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Dans cette thèse, un modèle mathématique d'adhésion dans le contexte de la motilité cellulaire a été étudié. Dans ce cadre, nous étudions un système couplé formé par une équation structuré en âge et une équation intégrale du Volterra. Nos travaux sont divisés en deux parties. Dans une première partie, nous étudions l'équation intégrale avec une force extérieure f à variation bornée. Nous introduisons la régularisée de la fonction f ainsi qu'une nouvelle variable et nous reformulons la version régularisée de cette équation. Nous dérivons une nouvelle estimation a priori et nous établissons la convergence de ce système par rapport au paramètre asymptotique ε. De plus, nous présentons un cas particulier où un principe de comparaison spécifique à ce genre d'équations intégrale peut être appliqué. Dans une deuxième partie, nous étudions le comportement asymptotique en temps long de la solution de l'équation intégrale. Nous construisons un développement asymptotique à N -termes de l'opérateur à retardement intégral dans le cas d'un noyau constant en temps et dépend seulement du variable d'âge. De plus, nous affaiblissons les hypothèses sur le taux du mort, de sorte que nous autorisons la décroissance polynomiale de la densité des liens, et nous améliorons heuristiquement les taux de convergence déjà prouver.

Mostly, the movement of cells means the life of organisms. It is the heart of many essential biological processes. The development of certain physiological phenomena such as embryogenesis, the formation of tissues and organs and the immune response requires cell motility. Indeed, immune cells cannot fight off harmful bacteria without being able to migrate between tissues and organs. Consequently, macrophages are unable to go to the location of the injury to aid in its healing. However, scientists think that this movement can also indicate the organism's demise. For instance, in the field of cancerology, this process of migration entails the spread of cancer cells throughout the body, leading to the development of new metastases ( [START_REF] Lambrechts | The actin cytoskeleton in normal and pathological cell motility[END_REF]; [START_REF] Dilki | Immune pathology associated with altered actin cytoskeleton regulation[END_REF]). A deeper comprehension of tumor cell migration might make it easier to find cures for cancer spread. Generally, the immune system's cells must move, either completely or mostly. Cell migration involves numerous actors. However, the extracellular matrix (ECM), focal points, and cytoskeleton are the three most important parts of them. The extracellular matrix (ECM) is a substrate that surrounds the cell and contains adhesion proteins (collagen, proteoglycans, elastin and glycoproteins) that allow the cell to move. The focal points are dynamic sites that guarantee the cell's adhesion to the ECM and substrate. The cytoskeleton is a dynamic filamentous network formed by three types of filaments (actin microfilaments, intermediate filaments and microtubules).

The main component thought to be the driver of cell movement is actin. Actin near the membrane can polymerize and depolymerize to allow the cell to extend forward and re-CHAPTER 1. ADHESION MODELING IN THE CONTEXT OF CELL MOTILITY tract backward.

Biological context : Cell motility

The ability of a cell to produce movement either spontaneously or in response to an external stimulus (chemotaxis) is known as motility. It's important to distinguish between mobility and motility. While an organism's motility is a biological property that characterizes its capability to cause movement, an organism's mobility refers to its capacity to be in motion.

The motion of a cell is like the motion of climbing : Find a hold with the arm outstretched, hold on to it, move your body, then release the previous hold. Cell migration can take a variety of forms, including amoebic, lamellipod, and vibratory migration. Our research focuses on a mathematical study of a lamellipodium cell migration mechanism. Located at the front of the cell, the lamellipodia is a lamelliform membrane protrusion. It drives cell migration. Actin filaments, which have a diameter of 5 to 9 nm, are the fine protein fibers that constitute it. These filaments ensure the traction of the cell toward the front and the retraction of the cell away from the back by polymerizing and depolymerizing, respectively [START_REF] Thomas | Cellular motility driven by assembly and disassembly of actin filaments[END_REF].

Cell migration phases

Cell migration onto substrates is a fundamental and crucial process that necessitates the coordination of numerous cellular processes that take place in a cycle. This mechanism consists of three crucial phases (see figure 1.1) :

1) First, the cell chooses its migratory direction by chemotaxis. The cell membrane is extended during the actin polymerization process near the front of the cell, where lamellipodia (broad, flat projections) and filopodia (elongated and narrow) are also formed. This step is called protrusion. During this stage, the cell provides a vast family of proteins that interact with actin directly and start the polymerization of it. Depending on how they work, these proteins are divided into numerous categories. The two most important actin nucleators are formins and Arp2/3 complex ([SG10]; [START_REF] Thomas | Structure and function of the Arp2/3 complex[END_REF]).

The role of the Arp2/3 complex in actin polymerization and the protrusions of lamellipodia has been demonstrated in several in vitro studies of actin polymerization dynamics [START_REF] Pantaloni | Mechanism of actin-based motility[END_REF].

2) Migration's second stage is adherence. At the front of the cell, the lamellipodium develops new adhesion sites during this phase in order to adhere to the substrate. These focal adhesions are responsible for the cell's attachment to the extracellular matrix and for producing the traction forces required for the cell to advance. This is called translocation.

3) Retraction is the final stage. The development of new focus points at the cell's front coincides with the disappearance of those in the back. The cell membrane and cell body can retract thanks to a contractile force produced by stress fibers inside the cell.

Adhesion process and its significance for cell migration

In many biological processes, cellular adhesion plays a dynamic role. From the embryonic development phase, adhesion proves its importance in the formation and functioning of tissues. The adhesion phenomenon is crucial to cell survival. It enables cell division, proliferation, and organization within tissues [START_REF] Barry | Cell adhesion: the molecular basis of tissue architecture and morphogenesis[END_REF]). Additionally, it permits the transmission of information between two cells in a relationship (cell-cell adhesion, [START_REF] Vania | Cell-cell adhesion and signalling[END_REF]). Alternatively, in the case of cell-substrate adhesions, the cell attaches to a protein of the extracellular matrix and involves the creation of focal adhesions and then the polymerization of actin filaments ( [START_REF] Ulrich | United we stand-integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction[END_REF]). So there are two sorts of cell adhesions: intercellular adhesions and cell-matrix adhesions. Understanding the mechanics of adhesion between the cell and its substrate is essential to comprehending the motility process. Our research focuses on the mathematical analysis of the model describing the adhesions between cells and their substrate. In the following, we present some essential molecular structures related to cell migration.

The lamellipod: actin polymerization factory

The lamellipod is a very thin membrane extension that forms at the front of migrating cells during the protrusion phase. It has a thickness of 20 nm and a width of a few micrometers. It is a two-dimensional structure in the form of thin sheets made up of a complex and dynamic network of actin microfilaments. A first model of cell migration that took into account the lamellipodium was developed by Abercrombie and colleagues in 1970 [START_REF] Abercrombie | The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella[END_REF].

Numerous studies have been carried out since the 1970s to the present to better understand the structure and function of these membrane protrusions in a variety of biological processes, notably in cell migration. In 1999, Svitkina and Borisy presented a very clear electron microscopic image of the actin filaments, the main part of the lamellipod [START_REF] Tatyana | Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia[END_REF].

They observed that these filaments are distributed in the form of Y junctions that polymerize at the front and depolymerize at the back of the lamellipod. It depicts a treadmilling process that happens in the lamellipodium. The lamellipod's presence is essential for controlling cell migration and accelerating it. Hu et al. presented this finding in 2012 [START_REF] Hu | Actin filament attachments for sustained motility in vitro are maintained by filament bundling[END_REF].

They demonstrated the significance of lamellipod development in the situation of cell migration in contact with a substrate. This membrane structure is essential for the organization and alignment of cell-extracellular matrix adhesions, which control the direction of movement.

Actin filaments

Actin filaments are one of the components of the eukaryotic cytoskeleton. The cytoskeleton is a cellular structure formed by a network of protein filaments. Actin filaments are created 1.2. MATHEMATICAL MODELING OF CELL MIGRATION : ADHESION MODEL during the polymerization of actin-G, a monomeric form of actin, through the action of nucleators like the Arp2/3 complex and formin. They are polar, flexible filaments with a diameter of around 7 nm. These filaments are polarized and have two distinct ends : a barbed end (noted (+)) and a pointed end (noted (-)). Actin does not polymerize at the same rate at the ends of these filaments. At the plus end, it moves more quickly than at the minus end.

The quantity of actin-G at each end determines this. During the treadmilling phenomenon that takes place in the lamellipod, we observe the accumulation of actin monomers at the barbed end and their dissipation at the pointed end. Therefore, actin polymerization regulation and location are crucial for cell motility. The Arp2/3 complex is a key component in actin polymerization.

The Arp2/3 complex

In 1994, the Arp2/3 complex is considered to be the eukaryotic cell's first actin nucleator [START_REF] Machesky | Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose[END_REF]. It is a molecular device made of seven proteins, only two of which are bound to actin : Arp2 and Arp3. This complex has a specific property that allows it to move along the pre-existing actin filaments. It enables the elongation of the actin filaments as it travels toward the barbed end. In addition, by leaving the pointed end, it enables the cross-linking of these filaments [START_REF] Mullins | The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments[END_REF]. The lamellipod can be extended using this protein motor, since it can produce the protrusion force needed. (1.1)

Mathematical modeling of cell migration : Adhesion

µ B ∂ 2 s η ± ∂ 2 s F ± bending -∂ s η ± λ ± ∂ s F ± inextensibility +η ± µ A D ± t F ± substrate adhesion ± ∂ s η + η -µ T ± (ϕ -ϕ 0 )∂ s F ±,⊥ twisting ±η + η -µ S ± D + t F + -D - t F - inter-filament adhesion = 0
where s denotes the actin filaments' arc length and α their angular position. The stationary distributions of the filament lengths for each family are represented by the variables η ± , respectively. The parameter µ B , µ B , µ T and µ s represent respectively the bending parameter, the friction term with the substrate, the stiffness term of cross-link and the friction term due to the stretching elasticity of cross-link. The angle between the filaments is de-

termined by ϕ = arccos ∂ s F + (α + , s + (α + , α -, t ), t ) • ∂ s F -(α -, s -(α + , α -, t ), t
) and ϕ 0 is the equilibrium angle. The speed of transmitting the protrusion force from the F-actin filaments to the substrate is represented by the total derivative operator D ± t := ∂ tv ± ∂ s and v ± are the polymerization speed. (1.1) describes the mechanical behavior of these two families of filaments. We are interested in the mathematical analysis of a system that models the adhesion terms (term in red in (1.1)).

Figure 1.2: The mechanical structure of the lamellipodium.

MATHEMATICAL MODEL OF ADHESION

Mathematical model of adhesion

In 2011, Oelz and Milišić [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] have studied a model concerning the terms of adhesions in (1.1). They chose to focus on a single adhesion site in order to reduce the previous problem, which appeared very complicated. According to their model, The adhesion site is seen as a point subjected to a sum of adhesive forces f (t ) that allows it to move along the substrate (see figure 1.3). This adhesion site is described by its position z ε (t ) at time t . The position z ε (t ) is a solution of a minimization problem :

(1.2) z ε (t ) := arg min w∈R 1 2ε R + |w -z ε (t -εa)| 2 ρ ε (a, t )d a -f (t )w
They assume that the bonds' stiffness is large and behaves like 1/ε, where the non-dimensional parameter ε represents the typical age of adhesions in respect to the longest possible lifetime of monomers in a filament. The Euler-Lagrange equation related to the minimization problem (1.2) is used to get the equation satisfied by the position z ε (t ). It satisfies the integral equation

(1.3)      1 ε R + (z ε (t ) -z ε (t -εa)) ρ ε (a, t )d a = f (t ), t > 0 z ε (t ) = z p (t ), t ≤ 0
The density ρ ε represents the age distribution of bonds that attach and detach from the substrate over time. It satisfies the renewal equation

(1.4)              (ε∂ t + ∂ a + ζ ε (a, t )) ρ ε (a, t ) = 0, (a, t ) ∈ R + × (0, T ) ρ ε (0, t ) = β ε (t ) 1 - R + ρ ε (a, t )d a , (a, t ) ∈ {0} × (0, T ) ρ ε (a, 0) = ρ I (a), (a, t ) ∈ R + × {0}.
where

β ε ∈ R + (resp. ζ ε ∈ R + )
is the kinetic on-rate (resp. off-rate) function. [Per07], but with a boundary condition at a = 0 that shows a saturation effect. No new bonds are formed when the total population µ 0,ε := R + ρ ε (a, t )d a is near to 1, but when the total population is low, a bond of age 0 is born. In [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], the authors have demonstrated existence and uniqueness results of a solution of the weakly coupled system (1.3;1.4), for a fixed ε. In this case, the death rate ζ ε is a known function independent of the position and satisfies assumptions of regularity, positivity and boundedness. Moreover, they demonstrated convergence when ε goes to zero under the assumption that the off-rate ζ ε is not necessarily non-decreasing passed a certain age a 0 ≥ 0. The strategy outlined to prove these findings is first studying the renewal equation (1.4), and then using it to investigate the integral equation (1.3). They introduced a novel entropy associated with (1.4) since there is a saturation effect in the non-local boundary condition for a = 0. It has the following form

H [u](t ) := ∞ 0 u(a, t )d a + ∞ 0 |u(a, t )|d a ,
it is a Lyapunov functional that allowed them to show the strong convergence when ε goes to zero of ρ ε to a limit ρ 0 , satisfying

(1.5)      ∂ a ρ 0 + ζ 0 (a, t )ρ 0 = 0, t > 0, a > 0, ρ 0 (a = 0, t ) = β 0 (t ) 1 - ∞ 0 ρ 0 (t , ã) d ã , t > 0,
They have also demonstrated that z ε converges to z 0 solution of (1.6)

   µ 1,0 (t )∂ t z 0 = f (t ), t > 0, z 0 (t = 0) := z p (0),
where µ 1,0 (t ) := ∞ 0 aρ 0 (a, t )d a. The convergence of z ε is based on a comparison principle specific to this kind of Volterra integral equations [START_REF] Gripenberg | Volterra integral and functional equations[END_REF]. Applying this principle and demonstrating convergence required two presumptions : the positivity of the kernel ρ ε and the monotonicity of ζ ε for a large age. The following theorem serves as a summary of these findings :

Theorem 1. Under well-chosen assumptions ( [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]) and for any fixed ε > 0, there exists a unique solution (z ε ,ρ ε ) of the coupled system (1.

3;1.4) in C 0 (R + ) × (C 0 (R + ; L 1 (R + )) ∩ L ∞ (R + 2 )
). Moreover for any T > 0 we have

∥z ε -z 0 ∥ C 0 ([0,T ]) + ∥ρ ε -ρ 0 ∥ C 0 ([0,T ];L 1 (R + )) → 0 when ε → 0.
where z 0 and ρ 0 are the solutions of (1.6) and (1.5) respectively.

THE RENEWAL EQUATION

The authors in [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF] have added a new elongation variable u ε that is given by

(1.7) u ε (a, t ) =      z ε (t ) -z ε (t -εa) ε , if t > εa z ε (t ) -z p (t -εa) ε , if t ≤ εa
to enhance stability and convergence results as ε goes to zero. This variable has the form of a discrete derivative of z ε . The benefit of changing the variable z ε to u ε is that it allows the integral equation (1.3) to become an age-structured equation with a non-local integral source term:

(1.8)

               ε∂ t u ε + ∂ a u ε = 1 µ 0,ε ε∂ t f + ∞ 0 ζ ε u ε ρ ε d a , (t , a) ∈ (R + ) 2 , u ε (a = 0, t ) = 0, (t , a) ∈ R + × {0}, u ε (a, t = 0) = z ε (0) -z p (-εa) ε =: u I ,ε (a), (t , a) ∈ {0} × R + , where µ 0,ε (t ) := ∞ 0 ρ ε ( ã, t ) d ã.
In the regular case, when the external force f is a locally Lipschitz function on R + , there is an equivalence relation between z ε and u ε . If we know z ε as a solution of (1.3), we can calculate u ε and the other way around. The variable u ε has a positive effect on the results proved in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]. It made it possible to derive the convergence results when ε tends to zero without having to assume that ζ ε is necessarily increasing passed a certain age a 0 . Moreover, it allows showing the global existence and uniqueness of the solution for the strong coupling system (1.3;1.4) where ζ ε also depends on the elongation u ε (see [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF]Section 7]). In this thesis, we are particularly interested in the weakly coupled system (1.3;1.4).

The renewal equation

The equation (1.4) studied in this research work represents an age-structured model. The classical form of age structured equation has the form (1.9)

           ∂ t n(a, t ) + ∂ a n(a, t ) = 0, (a, t ) ∈ (R + ) 2 , n(a = 0, t ) = +∞ 0 β(a ′ )n(a ′ , t )d a ′ , (a, t ) ∈ {0} × R + , n(a, t = 0) = n 0 (a), (a, t ) ∈ R + × {0},
where n(a, t ) represents the population density of age a at time t and β ≥ 0 is the birth rate.

(1.9) has been widely studied by Magal and Ruan 

(1.11) n(a, t ) =    z(t -a) if t ≥ a z p (t -a) otherwise.
It is easy to see that if z solves (1.10), then n solves the following equation (1.12)

           ∂ t n(a, t ) + ∂ a n(a, t ) = 0, (a, t ) ∈ (R + ) 2 , n(a = 0, t ) = +∞ 0 k(a ′ )n(a ′ , t )d a ′ , (a, t ) ∈ {0} × R + , n(a, t = 0) = n 0 (a) = z p (-a), (a, t ) ∈ R + × {0},
Conversely, if n is a solution of (1.12), then setting z(t ) = n(0, t ) solves (1.10). Indeed, 

z(t ) = n(0, t ) = R + n(a, t )k(a)d a = t 0 n(0, t -a)k(a)d a + +∞ t n 0 (a -t )k(a)d a = t 0 z(t -

The thesis's primary goals

During this three years of research, we attempted to enhance the findings from [MO11;

MO15]. Our work is divided into two parts. First, we extend the approach of [MO11; MO15], which relies on the Lipschitz property of the source term f , to the case where f is of bounded variation in (0, T ). In this case, the convergence of the solution of (1.3) is not shown by a comparison principle as in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]. This principle is only applicable in a certain situation where the kernel ρ ε is only dependent on age. Our objective is to demonstrate the convergence of z ε when ε goes to zero, by using the elongation variable u ε . The difficulty in our case is that the derivative of the function f ∈ BV ((0, T )) lacks sufficient regularity to directly apply the framework of [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], which is based on the derivative's regularity. Instead of f , we will define f δ , the regularized function of f ([Zie89, Section 5.3]), and apply the methodology of [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF] to the regular function u δ ε solution of (1.8). The work's plan is divided in two steps. In the first step, we fix the parameter ε > 0 and demonstrate the convergence of u δ ε when δ approaches to zero. On u δ ε , a uniform a priori estimate is proved with regard to CHAPTER 1. ADHESION MODELING IN THE CONTEXT OF CELL MOTILITY δ and ε. This ensures the passage to the limit with respect to the regularization variable δ and the ability to show the existence and uniqueness of a solution u ε satisfying (1.8). Then, we proceed to the limit when ε goes to 0 and prove the following result:

Theorem 3. Under some assumptions, one has

z ε → z 0 strongly in L ∞ ((0, T )) as ε → 0,
where z 0 is defined as

z 0 (t ) = z p (0) + t 0 f ( t )/µ 1,0 ( t ) d t .
Finally, we provide an error estimate that makes use of the comparison principle under the assumption that the kernelρ ε depends only on the age variable.

In the second part of this thesis, we study the asymptotic behavior in long time of the problem's solution, defining the location of an adhesion point with the substrate. We are interested in the study of the problem

(1.14)      1 ε R + (X ε (t ) -X ε (t -εa)) ρ ε (a, t )d a = f (t ), t > 0, X ε (t ) = X p (t ), t ≤ 0,
where ρ ε is the linkages' density satisfying

(1.15) 

             (ε∂ t + ∂ a + ζ(a, t )) ρ ε (a, t ) = 0, (a, t ) ∈ R + × (0, T ), ρ ε (0, t ) = β(t ) 1 - R + ρ ε (a, t )d a , (a, t ) ∈ {0} × (0, T ), ρ ε (a, 0) = ρ I (a), (a, t ) ∈ R + × {0}.
     (∂ a + ζ(a)) ρ(a) = 0 a > 0, ρ(0) = β 1 - R + ρ(a)d a a = 0,

THE THESIS'S PRIMARY GOALS

The goal of investigating this first case is to create an asymptotic approximation of order N ≥ 1 of the solution X ε satisfying (1.14) with a kernel that satisfies (1.16). This approximation takes the following form:

(1.17) Xε,N = X out er (t )

+ X i nner (τ) + O(ε N ),
where τ = t /ε is the stretched variable. The X out er component approximates the solution outside the origin. It is made up of a number of macroscopic correctors in the power of ε.

The part X i nner is an approximation of the solution close to the origin, formed by microscopic correctors. The initial condition of the first order differential equation solutions that make up X out er is established by stating that :

lim τ→+∞ X i nner (τ) = 0.
A first result is shown :

Theorem 5. According to the Assumptions that the higher order moment µ N +1 := R + a N +1 ρ(a)d a is bounded, an error estimate was obtained leading to :

X ε -Xε,N C ([0,T ]) ≲ ε N .
The second objective of this part is to investigate how the X ε solution of (1.14) behaves asymptotically with regard to the perturbation parameter ε. Studying the asymptotic behavior of the density ρ ε solution of (1.15) is necessary before moving on to this conclusion.

In [START_REF] Milisic | Initial layer analysis for a linkage density in cell adhesion mechanisms[END_REF], Milišić improved the error estimate obtained in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]. He showed the existence of an initial layer in time. This initial layer noted r 0 is written as the solution of the problem,

(1.18)

           (∂ t + ∂ a + ζ(a, 0)) r 0 (a, t ) = 0, a > 0, t > 0, r 0 (0, t ) = -β(0) R + r 0 (a, t )d a, a = 0, t > 0, r 0 (a, 0) = ρ I (a) -ρ 0 (a, 0), a > 0, t = 0.
The convergence rate achieved in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] has improved as a result of the insertion of this term. He came up with the following error estimate :

Theorem 7. Under suitable assumptions (see [START_REF] Milisic | Initial layer analysis for a linkage density in cell adhesion mechanisms[END_REF]), one has for every fixed time t > 0 :

∥ρ ε (•, t ) -ρ 0 (•, t ) -r 0 (•, t /ε)∥ L 1 (R + ) ≤ o ε (1).

CHAPTER 1. ADHESION MODELING IN THE CONTEXT OF CELL MOTILITY

The Grönwall Lemma must be used in order for this result to hold, which is implied by the fact that ζ admits a strictly positive lower bound ζ min > 0. In our work here, we are interested in weakening the assumptions on ζ. We assume that there exists a non-increasing function

m ∈ L 1 (R + ; (1 + a) 3 ) s.t. (1.19) ζ(a, t ) ≥ - m ′ (a) m(a)
, a.e. a ∈ R + .

The Grönwall lemma does not apply in this situation. One needs to add another term to the asymptotic expansion of ρ ε . We introduce ρ 1 , the first order macroscopic solution of :

(1.20)

     (∂ a + ζ(a, t )) ρ 1 (a, t ) = -∂ t ρ 0 (a, t ), a > 0, t > 0, ρ 1 (0, t ) = -β(t ) R + ρ 1 (a, t )d a, a = 0, t > 0.
Furthermore, it can be shown that for any t > 0, one has

H [ρ ε (•, t ) -ρ 0 (•, t ) -ερ 1 (•, t ) -r 0 (•, t /ε)] ≲ o ε (1).
This result is in turn used to extend the results of [8] to this new framework :

Theorem 9. Under some Assumptions (cf. chapter 3), if ρ ε is a solution of (1.4), ρ 0 solves (1.5), X ε is a solution of (1.14) and X 0 solves (1.6) then

∥ρ ε -ρ 0 ∥ L 1 ((0,T );L 1 (R + ,(1+a))) ≤ o ε (1), ∥X ε -X 0 ∥ C ([0,T ]) ≤ o ε (1).

The structure of the manuscript

Following to what have been mentioned, the rest of the manuscript will be divided into two chapters :

• Chapter 2 can be seen as an extension of the paper [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] to the case of loads of bounded variation ( f ∈ BV ((0, T ))). We introduce a careful analysis of different definitions of BV functions with respect to the boundary of the time domain (0, T ). Thus, we present the main results obtained in this work. The findings in this chapter are the focus of the article [START_REF] Allouch | Friction mediated by transient elastic linkages: extension to loads of bounded variation[END_REF].

• Chapter 3 is dedicated to the results obtained on the study of the long time behavior of the solutions of the Volterra integral equation (1.14). The body of an article to be published [START_REF] Allouch | Friction mediated by transient elastic linkages : asymptotic expansions and fat tails[END_REF] is made up of the results reported in this chapter.

Introduction

Cell 

       1 ε ∞ 0 (z ε (t ) -z ε (t -εa)) ρ ε (a, t ) d a = f (t ), t ≥ 0, z ε (t ) = z p (t ), t < 0.
The kernel ρ ε above solves a non-local age-structured problem :

(2.2)

           ε∂ t ρ ε + ∂ a ρ ε + ζ ε ρ ε = 0, t > 0, a > 0, ρ ε (a = 0, t ) = β ε (t ) 1 - ∞ 0 ρ ε (t , ã)d ã , t > 0, ρ ε (a, t = 0) = ρ I ,ε (a), a ≥ 0,
where

β ε ∈ R + (resp. ζ ε ∈ R + )
is the kinetic on-rate (resp. off-rate) function. These possibly depend on the dimensionless parameter ε > 0. The past positions are stored in the Lipschitz function z p (t ) ∈ R, prescribed for every t < 0.

Various mathematical issues related to this system have already been investigated [MO11;

MO15; MO16]. In [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], the authors have introduced a specific Lyapunov functional in order to study the convergence of (2.2) when ε goes to 0. Indeed, due to the saturation effect in the non-local boundary condition in (2.2), neither the Generalized Relative Entropy [Per07; Gab13] nor more generic comparison principles [START_REF] Gripenberg | Volterra integral and functional equations[END_REF] do apply. Then, concerning (2.1), under the assumptions that the force f is Lipschitz on R, and because the kernel

ρ ε in (2.1
) is non-negative, an extension of Gronwall's Lemma to integral equations, shows convergence of z ε towards z 0 the solution of (2.3), the limit equation associated to (2.1).

These two steps show that

∥z ε -z 0 ∥ C 0 ([0,T ]) + ∥ρ ε -ρ 0 ∥ C 0 (]0,T ];L 1 (R + )) → 0
where z 0 is given by

(2.3)    µ 1,0 (t )∂ t z 0 (t ) = f (t ), t > 0 z 0 (0) = z p (0) t = 0
where µ 1,0 (t ) := ∞ 0 aρ 0 (a, t )d a, and ρ 0 solves :

(2.4)

     ∂ a ρ 0 + ζ 0 (a, t )ρ 0 = 0, t > 0, a > 0, ρ 0 (a = 0, t ) = β 0 (t ) 1 - ∞ 0 ρ 0 (t , ã)d ã , t > 0.

INTRODUCTION

In [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], the authors weakened some assumptions concerning the off-rate ζ ε , by assuming that ζ ε is not necessarily non-decreasing passed a certain age a 0 . Then, they introduce a new variable u ε related to z ε which transforms (2.1) into a transport problem with a nonlocal source term :

(2.5)

                 ε∂ t u ε + ∂ a u ε = 1 µ 0,ε (t ) ε∂ t f + ∞ 0 ζ ε ( ã, t )u ε ( ã, t )ρ ε ( ã, t )d ã , t > 0, a > 0, u ε (a = 0, t ) = 0, t > 0, u ε (a, t = 0) = u I ,ε (a) := z ε (0) -z p (-εa) ε , a ≥ 0, where µ 0,ε (t ) := ∞ 0 ρ ε ( ã, t ) d ã and according to (2.1), it holds that (2.6) z ε (0) = 1 µ 0,ε (0) ∞ 0 z p (-εa)ρ I ,ε (a)d a + ε f (0) .
If f ∈ Lip(R), systems (2.1) and (2.5) are equivalent. Nevertheless, (2.5) admits a stability result that allows to show a weak-* convergence of

u ε /(1 + a) towards u 0 /(1 + a) in L ∞ (R + × (0, T ))
, where u 0 is the solution of the limit problem (2.7)

       ∂ a u 0 = 1 µ 0,0 ∞ 0 ζ 0 u 0 ρ 0 d ã, t > 0, a > 0, u 0 (a = 0, t ) = 0, t > 0,
which in turn provides the strong convergence of z ε in C ([0, T ]) towards z 0 solving (2.3).

In our analysis, however, when f ∈ BV((0, T )), the derivative of f is neither a function nor it is bounded, since it is a Radon measure. Therefore, we cannot apply directly results from [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]. Instead, defining f δ to be a specific regularization of f [Zie89, Section 5.3] provides a regular function u δ ε solving (2.5). To do this, we use the framework already established in [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF]. Then we show that u δ ε satisfies certain a priori estimates that are uniform with respect to both δ and ε. These provide necessary compactness in order to pass to the limit with the regularization parameter δ and give existence and uniqueness of a weak solution u ε associated to (2.5) with a load f ∈ BV((0, T )). The a priori estimates holding also in this weaker framework, we can consider convergence with respect to ε and prove consistency with the formal limit system. We show that, in the BV framework, the equivalence between (2.5) and (2.1) still holds. For the particular case when the kernel ρ ε is independent on time and on ε and under suitable hypotheses, we show error estimates to be compared with [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], the comparison principle being applied to the integral of the error's modulus.

In order to clarify the interplay between parameters ε and δ, we make the following remarks : in the previous literature [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF][START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], not only existence (and uniqueness) but CHAPTER 2. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : EXTENSION TO LOADS OF BOUNDED VARIATION also convergence results were strongly related to the Lipschitz regularity of the load f . This motivates the present work, since it is not clear that the convergence occurs with respect to ε in this weaker framework. This explains also why we first regularize the problem with the parameter δ, make δ tend to zero, and then consider the convergence with respect to ε.

The outline of this chapter is as follows : in Section 2.2, collecting various results from the literature on BV-functions in one space dimension, we introduce the framework used in the rest of the paper. We make the link with the Riemann-Stieltjes integral, through a careful analysis of different definitions of BV-functions with respect to the boundary of the time domain (0, T ). In Section 2.3, we recall some results concerning (2.2) already established in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]. Then, in Section 2.4, we establish uniform (with respect to ε) a priori estimates for the regularized system in u ε . After that, in Section 2.5, we show the weak convergence of u ε towards u 0 , the solution of the limit problem. This implies strong convergence of z ε in L ∞ (0, T ) as stated in Theorem 25. We establish, in Section 2.6, a specific comparison principle for Volterra equations when the density ϱ is constant in time and does not depend on ε.

Notations and main assumptions

We denote L p t L q a := L p ((0, T ); L q (R + )) for any real (p, q) ∈ [1, ∞] 2 and (2.8)

X T := g ∈ L ∞ l oc ((0, T ) × R + ) ; sup t ∈(0,T ) ∥g (t , a)w(a)∥ L ∞ a < ∞
where w(a) := (1 + a) -1 . The space Lip(I ) is the set of Lipschitz functions on the interval I .

Assumptions 1. For any T > 0 possibly infinite, we assume that :

i) The past condition z p is L z p -Lipschitz on R -i.e. :

|z p (a 2 ) -z p (a 1 )| ≤ L z p |a 2 -a 1 |, ∀(a 2 , a 1 ) ∈ R -× R -.
ii) The function

β ε (t ) is in L ∞ (0, T ) and ζ ε (a, t ) is in L ∞ (R + × (0, T )). iii) For limit functions β 0 ∈ L ∞ t and ζ 0 ∈ L ∞ t L ∞ a it holds that ∥ζ ε -ζ 0 ∥ L ∞ a,t → 0 and ∥β ε -β 0 ∥ L ∞ t -→ 0 as ε → 0.
iv) There are upper and lower bounds such that

0 < ζ min ≤ ζ ε (a, t ) ≤ ζ max and β min ≤ β ε (a, t ) ≤ β max ,
for all ε > 0, a ≥ 0 and t > 0.

Assumptions 2. The initial condition ρ

I ,ε ∈ L ∞ a (R + ) satisfies i) Positivity ρ I ,ε (a) ≥ 0, a.e. in R + ,
moreover, one has also that the total initial population satisfies

0 < R + ρ I ,ε (a)d a < 1;
ii) Boundedness of higher moments,

0 < R + a p ρ I ,ε (a)d a < c p , for p = 1, 2,
where c p are positive constants depending only on p.

Next, we introduce definitions of functions with bounded variation in one dimension, as well as some related properties. where var( f , P ) : Given an open interval (0, T ) ⊂ R, the space of functions with bounded variation BV((0, T )) is defined as the space of all functions f ∈ L 1 ((0, T )) for which there exists a signed Radon measure µ f such that

= n k=1 f (t k ) -f (t k-1 ) and P = {0 < t 0 < • • • < t n < T } is a partition of (0, T ). Moreover, we denote B PV ((0, T )) := f ∈ L ((0, T )), .s.t. pvar( f , (0, T )) < +∞ ,
(2.11) (0,T ) f φ ′ d t = - (0,T ) φd µ f , ∀φ ∈ C 1 c ((0, T )) for all φ ∈ C 1 c ((0, T )). The measure µ f is called the weak or distributional derivative of f . Remark 1. i) We define the total variation of f ∈ L 1 ((0, T )) by (2.12) ∥D f ∥((0, T )) = sup - (0,T ) f φ ′ d t , φ ∈ C 1 c ((0, T )), |φ| ∞ ≤ 1 . Moreover, f ∈ BV((0, T )) if ∥D f ∥((0, T )) < +∞.
ii) Definitions (2.9) and (2.12) are not equivalent. For instance, the Dirichlet indicatrix function χ Q∩[0,1] is not of pointwise bounded variation in (0, 1) in the sense of Definition 1 but is well-defined in the sense of Definition 2. The equivalence between the two definitions holds up to a.e. equality. Moreover, every integrable function f : (0, T ) → R such that pvar( f , Ω) < +∞, is in BV((0, T )) and ∥D f ∥((0, T )) ≤ pvar( f , (0, T )). On the other hand, if f belongs to BV((0, T )), then f admits a right continuous representative f with bounded pointwise variation such that pvar( f , (0, T )) = ∥D f ∥((0, T )).

Fore more details, see, e.g., [Leo09, theorem 7.3] and [START_REF] Heida | Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space[END_REF].

iii) Under the norm

∥ f ∥ BV := ∥ f ∥ L 1 + epvar( f , (0, T )) < ∞ BV((0, T )) is a Banach space.
Next, we provide existence of the left and right limits of functions with bounded variation [HPR19, Proposition 2.2].

Lemma 1. Let f ∈ BV((0, T )), Then both the limits

f (0 + ) = lim s→0,s>0 f (s) and f (T -) = lim s→T,s<T f (s) exist.

NOTATIONS AND MAIN ASSUMPTIONS

Additionally, if f is integrable, the left and right limits are as follows :

Lemma 2. Suppose that f ∈ BV((0, T )), then

f (0 + ) = lim ρ→0 + 1 ρ ρ 0 f (t ) d t , f (T -) = lim ρ→0 + 1 ρ T T -ρ f (t ) d t .
Next, we present a result used in the proof of Proposition 3, which relates the pointwise variation to the Lebesgue measure :

λ( f , h, Ω) := {t ∈Ω:t +h∈Ω} f (t + h) -f (t ) d t , Lemma 3. If f is in BPV((0, T )), then λ( f , h, (0, T ))/|h| is bounded. Moreover, λ( f , h, (0, T )) ≤ |h| pvar( f , (0, T )).
For the proof, we can see [Leo09, Theorem 2.20].

Finally, in [START_REF] Heida | Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space[END_REF], the authors add a new notion of variation containing the boundary value in order to expand the total variation of f to [0, T ]. This variation is defined as

(2.13) varw( f ) := sup φ∈C 1 c ([0,T ]) |φ| ∞ ≤1 φ(T ) f (T -) -φ(0) f (0 + ) - (0,T ) f φ ′ d t
Moreover, by summarizing the results of [HPR19, Proposition 2.3, 2.6 and 2.7] all notions of variations coincide :

epvar( f , (0, T )) = ∥D f ∥((0, T )) = varw( f )
The previous result allows to extend Lemma 3 to BV((0, T )) functions :

Lemma 4. If f is in BV((0, T )), then λ( f , h, (0, T ))/|h| is bounded. Moreover, λ( f , h, (0, T )) ≤ |h| D f ((0, T ))
Proof. By taking the infimum over almost every equal measurable functions, one has

inf f = f a.e. λ( f , h, (0, T )) ≤ |h| inf f = f a.e. pvar( f , (0, T )) = |h| epvar( f , (0, T )) = |h| D f ((0, T ))
Since the left-hand side is a Lebesgue integral one has :

inf f = f a.e. λ( f , h, (0, T )) = λ( f , h, (0, T ))
which ends the proof. ■

Data regularization

Theorem 11. For every f ∈ BV((0, T )), there exists a sequence of smooth functions (

f δ ) δ in C ∞ ((0, T )) such that lim δ→0 (0,T ) | f δ -f |d t = 0 and lim δ→0 (0,T ) | f ′ δ |d t = ∥D f ∥((0, T )).
Although the proof is classical (see for instance [Zie89, Theorem 5.3.3 p.225]), we need the explicit form of f δ in the rest of the paper. For this reason, we present in Section B the proof of Theorem 11.

Lemma 5. Let f ∈ BV((0, T )) ∩ L ∞ ((0, T )).
Then the regularization function f δ defined as (B.5) is bounded in (0, T ).

Next, we compare the left and right limits of f and its approximation f δ on the boundary : Lemma 6. Let f ∈ BV((0, T )) and f δ defined as (B.5), then

f δ (0 + ) = f (0 + ) and f δ (T -) = f (T -).
First we need the following result :

Proposition 1. Let f ∈ BV((0, T )). For every δ > 0, and t 0 ∈ {0, T },

(2.14) lim

τ→0 + 1 τ I τ ∩(0,T ) | f δ -f |d t = 0,
where

I τ = {t ∈ R : |t -t 0 | < τ}.
Proof. For a fixed t 0 ∈ {0, T } and t ∈ I τ ∈ (0, T ), we have

f δ (t ) -f (t ) = ∞ i =0 [χ δ i * (φ i f ) -φ i f ]
by the definition of supp φ i (see (B.1)), we have 1/(

j 0 + i + 1) < τ < 1/( j 0 + i -1) then i > 1/τ -j 0 -1. Since, R is an archimedean space then (2.15) ∀τ > 0, ∃! i 0 := 1 τ -j 0 s.t i 0 ≤ 1 τ < i 0 + 1
which implies by using (B.3) that

I τ ∩(0,T ) | f δ -f | d t = ∞ i =i 0 I τ ∩(0,T ) [χ δ i * (φ i f ) -φ i f ] d t ≤ ∞ i =i 0 δ2 -i ≤ δ2 -i 0 ∞ i =0 2 -i = 2 j 0 +1 δ 2 -⌊ 1 τ ⌋ 2.2. NOTATIONS AND MAIN ASSUMPTIONS then 1 τ I τ ∩(0,T ) | f δ -f | d t ≤ C δ 2 -⌊ 1 τ ⌋ τ using again (2.15), we have 2 -⌊ 1 τ ⌋ τ = exp(-⌊ 1 τ ⌋ ln 2) τ ≤ 2 exp(-1 τ ln 2) τ Finally, we conclude that lim τ→0 + 1 τ I τ ∩(0,T ) | f δ -f | d t = lim τ→0 + 2 exp(-1 τ ln 2) τ = 0. ■ Proof of Lemma 6 According to the Lemma 2, lim τ→0 + 1 τ τ 0 | f δ (t ) -f δ (0 + )| d t = 0 and lim τ→0 + 1 τ τ 0 | f (t ) -f (0 + )| d t = 0.
Moreover, we have, thanks to Proposition 1

lim τ→0 + 1 τ τ 0 | f δ -f | d t = 0.
Thus, for all ε ′ > 0, there exist δ ′ > 0 such that 0 < τ < δ ′ implies

f δ (0 + ) -f (0 + ) = 1 τ τ 0 f δ (0 + ) -f (0 + ) d t ≤ 1 τ τ 0 f δ (0 + ) -f δ (t ) d t + 1 τ τ 0 f δ (t ) -f (t ) d t + 1 τ τ 0 f (t ) -f (0 + ) d t ≤ 3ε ′
which proves the required result. Similarly, we can prove that

f δ (T -) = f (T -).

■

In the previous setting, the weak derivative of f ∈ BV((0, T )) defines a linear continuous form on C ((0, T )). In the next section, we show how to extend this measure on functions in

C ([0, T ]).

Definition and basic properties of Stieltjes integral

The Riemann-Stieltjes integral (RS-integral) is a generalization of the Riemann integral. Let P a tagged partition of [0, T ], defined as (2.16) 

P := {(ξ i , [t i -1 , t i ]) : 1 ≤ i ≤ n} where 0 = t 1 ≤ • • • ≤ t n = T ,
S( f , d g , P , [0, T ]) := i f (ξ i )[g (t i ) -g (t i -1 )].
Moreover, the RS-integral of f with respect to g (RS).

[0,T ]

f (t )d g (t )
exists and has a value I ∈ R, if, for every ε > 0, there exists δ > 0, such that the mesh size max i (t it i -1 ) < δ and for every

ξ i in [t i , t i +1 ], |S( f , d g , P , [0, T ]) -I | < ε. Lemma 7. Suppose that f is continuous on [0, T ] and g is of bounded pointwise varia- tion on [0, T ], then [0,T ] f d g ≤ ∥ f ∥ ∞ pvar(g , [0, T ])
In the following Theorem we see that a Riemann-Stieltjes integral can be used to describe any bounded linear functional on C ([0, T ]) (see [BC09, Theorem 7.1.1] and [Kre89, Theorem 4.4-1] for more details) : 

Theorem 13. Let Γ f ∈ (C ([0, T ])) ′ , then there exist g ∈ B PV ([0, T ]) such that Γ f (ϕ) = [0,T ] ϕd g , ∀ϕ ∈ C ([0, T ]).
f d g + [0,T ] g d f = [ f g (t )] t =T t =0 . Moreover, If f ∈ C 1 ([0, T ]) and g ∈ B PV ([0, T ]), then d f = f ′ d t

NOTATIONS AND MAIN ASSUMPTIONS

Lemma 8. Let f ∈ BV((0, T )). Then there exists g ∈ BPV([0, T ]) s.t

f ϕ t =T - t =0 + - (0,T ) f ϕ ′ d x = [0,T ] ϕd g , ∀ϕ ∈ C 1 ([0, T ]) s.t. f (t ) = g (t ), a.e. t ∈ (0, T ) Proof. We regularize f ∈ BV((0, T )) by f δ ∈ C ∞ ((0, T ))
as in Theorem 11, then we have :

s k t k f ′ δ ϕd t + s k t k f δ ϕ ′ d t = f δ ϕ t =s k t =t k =: L k , ∀ϕ ∈ C 1 ([0, T ])
where s k → T -and t k → 0 + . We define :

I k := s k t k f ′ δ ϕd t , J k := s k t k f δ ϕ ′ d t .
Thanks to Lebesgue's Theorem, one has that

lim k→∞ I k = I := T 0 f ′ δ ϕd t , lim k→∞ J k = J := T 0 f δ ϕ ′ d t
and thanks to Lemma 6 and the continuity of ϕ,

L k = L := f (T -)ϕ(T ) -f (0 + )ϕ(0), ∀k ∈ N
So that we have :

T 0 f ′ δ ϕd t + T 0 f δ ϕ ′ d t = f ϕ t =T - t =0 +
If we set

I f δ (ϕ) := T 0 f ′ δ ϕd t ,
it is a linear continuous form on C ([0, T ]), since one has :

(2.17)

I f δ (ϕ) ≤ f ′ δ L 1 ((0,T )) ϕ L ∞ ≤ D f ((0, T )) + δ ϕ L ∞ ((0,T ))
where we used estimates from the proof of [Zie89, Theorem 5.3.3]. Since it is a continuous linear form on C ([0, T ]), by Theorem 13 there exists h δ ∈ BPV([0, T ]) s.t.

I f δ (ϕ) = [0,T ] ϕd h δ , ∀ϕ ∈ C ([0, T ])
in the Stieljes' sense. But by using the integration by parts from Theorem 15, we have that

(2.18) f ϕ t =T - t =0 + - (0,T ) f δ ϕ ′ d t = [0,T ] ϕd h δ = h δ ϕ t =T t =0 - [0,T ] h δ ϕ ′ d t , ∀ϕ ∈ C 1 ([0, T ])
CHAPTER 2. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : EXTENSION TO LOADS OF BOUNDED VARIATION which implies that (0,T )

f δ ϕ ′ d t = (0,T ) h δ ϕ ′ d t , ∀ϕ ∈ D((0, T ))
and then we can apply [Leo09, Lemma 7.4] and conclude that there exists c ∈ R, s.t.

f δ = h δ + c.
Then setting g δ := h δ + c provides a function s.t.

[

f δ ϕ] T 0 - T 0 f δ ϕ ′ d t = T 0 ϕd g δ , ∀ϕ ∈ C 1 ([0, T ])
and s.t.

f δ (t ) = g δ (t ), a.e. t ∈ (0, T ).
Thanks to (2.17 where the left side is a Radon measure and the right hand side is the Riemann-Stieltjes integral. Because f δ tends to f in the L 1 (0, T ) topology, one has then that

f ϕ t =T - t =0 + - (0,T ) f ϕ ′ d t = [0,T ] ϕd h, ∀ϕ ∈ C 1 ([0, T ])
then using again integration by parts from Theorem 15, one concludes that

f (t ) = h(t ) + c, a.e. t ∈ (0, T ),
and setting g = h + c ends the proof.

■

Corollary 1. There exists a sub-sequence ( f δ k ) k∈N , s.t.

I f δ k (ϕ) := T 0 ϕ f ′ δ k d t → T 0 ϕd g , ∀ϕ ∈ C ([0, T ]),
when k → ∞.

MATHEMATICAL BACKGROUND FOR THE LINKAGES' DENSITY

Mathematical background for the linkages' density

We list here some of the results proved in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] used in the next sections of the paper.

Theorem 17. Let Assumptions 1 and 2 hold, then for every fixed ε > 0 there is a unique 

solution ρ ε ∈ C 0 (R + ; L 1 (R + ))∩L ∞ (R 2 + ) of
ρ ε (a, t ) =        β ε (t -εa) 1 -R + ρ ε ( ã, t -εa) d ã exp - a 0 ζ ε ( ã, t -ε(a -ã) d ã), ∀a < t ε ρ I ,ε (a -t ε ) exp -1 ε t 0 ζ ε t -t ε + a, t d t , ∀a ≥ t ε
Moreover, it is a weak solution as well since it satisfies (cf [MO11, Lemma 2.1])

T 0 +∞ 0 ρ ε (a, t ) ε∂ t ϕ + ∂ a ϕ -ζ ε ϕ d a d t -ε +∞ 0 ρ ε (a, T )ϕ(a, T ) d a + T 0 ρ ε (a = 0, t )ϕ(a = 0, t ) d t + ε +∞ 0 ρ I ,ε (a)ϕ(a, t = 0) d a = 0 (2.20) for every T > 0 and test function ϕ ∈ C ∞ (R 2 + ) ∩ L ∞ (R 2 +
). Now we define the moments of ρ ε which we denote by µ p,ε (t ) := R + a p ρ ε (a, t )d a, with p = 1, 2. Lemma 9. Let Assumptions 1 and 2 hold, then the unique solution ρ ε ∈

C 0 (R + ; L 1 (R + )) ∩ L ∞ (R 2 + ) of (2.2) satisfies i) ρ ε (a, t ) ≥ 0 for a.e (a, t ) in R 2 + , ii) µ 0,min ≤ µ 0,ε (t ) < 1, ∀t ∈ R + , where, µ 0,min < min µ 0,ε (0), β min β min +ζ max , iii) µ p,min ≤ µ p,ε (t ) ≤ k, where, µ p,min = min µ p,ε (0), µ p-1,min ζ max .
The authors provide a Liapunov functional that reads : 

H [u] := ∞ 0 u(a)d a + ∞ 0 |u(a)
H [(ρ ε -ρ 0 )(•, t )] ≤ H [ρ I ,ε -ρ 0 (•, 0)] exp -ζ min t ε + 2 ζ min ∥R ε ∥ L 1 a (R + ) + |M ε | L ∞ t (R + ) (2.21) with R ε := -ε∂ t ρ 0 -ρ 0 (ζ ε -ζ 0 ) and M ε := (β ε -β 0 )(1 - ∞ 0 ρ 0 d a).
This ensures the convergence of ρ ε that reads :

Theorem 19. Let ρ ε the solution of the system (2.2) and let ρ 0 given by (2.4), then

ρ ε → ρ 0 in C 0 ((0, ∞); L 1 (R + )) as ε → 0 ,
where the convergence with respect to time is meant in the sense of uniform convergence on compact subintervals.

Existence, uniqueness and stability

Using the regularized function f δ introduced in Theorem 11, we consider an approximation of (2.1).: we denote by z δ ε := z δ ε (t ) the function solving

(2.22)        1 ε ∞ 0 z δ ε (t ) -z δ ε (t -εa) ρ ε (a, t )d a = f δ (t ), t ≤ 0, z δ ε (t ) = z p (t ), t < 0.
We also define u δ ε (a, t ), an approximation of the elongation variable u ε , defined as the mild solution of (2.23)

             ε∂ t u δ ε + ∂ a u δ ε = 1 µ 0,ε ε f ′ δ + ∞ 0 ζ ε u δ ε ρ ε d a , t > 0, a > 0, u δ ε (a = 0, t ) = 0, t > 0, u δ ε (a, t = 0) = u δ I ,ε (a), a ≥ 0.
where (2.24)

u δ I ,ε (a) := z δ ε (0 + ) -z p (-εa) ε 2.4.

EXISTENCE, UNIQUENESS AND STABILITY and

(2.25)

z δ ε (0 + ) = 1 µ 0,ε (0) ε f δ (0 + ) + ∞ 0 z p (-εa)ρ I ,ε (a)d a .
More precisely, u δ ε is a solution of system (2.23) in the sense of characteristics, namely

(2.26) u δ ε (a, t ) =    a 0 h(t -ε ã) d ã, if t > εa t /ε 0 h(t -ε ã) d ã + u δ I ,ε (a -t /ε), if t ≤ εa,
where

h(t ) := 1 µ 0,ε ε∂ t f δ + ∞ 0 ζ ε u δ ε ρ ε d a .
By arguments similar to [MO11, Lemma 3], it is as well a weak solution of (2.23) i.e.

- T 0 ∞ 0 u δ ε (ε∂ t ϕ + ∂ a ϕ) d a d t + ∞ 0 u δ ε (s, a)ϕ(s, a) d a s=T s=0 = T 0 1 µ 0,ε ε f ′ δ + ∞ 0 ζ ε u δ ε ρ ε d a ∞ 0 ϕ(t , ã) d ã d t (2.27) for any function ϕ ∈ C ∞ c ([0, T ] × R + ).
Although, problem (2.22) can be defined for weaker data (typically L 1 ((0, T )) or the space of Radon measures M ((0, T ))), the elongation problem (2.23), requires to give a meaning to the time derivative of f , which is more restrictive.

Nevertheless, as we are mainly interested in convergence results, f ∈ BV((0, T )) seems the weakest possible regularity to our knowledge.

Theorem 21. Let Assumptions 1 hold, and let ρ ε be the unique solution of (2.2) then the system (2.23) has a unique solution u δ ε ∈ X T .

We are in the framework of [MO15, Theorem 6.1], but for sake of self-containtness, we recall in an abriged version the proof hereafter.

Proof. A Banach fixed point Theorem is used to prove this result. We define the mapping

φ(v) = u such that by Duhamel's principle (2.28) u(a, t ) =    a 0 G(t -ε ã) d ã, if t > εa t /ε 0 G(t -ε ã) d ã + u δ I ,ε (a -t /ε), if t ≤ εa,
where

G(t ) := 1 µ 0,ε ε f ′ δ + ∞ 0 ζ ε (a, t )v(a, t )ρ ε (a, t )d a .
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As in [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], a simple computation shows that

∥u∥ X T ≤ ∥G∥ L ∞ ((0,T )) T T + ε + u δ I ,ε (•) 1 + a L ∞ (R + ) Moreover, since ∂ t f δ ∈ L ∞ ((0, T )) ∥G∥ L ∞ ((0,T )) ≤ 1 µ 0,min ε ∥ f ′ δ ∥ L ∞ ((0,T )) + ζ max (1 + k) µ 0,min ∥v∥ X T
where k is the upper bound of µ 1,ε proved in Lemma 9. Furthermore, by the same argument we can prove that φ is a contraction. Indeed, if

u i = φ(v i ) for i ∈ {1, 2} ∥u 2 -u 1 ∥ X T ≤ C T T + ε ∥v 2 -v 1 ∥ X T
for a constant C > 0. Then we can choose T < ε/C and we obtain the existence of a local solution in time of (2.23), by Banach-Picard's fixed point theorem. As the contraction time does not depend on the initial data, we shall extend the same result by continuation. This shows existence and uniqueness in X T for any T > 0.

■ Lemma 11. If Assumptions 1 holds, then the solution of system (2.23) satisfies the uniform a priori estimates

∞ 0 ρ ε (a, t )|u δ ε (a, t )| d a ≤ t 0 | f ′ δ | d t + R + ρ I ,ε |u δ I ,ε | d a ≤ C f BV((0,T )) , (1 + a)ρ I L 1 (R + ) , z ′ p L ∞ (R -) (2.29)
where C is independent on ε and on δ.

Proof. Again, we proceed as in [MO15, Lemma 5.1], multiplying (2.23) by sgn(u δ ε ), testing against ρ ε , and integrating with respect to a gives :

d dt R + u δ ε ρ ε d a + R + u δ ε ζ ε ρ ε d a ≤ ε f ′ δ + R + u δ ε ζ ε ρ ε d a,
the rigorous proof relies on arguments exposed in [MO11, Lemma 3.1] and is left to the reader. Finally, after integration with respect to time, we conclude that

∞ 0 ρ ε (a, t )|u δ ε (a, t )|d a ≤ t 0 | f ′ δ |d t + R + ρ I ,ε |u δ I ,ε |d a,

EXISTENCE, UNIQUENESS AND STABILITY

since

|u δ I ,ε (a)| ≤ z δ ε (0 + ) -z p (0) ε + z p (0) -z p (-εa) ε ≤ 1 µ 0,ε (0) f δ (0 + ) + 1 ε ∞ 0 (z p (-εa) -z p (0))ρ I ,ε (a).d a + z p (0) -z p (-εa) ε ≤ 1 µ 0,min z ′ p L ∞ (R -) µ 1,ε (0) + f δ (0 + ) + z ′ p L ∞ (R -) a ≤ max 1 µ 0,min z ′ p L ∞ (R -) µ 1,ε (0) + f δ (0 + ), z ′ p L ∞ (R -)
(1 + a), the result follows.

■

In order to establish the convergence of u δ ε in X T , for a fixed ε, we introduce an intermediate variable w defined as

(2.30) w(a, t ) := u δ ε (a, t ) - f δ (t ) µ 0,ε (t ) It satisfies (2.31)                          ε∂ t w + ∂ a w = 1 µ 0,ε   ε f δ ∂ t µ 0,ε µ 0,ε + ∞ 0 ζ ε u δ ε ρ ε d a   , t > 0, a > 0, w(a = 0, t ) = -f δ (t ) µ 0,ε (t ) , t > 0, w(a, t = 0 + ) = u δ I ,ε (a) - f δ (0 + ) µ 0,ε (0) , a ≥ 0.
The following crucial result holds :

Lemma 12. For a fixed δ and ε, and under the Assumptions 1, the unknowns w and u δ ε , are uniformly bounded in X T with respect to δ and ε.

Proof. Using arguments from [MO11, Lemma 2.1], one can show that w defined as

(2.32) w(a, t ) :=    w(0, t -εa) + a 0 G w (t -ε ã) d ã, if t > εa w(a -t /ε, 0 + ) + t /ε 0 G w (t -ε ã) d ã, if t ≤ εa.
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   ε f δ ∂ t µ 0,ε µ 2 0,ε + 1 µ 0,ε ∞ 0 ζ ε ρ ε u δ ε d a    .
A simple computation shows that

∥w∥ X T ≤ ∥G w ∥ L ∞ ((0,T )) + ∥w(0, .)∥ L ∞ ((0,T )) + w(., 0) 1 + a L ∞ (R + )
.

It remains to estimate ∥G w ∥ L ∞ (0,T ) . For every fixed ε, µ 0,ε is a Lipschitz continuous function.

Indeed, µ 0,ε satisfies

ε∂ t µ 0,ε -β ε (1 -µ 0,ε ) + R + ζ ε ρ ε d a = 0
and then

∥ε∂ t µ 0,ε ∥ L ∞ t ≤ ∥β ε ∥ L ∞ t + ∥ζ ε ∥ L ∞ t ,a ∥ρ ε ∥ L ∞ t L 1 a ,
which shows, by using the result of Lemma 11 that G w , and also w, are uniformly bounded in L ∞ ((0, T )) with respect to δ and ε. Indeed,

∥G w ∥ L ∞ ((0,T )) ≤ ∥ε∂ t µ 0,ε ∥ L ∞ ((0,T )) ∥ f δ ∥ L ∞ ((0,T )) µ 2 0,min + ζ max µ 0,min R + ρ ε |u δ ε |d a < +∞.
Finally, we have that

∥u δ ε ∥ X T ≤ ∥w∥ X T + ∥ f δ ∥ L ∞ ((0,T ))
µ 0,min < +∞, which ends the proof.

■

Previous stability estimates allow to show :

Theorem 23. Under Assumption 1, one has for any fixed ε > 0,

u δ ε u ε weakly-* in X T
as δ → 0, where u ε solves the weak problem

- T 0 ∞ 0 u ε (ε∂ t + ∂ a )ϕ d a d t + ε ∞ 0 u ε (a, s)ϕ(a, s) d a s=T s=0 = ε T 0 ∞ 0 ϕ( ã, t )d ã µ 0,ε d g + T 0 ∞ 0 ζ ε ρ ε u ε d a µ 0,ε ∞ 0 ϕ( ã, t ) d ã (2.33) for any ϕ ∈ C 1 c ([0, T ] × R + ).

EXISTENCE, UNIQUENESS AND STABILITY

Proof. The uniform bound on u δ ε in X T , proved in Lemma 12, implies that

u δ ε 1 + a * u ε 1 + a in L ∞ ((0, T ) × R + )
in the weak-* sense and the limit function u ε belongs X T . For every ψ ∈

L ∞ ((0, T ) × R + ), we have ζ ε (1 + a)ρ ε ψ ∈ L 1 ((0, T ) × R + ) and then T 0 ∞ 0 ζ ε ρ ε u δ ε ψ d a d t → T 0 ∞ 0 ζ ε ρ ε u ε ψ d a d t .
By Corollary 1, the first term of right-hand in (2.27) tends to

T 0 ∞ 0 ϕ(t , ã)d ã/µ 0,ε d g as δ → 0, for any ϕ ∈ C 1 c ([0, T ] × R + ).
Regarding the second term of the right-hand side in (2.27), one has that ζ ε ρ ε /µ 0,ε ∈ L 1 ((0, T ) × R + ) and this leads, thanks again to the weak-* convergence above to write :

(2.34)

t 0 1 µ 0,ε ∞ 0 ζ ε ρ ε u δ ε d a d t -→ t 0 1 µ 0,ε ∞ 0 ζ ε ρ ε u ε d a d t as δ → 0,
which ends the proof.

■

The latter theorem allows to prove a convergence result when returning to the z ε variable :

Proposition 2. Under the same assumptions as above, it holds that

z δ ε → z ε strongly in L ∞ ((0, T )) as δ → 0,
where z ε satisfies,

(2.35) z ε (t ) = z ε (0 + ) + t 0 ε µ 0,ε d g + t 0 1 µ 0,ε ∞ 0 ζ ε u ε ρ ε d a d t
which is also a solution of (2.1).

Before showing this result, we make some comments : if u δ ε is a solution of (2.23) then z δ ε defined as (2.38)

(2.36) z δ ε (t ) := z δ ε (0 + ) + t 0 1 µ 0,ε ( t ) ε f ′ δ ( t ) + ∞ 0 ζ ε u δ ε ρ ε d a d t solves (2.22). Conversely, if z δ ε solves (2.22) then u δ ε , given by (2.37) u δ ε (a, t ) =        z δ ε (t ) -z δ ε (t -εa) ε , if t > εa z δ ε (t ) -z p (t -εa) ε , if t ≤
1 ε T 0 +∞ 0 (z δ k ε (t ) -z δ k ε (t -εa)) ρ ε (a, t ) ϕ(t ) d a d t = T 0 f δ k (t ) ϕ(t ) d t As z δ k ε converges strongly in L ∞ (0, T ) to z ε , the difference z δ k ε (t ) -z δ k ε (t -εa) converges
almost every where for any fixed (a, t ) in R + ×(0, T ) towards z ε (t )z ε (t -εa). Thanks to the L ∞ bounds on u δ k ε /(1+a), and the bounds in L 1 (R + ×(0, T )) on the first moment of ρ ε , there exists an integrable majorizing function g (a, t ) on R + × (0, T ) s.t.

z δ k ε (t ) -z δ k ε (t -εa) |ϕ(t )|ρ ε (a, t ) ≤ g (a, t )
uniformly for every k. Thus, one can apply the Lebesgue's Theorem in the left-hand side of (2.38). Since f δ converges in L 1 (0, T ) the convergence occurs in (2.38) for every ϕ ∈ D(0, T ) and thus almost everywhere in (0, T ) and thus z ε solves (2.1).

■

Weak convergence when ε goes to zero

Next, we prove the weak convergence of u ε from which we deduce the strong convergence of z ε .

Theorem 25. Under the same assumptions as above, one has u ε u 0 weakly-* in X T as ε → 0, where u 0 satisfies (2.7) and

∞ 0 u 0 (a, t ) ρ 0 (a, t ) d a = f (t ) a.e t ∈ (0, T ).
Furthermore, it also holds that

z ε → z 0 strongly in L ∞ ((0, T )) as ε → 0.
Proof. The proof follows the same steps as in [MO15, Theorem 6.2]. First, by Lemma 12, u δ ε is uniformly bounded in X T with respect to δ and ε, and therefore u ε is uniformly bounded 2.5. WEAK CONVERGENCE WHEN ε GOES TO ZERO in X T with respect to ε, then u ε is weakly convergent to u 0 in X T . On the other hand, Theorem 3.2 and Lemma 3.4 imply that (1 + a)ρ ε → (1 + a)ρ 0 strongly in L 1 ((0, T ) × R + ). These arguments justify that for every ψ ∈ L ∞ ((0,

T ) × R + ) one has T 0 ∞ 0 ζ ε ρ ε u ε ψ d a d t → T 0 ∞ 0 ζ 0 ρ 0 u 0 ψ d a d t .
Indeed, one has

T 0 ∞ 0 ζ ε ρ ε u ε -ζ 0 ρ 0 u 0 ψ d a d t = T 0 ∞ 0 (ζ ε -ζ 0 )ρ ε u ε ψ d a d t + T 0 ∞ 0 ζ 0 (ρ ε -ρ 0 )u ε ψ d a d t + T 0 ∞ 0 ζ 0 ρ 0 (u ε -u 0 ) ψ d a d t
As ζ ε → ζ 0 by Assumptions 1, and thanks to the weak convergence of u ε , both terms on the right-hand side tend to zero as ε → 0. Note that this implies the weak convergence of

R + ζ ε ρ ε u ε d a in L 1 ((0, T )), since we can choose ψ ∈ L ∞ ((0, T )). Moreover, thanks to Lemma 7 we obtain that [0,T ] +∞ 0 ϕ.d a µ 0,ε d g ≤ C ∥ϕ∥ L ∞ t ,a µ 0,min pvar(g , [0, T ]) ≤ C f BV((0,T )) .
As in [MO15, Theorem 6.2], passing to the limit in the weak formulation (2.33) we obtain

- T 0 ∞ 0 u 0 ∂ a ψ d a d t = T 0 ∞ 0 ζ 0 ρ 0 u 0 ψ µ 0,0 d a d t which implies that u 0 satisfies (2.39)        ∂ a u 0 = 1 µ 0,0 ∞ 0 ζ 0 ( ã, t )u 0 ( ã, t )ρ 0 ( ã, t ) d ã, t > 0, a > 0, u 0 (a = 0, t ) = 0, t > 0,
Similarly, we have the weak convergence of

∞ 0 u ε (t , a)ρ ε (t , a) d a towards ∞ 0 u 0 (t , a) ρ 0 (t , a) d a in L 1 ((0, T )).
Hence, one concludes that u 0 satisfies also As the right-hand side of (2.39) does not depend on age, one has that u 0 = γ(t ).a, where in order to satisfy the last compatibility condition implies that

γ(t ) R + aρ 0 (a, t )d a = f (t ), a.

e. t ∈ (0, T ). LOADS OF BOUNDED VARIATION

Thus u 0 (a, t ) = f (t )/µ 1,0 (t )a for almost every t ∈ (0, T ) and every a ∈ R + . Using again the weak convergence of R + ζ ε ρ ε u ε d a in L 1 ((0, T )) combined with the strong convergence of µ 0,ε allows to pass to the limit in the third term of (2.35). Moreover,

|z ε (0 + ) -z p (0)| = 1 µ 0,ε (0) ∞ 0 z p (-εa) -z p (0) ρ I ,ε (a) d a + ε f (0 + ) ≤ εk∥z ′ p ∥ L ∞ (R-) µ 0,min + ε| f (0 + )| µ 0,min -→ 0 as ε → 0
where k is the constant from Lemma 9. All together this provides that z 0 solves :

(2.40)

z 0 (t ) = z p (0) + t 0 f (τ) µ 1,0 (τ) R + ζ 0 (a, τ)ρ 0 (a, τ)d a µ 0,0 (τ) d τ
but because ρ 0 solves (2.4), one has that aρ 0 solves : ∂ a (aρ 0 ) -ρ 0 + aζ 0 (a, t )ρ 0 = 0, which after integration in time shows that

R + aζ 0 (a, t )ρ 0 (a, t )d a µ 0,0 (t ) = 1
and this shows in turn that (2.40) reduces to

z 0 (t ) = z 0 (0) + t 0 f (τ) µ 1,0 (τ) d τ
which is the integrated version of (2.3).

■

A comparison principle

In this section, we give error estimates between z ε and z 0 , the solution of the problem (2.41)

       1 ε ∞ 0 (z ε (t ) -z ε (t -εa)) ϱ(a) d a = f (t ), t ≥ 0, z ε (t ) = z p (t ), t < 0,
where ϱ is constant in time and satisfies (2.42)

     ∂ a ϱ + ζ(a)ϱ = 0, a > 0, ϱ(0) = β 1 - ∞ 0 ϱ( ã) d ã ,
where the data of (2.41) and (2.42) satisfy 2.6. A COMPARISON PRINCIPLE

Assumptions 3. i) f ∈ BV((0, T )), ii) z p ∈ Lip(R -), iii) β ∈ R * + , iv) ζ ∈ L ∞ (R + ) such that : 0 < ζ min ≤ ζ(a) ≤ ζ max , a.e. a ∈ R + .
Setting ẑε (t ) := z ε (t )z 0 (t ), it solves :

ẑε (t ) = 1 µ 0 t ε 0 ẑε (t -εa)ϱ(a)d a + hε (t )
where (2.43) 

hε (t ) = ε µ 0 t /ε 0   z 0 (t ) -z 0 (t -εa) ε -a∂ t z 0 (t )   ϱ(a) d a + ε µ 0 +∞ t /ε   z 0 (t ) -z 0 (0) ε -a∂ t z 0 (t )   ϱ(a) d a + 1 µ 0 +∞ t /ε z p (t -εa) -z p (0) ϱ(a)
Ẑε (t ) = t 0 | ẑε (τ)| d τ ≤ 1 µ 0 t 0 τ ε 0 | ẑε (τ -εa)| ϱ(a) d a d τ + t 0 | hε (τ)| d τ
then, we change the order of integration and the domain of integration becomes D ′ := {(a, τ) ∈ (0, t /ε) × (εa, t )}. We use the change of variable t = τεa in order to write :

t 0 τ ε 0 | ẑε (τ -εa)| ϱ(a) d a d τ = t ε 0 t εa | ẑε (τ -εa)| d τ ϱ(a) d a = t ε 0 t -εa 0 | ẑε ( t )| d t ϱ(a) d a = t ε 0 Ẑε (t -εa)ϱ(a) d a
So that finally Ẑε solves :

Ẑε (t ) ≤ 1 µ 0 t ε 0 Ẑε (t -εa) ϱ(a) d a + t 0 hε (τ) d τ = t 0 Ẑε ( ã)K ε (t -ã) d ã + t 0 hε (τ) d τ CHAPTER 2.
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where K ε ( ã) := 1 εµ 0 ϱ ã ε is the kernel of the integral operator. We use a comparison principle [GLS09, the Generalised Gronwall Lemma 8.2 p. 257] and construct a majorizing function U ε of the form U ε (t ) = ε(K 0 + K 1 t ) where K 0 and K 1 are suitably chosen, such that U ε ≥ | Ẑε | and U ε ∼ ε. The following two lemmas are required in order to apply this comparison principle :

Lemma 13. The Volterra kernel K ε satisfies :

∥K ε ∥ L ∞ (0,T ) := ess sup t ∈(0,T ) t 0 |K ε ( ã)| d ã < 1.
Proof. To prove this result, we need to show that

(2.45) 0 ≤ t 0 |K ε ( ã)| d ã = t ε 0 ϱ(a) d a +∞ 0 ϱ(a) d a < 1.
The kernel ϱ solves (2.42), thus it can be explicitly computed as

ϱ(a) = β 1 + βI exp - a 0 ζ(s)d s
one has the lower bound :

ϱ(a) ≥ β 1 + βI exp (-ζ max a) > 0, ∀a ∈ R + .
This in turn shows that

∞ t ε ϱ(a)d a > 0,
which is equivalent to the claim. ∂ a q(a, t ) + ζ(a + t /ϵ).q(a, t ) = 0, q(0, t ) = 1.

■

This problem admits an explicit solution of the form

(2.48) q(a, t ) = exp - a 0 ζ( ā + t /ϵ)d ā = exp - a+t /ϵ t /ϵ ζ( â)d â .
Then, we shall rewrite (2.46) as : 

A 1 [ϱ](t ) := +∞ 0 aq(a, t )d a +∞ 0 q(a,

■

Proposition 3. Under Assumptions 3, for 0 < t < T one has the estimates :

Hε (t ) := t 0 hε (τ) d τ ≤ ε 2 C 1
where C 1 depends on µ 2 ,µ 1 ,∥∂ t z 0 ∥ BV((0,T )) and on z p Lip(R -) but not on ε.

Proof. Recalling the definition of hε in (2.43), we split t 0 hε (τ) d τ into three parts. First, we define

I 1 := ε µ 0 t 0 τ/ε 0 z 0 (τ) -z 0 (τ -εa) ε -a∂ t z 0 (τ) ϱ(a) d a d τ
Since ∂ t z 0 ∈ BV((0, T )), then I 1 can be written in the form

I 1 = 1 µ 0 t 0 τ/ε 0 τ τ-εa ∂ t z 0 ( t ) -∂ t z 0 (τ) d t ϱ(a) d a d τ CHAPTER 2.
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by switching the integration order between τ and a, and using the change of variable t = τ + h, we get that

I 1 ≤ 1 µ 0 t /ε 0 t εa τ τ-εa ∂ t z 0 ( t ) -∂ t z 0 (τ) d t d τϱ(a) d a ≤ 1 µ 0 t /ε 0 t εa 0 -εa |∂ t z 0 (τ + h) -∂ t z 0 (τ)| d h d τ ϱ(a) d a ≤ 1 µ 0 t /ε 0 0 -εa t εa |∂ t z 0 (τ + h) -∂ t z 0 (τ)| d τ d h ϱ(a) d a (2.49)
and thus applying Lemma 3, one has the estimate of the inner integral of the latter righthand side :

t εa |∂ t z 0 (τ + h) -∂ t z 0 (τ)| d τ ≤ |h|∥∂ t z 0 ∥ BV , ∀h ∈ (-εa, 0)
which implies that

I 1 ≤ ∥∂ t z 0 ∥ BV µ 0 t /ε 0 0 -εa |h| d h ϱ(a) d a ≤ ε 2 ∥∂ t z 0 ∥ BV 2µ 0 t /ε 0 a 2 ϱ(a) d a.
Next, we set:

I 2 = ε µ 0 t 0 +∞ τ/ε z 0 (τ) -z 0 (0) ε -a∂ t z 0 (τ) ϱ(a) d a d τ ≤ 1 µ 0 t 0 +∞ τ/ε τ 0 ∂ t z 0 ( t )d t -τ∂ t z 0 (τ) ϱ(a) d a d τ + 1 µ 0 t 0 +∞ τ/ε |τ -εa| |∂ t z 0 (τ)| ϱ(a) d a d τ =: I 2,1 + I 2,2
As in the estimates of I 1 , first, one switches the order of integration and then one integrates on (2.50)

D := {(a, τ) ∈ (0, t /ε) × (0, εa)} ∪ {(a, τ) ∈ (t /ε, +∞) × (0, t )},
and one makes the change of variable t = τ + h in order to obtain

I 2,1 = 1 µ 0 t /ε 0 εa 0 0 -τ |∂ t z 0 (τ + h) -∂ t z 0 (τ)| d h d τϱ(a) d a + 1 µ 0 +∞ t /ε t 0 0 -τ |∂ t z 0 (τ + h) -∂ t z 0 (τ)| d h d τϱ(a) d a = 1 µ 0 t /ε 0 0 -εa εa -h |∂ t z 0 (τ + h) -∂ t z 0 (τ)| d τ d hϱ(a) d a + 1 µ 0 +∞ t /ε 0 -t t -h |∂ t z 0 (τ + h) -∂ t z 0 (τ)| d τ d hϱ(a) d a
2.6. A COMPARISON PRINCIPLE also, by using Lemma 4, we get that

I 2,1 ≤ ∥∂ t z 0 ∥ BV µ 0 t /ε 0 0 -εa |h| d hϱ(a) d a + ∥∂ t z 0 ∥ BV µ 0 +∞ t /ε 0 -t |h| d hϱ(a) d a ≤ ε 2 ∥∂ t z 0 ∥ BV 2µ 0 t /ε 0 a 2 ϱ(a) d a + ∥∂ t z 0 ∥ BV 2µ 0 +∞ t /ε t 2 ϱ(a) d a ≤ ε 2 ∥∂ t z 0 ∥ BV 2µ 0 t /ε 0 a 2 ϱ(a) d a + ε 2 ∥∂ t z 0 ∥ BV 2µ 0 +∞ t /ε a 2 ϱ(a)d a ≤ ε 2 µ 2 ∥∂ t z 0 ∥ BV µ 0 .
The second term I 2,2 is estimated in the same way as I 2,1 . We have

I 2,2 = 1 µ 0 t 0 +∞ τ/ε |τ -εa| |∂ t z 0 (τ)| ϱ(a) d a d τ = 1 µ 0 t /ε 0 εa 0 + +∞ t /ε t 0 |τ -εa| |∂ t z 0 (τ)| d τϱ(a) d a ≤ ε 2 ∥∂ t z 0 ∥ ∞ 2µ 0 t /ε 0 a 2 ϱ(a) d a + ε 2 ∥∂ t z 0 ∥ ∞ 2µ 0 +∞ t /ε a 2 ϱ(a) d a ≤ ε 2 µ 2 ∥∂ t z 0 ∥ ∞ µ 0 .
Finally, by similar computations, one has

1 µ 0 t 0 +∞ τ/ε z p (τ -εa) -z p (0) ϱ(a) d a d τ ≤ ε 2 z p Lip(R -) µ 2 µ 0

■

Theorem 27. Under Assumptions 3, z ε tends to z 0 , the solution of (2.3), strongly in L 1 (0, T ) as ε goes to zero. Moreover, there exists a generic constant C depending only on the data of the problem but not on ε, such that :

∥z ε -z 0 ∥ L 1 (0,T ) ≤ εC .
Proof. We have proved in Lemma 13 that the Volterra kernel K ε is non-positive and bounded (with a bound strictly less than one) in the sense of [ 

U ε (t ) - t 0 U ε ( ã)K ε ( ã) d ã ≥ h1,ε + h2,ε
We split the integral operator applied to U ε in two parts

U ε (t )- t 0 U ε ( ã)K ε ( ã) d ã = U ε (t ) - 1 µ 0 t /ε 0 U ε (t -εa)ϱ(a) d a = 1 µ 0 +∞ 0 (U ε (t ) -U ε (t -εa)) ϱ(a) d a :=H 1,ε + 1 µ 0 +∞ t /ε U ε (t -εa)ϱ(a) d a :=H 2,ε
and we shall specify U ε such that H 1,ε ≥ Hε (t ) and H 2,ε ≥ 0. To this end we set

(2.52) U ε (t ) := ε(K 0 + K 1 t ), ∀t ∈ R
with constants K 0 and K 1 to be specified. One has obviously that

H 1,ε (t ) = ε 2 K 1 µ 1 µ 0 ≥ ε 2 C 1 ≥ Hε (t )
a.e. on R + , provided that K 1 is chosen as

K 1 > µ 0 µ 1 C 1 .
Using (2.52) and the change of variable ã = -t /ε + a, we obtain that

H 2,ε = +∞ 0 (K 0 -εK 1 ã) ϱ( ã + t /ε) d ã = K 0 -εK 1 A ε [ϱ](t ) R + ϱ t ε + a d a
We are in the hypotheses of Lemma 14 : A ε [ϱ](t ), the expectation of a given density ϱ with respect to the tail a > t /ε is bounded by a positive constant A max

A ε [ϱ](t ) := R + aϱ( t ε + a) d a R + ϱ( t ε + a) d a ≤ A max .
Therefore it suffices to chose K 0 > εK 1 A max in order to obtain that H 2,ε ≥ 0. These computations show that U ε is a super-solution. Then the comparison principle implies that, for

all 0 ≤ t ≤ T , 0 ≤ Ẑε (t ) = t 0 |z ε (s) -z 0 (s)| d s ≤ U ε (t ) = ε(K 0 + K 1 t ) → 0.as.ε → 0, hence Ẑε → 0 in C ([0, T ]), which ends the proof since ∥z ε -z 0 ∥ L 1 (0,T ) ≤ Ẑε C ([0,T ]) .
■

A simple example

We construct by hand solutions of problems (2.1) and (2.3) when the load f is explicitly defined as

(2.53) f (t ) :=            1/2 if 0 < t ≤ 1 3 , 1 if 1 3 < t ≤ 2 3 , 3/2 if 2 3 < t < 1,
and the kernel ϱ is a simple exponential (see more precise statements below). So defined f is of course of bounded variation on (0, 1). The solution z ε solving (2.1) and its limit z 0 show different regularities (see Figure 2.1) : the adhesive approximation is rougher than the limit solution. This is an interesting feature of our approach. Assumptions 4. i) the load f is defined in (2.53),

ii) the on and off rates are constants defined as :

ζ ε = ζ 0 = ζ, β ε = β 0 = β.
iii) the initial condition is at equilibrium : 

ρ I ,ε = ρ 0 = βζ β + ζ e -ζa .
z ε (t ) = t 0 f µ 1,0 d s + ε f (t ) µ 0,0 + 1 µ 0,0 +∞ 0 z p (-εa)ρ 0 d a and hence, z ε (t ) -z 0 (t ) = ε f (t ) µ 0,0 + 0 -∞ z ′ p (s) exp ζs ε d s with z 0 (t ) = z p (0) + t 0 f (s)d s/µ 1,0 is a continuous function in [0, 1].
Note that the last term is an ε order term according to Assumption 1, indeed it holds that 0

-∞ z ′ p (s) exp ζs ε d s ≤ ε ζ ∥z p ∥ W 1,∞ (R -) .
Proof. The specific choice of data and kernel allows to rephrase (2.1) as

z ε (t ) - ζ ε t 0 z ε (s) exp - ζ(t -s) ε d s = ε f (t ) µ 0,0 + ζ ε 0 -∞ z p (s) exp - ζ(t -s) ε d s.
Next, setting

q ε (t ) = z ε (t ) exp ζt ε , t ≥ 0.
Then we can rewrite (1) for all t ≥ 0 as (2.54)

q ε (t ) - ζ ε t 0 q ε (s)d s = ε exp ζt ε f (t ) µ 0,0 + ζ ε 0 -∞ z p (s) exp ζs ε d s.
By differentiating (2.54) in time and using (2.6), we prove that q ε solve the equation (2.55)

           qε (t ) - ζ ε q ε (t ) = exp ζt ε µ 0,0 ζ f (t ) + ε f ′ (t ) , t > 0, q ε (0 + ) = ε f (0)/µ 0,0 + ζ ε 0 -∞ z p (s) exp ζs ε d s
and therefore q ε is explicitly given by

q ε (t ) = exp ζt ε   ε f (t ) µ 0,0 + ζ ε 0 -∞ z p (s) exp ζs ε d s + t 0 f (s) µ 1,0 d s  
which gives the formula of z ε . Moreover, it is clear that z ε is of bounded variation since f is it and z 0 is an absolutely continuous function.

■

Introduction

This work is a continuation of a series of works related to the mathematical study of adhesion forces in the context of cell motility (see [START_REF] Allouch | Friction mediated by transient elastic linkages: extension to loads of bounded variation[END_REF], [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], [START_REF] Milišić | Tear-off versus global existence for a structured model of adhesion mediated by transient elastic linkages[END_REF] and 

     1 ε R + (X ε (t ) -X ε (t -εa)) ρ ε (a, t )d a = f (t ), t > 0, X ε (t ) = X p (t ), t ≤ 0,
where f is an external force and the left-hand side represents a continuum of elastic forces with respect to past positions. The density of linkages ρ ε is a solution of an age-structured model

(3.2)              (ε∂ t + ∂ a + ζ(a, t )) ρ ε (a, t ) = 0, (a, t ) ∈ R + × (0, T ), ρ ε (0, t ) = β(t ) 1 - R + ρ ε (a, t )d a , (a, t ) ∈ {0} × (0, T ), ρ ε (a, 0) = ρ I (a), (a, t ) ∈ R + × {0}.
In the latter system, β ∈ R + (resp. ζ ∈ R + ) is the kinetic on-rate (resp. off-rate) function and the speed of linkage turnover is represented by the small parameter known as ε > 0

([MO11], [MO15]
, and [START_REF] Milišić | Tear-off versus global existence for a structured model of adhesion mediated by transient elastic linkages[END_REF]). Under the assumption that the death rate ζ admits a strictly positive lower bound ζ min , in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], the authors studied rigorously the asymptotic limit of the systems (3.1) and (3.2) when ε goes to zero. They obtained the convergence results

∥X ε -X 0 ∥ C 0 ([0,T ]) + ∥ρ ε -ρ 0 ∥ C 0 ((0,T ];L 1 (R + )) → 0,
where the limit X 0 solves

(3.3)    µ 1,0 (t )X ′ 0 = f (t ), t > 0, X 0 (t = 0) = X p (0), t = 0, 3.1. INTRODUCTION
where µ 1,0 (t ) denotes the first moment of ρ 0 , namely µ 1,0 (t ) := ∞ 0 aρ 0 (a, t )d a and ρ 0 satisfies :

(3.4)

     ∂ a ρ 0 + ζ(a, t )ρ 0 = 0, t > 0, a > 0, ρ 0 (a = 0, t ) = β(t ) 1 - ∞ 0 ρ 0 (t , ã) d ã , t > 0.
We underline that, to some extent, the ε scaling can be associated with the long time be- 1) increase the order of approximation with respect to ε,

2) weaken hypotheses on ζ allowing ρ ε and ρ 0 to have fat tails with respect to the age variable.

More precisely, we aim at constructing the N t h -order asymptotic approximation of the solution X ε satisfying (3.1) as

(3.6) Xε,N = X out er (t ) + X i nner (τ) + O(ε N ),
where τ = t /ε is the stretched variable. The construction of this asymptotic development is done in two steps. First, we construct X out er containing a series of macroscopic correctors in power of ε. These correctors are valid away from t = 0. Next, we construct X i nner containing microscopic correctors that correct the fast variation near the boundary layer at t = 0.

We start by studying problem (3.1) with a given non-negative density of linkages ϱ such that

µ N +1 := +∞ 0 (1 + a) N +1 ϱ(a)d a < +∞
and such that it is not compactly supported (cf. Hypotheses 5 for a more precise definition).

In this case, we construct an expansion (3.6) for any fixed integer N . The macroscopic part X out er is formed by correctors that solve first order differential equations (see (3.16)). The EXPANSIONS AND FAT TAILS initial condition of these correctors is then determined by matching inner and outer expansion. An error estimate was obtained, leading to

X ε -Xε,N C ([0,T ]) ≲ ε N .
Finally, we consider the general case where the density also depends on ε and solves (3.2). We are mainly concerned with the asymptotic behavior of X ε as the perturbation parameter ε approaches zero. First, we study the asymptotic behavior of ρ ε when ε goes to 0.

The novelty here, compared to [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], is that we weakened the assumptions on the death rate ζ. Namely we assume that there exists a non-increasing function m 

∈ L 1 (R + ; (1 + a) 3 ) such that (3.7) ζ(a, t ) ≥ - m ′ (a) m(
∥ρ ε (•, t ) -ρ 0 (•, t )∥ L 1 (R + ) ≤ H [ρ I (•) -ρ 0 (•, 0)] exp (-ζ min t /ε) + o ε (1).
Showing an exponential decay in time and age of the initial layer near to t = 0 [START_REF] Milisic | Initial layer analysis for a linkage density in cell adhesion mechanisms[END_REF]. In our case, if ζ satisfies the condition (3.7), we cannot use Gronwall's Lemma to establish the convergence when ε tends to 0. For this sake, we enrich the asymptotic expansion of ρ ε with supplementary terms. We introduce ρ 1 , the first order macroscopic solution of :

(3.8)      (∂ a + ζ(a, t )) ρ 1 (a, t ) = -∂ t ρ 0 (a, t ), a > 0, t > 0, ρ 1 (0, t ) = -β(t ) R + ρ 1 (a, t )d a, a = 0, t > 0,
and r 0 the initial layer approximation solving :

(3.9)

           (∂ t + ∂ a + ζ(a, 0)) r 0 (a, t ) = 0, a > 0, t > 0, r 0 (0, t ) = -β(0) R + r 0 (a, t )d a, a = 0, t > 0, r 0 (a, 0) = ρ I (a) -ρ 0 (a, 0), a > 0, t = 0.
This enhances the earlier error estimates. Indeed, for any t > 0, one has

H [ρ ε (•, t ) -ρ 0 (•, t ) -ερ 1 (•, t ) -r 0 (•, t /ε)] ≲ o ε (1),
leading to :

∥ρ ε -ρ 0 ∥ L 1 (R + ×(0,T ),(1+a))) ≤ o ε (1).

NOTATIONS

This result is in turn used to establish the strong convergence of X ε towards X 0 solving (3.3) extending the results from [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF] to this new framework.

The chapter's outline is structured as follows : in section 3.2, we list some assumptions and notations which will be used throughout this paper. In section 3.3, we analyze the case where the kernel in (3.1) is fixed and depends on the age variable. Moreover, we construct the asymptotic expansion of X ε and show error estimates. Finally, in section 3.4, we analyze the asymptotic behavior of ρ ε and X ε solutions of (3.2) and (3.1) respectively when ε tends to 0. Then we extend results from [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF] to our setting and conclude.

Notations

Before presenting our main result, we list some notations and assumptions that will be used in this paper. In the rest of the paper, we'll use some notations for the functional spaces, for instance

L p t L q a := L p ((0, T ); L q (R + )) for any real (p, q) ∈ [1, ∞] 2 , V T := L ∞ (R + × (0, T ), (1 + a) -1
), and The space Lip(R + ) is the set of Lipschitz functions on R + . Hereafter, in the following sections, capital letters (X i ) i ∈N denote the macroscopic correctors defined on [0, T ], and the microscopic correctors (x i , j ) (i , j )∈N 2 or (w k ) k∈N defined on R are then renamed with a tilde when rescaled with respect to ε : xi,j (t ) = x i , j (t /ε).

The linkages' density is constant in time

In this section, we begin to study the simple model of the problem (3.1) with a kernel ρ constant in time. We assume that the data of the problem satisfies the following assumptions :

Assumptions 5. Assume that : i) the source term is such that f ∈ C N (R + ). ii) the past condition X p ∈ C N +1 (R + ).
iii) for all a ∈ R + , there exists M ⊂ (a, ∞), M compact and |M | > 0 such that ϱ( ã) > 0 for almost every ã ∈ M . iv) moreover

µ N +1 := R + (1 + a) N +1 ϱ(a)d a < ∞.

Construction of the expansion

First, we start with the construction of the terms forming the N t h -order approximation of X ε solution of (3.1) for a fixed kernel as

(3.10) Xε,N := N -1 i =0 ε i X i (t ) outer expansion + Y N (t ) + Z N (t ) + W N (t ) inner expansion
, where these terms are set later on. Define the operator

L ε : C ([0, T ]) → C ([0, T ]) that maps X to L ε [X ](t ) := 1 ε µ 0 X (t ) - t ε 0 X (t -εa)ϱ(a)d a .
Then problem (3.1) can be rephrased as :

(3.11) L ε [X ε ](t ) = f (t ) + 1 ε ∞ t ε X p (t -εa)ϱ(a)d a, ∀t > 0
and we aim at constructing Xε,N such that it satisfies

(3.12) L ε [ Xε,N ] = f (t ) + 1 ε ∞ t ε X p (t -εa)ϱ(a)d a + O(ε N ).
Proposition 4. Assume that Hypotheses 5 hold, let the sequence of functions (X i ) i ∈{0,...,N -1} be given and for all i ∈ {0, . . . , N -1} assume that X i ∈ W N +1,∞ ([0, T ]), then one has the expansion :

L ε [X i ](t ) = N -i k=1 ε k-1 (-1) k+1 k! X (k) i (t ) µ k -Ξ 0,k (t ) + 1 ε ∞ t ε ϱ(a)d a X i (t ) + ε N -i R N +1-i i , where                  µ k := R + a k ϱ(a)d a, Ξ 0,k (t ) := ∞ t ε a k ϱ(a)d a =: ξ 0,k t ε , R N +1-i i ≤ 1 (N + 1 -i )! X (N +1-i ) i ∞ R + a N +1-i ϱ(a)d a,
Proof. One writes :

L ε [X i ](t ) = 1 ε t ε 0 (X i (t ) -X i (t -εa))ϱ(a)d a + 1 ε ∞ t ε ϱ(a)d a X i (t )
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then using the Taylor expansion :

X i (t -εa) = N -i k=0 ε k a k k! (-1) k X (k) i (t ) + (-εa) N +1-i (N -i )! 1 0 X (N +1-i ) i (t -sεa)(1 -s) N -i d s
so that the first term above becomes :

1 ε t ε 0 (X i (t ) -X i (t -εa)) ϱ(a)d a = N -i k=1 t ε 0 ε k-1 a k k! ϱ(a)d a(-1) k+1 X (k) i (t ) + ε N -i R N +1-i i = N -i k=1 (-1) k+1 k! X (k) i (t ) ε k-1 µ k - 1 ε ∞ t ε (εa) k ϱ(a)d a + ε N -i R N +1-i
i which provides the result.

■ Proposition 5. [Outer expansions]

Under the same hypothesis as above, the zeroth-order macroscopic limit is given by

(3.13) µ 1 X (1) 0 = f ,
and at any order ℓ ∈ {2, . . . , N }, we have :

(3.14) µ 1 X ′ ℓ-1 = ℓ k=2 (-1) k µ k k! X (k) ℓ-k .
Proof. The result proved in Proposition 4 leads to :

(3.15)

L ε N -1 i =0 ε i X i = N -1 i =0 ε i N -i k=1 ε k-1 (-1) k+1 k! X (k) i (t ) µ k -Ξ 0,k (t ) + N -1 i =0 ε i -1 ∞ t ε ϱ(a)d a X i (t ) + S N ,0 ,
where we set S N ,0 :

= ε N N -1 i =0 R N +1-i i and S N ,0 ≤ max i ∈{0,...,N -1} ∥X i ∥ W N +1,∞ (0,T ) µ N +1-i . Con-
sidering the first sum gives :

N -1 i =0 ε i N -i k=1 ε k-1 (-1) k+1 k! X (k) i (t ) µ k -Ξ 0,k (t ) = N k=1 N ℓ=k ε ℓ-1 (-1) k+1 k! X (k) ℓ-k (t ) µ k -Ξ 0,k (t ) = N ℓ=1 ε ℓ-1 ℓ k=1 (-1) k+1 k! X (k) ℓ-k (t ) µ k -Ξ 0,k (t ) 
CHAPTER 3. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : ASYMPTOTIC EXPANSIONS AND FAT TAILS Separating powers of ε and considering that terms containing functions Ξ 0,k belong to the initial layer (these depend only on the microscopic variable t /ε) provides :

(3.16)

ℓ k=1 µ k X (k) ℓ-k (t ) k! (-1) k+1 =    0 if ℓ ̸ = 1, f otherwise,
and by relating the lowest derivative with the highest index to the rest of the correctors, we establish macroscopic nested ODEs (3.13) and (3.14).

■

Remark 2. The initial conditions of the macroscopic correctors X i are to be defined later (cf Theorem 29).

Proposition 6. [Inner expansion] It is threefold.

• The first part accounts for terms containing Ξ 0,k in the first sum of (3.15) :

(3.17) Y N (t ) := N m=1 ε m m q=1 q k=1 (-1) k+1 k!(m -q)! X (k+m-q) q-k (0) xm-q,k (t ) 
where x j ,k := x j ,k (t /ε) and the microscopic correctors solve :

(3.18) L 1 [x j ,k ](t ) = ξ j ,k (t ) := t j ∞ t a k ϱ(a)d a,
and L 1 is the operator L ε taken for ε set to 1.

• The second part corrects the second sum in (3.15) and reads :

(3.19) Z N (t ) := - N m=1 ε m m-1 q=0 1 (m -q)! X (m-q) q (0) xm-q,0 - N -1 i =0 ε i X i (0) x0,0 .
• The last part concerns the remainders related to the past source term in (3.12)

W N (t ) := N i =0 ε i i ! X (i ) p (0) wi (t ),
where wi (t ) := w i (t /ε) and (w ℓ ) ℓ solve for ℓ ∈ N,

(3.20)      R + (w ℓ (t ) -w ℓ (t -a))ϱ(a)d a = 0, t > 0, w ℓ (t ) = t ℓ , t ≤ 0.
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Proof. First, we begin by constructing the first part of the initial layer Y N . We consider the second term in (3.15) and we use Taylor's expansion :

X (k) ℓ-k (t ) = N -k j =0 X (k+ j ) ℓ-k (0) t j j ! + ε N R N k,l ,
where

R N k,l := ε -k+1 (N -k)! t ε N -k+1 1 0 (1 -s) N -k X (N -k+1) ℓ-k (st )d s, which implies that (3.21) N ℓ=1 ε ℓ-1 ℓ k=1 (-1) k k! X (k) ℓ-k (t )Ξ 0,k (t ) = N ℓ=1 ε ℓ-1 ℓ k=1 (-1) k k! Ξ 0,k (t ) N -k j =0 X (k+ j ) ℓ-k (0) t j j ! + R N k,l = N ℓ=1 ℓ k=1 N -k j =0 (-1) k k! j ! ε ℓ+ j -1 X (k+ j ) ℓ-k (0) t ε j Ξ 0,k (t ) + S N ,1 =: I + S N ,1
where

(3.22) S N ,1 := ℓ,k ε ℓ+N -k (-1) k k! Ξ 0,k (t )R N k,l ,
that can be estimated as :

(3.23) S N ,1 ≤ C ε N µ N +1
The first triple sum can be decomposed thanks to Proposition 8 as

I := N m=1 ε m-1 m q=1 q k=1 (-1) k k!(m -q)! X (k+m-q) q-k (0)Ξ m-q,k (t ) + 2N -1 m=N +1 ε m-1 N q=m+1-N q+N -m k=1 (-1) k k!(m -q)! X (k+m-q) q-k (0)Ξ m-q,k (t ) =: I 1 + O(ε N )
In order to compensate I 1 , we define microscopic correctors x j ,k as (3.18) and set Y N as in (3.17). EXPANSIONS AND FAT TAILS Now, we need to correct the third term in (3.15), which we do with the same technique as above :

N -1 i =0 ε i -1 X i (t ) ∞ t ε ϱ(a)d a = N -1 i =0 ε i -1 N -i j =0 t j j ! X ( j ) i (0) + t N +1-i (N -i )! 1 0 X N +1-i i (st )(1 -s) N -i d s ∞ t ε ϱ(a)d a = N -1 i =0 N -i j =0 ε i + j -1 j ! X ( j ) i (0) t j ε j Ξ 0,0 (t ) + S N ,2 = N -1 i =0 N -i j =0 ε i + j -1 j ! Ξ j ,0 (t )X ( j ) i (0) + S N ,2 = N m=1 ε m-1 m-1 q=0 1 (m -q)! Ξ m-q,0 (t )X (m-q) q (0) + N -1 i =0 ε i -1 Ξ 0,0 (t )X i (0) + S N ,2
where Ξ j ,0 (t ) := r 1 ε j , 0(t /ε) and

(3.24) S N ,2 (t ) := N -1 i =0 ε i -1 t N +1-i N -i ! 1 0 X N +1-i i (st )(1 -s) N -i d sΞ 0,0 (t ),
and one has :

(3.25) S N ,2 ≤ C ε N R + (1 + a) N +1 ϱ(a)d a sup i ∈{0,...,N } ∥X i ∥ W N +1-i ,∞ (0,t ) . 
It suffices then to add the correction Z N defined as in (3.19). Lastly, it remains to correct the terms of the past. To find them, we need to develop X p (t -εa) around 0, which is stated as :

X p (t -εa) = N i =0 ε i X (i ) p (0) (t /ε -a) i i ! + ε N +1 (t /ε -a) N +1 N ! 1 0 X (N +1) p (s(t -εa))(1 -s) N d s,
and it involves

+∞ t ε X p (t -εa)ϱ(a)d a = N i =0 ε i X (i ) p (0) +∞ t ε (t /ε -a) i i ! ϱ(a)d a + S N ,3 , where (3.26) S N ,3 := ε N +1 +∞ t ε (t /ε -a) N +1 N ! 1 0 X (N +1) p (s(t -εa))(1 -s) N d sϱ(a)d a,

and

(3.27)

S N ,3 ≤ ε N 1 N ! ∥X (N ) p ∥ ∞ +∞ t ε t ε -a N ϱ(a)d a ≤ ε N 1 N ! ∥X (N ) p ∥ ∞ N +1 k=0 C N +1 k +∞ t ε t ε k (-a) N -k+1 ϱ(a)d a ≤ cε N +1 µ N +1

THE LINKAGES' DENSITY IS CONSTANT IN TIME

Which then yields that past-correctors should be added as :

W N (t ) := N i =0 ε i X (i ) p (0) i ! wi (t ),
where wi (t ) := w i (t /ε) and w i satisfies (3.20).

■

Lemma 16. If µ j +k+1 < ∞, then one has :

x j ,k (0) =    µ k µ 0 , if j = 0, 0, otherwise,
and x j ,k (t ) → µ j +1+k /(( j + 1)µ 1 ) when t → ∞.

Proof. The resolvent associated to (3.18), satisfies : 

r (t ) -(r ⋆ k)(t ) = k(t ),
r (t ) = µ 0 µ 1 + γ(t ),
where the function γ ∈ L 1 (R + ). Moreover, the resolvent being defined the solution x j ,k is computed explicitly and reads :

x j ,k = ξ j ,k + ξ j ,k ⋆ r = ξ j ,k + ξ j ,k ⋆ (µ 0 /µ 1 + γ) = ξ j ,k + ξ j ,k ⋆ γ + µ 0 µ 1 t 0 ξ j ,k (s)d s.
Thus the leading term in x j ,k when t grows large is the last integral. Indeed

µ 0 µ 1 R + t j ∞ t a k k(a)d ad t = 1 µ 1 R + a 0 t j d t a k ϱ(a)d a = 1 ( j + 1) µ j +k+1 µ 1
and one has :

x j ,k - 1 ( j + 1) µ j +k+1 µ 1 ∈ L 1 (R + ).
which we define as the formal expression x j ,k (t ) → µ j +1+k /(( j + 1)µ 1 ) when t → ∞.

■

Lemma 17. Under the same assumptions as in the previous Lemma, the microscopic functions w ℓ are discontinuous at t = 0, for all ℓ ≥ 0 :

w ℓ (0 + ) = (-1) ℓ µ ℓ µ 0 , w ℓ (0 -) = 0,
and and w ℓ (t ) → ((-1) ℓ µ ℓ+1 )/((ℓ + 1)µ 1 ) when t → ∞.

Proof. Using (3.20), we can easily show the discontinuity of the correctors w ℓ at t = 0. By the same arguments as proof of Lemma 16, one has that :

lim t →∞ w ℓ (t ) = 1 µ 1 R + ∞ t (t -a) ℓ ϱ(a)d ad t = 1 µ 1 R + a 0 (t -a) ℓ d t ϱ(a)d a = (-1) ℓ (ℓ + 1) µ ℓ+1 µ 1 ,
which ends the proof.

■

Lemma 18. Under the previous results, we obtain the error estimate

X ε (0 + ) -Xε,N (0 + ) ≲ ε N .
Proof. By definition, one has :

Xε,N (0 + ) = N -1 i =0 ε i X i (0) + Y N (0) + Z N (0) + W N (0 + ),
then one has

Y N (0) := 1 µ 0 N ℓ=1 ε ℓ ℓ k=1 (-1) k+1 k! X (k) ℓ-k (0)µ k = ε f (0) µ 0
where we used that x j ,k (0) = 0 for all j ̸ = 0 and (3.16). By definition,

Z N (0) = - N -1 i =0 ε i X i (0) x0,0 (0) = - N -1 i =0 ε i X i (0),
and compensates the first terms of the sum, then

W N (0) = 1 µ 0 N i =0 ε i X (i ) p (0) i ! (-1) i µ i .
Then one observes that

X ε (0) = ε f (0) µ 0 + R + X p (-εa) ϱ(a) µ 0 d a
and so the Taylor expansion of the last term ends the proof.
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Lemma 19. Under the Assumptions 5, K ε ( ã) := 1 εµ 0 ϱ ã ε satisfies :

∥K ε ∥ L ∞ (R + ) := ess sup t ∈R + t 0 |K ε ( ã, t )| d ã < 1.
Proof. We need to show that for every t ∈ R + ,

(3.30) 0 ≤ t 0 |K ε ( ã, t )| d ã = t ε 0 ϱ(a) d a R + ϱ(a) d a < 1.
which is equivalent to show that for every t ∈ R + , ■ Theorem 31. According to Assumptions 5, it holds that :

X ε -Xε,N C ([0,T ]) ≲ ε N .
where Xε,N is defined in (3.10) and X ε solving (3.29).

Proof. First, we consider the zero order approximation (i.e. N = 1). We denote X1 := X ε -Xε,1 , it solves :

L ε [ X1 ] = S 1 := 3 i =1 S 1,i ,
where |S 1 | ≤ εK 1 (see the estimations (3.23), (3.25) and (3.27) for N = 1). Now it remains to construct a super-solution U 1 such that

L ε X1 ≤ L ε [U 1 ]
, and X1 (0) ≤ U 1 (0), in order to obtain X1 (t ) ≤ U 1 (t ), for all t > 0. We set 

L ε [U 1 ] = c 1 Ξ 0,0 (t ) + εc 2 µ 1 + c 2 ∞ t ε (t -εa)ϱ(a)d a -εc 3 L ε [ w1 ] = c 1 Ξ 0,0 (t ) + εc 2 µ 1 + εc 2 ∞ t ε t ε -a ϱ(a)d a -εc 3 ∞ t ε t ε -a ϱ(a)d a ≥ εc 2 µ 1 .
The last inequality being true when c 1 ≥ 0 and c 2 = c 3 . Then, one tunes c 2 ≥ K 1 /µ 1 so that

L ε X1 ≤ |S 1 | ≤ εK 1 ≤ εµ 1 c 2 ≤ L ε [U 1 ],
and the constant c 1 is set such that X1 (0 b) the birth-rate β ∈ C (R + ) is such that

) ≤ εc 1 ≤ εc 1 + ε 2 c 3 µ 1 µ 0 = U 1 (0). More
0 < β min ≤ β(t ) ≤ β max . c) the initial condition ρ I ∈ BV (R + ) ∩ L ∞ (R + ) ∩ L 1 (R + , (1 + a) 3 ) satisfies ρ I ≤ cm(a), for almost every a ∈ R + .
Whereas X ε solves (3.1) and the data satisfy d) the source term f belongs to C 2 (R + ).

The linkages' density problem ρ ε,t ,a

Now we assume that ρ ε,t ,a solves the ε, t , a-dependent problem (3.2), and we introduce the first order asymptotic approximation of ρ ε,t ,a :

(3.31) ρε (a, t ) := ρ 0 (a, t ) -r0 (a, t ) -ερ 1 (a, t )

where ρ 0 is the zeroth order macroscopic limits given by (3.4), ρ 1 is the first order macroscopic limits given by (3.8) and r0 := r 0 (a, t /ε) where the initial layer r 0 solve (3.9). CHAPTER 3. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : ASYMPTOTIC EXPANSIONS AND FAT TAILS

The outer expansion of ρ ε

Proposition 7. Let Assumptions 6 hold, then there exists generic constants c j > 0 and c j ,1 > 0, such that ρ 0 and ρ 1 the solution of (3.4) and (3.8) respectively satisfies ρ j (a, t ) ≤ c j (1 + a) 2 j m(a), where j ∈ {0, 1}.

In a generic way, for all j ∈ {0, 1} and

k ∈ N, if ζ ∈ W k,∞ (R + × R + ) then : ∂ k t k ρ j (a, t ) ≤ c j ,k (1 + a) 2 j +k m(a).
Proof. First, for j = 0, ρ 0 is explicitly given by

ρ 0 (a, t ) = ρ 0 (0, t ) exp - a 0 ζ( ã, t )d ã ≤ ρ 0 (0, t ) m(a) m(0) ≤ β max ζ max ζ max + β min m(a) m(0)
which gives c 0 . Similarly, ∂ t ρ 0 (a, t ) it is explicit and reads :

∂ t ρ 0 (a, t ) = ∂ t ρ 0 (0, t ) exp - a 0 ζ( ã, t )d ã - a 0 exp - a τ ζ( ã, t )d ã ∂ t ζ(τ, t )ρ 0 (τ, t )d τ,
where

∂ t ρ 0 (0, t ) = g (t ) 1 + β(t ) +∞ 0 exp - a τ ζ( ã, t )d ã d a and g (t ) = β ′ (t ) 1 -µ 0 (t ) +∞ 0 exp - a τ ζ( ã, t )d ã d a - +∞ 0 a 0 exp - a τ ζ( ã, t )d ã ∂ t ζ(τ, t )ρ 0 (τ, t )d τd a.

So that

∂ t ρ 0 (a, t ) ≤ ∂ t ρ 0 (0, t ) m(a) m(0) + m(a)∥ζ∥ W 1,∞ a 0 ρ 0 (τ, t ) m(τ) d τ ≤ (k 1 + k 2 a)m(a) ≤ c ′ (1 + a)m(a)
where

k 1 := C ζ max β max + ζ max , ∥β∥ W 1,∞ , ∥m∥ L 1 (R + ) , ∥ζ∥ W 1,∞ , k 2 = c 0 ∥ζ∥ W 1,∞ m(0)
and c 0,1 := max(k 1 , k 2 ). Now, for j = 1, ρ 1 can be given explicitly by

ρ 1 (a, t ) = ρ 1 (0, t ) exp - a 0 ζ( ã, t )d ã - a 0 exp - a τ ζ( ã, t )d ã ∂ t ρ 0 (τ, t )d τ,
where

ρ 1 (0, t ) = h(t ) 1 + β(t ) +∞ 0 exp - a τ ζ( ã, t )d ã d a such that |h(t )| = R + a 0 exp - a τ ζ( ã, t )d ã ∂ t ρ 0 (τ, t )d τd a ≤ R + a 0 m(a) m(τ) ∂ t ρ 0 (τ, t ) d τd a ≤ c 0,1 R + (1 + a) 2 m(a)d a,
and finally, we obtain that

ρ 1 (a, t ) ≤ k ′ 1 m(a) m(0) + a 0 c 0,1 (1 + τ)m(a)d τ ≤ max(k ′ 1 , c 0,1 )(1 + a) 2 m(a)
where

k ′ 1 := C ζ max β max + ζ max , R + (1 + a) 2 m(a)d a .
Similarly, we can prove that

∂ t ρ 1 ≤ c 1,1 (1 + a) 3 m(a),
and the generic way can be deduced by induction.

■

The initial layer

One considers the problem (3.9) and defines x(t ) := r 0 (0, t ), then by using Duhamel's principle this problem can be rewritten as

(3.32)                x + k ⋆ x = f , k(a) = β exp - a 0 ζ(τ, 0)d τ , f (t ) := -β ∞ t ρ I (a -t ) exp - a-t a ζ(τ, 0)d τ d a.
As a consequence of the Paley-Wiener theorem (for instance see Theorem 51 in appendix A) and the fact that k is a decreasing function of a, one gets :

Theorem 33. If k is a decreasing non-negative kernel such that k ∈ L 1 (R + ), then the resolvent associated to (3.9) satisfies : 

r + r ⋆ k = k and r ∈ L 1 (R + ).

■

Corollary 2. Let assumptions 6 hold. If moreover, r 0 (•, 0) ∈ L 1 (R + , (1+a) 2 ) and that there exists a constant c > 0 such that r 0 (a, 0) ≤ cm(a),

then x = r 0 (0, •) ∈ L 1 t (R + ; (1 + t ) 2 ) ∩ L ∞ (R + ) and
r 0 ∈ L 1 (R + × R + ; (1 + a)),
and there exists another constant c ′ > 0 such that r 0 (a, t ) ≤ c ′ m(a).

Proof. Using the Assumption6 on ζ and on the data, one has

f (t ) ≤ β ∞ t r 0 (a -t , 0) m(a) m(a -t ) d a ≤ c ∞ t m(a)d a
which is bounded since m ∈ L 1 (R + ) and it is also integrable because so is the first moment of m. Writing then that

x = f -r ⋆ f
and since L 1 is an algebra for the convolution, x ∈ L 1 (R + ). Because, f is bounded and r ∈ L 1 ,

x ∈ L ∞ (R + ) as well. Then in a similar way, using Duhamel's principle, one has : 

r 0 (a, t ) :=    r 0 (0, t -a) exp -a 0 ζ( ã, 0)d ã , if t > a, r 0 (a -t , 0) exp -a a-t ζ( ã, 0)d ã , otherwise , so that |r 0 (a, t )| ≤    ∥x∥ L ∞ m(a) m(0) , if t > a,
m(a) m(a -t ) d a = 1 m(0) (|r 0 (0, •)| ⋆ m) (t ) + R + |r 0 ( ã, 0)| m( ã) m( ã + t )d ã = 1 m(0) (|x| ⋆ m) (t ) + c ∞ t m(a)d a
Then using that L 1 (R + ) is an algebra for the convolution, and that m ∈ L 1 (R + , (1 + a)), one concludes that

R + R + r 0 (a, t )d ad t < ∥m∥ L 1 (R + ,(1+a)) m(0) ∥r 0 (0, •)∥ L 1 (R + ) + cm(0)
the same holds for the first moment as well.

Setting q 1 (a, t ) := t r 0 (a, t ) and y(t ) := q 1 (0, t ), one has 

y(t ) = -β(0)
f x ∈ L 1 (R + ). Assuming that R + (1 + a) 2 m(a)d a < ∞ shows the claim. As above, t 0 q 1 (a, t ) d a ≤ t 0 q 1 (0, t -a) + a |x(t -a)| exp - a 0 ζ(s, 0)d s d a ≤ q 1 (0, •) ⋆ exp - (•) 0 ζ(s, 0)d s + |x(0, •)| ⋆ (•) exp - (•) 0 ζ(s, 0)d s together with ∞ t q 1 (a, t ) d a ≤ t ∞ t r 0 (a -t , 0) exp - a a-t ζ(τ, 0)d τ d a ≤ t c ∞ t
m(a)d a EXPANSIONS AND FAT TAILS both left-hand sides are then L 1 t functions in time, provided that m ∈ L 1 a (R + , (1 + a) 2 ). For the next step, one works similarly and obtains that

R + R + t 2 r 0 (a, t )d ad t < ∞ since m is in L 1 a (R + , (1 + a) 3 ).

■

Corollary 3. Under the Assumptions 6, one has x(t ) := r 0 (0, t ) → 0 when t grows large and the first moment can be estimated as follows :

R + (1 + a) |r 0 (a, t )| d a ≤ o 1/t (1) + c ∞ t (1 + a)m(a)d a,
where o 1/t (1) means small when t grows large.

Proof. Using Lyapunov's functional (3.5), one has that

R + |r 0 (a, t )| d a ≤ ∞
which, thanks to the boundary condition, provides that x(t ) is bounded on R + . This shows using Duhamel's principle that r 0 ∈ L ∞ (R + ×R + ). Moreover, defining the discrete differences D h t r 0 (a, t )r 0 := r 0 (a, t + h) -r 0 (a, t ) h it solves the problem :

(3.33)

             (∂ t + ∂ a + ζ(a, 0)) D h t r 0 = 0, a > 0, t > 0, D h t r 0 (0, t ) = -β(0) R + D h t r 0 (a, t )d a, a = 0, t > 0, D h t r 0 (a, 0) = r 0 (a, h) -r 0 (a, 0) h , a > 0, t = 0.
If the initial data is regular enough (for instance r 0 (•, 0) ∈ BV (R + ) since ρ I is too), one has that

D h t x(t ) = D h t r 0 (0, t ) ≤ β(0) R + D h t r 0 (a, t ) d a ≤ β(0)H [D h t r 0 (a, t )]
similarly as [Mil18, Theorem 3.2], by using Gronwall's Lemma, we get that

H [D h t r 0 (•, t )] ≤ H [D h t r 0 (•, 0)],
it suffices then to prove that the initial term H [D h t r 0 (•, 0)] is bounded. Indeed, we have

H [D h t r 0 (a, 0)] = R + r 0 (a, h) -r 0 (a, 0) h d a + µ r 0 (h) -µ r 0 (0) h := I 1 + I 2 3.4. THE GENERAL CASE where µ r 0 (t ) = R + r 0 (a, t )d a.
For the first term, we split the integral in two parts

I 1 = h 0 r 0 (a, h) -r 0 (a, 0) h d a + +∞ h r 0 (a, h) -r 0 (a, 0) h d a = 1 h h 0 r 0 (0, h -a) exp - a 0 ζ( ã, 0)d ã -r 0 (a, 0) d a + 1 h +∞ h r 0 (a -h, 0) exp - a a-h ζ( ã, 0)d ã -r 0 (a, 0) d a = I 1,1 + I 1,2
where we used the method of characteristics. It easy to see that the first term

I 1,1 ≲ 1 h h 0 d a β(0) ∥r 0 ∥ L ∞ t L 1 a + ∥r 0 (a, 0)∥ L 1 (R + ) < ∞.
Now, for I 1,2 , one splits the integral adding and subtracting intermediate terms

I 1,2 ≤ 1 h +∞ h (r 0 (a -h, 0) -r 0 (a, 0)) exp - a a-h ζ( ã, 0)d ã d a + 1 h +∞ h r 0 (a, 0) exp - a a-h ζ( ã, 0)d ã -r 0 (a, 0) d a ≲ T V (r 0 (•, 0)) +C ∥r 0 (a, 0)∥ L 1 (R + )
where T V denotes total variation of r 0 (•, 0) [START_REF] Appell | Bounded variation and around[END_REF]. For the second term I 2 noting that

∂ t µ r 0 (t ) ≤ ζ max + β max ∥r 0 ∥ L ∞ t L 1 a , one obtains 
I 2 ≤ ζ max + β max ∥r 0 ∥ L ∞ t L 1 a ,
and finally, we obtain that H [D h t r 0 (a, t )] < ∞, for all t > 0, which shows that x ∈ Li p(R + ).

Since x ∈ L 1 (R + ) (see Corollary 2), this implies that lim t →+∞ x(t ) = 0. Now, we consider

J (t ) := R + (1 + a) |r 0 (a, t )| d a ≤ t 0 |x(t -a)| (1 + a)m(a)d a = t /2 0 + t t /2 |x(t -a)| (1 + a)m(a)d a =: J 1 + J 2 .
For every δ > 0 there exists η 1 such that t > η 1 ,implying that sup

s∈( t 2 ,t ) |x(s)| < δ 2 R + (1 + a)m(a)d a
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J 2 ≤ ∥x∥ L ∞ (R + ) t t /2
(1 + a)m(a)d a < δ/2, by Lebesgue's Theorem (since the integral of (1 + a)m(a) is finite). These arguments show that J (t ) vanishes when t grows large. On the other hand :

∞ t (1 + a) |r 0 (a, t )| d a ≤ c ∞ t (1 + a)m(a)d a,
which is an initial layer.

■

Error estimates for the linkage's density

We define the difference :

ρε (a, t ) := ρ ε (a, t ) -ρε (a, t )
where ρε is defined by (3.31). We obtain : Proof. We start by writing the system satisfied by the error ρε :

(3.35)            (ε∂ t + ∂ a + ζ(a, t )) ρε (a, t ) = -ε (ζ(a, t ) -ζ(a, 0)) r0 (a, t ) -ε 2 ∂ t ρ 1 ρε (0, t ) = -β(t ) R + ρε (a, t )d a -β(t ) -β(0) R + r0 (a, t )d a ρε (a, 0) = -ερ 1 (a, 0)
Then following the same steps as in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], one has that

ε d dt H [ ρε ](t ) + R + ζ(a, t ) ρε (a, t ) + ρε (a, t ) sgn R + ρε ( ã, t )d ã d a ≤ 2ε 2 R + ∂ t ρ 1 (a, t ) d a + 2 R + |ζ(a, t ) -ζ(a, 0)| |r 0 (a, t )| d a + β(t ) -2β(0) R + |r 0 (a, t )| d a

THE GENERAL CASE

which after integration in time provides :

H [ ρε ](t ) ≤H [ ρε ](0) + 2ε t 0 R + ∂ t ρ 1 (a, s) d ad s + 2 t ε 0 R + ζ(a, ε t ) -ζ(a, 0) r 0 (a, t ) d ad t + 2 t ε 0 β(ε t ) -2β(0) R + r 0 (a, t ) d ad t .
Now, here the crucial point is that, thanks to Lebesgue's Theorem, the last two terms of the right-hand side do tend to zero as ε goes to zero.

■

Corollary 4. Let Assumptions 6 hold, then one has

R + (1 + a) ρ ε (a, t ) -ρ 0 (a, t ) d a ≤ o ε (1) + ∞ t ε (1 + a)m(a)d a.
Proof. Considering the system solved by the difference e(a, t

) = ρ ε (a, t ) -ρ 0 (a, t ) (3.36)                      (ε∂ t + ∂ a + ζ(a, t ))e(a, t ) = ε∂ t ρ 0 (a, t ), a > 0, t > 0, e(0, t ) = -β(t ) R + ρ ε ( ã, t ) -ρ 0 ( ã, t ) -r0 ( ã, t ) d a -β(t ) R + r0 (a, t )d a, a = 0, t > 0, e(a, 0) = ρ I (a) -ρ 0 (a, 0), a > 0, t = 0.
It satisfies (3.36) in the sense of characteristics, namely 

(3.37) e(a, t ) =                  e (0, t -εa) exp(- 0 -a ζ(a + s, t + εs)d s)+ +ε 0 -a ∂ t ρ 0 (a + s, t + εs) exp(- 0 s ζ(a + τ, t + ετ)d τ)d s, a < t /ε, e (a -t /ε, 0) exp(- 0 t /ε ζ(a + s, t + εs)d s)+ +ε 0 -t /ε ∂ t ρ 0 (a + s, t + εs) exp(- 0 s ζ(a + τ, t + ετ)d τ)d s, a > t /ε.
I 1 (t ) ≤ t ε 0 (1 + a) |e(0, t -εa)| exp - 0 -a ζ(a + s, t + εs)d s d a + ε t ε 0 (1 + a) 0 -a ∂ t ρ 0 (a + s, t + εs) exp - 0 s ζ(a + τ, t + ετ)d τ d sd a.
Gathering previous results one has that :

|e(0, t -εa)| ≲ o ε (1) + ∞ t ε -a m(a)d a,
which thanks to Proposition 7 gives that

I 1 (t ) ≤o ε (1) t ε 0 (1 + a)m(a)d a + t ε 0 (1 + a)m(a) ∞ t ε -a m( ã)d ãd a + εc 0,1 R + (1 + a) 3 m(a)d a,
using similar argument as in the proof of Corollary 3, one shows that 

t ε 0 (1 + a)m(a)d a ∞ t ε -a m( ã)d ãd a ≤ o ε (1),
I 2 ≤ ∞ t ε (1 + a) e(a - t ε , 0) exp - 0 -t ε ζ(a + s, t + εs)d s d a + ε ∞ t ε (1 + a) 0 -t ε ∂ t ρ 0 (a + s, t + εs) exp - 0 s ζ(a + τ, t + ετ)d τ d sd a ≤ c ∞ t ε (1 + a)m(a)d a + ε R + (1 + a) 3 m(a)d a.
■

Error estimates for the position

Theorem 37.

Under the Assumptions 6, if ρ ε is a solution of (3.2), ρ 0 solves (3.4), X ε is a solution of (3.1) and X 0 solves (3.13) then

∥ρ ε -ρ 0 ∥ L 1 ((0,T );L 1 (R + ,(1+a))) ≤ o ε (1), ∥X ε -X 0 ∥ C ([0,T ]) ≤ o ε (1).

THE GENERAL CASE

Proof. Setting u ε (a, t ) := X ε (t ) -X ε (t -εa) where X ε (t ) = X p (t ) when t < 0, one has that it solves :

(3.39)

               (ε∂ t + ∂ a )u ε = ∂ t X ε = 1 µ 0,ε ε∂ t f + R + u ε (a, t )ζ(a, t )ρ ε (a, t )d a , a > 0, t > 0, u ε (0, t ) = 0, a = 0, t > 0, u ε (a, 0) = u I (a) := X ε (0) -X p (-εa) ε , a > 0, t = 0,
since problem (3.1) can be expressed in a integro-differential equation :

µ 0,ε (t )∂ t X ε = ε∂ t f + R + X ε (t ) -X ε (t -εa) ε ζ(a, t )ρ ε (a, t )d a.
Following [MO15, Theorem 6.1], one has that

R + |u ε (a, t )|ρ ε (a, t )d a ≤ t 0 ∂ t f (τ) d τ + f (0) + L X p µ 1,max = c 1
Moreover, one has also the bound :

∥∂ t X ε ∥ L ∞ (0,T ) ≤ 1 µ 0,min ε∥∂ t f ∥ L ∞ (0,T ) + ζ max c 1 =: c 2
which provides thanks to Ascoli-Arzella that there exists a converging sub-sequence X ε in

C ([0, T ]). Moreover, it t > εa |u ε (a, t )| ≤ 1 ε t t -εa |∂ t X ε (τ)| d τ ≤ c 2 a whereas if t < εa, by similar arguments, |u ε (a, t )| ≤ t ε c 2 + f (0) µ 0,min + L X p µ 1,max µ 0,min Thus one has : u ε (a, t )/(1 + a) ∈ L ∞ (R + × 0, T ) uniformly with respect to ε. These results provide that u ε weak-* converges in L ∞ (R + × (0, T ); (1 + a) -1 ) to u 0 weak solution of (3.40)      ∂ a u 0 = ∂ t X 0 = 1 µ 0,0 R + u 0 ζ(a, t )ρ 0 (a, t )d a u 0 (0, t ) = 0
which shows that u 0 (a, t ) = a X 0 (t ). Since (3.1) reads as

A ε := T 0 R + u ε (a, t )ρ ε (a, t )d aϕ(t )d t = T 0 f (t )ϕ(t )d t , ∀ϕ ∈ L 1 (0, T ),
and since

ρ ε → ρ 0 in L 1 (R + × (0, T ); (1 + a)), u ε ⋆ u 0 in L ∞ (R + × (0, T ); (1 + a) -1 )
CHAPTER 3. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : ASYMPTOTIC EXPANSIONS AND FAT TAILS one concludes that 

A ε → T 0 R + u 0 (a, t )ρ 0 (a, t )d aϕ(t )d t = T 0 µ 0,1 (t )X 0 (t )d t = T 0 f (t )ϕ(t )d t .
       1 ε ∞ 0 (z ε (t ) -z ε (t -εa)) ρ ε (a, t ) d a = f (t ), t ≥ 0, z ε (t ) = z p (t ), t < 0,
where the kernel ρ ε solves a non-local age-structured problem :

(4.2)            ε∂ t ρ ε + ∂ a ρ ε + ζ ε ρ ε = 0, t > 0, a > 0, ρ ε (a = 0, t ) = β ε (t ) 1 - ∞ 0 ρ ε (t , ã) d ã , t > 0, ρ ε (a, t = 0) = ρ I ,ε (a), a ≥ 0,
where

β ε ∈ R + (resp. ζ ε ∈ R + )
is the kinetic on-rate (resp. off-rate) function.

In this case, we have first demonstrated the existence and uniqueness of a solution of the system (4.1) as well as the convergence to a solution of a macroscopic friction law using methods similar to those used in [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF]. Additionally, we have presented a comparison 4.3. STUDY OF THE DELAYED HARMONIC PROBLEM stant kernel. Indeed, the main obstacle encountered in this direction is that microscopic problems correcting initial layers start being dependent on some macroscopic parameter.

Results of continuous dependence of the resolvent on this parameter are the key missing argument in order to extend asymptotic expansions to the general time dependent case.

Study of the delayed harmonic problem

In this thesis work, we are interested in the long time behavior of the solution z ε of (4.1) which describes the position of a single adhesion point at time t . Another problem we could be interested is the long time asymptotics of problem (4.1) after the addition of the position variable x belonging to a bounded and regular domain Ω ⊂ R N . The asymptotic when ε goes to zero was already considered in [MO17] using compactness results obtained on ∂ t z ε among others quantities. The weakly coupled system considered read :

(4.3)              1 ε ∞ 0 (z ε (x, t ) -z ε (x, t -εa)) ρ ε (x, a, t ) d a -∆ x z ε = f (x, t ), t ≥ 0, x ∈ Ω, z ε (x, t ) = 0, t ∈ R + , x ∈ ∂Ω, z ε (x, t ) = z p (x, t ), t < 0, x ∈ Ω,
where the density ρ ε (x, a, t ) is the solution of :

(4.4)

           ε∂ t ρ ε + ∂ a ρ ε + ζ ε ρ ε = 0, x ∈ Ω a > 0, t > 0, ρ ε (x, a = 0, t ) = β ε (x, t ) 1 - ∞ 0 ρ ε (x, ã, t ) d ã ,
x ∈ Ω, a = 0, t > 0, ρ ε (x, a, t = 0) = ρ I ,ε (x, a), a ≥ 0, x ∈ Ω, t = 0.

Following ideas of Chapter 3, it could be of interest to consider error estimates for z ε and be able to quantify errors with the asymptotic expansion. The main reason is that even when ρ is constant in time there is no concept of resolvent at hand. 

A.1.1 Entropy and convergence

To obtain the convergence of the solution ñ and show that it approaches the steady state N solution of (A. To prove this result, it is sufficient to apply the theorem 43 for H [x] = x and the Grönwall lemma (for more details, see [Per07; Gab14]).

A.2 Volterra integral equation with convolution kernel

In this section, we present some main results to study the linear Volterra equations of the type (A.7) x(t ) - then by using Theorem 49, we can prove an exact formula of the solution of (A.10) in terms of the resolvent r associated to the kernel k. In the case of (1.3), the existence of the unique solution requires that the kernel is of bounded continuous type and the source term is continuous (see [GLS09, Theorem 5.4]).

A P P E N D I X B

AUXILIARY PROOFS TO CHAPTER 2

In this appendix, we list some results related to functions with bounded variation. The domain Ω is an open set of R n .

B.1 Proof of Theorem 11

As in the proof of [Leo09, Theorem 14.9], the aim is to show that for every δ > 0, there exists

a sequence { f δ } δ in C ∞ (Ω) such that Ω | f -f δ | dt < δ and |D f δ |(Ω) < ∥D f ∥(Ω) + δ.
Since the total variation ∥D f ∥(Ω) is bounded, lim j →+∞ ∥D f ∥(Ω \ {t , dist(t , ∂Ω) > 1/ j , |t | < j }) = 0 then for fixed δ > 0, there exists a j 0 ∈ N such that for all j ≥ j 0 , ∥D f ∥(Ω \ {t , dist(t , ∂Ω) > 1/ j , |t | < j }) ≤ δ.

For i ∈ N, we define the subdomain Ω i of Ω by Ω i := {t ∈ Ω, dist(t , ∂Ω) > 1/ j 0 + i , |t | < j 0 + i } such that Ω i ⊂⊂ Ω i +1 and ∞ i =0 Ω i = Ω. Let W 0 = Ω 1 and W i = Ω i +1 \ Ωi-1 , where Ω -1 = Ω 0 := , and let {φ i } be a partition of the unity subordinate to the covering {W i } i ∈N Let ψ ∈ C ∞ c (Ω) be such that |ψ| ∞ ≤ 1. Since φ i f ∈ BV((0, T )) for every i ∈ N, we have by Lemma 14.10 in [START_REF] Leoni | A first course in Sobolev spaces[END_REF] that (B.7)

φ i ∈ C ∞ 0 (W i ), 0 ≤ φ i ≤ 1, ∞ i =0 φ i = 1.
Ω χ δ i * (φ i f ) ψ ′ dt = Ω φ i f (χ δ i * ψ) ′ dt
let ψ δ i = χ δ i * ψ, and using the fact that support of ψ is compact and that the partition of unity is locally finite, we have that

Ω f δ ψ ′ dt = +∞ i =1 Ω χ δ i * (φ i f ) ψ ′ dt = +∞ i =1 Ω φ i f ψ ′ δ i dt = +∞ i =1 Ω f ((φ i ψ δ i ) ′ -φ ′ i ψ δ i ) dt := I 1 + I 2
since supp(φ i ψ δ i ) ⊂ W i and |φ i ψ δ i | ∞ ≤ 1, it follows that

I 1 = Ω f (φ i ψ δ i ) ′ dt + +∞ i =2 Ω f (φ i ψ δ i ) ′ dt ≤ ∥D f ∥(Ω) + +∞ i =2 ∥D f ∥(W i ) ≤ ∥D f ∥(Ω) + 3∥D f ∥(Ω \ Ω 1 )
≤ ∥D f ∥(Ω) + 3δ since each t ∈ Ω belongs at most two of the sets U i . On the other hand, by Fubini's theorem we have

I 2 = - +∞ i =1 Ω χ δ i * ( f φ ′ i )ψ dt = - +∞ i =1 Ω χ δ i * ( f φ ′ i ) -f φ ′ i ψ dt
by using the fact that +∞ i =1 φ ′ i = 0. We now use (B.4) and the fact that |ψ| ∞ ≤ 1, to conclude that I 2 ≤ δ and then we obtain that Proof. We separate the case where i < N and the case where i = N . In the first case, one has, by the following computation, that Then since the indicatrix function is not zero when [n + m -1] 2 = 0, there exists q ∈ Z such that n + m -1 = 2q ⇔ n = 1 + 2qm so that the summation with respect to n can be exchanged with a summation over q. When n ∈ {3-m, m+1}, q ∈ {1, m}, and similarly when n ∈ {m-2N +3, 2N -m+1}, q ∈ {m+1-N , N }.

s := N -1 i =1 i k=1 N -k j =0 a i , j ,k = N -1 i =1 N -i -1 j =0 i k=1 a i , j ,k + N -1 i =1 N -1 j =N -i N -j k=1 a i , j ,k , because    0 ≤ j ≤ N -i -1, k ∈ {1
Moreover q = i and j = mq. Thus the previous sum becomes :

S = N m=1 m q=1 + 2N -1 m=N +1 N q=m+1-N
min(q,N -(m-q)) k=1 a q,m-q,k Since min(q, q + Nm) = q + min(0, Nm) = q as soon as m ≤ N this gives the first term.

If m ∈ {N + 1, . . . , 2N -1}, then Nm < -1 and min(q, q + Nm) = q + Nm which ends the proof.

■

Proposition 9. In the same way as above

S ′ := N -1 i =0 N -i j =1
a i , j = N m=1 m-1 q=0 a q,m-q

Proof. Again we perform the change of variables m = i + j and n = ij +1 and we proceed as above.

■
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Figure 1

 1 Figure 1.1: (a) Model showing the stages of cell migration. Figure reproduced from [Tsc13]. (b) Diagram showing the different actin structures present in a cell: stress fibers, lamellipod and filopod. Figure reproduced from [Tac+18, Chapter 21].

  Cell migration is crucial for the growth and functioning of the organism, (embryonic development, wound healing, immunity . . . ). Various models of cell migration intend to assemble, analyse and weight various mechanisms related to cell motility. Abercrombie[START_REF] Abercrombie | The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella[END_REF] put the first brick in place by creating a model that outlined the four phases of the reptation : polarization, protrusion, adhesion, and contraction. Later, different models were developed. They describe the role of the different actors involved in each step of cell migration. Mogilner and Oster[START_REF] Mogilner | The physics of lamellipodial protrusion[END_REF], presented a model for the protrusion phase. They made it simpler to understand the protrusion forces brought on by actin polymerization. In addition, there are other studies that discuss, for example : the role of actin[START_REF] Zhu | Mesoscopic model of actin-based propulsion[END_REF], the extracellular matrix's participation in migration[START_REF] Schlüter | Computational modeling of single-cell migration: the leading role of extracellular matrix fibers[END_REF], the creation of focal adhesions[START_REF] Shemesh | Force-driven polymerization in cells: actin filaments and focal adhesions[END_REF], and the retraction mechanism [SR05]. In [OS10; OSS08], the authors suggest a model of the CHAPTER 1. ADHESION MODELING IN THE CONTEXT OF CELL MOTILITY actin cytoskeleton dynamics in the lamellipodium : the lamellipodium is represented by a two-dimensional structure made up of two actin filament families that cross and orient in opposite directions (see figure 1.2). The positions of these actin filaments, denoted by the superscripts + andaccording to their orientations, are the key unknowns presented in this model. F -(t , α, s) indicates the position of the filaments in the anti-clockwise direction, and F + (t , α, s) that of the filaments in the clockwise direction. The balance of forces acting on the cell membrane is the basis of this model :

Figure 1

 1 Figure 1.3: The position of an adhesion point that is changing on a substrate while being affected by a force f (t ).

  [AMR08], Diekmann and Metz [MD14], CHAPTER 1. ADHESION MODELING IN THE CONTEXT OF CELL MOTILITY Perthame [Per07], Doumic and Gabriel [DG10], Grwiazda and Wiedemann [GW16] and Gabriel [Gab14]. Several approaches have been developed to study the asymptotic behavior of the age-structured model. For example, the use of the Volterra integral equation formulation [Ian95], the semigroup theory [PR19; Web+85] and the generalized entropy method [MMP05; Per07]. The method developed by Perthame and al in [MMP05] is based on the definition of the population growth rate n in terms of an eigenvalue problem (see section A.1 in appendix A). Under specific assumptions on the birth rate (β is a nonnegative bounded rate on R + and R + β(a)d a > 1) and using the Krein-Rutman theorem, they prove the existence of a unique solution (λ, N , φ) of the eigenvalue problem and its dual. By establishing a General Relative Entropy (GRE) inequality, they proved that solutions to (1.9) satisfy the long time asymptotics R + φ(a) n(a, t )e -λtm 0 N (a) d a → 0, when t → +∞ for some real number m 0 > 0 and suitable function N and φ. The GRE method can be applied to the Volterra integral equation (1.3) in the case where the kernel ρ is constant in time and the source term f is null : (1.10) z(t ) -t 0 z(ta)k(a)d a = t 0 x p (ta)k(a)d a where k(a) := ρ(a) µ 0 and µ 0 := R + ρ(a)d a is the total population. Indeed, if we define

Definition 1 .

 1 Let f : (0, T ) → R be a Lebesgue measurable function. The pointwise variation (or Jordan variation) of f on (0, T ) is (2.9) pvar( f , (0, T )) := sup P var( f , P )

  the space of measurable functions with pointwise bounded variation, see for example, [AFP00, section 3.2], [Leo09, chapter 2] and [HPR19, section 2.2, 2.3]. The pointwise variation of f is clearly dependent on the value of f at each point of the domain, and it differs from one a.e.-representative of f to another. For this reason, for every measurable function f , one defines the essential pointwise variation : (2.10) epvar( f , (0, T )) := inf pvar(g , (0, T )) ; f (t ) = g (t ) a.e. t ∈ (0, T ) In [Leo09, Chapter 6], another functional space is defined : CHAPTER 2. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : EXTENSION TO LOADS OF BOUNDED VARIATION Definition 2.

  Theorem 15. (Integration by parts). If one of the integrals [0,T ] f d g and [0,T ] g d f exists, then the other exists as well, and we have [0,T ]

  ), I f δ is a linear continuous form on C ([0, T ]) uniformly bounded with respect to δ. It can be identified via the Riesz representation theorem as a Radon measure µ δ on [0, T ]. Therefore, there exist µ ∈ M 1 ([0, T ]) and a sub-sequence µ δ k such that µ δ k * µ in σ(M 1 ([0, T ]),C ([0, T ])) with respect to the weak-* topology. By Theorem 13, there exists h ∈ BPV([0, T ]) s.t. µ(ϕ) = T 0 ϕd h

  t , a)ρ 0 (t , a) d a = f (t ), a.e. t ∈ (0, T ).

| 0 |

 0 ẑε (t -εa)|ϱ(a)d a + | hε (t )|. Then integrating in time and setting Ẑε (t ) := t ẑε (τ)| d τ one has that :

  t )d a by using hypothesis iv) from Assumptions 3, one has exp(-ζ max a) ≤ q(a, t ) ≤ exp(-ζ min a) final upper bound.

Figure 2 . 1 :

 21 Figure 2.1: The solutions z ε and z 0 as a function of time, for a fixed ε = 10 -1 on the left y-axis. The load f on the right y-axis.

CHAPTER 2 .

 2 FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : EXTENSION TO LOADS OF BOUNDED VARIATION Lemma 15. Under Assumptions 4, one has that µ 0,ε = µ 0,0 = β/(β + ζ), µ 1,ε = µ 1,0 = β/(ζ(β + ζ)) and ρ 0 (a) = µ 0,0 ζe -ζa . Then the solution z ε of (2.1) is B PV ([0, 1]) and it is explicitly given by

[

  Figure 3.1: The position of the moving binding site at time t and time ta 1 with respective linkages to the substrate.

  havior of solutions of (3.1) and (3.2) [MS21, Theorem 4.4]. In [MO11], using the Lyapunov functional (3.5) H [u] := ∞ 0 u(a)d a + ∞ 0 |u(a)|d a , the authors have proved the convergence of ρ ε towards ρ 0 . In the same article they showed as well the convergence of the position X ε thanks to a comparison principle specific to Volterra equations [GLS09, Chapter 9, Section 8]. Here as well, the main goal is to study the asymptotic behavior of solutions of the coupled problem (3.1)-(3.2) under two major constrains :

  a) , a.e. a ∈ R + This hypothesis allows ζ to go to zero for large a and allows ϱ to have fat tails. In comparison, in [MO11], the hypothesis on ζ was stronger : ζ(a, t ) ≥ ζ min > 0. This allowed to use of Gronwall's Lemma and get a priori estimates :

where ( 3 0 r

 30 .28) k(a) := ϱ(a)/µ 0 , (r ⋆ k)(t ) := t (t -τ)k(τ)d τ and it can be decomposed [GLS09, Theorem 7.4.1, p.201] as

  )d a > 0. But, by definition, for every fixed t and ε there exists a compact set M ⊂ (t /ε, ∞) such that ϱ(a) > 0 for almost every a ∈ M so that ∞ t ε ϱ(a)d a ≥ M ϱ(a)d a > 0.

U

  1 (t ) := ε (c 1 + t c 2 -εc 3 w1 (t )) , where w1 solves (3.20) with ℓ = 1. As the resolvent associated to (3.20) is non-negative, applying the comparison principle [GLS09, Propostion 8.1 and Lemma 8.2], w1 (t ) ≤ 0 for 3.4. THE GENERAL CASE t > 0. Then

  generally, for any N , one sets U N := ε N (c 1 + c 2 t -εc 3 w1 ) and the result follows the same : choosing c 1 := XN (0) , c 2 := K N /µ 1 where |S N | ≤ ε N K N and c 3 = c 2 . ■ 3.4 The general case Assumptions 6. Assume the kernel ρ ε solves (3.2) and that the data satisfies : a) the off-rate ζ is in C ([0, T ]; L ∞ (R + )) and there exists a non-increasing m ∈ L 1 (R + ; (1 + a) 3 ) such that m ′ (a) m(a) ≤ ζ(a, t ) ≤ ζ max , a.e. a ∈ R + .

CHAPTER 3 .

 3 FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : ASYMPTOTIC EXPANSIONS AND FAT TAILSProof. The result is proved (if k decreasing) in[START_REF] Gripenberg | Volterra integral and functional equations[END_REF] p.264].

  |r 0 (a-t ,0)| m(a-t ) m(a) ≤ cm(a), otherwise , 3.4. THE GENERAL CASE which gives c ′ in the last estimates of the claim. Next we consider : R + |r 0 (a, t )|d a ≤ t 0 |r 0 (0, ta)| exp -

  at , 0) exp -a a-t ζ(s)d s d a i.e. y + k ⋆ y = f x it remains to check whether

  a)e(a, t )d a = t /ε 0 (1 + a)e(a, t )d a + +∞ t /ε (1 + a)e(a, t )d a := I 1 + I 2 . CHAPTER 3. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : ASYMPTOTIC EXPANSIONS AND FAT TAILS We treat each term separately because they correspond to the two cases of Duhamel's formula (3.37) :

  since (1+ a)m(a) is integrable and by Lebesgue's Theorem ∞ t m(a)d a → 0 as t grows large. On the other hand,

  , we are interested in the study of a weakly coupled model formed by two equations : the first one is a Volterra integral equation that describes the position of an adhesion point in contact with a substrate and subject to an external force. The second is a renewal equation that describes the distribution in ages of the bonds that can be created or broken during cell migration. We have restricted our attention to the study of the following system with a source term f with bounded variation in an open interval (0, T ) :(4.1)

(∂

  -structured model : the renewal equationThe age-structured equation, also called the Mckendrick-Von Foerster equation (or renewal equation) is of the form t n(a, t) + ∂ a n(a, t ) + d (a)n(a, t ) = 0, (a, t ) ∈ (R + ) 2 , n(a = 0, t ) = +∞ 0 β(a ′ )n(a ′ , t )d a ′ , (a, t ) ∈ {0} × R + , n(a, t = 0) = n 0 (a), (a, t ) ∈ R + × {0},where n(a, t ) represents the population density of age a at time t , β ≥ 0 is the birth rate and d ≥ 0 the death rate. The name of this equation refers to the non-local boundary term in a = 0 which describes the births of new individuals. In the following, we present some results related to the generalized entropy method (for more detail, see [Per07; Gab14]). The fundamental tool used by Perthame [Per07] to study the asymptotic behavior of the solution of (A.1) is to solve an eigenvalue problem : found N ∈ L 1 (R + ) positive and not identically null, and λ ∈ R such that (A.2) ) + ∂ a N (a) + d (a)N (a) = 0, a ≥ 0, N (0) = +∞ 0 β(a)N (a)d a, N (•) > 0, R + N (a)d a = 1, A.1. AGE-STRUCTURED MODEL : THE RENEWAL EQUATION Theorem 41. Under the assumptions that the initial data n 0 satisfying n 0 ∈ L 1 (R + , φ(a)d a) and ∃C 0 , |n 0 (a)| ≤ C 0 N (a) there is a unique solution in distribution sense ñ ∈ C (R + ; L 1 R + , φ(a)d a)) to (A.5), and we have i) the maximum principle | ñ(a, t )| ≤ C 0 N (a), ∀t ≥ 0, ii) the comparison principle n 0 1 ≤ n 0 2 =⇒ ñ1 (a, t ) ≤ ñ2 (a, t ), iii) the conservation law and the L 1 (φ(a)d a) contraction principle hold, +∞ 0 ñ(a, t )φ(a)d a = +∞ 0 n 0 (a)φ(a)d a, +∞ 0 | ñ(a, t )| φ(a)d a ≤ +∞ 0 n 0 (a) φ(a)d a.

(

  2), the author in [Per07] uses the general relative entropy method. He introduces a Lyapunov function H defined on R + by all n ∈ L 1 (R + ). Theorem 43. Under the same assumptions as above, then i) for all convex functions H : R + → R + with H (0) = 0, and for all t > 0,H [ ñ(a, t )] ≤ H [n 0 (a)],ii) for the probability measure d µ(a) = β(a)N (a) N (0) d a, and for all convex functions H , By using the theorem 43, we can prove the following result which gives the exponential convergence of ñ in norm L 1 .Theorem 45. Under assumptions above, and∃µ 0 > 0, s.t β(a) ≥ µ 0 φ(a) φ(0) the solution of (A.1) satisfies +∞ 0 n(a, t )e -λtκ 0 N (a) φ(a)d a ≤ e -µ 0 t +∞ 0 n 0 (a) -κ 0 N (a) φ(a)d a where κ 0 := +∞ 0 φ(a)n 0 (a)d a.

t 0 x

 0 (ta)k(a)d a = f (t )where k is the kernel and f the forcing function. This equation can be reformulated using the convolution by, (A.8)x(t ) = k ⋆ x(t ) + f (t ),A.2. VOLTERRA INTEGRAL EQUATION WITH CONVOLUTION KERNEL Theorem 55. Let k be a positive and integrable kernel such that R + ak(a)d a < +∞, then there exists a function ν ∈ L 1 (R + ), s.t. r (t ) = ν(t ) + t 0 ν(s)d s where r is the positive resolvent associated to k and one has: (a)d a < +∞, then there exists γ := ν -+∞ t ν(a)d a and γ ∈ L 1 (R + ) s.t.r (t ) = γ(t ) + 1 R + k(a)ad aThe results presented above can be applied to the equation (1.3) in a particular case. We can rewrite the integral equation (1.3) for ε = 1 and a constant kernel ϱ as:(A.10) µ 0 z(t ) -t 0 z(ta)ϱ(a)d a = f (t ) + +∞ t z p (ta)ϱ(a)d a By dividing by µ 0 and defining f (t ) := f (t ) + +∞ t z p (ta)ϱ(a)d a, we can rewrite (A.10) in the convolution form (A.11) z(t ) -t 0 z(ta)k(a)d a = f (t )

B. 1 .

 1 PROOF OF THEOREM 11 it remains to show that lim sup δ→0 |D f δ |(Ω) ≤ ∥D f ∥(Ω).

Ω

  f δ ψ ′ dt ≤ ∥D f ∥(Ω) + 3δ.By taking the supremum and passing to the limit when δ → 0, we obtain that(B.8) lim sup δ→0 ∥D f δ ∥(Ω) ≤ ∥D f ∥(Ω).

FinallyProposition

  , (B.6) and (B.8) together concludes the proof. APPENDIX C. AUXILIARY PROOFS TO CHAPTER 3 j ,kwhere a i , j ,k is a sequence of real numbers, then this sum is in fact equal to

  , . . . , i } ⇒ k ∈ {1, . . . , min(i , Nj )},Ni ≤ j ≤ N -1, k ∈ {1, . . . , Nj } ⇒ k ∈ {1, . . . , min(i , Nj )}. j ,k ,and then one remarks simply that min(i = N , Nj ) = Nj which gathering the terms gives thatS = s + s ′ = m,n), j (m,n),k χ {m,n∈N 2 } (m, n),where again m := i + j and n := ij + 1 and the inverse transform should provide integer values i (m, n) and j (m, n). Indeed, for the first sum one proceeds as above. When m > N , one needs to bound the summation on n in an interval depending on m (see Fig. C.1).Indeed, when i = N , we write :n = Nj + 1, m = N + j , ⇒ n = 2Nm + 1, while if j = N -1, n = i -N + 2, m = i + N -1, ⇒ n = m -2N + 3, a simple check shows that n ≤ 2N -1 ⇔ m -2N + 3 ≤ 2Nm + 1.

  

  εa CHAPTER 2. FRICTION MEDIATED BY TRANSIENT ELASTIC LINKAGES : EXTENSION TO LOADS OF BOUNDED VARIATION is a solution of (2.23). For more details see [MO15, Lemma 4.1 and Lemma 4.2].

	Proof. First, by using (2.34) in the proof of Theorem 23, and Lemma 6, we have that f δ (0 + ) =
	f (0 + ) and z δ ε given by (2.36) converge strongly in L ∞ ((0, T )) to z ε which verifies (2.35). Using
	[MO15, Lemma 4.2], if z δ ε is defined as (2.36) it solves (2.22). Multiplying (2.22) by a test
	function ϕ ∈ L 1 (0, T ) gives :

avec lequel je partage l'amour des mathématiques, Marwa Berjawe pour son soutien et ses encouragements qui auront été pour moi essentiels
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Matching inner and outer expansions

So far, the initial conditions of the outer expansion are not defined. For this sake, we write the inner expansion's limit when t → ∞. This gives :

(-1) k+1 (mq + 1)!k! X (k+m-q) q-k (0)µ m-q+k+1 =: s 1 , together with :

As we do not want the inner expansion to interfere with the outer expansion, we gather the powers of ε and define the initial conditions of the outer expansion so that lim t →∞ (Y N (t ) + Z N (t ) + W N (t )) = 0, which then gives :

Theorem 29. The macroscopic Ansatz should be given the initial conditions : for m = 0,

Error estimates

In this section, we give an error estimate between X ε , the solution of (3.29)

and the asymptotic expansion Xε,N given by (3.10). This result is based on the application of a comparison principle [GLS09, the Generalised Gronwall Lemma 8.2 p. 257] and the construction of a super solution U N such that U N ≥ X ε -Xε,N and U N ≲ ε N . The following lemma is required in order to apply the latter comparison principle : CHAPTER 4. CONCLUSION AND PERSPECTIVES principle related to the system (4.1) but in the case where the density ρ ε is constant in time, in accordance with the methodologies of [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF].

Next, we studied the asymptotic behavior of the couple(4.1,4.2) under weaker assumptions than in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF][START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF]. In this part, we were able to increase the order of the approximation with respect to ε in the case where the density ρ depends only on the age. In the general case, where ρ ε also depends on time, we were initially enhancing the asymptotic expansion of ρ ε proved in [START_REF] Milisic | Initial layer analysis for a linkage density in cell adhesion mechanisms[END_REF] before extending the methodology of [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF] to the framework of our study.

In the following, we present many questions and perspectives related to our framework.

Measure solutions to the renewal equation (4.2)

In this thesis, the data of (4.2) was restricted L 1 initial conditions and bounded and contiuous boundary data. Several approaches can be used to study the long time asymptotics of this kind of equation. In particular, In [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] the authors have proposed the generalized relative entropy method (GREM). This method uses an entropy inequality which

shows the convergence of the solution towards an asymptotic profile when time goes to infinity. Recently, Gwiazda and Wiedemann [START_REF] Gwiazda | Generalized entropy method for the renewal equation with measure data[END_REF], extended the GRE method to the case of the renewal equation with measure-valued initial data. In this case, in order to establish the GREM inequality and show the convergence, they approximate a measured valued solution by a sequence of regularized solutions. First, GREM applies to (4.1) only when the source term is zero and the past data is present. Then concerning the possible application of GREM to (4.2), the non-local birth term ρ ε (0, t ) = β(t )(1-µ 0,ε ), contains the opposite sign in front of the total population. In particular, neither Perron-Frobenius nor Krein-Rutman arguments are at hand. To study the long time asymptotics of (4.2), the authors in [MO11;

MO15] have introduced a specific entropy function. We would like to define measure solutions to (4.2) and prove the convergence when ε goes to zero, the extension of [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] to this framework seems to be an interesting perspective.

Asymptotic expansion of z ε : ρ ε is time dependent

In Chapter 3, we considered an asymptotic expansion of z ε solution of (4.1) when the density ρ ε is time independent. The extension of these results to the general case where ρ ε satisfies (4.2) is a challenging problem. The dependence of the asymptotic development of z ε on that of ρ ε precludes us from using the same approach as in the case of the con-and the dual equation

In this case, a necessary condition to prove the behavior of the solutions of (A.1) is

Biologically, condition (A.4) shows that the populations will not survive, but on the contrary, they will die out and disappear. By studying the equation (A.1), we expect the population to grow exponentially fast in time.

Indeed, we define ñ(a, t ) := n(a, t ) exp (-λa) .

The function ñ satisfies

Under the same assumptions of the previous theorem, we can assert the following results where (k ⋆ x)(t ) := t 0 k(a)x(ta)d a is the convolution product of k and x. In order to find a solution of (A.8), we must first find a solution of the resolvent r equation associated to the kernel k. We recall some of the results presented in [START_REF] Gripenberg | Volterra integral and functional equations[END_REF] without proof.

Theorem 47. Let k ∈ L 1 l oc (R + ), then there exists a solution r ∈ L 1 l oc (R + ) of the resolvent equation :

this solution is unique and depends continuously on k in the topology of L 1 l oc (R + ).

) and σ ∈ C, then the function e σt r (t ) is the resolvent of e σt k(t ).

Lemma 21. Let r the resolvent of k. If the function exp (-σt ) k(t ) belongs to L 1 (R + ) for some σ ∈ R, then there is a constant c such that the function exp (-c t ) r (t ) belongs to L 1 (R).

By using the resolvent we can prove the solution of (A.8).

Theorem 49. Let k ∈ L 1 l oc (R + ). Then for every f ∈ L 1 l oc (R + ), there exists a unique solution x ∈ L 1 l oc (R + ) of (A.8). This solution is given by the variation of constant formula :

where r is the resolvent of k. If moreover, f ∈ L p l oc (R + ) then x also belongs to it.

One of the methods used to determine the explicit solution of the resolvent equation (A.9)

is the inversion of the Laplace transform. In fact, If the Laplace transform k(z) exists in some half plane Rz > σ (for some sufficiently large σ) then, by Lemma 21, r (z) exists in some other half plane Rz > c. By applying the convolution theorem for Laplace transform, (A.9) may be transformed and becomes :

then the inversion of the Laplace transform gives r .

Remark 3. If k ∈ L 1 (R + ) this does not imply that its resolution r also belongs to L 1 (R + ).

We need more conditions on the kernel k for this result to be true.

Theorem 51. [Half Line Paley-Wiener] Let k ∈ L 1 (R + ), then the resolvent r of k satisfies :

Theorem 53. [A Generalized Gronwall Lemma] Let k be a positive kernel in L 1 l oc (0, T ), assume that x, f ∈ L 1 l oc (0, T ) and suppose that

a.e.t ∈ (0, T ).

Then

where y is the solution of the composition equation

Corollary 5. Let k ∈ L 1 (R + ) be nonegative and have a nonnegative convolution resolvent r . Then r ∈ L 1 (R + ).

This result is valid only for integral equations with a convolution kernel (A.8). Moreover, if the kernel k is integrable and admits a bounded first moment R + ak(a)d a < +∞, we can find the following result which characterizes the resolvent r associated to k :

For i ∈ N, the idea is to find δ i > 0 so small that (B.1) supp χ δ i * (φ i f ) ⊂ W i which allows to write (B.2)

and then from the local approximation Theorem (see Theorem 2 p.125 in [START_REF] Evans | Measure theory and fine properties of functions[END_REF]),

and also by convenience, we can take C = 1 2 i . Hence we conclude that

for a positive mollifiers χ δ defined as

By the construction of {W i }, we have

and since the finite sum of infinitely differentiable functions is infinitely differentiable, we conclude that f δ ∈ C ∞ (Ω) and

Using the theorem of Lower semicontinuity of variation measure (see chap 5, [EG92]), we have

B.1.1 Proof of Lemma 5:

Let f ∈ BV((0, T )) ∩ L ∞ (Ω). By using (B.5) and (B.1) we can write for all t in Ω,

since 0 ≤ φ i ≤ 1. On the other hand, we have W i ∩W i -1 = Ω i \Ω i -1 and W i -1 ∩W i ∩W i +1 = , which implies that

which ends the proof.

A P P E N D I X C AUXILIARY PROOFS TO CHAPTER 3 Some summations over integers :

In the following, we present some auxiliary results related to the subsection 3.3.2 of chapter 3.

.1: The index change from (i , j ) to (m, n) (here as an example N = 5).