
HAL Id: tel-04030895
https://theses.hal.science/tel-04030895v2

Submitted on 15 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Worst-case analysis of efficient first-order methods
Mathieu Barré

To cite this version:
Mathieu Barré. Worst-case analysis of efficient first-order methods. Optimization and Control
[math.OC]. Université Paris sciences et lettres, 2021. English. �NNT : 2021UPSLE064�. �tel-
04030895v2�

https://theses.hal.science/tel-04030895v2
https://hal.archives-ouvertes.fr

Préparée à l’École Normale Supérieure

Worst-Case Analysis of Efficient First-Order Methods

Soutenue par

Mathieu Barré
Le 6 octobre 2021

École doctorale no386

École Doctorale Sciences
Mathématiques de Paris
Centre

Spécialité
Mathématiques
Appliquées

Composition du jury :

Francis Bach
Directeur de Recherche, INRIA Président du jury

François Glineur
Professeur, UCLouvain Rapporteur

Silvia Villa
Professeure,
Université de Gênes Rapportrice

Alexandre d’Aspremont
Directeur de Recherche, CNRS Directeur de thèse

Resumé

De nombreuses applications modernes reposent sur la résolution de problèmes d’optimisations (par
exemple, en biologie numérique, en mécanique, en finance), faisant des méthodes d’optimisation des
outils essentiels dans de nombreux domaines scientifiques. Apporter des garanties sur le comportement
de ces méthodes constitue donc un axe de recherche important.

Une façon classique d’analyser un algorithme d’optimisation consiste à étudier son comportement
dans le pire cas. C’est à dire, donner des garanties sur son comportement (par exemple sa vitesse de
convergence) qui soient indépendantes de la fonction en entrée de l’algorithme et vraies pour toutes
les fonctions dans une classe donnée. Cette thèse se concentre sur l’analyse en pire cas de quelques
méthodes du premier ordre réputées pour leur efficacité.

Nous commençons par étudier les méthodes d’accélération d’Anderson, pour lesquelles nous don-
nons de nouvelles bornes de pire cas qui permettent de garantir précisément et explicitement quand
l’accélération a lieu. Pour obtenir ces garanties, nous fournissons des majorations sur une variation
du problème d’optimisation polynomiale de Tchebychev, dont nous pensons qu’elles constituent un
résultat indépendant.

Ensuite, nous prolongeons l’étude des Problèmes d’Estimation de Performances (PEP), développés
à l’origine pour analyser les algorithmes d’optimisation à pas fixes, à l’analyse des méthodes adapta-
tives. En particulier, nous illustrons ces développements à travers l’étude des comportements en pire
cas de la descente de gradient avec pas de Polyak, qui utilise la norme des gradients et les valeurs
prises par la fonction objectif, ainsi que d’une nouvelle version accélérée. Nous détaillons aussi cette
approche sur d’autres algorithmes adaptatifs standards.

Enfin, la dernière contribution de cette thèse est de développer plus avant la méthodologie PEP pour
l’analyse des méthodes du premier ordre se basant sur des opérations proximales inexactes. En utilisant
cette approche, nous définissons des algorithmes dont les garanties en pire cas ont été optimisées et nous
fournissons des analyses de pire cas pour quelques méthodes présentes dans la littérature.

i

Abstract

Many modern applications rely on solving optimization problems (e.g., computational biology, me-
chanics, finance), establishing optimization methods as crucial tools in many scientific fields. Providing
guarantees on the (hopefully good) behaviors of these methods is therefore of significant interest.

A standard way of analyzing optimization algorithms consists in worst-case reasoning. That is,
providing guarantees on the behavior of an algorithm (e.g. its convergence speed), that are independent
of the function on which the algorithm is applied and true for every function in a particular class. This
thesis aims at providing worst-case analyses of a few efficient first-order optimization methods.

We start by the study of Anderson acceleration methods, for which we provide new explicit worst-
case bounds guaranteeing precisely when acceleration occurs. We obtained these guarantees by pro-
viding upper bounds on a variation of the classical Chebyshev optimization problem on polynomials,
that we believe of independent interest.

Then, we extend the Performance Estimation Problem (PEP) framework, that was originally de-
signed for principled analyses of fixed-step algorithms, to study first-order methods with adaptive pa-
rameters. This is illustrated in particular through the worst-case analyses of the canonical gradient
method with Polyak step sizes that use gradient norms and function values information, and of an
accelerated version of it. The approach is also presented on other standard adaptive algorithms.

Finally, the last contribution of this thesis is to further develop the PEP methodology for analyzing
first-order methods relying on inexact proximal computations. Using this framework, we produce
algorithms with optimized worst-case guarantees and provide (numerical and analytical) worst-case
bounds for some standard algorithms in the literature.

ii

Remerciements

Je tiens tout d’abord à remercier mon directeur de thèse Alexandre d’Aspremont pour sa confiance et
son soutien tout au long de cette thèse. Il a su plusieurs fois me remotiver et contrebalancer mes avis
parfois très tranchés sur mon travail, et pour cela je lui suis très reconnaissant.

Je remercie également François Glineur et Silvia Villa d’avoir accepté de rapporter cette thèse.
Leurs retours détaillés et leurs multiples questions m’ont permis de gagner en recul sur le sujet.

Je souhaite aussi remercier Francis Bach, d’abord pour avoir présidé le jury, mais aussi et surtout
pour avoir été un excellent chef d’équipe au sein de l’Inria. Il a toujours été attentif au bien-être des
membres de l’équipe, et je le tiens en grande partie pour responsable de la très bonne ambiance régnant
au 4e étage.

Je tiens particulièrement à remercier Adrien Taylor avec qui ce fut un plaisir de travailler et de
“cohabiter” à l’Inria. Il m’a initié à la magie des PEPs, et plus généralement m’a énormément appris
en optimisation, grâce à sa pédagogie, sa gentillesse et sa patience infinies. Nos discussions ne se
résumaient pas qu’au travail et c’est grâce à lui par exemple que je lève maintenant la tête quand
j’entends un oiseau chanter !

Un grand merci aux nombreux occupants du bureau C407 que j’ai eu le plaisir de côtoyer. Ce
fut une joie de démarrer l’aventure aux côtés de Damien Scieur et Antoine Recanati. Merci à Thomas
Kerdreux, Grégoire Mialon et Radu Dragomir pour avoir allié ambiance studieuse, discussions animées
et lecture d’avenir dans la corbeille à papier pendant presque 3 ans. Enfin merci à Manon Romain avec
qui ce fut très agréable d’échanger.

Un merci particulier à mes collègues de Halo, Thomas Eboli et Rémi Jézéquel. Je remercie aussi
plus généralement les membres du 4e étage avec qui la vie de tous les jours au bureau était gaie et
amusante, Alex N, Antoine B, Ben D, Bruno L, Céline M, Hadrien H, Héloïse B, Loucas P, Oumayma
B, Raphaël B, Robin S, Ulysse M, Yana H, Yann L et bien d’autres.

Merci à mes compagnons de galère Jules, Mickaël, Nidham et Quentin pour tous nos débats et
discussions souvent portés autour de la thèse, et merci à Matthieu et Mélanie de nous avoir supportés.
Je remercie aussi coach Nicolas pour m’avoir maintenu en forme tout ce temps.

Enfin, merci à ma famille pour le soutien continuel qu’ils m’ont apporté, merci en particulier à mes
parents et ma grand-mère d’avoir fait le déplacement pour ce moment si particulier qu’est la soutenance.

Pour conclure, merci à Marion avec qui je partage ma vie depuis plus de 3 ans et qui a vécu avec
moi cette étape de ma vie. Merci de m’avoir apaisé et soutenu pendant toute cette période qui a été
parfois difficile pour toi aussi. J’espère pouvoir te rendre la pareille dans les 55 prochaines années (au
moins !) que nous allons vivre ensemble.

iii

Notations

N is the set of integers.

R is the set of real numbers.

Rd is the set of real vectors of dimension d.

Rk[X] is the set of polynomials of degree smaller than k ∈ N with real coefficients.

Rd1×d2 is the set of real matrices of size d1 by d2.

Sd is the set of symmetric matrices of size d by d.

S+
d is the set of positive semidefinite symmetric matrices of size d by d.

Tr(A) is the trace of matrix A.

AT is the transpose of matrix A.

I is the identity matrix or identity application depending on the context.

1 is a vector of ones with size depending on the context.

‖ · ‖ is the Euclidean norm on vectors and the spectral norm on linear operators.

‖ · ‖1 is the `1-norm on vectors. When applied to polynomials, it is the `1-norm of the vector of
coefficients.

‖ · ‖∞ is the `∞-norm on vectors.

‖ · ‖F is the Frobenius norm on matrices.

sign(x) is the sign of x ∈ R, and sign(0) = 0.

F(X,Y) is the set of functions defined on X with values in Y .

F0,∞(Rd) is the set of closed convex and proper functions over Rd (see Definition 3.1.1).

∂f is the subgradient mapping of f (see Definition 3.1.2).

Fµ,L(Rd) for 0 ≤ µ ≤ L ≤ +∞ is the set of closed µ-strongly convex and proper functions
over Rd with L-Lipschitz subgradient mapping (see Definition 3.1.15).

dom f is the domain of f , i.e. {x, f(x) < +∞}.

iv

iC is the indicator function of a set C, i.e. iC(x) = 0 when x ∈ C and +∞ otherwise.

f∗ is the Fenchel conjugate of the function f (see Definition 3.1.12).

ri(C) is the relative interior of the set C ⊂ Rd.

v

Contents

1 Introduction 1
1.1 Introduction to optimization . 1

1.1.1 First-order methods . 2
1.1.2 Worst-case guarantees of optimization methods 2
1.1.3 Computer aided worst-case analysis . 3

1.2 Adaptive first-order methods . 4
1.2.1 A short overview on first-order adaptive methods 4
1.2.2 Anderson acceleration . 5
1.2.3 Polyak step sizes . 6

1.3 Proximal methods and inexactness . 7
1.3.1 A short overview of proximal methods . 7
1.3.2 Inexact proximal computations . 8
1.3.3 Example: a simple inexact proximal method 8

1.4 Thesis outline and contributions . 9

2 Constrained Anderson Acceleration 12
2.1 Introduction to Chebyshev polynomials . 13

2.1.1 Chebyshev polynomials . 13
2.1.2 Application: Chebyshev iterations . 17

2.2 Preliminaries . 20
2.3 Constrained Anderson acceleration . 22

2.3.1 Anderson acceleration on linear problems . 22
2.3.2 Constrained Anderson acceleration on nonlinear problems 22

2.4 Constrained Chebyshev problem . 27
2.4.1 Numerical solutions . 28
2.4.2 Exact and upper bounds . 29

2.5 Convergence of CAA on gradient steps . 37
2.5.1 Convergence bounds . 37
2.5.2 Guarded and adaptive methods . 38
2.5.3 Numerical experiments . 41

3 Problem Classes, Interpolation Theorems and Performance Estimation Problems 43
3.1 Functional classes and interpolation theorems . 43

3.1.1 Closed convex proper functions . 43
3.1.2 Smooth and convex functions . 46
3.1.3 Smoothness and strong convexity . 49

vi

3.2 Introduction to performance estimation problems . 50
3.2.1 Performance estimation for gradient methods 50
3.2.2 Dual formulation . 55
3.2.3 Performance estimation with Lyapunov functions 57

4 Worst-Case Analyses of Adaptive Methods: Study of Polyak Step Sizes 66
4.1 Introduction . 67
4.2 Classical Polyak steps and variants . 69

4.2.1 Study of adaptive gradient method with Variant I 70
4.2.2 Study of adaptive gradient method with Variant II 73

4.3 Acceleration with Polyak momentum . 75
4.3.1 Robustness of AGM . 76
4.3.2 Polyak steps based momentum . 78
4.3.3 Removing the dependence on the optimal value 82

4.4 Analysis mechanisms . 84
4.5 Numerical analyses of adaptive methods . 87

4.5.1 Exact line search . 87
4.5.2 Conjugate gradient method . 89
4.5.3 Regularized Anderson acceleration . 90

4.6 Numerical experiments . 91
4.7 Conclusion and perspectives . 92
Appendices . 94
4.A Proof of Lemma 4.3.6 . 94
4.B Proximal variants . 97
4.C Study of standard Polyak steps . 98

4.C.1 Practical behavior . 98
4.C.2 A worst-case example . 98

5 Principled Analyses of First-Order Methods with Inexact Proximal Operations 101
5.1 Introduction . 102

5.1.1 Motivations and contributions . 102
5.1.2 Relationships with previous works . 102
5.1.3 Preliminary material . 104

5.2 Notions of inexactness for proximal operators . 105
5.2.1 A few observable notions of inexactness . 106
5.2.2 Abstract, generally non-observable, notions of inexactness 109
5.2.3 Absolute versus relative inaccuracies . 109

5.3 Principled, and computer-assisted worst-case analyses 110
5.3.1 A class of inexact proximal methods . 110
5.3.2 Computing worst-case guarantees . 112
5.3.3 Semidefinite formulation . 114
5.3.4 Recovering worst-case guarantees from dual solutions 115
5.3.5 Numerical examples . 116

5.4 An optimized relatively inexact proximal point algorithm 119
5.4.1 Reformulation as fixed-step inexact proximal methods 120
5.4.2 Obtaining optimized parameters . 121
5.4.3 Algorithm and convergence guarantees . 122

vii

5.5 Dealing with strongly convex objectives . 126
5.6 Conclusion . 129
Appendices . 130
5.A More examples of fixed-step inexact proximal methods 130
5.B Interpolation with ε-subdifferentials . 133
5.C Equivalence with Güler’s method . 133
5.D Missing details in Theorem 5.4.1 . 134

6 Some Inexact Proximal Algorithms and their Analyses 138
6.1 Introduction . 139
6.2 Background results . 140

6.2.1 Smooth strongly convex functions . 140
6.2.2 Proximal operations . 140
6.2.3 A notion of approximate proximal point . 141

6.3 An inexact accelerated forward-backward method . 142
6.3.1 Algorithm . 143
6.3.2 Proof of Theorem 6.3.2 . 146

6.4 Numerical examples . 148
6.4.1 Factorization problem . 148
6.4.2 Total variation regularization . 149

6.5 An accelerated hybrid proximal extragradient method 150
6.5.1 Algorithm . 150
6.5.2 Proof of Theorem 6.5.1 . 152

6.6 Partially inexact Douglas-Rachford splitting algorithm 154
6.7 Conclusion . 157

Conclusion and Perspectives 158

Bibliography 160

viii

Chapter 1

Introduction

1.1 Introduction to optimization

Optimality is a central concern in many scientific fields. Indeed, we model Nature using optimality
properties (e.g., Fermat’s principle in optic, least action principle in mechanics or geometry optimiza-
tion in chemistry) and applied these models in human made fields as economy or finance. Describing
formally what is optimal and being able to reach optimality constitute the essence of mathematical
optimization. Many modern problems can be formulated as optimization problems and solved using
optimization algorithms, making it a crucial tool in modern science.

Mathematically, an optimization problem can be formalized as

minimize f(x)
such that x ∈ C, (1.1)

where f : X → R ∪ {−∞,+∞} is an input objective function defined on some space X and C ⊂ X
is a constrained set. In particular, when it admits a solution, optimization aims at solving this problem.
For instance, in molecular geometry optimization, the objective function corresponds to the energy of
the molecule, the variable x represents the relative positions of the atoms that compose it, and C some
physical constraints on the positions. In that context, being able to find a solution to (1.1) would allow
predicting the atomic structure of a particular molecule.

In general, the cost (or difficulty) of solving an optimization problem as (1.1) depends on the
particular structures of f andC. Developing methods to tackle efficiently this problem under its general
form is out of reach. A large amount of work in optimization has been dedicated to cases where f andC
are convex, already modeling a large body of problems (e.g. Boyd and Vandenberghe [2004], Palomar
and Eldar [2010], Chambolle and Pock [2016]). Moreover, convex optimization constitutes a building
block in the resolution of more complex problems. Convexity definitions are recalled here and more
precisely in Chapter 3.

Definition 1.1.1 (Convex set). Let X be a real vector space, and C ⊂ X . X is convex if and only if

∀t ∈ [0, 1], ∀x, y ∈ C, tx+ (1− t)y ∈ C.

Convexity of real valued functions can be obtained from this definition as follows.

Definition 1.1.2 (Convex function). Let X be a real vector space and f : X → R ∪ {−∞,+∞}, the
epigraph of f is defined as

epi(f) = {(x, α) ∈ X × R s.t. f(x) ≤ α} ,

1

and f is a convex function if and only if epi(f) is a convex set.

An important effect of convexity is to make local discussions on optimality global (see e.g. convex
optimization textbooks Polyak [1987], Nemirovsky [1995], Nesterov [2018] or Nocedal and Wright
[2006] for more practical discussions). In this manuscript, we focus on convex optimization in finite
dimension, i.e. objective functions and constrained sets will be convex and the ambient space X will
be some real vector space Rd. Additional assumptions as closeness (i.e. closed level sets) or being
proper (i.e. function is not equal to +∞) are often used in order to avoid pathological cases (we refer
to Chapter 3 for precise definitions).

In the following, we give a high level overview on the class of optimization methods that are studied
in this thesis.

1.1.1 First-order methods

When the objective function of an optimization problem is regular enough, first-order information
(i.e. local linear approximation of f) can be of great help. Indeed, the gradient (or a subgradient for
convex functions [Rockafellar, 1996]) at some point x ∈ Rd provides a direction in which the objective
function is locally increasing (and locally decreasing in the opposite direction). The idea of methods
that start from an initial guess x0 ∈ Rd and update iteratively the current iterate by following first-order
directions dates back to the 18th century with the work of Cauchy [Cauchy, 1847] (see e.g. Lemaréchal
[2012] for a short historical survey). They are usually referred to as first-order (or gradient) methods.
For instance, given a differentiable function, gradient descent builds a sequence of iterates {xk}k using
updates of the form

xk+1 = xk − αk∇f(xk), for k ≥ 0,

with x0 ∈ Rd some starting point and {αk}k a sequence of step sizes (often chosen constant or de-
creasing). Under some condition on f and on {αk}k, the sequence of iterates {xk}k converges toward
some stationary point (local minima) of f . We refer to the recent textbook from Beck [2017] for
developments on many first-order methods.

First-order methods generally require more iterations than algorithms relying on second-order in-
formation to reach the same level of accuracy but iterations are often much cheaper. This makes these
algorithms particularly appealing for high dimensional applications with moderate target accuracy (e.g.
for inverse problems or machine learning).

Finally, these optimization methods typically assess input functions through their evaluations at
particular points or evaluations of their derivatives, being agnostic about the exact structure or proper-
ties of the entry. These algorithms benefit of being generic, in the sense that they can be applied to a
wide range of problems without particular tuning, but of course can be less efficient than some specific
algorithms on a particular application. For further information and a detailed treatment on “black-box”
optimization, we refer to the classical textbooks Nemirovsky [1995], Nesterov [2018].

1.1.2 Worst-case guarantees of optimization methods

Worst-case reasoning is a standard way of analyzing optimization algorithms. Such analyses aim at
providing guarantees on the behavior of an algorithm (e.g. its convergence speed), that are independent
of the function on which the algorithm is applied and true for every functions in a particular class.
Although worst-case analyses may not always reflect what can actually be observed when instantiating
an optimization method on a particular entry (as not all the entries may produce the worst possible
behavior), they constitute strong theoretical insurances on the well-functioning of a method for a range

2

of possible inputs. Furthermore, worst-case guarantees that are independent of the input functions
can usually be evaluated in advance without a precise knowledge of the function structure. This is
particularly useful in practice for estimating e.g. worst-case running time of a method.

Let F be a subset of F(Rd,R ∪ {−∞,+∞}) such that (1.1) admits a solution when f ∈ F , and
consider an optimization methodM that takes as entries a starting point x0 ∈ Rd, a function f ∈ F ,
an iteration number N ∈ N∗ and output an iterate xN ∈ Rd. That is, M : Rd × F × N∗ → Rd.
Worst-case guarantees for the methodM on the class of function F typically look like

Φobj(xN , f) ≤ τ(N,F)Φinit(x0, f), for all f ∈ F , x0 ∈ Rd, (1.2)

where xN =M(x0, f,N), Φobj an objective criterion that quantify how far is xN from being a solution
to (1.1), Φinit an initial condition quantifying how far is x0 from solving (1.1) and τ a worst-case bound
(hopefully decreasing toward 0 with N). For instance, when F is the class of differentiable convex
functions over Rd with L-Lipschitz gradient, and M is a gradient descent method with well chosen
step size, worst-case guarantees take the form (see Drori and Teboulle [2014, Theorem 3.1])

f(xN)− f(x∗) ≤ L
4N+2‖x0 − x∗‖2, for all f ∈ F , x0 ∈ Rd,

with x∗ ∈ argminx f(x), ensuring that the objective value at iterate xN converge to the optimal one at
a rate at most as large as O(N−1).

The bound τ(N,F) should control the behavior of the method over all possible inputs in a particular
class and therefore, this corresponds to study the worst possible scenario for the method (i.e. worst
objective function and worst initial iterate in this context). These worst-case instances can be described
by the following optimization problem,

max
x0∈Rd
f∈F

Φinit(x0,f)6=0

Φobj(M(x0, f,N), f)
Φinit(x0, f) , (1.3)

and the optimal value of (1.3) corresponds to the smallest τ(N,F) that satisfies (1.2).
In that case, τ is dependent on the class of function F , and therefore on the ambient dimension d.

However, we are often interested in worst-case guarantees valid for a set of function classes {Fd}d∈N∗
with Fd ⊂ F(Rd,R) leading to bounds τ that no longer depends on d.

In the next section, we introduce a recent framework to study worst-case behaviors of many opti-
mization methods in a systematic way.

1.1.3 Computer aided worst-case analysis

Worst-case behavior of an optimization method is sometimes hard to intuit as worst-case instances
may be pathological and might not reflect observations on standard inputs. In addition, optimization
methods with sharp worst-case bounds tend to require a high-level of technicality in their analysis or
their design, that may be difficult to complete by hand.

Computer aided worst-case analysis aims at helping optimizers to study the behavior of first-order
optimization methods. In particular, the performance estimation problem (PEP) framework initiated by
Drori and Teboulle [2014] transcribes the worst-case guarantees of a given fixed-step first-order method
into an optimization problem (similar to 1.3) that is reformulated as a semidefinite program and solved
numerically. These techniques were used, among others, to provide new analyses of gradient and fast
gradient methods [Nesterov, 1983].

3

This methodology was extended with the work of Taylor et al. [2017c], Taylor [2017]. Functional
interpolation results are introduced to guarantee tightness of the semidefinite reformulation, that is,
ensuring that the numerical solutions are indeed the smallest worst-case bounds. This framework allows
performing worst-case analysis of first-order methods on smooth and strongly convex function in a
principled way. Feasible points to the primal semidefinite problem correspond to matching examples
(i.e., worst-case instances: functions and iterates). In addition, it can be shown that feasible points
to the dual problem can be used to write proofs of worst-case guarantees (i.e., show how to combine
inequalities satisfied by the input functions).

The possibility of solving those problems numerically essentially allows sampling worst-case ex-
amples and proofs for given problem parameters (for example step sizes, smoothness or strong convex-
ity levels).

The PEP framework has been used to design several optimization methods with optimized guar-
antees as the Optimized Gradient Method (OGM) from Kim and Fessler [2016] for smooth convex
optimization, the strongly convex version ITEM from Taylor and Drori [2021] as well as other algo-
rithms [Drori and Teboulle, 2016, Kim and Fessler, 2018, Drori and Taylor, 2020, Kim and Fessler,
2021, Kim, 2021, Ryu and Vũ, 2019, Lee et al., 2021].

The PEP approach has been extended in many directions by e.g. incorporating Lyapunov (or po-
tential functions) arguments [Taylor et al., 2018b, Taylor and Bach, 2019], analyzing methods based on
inexact gradient computations [Klerk et al., 2017, 2020], Bregman gradient methods [Dragomir et al.,
2021] or by studying worst-case guarantees for monotone inclusion problems such as splitting meth-
ods [Ryu et al., 2020, Ryu and Vũ, 2019], proximal point algorithms [Gu and Yang, 2019a,b, Kim,
2021] or fixed point iterations [Lieder, 2020].

Note that the PEP approach is closely related with Integral Quadratic Constraints (IQC) originating
from control theory [Megretski and Rantzer, 1997] and further developed to analyze and design opti-
mization algorithms [Lessard et al., 2016, Hu and Lessard, 2017, Cyrus et al., 2018, Van Scoy et al.,
2018].

The PEP methodology is a central tool in this manuscript, especially in Chapters 4 and 5 where
it is extended to different contexts (adaptive methods in Chapter 4 and inexact proximal computations
in Chapter 5). A short introduction to the main results of performance estimation can be found in
Chapter 3 for readers who are not familiar with this approach.

1.2 Adaptive first-order methods

In this section, we focus on the particular type of first-order optimization methods that can be consid-
ered as “adaptive”. As opposed to fixed-step methods such as standard gradient descent with predefined
step sizes or Nesterov’s accelerated methods [Nesterov, 2018] that combine first-order information re-
gardless of the methods inputs, adaptive algorithms aim at adjusting their behavior according to the
current state of the method. Adaptive strategies often exhibit much better practical performances than
their nonadaptive counter part, although it is not always the case for theoretical guarantees.

1.2.1 A short overview on first-order adaptive methods

Many adaptive methods estimate some regularity parameters of the function being minimized, which
can vary depending on the region in which the iterates evolve. Indeed, regularity of the function might
be different when we are close or far from the optimum.

4

In order to improve the accelerated methods performances, line searches strategies are often used
to estimate local Lipschitz constant of the gradient [Nesterov, 1983, Beck and Teboulle, 2009], leading
to significant improvement in practical performances.

However, some regularity properties such as strong convexity or related quantities (e.g. Hölde-
rian error bounds [Bolte et al., 2007]) are required by accelerated methods to reach optimal complex-
ity bounds Nesterov [2018], Arjevani and Shamir [2016] and cannot be estimated using simple line
searches. Poor approximation of these parameters often lead to deteriorated convergence speeds. An
important line of work has been dedicated to the study of restarts strategies. They consist in plugging
back the output of an fixed-step accelerated method as new input for the same algorithm. Initiated by
the work of Nemirovskii and Nesterov [1985], Nesterov [2013], O’Donoghue and Candes [2015], sev-
eral restarts schedules have been proposed in e.g. Lin and Xiao [2014], Fercoq and Qu [2016], Roulet
and d’Aspremont [2020], Renegar and Grimmer [2021] together with theoretical guarantees on their
adaptability. These methods are not totally satisfying as they often rely on extra parameters that have
to be tuned.

Another important class of adaptive methods includes so called quasi-Newton methods. These
methods intend to mimic the behavior of Newton’s method without accessing full second-order in-
formation, by constructing estimates of the Hessian at the current iterates from variations in the past
gradients. These methods are more costly than simple gradient or accelerated gradient methods but
exhibit impressive results in many applications. L-BFGS [Liu and Nocedal, 1989] is probably the most
celebrated quasi-Newton method and is a building block of many optimization solvers, although only
local theoretical improvements compared to simple gradient scheme have been provided yet. We re-
fer to Dennis and Moré [1977], Dennis and Schnabel [1996] for detailed treatments on quasi-Newton
methods.

Among first-order adaptive methods, the conjugate gradient method [Hestenes and Stiefel, 1952]
has drawn the interest of the optimization community for many decades. Originally designed for the
minimization of convex quadratic functions (i.e. functions with affine gradient mappings) for which
it exhibits optimal convergence guarantees, it has been extended to the nonquadratic setting with e.g.
Fletcher and Reeves [1964], Polyak [1969], Fletcher [1987], Dai and Yuan [1999]. These methods only
use first-order information and rely on exact or approximate line searches. Although they demonstrate
fast empirical convergence, few theoretical results have been obtained on the convergence rate of these
methods when applied to nonquadratic functions. We refer to the nice survey by Hager and Zhang
[2006] for a comprehensive review.

Furthermore, several gradient methods with simple adaptive step sizes as those of Polyak [1987,
Section 5.3.2], Barzilai and Borwein [1988] or Malitsky and Mishchenko [2019] have been proposed
to adapt to the local geometry of the problem.

Finally, in the context of stochastic optimization (that is not considered in this manuscript), several
adaptive gradient methods have been developed with e.g. the celebrated AdaGrad [Duchi et al., 2011]
or Adam [Kingma and Ba, 2014] methods.

In the following, we focus on two particular adaptive methods that are Anderson acceleration
schemes and gradient method with Polyak step sizes.

1.2.2 Anderson acceleration

Extrapolation techniques [Anderson, 1965, Pulay, 1980, Sidi et al., 1986] are popular tools for speeding
up convergence of iterative processes (e.g. first-order methods) towards their limit points. Anderson
acceleration proceeds by extrapolating a better approximation of the limit using a weighted combina-
tions of previous iterates. These weights are obtained as solutions of a simple quadratic program also

5

depending on previous iterates.
In particular, given a converging iterative fixed point process F : Rd → Rd producing iterates

{xi}i=0,...,k such that
xi+1 = F (xi), for i = 0, . . . , k − 1,

Anderson acceleration produces an extrapolated point

xe =
k−1∑
i=0

c∗ixi,

where the c∗i ’s are solution to

c∗ = argmin
c∈Rk

1T c=1

‖
k−1∑
i=0

ci(xi+1 − xi)‖, (1.4)

which can be reformulated as a quadratic problem.
Anderson acceleration was originally developed for accelerating convergence of iterative methods

for solving linear systems which corresponds to an affine mapping F . In that case, (1.4) can be written
as

c∗ = argmin
c∈Rk

1T c=1

‖(F − I)
k−1∑
i=0

cixi‖, (1.5)

and xe corresponds to the combination with the smallest residual. For instance, when F is a gradient
step operator of a quadratic function f that is F (x) = x− α∇f(x), (1.5) aims at finding the combina-
tion with smallest gradient norm. Theory is the case of affine F is well furnished but becomes fuzzier
in the presence of nonlinearity. For nonlinear F , problem (1.4) can suffer from really poor conditioning
and convergence of the extrapolation scheme can break.

Many corrections have been proposed in the literature to stabilize these extrapolation processes
when dealing with nonlinear mappings. For instance, imposing some linear independence assump-
tions on the iterates {xk}k allows deriving convergence guarantees [Rohwedder and Schneider, 2011,
Brezinski and Redivo-Zaglia, 2019, Pollock and Rebholz, 2019]. Assumptions on the boundedness of
the extrapolation weights have also been considered in order to provide analyses in the nonlinear set-
ting [Toth and Kelley, 2015, Ouyang et al., 2020]. These strategies require assumptions to hold that are
often impossible to check without actually running the method. A regularization of problem (1.4) has
been proposed by Scieur et al. [2016, 2020] in order to stabilize the method, together with asymptotic
convergence guarantees. In this work, the authors mainly focus on the acceleration of gradient descent
procedure, and many extensions have followed with e.g. [Scieur et al., 2017, Mai and Johansson, 2020,
Bollapragada et al., 2019, Poon and Liang, 2019, Bertrand and Massias, 2021].

In Chapter 2, we provide an Anderson acceleration scheme that modifies problem (1.4) in the spirit
of Scieur et al. [2020], by imposing hard bounds on the extrapolation weights. Using these constraints
we can obtain explicit local linear convergence rates for the method in a nonlinear setting.

1.2.3 Polyak step sizes

Gradient descent with Polyak step sizes [Polyak, 1987, Section 5.3.2] is a simple adaptive method
that consists in gradient updates with a step size proportional to the difference between the current
objective value and its minimal value. It was first introduced in the context of subgradient methods

6

[Polyak, 1987, Nedic and Bertsekas, 2001, Boyd et al., 2003], where efficient step sizes policies are
sometimes difficult to determine.

Given a differentiable convex function f , gradient updates with Polyak step sizes can be written as

xk+1 = xk − f(xk)−f∗
‖∇f(xk)‖2∇f(xk),

where f∗ = minx f(x) has to be known in advance. This choice of step size naturally follows from the
convexity assumption on f . Indeed, when performing a gradient step of the form

xk+1 = xk − α∇f(xk),

with α ∈ R, the distance between the new iterates xk+1 and x∗ ∈ argminx f(x) can be expressed as

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖2.

Convexity of f guarantees that f(xk) + 〈∇f(xk), x∗ − xk〉 ≤ f∗ which implies that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2α(f(xk)− f∗) + α2‖∇f(xk)‖2,

and minimizing the right-hand side in α leads to an optimal step size α = (f(xk) − f∗)
/
‖∇f(xk)‖2.

Theoretical guarantees for gradient method with Polyak step size are similar to its nonadaptive coun-
terparts (see e.g. Hazan and Kakade [2019]). However, when it can be applied, it often exhibits much
better empirical performances.

Polyak step sizes have also recently witnessed regained interest in the context of stochastic opti-
mization where knowledge of f∗ can be made less restrictive [Loizou et al., 2021, Gower et al., 2021].

This simple step sizes policy is used as a canonical example in Chapter 4 to develop the performance
estimation methodology for adaptive methods.

1.3 Proximal methods and inexactness

Proximal operations were originally introduced in optimization by Martinet [1970, 1972] and Rock-
afellar [1976a,b], and constitute base primitives in many optimization methods. These operations were
originally defined in the context of vector valued mappings (see e.g. Ryu and Boyd [2016] for an ex-
cellent survey), but we focus on their optimization versions. Given a closed convex and proper function
f over Rd, the proximal operator with step size λ ≥ 0 associated to f corresponds to the mapping

proxλf (z) = argmin
x∈Rd

λf(x) + 1
2‖x− z‖

2, (Prox)

which is well defined for all z ∈ Rd using the assumptions on f . Therefore, proximal operations in
that case, consist in solving a strongly convex minimization problem (i.e. convex + squared euclidean
norm).

1.3.1 A short overview of proximal methods

Proximal operations are particularly useful for algorithms dedicated to the minimization of sum of
functions and/or when the objective functions are nondifferentiable. It is a crucial tool in e.g. proximal-
gradient methods [Bruck Jr, 1975, Lions and Mercier, 1979, Passty, 1979, Nesterov, 2013], Douglas-
Rachford splitting [Douglas and Rachford, 1956, Lions and Mercier, 1979, Eckstein and Bertsekas,

7

1992] or the alternating direction method of multipliers [Fortin and Glowinski, 1983, Gabay, 1983],
as well as in many other splitting methods [Eckstein, 1989, Combettes and Pesquet, 2011, Davis and
Yin, 2017]. Proximal operations are also central in the development of augmented Lagrangian methods
[Rockafellar, 1973, 1976a, Iusem, 1999].

More recently, these proximal operations have been used to accelerate slow algorithms in a system-
atic way (see e.g the Catalyst framework from Lin et al. [2015, 2018] or the monograph Aspremont
et al. [2021, Section 5]), or to take advantage of high-order information with e.g. second-order [Mon-
teiro and Svaiter, 2013, Section 6] or higher-order tensor methods [Nesterov, 2019].

For more developments on proximal algorithms, we refer to the recent surveys Combettes and
Pesquet [2011], Parikh and Boyd [2014], Ryu and Boyd [2016].

1.3.2 Inexact proximal computations

In many applications, the proximal operations (Prox) involved in optimization methods have closed
form expressions. This is for instance the case of the popular Lasso problem in statistics [Tibshirani,
1996], where the proximal mapping of the `1-norm has an exact formula (see e.g., Chierchia et al.
[2020] for a comprehensive list of formulae for various proximal mappings). However, this is far from
being a generic case, and in most situations, proximal operations have to be approximated by e.g. using
an optimization method to solve (Prox).

We wish to perform inexact proximal computations (i.e. solving (Prox)) in a clever way. That is,
not solving it to an unnecessary precision. In particular, when inexact proximal operations are used
inside an optimization method, it appears natural to start solving the inner proximal problems with low
precision and increase it as we get closer to the solution to the global problem. Choosing the accuracy
with which each inner proximal problem should be solved can be a challenging task.

Inexact proximal operations have been early considered with Rockafellar [1976a,b]. It has been
tackled in many works since, with e.g. inexact proximal point algorithm [Burachik et al., 1997, Eck-
stein, 1998] and its accelerated variants [Güler, 1992, Monteiro and Svaiter, 2013, Salzo and Villa,
2012], (accelerated) proximal gradient methods [Schmidt et al., 2011, Villa et al., 2013, Millán and
Machado, 2019], Douglas-Rachford splitting [Eckstein and Yao, 2018, Svaiter, 2018, Alves et al.,
2019], online optimization [Dixit et al., 2019, Ajalloeian et al., 2020] or meta algorithms as Lin et al.
[2015, 2018] that take advantage of inexact proximal computations to accelerate optimization methods.

1.3.3 Example: a simple inexact proximal method

For illustrative purposes, we present a basic example of inexact proximal operation. Given a closed
convex and proper function f over Rd, and an initial point z ∈ Rd, let x ∈ Rd be the proximal step
such that x = proxλf (z) with λ a nonnegative step size. Using the notions of subgradients for closed
convex and proper functions Rockafellar [1996, §23], this proximal step can be written explicitly as

x = z − λsx,

with sx a subgradient of f at x (when f is differentiable sx = ∇f(x)). We can define an approximate
proximal step x ≈ proxλf (x) by considering a point x ∈ Rd that satisfies

x = z − λ(sx + e),

with e ∈ Rd some error term. The quality of this approximation can be monitored by controlling
e.g. ‖e‖. When this approximate proximal step is used inside an optimization method, setting the

8

inexactness level (i.e. a bound on ‖e‖ in that case) is a crucial task as it largely influence practical
performances (see e.g. Rockafellar [1976a, criteria (A’) and (B’)] for different strategies).

We review different measures of inexactness for proximal computations in Chapter 5. In addition,
we provide a principled way of analyzing optimization methods relying on inexact proximal operations,
based on the performance estimation methodology [Drori and Teboulle, 2014, Taylor et al., 2017c].
We also present and analyze some inexact proximal methods that have been obtained through this
framework in Chapter 6.

1.4 Thesis outline and contributions

In this last section, we describe the organization of the manuscript, together with scientific contri-
butions. Each chapter is supposed to be self-sufficient but we recommend reading Chapter 3 before
Chapter 4 or Chapter 5. Although Chapters 5 and 6 can be considered separately, we prescribe reading
Chapter 5 before Chapter 6.

Chapters organization and contributions

• In Chapter 2, we study the Anderson extrapolation scheme for accelerating the convergence
of fixed point methods toward their fixed points. These methods use the solutions to simpler
subproblem to perform a weights combination of previous iterates, in order to obtain a better ap-
proximation of a fixed point. Anderson acceleration techniques applied to affine mappings enjoy
accelerated convergence guarantees. However, moving away from the affine setting can break
these convergences results. Modifications of the extrapolation procedure have been proposed in
the literature to make the method robust but lack of clear acceleration guarantees. In this chapter,
we propose a new version of Anderson acceleration that imposes hard bounds on the extrap-
olation weights. We provide explicit worst-case guarantees for acceleration in an optimization
setting. These bounds rely on the study of a variation of the classical Chebyshev polynomial opti-
mization problem. In this problem, we impose constraints on the coefficients and the polynomial
and obtain explicit upper bound on the minimal infinity norm of polynomials over a segment.

This chapter is associated with the publication:

- Mathieu Barré, Adrien Taylor, and Alexandre d’Aspremont. “Convergence of constrained
Anderson acceleration.” arXiv preprint arXiv:2010.15482, 2020 (Submitted).

• Chapter 3 is a introduction to the problem class that are encountered in the next chapters. In addi-
tion, this chapter presents the performance estimation problem (PEP) methodology that provide
a principled way of analyzing fixed-step first-order optimization methods. This part is mainly
based on the work of Taylor et al. [2017c] and does not enjoy notable personal contributions.
This chapter can be easily skipped by readers familiar with performance estimation.

• Chapter 4 focuses on worst-case analysis of adaptive optimization methods applied to strongly
convex functions with Lipschitz gradients. We mainly study algorithms based on the popular
Polyak step sizes, which use the optimal value of the objective function. We provide new analyses
for various versions of gradient descent with Polyak step sizes, and show that in the worst-case
they exhibit similar guarantees as their nonadaptive counterparts. Furthermore, we use these
step sizes to develop a momentum based acceleration method. This method demonstrates an
acceleration in its linear convergence rate although it does not use the strong convexity parameter.

9

These convergence guarantees are based on new robustness results on Nesterov’s method with
constant momentum. On the way, we show how to extend the PEP framework to analyze adaptive
algorithms, and we illustrate this approach with numerical worst-cae analyses of several standard
adaptive methods.

This chapter is associated with the publication:

- Mathieu Barré, Adrien Taylor, and Alexandre d’Aspremont. “Complexity guarantees for
Polyak steps with momentum.” Conference on Learning Theory (COLT). PMLR, 2020.

• In Chapter 5, we study optimization methods relying on proximal operations. In particular, we
focus on the case of inexact proximal computations, that is, when the subproblem behind the
proximal steps are solved approximately. We start by reviewing the different criteria used in
the literature to quantify inexactness in proximal operations, and we show that most of them
can be cast into a generic formulation. The main contribution of this chapter is to provide a
systematic way of analyzing these inexact proximal algorithms, based on the PEP methodology.
We illustrate this approach by presenting numerical worst-case bounds for several optimization
methods. In addition, we use this methodology to obtain a relatively inexact proximal point
algorithm with optimized worst-case guarantees.

This chapter is associated with the publication:

- Mathieu Barré, Adrien Taylor, and Francis Bach. “Principled analyses and design of first-
order methods with inexact proximal operators.” arXiv preprint arXiv:2006.06041, 2020
(Submitted).

• Chapter 6 gathers several inexact proximal algorithms that were obtained and/or analyzed using
the methodology of Chapter 5. These results are presented separately as we believe they are of in-
dependent interest. In particular, we provide an inexact accelerated forward-backward algorithm
possibly supporting strongly convex objectives. This algorithm also allows mixing absolute and
relative error terms in proximal computations. In addition, we present a new variant of the accel-
erated hybrid proximal extragradient method [Monteiro and Svaiter, 2013] for possibly strongly
convex objective, and analyze a variant of the partially inexact Douglas-Rachford algorithm from
Eckstein and Yao [2018].

This chapter is associated with the publication:

- Mathieu Barré, Adrien Taylor, and Francis Bach. “A note on approximate accelerated
forward-backward methods with absolute and relative errors, and possibly strongly con-
vex objectives.” arXiv preprint arXiv:2106.15536, 2021 (Submitted).

10

Publications not included in this manuscript

• Study on a proxy for the sparse recovery threshold in compressed sensing and possible applica-
tions in dictionary learning or MRI sampling:

- Mathieu Barré, and Alexandre d’Aspremont. "An M* Proxy for Sparse Recovery Perfor-
mance." arXiv preprint arXiv:1810.02748, 2018.

• Detection of methane emitters using Wasserstein barycenter on satellite data:

- Mathieu Barré, Clément Giron, Matthieu Mazzolini and Alexandre d’Aspremont. "Aver-
aging atmospheric gas concentration data using wasserstein barycenters." arXiv preprint
arXiv:2010.02762, 2020.

11

Chapter 2

Constrained Anderson Acceleration

Let F : Rd → Rd be an operator and consider the problem of finding its fixed point, i.e. a solution
x∗ ∈ Rd to

x∗ = F (x∗). (2.1)

When F is a contraction, one can find such a point by running fixed point iterations

xk+1 = F (xk)

starting from an initial guess x0 ∈ Rd. Obtaining faster convergence rates has been a key concern
in numerical analysis. Anderson acceleration methods extrapolate a new point hopefully closer to the
solution using a linear combination of fixed point iterates xk. This idea was first applied to univariate
sequences, fitting a linear model on the iterates and using the fixed point of this model as the ex-
trapolated point [Aitken, 1927, Shanks, 1955, Brezinski, 2006, Brezinski and Redivo-Zaglia, 2019].
Extrapolation techniques were then extended to linearly converging vector valued sequences [Ander-
son, 1965, Pulay, 1980, Sidi et al., 1986, Smith et al., 1987] with convergence guarantees in the linear
case, i.e. when F is an affine operator.

In the nonlinear case (i.e. when F is not an affine operator), convergence results can also be derived
using a perturbation argument. However, the weights used to construct extrapolated points are typically
obtained by solving ill conditioned quadratic programs, resulting in stability issues. The magnitudes
of these weights typically blow up, breaking convergence properties of the acceleration procedure (see
examples in e.g. Scieur et al. [2020, Figure 4]). Therefore, convergence guarantees in the nonlinear
case mostly rely on additional mechanisms for controlling magnitudes of extrapolation weights.

Contributions We study a constrained Anderson acceleration (CAA) algorithm that imposes hard
bounds on the extrapolation weights as suggested in Toth and Kelley [2015, Section 2.2] and Scieur
et al. [2018], and provide a simple worst-case analysis in a nonlinear setting. We do so by extending
the Chebyshev arguments of Scieur et al. [2020] to the constrained case. Overall, our contribution is
threefold.

(i) We provide an explicit upper bound for the optimal value of a constrained Chebyshev problem
on polynomials. We show this bound is tight on a range of parameters and show numerically that
it is close to the optimal value elsewhere.

(ii) We use this bound to construct an explicit, dimension free, worst-case local linear convergence
rate for CAA applied to nonlinear operators, and quantify this local acceleration rate.

12

(iii) We describe an adaptive strategy to adjust the constraints on extrapolation weights, when CAA
is applied to a gradient step operator.

Organization This chapter starts with an introduction to Chebyshev polynomials and to their role
in optimization in Section 2.1. Then, Section 2.2 details the setting considered in this work together
with a review of Anderson acceleration results. In Section 2.3, we present the constrained Anderson
acceleration algorithm together with its robustness properties. Section 2.4 focuses on the study of
a constrained version of the Chebyshev optimization problem. Finally, Section 2.5 is dedicated to
Constrained Anderson acceleration applied to the gradient descent method.

Notations Depending on the context ‖ · ‖ either denotes the classical Euclidean norm (when applied
to a vector in Rd), or the operator norm (when applied to a matrix in Rn×n). For B ⊂ Rd, diam(B) =
maxx,y∈B ‖x−y‖. We denote by S+

d the cone of symmetric positive semidefinite matrices of dimension
d and by Sp(A) ∈ C the set of eigenvalues of a matrix A. For k ∈ N, Rk[X] is the vector space of
polynomials of degree smaller than k, and real coefficients. We denote by ‖ · ‖1 either the sum of the
absolute values of the components of a vector (standard `1 norm when applied on Rn) or, when applied
to a polynomial, the sum of the absolute values of its coefficients. Finally, I denotes the identity
operator.

Before diving into the constrained Anderson results, we start by a short introduction to Chebyshev
polynomials.

2.1 Introduction to Chebyshev polynomials

Let us start with a study some properties of the family of Chebyshev polynomials of first kind (see e.g.,
Mason and Handscomb [2002] for a large collection of facts on Chebyshev polynomials).

2.1.1 Chebyshev polynomials

There exists many equivalent definitions of Chebyshev polynomials, in particular one can use the fol-
lowing recursive one.

Definition 2.1.1. The family of Chebyshev polynomials of first kind {Tk}k with Tk ∈ Rk[X] for k ≥ 0
is defined recursively as

T0(X) = 1
T1(X) = X

Tk+2(X) = 2XTk+1(X)− Tk(X) for k ≥ 0.

Based on this recursive formulation we can obtain the following property (sometimes directly used
to characterize Chebyshev polynomials).

Tk(cos(θ)) = cos(kθ) for all σ ∈ R and k ≥ 0, (2.2)

as the cosinus function follows a similar recursive equation

cos((k + 2)θ) = 2 cos(θ) cos((k + 1)θ)− cos(nθ).

Many important properties on Chebyshev polynomials in optimization follow from the fact that
they are solutions to polynomial optimization problems described in the next proposition.

13

Proposition 2.1.2. Let α ∈ R with |α| ≥ 1 and k ≥ 0,

Tk(X)
Tk(α) = argmin

p∈Rk[X]
p(α)=1

max
x∈[−1,1]

|p(x)|,

where Tk is the first kind Chebyshev polynomials of degree k.

Proof. For α > 1, this is the result from Flanders and Shortley [1950, Equation 10].
When α < 1, we have that the minimization problem

min
p∈Rk[X]
p(α)=1

max
x∈[−1,1]

|p(x)|,

is equivalent to

min
q∈Rk[X]
q(−α)=1

max
x∈[−1,1]

|q(−x)| also equivalent to min
q∈Rk[X]
q(−α)=1

max
x∈[−1,1]

|q(x)|.

Therefore using Flanders and Shortley [1950, Equation 10] we get that Tk(−X)
/
Tk(−α) is the unique

solution as −α > 1. Finally, we get the desired result by noticing (using e.g. Definition 2.1.1) that
T2k(−X) = T2k(X) and T2k+1(−X) = −T2k+1(X) for all k ≥ 0, implying Tk(−X)

/
Tk(−α) =

Tk(X)
/
Tk(α).

Based on the previous result, let us introduce the rescaled Chebyshev polynomials equal to 1 at 1,
that will be used throughout the rest of this chapter.

Definition 2.1.3. Let a < b < 1 ∈ R and k > 0, we call rescaled Chebyshev polynomial of the first
kind, of degree k, on [a, b] the polynomial

R
[a,b]
k (X) :=

Tk(2(X−a)
b−a − 1)

|Tk(2(1−a)
b−a − 1)|

,

where Tk is the Chebyshev polynomial of the first kind, of degree k.

As a consequence of Proposition 2.1.2, we can study the maximum of the absolute value of poly-
nomials over a segment [a, b] with a < b < 1 and obtain

Proposition 2.1.4. Let a < b < 1 ∈ R and k ≥ 0,

R
[a,b]
k (X) ≡

Tk
(

2
b−aX −

a+b
b−a

)
Tk(2

b−a −
a+b
b−a)

= argmin
p∈Rk[X]
p(1)=1

max
x∈[a,b]

|p(x)|,

where Tk is the first kind Chebyshev polynomials of degree k. In addition

max
x∈[a,b]

|R[a,b]
k (x)| = 2βk

1 + β2k ,

with β =
(√

1− a−
√

1− b
) / (√

1− a+
√

1− b
)

.

14

Proof. We have

min
p∈Rk[X]
p(1)=1

max
x∈[a,b]

|p(x)| = min
p∈Rk[X]
p(1)=1

max
y∈[−1,1]

|p((b− a)y+1
2 + a)| = min

q∈Rk[X]
q(2 1−a

b−a−1)=1

max
y∈[−1,1]

|q(y)|.

Thus, if p∗ is solution of the left hand side problem, q∗(y) = p∗((b − a)y+1
2 + a) is solution of the

right hand side one. This last problem is solved using Proposition 2.1.2 with α = 2(1−a)
b−a − 1 satisfying

|α| > 1 (using a < b < 1). This gives us the solution q∗(y) = Tk(y)
/
Tk(2(1−a)

b−a − 1), and thus the
solution to the original problem p∗(x) = Tk(2x−ab−a − 1)

/
Tk(21−a

b−a − 1).
For the value of the max, we know that max

y∈[−1,1]
|Tk(y)| = 1, therefore

max
x∈[0,ρ]

∣∣∣∣∣Tk(2(X−a)
b−a −1)

Tk(2(1−a)
b−a −1)

∣∣∣∣∣ = 1
Tk(2(1−a)

b−a −1)
.

Since
∣∣∣2(1−a)
b−a − 1

∣∣∣ > 1 one can use the formulas for Tk(x) with |x| ≥ 1 (see e.g., Mason and Hand-
scomb [2002, Eq 1.49]):

Tk(x) = 1
2

((
x−

√
x2 − 1

)k
+
(
x+

√
x2 − 1

)k)
when |x| ≥ 1.

It follows that

Tk(2(1−a)
b−a − 1) = 1

2

((
2−(a+b)
b−a −

√
(2−(a+b)

b−a)2 − 1
)k

+
(

2−(a+b)
b−a +

√
(2−(a+b)

b−a)2 − 1
)k)

= 1
2

((
2−(a+b)−

√
(2−(a+b))2−(b−a)2

b−a

)k
+
(

2−(a+b)+
√

(2−(a+b))2−(b−a)2

b−a

)k)

= 1
2

((
2−(a+b)−2

√
(1−a)(1−b)

b−a

)k
+
(

2−(a+b)+2
√

(1−a)(1−b)
b−a

)k)

= 1
2

((
(√1−a−

√
1−b)2

b−a

)k
+
(

(√1−a+
√

1−b)2

b−a

)k)

= (√1−a+
√

1−b)2k

2(b−a)k

(
1 +

(√
1−a−

√
1−b√

1−a+
√

1−b

)2k
)

= (√1−a+
√

1−b)k
2(√1−a−

√
1−b)k

(
1 +

(√
1−a−

√
1−b√

1−a+
√

1−b

)2k
)
,

providing the desired result.

Later on this chapter we focus on a variation of the optimization problem in Proposition 2.1.4,
with additional constraints on the coefficients of the polynomials, which makes the nice Chebyshev
argument impossible to apply.

Based on Proposition 2.1.4, we can finally state an important result that is at the center of many
worst-case analyses of convex quadratic minimization algorithms.

Theorem 2.1.5. Let d ∈ N∗, G ∈ S+
d such that Sp(G) ⊂ [0, ρ] with 0 < ρ < 1, it holds that

∀z ∈ Rd, min
p∈Rk[X]
p(1)=1

‖p(G)z‖ ≤ 2βk

1 + β2k ‖z‖,

15

0 a b 1

−1

−0.5

0

0.5

1

x

R
[a
,b

] (
x

)

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

Figure 2.1: Representation of R[a,b]
k (X) on the segment [a, b] with a = 0.1 and b = 0.9 for various

values of k.

with β = (1−
√

1− ρ)
/

(1 +
√

1− ρ).

Proof. Since G is positive definite, it can be expressed as ODOT , with O an orthogonal matrix and D
a diagonal matrix with Sp(D) ⊂ [0, ρ]. We have

‖p(G)‖ = ‖OP (D)OT ‖
≤ ‖p(D)‖ = max

x∈Sp(D)
|p(x)|

≤ max
x∈[0,ρ]

|p(x)|,

and applying Proposition 2.1.4 with a = 0 and b = ρ leads to the desired conclusion.

The following reformulation can be more practical depending on the application.

Theorem 2.1.6. Let d ∈ N∗, A ∈ S+
d such that Sp(A) ⊂ [µ,L] with 0 < µ < L, it holds that

∀z ∈ Rd, min
p∈Rk[X]
p(0)=1

‖p(A)z‖ ≤ 2βk

1 + β2k ‖z‖,

with β =
(√

L−√µ
)/(√

L+√µ
)

.

Proof. It simply comes from the reformulation

min
p∈Rk[X]
p(0)=1

‖p(A)z‖ = min
q∈Rk[X]
q(1)=1

‖q(I − 1
LA)z‖,

which allows applying Theorem 2.1.5 to G = I − 1
LA with Sp(G) ⊂ [0, 1− µ

L].

These theorems are used to provide convergence guarantees for many optimization algorithms such
that the conjugate gradient method (see textbooks Shewchuk [1994], Nocedal and Wright [2006]) or
GMRES [Saad and Schultz, 1986].

In the following, we illustrate these Chebyshev results on the study the celebrated Chebyshev iter-
ations (or Chebyshev acceleration).

16

2.1.2 Application: Chebyshev iterations

In this section, we detail an application of Theorem 2.1.5 in optimization. Given an affine contractive
operator F : Rd → Rd with unique fixed point x∗. The standard fixed point iteration writes as

xk+1 = F (xk),

and converges toward the fixed point x∗ for all initialization x0 ∈ Rd. The convergence of this fixed
point iterations method can be slow, with a linear convergence rate in ρ < 1 when F is ρ-contractive
(i.e. ρ-Lipschitz). That is,

‖xk − x∗‖ ≤ ρk‖x0 − x∗‖.

When ρ is known, and F is affine such that F (x) = x∗+G(x− x∗) with G ∈ S+
d and Sp(G) ⊂ [0, ρ],

a standard technique to accelerate the convergence consists in using the so called Chebyshev iterations
(see e.g., Golub and Varga [1961], Varga [1962], Nemirovsky [1992]). This method aims at exploiting
the results of Proposition 2.1.4 and Theorem 2.1.5 to obtain that

‖xk − x∗‖ ≤ ρ∗(k)‖x0 − x∗‖,

where ρ∗(k) = 2βk/(1+β2k) < ρk and β = (1−
√

1− ρ)
/
(1+
√

1− ρ). The Chebyshev acceleration
method corresponds to chose iterates xk such that the residual xk − x∗ satisfies

xk − x∗ = R[0,ρ](G)(x0 − x∗) for k ≥ 1, (2.3)

where R[0,ρ](X) is defined in Definition 2.1.3.
Using the recursion formula of Definition 2.1.1 allows obtaining a more practical form for the

updates. Indeed, it holds that

Tk+2
(

2
ρX − 1

)
= 2

(
2
ρX − 1

)
Tk+1

(
2
ρX − 1

)
− Tk

(
2
ρX − 1

)
∀k ≥ 0,

which leads to the iterates expression

xk+2 =x∗ +
2
(

2
ρG−1

)
Tk+1

(
2
ρG−1

)
−Tk

(
2
ρG−1

)
Tk+2

(
2
ρ−1

) (x0 − x∗)

=x∗ +
2
(

2
ρG−1

)
Tk+1

(
2
ρ−1

)
Tk+2

(
2
ρ−1

) (xk+1 − x∗)−
Tk

(
2
ρ−1

)
Tk+2

(
2
ρ−1

)(xk − x∗)

=
4Tk+1

(
2
ρ−1

)
ρTk+2

(
2
ρ−1

) (x∗ +G(xk+1 − x∗))− 2
Tk+1

(
2
ρ−1

)
Tk+2

(
2
ρ−1

)xk+1 −
Tk

(
2
ρ−1

)
Tk+2

(
2
ρ−1

)xk,
where in the last line we used Tk+2

(
2
ρ − 1

)
= 2

(
2
ρ − 1

)
Tk+1

(
2
ρ − 1

)
− Tk

(
2
ρ − 1

)
. Finally, using

R
[0,ρ]
1 (X) = 2

2−ρX −
ρ

2−ρ we can reformulate (2.3) as

x0 ∈ Rd
x1 = 2

2−ρ(x∗ +G(x0 − x∗))− ρ
2−ρx0

xk+2 = 4ωk+1
ρ (x∗ +G(xk+1 − x∗))− 2ωk+1xk+1 −

(
2(2
ρ − 1)ωk+1 − 1

)
xk,

for k ≥ 0, where ωk+1 = −
Tk+1

(
2
ρ−1

)
Tk+2

(
2
ρ−1

) .
(2.4)

17

We have seen in the proof of Theorem 2.1.6 that

Tk
(

2
ρ − 1

)
= 1+β2k

2βk , with β = 1−
√

1−ρ
1+
√

1−ρ ,

which leads to the simplified expression

ωk+1 = β 1+β2(k+1)

1+β2(k+2) , with β = 1−
√

1−ρ
1+
√

1−ρ .

Finally, we can express (2.3) as:

Chebyshev acceleration

Input:

- Operator F : Rd → R.

- Initial guess: x0 ∈ Rd.

- Contraction factor: 0 < ρ < 1 .

Initialization:

x1 = 2
2−ρF (x0)− ρ

2−ρx0,

Run:

For k = 1, . . . :

ωk = β 1+β2k

1+β2(k+1)

xk+1 = 4ωk
ρ F (xk+1)− 2ωkxk+1 −

(
2(2
ρ − 1)ωk − 1

)
xk

(Cheb-acc)

End For

Output: xk+1

Remark 2.1.7. Chebyshev acceleration can be reformulated in an optimization setting, where we seek
to minimize a convex quadratic function f defined as

f(x) = 1
2(x− x∗)TA(x− x∗) + f∗,

with A ∈ S+
d such that Sp(A) ⊂ [µ,L], (0 < µ < L), x∗ ∈ Rd and f∗ ∈ R. In that case, we can apply

Chebyshev iterations to the contractive operator F = I − 1
L∇f with contraction factor ρ = 1− µ

L .

Remark 2.1.8. Since 0 < β < 1 one notices that ωk tends to β with the iterations. A variation of
Chebyshev acceleration consists in fixing ωk equal to β. This method is closely related to Polyak’s
heavy-ball method in optimization [Polyak, 1964].

As announced at the beginning of this section, we can get the following worst-case bound on the
distance to the optimum.

18

Proposition 2.1.9. Let d ∈ N∗, F : Rd → Rd be a contractive operator such that F (x) = x∗+G(x−
x∗) with Sp(G) ⊂ [0, ρ], 0 < ρ < 1 and x∗ ∈ Rd. The iterates of the Chebyshev acceleration method
(Cheb-acc) applied on F and initiated at x0 ∈ Rd with contraction parameter ρ satisfy

‖xk − x∗‖ ≤
2βk

1 + β2k ‖x0 − x∗‖, for k ≥ 0,

with β = (1−
√

1− ρ)
/
(1 +

√
1− ρ) and F (x∗) = x∗.

Proof. Similar to the proof of Theorem 2.1.5,

‖xk − x∗‖ = ‖R[0,ρ]
k (G)(x0 − x∗)‖ ≤ ‖R[0,ρ]

k ‖‖x0 − x∗‖,

and we conclude using Proposition 2.1.4.

We illustrate on Figure 2.2, how the Chebyshev acceleration method can accelerate convergence
toward a fixed point of an affine mapping compared with a simple fixed point procedure.

0 50 100 150 200
10−14

10−11

10−8

10−5

10−2

101

iterations k

‖x
k
−
x
∗
‖

Fixed point
Cheb acc. ωk = β

Cheb acc.
2βk

1+β2k ‖x0 − x∗‖

Figure 2.2: Numerical comparison of fixed point iterations (blue), Chebyshev acceleration with con-
stant ωk = β (purple) and Chebyshev acceleration (red), on an affine contractive mapping with
ρ = 0.99. The black dashed curve corresponds to the bound of Proposition 2.1.9 with β =
(1−

√
1− ρ)

/
(1 +

√
1− ρ).

Remark 2.1.10. In order for Proposition 2.1.9 to hold, the contraction factor of the affine mapping F
has to be known in advance (or an upper-bound of it). This constitute an important limitation in the
application of Chebyshev acceleration as this parameter is difficult to estimate in many situations (e.g.,
estimation of strong convexity parameter in optimization).

In this section, we reviewed some elements of numerical analysis based on Chebyshev polynomials.
In the rest of the chapter we focus on Anderson acceleration and on a variation of the polynomial
problem appearing in Proposition 2.1.4 and Theorem 2.1.5.

19

2.2 Preliminaries

From this point on, we study the linear convergence of a constrained Anderson acceleration scheme
on an operator F : Rd → Rd. In recent applications of Anderson extrapolation in optimization, F is
typically a gradient step with constant step size (e.g.,Scieur et al. [2020], Mai and Johansson [2020]).
We use two types of assumptions on F throughout.

Assumption 2.2.1. F is ρ-Lipschitz with ρ < 1, and can be decomposed as

F = G+ ξ

for a linear G ∈ S+
d with G 4 ρI and a nonlinear ξ : Rd → Rd α-Lipschitz with α ≥ 0.

Assumption 2.2.2. F is ρ-Lipschitz with ρ < 1 and is continuously differentiable with positive semidef-
inite and η-Lipschitz Jacobian F ′ where η ≥ 0.

The ρ-Lipschitzness assumption implies that F has a unique fixed point x∗ and the iterates of the
fixed point iterations xk+1 = F (xk) satisfy ‖xk+1 − xk‖ ≤ ρ‖xk − xk−1‖ and xk → x∗. The second
assumption implies that for x0 ∈ Rd and a compact set B ⊂ Rd containing x0, one can decompose
F as F = G + ξ with G = F ′(x0) and ξ = F − F ′(x0). Moreover ξ is locally Lipschitz over B
with Lispchitz constant roughly equal to η diam(B), decreasing with the diameter of B. Note that
Assumption 2.2.2 does not enforce Assumption 2.2.1 to hold as it implies local Lipschitzness.

Remark 2.2.3. We illustrate these assumptions in the optimization setting.

• When f : Rd → R is a quadratic function with µI � ∇2f � LI and 0 < µ ≤ L, the gradient
step operator F = I − 1

L∇f is affine and satisfies Assumption 2.2.1 with ρ =
(
1− µ

L

)
and

ξ = 0.

• When f : Rd → R is a C2, µ-strongly convex function with L-Lipschitz gradient for 0 < µ ≤ L,
and η-Lipschitz Hessian, the gradient step operator F = I − 1

L∇f is nonlinear and satisfies
Assumption 2.2.2 with ρ =

(
1− µ

L

)
(see e.g., Ryu and Boyd [2016]).

We focus on a fixed depth version of Anderson acceleration. For a predetermined constant k ∈ N,
this simple method consists in performing k+1 fixed point iterations with F and use these k+1 iterates
to get an extrapolated point. We can then restart the method at the extrapolated point. The extrapolated
solution is obtained by solving a quadratic program with a bound on the `1 norm of extrapolation
weights. This choice of norm is motivated by a tightness result derived in Theorem 2.4.8, but any norm
would lead to similar developments. The procedure is described in Algorithm 2.2.

In practice, k is set to a small constant (e.g. 5 or 10) and Algorithm 2.2 is restarted by plugging the
extrapolated output as input (see e.g., Scieur et al. [2018]) for a new run of the method. The linearly
constrained quadratic subproblem in (2.5) for computing the extrapolation weights is low dimensional
and can be easily solved by e.g., interior-point methods.

We look at convergence bounds of the form ‖F (xe)−xe‖ ≤ ρ̃‖F (x0)−x0‖, where xe is the output
of Algorithm 2.2 started at x0 and the quantity ‖F (x) − x‖ controls how far x is from being a fixed
point of F . This choice allows to chain together the convergence guarantees for consecutive run of
Algorithm 2.2. When F satisfies Assumption 2.2.1 we always have that ‖F (xk)− xk‖ ≤ ρk‖F (x0)−
x0‖ hence we consider that extrapolation provides convergence acceleration as soon as ρ̃ < ρk

20

Constrained Anderson acceleration (Algorithm 2.2)

Input:

– Contractive operator: F : Rd → Rd.

– Initial guess: x0 ∈ Rd.

– Bound on extrapolation weights: C ≥ 1.

– Number of iterates used in extrapolation: k ∈ N∗.

Run:

For i = 0, . . . , k:

xi+1 = F (xi)

End For

Form R =
[
x0 − x1 · · · xk − xk+1

]
and compute

c̃ = argmin
1T c=1, ‖c‖1≤C

‖Rc‖ (2.5)

Output: Extrapolated point xe =
∑k
i=0 c̃ixi

Related work Several recent results have been focused on improving convergence guarantees for
acceleration methods. In Scieur et al. [2020], the authors apply a regularized formulation of Anderson
extrapolation in an optimization setting. Regularization yields accelerated linear convergence rates
in some asymptotic regimes, without any additional hypothesis on the independence of the residuals.
Brezinski et al. [2020] also proposes a stabilized version guaranteeing local linear acceleration without
any linear independence hypothesis but with an assumption on the conditioning of the Jacobian.

Acceleration mechanisms, and Anderson acceleration in particular, have a strong link with quasi-
Newton methods Fang and Saad [2009], Rohwedder and Schneider [2011]. A variant of Anderson
acceleration called the DIIS procedure has been studied in Rohwedder and Schneider [2011] and yields
accelerated local linear convergence under a linear independence hypothesis on differences of consec-
utive residuals and an hypothesis on the conditioning of the Jacobian of I − F at a fixed point x∗. The
idea of imposing a sufficient linear independence condition on the difference of the residuals is also
present in Pollock and Rebholz [2019]. It has also been shown in Toth and Kelley [2015] that when
the extrapolation weights are bounded, AA is locally linearly convergent. However, none of these con-
ditions guarantee a priori improved linear convergence rates, as they are impossible to check without
actually running the method.

A globally convergent modification of the DIIS procedure is proposed in Chen and Kelley [2019]
consisting in using only positive weights in the extrapolation. However, using only positive weights
amounts to forming convex combination of previous iterates which severely limits acceleration. An
adaptive regularization scheme in Ouyang et al. [2020] provides acceleration guarantees under bound-
edness hypothesis on the extrapolation weights, extending the work of Toth and Kelley [2015]. A
globally converging Anderson acceleration type algorithm is also presented in Zhang et al. [2020];

21

however, due to the very general assumptions made in the paper, no convergence rate is provided. In
Chupin et al. [2020], an adaptive restart strategy yields local superlinear convergence without any as-
sumption on conditioning, but the region around the optimum where superlinear convergence occurs is
dependent on the ambient dimension d and its size goes to 0 when d tends to infinity.

Finally, these extrapolation methods were widely extended in the optimization community: to the
stochastic setting [Scieur et al., 2017], to composite optimization problems [Massias et al., 2018, Mai
and Johansson, 2020], to splitting methods [Poon and Liang, 2019, Fu et al., 2020], to coordinate
descent [Bertrand and Massias, 2021] and to accelerate momentum based methods [Bollapragada et al.,
2019].

The setting of this chapter is essentially that of Scieur et al. [2020], which is more restrictive than
those of Pollock and Rebholz [2019], Ouyang et al. [2020], Brezinski et al. [2020], Chupin et al. [2020]
(in particular because of the symmetry assumption onG). This setup allows proving explicit, dimension
independent, worst-case local linear convergence rates, a priori, without additional assumption on the
iterates themselves, or on the optimum.

2.3 Constrained Anderson acceleration

We first recall some standard results on Anderson acceleration on linear operators when α = 0 in
Assumption 2.2.1 (or η = 0 in Assumption 2.2.2). We then introduce constraints on the extrapo-
lation coefficients for stabilizing the extrapolation procedure, and deal with nonlinearity through the
introduction of perturbation parameters α > 0 in Assumption 2.2.1 (or η > 0 in Assumption 2.2.2).

2.3.1 Anderson acceleration on linear problems

Let us consider the case α = 0 (i.e., F is affine), where Algorithm 2.2 can be used with C = ∞. We
recall the well-known convergence result on Anderson acceleration in the linear case.

Proposition 2.3.1. Let F be satisfying Assumption 2.2.1 with α = 0, xe ∈ Rd be the output of Al-
gorithm 2.2 initiated at some x0 ∈ Rd such that F (x0) 6= x0, and let C = ∞ and k > 0. We have
that

‖F (xe)− xe‖
‖F (x0)− x0‖

≤ min
p∈Rk[X]
p(1)=1

max
x∈[0,ρ]

|p(x)| = ρ∗ := 2βk
1+β2k ,

with β = 1−
√

1−ρ
1+
√

1−ρ . In addition ρ∗ < ρk.

Proof. Reformulation of Scieur et al. [2020, Proposition 2.1].

In the following, α or η may be nonzero and the previous proposition does not apply.

2.3.2 Constrained Anderson acceleration on nonlinear problems

When applying the extrapolation step (2.5) to a nonlinear operator F , the conditioning of the matrix
RTR ∈ S+

k+1 becomes an important issue. This matrix might be singular in some particular situations
(see below), but more importantly becomes very close to singular in typical situations. For instance,
when F is a gradient step operator of a smooth convex function, consecutive gradients tend to get
aligned (in particular, this can be easily formalized when F is the gradient step operator of a convex
quadratic function), leading to a very ill-conditionedRTR in that case. Furthermore, if F is the gradient
of a convex quadratic function with Hessian H � 0, and x0 is an eigenvector of H , the matrix RTR

22

will be singular. This means the solution vector c̃ can have coefficients with very large magnitude.
When α > 0, those coefficients are multiplied with the nonlinear part of F and can make the iterates
of the algorithm diverge (see Scieur et al. [2020] for an example of such divergence). A solution to
fix this issue is to check the conditioning of the matrix (or some related quantity) and adjust iterations
depending on it (e.g. restart [Chupin et al., 2020] or discard iterates [Brezinski et al., 2020]). A more
direct method consists in controlling the magnitude of these coefficients, by e.g. regularizing (2.5), as
in Scieur et al. [2020] (with C = ∞), or by imposing hard constraints on c̃, as we do here. Whereas
regularization renders computations easier in practice, imposing constraints makes the analysis simpler.

Proposition 2.3.2. Let F be an operator satisfying Assumption 2.2.1, α ≥ 0 and xe ∈ Rd be the output
of Algorithm 2.2 initiated at x0 ∈ Rd with C ≥ 1 and k ≥ 1. We have

‖F (xe)− xe‖ ≤
(

max
x∈[0,ρ]

|pC∗ (x)|+ 3Cαk
)
‖F (x0)− x0‖, (2.6)

where
pC∗ ∈ argmin

p∈Rk[X]
p(1)=1
‖p‖1≤C

max
x∈[0,ρ]

|p(x)|,

and ‖p‖1 is the `1 norm of the vector of coefficients of p. In addition, under Assumption 2.2.2, the
bound in (2.6) holds with α = kCη‖F (x0)− x0‖.

Proof. The proof mostly relies on reformulations and triangle inequalities. We consider fixed point
iterations of F , of the form

xi+1 = G(xi) + ξ(xi).

Equivalently, such iterations can be described as

xi+1 − x∗ = G(xi − x∗) + ξ(xi)− ξ(x∗),

with x∗ = F (x∗). Expanding previous expression, one can rewrite the iterative process as

xi+1 − x∗ = Gi+1(x0 − x∗) +
k∑
j=0

Gi−j(ξ(xj)− ξ(x∗)),

or in terms of the fixed point residual F (xi)− xi = xi+1 − xi,

xi+1 − xi = (G− I)Gi(x0 − x∗) + (G− I)
i−1∑
j=0

Gi−j−1 (ξ(xj)− ξ(x∗)) + ξ(xi)− ξ(x∗).

Let us use those expressions, along with a triangle inequality, to work out the fixed point residual after
extrapolation

‖(F − I)(xe)‖
= ‖(G− I)(xe − x∗) + ξ(xe)− ξ(x∗)‖

=
∥∥∥∥∥
k∑
i=0

c̃i(G− I)(xi − x∗) + ξ(xe)− ξ(x∗)
∥∥∥∥∥

23

=

∥∥∥∥∥∥
k∑
i=0

c̃iG
i(G− I)(x0 − x∗) + (G− I)

k∑
i=0

c̃i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗)) + ξ(xe)− ξ(x∗)

∥∥∥∥∥∥
=
∥∥∥∥∥
k∑
i=0

c̃i(xi+1 − xi)−
k∑
i=0

c̃iξ(xi) + ξ(xe)
∥∥∥∥∥ ,

where we used
∑k
i=0 c̃i = 1 in the last step. We finally arrive to

‖(F − I)(xe)‖ ≤
∥∥∥∥∥
k∑
i=0

c̃i(xi+1 − xi)
∥∥∥∥∥+

∥∥∥∥∥ξ(xe)−
k∑
i=0

c̃iξ(xi)
∥∥∥∥∥ , (2.7)

where the first term on the right hand side is exactly the quantity that is minimized in Algorithm 2.2.
We then bound the two terms separately. Let c∗ denotes the coefficients of the polynomial pC∗ =
argmin
p∈Rk[X]
p(1)=1
‖p‖1≤C

max
x∈[0,ρ]

|p(x)|, we proceed as follows:

∥∥∥∥∥
k∑
i=0

c̃i(xi+1 − xi)
∥∥∥∥∥ ≤

∥∥∥∥∥
k∑
i=0

c∗i (xi+1 − xi)
∥∥∥∥∥ since c∗ feasible for problem (2.5),

and then∥∥∥∥∥
k∑
i=0

c∗i (xi+1 − xi)
∥∥∥∥∥

=

∥∥∥∥∥∥
k∑
i=0

c∗iG
i(G− I)(x0 − x∗) + (G− I)

k∑
i=0

c∗i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗))

+
k∑
i=0

c∗i (ξ(xi)− ξ(x∗))
∥∥∥∥∥

=

∥∥∥∥∥∥
k∑
i=0

c∗iG
i [(G− I)(x0 − x∗) + ξ(x0)− ξ(x∗)] + (G− I)

k∑
i=0

c∗i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗))

+
k∑
i=0

c∗i

[
ξ(xi)− ξ(x∗)−Gi(ξ(x0)− ξ(x∗))

]∥∥∥∥∥
≤
∥∥∥∥∥
k∑
i=0

c∗iG
i [(F − I)(x0)]

∥∥∥∥∥
+

∥∥∥∥∥∥(G− I)
k∑
i=1

c∗i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗)) +
k∑
i=1

c∗i

[
ξ(xi)− ξ(x∗)−Gi(ξ(x0)− ξ(x∗))

]∥∥∥∥∥∥
≤
∥∥∥pC∗ (G)

∥∥∥ ‖(F − I)(x0)‖+

∥∥∥∥∥∥
k∑
i=1

c∗i

 i∑
j=1

Gi−j(ξ(xj)− ξ(x∗))−
i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗))

∥∥∥∥∥∥
≤
∥∥∥pC∗ (G)

∥∥∥ ‖(F − I)(x0)‖+

∥∥∥∥∥∥
k∑
i=1

c∗i

i−1∑
j=0

Gi−j−1 [ξ(xj+1)− ξ(xj)]

∥∥∥∥∥∥
24

≤
∥∥∥pC∗ (G)

∥∥∥ ‖(F − I)(x0)‖+ α
k∑
i=1
|c∗i |

i−1∑
j=0

ρi−j−1ρj ‖(F − I)(x0)‖

≤
(∥∥∥pC∗ (G)

∥∥∥+ α
k∑
i=1
|c∗i |ρi−1i

)
‖(F − I)(x0)‖

≤
(∥∥∥pC∗ (G)

∥∥∥+ αk‖c∗‖1
)
‖(F − I)(x0)‖

≤
(∥∥∥pC∗ (G)

∥∥∥+ αkC
)
‖(F − I)(x0)‖ .

One can bound ‖pC∗ (G)‖with standard arguments: Since 0 4 G 4 ρI , there exist an orthogonal matrix
O and a diagonal matrix D such that G = OtDO. Therefore, we get ‖p∗(G)‖ = ‖OtpC∗ (D)O‖ ≤
‖pC∗ (D)‖. One can then notice that ‖pC∗ (D)‖ = max

λ∈Sp(G)
|pC∗ (λ)| ≤ max

x∈[0,ρ]
|pC∗ (x)|, where Sp(G) is the

set of eigenvalues of G. Let us bound the second term of the right hand side in (2.7)

‖ξ(xe)−
k∑
i=0

c̃iξ(xi)‖ ≤ ‖ξ(xe)− ξ(xk)‖+ ‖ξ(xk)−
k∑
i=0

c̃iξ(xi)‖

≤ α
(
‖xe − xk‖+

k∑
i=0
|c̃i|‖xk − xi‖

)

≤ 2α
k−1∑
i=0
|c̃i|‖xk − xi‖

≤ 2α
k−1∑
i=0
|c̃i|ρi‖xk−i − x0‖

≤ 2α
k−1∑
i=0
|c̃i|ρi

k−1−i∑
j=0
‖xj+1 − xj‖

≤ 2α
k−1∑
i=0
|c̃i|ρi(k − i)‖(F − I)(x0)‖

≤ 2αk‖c̃‖1‖(F − I)(x0)‖
≤ 2αkC‖(F − I)(x0)‖.

Combining the two previous bounds allows reaching (2.6).
Let Assumption 2.2.2 hold, we can then pick G = F ′(x0) and ξ = F − F ′(x0) (note that F ′(x0)

is symmetric positive semidefinite by assumption and that ‖F ′(x0)‖ ≤ ρ when F is ρ-Lipschitz). In
computations of the previous bounds, Lischitzness was only used on the convex setBC = {

∑k
i=0 cixi :

‖c‖1 ≤ C,
∑k
i=0 ci = 1}. Let us bound ‖Dξ(x)‖ for x =

∑k
i=0 cixi in BC .

‖Dξ(x)‖ = ‖F ′(x)− F ′(x0)‖

≤ η‖x− x0‖ = η

∥∥∥∥∥
k∑
i=0

ci(xi − x0)
∥∥∥∥∥

≤ η
k∑
i=1
|ci|

∥∥∥∥∥∥
i−1∑
j=0

xj+1 − xj

∥∥∥∥∥∥
25

≤ η
k∑
i=1
|ci|

i−1∑
j=0

ρj ‖x1 − x0‖

≤ ηCk ‖F (x0)− x0‖ .

Using the mean value theorem, we conclude that ξ(x) is ηCk ‖F (x0)− x0‖-Lipschitz on BC .

The following corollary simply states that one can allow a small relative error in the computation
of (2.5) in Algorithm 2.2 while keeping linear convergence.

Corollary 2.3.3. Let F be an operator satisfying Assumption 2.2.1, α ≥ 0 and xe ∈ Rd be the output
of Algorithm 2.2 initiated at x0 ∈ Rd with C ≥ 1 and k ≥ 1. If (2.5) is solved with relative precision
ε‖F (x0)− x0‖ on its optimality gap for some ε > 0, that is

‖Rc‖ − ‖Rc̃‖ ≤ ε‖F (x0)− x0‖,

then

‖(F − I)xe‖ ≤
(

max
x∈[0,ρ]

|pC∗ (x)|+ 3Cαk + ε

)
‖(F − I)x0‖.

Under Assumption 2.2.2, this bound holds with α = kCη‖F (x0)− x0‖.

The result of Proposition 2.3.2 is independent of the dimension of the ambient space. Moreover,
we can also get dimension dependent local superlinear convergence.

Remark 2.3.4. Let ρ ∈]0, 1[and F be satisfying Assumption 2.2.2. Let xe ∈ Rd be the output of
Algorithm 2.2 initiated at x0 ∈ Rd with C ≥ 1 and k ≥ 1. A slight modification in the proof of
Proposition 2.3.2 yields

‖F (xe)− xe‖ ≤

 min
p∈Rk[X]

p(1)=1,‖p‖1≤C

‖p(G)‖+ 3C2ηk2‖F (x0)− x0‖

 ‖F (x0)− x0‖.

Let λ1, . . . , λd ∈ [0, ρ[be the eigenvalues ofG, whenC ≥ (1+ρ)n
(1−ρ)n the polynomial χ(X) =

∏d

i=1(X−λi)∏d

i=1(1−λi)
satisfies χ(G) = 0, χ(1) = 1 and ‖χ‖1 ≤ C, thus for k = d

‖F (xe)− xe‖ ≤ 3C2ηd2‖F (x0)− x0‖2,

which gives local superlinear convergence. Setting k = d is of course somewhat impractical when the
ambient dimension of the problem gets large.

In the rest of the chapter, we focus on convergence rates that are dimension independent. Proposi-
tion 2.3.2 highlights a trade-off between (i) allowing coefficients to have larger magnitudes, i.e., via a
largeC, leading to a smaller maxx∈[0,ρ] |pC∗ (x)| that gets closer to the optimal rate ρ∗, and (ii) diminish-
ing C to better control the nonlinear part of F but getting a slower rate maxx∈[0,ρ] |pC∗ (x)|, closer to ρk.
In the next section, we bound maxx∈[0,ρ] |pC∗ (x)| as a function of C, to make this trade-off explicit.

26

2.4 Constrained Chebyshev problem

We have seen in Section 2.1 that the Chebyshev problem, recalled in the following theorem, is central
to many results of numerical analysis. For instance, it is used to provide convergence rates for several
algorithms such as Lanczos’ method for eigenvalue computations [Golub and Van Loan, 1990], con-
jugate gradients [Shewchuk, 1994], Anderson acceleration, or Chebyshev iterations [Golub and Varga,
1961, Nemirovskiy and Polyak, 1984, Nemirovsky, 1992].

We recall the fundamental result on rescaled Chebyshev polynomials from Golub and Varga [1961,
Section 3] (which is a particular instance of Proposition 2.1.4).

Theorem 2.4.1 (Golub and Varga [1961]). Let ρ ∈]0, 1[and k > 0, we call Chebyshev problem of
degree k on [0, ρ] the following optimization problem on polynomials

ρ∗ := min
p∈Rk[X]
p(1)=1

max
x∈[0,ρ]

|p(x)|, (Cheb)

whose solution is p∗(X) = R
[0,ρ]
k (X), and ρ∗ = 2βk

1+β2k with β = 1−
√

1−ρ
1+
√

1−ρ .

The following corollary extends the result of Theorem 2.4.1 and will be useful at the end of this
section.

Corollary 2.4.2. Let ρ ∈]0, 1[, k > 0 and ε ≥ 0. It holds that

ρε := min
p∈Rk[X]
p(1)=1

max
x∈[−ε,ρ]

|p(x)|, (2.8)

whose solution is the rescaled Chebyshev polynomial R[−ε,ρ]
k (X), and ρε = 2βkε

1+β2k
ε

with βε =

1−
√

1− ρ+ε
1+ε

/
1 +

√
1− ρ+ε

1+ε .

Proof. This is an application of Proposition 2.1.4 with a = −ε and b = ρ.

We have seen in Proposition 2.3.2 that we need to control the optimal value of a slightly modified
version of (Cheb) with an additional constraint on the `1 norm of the vector of coefficients of the
polynomial. Adding this constraint breaks the explicit result of Theorem 2.4.1 and no closed form
solution for this constrained Chebyshev problem is known for arbitrary choices of C. In this section
we seek upper bounds on the optimal value to this problem.

Let k > 0 and ρ ∈]0, 1[, we are interested in the following constrained Chebyshev problem

ρ̃(C) := min
p∈Rk[X]
p(1)=1
‖p‖1≤C

max
x∈[0,ρ]

|p(x)|. (Cstr-Cheb)

Before detailing explicit upper bounds on this problem, we first explain how to compute this ρ̃(C)
numerically for C ≥ 1. Note that the feasible set is trivially empty when C < 1.

27

10 20 30

0.400

0.600

C

0 100 200 300

0.200

0.400

0.600

C

0 0.5 1

·104

0.000

0.200

0.400

C

ρk

Equation (2.12)
Proposition 2.4.14
ρ̃(C)
ρ∗

0 20 40 60 80

0.985

0.990

0.995

C

0 1,000 2,000 3,000

0.960

0.980

C

0 2 4

·105

0.900

0.950

C

Figure 2.3: Dotted curves correspond to the fixed point iterations rate ρk, purple ones are bounds on
ρ̃(C) from (2.12) using convexity. Red curves correspond to the bound on ρ̃(C) presented in Proposi-
tion 2.4.14 with M = k, blue ones correspond to numerical solutions to (2.10) (i.e., numerical value
of ρ̃(C)) and the dashed ones to accelerated rate ρ∗ defined in (Cheb). On x-axis C goes from 1 to C∗
defined in (2.11). Top : ρ = 0.9. Bottom: ρ = 0.999. Left: k = 3. Middle: k = 5. Right: k = 8.

2.4.1 Numerical solutions

When C ≥ 1, the problem (Cstr-Cheb) has a non empty feasible set, and this feasible set is convex
(intersection of an affine space with an `1 ball). The objective function is a norm on Rk[X], hence is
convex. The problem (Cstr-Cheb) is equivalent to

ρ̃(C) = min t
p ∈ Rk[X], t ∈ R,
p(1) = 1, ‖p‖1 ≤ C,
−t ≤ p(x) ≤ t, ∀x ∈ [0, ρ].

(2.9)

This problem involves polynomial positivity constraints on a bounded interval. A classical argument to
transform this local positivity into positivity on R uses the following change of variable.

p(x) ≥ 0 ∀x ∈ [0, ρ] ⇐⇒ (1 + x2)kp
(
ρ x2

1+x2

)
≥ 0 ∀x ∈ R.

Positivity constraints for univariate polynomials can be expressed using a sum of squares (SOS) for-
mulation [Parrilo, 2000, Lasserre, 2001] (see e.g., Magron et al. [2019, Theorem 1] for a short proof).
Standard packages can be used to solve the following reformulation of (2.9) with SOS constraints.

ρ̃(C) = min t
p ∈ Rk[X], t ∈ R,
p(1) = 1, ‖p‖1 ≤ C,
(1 + x2)kp(ρ x2

1+x2) + (1 + x2)kt ≥ 0 ∀x ∈ R,
(1 + x2)kt− (1 + x2)kp(ρ x2

1+x2) ≥ 0 ∀x ∈ R.

(2.10)

We used YALMIP [Löfberg, 2004] and MOSEK [Mosek, 2010] and numerical solutions to (2.10) are
detailed in Figure 2.3 (in blue) for a few values of ρ and k.

28

2.4.2 Exact and upper bounds

The main goal of this section is to provide an explicit upper bound for the function ρ̃(C) defined in
(Cstr-Cheb), which we later combine with the result of Proposition 2.3.2.

Naive upper bound and base properties

We start by presenting a property of the function ρ̃ that will be very useful to stitch together several
upper bounds that will be derived on ρ̃ in what follows.

Proposition 2.4.3. The function ρ̃ defined in (Cstr-Cheb) is convex on [1,+∞[.

Proof. LetC0, C1 ∈ [1,+∞[and t ∈ [0, 1], when p0 and p1 are feasible points for problem (Cstr-Cheb)
with C equal to C0 and C1, then (1 − t)p0 + tp1 is feasible for problem (Cstr-Cheb) with C =
(1 − t)C0 + tC1. Thus, by convexity of the objective function we have that ρ̃((1 − t)C0 + tC1) ≤
(1− t)ρ̃(C0) + tρ̃(C1).

We write C∗ the `1-norm of the rescaled Chebyshev polynomial p∗ = R
[0,ρ]
k of Theorem 2.4.1, i.e.

C∗ = ‖R[0,ρ]
k ‖1, where R[0,ρ]

k solves (Cheb). (2.11)

We start with a few observations on the behavior of ρ̃ at the boundaries of its domain.

Remark 2.4.4. From Theorem 2.4.1, when C is larger than C∗, problem (Cstr-Cheb) becomes uncon-
strained and ρ̃(C) is constant equal to ρ∗.

Remark 2.4.5. When C = 1, the feasible set of (Cstr-Cheb) consists only of convex combinations of
monomials of degree smaller than k. Among them, Xk has the minimal absolute value on [0, ρ] and
ρ̃(1) = ρk.

Based on the two previous remarks and Proposition 2.4.3 we obtain a first natural upper bound on
ρ̃ written

ρ̃(C) ≤ C∗−C
C∗−1 ρ

k + C−1
C∗−1ρ∗, for C ∈ [1, C∗]. (2.12)

This is a very coarse upper bound since C∗ � 1. Indeed we can observe in Figure 2.3 that there is an
important gap between ρ̃ and the coarse upper bound from (2.12) that is displayed in purple. Bellow,
we show that using a refined set of sample points in [1, C∗] along with convexity of ρ̃ allows obtaining
more precise upper bounds.

Behavior for C close to 1

It turns out that when C is close to 1, the behavior of ρ̃(C) can be explicitly characterized. Indeed, in
the next lemma we provide an explicit expression for ρ̃(C) when C is in an explicit neighborhood of 1.

Lemma 2.4.6. Let C1 = 2+ρk
2−ρk , for C ∈ [1, C1] we have the following expression for ρ̃

ρ̃(C) = C+1
2 ρk − C−1

2 .

29

Proof. Let us show that p(X) = C+1
2 Xk − C−1

2 solves of (Cstr-Cheb). First notice that p is feasible
as ‖p‖1 = C and p(1) = 1. In addition, since p is increasing on [0, ρ], |p| reach its maximum on the
boundary and max

x∈[0,ρ]
|p(x)| = max(|p(ρ)|, |p(0)|) = p(ρ) = C+1

2 ρk − C−1
2 using that C ∈ [1, 2+ρk

2−ρk].

Let q be another feasible polynomial such that q =
∑k
i=0 qiX

i,
∑k
i=0 qi = 1 and

∑k
i=0 |qi| ≤ C.

We show that |q(ρ)| ≥ |p(ρ)|. First we have that

q(ρ) =
∑
qi≥0

qiρ
i +

∑
qi≤0

qiρ
i ≥

∑
qi≥0

qiρ
k +

∑
qi≤0

qi =
∑
qi≥0

qiρ
k +

1−
∑
qi≥0

qi

 .
In addition, one notices that

∑
qi≥0 qi −

∑
qi≤0 qi =

∑k
i=0 |qi| ≤ C thus using that

∑
qi≤0 qi = 1 −∑

qi≥0 qi, we obtain
∑
qi≥0 qi ≤ C+1

2 , and

q(ρ) ≥ C+1
2 (ρk − 1) + 1 = p(ρ) > 0.

Thus |q(ρ)| = q(ρ) ≥ p(ρ) = max
x∈[0,ρ]

|p(x)|. Then max
x∈[0,ρ]

|q(x)| ≥ max
x∈[0,ρ]

|p(x)| so p is an optimal

solution of (Cstr-Cheb).

Using Remark 2.4.4 and Lemma 2.4.6, we can obtain exact expression for ρ̃ when k = 1.

Remark 2.4.7. For k = 1, we have C∗ = 2+ρ
2−ρ = C1 and

ρ̃(C) =
{

C+1
2 ρk − C−1

2 for C ∈ [1, C1]
2

2−ρ for C ≥ C1
.

We can also give an explicit form for solutions of (Cstr-Cheb) in a neighborhood of C∗ as detailed
below.

Behavior for C around C∗

In this section, we show that solutions to the Chebyshev problem with light constraints (C close to C∗)
are also rescaled Chebyshev polynomials (see Definition 2.1.3) on a segment [−ε, ρ] instead of [0, ρ],
with ε ≥ 0.

Theorem 2.4.8. Let ρ ∈]0, 1[, k > 0 and

ε̃ = ρ
1+cos(2k−1

2k π)

1−cos(2k−1
2k π)

.

For any ε ∈ [0, ε̃] we have
R

[−ε,ρ]
k ∈ argmin

p∈Rk[X], p(1)=1

‖p‖1≤
∥∥∥R[−ε,ρ]

k

∥∥∥
1

max
x∈[0,ρ]

|p(x)|,

which implies
ρ̃
(∥∥∥R[−ε,ρ]

k

∥∥∥
1

)
= max

x∈[−ε,ρ]

∣∣∣R[−ε,ρ]
k (x)

∣∣∣ .

30

In order to prove Theorem 2.4.8, we use some intermediary results on rescaled Chebyshev polyno-
mials, listed on the following Lemmas.

First we provide results on the equioscillation properties of rescaled Chebyshev polynomialsR[−ε,ρ]
k

when ε is small enough.

Lemma 2.4.9. Let k > 0 and ρ ∈ [0, 1[. For ε ∈ [0, ε̃] with ε̃ = ρ
1+cos(2k−1

2k π)

1−cos(2k−1
2k π)

we have the following

properties of R[−ε,ρ]
k =

Tk(2(X+ε)
ρ+ε −1)

Tk(2(1+ε)
ρ+ε −1)

.

(i)
∣∣∣R[−ε,ρ]

k (X)
∣∣∣ is maximal on the mi = (ρ+ε) cos(iπk)+ρ−ε

2 ∈ [−ε, ρ] for i = 0, . . . , k

and sign(R[−ε,ρ]
k (mi)) = (−1)i.

(ii) Let c ∈ Rk+1 such that R[−ε,ρ]
k (X) =

∑k
i=0 ciX

i. Then sign(ci) = (−1)k−i for i = 1, . . . , k
and (−1)kc0 ≥ 0.

Proof. The Chebyshev polynomial of first kind Tk(X) is defined such that

Tk(cos(θ)) = cos(kθ) for all θ ∈ R.

Using this property, (i) is obtained by observing that max
x∈[−1,1]

|Tk(x)| = 1 is attained for xi = cos(iπk)

with i = 0, . . . , k. In particular Tk(xi) = (−1)i. Thus |R[−ε,ρ]
k | has its maxima on

mi = (ρ+ε) cos(iπk)+ρ−ε
2 , i = 0, . . . , k

and R[−ε,ρ]
k (mi) = (−1)i.

Let us now prove (ii). From the definition of Tk, we get that the roots of Tk are the (zi)i∈[0,k−1] =
(cos

(
2i+1
2k π

)
)i∈[0,k−1] ∈ [−1, 1]. The roots ofR[−ε,ρ]

k (X) are the zεi defined such that 2zεi
ρ+ε−

ρ−ε
ρ+ε = zi.

This corresponds to
zεi = (ρ+ε)zi+ρ−ε

2 ∈ [−ε, ρ], i = 0, . . . , k − 1.

The smallest root zεk−1 = (ρ+ε) cos(2k−1
2k π)+ρ−ε
2 is nonnegative for ε ∈ [0, ρ1+cos(2k−1

2k π)

1−cos(2k−1
2k π)

] = [0, ε̃].

This means that this for choice of ε, all the roots of R[−ε,ρ]
k are in [0, ρ].

One can thus express R[−ε,ρ]
k using its roots as R[−ε,ρ]

k (x) = a
∏k−1
i=0 (x − zεi) with a the leading

coefficients. Using that the leading coefficient of Tk is 2k−1 and that Tk(2(1+ε)
ρ+ε −1) > 0 since 2(1+ε)

ρ+ε −
1 > 1, we have a > 0. By developing the product we have

R
[−ε,ρ]
k (x) = a

 k∑
j=1

(−1)k−jxj
∑

0<i0<···<ik−j
zεi0 · · · z

ε
ik−j

+ xk

 ,
which gives us (ii).

Then we study properties of some polynomial descent directions h on the maximal absolute value
on [0, ρ] at the point R[−ε,ρ]

k .

31

Lemma 2.4.10. Let k > 0 and 0 ≤ ε ≤ ε̃, suppose that there exists a nonzero polynomial h ∈ Rk[X]
satisfying

(i) h(1) = 0.
(ii) max

x∈[0,ρ]
|h(x)| ≤ 1

2 max
x∈[0,ρ]

|R[−ε,ρ]
k (x)|.

(iii) max
x∈[0,ρ]

|R[−ε,ρ]
k (x) + h(x)| < max

x∈[0,ρ]
|R[−ε,ρ]

k (x)|.

Then, h possesses k distinct roots in]0, 1], (−1)kh(−1) > 0 and (−1)kh(0) > 0.

Proof. From Lemma 2.4.9 we know that |R[−ε,ρ]
k | is maximal on [−ε, ρ] at the mi = (ρ+ε) cos(iπk)+ρ−ε

2
for i = 0, . . . , k and sign(R[−ε,ρ]

k (mi)) = (−1)i. In addition, mi ∈]0, ρ] for i = 0, . . . , k − 1.

Indeed the mi are in decreasing order and mk−1 = (ρ+ε) cos((k−1)π
k)+ρ−ε

2 >
(ρ+ε) cos((2k−1)π

2k)+ρ−ε
2 ≥

(ρ+ε̃) cos((2k−1)π
2k)+ρ−ε̃

2 = 0 since ε ∈ [0, ε̃].
It follows from (ii) that |h(mi)| ≤ 1

2 |R
[−ε,ρ]
k (mi)| for i = 0, . . . , k − 1 which implies that

|R[−ε,ρ]
k (mi) + h(mi)| = |R[−ε,ρ]

k (mi)| + sign(R[−ε,ρ]
k (mi))h(mi) = |R[−ε,ρ]

k (mi)| + (−1)ih(mi).
Together with (iii) this leads to (−1)ih(mi) < 0 for i = 0, . . . , k − 1.

Because h alternates sign between mi’s, the mean value theorem implies that h possesses a root
inside each interval]mi+1,mi[⊂]0, 1[for i = 0, . . . , k − 2. Along with (i), this shows that h has
k distinct roots in]mk−1, 1] ⊂]0, 1]. Furthermore, h keeps the same sign on] − ∞,mk−1] (since it
already has k roots) which is (−1)k. In particular, it implies that (−1)kh(−1) > 0 and (−1)kh(0) > 0
reaching the desired statements.

We can finally prove Theorem 2.4.8:

Proof. We proceed by contradiction: we assume thatR[−ε,ρ]
k is not a solution to the constrained Cheby-

shev problem and show that it leads to a contradiction.
Assume that R[−ε,ρ]

k is not a global minimum of (Cstr-Cheb), R[−ε,ρ]
k is not a local minimum either,

therefore for all δ > 0, there exists a nonzero polynomial h ∈ Rk[X] such that

(i) R
[−ε,ρ]
k (1) + h(1) = 1. (feasibility)

(ii)
∥∥∥R[−ε,ρ]

k + h
∥∥∥

1
≤
∥∥∥R[−ε,ρ]

k

∥∥∥
1
. (feasibility)

(iii) max
x∈[0,ρ]

|h(x)| ≤ δ. (not a local minimum)

(iv) max
x∈[0,ρ]

|R[−ε,ρ]
k (x) + h(x)| < max

x∈[0,ρ]
|R[−ε,ρ]

k (x)|. (not a minimum).

For δ < 1
2 maxx∈[0,ρ] |R

[−ε,ρ]
k (x)|, (i), (iii) and (iv) correspond to the assumptions of Lemma 2.4.10 for

h. This implies that it possesses k roots in]0, 1[, (−1)kh(−1) > 0 and (−1)kh(0) > 0.
Then, writing R[−ε,ρ]

k (x) =
∑k
i=0 cix

i and h(x) =
∑k
i=0 hix

i, Lemma 2.4.9 allows concluding
that

(v) ci 6= 0 and sign(ci) = (−1)k+i for i = 1, . . . , k
(vi) (−1)kc0 ≥ 0.

From (vi) and the fact that (−1)kh(0) > 0, we have |c0 + h0| = (−1)k(c0 + h0) = |c0| + (−1)kh0.
Hence, for δ small enough, it follows that 0 < maxi=1,...,k |hi| < mini=1,...,k |ci| and we obtain

|ci + hi| = |ci|+ sign(ci)hi = |ci|+ (−1)k+ihi,

32

where the second equality follows from (v).
It remains to express the `1 norm of R[−ε,ρ]

k + h as

∥∥∥R[−ε,ρ]
k + h

∥∥∥
1

=
k∑
i=0
|ci + hi| =

k∑
i=0
|ci|+ (−1)k+ihi

=
∥∥∥R[−ε,ρ]

k

∥∥∥
1

+ (−1)kh(−1).

Combining (ii) with the previous equality leads to (−1)kh(−1) ≤ 0 which is in contradiction with
(−1)kh(−1) obtained earlier.

Therefore, R[−ε,ρ]
k has to be a solution of (Cstr-Cheb), reaching the desired claim.

As mentioned in this proof, the coefficients of R[−ε,ρ]
k for ε ∈ [0, ε̃] have alternating signs, so∥∥∥R[−ε,ρ]

k

∥∥∥
1

is in fact |R[−ε,ρ]
k (−1)|. This relation is key in the proof of the previous theorem, and is the

main motivation behind the choice of the `1 norm on coefficients (versus e.g. `2). Furthermore, this
yields a somewhat simple expression for

∥∥∥R[−ε,ρ]
k

∥∥∥
1
, as follows.

Lemma 2.4.11. Let ρ ∈]0, 1[, and k > 0. For any ε ∈ [0, ε̃] with

ε̃ = ρ
1+cos(2k−1

2k π)

1−cos(2k−1
2k π)

,

we have

‖R[−ε,ρ]
k ‖1 =

(
1+ρ−ε

2 −
√

(1+ρ)(1−ε)
)k

+
(

1+ρ−ε
2 +
√

(1+ρ)(1−ε)
)k

(
1+ρ−ε

2 −
√

(1−ρ)(1+ε)
)k

+
(

1+ρ−ε
2 +
√

(1−ρ)(1+ε)
)k .

Furthermore, the function ε→
∥∥∥R[−ε,ρ]

k

∥∥∥
1

is continuous and decreasing on [0, ε̃].

Proof. Using ‖R[−ε,ρ]
k ‖1 = |R[−ε,ρ]

k (−1)|, we apply the classical expression for Tk(x) with |x| ≥ 1
(see e.g., Mason and Handscomb [2002, Eq 1.49]) Tk(x) = 1

2

(
(x−

√
x2 − 1)k + (x+

√
x2 − 1)k

)
.

Using this formula, we arrive to (after a bit of work)

∥∥∥R[−ε,ρ]
k

∥∥∥
1

=

∣∣∣Tk(−2−ρ+ε
ρ+ε)

∣∣∣∣∣∣Tk(2−ρ+ε
ρ+ε)

∣∣∣ =

(
1+ρ−ε

2 −
√

(1+ρ)(1−ε)
)k

+
(

1+ρ−ε
2 +
√

(1+ρ)(1−ε)
)k

(
1−ρ−ε2 −

√
(1−ρ)(1+ε)

)k
+
(

1−ρ−ε2 +
√

(1−ρ)(1+ε)
)k .

A base study of variations reveals that the numerator is decreasing and the denominator increasing on
[0, ε̃].

Remark 2.4.12. In particular, one can express the value of C∗ using Lemma 2.4.11 applied to the
unconstrained Chebyshev problem (Cheb) (ε = 0), yielding

C∗ = (2 + ρ− 2
√

1 + ρ)k + (2 + ρ+ 2
√

1 + ρ)k

(2− ρ− 2
√

1− ρ)k + (2− ρ+ 2
√

1− ρ)k
.

33

Remark 2.4.13. Theorem 2.4.8 and Lemma 2.4.11 do not provide explicit expressions of ρ̃(C) for
C ∈ [C̃, C∗] with C̃ = ‖R[ε̃,ρ]

k ‖1. Indeed, we cannot explicitly invert the relation ε → ‖R[−ε,ρ]
k ‖1.

However one can get arbitrarily tight upper bounds by sampling (εi)i∈[1,M] ∈ [0, ε̃]. Then, one can

compute Ci = ‖R[εi,ρ]
k ‖1 explicitly using Lemma 2.4.11. Note that since ε→

∥∥∥R[−ε,ρ]
k

∥∥∥
1

is continuous

and decreasing on [0, ε̃], we can obtain an arbitrarily good covering of [C̃, C∗] using the Ci. Finally,
using convexity from Proposition 2.4.3 to interpolate linearly between the Ci and ρ̃(Ci), provides a
piecewise linear upper bound on [C̃, C∗] which can be made arbitrarily close to ρ̃ by increasing M .

Note however that the interval [C̃, C∗] is actually quite narrow compared with [1, C∗]. We describe
the construction of upper bounds for all C ≥ 1 in the next section.

Construction of upper bounds for all values of C

To construct an upper bounds on ρ̃(C) for all C ∈ [1, C∗], we use the idea presented above, based on
bounding ρ̃ at a finite number of points, then using convexity to interpolate upper bounds between these
points. Given M ∈ N∗ accounting for the number of intermediate breaking points, the upper bound is
built as follows.

(i) Select M + 2 constraint parameters Ci ∈ [1, C∗] for i = 0, . . . ,M + 1 with C0 = 1, C1 = 2+ρk
2−ρk

(from Lemma 2.4.6) and CM+1 = C∗.

(ii) Using feasible polynomials of (Cstr-Cheb), obtain ρi such that ρ̃(Ci) ≤ ρi for i = 0, . . . ,M + 1,
with ρ0 = ρk, ρ1 = ρ̃(C1) = ρk

2−ρk (from Lemma 2.4.6) and ρM+1 = ρ∗.

(iii) Use the lower convex hull of the (Ci, ρi) as an upper bound on ρ̃ on [1, C∗].

Note that we only focus on [1, C∗] since we know that ρ̃(C) = ρ∗ when C ≥ C∗ (see Remark 2.4.12).

Proposition 2.4.14. Let k > 2 , ρ ∈]0, 1[and M ≥ 2, (εi)i∈[2,M] =
(

ρ
2i−2

)
i∈[2,M]

. Let

(Ci)i∈[2,M] =
(
min

∥∥∥R[εi,ρ]
k

∥∥∥
1
, C∗

)
i∈[2,M]

, C0 = 1, C1 = 2+ρk
2−ρk , and CM+1 = C∗.

We denote by (ρi)i∈[2,M] =
(

2βki
1+β2k

i

)
i∈[2,M]

, with βi = 1−
√

1− ρ+εi
1+εi

/
1 +

√
1− ρ+εi

1+εi , ρ0 = ρk,

ρ1 = ρk

2−ρk and ρM+1 = ρ∗. Then, we index C[i] such that 1 = C0 = C[0] ≤ C[1] ≤ . . . ≤ C[M+1] =
CM+1 = C∗, and define ρ̃b on [1,+∞] as

ρ̃b(C) =

min
j,l

C[j]≤C[i]
C[l]≥C[i+1]

C−C[j]
C[l]−C[j]

ρ[l] + C[l]−C
C[l]−C[j]

ρ[j] for C ∈ [C[i], C[i+1]]

ρ∗, for C ≥ C∗

,

which is an upper bound on ρ̃.

Proof. The values Ci =
∥∥∥R[εi,ρ]

k

∥∥∥
1

can computed explicitly using e.g. Mason and Handscomb [2002,
Equation 2.18] to obtain the coefficients of Tk. If C > C∗ we saw that ρ̃(C) = ρ∗. Otherwise C is
between a C[i] and a C[i+1] and the result follows from the convexity of ρ̃.

34

To select the Ci in step (i), we rely on the intuition provided by Theorem 2.4.8 and on numer-
ical observations. Indeed we noticed that for a large range of ε (more precisely for ε ∈ [0, ρ]),
max[0,ρ]

∣∣∣R[−ε,ρ]
k (x)

∣∣∣ is a good upper bound for ρ̃
(∥∥∥R[−ε,ρ]

k

∥∥∥
1

)
. Therefore, we sample M − 1 val-

ues εi ∈ [0, ρ] and use Ci =
∥∥∥R[εi,ρ]

k

∥∥∥
1

in step (i). Then, we set ρi = max[0,ρ]

∣∣∣R[εi,ρ]
k (x)

∣∣∣ (= ρεi from
Corollary 2.4.2) in step (ii) and finally apply step (iii) to get the upper bound. As shown in Figure 2.3,
Proposition 2.4.14 provides upper bounds, represented in red on the figure, that are close to ρ̃(C).

Setting ε2 = ρ in the previous proposition is motivated by two observations, (i) numerically ρε =
maxx∈[0,ρ] |R

[ε,ρ]
k (x)| is close to ρ

(∥∥∥R[−ε,ρ]
k

∥∥∥
1

)
for ε ∈ [0, ρ] and diverges from it for larger ε, (ii) we

can study R[ρ,ρ]
k and get a relatively simple expression for ‖R[ρ,ρ]

k ‖1 as described below.

Lemma 2.4.15. Let ρ ∈]0, 1[and k ≥ 1,

C2 :=
∥∥∥R[ρ,ρ]

k

∥∥∥
1

= (1−
√

1+ρ2)k+(1+
√

1+ρ2)k

(1−
√

1−ρ2)k+(1+
√

1−ρ2)k
. (2.13)

Proof. From Definition 2.1.3 we have R[ρ,ρ]
k (X) =

Tk(Xρ)

Tk(1
ρ)

. Then, noticing that ‖R[ρ,ρ]
k ‖1 =

∣∣∣Tk(iρ)
∣∣∣

Tk(1
ρ)

(with i the unit imaginary number) allows to use the nice formulation for the value of Chebyshev
polynomials (see e.g., Mason and Handscomb [2002, Eq 1.49])

‖R[ρ,ρ]
k ‖1 =

∣∣∣(i−(i2−ρ)1/2)k+(i−(i2−ρ)1/2)k)
∣∣∣

(1−
√

1−ρ2)k+(1+
√

1−ρ2)k
= C2.

In order to get more insights on how this upper bound behaves at C2, we study the regime ρ ∼ 1.

Remark 2.4.16. We have

ρ2 := max
x∈[0,ρ]

|R[ρ,ρ]
k (x)| = 2ρk

(1+
√

1−ρ2)k+(1−
√

1−ρ2)k
≤ ρk.

When ρ→ 1 we can show

1− ρk ∼ k(1− ρ), 1− ρ∗ ∼ k2(1− ρ) and 1− ρ2 ∼ k
2k−1k

2(1− ρ).

In addition,
C2 ∼ (1+

√
2)k+(1−

√
2)k

(1+
√

2)2k+(1−
√

2)2kC∗ ≤ 1
2kC∗.

In the bad conditioned regime where ρ ∼ 1, decreasing the constraint C by a factor 2k, only
deteriorates the convergence rate by a factor k

2k−1 .

We now, present a simpler and more practical upper bound, which corresponds to a scenario where
the Ci’s are ordered.

Remark 2.4.17. Following the notations of Proposition 2.4.14, a simpler upper bound when the Ci’s
are ordered is

ρ̃bo(C) :=
{

C−Ci
Ci+1−Ci ρi+1 + Ci+1−C

Ci+1−Ci ρi for C ∈ [Ci, Ci+1] and 0 ≤ i ≤M
ρ∗ for C ≥ C∗

. (2.14)

35

Numerically
∥∥∥R[−ε,ρ]

k

∥∥∥
1

appears to be decreasing with ε, as the intuition suggests. Indeed, when ε gets

larger, the graph of R[−ε,ρ]
k exhibits wider oscillations, which would imply a decrease in the magnitude

of its coefficients. For now, this remains a conjecture as we could not prove it formally. Note however
that for M = 2, we can show (see Lemma 2.4.18) that C0 < C1 < C2 < C3 and thus, (2.14) defines a
simplified upper bound.

Lemma 2.4.18. Let k ∈ N, ρ < 1, C∗ is defined in (2.11) (an explicit value is provided in Re-
mark 2.4.12) and C2 in (2.13). It holds that

C1 = 2+ρk
2−ρk ≤ C2 for k > 1 and C2 ≤ C∗ for k ≥ 1.

Proof. We start from the expression of C2

C2 = (1−
√

1+ρ2)k+(1+
√

1+ρ2)k

(1−
√

1−ρ2)k+(1+
√

1−ρ2)k
=
∑bk/2c
i=0

(k
2i
)
(1 + ρ2)i∑bk/2c

i=0
(k
2i
)
(1− ρ2)i

.

For obtaining C2 ≥ 2+ρk
2−ρk we need to show

(2− ρk)
bk/2c∑
i=0

(
k

2i

)
(1 + ρ2)i − (2 + ρk)

bk/2c∑
i=0

(
k

2i

)
(1− ρ2)i ≥ 0,

and in particular we study
(2− ρk)(1 + ρ2)i − (2 + ρk)(1− ρ2)i.

When i = 0, this is equal to −2ρk, and when i = 1 this is equal to 4ρ2 − 2ρk. In addition, one can
easily observe that it is an increasing function of i. Hence, it is nonnegative when i ≥ 1. For k ≥ 2, we
can further write

(2− ρk)
bk/2c∑
i=0

(
k

2i

)
(1 + ρ2)i − (2 + ρk)

bk/2c∑
i=0

(
k

2i

)
(1− ρ2)i ≥ −2ρk +

(
k

2

)
(−2ρk + 4ρ2)

≥ 4ρ2(1− ρk−2)
≥ 0 strict inequality when k > 2,

and then
C2 ≥ 2+ρk

2−ρk with strict inequality when k > 2.

Finally, we show the second inequality between C∗ and C2.

C∗ = (2+ρ−2
√

1+ρ)k+(2+ρ+2
√

1+ρ)k

(2−ρ−2
√

1−ρ)k+(2−ρ+2
√

1−ρ)k
=
∑bk/2c
i=0

(k
2i
)
(1 + ρ

2)k−2i(1 + ρ)i∑bk/2c
i=0

(k
2i
)
(1− ρ

2)k−2i(1− ρ)i
.

When k ≥ 1, (1 + ρ
2)k−2i(1 + ρ)i > (1 + ρ2)i and (1 − ρ

2)k−2i(1 − ρ)i < (1 − ρ2)i for i ∈ [0, bk2c]
and thus

C∗ > C2 when k ≥ 1,
reaching the desired conclusion.

In the next section we use the simplified bound on the constrained Chebyshev problem of Re-
mark 2.4.17 to provide explicit bounds on constrained Anderson acceleration for gradient step opera-
tors.

36

2.5 Convergence of CAA on gradient steps

As discussed above, combining Proposition 2.4.14 and Proposition 2.3.2 gives an explicit linear rate of
convergence for one pass of Algorithm 2.2. In what follows, we focus on applications of these results
to the optimization setting where F is an operator representing an optimization method.

100 102 104

0.96

0.98

C

100 102 104

0.96

0.98

C

ρk

η‖∇f(x0)‖ = 10−2 µ
L

η‖∇f(x0)‖ = 10−3 µ
L

η‖∇f(x0)‖ = 10−4 µ
L

η‖∇f(x0)‖ = 10−5 µ
L

η‖∇f(x0)‖ = 10−6 µ
L

η‖∇f(x0)‖ = 0
ρ∗

100 102 104

0.96

0.98

C

100 102 104

0.96

0.98

C

Figure 2.4: Bounds on the convergence rate of Algorithm 2.2 with k = 5, µ = 10−3 and L = 1.
Top Left: bound from (2.15), Top Right: bound from (2.12), Bottom Left: bound from (2.16) with
M = k + 1. Bottom Right: bound from (2.16) with M = 2. Note that the apparent nonconvexity of
the bounds is due to the x-axis being represented in logarithmic scale.

2.5.1 Convergence bounds

In this section, we come back to the problem of accelerating convergence of a first-order method,
and consider that F is specifically encoding a gradient step of a function f (see e.g., Scieur et al.
[2020]). It is well known (see for instance Ryu and Boyd [2016]) that when f is µ-strongly convex
with L-Lipschitz gradient for 0 < µ < L, F = (I − 1

L∇f) is a ρ =
(
1− µ

L

)
-Lipschitz operator. In

addition, we assume that∇2f , the Hessian of f , is η-Lipschitz for η > 0, which implies that F satisfies
Assumption 2.2.2.

Given x0 ∈ Rd, Proposition 2.3.2 shows that the output xe of Algorithm 2.2 with k ≥ 1 and C ≥ 1
satisfies

‖∇f(xe)‖ ≤
(
ρ̃(C) + 3 ηLk

2C2‖∇f(x0)‖
)
‖∇f(x0)‖, (2.15)

where ρ̃ is defined in (Cstr-Cheb). When C is fixed, there are two ways of for improving the conver-
gence rate of CAA : (i) having a Hessian with a small Lipschitz constant η, which means being globally
close to a quadratic, or (ii) being sufficiently close to the optimum (i.e., ‖∇f(x0)‖ small).

37

To make our bounds more concrete, we now combine (2.15) with the upper bound from Proposi-
tion 2.4.14. For clarity, we only consider the simple upper bound from Remark 2.4.17. The next propo-
sition provides a range of values of C, depending on the perturbation parameter η

L2 ‖∇f(x0)‖ (which
measures deviation from quadratic case), for which acceleration is guaranteed with Algorithm 2.2 com-
pared to the baseline convergence rate ρk after k iterations of the fixed-step gradient method.

Proposition 2.5.1. Let f : Rd → R be a µ-strongly convex function with L-Lipschitz gradient and
η-Lipschitz Hessian. Let xe be the output of Algorithm 2.2 with x0 ∈ Rd, k > 2 and C ≥ 1.

‖∇f(xe)‖ ≤
(
ρ̃bo(C) + 3 η

L2k
2C2‖∇f(x0)‖

)
‖∇f(x0)‖. (2.16)

where ρ̃bo is defined in (2.14) with M ≥ 2 and ρ = 1− µ
L . In addition,

(i) If η
L2 ‖∇f(x0)‖ < ρk(1−ρk)(2−ρk)

3k2(2+ρk)2 then

∃ δ > 0 s.t. ‖∇f(xe)‖ < ρk ‖∇f(x0)‖ for C ∈ [2+ρk
2−ρk − δ,

2+ρk
2−ρk + δ].

(ii) If η
L2 ‖∇f(x0)‖ < min(ρ

k(1−ρk)(2−ρk)
3k2(2+ρk)2 , ρ

k−ρ2
3k2C2

2
) then

‖∇f(xe)‖ < ρk ‖∇f(x0)‖ for C ∈ [2+ρk
2−ρk , C2].

(iii) If η
L2 ‖∇f(x0)‖ < min(ρ

k(1−ρk)(2−ρk)
3k2(2+ρk)2 , ρ

k−ρ∗
3k2C2

∗
) then

‖∇f(xe)‖ < ρk ‖∇f(x0)‖ for C ∈ [2+ρk
2−ρk , C∗].

Proof. Using Proposition 2.3.2, the result follows from upper bounding

ρ̂(C) := ρ̃(C) + 3 η
L2k

2C2 ‖∇f(x0)‖ ,

by ρk. In addition, since ρ̃ is convex in C (see Proposition 2.4.3) so is ρ̂.
The case (i) follows directly from the fact that ρ̃(C1) = ρ1 = ρk

2−ρk (see Lemma 2.4.6). For
(ii) (resp. (iii)), we have ρ̃(C2) ≤ ρ̃bo(C2) = ρ2 (resp. ρ̃(C∗) = ρ∗), thus taking η

L2 ‖∇f(x0)‖ <
min(ρ

k(1−ρk)(2−ρk)
3k2(2+ρk)2 , ρ

k−ρ2
3k2C2

2
) (resp. η

L2 ‖∇f(x0)‖ < min(ρ
k(1−ρk)(2−ρk)
3k2(2+ρk)2 , ρ

k−ρ∗
3k2C2

∗
)) implies ρ̂(C1) < ρk

and ρ̂(C2) < ρk (resp. ρ̂(C∗) < ρk), which gives the result using convexity of ρ̂.

Figure 2.4 displays the values of bounds from (2.16) with fixed k, µ and L for various values of the
perturbation parameter η‖∇f(x0)‖. We observe that we do not loose much by using the simple upper
bound with M = 2 compared with the numerical value of ρ̃(C) obtained by solving (2.10). In the next
section we study a version of Algorithm 2.2 with restarts.

2.5.2 Guarded and adaptive methods

Due to the particular form of the perturbation parameter α, proportional to η‖∇f(x0)‖ in the case
of the gradient step operator, we see that as soon as η‖∇f(x0)‖ is small enough to get ρ̃(C) +
3 η
L2k

2C2 ‖∇f(x0)‖ < 1, one can restart Algorithm 2.2 to get a decreasing sequence of perturbation
parameters, leading to faster convergence guarantees. Adding a guarded step to this scheme produces
Algorithm 2.5.2. The guarded step consists in using the extrapolated point xe only if the gradient norm
at this point is smaller than those of previous iterates, yielding global convergence guarantees.

38

Guarded Constrained Anderson acceleration (Algorithm 2.5.2)

Input:

– Objective function: f ∈ Fµ,L(Rd) with 0 < µ ≤ L.

– Initial guess: x0 ∈ Rd.

– Number of iterates used in extrapolation: k ∈ N∗.
– Number of iterations: N ∈ N∗.

Run:

For i = 0, . . . , N − 1:

x0
i = xi

For j = 0, . . . , k:

xj+1
i = xji − 1

L∇f(xji)

End For

Form R =
[
x0
i − x1

i · · · xki − x
k+1
i

]
Compute c̃ = argmin

1T c=1, ‖c‖1≤C(i)

‖Rc‖

xei =
k∑
j=0

c̃jx
j
i

xi+1 = argmin
x∈{xei ,x

k
i }
‖∇f(x)‖ (guarded step)

End For

Output: xN

Proposition 2.5.2. Let f be a µ-strongly convex function, with L-Lipschitz gradient and η-Lispchitz
Hessian. Let (xi)i ∈ Rd be the sequence of iterates of Algorithm 2.5.2 on f , initiated at x0 ∈ Rd with
k > 2, N ≥ 1 and with parameters (C(i))i such that C(i) ≥ 1. It holds that

‖∇f(xN)‖ ≤
N∏
i=1

ρ̂i(C(i−1))‖∇f(x0)‖,

where
ρ̂i(C) = min

(
ρk, ρ̃bo(C) + 3 η

L2 ‖∇f(xi−1)‖k2C2
)
, (2.17)

with ρ̃bo defined in (2.14) with ρ = 1− µ
L .

Proof. This is a direct consequence of Proposition 2.5.1.

39

Using the explicit expression (2.16), one can for instance get a (conservative) lower bound on the
number of iterations of Algorithm 2.5.2 for acceleration to occur (i.e. escape the guarded regime, which
does nothing more than just iterating F).

Corollary 2.5.3. Let f be a µ-strongly convex function, with L-Lipschitz gradient and η-Lispchitz
Hessian. Let (xi)i ∈ Rd be the sequence of iterates of Algorithm 2.5.2 on f , initiated at x0 ∈ Rd with
k > 2, N ≥ 1 and with parameters (C(i))i such that C(i) ∈ [3, C∗]. It holds that

N ≥
log
(

η
L2

3k2(2+ρk)2‖∇f(x0)‖
ρk(1−ρk)(2−ρk)

)
k log 1

ρ

=⇒
N∏
i=1

ρ̂i(C(i−1)) < ρkN ,

with ρ̂i(C(i−1)) defined in (2.17).

Proof. We use (iii) from Proposition 2.5.1 along with 2+ρk
2−ρk ≤ 3.

We notice that choosing (C(i))i such that ‖∇f(xi−1)‖C2
(i−1) tends to 0 with i makes the per-

turbation terms 3 η
L2 ‖∇f(xi−1)‖k2C2

(i−1) in the convergence rate of Proposition 2.5.1 vanish with
iterations. In addition, when the sequence (C(i))i is unbounded above, there exists a rank i0 such
that ρ̃bo(C(i)) = ρ∗ ∀i ≥ i0. Satisfying these two properties simultaneously would guarantee that

ρ̂i
(
C(i−1)

)
−→
i→+∞

ρ∗ (with ρ̂i defined in (2.17)). We propose such an adaptive choice of (C(i))i in the

next corollary.

Corollary 2.5.4. Under the conditions and notations of Proposition 2.5.2, with (C(i))i satisfying

C(i) = i
(

L
‖∇f(xi)‖

)δ
for i ∈ N, (Adapt-Ctr)

with 0 < δ < 1
2 , we have that

ρ̂N (C(N−1)) −→
N→+∞

ρ∗,

meaning that asymptotically we reach the convergence rate of unconstrained Anderson acceleration on
quadratics.

Proof. With this choice of C(i) we have

ρ̂i(C(i−1)) = min
(
ρk, ρ̃bo(C(i−1)) + 3 η

L2(1−δ) ‖∇f(xi−1)‖1−2δk2
)
.

We have ‖∇f(xi−1)‖ that goes to 0 when i grows, which implies that C(i−1) tends to +∞ and thus
ρ̃bo((C(i−1))) = ρ∗ for i large enough. The choice 0 < δ < 1

2 finally leads to the desired conclusion.

The next section is dedicated to numerical testing of Algorithm 2.5.2 with the choice of constraints
parameters (Adapt-Ctr).

40

2.5.3 Numerical experiments

For solving (2.5), we consider the following reformulation

min
1T c=1
‖c‖1≤C

1
2‖Rc‖

2, (2.18)

which we solve using a Frank-Wolfe method [Frank and Wolfe, 1956, Jaggi, 2013]. Indeed, as the
constraint set is the convex hull of the set of points {C+1

2 ei+ 1−C
2 ej , i, j = 1, . . . , k+ 1, i 6= j} where

ei is the unit vector of Rk+1 with a one at the i-th position and zeros elsewhere. Frank-Wolfe methods
have the advantage to offer simple access to an upper bound of the primal gap which is the stopping
criterion we are interested in (see Corollary 2.3.3).

Figure 2.5 contains experiments performed on `2 regularized logisitc regression. Blue curves cor-
respond to gradient descent with step size 1

L where L is the Lipschitz constant of the objective function.
Red curves are obtained with Algorithm 2.5.2 using Ci = +∞ (i.e. Anderson acceleration) and in that
case (2.5) only involves solving a linear system. Finally, green curves correspond to Algorithm 2.5.2
using constraint parameters (Adapt-Ctr) with δ = 0.49 (CAA).

Using an unconstrained or unregularized version of Anderson acceleration is often the best practical
choice, although it is not generically guaranteed to even converge in all situations beyond quadratic
minimization. We observe on Figure 2.5 that our constrained version (CAA) which provably guarantees
acceleration exhibits similar good practical performances.

Code The implementation of CAA that we used for numerical experiments of Section 2.5.3 is avail-
able at

https://github.com/mathbarre/ConstrainedAndersonAcceleration

Conclusion

In this chapter, we proposed upper bounds on the optimal value of a constrained Chebyshev problem,
and used them to produce explicit, dimension independent, local convergence bounds on constrained
Anderson acceleration applied to nonlinear operators with a particular emphasis on gradient step oper-
ators. In this setting, we proposed a guarded method with an adaptive choice of constraint parameter.
Our convergence bounds are somewhat conservative as they rely on treating the nonlinear part of the
operator as a perturbation of the linear setting. Some open questions remain. Can we remove the sym-
metry requirements in Assumptions 2.2.1 and 2.2.2 and still use a constrained Chebyshev arguments?
Can we prove better convergence bounds on Anderson acceleration without decoupling linear and non-
linear parts of the operator? This last part would however require very different proof techniques.

41

https://github.com/mathbarre/ConstrainedAndersonAcceleration

0.4 0.8 1.2 1.6

·106

10−2

100

102

104

iterations

‖∇
f

(x
k
)‖

0.5 1 1.5

·104

10−2

100

102

104

time (s)

GD
AA
CAA

0.2 0.4 0.6 0.8

·106

10−3

10−1

101

iterations

‖∇
f

(x
k
)‖

0.5 1 1.5

·104

10−3

10−1

101

time (s)

Figure 2.5: Comparison of Gradient descent (GD), vanilla Anderson acceleration (AA) and constrained
Anderson acceleration with adaptive constraints parameters (CAA) on Logistic regression with `2 reg-
ularization fixed to 10−8L where L is the Lipschitz constant of the logisitc regression. Top: Madelon
dataset. Bottom: RCV1 dataset. Datasets are taken from the LIBSVM library [Chang and Lin, 2011].

42

Chapter 3

Problem Classes, Interpolation Theorems
and Performance Estimation Problems

The purpose of this chapter is to introduce problems and notions that will be frequently mentioned and
used in the last three chapters of this manuscript. We start by a short description of several standard
functional classes used in the optimization literature. These classes are typically describe by sets of
inequalities and we are particularly interested in their interpolation properties. These properties aim
at characterizing functions in a particular class that interpolate a finite number of points using a finite
number of inequalities. Then, we describe the Performance Estimation Problem (PEP) framework
initiated by Drori and Teboulle [2014] and further developed by Taylor et al. [2017c] for analyzing
optimization methods in a principled way.

Codes Matlab scripts and Mathematica notebooks can be found at

https://github.com/mathbarre/Chapter3_manuscript,

to help the reader reproducing the examples and proofs of Section 3.2.

3.1 Functional classes and interpolation theorems

In this section, we review some classical class of problems on which first-order optimization algorithm
are typically applied. Together with their definitions we detail some interpolation (or extension) results
on these classes that will be used many times in this manuscript. We refer to classical textbooks on
convex analysis as Rockafellar [1996], Hiriart-Urruty and Lemaréchal [2013] for more details on the
functional classes and to Taylor [2017, Section 3] for more developments on interpolation.

3.1.1 Closed convex proper functions

We start be the definition of closed, convex and proper functions which constitute a class of particular
interest in optimization.

43

https://github.com/mathbarre/Chapter3_manuscript

Definition 3.1.1 (Closed convex proper functions). Let d ∈ N∗, we denote by F0,∞(Rd) the set of
closed convex proper functions on Rd defined as

F0,∞(Rd) =

f : Rd → R ∪ {+∞} such that
∀α ∈ R, {x ∈ dom f, f(x) ≤ α} is a closed set, (closed)
∀x, y,Rd, ∀t ∈ [0, 1], f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), (convex)
dom f 6= ∅ (proper)

 ,
where dom f = {x ∈ Rd, f(x) < +∞}.

When minimizing such functions, one can characterize their optimal points using a “first-order”
optimality condition relying the notions of subdifferentials.

Definition 3.1.2 (Subdifferentials). Let d ∈ N∗, f : Rd → R ∪ {+∞} and x ∈ dom f , the subdiffer-
ential of f at x is defined as

∂f(x) = {g ∈ Rd, ∀y ∈ Rd f(y) ≥ f(x) + 〈g, x− y〉}.

When they exist, subdifferentials define affine lower bounds on the considered function. The fol-
lowing theorem guarantees that closed convex proper functions admit subdifferential at each point in
their domain.

Theorem 3.1.3. Let d ∈ N∗ and f : Rd → R ∪ {+∞}, the following equivalence holds

f is proper and convex =⇒ ∀x ∈ ri(dom f), ∂f(x) 6= ∅.

Proof. See e.g. Rockafellar [1996, Theorem 23.4].

The previous theorem connects convexity of f with the existence of affine lower bounds at all point
of dom f , and in particular we can derive the following optimality condition for a point x∗ ∈ dom f
to be a minimum of f .

Corollary 3.1.4. Let d ∈ N∗ and f ∈ F0,∞(Rd), the following equivalence holds

x∗ ∈ argmin
x∈Rd

f(x) ⇐⇒ 0 ∈ ∂f(x∗).

Proof. Both sides can be reformulated as f(x∗) ≤ f(x), ∀x ∈ Rd.

Together with this class of function, we present some convex interpolation results that sre crucial
tools in the study of worst-case analysis methodology detailed in the second part of this chapter. The
interpolation problem can be stated as follow: given a finite index set I and a finite set of triplets
S = {(xi, gi, fi)}i∈I ⊂ Rd×Rd×R, does there exist a function f ∈ F0,∞(Rd) such that gi ∈ ∂f(xi)
and fi = f(xi) for all i ∈ I ? The following theorem provide necessary and sufficient condition
for such a function to exist. We give a proof of this theorem as it show how to construct such an
interpolating function.

Theorem 3.1.5 (Theorem 1 of Taylor et al. [2017c]). Let d ∈ N∗, I be a finite index set and S =
{(xi, gi, fi)}i∈I ⊂ Rd × Rd × R. The following equivalence holds

∃f ∈ F0,∞(Rd) such that gi ∈ ∂f(xi) and fi = f(xi) for all i ∈ I, (3.1)

if and only if
fj ≥ fi + 〈gi, xj − xi〉, for all (xi, gi, fi), (xj , gj , fj) ∈ S. (3.2)

44

x1 x2 x3

f1

f2

f3

g1

g2

g3

x1 x2 x3

f1

f2

f3

g1

g2

g3

f(x)

Figure 3.1: On the left hand side, interpolation conditions (3.2) are not satisfied as f2 < f1 + 〈g1, x2−
x1〉, therefore we can note construct a convex interpolation function as it should stay above all the
dashed curves and still be equal to f2 in x2. On the right hand side, conditions (3.2) are satisfied and
we can construct a convex interpolation function f .

Proof. (=⇒) follows from Definition 3.1.2 on subdifferentials.
For (⇐=), we observe that the function

f(x) = max
(xi,gi,fi)∈S

fi + 〈gi, x− xi〉,

is in F0,∞(Rd), f(xi) = fi and gi ∈ ∂f(xi).

We illustrate this result on some 1-dimensional examples in Figure 3.1.

Strongly convex functions A standard restriction of the closed convex proper function class is con-
stituted by convex functions that stay convex when one subtracts a convex quadratic term from it. More
precisely, the class of µ-strongly convex functions is defined as follows.

Definition 3.1.6 (Strong convexity). Let d ∈ N∗ and µ ≥ 0, we denote by Fµ,∞(Rd) the set of closed
convex proper functions on Rd defined as

Fµ,∞(Rd) =
{
f : Rd → R ∪ {+∞} s.t. f(·)− µ

2‖·‖
2 ∈ F0,∞(Rd)

}
.

From this definition, one can directly extend the results of Theorem 3.1.5 to provide interpolation
result on strongly convex functions.

Theorem 3.1.7 (Strongly convex interpolation). Let d ∈ N∗, µ ≥ 0, I be a finite index set and
S = {(xi, gi, fi)}i∈I ⊂ Rd × Rd × R. The following equivalence holds

∃f ∈ Fµ,∞(Rd) such that gi ∈ ∂f(xi) and fi = f(xi) for all i ∈ I, (3.3)

if and only if

fj ≥ fi + 〈gi, xj − xi〉+ µ
2‖xi − xj‖

2, for all (xi, gi, fi), (xj , gj , fj) ∈ S. (3.4)

Proof. The result follows from Theorem 3.1.5 applied to Sµ = {(xi, gi−µxi, fi− µ
2‖xi‖

2)}i∈I which
guarantee the existence of f̃ ∈ F0,∞(Rd) such that gi − µxi ∈ ∂f̃(xi) and fi − µ

2‖xi‖
2 = f̃(xi), and

therefore f(·) = f̃(·) + µ
2‖·‖

2 ∈ Fµ,∞(Rd) suits.

45

3.1.2 Smooth and convex functions

When the closed convex and proper objective function to be minimized is differentiable, the subdiffer-
ential sets are singletons (i.e., ∂f(x) = {∇f(x)}) and a standard assumptions to ensure convergence
of many first-order methods (e.g., gradient descent with fixed step size) is to require the gradient to be
Lipschitz (Lipschitzness of the gradient is also referred as smoothness). We define the class of closed
convex and proper functions with Lipschitz subgradient mapping as follows.

Definition 3.1.8 (Smoothness and convexity). Let d ∈ N∗ and L ≥ 0, we denote by F0,L(Rd) the set
of functions on Rd defined as

F0,L(Rd) =
{
f ∈ F0,∞(Rd) s.t.∀x, y ∈ dom f and ∀sf (x), sf (y) ∈ ∂f(x), ∂f(y),
1
L‖sf (x)− sf (y)‖ ≤ ‖x− y‖

}
.

Note that this definition does not directly use the gradient of f and is therefore valid when L =∞.
In the following lemmas, we see that for L < +∞ we recover the class of convex function with L-
Lipschtiz gradient. First let us prove that elements f ∈ F0,L(Rd) necessarily satisfy dom f = Rd
when L is finite.

Lemma 3.1.9. Let d ∈ N∗, 0 ≤ L < +∞ and f ∈ F0,L(Rd), it holds that

dom f = Rd.

Proof. First, let us notice several useful facts. It follows from Definition 3.1.8 and Theorem 3.1.3 that
elements of ri(dom f) have unique subgradients and that the application x → sf (x) is L-Lipschitz,
and therefore continuous.

In addition, let x, y ∈ ri(dom f), Definition 3.1.2 allows writing for sf (y) ∈ ∂f(y)

f(y) + 〈sf (y), x− y〉 ≤ f(x),

which implies that

f(y) + 〈sf (y)− sf (x), x− y〉 ≤ f(x) + 〈sf (x), y − x〉,

with sf (x) ∈ ∂f(x). Using the smoothness Definition 3.1.8 and Cauchy-Schwarz inequality we obtain

f(y) ≤ f(x) + 〈sf (x), y − x〉+ L‖x− y‖2. (3.5)

Now, assume that dom f 6= Rd. This implies that ri(dom f) 6= Rd and in particular ∂(ri(dom f))
is not empty. We denote by x∂ an elements of this boundary.

There exists a sequence (xk)k of elements of ri(dom f) such that xk → x∂ . Note that (3.5) implies
that (f(xk))k is bounded (as xk is a converging sequence) and Definition 3.1.8 implies that (sf (xk))k
is also bounded. Therefore, one can find an extraction φ, a vector g∂ ∈ Rd and a real f∂ ∈ R such that
f(xφ(k))→ f∂ and sf (xφ(k))→ g∂ . By convexity, Theorem 3.1.3 allows writing for all x ∈ dom f ,

f(xφ(k)) + 〈sf (xφ(k)), x− xφ(k)〉 ≤ f(x),

and by taking the limit in k, we get

f∂ + 〈g∂ , x− x∂〉 ≤ f(x),

46

and using the lower semicontinuity of closed convex proper function [Rockafellar, 1996, Theorem 7.1]
gives f(x∂) ≤ f∂ which leads to

f(x∂) + 〈g∂ , x− x∂〉 ≤ f(x),

for all x ∈ dom f . Finally, g∂ ∈ ∂f(x∂) and using the supporting hyperplane theorem on ri(dom f)
at x∂ provides a nonzero direction v ∈ Rd such that

〈v, x− x∂〉 ≤ 0 for all x ∈ ri(dom f),

and this is also true for all x ∈ dom f (as the adherence of ri(dom f) contains dom f). This implies
that g∂ + λv are subgradients for all λ ≥ 0, and is in contradiction with the unicity of the subgradients
induced by Definition 3.1.8. Therefore, ∂(ri(dom f)) has to be empty, and ri(dom f) = Rd.

Differentiability of the function f ∈ F0,L(Rd) when L < +∞ is ensured by the following lemma.

Lemma 3.1.10. Let d ∈ N∗, 0 ≤ L < +∞ and f ∈ F0,L(Rd), then f is continuously differentiable
and its gradient satisfies

∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Proof. First note that using Lemma 3.1.9, it holds that dom f = Rd. We start by showing that ∂f(x)
is reduced to a singleton for all x ∈ Rd. Indeed, choosing x = y in Definition 3.1.8 provides us the
desired conclusion, and we use the notation sf (x) to refer to the unique element of ∂f(x).

Then, we show that f is differentiable and that sf (x) corresponds to the gradient of f at x. For
v ∈ Rd with ‖v‖ = 1 and t > 0, Definition 3.1.2 allows obtaining the following inequality

f(x) + t〈sf (x), v〉 ≤ f(x+ tv) ≤ f(x) + t〈sf (x+ tv), v〉. (3.6)

From Lipschitzness in Definition 3.1.8, we have that

‖sf (x)− sf (x+ tv)‖ ≤ tL,

which shows that sf (x+ tv) →
t→0

sf (x), and implies together with (3.6) that

f(x+ tv)− f(x)
t

→
t→0
〈sf (x), v〉.

Therefore f is differentiable and∇f(x) = sf (x) which concludes the proof.

The next theorem lists some standard characterizations of convex function with Lipschitz gradient
(see e.g. Nesterov [2018, Theorem 2.1.5]) that will be used in the rest of the manuscript.

Theorem 3.1.11. Let d ∈ N∗, f ∈ F0,∞(Rd) and differentiable, the following properties are equivalent

(i) f ∈ F0,L(Rd),

(ii) ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,

(iii) ∀x, y ∈ Rd, f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2 ‖x− y‖

2,

47

(iv) ∀x, y ∈ Rd, 〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖2,

(v) ∀x, y ∈ Rd, f(x) + 〈∇f(x), y − x〉+ 1
2L‖∇f(x)−∇f(y)‖2 ≤ f(y),

(vi) ∀x, y ∈ Rd, 1
L‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉.

In order to provide simple proofs of interpolation theorems for smooth convex functions, let us
introduce the notion of Fenchel conjugate of a convex function [Rockafellar, 1996, §12].

Definition 3.1.12 (Convex Conjugate). Let d ∈ N∗ and f : Rd → R ∪ {−∞,+∞}. The Fenchel
conjugate of f is denoted f∗ and is defined as

∀x ∈ Rd, f∗(x) = sup
y∈Rd
〈x, y〉 − f(y).

In the following theorem we list important properties of the Fenchel conjugate of closed convex
and proper functions [Rockafellar, 1996, §12, §26] that we use in the sequel.

Theorem 3.1.13. Let d ∈ N∗ and f ∈ F0,∞(Rd), the following properties hold

(i) f∗ ∈ F0,∞(Rd),

(ii) (f∗)∗ = f ,

(iii) Let x ∈ dom f : g ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(g),

(iv) Let x ∈ dom f and g ∈ ∂f(x), then f∗(g) = 〈g, x〉 − f(x),

(v) Let L ≥ 0, f ∈ F0,L(Rd) ⇐⇒ f∗ ∈ F1/L,∞(Rd).

Theorem 3.1.13 (v) links the smoothness property to strong convexity using Fenchel conjugate.
This relation allows converting the interpolation results of Theorem 3.1.7 into interpolation results for
closed convex and proper functions with Lipschitz gradients.

Theorem 3.1.14 (Smooth and convex interpolation). Let d ∈ N∗, L ≥ 0, I be a finite index set and
S = {(xi, gi, fi)}i∈I ⊂ Rd × Rd × R. The following equivalence holds

∃f ∈ F0,L(Rd) such that gi ∈ ∂f(xi) and fi = f(xi) for all i ∈ I, (3.7)

if and only if

fj ≥ fi + 〈gi, xj − xi〉+ 1
2L‖gi − gj‖

2, for all (xi, gi, fi), (xj , gj , fj) ∈ S. (3.8)

Proof. Applying Theorem 3.1.7 with µ = 1
L to the set SL = {(gi, xi, 〈gi, xi〉 − fi)}i∈I leads to the

following equivalence

∃h ∈ F1/L,∞(Rd) such that xi ∈ ∂h(gi) and h(gi) = 〈gi, xi〉 − fi for all i ∈ I, (3.9)

if and only if

fi ≥ fj + 〈gj , xi − xj〉+ 1
2L‖gj − gi‖

2, for all (xi, gi, fi), (xj , gj , fj) ∈ S.

Finally, Theorem 3.1.13 allows writing

(3.9) ⇐⇒ ∃f ∈ F0,L(Rd) such that gi ∈ ∂f(xi) and f(xi) = fi for all i ∈ I,

using convex conjugate, and this concludes the proof.

We end this first section by studying the class of functions that are both smooth and strongly convex.

48

3.1.3 Smoothness and strong convexity

Another, class of functions that is often considered in convex optimization literature is the class of
closed convex proper functions that are strongly convex with Lipschitz gradients. This class contains
for instance quadratic functions with positive definite Hessians.

Definition 3.1.15 (Smoothness and strongly convexity). Let d ∈ N∗ and 0 ≤ µ ≤ L, we denote by
Fµ,L(Rd) the set of functions on Rd defined as

Fµ,L(Rd) = Fµ,∞(Rd) ∩ F0,L(Rd).

Note that for Fµ,L(Rd) to be nonempty, µ has to be smaller than L, indeed from Theorem 3.1.3
applied to f(·)− µ

2‖·‖
2 and from Definition 3.1.8, one can show that

µ‖x− y‖ ≤ ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

In order to get interpolation conditions for Fµ,L(Rd), we first need the following lemma.

Lemma 3.1.16 (Theorem 3 of Taylor et al. [2017c]). Let d ∈ N∗ and 0 ≤ µ ≤ L, the following
equivalence holds

f ∈ Fµ,L(Rd) ⇐⇒ f(·)− µ
2‖·‖

2 ∈ F0,L−µ(Rd).

Proof. The case L = +∞ is trivial, therefore we consider L < +∞. From Theorem 3.1.11 we have
that f(·)− µ

2‖·‖
2 ∈ F0,L−µ(Rd) is equivalent to

∀x, y ∈ Rd, 〈∇f(x)−∇f(y)− µ(x− y), x− y〉 ≤ (L− µ)‖x− y‖2,

which can be reformulated as

∀x, y ∈ Rd, 〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖2,

and which is equivalent to f ∈ F0,L(Rd) using once again Theorem 3.1.11.
In addition, f(·)− µ

2‖·‖
2 ∈ F0,L−µ(Rd) ⊂ F0,∞(Rd), therefore f ∈ Fµ,∞(Rd) by Definition 3.1.6

and we get the desired conclusion.

Lemma 3.1.16 allows using directly Theorem 3.1.14 and obtaining the following interpolation con-
ditions.

Theorem 3.1.17 (Theorem 4 of Taylor et al. [2017c]). Let d ∈ N∗, 0 ≤ µ ≤ L, I be a finite set of
indexes and S = {(xi, gi, fi)}i∈I ⊂ Rd × Rd × R. The following equivalence holds

∃f ∈ Fµ,L(Rd) such that gi ∈ ∂f(xi) and fi = f(xi) for all i ∈ I, (3.10)

if and only if

fj ≥ fi + 〈gi, xj − xi〉+ 1
2(L−µ)‖gi − gj − µ(xi − xj)‖2 + µ

2‖xi − xj‖
2,

for all (xi, gi, fi), (xj , gj , fj) ∈ S.
(3.11)

Proof. We obtain the desired result by using Lemma 3.1.16 and applying Theorem 3.1.14 to Sµ =
{(xi, gi − µxi, fi − µ

2‖xi‖
2)}i∈I with smoothness parameter L− µ.

Remark 3.1.18. In the last three chapter, Theorem 3.1.7 is often used under the form

fj ≥ fi + 〈gi, xj − xi〉+ 1
2L‖gi − gj‖

2 + µ

2
(
1−µL

)‖xi − xj − 1
L(gi − gj)‖2

for all (xi, gi, fi), (xj , gj , fj) ∈ S.

49

3.2 Introduction to performance estimation problems

In this section we present recent developments in worst-case analyses of optimization methods. The
Performance Estimation Problem (PEP) methodology consists in expressing worst-case guarantees of
an optimization algorithm as the result of another optimization problem which can be solved numeri-
cally using semidefinite programing. This idea, originate from Drori and Teboulle [2014] and has been
further developed by Taylor et al. [2017c]. We refer to Section 1.1.3 of Chapter 1 for a short literature
review. We start by presenting this framework in an abstract setting, and then develop it in the context
of gradient methods applied to smooth convex functions.

Let N ∈ N and R ∈ R∗, for all dimensions d, we define the following elements

• A sequence of functional spaces {Fd}d∈N∗ with Fd ⊂ F(Rd,R ∪ {−∞,+∞}),

• a sequence of optimization methods {Md}d∈N∗ with Md : F × Rd × N → Rd (i.e., given a
function f ∈ Fd, a starting point x0 ∈ Rd and a number of iteration k ∈ N, xk =Md(f, x0, k)
is the k-th iterate of the method),

• an objective criterion Φd,obj : Fd × (Rd)N+1 → R ∪ {−∞,+∞},

• an initial condition Φd,init : Fd × (Rd)N+1 → R ∪ {−∞,+∞}.

We are interested in finding a bound C(N,R) on the value (possibly +∞) of Φd,obj(f, {xk}k=0...N)
for all dimension d ∈ N∗, all input value x0 ∈ Rd , all function f ∈ Fd, such that xk =Md(f, x0, k)
for k = 1 . . . , N and such that Φd,init(f, {xk}k=0...N) ≤ R2. This can be expressed as the optimization
problem

C(N,R) = sup
d,f

x0∈Rd

Φd,obj(f, {xk}k=0...N)

s.t. f ∈ Fd,
R2 ≥ Φd,init(f, {xk}k=0...N),
xk =Md(f, x0, k) for k = 1 . . . , N.

(3.12)

Without additional assumptions, solving problem (3.12) appears out of reach. It involves variables
belonging to potentially infinite dimensional functional spaces and has many dependence in the dimen-
sion d. In the next section we impose some constraints on Φd,obj, Φd,init, and instantiate Fd andMd in
order to reformulate (3.12) as a tractable semidefinite program.

3.2.1 Performance estimation for gradient methods

For illustration purposes, we work with functional spaces Fd = Fµ,L(Rd) with 0 ≤ µ < L < +∞
defined in Definition 3.1.15 from this point on. In particular, we focus on analyzing worst-case per-
formance of fixed-step (i.e. iterates are obtained as predefined combinations of the gradients) gradient
methods, and other types of methods are analyzed in Chapters 4 to 6. These fixed-step methods corre-
spond to fix a sequence of parameters {γi,j}i,j∈N such that

∀d ∈ N∗, f ∈ Fµ,L(Rd), x0 ∈ dom f, k ∈ N,Md(f, x0, k) = x0 −
k−1∑
i=0

γk,i∇f(xi). (3.13)

In addition, we consider first-order methods that are not degenerate (i.e. use the last gradient available
at each iteration), that is

γk,k−1 6= 0, for k ≥ 1. (3.14)

50

We also assume Φd,obj (objective criterion) and Φd,init (initial condition) to be Gram-representable
(or SDP representable) in the sense of the following definition.

Definition 3.2.1 (Gram-representability). Let d ∈ N∗, N ∈ N, we say that Φd,obj and Φd,init are
Gram-representable, if for f ∈ Fµ,L(Rd) and a sequence {xk}k=0,...,N , it holds that

Φd,obj(f, {xk}k=0,...,N) and Φd,init(f, {xk}k=0...N) are linear combinations of f(x∗), f(x0), . . . ,
f(xN) and of 〈x, y〉 for x, y ∈ {xk}k∈{∗,0,...,N} ∪ {∇f(xk)}k∈{∗,0,...,N}, where x∗ ∈ argminx f(x).
In addition, the linear combinations are independent of the dimension d.

With these choices of functional spaces, methods, objective criteria and initial conditions, the opti-
mization problem (3.12) can be reformulated as

C(N,R) = sup
d,f

x0∈Rd

Φd,obj(S)

s.t. f ∈ Fµ,L(Rd),
S = {(xk,∇f(xk), f(xk))}k∈{∗,0,...,N},
∇f(x∗) = 0,
R2 ≥ Φd,init(S),

xk = x0 −
k−1∑
i=0

γk,i∇f(xi) for k = 1 . . . , N,

(3.15)

where we use the notations Φd,obj(S) and Φd,init(S), as Definition 3.2.1 implies that these functions
only depend on elements of S. We can observe that, apart from the functional constraint f ∈ Fµ,L(Rd),
objective and constraints only depend on elements of the finite set S. We can slightly reformulate (3.15)
as

C(N,R) = sup
d, S

Φd,obj(S)

s.t. S = {(xk, gk, fk)}k∈{∗,0,...,N},
∃f ∈ Fµ,L(Rd), gk = ∇f(xk) and fk = f(xk) for k ∈ {∗, 0, . . . , N},
g∗ = 0,
R2 ≥ Φd,init(S),

xk = x0 −
k−1∑
i=0

γk,igi for k = 1 . . . , N,

(3.16)

and observe that we can use interpolation results from Theorem 3.1.17 to replace the existence condition
of f by a finite set of inequalities on the elements of S.

51

This leads us to

C(N,R) = sup
d, S

Φd,obj(S)

s.t. S = {(xk, gk, fk)}k∈{∗,0,...,N},
fj ≥ fi + 〈gi, xj − xi〉+ 1

2(L−µ)‖gi − gj − µ(xi − xj)‖2

+ µ
2‖xi − xj‖

2 for i, j ∈ {∗, 0, . . . , N},
g∗ = 0,
R2 ≥ Φd,init(S),

xk = x0 −
k−1∑
i=0

γk,igi for k = 1 . . . , N,

(3.17)

which has finite dimension. The maximization over the dimension d remains a problem as it seems
difficult to perform, however we can use the Gram-representability assumption (see Definition 3.2.1)
to write (3.17) as a linear semidefinite program as detailed in the next section.

Semidefinite reformulation Given S = {(xk, gk, fk)}k∈{∗,0,...,N} ⊂ Rd × Rd × R, we define the
vector of function values

F = [f∗, f0, . . . , fN] ∈ R1×N+2,

and the Gram-matrix
G = XTX ∈ S+

N+3, (3.18)

with
X = [x∗, x0, g0, . . . , gN] ∈ Rd×N+3.

We set Definition 3.2.1 down in order to be able writing Φd,obj and Φd,init in terms of F and G. In
particular, there exist Aobj, Ainit ∈ RN+3×N+3 and aobj, ainit ∈ RN+2 such that for all d ∈ N∗

Φd,obj(S) = Tr(AobjG) + Faobj,

and
Φd,init(S) = Tr(AinitG) + Fainit.

In order to express (3.17) in terms of variables F and G, we introduce the convenient notations
{xk}k∈{∗,0,...,N}, {gk}k∈{∗,0,...,N} and {fk}k∈{∗,0,...,N} allowing to select the right entries in F and G
as

xk = Xxk, gk = Xgk
fk = F fk, for k ∈ {∗, 0, . . . , N}.

To do so, we set

g∗ = 0, f∗ = u1, x∗ = e1, x0 = e2,

fk = uk+2, gk = ek+3, for k = 0, . . . , N,

where {ek}k=1,...,N+3 is the cartesian basis of RN+3 and {uk}k=1,...,N+2 that of RN+2. The remaining
xk are defined as

xk = x0 −
k−1∑
i=0

γk,igi, for k = 1, . . . , N.

52

Finally, this allows expressing (3.17) as the following linear semidefinite problem

C(N,R) = sup
F∈R1×N+2

G∈S+
N+3

Tr(AobjG) + Faobj

s.t. F fj ≥ F fi + gTi G(xj − xi)
+ 1

2(L−µ)(gi − gj − µ(xi − xj))TG(gi − gj − µ(xi − xj))

+ µ
2 (xi − xj)TG(xi − xj), for i, j ∈ {∗, 0, . . . , N},

R2 ≥ Tr(AinitG) + Fainit.

(3.19)

This problem can be solved efficiently using semidefinite solvers (e.g., Mosek [Mosek, 2010],
SDPT3 [Toh et al., 2012] or Sedumi [Sturm, 1999]).

Remark 3.2.2. We can show using a simple homogeneity argument inside (3.19) that

C(N,R) = C(N, 1)R2,

and therefore, we can set R = 1 without loss of generality.

Remark 3.2.3. In many situations, PEPs admit the ratio Φd,obj(S)
/
Φd,init(S) as objective, without

the constraint Φd,init(S) ≤ R2. Note that this can be reformulated equivalently as (3.19) with R = 1
using again homogeneity arguments. This is not true in Chapter 5, as we consider objective criteria
and initial conditions with additional constant terms, breaking the homogeneity argument.

Example: Gradient descent with constant step size We illustrate the previous developments on one
of the most celebrated (and simple) optimization method which is the gradient descent with constant
step size. Given a function f ∈ F0,L(Rd) (µ = 0), a starting point x0 ∈ Rd and a step size λ ≥ 0
gradient descent updates are expressed as

xk+1 = xk − λ∇f(xk), for k ≥ 0.

This method can be formulated as (3.13) by setting the coefficients γi,j all equal to λ. We study
the worst-case guarantees of the objective criterion Φd,obj(f, {xk}k=0,...,N) = f(xN) − f(x∗) with
x∗ ∈ argminx f(x) and with initial condition Φd,init(f, {xk}k=0,...,N) = ‖x0 − x∗‖2 (see e.g. Ab-
baszadehpeivasti et al. [2021] for worst-case guarantees on gradient descent in a different setting).
Note that these quantities satisfy Definition 3.2.1. Numerical computations of the bound C(N, 1) on
f(xN) − f(x∗) with initial condition ‖x0 − x∗‖2 ≤ 1 are represented in Figure 3.2 (see §Codes for a
matlab script reproducing this figure).

Feasible points to (3.19) provide lower bounds on C(N,R) (i.e. lower bounds on the worst-
behavior of a method). In order to obtain upper bounds, it is natural to study dual problems associated
to (3.19). Before studying a dual formulation, let us show that Slater condition (see e.g., Boyd and
Vandenberghe [2004, Section 5.2.3]) holds for (3.19), which imply zero duality gap (i.e. the largest
lower bound is the same as the smallest upper bound).

Slater condition We start by observing that all the constraints in (3.19) are affine and therefore, Slater
condition simply corresponds to find elements G ∈ S+

N+3 and F ∈ R1×N+2 such that

G � 0,

53

0 10 20 30 40

10−2

10−1

100

Iterations N

C
(N
,1

)

0 10 20 30 40

10−2

10−1

100

Iterations N

λ = 0
λ = 0.4/L
λ = 0.8/L
λ = 1/L
λ = 1.4/L
λ = 1.8/L
ρ(N,λ, L)

Figure 3.2: Numerical worst-case guarantees on f(xN)−f(x∗) with initial condition ‖x0 − x∗‖2 ≤ 1,
as function of N (obtained by solving semidefinite programs (3.19)) with L = 1 and R = 1. The
semidefinite programs were solved through Löfberg [2004] and Mosek [2010]. The dashed black
curves corresponds to the conjectured upper bound ρ(N,λ, L) = L

2 max
(
(1− Lλ)2N , 1

2NLλ+1

)
from

Drori and Teboulle [2014, Conjuecture 3.1].

F fj ≥F fi + gTi G(xj − xi) + 1
2(L−µ)(gi − gj − µ(xi − xj))TG(gi − gj − µ(xi − xj))

+ µ
2 (xi − xj)TG(xi − xj), for i, j ∈ {∗, 0, . . . , N},

(3.20)

and
R2 ≥ Tr(AinitG) + Fainit. (3.21)

The two first constraints can be satisfied by finding some integer d > 0, a starting point x0 ∈ Rd and a
function f ∈ Fµ,L(Rd) such that the Gram matrix G defined as in (3.18) has full rank. After that, one
can satisfy easily the last constraint using an homogeneity argument.

We denote by f , the quadratic function define as

f(x) = 1
2(x− x∗)T [H + µI] (x− x∗),

where x∗ = eN+3 ({ek}k=1,...,N+3 is the cartesian basis of RN+3) and A ∈ SN+3 is the symmetric
tridiagonal matrix

H = L−µ
2 cos(π

N+4)

cos(π

N+4) 1/2 0 0
1/2 cos(π

N+4) 1/2 0 0
0 1/2 cos(π

N+4) 1/2 0 . . . 0
...

.
...

 .
From e.g. Bernstein [2009, Fact 5.11.43] we obtain that H satisfies Sp(H) = {λk}k=1,...,N+3 with

λk = L−µ
2 cos(π

N+4)
(cos(kπ

N+4) + cos(π
N+4)), for k = 1, . . . , N + 4.

In particular, we observe that L− µ = λ1 ≥ λ2 ≥ . . . ≥ λN+3 = 0, and therefore f ∈ Fµ,L(RN+3).
Finally, we chose x0 = e1 + eN+3 and set the iterates {xk}k=1,...,N as

xk = x0 −
k−1∑
i=0

γk,i∇f(xi), for k = 1, . . . , N,

54

where {γi,j}i,j is a predetermined sequence of parameters with γk,k−1 6= 0 for k = 1, . . . , N .
Starting from the observation that∇f(x0) = [H + µI] (x0−x∗) ∈ span[e1, e2]\span[e1], we can

show recursively using the tridiagonal form of [H + µI] as well as γk,k−1 6= 0 for k = 1, . . . , N , that

∇f(xk) ∈ span[e1, . . . , ek+2]\span[e1, . . . , ek+1], for k = 0, . . . , N.

This implies that the matrix

X = [x∗, x0,∇f(x0), . . . ,∇f(xN)] ∈ RN+3×N+3,

is full rank and therefore,
G � 0.

In addition, Theorem 3.1.14 ensures that (3.20) is satisfied. If (3.21) is not satisfied, it is sufficient to
divide F and G by Tr(AinitG) + Fainit > R2 > 0.

Hence, Slater condition holds for nondegenerate fixed-step gradient methods on the class of smooth
closed strongly convex and proper functions, and therefore strong duality holds for (3.19).

3.2.2 Dual formulation

We denote by ν = {νi,j}i,j∈{∗,0,...,N} the nonnegative Lagrange multipliers associated with the convex
interpolation inequalities and τ that associated with the initial condition. We define respectively G̃(ν) ∈
RN+3×N+3 and F̃ (ν) ∈ RN+2 such that

G̃(ν) =
∑

i,j∈{∗,0,...,N}
νi,j
[
(xj − xi)gTi + µ

2 (xi − xj)(xi − xj)T

+ 1
2(L−µ)(gi − gj − µ(xi − xj))(gi − gj − µ(xi − xj))T

]
,

(3.22)

and
F̃ (ν) =

∑
i,j∈{∗,0,...,N}

νi,j(fi − fj). (3.23)

The Lagrangian associated with (3.19) is defined as

L(G,F, ν, τ) = F
[
aobj − τainit − F̃ (ν)

]
+ Tr

([
Aobj − τAinit − G̃(ν)

]
G
)

+ τR2, (3.24)

and the corresponding dual function is

sup
G<0,F

L(G,F, ν, τ) =

τR2 if aobj − τainit − F̃ (ν) = 0 and

Aobj − τAinit − G̃(ν) +
(
Aobj − τAinit − G̃(ν)

)T
4 0

+∞ otherwise,

(3.25)

leading to the dual problem

inf
ν≥0
τ≥0

τR2

s.t. aobj − τainit − F̃ (ν) = 0,

Aobj − τAinit − G̃(ν) +
(
Aobj − τAinit − G̃(ν)

)T
4 0,

(3.26)

55

which is also a linear semidefinite program.
We have seen previously in Section 3.2.1 that strong duality holds. Therefore, given a nonde-

generate first-order method M (as in 3.13), Gram-representable objective criterion Φd,obj and initial
condition Φd,init, we obtain that C(N,R) the smallest quantity such that

∀d ∈ N∗, ∀f ∈ Fµ,L(Rd), ∀x0 ∈ Rd, s.t. Φd,init(f, {xk}k=0,...,N) ≤ R2

Φd,obj(f, {xk}k=0,...,N) ≤ C(N,R),
(3.27)

with
xk =M(f, x0, k), for k = 1, . . . , N,

is equal to τ∗R2 with (τ∗, ν∗) an optimal solution to the dual problem (3.26). Hence, we recover the
result of Remark 3.2.2, stating that C(N,R) is 1-homogeneous in R2.

Moreover, accessing dual feasible pairs (ν, τ) allows writing proofs of worst-case bounds using
weighted combinations of inequalities. Indeed, let (ν, τ) be a feasible dual pair, then for all G < 0 and
F , we can write

0 ≥ F
[
aobj − τainit − F̃ (ν)

]
+ Tr

([
Aobj − τAinit − G̃(ν)

]
G
)
.

Using functional notations with f , it transcribes as ∀d ∈ N∗, ∀f ∈ Fµ,L(Rd)

0 ≥Φd,obj(f, {xk}k=0,...,N)− τΦd,init(f, {xk}k=0,...,N)
−

∑
i,j∈{∗,0,...,N}

νi,j
[
f(xi)− f(xj) + 〈∇f(xi), xj − xi〉+ µ

2‖xi − xj‖
2

+ 1
2(L−µ)‖∇f(xi)−∇f(xj)− µ(xi − xj)‖2

]
≥Φd,obj(f, {xk}k=0,...,N)− τΦd,init(f, {xk}k=0,...,N),

where the last inequality comes from the fact that the νi,j are nonnegative and the terms that multiply it
are nonpositive using e.g. Theorem 3.1.17. Many proofs of worst-case guarantees in different chapters
of this manuscript were obtained following the similar procedures, that is

(i) intuit analytical expressions for τ and ν. This step is often an “educated guess” as we infer these
expressions using numerical solutions to (3.26) with different values of N , µ and L, together
with a computer algebra system.

(ii) Compute

Φd,obj(f, {xk}k=0,...,N)− τΦd,init(f, {xk}k=0,...,N)
−

∑
i,j∈{∗,0,...,N}

νi,j
[
f(xi)− f(xj) + 〈∇f(xi), xj − xi〉+ µ

2‖xi − xj‖
2

+ 1
2(L−µ)‖∇f(xi)−∇f(xj)− µ(xi − xj)‖2

]

and show that it is nonpositive (in particular that it can be written as a nonpositive sum of squared
euclidean norms).

(iii) Conclude that
Φd,obj(f, {xk}k=0,...,N) ≤ τΦd,init(f, {xk}k=0,...,N),

for all d ∈ N∗, all functions in the considered functional class (Fµ,L(Rd) in that case) and all
initial point x0 ∈ Rd.

56

If we obtain in step (i), τ = τ∗ = C(N, 1) an optimal dual point, we can conclude in step (iii) that

Φd,obj(f, {xk}k=0,...,N) ≤ C(N, 1)Φd,init(f, {xk}k=0,...,N),

and there exists a dimension d and function f ∈ Fµ,L(Rd) such that

Φd,obj(f, {xk}k=0,...,N) = C(N, 1)Φd,init(f, {xk}k=0,...,N).

Remark 3.2.4. One could use other inequalities satisfied by elements of Fµ,L(Rd), for instance we
could replace some of the interpolation inequalities by the (perhaps more standard) inequalities

fj ≤ fi + 〈gi, xj − xi〉+ L
2 ‖xi − xj‖

2

and/or

fj ≥ fi + 〈gi, xj − xi〉+ µ
2‖xi − xj‖

2,

for some i, j ∈ {∗, 0, . . . , N}. This would only produce an upper bound on C(N,R) but could induce
simpler analytical expressions for the dual variables as well as simpler proofs.

3.2.3 Performance estimation with Lyapunov functions

We end this introductory chapter on performance estimation by presenting useful techniques that allow
using and designing Lyapunov functions (i.e., objective criterion and initial condition) in the perfor-
mance estimation framework. These techniques or related ones have been used to obtain some results
of Chapters 4 to 6.

Originating from the study of dynamical systems, Lyapunov’s theory [Lyapunov and Fuller, 1992]
aims at finding a sequence of functions (called potential functions or Lyapunov functions) that are
conserved or dissipated (i.e decreasing) with time. Using conservation or dissipation together with
the form of the potentials can be used to provide convergence guarantees for the system toward some
stationary state. This approach has been applied for optimization algorithms with e.g. Nesterov [1983],
Bansal and Gupta [2019], Wilson [2018], Wilson et al. [2021] and incorporated in PEPs by Taylor and
Bach [2019], Taylor et al. [2018b].

In this section, we look at gradient methods that exhibit some recursive formulation, that is methods
satisfying (3.13) and for some m ∈ N∗, x0 ∈ Rd,{

xk = x0 −
∑k−1
i=0 γk,i∇f(xi), for k = 1, . . . ,m− 1

xk+m =
∑m−1
i=0 [αk+m,ixk+i − γk+m,i∇f(xk+i)] , for k ≥ 0 (3.28)

with
∑m−1
i=0 αk+m,i = 1 (in order for x∗ satisfying∇f(x∗) = 0 to be a stationary point of the method),

and ak+m,m−1 6= 0 (i.e., nondegenerate methods).
Finding potentials functions for a given method corresponds to obtain a sequence of functions

{Φk}k∈N satisfying

ΦN+1(f, {xk}k=N+1,...,N+m) ≤ ΦN (f, {xk}k=N,...,N+m−1), (3.29)

for all d ∈ N∗, all f ∈ Fµ,L(Rd), and all N ∈ N. This allows nesting these inequalities together and
producing the following bound after N iterations

ΦN (f, {xk}k=N,...,N+m−1) ≤ Φ0(f, {xk}k=0,...,m−1), (3.30)

57

for all d ∈ N∗, all f ∈ Fµ,L(Rd), and all N ∈ N.
When the potential functions are Gram-representable (see Definition 3.2.1), we can use the perfor-

mance estimation methodology to check whether (3.29) is satisfied. Indeed, this corresponds to verify
that

0 ≥ sup
d, S

ΦN+1(S)− ΦN (S)

s.t. S = {(xk, gk, fk)}k∈{∗,N,...,N+m},

fj ≥ fi + 〈gi, xj − xi〉+ 1
2(L−µ)‖gi − gj − µ(xi − xj)‖2

+ µ
2‖xi − xj‖

2 for i, j ∈ {∗, N, . . . , N +m},
g∗ = 0,

xN+m =
m−1∑
i=0

[αN+m,ixN+i − γN+m,i∇f(xN+i)] ,

(3.31)

for all N ≥ 0.

Remark 3.2.5. We see that (3.31) does not take into account how iterates xN , . . . , xN+m−1 were
obtained. This makes the worst-case guarantees obtained using this potential based formulation more
conservative than the ones presented in the previous section, but often leads to simpler analyses.

We can proceed as in Section 3.2.1 and write (3.31) as

0 ≥ sup
F∈Rm+2

G∈S+
2m+2

Tr([AN+1 −AN]G) + F [aN+1 − aN]

s.t. F fj ≥ F fi + gTi G(xj − xi)
+ 1

2(L−µ)(gi − gj − µ(xi − xj))TG(gi − gj − µ(xi − xj))

+ µ
2 (xi − xj)TG(xi − xj), for i, j ∈ {∗, N, . . . , N +m},

(3.32)

where

x∗ = e1, g∗ = 0, f∗ = u1,

xk = ek−N+2 for k = N, . . . , N +m− 1, gk = em+k−N+2 for k = N, . . . , N +m,

xN+m =
m−1∑
i=0

[αN+m,ixN+i − γN+m,igN+i]

fk = uk−N+2 for k = N, . . . , N +m,

and the potentials satisfy

Φk(S) = Φk(F,G) = Tr(AkG) + Fak, for k ≥ 0.

Using similar duality arguments as in Section 3.2.2, we can show that verifying (3.32) amounts to
solve the feasibility problem

Find {νi,j}i,j∈{∗,N,...,N+m}

s.t. ν ≥ 0
aN+1 − aN − F̃ (ν) = 0,

AN+1 − aN − G̃(ν) +
(
AN+1 −AN − G̃(ν)

)T
4 0,

(3.33)

58

with
F̃ (ν) =

∑
i,j∈{∗,N,...,N+m}

νi,j [fi − fj] ,

and

G̃(ν) =
∑

i,j∈{∗,N,...,N+m}
νi,j

[
(xj − xi)gTi + µ

2 (xi − xj) (xi − xj)T

+ 1
2(L−µ)(gi − gj − µ (xi − xj))(gi − gj − µ (xi − xj))T

]
.

.

Therefore, if (3.33) is feasible, (3.29) holds as well as (3.30).
In the following, we illustrate how introducing some degrees of freedom in the parameters Ak’s

and ak’s (i.e. in the potential functions) allows obtaining simple convergence arguments for two opti-
mization methods.

Example: Nesterov method with constant momentum In this part, we study the standard Nesterov
method with constant momentum [Nesterov, 2018, Algorithm 2.2.22] and design a potential function
to show linear convergence of the algorithm with the accelerated rate ρ =

(
1−

√
µ/L

)
. Potential

based proof of many accelerated methods can be found in e.g. in Wilson et al. [2021] and an analysis of
Nesterov’s method with constant momentum based on linear matrix inequality (originating from control
theory, and essentially corresponding to relaxed version of PEPs) is performed in Hu and Lessard
[2017].

When applied to smooth strongly convex functions f ∈ Fµ,L(Rd), starting from y0 = x0 ∈ Rd the
updates are often expressed using 2 sequences as{

yk+1 = xk − 1
L∇f(xk)

xk+1 = yk+1 + β(yk+1 − yk), for k ≥ 0, (3.34)

with β =
(√

L−√µ
) / (√

L+√µ
)

. Note that the sequences names are inverted compared to Nes-
terov [2018, Algorithm 2.2.22], mainly for notational coherence. This method can be expressed under
the form (3.28) with m = 2 as{

x1 = x0 − 1
L∇f(x0)

xk+2 = (1 + β)xk+1 − βxk − 1+β
L ∇f(xk+1) + β

L∇f(xk), for k ≥ 0,

and we focus on a particular class of potentials functions defined as

Φk(F,G) = 1
ρk

F (fk − f∗)︸ ︷︷ ︸
ak

+Tr

[xk+1 − x∗,xk − x∗,
gk
L

]S[xk+1 − x∗,xk − x∗,
gk
L

]T︸ ︷︷ ︸
Ak

G

 ,

for k ≥ 0 with S ∈ S+
3 . Similar to (3.33), we can obtain a feasibility problem ensuring that (3.29) is

satisfied. In addition, we can add the matrix S together with its semidefinite constraint in the feasibility

59

problem as

find {νi,j}i,j∈{∗,N,...,N+2} and S ∈ R3×3

s.t. ν ≥ 0, S < 0,
fN+1 − f∗ − ρ(fN − f∗)− F̃ (ν) = 0,
[xN+2 − x∗,xN+1 − x∗,gN+1/L]S[xN+2 − x∗,xN+1 − x∗,gN+1/L]T

− ρ[xN+1 − x∗,xN − x∗,gN/L]S[xN+1 − x∗,xN − x∗,gN/L]T − G̃(ν)+G̃(ν)T
2 4 0.

(3.35)

We can notice that feasibility of (3.35) is independent of N in that case, and therefore we can study
this problem with N = 0 without loss of generality.

Problem (3.35) is a linear semidefinite program and can be solved efficiently as previously (see
§Codes for a matlab script solving this problem). We typically search for feasible points with sparse
multiplier ν and low rank potential matrix S. In this example, numerical trials indicate that

S = L2

2(L− µ)

(
1 +

√
µ
L

)2
−
(
1 +

√
µ
L

) (
1 +

√
µ
L

)
−
(
1 +

√
µ
L

)
1 −1(

1 +
√

µ
L

)
−1 1

and

νN+1,∗ = (1− ρ), νN+1,N = ρ and νi,j = 0 otherwise,

are feasible. Note that the potential that we obtained is slightly different from that of Hu and Lessard
[2017, Section 3.1] or Bansal and Gupta [2019, Section 5.5] (essentially as we consider function eval-
uations on the extrapolated sequence). We can then combine interpolation inequalities as presented in
Section 3.2.2 to obtain the following property.

Proposition 3.2.6. Let d ∈ N∗, 0 < µ < L < +∞, f ∈ Fµ,L(Rd) and xN , xN+1 ∈ Rd be some
iterates. It holds that

Φ(xN+2, xN+1) ≤ ρΦ(xN+1, xN),

where

Φ(x, y) = L2

2(L−µ)‖(1 +
√

µ
L)(x− x∗)− (y − x∗) + 1

L∇f(y)‖2 + f(y)− f(x∗),

x∗ ∈ argminx f(x), ρ =
(
1−

√
µ
/
L
)

, and xN+2 is constructed using Nesterov’s method as

xN+2 = (1 + β)xN+1 − βxN − 1+β
L ∇f(xN+1) + β

L∇f(xN),

with β =
(√

L−√µ
)/(√

L+√µ
)

.

Proof. The proof consists in performing the following weighted sum of inequalities

• smoothness and strong convexity of f between xN+1 and x∗ with weight νN+1,∗ = 1− ρ,

f(x∗) ≥ f(xN+1) + 〈∇f(xN+1), x∗ − xN+1〉+ µ
2‖xN+1 − x∗‖2

+ 1
2(L−µ)‖∇f(xN+1)− µ(xN+1 − x∗)‖2,

60

• smoothness and strong convexity of f between xN+1 and xN with weight νN+1,N = ρ,

f(xN) ≥ f(xN+1) + 〈∇f(xN+1), xN − xN+1〉+ µ
2‖xN+1 − xN‖2

+ 1
2(L−µ)‖∇f(xN+1)−∇f(xN)− µ(xN+1 − xN)‖2.

This weighted sum writes as

(1− ρ)f(x∗) + ρf(xN) ≥ f(xN+1) + (1− ρ)
[
〈∇f(xN+1), x∗ − xN+1〉+ µ

2‖xN+1 − x∗‖2

+ 1
2(L−µ)‖∇f(xN+1)− µ(xN+1 − x∗)‖2

]
+ ρ

[
〈∇f(xN+1), xN − xN+1〉+ µ

2‖xN+1 − xN‖2

+ 1
2(L−µ)‖∇f(xN+1)−∇f(xN)− µ(xN+1 − xN)‖2

]
.

(3.36)

The terms depending on∇f(xk+1) in this inequality can be grouped together as

〈∇f(xk+1), (1−ρ)L
L−µ (x∗ − xN+1) + ρL

L−µ(xN − xN+1)− ρ
L−µ∇f(xN)〉+ 1

2(L−µ)‖∇f(xN+1)‖2

= L2

2(L−µ)‖
1
L∇f(xN+1) + ρ(xN − x∗)− (xN+1 − x∗)− ρ

L∇f(xN)‖2

− L2

2(L−µ)‖ρ(xN − x∗)− (xN+1 − x∗)− ρ
L∇f(xN)‖2

= L2

2(L−µ)‖(2− ρ)(xN+2 − x∗)− (xN+1 − x∗) + 1
L∇f(xN+1)‖2

− L2

2(L−µ)‖ρ(xN − x∗)− (xN+1 − x∗)− ρ
L∇f(xN)‖2,

where in the last equality we used xN+2 = (1 + β)xN+1 − βxN − 1+β
L ∇f(xN+1) + β

L∇f(xN) and
β = ρ

/
(2− ρ). We inject this expression in (3.36) and get

0 ≥Φ(xN+2, xN+1)− ρ(f(xN)− f(x∗)) + (1−ρ)Lµ
2(L−µ) ‖xN+1 − x∗‖2 + ρLµ

2(L−µ)‖xN+1 − xN‖2

+ ρµ
L−µ〈∇f(xN), xN+1 − xN 〉+ ρ

2(L−µ)‖∇f(xN)‖2

− L2

2(L−µ)‖ρ(xN − x∗)− (xN+1 − x∗)− ρ
L∇f(xN)‖2,

(3.37)
Introducing Φ(xN+1, xN) in (3.37) allows writing

0 ≥Φ(xN+2, xN+1)− ρΦ(xN+1, xN) + (1−ρ)Lµ
2(L−µ) ‖xN+1 − x∗‖2 + ρLµ

2(L−µ)‖xN+1 − xN‖2

+ ρL2

2(L−µ)‖(2− ρ)(xN+1 − x∗)− (xN − x∗) + 1
L∇f(xN)‖2

+ ρµ
L−µ〈∇f(xN), xN+1 − xN 〉+ ρ

2(L−µ)‖∇f(xN)‖2

− L2

2(L−µ)‖ρ(xN − x∗)− (xN+1 − x∗)− ρ
L∇f(xN)‖2.

(3.38)

As previously, we group together the terms in (3.38) (Φ(xN+2, xN+1) and ρΦ(xN+1, xN) apart) that
depend on xN+1 − x∗, as

Lρ(2−ρ)2L+µ−L
2(L−µ) ‖xN+1 − x∗‖2 − LρL(2−ρ)+ρµ−Lρ

(L−µ) 〈xN+1 − x∗, xN − x∗ − 1
L∇f(xN)〉

=L
2

√
µ
L‖xN+1 − x∗‖2 − L

√
µ
L〈xN+1 − x∗, xN − x∗ − 1

L∇f(xN)〉

=L
2

√
µ
L‖xN+1 − xN + 1

L∇f(xN)‖2 − L
2

√
µ
L‖xN − x∗ −

1
L∇f(xN)‖2,

61

where we used ρ = 1−
√
µ
/
L in the first equality. Re-injecting this expression in (3.38) leads to

0 ≥Φ(xN+2, xN+1)− ρΦ(xN+1, xN) + L
2 (1− ρ)‖xN+1 − xN + 1

L∇f(xN)‖2

− L
2 (1− ρ)‖xN − x∗ − 1

L∇f(xN)‖2

+ ρL2

2(L−µ)‖xN − x∗ −
1
L∇f(xN)‖2 + ρLµ

2(L−µ)‖xN − x∗‖
2

+ ρµ
L−µ〈∇f(xN), x∗ − xN 〉+ ρ

2(L−µ)‖∇f(xN)‖2

− L2

2(L−µ)‖ρ(xN − x∗)− ρ
L∇f(xN)‖2

=Φ(xN+2, xN+1)− ρΦ(xN+1, xN) + L
2 (1− ρ)‖xN+1 − xN + 1

L∇f(xN)‖2

+ L
2

(
−(1− ρ) + ρL(1−ρ)

L−µ

)
‖xN − x∗ − 1

L∇f(xN)‖2

+ ρLµ
2(L−µ)‖xN − x∗‖

2 + ρµ
L−µ〈∇f(xN), x∗ − xN 〉+ ρ

2(L−µ)‖∇f(xN)‖2

=Φ(xN+2, xN+1)− ρΦ(xN+1, xN) + L
2 (1− ρ)‖xN+1 − xN + 1

L∇f(xN)‖2

+ L
2

(
−(1− ρ) + ρL(1−ρ)+ρµ

L−µ

)
‖xN − x∗ − 1

L∇f(xN)‖2

+ ρ
2L‖∇f(xN)‖2

=Φ(xN+2, xN+1)− ρΦ(xN+1, xN) + L
2 (1− ρ)‖xN+1 − xN + 1

L∇f(xN)‖2

+ ρ
2L‖∇f(xN)‖2,

(3.39)

where in the last equality we use that −(1 − ρ) + ρL(1−ρ)+ρµ
L−µ = 0 when ρ =

(
1−

√
µ
/
L
)

. Finally,
(3.39) implies that

0 ≥ Φ(xN+2, xN+1)− ρΦ(xN+1, xN),

which is the desired conclusion.

As previously noted, nesting inequalities from Proposition 3.2.6 together leads to the following
convergence bound after N iterations.

Corollary 3.2.7. Let d ∈ N∗, f ∈ Fµ,L(Rd) with 0 < µ < L < +∞, N ∈ N∗ and xN the N -th iterate
of Nesterov’s method (3.34) initiated at x0 ∈ Rd. It holds that

f(xN)− f(x∗) ≤
(
1−

√
µ
L

)N [
µL

2(L−µ)‖x0 − x∗ − 1
L∇f(x0)‖2 + f(x0)− f(x∗)

]
,

where x∗ = argminx f(x).

Proof. Combining inequalities from Proposition 3.2.6 leads to

Φ(xN+1, xN) ≤
(
1−

√
µ
L

)
Φ(xN , xN−1) ≤ . . . ≤

(
1−

√
µ
L

)N
Φ(x1, x0).

We conclude by noticing that Φ(x1, x0) = µL
2(L−µ)‖x0 − x∗ − 1

L∇f(x0)‖2 + f(x0) − f(x∗) and that
f(xN)− f(x∗) ≤ Φ(xN+1, xN) .

Remark 3.2.8. Note that more standard convergence results for Nesterov’s method with constant mo-
mentum focus on bounding f(yN) − f(x∗). Indeed, in the case of composite minimization (i.e., the
objective function writes as f = h + g with h ∈ Fµ,L(Rd) and g ∈ F0,∞(Rd)) the iterates {xk}k are
not guaranteed to stay in dom f = domh which is not necessarily Rd in that case.

62

Remark 3.2.9. The result of Proposition 3.2.6 is not necessarily tight (i.e. there does not necessarily
exist an entry such that there is equality). Indeed, we fixed the form of the potential functions and only
search for parameters such that (3.29) is satisfied.

We have seen on this example how we can design potentials to prove linear convergence guarantees.
In the next example, we illustrate how to obtain potential functions to deal with sublinear rates.

Example: Gradient descent In Section 3.2.1 we used performance estimation to compute conver-
gence guarantees after N iterations of the gradient descent method with constant step size. Given
d ∈ N∗, f ∈ F0,L(Rd) (µ = 0), λ ≥ 0 and x0 ∈ Rd, we consider updates

xk+1 = xk − λ∇f(xk), (3.40)

which fits into (3.28) with m = 1. We look for potential functions of the form

Φk(F,G) = F tk(fk − f∗)︸ ︷︷ ︸
ak

+Tr

[xk − x∗,gk/L]S[xk − x∗,gk/L]T︸ ︷︷ ︸
Ak

G

 ,
with tk ≥ 0 and S ∈ S+

2 such that (3.29) holds. With S constant, the growth of the {tk}k controls the
convergence rate of f(xk)− f(x∗), therefore we are interested in finding the potentials with the largest
tk’s.

We search for the largest tN+1 such that (3.29) holds given some fixed tN , that is solving the
following problem

sup
ν≥0, S<0
tN+1

tN+1

s.t. ν ≥ 0, S < 0,
tN+1(fN+1 − f∗)− tN (fN − f∗)− F̃ (ν) = 0,
[xN+1 − x∗,gN+1/L]TS[xN+1 − x∗,gN+1/L]

− [xN − x∗,gN/L]TS[xN − x∗,gN/L]− G̃(ν)+G̃(ν)T
2 4 0,

(3.41)

with G̃(ν) and F̃ (ν) defined as previously. It turns out that this problem is not well-posed (unbounded)
as S tends to grow to compensate with the maximization of tN+1. Therefore, we introduce a normal-
ization constraint on S through the trace, as

Tr(S) ≤ 1,

preserving the linearity of the maximization problem (see §Codes for a matlab script solving this prob-
lem). From numerical trials we can find the following solutions

tN+1 = tN + 2λ,
νN,∗ = 2λ, νN+1,N = tN + 2λ,

S =
(

1 0
0 0

)
,

(3.42)

which leads to the same potential function as e.g Bansal and Gupta [2019, Theorem 3.3]. Finally, we
obtain the next result using the proof mechanism presented in Section 3.2.2.

63

Proposition 3.2.10. Let d ∈ N∗, 0 < L < +∞, f ∈ F0,L(Rd), xN ∈ Rd be some iterate, λ ∈
(0, 1+

√
5

2L] be a step size and tN ≥ 0. It holds that

‖xN+1 − x∗‖2 + (tN + 2λ) (f(xN+1)− f(x∗)) ≤ ‖xN − x∗‖2 + tN (f(xN)− f(x∗)) ,
where x∗ ∈ argminx f(x) and xN+1 is obtained using a gradient step with step size λ, that is

xN+1 = xN − λ∇f(xN).
Proof. The proof consists in performing the following weighted sum of inequalities

• smoothness and convexity of f between xN and x∗ with weight νN,∗ = 2λ,

f(x∗) ≥ f(xN) + 〈∇f(xN), x∗ − xN 〉+ 1
2L‖∇f(xN+1)‖2,

• smoothness and convexity of f between xN+1 and xN with weight νN+1,N = tN + 2λ,

f(xN) ≥ f(xN+1) + 〈∇f(xN+1), xN − xN+1〉+ 1
2L‖∇f(xN+1)−∇f(xN)‖2.

This weighted sum takes the form

2λf(x∗) ≥(tN + 2λ)f(xN+1)− tNf(xN)
+ 2λ

[
〈∇f(xN), x∗ − xN 〉+ 1

2L‖∇f(xN)‖2
]

+ (tN + 2λ)
[
〈∇f(xN+1), xN − xN+1〉+ 1

2L‖∇f(xN+1)−∇f(xN)‖2
]
.

(3.43)

Introducing the quantities

ΦN+1 = (tN + 2λ)(f(xN+1)− f(x∗)) + ‖xN+1 − x∗‖2,
and

ΦN = tN (f(xN)− f(x∗)) + ‖xN − x∗‖2,
the weighted sum (3.43) becomes

0 ≥ΦN+1 − ΦN − ‖xN+1 − x∗‖2 + ‖xN − x∗‖2

+ 2λ
[
〈∇f(xN), x∗ − xN 〉+ 1

2L‖∇f(xN)‖2
]

+ (tN + 2λ)
[
〈∇f(xN+1), xN − xN+1〉+ 1

2L‖∇f(xN+1)−∇f(xN)‖2
]
.

(3.44)

We group together the terms in (3.44) that depend on∇f(xN+1) as

(tN + 2λ)
[
〈∇f(xN+1), xN − xN+1〉+ 1

2L‖∇f(xN+1)‖2 − 1
L〈∇f(xN+1),∇f(xN)〉

]
= tN+2λ

2L ‖∇f(xk+1) + (Lλ− 1)∇f(xN)‖2 − (tN+2λ)(Lλ−1)2

2L ‖∇f(xN)‖2,
(3.45)

where we used the expression xN+1 = xN − λ∇f(xN). We can then re-inject this equality in (3.44)
and get

0 ≥ΦN+1 − ΦN + tN+2λ
2L ‖∇f(xk+1) + (Lλ− 1)∇f(xN)‖2 − (tN+2λ)(Lλ−1)2

2L ‖∇f(xN)‖2

− ‖xN+1 − x∗‖2 + ‖xN − x∗‖2 + 2λ
[
〈∇f(xN), x∗ − xN 〉+ 1

2L‖∇f(xN)‖2
]

+ (tN + 2λ) 1
2L‖∇f(xN)‖2

=ΦN+1 − ΦN + tN+2λ
2L ‖∇f(xk+1) + (Lλ− 1)∇f(xN)‖2 − (tN+2λ)(Lλ−1)2

2L ‖∇f(xN)‖2

− λ2‖∇f(xN)‖2 + 2λ
2L‖∇f(xN)‖2 + (tN + 2λ) 1

2L‖∇f(xN)‖2

=ΦN+1 − ΦN + tN+2λ
2L ‖∇f(xk+1) + (Lλ− 1)∇f(xN)‖2

+ 2λ+(tN+2λ)−2Lλ2−(tN+2λ)(Lλ−1)2

2L ‖∇f(xN)‖2

0 ≥ΦN+1 − ΦN + 2λ+(tN+2λ)−2Lλ2−(tN+2λ)(Lλ−1)2

2L ‖∇f(xN)‖2,

(3.46)

64

where we used the expression of xN+1 in the first equality.
In order to obtain the desired result, that is

0 ≥ ΦN+1 − ΦN , (3.47)

we need to show that 2λ + (tN + 2λ) − 2Lλ2 − (tN + 2λ)(Lλ − 1)2 is nonnegative for the range of
step sizes λ considered. We can reformulate this quantify as follows

2λ+ (tN + 2λ)− 2Lλ2 − (tN + 2λ)(Lλ− 1)2 = λ (2− 2Lλ+ (tN + 2λ)L(2− Lλ))

= λ
(
2(1 + Lλ− L2λ2) + tNL(2− Lλ)

)
≥ 0,

as the polynomial 1 + X − X2 is nonnegative on [0, 1+
√

5
2] and 2 − Lλ ≥ 0. This finally allows

obtaining the conclusion (3.47).

As previously, this produces the following worst-case bound after N iterations.

Corollary 3.2.11. Let d ∈ N∗, f ∈ F0,L(Rd) with 0 < L < +∞, N ∈ N∗ and xN the N -th iterate of
Gradient descent (3.40) with step size λ ∈ (0, 1+

√
5

2L] initiated at x0 ∈ Rd. It holds that

f(xN)− f(x∗) ≤ 1
2Nλ‖x0 − x∗‖2,

where x∗ ∈ argminx f(x).

Proof. We can nest together inequalities from Proposition 3.2.10 with tN = 2λN + t0 to get

tN (f(xN)− f(x∗)) + ‖xN − x∗‖2 ≤ . . . ≤ t0 (f(x0)− f(x∗)) + ‖x0 − x∗‖2,

and the result follows from the choice t0 = 0.

This convergence results after N iterations appears slightly weaker that the conjecture and the
numerical observations presented in the example of Figure 3.2. Indeed, Lyapunov theory often provides
weaker guarantees as it focuses on the behavior of a small batch of iterates (i.e. does not take into
account how previous iterates were computed) and relies on the (arbitrary) choice of the potential
functions.

We have seen how Lyapunov arguments can be incorporated into the performance estimation frame-
work, with the benefit of studying smaller semidefinite program (m versus N) together with (often)
simpler dual certificates. We refer the reader to Taylor and Bach [2019] for (comprehensive) develop-
ments on the use of potential functions in PEPs.

Design of optimization methods We end this introduction on the performance estimation framework
by briefly mentioning the possibility of designing optimization methods with optimized worst-case
guarantees using PEPs.

In the previous part, we have seen that we could introduce some degrees of freedom in potential
functions. Similarly, we can add degrees of freedom in the methods coefficients and search for methods
parameters that make the worst-case bounds the smallest possible. However, this may produce nonlin-
earity in the semidefinite reformulations. The main problem of methods design in this context, consists
in removing this nonlinearity by slightly modifying the problem to solve. Several technical “tricks” has
been developed using e.g. change of variables, Schur complements, and/or relaxations (see e.g. Drori
and Teboulle [2014], Kim and Fessler [2016], Taylor and Drori [2021] or Chapter 5).

65

Chapter 4

Worst-Case Analyses of Adaptive
Methods: Study of Polyak Step Sizes

In this chapter, we focus on unconstrained optimization problems of the form

min
x∈Rd

f(x),

where f is strongly convex and has a Lipschitz continuous gradient with respect to the Euclidean norm.
Very broadly speaking, the current numerical toolbox to solve these convex minimization problems
contains two types of methods. On one hand, simple numerical schemes with explicit albeit conserva-
tive theoretical guarantees. These include gradient methods and their accelerated variants, and require
knowing problem parameters, such as strong convexity parameters, or Hölderian error bounds [Bolte
et al., 2007]. On the other hand, adaptive methods, such as conjugate gradients or quasi-Newton,
adapting much better to the objective function by estimating some of its regularity properties. For
these methods, we typically have few justifications for their improved performances. In the following,
we study worst-case guarantees of some adaptive first-order methods, and in particular some methods
based on “Polyak steps”[Polyak, 1987].

Contributions Our contributions can be summarized as follows:

(i) We provide new worst-case bounds for variants of gradient descent with Polyak steps.

(ii) We develop and analyze an accelerated gradient method with Polyak steps based momentum.

(iii) We show how Performance Estimation Problems (PEPs) [Drori and Teboulle, 2014, Taylor et al.,
2017c] can be used to analyze some adaptive algorithms.

Organization We start this chapter by an introduction and a short review of adaptive first-order meth-
ods in Section 4.1. Then, in Section 4.2 we study worst-case behaviors of variants of gradient descent
with Polayk step sizes, and accelerated versions in Section 4.3. In Section 4.4, we detail the analysis
mechanisms behind the bounds provided in previous sections, and present numerical analyses of sev-
eral adaptive methods in Section 4.5. Finally, we present in Section 4.6 numerical experiments on the
accelerated gradient method with Polyak steps based momentum, and conclude in Section 4.7.

66

4.1 Introduction

Empirically, adaptive optimization methods often perform significantly better than their parametric
counterparts, and, by nature, require much less tuning. For example, roughly estimating regularity con-
stants on-the-fly and plugging these estimates in parametric algorithms often produces fast algorithms
with no theoretical guarantees. This phenomenon is illustrated in Figure 4.1 on logistic regression.

0 0.2 0.4 0.6 0.8 1

·105

10−11

10−4

103

number of iterations

f
−
f
∗

0 0.2 0.4 0.6 0.8 1

·105

10−11

10−4

103

number of iterations

f
−
f
∗

GD
AGM-smooth
AGM
Polyak

Figure 4.1: Convergence of gradient descent (GD), accelerated gradient method for smooth optimiza-
tion (AGM-smooth) [Nesterov, 1983], accelerated gradient method with constant momentum (AGM)—
described below as Algorithm 4.3 with (Const-mom)—where the momentum is set using the value of
the regularization parameter and gradient method with Polyak steps (Polyak). Experiments on regular-
ized logistic regression for the Sonar dataset without any tuning of the methods. Left: regularization
parameter 10−7. Right: regularization parameter 10−4. For Polyak steps, the best iterate is displayed.
Observe that Polyak method is a (non-accelerated) adaptive method, which performs comparatively
well against accelerated schemes.

Although many advances have been made in designing optimization schemes adaptive to some
types of parameters (e.g., Lipschitz constants, see discussions below), these results still leave a huge gap
between theory and practice (as in Figure 4.1). In particular, estimating strong convexity coefficients
while preserving convergence guarantees remains a challenging issue. Restart schemes are probably
the most effective option among existing approaches for adapting to this type of parameters and do
provide improved complexity estimates without any knowledge of strong convexity parameters, at the
expense of a log scale grid search. However, while on paper the complexity of these schemes is nearly
optimal, the presence of an outer loop clearly limits their practical effectiveness and their capacity to
adapt to the function’s local regularity, which leaves a lot of margin for improvement, on the numerical
front. Producing single loop algorithms adapting to local strong convexity (or Hölderian error bounds)
and have nearly optimal complexity bounds is an important open problem which is the main focus of
this work.

Here, we study the complexity of adaptive methods using Polyak steps, estimating the momentum
term using information on the optimum objective value f∗ instead of the strong convexity constant.
In some scenarios, such as “interpolation” in machine learning problems, the value of f∗ is known a
priori (usually zero), and estimating it is much easier than estimating strong convexity, see e.g., Asi and
Duchi [2019] for a recent discussion on these model assumptions.

The obvious next research question in this direction is to substitute knowledge on f∗ by weaker
bounds. A first step in this direction is for example Hazan and Kakade [2019] which uses successive
refinements of a lower bound on f∗. However, it seems that in the case of linear convergence, the extra

67

cost of this procedure might be prohibitive.

Related works

Gradient and accelerated gradient methods. For smooth optimization problems, simple line search
strategies provide accelerated algorithms that adapt to the local gradient Lipschitz constant [Nesterov,
2013] and explicit adaptive complexity bounds can be derived for certain variants using the mean root
Lipschitz constant [Scheinberg et al., 2014].

Restarts. For smooth and strongly convex optimization problems (or more generally problems satis-
fying Hölderian error bounds), accelerated methods with optimal complexity bounds require knowledge
of the strong convexity constant to compute iterates [Nesterov, 2013, 2018]. In particular, Arjevani and
Shamir [2016] show that this information is necessary when using oblivious steps. This quantity can be
hard to estimate and a lot of effort has been put in the development of adaptive optimization methods
preserving fast convergence rates [Lin and Xiao, 2014, Fercoq and Qu, 2016, Roulet and d’Aspremont,
2020]. All these works are based on restart strategies [O’Donoghue and Candes, 2015, Nesterov, 2013]
and although they exhibit fast theoretical convergence rates, they often contain parameters that have to
be tuned in order to get good practical results, or require additional information on the function itself
(e.g., its minimum f∗). Once again, while on paper the complexity of restart schemes is nearly optimal,
the presence of an outer loop generally limits their capacity to adapt to the function’s local regularity
and significantly affects empirical performance.

Quasi-Newton methods. An important family of adaptive algorithms is composed of quasi-Newton
methods. As the name suggests, these methods try to mimic the behavior of Newton schemes, by
constructing an estimate of the hessian at the current point, using previous gradients. The most notable
quasi-Newton method is certainly L-BFGS [Liu and Nocedal, 1989]. These commonly used algorithms
exhibit very fast empirical converge rates but only local improvements over gradient descent have been
proven at this point.

Conjugate gradient methods. Conjugate gradient methods are probably among the most famous
examples of adaptive algorithm. Firstly introduced for quadratic minimization [Hestenes and Stiefel,
1952], and motivated by nice theoretical guarantees (such as finite-time convergence), many variants
have been introduced for going beyond quadratics [Fletcher and Reeves, 1964, Polyak, 1969, Fletcher,
1987]—see, for example, the nice survey Hager and Zhang [2006]. Roughly speaking, at each iter-
ation, the method constructs an update direction based on the gradient at the current iterate, and on
the knowledge of the previous search directions. The next iterate is obtained by line-search in the up-
date direction. Whereas conjugate gradient methods are widely used in practice (e.g Rodi and Mackie
[2001], Volkwein [2004], Zhao et al. [2015]), and perform very well when they applies, there are barely
any non-asymptotic convergence guarantees for those methods beyond unconstrained quadratic mini-
mization.

Polyak step sizes. When the optimal value of the objective function value is known, a well-known
adaptive strategy consists in using the so-called “Polyak step sizes”—see e.g., Polyak [1987, Section
5.3.2] or Nedic and Bertsekas [2001], Boyd et al. [2003]. The method consists in iterating gradient
steps with step sizes proportional to the primal gap at the current iterate. As opposed to most adaptive

68

gradient methods mentioned above, this method comes with explicit theoretical properties, even beyond
the quadratic optimization case.

Barzilai-Borwein step sizes. The Barzilai-Borwein [Barzilai and Borwein, 1988, Fletcher, 2005]
method consists in gradient steps with adaptive step sizes. It is another case with complete theory for
quadratic optimization, but barely any performance guarantees in non-quadratic cases (it is even known
to diverge on some problem instances).

Adaptive gradient steps In Malitsky and Mishchenko [2019] the authors developed a step size policy
that adapts to the local geometry, together with nice theoretical guarantees.

Preliminaries

We denote f∗ the minimum of f . Let 0 ≤ µ < L < +∞, the class of L-smooth and µ-strongly convex
functions is denoted Fµ,L(Rd). Functions in this class satisfy (see e.g., Nesterov [2018]) ∀x, y ∈ Rd:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2 ‖y − x‖

2 (smoothness),

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ
2‖y − x‖

2 (strong convexity).

We recall the following inequality satisfied by smooth and strongly convex functions.

Lemma 4.1.1. [Taylor et al., 2017c, Theorem 4] Given f ∈ Fµ,L(Rd), for any (x, y) ∈ Rd × Rd

f(x)− f(y) +∇f(x)T (y − x) + 1
2L‖∇f(x)−∇f(y)‖2

+ µ

2(1−µL)
‖x− y − 1

L(∇f(x)−∇f(y))‖2 ≤ 0

The proof presented in this chapter mostly rely on these inequalities (or weaker versions of it).

4.2 Classical Polyak steps and variants

Let us start with complexity bounds for gradient methods with Polyak steps for smooth and strongly
convex optimization problems. Note that Polyak step sizes are usually discussed in the nondifferen-
tiable setting—see Polyak [1987, Section 5.3.2] or Nedic and Bertsekas [2001], Boyd et al. [2003].
We first recall the complexity of the gradient method with Polyak steps in the smooth strongly convex
case, then derive similar bounds for two variants. For the first variant, we scale the steps by a factor
two compared to standard Polyak steps, yielding a simple convergence proof with slightly improved
theoretical guarantees. The second variant is a descent method, where the complexity bound is written
in terms of the primal gap. We delay a full discussion of the proof mechanisms to Section 4.4.

Adaptive gradient method (Algorithm 4.2)

Input:

- Objective function: f ∈ Fµ,L(Rd).

- Initial guess: x0 ∈ Rd.

69

- Optimal objective value: f∗ ∈ R .

Run:

For k = 0, . . . :

Compute γk
xk+1 = xk − γk∇f(xk)

End For

Output: xk+1

Regular Polyak steps: γk = f(xk)−f∗
‖∇f(xk)‖2 (Polyak)

Polyak steps, variant I: γk = 2 f(xk)−f∗
‖∇f(xk)‖2 (Variant I)

Polyak steps, variant II: γk =
(
2− ‖∇f(xk)‖2

2L(f(xk)−f∗)

)
/L (Variant II)

The classical step size rule (Polyak) was mostly studied in the nonsmooth convex case [Polyak,
1987]. For smooth strongly convex problems, it is known (see e.g., Hazan and Kakade [2019]) that

f(xN)− f∗ ≤ (1− µ
L)N L‖x0−x∗‖2

2 . (4.1)

The two following propositions show that different step sizes policies (namely (Variant I) and
(Variant II)) produce slightly improved convergence rates, matching the best known rates for gradi-
ent methods with known µ and L. The γk are always well defined except when xk has a zero gradient,
in this case we can simply stop the method since we have reached optimality. When it is well defined,
γk ∈ [1

L ,
1
µ] for (Variant I) and γk ∈ [1

L ,
2−µ/L
L] for (Variant II).

4.2.1 Study of adaptive gradient method with Variant I

First, let us state that if we seek to decrease the distance to the optimal point, (Variant I) provides a
rate that matches that of gradient descent with optimal (non-adaptive) step sizes [Nesterov, 2018] in
the worst-case.

Proposition 4.2.1 (Variant I). Let f ∈ Fµ,L(Rd) and consider Algorithm 4.2 with step sizes (Variant I).
Then, for any x0 ∈ Rd and N ∈ N, such that the sequence {γk}k is well defined, it holds that

‖xN − x∗‖2 ≤
(
N−1∏
k=0

ρ(γk)
)
‖x0 − x∗‖2,

where x∗ ∈ argminx f(x), ρ(γ) = (γL−1)(1−γµ)
γ(L+µ)−1 , and max

γ∈[1
L,

1
µ]
ρ(γ) = (L−µ)2

(L+µ)2 . Otherwise∇f(xk) = 0

with k ∈ [0, N].
In addition, for all d ≥ 2, x0 ∈ Rd and 0 < µ < L, there exists fx0 ∈ Fµ,L(Rd) such that xN the

output of Algorithm 4.2 with step sizes (Variant I) applied to fx0 satisfies

‖xN − x∗‖2 =
(
L−µ
L+µ

)2N
‖x0 − x∗‖2.

For readability purposes the proof of Proposition 4.2.1 is cut in half.

70

Convergence bound First, we present the proof of the convergence bound.

Proof. For proving the desired result, it is only necessary to consider a single iteration of Algorithm 4.2
with (Variant I). We use the following (in)equalities obtained from Lemma 4.1.1:

• smoothness and strong convexity between xk and x∗, with multiplier λ1 = 2γk(γkL−1)
γk(L+µ)−1 :

f(xk)− f∗ +∇f(xk)T (x∗ − xk) + 1
2L‖∇f(xk)‖2 + µ

2(1−µL)
‖xk − x∗ − 1

L∇f(xk)‖2 ≤ 0,

• smoothness and strong convexity between x∗ and xk, with multiplier λ2 = 2γk(1−γkµ)
γk(L+µ)−1 :

f∗ − f(xk) + 1
2L‖∇f(xk)‖2 + µ

2(1−µL)
‖xk − x∗ − 1

L∇f(xk)‖2 ≤ 0,

• definition of the step size policy, with multiplier λ3 = γk(2−γk(L+µ))
γk(L+µ)−1 :

2(f(xk)− f∗)− γk‖∇f(xk)‖2 = 0.

Given that λ1, λ2 ≥ 0 (since 1
L ≤ γk ≤

1
µ), the following weighted sum is a valid inequality:

0 ≥λ1

[
f(xk)− f∗ +∇f(xk)T (x∗ − xk) + 1

2L‖∇f(xk)‖2 + µ

2(1− µL)
‖xk − x∗ − 1

L∇f(xk)‖2
]

+ λ2

[
f∗ − f(xk) + 1

2L‖∇f(xk)‖2 + µ

2(1−µL)
‖xk − x∗ − 1

L∇f(xk)‖2
]

+ λ3
[
2(f(xk)− f∗)− γk‖∇f(xk)‖2

]
.

Using the fact that xk+1 = xk − γk∇f(xk), this weighted sum can be reformulated exactly as

‖xk+1 − x∗‖2 − ρ(γk)‖xk − x∗‖2 ≤ 0

(one can verify that both expressions are equal) with ρ(γ) = (γL−1)(1−γµ)
γ(L+µ)−1 . Therefore, after N itera-

tions, we get

‖xN − x∗‖2 ≤
(
N−1∏
i=0

ρ(γi)
)
‖x0 − x∗‖2.

In addition, distance to optimality decreases, in the worst-case, with rate maxγ ρ(γ), with

(L−µ)2

(L+µ)2 = max
{
ρ(γ)

∣∣ 1
L ≤ γ ≤

1
µ

}
.

because ρ(γ) is a concave function of γ on the interval [1
L ,

1
µ], as ρ′′(γ) = − 2Lµ

(γ(L+µ)−1)3 ≤ 0, whose
maximum is attained at γ∗ = 2

L+µ . Note that substituting the expression of γk inside the interpola-
tion inequalities, instead of using it as an independent equality constraints, yields a considerably less
tractable result.

71

Tightness Now, we focus on the tightness result in Proposition 4.2.1. We construct a 2-dimensional
quadratic function on which Algorithm 4.2 with step sizes (Variant I) reaches the maximal convergence
bound.

Proof. First, we consider the case d = 2 and x0 =
(

1
0

)
. We define the quadratic function f as

f(x) := 1
2x

THx,

with

H = 1
L+ µ

(
2Lµ −(L− µ)

√
Lµ

−(L− µ)
√
Lµ L2 + µ2

)
.

We can check that f belongs to Fµ,L(R2). Indeed, Tr(H) = L + µ and det(H) = Lµ which implies
that H admits L and µ as eigenvalues. Moreover, f reaches its minimal value f∗ = 0 in x∗ = 0.

Then, we show that for {xk}k the sequence of iterates defined by

xk+1 = xk − 2 f(xk)−f∗
‖∇f(xk)‖2∇f(xk), for k ≥ 0,

satisfies
x2k+1 = (L−µ)2

(L+µ)2

2k
x1

x2k+2 = (L−µ)2

(L+µ)2

2k+2
x0.

(4.2)

with ‖x1 − x∗‖2 = (L−µ)2

(L+µ)2 ‖x0 − x∗‖2, which implies the awaited result

‖xk − x∗‖2 =
(

(L−µ)2

(L+µ)2

)N
‖x0 − x∗‖2, for k ≥ 0. (4.3)

We start by studying the form of the first Polyak step size, that is

2 f(x0)−f∗
‖∇f(x0)‖2 = 2 Lµ

L+µ
(L+µ)2

4L2µ2+Lµ(L−µ)2

= 2 (L+µ)
4Lµ+(L−µ)2

= 2
L+µ .

Therefore, we can express x1 as

x1 =
(

1− 2
L+µ

2Lµ
L+µ

2
L+µ

(L−µ)
√
Lµ

L+µ

)
= (L−µ)

(L+µ)2

(
L− µ
2
√
Lµ

)
. (4.4)

And finally,

‖x1 − x∗‖2 = (L−µ)4+4Lµ(L−µ)2

(L+µ)4

= (L−µ)2

(L+µ)2
(L−µ)2+4Lµ

(L+µ)4 = (L−µ)2

(L+µ)2 .

Then, we proceed similarly and observe (after some simplifications) that the second Polyak step size is

2 f(x1)−f∗
‖∇f(x1)‖2 = 2

L+µ . (4.5)

72

Based on it, we can express x2 as

x2 =

 (L−µ)2

(L+µ)2 − 2
L+µ0

2 (L−µ)
√
Lµ

(L+µ)2 − 2
L+µ

(L−µ)
√
Lµ

L+µ

=
((L−µ)2

(L+µ)2

0

)
= (L−µ)2

(L+µ)2x0.

Using the quadratic form of f (i.e., f(αx) = α2f(x) and ∇f(αx) = α∇f(x) for all α ∈ R and
x ∈ R2), Polyak step sizes remain equal to 2

L+µ throughout iterations and equations (4.2), (4.3) hold.
In order to get the result for any x0 6= 0, we can consider O the rotation matrix such that Ox0 =

‖x0‖e1 with e1 the vector of R2 with 1 is first position and 0 in second position. Applying Algo-
rithm (4.2) with step sizes (Variant I) to the function g(x) = f(Ox) produces iterates that also satisfy
(4.3).

Finally, in higher dimensions, we can simply consider a quadratic function f such that

f(x) = 1
2x

T

H 0 . . . 0
0 µ 0 0
... 0 . . .

...
0 . . . 0 µ

x,
and for x0 ∈ Rd, define similarly g(x) = f(Ox) with O the rotation matrix such that Ox0 = e1 the
basis vector of Rd with 1 in first position and 0 elsewhere.

4.2.2 Study of adaptive gradient method with Variant II

If on the other hand we seek to decrease the primal gap, (Variant II) provides a rate that matches that
of gradient descent with exact line search [Klerk et al., 2017], at the expense of knowledge on L.

Proposition 4.2.2 (Variant II). Let f ∈ Fµ,L(Rd), consider Algorithm 4.2 with step sizes (Variant II).
Then, for any x0 ∈ Rd and N ∈ N, such that the sequence {γk}k is well defined, it holds that

f(xN)− f∗ ≤
(
N−1∏
k=0

ρ(γk)
)

(f(x0)− f∗),

where f∗ = minx f(x), ρ(γ) = (Lγ − 1) (Lγ(3− γ(L+ µ))− 1), and max
γ∈[1

L,
2L−µ
L2]

ρ(γ) = (L−µ)2

(L+µ)2 .

Otherwise∇f(xk) = 0 with k ∈ [0, N].

Proof. Let us consider a single iteration of Algorithm 4.2, with step sizes (Variant II). The proof is a
consequence of the following combination of inequalities obtained from Lemma 4.1.1:

• smoothness and strong convexity between xk and x∗, with multiplier λ1 = γkµ(Lγk − 1):

f(xk)− f∗ +∇f(xk)T (x∗ − xk) + 1
2L‖∇f(xk)‖2 + µ

2(1−µL)
‖xk − x∗ − 1

L∇f(xk)‖2 ≤ 0,

• smoothness and strong convexity between xk+1 and x∗, with multiplier λ2 = γkµ:

f(xk+1)− f∗ +∇f(xk+1)T (x∗ − xk+1) + 1
2L‖∇f(xk+1)‖2

+ µ

2(1−µL)
‖xk+1 − x∗ − 1

L∇f(xk+1)‖2 ≤ 0,

73

• smoothness and strong convexity between xk+1 and xk, with multiplier λ3 = 1− γkµ:

f(xk+1)− f(xk) +∇f(xk+1)T (xk − xk+1) + 1
2L‖∇f(xk+1)−∇f(xk)‖2

+ µ

2(1− µL)
‖xk+1 − xk − 1

L(∇f(xk+1)−∇f(xk))‖2 ≤ 0,

• definition of the step size policy, with multiplier λ4 = γk
2 ((L+ µ)γk − 2):

(2L2γk − 4L)(f(xk)− f∗) + ‖∇f(xk)‖2 = 0.

Given that λ1, λ2, λ3 ≥ 0 (due to 1
L ≤ γk ≤

2−µL
L), the following weighted sum is a valid inequality:

0 ≥λ1

[
f(xk)− f∗ +∇f(xk)T (x∗ − xk) + 1

2L‖∇f(xk)‖2 + µ

2(1− µL)
‖xk − x∗ − 1

L∇f(xk)‖2
]

+ λ2

[
f(xk+1)− f∗ +∇f(xk+1)T (x∗ − xk+1) + 1

2L‖∇f(xk+1)‖2

+ µ

2(1−µL)
‖xk+1 − x∗ − 1

L∇f(xk+1)‖2
]

+ λ3

[
f(xk+1)− f(xk) +∇f(xk+1)T (xk − xk+1) + 1

2L‖∇f(xk+1)−∇f(xk)‖2

+ µ

2(1−µL)
‖xk+1 − xk − 1

L(∇f(xk+1)−∇f(xk))‖2
]

+ λ4
[
(2L2γk − 4L)(f(xk)− f∗) + ‖∇f(xk)‖2

]
.

Using the expression xk+1 = xk − γk∇f(xk) (without substituting the expression of γk, whose value
is encoded through the last equality of the list), this weighted sum can be rewritten exactly as

0 ≥f(xk+1)− f∗ − ρ(γk)(f(xk)− f∗)
+ 1

2(L−µ) ‖∇f(xk+1)− Lµγk(xk − x∗) + (γk(L+ µ)− 1)∇f(xk)‖2

with ρ(γ) = (Lγ − 1) (Lγ(3− γ(L+ µ))− 1) which, in turns, give

f(xk+1)− f∗ ≤ρ(γk)(f(xk)− f∗)
− 1

2(L−µ) ‖∇f(xk+1)− Lµγk(xk − x∗) + (γk(L+ µ)− 1)∇f(xk)‖2

≤ρ(γk)(f(xk)− f∗).

Therefore, after N iterations, we get

f(xN)− f∗ ≤
(
N−1∏
i=0

ρ(γi)
)

(f(x0)− f∗).

Finally, the worst-case convergence rate is maxγ ρ(γ) on the interval [1
L ,

2−µ/L
L], for which

(L−µ)2

(L+µ)2 = max
{
ρ(γ)

∣∣ 1
L ≤ γ ≤

2−µ/L
L

}
.

The proof follows from the following steps:

74

• First, on the boundaries of the interval: (i) ρ(1
L) = 0 and (ii) ρ(2− µ

L
L) = (L−µ)4

L4 ≤ (L−µ)2

(L+µ)2 .

• Secondly, in the interior of the interval: ρ′(γ) = L(3Lγ− 2)(2− (L+µ)γ) is zero at γ∗ = 2
L+µ

(inside the interval).

• Therefore ρ(γ∗) = (L−µ)2

(L+µ)2 and this is the maximum on the interval.

In the following section, we study variants of those methods, where we aim to speed up convergence
by incorporating a momentum term. Those methods follow in spirit the line of works on Nesterov’s
acceleration [Nesterov, 2013], where we supersede knowledge of µ by that of f∗.

4.3 Acceleration with Polyak momentum

In the following, AGM refers to the Accelerated Gradient Method with momentum introduced by
Nesterov [Nesterov, 1983, 2018]. We are interested in optimizing a function f ∈ Fµ,L(Rd) without
any information on the strong convexity constant µ. However, as in the Polyak gradient method, we
rely on the knowledge of f∗. We describe a single loop adaptive accelerated method (i.e. without
restarts), with convergence rate of order 1 − (µ/L)3/4, compared with 1 − µ/L for gradient descent,
and 1− (µ/L)1/2 for its accelerated version with perfect knowledge of µ.

Accelerated gradient method (AGM) (Algorithm 4.3)

Input:

- Objective function: f ∈ Fµ,L(Rd).

- Initial guess: x0 ∈ Rd.

- Optimal objective value: f∗ ∈ R.

- Smoothness parameter: L ∈ R∗.

Initialization:

y0 = x0

Run:

For k = 0, . . . :

yk+1 = xk − 1
L∇f(xk)

Compute µ̃k and βk =
√
L−
√
µ̃k√

L+
√
µ̃k

xk+1 = yk+1 + βk(yk+1 − yk)

End For

Output: yk+1

75

Constant momentum: µ̃k = µ (Const-mom)

Polyak Acc., variant I: µ̃k = ‖∇f(yk+1)‖2

2(f(yk+1)−f∗) , (Acc. Variant I)

Polyak Acc., variant II: µ̃k =
{

+∞ if k = −1
min

(
µ̃k−1,

‖∇f(yk+1)‖2

2(f(yk+1)−f∗)

)
otherwise

(Acc. Variant II)

Algorithm 4.3 is based on the AGM algorithm [Nesterov, 2018], in which the knowledge of µ
is essential to set the constant momentum term βk = β∗ = (

√
L − √µ)/(

√
L + √µ). Common

convergence guarantees require a lower bound on the strong convexity.

4.3.1 Robustness of AGM

As a first step towards producing adaptive versions of AGM, Lemma 4.3.1 and Corollary 4.3.2 below
guarantee that AGM with any momentum factor βk in [0, 1] converges at least as fast as the classical
gradient method.

Lemma 4.3.1 (Convergence of AGM with bad momentum). Let f ∈ Fµ,L(Rd), some iteration number
k ∈ N, and consider Algorithm 4.3 with βk ∈ [0, 1]. Then, for any xk, yk ∈ Rd, it holds that

Φ(xk+1, yk+1) ≤ ρΦ(xk, yk) (4.6)

where Φ(x, y) = L−µ
2 ‖x− y‖

2 + f(y)− f∗, f∗ = minx f(x) and ρ = 1− µ
L .

Proof. We use the notation ρ = 1− µ/L in this proof. It consists in combining the following inequal-
ities obtained from Lemma 4.1.1:

• smoothness and strong convexity between xk and yk with multiplier λ1 = ρ:

f(xk)− f(yk) +∇f(xk)T (yk − xk) + 1
2L‖∇f(xk)−∇f(yk)‖2

+ µ

2(1−µL)
‖xk − yk − 1

L(∇f(xk)−∇f(yk))‖2 ≤ 0,

• smoothness and strong convexity between yk+1 and x∗ with multiplier λ2 = 1− ρ:

f(yk+1)− f∗ +∇f(yk+1)T (x∗ − yk+1) + 1
2L‖∇f(yk+1)‖2

+ µ

2(1−µL)
‖yk+1 − x∗ − 1

L∇f(yk+1)‖2 ≤ 0,

• smoothness and strong convexity between yk+1 and xk with multiplier λ3 = ρ:

f(yk+1)− f(xk) +∇f(yk+1)T (xk − yk+1) + 1
2L‖∇f(yk+1)−∇f(xk)‖2

+ µ

2(1−µL)
‖yk+1 − xk − 1

L(∇f(yk+1)−∇f(xk))‖2 ≤ 0.

Given that λ1, λ2, λ3 ≥ 0, the following weighted sum is a valid inequality

0 ≥λ1

[
f(xk)− f(yk) +∇f(xk)T (yk − xk) + 1

2L‖∇f(xk)−∇f(yk)‖2

+ µ
2(1− µ

L
)‖xk − yk −

1
L(∇f(xk)−∇f(yk))‖2

]

76

+ λ2

[
f(yk+1)− f∗ +∇f(yk+1)T (x∗ − yk+1) + 1

2L‖∇f(yk+1)‖2

+ µ

2(1−µL)
‖yk+1 − x∗ − 1

L∇f(yk+1)‖2
]

+ λ3

[
f(yk+1)− f(xk) +∇f(yk+1)T (xk − yk+1) + 1

2L‖∇f(yk+1)−∇f(xk)‖2

+ µ

2(1−µL)
‖yk+1 − xk − 1

L(∇f(yk+1)−∇f(xk))‖2
]
,

which can be reformulated exactly, using the notation

Φ(x, y) = f(y)− f∗ + L−µ
2 ‖x− y‖

2

yk+1 = xk − 1
L∇f(xk)

xk+1 = yk+1 + βk(yk+1 − yk)

along with the expression of ρ, in the form

0 ≥Φ(xk+1, yk+1)− ρΦ(xk, yk)
+ 1

2(L−µ) ‖(1− ρ)(∇f(xk)− L(xk − x∗)) +∇f(yk+1)‖2

+ ρ
2(L−µ) ‖∇f(yk)−∇f(xk) + µ(xk − yk)‖2

+ (1−β2)ρ
2L ‖∇f(xk) + L(yk − xk)‖2.

Therefore, using the assumption βk ∈ [0, 1], we finally arrive to the desired

Φ(xk+1, yk+1) ≤ ρΦ(xk, yk).

We then get the following corollary on the primal gap after N iterations.

Corollary 4.3.2. Let f ∈ Fµ,L, a number of iterations N ∈ N, and consider Algorithm 4.3 with a
sequence {βk}k satisfying βk ∈ [0, 1] for all k ∈ [1, N]. Then, for any x0 ∈ Rd, it holds that

f(yN)− f∗ ≤
(

1− µ

L

)N
(f(x0)− f∗),

where f∗ = minx f(x).

Proof. Using the potential function argument of Lemma 4.3.1, we can nested together the inequalities
and get

f(yN)− f∗ ≤ Φ(xN , yN) ≤ . . . ≤ ρNΦ(x0, y0) = f(x0)− f∗,

where we used x0 = y0 in the last equality.

This result shows the robustness of AGM with respect to the momentum parameter. Adaptive
strategies, that modify the momentum term in the algorithm automatically, thus at least enjoy the
gradient method’s convergence rate when βk is kept within the interval [0, 1]—this is the case for
both (Acc. Variant I) and (Acc. Variant II). To our knowledge, only non-blowup properties [Lin and
Xiao, 2014, Lemma 1] were known when overestimating µ.

77

4.3.2 Polyak steps based momentum

The momentum term in (Acc. Variant I) was designed using the inverse of Polyak step as an esti-
mate of the strong convexity parameter. This choice of strong convexity estimate is motivated by the
fact that under some mild assumptions on f (i.e., for quadratic or self-concordant f), the quantity
‖∇f(zk)‖2

/
(2(f(zk) − f∗)) converges to the strong convexity constant at optimum when the zk are

iterates of gradient descent algorithm with step size 1/L. Indeed, when f is e.g. quadratic, Polyak
steps can be expressed as

‖∇f(zk)‖2

2(f(zk)− f∗)
= ‖∇2f(zk − x∗)‖2

〈zk − x∗,∇2f(zk − x∗)〉

=
∑d
i=1 ν

2
i 〈zk − x∗, ei〉2∑d

i=1 νi〈zk − x∗, ei〉2
,

where x∗ ∈ argminx f(x), 0 < µ = ν1 ≤ . . . ≤ νd = L the eigenvalues of ∇2f and {ei}i=1,...,d an
orthonormal basis of eigenvectors. When {zk}k is obtained through a gradient descent with step size
1
L , the residuals zk − x∗ tend to align with eigenvectors associated to the smallest eigenvalue ν1 = µ,
and therefore the inverse Polyak steps converge to µ.

In order for µ̃k to be always defined and within the interval [µ,L], we assume that iterates never
reach exactly optimality. Under this condition we have βk ∈ [0, β∗] and Corollary 4.3.2 readily applies
to both (Acc. Variant I) or (Acc. Variant II). However, this result can be improved for those particular
choices, as described in Lemma 4.3.3 and Proposition 4.3.4, as the rate can be expressed in terms of
the local µ̃k instead of µ.

Lemma 4.3.3 (Adaptivity). Let f ∈ F0,L(Rd), some iteration number k ∈ N, and consider Algo-
rithm 4.3 with either (Acc. Variant I) or (Acc. Variant II). For any xk, yk ∈ Rd such that µ̃k well
defined, it holds that

Φ(xk+1, yk+1) ≤ ρ(µ̃k)Φ(xk, yk) (4.7)

where Φ(x, y) = L
2 ‖x−y‖

2+f(y)−f∗, f∗ = minx f(x) and ρ(µ̃) = 1
1+ µ̃

L

. Otherwise∇f(yk+1) = 0.

Proof. We denote by ρ(x) the function ρ(x) = 1
1+ x

L
. The proof consists in the following combination

of inequalities obtained from Lemma 4.1.1:

• smoothness and convexity between yk+1 and xk with multiplier λ1 = ρ(µ̃k):

f(yk+1)− f(xk) +∇f(yk+1)T (xk − yk+1) + 1
2L‖∇f(xk)−∇f(yk+1)‖2 ≤ 0,

• convexity between xk and yk with multiplier λ2 = ρ(µ̃k):

f(xk)− f(yk) +∇f(xk)T (yk − xk) ≤ 0,

• definition of µ̃k with multiplier λ3 = 1−ρ(µ̃k)
2µ̃k :

2µ̃k(f(yk+1)− f∗)− ‖∇f(yk+1)‖2 ≤ 0

(we use an inequality so that it also holds for µ̃k = min{µ̃k−1,
‖∇f(yk+1)‖2

2(f(yk+1)−f∗)}).

78

The following weighted sum is a valid inequality given that λ1, λ2, λ3 ≥ 0:

0 ≥λ1
[
f(yk+1)− f(xk) +∇f(yk+1)T (xk − yk+1) + 1

2L‖∇f(xk)−∇f(yk+1)‖2
]

+ λ2
[
f(xk)− f(yk) +∇f(xk)T (yk − xk)

]
+ λ3

[
2µ̃k(f(yk+1)− f∗)− ‖∇f(yk+1)‖2

]
,

which can be reformulated exactly, using the notation

Φ(x, y) = f(y)− f∗ + L
2 ‖x− y‖

2

yk+1 = xk − 1
L∇f(xk)

xk+1 = yk+1 + βk(yk+1 − yk)

βk =
√
L−
√
µ̃k√

L+
√
µ̃k

along with the expression for ρ(x), in the form

0 ≥Φ(xk+1, yk+1)− ρ(µ̃k)Φ(xk, yk)

+

(
4L2
√

µ̃k
L −L

(
µ̃k−2µ̃k

√
µ̃k
L

)
−µ̃2

k

)
2L2(L+µ̃k)

(√
µ̃k
L

+1
)2 ‖∇f(xk) + L(yk − xk)‖2,

which, in turns, is equivalent to

Φ(xk+1, yk+1) ≤ρ(µ̃k)Φ(xk, yk)−

(
4L2
√

µ̃k
L
−L
(
µ̃k−2µ̃k

√
µ̃k
L

)
−µ̃2

k

)
2L2(L+µ̃k)

(√
µ̃k
L

+1
)2 ‖∇f(xk) + L(yk − xk)‖2,

≤ρ(µ̃k)Φ(xk, yk)

where the inequality follows from the sign of the term we removed, so it remains to show that

4L2
√

µ̃k
L − L

(
µ̃k − 2µ̃k

√
µ̃k
L

)
− µ̃2

k ≥ 0 ∀µ̃k ∈ [0, L].

Indeed, evaluating the sign of the previous expression boils down to study that of g(x) = 4
√
x −

(x− 2x
√
x)− x2 on [0, 1], which follows from:

g(x) ≥ 3
√
x+ x

√
x ≥ 0 ∀x ∈ [0, 1].

Proposition 4.3.4. Let f ∈ F0,L(Rd), some number of iterations N ∈ N, and consider Algorithm 4.3
with either (Acc. Variant I) or (Acc. Variant II). Then, for any x0 ∈ Rd, such that the sequence {µ̃k}k
is well defined , it holds that

f(yN)− f∗ ≤
(
N−1∏
k=0

ρ(µ̃k)
)

(f(x0)− f∗)

where f∗ = minx f(x) and ρ(µ̃) = 1
1+ µ̃

L

. Otherwise∇f(yk) = 0 with k ∈ [0, N].

79

Proof. Use Lemma 4.3.3 recursively and notice that Φ(x0, y0) = f(x0)− f∗.

In fact, these results on (Acc. Variant I) and (Acc. Variant II) also hold under Hölderian error
bounds [Bolte et al., 2007, 2017] (also known as Kurdyka-Łojasewicz, Polyak-Łojasewicz, quadratic
growth, etc.) which require the existence of µ > 0 such that for all x ∈ Rd, f(x)− f∗ ≤ 1

2µ‖∇f(x)‖2.
This condition holds in particular for strongly convex function but is much weaker.

Corollary 4.3.5. Under the conditions of Proposition 4.3.4, if there exists µ > 0 such that for all
x ∈ Rd, f(x)− f∗ ≤ 1

2µ‖∇f(x)‖2 then after N ∈ N iterations

f(yN)− f∗ ≤
(

1 + µ

L

)−N
(f(x0)− f∗),

where f∗ = minx f(x).

Looking at Proposition 4.3.4 more closely, we notice that when the estimates µ̃k are larger than√
Lµ, the adaptive accelerated method exhibits an accelerated linear convergence rate O(1 −

√
µ
L). It

remains to study the convergence of the adaptive method in the regime where µ̃k is small. In this case,
we provide another robustness result for the AGM algorithm when the momentum βk is close enough
to its classical value (Const-mom).

Lemma 4.3.6. Let f ∈ Fµ,L(Rd), some iteration number k ∈ N, and consider Algorithm 4.3 with

√
L− 4√Lµ√
L+ 4√Lµ ≤ βk ≤ β∗ =

√
L−√µ√
L+√µ .

Then, for any xk, yk ∈ Rd, it holds that

Φ(xk+1, yk+1) ≤ ρΦ(xk, yk) (4.8)

where Φ(x, y) = L
2 ‖

1√
ρ(x− x∗)−

√
ρ(y − x∗)‖2 + f(y)− f∗, x∗ ∈ argminx f(x), f∗ = f(x∗) and

ρ =
(
1 +

(µ
L

) 3
4
)−1

.

Proof. The proof, that follows the same steps as the previous ones, but with some additional technical-
ities for certifying the positivity of some polynomials, is deferred to Section 4.A.

This lemma guarantees a linear convergence rate O
(
1−

(µ
L

)3/4)k that is slower than the acceler-
ated rate with full knowledge of µ but faster than the gradient rate. We now combine the convergence
results for the two regimes of µ̃k, and get a global linear convergence rate for (Acc. Variant II).

Proposition 4.3.7 (Adaptive AGM). Let f ∈ Fµ,L(Rd), and N ∈ N be a number of iterations. We
consider Algorithm 4.3 with (Acc. Variant II), and let {yk, xk}k be the iterates of the method. Then,
for any x0 ∈ Rd, such that the sequence {µ̃k}k is well defined, we let m ∈ N be the first integer such
that ‖∇f(ym+1)‖2

2(f(ym+1)−f∗) ≤
√
Lµ, (let m =∞ if this never happens during the N iterations),

f(yN)− f∗ ≤

ρN1

(
L
2

(
1√
ρ1
−√ρ1

)2
‖x0 − x∗‖2 + f(x0)− f∗

)
if m = 0,

ρN2 (f(x0)− f∗) if m =∞,
CρN−m1 ρm2 (f(x0)− f∗) otherwise,

80

where x∗ ∈ argminx f(x), f∗ = f(x∗), C =
((

1
ρ1
− 1

) (
1 +

√
L
2µ

)2
+ 1

)
, ρ1 =

(
1 +

(µ
L

)3
4
)−1

and ρ2 =
(
1 +

√
µ
L

)−1
.

Otherwise∇f(yk) = 0 with k ∈ [0, N].

Proof. The case m = 0 results from Lemma 4.3.6 applied recursively and the case m =∞ result from
Proposition 4.3.4. In the following we consider that m ∈ [1, N]. Then for (yk, xk)k∈[m+1,N],

√
L− 4
√
Lµ√

L+ 4
√
Lµ
≤ βk−1 ≤

√
L−√µ√
L+√µ

and Lemma 4.3.6 applies so

f(yN)− f∗ ≤ ρN−m1

(
L

2 ‖
1
√
ρ1

(xm − x∗)−
√
ρ1(ym − x∗)‖2 + f(ym)− f∗

)

and we have

L

2 ‖
1
√
ρ1

(xm − x∗)−
√
ρ1(ym − x∗)‖2 + f(ym)− f∗

= L

2

(1
ρ1
− 1

)
‖xm − x∗‖2 −

L

2 (1− ρ1)‖ym − x∗‖2 + L

2 ‖xm − ym‖
2 + f(ym)− f∗

≤ L

2

(1
ρ1
− 1

)
‖xm − x∗‖2 + L

2 ‖xm − ym‖
2 + f(ym)− f∗

≤ L

2

(1
ρ1
− 1

)
(‖xm − ym‖+ ‖ym − x∗‖)2 + L

2 ‖xm − ym‖
2 + f(ym)− f∗

≤
(1
ρ1
− 1

)√L

2 ‖xm − ym‖+
√
L

2µ

√
f(ym)− f∗

2

+ L

2 ‖xm − ym‖
2 + f(ym)− f∗

We can now apply Corollary 4.3.5. From the definition of m, we have

2(f(yk)− f∗) ≤
1√
Lµ
‖∇f(yk)‖2 for all k ∈ [1,m].

Therefore, by denoting ρ2 =
(
1 +

√
µ
L

)−1
, we have the following inequalities

L

2 ‖xm − ym‖
2 + f(ym)− f∗ ≤ ρm2 (f(x0)− f∗),√
L

2 ‖xm − ym‖ ≤ ρ
m/2
2

√
f(x0)− f∗,√

L

2µ

√
f(ym)− f∗ ≤

√
L

2µρ
m/2
2

√
f(x0)− f∗,

which leads to

L

2 ‖
1
√
ρ1

(xm − x∗)−
√
ρ1(ym − x∗)‖2 + f(ym)− f∗

81

≤

(1
ρ1
− 1

)(
1 +

√
L

2µ

)2

+ 1

 ρm2 (f(x0)− f∗),

reaching the desired result.

The previous convergence bound is only valid for (Acc. Variant II) mostly for technical reasons.
Indeed the min is present in order to have at most one transition between the regime µ̃k ≥

√
Lµ

and µ̃k ≤
√
Lµ. In practice, however, we didn’t observe any difference between the behaviors

of (Acc. Variant I) and that of (Acc. Variant II).
In the following, we present an (unpractical) way of removing the need for f∗.

4.3.3 Removing the dependence on the optimal value

The key ingredients in Proposition 4.3.7 are, (i) the fact that the method is fast when µ̃ is large, (ii) the
robustness of AGM when µ̃ is small. In the following, we describe an algorithm together with estimates
of µ that follows the same arguments.

Accelerated gradient method (AGM) no f∗ (Algorithm 4.3.3)

Input:

- Objective function: f ∈ Fµ,L(Rd).

- Initial guess: x0 ∈ Rd.

- Smoothness parameter: L ∈ R∗.
- Number of iterations: N ∈ N∗.

Initialization:

µ̃0 = L

Run:

For k = 0, . . . , N − 1:

xk+1 = xk − 1
L∇f(xk)

µ̃k+1 = min
(
µ̃k, L

(
1− ‖∇f(xk+1)‖

‖∇f(xk)‖

))
End For

z0 = xN , y0 = z0, β =
√
L−
√
µ̃N√

L+
√
µ̃N

For k = 0, . . . , N − 1:

yk+1 = zk − 1
L∇f(zk)

zk+1 = yk+1 + β(yk+1 − yk)

End For

Output: yN

82

The following lemma ensures that the estimates of µ used in Algorithm 4.3.3 stay in [µ,L].

Lemma 4.3.8. Let f ∈ Fµ,L(Rd), xk ∈ Rd and xk+1 = xk − 1
L∇f(xk). It holds that

µ ≤ L
(

1− ‖∇f(xk+1)‖
‖∇f(xk)‖

)
≤ L.

Proof. The right hand side inequality is direct. For the left hand one, we add the two inequalities from
Lemma 4.1.1

• smoothness and strong convexity between xk+1 and xk:

f(xk+1)− f(xk) + 〈∇f(xk+1), xk − xk+1〉+ 1
2L‖∇f(xk)−∇f(xk+1)‖2

+ µ

2(1− µL)
‖xk − xk+1 − 1

L (∇f(xk)−∇f(xk+1))‖2 ≤ 0,

• smoothness and strong convexity between xk and xk+1:

f(xk)− f(xk+1) + 〈∇f(xk), xk+1 − xk〉+ 1
2L‖∇f(xk)−∇f(xk+1)‖2

+ µ

2(1− µL)
‖xk − xk+1 − 1

L (∇f(xk)−∇f(xk+1))‖2 ≤ 0.

Summing these two inequalities gives

〈∇f(xk+1)−∇f(xk), xk − xk+1〉+ 1
L‖∇f(xk)−∇f(xk+1)‖2

+ µ

(1− µL)
‖xk − xk+1 − 1

L (∇f(xk)−∇f(xk+1))‖2 ≤ 0,

and substituting the expression of xk+1 leads to

1
L〈∇f(xk+1)−∇f(xk),∇f(xk)〉+ 1

L‖∇f(xk)−∇f(xk+1)‖2 + µ
L(L−µ)‖∇f(xk+1)‖2 ≤ 0,

which can be reformulated as

1
L

(
1 + µ

(L−µ)

)
‖∇f(xk+1)‖2 ≤ 1

L〈∇f(xk+1),∇f(xk)〉.

Using Cauchy-Schwarz in the left hand side, we finally obtain

‖∇f(xk+1)‖ ≤
(
1− µ

L

)
‖∇f(xk)‖,

from which the desired conclusion follows easily.

Proposition 4.3.9. Let f ∈ Fµ,L(Rd), N ∈ N∗ be a number of iterations. Denote by {xk, yk, zk}k the
iterates of Algorithm 4.3.3 initiated at x0 ∈ Rd. It holds that

f(yN)− f∗ ≤

 ρN1 ρ
2N
2

(
L
2

(
1√
ρ1
−√ρ1

)2
‖x0 − x∗‖2 + f(x0)− f∗

)
if µ̃N ≤

√
Lµ,

1
2µρ

N
2 ρ

2N
3 ‖∇f(x0)‖2 otherwise,

where x∗ ∈ argminx f(x), f∗ = f(x∗), ρ1 =
(
1 +

(µ
L

)3/4)−1
, ρ2 =

(
1− µ

L

)
and ρ3 =

(
1−

√
µ
L

)
.

Proof. We treat the two regimes separately.

83

• First case : µ̃N ≤
√
Lµ.

Combining inequalities of Lemma 4.3.6 leads to

f(yN)− f∗ ≤ ρN1
(
L
2

(
1√
ρ1
−√ρ1

)2
‖xN − x∗‖2 + f(xN)− f∗

)
,

where ρ1 =
(
1 +

(µ
L

)3/4)−1
. Then, we use that gradient descent with step size 1

L makes squared

distance to optimum and function values decrease linearly with a rate ρ2
2 =

(
1− µ

L

)2 (see e.g.
Taylor et al. [2018a, Theorem 2.1] with h = 0). This finally produces the bound

f(yN)− f∗ ≤ ρN1 ρ2N
2

(
L
2

(
1√
ρ1
−√ρ1

)2
‖x0 − x∗‖2 + f(x0)− f∗

)

• Second case : µ̃N ≥
√
Lµ.

Using Corollary 4.3.2 we can write

f(yN)− f∗ ≤ ρN2 (f(xN)− f∗),

and using strong convexity of the objective, we obtain

f(yN)− f∗ ≤ 1
2µρ

N
2 ‖∇f(xN)‖2. (4.9)

Finally, we get from the definition of the µ̃k’s that

‖∇f(xN)‖ ≤
N∏
k=1

(
1− µ̃k

L

)
‖∇f(x0)‖

≤
(
1− µ̃N

L

)N
‖∇f(x0)‖,

(4.10)

and re-injecting the bound (4.10) in (4.9) together with the condition µ̃N ≥
√
Lµ give the desired

result.

Proposition 4.3.9 guarantees that Algorithm 4.3.3 converges at a linear rateO
(
1− 1

2
(µ
L

)3/4)when
µ/L� 1. This method illustrates how the robustness results on AGM can be used to provide acceler-
ated algorithms. However, note that Algorithm 4.3.3 is not really practical as the gradient descent steps
can be very slow.

4.4 Analysis mechanisms

Starting with the work of Drori and Teboulle [2014], computer-aided worst-case analyses of convex
optimization methods have provided a generic technique producing convergence rates for many clas-
sical first-order algorithms. The results in [Drori and Teboulle, 2014, Taylor et al., 2017c] use an
interpolation argument to write the problem of finding the worst case behavior of an algorithm, given
a convergence criterion, as a tractable semidefinite program—often referred to as a Performance Es-
timation Problem (PEP). We adapted the technique for generating the complexity bounds on gradient
methods with Polyak steps.

84

Our proofs were obtained by searching for Lyapunov (or potential) functions (see e.g. [Bansal and
Gupta, 2019] for a recent survey) as briefly presented in Section 3.2.3 of Chapter 3. We also refer the
reader to the discussions on PEPs in [Taylor and Bach, 2019, Taylor et al., 2018b] for more details. A
related line of works (equivalent in many situations) is that of integral quadratic constraints [Lessard
et al., 2016], which leverage results from control theory to perform worst-case complexity analysis. All
these approaches were originally developed for non adaptive methods and in what follows, we show
how we used the PEP approach for adaptive algorithms. A similar reasoning would allow adapting
IQCs for adaptive methods as well.

To fix ideas and illustrate our procedure, we first analyze the worst case complexity of a variant
of the classical gradient method with Polyak steps, and show improved convergence bounds compared
to classical results (see Hazan and Kakade [2019] for a recent treatment). We consider the gradient
method with Polyak steps described in Algorithm 4.2 with (Variant I) for f ∈ Fµ,L(Rd). Notice that
there is a factor two in the step size that is not present in the original Polyak step. This factor simplifies,
and improves, the analysis for the convergence in terms of distance to the optimum.

To prove a linear convergence rate, we can focus on the improvement yielded by a single iteration
of the form

xk+1 := xk − γk∇f(xk), where γk := 2 f(xk)− f∗
‖∇f(xk)‖2

. (4.11)

We seek to bound the worst case (i.e., smallest) decrease in ‖xk+1− x∗‖2 relative to ‖xk − x∗‖2 when
xk+1 is obtained using the iteration in (4.11) for any function f ∈ Fµ,L(Rd) and any point xk. In other
words we seek to solve the following optimization problem

maximize
‖xk+1 − x∗‖2

‖xk − x∗‖2
subject to xk+1 = xk − 2 f(xk)−f∗

‖∇f(xk)‖2∇f(xk),
f ∈ Fµ,L(Rd), xk ∈ Rd, d ∈ N.

(4.12)

in the variables f ∈ Fµ,L(Rd) and xk, xk+1, x∗,∇f(xk) ∈ Rd, with parameter f∗ ∈ R. The key
argument in [Drori and Teboulle, 2014, Taylor et al., 2017c] is that the constraint on the regularity of
the function f in problem (4.12) can be replaced by a finite number of inequalities from Lemma 4.1.1.
We get an upper bound on the optimum of problem (4.12) by relaxing the constraint f ∈ Fµ,L(Rd),
keeping just two inequalities from Lemma 4.1.1 relating xk and x∗ to obtain the following relaxed
problem

maximize
‖xk+1 − x∗‖2

‖xk − x∗‖2
subject to fk − f∗ + gTk (x∗ − xk) + 1

2L‖gk‖
2 + µ

2(1− µ
L

)‖xk − x∗ −
1
Lgk‖

2 ≤ 0
f∗ − fk + 1

2L‖gk‖
2 + µ

2(1− µ
L

)‖xk − x∗ −
1
Lgk‖

2 ≤ 0
xk+1 = xk − 2fk−f∗‖gk‖2 gk

(4.13)

in the variables xk, x∗, gk ∈ Rd and fk, f∗ ∈ R.
This relaxed problem is finite dimensional, but still depends on the dimension of the ambient space

while we are interested in convergence rates independent of the dimension. One of the key insights
of the PEP approach is to notice that (4.13) can be kernelized, i.e., written in terms of the quadratic
variables Xk = ‖xk − x∗‖2, Gk = ‖gk‖2, GXk = gTk (x∗ − xk) in addition to fk and f∗. Indeed,

85

problem (4.13) is equivalent to solving

maximize 1 + 4fk−f∗Gk
GXk
Xk

+ 4 (fk−f∗)2

GkXk

subject to fk − f∗ +GXk + 1
2LGk + µ

2(1− µ
L

)

(
Xk + 2

LGXk + 1
L2Gk

)
≤ 0

f∗ − fk + 1
2LGk + µ

2(1− µ
L

)

(
Xk + 2

LGXk + 1
L2Gk

)
≤ 0(

Xk GXk

GXk Gk

)
< 0

(4.14)

in the variables Xk, Gk, GXk, fk, f∗ ∈ R. This new problem has only five real variables but is not
readily tractable because of the non-linearity in the objective. By homogeneity we can impose Xk = 1
without loss of generality. We introduce a step size variable γ to rewrite the problem as

maximize ρ(γ)
subject to γ ∈ R (4.15)

where

ρ(γ) := max. 1 + 2γGXk + 2(fk − f∗)γ
s.t. fk − f∗ +GXk + 1

2LGk + µ
2(1− µ

L
)

(
Xk + 2

LGXk + 1
L2Gk

)
≤ 0

f∗ − fk + 1
2LGk + µ

2(1− µ
L

)

(
Xk + 2

LGXk + 1
L2Gk

)
≤ 0(

Xk GXk

GXk Gk

)
< 0

Xk = 1, Gkγ = 2(fk − f∗)

(4.16)

which is a semidefinite program. Given γ, ρ(γ) can thus be computed efficiently and our relaxation
upper bound on the convergence rate of the method is then given by the maximum value of ρ(γ).
Note that due to the definition of the step size, we only need to study ρ(γ) on the interval [1

L ,
1
µ].

Figure 4.2 (left) plots ρ(γ) for fixed values µ = 0.1 and L = 1, and shows (right) the maximum
value of ρ(γ) for various condition numbers. In this experiment, the worst case convergence rates we
obtained numerically appear to perfectly match the bound (L− µ)2/(L+ µ)2.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

γ

ρ
(γ

)

10−4 10−3 10−2 10−1 100

0

0.5

1

µ/L

m
ax
γ
ρ
(γ

)

(
L−µ
L+µ

)2

Worst-case bound

Figure 4.2: Left: we plot ρ(γ), by solving (4.16) with µ = 0.1 and L = 1. Right: Worst case rate
maxγ ρ(γ), by solving (4.15), versus inverse condition number.

These numerical observations can in fact be proven analytically as follows. Given a target conver-
gence rate ρ ∈ [0, 1], we need to show that

‖xk+1 − x∗‖2 − ρ‖xk − x∗‖2 ≤ 0 (4.17)

86

for all feasible values of xk, xk+1, x∗ ∈ Rd, satisfying the constraints of problem (4.13). In the spirit of
the Putinar positivstellensatz used in sum of squares solutions of semi-algebraic optimization problems
[Putinar, 1993, Lasserre, 2001, Parrilo, 2000], we seek to write a certificate of the validity of inequal-
ity (4.17) using a positively weighted sum of valid inequalities satisfied by xk, xk+1, x∗ ∈ Rd in (4.13).
Here, this means writing

‖xk+1 − x∗‖2 − ρ(γk)‖xk − x∗‖2 =

λ1

[
f(xk)− f∗ +∇f(xk)T (x∗ − xk) + 1

2L‖∇f(xk)‖2 + µ

2(1− µL)
‖xk − x∗ − 1

L∇f(xk)‖2
]

+λ2

[
f∗ − f(xk) + 1

2L‖∇f(xk)‖2 + µ

2(1− µL)
‖xk − x∗ − 1

L∇f(xk)‖2
]

+λ3
[
2(f(xk)− f∗)− γk‖∇f(xk)‖2

]
≤ 0

for some λ1, λ2 ≥ 0, λ3 ∈ R, and using the fact xk+1 = xk − γk∇f(xk) by construction. Through
symbolic computations, or by trial and error, inferring a target convergence rate from optimal values of
the semidefinite program, the proof consists in showing that we can pick

ρ(γk) = (γkL−1)(1−γkµ)
γk(L+µ)−1 , λ1 = 2γk(γkL−1)

γk(L+µ)−1 , λ2 = 2γk(1−γkµ)
γk(L+µ)−1 and λ3 = γk(2−γk(L+µ))

γk(L+µ)−1 .

In practice, the numerical solution of the semidefinite program in (4.16) giving ρ(γ) can be used to
greedily narrow down the list of valid inequalities required by the proof.

Note that since (4.15) is a semialgebraic problem, we could have used sum-of-squares techniques to
prove the convergence rate. However, the multipliers and the rates are fractions in γk. Since one usually
doesn’t know in advance the form of the denominators, one needs relatively high degree polynomials
in the SOS program. This means this approach suffers from the usual SOS issues of poor conditioning
and scaling.

4.5 Numerical analyses of adaptive methods

In this section, we use the methodology presented in Section 4.4 for performing worst-case analyses of
some adaptive algorithms, numerically.

4.5.1 Exact line search

We start by looking at the worst-case guarantees of gradient descent with exact line search. That is, we
consider updates of the form γ∗ = argmin

γ
f(xk − γ∇f(xk))

xk+1 = xk − γ∗∇f(xk),

where f ∈ Fµ,L(Rd), and xk ∈ Rd. From Klerk et al. [2017, Theorem 1.2], we know that iterates of
gradient descent with exact line search applied to f ∈ Fµ,L(Rd) satisfy

f(xk+1)− f∗ ≤
(
L−µ
L+µ

)2
(f(xk)− f∗), for all k ≥ 0.

87

This results were obtained using relaxations in the associated performance estimation problem. It turns
out that this relaxation is tight for this particular criterion, but not necessarily when using e.g. distance
to optimality.

We can study more precisely worst-case guarantees of this type by looking at bounds on the value
of the ratio (f(xk+1)− f∗)/(f(xk)− f∗) versus the actual step size value γ ∈ R. Using orthogonality
between consecutive gradients (i.e. necessary and sufficient optimality condition of the line search
procedure),

γ∗ = argmin
γ

f(xk − γ∇f(xk)) ⇐⇒ 〈∇f(xk − γ∗∇f(xk)),∇f(xk)〉 = 0,

this corresponds to solve the following problem

ρ(γ) := max
f(xk+1)− f∗
f(xk)− f∗

s.t. xk+1 = xk − γ∇f(xk),
〈∇f(xk+1),∇f(xk)〉 = 0,
f ∈ Fµ,L(Rd), xk ∈ Rd, d ∈ N,

(4.18)

for several values of γ. This maximization problem can be reformulated as a semidefinite program
similar to Section 4.4 (following the steps in Chapter 3 and the references therein) and numerical
worst-case bounds of gradient descent with exact line search in this context are displayed in Figure 4.3.
Note that ρ(γ) is zero when γ is outside the ranges displayed in Figure 4.3.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

γ

ρ
(γ

)

0 20 40 60 80 100
0

0.5

1

γ

(
L−µ
L+µ

)2

Worst-case Bound

Figure 4.3: We plot ρ(γ), by solving an SDP reformulation of (4.18) with µ/L = 0.1 (left) and
µ/L = 0.01 (right).

Remark 4.5.1. Note that we directly obtain the tightness of the semidefinite reformulation used to com-
pute ρ(γ) numerically (i.e. the numerical solution corresponds to (4.18)), whereas Klerk et al. [2017]
had to provide a worst-case example. This also allows obtaining tight reformulations for different
criteria (e.g. ‖xk+1 − x∗‖2

/
‖xk − x∗‖2 with x∗ ∈ argminx f(x) as displayed in Figure 4.4).

We can look at another criterion such as ‖xk+1 − x∗‖2
/
‖xk − x∗‖2 with x∗ ∈ argminx f(x) and

study the problem

ρ(γ) := max
‖xk+1 − x∗‖2

‖xk − x∗‖2
s.t. xk+1 = xk − γ∇f(xk),

〈∇f(xk+1),∇f(xk)〉 = 0,
f ∈ Fµ,L(Rd), xk ∈ Rd, d ∈ N.

(4.19)

88

It can be reformulated as a semidefinite problem and Figure 4.4 exhibits numerical solutions for various
values of γ. In particular, we notice that the bounds given by (4.19) are smaller than those obtained
using the relaxation of Klerk et al. [2017] (red dashed line).

0 2 4 6 8 10
0

0.5

1

γ

ρ
(γ

)

0 20 40 60 80 100
0

2

4

6

8

10

γ

Relaxation [Klerk et al., 2017]
Worst-case Bound

Figure 4.4: We plot ρ(γ), by solving an SDP reformulation of (4.19) with µ/L = 0.1 (left) and
µ/L = 0.01 (right). The red dashed line corresponds to the bound obtained by solving a relaxed
version of the performance estimation problem associated to the exact line search procedure as in
Klerk et al. [2017].

4.5.2 Conjugate gradient method

In the following we study 2 iterations of a nonlinear conjugate gradient method from Fletcher and
Reeves [1964]. Beyond quadratic optimization problems, worst-case guarantees are difficult to obtain
in general.

We focus on updates of the form

γk = argmin
γ

f(xk − γ∇f(xk))

xk+1 = xk − γk∇f(xk)
dk+1 = ∇f(xk+1) + β∇f(xk)
γk+1 = argmin

α
f(xk+1 − αdk+1)

xk+2 = xk+1 − γk+1dk+1,

(4.20)

where f ∈ Fµ,L(Rd), xk ∈ Rd and β = ‖∇f(xk+1)‖2/‖∇f(xk)‖2.
We study worst-case bounds on the ration (f(xk+2) − f∗)/(f(xk) − f∗) by solving the following

problem

max
f(xk+2)− f∗
f(xk)− f∗

s.t. γk = argmin
γ

f(xk − γ∇f(xk)),

xk+1 = xk − γk∇f(xk),
dk+1 = ∇f(xk+1) + β∇f(xk),
γk+1 = argmin

γ
f(xk+1 − γdk+1),

xk+2 = xk+1 − γk+1dk+1,
‖∇f(xk+1)‖2 = β‖∇f(xk)‖2,
f ∈ Fµ,L(Rd), xk ∈ Rd, d ∈ N,

(4.21)

89

for a range of values β. Note that we could introduce 2 additional parameters to handle the exact line
searches as in the previous section, but for simplicity we follow the methodology of Klerk et al. [2017]
to handle line searches. We can relax (4.21) as

ρ(β) := max
f(xk+2)− f∗
f(xk)− f∗

s.t. dk+1 = ∇f(xk+1) + β∇f(xk),
〈∇f(xk+1),∇f(xk)〉 = 0,
〈∇f(xk+1), xk+1 − xk〉 = 0,
〈∇f(xk+2), dk+1〉 = 0,
〈∇f(xk+2), xk+2 − xk+1〉 = 0,
‖∇f(xk+1)‖2 = β‖∇f(xk)‖2,
f ∈ Fµ,L(Rd), xk, xk+1, xk+2 ∈ Rd, d ∈ N,

(4.22)

and ρ(β) is an upper bound on the optimal value of (4.21). Problem (4.22) can be reformulated as a
semidefinite problem (following the steps in Chapter 3 and the references therein). Numerical compu-
tations are reported in Figure 4.5. These numerical results tend to show that 2 iterations of conjugate
gradient (4.20) yield better worst-case guarantees than 2 iterations of gradient descent with exact line
search (red dashed lines in Figure 4.5), with essentially the same cost.

0 0.5 1 1.5 2
0

0.2

0.4

β

ρ
(β

)

0 10 20
0.2

0.4

0.6

0.8

1

β

(
L−µ
L+µ

)4

Worst-case Bound

Figure 4.5: We plot ρ(β), by solving a SDP reformulation of (4.22) with µ/L = 0.1 (left) and µ/L =
0.01 (right).

4.5.3 Regularized Anderson acceleration

Finally, we study worst-case guarantees of a regularized version of the Anderson extrapolation scheme
due to Scieur et al. [2020]. We focus an a simple two-step extrapolation procedure (see Chapter 2
for details on Anderson extrapolation) with a regularization proportional to the gradient of the initial
iterate, which corresponds to the following updates

xk+1 = xk − 1
L∇f(xk)

c∗ = argmin
c∈R

1
2‖(1− c)∇f(xk) + c∇f(xk+1)‖2 + λ‖∇f(xk)‖2

2
(
(1− c)2 + c2)

xe = (1− c∗)xk + c∗xk+1,

(4.23)

where f ∈ Fµ,L(Rd), xk ∈ Rd and λ ≥ 0. Using first-order optimality condition, we can notice that

c∗ = argmin
c∈R

1
2‖(1− c)∇f(xk) + c∇f(xk+1)‖2 + λ‖∇f(xk)‖2

2

(
(1− c)2 + c2

)
,

90

if and only if

〈∇f(xk),∇f(xk)−∇f(xk+1)〉+ λ‖∇f(xk)‖2 = c∗
(
‖∇f(xk)−∇f(xk+1)‖2 + 2λ‖∇f(xk)‖2

)
.

We study worst-case bounds on the ratio ‖∇f(xe)‖2
/
‖∇f(xk)‖2 (which is often considered when

analyzing Anderson acceleration methods, see e.g. Chapter 2) by solving the following problem

ρ(c) := max
‖∇f(xe)‖2

‖∇f(xk)‖2
s.t. xk+1 = xk − 1

L∇f(xk),
xe = (1− c∗)xk + c∗xk+1,
〈∇f(xk),∇f(xk)−∇f(xk+1)〉+ λ‖∇f(xk)‖2 =
c
(
‖∇f(xk)−∇f(xk+1)‖2 + 2λ‖∇f(xk)‖2

)
,

f ∈ Fµ,L(Rd), xk ∈ Rd, d ∈ N,

(4.24)

for various values of c. We can reformulate this problem as a semidefinite program (following the steps
in Chapter 3 and the references therein), and numerical solutions are displayed in Figure 4.6. We can
observe that the worst-case bounds appear very sensitive to the choice of λ. Indeed, we mainly see two
regimes, (i) large λ’s with little extrapolation (i.e. small c) leading to conservative guarantees and (ii)
smaller λ’s leading to larger values of c’s and possible explosion of the bounds.

1 2 3
0

0.2

0.4

0.6

0.8

1

c

ρ
(c

)

1 2 3

0.4

0.6

0.8

1

1.2

c

(
1− µ

L

)2

λ = 0
λ = 0.01
λ = 0.05
λ = 0.1
λ = 0.5

Figure 4.6: We plot ρ(c), by solving a SDP reformulation of (4.24) with µ/L = 0.1 (left) and µ/L =
0.01 (right). The red dashed line correspond to the worst-case bounds on the ratio of gradients for
gradient descent.

4.6 Numerical experiments

Numerical experiments with our algorithms are provided in Figure 4.7, respectively on least squares,
regularized logistic regression and Lasso problems. For solving the Lasso problems, we used a prox-
imal variant of Algorithm 4.3, whose details are provided in Section 4.B. We respectively used the
Sonar [Gorman and Sejnowski, 1988] and Musk [Dietterich et al., 1997] datasets.

In the experiments, when no analytical version of f∗ was available (for logistic regression and
Lasso), we used ad hoc methods to obtain higher precision estimates of f∗. As previously discussed, a
fundamental next step is to incorporate successive refinements of a lower bound on f∗ (a first step in
this direction is for example Hazan and Kakade [2019]). One should notice that vanilla Polyak steps
without momentum actually perform very well when they apply (see Section 4.C for a discussion on

91

0 1,000 2,000
10−11

10−3

105

iterations

f
−
f
∗

0 1.5 3

·104

10−11

10−4

103

iterations

0 1,000 2,000
10−11

10−4

103

iterations

GD
AGM-smooth
AGM
Acc Polyak II
Polyak

0 1 2

·104

10−11

10−3

105

iterations

f
−
f
∗

0 0.5 1

·105

10−11

10−4

103

iterations

0 0.5 1

·104

10−11

10−4

103

iterations

Figure 4.7: Top: Sonar dataset. Bottom: Musk dataset. Left: Least squares. Middle: Logistic re-
gression with Tikhonov regularization (regularization parameter 10−3). Right: LASSO (regularization
parameter 1). For Polyak steps the best iterate is displayed. No tuning in any of the methods.

the performances of vanilla Polyak steps). We believe that modifying the accelerated Polyak so that it
also adapts to the Lipschitz constant could make it more competitive, but the current state of the proofs
does not allow it yet.

4.7 Conclusion and perspectives

We provided a momentum version of the Polyak steps, with an accelerated linear convergence rate.
When f∗ is available, this method is easy to implement and requires no tuning at all. On the way, we
illustrated the methodology that was used for obtaining those rates, for the special case of a gradient
method with Polyak steps. This methodology relies on the recent developments on performance esti-
mation problems [Drori and Teboulle, 2014, Taylor et al., 2017c], which we adapted for studying our
adaptive methods.

One of the main questions that remains open is to understand whether there exists a way to get the
same convergence guarantees without using f∗. The robustness result of Lemma 4.3.1 is reassuring in
the sense that a misspecified f∗ cannot break the algorithm (albeit worsening the convergence rate).

Let us mention that the problem of designing theoretically supported adaptive methods is an open
question. We managed to design (Variant II), for which we used our methodology—to find a method
that would use Polyak steps to make the primal gap decrease linearly at each iterations—, but designing
adaptive accelerated methods appeared as much more daunting task.

Finally, we note that regular Polyak steps do not enjoy a known (working) proximal extension. On
the contrary, our results suggest that its accelerated counterparts do work with proximal operators (for
minimizing composite objective functions with a non-smooth term). Therefore, developing the theory
in this direction is another natural next step.

92

Codes The code used to obtain Figures 4.2, 4.3 and 4.5 to 4.7, Figure 4.C.1 and to verify proofs is
available at https://github.com/mathbarre/PerformanceEstimationPolyakStep
s/tree/extended.

93

https://github.com/mathbarre/PerformanceEstimationPolyakSteps/tree/extended
https://github.com/mathbarre/PerformanceEstimationPolyakSteps/tree/extended

Appendices

4.A Proof of Lemma 4.3.6

Proof. Our statement follows from a weighted sum of inequalities obtained from Lemma 4.1.1:

• smoothness and strong convexity between yk+1 and xk, with multiplier λ1 = 1:

f(yk+1)− f(xk) +∇f(yk+1)T (xk − yk+1) + 1
2L‖∇f(yk+1)−∇f(xk)‖2

+ µ
2(1− µ

L
)‖yk+1 − xk − 1

L(∇f(yk+1)−∇f(xk))‖2 ≤ 0,

• smoothness and strong convexity between xk and x∗, with multiplier λ2 = 1− ρ:

f(xk)− f∗ +∇f(xk)T (x∗ − xk) + 1
2L‖∇f(xk)‖2

+ µ

2(1−µL)
‖xk − x∗ − 1

L∇f(xk)‖2 ≤ 0,

• convexity between xk and yk, with multiplier λ3 = ρ:

f(xk)− f(yk) +∇f(xk)T (yk − xk) ≤ 0.

The weighted sum is a valid inequality given that λ1, λ2, λ3 ≥ 0:

0 ≥ λ1

[
f(yk+1)− f(xk) +∇f(yk+1)T (xk − yk+1) + 1

2L‖∇f(yk+1)−∇f(xk)‖2

+ µ

2(1−µL)
‖yk+1 − xk −

1
L

(∇f(yk+1)−∇f(xk))‖2
]

+λ2

[
f(xk)− f∗ +∇f(xk)T (x∗ − xk) + 1

2L‖∇f(xk)‖2

+ µ

2(1−µL)
‖xk − x∗ − 1

L∇f(xk)‖2
]

+λ3
[
f(xk)− f(yk) +∇f(xk)T (yk − xk)

]
.

This inequality can be reformulated using the notations

Φ(x, y) = f(y)− f∗ + L
2 ‖

1√
ρ(x− x∗)−

√
ρ(y − x∗)‖2

yk+1 = xk − 1
L∇f(xk)

xk+1 = yk+1 + βk(yk+1 − yk)
β = βk

in the form

0 ≥Φ(xk+1, yk+1)− ρΦ(xk, yk) + 1
2(L−µ)‖∇f(yk+1)‖2 + 1−ρ

2L ‖∇f(xk)‖2

+ L(ρ3−β2)
2ρ ‖(yk − x∗) + βρ−β(β+1)+ρ2

β2−ρ3 (xk − x∗) + β2−βρ+β−ρ2

β2L−Lρ3 ∇f(xk)‖2

+ L2(1−ρ)
(µ
Lρ(2βρ−β(β+2)+ρ)+(ρ−1)(β−ρ)2

)
2(ρ3−β2)(L−µ) ‖xk − x∗ − 1

L∇f(xk)‖2.

94

It is then direct to reach

Φ(xk+1, yk+1) ≤ρΦ(xk, yk)− 1
2(L−µ)‖∇f(yk+1)‖2 − 1−ρ

2L ‖∇f(xk)‖2

− L(ρ3−β2)
2ρ ‖(yk − x∗) + βρ−β(β+1)+ρ2

β2−ρ3 (xk − x∗) + β2−βρ+β−ρ2

β2L−Lρ3 ∇f(xk)‖2

− L2(1−ρ)
(µ
Lρ(2βρ−β(β+2)+ρ)+(ρ−1)(β−ρ)2

)
2(ρ3−β2)(L−µ) ‖xk − x∗ − 1

L∇f(xk)‖2

≤ρΦ(xk, yk),

where we used the facts that the following coefficients were nonnegative (proofs below) on the domain
of interest:

• 1
2(L−µ) ≥ 0 (clear from the assumption µ ≤ L),

• 1−ρ
L ≥ 0 (clear from ρ ≤ 1),

•
L(ρ3−β2)

2ρ ≥ 0 follows from
(
ρ3 − β2) ≥ 0, proved below,

•
L2(1−ρ)

(µ
Lρ(2βρ−β(β+2)+ρ)+(ρ−1)(β−ρ)2

)
2(ρ3−β2)(L−µ) ≥ 0 follows from previous points along with

µ
Lρ(2βρ− β(β + 2) + ρ) + (ρ− 1)(β − ρ)2 ≥ 0,

which is proved below.

The missing proofs are as follow. First, let us define κ := µ
L ∈ [0, 1], the (inverse) condition number,

and recall that we want to prove the expressions above to be nonnegative when ρ = 1
1+κ3/4 and β− ≤

β ≤ β+ with β− =
√

1− 4√κ√
1+ 4√κ and β+ =

√
1−
√
κ√

1+
√
κ

.

• To show that ρ3 − β2 ≥ 0, let us remark that the expression is a second order polynomial in the
variable β with negative curvature. Therefore, its minimum values are achieved on the boundary
of the interval, and it is sufficient to show ρ3 − β2

− ≥ 0 and ρ3 − β2
+ ≥ 0 for establishing our

claim. For the case β = β−, we get:

ρ3 − β2
− = κ1/4(4−8κ1/4+9

√
κ−4κ3/4−4κ+9κ5/4−8κ3/2+4κ7/4−κ2)

(1+κ1/4)3(1−κ1/4+
√
κ)3 ,

and we need to show that
(
4− 8κ1/4 + 9

√
κ− 4κ3/4 − 4κ+ 9κ5/4 − 8κ3/2 + 4κ7/4 − κ2

)
is

non negative for all κ ∈ [0, 1]. For showing that, we perform the change of variable x ← κ1/4

(which is invertible since κ ∈ [0, 1]), and study the polynomial

p1(x) = −x8 + 4x7 − 8x6 + 9x5 − 4x4 − 4x3 + 9x2 − 8x+ 4,

such that

p1(x) ≥ 3x7 − 8x6 + 9x5 − 4x4 − 4x3 + 9x2 − 8x+ 4
= 3x7 − 8x6 + 9x5 − 4x4 − 4x3 + 5x2 + 4(1− x)2

≥ 3x7 − 8x6 + 9x5 − 4x4 − 4x3 + 5x2

≥ 3x7 − 8x6 + 9x5 − 4x4 + x3

95

= 3x7 − 8x6 + 5x5 + x3(2x− 1)2

≥ x5(3x2 − 8x+ 5)
= x5(1− x)(5− 3x)
≥ 0,

hence finally ρ3 − β2
− ≥ 0. For the case β = β+, we obtain:

ρ3 − β2
+ =

√
κ(4−3κ1/4+6κ3/4−3κ−3κ5/4+6κ3/2−κ7/4−3κ2+2κ9/4−κ11/4)

(1+κ1/4)3(1+
√
κ)2(1−κ1/4+

√
κ)3 ,

and we need to show that(
4− 3κ1/4 + 6κ3/4 − 3κ− 3κ5/4 + 6κ3/2 − κ7/4 − 3κ2 + 2κ9/4 − κ11/4

)
is nonnegative for all κ ∈ [0, 1]. After changing variable x ← κ1/4 (which is invertible since
κ ∈ [0, 1]), we study the polynomial

p2(x) = −x11 + 2x9 − 3x8 − x7 + 6x6 − 3x5 − 3x4 + 6x3 − 3x+ 4

such that

p2(x) ≥ x9 − 3x8 − x7 + 6x6 − 3x5 − 3x4 + 6x3 − 3x+ 4
≥ x9 − 3x8 − x7 + 6x6 − 3x5 − 3x4 + 6x3 + 1
≥ x9 − 3x8 − x7 + 6x6 + 1
≥ x9 + 2x6 + 1
≥ 0,

hence ρ3 − β2
+ ≥ 0.

• Similarly, the expression p3(κ) =
(
κρ(2βρ− β(β + 2) + ρ) + (ρ− 1)(β − ρ)2) is also a sec-

ond order polynomial in β, with leading coefficient

−(1− ρ)− κρ ≤ −(1− ρ) ≤ 0.

Therefore, this quadratic function is also concave and we only need to verify the inequality on
the boundary of the interval [β−, β+]. In the case β = β−, we get:

p3(β−) = (1−
√
κ+κ3/4)κ7/4

(1+κ1/4)3(1−κ1/4+
√
κ)3 ≥ 0.

For case β = β+, we obtain:

p3(β+) = κ3/2(4−7κ1/4+4
√
κ+5κ3/4−7κ+3κ5/4+2κ3/2−κ7/4+κ2)

(1+κ1/4)3(1+
√
κ)2(1−κ1/4+

√
κ)3 ,

and we need to show that
(
κ2 − κ7/4 + 2κ3/2 + 3κ5/4 − 7κ+ 5κ3/4 + 4

√
κ− 7 4

√
κ+ 4

)
is

nonnegative for κ ∈ [0, 1]. We change variables x← κ1/4 (which is invertible since κ ∈ [0, 1]),
and study the polynomial

p4(x) = x8 − x7 + 2x6 + 3x5 − 7x4 + 5x3 + 4x2 − 7x+ 4

96

on the interval [0, 1]:

p4(x) = x8 − x7 + 2x6 + 3x5 − 7x4 + 5x3 + x+ 4(1− x)2

≥ x3(x5 − x4 + 2x3 + 3x2 − 7x+ 5)
= x3(x5 − x4 + 2x3 − x2 + x+ 1 + 4(1− x)2)
≥ x3(x5 + x3 + 1 + 4(1− x)2)
≥ 0,

hence p3(β+) ≥ 0, which concludes the proof.

4.B Proximal variants

A natural extension of smooth and strongly convex optimization is the case composite optimization

min
x∈Rd
{F (x) ≡ f(x) + g(x)},

where f ∈ Fµ,L(Rd) and g ∈ F0,∞(Rd) is a proper convex function with proximal operator available.

Proximal accelerated gradient method (Algorithm 4.B)

Input:

- Objective function: f ∈ Fµ,L(Rd), g ∈ F0,∞(Rd).

- Initial guess: x0 ∈ Rd.

- Optimal objective value: f∗ ∈ R.

- Smoothness parameter: L ∈ R∗.

Initialization:

y0 = x0

Run:

For k = 0, . . . :

yk+1 = prox g
L

(xk − 1
L∇f(xk))

Compute µ̃k and βk =
√
L−
√
µ̃k√

L+
√
µ̃k

xk+1 = yk+1 + βk(yk+1 − yk)

End For

Output: yk+1

97

We used the proximal version of AGM with constant momentum. It is of the same form as Al-
gorithm 4.3 but the gradient step is combined with a proximal step. We extended our estimate µ̃k
the following way. Given F ≡ f + g where f ∈ Fµ,L(Rd) and g a proper convex function that is
proximable,

µ̃k = D(yk+1, L)
2(F (yk+1)− F∗)

,

where
D(x, L) = −2L min

y

[
〈∇f(x), y − x〉+ L

2 ‖x− y‖
2 + g(y)− g(x)

]
.

Notice that when g = 0 the previous formula is exactly (Acc. Variant I). Also, when they are well
defined these estimates still belong to [µ,L] [Karimi et al., 2016].

4.C Study of standard Polyak steps

In this section, we briefly study the standard choice of step sizes (Polyak).

4.C.1 Practical behavior

From numerical experiments, we noticed that (Variant I) was actually typically performing only slightly
better than vanilla gradient descent. From a worst-case point of view, this is expected. However, our
experiments (see Figures 4.1 and 4.7) suggest that regular Polyak steps (Polyak) actually perform much
better than one could expect from its worst-case guarantees.

In this section, we provide a tentative explanation of this behavior, through experiments on a toy
example. Figure 4.C.1 (top) was obtained by running the methods on a least squares problem (we used
a rescaled version of the Sonar dataset, with regularity parameters L = 1 and µ = 0.01).

Similar in spirit as in Figure 4.2 (left), we provide, in Figure 4.C.1, the worst-case ratio of ‖xk+1−
x∗‖2/‖xk − x∗‖2 (by solving (4.12) numerically for regular Polyak steps). One can observe that the
worst case rate (using distances to optimum as the criterion) is slightly worse than that of (Variant I)
(note that this rate can be improved through the use of refined Lyapunov functions).

In Figure 4.C.1, we provide the distributions of step size magnitudes observed through the opti-
mization process on the toy example. One can notice that the distribution does not fully concentrate
around the worst-case value (the value of γ that achieves the worst-case) for (Polyak). A large pro-
portion of effective step size values are even located in regions of fast convergence. On the contrary,
for (Variant I), the distribution is much more concentrated around its worst-case. Those distributions
strongly suggest that worst case analyses might not be the best way to explain the good practical be-
haviors of such adaptive methods.

We show in the next section that Polyak steps methods with step sizes (Polyak) and (Variant I)
behave similarly in the worst-case, although their practical performances appear quite different.

4.C.2 A worst-case example

Note that the numerical worst-case guarantee for standard Polyak steps in Figure 4.C.1 is only valid for
1 iteration of the method. The worst-case behavior after N iterations could potentially be much better.
However, as for Polyak steps with (Variant I), we can exhibits a function on which the convergence rate
for the distance to the optimum after N iterations is (L−µ)2N

(L+µ)2N .

98

0 200 400
10−11

10−7

10−3

101

iterations

f
−
f
∗

GD
AGM-smooth
Polyak
Variant I

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

γ

Distribution of observed {γk}k
Convergence rate ρ(γ)

maxγ ρ(γ) = L2−Lµ+µ2

(L+µ)2

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

γ
2

Distribution of observed {γk}k
Convergence rate ρ(γ)

maxγ ρ(γ) = (L−µ)2

(L+µ)2

Figure 4.C.1: Top: Least squares on rescaled Sonar dataset (L = 1 and µ = 0.01). Middle: ρ(γ)
for (Polyak) (blue)—computed numerically following the methodology of Section 4.4 with fixed L = 1
and µ = 0.01. Distribution of effective step size magnitudes (black) used throughout the 150 iterations
of (Polyak) appearing in (top). Bottom: ρ(γ) for (Variant I) (blue)—with L = 1 and µ = 0.01.
Distribution of effective step size magnitudes (black) used throughout the 400 iterations of (Variant I)
appearing in (top).

99

Proposition 4.C.1. Let d ≥ 2, N ∈ N, x0 ∈ Rd, 0 < µ ≤ L
3 , there exists f ∈ Fµ,L(Rd) such that, the

output xN of Algorithm 4.2 with step sizes (Polyak) applied to f satisfies

‖xN − x∗‖2 =
(

(L−µ)2

(L+µ)2

)N
‖x0 − x∗‖2,

where x∗ = argminx f(x).

Proof. The structure of the worst-case example that we present here is similar to that in Section 4.2.1.
Indeed, we consider the 2-dimensional quadratic function

f(x) = 1
2x

THx,

with

H = 1
3(L+µ)

(
4Lµ −

√
Lµ(L− 3µ)(3L− µ)

−
√
Lµ(L− 3µ)(3L− µ) 4L2 − (L− 3µ)(L+ µ)

)
.

We can compute Tr(H) = L + µ and det(H) = Lµ, therefore H has L and µ as eigenvalues and

f ∈ Fµ,L(Rd). Let x0 =
(

1
0

)
, and {xk}k define as

xk+1 = xk − f(xk)−f∗
‖∇f(xk)‖2∇f(xk).

As in the proof of Proposition 4.2.1, we can show that the Polyak steps keep the value 2
L+µ , that

x2 = (L−µ)2

(L+µ)2x0 and ‖x1 − x∗‖2 = (L−µ)2

(L+µ)2 ‖x0 − x∗‖2, which leads to

x2k+1 = (L−µ)2

(L+µ)2

2k
x1

x2k+2 = (L−µ)2

(L+µ)2

2k+2
x0,

(4.25)

and the proof is concluded similarly to the proof of Proposition 4.2.1.

100

Chapter 5

Principled Analyses of First-Order
Methods with Inexact Proximal
Operations

Proximal operations are among the most common primitives appearing in both practical and theoretical
(or high-level) optimization methods. This basic operation typically consists in solving an intermedi-
ary (hopefully simpler) optimization problem. In this chapter, we survey notions of inaccuracies that
can be used when solving those intermediary optimization problems. Then, we show that worst-case
guarantees for algorithms relying on such inexact proximal operations can be systematically obtained
through a generic procedure based on semidefinite programming. This methodology is primarily based
on the approach introduced by Drori and Teboulle Drori and Teboulle [2014] and on convex interpola-
tion results [Taylor et al., 2017c], and allows producing non-improvable worst-case analyses. In other
words, for a given algorithm, the methodology generates both worst-case certificates (i.e., proofs) and
problem instances on which those bounds are achieved.

Relying on this methodology, we study numerical worst-case performances of a few basic methods
relying on inexact proximal operations including accelerated variants, and design a variant with opti-
mized worst-case behavior. We further illustrate how to extend the approach to support strongly convex
objectives by studying a simple relatively inexact proximal minimization method.

Contributions We can summarize our main contributions as follows:

(i) We review the literature on inexactness criteria in proximal computations and show that many of
them can be expressed in a generic way.

(ii) We show that the performance estimation approach [Drori and Teboulle, 2014, Taylor et al.,
2017c] can be used for analyzing algorithms with inexact proximal computations.

(iii) We provide an accelerated relatively inexact proximal point method with optimized worst-case
guarantees.

Organization This work is organized as follows: Section 5.1 introduces the notions of inexact prox-
imal computations and computer-assisted worst-case analyses. In Section 5.2 we survey common and
natural notions of inaccuracies for proximal operations. Then, because of the structure of the inexact-
ness criteria, we show in Section 5.3 that worst-case analyses of algorithms relying on such inexact

101

proximal operations can be studied with performance estimation, which we later illustrate through
several examples. Finally, we use the approach to optimize the parameters of a method relying on in-
exact proximal operations, in Section 5.4. Strongly convex objectives are treated in Section 5.5, before
drawing some conclusions in Section 5.6.

5.1 Introduction

Proximal operations serve as base primitives in many conceptual and practical optimization methods.
Formally, given a closed, proper, convex function h : Rd → R, the proximal map of h, denoted by
proxλh : Rd → Rd, is

proxλh(z) = argmin
x∈Rd

{
λh(x) + 1

2‖x− z‖
2
}
,

where λ is a step size. In ideal situations, proximal operations are accessed through analytical expres-
sions (see e.g., Chierchia et al. [2020]). However, in many cases, proximal steps have to be computed
only approximately (e.g., via iterative methods). Although those problems may often be solved effi-
ciently, one has to take those inaccuracies into account while analyzing the corresponding algorithms,
in order to design methods that are sufficiently robust, and for avoiding solving the proximal subprob-
lem to an unnecessary high precision. Those topics are motivated in different areas of the optimization
literature, in particular for augmented Lagrangian techniques (e.g., when the augmented Lagrangian
has to be solved numerically), and in the context of splitting methods when proximal operators are
complicated, or expensive, to compute.

In this chapter, we show that the performance estimation framework, originating from Drori and
Teboulle [2014], can be used for studying algorithms whose base operations are approximate proximal
operators. We illustrate the approach by studying numerical worst-case guarantees on various methods
from the literature, and by designing an optimized inexact proximal minimization method. On the way,
we survey notions of approximate proximal operators that are used in the literature.

5.1.1 Motivations and contributions

The main motivation of this work is to improve our capabilities of performing worst-case analyses of
algorithms involving inexact proximal operations. Relying on the idea of performance estimation, and
convex interpolation, we show that such analyses (i) can be completed in a principled way, and (ii)
that semidefinite programming can help in the process of designing the proof. We first illustrate the
approach on a variant of the inexact proximal point algorithm under a simple model of inaccuracy, and
further explore the worst-case behavior of a few accelerated inexact proximal methods from Salzo and
Villa [2012], Monteiro and Svaiter [2013]. Then, we use it for designing an optimized relatively inexact
method under a generic primal-dual inaccuracy model. Finally, we use a simple inexact proximal
minimization method for showing how to extend the methodology to treat strongly convex objectives.

5.1.2 Relationships with previous works

Proximal operations, originally introduced by Moreau [Moreau, 1962, 1965], serve as base primitives
in many conceptual and practical algorithms. In optimization, its use is omnipresent and originally
attributed to Martinet [Martinet, 1970, 1972] and Rockafellar [Rockafellar, 1976a,b]. Successful ex-
amples of algorithms relying on proximal operators include proximal gradient methods [Bruck Jr, 1975,

102

Lions and Mercier, 1979, Passty, 1979, Beck and Teboulle, 2009, Nesterov, 2013], the celebrated alter-
nating direction method of multipliers [Fortin and Glowinski, 1983, Gabay, 1983], the related Douglas-
Rachford splitting [Douglas and Rachford, 1956, Lions and Mercier, 1979, Eckstein and Bertsekas,
1992], and many other splitting methods [Lions and Mercier, 1979, Eckstein, 1989]. This type of
methods are abundantly used in the optimization literature, and lies at the heart of many optimization
paradigms that includes distributed/decentralized optimization (e.g., through operator splitting), aug-
mented Lagrangian techniques [Rockafellar, 1973, 1976a, Iusem, 1999, Eckstein and Silva, 2013], and
other meta-algorithms, such as “Catalyst” [Lin et al., 2015, 2018]. The many aspects of their theoret-
ical and practical uses are heavily covered in the literature, and we defer those discussions to surveys
on such topics [Boyd et al., 2011, Combettes and Pesquet, 2011, Eckstein and Yao, 2012, Parikh and
Boyd, 2014, Ryu and Boyd, 2016] and the references therein.

Proximal operations and inexactness Using inexact solutions to proximal operations is not a new
idea. First analyses of approximate proximal algorithms for monotone inclusions and optimization
problems emerged in Rockafellar [1976b], and this topic appeared in many works since then (see
e.g., Güler [1992], Salzo and Villa [2012], Auslender [1987], Solodov and Svaiter [2001], Fuentes
et al. [2012], Correa and Lemaréchal [1993], Solodov and Svaiter [2000b,a]). Many notions of in-
accuracies are also already covered in the literature. In particular, those notions were applied to the
proximal point algorithm Burachik et al. [1997], Eckstein [1998], Solodov and Svaiter [1999a], Mon-
teiro and Svaiter [2013], inexact splitting scheme such as forward-backward splitting (and its acceler-
ated variants) [Schmidt et al., 2011, Villa et al., 2013, Millán and Machado, 2019, Bello-Cruz et al.,
2020], Douglas-Rachford [Eckstein and Yao, 2017, 2018, Svaiter, 2018, Alves et al., 2019], three-
operator splitting [Zong et al., 2018], online optimization [Dixit et al., 2019, Ajalloeian et al., 2020,
Bastianello et al., 2020], and for designing meta-algorithms such as the hybrid approximate extragra-
dient method [Solodov and Svaiter, 1999a, Monteiro and Svaiter, 2010, 2013, Alves and Marcavillaca,
2019], and “Catalyst” [Lin et al., 2015, 2018]. Inexact proximal operations are also closely related to
the theory of ε-subdifferentials, introduced in Brøndsted and Rockafellar [1965], and to their inexact
gradient and subgradient methods (see e.g., Simonetto and Jamali-Rad [2016], Millán and Machado
[2019], Devolder [2013], Devolder et al. [2014]). Finally, let us mention higher-order proximal meth-
ods, that are introduced in Nesterov [2020b,a], and also used together with notions for approximating
them.

Monotone inclusions Inexact proximal methods were also studied in many works in the context of
monotone operators and monotone inclusion problems [Rockafellar, 1976b] (see e.g., Bauschke and
Combettes [2011] for the general topic of monotone operators, or the nice tutorial Ryu and Boyd
[2016]). This was often done through notions of enlargements [Burachik et al., 1998, 1997, 2015],
see for example Solodov and Svaiter [1999a, 2001], Burachik et al. [1999], Alves and Marcavillaca
[2019], Monteiro and Svaiter [2010], Boţ and Csetnek [2015]. Though we are not going to work
with monotone operators and inclusions, there is no apparent obstacle in applying the methodology
presented here directly for dealing with inexactness in such setups.

Computer-assisted analyses Using semidefinite programming for obtaining worst-case guarantees
in the context of first-order optimization schemes dates back to Drori and Teboulle [2014], via so-called
performance estimation problems (PEPs), which they use to provide novel analyses of gradient, heavy-
ball and accelerated gradient methods (see Polyak [1964], Nesterov [1983]). Performance estimation
problems were coupled with “convex interpolation” results in Taylor et al. [2017c,a], allowing the PEP

103

approach to be guaranteed to generate tight worst-case certificates. For obtaining simpler proofs, per-
formance estimation problems can be used for designing potential functions Taylor and Bach [2019].
This idea is closely related to that based on integral quadratic constraints (IQCs), originally coined
in control theory [Megretski and Rantzer, 1997], and which were introduced for analyzing linearly-
converging first-order methods in Lessard et al. [2016]; and later extended to deal with sublinear con-
vergence rates Hu and Lessard [2017]. We will not further discuss IQCs here, as the current framework
essentially relies on PEPs. Those methodologies being closely related, the developments below could
be formulated, instead, in control-theoretic terms.

Let us mention that the PEP methodology was already taken further in different directions, as for
example in the context of monotone inclusions: for the three operator splitting [Ryu et al., 2020], prox-
imal point algorithm [Gu and Yang, 2019a,b], and accelerated variants [Kim, 2021]. The methodology
was also used in a saddle-point setting in [Drori, 2014, Section 4.6] and for studying worst-case proper-
ties of fixed point iterations [Lieder, 2020]. Both IQCs and PEPs were also already used for performing
algorithmic design in different settings, starting through the works by Drori and Teboulle [2014], Kim
and Fessler [2016], Drori and Teboulle [2016] and taken further in different directions [Taylor et al.,
2017a, Kim and Fessler, 2018, Van Scoy et al., 2018, Drori and Taylor, 2020, Kim and Fessler, 2021,
Kim, 2021, Ryu and Vũ, 2019]. The methodology was also used in the context of multiplicative gra-
dient noise [Klerk et al., 2020, 2017, Cyrus et al., 2018], and Bregman gradient methods [Dragomir
et al., 2021].

5.1.3 Preliminary material

We denote by Fµ,∞(Rd) the set of closed proper µ-strongly convex functions on Rd with 0 ≤ µ <∞,
and by F0,∞(Rd) the corresponding subset of closed, proper and convex functions. Depending on the
context, we will also use the notation ∂h(x) for denoting the subdifferential of h at x, or for abusively
denoting a particular subgradient of h at x, for notational convenience. For h ∈ F0,∞(Rd), the proximal
problem can be formulated through a primal, a saddle point, or a dual formulation, as follows:

min
x
{Φp(x; z) ≡ λh(x) + 1

2‖x− z‖
2} (P)

max
v

min
x
{Φ(x, v; z) ≡ λh(x) + 〈λv; z − x〉 − 1

2‖λv‖
2} (SP)

max
v
{Φd(v; z) ≡ −λh∗(v)− 1

2‖λv − z‖
2 + 1

2‖z‖
2}, (D)

where h∗ ∈ F0,∞(Rd) denotes the Fenchel conjugate of h. In this setting, a sufficient condition
for having no duality gap is that ri(domh) 6= ∅ (see e.g., Rockafellar [1996, Corollary 31.2.1], or
discussions in Chambolle and Pock [2016, Section 3.5]). In the following sections, we examine natural
approximate optimality conditions for those three problems. Let us recall a few relations between their
optimal solutions. First, first-order optimality conditions along with Fenchel conjugation allows writing

x = proxλh(z)⇔ z−x
λ ∈ ∂h(x)⇔ x ∈ ∂h∗(z−xλ)⇔ z−x

λ = proxh∗/λ(zλ).

By noting the last equality can be written as z−proxλh(x)
λ = proxh∗/λ(zλ), we arrive to Moreau’s identity

proxλh(z) + λproxh∗/λ(zλ) = z (Moreau)

and to the corresponding identity in terms of function values:

h(proxλh(z)) + h∗(proxh∗/λ(zλ)) = 〈proxλh(z); proxh∗/λ(zλ)〉.

104

Though not being mandatory for the understanding of the material covered in the sequel, a great deal
of simplifications in the exposition (particularly in the algorithmic analyses) can be obtained through
the notion of ε-subdifferentials [Brøndsted and Rockafellar, 1965].

Definition 5.1.1 (Section 3 of Brøndsted and Rockafellar [1965]). Let h ∈ F0,∞(Rd). For any ε ≥ 0,
we denote by ∂εh(x) the ε-subdifferential of h at x ∈ Rd:

∂εh(x) = {g |h(z) ≥ h(x) + 〈g; z − x〉 − ε ∀z ∈ Rd}
= {g |h(x) + h∗(g)− 〈g;x〉 ≤ ε}.

Any g ∈ ∂εh(x) is called an ε-subgradient of h at x ∈ Rd.

Before finishing this section, let us note that the symmetry of the second equality in the definition
implies g ∈ ∂εh(x)⇔ x ∈ ∂εh∗(g).

5.2 Notions of inexactness for proximal operators

Our main motivation in this section is to survey the main natural notions of inexact proximal operations
that can be used in practical applications. In particular, when solving a proximal subproblem through
an iterative method, we want to be able to assess the quality of an approximate solution. Therefore, it
is important to have accuracy requirements that can be evaluated in practice, and which do not depend
on quantities to are generally unknown to the user, such as the exact solution to the proximal sub-
problem, or an optimal function value. A natural way to design such candidates accuracy conditions
is to inspect optimality conditions of the proximal subproblem, and to require our approximate solu-
tions to the subproblems to satisfy them within an appropriate accuracy. We focus on the optimization
settings, but many notions extend to the monotone operator world either directly or using concepts of
enlargements [Burachik et al., 1997, 1998].

Before proceeding, note that all notions do not have the same practical implications, as some might
for example require having access to the dual problem (D), or having access to h∗, whereas other do
not. In addition, it might be easy to find approximate solutions for certain accuracy requirements, but
hard to find candidates for others, depending on the target application.

In this section, we propose a list of natural notions for measuring inaccuracies within proximal
operations. Those notions are not new, and our intent here is to list them in a systematic way, and to
show (in the next section) that worst-case analyses of natural algorithms relying on such notions can be
studied by following the same principled steps.

Our starting point is to express optimality conditions for the proximal subproblem in its different
forms (P), (SP), and (D), as follows.

• First-order optimality conditions of (SP) can be written as{
x = proxλh(z)
v = proxh∗/λ(zλ) ⇔ 0 ∈

(
∂xΦ(x, v; z)

∂v(−Φ(x, v; z))

)
,

which can equivalently be formulated as the optimality conditions of either (P) or (D):{
0 = ‖w − v‖ for some w ∈ ∂h(x)⇔ 0 = ‖u− x‖ for some u ∈ ∂h∗(v),
0 = ‖x− z + λv‖.

105

• Assuming no duality gap occurs between (P) and (D) (see Section 5.1.3), one can write the
zeroth-order optimality conditions (i.e., the primal-dual gap) for (SP){

x = proxλh(z)
v = proxh∗/λ(zλ) ⇔ Φp(x; z)− Φd(v; z) = 0,

which can explicitly be written as

Φp(x; z)− Φd(v; z) = λh(x) + λh∗(v)− λ〈x; v〉+ 1
2‖x− z + λv‖2.

We observe in the previous primal-dual gap expression that it decomposes as the sum of two
nonnegative quantities λh(x) + λh∗(v) − λ〈x; v〉 and 1

2‖x − z + λv‖2. In particular, the first
term controls how far is v from ∂h(x). Indeed, first-order optimality conditions applied to the
definition of the Fenchel-Legendre transform (see e.g., Rockafellar [1996, Theorem 23.5]) gives

0 = λh(x) + λh∗(v)− λ〈x; v〉 ⇔ v ∈ ∂h(x)⇔ x ∈ ∂h∗(v).

Moreover, when this term is nonzero, one can express the relationship between x and v through
ε-subdifferentials (see Definition 5.1.1) as

h(x) + h∗(v)− 〈v;x〉 ≤ ε⇔ v ∈ ∂εh(x)⇔ x ∈ ∂εh∗(v).

In other word, for any primal-dual pair (x, v), v is always an ε-subgradient of h at x with ε =
h(x) + h∗(v)− 〈x; v〉 (which is finite when v ∈ domh∗).

Those elements motivate measuring inaccuracies simultaneously in two ways:

(i) requiring ‖x− z + λv‖ being small enough (i.e., requiring (Moreau) to hold approximately),
and

(ii) requiring either v being close enough to ∂h(x), and/or how x being close enough to ∂h∗(v).
Via the primal-dual gap formulation, this is done by requiring h(x) + h∗(v)− 〈v;x〉 to be small
enough. In first-order optimality conditions, this could be done by requiring ‖v − w‖ to be small
enough for some w ∈ ∂h(x) or ‖x− u‖ to be small enough for some u ∈ ∂h∗(y).

Note that when either the candidate dual solution satisfies v ∈ ∂h(x), or the candidate primal solution
satisfies x ∈ ∂h∗(v) (for example if the proximal subproblem is solved via a purely primal, or purely
dual, method), then the only term that needs to be controlled is that of (i). In the case where either
the approximate dual solution is chosen as v = z−x

λ or the approximate primal solution is chosen as
x = z − λv, the only term that needs to be controlled is (ii), as (i) is automatically 0. In other cases,
both terms need to be controlled.

5.2.1 A few observable notions of inexactness

In this section, we are interested in inexactness notions that do no require knowledge on proxλh(z) or
proxh∗/λ(zλ) to be evaluated. In what follows, we denote the primal-dual gap by

PDλh(x, v; z) := Φp(x; z)− Φd(v; z),

and the Moreau gap by
Mλ(x, v; z) := ‖x− z + λv‖2,

for convenience, and we recall a property on the primal-dual gap that was stated earlier in Section 5.2
but that is key to compare it with ε-subgradient based criterion in the literature.

106

Lemma 5.2.1. Let h ∈ F0,∞(Rd), ε ≥ 0, x, v, z ∈ Rd. If v ∈ ∂εh(x), then the following inequality
holds

PDλh(x, v; z) ≤ 1
2 Mλ(x, v; z) + λε.

Furthermore, it holds with equality when ε = h(x) + h∗(v)− 〈x; v〉.
Reciprocally, let σ ≥ 0, x, v, z ∈ Rd, if PDλh(x, v; z) ≤ σ then,

v ∈ ∂εvh(x), with εv = σ
λ −

1
2λ Mλ(x, y; z).

Therefore, imposing an upper bound on the right hand side, automatically imposes a bound on
the primal-dual gap. We list a series of criterion that were used in different works for quantifying the
quality of some primal-dual pair (x, v) for approximating the pair (proxλh(z), proxh∗/λ(z/λ)). In all
the criteria that follow, σ denotes an error magnitude that we do not specify for now as we focus on the
left hand side of the inexactness criteria.

• (Primal-dual inaccuracy, take I) The quality of a primal-dual pair (x, v) for approximating the
couple (proxλh(z), proxh∗/λ(z/λ)) can be monitored by requiring

PDλh(x, v; z) ≤ σ,

to hold for some predefined σ ≥ 0. Using Lemma 5.2.1, one can reformulate this require-
ment as ∃ε ≥ 0: v ∈ ∂εh(x) and 1

2‖x− z + λv‖2 + λε ≤ σ. This criterion is used among
others in the hybrid approximate extragradient (HPE) framework [Solodov and Svaiter, 1999a,
2000a,b, 2001], in its inertial/accelerated versions [Monteiro and Svaiter, 2013, Boţ and Csetnek,
2015, Alves and Marcavillaca, 2019], or for forward-backward splittings [Millán and Machado,
2019, Bello-Cruz et al., 2020]. This criterion is generalized in the (monotone) operator world,
through the notion of ε-enlargements [Burachik et al., 1998, 1997], generalizing the notion of
ε-subdifferentials.

Stronger notions of primal-dual pairs can be obtained by coupling the primal and dual estimates, as
follows.

• (Primal-dual inaccuracy, take II) The quality of a primal point x for approximating proxλh(z)
can be monitored by constructing an approximate dual point through (Moreau): v = z−x

λ and
requiring the corresponding primal-dual gap to satisfy

PDλh(x, z−xλ ; z) ≤ σ.

Note that this formulation can be rewritten as PDλh(x, z−xλ ; z) = λh(x)+λh∗(z−xλ)−λ〈x; x−zλ 〉
≤ σ ⇔ z−x

λ ∈ ∂σ/λh(x), or equivalently x = z − λv with v ∈ ∂σ/λh(x), or even in a dual form
v = z−u

λ with u ∈ ∂σ/λh∗(v). This notion of inaccuracy was also used in quite a few works,
see e.g., Lemaire [1992], Cominetti [1997] and more recently in Villa et al. [2013] and Salzo and
Villa [2012, “approximation of type 2”].

• (Primal-dual inaccuracy, take III) The quality of a primal point x for approximating proxλh(z)
can be monitored by constructing an approximate dual point as v = h′(x) ∈ ∂h(x) and by
requiring

PDλh(x, h′(x); z) ≤ σ.

In this case, the criterion can be written as PDλh(x, h′(x); z) = 1
2‖x − z + λh′(x)‖2 ≤ σ,

which is equivalent to x = z − λv + λe with v ∈ ∂h(x) and λ2

2 ‖e‖
2 ≤ σ. This error criterion

107

was among the first to be used, see Rockafellar [1976b], and was later used in many works, see
e.g., Burke and Qian [1999], Solodov and Svaiter [1999b, 2000a,b], Eckstein [1998], Alves et al.
[2019], and Salzo and Villa [2012, “approximation of type 3”].

Among known methods for dealing with inexact proximal iterations, extra-gradient methods occupy an
important place (see, e.g., the conceptual algorithm in Nemirovski [2004]). Intuitively, the idea is to
compute some intermediate point u ≈ proxλh(z), to evaluate some u′ ∈ ∂h(u) (or an ε-subgradient
version of it), and to use x = z − λu′ as our working approximation of proxλh(z). Natural notions of
inaccuracy applied on u can also then directly be interpreted in terms of x, as follows.

• (Primal-dual inaccuracy, take IV) One way to interpret the hybrid proximal extra-gradient method
[Solodov and Svaiter, 1999a] is that it measures the quality of a primal point x for approximating
proxλh(z) by requiring the existence of some other primal point u satisfying

PDλh(u, z−xλ ; z) ≤ σ.

Equivalently, one can write this condition as ∃ε ≥ 0 and ∃u ∈ ∂εh∗(z−xλ) such that 1
2‖u− x‖

2 +
λε ≤ σ, which we can also explicitly rewrite in an extra-gradient format as: x = z − λu′ with
u′ ∈ ∂εh(u), 1

2‖u − z + λu′‖2 + λε ≤ σ for some feasible u. In other words, it corresponds to
obtain a u ≈ proxλh(z) according to the primal-dual inaccuracy criterion (take I) on u, and to
use x = z − λu′ as the working approximation of proxλh(z).

• (Primal-dual inaccuracy, take V) A stronger version of the previous construction for measuring
inaccuracy of x consists in picking u ∈ ∂h∗(z−xλ) and requiring

PDλh(u, z−xλ ; z) = 1
2‖x− u‖

2 ≤ σ.

In this setting, one can rewrite x = z − λu′ with u′ ∈ ∂h(u) with 1
2‖x − u‖2 ≤ σ. This

condition was presented, and used, in Solodov and Svaiter [2000c] (though not exactly using
this viewpoint). This corresponds to apply the primal-dual inaccuracy criterion (take III) on
u ≈ proxλh(z), and to use x = z − λu′ as the working approximation of proxλh(z). This
criterion is also used in Eckstein and Yao [2017] for relatively inexact Douglas-Rachford and
ADMM.

Perhaps curiously, applying the same extra-gradient idea to primal-dual inaccuracy (take II), one re-
covers (take II) without any change.

One can then do the same exercise by requiring first-order optimality conditions to be approxima-
tively satisfied. As previously explained, the corresponding notions of inexactness actually collapse
with those based on primal-dual requirements as soon as either the dual variable is a subgradient of h
at the primal point v ∈ ∂h(x), or equivalently when x ∈ ∂h∗(v).

• (Primal-dual subgradient residual) Among the many possibilities for quantifying the quality of
a primal-dual pair (x, v) as an approximation of the solution (proxλh(z), proxh∗/λ(z/λ)), one
probably natural criterion is to require

max{‖x− z + λv‖, ‖v − ∂h(x)‖, ‖x− ∂(h∗)(v)‖} ≤ σ.

Another possibility is to require a positively weighted sum of those different terms to be small
enough.

108

Note that one can design alternate criteria by performing conic combinations, intersections and unions
of previous inaccuracy criteria. Finally, note that the choice of the most appropriate criterion depend
on the application at hand (e.g., depending on the cost of obtaining an approximation satisfying the
accuracy requirement, and on the cost of checking it).

Remark 5.2.2. In practice, as soon as one can use a first-order (or higher-order) method for solv-
ing (P), (D) or (SP) there are often different ways to obtain primal-dual pairs (x,v) satisfying some
primal-dual inexactness requirement. Depending on the application, h∗ and ∂h∗ might or might not
be available, rendering some criterion irrelevant for that particular application. In particular, it is
common that (P) can be solved approximately and one has access to elements of ∂h(x). Then, criteria
of the form PDλh(x, ∂h(x); z) ≤ σ can be used, as in Alves et al. [2019].

5.2.2 Abstract, generally non-observable, notions of inexactness

Some notions are more complicated to directly monitor in practice. However, they might allow model-
ing certain situations that are not covered by previous notions (such as dealing with possibly infeasible
primal and dual solutions).

• (Purely primal (or dual) inaccuracy) The quality of an approximate x ≈ proxλh(z) can be mon-
itored by requiring x to satisfy, for some σ ≥ 0

PDλh(x, proxh∗
λ

(zλ); z) = Φp(x; z)− Φp(proxλh(z); z) ≤ σ

This notion is directly considered, e.g., in Auslender [1987], Schmidt et al. [2011], Lin et al.
[2015, 2018], in Salzo and Villa [2012, “approximation of type 1”], and indirectly in other works
(e.g., Güler [1992, Lemma 3.1]). Although it is mostly impractical (as it requires knowing the
optimal value of the proximal subproblem), it can be verified indirectly via other error crite-
rion (such as a primal-dual gap). In the same spirit, one could use purely dual requirements
Φd(proxh∗/λ(z/λ); z)− Φd(v; z).

• (Distance to the solution) A primal candidate x ≈ proxλh(z) may be required to be close to
proxλh(z). That is, for some σ > 0, one may require

‖x− proxλh(z)‖ ≤ σ.

This corresponds to control an approximate Moreau gap Mλ(x, v; z) with v = proxh∗/λ(z/λ).
This notion is also not new [Rockafellar, 1976b, Güler, 1992], and can also be verified indirectly,
e.g. via 1

2‖x− proxλh(z)‖2 ≤ PDλh(x, proxh∗/λ(z/λ); z). Its dual version corresponding to
‖proxh∗/λ(z/λ)− v‖, or a primal-dual notion as ‖x− proxλh(z)‖2 +λ2‖proxh∗/λ(z/λ)− v‖2
could also be considered.

5.2.3 Absolute versus relative inaccuracies

Depending on algorithmic requirements, error tolerances might be specified in terms of absolute con-
stants, or as functions of the state of the algorithm at hand. For example, a common situation is to
choose some absolute constant σ > 0, and to require PDλh(x, v; z) ≤ σ, where σ should typically be
chosen as a decreasing function of the iteration counter. A standard alternative is to pick a relative type
of accuracy requirement, such as PDλh(x, v; z) ≤ ‖x− z‖2. Both types of requirements are pretty
standard, and were already stated in early developments on inexact proximal methods (see e.g., Rock-
afellar [1976b, condition (A) or (B)]. Relative versions often offer the advantage of being simpler to
tune, sometimes at the cost of worse performances, see e.g., Lin et al. [2018].

109

5.3 Principled, and computer-assisted worst-case analyses

In this section, we show that a generic inexact proximal method can be analyzed using performance
estimation problems. Those problems were introduced in Drori and Teboulle [2014] for analyzing
fixed-step first-order methods for smooth convex optimization, and were extended in a few directions
since then, see §“Computer-assisted analyses” in Section 5.1.2.

In short, we provide a principled approach to obtain rigorous worst-case guarantees and the cor-
responding proofs for a class of inexact proximal methods. The idea is to formulate the problem of
performing a worst-case analysis as an optimization problem, which can be solved numerically. Feasi-
ble points to this problem correspond to matching examples (i.e., worst-case instances: functions and
iterates) and feasible points to the dual problem correspond to worst-case guarantees (i.e., proofs). The
possibility of solving those problems numerically essentially allows sampling worst-case examples and
proofs for given problems and algorithmic parameters (for instance, step sizes and accuracy levels).

5.3.1 A class of inexact proximal methods

In this section we consider the minimization problem

min
x∈Rd

h(x)

with h ∈ F0,∞(Rd) (a closed, proper, and convex function) and define a class of approximate proximal
methods for solving this problem, along with a principled way of analyzing them.

Fixed-step inexact proximal methods

Let x0 ∈ Rd be an initial point, and let {λi}i be a sequence of nonnegative step sizes. When exact
proximal computations are available, a natural class of methods can be described by

wk+1 = proxλk+1h

(
wk −

k∑
i=1

αk+1,ivi

)

where vi ∈ ∂h(wi) for i = 1, . . . , k and {αi,j}ij is a sequence of parameters. In this setting, the next
iterate of the method is obtained as the result of the proximal operator of h applied to the previous
iterate plus a linear combination of previously encountered subgradients. It can be reformulated as

wk+1 = wk −
k∑
i=1

αk+1,ivi − λk+1vk+1

where vk+1 ∈ ∂h(wk+1), which corresponds to optimality conditions of the proximal subproblems.
We extend this class of algorithms for inexact proximal computations by introducing some error

terms {ei}i in the previous formulation.

wk+1 ≈ proxλk+1h

(
wk −

k∑
i=1

αk+1,ivi −
k∑
i=0

βk+1,iei

)

where vi ∈ ∂h(wi) for i = 1, . . . , k and {αi,j}ij , {βi,j}ij are sequences of parameters. In particular,
{βi,j}ij allows the method to take into account the errors made in previous proximal computations.

110

We disambiguate the ≈ notation by introducing an additional error term ek+1 and define the class of
fixed-step inexact proximal methods as

wk+1 = wk −
k∑
i=1

αk+1,ivi −
k∑
i=0

βk+1,iei − λk+1(vk+1 + ek+1), (5.1)

where vk+1 ∈ ∂h(wk+1). The error source in the proximal operation comes from the fact that vk + ek
does not necessarily belong to ∂h(wk). For modelling the error incurred in the proximal operations, in
particular the discrepancy between vk + ek an ∂h(wk), we are allowed to use all notions from previous
sections. We abstract this modelling step by imposing on the iterates some (possibly vector) inequalities
of the form

EQk(w0, . . . , wk, v0, . . . , vk, e0, . . . , ek, h(w0), . . . , h(wk)) ≤ 0. (5.2)

For readability purposes, we abusively use EQk without explicitly instantiating the inputs in what
follows.

In addition, all the inexactness criteria of Section 5.2 share a common structure which we refer to
as “Gram-representable", as follows.

Definition 5.3.1. A criterion (5.2) is Gram-representable if it is affine in h(w0), . . . , h(wk) and in
〈x; y〉 for all x, y ∈ {wi}i∈[0,k] ∪ {vi}i∈[0,k] ∪ {ei}i∈[0,k].

Compared to Definition 3.2.1, this definition allows using affine combinations (i.e. possibility of
adding constant terms). All methods in the form (5.1) subject to Gram-representable (5.2) can be
analyzed in a principled way using the performance estimation procedure presented in the next section.
Furthermore, all inaccuracy criterion presented in Section 5.2 are actually Gram-representable.

Examples

Before going into the analyses, we provide a few examples of methods that fit into model (5.1) with
Gram-representable models of the form (5.2). In all cases, we let {λk}k be a sequence of predefined
step sizes.

• The vanilla proximal minimization algorithm is given by

xk+1 = xk − λk+1vk+1,

with vk+1 ∈ ∂h(xk+1). It fits in (5.1) with αi,j = βi,j = 0, as well as ek = 0 which can be
transcribed into a Gram-representable (5.2).

• The inexact proximal minimization algorithm proposed in Rockafellar [1976a, Section 3] can be
described by

xk+1 = xk − λk+1(vk+1 + ek+1),

with vk+1 ∈ ∂h(xk+1), with the error term ek+1 being controlled via either

‖ek+1‖2 ≤
ε2k+1
λ2
k+1

, or ‖ek+1‖2 ≤
δ2
k+1
λ2
k+1
‖xk+1 − xk‖2

for some appropriate sequence {εk}k [Rockafellar, 1976a, Criterion (A’)], or {δk}k [Rockafellar,
1976a, Criterion (B’)]. In both cases, the method fits into model (5.1) with αi,j = βi,j = 0 and a
Gram-representable (5.2). Depending on how we decide to control the error, we can either pick

EQk+1 = ‖ek+1‖2 −
ε2
k+1
λ2
k+1

or EQk+1 = ‖ek+1‖2 −
δ2
k+1
λ2
k+1
‖xk+1 − xk‖2.

111

Many known proximal methods rely on using the past first-order information for improving conver-
gence guarantees of the sequence iterates.

• Güler proximal point algorithm [Güler, 1992, Section 6] is defined as follow given β0 > 0,
y0 = x0 ∈ Rd and {λk}k a sequence of positive step sizes

tk+1 = 1+
√

1+4t2
k

2
xk+1 = yk − λk+1vk+1 with vk+1 ∈ ∂h(xk+1)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk) + tk

tk+1
(xk+1 − yk)

One can substitute the yk+1 by xk+2+λk+2vk+2 and yk by xk+1+λk+1vk+1 in the last definition,
which leads to

xk+2 =
(
1 + tk−1

tk+1

)
xk+1 − tk−1

tk+1
xk − tkλk+1

tk+1
vk+1 − λk+2vk+2.

This allows to show recursively that the {xk}k belong to the class (5.1). Indeed x1 = x0−λ1v1.
Then suppose that xk+1 has the form of (5.1), with βk+1,i = 0 and ek+1 = 0, then

xk+2 =xk+1 − tk−1
tk+1

(
k∑
i=1

αk+1,ivi + λk+1vk+1

)
− tkλk+1

tk+1
vk+1 − λk+2vk+2.

And we can identify αk+2,i = tk−1
tk+1

αk+1,i for i = 1 . . . k and αk+2,k+1 = tk−1
tk+1

λk+1, as well as
βk+2,i = 0 and ek+2 = 0.

Other methods that fit in (5.1) with Gram-representable inexactness criterion (5.2) include the hybrid
approximate extragradient algorithm [Solodov and Svaiter, 1999a] (details in Section 5.A), the inexact
accelerated proximal point algorithm IAPPA1 and IAPPA2 [Salzo and Villa, 2012] (details in Sec-
tion 5.A), A-HPE [Monteiro and Svaiter, 2013] (see details in Section 5.A), and Catalyst [Lin et al.,
2015].

5.3.2 Computing worst-case guarantees

In this section, we provide a principled approach for performing worst-case analyses of fixed-step
inexact proximal methods written in terms of (5.1) and (5.2). Let N ∈ N and R ∈ R∗, for simplicity
of the exposition, we only consider worst-case guarantees of type

h(wN)− h(w∗) ≤ C(N,R), (5.3)

for all h ∈ F0,∞(Rd), w∗ ∈ argminx h(x), w0 ∈ Rd such that ‖w0 − w∗‖2 ≤ R2, and d ∈ N. Our
goal is then to compute values of C(N,R), hopefully small and decreasing with N , for this inequality
to be valid. This choice is made for simplicity purposes, and can be changed (e.g. Section 5.5); see
discussions and examples in Taylor et al. [2017a,b].

Given a method in the form (5.1) (i.e., fixed {αi,j}ij , {βi,j}ij) as well as inexactness criteria in
the form (5.2) (i.e., fixed {EQi}i), we formulate the problem of computing the smallest C(N,R) such
that (5.3) is valid. For doing that, we look for the worst problem instance for guarantees of type (5.3),

112

that is, a convex function on which h(wN)− h(w∗) is the largest possible when ‖w0 − w∗‖2 ≤ R2

C(N,R) ≥ max
d,h

w∗,w0,...,wN∈Rd
v0,...,vN∈Rd
e0,...,eN∈Rd

h(wN)− h(w∗)

s.t. h ∈ F0,∞(Rd), w∗ ∈ argmin
x

h(x)

‖w0 − w∗‖2 ≤ R2

w1, . . . , wN satisfying (5.1)

EQk ≤ 0 k = 0, . . . , N.

(5.4)

This type of problems is often referred to as a performance estimation problem (introduced in Drori and
Teboulle [2014]). It is intrinsically infinite dimensional, as it contains a variable h ∈ F0,∞(Rd). One
possible way of dealing with this variable is to restrict ourselves to work with a discrete (or sampled)
version of h. For doing that, we introduce a set S containing sampled points of h, in the form S =
{(wi, vi, hi)}i, and we reformulate the previous problem using the requirement hi = h(wi), vi ∈
∂h(wi). In addition, (5.2) implies that the EQk are only described using {ei}i and the elements of S
(we emphasize this by writing EQk(S, e)), thus we can write

C(N,R) ≥ max
d

S⊂Rd×Rd×R
e0,...,eN∈Rd

hN − h∗

s.t. S = {(wi, vi, hi)}i∈{∗,0,1,...,N}
∃h ∈ F0,∞(Rd) : f = h(x), g ∈ ∂h(x) ∀(x, g, f) ∈ S
v∗ = 0, ‖w0 − w∗‖2 ≤ R2

w1, . . . , wN satisfying (5.1)

EQk(S, e) ≤ 0 k = 0, . . . , N.

(5.5)

Now, a key step is to rely on interpolation (also often referred to as extension) theorems for for-
mulating the existence constraints in a tractable way. Such results can be formulated as follows (see
e.g., Taylor et al. [2017c, Theorem 1]) :

∃h ∈ F0,∞(Rd) : f = h(x), g ∈ ∂h(x) ∀(x, g, f) ∈ S
⇔ f ′ ≥ f + 〈g;x′ − x〉 ∀(x, g, f), (x′, g′, f ′) ∈ S.

(5.6)

It allows arriving to a nearly quadratic problem (still dependent on a dimension variable d).

max
d

S⊂Rd×Rd×R
e0,...,eN∈Rd

hN − h∗

s.t. S = {(wi, vi, hi)}i∈{∗,0,1,...,N}
f ′ ≥ f + 〈g;x′ − x〉 ∀(x, g, f), (x′, g′, f ′) ∈ S
v∗ = 0, ‖w0 − w∗‖2 ≤ R2

w1, . . . , wN satisfying (5.1)

EQk(S, e) ≤ 0 k = 0, . . . , N.

(5.7)

113

Remark 5.3.2. Let us note that inexactness requirements for proximal operators are often formulated
through ε-subdifferentials. In order to simplify the performance estimation problems, one can use
appropriate interpolation conditions for directly incorporating ε-subdifferentials. Since this interpola-
tion result is rather a trivial extension of regular convex interpolation (see e.g., Taylor et al. [2017c,
Theorem 1]), we provide it in Section 5.B.

The next section presents how problem (5.7) can be reformulated as linear semidefinite program
when the EQk are Gram-representable.

5.3.3 Semidefinite formulation

Let
H = [h0 − h∗, h1 − h∗, . . . hN − h∗] ∈ R1×(N+1)

a flat vector containing function values and

G = XTX � 0 with

X = [w∗, w0, v0, . . . vN , e0, . . . eN] ∈ Rd×(2N+4)

a Gram matrix of the vector variables of (5.7). For writing (5.7) as a semidefinite program, let us
introduce base vectors wk, vk, and ek in R2N+4 for conveniently selecting entries of X , and hk in
RN+1 for selecting entries of H , such that

wk = Xwk, vk = Xvk, ek = Xek,
hk = Hhk.

More precisely, we pick w∗ = u1, v∗ = 0, w0 = u2, vk = uk+3 (k = 0, . . . , N), ek = uk+N+4
(k = 0, . . . , N) with ui the unit vector of R2N+4 with 1 at its ith component. For wk (k = 1, . . . , N),
we use (5.1) and write

wk+1 = wk −
k∑
i=1

αk+1,ivi −
k∑
i=0

βk+1,iei − λk+1(vk+1 + ek+1).

For function values, we define h∗ = 0 and hk = uk+1 (k = 0, . . . , N) with ui now in RN+1. In
addition, when the constraints EQk(S, e) ≤ 0 are Gram-representable, that is, each EQk(S, e) ≤ 0
can be encoded as m ∈ N∗ inequalities of the form EQk,i = Tr(Ak,iG) + Hak,i ≤ bk,i with Ak,i ∈
R(2N+4)×(2N+4), ak,i ∈ RN+1, bk,i ∈ R and i ∈ [1,m], (5.7) can finally be reformulated as

max
G�0, H

H(hN − h∗)

s.t. 0 ≥ H(hi − hj) + vTi G(wj −wi) ∀i, j ∈ {∗, 0, . . . , N}
R2≥ (w0 −w∗)TG(w0 −w∗)
0 ≥ −bi,j +Hai,j + Tr(Ai,jG) ∀i ∈ {0, . . . , N}, j ∈ {1, . . . ,m},

(5.8)

which is a linear semidefinite program. Feasible points correspond to discrete version of functions
h ∈ F0,∞(Rd), which can be constructed through convex interpolation mechanisms [Taylor et al.,
2017c].

Remark 5.3.3. The bi,j terms in the inexactness criterion is here to take into account possible absolute
(non-homogeneous) error terms (i.e., independent of the iterates).

114

We have seen how to solve numerically the performance estimation problem (5.4) using a semidef-
inite reformulation (5.8). The objective of the next section is to present some duality arguments that
allows to derive worst-case guarantees from feasible dual points of problem (5.8).

5.3.4 Recovering worst-case guarantees from dual solutions

The worst-case guarantees presented in the sequel were found using dual certificates (i.e., dual feasible
points) of problem (5.8). In this section, we detail the relationship between such dual feasible points
and traditional proofs not relying on semidefinite programming.

Let ν = {νi,j}ij be the nonnegative Lagrangian multipliers associated with the convex interpola-
tion constraints and µ = {µi,j}ij the ones associated with inexactness constraints. We introduce the
quantities

H̃(ν, µ) =
∑

i,j∈{∗,0,...,N}
νi,j [(hi − hj)] +

∑
i∈{0,...,N}
j∈{1,...,m}

µi,jai,j ,

G̃(ν, µ) =
∑

i,j∈{∗,0,...,N}
νi,j

[
(wj −wi)vTi

]
+

∑
i∈{0,...,N}
j∈{1,...,m}

µi,jAi,j ,

B̃(µ) =
∑

i∈{0,...,N}
j∈{1,...,m}

µi,jbi,j ,

and the Lagrangian of problem (5.8) can be expressed as

L(G,H, ν, µ, τ) =H
[
hN − h∗ − H̃(ν, µ)

]
+ τR2 + B̃(µ)

− Tr
([
G̃(ν, µ) + τ(w0 −w∗)(w0 −w∗)T

]
G
)
,

where τ ≥ 0 is the multiplier associated with the constraint on distance to optimality of the starting
point.

Since the Lagrangian is linear in G and H , maximizing with respect to H and G � 0 leads to the
following dual function

max
G�0
H

L(G,H, ν, µ, τ,D) =

τR2 + B̃(µ) if hN − h∗ = H̃(ν, µ) and

G̃(ν,µ)+G̃(ν,µ)T
2 + τ(w0 −w∗)(w0 −w∗)T � 0

+∞ otherwise

and the corresponding dual problem

min
τ≥0,

ν≥0, µ≥0

τR2 + B̃(µ)

s.t. hN − h∗ = H̃(ν, µ)
G̃(ν,µ)+G̃(ν,µ)T

2 + τ(w0 −w∗)(w0 −w∗)T � 0.

(5.9)

Therefore, for any feasible dual point (ν, µ, τ), the following inequality is valid for all G � 0, H

L(G,H, ν, µ, τ) ≤ τR2 + B̃(µ),

115

which can be rewritten as

L(G,H, ν, µ, τ)− τR2 + B̃(µ) =H
[
hN − h∗ − H̃(ν, µ)

]
− Tr

([
G̃(ν, µ) + τ(w0 −w∗)(w0 −w∗)T

]
G
)

≤ 0.

Going back to the notations of problem (5.7) the previous inequality is equivalent to

h(wN)− h∗ − τ‖w0 − w∗‖2 ≤
∑

i,j∈{∗,0,...,N}
νi,j [h(wi)− h(wj) + 〈vi;wj − wi〉]

+
∑

i∈{0,...,N}
j∈{1,...,m}

µi,jEQi,j + B̃(µ)

≤ B̃(µ),

(5.10)

the last inequality comes from the fact that the dual variables are (element-wise) nonnegative, vi ∈
∂h(wi), and EQi,j ≤ 0. Therefore, we get that

h(wN)− h∗ ≤ τ‖w0 − w∗‖2 + B̃(µ).

Thus, obtaining admissible dual points τ , ν, µ of problem (5.8) provides a way of combining interpo-
lation inequalities and inexactness criterion such that (5.10) is valid (examples of proofs relying on this
mechanism can be found e.g., Klerk et al. [2017], Lieder [2020], Taylor and Bach [2019]).

Remark 5.3.4. The quantity τR2 + B̃(µ) is always an upper-bound on C(N,R) when (τ, ν, µ) is a
feasible point of (5.9). Furthermore, under mild conditions for zero duality gap to occur (e.g., when
Slater’s condition holds for the primal problem), the smallest possible C(N,R) satisfying (5.3) is
exactly equal to τ∗R2 + B̃(µ∗) where (τ∗, ν∗, µ∗) is an optimal solution to (5.9).

Remark 5.3.5. When there is no absolute error in the proximal computations (i.e., bi,j = 0) which
corresponds to inequalities EQk that are 1-homogeneous in function values and 2-homogeneous in
vector variables, then B̃(µ) = 0 and the convergence guarantees have the standard form h(wN)−h∗ ≤
τ‖w0 − w∗‖2. In addition, we notice that solutions to the dual problem (5.9) are independent of R and
the optimal objective value is proportional to R2.

In the rest of the chapter we use this framework to analyze some optimization methods with inexact
proximal computations under different inexactness criteria.

5.3.5 Numerical examples

In this section we instantiate various inexact proximal minimization methods and exhibits numerical
worst-case guarantees using the framework of Section 5.3.

A simple relatively inexact proximal point method

The inexact proximal minimization algorithm with fixed step size presented in Section 5.3.1 corre-
sponds to updates wk+1 = wk−λ(vk+1 + ek+1), with vk+1 ∈ ∂h(wk+1), where we impose a criterion

116

of the form (Primal-dual inaccuracy, take III) that is controlled relatively by the distance between two
consecutive iterates. This corresponds to

EQk+1 = ‖ek+1‖2 − σ2

λ ‖wk+1 − wk‖2 ≤ 0

for a fixed σ ≥ 0. In this setting, problem (5.8) is of the form

max
G�0, H

H(hN − h∗)

s.t. 0 ≥ H(hi − hj) + vTi G(wj −wi) ∀i, j ∈ {∗, 0, . . . , N}
R2≥ (w0 −w∗)TG(w0 −w∗)

0 ≥ eTi Gei − σ2

λ2 (wi −wi−1)TG(wi −wi−1) ∀i ∈ {1, . . . , N},

(5.11)

using notations of Section 5.3.3.

100 101

10−3

10−2

10−1

k

h
(w
k
)−

h
∗

100 101

10−3

10−2

10−1

k

σ2 = 1
σ2 = 0.8
σ2 = 0.6
σ2 = 0.4
σ2 = 0.2
σ2 = 0

Figure 5.3.1: Numerical worst-case guarantees on h(wk)− h∗ with initial condition ‖w0 − w∗‖2 ≤ 1,
as function of k (obtained by solving semidefinite programs (5.11)) for the relatively inexact proximal
point algorithm of Section 5.3.5, with parameters λ = 1 (left), and λ = 10 (right). The dashed lines
are empirical upper bounds of the form (1 + σ)/(4λk

√
1−σ2) which we plotted for reference. The

semidefinite programs were solved through Löfberg [2004] and Mosek [2010].

One can now solve (5.11) numerically, for different values of σ, λ and R, using standard semidef-
inite solvers (see e.g.; Mosek [2010], Sturm [1999]). The corresponding numerical worst-case bounds
are provided in Figure 5.3.1 for different parameter values. Based on numerical experiments, we con-
jecture the expression R2(1 + σ)/(4λN

√
1−σ2) to be a valid C(N,R). For this example, we do not

have a proof for this bound, as the algebra involved in obtaining an analytical form of a dual feasible
point (as described in Section 5.3.4) turned out to be quite complicated in our trials on this simple
method.

This example illustrates how we can use the performance estimation approach to compute worst-
case bounds numerically, even when rigorous analytical proofs seem out of reach.

Inexact accelerated proximal point algorithms IAPPA

As detailed in Section 5.A, IAPPA1 and IAPPA2 from Salzo and Villa [2012, Section 5] fit into the
formalism of Section 5.3. In particular, one can apply Section 5.3.3 to compute numerical worst-case
guarantees, as provided in Figure 5.3.2.

Regarding the numerical experiments, note that it might be delicate to deduce asymptotic conver-
gence convergence rates by looking only at about a hundred of iterations. This is the limiting part of this

117

100 101 102

10−3

10−2

10−1

100

k

h
(x
k
)−

h
∗

100 101 102

10−3

10−2

10−1

100

k

εk = k−1

εk = k−
3
2

εk = k−2

εk = k−3

εk = k−4

εk = 0
O(k−2)

Figure 5.3.2: Numerical worst-case guarantees on h(xk)− h∗ with initial condition ‖w0 − w∗‖2 ≤ 1,
as function of k for IAPPA1 (left) and IAPPA2 (right), with constant step size equal to 1 and (εk)k
the sequence of parameters controlling the primal-dual gap values. We observe that for IAPPA1 (left),
the cases εk = k−4 (red) and εk = k−3 (purple) seems to decrease as O(k−1) as stated in Salzo and
Villa [2012, Theorem 4]. For IAPPA2 (right), Salzo and Villa [2012, Theorem 6] states that εk = k−4

(red) and εk = k−3 (purple) curves of Figure 5.3.2 (right) should exhibit a convergence in O(k−2), as
observed. More iterations might be needed to observe the same phenomenon for the εk = k−2 (green).

approach: the number of constraints in the semidefinite problems defined in Section 5.3.3 grows with
the square of the number of iterations, which limits our capabilities of solving the corresponding prob-
lem. However, we can still make some observations, and sometimes deduce proofs (see Section 5.3.4).

Let us compare numerical worst-case guarantees in Figure 5.3.2 with convergence theorems [Salzo
and Villa, 2012, Theorem 4, Theorem 6] for IAPPA1 and IAPPA2. First note that Salzo and Villa
[2012, Theorem 4] states that primal gap in IAPPA1 converges to 0 as soon as εk = O(k−q) with
q > 3

2 , which is compatible with numerical experiments in Figure 5.3.2 (left). Reciprocally, it does
seem that q ≤ 3

2 the worst-case guarantee does not converge to 0, apparently tightening Salzo and
Villa [2012, Theorem 4]. Similar observations hold for algorithm IAPPA2 (which involves a stricter
inexactness requirements) with convergence of the primal gap for q > 1/2.

Accelerated hybrid proximal Extragradient method (A-HPE)

As detailed in Section 5.A, the A-HPE method from Monteiro and Svaiter [2013, Section 3] also fits
into the formalism of Section 5.3. In particular, one can apply Section 5.3.3 to compute numerical
worst-case guarantees that we provide in Figure 5.3.3.

The numerical bounds on h(yk) − h∗ that we obtain in Figure 5.3.3 for σ = 1 seems to match
exactly the analytical bound ‖w0−w∗‖2

2Ak provided in Monteiro and Svaiter [2013, Theorem 3.6]. We
further observe that numerical worst-case guarantees for all σ ∈ [0, 1] tend to match with this analytical
bound when the number of iterations gets larger.

In the next section we describe an optimized relatively inexact proximal point method with worst-
case behavior derived from a dual feasible point, as previously described in Section 5.3.4.

118

100 100.5 101
10−3

10−2

10−1

k

h
(y
k
)−

h
∗

100 100.5 101
10−3

10−2

10−1

k

1
2Ak

σ = 1
σ = 0.75
σ = 0.5
σ = 0.25
σ = 0

Figure 5.3.3: Numerical worst-case guarantees on h(yk)− h∗ with initial condition ‖w0 − w∗‖2 ≤ 1,
as function of k for the A-HPE method with constant step size λ = 1 (left), and λ = 10 (right). The
dashed curve corresponds to a theoretical upper bound on the primal gap from Monteiro and Svaiter
[2013, Theorem 3.6].

5.4 An optimized relatively inexact proximal point algorithm

In this section we use the framework detailed in the Section 5.3 for designing an inexact proximal
minimization algorithm with optimized worst-case performances. Similar to (5.1), provided sequences
of step sizes {λi}i and parameters {αi,j}ij , {βi,j}ij , we consider iterates of the form

xk+1 = xk −
k∑
i=1

αk+1,igi −
k∑
i=1

βk+1,iei − λk+1(gk+1 + ek+1), (5.12)

and impose an inexactness criterion of the form

PDλkh(xk, gk;xk + λk(gk + ek)) ≤ σ2

2 ‖λk(gk + ek)‖2, k ≥ 1.

This class of methods actually fits into (5.1) and (5.2), as shown in the next section.
Note that as mentioned in Remark 5.3.5, in the absence of non-homogeneous error terms in the

inexactness criteria (which is the case here) and given methods parameters, provable worst-case guar-
antees derived from dual certificates are independent of the bound on the initial distance to optimality
R. Therefore, we fix R = 1 in the performance estimation problems studied in this section for simplic-
ity.

In order to find parameters {αi,j}ij and {βi,j}ij that provide the smallest possible worst-case guar-
antees on h(xN)− h∗ after N ∈ N∗ iterations, we define

W ({αi,j}ij , {βi,j}ij) := max
d,h

x∗,x0,...,xN∈Rd
g0,...,gN∈Rd
e0,...,eN∈Rd

h(xN)− h(x∗)

s.t. h ∈ F0,∞(Rd), x∗ ∈ argmin
x

h(x)

‖x0 − x∗‖2 ≤ 1
x1, . . . , xN satisfying (5.12)

PDλkh(xk, gk;xk + λk(gk + ek))

≤ σ2

2 ‖λk(gk + ek)‖2 k = 1, . . . , N,

(5.13)

119

and wish to solve the following problem

argmin
{αi,j}ij ,{βi,j}ij

W ({αi,j}ij , {βi,j}ij) . (5.14)

The rest of the section is organized as follow. First, we reformulate the method (5.12) and problem
(5.13) for fitting into the setting and notations of Section 5.3. Then, since solving (5.14) exactly is
out of reach in general, we detail a procedure to obtain feasible points (i.e., methods parameters) with
optimized objective value. Finally, we present the method obtained from this choice of parameters
together with its worst-case analysis.

5.4.1 Reformulation as fixed-step inexact proximal methods

The difference between (5.12) and (5.1) lies in the fact that we do not enforce gi ∈ ∂h(xi) in the first
model. In order to cast (5.12) into (5.1), we can define iterates as{

w2k+1 = w2k − e2k
w2k+2 = w2k −

∑k
i=1 αk+1,iv2i−1 −

∑k
i=1 βk+1e2i−1 − λk+1(v2k+1 + e2k+1), (5.15)

with vi ∈ ∂h(wi), which fits into (5.1).
The inexactness requirements are then, EQ0 = 0, EQ2k+1 = 0 and

EQ2k+2 = PDλk+1h(w2k+2, v2k+1, w2k+2 + λk+1(v2k+1 + ek+1))− σ2

2 ‖λk+1(v2k+1 + e2k+1)‖2.

Since v2k+1 ∈ ∂h(w2k+1), we can write

h∗(v2k+1) = 〈v2k+1;w2k+1〉 − h(w2k+1),

in the primal-dual gap and thus

EQ2k+2 = λk+1
2 ‖e2k+1‖2 − λk+1σ

2

2 ‖v2k+1 + e2k+1‖2 + h(w2k+2)− h(w2k+1)
− 〈v2k+1;w2k+2 − w2k+1〉.

which is Gram-representable. Finally, we can identify iterates {w2k}k with the {xk}k from (5.12) and
we have

W ({αi,j}ij , {βi,j}ij) = max
d,h

w∗,w0,...,w2N∈Rd
v0,...,v2N∈Rd
e0,...,e2N∈Rd

h(w2N)− h(w∗)

s.t. h ∈ F0,∞(Rd), w∗ ∈ argmin
x

h(x)

‖w0 − w∗‖2 ≤ 1
w1, . . . , w2N satisfying (5.15)

EQk ≤ 0 k = 0, . . . , N.

(5.16)

In the following we first give a high level overview of how we can use a relaxation of (5.16)
inside the minimization problem (5.14) to get a feasible point with optimized worst-case bound, and
then present the algorithm obtained with this choice of optimized parameters together with its sharp
convergence guarantees (sharp in the sense that given {λk}k and N we can find a function for which
the worst-case guarantee is attained exactly).

120

5.4.2 Obtaining optimized parameters

Problem (5.14) can be formulated as a linear minimization problem under a bilinear matrix inequality,
which is NP-hard in general (see e.g., Toker and Ozbay [1995]). Thus, we approximate it by using a
technique similar to that of Drori and Teboulle [2014], Kim and Fessler [2016], which consists in four
steps.

(i) Find a suitable relaxation of the inner maximization problem (5.16) i.e., only keep a subset of
the interpolation constraints. This relaxation is chosen by a numerical trial and error procedure.

(ii) Dualize the relaxed semidefinite formulation of the inner maximization problem to obtain a two-
level minimization problem.

(iii) Use a change of variable similar to that in Drori and Teboulle [2014, Section 5] to remove non-
linear terms in the bilinear semidefinite problem obtained at the previous step.

(iv) Retrieve a feasible point of (5.14) from the solution of the problem obtained in step (iii).

The final choice for the relaxation of (5.16) consisted in using only the following interpolation inequal-
ities:

• convexity inequality between w2k and w2k+1

h(w2k) ≥ h(w2k+1) + 〈v2k+1;w2k − w2k+1〉,

• convexity inequality between w∗ and w2k+1

h(w∗) ≥ h(w2k+1) + 〈v2k+1;w∗ − w2k+1〉,

• convexity inequality between w2k+2 and w2k+1

h(w2k+2) ≥ h(w2k+1) + 〈v2k+1;w2k+2 − w2k+1〉,

along with inexactness conditions EQk. Those are exactly the inequalities used in the proof in next
section.

More precisely, step (i) consisted in replacing W ({αi,j}ij , {βi,j}ij) in problem (5.14) by a relaxed
version U ({αi,j}ij , {βi,j}ij) defined in its semidefinite form as follow

U ({αi,j}ij , {βi,j}ij) :=
max
G�0, H

H(h2N − h∗)

s.t. 0 ≥ H(h2i+1 − h2i) + vT2i+1G(w2i −w2i+1) ∀i ∈ {1, . . . , N − 1}
0 ≥ H(h2i−1 − h∗) + vT2i−1G(w∗ −w2i−1) ∀i ∈ {1, . . . , N}
0 ≥ H(h2i − h2i−1) + vT2i−1G(w2i −w2i−1) ∀i ∈ {1, . . . , N}
1 ≥ (w0 −w∗)TG(w0 −w∗)
0 ≥ λi

2 eT2i−1Ge2i−1 +H(h2i − h2i−1)− vT2i−1G(w2i −w2i−1)

− σ2λi
2 (e2i−1 + v2i−1)TG(e2i−1 + v2i−1) ∀i ∈ {1, . . . , N},

(5.17)

121

Then, step (ii) consisted in dualizing the maximization problem as seen in Section 5.3.4. From
there, we search for parameters {αi,j}ij , {βi,j}ij that minimize the optimal value of the dual of (5.17).
This is a minimization problem in {αi,j}ij , {βi,j}ij and in the dual variables of (5.17), that contains
bilinear terms.

In step (iii), the bilinear terms in the minimization problem of step (ii) are replaced by new variables,
producing a linear semidefinite program that can be solved efficiently.

Finally, in the last step, we retrieve parameters {α̃i,j}ij and {β̃i,j}ij from the solutions of the
linear semidefinite program of step (iii). Note that the relaxation step (i) is chosen so that step (iv) is
achievable.

In the following, we describe the algorithm obtained from the choice of parameters {α̃i,j}ij ,
{β̃i,j}ij .

5.4.3 Algorithm and convergence guarantees

Optimized relatively inexact proximal point algorithm (ORI-PPA)

Input:

– Objective function: h ∈ F0,∞(Rd).

– Initial guess: x0 ∈ Rd.

– Inexactness parameter: σ ∈ [0, 1].

Initialization:

z0 = x0, A0 = 0,

Run:

For k = 0, 1, . . .:

Choose λk+1 ≥ 0

Ak+1 = Ak + λk+1+
√

4λk+1Ak+λ2
k+1

2

yk = xk + λk+1
Ak+1−Ak (zk − xk)

[Obtain (xk+1, gk+1) ≈
(
proxλk+1h(yk), proxh∗/λk+1(yk

λk+1
)
)

which satisfies PDλk+1h(xk+1, gk+1; yk) ≤ σ2

2 ‖xk+1 − yk‖2
]

zk+1 = zk − 2(Ak+1−Ak)
1+σ gk+1

(ORI-PPA)

End For

Output: xk+1

Perhaps luckily, it turns out that the parameters {α̃i,j}ij and {β̃i,j}ij obtained from the four step
procedure of Section 5.4.2 follow recursive equations allowing to rewrite iterations (5.1) under a

122

more compact form as presented in Algorithm (ORI-PPA) above. As mentioned earlier the iterates
{xk}k, {gk+1}k corresponds to the {w2k}k, {v2k+1}k from (5.15) using{α̃i,j}ij and {β̃i,j}ij .

The Algorithm (ORI-PPA) is actually almost the same as the A-HPE algorithm from Monteiro and
Svaiter [2013] (in particular definitions of sequences {yk}k, {zk}k are the same when σ = 1). The
main differences reside in the inexactness criterion, as we prefer to use primal-dual formulation rather
than using ε-subgradients, and in the fact that (ORI-PPA) uses explicitly the inexactness level σ in its
step sizes. This last difference allows to improve the worst-case guarantee by a constant factor 1+σ

2 ≤ 1
compared to Monteiro and Svaiter [2013, Theorem 3.6].

Perhaps surprisingly, this method reduces to that of Güler [Güler, 1992, Section 6] when using
exact proximal operations (σ = 0) and constant step size, although the current method was obtained by
crude numerical optimization of its parameters (see Section 5.C for details).

Solving numerically the dual of (5.17) allows to obtain rather simple analytical form for the optimal
dual variables. We use these multipliers as in Section 5.3.4, to prove the following theorem.

Theorem 5.4.1. Let h ∈ F0,∞(Rd), a sequence of step sizes {λk}k with λk > 0, and σ ∈ [0, 1]. For
any starting point x0 ∈ Rd, N ≥ 1, the iterates of (ORI-PPA) satisfy

h(xN)− h(x∗) ≤ (1+σ)‖x0−x∗‖2

4AN ,

with x∗ ∈ argminx h(x). Furthermore, this bound is tight: for all {λk}k with λk > 0, σ ∈ [0, 1],
d ∈ N, x0 ∈ Rd, and N ∈ N, there exists h ∈ F0,∞(Rd) such that this bound is achieved with equality.

Proof. For the sake of clarity, we present the proof using notations of (ORI-PPA), although the proof
was found via the SDP formulation (5.17).

We start with the case σ ∈ (0, 1]. The case σ = 0 is considered afterward as it requires a slightly
different treatment.

In the following we denote by uk+1 a point satisfying uk+1 ∈ ∂h∗(gk+1) or equivalently gk+1 ∈
∂h(uk+1). These uk+1 can be identified with the w2k+1 in (5.15).

Consider the following inequalities with their corresponding weights :

• convexity between xk and uk+1 with weight νk,k+1 = Ak
1+σ

(for k = 1, . . . , N − 1)

h(xk) ≥ h(uk+1) + 〈gk+1;xk − uk+1〉,

• convexity between x∗ and uk with weight ν∗,k = Ak−Ak−1
1+σ

(for k = 1, . . . , N)
h(x∗) ≥ h(uk) + 〈gk;x∗ − uk〉,

• convexity between xk and uk with weight νk,k = Ak(1−σ)
σ(1+σ)

(for k = 1, . . . , N)
h(xk) ≥ h(uk) + 〈gk;xk − uk〉,

• approximation requirement on xk with weight νk = Ak
σ(1+σ)

(for k = 1, . . . , N)

σ2

2λk ‖xk − yk−1‖2 ≥ 1
2λk ‖xk − yk−1 + λkgk‖2 + h(xk)− h(uk)− 〈gk;xk − uk〉.

123

By linearly combining the previous inequalities, with their corresponding weights (which are nonneg-
ative), we arrive to the following valid inequality:

N−1∑
k=1

νk,k+1h(xk) +
N∑
k=1

ν∗,kh(x∗) +
N∑
k=1

νk,kh(xk) +
N∑
k=1

νk
σ2

2λk ‖xk − yk−1‖

≥
N−1∑
k=1

νk,k+1[h(uk+1) + 〈gk+1;xk − uk+1〉]

+
N∑
k=1

ν∗,k[h(uk) + 〈gk;x∗ − uk〉] +
N∑
k=1

νk,k[h(uk) + 〈gk;xk − uk〉]

+
N∑
k=1

νk[1
2λk ‖xk − yk−1 + λkgk‖2 + h(xk)− h(uk)− 〈gk;xk − uk〉].

Substituting xk by its expression in (5.28), a reasonable amount of work (see Section 5.D) allows
reformulating this inequality exactly as

AN
1+σ (h(xN)− h∗) ≤1

4‖x0 − x∗‖2 − 1
4‖x∗ − x0 + 2

1+σ

N∑
i=1

(Ai −Ai−1)gi‖2

− 1−σ
2σ

N∑
i=1

Aiλi‖yi−1−λigi−xi
λi

+ σ
1+σgi‖

2.

Since the last two terms in the right hand side are nonpositive, we deduce that

AN
1+σ (h(xN)− h∗) ≤ 1

4‖x0 − x∗‖2.

For the case σ = 0 [Güler, 1992, Theorem 6.1] provides a proof when using constant step sizes.
Here, we follow the same pattern as before for allowing variable step sizes. We consider the following
inequalities

• convexity between xk and xk+1 with weight νk,k+1 = Ak
(for k = 0, . . . , N − 1)

h(xk) ≥ h(xk+1) + 〈gk+1;xk − xk+1〉,

• convexity between x∗ and xk with weight ν∗,k = Ak −Ak−1
(for k = 1, . . . , N)

h(x∗) ≥ h(xk) + 〈gk;x∗ − xk〉.

As previously linearly combining the previous inequalities leads to

N−1∑
k=1

νk,k+1h(xk) +
N∑
k=1

ν∗,kh(x∗) ≥
N−1∑
k=1

νk,k+1[h(xk+1) + 〈gk+1;xk − xk+1〉]

+
N∑
k=1

ν∗,k[h(xk) + 〈gk;x∗ − xk〉],

124

which can be reformulated exactly as

AN (h(xN)− h∗) ≤1
4‖x0 − x∗‖2 − 1

4‖x∗ − x0 + 2
N∑
i=1

(Ai −Ai−1)gi‖2

≤1
4‖x0 − x∗‖2.

For the tightness part of the proof, we verify that the guarantee for (ORI-PPA) provided by Theo-
rem 5.4.1 is actually non-improvable. That is, for all {λk}k with λk > 0, σ ∈ [0, 1], d ∈ N, x0 ∈ Rd,
and N ∈ N, there exists f ∈ F0,∞(Rd) such that this bound is achieved with equality. For proving this
statement, it is sufficient to exhibit a one-dimensional function for which the bound is attained, which
is what we do below. The bound is attained on the one-dimensional linear minimization problem

min
x
{f(x) ≡ c x+ iR+(x)}, (5.18)

with an appropriate choice of c > 0, where iR+ denotes the convex indicator function of R+. Indeed,
one can check that the relative error criterion

∃uk ∈ R+,
λk
2 ‖ek‖

2 + f(xk)− f(uk)− 〈gk;xk − uk〉 ≤ λkσ
2

2 ‖ek + gk‖2

is satisfied with equality when picking gk = c (gk is thus a subgradient at xk), uk = xk, and ek =
− cσ

1+σ ; and hence xk = yk−1 − cλk
1+σ . The argument is then as follows: if for some x0 > 0 and

0 ≤ h ≤ x0/c we manage to show that xN = x0 − ch, then f(xN) − f(x∗) = c(x0 − ch) and
hence the value of c producing the worst possible (maximal) value of f(xN) is c = x0

2h . In that case,

the resulting value is f(xN) − f(x∗) = x2
0

4h . Therefore, in order to prove that the guarantee from
Theorem 5.4.1 cannot be improved, we show that xN = x0 − AN

1+σ c on the linear problem (5.18). It
is easy to show that x1 = x0 − A1

1+σ c using A1 = λ1. The argument follows by induction: assuming
xk = x0 − Ak

1+σ c, one can compute

xk+1 = λk+1
Ak+1−Ak

(
x0 − 2

1+σ

k∑
i=1

(Ai −Ai−1)gi

)
+
(
1− λk+1

Ak+1−Ak

)
xk

− λk+1(gk+1 + ek+1)

= λk+1
Ak+1−Ak

(
x0 − 2c

1+σAk
)

+
(
1− λk+1

Ak+1−Ak

) (
x0 − Ak

1+σ c
)
− λk+1

c
1+σ

=x0 − c
1+σ

2λk+1Ak+(Ak+1−Ak)Ak−λk+1Ak+λk+1(Ak+1−Ak)
Ak+1−Ak

=x0 − c
1+σ

(Ak+1−Ak)Ak+λk+1Ak+1
Ak+1−Ak

=x0 − c
1+σAk+1,

where the second equality follows from simple substitutions, and the last equalities follow from basic
algebra and λk+1Ak+1 = (Ak+1 − Ak)2. The desired statement is proved by picking c = (1+σ)x0

2AN ,

reaching f(xN)− f(x∗) = (1+σ)x2
0

AN
.

A classical lower bound on the value of the sequence {Ak}k shows that the previous bound is a
O(N−2) when the λk are lower bounded by some positive constant.

125

Lemma 5.4.2 (Lemma 3.7 of Monteiro and Svaiter [2013]). Given a sequence {λk}k with λk ≥ 0. Let

A0 = 0 and Ak+1 = Ak + λk+1+
√

4λk+1Ak+λ2
k+1

2 defined recursively, then

Ak ≥
1
4

(
k∑
i=1

√
λk

)2

for k ≥ 1.

Remark 5.4.3. We emphasize that there is no constraint on the relation between primal and dual
points outputted by the process hidden behind “Obtain". In particular, primal-dual pairs of the form
(xk, ∂h(xk)) or (xk, yk−1−xk

λk
) can be used.

5.5 Dealing with strongly convex objectives

In this section we present how the methodology detailed in Section 5.3 can be extended to support
strongly convex functions. We illustrate it on the simple relatively inexact proximal method studied in
Section 5.3.5 applied to strongly convex objectives.

For adjusting the performance estimation approach to strongly convex problems, we only need
minor modifications. According to Taylor et al. [2017c, Corollary 2], for µ > 0 and a set S ∈ Rd ×
Rd × R

∃h ∈ Fµ,∞(Rd) : f = h(x), g ∈ ∂h(x) ∀(x, g, f) ∈ S
⇔ f ′ ≥ f + 〈g;x′ − x〉+ µ

2‖x− x
′‖2 ∀(x, g, f), (x′, g′, f ′) ∈ S.

(5.19)

In order to analyze inexact proximal minimization methods on strongly convex functions, we can sim-
ply follow Section 5.3 replacing the use of (5.6) by that of (5.19).

Let us illustrate that statement by instantiating the inexact proximal minimization algorithm for
strongly convex objectives. We recall the form of the updates

wk+1 = wk − λk+1(vk+1 + ek+1)

‖ek+1‖2 ≤ σ2

λ2
k+1
‖wk+1 − wk‖2,

(5.20)

with {λk}k a sequence of nonnegative step sizes, vk+1 ∈ ∂h(wk+1), {ek}k a sequence of errors and
σ ∈ [0, 1].

For µ > 0 we can study the following performance estimation problem for µ-strongly convex
objective functions h. In order to derive simpler worst-case guarantees, we use as slightly different
initial condition compared with the previous section, which is h(w0)− h(w∗) ≤ R2 with R ∈ R∗.

max
d,h

w∗,w0,...,wN∈Rd
g0,...,gN∈Rd
e0,...,eN∈Rd

h(wN)− h(w∗)

s.t. h ∈ Fµ,∞(Rd), w∗ ∈ argmin
x

h(x)

h(w0)− h(w∗) ≤ R2

w1, . . . , wN satisfying (5.20)

‖ek‖2 ≤ σ2

λ2
k
‖wk − wk−1‖2 k = 1, . . . , N.

(5.21)

126

Following similar developments as those of Section 5.3 and using interpolation conditions (5.19)
we get the semidefinite reformulation

max
G�0, H

H(hN − h∗)

s.t. 0 ≥ H(hi − hj) + vTi G(wj −wi)
+ µ

2 (wj −wi)TG(wj −wi) ∀i, j ∈ {∗, 0, . . . , N}
R2≥ H(h0 − h∗)

0 ≥ eTi Gei − σ2

λ2
i
(wi −wi−1)TG(wi −wi−1) ∀i ∈ {1, . . . , N}.

(5.22)

As before, we exhibit a dual feasible point, and the proof relies on weak duality.

Theorem 5.5.1. Let µ ≥ 0, h ∈ Fµ,∞(Rd), a sequence of step sizes {λk}k with λk > 0, and σ ∈ [0, 1].
For any starting point w0 ∈ Rd, N ≥ 1, the iterates of (5.20) satisfy

h(wN)− h(w∗) ≤
N∏
i=1

(
1+σ

1+σ+λkµ

)2
(h(w0)− h(w∗)),

with w∗ ∈ argminx h(x). Furthermore, this bound is tight: for all µ ≥ 0, {λk}k with λk ≥ 0,
σ ∈ [0, 1], d ∈ N, w0 ∈ Rd, and N ∈ N, there exists h ∈ Fµ,∞(Rd) such that this bound is achieved
with equality.

Proof. Let us denote by ρk = 1+σ
1+σ+λkµ ∈ [0, 1] for k = 1, . . . , N . We show the result by proving that

h(wk)− h(w∗) ≤ ρ2
k(h(wk−1)− h(w∗)) k = 1 . . . , N.

Indeed, chaining these inequalities for k ∈ [1, N] leads to the desired conclusion.
We first detail the case σ ∈ (0, 1]. Let k ∈ [1, N], and consider the following inequalities with their

corresponding weights :

• strong convexity between wk−1 and wk with weight νk−1,k = ρ2
k

h(wk−1) ≥ h(wk) + 〈vk;wk−1 − wk〉+ µ
2‖wk−1 − wk‖2,

• strong convexity between w∗ and wk with weight ν∗,k = 1− ρ2
k

h(w∗) ≥ h(wk) + 〈vk;w∗ − wk〉+ µ
2‖wk − w∗‖

2,

• approximation requirement on wk with weight νk = λkρk
2σ

σ2

λ2
k
‖wk−1 − wk‖2 ≥ ‖ek‖2.

By linearly combining previous inequalities, with their corresponding weights (which are nonnegative),
we arrive to the following valid inequality:

νk−1,kh(wk−1) + ν∗,kh(w∗) + νk
σ2

λ2
k
‖wk−1 − wk‖2

≥ νk−1,k[h(wk) + 〈vk;wk−1 − wk〉+ µ
2‖wk−1 − wk‖2]

+ ν∗,k[h(wk) + 〈vk;w∗ − wk〉+ µ
2‖w∗ − wk‖

2] + νk‖ek‖2.

(5.23)

127

First we can regroup the function values together and observe that

νk−1,kh(wk) + ν∗,kh(wk)− νk−1,kh(wk−1)− ν∗,kh(w∗)
= h(wk)− h(w∗)− ρ2

k(h(wk−1)− h(w∗)).

Then, we regroup the vector variables together and use wk = wk−1 − λk(vk + ek) in

νk−1,k[〈vk;wk−1 − wk〉+ µ
2‖wk−1 − wk‖2] + νk[‖ek‖2 − σ2

λ2
k
‖wk−1 − wk‖2]

+ ν∗,k[〈vk;w∗ − wk〉+ µ
2‖w∗ − wk‖

2]

= νk−1,k[λk〈vk; vk + ek〉+ µλ2
k

2 ‖vk + ek‖2] + νk[‖ek‖2 − σ2‖vk + ek‖2]
+ ν∗,k[〈vk;w∗ − wk−1 + λk(vk + ek)〉+ µ

2‖w∗ − wk−1 + λk(vk + ek)‖2]

= νk−1,k[λk〈vk; vk + ek〉+ µλ2
k

2 ‖vk + ek‖2] + νk[‖ek‖2 − σ2‖vk + ek‖2]
+ ν∗,k[µ2‖w∗ − wk−1 + λk(vk + ek) + 1

µvk‖
2 − 1

2µ‖vk‖
2].

We can then factorize the following expression

νk−1,k[λk〈vk; vk + ek〉+ µλ2
k

2 ‖vk + ek‖2] + νk[‖ek‖2 − σ2‖vk + ek‖2]− ν∗,k
2µ ‖vk‖

2

= [νk−1,k
µλ2

k
2 + νk(1− σ2)]‖ek‖2 + [νk−1,kλk + νk−1,kµλ

2
k − 2νkσ2]〈ek; vk〉

+ [νk−1,kλk + νk−1,k
µλ2

k
2 − νkσ

2 − ν∗,k
2µ]‖vk‖2

= λkρk
2σ [λkµσρk + (1− σ2)]‖ek‖2 + λkρk[ρk(1 + λkµ)− σ]〈ek; vk〉

+ [(ρk+λkµρk)2−(1+λkµσρk)
2µ]‖vk‖2

= λk(1+σ)2(1−σ2+λkµ)
2σ(1+σ+λkµ)2 ‖ek‖2 + λk(1+σ)(1−σ2+λkµ)

(1+σ+λkµ)2 〈ek; vk〉+ λkσ(1−σ2+λkµ)
2(1+σ+λkµ)2 ‖vk‖2

= λk(1+σ)2(1−σ2+λkµ)
2σ(1+σ+λkµ)2 ‖ek + σ

1+σvk‖
2,

where we replaced ρk by its expression in the second to last line. Finally (5.23) can be written as

0 ≥h(wk)− h(w∗)− ρ2
k(h(wk−1)− h(w∗))

+ (1−ρ2
k)µ

2 ‖w∗ − wk−1 + λk(vk + ek) + 1
µvk‖

2

+ λk(1+σ)2(1−σ2+λkµ)
2σ(1+σ+λkµ)2 ‖ek + σ

1+σvk‖
2.

Since ρk, σ ∈ [0, 1] the leading factors in front of the squared Euclidean norms are nonnegative and
this leads to

h(wk)− h(w∗) ≤ ρ2
k(h(wk−1)− h(w∗))

which concludes the first part of the proof for σ ∈ (0, 1], according to our initial remark.
For the exact case (i.e., σ = 0), the proof carries on likewise, by only combining the first two

inequalities, encoding strong convexity, leading to

0 ≥h(wk)− h(w∗)− ρ2
k(h(wk−1)− h(w∗)) + (1−ρ2

k)µ
2 ‖w∗ − wk−1 +

(
λk + 1

µ

)
vk‖2,

and the desired conclusion follows. For tightness part of the proof, we show that the guarantee provided
in Theorem 5.5.1 is non-improvable. That is, for all µ ≥ 0, {λk}k with λk ≥ 0, σ ∈ [0, 1], d ∈ N,

128

w0 ∈ Rd, and N ∈ N∗, there exists h ∈ Fµ,∞(Rd) such that this bound is achieved with equality.
Indeed, the bound is attained on the simple quadratic minimization problem

min
x
{h(x) ≡ µ

2‖x‖
2}. (5.24)

We can check that the relative error criterion

λk
2 ‖ek‖

2 ≤ σ2λk
2 ‖ek + vk‖2,

is satisfied with equality when picking vk = ∇h(wk+1) = µwk+1 and ek = − σ
1+σvk. Under these

choices, one can write
wk+1 = wk − λk+1µ

1+σ wk+1,

which leads to
wk+1 = 1+σ

1+σ+λk+1
wk.

Finally

wN =
N∏
i=1

1+σ
1+σ+λiµw0,

and the desired results follows.

5.6 Conclusion

In this chapter, we showed that the performance estimation framework, initiated by Drori and Teboulle
[2014], allows studying first-order methods involving natural notions of inexact proximal operations.
On the way, we reviewed natural accuracy requirements used in the literature for characterizing inexact
proximal operations. We also used the approach for optimizing the parameters of an inexact proximal
point algorithm. Finally, we presented a simple extension to the strongly convex setting.

As future works, we believe the approach can be extended to inexact Bregman proximal steps (see
e.g., Eckstein [1998]), and to inexact resolvent for monotone operators (see e.g., Solodov and Svaiter
[1999a]), for example by following steps taken Dragomir et al. [2021], Ryu et al. [2020]. Further
using those tools for designing optimized methods involving inexact proximal operations for monotone
inclusions, and variational inequalities are also possibilities. Let us also mention that it is currently
unclear to us whether similar techniques can be used for studying higher-order proximal methods, as
recently introduced by Nesterov [Nesterov, 2020b,a].

Finally, an alternate, and more geometric, approach for studying inexact proximal operations could
be to extend scaled relative graphs Ryu et al. [2019] to deal with inaccuracies.

Codes Codes, that include notebooks for helping the reader reproducing the proofs and implementa-
tion of the performance estimation problems, are available at

https://github.com/mathbarre/InexactProximalOperators/tree/version-2

Notions of inexactness were also included in the performance estimation toolbox from Taylor et al.
[2017b].

129

https://github.com/mathbarre/InexactProximalOperators/tree/version-2

Appendices

5.A More examples of fixed-step inexact proximal methods

This extends the list of examples of Section 5.3.1.

• The hybrid approximate extragradient algorithm (see Solodov and Svaiter [1999a] or Monteiro
and Svaiter [2010, Section 4]) can be described as

xk+1 = xk − ηk+1gk+1,

such that ∃uk+1,PDηk+1h(uk+1, gk+1; xk) ≤ σ2

2 ‖uk+1 − xk‖2 (see Lemma 5.2.1 for a link
between ε-subgradient formulation and primal-dual gap). One iteration of this form can be arti-
ficially cast into three iterations of (5.1) as

w3k+1 = w3k − e3k
w3k+2 = w3k+1 − e3k+1
w3k+3 = w3k+2 + e3k + e3k+1 − ηk+1v3k+2

with v3k+2 ∈ ∂h(w3k+2) . This corresponds to setting λ3k+1 = λ3k+2 = λ3k+3 = 0,
α3k+3,3k+2 = ηk+1, β3k+1,3k = β3k+2,3k+1 = 1, β3k+3,3k+1 = β3k+3,3k+2 = −1 and
the other parameters to zero. Notice that w3k+3 = w3k − ηk+1v3k+2 and imposing the con-
straint PDηk+1h(w3k+1, v3k+2; w3k) ≤ σ2

2 ‖w3k+1 − w3k‖2 allows identifying the primal-dual
pair (uk+1, gk+1) with (w3k+1, v3k+2) and iterates xk+1 with w3k+3. In addition, we set

EQ3k+1 = 0,
EQ3k+2 = 0,

EQ3k+3 = PDηk+1h(w3k+1, v3k+2; w3k)− σ2

2 ‖w3k+1 − w3k‖2.

Using v3k+2 ∈ ∂h(w3k+2), we have h∗(v3k+2) = 〈v3k+2;w3k+2〉 − h(w3k+2) and thus

EQ3k+3 =1
2‖w3k+1 − w3k+3‖2 + ηk+1(h(w3k+1)− h(w3k+2)

− 〈v3k+2;w3k+1 − w3k+2〉)− σ2

2 ‖w3k+1 − w3k‖2,

which complies with (5.2) and is Gram-representable.

• The inexact accelerated proximal point algorithm IAPPA1 in its form from Salzo and Villa [2012,
Section 5] can be written as

tk+1 =
1+
√

1+4t2
k

ηk+1
ηk+2

2
xk+1 = yk − ηk+1(gk+1 + rk+1)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

with t0 = 1, {ηk}k a sequence of step sizes, y0 = x0 ∈ Rd along with an inexactness criterion
of the form PDηk+1h(xk+1, gk+1; yk) ≤ εk+1 given a nonnegative sequence {εk}k. Similarly to
Güler’s method we get the recursive formulation

xk+2 =
(
1 + tk−1

tk+1

)
xk+1 − tk−1

tk+1
xk − ηk+2(gk+2 + rk+2).

130

We consider particular iterations from (5.1) of the form
w2k+1 = w2k − e2k

w2k+2 = w2k+1 −
2k+1∑
i=1

α2k+2,ivi −
2k+1∑
i=0

β2k+2,iei,

with initial iterate w0 = x0. We aim at finding parameters αi,j , βi,j such that we can identify
{w2k}k with {xk}k (i.e., any sequence {xk}k can be obtained as a sequence {w2k}k). We set
α2k+2,2k+1 = β2k+2,2k+1 = ηk+1, α2k+2,i = tk−1−1

tk
α2k,i for i = 1, . . . , 2k − 1 and β2k+2,i =

tk−1−1
tk

β2k,i for i ∈ {0, . . . , 2k − 1}\{2(k − 1)} as well as β2k+2,2k = −1 and β2k+2,2(k−1) =
tk−1−1
tk

(1 + β2k,2(k−1)).

This gives

w2(k+1) =w2k+1 + e2k − tk−1−1
tk

(e2(k−1))−
tk−1−1
tk

2k−1∑
i=1

α2k,ivi

− tk−1−1
tk

2k−1∑
i=0

β2k,iei − ηk+1(v2k+1 + e2k+1)

=(1 + tk−1−1
tk

)w2k − tk−1−1
tk

w2(k−1) − ηk+1(v2k+1 + e2k+1),

which shows that {w2k}k follows the same recursive equation as {xk}k. In addition, we have
w0 = x0 and w2 = x0 − η1(v1 + e1) similar to x1 = x0 − η1(g1 + r1).
Requiring PDηk+1h(w2k+2, v2k+1; w2k+2 + ηk+1(v2k+1 + e2k+1)) ≤ εk+1 (with the convention
w−1 = w0) allows to identify the primal-dual pair (xk+1, gk+1) with (w2k+2, v2k+1).

Finally, we can set EQ2k+2 = PDηk+1h(w2k+2, v2k+1; w2k+2 + ηk+1(v2k+1 + e2k+1)) − εk+1
which is Gram-representable (similar to hybrid approximate extragradient algorithm).

Note that we can proceed similarly for IAPPA2 from Salzo and Villa [2012, Section 5] with
sequence {ak}k constant equal to 1, by removing the sequence {rk}k “type 2" errors).

• The acceleration hybrid proximal extragradient algorithm (A-HPE) from Monteiro and Svaiter
[2013, Section 3] can be written as

ak+1 = ηk+1+
√
η2
k+1+4ηk+1Ak

2
Ak+1 = Ak + ak+1
x̃k = yk + ak+1

Ak+1
(xk − yk)

yk+1 = x̃k − ηk+1(gk+1 + rk+1)
xk+1 = xk − ak+1gk+1,

with A0 = 0, {ηk}k a sequence of step sizes, y0 = x0 ∈ Rd along with an inexactness criterion
of the form PDηk+1h(yk+1, gk+1; x̃k) ≤ σ

2 ‖yk+1 − x̃k‖2 given a parameter σ ∈ [0, 1]. As in
the previous examples, we search for a recursive equation followed by the sequence {yk}k. By
performing multiple substitutions, we obtain

yk+2 =x̃k+1 − ηk+2(gk+2 + rk+2)

=Ak+1
Ak+2

yk+1 + ak+2
Ak+2

xk+1 − ηk+2(gk+2 + rk+2)

131

=Ak+1
Ak+2

yk+1 + ak+2
Ak+2

(xk − ak+1gk+1)− ηk+2(gk+2 + rk+2)

=Ak+1
Ak+2

yk+1 + ak+2
Ak+2

(
Ak+1
ak+1

x̃k − Ak
ak+1

yk − ak+1gk+1
)
− ηk+2(gk+2 + rk+2)

=Ak+1
Ak+2

yk+1 + ak+2
Ak+2

(
Ak+1
ak+1

(yk+1 + ηk+1(gk+1 + rk+1))− Ak
ak+1

yk − ak+1gk+1
)

− ηk+2(gk+2 + rk+2)

=
(
Ak+1
Ak+2

+ ak+2Ak+1
Ak+2ak+1

)
yk+1 − ak+2Ak

Ak+2ak+1
yk + ak+2

Ak+2

(
Ak+1
ak+1

ηk+1 − ak+1
)
gk+1

+ ak+2Ak+1
Ak+2ak+1

ηk+1rk+1 − ηk+2(gk+2 + rk+2)

=
(
1 + ak+2Ak

Ak+2ak+1

)
yk+1 − ak+2Ak

Ak+2ak+1
yk + ak+2

Ak+2

(
Ak+1
ak+1

ηk+1 − ak+1
)
gk+1

+ ak+2Ak+1
Ak+2ak+1

ηk+1rk+1 − ηk+2(gk+2 + rk+2).

Similar to IAPPA1, we consider particular iterations from (5.1) of the form
w2k+1 = w2k − e2k

w2k+2 = w2k+1 −
2k+1∑
i=1

α2k+2,ivi −
2k+1∑
i=0

β2k+2,iei,

with initial iterate w0 = x0. We aim at finding parameters αi,j , βi,j such that we can identify
{w2k}k with {yk}k (i.e., any sequence {yk}k can be obtained as a sequence {w2k}k). We set
α2(k+1),2k+1 = β2(k+1),2k+1 = ηk+1, α2(k+1),i = ak+1Ak−1

Ak+1ak
α2k,i for i ∈ {1, . . . , 2(k − 1)} and

β2(k+1),i = ak+1Ak−1
Ak+1ak

β2k,i for i ∈ {0, . . . , 2k − 3} as well as β2(k+1),2k = −1, β2(k+1),2k−1 =
ak+1
Ak+1ak

(Ak−1β2k,2k−1−Akηk), β2(k+1),2(k−1) = ak+1Ak−1
Ak+1ak

(1 + β2k,2(k−1)) and α2(k+1),2k−1 =
ak+1
Ak+1

(
Ak−1
ak

α2k,2k−1 − Ak
ak
ηk + ak

)
.

This gives

w2(k+1) =w2k+1 + e2k + ak+1Ak
Ak+1ak

ηke2k−1 − ak+1Ak−1
Ak+1ak

e2(k−1) + ak+1
Ak+1

(
Ak
ak
ηk − ak

)
v2k−1

− ak+1Ak−1
Ak+1ak

2k−1∑
i=1

α2k,ivi − ak+1Ak−1
Ak+1ak

2k−1∑
i=0

β2k,iei − ηn+1(v2k+1 + e2k+1)

=w2k + ak+1Ak
Ak+1ak

ηke2k−1 − ak+1Ak−1
Ak+1ak

e2(k−1) + ak+1
Ak+1

(
Ak
ak
ηk − ak

)
v2k−1

+ ak+1Ak−1
Ak+1ak

(w2k − w2(k−1) + e2(k−1))− ηn+1(v2k+1 + e2k+1)

=
(
1 + ak+1Ak−1

Ak+1ak

)
w2k − ak+1Ak−1

Ak+1ak
w2(k−1) + ak+1

Ak+1

(
Ak
ak
ηk − ak

)
v2k−1

+ ak+1Ak
Ak+1ak

ηke2k−1 − ηn+1(v2k+1 + e2k+1),

which shows that {w2k}k follows the same recursive equation as {yk}k. In addition, we have
w0 = x0 = y0 and w2 = y0 − η1(v1 + e1) similar to x1 = x0 − η1(g1 + r1). Requir-
ing PDηk+1h(w2(k+1), v2k+1; w2k+2 + ηk+1(v2k+1 + e2k+1)) ≤ σ2

2 ‖w2(k+1) − w2k‖2 allows to
identify the primal-dual pair (yk+1, gk+1) with (w2(k+1), v2k+1).

Finally, we set

EQ2k+2 = PDηk+1h(w2k+2, v2k+1; w2k+2 + ηk+1(v2k+1 + e2k+1))− σ2

2 ‖w2(k+1) − w2k‖2,

which is Gram-representable (similar to hybrid approximate extragradient algorithm).

132

5.B Interpolation with ε-subdifferentials

In this section, we provide the interpolation result for working with ε-subdifferentials inside perfor-
mance estimation problems.

Theorem 5.B.1. Let I be a finite set of indices and S = {(wi, vi, hi, εi)}i∈I with wi, vi ∈ Rd, hi, εi ∈
R for all i ∈ I . There exists h ∈ F0,∞(Rd) satisfying

hi = h(wi), and vi ∈ ∂εih(wi) for all i ∈ I (5.25)

if and only if
hi ≥ hj + 〈vj ;wi − wj〉 − εj (5.26)

holds for all i, j ∈ I .

Proof. (⇒) Assuming h ∈ F0,∞(Rd) and (5.25), the inequalities (5.26) hold by definition.
(⇐) Assuming (5.26) hold, one can perform the following construction:

h̃(x) = max
i
{hi + 〈vi;x− wi〉 − εi},

and one can easily check that h = h̃ ∈ F0,∞(Rd) satisfies (5.25).

5.C Equivalence with Güler’s method

In this section, we show that optimized algorithm (ORI-PPA) and Güler’s second method [Güler, 1992,
Section 6] are equivalent (i.e., produce the same iterates), in the case of exact proximal computations
(i.e., σ = 0).

We consider a constant sequence of step sizes {λk}k with λk = λ > 0. In Güler’s second method,
the sequence {βk}k is defined as β1 = 1 and

βk+1 = 1+
√

4β2
k
+1

2 .

The sequence {Ak}k generated by (ORI-PPA) satisfies A0 = 0 and

Ak+1 = Ak + λ+
√

4λAk+λ2

2 , k ≥ 0.

We can link together these two sequences through the following equality

βk = Ak−Ak−1
λ , k ≥ 1. (5.27)

Let us prove it recursively. First, observe that β1 = 1 and A1−A0
λ = 1. Then assuming that the property

is true for some k ≥ 1, we have

βk+1 = 1+
√

4β2
k
+1

2

=
1+
√

4
(Ak+1−Ak)2

λ2 +1
2 .

One might notice that

(Ak+1 −Ak)2 = 2λ2+4λAk+2λ
√

4λAk+λ2

4 = λAk+1,

133

which gives

βk+1 =
1+
√

4
Ak+1
λ +1

2

= λ+
√

4λAk+1+λ2

2λ

= Ak+2−Ak+1
λ ,

and we finally arrive to (5.27).
In the exact case (σ = 0) iterations of (ORI-PPA) can be written as

yk = xk + λ
Ak+1−Ak (zk − xk)

xk+1 = proxλh(yk)
zk+1 = zk + 2(Ak+1−Ak)

λ (xk+1 − yk).

Therefore, we can express

yk+1 = xk+1 + λ
Ak+2−Ak+1

(zk + 2(Ak+1−Ak)
λ (xk+1 − yk)− xk+1)

= xk+1 + λ
Ak+2−Ak+1

(xk − Ak+1−Ak
λ (xk − yk) + 2(Ak+1−Ak)

λ (xk+1 − yk)− xk+1)

= xk+1 + λ
Ak+2−Ak+1

((
Ak+1−Ak

λ − 1
)

(xk+1 − xk) + Ak+1−Ak
λ (xk+1 − yk)

)
,

and combining the last equality with (5.27) leads to

yk+1 = xk+1 + βk+1−1
βk+2

(xk+1 − xk) + βk+1
βk+2

(xk+1 − yk)

which is exactly the update in Güler’s second method [Güler, 1992, Section 6] modulo a translation in
the indices of the {yk}k sequence (indeed in Güler’s method y1 = x0 whereas in (ORI-PPA) y0 = x0).

5.D Missing details in Theorem 5.4.1

The missing elements in the proof of Theorem 5.4.1 are presented bellow.

Proof. Let us rewrite the method in terms of a single sequence, by substitution of yk and zk:

ek := 1
λk

(yk−1 − λkgk − xk)

xk = λk
Ak−Ak−1

(
x0 − 2

1+σ

k−1∑
i=1

(Ai −Ai−1)gi

)
+
(
1− λk

Ak−Ak−1

)
xk−1 − λk(gk + ek),

(5.28)

and let us state the following identity on the Ak coefficients

λk+1Ak+1 = (Ak+1 −Ak)2 (for k ≥ 0). (5.29)

We prove the desired convergence result by induction. First, for N = 1

0 ≥ν∗,1[h(u1)− h(x∗) + 〈g1;x∗ − u1〉] + ν1,1[h(u1)− h(x1) + 〈g1;x1 − u1〉]

+ ν1[λ1
2 ‖e1‖2 − λ1σ2

2 ‖e1 + g1‖2 + h(x1)− h(u1)− 〈g1;x1 − u1〉]

134

with ν∗,1 = A1−A0
1+σ = A1

1+σ as A0 = 0, ν1,1 = (1−σ)A1
σ(1+σ) and ν1 = A1

σ(1+σ) . This gives

0 ≥ A1
1+σ (h(x1)− h∗) + A1

1+σ 〈g1;x∗ − x1〉+ A1
σ(1+σ) [1

2‖e1‖2 − σ2

2 ‖e1 + g1‖2]

= A1
1+σ (h(x1)− h∗) + A1

1+σ 〈g1;x∗ − x0 + λ1(g1 + e1)〉+ A1
σ(1+σ) [λ1

2 ‖e1‖2 − λ1σ2

2 ‖e1 + g1‖2]

= A1
1+σ (h(x1)− h∗) + 1

2〈2
A1

1+σg1;x∗ − x0〉+ 〈 A1
1+σg1;λ1(g1 + e1)〉

+ A1
σ(1+σ) [λ1

2 ‖e1‖2 − λ1σ2

2 ‖e1 + g1‖2]

= A1
1+σ (h(x1)− h∗) + 1

4‖x∗ − x0 + 2 A1
1+σg1‖2 − 1

4‖x∗ − x0‖2 − ‖ A1
1+σg1‖2

+ 〈 A1
1+σg1;λ1(g1 + e1)〉+ A1

σ(1+σ) [λ1
2 ‖e1‖2 − λ1σ2

2 ‖e1 + g1‖2]

= A1
1+σ (h(x1)− h∗) + 1

4‖x∗ − x0 + 2 A1
1+σg1‖2 − 1

4‖x∗ − x0‖2 + A1λ1(1−σ)
2σ ‖e1‖2

+ A1λ1(1−σ)
1+σ 〈g1; e1〉+ A1

1+σ

(
− A1

1+σ + λ1 − λ1σ
2

)
‖g1‖2

= A1
1+σ (h(x1)− h∗) + 1

4‖x∗ − x0 + 2 A1
1+σg1‖2 − 1

4‖x∗ − x0‖2

+ A1λ1(1−σ)
2σ ‖e1 + σ

1+σg1‖2 + A1
1+σ

(
− A1

1+σ + λ1 − λ1σ
2 −

λ1(1−σ)σ
2(1+σ)

)
‖g1‖2

= A1
1+σ (h(x1)− h∗) + 1

4‖x∗ − x0 + 2 A1
1+σg1‖2 − 1

4‖x∗ − x0‖2

+ A1λ1(1−σ)
2σ ‖e1 + σ

1+σg1‖2 + A1
1+σ

(
λ1−A1

1+σ

)
‖g1‖2

= A1
1+σ (h(x1)− h∗) + 1

4‖x∗ − x0 + 2 A1
1+σg1‖2 − 1

4‖x∗ − x0‖2 + A1λ1(1−σ)
2σ ‖e1 + σ

1+σg1‖2

where we used in the last line that A1 = λ1.
Now, assuming the weighted sum can be reformulated as the desired inequality for N = k, that is:

0 ≥ Ak
1+σ (h(xk)− h∗)− 1

4‖x∗ − x0‖2 + 1
4‖x∗ − x0 + 2

1+σ

k∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k∑
i=1

Aiλi‖ei + σ
1+σgi‖

2,

let us prove it also holds true for N = k + 1. Noticing that the weighted sum for k + 1 is exactly the
weighted sum for k (which can be reformulated as desired, through our induction hypothesis) with 4
additional inequalities, we get the following valid inequality

0 ≥ Ak
1+σ (h(xk)− h∗)− 1

4‖x∗ − x0‖2 + 1
4‖x∗ − x0 + 2

1+σ

k∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k∑
i=1

Aiλi‖ei + σ
1+σgi‖

2

+ Ak+1−Ak
1+σ [h(uk+1)− h∗ + 〈gk+1;x∗ − uk+1〉]

+ (1−σ)Ak+1
(1+σ)σ [h(uk+1)− h(xk+1) + 〈gk+1;xk+1 − uk+1〉]

+ Ak
1+σ [h(uk+1)− h(xk) + 〈gk+1;xk − uk+1〉]

+ Ak+1
(1+σ)σ

[λk+1
2 ‖ek+1‖2 − λk+1σ

2

2 ‖ek+1 + gk+1‖2

+ h(xk+1)− h(uk+1)− 〈gk+1;xk+1 − uk+1〉
]
.

135

By regrouping all function values we get the following simplification:

[Ak1+σ −
Ak

1+σ]h(xk) + Ak+1
1+σ [1

σ −
1−σ
σ](h(xk+1)− h∗)

+ 1
1+σ [Ak+1 −Ak + 1−σ

σ Ak+1 +Ak − 1
σAk+1]h(uk+1)

=Ak+1
1+σ (h(xk+1)− h∗),

where h(xk) and h(uk+1) disappear. The remaining inequality is therefore

0 ≥Ak+1
1+σ (h(xk+1)− h∗)− 1

4‖x0 − x∗‖2 + 1
4‖x∗ − x0 + 2

1+σ

k∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k∑
i=1

Aiλi‖ei + σ
1+σgi‖

2 + Ak+1λk+1
2(1+σ)σ [‖ek+1‖2 − σ2‖ek+1 + gk+1‖2]

+ 1
1+σ 〈gk+1; (Ak+1 −Ak)(x∗ − uk+1)−Ak+1(xk+1 − uk+1)〉+Ak(xk − uk+1)

=Ak+1
1+σ (h(xk+1)− h∗)− 1

4‖x0 − x∗‖2 + 1
4‖x∗ − x0 + 2

1+σ

k∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k∑
i=1

Aiλi‖ei + σ
1+σgi‖

2 + Ak+1λk+1
2(1+σ)σ [‖ek+1‖2 − σ2‖ek+1 + gk+1‖2]

+ 1
1+σ 〈gk+1; (Ak+1 −Ak)x∗ −Ak+1xk+1 +Akxk〉.

(5.30)

Then, by using (5.29), one can observe that

Ak+1xk+1 =Ak+1λk+1
Ak+1−Ak

(
x0 − 2

1+σ

k∑
i=1

(Ai −Ai−1)gi

)
+
(
Ak+1 − Ak+1λk+1

Ak+1−Ak

)
xk

−Ak+1λk+1(gk+1 + ek+1)

=(Ak+1 −Ak)
(
x0 − 2

1+σ

k∑
i=1

(Ai −Ai−1)gi

)
+Akxk −Ak+1λk+1(gk+1 + ek+1),

and by re-injecting this inside the last line of (5.30), we get

0 ≥Ak+1
1+σ (h(xk+1)− h∗)− 1

4‖x0 − x∗‖2 + 1
4‖x∗ − x0 + 2

1+σ

k∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k∑
i=1

Aiλi‖ei + σ
1+σgi‖

2 + Ak+1λk+1
2(1+σ)σ [‖ek+1‖2 − σ2‖ek+1 + gk+1‖2]

+ 1
1+σ 〈(Ak+1 −Ak)gk+1;x∗ − x0 + 2

1+σ

k∑
i=1

(Ai −Ai−1)gi〉

+ Ak+1λk+1
1+σ 〈gk+1; (gk+1 + ek+1)〉.

We can then proceed in a similar manner as in the case k = 1 for factorizing the quadratic terms,

0 ≥Ak+1
1+σ (h(xk+1)− h∗)− 1

4‖x0 − x∗‖2 + 1
4‖x∗ − x0 + 2

1+σ

k+1∑
i=1

(Ai −Ai−1)gi‖2

136

+ (1−σ)
2σ

k∑
i=1

Aiλi‖ei + σ
1+σgi‖

2 + Ak+1λk+1
2(1+σ)σ [‖ek+1‖2 − σ2‖ek+1 + gk+1‖2]

− (Ak+1−Ak)2

(1+σ)2 ‖gk+1‖2 + Ak+1λk+1
1+σ 〈gk+1; (gk+1 + ek+1)〉

=Ak+1
1+σ (h(xk+1)− h∗)− 1

4‖x0 − x∗‖2 + 1
4‖x∗ − x0 + 2

1+σ

k+1∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k∑
i=1

Aiλi‖ei + σ
1+σgi‖

2 + Ak+1λk+1(1−σ)
2σ ‖ek+1 + σ

1+σgk+1‖2

+ [Ak+1λk+1
(1+σ) − Ak+1λk+1σ

2(1+σ) − (Ak+1−Ak)2

(1+σ)2 − Ak+1λk+1σ(1−σ)
2(1+σ)2]‖gk+1‖2

=Ak+1
1+σ (h(xk+1)− h∗)− 1

4‖x0 − x∗‖2 + 1
4‖x∗ − x0 + 2

1+σ

k+1∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k+1∑
i=1

Aiλi‖ei + σ
1+σgi‖

2 + Ak+1λk+1
(1+σ) [1− σ

2 −
1

(1+σ) −
σ(1−σ)
2(1+σ)]‖gk+1‖2

=Ak+1
1+σ (h(xk+1)− h∗)− 1

4‖x0 − x∗‖2 + 1
4‖x∗ − x0 + 2

1+σ

k+1∑
i=1

(Ai −Ai−1)gi‖2

+ (1−σ)
2σ

k+1∑
i=1

Aiλi‖ei + σ
1+σgi‖

2,

since 1− σ
2 −

1
1+σ −

σ(1−σ)
2(1+σ) = 0 and this concludes the proof.

137

Chapter 6

Some Inexact Proximal Algorithms and
their Analyses

In this shorter chapter, we provide a simple version of an accelerated forward-backward method (a.k.a.
Nesterov’s accelerated proximal gradient method) possibly relying on approximate proximal operators
and allowing to exploit strong convexity of the objective function. The method supports both relative
and absolute errors, and its behavior is illustrated on a set of standard numerical experiments.

Using the same developments, we further provide a version of the accelerated hybrid proximal
extragradient (A-HPE) method of Monteiro and Svaiter [2013] possibly exploiting strong convexity
of the objective function. Finally, we provide a worst-case analysis of a partially inexact Douglas-
Rachford algorithm due to Eckstein and Yao [2018].

The inexact forward-backward algorithm and the strongly convex A-HPE method were obtained
using the developments presented in Chapter 5, but are presented separately as we believe they are of
independent interest.

Contributions We can summarize our contributions as follows.

(i) We provide and analyze an inexact accelerated forward-backward method possibly supporting
strongly convex objectives and possibly mixing relative and absolute error terms.

(ii) We provide and analyze an extension of the accelerated hybrid proximal extragradient method
from Monteiro and Svaiter [2013] possibly supporting strongly convex objectives.

(iii) We present worst-case convergence bounds for the partially inexact Douglas-Rachford algorithm
from Eckstein and Yao [2018] in a strongly convex setting.

Organization This note is organized as follows. First, we provide a short introduction on algorithm
relying on inexact proximal computations in Section 6.1. Then, we give some base results and no-
tations in Section 6.2. We provide the inexact accelerated forward-backward in Section 6.3, along
with a worst-case analysis relying on a standard Lyapunov argument (for which we provide symbolic
notebooks, helping the reader reproducing the algebraic part of the proof without pain). Numerical
experiments illustrating the practical behavior of the method are then provided in Section 6.4. After
that, Section 6.5 shows how to slightly improve the proof for obtaining an accelerated hybrid proximal

138

extragradient method [Monteiro and Svaiter, 2013], specifically dealing with nonsmooth strongly con-
vex minimization. Finally, we analyze the partially inexact Douglas-Rachford splitting algorithm from
Eckstein and Yao [2018] in Section 6.6. We draw some conclusions in Section 6.7.

6.1 Introduction

In this work, we consider a standard composite convex minimization problem of the form

min
x∈Rd

{F (x) ≡ f(x) + g(x)} , (6.1)

where f : Rd → R is a L-smooth convex function (with 0 < L < ∞), and g : Rd → R ∪ {+∞} is a
proper closed convex function. In addition, we allow either f or g to be possibly µ-strongly convex. In
this setting, we propose an inexact accelerated forward-backward method for solving (6.1) relying on
the access to the gradient of f , and to an iterative routine for approximating the proximal operator of g.

Relation to previous works When the proximal operator of g is readily available, the method pre-
sented below becomes a variant of standard accelerated (or fast) forward-backward (or proximal gra-
dient) methods for convex minimization, see e.g., Nesterov [2013], Beck and Teboulle [2009], and the
introductory survey by Aspremont et al. [2021].

Purely backward versions (f = 0) emerged earlier from the works of Güler [1992] and Monteiro
and Svaiter [2013], Salzo and Villa [2012], whereas the first purely forward version (g = 0) was
developed by Nesterov [1983]. The first inexact versions of accelerated forward-backward methods that
we are aware of were presented in Schmidt et al. [2011], Villa et al. [2013], Jiang et al. [2012], whereas
versions with relative errors appeared more recently in Millán and Machado [2019], Bello-Cruz et al.
[2020]. In contrast, our method allows handling different types of error (namely absolute and relative
errors of different types), while allowing to exploit strong convexity of f or g—see e.g. Nesterov
[2004, 2013], Chambolle and Pock [2016], for original analyses in the strongly convex case, when the
proximal operator of g is readily available. The same developments allow obtaining a strongly convex
version of the accelerated hybrid proximal extragradient method (A-HPE), in the spirit of Monteiro and
Svaiter [2013].

The notion of an “approximate proximal point” used in this note (see Section 6.2.2) was used
in a few previous works, starting with the hybrid extragradient method [Solodov and Svaiter, 1999a,
2000a]. It was also used for its accelerated version [Monteiro and Svaiter, 2013] and in the context of
another forward-backward splitting method [Millán and Machado, 2019]. In these works, the primal-
dual requirement is presented under a different formulation involving the notion of ε-subdifferentials
[Brøndsted and Rockafellar, 1965, Section 3] (or ε-enlargement in the context of monotone operators
[Burachik et al., 1997, 1998]). We refer the reader to Section 5.2 of Chapter 5 for a survey on common
notions of “approximate proximal point” used in the literature.

Notations We refer to classical textbooks [Rockafellar, 1996, Hiriart-Urruty and Lemaréchal, 2013]
for standard elements of convex analysis. We use the notation F0,∞(Rd) to denote the set of closed
convex proper function on Rd. The corresponding subset of closed convex proper functions that are
µ-strongly convex and L-smooth (with 0 ≤ µ < L ≤ ∞) is denoted Fµ,L(Rd). That is, h ∈ Fµ,L(Rd)
if and only if

• (µ-strong convexity) ∀x, y ∈ Rd, sh(x) ∈ ∂h(x), sh(y) ∈ ∂h(y), it holds ‖sh(x) − sh(y)‖ ≥
µ‖x− y‖,

139

• (L-smoothness) ∀x, y ∈ Rd, sh(x) ∈ ∂h(x), sh(y) ∈ ∂h(y), it holds ‖sh(x) − sh(y)‖ ≤
L‖x− y‖,

where ∂h(x) denotes the subdifferential of h at x ∈ Rd. When h ∈ Fµ,L(Rd) with L < ∞, we use
∇h(x) to denote the unique element∇h(x) ∈ ∂h(x) (i.e. the gradient of h at x).

Codes For helping the reader reproducing the analytical results (via Mathematica notebooks) as well
as numerical experiments, our code is available at

https://github.com/mathbarre/InexactStronglyConvexForwardBackward/tr
ee/extended.

6.2 Background results

6.2.1 Smooth strongly convex functions

We recall some standard inequalities satisfied by smooth convex and strongly convex functions (see
Chapter 3), which we use in the sequel for exploiting strong convexity and smoothness, see e.g. Nes-
terov [2004].

Proposition 6.2.1 (µ-strong convexity). Let g ∈ Fµ,∞(Rd). For all x, y ∈ Rd and all sg(x) ∈ ∂g(x)
it holds that

g(y) ≥ g(x) + 〈sg(x), y − x〉+ µ
2‖x− y‖

2.

Proposition 6.2.2 (L-smoothness & convexity). Let f ∈ F0,L(Rd) with L < +∞. For all x, y ∈ Rd it
holds that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2L‖∇f(x)−∇f(y)‖2.

In the sequel, the use of the inequalities provided by Proposition 6.2.1 and Proposition 6.2.2 are
motivated by their interpolation (or extension) properties; that is, the analyses provided below were
obtained following a principled approach to worst-case analyses of first-order methods, see e.g., Taylor
et al. [2017c] or Chapter 5 specifically for the cases of methods relying on approximate proximal
operations.

6.2.2 Proximal operations

The proximal operation is a base primitive that is widely used in modern optimization methods; it is
a central building blocks in many optimization algorithms, see e.g., Parikh and Boyd [2014], Ryu and
Boyd [2016]. The proximal operator of a function g ∈ F0,∞(Rd) with step size λ ≥ 0 is defined as

proxλg(z) = argmin
x∈Rd

{
λg(x) + 1

2‖x− z‖
2
}
, (6.2)

with z ∈ Rd. When g ∈ F0,∞(Rd), the proximal operation is well defined, and its solution is unique.
A comprehensive list of cases where (6.2) has an analytical solution is provided in Chierchia et al.
[2020]. In other cases, the proximal operator has to be approximated. For doing that, one can define
the following primal and dual problems associated to the proximal operation

min
x∈Rd

{Φp(z; x) ≡ λg(x) + 1
2‖x− z‖

2}, (P)

140

https://github.com/mathbarre/InexactStronglyConvexForwardBackward/tree/extended
https://github.com/mathbarre/InexactStronglyConvexForwardBackward/tree/extended

max
v∈Rd

{Φd(z; v) ≡ −λg∗(v)− 1
2‖z − λv‖

2 + 1
2‖z‖

2}, (D)

where g∗ ∈ F0,∞(Rd) is the Fenchel conjugate of g. Let us further note that proxλg(z) is the unique
solution to (P), and that proxg∗/λ(z/λ) is the unique solution of (D). In this context, the primal and
dual solutions are linked by the well-known Moreau’s identity proxλg(z) + λ proxg∗/λ (z/λ) = z.

Under relatively weak conditions (such as ri(dom g) 6= ∅, see e.g., Chambolle and Pock [2016,
Section 3.5]), strong duality holds between (P) and (D) and hence

min
x∈Rd

Φp(z; x) = max
v∈Rd

Φd(z; v).

Motivated by those elements, we use the quantity

PDλg(x, v; z) = Φp(z; x)− Φd(z; v), (PD)

for quantifying how well (x, v) approximates the pair (proxλg(z), proxg∗/λ(z/λ)), in the sequel.

6.2.3 A notion of approximate proximal point

In this section, we define the notion of approximate proximal point of g ∈ F0,∞(Rd) used throughout
the chapter (see Section 6.1 §“Relation to previous works” for historical references for the case µ = 0).
This notion features two parameters: a tolerance and a lower bound on the strong convexity parameter
of g (possibly 0). The estimate of the strong convexity is used for relating proximal points of g(·) in
terms of that of gµ(·) = g(·) − µ

2‖ · ‖
2 ∈ F0,∞(Rd), and the tolerance is used for quantifying the

quality of an approximate solution to the proximal problem on gµ(·), which simplifies the analyses
below. More precisely, for g ∈ Fµ,∞(Rd), it is relatively straightforward to verify that

proxλg(z) = prox λ
1+λµgµ

(
z

1+λµ

)
,

with gµ(x) = g(x)− µ
2‖x‖

2. This observation motivates the introduction of the following inexactness
criterion.

Definition 6.2.3. Let µ > 0, g ∈ Fµ,∞(Rd), and let λ > 0 be a step size and ε ≥ 0 be a tolerance. For
a triplet (x, v, y) ∈ Rd × Rd × Rd we use the notation

(x, v) ≈ε,µ
(

proxλg(y), prox g∗
λ

(yλ)
)
,

for denoting that
PD λ

1+µλgµ

(
x, v − µx; y

1+µλ

)
≤ ε,

with gµ(x) = g(x)− µ
2‖x‖

2 and PD the primal-dual gap of the proximal problem defined in (PD).

In the following technical lemma, we provide an explicit expression for quantifying the quality of
a triplet (x, v, y) ∈ Rd × Rd × Rd in light of Definition 6.2.3.

Lemma 6.2.4. Let µ ≥ 0, g ∈ Fµ,∞(Rd), and let λ > 0 be a step size and (x, v, z) ∈ Rd × Rd × Rd.
The following equality holds

PD λ
1+µλgµ

(x, v − µx; z
1+µλ) = 1

2(1+λµ)2 ‖x− z + λv‖2

+ λ
1+λµ

(
g(x)− g(w) + µ

2‖x− w‖
2 − 〈x− w, v〉

)
,

(6.3)

with gµ(·) = g(·)− µ
2‖ · ‖

2 and w ∈ Rd satisfying v − µx+ µw ∈ ∂g(w) (i.e., w ∈ ∂g∗µ(v − µx)).

141

Proof.
PD λ

1+µλgµ
(x, v − µx; z

1+µλ) = 1
2‖x−

z
1+λµ + λ

1+λµ(v − µx)‖2

+ λ
1+λµ

(
gµ(x) + g∗µ(v − µx)− 〈x, v − µx〉

)
= 1

2(1+λµ)2 ‖x− z + λv‖2

+ λ
1+λµ

(
g(x) + µ

2‖x‖
2 + g∗µ(v − µx)− 〈x, v〉

)
.

(6.4)

In particular
g∗µ(v − µx) = max

y
〈y, v − µx〉 − g(y) + µ

2‖y‖
2,

and by choosing w ∈ Rd such that v − µx+ µw ∈ ∂g(w) we get

g∗µ(v − µx) = 〈w, v − µx〉 − g(w) + µ
2‖w‖

2. (6.5)

Finally, using the expression of g∗µ(v − µx) in (6.4) leads to the desired results.

In the next section, we present an inexact accelerated forward-backward method where inexactness
in proximal computations are measured using the primal-dual criterion from Definition 6.2.3.

6.3 An inexact accelerated forward-backward method

In this section, we provide the main contribution of this work, namely Algorithm 6.3.1. This method
aims at solving (6.1) when the gradient of f is readily available and the proximal operator of g can
be efficiently approximated within a target precision (e.g., by an iterative method). It further allows
to exploit g to be µ-strongly convex. In the case where f is strongly convex, one can shift this strong
convexity to g instead (by removing the corresponding quadratic of f and adding it to g). Of course,
any under-approximation of µ can be used within the method.

The worst-case analysis is based on a simple Lyapunov (or potential) argument, following the now
standard template for accelerated schemes as in Nesterov [1983], for which surveys are provided in
e.g., Bansal and Gupta [2019], Wilson et al. [2021], and Aspremont et al. [2021, Chapter 4]. As a
byproduct of the analysis, the method does not require an accurate estimate of the smoothness con-
stant L, whose estimation is improved on the fly using standard backtracking tricks, similar in spirit
with Nesterov [1983], Beck and Teboulle [2009].

The algorithm below builds on approximations of the forward-backward operator (with step sizes
λk) of problem (6.1). More precisely, it relies on primal-dual pairs (xk+1, vk+1) approximating the
forward-backward operator evaluated at some iterates yk, and satisfying

(xk+1, vk+1) ≈εk,µ

(
proxλkg(yk − λk∇f(yk)),prox g∗

λk

(yk−λk∇f(yk)
λk

)
)
,

where εk encodes some approximation level. In this work, this error term is parameterized by three
sequences of nonnegative scalars {σk}k, {ζk}k, {ξk}k that can be chosen by the user for possibly
mixing both relative (or multiplicative) and absolute (or additive) error terms

εk = σ2
k

2(1+λkµ)2 ‖xk+1 − yk‖2 + ζ2
kλ

2
k

2(1+λkµ)2 ‖vk+1 +∇f(yk)‖2 + λkξk
2(1+λkµ)2 ,

where {ξk}k parametrizes the absolute error term, and where {σk}k and {ζk}k parametrize two types
of relative errors. Of course, convergence properties of the algorithm depend on the choice of those

142

sequences of parameters, as provided in Corollary 6.3.4 and Corollary 6.3.5 below. Examples of simple
rules for {σk}k, {ζk}k, {ξk}k are provided in Section 6.4 (typically, {σk}k, {ζk}k can be chosen
constant, whereas {ξk}k should be either identically 0 or decreasing fast enough).

Before going into the algorithm itself, let us mention that the backtracking line-search strategy (Btr)
for estimating the smoothness constant builds on the condition

f(yk) ≥ f(xk+1) + 〈∇f(xk+1), yk − xk+1〉+ λk
2(1−σ2

k
)‖∇f(yk)−∇f(xk+1)‖2, (Smooth)

where xk’s and yk’s are some iterates. In particular, picking λk ∈ (0, 1−σ2
k

L] (hence depending on
the true smoothness constant L) guarantees (Smooth) to be satisfied without backtracking, as, when
f ∈ F0,L(Rd), Proposition 6.2.2 holds.

6.3.1 Algorithm

An inexact accelerated forward-backward method (Algorithm 6.3.1)

Input:

– Objective function: f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd), and µ ≥ 0.
– Initial point: x0 ∈ Rd.
– Initial step size: λ0 > 0.
– Tolerance parameters: {σk}k, {ζk}k with σk, ζk ∈ [0, 1), and {ξk}k with ξk ≥ 0.
– Backtracking parameters 0 < α < 1 and β ≥ 1.

Initialization:

z0 = x0, A0 = 0,

Run:

For k = 0, 1, . . .:

ηk = (1− ζ2
k)λk (6.6)

Ak+1 = Ak + ηk+2Akµηk+
√
η2
k
+4ηkAk(1+ηkµ)(1+Akµ)

2

yk = xk + (Ak+1−Ak)(Akµ+1)
Ak+1+Ak(2Ak+1−Ak)µ(zk − xk)

εk = σ2
k

2(1+λkµ)2 ‖xk+1 − yk‖2 + ζ2
kλ

2
k

2(1+λkµ)2 ‖vk+1 +∇f(yk)‖2 + λkξk
2(1+λkµ)2

(xk+1, vk+1) ≈εk,µ

(
proxλkg(yk − λk∇f(yk)),prox g∗

λk

(yk−λk∇f(yk)
λk

)
)

[
If (Smooth) is not satisfied, set λk ← αλk and go back to step (6.6)

]
(Btr)

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− (vk+1 +∇f(yk)))

λk+1 = βλk

End For

Output: xk+1

143

Remark 6.3.1 (Related methods). When the objective function is not strongly convex (i.e. µ = 0), the
update rules of Algorithm 6.3.1 are very similar to those of the accelerated inexact forward-backward
methods from Millán and Machado [2019, Algorithm 3] (when ζk = 0 and ξk = 0) or Bello-Cruz
et al. [2020, Algorithm 2] (when σk = 0 and ξk = 0). Compared to those works in this setup,
Algorithm 6.3.1 allows using both relative and absolute errors while having a backtracking strategy.
Note also the similarities with some inexact FISTA [Villa et al., 2013, Schmidt et al., 2011], although
these methods do not re-use explicitly the dual direction vk+1 and focus only on absolute error terms
(i.e., σk = ζk = 0). Finally, when the computation of the proximal operator is exact, we recover one
of the many variants of an accelerated forward-backward method; see for example Nesterov [2013],
Tseng [2008], Beck and Teboulle [2009]; we refer to Aspremont et al. [2021, Chapter 4] and the
references therein for further discussions on this topic.

The following theorem contains the main (Lyapunov-based) ingredient of the worst-case analysis.

Theorem 6.3.2. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd), F ≡ f + g, k ≥ 0, parameters σk, ζk ∈ [0, 1),
ξk ≥ 0 and some λk > 0 such that (Smooth) is satisfied. For any xk, zk ∈ Rd, and Ak ≥ 0, it holds
that

Ak+1(F (xk+1)− F (x∗)) + 1+µAk+1
2 ‖zk+1 − x∗‖2

≤ Ak(F (xk)− F (x∗)) + 1+µAk
2 ‖zk − x∗‖2 + Ak+1

2 ξk,
(6.7)

with x∗ ∈ argminx F (x), and where zk+1, xk+1 are constructed by one iteration of Algorithm 6.3.1.

The proof of this Theorem is deferred to Section 6.3.2. The following (classical) corollary es-
tablishes that the growth rate of the sequence {Ak}k drives the convergence rate of the worst-case
guarantee. Those factors Ak+1, controlling the convergence rate, were greedily chosen (as large as
possible) while enforcing (6.7) to hold.

Corollary 6.3.3. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd) and F ≡ f + g. Let x0 ∈ Rd, λ0 be a positive
initial step size, α ∈ (0, 1) and β ≥ 1 be some backtracking parameters, sequences (relative error
parameters) {σk}k, {ζk}k, satisfying σk, ζk ∈ [0, 1) and a sequence (absolute error parameters) {ξk}k
with ξk ≥ 0. Let xN ∈ Rd be the output after N ∈ N∗ iterations of Algorithm 6.3.1 on F initiated at
x0 ∈ Rd, it holds that

F (xN)− F (x∗) ≤ 1
2AN ‖x0 − x∗‖2 +

N−1∑
i=0

Ai+1
2AN ξi,

where x∗ ∈ argminx F (x).

Proof. We denote by Φk the quantity (a.k.a., the Lyapunov/potential function)

Φk = Ak(F (xk)− F (x∗)) + 1+µAk
2 ‖zk − x∗‖2,

for k ≥ 0. Theorem 6.3.2 allows nesting the Φk’s together as

ΦN ≤ ΦN−1 + AN
2 ξN−1 ≤ . . . ≤ Φ1 +

N−1∑
i=1

Ai+1
2 ξi ≤ Φ0 +

N−1∑
i=0

Ai+1
2 ξi.

We reach the target conclusion using AN (F (xN)−F (x∗)) ≤ ΦN , together with z0 = x0 and A0 = 0.

144

Let us note that when µ = 0, we recover a composite version of the A-HPE method [Monteiro and

Svaiter, 2013]. In that case, we can bound Ak ≥ 1
4

(∑k−1
i=0
√
ηk
)2
≥ ηmin

4 k2, assuming the existence
of some ηmin ≤ ηk for all k ≥ 0. Such a lower bound on ηk exists as soon as the parameters {σk}k,
{ζk}k are well chosen (see for example Corollary 6.3.4 and Corollary 6.3.5 below), and due to the
L-smoothness of the function. Similarly, when µ > 0, Ak’s are growing exponentially as

Ak+1 = Ak + ηk+2Akηkµ+
√

4ηkAk(Akµ+1)(ηkµ+1)+η2
k

2

≥ Ak(1 + ηkµ) +Ak

√
ηkµ(1 + ηkµ)

= Ak/
(
1−

√
ηkµ

1+ηkµ

)
,

with A1 > 0, reaching 1/Ak ≤ ηmin
(
1−

√
ηminµ

1+ηminµ

)k−1
assuming again the existence of some

ηmin ≤ ηk for all k ≥ 0. The following corollaries provide more precise convergence bounds for
Algorithm 6.3.1, by quantifying the growth rate of the Ak’s, for some particular choices of parameters
{σk}k (constant), {ζk}k (constant), and {ξk}k (parameterized function of k), linking the behavior of
the decrease rate of the absolute errors ξk with the convergence bound.

Corollary 6.3.4. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd) and F ≡ f + g. Let x0 ∈ Rd, λ0 be an initial
positive step size, α ∈ (0, 1) and β ≥ 1 be some backtracking parameters, sequences (relative error
parameters) σk = σ, ζk = ζ with σ, ζ ∈ [0, 1) and a sequence (absolute error parameters) ξk = Cρk

with C, ρ > 0. Let xN ∈ Rd be the output after N ∈ N∗ iterations of Algorithm 6.3.1 on F initiated at
x0 ∈ Rd, it holds that

F (xN)−F (x∗) ≤ 1
2η

(
1−

√
ηµ

1+ηµ

)N−1
‖x0−x∗‖2 +

C

2(1−
√

ηµ
1+ηµ − ρ)

(
1−

√
ηµ

1+ηµ

)N
if ρ < τ ,

1
2CN

(
1−

√
ηµ

1+ηµ

)N−1
if ρ = τ ,

C

2(ρ− 1 +
√

ηµ
1+ηµ)

ρN if ρ > τ ,

for some η = min
i=0,...,N−1

ηi ≥ ηmin = (1 − ζ2) min
(
λ0,

α(1−σ2)
L

)
and where τ = 1 −

√
ηµ

1+ηµ and

x∗ ∈ argminx F (x).

Proof. Starting from the conclusion of Corollary 6.3.3, we obtain the desired result using classical

properties of geometric sums along withAk ≤
(
1−

√
ηµ

1+ηµ

)N−k
AN where η = min

i=0,...,N−1
ηi ≥ ηmin.

When µ = 0, the proof is still valid, and 1
AN

= O(N−2). In particular, we recover the same rates

as those of Villa et al. [2013, Theorem 4.4] (who used the particular choice vk+1 = yk−λk∇f(yk)−xk+1
λk

).

Corollary 6.3.5. Let f ∈ F0,L(Rd), g ∈ Fµ,∞(Rd) and F ≡ f + g. Let x0 ∈ Rd, λ0 be an initial
positive step size and sequences (relative error parameters) σk = σ, ζk = ζ with σ, ζ ∈ [0, 1). Let
xN ∈ Rd denote the output after N ∈ N∗ iterations of Algorithm 6.3.1 on F initiated at x0 ∈ Rd.

• We further let α ∈ (0, 1) and β = 1 be the backtracking parameters, and a sequence (absolute
error parameters) ξk = C(k + 1)−q with C, q ≥ 0. It holds that

F (xN)− F (x∗) ≤ 2
ηminN2 ‖x0 − x∗‖2 +

2C ηmax

ηmin

(
∑∞

k=0(k+1)2−q)
N2 if q > 3,

2C ηmax
ηmin

(1+ln(N))
N2 if q = 3,

2C ηmax
ηmin

(
1
N2 + 1

(3−q)Nq−1

)
if 1 < q < 3,

145

with ηmin = (1 − ζ2) min(λ0,
α(1−σ2)

L), ηmax = (1 − ζ2) max(λ0,
(1−σ2)
L) and where x∗ ∈

argminx F (x).

• We further let α ∈ (0, 1) and β ≥ 1 be the backtracking parameters, and a sequence ξk = 0 (no
absolute error). It holds that

F (xN)− F (x∗) ≤ 2
ηminN2 ‖x0 − x∗‖2,

where ηmin = (1− ζ2) min(λ0,
α(1−σ2)

L) and x∗ ∈ argminx F (x).

Proof. Starting from the conclusion of Corollary 6.3.3, we obtain the desired result in the case β = 1
using comparisons of sums with integrals along with the bounds ηmin

4 k2 ≤ Ak ≤ ηmaxk
2. In the second

case, where β ≥ 1 and ξk = 0, the target result follows from ηmin
4 k2 ≤ Ak.

6.3.2 Proof of Theorem 6.3.2

The following proof is presented in a purely algebraic form consisting in a weighted sum of inequalities
satisfied by the functions f and g as well as inexactness requirements. Indeed, it has been obtained from
a dual certificate of a performance estimation problem (see Section 5.3 of Chapter 5 for more details on
performance estimation in the context of inexact proximal operations). As mentioned in Section 6.1,
the algebraic equivalences stated below can be verified either by hand or with help of Mathematica
notebooks (see Section 6.1, §“Codes”).

Proof. Let wk+1 ∈ Rd such that vk+1 − µxk+1 + µwk+1 ∈ ∂g(wk+1). Using (6.3), this leads to

PD λk
1+µλk gµ

(xk+1, vk+1 − µxk+1; yk−λk∇f(yk)
1+µλk) = 1

2(1+λkµ)2 ‖xk+1 − yk + λk(vk+1 +∇f(yk))‖2

+ λk
1+λkµ

(
g(xk+1)− g(wk+1)

+ µ
2‖xk+1 − wk+1‖2 − 〈xk+1 − wk+1, vk+1〉

)
,

with gµ(·) = g(·)− µ
2‖ · ‖

2.
The proof consists in performing a weighted sum of the following inequalities:

• strong convexity of g between wk+1 and x∗ with weight ν1 = Ak+1 −Ak

g(x∗) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, x∗ − wk+1〉+ µ
2‖wk+1 − x∗‖2,

• strong convexity of g between wk+1 and xk with weight ν2 = Ak

g(xk) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk − wk+1〉+ µ
2‖wk+1 − xk‖2,

• strong convexity of g between wk+1 and xk+1 with weight ν3 = Ak+1λkµ

g(xk+1) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk+1 − wk+1〉+ µ
2‖wk+1 − xk+1‖2,

• convexity of f between yk and x∗ with weight ν4 = Ak+1 −Ak

f(x∗) ≥ f(yk) + 〈∇f(yk), x∗ − yk〉,

146

• convexity of f between yk and xk with weight ν5 = Ak

f(xk) ≥ f(yk) + 〈∇f(yk), xk − yk〉,

• convexity and 1−σ2
k

λk
-smoothness of f between xk+1 and yk required by (Smooth) with weight

ν6 = Ak+1

f(yk) ≥ f(xk+1) + 〈∇f(xk+1), yk − xk+1〉+ λk
2(1−σ2

k
)‖∇f(yk)−∇f(xk+1)‖2,

• approximation requirement on xk+1 with weight ν7 = Ak+1
λk

σ2
k
2 ‖xk+1 − yk‖2 + ζ2

kλ
2
k

2 ‖vk+1 +∇f(yk)‖2 + λk
2 ξk ≥

1
2‖xk+1 − yk + λk(vk+1 +∇f(yk))‖2

+ λk(1 + λkµ)
(
g(xk+1)− g(wk+1)

+ µ
2‖xk+1 − wk+1‖2

− 〈xk+1 − wk+1, vk+1〉
)
.

The weighted sum can be written as

0 ≥ ν1
[
g(wk+1)− g(x∗) + 〈vk+1 − µxk+1 + µwk+1, x∗ − wk+1〉+ µ

2‖wk+1 − x∗‖2
]

+ ν2
[
g(wk+1)− g(xk) + 〈vk+1 − µxk+1 + µwk+1, xk − wk+1〉+ µ

2‖wk+1 − xk‖2
]

+ ν3

[
g(wk+1)− g(xk+1) + 〈vk+1 − µxk+1 + µwk+1, xk+1 − wk+1〉

+ µ
2‖wk+1 − xk+1‖2

]
+ ν4 [f(yk)− f(x∗) + 〈∇f(yk), x∗ − yk〉] + ν5 [f(yk)− f(xk) + 〈∇f(yk), xk − yk〉]

+ ν6

[
f(xk+1)− f(yk) + 〈∇f(xk+1), yk − xk+1〉+ λk

2(1−σ2
k
)‖∇f(yk)−∇f(xk+1)‖2

]
+ ν7

[
λk(1 + λkµ)

(
g(xk+1)− g(wk+1) + µ

2‖xk+1 − wk+1‖2 − 〈xk+1 − wk+1, vk+1〉
)

+ 1
2‖xk+1 − yk + λk(vk+1 +∇f(yk))‖2 −

σ2
k
2 ‖xk+1 − yk‖2 − λk

2 ξk

− ζ2
kλ

2
k

2 ‖vk+1 +∇f(yk)‖2
]
.

(6.8)

Substituting yk and zk+1 in the weighted sum, that is

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak)(zk − xk)

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− (vk+1 +∇f(yk)))) ,

(6.8) is equivalently reformulated as

Ak+1(F (xk+1)− F (x∗)) + 1+µAk+1
2 ‖zk+1 − x∗‖2

≤ Ak(F (xk)− F (x∗)) + 1+µAk
2 ‖zk − x∗‖2 + Ak+1

2 ξk

147

− Ak(Ak+1−Ak)µ(1+Akµ)
2(Ak+1+Ak(2Ak+1−Ak)µ)‖xk − zk‖

2

− Ak+1λk
2(1−σ2

k
)‖∇f(xk+1)−∇f(yk) + (1− σ2

k)
yk−xk+1

λk
‖2

− µ(Ak+1+Ak(2Ak+1−Ak)µ)
2(1+Ak+1µ) ‖xk+1 − yk + (Ak+1−Ak)2

Ak+1+Ak(2Ak+1−Ak)µ(vk+1 +∇f(yk))‖2

+Ak+1
Ak+1(Ak+1−ηk)−Ak(1+ηkµ)(2Ak+1−Ak)

2(Ak+1+Ak(2Ak+1−Ak)µ) ‖vk+1 +∇f(yk)‖2

≤ Ak(F (xk)− F (x∗)) + 1+µAk
2 ‖zk − x∗‖2 + Ak+1

2 ξk

+Ak+1
Ak+1(Ak+1−ηk)−Ak(1+ηkµ)(2Ak+1−Ak)

2(Ak+1+Ak(2Ak+1−Ak)µ) ‖vk+1 +∇f(yk)‖2

= Ak(F (xk)− F (x∗)) + 1+µAk
2 ‖zk − x∗‖2 + Ak+1

2 ξk,

where the inequality in the second to last line comes from the fact that factors in front of three squared
Euclidean norms are nonpositive. In addition, the last equality follows from the particular choice of
Ak+1 satisfies

Ak+1(Ak+1 − ηk)−Ak(1 + ηkµ)(2Ak+1 −Ak) = 0,

which implies that the factors in front of the last squared Euclidean norm vanishes.

6.4 Numerical examples

In this section, we present a few numerical experiments illustrating the behavior of the accelerated
inexact forward backward method (Algorithm 6.3.1) on two convex problems. More precisely, we
applied the method to a factorization problem and to a total variation problem.

In both cases, we use a Tikhonov regularization, improving the conditioning and rendering the
problems strongly convex, and illustrate the numerical performances of the algorithm with different
tunings, including in the purely relative (ξk = 0) and absolute accuracy (σk = ζk = 0) setups, as well
as the influence of the knowledge of strong convexity parameter.

6.4.1 Factorization problem

Our first numerical experiment is a CUR-like factorization problem, introduced in Mairal et al. [2011].
It consists, given a matrix W ∈ Rm×p, in solving the minimization problem

min
X

F (X) ≡ 1
2‖W −WXW‖2F︸ ︷︷ ︸

f(X)

+λrow

nr∑
i=1
‖Xi‖2 + λcol

nc∑
j=1
‖Xj‖2 + µreg

2 ‖X‖
2
F︸ ︷︷ ︸

g(X)

,

where ‖ · ‖F is the Frobenius norm, and where Xi and Xj respectively denote the ith row and the jth
column of the matrix X . This problem has already been used in Schmidt et al. [2011] for illustrating
convergence guarantees of an inexact accelerated proximal gradient method with absolute errors. As
in Schmidt et al. [2011], we use an inexact version of the proximal operator of the regularization part,
which we solve via a dual block coordinate ascent method [Jenatton et al., 2010] (i.e., we solve the
dual of the proximal problem). Our implementation (see link in §Codes from Section 6.1) is based on
that of Schmidt et al. [2011], and our experiments are done on the “a1a” dataset from the LIBSVM
library [Chang and Lin, 2011]. The corresponding matrix W is normalized for having zero mean and
unit norm. We also impose λcol =

√
p
mλrow for having a similar scaling for the row and column

148

regularization parameters. The choice of the error criteria and regularization parameters is detailed in
Figure 6.4.1 where we plot gaps between the objective function values at the iterates of Algorithm 6.3.1
and the optimal objective value versus the number of iteration of Algorithm 6.3.1 (left) and versus the
total number of dual block coordinate ascent iterations (right).

0 200 400 600
10−13

10−7

10−1

iterations k

F
(x
k
)−

F
∗

0 0.5 1 1.5

·104

10−13

10−7

10−1

total iterations

µ = 0
µ = 0 + (Btr)
µ = µreg
µ = µreg + (Btr)

0 100 200 300 400
10−13

10−7

10−1

iterations k

F
(x
k
)−

F
∗

0 0.2 0.4 0.6 0.8 1

·104

10−13

10−7

10−1

total iterations

ξk = C
(k+1)2

ζk = 0.8
σk = 0.8
σk = 0.5, ζk = 0.5

ξk = C(1−
√
µreg/L)k

Figure 6.4.1: Algorithm 6.3.1 on CUR factorization. The initial step size is set to λ0 = 1−σ2
0

L , initial
L to ‖W‖4, λrow = λcol

√
m/p = 2.10−3 (∼ 30% nonzero coefficients in the solution) and µreg =

2.10−3L. Top: σk = 0.8 , ζk = 0 and ξk = 0. Bottom: accelerated inexact forward-backward with
µ = µreg and no backtracking. When backtracking is used, α is set to 1

2 and β to 1.1. “Total iterations"
refers to total the number of block coordinate ascent iterations used in the subroutine that computes
the proximal steps approximately. F∗ is approximated by the smallest objective values encountered in
2.104 total iterations of block coordinate ascent.

6.4.2 Total variation regularization

In this section, we compare the behaviors of the accelerated inexact forward backward method (Al-
gorithm 6.3.1) with different tunings, on the classical problem of deblurring through total variation
regularization [Rudin et al., 1992, Rudin and Osher, 1994, Wang et al., 2008]. Given a blurred image
Y ∈ Rn×n and a blurring operator A, the problem consists in solving

min
X

F (X) ≡ 1
2‖AX − Y ‖

2
F︸ ︷︷ ︸

f(X)

+λreg

n∑
i,j=0
‖(∇X)i,j‖2 + µreg

2 ‖X‖
2
F︸ ︷︷ ︸

g(X)

,

where ∇ is the discrete gradient of an image, see e.g., Chambolle and Pock [2016, Equation (2.4)].
One way of dealing with this problem is to approximate the proximal operator of the discrete total
variation plus the Tikhonov regularization. As in Villa et al. [2013], Millán and Machado [2019], we
apply FISTA [Beck and Teboulle, 2009] on the dual of the proximal subproblem (which is provided

149

e.g., in Chambolle and Pock [2016, Example 3.1]), which we use in the accelerated inexact forward-
backward method.

In the experiments Y is the popular 256 × 256 greyscale boat image (see e.g., http://sipi
.usc.edu/database/). We blur Y via a 5 × 5 box blur kernel A, and add a Gaussian noise of
standard deviation 0.01 times the mean of the blurred image and zero mean to the picture. Some results
are detailed in Figure 6.4.2 where we plot gaps between the objective function values at the iterates
of Algorithm 6.3.1 and the optimal objective value versus the number of iterations of Algorithm 6.3.1
(left) and versus the total number iterations of FISTA on the dual subproblem (right).

0 100 200 300
10−4

101

106

iterations k

F
(x
k
)−

F
∗

0 2 4 6

·104

10−4

101

106

total iterations

µ = 0
µ = 0 + (Btr)
µ = µreg
µ = µreg + (Btr)

0 100 200 300
10−4

101

106

iterations k

F
(x
k
)−

F
∗

0 2 4 6

·104

10−4

101

106

total iterations

ξk = C
(k+1)2

ζk = 0.8
σk = 0.8
σk = 0.5, ζk = 0.5

ξk = C(1−
√
µreg/L)k

Figure 6.4.2: Algorithm 6.3.1 on TV regularization. The initial step size is set to λ0 = 1−σ2
0

L , the
initial L and λreg to 1 and µreg to 10−2L. Top: σk = 0.8 , ζk = 0 and ξk = 0. Bottom: accelerated
inexact forward-backward with µ = µreg and backtracking. When backtracking is used, α is set to 1

2
and β to 1.1. “Total iterations" refers to total the number of FISTA iterations used in the subroutine
that computes the proximal steps approximately. F∗ is approximated by the smallest objective values
encountered in 2.104 total FISTA iterations.

6.5 An accelerated hybrid proximal extragradient method

In this section, we provide an improved analysis for the specific case f = 0 (no smooth convex term
in (6.1)). This type of methods is often used as a globalization strategy for higher-order methods,
see Monteiro and Svaiter [2013]. The version presented in this section allows exploiting the possible
strong convexity of the objective, which was not incorporated in previous versions of the method, to
the best of our knowledge.

6.5.1 Algorithm

A version of Algorithm 6.5.1 has been re-analyzed and used by Alves [2021] recently for accelerating
higher-order tensor algorithms.

150

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/

When µ = 0 and σk is fixed, this method actually reduces to the optimized relatively inexact
proximal point algorithm (ORI-PPA) from Chapter 5. In this case, the growth rate of the sequence
{Ak}k is essentially

Ak ≥ 1
4

(
k−1∑
i=0

√
2λi

(1+σi)

)2

≥ O(k2) for k ≥ 1,

when the parameters {λk}k, {σk}k are well chosen (e.g., constant parameters).

Strongly convex accelerated hybrid proximal extragradient method (Algorithm 6.5.1)

Input:

– Objective function: g ∈ Fµ,∞(Rd).

– Initial point: x0 ∈ Rd.

– Step sizes: {λk}k with λk > 0.

– Tolerance parameters: {σk}k with σk ∈ [0, 1].

Initialization:

z0 = x0, A0 = 0,

Run:

For k = 0, 1, . . .:

ak+1 =
(2(1−σk)+λkµ)λk

(
1+2Akµ+

√
1+4Ak(1+Akµ) (1+λkµ)2−σk(σk+λkµ)

(2(1−σk)+λkµ)λk

)
2(1−σ2

k
+λkµσk)

Ak+1 = Ak + ak+1

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak)(zk − xk)

εk = σ2
k

2(1+λkµ)2 ‖xk+1 − yk‖2

(xk+1, vk+1) ≈εk,µ
(
proxλkg(yk),proxg∗/λk(ykλk)

)
zk+1 = zk + Ak+1−Ak

1+µAk+1
(µ(xk+1 − zk)− vk+1)

End For

Output: xk+1

When µ > 0, the sequence {Ak}k grows as

Ak+1 ≥ Ak

(
1 + 2(1−σk)+λkµ

1−σ2
k
+λkµσk

(
λkµ+

√
λkµ

(1+λkµ)2−σk(σk+λkµ)
(2(1−σk)+λkµ)

))

= Ak

(
(1+λkµ)2−σk(σk+λkµ)+

√
λkµ(2(1−σk)+λkµ)((1+λkµ)2−σk(σk+λkµ))

1−σ2
k
+λkµσk

)

151

= Ak

(
(1+λkµ)2−σk(σk+λkµ)−λkµ(2(1−σk)+λkµ)

1−σ2
k
+λkµσk

)/(
1−

√
λkµ(2(1−σk)+λkµ)

(1+λkµ)2−σk(σk+λkµ)

)
= Ak

/(
1−

√
λkµ(2(1−σk)+λkµ)

(1+λkµ)2−σk(σk+λkµ)

)
,

with A1 = λ0
2(1−σ0)+λ0µ

(1−σ2
0+λ0µσ0) ≥ λ0. In particular we recover the rate of the inexact accelerated forward-

backward method when σk = 1. In addition, we notice that

1−
√

λkµ(2+λkµ−2σk)
(1+λkµ)2−σk(σk+λkµ) ∼ 1−

√
2

1+σkλkµ,

when λkµ� 0.

Theorem 6.5.1. Let g ∈ Fµ,∞(Rd), k ≥ 0, a parameter σk ∈ [0, 1] and some λk > 0. For any
xk, zk ∈ Rd and Ak ≥ 0, it holds that

Ak+1(g(xk+1)− g(x∗)) + 1+µAk+1
2 ‖zk+1 − x∗‖2 ≤ Ak(g(xk)− g(x∗)) + 1+µAk

2 ‖zk − x∗‖2

with x∗ ∈ argminx g(x), and where zk+1, xk+1 are constructed by one iteration of Algorithm 6.5.1.

Proof. The proof of this Theorem is deferred to Section 6.5.2

Just as for the its forward-backward version, one can obtain a final worst-case guarantee driven by
the growth rate of the sequence {Ak}k.

Corollary 6.5.2. Let g ∈ Fµ,∞(Rd), {λk}k be a sequence of positive parameters, and a sequence
(relative error parameters) {σk}k satisfying σk ∈ [0, 1]. Let xN ∈ Rd be the output after N ∈ N∗
iterations of Algorithm 6.5.1 on g initiated at x0 ∈ Rd, it holds that

g(xN)− g(x∗) ≤ 1
2AN ‖x0 − x∗‖2,

where x∗ ∈ argminx g(x).

Proof. The proof follows from the same lines as that of Corollary 6.3.3, using Theorem 6.5.1 instead
of Theorem 6.3.2.

6.5.2 Proof of Theorem 6.5.1

The proof follows the same structure as that of in Section 6.3.2, and simply consists in reformulating a
weighted sum of inequalities.

Proof. First we consider σk ∈ (0, 1] as the case σk = 0 requires a particular treatment. Let wk+1 ∈ Rd
such that vk+1 − µxk+1 + µwk+1 ∈ ∂g(wk+1). Using (6.3), this leads to

PD λk
1+µλk gµ

(xk+1, vk+1 − µxk+1; yk
1+µλk) = 1

2(1+λkµ)2 ‖xk+1 − yk + λkvk+1‖2

+ λk
1+λkµ

(
g(xk+1)− g(wk+1) + µ

2‖xk+1 − wk+1‖2

− 〈xk+1 − wk+1, vk+1〉
)
,

with gµ(·) = g(·)− µ
2‖ · ‖

2.
The proof consists in performing a weighted sum of the following inequalities:

152

• strong convexity between wk+1 and x∗ with weight ν1 = Ak+1 −Ak
g(x∗) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, x∗ − wk+1〉+ µ

2‖wk+1 − x∗‖2,

• strong convexity between wk+1 and xk with weight ν2 = Ak

g(xk) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk − wk+1〉+ µ
2‖wk+1 − xk‖2,

• strong convexity between wk+1 and xk+1 with weight ν3 = Ak+1(1−σk+λkµ)
σk

g(xk+1) ≥ g(wk+1) + 〈vk+1 − µxk+1 + µwk+1, xk+1 − wk+1〉+ µ
2‖wk+1 − xk+1‖2,

• approximation requirement on xk+1 with weight ν4 = Ak+1
λkσk

σ2
k
2 ‖xk+1 − yk‖2 ≥ 1

2‖xk+1 − yk + λkvk+1‖2 + λk(1 + λkµ)
(
g(xk+1)− g(wk+1)

+ µ
2‖xk+1 − wk+1‖2 − 〈xk+1 − wk+1, vk+1〉

)
.

Substituting yk and zk+1 in the weighted sum, that is

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak)(zk − xk)

zk+1 = zk + Ak+1−Ak
1+µAk+1

(µ(xk+1 − zk)− vk+1) ,

the weighted sum is equivalently reformulated as

Ak+1(g(xk+1)− g(x∗)) + 1+µAk+1
2 ‖zk+1 − x∗‖2

≤ Ak(g(xk)− g(x∗)) + 1+µAk
2 ‖zk − x∗‖2

− Ak(Ak+1−Ak)µ(1+Akµ)
2(Ak+1+Ak(2Ak+1−Ak)µ)‖xk − zk‖

2

− λk
2
λkµ(Ak+1+Ak(2Ak+1−Ak)µ)

1+Ak+1µ
‖yk−xk+1

λk
− (µ(A2

k+1+A2
kσk)+Ak+1(1−σk−2Akµσk))vk+1

Ak+1(1+Ak+1µ)(1−σ2
k
)+λkµσk(Ak+1+Ak(2Ak+1−Ak)µ)‖

2

− λk(1−σ2
k)Ak+1

2σk ‖yk−xk+1
λk

− µ(A2
k+1+A2

kσk)+Ak+1(1−σk−2Akµσk)
Ak+1(1+Ak+1µ)(1−σ2

k
)+λkµσk(Ak+1+Ak(2Ak+1−Ak)µ)vk+1‖2

+ Ak+1((2AkAk+1−A2
k)(1−σ2

k+λ2
kµ

2+λkµ(2−σk))−A2
k+1(1−σ2

k+λkµσk)+Ak+1λk(2(1−σk)+λkµ))
2(A2

k
λkµ2σk−A2

k+1µ(1−σ2
k
)−Ak+1(1−σ2

k
+λkµσk(1+2Akµ))) ‖vk+1‖2

≤ Ak(g(xk)− g(x∗)) + 1+µAk
2 ‖zk − x∗‖2

+ Ak+1((2AkAk+1−A2
k)(1−σ2

k+λ2
kµ

2+λkµ(2−σk))−A2
k+1(1−σ2

k+λkµσk)+Ak+1λk(2(1−σk)+λkµ))
2(A2

k
λkµ2σk−A2

k+1µ(1−σ2
k
)−Ak+1(1−σ2

k
+λkµσk(1+2Akµ))) ‖vk+1‖2

= Ak(g(xk)− g(x∗)) + 1+µAk
2 ‖zk − x∗‖2,

where the inequality in the second to last line comes from the fact that factors in front of squared
Euclidean norms are nonpositive, and the last equality from the fact that Ak+1 is chosen such that it
satisfies

(2AkAk+1−A2
k)(1−σ2

k+λ2
kµ

2+λkµ(2−σk))−A2
k+1(1−σ2

k+λkµσk)+Ak+1λk(2(1−σk)+λkµ) = 0.

Note that the intermediary expressions largely simplifies when choosing this Ak+1, as the last
term disappears, and the two other squared Euclidean norms become (up to nonpositive multiplicative
factors) ‖xk − zk‖2 and ‖yk−xk+1

λk
− 1−σk+λkµ

1−σ2
k
+λkµ

vk+1‖2.

For the case σk = 0 (i.e., exact proximal computations) vk+1 ∈ ∂g(xk+1) and we proceed as
previously by performing the following weighted sum of inequalities:

153

• strong convexity between xk+1 and x∗ with weight ν1 = Ak+1 −Ak

g(x∗) ≥ g(xk+1) + 〈vk+1, x∗ − xk+1〉+ µ
2‖xk+1 − x∗‖2,

• strong convexity between xk+1 and xk with weight ν2 = Ak

g(xk) ≥ g(xk+1) + 〈vk+1, xk − xk+1〉+ µ
2‖xk+1 − xk‖2.

Substituting yk, xk+1 and zk in the weighted sum, that is

yk = xk + (Ak+1−Ak)(1+µAk)
Ak+1+µAk(2Ak+1−Ak)(zk − xk)

xk+1 = yk − λkvk+1
zk+1 = zk + Ak+1−Ak

1+µAk+1
(µ(xk+1 − zk)− vk+1) ,

the weighted sum is equivalently reformulated as

Ak+1(g(xk+1)− g(x∗)) + 1+µAk+1
2 ‖zk+1 − x∗‖2

≤ Ak(g(xk)− g(x∗)) + 1+µAk
2 ‖zk − x∗‖2

− Ak(Ak+1−Ak)µ(1+Akµ)
2(Ak+1+Ak(2Ak+1−Ak)µ)‖xk − zk‖

2

+ Ak+1(Ak+1−λk(2+λkµ))−Ak(2Ak+1−Ak)(1+λkµ)2

2(1+Ak+1µ) ‖vk+1‖2

≤ Ak(g(xk)− g(x∗)) + 1+µAk
2 ‖zk − x∗‖2

+ Ak+1(Ak+1−λk(2+λkµ))−Ak(2Ak+1−Ak)(1+λkµ)2

2(1+Ak+1µ) ‖vk+1‖2

= Ak(g(xk)− g(x∗)) + 1+µAk
2 ‖zk − x∗‖2,

where the inequality in the second to last line comes from the fact that factor in front of squared
Euclidean norm is nonpositive, and the last equality from the fact that Ak+1 is chosen such that it
satisfies

Ak+1(Ak+1 − λk(2 + λkµ))−Ak(2Ak+1 −Ak)(1 + λkµ)2 = 0,

when σk = 0.

6.6 Partially inexact Douglas-Rachford splitting algorithm

In this section, we study a partially inexact version of the Douglas-Rachford algorithm introduced
in Eckstein and Yao [2018, Algorithm 3]. In Eckstein and Yao [2018, Proposition 3], convergence of
the scheme is established for solving monotone inclusions problems. We study the particular case that
consists in applying this scheme to the composite convex optimization problem of the form

min
x
{F (x) ≡ f(x) + g(x)},

where f ∈ Fµ,L(Rd) and g ∈ F0,∞(Rd). In the case where exact proximal operations are used,
we recover the convergence rates of the vanilla Douglas-Rachford splitting from Giselsson and Boyd
[2016, Theorem 2] (vanilla DRS is obtained by fixing α = 1/2 in that work) and Giselsson and Boyd
[2014, Proposition 6] (vanilla DRS is obtained by fixing θ = 1/2 in that work). The proofs below were,
again, obtained through the same methodology.

154

This algorithm uses an inexactness criterion that is slightly more restrictive than the previous ones.
Indeed, here the iterate xk+1 is an approximated proximal step from yk, denoted xk+1 ≈σ proxλf (yk),
if it satisfies

‖xk − zk + λ∇f(xk)‖2 ≤ σ2‖yk − zk + λ∇f(xk)‖2. (6.9)

Partially inexact Douglas-Rachford splitting algorithm [Eckstein and Yao, 2018]

Input:

– Objective function: f ∈ Fµ,L(Rd), g ∈ F0,∞(Rd).

– Initial point: z0 ∈ Rd.

– Step size: λ > 0.

– Tolerance parameter: σ ∈ [0, 1).

Run:

For k = 0, 1, . . .:

xk ≈σ proxλf (zk)
yk = proxλg(xk − λ∇f(xk))

zk+1 = zk + yk − xk

End For

Output: xk

Theorem 6.6.1. Let f ∈ Fµ,L(Rd) and g ∈ F0,∞(Rd), F ≡ f + g. Let λ > 0 and σ ∈ [0, 1). For any
zk ∈ Rd, it holds that

‖zk+1 − z∗‖ ≤ max
(1− σ + λµσ

1− σ + λµ
,
σ + (1− σ)λL
1 + (1− σ)λL

)
‖zk − z∗‖

with z∗ being such that proxλf (z∗) = x∗ with x∗ ∈ argminx F (x), and where zk+1 is constructed by
one iteration of the Partially inexact Douglas-Rachford splitting algorithm. Furthermore, this bound is
tight: for all λ > 0, σ ∈ [0, 1), d ∈ N∗ and zk ∈ Rd, there exists f ∈ Fµ,L(Rd) and g ∈ F0,∞(Rd)
such that this bound is achieved with equality for all k ∈ N.

Proof. Let us denote ρ(λ, σ) := max
(

1−σ+λµσ
1−σ+λµ ,

σ+(1−σ)λL
1+(1−σ)λL

)
(which we note ρ when values of λ and

σ are clear from the context), and remark that

ρ(λ, σ) =

1−σ+λµσ
1−σ+λµ if λ ≤ 1√

Lµ
,

σ+(1−σ)λL
1+(1−σ)λL otherwise.

The proof consists, as before, in performing the following weighted sum of inequalities.

155

• Strong convexity and smoothness of f between xk and x∗ with ν1 = 2λρ(λ, σ)

〈∇f(xk)−∇f(x∗), xk − x∗〉
≥ 1

L‖∇f(xk)−∇f(x∗)‖2 + µ

1−µL
‖xk − x∗ − 1

L(∇f(xk)−∇f(x∗))‖2,

see e.g., [Taylor et al., 2017c, Theorem 4] (symmetrized version).

• Convexity of g between yk and x∗ with weight ν2 = 2λρ(λ, σ)η(λ)

〈sg(yk)− sg(x∗), yk − x∗〉 ≥ 0,

for some sg(yk) ∈ ∂g(yk), and sg(x∗) ∈ ∂g(x∗), and η(λ) := min(1+λµ
1−λµ ,

1+λL
λL−1).

• Accuracy requirement (6.9) with weight ν3 = ρ(λ,σ)
σ

‖xk − zk + λ∇f(xk)‖2 ≤ σ2‖zk − yk − λ∇f(xk)‖2.

Substituting xk,yk, zk+1, x∗, and sg(x∗) by the expressions

yk = xk − λ∇f(xk)− λsg(yk)
zk+1 = zk − λ∇f(xk)− λsg(yk)
x∗ = z∗ − λ∇f(x∗)

sg(x∗) = −∇f(x∗) (optimality conditions for x∗),

we then reformulate the weighted sum as follows, in two cases.

• When λ ≤ 1√
Lµ

, we have ρ = 1−σ+λµσ
1−σ+λµ , η(λ) = 1+λµ

1−λµ , and

0 ≤ ρ2‖zk − z∗‖2 − ‖zk+1 − z∗‖2

−ρ 2λ(1− λ2µL)
(1− λ2µ2)(L− µ)‖∇f(x∗)−∇f(xk) + µ(xk − z∗ + λ∇f(x∗))‖2

−ρ λ2(λµ(σ + 1)− σ + 1)2

(1− λ2µ2) (λµ(σ2 + 1)− σ2 + 1)‖∇f(xk) + (λµ+ 1)sg(yk) + µ(z∗ − xk)‖2

− ρ− σ
σ(ρσ + 1)

∥∥∥∥λσ(1− ρσ)
(ρ− σ) sg(yk)− λ∇f(xk) + ρ(σ2 − 1)

(ρ− σ) xk + (ρσ + 1)zk −
(ρ2 − 1)σ
(ρ− σ) z∗

∥∥∥∥2

,

and the conclusion ‖zk+1 − z∗‖2 ≤ ρ2‖zk − z∗‖2 follows from the signs of all leading coeffi-
cients being nonnegative, which easily follows from λ ≤ 1/

√
Lµ, λ > 0, ρ > 0, L > µ > 0,

0 ≤ σ < 1, and ρ− σ = (1− σ)2/(λµ− σ + 1) > 0.

• When λ ≥ 1√
Lµ

, we have ρ = σ+(1−σ)λL
1+(1−σ)λL , η(λ) = 1+λL

λL−1 , and

0 ≤ ρ2‖zk − z∗‖2 − ‖zk+1 − z∗‖2

−ρ 2λ(λ2µL− 1)
(λ2L2 − 1) (L− µ)‖∇f(x∗)−∇f(xk) + L(xk − z∗ + λ∇f(x∗))‖2

−ρ (Lλ(1− σ) + σ + 1)2

λL (λ2L2 − 1) (λL (1− σ2) + σ2 + 1)‖λ(λL∇f(xk) + (λL+ 1)sg(yk))− xk + z∗‖2

− ρ− σ
σ(ρσ + 1)

∥∥∥∥∥λσ(1− ρσ)
(ρ− σ) sg(yk)− λ∇f(xk) +

ρ
(
σ2 − 1

)
(ρ− σ) xk + (ρσ + 1)zk −

(
ρ2 − 1

)
σ

(ρ− σ) z∗

∥∥∥∥∥
2

,

156

and the desired conclusion ‖zk+1 − z∗‖2 ≤ ρ2‖zk − z∗‖2 follows from leading coefficients
being nonnegative, using λ ≥ 1/

√
Lµ, λ > 0, ρ > 0, L > µ > 0, 0 ≤ σ < 1, and

ρ− σ = λL(1− σ)2/(1 + λL(1− σ)) > 0.

Tightness relies on applying the method on either the pair f(x) = µ
2x

2 and g(x) = 0, or on the pair
f(x) = L

2 x
2 and g(x) = i{0}(x) (the indicator function of 0), just as in the exact case (σ = 0),

see Giselsson and Boyd [2016, Section 3.2].

• the first term in the maximum is achieved by picking f(x) = µ
2x

2 and g(x) = 0. In this case the
solution is x∗ = z∗ = 0, and picking xk = 1−σ

1−σ+λµzk, yk = xk − λ∇f(xk) = (1−σ)(1−λµ)
1−σ+λµ zk,

and zk+1 = 1−σ+λµσ
1−σ+λµ zk is a valid sequence for the algorithm for any zk ∈ R (it is straightforward

to verify the error criterion as xk − zk + λ∇f(xk) = σ(yk − zk + λ∇f(xk)) in this case), and
‖zk+1‖ = 1−σ+λµσ

1−σ+λµ ‖zk‖.

• The second term in the maximum is achieved by picking f(x) = L
2 x

2 and g(x) = i{0}(x) (the
indicator function of 0). In this case the solution is x∗ = z∗ = 0, and picking xk = 1−σ

1+(1−σ)Lλzk,

yk = 0, and zk+1 = σ+(1−σ)λL
1+(1−σ)λL zk is a valid sequence for the algorithm for any zk ∈ R (it is

straightforward to verify the error criterion as xk − zk + λ∇f(xk) = σ(yk − zk + λ∇f(xk)) in
this case), and ‖zk+1‖ = σ+(1−σ)λL

1+(1−σ)λL ‖zk‖.

6.7 Conclusion

In this chapter, we proposed an inexact accelerated forward-backward method for solving composite
convex minimization problems, along with some worst-case guarantees. The method supports inexact
evaluations of the proximal subproblems, backtracking line-search on the smoothness parameter, and
allows exploiting the possible strong convexity of one of the component in the objective function. The
analysis relies on a now standard Lyapunov argument of the same type as that of Nesterov [1983], and
the numerical behavior is illustrated on a factorization and a total variation problem. In addition, we
provided a version of the A-HPE method [Monteiro and Svaiter, 2013] that supports possibly strongly
convex objectives, and analyzed a partially inexact Douglas-Rachford splitting algorithm due to Eck-
stein and Yao [2018].

Let us note that the overall computational complexity of each numerical scheme presented in this
chapter depends on the method used for obtaining an approximate solution for the proximal subprob-
lem.

157

Conclusion and Perspectives

Overall, this thesis took place in the global effort to better understand the behavior of first-order meth-
ods, through their worst-case analyses. For that purpose, we specifically relied on conic optimization,
and on a principled approach to worst-case analysis, commonly referred to as performance estimation
problems (PEPs). We extended the approach for being able to deal with adaptive first-order methods as
well as approximate proximal operations. In addition, we analyzed a constrained nonlinear acceleration
method.

We started with the study of an Anderson acceleration scheme with hard constraints on its extrap-
olation weights. When Anderson acceleration is applied to an affine linearly converging fixed point
mapping (e.g. gradient steps on quadratic functions), its behavior is well understood. In order to pro-
vide guarantees for Anderson acceleration applied to nonlinear (non-affine) mappings, we performed
a perturbation analysis. That is, seeing nonlinearity of the fixed point mapping as a perturbation of
an affine one. In this nonlinear setting, we used similar polynomial arguments as in the linear case to
obtain worst-case bounds. These guarantees followed from new upper-bounds on a constrained version
of the Chebyshev optimization problem on polynomials. We believe those upper-bounds to be also of
independent interest. However, we note that these robustness results are quite conservative due to the
perturbation analysis. We believe that going beyond those results might require more advanced tech-
niques not relying on perturbation arguments. Finding a way of simplifying performance estimation
problems for Anderson acceleration schemes might constitute a possible solution.

Then, we focused on the worst-case analysis of adaptive first-order methods. In such methods, one
typically combines first-order information using the current state of the algorithm, as opposed to fixed-
step (or nonadaptive) methods that rely on predefined coefficients. Adaptive algorithms often exhibit
better empirical performances than their nonadaptive counter parts, but lack of theoretical guarantees
supporting these observations. We studied a class of adaptive methods based on Polyak step sizes
and analyzed variants of gradient descent and accelerated gradient methods relying on these Polyak
coefficients. To obtain worst-case guarantees we adapted the performance estimation approach from
Drori and Teboulle [2014], Taylor et al. [2017c]. This allows using semidefinite programing for study-
ing worst-case behavior of adaptive methods. We also illustrated this methodology by performing the
worst-case analysis of a few adaptive algorithms numerically (namely gradient with exact line search, a
nonlinear version of the celebrated conjugate gradient method, and a regularized Anderson acceleration
algorithm).

Finally, we further extended the PEP framework to analyze first-order methods involving inexact
proximal computations. Allowing inexactness in the proximal steps used inside optimization methods
is a key feature for many algorithms. The “outer” algorithms we analyzed only require the approximate
proximal steps to satisfy some inexactness criterion. In particular, they do not take into account how
the approximated points were obtained. This allows producing generic analyses, as any strategy can be
plugged-in to compute the proximal operations approximately, as long as it produces points satisfying

158

the inexactness requirements. However, this may lead to more conservative guarantees when studying
the total cost of an inexact proximal method. Indeed, one may combine worst-case bounds of the inner
method computing the proximal steps with worst-case guarantees of the “outer” algorithm.

We have seen that worst-case analysis is a powerful framework to study optimization algorithms.
However it may be too conservative in some situations, e.g. for capturing the benefit brought by adap-
tive methods compared to nonadaptive ones. Other type of analyses might be better suited for such
purposes. For instance, average-case analysis represents the behavior of an algorithm as a mean on
a range of scenarios instead of the worst possible one. In Pedregosa and Scieur [2020], average-case
analysis is performed for convex quadratic optimization by considering classes of functions represented
by the distribution their Hessian’s spectrum. It is not clear yet how to set tractable distributions on the
class of smooth and strongly convex functions, but we believe that studying the average behaviors of
optimization methods would reflect more finely their empirical performances.

We conclude by discussing possible new directions for the performance estimation methodology.
We have seen that proofs derived from dual certificates of performance estimation problems consist in
performing weighted sums of inequalities satisfied by elements of the functional class of interest, and
showing that these sums have constant signs (by expressing them as sums of squares). This procedure
is generic when working with fixed-step methods. In the case of adaptive methods, and in particular for
gradient descent with Polyak step sizes, we observed that the corresponding PEP involved polynomials
of degrees larger than 2 in function values and in kernelized variables (i.e. scalar product between
iterates and/or gradients). In that case, one could look for worst-case guarantees through SOS decom-
positions of higher degrees, that is performing weighted sums of inequalities (that are polynomials in
the kernelized variables) using polynomial weights and guaranteeing positivity using sum of squares
certificates. We obtained underwhelming results when trying to apply these SOS tools to Polyak steps
but we believe it might be worth looking deeper into.

159

Bibliography

Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani. The exact worst-case convergence rate of the
gradient method with fixed step lengths for l-smooth functions. arXiv preprint arXiv:2104.05468, 2021.

Alexander Craig Aitken. On Bernoulli’s numerical solution of algebraic equations. Proceedings of the Royal
Society of Edinburgh, 46:289–305, 1927.

Amirhossein Ajalloeian, Andrea Simonetto, and Emiliano Dall’Anese. Inexact online proximal-gradient method
for time-varying convex optimization. In 2020 American Control Conference (ACC), pages 2850–2857. IEEE,
2020.

Maicon M. Alves. Variants of the A-HPE and large-step A-HPE algorithms for strongly convex problems with
applications to accelerated high-order tensor methods. preprint arXiv:2102.02045 [V1], 2021.

Maicon M. Alves and Raul T. Marcavillaca. On inexact relative-error hybrid proximal extragradient, forward-
backward and tseng’s modified forward-backward methods with inertial effects. Set-Valued and Variational
Analysis, pages 1–25, 2019.

Maicon M. Alves, Jonathan Eckstein, Marina Geremia, and Jefferson Melo. Relative-error inertial-relaxed inex-
act versions of Douglas-Rachford and ADMM splitting algorithms. preprint arXiv:1904.10502, 2019.

Donald G. Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM (JACM), 12(4):
547–560, 1965.

Yossi Arjevani and Ohad Shamir. On the iteration complexity of oblivious first-order optimization algorithms.
In International Conference on Machine Learning, pages 908–916, 2016.

Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point methods: Convergence, optimality, and
adaptivity. SIAM Journal on Optimization, 29(3):2257–2290, 2019.

Alexandre d’ Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods. preprint arXiv:2101.09545,
2021.

Alfred Auslender. Numerical methods for nondifferentiable convex optimization. In Nonlinear Analysis and
Optimization, pages 102–126. Springer, 1987.

Nikhil Bansal and Anupam Gupta. Potential-function proofs for gradient methods. Theory of Computing, 15(1):
1–32, 2019.

Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient methods. IMA journal of numerical
analysis, 8(1):141–148, 1988.

Nicola Bastianello, Amirhossein Ajalloeian, and Emiliano Dall’Anese. Distributed and inexact proximal gradient
method for online convex optimization. arXiv preprint arXiv:2001.00870, 2020.

Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces,
volume 408. Springer, 2011.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

160

Yunier Bello-Cruz, Max L. N. Gonçalves, and Nathan Krislock. On inexact accelerated proximal gradient meth-
ods with relative error rules. preprint arXiv:2005.03766, 2020.

Dennis S. Bernstein. Matrix mathematics. Princeton university press, 2009.

Quentin Bertrand and Mathurin Massias. Anderson acceleration of coordinate descent. In International Confer-
ence on Artificial Intelligence and Statistics, pages 1288–1296. PMLR, 2021.

Raghu Bollapragada, Damien Scieur, and Alexandre d’Aspremont. Nonlinear acceleration of primal-dual algo-
rithms. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 739–747, 2019.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The lojasiewicz inequality for nonsmooth subanalytic functions
with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17(4):1205–1223, 2007.

Jérôme Bolte, Trong Phong Nguyen, Juan Peypouquet, and Bruce W Suter. From error bounds to the complexity
of first-order descent methods for convex functions. Mathematical Programming, 165(2):471–507, 2017.

Radu Ioan Boţ and Ernö Robert Csetnek. A hybrid proximal-extragradient algorithm with inertial effects. Nu-
merical Functional Analysis and Optimization, 36(8):951–963, 2015.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes of EE392o, Stanford Univer-
sity, Autumn Quarter, 2004:2004–2005, 2003.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine
learning, 3(1):1–122, 2011.

Claude Brezinski. Accélération de la convergence en analyse numérique, volume 584. Springer, 2006.

Claude Brezinski and Michela Redivo-Zaglia. The genesis and early developments of aitken’s process, shanks’
transformation, the ε–algorithm, and related fixed point methods. Numerical Algorithms, 80(1):11–133, 2019.

Claude Brezinski, Stefano Cipolla, Michela Redivo-Zaglia, and Yousef Saad. Shanks and anderson-type accel-
eration techniques for systems of nonlinear equations. arXiv preprint arXiv:2007.05716, 2020.

Arne Brøndsted and Ralph T. Rockafellar. On the subdifferentiability of convex functions. Proceedings of the
American Mathematical Society, 16(4):605–611, 1965.

Ronald E. Bruck Jr. An iterative solution of a variational inequality for certain monotone operators in Hilbert
space. Bulletin of the American Mathematical Society, 81(5):890–892, 1975.

Regina S. Burachik, Alfredo N. Iusem, and Benar F. Svaiter. Enlargement of monotone operators with applica-
tions to variational inequalities. Set-Valued Analysis, 5(2):159–180, 1997.

Regina S. Burachik, Claudia A. Sagastizábal, and Benar F. Svaiter. ε-enlargements of maximal monotone oper-
ators: Theory and applications. In Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing
methods, pages 25–43. Springer, 1998.

Regina S. Burachik, Claudia A. Sagastizábal, and Benar F. Svaiter. Bundle methods for maximal monotone
operators. In Ill-posed variational problems and regularization techniques, pages 49–64. Springer, 1999.

Regina S. Burachik, Juan Enrique Martínez-Legaz, Mahboubeh Rezaie, and Michel Théra. An additive subfamily
of enlargements of a maximally monotone operator. Set-Valued and Variational Analysis, 23(4):643–665,
2015.

James V. Burke and Maijian Qian. A variable metric proximal point algorithm for monotone operators. SIAM
Journal on Control and Optimization, 37(2):353–375, 1999.

Augustin Cauchy. Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci.
Paris, 25(1847):536–538, 1847.

Antonin Chambolle and Thomas Pock. An introduction to continuous optimization for imaging. Acta Numerica,
25:161–319, 2016.

161

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu
.edu.tw/~cjlin/libsvm.

Xiaojun Chen and Carl T. Kelley. Convergence of the EDIIS algorithm for nonlinear equations. SIAM Journal
on Scientific Computing, 41(1):A365–A379, 2019.

Giovanni Chierchia, Emilie Chouzenoux, Patrick L. Combettes, and Jean-Christophe Pesquet. The proximity
operator repository. user’s guide, 2020. URL http://proximity-operator.net/download/gu
ide.pdf.

Maxime Chupin, Mi-Song Dupuy, Guillaume Legendre, and Éric Séré. Convergence analysis of adaptive DIIS
algorithms with application to electronic ground state calculations. arXiv preprint arXiv:2002.12850, 2020.

Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing. In Fixed-
point algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011.

Roberto Cominetti. Coupling the proximal point algorithm with approximation methods. Journal of Optimization
Theory and Applications, 95(3):581–600, 1997.

Rafael Correa and Claude Lemaréchal. Convergence of some algorithms for convex minimization. Mathematical
Programming, 62(1-3):261–275, 1993.

Saman Cyrus, Bin Hu, Bryan Van Scoy, and Laurent Lessard. A robust accelerated optimization algorithm for
strongly convex functions. In 2018 Annual American Control Conference (ACC), pages 1376–1381, 2018.

Yu-Hong Dai and Yaxiang Yuan. A nonlinear conjugate gradient method with a strong global convergence
property. SIAM Journal on optimization, 10(1):177–182, 1999.

Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization applications. Set-Valued
and Variational Analysis, 25(4):829–858, 2017.

John E. Dennis and Jorge J. Moré. Quasi-newton methods, motivation and theory. SIAM review, 19(1):46–89,
1977.

John E. Dennis and Robert B. Schnabel. Numerical methods for unconstrained optimization and nonlinear
equations. SIAM, 1996.

Olivier Devolder. First-order methods with inexact oracle: the strongly convex case. CORE Discussion Papers,
2013.

Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex optimization with
inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the multiple instance problem
with axis-parallel rectangles. Artificial intelligence, 89(1-2):31–71, 1997.

Rishabh Dixit, Amrit S. Bedi, Ruchi Tripathi, and Ketan Rajawat. Online learning with inexact proximal online
gradient descent algorithms. IEEE Transactions on Signal Processing, 67(5):1338–1352, 2019.

Jim Douglas and Henry H. Rachford. On the numerical solution of heat conduction problems in two and three
space variables. Transactions of the American Mathematical Society, 82:421–439, 1956.

Radu-Alexandru Dragomir, Adrien Taylor, Alexandre d’Aspremont, and Jérôme Bolte. Optimal complexity and
certification of bregman first-order methods. Mathematical Programming, pages 1–43, 2021.

Yoel Drori. Contributions to the Complexity Analysis of Optimization Algorithms. PhD thesis, Tel-Aviv Univer-
sity, 2014.

Yoel Drori and Adrien Taylor. Efficient first-order methods for convex minimization: a constructive approach.
Mathematical Programming, 184(1):183–220, 2020.

Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex minimization: a novel
approach. Mathematical Programming, 145(1-2):451–482, 2014.

Yoel Drori and Marc Teboulle. An optimal variant of Kelley’s cutting-plane method. Mathematical Program-

162

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://proximity-operator.net/download/guide.pdf
http://proximity-operator.net/download/guide.pdf

ming, 160(1-2):321–351, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel optimization. PhD
thesis, Massachusetts Institute of Technology, 1989.

Jonathan Eckstein. Approximate iterations in bregman-function-based proximal algorithms. Mathematical pro-
gramming, 83(1-3):113–123, 1998.

Jonathan Eckstein and Dimitri P. Bertsekas. On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Mathematical Programming, 55(1-3):293–318, 1992.

Jonathan Eckstein and Paulo J. S. Silva. A practical relative error criterion for augmented lagrangians. Mathe-
matical Programming, 141(1-2):319–348, 2013.

Jonathan Eckstein and Wang Yao. Augmented Lagrangian and alternating direction methods for convex opti-
mization: A tutorial and some illustrative computational results. RUTCOR Research Reports, 32(3), 2012.

Jonathan Eckstein and Wang Yao. Approximate ADMM algorithms derived from Lagrangian splitting. Compu-
tational Optimization and Applications, 68(2):363–405, 2017.

Jonathan Eckstein and Wang Yao. Relative-error approximate versions of Douglas–Rachford splitting and special
cases of the ADMM. Mathematical Programming, 170(2):417–444, 2018.

Haw-Ren Fang and Yousef Saad. Two classes of multisecant methods for nonlinear acceleration. Numerical
Linear Algebra with Applications, 16(3):197–221, 2009.

Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough strong convexity estimate.
arXiv preprint arXiv:1609.07358, 2016.

Donald A. Flanders and George Shortley. Numerical determination of fundamental modes. Journal of Applied
Physics, 21(12):1326–1332, 1950.

Roger Fletcher. Practical methods of optimization, 1987.

Roger Fletcher. On the Barzilai-Borwein method. In Optimization and control with applications, pages 235–256.
Springer, 2005.

Roger Fletcher and Colin M. Reeves. Function minimization by conjugate gradients. The computer journal, 7
(2):149–154, 1964.

Michel Fortin and Roland Glowinski. On decomposition-coordination methods using an Augmented Lagrangian.
In M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Solution of
Boundary-Value Problems. North-Holland:Amsterdam, 1983.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research logistics quarterly,
3(1-2):95–110, 1956.

Anqi Fu, Junzi Zhang, and Stephen Boyd. Anderson accelerated douglas–rachford splitting. SIAM Journal on
Scientific Computing, 42(6):A3560–A3583, 2020.

Marc Fuentes, Jérôme Malick, and Claude Lemaréchal. Descentwise inexact proximal algorithms for smooth
optimization. Computational Optimization and Applications, 53(3):755–769, 2012.

Daniel Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin and R. Glowin-
ski, editors, Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems.
North-Holland:Amsterdam, 1983.

Pontus Giselsson and Stephen Boyd. Diagonal scaling in douglas-rachford splitting and admm. In 53rd IEEE
Conference on Decision and Control, pages 5033–5039. IEEE, 2014.

Pontus Giselsson and Stephen Boyd. Linear convergence and metric selection for Douglas–Rachford splitting
and ADMM. IEEE Transactions on Automatic Control, 62(2):532–544, 2016.

163

Gene H. Golub and Charles F. Van Loan. Matrix computation. North Oxford Academic, 1990.

Gene H. Golub and Richard S. Varga. Chebyshev semi-iterative methods, successive overrelaxation iterative
methods, and second order richardson iterative methods. Numerische Mathematik, 3(1):157–168, 1961.

Paul R. Gorman and Terrence J. Sejnowski. Analysis of hidden units in a layered network trained to classify
sonar targets. Neural Networks, 1:75, 1988.

Robert M. Gower, Aaron Defazio, and Michael Rabbat. Stochastic polyak stepsize with a moving target. arXiv
preprint arXiv:2106.11851, 2021.

Guoyong Gu and Junfeng Yang. Optimal nonergodic sublinear convergence rate of proximal point algorithm for
maximal monotone inclusion problems. preprint arXiv:1904.05495, 2019a.

Guoyong Gu and Junfeng Yang. On the optimal ergodic sublinear convergence rate of the relaxed proximal point
algorithm for variational inequalities. preprint arXiv:1905.06030, 2019b.

Osman Güler. New proximal point algorithms for convex minimization. SIAM Journal on Optimization, 2(4):
649–664, 1992.

William W. Hager and Hongchao Zhang. A survey of nonlinear conjugate gradient methods. Pacific journal of
Optimization, 2(1):35–58, 2006.

Elad Hazan and Sham Kakade. Revisiting the Polyak step size. arXiv preprint arXiv:1905.00313, 2019.

Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems. Journal of
research of the National Bureau of Standards, 49(6):409–436, 1952.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization algorithms I: Funda-
mentals, volume 305. Springer science & business media, 2013.

Bin Hu and Laurent Lessard. Dissipativity theory for nesterov’s accelerated method. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1549–1557. JMLR. org, 2017.

Alfredo N. Iusem. Augmented Lagrangian methods and proximal point methods for convex optimization. Inves-
tigación Operativa, 8(11-49):7, 1999.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML (1), pages 427–435,
2013.

Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, and Francis Bach. Proximal methods for sparse hierar-
chical dictionary learning. In Proceedings of the 27th International Conference on International Conference
on Machine Learning (ICML), pages 487–494, 2010.

Kaifeng Jiang, Defeng Sun, and Kim-Chuan Toh. An inexact accelerated proximal gradient method for large
scale linearly constrained convex sdp. SIAM Journal on Optimization, 22(3):1042–1064, 2012.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods
under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 795–811. Springer, 2016.

Donghwan Kim. Accelerated proximal point method for maximally monotone operators. Mathematical Pro-
gramming, pages 1–31, 2021.

Donghwan Kim and Jeffrey A. Fessler. Optimized first-order methods for smooth convex minimization. Mathe-
matical Programming, 159(1-2):81–107, 2016.

Donghwan Kim and Jeffrey A Fessler. Another look at the fast iterative shrinkage/thresholding algorithm (fista).
SIAM Journal on Optimization, 28(1):223–250, 2018.

Donghwan Kim and Jeffrey A Fessler. Optimizing the efficiency of first-order methods for decreasing the gradi-
ent of smooth convex functions. Journal of Optimization Theory and Applications, 188(1):192–219, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

164

Etienne de Klerk, François Glineur, and Adrien Taylor. On the worst-case complexity of the gradient method
with exact line search for smooth strongly convex functions. Optimization Letters, 11(7):1185–1199, 2017.

Etienne de Klerk, Francois Glineur, and Adrien Taylor. Worst-case convergence analysis of inexact gradient and
newton methods through semidefinite programming performance estimation. SIAM Journal on Optimization,
30(3):2053–2082, 2020.

Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on
Optimization, 11(3):796–817, 2001.

Jongmin Lee, Chanwoo Park, and Ernest K. Ryu. A geometric structure of acceleration and its role in making
gradients small fast. arXiv preprint arXiv:2106.10439, 2021.

Bernard Lemaire. About the convergence of the proximal method. In Advances in Optimization, pages 39–51.
Springer, 1992.

Claude Lemaréchal. Cauchy and the gradient method. Doc Math Extra, 251(254):10, 2012.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

Felix Lieder. On the convergence rate of the halpern-iteration. Optimization Letters, pages 1–14, 2020.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization. In Advances
in Neural Information Processing Systems, pages 3384–3392, 2015.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. Catalyst acceleration for first-order convex optimization:
from theory to practice. Journal of Machine Learning Research, 18(212):1–54, 2018.

Qihang Lin and Lin Xiao. An adaptive accelerated proximal gradient method and its homotopy continuation for
sparse optimization. In ICML, pages 73–81, 2014.

Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6):964–979, 1979.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization. Mathemat-
ical programming, 45(1-3):503–528, 1989.

Johan Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD
Conference, 2004.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak step-size for
sgd: An adaptive learning rate for fast convergence. In International Conference on Artificial Intelligence and
Statistics, pages 1306–1314. PMLR, 2021.

Aleksandr M. Lyapunov and Anthony T. Fuller. General Problem of the Stability Of Motion. Control Theory and
Applications Series. Taylor & Francis, 1992. Original text in Russian, 1892.

Victor Magron, Mohab Safey El Din, and Markus Schweighofer. Algorithms for weighted sum of squares
decomposition of non-negative univariate polynomials. Journal of Symbolic Computation, 93:200–220, 2019.

Vien Mai and Mikael Johansson. Anderson acceleration of proximal gradient methods. In International Confer-
ence on Machine Learning, pages 6620–6629. PMLR, 2020.

Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Convex and network flow optimiza-
tion for structured sparsity. Journal of Machine Learning Research, 12(Sep):2681–2720, 2011.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. arXiv preprint
arXiv:1910.09529, 2019.

Bernard Martinet. Régularisation d’inéquations variationnelles par approximations successives. Revue Française
d’Informatique et de Recherche Opérationnelle, 4:154–158, 1970.

Bernard Martinet. Détermination approchée d’un point fixe d’une application pseudo-contractante. cas de
l’application prox. Comptes rendus hebdomadaires des séances de l’Académie des sciences de Paris, 274:
163–165, 1972.

165

John C. Mason and David C. Handscomb. Chebyshev polynomials. CRC press, 2002.

Mathurin Massias, Alexandre Gramfort, and Joseph Salmon. Celer: a fast solver for the lasso with dual extrapo-
lation. In International Conference on Machine Learning, pages 3315–3324, 2018.

Alexandre Megretski and Anders Rantzer. System analysis via integral quadratic constraints. IEEE Transactions
on Automatic Control, 42(6):819–830, 1997.

Reinier D. Millán and Mariela P. Machado. Inexact proximal epsilon-subgradient methods for composite convex
optimization problems. Journal of Global Optimization, 75(4):1029–1060, 2019.

Renato D.C. Monteiro and Benar F. Svaiter. On the complexity of the hybrid proximal extragradient method for
the iterates and the ergodic mean. SIAM Journal on Optimization, 20(6):2755–2787, 2010.

Renato D.C. Monteiro and Benar F. Svaiter. An accelerated hybrid proximal extragradient method for convex
optimization and its implications to second-order methods. SIAM Journal on Optimization, 23(2):1092–1125,
2013.

Jean-Jacques Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes rendus
hebdomadaires des séances de l’Académie des sciences de Paris, 255:2897–2899, 1962.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de
France, 93:273–299, 1965.

APS Mosek. The MOSEK optimization software. Online at http://www.mosek.com, 54, 2010.

Angelia Nedic and Dimitri P. Bertsekas. Incremental subgradient methods for nondifferentiable optimization.
SIAM Journal on Optimization, 12(1):109–138, 2001.

Arkadi S. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Opti-
mization, 15(1):229–251, 2004.

Arkadi S. Nemirovskii and Yuri Nesterov. Optimal methods of smooth convex minimization. USSR Computa-
tional Mathematics and Mathematical Physics, 25(2):21–30, 1985.

Arkadi S. Nemirovskiy and Boris T. Polyak. Iterative methods for solving linear ill-posed problems under precise
information. ENG. CYBER., (4):50–56, 1984.

Arkadi S. Nemirovsky. Information-based complexity of linear operator equations. Journal of Complexity, 8(2):
153–175, 1992.

Arkadi S. Nemirovsky. Information-based complexity of convex programming. Lecture Notes, 1995. URL
https://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet
Mathematics Doklady, 27:372–376, 1983.

Yurii Nesterov. Introductory Lectures on Convex Optimization : a Basic Course. Applied optimization. Kluwer
Academic Publishing, 2004.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1):
125–161, 2013.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization. Mathematical Program-
ming, pages 1–27, 2019.

Yurii Nesterov. Inexact high-order proximal-point methods with auxiliary search procedure. Technical report,
CORE discussion paper, 2020a.

Yurii Nesterov. Inexact accelerated high-order proximal-point methods. Technical report, CORE discussion
paper, 2020b.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.

166

https://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf

Brendan O’Donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes. Foundations
of computational mathematics, 15(3):715–732, 2015.

Wenqing Ouyang, Jiong Tao, Andre Milzarek, and Bailin Deng. Nonmonotone globalization for anderson accel-
eration using adaptive regularization. arXiv preprint arXiv:2006.02559, 2020.

Daniel Palomar and Yonina Eldar. Convex optimization in signal processing and communications. Cambridge
university press, 2010.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends® in Optimization, 1(3):127–239,
2014.

Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and
optimization. PhD thesis, California Institute of Technology, 2000.

Gregory B. Passty. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. Journal of
Mathematical Analysis and Applications, 72(2):383–390, 1979.

Fabian Pedregosa and Damien Scieur. Acceleration through spectral density estimation. In International Con-
ference on Machine Learning, pages 7553–7562. PMLR, 2020.

Sara Pollock and Leo Rebholz. Anderson acceleration for contractive and noncontractive operators. arXiv
preprint arXiv:1909.04638, 2019.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Boris T. Polyak. The conjugate gradient method in extremal problems. USSR Computational Mathematics and
Mathematical Physics, 9(4):94–112, 1969.

Boris T. Polyak. Introduction to optimization. Optimization Software, New York, 1987.

Clarice Poon and Jingwei Liang. Trajectory of alternating direction method of multipliers and adaptive acceler-
ation. In Advances in Neural Information Processing Systems, pages 7355–7363, 2019.

Péter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration. Chemical Physics Letters,
73(2):393–398, 1980.

Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal,
42(3):969–984, 1993.

James Renegar and Benjamin Grimmer. A simple nearly optimal restart scheme for speeding up first-order
methods. Foundations of Computational Mathematics, pages 1–46, 2021.

Ralph T. Rockafellar. A dual approach to solving nonlinear programming problems by unconstrained optimiza-
tion. Mathematical programming, 5(1):354–373, 1973.

Ralph T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex pro-
gramming. Mathematics of operations research, 1(2):97–116, 1976a.

Ralph T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and
optimization, 14(5):877–898, 1976b.

Ralph T. Rockafellar. Convex Analysis. Princeton University Press, 1996.

William Rodi and Randall L. Mackie. Nonlinear conjugate gradients algorithm for 2-d magnetotelluric inversion.
Geophysics, 66(1):174–187, 2001.

Thorsten Rohwedder and Reinhold Schneider. An analysis for the DIIS acceleration method used in quantum
chemistry calculations. Journal of mathematical chemistry, 49(9):1889, 2011.

Vincent Roulet and Alexandre d’Aspremont. Sharpness, restart, and acceleration. SIAM Journal on Optimization,
30(1):262–289, 2020.

Leonid I. Rudin and Stanley Osher. Total variation based image restoration with free local constraints. In
Proceedings of 1st International Conference on Image Processing, volume 1, pages 31–35. IEEE, 1994.

167

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Ernest K. Ryu and Stephen Boyd. Primer on monotone operator methods. Applied and Computational Mathe-
matics, 15(1):3–43, 2016.

Ernest K. Ryu and Bang Công Vũ. Finding the forward-Douglas–Rachford-forward method. Journal of Opti-
mization Theory and Applications, pages 1–19, 2019.

Ernest K. Ryu, Robert Hannah, and Wotao Yin. Scaled relative graph: Nonexpansive operators via 2d euclidean
geometry. preprint arXiv:1902.09788, 2019.

Ernest K. Ryu, Adrien Taylor, Carolina Bergeling, and Pontus Giselsson. Operator splitting performance es-
timation: Tight contraction factors and optimal parameter selection. SIAM Journal on Optimization, 30(3):
2251–2271, 2020.

Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–869, 1986.

Saverio Salzo and Silvia Villa. Inexact and accelerated proximal point algorithms. Journal of Convex Analysis,
19(4):1167–1192, 2012.

Katya Scheinberg, Donald Goldfarb, and Xi Bai. Fast first-order methods for composite convex optimization
with backtracking. Foundations of Computational Mathematics, 14(3):389–417, 2014.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient methods for
convex optimization. In Advances in neural information processing systems (NIPS), pages 1458–1466, 2011.

Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized Nonlinear Acceleration. NIPS, 2016.

Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Nonlinear acceleration of stochastic algorithms.
arXiv preprint arXiv:1706.07270, 2017.

Damien Scieur, Edouard Oyallon, Alexandre d’Aspremont, and Francis Bach. Online regularized nonlinear
acceleration. arXiv preprint arXiv:1805.09639, 2018.

Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized nonlinear acceleration. Mathematical
Programming, 179(1):47–83, 2020.

Daniel Shanks. Non-linear transformations of divergent and slowly convergent sequences. Journal of Mathemat-
ics and Physics, 34(1):1–42, 1955.

Jonathan R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain, 1994.

Avram Sidi, William F. Ford, and David A. Smith. Acceleration of convergence of vector sequences. SIAM
Journal on Numerical Analysis, 23(1):178–196, 1986.

Andrea Simonetto and Hadi Jamali-Rad. Primal recovery from consensus-based dual decomposition for dis-
tributed convex optimization. Journal of Optimization Theory and Applications, 168(1):172–197, 2016.

David A. Smith, William F. Ford, and Avram Sidi. Extrapolation methods for vector sequences. SIAM review,
29(2):199–233, 1987.

Michael V. Solodov and Benar F. Svaiter. A comparison of rates of convergence of two inexact proximal point
algorithms. In Nonlinear optimization and related topics, pages 415–427. Springer, 2000a.

Mikhail V. Solodov and Benar F. Svaiter. A hybrid approximate extragradient–proximal point algorithm using
the enlargement of a maximal monotone operator. Set-Valued Analysis, 7(4):323–345, 1999a.

Mikhail V. Solodov and Benar F. Svaiter. A hybrid projection-proximal point algorithm. Journal of Convex
Analysis, 6(1):59–70, 1999b.

Mikhail V. Solodov and Benar F. Svaiter. Error bounds for proximal point subproblems and associated inexact
proximal point algorithms. Mathematical programming, 88(2):371–389, 2000b.

Mikhail V. Solodov and Benar F. Svaiter. An inexact hybrid generalized proximal point algorithm and some new

168

results on the theory of Bregman functions. Mathematics of Operations Research, 25(2):214–230, 2000c.

Mikhail V. Solodov and Benar F. Svaiter. A unified framework for some inexact proximal point algorithms.
Numerical functional analysis and optimization, 22(7-8):1013–1035, 2001.

Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization
Methods and Software, 11–12:625–653, 1999.

Benar F. Svaiter. A weakly convergent fully inexact Douglas-Rachford method with relative error tolerance.
preprint arXiv:1809.02312, 2018.

Adrien Taylor. Convex interpolation and performance estimation of first-order methods for convex optimization.
PhD thesis, Université catholique de Louvain, 2017.

Adrien Taylor and Francis Bach. Stochastic first-order methods: non-asymptotic and computer-aided analyses via
potential functions. In Proceedings of the Thirty-Second Conference on Learning Theory (COLT), volume 99,
pages 2934–2992. PMLR, 2019.

Adrien Taylor and Yoel Drori. An optimal gradient method for smooth (possibly strongly) convex minimization.
arXiv preprint arXiv:2101.09741, 2021.

Adrien Taylor, Julien M. Hendrickx, and François Glineur. Exact worst-case performance of first-order methods
for composite convex optimization. SIAM Journal on Optimization, 27(3):1283–1313, 2017a.

Adrien Taylor, Julien M. Hendrickx, and François Glineur. Performance Estimation Toolbox (PESTO): auto-
mated worst-case analysis of first-order optimization methods. In IEEE 56th Annual Conference on Decision
and Control (CDC), pages 1278–1283, 2017b.

Adrien Taylor, Julien M. Hendrickx, and François Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods. Mathematical Programming, 161(1-2):307–345, 2017c.

Adrien Taylor, Julien M. Hendrickx, and François Glineur. Exact worst-case convergence rates of the proximal
gradient method for composite convex minimization. Journal of Optimization Theory and Applications, 178
(2):455–476, 2018a.

Adrien Taylor, Bryan Van Scoy, and Laurent Lessard. Lyapunov functions for first-order methods: Tight auto-
mated convergence guarantees. In Proceedings of the 35th International Conference on Machine Learning
(ICML), pages 4897–4906, 2018b.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288, 1996.

Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. On the implementation and usage of SDPT3–a Matlab
software package for semidefinite-quadratic-linear programming, version 4.0. In Handbook on semidefinite,
conic and polynomial optimization, pages 715–754. Springer, 2012.

Onur Toker and Hitay Ozbay. On the np-hardness of solving bilinear matrix inequalities and simultaneous
stabilization with static output feedback. In 1995 Annual American Control Conference (ACC), volume 4,
pages 2525–2526, 1995.

Alex Toth and Carl T. Kelley. Convergence analysis for anderson acceleration. SIAM Journal on Numerical
Analysis, 53(2):805–819, 2015.

Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization. submitted to SIAM
Journal on Optimization, 2008.

Bryan Van Scoy, Randy A. Freeman, and Kevin M. Lynch. The fastest known globally convergent first-order
method for minimizing strongly convex functions. IEEE Control Systems Letters, 2(1):49–54, 2018.

Richard S. Varga. Iterative analysis. Springer, 1962.

Silvia Villa, Saverio Salzo, Luca Baldassarre, and Alessandro Verri. Accelerated and inexact forward-backward
algorithms. SIAM Journal on Optimization, 23(3):1607–1633, 2013.

Stefan Volkwein. Nonlinear conjugate gradient methods for the optimal control of laser surface hardening.

169

Optimization Methods and Software, 19(2):179–199, 2004.

Yilun Wang, Junfeng Yang, Wotao Yin, and Yin Zhang. A new alternating minimization algorithm for total
variation image reconstruction. SIAM Journal on Imaging Sciences, 1(3):248–272, 2008.

Ashia Wilson. Lyapunov arguments in optimization. PhD thesis, UC Berkeley, 2018.

Ashia Wilson, Ben Recht, and Michael I. Jordan. A Lyapunov analysis of accelerated methods in optimization.
Journal of Machine Learning Research, 22(113):1–34, 2021.

Junzi Zhang, Brendan O’Donoghue, and Stephen Boyd. Globally convergent type-i anderson acceleration for
nonsmooth fixed-point iterations. SIAM Journal on Optimization, 30(4):3170–3197, 2020.

Jing Zhao, Edwin Vollebregt, and Cornelis W. Oosterlee. A fast nonlinear conjugate gradient based method for
3d concentrated frictional contact problems. Journal of Computational Physics, 288:86–100, 2015.

Chunxiang Zong, Yuchao Tang, and Yeol Cho. Convergence analysis of an inexact three-operator splitting
algorithm. Symmetry, 10(11):563, 2018.

170

MOTS CLÉS

optimisation convexe, méthodes adaptatives, problèmes d’estimation de performances, analyse de pire cas,
taux de convergence

RÉSUMÉ

De nombreuses applications modernes reposent sur la résolution de problèmes d’optimisations (par exemple, en biologie
numérique, en mécanique, en finance), faisant des méthodes d’optimisation des outils essentiels dans de nombreux do-
maines scientifiques. Apporter des garanties sur le comportement de ces méthodes constitue donc un axe de recherche
important.
Une façon classique d’analyser un algorithme d’optimisation consiste à étudier son comportement dans le pire cas. C’est
à dire, donner des garanties sur son comportement (par exemple sa vitesse de convergence) qui soient indépendantes
de la fonction en entrée de l’algorithme et vraies pour toutes les fonctions dans une classe donnée. Cette thèse se
concentre sur l’analyse en pire cas de quelques méthodes du premier ordre réputées pour leur efficacité.
Nous commençons par étudier les méthodes d’accélération d’Anderson, pour lesquelles nous donnons de nouvelles
bornes de pire cas qui permettent de garantir précisément et explicitement quand l’accélération a lieu. Pour obtenir ces
garanties, nous fournissons des majorations sur une variation du problème d’optimisation polynomiale de Tchebychev,
dont nous pensons qu’elles constituent un résultat indépendant.
Ensuite, nous prolongeons l’étude des Problèmes d’Estimation de Performances (PEP), développés à l’origine pour
analyser les algorithmes d’optimisation à pas fixes, à l’analyse des méthodes adaptatives. En particulier, nous illustrons
ces développements à travers l’étude des comportements en pire cas de la descente de gradient avec pas de Polyak,
qui utilise la norme des gradients et les valeurs prises par la fonction objectif, ainsi que d’une nouvelle version accélérée.
Nous détaillons aussi cette approche sur d’autres algorithmes adaptatifs standards.
Enfin, la dernière contribution de cette thèse est de développer plus avant la méthodologie PEP pour l’analyse des méth-
odes du premier ordre se basant sur des opérations proximales inexactes. En utilisant cette approche, nous définissons
des algorithmes dont les garanties en pire cas ont été optimisées et nous fournissons des analyses de pire cas pour
quelques méthodes présentes dans la littérature.

ABSTRACT

Many modern applications rely on solving optimization problems (e.g., computational biology, mechanics, finance), es-
tablishing optimization methods as crucial tools in many scientific fields. Providing guarantees on the (hopefully good)
behaviors of these methods is therefore of significant interest.
A standard way of analyzing optimization algorithms consists in worst-case reasoning. That is, providing guarantees on
the behavior of an algorithm (e.g. its convergence speed), that are independent of the function on which the algorithm
is applied and true for every function in a particular class. This thesis aims at providing worst-case analyses of a few
efficient first-order optimization methods.
We start by the study of Anderson acceleration methods, for which we provide new explicit worst-case bounds guaran-
teeing precisely when acceleration occurs. We obtained these guarantees by providing upper bounds on a variation of
the classical Chebyshev optimization problem on polynomials, that we believe of independent interest.
Then, we extend the Performance Estimation Problem (PEP) framework, that was originally designed for principled analy-
ses of fixed-step algorithms, to study first-order methods with adaptive parameters. This is illustrated in particular through
the worst-case analyses of the canonical gradient method with Polyak step sizes that use gradient norms and function
values information, and of an accelerated version of it. The approach is also presented on other standard adaptive
algorithms.
Finally, the last contribution of this thesis is to further develop the PEP methodology for analyzing first-order methods
relying on inexact proximal computations. Using this framework, we produce algorithms with optimized worst-case guar-
antees and provide (numerical and analytical) worst-case bounds for some standard algorithms in the literature.

KEYWORDS

convex optimization, adaptive methods, performance estimation problems, worst-case analysis, convergence
rates

	Introduction
	Introduction to optimization
	First-order methods
	Worst-case guarantees of optimization methods
	Computer aided worst-case analysis

	Adaptive first-order methods
	A short overview on first-order adaptive methods
	Anderson acceleration
	Polyak step sizes

	Proximal methods and inexactness
	A short overview of proximal methods
	Inexact proximal computations
	Example: a simple inexact proximal method

	Thesis outline and contributions

	Constrained Anderson Acceleration
	Introduction to Chebyshev polynomials
	Chebyshev polynomials
	Application: Chebyshev iterations

	Preliminaries
	Constrained Anderson acceleration
	Anderson acceleration on linear problems
	Constrained Anderson acceleration on nonlinear problems

	Constrained Chebyshev problem
	Numerical solutions
	Exact and upper bounds

	Convergence of CAA on gradient steps
	Convergence bounds
	Guarded and adaptive methods
	Numerical experiments

	Problem Classes, Interpolation Theorems and Performance Estimation Problems
	Functional classes and interpolation theorems
	Closed convex proper functions
	Smooth and convex functions
	Smoothness and strong convexity

	Introduction to performance estimation problems
	Performance estimation for gradient methods
	Dual formulation
	Performance estimation with Lyapunov functions

	Worst-Case Analyses of Adaptive Methods: Study of Polyak Step Sizes
	Introduction
	Classical Polyak steps and variants
	Study of adaptive gradient method with Variant I
	Study of adaptive gradient method with Variant II

	Acceleration with Polyak momentum
	Robustness of AGM
	Polyak steps based momentum
	Removing the dependence on the optimal value

	Analysis mechanisms
	Numerical analyses of adaptive methods
	Exact line search
	Conjugate gradient method
	Regularized Anderson acceleration

	Numerical experiments
	Conclusion and perspectives
	Appendices
	Proof of lem:acd34
	Proximal variants
	Study of standard Polyak steps
	Practical behavior
	A worst-case example

	Principled Analyses of First-Order Methods with Inexact Proximal Operations
	Introduction
	Motivations and contributions
	Relationships with previous works
	Preliminary material

	Notions of inexactness for proximal operators
	A few observable notions of inexactness
	Abstract, generally non-observable, notions of inexactness
	Absolute versus relative inaccuracies

	Principled, and computer-assisted worst-case analyses
	A class of inexact proximal methods
	Computing worst-case guarantees
	Semidefinite formulation
	Recovering worst-case guarantees from dual solutions
	Numerical examples

	An optimized relatively inexact proximal point algorithm
	Reformulation as fixed-step inexact proximal methods
	Obtaining optimized parameters
	Algorithm and convergence guarantees

	Dealing with strongly convex objectives
	Conclusion
	Appendices
	More examples of fixed-step inexact proximal methods
	Interpolation with -subdifferentials
	Equivalence with Güler's method
	Missing details in thm:orip2

	Some Inexact Proximal Algorithms and their Analyses
	Introduction
	Background results
	Smooth strongly convex functions
	Proximal operations
	A notion of approximate proximal point

	An inexact accelerated forward-backward method
	Algorithm
	Proof of thm:deacres-potential

	Numerical examples
	Factorization problem
	Total variation regularization

	An accelerated hybrid proximal extragradient method
	Algorithm
	Proof of thm:ahpe

	Partially inexact Douglas-Rachford splitting algorithm
	Conclusion

	Conclusion and Perspectives
	Bibliography

