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Titre: Diamagnétisme et paramagnétisme orbital singulier dans le graphène.
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Résumé: Le graphène est un des matériaux les
plus étudiés dans la matière condensée en raison
de ses propriétés surprenantes liées à sa relation
de dispersion linéaire. Une de ces propriétés est
la susceptibilité orbitale divergente diamagnétique
au point de Dirac. Cette caractéristique, qui est
une signature étonnante de la phase anormale de
Berry égale à π dans le graphène, avait été prédite
plusieurs décennies auparavant, mais il a été dif-
ficile de la mesurer au niveau d’une monocouche
unique. Une autre prédiction passionnante con-
cerne le magnétisme orbital des cristaux 2D en
général. L’existence d’une susceptibilité param-
agnétique orbitale divergente a été prédite. Ces
singularités sont attendues aux points selle de la
structure de bandes.

Pour réaliser nos expériences, nous avons util-
isé une nouvelle technique qui implique des sondes
de magnétorésistance géantes (GMR) très sensi-
bles en combinaison avec le contrôle du potentiel
chimique par une modulation de la grille. Nous

avons ainsi réussi à mesurer la susceptibilité dia-
magnétique orbitale singulière dans le graphène
monocouche, pour la première fois au niveau
d’une monocouche unique. Nous avons égale-
ment mesuré la susceptibilité paramagnétique or-
bitale singulière du graphène dans un superpoten-
tiel moiré qui provient de l’alignement du graphène
et du nitrure de bore. Nous présentons également
les résultats préliminaires de la susceptibilité or-
bitale du graphène bicouche AB, et son évolution
lorsqu’un champ électrique perpendiculaire est ap-
pliqué. Nos résultats ouvrent une nouvelle voie
pour explorer le magnétisme orbital et les courants
orbitaux dans les matériaux 2D. Cette expérience
devrait également permettre complémenter l’étude
des particularités de la géométrie de la structure de
bande des cristaux 2D, en particulier les anomalies
de phase de Berry ou les points selle, ou révéler
l’existence de courants de boucle balistique le long
des bords des isolants topologiques 2D.

Title: Singular orbital diamagnetism and paramagnetism in graphene.
Keywords: graphene, orbital, diamagnetism, paramagnetism, GMR

Abstract: Graphene is one the most studied mate-
rials in condensed matter because of its astonishing
properties related to its linear dispersion relation.
One of these properties is the diamagnetic diver-
gent orbital susceptibility at the Dirac point. This
characteristic, which is a striking signature of the
anomalous π Berry phase in graphene, was pre-
dicted many decades before, but it has been chal-
lenging to measure at a single-flake level. Another
exciting prediction concerns the orbital magnetism
of 2D crystals in general. The existence of a diver-
gent orbital paramagnetic susceptibility has been
predicted. These singularities are expected at the
saddle points of the band structure.

To realize our experiments he have used a
new technique that involves highly sensitive gi-
ant magneto-resistant (GMR) probes in combi-
nation with chemical potential control through a

gate modulation. By the means of this technique,
we have measured the singular orbital diamagnetic
susceptibility in monolayer graphene, for the first
time at single-flake level. We have also measured
the singular orbital paramagnetic susceptibility in
graphene in a moiré superpotential that comes
from the alignment of graphene and boron nitride.
We also present the preliminary results of the or-
bital susceptibility of AB bilayer graphene, and its
evolution when a perpendicular electric field is ap-
plied. Our results open a new way to explore the
orbital magnetism and currents in 2D materials.
This experiment should also complement the in-
vestigation of the particularities of the geometry
of the band structure of 2D crystals, particularly
Berry phase anomalies or saddle points, or reveal
the existence of ballistic loop currents along the
edges of 2D topological insulators.
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Introduction

The study of orbital currents has started to raise interest by analogy to its spin
counterpart as a way to reveal, access and control new degrees of freedom that
can be used in new technologies [1]. In recent studies, it has been demonstrated
that controlling pure orbital currents is possible [2, 3, 4]. Also, it has been shown
that orbital currents can mediate and explain the spin Hall effect (SHE) or valley
Hall effect (VHE) [5, 6, 7] in 2D materials. Other phenomena studied include for
example orbital Rashba Edelstein effects [8, 9, 10] or orbital torque. However, orbi-
tronics is far less developed than spintronics, partly due to the existence of orbital
quenching in some metals (particularly from the Fe family). This phenomenon is
known for reducing the orbital angular momentum to zero and thus, the spin is
the only relevant contribution to angular momentum and magnetism in these type
of systems.

Nevertheless, there are systems where the orbital part is an important con-
tribution for magnetism, for example, Landau diamagnetism in metals [11] that
originates from the motion of effectively free electrons in magnetic fields is of the
same order of magnitude as the spin Pauli magnetism. In some semi-metals as
graphite or bismuth, orbital magnetism becomes the dominant contribution and
even arrives to a divergence in the case of graphene [12]. Other examples are the
Meissner effect in superconductors, the magnetization of mesoscopic copper rings
produced by persistent currents [13], or more recently, the observation of intra-
unit-cell magnetism that is attributed to loop currents in the unit cell of high-Tc
superconductor YBCO [14].

Among the systems where the orbital magnetism presents exciting properties
we can find graphene and some of the van der Waals structures based on it. For
example, the existance of orbital ferromagnets in twisted bilayer graphene [15, 16]
has been found recently.

During this thesis, we focused on the experimental study of the orbital mag-
netism of 3 systems: monolayer graphene, graphene on a moiré potential and
bilayer graphene.

In this spirit, we dedicate the first chapter 1 to orbital magnetism. In this
chapter we will present a very brief introduction to the fundamental definitions
needed for the rest of the manuscript. We will also mention the interrelation
between the experimentally accessible features of the orbital susceptibility and the
particularities of the band structure that are at their origins.

The general properties and most fundamental characteristics of graphene are
presented in chapter 2. Here we used the tight binding model to give a very simple
explanation of its most prominent magnetic property, the McClure diamagnetic
peak diverging at the Dirac point, which is a striking signature of the anomalous
π Berry phase in graphene.
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In the third chapter, we will present one of the key aspects that makes possible
the experimental detection: the giant-magneto-resistance probes (GMRs). We will
present the characteristics as well as a simple but intuitive model to explain their
functioning in a general way.

Chapter 4 details the set up and principle of the experimental detection. It
highlights the technique that allows us to reduce the contributions of spurious
magnetic signals. We also present the fabrication of our samples in this chapter.

The experimental study of the orbital diamagnetic singular response in graphene
is given in chapter 5. It shows the measurements of the gate-voltage dependent
magnetization of a single monolayer graphene flake encapsulated between boron
nitride crystals. It is also accompanied with the a theoretical model that allows for
understanding of the details. This chapter is taken from the article [17] that was
published during this project.

Next on chapter 6, we present the experimental exploration of the orbital
magnetism of monolayer graphene in a moiré potential. This was made by aligning
the graphene flake with one of the BN crystals that encapsulates it. In particular,
we focus on the region where saddle points in the band structure are expected,
which is accompanied by divergences in the density of states. At these points, the
susceptibility is expected [18] and experimentally found to be paramagnetic .

We present the preliminary results of the orbital magnetism of bilayer graphene
in chapter 7. Here, we mainly focus on the evolution of the susceptibility as a
function of the perpendicular electric displacement field.

Finally, we present the summary of this project and the results as a conclusion
section.
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1 - Orbital magnetism

It is a well established fact that magnetism can originate, either from the spins
of fundamental particles, or on the other side, it can come from the quantum
mechanical motion of charged particles. The later is known as orbital magnetism
and is the subject of experimental interest in this thesis. The orbital motion or
spin effect of this charges can be localized, as for example electrons orbiting in
atoms, or delocalized, as it occurs in a crystal with electrons moving in the bands.
In this delocalized magnetism, Bloch electrons have orbital and spin momenta that
can both interact with magnetic fields. It is this delocalized component of orbital
magnetism that is studied in this thesis. In particular, we are interested in electrons
in graphene crystals, so their motion is restricted to the 2D plane.

Recently, orbital magnetism in general has started to be seen under a perspec-
tive where multiband physics plays a major role [19, 20, 21]: the orbital motion
within one band is influenced by the other bands, through virtual interband tran-
sitions that can be mediated by magnetic fields. These interband transitions can
reflect non-trivial geometry of band eigenstates, for example the contributions of
the Berry phase [22, 23, 24]. In particular in reference [21], it was shown that for
a two-band system, with electron-hole symmetry, the orbital susceptibility can be
decomposed in the sum of contributions from different origins. For example, the
Landau-Peierls susceptibility (contributions from each individual band proportional
to the curvature of the bands), a term containing the Berry curvature and a term
characterized by the metric tensor. This allows us to see that orbital susceptibility
is deeply connected to the geometry of the Bloch functions in the reciprocal space
and so, by measuring this quantity, we can have an experimental way to obtain
information about these properties.

We will not give the full expressions for the orbital susceptibility in this manuscript
(that can be found in [20, 21] for example). Instead, we will focus, for each ex-
periment, on the particular behavior of the band structure that we were able to
explore. In consequence, it is first convenient to introduce some definitions and
cases that we will use frequently throughout this manuscript.

1.1 . Magnetization, susceptibility and magnetic field

The main relation we use defines the magnetic linear response of a system in
the presence of an external magnetic field

M⃗ ≡ χorbB⃗ (1.1)
where B⃗ is the external magnetic field, χorb is the susceptibility and M⃗ is the mag-
netization of the system. Because in 2D, M⃗ is the density of magnetic moments
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m⃗ per unit surface, the magnetization will be given in Amperes, A, the external
field in Tesla, T, and so, the susceptibility will be given in Ampere per Tesla, A/T.

When the magnetization opposes to the magnetic field, equivalently M⃗ and B⃗
are anti-parallel, then the susceptibility is negative, χorb < 0. We talk in this case
of orbital diamagnetism. In the opposite case, when M⃗ and B⃗ are parallel, we talk
about orbital paramagnetism and χorb > 0. All this is general to 2D magnetism.

1.2 . Magnetism as a thermodynamic property

Taking into consideration a large number of electrons, as it is the case inside
a crystal, magnetization must be defined as a statistical property. It accounts for
the effect of the external field in the ensemble of charged particles in the crystal.
To quantify this effect, first we need to define the statistical ensemble. It is
convenient for us to use the grand canonical ensemble in which the temperature
T and chemical potential µ are defined by reservoirs. This is justified by the set
up of our experiments in which the sample is generally in a thermal bath and the
chemical potential will be controlled and fixed by using a gate. In this ensemble,
the characteristic state function is the grand potential Ω. This is the quantity that
allows us to obtain all the information of the system, particularly the effects of the
magnetic field. In this case, the magnetization of a grand canonical ensemble is
given by:

M⃗ = − 1

S

∂Ω

∂B
u⃗z (1.2)

and consequently, the orbital susceptibility is

χorb = − 1

S

∂2Ω

∂B2

∣∣∣∣
B→0

. (1.3)
Focusing in the 2D crystals, there are several different regimes that we could

find while studying the characteristics and behavior of the orbital susceptibility.
This characteristics of course are related with their band structure. This is the
reason why before going into the detail of experimental realization, it is necessary
to mention some very basic ground ideas about the magnetism and what to expect
due to some particular shapes in the band structure. We will focus in a few of
them, those relevant in the experiments performed during this thesis.

Even if not all of them are achievable in the same type of crystal and it is worth
mentioning as they are part of what we can find in a normal metal, in graphene,
or in a moiré superlattice or in bilayer grapehene.

1.3 . Magnetic moment of a classical charge

In order to go further with the understanding of orbital magnetism, it is always
useful to draw some parallel lines to what can be easily understood through intuition
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and for this we can use classical mechanics. For instance, a classical charge moving
with a velocity v⃗ = vxu⃗x + vyu⃗y, in an electromagnetic field (E⃗, B⃗ = Bu⃗z)
experiences a force given by

F⃗ = qE⃗ + qv⃗ × B⃗. (1.4)
From this equation we see that because v⃗ and B⃗ are perpendicular, the charge
will move forming loops, which are known as the cyclotron orbits. These orbits are
defined by their radius rc and the frequency of orbiting ωc, given by

ωc =
qB

m
, (1.5)

related by rcωc = v. m is known as the cyclotron mass.
We can then define a surface S = πr2c and a current loop I = qωc. This

current generates a magnetic moment m⃗ given by m⃗ = ISu⃗norm, being u⃗norm
the perpendicular direction of the oriented surface delimited by the current. Figure
1.1 shows this orientation for a positive charge. It also shows the directions of
the vectors that are involved in equation 1.4 and the magnetic moment. As it
is shown, the sign of the normal direction is opposed to the one of the external
magnetic field that produces the loop, so the magnetic moment will be opposed to
the external field. Then, the orbital magnetization of a charge moving in a plane
is equivalent to a current

M⃗C =
m⃗

S
= −Iorbu⃗z = −q

2B

m
u⃗z (1.6)

and the susceptibility is

χC = −q
2

m
. (1.7)

In this way, every time we talk about orbital magnetism, we will automatically
define the equivalent orbital current. That is why all along this manuscript we
speak about orbital magnetism and orbital current indistinctly. It is worth noting
that regardless the sign of the charge, the susceptibility due to the movement of
classical charges in 2D is negative, therefore diamagnetic.

Equation 1.4 tells us that free classical charges in a magnetic field will move
in orbits whose magnetization direction is opposed to that of the external field.
Therefore, we may be tempted to think that diamagnetism at every scale is just a
consequence of the Lorentz force, even further, that only diamagnetism is possible
due to orbital movement. However, this is a good example of a conclusion that we
get when we use a classical argument and stop the reasoning midway through it,
paraphrasing Feynman. It turns out that magnetism needs a quantum description
to be understood and classical mechanics is a very useful tool to draw intuitive
analogues, but not to explain magnetism. In fact, when classical statistical me-
chanics is applied rigorously to an ensemble of electrons at thermal equilibrium,
the net magnetization of the system is identically null.
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Figure 1.1: A) Shows the direction of the Lorentz force acting on a neg-ative charge. B) Shows the current I associated to themovement of thenegative charge in A. The current is positive in the direction of positivemoving charges. C) Definition of an oriented surface. The orientationis given with respect to the current I. This sign can be viewed as analo-gous to the Lenz law.
This is known as the Bohr-van Leeuwen theorem. The intuitive argument is

that according to Maxwell-Boltzmann statistics, the probability of the system of
being in a particular state of energy E is proportional to e−E/kT . E accounts for
the kinetic and potential energy so it is independent from the magnetic field. In
other words, because magnetic field produces a force perpendicular to the velocity,
it does not generate work, so it does not change the energy of the particles. Then,
the probability of any state of movement with magnetic field at thermal equilibrium
will be the same as the probability without field. Figure 1.2 gives a schematic
explanation of the impossibility of orbital magnetism with classical orbits.

1.4 . Case of a 2D free electron gas

One of the simplest cases of orbital magnetism comes from free electrons.
We can use equation 1.3 to study the behavior of electrons in a 2D electron gas
(2DEG). This is handy when we want to compare to the case of the classical result
given in 1.7 and later on, to put into perspective the different results obtained.

The treatment to study the susceptibility consists on studying free electrons
in a magnetic field, which obey the Schrodinger equation with minimal coupling.
This means that the moment operator is replaced via the substitution [21]

p⃗→ Π⃗ = p⃗− eA⃗, (1.8)
where A⃗ is the vector potential associated to the external magnetic field B⃗ =

12



Figure 1.2: Classical trajectories of electrons in 2DEG in the presence ofa magnetic field. In each point there are 2 trajectories with velocities v1and v2 that are equal and opposed. Then, the contribution to angularmomentum in each point is zero. Therefore, there is no magnetism ina 2DEG with classical trajectories. Adapted from [25].
∇⃗ × A⃗. Then, Schrodinger equation becomes

ĤΨ =
1

2m
Π⃗2Ψ = EΨ. (1.9)

It is usual To solve this equation by rewriting this equation in the form of an
harmonic oscillator, whose eigenenergies are given by

En = ℏω
(
n+

1

2

)
. (1.10)

The index n is the number of Landau levels. Then, by calculating the grand
potential:

Ω = kBTgB
∑
n≥0

ln
(
1 + e−(ℏωc(n+1/2)−µ)/kBT

) (1.11)
and by applying the definition of susceptibility given by 1.3, and considering the
limit when α ≡ ℏωc/kBT << 1, then, the susceptibility at T → 0, up to second
order in α is [21].

χL = − e2

24πm
. (1.12)

We can think that the Landau susceptibility is the quantum description of suscep-
tibility of the one calculated in 1.7, arising from the formation of the Landau levels
as parallel to the cyclotron orbits.

This Landau susceptibility exists also in the majority of normal metals, how-
ever the mass that appears must be replaced by the effective mass to take into
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Figure 1.3: Left: Parabolic dispersion relation of a 2EDG. This is behav-ior is equivalent to the one found in normal metals, where the disper-sion relation is parabolic. Right: Landau levels corresponding to thedispersion relation in the right. Adapted from [21].
account the effects of the potential of the crystal in the band structure. Even more
important, this description is only valid when the band can be considered isolated,
i.e. separated from the neighboring bands by large enough energy gaps.

It was shown in [26, 27, 28], that orbital magnetism of semi-metals cannot be
described by expression 1.12. As an example, [27] explains the diamagnetism in
Bismuth as the contribution of the interband terms.

1.5 . Graphene in the vicinity of its neutrality point

In particular, the orbital susceptibility of graphene close to the neutrality point
is determined by its Dirac conic band structure around K points, where graphene
exhibits the crossing of two bands. Contrasting with the behavior of quadratic
dispersion relation that is found in free electrons, electrons in graphene present a
linear dispersion relation. This means that Dirac electrons behave as if their mass is
effectively null. The consequences of this dispersion relation in the electronic prop-
erties of graphene has been extensively studied both theoretical and experimentally.
One of this properties characteristics of graphene is its Landau spectrum, which
are the energy levels of graphene in the presence of a magnetic field. Rabi [29]
was the first to be interested in the study of the behavior of free Dirac electrons
in a region of homogeneous magnetic field. Then, McClure in 1956 [12] explicitly

calculated the Landau levels in graphene as ϵn = sign(n)
√
2v2F eB|n|. We will

explicitly show a way to calculate these levels in chapter 2 in the case of graphene
in the tight binding model, but for now, we will just compare this result to the
case of free electrons. McClure also calculated the zero field orbital susceptibility,
given by

χMcC = −
e2v2F
6πkBT

sech2(µ/2kBT ). (1.13)
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Figure 1.4: Left: linear dispersion relation. This is the behavior of elec-trons in graphene at low energies. Right: Landau levels for a lineardispersion relation. Adapted from [21].
where vF is the Fermi velocity of graphene and n is the number of the Landau
level.

By directly comparing χMcC at ambient temperature (T = 300K) with χL

(which is constant), we find that at µ = 0, that χMcC ∼ 100χL. This provided an
explanation of the large diamagnetism observed in graphite. We also note that this
susceptibility diverges at low T when the Fermi level stands a the charge neutrality
point (CNP), because χ ∼ 1/T .

1.6 . Van Hove singularities

Another feature that one can find while exploring the bands of graphene-based
compounds are van Hove singularities. Following [30], we can relate the density of
states, gn, explicitly with the band structure of a crystal. The relation in 3D is:

gn(ϵ) =

∫
Sn(ϵ)

dS

4π3
1

|∇ϵn(k⃗)|
, (1.14)

where the integral is made on the surface Sn in k-space, which is the surface of
constant energy ϵn(k⃗) = ϵ. This illustrates a general result concerning the density
of states: whenever the gradient of the dispersion relation at the band, |∇ϵn(k⃗)|
vanishes, then, the integrand of equation 1.14 diverges. This gradient can vanish
at local maxima, minima or at saddle points. In 3D, the density of states remains
finite although its derivative dg/dϵ diverges. However, for a 2D lattice, the density
of states diverges at a saddle point. A saddle point in the band structure is a
(mathematical) critical point that exhibits neither a local maximum nor a local
minimum. This means that the gradient |∇ϵn(k⃗)| vanishes at this point but the
curvature in perpendicular directions have opposite signs (lets say ∼ ∂2ϵ/∂x2 > 0

and ∼ ∂2ϵ/∂y2 < 0). Vignale [18] has shown that for a 2D lattice, the orbital
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Figure 1.5: Left: Generic saddle point of a band where the dispersionrelation is E ∼ p2x − p2y. Right: Color plot of iso-energy lines from thesaddle point in the left. Adapted from [21].
magnetic susceptibility close to a saddle point follows the behavior of the density
of states, with positive sign. This means, given that the density of states diverges
as a logarithmic function, the orbital susceptibility diverges too in the same way.
Vignale’s formula of the susceptibility close to a saddle point is

χ ∼ −e
2ℏ2g(ϵ)
12π

[
∂2E

k⃗

∂k⃗2x

∂2E
k⃗

∂k⃗2x

]
(1.15)

This same result can be obtained via the Landau-Peierls susceptibility, which
will be shown later on in chapter 6, when discussing the orbital paramagnetism in
a moiré superlattice.

In the case of the saddle point shown in figure 1.5, we can explicitly calculate
the divergence of the density of states and the associated orbital susceptibility.

The physical intuitive reason for the existence of these orbits was given by
Vignale in terms of magnetic breakdown [18, 31, 32] : the electrons have quasi-
classical hyperbolic trajectories that follow the lines of constant energies. When
they are close to the saddle point, the probability to tunnel towards another orbit
is non-zero. This results in a change of the direction of the rotation and therefore,
an inversion of the direction of the magnetic moments. If we consider figure 1.1,
the resulting orbital magnetic moment will be paramagnetic.
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2 - Monolayer Graphene

Given that all the 2D crystals in our experiments are based on graphene, we
will devote this chapter to some of the basic electronic properties of monolayer
graphene, specially those needed to understand our experimental results. Then we
will talk about graphene in a magnetic field and finally present the results obtained.

Since the experimental realization of graphene in the early 2000s, graphene
has become one of the most studied materials. Its popularity may have a variety
of origins: form one side, µm-scale graphene is simple enough to obtain to be
worldwide spread among condensed matter labs. Due to its structure, graphene
present electronic (as well as mechanical and optical) properties that differ from
what is known in conventional metals. Last but not least, because of its relative
simplicity, the theoretical study of graphene is able to precisely describe the variety
of phenomena present.

Electronic properties

A Carbon (C) atom has 6 electrons, with an electronic configuration of the
ground state 1s2 2s2 2p2. This means that 4 (valence) electrons can participate in
the fabrication of bonds. Different allotropes of carbon hybridize these 4 electrons
in different way in order to get their crystalline structure. In the case of graphene
layers, one of the s electrons is promoted to the p orbital, getting the excited
configuration 1s2 2s1 2p3. Graphene crystal forms a honeycomb lattice, where
each atom of carbon has a bond with 3 other C atoms, separated by 120◦. This
structure requires that two p orbitals hybridize with the remaining s orbital, forming
three sp2 orbitals in plane that allow C atoms to form the 3 σ bonds per C atom.
This lets the the remaining orbital, pz, perpendicular to the plane, giving one π
bond per carbon atom.

Figure 2.1(a) shows the structure of graphene lattice. The figure shows a hon-
eycomb lattice where every circle is a carbon atom. As it is well known, honeycomb
lattice is not a Bravais lattice but instead the result of adding two triangular (solid
and empty) lattices and shift them to create regular hexagons. It is mathemati-
cally equivalent to say it is a triangular lattice with a basis of two atoms. Centered
in a carbon atom (sublattice A), the lattice vectors are given by a⃗1 = a x̂ and
a⃗2 =

a
2 x̂+

a
√
3

2 ŷ (or equivalent). The second carbon atom of the basis (sublattice
B) is located at δ⃗1 = acc ŷ, where a = acc

√
3 = 0.246nm is the lattice parameter

of graphene and acc = 0.142nm is the distance between nearest neighbor carbon
atoms. The position of the first neighbors is given by the blue arrows in figure
2.1a, given by vectors δ⃗1 = (

√
3x̂+ ŷ)acc/2, δ⃗2 = (−

√
3x̂+ ŷ)acc/2, δ⃗3 = −accŷ.

Reciprocal lattice vectors are given by b⃗1 = (2πa x̂ − 2π
a
√
3
ŷ) and b⃗1 = 4π

a
√
3
ŷ.

Figure 2.1b shows the first Brillouin zone in the shaded area and the thick border.
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Figure 2.1: (a) Graphene lattice showing the latice vectors ai, and thepositions of the first neighbors δi. (b) First Brillouin zone (FBZ) show-ing the high symmetry points K and M. The thicker edge of the centralhexagon belongs to the FBZ. Adapted from [33].
The non-equivalent points K and K’ and the 3 non-equivalent M, M’, M” are
highlighted. This non-equivalence is related with the nature of the Bravais lattice
and the definition of the Brillouin zone.

Now, in order to derive electronic properties, it is necessary to describe graphene
with a simple model. For this, let’s consider the tight Binding (TB) approximation
where electrons are allowed only between hop to nearest neighbors. This calculation
was first done by Wallace [34]. This part will only show key points to make the
calculation clear but it does not contain all the details. Reference [33] presents a
comprehensive solution of the tight biding model.

This section addresses only to the π electrons, which are the ones responsible
of the electronic properties at low energy. For these electrons, the TB Hamiltonian
is given by:

ĤTB = Ĥatom +∆V (2.1)
where Ĥatom is the atomic Hamiltonian and ∆V is the correction of the potential
due to the other atoms that are in the lattice. We need to solve the Schrodinger
equation

ĤTBΨk⃗
(r⃗) = ϵ

k⃗
Ψ

k⃗
(r⃗). (2.2)

We use the test functions considering that we have two atoms per unit cell (A, B):

Ψ
k⃗
(r⃗) = a

k⃗
ψA
k⃗
(r⃗) + b

k⃗
ψB
k⃗
(r⃗) (2.3)

where a
k⃗

and b
k⃗

are complex constants and each ψ is a Bloch function of the form

ψ
(j)

k⃗
(r⃗) =

∑
R⃗l

eik⃗·R⃗lϕ(j)(r⃗ + δ⃗j − R⃗l) (2.4)

with j indicates the sublattice A or B, vectors δ⃗ connects nearest neighbors and ϕ
are atomic orbitals that satisfy Ĥatomϕ(j) = ϵ(j)ϕ(j), being ϵ(j) the on-site energy,
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which is the same in both sublattices because carbon atoms sit on both. This en-
ergy will only represent a constant shift of the Fermi energy and so we will consider
equal to 0. Now, to solve equation 2.2, we multiply by the complex conjugate of
the wavefunction from the left. Then, writting the Hamiltonian components of the
matrix, will give us:

Ĥ ij

k⃗
= ϵ

(j)

k⃗
s
(ij)

k⃗
+ t

(ij)

k⃗
(2.5)

where we already have removed the on-site energy, t is the hopping term and s is
the overlap of the wavefunctions

tAB
k⃗

=
(
1 + eik⃗·⃗a2 + eik⃗·(a⃗2−a⃗1)

)∫
d2rϕA(r⃗)∗∆V ϕB(r⃗ + δ⃗3)

= γ∗
k⃗
t =

(
tBA
k⃗

)∗ (2.6)

By orthonormality of ϕ, sAA = sBB = 1. We consider the overlap between orbitals
at different sites to be negligible, so sAB = sAB ∼ 0, and, because we consider
only first neighbors hopping, we assume tAA = tBB ∼ 0. These terms break
electron-hole symmetry, but their signature is only important at high energies and
do not contribute to the band structure to the Fermi level.

With all these simplifications, we arrive to the effective TB Hamiltonian in the
A,B pairs, whose eigenenergies are obtained by solving:

det

[
ϵ
k⃗

−tγ∗
k⃗

−tγ
k⃗

ϵ
k⃗

]
= 0 (2.7)

which yields energy bands:

ϵλ
k⃗
= λ t

√√√√3 +

3∑
i=1

cos (k⃗ · a⃗i) (2.8)
where λ = ± indicating valence (-) or conduction (+) bands, and a⃗3 = a⃗2 − a⃗1.
When graphene is neutral, the chemical potential is by convention set at ϵ = 0.
This is obtained for the wave vectors that make γ

k⃗
= 0:

k⃗ϵF=0 = K⃗D = ± 4π

3
√
3acc

x̂ (2.9)
i.e. where the two non-equivalent K, K’ points of the reciprocal lattice are located.
γ
k⃗

is defined by equation 2.6.
Now, it is frequent to use a low energy approximation as most of the experi-

mental results take place at energies that are much smaller than the bandwidth.
For this, we must expand the function γ

k⃗
around the position of the charge neu-

trality point (CNP), so the wave vector is written in the form k⃗ = K⃗D+ q⃗. Taking
only the first order in |q⃗|acc, we can obtain the low-energy Hamiltonian:

Ĥeff
q⃗,ξ = ξℏvF

[
0 qx − iξqy

qx + iξqy 0

]
(2.10)
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Figure 2.2: Lowest bands of graphene in the tight binding model. Inzoom, the contact point between the two bands at the K points, wherethe Fermi level sits, for undoped neutral graphene.
where ξ = ±1 accounts for the valley and vF is the Fermi velocity defined as:

vF =
3tacc
2ℏ

. (2.11)
The dispersion relation around the Fermi level is then

ϵ = ℏvF q (2.12)
Consequently, close to the K, K’ points, graphene effectively behaves as a

system with a linear dispersion relation, electron-hole symmetric and with the
valence and conduction band touching in a single point. From this particular
dispersion relation the density of states can be calculated:

g(E) =
2|E|
πℏ2v2F

(2.13)
which also follows a linear behavior. As we can see from figure 2.3, the DOS
vanishes at the CNP, which by convention is set at ϵ = 0. As mentioned before,
it is the same position of the contact points of the linear conduction and valence
bands. This is known as the Dirac point. This vanishing DOS gives graphene its
well-known resistance maximum as a function of gate voltage. The maximum of
the resistance is achieved at the CNP and from there, as electrons get into the
conduction band, the resistance drops again, see figure 2.5.
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Figure 2.3: Calculation of the density of states (DOS) for graphene in thetight binding model, considering only nearest neighbor hopping, andsetting the next-nearest neighbors hopping amplitude as zero t′ = 0.In the right, a zoom of this plot where the linear behavior of the DOS isevident. Adapted from [35].

By analyzing the lowest energy bands in graphene, we can observe many in-
teresting features present in the bands as well as in the susceptibility. Figure 2.4
shows the susceptibility as calculated in [36], accompanied by the band structure
that leads to this magnetic response. In the x axis we show the chemical poten-
tial normalized by the hopping parameter t. At charge neutrality, in the K points
(µ/t = 0), the linear dispersion and the touching point of the bands is characteristic
of graphene. This gives, as consequence, the Dirac-delta diamagnetic divergence
(red arrow). At higher doping, at the M point (µ/t = 1), there is a saddle point in
the band structure. It is accompanied by a paramagnetic divergent susceptibility
(black arrow). At the extremity of these bands, at the Γ points (ν/t = 3), the
dispersion relation is parabolic, and then, the limit where electrons behave quasi-
freely is attained. Then, the Landau diamagnetism is observed (green arrows).

At the Dirac point then, graphene has a vanishing number of charges and one
may expect that the screening of the external magnetic field due to free charges’
motion is weak. However, graphite has a well-known large diamagnetic behavior
when magnetic field is perpendicular to the plane of the layers. This paradoxical
result was already studied theoretically in 1956 [12], where a singular behavior was
predicted for the orbital magnetic susceptibility in response to an external magnetic
field perpendicular to a single layer of graphene. We can introduce the magnetic
field by minimal coupling Π⃗ = p⃗ − eA⃗, where A⃗ = −Byu⃗x in the Landau gauge.
Then, introducing this in the Hamiltonian 2.10, for the ξ = 1 valley we have the
Schrodinger equation

ĤΨ = vF

[
0 Πx − iΠy

Πx + iΠy 0

] (
ψA

ψB

)
= ϵ

(
ψA

ψB

)
= ϵΨ (2.14)
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Figure 2.4: Up: orbital susceptibility of graphene in a model of 2 cou-pled bands calculated in [36]. Down: Band structure of the two lowestenergy bands in graphene, calculated with the numerical package py-binding [37]. The black arrows are the points where saddle points ap-pear in the band structure, and the corresponding paramagnetic sus-ceptibility. Red arrows show places of Dirac points with diamagneticdivergences. Green arrows correspond to parabolic bands and Lan-dau diamagnetism.

22



Figure 2.5: The red curve shows the typical behavior of graphene’s re-sistance as a function of the gate voltage. It reaches a sharp peak atcharge neutrality point, where the lower band is completely full. The re-sistance drops fast as graphene is doped with either electrons (Vg > 0)or holes (Vg < 0). This 3 cases are showed by the cones representinggraphene’s bands and their filling showing how the chemical potentialcan be controlled via a gate voltage. The inset of the top part is theschematics of a top gate on graphene. Au electrode and graphene arethe two plates of a parallel capacitor, with BN as the dielectric.
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[38, 33, 12] which leads us to a system of 2 equations:

ϵψA = vF (Πx − iΠy)ψB (2.15a)
ϵψB = vF (Πx + iΠy)ψA. (2.15b)

By substituting one into the other equation, we can decouple them and solve them
independently. With a bit of algebra and by the use of the canonical commutation
relations, we arrive to independent harmonic oscillator equations[

(e0B)2
(
p̂x
e0B

+ ŷ

)2

+ p̂2y

]
ψA =

(
ϵ2

v2F
+ e0Bℏ

)
ψA (2.16)

where e0 = −e ≃ 1.6 × 10−19C. Looking at equation 2.16, we can notice that
it has a similar shape than an harmonic oscillator in one dimension (y), centered
around p̂x/e0B ≡ y0.

We can introduce the definitions of magnetic length lB and cyclotron frequency
ω′
c as [33]

lB =

√
ℏ
e0B

(2.17a)
ω′
c =

√
2vF
lB

=
vF

√
2e0B√
ℏ

. (2.17b)
These constants are meaningful because in one case the magnetic length defines
the limit when the Peierls substitution is valid, this means, as long as the space
between atoms is much smaller than lB ≃ 23nm/

√
B(T). In the other case, ω′

c

is the equivalent of the cyclotron frequency for relativistic particles. If we multiply
equation 2.16 in both sides by v2F /ω

′
cℏ, with some algebra and rearrangement of

the terms we obtain:[
ω

′2
c

2

ℏ√
2vf lB

(ŷ + y0)
2 +

p̂2y
2

√
2vf lB
ℏ

]
ψA =

v2F
ω′
cℏ

(
ϵ2

v2F
+ e0Bℏ

)
ψA (2.18)

Now this equation has the exact same form of the 1D harmonic oscillator, ψA

are eigenfunctions of the harmonic oscillator and the eigenvalues of the energy are
λn = ℏω′

c(n+ 1/2). Then, the right part of 2.18 leads to

ϵn = sign(n)
√

2v2FℏBe0|n| (2.19)
where n is the Landau level index and can take any integer number, including zero.
Their degeneracy per unit area is given by 4eB/h, where the factor 4 considers
the spin and valley degeneracies.

The 0th level is precisely the reason why graphene is strongly diamagnetic.
The qualitative argument for this diamagnetism can be seen as follows: because
of equation 2.13, we know that the states are distributed linearly and continuously
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Figure 2.6: The continuous distribution of states in zero field coalesceto form the Landau levels spectrum. For graphene in (a), we notice theformation of a level at zero energy, which is absent for the Dice modelin (b). Taken from [19].
when there is no magnetic field. Once the magnetic field is on, groups of states
coalesce to the average energy of the group, see 2.6. The n = 0 level is shared
between valence and conduction bands but the later are empty, so the levels in
the valence have to increase their energy to form this Landau level, therefore,
the magnetic response will be diamagnetic, repelling the external field. To show
the importance of this level, McClure calculates an estimation to the contribution
of the condensation of the states into the 0th Landau level to the susceptibility
[12]. Although the exact value is slightly different, it let us have a very close
approximation. At zero field, the total energy of this group of electrons is

E =

∫ E0

−E0

g0(ϵ)f(ϵ)ϵdϵ (2.20)
where g0 is the density of states given by 2.13, f is the Fermi-Dirac function and
E0 is the energy of the limit of the group of electrons that will populate the n = 0

level (see figure 2.6). The value of E0 is obtained by equating the degeneracy of
the level with the integral of the density of states up to that point. Because the
density of states is linear, the integral is the area of a triangle with base E0 and
height g0(E0). Then, because the n = 0 level is equally shared between electron
and hole states, this area accounts only for half of the degeneracy in the level:

1

2
E0

2E0

πℏ2v2F
=

1

2

4eB

h
(2.21)

from where
E0 = vF

√
eℏB. (2.22)

If the energy scale associated to the magnetic field, ϵB =
√
2ev2FℏB, is small

compared to the thermal energy, kBT , then we can expand f(ϵ) to first order and
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write:

E ≃ 4

πℏ2v2F

∫ E0

0
ϵ3f ′(ϵ = 0)dϵ. (2.23)

The change in energy produced by the field is −E because the energy of the level
0 is exactly zero. Then, by neglecting the change in entropy (which is a rough
approximation), the susceptibility in the limit kT >> ϵB is:

χn=0 ∼ −∂
2E

∂B2
∝ −

e2v2F
π

1

kBT
sech2

(
µ

2kBT

)
. (2.24)

The maximum value of this function is at µ = 0. χ0 gets sharper and bigger as
T gets smaller, and the limit is δ(µ) when T → 0. This χ0 is an overestimation
but it is of the same order of magnitude than the exact calculation, differing by
a factor 2/3 from the exact value due to the assumptions made before. What is
important from the message given by McClure is that the large diamagnetism is
due to the existence of the n = 0 level. The fact that this level is shared between
valence and conduction band allows for the possibility of interband transitions and
the fact that the diamagnetism is large is due to their very low effective mass (in
fact they behave as massless particles).

In the limit when the temperature and chemical potential are zero (T = 0,
µ = 0), we can estimate the change of energy associated to this first region λ in
a similar way. In this case, f(ϵ) = 1 for the occupied states (ϵ < 0) and then, the
integral 2.20 becomes

∆E = −
∫ 0

−λ
g0(ϵ)ϵdϵ =

2

3πℏ2v2F
ϵ3
∣∣∣∣0
−λ

. (2.25)
From equation 2.25 we obtain the magnetization:

M = −∂∆E
∂B

= −vF e
3/2

π
√
ℏ

√
B (2.26)

which allows us to recover the
√
B dependence of the magnetization, characteristic

of graphene. Again this is an overestimation (by a factor 2 approximately) but it
shows the importance of the zero level.

The existence of this n = 0 level can be seen equivalently as a consequence
of the Berry phase of π in graphene, which can be understood by the following
argument: The semiclassical Onsager’s quantization rule [39] fails to recover the
exact distribution of the Landau levels in graphene. This rule is the condition for a
semiclassical wavefunction to have a single value. It states that when an electron
moves around its cyclotron orbit, the total stationary phase accumulated is zero
modulo 2π [40]. In a semiclassical approximation, only the spatial and Aharonov-
Bohm phase contribute. In the case of graphene, the problem is the absence of
the 0th level even though the (nB)1/2 law for Landau levels is present. However,
a correction of this quantization rule can be done in order to solve this problem.
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Figure 2.7: (Left) diagram of the dice lattice showing the 3 atoms persite whose . (Right) Numerically calculated orbital susceptibility of thedice lattice for a temperature kBT = 0.01t. At µ = 0, χ is divergent andparamagnetic. Adapted from [21].
Kohn [41] and later Roth [42] proposed a generalization of Onsager’s rule in order
to determine both the steady susceptibility and the de Haas-van Alphen oscillations
in Bloch’s electrons. By taking the next term in the expansion series of the energy
as a function of magnetic field, the quantization condition is given by:

An = πk2n =

(
n+

1

2
− ΦB

2π

)
2πeB

ℏ
. (2.27)

where each energy level, n, describes a semiclassical orbit with area An. ΦB is the
Berry phase acquired by the motion around the orbit. In the case of open orbits,
it has the value of 0. For graphene, it is equal to π. By inserting 2.12 in 2.27, we
are able to recover 2.19.

If the Berry phase is zero, however, the Landau spectrum is

ϵn =

√
2ev2fℏB

(
n+

1

2

)
. (2.28)

It was shown in reference [19] that for a system whose Landau levels follow
2.28, the orbital susceptibility is still singular at the charge neutrality point, but
the sign of the singularity is positive. This means that it is paramagnetic instead
of diamagnetic. We see in figure 2.7 the T3-lattice (or dice) model. This is a
triangular lattice with 3 atoms per lattice site. The distribution of Landau levels is
given by equation 2.28. This subtle but important change inverts the sign of the
divergence of the susceptibility, which now behaves as χDice ∼ +δ(µ).

The exact calculation of the susceptibility of graphene in the presence of dis-
order, magnetic field, as a function of temperature and chemical potential needs
a bit of attention and the main steps to get it will be given in next chapter 5, as
part of the results obtained by our collaborators and presented in [17].
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However at this point we can make some comments about graphene’s suscep-
tibility. As it was mentioned earlier, McClure already found that in the limit where
T → 0, the susceptibility takes the form of a Dirac delta function of the chemical
potential χorb ∼ −δ(µ). This leads to a surprising result: the orbital magnetic
susceptibility, at vanishing magnetic field, diverges at the charge neutrality point.
But, the density of states at CNP in graphene is zero. Now, a paradoxical conclu-
sion appears: at CNP there are no carriers that can make opposition to the external
magnetic field, nevertheless, graphene’s orbital magnetic susceptibility diverges!

In the words of McClure, the diamagnetic characteristic of this susceptibility is
due to the degeneracy of the Fermi level and the existence of the interband terms
in the tight binding Hamiltonian of graphene. This is nowadays resumed as the
contribution of the π Berry phase [21]. The fact that susceptibility diverges is
related to the ultra-relativistic nature of electrons in graphene, in simpler words,
their linear dispersion relation [12, 19].
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3 - Giant magneto-resistance (GMR) sensors

One of the main goals of this project was to measure the orbital magnetization
of graphene and graphene-based 2D materials. As it was mentioned before, the
orbital magnetic moment of a 2D crystal is expected to vary linearly with the
applied external field. Then, the higher the external field, the larger the amplitude
of the response signal, but also the undesired effects of the external field in the
measurement become more important and harder to subtract. In addition, we must
be sure that we can discriminate the signal from our sample from all the other
magnetic contributions originating from external magnetic fields, electromagnetic
radiation, impurities in the substrate or sample, or even magnetic contributions
intrinsic to the sample that do not have the same nature, for example magnetic
impurities from vacancies or defects. This is the reason why, it is necessary to
ensure that only the magnetic signal coming from the orbital currents in the crystal
is measured.

Another experimental difficulty that we have faced during this project is evident:
the amplitude of the orbital magnetization of a single graphene flake is expected
to be small. Using equation 1.13, mentioned in the previous chapter, one can
estimate the order of magnitude of the susceptibility. At T = 4K and for a small
external field, the orbital current expected is of about 10µA, in the absence of
disorder. If we consider this current as a classical cyclotron orbit (to simplify),
the magnetic field it produces is of the order of 1 − 10nT, at 1µm. This field is
co-linear and anti-parallel to the external field that generates this response. Then,
the signal we search is a correction of 10−7-10−8 times the external field, in the
best case scenario. This means that very sensitive probes are needed and which are
usually limited by the range of operation of external field. (Later in this chapter,
section 3.6, we will briefly mention the other probes that have been tested).

3.1 . GMR detectors

The probes that we chose to measure the magnetic response of the 2D materials
studied are GMR probes. The magnetoresistive material of the GMR detectors
consist of a multilayered material that contains ferromagnetic layers separated by
non-magnetic layers with a large enough spin diffusion length, lSD [43], which is
the mean distance along which electrons can diffuse between spin-flipping events
[44]. These layers are sufficiently thin to ensure negligible leakage fields. The GMR
effect is based on the variation of conductivity in these multilayered ferromagnetic
materials according to the relative orientation of the different layer’s magnetization.

This effect was discovered in the late 1980 by the works of Fert and Grunberg
[45, 46]. They observed a high change in the resistance of a ferromagnetic multi-
layer device when the magnetization of these layers where brought into alignment
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using an external magnetic field. Fert and Grunberg were awarded the Nobel prize
in 2007 for their discovery, as it was one of the fundamental ideas behind the de-
velopment of spintronics, field that has been extensively studied both theoretically
and experimentally through these years. For example, the advances in this field
has led to the improvement of the technology used for the reading of hard disks
and for designing new methods for mass storage devices. In the heart of spintron-
ics is the idea that electrons have the spin degree of freedom (that is quantized)
and, through imposed conditions, can be manipulated to achieve control over their
transport. For example, in magnetic materials, the spin of conducting electrons is
polarized depending in the characteristics of the crystals and so magnetic scattering
will be favored or not depending on the spins of electrons in an injected current.
This is the idea behind the GMR devices.

Perhaps the easiest way to understand the magneto-resistance phenomenon
in multilayered materials is by looking in figure 3.1A at the current perpendicular
to plane geometry (CPP). Most of the applications of these devices in standard
technology use the CPP configuration, for example hard disk drives. Following the
direction of the current, the spin of the conduction electrons is polarized accord-
ing to the direction imposed the magnetization of the pinned ferromagnetic layer
(green). Then, electrons travel through a non-magnetic material (orange spacer
layer) without magnetic scattering if lSD is big enough. Afterwards, electrons go
through the free ferromagnetic layer (blue). They will find it easier to enter in
this second layer if the orientation of both magnetic layers is the same. From this
basically general idea, we can expect that the resistance of the device will strongly
depend on the relative angle between the hard (pinned) and soft (free) layers. Un-
derstanding this geometry in a theoretical model is relatively simple because the
multilayer can be modeled as a series of resistors whose values change according
to the relative alignment of the magnetic layers. For a detailed description of of
this CPP geometry, we can see the corresponding section in reference [47].

GMR devices can also have a geometry similar to the one showed in figure
3.1B, where the current flows in parallel with the layers. This geometry is known
as current in plane (CIP), and it is the one used in our experiments. In CIP
configuration, the current flows parallel to the layers and electrons go through both
magnetic layers and the spacer successively and repeatedly, with the condition that
the layers are sufficiently thin. Thus, in order for this configuration to exhibit a
sizable GMR behavior, there is an optimal thickness of the spacer which should
be thin enough in order that the electrons can travel easily between the magnetic
layers, but also thick enough in order that the coupling between ferromagnetic
layers is not too high.

CIP mode can be modeled then as a small correction to the conductance. One
can consider the conductance of all layers in parallel and add the contribution of the
interfaces of magnetic layers in the transport of the electrons. They generally have
a structure (F/NM)n, which is made by stacking n times a layer of ferromagnetic
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Figure 3.1: (A) Diagram of a spin valve device. In this geometry thecurrent flows perpendicular to the plane of the layers (CPP) followingthe x axis (red arrow). (B) Diagram of a current in plane (CIP) geometry.Current flows in parallel with the plane of the layers following the y axis(red arrow). This is the geometry of our probes.
transition metal layer, F , in contact with a non ferromagnetic metal NM . Then,
the whole stack is connected by the sides, as represented in figure 3.1B. In the
following, we present a very brief description of the model derived in [48]. It allows
to understand the GMR effect in the CIP geometry.

3.2 . CIP in a nutshell

In 1989 Camley and Barnas [48] proposed the first model in order to explain
the changes in resistance observed in Fe/Cr layered structures, that was previously
reported by Grunberg [46]. This model is based on the Fuchs-Sondheimer [49]
theory of the conduction in thin films of metals. From a semi-classical approach,
this model solves the Boltzmann equation for conduction quasi-free electrons by
considering each spin species as independent. This is known as the two current
model, where the total current density, J⃗ , can be decomposed into two independent
contributions, one for each spin.

J⃗ = (σ↑ + σ↓) E⃗ (3.1)
where σ↑,↓ are the conductivities for spin up and down respectively and E⃗ is the
electric field. By neglecting the effects of magnetic fields on the conduction, the
Boltzmann equation is:

− e

m
E⃗ · ∇⃗vf + v⃗ · ∇⃗rf = −f − f0

τ
(3.2)

which relates the rate of change in f , the electrons distribution function, due
to external fields, E⃗. f is the out-of-equilibrium, local, time-dependent Fermi-
Dirac distribution of electrons in the material, in the presence of an electric field,
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Figure 3.2: Fe/Cr/Fe multilayer in CIP configuration, the first genera-tion of GMR devices. It is also the basic system that is analized by [48]in their model. In the figure, the equations 3.7 (red) and 3.8 (black) areshown schematically. Subindices +,− refer to the velocity of the elec-trons along the x axis, i.e., vx > 0 and vx < 0, respectively. Subindices
↑, ↓ refer to the spin of the electrons along the z axis.
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(f = f(r⃗, v⃗, t)). τ is the relaxation time related to collisions and f0 is the Fermi-
Dirac equilibrium distribution function.

In a thin film whose thickness grows in the x direction, one can write f as

f = f0 + g(v⃗, x), (3.3)
where g is a small correction to the equilibrium, and so Boltzmann equation reads:

∂g

∂x
+

g

τvx
=

eE

mvx

∂f0
∂vy

, (3.4)
where the electric field has been chosen along in the y direction, parallel to the
layers, as it is in a CIP geometry.

At this point, g can be separated into different regions in space and adding the
contributions of each spin species up or down (note that the defined regions are
not the same as layers, as there are 4 regions for 3 layers). Thus, in A region, g
has the form

gA,±,↑ =
eEτ

m

∂f0
∂vy

[
1 +A±,↑ exp

(
∓x
τ |vx|

)]
. (3.5)

Where the ± indicates the sign of the velocity of electrons in x and the arrow
indicates the spin. Coefficients A±,↑ need to be determined by the boundary
conditions of the layers and so we could calculate the current density originating
from g as:

J⃗(x) =

∫
vyg d⃗v. (3.6)

At the interfaces, electrons can be transmitted with probability T or reflected with
probability R, except at the outermost boundaries where electrons cannot escape
so they will be perfectly reflected. As it is shown in figure 3.2, gA,−,↑ (which refers
to electrons in region A with spin up and moving to the left vx < 0), is affected by
electrons coming from neighboring region B with same spin ↑ and velocity vx < 0,
and by electrons in the same region A with the same spin ↑ but opposite velocity
vx < 0 who reflect on the interface located at x = −a. For this boundary, we can
write:

gA,−,↑ = T↑ gB,−,↑ +R↑ gA,+,↑ (3.7)
and similarly for the other boundaries, spins and velocity directions.

We can also wonder about electrons that start in one Fe layer and arrive to the
next Fe layer, from region A to D or vice versa. Here we need to consider that the
magnetization of the two layers may or may not be different, and so, an electron
with spin up in the regions A and B, can be seen as an spin down in the regions C
and D. This is not really a flip of the spin but instead a change in the direction of
the quantization of the spin. In the model of Camley and Barnas, they place the
x = 0 line as the point of this change of the direction of the quantization. In this
case, it is necessary to take into account this possibility by adding coefficients of
transmission up-up T↑↑, down-down T↓↓, up-down T↑↓ or down-up T↓↑.
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As an example of the boundary conditions that we need to consider, we can
focus on the region C at x = 0, according to figure 3.2 (red diagram). The
distribution of electrons with spin up moving to the right is composed by the
electrons coming from B (here there is no reflexion as z = 0 is not a real boundary).
From one side, those electrons who have spin up, related to A region, and continue
having the same direction respect to D. From the other side, spin downs in A region
that are spin up respect to D region

gC,+,↑ = T↑↑ gB,+,↑ + T↑↓ gB,+,↓ (3.8)
where this double-transmission probabilities are dependent on the angle between
the magnetization of Fe layers θ

T↑↑ = T↓↓ = cos2 (θ/2)

T↑↓ = T↓↑ = sin2 (θ/2),
(3.9)

which will be determined ultimately by the external magnetic field Bext.
To simplify the model and reduce the number of parameters in this already

large set of equations, reference [48] assumed that there is no reflection at the
inner interfaces of the multilayer, by considering the metals to be identical except
for the magnetization, then all coefficients of reflexion are zero R = 0. This will
greatly simplify the model making it depend only on three parameters: T↑, T↓
and of course θ(Bext). Once all the coefficients are obtained, the correction to
the current can be calculated as a sum of two parts of different spins, and then
added to the current given by the equilibrium distribution function. Although these
simplifications seem rough, the model in [48] showed it is possible to capture the
essence of the behavior of the magnetoresistance of the multilayer, as it is shown
in figure 3.3.

The system studied in reference [48] is the multilayer used in [46] Fe/Cu/Fe.
At zero magnetic field, the magnetization direction of the Fe layers is antiparallel.
The magnetic field is applied along the easy axis of the stack, which is in plane,
perpendicular to the direction of initial magnetization of the Fe layers.

Then, when both Fe layers have anti-parallel magnetization vectors, spins arriv-
ing to a layer of opposite magnetization orientation will have an extra energy and
thus, they will relax by magnetic scattering events, producing a high resistance.

In the opposite case, when layers have parallel magnetization vectors, θ = 0,
the transmission for the majority of the species of spin is favored (cos (0) = 1) as
it is aligned with the magnetization, producing a decrease in resistance. In figure
3.3, this regime is reached with high magnetic fields where the relative change in
resistance is the lowest.

More sophisticated models have been proposed where it is explicitly taken into
account in the calculations the difference in the mean free path of the spin species
and between layers, for example [50]. Nevertheless, they maintain the idea of
explaining the GMR effect through the coexistence of 2 currents of opposed spin

34



Figure 3.3: The results of the model of Camley and Barnas. The qual-itative characteristics of the behavior of the change in resistance as afunction of the field is captured. In the theoreticalmodel and the exper-imental results (from [46]), the magnetization vectors of the Fe layersare antiparallel at zero magnetic field Bext (antiferromagnetic couplinggiven by the thickness of Cu). By increasing the horizontal magneticfield, the magnetization of both Fe layers align with the direction of
Bext and then the resistance decreases to a minimum. The blue linesshow the direction of themagnetization of each Fe layer. Adapted from[48].
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that conduct in parallel, and whose difference can be attributed to the different
transmission probabilities of each spin into a new layer, and that is also dependent
on the angle between the direction of the magnetizations. But the purpose of this
part is just to have a simple picture of the quantities that are involved and the origin
of the GMR phenomena, to not treat our probes as mere black-box-transducers.

To summarize the functioning of the GMRs, the resistance of the multilayer
can be seen as a constant part that is modified by a small correction dependent on
the magnetic field. This small resistance correction changes according to the angle
between the magnetization vectors of the layers. In this spirit, to take advantage of
these effect, the magnetization of one of the layers can be pinned to one specific
direction. Then, by applying a magnetic field that makes the soft layer aligned
to the pinned one, the resistance of the device will be reduced. If the magnetic
field makes the layers to be antiparallel, then the resistance will increase. This
has been done in the probes we use. We can compare the results of the model
and experimental results shown in figure 3.3 to the behavior of our sensors. If we
consider only half of figure 3.3 (negative magnetic field up to zero), the behavior is
the same we can observe in figure 3.5. By contrast, once we completely anti-align
our GMRs, we saturate the resistance and we cannot see the decrease shown for
positive fields in 3.3. The reason is that our probes have a pinned layer whose
coercitivity is much larger than the applied external fields.

Our probes measure the orbital magnetization by detecting the stray field of
graphene’s orbital currents when they are present, changing the resistance of the
device as a function of graphene’s doping.

3.3 . Fabrication

The GMR probes we used were fabricated by Claude Fermon, Myriam Pannetier-
Lecoeur and Elodie Paul, from SPEC-CEA. These sensors consist of a stack de-
posited by sputtering over a 300 µm-thick silicon substrate. It has the following
composition as given in the suplementary materials of [17]: Ta (3 nm) / NiFe(5
nm) / CoFe (2.1 nm) / Cu (2.9 nm) / CoFe (2.1 nm) / Ru (0.85 nm) / CoFe
(2nm) / IrMn (7.5 nm) /Ru (0.4 nm) / Ta (5 nm). The pinned layer is composed
of the antiferromagnet IrMn coupled to a synthetic ferromagnet (CoFe/Ru/CoFe);
on the other hand the soft layer is made of the CoFe/NiFe bilayer.

After the GMR stack deposition, an oven-annealing step at 1 T and 180 °C is
performed to set the magnetization direction of the hard layer. The GMR sensors
( 3 µm wide and 20 µm long (in their active region), see figure 3.4) are defined
by optical lithography and ion beam etching. Contacts consist of a Ti(10 nm)/Au
(100 nm) bilayer deposited by evaporation. The resistance of the contacted GMR is
150 Ω at 4K. The sample is then protected by a ∼ 900 nm-thick Al2O3 passivation
layer, deposited by sputtering, that not only protects the probes, insulates them
from the rest of the sampl and also, it allows to position graphene at an optimum
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Figure 3.4: Optical image of the sensors. The central zone is wherethe BN/graphene/BN stack is going to be deposited, centered in be-tween the two GMR stripes. The polarization current flows througheach stripe to the common electrode, from right to left in the picture.The most sensitive direction is perpendicular to the long axis of thestripes, along the y axis.

height to maximize sensitivity. An image of the central zone of the probes on a
chip is displayed in figure 3.4.

3.4 . Suppressing external fields

3.4.1 . Wheatstone bridge configuration

Once we understood the very basics of how our sensors work, the next challenge
is to ensure that this high sensitive probes are only measuring the field generated
by the orbital response of graphene. As it was mentioned in the previous section,
GMRs will react to any horizontal magnetic field. It is necessary then to suppress
all the spurious external fields. This is cleverly done by putting two GMRs par-
allel to one another and measuring the difference between their resistances. In
this configuration, the contributions of magnetic fields which are identical on the
2 probes cancel each other. For example, one can be affected by macroscopic
sources of electromagnetic radiation, for example, the earth’s magnetic field, ex-
ternal magnetic noise from neighboring equipment, if we use only one GMR. But
by subtracting the same background from the neighbor probe, we are not sensitive
to this background. For the same reason, the field that are opposed in each of the
GMRs add to one another. This is exactly what happens with the field generated
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A B

Figure 3.5: A shows the change in resistance of one GMR alone withhorizontal field and B shows the relative change of sensitivity when thevertical field is not compensated. This loss of sensitivity (to comparewith figure 3.8) is mainly due to the residual in-plane projection of theexternal field [17].
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Figure 3.6: Diagram of the circuit used for the measurements. In thecenter, the Wheatstone bridge showing the set up for the connectionsof the GMRs. This set up allows for the system to remove the influ-ence of external magnetic fields by tuning R1 and R2, polarization re-sistances, to get ∆V = V1 − V2=0, when Bperp = 0. The purple barrepresents graphene and the yellow is the gate electrode. The shadedgray area is the part of the circuit at low temperature, tipically 4K.

by the gated part of graphene, which lies in the middle of the two GMRs and
because it is symmetric to the middle point of the GMRs, it has different sign in
each one, so the measured graphene orbital field is doubled. But this is not the
end of the story: we must be sure that the sensors report a zero value when they
are in zero magnetic field and that they will respond in an equal way to magnetic
field. For this, the first thing to do is to assure that the difference in the drop of
tension in each GMR is zero, in other words we require R1I1 − R2I2 = 0. This
is achieved by connecting the GMRs in Wheatstone bridge configuration as it is
depicted in figure 3.6. The objective is to modify the resistance in the variable
resistor (potentiometer) in a way that the potential drop at GMRs A and B are
identical when there is no magnetic field.

3.4.2 . Compensation

When the perpendicular external field is applied, then it is necessary to take
into account the misalignment between the direction of the field and the direction
perpendicular to the plane of the GMRs. In an ideal situation, both directions
coincide but in practice, these two directions do not exactly coincide. To com-
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Figure 3.7: Schematics of the set up used to apply the external mag-netic field. The horizontal Helmholtz coils cancel the horizontal projec-tion of the external magnetic field.

pensate for the projection of the external field in the horizontal plane, two pairs
of Helmholtz coils are placed along the x and y directions, see figure 3.7. We
increase adjust the currents in the x and y coils while simultaneously measuring
the sensitivity of the probes. We know in-plane components of the external field
alter the value of the sensitivity only when the probes are out of its linear regime,
which occurs at a few mT in the most sensitive direction (transversal, y in figure
3.4,3.7) as shown in figure 3.5 (the sensitivity along the longitudinal direction is
1/10 of the transversal one). As figure 3.8 shows, there is also loss in sensitivity
with the perpendicular magnetic field. This is due to some domains starting to
align with the perpendicular direction when it is sufficiently strong, and thus, not
participating in the correction to the conductivity part described in section 3.2.
This loss of sensitivity is intrinsic to the design of experiment and there is nothing
we can do about it, except for estimating its value from figure 3.8 and adding as
a factor in our results.

3.5 . Sign determination
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Figure 3.8: Variation in the sensitivity of a GMR device as a functionof perpendicular magnetic field. As reference, points where the max-imum sensitivity B = 0 and half of the sensitivity B ∼ 0.6T are high-lighted, as well as a rough tendency of this variation. Plot adapted from[51].
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If we want to determine the nature of the magnetic response, we must pay
extreme attention to the sign of the response. If these curves are indeed showing
the McClure peak, they must be diamagnetic, this means, to oppose the magnetic
field. In this regard, the sign of these curves relative to the external field must be
determined independently. The procedure is easier to do than to explain, but here
is the description of how it was done:

• Fix the sign of the external magnetic field. This is easily done using the
convention of the power source: positive sign will be the one created by a
positive current.

• Determine the spatial orientation of this positive external field. With the help
of the magnetometer in a smartphone, we can know whether our positive
field points in +Z or -Z direction. In this case, let’s assume positive field
points to +Z direction. It is shown by the vertical red arrow in figure 3.9.

• We can use this knowledge to apply a known horizontal field to each of the
GMRs independently, in this case, let’s focus on the right GMR in figure
3.9. The idea is to know how will the GMRs respond to a known field that
will mimic the stray field from the induced magnetic moment in graphene.
Knowing that each of them will respond with opposite sign. As we have two
pairs of horizontal coils that are perpendicular to each other, we can apply
this horizontal field in the direction perpendicular to the long side (the y
direction) of the GMRs, to simulate graphene’s field.

• Let’s say we apply a negative horizontal field to the GMR in the right.
The signal coming from the change of resistance of the GMR will have
a determined sign that will increase with increasing field. This sign will
determine the diamagnetic sign of the field that will be measured by the
GMRs.

• Once we know the diamagnetic sign, we should just compare it with the
integrated sign of the data obtained (shown later in the results section),
settling the diamagnetic or paramagnetic response of them.

• Then, by applying the opposite horizontal field, we can check that the GMR
will show an opposite response and then, we determine the paramagnetic
direction.

3.6 . Comparing with other sensors

As discussed in the SM in [17], we can briefly compare other probes to the
GMRs. For example, TMR detectors are in principle more sensitive than the GMR
sensors we have used. However, they are much noisier than GMRs in the range
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Figure 3.9: (A) Horizontal field applied on the right GMR to mimic thestray field from graphene. This field allows us to know the sign of re-sponse of the GMR to diamagnetism in graphene, shown in (B). (C) Hor-izontal field applied on the right GMR to mimic the stray field from gra-phene. This field allows us to know the sign of response of the GMR toparamagnetism in graphene, shown in (D).

43



of temperature and frequency we are working at. Moreover, the technique of
fabrication of these sensors with the constraint that they also should work at
cryogenics temperature with a small electric power consumption in order not to
heat the graphene sample, is not as advanced as for the metallic GMR sensors we
used. It is also interesting to compare this sensitivity of detection of our GMR set
up to SQUID detectors. If one considers a SQUID of 10 micron square 0.1 nT
leads to a flux of the order of 10−21Wb = 0.5 × 10−6Φ0 which is of the order
of the best sensitivity which can be achieved in zero magnetic field in a micro
SQUID. Nano SQUIDs are even more sensitive in terms of flux detection. Their
sensitivity in terms of magnetic field is however limited to 1nT, see [52]. They have
a much better spatial resolution than our GMR detectors which translates into a
higher sensitivity in terms of magnetic moment [53]. They can detect a single Bohr
magneton electronic magnetic moments, however all these SQUID detectors are
also very sensitive to out-of-plane magnetic field. In the present experiment, we
exploit the fact that GMR sensors are insensitive to the out-of-plane component of
the magnetic field, which is obviously not the case for SQUID sensors. NV sensors
are very nice quantum detectors of small magnetic moments but they cannot be
operated in magnetic fields above 100mT moreover they are not sensitive to the
sign of the magnetic field detected, whereas this sign issue is essential in our
experiment.

3.7 . Limit of magnetic field detection

The magneto-resistive sensors are inserted into a Wheatstone bridge circuit
with adjustable dc currents (in the 0.1 to 1mA range) through the two GMR strips,
in such a way that the bridge voltage is zero in a uniform horizontal magnetic field.
The bridge voltage is then read by a low noise voltage amplifier. We use a low noise
voltage amplifier which input noise voltage is 2nV/

√
Hz above 40Hz (the current

noise of the order of 10−14 A/
√
Hz yields a negligible contribution through the 150

Ω GMR sensors). We show in figure 3.10 the voltage noise of the amplifier together
with the noise measured on the DC current biased GMR sensors. This data show
that the amplifier noise is negligible compared to the intrinsic noise of the GMR
We have also checked that the graphene signal on the GMR does not depend on
frequency between 7 Hz and 125 Hz but is more noisy at low frequency because
of the low frequency 1/f noise of the GMRs. From this figure, it appears that it
could have been also interesting to work at even larger frequency. However we are
concerned with the fact that at high frequency the modulation of the gate voltage
induces current in graphene giving rise to an out-of-phase signal on the GMR
sensors. By limiting the frequency below 200 Hz, we ensure that this contribution
is negligible compared to the in-phase component due to the equilibrium orbital
moment of graphene. The lowest detectable magnetic field is then simply related
to the voltage noise measured on the GMR bridge Vn = 4nV/

√
Hz knowing the
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Figure 3.10: Noise spectrum of the short-circuited GMR probes andwith 500µA through the GMRs (red). The peaks at odd multiple valuesof 50Hz come from the power supply of the building sector [17]. Wehighlighted 123Hzbecause it is a typical value used in our experiments.
sensitivity of the GMRs, s(Bperp) = 2500 ΩT−1 shown in figures 3.5 and 3.8,
and the DC current drive IGMR = 0.5 mA which is the maximum allowed value
to keep the graphene device at 4.2 K. When data is averaged over time τ the
sensitivity reaches δB = Vn/(2sIGMR

√
2πnτ) = 40 pT for n = 100, τ = 3 s, at

Bperp = 0.1 T. And 0.4 nT at Bperp = 1T, taking into account of the decrease
of the sensitivity of the GMRs with perpendicular magnetic field.
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4 - Stack fabrication and measurement tech-
nique

In this chapter we describe the experimental techniques and fabrication details
that are used through all the experiments performed during this thesis. We will
discuss the most important details necessaries to understand the fabrication as well
as how the principle of the measurement work.

4.1 . Samples fabrication

Although it can be found that each group has its own recipe for the fabrication
of van der Waals hetero-structures, the basic steps are usually very similar. Here
we present our version of the recipe derived from reference [54].

4.1.1 . Exfoliation
The process starts with the preparation of the silicon substrate needed to

exfoliate the crystals. After cutting the wafer in easy to use and store chips, the
procedure is to clean them in 3 consecutive ultrasonic baths in acetone, isopropanol
and deionized water. Each bath lasts for 5 to 10 min. The exfoliation consists in
the separation of the bulk crystal into its layers. For that, we use adhesive tape,
deposit some pieces of the bulk crystal on the tape and then, by using another
piece of tape, we glue and tear the second piece to get thinner flakes. Then we
deposit these tapes on top of our silicon chips. Although the chips have to be
cleaned once more before contacting the adhesive tape. For this, we need to do
oxygen plasma tratment for around 20sec as suggested in [54]. This gives the
best results in terms of yield and size of the graphene crystals. In the case of BN,
the procedure is the same except for the plasma cleaning. This is because we are
not interested in few layer BN flakes. For thickness larger than 50nm, it is not
necessary to use the plasma. Once the tapes are on the chips, we heat them up
to 100°C for around 3min. Then, we let them cool down and separate the tapes
from the chips.

4.1.2 . Transfer
To pick up the flakes, stack and deposit them on the GMRs we used a tech-

nique similar to [54]. The difference is the polymer used and consequently, the
temperature values. We use Poly carbonate (PC). Due to its high adhesive power
and relatively low melting point it has become a very useful tool in the assembly of
van der Waals hetero-structures. In our case, the impossibility to heat the probes
to high temperature, makes PC the only polymer which can be used. Depending
on the concentration, PC’s melting point is around 180◦C and it can be removed
with its solvent, chloroform, which does not affect the alumina layer on our chips.
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Figure 4.1: (A) Graphite crystals on a scotch tape. (B) Graphene flakeon a SiO2/SiO substrate. Themonolayer is the part where optical con-trast is the lowest. (C) Schematics of the device consisting of a PC layeron top of a PDMS cushion used to fabricate the stacks.

Typical used concentrations of PC in chloroform are between 5-10% in mass. The
difference being that higher concentrations tend to be more plastic and easy to
manipulate, but the melting point tends to increase with concentration. The pro-
cedure to pick up flakes is as follows: First, we touch the silicon substrate close to
the region where the top BN is placed, leaving some space between the touching
point and the flake, typically 100µm. Then, when we increase the temperature
of the stage to 90°C, due to its thermal expansion, the film spreads it and covers
the whole BN. Then, we stop heating and let the thermal contraction reduce the
size of the contact zone. When the film retracts, it will pick up the BN flake.
Once we have the BN flake on the film, we repeat the procedure but this time
we carefully place the BN on top of the graphene we have selected. This time,
it is not necessary to heat up to 90°C, as even room temperature is sometimes
enough to pick up. Finally, we repeat the same procedure to pick up the bottom
BN. Then we must deposit the stack on the GMRs. It is necessary to melt the
PC film to do so. We slowly increase the temperature, slightly retracting the slide
from the stage to keep the contact zone constant. This helps the PC film to break
far from the flake to reduce the risk of picking it up again. At 180°C we will see
a dark thick circumference that indicates that the PC has broken. Then it is safe
to slowly retract the slide to separate it from the stage.

Once the film is cold, we can take the chip and soak it into chloroform for
15min to clean the PC. Then, the film melts leaving few traces and the stack is
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ready to pass to the contact fabrication. Contacts are made using a combination
of electron beam lithography and metal deposition. Electrodes are usually made
of one thin layer of around 10 nm of titanium or palladium and a thicker layer
of gold. Pd is used in the cases where graphene needs to be connected through
1D contacts, to guarantee that the metal contacts the graphene. Pd is deposited
using sputtering technique, which makes the flow of metal isotropic. Ti is usually
used for the first layer of the gates. The reason being its good adhesion with non
metallic surfaces. Ti is usually deposited using electron-beam vapor deposition as
well as gold.

The fabrication methods described above are general for all of the samples in
this manuscript. Nevertheless, for the fabrication of the moiré samples, we must
add an extra consideration: moiré effects are noticeable at angles smaller than 2◦,
and increasing for smaller angles. So we must make sure that graphene and BN
crystals are aligned and for this, we should look at the geometry of the crystals.

In the following, we will describe the two methods we used to fabricate the 2
moiré samples that we study and whose results will be shown below in chapter 6.
We have called these samples MA and MB.

4.2 . Fabrication of the graphene/BN moiré samples

In a honeycomb lattice, one can have two type of endings: armchair or zigzag,
both are shown in figure 4.2. Given this, an arbitrary edge in a flake can be a
combination of multiple sections of different ending. However, long straight edges
are formed by large series of the same type of ending or as a linear combination of
both endings. In this way, a long straight edge will be either parallel to a lattice
vector or to a linear combination of them.

Then, we first identified long straight edges in both graphene and hBN in each
case. These edges follow the crystallographic axes of each honey-comb lattice.
Therefore, by aligning these straight edges, one has equal probability that graphene
and hBN are aligned or that their respective alignment are shifted by a 30◦ angle.
In order to guarantee the alignment, two different methods were followed for the
two samples MA and MB investigated .

For sample MB, a flake of graphene with a long straight edge of about 45µm
long was cut in three parts of roughly 20µm, 5µm and 20µm respectively. The first
part was aligned and picked-up with a straight edge of a big flake of hBN. Then
covered by a bottom misaligned hBN. The second and third parts were rotated
with an angle of 30◦ with respect to the hBN edge, picked up with another part
of the same top hBN flake and finally covered with a misaligned hBN. Raman
spectroscopy measurements allowed us to determine which of the two samples
is the one with the largest moiré constant by measuring the width of the 2D
peak. This sample was selected and deposited on the top of the GMRs based
magnetization detector, using the standard dry transfer techniques.
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Figure 4.2: Representation of a graphene flake where the 2 types ofborders are highlighted. Zigzag is highlighted in green, whereas arm-chair is in yellow

Figure 4.3: Signatures of themoiré potential on thewidth of the Raman2D peak.

In the case of sample MA, a large hBN flake was cut into two parts along
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one main crystallographic edge (this was done by opening a narrow slit though the
hBN flake using electron-beam lithography followed by reactive ion etching ) A
single graphene flake was then aligned along the straight edge of one of the halves
of the hBN flake, and encapsulated beween this part and the other half previously
rotated by 30◦. The presence of a long-range moiré pattern, was confirmed by
Raman spectroscopy. For both samples these Raman experiments enabled us the
determination of the moiré lattice parameters. According to [55], the FWHM of
the 2D peak of the Raman spectrum of graphene varies linearly with the size of
the moiré superlattice, aM leading to the relation

FWHM2D = 2.77 ∗ aM + 0.77. (4.1)
From figure 4.3, we found the FWHM of the 2D peak to be 26.5cm−1 for MA

sample and 34.9cm−1 for MB. From these values, using the relation given above
relating the width of the Raman 2D peak to the moiré lattice, we can deduce
for the 2 samples A and B, aM = 9.5 ± 0.5nm and 12.5 ± 0.5 nm as well the
twist angle θ between the hexagonal lattices of graphene and hBN acording to the
relation

aM =
(1 + ϵ)a√

2(1 + ϵ)(1− cos θ) + ϵ2
. (4.2)

where δ = 0.017 is the ratio between graphene and hBN lattice constants). We
find θA = 1.1± 0.1° and θB = 0.6± 0.1°.

4.3 . Set up and dimensions

We now look at the coupling between our sample and the sensors. For this, it
is important to insist on the fact that the objective is to measure the stray field of
the orbital currents. Because the GMRs are sensitive to the in-plane field, then, we
must let this stray field have an in-plane projection as important as possible. This
can be done by centering the part of the sample covered by the gate in between
the GMRs, and adjusting the position of the graphene sample along the z axis
perpendicular to the GMR, as shown in 4.4. There is a compromise to be done
between the distance and the angle of the field lines on the GMR. On one side,
the higher the sample is located, the smaller the intensity of the field (Biot-Savart
1/r). On the other hand, a higher sample guarantees that the horizontal projection
is larger.

In order to estimate the magnetic susceptibility of graphene, a geometrical
model of the orbital current loop is needed. The easiest model one can imagine
is the one of a current flowing along the edges of the gated region of graphene.
This is equivalent to a thin rectangular loop carrying the orbital current. The
edges parallel to the GMRs mostly contribute to the detected magnetic field. To
illustrate better the dimensions and quantitatively estimate the relation of field and
current, we used in this part the dimensions of the first sample that we measured
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Figure 4.4: Front and lateral views of the sample with the definition ofthe angles θh1 and θh2 between the 2 edges of the gate electrode andthe plane of the GMR. C is the center of symmetry of the GMR detector.
[17] (the other samples studied in this manuscript have similar geometries, except
for MB, which is smaller). From Biot-Savart law we can determine the horizontal
component of the magnetic field detected by the GMR. This value at the point
C, the center of the GMR, is computed from the distances from C to the parallel
edges of the gated region: d1 = 1.75 µ m and d2 = 5.57 µ m as well as the angles
θh1 = 30.96o, θh2 = 9.3o α1 = 76o, α1 = 51.5o shown in figure 4.4.

BGMR =
µ0Iorb
2π

[
sin(θh1)

d1
sin (α1)−

sin(θh2)

d2
sin (α2)

]
(4.3)

from where we can find the coefficient relating the orbital current (or equivalently
the magnetization per unit surface) to the field measured by the GMR sensor:

Iorb = morb/S = 22.3×BGMR in A/T (4.4)
We also applied the same model to compare the experimental value of the mag-

netic field induced on the GMR by a rectangular gold loop (e-beam lithography and
metal evaporation) which was deposited between the GMRs. The measurements
of this loop were made during a previous work in the group [56]. The dimensions of
the loop shown in figure 4.5 were 4× 8µm, corresponding to the right lithographic
pattern. An AC modulation of the current through the loop was used to deter-
mined the response of the GMR to the field generated by the loop. A sensitivity
of 4 × 10−2TA−1 was obtained experimentally. When we applied the model of
equation 4.3 for the dimensions and geometry of this loop, the estimated sensitivity
was 5.2× 10−2TA−1, which agrees within 30% of the experimental value.
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Figure 4.5: Lithography pattern of current loops fabricated to calibratethe GMRs sensors. Only the right one was operational. Adapted from[56].
4.4 . Extraction of the signal from the noise

Once we see how to eliminate the external field, we need to see how to dis-
criminate our signal from 1) electronic noise and 2) from the magnetism coming
from impurities in the alumina, for example. A way to address these problems is
to apply an AC modulation on the gate voltage. First, let’s talk briefly about the
well known technique lock-in detection.

4.4.1 . Lock-in amplifier

Lock-in detectors are a very common equipment we can find in many laborato-
ries. The reason for their popularity is their capability to measure a periodic signal
buried into noise that can be several orders of magnitude larger. In order to do
so, lock-in amplifiers use phase-sensitive detection to extract the part of the input
corresponding to a specific frequency and phase, eliminating all other signals that
have different frequencies [57, 58]. Lock-in detectors use a reference signal, mixed
with the input, this means to multiply them and then to apply a low-pass filter.
So we can model our input signal as:

Vin = Vs sin (ωst+ θs) + FNoise({ω}) (4.5)
where Vs is the amplitude of the periodic signal of frequency ωs we want to mea-
sure, {ωi} represents a set of all possible frequencies, in a simplified way to depict
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noise as the contribution of many possible frequencies. The reference signal cre-
ated by the lock-in has the form Vref = Vr sin (ωrt+ θr). When Vs and Vref are
multiplied together, we can distinguish two parts:

Vmixer =VsVr sin (ωst+ θs) sin (ωrt+ θr)

+
∑
i

Vr sin (ωrt+ θr)FNoisei({ωi}) (4.6)

where the second term contains the product of the reference and the noise. The
first term of the right part can be written in a better way:

VPSD = VsVr sin (ωst+ θs) sin (ωrt+ θr)

=
VsVr
2

[cos[(ωr − ωs)t+ θs − θr]− cos[(ωr + ωs)t+ θs + θr]] .
(4.7)

We are interested in having the exact same frequency in the signal and the
reference, so the first term in 4.7 will become constant in time, and later, by
applying a low-pass filter (which mathematically corresponds to averaging over
a time 1/2πfc), all the AC components will average to zero. Particularly, the
second term in equation 4.6 will give no contribution as the terms in the sum are
the product of sine functions of different frequencies, so averaging them in time
gives zero. The time constant in the lock-in determines the window for averaging.
The the cut-off frequency is the frequency at which the signal is halved. These
quantities are inversely proportional τ ∼ 1/fc and they determine the efficiency of
the filtering. A larger time constant will led to narrow bandwidth but it requires
longer measurements times.

Because of the design and planing of these experiments, we need now to gener-
ate the orbital magnetization in a way such that we can profit from the properties
of the lock-in detectors. From the theoretical predictions, we expect OM on gra-
phene to be strongly dependent on the chemical potential µ as shown in figure
2.4. It is a well known technology to control µ by applying a DC gate voltage
between one electrode and graphene separated by a dielectric, forming a capaci-
tor, and then sweeping this voltage to dope or undope graphene as the capacitor
charges/discharges (details maybe in graphene). In addition to this, one can add
modulation in series with the DC voltage. This means, to add an small AC voltage
to the sweeping DC voltage. The reason to do this will be explained in the next
section, but the idea behind this is that the lock-in will only measure the part of
the signal that varies in time at the chosen frequency.

4.4.2 . Modulationg the chemichal potential of graphene
By considering graphene as one of the metallic plates of a parallel plate ca-

pacitor, we can design a set-up that allows us to add or remove charges from it.
The principle is exactly the same as in a capacitor. The inset in figure 2.5 shows
the schematic view of the capacitor. Graphene encapsulated between two Boron
Nitride (BN) layers is connected by the sides following the 1D contact techniques.
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We place an electrode on top of the upper BN which is going to determine the
area of the capacitor. BN acts as the dielectric of the capacitor (ϵr ∼ 3.6). Then,
by applying a potential difference between graphene and the electrode, we can
dope graphene by adding negative charges, electron doping, or removing negative
charges, hole doping.

4.4.3 . Measured signal
The input of our lock-in is going to be connected to the output of a differential

pre-amplifier with gain G = 100. It then measures the potential difference between
the 2 GMRs, ∆VGMR, as shown in figure 3.6. Considering section 3.2, we will
measure the horizontal field dependent variations of the resistance of the GMR,
this means:

∆VGMR = 2× I × δGMR(BM ). (4.8)
where the factor 2 takes into account the 2 probes. This δGMR, is the field
dependent part and the field, BM , is the horizontal projection of the stray field
coming from graphene’s magnetism:

δGMR(t) =
∂R

∂BM
δBM (t) (4.9)

where the derivative is the sensitivity of the probes, typically in the order of 1 −
2.5 ΩmT−1. In summary, the measured quantity is the change in resistance,
δGMR(t), at the frequency of modulation of the gate. We can write then:

δGMR(t) =
∂R

∂BM

∂(KM)

∂Vg
δVg(t) (4.10)

where BM = KM , being K a geometrical constant that has been determined by
assuming the path of the orbital current and by usign Biot-Savart’s law. K was
calculated in section 4.3. δVg(t) = δVg(ω, t) is the modulation of the gate voltage,
at a frequency ω that is also the reference frequency of the lock-in.

So rephrasing equation 4.8 in terms of the gate voltage, at first order we have:

∆VGMR = I

[
∂R

∂BM

∂(KM)

∂Vg
δVg sin (ωt)

]
(4.11)

and by the principle of functioning of the lock-in, we know we will only recover the
part of the signal oscillating at frequency ω, so the information we get from the
lock-in is:

Vlock−in = IK

[
∂R

∂BM

∂M

∂Vg
δVg

]
(4.12)

from where it is easy to extract the actual quantity of interest:

∂M

∂Vg
=

Vlock−in

IK
[

∂R
∂BM

δVg

] . (4.13)
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5 - Experimental results: McClure suscepti-
bility in Graphene

In this part of the thesis, we will present the results obtained for a graphene
monolayer. By using the measurement principle described in chapter 3 and 4, here
we will present the measurement of graphene’s orbital magnetic susceptibility. This
chapter is taken from the article in reference [17].

5.1 . Detection of graphene’s divergent orbital diamagnetism
at the Dirac point

Orbital magnetism results from the quantum motion of electrons in a magnetic
field. At low energy, this motion leads to the Landau spectrum, which is, in
most two dimensional (2D) conductors, a harmonic oscillator-type spectrum with
equally spaced levels separated by the cyclotron energy ℏωc [11]. As long as the
material is non superconducting, this spectrum causes a very small diamagnetic
low-field susceptibility, that is usually hidden by spin contributions. However, some
materials, such as graphene, can display extraordinarily large diamagnetism. This
was predicted in the theoretical work of McClure [12], who showed that graphene
is diamagnetic at half filling (at the so-called Dirac point), with a divergent zero
field susceptibility

χ0 =
∂M

∂B
= −

2e2v2F
3π

δ(µ) (5.1)
where vF is the Fermi velocity, e is the electronic charge and the Fermi energy µ
is zero at the Dirac point. This is all the more surprising because the density of
states is zero at that point. The reason for this singular susceptibility stems from
the electron-hole symmetric linear spectrum of Dirac relativistic electrons, giving
rise to a Landau spectrum quantized as ±

√
nB where n is a positive integer. The

diamagnetic sign of χ0 is attributable to the existence of the zero-energy Landau
level (n = 0), as mentioned in 2 (see also figure 5 of [19] and related comment).
This peculiar level is known to result from the Berry phase [59] of π acquired by
the wave function pseudo-spin upon a revolution around a Dirac cone in reciprocal
space [35]. Therefore, the diamagnetic sign of the susceptibility at the Dirac point
is a direct consequence of the π Berry phase. Indeed, it has been shown that
slightly different models with a zero Berry phase lead to orbital paramagnetism at
the Dirac point [19]. To summarize, the divergence reflects the linear spectrum
and the diamagnetic signe reflects the non-trivial geometry of the eigenstates via
the Berry phase [19].

However, despite these striking predictions, the singular orbital magnetism of
a single graphene flake remains undetected. The reason for this lies in at least
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three obvious experimental difficulties. First, the magnetic signal of an atomic
monolayer is extremely small. Second, the McClure singularity, originally computed
for an ideal system without disorder, at zero temperature and in the limit of zero
magnetic field, is rounded when any of these conditions is relaxed [28, 60, 61,
62]. Finally, this orbital magnetism is expected to be hidden by the magnetism of
spins originating from edges, vacancies, or impurities [63], which tends to become
dominant at low temperature. This may explain why magnetization measurements
have to date only been performed on a macroscopic number of graphene flakes.
In one case [64], the focus was mainly on the spin paramagnetism of induced
vacancy- and resonant states-type defects, which were found to depend on the
chemical doping of the samples. A second set of measurements [65] did focus on
the diamagnetism, and found diamagnetism larger than that of pure graphite by a
factor of 3. The magnetization curves at high fields were found to be compatible
with the

√
B dependence predicted for the Dirac spectrum. However it was not

possible to fix the doping in those experiments, nor could the residual contribution
of paramagnetic spins along edges of the flakes be well controlled [66].

In the present experiment, by contrast, we measure the orbital moment of a
single flake whose Fermi energy is precisely controlled.

This is achieved by implementing several sensitivity-enhancing features detailed
in chapters 3, 4 and next section. As shown in figure 5.1, our experiment consists of
graphene monolayer, encapsulated between two hexagonal boron nitride (hBN) 2D
crystals, capacitively coupled to a top-gate electrode and positioned above a highly
sensitive magnetic detector made of two giant magnetoresistance (GMR) strips
(chapters 3,4 and next section) in a Wheatstone bridge configuration. One key
asset is that whereas graphene’s orbital magnetism responds to a field perpendicular
to the graphene plane ("vertical" field), the GMR detectors are sensitive only to
the in-plane-field, and thus detect the horizontal field generated by the orbital
current loops in the graphene, (see 5.1), all the while being insensitive to the
vertical component. A second feature is the addition of a small AC modulation
to the DC gate voltage, which in turn modulates the magnetization with respect
to gate voltage and thus the resistance of the GMR detector. Beyond increasing
the sensitivity, this modulation technique makes gate-independent magnetic signals
invisible. Thanks to those experimental implementations, we succeeded to detect
the derivative with respect to gate voltage of the diamagnetic McClure peak at low
magnetic fields. We have also measured the crossover to the de Haas-van Alphen
magnetic oscillations at higher fields.

Figure 5.2 shows the gate voltage derivative of the field induced by the graphene
sample on the calibrated GMRs as a function of Vg for perpendicular magnetic fields
between 0.1 and 1.2 T. We found an antisymmetric peak centered at Vg = −0.29

V which was identified as the Dirac point from the measurement of the resistance
of the sample R(Vg), shown on 5.2b (and figure 5.10). At low magnetic fields the
antisymmetric peak detected by the GMR is directly related to the derivative of
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the McClure peak with respect to the chemical potential (controled by the gate
voltage), as detailed in chapter 4. The experimental detection of this peak and
its evolution with magnetic field are the central result of our work. Both the
peak width and amplitude increase linearly with field, as shown in Figs. 5.2e and
5.2f. Above 0.6 T, ∂M/∂Vg(Vg) displays periodic oscillations in addition to the
antisymmetric peak around the Dirac point. Those oscillations are related to the
expected de Haas-van Alphen oscillations of the magnetization, as discussed below.

The magnetization, shown in figure 5.2c, is obtained by numerical integration
of the curves in figure 5.2a. The peak amplitude translates to a few nanoTesla
induced in the GMR plane by graphene’s response to a 0.1 T perpendicular field.
This illustrates the sensitivity of our experiment. The correspondence between
this detected field, BGMR, and magnetization is obtained by modeling the orbital
magnetic moment as an effective current loop whose geometry is defined by the
gated region of graphene 4.4. We find that positive magnetic fields produce a neg-
ative peak in magnetization, and vice-versa, which is consistent with the expected
diamagnetic response of graphene [12]. This sign of the response was carefully
settled via the sign of the response of the GMR sensor to a horizontal field of
known orientation. (chapter 3).

We can assert that the signal cannot be attributed to gate-voltage-dependent
magnetism of paramagnetic impurities, given the absence of temperature depen-
dence between 4.2 and 40 K [67] (see 5.12). In addition, thanks to our gate-
modulation technique, we can exclude spurious contributions from impurities or
defects in alumina or graphene which would not depend on gate voltage. This
contrasts with all previous measurements of graphene’s magnetism, which were
performed on large ensembles of flakes.

In the following we compare our results to theoretical predictions, taking into
account the variations of chemical potential due to charge inhomogeneity, and
ignoring the smaller broadening due to temperature (as detailed in next section).

Assuming a Gaussian distribution for the electrochemical potential µ′

Pσ(µ
′) =

1√
2πσ

exp−
[
(µ′ − µ)2

2σ2

]
(5.2)

yields a smoothed susceptibility

χ(µ) =

∫
Pσ(µ

′)χ0(µ
′)dµ′. (5.3)

Then, the δ−peak of the susceptibility is broadened as

χσ(µ) = −
2e2v2F
3π

Pσ(µ) (5.4)
The full field and chemical potential dependence of the magnetization, includ-

ing the oscillations, is given by the derivative M = −∂Ω/∂B of the disorder-
averaged grand potential Ωσ(µ,B) (shown in next section):

Ωσ(µ,B) =

∫
Pσ(µ

′) Ω0

(
µ− µ′, B

)
dµ′, (5.5)
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with

Ω0(µ,B) =
ϵ3B

4π2ℏ2c2
∑
p

1

p3/2

[
1− 2S

(
2
√
p
|µ|
ϵB

)]
. (5.6)

The Landau levels at energies
√
nϵB, with ϵB =

√
2eℏv2FB, enter via the argument

√
p|µ|/ϵB in the Fresnel function

S(x) =

∫ x

0
sin

π

2
t2dt. (5.7)

The predicted disorder-averaged magnetization is displayed in figure 5.3E. With
increasing magnetic field, it evolves from a sole diamagnetic McClure peak of
width σ at low field, to a broader peak with additional oscillations, centered at
µn/ϵB =

√
n. figure 5.3D demonstrates how charge disorder induces rounding and

attenuates the oscillations.
To compare these predictions to experiment, we have also to relate the gate

voltage Vg to the chemical potential µ. Far from the Dirac point, this relation is
quadratic, Vg(µ)− VD = αµ2sign(µ), with

α = (e/Cg)/(πℏ2v2F ). (5.8)
where VD is the gate voltage at the Dirac point, and Cg is the geometrical ca-
pacitance per unit surface between graphene and gate, as determined from the Vg
periodicity of the de Haas-van Alphen oscillations at high field, (detailed in next
section). In contrast, close to the Dirac point, one can show that Vg varies linearly
with µ, with a slope given by the standard deviation of µ disorder around the Dirac
point, σ0:

Vg(µ)− VD = 4σ0µ/
√
2π. (5.9)

We find that the experimental data can be fit (see 5.4) using two constants,
σ0 = 165 K and σ∞ = 50 K, which describe the µ distribution at low and high
doping respectively. The smaller value of σ∞ is explained by the more efficient
charge impurities screening at high doping. We note that the two constants can
practically be determined independently, given the high sensitivity of the deHvA de-
cay to disorder, and the large broadening of the McClure peak induced by magnetic
field (of the order of ϵB) .

We find that M(Vg) and ∂M/∂Vg depend on Vg, σ0 and σ∞, exclusively via
the variables Vg/αϵ2B , σ0/ϵB and σ∞/ϵB. In particular, the variation of the peak
in ∂M/∂Vg width as αϵ2B, shown in figure 5.2f, is directly related to this scaling
originating from the Dirac Landau spectrum of graphene.

Next, we can compare the amplitude of the magnetization peaks measured at
the Dirac point at 0.1 T and 0.2 T to the expected theoretical values. We find
that the predicted value of the amplitude of the antisymmetric magnetization peak
at the Dirac point 1

B
∂M
∂Vg

at low magnetic field, equal to 9.6 × 10−6A(TV )−1,
is of the order of the experimental values although larger by a factor 2 to 2.6.
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AA B

Figure 5.1: A: Principle of the experiment. The orbital magnetizationcan be viewed as a current loop generated by a vertical magnetic fieldand circulating around the graphene region covered by the gate elec-trode. It is detected by the two GMR detectors which measure the hor-izontal component of the field generated by this loop. The sensitivityis of the order of 0.1nT. B: Micrograph of the sample investigated, thegate voltage derivative of the orbital magnetization ismeasured via thedifference between the dc current biased GMR resistances. The signalmeasured by a lock-in amplifier (L.I) is the ac component of the volt-age difference V1−V2 at the modulation frequency of the gate voltage.There is no current applied to the graphene sample during the magne-tization measurements.
This is probably due to the over-simplified model of the Gaussian distribution of
electrochemical potentials we have used. This value corresponds to a diamagnetic
magnetization of two orders of magnitude larger than the Landau diamagnetism of
a 2D free electron gas. Finally, deviations of the linearity between magnetization
and magnetic field are expected when ϵB becomes much greater than σ0, with
a smooth crossover towards a

√
B dependence, as showed in section 5.2. Since

the calibration of the GMR sensor becomes delicate in high perpendicular magnetic
fields due to the residual imperfect alignment of the magnetic field, these deviations
from linearity cannot be checked in the field range above 0.5 T where they are
expected to occur.
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Figure 5.2: a: Detected modulation of the GMR detector’s resistancewith an ac gate voltage modulation of 20 mV, as a function of the DCgate voltage. The quantity plotted is ∂BGMR

∂Vg
, deduced from the signal

on the calibrated GMR sensor, divided by the applied vertical magneticfield B. Data are the average of 80 independent measurements. b:Derivative with respect to gate voltage of the two-point resistance ofgraphene measured through the side electrodes, in the region of theDirac point, with a gate voltagemodulation of 50mV. c: For comparisonpurposes, GMR signal at -0.6 T using the same gate voltagemodulationas in b. The GMR peak is much narrower. d: Numerical integration ofthe data plotted in a, yielding the magnetization per unit surface in nA(right axis), and the magnetic field BGMR detected by the GMR device,in nT (left axis), as a function of the gate voltage. e and f: Field depen-dences of the peak maxima and widths, defined in c, for gate voltagemodulations of 20 and 50mV, and comparison with theoretical predic-tions. Deviations due to the excessivemodulation amplitude are visiblefor a 50 mV modulation.
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nϵB. c:Sketch illustrating the spatial distribution of electrochemical potentials
µ′ = µD − ⟨µD⟩ where µD is the local Dirac point and ⟨µD⟩ its spatialaverage. d: Rounding of M(µ/ϵB) by a Gaussian chemical potentialdistribution with a variance σ = 0.1ϵB. e: M(µ) for different magneticfields for σ = 50 K. At low field the oscillations disappear and the mag-netization displays a Gaussian diamagnetic peak at µ = 0. This peak isbroaden by magnetic field as soon as ϵB ≥ σ
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5.2 . Theoretical calculation of the susceptibility

We show some parts of the supplementary materials of the article in reference
[17]. First in this part, we show a way to calculate graphene’s orbital susceptibility
derived by Gilles Montambaux and presented in [17].

The quantity we have measured is ∂M/∂Vg, as a function of the gate voltage
Vg. In this part we propose a theoretical derivation of this quantity. This is done in
two steps, the dependence of the magnetization versus chemical potential M(µ)

and the relation between µ and the gate voltage Vg. Special attention is given
to the broadening due to a distribution of the electrochemical potential in the
presence of disorder.

5.2.1 . Grand potential as a function of the chemical potential
Several alternative expressions for the field dependent part of the grand po-

tential in graphene are found in the literature, including the original paper by
McClure[12, 68, 69, 65]. Here we propose the following derivation.The electronic
spectrum in a field is given by equation 2.19. with degeneracy 2eB/h per unit
area. The grand potential Ω is a double integral of the density of states per unit
of area ν(ϵ, B) which can be written:

ν(ϵ, B) =
2eB

h

∑
n,±

δ
(
ϵ± ϵB

√
|n|
)
. (5.10)

A Poisson transformation leads to the Fourier decomposition of the density of
states:

ν(ϵ, B) =
2|ϵ|B
πℏ2v2F

1 + 2
∞∑
p=1

cos
2πpϵ2

ϵ2B

 (5.11)
After a double integration, we obtain the oscillatory part of the grand potential

for a clean sample and at zero temperature:

Ω0(µ,B) =
ϵ3B

4π2ℏ2v2F
∆0

(
µ

ϵB

)
(5.12)

, with

∆0(x) =
∞∑
p=1

1

p3/2
[1− 2S(2

√
p|x|)] (5.13)

where S(x) is the Fresnel integral :

S(x) =

∫ x

0
sin

πt2

2
dt . (5.14)

This variation, first obtained by McClure (although in a different form) is recalled
in figure 5.6-a. On an energy scale larger than ϵB, the function can be replaced by
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a δ-function having the same total weight. The substitution 1− 2S(|x|) → 4
π δ(x)

transforms eq. (5.12) into:

Ω0(µ,B) =
ϵ4B

12πℏ2v2F
δ(µ) =

e2v2FB
2

3π
δ(µ) (5.15)

sometimes called the McClure peak.

At finite temperature, in the presence of elastic disorder, or with a distribution
of the electrochemical potential around the average chemical potential (coinciding
with Fermi energy at zero temperature), this expression has to be convoluted with
one of the corresponding functions:

PT (µ) =
β/4

cosh2 βµ/2
,

PD(µ) =
TD

µ2 + (πTD)2
,

Pσ(µ) =
1√
2πσ

e−
µ2

2σ2 . (5.16)
Here we consider that the main source of broadening is due to the distribution

Pσ(µ
′) for the electrochemical potential µ′ assumed to be Gaussian with a standard

deviation σ. which can be µ dependent. In graphene, the efficiency of the screening
of charged impurities giving rise to the disorder potential increases indeed with
doping, that is when moving away from the Dirac point. Therefore the fluctuation
of µ′ is expected to depend on µ: the standard deviation σ being a function σ(µ)
which decreases with |µ|, see figure 5.5. Here, we present the calculation of the
grand potential, with a fixed value of σ.

Ωσ(µ,B) =

∫ +∞

−∞
Pσ(µ

′)Ω0(µ− µ′, B)dµ′

=
ϵ3B

4π2ℏ2v2F
∆σ

(
µ

ϵB

)
(5.17)

with

∆σ(x) =

∞∑
p=1

1

p3/2

∫ ∞

−∞

e−y2

√
π

[
1− 2S

(
2
√
p|x+

√
2σ

ϵB
y|
)]
dy (5.18)

This function is plotted in figure 5.6-b for σ/ϵB = 0.1 which corresponds to σ = 42

K for B = 1 T.

In the limit σ ≫ ϵB, one recover the Gaussian decay

∆σ≫ϵB (µ/ϵB) =
πϵB
3
Pσ(µ) −→ Ωσ≫ϵB (µ,B) =

e2v2FB
2

3π
Pσ(µ) (5.19)
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µD

µD

µD

µD

Figure 5.5: Schematic representation of the fluctuation of electrochem-ical potential µ′ = µD − ⟨µD⟩, measured with respect to average Diracpoint ⟨µD⟩. They are induced by a screened disorder potential pro-duced by charge impurities which decreases when µ− ⟨µD⟩ increases:The standard deviation σ depends on µ.

or a decay as PT (µ), PD(µ) if temperature or elastic disorder are the main sources
of broadening.

From the grand potential, we deduce the magnetization M = −∂Ω/∂B (here
we compute −∂Ω/∂ϵB noting that ∂/∂B = (ϵB/2B)∂/∂ϵB). The dependence of
this quantity versus chemical potential is displayed on figure 5.7. In principle all
these calculations could also be done taking an explicit dependence of σ(µ).

5.2.2 . Non-linear field dependence of the magnetization
We discuss now the field dependence of the diamagnetic response, here at fixed

chemical potential µ = 0. In the presence of broadening, the field dependent part
of the grand potential is given by :

Ω(B) =

∫
P (µ′)Ω0(µ

′, B)dµ′ (5.20)
where Ω0(µ,B) and P (µ) are given by eqs. (5.12,5.13) and (5.16). Two limits
are of special interest:

67



A

B

Figure 5.6: Functions ∆0(x), and ∆σ(x) for σ/ϵB = 0.1.

When the broadening is large, that is T, TD or σ ≫ ϵB,

Ω(B) = P (µ = 0)

∫
Ω0(µ

′, B)dµ′ =
e2v2FB

2

3π
P (µ = 0) (5.21)

leading to a quadratic field dependence of the grand potential asB2×min(1/T, 1/TD, 1/σ)

and a magnetization linear in B. For the specific case of a Gaussian distribution of
width σ, the grand potential reads in this limit:

Ωσ(B) =

√
2e2v2FB

2

6π3/2σ
(5.22)

In the opposite limit of a perfectly clean sample or very strong field, the field
dependence becomes non-analytical [12] as :

Ω(B) = Ω0(0, B) =
ϵ3B

4π2ℏ2v2F
ζ(3/2) =

vF e
3/2ζ(3/2)

π2
√
2ℏ

B3/2 (5.23)
since ∆0(0) = ζ(3/2) and the magnetization is proportional to

√
(B) . Note that

all limits can be summarized as

Ω(B) ∝ B2 ×min(1/ϵB, 1/T, 1/TD, 1/σ) (5.24)
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Figure 5.7: Magnetization as a function of µ/ϵB , for σ = 0 and σ/ϵB =
0.1 independent of µ.

The non-linear field dependence of the magnetization is difficult to observe [65].
Authors in [65] have investigated deviations from the linearity at moderate magnetic
field. A description of the interpolating regime has been proposed by [65] using
a Langevin function. We stress here that the correct behavior (5.20) deviates
significantly form a Langevin function, in particular in small field.

5.2.3 . Gate voltage Vg(µ)

It is of fundamental importance to find the relation between Vg and µ given
that in our experiment the control variable is precisely the gate voltage. We start
by modeling the action of Vg as the one of a capacitance per unit surface relating
Vg to the charge density in graphene: Vg × Cg = en:

Vg =
en

Cg
=

e

Cgπ
k2 = α sign(µ− µD)(µ− µD)

2, (5.25)

with α = e/(Cgπℏ2v2F ). In the model of a Gaussian distribution of µ′, this relation
takes the following form, assuming that Cg is the geometrical capacitance between
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Figure 5.8: Theoretical magnetization (normalized to its value at µ = 0)as a function of µ expressed in kelvins. The plot shows the broadeningof the peak with increasing magnetic field.

graphene and the gate and therefore independent of µ:

Vg(µ) =
α√
2πσ

∫ ∞

−∞
sign(µ− µ′)(µ− µ′)2 exp

(
− µ′2

2σ2

)
dµ′ (5.26)

After integration, we get:

Vg(µ) = α× Erf
(

µ√
2σ

)
(µ2 + σ2) +

4α√
2π
µσ × exp

(
− µ2

2σ2

)
(5.27)

where Erf is the error function: Erf(x) = 2√
π

∫ x
0 e

−t2dt.
It is easy to generalize equation 5.27 to the case where σ depends on µ. It

leads then to the two following expressions, respectively valid in the limits of low
and large µ compared to σ0:

Vg(µ) = 4σ0µ/
√
2π for µ≪ σ0

Vg(µ) = αµ2 sign(µ) for µ≫ σ0 (5.28)
In graphene, the efficiency of the screening of charged impurities giving rise to the
disorder potential increases with doping, that is when moving away from the Dirac
point. Therefore the fluctuations of µ′ are expected to depend on µ: the standard
deviation σ being a function σ(µ) which decreases with |µ|. We denote σ0 the
value of σ(µ) close to the Dirac point and σ∞ its limiting value far from the Dirac
point. Experimentally our data give rise to σ0 ≃ 165K which is much larger than
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Figure 5.9: Relation between the gate voltage and the chemical poten-tial, assuming that σ is independent of µ. Note the linear dependenceof Vg(µ) at low µ compared to σ.

σ∞ ≃ 50K determined from the damping of de Haas-van Alphen oscillations at
large µ≫ σ0. This is due to the formation of electron-hole puddles in the vicinity
of the Dirac point [70, 71].

In order to describe experimental data we consider only these two values σ0
which determines the width and amplitude of the McClure peak and the value σ∞.
These 2 parameters are sufficient to describe our experimental data in the whole
range of gate voltage and magnetic field we have investigated.

5.3 . Additional data

Here we show some plots with additional information. For example, figure
5.10 shows the resistance of the sample as a function of the gate voltage. This
measurement allowed us to obtain the position in gate voltage of the Dirac point.
We also show the odd behavior of the measured magnetization as a function of the
magnetic field in figure 5.11. Finally, we show the evolution of the derivative of
magnetization as a function of temperature in figure 5.12. Here, in blue we have
∂M/∂Vg at T = 4K. We did not observe a considerable change in the behavior of
the curve up to T = 40K (curve in green). However, at T = 60K, the amplitude
of the signal that we obtained was considerably reduced (curve in red).
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Figure 5.10: Resistance as a function of the gate voltage for the studiedsample. The charge neutrality point is found at around -0.2 V.
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Figure 5.11: Derivative of the magnetization as a function of the gatevoltage for different positive (left) and negative (right) fields.

72



 !"#$
%&

'

(

#

$

%#

%(

#  
 
!

 
"
#
! )
$ %
"
*

%#+$ $+$ #+$

"# ,"&!)-*
%#+$ $+$ #+$ %#+$ $+$ #+$

!&$!.
! $!.
!!! !.

Figure 5.12: Derivative of the magnetization as a function of gate volt-age for the samemagnetic field. We can notice that the peak amplitudedoes not vary between 4.2 and 40 K but is reduced at 60 K.

73



5.4 . New measurements of the McClure peak: lower disorder

We present here the results of the magnetism of a different sample, named
MA. It consists of an encapsulated graphene flake between two BN crystals,
with one of the BN crystals aligned with graphene at 1.1°. This gives a moiré
superlattice whose size is of around 9.5nm. Its fabrication is mentioned in section
4.2. According to the literature [72, 73], for this moiré size, there is small relaxation
on the atomic positions and so, the gap opening at charge neutrality is negligible
when compared with disorder. This allows us to treat the magnetism at the Dirac
point in the same way as in the previous sections.

As shown in figure 5.13, the magnetization close to Dirac point features the
diamagnetic McClure peak discussed in previous sections. This peak broadens with
magnetic field and de Haas-van Alphen (dHvA) oscillations appear with increas-
ing doping. Figure 5.13 shows both the derivative of the magnetization and the
integrated curve as a function of the gate voltage for the MA sample, in a per-
pendicular magnetic field of 0.2 T. The amplitude of the detected signal BM is
15 nT, at the Dirac point. This is approximately equivalent to an orbital current
of 350 nA. A direct comparison with the estimations given in the beginning of
chapter 3 is not accurate and should be made with caution. The reason is that
the rounding effects discussed there (equation 6.6 uses a thermal rounding) and
here are different in nature and thus, give different results. However, if we take
the disorder parameter σ0 as an effective temperature Teff at the McClure peak
in equation 6.6, then the experimental data is of the same order of magnitude as
expected (by a factor 2).

This data can be precisely described by the theoretical formulas derived analyti-
cally in section 5.2, (particularly equations 5.17 and 5.18) where the magnetization
was derived from the magnetic field dependence of the grand potential of graphene
at a chemical potential fixed by the gate voltage.

As before, disorder is modeled by a gaussian distribution of chemical potential
µ whose standard deviations σµ decreases with its average, due to screening effects
which are more efficient at large doping. The magnetization was shown to be a
universal function of the variables µ/ϵB, σ/ϵB. The McClure peak at low field has
a width σ0 = 80± 5K and a characteristic energy scale of σ∞ = 20± 5K for the
damping of dHvA oscillations at larger doping, which are both twice smaller than
in our previous sample from section 5.1 and indicate a better quality of the present
samples. The dashed curve in figure 5.13A shows the theoretical fits for ∂M/∂Vg
using those parameters.

Figure 5.13C shows the evolution of the magnetization with Landau level fill-
ing factor for different field values. These data show the increase of the dHvA
oscillations relative to the McClure response as magnetic field increases. The mag-
netization is renormalized by the applied magnetic field, which in the linear regime
is the magnetic susceptibility χ = M/B. The low field apparent increase of χ
with B, is an artefact due to the field modulation which broadens the McClure
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peak. This effect becomes negligible when the intrinsic McClure peak broadening,
proportional to B, exceeds the gate voltage modulation.
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6 - Orbital paramagnetism in graphene with
a moiré potential

6.1 . Introduction

This section has been taken from the article in preparation: Singular para-
magnetic orbital magnetism in Graphene with a moiré potential [74]. It will be
submitted soon to a indexed journal but for now, we present a preliminary version.

As we mentioned in chapter 1, the orbital susceptibility can be decomposed
in the contributions from the isolated bands and the interband contributions. For
the isolated bands, the orbital susceptibility is proportional to the curvature of
the energy dispersion relation (i.e. the inverse effective mass of carriers). This is
known as the Landau-Peierls result [11, 75].

In multiband systems, in the other hand, the coupling induced between Bloch
wave functions of different bands by the magnetic field gives rise to new effects.
The zero field susceptibility is then not only determined by the curvature of the
bands, but also by geometrical properties of Bloch functions such as the Berry
curvature in reciprocal space [23, 19, 20, 21]. As an example of this, there is
the divergent diamagnetism of undoped graphene at the Dirac point, predicted by
McClure [12] and whose experimental evidence is discussed in the previous chapter.
It was subsequently related to the π anomalous geometrical Berry phase at this
point and to the existence a zero energy Landau level in magnetic field [40].

It is also known that orbital magnetism can be paramagnetic rather than dia-
magnetic. From general principles, the sum rule indicates that for a tight binding
model, the integral of the susceptibility the full range of energy in a bounded spec-
trum must be null. This means that, if Landau diamagnetism is possible within
this bound, then necessarily the susceptibility must be positive for some other
value of the energy inside this interval. In particular, graphene is expected to ex-
hibit a paramagnetic plateau [76, 19, 20, 21], when doping is increased both on
the electron and hole sides. It was also predicted that orbital susceptibility is para-
magnetic due to electron-electron interactions, for doped graphene [77], however
this phenomenon will not be discussed in this manuscript.

In addition, logarithmic paramagnetic divergences when the Fermi energy co-
incides with saddle points of the graphene band structure [19], as shown in figures
2.4, 6.1. This is the consequence of a more general result: paramagnetic orbital
susceptibility singularities behaving like the logarithmic van Hove (vH) singulari-
ties in the density of states (DOS) were predicted at saddle points of the band
structure of any 2D crystalline materials by Vignale [18]. From equation 6.10,
the susceptibility follows grosso-modo the product of the DOS and the curvature
of the band in x and y, this means χ ∼ −g(E)/mxmy (see equation 1.15). As
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it was introduced in chapter 1, the intuitive physical explanation of the param-
agnetic sign lies in the coexistence of effective masses (mx and my) of opposite
signs at the saddle points. In magnetic field, carriers follow diamagnetic hyperbolic
trajectories in reciprocal space centered around those points. Tunneling between
these trajectories (also called magnetic breakdown [31]) gives rise to quasi-circular
paramagnetic trajectories around the saddle points, see figure 6.1.

However, reaching these saddle points in pure graphene requires doping to
unattainable Fermi levels of the order of the nearest neighbor hoping energy t=2.7
eV. In practice, this means applying gate voltages of around 103 V, if we would
like to electrostatically control doping (using BN as dialectric for example).

We show in the following how, by inducing a large wavelength moiré periodicity
in graphene aligned to an hBN crystal, we can reach such saddle points in the
band structure at reasonable doping and detect the expected singular paramagnetic
orbital response.

The moiré lattice parameter of graphene on hBN, aM , is much larger than the
size of the unit cell of graphene, a, see equation 4.2. The moiré potential leads to
the formation of low energy minibands centered around each Dirac point in figure
6.1D), and the occurrence of satellite Dirac points (SDP) (at µS ≃ ±t/10). These
SDP accessible by applying moderate gate voltages were observed experimentally
by several groups including [78, 55].

These SDP are surrounded by saddle points whose associated vH singularities
were detected via DOS measurements [78]. The presence of saddle points were
also revealed in electron focusing experiments [79] and more indirectly in magnetic
field dependent patterns in Josephson junctions [80].

Field dependent peaks in photo-emission spectra[81] as well as in thermoelec-
tric Hall measurements[82] were interpreted as related to orbital magnetization
singularities at those low energy vH singularities.

In the following sections we first discuss the general properties of graphene in
a moiré potential and then present the results of the magnetism of two samples
where the effects of the moiré superlattice are important. We explore a wide
range of chemical potential on each one of them. These experiments reveal the
paramagnetic susceptibility peaks predicted long ago by Vignale at saddle points
of the moiré band structure.

6.2 . Graphene in a moiré potential

In the recent years, the interest for assembled stacks of van der Waals struc-
tures has gained a lot of intensity because of the versatility of fabrication and the
possibilities of modifying the electronic properties of these 2D materials. It is now
possible to stack and combine materials at will enabling to increase the quality of
the samples thanks to encapsulation and, on the other hand, to create systems with
new properties and potential applications. Many examples can be named, starting
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from the well-known twisted bilayer graphene (TBG), where exotic properties have
been found [83, 84]. Boron Nitride (BN) has been used as the ideal substrate for
graphene. It has many interesting properties: it is atomically flat, it has a huge
band gap and it has the same structure as graphene except for a small difference
in the size of the lattice. It is precisely this difference that can give rise to a set of
features that are not present in isolated graphene (either suspended or on SiO2).

The physical simple explanation is the following: due to the difference in size
of the (otherwise) identical lattices, the structure can form an effective moiré su-
perlattice. This means that a geometrical pattern with a larger periodicity emerges
from the two original lattices. This superlattice can be modeled as a superpoten-
tial which periodicity is given by the size of the moiré lattice. So, the electrons
in graphene (the ones that are involved in the electronic properties) feel the usual
potential owing to its own lattice but on top of that, they can feel the potential
due to the BN substrate. The easiest way to model and understand this is by
considering that graphene and BN are two rigid lattices. The small difference in
lattice constant in real space will produce a periodic arrangement of the atoms
when considering both graphene’s and BN’s atoms. The lattice parameter of this
new superlattice is given by the places where the pattern repeats itself.

Reference [85] gives a clear way to understand and calculate the size of this
superlattice, and here we sumarize it as follows: We start from the two identical
honeycomb lattices, the BN lattice can be written as an expansion of the graphene
lattice. Calling a⃗i the lattice vectors of graphene, BN lattice vectors can be written
as b⃗i = Ma⃗i, where M = (1 + ϵ)I, ϵ =

aBN−ag
ag

and I is the identity matrix.
Moreover, if we want to include the relative rotation of the two lattices, we apply
the rotation matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
,

so the BN vectors are written b⃗i = M R a⃗i. Then, starting in a position where
we have AA stacking (white circles in figure 6.2), the displacement δ⃗, from the
position of an atom of hBN, r⃗BN , and the graphene atom r⃗g is given by.

δ⃗ = r⃗BN − r⃗g = (1−R−1 M−1)r⃗BN . (6.1)
If δ⃗ is exactly equal to a graphene lattice vector a⃗i, this means that the shift of
the two lattices has arrived to the point that we are again in an AA stacking (see
the other green circles), given a full spacial period of the moiré lattice a⃗M .

δ⃗ = a⃗i = (1−R−1 M−1)⃗aM

or equivalently
a⃗M = (1−R−1 M−1)−1a⃗i (6.2)

and one of the moiré lattice vectors will be given by

a⃗M1 =

[
1− cos θ

1+ϵ
sin θ
1+ϵ

− sin θ
1+ϵ 1− cos θ

1+ϵ

]−1 [
ag
0

]
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and the norm aM = |⃗aM | is

aM =
(1 + ϵ)a√

2(1 + ϵ)(1− cos θ) + ϵ2
.

Then, exactly as in the case of a crystal, we can define the reciprocal lattice vector
of the moiré

G⃗Mi · a⃗Mj = 2πδij . (6.3)
Recalling the fabrication of our moiré samples in section 4.2, the moiré length

of the two samples investigated in this thesis are aMA
= 9.5± 0.5nm and aMB

=

12.5 ± 0.5nm, which corresponds to misalignments of θMA
= 1.1 ± 0.1° and

θMB
= 0.6± 0.1°.

6.3 . Effective Hamiltonian with moiré periodic potential

In this part, we present details about the model used to describe the band
structure of the moiré system. It contains the work done essentially by Jean Noel
Fuchs and Frederic Piéchon, and is part of an article in preparation [74]. We
will briefly discuss how we obtained the bands structure of the moiré system. We
used the approach described in [78, 86]. We start from the effective massless
Dirac Hamiltonian, H0, that is used to describe graphene at low energies in a
single valley. We then add a scalar periodic potential V , which represents the
effect of the substrate, BN, on graphene. The moiré potential has the periodicity
of the moiré structure and is 6-fold symmetric. Here, we consider the only the
first order perturbation to graphene’s lattice and neglect all the terms that break
AB symmetry, following the reference [78]. These symmetry breaking terms are
responsible of opening gaps in the band structure [73] that have been observed
experimentally [72, 55]. The Hamiltonian is then:

H = H0 + V = vp · σ + tM

5∑
m=0

eiGm·r, (6.4)
where σ are the Pauli matrices describing the sublattice pseudospin of the hon-
eycomb lattice and bm = b{cos(mπ/3), sin(mπ/3)} are reciprocal lattice vectors
with norm G, given by:

G ≃ 4π

3aM
, (6.5)

with aM the moiré length. The momentum operator is the usual p → −iℏ∇ in
2D (it is shifted such that K now plays the role of the reciprocal space origin ΓS).
This formulation is equivalent to the one presented in [86, 85] if we consider only
the first correction to the linear effective hamiltonian of graphene.

Figure 6.2 shows a schematic view of the moiré lattice. The graphene lattice,
in green, sits on top of the BN, in orange and red. In the background one can see
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Figure 6.2: Schematics of the moiré superlattice when both grapheneand BN are considered rigid. The circles show the regions where thestacking between atoms is special: AA zones are in white, AB in skyblue and the zones where an A graphene atom sits on the center ofthe BN hexagon in orange (this region is the equivalent of an BA stack-ing because three equidistant B graphene atoms are the closest hereto A atoms of BN). In the background, the potential is ploted as colorcode. Red (blue) zones represent regions where the potential is nega-tive (positive).

82



the periodic potential given by the second term in equation 6.4 for tM = −23meV.
Figure 6.2 also shows regions in red represent the minima of the potential. As said
before, the potential is modeled in such a way that it reproduces the periodicity of
the moiré pattern, however, if we look at the detailed picture, the potential shows
a C6 symmetry (inherited from graphene) while the actual moiré superlattice, does
not. It has C3 symmetry in real space, inherited from BN. However, this simple
hamiltonian is enough to understand our results, as it is studied in reference [78].
A much more precise modelization of this system is developed in reference [73]
where the full hamiltonian in [86] and the relaxation proposed in reference [87] are
taken into account.

The amplitude of the potential was obtained experimentally as it is explained
below. The sign was settled by comparing the transport measurements with the
theoretical curves of the density of states calculated in [86]. Thus, a negative sign
is given to the potential. This results in a potential where the minima form a
triangular lattice, as shown in figure 6.2. This choice of sign is the same one made
also in [81].

We can write the potential in terms of the eigenvectors of H0. These are plane
wave spinors |⃗k, s⟩, where s = ± is the sign of the energy ϵ0

k⃗,s
= sℏvFk. The

potential then takes the form:

⟨k⃗′, s′|V |⃗k, s⟩ = tMδs,s′
5∑

m=0

δ
k⃗′ ,⃗k+G⃗m

.

To calculate the band structure of the moiré system, we use a code written by
Fuchs and Piechon [88]. For this, we are only interested in the lowest energy bands,
so we limit the calculation by imposing a cutoff in energy. This means that the
matrix elements of the potential will only consider k⃗′ vectors such that, for each k⃗
in the mini Brillouin zone, k⃗− k⃗′ is a reciprocal lattice vector and |⃗k− k⃗′| ≤ 2|G|.
This means that for each sign of the energy s, there are 19 states. In total, for
each k⃗ in the moiré Brillouin Zone (mBZ), the diagonalized Hamiltonian has 38
bands. The 6 lowest energy bands are the ones represented in figures 6.5. A 3D
representation is also given in figure 6.3.

The hamiltonian in equation 6.4 yields the band structure shown in figures 6.3
and 6.5. We can observe at zero energy, the usual graphene’s Dirac cone but the
most interesting feature is the emergence of small replicas of this linear behavior.
At slightly higher doping (slightly less than ± 0.2 eV in chemical potential for
perfect alignement), because of the action of the moiré potential, secondary Dirac
peaks appear. Hamiltonian 6.4 can be seen as replicating the Dirac cone, placing
one replica in each one of the moiré harmonics (see section 6.3). Therefore, by
increasing the chemical potential, these cones will eventually cross, generating the
secondary Dirac points. As we see in figure 6.3, at the borders of the mBZ,
the crossing with the neighboring cones alters the band structure in at least two
important ways: 1) The emergence of the secondary Dirac cones at the positions
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Figure 6.3: 3D representation of the band structure of graphene witha moiré potential obtained from equation 6.4. For two different am-plitudes of the moiré potential, the saddle point in the first hole bandH1 exhibits a C3 symmetry saddle point which splits into 3 A1 pointsaround κS when the amplitude of tM decresases.
where the bands cross and 2) the appearance of van Hove singularities. We have
chosen to extend the traditional notation of the high symmetry points of graphene
to the mBZ. This means that in the mBZ corner of the hexagons are called κs and
the midpoint of the sides are called ms. See figure 6.1.

We show, also in figure 6.3, the contour plot of the two lowest energy bands
for two different potential amplitudes, tM ∼ −65meV and tM = −23meV. In the
band H1, we can distinguish the formation of a saddle point of symmetry C3 for
high potential amplitudes. However, it is unstable and it splits into 3 A1 saddle
points for lower values of the potential amplitude.
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6.4 . Moiré samples and magnetic detection

We fabricated samples where the hBN and Graphene lattices are nearly aligned,
leading to the maximum value of the G/hBN moiré super-lattice parameter as
described in section 4.2. We investigated two different samples MA and MB.
Then, Raman spectroscopy was used to verify the alignment as well to determine
the lattice parameters yielding aMA

= 9.5nm± 0.5 nm and aMB
= 12.5± 0.5 nm

corresponding to 1◦ and 0.6◦ mismatch angles.
The magnetization experiments were performed using the technique described

in [17] and discussed in chapters 3 and 4. The encapsulated samples are deposited
on a magnetization detector which consists in a pair of highly sensitive gian mag-
netoresistance (GMR) probes, described in chapter 3. The key point of using
these sensors is that whereas the orbital magnetism in the system is generated in
response to the perpendicular external field, the GMRs are only sensitive to the
in-plane components of the stray field created by the orbital currents. Connecting
the two GMR strips in a Wheatstone bridge configuration, as in figure 3.6, and
modulating the gate voltage eliminates most of the spurious magnetic contribu-
tions from the environment and yields the Vg derivative of the magnetization of
graphene below the gate between the GMR probes, as it was mentioned in chapter
4. Two additional electrodes outside the GMR detection zone allow for transport
measurements and an independent determination of the main and satellite Dirac
points positions. The calibration of the GMRs sensors coupled to MA and MB,
(respectively 2.5 and 1 Ω/mT ), leads to in-plane sensitivity of detection of the
order of 1 nT for an applied perpendicular field of 0.1 T.

6.5 . Satellite Dirac spectra, diamagnetic and paramagnetic sin-
gularities

We now turn to the higher doping regime. Figure 6.4A shows the 4-terminal
resistance of sample MA in a wide range of gate voltage. The satellite Dirac peaks
at Vg = −16 V and Vg = +15.5 V symmetrical with respect to the main Dirac
peak are clearly visible. figure 6.4B, shows the magnetization response at 0.2 T
in the same range of gate voltage, using a 100 mV modulation. This strong Vg
modulation increases the detection sensitivity at high gate voltage because the
chemical potential scales as

√
Vg but damps the previously discussed diamagnetic

McClure response and dHvA oscillations.
In the high doping region of interest here, in particular in the region where

the SDP are found in the resistance measurement, we find a series of three an-
tisymmetric peaks, compatible with the expected orbital magnetism of the moiré
as shown below. The integrated trace displayed in figure 6.4C clearly features
a diamagnetic peak (red arrow) in the hole doped region at Vg = −17 V sur-
rounded by two paramagnetic peaks (black arrows). In the electron doped region,
we also detect a diamagnetic peak at the SDP but only one clear paramagnetic
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peak. From the value of moiré lattice parameter (determined from the Raman
spectra, see section 4.2 figure 4.3) we find that the gate voltage positions of the
diamagnetic peaks correspond, as expected, exactly to a carrier density of 4 n0
where n0 is the number of carriers per moiré cell, (the factor 4 comes from spin
and valley degeneracies). The peak positions differ slightly from those observed
on the resistance measurements shown in figure 6.4A, a discrepancy we attribute
to the different sample region probed in the resistance measurements.

Indeed, since the geometry of the two experiments (transport and magnetism)
is different, we may be seeing a slightly different effective moiré length (of about
0.5nm) in each experiment. Another possible explanation for this discrepancy
might be the possible inhomogeneous strain that is present in the sample. In any
case, the difference in the position in doping between magnetization and resistance
measurements can be explained by considering the error bars of the calibration of
the moiré-length/FWHM relation (see figure S2 in the suplementary information
of [55]).

We assign the paramagnetic peaks to the expected magnetic orbital response at
the saddle points of the moiré miniband structure. Using the capacitance of sample
MA, we determine the energy splitting between the paramagnetic and diamagnetic
peaks and thefore the expected positions of the VHS, to be of the order of 20
meV . This number yields an estimate of the amplitude tM of the moiré potential
[18] and figure 6.1.

Figure 6.4 also presents equivalent data on sample MB.There, as well dHvA
oscillations are attenuated by the gate voltage modulation of 100 mV and invisible
at (±0.2 T) , but are visible at 1 T due to their larger period. At high hole and
electron doping one clearly identifies, three peaks of similar amplitude. The position
of the diamagnetic satellite peaks are consistent with transport data (shown in
SM) and with a moiré period larger than that of sample MA. There as well,
the diamagnetic peaks at the SDP are surrounded by paramagnetic singularities
expected from vHS at the saddle points of the band structure.

The data taken at lower field, at ±0.2 T display peaks of opposite sign, ap-
proximately at the same positions and with 5 times smaller amplitude than the
1T data which is consistent with a linear field dependent magnetization. However,
in contrast with the 1 T data, the inner smaller paramagnetic peaks are nearly
undetectable at ±0.2T . We note that at 1T the magnetic energy scale ϵB is equal
to 30 mV i.e. of the order of the moiré potential, which means that the miniband
spectrum is modified in a non perturbative way at this field. This can explain
that the data at 1T is significantly different from the the lower field data. In the
following, we discuss possible explanations for these asymmetries in amplitude of
paramagnetic singularities on either side of satellite Dirac peaks. We note that
these asymmetries were also observed in vH singularities detected through DOS
experiments [78].
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6.6 . Comparison with a simple theoretical model

Computations of moiré spectra rely on specific modelisations of the moiré
potential [78, 86, 87, 85]. In the following, we propose to use the simplest model
which reproduces the positions and amplitudes of the different susceptibility peaks
at the Dirac and saddle points which are the primary focus of our experimental
measurements. This model initially derived in [78] is the same model we described
above in section 6.3. The miniband spectrum, folded into the moiré Brillouin
zone, can be easily calculated within this approximation as shown in section 6.3.
The amplitude of the moiré potential affect the number and position of the Dirac
satellite points as well as the symmetry of the saddle points. These features
also depend on the minibands considered on electron or hole doping sides, [78,
86, 81] and section 6.3. When increasing the amplitude of the moiré potential,
tM one finds a clear electron- hole asymmetry of the energy minibands spectrum
determined by the sign of tM . This is illustrated in figure 6.5 showing cuts along
the κS ,mS axis of the three lowest moiré electron and highest hole bands around
the Dirac point. For negative values of tM the bands of the moiré minibands are
wider on the hole compared to the electron side.

Whereas crossings occur essentially between the first and the second bands on
the electron side, they also occur between the second and third band on the hole
side. These crossings determine the number and position of the satellite Dirac
points in the reciprocal space. For small values of tM these crossings occur both
at κS and mS points for the first two electron bands, see the bands in figure 6.5
and 6.6, for example. These points are separated by ordinary saddle points giving
rise to logarithmic vH singularities, shown in 6.6. These saddle points connecting
2 valleys are called A1 following [89].

By contrast, the first hole miniband H1 below the main Dirac peak does not
exhibit a Dirac point at κS but instead a C3 saddle point which can be viewed
as the merging of three A1 saddle points. C3 saddle points are characterized by
energy varying as a cubic function of the wave-vector (2nd order curvature cancels
in all directions) yieding a plateau surrounded by 3 maxima separated by 3 valleys
at 120 degrees (see figure 6.3, 6.7 as well as [89], for the classification of saddle
points). When |tM | is small, one can note the presence of an extra shallow dip
at κS (black arrow in figure 6.5 on the H1 band) probably due to the coupling
between that band and the lower energy bands crossing at κS .

Coming back to experiments, in figure 6.5 we attempt to match, for both sam-
ples, the position of the measured diamagnetic and paramagnetic satellite peaks
with their expected positions in the moiré band structure, taking tM as an ad-
justable parameter.

The calculated bands which best match the experimental positions of the dif-
ferent peaks are obtained for tM = −15 meV and tM = −23 meV for samples
MA and MB as shown in figure 6.5. These values are obtained directly from mea-
suring the distance between diamagnetic and paramagnetic peaks in figure 6.5. For
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these values of tM we expect crossings between the E1 and E2 bands both at κS
and MS points yielding 2 families of satellite Dirac points. Since these crossings
occur at different energies, a splitting of the diamagnetic satellite McClure peak is
expected and is compatible with what is measured experimentally in figure 6.5 on
the electron side for bands E1 and E2. Larger splittings observed on the hole side
correspond to the crossings between H2 and H3.

Moreover scrutinizing the shape and curvature of the minibands figure 6.5, 6.6
and 6.7, we can understand the asymmetry of the positions and amplitudes of the
paramagnetic singularities, clearly more pronounced on the high doping sides of
SDPs (bands E2 and H2). From one side, the curvature in the bands E1 and H1 is
strongly asymmetric. More precisely, the curvature following the ms−κs axis or is
around 100 and 70 times smaller than the perpendicular direction, for samples MA

and MB respectively. By contrast, in bands E2 and H2 the curvature is similar in
the two perpendicular directions. On the other hand, saddle points in bands E1 and
H1 are closer to the secondary Dirac point, and given their finite width, diamagnetic
and paramagnetic contributions tend to cancel whereas the paramagnetic peaks in
E2, H2 are further in energy from the SDP and can be resolved. This asymmetry
is enhanced by disorder and by a high value of modulation. This explains why the
outer paramagnetic peaks around the satellite Dirac points are more intense than
the inner ones.

At present our experiments are not accurate enough to investigate in detail the
shape of paramagnetic singularities, but we can nevertheless compare the typical
amplitudes of the measured magnetization singularities to theoretical predictions.
To this end, we first compare the theoretical ratio between the diamagnetic peaks
at the main at satellite Dirac points with the experimental values. According
to reference [17, 12] the orbital magnetic susceptibility of graphene at the Dirac
point, χD, depends on the square of the Fermi velocity and the disorder standard
deviation σ0 according to:

χD = −
√
2v2FD

e2

3σ0π3/2
(6.6)

It was pointed out in [78] that the satellite Dirac cones (at the mS points of the
moiré hexagonal Brillouin zone) are anisotropic, with elliptical cross sections leading
to an effective Fermi velocity: v′FS

=
√
vsx × vsy. These anisotropic components

of the Fermi velocity along the principal axis of the elliptical energy cross sections
in the vicinity of SDP are vsx = vFD

, the original Fermi velocity of graphene and

vsy =

√
3aM tM
2πℏ

, (6.7)
the reduced transverse velocity originating from the moiré potential. We then
assume that the susceptibility, χS , at secondary diamagnetic peaks, is similar to
the McClure susceptibility of graphene in Eq.6.6 replacing vFD

by
√
vsx × vsy and

the amplitude of disorder σ0 by σs, of the order of 4.5meV and 5meV for samples
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MA and MB respectively. This leads to the susceptibility ratio for the diamagnetic
peaks

rdia = χS/χD = 3
vsyσ0
vFD

σs
. (6.8)

Where the factor 3 comes from considering the 3-fold degeneracy of ms points.
The values obtained are rA = 0.28 and rB = 0.52, for samples MA and MB, of
the order of 2-3 times the experimental values 0.09 and 0.33. For these estimations
we have not taken into account the contribution of Dirac points at the κS points.

These experimental values have been obtained from the results obtained at 0.2
T. The amplitude of the secondary diamagnetic peaks were obtained from the plots
in figure 6.4 for both samples. The main diamagnetic peaks were taken from figure
5.13, for MA, and a similar low-modulation curve for sample MB. We estimate
the value of the parameter σS also from experimental results. This parameter has
the same meaning of σ in section 5.1 and 5.2 in monolayer graphene, i.e., it is the
standard deviation of the gaussian distribution of the chemical potential. As it was
also mentioned in section 5.1 and 5.2, σ is a measure of the disorder associated to
the presence and screening of charged impurities. We find that σS is larger than
σinf describing the damping of the de Haas-van Alphen oscillations. It is possible
that the moiré potential introduces extra disorder not present in pure graphene.
In the case of these samples, we can measure the width of the derivative of the
secondary diamagnetic peaks and extract the value of σS , as it is shown in figure
6.8.

Turning to the paramagnetic susceptibility peaks, we can estimate their ampli-
tude from the miniband spectrum determined in our simple model by the param-
eters tM and aM . The DOS and the susceptibility both depend on the product
αxαy of the curvatures of the energy bands at the saddle points. As an exemple,
for the E2 band which has the highest curvatures at the A1 saddle points (see
figure 6.7), these values are αx = 4.7 tMa

2
M and αy -1.5 tMa

2
M , instructive to

compare with the inverse of the free electron mass me. We find, αx = -3.13 αy

= 100 m−1
e and 265 m−1

e for respectively samples MA and MB.
In order to go further and compare these findings to the experiments we have

also to consider the effect of disorder and degeneracy of saddle points. From the
value of the ratio σS/tM estimated experimentally to be of the order of 0.15, we
find that the amplitude of the paramagnetic magnetization at A1 saddle points is
expected to be of the same order of magnitude as the diamagnetic peak at the SDP
in agreement with our experimental results. In order to obtain σS , we approximate
the diamagnetic secondary peak as a gaussian. Then, the distance between the
maximum and the minimum of the derivative of a gaussian is 2σ, see figure 6.8.

We present tables 6.1 and 6.2 to summarize the parameters that are involved
in the estimation of the amplitudes of the peaks. They contain the numerically
calculated curvatures, velocities and ratios for the bands E1, E2, H1, H2 for both
samples. These parameters appear in equations 6.6, 6.7 and 6.23. Here we have
expressed the velocities in units of graphene velocity vF . The parameter α, which
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Figure 6.6: (A) Contour plot of bandsH2 (left) andH1 (right) in the miniBrillouin zone for tM = −23meV. (B) Zoomaround κs andms points. (C)and (D) 3D representation of the bands close to κs andms. The curveddouble arrow indicates the saddle point.
92



Figure 6.7: (A) Contour plot of bands E1 (left) and E2 (right) in the miniBrillouin zone for tM = −23meV. (B) Zoomaround κs andms points. (C)and (D) 3D representation of the bands close to κs andms. The curveddouble arrow indicates the saddle point.
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is the inverse of the effective mass, is shown in units of vF /ℏG. The values of v′Fs

and α are the geometrical averages of these values in the x and y directions. This
means that v′Fs

=
√
vsx × vsy and α =

√
αx × αy.

The values in these tables allow us to compare the amplitudes of the different
peaks we have found and give an estimate of the relation between them. These data
support the comparison of the amplitudes of the observed peaks that we mentioned
early. Additionally, we can define the ratio between paramagnetic 1.15,(and below
in 6.23) and diamagnetic 6.6 susceptibilities by

rp/d =
vFGℏσs
4t2M

∼ 1. (6.9)

MA vsx vsy v′Fs
αx αy α αv′2Fs |tM |α/v′2Fs

E1 1 0.07 0.26 -150 1 12 0.85 6.1
E2 1 0.07 0.26 25 -7 13.2 0.92 6.6
H1 1 0.07 0.26 200 -1 14 0.98 7
H2 1 0.07 0.26 23 -10 15 1.1 7.6

Table 6.1: Theoretical parameters for sampleMA, with tM = −15meV.

MB vsx vsy v′Fs
αx αy α αv′2Fs |tM |α/v′2Fs

E1 1 0.1 0.32 -70 1 8.4 0.84 5.4
E2 1 0.1 0.32 16 -5 8.9 0.89 5.7
H1 1 0.15 0.38 60 -1 7.7 1.16 3.3
H2 1 0.15 0.38 12 -6 8.5 1.3 3.6

Table 6.2: Theoretical parameters for sampleMB , with tM = −23meV.
In addition, we can also summarize the parameters extracted and used in the

comparisons from the experimental point of view in tables 6.3 and 6.4. The values
of ∆µiE,H ≡ |µpara,i − µdia,i|E,H (in meV) are obtained from the distance in
energy between the chemical potential of the paramagnetic and corresponding
diamagnetic peaks for each band (when they are visible). The subindices i indicates
the band for each side of the doping: E1, E2, H1, H2. The value of σS , from the
distance in energy between maxima and minima of the chemical potential derivative
of the secondary diamagnetic peaks. The amplitudes of the magnetization Mi (in
nT) are measured directly from the curves of the magnetization. All the values are
obtained at an external field of 0.2T. From the amplitudes given in these tables,
we can calculate the experimental rp/d. For all the peaks, these ratios are between
0.3 and 1.8, the same order of magnitude of the theoretical ratio 1 introduced in
equation 6.9.
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MA ∆µ1 ∆µ2 σS |MCNP | |MsDP | |Mpara−1| |Mpara−2|
E1,2 N.A. 12 4.8 15 1.3 0.5 ± 0.5 0.5 ± 0.5
H1,2 13 >10 5 " 1 1.2± 0.5 1 ± 0.5

Table 6.3: Experimental parameters for sample MA. ∆µi = |µpara,i −
µdia,i| and σS are given in meV. The amplitudes of the magnetizationat charge neutrality point MCNP , at the secondary Dirac points MsDP ,and the paramagnetic peaksMpara−1,2 are given in nT.

MB ∆µ1 ∆µ2 σS |MCNP | |MsDP | |Mpara−1| |Mpara−2|
E1,2 N.A. 23 4 5.6 1.8 N.A. 3.3
H1,2 N.A. 14 5 " 1.7 N.A. 1.7

Table 6.4: Experimental parameters for sample MB. ∆µi = |µpara,i −
µdia,i| and σS are given in meV. The amplitudes of the magnetizationat charge neutrality point MCNP , at the secondary Dirac points MsDP ,and the paramagnetic peaksMpara−1,2 are given in nT.

We finally note that the large miniband curvatures due to the large period of
the moiré potential contrast with the curvatures at the saddle points of the 2D
original atomic lattice [18], and exclude any sizable contribution of Pauli magnetism
at vH singularities. The Pauli susceptibility χP is indeed expected to vary as
χP = µ2Bρ(ϵ) where µB = e/me is the Bohr magneton, yielding a ratio between
the orbital and spin susceptibility χOrb/χP = αxαym

2
e of the order of 104, whereas

this ratio is of the order of 1 for the 2D square lattice.
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6.7 . Theoretical calculation of the orbital paramagnetism

Landau-Peierls susceptibility for a saddle point A1
Landau-Peierls susceptibility can be written as [21]:

χLP =
e2

12ℏ2

∫
BZ

g′(Ek)

(
∂2Ek

∂k2x

∂2Ek

∂k2y
−
(

∂2Ek

∂kx∂ky

)2
)
d2k

4π2
(6.10)

The dispersion relation in the vicinity of a van Hove singularity varies depending
on the type of singularity [89]. Our vHs are going to be treated as type A1, despite
the theoretical possibility of hosting a C3 type. This means that the dispersion
takes the form

E = α(p2x − p2y) (6.11)
where α represents the inverse of a mass α = 1/2m. By inserting 6.11 into 6.10,
we can see that the term in between parenthesis in the integral is constant and
equal to 4α2ℏ4. In this way, equation 6.10 reduces to calculate the integral of the
derivative of the density of states. This later can be written as

ρ(ϵ) =

∫
δ(ϵ− ϵ(p⃗))

d2p

4π2
(6.12)

with δ(ϵ) the Dirac delta function. We can invert the order and integrate first, so
the integral in energy can be written as

N(ϵ) =

∫
Θ(ϵ− ϵ(p⃗))

d2p

4π2
(6.13)

where Θ(ϵ) is the Heaviside function. In Cartesian coordinates, and using 6.11, it
takes the form

N(ϵ) =

∫
α(p2x−p2y)<ϵ

dpx dpy
4π2

(6.14)
In order to integrate the density of states, a cutoff energy must be introduced,

it is ϵc = αp2c . Also, it is convenient to pass to polar coordinates (p, θ). So, by
taking px = p cos(θ), py = p sin(θ), we get for the dispersion relation of 6.11:

E = α(p2x − p2y) = αp2 cos(2θ) (6.15)
and so the integrated density of states can be written as

N(ϵ) =
4

4π2

∫ π/4

0
dθ

∫ p

0
pdp (6.16)

with the condition that αp2 cos(2θ) < ϵ. The factor 4 in front of the integral
appears because there are 4 zones of integration. So, integrating p in this limit

N(ϵ) =
ϵ

2π2α

∫ π/4

0

dθ

cos(2θ)
. (6.17)
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Because of the divergence of the integral at θ = π/4, here we must introduce
the cutoff. This takes the form

θc =
1

2
arccos

ϵ

ϵc
≃ π/4− ϵ

ϵc
(6.18)

and so 6.17 becomes

N(ϵ) =
ϵ

2π2α

∫ θc

0

dθ

cos(2θ)
. (6.19)

from where we can find

lim
x→0

∫ π/4−x

0

dθ

cos(2θ)
=

1

2
ln

1

x
(6.20)

so that the integrated density of states is

N(ϵ) =
ϵ

4π2α
ln

2ϵc
|ϵ|

(6.21)
and so taking the derivative with respect to the energy, we find

∂N

∂ϵ
= ρ(ϵ) =

1

4π2α
ln
Bϵc
|ϵ|

, (6.22)
and by re-inserting this and 6.11 in equation 6.10, we get

χ(ϵ) =
e2ℏ2

12π2
α ln

Bϵc
|ϵ|

(6.23)
with B ≃ 2/e, with e the Euler’s constant. This is in agreement with the result
obtained by Vignale [18].

6.8 . Additional data

In this section we will present some additional data that can help us support
our conclusions from the previous sections. We start by presenting the derivative
of the resistance from sample MB. This allows us to directly compare the positions
(in gate voltage) of the main and secondary Dirac peaks with the corresponding
diamagnetic peaks. At CNP, we see in the resistance a positive derivative. In mag-
netization, it has associated a negative derivative. It corresponds to the McClure
peak. At higher doping, we see in resistance the positive derivatives corresponding
to the secondary Dirac peaks. In magnetization, we see various derivatives cor-
responding to both seconday McClure peaks and paramagnetic peaks. When this
magnetization curve is integrated, it gives the curve shown in figure 6.4D for 0.2
T.

We now consider on the same data the effects of modulation and integration.
Figure 6.10 compares the integrated curve of data in 6.9 with data taken obtained
for a smaller range of gate voltage and with a smaller modulation. It also shows

98



10

5

0

-5

dR
/d

V
g 

 (a
rb

. u
ni

ts
)

-15 -10 -5 0 5 10 15

Vg  (V)

60

40

20

0

-20

-40

dM
/d

V
g 

 (a
rb

. u
ni

ts
)

-15 -10 -5 0 5 10 15

Vg  (V)

Figure 6.9: Top: derivative of the resistance as a function of the gatevoltage for sample MB. Bottom: derivative of the magnetization as afunction of the gate voltage for the same sample.
the effect of performing the integration by separating the curve in 3 pieces. We
can notice that the higher modulation allows us to obtain a smoother curve with
less noise, but certain structures get rounded in a non-negligible way. Also, when
integrating over the full range of gate voltage, we may accumulate errors that can
result in the distortion of some small features. This might be taken as additional
explanation on why it is more difficult for our experiment to observe the inner
paramagnetic peaks in vHs related to bands E1 and H1, as compared to E2 and
H2.
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7 - Orbital magnetism in AB bilayer graphene

The present chapter is dedicated to the experimental study of the orbital mag-
netism of bilayer graphene (BLG).

Earlier, in chapter 1, we discussed briefly how different shapes in the band
structure lead to very interesting and different forms of the orbital susceptibility.
In this regard, a particular mention should be addressed to bilayer graphene, whose
band structure presents all the aforementioned peculiarities within energy ranges
that should be experimentally accessible. However, for this to be realized, the
energy resolution of the measurement techniques need to be able to separate these
features, and the amplitude of disorder has to be small enough. Although from
its early experimental years it has been an interesting system to study, nowadays
the study of bilayer graphene has gained momentum thanks to the improvement
in fabrication that has led to cleaner samples. There is a number of examples
of recent works focused on BLG, for example [90, 91], just to name a few. In
most of these cases, the key property that makes BLG so valuable is the possibility
to create a band gap, by applying an electric displacement field and at the same
time, to precisely control the chemical potential through two gates. This relative
simplicity in the fabrication makes the experiments reproducible and BLG a good
experimental platform.

Before going into the detail, let us start from some general concepts.

7.1 . General properties of bilayer graphene

As the name already suggest, BLG is formed by two layers of graphene. These
layers are coupled together by van der Waals forces that arise between the pz
orbitals in the monolayer. The crystaline structure of BLG follows that of monolayer
graphene, this means that it is formed by two honeycomb lattices one on top of
the other. We can consider BLG as a triangular lattice, whose basis is composed
by 4 atoms (see figure 7.1). The most stable configuration of these two layers is
the so called Bernal or AB stacking. This corresponds to a configuration in which
the atoms sub-lattice A2 in the top layer (2) are located directly on top of atoms
of sub-lattice B1 in the bottom layer (1). The atoms of sub-lattice B2 are located
on the center of the hexagons of layer 1. A graphic representation of the structure
of bilayer graphene is shown in figure 7.1. Bilayer graphene‘s lattice vectors are
the same as in the monolayer, with the difference that this time the unit cell
contains 4 atoms, instead of 2. Figure 7.1a shows a possible definition of lattice
vectors starting from a site where A2 and B1 atoms are located. Similarly yhan
for the case of monolayer graphene, we can construct the tight binding model for
bilayer graphene. As we are interested in the low energy behavior, it is sufficient
to consider an effective Hamiltonian close to the K points. The effective tight
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Figure 7.1: Schematic views of the lattice structure of bilayer graphene.(a) top view and (b) lateral view. Solid black dots correspond to dimersites whereas gray and white are the non-dimer sites. Adapted from[92]
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binding Hamiltonian close to the K point is [92]:

ĤBLG =


ϵA1 vπ† −v4π† v3π
vπ ϵB1 γ1 −v4π†

−v4π γ1 ϵA2 vπ†

v3π
† −v4π vπ ϵB2

 (7.1)

where we introduced the velocities vi =
√
3aγi/2ℏ. The quantities γi represent

the hopping parameters between the different pair of neighboring atoms. For
example, γ0 ∼ 3eV is the hopping integral between nearest neighbors in one layer.
γ1 ∼ 0.38eV relates atoms A2 and B1. γ3 ∼ 0.38eV connects sites B2 and A1

whereas γ4 ∼ 0.14eV relates sites A2 and A1 [92, 93]. Quantities ϵA,B/1,2 are the
on-site energies, each for one of the 4 sites per unit cell considered, which are not
necessarily equal. What is physically relevant is not so much their values but their
differences. We define the quantities U , ∆′,δAB, as [94]

U =
1

2
[(ϵA1 + ϵB1)− (ϵA2 + ϵB2)] (7.2a)

∆′ =
1

2
[(ϵA2 + ϵB1)− (ϵA1 + ϵB2)] (7.2b)

δAB =
1

2
[(ϵA1 + ϵA2)− (ϵB1 + ϵB2)] (7.2c)

where U describes the asymmetry between to the two layers, ∆′ accounts for
the difference in energy between the dimer and non-dimer atoms, and finally δAB

accounts for the difference in sites A and B in each layer [92]. In the simplest case,
we can consider v4 = 0 and the on-site energies only causing asymmetry in layers
ϵA1 = ϵB1 = −U/2 and ϵA2 = ϵB2 = U/2. Then the Hamiltonian can be exactly
solved. The eigenenergies are

Eh,e =±
[
γ21
2

+
U2

4
+

(
v2 +

v23
2

)
p2 + (−1)α

√
Γ

]1/2
,

with

Γ =
1

4
(γ21 − v23p

2)2 + v2p2[γ21 + U2 + v23p
2]

+ 2ξγ1v3v
2p3 cos(3φ),

(7.3)

where ξ = ±1 accounts for the valley and φ is the polar angle of the momentum
p⃗ = p cosφu⃗x+ p sinφu⃗y. α distinguishes the bands of lower energy of non-dimer
sites (α = 1) from those of higher energy of dimer sites (α = 2).

From equation 7.3 we see that there is symmetry between the bands of holes
and electrons (notice the ± that refers to holes and electrons respectively). At very
low energy, in the range of 2eV, γ3 has a remarkable effect on the band structure.
As we can see in figure 7.1, γ3 is the hopping parameter that relates non-dimmer
sites. This skewed interaction has trigonal symmetry and makes the band structure
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Figure 7.2: Schematichs of the bands of bilayer graphene at low energy,with γ3 ̸= 0.

follow this symmetry at low energy, where the last term of equation 7.3 is more
important. This behavior is known as trigonal warping. As it is shown in figure
7.3, the contact between the two lowest electron and hole bands, at the K points
are made at 4 Dirac points. The 3 exterior Dirac points have a Berry phase of
π whereas the central one has a Berry phase of −π, giving the total of 2π that
has been already studied as the responsible of the absence of the 0th step in the
Hall conductivity, which is a Direct consequence of bilayer’s n = 0 Landau level.
From an experimental point of view, it would be interesting to explore the orbital
magnetization of a bilayer graphene in the energy range of these trigonal warping
effect, because we can think that the diamagnetic signal coming from these 4
Dirac points will add up, giving a signal 4 times bigger than the one in monolayer
graphene. Additionally, as figure 7.3b suggest, 3 saddle points can appear while
going from one Dirac point to the next one. This, as mentioned before, would be
accompanied with van Hove singularities and orbital paramagnetism. In order to
be able to observe such peaks, we should have an energy resolution in the order of
1meV and a sample whose disorder energy scale is smaller than that. As shown in
figure 7.3, the difference in energy between the 4-Dirac points and the saddle point
is around 1meV. If the energy scale of disorder is of similar value, then the signal
coming from the Dirac points and vHs will be rounded, overlapping and hiding the
smallest contributions.

However, it is worth mentioning that this phenomenon is important only at
very low energies. For slightly higher energies, the term on ∼

√
v2p2 dominates

and then, bilayer graphene follows a quadratic dispertion relation E ∼ p2. Further-
more, by neglecting the hopping interaction γ3 for an instant, bilayer graphene’s
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orbital diamagnetism is still quite interesting. Because it is composed by two lay-
ers of graphene, BLG inherits the strongly diamagnetic behavior at the charge
neutrality point. In particular, the orbital susceptibility of bilayer graphene was
calculated in the 80s in the context of the understanding of the magnetism of
graphite intercalated compounds [95, 96]. In the limit when γ3 → 0 it takes the
form [60]:

χ = gvgs
e2v2

4πc2γ1
θ(γ1 − |ϵ|)

(
log

|ϵ|
γ1

+
1

3

)
. (7.4)

The out of plane interaction in BLG characterized by the hopping parameter γ1
modifies the δ(µ) divergence of monolayer graphene and the susceptibility exhibits
a logarithmic divergence. It was also shown [95, 96] that when the only term
considered is nearest-neighbors interaction, or in this case γ1 → 0, the susceptibility
reduces to the one of monolayer, as it is expected from what would be 2 decoupled
monolayers.

Another remarkable property of BLG is the possibility of opening a band gap
by applying an electric displacement field. From equation 7.2a, the parameter U
reflects the difference in energy between the layers. If U ̸= 0, this means that the
inversion symmetry is broken and a gap is open. By the means of a displacement
field, the inversion symmetry is broken. It was first experimentally observed in
[97]. In this experiment the BLG was inserted between two gates, top and bottom,
allowing independently the 2-layer doping control. Figure 7.4 shows the schematic
set up of a BLG in between two gates. Generally, by placing BLG in a region
of electric field perpendicular to the plane, there is a spatial asymmetry in the
perpendicular direction, due to an imbalance of the charge induced on each layer.
This is caused by the finite thickness of BLG [98, 92]. This effect is enhanced by
adding a second gate [99, 97], so BLG is in a region of two added electric fields,
which work as 2 capacitors in series. The asymmetry is related to the average
electric displacement field, and the gap is proportional to this average [97]. This
gap has been shown to depend on the induced difference of tension |V1 − V2|
between the two layers of BLG. By the means of two electrostatic gates, it is
possible to control this voltage and simultaneously control the total excess charge
on BLG.

U ∼ D =
1

2
(Dt +Db) =

ϵ

2

(
Vb
db

+
Vt
dt

)
n = Qtot/eS = C1V1/eS + C2V2/eS =

ε0
e

(
εr2Vt
d1

+
εr2Vtd2
d2

) (7.5)

This has been achieved experimentally [97] and has been compared with theoretical
models as it can be seen in figure 7.5. The relation between the displacement field
and the gap generated is shown in figure 7.5 from [97].

When thinking in terms of the orbital susceptibility, the possibility of a con-
trolled gap opening seems very interesting. Recovering the γ3 ̸= 0 and a non-zero
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Figure 7.3: Schematics of the bands with U = γ1 and γ3 ̸= 0.

Figure 7.4: Schematics of the connection of bilayer graphene with twogates.
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Figure 7.5: Relation between the average electric displacement fieldapplied to a bilayer graphene sample and the energy of the open gap.Adapted from [97].
gap U ̸= 0, the band structure for the lowest bands in BLG shows a Mexican
hat shape. However, because of the trigonal warping, the saddle points are pre-
served. Koshino [100] calculated the behavior of susceptibility for different gap
values. Inside the gap, the magnetic response continues to be diamagnetic but
instead of a peak, the susceptibility is constant, forming a diamagnetic plateau.
When the chemical potential reaches the saddle points, where the density of states
diverges, then the orbital susceptibility diverges with a positive sign, and exhibits
a paramagnetic peak. The explanation is the same as the one given in 6. As
mentioned there, electron trajectories are hyperbolas close to the saddle points.
When these diamagnetic trajectories are close enough, tunneling can appear be-
tween trajectories, giving a resulting closed orbit whose sign is paramagnetic. As
it was calculated by Koshino [100], by increasing the bandgap, the diamagnetic
pic becomes a plateau that gets smaller and wider by increasing the gap, and the
paramagnetic contributions increase. [60].

The band structure, density of states and the orbital magnetic susceptibility
is shown in figure 7.6 where 3 values of the gap energy have been considered: 0,
0.2γ1 and 0.5γ1. According to [92], this means energies of the order of 0, 60meV

and 150meV respectively. From the results given in [97], this corresponds to
values of the average displacement field of approximately 0, 70 and 150 V nm−1,
respectively.
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7.2 . Preliminary results on susceptibility of a bilayer graphene

In this section we present preliminary results on the evolution of the orbital
magnetism as a function of the induced gap. The objective is to follow the behavior
of the McClure diamagnetic peak, with increasing electrical displacement field, and
if possible, the appearance of paramagnetic peaks at the edge of the gap region.

Our sample consisted of an encapsulated Bernal-stack bilayer graphene. The
size of the gated zone in this sample is 15µm by 4µm approximately, similar to
the monolayers discussed in chapter 5. No intentional alignment with the BN
crystals was done to be able to neglect the effects of moiré superlattices. As it
was described in chapter 4, it was fabricated using the traditional dry transfer
techniques. This sample was then dropped on top of the GMRs chip, where
previously a gold electrode was deposited to be used as the electrode of the bottom
gate. It was designed using electron beam lithography, and the purpose was to fill
the space between GMRs and get a flatter region. This electrode was measured in
the AFM and it was found to correct the step of about 60nm that exists between
the GMRs. Once the sample was in place, a gold top gate was deposited in a
way that it covers the same region of the sample over the bottom gate. Also,
1D contacts where patterned in order to have access to transport measurements
in parallel with the magnetization. To avoid having a current in parallel with the
gaped bilayer zone, the gate electrode was used as a mask to delimit the zone
of bilayer to keep and then, the rest of it was etched away using standard RIE
techniques. This was done because we wanted to reduce as much as possible the
contribution from BLG to transport or magnetism that is not affected by the two
gates. In particular, if part of BLG is not affected by the two gates, then this
part will not be gaped and current will still flow through it, giving always a signal
regardless the electric field. Unfortunately, the contact of one of the electrodes was
lost when etching away the bilayer graphene that was not in between the gates.

Figure 7.7 shows the 2-probe resistance as a function of top and bottom gate
voltages. The linear yellow zone that crosses diagonally the plot indicates the
charge neutrality point. It evolves linearly following the electric displacement field
as it is expected. It allows us to find the values of gate voltage where to look
for the signatures of the orbital magnetism of BLG. Figure 7.8 shows the same
information but for larger values of the two gates outside the zone in 7.7. Figure
7.8a shows the resistance for the longitudinal direction, whereas 7.8b shows the
transverse direction. 7.8a seems to indicate that for electric fields bigger than
0.39V nm−1, the value of the resistance reaches a plateau and does not increase
more with increasing electric field. This may be the indication of the existence
of a conducting channel in parallel that cannot be gaped with the electric field.
Evidence of this kind of behavior has been presented in [101] paper. There, this
channel appears as the boundary between AB and BA regions in the same bilayer
crystal. The coexistence of these two stacking types in Bernal-stack BLG should
not be shocking, because the two types are energetically equivalent and its presence
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Figure 7.6: Top: Band structure for bilayer graphene showing the low-est 4 bands and their evolution when the interlayer energy differenceis 0, 0.2γ1 and 0.5γ1. The calculations give a gap that is approximatelyequal to the interlayer energy difference. Middle: Density of states cal-culated from the band structure. The DOS diverges at the points wherethe band structure shows saddle points. Bottom: corresponding or-bital susceptibility for the same cases as previous. Adapted from [100].
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Figure 7.7: Resistance as a function of both top gate voltage and bot-tom gate voltage. The yellow zone with a green dashed line indicatesthe zone of charge neutrality point. Transverse to this line lies thepoints where the gap is constant. The inset shows the evolution of theresistance at CNP, as a function of the perpendicular electric field.

could be explained perhaps by strain on the sample during the fabrication process.
In between an AB and a BA zones, the stacking must pass through AA stacking.
This must be the responsible of the remaining conduction as it has been shown
that AA region do not open a gap with electric field [102]. Figure 7.9 shows
the resistance and its derivative as a function of the gate voltage for BLG in a
perpendicular magnetic field of 1T. The oscillations of the resistance that appear
at slightly higher doping are the Shubnikov-de Haas oscillations. As it is shown in
figure 7.9A and 7.9B, they appear clearer in the derivative and are barely visible in
the direct 2-probes measurement or in the integral.

Figure 7.10 show the evolution of the McClure peak for a bilayer graphene as
a function of the electric displacement field applied using the two gates. All the
curves in this plot were obtained at constant magnetic field of 0.2T. As it can
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Figure 7.8: 2-probe resistance as a function of the top gate voltage,for different values of the bottom gate voltage. The two plots showtwo directions of themeasurements: longitudinal (left) and transversal(right).

Figure 7.9: (A) Derivative of the resistance as a function of the top gatevoltage for bilayer graphene. Shubnikov-deHaas oscillations are visiblefrom B = 1T. (B) 2-probe measurement of the resistance as a functionof gate voltage in black. The blue curve is the integral of the left redcurve.
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Figure 7.10: McClure peak for bilayer graphene for different values ofthe displacement field. Temperature in these measurements is in theorder of 500mK.

be seen from the plot, when the electric field is zero, the McClure peak is the
sharpest and highest. This can be interpreted as the whole crystal contributing
to the orbital magnetization, without the effects of the induced gap. As the
electric field increases, we see a broadening of the peak and a diminution of its
amplitude. We can interpret this as the starting of a gap opening in the zones
of BLG compatible with this AB and BA. However, the diamagnetic behavior,
even if small and broad, persist even at average displacement fields of around
D ∼ 0.5V nm−1. The expected signal for a gaped bilayer graphene is a rectangular
shape, where the diamangetic part reaches a plateau as wide as the gap, and that is
delimited by the paramagnetic peaks coming from the van Hove singularities. This
behavior was not observed in this sample. What is seen instead is the mentioned
persistent diamagnetic peak. One possible explanation of this behavior (similar
to the saturation of the resistance described above) could also be related to the
formation of boundary states between AB and BA regions. As a matter of fact, if
the presence of the gap is not uniform in the sample, there will always be regions
with negative susceptibility cancelling smaller positive contributions. Therefore the
paramagnetism of the van Hove singularities cannot be seen. Another possibility
may be related to disorder. In the case of high disorder, the electric field necessary
to see the effects of the gap might be even larger than the range that was used here.
More studies are required in order to answer the question whether bilayer graphene
is a good system to search for orbital paramagnetism, and whether trigonal warping
effects are distinguishable using this measurements technique or even, if other
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Figure 7.11: Normalized 2-probe resistance of the BLG sample (blue) incomparison with the moiré sampleMA (in orange).
phenomena as VHE can be investigated using this platform.

Finally, we show (as an illustrative figure) a comparison between the McClure
peaks that we were able to measure for monolayer and bilayer graphene. In the case
of samples MA and B1, the size of the sample and the geometry and sensibility
of the GMRs is similar. However, a large difference in the width of the peaks can
be observed. This put on evidence the nature of their respective singular behavior,
being the monolayer the sharpest and tallest because the divergence is ideally a
Dirac delta and the bilayer being a logarithmic function.
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Figure 7.12: Orbital magnetism of three of the samples studied in thisthesis, at charge neutrality point, in an external magnetic field of 0.2T.Themagnetization has been normalized to compare the width of thesepeaks. The bilayer, in blue, shows the widest peak (FWHM ∼ 0.4V).Whereas between the twomonolayers, one can directly measure a fac-tor 2 of the widths (∼ 0.2 vs ∼ 0.1V), which is in agreement with theparameters of the model of disorder discussed in chapter 5.
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8 - Conclusions

In this thesis, we have studied the orbital magnetism of three related but differ-
ent systems based on graphene. First, an encapsulated monolayer graphene. Then,
two samples of encapsulated monolayer graphene with a moiré potential where the
moiré pattern comes from the alignment between graphene and the boron ni-
tride substrate. Finally, a sample consisting of encapsulated AB bilayer graphene.
Through the means of a combination of highly sensitive giant magneto-resistant
(GMR) probes with the chemical potential control through the gate voltage mod-
ulation, we have opened a new way to measure the orbital magnetization in 2D
materials.

In the case of the first monolayer graphene, we have detected the McClure
singularity of low-field orbital magnetization of a single graphene monolayer at
the Dirac point, which is the signature of the π Berry phase of electronic wave
functions in graphene. We studied the evolution of this singular peak as a function
of magnetic field. We were able to observe the crossover between the McClure
diamagnetism at CNP and the de Haas - van Alphen oscillations at higher doping,
when the magnetic field is strong enough. We also study the role of disorder in the
rounding this singularity and showed the experimental results of a second sample in
which this disorder is reduced. We presented a model that allows us to reproduce
our data in a quantitative way, taking into account this disorder. The results of
this part of the work were published in the reference [17].

In the case of the the orbital magnetization of graphene in a moiré potential,
our measurements have shown evidence of a rich set of magnetic singularities of
the orbital magnetization in the vicinity of SDP. These consist of diamagnetic
peaks at the satellite Dirac points surrounded by paramagnetic peaks which can
be associated to the van-Hove singularities of the DOS at the saddle points of the
mini-band structure induced by the moiré potential. These experiments therefore
confirm the long standing theoretical predictions on the existence of paramagnetic
orbital magnetism in 2D materials at Van Hove singularities which in the case of
the graphene/hBN moiré investigated here, exceeds by far the Pauli susceptibility.
These results form part of an article in preparation.

In the last system studied, we focused on the orbital magnetism of bilayer
graphene. We have obtained results concerning the diamagnetic divergence of this
system, which is predicted to be a logarithmic divergence. We have also explored
the evolution of this diamagnetic peak as a function of the perpendicular electric
field that was applied between a top and bottom gates. This perpendicular electric
field has been shown to open a gap in BLG, and the theoretical prediction states
that the diamagnetic response tends to decrease for higher electric field. Then,
the appearance of paramagnetic peaks at the border of the gap is expected.

The preliminary experimental results showed a decrease and broadening in the
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diamagnetic peak as the electric field increased. However, no sign of the para-
magnetic peaks has been found yet. This might be related to the presence of
conducting channels that are present and prevent the gap for forming. More ex-
periments exploring the magnetism in bilayer graphene are necessary in order to
obtain conclusive results about the evolution of the magnetism with electric field.

We believe that our results prove the suitability of our method to explore a large
variety of systems. For example, the possibility to study valley currents in BLG
raises also great interest as a future project. Specially since our set up allows for the
measurements of equilibrium orbital currents and non-local transport in the same
sample. This kind of experiments should also enable the investigation of interband-
induced Berry curvature anomalies [23, 20] as well as Coulomb interaction effects
in 2D materials such as graphene and its bilayer [103, 77].

Another notable example is twisted bilayer graphene at the magic angle, which
is known to have flat bands [83] and host thrilling properties due to interactions. An
anomalous quantum Hall effect is then expected to appear as the result of Coulomb
interactions leading to valley symmetry breaking [104, 105, 106] and formation of
orbital current loops in zero magnetic field. They are detectable via the orbital
magnetic moments they would generate as recently shown in [15]. The possibility
to generate flat bands with a periodic array of strain has been also predicted [107,
108, 109].

It is also interesting that the typical amplitude of the paramagnetic suscepti-
bility peaks we have measured is of the same order of magnitude than the values
predicted for graphene bilayer moirés close to the magic angle [110]. This singular
paramagnetic orbital magnetism is shown to possibly lead to the emergence of new
kinds of correlated phases when the sample is imbedded in a plasmonic cavity. Our
results also motivate the extension of this work to graphene twisted bilayers with
larger moiré periods in which field periodic orbital currents are expected [111].

Moreover, in the supplementary materials of [17], data on a strained sample
was presented. On this sample it was possible to detect a gate dependent GMR
signal at zero magnetic field. This preliminary result suggest that more controlled
situations like in [112] can be combined with our set up and investigated.

Finally, we expect that the kind of measurements we have performed could also
be used to reveal the expected ballistic loop currents along edges of 2D topological
insulators [9, 113, 114, 115].
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Résumé

1. Magnétisme orbital

Nous consacrons le premier chapitre 1 au magnétisme orbital. Dans ce chapitre,
nous présenterons une très brève introduction aux définitions fondamentales néces-
saires pour le reste du manuscrit. On mentionnera également l’interrelation entre
les caractéristiques accessibles expérimentalement de la susceptibilité orbitale et
les particularités de la structure de bande qui sont à leur origine.

La relation principale que nous utilisons définit la réponse linéaire magnétique
d’un système en présence d’un champ magnétique externe

M⃗ ≡ χorbB⃗ (8.1)
où B⃗ est le champ magnétique externe, χorb est la susceptibilité et M⃗ est l’aimantation
du système.

Parce qu’en 2D, M⃗ est la densité de moments magnétiques m⃗ par unité de
surface, l’aimantation sera donnée en Ampères, A, le champ extérieur en Tesla, T,
et donc, le la susceptibilité sera donnée en Ampère par Tesla, A/T.

Lorsque l’aimantation s’oppose au champ magnétique, de manière équivalente
M⃗ et B⃗ sont anti-parallèles, alors la susceptibilité est négative, χorb < 0. On parle
dans ce cas de diamagnétisme orbital. Dans le cas contraire, lorsque M⃗ et B⃗ sont
parallèles, on parle de paramagnétisme orbital et χorb > 0. Tout ceci est général
au magnétisme 2D.

Dans le cas d’un ensemble grand canonique, l’aimantation est

M⃗ = − 1

S

∂Ω

∂B
u⃗z (8.2)

et par conséquent, la susceptibilité orbitale est

χorb = − 1

S

∂2Ω

∂B2

∣∣∣∣
B→0

(8.3)
où Ω es le grand potentiel.

2. Graphène

Les propriétés générales et les caractéristiques les plus fondamentales du graphène
sont présentées dans le chapitre 2. Ici, nous avons utilisé le modèle de liaisons fortes
pour donner une explication très simple de sa propriété magnétique la plus impor-
tante, le pic diamagnétique de McClure divergeant au point de Dirac, qui est une
signature étonnante de la phase de Berry anormale égale à π dans le graphène.
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Figure 8.1: En haut : susceptibilité orbitale du graphène dans un mod-èle à 2 bandes couplées calculé en [36]. En bas : structure des bandesdes deux bandes d’énergie les plus basses du graphène, calculée avecle package numérique pybinding [37]. Les flèches noires sont les pointsselle dans la structure des bandes, et la susceptibilité paramagnétiquecorrespondante. Les flèches rouges montrent les endroits des pointsde Dirac avec des divergences diamagnétiques. Les flèches vertes cor-respondent aux bandes paraboliques et au diamagnétisme de Landau.
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3. Sondes à effet de magnéto-resistance géante

Dans le troisième chapitre, nous présenterons l’un des aspects clés qui rend pos-
sible la détection expérimentale : les sondes à magnéto-résistance géante (GMR).
Nous présenterons les caractéristiques ainsi qu’un modèle simple mais intuitif pour
expliquer leur fonctionnement de manière générale.

A B

Figure 8.2: (A) Variation de la résistance d’une seule GMR en fonctiondu champ horizontal [17]. (B) Schéma d’une GMR dans la géométrie:courant dans le plan (CIP). Le courant circule parallèlement au plan descouches suivant l’axe y (flèche rouge). C’est la géométrie de nos son-des.
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4. Technique de fabrication des stacks et principe de mesure

Le chapitre 4 détaille le montage et le principe de la détection expérimentale.
Il met en évidence la technique qui permet de réduire les contributions des signaux
magnétiques parasites. En particulier, nous montrons que le signal mésuré est
proportionel à la dérivé de l’aimantation en fonction de la tension de grille

Vlock−in = IK

[
∂R

∂BM

∂M

∂Vg
δVg

]
(8.4)

Nous présentons également la technique de fabrication de nos échantillons dans ce
chapitre

Figure 8.3: (A) Cristaux de graphite sur du ruban adhésif. (B) Mono-couche de graphène sur un substrat de SiO2/SiO. La monocoucheest la partie où le contraste optique est le plus faible. (C) Schémas dudispositif consistant en une couche PC au-dessus d’un coussin PDMSutilisé pour fabriquer les stacks.

132



5. Résultats experimentaux: susceptibilité de McClure dans le
graphène

L’étude expérimentale de la réponse singulière diamagnétique orbitale dans le
graphène est donnée au chapitre 5. Il montre les mesures de l’aimantation dépen-
dante de la tension de grille d’un seul flocon de graphène monocouche encapsulé
entre des cristaux de nitrure de bore. Il est également accompagné d’un modèle
théorique qui permet de comprendre les détails. Ce chapitre est tiré de l’article
[17] qui a été publié au cours de ce projet.
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Figure 8.4: A : modulation détectée de la résistance du détecteur GMRavec une modulation de tension de grille AC de 20 mV, en fonction dela tension de grille continue. La quantité tracée est ∂BGMR

∂Vg
, déduite du

signal sur le capteur GMR calibré, divisée par le champ magnétiquevertical appliqué B. Les données sont la moyenne de 80 mesures in-dépendantes . B : Dérivée par rapport à la tension de grille de la ré-sistance à deux points du graphène mesurée à travers les électrodeslatérales, dans la région du point de Dirac, avec une modulation detension de grille de 50 mV. C : à des fins de comparaison, signal GMRà -0,6 T utilisant la même modulation de tension de grille que dans B.Le pic GMR est beaucoup plus étroit. D : intégration numérique desdonnées tracées dans A, donnant l’aimantation par unité de surfaceen nA (axe de droite), et le champ magnétique BGMR détecté par ledispositif GMR, en nT (axe de gauche), en fonction de la tension degrille. E et F : dépendances de champ des maxima et des largeurs depic, définis dans C, pour des modulations de tension de grille de 20 et50 mV, et comparaison avec les prédictions théoriques. Les écarts dusà l’amplitude de modulation excessive sont visibles pour une modula-tion de 50 mV.
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6. Paramagnétisme orbital dans le graphène avec un potential
de moiré

Ensuite au chapitre 6, nous présentons l’exploration expérimentale du mag-
nétisme orbital du graphène monocouche dans un potentiel moiré. Cela a été fait
en alignant le flocon de graphène avec l’un des cristaux de BN qui l’encapsule. En
particulier, nous nous concentrons sur la région où les points de selle dans la struc-
ture de bande sont attendus, ce qui s’accompagne de divergences dans la densité
des états. En ces points, la susceptibilité est attendue [18] et expérimentalement
trouvée paramagnétique.

7. Magnétisme orbital dans la bicouche de graphene AB

Nous présentons les résultats préliminaires du magnétisme orbital du graphène
bicouche dans le chapitre 7. Ici, nous nous intéressons principalement à l’évolution
de la susceptibilité en tant que fonction du champ de déplacement électrique per-
pendiculaire.
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