm/h. However, since the buoys have a
time resolution of ten minutes, some quick sub-mesoscale processes, such as gust fronts,
are difficult to register. The limited spatial range of the buoys is also an issue to retrieve
observations of rare phenomena. Future work should address these concerns.
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CONCLUSION

1 Contributions

The segmentation of meteorological and oceanic processes is a crucial topic to understand
the meteorological and oceanic conditions. The diversity in their nature, scale, appearance,
and the specifics of the sensors capable of detecting them require consideration of their
unique qualities when designing a machine learning method. Although the manuscript
focuses on the segmentation of meteorological and oceanic processes, Synthetic Aperture
Radar (SAR) and Deep Learning can be applied to a wide range of tasks, such as cat-
egorization [207], despeckling [103, 50], and super resolution [51, 162, 102]. By limiting
ourselves to segmentation problems, we observed that, from a statistical perspective, the
estimation of sea ice concentration, rainfall, and wind speed pose different challenges, with
respectively a bimodal distribution with modes at the two limits of a [0, 1] interval (in
Chapter 5) and unimodal distributions on [0, +∞] with either a null (in Chapter 6) or
non-null mode (in Chapter 7).

Each of these tasks therefore needs for a dedicated solution. The semantic segmen-
tation using the ten classes from TenGeoP-SARwv in Chapter 3 was subject to class
unbalance, which led to the formulation of a balanced loss. In the case of the segmen-
tation of Convective Cells in Chapter 4, a dynamic loss varying during the training was
designed to be able to segment convective cells as well as their fronts. The segmenter
architecture was also enhanced to take into account a multiscale aspect and increase the
receptive field of the model. In Chapter 5, the regression of a single value, the Sea Ice
Concentration, is simplified as a multiclass segmentation, though it uses an additional
regression layer embedded in the model to constrain the subsequent categorization layer.
Chapter 6 reuses this simplification of regression into a segmentation task to facilitate the
balancing of stronger and scarcer rainfall. The Chapter 7 shifts the balancing considera-
tions by considering them at the dataset creation rather than in the architecture of the
model or the loss to minimize.

Another common focus is the quality of the annotations. Chapter 3 explores the use of
weakly supervised frameworks for the segmentation of metocean processes and concludes
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that a small number of high-quality annotations is better than a large number of impre-
cise annotations. This conclusion drove the construction of manually annotated datasets
used in Chapter 2 and 4. However, the annotation process for metocean conditions is
time-consuming, making it difficult to extend the process to capture the full range of
metocean variations. In Chapter 5, the dataset was obtained via collocations with manual
annotations from the Norwegian Meteorological Institute. The objective of high-quality
annotations also appears in Chapter 6 since the existing NEXRAD collocations were
manually checked and realigned against the rain signatures on the SAR observations. In
Chapter 7, the dataset is built to specifically select samples where the SAR-based wind
speed prior was close to the atmospheric model, though this condition is only enforced on
rainless pixels.

Each of these segmentation tasks has similar difficulties, but the considerations on the
model architectures, loss functions and datasets have to be carefully studied to fine-tune
the solutions. This is especially true when it comes to validating the model performances.
In data-driven frameworks, a part of the dataset, namely the test set, is reserved for mea-
suring the performances on data independent of those on which the model was trained.
However, because of the aforementioned difficulty in retrieving data over diverse meto-
cean condition, it is often necessary to build a secondary dataset for a second validation.
In Chapter 2, the validation of the Biological Slicks segmentation was performed using
geologic and oceanographic priors -namely the presence of cold seeps or of gyres- as well as
comparison with measurements of ocean colour from Sentinel-3. Chapter 4 compares the
segmentation of the Convective Cells to the measurements from infrared sensors aboard
GOES-16 and GOES-17. Chapter 6 aims at measuring the performances on winds too
scarce in the training set by collocating GLM, using its lightning detection capability as
a proxy of rain information. Finally, Chapter 7 used in situ wind speed measurements to
validate that learning from an atmospheric model was possible. This validation process
helps to understand the inner behaviour of the models and detect the situations that
would raise incorrect predictions.

Considering these points, we can answer, at least partially, to the questions raised in
the foreword.

It is possible to segment metocean processes on Synthetic Aperture Radar
observations?
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The segmentation of several processes appears to be possible. In particular, segmen-
tation of Sea Ice, biological slicks, convective processes, rainfall, and the estimation of
the wind speed all obtain satisfying results and prove the possibility to use supervised
learning and convolutional neural networks to obtain the segmentations. The use of the
U-Net architecture for most segmentation tasks led to believe that the segmentation of
additional metocean processes could be possible with a similar architecture if an adequate
dataset is provided.

Is it possible to separate processes appearing on the same pixels?

The rain-induced wind speed estimation is an example of two metoceans processes
appearing simultaneously on the same pixels. Chapter 7 proved that it was possible to
mitigate this overestimate, though only partially. The main difficulty was to retrieve accu-
rate groundtruth for the wind speed. This issue was solved by comparing the SAR-based
wind speed and the atmospheric model on rainless pixels. This methodology is therefore
only possible when the observation contains non-overlapping areas. The extension to other
co-occurring phenomena would therefore be more difficult than the simpler segmentation
of Question 1 that only considers non-overlapping processes.

Is segmentation achievable using current datasets?

Though some methods exist to obtain segmentation maps from the image-level infor-
mation -and were applied on the TenGeoP dataset in Chapter 3- it proved to be difficult to
obtain high accuracy from weakly-supervised methods. Chapter 3 was not an exhaustive
review of weakly-supervised methods, but it highlighted the importance of high quality
groundtruth. This point was confirmed by the rainfall estimation (Chapter 6) and the
wind speed estimation (Chapter 7). It convinced us that fully-supervised methods have
advantages that counterbalance the difficulty in obtaining segmentation datasets. Fur-
thermore, groundtruth can be obtained from collocation with non-SAR sensors rather
than manual annotation. It decreases the time needed to build a dataset, despite a clean-
ing step required to assure the quality of the automatically retrieved groundtruth. Other
frameworks, such as semi-supervised [16], could also help by providing means to learn
from both annotated and unannotated data but are left for further studies.
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2 Perspectives

SAR images are richer than what is used in our models and additional channels, un-
used in this manuscript, are available to enhance the quality of the segmentations. The
cross polarization channel is less subject to saturation at high wind speed. The thermal
noise annotation, available in GRD products, is thought to be beneficial to select which
pixels of the observation are the most informative. Topographic information such as the
bathymetry/elevation and the distance to coast can be used to understand the context
of the acquisition and enhanced to capacity of the models to work in various meteocean
contexts. Internal variables such as the incidence angle the heading are also of interest as
the aspect of the process change depending on the geometry of the observation. Finally,
meteorological information, such as the wind direction or its speed, can provide prior
beneficial to the models. However, the integration of additional channels is difficult due
to the increase of the input vector space dimension. Especially when working on datasets
of limited size, it has been experienced that supplementary channels tend to overfit the
model and, as such, did not systematically lead to enhanced capabilities. Further work
should study the possibility to use these ancillary channels in addition to the single VV
polarization. The use of the additional channels could be achieved on the rainfall estima-
tion problem. Current work is directed at increasing the dataset using the Operational
Programme for the Exchange of weather Radar Information (OPERA) that provides pan-
European radar composite. Since we now have access to a rainfall estimator, it is easier
to retrieve the metocean condition likely to over- or under-estimate the precipitation and
compare with weather radar observations. This would allow to extend the capabilities of
the rainfall estimator to stronger wind regimes. This is of particular interest since ex-
treme events such as hurricanes are among the phenomena with both high rainfall and
wind speed.

The convective process segmenters can be used to perform systematic collocations
with secondary sensors. Geostationary satellites, such as the GOES, Himawari, and MSG
series, are well-suited for collocation because they provide large observations at high time
resolution. These satellites all have passive imaging radiometers on board with IR band
observations that provide information on water vapor and indirectly, convective processes.
The 11.2 µm band (GOES & Himawari) or the 10.8 µm band (MSG) can be used as priors
to estimate convective cells. However, it is unknown if using this supplementary channel
will increase overfitting and require new annotations.
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The study on biological slicks found a correlation between the probability of their
appearance and ocean color, which was expected as they are both byproducts of photo-
synthesis. However, the correlation is weaker at large scales. Further studies, including
collocation of additional ocean properties, such as salinity, sea surface temperature, and
surface currents, are needed to better understand the differences between the two obser-
vation processes.

With the increasing availability of data and sensors, it is believed that the number of
models dedicated to geophysical processes will continue to rise and improve their capa-
bilities. There are still many metocean phenomena that have not been studied, such as
orographic waves, upwelling, internal waves, eddies, and extreme events like hurricanes.
These subjects are of high interest in the oceanographic community, but acquiring anno-
tated datasets can be difficult. Nevertheless, it is expected that in the near future, the
number of SAR-based segmentation maps will increase and cover an even wider range of
phenomena.
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GLOSSARY

ABI Advanced Baseline Imager. A radiometer observing the Earth with 16 spectral bands
between 450 and 1300 nm. . 19, 84, 184

ENL Equivalent Number of Looks. Number of looks that would produce similar speckle
than the product. The higher this number is, the lower both the speckle and the
resolution are. . 27, 184

EW Extra-Wideswath. The default observation mode of the Sentinel-1 mission in polar
areas. EW are products of 400 km in range. . 27, 81, 184

GAN Generative Adversarial Network. A model architecture in which the loss (or part
of the loss) is not defined explicitly but estimated from a secondary model (called
the discriminator) training simultaneously. . 42, 184

GLM Geostationary Lightning Mapper. A near-infrared optical sensor onboard the GOES-
16 and GOES-17 satellites. It aims at detecting lightning events. . 18, 19, 184

GMF Geophysical Model Function. In the context of SAR imagery, it refers to a function
linking the wind speed, its direction relative to the satellite heading, the incidence
angle, and the reflectivity. It is notably used to retrieve the wind speed from the
SAR observation, assuming a wind direction obtained by a atmospheric model.. 132,
143, 184

GOES-16/17 Geostationary Operational Environmental Satellite 16 and 17. Part of the
GOES constellation. Both are geostationnary satellites and embark a radiometer
(ABI) and a near-infrared detector (GLM). . 19, 184

GPM-DPR Global Precipitation Measurement/Dual-frequency Precipitation Radar. A
weather radar aboard the GPM-core satellite. . 18, 19, 133, 184

GRD Ground Range Detected. A SAR product where the observation have been pro-
jected to the ground using a Earth model, with a square spatial resolution. . 19, 25,
49, 133, 153, 184
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incidence angle The angle between the direction of the measurement and the nadir. .
18, 53, 132, 133, 184

IW Interferometric Wideswath. The default observation mode of the Sentinel-1 mission
in coastal areas. IW are products of 250 km in range. . 19, 27, 46, 80, 132, 133, 184

L2 Level-2 Product. Geolocated geophysical products derived from an observation. . 50,
133, 184

MAE Mean Absolute Error. An error function defined as MAE(x, x̃) = 1
n

∑n
i=0 abs(x−x̃).

138, 139, 184

metocean Contraction of meteorologic and oceanic processes. Processes than originate
either from atmospheric or oceanic conditions. . 8, 184

MSE Mean Square Error. An error function defined as MSE(x, x̃) = 1
n

∑n
i=0(xi − x̃i)2.

82, 83, 84, 184

NDBC National Data Buoy Center. An american network of buoys and coastal stations.
. 17, 184

NEXRAD NEXt generation RADar. An american network of ground-based weather
radars. . 17, 133, 184

NRCS The Normalized Radar Cross-Section, also called σ0, is the radiometric calibrated
radar cross-section in respect to the thermal noise, the incidence angle, and various
other geophysical parameters [108]. . 22, 184

off-nadir Observation performed with a non-null incidence angle. . 18, 184

OLCI Ocean and Land Colour Instrument. A spectrometer using 21 bands from 400 nm
to 1070 nm used notably to measure the ocean colour. . 19, 50, 184

RMSE Root Mean Square Error. An error function defined as RMSE(x, x̃) =
√

1
n

∑n
i=0(xi − x̃i)2.

142, 184

SAR Synthetic Aperture Radar. An imaging technique relying on the movement of the
sensor to provide high-resolution observations. . 19, 45, 79, 132, 184
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Sentinel-3 A satellite serie part of the Copernicus Program. It embarks the OLCI used
to estimate, inter alia, the chlorophyll concentration. . 19, 50, 184

SLC Single Look Complex. A SAR product where the observation is in the image plane
of satellite data acquisition, and without multi-looking. Both phase and amplitude
information are conserved, but the speckle is higher than in GRD products. . 19,
25, 184

Weakly-supervised learning A machine learning strategy under which some charac-
terics of the desired output are better than those in the actual groundtruth (for
example, higher spatial resolution or lower noise). . 44, 184

WV Wave Mode. The default observation mode in open ocean. WV products are obser-
vations of 20x20 km. . 19, 27, 79, 184
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Titre : De l’Utilisation de l’Apprentissage profond pour la Segmentation d’Images SAR océaniques

Mot clés : Télédetection, Radar à Synthèse d’Ouverture, Apprentissage Profond, Océanographie

Résumé : Nombreux sont les phénomènes
météorologiques prenant naissance dans les
océans, dont 71% de la surface de la Terre
est couverte. L’observation des étendues marines
est primordiale pour accroître notre compréhen-
sion du système Terre, améliorer les modèles
météorologiques et atténuer l’effet des catastro-
phes naturelles. Depuis le lancement d’ERS-1 en
1991, les radars à synthèse d’ouverture (SAR,
d’après l’acronyme anglais) en bande C sont util-
isés pour observer les surfaces océaniques. La
bande C est, en effet, particulièrement utile pour
obtenir des informations sur les vagues, le vent,
les précipitations, la banquise, que ce soit à méso-
ou à sous-méso échelle.

La thèse ci-présente traite de la segmentation,
c’est-à-dire de la classification pixel par pixel, des
observations SAR en bande C dans un contexte
océanographique. Les modèles d’apprentissage
profond permettant d’inférer des informations à

partir de larges ensembles de données, nous met-
tons à profit les acquisitions produites par les satel-
lites Sentinel-1A et Sentinel-1B pour générer des
cartes de segmentation. Ces deux satellites du
programme Copernicus ont été lancés au cours
des années 2014 et 2016. Les observations du
capteur SAR sont co-localisées avec des sources
secondaires (par exemple des radars côtiers,
des bouées ou encore d’autres satellites), parfois
manuellement annotées, ou encore reliées à des
modèles météorologiques. Elles sont ensuite util-
isées pour entraîner des modèles d’apprentissage
profond et pour s’assurer de leurs performances à
travers de multiples comparaisons.

Ces études mettent en exergue la possibilité
pour l’imagerie SAR de déduire de nouvelles infor-
mations prometteuses. Elles proposent également
un cadre pour la construction de jeux de données
de segmentation et de l’entraînement des modèles
afférents.

Title: On the Use of Deep Learning for Ocean SAR Image Semantic Segmentation

Keywords: Remote Sensing, Synthetic Aperture Radar, Deep Learning, Oceanography

Abstract: With water covering 71% of the surface
of the Earth, and most meteorological processes
stemming from the oceans, their observation is
primordial to enhance our comprehension of the
Earth system, improve meteorological models, and
prevent hazards. Since ERS-1 (launched in 1991),
C-Band Synthetic Aperture Radar (SAR) has been
used to observe the ocean surfaces. This particular
electromagnetic band is especially useful for deriv-
ing information on waves, winds, precipitation, sea
ice, and more at meso- and sub-mesoscale.

The subject of this thesis is the segmentation,
or pixel-per-pixel classification, of the ocean sur-
face C-Band SAR observations. The generation of
segmentation maps is possible through the use of

machine learning frameworks that are able to ex-
tract information from the large data volume pro-
duced by the satellites Sentinel-1A and Sentinel-
1B, which were launched in 2014 and 2016 as part
of ESA’s Copernicus program. These observations
are collocated with third-party sensors (ground sta-
tions, buoys, satellite-boarded instruments), man-
ually annotated segmentations, or meteorological
models to be able to train deep learning models
and ensure their capacity through extensive tests.

These studies show promising uses of new
SAR-derived information and propose guidelines
for building dedicated segmentation datasets and
models.
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