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ABSTRACT

Aerial manipulation is an emerging domain where multirotor Unmanned Aerial Ve-
hicles (UAVs) are equipped with onboard end-effectors for grasping, transporting and
manipulating objects. To enhance the payload capacity and achieve full manipulability
in 3-dimensional space, a flying parallel robot (FPR) was previously proposed in which
a number of UAVs are used to collectively support a passive parallel architecture. While
the previous works have focused on design, modelling and motion control of the robot, it
is significant to further investigate the FPR interacting with the environment.

In this thesis, the estimation and control methods dealing with the interaction with the
environment are presented, which are applied to a specific FPR composed of a moving
platform and a number of rigid legs attached with quadrotors actuating the system.
Several momentum-based observers are implemented to estimate the external wrench
exerted on the robot. An impedance-based controller is designed with the desired wrench-
tracking capability. Experiments show that the overall estimation and control methods can
deal with modelling uncertainties, and external disturbances such as additional payload
and wind perturbations, as well as accomplish contact-based interaction tasks.

The second main contribution of this thesis is the proposal of decentralized strategies
based on onboard and intrinsic measurements of the UAVs. A vision-based estimation
technique using the ArUco marker system is firstly presented, shown to be capable of
reconstructing partially the robot pose sufficient for the control in absence of any external
localisation system. The previously proposed motion or interaction control algorithms can
then be deployed in a decentralized manner, allowing each UAV to perform its own control
based on its own measurements and information shared within all the UAVs. Experiments
show the effectiveness of the proposed methods in regulating the robot configuration,
achieving precise positioning tasks through teleoperation and performing contact-based
interactions with an object in the environment.

In addition, a detailed analysis of the wrench feasibility of the FPR is presented.
Notions of Available Thrust Set and Available Wrench Set are introduced, with detailed
computation and case studies conducted. A quantitative metric named feasibility margin
is furthermore adopted, which is applied to determine the optimal leg configurations of
the FPR in different platform orientations maximising the wrench feasibility of the robot
accordingly to specific task requirements.
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RÉSUMÉ

La manipulation aérienne est un nouveau domaine où les drones multirotors sont
équipés d’effecteurs pour la saisie, le transport et la manipulation des objets. Afin d’
améliorer la capacité de charge et la manipulabilité dans l’espace 3D, un robot parallèle
volant (FPR) a été proposé, dans lequel un certain nombre de drones sont utilisés pour
soutenir coopérativement une architecture parallèle et passive. Alors que les travaux précé-
dents se sont concentrés sur la conception, la modélisation et le contrôle de mouvement du
robot, il est important d’étudier davantage le FPR en interaction avec l’environnement.

Dans cette thèse, les méthodes d’estimation et de contrôle considérant l’interaction
avec l’environnement sont présentées et appliquées à un FPR spécifique composé d’une
plateforme mobile et des jambes rigides attachées à des quadrirotors qui actionnent le
système. Plusieurs observateurs basés sur la quantité de mouvement sont mis en œuvre
pour estimer les torseurs externes exercés sur le robot. Un contrôle d’impédance est conçu
avec la capacité de suivi de torseurs d’interaction désirés. Les expériences montrent que
les méthodes de contrôle et d’estimation peuvent traiter les incertitudes de modélisation,
les perturbations externes telles que la charge supplémentaire et les perturbations du vent,
ainsi que les tâches d’interaction au contact avec un objet dans l’environnement.

La deuxième contribution de cette thèse est la proposition de stratégies décentralisées
basées sur des mesures embarquées et intrinsèques des drones. Une technique d’estimation
utilisant la vision et le système de marqueurs ArUco est tout d’abord présentée. Elle
s’avère capable de reconstruire partiellement la pose du robot en l’absence de système de
localisation externe. Les algorithmes de contrôle de mouvement ou d’interaction peuvent
ensuite être déployés de manière décentralisée, permettant à chaque drone d’effectuer sa
propre loi de commande sur la base de ses propres mesures et des informations partagées
au sein de tous les drones. Les expériences montrent l’efficacité des méthodes proposées
pour la régulation de la configuration du robot, la réalisation des tâches de positionnement
précis par téléopération et des interactions basées sur le contact.

En outre, une analyse détaillée sur les torseurs admissibles du FPR est présentée. Les
notions d’espace de force de poussée et d’espace de torseurs admissibles sont introduites,
avec des calculs détaillés et des études de cas réalisées. Une métrique quantitative appelée
marge de faisabilité est ensuite présentée, et appliquée pour déterminer les configurations
optimales des jambes du FPR dans différentes orientations de la plateforme, maximisant
la faisabilité de torseurs du robot en fonction des exigences spécifiques de la tâche.
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INTRODUCTION

Research Context

In the past two decades, advances in equipment, electronics, sensors and batteries
have supported the development of micro Unmanned Aerial Vehicle (UAV) platforms.
The emergence of small and inexpensive rotor-based platforms has dramatically increased
research topics and civilian applications of UAVs from the public to professionals, such
as aerial photography, building and infrastructure inspection, agricultural monitoring,
security and surveillance. These application scenarios are evolving with an increase in
research into micro UAVs, particularly for:

• Sensor-based estimation or control of a single UAV [Fraundorfer, 2012; Zhou, 2015;
Bourquardez, 2009; Serra, 2016];

• Formation flight of a fleet of UAVs [Turpin, 2012; Schiano, 2016; Hou, 2018; Guerrero-
Castellanos, 2019];

• Aerial manipulations achieved either by a single UAV equipped with an onboard
actuator (see Section 1.1.1) or by the cooperation of multiple UAVs for the transport
and handling of loads using cables or rigidly-connected links (see Section 1.1.2).

The application for which the aerial vehicles need to physically interact with the
environment presents various challenges such as flight stability, autonomy, accuracy and
payload capacity, etc. A variety of novel architectures and prototypes involving UAVs
have been developed and tested with their industrial applications being in the development
phase [Ollero, 2018]. However, existing aerial vehicle platforms generally face the following
difficulties:

• A low autonomy due to the limited payload capacity and energy consumption of
onboard actuators;

• Unfavourable flight stability and accuracy during interactions with the environment;

• A disruption in manipulation due to the blast of UAVs;

• Limited manipulation and payload capacity.

To overcome some of these limitations, a concept of an aerial robot actuated by multiple
UAVs named Flying Parallel Robot (FPR) has been proposed in [Six, 2018a]. It is a poly-
articulated passive architecture composed of a moving platform on which an arbitrary
number of passive legs and UAVs are attached (see Section 1.2 for more details). This
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Introduction

concept has combined the advantages of parallel mechanism and aerial vehicles, offering
potentially manipulation capabilities such as enhanced payload capacity and full manip-
ulability in 3-dimensional space that do not exist compared to other aerial manipulators
with single or multiple UAVs.

While the previous works in [Six, 2018a] have been carried out to tackle several scientific
challenges, such as the generic dynamic modelling and control of the FPR with n UAVs,
there are still scientific and technological obstacles remain to be overcome, which are also
the main objectives of this thesis, namely:

• Objective 1: robot control considering the interaction with the environment (action
on an object/wall for example);

• Objective 2: decentralized control and estimation strategies that can be deployed
onboard each UAV to improve control of the entire system;

• Objective 3: sensor-based observers/controllers to avoid as much as possible using
Motion Capture (MOCAP) systems for exteroceptive measurements.

Contributions

In this thesis, the control and estimation techniques applied to a multi-UAV parallel
robot named Flying Parallel Robot (FPR) taking into account the interaction with the en-
vironment are investigated, which extend potentially the capability of the FPR to achieve
aerial manipulation tasks in the real-world scenario. The specific FPR studied within the
thesis is composed of a moving platform, on which a number of legs are attached with
one Degree-of-Freedom (DoF) revolute joints, and multirotors attached on the other end
of the legs by means of spherical joints.

With the initial design, generic modelling and control of the FPR previously proposed,
the main contributions of this thesis mainly consist of

❖ An in-depth study on the modelling of the specific FPR (Chapter 2), including the
geometric relations, kinematics and dynamics modelling of the robot. This involves
analytical expressions of geometric and kinematic models with several numerical
algorithms for deriving the dynamic models. The numerical validation of all the
models has been done to verify the modelling process served as a basis for the
control and estimation techniques studied in the rest of the thesis.

❖ Several momentum-based observers applied to the FPR (Section 3.2), namely first-
order wrench observer (FOWO), second-order wrench observer (SOWO) and sliding-
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mode wrench/momentum observer (SMWO), for estimating the external wrench
exerted on the robot. The momentum-based approaches have been constructed ac-
cording to the dynamic properties (and models) of the robot, and experimentally
validated (Section 3.5).

❖ An impedance-based control applied to the FPR dealing with the interaction with
the environment (Section 3.3), which is completed with the external wrench es-
timation performed by the momentum-based observer. The proposed controller is
capable of tracking desired trajectories of the robot pose and the desired wrench ex-
pected to exert on the environment. The overall control and estimation techniques
(Section 3.4) are experimentally validated with modelling uncertainties, external
perturbations and contact-based interactions with the environment (Section 3.5).

❖ A vision-based pose estimation method that can be deployed onboard each UAV to
reconstruct partially the robot pose without depending on any external localisation
system (Section 4.2). The real-time pose estimation is based on ArUco marker
detection system, along with the measurements from the Inertial Measurement Unit
(IMU) and the Extended Kalman Filter (EKF) technique to reconstruct the robot
pose and velocity.

❖ Several decentralized control algorithms proposed for motion control and interaction
control schemes (Section 4.3). These controllers have been implemented with emu-
lated or real-time pose estimation results, and validated in a variety of experiment-
ing scenarios such as precise positioning of the platform, pick-up of payload with
teleoperation and contact-based interactions with the environment (Section 4.4).

❖ A detailed analysis on wrench feasibility of the FPR (Chapter 5), which computes
the feasible wrench the robot can exert or resist taking into account the actua-
tion limits of UAVs (constrained by the maximum thrust magnitude and rotational
movements of UAVs). Then the analysis of the quantitative metrics has been applied
to determine the optimal leg configurations to maximise the wrench feasibility in
certain platform orientations.

In summary, the main contents of this manuscript will be organised as follows: The-
oretical background and basis regarding the modelling of the FPR will be presented
respectively in Chapter 1 and Chapter 2. The scientific problems related to Objective
1 for the interaction with the environment will be addressed in Chapter 3. Then, decen-
tralized control and estimation strategies of Objective 2 will be discussed in Chapter 4,
in which the real-world challenges in Objective 3 for sensor-based estimation have also
been partially tackled. Finally, Chapter 5 complements the wrench analysis of the FPR
interacting with the environment.
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Chapter 1

STATE OF THE ART

This chapter presents the state of the art regarding the thesis subject on the Flying
Parallel Robot (FPR) as an aerial manipulator with multiple Unmanned Aerial Vehicles
(UAVs). In the first section, the domain of aerial manipulation is introduced, with a liter-
ature review on the existing architectures and designs for all kinds of aerial manipulators,
which consist mainly of single-UAV designs and cooperative or rigidly connected systems
with multiple UAVs. The second section presents the FPR design, which has been pro-
posed in order to combine the advantages and capacities of a parallel mechanism and
aerial vehicles. A general modelling and motion control of FPR are also detailed.

1.1 Aerial Manipulation

In recent years, the development of micro Unmanned Aerial Vehicles (UAVs) based
on powerful and inexpensive multirotor-based platforms has dramatically increased the
research topics on UAVs. The applications of modern UAVs are not only for aerial pho-
tography but extended to totally novel domains, among which a topic that has been
rapidly developed is aerial manipulation. It is a domain where the UAVs are equipped
with robotic arms or/and end-effectors for accomplishing aerial grasping, transportation
and manipulation tasks [Ruggiero, 2018; Ollero, 2021]. The proposal of such novel aerial
workers is essential because they can easily access remote locations or other places that
are dangerous or inaccessible for human operators. For instance, aerial manipulators can
quickly reach and operate in high-altitude workspaces, for the applications like inspection
and maintenance of infrastructure, grasping and transporting objects where aerial robots
need to physically interact with the environment [Ollero, 2018].

The topic of aerial manipulation presents many scientific and technological challenges,
such as vehicle autonomy, flight stability, manipulation accuracy and payload capability,
etc. It is therefore a cutting-edge research topic which attempts to extend the ability of
aerial robots for performing dexterous and complex manipulation tasks in the air. To
enhance the capability and versatility of aerial robots, problems on the mechanical and
structural designs, advanced sensing and perception as well as robot planning and control
have been addressed. Different UAV platforms have been analysed and used in the aerial
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1.1. Aerial Manipulation

manipulation field, ranging from helicopters and classical under-actuated multirotors,
to fully-actuated multirotors with tilted/tilting rotors. A variety of aerial manipulator
designs have also been developed and studied over the past decade, which can be generally
classified into two genres:

• Single-UAV manipulator: single UAV attached with additional equipment for aerial
manipulation;

• Multi-UAV manipulator: multiple UAVs performing cooperatively the aerial task or
rigidly connected to a moving platform or an articulated structure.

In the following sections, a literature review on the development of different generations
of aerial manipulators is given, along with the state of the art on the perception, estimation
and control of such aerial robots for accomplishing aerial manipulation tasks in both
indoor and outdoor scenarios.

1.1.1 Single-UAV Manipulators: From Helicopter to Multirotor-
based Platforms

The early development of aerial manipulators has been based on a variety of mature
aerial vehicles such as helicopters, multirotor-based platforms and other vehicles that have
been derived from classical multirotors. The types of onboard equipment to perform the
manipulation tasks have also evolved from simple rigid/passive links to more sophisti-
cated grippers or articulated robotic arms. The development of the mechanical designs
of end-effectors, onboard sensing and control algorithms has allowed a single aerial vehi-
cle to achieve novel applications and extend its potential capacities in real-world scenarios.

Helicopters with Industrial Arms
When referring to the aerial manipulator, the helicopter has played an important role

in the development of early works, which is a classical aerial system composed of a main
horizontal rotor for providing vertical lifting and a tail rotor to counteract the torque
generated by the main rotor and control the heading of the aircraft. It has been taken as
one of the first platforms to embed robotic manipulators or end-effectors to achieve grasp-
ing, transportation and manipulation in outdoor environments. For instance, [Bernard,
2010; Bernard, 2011] have investigated the use of helicopters for autonomous slung-load
transportation and deployment (see Fig. 1.1(a)); the grasping of payloads by a small-
size helicopter attached with a self-designed gripper or manipulator has been studied in
[Pounds, 2011; Pounds, 2012; Pounds, 2014] (see Fig. 1.1(b)) and [Kondak, 2013] (see
Fig. 1.1(d)); the helicopters can also be equipped with an industrial and large-size robotic
manipulator, applied to manipulation and operation of objects remotely, as investigated
in [Huber, 2013; Kondak, 2014; Laiacker, 2016] (as shown in Fig. 1.1(c)). These designs

5



Chapter 1 – State of the Art

(a) Helicopter for autonomous load trans-
portation and deployment [Bernard, 2011]

(b) Helicopter with a gripper for grasping and
transporting objects [Pounds, 2012]

(c) Helicopter equipped with a KUKA LWR
industrial manipulator [Laiacker, 2016]

(d) Helicopter equipped with a robotic arm for
grasping and manipulation [Kondak, 2013]

Figure 1.1 – Aerial manipulators composed of a helicopter and an end-effector/industrial
manipulator.

often use GNSS (Global Navigation Satellite System) for the positioning of the robot as
they must work outdoors due to the dimension requirement of helicopters, and equip with
other onboard sensors such as IMU and cameras for pose estimation.

The use of helicopters is advantageous in terms of payload capacity and autonomy during
the manipulation tasks. However, the mechanical construction and control of such com-
plex and large-size platforms are difficult to handle, along with the safety issues associated
with the blades of the helicopter’s main rotor for flights close to external objects and sur-
faces. In contrast, multirotor-based UAVs are usually small-size aircraft and significantly
simpler in terms of design, assembly and control, resulting in growing trends towards us-
ing multirotor as the platform for aerial manipulation in most of the recent works.

Classical Multirotors with Links, Grippers or Articulated Arms
The multirotor consists of a rigid frame and multiple propellers parallelly fixed to the

frame, producing unidirectional thrust vertical to the main frame and generating three-
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dimensional moments to rotate its attitude, which is therefore an under-actuated system
moving in SE(3) with vertical take-off and landing (VTOL) capability. The multirotors
are commonly equipped with four, six or eight propellers, and thus characterised by the
number of rotors and named respectively as quadrotor, hexarotor and octorotor. The sec-
ond generation of aerial manipulators is thus generally composed of a single multirotor
equipped with onboard end-effectors, which are usually customised using inexpensive ma-
terials and lightweight servo motors (when actuated). The achievable manipulation tasks
depend on the type of embedded equipment, which can be summarised as follows:

❖ actuated rigid links or tools, with examples shown in Fig. 1.2(a)-(c);

❖ grippers, with examples in Fig. 1.2(d), (e);

❖ passive links, such as cables or tethers used in designs shown in Fig. 1.2(f), (g);

❖ articulated robotic arms, including single serial robotic arm as in Fig. 1.2(h)-(j),
dual-arm system in Fig. 1.2(k) and parallel manipulators in Fig. 1.2(l), (m).

First of all, the employment of actuated rigid links or tools has the objective to
achieve specific and unitary interaction tasks. For instance, designs where a rigid link is
attached on the quadrotor have been proposed in [Bartelds, 2016] [Alexis, 2016; Yüksel,
2016; Wopereis, 2017; Hamaza, 2018; Yüksel, 2019], showing the composed system capa-
ble of applying a sustained force on the external surfaces [Bartelds, 2016] (see Fig. 1.2(a)),
[Yüksel, 2016; Wopereis, 2017], and dedicated to contact-based inspection [Alexis, 2016]
or painting-like tasks [Yüksel, 2019] (see Fig. 1.2(b)). Customised tools can also be embed-
ded on a single UAV to achieve the specific task, such as “PaintCopter” a quadrotor fitted
with a spray mechanism for autonomous spray painting [Vempati, 2018] (see Fig. 1.2(c)),
a quadrotor equipped with suction cups capable of perching and opening the door [Tsuk-
agoshi, 2015], and a nailgun-equipped octorotor for nail deployment [Romano, 2021].

Similarly, custom and small-size grippers can be deployed onboard the quadrotors for
the grasp and transportation of objects, such as gripping of a beam-like object and piece
of wood using impactive and ingressive gripper [Mellinger, 2011b] (see Fig. 1.2(d)), grasp
of a stuffed toy ensured by the compliance and under-actuation of the self-designed grip-
per [Ghadiok, 2011] (see Fig. 1.2(e)), pickup of a cylinder-form object by avian-inspired
gripper [Thomas, 2013], as well as grasping and transportation of magnetic objects by a
team of quadrotors equipped with self-designed gripper [Loianno, 2018b].

In addition, in some of the aerial manipulator designs, passive links like cables or teth-
ers are integrated within the multirotor model for agile transportation of cable-suspended
load as investigated in [Palunko, 2012; Palunko, 2013; Sreenath, 2013b] and [Foehn, 2017]
(see Fig. 1.2(f)), for inspection and surveillance tasks in case of tethered to a moving
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platform [Tognon, 2016], and for assembling rope structures in inaccessible locations [Au-
gugliaro, 2013] (see Fig. 1.2(g)).

Most importantly, designs with different types of articulated robotic arms embedded
on the UAV are commonly seen in a large number of works, because the onboard robotic
manipulators can provide additional degrees of freedom allowing to accomplish more com-
plex manipulation tasks and compensate the perturbations on the multirotors. The em-
ployed robotic arms range from a single serial manipulator (up to 6 DoFs) to dual-arm
systems and parallel mechanisms. For instance, a single multirotor has been equipped with
multi-DoF serial robotic arm, including: a 2-DoF arm for object manipulation [Kim, 2013]
(see Fig. 1.2(h)), grasping [Tognon, 2017] (see Fig. 1.2(i)) and catch/release application
[Morton, 2016]; a 3-DoF arm for contact-based inspection [Nayak, 2018], object grasp-
ing [Kim, 2016] and assembly tasks [Jimenez-Cano, 2013]; a 4-DoF arm for hinged-door
opening application [Lee, 2020]; a 5-DoF arm for object grasping and manipulation task
[Bellicoso, 2015]; and a 6-DoF robotic arm for precise positioning task [Ruggiero, 2015a]
(see Fig. 1.2(j)) [Lippiello, 2016; Rossi, 2017], interaction task with ropes and flexible bars
[Cataldi, 2016] and assembly of bar structures [Cano, 2013]. As the shortcomings of serial
arms like the increased inertia and shifted centre of mass (CoM) might further affect the
stability of the system, interest in applying parallel designs with multi-arm systems and
parallel manipulators has been increasingly aroused in recent works. On one hand, the
dual-arm systems are particularly studied for grasping pipe-like objects [Suarez, 2017a]
(see Fig. 1.2(k)) [Suarez, 2018], for transporting objects along with long-reach link [Ca-
ballero, 2018], for valve tuning [Orsag, 2014] and peg-in-hole insertion task [Car, 2018].
A three-arm onboard manipulator system has also been proposed in [Paul, 2019] which is
capable of gripping objects with multiple forms and landing on an uneven surface. On the
other hand, the use of parallel manipulators has greatly increased the achievable accuracy
of the composed aerial manipulators, for which examples can be seen in contact-based in-
spection [Fumagalli, 2012; Scholten, 2013; Fumagalli, 2016], surface cleaning application
[Kamel, 2016] (see Fig. 1.2(l)), precise positioning and manipulation of objects [Danko,
2015], and even aerial writing task [Tzoumanikas, 2020] (see Fig. 1.2(m)).

The application scenarios involve both indoor and outdoor operations, integrating out-
door navigation systems based on GNSS [Jimenez-Cano, 2013; Ruggiero, 2015a; Morton,
2016; Suarez, 2017a], indoor navigation features using Motion Capture (MOCAP) sys-
tems [Alexis, 2016; Hamaza, 2018; Romano, 2021; Palunko, 2012; Rossi, 2017; Orsag,
2014; Car, 2018; Danko, 2015; Kamel, 2016; Tzoumanikas, 2020], and onboard vision-
based approaches [Ghadiok, 2011; Kim, 2016; Lippiello, 2016; Suarez, 2017b; Vempati,
2018].
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(a) Quadrotor attached with
an actuated rigid link for
contact-based inspection
task [Bartelds, 2016]

(b) Quadrotor mounted
with a rigid bar for physical
interaction with the envi-
ronment [Yüksel, 2019]

(c) Quadrotor equipped with
a custom spray gun mecha-
nism for spray painting [Vem-
pati, 2018]

(d) Quadrotor equipped with impactive and ingressive gripper
for grasping and transporting bar structures and pieces of wood
[Mellinger, 2011b]

(e) Quadrotor with a compli-
ant gripper for indoor aerial
gripping [Ghadiok, 2011]

(f) Agile quadrotor manoeuvres with a cable-
suspended payload [Foehn, 2017]

(g) Quadrotor assembling tensile structures
[Augugliaro, 2013]

(h) Quadrotor with a 2-
DoF arm for object ma-
nipulation [Kim, 2013]

(i) Quadrotor with a 2-DoF manip-
ulator and gripper for aerial grasp-
ing [Tognon, 2017]

(j) Quadrotor endowed with
a 6-DoF robotic arm for
assembly task [Ruggiero,
2015a]

(k) Hexarotor equipped with a
dual-arm system for grasping
bar-like objects [Suarez, 2017a]

(l) Quadrotor mounted with a
five-bar parallel mechanism for
surface cleaning [Kamel, 2016]

(m) Hexarotor with a 3-DoF
parallel arm for aerial writ-
ing task [Tzoumanikas, 2020]

Figure 1.2 – Aerial manipulator frameworks with a single multirotor platform and attached
equipment for physical interaction.
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Non-Conventional Multirotors with Arms
Apart from classical multirotors, there exists some derivations from these conventional

aerial vehicles based on which novel aerial manipulator frameworks are established as il-
lustrated in Fig. 1.3. One similar platform to the multirotor is the ducted fan, in which
a main horizontal propeller is mounted within a cylindrical duct to generate the total
thrust while a set of control vanes is available on the duct surface to achieve full control-
lability of the vehicle’s attitude. It is therefore an aerial vehicle possessing the equivalent
under-actuation and VTOL characteristics of multirotors. Similar frameworks have been
proposed for physical interaction with the environment using a rigid link [Gentili, 2008;
Marconi, 2011; Marconi, 2012; Forte, 2014], and a parallel robotic arm as in [Keemink,
2012; Torre, 2012] and [Naldi, 2018] (see Fig. 1.3(a)).

Besides, as the multirotor and ducted-fan aircraft are typically under-actuated systems,
implying that the vehicle’s attitude dynamics is coupled with its translational movements,
which has limited the manipulability of such aerial manipulators in 3-dimensional space,
recent works have also focused on developing multirotors with tilted or tiltable pro-
pellers. These novel and usually customised platforms consist of a main rigid frame
and multiple tilted propellers fixed to the rigid frame [Rajappa, 2015; Rashad, 2019] or
movable elements actuated by servo motors for tilting them [Ryll, 2016; Staub, 2018],
showing their possibility of being fully-actuated, over-actuated or even omnidirectional
systems that can exert total thrust along any direction with any value in a spherical
shell independently from the total moment [Tognon, 2018a; Hamandi, 2021]. The special
actuation characteristics of the tilted or tiltable multirotor makes it more versatile and
efficient in accomplishing physical interaction tasks as they benefit from the increased
aerodynamic behaviour due to non-parallel rotor configuration [Abbaraju, 2021].

The examples of these aerial manipulators can be seen in: “Tilt-Hex” robot with a fully-
actuated tilted-propeller hexarotor for 6D physical interaction [Ryll, 2017; Franchi, 2018;
Ryll, 2019] (see Fig. 1.3(b)); “OTHex” (Open-Tilted Hexarotor) platform endowed with
a gripper for grasping bar structures [Staub, 2018] and a 2-DoF robotic arm for push-
and-slide inspection [Tognon, 2019; Nava, 2020]; “AeroX” adopting an eight-tilted rotor
and a 6-DoF robotic arm for physical contact inspection in the oil and gas industry [Tru-
jillo, 2019] (see Fig. 1.3(c)); omnidirectional vehicles such as “Voliro” platform capable
of wall interaction [Kamel, 2018]; “ODAR” system with eight non-aligned bidirectional
rotors for peg-in-hole operation [Park, 2018]; an omnidirectional octorotor equipped with
a pouch for catching a thrown ball [Brescianini, 2018] (see Fig. 1.3(d)); a tilting-hexarotor
platform equipped with a rigid end-effector for contact inspection [Bodie, 2019; Bodie,
2021a], or mounted with a delta-based parallel manipulator for aerial pick-and-place ap-
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plication [Bodie, 2021b] (see Fig. 1.3(e)), and even with a soft robotic arm [Szasz, 2022]
for applications in aerial construction, delivery, etc. Another interesting design with om-
nidirectional multirotors is “dextAIR” where an aerial manipulator suspended by elastic
spring [Yiğit, 2021b; Perozo, 2022] (see Fig. 1.3(f)) or from a cable-driven parallel robot
(CDPR) [Yiğit, 2021c] has been proposed to enhance the ability of this kind of aerial
manipulators like increasing the accuracy, autonomy and especially reducing the energy
consumption due to gravity compensation from the suspension system.

Last but not least, another type of derived platform worth mentioning is morphing
multirotors, where the main body of the vehicle is composed of actuated links that are
movable and equipped each with one or multiple propellers. These morphing designs allow
for very high adaptability to the environment and interaction tasks, since the vehicle can
not only modify the propeller directions but also its shape and thus the relative positions
of propellers thanks to the actuated multi-link structures. For instance, [Falanga, 2019] has
proposed a morphing quadrotor capable of folding itself with several possible morpholo-
gies for surface inspection and rescue application (see Fig. 1.3(g)); a similar morphing
quadrotor that can optimise its morphology for transportation has been studied in [Kim,
2021]; a transformable quadrotor with two-dimensional multi-links capable of grasping,
carrying and dropping objects has been proposed by [Zhao, 2017] (see Fig. 1.3(h)), which
has then been extended to a fully-actuated tilted-octorotor design for aerial grasping of
large-size objects [Anzai, 2018], and a fully-actuated quadrotor with tiltable propellers
capable of opening the door [Sugito, 2022].

These derived multirotor-based platforms have shown their respective advantages such
as fully- or even over-actuation, flexibility and configurability, which are interesting char-
acteristics to enhance the capacity of the constructed aerial manipulators. On the other
hand, there are further challenges in the mechanical design, motion planning and control
of such systems due to their complexity.

As mentioned beforehand, all these aerial manipulator designs have been based on
a variety of UAV platforms for the purpose of performing physical interaction tasks,
which has opened up the field of aerial manipulation. The transition from helicopters to
multirotor-based platforms has been due to the consideration of safety and stability issues
that might be associated with aerial manipulators using helicopters during the flight and
the manipulation task. Then a large branch of additional tools has been employed onboard
a single multirotor to achieve all kinds of possible aerial applications. Similar designs can
also be found using the ducted-fan vehicle, which is however a less interesting platform
due to the complexity of the system and the similarity to conventional multirotors in their
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characteristics. To further enhance the manipulability of aerial vehicles, frameworks with
tilted- or tiltable propellers have overcome the under-actuation of multirotors, and morph-
ing designs have shown their largely improved flexibility and adaptability to interact with
the environment, which however further complicates the mechanical design and control
of the system. Despite all these efforts put in for the enhancement of aerial vehicles, the
single-UAV manipulator still presents a major drawback related to the limited payload
capacity, resulting in tasks infeasible for a single manipulator such as handling a load too
heavy or too large, or the required interaction wrench beyond the range a single UAV can
exert. Therefore, there is a growing tendency towards multi-UAV manipulator designs,
which will be presented in the next section.

(a) Ducted fan with a par-
allel arm for docking ma-
noeuvre [Naldi, 2018]

(b) Tilt-Hex: a fully-actuated hexa-
rotor with tilted rotors performing
peg-in-hole task [Ryll, 2019]

(c) AeroX: an eight-tilted
rotor platform with an 6-
DoF robotic arm for contact
inspection [Trujillo, 2019]

(d) A tilted octorotor with
a pouch mounted to catch
ball [Brescianini, 2018]

(e) An omnidirectional hexarotor
with a parallel arm for pick-and-
place operation [Bodie, 2021b]

(f) dextAIR: an omnidirec-
tional octorotor with elastic
suspension [Perozo, 2022]

(g) A morphing quadrotor capable of folding and
squeezing [Falanga, 2019]

(h) A transformable quadrotor with two-
dimensional multi-links [Zhao, 2017]

Figure 1.3 – Aerial manipulator frameworks with derived multirotor-based platforms.
(a): ducted-fan vehicle; (b)-(f): multirotor with tilted or tiltable propellers; (g) and (h):
morphing multirotor designs.
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1.1.2 Multi-UAV Manipulators: From Cooperative Systems to
Rigidly Connected Systems

The designs where multiple UAVs are deployed to cooperatively perform an aerial task
or to compose a multi-body system have been increasingly seen in recent works, which
can be a potential solution for the transportation of heavy or large-size objects and the
tasks infeasible by a single UAV. During a cooperative aerial manipulation, every single
aerial manipulator can perform the task independently but they cooperate to enhance the
manipulation ability, while in a multi-body system, all the UAVs are rigidly attached to
a structure or a moving platform with articulated links for more challenging application
scenarios. Each aerial vehicle consisting the cooperative or multi-body systems can be
based on the main types of platforms previously described in Section 1.1.1, i.e. helicopter,
conventional multirotor, ducted fan, and multirotor with tilted or tiltable propellers, etc.

Cooperative Systems with Multiple Independent Manipulators
An instinctive design for cooperative aerial manipulation is the cooperation of single-

UAV manipulators with actuated equipment previously proposed as an aerial vehicle
platform equipped with a rigid tool, a gripper or a robotic arm. Examples of such studies
can be seen in cooperative grasping and transportation of objects using a team of quadro-
tors equipped with simple grippers such as [Mellinger, 2013] (see Fig. 1.4(a)), [Loianno,
2018a] (see Fig. 1.4(b)) and [Tagliabue, 2019], or with multi-DoF robotic arms [Kim, 2017]
(see Fig. 1.4(c)) [Caccavale, 2015; Yang, 2015; Lee, 2015; Kim, 2018a; Kim, 2018b], and
cooperative manipulation with multiple tool-embedded quadrotors [Gioioso, 2014; Mo-
hammadi, 2016; Thapa, 2020]. An interesting design can also be noted where multiple
quadrotors with docking mechanisms physically connect and form a whole system to a
flying gripper [Gabrich, 2018].

As each individual manipulator is rigidly attached to the objects when the grasp is en-
gaged or the contact with the object is performed, the internal dynamics due to the
interaction between the object and each manipulator should be carefully considered. This
can be handled by modelling the cooperative multi-agent system as a single composed
system and controlling it in a centralized manner [Caccavale, 2015; Lee, 2015; Moham-
madi, 2016; Loianno, 2018a] using either control allocation or optimal control methods to
determine the input of each agent. Decentralized controllers have also been investigated
where each agent computes its own control law with only knowledge of its own states.
Such a controller can be established either along with a higher-level planner such as an
optimal contact force distribution process [Yang, 2015; Mohammadi, 2016] and a trajec-
tory planner with each agent control enhanced by an onboard estimation of internal forces
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[Kim, 2018b; Tagliabue, 2019], or by employing a consensus algorithm to ensure an equal
share of estimated payload mass on each agent [Thapa, 2020]. Besides, motion planning
of such multi-agent systems is significantly important in order to perform cooperatively
the aerial grasping and transportation task, especially in an obstacle environment, as in-
vestigated in [Lee, 2015; Kim, 2017; Kim, 2018a].

Cable-Suspended Cooperative Systems
Another design of cooperative manipulation by aerial robots that has been intensively

studied is the cable-suspended aerial system for transportation or manipulation using a
number of UAVs, which can be considered as a composition of multiple aerial manipulators
with passive links shown in Fig. 1.2(g). One possibly the earliest example of such coop-
erative systems is the aerial cable-towed system (ACTS) investigated for the first time in
[Michael, 2011; Fink, 2011; Jiang, 2013; Sreenath, 2013a; Manubens, 2013] as an analogy
to classical CDPR, during the time when mechanical design, motion planning, modelling
and control problems of this aerial cooperative system have been addressed. Later, the
works have been extended to a variable cable-towed system [Li, 2020b] (see Fig. 1.4(d))
in terms of mechanical design, a cooperative transportation system using only onboard
sensing (i.e. monocular vision and IMU) [Li, 2021a] for the perception and pose estima-
tion, an analysis on configuration planning of such systems based on wrench feasibility
[Erskine, 2019a] in the aspect of planning, and a more robust ACTS under uncertainties
[Sanalitro, 2020] regarding the control. The cable suspension designs can also be found in
dual-UAV co-manipulation and transportation of rod-like objects [Tagliabue, 2017] (see
Fig. 1.4(e)) [Gassner, 2017; Tognon, 2018b; Mohiuddin, 2020]. A catenary robot for non-
prehensile manipulation of cuboid objects using a non-stretchable cable connected to two
quadrotors has been proposed in [Cardona, 2021] (see Fig. 1.4(f)).

Unlike the cooperation of manipulators with onboard actuated equipment, this type of
cooperative system often requires a preparation phase before the transportation or ma-
nipulation task during when the cables and the load (in transportation tasks) need to
be assembled to the UAVs in advance, and therefore they are often modelled as a single
robot including the states of all the UAVs and controlled in a centralized way. Exceptions
can be found in several works using decentralized controllers based on the leader-follower
paradigm [Tagliabue, 2017; Tognon, 2018b] or guided by onboard vision [Gassner, 2017].
The advantage of multiple UAVs supporting the payload by suspended cables is the large
workspace and high payload capacity. However, the tensile-only nature of cables reduces
the wrench feasibility of the robot [Erskine, 2018; Erskine, 2019b], making the cable-
suspended systems only for transporting objects. As a result, designs on multiple UAVs
with rigidly connected links have been more recently investigated.
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(a) Cooperative grasping
and transportation by
a team of manipulators
with impactive grippers
[Mellinger, 2013]

(b) Cooperative transportation
by two quadrotors with electro-
magnet [Loianno, 2018a]

(c) Cooperative trans-
portation of a rod by two
quadrotors with robotic
arm [Kim, 2017]

(d) Variable aerial cable-
towed system for flexible
cooperative transportation
[Li, 2020b]

(e) Collaborative transporta-
tion of beam-like objects sus-
pended by cables using two
hexarotors [Tagliabue, 2017]

(f) Two quadrotors attached
with a non-stretchable cable
for manipulating cuboid objects
[Cardona, 2021]

Figure 1.4 – Cooperative aerial manipulation frameworks. (a)-(c): cooperation of multiple
aerial manipulators with onboard actuated equipment; (d)-(f): cable-suspended trans-
portation or manipulation collaborated by multiple UAVs.

Rigidly Connected Systems with Multiple UAVs
Similarly to the ACTS, the rigidly connected system with multiple UAVs is considered

as a single robot and required to be pre-assembled. According to the assembly configura-
tions, the UAVs can be attached to a single rigid frame (as referred to Fig. 1.5(a)-(c)), or
to an articulated architecture with actuated or passive joints to compose a multi-body sys-
tem (seen in Fig. 1.5(d), (e)). In these rigidly connected systems, additional mechanisms
are commonly used in order to maximise motion dexterity and improve the manipulability
of the robot.

An earliest and successful demonstration of such systems is the SmQ (spherically-connected
multi-quadrotor) platform [Nguyen, 2015; Nguyen, 2018] (see Fig. 1.5(a)). In this design,
multiple quadrotors are connected to a rigid frame (i.e. a moving platform) for cooperative
manipulation. The attachment of quadrotors onto the rigid frame is achieved via a passive
spherical joint to decouple the rotational dynamics of each quadrotor with the movements
of the rigid body, rendering the whole system fully actuated (i.e. full 6-dimensional pose
of the rigid frame independently controllable). It has been proven that fully actuation can
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be ensured with at least three well-located UAVs whose attaching points to the CoM of
the platform (or the tool) are not collinear with each other [Nguyen, 2015]. The feasible
wrench analysis and optimal control of this SmQ system with three quadrotors are inves-
tigated afterwards in [Nguyen, 2018].

A similar design is an over-actuated multi-rotor aerial vehicle with more tiny quadro-
tors attached to a rigid frame via a two-DoF passive gimbal mechanism [Yu, 2021] (see
Fig. 1.5(b)). The platform can achieve full 6-dimensional motion with redundancies from
four quadrotors seen as vectoring force actuators. A nullspace-based control allocation
method of this over-actuated system has been proposed in [Su, 2021] allowing better per-
formance of trajectory tracking by the rigid platform.

Another interesting design is the flying gripper in which multiple UAVs are physically fixed
to a rigid frame with well-arranged orientations to allow fully actuation of the rigid body.
An under-actuated finger is further attached beneath each quadrotor and actuated by its
yaw rotation using a non-back-drivable worm-gear mechanism permitting the opening and
closing motion of four fingers for aerial grasping and transportation of large-size objects
[Li, 2021c] (see Fig. 1.5(c)). The original design has been proposed in [Saint-Sevin, 2018]
and optimisation on the geometric arrangements of quadrotors has also been addressed
to maximise the robot’s manipulability and its capacity to produce form-closed grasps.
The dynamic control algorithm using Model Predictive Control (MPC) of the flying grip-
per has been investigated in [Li, 2021c]. A flying gripper design with mobile quadrotor
attitudes has later proposed during the thesis of [Li, 2021b], in which the attachment of
quadrotors to the rigid frame is achieved by means of universal joints, showing a more
robust behaviour of the robot during the grasp due to the decoupling on quadrotor roll
and pitch dynamics.

Moving forward from these designs with multiple UAVs attached to a single rigid
structure, the multi-body system is a more recently proposed architecture composed of
an articulated structure with passive or actuated joints and multirotors distributed over
multiple links. Similarly to morphing multirotors with transformable multi-links, the use
of articulated structure has largely increased the flexibility and the manipulability of the
robot, and the whole system is usually fully-actuated due to the collaboration of multiple
multirotors. One example of multi-body systems is the “DRAGON” platform composed of
a transformable multi-body structure and ducted-fan vehicles attached to each link with
servo motors to actuate the system. The robot has shown its capability of flying through a
narrow window by changing its structure [Zhao, 2018], performing a squeezing task under
a plate with an embedded soft end-effector [Zhao, 2020], and being applied to forceful
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valve manipulation task [Zhao, 2022] (see Fig. 1.5(d)). Another example can be seen in
“LASDRA” (large-size aerial skeleton system with distributed rotor actuation) initially
proposed in [Yang, 2018]. The system consists of multiple links connected to each other
using passive spherical joints, with each link fully actuated by distributed multi-rotors.
A joint locking strategy has been proposed to increase the robot’s loading capacity and a
decentralized impedance control scheme has been studied to allow for compliant operation
by such a large-size dexterously-articulated robot [Yang, 2018]. Further investigation of
LASDRA system working in the outdoor environment has been done, in which a pose
and posture estimation method has been proposed based on IMU and GNSS modules
[Park, 2019] (see Fig. 1.5(e)).

In conclusion, the cooperation of multiple aerial manipulator platforms has been more
appropriate for the manipulation task unfeasible by a single UAV because of the payload
capacity and actuation property. Such advantages have been particularly illustrated by
the aerial cable-towed systems (ACTS) where a payload is supported by multiple UAVs
using suspended cables. As a cable can only generate unilateral force, the system is only
dedicated to aerial transportation tasks. Therefore, designs with multiple UAVs rigidly
connected to a moving platform seem to be more appealing for full-pose manipulation of
an object by the tool/end-effector attached to the rigid frame. To further enhance the
flexibility and configurability of these aerial robots, multi-body systems with an articu-
lated structure actuated by multiple UAVs have been investigated, showing their potential
in accomplishing more complex tasks in unconstrained environments. Inspired by some
of these designs, a flying parallel robot with a passive architecture actuated by multiple
UAVs has been proposed, which will be presented in the next section.
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(a) SmQ: spherically con-
nected multi-quadrotor system
[Nguyen, 2018]

(b) An over-actuated UAV plat-
form with four quadrotors rigidly
connected to the frame using
gimbal mechanism [Yu, 2021]

(c) Flying gripper with four
quadrotors connected to fin-
gers using gear-worm mech-
anisms [Li, 2021c]

(d) DRAGON platform: multi-link robot actu-
ated by ducted fans [Zhao, 2020]

(e) LASDRA: large-size aerial skeleton sys-
tem with distributed rotor actuation [Park,
2019]

Figure 1.5 – Aerial manipulators with rigidly connected structures. (a)-(c): multiple UAVs
connected to a rigid frame using mechanical mechanisms; (d) and (e): multi-body systems
actuated by multiple UAVs connected by means of passive joints.

1.2 Design of Flying Parallel Robots

Belonging to the class of multi-UAV parallel manipulators, the design of Flying Parallel
Robot (FPR) has been proposed in the thesis of [Six, 2018a] where multiple multirotor-
based UAVs are rigidly connected to an articulated structure via mechanical joints. The
structure on which the multiple UAVs are attached is analogous to a classical parallel
mechanism, and therefore it is named as passive architecture in the FPR design, implying
that the articulated structure includes only the passive (i.e. not actuated) joints. The
passive architecture is commonly composed of a moving platform and multiple kinematic
chains connecting the multirotors as actuators to the platform via rigid bodies and pas-
sive joints. Fig. 1.6 shows examples of flying parallel robots with 2 or 3 UAVs and their
analogies as a Bi-glide mechanism and a 3-RPS parallel mechanism. As it can be seen, the
fixed base and the motors (within active joints) in parallel mechanisms are replaced by
multirotors in the design of FPR using a similar architecture. The only actuation of the
system is thus exclusively provided by the thrust forces of multirotors while the attach-
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ments of multirotors using spherical joints ensure a decoupling property between their
rotational dynamics and the dynamics of the passive architecture, making it possible to
consider the multirotors as vectoring thrust generators in 3-dimensional space. One can
also discover the same property through the use of spherical or universal joints in the
design of SmQ platform [Nguyen, 2018], the over-actuated UAV platform [Yu, 2021] and
the flying gripper with mobile-attitude quadrotors [Li, 2021b].

The original idea of this proposal is to combine a parallel architecture with the capacity
provided by multiple UAVs, allowing to obtain several interesting properties such as:

❖ High payload capacity due to the distribution of the load on multiple UAVs;

❖ No additional actuators needed apart from the multirotors, which is advanta-
geous in terms of energy consumption;

❖ Low perturbations on the end-effector from the airflow generated by the propellers
of UAVs, which can be ensured by an adapted passive architecture that supports
the end-effector far away from locations of UAVs;

❖ High versatility and configurability to the aerial tasks, as the use of rigid links
and the possibility of reconfiguring the architecture allow to perform the task above
or below the level of flight of UAVs by a single robot;

❖ Large amount of possible architectures presented in the community of parallel
robots, offering the possibility of constructing the flying parallel robot with different
kinematics and dynamics properties.

These advantageous properties allow the FPR to become a potential candidate for a
versatile aerial manipulator capable of performing multiple manipulation tasks with a
single design. In [Six, 2018a], analytical studies on the general modelling and motion
control of flying parallel robots were conducted, with preliminary implementations on a
2D FPR actuated by two UAVs presented in [Six, 2017b] and a 3-D FPR with three
UAVs referred to [Six, 2018b]. In the following parts, the literature review on the general
modelling of the flying parallel robot and the motion control of a general FPR tracking a
prescribed trajectory will be detailed.

1.2.1 General Modelling of Flying Parallel Robots

In this section, a general methodology regarding the dynamic modelling of flying par-
allel robots is presented. To keep the generality, the modelling of the FPR is developed
on a general design composed of a moving platform and n legs attached with multirotors
(as illustrated in Fig. 1.7) without specifying the number of legs. The general modelling
can thus be applied to a specific design such as the ones shown in Fig. 1.6.
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(a) Example of a 2D flying parallel robot with 2
UAVs [Six, 2018a]

(b) A Bi-glide parallel mechanism,
with the active joints in grey.

(c) Example of a flying parallel robot with 3
UAVs [Six, 2018b]

(d) A 3-RPS mechanism [Qu, 2015].
The prismatic joints are actuated.

Figure 1.6 – Example of flying parallel robots with 2 UAVs analogous to a Bi-glide parallel
mechanism and with 3 UAVs to a 3-RPS parallel mechanism.

In the general design of FPR, the CoM positions of multirotors are considered to be
attached to the end of each leg by means of spherical joints. This hypothesis ensures the
previously discussed decoupling property between the rotational movements of multirotors
and that of the passive architecture, which is indispensable for designing a cascaded control
law presented afterwards in Section 1.2.2. It has to be mentioned by the way that, the
revolute joints are adequate for connecting the multirotors to the rigid structure in a 2D
FPR design such as Fig. 1.6(a), which ensures the decoupling property in 2-dimensional
space. The passive architecture in the FPR can be characterised by:

• the 6-dimensional pose of the moving platform (in case of 2D FPR design, its di-
mension is reduced to be expressed in 2D space);

• the additional coordinates associated with the internal configuration of each leg,
which are specified according to different architecture designs.
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Figure 1.7 – General schema of the flying parallel robot design with n UAVs [Six, 2018a].

The 6-dimensional pose of the platform is commonly expressed by the position and ori-
entation of the platform with respect to a global reference frame (denoted by F0), using
six coordinates (x, y, z, ψ, θ, ϕ). The first three components define the CoM position of
the platform in the global frame, and the last three components represent the orienta-
tion of the platform relative to the global frame using the convention of Euler-Bryant
angles [Diebel, 2006]. Therefore, the vector of the generalised coordinates for the passive
architecture can be denoted by qp grouping the pose of the platform and the coordinates
characterising the joint variables in the kinematic chains. The total number of DoFs of
the FPR is thus characterised by the dimension of qp, denoted by np.

The modelling process can be inspired by the analytical methods well studied for
parallel robots, which generally implies a virtual separation of the platform from the rest of
the robot to compose a tree structure. In the general modelling of FPR, the multirotors are
virtually separated from the passive architecture, which allows obtaining a tree structure
from the moving platform to the extremities of the legs (as seen in Fig. 1.8). Similarly
to the dynamic modelling of parallel robots, the dynamic model is then calculated for
each of the virtually separated elements. The overall dynamics of the FPR can finally be
established by expressing the interaction force between the extremity of each element and
the attached multirotor through the spherical joint.

To model a tree structure, it is common to use the Modified Denavit-Hartenberg (MDH)
convention [Khalil, 2002b], which has been extensively adopted in modelling serial or
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Figure 1.8 – Virtual separation of UAVs with the passive architecture [Six, 2018a].

tree-structure robots. The MDH convention uses a number of parameters to describe the
position and orientation of the downstream body according to the antecedent body, de-
pendent on the type of joint for the connection (usually classified by revolute joint or
prismatic joint). More complex joints can be decomposed and represented by a combina-
tion of several simple joints, for instance, a spherical joint can be seen as three revolute
joints with orthogonal axes. More details about the modelling of a tree-structure robot
can be found in [Khalil, 2002b, Chapter 7]. The parameters of MDH convention for an
arbitrary body i are given by:

• anti: the antecedent body of the body i in a single kinematic chain;

• µi: equals to 0 (or 1) if the joint between two bodies is passive (or active);

• σi: equals to 0 (or 1) if the joint type is revolute (or prismatic);

• αi, di, θi, ri: four parameters defining the position and orientation of the current joint
i from the frame of its antecedent body;

• γi, bi: supplementary parameters for the definition of frame in a tree structure.

To be able to model the mobility of the moving platform using the MDH convention, it
is necessary to define a virtual serial architecture to relate the platform frame Fp to the
global frame F0 using six coordinates of the platform pose. This virtual architecture can
then be modelled by a 3P3R serial architecture (as illustrated in Fig. 1.9). The platform
body Bp is supposed to be aligned with the last body in the 3P3R architecture while
the intermediary virtual bodies (denoted as V1 to V5) are considered to have zero mass
and inertia, and to be coincident with each other. The order of three revolute joints
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depends on the rotation order defined by the chosen representation of orientation, e.g. for
Euler-Bryant angles, the revolute joints are defined successively about x, y and z axis in
the global frame. The parameters for the virtual architecture equivalent to the moving
platform are given by Fig. 1.10.

Figure 1.9 – Equivalent 3P3R architecture to the mobility of the moving platform [Six,
2018a].

Figure 1.10 – Table of MDH parameters associated with the virtual 3P3R architecture
corresponding to the mobility of the moving platform [Six, 2018a]

This MDH table will be completed according to the type of joints used in the legs and
the geometric parameters from the platform to the extremities where the multirotors are
located. After having fully determined the MDH table of the whole passive architecture,
the computation of the geometric relation and kinematics of the FPR can be achieved
by applying the well-structured analytical algorithms presented in [Khalil, 2002b], which
results in a geometric model determining the positions of the leg extremities knowing the
generalised coordinates qp and a kinematic model defining the velocity relationship as
follows:

0ti = Ji(qp)q̇p (1.1)
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where:

• q̇p is the generalised velocity vector of the passive architecture;

• 0ti is the twist 1 of the point Oi (i.e. the extremity of each leg i) expressed in the
global frame F0;

• Ji(qp) ∈ R6×np is the Jacobian matrix associated to the leg i which is dependent on
the generalised coordinates qp.

One may refer to [Khalil, 2002b] for more details on how to derive the geometric relation-
ship and kinematic model using the MDH convention.

By separating the linear velocity vi and angular velocity ωi of the twist, (1.1) can be
further expressed by 0vi

0ωi

 =
Jv,i
Jω,i

 q̇p (1.2)

For the dynamic modelling of the FPR, the first step is to model the dynamics of the
passive architecture excluding the multirotors, as it has been virtually decoupled with the
multirotors to compose a tree structure. Then, by introducing the multirotor’s dynamics
and the interaction forces between the multirotors and the legs, the complete dynamic
model of the FPR can be derived.

First of all, the dynamics of the passive architecture can be computed using the Euler-
Lagrange formula. The Lagrangian associated to the passive architecture is given by

Lp(qp, q̇p) = Ep(qp, q̇p) − Up(qp) (1.3)

where Ep and Up are respectively the kinematic and potential energy of the passive archi-
tecture. The equation of Euler-Lagrange is written as [Khalil, 2002b]

d
dt

(
∂L

∂q̇p

)
−
(
∂L

∂q

)
= τ p (1.4)

where the virtual actuation wrench τ p can be expressed as a function of the interaction
wrench wp,i =

[
fTp,i mT

p,i

]T
between the multirotor i and the passive architecture archi-

tecture, where fp,i and mp,i are the force and moment. This is done by defining a virtual
velocity q̇∗

p and a virtual twist t∗
i of the last body on each leg i. Then the principle of

virtual power indicates that the virtual power of the passive architecture should be equiv-
alent to the sum of power provided by the interaction wrench transmitted at the extremity

1. A twist is a 6-dimensional vector, representing the linear and angular velocity of a rigid body.
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of each leg, i.e.
q̇∗T
p τ p =

n∑
i=1

t∗T
i wp,i (1.5)

By replacing the term t∗
i by the kinematic relationship of (1.1), (1.5) becomes

τ p =
n∑
i=1

JTi wp,i (1.6)

Introducing this relation in (1.4) and linearising the equation given the acceleration vector
of the generalised coordinates q̈p, the expression of the dynamic model in matrix form
can be finally obtained as

Mpq̈p + cp =
n∑
i=1

JTi wp,i (1.7)

with Mp the generalised inertia matrix of the passive architecture, and cp a vector includ-
ing the Coriolis, centrifugal and gravitational effects.

Then, the second step involves the calculation of the interaction wrench based on the
development of the dynamics of the virtually separated multirotors. Each multirotor pro-
duces a thrust force acting on its frame, being subject to the interaction wrench wp,i from
the legs and the gravity. Since the spherical joints are used to connect the multirotors to
the passive architecture, the moments are not transmitted, i.e. mp,i = 0. The translational
dynamics of a single multirotor i can thus be derived, which is expressed in the reference
frame F0 as follows

mir̈i = fi +mig − fp,i (1.8)

where:

• ri is the CoM position of multirotor i expressed in F0, and thus r̈i is its linear
acceleration;

• fi is the 3-dimensional thrust force produced by the propellers of the multirotor i
expressed in the global frame F0;

• mi is the mass of multirotor i;

• g =
[
0 0 −g

]T
is the gravity vector expressed in F0.

By further expressing the acceleration of each multirotor (i.e. the acceleration of the leg
extremity v̇i) using the derivatives of (1.2), it is possible to express the interaction force
between the multirotor and the passive architecture by

fp,i = fi +mig −mi(Jv,iq̈p + J̇v,iq̇p) (1.9)

After knowing the interaction force established by the translational dynamics of mul-
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tirotors, this internal term in (1.7) can be cancelled to reach

Mpq̈p + cp =
n∑
i=1

JTv,i(fi −miJv,iq̈p −miJ̇v,iq̇p +mig) (1.10)

reminding that Jv,i is the linear components of the Jacobian matrix, i.e. first three rows
of Ji, since no moments are transmitted to the passive architecture and thus the angular
components (last three rows) of the Jacobian matrix in (1.2) are omitted. Knowing the
rotation matrix associated to each multirotor’s orientation, the 3-dimensional thrust force
fi in (1.10) can be expressed by

fi = Ri
ifi (1.11)

with ifi =
[
0 0 fz,i

]T
the body-frame thrust force and Ri the rotation matrix dependent

on the chosen convention of Euler angles. For the convention of Euler-Bryant angles (XYZ
convention) defined by (ϕi, θi, ψi), the rotation matrix Ri is given by

Ri =


cos θi cosψi − cos θi sinψi sin θi

cosϕi sinψi + cosϕi sin θi sinψi cosϕi cosψi − sinϕi sin θi sinψi − sinϕi cos θi
sinϕi sinψi − cosϕi sin θi cosψi sinϕi cosψi + cosϕi sin θi sinψi cosϕi cos θi


(1.12)

Introducing (1.11) in (1.10) and reformulating the equation, the following relation can be
obtained

(
Mp +

n∑
i=1

miJTv,iJv,i
)
q̈p +

(
cp +

n∑
i=1

miJTv,i(J̇v,iq̇p − g)
)

=
n∑
i=1

JTv,iRi
ifi (1.13)

By further grouping the relations for all the legs and multirotors, the dynamic model of
the FPR can be written in matrix form as

Mtq̈p + ct = JTp Rtft (1.14)

where:

• Mt = Mp +∑n
i=1 miJTv,iJv,i ∈ Rnp×np

This matrix is the composed generalised inertia matrix, which has taken into account
the inertia matrix of the passive architecture and the sum of inertial effects due to
the mass of multirotors attached at the extremities of legs.

• ct = cp +∑n
i=1 miJTv,i(J̇v,iq̇p − g) ∈ Rnp

This vector is composed of the Coriolis, centrifugal and gravitational terms corre-
sponding to the passive architecture cp and those effects generated by the mass of
multirotors.
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• Jp =


Jv,1
Jv,2

...
Jv,n

 ∈ R3n×np

The complete Jacobian matrix concatenates the individual Jacobian matrices corre-
sponding to each multirotor. Note that this Jacobian matrix is a priori not square.

• Rt =


R1 0 · · · 0
0 R2 · · · 0
... ... . . . ...
0 0 · · · Rn

 ∈ R3n×3n

This is a square matrix concatenating the rotation matrices of all the multirotors.

• ft =



1f1
2f2
...

nfn

 ∈ R3n

This is a vector concatenating the 3-dimensional thrust forces produced by all the
multirotors, expressed in the local frame of each multirotor.

The rotational dynamics of multirotors are fully decoupled through the use of spherical
joints, with the hypothesis being implicitly made that the centre of spherical joints is
located at the CoM position of each multirotor. It can thus be expressed by a well-known
formula such as the one presented in [Mahony, 2012]. The orientation of the multirotor
can also be characterised by Euler-Bryant angles, denoted by ηi =

[
ϕi θi ψi

]T
, with its

body-frame rotational velocity and acceleration defined respectively by iωi and iω̇i. Then
the rotational dynamics of a single multirotor can be given by

Iiiω̇i = −iωi × (Iiiωi) + imi (1.15)

with Ii the moment of inertia of the multirotor expressed in its body frame and imi the
moment generated by the multirotor about its own frame. The angular velocity of each
multirotor i can be related to the rates of the Euler angles via the equation

iωi = Diη̇i (1.16)

where the matrix Di depends on the convention of the Euler angles, which can be given
by the following equation coherent with the rotation matrix defined in (1.12).

Di =


cos θi cosψi sinψi 0

− cos θi sinψi cosψi 0
sin θi 0 1

 (1.17)
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Note that for small angles, iωi ≈ η̇i. This approximation is however not considered in the
model as multirotors might have large inclination angles. By introducing the relation of
(1.16) and its derivative into (1.15), the following equation can be obtained

IiDiη̈i = −IiḊiη̇i − Diη̇i × (IiDiη̇i) + imi (1.18)

The rotational dynamics of all the multirotors can be grouped and written in the same
matrix form as in (1.14) by

Maq̈a + ca = m (1.19)

where:

• qa =


η1

η2
...

ηn

 ∈ R3n

The vector concatenates the orientation coordinates of the multirotors.

• Ma =


I1D1 0 · · · 0

0 I2D2 · · · 0
... ... . . . ...
0 0 · · · InDn

 ∈ R3n×3n

The matrix concatenates the product between the moment of inertia and the matrix
D for each multirotor in diagonal elements.

• ca =


I1Ḋ1η̇1 + D1η̇1 × (I1D1η̇1)

...
InḊnη̇n + Dnη̇n × (InDnη̇n)

 ∈ R3n

This vector groups the Coriolis and centrifugal effects associated with the rotational
movements of multirotors.

• m =


1m1

...
nmn

 ∈ R3n

The vector concatenates the moments applied by the propellers of each multirotor
on its body frame.

In general, the dynamic model of the FPR is composed of the dynamics of passive
architecture including the effects due to the masses of multirotors depicted by (1.14) and
the rotational dynamics of the multirotors in (1.19), formulating a decoupled system in
two levels. The derivation of this dynamic model and its property is indispensable to
designing the control algorithms, such as the motion control presented as follows.
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1.2.2 Motion Control of Flying Parallel Robots

As mentioned above, the decoupling between the rotational dynamics of multirotors
and the dynamics of the passive architecture allows to construct a cascaded control law,
which is composed of:

• A high-level control loop for the trajectory tracking of the passive architecture;
• A low-level attitude control of multirotors to achieve the thrust forces required by

the high-level loop.
This arrangement is achievable and commonly seen in other rigidly connected multi-UAV
designs such as [Nguyen, 2018], because the response of multirotor’s rotational dynamics
is much faster than the dynamics of the rigid structure.

For the control of the passive architecture, considering the dynamic model given by
(1.14), an auxiliary control input νp can be defined such that the inverse dynamic model
can be written as a double integrator system, i.e.

q̈p = νp = M−1
t (JTp Rtft − ct) (1.20)

Given a desired trajectory on the coordinates of the passive architecture to follow, denoted
by (qdp, q̇dp, q̈dp), the auxiliary input can be established by a PID (Proportional-Integral-
Derivative) control law for minimising the tracking error defined by ep = qp − qdp, which
is written as

νp = q̈dp − Kpep − Kdėp − Ki

∫
ep (1.21)

with Kp, Kd and Ki the positive-definite diagonal matrices respectively for the propor-
tional, derivative and integral gains. These gains should be properly determined to make
sure the convergence of the double integrator system of (1.20). In general cases, a PD
regulation is sufficient to ensure the convergence towards the desired trajectory. However,
the integral term is sometimes mandatory to compensate for the static error due to the
inevitable modelling errors, which in contrast can not be handled by a PD controller.
Then, combining equations (1.20) and (1.21), the control input of the passive architecture
denoted by an auxiliary variable νJ of dimension (3n× 1) is known

νJ = (JTp )†
(

Mt

(
q̈dp − Kpep − Kdėp − Ki

∫
ep
)

+ ct
)

(1.22)

which is the vector of thrust forces required to actuate the system expressed in F0, i.e.

νJ = Rtft =
[
fT1 fT2 · · · fTn

]T
(1.23)

with fi the 3-dimensional thrust force of multirotor i expressed in F0. Note that (JTp )†
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is the pseudo-inverse of the transpose of the Jacobian matrix Jp, since the matrix Jp is
generally not a square matrix, i.e. 3n ̸= np.

Once the commands on the vector of thrust forces are known, the setpoints for the
low-level system can be determined, consisting in the total thrust and the desired attitude
of each multirotor. It can be done by simplifying the expression of (1.23) to keep only
the z components of each ifi, as the thrust forces produced by multirotors are always
along the z axis of its own frame. Therefore, the expression of (1.23) can be reduced to
be expressed in the form of

νJ = Rrfz (1.24)

with fz =
[
fz,1 fz,2 · · · fz,n

]T
being the vector concatenating the z components of each

ifi as the total thrust produced by each multirotor, and Rr the reduced matrix of Rt

having the dimension of (3n×n) which is composed of the third columns of each rotation
matrix Ri. From (1.12) and (1.14), it can be written by

Rr =



sin θ1

− sinϕ1 cos θ1 0 · · · 0
cosϕ1 cos θ1

sin θ2

0 − sinϕ2 cos θ2 · · · 0
cosϕ2 cos θ2

... ... . . . ...
sin θn

0 0 · · · − sinϕn cos θn
cosϕn cos θn



(1.25)

which brings the direct relationship of the auxiliary variable νJ with the total thrust and
attitude for each multirotor i as

sinϕifz,i = νJ,3i−2

− sinϕi cos θifz,i = νJ,3i−1

cosϕi cos θifz,i = νJ,3i

(1.26)

with νJ,k the k-th component of the vector νJ . Therefore, the total thrust and the desired
attitude (roll and pitch) of each multirotor can be determined by

fz,i =
√
ν2
J,3i−2 + ν2

J,3i−1 + ν2
J,3i

ϕi = −atan2(νJ,3i−1, νJ,3i)

θi = asin(νJ,3i−2

fz,i
)

(1.27)
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However, the yaw angle ψi of each multirotor cannot be determined from (1.24). According
to (1.16) and (1.17), the multirotor’s yaw movement will have an effect on its inclination
angle, and thus the 3-dimensional thrust it produces. To produce the correct thrust, a
predefined constant yaw for each multirotor should be maintained.

In the low-level control loop running at a higher frequency, the objective is to achieve
the desired setpoints computed beforehand. Considering the rotational dynamics of mul-
tirotors depicted by (1.19), the control input of the attitude controller consists of the
moments generated on each multirotor’s frame, i.e. the vector of m. The desired setpoints
of all the multirotors can be grouped by a vector qda, with the tracking error defined by
ea = qa − qda. Similarly to the process in the high-level loop, the inversion of the dynamic
model allows to construct a double integrator system, by defining an auxiliary input νa

such that
q̈a = νa = M−1

a (m − ca) (1.28)

A control law can therefore be designed based on the auxiliary input νa which is corre-
sponding to the angular accelerations of multirotors. To make up the concept of a cascaded
control algorithm in two levels, rapid convergence and good stability of attitude tracking
are crucial in the low-level controller. The sliding mode control is thus chosen to ensure
these two features, which in addition is robust to the modelling errors and perturbations.
The vector of the sliding surface variable is firstly defined by [Six, 2018a]

σ = ėa + Λ1ea + Λ2

∫
ea (1.29)

with Λ1 and Λ2 two positive-definite diagonal matrices. The auxiliary input can then be
computed by sliding mode as

νa = q̈da − Λ1ėa − Λ2ea − Kssign(σ) (1.30)

with Ks a positive-definite diagonal matrix for the gains. The output of the function
sign(.) is defined by a vector s of the same dimension

sign(σk) =


1 if σk > 0
0 if σk = 0

−1 if σk < 0

(1.31)

The stability of the sliding mode control can be proven using the Lyapunov theory [Khalil,
2002b]. Considering a Lyapunov function defined by V = σTσ, its derivative is written
by

V̇ = −2σT σ̇ (1.32)
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By introducing (1.29), there is

V̇ = −2σT (q̈a − q̈da + Λėa + Λiea) (1.33)

Combining (1.30) and (1.33), the following relation can be found

V̇ = −2σTKssign(σ) (1.34)

which is strictly negative for σ not zero. Therefore, σ converges asymptotically towards
zero in infinite time, which ensures the stability of the closed-loop system. Once the
convergence of the sliding surface variable is achieved, the evolution of the tracking error
can be written by the error dynamics

ėa + Λea + Λi

∫
ea = 0 (1.35)

The convergence towards the desired attitude qda is guaranteed, since Λ and Λi are the
matrices with coefficients strictly positive. However, despite its robustness, the sliding
mode control often suffers from the chattering issue, which is an undesired phenomenon
caused by the non-continuous output of sign(.) function. A solution to limit this problem
is to replace the sign(.) by a saturation function sat(.) which outputs continuously and is
given by

sat(σk) =


1 if σk > ϵk

σk/ϵk if ∥σk∥ ≤ ϵk

−1 if σk < −ϵk

(1.36)

with ϵk an arbitrarily small value defining a boundary around the sliding surface.

Finally, the control input for the attitude controller is obtained by the combination of
sliding mode control law and the dynamic model as follows

m = Ma

(
q̈da − Λėa − Λiea − Kssat(σ)

)
+ ca (1.37)

The control input of multirotors is then completed by fz and m, i.e. the vector of total
thrusts and the vector of moments. These commands can be achieved by an onboard flight
controller that distributes the force and moment commands to the rotor speeds. It needs
to be mentioned that for quadrotors, the commands of fz and m are sufficient to fully
determine the motor inputs of each propeller, while in the case of hexarotor or octorotor,
an additional allocation method should be applied to allocate the control commands since
the number of actuators is greater than the dimension of the commands (i.e. the system
is over-actuated).
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The overall control algorithm of the flying parallel robot can be summarised by the
diagram shown in Fig. 1.11. The high-level loop regulates the coordinates of the passive
architecture, with its output determining the total thrust and the attitude (roll and pitch)
for each multirotor required to actuate the system. The desired roll and pitch angles from
the output of the high-level loop are usually filtered to avoid high-frequency noises, and
the desired yaw is predefined to fully compose the attitude setpoints. Then the low-level
loop running at a higher frequency stabilises the attitude of the multirotors and ensures
the production of desired thrust forces using the sliding mode control law. The stability
of the complete control procedure for trajectory tracking is ensured by the arrangement
of the cascaded control algorithm.

Figure 1.11 – Overall control diagram of the flying parallel robot [Six, 2018a].

1.3 Conclusion

In this chapter, the topics of aerial manipulation and the design of the Flying Parallel
Robot (FPR) have been discussed. A literature review on the existing aerial manipulator
architectures is firstly conducted, in which a variety of aerial vehicle platforms have been
adopted to achieve the manipulation tasks, and the transition of designs has been found
from single-UAV manipulators equipped with onboard end-effectors to multi-UAV designs
as cooperation systems or rigidly connected systems. Belonging to the class of multi-UAV
manipulators, the FPR presents a passive architecture analogous to a parallel mecha-
nism supported by multiple UAVs. This design has the potential of achieving various and
possibly complex manipulation tasks with a single architecture due to the advantages of
combining the parallel mechanism design with aerial vehicles.

General modelling of the FPR has then been presented, and the decoupling prop-
erty between the rotational dynamics of multirotors and the dynamics of the passive
architecture allows the design of a cascaded control algorithm which has the objective to
track a desired trajectory of the passive architecture in the high-level loop and stabilise
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the attitudes of multirotors in the low-level loop. These state-of-the-art studies on aerial
manipulators and the general design of FPR serve as a solid basis for this thesis. The
modelling process and the motion control algorithm have also been the preliminaries for
the studies on a specific FPR presented in the rest of the manuscript.
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Chapter 2

GEOMETRIC, KINEMATIC AND DYNAMIC

MODELLING

This chapter presents the geometric relations, kinematics and dynamics of a specific
Flying Parallel Robot (FPR) composed of a moving platform supported by a number of
multirotor-based Unmanned Aerial Vehicles (UAVs) with passive kinematic chains. An
introduction to this particular design of the FPR is given in the first section. The second
section presents the system description such as the coordinate frames and the robot states.
The third section demonstrates the geometric relations, which are then derived to compute
the kinematics in the fourth section. The dynamic modelling of the FPR is detailed in the
fifth section, in which the dynamics of the passive architecture is modelled using two nu-
merical algorithms and the decoupled rotational dynamics for each multirotor is discussed.
Numerical validation of the kinematics and dynamics is presented in the sixth section.

2.1 Introduction

The Flying Parallel Robot (FPR) studied within the scope of this thesis is a specific
case of the general design presented in Section 1.2, which is explicitly composed of

❖ a moving platform potentially equipped with an end-effector;

❖ a number of rigid legs connected to the platform using one-DoF revolute joints;

❖ multirotors connected at the extremity of each leg by means of spherical joints.

All the joints in the FPR are not actuated and the only actuation of the system is provided
by the multirotors. The location of the spherical joints connecting the multirotors to the
rigid legs is assumed to be the Centre of Mass (CoM) position of each multirotor, which is a
reasonable assumption commonly found in other multi-UAV robots with rigidly-connected
links as in [Nguyen, 2018; Li, 2021b]. The spherical joint is a constraint element allowing
the relative rotation of two bodies and transmitting only force but not moment. This
mechanical property makes it possible to decouple the rotational dynamics of multirotors
from the dynamics of the passive architecture 1, similarly to what has been discussed in

1. Recall that passive architecture refers to the rigid articulated structure including the moving plat-
form, the rigid legs and the passive (i.e. not actuated) joints, as presented in Section 1.2
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Section 1.2. The multirotors can thus be considered as rotating thrust generators in 3-
dimensional space, providing together thrust forces to actuate the passive architecture of
the FPR. As a result, it is possible to consider the FPR as a cascade system composed of

• the passive architecture with relatively slow dynamics that is driven by the thrust
forces of multirotors transmitted to the leg tips via spherical joints;

• multirotors that generate the corresponding thrust forces, with fast rotational dy-
namics decoupled from the dynamics of the passive architecture.

The translational dynamics of each multirotors is however dependent on that of the pas-
sive architecture as they are rigidly connected to the legs. In the state of the art for
the general modelling of FPRs (referred to Section 1.2.1), the overall dynamics of the
FPR can be derived by introducing the interaction force between the multirotor and the
corresponding leg. Then by cancelling the interaction force that appears both in the trans-
lational dynamics of the multirotor and dynamics of the passive architecture, a generalised
dynamic model of the FPR is obtained. This methodology can be applied to model the
specific FPR studied in this thesis. However, another solution is adopted to simplify the
modelling process, without the requirement of introducing the interaction force. Actually,
the multirotors can be considered as additional mass points added at the extremities of
the legs, by which the translational dynamics of the multirotors are systematically taken
into account in the model of the passive architecture, while the rotational dynamics of
each multirotor remains decoupled with this dynamic model. In addition, more intuitive
and numerically efficient methods are used regarding the geometric, kinematic and dy-
namic modelling of this FPR, instead of applying the state-of-the-art methods based on
the MDH convention and Euler-Lagrange formula.

2.2 System Description

A general scheme of the FPR is shown in Fig. 2.1, demonstrating a platform supported
by several multirotor-based UAV via the rigid legs. Note that the subscript i is denoted as
an index for the number of the leg and the multirotor, which remains the same meaning
in the rest of the manuscript. In addition, several frames are presented, and respectively
denoted by:

• F0 an inertial reference frame fixed in a global localisation system with its origin
denoted by O;

• Fp a body-fixed frame of the platform located at its CoM position denoted by P ;

• Fli a frame attached to the centre of leg i’s revolute joint Ai, in which the joint angle
is expressed around the z axis;

• Fbi a body-fixed frame attached to the CoM position Bi of the multirotor i.
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2.2. System Description

As discussed in Section 1.2.1, the generalised coordinates of the FPR consist of the 6-
dimensional pose of the platform and the additional mobility in the passive kinematic
chains. For the orientation of the platform, the representation of unit quaternion is chosen,
in order to avoid the potential singularity issue associated with the Euler angles. The
mobility in the passive chains is characterised by the angle of the respective revolute
joint. Therefore, the vector of the generalised coordinates can be defined by

q =


pp
qp

θl

 ∈ R7+n (2.1)

where pp ∈ R3 is the 3-dimensional position of the platform, qp ∈ H is the unit quaternion
of the platform, which is defined in the quaternion space H, and θl =

[
θ1 θ2 ... θn

]T
∈

Rn is a vector concatenating the leg angles. n is the total number of legs (and multirotors)
and is supposed to be equal to or greater than 3. If n < 3, it can be proven that the
system is under-actuated such that the 6-dimensional pose of the platform is not fully
controllable [Six, 2018a], which is undesired and out of the research interests in this thesis.
The generalised velocity of the FPR is defined by a vector

ν =


vp
pωp

θ̇l

 ∈ R6+n (2.2)

including the linear velocity of the platform vp ∈ R3 expressed in F0, the body-frame
angular velocity of the platform pωp ∈ R3 in Fp, and a vector of the leg angle rates
θ̇l =

[
θ̇1, θ̇2, ..., θ̇n

]T
∈ Rn. The generalised acceleration of the FPR is given by a

vector

ν̇ =


ap
pω̇p

θ̈l

 ∈ R6+n (2.3)

where ap is the linear acceleration of the platform with respect to F0 and expressed in
F0, pω̇p is the angular acceleration expressed in Fp and θ̈l concatenates the joint angle
accelerations. Note that ap can be calculated by the time derivative of the velocity as v̇p
since the linear velocity of the platform is also expressed in F0.

The coordinates of the actuators (i.e. each multirotor i) can be defined by the position
pi ∈ R3 and orientation qi ∈ H with respect to the reference frame F0, while its linear
and angular velocities are denoted by vi ∈ R3 expressed in F0 and biωi ∈ R3 expressed in
Fbi. Each multirotor produces a thrust force to actuate the FPR, represented by a vector
fi ∈ R3 expressed in F0 which can be written as bifi =

[
0 0 ft,i

]T
in its body-fixed frame
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Fbi, with ft,i being the total thrust magnitude.

Figure 2.1 – A general scheme of the Flying Parallel Robot, with x, y, z axes of the frames
defined respectively by red, green and blue arrows.

It should be remarked that any multirotor-based UAV can be applied as the actuators in
the FPR design, among which the quadrotor (as shown in Fig. 2.1) has been chosen in
the works done during this thesis for several reasons, including

❖ Fully actuation: Given a thrust force vector fi and desired yaw as commands,
quadrotor’s inputs are fully determined, i.e. thrust magnitude and orientation in
3-dimensional space derived from fi can deterministically define the four inputs of
the quadrotor’s motors.

❖ Implementation simplicity: Quadrotor’s control has been intensively studied in
the literature, and open-source autopilot software is available.

To not to lose the generality in the following sections, the term multirotor is still used to
present the multirotor-based UAVs as the quadrotors used in the FPR.

It is additionally noted that the orientation of any given body j can also be defined by Eu-
ler angles using ZYX convention as ηj =

[
ϕj ϑj ψj

]T
∈ R3, with ϕj, ϑj, ψj respectively

representing the roll, pitch and yaw angle of a body (see [Diebel, 2006] and Appendix A.1).
This representation is beneficial to simplify the trajectory generation and data analysis,
which might however encounter singularity problems and is thus not preferable in the
control. Remark that the unit quaternion is the only representation adopted in the con-
trol algorithms presented in this thesis, while the Euler angles are used when it is needed
(such as data analysis). The conversion between Euler angles and the corresponding unit
quaternion can be found in Appendix A.2.

38



2.3. Geometric Relations

2.3 Geometric Relations

The geometric relations in robotics involve generally the Direct Geometric Model
(DGM) which determines the end-effector pose from the values of the actuated joints,
and the Inverse Geometric Model (IGM) as an inverse problem of the DGM. For parallel
robots, the DGM is a complex problem in general, as it cannot be easily expressed in an-
alytical form and might have multiple solutions. In contrast, the IGM is simple to derive
and remains unique for parallel robots.

The IGM of the FPR is specifically referred to as the model computing the positions of
multirotors knowing the coordinates of the passive architecture, since the actuators are
the multirotors and the robot pose is composed of not only the pose of the end-effector
(i.e. the platform), but also the leg angles. This model can then be applied to compute
the internal configuration of the FPR (i.e. leg angles), supposing that the positions of
multirotors and the pose of the platform are known by exteroceptive sensors. Finally, the
additional consideration on the location of spherical joints attached to the multirotor that
is away from the multirotor’s CoM will be presented.

2.3.1 Inverse Geometric Model (IGM)

The location of the multirotor i’s CoM position can be determined via the kinematic
chain linking the moving platform to each multirotor, as

−−→
OBi = −→

OP + −−→
PAi + −−→

AiBi (2.4)

This relation can be written by introducing the system’s coordinates as

pi = pp + r · ri + l · li (2.5)

where pi is the 3-dimensional position of the multirotor i, r is denoted as the radius of
the platform (distance from its CoM position to the centre of the revolute joint), and l as
the length of the leg, ri, li are two unit vectors defining the direction of −−→

PAi and −−→
AiBi.

These two unit vectors are expressed in F0, which is however constant if being expressed
respectively in Fp and Fli. Thus, the following transformations of frames can be found

ri = Rp
pri

li = Rp
pRli

lili
(2.6)

where Rp is the rotation matrix associated to the quaternion qp (referred to (A.60) in
Appendix A.2), pRli the rotation matrix defining the transformation from Fli to Fp, and
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pri, lili are obviously two constant vectors that can be defined by

pri =


cosαi
sinαi

0

 , with αi = (i− 1) · (n− 2)π
n

; lili =


1
0
0

 (2.7)

αi is a constant parameter defining the inclined angle between −−→
PAi and the x axis of the

platform frame in Fp, with α1 initialized as zero (i.e. −−→
PA1 aligned with platform’s x axis).

It is recalled that the total number of the legs satisfies n ≥ 3 to ensure the expression
of αi in (2.7) being valid. The transformation between Fli and Fp given by pRli can be
defined with three sequential rotations similarly as the definition of Euler angles in ZXZ
convention (see Appendix A.1), by firstly rotating an angle of αi around z axis of the
frame Fp, then following with a rotation of −π/2 around the x axis of the rotated frame,
and rotating an angle of θi around the new z axis to finally obtain the frame Fli (as shown
in Fig. 2.2, with F′ and F′′ being two intermediary frames).

Figure 2.2 – Sequential rotations for defining the transformation between the platform
frame and leg i’s frame.

By multiplying the corresponding unit coordinate rotations given by (A.40), (A.41) and
(A.42) in Appendix A.1, the rotation matrix pRli can be derived as

pRli = Rz(αi)Rx(−
π

2 )Rz(θi)

=


cosαi − sinαi 0
sinαi cosαi 0

0 0 1



1 0 0
0 0 1
0 −1 0



cos θi − sin θi 0
sin θi cos θi 0

0 0 1



=


cosαi cos θi − cosαi sin θi − sinαi
sinαi cos θi − sinαi sin θi cosαi

− sin θi − cos θi 0



(2.8)

Finally, by grouping the equation of (2.5) for each multirotor, the complete IGM model
can be obtained, which can be summarised by

p = IGM(q) (2.9)
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with p =
[
pT1 pT2 · · · pTn

]T
∈ R3n a vector concatenating the positions of all the

multirotors, and the input q as the vector of generalised coordinates of the robot.

2.3.2 Calculation of Internal Configuration via Geometric Re-
lation

The geometric relation derived above can be used to calculate the internal configura-
tion of the robot, i.e. the inclined angles θi of the revolute joints on the legs, knowing the
position of the multirotor pi and the pose of the platform pp and qp. By definition of the
dot product between two vectors, the following relationship can be found

−−→
PAi ·

−−→
AiBi = ∥

−−→
PAi∥ · ∥

−−→
AiBi∥ · cos θi (2.10)

from which the revolute joint angle of the leg i can be derived as

θi = acos
 −−→

PAi ·
−−→
AiBi

∥
−−→
PAi∥ · ∥

−−→
AiBi∥

 (2.11)

where −−→
PAi and −−→

AiBi are vectors expressed in F0. Using the geometric relationship derived
in the IGM, the expression of these two vectors can be given knowing the position of
the multirotor i and the platform pi, pp, and the rotation matrix Rp associated with the
platform orientation qp as follows



−−→
PAi = Rp

prPAi

−−→
AiBi = −−→

OBi −
−−→
OAi = −−→

OBi − (−→
OP + −−→

PAi)
= pi − (pp + Rp

prPAi
)

(2.12)

where prPAi
is a constant vector defining the revolution joint i’s position in Fp and ap-

parently prPAi
= r · pri, with pri a constant unit vector defined in (2.7). Note that the

calculation of the leg angles using (2.11) can also be done if all the vectors are expressed
in a local frame, such as Fp.

2.3.3 Location of Spherical Joint attached on the Multirotor

The spherical joint attaching the multirotor to the leg’s tip is not necessarily located
at the multirotor’s CoM position. In the design of the FPR within the range of this thesis,
the location of the spherical joint lies in the plane defined by the x and y axes of the mul-
tirotor’s body-fixed frame Fbi. This location can thus be characterised by two constant
parameters, the relative distance d and the relative angle β with respect to the multirotor
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i’s frame as depicted in Fig. 2.3. A set of more generalised parameters can be defined such
as the relative position of the joint’s centre in the multirotor frame. However, only d and
β are used to parameterise the location of the spherical joint to keep the coherence and
simplicity of the actual mechanical design.

From Fig. 2.3, it can be found that d = ∥
−−→
BiSi∥ and β is the inclined angle between −−→

BiSi

and x axis of the multirotor’s body-fixed frame Fbi. Note that these two parameters d and
β can be different for each multirotor, in particular the relative angle β where the spherical
joint is connected. However, their values are considered as equal for all the multirotors
in this FPR which is ensured by the assembly prerequisite. In addition, while a common
assumption is that the centre of the spherical joint is located at the CoM position of the
multirotor (i.e. d = 0) as discussed in Section 2.1, the fact that d ̸= 0 makes the geometric
relationship of (2.4) deviated by

−−→
OBi = −→

OP + −−→
PAi + −−→

AiSi + −−→
SiBi (2.13)

which gives the following expression introducing the robot variables

pi = pp + r · ri + l · li + d · di (2.14)

with di representing the unit vector of −−→
BiSi expressed in F0. However, the conditions that

r ≫ d and l ≫ d allow this additional term in the geometric model to be neglected, as
the radius of the platform r and the leg’s length l are often required to be large enough
such that no potential collision or interference between the multirotors would occur. In
the following sections, the condition that d = 0 is a priori assumed, while additional
discussions on the case where d ̸= 0 will be made in Section 2.5.5 dealing with rotational
dynamics of the multirotor.

Figure 2.3 – Geometric constants defining the location Si of the attached spherical joint
on the multirotor.

The geometric relation given by (2.5) can be further derived to develop the kinematic
model, which is detailed in the next section.
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2.4 Kinematics

Similarly to geometric models, the Forward Kinematic Model (FKM) and the Inverse
Kinematic Model (IKM) of the robot are dual models to construct the relationship between
the velocity of the actuated variables and the velocity of the robot generalised coordinates.
Similarly to the geometric model, the IKM of the FPR is easily computed which computes
the linear velocity of each multirotor based on the knowledge of generalised velocity vector.
The FKM is thus solved by the inverse of IKM. The second-order kinematics is also
detailed as follows.

2.4.1 First-Order Kinematics

For the FPR, the first-order IKM can be developed by differentiating the geometric
relationship in (2.5), which gives

vi = vp + r · ṙi + l · l̇i (2.15)

with vi ∈ R3 being the linear velocity of multirotor i expressed in F0. Note that vp is the
linear velocity of the platform. The derivatives ṙi and l̇i require however the differentiation
of the rotation matrices, which hold

ṙi = Ṙp
pri + Rp

pṙi = Rp[pωp]×pri
= −Rp[pri]×pωp

(2.16)

l̇i = Ṙp
pRli

lili + Rp
pṘli

lili + Rp
pRli

lil̇i
= Rp[pωp]×pRli

lili + Rp
pRli[liωli/p]×lili

= −Rp[pli]×pωp − Rli[lili]×liωli/p

(2.17)

where pωp is the body-frame angular velocity of the platform, liωli/p ∈ R3 is the angular
velocity of the frame Fli with respect to Fp and expressed in Fli, which is by definition
given as liωli/p = θ̇iδi, with θ̇i the leg angle rate and δi =

[
0 0 1

]T
representing the

revolute-joint axis of the leg i. Note that [.]× represents the skew-symmetric matrix asso-
ciated with an arbitrary 3-dimensional vector for the cross product operation (referred to
(A.50) in Appendix A.1), pli = pRli

lili is the vector li expressed in Fp, and Rli = Rp
pRli

represents the rotation matrix from Fli to F0.

The kinematics relationship of (2.15) can be computed by introducing (2.16) and (2.17)
into (2.15) and taking liωli/p = θ̇iδi into account, as

vi = vp − r · Rp[pri]×pωp − l · (Rp[pli]×pωp + θ̇i · Rli[lili]×δi) (2.18)
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where the result of the cross product [lili]×δi = lili × δi =
[
0 −1 0

]T
can be further

applied to develop (2.18), which gives

vi = vp + (r · Rp[pri]T× + l · Rp[pli]T×)pωp + θ̇il · yli (2.19)

with −[.]× = [.]T× and yli representing the y-axis vector (i.e. second column) of the rotation
matrix Rli. The physical interpretation of this relationship can be given as follows:

• the linear velocity of each multirotor vi is directly linked to the linear velocity of
the platform vp, both expressed in F0.

• the angular velocity of the platform causes additionally translational movements
at the leg extremities. Note that the term (r · Rp[pri]T× + l · Rp[pli]T×)pωp can be
interpreted as pωp × rPBi

, with rPBi
representing the vector of −−→

PBi.

• the rotational rate of the leg angle θ̇i generates translational movement of the mul-
tirotor only along y axis of the leg i’s frame, according to the only possible DoF of
the multirotor in leg’s frame constrained by the revolute joint.

By concatenating the kinematics relationship in (2.19) for each multirotor i, the first-order
IKM of the FPR can be finally derived by

v =


13×3 Jω1 l · yl1 03 ... 03

13×3 Jω2 03 l · yl2 ... 03
... ... ... ... ... ...

13×3 Jωn 03 03 ... l · yln





vp
pωp

θ̇1

θ̇2
...
θ̇n


= Jν (2.20)

where Jωi
=
(
r · Rp[pri]T× + l · Rp[pli]T×

)
∈ R3×3, 13×3 is the (3 × 3) identity matrix and

03 is a (3 × 1) vector of zeros. J ∈ R(3n)×(6+n) is the Jacobian matrix linking the gen-
eralised velocity of the robot ν ∈ R6+n to the vector of the multirotor linear velocities
v =

[
vT1 vT2 ... vTn

]T
∈ R3n.

The FKM of the FPR, also called Forward Kinematics, is dedicated to calculate the
velocity coordinates from the linear velocities of the multirotors. For the FPR, this model
can be derived by the inverse of (2.20) as

ν = J†v (2.21)

with J† being the pseudo-inverse of the Jacobian matrix when the dimension of the ac-
tuated states (the linear velocities of multirotors, 3n) is superior than the dimension of
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robot coordinates (generalised velocity, 6 + n), i.e. the robot is over-actuated. Note that
for the case where n = 3, J† = J−1 since J is square (3n = 6 + n), and the system is
fully actuated. However, the inverse of Jacobian matrix necessitates J being invertible,
i.e. det(J) ̸= 0. It has been proven that this assumption holds true if all the leg angles are
within the range of [0, π/2] rad [Six, 2018b].

2.4.2 Second-Order Kinematics

The second-order kinematic model depicts the relationship between the acceleration of
the actuated variables and that of the robot configuration, which can be derived directly
by the differentiation of the first-order kinematics in (2.20) as

v̇ = Jν̇ + J̇ν (2.22)

where v̇ =
[
v̇1 v̇2 ... v̇n

]T
∈ R3n is a vector concatenating the linear accelerations of

multirotors expressed in F0. J is the Jacobian matrix given in (2.20) and J̇ ∈ R(3n)×(6+n)

is the derivative of the Jacobian matrix in form of

J̇ =


03×3 J̇ω1 l · ẏl1 03 ... 03

03×3 J̇ω2 03 l · ẏl2 ... 03
... ... ... ... ... ...

03×3 J̇ωn 03 03 ... l · ẏln

 (2.23)

where J̇ωi
=
(
r · Rp[pωp]×[pri]T× + l · Rp[pωp]×[pli]T× + l · Rp[pRli[θ̇iδi]×lili]T×

)
∈ R3×3, ẏli is

the second column of the matrix given by Ṙli =
(
Rp[pωp]×pRli + Rp

pRli[θ̇iδi]×
)

∈ R3×3.

Similarly as in FKM, the acceleration of the FPR can be computed knowing the
accelerations of the multirotors, i.e.

ν̇ = J†(v̇ − J̇ν) (2.24)

J† = J−1 when n = 3, assuming that det(J) ̸= 0.

2.5 Dynamics

The dynamics model depicts the relationship between the robot motion and the applied
actuation wrench by the equation of motion. It is necessary to derive an accurate dynamic
model for the purpose of simulating the robot’s behaviour using the Direct Dynamic Model
(DDM) or constructing the control law with the Inverse Dynamic Model (IDM).
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As discussed in Section 2.1, the dynamics of the FPR is decoupled by two-level sys-
tems: dynamics of the passive architecture and rotational dynamics of multirotors, which
is ensured by the mechanical property of using spherical joints attached to the CoM
of the multirotors. The effects due to the masses of multirotors are additionally consid-
ered within the development of the IDM for the passive architecture, which eliminates the
need of introducing interaction force between the multirotor and the leg as in [Six, 2018a].

The IDM of the passive architecture can generally be written in matrix form as

M(q)ν̇ + c(q,ν) = τ (2.25)

where M(q) ∈ R(6+n)×(6+n) is the generalised inertia matrix, c(q,ν) ∈ R6+n is a vector
including Coriolis, centrifugal and gravitational effects, and τ ∈ R6+n is the actuation
wrench applied to the robot. This model can also be expressed as

M(q)ν̇ + C(q,ν)ν + g(q) = τ (2.26)

with C(q,ν) ∈ R(6+n)×(6+n) the Coriolis matrix factorizing the Coriolis and centrifu-
gal terms, and g(q) ∈ R6+n being the generalised gravity wrench, such that c(q,ν) =
C(q,ν)ν +g(q). Note that ν and ν̇ represent the generalised velocity and acceleration of
the robot as defined in (2.2) and (2.3). For more general cases in classical robotics, they
are often represented by the derivatives of the robot coordinates q̇ and q̈.

The dynamic modelling consists in computing the terms in (2.25) or (2.26) either in
analytical forms or using numerical algorithms. It is straightforward to get expressions
of the dynamic model using Euler-Lagrange formulation as discussed in Section 1.2.1.
However, the development of analytical expressions is often tedious and computationally
heavy to be implemented in real time. Therefore, numerical methods are more commonly
adopted, such as Khalil’s method based on recursive Newton-Euler algorithm [Khalil,
2002b] and Featherstone’s method using Spatial Vector notation [Featherstone, 2008].
Khalil’s method is usually applied to obtain the dynamic model in form of (2.25), which
is then used to construct a dynamic model-based control law. The Spatial Vector nota-
tion uses 6-dimensional vectors and matrices, and equations are thus more compact. A
numerical algorithm for computing the Coriolis matrix in (2.26) is furthermore applied,
which might be required in specific control and estimation methods. They are therefore
indispensable for developing algorithms presented in the following chapters of this thesis.

In the following subsections, the computation of the actuation wrench for the passive
architecture is firstly given. Then, two numerical methods for the dynamic modelling
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respectively based on the recursive Newton-Euler algorithm and Spatial Vector notation
will be detailed. In the fourth subsection, the gravity wrench can be computed directly
by the static model, which complements the dynamic model written in form of (2.26).
Finally, the decoupled rotational dynamics of multirotors will be presented.

2.5.1 Computation of Actuation Wrench

As discussed in Section 2.1, the FPR is a cascaded system in which the dynamics of
the passive architecture is decoupled with the rotational dynamics of multirotors. The
system is exclusively actuated by the thrust forces produced by the multirotors. The 3-
dimensional thrust forces produced by the multirotors can be concatenated by a vector
f =

[
fT1 fT2 · · · fTn

]T
∈ R3n, with fi ∈ R3 the thrust force vector of the multirotor i

expressed in F0. The actuation wrench of the FPR given by τ in the dynamic models can
be expressed as

τ =


fp

pmp

ml

 ∈ R6+n (2.27)

with fp ∈ R3, pmp ∈ R3 being the 3-dimensional force and moment actuated on the
platform expressed respectively in F0 and Fp, and ml =

[
ml1 ml2 ... mln

]T
∈ Rn con-

catenating the moments actuated about the revolute-joint axis of the legs. The actuation
wrench can be computed from f using the static relation such that

τ = JT f (2.28)

where J is the kinematic Jacobian matrix defined in (2.20) relating the generalised velocity
of the FPR to the velocities of actuated multirotors. This relationship can be proven by
the principle of virtual power as follows (referred to Section 1.2.1 and [Briot, 2015]).

Proof. Consider a virtual velocity of the robot ν∗ which is driven by the virtual
velocities of the multirotors v∗. In absence of any other effects, the thrust forces
of the multirotors f lead to the robot’s actuation wrench τ . Thus, power conser-
vation states that

ν∗Tτ = v∗T f (2.29)

Replacing v∗ with kinematic relation given by (2.20) gets

ν∗Tτ = (Jν∗)T f (2.30)

which can be further simplified to obtain the relation (2.28) with the virtual
velocity ν∗ being arbitrary.
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2.5.2 Dynamic Modelling via Recursive Newton-Euler Algorithm

The recursive Newton-Euler algorithm uses the recursive computation of Newton-
Euler equations allowing to decrease the computational complexity of the dynamic model
[Khalil, 2010; Briot, 2015]. The algorithm starts with the formulation of the Newton-Euler
equations for each rigid body in the robot, giving the total forces Σfj and moments Σmj

on the body j at the origin of its frame Fj, i.e.

Σfj = mjaj + ω̇j × msj + ωj × (ωj × msj)
Σmj = IOj

ω̇j + msj × aj + ωj × (IOj
ωj)

(2.31)

where aj is the linear acceleration of the origin of the frame Fj, ωj and ω̇j are the angular
velocity and acceleration of the link, msj ∈ R3 is the vector of the first moment of inertia
which is calculated by

msj = mjsj (2.32)

as the mass of the body mj multiplied by the CoM position sj of the link with respect to
its own frame Fj. IOj

∈ R3×3 is the rotational inertia matrix expressed at the origin of Fj.

Then, the dynamic model is obtained by applying two recursive algorithms sequentially,
the forward recursive computation for the velocity and acceleration of the links, i.e. right
side of the equations (2.31) and the backward recursive computation for the total forces
and moments, i.e. the left side of the equations (2.31). The recursive algorithms for the
modelling of the FPR are detailed as follows, which involve the computation of the inertial
matrix and the Coriolis vector for the dynamics of the passive architecture considering
additional masses of the multirotors attached at the leg tips. Note that the moving plat-
form is considered as the (floating) base of the robot, required to define the forward and
backward directions as in the modelling of classical robotic manipulators.

Forward Recursive Computation
The forward computation has the objective to compute the velocities and accelerations

of the legs from those of the platform. It is therefore initialized by the knowledge of the
platform twist (i.e. vp and pωp) and accelerations (i.e. ap and pω̇p) with respect to F0,
where vp, ap are further converted to be expressed in Fp by pvp = RT

p vp and pap = RT
p ap.

Then, the velocity of the leg i’s frame Fli with respect to F0 and expressed in its own
frame can be computed from that of the platform (in the forward direction)

livli = pRT
li
pvli = pRT

li (pvp + pωp × prPAi
)

liωli = pRT
li
pωp + liωli/p = pRT

li
pωp + θ̇iδi

(2.33)
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Remark that pRli is the rotation matrix from the frame Fli to the frame Fp, prPAi
is the

vector −−→
PAi expressed in Fp (i.e. prPAi

= r · pri), liωli/p is the relative angular velocity of
the frame Fli with respect to Fp and expressed in Fli, which is given by the leg angle rate
θ̇i multiplied by its rotational axis δi of the revolute joint. Regarding the acceleration of
each leg’s frame Fli, the following relations are given

liali = pRT
li
pali = pRT

li

(
pap + pω̇p × prPAi

+ pωp × (pωp × prPAi
)
)

liω̇li = pRT
li
pω̇p + liω̇li/p = pRT

li
pω̇p + θ̈iδi + θ̇i(liωp × δi)

(2.34)

where θ̈i is the angular acceleration of the revolute-joint angle, liωp is the angular velocity
of the platform expressed in Fli (i.e. liωp = pRT

li
pωp).

Backward Recursive Computation
The backward computation is then developed to compute the total forces and mo-

ments acting on each body of the robot (i.e. the left side of (2.31)), which is performed
in the backward direction (from the legs to the platform).

For each leg i, the total forces and moments expressed in Fli are given by

liΣfi = lifp,i +mi
lig

liΣmi = limp,i + limsi × lig
(2.35)

where lifi and limi are the reaction force and moment exerted on the leg i by the
platform expressed in Fli, lig is a gravity vector expressed in Fli, i.e. lig = RT

lig, with
g =

[
0 0 −g

]T
and g = 9.81m/s2. mi and limsi are constant mass parameters taking

into account the leg’s mass and the attached multirotor’s mass, which are calculated by
 mi = ml,i +mb,i

limsi = limsl,i + limsb,i
(2.36)

where ml,i and mb,i are the masses of the leg i and the multirotor i, limsl,i is the vector of
the leg i’s first moment of inertia, which is computed by the multiplication between the
leg i’s mass and the CoM position in its own frame Fli, limsb,i is the vector of the first
moment of inertia corresponding to the multirotor’s mass expressed in Fli, which is thus

limsb,i = mb,i · lirAiBi
(2.37)

with lirAiBi
= l · lili is the vector −−→

AiBi expressed in Fli.
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The total forces and moments on the platform expressed in Fp can then be computed by
considering the forces and moments transmitted from the legs

pΣfp = pfp −
n∑
i=1

pfp,i +mp
pg

pΣmp = pmp −
n∑
i=1

(pmp,i + prPAi
× pfp,i) + pmsp × pg

(2.38)

where pfp and pmp are the reaction force and moment exerted on the platform by the
virtual base (considered as the actuation wrench in (2.27)) expressed in Fp, pfp,i and pmp,i

are the reaction force and moment exerted on the platform by the individual leg expressed
in Fp, pg = RT

p g is the gravity vector expressed in Fp, mp and pmsp are constant mass
parameters of the platform.

In practical computation, the gravity terms from (2.35) and (2.38) can be cancelled
by taking into account their effects in the linear acceleration of the platform such that

pap = RT
p (ap − g) (2.39)

Thus, combining equations (2.33), (2.34) and (2.35), the expression of Newton-Euler equa-
tions (2.31) for the leg i can be written, which is then used to obtain the following relations

lifp,i = mi
liali + liω̇li × limsi + liωli × (liωli × limsi)

limp,i = liIOi

liω̇li + limsi × liali + liωli × (liIOi

liωli)
(2.40)

where the composed mass mi and first moment of inertia limsi corresponding to the leg i
with the attached multirotor i are given by (2.36), and the composed moment of inertia
liIOi

is calculated by
liIOi

= liIOl,i
+ liIOb,i

(2.41)

with liIOl,i
being the leg’s moment of inertia expressed at the origin of its frame Fli, and

liIOb,i
the moment of inertia due to the mass of the multirotor attached at the extremity

of the leg expressed in Fli, i.e.

liIOb,i
= mb,i ·


0 0 0
0 l2 0
0 0 l2

 (2.42)

l is the leg’s length.

The actuation force and moment of the platform can be calculated by formulating the
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Newton-Euler equations and considering relations in (2.38) and (2.40) as

pfp = mp
pap + pω̇p × pmsp + pωp × (pωp × pmsp) +

n∑
i=1

pfp,i

pmp = pIOp

pω̇p + pmsp × pap + pωp × (pIOp

pωp) +
n∑
i=1

(pmp,i + prPAi
× pfp,i)

(2.43)

where mp, pmsp and pIOp are constant parameters corresponding to the platform’s mass,
first moment of inertia and moment of inertia expressed in Fp, respectively. The reaction
force pfp,i and moment pmp,i exerted on the platform by each leg are computed in (2.40)
and converted by

pfp,i = pRli
lifp,i

pmp,i = pRli
limp,i

(2.44)

Finally, the additional computation is performed to obtain the actuation wrench of the
FPR aligned with its definition in (2.27) as follows

τ =



fp
pmp

ml1
...

mln


=



Rp
pfp

pmp

δT1 · l1mp,1
...

δTn · lnmp,n


(2.45)

Note that ml1, ...,mln represents the moment about the rotational axis of the revolute
joints, δ1, ..., δn are the revolute-joint axis which are identical to be δi =

[
0 0 1

]T
.

The recursive Newton-Euler formula for the dynamic modelling of the FPR is thus
given by equations (2.33)–(2.45). By factorizing different terms that appear in (2.25), the
inertia matrix and the Coriolis vector can be computed. A numerical algorithm can be
implemented allowing an online computation of the dynamic model, as

❖ by imposing ν = 0 and g = 0, the result of τ computed by the recursive algorithm
is exclusively the term M(q)ν̇ in the dynamic model,

❖ then, by imposing ν̇r =
[
... 0 1(r) 0 ...

]T
the acceleration vector with only 1 for

the r-th component and 0 elsewhere, the result of τ corresponds to the r-th column
of the inertia matrix M(q),

❖ the Coriolis vector c(q,ν) is resulted from the computations by imposing ν̇ = 0.

Therefore, the numerical computation for the dynamic modelling using the recursive
Newton-Euler method can be summarized by the following algorithm, which has a time
complexity of O(Nn), with N being the total number of the degrees of freedom of the
FPR, i.e. N = 6 + n, and n being the number of the legs (and the attached multirotors).
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Input: q, ν Output: M(q), c(q,ν)
M = 0N×N

for j = 1 to N

ν̇r = 0N
ν̇r(j) = 1
M.column(j) = recursiveNewtonEuler(q,ν = 0, ν̇r, g = 0)

end
c = recursiveNewtonEuler(q,ν, ν̇ = 0, g = 9.81)
return M, c

function τ = (q,ν, ν̇, g)
pap = RT

p (ap +
[
0 0 g

]T
) (ap = ν̇1:3)

pfp = mp
pap + pω̇p × pmsp + pωp × (pωp × pmsp) (pωp = ν4:6)

pmp = pIOp
pω̇p + pmsp × pap + pωp × (pIOp

pωp) (pω̇p = ν̇4:6)
for i = 1 to n

liωli = pRT
li
pωp + θ̇iδi (θ̇i = ν6+i)

liali = pRT
li

(
pap + pω̇p × prPAi

+ pωp × (pωp × prPAi
)
)

liω̇li = pRT
li
pω̇p + θ̈iδi + θ̇i(liωp × δi) (θ̈i = ν̇6+i)

lifp,i = mi
liali + liω̇li × limsi + liωli × (liωli × limsi)

limp,i = liIOi
liω̇li + limsi × liali + liωli × (liIOi

liωli)
τ 6+i = δTi

limp,i

pfp = pfp + pRli
lifp,i

pmp = pmp + pRli
limp,i + prPAi

× (pRli
lifp,i)

end
τ 1:3 = Rp

pfp; τ 4:6 = pmp

end

Algorithm. Numerical Computation of the Recursive Newton-Euler Method

2.5.3 Dynamic Modelling using Spatial Vector Notation

Featherstone’s algorithms are used to model the dynamics of a rigid-body system
based on spatial vector notation [Featherstone, 2008]. As presented in Section 2.5.2, a
rigid body in 3-dimensional space has 6-DoF motion, with force and moment expressed
by 3-dimensional vectors. In spatial vector notation, 6-dimensional wrenches or twists are
introduced combining the linear and angular aspects of the rigid body’s motion to simplify
the equations and computations. For instance, linear and angular velocity/acceleration are
combined to form a 6-dimensional spatial velocity/acceleration vector; force and moment

52



2.5. Dynamics

are combined to form a spatial force vector. Using these 6-dimensional vectors, the equa-
tion of motion for a rigid body j can be written as

f̃j = Ĩjãj + ṽj ×∗ Ĩjṽj (2.46)

where f̃j =
mj

fj

 ∈ F is the spatial force acting on the body j, ṽj =
ωj

vj

 ∈ M and

ãj =
ω̇j

v̇j

 ∈ M are the spatial velocity and acceleration of the body j, with F and M

denoting respectively spatial force vector space and motion vector space. Ĩj is the body
j’s spatial inertia tensor detailed in (2.47). The symbol ×∗ denotes the cross product
of a spatial motion vector with a spatial force vector, i.e. M ×∗ F. Note that for spatial
vectors, additional tildes are placed above the symbols to distinguish them from a classical
3-dimensional vector, and the vectors of the angular/rotational aspects are usually placed
above those of the linear/translational ones. For simplicity, all the spatial quantities are
written in body coordinates without explicit expressions.

Ĩj =
 IOj

[msj]×
[msj]T× mj13×3

 (2.47)

Recall that [.]× represents the skew-symmetric matrix for the cross-product operation of a
3-dimensional vector.mj, msj and IOj

are respectively the mass, vector of the first moment
of inertia, and inertia parameters as defined in (2.31). The cross-product operation of a
spatial motion vector with the symbol ×∗ is given by

ṽj×∗ =
ωj

vj

×∗ =
[ωj]× [vj]×

03×3 [ωj]×

 (2.48)

The cross-product operation between two spatial motion vectors denoted by ×, i.e. M6 ×
M6, is regarded as the dual of ×∗ and given by

ṽj× =
ωj

vj

× =
[ωj]× 03×3

[vj]× [ωj]×

 (2.49)

Note that v̇j in the spatial acceleration vector represents the body-frame linear accelera-
tion, which is obtained directly by the time derivative of the linear velocity vj, while the
linear acceleration aj in the dynamic modelling using Khalil’s method is relative to the
reference frame F0, with the relationship given by

aj = v̇j + ωj × vj (2.50)
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It is therefore remarked that the equation of motion depicted by (2.46) is equivalent to
the Newton-Euler equations in (2.31), which can be applied to a recursive computation
algorithm for the dynamic modelling as presented in Section 2.5.2. In this section, more
compact algorithms for dynamic modelling are introduced taking advantage of the spatial
vector notation, including

❖ a composite-rigid-body algorithm for computing the inertia matrix;
❖ a numerical algorithm for computing the Coriolis matrix.

Composite-Rigid-Body Algorithm
The numerical computation of the inertia matrix detailed in the recursive Newton-

Euler algorithm has the advantage of being simple and straightforward. It is however not
the most efficient way to calculate M, since the algorithm runs the same computations
ndof times which is the total number of the DoFs of the robot. The composite-rigid-body
algorithm [Featherstone, 2008], as the fastest algorithm to compute the generalised inertia
matrix, considers the robot as a single composite rigid body (from which the algorithm
gets its name). The algorithm starts from the computation of the spatial inertia tensor of
each body from the base, i.e. Ĩp of the platform (considered as the floating base) in the
FPR as

Ĩp =
 pIOp [pmsp]×
[pmsp]T× mp13×3

 (2.51)

with mp, pmsp and pIOp the mass, vector of the first moment of inertia and the moment
of inertia of the platform, expressed at the origin of the platform frame Fp. Similarly, the
inertia tensor of each leg i can be calculated by

Ĩi =
 liIOi

[limsi]×
[limsi]T× mi13×3

 (2.52)

with mi, limsi and liIOi
being the composed mass, first moment of inertia and moment of

inertia of the leg i expressed at the origin of the leg’s frame Fli and computed by equations
(2.36) and (2.41) taking into account the attached multirotor’s mass.

Then a new quantity is introduced, ĨCj , denoted as the composite inertia of the subtree
of the robot rooted at an arbitrary body j, which is treated as a single composite rigid
body. ĨCj is given by

ĨCj = Ĩj +
∑

k∈µ(j)

jX̃∗
k ĨCk kX̃j (2.53)

where µ(j) represents the set of all child bodies of the body j (the downstream bodies
supported directly by the body j), jX∗

k, kXj ∈ R6×6 are spatial matrices for the joint
transform between two frames. Given two arbitrary frames Fj and Fk, they are defined
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by

jX̃k =
 jRk 03×3

03×3
jRk

  13×3 03×3

[jrk]T× 13×3

 , jX̃∗
k =

 jRk 03×3

03×3
jRk

13×3 [jrk]T×
03×3 13×3

 (2.54)

with jRk representing the rotation matrix from Fk to Fj, and jrk being the translation vec-
tor between the origins of two frames expressed in Fj. The inverse of these two transforms
can be given by

kX̃j =
 13×3 03×3

[jrk]× 13×3

jRT
k 03×3

03×3
jRT

k

 , kX̃∗
j =

13×3 [jrk]×
03×3 13×3

jRT
k 03×3

03×3
jRT

k

 . (2.55)

It can be noted that kX̃∗
j = jX̃T

k .

Finally, each component of the inertia matrix M can be calculated from the composite
inertia by the following relations

Mjk =


S̃Tj ĨCj jX̃k S̃k if j ∈ υ(k)
S̃Tj jX̃∗

k ĨCk S̃k if k ∈ υ(j)
0 otherwise

(2.56)

where S̃j, S̃k are the spatial vectors/matrices defining the joint’s motion subspace, which
are dependent on the joint type. For instance, S̃ =

[
0 0 1 0 0 0

]T
for the revolute

joint’s motion; S̃ = 16×6 for a 6-DoF joint motion (free motion). υ(j), υ(k) are the sets
of bodies in the subtree starting from the body j or k, meaning that body j is within the
downstream bodies of body k if j ∈ υ(k), or vice visa. If j = k, it refers to the same body
and Mjj (or Mkk) becomes S̃Tj ĨCj S̃j. Mjk = 0 if body j and body k are not located in
the same chain from the robot base to the tips. However, to devise an efficient calculation
for Mjk in (2.56), a new quantity kF̃j is introduced, which is the value of ĨCj S̃j expressed
in body k’s coordinates, i.e. kF̃j = kX̃∗

j ĨCj S̃j. This quantity can be calculated recursively
by the relationship

λ(k)F̃j = λ(k)X̃∗
k
kF̃j with jF̃j = ĨCj S̃j (2.57)

where λ(k) represents the parent bodies supporting the body k. The computation of this
quantity is therefore achieved from the tips back to the base. The inertia matrix is then
given by

Mjk =


S̃Tj jF̃k if k ∈ υ(j)

MT
kj if j ∈ υ(k)

0 otherwise

(2.58)
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Using the above-mentioned computation method, the inertia matrix of the FPR dy-
namics can be calculated, which is detailed as follows. The composite inertia of each body
in the FPR is firstly calculated by a recursive computation from the downstream bodies
(i.e. legs) to the base (i.e. platform), in which each leg’s composite inertia is equal to the
inertia tensor defined in (2.52), i.e. ĨCi = Ĩi. The composite inertia of the platform is then
computed according to the relation (2.53) by

ĨCp = Ĩp +
n∑
i=1

pX̃∗
i ĨCi iX̃p (2.59)

given the joint transform matrices defined by

pX̃∗
i =

pRli 03×3

03×3
pRli

13×3 [prPAi
]T×

03×3 13×3

 , iX̃p =
 13×3 03×3

[prPAi
]× 13×3

 pRT
li 03×3

03×3
pRT

li

 (2.60)

recalling that pRli is the rotation matrix from Fli to Fp defined in (2.8), prPAi
= r · pri is

the vector of −−→
PAi expressed in Fp with the unit vector pri defined in (2.7).

Then for the definition of joint’s motion subspace matrices, as the translational motion
of the platform and its corresponding actuated force are defined in a global frame F0, the
joint motion matrix S̃p ∈ R6×6 is particularly defined by

S̃p =
03×3 13×3

RT
p 03×3

 (2.61)

Note that the platform is considered as a floating base with 6-DoF free motion, and the
joint motion matrix is thus similar to that of a 6-DoF joint motion (identity matrix), but
the translational motion is further converted from F0 to Fp with the order adjusted to be
coherent with the one defined in 3-dimensional vectors. The joint motion matrix for each
leg i can be given by (2.62), since one-DoF revolute joints are applied

S̃i =
[
0 0 1 0 0 0

]T
(2.62)

Based on the equations (2.56) and (2.58), the inertia matrix of the FPR computed by the
composite-rigid-body algorithm is finally given by



M1:6,1:6 = S̃Tp ĨCp S̃p
M6+i,6+i = S̃Ti ĨCi S̃i
M1:6,6+i = S̃Tp pF̃i (with pF̃i = pX̃∗

i ĨCi S̃Ti )
M6+i,1:6 = MT

1:6,6+i

(2.63)
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where M1:6,1:6 is the top left (6 × 6) sub-matrix, M6+i,6+i is the component at the index
(6+i, 6+i) and M1:6,6+i, M6+i,1:6 represent respectively a (6 × 1) column vector and a
(1 × 6) row vector in the (6 + i)th column/row of the inertial matrix.

Numerical Algorithm for Coriolis Matrix Computation
The Coriolis Matrix C of the dynamic model written in form of (2.26) allows to

compute the Coriolis and centrifugal terms factorized by the velocity of the robot. It is
well known that many possible choices of C exist, which provide the correct dynamics
satisfying the relation of νT

(
Ṁ(q) − 2C(q,ν)

)
ν = 0 [Siciliano, 2010], or more generally

uT
(
Ṁ(q) − 2C(q,ν)

)
u = 0, ∀ u ∈ Rndof (2.64)

This relation is equivalent to the condition that Ṁ(q) − 2C(q,ν) is skew symmetric or
that

Ṁ(q) = C(q,ν) + C(q,ν)T (2.65)

One special computation for C can be achieved by

Cij =
∑
k

Γijk · νk, where Γijk = 1
2

(
∂Mij

∂qk
+ ∂Mik

∂qj
− ∂Mjk

∂qi

)
(2.66)

are referred to as the Christoffel symbols [Siciliano, 2010]. Note that νk is the velocity of
the joint k, M is the inertia matrix of the system expressed in an analytical form. The
Coriolis matrix computed by Christoffel symbols can be denoted by C⋆(q,ν), which is
also called the Christoffel-consistent Coriolis factorization. However, this method needs
to compute the partial differentiation of the inertia matrix with respect to the robot
generalised coordinates q, requiring a relatively complex analytical derivation. Therefore,
the other Coriolis factorization methods for the computation of C can be applied, among
which an admissible Coriolis factorization is defined as follows [Echeandia, 2021].

Definition (Admissible Coriolis Factorization). Consider a system with the in-
ertia matrix given by M(q). A matrix-valued function C(q,ν) is said to be an
admissible factorization if

1. C(q,ν)ν = C⋆(q,ν)ν with C⋆(q,ν) being the Christoffel-consistent Cori-
olis factorization.

2. ∀q,ν, Ṁ(q) − 2C(q,ν) is skew-symmetric.

The Coriolis computation can be achieved by factorization of the spatial equation
(2.46) in which the velocity-product term ṽj ×∗ Ĩjṽj is firstly factorized in a way such
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that
ṽj ×∗ Ĩjṽj = B̃(ṽj, Ĩj)ṽj (2.67)

from which one immediate factorization can be taken as B̃(ṽj, Ĩj) = (ṽj ×∗ Ĩj), while
another factorization adopted by [Echeandia, 2021] is

B̃(ṽj, Ĩj) = 1
2
(
(ṽj×∗)Ĩj + (Ĩjṽj×̄∗) − Ĩj(ṽj×)

)
(2.68)

with the operation ×̄∗ defined as an equivalence of the cross product ×∗ between a spatial
motion vector ṽj and a spatial force vector f̃j, i.e.

(f̃j×̄∗)ṽj = (ṽj×∗)f̃j . (2.69)

It can be noticed from (2.48) that this operation is derived as

f̃j×̄∗ =
mj

fj

 ×̄∗ =
[mj]T× [fj]T×

[fj]T× 03×3

 . (2.70)

The factorization of the velocity-product terms given by (2.68) satisfies the properties for
an admissible factorization of the Coriolis matrix C(q,ν) in the dynamic model, which
is proven as follows.

Proof. Consider the spatial inertia tensor of a body j denoted by Ĩj and its
spatial velocity vector ṽj. Knowing the time derivative of spatial inertia that is
given by [Featherstone, 2008]

˙̃Ij = (ṽj×∗)Ĩj − Ĩj(ṽj×) (2.71)

it can be demonstrated that the factorization of B̃(ṽj, Ĩj) in (2.68) satisfies

ṽT
( ˙̃Ij − 2B̃(ṽj, Ĩj)

)
ṽ = 0, ∀ ṽ ∈ M (2.72)

which is equivalent to that ˙̃Ij − 2B̃(ṽj, Ĩj) is skew-symmetric when expressed
in coordinates or ˙̃Ij = B̃(ṽj, Ĩj) + B̃(ṽj, Ĩj)T . Such factorization is said to be
an admissible body-level factorization which will naturally lead to system-level
Coriolis matrix C satisfying the conditions for an admissible Coriolis factoriza-
tion.

Then, the factorization of Ĩjãj by ṽj is additionally required as the spatial acceleration
of each body j involves the joint velocity. The spatial velocity and acceleration of a body
can be computed recursively as presented in the Newton-Euler recursive algorithm but
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written in spatial vector notation as

ṽk =
∑

j∈λ(k)
S̃jṽj (2.73)

ãk =
∑

j∈λ(k)
(S̃jãj + ˙̃Sjṽj) (2.74)

with λ(k) representing the sets of the parent bodies of the body k (upstream bodies from
the body k to the base), and S̃k being the joint’s motion subspace of the body k. ˙̃Sk is
the derivative of the joint’s motion subspace matrix due to the joint moving and given by

˙̃Sk = (ṽk×)S̃k (2.75)

Therefore, it can be noticed from (2.74) that the additional terms corresponding to
Ĩj
∑
k∈µ(j)( ˙̃Skṽk) of each body should be included in the Coriolis terms, which necessi-

tates the computation of the body’s composite inertia as given by (2.53). The body-level
computation of B̃(ṽj, Ĩj) can be achieved using the same principle of the composite-rigid-
body algorithm, i.e.

B̃C(ṽj, Ĩj) = B̃(ṽj, Ĩj) +
∑

k∈µ(j)
B̃C(ṽk, Ĩk) (2.76)

By grouping the factorization terms B̃(ṽj, Ĩj) and Ĩj
∑
k∈µ(j)( ˙̃Sk) and expressing in body

coordinates, the component of Coriolis matrix can be calculated as

Cjk = S̃Tj jX̃∗
k (ĨCk ˙̃Sk + B̃C

k S̃k)

Ckj =
( ˙̃SjT jX̃∗

k ĨCk S̃k + S̃Tj jX̃∗
k (B̃C

k )T S̃k
)T (2.77)

when j ∈ υ(k), i.e. body j is in the path from body k to the robot base. Similarly as in
(2.57), additional quantities can be defined to facilitate the calculation


λ(k)F̃1,j = λ(k)X̃∗

k
k(ĨCj ˙̃Sj + B̃C

j S̃j)
λ(k)F̃2,j = λ(k)X̃∗

k
k(ĨCj S̃j)

λ(k)F̃3,j = λ(k)X̃∗
k
k((B̃C

j )T S̃j)

(2.78)

which can then be calculated recursively from the downstream bodies to the robot base.
The Coriolis matrix calculation is finally given by

Cjk = S̃Tj jF̃1,k

Ckj = ( ˙̃SjT jF̃2,k + S̃Tj jF̃3,k)T
(2.79)
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For the FPR, the computation of the Coriolis matrix is achieved following the above-
mentioned process, which is initiated by computing the composite factorization term
B̃C(ṽi, Ĩi) = B̃(ṽi, Ĩi) of each leg. Then the composite factorization term of the platform
is calculated according to (2.76) by

BC(ṽp, Ĩp) = B(ṽp, Ĩp) +
n∑
i=1

BC(ṽi, Ĩi) (2.80)

where B(ṽp, Ĩp) and each B(ṽi, Ĩi) are computed using the factorization of (2.68). For the
additional terms corresponding to the derivative of the joint’s motion subspace matrix
˙̃Sk, it is noted that for each leg

˙̃Si = (ṽi×)S̃i (2.81)

with ṽi the spatial velocity of the leg i that can be calculated recursively using the relation
of (2.73) and S̃i being the revolute-joint motion vector given by (2.62). The derivative of
the platform’s joint motion matrix, denoted by ˙̃Sp, is however different from the original
definition in (2.75), since the platform is a floating base and does not have the notion of
joint motion. The joint motion matrix defined in (2.61) is only used for the purpose of
transforming frames. From the definition of S̃p, its derivative can therefore be defined by

˙̃Sp =
 03×3 03×3

[pωp]T× 03×3

 (2.82)

Knowing that Ṙp = Rp[pωp]× and as the linear velocity in ṽp is defined in F0, the left-down
corner of ˙̃Sp becomes [pωp]T×. Note that the acceleration of the platform in the generalised
acceleration vector of (2.3) is defined with respect to F0, while the spatial acceleration
is referred to as body-frame acceleration, with the relationship presented in (2.50). The
joint motion derivative matrix of the platform ˙̃Sp is applied to satisfy this relationship as

ãp =
pω̇p

pv̇p

 = S̃p

pω̇p

ap

+ ˙̃Spṽp (2.83)

where S̃p is the platform’s motion subspace matrix defined in (2.61).

Based on equations (2.78) and (2.79), the Coriolis matrix of the FPR can finally be
calculated by 

C1:6,1:6 = S̃Tp pF̃1,p

C6+i,6+i = S̃Ti iF̃1,i

C1:6,6+i = S̃Tp pF̃1,i

C6+i,1:6 = ( ˙̃SpT pF̃2,i + S̃Tp pF̃3,i)T

(2.84)
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where C1:6,1:6 is the top left (6 × 6) sub-matrix of C, C6+i,6+i is the component at the
index (6+i, 6+i), and C1:6,6+i, C6+i,1:6 represent respectively a (6 × 1) column vector and
a (1 × 6) row vector in the (6 + i)th column/row of the Coriolis matrix. The additional
quantities are given by 

pF̃1,p = ĨCp
˙̃Sp + B̃C

p S̃p
iF̃1,i = ĨCi

˙̃Si + B̃C
i S̃i

pF̃1,i = pX̃∗
i (ĨCi ˙̃Si + B̃C

i S̃i)
pF̃2,i = pX̃∗

i (ĨCi S̃i)
pF̃3,i = pX̃∗

i ((B̃C
i )T S̃i) .

(2.85)

The algorithm for computing the inertia matrix and the Coriolis matrix of the FPR
based on spatial vector notation can be summarised by the following algorithm. The
overall algorithm has a time complexity of O(n), with n being the total number of legs.

Input: q, ν Output: M(q), C(q,ν)
ṽp =

[
pωT

p vTp
]T

(vp = ν1:3, pωp = ν4:6)
ĨCp = Ĩp
B̃C
p = 1

2

(
(ṽp×∗)Ĩp + (Ĩpṽp×̄∗) − Ĩp(ṽp×)

)
for i = 1 to n

ṽi = iX̃pṽp + S̃iθ̇i (θ̇i = ν6+i)
˙̃Si = (ṽi×)S̃i
ĨCi = Ĩi
B̃C
i = 1

2

(
(ṽi×∗)Ĩi + (Ĩiṽi×̄∗) − Ĩi(ṽi×)

)
F̃1,i = ĨCi

˙̃Si + B̃C
i S̃i

F̃2,i = ĨCi S̃i
F̃3,i = (B̃C

i )T S̃i
C6+i,6+i = S̃Ti F̃1,i; M6+i,6+i = S̃Ti F̃2,i
pF̃1,i = pX̃∗

i F̃1,i; pF̃2,i = pX̃∗
i F̃2,i; pF̃3,i = pX̃∗

i F̃3,i

C1:6,6+i = S̃Tp pF̃1,i

C6+i,1:6 = ˙̃SpT pF̃2,i + S̃Tp pF̃3,i

M1:6,6+i = S̃Tp pF̃2,i

M6+i,1:6 = MT
1:6,6+i

ĨCp = ĨCp + pX̃∗
i ĨCi iX̃p

B̃C
p = B̃C

p + pX̃∗
i B̃C

i
iX̃p

end
F̃1,p = ĨCp

˙̃Sp + B̃C
p S̃p

Algorithm. Computation of Inertia and Coriolis Matrix based on Spatial Vectors
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F̃2,p = ĨCp S̃p
F̃3,p = (B̃C

p )T S̃p
C1:6,1:6 = S̃Tp F̃1,p ; M1:6,1:6 = S̃Tp F̃2,p

return M, C

2.5.4 Computation of Gravity Wrench

The vector of the generalised gravity wrench g(q) in the dynamic model (2.26) can
be computed using the recursive Newton-Euler algorithm by setting ν = 0, ν̇ = 0 (see
Section 2.5.2). However, this term refers to the forces and moments due to the gravitational
effects and can be computed more straightforward by deriving the static model written
as

τ g = g(q) (2.86)

where τ g refers to the actuation wrench needed to compensate for the gravitational effects.
It is remarked that the static model (2.86) indicates the robot working in (quasi-)static
conditions where the velocity ν and acceleration ν̇ are assumed to be zero.

The elements of τ g are defined in the same space of τ in (2.27) and given by

τ g =


fp,g

pmp,g

ml,g

 (2.87)

with ml,g =
[
m1,g m2,g ... mn,g

]T
being the moments exerted about the revolute-joint

axis of each leg due to the gravitation effects. It is obvious that the force acting on the
platform fp,g to compensate for the gravitational effect can be given by

fp,g = −mtotg (2.88)

where g =
[
0 0 −g

]T
is the gravity vector expressed in F0 with g = 9.81 m/s2, mtot is

the total mass of the robot
mtot = mp +

n∑
i=1

mi (2.89)

Note that mi is the total mass of the leg i and the attached multirotor given in (2.36).
The gravitational effect on the moment of the platform is computed recursively by

pmp,g = −
(
pmsp × pg + pRli

n∑
i=1

(limsi × lig)
)

(2.90)
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with pg = RT
p g and lig = pRT

liRT
p g.

Finally, the moment of each leg to compensate the gravity can be written by

mi,g = −δTi (limsi × lig) (2.91)

with δi =
[
0 0 1

]T
being the axis of the revolute joint.

2.5.5 Multirotor Rotational Dynamics

As presented in Section 2.5, the translational dynamics of the multirotors are system-
atically considered in the dynamic model of the passive architecture, as they are rigidly
connected to the passive architecture and their effects are taken into account by adding
additional mass at each leg’s tip. The rotational dynamics is however decoupled for each
multirotor. Equations of motion for the rotational movement of the multirotor i can be
written as [Brescianini, 2013]

q̇i = 1
2qi ◦

 0
biωi


bimi = biIibiω̇i + biωi × biIibiωi

(2.92)

where qi ∈ H, biωi ∈ R3 and biω̇i ∈ R3 are the quaternion-represented orientation, an-
gular velocity and acceleration of the multirotor i. bimi is the body-frame torque, and
biIi is the rotational inertia of the multirotor. The operation ◦ represents the quaternion
multiplication detailed in (A.48) of Appendix A.1.

The decoupling property of the multirotor’s rotational dynamics from the dynamics of
the passive architecture is ensured by the fact that the moment cannot be transmitted
through a spherical joint, which necessitates that the CoM position of the multirotor Bi is
aligned with the location of the spherical joint Si, i.e. d = 0 as presented in Section 2.3.3.
When d ̸= 0, the interaction force between the multirotor and the leg will additionally
generate a moment in the multirotor’s body-fixed frame. Given the interaction force fl,i
exerted by the leg on the multirotor, the additional moment due to the spherical-joint
location di = −−→

SiBi away from the multirotor’s CoM position can be calculated by

ml,i = di × fl,i (2.93)

written in global coordinates (expressed in F0) as shown in Fig. 2.4.
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Figure 2.4 – Forces and moment exerted on the multirotor (red arrows), and reaction
force and moment exerted on the leg (blue arrows).

Similarly, the actuated force fi produced by the multirotor is transmitted to the passive
architecture via the leg, generating an additional moment mi,l due to the spherical joint
location that is away from the CoM location of the multirotor. However, this moment will
not affect the dynamics of the passive architecture since the moment between two bodies
connected via the spherical joint cannot be transmitted. Therefore, the condition d = 0
can be assumed even if it is not necessarily the case, with the moment ml,i considered
as a disturbance exerted on the multirotor degenerating its rotational dynamics. The
disturbance of ml,i is bounded and can be neglected in general cases as the value of d is
small enough.

2.6 Numerical Validation

The modelling methods presented in the above sections are usually applied to construct
model-based control algorithms or estimation techniques. In these methods, the modelling
accuracy is an important issue affecting the validity and stability of the estimation and
control system. The numerical validation of the models should therefore be conducted.
This can be done by cross-validating the different modelling algorithms, comparing the
results of the dynamic models respectively based on Khalil’s algorithm [Khalil, 2002b]
and Featherstone’s Spatial Vector algorithms [Featherstone, 2008].

The principle of the numerical validation on the dynamic modelling is that by randomly
choosing a set of values for the robot states (i.e. generalised coordinates q and velocity
vector ν), the results using two methods should be identical. As the expressions of the
dynamic model between (2.25) and (2.26) are slightly different using two algorithms, a
fair comparison is done by the following steps:

• M(q) the inertia matrix computed respectively using recursive Newton-Euler and
Composite-Rigid-Body algorithms.

• c(q,ν) the Coriolis vector computed by the recursive Newton-Euler algorithm con-
sidering only the Coriolis and centrifugal effects with the gravity g set as zero,
compared with the term C(q,ν)ν in which C(q,ν) is calculated using the Coriolis
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Matrix Computation algorithm.

• g(q) the vector of the gravity wrench computed using two methods: one computed by
the recursive Newton-Euler algorithm excluding the Coriolis and centrifugal terms
by setting ν = 0, the other directly obtained by the static model detailed in Sec-
tion 2.5.4.

The numerical implementation of the dynamic models on a specific FPR composed of
three legs attached with multirotors was done in C++ and then the results were numer-
ically validated using the G-Test tool in ROS2 environment [Open-Robotics, 2022]. The
repeatable results were found during the numerical validation by taking different sets of
random values in the robot coordinates and one result is presented below. While the val-
ues on the constant parameters can be found in Table B.1 of Appendix B, the generalised
coordinates and velocity of the robot are generated by random numbers as follows

q = [pp,x, pp,y, pp,z, qp,0, qp,1, qp,2, qp,3, θ1, θ2, θ3]T

= [0.815, 0.906, 0.127, 0.795, 0.550, 0.085, 0.242, 0.547, 0.958, 0.965]T

ν = [vp,x, vp,y, vp,z, ωp,x, ωp,y, ωp,z, θ̇1, θ̇2, θ̇3]T

= [0.158, 0.971, 0.957, 0.485, 0.800, 0.142, 0.422, 0.916, 0.792]T

(2.94)

Note that the units are respectively metres for pp, radians for θl, metres per second for
vp, and radians per second for angular velocities such as νp and θ̇l. The values of the unit
quaternion qp = [qp,0, qp,1, qp,2, qp,3]T = [0.795, 0.550, 0.085, 0.242]T have been normalised.
The results on the numerical comparison are shown in Table 2.1.

Comparison Term Computation Method Maximum Difference
Khalil’s method Featherstone’s method

Inertia matrix MRNE(q) MComposite(q) 4.4e-16
Coriolis vector cRNE(q,ν, g = 0) CCoriolis(q,ν)ν 8.9e-16
Gravity term cRNE(q,ν = 0, g = 9.81) g∗(q) 0

Table 2.1 – Numerical validation of the modelling algorithms based on Khalil’s method and
Featherstone’s Spatial Vector notation. Note that RNE refers to the recursive Newton-
Euler algorithm, Composite stands for the Composite-Rigid-Body algorithm and Coriolis
for the Coriolis Matrix Computation algorithm.

It can be noticed that results from the two modelling methods are well coherent with each
other, with the maximum values of the absolute differences on every element between two
comparison terms all near zero. Note that the gravity wrench g∗(q) under Featherstone’s
method is actually not based on Spatial Vector notation, but directly computed via the
static model. It can be done by developing Featherstone’s algorithm with the velocity ν

set as zero, similarly to what has been done in Khalil’s method. However, due to the sim-
plicity of the static model, it is not preferred to restart the algorithm from the beginning
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for computing the gravity term.

The numerical validation of the other models such as the geometric relations and the
Jacobian matrix in the kinematic model has also been conducted. As the analytical ex-
pressions of such models are well known and carefully verified, the only concern remains
on the programming mistakes. To avoid this, cross-validation between different program-
ming platforms was done, in which the results from the C++ codes were compared with
those obtained by the codes written in MATLAB. The acceptance precision was set to
1e-7 as the success criterion for G-Test and all the tests were successfully passed. An-
other numerical test for the cross-validation between the IGM and the inverse kinematics
(IKM) has been done, in which the idea is that by setting arbitrarily initial values for the
generalised coordinates q and some small variations δq, the initial and final multirotor
positions can be computed using the IGM as pinit = IGM(q), pfin = IGM(q + δq), while
the final positions can also be computed approximately using kinematic model by the
Jacobian matrix as p′

fin = pinit + J(q)ν ′. Note that ν ′ is obtained from δq, in which the
transformation from the quaternion derivative δqp to the angular velocity pωp is given by
the relationship detailed in (A.83) (see Appendix A.3). During this test, q was initialised
by the values given in (2.94) and several set of random values on δq were generated by a
normal distribution N ∼ (0, 0.001). The results on the norm of the difference pfin − p′

fin

were all limited within 1e-5.

All the numerical validations have been successfully passed, allowing the validation of
the modelling algorithms presented in this chapter.

2.7 Conclusion

In this chapter, a specific design of the Fling Parallel Robot is presented, in which
a number of multirotors support collectively a moving platform with passive rigid legs.
The robot coordinates vector is composed of the 6-dimensional platform pose and the
additional degrees of freedom of the revolute joints by which the legs are attached to the
platform. The geometric, kinematics and dynamics of this particular FPR are detailed,
allowing to respectively compute the internal configuration (i.e. leg angles) of the robot,
relate the actuators’ velocities (i.e. linear velocities of multirotors) to the generalised
velocity of the robot, and develop the dynamic model written in generic forms using
several numerical algorithms. All the models have been numerically validated to ensure
the correctness of the modelling and programming progress. The models derived in this
chapter are used to construct the model-based estimation and control algorithms which
will be discussed in the next chapters.
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Chapter 3

WRENCH ESTIMATION AND INTERACTION

CONTROL

This chapter presents the external wrench estimation and interaction control tech-
niques applied to the Flying Parallel Robot (FPR) for physically interacting with the en-
vironment. An introduction to the robot-environment interaction of aerial robots, as well
as a literature review on different approaches, are given in the first section. Then the
momentum-based observers are presented in the second section, which can be used to con-
struct an estimation technique of the external wrench acting on the robot. The third section
presents an impedance-based interaction control method with the desired wrench tracking
capacity, including a high-level impedance controller of the FPR and low-level multirotors’
attitude controllers. A discussion of the overall estimation and control framework is given
in the fourth section. Extensive experimental results are finally presented in the fifth sec-
tion, validating the presented estimation and control techniques for cancelling modelling
uncertainties, rejecting disturbances and accomplishing contact-based interaction tasks.

3.1 Introduction

As a potential aerial manipulator dedicated to industrial applications, it is important
to show or enhance the ability of the Flying Parallel Robot in conducting real-world
tasks, such as pushing/pulling an object, twisting on a surface, etc. The topic of the
FPR physically interacting with the environment must be investigated. It is obviously a
challenging topic especially for aerial robots as they can easily suffer from aerodynamic
disturbances and uncertainties. Unlike the classical robot manipulators, flying robots are
unstable and dynamically faster systems, which makes it more difficult to preserve the
stability of the system when dealing with external disturbances or even interacting actively
with the environment. A such problem commonly encountered by single UAVs or more
sophisticated aerial manipulators is generally addressed by two classes of approaches in
the literature:

❖ via robust control algorithms such as [Islam, 2015; Nguyen, 2018; Zhang, 2019;
Sanalitro, 2020; Chen, 2020];
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❖ by estimation technique to construct the external effects as in [Bellens, 2012;
Ruggiero, 2014; Ruggiero, 2015b; Tomić, 2017; Bodie, 2019].

In the first strategy, it is common to assume that the unknown external disturbances
are bounded, which can be overcome by a robust controller with Lyapunov-based stabil-
ity. However, this kind of control strategy might not be adequate to handle significant
robot-environment interactions, during which the external forces or moments might easily
exceed the presumed limits, nor applicable to the scenarios where it is expected to control
the interaction behaviour of the robot. In contrast, using the estimation techniques to con-
struct knowledge of the external wrench acting on the aerial robot, a reaction behaviour
of the robot can then be designed and thus controlled. This can usually be achieved by
force control strategies [Bruno, 2000], including hybrid force/position control applied in
[Bellens, 2012; Marconi, 2012; Scholten, 2013; Nguyen, 2013; Tzoumanikas, 2020], admit-
tance control such as [Barawkar, 2017; Ryll, 2019; Smrcka, 2021], and impedance control
that can be found in [Forte, 2012; Ruggiero, 2014; Cataldi, 2016; Car, 2018; Bodie, 2019].

In hybrid force/position control, a separated control paradigm is selected, in which a set
of robot’s degrees of freedom are controlled in position while the others are selected to
be force controlled. This often requires prior knowledge of the environment model and
a properly defined position/force trajectory, which is however not easy to be satisfied.
Admittance and impedance controllers are dual approaches to dynamic control relating
the position and force. They are often used in applications where a manipulator interacts
with the environment and the position/force relation is of concern. While an admittance
control law defines the motions that result from a force input, impedance control consid-
ers the ratio of force output to motion input. Like the hybrid position/force control, the
admittance control additionally requires a considerably precise position (or motion) loop
to achieve the overall control. This is however not evident for multi-UAV parallel robots
such as the FPR, as the accuracy of the motion controller is extremely affected by the
aerodynamic disturbances and any degenerated motion tracking will cause the controller
failure. Therefore, impedance control seems to be a more preferable method among force
control strategies, because the motion control loop is entirely replaced by a regulation of
the desired robot interaction behaviour as a virtual impedance system. The impedance-
controlled aerial robots reacting passively to the external effects would therefore be more
robust, especially for significant robot-environment interactions.

As mentioned beforehand, the FPR under impedance control enhanced by an estima-
tion of the external wrench using momentum-based observers might be more appropriate
for cancelling the modelling errors, rejecting disturbances and potentially interacting with
the environment, which will be presented in the next sections.
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3.2 External Wrench Estimation

In this section, an estimation technique based on momentum computation is presented,
which is capable of estimating the wrench exerted on the robot due to the external ef-
fects without the need of knowing the acceleration of the robot as mainly required using
acceleration-based techniques (applying directly the IDM). The external effects might
consist of modelling errors, disturbances and potential interaction with the environment.
The momentum-based observers show its efficiency in estimating all these effects as the
external wrench acting on the full DoFs of the robot by a mismatch between the predicted
and actual dynamics of the robot.

In the following subsections, the principle of the momentum-based approach is firstly
presented, which allows for designing external wrench observers using the momentum
dynamics. Three observers applying different techniques are then presented, including:

• First-Order Wrench Observer (FOWO);

• Second-Order Wrench Observer (SOWO);

• Sliding-Mode Wrench/Momentum Observer (SMWO).

As mentioned above, the external wrench acting on the robot can be estimated by these
momentum-based observers using accessible measurements of the robot states, without
the requirement of any acceleration measurements which might potentially be too noisy
to perform a good estimation. The discussion on the momentum-based approach for esti-
mating the external effects will be given at the end of this section.

3.2.1 Principle of Momentum-based Approach

The momentum-based estimation technique is constructed on the basis of the robot’s
dynamic model as the one presented in (2.26). An additional term τ e corresponding to
the external wrench is furthermore taken into account in the dynamic model as

M(q)ν̇ + C(q,ν)ν + g(q) = τ + τ e (3.1)

where τ e is composed of

τ e =


fp,e

pmp,e

ml,e

 ∈ R6+n (3.2)

with fp,e, pmp,e representing the external force and moment exerted on the platform,
expressed in F0 and Fp respectively, and ml,e being the external moments acting on the
revolute-joint axis of each leg.
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Once the dynamic expression is obtained, the momentum of the robot can be com-
puted. Let P be the generalised momentum of the robot that can be determined by

P = M(q)ν ∈ R6+n (3.3)

where M(q) is the generalised inertia matrix given in the dynamic model of (3.1), and ν

is the generalised velocity vector. Then the time derivative of the generalised momentum
is given by

Ṗ = Ṁ(q)ν + M(q)ν̇ (3.4)

The skew-symmetric property of the generalised inertia matrix as in (2.65) and [Siciliano,
2010] indicates that

Ṁ(q) = C(q,ν) + C(q,ν)T (3.5)

Based on equations (3.1) and (3.5), the time derivative of generalised momentum in (3.4)
is finally determined by

Ṗ =
(
C(q,ν) + C(q,ν)T

)
ν +

(
τ + τ e − C(q,ν)ν − g(q)

)
= C(q,ν)Tν − g(q) + τ + τ e

(3.6)

which can be used to directly compute the external wrench by

τ e = Ṗ − C(q,ν)Tν + g(q) − τ (3.7)

Note that τ is the actuation wrench exerted by the thrust forces of the multirotors as
calculated in (2.28), C(q,ν) and g(q) are the Coriolis matrix and gravity wrench com-
puted from the accessible robot generalised coordinates and velocity vectors (i.e. q and
ν). Therefore, one can reconstruct an estimate of the external wrench exerted on the
robot using momentum computation, with only knowledge of robot states (generalised
coordinates and velocity) and the commands as the actuation wrench τ sent to the robot.
However, as noises in the measurements of the robot states might affect the computation
result of the external wrench term, additional filtering techniques are often applied on the
basis of the direct computation in (3.7), which will be presented in the following sections.

3.2.2 First-Order Wrench Observer (FOWO)

As mentioned above, an additional filter should be applied to the computation of the
external wrench given in (3.7) to leverage the measurement noises. A first-order filter
can be adopted in the first place due to its simplicity. Let τ̂ e denotes an estimate of
the external wrench. By applying a first-order filter, the time-domain expression of the
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external wrench estimate can be determined as follows

τ̂ e(t) =KO

[
P(t) −

∫ t

t0

(
C
(
q(t),ν(t)

)T
ν(t) − g

(
q(t)

)
+ τ (t)

+ τ̂ e(t− ∆t)
)
dt− P(t0)

] (3.8)

where KO ∈ R(6+n)×(6+n) is a positive-definite diagonal matrix as the observer gains,
τ̂ e(t − ∆t) denotes an external wrench estimate at the previous timestamp with ∆t re-
ferring to a single time step of the digital computation, P(t) is the robot’s momentum
variable at timestamp t with P(t0) being the momentum at the initial time which is
usually set to zero supposing ν(t0) = 0, τ (t) refers to the actuation wrench sent to the
robot at the current time which can be calculated using relation of (2.28). Remark that
the current estimate is computed by (3.8) based on the previous estimate and the terms
computed by the dynamic model.

By differentiating (3.8) with respect to time, the observer dynamics can be obtained
from (3.6) as

˙̂τ e(t) + KO

(
τ̂ e(t− ∆t) − τ e

)
= 0 (3.9)

Performing furthermore an approximation between two consecutive timestamps (suffi-
ciently small time steps between every two estimation iterations), the estimation error
dynamics can be finally depicted by the following differential equation

˙̂τ e + KOτ̃ e = 0 (3.10)

with τ̃ e = τ̂ e−τ e being the estimation error. This relationship can be expressed element-
wise in the Laplace domain by

Gj(s) = τ̂e,j(s)
τe,j(s)

= KO,j

s+KO,j

, j = 1, ... , N (3.11)

with N (equal to 6+n) decoupled transfer functions Gj(s) for each element of the external
wrench estimates. In ideal conditions, the following relation holds [De Luca, 2006]

KO → ∞ ⇒ τ̃ e ≈ 0 ⇒ τ̂ e ≈ τ e (3.12)

which means that the estimation gains should be taken as large as possible in the practice.
However, larger values for KO also result in higher noise amplification in the wrench
estimates which might deteriorate the observer performance in terms of sensitivity, and
the limitation given by the digital implementation should also be taken into account.
Therefore, a good compromise has to be reached to properly tune the estimation gains.
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3.2.3 Second-Order Wrench Observer (SOWO)

Based on the direct computation of the external wrench by (3.7), a second-order filter
can also be applied, which might better weaken the effects of high-frequency noises and
thus have the performance superior to that of the first-order observer as a simple low-pass
filter. Using the second-order filtering technique, the estimated external wrench in time
domain can be given by

τ̂ e(t) = KO1

[ ∫ t

t0
−τ̂ e(t− ∆t) + KO2

[
P(t) −

∫ t

t0

(
C
(
q(t),ν(t)

)T
ν(t)

− g
(
q(t)

)
+ τ (t) + τ̂ e(t− ∆t)

)
dt
]
dt

] (3.13)

supposing that the momentum and the external wrench at initial timestamp are all zero.
KO1 , KO2 ∈ R(6+n)×(6+n) are the positive-definite diagonal matrices for the second-order
observer gains.

By differentiating two times (3.13) with respect to time and neglecting the time dif-
ference between any two consecutive timestamps (i.e. (t − ∆t) and t) supposing ∆t is
arbitrarily small, the estimation error dynamics can be obtained as

¨̂τ e + DO
˙̂τ e + KOτ̃ e = 0 (3.14)

with τ̃ e = τ̂ e−τ e being the estimation error and the gains related to the estimation gains
defined in (3.13) as DO = KO1

KO = KO1KO2

(3.15)

Similarly, (3.14) can be written in the Laplace domain with element-wise transfer functions
defined as

Gj(s) = KO,j

s2 +DO,js+KO,j

, j = 1, ... , N (3.16)

From the definition of a second-order transfer function, the unitary gains for each element
can be determined by DO,j = KO1,j = 2ζjωn,j

KO,j = KO1,jKO2,j = ω2
n,j

(3.17)

with ωn,j and ζj being respectively the natural frequency and damping factor of the system
decoupled on each element. In an ideal case, notice that [Ruggiero, 2014]

ζj → 1
ωn,j → ∞

⇒ τ̃ e ≈ 0 ⇒ τ̂ e ≈ τ e (3.18)
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which means that the gains in second-order wrench observer should also be taken as large
as possible. Due to the same issues considering the sensibility and real-world implemen-
tation of the wrench observer, the values of these gains should be properly tuned.

3.2.4 Sliding-Mode Wrench/Momentum Observer (SMWO)

The momentum-based wrench estimator can be further enhanced by the sliding mode
technique according to the expression of Ṗ in (3.6), which is reformulated to separate the
accessible and unknown terms as

C(q,ν)Tν − g(q) + τ = Ṗ − τ e (3.19)

where the accessible left-side terms can be used in place of unknown right-side terms to
design an observer that provides an estimation of both the generalised momentum and
the external wrench in finite time [Garofalo, 2019]. In fact, applying the sliding mode
technique, an estimation on the generalised momentum is firstly constructed and then
the external wrench is estimated by the mismatch between the estimated momentum
dynamics and the real one, which is consequently performed in finite time. The observer
structure can be designed according to the Super Twist Algorithm (STA) [Moreno, 2008]
for observation using second-order sliding modes as follows

˙̂P = C(q,ν)Tν − g(q) + τ − KOT
∥P̃∥

1
2 sgn∗(P̃) + σ

σ̇ = −KOS
sgn∗(P̃)

(3.20)

where P̃ = P̂ − P is the momentum estimation error, with P̂ being the estimated
momentum, and KOS

, KOT
∈ R(6+n)×(6+n) are positive-definite diagonal matrices for

the observer gains. Note that all the operators in (3.20) should be applied element-wise.
sgn∗(.) denotes an adapted sign function given by (3.21), which has continuous output to
avoid chattering issues that might occur using the sliding mode technique.

sgn∗(s) =


1 if ∥s∥ > ϵ and s > 0;
s

ϵ
if ∥s∥ ≤ ϵ;

−1 if ∥s∥ > ϵ and s < 0

(3.21)

ϵ is an arbitrarily small and non-zero value, which is used to perform a linear approxima-
tion to avoid the discontinuity in the output of the sign function when input is near zero.

Using (3.4) and defining s = σ − τ e, the error dynamics of the sliding mode observer
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can be obtained by
˙̃P = −KOT

∥P̃∥
1
2 sgn∗(P̃) + s

ṡ = −KOS
sgn∗(P̃) − τ̇ e

(3.22)

which refers to N independent and decoupled super twist algorithms (corresponding to
the element-wise estimates of the momentum and external wrench). As global finite-time
stability of the equilibrium point defined by (P̃ , s) = (0,0) can be guaranteed for the STA
being robust [Moreno, 2008; Garofalo, 2019], σ is an estimation of the external wrench
τ e in finite time. For a successful implementation and application of such sliding mode
wrench observer, it is important to properly tune the observer gains KOS

and KOT
which

affect both the stability and the dynamic behaviour of the observer [Garofalo, 2019]. To
obtain an intuition on tuning the observer gains, the error dynamics in (3.22) can be
rewritten as a second-order differential equation

˙̃P = −KOT
∥P̃∥

1
2 sgn∗(P̃) − KOS

∫ t

t0
sgn∗(P̃)dt− τ e (3.23)

where the observer gain KOT
can be interpreted as equivalent to the proportional gain,

while KOS
is equivalent to the integral gain. Therefore, too high values for KOT

will
lead to overshoots, and too small values result in poor convergence of the estimation. In
addition, values for KOS

are tuned to reduce the static remaining errors. Empirically, the
desired behaviour of the sliding mode observer is obtained by tuning the observer gains
with initial values taking the relation of KOT ,j = 1.6

√
KOS ,j (j = 1, ..., N). Then the

estimated external wrench can be written in the time domain by

P̂(t) =
∫ t

t0

(
C
(
q(t),ν(t)

)T
ν(t) − g

(
q(t)

)
+ τ (t)

− KOT
∥P̃(t− ∆t)∥ 1

2 sgn∗
(
P̃(t− ∆t)

)
+ τ̂ e(t− ∆t)

)
dt

P̃(t) = P̂(t) − P(t)

τ̂ e(t) =
∫ t

t0
−KOS

sgn∗
(
P̃(t)

)
dt

(3.24)

where P̃(t− ∆t), P̃(t) and τ̂ e(t− ∆t), τ̂ e(t) are respectively the momentum estimation
error and the estimated external wrench at the previous and current timestamp. Note
that for all quantities, the initial values are assumed to be zero such that the constant
terms of the integration in (3.24) can be omitted.

3.2.5 Discussion on Wrench Observers

The above-mentioned momentum-based wrench observers are derived on the basis of
the dynamic model depicted by (3.1) and its property, which are capable of estimating the
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unknown external wrench with only knowledge of the accessible robot states, i.e. robot
configuration q and velocity ν. In terms of dynamic modelling, the Spatial Vector al-
gorithms presented in Section 2.5.3 can be adopted, allowing an online computation of
generalised inertia matrix and Coriolis matrix needed to construct the estimation. It is
worth mentioning that although three types of wrench observers all use the momentum
dynamics to obtain an estimation of the external wrench, the ways in which the rela-
tion (3.7) is used are different. In first-order and second-order observers, the momentum
dynamics is used as an integrand in order to construct a low-pass filter to leverage high-
frequency measurement noises, while the states of the sliding mode observer are directly
an estimation of the generalised momentum and the external wrench, in which the mo-
mentum dynamics is internally considered in constructing the sliding mode.

Additionally, all these observers guarantee theoretically an estimation of the external
wrench that converges to τ e in finite time. This is performed by the mismatch between the
expected robot dynamics and its real behaviour which assumes that the command τ sent
to the robot has been well achieved. Knowing the relationship of (2.28), this means that
the thrust force commands f should be sufficiently well tracked by the multirotors, which
however cannot be assured in real case scenarios. Therefore, the estimation of the external
wrench will also contain uncertainties on thrust forces generated by the multirotors. In
addition to this factor, any other modelling uncertainties, measurement noises and errors
will inevitably lead to a noisy and/or biased estimation. As a consequence, the estimated
external wrench will not be exactly zero even when no external effects are present. A
threshold has to be empirically set to avoid false positives if the observers are used to
detect the contacts or collisions.

3.3 Impedance-based Interaction Control

After having discussed the external wrench estimation based on momentum computa-
tion, the next step is to investigate the interaction control algorithm for interacting with
the environment. As discussed in Section 3.1, the impedance control method is an indirect
force control algorithm which regulates passively the robot’s behaviour with respect to
the external wrench. The desired behaviour is determined by a virtual impedance sys-
tem, i.e. a mass-spring-damper system, taking the wrench exerted on the environment by
the robot as the system’s input. This control paradigm is particularly suitable for flying
robots which can easily be suffered from aerodynamic uncertainties and disturbances,
since the impedance controller can be applied to both reject the disturbance and control
the interaction behaviour, making the robot itself robust enough for performing the inter-
action tasks. Additionally, as the motion control loop is totally replaced by the impedance
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law, the controller can handle both free-space flights and potential interaction tasks with-
out the need of switching controllers as required in most of other force control approaches.

In this section, an impedance-based control of the flying parallel robot with wrench
tracking capacity is presented. The high-level control law is firstly computed by designing
the desired impedance behaviour of the robot. Then the desired thrust magnitude and
attitude setpoints of each multirotor are derived in order to properly actuate the system.
The low-level multirotor’s attitude control is then discussed, which is based on a pro-
portional regulation of the attitude and PID regulation of the angular rate. Additional
discussions on the overall control structure and controller tuning will be given in the last
subsection.

3.3.1 High-level Impedance-based Controller

Recall that q, ν and ν̇ denote as the robot’s generalised position, velocity and ac-
celeration vectors, defined in Section 2.2. Let qd, νd and ν̇d be the desired position,
desired velocity and desired acceleration of the robot, which can be defined by an off-line
trajectory generation process usually based on an interpolation technique with a list of
prescribed waypoints. A generalised form of the desired impedance behaviour of the robot
interacting with the environment can be chosen as

Md(ν̇d − ν̇) + Bd(νd − ν) + Kdεq(qd,q) = ετ (3.25)

where Md, Bd and Kd ∈ R(6+n)×(6+n) are the positive-definite diagonal matrices respec-
tively for the desired mass, damping and stiffness coefficients of the system, which are
decoupled on each robot state. The input of the desired impedance system is defined to
be the wrench tracking error ετ as in [Seraji, 1997], which is calculated by

ετ = −τ̂ e − τ d
e ∈ R6+n (3.26)

with τ̂ e being the estimated external wrench that can be constructed by the momentum-
based observers discussed in Section 3.2, and τ d

e representing the desired interaction
wrench the robot is expected to exert on the environment. Note that −τ̂ e refers to the es-
timated interaction wrench the robot exerted on the environment. εq(qd,q) is the tracking
error of the robot configuration, which takes the form of

εq(qd,q) =


pdp − pp

εo(qdp, qp)
θdl − θl

 ∈ R6+n (3.27)
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with εo(qdp, qp) ∈ R3 being the platform orientation error computed by the quaternion
error between the desired and actual orientations [Brescianini, 2013] as

εo(qdp, qp) = sgn(qerrp,0 )qerrp,1:3

qerrp = q−1
p ◦ qdp

(3.28)

with ◦ being the quaternion multiplication as detailed in (A.48) of Appendix A.1, q0 and
q1:3 are respectively the scalar part and the vector part of a quaternion. sgn(qerrp,0 ) being
the classical sign function defined as

sgn(qerr0 ) =
1, qerr0 ≥ 0 ;

− 1, qerr0 < 0 .
(3.29)

Based on the desired impedance in (3.25), an auxiliary input corresponding to the accel-
eration of the system can be determined by

u = ν̇ = ν̇d + (Md)−1
(
Bd(νd − ν) + Kdεq(qd,q) − ετ

)
(3.30)

The control input of the high-level impedance controller can then be calculated by feed-
back linearization using the dynamic model of (3.1) as

τ = M(q)u + C(q,ν)ν + g(q) − τ̂ e

= M(q)ν̇d + M(q)(Md)−1
(
Bd(νd − ν) + Kdεq(qd,q) − ετ

)
+ C(q,ν)ν + g(q) − τ̂ e

(3.31)

which is the actuation wrench that should be applied to the FPR to properly achieve the
desired impedance behaviour of the system. By taking the relationship defined in (2.28),
the required thrust forces of the multirotors actuating the robot can be calculated by

f =
[
J(q)T

]†
τ (3.32)

with J(q) being the Jacobian matrix derived in (2.20) and
[
J(q)T

]†
denoting the pseudo-

inverse of the transpose of the Jacobian matrix. In case where the number of legs n = 3,
it can be simplified by J(q)−T as the inverse of J(q)T . However, one should assume that
the Jacobian matrix is invertible, i.e. det(J) ̸= 0. When det(J) = 0, it means that the
specific robot configuration is singular and the determination of required thrust forces is
impossible under such configuration. According to the singularity analysis conducted in
[Six, 2018b], the singularity-free configuration can be assured when the leg angles are all
restricted within the range of [0, π2 ].
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The stability of the impedance controller with external wrench estimates can be proven
by considering the stability of perturbed systems studied in [Khalil, 2002a]. The error
dynamics applying the control law of (3.31) can be written as

M(ν̇ − ν̇d) + MvBd(ν − νd) + MvKdεq(q,qd) + Mvετ = −τ̃ e (3.33)

with τ̃ e = τ̂ e−τ e recalled as the estimation error and Mv = M(Md)−1. In case of perfect
compensation of external wrench, i.e. τ̃ e = 0, it can be proven that a global asymptotically
stable equilibrium point is achieved by taking the following conditions [Khalil, 2002a]

εq(q,qd) = 0, ν − νd = 0, ν̇ − ν̇d = 0, ετ = 0 . (3.34)

In most cases where the condition of τ̃ e = 0 is not necessarily ensured, the stability proof
of the system has to be accomplished by taking into account non-vanishing perturbations,
in which a stable equilibrium point of the system is no longer existing. However, with a
reasonable hypothesis of the perturbation term being bounded, i.e.

∥τ e − τ̂ e∥ ≤ δ (3.35)

with δ an arbitrarily small and positive value, it is possible to prove that the nominal
system has an exponentially stable equilibrium at the origin (that of conditions in (3.34))
because it shows that arbitrarily small and uniformly bounded perturbations will not
result in large steady-state deviations of the system from the origin [Khalil, 2002a]. In
other words, the stability of the impedance control law of (3.31) with external wrench
estimation can be ensured if the estimation error, i.e. τ e − τ̂ e, is bounded. Furthermore,
the time-scale separation argument commonly found in several robotics applications is
exploited in dealing with feedback control with estimation. The estimator dynamics are
supposed fast enough such that its transient behaviour can be considered as a bounded
perturbation with respect to the robot motion, which further proves the assumption of
bounded perturbation term in (3.35) to the system.

3.3.2 Computation of Multirotor Thrust/Attitude Setpoints

Based on fi resulted from (3.32) corresponding to the multirotor i’s thrust force vector
in 3-dimensional space, the desired thrust magnitude and desired attitude of multirotor
i can be determined. As the classical multirotor (with untilted rotors) can only provide
thrust force vertically in its body frame, the total thrust magnitude and the z axis of the
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multirotor’s body frame Fbi for the desired attitude can be systematically defined by

fdt,i = ∥fi∥, zdi = fi
∥fi∥

(3.36)

Any orientation satisfying zdi with an arbitrary yaw around zdi can be chosen to provide
the correct desired thrust force fi. To fully determine the desired attitude, a desired yaw
can be chosen by defining the desired x axis (or y axis) of the body frame. A constant
angle βi (as presented in Section 2.3.3) between the leg’s direction and the x axis of the
multirotor’s frame can be chosen, for the purpose of avoiding potential collisions between
the rigid legs and the propellers. The definition of the desired x axis can be done in two
steps:

1. defining firstly an auxiliary axis x′d
i which is perpendicular to both leg’s direction

−−→
AiBi (with its unit vector expressed by li) and the axis zdi ;

2. then rotating an angle of (β − π
2 ) around the axis zdi .

The computation of the desired x axis of each multirotor’s body frame is shown in Fig. 3.1
and detailed in (3.37).

Figure 3.1 – Definition of the desired x axis of the multirotor’s body frame.

x′d
i = li × zdi ,

xdi = AxisAngle(zdi , β − π

2 ) x′d
i

(3.37)

with ui =
−−−→
AiBi

∥
−−−→
AiBi∥

and −−→
AiBi computed via the relation of (2.12). Note that AxisAngle(axis,

angle) refers to the axis-angle representation of an orientation (see Appendix A.1). Finally,
the rotation matrix associated with the desired attitude of the multirotor i can be fully
determined as

Rd
i =

[
xdi zdi × xdi zdi

]
(3.38)

which is then converted to the unit quaternion qdi corresponding to the desired attitude
of the multirotor i.
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3.3.3 Low-level Multirotor Attitude Controller

Once the commands of (fdt,i, qdi ) are obtained corresponding to multirotor i’s desired
thrust magnitude and desired attitude, a thrust/attitude controller commonly seen in the
literature can be chosen for the low-level multirotor control. For the cases where hexarotors
or octorotors are used as the aerial vehicle platforms in the FPR design, the knowledge of
desired thrust magnitude and attitude setpoints is not enough to determine the actuator
inputs (i.e. motor speeds of the rotors). To solve this, a control allocation or optimisation
method is often adopted, satisfying the achievement of thrust/attitude commands and op-
timising energy consumptions as investigated in [Kotarski, 2018; Werink, 2019; Liu, 2013].
In the works conducted within this thesis, the quadrotors are chosen to actuate the robot
with no over-actuation needed to be handled as it is sufficient to fully determine the four
motor inputs given the desired thrust magnitude and desired attitude of a quadrotor. A
quaternion-based attitude control of quadrotor such as [Brescianini, 2013; Fresk, 2013]
can then be applied, which is based on the quadrotor’s kinematics and detailed as follows.

The objective of the low-level quadrotor control is to design a feedback law which
stabilizes the quadrotor at the desired attitude while generating the desired thrust. From
the desired and actual attitude of the quadrotor, the angular rate commands can be
calculated considering the following control law

ωd
i (qi) = 2

τ
sgn(qerri,0 )qerri,1:3 (3.39)

where τ is the first-order system time constant corresponding to the attitude (propor-
tional) control gain, qerri = q−1

i ◦ qdi is the quaternion error, and sgn(qerri,0 ) is the sign
function of the scalar part of the quaternion error, which has been defined in (3.29).

The computation of the desired angular rate commands by (3.39) satisfies ωd
i (qi) =

ωd
i (−qi), required to solve undesired unwinding phenomena when using quaternion-based

controllers as qi and −qi represent the same physical attitude [Mayhew, 2011]. It is evi-
dent since any physical attitude in SO(3) corresponds to two antipode quaternions, i.e. qi
and −qi, and the controller outputs must therefore be consistent in these two equivalent
attitude inputs. Then a PID-based controller can be designed to achieve the angular rate
commands, as

md
i = KPεω + KDε̇ω + KI

∫ t

0
εωdt (3.40)

with εω = ωd
i − ωi being the error between the angular rate setpoints and the measured

values, KP , KD and KI are the positive-definitive diagonal matrices for the PID gains.
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It is additionally noted that the angular rate commands for each multirotor (i.e. ωd
i )

should theoretically be depending on the rates of high-level control outputs (i.e. the rate
of thrust commands computed from the high-level loop). This term or even higher-order
terms affecting the low-level control are however neglected, supposing that the desired at-
titude setpoints are achieved instantaneously, a hypothesis ensured by the higher control
rate and faster convergence of the low-level attitude controller compared to the high-level
one for the relatively slow dynamics of the passive architecture.

After having obtained the commands on the quadrotor’s thrust magnitude and rota-
tional moments, the rotor speeds can be directly computed without any ambiguity. It is
well known that for a quadrotor the thrust force applied to the airframe is the sum of
thrusts produced by four rotors, while the reaction moments acting on the airframe are
due to the rotor drag forces. Their relations between the squares of the motor speeds for
a quadrotor can be written in matrix form [Mahony, 2012]


ft

mx

my

mz

 =


cT cT cT cT

0 dcT 0 −dcT
−dcT 0 dcT 0
−cQ cQ −cQ cQ




Ω2

1

Ω2
2

Ω2
3

Ω2
4

 (3.41)

where Ωj for j ∈ {1, 2, 3, 4} are the motor speeds, cT and cQ are the thrust force and
drag force coefficients, and d is the distance from the central axis of the quadrotor to the
rotor axis. This constant matrix is then inverted to compute the motor speeds from the
commands of fdt,i and md

i , which is usually referred to as the output mixing process.

3.3.4 Discussion on Controller Structure and Tuning

The overall control structure is summarized by the diagram shown in Fig. 3.2. The
high-level impedance controller deals with the tracking of the desired trajectory (qd,νd, ν̇d)
as well as the desired interaction wrench τ d

e, via regulation on the impedance behaviour
of the system. The output of the impedance controller, the vector of 3-dimensional thrust
forces f , is then used to compute the thrust and attitude setpoints for the low-level mul-
tirotor attitude controller, which should be run at a frequency higher than the high-level
controller to ensure the fast convergence towards the attitude setpoints.

Regarding the control gains, the multirotor (quadrotor) controller is experimentally
tuned with aggressive attitude and angular rate gains to achieve fast convergence and good
robustness to the perturbations. This can be accomplished by setting high proportional
gains for the attitude control and properly tuning the PID gains for the angular rate
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Figure 3.2 – Diagram of the impedance-based interaction control along with the low-level
quadrotor control.

control with good behaviour in convergence time and damped oscillations. The impedance
gains in (3.25) are determined on the basis of the desired impedance behaviour for the
robot-environment interaction, with values being tuned according to the specific task. For
instance, a high stiffness can be chosen to reject disturbances during a steady flight, while
a lower value will be more appropriate to ensure the compliance behaviour of the robot
interacting with the external environment. On the other hand, the mass and damping
coefficients must be properly defined to avoid overshooting and oscillations. Furthermore,
the damping ratio of the desired impedance system can be taken into account, which is
calculated by

ζ = Bd

2
√

KdMd
(3.42)

The system is under-damped when ζ < 1, critically damped when ζ = 1, and over-damped
when ζ > 1. The damping ratio is usually selected between 0.4 and 0.7 in general case
[Shinners, 1998].

3.4 Overall Estimation and Control Framework

The overall framework of the external wrench estimation and impedance-based control
applied to the FPR is summarized in Fig. 3.3. An off-line trajectory generation procedure
is firstly conducted, in which the desired waypoints of the generalised position coordinates
qd are defined in a list, and the desired velocity and acceleration are calculated generally
using the 5-order or 7-order polynomial interpolation techniques [Kermorgant, 2022]. Then
the desired wrench can be planned similarly in an off-line process or sent to the FPR online
by an operator, providing the possibility of deriving from the tracking of the desired
trajectory in case of interacting with the environment to achieve potential manipulation
tasks. The determination of the desired wrench τ d

e the robot exerts to the environment
depends on the specific tasks performed by the robot. In the interaction experiments
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Figure 3.3 – Block diagram of the overall external wrench estimation and impedance-
based control framework.

shown in the next section, the FPR is controlled to exert a certain amount of the contact
force along the platform’s normal direction (i.e. z axis of the platform) while interacting
with the environment. The desired force exerted by the platform on the environment is
thus chosen to be

pfdp,e =
[
0 0 fdc

]T
(3.43)

with fdc representing the desired contact force between the platform and the environment
along the normal direction of the platform plane. This desired force is converted to be
expressed in F0 by multiplying the rotation matrix associated with the platform’s actual
orientation as

fdp,e = Rp
pfdp,e (3.44)

Similarly, the contact force can be estimated by the wrench observers by inverting the
rotation matrix as

pf̂p,e = RT
p f̂p,e (3.45)

from which the estimated contact force exerted by the robot is taken as −pf̂pz,e (i.e. neg-
ative of the z component of pf̂p,e). The desired and estimated forces on the platform are
then used to calculate the force tracking error (i.e. the first three components of ετ ). The
rest of the elements in τ d

e are set to zero during the contact-based interaction experiments,
resulting in a compliance behaviour of the robot to the modelling errors and external dis-
turbances acting on those axes.

In terms of state measurements, the generalised position q of the FPR is measured
directly by the Motion Capture (MOCAP) system, while the velocity of the robot ν is
computed using the Forward Kinematics detailed in (2.21) from the measurements of
linear velocities onboard the quadrotors by their IMU sensors. These easily accessible
measurements of the robot states are taken as input for both external wrench estimation
and the impedance-based interaction controller. Remark that for the velocity measure-
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ments, the derivatives from MOCAP data are not preferable due to the noise after the
numerical differentiation, while the onboard linear velocity measurements of each UAV
are usually well estimated by the additional filtering techniques.

3.5 Experimental Validation

In this section, the implementation and experimental validation of the wrench ob-
servers and the impedance-based control are presented, for which a video of experiments
can be found at https://youtu.be/ryffKG-VG68 and results in [Liu, 2022]. In the FPR
prototype applied to the experimental works detailed in Appendix B, the quadrotors are
used to actuate the system and the number of the legs (and attached quadrotors) is se-
lected to be 3, which is the minimum number requested to be able to control the full
DoFs of the robot. Experiments have been conducted to show the performance of the
wrench observers and impedance-based controller applied to the FPR dealing with mod-
elling uncertainties, external disturbances and physical interactions with the environment.

The high-level impedance-based controller as well as the wrench observers are imple-
mented on a ground computer and run at 50 Hz. The commands are sent to each quadrotor
by a 5 GHz Wifi network and tracked by the onboard autopilot of attitude control run at
250 Hz. The experiments of the FPR were done in an enclosed 6 × 4 × 3.5 m flight arena
equipped with an 8-camera Qualisys Motion Capture (MOCAP) system [Qualisys, 2022].
The MOCAP system can provide the measurements of the poses of all the bodies recorded
in the arena, and stream the data over the Wifi network at 100 Hz.

3.5.1 Experiment I: Hovering in Free Space

In the first experiment, the FPR is flown in free space for the purpose of tuning the
observer gains and the impedance gains. As the modelling errors can be estimated by the
wrench observers, the free-space flight is also performed to analyse the effects of modelling
errors and uncertainties. For tuning the wrench observers, the gains are particularly chosen
to filter the high-frequency noises, while limiting the sensibility of the observer and the
estimation oscillations at the same time. The gains of different wrench observers are
determined to have equivalent cut-off frequencies. From the aspect of controller tuning, the
impedance gains are chosen experimentally taking into account the damping ratio of the
desired impedance system given by (3.42). The values of the impedance gains can be varied
according to the specific application scenarios. In the general case, the gains are decoupled
along different robot coordinates (i.e. platform position, orientation and leg angles of the
FPR). A relatively small damping ratio on the platform position coordinates is selected
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to have a rapid response to the external effects during the flight. A slightly under-damped
behaviour of the platform’s rotational movement is chosen to reach the best trade-off
between the response time and the acceptable overshoot on the platform orientation.
In contrast, over-damped impedance gains are preferable on the leg angles to limit the
overshooting and sensibility to external disturbances, which are beneficial to both avoid
the singular configurations and maintain the wrench capability during the interaction with
the environment. The pre-tuned gains of the wrench observers and impedance controller
for achieving a stable free-space flight are summarized in Table 3.1.

Robot State Wrench Observer Gains Impedance Gains
KO KO1 KO2 KOS

KOT
Md Bd Kd ζ

Platform position 2 4 1 4 3.2 5 10 25 0.45
Platform orientation 1 2 0.5 1 1.6 8 25 25 0.88

Leg angles 1 2 0.5 1 1.6 5 20 15 1.15

Table 3.1 – Wrench observer and impedance control gains along different robot states. The
corresponding damping ratio of the desired impedance system is calculated by (3.42).

One of the first analyses conducted on the results of this experiment is the performance
of the implemented momentum-based observers. Fig. 3.4 shows the results of the exter-
nal wrench estimation performed by three different momentum-based wrench observers
during a hovering flight of 150 s. The range and evolution of the external wrenches esti-
mated by three different observers are similar, which can be seen as cross-validation on
the estimation techniques based on momentum computation. However, their performance
is slightly different: compared to the first-order wrench observer (FOWO), the estimated
values of the second-order wrench observer (SOWO) are less noisy but less reactive to the
external wrench changes as well; in contrast, the sliding-mode wrench observer (SMWO)
reacts very fast to the evolution of external wrench, the noise amplitude of which is how-
ever much higher.

Furthermore, the effects of modelling errors and uncertainties estimated by the ob-
servers can be analysed. One may notice that the z-axis external force exerted on the
platform decreases linearly as time goes on. This is caused by the drops in battery levels
as the flight lasts which lead to a decrease in thrusts generated by quadrotors. Therefore,
the mismatch between the desired thrusts and the actual thrusts produced by quadrotors
has been estimated in the external wrench term, in particular the z-component of f̂p,e.
One may also find an increase in external moments on the legs due to the same reason
since a decrease in quadrotor thrust will cause an external moment around the revolute-
joint axis considered to be additionally exerted on each leg. According to Fig. 3.5(a), the
tracking of the platform’s z position was affected equivalently by applying three different
wrench observers, caused by the mismatch of the actual thrusts produced by quadrotors.
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The estimates of the external wrench on the other states are small, proving that the rest
of the modelling errors except the uncertainties on quadrotor thrusts are negligible.
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(a) f̂p,e estimated by FOWO
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(b) m̂p,e estimated by FOWO
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(c) m̂l,e estimated by FOWO
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(d) f̂p,e estimated by SOWO
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(e) m̂p,e estimated by SOWO
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(f) m̂l,e estimated by SOWO
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(g) f̂p,e estimated by SMWO
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(h) m̂p,e estimated by SMWO
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Figure 3.4 – External wrench estimation performed respectively by: (a)-(c) the first-order
wrench observer (FOWO), (d)-(f) the second-order wrench observer (SOWO), (g)-(i) the
sliding-mode wrench observer (SMWO) during the hovering flight in free space.

Additionally, the regulation on the thrusts produced by quadrotors can be achieved
in order to cancel the effects due to the battery level changes, which is detailed in Ap-
pendix C. After applying the regulation of thrust based on the actual battery levels used
onboard, a free-space hovering flight of the FPR was performed again. The results on
the evolution of the platform’s z position after the thrust regulation are demonstrated in
Fig. 3.5, in which the comparison with the PD and PID-based controllers initially pro-
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posed in [Six, 2018b; Liu, 2021] is also conducted. It can be seen that after the thrust
regulation, the impedance controller can well perform the tracking of desired trajectories
in free space, with the results comparable to that of the PD and PID-based controllers
which are previously well-tuned to have the best performance such controllers can achieve.
In the following experiments, the thrust regulation is a priori applied to reduce as much
as possible the effects of modelling uncertainties. The quantitative results presented in
Table 3.2 also show that even with well-tuned gains, the PD controller is still inevitably
affected by static errors, especially seen in the positioning errors, while the impedance
controller and PID controller can both work fine in tracking desired trajectories during
the hovering flights in free space.
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(a) Platform z position without thrust reg-
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tion, comparing impedance controller with
PD and PID-based controllers.

Figure 3.5 – Evolution of platform’s z position without/with the thrust regulation based
on battery levels during the hovering flight in Experiment I.

Controller pp [cm] ϕp [°] ϑp [°] θl [°]
Impedance 6.8 4.6 3.0 5.0

PD 12.5 5.1 6.6 3.9
PID 7.1 3.3 2.9 3.7

Table 3.2 – Root-mean-square error (RMSE) of the trajectory tracking during a hovering
flight in free space. Note that RMSE for pp refers to the platform positioning error, ϕp
and ϑp represent the roll and pitch Euler angles of the platform, and RMSE for θl is the
mean value of RMSE of three leg angles.

3.5.2 Experiment II: Hovering with Additional Payload

In the second experiment, the FPR was flown with an additional payload attached
to the centre of the platform (as shown in Fig. 3.6), which is unconsidered in the model
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and thus acts as an external disturbance on the platform. A hovering flight with a pay-
load weighting 200 g was firstly conducted to test the performance of different observers
and their effects on the control. The results of the external wrench estimation and the
trajectory tracking on the platform’s x and z position as well as leg angles are shown
respectively in Fig. 3.7 and Fig. 3.8.

It can be remarked that all three observers can well perform the estimation, with estimated
values converged to 2 N as the ground truth and the RMSE of the estimation all limited
within 1.1 N as shown in Table 3.3. The tracking of the platform’s z position is slightly
degenerated to stably control the robot suffering from the external force along z direction,
which is the compliance behaviour ensured by the desired impedance settings. In addition,
the performance of the observers discovered in Experiment I can also be well identified: the
FOWO has an average convergence time, and the high-frequency noises are well filtered;
the SOWO can largely reduce the estimation noises, but it converges relatively slow to
stable values; the SMWO is more reactive to the external wrench and convergences faster,
however it further amplifies the external wrench such that the estimated values are very
unstable compared to the other observers. The undesired behaviour found in SOWO and
SMWO affects the stability of the control system, which can be seen in Fig. 3.7(b) that the
tracking of the platform’s x axis is poor using SMWO due to its noise amplification and
in Fig. 3.8 that the slow convergence of SOWO affects the tracking of the leg angle. The
quantitative results presented in Table 3.3 also demonstrate that the stability of different
estimation techniques affects positioning accuracy and the tracking of the platform’s roll
and pitch angles. Consequently, the FOWO is kept in the following experiments because
of its best compromise between the estimation noise and convergence time.

Figure 3.6 – FPR hovering with additional payload in Experiment II.
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(b) x position of the platform
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(c) z-axis platform external force
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(d) z position of the platform

Figure 3.7 – Evolution of the x and z-axis external force estimates and the platform’s x
and z position during the hovering flight with an additional payload of 200 g.
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(a) External moment around leg’s joint axis
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(b) Leg’s revolute-joint angle

Figure 3.8 – Evolution of the external moment estimates on m̂l3,e and the revolute-joint
angle of the leg 3 during the hovering flight with an additional payload of 200 g.

In the next step, the hovering flight in addition to an external payload of 300 g was
flown with the external wrench estimated by FOWO. For purpose of comparing with
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Observer pp,xy [cm] ϕp [°] ϑp [°] θl [°] f̂pz,e [N]
FOWO 7.3 4.2 3.7 6.7 1.1
SOWO 8.5 7.2 5.0 6.5 1.1
SMWO 11.9 5.5 5.8 6.4 1.0

Table 3.3 – Root-mean-square error (RMSE) of the trajectory tracking and the z-axis
external force estimation during a hovering flight with 200 g payload using different ob-
servers. Note that RMSE for pp,xy refers to the platform positioning error on its x and y

axes, and RMSE for f̂pz,e is computed relative to the ground truth.

existing controllers, the same testing flights were conducted using the following controllers:

1. Impedance-based controller presented in this chapter;

2. PD-based controller initially presented in [Six, 2018b];

3. PD-based controller with feed-forward compensation term corresponding to the ex-
ternal wrench estimation (named as PD+C controller).

All controllers are experimentally tuned to have good tracking results in free-space flights
and then tested to handle the additional payload as the external disturbance. It has to be
mentioned that PD controller is not dedicated to the interaction with the environment,
whose performance is normal to be worse. However, the flights with this controller were
still performed in order to set up a reference of the worst case. In addition, the PD+C
controller is also compared in which the PD controller is enhanced by the knowledge of
external wrench. The addition of an integral term in the PID-based controller was how-
ever shown to be unable to handle the external payload and inevitably result in crashes,
which is therefore excluded in the comparison.
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(a) z-axis platform external force
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(b) z position of the platform

Figure 3.9 – Evolution of the external force estimates on f̂pz,e and the platform’s z position
during the hovering flight with an additional payload of 300 g.
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Fig. 3.9 shows the results of the tracking of the platform’s z position, and the estimated
external force along z axis in F0. The root-mean-square errors (RMSE) of the trajectory
tracking and the external force estimation are presented in Table 3.4. From the results,
it can be seen that the impedance controller can better deal with unknown disturbances,
with good compliance behaviour shown in the platform’s z position and better tracking
performance on the other states. In addition, the effectiveness of the wrench estimator is
validated as the RMSE of the z-component external force estimates are all about 1 N,
which is an acceptable value, especially taking into account the large estimation errors
in take-off and landing periods due to the ground effects (during the time interval within
[0,2] s and [45,47] s shown in Fig. 3.9).

Controller pp,xy [cm] ϕp [°] ϑp [°] θl [°] f̂pz,e [N]
Impedance 6.2 5.3 4.9 5.1 1.0

PD 9.3 10.7 8.0 13.6 1.1
PD+C 8.9 9.2 6.9 12.0 0.9

Table 3.4 – Root-mean-square error (RMSE) of the trajectory tracking and the z-axis
external force estimation during a hovering flight with additional payload of 300 g. Refer
to Table 3.2 and Table 3.3 for the meaning of each state.

Figure 3.10 – FPR hovering in presence of external wind perturbations in Experiment III.

3.5.3 Experiment III: Hovering with External Wind Perturba-
tions

After having validated the effectiveness of the estimation and impedance control tech-
niques, this experiment has an objective of comparing the behaviour of the impedance
system under different impedance gains. The FPR was flown to hover in front of a wind
generator with a wind speed measured about 26 km/h from the centroid of the three
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quadrotors at their hovering height (as shown in Fig. 3.10). The winds are generated
along the x axis of the global frame, which is approximately aligned with the platform’s
x axis since zero yaw of the platform relative to the global frame is set in the desired
trajectory. Therefore, the external winds will perturb the control of the leg angles and
generate an external wrench on the platform mainly composed of:

• an x-axis force expressed in the global frame;

• a moment around the negative y axis of the platform frame (direction of the negative
pitch angle of the platform).

Then the hovering flights in presence of wind perturbations during 60 s were performed,
with different impedance gains on the platform’s position and orientation states, while
leaving the same gains for the additional DoFs on the leg angles. The mass and stiffness
coefficients are varied with values higher or lower than the originally tuned ones to analyse
the influence of impedance tuning, and the damping coefficients are calculated accordingly
to maintain the same damping ratio as given in Table 3.1. Table 3.5 shows the variation
in the impedance gains studied during the experiments, and the results on the tracking
error distribution of the platform’s x position and pitch angle are shown in Fig. 3.11, with
quantitative results on the tracking performance of different impedance systems presented
in Table 3.6.

Impedance Gains Md
p Bd

p Kd
p Md

o Bd
o Kd

o

Originally tuned 5 10 25 8 25 25
High mass 8 25 12.65 12 25 30.62
Low mass 3 25 7.74 5 25 19.77

High stiffness 5 35 11.83 8 50 35.36
Low stiffness 5 20 8.94 8 15 19.36

Table 3.5 – Impedance gains chosen in Experiment III. Note that the subscripts p and o
represent respectively the platform’s position and orientation states.

Impedance Gains pp [cm] ϕp [°] ϑp [°] θl [°]
Originally tuned 12.3 3.4 11.2 5.0

High mass 14.1 5.1 10.2 5.4
Low mass 12.4 3.5 16.3 5.4

High stiffness 9.4 2.1 5.6 4.6
Low stiffness 15.8 6.1 19.2 5.8

Table 3.6 – Root-mean-square errors (RMSE) of the trajectory tracking during the hover-
ing flight in presence of external wind perturbations corresponding to different impedance
gains. Refer to Table 3.2 for the meaning of each state.

From the results, different compliance behaviour according to the variations in mass
and stiffness coefficients can be well identified. A higher value in mass coefficient might be
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(b) Error distribution on the platform’s pitch angle.

Figure 3.11 – Error distribution on the platform’s x position and pitch angle during the
hovering flight in presence of external wind perturbations with different impedance gains.
Note that the error distributions are calculated using the norm errors on the tracking of
desired trajectories.

beneficial to resist the external wrench (especially shown in the platform pitch response).
However, the robot becomes less reactive to external effects, which is unexpected during
the interaction tasks. A proper selection for the mass coefficient such as the values selected
in the original gains which are coherent with the mechanical and structural properties of
the robot is preferable. On the other hand, a stiffer impedance system is always advan-
tageous in rejecting the disturbances as shown in both cases, in which the tracking of
the platform orientation is much enhanced by increasing the stiffness of the impedance
system. The concern of increasing stiffness would be the loss of compliance with the ex-
ternal environment and the problems of overshooting and oscillation that might occur.
Based on this analysis, proper values for the impedance gains can be chosen according
to the specific tasks the robot is controlled to achieve. For instance, to achieve contact-
based interaction tasks, the original gains are chosen for the platform’s position and leg
angle states, while a stiffer behaviour of the platform orientation state is desirable. In this
way, the platform’s compliance during the interaction is maintained, while there is more
resilience against perturbations on the platform orientation.
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3.5.4 Experiment IV: Contact-based Interaction Tasks

In this experiment, the FPR was flown to work in more challenging scenarios where the
contact-based interaction tasks were performed in order to mimic real-world applications
using this kind of aerial manipulators. A simply designed cylinder-form end-effector is
attached at the centre of the platform, whose frame is supposed to be aligned with the
platform frame. During the interaction tasks, the platform of the FPR (with the attached
end-effector) was controlled to interact with a 30×30 cm wooden board fixed in the middle
of the flight arena by exerting force along its normal direction (i.e. z axis of the platform
frame). The wooden board is considered as an unknown object in the environment, such
as the surface of a ceiling. It is hung by several tightly stretched ropes and attached with
a heavy payload above, and thus assumed to be stiff enough to resist the interaction
force between the platform during the experiment. It has to be mentioned that the exact
position of the external object is not necessarily known. A predefined trajectory is sent
to the FPR for taking off and reaching the potential interaction pose measured by the
MOCAP. Then a human operator sends the desired contact force commands by a joystick
to perform the interactions with the board by the end-effector attached to the platform.
Fig. 3.12 shows the configuration of several contact-based interaction tasks performed by
the FPR in this experiment, demonstrating different application scenarios that can be
achieved by the FPR.

Figure 3.12 – FPR performing contact-based interaction tasks in Experiment IV.

Experiment pp [cm] ϕp [°] ϑp [°] θl [°] fdc [N]
Task 1 - Case 1 6.9 5.5 5.3 5.0 1.7
Task 1 - Case 2 7.9 6.5 6.7 4.3 1.5

Task 2 7.4 3.4 3.1 3.6 1.3
Task 3 10.3 2.7 6.1 4.7 1.0

Table 3.7 – RMSE of the tracking of desired trajectories and contact force in Experiment
IV. Note that RMSE for fdc refers to the tracking error of the desired contact force, and
the rest of the states are defined in Table 3.2.
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Task 1: pushing with different orientations
In the first task, the FPR was controlled to exert force onto the board by the platform

in two different orientations: one in flat orientation and the other at an angle of about
10◦ in roll and 25◦ in pitch. The desired contact force is sent by the operator when the
platform approaches the potential interaction pose with the board. Fig. 3.13 and Fig. 3.14
show the evolution of the desired and estimated contact force and the platform’s position
in two case studies with different orientations. In both cases, the estimated values of the
contact force converge to desired values, with the range of the contact force exerted up
to 10 N, validating the force-tracking performance of the proposed impedance controller.
From the results of the tracking of the platform’s position, the steady contacts between
the platform and the board can be well identified, during which the platform position is
further stabilized (indicated by the shaded areas in orange). The RMSE on the tracking
of the other states in Table 3.7 also demonstrates that the robot configuration is stably
regulated by the impedance controller during the interaction tasks.

Task 2: pushing and twisting
In this task, the platform was controlled to interact with the board in a flat orientation

while twisting itself by yaw movement. When the contact is possible, the operator sends
both the desired contact force and yaw rate commands to establish the interaction with
the board and twist the platform at the same time. Fig. 3.15 shows the tracking of the
desired contact force and platform’s position, while the evolution of the platform’s yaw
angle is presented in Fig. 3.16. From these results, it can be remarked that the pushing
& twisting task was successfully accomplished, with the contact force exerted by the
platform up to 6 N. This task shows the FPR capable of accomplishing more complex
tasks such as screwing or equipment replacement at remote locations.
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Figure 3.13 – Evolution of the desired and estimated contact force and the platform’s
position during the interaction task in a flat orientation. Note that the dashed lines are
the desired values and the shaded areas in orange indicate the performed steady contacts.
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Figure 3.14 – Evolution of the desired and estimated contact force and the platform’s
position during the interaction task with inclined orientation.
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(b) Evolution of the platform’s position

Figure 3.15 – Evolution of the desired and estimated contact force and the platform’s
position during the pushing and twisting task.
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Figure 3.16 – Evolution of the platform’s yaw angle during the pushing and twisting task.
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Task 3: pushing in presence of external winds
This task involves a more challenging scenario where the FPR was performing the

pushing task in presence of wind perturbations at a speed of about 13 km/h. The track-
ing results shown in Fig. 3.17 demonstrate that the interactions with the board were
successfully achieved under the wind perturbations. The effects of the external winds are
well estimated by the observer as shown in Fig. 3.18, demonstrating a x-axis force of
about 2 N and a negative pitch moment of about −2 N.m on the platform. The tracking
of the platform’s x position and the pitch angle was perturbed, however the errors remain
in a reasonable range to not perturb the steady contacts performed by the platform.
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Figure 3.17 – Evolution of the desired and estimated contact force and the platform’s
position during the pushing task with external wind perturbations.
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Figure 3.18 – Evolution of the platform’s external force and moment estimates.

It can be concluded that all the interaction tasks were successfully accomplished,
with acceptable RMSE on the tracking of the desired values given in Table 3.7. The
desired contact forces are well tracked in all tasks, with errors limited within 1.7 N. These
results have shown the effectiveness of the impedance controller with the external wrench
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estimated by the first-order wrench observer applied to the FPR for performing contact-
based interaction tasks in relatively complex working scenarios.

3.6 Conclusion

In this chapter, a methodology of controlling the FPR interacting with the environ-
ment has been studied, which involves firstly an estimation technique based on momentum
computation to estimate the external wrench acting on the robot due to the modelling un-
certainties, external disturbances and potential interactions with the environment. Several
momentum-based observers are studied, including first-order wrench observer (FOWO),
second-order wrench observer (SOWO) and sliding-mode wrench observer (SMWO). It
has then been shown that these observers present different performances in terms of re-
sponse time and noise amplitude in estimation. Then, based on the estimated external
wrench, an impedance-based controller can be applied, which is designed by the desired
impedance system and has the ability to track the desired interaction wrench set by a
human operator. Extensive experimental validation has been done, in which the imple-
mented estimation and control techniques have been tested and shown to be applicable to
the FPR to cancel the modelling uncertainties, deal with the external disturbances and
perform contact-based interaction tasks.

The method studied within this chapter has shown good potential in accomplishing
a variety of industrial applications by the FPR. However, until now, this method still
requires precise and high-rate exteroceptive measurements of the robot states and is usu-
ally implemented in a centralized way relying on the stable communication between each
computation unit, which might not be realistic for real-world applications. In the next
chapter, the presented estimation and control methods are shown to be applicable in a
decentralized manner with the state estimation deployed onboard each multirotor using
only intrinsic measurements.

98



Chapter 4

DECENTRALIZED ESTIMATION AND

CONTROL

This chapter presents the decentralized control algorithms applied to the Flying Parallel
Robot (FPR). An introduction to the topics of the decentralization of multi-vehicle aerial
robots is given in the first section. While most of the previous works on such robots often
depend on the use of exteroceptive state measurements by the Motion Capture (MOCAP)
systems, a method for reconstructing the robot state distributed on each multirotor using
only intrinsic measurements is presented in the second section. Then the decentralized
controllers based on previously studied control methods are introduced in the third section,
including two PID-based motion controllers and an impedance-based interaction controller
decentralized on each UAV. These decentralized control methods are complemented by inte-
grating the teleoperation from a human operator as no global reference frame is considered
available for positioning the platform. Finally, the proposed decentralization methods are
validated by extensive experiments detailed in the fourth section.

4.1 Introduction

In most of the previous works on multi-UAV manipulators discussed in Section 1.1.2
such as the FPR, the controller is often deployed in a centralized manner, implying that
a central computation unit receives all the measurements and computes the control for
all the UAVs. This control scheme is usually straightforward to be developed, however
it relies on a highly reliable bidirectional communication channel for transmitting all the
control and measurement messages, and the crashes will almost inevitably occur from
any communication interruption of more than a few control iterations (this means sev-
eral tenths of a second for an aerial robot). Therefore, the deployment of a decentralized
controller allowing each multirotor to perform its own control seems to be more robust to
communication interruptions.

Another issue along with the centralized controller of an aerial robot is that this scheme
often requires reliable and high-rate measurements of the robot pose in a global reference
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frame, which is handled in most of the works by the Motion Capture (MOCAP) systems.
These systems are usually bulky, expensive and require unobstructed lines of sight from
multiple angles to each rigid body for the pose measurements. Along with high costs, the
obvious impracticality in outdoor, cluttered or unknown environments is a disappoint-
ing limitation for an aerial robot. In some of the recent works, the MOCAP system is
replaced by onboard visual and inertial sensing, such as in [Tagliabue, 2017] for leader-
follower control of a suspended payload, [Loianno, 2018a] for transporting a bar-like object
collaboratively by two UAVs, and [Li, 2021a] for transporting a payload with quadrotors
suspended by cables. However, these works were for the cooperative transportation of
a payload by multiple UAVs, a relatively simple system. Multi-UAV manipulators with
rigidly-connected structure working in outdoor environments are rare, due to the relatively
inaccurate GPS localisation (particularly near buildings or under cover) being insufficient
for precise inter-UAV positioning to avoid potential collisions.

The decentralization and the lack of global localisation in a common inertial frame are
the issues that are extensively treated by the multi-robot control communities for swarm-
ing and formation flight [Coppola, 2020]. In these fields, a centralized control scheme is
often undesirable not only because stable and reliable communication channels between
every pair of a large number of agents seem infeasible, but also due to the complex-
ity of a high-dimensional system resulting in centralized computation almost impossible.
Therefore, it is much preferable to treat each robot as an independent agent running its
own perception and control algorithms (a so-called decentralized architecture) making
for a more intrinsically dependant and robust system [Chung, 2018]. The application of
such decentralized algorithms can be seen in the formation control of a team of aerial
robots such as [Turpin, 2012; Schiano, 2016], leader-follower consensus of multiple UAVs
[Hou, 2018; Guerrero-Castellanos, 2019], and outdoor flocking of a large number of UAVs
[Vásárhelyi, 2014]. In these works, decentralization is often made possible by the indi-
vidual robots finding some virtual common frame through consensus or other algorithms
which moves with the group of robots [Coppola, 2020; Schiano, 2016]. For the systems
with rigidly-connected links, the classical decentralized strategies are not applicable since
the multiple UAVs are physically interfered with by the rigid links and have effects on
each other. One may however remark that all the UAVs are connected to a common body
(the payload or the moving platform), and therefore a common frame can be assigned
with respect to which the individual UAVs can localise and control themselves based on
intrinsic and onboard measurements.

In the following sections, the robot state estimation distributed on each multirotor is
firstly investigated, which is performed using only the onboard visual and inertial cues.
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Then, the decentralized schemes of the previously studied control law will be presented,
which are then validated in real-world experiments.

4.2 Distributed State Estimation

As mentioned above, one of the main drawbacks of the previous works on the FPR has
been that the controller often required reliable and high-frequency measurements of the
robot pose expressed in a global reference frame. This is also one of the current limita-
tions of other multi-UAV parallel robots (with rigidly connected links), which has meant
until now the necessity of using MOCAP systems, rendering such robots far away from
practical applications in the real world. In this section, a solution for recovering the robot
state using only intrinsic measurements is proposed, which can be distributed on each
multirotor and allows to sufficiently reconstruct a partial set of robot states required by
the control.

The vector of the generalised coordinates given by (2.1) that needs to be reconstructed
can be divided into two parts: the platform pose (i.e. pp and qp), and the internal configu-
ration (i.e. passive leg angles θl). In the previous works, the platform pose was measured
by the MOCAP system and the leg angles were computed using the geometric relation
given the platform pose and the positions of the multirotors as presented previously in
Section 2.3.2. Considering for now there is no longer external localisation available, two
options can be proposed for measuring the leg angles:

❖ Potentiometers (or encoders) at the passive leg joints;

❖ Monocular pinhole cameras mounted on each multirotor.

The measurements of the leg angles by potentiometers could be straightforward. However,
along with the much added weight due to the necessary stiffening of the revolute joint to
maintain an accurate alignment, the additional arrangements such as the wiring, tuning
and potential filtering to the noisy and biased measurements would reduce the practicality
of using potentiometers. In contrast, the monocular vision seems to be a better solution,
as cameras are now very lightweight and a branch of vision-based detection algorithms are
available in the literature, such as an ArUco marker detection system [Romero-Ramirez,
2018; Romero-Ramirez, 2021], or model-fitting visual techniques that are rapidly becoming
more computationally feasible [Tekin, 2017; Rad, 2017]. In addition, the vision onboard
the multirotors can provide more information not only for estimating the leg angles by
detecting the relative position, but also for reconstructing the orientation of the platform
by the knowledge of relative orientation. As a result, the solution using pinhole cameras
is chosen in this work.
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In the following parts, the methodology of measuring the relative pose (i.e. position
and orientation) between the platform and each multirotor is firstly presented, which is
based on a marker detection system. A filtering technique based on Extended Kalman
Filter (EKF) on the relative pose is implemented, for the purpose of maintaining a high
frequency of the relative pose estimates and reducing the rate of false detections. This
filtered relative pose is then used to reconstruct a partial set of robot coordinates, in
which a notion of flat frames is introduced to represent the states such as the orientations
in the case where no inertial reference frame is available.

4.2.1 Relative Pose Measurement

To measure the relative pose, a camera is assumed to be mounted on each multirotor
and has its own frame FCi. An identified ArUco marker is supposed to be attached below
the platform and has the marker frame FM . Fig. 4.1 shows the definition of the frames
for the onboard pose measurement on each multirotor i. Note that an ArUco marker is
a synthetic square fiducial marker composed of a wide black border and an inner binary
matrix which determines its identifier. A specific library is chosen to generate an ArUco
marker [Garrido-Jurado, 2016], which can be detected for pose estimation using the ArUco
detection algorithm detailed in [Romero-Ramirez, 2021] given the marker ID and size. The
relative pose between the marker and the camera is therefore supposed to be estimated and
represented by a homogeneous transformation matrix CiTM . Note that the homogeneous
transformation matrix between two arbitrary frames FA, FB is given by

ATB =
ARB

ApB
0T3 1

 ∈ R4×4 (4.1)

where ARB and ApB are respectively the rotation matrix and displacement vector of FB
expressed in FA, representing the relative pose between two frames.

The fixed transformations between the frames can be known by a prior calibration process,
which are

• biTCi the transformation of the camera frame relative to the multirotor frame;

• pTM the transformation of the marker frame relative to the platform frame.

Then, if the camera is able to detect the ArUco marker and estimate the relative pose of
CiTM , each multirotor will have knowledge of its pose relative to the platform frame Fp.
This can be done by multiplying the transformation matrices as

pTbi = pTM
MTCi

CiTbi (4.2)
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with pTbi =
pRi

ppi
0T3 1

 the transformation matrix between Fbi and Fp, which is composed

of the relative position and orientation of the multirotor i expressed in Fp (represented by
the translation vector ppi and the rotation matrix pRi). The fixed transformation matrices
are computed as MTCi = CiT−1

M , CiTbi = biT−1
Ci with the inverse transformation defined

by
BTA = AT−1

B =
ART

B −ART
B
ApB

0T3 1

 ∈ R4×4 (4.3)

given two arbitrary frames FA and FB.

Figure 4.1 – Definition of the frames in the FPR for the pose estimation on each multirotor.

4.2.2 EKF-based Pose Estimation

The relative pose between the platform and each multirotor represented by pTbi is sup-
posed to be estimated by the ArUco marker detection system. This may present problems
in practical cases like uneven detection rate, false detection and noise due to the issues
commonly found in vision systems such as motion blur, unfavourable lightening conditions
and loss of objects in the camera’s angle of view. Therefore, the detected relative pose
pTbi is not directly used in the next step for the robot pose reconstruction (presented in
the next subsection), but rather filtered to output at a constant frequency with reduced
noises and errors. To achieve this, an Extended Kalman Filter (EKF)-based algorithm is
adopted, a well-known technique for data fusion and filtering in non-linear and discrete
systems [Welch, 1995].

The relative pose to be filtered is rearranged by a vector defined as the system state used
in the Kalman filter

x =
ppi
pqi

 (4.4)
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with pqi a unit quaternion converted from the rotation matrix pRi (see the conversion
detailed in Appendix A.2). The evolution of the system state is then defined by

ẋ =
pṗi
pq̇i

 (4.5)

To develop the prediction model in the EKF, two main hypotheses are made:
• pṗi is supposed to be zero at each instant, due to the fact that each multirotor is

rigidly attached to the passive structure and its relative position in the platform
frame should be constant if the corresponding leg angle is not changing.

• pq̇i is only affected by the angular velocity of each multirotor, as the rotational
movements of multirotors are fully decoupled with the passive architecture and
the angular velocity of the platform is negligible compared to the fast rotational
dynamics of UAVs.

Therefore, the expression of ẋ can be given by

ẋ =


03

1
2
pqi ◦

 0
biωi


 (4.6)

with biωi the angular velocity of the multirotor i, and ◦ representing the quaternion mul-
tiplication. The evolution of the quaternion can be simplified by the matrix multiplication

pq̇i = Ω(biωi)pqi (4.7)

with Ω(ω) is a (4×4) skew-symmetric matrix associated to a vector of the angular velocity
ω, which can be defined as [Schwab, 2002]

Ω(ω) = 1
2

0 −ωT

ω −[ω]×

 (4.8)

Remind that [.]× represents the skew-symmetric matrix associated with a 3-dimensional
vector for the cross product operation (referred to (A.50) in Appendix A.1).

It should be noticed that if the leg angles are changing or the platform is rotating (espe-
cially in roll and pitch angles), ẋ will also be affected by such movements. However, the
slow dynamic response of the FPR structure limits the agility of the robot, which makes
the evolution of the relative pose caused by the unconsidered movements as bounded
modelling errors in the transition phase. They would slightly degenerate the prediction
process, but will rapidly be rectified once the robot gets back to the quasi-static condition
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or during the next correction step.

According to [Welch, 1995], the equations of the EKF can be written as follows for
the state prediction and correction models

xk = f(xk−1,uk) + wk−1

zk = h(xk) + vk
(4.9)

with uk as the input of the system at each instant k, and additive vectors wk−1, vk respec-
tively for the prediction and measurement noises. The prediction equation corresponding
to (4.6) can be written in discrete time, where the discrete-time expression of the evolution
of the unit quaternion corresponding to (4.7) can be given by [Sabatini, 2006]

pqi,k = exp
(
Ωk(biωi,k)Ts

)
pqi,k−1 + wq,k−1 (4.10)

where uk = biωi,k is considered as the system input at time k, Ts is the time step of the
prediction process, wq,k−1 is the vector of prediction noises in quaternion elements, and
pqi,k−1 and pqi,k are the quaternions at two consecutive time steps within an interval of
Ts. When Ts is small enough, Ωk(biωi,k) is assumed to be constant. Therefore, one can
rewrite exp

(
Ωk(biωi,k)Ts

)
approximately using its first-order and second-order items of

Taylor series expansion as [Feng, 2017]

pqi,k =
(
14×4 + Ω(biωi,k)Ts

)
pqi,k−1 + wq,k−1 (4.11)

which yields the prediction model and the state transition matrix finally given by

f(xk−1,uk) = xk−1 +
 0
Ω(biωi,k)Ts

 (4.12)

and

Fk = ∂f
∂x

∣∣∣∣
xk−1,uk

=
13×3 03×4

04×3 14×4 + Ω(biωi,k)Ts

 (4.13)

For the observation model, the system state defined in (4.4) is considered to be directly
measured via the relationship of (4.2), which gives

h(xk) = xk; Hk = ∂h
∂x

∣∣∣∣
xk

= 17×7 (4.14)

where Hk is the observation matrix set by a (7 × 7) identity matrix.

After having constructed the state prediction and observation models, the prediction
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and correction equations of the EKF algorithm can be written as follows [Welch, 1995]
Prediction:

x′
k = f(xk−1,uk)

P′
k = FkPk−1FT

k + Qk

(4.15)

Correction:
xk = x′

k + Kk

(
zk − h(x′

k)
)

Kk = P′
kH′T

k (H′
kP′

kH′T
k + Rk)−1

Pk = (1 − KkH′
k)P′

k

(4.16)

Note that Pk is the covariance matrix of the estimation at each instant k, with the co-
variance P0 initialized with the initial state x0. Kk is the matrix for the Kalman gains.
Qk and Rk are the covariance matrices respectively for the prediction and measurement
noises, defined by Qk = E[wkwT

k ] and Rk = E[vkvTk ]. The terms with the prime symbol
are those predicted but not yet updated.

The tuning of the EKF system stays at the determination of prediction and measure-
ment noise covariance, i.e. Qk and Rk. The former depends on the correctness of the
prediction model, while the latter is usually defined based on the measurement uncer-
tainties according to the noise covariance of sensor outputs. The prediction and update
process are usually performed at the same rate (i.e. time interval of Ts). However, as
the correction model does not depend on the time step, the update process can be done
asynchronously each time when the measurements are available.

One major advantage of using EKF for the pose estimation is therefore that by a proper
and regular prediction process, the EKF system can output the filtered relative pose at
a constant rate. This is beneficial to recovering the robot state and the control in the
following steps. The algorithm of EKF-based pose estimation can potentially be extended
by adding another source of measurements, for which multiple sensor data can be fused to
increase the redundancy of the pose estimation to avoid false detection issues. However,
the Extended Kalman Filter is in general not an optimal estimator and only ensures local
convergences due to the linearisation of the models (it is optimal when the prediction and
correction models are both linear, the case where an EKF is identical to a regular Kalman
filter). Additionally, the linear prediction and correction models in the EKF might not
satisfy the normalisation constraint of the unit quaternion, which is ensured by a manual
normalisation of the resulted quaternion after every prediction and correction process.
Therefore, it would be better to adopt another filter more appropriate for the rotation
group and quaternion parameterisation, such as Multiplicative Extended Kalman Filter
(MEKF) [Markley, 2003; Li, 2020a], Invariant Extended Kalman Filter (IEKF) [Bonnabel,
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2009; Barrau, 2017] or Equivariant Filter (EqF) [Goor, 2022]. This may be the future
improvements of the works presented in this section.

4.2.3 Robot State Reconstruction

Supposing now the relative pose of the platform expressed in Fbi is well estimated by
each multirotor, the current focus remains on how to reconstruct the robot states (i.e. the
generalised coordinates q and the velocity ν) that are necessary for the control. This is
done by firstly computing the leg angles knowing the position of multirotor i expressed
in the platform frame, i.e. ppi. With the fixed revolution joint position of each leg ppAi

expressed in Fp that can be given by the expression of pri in (2.7), the vector describing
the leg’s direction expressed in Fp can be computed by

prAiBi
= ppi − ppAi

(4.17)

Note that the relative position ppi is equivalent to the vector of ppBi, i.e. the CoM position
Bi of the multirotor i expressed in Fp.

Then, the revolute joint angle of each leg can be calculated using the equation equivalent
to (2.11), but expressed in Fp

θi = acos
(

prAiBi
· ppAi

∥prAiBi
∥ · ∥ppAi

∥

)
(4.18)

While this geometric model for computing the leg angles holds true for the FPR, the
method may be generalised to other aerial manipulators by substituting their geometric
models to compute the internal configuration with the knowledge of pTbi.

The platform pose was previously measured by the MOCAP systems and expressed
with respect to a reference frame F0, which has lost much of its meaning under the sit-
uation that there is no more external localisation system, nor a global reference frame.
To deal with the lack of the reference frame, one could of course use Fp as a common
frame for expressing all the states, and instead of controlling directly the position and
orientation of the platform (previously in a global frame), one could regulate its linear
and angular velocity expressed in Fp through the first-order kinematic model described in
Section 2.4.1. However, this might invoke additional problems: for teleoperation purposes,
the operator must stabilise all six DoFs of the platform via the control of 6-dimensional
velocity, which is difficult with a standard 4-axis joystick; excessive roll and pitch during
the control can rapidly lead to instability of the robot; while this may work for eye-in-hand
visual servoing, the additional tuning of the sensor-space control will potentially be too
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complicated. Therefore, a better choice of the common reference frame can be determined
and a more ideal arrangement for the control of the platform’s orientation should be made.

Actually, it is remarked that each multirotor can necessarily estimate its own attitude
using onboard IMU measurements with the state estimation techniques such that it can
provide additional information on the global attitude. Recall the Euler angles of ZYX con-
vention ηi =

[
ϕi ϑi ψi

]T
∈ R3 for each multirotor i, denoted by ψi (yaw), ϑi (pitch) and

ϕi (roll) angles. The roll and pitch are commonly defined about the axes orthogonal to the
gravity vector and are necessarily well estimated by the onboard sensing and estimation
process for a stable flight. However, for the yaw estimates, the multirotors are usually not
sharing a common frame, as in practice this measurement suffers from noises and biases
especially in presence of magnetic field perturbations close to the metallic structures and
electrical circuits onboard the multirotor. It can then be reasonably assumed that each
multirotor’s attitude is estimated with respect to an unknown reference frame F0i, which
is constrained such that its z axis is aligned with the z axis of F0 (i.e. z0i = z0), but with
an unknown yaw 0ψ0i relative to F0. Therefore, a notion of flat frame FFj attached to an
arbitrary body j is introduced to represent an orientation with zero roll and pitch relative
to a global reference frame, and an unknown yaw with respect to the unknown global
frame F0 (as shown in Fig. 4.2). The orientation of a body can thus be expressed in the
flat frame, in which the roll and pitch are expressed similarly as previously defined in a
global inertial frame, with an unknown yaw considered to be always zero. The orientation
of multirotor i expressed in its flat frame can be expressed as

FiRi = Ry(ϑi)Rx(ϕi) (4.19)

with Rj(.) (for j = {x, y}) the unit coordinate rotations detailed in Appendix A.1.

As the relative orientation of the platform with respect to each multirotor i is known by
iRp = pRT

i , with pRi computed by its associated unit quaternion pqi, the orientation of
the platform can be further expressed in FFi by

FiRp = FiRi
iRp (4.20)

which allows to obtain the roll and pitch of the platform expressed in FFi independently
to any yaw of the platform. Remark that the measurements and computations of FiRp on
each multirotor must be identical. To simplify the derivation, a flat platform frame FFp is
introduced, which shares a common z axis with FFi and has an unknown yaw relative to
any FFi. According to the expression of the rotation matrix written by ZYX-convention

108



4.2. Distributed State Estimation

Figure 4.2 – Introduction of flat frames for expressing the orientation defined by the roll
and pitch angles on one leg of the FPR. The real platform and multirotor poses are solid,
and their poses in the flat frames are transparent. Note that the origins of real and flat
frames should be collinear, which is not the case in the figure just for better visualisation.

Euler angles, the roll and pitch of the platform expressed in FFp are computed by

Fpϕp = atan2
(
FiRp(3, 2), FiRp(3, 3)

)
Fpϑp = −asin

(
FiRp(3, 1)

) (4.21)

where R(r, c) refers to the element at the r-th row and c-th column of the matrix. This
allows to reconstruct the quaternion of the platform relative to FFp, which is then used in
the control. The flat frame attached to the platform can therefore be served as a common
frame to express all the other states of each multirotor i, for which the transformation
matrix between Fbi and FFp is computed by

FpTbi = FpTp
pTbi (4.22)

This allows to further express the linear velocities of all the multirotors expressed com-
monly in FFp by

Fpvi = FpRi
bivi (4.23)

with FpRi representing the relative orientation of the multirotor i expressed in FFp, ex-
tracted from the transformation matrix FpTbi, and bivi being the body-frame linear ve-
locity of each multirotor i measured onboard.

Then the computation of the generalised velocity of the FPR can be done similarly by
using the forward kinematics of (2.21) as previously discussed in Section 3.4 for a cen-
tralized scheme. As the linear velocities of multirotors are all expressed in FFp, the linear
velocity of the platform (i.e. Fpvp) is now expressed in FFp, while the body-frame angular
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velocity of the platform pωp and the leg angles rates θ̇l are the same as computed in the
centralized scheme.

The geometric and kinematic models as well as the introduction of the flat frames
have allowed to reconstruct the full vector of the robot velocity and a partial set of the
robot pose as follows

q =
[
0T3 FpqTp θTl

]T
(4.24)

with the platform orientation Fpqp defined by its roll and pitch expressed in FFp (i.e. Fpϕp
and Fpϑp) and the leg angles θl, up to an unknown position pp (considered as zero in
the first three elements of q) and unknown yaw ψp of the platform with respect to any
inertial frame.

4.3 Decentralized Controllers

Having shown in the previous section that sufficient information on the robot states
can be recovered from intrinsic measurements and estimation techniques, this section ad-
dresses decentralized controllers which allow each multirotor to compute its own control
law based on the available robot states estimated onboard. For the control law itself, it is
based on the same controller presented in Section 1.2.2 for motion control or the interac-
tion controller developed in Section 3.3. Compared to a centralized scheme which depends
on highly reliable communication between each multirotor and the centralized computer,
the deployment of the control law in a decentralized manner onboard each multirotor re-
quires only partial information shared among all the agents, which would be more robust
to communication delays or interruptions.

In the following parts, the control problem is firstly formulated in line with the robot
states reconstructed by each multirotor. Then the decentralization of the motion control
and interaction control law are presented, within which different schemes are discussed de-
pending on whether the sharing of information between multirotors is available/necessary
or not. For each multirotor, the computation of desired attitude setpoints is furthermore
adjusted, considering the fact that there is no more global reference frame to express
commonly the attitude setpoints and measurements.

4.3.1 Control Problem Formulation

The reconstruction of the robot states (i.e. robot pose and velocity) described in
Section 4.2 has built knowledge of the platform orientation Fpqp expressed in FFp, leg
angles θl and the robot velocity. The unknown coordinates are the position pp and yaw
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ψp of the platform relative to any inertial reference frame. One may remark that these
unknown coordinates are the same as the flat outputs of a quadrotor [Mellinger, 2011a],
which are easily controlled with a joystick. Therefore, the control of the platform is similar
to the manual pilot of a single multirotor, with the roll ϕp and pitch ϑp of the platform
decoupled from its yaw rate ψ̇p, and translation movements of the platform controlled by
the linear velocity vp. Based on this arrangement, a new set of robot states that can be
reconstructed is defined as

χ =
[
FpvTp Fpψ̇p

Fpϑp
Fpϕp θTl

]T
(4.25)

which can be known without relying on any external localisation system and thus defined
as the set of controllable variables.

This is furthermore an easily teleoperable system, as the leg angles, roll and pitch of the
platform may be regulated by values (instead of by rate), which are the states susceptible
to causing physical or numerical instabilities when the values are too small or too large
(i.e. near unstable configurations). An operator is then able to set the desired values for
those sensible states, and focus on the positioning and heading of the platform by con-
trolling the linear velocity and yaw rate of the platform in FFp, independent of changes in
roll and pitch of the platform. It is therefore assumed that an operator sends the desired
values for χd during the teleoperation of the FPR. To further ensure the smoothness of
the evolution of the robot states, these teleoperation commands sent by the operator are
further filtered, with the derivatives χ̇d output from a basic low-pass filter provided to
the controller as well. Therefore, the decentralized controller deployed on each multirotor
will listen to the teleoperation commands χd and χ̇d sent by an operator, and regulate
the robot states towards the desired setpoints, while the human operator is involved in
the highest control loop for regulating the platform’s position and yaw.

From the controller side, once the teleoperation commands of χd and χ̇d are received,
the desired trajectory corresponding to the desired generalised coordinates, velocity and
acceleration of the robot (i.e. qd, νd and ν̇d) needs to be further computed to construct
the tracking error in the control law. The position of the platform pp is now unknown,
and thus its desired value is always set to zero. As the orientation of the platform is now
defined by its roll and pitch angles in FFp, the unit quaternion Fpqdp associated to the
rotation matrix for desired angles FpRd

p = Ry(Fpϑdp)Rx(Fpϕdp) is defined as the desired ori-
entation. For the leg angles, the definition of the tracking error remains the same because
their values are known by the geometric model.
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The commands on the velocities given from χd and χ̇d are furthermore converted to
compute the desired velocity and acceleration of the FPR as follows:

• The desired linear velocity and acceleration of the platform is set by Fpvdp and Fpv̇dp
expressed in FFp;

• The desired angular velocity and acceleration of the platform can be computed by

pωd
p = D(Fpϕp, Fpϑp) Fpη̇dp

pω̇d
p = Ḋ(Fpϕp, Fpϑp) Fpη̇dp + D(Fpϕp, Fpϑp) Fpη̈dp

(4.26)

where the desired Euler angle rates are extracted from the teleoperation commands
χd and χ̇d, i.e. Fpη̇dp =

[
Fpϕ̇

d

p
Fpϑ̇

d

p
Fpψ̇

d

p

]T
and Fpη̈dp =

[
0 0 Fpψ̈

d

p

]T
, D and Ḋ

are the matrices defined in (A.78) and (A.82) (see Appendix A.3).

• The desired leg angle rates θ̇
d

l are directly obtained from χ̇d, with their values on
desired accelerations θ̈

d

l set by zero.

Note that the desired accelerations are zero for the roll and pitch of the platform and the
leg angles such that smoothness for those states susceptible to instability is ensured.

4.3.2 Decentralized Motion Controllers

In order to achieve the controller in a decentralized manner, meaning that each multi-
rotor performs its own control based on the onboard measurements and estimations, the
motion control law previously proposed in [Six, 2018a] and introduced in Section 1.2.2 is
firstly adopted. The high-level motion control law is summarised as follows in line with the
definition of the dynamic model and the robot states in this manuscript, but the method
is equivalent to the one presented in the literature.

Considering the dynamic model of the FPR represented in form of (2.25) and the rela-
tionship between the thrust forces and the actuation wrench of (2.28), the vector of thrust
forces is defined by an inversion of the dynamics as

f =
[
J(q)T

]†(
M(q)u + c(q,ν)

)
(4.27)

Note that
[
J(q)T

]†
represents the pseudo-inverse of the transpose of the Jacobian matrix

J; q and ν are the generalised coordinates and velocity of the robot; u is an auxiliary
input defined to minimise the tracking error by a PID regulation as

u = ν̇d + Kd(νd − ν) + Kpε + Ki

∫
ε dt (4.28)
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where Kp, Ki, Kd are positive-definite diagonal matrices respectively for the PID gains,
νd, ν̇d are the desired velocity and acceleration, and ε is the tracking error that can be
equivalently defined by (3.27). As discussed in Section 4.3.1, it is now given by

ε(qd,q) =


03

εo(Fpqdp, Fpqp)
θdl − θl

 ∈ R6+n (4.29)

with Fpqp the platform’s orientation converted from FpRp and Fpqdp its desired orientation
computed from the desired roll and pitch Fpϕdp, Fpϑdp, all expressed in FFp. εo(.) is the
orientation error defined in (3.28).

Then, the control input of the high-level control loop is further converted to determine
the desired thrust magnitude and attitude for each multirotor similarly to the method
presented in Section 3.3.2. The final commands sent to the low-level control on each
multirotor can be defined by a vector named control vector and denoted by

ui =
fdt,i
qdi

 ∈ R5 (4.30)

with fdt,i the desired thrust magnitude and qdi defined as the unit quaternion for the de-
sired attitude of each multirotor i, which are afterwards tracked by the low-level attitude
controllers.

As the low-level control is already performed onboard each multirotor independently,
the only need is to decentralize the high-level computation of desired commands to the
multirotors. One may notice that the motion control law of (4.27) can be done individu-
ally on all the multirotors. In this case, each one of them computes the full vector of the
required thrust forces for all the multirotors but only uses the thrust vector belonging to
itself to perform the next low-level control. The overall control on each multirotor is there-
fore deployed in a decentralized manner and receives feedback from decentralized sources,
while listening to the common teleoperation commands remotely sent by an operator.

However, for each multirotor, the construction of the control law by (4.27) means the
necessity of knowing some of the states reconstructed on the other multirotors, which are
specifically the other leg angles and the linear velocities of the other multirotors. It is
assumed that each multirotor has an estimation of the leg angle and its linear velocity
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expressed in FFp, denoted by a vector named information vector as

ζi =
 θi
Fpvi

 (4.31)

and can apply the control law if it has knowledge of the states of the other agents, i.e.
ζj =

[
θj

FpvTj
]T
, ∀j ̸= i. Based on how these unknown states are obtained on the

multirotor, two different decentralized controllers are proposed with the control diagrams
illustrated in Fig. 4.3:

• Communicating controller (C-controller): sharing of information among all the
multirotors to exchange the most recent measurements or estimates of ζj, ∀j ̸= i

for each multirotor, supposing that the communication between every two of all the
multirotors is reliable.

• Non-communicating controller (NC-controller): a communication-less method for
which each multirotor assumes that each of the other multirotors perfectly tracks
the desired states, and thus the unknown states are given by their desired values,
i.e. ζdj =

[
θdj

Fpvdj
T
]T
, ∀j ̸= i.

Figure 4.3 – The communicating (left) and non-communicating (right) decentralized con-
trol diagrams. IKM and FKM refer to the Inverse Kinematic Model and the Forward
Kinematic Model, and the red dashed lines indicate the modules that are embedded on
each multirotor.

Note that for NC-controller, the desired leg angles θdi are directly obtained from the
teleoperation commands, while the desired linear velocity of the other multirotors can be
computed from the desired velocity commands νd using the IKM detailed in (2.20), but
expressed now in FFp as

Fpvd = J(q)νd (4.32)

where Fpvd =
[
Fpvd1 Fpvd2 · · · Fpvdn

]
∈ R3n is the vector of desired linear velocities of

all the multirotors, J(q) is the Jacobian matrix defined in (2.20) taking the robot state
reconstructed now by Fpqp and θl as input, and νd is the desired velocity computed from
the teleoperation commands presented in Section 4.3.1.

While the C-controller benefits from a dynamic model that is closer to that of the real
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robot (deviating only by measurement noise), it may also have a noisier (thus less precise)
dynamic model near the converged state. It is furthermore not robust to communication
failures, and may have time delays, mitigating the potential advantage of the more ac-
curate dynamic model. The NC-controller shows good potential in maintaining the robot
configuration in converged and equilibrium states, however it might be less accurate when
tracking varying trajectories, in particular sudden changes in trajectory (such as a step
signal) will cause differences between the desired and actual states large enough to affect
the controller stability.

4.3.3 Decentralized Interaction Controller

As previously studied decentralized motion controllers, the impedance-based interac-
tion control presented in Section 3.3 beforehand can be deployed in a decentralized manner
as well. Similarly as presented in Section 4.3.2, the need is to decentralize the computation
of the desired thrust magnitude and desired attitude for each multirotor by the high-level
control. For this, the interaction control law is adopted from (3.31) and (3.32), which is
summarised by

f =
[
J(q)T

]†(
M(q)u + C(q,ν)ν + g(q) − τ̂ e

)
(4.33)

with M(q), C(q,ν) and g(q) being respectively the generalised inertia matrix, the Coriolis
matrix and the gravity wrench of the robot. τ̂ e is the external wrench estimate and u is
an auxiliary input defined by the impedance system of (3.25)

u = ν̇d + (Md)−1
(
Bd(νd − ν) + Kdεq − ετ

)
(4.34)

where Md, Kd, Bd are the desired mass, spring and damping matrices, the same as defined
in (3.25), νd, ν̇d are the desired velocity and acceleration computed from the teleoperation
commands, εq is the tracking error equivalently given by (4.29) considering the available
states computed from decentralized sources, and ετ is the tracking error of the desired
interaction wrench defined in (3.26). Note that the desired interaction wrench τ d

e can
be defined by an off-line procedure or sent by an operator along with the teleoperation
commands using a joystick.

Similarly as illustrated in Section 4.3.2, the vector of thrust forces resulted from the high-
level control loop of (4.33) is then converted into the desired thrust magnitude and desired
attitude, represented by the control vector ui =

[
fdt,i qdi

T
]T

for each multirotor i, which
can then be regulated by the low-level onboard controller.

It is furthermore noted that an estimation of the external wrench τ̂ e is necessary to
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complete the impedance control law. To achieve this, the first-order momentum observer
is chosen thanks to its advantageous behaviour regarding the convergence time and the
stability previously validated in Section 3.5, with the estimates rewritten as

τ̂ e(t) = KO

[
P(t) −

∫ t

t0

(
C
(
q(t),ν(t)

)T
ν(t) − g

(
q(t)

)
+ τ (t) + τ̂ e(t− ∆t)

)
dt
]

(4.35)

with KO the observation gains, P = M(q)ν the momentum of the robot, and τ the
actuation wrench that can be computed by the relationship of (2.28), knowing the vec-
tor of the thrust force commands for all the multirotors, i.e. f =

[
fT1 fT2 · · · fTn

]T
∈ R3n.

The decentralized achievement of the control law by (4.33) and estimation by (4.35)
requires however the knowledge of not only some of the states (i.e. leg angles and linear
velocities), but also the commands of the other multirotors. This information should be
accurate enough to ensure the stability of the entire system. It is therefore assumed that
inter-agent communications are possible as the C-controller in Section 4.3.2 and each
multirotor shares the most recent values of its states and thrust magnitude commands
with others, of which the information vector is now defined as

ζi =


θi

Fpvi
Fpqi

fdt,i

 (4.36)

with θi being the leg i’s angle computed by the multirotor i based on the geometric model,
Fpvi the linear velocity and Fpqi the attitude estimated onboard with respect to FFp, and
fdt,i the desired thrust magnitude from the last commands computed.

Based on the information received on each multirotor i, i.e. ζj, ∀j ̸= i, the robot coor-
dinates and velocity vectors are known and the control law can be completed. For the
control input required by the momentum observer, the thrust forces for all the multirotors
can be further computed to be expressed in FFp

Fpfi = FpRi


0
0
fdt,i

 , i = 1, 2, ..., n (4.37)

with FpRi representing the rotation matrix associated to the unit quaternion Fpqi that
has been reconstructed on each multirotor and fdt,i the most recent thrust magnitude
command sent to the low-level controller. On a given multirotor i, the other states of
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fdt,j and Fpqj (∀j ̸= i) are obtained by the sharing of information. The overall control
diagram can be summarised by Fig. 4.4, in which the interaction control module includes
the momentum observer and the impedance-based controller.

Figure 4.4 – Decentralized interaction control diagram. FKM refers to the Forward Kine-
matic Model, and the red dashed lines indicate the modules that are embedded in each
multirotor.

This allows for each multirotor to construct the vector of thrust forces expressed in FFp,
i.e. Fpf =

[
FpfT1 FpfT2 · · · FpfTn

]T
∈ R3n, and then to perform the estimation of the

external wrench, in which the platform’s external force is now expressed in FFp, while the
external moment of the platform and external moments of legs are still expressed relative
to their own frames as initially defined in (3.2). Note that for constructing the thrust force
vectors, the actual values of each multirotor’s attitude are used rather than the desired
ones. This is because each multirotor is not necessarily performing the estimation at the
same time (which is however the case in centralized estimation) and the use of actual
attitudes would allow to construct the external wrench estimates closer to the real values,
better satisfying the controller stability requirements as discussed in Section 3.3.1.

In summary, the decentralized interaction controller requires stable communication
between the multirotors for a non-biased external wrench estimation from decentralized
sources of information on each UAV. The impedance-based controller decentralized on
multiple UAVs can maintain its capability of tracking the desired trajectory and the
desired interaction wrench sent by a human operator, as long as the inter-UAV communi-
cation is reliable. The overall decentralized scheme shows a teleoperation system allowing
the operator to pilot the FPR potentially interacting with the environment.

4.3.4 Adjustment on Low-level Attitude Commands

After having obtained the desired commands ui
d for each multirotor from the decen-

tralized high-level controllers (no matter for motion control or interaction control), the
desired attitude commands Fpqdi computed in FFp should be adjusted to be expressed in
the coherent local frame F0i of each multirotor, which is however an unknown inertial
frame (referred to Section 4.2.3). It is known that the common reference frame FFp can
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express equivalent roll and pitch angles compared to any inertial frame, but has a differ-
ent and unknown yaw. Therefore, the further adjustment on the attitude commands is
necessary to provide coherent yaw angles to the low-level attitude controllers.

This can be done by computing the desired Euler angles in FFp converted from Fpqdi ,
denoted by Fpϕdi , Fpϑdi and Fpψdi , where the desired roll and pitch angles of each multirotor
in F0i should be the same as defined in the flat frame FFp (i.e. 0iϕdi = Fpϕdi , 0iϑdi = Fpϑdi ).
The expression of the desired yaw is however different as there is unknown relative yaw
between the two frames. It can be calculated knowing an onboard IMU measurement of
the multirotor’s actual yaw 0iψi and an estimate of the relative yaw pψi extracted from
pRi by

0iψdi = 0iψi + (Fpψdi − pψi) (4.38)

Note that pψi = Fpψi as the flat frame FFp and the platform’s body frame Fp share a
common yaw. This relationship allows to correct the desired yaw commands to be co-
herent with the multirotor’s yaw measurements relative to the unknown inertial frame
F0i. Actually, instead of converting the desired yaw directly from FFp to F0i, a difference
between the desired and actual yaw angle is computed, i.e. (Fpψdi − pψi), which is then
set to correct the desired yaw 0iψdi based on its onboard measurements 0iψi.

The desired attitude of each multirotor in its own inertial frame F0i can finally be deter-
mined by the quaternion 0iqdi which is converted from the Euler angles 0iϕdi , 0iϑdi and 0iψdi

and tracked by the onboard quaternion-based attitude controller.

4.4 Experimental Validation

In this section, the proposed decentralized controllers are validated by real-world ex-
periments on an FPR prototype detailed in Appendix B. The decentralized motion con-
trollers detailed in Section 4.3.2 were firstly validated using emulated camera detection
data by the Motion Capture (MOCAP) system, with a video of experiments available at
https://youtu.be/Rmmq0-b2zws. Then, real-world implementation of pose estimation
with ArUco marker system based on monocular vision has been done, which is shown in
the experimental validation of the decentralized interaction controller presented in Sec-
tion 4.3.3. A video of experiments can be found at https://youtu.be/T0-fycf1V28.

During the experiments demonstrated in this section, the FPR was flown by teleop-
eration using a 4-axis gamepad controller with desired values set by axes and buttons as
shown in Fig. 4.5. Note that the values for all the leg angles are set to be identical in the
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4.4. Experimental Validation

experiments. All the flights were performed inside a 4 × 6 × 3.5 m flight arena equipped
with an 8-camera Qualisys MOCAP system, streaming data over a 5 GHz wifi network.
The decentralized controllers have been implemented onboard the companion computer of
each quadrotor at 50 Hz. The onboard ArUco detection rate is 20 Hz for the experiments
when the onboard vision is used, with the RGB images of size 640 × 480 pixels captured
by Raspberry Pi Camera V2. It is additionally noted that the communication between
the onboard Raspberry Pi and Pixhawk autopilot for each quadrotor was handled using
Ethernet (referred to Appendix B), in order to reduce the communication burden when
the onboard camera is enabled.

Figure 4.5 – Demonstration of 4-axis gamepad for teleoperating the FPR.

4.4.1 Experiments on Decentralized Motion Controllers

In the experiments validating the decentralized motion controllers presented in Sec-
tion 4.3.2, the MOCAP system is used to emulate the relative pose that can be estimated
by the camera and vision-based detection techniques. In addition, the onboard velocity
estimation of each multirotor is enhanced by the MOCAP system in these preliminary
experiments. The integration of optical sensors can however be done and is only related
to technological concerns. More precisely, the MOCAP system is used for:

• Extracting the pose of the platform in each multirotor’s local frame (i.e. extracting
pTbi). It could therefore be replaced by a monocular camera observing the ArUco
marker as presented in Section 4.2.1. To represent the measurement noise, Gaussian
noises with a standard deviation of 2 cm for translations and 2° for rotations are
added along/around each axis of the relative pose.

• Sensor fusion onboard the UAVs to improve the estimates of their body-frame linear
velocities. It could thus be replaced by onboard optical flow sensors.
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• Providing ground truth in post-flight analysis.

Two experimenting scenarios have been conducted to verify the effectiveness of the
decentralized controllers, respectively the C-controller and NC-controller based on the
PID regulation for a free-space flight of the FPR, which are:

1. Control of Orientation and Internal Configuration

2. Precise Positioning with Teleoperation

In the first scenario, the decentralized controller is tested to control the platform orien-
tation and the internal configuration (i.e. leg angles). Then the precise positioning of the
platform performed by a human pilot with teleoperation is shown in the second scenario.

Scenario I: Control of Orientation and Internal Configuration
The first experiment demonstrating the validity of the control method is simply to

fly the FPR without any specific task, and track the desired configuration ϕdp, ϑdp, and θd

given by the operator. Fig. 4.6(a) shows a configuration with a large angle on the platform
roll, while Fig. 4.6(b) shows a wide leg configuration (with small values on the leg angles).
The results with the centralized controller previously presented in the literature making
full use of MOCAP and computing all control in F0 are also provided for comparison. The
PID control gains of the centralized and decentralized controllers are given in Table 4.1.
Note that the saturation on the integral term is enabled in the PID regulation to avoid
integral wind-up [Azar, 2015].

(a) Configuration with large platform roll (b) Configuration with small leg angles

Figure 4.6 – Control of the platform orientation and leg angles of the FPR using decen-
tralized C- and NC-controller.

The desired and measured states for the control of the platform orientation and leg
angles using the C- and NC-controller are plotted in Fig. 4.7. The result of the controlled
states using both decentralized controllers as well as that of the centralized controller
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Robot State Centralized Controller Decentralized Controller
Kp Kd Ki Kp Kd Ki

pp,xy 9 6 25 * 9 *
pp,z 16 8 50 * 8 *
op,xy 9 6 1 9 6 1
op,z 9 6 0.5 * 6 *
θ 9 6 10 9 6 0.5

Table 4.1 – Numerical values for the PID control gains. The control gains are decoupled
along/around each axis of the robot state. pp,., op,. stand for position and orientation axes
of the platform decoupled between x or y and z axes. θ represents the leg angles on which
the gains are the same. (*) indicates that the corresponding term is not available in the
decentralized controller.

tracking a trajectory with similar ranges of values and continuous accelerations are sum-
marised in Table 4.2.
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(b) Results of NC-controller

Figure 4.7 – Results of the tracking on the platform roll and pitch, as well as the leg angles
using C- and NC-controller. The top curves show the desired value for all the legs θdl (blue
line) and measured ones θl (light blue lines). The bottom curves show the tracking of the
platform orientation, i.e. desired roll ϕdp (dark red line), actual roll ϕp (light red line),
desired pitch ϑdp (dark green line) and actual pitch ϑp (light green line).

Robot State C-controller NC-controller Centralized
ϕp [°] 4.1 5.0 2.5
ϑp [°] 2.9 4.2 3.3

mean θl [°] 2.8 3.8 2.1

Table 4.2 – Results on the root-mean-square error (RMSE) for the experiment of con-
figuring the platform orientation and leg angles. Note that mean θl refers to the mean
RMSE of three leg angles.

It can be seen in the plots that the platform orientation and the internal configuration
track quite well their desired values. Both the C-controller and NC-controller can perform
nicely the tracking of these variables, but C-controller is slightly better in terms of tracking
errors. While we would expect the centralized controller to have better performance, it is
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not vastly superior to the two decentralized methods. In fact, as the centralized controller
doesn’t have any measurement noise (outside that of MOCAP which is negligible) and
follows smooth trajectories with continuous acceleration, the degradation when switching
to decentralized control with simulated noisy intrinsic measurements and non-continuous
desired states seems reasonable.

Scenario II: Precise Positioning with Teleoperation
The second experimental scenario shows that fine positioning using eye-to-platform

teleoperation is achievable. Three targets (the tennis balls) are suspended in the flight
arena as shown in Fig. 4.8. An operator flies the FPR with the task of positioning the
platform at each of the three targets. Once the positioning error falls below 10 cm, the
operator is given 10 s to attempt to pick up the ball by placing it in the 4.5 cm diameter
circular hole at the centre of the platform, which can be confirmed by the stabilisation of
the positioning error around a small value near zero corresponding to the radius of the
tennis ball. After the time is elapsed, a new target is assigned and the process repeats. This
experiment is performed with the platform at a configuration of zero roll and pitch, and
leg angles of 60◦, however there is no problem with performing it in other configurations as
investigated in the experiments. The evolution of the platform positioning error towards
the targets using the C- and NC-controller over the course of the full experiment in 165 s
is shown in Fig. 4.9. Note that the successful examples in Fig. 4.9(b) and (e) show that the
positioning error stabilises below 0.05 m, corresponding to the radius of the ball, which
indicates the ball has been successfully picked up. The unsuccessful examples are shown
in Fig. 4.9(c) and (f) as the positioning error is never stabilised. The large oscillations in
positioning errors for the failed tasks correspond to the ball swinging due to a collision
with the platform early in the task.

Figure 4.8 – Fine positioning of the platform with teleoperation towards the tennis balls
hanging in the air.

There was little difference in performing the tasks between the C-controller and NC-
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(a) Positioning error using C-controller
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(b) Success (Task No.2)
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(c) Failure (Task No.1)
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(d) Positioning error using NC-controller
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(e) Success (Task No.3)
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(f) Failure (Task No.5)

Figure 4.9 – Evolution of positioning error of the platform during the experiment using
respectively C-controller (top) and NC-controller (bottom). Examples of successful and
failed tasks are shown in (b) and (c) for C-controller, (e) and (f) for NC-controller. The
black dashed lines represent the criteria for stating the precise positioning task, while the
red dashed lines show the criteria for a successful task. The rectangle boxes in (a) and (d)
refer to individual positioning tasks, with successful tasks in red and failed ones in black.

controller. From the operator’s perspective, both controllers were equivalent in terms of
stability and positioning accuracy. Using the C-controller, 5/7 positioning tasks were suc-
cessful, while with the NC-controller 6/7 tasks were accomplished. It must be recognized
however that as teleoperation has human-in-the-loop feedback, it is not straightforward
to standardize between tests.

In addition, the configuration states of the FPR were well tracked in both cases as
shown in Table 4.3, with RMSE values almost half of what they were in Scenario I (since
the configuration states had constant reference trajectories). However, a significant remark
is that in Scenario I, the C-controller was better across all configuration states, while in
Scenario II the NC-controller performs better. This is reasonable as it is expected that
the C-controller will allow a more accurate model of the robot compared to the NC-
controller when the robot is not near the desired state (during a step input for example).
The C-controller however introduces noisy measurements and delays to each quadrotor’s
controller, thus for smooth flights it may be less precise. This is further supported by the
observation during experiments that if a noisy velocity input was provided to the FPR,
instability occurred in the C-controller but not necessarily the NC-controller, probably
due to communication delays.
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Robot State C-controller NC-controller
ϕp [°] 2.4 2.1
ϑp [°] 2.1 1.8

mean θl [°] 1.8 1.6
Success rate 5/7 6/7

Table 4.3 – Results on the root-mean-square error (RMSE) of the robot configuration
during the precise positioning of the platform, comparing the configuration tracking error
as in Table 4.2. The last row is the number of successful positioning tasks accomplished
in the experiment.

While these results have demonstrated centimetre-level precise for teleoperation using
both C- and NC-controller, two factors likely contributed to the difficulty in accomplishing
manipulation tasks:

• The operator has to stand away from the robot for safety, thus small errors between
the platform frame and the target are hard to see. A solution could be eye-in-hand
control with a camera on the platform.

• The gamepad controller has a large dead zone making fine control difficult.

Despite these difficulties, the decentralized motion controllers using either a communicat-
ing or non-communicating scheme have been verified and shown to be able to regulate the
robot configuration (platform roll and pitch, and leg angles) as well as to achieve precise
positioning through eye-to-platform teleoperation.

4.4.2 Experiments on Decentralized Interaction Controller

As the experimental results in the previous section have validated the decentralized
controllers for free-space flight with emulated camera measurements by MOCAP, a more
realistic experimental setup is considered in this section, involving the relative pose es-
timation by ArUco marker system in real-time and the controller handling the physical
interaction with the environment.

A fiducial marker is attached beneath the platform, with the size of 0.109 m and ID
0 selected among the ArUco marker dictionary “ARUCO_MIP_36h12” [Garrido-Jurado,
2016]. Fig. 4.10 shows the images captured by the onboard Raspberry Pi cameras and
the detection results by ArUco detection library on three multirotors. Note that these
images are captured when the UAVs are motionless and staying on the ground (images are
however rotated 90° counter-clockwise), but the detection algorithm is capable of tracking
the moving marker to ensure its robustness to the image noise and blur due to the camera
motion [Romero-Ramirez, 2021]. Based on the detected relative pose between the marker
and a camera frame represented by CiTM and with knowledge of the global poses of the
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frames by the MOCAP system, the fixed transformations biTCi, pTM required to compute
the relative pose of biTp on each multirotor can be calibrated, with the calibration process
and results detailed in Appendix D.

(a) Detection on multirotor 1 (b) Detection on multirotor 2 (c) Detection on multirotor 3

Figure 4.10 – Visualisation of the ArUco marker detected onboard each of three multiro-
tors of the FPR from different angles of view. The cubic boxes and the three-axis arrows
represent the estimated pose of the detected marker relative to the camera frame. On
each image, the number 0 indicates the detected marker ID, and the values following the
keyword “w:” are the percentage of confidence between 0 and 1.

Even though the ArUco detection library seems robust enough to perform the pose
estimation (with the estimation noise and error on translation and rotation states in
comparison to the MOCAP data given in Table 4.4), the real-time results of this detection
algorithm during the experiments still suffer from other issues, such as the sensitivity to
lightening conditions (too bright or too dark), the marker loss in camera’s field of view,
etc. Therefore, the emulated data is still used to make up for these defective situations.
Additionally, the MOCAP system is used in the following experiments for:

• Emulating the relative pose pTbi with the same noises presented in Section 4.4.1
if the detection is lost for more than 0.5 s (corresponding to 10 control iterations)
or a false detection is identified (with translation error >10 cm or rotation error
>10°). This is required for safety reasons as the detection failure will inevitably
cause instabilities and crashes, it may however be handled by redundant detection
from other sources of sensors in the future.

• Emulating a high-level perception of the environment to obtain the velocity com-
mands for x, y and yaw axes in experimenting scenario II. It can be achieved by
adding an additional camera on the platform to estimate the pose to the contact
surface.
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• Sensor fusion onboard the UAVs to improve the linear velocity estimates of each
UAV. It could thus be replaced by onboard optical flow sensors.

• Providing ground truth in post-flight analysis.

Estimation State Estimation Noise (STD) Absolute
ArUco MOCAP Difference

Translation [mm] 0.22 0.03 2.61
Rotation [°] 0.02 0.02 0.46

Table 4.4 – Estimation noise of the ArUco detection algorithm [Romero-Ramirez, 2021]
represented by standard deviation (STD) in comparison to the MOCAP noise. The data
was recorded with a static marker whose pose was being estimated using both ArUco and
MOCAP (with additional settings for the detection tags) systems over 80 s. The absolute
differences between ArUco and MOCAP results are seen as the estimation error.

Several experimenting scenarios are set up to validate the decentralized interaction
controller based on the impedance-based control law along with the first-order wrench
observer (FOWO) estimating the external wrench, including:

• Precise positioning of the platform towards a target and pick-up of the load

• Contact-based interactions with an object in the environment

As the impedance-based controller has been proven to be able to handle both free-space
flights and the physical interactions with the environment, the estimation and control
gains are set by the same values for all the experiments, which are summarised in Table 4.5.

Robot State KO Md Bd Kd

Platform position 2 5 10 *
Platform orientation 1 8 25 25*

Leg angles 1 5 20 15

Table 4.5 – Estimation and control gains applied in the experiments. *The stiffness coef-
ficient for the platform position and yaw is meaningless in the decentralized controller.

Scenario I: Precise Positioning and Pick-up of Load with Teleoperation
In this experimenting scenario, the platform is teleoperated by a human operator using

a gamepad joystick shown in Fig. 4.5 for the precise positioning towards a target (tennis
ball) hanging in the air, with a load suspended below corresponding to a total weight
of about 400 g, as shown in Fig. 4.11. The robot configuration is maintained with a flat
platform orientation (zero roll and pitch) and leg angles of 50°, a configuration beneficial
to ensure the visibility towards the marker from the onboard cameras of all the UAVs.
Then the human operator pilots the platform by sending linear velocity and yaw rate
commands, similarly to the precise positioning experiment shown in Section 4.4.1, but
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with the task of picking up the load. The impedance-based controller thus regulates the
robot configuration while tracking the desired velocity commands sent by the operator,
involving a free-space control before touching the object and then the interaction with
the load as its mass is no longer negligible.

Figure 4.11 – Precise positioning of the platform towards a target (tennis ball) suspended
with a load and pick-up of the load.

The real-time pose estimation between the platform and the UAVs by ArUco detection
algorithm and EKF-based filtering is firstly evaluated. The results of the multirotor 1 are
plotted in Fig. 4.12, consisting in the estimated relative pose, the filtered output from
the EFK and the ground truth known by MOCAP. Note that each axis of the relative
position pp1 and the orientation represented by the quaternion pq1 are separately analysed.

It can be noticed that except for several outliers, the ArUco detection results are very
close to the ground truth, and the measurement noise is well filtered from the outputs of
the EKF. Table 4.6 shows the RMSE of the detection and filtering results for all the UAVs
using onboard ArUco detection and EKF techniques. The RMSE of the EKF outputs are
all limited within 3 cm for relative position and 3° for relative orientation, which has
validated the effectiveness of the relative pose estimates used afterwards in the control.
Although the detection failures and interruptions illustrated by the outliers in Fig. 4.12
had to be compensated by MOCAP data, the percentage of successful detections presented
in Table 4.8 shows a relatively good detection rate in the real-world scenario.
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(a) x-axis relative position
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(b) y-axis relative position

0 10 20 30 40
−1.1

−1

−0.9

−0.8

−0.7

Time [s]

R
el
at
iv
e
P
os
it
io
n

p
p
1,
z
[m

]

ArUco
Filtered
Mocap

(c) z-axis relative position
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Figure 4.12 – Relative pose of the multirotor 1 expressed in the platform frame. Blue
curves represent the pose estimated by the ArUco detection algorithm [Romero-Ramirez,
2021], green curves are the filtered results from the EKF and the red dashed curves are
the ground truth measured by the MOCAP. The outliers corresponding to the detection
failures or interruptions are pointed out by red circles.

UAV Estimation Relative Position [m] Relative Orientation [°]
Result x y z roll pitch yaw

1 ArUco 0.036 0.023 0.038 2.078 2.968 3.728
EKF 0.017 0.012 0.026 1.272 1.571 3.305

2 ArUco 0.037 0.041 0.044 2.627 1.822 1.942
EKF 0.019 0.026 0.029 1.302 1.407 1.363

3 ArUco 0.037 0.051 0.040 3.644 2.691 1.678
EKF 0.014 0.033 0.023 3.048 1.128 0.891

Table 4.6 – Root-mean-square error (RMSE) of the ArUco detection and EKF-based
filtering results on the relative pose between each UAV and the platform during one
positioning task. Note that the roll, pitch and yaw angles for the relative orientation are
converted from the quaternions pqi.

Since the control of the FPR by teleoperation involves a human-in-the-loop situation,
the operator was asked to perform the same task 6 times to reduce the human factor
affecting the results, during which the operator was given 45 s to position the platform
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towards the target and to pick up the load attached below. From the pilot’s point of view,
the system is quite easy to manipulate, similar to the manual pilot of a single quadrotor
without many difficulties. The results on the evolution of positioning errors for the 6
tasks (5 success and 1 failure) are shown in Fig. 4.13, with successful tasks well identified
by the positioning error being stabilised below 15 cm. The z-axis external force of the
platform estimated by UAV 1 during the successful task 1⃝ is plotted in Fig. 4.14, from
which the pick-up of the load is illustrated with the estimated values converged to the
ground truth of around -4 N. It is also remarked that there is very little difference in the
external wrench estimates performed on different multirotors, which is reasonable as the
decentralized estimation of the external wrench might only be affected by communication
delays (negligible in the experiment). The overall success rate (5/6) of the pick-up tasks
is acceptable with RMSE on the robot configuration presented in Table 4.7 , showing that
the fine positioning of the platform by teleoperation considering the interaction with the
environment is achievable.
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Figure 4.13 – Evolution of positioning errors of the platform with respect to the target in
6 performed tasks. Note that the black dashed line is the criterion for a successful task,
corresponding to the distance from the target’s centre to the attached load (≈ 15 cm).
The blue and purple curves (Success 1⃝ and 3⃝) are two successful cases where the load
was released before the end of the given time (the reason why their positioning errors
increase at the end).
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Figure 4.14 – Evolution of the z-axis external force estimates of the platform during
the successful experiment (Success 1⃝). Note that only the force estimated by UAV 1 is
plotted, but the estimates on the other UAVs are identical to this curve.
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Scenario II: Contact-based Interactions with the Environment
This experiment has been done in a more complex scenario where the FPR is controlled

with teleoperation to interact with an object in the environment and exert a certain
amount of force on it. It can therefore be seen as an extension of the contact-based
interaction experiments presented in Section 3.5.4, but with onboard vision handling the
robot pose estimation, and the estimation and control methods decentralized on each
UAV. Similarly to the experimental setup presented in Section 3.5.4, a wooden board of
dimension 30 × 30 cm is hanging in the air with tightly stretched ropes and additional
masses to sufficiently consider it as a stiff object in the environment. A region of dimension
10 × 10 cm is pointed out, with its centre considered as the target for contact-based
interactions. Fig. 4.15 illustrates the interaction experiment performed by the FPR.

Figure 4.15 – Contact-based interaction experiment of the FPR during which the platform
is controlled to exert forces in normal direction on a board fixed in the environment.

Since the teleoperation still involves the human in the loop, which is undesired for
validating the methodology independent of the proficiency of the human operator. There-
fore, an emulated pose estimation between the target and the platform is set up in this
experiment running at the highest level to generate the desired velocity on x and y axes
Fpvp,x/y and desired yaw rate Fpψ̇p using the MOCAP data. The desired velocity can be
computed based on the proportional law given as

Fpvp,x/y = λp
Fppt,x/y

Fpψ̇p = λψ
Fpψt

(4.39)

where Fppt,x/y is the relative position (in x and y axes) of the target with respect to
FFp, Fpψt is the relative yaw of the target with respect to FFp, both known by the MO-
CAP, and the proportional gains for controlling the platform to approach the target with
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aligned yaw are set by λp = 0.4, λψ = 0.25. Note that the knowledge of Fppt,x/y and
Fpψt can be done by adding an additional camera on the platform pointing towards the
target and integrating an online pose estimation achievable by ArUco detection algorithm
[Romero-Ramirez, 2021] or other model-based/learning-based algorithms. A visual servo-
ing procedure for minimising some image features to attain the contact position may also
be done [Chaumette, 2004; Lippiello, 2016]. Therefore, the experiment was conducted in
a hybrid scheme: the platform’s linear velocity Fpvp,x/y and yaw rate Fpψ̇p are controlled
by high-level control law (4.39) with emulated pose estimation (using MOCAP), the z-
axis linear velocity of the platform and the desired contact force are controlled by the
human operator, while the leg configuration and the platform orientation are regulated
with desired values set by the teleoperation commands.

Fig. 4.16 shows the evolution of the positioning error between the platform and the
target, and Fig. 4.17 are the desired and estimated values of the contact force between the
platform and the board. It has taken about 27 s for the FPR to establish contact with the
board, and during the steady contact (in the time interval of [27, 55] s) the positioning
error is stabilised at a value lower than 6 cm. From Fig. 4.17, the estimated contact force
well tracks the desired values of 5 N during the interaction, except the peak between [27,
30] s probably because an impact occurs at the beginning of the contact.
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Figure 4.16 – Evolution of the positioning error between the platform and the target
during the interaction experiment.
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Figure 4.17 – Evolution of the desired and estimated values of the contact force between
the platform and the board during the interaction experiment, recorded on UAV 2.
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These results have shown that the proposed decentralization of the impedance-based
controller on each UAV is capable of positioning the platform with good precision and
exerting a certain range of forces along the normal direction of the platform. The suc-
cess rates of the online ArUco detection are summarised in Table 4.8 and the RMSE of
the robot configuration (i.e. platform roll and pitch and the leg angles) are presented in
Table 4.7, which demonstrates a considerably favourable result in a real-world scenario.
This experiment has shown the ability of the FPR to accomplish real manipulation tasks,
such as contact-based inspection or repair on the surface of industrial infrastructures.

Robot State Scenario I Scenario II
ϕp [°] 5.4 4.6
ϑp [°] 5.9 5.9

mean θl [°] 5.4 5.3

Table 4.7 – Root-mean-square error (RMSE) on the tracking of the platform orientation
and leg angles. Note that mean θl indicates the mean value of the RMSE of three leg
angles. The results on Scenario I are computed by the average values of 6 performed
positioning tasks.

UAV Scenario I Scenario II
1 93.1% 95.3%
2 88.3% 89.4%
3 88.7% 91.2%

Table 4.8 – Successful detection rates for all the UAVs in two experimenting scenarios.
Note that a successful detection is that the detection errors are less than 10 cm for position
and 10° for rotation.

The conducted experiments have therefore validated the interaction controller decen-
tralized on each UAV to achieve interaction tasks such as the pick-up of a load and
contacts with an object in the environment. The overall success rate of the onboard pose
estimation by monocular cameras based on ArUco detection and EKF algorithms is from
88.3% to 95%. Compared to the previous results using emulated camera data, the results
of the robot configuration tracking given by Table 4.7 seem very acceptable when switch-
ing to a real-time pose estimation technique based on onboard vision. In addition, it has
been observed in the experiment that the decentralized controller shows its advantageous
feature compared to the centralized one especially in the emergency case where the com-
munications among the UAVs were lost, while they are still capable of maintaining their
own control and landing properly without crashing (by using desired states for the other
UAVs as investigated in NC-controller in Section 4.3.2). This work is thus an encouraging
step towards the control and teleoperation of the FPR with only intrinsic measurements
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to accomplish manipulation tasks.

It is however found in the experiment that the platform angles and the leg configuration
should be regulated within a small interval to ensure the marker visibility from the camera
attached to each UAV. The experiments involving the control of the platform orientation
in free space were conducted (as shown in Fig. 4.18), whose results were unfavourable
because of the loss of detection during longer series of control iterations (the successful
detection rate has dropped down to 61% for one UAV in the worst case). This is therefore a
limitation of the proposed pose estimation technique based on vision. Although the marker
visibility issue may potentially be solved by attaching to each UAV a specific marker on the
platform with a better angle of view, the failure cases related to environmental conditions
such as brightness still present the frustrating aspect of the vision-based method.

Figure 4.18 – Unfavourable configuration with large platform angle for onboard detection
of the ArUco marker. Right figure shows the image captured on UAV 3 on which the
marker tracking is lost.

4.5 Conclusion

In this chapter, the methodology related to the decentralized estimation and control
of the Flying Parallel Robot (FPR) has been investigated. A vision-based method for
estimating and reconstructing the robot pose has been presented, which is constructed
on basis of ArUco marker detection system and EKF-based filtering technique. Then sev-
eral decentralized controllers have been proposed according to the application scenarios:
for motion control, C- and NC-controllers depending on whether the sharing of infor-
mation between the UAVs is possible, and a communicating impedance-based controller
considering the interaction with the environment. Extensive experimental results for all
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the proposed controllers have shown the effectiveness of the method dealing with precise
positioning of the platform, and contact-based interactions with the environment. These
methods are applicable to other multi-UAV parallel manipulators as the FPR for appli-
cations such as the pick-and-transport of objects and contact-based inspections.

Even though the overall success rate of the onboard detection is quite high in the
experiments using the vision-based technique for the pose estimation, the requisites on
the lightening condition and the robot configuration (i.e. narrow intervals of platform
orientation and leg angles for marker visibility) are quite strict for real-world applications.
Therefore, future works may focus on the improvement of the onboard detection algorithm
to be robust to the environmental conditions, or integrate other sources of sensors for the
pose estimation such as the IMU on the platform for the orientation, and encoders for
measuring the leg angles. The exploration of the outdoor scenario for the FPR can also be
done, where the global positions of UAVs can be measured by low-cost GPS and possibly
enhanced by time-of-flight-based sensors measuring the internal distances between the
UAVs.
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Chapter 5

WRENCH FEASIBILITY ANALYSIS

In this chapter, a wrench feasibility analysis on the Flying Parallel Robot (FPR) is in-
vestigated. The objective of this analysis is to build knowledge of available wrench the FPR
can exert/support in quasi-static equilibrium circumstances. The content of this chapter
is structured as follows: a general introduction to the wrench feasibility analysis is firstly
presented, with some basic concepts introduced in the second section. Then a detailed def-
inition of the Available Thrust Set (ATS) and the computation of the Available Wrench
Set (AWS) on the full degrees of freedom of the FPR are detailed in the third section.
A comprehensive static feasibility analysis is illustrated in the fourth section, which is
then applied in order to determine the optimal leg configurations maximising the wrench
feasibility of the platform in different platform orientations in the fifth section.

5.1 Introduction

The wrench feasibility analysis is a useful technique commonly found in a variety of
mechanics and robotic applications. In parallel mechanisms or parallel robotics, the topic
of the Wrench-Feasible Workspace (WFW) has been extensively studied to determine the
robot workspace. A WFW usually refers to the set of poses for which the robot can bal-
ance any wrench of a specified set of wrenches, such that the actuation wrench in each
actuator remains within a prescribed range [Gouttefarde, 2007]. It is therefore one of the
most important criteria that can be applied to robot design, planning and control.

The WFW analysis approaches are probably the topics the most investigated in Cable-
Driven Parallel Robots (CDPRs), as the tensile-only nature of cables (i.e. unilateral and
non-negative cable tension) reduces dramatically the feasible workspace of such robots. For
instance, [Riechel, 2004; Bosscher, 2006] studied the analytical generation of the bound-
aries of the WFW for point-mass cable robots. [Loloei, 2009] proposed analysis on the
WFW of a redundant CDPR formulated by Linear Matrix Inequalities (LMI); A more
general case of CDPRs with variable configurations and degrees of freedom was consid-
ered in [Bouchard, 2010], in which the fundamental nature of Available Wrench Set (AWS)
and Task Wrench Set (TWS) was studied. A numerical approach based on interval anal-
ysis was proposed in [Gouttefarde, 2007; Gouttefarde, 2011], aiming at the determination
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of 6D workspace with consideration of more practical uncertainties and application to
optimal design. While most of the previous works were based on a quasi-static equilib-
rium situation, the determination of the dynamic feasible workspace has been proposed
in [Gagliardini, 2018]. The determination of WFW for CDPRs is in general achieved by
taking into account both the requirement of non-negative cable tensions and that of max-
imum admissible values. It has allowed an enhanced knowledge of the robot’s capacities,
which is thus applicable to robot planning and optimal design.

The wrench analysis is also an important topic in legged robots for the contact/motion
planning based on the computation of Actuation Wrench Polytope (AWP) and Feasi-
ble Wrench Polytope (FWP) as in [Carpentier, 2017; Fernbach, 2018; Orsolino, 2018;
Carpentier, 2018; Aceituno-Cabezas, 2018; Orsolino, 2020], because the determination of
footprints that remains in the feasible wrench workspace is crucial for stable locomo-
tion of such robots. Therefore, the computed FWP can be employed to an optimization
process for footholds (contact points) selection [Fernbach, 2018; Aceituno-Cabezas, 2018;
Orsolino, 2020], trajectory/motion planning [Carpentier, 2017; Orsolino, 2018; Aceituno-
Cabezas, 2018] and optimal control [Carpentier, 2018]. Similar problems have equivalently
been investigated in research related to robotic grasping, a domain that has flourished
much earlier [Miller, 2004; Borst, 2004; Krug, 2016]. In these works, the notion of Grasp
Wrench Space (GWS) is applied, indicating the set of wrenches that can be applied to
an object by a grasp given limits on the contact normal forces [Miller, 2004]. A GWS
can be created by the combination of friction cones on the contacts, called Cone Wrench
Space (CWS), within which a force in each contact can be applied to the object to per-
form a stable grasp. The GWS can therefore be employed to analyse the grasping stability.

More recently, the wrench analysis has been employed in multi-UAV parallel robots to
determine the available wrench that can be generated on a moving platform (and the at-
tached end-effector) actuated by multiple UAVs. This analysis can be employed in aerial
cable-towed systems [Erskine, 2018; Erskine, 2019a; Jamshidifar, 2020], aerial manipu-
lator architectures [Park, 2018; Nguyen, 2018; Li, 2022] for various applications such as
the optimal design of the novel architectures, determination/optimization of the robot
workspace and the optimal control by maximising the wrench feasibility.

Inspired by these previous works, an analysis of the wrench feasibility of the Flying
Parallel Robot (FPR) is conducted, which can be applied to determine the feasible task the
FPR can exert and potentially to an optimal determination of the internal configuration
(i.e. leg angles) having the optimal wrench feasibility according to the task specifications.
Before detailing the methodology for wrench feasibility analysis of the FPR, some basic
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concepts regarding the wrench feasibility are introduced in the next section.

5.2 Basic Concept of Wrench Feasibility

The wrench feasibility analysis is generally initiated by finding the relationship between
the actuated forces and the wrench exerted on the platform/end-effector of the robot,
which can be depicted by a general form as in [Bouchard, 2010]

Wt = w (5.1)

where t is the vector of actuated forces, w is the wrench (i.e. force and moment) applied
on the platform, and W is the wrench matrix being pose-dependent 1. In cable-driven
robots, t =

[
t1 ... tm

]T
denoting the vector of cable tensions. However, for aerial ma-

nipulators actuated by multiple UAVs, the vector of the actuated forces t is given by
f =

[
fT1 ... fTm

]T
composed of vectors of 3-dimensional thrust forces produced by the

multirotors. The wrench matrix W can often be characterised by the Jacobian matrix as
the relationship between the actuated wrench and thrust forces illustrated in Section 2.5.1,
resulting in the wrench matrix equal to the transpose of the Jacobian matrix, i.e. W = JT .

Knowing the relationship of (5.1), a Wrench-Feasible Workspace (WFW) is defined as

Definition (Wrench-Feasible Workspace). Consider a set of actuated forces, de-
noted as T , which includes all possible t within the actuation limits, and a
prescribed set of wrenches w on the mobile platform (end-effector), denoted as
Ws. The Wrench-Feasible Workspace is the set of mobile platform poses
that are wrench-feasible, i.e. the poses for any wrench w in Ws, there exists a
vector of actuated forces t in T such that Wt = w.

The Available Wrench Set (AWS) is a dual concept of the WFW that can be defined as

Definition (Available Wrench Set). Consider a set of actuated forces, donated as
T , which inludes all possible t within the actuation limits. The Available Wrench
Set (AWS), denoted as W , is the set of wrenches w that can be generated on
the mobile platform (end-effector) at a given pose, i.e. for all actuated forces t
in T , W is the set of wrenches w such that Wt = w.

The above-mentioned notions of WFW and AWS can be employed to analyse the
feasibility of tasks in a certain condition. Given a prescribed task defined by a set of the

1. Pose-dependent means that the matrix is dependent on the robot pose, i.e. W(q) with q usually
including the end-effector pose and the robot internal configurations.
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required wrenches on the platform (end-effector), denoted by Wt, the task is said to be
feasible

• If the platform pose remains in the Wrench-Feasible Workspace during the genera-
tion of required task wrenches in Wt; or

• If the set of task wrenches Wt is a subset of the Available Wrench Set, i.e. Wt ⊂ W .

One may remark that the second criterion is easier for analysing the task feasibility,
since the determination of WFW itself is a complex problem. As shown in Fig. 5.1, the
determination of WFW in Fig. 5.1(a) is tedious and a numerical method for approximating
the WFW has been adopted, while the calculation of AWS in Fig. 5.1(b) for a planner
CDPR allows to verify if a task set (illustrated by regions T1, T2 and T3) is feasible, i.e.
if it is a subset of the Available Wrench Set (region A).

(a) Determination of WFW for a
6-DoF CDPR [Gouttefarde, 2007]

(b) Task feasibility analysed by the definition of
AWS [Bouchard, 2010]

Figure 5.1 – Wrench-Feasible Workspace analysis (left) and task feasibility analysis based
on the Available Wrench Set (right).

Apart from analysing the feasible workspace or the feasibility for a given task, another
common investigation on the feasibility focuses on the static equilibrium of the robot pose,
for which the Static Feasible Workspace can be defined as a special case of WFW where
only the gravity wrench induced by the platform weight has to be balanced considering the
actuation limits [Gouttefarde, 2011]. In other words, the static wrench feasibility states
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that the wrench required to balance the gravity wrench wg induced by the robot weight
should be belonging to the AWS. A detailed definition is given as follows:

Definition (Static Wrench Feasibility). Consider a set of actuated forces T tak-
ing into account the actuation limits. A moving platform pose is said to be static
feasible if the gravity wrench wg that corresponds to the moving platform (and
the payload)’s weight can be balanced without violating the actuation limits, i.e.

∃ t ∈ T such that Wt + wg = 0 (5.2)

or
−wg ∈ W (5.3)

where W is the set of available wrench w for which Wt = w, ∀ t ∈ T .

The dynamic feasibility criterion can also be analysed as in [Loloei, 2009; Erskine, 2019b],
in which the moving platform (or the payload)’s dynamic movements are considered be-
yond the quasi-static conditions. However, for aerial manipulators such as the FPR studied
within the scope of this thesis, the dynamic response of the overall structure is relatively
slow and the robot behaviour is furthermore close to a quasi-static motion when per-
forming the interaction tasks. Therefore, the dynamic feasibility is not studied in this
manuscript even though it is possible and not very complex to consider it.

Having discussed the basic concepts related to the wrench feasibility analysis, a de-
tailed analysis of the Available Wrench Set of the FPR will be given in the next section.

5.3 Analysis of Available Wrench Set

The wrench analysis of the FPR has the objective to construct knowledge of the
available wrench the robot is capable of resisting or exerting. Unlike the classical paral-
lel mechanism such as CDPRs, the actuation by aerial vehicles and the additional DoFs
provided by the mobility of internal configuration (i.e. leg angles) make the study of
Wrench-Feasible Workspace (WFW) meaningless. The moving platform of the FPR has
an unlimited workspace (in position and orientation) in 3-dimensional space as long as the
internal configuration is well regulated for all wrench-feasible orientations. However, the
calculation of Available Wrench Set (AWS) is useful to determine whether an interaction
task is feasible or to optimise the robot configuration to ensure better wrench feasibility.

Taking the basic concepts of feasibility analysis presented in Section 5.2, the Available
Wrench Set of the FPR is particularly defined as an augmented high-dimensional space
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in R6+n with n being equal to the number of legs, which depicts not only the 6D wrench
(force and moment) actuated on the platform that is achievable, but also the available
moments actuated on the revolute-joint axes of the legs, i.e.

W =
{

w ∈ R6+n
∣∣∣ w =

[
fTp mT

p mT
l

]T }
(5.4)

where fp is the force actuated on the platform expressed in inertial reference frame F0, mp

is the body-frame moment actuated on the platform, and ml concatenates the moments
actuated on the revolute joints of the legs. Note that from its definition, the wrench set
of the FPR shares the same space with that of the actuation wrench defined in (2.27).

To analytically describe a high-dimensional space, the mathematical techniques of con-
vex hull and convex polytopes are usually adopted. If a space is convex 1, the intersection
of any family of convex sets is again convex, and any affine transformation of the con-
vex space is also convex [Grünbaum, 2003]. This interesting property of convex polytopes
facilitates the definition and computation of available wrench sets. A more detailed math-
ematical definition of polytopes and convex hulls will be given in the next subsection.
Considering the actuation limitation of a single UAV, a notation of Available Thrust Set
is presented and computed in the second subsection. Then a detailed methodology for the
computation of Available Wrench Set of the FPR will be presented using two different
representations. Several case studies and results will finally be demonstrated at the end
of this section.

5.3.1 Definition of Convex Polytopes

As previously mentioned, the definition of a available set by means of convex polytopes
is advantageous for further computation by a linear mapping or affine transformation. The
precise mathematical definition of several common notations to be referred to throughout
the calculation of Available Wrench Set is given as follows [Herceg, 2013]:

Definition (Convex Set). A set S ⊆ Rd is convex if the line segment connecting
any pair of points of S lies entirely in S, i.e. if for any s1, s2 ∈ S and any α with
0 ≤ α ≤ 1, αs1 + (1 − α)s2 ∈ S.

Definition (Convex Hull). The convex hull of a subset S ⊆ Rd, denoted by
conv(S), is the intersection of all the convex sets in Rd which contain S.

1. A space is called convex if any points on the segment between two arbitrary points within the space
still belong to the space.
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Definition (Polytope). A polytope is a bounded convex set given as the intersec-
tion of a finite number of hyperplanes and half-spaces or as a convex combination
of a finite number of vertices.

Based on these definitions, a polytope can be mathematically written using two different
representations, respectively named H-representation and V-representation defined as

Definition (H-representation). A polytope P is formed by the intersection of
hyperplanes and half-spaces characterised by mi inequalities and me equalities,
i.e.

P =
{

x ∈ Rd
∣∣∣ Ax ≤ b, Aex = be

}
(5.5)

where A ∈ Rmi×d, b ∈ Rmi , Ae ∈ Rme×d, be ∈ Rme are the matrices representing
the half-spaces and hyperplane, respectively.

Definition (V-representation). A polytope P is formed by the convex combina-
tion (convex hull) of nv vertices, i.e.

P =
{

x ∈ Rd
∣∣∣ x =

nv∑
i=1

λivi, λi > 0,
nv∑
i=1

λi = 1
}

(5.6)

where vi (i = 1, 2, ..., nv) ∈ Rd are the vertices.

These two representations are dual concepts for defining a polytope, as the H-representation
(by the intersection of hyperplanes and half-spaces) can be converted to the V-representation,
and vice versa, from which the represented polytopes are equivalent.

5.3.2 Computation of Available Thrust Set

With the knowledge of convex polytopes as the mathematical tool to define the space,
the first step is to determine the Available Thrust Set (ATS) for a single UAV. The
limitation of the actuated forces in systems involving UAVs is principally due to the limited
thrust outputs of the propellers of a UAV [Park, 2018]. Additionally, the multirotors
physically connected to a rigid structure in these designs are usually constrained by the
mechanical stops in the joints, further limiting their rotational movements, as investigated
in [Nguyen, 2018]. These constraints can be all described with the thrust force fi generated
by multirotor i expressed in F0, which allows to determine the Available Thrust Set (ATS)
that a single multirotor i can achieve in the FPR as follows

Ti =
{

fi ∈ R3
∣∣∣ ∥fi∥ ≤ fmax, ∥fi∥ · cos γ ≤ zT fi, z =

[
0 0 1

]T }
(5.7)
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with two parameters characterising the actuation limitation, γ ∈ R, 0 < γ < π/2 the
maximum angle of a multirotor’s rotational motion in roll and pitch (i.e. ϕi ≤ γ, ϑi ≤ γ),
and fmax the maximum thrust magnitude (total thrust of all the propellers). An instinctive
interpretation of Ti is that it is defined by the intersection between a sphere (constrained
by ∥fi∥ ≤ fmax representing the maximum total thrust of a multirotor) and a cone with
an apex located at the sphere centre (representing the constrained rotational movements).
The expression of the cone is given by ∥fi∥ · cos γ ≤ zT fi and can be interpreted as

zT
fi

∥fi∥
= zTzi = ∥z∥ · ∥zi∥ · cos(ϕi or ϑi) ≥ cos γ (5.8)

from which the inclination angle of the multirotor is constrained by a constant angle γ,
i.e. ϕi or ϑi ≤ γ, with zi representing the z axis of the multirotor i’s body frame expressed
in F0. A visual representation of the ATS defined by (5.7) is given as follows.

Figure 5.2 – Continuous ATS representing the actuation limit of a single UAV, with the
sphere surface rendered in orange and the cone surface rendered in light blue.

As the ATS of a single multirotor defined by (5.7) and illustrated in Fig. 5.2 has
continuous surfaces and represents an infinite number of vertices, a common way to handle
the infinity is to linearise (or discretise) the expression of Ti by a finite number of vertices.
This is done by evenly choosing the points (i.e. vertices) on the surface of the cone space
and the sphere space, respectively. The selection of a finite number of vertices on the cone
surface is equivalent to the approximation of a circle by n-side regular polygon shown in
Fig. 5.3, which is the intersection circle on the cone surface bounded by the maximum
thrust limit. Along with the apex point of the cone, the selected vertices for a bounded
cone surface are written by (5.9).

Figure 5.3 – Approximation of a circle by a regular polygon with nc sides [Brilliant, 2022],
from top view of Fig. 5.2.
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vc,0 =
[
0 0 0

]T
, vc,j = fmax


sin γ sinα
sin γ cosα

cos γ

 , with α = 2πj
nc

, j = 1, 2, ..., nc. (5.9)

Note that nc is the number of points to approximate a circle, and vc,0 is the apex of the
cone corresponding to the point that represents minimum zero thrust produced by the
multirotor (when the motors are off). One may also remark that the expression of vc,j
is written in spherical coordinates, in which a point is addressed by two angular coor-
dinates, the polar angle γ and the azimuthal angle α, with the polar angle being fixed
to a constant value. This representation is beneficial to the definition of points on a sphere.

Consider a point located on the surface of a sphere depicting the maximum thrust limits,
and characterised by the polar angle ϑ ∈ [0, π] and the azimuthal angle φ ∈ [0, 2π].
Given the radius of the sphere r, being equal to the maximum thrust fmax, the Cartesian
coordinates of a point on the surface of a sphere are given by

vs = r


sinϑ cosφ
sinϑ sinφ

cosϑ

 (5.10)

The discretisation of the sphere surface can then be done by choosing a finite number
of vertices. For this, an algorithm for equi-distributing points on the surface of a sphere
is adopted, in which the points are regularly placed such that their distances in two
orthogonal directions are locally always the same [Deserno, 2004]. It can be summarised
by the following algorithm.

Input: N the total number of points
Initialise ns = 0
a = 4πr2/N and d =

√
a

Mϑ = round(π/d)
dϑ = π/Mϑ and dφ = a/dϑ

for j = 0 to Mϑ − 1
ϑ = π(j + 0.5)/Mϑ

Mφ = round(2π sinϑ/dφ)
for k = 0 to Mφ − 1

φ = 2πk/Mφ

Create point for (ϑ, φ) using (5.10)

Algorithm. Regular Placement of Points on the Surface of a Sphere
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ns = ns + 1
end

end

This regular equi-distribution algorithm is actually achieved by choosing circles of lati-
tude at constant intervals dϑ and then points on these circles with distance dφ, such that
dϑ ≃ dφ and that dϑsdφ equals the average area a per point [Deserno, 2004]. Note that at
the end of the algorithm, ns points have been placed on the surface of a complete sphere,
with ns very close to the desired number of points N . To further select the points that
are within the cone space limited by the rotational motion of multirotor, one can make
a selection by a simple condition on the polar angle ϑ which should be in the interval
[π/2 − γ; π/2], with γ the maximum inclination angle.

Finally, a finite number of vertices describing the actuation constraints of a single UAV
are generated, which allows to determine a discretised ATS by a convex combination of
all the vertices

Ti =
{

fi ∈ R3
∣∣∣ fi =

nv∑
k=1

λkvk, λk > 0,
nv∑
k=1

λk = 1
}

(5.11)

with vk a vertex from the collection of vc,j, (j = 0, 1, ..., nc) and vs,j, (j = 1, ..., ns), and
the total number of vertices nv = ns + nc + 1. Recall that ns is the number of sphere
surface points, nc the number of circle points on the cone surface, plus the apex point of
the cone.

5.3.3 Computation of Available Wrench Set

Knowing the ATS, the Available Wrench Set (AWS) can then be computed, combining
the actuation constraints of all the multirotors depicted each by the ATS defined in the
previous section and mapping into the wrench set. It is reasonably assumed that the FPR
has a homogeneous multirotor platform design and the ATS of all the multirotor are the
same. The computation of AWS in both V-representation and H-representation is detailed
as follows.

Available Wrench Set in V-representation
The computation of AWS using V-representation is straightforward, since every vertex

in the thrust set Ti can be directly mapped into a vertex in the wrench set W by the
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5.3. Analysis of Available Wrench Set

relationship of (5.1), which can be further decomposed and written as

w = Wf

=
[
W1 W2 · · · Wn

]


f1

f2
...
fn


(5.12)

with Wi ∈ R(6+n)×3 a sub-matrix mapping the multirotor i’s thrust vector fi ∈ R3 to the
wrench vector w ∈ R6+n.

This relationship allows to compute the Available Wrench Set corresponding to the actu-
ation limitation of each single UAV, i.e. Wi, with its definition given by

Wi =
{

w ∈ R6+n
∣∣∣ w = Wifi, with fi ∈ Ti

}
(5.13)

or equivalently by

Wi =
{

w ∈ R6+n
∣∣∣ w =

nv∑
k=1

λkvik λk > 0,
nv∑
k=1

λk = 1
}

(5.14)

with vik = Wivk (i = 1, 2, ..., n, k = 1, 2, ..., nv) being a vertex of each space Wi obtained
from Ti. Remark that this mapping (from fi ∈ R3 to w ∈ R6+n) indicates a lifting in
dimensions, resulting in Wi a lower-dimension notation represented in high-dimensional
space (examples as a line located in a 2D surface, or a 2D plane in 3-dimensional space).

After having computed all the sub-spaces Wi by a linear mapping of the thrust sets
for all the individual multirotors, the overall Available Wrench Set represented by V-
representation can be determined by the Minkowski sum of all the sub-spaces or the
convex hull of all the vertices in W , i.e.

W = W1 ⊕ W2 ⊕ · · · ⊕ Wn (5.15)

with ⊕ being the Minkowski sum, or equivalently expressed by

W =
{

w ∈ R6+n
∣∣∣ w =

n′
v∑

k=1
λ′
kv′

k, λ′
k > 0,

n′
v∑

k=1
λ′
k = 1

}
(5.16)

where v′
k (k = 1, 2, ..., n′

v) are the vertices of the wrench set W . Remark that the
Minkowski sum of any two polytopes defined by their vertices is defined as follows.
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Definition (Minkowski Sum of Polytopes by Vertices). Consider two convex
polytopes A, B and the sets of their vertices VA, VB. Let C be the Minkowski
sum of two polytopes C = A ⊕ B and VC denotes the set of vertices, in which the
vertex is defined by:

For all ai ∈ VA and bj ∈ VB, check whether there exists a pair (a′, b′) ̸= (ai, bj)
with a′ ∈ VA and b′ ∈ VB such that (a′ + b′) = (ai + bj). If it is the case, then
(ai + bj) /∈ VC , otherwise (ai + bj) ∈ VC .

It is often tedious to determine the Minkowski sum of two polytopes by their vertices,
not to mention the need for computing the AWS by (5.15), which indicates n − 1 times
of the Minkowski sum. Therefore, a computationally efficient algorithm can be adopted,
which is based on the formulation of linear programming problems that can be solved in
polynomial time [Delos, 2015]. The time complexity of computing the AWS by vertices for
the FPR isO(nvn), with nv the number of vertices in ATS and n the number of multirotors.

Available Wrench Set in H-representation
The computation of AWS in H-representation is useful because the definition of hy-

perplanes and half-spaces by a set of inequality or equality equations can facilitate the
determination of wrench feasibility afterwards. This requires the conversion of the expres-
sion of a space from V-representation to H-representation, which is however not an easy
problem. Therefore, instead of converting the wrench set from its V-representation defined
by (5.16) to H-representation, which is dependent on the robot pose, it is more convenient
to convert the ATS expressed in V-representation to its H-representation counterpart, as
the ATS is not pose-dependent and considered constant.

The conversion from V-representation to H-representation can be done using a generic
method based on the Fourier-Motzkin elimination [Matoušek, 2007]. Recall the ATS in
V-representation of (5.11), and let V ∈ R3×nv be a vertex matrix whose columns are the
set of vertices. The convex combination of all the vertices, i.e. the discretised ATS can be
rewritten as

Ti =
{

fi ∈ R3
∣∣∣ fi = Vλ, λ > 0, 1Tλ = 1

}
(5.17)

where λ =
[
λ1 λ2 · · · λnv

]T
is the vector of coefficients. The expression of (5.17)

is already close to the H-representation. By eliminating all the coefficients λm (m =
1, 2, ..., nv) of λ from the system of linear inequalities by Fourier-Motzkin yields an H-
representation (refer to [Matoušek, 2007] for more details), which can be written by

Ti =
{

fi ∈ R3
∣∣∣ Affi ≤ bf

}
(5.18)
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with Af ∈ Rnh×3, bf ∈ Rnh representing the half-spaces corresponding to the vertices in
V, nh being the total number of half-spaces (i.e. inequality equations). Remark that the
elimination of vertex coefficients only results in the inequality constraints, and not always
ensures non-redundant solutions.

Based on the expression of ATS in H-representation for a single multirotor, a notion of
Augmented Thrust Set is introduced, in which the actuation limits for all the multirotors
are included. This space can be constructed using H-representation by

Taug =
{

f =
[
f1 f2 · · · fn

]T
∈ R3n

∣∣∣ Aaugf ≤ baug
}

(5.19)

with Aaug ∈ Rn·nh×3n and baug ∈ Rn·nh respectively given by

Aaug =


Af 0 · · · 0
0 Af · · · 0
... ... . . . ...
0 0 · · · Af

 , baug =


bf

bf
...

bf

 (5.20)

The AWS in H-representation is finally obtained by the linear mapping from the aug-
mented thrust set via the wrench matrix as

W =
{

w ∈ R6+n
∣∣∣ Aww ≤ bw

}
(5.21)

where the matrix Aw ∈ Rn·nh×(6+n) and the vector bw ∈ Rn·nh for the inequality con-
straints are respectively given by

Aw = AaugW−1, bw = baug (5.22)

with W−1 being the simple inverse of the wrench matrix if its dimension is square. Note
that if W is not a square matrix, the inversion is usually performed by the pseudo-inverse,
which is however not guaranteed not to break the inequality constraints. In such cases,
solving an inequality-constrained optimisation problem is a viable solution in place of the
pseudo-inverse of the wrench matrix [Orsolino, 2020].

5.3.4 Case Study

The analysis of the available wrench set of a specific FPR (with n the number of
legs/multirotors being equal to 3) is conducted as a case study. The definition and com-
putation of polytopes by V-representation and H-representation are implemented using
Matlab. While there exists a lot of open-source toolboxes and libraries for solving the
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Chapter 5 – Wrench Feasibility Analysis

problems regarding the convex polytopes such as [Lofberg, 2004; Herceg, 2013], it is still
worthwhile to develop the algorithms presented beforehand by generic codes in order to
easily migrate the algorithms to other programming platforms.

For the definition of Available Thrust Set corresponding to the actuation limitation
of a single multirotor, the following constant values on the constraints are reasonably
considered in line with the mechanical stops of the joints and the specifications of the
brushless motors used to actuate the propellers.

fmax = 25N, γ = 35◦ (5.23)

The discretisation of the ATS is done by choosing a number of vertices approximating the
spherical cone surface. With more points selected, the space is closer to theoretically the
real one, but the computation time especially for the mapping to the wrench set is much
greater. Two discretised ATS are therefore obtained by selecting respectively 17 (nc = 12,
ns = 4) and 38 (nc = 24, ns = 13) vertices, which can be visualised as follows.

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15
0

5

10

15

20

25

fi,x [N]fi,y [N]

f i
,z
[N
]

(a) ATS discretised by 17 vertices
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(b) ATS discretised by 38 vertices

Figure 5.4 – Visualisation of discretised Available Thrust Set (ATS) by different number
of vertices chosen.

The V-representation of the ATS is systematically obtained by the convex hull of these
discretised vertices, while the conversion to H-representation can be done using the toolbox
[Herceg, 2013]. The theoretical volume of the original and continuous spherical-cone space
is known by

V = 2
3πf

2
maxh (5.24)

with h = fmax(1 − cos γ). The volume of a convex polytope can be computed based
on the algorithm presented in [Büeler, 2000]. In this case study, it is computed by the
toolbox [Herceg, 2013]. The precision of the discretisation on an ATS can therefore be
depicted by the percentage of its coverage volume with respect to the volume of the
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theoretically actual ATS. The precision of discretised thrust sets and the number of half-
spaces (i.e. inequalities) for the H-representation are given in Table 5.1. Remark that as
the discretised ATS by 17 vertices can cover more than 90% of the theoretical ATS, this
thrust set is chosen in the following analysis considering the fact that the computation
time and complexity explode exponentially when the number of vertices increases.

Discretised ATS Fig. 5.4(a) Fig. 5.4(b)
V-representation 17 vertices 38 vertices
H-representation 30 half-spaces 69 half-spaces

Precision 90.3% 96.4%

Table 5.1 – Information of the discretised ATS by different number of vertices (V-
representation) or half-spaces (H-representation) and their precisions with respect to the
theoretical ATS.

Then, the discretised ATS can be mapped to the wrench set via two different pathways
depending on the representation as discussed in Section 5.3.3:

1. Using V-representation: mapping all the vertices in discretised ATS to the vertices
in the wrench set by a sub-wrench matrix → computing the Minkowski sum of the
vertices in the wrench set.

2. Using H-representation: converting the discretised ATS defined by vertices to its
H-representation counterpart → constructing the augmented ATS considering all
the multirotors → mapping to the wrench set.

The mapping from the thrust set to the wrench set requires the computation of the
Jacobian matrix (i.e. W = JT ), which is dependent on the robot pose. In this case study,
the robot generalised coordinates are set by the following values

q = [pp,x, pp,y, pp,z, qp,0, qp,1, qp,2, qp,3, θ1, θ2, θ3]T

= [0, 0, 0, 1, 0, 0, 0, 0.785, 0.785, 0.785]T
(5.25)

corresponding to a configuration with a flat platform orientation and leg angles of 45◦.

Note that the Jacobian matrix is particularly square for this specific FPR with 3 multi-
rotors (i.e. 6 + n = 3n, when n = 3), and thus the mapping from augmented thrust set
Taug ∈ R9 to the wrench set W ∈ R9 requires simply an inverse of the wrench matrix.
This makes the construction of wrench sets in (5.21) by H-representation much easier
compared to the V-representation method which needs to solve n3

v linear programming
problems. The pathway of using H-representation is valid and efficient as long as the Ja-
cobian matrix is invertible, which can be ensured by singular-free robot configurations.
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Chapter 5 – Wrench Feasibility Analysis

For the FPR, this means that the leg angles should always be constrained between 0◦

to 90◦ [Six, 2018b]. However, apart from the simplicity of computing wrench sets using
H-representation, the visualisation of high-dimensional space (i.e. W ∈ R9) defined by
the intersection of half-spaces is not easy to deal with. In general, the high-dimensional
space (hyperplanes) is projected into a low-dimensional space that can be visualised (such
as 3D or 2D space). In contrast, the definition of space by vertices is more advantageous
for visualisation purposes, since the vertices in wrench set mapped from the ATS can be
decomposed to construct three independent spaces, i.e.

W ∈ R9 decomposed−−−−−−→ Fp ∈ R3,Mp ∈ R3,Ml ∈ R3 (5.26)

where Fp, Mp and Ml are the available sets respectively for the 3-dimensional force and
moment actuated on the platform and the moments actuated about the revolute joints of
the legs. Based on the V-representation, they are systematically defined by the vertices
in (5.16), i.e obtained by decomposition on each vertices v′

k =
[
fTp,k pmT

p,k mT
l,k

]T
. It

is however remarked that these vertices decomposed from those of the overall AWS are
probably redundant for the representation of the decomposed spaces. The redundancy
of vertices can be removed by checking the uniqueness of vertex using the algorithm de-
tailed in [Delos, 2015] when the Minkowski sums of polytopes are performed. This can
also be handled by constructing irredundant decomposed spaces Fp,i, Mp,i and Mp,i for
each multirotor i from its thrust set Ti and performing afterwards the Minkowski sums
respectively for Fp, Mp and Ml.

The visualisation of Fp, Mp and Ml using V-representation according to the robot con-
figuration given by (5.25) is shown in Fig. 5.5, which has been validated to be equivalent
to the spaces represented by half-spaces. Table 5.2 shows the details on the number of
irredundant vertices and half-spaces defining the decomposed spaces. It can be noted that
Fp has a similar form of Ti since the corresponding sub-wrench matrix mapping the thrust
sets to Fp is identity (i.e. first three columns of Wi), indicating a simple Minkowski sum
of the ATS vertices. Fp is therefore not dependent on the robot pose as it depicts the
available force actuated on the platform expressed in F0. Mp is a more complex space
in which all the surfaces are mapped from the thrust sets by the rotational parts of the
Jacobian matrix (i.e. Jω1 defined in (2.20)), while the moments generated on the legs are
equivalently constrained from zero to about 25 N.m in the clockwise direction (for which
the sign is negative) when the leg angles are 45◦.

Based on the definition of ATS and the computation of AWS, the static wrench feasi-
bility can be analysed and will be presented in the next section.
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(f) Top view of Ml

Figure 5.5 – Visualisation of decomposed Available Wrench Sets.

Available Wrench Set Fp Mp Ml

V-representation 17 vertices 170 vertices 8 vertices
H-representation 30 half-spaces 150 half-spaces 6 half-spaces

Table 5.2 – Number of vertices (V-representation) or half-spaces (H-representation) de-
fined in the decomposed AWS.

5.4 Analysis of Static Wrench Feasibility

The construction of Available Wrench Set has the objective to analyse the feasibility
of a specific task, if the wrench set required to accomplish the given task is known. How-
ever, for more general cases, the static wrench feasibility is of great interest, as it can
provide information about the feasibility in quasi-static equilibrium conditions. Without
the need of determining the wrench set of a known task, the static wrench feasibility can
be analysed to determine quantitatively the available wrench that the robot can exert
according to certain robot configurations after having compensated the gravity wrench.
This analysis is particularly significant for evaluating the ability of the FPR such as the
potential wrench capacity during a manipulation task, where the movements of the robot
are considered slow enough to neglect its dynamic response.
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Chapter 5 – Wrench Feasibility Analysis

In the following subsections, the notion of feasibility margin is firstly presented, which
serves as quantitative metrics to evaluate the wrench feasibility in static conditions. Then,
an extended analysis of the static wrench feasibility of the FPR based on the computation
of AWS detailed in Section 5.3 is given. Finally, several case studies on different robot
configurations, as well as the corresponding wrench set and feasibility will be given.

5.4.1 Definition of Static Feasibility Margin

As introduced in Section 5.2, the analysis of the static feasibility necessitates the
computation of the wrench required to compensate for the gravitational effects (i.e. wg).
From the computation of gravity wrench detailed in Section 2.5.4, this term can be known
by the static model written as

w − wg = 0 (5.27)

which is pose dependent, i.e. the computation of wg takes the generalised coordinates q
as input. According to the definition in (5.4), the wg can be decomposed and written as

wg =
[
fTp,g mT

p,g mT
l,g

]T
(5.28)

The static feasibility is therefore evaluated by the condition if wg ∈ R6+n is belonging to
the Available Wrench Set W . It is remarked however that the fulfilment of this condition
only verifies if the robot in a certain configuration is capable of resisting the wrench due
to the gravity in static equilibrium, without any quantitative metrics to possibly compare
the feasibility in different configurations for example. Therefore, a feasibility metric can
be adopted which is based on the capacity margin initially proposed in [Gagliardini, 2016]
for CDPRs, and applied to the study of ACTS in [Erskine, 2019b].

In this manuscript, the feasibility metric in quasi-static conditions is named as Static
Feasibility Margin, which is defined as the shortest distance from the wg to the nearest
facet (i.e. hyperplanes) of W . It is therefore an index used to evaluate the robustness of
the equilibrium in a specific robot configuration. The mathematical definition of the static
feasibility margin can be given as follows.

min ∥w′ − wg∥, ∀ w′ ∈ W

s.t. Aww′ = bw
(5.29)

where Aw and bw are respectively the matrix and vector defining the half-spaces of the
AWS given by (5.21). The definition of feasibility margin allows to compute for each
configuration a quantitative result evaluating the wrench feasibility in static equilibrium.
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5.4.2 Computation of Static Feasibility

As it can be seen in the definition of static feasibility margin (named as feasibility
margin in the rest of this chapter), the expression of the AWS by Aw and bw (i.e. half-
spaces) is needed for the computation of this variable. This makes the H-representation
more favourable than the V-representation for the analysis of static wrench feasibility,
especially because additional conditions corresponding to the intersection with hyper-
planes (i.e. equality constraints) can easily be added to the expression of wrench sets in
H-representation.

Taking advantage of using H-representation, the static Available Wrench Set can be
further evaluated separately for the force and moment spaces decomposed from the wrench
sets of the platform, i.e. Fp ∈ R3,Mp ∈ R3. These spaces describe the wrench capacity of
the FPR in static equilibrium when the gravity wrench is well compensated. It is remarked
that the feasibility analysis on the available moment set of the leg angles (denoted by the
Ml ∈ Rn) can also be done similarly, which is however omitted because it is not supposed
that the manipulation task will be handled by the legs. Although it is possible to evaluate
the range of available moments each leg can exert apart from resisting the moment due to
the gravity, the moments actuated on the legs in the analysis presented in this section are
only considered to compensate the gravity to stably maintain the internal configuration
of the robot.

A detailed expression of the Available Wrench Set for analysing respectively the force and
moment feasibility of the platform in static equilibrium can be written as

Ws
fp

=
{

w ∈ R6+n
∣∣∣ Aww ≤ bw, Afpw = bfp

}
(5.30)

Ws
mp

=
{

w ∈ R6+n
∣∣∣ Aww ≤ bw, Ampw = bmp

}
(5.31)

where the additional equality constraints are characterised by the matrices and vectors
given by

Afp =
[
0(3+n)×3 1(3+n)×(3+n)

]
, bfp =

[
mT

p,g mT
l,g

]T
Amp =

13×3 03×3 0n×n

0n×3 0n×3 1n×n

 , bmp =
[
fTp,g mT

l,g

]T (5.32)

Note that the static AWS for force Ws
fp

or moment Ws
mp

are two different sets parame-
terising the force or moment feasibility of the platform in different static conditions. The
static available force and moment sets F s

p ,Ms
p ∈ R3 are then obtained by the projection

of the respective wrench sets onto a 3-dimensional space, i.e. F s
p = Ws

fp
.project(1 : 3),

Ms
p = Ws

mp
.project(4 : 6). Remark that this projection onto the 3-dimensional space
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is done for visualisation purpose, which does not loose any information of the initially
computed AWS. The expression of Fp and Mp after the projection can be further written
using H-representation as

F s
p =

{
fp ∈ R3

∣∣∣ As
fp

fp ≤ bsfp

}
(5.33)

Ms
p =

{
mp ∈ R3

∣∣∣ As
mp

mp ≤ bsmp

}
(5.34)

Note that the matrices As
fp
,As

mp
and vectors bsfp

,bsmp
defining the half-spaces in 3-

dimensional space are obtained by the intersection of initial half-spaces represented by
Aww ≤ bw and the hyperplanes respectively given by Afpw = bfp and Ampw = bmp ,
which are then projected into the corresponding force or moment space in R3.

After having obtained the respective available force and moment sets of the platform,
the feasibility margin can be computed to evaluate quantitatively the feasibility in certain
robot configurations, especially for different leg angles. The feasibility margin for Fp and
Mp is therefore determined by the shortest distance respectively from the fp,g and mp,g

to all the facets of the available set.

Based on the definition of feasibility margin, the finding of minimum distance can be
formulated as a Quadratic Programming (QP) problem that can be written as follows.

min xTHx + bTx + c

s.t. Aex = be
(5.35)

According to the computation of feasibility margin for the force or moment spaces, the
arguments for solving the QP problems are respectively defined by Table 5.3.

Available Set H b c Ae be
F s
p (x = fp) 13×3 −2 · fp,g fTp,gfp,g As

fp
bsfp

Ms
p (x = mp) 13×3 −2 · mp,g mT

p,gmp,g As
mp

bsmp

Table 5.3 – Definition of arguments for QP problem solving the feasibility margins.

The computation of static Available Wrench Sets (respectively on the available force
and moment of the platform), as well as the determination of feasibility margin have
allowed the completion of the feasibility analysis by a quantitative evaluation. The case
study on this static feasibility analysis in different robot configurations is given in the
following subsection.
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5.4.3 Case Study

The case study is performed on a specific FPR design with 3 multirotors and the ATS
discretised by 17 vertices presented in Section 5.3.4. The computation of the static AWS,
i.e. F s

p and Ms
p, is achieved by the toolbox [Herceg, 2013] in Matlab, with the definition of

H-representation spaces given by (5.30) and (5.31). The QP problem for determining the
feasibility margin can be solved by a generic solver such as the one presented in [Herceg,
2013].

As the static AWS are pose-dependent, implying that changes in platform orientation
and leg angles will induce evolution in the wrench sets as well as the feasibility margin.
Therefore, a first investigation can be done to fix a specific platform orientation, while
evaluating the feasibility with varied values in the leg angles. To maintain balanced feasi-
bility along different axes and avoid potential collisions, the values on different leg angles
are always set to be equal.

The available wrench sets F s
p and Ms

p and their feasibility margins corresponding to three
different leg angles are studied, with the values on the angles chosen to be (see Fig. 5.6)

• 15◦ for wide configuration (rendered in red);

• 45◦ for normal configuration (rendered in green);

• 75◦ for narrow configuration (rendered in blue).

Figure 5.6 – Illustration of configurations with different leg angles.

Two cases on the platform orientation are furthermore considered, with the first one in the
condition of flat orientation (roll and pitch are all zero) and the second one in an inclined
orientation (roll=10°, pitch=25°). The results on the Available Wrench Sets of each case
can be visualised in Fig. 5.7 and Fig. 5.8. The feasibility margins of the corresponding
force and moment spaces F s

p , Ms
p in static equilibrium are summarised in Table 5.4.

Case 1: Flat Platform Orientation (roll=0°, pitch=0°)
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Figure 5.7 – Available Wrench Sets evaluated at static equilibrium of Afpw = bfp (left)
and Ampw = bmp (right) for the flat platform orientation (roll = 0°, pitch = 0°) and the
leg angles being respectively 15° (red regions), 45° (green regions) and 75° (blue regions).
The red star corresponds to the static equilibrium point at fp,g (left) and mp,g (right).

Case 2: Inclined Platform Orientation (roll=10°, pitch=25°)
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Figure 5.8 – Available Wrench Sets evaluated at static equilibrium of Afpw = bfp (left)
and Ampw = bmp (right) for the inclined platform orientation (roll = 10°, pitch = 25°)
and the leg angles being respectively 15° (red regions), 45° (green regions) and 75° (blue
regions). Note that the static equilibrium point for available force sets is given by the star
point in red (left), while for available moment sets, they are respectively represented by
the star points in red, green and blue (right) for each case of leg angles.

It can be seen that in both cases, the spaces with leg angles being 45° (green spaces)
cover more feasibility areas. The narrow configuration (blue spaces) has better feasibility
in the forces exerted towards the normal direction of the platform (peaks of the F s

p in
blue), while the wide configuration is capable of exerting more moments around the z axis
of the platform (peaks in red Ms

p). Furthermore, the Available Wrench Sets have been
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5.4. Analysis of Static Wrench Feasibility

Configurations Flat Orientation Inclined Orientation
F s
p [N] Ms

p [N.m] F s
p [N] Ms

p [N.m]

Leg Angles
15° 4.10 2.42 3.02 1.78
45° 8.22 6.90 7.07 6.03
75° 5.01 4.99 2.96 3.04

Table 5.4 – Feasibility margin of F s
p and Ms

p with different robot configurations.

shifted when the platform is inclined, implying that the robustness is no longer symmetric
relative to the static equilibrium point. This can be better visualised by the side views
shown in Fig. 5.9, from which the shifting of the available sets can be well identified. Note
that the force fp,g actuated on the platform due to the gravity in the available force sets
remains constant as the platform force is expressed in the global frame.
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p in inclined orientation
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(d) Side view of Ms
p in inclined orientation

Figure 5.9 – Side views of the Available Wrench Sets of the platform evaluated at static
equilibrium respectively for the flat and inclined platform orientations.

In addition, one may remark from the quantitative results shown in Table 5.4 that in
both cases for different orientations, the configuration with leg angles of 45° has pre-
sented better feasibility in force and moment margins, indicating that the robustness of
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Chapter 5 – Wrench Feasibility Analysis

the equilibrium in this normal configuration is better compared to a wide or narrow con-
figuration. This has justified the selection of the leg angles preferable to be around 45° in
the previous works, although the other configurations might be suitable for specific cases
such as in certain applications where the task requires a higher force or moment feasibility
along/about the z axis.

The analysis of static feasibility can be applied to the determination of the best leg
angles for every platform orientation required to accomplish a specific task, which will be
presented in the next section.

5.5 Determination of Optimal Leg Configuration

In the previous sections, the computation of Available Wrench Set and the analysis of
static feasibility with a quantitative metric to evaluate the feasibility in static equilibrium
have been extensively studied. While in the previous case studies, the feasibility of differ-
ent platform orientations with various leg configurations has been evaluated, it is possible
to determine the optimal leg angles allowing maximisation of the feasibility margin in a
given platform orientation.

As presented in Section 5.4, the computation of static wrench sets is dependent on the
robot pose, i.e. the platform orientation and the internal configuration (i.e. leg angles).
Therefore, for every single case of the robot pose, the static wrench set will evolve, and so
does the static margin. This has complicated the determination of the optimal leg angles
for a given orientation of the platform, because it means comparing the static feasibility
margins and finding the maximum for different wrench sets corresponding to different
leg angles. To simplify the task by reducing the number of cases, it can be reasonably
assumed for each given platform orientation that

• values of all the leg angles are remaining as the same;

• a minimum step on the leg angles is set to be 1°.

Then, by performing the computational steps presented in Section 5.3 and Section 5.4 for
each leg angle selected within the interval of non-singular configurations (i.e. between 0°
and 90°) and an angle step of 1°, the optimal one maximising respectively the force and
moment feasibility can be found. It is noted that the ATS is represented by half-spaces
and only needs to be computed once (as it is constant and pose-independent), which is
then mapped to the wrench set using the Jacobian matrix computed according to each
case of the leg angles. Fig. 5.10 and Fig. 5.11 show the evolution of feasibility margins for
two cases of the platform orientation studied in Section 5.4.3.
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5.5. Determination of Optimal Leg Configuration
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Figure 5.10 – Evolution of feasibility margins of the platform regarding different leg angles
in flat platform orientation. The leg angles corresponding to optimal wrench feasibility are
found at 32° for the force feasibility (8.66 N) and 48° for the moment feasibility (6.92 N.m).
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Figure 5.11 – Evolution of feasibility margins of the platform regarding different leg angles
in flat platform orientation. The leg angles corresponding to optimal wrench feasibility are
found at 32° for the force feasibility (8.23 N) and 41° for the moment feasibility (6.13 N.m).

It can be found in the results that the optimal leg angles maximising the force feasibility
are occasionally 32° for both orientations (which are different with another inclination),
a relatively wider configuration compared to the normal one where the leg angles are 45°,
while for the moment feasibility, the optimal angles are close to the values of the normal
configuration, but with 7° of difference for two different platform orientations. One may
additionally remark that the moment feasibility margins with leg angles under 8° are
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Chapter 5 – Wrench Feasibility Analysis

zero, which means that the balance of the static equilibrium is even infeasible for those
leg configurations. This makes the force feasibility margins under such leg configurations
become uninterpretable since the computation of available force sets requires to compen-
sate the gravity moment on the platform, which is however infeasible in these leg angles.
The static AWS F s

p , Ms
p with the optimal leg angles are visualised in Fig. 5.12. These

results of the wrench feasibility analysis allow to determine the optimal leg angles which
ensure the maximisation of force or moment feasibility according to the specific needs of
the manipulation tasks.
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Figure 5.12 – Optimal Available Wrench Sets of the platform F s
p and Ms

p in flat (blue
regions) and inclined (red regions) orientations with the optimal leg angles chosen from
Fig. 5.11 to maximise the feasibility margin. The star points correspond to the static
equilibrium at each configuration.

Then, the feasibility analysis on the evolution of the platform orientation can be done,
in which the optimal leg configuration corresponding to each of the platform orientation
cases can be found. The idea of conducting this analysis is also to verify if the platform
is wrench feasible at static equilibrium in omnidirectional directions, i.e. with the plat-
form’s roll and pitch ranging from -180° to 180°. Remark however that as the leg angles are
restricted between 0° and 90° to avoid the singularity, implying the platform is always sup-
ported above the UAVs, the orientations with the roll and pitch of the platform remaining
within [-90°, 90°] are feasible in such leg configurations. In addition, the configurations
of the platform’s roll and pitch in the interval of [-90°, 0°] and [0, 90°] are symmetric
and should have the same results on the wrench feasibility. Therefore, the cases of the
platform angles within [0, 90°] are of interest in this analysis to determine the optimal
leg angles and feasibility margins. It is furthermore noticed that the cases of the platform
angles within [-180°, -90°] and [90°, 180°] can be also seen as symmetric configurations
but with the leg angles being restricted within [-90°, 0°] (i.e. the platform is beneath the
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5.5. Determination of Optimal Leg Configuration

UAVs). Their results are thus easy to derive considering the same computation process.
The transition between two singularity-free leg configurations (between the intervals of
[-90°, 0°] and [0, 90°]) is however not studied in this thesis. It can be seen as a prerequisite
in the setup of the robot assembly according to a specific task.

Apart from the discretisation of leg angles by angle step of 1° finding the maximum
feasibility margins at each given orientation, an angle step of 5° on the roll (ϕp) and
pitch (ϑp) of the platform is furthermore taken into account for varying the orientations.
The optimal leg angles and their maximum force and moment feasibility margins can be
visualised respectively by the 3D mesh plots in Fig. 5.13 and Fig. 5.14. The precision of
this analysis is thus 5° in angles of the platform orientation, and 1° for the leg angles.
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Figure 5.13 – Optimal leg angles for maximising the force feasibility margin.
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Figure 5.14 – Optimal leg angles for maximising the moment feasibility margin.

It can be remarked from these results that the values of the optimal leg angles for the
force feasibility are located in relatively wider configuration (θl from 28° to 45°), while
for the moment feasibility they are more symmetrically distributed around the normal
configuration (θl between 35° and 55°). The best wrench-feasible platform orientation is
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Chapter 5 – Wrench Feasibility Analysis

found at the point where the roll and pitch are zero, but a locally-optimal configuration can
also be noticed around the point ϕp = 25◦, ϑp = 60◦. In addition, the feasibility margins
for both force and moment of the platform in optimal leg configurations are always above
a value considerably high enough to ensure the robustness of the static equilibrium (about
8 N for the force feasibility and 6 N.m for the moment feasibility), which has validated
the capability of the FPR for executing the tasks required to generate omnidirectional
wrench in various orientations.

5.6 Conclusion

In this chapter, a detailed analysis of the wrench feasibility of the FPR is conducted.
The definition of the vertices depicting the actuation limitation of a single UAV allows
to discretise the Available Thrust Set, which can then be mapped by the wrench matrix
to obtain the Available Wrench Set of the FPR using respectively the V-representation
and H-representation of polytopes. The static available wrench set and the static feasibil-
ity by a quantitative metric called static feasibility margin are introduced, which is then
applied to determine the optimal leg configurations with different platform orientations
to maximise the wrench feasibility of the platform. This analysis is thus a quantitative
proof of the capacity of the FPR in performing manipulation tasks, which is applicable to
optimal configuration planning, especially for determining the internal leg configurations.

While all the computation in this chapter has been implemented in Matlab, the pre-
sented algorithms can potentially be achieved in other programming platforms such as
C++ or Python, in order to compute the optimal leg configurations in real-time. However,
the computation of wrench sets and the optimal leg angles still needs to solve a relatively
large number of QP problems for every single configuration, which may be handled in
future works by more efficient algorithms that reduce the complexity of the problem for
every case.
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CONCLUSION

Summary of the Thesis

The domain of aerial manipulation has experienced rapid development in recent years.
Although a variety of aerial manipulator architectures have been proposed and studied
in the literature, evolving from single Unmanned Aerial Vehicle (UAV) equipped with
onboard actuators to multi-UAV cooperative systems, there still have been a lot of sci-
entific issues awaited to be overcome, such as payload capacity, flight stability, wrench
feasibility and manipulability of this kind of aerial robots. For this, a multi-UAV parallel
robot named Flying Parallel Robot has been proposed within the thesis of [Six, 2018a],
which presents better payload capacity, flight stability and accuracy, and can achieve full
manipulability in 3-dimensional space thanks to the design of a parallel passive architec-
ture actuated by multiple UAVs.

On the basis of the previous works for generic modelling and motion control applied
to the FPR, the works presented in this thesis have been focusing on decentralized con-
trol and estimation techniques dealing with the interaction with the environment, which
has extended the capability of the FPR for performing potentially industrial manipula-
tion tasks while facing with challenges that might appear in real-world scenarios. More
precisely, the main contents of this manuscript have been as follows:

❖ Chapter 1 has been devoted to a literature review of aerial manipulation with
different generations of aerial manipulators, and the introduction to the design of
Flying Parallel Robot as well as the generic modelling and motion control of the
FPR. These previous works have been an inspiration and a solid basis for the works
conducted in this thesis.

❖ Chapter 2 has investigated in depth the modelling of a specific FPR composed of a
moving platform and a number of one-DoF legs attached with multirotors. Analyti-
cal expressions of geometric and kinematic relations have been derived, relating the
robot pose/velocity to the positions/linear velocities of the multirotors. Dynamic
modelling has also been done based on numerical algorithms using Khalil’s method
and Featherstone’s Spatial Vector notation. Numerical validation of all the models
has been conducted to verify the modelling correctness.
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❖ Chapter 3 has tackled the problems related to the interaction with the environment
by the FPR. Several momentum-based observers for estimating the external wrench
exerted on the robot are firstly implemented and compared, which are then used
in an impedance-based controller with wrench tracking capability shown to be able
to deal with the modelling uncertainties, perturbations and physical interactions in
the experimental validation.

❖ Chapter 4 has dealt with the decentralized estimation and control strategies for the
FPR being more robust and independent on external localisation systems. A vision-
based pose estimation technique using ArUco marker system has been adopted,
with the estimation results enhanced by a quaternion-based Extended Kalman Fil-
ter considering the IMU measurements, for which a methodology of reconstructing
a partial set of robot pose and velocity has been shown to be sufficient to con-
struct a teleoperable system. Then several decentralized controllers according to
the previously presented motion control and interaction control schemes have been
investigated. These decentralized methods have been experimentally validated for
precise positioning of the robot by teleoperation, pick-up of a payload and perform-
ing contact-based interactions.

❖ Chapter 5 has presented a wrench feasibility analysis of the FPR considering
the actuation limits of UAVs. A Feasible Thrust Space has been firstly computed
taking into account the limited thrust and rotational movements of a UAV. The
computation of the Feasible Wrench Space of the FPR has been done using both
H-representation and V-representation defining a convex polytope. A quantitative
metric corresponding to the feasibility margin has been adopted to analyse quan-
titatively the feasible spaces, which is then applied to determine the optimal leg
configurations to maximise the wrench feasibility in different platform orientations.

This thesis has thus been an extension of the previous works on the FPR to develop its
application in the real world and its potential merits in the industrial context. Extensive
experimental results have also been a valid demonstration of the FPR that is capable
of performing a variety of manipulation tasks such as the transportation of relatively
heavy loads, pick and place operations in remote locations, and contact-based inspection
or repair of infrastructures.

Perspectives and Future Works

This thesis has presented the control and estimation methodologies for a multi-UAV
manipulator performing physical interaction with the environment, with considerations
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of real-world constraints and implementations. Nevertheless, there are still places for im-
provements that may be completed in future works.

First of all, in terms of control, an impedance-based method based on the estima-
tion of the external wrench has been implemented, regulating the robot’s behaviour by
the virtual impedance system when interacting with the environment. The output of this
control law is however not ensured to be optimal, resulting in the positioning precision of
the platform being centimetric or sometimes decimetric due to the perturbations or the
uncertainties from UAVs themselves. A model-based optimal control algorithm may
therefore be investigated, such as the Nonlinear Model Predictive Control (NMPC) as
studied in [Lunni, 2017; Lee, 2020; Tzoumanikas, 2020; Yiğit, 2021a] applied to the FPR
to compute the optimal control for minimising both position and wrench tracking errors
with more constraints and optimisation conditions considered (like the actuation limits
of UAVs and the energy consumptions). Besides, the control law considering a crossing
of singularity can also be investigated [Six, 2017a], allowing the FPR to work in different
configurations (where the platform is below or above the UAVs) and make possible a
transition between two configurations suitable for different scenarios.

Secondly, even though a robot pose estimation technique based on onboard and intrin-
sic measurements has been adopted to sufficiently control the FPR with teleoperation,
the lack of robustness in vision-based techniques still prevents this method to work in
non-ideal environments. Therefore, the pose estimation based on other sources of sen-
sors might be foreseen. On one hand, the vision-based approaches can be enhanced by
redundant detection with other techniques to complete the defective situations for vision;
on the other, novel strategies with no vision can be proposed to overcome the drawbacks
related to the cameras. Such sources of sensors can be GPS for outdoor applications, addi-
tional IMU attached on the platform for measuring its orientation, encoders for measuring
the leg angles, and/or Ultra Wide-band (UWB)-based localisation algorithm [Shule, 2020]
applied to the FPR.

Thirdly, the perception of environment when the robot navigates is totally omitted
in this thesis, which has been considered known (by MOCAP) during the experiments in
Chapter 3 and handled by a human operator with teleoperation in Chapter 4. An online
perception of the environment like detecting the contact surface may be implemented us-
ing an additional camera attached to the platform, for example Time-of-Flight camera in
[Bodie, 2021a]. The perception may potentially be followed by a complete vision-based
control, such as eye-in-hand image-based visual servoing (IBVS) of the platform. To fur-
ther deal with the interaction with the environment, a hybrid vision/force control can be
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applied as investigated in [Bellakehal, 2011]. The vision-based control may also be applied
to a leg-direction-based visual servoing for maintaining a good internal configuration of
the FPR. The application of such arrangements in control has been seen in cable-driven
parallel robots (CDPRs) [Dallej, 2019], and classical parallel manipulators [Andreff, 2006;
Zhu, 2022]. In the other aspect, the teleoperation of the FPR by a human operator
may still be a solution for avoiding the onboard perception, but can be enhanced by a
bilateral haptic feedback [Lee, 2011; Omari, 2013; Zhang, 2020], which results in a more
teleoperable system for accomplishing potential manipulation tasks.

Moreover, along with an initial analysis on the wrench analysis of the FPR, the
optimal leg configurations are determined to relatively maximise the force and moment
feasibility margins of the platform in different orientations. However, this analysis was
only done off-line due to the computational time and complexity. A more computation-
ally efficient algorithm may be proposed to extend the wrench feasibility analysis to online
optimal planning of the leg angles maximising the feasibility according to the actual ori-
entation of the platform and the specific task the robot is performing.

Last but not least, the improvements on practical and experimental aspects might
also be necessary to bring the FPR closer to its real-world application. To this point, the
quadrotor UAVs used in the FPR for experimental validations are customised using low-
cost materials and a minimum set of sensors with an open-source flight controller, which
has shown acceptable precisions for testing flights in the laboratory environment. The final
applications of the FPR in the real world must be supported by more maturely controlled
UAVs with a complete set of embedded sensors including IMU, optical flow, sonar-based
or laser-based height sensors and possibly GPS (for outdoor applications).
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APPENDIX

Appendix A: Orientation and Rotational Kinematics

In robotics, a variety of mathematical constructs are adopted to represent the ori-
entation (or attitude) of a rigid body in 3-dimensional space. While different ways of
parametrising an orientation have their respective advantages and disadvantages, they
are equivalent and should have unified conversions between each other. In addition, the
rotational kinematics of a rigid body is of great importance to depict its angular motion,
which can be equivalently described using different mathematical representations.

This appendix has thus objective to provide a thorough and unified reference on the
definition of orientation and rotational kinematics adopted in this manuscript.

A.1 Representations of Orientation

The main mathematical notations to represent the orientation of a rigid body in 3-
dimensional space are: 1) the rotation matrix, 2) a triple of Euler angles, 3) the
unit quaternion, and 4) the axis-angle representation. In the following part, a
detailed definition of different notations as well as their relations and useful conversions
will be given. For the mathematical derivations in this section, one may refer to [Diebel,
2006; Slabaugh, 2020; Flores, 2015; Schwab, 2002].

Rotation Matrix

A rotation matrix is a matrix for rotating a vector while preserving its length by the
multiplication with the vector. It is belonging to the special orthogonal group, denoted by
SO(3). If a matrix R ∈ SO(3), then it possesses the following properties:

det R = ±1, R−1 = RT (A.36)

Rotation matrices for which the determinant det R = 1 are called proper and those for
which det R = −1 are called improper. Improper rotations usually consist of a rota-
tion followed by an inversion operation, known as rotoinversions and are not representing
robot-body transformation [Diebel, 2006]. Therefore, the determinant of the rotation ma-
trix for representing the orientation of a rigid body is constrained to be 1 (proper rotation
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matrix), which can be written with elements as follows:

R =
[
r1 r2 r3

]
=


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (A.37)

The rotation matrix encodes the attitude of a rigid body to be the matrix that when
pre-multiplied by a vector expressed in the body-fixed frame yields the same vector but
expressed in the world frame 1. That is, for a rigid body A, if z ∈ R3 is a vector in the
world frame and Az ∈ R3 is the same vector expressed in the body-fixed frame, then the
following relations hold:

z = RA
Az

Az = RT
A z

(A.38)

with RA the rotation matrix representing the orientation of the rigid body with respect to
the world frame. It should be noted that there are two possible conventions for defining the
rotation matrix: one mapping from the body-fixed coordinates to the world coordinates
as in (A.38); the other one writes the matrix that maps from the world coordinates to the
body-fixed coordinates. Although two conventions are equivalent with their conversions
being as trivial as performing the transpose of a matrix, it is necessary to be sure which
convention is being used so as not to lose the coherence.

The rotation matrix can also depict the relative orientation between two coordinate
systems or frames, i.e. for two frames denoted by FA and FB, the rotation matrix ARB

performs a rotation from FB to FA, that can be given by

ARB = RT
A RB (A.39)

Note that RA and RB represent respectively the orientation of the rigid body A and B
relative to the world frame.

Euler Angles

The most popular way to represent the orientation of a rigid body is a set of Euler
angles, because of their simplicity to understand and use. A widely used convention of
Euler angles for aerial robotics is ZYX, defined by yaw, pitch, roll angles about successive
z-y-x axes of the body-fixed frame. Another convention is ZXZ, defined by successive
z-x-z axes, with angles known respectively as spin, nutation and precession.

1. Note that world frame or world coordinate system is also referred as the global frame or inertial
reference frame in the manuscript.
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The Euler angles can be parametrized by a vector η ∈ R3 of three angles defined
about the successive body-fixed axes (with a specific order according to the ZYX or
ZXZ convention). The orientation represented by Euler angles can thus be obtained by
a combination of these three rotations about the single coordinate axis, which is called
coordinate rotation denoted by Rj(α) : R → SO(3) for j ∈ {x, y, z}, defining a rotation
of an arbitrary angle α respectively about the x, y and z axis

Rx(α) =


1 0 0
0 cosα − sinα
0 sinα cosα

 (A.40)

Ry(α) =


cosα 0 sinα

0 1 0
− sinα 0 cosα

 (A.41)

Rz(α) =


cosα − sinα 0
sinα cosα 0

0 0 1

 (A.42)

Based on the unit coordinate rotations, the rotation matrix associated with different
conventions of Euler angles can be fully determined. The rotation matrix defined by ZYX
Euler angles η = [ϕ, ϑ, ψ]T (written in roll, pitch and yaw order) is

R = Rz(ψ) Ry(ϑ) Rx(ϕ)

=


cosϑ cosψ sinϕ sinϑ cosψ − cosϕ sinψ cosϕ sinϑ cosψ + sinϕ sinψ
cosϑ sinψ sinϕ sinϑ sinψ + cosϕ cosψ cosϕ sinϑ sinψ − sinϕ cosψ

− sinϑ sinϕ cosϑ cosϕ cosϑ

 (A.43)

Similarly, the rotation matrix of ZXZ Euler angles η = [ψ1, ϕ, ψ2]T (for spin, nutation
and precession angles) can be given by

R = Rz(ψ1) Rx(ϕ) Rz(ψ2)

=

cosψ1 cosψ2 − sinψ1 cosϕ sinψ2 − cosψ1 sinψ2 − sinψ1 cosϕ cosψ2 sinψ1 sinϕ
sinψ1 cosψ2 + cosψ1 cosϕ sinψ2 − sinψ1 sinψ2 + cosψ1 cosϕ cosψ2 − cosψ1 sinϕ

sinϕ sinψ2 sinϕ cosψ2 cosϕ

 (A.44)

One disadvantage of using Euler angles is that the singularity might occur at certain
angles, which restricts the usage of this representation particularly for control. For instance
the singularity occurs at pitch values of ϑ = π

2 + nπ (n ∈ Z) for ZYX convention, and at
nutations values of ϕ = nπ (n ∈ Z) for ZXZ convention. These singularities found in the
various Euler angle representations are said to arise from gimbal lock, where the first and
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third Euler angles are indistinguishable when the second Euler angle is at some critical
value. This means, for the ZYX convention, when the pitch angle is 90°, the vehicle is
pointing straight up, making the roll and yaw impossible to be determined. For the ZXZ
convention, when the nutation angle is 0° or 180°, the other two angles are ambiguous.

Unit Quaternion

The unit quaternion uses a four-element vector to represent an orientation in 3-
dimensional space. With the quaternion space defined by H, a quaternion q ∈ H can
be parametrised by

q =
[
q0 q1 q2 q3

]T
=
 q0

q1:3

 (A.45)

which is composed of a scalar value q0 and a complex part of the 3-dimensional vector
q1:3. For a unit quaternion, the additional constraint is that

∥q∥ =
√
q2

0 + q2
1 + q2

2 + q2
3 = 1 (A.46)

A set of additional definitions and operations may be applied to it, such as the conju-
gate and inverse of the quaternion given as follows

q̄ =
 q0

−q1:3

 , q−1 = q̄

∥q∥
(A.47)

It can be noted that for a unit quaternion, its inverse is equal to the conjugate of the
quaternion, i.e. q−1 = q̄ when ∥q∥ = 1.

As the unit quaternions are representatives of rigid-body orientations, the combination
of two orientations can be done by the multiplication of two quaternions. The multiplica-
tion between two arbitrary quaternions qA and qB is defined by

qA ◦ qB =
 qA,0qB,0 − qTA,1:3qB,1:3

qA,0qB,1:3 + qB,0qA,1:3 + qA,1:3 × qB,1:3

 (A.48)

with ◦ representing the quaternion multiplication operation. (A.48) may be rewritten as
a quaternion pre-multiplied by a matrix-valued function of the other quaternion, that is

qA ◦ qB =
 qA,0 −qTA,1:3

qA,1:3 qA,013×3 + [qA,1:3]×

 qB,0

qB,1:3


=
 qB,0 −qTB,1:3

qB,1:3 qB,013×3 − [qB,1:3]×

 qA,0

qA,1:3

 (A.49)
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where the skew-symmetric cross product matrix [.]× : R3 → R3×3 is defined by

[v]× =


0 −vz vy

vz 0 −vx
−vy vx 0

 (A.50)

It is additionally remarked that the cross-product operation and skew-symmetric matrix
have the following properties

v × ω = −ω × v

[v]×ω = −[ω]×v = [ω]T×v
(A.51)

More compactly, the quaternion multiplication may be written as the second quaternion
pre-multiplied by a matrix-valued function of the first quaternion, which is

qA ◦ qB = Q(qA)qB = Q̄(qB)qA (A.52)

where the quaternion matrix function, Q : H → R4×4 is defined by

Q(q) =
 q0 −qT1:3

q1:3 q013×3 + [q1:3]×

 =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (A.53)

and the closely related conjugate quaternion matrix Q̄ : H → R4×4 is defined by

Q̄(q) =
 q0 −qT1:3

q1:3 q013×3 − [q1:3]×

 =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

 (A.54)

Note that the quaternion matrix has the property of Q(q̄)q = Q(q)Tq.

A unit quaternion can be used to represent the orientation of a rigid body. Consider
a vector z ∈ R3 in the global coordinates and the same vector Az ∈ R3 expressed in the
body-fixed frame of a rigid body A. The following relation holds:0

z

 = qA ◦

 0
Az

 ◦ q̄A (A.55)

with ◦ being the operation of quaternion multiplication. Moreover, a physical interpreta-
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tion of unit quaternion is that it is defined by a rotation angle (the scalar value q0) about
a spatial axis (given by the complex vector q1:3), as

q =
 q0

q1:3

 =
 cos θ

2

sin θ
2u

 (A.56)

where θ
2 is the half of the rotation angle and u is the unit vector defining the rotation axis.

The advantage of using unit quaternions is that there is no singularity in this represen-
tation. However, the main disadvantage of unit quaternions is that they are constrained to
have unit length, a quadratic constraint that can lead to complications when attempting
to optimise over the quaternion parameters. In addition, the interpretation of quaternion
values is difficult, and the discontinuity between two quaternions for an identical orienta-
tion represented by

[
q0 qT1:3

]T
and

[
−q0 −qT1:3

]T
should be tackled.

Axis-Angle Representation

The axis-angle representation is a notation closely related to the unit quaternion, but
with a more intuitive interpretation as it corresponds to a rotation vector codirectional
with a rotation axis, denoted by u, and the length being the rotation angle, denoted by
θ. The rotation vector representing an orientation is therefore defined by the product of
the unit rotation axis and the rotation angle, as

θ = θu ∈ R3 (A.57)

Given a vector z ∈ R3, the vector rotated about the axis of rotation defined by the unit
vector u by an angle θ can be obtained using Rodrigues’ rotation formula

z′ = (cos θ)u + (sin θ)(u × z) + (1 − cos θ)(u · z)u (A.58)

However, the same orientation can be represented by an infinite number of rotation
vectors, and the relation between the rotation vector and the unit quaternion is quite
straightforward as shown in (A.56), which together makes the axis-angle representation
less used than its counterparts.

A.2 Conversions between Representations

As the same orientation can be represented by different notations, the unified con-
versions between them can be determined, among which the conversions between the
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commonly used representations that appear in this manuscript are summarised as fol-
lows.

Unit Quaternion ⇔ Rotation Matrix

The conversion from the unit quaternion to the rotation matrix can be derived from
(A.55), which states

0
z

 = Q̄(qA)TQ(qA)
 0
Az

 =
 1 0T3
03 RA(qA)

  0
Az

 (A.59)

from which the rotation matrix R(q) : H → SO(3) corresponding to the unit quaternion
q can be written by

R(q) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q2

0 − q2
1 − q2

2 + q2
3

 (A.60)

The reverse mapping from a rotation matrix to a unit quaternion is slightly more
complicated. Inspection from (A.60) yields the following relations



4q2
0 = 1 + r11 + r22 + r33

4q2
1 = 1 + r11 − r22 − r33

4q2
2 = 1 − r11 + r22 − r33

4q2
3 = 1 − r11 − r22 + r33

and



4q0q1 = r32 − r23

4q0q2 = r13 − r31

4q0q3 = r21 − r12

4q1q2 = r12 + r21

4q1q3 = r13 + r31

4q2q3 = r23 + r32

(A.61)

From these relations, four different inverse conversions can be obtained, written as qi(R) :
SO(3) → H for i ∈ {0, 1, 2, 3}, and respectively defined by

q0(R) = 1
2


(1 + r11 + r22 + r33)

1
2

(r32 − r23)/(1 + r11 + r22 + r33)
1
2

(r31 − r13)/(1 + r11 + r22 + r33)
1
2

(r21 − r12)/(1 + r11 + r22 + r33)
1
2

 (A.62)

q1(R) = 1
2


(r32 − r23)/(1 + r11 − r22 − r33)

1
2

(1 + r11 − r22 − r33)
1
2

(r12 + r21)/(1 + r11 − r22 − r33)
1
2

(r13 + r31)/(1 + r11 − r22 − r33)
1
2

 (A.63)
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q2(R) = 1
2


(r13 − r31)/(1 − r11 + r22 − r33)

1
2

(r12 + r21)/(1 − r11 + r22 − r33)
1
2

(1 − r11 + r22 − r33)
1
2

(r23 + r32)/(1 − r11 + r22 − r33)
1
2

 (A.64)

q3(R) = 1
2


(r21 − r12)/(1 − r11 − r22 + r33)

1
2

(r13 + r31)/(1 − r11 − r22 + r33)
1
2

(r23 + r32)/(1 − r11 − r22 + r33)
1
2

(1 − r11 − r22 + r33)
1
2

 (A.65)

Depending on the values of R, some of these functions will produce complex numbers.
To avoid this, the following composite function can be defined, in which the best of these
four conversions is selected depending on the parameters of R, i.e. q(R) : SO(3) → H

q(R) :=



q0(R) if r22 > −r33, r11 > −r22, r11 > −r33

q1(R) if r22 < −r33, r11 > r22, r11 > r33

q2(R) if r22 > r33, r11 < r22, r11 < −r33

q3(R) if r22 < r33, r11 < −r22, r11 < r33

(A.66)

Euler Angles ⇔ Unit Quaternion

From the definition of unit quaternion by a rotation axis with the rotation angle in
(A.56), the unit quaternions qj(α) : R → H for j ∈ {x, y, z} corresponding to the unit
coordinate rotation respectively about x, y and z axis can be obtained as follows

qx(α) =
[
cos α

2 sin α
2 0 0

]T
(A.67)

qy(α) =
[
cos α

2 0 sin α
2 0

]T
(A.68)

qz(α) =
[
cos α

2 0 0 sin α
2

]T
(A.69)

Based on these quaternions for unit coordinate rotations, the unit quaternions associated
with ZYX and ZXZ Euler angles are respectively

qzyx = qz(ψ) ◦ qy(ϑ) ◦ qx(ϕ)

=


cos ϕ

2 cos ϑ
2 cos ψ

2 + sin ϕ
2 sin ϑ

2 sin ψ
2

sin ϕ
2 cos ϑ

2 cos ψ
2 − cos ϕ

2 sin ϑ
2 sin ψ

2

cos ϕ
2 sin ϑ

2 cos ψ
2 + sin ϕ

2 cos ϑ
2 sin ψ

2

cos ϕ
2 cos ϑ

2 sin ψ
2 − sin ϕ

2 sin ϑ
2 cos ψ

2


(A.70)
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qzxz = qz(ψ1) ◦ qx(ϕ) ◦ qz(ψ2)

=


cos ψ1

2 cos ϕ
2 cos ψ2

2 − sin ψ1
2 cos ϕ

2 sin ψ2
2

cos ψ1
2 sin ϕ

2 cos ψ2
2 + sin ψ1

2 sin ϕ
2 sin ψ2

2

sin ψ1
2 sin ϕ

2 cos ψ2
2 − cos ψ1

2 sin ϕ
2 sin ψ2

2

sin ψ1
2 cos ϕ

2 cos ψ2
2 + cos ψ1

2 cos ϕ
2 sin ψ2

2


(A.71)

The reverse mapping from the unit quaternion to Euler angles in different conventions
can be identified from (A.43), (A.44) and (A.60), which can be written by

ηzyx =


ϕ

ϑ

ψ

 =


atan2(r32, r33)

asin(−r31)
atan2(r21, r11)

 =


atan2

(
2(q0q1 + q2q3), q2

0 − q2
1 − q2

2 + q2
3

)
asin

(
2(q0q2 − q1q3)

)
atan2

(
2(q0q3 + q1q3), q2

0 + q2
1 − q2

2 − q2
3

)
 (A.72)

ηzxz =


ψ1

ϕ

ψ2

 =


atan2(r13,−r23)

acos(r33)
atan2(r31, r32)

 =


atan2

(
2(q0q2 + q1q3), 2(q2

0q
2
1 − q2

2q
2
3)
)

acos(q2
0 − q2

1 − q2
2 + q2

3)
atan2

(
2(q1q3 − q0q2), 2(q2

2q
2
3 + q2

0q
2
1)
)
 (A.73)

where atan2, asin and acos are the arctan, arcsin and arccos functions implemented in
computer languages that produce correct results for all possible orientations.

A.3 Rotational Kinematics

Rotational kinematics is the study of rigid body motion irrespective of the forces
and moments involved. In this section, the kinematic relations depicting the rotational
movement of a rigid body using different representations are presented, including the re-
lationship of derivatives of rotation matrix, Euler angles and unit quaternion with respect
to the angular velocity of the rigid body as in [Zhao, 2016; Diebel, 2006; Schwab, 2002].

Derivative of Rotation Matrix

Let RA ∈ SO(3) be the rotation matrix of a rigid body A, satisfying RT
A RA = 13×3

(i.e. det RA = 1). The time derivative of the rotation matrix is defined by

ṘA = [ωA]×RA

ṘA = RA[AωA]×
(A.74)

where [.]× represents the skew-symmetric matrix defined in (A.50), ωA and AωA are the
angular velocity of the body A expressed respectively in the world frame and the body-
fixed frame.
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Similarly, the derivative of a rotation matrix depicting a relative rotation between two
frames, such as ARB from FB to FA, can be given by

AṘB = [AωB/A]×ARB

AṘB = ARB[BωB/A]×
(A.75)

where AωB/A is the angular velocity of FB (relative to FA) expressed in FA, and BωB/A

is the same quantity expressed in FB.

Rates of Euler Angles

The relationship between the angular velocity of a rigid body AωA expressed in its
body-fixed frame and the rates of changes of Euler angles η̇A can be defined by

AωA = Dη̇A (A.76)

with the mapping matrix D ∈ R3×3. Depending on the convention of Euler angles, this
matrix takes different forms which can be derived from the definition of the order of Euler
angles, i.e. for ZYX Euler angles

AωA = ϕ̇ RT
x (ϕ)


1
0
0

+ ϑ̇ RT
x (ϕ)RT

y (ϑ)


0
1
0

+ ψ̇ RT
x (ϕ)RT

y (ϑ)RT
z (ψ)


0
0
1



= Dzyx


ϕ̇

ϑ̇

ψ̇


(A.77)

with Rx(ϕ), Ry(ϑ) and Rz(ψ) being the unit coordinate rotations. Then the matrix D
can be calculated as

Dzyx =


1 0 − sinϑ
0 cosϕ cosϑ sinϕ
0 − sinϕ cosϑ cosϕ

 (A.78)

The matrix mapping the rates of ZXZ Euler angles to body-fixed angular velocity can be
derived using the same procedure, which is however omitted here as this convention is not
used to represent the rotational movement of a rigid body in this manuscript.

The reverse mapping from the body-fixed angular velocity to the Euler angle rates
can be known by inverting the matrix D as

η̇A = (D−1)AωA (A.79)
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where the inverse of the mapping matrix is written by

D−1
zyx =


1 sinϕ tanϑ cosϕ tanϑ
0 cosϕ − sinϕ
0 sinϕ/ cosϑ cosϕ/ cosϑ

 (A.80)

The second-order kinematics related to the Euler angles in ZYX convention can be
additionally derived from (A.76), which holds

Aω̇A = Dη̈A + Ḋη̇A (A.81)

where Aω̇A is the angular acceleration of the rigid body expressed in its body-fixed frame
FA, η̇A and η̈A represent the rates and second-order rates of the Euler angles, and Ḋ is
the time derivative of D written as

Ḋzyx =


0 0 − cosϑ · ϑ̇
0 −ϕ̇ sinϕ −ϑ̇ sinϑ sinϕ+ ϕ̇ cosϑ cosϕ
0 −ϕ̇ cosϕ −ϑ̇ sinϑ cosϕ− ϕ̇ cosϑ sinϕ

 (A.82)

Derivative of Unit Quaternion

Consider a unit quaternion of a rigid body written by qA, its derivative q̇A is related
to the angular velocity AωA expressed in the body-fixed frame, which can be written by
the following relationship  0

AωA

 = 2q̄A ◦ q̇A = 2Q(qA)T q̇A (A.83)

and with the inverse mapping

q̇A = 1
2qA ◦

 0
AωA

 = 1
2Q(qA)

 0
AωA

 (A.84)

Note that the relationship with respect to the angular velocity expressed in the world
frame can also be derived, for which the reader may refer to [Schwab, 2002].

The angular acceleration of a rigid body is found by differentiation of the expression
in (A.83), resulting in  0

Aω̇A

 = 2Q(qA)T q̈A + 2
∥q̇0∥2

03

 (A.85)
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Appendix B: Prototype and Experimental Implemen-
tation

The prototype of the Flying Parallel Robot (FPR) studied within this thesis is com-
posed of a triangle-form platform and three legs attached with quadrotors, as shown in
Fig. B.1(a). The structure of the passive architecture is designed, manufactured and as-
sembled in the laboratory, with the original CAD model illustrated in Fig. B.1(b).

The aluminium platform weighs 250 g and the rigid legs are each 1.043 m long with a
mass of 66 g. Each of them is assembled by a carbon-fibre tube and 3D-printed con-
nection parts. The spherical joints and the bearings (for revolute joints) are based on
standard parts, which are sufficiently lubricated to reduce friction in the joints. The cus-
tom quadrotors used in the FPR are based on a 34-cm Lynxmotion Crazy2Fly frame, with
SunnySky 1250kV brushless DC motors, 8045 dual-blade propellers and a 3-cell LiPo bat-
tery, weighing about 1 kg. The detailed information on geometric and dynamic parameters
are summarized in Table B.1, which are obtained from the CAD model in Catia V5.

(a) Prototype of the FPR with three quadrotors (b) CAD model of the FPR prototype

Figure B.1 – FPR prototype and its original CAD design for the experimental validation.

In terms of low-level quadrotor control, an open-source autopilot is chosen, which is
based on PX4 (software) and Pixhawk 4 Mini/Pixhawk 5 (hardware) [Dronecode, 2021].
The flight control board can achieve different levels of quadrotor control, such as position,
velocity, attitude and angular rate, with onboard IMU sensor and EKF filtering technique
sufficiently estimating the state of the quadrotor, such as its attitude and linear velocity.
A custom-built PX4 firmware is installed on the Pixhawk performing the attitude control
such as the one presented in Section 3.3.3, which has been experimentally tuned with
aggressive attitude and angular rate gains to ensure rapid convergence to the attitude

178



Symbol Parameter Value Unit
r Platform radius 0.127 [m]
l Leg length 1.043 [m]
d Spherical-joint offset 0.069 [m]
β Yaw constant 45 [°]
mp Platform mass 0.250 [kg]
ml Leg mass 0.066 [kg]
sp Platform CoM [0, 0, 0.010]T [m]
sl Leg CoM [0.599, 0, 0]T [m]
Ip Platform MoI* diag({5.4e−4, 5.4e−4, 0.001}) [kg.m2]
Il Leg MoI* diag({1.6e−6, 0.035, 0.035}) [kg.m2]

mb,1,mb,2,mb,3 Quadrotor masses {1.007, 1.028, 1.018} [kg]

Table B.1 – Geometric and dynamic parameters of the FPR. *MoI refers to the Moment
of Inertia. diag(.) : Rn → Rn×n is the diagonal matrix of a given array of values.

setpoints and robustness to the disturbances. The location of the spherical joint is given
by the offset d and the yaw constant β in Table B.1, which is away from the CoM of
the quadrotor and considered as a disturbance on the onboard attitude controller. On
each quadrotor, a Raspberry Pi 4B is mounted working as a companion computer to
handle the communication with the Pixhawk either via serial ports by microRTPS protocol
[eProsima, 2022] or through Ethernet by UDP protocol. It is remarked that the Ethernet
connection seemed to be more robust in terms of bandwidth and stability compared to
serial communication channels. The communication between the ground computer and
the companion computers is handled by ROS2 Galactic, performed through a 5-GHz Wifi
network.
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Appendix C: Quadrotor Thrust Regulation

The onboard flight control of the quadrotor UAV used in the FPR prototype (detailed
in Appendix B) is achieved by open-source hardware and software (Pixhawk and PX4).
When received the thrust magnitude setpoint (i.e. fdt ) from a high-level controller, the
onboard companion computer (i.e. Raspberry Pi) computes a scalar value as a percentage
of maximum thrust and sends to the Pixhawk, i.e.

uf = fdt
fmax

(C.1)

with uf a value between [0, 1] and fmax a parameter characterising the maximum thrust
magnitude in the Pixhawk.

The desired thrust is then mapped by Electronic Speed Control (ESC) units to the motor
speeds propelling the rotors. The regulation of motor speeds by the ESCs is however in an
open loop without any feedback, which makes the actual thrust produced by a quadrotor
being deviated from its desired values. When the battery is fully charged, the actual thrust
produced by the quadrotor is sufficiently close to the desired value, while the mismatch
between the desired and actual thrusts becomes non-negligible with low battery levels.
This problem has been particularly recognised when the flight lasts a relatively long du-
ration, during which the tracking of z position of a UAV is gradually degenerated due to
drops in the battery level.

However, it has been noticed that the maximum thrust that the quadrotor can produce
decreases linearly when the battery level drops. Therefore, an online regulation of the
thrust commands uf adapting the maximum thrust parameter fmax according to the
actual battery level can be done, which is given by a linear relationship as

fmax = afV + bf (C.2)

with a and b two constants and V being the battery level in voltage.

To determine the linear relationship between the battery level and maximum thrust
parameter in (C.2), a hovering flight of a single UAV has been done using a simple PD-
based position controller as in [Kamel, 2017]. Note that the integral gain of a classical
PID controller is disabled to not compensate for the thrust changes due to the evolution
of the battery level during the hovering flight. An acceleration-based observer such as the
one investigated [Tomić, 2017] is additionally implemented to estimate the evolution of
the maximum thrust fmax during the flight, which can be summarised as follows:
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Consider the 3-dimensional thrust force produced by a quadrotor i expressed in its
own frame Fbi written by bifi = [0, 0, ft,i]. It can be known from the linear acceleration ai
of the quadrotor i expressed in F0 by

bifi = miRT
i (ai − g) (C.3)

with mi the mass of the quadrotor, Ri the rotation matrix representing its orientation
and g =

[
0 0 −g

]
(for g = 9.81m/s2) being the gravity vector in F0. One may remark

that the term aacc := RT
i (ai−g) is directly measured by the accelerometer of the onboard

IMU sensor, of which the z-axis element is related to ft,i and can be denoted by aacc,z.

Knowing from (C.1) that fmax = fdt /uf , an estimation on the maximum thrust parameter
can be formulated based on the relation of (C.3) such that

f̂max(t) = KI

∫ t

0

(
miaacc,z
uf

− f̂max(t− ∆t)
)
dt (C.4)

where f̂max(t), f̂max(t − ∆t) are the estimated maximum thrust parameter respectively
at current and previous timestamps, uf is the actual control value sent to the flight con-
troller, and KI is the estimation gain.

This acceleration-based estimation is equivalent to a first-order filter. That is, by deriving
the relation of (C.4), one can obtain the estimation error dynamics as

˙̂
fmax +KI(f̂max − fmax) = 0 (C.5)

where the estimation error is given by (f̂max − fmax) with fmax = miaacc,z

uf
as the actual

maximum thrust computed from the direct measurements. f̂max converges asymptotically
to its actual value fmax.

It is additionally remarked that the estimated values of f̂max might not be smooth
enough due to the noisy acceleration measurements. To avoid this, (C.4) can be further
adapted to (C.6) using measurements of the linear velocity which are much better filtered
by the onboard EKF technique.

f̂max(t) = KI

[ ∫ t

0

(
− mi

bigz
uf

− f̂max(t− ∆t)
)
dt+

bivi,z
uf

]
(C.6)

where bigz represents the z-axis element of the gravity vector expressed in Fbi by big = RT
i g,

and bivi,z is the z-axis linear velocity of the quadrotor i expressed in Fbi.
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The results on the evolution of the estimated maximum thrust parameter and the
battery level recorded on one quadrotor are plotted in Fig. C.1. The linear regression for
obtaining the relationship of (C.2) has been done (shown in Fig. C.2), which has resulted
in constant parameters for regulating the maximum thrust parameter according to the
battery level on all the quadrotors given in Table C.1.
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Figure C.1 – Evolution of the estimated maximum thrust and the battery voltage level of
a quadrotor during a hovering flight over 120 s.
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Figure C.2 – Linear regression between battery levels and maximum thrust estimates.

Quadrotor af [N/V] bf [N]
1 8.02 -61.66
2 8.22 -64.01
3 8.15 -62.28

Table C.1 – Constant parameters for thrust regulation as a function of battery levels
according to (C.2) for three quadrotors.
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Appendix D: Calibration of Fixed Transformations

As presented in Section 4.2.1, the estimation of relative pose between each UAV and
the platform requires two fixed transformations to be known, which are biTCi from the
camera frame to multirotor’s body frame, and pTM from the ArUco marker frame to the
platform frame. A calibration process is done to obtain the values of these two transfor-
mation matrices using both marker pose estimation algorithm and the MOCAP data. It
is noted that to reduce the calibration errors, instead of detecting a single marker using
ArUco algorithm, a ChArUco marker detection algorithm available in OpenCV [OpenCV,
2022] is chosen. The ChArUco maker is a chessboard composed of 3 × 3 squares and four
ArUco markers inside the white squares. The pose estimation is therefore more accurate
as the algorithm detects the corner points of four markers and the black squares, and esti-
mates the pose based on these detected features. However, the size of four ArUco markers
in a ChArUco marker is too small, limiting this method only for calibration (detecting in
a short distance), but not for the pose estimation discussed in Section 4.2.1.

For calibrating biTCi, a ChArUco marker is placed in the flight arena, whose pose
relative to the camera frame of the quadrotor is being estimated by the ChArUco algorithm
(as shown in Fig. D.1). To distinguish with the ArUco marker attached below the platform,
the ChArUco marker for calibration has a maker frame FMc . The ground-truth poses of
the UAV and the marker are recorded by the MOCAP system, which allows to know their
global poses written in transformation matrices as

Tbi =
Ri pi
0T3 1

 , TMc =
RMc pMc

0T3 1

 (D.1)

where Ri, pi are the rotation matrix and translation vector for the pose of the UAV i,
and RMc , pMc represent the pose of the marker, with all the quantities expressed in the
global frame F0. From these global poses, the relative pose from the marker frame to the
body frame of UAV i can be known by

biTMc = T−1
bi TMc (D.2)

with T−1
bi being the inverse transformation that has been defined in (4.3).

Knowing the relative pose of the marker frame expressed in the camera frame estimated
by the algorithm, written as CiTMc , the fixed transformation of biTCi can finally be known
by

biTCi = biTMc

CiT−1
Mc

(D.3)
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(a) Calibration configuration (b) Pose estimation by ChArUco algorithm

Figure D.1 – Calibration of the camera pose relative to the multirotor’s frame, i.e. biTCi,
using ChArUco pose estimation algorithm and MOCAP data.

The calibration of the fixed transformation pTM can be done using a similar process.
However, it is remarked that the global poses of the platform and the marker can be
directly detected by MOCAP, written respectively by Tp and TM expressed in F0. The
pose of the marker relative to the platform frame is therefore known by

pTM = T−1
p TM (D.4)

with the inverse transformation T−1
p .

The fixed transformations have thus been calibrated, which are expressed respectively
by a rotation matrix and a translation vector. For the orientation, a simpler representa-
tion can be chosen to reduce the number of parameters for saving these constant values.
The Euler angles in ZXZ convention are selected because they are simple and intuitive to
use. The conversion from the rotation matrix to the ZXZ Euler angles is given in (A.73).
Finally, the constant parameters for all the fixed transformations are summarised in Ta-
ble D.1. Noted that the fixed transformation biTCi for all the UAVs are supposed to be
identical.

Transformation p [cm] ηzxz [rad]
x y z ψ1 ϕ ψ2

Camera Pose 8.45 −9.35 0.79 1.561 0.708 0.829
Marker Pose −0.83 0.26 −2.47 −0.716 3.136 0.837

Table D.1 – Constant parameters (translation vector and ZXZ Euler angles) of the fixed
transformations for the camera pose and the ArUco marker pose.
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Titre : Commande décentralisée et estimation d'un robot parallèle volant en interaction avec
l'environnement

Mots clés : Systèmes Aériens: Mécanique et Contrôle; Robot Parallèle; Système Multi-Robots;
Estimation basée sur la Vision; Commande Décentralisée; Manipulation Aérienne.

Résumé : La manipulation aérienne est un
nouveau domaine où les drones multirotors sont
équipés d'effecteurs pour la saisie, le transport
et la manipulation des objets. Afin d'améliorer la
capacité de charge et la manipulabilité dans
l'espace 3D, un robot parallèle volant (FPR) a
été proposé, dans lequel un certain nombre de
drones sont utilisés pour soutenir
collaborativement une architecture parallèle et
passive.

Dans cette thèse, les méthodes d'estimation
et de contrôle considérant l'interaction avec
l'environnement sont adressées et appliquées à
un FPR spécifique composé d'une plateforme
mobile et des jambes rigides attachées à des
quadrirotors qui actionnent le système.

La deuxième contribution de cette thèse est la
proposition de stratégies décentralisées
basées sur des mesures embarquées et
intrinsèques des drones. Les expériences
montrent l'efficacité des méthodes proposées
pour la régulation de la configuration du robot,
la réalisation des tâches de positionnement
précis par téléopération et des interactions
basées sur le contact. En outre, une analyse
détaillée sur les torseurs admissibles du FPR
est présentée, qui permet de calculer l'espace
de torseur admissible (AWS) de la plateforme
et de déterminer les configurations optimales
des jambes maximisant la faisabilité de
torseurs du robot en fonction des exigences
spécifiques de la tâche.

Title : Decentralized control and estimation of a flying parallel robot interacting with the environment

Keywords : Aerial Systems: Mechanics and Control; Parallel Robot; Multi-Robot Systems; Vision-
based Estimation; Decentralized Control; Aerial Manipulation.

Abstract : Aerial manipulation is an emerging
domain where multirotor Unmanned Aerial
Vehicles (UAVs) are equipped with onboard
end-effectors for grasping, transporting and
manipulating objects. To enhance the payload
capacity and achieve full manipulability in 3-
dimensional space, a flying parallel robot (FPR)
was previously proposed in which a number of
UAVs are used to collectively support a passive
parallel architecture.

In this thesis, the estimation and control
methods dealing with the interaction with the
environment are addressed, which are applied
to a specific FPR composed of a moving
platform and a number of rigid legs attached
with quadrotors actuating the system.

The second main contribution of this thesis is
the proposal of decentralized strategies based
on onboard and intrinsic measurements of the
UAVs. Experiments show the effectiveness of
the proposed methods in regulating the robot
configuration, achieving precise positioning
tasks through teleoperation and performing
contact-based interactions with an object in the
environment. In addition, a detailed analysis of
the wrench feasibility of the FPR is presented,
allowing to compute the Available Wrench Set
(AWS) of the platform and determine the
optimal leg configurations maximising the
wrench feasibility of the robot accordingly to
specific task requirements.


	Introduction
	State of the Art
	Aerial Manipulation
	Single-UAV Manipulators: From Helicopter to Multirotor-based Platforms
	Multi-UAV Manipulators: From Cooperative Systems to Rigidly Connected Systems

	Design of Flying Parallel Robots
	General Modelling of Flying Parallel Robots
	Motion Control of Flying Parallel Robots

	Conclusion

	Geometric, Kinematic and Dynamic Modelling
	Introduction
	System Description
	Geometric Relations
	Inverse Geometric Model (IGM)
	Calculation of Internal Configuration via Geometric Relation
	Location of Spherical Joint attached on the Multirotor

	Kinematics
	First-Order Kinematics
	Second-Order Kinematics

	Dynamics
	Computation of Actuation Wrench
	Dynamic Modelling via Recursive Newton-Euler Algorithm
	Dynamic Modelling using Spatial Vector Notation
	Computation of Gravity Wrench
	Multirotor Rotational Dynamics

	Numerical Validation
	Conclusion

	Wrench Estimation and Interaction Control
	Introduction
	External Wrench Estimation
	Principle of Momentum-based Approach
	First-Order Wrench Observer (FOWO)
	Second-Order Wrench Observer (SOWO)
	Sliding-Mode Wrench/Momentum Observer (SMWO)
	Discussion on Wrench Observers

	Impedance-based Interaction Control
	High-level Impedance-based Controller
	Computation of Multirotor Thrust/Attitude Setpoints
	Low-level Multirotor Attitude Controller
	Discussion on Controller Structure and Tuning

	Overall Estimation and Control Framework
	Experimental Validation
	Experiment I: Hovering in Free Space
	Experiment II: Hovering with Additional Payload
	Experiment III: Hovering with External Wind Perturbations
	Experiment IV: Contact-based Interaction Tasks

	Conclusion

	Decentralized Estimation and Control
	Introduction
	Distributed State Estimation
	Relative Pose Measurement
	EKF-based Pose Estimation
	Robot State Reconstruction

	Decentralized Controllers
	Control Problem Formulation
	Decentralized Motion Controllers
	Decentralized Interaction Controller
	Adjustment on Low-level Attitude Commands

	Experimental Validation
	Experiments on Decentralized Motion Controllers
	Experiments on Decentralized Interaction Controller

	Conclusion

	Wrench Feasibility Analysis
	Introduction
	Basic Concept of Wrench Feasibility
	Analysis of Available Wrench Set
	Definition of Convex Polytopes
	Computation of Available Thrust Set
	Computation of Available Wrench Set
	Case Study

	Analysis of Static Wrench Feasibility
	Definition of Static Feasibility Margin
	Computation of Static Feasibility
	Case Study

	Determination of Optimal Leg Configuration
	Conclusion

	Conclusion
	Appendix
	Appendix A: Orientation and Rotational Kinematics
	Representations of Orientation
	Conversions between Representations
	Rotational Kinematics

	Appendix B: Prototype and Experimental Implementation
	Appendix C: Quadrotor Thrust Regulation
	Appendix D: Calibration of Fixed Transformations 

	Bibliography

