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Abstract

This PhD tackles two aspects of surface reconstruction from point clouds. Firstly, it
addresses the case of large-scale point clouds that are too massive to fit into the memory
of one single machine. We present an end-to-end distributed algorithm that can scale up
to arbitrarily large point clouds whilst guaranteeing the watertightness of the resulting
surface. Secondly, we deal with the assessment of surface reconstruction by proposing two
evaluation protocols. The first one requires synthetic data whereas the second one can
be set up with data directly obtained from a sensor. These protocols and their respective
newly-defined metrics allow the quantification of the quality of surface reconstructions
with less bias than previous approaches.

Résumé

Cette thèse de doctorat traite de deux aspects de la reconstruction de surface à partir de
nuage de points. Premièrement, elle aborde le cas large échelle où un nuage de points est
trop volumineux pour être stocké dans la mémoire d’un seul ordinateur. Nous présentons
un algorithme distribué de bout en bout permettant de traiter des nuages de points arbi-
trairement grands tout en garantissant l’étanchéité de la surface produite. Deuxièmement,
cette thèse contribue à l’évaluation de la reconstruction de surface de par la définition de
deux protocoles. Le premier nécessite des données synthétiques alors que le deuxième
peut être mis en place en ayant uniquement recours à des données provenant de capteurs.
Ces protocoles et les nouvelles métriques qui leur sont associées permettent de quantifier
la qualité des reconstructions avec un biais moins important que les approches utilisées
jusqu’alors.
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Introduction

Motivation

Surface reconstruction is the task of producing a continuous digital representation of a
real surface about which discrete information has been acquired. This information may
already be in the form of point clouds produced by a laser scanner. This includes Time-
of-flight [2] and Structured-light [3] devices as well as terrestrial and airborne LiDAR [4]
that can scan large environments. Point clouds can also be produced from images using
Multi-view stereo [5] or Structure from motion [6].

This task has been extensively studied and a tremendous amount of approaches have
been proposed as shown in Chapter 1. Nonetheless, two major aspects are still facing a
lack of contributions.

Firstly, very few approaches efficiently handle large point clouds as shown in Chapter
1, Section 1.2. With the improvement in sensor capabilities, it has become much easier
to acquire massive amounts of visual data in the last few years. In particular, cameras
are able to capture more pixels, LiDAR scanners produce more points, and the platforms
onto which these device can be embedded have diversified: static, terrestrial and aerial
mobile mapping or drones.

As pointed out in [7], random-access memory (RAM) size is often a bottleneck when
it comes to dealing with large amounts of data. Most surface reconstruction algorithms
build the surface all at once by loading the whole point cloud and then creating addi-
tional data structures (Delaunay triangulations, voxel grids, octrees, etc.) to represent
the output surface. This implies a strong constraint on the maximum input data size for
a given amount of RAM. Processing time inevitably increases with the number of points
to process, at best in a linearly fashion. Even without considering real-time applications,
it is important to keep the processing time within reasonable bounds when the data size
becomes very large.

The second major aspect of surface reconstruction that has not yet been deeply ex-
plored is its evaluation in the case of open scenes. While many methods are available to
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build a 3-dimensional mesh from point clouds, there is a lack of relevant metrics to assess
the accuracy of these reconstructions. As surface reconstruction is an ill-posed problem,
several outputs are possible for the same input point cloud, and they might not even be
equivalent in terms of topology (e.g. number of components). How can we know which
model is the best? Can we quantify their accuracy? Although it is possible to assess the
quality of the models visually, this approach raises several issues. First, it is a subjective
comparison and one might be tempted to favour their own or preferred method over oth-
ers. Secondly, everyone has a different perception of visual quality making it difficult to
come to an agreement, even in the absence of a conflict of interest. Thirdly, while it might
sound reasonable to visually evaluate a few different models of a relatively small scene,
it is very unlikely that one would be able to carry out a large-scale evaluation involving
dozens of models representing large areas. Current metrics are not entirely satisfactory
as they often depend heavily on the priors used by the algorithms to reconstruct a sur-
face (closed or not, for example) or the ground truth density. This becomes particularly
troublesome in the case of open scenes when the ground truth might not be dense and
homogeneous, and when the priors have a massive influence on the output surface. It is
thus essential to find relevant metrics.

In the context of remote sensing, this topic was first neglected in favour of 2.5D
approaches, where the surface reconstruction problem is merely a question of interpolation
of possibly sparse height data sampled on a regular grid. This led to the popular Digital
Elevation Models (DEMs) and Digital Surface Models (DSMs) used to represent the
geometry of the visible surface of a scene seen from above. This representation is, however,
becoming more and more limited: an increasing number of applications require terrestrial
data (Mobile Mapping Systems, fixed stations and hand-held cameras) for which the
2.5D setting is completely inappropriate. Moreover, the spread of aerial oblique imagery
aiming at acquiring more data on vertical surfaces, and the fact that some aerial LiDAR
can scan up to 40◦ away from the vertical, call for more generic 3D models in order to
have a continuous geometric representation of the underlying scene. Finally, an increasing
number of commercial products such as Sure by NFrames or ContextCapture by Bentley
already offer full 3D processing pipelines for surface mesh reconstruction from remote
sensing data. For all these reasons, 3D surface reconstruction, once a topic mainly studied
in the geometry processing community, is becoming more and more widespread in remote
sensing.

Why has so little work been carried out on the assessment of surface reconstruction
of open scenes? One major reason is the complexity of defining an appropriate ground
truth. In real-case scenarios when the goal is to produce a digital model of a real object
or scene, there is no ground truth other than the real surface itself. It is thus impossible
to directly compute the “distance” or the “difference” between a digital model and the
ideal real surface. One option is to use synthetic data as in Chapter 3, where a given mesh
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is chosen to be the ground truth and is then virtually scanned in a way that simulates
the defects of a real acquisition, and then the surface reconstruction algorithms to be
evaluated are run on this virtual scan. This makes it more straightforward to compute
metrics that assess the difference between the ground truth model and the reconstructed
one. Another possibility for working with data representing real scenes is to scan the
given scene or object chosen for the evaluation in two different ways such that we can
be certain that one scan is significantly “better” than the other one. In particular, this
high-quality point cloud has to be denser, more accurate and/or contain fewer occlusions.
After running the algorithms to be assessed on the low-quality point cloud, the resulting
meshes can be evaluated using the additional information contained in the high-quality
one.

Definitions and properties of surfaces

A surface is not defined the same way in all branches of mathematics. In topology [8], a
surface is a two-dimensional manifold (2-manifold).

Definition 0.0.1. An n-manifold is a topological space such that each point has a neigh-
bourhood that is homeomorphic to an n-dimensional open disc.

Definition 0.0.2. An n-manifold with boundary is a topological space such that each
point has a neighbourhood that is homeomorphic to either an n-dimensional open disc or
the half-disc.

We can thus define the boundary of a manifold as the set of points with half-disc
neighbourhoods.

In computer graphics, a triangle mesh is the most common way of representing sur-
faces, so let us bind the two domains by introducing the concepts that lead to the definition
of a triangulated surface.

Definition 0.0.3. An n-cell is an n-manifold with boundary with the additional property
that its boundary must be divided into a finite number of lower-dimensional cells, called
the faces of the n-cell.

In particular:

• A 0-dimensional cell is a point

• A 1-dimensional cell is a segment

• A 2-dimensional cell is a polygon (we will consider it to be a triangle)

• A 3-dimensional cell is a solid polyhedron (we will consider it to be a tetrahedron)
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Cells can be bound to each other to form complexes:

Definition 0.0.4. A complex K is a finite set of cells K = ⋃ {σ : σ is a cell} such that:

1. if σ is a cell in K, then all faces of σ are elements of K.

2. if σ and τ are cells in K, then Int(σ) ∩ Int(τ) = ∅.

The dimension of K is the dimension of its highest-dimensional cell.

Definition 0.0.5. A simplicial complex (or triangulation) is a 2-complex structure with
only triangular cells, and with the additional condition that any two triangles are either
connected along a single edge or at a single vertex, or are disjoint.

In all following chapters, we will always refer to triangle meshes as surfaces. Before
extending the meaning of this term, let us properly define what we mean by a triangulated
surface.

Definition 0.0.6. A triangulated surface (without boundary) is a simplicial 2-complex
such that:

1. each edge belongs to exactly 2 triangles.

2. the triangles that meet at a vertex can be labelled T1, T2, . . . , Tn, with adjacent
triangles in this sequence connected along an edge and Tn connected to T1 along an
edge.

A triangulated surface with boundary can, however, have edges that belong to only one
triangle. The boundary is formed by such edges.

In the domain of computer graphics, one may encounter triangle soups (a set of tri-
angles in R3) that are not triangulated surfaces. It is possible to define a list of vertices
with connections between them without the resulting triangle soup respecting the criteria
for being a surface. We will thus define some of the properties that triangle soups can have.

Edge-manifold if, for each edge, the set of triangles that share this edge form a topo-
logical disk.
Vertex-manifold if, for each vertex, the set of triangles that share this vertex form a
topological disk.
Manifold if any point on the mesh has a neighbourhood that is homeomorphic to the
Euclidean plane R2. This is desirable as many mesh-processing algorithms will fail on
non-manifold meshes.
Orientable if one can define a consistent continuous orientation of each triangle, mean-
ing that each edge shared by two triangles appears in the opposite order in the index
order of each triangle. Once again, mesh processing methods often require orientability,
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Figure 1: 2D comparison between hard watertightness (left) and soft watertightness
(right). The soft-watertight surface has a border (materialised by the blue dots) but
only on the boundary of the domain. When trying to model urban environments, the red
piece of surface from the hard-watertight surface does not have any significant meaning
so soft-watertightness is often better suited to open scenes.

in particular because the widely-used halfedge data structure has this prerequisite.
Intersection-free if all pairs of triangles that do not share an edge or vertex do not
intersect. Self-intersection is always seen as a bad property as real surfaces cannot self
intersect.
Watertightness: A surface is watertight if it has no border. In the case of a triangle
mesh, this means each edge needs to have exactly two incident faces. We will call this
property hard watertightness. When trying to reconstruct an open scene, it is often more
realistic to authorise the reconstructed surface to intersect the boundary of a domain
of interest B (a bounding box, for instance) as illustrated in Figure 1. We thus define
soft watertightness as the property that a mesh has when it has no border except on the
boundary of the domain ∂B. Only triangle edges lying on the domain boundary can have
only one incident face.

Objectives

This thesis aims to address surface reconstruction through the following objectives:

1. Scaling up surface reconstruction by proposing an algorithm that can process arbitrarily-
large point clouds.

2. Defining new metrics to evaluate surface reconstruction.

Main Contributions

The main contributions of this thesis are as follows:

1. An end-to-end distributed out-of-core algorithm guaranteeing watertightness and
suited to any kind of large-scale point cloud with an arbitrarily-complex 3D geom-
etry.
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2. An evaluation protocol to assess surface reconstruction in the case where a ground
truth mesh is available. For open scenes, this is only possible by synthetically
scanning a realistic mesh, in our case publicly available 3D meshes of open scenes.
We thus developed an aerial LiDAR simulator with different scanning patterns and
realistic noise, the code of which is open source and available online 1.

3. An evaluation protocol to assess surface reconstruction using only real data, which
we applied to public datasets but also to a dataset specifically designed and acquired
for this study. This dataset and the code to evaluate a reconstruction has been
publicly released1.

Outline

The dissertation is composed of 4 chapters.

Chapter 1 presents a state of the art of the relevant contributions. In particular, we
present surface reconstruction algorithms but also general tools to process massive input
data. Moreover, we investigate previous work on the evaluation of surface reconstruction.

In chapter 2, we present a distributed and out-of-core algorithm that is able to pro-
cess large-scale point clouds. We explain how we managed to parallelise the last step of
a reference algorithm, which until now was its main bottleneck.

Chapter 3 presents an evaluation protocol using synthetic data as well as some tools
we had to develop to carry out such an assessment, in particular an aerial LiDAR simu-
lator and a high-quality mesh dataset.

Another approach to assess surface reconstruction without the need for synthetic data
is proposed in Chapter 4.

Finally, we give the conclusion and perspectives of our work.

1Source code is available at: GitHub/SurfaceReconEval
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Chapter 1

State of the art

1.1 Surface Reconstruction

Here we review existing methods to reconstruct a triangle mesh from point cloud and
classify them by the paradigm they use. See [9] and [10] for an even deeper analysis
of them (even though the most recent methods do not appear). Methods evaluated in
Chapters 3 and 4 are typesetted in bold.

1.1.1 Indicator function

Often used to achieve watertight reconstructions, this class of algorithms proceed by
computing a space segmentation. The object itself is defined as the region of space where
the labelling equals a certain value. The surface is then computed by finding the changes
in the segmentation. A popular approach in this field is Poisson reconstruction [11].
Their indicator function χ is defined as 1 inside the object and 0 outside. They show that
χ convolved with a smoothing filter has to respect Poisson equation (1.1) where −→V is a
vector field depending on point locations and the associated normals.

∆χ̃ = ∇.−→V (1.1)

This differential equation is solved numerically and an adaptation of the marching cube
algorithm [12] is used to extract a triangle mesh approximating the χ̃ = γ isosurface,
where γ is the average of χ̃ at the sample positions. This approach is screened in [13] to
incorporate additional constraints on sample locations, which significantly improves the
resulting quality. This implementation also supports two boundary conditions:

• Dirichlet specifies the values that χ needs to take along the boundary of the domain
∂M . Hard watertightness is then enforced by imposing χ = 0 along ∂M .

• Neumann specifies the values that∇χ needs to take along ∂M . While this boundary
condition also allows hard watertightness, it is less restrictive because it enables the
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surface to cross ∂M orthogonally, thereby only imposing soft watertightness.

[14] uses the same input data but their algorithm computes the Fourier coefficients of the
indicator function χ, and extracts the surface approximating its isovalue.
A differentiable Poisson solver has been introduced in [15] to further increase the robust-
ness to outliers and to serve as a basis for a trainable model to reconstruct surfaces. They
predict the effect that shifting the oriented point samples has on the resulting surface in
order to find the surface that best approximates the input point cloud. To do so, they
use a bi-directional L2 Chamfer Distance LCD between the mesh and the point cloud and
iteratively shift points to optimise LCD. They also regularly update the input point cloud
by sampling the largest mesh component with the objective of discarding outliers.

Recently, lots of learning-based methods have been proposed. While they often outper-
form non-learning-based ones on simple geometries, especially closed objects, they have
not been proved as able to deal with the complexity of large and open scenes. IM-NET [16]
is a learning framework which predicts whether any point (x, y, z) is inside or outside the
given shape needing to be reconstructed. The input of their network is the 3 coordinates
of a point as well as a feature vector that can be computed using PointNET [17].
Occupancy Networks [18] presents a similar way of computing the so-called occupancy
function of the 3D object. However, instead of concatenating a feature vector to the
coordinates of points, they use a batch-sampling strategy. An important advantage of the
two latter methods is the arbitrary resolution at which the surface can be extracted.
Convolutional Occupancy Networks [19] introduced a learning-based framework to com-
pute implicit surfaces. Taking as input a point cloud x, their encoder computes features
which can be projected in three ways, resulting in a 2D or 3D representation. Given a
location p ∈ R3, linear interpolation is applied to compute its feature vector ψ(x, p). This
vector is known at point cloud locations, allowing for interpolation. Occupancy probabil-
ity at p is then predicted thanks to a fully-connected network fθ (p, ψ(x, p)) ∈ [0, 1]. A
mesh can be extracted by the application of Multiresolution IsoSurface Extraction (MISE)
[18]. A sliding-window implementation enables the algorithm to process large-scale in-
puts.
Recently, [20] proposed a general learning framework dubbed AtlasNet to take as input a
3D point cloud or an RGB image. It proceeds by concatenating this data with a sampling
of a patch, namely the unit square, before passing it to multilayer perceptrons (MLPs)
with rectified linear unit (ReLU) nonlinearities, producing as output a point cloud of arbi-
trary resolution. A mesh can be generated either by transferring the connections between
vertices of a mesh defined on the patch to their 3D image points or by using Poisson
Surface Reconstruction [11] on a sufficiently dense point cloud. A third solution is to
sample a 3D sphere instead of patches.
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1.1.2 Volumetric Segmentation

This is a sub-discipline of indicator functions as it consists in giving information about
whether a region of space is filled by the object or is empty. The data structure can be:

• the Delaunay Triangulation of input samples as in [21, 22, 23, 24].

• voxels: [25] labels them as free space, occupied or unknown. To achieve this, point
locations combined with sensor positions allow computing the ray corresponding to
a beam of free space. An interesting feature is that undesirable moving objects such
as humans can be erased in the final surface thanks to scans of the same area from
different sensor positions.

Robust and Efficient Surface Reconstruction (RESR) [21] label as inside or
outside each tetrahedron of the Delaunay triangulation of the point samples. The triangles
separating an empty-labelled tetrahedron from an occupied-labelled one are extracted
thanks to a graph-cut optimisation of an energy function defined thanks to the lines of
sight (emanating from the vertex and pointing at the laser scanner) and the shape of the
triangles.
Similarly, Watertight Mesh generation With Uncertainties (WMWU) [23] label
as occupied or empty each tetrahedron t of the Delaunay triangulation T of the point
samples. First of all, a set of mass functions mt are computed. Each mt represents the
likelihood of tetrahedron t ∈ T being empty or occupied, or the case in which its occupancy
is mostly unknown. These are computed based on visibility priors that make use of sensor
positions. Binary labels lt are attributed to each tetrahedron t ∈ T minimising an energy
function (equation 1.2). Denoting lT = (lt)t∈T as the labelling of each tetrahedron in the
triangulation T and L = {0, 1} the set of possible labels, the problem is formulated as:

lT = arg min
lT ∈LT

(
Edata(lT ) + λ Eprior(lT )

)
(1.2)

Edata(lT ) =
∑
t∈T

∥lt −mt∥2 (1.3)

Eprior(lT ) =
∑

(t1,t2)∈T 2

|t1 ∩ t2|.∥lt1 − lt2∥
2 (1.4)

The data term (equation 1.3) enforces a solution close to the overall mass function
and the prior term (equation 1.4) minimises the total area of the interfaces. The value of
the parameter λ balances the two of them.
Delaunay-Graph Neural Networks (DGNN) [26] also use this paradigm (equation
1.2) to label Delaunay cells of the input point cloud tetrahedralisation but they claim
that the problem with previous methods like RESR [21] and WMWU [23] is that the
occupancy of the cells is often estimated using visibility models that are not necessarily
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robust to noise. In this context, the main asset of their method is the estimation of the
occupancy of the tetrahedra thanks to a graph neural network. They can thus adapt to
different complexities by learning on different point cloud configurations. A graph-cut-
based optimisation then reinforces global consistency.

1.1.3 Signed-distance function

Another way of generating a watertight surface is to compute the signed-distance function
f to the surface and to extract its zero-level set. This is the approach chosen in Multi-level
Partition of Unity (MPU) [27] and Smooth Signed Distance (SSD) [28].

MPU [27] presents an implicit surface reconstruction algorithm which takes as input a
normal-equipped point cloud and produces an approximation f : R3 −→ R of the signed-
distance field from the surface. The surface is then approximated by the zero-level set of
this function. The space delimiting the region of interest is subdivided using an adaptive
octree: if the accuracy of the shape function within a certain cell is not acceptable, the
region is subdivided and a new computation is run. This quality-based behaviour offers
the possibility of a trade-off between quality preservation (including sharp features) and
computation performance (computation time and memory consumption).
Local shape functions: We denote by Ω the bounded domain of interest included in R3

which contains the point cloud P = {p1, . . . , pN} equipped with the set of normals N =
{n1, . . . , nN}. As the computation mostly happens within the octree cells, let us analyse
the various calculations that will be done for a given cell of centre c and length of the
main diagonal d. A support radius (equation 1.5, α being a smoothing parameter typically
equal to 0.75) is associated with the cell and only the set of points within the ball B(c, R),
which we will denote by P ′, is considered for further operations.

R = αd (1.5)

For the sake of clarity, we do not detail the conditions under which the cell is supposed to
be subdivided or not, let us just say the number of points within B has to be sufficient and
as mentioned above, the quality of the fitting procedure needs to respect a user-specified
threshold.
A local shape function Q(x) is computed based on P ′. In order to account for the various
conditions of density and distribution of the points, three different types of function are
considered:

• a general 3D quadric

• a bivariate quadratic polynomial in local coordinates

• a piecewise quadric surface

29



Approximation of the global solution: Now that each of these local shape functions Qi

have been estimated, the global signed-distance function f is computed by blending all
the contributions, weighted by non-negative compactly-supported functions {wi(x)} such
that the union of their supports span the whole domain Ω (equation 1.6).

f(x) ≈
∑

i ωi(x)Qi(x)∑n
j=1 ωj(x) (1.6)

SSD [28] consists in using a least-square minimisation of an average of several energy
functions EDi

(f), weighted by coefficients λi (equation 1.7).

ED(f) =
∑

i

λiEDi
(f) (1.7)

The two main energy functions used are those of equations 1.8 and 1.9.

ED0(f) = 1
N

N∑
k=1

f (pk)2 (1.8)

ED1(f) = 1
N

N∑
k=1
||∇f (pk)− nk||2 (1.9)

Equation 1.8 is precisely the one enforcing the condition f(x) = 0 at point locations
(near the surface). Equation 1.9 comes from the fact that the gradient of the function f

represents the normal field where f(x) = 0. Consequently, near the surface, the condition
∇f(pk) = nk should be satisfied. A third energy function involving the Hessian matrix of
f enforces that the gradient of f should remain almost constant away from the surface.
Following this idea, the surface produced is watertight as long as the function f is con-
tinuous.
Recently, DeepSDF [29] has shown how to learn the surface distance field. They do so by
using the 3D coordinates of a point as well as a latent vector that accounts for the type
of shape to which the point belongs.

1.1.4 Unsigned-distance function

[30] presents a method for reconstructing large-scale watertight and manifold surfaces
using only point locations. They proceed by estimating a confidence map over a pre-
defined volumetric grid V . This function ϕ : v −→ c ∈ [0, 1] associates to any voxel v
its confidence c which can be seen as the pseudo-distance to the nearest point location
p. The aim is then to minimise the sum of pseudo-distances over a certain set of voxels
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(equation 1.10). An algorithm for extracting the corresponding mesh is also proposed.

Sopt = arg min
S⊂V

∑
v∈S

ϕ(v) (1.10)

1.1.5 Primitive-based

In this field, PolyFit [31] uses RANSAC [32] to detect planar segments and refine them.
The surface is extracted by combining the optimisation of an objective function which
favours data fitting, point coverage and model complexity and the enforcement of water-
tightness and manifoldness.

Point Set Structuring (PSS) [22] relies on the Delaunay triangulation of input
points and the labelling of its tetrahedrons as empty or occupied, but their specificity
resides in the extraction of primitives as a pre-processing step, a resampling of the resulting
structures and the combination of points from planar regions and unstructured ones in
the reconstruction step.

1.1.6 MLS-based

Moving least squares (MLS) was first introduced by Lancaster in [33], based on the work
conducted by, amongst others, Shepard in [34]. Since then, a tremendous amount of
extensions have been added as pointed out by a survey conducted in 2008 in [35]. For
instance, [36], [37] and [38] significantly contributed to the advances in MLS-based algo-
rithms. As explained in [35], MLS-based algorithms can be roughly classified into two
main categories:

Implicit MLS surfaces require the computation of a level set function of which the
zero isosurface can be extracted.

Projection MLS surfaces consist of first computing a projection operator that maps
any point of the space to a point on the surface. The surface is then made of the set
of stationary points. [39] defined a projection operator on points equipped with normals
(that they call surfels). That enabled [40] to propose an out-of-core implementation of
an MLS-based explicit surface reconstruction method. Their projector, applied to any
point p of the space, produces another point p∗ and a normal n∗. n∗ is defined as the
vector that best mimics the normal of the surface patch closest to p. This vector field is
computed as a weighted average on a neighbourhood of p as follows:

nP SS(p) =
∑

i

−→ni ϑN(p, xi) (1.11)
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where the weighting function is:

ϑN(p, xi) = e− ∥p−xi∥2

h2

∑
j e

−
∥p−xj∥2

h2

(1.12)

p∗ is defined as the point that minimises the energy function defined by equation (1.13).
It is then the nearest point to p that belongs to the surface.

eP SS(p) =
∑

i

dist(p, xi, ni) ϑN(p, xi) (1.13)

The pair (p∗, n∗) enables the definition of a plane P that is, by construction, the best
approximation of the nearest surface to p. We are now able to define the distance between
the point p and the surface: it is approximated by the distance between p and its projection
onto the plane P .
All this being well-defined, the distance between a point and the surface defines the
so-called scalar field. An octree is used to implement the out-of-core computing of the
surface. This structure is also leveraged at this point: the scalar field is evaluated at the
corner of the deepest leaves and if a sign change is detected between two corners of the
same leaf, the corresponding voxel is sent to a polygonalisation algorithm to extract the
local mesh.

1.1.7 Refinement

These methods are particularly useful when data is too massive or when it needs to be
processed on the fly. For example, [41] presents an out-of-core algorithm that interactively
processes point clouds that do not fit into memory. Their approach consists in sub-
sampling the initial input point cloud P to produce a new, smaller one: Prep. The
Delaunay triangulation (DT) of Prep is computed and the geometric convection algorithm
from [42] allows to reconstruct a simplified version of the surface implied by P . After
dividing P into n regions of equal size such that: P1 ∪ P2 ∪ · · · ∪ Pn = P , points of each
Pi, i=1,...,n are inserted in the triangulation and a surface refinement algorithm processes
them in order to update the reconstructed surface.

1.2 Large-scale reconstruction

As explained in the Introduction, massive point clouds are now available thanks to the rise
in sensor capabilities but their processing is challenging mainly because of the increased
processing time and the RAM size that is necessary in order to store this data. In this
section, we present the work of authors who proposed innovative approaches to limit
memory footprint or processing time or both. Work addressing surface reconstruction

32



specifically are summarised and classified in Table 1.1.

1.2.1 Pioneers

Some authors have pioneered Big Data by introducing new paradigms bypassing the
typical constraints we discussed. As an example, [43] is an algorithm by Hoppe et al.
dating back from 1996 that could be performed in streaming given the locality of the
information that is necessary to build the surface. The ball-pivoting algorithm [44] was
proposed in 1999 and has come as a forerunner in terms of out-of-core surface recon-
struction. It is an incremental interpolating algorithm which basic idea is the following:
a ball pivots around an edge of an initial triangle until it touches another point. If no
other point is in the ball, the three points form a triangle. The process is repeated for
another edge and then from another seed triangle until the whole point cloud has been
explored. The interesting property is that only a small neighbourhood is considered. We
can therefore process the data incrementally. To achieve this, two axis-aligned planes π1

and π2 define the so-called active region of work for pivoting. When all edges within this
space have been tested, the two planes are shifted, data that is not going to be used again
is dumped and new points are loaded according to the new active region of work.

In 2005, [45] introduced a stream-processing model that enables to process point clouds
out-of-core. The idea of the so called sweep-plane model is that some operators only need
a subset of the whole input data at a given time. Thus, this small number of points is
loaded in memory and the function can be performed while the rest of the point cloud
stays on disk. This has been the theoretical basis for several algorithms including [46]
which is still considered as a standard in this domain.
More precisely, [45] describes the concept of streaming as a “sliding window” that defines
the fraction of the input data that is living ie stored in in-core main memory and being in-
volved in some calculation. This concept of a sweep plane moving forward along a certain
axis and finding points on the way implies that the points stored on disk have to be sorted
along that axis. This pre-processing step is crucial but obviously cannot be carried out
in internal memory. The problem has to be re-thought since classical methods for sorting
cannot be used as pointed out by Knuth in [47]. Knuth describes in his book several
several solutions to external sorting. [48] reviews it as well as a couple improvements.

Assuming that p1, ... , pn ∈ R3 is the ordered set of points that we want to process,
A = {pj−m, ... , pj} is called the active set: these points are the only ones to reside in main
memory. The condition that the active set is orders of magnitude smaller than the full
data set, |A| = m≪ n, ensures that we can process arbitrarily large data sets if it can fit
on disk.

Two fundamental definitions are given in [45]. The neighbourhood Ni of a point pi is

33



often defined as its k-nearest neighbours or points lying within the sphere centred on pi

and of a given radius.

Definition 1.2.1. A local operator Φ (pi) performs a function on a point pi that computes
or updates a subset of attributes Ai associated with pi. As function parameters, Φ (pi)
only accepts pi, Ai and a set of points pj ∈ Ni within close spatial proximity to pi (and
all their associated attributes Aj).

Definition 1.2.2. A local operator Φk (pi) is streamable if it is computed in one single
invocation on pi and not called recursively on points pj ∈ Ni. Additionally, the FIFO
semantic of its queue Qk ensures no interference between consecutive operators Φk±1.

Indeed, the framework enables to concatenate several operators Φk each of these act-
ing as a sequential FIFO queue buffer Qk on the point stream. In order to fulfil these
requirements, operators need to be organised in a compatible order and semantic rules
need to be implemented for each operator buffer based on its class.

Three operators need to be highlighted:

1. The read operator ΦR(pi) which reads and buffers one new point. It must be the
first operator of the stream.

2. The deffered-write operator ΦW (pi) which removes and writes point pi−m to the
output stream. It is the final operator.

3. The neighbourhood operator ΦX(pi) which computes the set Ni. This one can be
implemented in a number of ways depending on the definition of the neighbourhood
of a point. The k-nearest neighbours is probably the most famous one.

1.2.2 Standardised frameworks

Message Passing Interface (MPI) [49, 50] is the standardisation of a set of tools enabling
the communication between several processes that own only local memory. The goal is
then to share the workload amongst several nodes to save time. In the surface reconstruc-
tion field, it has been used by [51].

MapReduce [52] is a programming model specifically dedicated to processing massive
datasets. Data is represented as key/value pairs onto which two types of operation can
be carried out: Map and Reduce. The Map operator accepts one pair and produces a set
of intermediate pairs that are grouped by key before being sent to the Reduce operator
which processes the intermediate values.
This paradigm has a master/slave architecture: one particular program, the master, or-
ganises the workload across all nodes of the cluster. To achieve this, it first defines the
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data partitions. It also attributes operations to the nodes. The workers, processes called
by the master, then read the necessary data, compute the task they have been assigned
and return the result to the master. In case of failure it is the master’s responsibility to
organise its re-run. As a consequence, a failure of the master is not tolerated.

Spark [53] is a cluster computing framework implemented in Scala programming lan-
guage that uses the same master/slave architecture as MapReduce [52] but it is better-
suited than for two particular types of task:

• iterative applications which necessitates to loop through the same data and apply
certain operators in parallel.

• interactive works where data needs to be accessed on demand.

In both these cases, Spark enables to choose a storage strategy that quickens its access and
saves an important amount of time. In addition, two advantageous features of MapRe-
duce, scalability and fault-tolerance, are preserved.

Resilient Distributed Datasets A resilient distributed dataset (RDD) [54] is an
abstraction of a parallel data structure that is fault-tolerant and user-manageable. Es-
sentially, the data is virtually partitioned across several machines (the nodes) and one can
create an RDD by defining an operation on data residing in some stable storage device.
The result is not necessarily computed but instead, other operations can be defined on
this first RDD, resulting in the definition of new RDDs. Such operations are then called
transformations and include flatMap which is the equivalent of the Map of the MapReduce
paradigm.
As opposed to those “lazy” operations, actions actually trigger the computation of nec-
essary pre-defined transformations and either return a result or write data to external
memory.

Fault-tolerancy is inherently related to this notion of lazy-computing pattern. Indeed,
more than the data itself, its lineage is crucial because it enables any partition that has
been lost due to a node failure to be retrieved. The set of transformations guarantees
that any RDD can be recomputed based on the original data and the log of all the trans-
formations it went through. Moreover, only the lost partition necessitates such a process.

Operations are run based on data locality: by default, the scheduler favours the node
that already contains the necessary input data to execute the task. But on top of that,
the user can influence the organisation of the work in two ways:

• persistence can be enforced that is to say one can choose to replicate an RDD. It
is particularly useful if it is meant to be transformed several times because in case
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of failure, the recovery can start from the latest persisted RDD instead of going all
the way from the beginning.

• one can choose where to store some data by using partitioning. For instance, an
insightful strategy is to maintain in memory on the same nodes partitions that are
going to be combined in an operation.

1.2.3 Methods addressing large-scale reconstruction

The refinement-based method [41] already introduced in Section 1.1.7 enables to incre-
mentally refine the surface by treating each of the sub point clouds separately.

The methods presented in Parallel Poisson Surface Reconstruction [55] and Stream-
ing MLS [59] are both out-of-core and parallel. The external memory feature of Parallel
Poisson [55] comes from the fact that it is based on a previous algorithm [46] while being
able to run several computations at the same time is the real contribution of their paper.
Their approach consists of formulating the surface reconstruction problem as a Poisson
equation as introduced in [11]. However, to enable scalability, they get rid of the necessity
to consider the whole point cloud at once and rather partition the space in order to solve
the problem locally.
Streaming MLS [59] is based on Moving Least Squares [33] and has a very straightforward
parallel implementation that enables it to be run on a cluster of PCs. Besides, [40] (in-
troduced in Section 1.1.7) also presented an MLS-based out-of-core algorithm.

[57] is also based on the computation of an implicit function and the extraction of
a mesh approximating its isovalue. They compute the function by using wavelets. An
important result is that their streaming implementation is an order of magnitude faster
than Poisson [11] and MPU [27] still using far less memory.

[51] use Non-Uniform Rational B-Spline (NURBS) approximation to compute a sur-
face. The optimisation problem is formulated such that the knot vector T is part of the
unknowns. The solution is parallelised using MPI [49] on the Chemnitzer Linux Cluster
supercomputer [60] and the associated speedup is almost linear.
Recently, [58] proposed an extension of a segmentation based method to large scale data
set based on local Delaunay triangulation and local graph-cut distribution. It improves
the tiling by optimising tile borders for them to cross regions of low complexity (i.e. flat
areas). However, it does not guarantee watertightness along borders which is an impor-
tant property for many applications. Moreover, [58] only deals with scenes in which a
dimension is highly dominated by the two others (e.g. a city scene enables to “partition
the scene on the ground plane” as said in their paper).
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Method WT OOC SG PL ALS LG AF OS
Indicator Function (1 in / 0 out) ∀x ∈ R3

Fourier [14] ✓ voxels ni

Poisson [11] ✓ octree ni ✓

Screened Poisson [13] ✓ octree ni ✓

Streaming Poisson [46] ✓ ✓ ✓ octree ni

Parallel Poisson [55] ✓ ✓ ✓ ✓ octree ni

Zhou et al. [56] ✓ ✓(GPU) octree ni

IM-NET [16] ✓ voxels ✓ ✓

Occupancy Networks [18] ✓ ✓ octree ✓ ✓

Wavelets [57] ✓ ✓ ✓ octree ni ✓

Volumetric segmentation (1 in / 0 out) of a volumetric discretisation of the object
Kolluri et al. [24] ✓ tetrahedra
Labatut et al. [21] ✓ tetrahedra l.o.s

Holenstein et al. [25] ✓ ✓ ✓ ✓ voxels + tiles l.o.s
Caraffa et al. [23] ✓ tetrahedra l.o.s

Han et al. [58] ✓ ✓ tetrahedra + tiles l.o.s
Signed-distance function

MPU [27] ✓ octree ni ✓

SSD [28] ✓ octree ni ✓

DeepSDF [29] ✓ ✓ ✓

Unsigned-distance function
Hornung et al. [30] ✓ octree

Randrianarivony et al. [51] ✓

Primitive-based
PolyFit [31] ✓ primitives ✓

MLS-based
Out-of-core MLS [40] ✓ octree ni

Streaming MLS [59] ✓ ✓ ✓ octree ni

Refinement (iterative)
Ball-Pivoting [44] ✓ ✓ ✓

Allegre et al. [41] ✓ ✓ kd-tree |ni|

Table 1.1: Categorisation of surface reconstruction in terms of the properties that are
guaranteed as regards watertightness (WT), scaling issue i.e. out-of-core (OOC), stream-
ing (SG) or parallel (PL) implementation as well as the use of an additional localisation
structure (ALS) ; learning (LG) capabilities, the necessity of additional features (AF) as
normals: “ni” or lines of sight: “l.o.s” in the computation ; and the open-source (OS)
availability of the code.
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A particular and interesting way of parallelising algorithms is to make them suitable for
a Graphics Processing Unit (GPU) implementation to leverage this specifically-designed
hardware which contains a massive set of cores. They are yet often limited to a small por-
tion of algorithms namely Deep-Learning-oriented ones, several of them being introduced
in Section 1.1. It is therefore a totally different kind of parallel computation which does
not necessarily enable to process arbitrarily large point clouds since they still have to be
loaded into the memory of one single machine. As an example, [56] and more recently
[61] both offer a GPU implementation of their algorithm.

The methods and the properties they offer are summarised in Table 1.1.

1.3 Evaluation of surface reconstruction

In order to assess the quality of a reconstruction, there is need for a ground truth, an
input point cloud and a means of calculating the difference between a given output surface
and the so-called ground truth. Let us present the various possibilities that have so far
been considered for these three aspects.

1.3.1 Ground Truth

Ground truth could potentially take any surface form, i.e. implicit field, triangle mesh,
volumetric segmentation, point set, deformed model, skeleton curve, primitives. However,
only two have so far been considered: triangle mesh [62, 14] and implicit field [63].

1.3.2 Input Point Cloud

Producing point samples from a surface can be carried out in several ways:

• Real scanning: Based on a physical object (or scene), laser-based scanning gen-
erates a point cloud directly. Such technologies include Time-of-Flight [2] and
Structured-light [3] devices. In addition, terrestrial or airborne LiDAR [4] offer
the possibility to deal with large areas.

• Image-based: Multi-view stereo [5] and Structure from motion [6] allow creating
a 3D model from images, which can be the starting point for surface reconstruction.

• Model sampling: Based on a continuous digital input model, synthetic sampling
has the advantage of making it possible to fully control the data. In particular, one
can generate more realistic data by adding noise, outliers, misalignment and occlu-
sions, and by setting the density. In this field, several procedures have been consid-
ered: random or uniform sampling [14, 57, 64], synthetic raytracing [43, 63]
or z-buffering [62]. Of particular interest is the recent work presented in [65] and
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[66]. Helios++ [65] is an open-source tool for the simulation of airborne, UAV-based,
and terrestrial static and mobile laser scanning implemented in C++ . [66] developed
LiDARsim: a virtual terrestrial LiDAR platform generating realistic point clouds
based on a high-quality mesh, free of moving objects.

1.3.3 Comparison

With regards to comparing an output reconstruction, six main possibilities have been
explored:

• Visually: Most of the time, surface reconstruction aims at producing a digital
representation as visually similar as possible to a real object. Hence, Poisson [11],
MPU [27] and SSD [28] have simply compared models on a visual basis. This
obviously raises the issues of being sensitive to the observer’s perception, conflict of
interest and the lack of quantitative information.
The following five methods come with the advantage of providing a quantitative
quality assessment that is independent of any human bias.

• Point-to-mesh distance computation: When the only ground truth that is
available comes in the form of a point cloud, it is relatively straightforward to
compute the distance from each of those points to the reconstructed model. [13] have
evaluated their method by randomly partitioning their point cloud into two equal-
sized subsets: one of points serving as input for the reconstruction algorithms and
one of validation points from which distances to the output meshes are computed.

• Point-to-point distance computation: In the case where the ground truth comes
in the form of a point cloud that has been acquired by scanning a real surface using
a sensor, or if points have been sampled from a ground-truth surface, it is possible to
sample the reconstructed surface and measure the distance between the two resulting
point sets. In the computer vision community, the Chamfer distance [67] and the
Hausdorff distance [68] are common ways of measuring the distance between two
point sets. Given two point sets P1 and P2, and defining the distance from a point
p to a point set P as:

∀p ∈ R3, d (p,P) = min
q∈P
||p− q||2 (1.14)

the Hausdorff distance is defined [68] as:

dHausdorff (P1,P2) = max
{

max
p∈P1

d (p,P2) , max
q∈P2

d (q,P1)
}

(1.15)
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the Chamfer distance is defined [67] as:

dChamfer(P1,P2) = 1
|P1|

∑
p∈P1

d (p,P2)2 + 1
|P2|

∑
q∈P2

d (q,P1)2 (1.16)

We believe that these metrics are not suited to the specific case of open scene re-
construction because they can be impacted by occlusions. Complex open scenes
such as urban environments typically contain many vertical surfaces (building fa-
cades, for example) and overhangs (which can be found on bridges). Scanning this
type of environment therefore often leads to a tremendous amount of occlusions.
Points associated to correct pieces of surface might be unjustifiably penalised by
these metrics if lying in occluded areas, for which no ground truth is available.

• Mesh-to-mesh distance computation: [62] and [13] use the Metro tool [1] to
compute the distance between two meshes. It works as follows: given two meshes
(a sampled one Ms and a target one Mt), Metro samples Ms and measures the
shortest distance from each sample toMt. Metro then computes the mean distance,
the maximum distance and the Root Mean Square (RMS) distance over all samples.
It is also possible to inverse the roles of Ms and Mt and perform the same calcu-
lations. Instead of evaluating how close the reconstruction is to the ground truth,
this will assess how complete the reconstruction is.
The Hausdorff distance is defined as the greater value between the maximum dis-
tance from Ms to Mt and the maximum distance from Mt to Ms. Again, in the
case of open scenes, the input point cloud that is fed to the reconstruction method
is likely to contain many occlusions. Therefore, care must be taken when sampling
the two meshes. Uniformly sampling the meshes is pertinent in the case of a closed
object that can be scanned from different viewpoints. However, when dealing with
open scenes, sampling the meshes in unobserved regions will lead the metrics to re-
flect the capacity of algorithms to fill holes rather than their reconstruction accuracy
near the input data. This will be illustrated in Chapter 3.

• Mesh-to-implicit distance computation: [63] chose to use an implicit field
that we will call Ω as the ground truth, and consequently they adapted the Metro
methodology in order to compute the distance from a nearly uniform sampling of Ω
to the evaluated mesh and vice-versa. The evaluation process answers the question:
how well does the reconstructed mesh fit to the implicit surface computed by the
MPU [27] algorithm? To address this issue, several measures are proposed by the
benchmark [63]: Hausdorff distance (equation 1.19), mean distance (equation 1.20),
max (equation 1.21) and mean angle deviation (equation 1.22). The former two
allow us to know how close the two surfaces are to each other while the latter two
give an insight into how similar the local orientation is.
In order to compute these, defining point correspondences between the two surfaces
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are needed. Let us denote by M the implicit surface and by M the output triangle
mesh. As defined in [69], the mapping Φ : M −→ M attributes to one point
p ∈ M the intersection of the normal line through p and the mesh M . The inverse
mapping Φ−1 : M −→ M attributes to Φ(p) its closest neighbour on the implicit
surface M . This definition, associated with a sampling PM of M produces a set of
nearest neighbour correspondences that we call CM (equation 1.17).

CM = {(x, p)|p ∈ PM , x = Φ(p)} (1.17)

By defining the corresponding operator Ψ : M −→ M and a sampling PM of the
reconstructed mesh M , we get CM (equation 1.18).

CM = {(p, x)|x ∈ PM , p = Ψ(x)} (1.18)

Denoting |S| = |CM |+ |CM | and with γ(p, x) the angle between the normals NM(p)
and NM(x), error measures are the following:

H(M,M) = max
{

max
(x,p)∈CM

|x− p|, max
(p,x)∈C

M

|p− x|
}

(1.19)

µ(M,M) = 1
|S|

 ∑
(x,p)∈CM

|x− p|+
∑

(p,x)∈C
M

|p− x|

 (1.20)

HN(M,M) = max
{

max
(x,p)∈CM

γ(p, x), max
(p,x)∈C

M

γ(p, x)
}

(1.21)

µ(M,M) = 1
|S|

 ∑
(x,p)∈CM

γ(p, x) +
∑

(p,x)∈C
M

γ(p, x)

 (1.22)

• Neural Feature Similarity: Recently, [70] proposed a benchmark targeting deep-
learning-based surface reconstruction algorithms. They compute the similarity be-
tween two surfaces in the deep feature space.

1.4 Conclusion

To sum up, whilst surface reconstruction has been extensively studied, few approaches
[55, 58] tackle watertight reconstruction of large open scenes. In addition, while metrics
to assess surface reconstruction do exist, they are not adapted to deal with the many
occlusions that open scenes typically contain. This calls for more contributions to scaling-
up and evaluating surface reconstruction from point clouds of open scenes. This PhD
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thesis proposes new approaches to tackle both these challenges.
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Chapter 2

Large scale surface reconstruction

In this chapter, we tackle the task of scaling up surface reconstruction. As highlighted
in the Introduction, acquiring massive point clouds has been made possible with the im-
provement in sensor capabilities but processing them remains a challenge. In Chapter 1,
Section 1.2, we surveyed methods contributing to this specific task but very few guar-
antee that the resulting mesh is watertight and matches the reference one. The major
contribution of the work presented in this chapter is the first Delaunay-based watertight
surface reconstruction algorithm that can handle arbitrarily large point clouds. Poisson
surface reconstruction [55] is the only other known approach that scales while ensuring
watertightness but it is not suited to urban scenes as it fails to reconstruct sharp edges.
Recently, [58] proposed an extension of a distributed workflow specific to urban scene
reconstruction but it does not guarantee watertightness. Moreover, as their objective is
to process urban environment only, the tiling strategy presented in their paper is purely
2-dimensional which restricts their algorithm to scenes in which a dimension is highly
dominated by the two others. Conversely, the following end-to-end distributed out-of-
core algorithm guarantees watertightness and it is suited to any kind of large-scale point
cloud with arbitrarily complex 3-dimensional geometry (overhangs...).

We proceed by first tiling the point cloud with a distributed octree approach which
consists in choosing the maximum depth of an octree decomposition and then merging
cells for which the total number of points that they contain does not exceed a given value
(Figure 2.1a). Then, we compute the exact 3D Delaunay triangulation to discretise space
using the algorithm introduced in [71]. Based on a distributed triangulation structure with
shared cells between tiles (blue triangles on Figure 2.1b), associated with the adjacency
graph of the tiles (red lines on Figure 2.1b), we propose an extension of a distributed
graph-cut algorithm [72] (initially introduced for images) to carry out the in/out space
labelisation that minimises our energy function (equation 2.1). The watertight surface can
be extracted on the whole scene (blue line on Figure 2.1c) without any post-processing
thanks to the consistent topology ensured by the global Delaunay triangulation.
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2.1 Surface reconstruction model

In this section, we present the reference (undistributed) surface reconstruction algo-
rithm [23] of which we present a distributed version in Section 2.2.

(a) Tiled input point cloud with multiple acquisitions.

(b) Tiled Delaunay triangulation. The local cells are shown in white
and the mixed ones in blue. The adjacency graph is drawn in red.

(c) Surface extraction. The cells in red and green are labelled as empty
and occupied respectively, the light blue line denotes the extracted
surface.

Figure 2.1: 2-dimensional example of the proposed approach.

2.1.1 Local PCA

Several steps of the pipeline rely on a local PCA (Principal Components Analysis) of the
inertia matrix of a carefully chosen neighbourhood of each point p ∈ P . The resulting
normalised eigenvectors define a local frame f = (p, v⃗1, v⃗2, v⃗3) and the corresponding
eigenvalues (e1, e2, e3) indicate how much the point cloud locally spreads in each direction.
The eigenvector associated to the smallest eigenvalue provides a local (unoriented) surface
normal direction. The position of the optical centre can then be used to consistently orient
the normals from occupied to empty space.
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2.1.2 Sub-sampling

As planar areas can be represented with large triangles, the input point cloud is sub-
sampled to reduce its size, but without impairing the geometric precision. To this end,
we use an adaptive algorithm based on PCA. Points p from the original point cloud
P are randomly sampled and added to the set of sub-sampled points PS only if ∀ j ∈
{1, 2, 3}, pj = |(p − q).v⃗j| > σej where pj are the coordinates of p in the local frame
of its closest point q ∈ PS. The parameter σ controls the density of the resulting point
cloud: as it increases, the distance threshold becomes larger so less points are added to
PS which density decreases.

2.1.3 Delaunay Triangulation (DT)

Space is discretised with the DT [73] of PS. In 3D, cells of this DT are tetrahedra which
circumspheres do not contain any point of PS other than the 4 points lying on them.
Additionally, their union exactly covers the convex hull of PS.

2.1.4 Mass computation

Following [23], the empty/occupied/unknown state of space at any point y ∈ R3 is defined
for each input line of sight associated with point p using Dempster Shafer Theory (DST)
masses mp(y) = (e, o, u) ∈

[
0, 1

]3
such that e + o + u = 1. For example, for a given

position y ∈ R3:

• e = 1 means certainty that space is empty

• o = 1 means certainty that space is occupied

• u = 1 means total uncertainty

These masses mp(y) are then combined into an overall mass m(y) = (e, o, u) and inte-
grated over each tetrahedron t of the DT with a Monte Carlo sampling, yielding a single
occupancy value mt = o/(1− u) that gives the probability of t to be occupied.

2.1.5 Volumetric segmentation via graph-cut optimisation

The reconstruction method relies on assigning to each tetrahedron t of the DT the label
0 if t is empty or 1 if t is occupied. For simplicity we call T both the DT of PS and the
set of tetrahedra of this DT. This labelling problem is formulated as a Boolean energy
minimisation (2.1). The energy function is composed of a data term (2.2) encouraging
labels to be in accordance with overall masses and a prior term (2.3) smoothing the
surface, balanced by a parameter α:
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x̂ = arg min
x∈{0,1}|T |

(
Edata(x) + α Eprior(x)

)
(2.1)

where x = (xt)t∈T ∈ {0, 1}|T | is the set of tetrahedra labels and |T | the number of
tetrahedra.

Edata(x) =
∑
t∈T

Vt.|xt −mt| (2.2)

Eprior(x) =
∑

(t,t′)∈T 2

At∩t′ .|xt − xt′ | (2.3)

where Vt is the volume of tetrahedron t and At∩t′ is the area of the interface between
tetrahedra t and t′.

This energy (2.1) can be optimised via a graph-cut algorithm. To do so, let us denote
by G = (V,E) the dual graph of which the vertices V = {s, t} ∪ T are the source s,
the sink t and the tetrahedra of T . The edges E are the triangles making the interface
between all pairs of adjacent tetrahedra but also those connecting every tetrahedron to
both s and t. Each edge is weighted so that the cost of an s-t cut in the dual graph
has the same value as the energy function (2.1) after attributing the label values x. To
minimise the energy, we therefore need to minimise the sum of cut edges weights:

∑
(i,j)∈E

ci,jxi,j (2.4)

where ci,j is the weight of edge (i, j) and xi,j is a Boolean indicating if the edge (i, j) is
cut (in which case xi,j = 1) or not (xi,j = 0). Moreover, xi (the label of tetrahedron i)
indicates whether vertex i is linked to s (xi =0) or to t (xi =1) after a given cut. We then
have:

• xs = 0

• xt = 1

• ∀(i, j) ∈ E, xi,j = |xi − xj|

2.1.6 Surface extraction

The final surface is defined as the set of triangles separating occupied and empty tetra-
hedra.

2.2 Distributed surface reconstruction

In this section, we explain the distribution strategy. Algorithm 1 sums up in detail the
different steps and Figure 2.2 presents the complete distributed workflow.
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Figure 2.2: The proposed distributed surface reconstruction workflow. P denotes the
input point set, Pk the tiled point set, PI

k and PS
k are the tiled point set with PCA

information and the simplified one, Tk the tile-triangulations, T m
k the tile-triangulation

with the mass score, T x,t
k the labelled tile-triangulation at iteration t, xk the updated

mixed cells during the optimisation and Mk the final mesh.

2.2.1 Algorithm distribution

Tiling: Given a point set P , we note the partition PK = (Pk)k∈K its decomposition
into |K| disjoint subsets Pk, where K denotes a discrete set of tile indices (Figure 2.1a,
Algorithm 1 line 2). We can define the primary tile of a point p ∈ P as the unique tile
Pk such that p ∈ Pk.

Local PCA: The PCA is distributed by computing it separately on each tile Pk. The
tile along with the PCA Information is denoted PI

k .

Sub-sampling: Each tile Pk is sub-sampled separately yielding Sub-sampled tiles PS
k

from which the surface will be extracted (Algorithm 1 line 6).

Distributed Delaunay triangulation: We use the algorithm proposed in [71] to
compute a distributed DT of the union of the sub-sampled point clouds PS

K = ⋃
k∈K PS

k

(Algorithm 1 line 8). The distributed DT of a tiled point set P = ⋃
k∈K Pk is defined

in [71] as a set of DTs: TK = (Tk)k∈K such that Pk is a subset of the vertices of Tk. The
vertices of Tk are said to be local in Tk if they belong to Pk and foreign in Tk if they
belong to another tile Pl with l ̸= k. By extension, cells and facets of Tk are local or
foreign in Tk if all their vertices are local in Tk or foreign in Tk respectively, and mixed
otherwise. For a mixed cell t, we call Kt the set of indices of tiles containing t. We call
a mixed cell main in Tk if min(Kt) = k. The algorithm of [71] guarantees that the union
of all local and main mixed cells is exactly the DT of P and that these cells are disjoint.
We define the adjacency graph of the triangulation GA = (T A, EA) where T A are the
tile-triangulations and EA the edges between them. Two triangulations are connected by
an edge if and only if these triangulations share mixed points (see Figure 2.1b).
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Algorithm 1: Distributed surface reconstruction
Input: Point set P
// Tiling

1 for p ∈ P do in parallel
2 k ← TileId(p)
3 Pk ← Pk

⋃{p}
4 end

// PCA/Sub-sampling
5 for k ∈ K do in parallel
6 PI

k,PS
k ← PCA(Pk)

7 end
// Delaunay Triangulation (DT)

8 T A, EA = DDT (PS)
// Mass computation

9 for k ∈ K do in parallel
10 T m

k ← mass computation(T A
k ∪ PI

k)
11 end

// Volumetric segmentation
12 t← 0
13 for k ∈ K do in parallel
14 T x

k,t,xk→l ̸=k,t ← graph cut(T m
k )

15 end
16 t← 1
17 while t < max iterations do
18 for k ∈ K do in parallel
19 λk

t ← update lagrange (⋃
l xl→k,t−1)

20 T x
k,t,xk→l ̸=k,t ← graph cut(T x

k,t−1,λ
k
t )

21 end
22 t← t+ 1
23 end

// Surface extraction
24 for k ∈ K do in parallel
25 T ′

k ← aggregate neigbors(Tk,t, EA)
26 Mk = extract surface(T ′

k )
27 end
28 return M

Mass computation: Given that the effect of an input point p on a tetrahedron
t decreases with the distance, the mass function is only computed locally on each tile-
triangulation Tk using PI

k (Algorithm 1 line 10).

Volumetric segmentation: The energy function 2.1 is optimised in parallel with
independent graph-cuts on each tile (Algorithm 1 line 12) where the labels of mixed cells
are encouraged to agree with an iterative scheme as explained in Section 2.2.2.
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Surface extraction: To extract the full surface, each tile is loaded with its respective
neighbours regarding the adjacency graph’s edges E (Algorithm 1 line 24). We denote by
aggregate neigbors(T A

k , EA) the function that aggregates the triangulation and its respec-
tive neighbours. Because the iterative scheme does not provide the guarantee to converge
on the same label on mixed cells (for which copies exist in multiple tile-triangulations),
the label from the main mixed cell is systematically chosen for the surface extraction.
Note that the surface is watertight even if the labels do not agree since the optimisation
ends up with a unique set of labels which inevitably leads to a watertight mesh.

2.2.2 Distributed graph-cut

The main challenges to distribute a DT-based surface reconstruction method are dis-
tributing the DT itself, for which we use the implementation of [71], and distributing the
graph-cut optimisation. Graph-cut distribution approaches are highly dependent on the
structure of the graph. While many approaches exist to distribute graph cuts as sur-
veyed very recently in [74], we chose the dual decomposition paradigm because it offers
the best distribution potential. Very little information has to be shared between the dif-
ferent tiles. While dual decomposition has been used for a graph representing the regular
2-dimensional structure of images [72], we did not find any work tackling the specific
structure of the adjacency graph G of the cells of a DT (see Section 2.1) and of its tiling-
induced split into |K| sub-graphs Gk = (Vk, Ek). Thus, one of the main contributions of
this work is the generalisation of the method proposed in [72] to our tiled graph G which
allows to distribute the graph-cut optimisation across multiple tiles. We use the structure
of the tiled DT to split G into |K| subgraphs Gk, one for each tiled-triangulation Tk. In
practice, each Gk is defined as the adjacency graph of the set of local and mixed cells of
Tk (Figure 2.4). The main issue of the distributed problem is to ensure that the mixed
cells have the same label relatively to the tiles that share them. For any k ∈ |K|, we
denote by xk

i,j and xk
i the values of xi,j in sub-graph k and xi in sub-graph k respectively.

We also define ck
i,j = ci,j

|{k:(i,j)∈Ek}| as the weight of edge (i, j) normalised by the number of
tiles it appears in. Using this decomposition, the optimised function becomes:

f(x) =
∑

(i,j)∈E

ci,jxi,j =
∑
k∈K

∑
(i,j)∈Ek

ck
i,jx

k
i,j (2.5)

under the condition that labels xk
i should have the same value amongst all subgraphs they

appear into:
∀ k, l ∈ K2, ∀ i ∈ Vk ∩ Vl, xk

i − xl
i = 0 (2.6)

To split this problem in sub-problems using our tiled graph structure, we solve the graph-
cut on each sub-graph Gk with variables xk

i,j. To guarantee the condition expressed in
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equation 2.6, we add a penalty term to the energy using Lagrangian duality:

L(x,λ) =
∑
k∈K

∑
(i,j)∈Ek

ck
i,jx

k
i,j

+
∑
k∈K

∑
l>k

∑
i∈Vk∩Vl

λk,l
i (xk

i − xl
i) (2.7)

with λ = {λk,l
i : (k, l) ∈ K2, i ∈ Vk ∩ Vl}. By defining, for any tile index k ∈ K:

Lk(xk,λ) =
∑

(i,j)∈Ek

ck
i,jx

k
i,j

+
∑
l ̸=k

∑
i∈Vk∩Vl

 1 if l > k

−1 otherwise

λk,l
i xk

i (2.8)

We then have:
L(x,λ) =

∑
k∈K

Lk(xk,λ) (2.9)

Figure 2.3 allows to visualise the dual graph weights update in the case of a single split
resulting in two tiles. We define the Lagrange dual function:

g(λ) = min
x
L(x,λ) (2.10)

Since the Lagrange dual function g(λ) (equation 2.10) is concave [75], we can find an
optimal distributed solution to our problem (2.5+2.6) by maximising g(λ) via an ascent
method. We denote by t the iteration index and by τ = {τ k,l

i : (k, l) ∈ K2, i ∈ Vk∩Vl} the
vector of step amplitudes by which we increment λ. We initialise the Lagrange multiplier
vector λ(t=0) = 0 and the vector of steps τ (t=0) by τ k,l

i =τ0. As demonstrated in [72],
(xk−xl)k,l∈K2 is a supergradient to g at λ. Consequently, we can solve the distributed
graph cut by iterating:

• Solve the graph-cut problems Lk(xk,λ) for xk

• Update λ and τ :

for k ∈ K and l > k :
λk,l

i,t+1 = λk,l
i,t + τ k,l

i,t (xk
i,t − xl

i,t) (2.11)

τ k,l
i,t+1 = τ k,l

t

2 if xk
i,t−xl

i,t ̸= xk
i,t−1−xl

i,t−1 (2.12)

To perform this update at iteration step t, each tile Gl sends to its neighbour tiles Gk the
labels of their shared mixed cells (according to Gl) in a vector xl→k,t.
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(a) Dual graph before split

(b) Dual sub-graphs after split

Figure 2.3: Weight update after a single split in the dual graph. We focus on node i.
Nodes in bold are the ones that have been duplicated after the split. s and t represent
the source and the sink.
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Figure 2.4: 2D visualisation of the full triangulation (left) being split into 2 tiles (middle
and right) with local cells in white and mixed cells in blue. Mixed cells are duplicated in
both sub-graphs.

2.2.3 Implementation details

The workflow is implemented with the Apache Spark framework [53]. The input of the
algorithm is a point cloud separated in several files stored on the Hadoop distributed
filesystem (HDFS) [76]. To ensure a reasonable memory footprint in the tiling, we split
large files to ensure that each input file contains less than 1 million points. Each such
file is serialised into an RDD [54] with a Base64 encoding in a String. The key/value
formalism is used: each element of the RDD is represented by a key and a value which
is a list of sets (list of point sets, list of tile-triangulations, etc.). A transformation on an
RDD (Local graph-cut, mass computation, etc.) is performed with a C++ call in parallel
on each RDD chunk by using the pipe operator. The union operator (∪ in Algorithm 1
and ⋄ in Figure 2.2) is a union followed by a ReduceByKey in Spark.

2.3 Experimental results

While memory and computational efficiency are the main goals when trying to distribute
an algorithm, the most important aspect of evaluation is to verify that the distributed
algorithm reproduces as closely as possible the output of the reference algorithm. For that
reason, we will first evaluate the distributed algorithm in comparison with the reference,
and then focus on the scalability. Moreover, as PCA and sub-sampling are expected
to suffer minor border effects, and the distributed Delaunay triangulation is proved to
produce the exact Delaunay Triangulation [71], we mainly focus our evaluation on our
major contribution: the distributed graph cut. In all the following experiments, unless
otherwise stated, we used the values: α = 0.005, τ0 = 5, and 30 iterations.
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2.3.1 Distributed graph-cut convergence

Graph cut implementations provably find the global minimum cut of the graph [77] which
equivalently achieves the global minimum of the associated energy (eq 2.1). We will there-
fore assess our distributed graph cut implementation by comparing the energy obtained
with our distributed implementation with this global minimum energy. In order to evalu-
ate our capacity to handle a large proportion of mixed cells (which makes the distributed
problem harder), the algorithm is run with different octree depths for a fixed number of
points. A larger depth induces more and smaller tiles, resulting in a higher proportion of
mixed cells. As our iterative scheme is mainly influenced by the value of τ0, we also eval-
uate its impact on convergence. Figure 2.5 shows the evolution along iterations t of the
ratio between the energy (eq 2.1) of the labelling computed with the distributed graph-cut
Ed and the labelling computed with the reference graph-cut Er. It is important to note
that even if two surfaces with the same energy are not necessarily the same, they are
considered equally good. For all values of τ0 and octree depths, the energy ratio increases
during the first iterations until it reaches a maximum around iteration 5, then decreases
until converging significantly under the initialisation value,which shows the robustness of
our distributed algorithm to these two factors.
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Figure 2.5: Ratio between the energy of the labelling given by the distributed graph-
cut Ed and the reference graph-cut with one thread Er for different initialisations of the
Lagrangian step τ0 = 1, 2, 3, 5, 10, 20 (left) and different octree depths 1, 2, 3, 4 (right).

Figure 2.7 shows the resulting mesh along iterations on a LiDAR data set. Shared
cells are visually the most impacted after the first graph-cut. In some areas, tiles are
not or badly connected, only triangles between local cells at the centre of a tile are well
reconstructed. After 3 iterations, the mesh is better regularised but the quality remains
bad at the boundary. After 15 iterations, the main errors are removed and the tiles are
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globally well connected. At iteration 30, small shared areas like the car hood in the
example are well reconstructed.

2.3.2 Speedup

The efficiency of the proposed approach is evaluated on a Spark cluster with 28 cores and
100GB of RAM. This configuration is close to the m5 1 setup of the Amazon EMR service
dedicated to general usage that provides 4GB per core. We evaluate the strong scaling
speedup which quantifies how the algorithm scales with an increasing number of cores for
a fixed number of points. We compute the surface of a 10 million points data set with
different cluster configurations: a varying number of executors (7,4,2 and 1) and, for each
executor, a varying number of cores (4,3,2,1) for a fixed 12GB of RAM per executor in
every case. The total number of cores is the number of executors times the number of
cores per executor. The result is shown on Figure 2.6 where the strong scaling factor is
defined as t1 core/(n.tn cores), where tx cores is the time it takes to compute the solution to
the problem using x cores. The strong scaling factor is expressed as a function of the
number of cores. As our application is fully distributed, we compare it to the perfect
scale factor of 1. Results show that every configuration has a scale factor > 0.6. In other
words, the execution time with a single thread is at least divided by 0.6 times the number
of cores with the distributed implementation.
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Figure 2.6: Execution time (left) and strong scaling factor t1 core
n.tn cores

(right) as a func-
tion of the number of cores with 4, 3, 2 and 1 core(s)/executor (12Go RAM/executor) on
a 10 million points data set.

1https://aws.amazon.com/ec2/instance-types/m5/
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2.3.3 Large data set result

We tested our algorithm on a very large data set that combines more than 350 million
points acquired with both aerial and terrestrial LiDAR (Figure 2.8), on which our available
hardware could not run the reference implementation by lack of RAM. The point cloud
was split into 9520 tiles and it took 17 hours to process using 28 cores. The proposed
approach produces a watertight mesh of the whole area with highly detailed and complex
3D structures, composed of around 80M vertices. We empirically set the sub-sampling
parameter σ = 0.3 to have a good trade-off between accuracy and computing time (a
higher σ would reduce computing time at the cost of accuracy).

2.4 Conclusion

In this chapter, we presented a fully distributed and out-of-core surface reconstruction
method. The extension of the distributed graph-cut method of [72] to the structure
of the tiled 3D Delaunay Triangulation of [71] leads to a fully distributed method that
ensures both watertightness of the resulting mesh and preservation of sharp edges. The
evaluation confirms that the proposed method produces meshes of similar quality to the
reference (non-distributed) implementation. The fully distributed framework allows an
efficient speedup while maintaining a reasonable memory footprint even for very large
inputs. The implementation on the state-of-the-art Apache-Spark framework shows very
good results on managing very large data sets.
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Figure 2.7: Evolution of the resulting mesh along iterations on an urban scene. Each
line shows two different parts of the mesh. The first line shows the result with the local
graph-cut without iterating, the second line corresponds to iteration n◦3, the third line
to iteration n◦15 and the fourth line to iteration n◦30.
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Figure 2.8: Reconstruction result on a 350 million points data set. Tiling is visualised
through a random colour per tile.
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Chapter 3

Evaluating surface reconstruction
using synthetic data

This chapter addresses the evaluation of algorithms reconstructing a surface from a point
cloud, using synthetic data. The objective is to set a rigorous protocol measuring the
quality of the reconstruction. This work is of fundamental interest for two reasons. First,
it enables the assessment of different algorithms tackling the same problem to determine
the best approach. Secondly, as most algorithms can be tuned via a set of parameters, it
makes it possible to quantitatively study the influence of the different settings and adjust
them in order to achieve the best performance. This is a new approach, that introduces
less bias than previous contributions. We use ground truth surfaces and we proceed by
filtering out parts of the meshes that are not relevant to assess, at different thresholds.
We compute distances between samplings of these filtered meshes and samplings from the
filtered ground truth surfaces.

3.1 Evaluation protocol

3.1.1 Input data

In order to assess surface reconstruction, we first assume the availability of a ground truth
model taking the form of a triangle mesh MGT . Secondly, a point cloud P representing
a realistic scan of MGT must have been generated using a LiDAR simulator like the one
we present in section 3.2. Finally, we will denote by ME a reconstructed triangle mesh
produced with one of the methods to evaluate.

3.1.2 Intuition

As explained in Chapter 1, one way of assessing the quality of a given reconstruction is to
uniformly sample the corresponding meshME and to compute the distance from each of
these samples to the ground-truth meshMGT , and then doing the same but inverting the
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Figure 3.1: In this situation, the real surface has been partially scanned, resulting in a
serious occlusion in the input point cloud. If we uniformly sampled the entirety of both
reconstructed meshes R1 and R2 and used the Metro tool [1] to compute the distances
from them to the ground-truth, the metrics would be dominated by occlusion-based errors
(highlighted in bold).

roles of ME and MGT . Scanning open scenes such as urban environments often results
in severe occlusions because of the presence of many vertical surfaces and overhangs.
Sampling points from the reconstructed surface ME in unobserved regions and taking
into account the corresponding distances toMGT is very likely to dramatically affect the
global performance. This is because the main errors made by the algorithm are very likely
to correspond to those occluded areas. This approach would thus give an indication of
the capacity of the algorithm to fill holes rather than its reconstruction accuracy near the
input data. This is illustrated in Figure 3.1.

3.1.3 Best expected surface

In the general case, as we explained it in Section 3.1.2, only a limited portion of the ground
truth surfaceMGT is covered by the acquisition. If we can expect an algorithm to fill some
holes in the data in a reasonable manner, we cannot expect it to recover the shape of the
scene far from this covered area. Thus, we need to define the “reconstructible” partMα

GT

ofMGT , which can be non connected and have holes, but is still orientable and manifold.
To this end, we propose to define an explicit maximum interpolation (hole filling, super
resolution) and extrapolation (uncropping) distance α at which we evaluate the algorithm.
We can then computeMα

GT by removing all triangles ofMGT for which none of its vertices
lie closer than α to a point of the sampling P . See algorithm 2 for a description of this
mesh processing step. Mα

GT is then the best surface an algorithm can be expected to
reconstruct. Consequently, this is the surface we will compare every reconstructed mesh
with. However, watertight reconstruction pipelines interpolate surface even where point
samples are absent. While watertightness is desirable for the reconstruction of closed
objects, it is less for open scenes that naturally have a border corresponding to the limit
of the coverage of the scene by the acquisition. In order to be impartial with every
algorithm prior, we will not evaluate those interpolated mesh parts further away than α
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from the input data. As a consequence, we also need to compute the part of ME that is
relevant to assess i.e. the sub-mesh Mα

E of ME (applying algorithm 2) containing only
triangles closer to P than a distance α. This is not limiting as in practice, it is an easy
post-processing step that the user can choose to perform if he does not require a fully
watertight mesh. For all these reasons, we believe this approach introduces less bias than
previous work. Figure 3.2 allows to visualise the computation of Mα

GT and Mα
E for a

given α.

Figure 3.2: Visualisation of the computation of the best expected surface for a small value
of α. Starting from the input point cloud, the ground-truth mesh and two reconstructed
meshes R1 and R2, we compute the best expected surface and the relevant parts to assess
Rα

1 and Rα
2 by removing all triangles lying further than α from a point of the input point

cloud.

3.1.4 Sampling

Once Mα
GT and Mα

E have been computed, we need a way to measure the difference
between them. We consider that computing error metrics based on distances between
vertices of one mesh and triangles of the other is biased, as different algorithm can produce
triangles of very different size. Thus we propose to perform a Poisson-disk sampling of
the triangles, which guarantees an even distribution of samples so that we can consider
that each sample represents the same amount of surface area. We choose a Poisson-disk
radius R significantly smaller than α. We denote by PR

Mα
GT

and PR
Mα

E
the Poisson-disk

samplings of radius R of Mα
GT and Mα

E respectively.

60



Algorithm 2: Reconstructible part of mesh M computation
Data: M,P , α
// Browse vertices of M:
for each vertex v ∈ vertices(M) do

compute d = d(v,P) = minPi
d (d,Pi)

if d < α then
// Browse all triangles incident to v:
for each triangle t ∈ {T : v ∈ T} do

if t /∈Mα then
// Browse vertices adjacent to t:
compute (v0, v1, v2) = vertices(t)
for each vertex vt ∈ {v0, v1, v2} ∈ do

if vt /∈Mα then
add vt to Mα

end
add t to Mα

end
end

3.1.5 Quality measure

Thanks to notations introduced in Section 3.1.4 and using the point-to-mesh distance
d (p,M) defined in equation 3.1, bi-directional distances can be computed (equations 3.2, 3.3).

∀p ∈ R3, d (p,M) = min
q∈M

d(p, q) (3.1)

Mean Precision: 1
|PR

Mα
E
|

∑
p∈PR

Mα
E

d (p,Mα
GT ) (3.2)

Mean Recall: 1
|PR

Mα|
∑

p∈PR
Mα

GT

d (p,Mα
E) (3.3)

Precision measures how close are points from the reconstructed mesh to the ground truth
and recall indicates which distance separates points from the ground truth to the recon-
struction. While these terms are named in analogy with the machine learning community
metrics, it is important to note that they do not measure a ratio of relevant information
but a distance and thus the lower, the better.
Instead of choosing an arbitrary α, we propose to compute these distances for a range
of α values and draw the charts corresponding to each of these. Note that the case
where α −→ ∞ corresponds to computing the distances on samplings of the raw meshes
MGT and ME, without applying algorithm 2. The resulting curves will both indi-
cate the precision of the algorithm for small α values and the quality of the interpo-
lation/extrapolation/hole filling for larger α values.
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3.2 Aerial LiDAR simulator

Similar to LiDARsim [66] for terrestrial scan, we developed our own airborne LiDAR
simulation platform in order to generate realistic scans of a given environment.

3.2.1 Virtual environment

We used the open dataset from [78] which was financed by the European Union as part
of a FEDER (Fonds Européen de Developpement Régional). It consists of a 3D mesh of
a large area covering the metropole of Strasbourg. It was produced by photogrammetry
using high resolution (between 4 and 7cm GSD) oblique imagery acquired by helicopter
platform such that it presents details at a higher resolution than typical aerial LiDAR
acquisitions. Figure 3.3 shows a 250m by 250m tile of this mesh.

Figure 3.3: Virtual environment from Strasbourg open dataset

3.2.2 Scanning process

In this section, we formalise our aerial LiDAR simulator. We assume the plane trajectory
can be modelled as a sequence of straight lines and we implemented two scanning patterns.
Among the many possibilities available on the market (zig-zag, elliptical, circular...), we
chose to replicate the parallel line and the elliptical scanning pattern produced by a
rotating mirror mechanism.
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3.2.2.1 Plane trajectory

We use (O,−→ex ,
−→ey ,
−→ez ) as the global coordinate frame, the one in which mesh vertices

coordinates are expressed as detailed in Figure 3.4. We model the acquisition by a linear
trajectory of the LiDAR optical center M moving from A (xA, yA, zA) to B(xB, yB, zB) at
constant speed v0. We also use a local coordinate frame

(
M,
−→
i ,
−→
j ,
−→
k

)
associated to M

defined as:
−→
k =

−→
AB∥∥∥−→AB∥∥∥ ; −→

j =
−→ez ∧

−→
k∥∥∥−→ez ∧
−→
k

∥∥∥ ; −→
i = −→j ∧ −→k (3.4)

which ensures that −→j is orthogonal to −→AB and to the vertical direction −→ez . Note that −→k
is undefined only when −→AB and −→ez are colinear which never happens in practice (a plane
does not fly vertically). −→i completes the frame so that

(−→
i ,
−→
j ,
−→
k

)
is right-handed. M(t)

moves in a straight line and thus can be defined as:

∀ t ∈ [0, tB] , −−→OM(t) = −→OA+ v0 t
−→
k (3.5)

Figure 3.4: Global frame and flight trajectory.

3.2.2.2 Parallel-line scanning pattern

We denote as −→r the direction of the laser ray. −→r is rotating around −→k at constant
angular speed ω = θ̇ (see Figure 3.5). Thus:

−→r = cos(θ)−→i + sin(θ)−→j (3.6)

∀ t ∈ [0, tB] , θ(t) = ω t+ θ0 (3.7)

Such a system is also defined by its field of view i.e. the angle range [θmin, θmax] to which
θ must belong for laser pulses being actually emitted, and by the pulse rate (frequency at
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which pulses are emitted) fp.

Figure 3.5: Parallel-line scanning pattern: zoom in on the local frame and laser pulse
direction. The red-blured area represents the field of view.

3.2.2.3 Elliptical scanning pattern

Denoting as −→r the direction of the laser ray, and using (M,−→u ,−→v ,−→w ) as the canonical
spherical coordinate frame (see Figure 3.6), −→r is rotating around −→w at constant angular
speed ω = ϕ̇ with ϕ being the azimuthal angle of −→r . The polar angle θ is constant.

The laser ray’s direction −→r is:

−→r = sin(θ) cos(ϕ)−→u + sin(θ) sin(ϕ)−→v + cos(θ)−→w
−→r = sin(θ) cos(ϕ)−→−j + sin(θ) sin(ϕ)−→k + cos(θ)−→−i
−→r = − cos(θ)−→i − sin(θ) cos(ϕ)−→j + sin(θ) sin(ϕ)−→k

with :

• ∀ t, θ(t) = θ0 (e.g. π − π
9 )

• ∀ t, ϕ(t) = ωt+ ϕ0

3.2.2.4 Noise model

The quality of LiDAR data has recently been surveyed by [79]. We are especially interested
in the accuracy of the point coordinates that a real LiDAR can achieve. Most of studies
in this area agree to state that it can be split up in an altimetric and a planimetric
component. Values are obviously influenced by the modernity of the system but they also
vary depending on the type of terrain that is considered (bare soil, low grass, forestry)
and the flight parameters (altitude, speed). See [80], [81] for studies on altimetric error
and [82], [83] for planimetric error analysis. As suggested by these contributions, we
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Figure 3.6: Elliptical scanning pattern: zoom in on the local frame and laser pulse direc-
tion.

suppose a normal distribution of errors, differentiating them into planimetric ∆x,∆y
and altimetric ∆z components:

∆x,∆y ∼ N
(
µxy, σ

2
xy

)
; ∆z ∼ N

(
µz, σ

2
z

)
(3.8)

3.2.2.5 Implementation

We implemented the method described above in C++ using CGAL library [84]. Rays are
traced from the virtual aerial station in direction −→r and their exact intersections with the
virtual environment are computed. Gaussian noise following 3.8 is added to these perfect
intersections. As oriented normals or sensor positions are required for some reconstruction
algorithms, point clouds containing this additional information are generated after any
simulation.

3.3 Evaluation

The algorithms we assessed have been run on a point cloud we generated using the LiDAR
simulator described in section 3.2 and the virtual environment displayed in Figure 3.3.
We selected the following ones:

• Poisson N: Poisson [13] using Neumann boundary condition

• Poisson D: Poisson [13] using Dirichlet boundary condition

• SSD: Smooth Signed Distance [28]

• PSS: Point Set Structuring [22]

• RESR: Robust and Efficient Surface Reconstruction [21]
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• WMWU: Watertight Mesh generation With Uncertainties [23]

Resulting surfaces are shown on Figure 3.7.

Ground Truth Poisson N

SSD PSS

RESR WMWU

Figure 3.7: Result of the different algorithms evaluated on a crossroad of the scene

3.3.1 Experimental parameters and methodology

To generate the point cloud on which we evaluated the various algorithms, we used the
parallel-line scanning pattern of the aerial simulator presented in Section 3.2. Values of
the experimental parameters we used are to be found in Table 3.1. As regards to the
evaluation part, we set to R = 0.3m the Poisson-disk sampling radius. This parameter is
chosen by considering the trade-off between sampling density and computational time.
As every algorithm we assessed can be tuned, we first studied the performance of each of
them for a small number of α’s, changing some parameter values. We then selected the
best version of each algorithm and carried out the full evaluation for which the results are
presented in section 3.3.2.

3.3.2 Quantitative results

We plotted the mean precision on Figure 3.8 and mean recall on Figure 3.9 (following
equations 3.2 and 3.3) as a function of α.
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Symbol Value Unit Description
h 1 000 m Flying altitude
v0 60 m.s−1 Flying speed
ω 150 Hz Angular speed

∆θ 40 (°) Field of view
fp 400 000 Hz Pulse frequency
σxy 0.13 m Planimetric error
σz 0.05 m Altimetric error

Table 3.1: Values of experimental parameters we used (parallel-line pattern).

RESR [21] achieves the best performance both in terms of precision and recall and
for any value of α. Additional information provided by sensor positions is certainly help-
ing but we can assume they are making the best use of it, in comparison to WMWU [23].

Results of the evaluation of Poisson [13] confirm that Neumann (Poisson N) leads
to a better reconstruction of open scenes as it enables the surface to extend out to the
boundary of the domain. In contrast, Dirichlet (Poisson D) enforces hard watertightness.
Consequently, an undesirable closure of the surface from the bottom leads to a poor
precision, but only for high α’s. We now see how important it is to differentiate between
global and local evaluation.
WMWU [23] evaluation shows a comparable result as those provided in the original
article. This method provides good results regarding the recall metrics while precision
quickly worsens when α increases. The main explanation is the same as for Poisson with
Dirichlet boundary condition: the surface is artificially closed to ensure watertightness,
leading a great amount of surface to lie away from the ground truth.
SSD [28] curve logically follows the one of Poisson N, as both methods use smooth basis
functions to solve their equation.
PSS [22] could have been expected to perform better since it is based on primitive
detection and an urban scene is full of planar regions. However, it is quite sensitive
to missing data and facades of the buildings are mostly out of reach for a parallel line
scanning pattern LiDAR.

3.4 Conclusion

Surface mesh reconstruction from remote sensing point clouds is a challenging task that
becomes more and more important as data acquisition starts from a purely vertical per-
spective. Our evaluation shows important differences between the various state of the
art approaches. In this chapter, we evaluate the quality of the interpolation that surface
reconstruction algorithms perform between the input points. We argue that this should
be measured as a function of the distance at which we expect the algorithm to interpolate
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Figure 3.8: Mean Precision

Figure 3.9: Mean Recall
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the surface. The resulting metric take the form of curves indicating two quality criteria
as a function of the maximum interpolation distance. Our study shows that [85], while
quite old, remains a very good choice. The very popular Poisson method [11] is efficient
and scales well but does not preserve sharp features that are very present in our urban
evaluation scene.
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Chapter 4

Evaluating surface reconstruction
using real data

4.1 Introduction

The evaluation of surface reconstruction from synthetic data, as presented in Chapter 3,
offers several advantages including the possibility to directly compute the difference be-
tween the reconstructed surface and the ideal one. However, high-quality synthetic meshes
representing large scenes are expensive to obtain thus reducing the range of possibilities.
This Chapter tackles the evaluation of surface reconstruction in the real-world case where
we do not have access to such a synthetic ground truth. We call “real data” the data
acquired in the physical world with real sensors. This includes LiDAR scans, images,
RGB-D images, etc. As is usually done to address this issue, we assess the reconstruction
of real scenes from real data only based on other real data of significantly higher quality.
Even though this idea is quite typical, the main contribution of the work presented in this
chapter lies in the way that we assess the difference between the reconstructed surface and
the high-quality real data as inconsistencies, inspired by recent work on change detection
[86]. This endeavour is hard because of several aspects.

Limits in the quality of the ground truth: the specificity of working with real
data is the presence of noise in what we consider as the ground truth. In addition, real
data is always sparse and incomplete, which means that we do not know the state of space
(occupied by the object or empty) everywhere. This raises the question of how to assess
pieces of reconstructed surface in unseen, unobserved regions.

Our contributions are twofold:

1. We propose a setting where the high-quality data used to compute metrics is signifi-
cantly better than the low-quality data on which surface reconstruction is performed
in three separate ways:
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• Coverage: we use multiple data sources acquired from multiple points of view
to ensure that the high-quality data has a significantly better coverage of the
surface to reconstruct than the low-quality data.

• Density: we ensure that the density of the points in the high-quality data is
significantly better than that of the low-quality data.

• Noise: we ensure that the noise level is lower in the high-quality data than in
the low-quality data.

2. We propose metrics that penalise inconsistencies between the surface to be evaluated
and the high-quality data: a piece of surface reconstructed within a volume unseen
by the high-quality data will simply not be evaluated as we have no information
on it. This does not mean that we do not evaluate the hole-filling capacity of the
evaluated methods. As the high-quality data has more coverage, we evaluate hole
filling exactly where we have the data to do so.

Assumptions and priors: algorithms make different assumptions about the type
of shape that needs to be reconstructed and this leads to very different properties. Con-
sequently, depending on the metrics’ definitions, these assumptions can dramatically in-
fluence the assessment and sometimes in an unjustified manner. An example of such a
situation is shown in Figure 1 where the left model would be attributed a bad mark be-
cause of the red piece of surface even though the rest of the model is correct. Does this
red piece of surface need to be taken into account when assessing the model? We tackle
this issue by defining metrics that only assess hole filling where relevant high-quality data
is available.

Our proposed metrics are based on the visibility information contained in the high-
quality data. We assess the reconstructed surface only where the real one has been
observed. For that purpose, we make an extensive use of sensor positions (positions from
which points have been acquired). This information is easy to access and it provides us
with a full ray along which we know that space is free, instead of just a single position
where we know that the real surface lies. We used these newly-defined metrics to assess
several open-source surface reconstruction algorithms and a licensed one on different types
of scenes. In Section 4.2, we define our metrics and discuss their nature. In Section 4.3,
we present the three datasets on which we tested our evaluation protocol and present the
experimental setup we used to generate the high-quality data. Results are detailed and
analysed in Section 4.4, before we present the conclusions of this work in Section 4.5.
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4.2 Evaluation protocol

4.2.1 Intuition

Let us give some examples of situations where current metrics are not adequate to evalu-
ate surface reconstruction, and what we suggest would be an improvement. This is going
to help understand our metrics’ definitions in Section 4.2.3.

First, as presented in Section 1.3, comparing a reconstructed mesh with a ground
truth point cloud can be done by computing the distances from those points to the mesh
model. While this seems like a good starting point to assess how well holes have been
filled around those points, it is inadequate to evaluate the overall accuracy of the surface.
Figure 4.1 shows an example of such a situation where a surface would be evaluated as
almost perfect even though large portions are clearly incompatible with the ground truth
if we take into account the positions from which points have been acquired.

Secondly, it is possible to measure accuracy solely with ground truth points by sam-
pling the reconstructed surface and measuring the distance from these samples to the
ground truth points. Nevertheless, large pieces of the reconstructed surface might be
judged as being of poor quality (if lying far from the nearest ground truth point) despite
being correct, just because of a low ground truth density. We want to assess both accu-
racy and completeness only in regions where ground truth information is available, and
this is possible using sensor positions as shown in Figure 4.1.

Figure 4.1: The importance of sensor positions: the dashed part of the reconstructed
surface can be identified as wrong by making use of sensor positions when the high-
quality point cloud does not provide enough information.

Thirdly, as surface reconstruction has often been evaluated visually, we wanted to
find metrics that would imitate this human intuition-based assessment. We believe that
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Figure 4.2: These four cases would be evaluated in the same way by a basic point-to-mesh
distance. However, they are very different in terms of what a human being would be able
to see from the sensor position.

visibility-based metrics are more appropriate for assessing how the reconstructed surface
matches the real one everywhere where we can see and compare them. Figure 4.2 shows
four situations for which the piece of reconstructed surface would be marked similarly
by a point-to-mesh distance. The distance from the high-quality point to the nearest
piece of reconstructed surface is indeed the same in all four situations. However, we are
certain that they should correspond to three completely different outcomes and we want
our metrics to be able to differentiate between them. In particular:

• in (a), the reconstructed surface lies slightly behind the high-quality point. We
consider it as correct at the threshold defined by our tolerance zone.

• in (b), the reconstructed surface lies slightly in front of the high-quality point. As
in (a), we consider it as correct even though we can measure a slight error.

• in (c), whilst the piece of real surface corresponding the high-quality point has been
recovered just like in (a), the reconstructed surface hides the nearest intersection
by crossing the laser ray, resulting in an obvious inaccuracy. What one would see
by looking in the direction of the laser ray is not the right piece of reconstructed
surface but rather something else far in front of it.

• situation (d) might look similar to (b) but there is actually no intersection between
the reconstructed surface and the laser ray. Consequently, what one would see by
looking in the direction of the laser ray is not the right piece of reconstructed surface
but something else in the background. We thus consider that the surface has not
been recovered at all here.

ETH3D benchmark [87] proposed metrics to evaluate how well a two- or multi-view
stereo point cloud matches a LiDAR-based one, using sensor positions. While surface
reconstruction is a different task to MVS (in particular in terms of the expected output
properties), [87] still evaluates the matching between two 3-dimensional structures and
we were inspired by their use of sensor positions. However, we chose different paradigms
that are more adapted to surfaces, so our evaluation protocol is considerably different.
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The ETH3D benchmark [87] defines completeness as the proportion of ground truth
points for which the distance to its closest reconstructed point is below a given threshold.
We could keep this definition and find the point from the reconstructed surface that min-
imises the distance to each point of the high-quality point cloud. Nonetheless, given that
we know in what direction this point is supposed to be encountered thanks to the sensor
position, we find it more relevant to compute the distance between the high-quality point
and the nearest intersection between the corresponding laser ray and the mesh model. In
other words, while the most natural adaptation of this point-to-point distance would be
a point-to-mesh distance, we believe that for each ray that hit the the real surface there
should be a piece of reconstructed surface close by and along the ray.

However, we also leverage the information given by each laser ray: the space between
each sensor position and its associated high-quality point should be empty. We soften this
property by defining a tolerance zone: a piece of reconstructed surface will be considered
as correct if its distance along the ray from the high-quality point is smaller than a given
threshold dmax. Every piece of surface further than dmax and situated in front of the
high-quality point will affect the accuracy of the model.

Contrary to ETH3D benchmark [87], we do not model the shape of a laser beam as a
truncated cone. The first reason for this is that we do not need to, since the model we are
trying to evaluate (a surface) is continuous instead of discrete (a point cloud). Hence, we
are not at risk of missing any part of it. In addition, it makes it simpler to get a point as
the intersection between a ray and a piece of surface. This way, every couple (ray - piece
of surface) gives the same amount of information.
[87] uses voxels to prevent a “cheating” strategy from achieving both high accuracy and
completeness despite raising other issues. For example, regions of low ground truth density
contribute as much as high density ones while encapsulating less information. A cheating
strategy for surface reconstruction would be to add several parallel layers of surface in
regions of high confidence. We do not need to discretise space as in [87] since for each ray
we propose to keep only the closest intersection as a potential correct one and penalise
all the ones situated in front of it. Note that even layers situated behind the closest
intersection might be obstacles to rays pointing at another object in the background.

If the nearest intersection is found behind the high-quality point at a greater distance
than dmax, or if no intersection is found at all, then we consider that this piece of surface
has not been recovered. This therefore affects the completeness of the model.
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4.2.2 Definitions and notations

In this chapter, we want to evaluate the quality of surface reconstructions from low-
quality data PIf , with only having access to high-quality data PGT of the same scene
and without having access to the perfect ground truth surface that the algorithms are
supposed to produce.

• PIf : the low-quality point cloud that will be fed to the evaluated surface reconstruc-
tion methods to produce the output surface meshes to be evaluated.

• PGT : the high-quality (ground-truth) point cloud with better coverage, higher den-
sity and less noise than PIf and for which we know the sensor positions, defining
one ray per point.

• ME: the reconstructed mesh to evaluate, produced by an algorithm from PIf .

• dmax: the maximum distance at which we evaluate the reconstruction. It is a param-
eter which influences the different metrics as we use it to separate noise (distance
< dmax) from outliers (distance > dmax).

Figure 4.3: Toy example to visualise the definitions of the metrics. The real surface has
been scanned from two positions: O1 and O2. A given real laser ray (the thick one) was
cast from O1 and it hit the real surface at Gt. Note that the position of the intersection
might be noisy, hence the shift between the real surface and the high-quality point cloud.
We compute all intersections between the associated virtual ray (i.e. the extension of the
real laser ray) and the reconstructed surface. In this case, it results in six intersections
I1,...,6. The closest intersection to Gt happens to be I2 so the “ray distance” metric for
that particular ray is the distance (Gt, I2). If (Gt, I2) < dmax, Gt is to be counted as a
TP, otherwise it will not be taken into account in the evaluation since it is situated after
Gt. Note that this piece of surface might still be evaluated thanks to another ray (as one
emanating from O2, for example). Besides, we found one intersection I1 on the way to
the closest intersection I2 which is counted as a FP.
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4.2.3 Metrics definitions

Similar to [88], we would like to assess both the precision of each part of the reconstructed
surface (each part of the surface should lie near some part of the real surface) and the
completeness of the model (there should be as few missing parts of the real surface as
possible). As we do not have access to a digital model of the real surface, we cannot
compute the actual precision and recall as in [88]. Our knowledge of the ground truth is
limited to the high-quality data PGT . However, we also know where the surface is not
supposed to lie since we know the sensor position from which every point of PGT has been
acquired, thus defining a ray of free space. Therefore, we define a precision metric that
penalises inconsistencies between the reconstructed surface and the visibility information
contained in PGT . We propose an equivalent of the recall metric: for each [OP ] ray from
PGT , we compute the distance from the P to the closest intersection between the [OP )
half line and the reconstructed surface. Here is the formalisation of these metrics in more
detail:

• “Ray distance”: for each point/ray (p, r) ∈ PGT , we compute the distance from p to
the closest intersection (which we will denote as c) between r and ME (among all
potential intersections, we choose the one with the smallest distance with respect to
p). If this distance is < dmax then the piece of reconstructed surface is considered
as being correct and we add this distance to an array of distances.

• “Precision”: for each point/ray (p, r) ∈ PGT , if the “ray distance” (between p and c)
is < dmax then we count c as a True Positive (TP) (since there is a piece of surface
and it is correct). Otherwise, if the intersected point c lies at a distance greater
than dmax and it is before the corresponding high-quality point p, we consider it as
being false and we count it as a False Positive (FP) (since there is a piece of surface
and it is false). We consider that we cannot say anything about the closest point c
if it lies at a greater distance than dmax and it is situated after the corresponding
high-quality point p (neither can we for all intersected points lying after it), so we
just ignore them. All intersected points lying before this closest intersection c are
also counted as FP as they are inconsistent with the corresponding ray of free space
(p, r). This is enough to define the precision ratio (equation 4.1).

• “Recall”: it is defined as the ratio between the number of TP and the number of
cast rays (equation 4.2. Every high-quality point p ∈ PGT is either mapped to its
corresponding TP (in which case the piece of real surface has actually been recovered
by the algorithm) or not (meaning a lack of exhaustiveness of the reconstruction
and corresponding to a False Negative FN ). The number of rays thus equals the
sum of the TP and the FN.
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• “Cumulative distances”: the cumulative histogram of the ray distances where the
x-axis corresponds to the distance and on the y-axis we plot the number of points
for which the ray distance is below the x-distance, divided by the total number of
rays cast. It contains the information of both mean ray distance and recall. The
right-most value will be at a given distance from the y = 1 line, which corresponds
to the number of points for which the ray distance is above dmax (if “re-multiplied”
by the total number of rays).

Precision = TP

TP + FP
(4.1)

Recall = TP

TP + FN
= TP

number of rays (4.2)

F-score = 2 · precision · recall
precision + recall (4.3)

As we define precision and recall as ratios, the harmonic mean (F-score, see equation 4.3)
allows ranking the methods by taking into account both metrics.

4.2.4 Tuning / Training

The algorithms we evaluate in this chapter are either tunable for the most part or they
learn parameters in order to reconstruct surfaces. For example, DGNN [26] needs a
training dataset in order to learn the parameters of its model and Poisson [11] can be
run at different resolutions by changing the depth of the octree that is used. In order
to be as fair as possible, we used the same dataset to tune or train the algorithms. We
therefore ran the non-learning-based methods with different values for their parameters
and carried out an evaluation. A first interesting result is that for some methods, it can
be hard to obtain a good performance regarding the precision and the recall metrics at
the same time. For PSS, the higher the value of the trade-off parameter λ (therefore
the more importance given to the prior term, see equation 1.2), the higher the precision
(up to a certain value) but the lower the recall. Maximising the score of one metric (by
varying λ) results in minimising the score of the other one (we explain why in Section
4.4). Thus, we selected the two λ values that maximise each of these metrics individually.

The tuning/training dataset that we decided to use is composed of three scenes from
STRAS . The reason behind this choice is the availability of ground-truth meshes which
are absolutely necessary for the training phase of DGNN. We then also used these three
scenes to find the best parameters (in terms of ray distance, precision and recall) for the
non-learning-based algorithms.
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4.3 Input data

We aim to evaluate the algorithms in very different scenarios as the methods’ priors might
influence the quality of the reconstruction depending on the type of scene or the type of
data involved. We therefore compute the metrics introduced above on three significantly
varying datasets.

4.3.1 STRAS: Strasbourg dataset and LiDAR simulator

Figure 4.4: Strasbourg scene (mesh in grey, point cloud in blue)

4.3.1.1 Elliptical aerial LiDAR simulator

In order to control the data itself, we started by using the same synthetic dataset [78] as
in Chapter 3. Figure 4.4 shows a 250 metre by 250 metre tile of this mesh. In order to
generate the ground-truth and the input point clouds PGT and PIf , we used the aerial
LiDAR simulator that we introduced in Chapter 3 [88]. This is because such a large
urban environment is typically scanned using an airborne LiDAR system. The problem
with the parallel line pattern is that facades that are perpendicular to the direction of
the plane are not reachable by the laser ray and thus are absent from the resulting point
cloud. In order to overcome this issue, we used the elliptical scanning pattern. It
is indeed better suited to urban environments, for the laser ray will be able to point at
far more facades than with the parallel line pattern, resulting in a better coverage. The
values of all the parameters we used can be found in Table 4.1.

4.3.1.2 Experimental setup

We aim to produce two point clouds PGT and PIf in such a way that PGT should have
less occlusions and be denser than PIf . The scenes are all 250 metre by 250 metre tiles
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Symbol Value Unit Description
h 1 000 m Flying altitude
v0 60 m.s−1 Flying speed
ω 150 Hz Angular speed
θ0 160 (°) Polar angle
fp 400 000 Hz Pulse frequency
σxy 0.13 m Planimetric error
σz 0.05 m Altimetric error

Table 4.1: Values of experimental parameters used.

of an urban environment for which positions are expressed in a global coordinate frame
(O,−→ex ,

−→ey ,
−→ez ) such that −→ez represents the ascending vertical direction. In our setup, a

trajectory of the LiDAR system for each scene is a single straight pass of the plane along
axis −→ey for x = αx (xmax − xmin) , αx ∈ [0, 1]. We generate PIf thanks to one pass of
the plane with αx = 0.5 and PGT thanks to three passes with αx ∈ {0.25, 0.5, 0.75}. We
denote Pαx as the point cloud resulting from the flight x = αx (xmax − xmin). We then
have: PIf = P0.5 and PGT = P0.25 ∪ P0.5 ∪ P0.75. This way, PIf forms part of PGT and
contains a lot more occlusions in particular on facades parallel to the direction of the
plane. Figure 4.5 gives an example of such a situation.

Figure 4.5: Left: Mesh, Centre: PIf , Right: PGT . The facades parallel to the direction of
the plane are a lot more occluded in PIf .

4.3.2 ENSG dataset: indoor and outdoor terrestrial LiDAR
scan

As the original goal of our study was to propose an evaluation protocol suited for real
data, this dataset is only based on real data that we acquired ourselves. The resulting
point clouds intensity channel can be visualised on Figure 4.6.

4.3.2.1 Stationary LiDAR station

We used the stationary LiDAR station “Leica ScanStation P40” for which we will give a
brief introduction. Once the station is settled, rays are cast 360◦ horizontally around its
origin and 290◦ vertically (the ground area immediately underneath the station remains
unobserved during the acquisition). It can acquire up to 1, 000, 000 points per second
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from 0.4 metre to 270 metres with a 3D position accuracy of 3 millimetres at 50 metres.
In order to satisfy the condition of PGT being of higher quality than PIf , we decided to
acquire points from more viewpoints to generate PGT , using the same LiDAR station. We
thus scanned each environment from five positions: the four vertices of an approximately
regular 1.5 metres side length tetrahedron (O1, O2, O2, O4) and its centre of mass O5 as
shown in Figure 4.7. In order to evaluate surface reconstruction algorithms in several
different scenarios, we repeated this procedure for three scenes:

• “Building”: an outdoor scene made of a building, a sloped road, trees and an opening
to another scene called “Car park”.

• “Car park”: an indoor scene with pipes, partially occluded cars and open doors,
including one communicating with the outdoor scene “Building”.

• “Clutter”: a closed indoor scene with a lot of occlusions due to a high density of
objects.

Figure 4.7: Tetrahedron-like viewpoints. (O1, O2, O2, O4) form an approximately regular
1.5 metres side length tetrahedron and O5 is positioned at its centre of mass. The black
rectangle represents a room in which we installed our stationary LiDAR.

4.3.2.2 Matrix format and sub-sampling

Following the definition of our protocol (see Section 4.2), we need to generate poorer-
quality point clouds to run reconstructions. Our LiDAR system has a spherical geometry
as illustrated in Figure 4.8. The horizontal resolution and vertical resolution of the scanner
define a fixed number w of values for ϕ and a fixed number h of values for θ respectively.
Laser rays are thus cast in the directions given by every pair of angles (ϕ, θ). We can
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thus represent the points as a matrix of height h and width w and then index all points
by their (i, j) ∈ [|1, h|]× [|1, w|] coordinates. Figure 4.6 shows the intensity of the returns
in this matrix-like format. Each raw acquired point cloud did not fit into the memory of
our machine so we down-sampled them by keeping odd-indexed points as illustrated in
Figure 4.8. Starting from the raw point clouds with origins centred on O1, O2, O3 O4 and
O5, we down-sampled them all (roughly four times) following this matrix-based scheme
and PGT is the union of these five four-time down-sampled point clouds. We repeated
this matrix-based down-sampling scheme on the point cloud centred onO5 to generate PIf .

Figure 4.8: Matrix format-based subsampling. Left: spherical representation of a point
cloud acquired with the stationary LiDAR station “Leica ScanStation P40”. Each point
acquired is defined by its spherical coordinate angles (ϕ, θ). Right: Matrix format-based
sub-sampling: only points represented with a black outskirt are kept in the sub-sampled
point cloud.

4.3.3 ETH3D dataset

[87] presents a two- and multi-view stereo benchmark. Their dataset contains several
scenes with:

• input images at 24 Megapixel resolution on several scenes

• ground truth 3D laser scan point clouds

4.3.3.1 Generating the point clouds: Multi-View Stereo and real LiDAR

In order to generate the low-quality data, we used the OpenMVS [89] library to generate
dense point clouds from images using the provided camera poses of three scenes (Terrace,
Courtyard, Pipes) of the ETH3D train dataset. We used the DensifyPointCloud tool
of OpenMVS with the standard settings, except for the following parameters: number-
views-fuse = 2, optimize = 0 and resolution-level = 4. We used the provided LiDAR
point clouds as our high-quality data. A typical MVS pipeline generates a much sparser
and more noisy point cloud than what a laser scan provides. It also contains more out-
liers. For all these reasons, we consider it relevant to carry out an evaluation on a set of

81

https://github.com/cdcseacave/openMVS


MVS-based point clouds. We thus used three scenes from the ETH3D dataset [87], which
can be seen in Figure 4.10.
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Figure 4.6: Equirectangular projection of the LiDAR points. Top: Outdoor scene (“Build-
ing”) from O3 - Middle: indoor scene (“Car park”) from O2 - Bottom: Indoor Scene
(“Clutter”) from O1. “Building” and “Car park” share some space thanks to what can be
seen through the open door in the middle of both images.

83



(a) LiDAR Point Cloud (b) Image Point Cloud

(c) LiDAR Point Cloud With Visibility (d) Image Point Cloud With Visibility

Figure 4.9: Point Clouds with Visibility Information: Terrestrial point clouds (a,
b) from the Terrace scene of ETH3D [87]. We visualise some of the sensor positions
and lines-of-sight (c, d).

84



Figure 4.10: Images of the three scenes from the ETH3D dataset we used. Top: Out-
door scene (“Courtyard”) - Middle: indoor scene (“Pipes”) - Bottom: Outdoor Scene
(“Terrace”).
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4.4 Results

In this survey, we assessed:

• RESR [21]

• SSD [28] with two combinations of the octree depth and the B-spline degree param-
eters: (depth = 8, degree = 2) and (depth = 12, degree = 3).

• Poisson [13] with two values for the octree depth parameter: 8 and 11. The B-spline
degree will always be 2.

• DGNN [26]

• PSS [22] with two values for the trade-off parameter: 0.1 and 0.6

• Agisoft Metashape 1.6.4 (the user manual can be found here) with Extrapolated
mode and ultra high resolution.

For the ETH3D dataset only, we assess two other surface reconstruction algorithms as
they are part of the OpenMVS [89] pipeline. Mesh reconstruction is initiated using Ex-
ploiting Visibility Information in Surface Reconstruction to Preserve Weakly
Supported Surfaces (WSS) [90]. A refinement step is then carried out using High
Accuracy and Visibility-Consistent Dense Multiview Stereo (DMS) [91]. We
thus compute the metrics on the resulting meshes from both these methods.

STRAS PC3E44 3 (dmax = 50 cm)
Method TP FP TP + FN MD (cm) P (%) R (%) F1 (%)
RESR 1278734 57089 1365120 6.58 95.73 93.67 94.69
DGNN 1246228 72899 1365120 6.79 94.47 91.29 92.85

Poisson 11/2 1267301 128888 1365120 8.91 90.77 92.83 91.79
PSS 0.6 1217138 81549 1365120 7.39 93.72 89.16 91.38

SSD 12/3 1271969 172285 1365120 9.56 88.07 93.18 90.55
SSD 8/2 1203150 167204 1365120 13.04 87.80 88.14 87.97

Poisson 8/2 1174069 151134 1365120 12.77 88.60 86.00 87.28
A. Metashape 1033179 195725 1365120 19.41 84.07 75.68 79.66

PSS 0.1 1280230 686825 1365120 7.47 65.08 93.78 76.84

Table 4.2: Raw numerical results for dmax = 50 cm (MD stands for mean distance, P for
precision, R for recall and F1 for F-score)

4.4.1 STRAS dataset

In accordance with the survey conducted and published in [88] on the same dataset but
with different assumptions and metrics, Table 4.3 shows that RESR achieves the best
performance again on the urban environment of [78] regarding both precision and recall.
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STRAS (dmax = 50 cm)
Method mean distance (cm) precision (%) recall(%) F-score(%)
RESR 5.98 96.68 94.88 95.77
DGNN 6.13 96.08 92.56 94.29

Poisson 11/2 7.99 93.19 94.31 93.75
PSS 0.6 6.67 95.08 91.35 93.17

SSD 12/3 8.53 90.72 94.63 92.63
SSD 8/2 11.57 90.11 90.48 90.30

Poisson 8/2 11.49 91.11 88.39 89.73
A. Metashape 16.21 87.92 80.63 84.11

PSS 0.1 6.76 72.72 95.00 82.28
mean methods 9.04 90.40 91.36 90.67

Table 4.3: Average numerical results on the three scenes from STRAS dataset sorted by
decreasing F-score for dmax = 50 cm

As evaluating surface reconstruction from real data only is harder than using synthetic
data (we do not have an exhaustive ground truth), it is a very sound validation that the
metrics that we defined without access to the ground truth surface show similar tenden-
cies to the metrics that have access to ground truth surfaces.

We also carried out a more detailed evaluation by testing several values for the main
parameters of selected methods. We found that the trade-off of PSS [22] has a big effect
on the metrics. More precisely, the lower we set it (the more confidence we give to the
data), the lower the precision but the higher the recall (and vice versa). A high confidence
in the data results in a lot more interfaces between occupied tetrahedra and empty ones.
Conversely, a higher trade-off λ gives more power to the regularisation term, resulting in
fewer couples of adjacent tetrahedra being labelled differently, and so fewer triangles in
the output mesh. When more confidence is given to the data, there are a lot more unde-
sired triangles “floating” in regions of free space, which dramatically affects the precision.
However, small structures might be erased from the mesh if less confidence is given to the
data term, resulting in a poorer recall.

Poisson [11] and SSD [28] are both influenced positively by an increase in the octree
depth. This was expected since more points are used to reconstruct the mesh, which
results in an increase in the computation time and memory footprint.

DGNN performs a lot better on the STRAS dataset than on the two others, which
highlights a problem in its capacity to generalise to scenes that differ from the ones in the
training set. However, its poorer F-score performance on ETH3D and ENSG is mostly
due to the precision metric. DGNN often succeeds in recovering the scene features but
adds too many undesired triangles in the scene.
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Figure 4.11: Cumulative distances over the three scenes from STRAS dataset for dmax =
50 cm.

While precision, recall and ray distance provide complete information on the quality
of the reconstruction, one might find it more intuitive to start by having a look at the
cumulative distances shown in Figure 4.11. The precision at small range can be estimated
as the area under the curve. The closer the curve is to the top left-hand corner, the better
it is since this means that all the True Positives are actually very close to it. Besides, the
highest value of each curve is the recall of the corresponding method so the gap between
the cumulative population in the last category and the line y = 1 should be as small as
possible.

4.4.2 ENSG dataset

The ENSG dataset, having been generated using a stationary LiDAR system, is the one
containing the least amount of noise hence the overall good performance of all of the
methods. In particular, we can see that the mean distance is generally a lot smaller than
with other datasets even though the scenes themselves have much more complicated ge-
ometries and more occlusions.

Figure 4.12 shows the meshes reconstructed by every assessed algorithm on the Park-
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ENSG (dmax = 20 cm)
Method mean distance (cm) precision (%) recall(%) F-score(%)
RESR 0.45 93.10 95.99 94.51

Poisson 11/2 0.90 78.38 96.96 86.22
Poisson 8/2 2.72 78.66 88.16 83.05
SSD 12/3 1.27 72.41 96.04 82.23

A. Metashape 1.63 79.00 83.95 81.37
SSD 8/2 3.04 71.95 87.77 78.96
DGNN 0.49 52.99 96.22 68.28
PSS 0.6 0.54 28.44 97.92 43.94
PSS 0.1 0.54 22.30 98.19 36.18

mean methods 1.29 64.14 93.47 72.75

Table 4.4: Average numerical results on the three scenes from ENSG dataset sorted by
decreasing F-score for dmax = 20 cm

ing Lot scene (part of the ENSG dataset). One can fairly easily interpret the perfor-
mance achieved by these methods by analysing the type of mistake they made on the
corresponding scene. RESR succeeds at reconstructing most of the visible parts, and
very few undesired triangles lie in free space (most of them are connecting the pipes to
the wall and the ceiling).
At first glance, Poisson 11/2 reconstruction seems to be a lot more accurate than Pois-
son 8/2 so it might not be obvious why they have the same precision. This situation
actually shows the interest of the mean distance metric. While the two reconstructed
models are structurally the same, the difference between them is visible at close range:
under the threshold dmax. Consequently, Poisson 8/2 has a much higher mean distance
than Poisson 11/2 but achieves a similar precision. The same kind of argument holds
for explaining the relatively poor performance of SSD 12/3 and A. Metashape: whilst
being locally more accurate than Poisson 8/2, the meshes are structurally not in ac-
cordance with the visibility information provided by the high-quality point cloud. The
precision metric is dramatically affected by large portions of surface lying in free space.
DGNN and PSS have the same problem: whilst having a high recall, denoting their
capacity to recover most of the existing pieces of surface (and very accurately, given the
very low mean distance metric), they connect too many regions of space with triangles
lying in empty space, thus affecting their precision.
The accordance between all of these visual observations and the corresponding quantita-
tive results given by our metrics prove their relevance.

4.4.3 ETH3D dataset

MVS-based point clouds are known to be noisy and contain quite a lot of outliers. This
seems to have an effect on the performances of the different methods. The ones perform-
ing best on ENSG and STRAS seem to struggle more, and surprisingly, Poisson 8 [11]
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(a) RESR (b) Poisson 11/2

(c) Poisson 8/2 (d) SSD 12/3

(e) A. Metashape (f) SSD 8/2

(g) DGNN (h) PSS 0.6

(i) PSS 0.1

Figure 4.12: Reconstructed meshes from the ENSG Parking Lot scene.
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ETH3D (dmax = 20 cm)
Method mean distance (cm) precision (%) recall(%) F-score(%)
DMS 2.04 95.33 93.72 94.47

Poisson 11/2 2.56 93.91 94.04 93.96
RESR 2.62 94.12 92.65 93.29

A. Metashape 2.57 95.09 91.18 93.00
WSS 2.66 91.31 93.79 92.51

SSD 12/3 2.66 90.65 94.44 92.48
SSD 8/2 4.21 93.38 89.03 91.13

Poisson 8/2 3.99 94.66 86.94 90.59
DGNN 2.61 79.47 93.63 85.95
PSS 0.6 2.52 67.41 94.63 78.52
PSS 0.1 2.56 53.79 95.16 66.99

mean methods 2.82 86.28 92.66 88.44

Table 4.5: Average numerical results on the three scenes from ETH3D dataset sorted by
decreasing F-score for dmax = 20 cm

achieves a fairly high precision on this dataset. We believe that this is because it is more
capable of filtering out the noise with an 8-depth than with an 11-depth octree. That
would explain why SSD 8/2 also has a better precision than SSD 12/3. However, their
poorer recall indicates that more pieces of real surface have not been recovered.

The method that performs best, however, is DMS, which is not very surprising con-
sidering the fact that it is the best version of a real MVS pipeline, fed with images and
not with an image-derived point cloud.

The relatively good performance of A. Metashape on ETH3D compared to the other
datasets might suggest it copes pretty well with outliers. More generally, considering it is
a licensed solution, we might have expected a better overall performance on at least one
of our datasets.

4.4.4 General remarks

Overall, RESR is the method that performs best almost everywhere. DGNN shows
that learning how to reconstruct large, complex and open scenes is indeed possible, but it
faced generalisation problems since the metrics on ENSG and ETH3D datasets are signif-
icantly lower than those on STRAS (from which its training set was extracted). However,
with RESR and DGNN being the only methods making use of sensor positions, we
believe that this is an important reason behind their good results. Sensor positions give
an important piece of information that neither the points themselves nor the associated
normals provide.
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Poisson generally performs structurally better than SSD. Small-scale differences are
noticeable when changing the octree depth used by both these algorithms.

PSS often reconstructs meshes very close to the real surface but also connects pieces
of surface in regions of space that should remain empty. We can assume that we failed to
find the right parameter settings because it was definitely the hardest algorithm to tune,
but this is the best performance we managed to get.

4.5 Conclusion

Surface reconstruction is hard to evaluate since it is impossible to directly compute the
difference between the real surface and a reconstructed one. It has often been assessed
visually because it seems fairly intuitive to know whether a piece of surface has been
accurately recovered. However, human perception can be unfair and a purely visual eval-
uation lacks quantitative information. In this chapter, we proposed new metrics to assess
surface reconstruction. We have leveraged the visual information obtained by combining
the acquired points and the associated sensor positions in order to define what we believe
are more relevant metrics than the ones currently used. They imitate the process of a hu-
man being looking at and comparing the two surfaces (the real one and the reconstructed
one). This goal has been achieved since our survey validates behaviours that a human
can interpret by just looking at the meshes. In Section 4.4 we drew parallels between the
specific visual observations and the quantitative evidence provided by our metrics that
confirms them.

Our metrics enable the assessment of the completeness of the reconstructions as well
as their precision both locally and globally. One can thus analyse the results from different
points of view. As a relevant outcome, our survey also confirms that sensor positions are
very relevant when trying to separate occupied from empty space.

As well as all these advantages that make surface reconstruction evaluation more ob-
jective, the fact that we only use raw data acquired with basic sensors makes it easy to
set up a new experiment. Having access to expensive data is not a requirement. We pro-
vide a tool to make surface reconstruction evaluation easier and wish to see it used widely.
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General conclusion and perspectives

Conclusion

Two major challenges in surface reconstruction have been tackled in this PhD. We first
presented an end-to-end distributed surface reconstruction pipeline in order to make it
possible to scale up to arbitrarily-large point clouds whilst guaranteeing the watertightness
of the model. Secondly, we proposed two protocols to assess the quality of any recon-
struction with the aim to make assessments more rigorous and less biased than previous
approaches.

Large-scale surface reconstruction

Improvements in sensor capabilities have made it possible to acquire massive point clouds
representing large areas. The LiDAR HD project, led by the French Mapping Agency,
aims to map all French territory at 10 points per square meter resolution. However,
working with such massive data is impossible without re-thinking point cloud processing
algorithms and storage. Memory footprint and computation time quickly become pro-
hibitive when working on a standard machine, so we investigated the parallelisation of a
surface reconstruction algorithm [23] and in particular the graph-cut optimisation step.

We generalised the work on the parallelisation of an imaged-based graph-cut optimi-
sation [72], which uses the method of Lagrange multipliers [75], to the more complex case
of a 3-dimensional structure dual graph. We proceeded by splitting the input point cloud
into tiles and computing its distributed Delaunay triangulation using the algorithm and
data structure presented in [71]. In order to label each tetrahedron as empty or occu-
pied, we needed to minimise an energy function. While it has become standard to use
graph-cut optimisation to solve this problem, we wanted to make it possible to split the
computation on the nodes of a cluster. We split the Delaunay triangulation dual graph
after duplicating the frontier nodes so that the energy function can be divided into as
many sub-energies as there are tiles. However, in order to end up with a globally consis-
tent surface, we needed frontier nodes to be labelled identically in all the sub-graphs that
they belong to. We showed how to incorporate these constraints into the energy function
itself and optimise the global energy function by iterating local graph-cut optimisations
and Lagrange multipliers’ updates. This leads to a watertight surface that is close to the
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one that would have been produced by the non-distributed method.

Evaluation of surface reconstruction

Evaluating surface reconstruction is difficult because of the nature of the problem: the
goal is to produce a digital model that represents as best as possible a real object or
environment, of which discrete information has been acquired using a noisy sensor. For
complex open scenes, it is nearly impossible to define the ground truth surface as it should
be the real surface itself, so we cannot directly compute the difference between this real
surface and the reconstructed one.

We have shown that one possible solution is to work with synthetic data that we con-
sider as being as close to the real surface as possible. We thus considered such a mesh to be
the perfect surface that an algorithm is supposed to reproduce, which solves the problem
of defining a ground-truth that we can directly compare a reconstruction with. We next
had to simulate the acquisition of a point cloud from this ground-truth mesh by a sensor.
In order to produce a realistic input point cloud, the simulation includes adding noise to
the acquired point positions. We could then run the algorithms that we wish to assess
on this simulated data. To achieve this, we developed an aerial LiDAR simulator that
replicates the production of a realistic point cloud representing an urban environment.
We used it on a publicly available high-quality dataset [78]. However, even after solving
this problem, measuring how different the reconstruction is from the ground truth is not
straightforward. Point clouds are noisy and contain occlusions so all the features of the
scene might not be present in the input point cloud, or they might be scarcely sampled.
In this context, cannot expect an algorithm to recover such shapes. To deal with this
question, we proposed processing both the ground truth and the reconstructed meshes.
We filtered out triangles from both meshes that lie further than a given threshold from
the input point cloud, thus defining the “best expected surface” and its reconstructed
equivalent. We repeated this process for several threshold values and computed the dis-
tance between Poisson-Disk samplings of both these filtered meshes, thus resulting in two
curves of distances. This protocol offers the possibility to analyse the precision and the
recall of the reconstructions locally and globally. This proved to be insightful since we
observed the algorithms we tested had different behaviours depending on the range at
which we assessed them.

In order to avoid having to work with synthetic data, we showed that it was possible
to set a rigorous protocol to evaluate surface reconstruction exclusively with real data.
We only had to make sure that we have access to two different point clouds representing
the same scene, with one of them being of significantly better quality than the other: it
has to be denser, have fewer occlusions and less noise. In addition, we made extensive
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use of sensor positions, which are easy-to-access pieces of information in our controlled
setting. The combination of high-quality points and the positions from which these points
have been acquired allow us to define rays along which space is supposed to be free.
Each ray also provides us with a direction along which space is supposed to become
occupied, close to the corresponding high-quality point. We therefore expect to find a
piece of surface in this region. We proposed computing the intersections between these
rays and the reconstructed model, and analysing the ones situated in observed space.
These intersections that denote pieces of reconstructed surface can be classified as True
Positives or False Positives depending on how close they are to the corresponding high-
quality point and how compatible they are with the visibility information provided by
the laser ray. We defined False Negatives as pieces of surface that were expected but
were not recovered, and these entities allow us to calculate precision and recall ratios.
We combined these two complementary metrics with the distance from each high-quality
point to the nearest intersection, which provides information on the local precision of the
reconstruction. We showed that these metrics are relevant when trying to assess surface
reconstruction since they allow validating and quantifying human visual assessment.

Perspectives

The end-to-end distributed surface reconstruction pipeline that we presented in Chap-
ter 2 is an improvement on previous Delaunay-based algorithms. We have nevertheless
identified a number of perspectives for our work. In particular, there is no theoreti-
cal guarantee that the algorithm converges to a unique labelling over all tiles. In other
words, there might be residual disagreements between the labelling of a single tetrahedron
in the different tiles that it belongs to. To guarantee watertightness, we decided that each
of these inconsistently labelled tetrahedra would be labelled according to one particular
tile, defined by our distributed Delaunay triangulation structure [71]. In the case where a
tetrahedron is split across an odd number of tiles, we could probably change that decision
making process to a majority vote between the tiles. However, a shared tetrahedron is
much more likely to belong to either two or four tiles, making this source of improve-
ment quite limited. Another possibility to reduce the number of disagreements would
be to duplicate more tetrahedra than just the ones defined by the distributed Delaunay
triangulation structure [71]. This would add more contextual information to the decision
making process, helping to guess the right label of each tetrahedron. The drawback of
this approach is the induced increase in the memory footprint and the extra computations
carried out for each tile involved.

An ambitious avenue would be to seek a more efficient way to update the Lagrange
multipliers. The algorithm, in its current form, needs quite a few iterations to converge
and we might be able to save computation time by finding a more efficient strategy.
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The contributions to the evaluation of surface reconstruction that we presented in
Chapter 3 and 4 could also be strengthened. Our synthetic data evaluation pipeline has
been tested on a mesh that represents a real scene (the city of Strasbourg in France). We
can theoretically use it on any mesh representing a fictitious environment. An evident
continuation of this work would therefore be to use purely handmade synthetic data in
order to diversify the type of environment on which we evaluate algorithms.

We could even turn it into an open benchmark by extending to more complex scanning
geometries but also to other scanning devices, in particular terrestrial, drone, or satellite
platforms. That would also require incorporating the new metrics that we defined on real
data, which would result in a multi-scene, multi-data and multi-metric benchmark.

A final perspective that we have identified concerns learning-based algorithms. Such
methods are gaining in popularity despite still facing problems when trying to reconstruct
large and complex scenes. Our work could provide a way to produce more training data
and learn more efficiently thanks to our metrics.
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Résumé de la thèse en français

Passage à l’échelle et évaluation de la
reconstruction de surface à partir de nuages de
points de scènes ouvertes

Introduction

La reconstruction de surface à partir de nuages de points consiste à trouver le modèle con-
tinu représentant au mieux une surface réelle dont seule une information ponctuelle est
disponible. Ce nuage de points peut avoir été produit à partir d’images de la scène grâce
aux techniques de Stéréoscopie multi-vues (Multi-view stereo) [5] ou de Structure acquise à
partir d’un mouvement (Structure from motion) [6]. Mais nous nous intéresserons surtout
au cas où les nuages de points ont été acquis grâce à un dispositif laser de type LiDAR
aérien ou terrestre permettant de scanner des zones étendues. D’autres appareils de plus
courte portée sont basés sur le temps de vol (time-of-flight) [2] ou la lumière structurée
(structured-light) [3].

De nombreuses contributions ont été proposées pour résoudre ce problème. Poisson
[11] est une méthode qui consiste à calculer une fonction indicatrice (valant 1 à l’intérieur
de l’objet et 0 en dehors) en se basant sur les positions des points du nuage ainsi que
sur les normales qui leur sont associées. Un maillage triangulé correspondant à une
isovalue est ensuite extrait. [23] calcule la triangulation de Delaunay du nuage de points
et utilise les positions à partir desquelles chaque point a été acquis afin d’attribuer à
chaque tétrahèdre un statut (intérieur ou extérieur). La surface est alors définie comme
l’ensemble des triangles à l’interface entre un tétraèdre intérieur et un tétraèdre extérieur.
Plus précisément, la segmentation des tétraèdres provient de l’optimisation par coupe de
graphe d’une fonction énergie composée de deux termes :

• un terme de données qui favorise des statuts (intérieur ou extérieur) en accord
avec les hypothèses faites grâce aux données (points et positions du capteur)
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• un terme de régularisation qui minimise le nombre de couples de tétraèdres
adjacents ayant des statuts différents.

Plus récemment, des algorithmes basés sur l’apprentissage machine ont été développés
pour estimer cette segmentation intérieur-extérieur : IM-NET [16], Occupancy Networks
[18], Convolutional Occupancy Networks [19].

Les performances des appareils d’acquisition de données cités plus haut ont beau-
coup augmenté au cours des dernières années, rendant possible la production massive de
données. Les ordinateurs sont quant à eux limités par leur mémoire vive et leur puissance
de calcul. Il est par conséquent nécessaire de repenser les algorithmes de traitement de
données et certains travaux permettent de répondre à ce besoin. De nouveaux outils et
paradigmes ont vu le jour notamment le streaming [45] mais aussi des procédures stan-
dardisées comme le Message Passing Interface (MPI) [49, 50] ou encore Spark [53], un
cadre de programmation en Scala plus adapté que le paradigme MapReduce [52] pour
les traitements itératifs et interactifs. D’autre part, des algorithmes de reconstruction
de surface dédiés au cas particulier des nuages de points large échelle ont vu le jour :
l’algorithme ball-pivoting [44] datant de 1999 fait figure de pionnier en termes de méthode
out-of-core. La méthode proposée dans [58], basée sur la triangulation de Delaunay, con-
siste à découper le nuage de points en tuiles et calculer les bouts de surface correspondant
aux différentes tuiles en parallèle. Le problème d’une telle approche est que la surface
globale résultante n’est pas forcément étanche, propriété importante des surfaces réelles.

Alors que de nombreux algorithmes utilisant un panel d’approches variées ont été
développés pour reconstruire un maillage triangulé à partir d’un nuage de points, peu
de méthodes d’évaluation sont aujourd’hui disponibles. L’évaluation permet pourtant
de déterminer quelle surface est la plus fidèle par rapport à la réalité et idéalement, de
quantifier les écarts entre les différentes méthodes. De nombreux auteurs ont simplement
évalué la qualité des modèles produits visuellement, ce qui pose évidemment des problèmes
d’honnêteté dus aux conflits d’intérêt et de manque de quantification. À condition de
disposer d’un maillage que l’on considère idéal, Metro [1] permet de calculer la distance
entre un échantillonnage de la surface reconstruite et le maillage vérité terrain (et vice
versa).

Passage à l’échelle

L’une des contributions de cette thèse est l’adaptation d’un algorithme de reconstruction
de surface [23] au cas large échelle. En particulier, nous présentons comment paralléliser
l’étape d’optimisation de la fonction énergie (équation 4.4).
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Algorithme de référence

x̂ = arg min
x∈{0,1}|T |

(
Edata(x) + α Eprior(x)

)
(4.4)

La méthode consiste à attribuer à chaque tétraèdre t de la triangulation de Delaunay T
du nuage de points le label 0 si celui-ci est vide et 1 s’il est plein. Pour cela, on minimise
la fonction énergie (4.4) par coupe de graphe. On notera G = (V,E) le graphe dual dont
les sommets V = {s, t} ∪ T sont la source s, le puits t et les tétraèdres de T . Les arrêtes
E sont les triangles à l’interface entre toutes les paires de tétraèdres adjacents mais aussi
celles qui connectent chaque tétraèdre à s et t. Chaque arrête est pondérée de manière
à ce que le coût d’une coupe s-t dans le graphe dual ait la même valeur que la fonction
énergie (4.4) après avoir attribué les valeurs des labels x. Pour minimiser cette énergie,
nous devons donc minimiser la somme des poids des arrêtes coupées (équation 4.5).

∑
(i,j)∈E

ci,jxi,j (4.5)

où ci,j est le poids de l’arrête (i, j) et xi,j est un Booléen indiquant si l’arrête est coupée
(1 = coupée, 0 = non coupée). De plus, xi (le label du tétraèdre i) indique si le sommet
i est relié à s (xi = 0) ou à t (xi = 1) après une coupe. On a alors : xs = 0, xt = 1 et
∀(i, j) ∈ E, xi,j = |xi − xj|.

Algorithme distribué

Pour paralléliser l’étape d’optimisation de la fonction énergie, nous proposons de découper
le nuage de points d’entrée P en tuiles. Nous noterons PK = (Pk)k∈K sa décomposition
en |K| sous-ensembles disjoints Pk, où K représente l’ensemble des indices des tuiles.

La triangulation de Delaunay T du nuage de points peut donc être décomposée elle-
aussi en |K| sous-graphes Gk = (Vk, Ek) en utilisant l’algorithme et la structure de [71].
Certains tétraèdres seront partagés par deux tuiles donc le nœud qui les représente ap-
parâıtra dans deux sous-graphes. Le problème principal est alors de garantir que les
tétraèdres à l’interface entre deux tuiles obtiendront le même label dans les deux sous-
graphes. Pour tout k ∈ |K|, on dénote respectivement par xk

i,j et xk
i les valeurs de xi,j

et xi dans le sous-graphe k. En outre, on définit ck
i,j = ci,j

|{k:(i,j)∈Ek}| : le poids de l’arrête
(i, j) normalisé par le nombre de tuiles auxquelles cette arrête appartient. Avec cette
décomposition, la fonction optimisée devient :

f(x) =
∑

(i,j)∈E

ci,jxi,j =
∑
k∈K

∑
(i,j)∈Ek

ck
i,jx

k
i,j (4.6)

avec la condition que les labels xk
i doivent avoir la même valeur dans tous les sous-graphes
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dans lesquels ils appartiennent :

∀ k, l ∈ K2, ∀ i ∈ Vk ∩ Vl, xk
i − xl

i = 0 (4.7)

Pour transformer ce problème en sous-problèmes en utilisant notre structure de graphe
tuilé, on optimise par coupe de graphe chaque sous-graphe Gk par rapport aux variables
xk

i,j. Pour garantir la condition exprimée par l’équation 4.7, on ajoute un terme de pénalité
à l’énergie en utilisant la dualité Lagrangienne :

L(x,λ) =
∑
k∈K

∑
(i,j)∈Ek

ck
i,jx

k
i,j

+
∑
k∈K

∑
l>k

∑
i∈Vk∩Vl

λk,l
i (xk

i − xl
i) (4.8)

avec λ = {λk,l
i : (k, l) ∈ K2, i ∈ Vk ∩ Vl}. En définissant, pour chaque index de tuile

k ∈ K :

Lk(xk,λ) =
∑

(i,j)∈Ek

ck
i,jx

k
i,j

+
∑
l ̸=k

∑
i∈Vk∩Vl

 1 if l > k

−1 otherwise

λk,l
i xk

i (4.9)

On a alors :
L(x,λ) =

∑
k∈K

Lk(xk,λ) (4.10)

La Figure 4.13 permet de visualiser la mise à jour des poids du graphe dual sur un cas
simple avec une seule séparation. On définit la fonction duale de Lagrange :

g(λ) = min
x
L(x,λ) (4.11)

Comme la fonction duale de Lagrange g(λ) (équation 4.11) est concave [75], on peut
trouver une solution optimale au problème (4.6+4.7) en maximisant g(λ) grâce à une
méthode ascendante. On itère alors les phases de :

• Résolution des sous-problèmes d’optimisation par coupe de graphe Lk(xk,λ) for xk.

• Mise à jour de λ pour aller dans la direction de plus forte montée.

Nous montrons expérimentalement que l’implémentation de cet algorithme avec Spark
[53] et son exécution sur un cluster d’ordinateurs permet de diminuer le temps de calcul
(pas de manière linéaire cependant) en augmentant le nombre de noeuds. Cet algorithme
garantit l’étanchéité du modèle grâce à la segmentation unique des tétraèdres de la tri-
angulation. Enfin, le modèle produit par la méthode distribuée converge vers un modèle
proche de celui produit par l’algorithme de référence.
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(a) Graphe dual avant séparation

(b) Sous-graphes duaux après séparation

Figure 4.13: Mise à jour des poids du graphe dual après une séparation. On analyse le
noeud i en particulier. Les noeuds en gras sont ceux qui ont été dupliqués au cours de la
séparation. s et t représentent la source et le puits.
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Évaluation

Évaluer la reconstruction de surface est un problème difficile par nature étant donné que
la seule vérité terrain est la surface réelle elle-même. Comme l’objectif est de produire
un modèle numérique représentant cette surface, il est impossible de calculer directement
l’“écart” entre les deux. Deux alternatives ont alors été envisagées.

Utilisation de données synthétiques

La ville et eurométropole de Strasbourg a financé la production d’un maillage de son ter-
ritoire [78] et nous avons utilisé ce jeu de données pour définir des métriques d’évaluation
propres à ce cas de figure.

Notre protocole repose premièrement sur la disponibilité d’une surface vérité terrain
MGT . Deuxièmement, il faut un nuage de points P représentant une numérisation de
MGT réalisée à l’aide d’un simulateur de LiDAR comme celui présenté dans cette thèse.
Enfin, nous avons besoin d’un maillage triangulé ME reconstruit grâce à une méthode
que l’on souhaite évaluer.

En pratique, seule une partie limitée de la vérité terrain est couverte par l’acquisition.
Si nous pouvons attendre d’un algorithme qu’il remplisse les trous entre les points, on
ne peut cependant pas espérer qu’il devine la forme de la surface loin de tout point
d’acquisition. On définit alors la partie “reconstructible” Mα

GT de MGT au seuil de α.
On peut produire Mα

GT en supprimant tous les triangles de MGT pour lesquels les trois
sommets se trouvent à une distance supérieure à α d’un point de P . Mα

GT est donc la
meilleure surface que l’on peut attendre d’un algorithme, au seuil de α. Toute partie
reconstruite à une distance supérieure à α d’un point de P sera également volontairement
ignorée pour ne pas que les hypothèses faites par les algorithmes impactent l’évaluation.
On définira doncMα

E comme la partie pertinente à évaluer deME. La Figure 4.14 permet
de visualiser le calcul de Mα

GT et Mα
E pour un α donné.

Nous proposons d’évaluer la qualité de la reconstructionME en calculant la distance
moyenne entre des échantillonnages de type Poisson-disk de Mα

E et Mα
GT . En notant

PR
Mα

GT
and PR

Mα
E

les échantillonnages de type Poisson-Disk de rayon R correspondant à
Mα

GT andMα
E, et grâce à la définition de la distance point-vers-maillage (équation 4.12),

on calcule alors deux métriques (équations 4.13 and 4.14).

∀p ∈ R3, d (p,M) = min
q∈M

d(p, q) (4.12)
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Figure 4.14: Visualisation du calcul de la partie “reconstructible” des différents maillages
pour un α proche de la valeur de l’espacement moyen entre deux points du nuage. À
partir du nuage de points, du maillage vérité terrain et de deux maillages reconstruits R1
et R2, on calcule la partie reconstructible de la vérité terrain, et les parties pertinentes à
évaluer Rα

1 et Rα
2 en enlevant les triangles éloignés de plus de α d’un point du nuage de

points.

Précision moyenne : 1
|PR

Mα
E
|

∑
p∈PR

Mα
E

d (p,Mα
GT ) (4.13)

Rappel moyen : 1
|PR

Mα|
∑

p∈PR
Mα

GT

d (p,Mα
E) (4.14)

La précision décrit à quel point la surface reconstruite est en accord avec la vérité terrain.
Le rappel donne une information d’exhaustivité de la reconstruction c’est-à-dire qu’il per-
met de savoir à quel point les morceaux de surface de la vérité terrain sont également
présents dans la reconstruction.

En calculant ces deux grandeurs pour différentes valeurs de α, on obtient deux courbes
qui permettent d’analyser les performances des algorithmes localement (pour les faibles
valeurs de α) et plus globalement (pour les hautes valeurs de α). Les différents comporte-
ments observés pour les différentes valeurs de α valident la pertinence de ce raisonnement.

Utilisation de données réelles

Une continuation assez naturelle du travail réalisé sur l’évaluation de la reconstruction de
surface était de mettre en place un protocole remplissant le même objectif mais sans avoir
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recours à des données synthétiques. On appelle “données réelles” des données acquises
dans le monde réel avec de vrais capteurs. Ceci inclut les images RGB-D, les acquisitions
LiDAR, etc. Nous allons évaluer la reconstruction de scènes réelles à partir de données
réelles de qualité significativement meilleure que celles qui ont servi à la reconstruction.
Même si cette idée est assez classique, la contribution majeure de ce travail réside dans
la manière dont nous proposons de calculer la différence entre la surface reconstruite et
les données réelles de haute qualité en relevant les incompatibilités et les morceaux de
surface manquants. De plus, pour la première fois, nous proposons d’utiliser les positions
du capteur pour l’évaluation. Associées aux points de haute qualité, elles permettent de
définir un rayon le long duquel l’espace est censé être vide. Tout morceau de surface
se trouvant sur le chemin du rayon laser sera donc pénalisé car incompatible avec cette
information. Un morceau de surface sera considéré manquant si aucune intersection n’est
trouvée entre le rayon laser et la surface reconstruite ou si une telle intersection est trouvée
à une distance supérieure à un certain seuil du point de haute qualité correspondant, et
située après, le long du rayon. Cela nous permet de classer les intersections trouvées dans
des zones observées. Les intersections correctes correspondent à des Vrais positifs, celles
incorrectes sont des Faux positifs et les morceaux de surface manquants sont des Faux
négatifs. On peut alors calculer la précision et le rappel et combiner ces deux métriques
à la distance moyenne des intersections correctes aux points de haute qualité. La Figure
4.15 permet de visualiser ces définitions sur un exemple simple.

Ce protocole d’évaluation, basé sur l’information de visibilité venant des positions du
capteur, a été testé sur trois jeux de données différents, contenant chacun trois scènes.
Les métriques permettent de confirmer des intuitions visuelles, participant ainsi à valider
la pertinence de ce mode d’évaluation.

Conclusion

Cette thèse de doctorat contribue à deux aspects fondamentaux de la reconstruction de
surface. Premièrement, un algorithme distribué de bout en bout a été proposé afin de
répondre à la demande de traitement des nuages de points large échelle. Il offre notamment
la garantie de reconstruire une surface étanche. Deuxièmement, nous avons présenté deux
protocoles d’évaluation permettant de quantifier la qualité d’une surface reconstruite.
L’un nécessite d’avoir accès à un maillage vérité terrain alors que l’autre fait uniquement
usage de données provenant d’un capteur.

104



Figure 4.15: Exemple simple pour visualiser les définitions des métriques. La surface réelle
a été scannée depuis deux positions : O1 et O2. Un rayon laser réel particulier (le plus
épais) a été lancé depuis O1 et il a intersecté la surface réelle au point Gt. Il est à noter
que la position de l’intersection peut être bruitée, d’où le décalage entre la surface réelle
et le nuage de points de haute qualité. On calcule toutes les intersections entre le rayon
virtuel associé (i.e. l’extension du rayon laser réel) et la surface reconstruite. Dans le cas
présent, on trouve six intersections I1,...,6. L’intersection la plus proche de Gt se trouve
être I2 donc la métrique de “distance rayon” pour ce rayon particulier est la distance
(Gt, I2). Si (Gt, I2) < dmax, Gt doit être compté comme un Vrai Positif, sinon il ne
sera pas pris en compte dans cette évaluation puisqu’il se situe après Gt. Par ailleurs, on
rencontre une intersection I1 sur le chemin vers l’intersection la plus proche I2, ce qui est
compté comme un Faux positif.

Perspectives

L’algorithme de reconstruction de surface distribué de bout en bout constitue une avancée
importante par rapport aux approches basées sur la triangulation de Delaunay. Plusieurs
pistes d’améliorations sont toutefois envisageables. En particulier, il n’y a pas de garantie
théorique sur la convergence de l’algorithme vers une segmentation unique des tétraèdres
parmi toutes les tuiles. Pour garantir l’étanchéité du modèle en cas de désaccord, un
tétraèdre se verra octroyer le label d’une tuile particulière. Dans le cas où il est partagé
par un nombre impair de tuiles, il pourrait être judicieux de prendre cette décision par
vote majoritaire entre les tuiles concernées. Une autre possibilité consiste à réduire le
nombre de désaccords en dupliquant plus de tétraèdres que ceux définis par la structure
de triangulation de Delaunay de [71]. Ceci ajouterait plus de contexte rendant la prise
de décision plus fiable. En revanche, l’empreinte mémoire et le temps de calcul à chaque
itération se verraient être augmentés à cause de ces tétraèdres dupliqués supplémentaires.

Dans le but d’améliorer la capacité de l’algorithme à converger, réduisant ainsi le temps
de calcul, il serait judicieux de trouver une stratégie de mise à jour des multiplicateurs de
Lagrange plus efficace.

Les contributions à l’évaluation de la reconstruction de surface peuvent elles aussi
êtres approfondies. Le protocole d’évaluation basé sur les données synthétiques a été
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testé sur un maillage représentant une vraie scène (la ville de Strasbourg, en France). Il
est théoriquement possible de l’utiliser avec un maillage représentant une scène imaginaire.
Nous pourrions alors envisager d’utiliser des scènes créées à la main afin de diversifier le
type d’environnement sur lesquels nous évaluons les algorithmes.

Nous pourrions même en faire un “benchmark” ouvert en incluant des géométries
d’acquisition plus complexes mais aussi en proposant d’autres dispositifs comme des Li-
DAR terrestres ou des drones. Cela serait aussi l’occasion d’incorporer les nouvelles
métriques basées sur les données réelles que nous avons définies, permettant ainsi de créer
une plateforme d’évaluation multi-scène, multi-données et multi-métriques.

Enfin, les algorithmes d’apprentissage machine connaissent une popularité grandis-
sante même s’ils sont souvent limités à la reconstruction d’objets fermés simples. Dans ce
contexte, ces travaux sur l’évaluation pourraient devenir un moyen de produire davantage
de données d’entrâınement et d’apprendre plus efficacement en utilisant les métriques
présentées.
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