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Chapter 1

INTRODUCTION

1.1 Research Background

In recent years, tremendous development has been made in the automotive industry.
And substantial research efforts have been made to investigate the Advanced Driving
Assistance System (ADAS) or Autonomous Vehicles (AV). Nowadays, the autonomous
vehicles are usually equipped with several proprioceptive and exteroceptive sensors to
perceive the surroundings, which promotes safety-critical self-driving. Specifically, the
sensor measurements enable the autonomous vehicle to understand the scene context, on
which basis, high-level tasks such as localization, obstacle avoidance and adaptive cruise
control can be performed. Among the exteroceptive sensors, the cameras provide rich
color and texture information of the scene. The visual features can be leveraged for
2D object detection, which can localize the objects on the image plane. Moreover, the
features can be associated across the frames for relative pose estimation. In order to
address the issue of depth loss, the multi-layer LiDAR can be used to acquire the range
measurement. The LiDAR sensor is also invariant to the illumination conditions, which
well complements the visual sensors. However, in complex urban environments, it is still
challenging to have a comprehensive scene understanding. Due to the existence of moving
objects, mutual occlusion and unexpected object movements tend to complicate the scene
perception and ego-motion estimation tasks.

Driven by the advancement in hardware performance and corresponding software sup-
port, sensor fusion becomes a mainstream for the automotive perception system design.
The sensor fusion-based architecture aims to leverage multiple sensors’ measurements to
empower the autonomous vehicle perception, so that a richer and more reliable repre-
sentation of the surroundings can be obtained. Based on the accurate scene perception,
the autonomous vehicle can accordingly implement the tasks such as self-localization,
predictive path planning, etc. In this thesis, the automotive perception system which
incorporates the cameras and LiDAR sensors is extensively studied (see Fig. 1.2). The
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(a) The multi-sensor setup configured on the Volk-
swagen vehicle in the KITTI dataset

(b) The multi-sensor setup configured on the Re-
nault vehicle in the LS2N dataset

Figure 1.1 – The exteroceptive sensors are attached onboard for experimental benchmark-
ing purposes

exteroceptive Camera and LiDAR sensors have their own strengths and weaknesses un-
der different working conditions. One main contribution of this thesis is to adaptively
fuse the complementary vision-based and range-based sensors, where respective sensing
modality estimation uncertainty is considered. Moreover, this thesis also bridges the gap
between model-based and data-driven approaches, where the data-driven high-level se-
mantic cues effectively complement the model-based ego-motion estimation in dynamic
scenarios. Extensive experimental tests are carried out on both KITTI and LS2N datasets
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(a) (b)

Figure 1.2 – Camera and LiDAR sensors are leveraged for scene perception and self-
localization

(see Fig. 1.1). The proposed benchmarking scenarios include but are not restricted to
parking, urban, and highway areas. The benchmarking results suggest the superiority
of the multi-sensor fusion approach. Finally, the advantage of semantics involvement in
ego-motion estimation and mapping processes is also highlighted.

1.2 Literature Review

The application of exteroceptive sensors to perceive the environment and estimate
vehicle ego-motion can date back to the 1980s. In order to overcome the wheel slippage
problem, the slider stereo-vision system is employed in [1] to estimate the 6 DoF ego-
motion of the planetary rover. Due to the limited computation resources onboard, the
terrain rover has to follow the stop-and-go motion to spare time for the image signal
processing. With the 3D information of the surroundings, the planetary rover is capable
of implementing the task of obstacle avoidance. This pioneering work [1] proposes a
feature-based ego-motion estimation pipeline, which is classic and lays the foundation
for modern applications. Afterwards, the vision-based perception system is equipped
by the NASA Mars Exploration Rover [2] [3], which successfully ensures the planetary
exploration safety and accelerates the rovers’ navigation to the target area. However,
the computation efficiency remains a bottleneck and the rover perception system can not
be applied in real-time applications. The first real-time motion estimation architecture
is proposed by Nister et al. in [4], where the five-point algorithm [5] is embedded in
the Random Sample Consensus (RANSAC) [6] framework for efficient outlier rejection.
Moreover, the 3D-2D reprojection error is for the first time used in [4] to estimate the
camera relative motion, which successfully integrates the map points location and camera
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poses into a single minimization function. To further improve the pose estimation accuracy
and efficiency, the sliding-window based bundle adjustment approach is proposed in [7]
by Mouragnon et al. The Jacobian matrix for the bundle adjustment problem renders a
specific sparse structure, which ensures real-time implementation.

The modern vision-based perception system can not only estimate the camera poses
but also capture the scene structure simultaneously. Among them, the Parallel Tracking
and Mapping (PTAM) system [8] is a representative work, which initially divides the state
estimation problem into front-end and back-end threads (see Fig. 1.3). Hereby, the state

Sensor

Data Acquisition Front End Back End

Reconstruction

Feature Extraction

Data Association

Non-linear

Sparse/Dense

Optimization

Mapping

Measurement

Figure 1.3 – Scheme of the front end and back end responsibilities for the state estimation
problem

estimation refers to the vehicle poses and map points location estimation. On the one
hand, the front-end thread is responsible for real-time feature tracking and relative pose
estimation. On the other hand, the back-end thread performs the non-linear optimization
to correct the map point positions and camera poses, which makes the state estimation
process resilient to spurious data association. It needs to be noted that the back-end op-
timization does not require real-time implementation, and the thread synchronization can
be performed when necessary, owing to the parallelization of the tracking and mapping
process. Additionally, the keyframe-based pose estimation and mapping pipeline avoids
data association and optimization for each frame, which saves substantial computing re-
sources. It can be seen from Fig. 1.4 that the sparse map points are plotted to represent
the scene. This map representation is quite compact and consists of the feature points
(landmarks) observed from different view points, which is sufficient for the localization
purpose. Nonetheless, the PTAM framework is just applicable in small scenes and there is
no remedy when the feature tracking thread fails. Encouragingly, the vision-based percep-
tion system has made astonishing progress in the past decade, which enables autonomous

18



Introduction

Figure 1.4 – The estimated keyframe poses and 3D map points with the PTAM framework
[8]

vehicle large-scale exploration. ORB-SLAM [9] is one of the complete vision-based per-
ception system, which is essentially an ORB [10] feature-based approach built upon on
the PTAM framework. The ORB-SLAM pipeline consists of three main components,
namely the feature tracking, local mapping and loop closing threads. The ORB feature
is invariant to the scaling and rotation transformation, which ensures the robust feature
tracking across frames. For severe viewpoint changes, the relocalisation module [11] will
be activated to recover the feature tracking process. A bag of words place recognizer with
ORB features is also proposed in [11] for loop closure detection, which will greatly reduce
the accumulated drift. The ORB-SLAM2 system is then proposed in [12] to support
the stereo and RGB-D cameras. With the stereo-vision system, the scale metric can be
recovered. After the keyframe-based local and global optimization, the final trajectory
tends to be accurate (see Fig. 1.5). Nevertheless, ORB-SLAM2 architecture relies on the
sparse feature points for the scene mapping. This landmark-based scene representation
only satisfies the localization purposes and is less appealing for the navigation tasks such
as obstacle avoidance or path planning. For the navigation or path planning tasks, the
dense map representation is more appropriate to avoid collision between two landmarks.
According to the specific applications, the common dense map representation can be ei-
ther 2D occupancy grid map [13] or 3D octomap [14], which are shown in Fig. 1.6 and Fig.
1.7. The dense maps can identify and present the drivable areas within the probabilistic
framework, which favors the conservative and secure decision making.
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Figure 1.5 – The estimated vehicle trajectory and reconstructed sparse map of the scene
with ORB-SLAM2 [12]

Figure 1.6 – Scheme of the 2D Occupancy Grid Map [13]
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Figure 1.7 – Scheme of the 3D OctoMap [14]

Light Detection And Ranging (LiDAR) sensor is gaining the popularity in automotive
industry, owing to its high precision and resolution for the scene perception. The LiDAR
sensor measurements consist of dense 3D point clouds, which prepares the condition for
dense scene reconstruction. Meanwhile, geometric features can be extracted from the
dense point clouds for efficient relative transformation estimation. It is shown in LOAM
[15] that the edge and planar features can be detected according to the curvature value.
Then the point-to-edge and point-to-plane distances are minimized to calculate the scan-
to-scan relative pose. In the back-end, the received LiDAR scans are matched with the
local map to reduce the estimation drift (see Fig. 1.8). Furthermore, the real-time
LiDAR-based loop closure is managed in the Cartographer framework [16], where the
scan-to-submap matching constraints come from the branch-and-bound searching. The
2D Cartographer SLAM assumes a flat world, and the correlative scan matcher works well
with the vertical direction implicitly defined. For 3D Cartographer SLAM, the inertial
measurement unit is needed to measure the gravity.

The ego-motion estimation result reached by visual-SLAM algorithms can be enhanced
via integrating LiDAR measurements. In [17], depth information from LiDAR measure-
ments was utilized for visual feature tracking after LiDAR points being projected onto
image frames. At the same time, visual semantic information was used for removing
outliers and increasing the weights of static landmarks. Instead of using visual feature
points, in [18] a SLAM system using visual photometric information was proposed. Its
performance was enhanced with the involvement of sparse LiDAR point cloud for depth
acquisition. However, as pixel resolution was much greater than LiDAR point cloud one,
many pixels were not assigned the depth value, thus extra interpolation was needed to
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Figure 1.8 – The LOAM algorithm is tested on both indoor and outdoor scenarios for
dense scene reconstruction based on the estimated poses [15]

make up the missing values. In many cases, LiDAR scan-matching is used for local mo-
tion estimation and visual hint is utilized for loop closure validation. The accuracy of
LiDAR based localization was improved in [19], with visual feature aided loop detection
to reduce the accumulated drift. In [20], the visual keyframes were utilized to assist
the laser-based slam to perform local and global bundle adjustments. Furthermore, the
LiDAR scan-to-scan matching can be improved using the initial guess from visual estima-
tion as demonstrated in [21]. There are also many works which coupled both LiDAR and
visual state estimation process together. Zhang et al. [22] designed V-LOAM pipeline
which used high frequency vision based odometry as the motion prior and corrected with
high precision, low frequency lidar scan matching estimation afterwards. The framework
in [23] did not rely on visual estimation as the motion initial guess for lidar odometry.
They took in both visual and LiDAR measurements, stacking and minimizing both modal-
ities’ residuals during the optimization phase. However, as mentioned beforehand, they
did not consider the uncertainty during state estimation process, which may cause the
overconfident estimation prone to certain sensor modality.

1.3 Thesis Contribution and Outline

The main contributions of this thesis are three-fold.
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1. Enhanced Vision-based Perception and Localization. The mono-vision sys-
tem can efficiently localize the ego-vehicle, while creating a map of the surround-
ings in static scenarios. And the scale metric can be recovered trivially with the
stereo-vision system. However, the vision-based estimation tends to have poor
performance with the moving objects in the scene, which is quite common in real
traffic scenarios. In order to segment the moving objects from the background,
pure geometric modeling is insufficient and semantic information needs to be as-
sociated to the geometric entities. A semantic-guided method is thus proposed to
address this issue, which ensures the data association process is not biased due to
the impact of moving objects presence. Moreover, the backward covariance prop-
agation is leveraged to transform the uncertainty from the measurement space to
the estimation space. And the estimation uncertainty paves the way to adaptive
sensor fusion.

2. Enhanced LiDAR-based Perception and Localization. The LiDAR is ca-
pable of accurate range sensing, which provides the basis for scale-aware pose
estimation and scene reconstruction. In order to overcome the weakness of indi-
vidual direct or feature-based LiDAR scan matching, a semi-direct LiDAR point
cloud registration method is proposed. The adaptive initialization strategy takes
advantage of the constant-velocity motion model, and it reduces the possibility
that the initial guess position is in the vicinity of local minima. Besides, the
uncertainty of LiDAR-based ego-motion estimation is derived with inconsistency
indicator. The pose uncertainty estimation helps to bound the pose error within a
known confidence interval. On this basis, the main factors which degrade LiDAR
scan alignment performances are analyzed and eased by the pose graph-based op-
timization. It is demonstrated that ground points and dynamic objects such as
vehicles or pedestrians are the main causes of pose estimation accuracy decrease.
It is also noticed that significant errors frequently occur near the road intersec-
tions and in highway scenarios, where it is more likely to come across the dynamic
vehicles and the geometric information is not adequate for reliable ego-motion esti-
mation. Moreover, the LiDAR-based object detection problem is investigated with
both unsupervised clustering-based and supervised learning-based methods, which
further empowers the onboard perception system. And it is shown that the Center-
Point neural network outperforms the state-of-the-art for the objects orientation
prediction in real traffic scenarios.
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3. Adaptive LiDAR-Vision Fusion-based Perception and Localization. For
the autonomous vehicle, it is not reliable to perceive the environment with sin-
gle sensing modality. In this thesis, the complementary visual and range sen-
sors are adaptively combined for robust localization and consistent scene mapping.
To be more specific, the LiDAR sensor is employed for 3D real-dimension object
detection and the visual features are leveraged for the objects’ state of motion
(static/dynamic) estimation. With the dynamic portions of the scene identified,
the data association problem is easy to solve and the scene mapping will be more
consistent. Additionally, a loosely coupled vision-LiDAR odometry is proposed
considering the uncertainty of each sensor estimation. Covariance intersection fil-
tering ensures that the uncertainty of pose estimation does not expand after the
sensor fusion, which efficiently filters out the unstable estimation. The fused pose
will better register the lidar map points and the multi-level voxel scan-to-map
matching is adopted to reduce the frame-to-frame estimation drift.

Some of the thesis results have been published in international conference proceedings or
have been submitted to the international journal for peer-review.
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Macau, China.

— Chen, S., Sun, H. and Frémont, V., Mono-Vision based Moving Object Detec-
tion using Semantic-Guided RANSAC, 2021 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI 2021), Sep 2021,
Karlsruhe, Germany.

— Chen, S. and Frémont, V., A Loosely Coupled Vision-LiDAR Odometry using Co-
variance Intersection Filtering. 2021 IEEE Intelligent Vehicles Symposium (IV
2021), Jul 2021, Nagoya, Japan.

Peer-Reviewed International Journals

— Chen, S. and Frémont, V., Uncertainty-Aware Semi-Direct LiDAR Scan Matching
for Ground Vehicles Positioning and Scene Mapping. Submitted to IEEE Sensors
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Journal (under review).

The following chapters of this thesis is organized as follows. To begin with, in Chap-
ter 2, vision-based perception and ego-motion estimation are explored. Moving objects
are efficiently segmented from the background with the semantic-guided RANSAC algo-
rithm. Moreover, the pose estimation uncertainty modeling with the backward covariance
propagation is demonstrated. Then, the investigation of LiDAR-based perception and lo-
calization is conducted in Chapter 3. A semi-direct LiDAR scan matching approach is
proposed for robust ego-motion estimation. And the LiDAR-based pose estimation uncer-
tainty is deduced from the inconsistency indicator, from which the main factors to degrade
the laex ser scan alignment can be analyzed. Moreover, to facility LiDAR-based scene
understanding, both clustering-based and learning-based 3D objects detection are imple-
mented and discussed. Finally, in Chapter 4, the LiDAR-Vision fusion-based approach
is developed for better scene perception and localization. The proposed algorithms are
tested with real world datasets and promising benchmarking results are obtained. The
achieved leading results reflect the advantages of LiDAR-Vision measurements fusion and
geometric-semantic information integration in complex traffic scenarios.
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Chapter 2

VISION-BASED PERCEPTION AND STATE

ESTIMATION

It is fundamental for the autonomous vehicles to obtain an accurate scene percep-
tion and precise self-localization, which will facilitate their secure operation in various
unknown environments. Hereby, the vision-based perception stands for objects detection
on the image plane and state estimation includes both the ego-vehicle poses and map
points location. Vision-based Advanced Driver Assistance Systems (ADAS) are widely
employed onboard nowadays to acquire the information of the surroundings and perform
high-level tasks such as autonomous parking, adaptive cruise control, obstacle avoidance,
etc. The visual sensors like cameras are just like human eyes, which receive the passive
light and transform the 3D world into the 2D images via projection. Due to their afford-
able cost and compact size, the cameras are usually prioritized to be integrated into the
intelligent vehicle perception system. The cameras are versatile and can capture the rich
color and texture information of the surroundings with low latency. Based on the visual
measurements, various distinctive features can be extracted and matched for ego-motion
estimation. Moreover, with the learning-based methods, meaningful objects and semantic
labels can be predicted in urban traffic scenarios with the geometric features encoding
and decoding. Thus, the visual sensors play a key role for the autonomous driving system
to identify the scene components such as pedestrians, cyclists, vehicles, lane markings,
traffic signs, etc.

The perception system that incorporates only a single camera is called mono-vision
perception system. The mono-vision system can efficiently capture the 3D environment
and estimate the camera pose with an up-to-scale factor due to the depth information
loss. Meanwhile, the existence of moving objects in the scene is quite common, and it
will degrade the ego-motion estimation. Segmenting these moving objects is essential
for robust Structure-from-Motion (SfM) process. The semantic-guided approach will be
detailed in this section to leverage the contextual and geometric information together
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for moving objects segmentation. In order to solve the scale ambiguity of the mono-
vision system, the stereo-vision system is proposed, where the pixel depth value can be
inferred from the left-right images matching and disparity calculation. Then the 3D
scene reconstruction task can be implemented with the depth information, which is the
prerequisite for the further map-based localization or other interaction. Moreover, due to
the measurement noise, the estimation results are not accurate or perfect. The ego-motion
uncertainty modeling will also be discussed, which propagates the uncertainty from the
measurement space to the estimation space based on the backward propagation method.

2.1 Mono-Vision based Structure-from-Motion

Structure from Motion (SfM) is the process to incrementally compute the camera
poses and to recover the 3D scene structure with the input of sequential 2D images.
The 2D images captured by the pinhole monocular camera are essentially the perspective
projection of the 3D world (see Fig. 2.1). The image projection consists of the rays

Figure 2.1 – Scheme of the pinhole camera perspective projection model

reflected from the scene components, which lie on the image plane with the distance of
focal length from the camera optical center. Let P = [x, y, z]T be a 3D point expressed in
the camera frame FC and p = [u, v]T be the pixel coordinates on the image plane. The
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3D-2D pinhole camera perspective projection can be described as follows:
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where z encodes the point depth value, and fx, fy, u0, v0 are the camera intrinsic param-
eters. The camera intrinsic parameters can be estimated with Zhang’s method [24] when
the planar checkerboard dimension and structure are known, see Fig. 2.2 and Fig. 2.3. In
order to have a non-biased calibration result, the checkerboard pattern needs to be placed
on a planar surface and be captured from different position and orientation. According

Figure 2.2 – The input image sequence for the camera intrinsic and extrinsic parameters
calibration

to whether the visual features are detected and tracked for the camera pose estimation,
the monocular SfM problem can be solved with the appearance-based or feature-based
methods. The appearance-based methods [25] [26] operate directly on image pixels and
leverage the pixel intensity information for the ego-motion estimation. Instead of direct
photometric error minimization, the feature-based approaches [9] [12] track the distinctive
and repeatable features across frames and aim to minimize the reprojection errors. The
corner features proposed in [27] [28] [29] can be extracted trivially on the image plane
and they are more invariant to the illumination changes than the simple gray-scale pixel
values. To account for the rotation, scale and lighting condition variations during the
viewpoint changes, more and more handcrafted visual features such as Scale-Invariant
Feature Transform (SIFT) [30], Speeded Up Robust Features (SURF) [31], Oriented fast
and Rotated Brief (ORB) [10] are proposed. Among them, the ORB feature is widely
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Figure 2.3 – The estimated camera poses during the camera calibration process
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adopted due to its real-time performance of feature detection and matching, see Fig.
2.4. Meanwhile, the rotated Binary Robust Independent Elementary Features (BRIEF)
[32] descriptor is embedded in the ORB feature, which allows for the large inter-frame
movement feature matching according to the descriptor similarity.

Figure 2.4 – The ORB features are detected and matched on two adjacent ZOE images

Given the matched 2D feature points on the image plane, the up-to-scale camera
motion can be estimated with the epipolar constraints [33], see Fig. 2.5. Suppose that p1

P (x, y, z)

C1
Baseline

C2

p1
p2

e2e1

I1

I2

l1 l2

Figure 2.5 – Scheme of the epipolar geometry

and p2 are the projection of the world point P on the subsequent image planes, then the
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epipolar constraint can be written as:

pT2 K−Tt∧RK−1p1 = 0 (2.2)

where the K, t and R represent the camera intrinsic matrix, camera translation and
camera rotation respectively. It can be seen that both camera translation and rotation
are encoded in the epipolar equation Eq. 2.2, the essential matrix E and fundamental
matrix F can be defined as follows:

E = t∧R, F = K−TEK−1, xT2 Ex1 = pT2 Fp1 = 0 (2.3)

where x1 and x2 are the normalized coordinates. In reality, the matched feature points
will be more than 8 pairs. In this situation, the Random Sample Consensus (RANSAC)
[6] algorithm needs to be applied to filter out the spurious measurements and estimate
the model with the most inliers. The principle of RANSAC is to compute the model
hypotheses from randomly selected samples and verify the hypotheses with the rest of
the measurement set. To be more specific, for each iteration, eight points are randomly
sampled from the entire matched points set. Then the hypothesis fundamental matrix
can be estimated with the eight-point algorithm [34]. For the rest of the paired points,
their epipolar distances are computed and summed up for hypothesis verification. At the
end of the iterations, the fundamental matrix with the least summed epipolar distances is
chosen as the estimation result. Meanwhile, the matched points can be classified as inliers
or outliers according to the predefined threshold. Due to the depth information loss, the
epipolar geometry can only estimate an up-to-scale camera translation t. By convention,
t is usually normalized with the norm of 1.

After estimating the camera motion, the observed feature points on the image plane
can be triangulated to obtain the 3D spatial position of the points, see Fig. 2.6. Triangu-
lation means that the pixel depth value can be determined if the points (landmarks) are
observed from two image frames with the relative pose of R and t. Ideally, the two rays
−−−→C1p1 and −−−→C2p2 will intersect at the 3D map point P. However, due to the measurement
noise, the two rays will not intersect perfectly. In this case, the least-square method can be
deployed to minimize the intersection discrepancy. According to the epipolar constraints,
the normalized coordinates x1 and x2 will follow:

s2x2 = s1Rx1 + t (2.4)
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Figure 2.6 – Scheme of the feature point triangulation

where s1 and s2 are depth of the observed feature points. If x∧2 is multiplied on the both
sides of the equation:

s2x∧2 x2 = 0 = s1x∧2 Rx1 + x∧2 t (2.5)

where x∧2 is the cross product skew symmetric matrix. Then, the depth value can be
trivially solved. The deviation distances from the triangulated 3D points to the camera
optical rays quantify the triangulation quality, and the 3D points which exhibit large
uncertainty will be dropped out. After the initialization phase of the monocular SfM,
incrementally, the camera poses and corresponding 3D map points can be recovered.
Since the absolute scale can not be obtained from the mono-vision system, for consecutive
frames, the relative scale ratio r can be calculated as:

r =

∥∥∥FCt−1 Pi −FCt−1 Pj

∥∥∥∥∥∥FCtPi −FCt Pj

∥∥∥ (2.6)

where Pi and Pj are the 3D co-visible map points in the frame FCt−1 and frame FCt .
In order to reduce the motion estimation drift, windowed Bundle Adjustment (BA) [35]
optimization can be opted to adjust the 3D map points and camera poses jointly, see Fig.
2.7. The BA reprojection residual can be expressed as follows:

arg min
Pi,Ck

∑
i,k

∥∥∥pik − f (Pi,Ck

)∥∥∥2
(2.7)
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Figure 2.7 – Scheme of the bundle adjustment reprojection error minimization

where pik is the image point of the 3D landmark Pi measured in the kth image and
f(Pi,Ck) is reprojected image point with the estimated camera pose Ck and estimated
map point Pi. The windowed bundle adjustment is essentially a nonlinear optimiza-
tion problem, and can be efficiently solved with the Levenberg-Marquardt method, owing
to the sparsity feature of the BA problem. The sparsity feature of BA means that the
estimated camera poses and 3D landmarks are only related with the co-visibility measure-
ments, which makes the Jacobian matrix sparse and easy to solve. During the nonlinear
optimization, Lie algebra [36] is leveraged to describe the camera poses Ck, which makes
the Jacobian derivatives much simpler without the need to consider the rotation matrix
orthogonality constraints. The local bundle adjustment refines the camera poses (ren-
dered in red) and provides the sparse feature-based scene reconstruction, as seen in Fig
.2.8. The full sequence image samples can be accessed from the link. For solving the
depth scale ambiguity, the stereo vision system can be employed or the range sensor such
as LiDAR can be integrated into the perception system, which will be discussed in the
following Section 2.3 and Section 4.2.

2.2 Mono-Vision based Moving Object Segmentation

Vision-based traffic scene understanding is a complex yet indispensable task for the
perception of autonomous vehicles. Typically, vision-based Moving Object Segmentation
(MOS) is fundamental for high-level tasks such as obstacle avoidance in dynamic and
uncertain environments. Identifying the dynamic objects also plays an important role
in the vision based ego-motion estimation problem which usually has the assumption of
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2.2. Mono-Vision based Moving Object Segmentation

(a) The captured ZOE image sequence samples

(b) The Structure from Motion result with the ZOE image sequence

Figure 2.8 – The scheme for Stucture from Motion pipeline to reconstruct the scene

static surroundings. Being able to recognize movable objects (cars, pedestrians, cyclists)
and to obtain their states (stationary, non-stationary) can facilitate the safety of the
autonomous vehicle operation.

Before the wide application of deep learning-based methods for scene perception, lo-
cal sliding-window feature-based approaches based on Scale-Invariant Feature Transforms
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(SIFT) [37] and Histogram of Oriented Gradients (HOG) [38] are commonly adopted for
objects detection on the image plane. Lowe [37] demonstrated that the extracted local
visual features can be leveraged to identify the potential objects with the near-neighbor
indexing. In [38], the HOG feature vectors are calculated and fed in the Support Vector
Machine (SVM) for object/non-object classification. And the conventional non-maximum
suppression technique is then used to filter out the detection false alarms. However, it
remains challenging for the feature-based methods to identify the unseen objects in the
scene, which limits their application. In the machine learning era, these difficulties are
well addressed with the deep learning-based approaches that greatly outperform the tra-
ditional feature-based methods. Generally, the learning-based object detection methods
can be categorized as two types: the two-stage region-based methods [39] [40] [41] and
one-stage region proposal-free methods [42] [43]. Regions with Convolutional Neural Net-
works (R-CNN) in [39] adopts a selective search algorithm to generate up to 2000 region
proposals. Then the CNN architecture is leveraged in these Regions of Interest (ROI) to
extract dense features, and the feature vector will be fed into the SVM classifier to pre-
dict the presence of objects. Additionally, the post-processing is implemented to refine the
bounding box dimensions and eliminate duplicate detection results. Instead of applying
the CNN separately to different ROIs, Fast R-CNN [40] directly generates a convolutional
feature map through the single image forward pass. From the convolutional feature map,
the bounding box location and class can be regressed together after the ROI pooling layer
to improve the efficiency. Furthermore, faster R-CNN is proposed in [41] which unifies the
ROI proposal, feature extraction and object classification within the CNN architecture to
accelerate the object detection process. A Region Proposal Network (RPN) is used to pre-
dict the ROIs, which is much more efficient than the previous selective search algorithm.
Unlike sliding window and region proposal-based methods, the single shot detector You
Only Look Once (YOLO) [42] encodes global contextual information of the entire image
at the first sight and converts object detection into a single regression problem. Owing to
this unified design, the real-time (155 fps) bounding box prediction and classification can
be achieved. The YOLO network [42] is further enhanced in YOLO9000 [43], where the
detection performance is optimized and up to 9000 categories objects can be identified.
The YOLO architecture cuts the image into different segments and outputs instance-level
bounding boxes which are weighted by the prediction scores. Though the YOLO network
is able to predict the existence of objects and their semantic class in the scene, the objects
state of motion prediction is still challenging for the end-to-end neural-based approaches.
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Specifically, the object state of motion remains unknown if its semantic label is not defi-
nitely static. In Microsoft COCO dataset [44], definitely static (non-movable) objects are
listed as traffic light, fire hydrant, stop sign, parking meter, bench and potted plant. The
rest are classified as movable objects such as pedestrians, bicycles, or vehicles, which need
further information to solve the ambiguities for their states of motion.

Substantial research work has been devoted to the domain of moving objects segmen-
tation in recent years. Background subtraction [45] approach is widely applied to handle
the MOS problem when image sequences are acquired from a static camera. However, for
a moving camera, this approach cannot be directly utilized without additional constraints
imposed. Because of the vehicle ego-motion, the object-motion and ego-motion are cou-
pled together which makes the background subtraction non-trivial. In order to decouple
and compensate for the ego-motion, the epipolar geometry [45] is commonly adopted for
ego-motion estimation across two consecutive frames. Unfortunately, sparse feature-based
state estimation may be unstable when the non-static feature points are chosen and in-
corporated in the estimation process. By convention, dynamic objects are regarded as
outliers and a random sample consensus (RANSAC) [6] method is often applied to filter
them out. However, this strategy fails to operate when the dynamic objects turn out to
be the dominant components in the scene. Thus, effective moving objects segmentation in
a complex scene remains a critical issue to be solved for the perception of autonomous ve-
hicles. In [46], the challenge of estimating a vehicle’s ego motion as well as the movements
of dynamic objects at the same time is addressed based on projective factorization of the
multiple-trajectory matrix. Stereo-vision based moving object segmentation methods are
proposed in [47] [48] [49], where the motion likelihood of every pixel is calculated given
the approximated ego-motion uncertainty and U-disparity map is built to characterize
on-road obstacles. Color and depth hints are leveraged in the graph-cut framework for
connected regions (moving objects) extraction. In [50], a Bayesian framework is applied
to generate a probability value for each pixel, either being static or dynamic, according
to the epipolar and focus of expansion constraints. The framework enables the system to
segment moving objects with degenerate motion due to the Flow Vector Bound (FVB)
constraint attached. With the advancement of learning-based methods, an unsupervised
adversarial contextual model is proposed in [51] to segment dynamic objects in the im-
age frame. The contextual information of the surroundings is fed for the neural network
training to infer the optical flow in specific regions, meanwhile another network formats
the context as uninformative as possible since the optical flow of a moving object is uncor-
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related with the background. The term of moving objectness is introduced in [52], which
represents the possibility that they belong to moving objects. Several prediction are firstly
proposed using multiple figure-ground segmentations and then the proposals are ranked
with the moving objectness criteria to identify moving objects. In [53], Neural-Guided
RANSAC is applied to a wide range of computer vision tasks such as fundamental matrix
estimation, horizon line estimation and camera re-localization. Inspired by this, a novel
semantic-guided RANSAC algorithm is formulated in this thesis to reject instance-level
outliers which helps to discriminate truly moving objects from stationary ones. Different
from differentiable RANSAC in [53], the proposed two-stage approach (semantic predic-
tion and geometric validation) is more flexible to add constraints to detect the objects with
degenerate motion regardless of the ego-motion variation, without modifying or retraining
the existing neural networks.

(a) Get the bounding boxes with semantic labels us-
ing yolo v4 detector

(b) Extract the Shi-Tomasi corner feature points,
rendering in green for movable objects, rendering in
blue for non-movable objects and background points

(c) Estimate the Fundamental matrix with the fea-
ture correspondences rendering in blue (pyramidal
Kanade-Lucas-Tomasi tracker)

(d) Render the moving bounding box in red when
the proportion of pixel-level outliers in the bounding
box is over the threshold of 0.5

Figure 2.9 – Overview of the proposed semantic-guided RANSAC for moving objects
segmentation. Blue, red, green colors stand for stationary, non-stationary and unknown
objects respectively in KITTI dataset

In Fig. 2.9, it is shown that the proposed framework starts with a YOLO object
detection module. Objects with static semantic labels such as traffic lights are directly
classified as stationary. However, movable objects with the labels such as person, bicycle
and car need further information to make the inference. Thus, Shi-Tomasi corner points
[28] are extracted from the image and iteratively tracked using Lucas-Kanade optical flow.

38



2.2. Mono-Vision based Moving Object Segmentation

Feature points which belong to the static objects and background are utilized to estimate
the fundamental matrix. Semantic-guided RANSAC takes full advantage of instance-level
semantic segmentation and enables the fusion of semantic labels and geometric constraints
for moving object detection. Combining semantic and geometric cues results in accurate
moving object segmentation by checking the residual value of the epipolar constraint and
flow vector bound for all suspicious points lying in the movable bounding boxes. Instead
of training an end-to-end fashion neural network which outputs object existence and its
state, a two-stage approach is taken in this thesis. The YOLO network output provides
good semantic prior to predict the existence of the objects and then semantic-guided
ransac decides the state of the objects based on the epipolar geometry and flow vector
bound constraint.

The well-known Kanade–Lucas–Tomasi (KLT) [54] tracker leverages spatial intensity
cues to guide the search for the corresponding features across two frames. In order to deal
with large camera motion across frames, a pyramidal KLT tracker is implemented to allow
for tracking points with large displacements between frames. Moreover, semantic label
consistency and forward-backward flow consistency constraints are added into feature
points tracking process to reduce the occurrence of mismatches due to occluded pixels
and pixels with strong illumination changes. Pyramidal KLT tracker can be applied
to get the pair of matched feature points (p1,p2) across frames, p2 = KLTforward(p1).
Then the optical flow propagates backward to get the estimated initial feature point
p̂1, p̂1 = KLTbackward(p2). The forward-backward constraint is imposed to compute the
euclidean distance dist(p̂1,p1) for matched points, and this metric is used to discard
potentially erroneous feature matches when their discrepancy is over 2 pixels.

Status(p1,p2) =

 valid dist(p̂1,p1) < 2
invalid dist(p̂1,p1) > 2

(2.8)

Status(p1, p2) =

 valid label(p1) = label(p2)
invalid label(p1) 6= label(p2)

(2.9)

RANSAC [6] is an iterative method to estimate the underlying model parameters
which meanwhile divides the input data into inliers and outliers. The main limitation of
RANSAC is that, when large number of outliers are incorporated in the dataset, biased
estimation output may be provided due to the limits of iteration times. Due to the increase
of outliers ratio, RANSAC needs exponentially more iterations to reach the point with a
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outlier-free subset found, see Fig. 2.10. The expected number of iterations r to reach a
certain probability p with a minimal outlier-free subset found is

r = log(1− p)
log (1− wN) (2.10)

where w is the fraction of inliers and N is the minimum number of samples needed for
model estimation which should be eight pairs [45] of matching points for fundamental
matrix estimation in our case. Higher inlier fraction is preferred since it helps to incor-
porate more correct correspondences in the consensus set and fewer iterations are needed
get obtain the model parameters.
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Figure 2.10 – RANSAC number of iterations for 8-point fundamental matrix estimation

Figure 2.11 – The ratio of fundamental matrix estimation time with/out semantic prior.
The semantic prior can reject the outliers and accelerate the fundamental matrix estima-
tion convergence

The proposed semantic-guided fundamental matrix estimation makes use of semantic
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priors to guide the model fitting, which facilitates obtaining the outlier-free minimal
subset. Static feature points belonging to background and objects with non-movable
semantic labels such as traffic lights and traffic signs have higher priority than movable
objects such as pedestrians and vehicles to be utilized for fundamental matrix estimation.
Moreover, the semantic bounding box from YOLO v4 output whose objectness score is
lower than a threshold of 0.2 is suppressed and not taken into account. The semantic
prior ultimately increases the fraction of inliers in the tentative pairs set and as a result,
fundamental matrix estimation is more well conditioned which requires much less number
iterations to converge (see Fig. 2.11), where the frames are taken from KITTI raw data
2011_09_26_drive_0056 sequence.

Considering pairs of matched points belonging to the background and static objects,
the fundamental matrix is robustly estimated with the 8-point algorithm [34]. And given
a pair of matched points (pin,pin+1) lying in the movable object, geometric constraint can
be leveraged to distinguish the truly dynamic objects from the static ones. Fundamental
matrix maps the point pin to its corresponding epipolar line lin+1 as lin+1 ∼ Fpin across two
frames, where ∼ represents an up-to-scale equality. Then it is possible to calculate the
epipolar geometry residual rF for matched points to implement outlier rejection based on
point-to-line distance dp2l in the image.

rF = max{dp2l
(
pin, lin

)
, dp2l

(
pin+1, lin+1

)
} (2.11)

where the point-to-line distance dp2l from the point pin = (uin, vin) to line lin with reduced
coefficients [ain, bin, cin]T is calculated as:

dp2l = ainu
i
n + binv

i
n + cin√

(ain)2 + (bin)2
(2.12)

However, when a 3D point in the scene appears on the epipolar plane which is constructed
by the point itself the camera center in the previous and current frames, the perspective
projection of the moving point always stays on the corresponding epipolar line. In this
case, null epipolar residual does not represent that the point is static, see Fig. 2.12. So the
epipolar constraint is not capable to detect such moving points with degenerate motion.
Thus, another constraint using Flow Vector Bound (FVB) [50] is additionally imposed to
find the bound of parallax range [dFV Bmin , d

FV B
max ] for static and background points in the scene

with Eq. 2.13. Given images captured from a pinhole camera, pixel-wise displacement di
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(a) The epipolar geometry constraint works well in
non-degenerate case
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(b) The epipolar geometry constraint fails in degen-
erate case

Figure 2.12 – The scheme for the degenrate motion illustration

for the feature point pin = (uin, vin) which has the depth value z can be obtained with the
equation:

pin+1 −KRK−1pin = 1
z
Kt

di =
∣∣∣pin+1 −KRK−1pin

∣∣∣ (2.13)

where K, R and t are the camera intrinsics, rotation and translation from timestamp
n to n + 1 respectively. Any point with a parallax value di which is not in the range
[dFV Bmin , d

FV B
max ] will be also set as an outlier and rejected. Then, the ambiguous movable

object can be classified as a truly dynamic (static) object if there are more than 8 feature
points lying on the object and the proportion of pixel-level outliers is above (below) the
threshold of 0.5. If the number of feature points inside the bounding box is less than
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8 (minimum number for independent fundamental matrix estimation), the state of the
object is set as unknown and waiting for further information to make the decision. In
Section 4.1, a more sophisticated σ-rule based probabilistic method will be developed
to reduce the number of tuning hyper-parameters. Moreover it needs to be noted that
epipolar geometry constraint only works for the moving camera mounted on the vehicle.
When the camera does not move, the epipolar line can not be defined. In this situation,
FVB constraint complements the epipolar geometry constraint to detect moving objects
in the scene.

Algorithm 1 Semantic-Guided Instance-level Outlier Rejection
Input: Corresponding feature points in two consecutive frames
Output: Segmented moving bounding boxes in the scene frame
1: I Extract the background and static feature points in the scene by excluding the

feature points with movable semantic labels
2: I Apply the 8-point algorithm to estimate F with the static and background feature

points
3: I Check how well F matches feature points in the bounding boxes with movable

labels using Eq. 2.11
4: I Impose FVB constraint to detect feature points on objects with degenerate motion

using Eq. 2.13
5: I Determine the movable object as the truly dynamic object if there are enough

feature points on the object and the proportion of pixel-level feature point outliers is
above the threshold of 0.5

The KITTI dataset [55] contains image sequences recorded in urban and highway
environments. In the category of raw data, 2D bounding boxes tracklets of moving objects
are provided for several sequences. Our system is evaluated at the bounding box level
with the metrics of Precision and F-score defined as:

P = tp
tp + fp

, F = 2tp
2tp + fp + fn

(2.14)

with tp, fp and fn represent true positive detection, false positive misdetection and false
negative alarm successively. In order to highlight the advantage of our proposed ap-
proach which fuses semantic and geometric information, the method presented in [48] and
[49] which uses stereo-vision without considering semantic clues are chosen as the base-
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Figure 2.13 – Flow vector bound constraint for detecting moving objects with degenerate
motion with the frame from KITTI raw data sequence 05

(a) YOLO network wrongly classifies reflections in
the mirror as cars with high confidence

(b) States of cars in the mirror are set as unknown
(green) in our pipeline due to lack of consistently
matched feature points for decision-making

Figure 2.14 – Result analysis for false alarms due to mirror reflection with the frame from
KITTI raw data sequence 71

line. Four typical heavy traffic scene sequences are selected to evaluate our system. Tab.
2.1 illustrates the quantitative results for the comparison purpose. From Tab. 2.1, it is
shown that the precision of moving object detection has been greatly improved due to the
semantic cues involvement. Taking the semantic information into account increases the
true positive detection rate and decreases the false negative alarm rate. Moreover, with
RTX 2070 GPU acceleration, the neural-based semantic inference can run at the speed of
30FPS. Then, with the efficient CPU-based OpenCV library [56] for geometric validation
and instance-level outlier rejection, the cascaded implementation can achieve real-time
performance at 10FPS. It is superior to the approach in [48] and which takes more than
0.2 second to estimate the ego-motion along with its uncertainty for each single frame.
In the proposed method, the ego-motion is implicitly integrated in the epipolar geometry
point-to-line residuals and the sparse feature points optical flow ensures the efficiency of
the whole pipeline. Fig. 2.13 demonstrates that, the FVB constraint effectively helps to
segment moving objects with degenerate motion. At the same time, the FVB constraint
also applies when the ego-motion is null, see the video presentation, which makes our
system robust against the ego-motion variation. And it is presented in Fig. 2.14 that, the
false alarms due to mirror reflection are set as unknown states because of the minimum
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feature number constraint imposed. Compared with the end-to-end moving object detec-
tion approach, our two-stage method is more flexible to add constraints without modifying
or retraining the existing neural networks. Despite these advantages, our framework also
has some drawbacks. It does not perform very well in some certain scenario where the ob-
jects are far from the ego-vehicle. In this situation, they appear to be very small and there
are not enough feature points on them for decision-making. Moreover, when the static
objects are getting close to the vehicle due to ego-motion, false alarms will be raised if
their parallax across frames exceed the flow vector bound for the current frame. Besides,
object mutual occlusion might also cause the false alarm occurrence when overlapping
bounding boxes share the feature points for outlier rejection. Indeed, in these situations,
the detection precision degrades. However, in practice, false alarms do not have fatal
impact for the autonomous driving and misdetection of moving objects in the scene is not
that critical when the objects are far away from the vehicle.

Table 2.1 – Comparison of MOS accuracy
Methods Metrics 05 11 51 56

Our Precision 0.700 0.868 0.856 0.885
approach F-Score 0.762 0.878 0.773 0.798

Approach in Precision 0.690 0.696 0.680 0.768
[48] F-Score 0.780 0.792 0.799 0.777

Approach in Precision 0.383 0.675 0.556 0.510
[49] F-Score 0.513 0.770 0.706 0.664

2.3 Stereo-Vision based State Estimation and Uncer-
tainty Modeling

The conventional monocular camera has the inherent problem of depth ambiguity for
the state estimation and mapping tasks, see Fig. 2.15. It can be seen from Fig. 2.15
that, all the points which lie along the ray from the camera optical center O to the image
point p uniformly satisfy the perspective projection rule. In order to distinguish the
possible spatial locations of 3D point P, the stereo vision system is proposed in [1] for
the 6 Degree of Freedom (DoF) motion estimation. The stereo vision system basically
consists of two cameras that are set apart for the visual points triangulation (see Fig.
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Optical Center

Normalized Plane

Possible Locations of

p with normalized coordinates

Figure 2.15 – Scheme of point depth ambiguity for the mono-vision system

2.16). This mechanism is similar to our human eyes, where the point depth can be easily

Left camera Right camera

Figure 2.16 – Scheme of the stereo-vision system to estimate the depth of triangulated
point P

deduced from the left-right pixel-wise disparity calculation. In Fig. 2.16, the 3D point
P is captured by both the left and right cameras, where pl, pr are the projected points
on the image planes. Before the disparity and depth estimation, the captured left and
right images need to be rectified to ensure the corresponding points stay on the same row,
where the pixel v coordinates are identical. According to the principle of similarity of
triangles, we can have equation as follows:

z − f
z

= B − ul + ur
B

(2.15)
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where z, f , B stand for the point depth, focal length and baseline distance respectively.
After the simplification, we can obtain:

z = fB

∆ , ∆ , ul − ur (2.16)

And ∆ is defined as the disparity value between the corresponding left and right image
points. As we can see from Eq. 2.16, the depth is inversely proportional to this disparity
value. When the disparity value is obtained, to calculate the depth with Eq. 2.16 is an easy
task. However, matching the exact points from left and right images is not that trivial for
the stereo-vision system. Thus, the basic block matching method proposed in [57] solves
the data association problem via comparing the Sum of Absolute Differences (SAD) of
each block on the image plane. Furthermore, the Semi-Global Block Matching (SGBM)
[58] approach additionally imposes the condition of similar disparity among neighboring
blocks to improve the stereo matching accuracy, which makes the disparity calculation
more reliable in complex scenes. It can be seen from Fig. 2.18 that the stereo image points

(a) The image captured by the left gray-scale camera
in kitti dataset

(b) The image captured by the right gray-scale cam-
era in kitti dataset

Figure 2.17 – The images captured with stereo-vision system in KITTI dataset

(a) The calculated disparity map with SGBM algo-
rithm in KITTI dataset

(b) The reconstructed 3D scene map with the abso-
lute depth information

Figure 2.18 – The disparity map and depth-aware scene reconstruction results in KITTI
dataset

are assigned with the depth information for the scene reconstruction. Some of the parts
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are left as blank due to the viewpoint changes or occlusion, which complicates the stereo
matching and triangulation process. With the depth information, the 3D feature points
can be directly leveraged for the 6 DoF ΘFCt−1

FCt
ego-motion estimation via minimizing

the image plane re-projection errors, see Eq. 2.17.

Θ∗FCt−1
FCt

= argmin
Θ

FCt−1
FCt

∑
i

∥∥∥FItxi − FIt x̂i∥∥∥2

Σ
(2.17)

where ‖ · ‖2
Σ is the Mahalanobis distance with Σxi as the covariance matrix for the ith

measurement and the uppercase FCt−1 , FCt , FIt stand for the current camera frame,
previous camera frame, current image frame respectively. The FIt x̂i = (ûi,l, v̂i,l, ûi,r, v̂i,r)T

is the reprojected 2D point on the left and right images via inter-frame transformation
ΘFCt−1
FCt

and camera perspective projection K.

FIt x̂i = f(K, ΘFCt−1
FCt

,
FCt−1 P̂i−1) (2.18)

Since the 3D points are triangulated from the stereo images instead of adjacent monoc-
ular frames, the stereo-vision system will be more robust than the monocular scheme in
challenging scenarios, such as aggressive motion and mutual occlusion [4].

The general formulation in Eq. 2.17 aims to find the relative transformation ΘFCt−1
FCt

that minimizes the image plane reprojection errors. The residual errors measure the
distance from the estimation to measurement location on the image, which can be used
to assess or quantify the estimation results without any priors. However, it needs to
be noted that the data collected by the visual sensors are not noise-free, so the residual
errors can not completely represent the estimation uncertainty. Furthermore, with more
and more point matches taken into the residual optimization, the overall residual errors
inevitably increase. In this case, residual errors alone are no longer suitable for the
estimation uncertainty modeling. Intuitively, more point matches will consolidate the
state estimation results and the estimation variance should decrease.

In order to quantify the optimum estimate uncertainty, we need to figure out how the
estimation results are obtained. We assume that the measurement noise on the image
plane observes the Gaussian distribution, with zero mean and the covariance Σxi . For the
notation simplicity, the reprojection residual in Eq. 2.17 can be rewritten as:

‖x− f(Θ̂)‖Σ = ‖(x− x)− J(Θ̂	Θ)‖Σ (2.19)
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where x represents the measurement value. Θ̂ is the estimated value and x, Θ stand for
the true values. J is the Jacobian matrix which is the partial derivative ∂f

∂Θ taken at the
estimated Θ̂ and Σ denotes the measurement noise. The solution for the least square
minimization follows the equation:

(Θ̂	Θ) =
(
J>Σ−1 J

)−1
J>Σ−1(x− x) (2.20)

Then the estimated transformation can be expressed as:

Θ̂ =
(
J>Σ−1 J

)−1
J>Σ−1(x− x)⊕Θ (2.21)

If x is contaminated with the Gaussian white noise with zero mean and known covariance
matrix Σ, then the estimated parameters Θ will also follow the Gaussian distribution,
with the mean of Θ and covariance ΣΘ

ΣΘ =
[(

J>Σ−1 J
)−1

J>Σ−1
]

Σ
[(

J>Σ−1 J
)−1

J>Σ−1
]>

(2.22)

After the simplification, we can obtain the backward covariance propagation equation:

ΣΘ =
(
J>Σ−1 J

)−1
(2.23)

which propagates the uncertainty from the measurement space to the estimation space.
The uncertainty backward propagation involves the first order linearization around the
optimum estimate and we can concatenate all matched points factors to get the final
transformation uncertainty:

ΣΘ = Jm2e(
∑
i

(JTi (Θ)Σ−1
xi Ji(Θ)))−1JTm2e (2.24)

where Jm2e is the Jacobian matrix to transform from the manifold estimation domain to
the euclidean estimation domain, which will be detailed in Section 4.3. We can infer from
Eq. 2.24 that, more inlier matches will aggregate the measurement information, which
results a more confident estimation. And the quantitative results of the pose estimation
uncertainty can be seen from Fig. 2.19, where the three sigma bounds can successfully
bound the pose estimation errors.
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Figure 2.19 – Stereo-vision pose uncertainty along tx, tz, and ry for KITTI sequence 03

2.4 Summary

In this chapter, both the pinhole monocular camera and stereo vision system are cov-
ered for the scene perception and self-localization. The camera relative transformation
can be estimated by the reprojection residual errors minimization. Then concatenated
relative poses need to be refined with the local bundle adjustment optimization, which
can improve the visual odometry accuracy. However, the real-world environments are not
always static. The moving objects such as pedestrians, cyclists, or vehicles may contami-
nate the data association process, which will result in biased ego-motion estimation and
erroneous scene mapping. In order to segment the moving objects within the field of view,
the geometric model and semantic information are adaptively combined to associate the
semantic meaning to the geometric entities. The outlier rejection mechanism RANSAC is
applied at a higher level abstraction to reject instance-level outliers which depends on the
proportion of pixel-wise outliers in the bounding box. A moving object is extracted seam-
lessly from the semantic-guided RANSAC process and the computational complexity is
reduced since sparse Shi-Tomasi corner features are used with semantic prior instead of all
pixels in an image. Moreover, the fundamental matrix estimation process becomes more
robust and efficient by taking the semantic prior into consideration. Without dedicated
objects tracking and ego-motion estimation, our approach still achieves high precision and
F-score on KITTI benchmarking sequences. Since the mono-vision perception has the in-
herent problem of depth ambiguity, the stereo-vision system is introduced to overcome
this problem. The principle of the stereo-vision system is to capture synchronized images
with both the left and right cameras, and depth of each matched pixel can be calculated
with the left-right disparity and the baseline distance. After the outlier rejection, the
relatively accurate 6 DoF estimation results can be obtained. Nonetheless, the deter-
ministic ego-motion estimation scheme does not consider the visual sensor measurement
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noise. In order to measure the estimation uncertainty, the first-order linear approxima-
tion is made to calculate the Jacobian matrix. The first-order Jacobian matrix helps to
propagate the uncertainty from the measurement space to the estimation space. As a
result, the confidence of the obtained optimum estimate can be assessed, which is vital
for the conservative and secure decision-making.

Even though the visual cameras are versatile for the geometric and semantic parsing
of the scene, they tend to have poor performance in low illumination condition. Thus,
the full autonomous perception system tends to fuse the visual sensors with other sensing
modalities, to increase the system resilience and robustness against measurement noise and
perception degeneration cases. In Chapter 4, the LiDAR-Vision sensor fusion approach
is developed for more robust perception and ego-motion estimation.
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Chapter 3

LIDAR-BASED PERCEPTION AND STATE

ESTIMATION

The previous Chapter focuses on leveraging the visual sensors for the moving objects
segmentation and state estimation. The state estimation is two-fold, which includes the
ego-motion estimation and map points registration. Indeed, in order to navigate in un-
known real-world environments, accurate self-positioning and precise perception of the
surroundings are two fundamental capabilities for intelligent vehicles. With the advance-
ment of the automobile industry and mobile robotics, different sensing modalities are
employed onboard to analyze the scene and to estimate the vehicle ego-pose. For outdoor
maneuvering, Global Navigation Satellite Systems (GNSS) are widely used solutions to
obtain the vehicle pose when a reliable signal can be obtained from several satellites.
However, in GPS-denied areas, the popular high-definition Light Detection and Ranging
(LiDAR) sensor is gaining popularity due to its inherent high precision and robustness
against noise. Compared to visual sensors, LiDAR is invariant to the illumination condi-
tions and its omnidirectional field of view enables robust scale-aware pose estimation and
precise 3D scene mapping.

Basically, the multi-layer LiDAR measurements are consisted of dense point clouds
that are collected from the laser beam reflection. Given the consecutive timestamped
3D LiDAR scans, a rigid transformation can be obtained to tightly align the associated
LiDAR point clouds, which forms the basis for LiDAR-based ego-motion estimation. By
matching the corresponding LiDAR points, the LiDAR-based ego-motion estimation aims
to determine the position and orientation of the ego-vehicle in an incremental way and
the absolute pose to the reference frame can be retrieved by means of rigid transformation
accumulation. Moreover, the point clouds returned from the laser reflection provide the
reflectance value and rich geometric features that enable real-time 3D object detection.
For autonomous vehicles, it is essential to predict the location and class of the traffic
participants such as pedestrians, cyclists and cars in the neighboring areas. Due to the
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3D perception capability of the LiDAR sensor, the objects are usually recognized and
described with oriented 3D bounding boxes in the ego-vehicle sensor frame. The 3D
bounding boxes give the center coordinates and the width, length and height dimensions
of the detected objects, where the orientation angle is simplified as the yaw angle with
respect to the ego-vehicle sensor frame.

3.1 3D Semi-Direct LiDAR Scan Matching

In the past few decades, several achievements in pose estimation using 3D LiDAR
scan matching-based approaches have been obtained, which reached centimeter-level pre-
cision. In order to tightly align two time-consecutive point clouds, ICP-based algorithms
are well-recognized methods to estimate the relative pose of the LiDAR frames. The
direct ICP scan matching algorithm was firstly introduced in [59]. The ICP algorithm
iteratively searches for the nearest neighbor in the target point cloud and builds the
correspondences, based on an objective function, that refines the optimal relative trans-
formation through iterations. In [59], the point-to-point distance is used for the closest
neighbor association, which might be too greedy when the two scans are captured with
strong viewpoints changes. In order to mitigate this problem, the point-to-plane dis-
tance is proposed in [60] for robust data association. Compared with the point-to-point
distance metric, the point-to-plane distance metric relaxes the strict point-to-point corre-
spondence restrictions, which is more adaptable for partially overlapped scans in practice.
In order to speed up the scan matching data association process, a KD-tree data structure
[61] is adopted for efficient nearest neighbor queries. To increase the robustness against
outliers, the Trimmed ICP algorithm is presented in [62]. In this work [62], the strict
selection of low mean square error correspondences allows a scan matching with low over-
laps. With the purpose of unifying the point-to-point and point-to-plane distance metrics
into a probabilistic framework, Generalized-ICP (G-ICP) has been proposed in [63]. In
the G-ICP framework, the scan alignment accuracy, efficiency and robustness are main-
tained under a variety of challenging situations. Instead of aligning the whole raw 3D
point cloud, the feature-based methods extract distinctive feature points and build the
correspondences based on high-dimension descriptors instead of simple Euclidean distance
between the points positions. For example, a double-layer feature-based method [64] ex-
tracts the ground and vertical features to represent the scene, and robustly associates the
correspondences between the scan observations. Moreover, the edge and planar points
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are classified and associated according to the curvature value in LOAM [15] to realize the
long-term localization. In order to further alleviate the outliers contamination, T-LOAM
[65] pre-classified the points into edge features, sphere features, planar features and ground
features, which are associated with a truncated least-squares method to maintain the scan
matching robustness and accuracy at the same time. For large-scale scene localization,
the multi-scale feature maps are built as a prior in [66] for efficient global positioning.
Recently, inspired by images-based approaches, more and more viewpoint invariant de-
scriptors such as PFH [67], FPFH [68], and SHOT [69] emerged to characterize the local
patches around the points of interest in the LiDAR scans. Sample Consensus Initial Align-
ment (SAC-IA) has been proposed in [68] for the rough scan alignment. This approach is
robust to sensor noise but might cause overfitting in information-deprived environments
such as indoor corridors, outdoor tunnels or highways. The accuracy of the standard
ICP scan matching is highly dependent on the initialization process as reported in [70].
It means that a large deviation of the initial alignment may cause the ICP optimization
divergence or being stuck in local minima. Thus, hybrid methods [21] [71] [72] [73] [74]
[19] that incorporated visual and range sensor information have been proposed for reliable
state estimation and scene reconstruction. In [21], the omnidirectional visual features (as-
signed with the SIFT [30] descriptors) are back-projected to the LiDAR sensor frame to
boost the ICP convergence. The visual and LiDAR sensor information are loosely coupled
by covariance intersection in [71] for the robust inter-frame pose estimation. Besides, a
LiDAR-Camera joint optimization approach has been proposed in [72] for accurate pose
estimation and dense 3D model reconstruction. At the same time, the sparse LiDAR
depth map can also be enhanced with the involvement of the state-of-the-art event-based
camera to realize dense scene reconstruction [73]. Moreover, a polarized camera factor
can be integrated in a factor graph framework [74] to correct the yaw angle estimation
in sparse and GPS-denied areas. Furthermore, the drift of the incremental LiDAR scan
alignment can be eliminated by the vision-based place recognition technique, as demon-
strated in [19]. With the advent of deep learning era, data-driven local 3D descriptors
such as 3DMatch [75], PPFNet [76], and 3DFeat-Net [77] appeared, which learned from
pre-built correspondences in the training dataset and encoded the volumetric patches into
descriptive vectors for robust feature matching. Besides, an Long Short-Term Memory
(LSTM) [78] network was put forward for real-time LiDAR odometry estimation, which
inferred the possible connections across consecutive frames. Another deep neural network
named 3DRegNet was then proposed in [79] for robust correspondences outliers rejection
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and efficient 3D point cloud alignment with noisy input. Moreover, a modified siamese
network OverlapNet [80] has achieved prosperous results by adaptively comparing the
similarity between pairs of LiDAR scans to address the challenges of purely LiDAR-based
loop closure and global localization.

Depending on whether raw data and local features are extracted and matched in
the source and target point clouds, LiDAR scan matching algorithms can be roughly
categorized into two branches, namely the direct and feature-based point cloud alignment
approaches. On the one hand, the direct scan matching method aligns the raw point
clouds without distinguishing the feature points. The correspondences are built iteratively
according to the nearest neighbor criteria, and the optimal transformation is estimated
as the relative pose between the source and target point clouds. However, it needs to
be noticed that the direct method always requires a good initial guess to start, and it
does not work efficiently for small overlapping and noisy scans. On the other hand, the
feature-based scan matching methods extract local features from raw point clouds and
build high dimension descriptors for the features’ matching process. The established
corresponding points will then be used to estimate the relative pose, while increasing the
robustness against noise and erroneous matches. Nonetheless, in repetitive and feature-
less environments, the performance of the feature-based method may degrade due to the
lack of features working as anchors during the alignment process. Semi-direct approaches
were firstly proposed in [81] [82] [83] for vision-based state estimation to overcome the
problem of visual illumination changes and loss of visual feature tracking. Basically,
the estimated transformation from the feature-based method serves as the starting point
for the direct method to increase the estimation precision and robustness. Inspired by
those performances in vision-based state estimation, a so-called semi-direct scan matching
approach is proposed that combines the conceptually complementary direct and feature-
based scan matching. The proposed semi-direct scan matching algorithm ensures that the
registration is robust against high-speed or large-rotation motion, and travel in repetitive
and feature-less environments. Besides, for vehicles driving on roads, the ground points
that appear to be highly isotropic, are inevitably scanned and matched, which may bias
the state estimation. In order to reduce the registration lag effects, ground points are
removed beforehand. Since the ground vehicle platform is used for scene perception and
state estimation, the roll and pitch angles will be very small and are mainly due to the
vehicle body vibration. So they can be safely neglected and will not cause critical issues.
Thus, a simple but efficient method is applied to identify and to clear the ground points
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with the prior vehicle height and planar motion assumptions.
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Figure 3.1 – Adaptive Semi-Direct LiDAR Scan Matching for Ground Vehicles Localization and Map-
ping.

The pipeline of the proposed semi-direct LiDAR scan matching approach is shown
in Fig. 3.1. For consecutive LiDAR scans perceived in the local frame, point cloud
pre-processing is necessary before implementing the scan matching. The point cloud pre-
processing includes scattered outliers and ground points removal, which will significantly
ease the false correspondence matching problem. Afterwards, a robust semi-direct scan
matching that adopts the adaptive initialization strategy is applied to compute the relative
poses.

The scattered scene components such as tree leaves or bushes are sparse and non-
permanent, which may cause a challenge for accurate scan matching. Besides that, due to
the existence of measurement noise, some spurious points may be collected and matched
which may corrupt the alignment results. It is thus mandatory to filter out such scattered
outliers in the point clouds before implementing the scan alignment. In the proposed
approach, a Gaussian distribution based outlier rejection method is performed to remove
the sparse and isolated points. Firstly, for each 3D point {xi}, the distances to its
neighbors xj ∈ N(xi) are computed within a pre-defined area. In this thesis, the query
area N(xi) is defined as the 20 nearest neighbors around the point {xi}. With the
assumption that the calculated distances satisfy a Gaussian distribution, the mean µ(xi)
and standard deviation σ(xi) are computed. Then, the neighbors {xj} with distances
exceeding the sigma-rule boundary from the mean distance, are marked as outliers to
be trimmed. Subsequently, the voxel grid filter with the leaf size Lsize is applied to
down-sample and to approximate the point clouds for efficient scan alignment. For each
voxel Vi, the points {xi} inside it, are approximated with their centroid Ci =

∑
xi∈Vi

xi
|Vi|

.
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This operation will greatly reduce the number of points without losing the raw points
distribution. When traveling on real roads, the point cloud acquired by the LiDAR sensor
placed on the top of the vehicle naturally contains many ground points. Ground points on
flat roads tend to be isotropic and they encode little geometric information for the data
association step. During the iterative nearest neighbor tracking, a slight deviation may
cause mismatches of the ground points and distort the whole scan alignment. This usually
occurs in city or suburb open areas where the navigable space is the predominant planar
surface. Therefore, ground points removal is crucial to ease the scan matching process.
To address these problems, a consensus-based method is applied to segment the ground
points with the assumption that the vehicle follows a planar motion and the LiDAR
vertical position is known. On this basis, a set of potential ground points {Ĝt : xGl ∈ Ĝt}
are selected, incorporating all the points that locate hprior along the z-axis below the
vehicle roof. Here, hprior is highly linked to the LiDAR installation height. Meanwhile,
another condition for potential points selection is that the unit normal vector ~nGxl around
xGl needs to stay within an offset of γoff from the z-axis of the LiDAR frame. The offset
γoff allows slightly sloped terrain points to participate in the ground plane estimation,
considering the fact that the driving road is not always fully flat.

xGlz < −hprior, ~nGxl · [0, 0, 1]T > cos(γoff ) (3.1)

After that, the consensus-based method iteratively picks three non collinear points
{xGi ,xGj ,xGk } within the pre-defined point set {Ĝt} to fit the ground plane equation {P̂G :
Ax + By + Cz + D = 0}. The distances of the potential ground points {xGl ∈ Ĝt}
to the estimated plane P̂G are then computed and summed up to vote for the plane
candidates until the convergence criteria are met. At the end of the iterations, the plane
with the least point-to-plane distances is chosen as the ground plane P∗G. As long as
the ground plane is found, the points in {Ĝt} with the distances less than hoff to the
ground plane P∗G are also considered as belonging to the ground to increase robustness
against measurement noise (see Fig. 3.2). In this figure, the estimated ground plane
is {P∗G : −0.00x + 0.03y + 1.00z + 1.75 = 0}, which reaches centimeter level precision
according to installation measurements. Finally, the pre-processing procedure ends, and
the ground points excluded from LiDAR scans {S4t } are used to minimize the alignment
error.

As reported in [70], the direct scan matching with raw point clouds tends to be less
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3.1. 3D Semi-Direct LiDAR Scan Matching

Figure 3.2 – Visualization of the ground points (in red) segmented by our consensus-based
method with the KITTI HDL-64E LiDAR

efficient with large baseline motions, while feature-based methods lose their advantages
of bootstrapping from local minima in feature-less environments. To complement the
weakness of individual direct or feature-based methods, a hybrid semi-direct approach is
proposed, to allow robust estimation under challenging conditions. Here, a feature-based
method is leveraged to estimate a coarse but globally consistent inter-frame pose that
serves as a prior for the following multi-scale direct dense point clouds alignment. In
this proposed semi-direct approach, the point-to-plane distance metric is adopted for the
optimal estimation of T∗,

T∗ = argmin
T

∑
(xi,x

′
i)∈C

ii
′

‖(x′i −Txi)n
′

i‖2 (3.2)

where Cii′ is the correspondence set incorporating the point pairs in the source and target
LiDAR scans. The plane normal vectors n′i around x′i in the target LiDAR scan could
effectively guide the scan matching process to distinguish points lying on different sur-
faces and discard unreliable correspondences {(xi,x

′
i)}. For the sake of reducing spurious

correspondences, the selected features for the sparse point cloud alignment need to be
distinctive and invariant to viewpoint changes. To this end, intrinsic Shape Signatures
(ISS) [84] is a salience-based keypoints extraction method, in which the salience measure
is derived from the scatter matrix Σ(xi) eigenvalue decomposition.

x̄ = 1
|S(xi)|

∑
xj∈S(xi)

xj (3.3)
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Σ(xi) = 1
|S(xi)|

∑
xj∈S(xi)

(xj − x̄) (xj − x̄)T (3.4)

where S(xi) are the spherical neighbours of xi within a pre-defined radius. With the
scatter matrix Σ(xi) eigenvalue decomposition, the descending eigenvalues {λ1

i , λ
2
i , λ

3
i }

can be obtained, and their corresponding eigenvectors {e1
i , e

2
i , e

3
i } are used to build the

intrinsic reference frame. To ensure the distinctiveness of the local features, ratios of the
sequential eigenvalues are required to not exceed the thresholds γ21 and γ32.

λ2
2/λ

2
1 < γ21, λ2

3/λ
2
2 < γ32 (3.5)

The thresholds γ21 and γ32 guarantee that the established intrinsic reference frame exhibits
maximum salience along the principal directions, which makes features more informative
and recognizable from various viewpoints. As long as the ISS features are extracted
from the 3D point cloud, the efficient Fast Point Feature Histogram (FPFH) descriptor
[68] is used for robust data association. FPFH is basically a 33-dimensional vector that
characterize the local geometry around a point. It efficiently increases the keypoints
description and helps to establish the keypoints correspondences. Through iteratively
taking three pairs of matched feature points {(xi,x

′
i), (xj,x

′
j), (xk,x

′
k)} and implementing

correspondence consistency (edge similarity) check, the transformation matrix Tf that
optimally aligns the sparse feature points could be obtained by using the Random Sample
Consensus (RANSAC) method. The correspondence consistency check is to verify the
edges distance {(dij, dik, djk), (d

′
ij, d

′
ik, d

′
jk)} formed by the features in each frame. This

prevents mismatches in the environment with repeatable features. The correspondences
are then considered as valid, if the features are not collinear

(xi − xj)/dij 6= (xi − xk)/dik
(x′i − x′j)/d

′
ij 6= (x′i − x′k)/d

′
ik

(3.6)

and their formed edges have similar length as

0.9 < dij/d
′
ij < 1.1

0.9 < dik/d
′
ik < 1.1

0.9 < djk/d
′
jk < 1.1

(3.7)

Given a set of associated feature points, the RANSAC-based scan matching does not
require initial guess and is more robust to outliers. This alleviates the problem of getting
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stuck at the local minima. However, in the feature-less environment with few distinctive
features to be extracted, feature tracking tends to be hard to manage. In this way, we
need to evaluate the estimated pose Tf from the feature-based method and the last pose
estimation heuristics tT̂t−1 with the Chamfer Distance (CD), to choose a more reliable
initialization point Tinit for the dense alignment.

Tinit = arg min
tT̂t−1,Tf

{CD(tT̂t−1S4t ,S
4
t+1), CD(TfS4t ,S

4
t+1)} (3.8)

where the notation (·)4 stands for ground points free LiDAR scans, and the Chamfer
Distance (CD) is a metric to measure the tightness of two aligned point clouds, with the
expression as:

CD (S1,S2) = 1
|S1|

∑
xi∈S1

min
x′i∈S2

‖xi − x′i‖2

+ 1
|S2|

∑
x′j∈S2

min
x∈j S1
‖xj − x′j‖2

(3.9)

Then the multi-scale pyramidal [85] dense point cloud alignment is implemented to re-
fine the coarse initial pose Tinit. The multi-scale pyramid defines a two-layer maximum
correspondence distance as 3 × Lsize and Lsize, and Lsize is the downsampling voxel leaf
size. The first layer point cloud alignment has the maximum correspondence distance of
3× Lsize, whose convergence criteria is simple to reach. As a result, the first layer align-
ment further eliminates the effect of false correspondence and reduces the risk of being
stuck in the local minima. Then, based on the result from the first layer, the second layer
pyramid searches in a finer scale for the final tight point-cloud alignment. This design
adaptively determines the nearest neighbor searching radius without fine-tuning, which
greatly facilitates optimization convergence for partially overlapped point clouds. Since
more raw points information is considered, the point cloud alignment is more robust in
feature-less scenes with few distinctive 3D feature points to track.

To evaluate the performances of the proposed Semi-Direct ICP (SD-ICP) scan match-
ing approach, extensive experiments have been carried out using the public KITTI [55]
and self-recorded LS2N datasets at the Centrale Nantes Campus. The KITTI dataset
point cloud is acquired with a Velodyne HDL-64E laser scanner, which has 64 channels
with a maximum range of 120 m. Our self-recorded dataset is collected with a light-weight
Velodyne VLP-16 LiDAR, which only has 16 perception channels and renders sparse point
clouds. The parameters chosen for the proposed approach are summarized in the Tab.
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Algorithm 2 Semi-Direct Scan Matching Algorithm
Input: Consecutive LiDAR scans {St,St+1}, Relative transformation heuristics tT̂t−1
Output: Estimated transformation t+1T̂t that tightly aligns the consecutive scans
1: Initialize 1T̂0 ← I4
2: while New LiDAR scan arrives do
3: Remove the scattered outliers and ground points to get the processed LiDAR scans

{S4t ,S4t+1}
4: Apply the ISS keypoints detection, FPFH description to {S4t ,S4t+1}
5: Implement the keypoints correspondence consistency check and only keep the valid

ones using Eq. 3.6, 3.7
6: Obtain the rough transformation Tf with the consistent keypoints correspondences

using RANSAC
7: Evaluate the Chamfer Distance (CD) of tT̂t−1 and Tf , then choose the initial guess

Tinit using Eq. 3.8
8: Conduct the multi-scale dense alignment with Tinit and get the relative transfor-

mation t+1T̂t

9: Update the LiDAR scan timestamp t← t+ 1
10: end while

3.1. The considered evaluation metrics are the Relative Fitness (RF) and Relative Root

Table 3.1 – The parameters table for the proposed SD-ICP
Lsize hprior γoff hoff γ21 γ32

0.1 m 1.4 m π/5 rad 0.2 m 0.975 0.975

Mean Square Error (RMSE) of the inlier correspondences {Cii′}, that can be expressed
as:

RF = |Cii′ |
|St+1|

, RMSE = 1
|Cii′ |

∑
(xi,x

′
i)∈C

ii
′

√
‖xi − x′i‖2 (3.10)

On the one hand, the Relative Fitness (RF) measures the proportion of associated inliers
{Cii′} among the full target cloud {St+1}, and higher relative fitness values represent
better scan matching results. On the other hand, RMSE measures the root mean square
errors of all inlier correspondences, and lower RMSE stands for tighter alignment.

According to the KITTI sensor setup datasheet 1, the LiDAR installation height is
1.73 m from the ground, which verifies that our ground plane estimation in Fig. 3.2 is
precise and reliable. This can be mainly attributed to the fact that the potential ground

1. http://www.cvlibs.net/datasets/kitti/setup.php
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Figure 3.3 – Quantitative relative fitness and RMSE metrics evaluation of scan matching
with(out) ground points for KITTI odometry sequence 00-10

points set has been strictly selected and only contains a few outliers. As a result, the
consensus-based ground plane estimation avoids local minima, which facilitates accurate
ground points segmentation. The registration lag effect, which means that the ground
points erroneous matches distract the point clouds from seamless alignment, is shown in
Fig. 3.3. It can be seen that ground points’ existence lowers the inliers proportion and
amplifies the relative RMSE value, which reveals the necessity to remove the ground points
before conducting scan matching. However, for KITTI sequence 01, the ego-vehicle travels
on the highway and is constantly surrounded by other moving vehicles, which poses great
challenges for accurate ego-pose estimation. In this case, removing the ground points does
not improve the scan matching performance. To integrate an Inertial Measurement Unit
for ego-pose pre-integration may ease this problem.

In order to benchmark the performances of the proposed semi-direct scan matching
method, a thorough quantitative evaluation is conducted in various scenarios such as ur-
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(a) The ground points erroneous matches distract the point clouds from
seamless alignment

(b) The registration lag effect is greatly reduced by ground points removal

Figure 3.4 – Qualitative results for the registration lag effect caused by the ground points
erroneous matches for the KITTI sequence 05

ban (KITTI 04), highway (KITTI 01), residential (KITTI 00, 02-03, 05-10) and outdoor
parking (LS2N 00-01) areas. In these different driving scenarios, the vehicle ego-motion
varies a lot, which provides high speed motion in the highway and mild motion in the
parking area for us to investigate the performance of different LiDAR scan matching ap-
proaches. Tab 3.2 and Tab 3.3 2 list the relative fitness and RMSE metric values of the
state-of-the-art scan matching methods as well as our approach, including Direct ICP
[60] (D-ICP), Feature-based ICP [68] (F-ICP), Generalized ICP [63] (G-ICP) and our
Semi-Direct ICP (SD-ICP). From Tab 3.2 and Tab 3.3, it is shown that the dense point
cloud alignment using the direct ICP is generally superior to the sparse feature-based ICP.
Particularly, for the sequence of LS2N 00, direct ICP outperforms other approaches in the
term of the fitness metric due to the fact that the ego-vehicle moves slowly in the parking

2. The scan registration with the relative fitness below 30% is considered as invalid and the RMSE
value is not calculated in that case
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Table 3.2 – SD-ICP Registration Results Benchmarking with RF(%)

Dataset
Metric D-ICP F-ICP G-ICP SD-ICP

KITTI_00 47.7% 27.0% 59.7% 77.2%
KITTI_01 26.8% 24.8% 27.2% 49.4%
KITTI_02 38.1% 29.9% 57.7% 73.2%
KITTI_03 47.2% 27.7% 62.8% 67.2%
KITTI_04 31.7% 30.9% 31.6% 65.4%
KITTI_05 43.8% 28.9% 61.4% 76.4%
KITTI_06 27.6% 19.8% 40.9% 62.3%
KITTI_07 56.8% 33.4% 62.4% 78.7%
KITTI_08 39.1% 24.5% 50.4% 70.7%
KITTI_09 28.3% 21.4% 52.6% 68.8%
KITTI_10 49.5% 30.7% 69.8% 76.0%
LS2N_00 74.7% 69.9% 74.3% 72.7%
LS2N_01 44.8% 32.9% 44.9% 49.5%
Average 42.8% 30.9% 53.5% 68.3%

Table 3.3 – SD-ICP Registration Results Benchmarking with RMSE (CM)

Dataset
Metric D-ICP F-ICP G-ICP SD-ICP

KITTI_00 5.83 − 5.68 5.53
KITTI_01 − − − 6.23
KITTI_02 6.18 − 5.94 5.75
KITTI_03 6.08 − 5.83 5.75
KITTI_04 5.91 6.03 5.92 6.05
KITTI_05 5.80 − 5.64 5.51
KITTI_06 − − 5.84 5.75
KITTI_07 5.49 5.98 5.36 5.26
KITTI_08 6.05 − 5.91 5.68
KITTI_09 − − 6.07 5.85
KITTI_10 5.95 6.38 5.62 5.53
LS2N_00 5.37 5.56 5.41 5.34
LS2N_01 6.11 6.40 6.07 6.02
Average 5.88 6.07 5.77 5.71

area. Since more raw point clouds information is leveraged for scan matching, the direct
ICP has better performance when the subsequent scans that share adequate overlapping
areas. The sparsity of the point clouds obtained by 16-layer LiDAR is another reason
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(a) Point cloud registration stuck in local minima for the D-ICP

(b) Point cloud registration boosted from local minima for the SD-ICP

Figure 3.5 – Point cloud registration results visualization at the road intersection for frame
133-134 in the KITTI sequence 05

for the poor performance of the feature-based method. However, when the ego-vehicle
experiences important viewpoint changes, the direct ICP loses its advantages, especially
with the poor identity matrix transformation initialization. Due to the unanticipated
decrease of overlaps, the inherent iterative nearest neighbor association strategy of D-ICP
is vulnerable and tends to be stuck in the local minima, see Fig. 3.5(a). On the con-
trary, since high dimensional feature descriptors are invariant to viewpoint changes, the
feature-based scan matching is more robust for the large baseline motion across consec-
utive frames. The putative descriptor-based keypoints correspondences are constructed
beyond iterative nearest neighbor searching and update loop, which reduces the risks of
being stuck in the local minima. With pre-established correspondences, the initialization-
free sampling consensus-based method is applied to reject potential outliers and to obtain
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(a) Point cloud registration lag in the feature-less environment for the
F-ICP

(b) Robust point cloud registration with the adaptive initialization strat-
egy for the SD-ICP

Figure 3.6 – Point cloud registration results visualization on the highway for frame 634-
635 in the KITTI sequence 01

the optimal relative transformation. Nevertheless, it also needs to be mentioned that the
feature-based scan matching is highly dependent on the feature detection procedure, which
may lead to inaccurate or biased registration in the feature-less or feature-repetitive envi-
ronments such as corridors or highways, see Fig. 3.6(a). The drawbacks of the direct and
feature-based scan matching reveal the necessity for their combination to provide more
robust estimation in the information-deprived environments. From the benchmarking re-
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sults, it can be noticed that our semi-direct approach outperforms the state-of-the-art
methods by a considerable margin in various scenarios, achieving the leading results with
68.3% average relative fitness and 5.71 cm average RMSE distance, respectively. Due to
the fact that our semi-direct method implements the scan matching in a coarse-to-fine
manner, it is less sensitive to unmodelled artifacts such as moving objects or undergo-
ing the view occlusion, viewpoint changes, and information-deprived environments. For
instance, it can be seen from Fig. 3.7 that a van constantly appear in front of the ego-
vehicle for the KITTI sequence 04. The existence of moving objects in the scene degrades
a lot the performance of both direct and feature-based ICP methods, see the fifth row
of Tab 3.2. In this case, the D-ICP and F-ICP tend to be stuck in the local minima,
which may partially align the point clouds and provide low fitness registration results.
Indeed, the undergoing environments and realized ego-trajectories have a deep impact on

Figure 3.7 – Moving objects in the scene degrade the state estimation performance for
the KITTI sequence 04

the performance of LiDAR scan matching. To be more specific, our approach obtains
promising results in the highway scenarios (KITTI 01), which is very challenging for di-
rect and feature-based methods because of the relatively low frame rate compared with
the high-speed ego-motion( see the second row of Tab 3.2 and Tab 3.3). The adaptive
initialization strategy in Eq. 3.8 ensures that the starting point for the pose optimization
is not biased. With a reliable initialization point considering the last pose heuristics, it
takes fewer iterations for dense point-cloud alignment to converge, and it is also more
likely to obtain the global minima even for the fast motion (see Fig. 3.6(b)).

3.2 3D LiDAR Scan Matching Uncertainty Modeling

For LiDAR scan matching, it is crucial to evaluate the corresponding uncertainty
for the estimated relative poses. This is beneficial for fusing the estimates with other
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sensors or for assigning weights to the nodes in a pose-graph to reduce the local errors.
Another advantage of uncertainty modeling is to bound the estimation error within a
known confidence interval, which is the prerequisite for roads obstacle avoidance and
interactive navigation tasks.

There exit several methods like in [86] and [87] for the scan matching covariance
estimation. A closed-form covariance estimation method is presented in [86], which lay
on the basis of objective function linearization around the optimal estimation. In order
to correctly propagate the uncertainty from the measurement space to the estimation
domain, the second-order derivatives of the objective function are calculated and applied
to the initial measurement noise. Nevertheless, it needs to be noted that the closed-
form covariance estimation only considers the uncertainty caused by the sensor noise;
thus, it could not apply to the local minima situations. Monte Carlo simulation [87] is
another branch of the covariance estimation, which iteratively contaminates the LiDAR
scan and the initial guess with white noise. Then, several pose estimates under different
conditions can be computed. Based on Monte Carlo sampled scan matching results, the
distribution of the relative pose estimation can be reconstructed. Nevertheless, the brute
force sampling is time-consuming and limited in its application scenarios.

In order to maintain the computation efficiency and estimation accuracy, the derivative-
free covariance estimation method in [88] is adopted to assess the scan matching quality.
Instead of indoor pose confidence estimation with the RGB-D sensor [88], it is reformu-
lated in this thesis to predict the LiDAR scan matching uncertainty in large-scale outdoor
scenarios with noise and large viewpoint changes. Given the two consecutive LiDAR scans
in the local sensor frame TtSt and Tt+1St+1, the estimated relative pose t+1T̂t tightly aligns
the corresponding points 3 {xi} ∈ St and {x

′
i} ∈ St+1 in the point clouds. Essentially,

the uncertainty estimation is based on the inconsistency indicator D(t+1T̂t,Tt,Tt+1) for
all valid pairwise correspondences (xi,x

′
i) ∈ Cii′ within a predefined distance threshold∥∥∥t+1T̂txi − x′i

∥∥∥ < ε. The error tolerance ε is linked to the sensor precision, which is set
as 0.1 m in this thesis. And the information matrix can then be extracted via the lo-
cal parameterization ξ = (r, t) = (α, β, γ, x, y, z) 4 about the estimation and true value

3. {xi} are points with the homogeneous coordinates and {x∧
ivec
} are skew symmetric matrices of

points with the vectorized cartesian coordinates
4. For the local parameterization of transformation discrepancy, β is far away from its singular position

of π2 , thus the gimbal lock issue of Euler angle parametrization is avoided
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discrepancies T−1
t Tt+1

t+1T̂t in such manner:

T−1
t Tt+1

t+1T̂t ≈

I3 + r∧ t
0 1

 (3.11)

After that, the inconsistency indicator can be approximated as:

D(t+1T̂t,Tt,Tt+1) =
∑

(xi,x
′
i)∈C

ii
′

∥∥∥t+1T̂txi − x′i
∥∥∥2

=
∑

(xi,x
′
i)∈C

ii
′

∥∥∥t+1T̂txi −T−1
t+1Ttxi

∥∥∥2

=
∑

(xi,x
′
i)∈C

ii
′

∥∥∥T−1
t Tt+1

t+1T̂txi − xi
∥∥∥2

≈
∑

(xi,x
′
i)∈C

ii
′

‖r× xivec + t‖2

=
∑

(xi,x
′
i)∈C

ii
′

∥∥∥[−x∧ivec I3

]
ξ
∥∥∥2

= ξTΛξ

(3.12)

where Λ is the information matrix in the quadratic form with the expression as follows:

Λ =
∑

(xi,x
′
i)∈C

ii
′

[
−x∧ivec I3

]T [
−x∧ivec I3

]
(3.13)

The information matrix gives a direct reflection of the tightness of two LiDAR scans
being aligned, and its inverse Λ−1 can be considered as the covariance matrix to model
the scan matching uncertainty. Compared with the scan alignment itself, the covariance
matrix is calculated only once at the final iteration, and its estimation time is negligible
since it is derivative-free. The validity of the proposed approach is validated through
the publicly available KITTI dataset sequence 05, which contains road intersection and
dynamic environments. (See Fig. 3.8 and Fig. 3.9)

The pose uncertainty estimation helps to bound the pose error within a known con-
fidence interval. On the one hand, it can be seen from Fig. 3.8 that our predicted
confidence interval could accurately bound the estimation errors during most of the time.
It is attributed primarily to the pre-conducted outdoor ground points removal, scattered
outliers removal, and multi-level semi-direct scan matching that incorporate more reliable
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Figure 3.8 – Scan matching uncertainty estimation along tx, ty and tz for the KITTI
sequence 05

correspondences for the pose estimation. As it can be inferred from Eq. 3.13, more valid
correspondences will result in a more confident state estimation, which is in line with
the principle of maximum likelihood estimation. It can also be seen from Eq. 3.13 that
the farther the inliers {xi} locate from the local sensor frame, the more confidence we
gain from the pairwise correspondences. On the other hand, it is observed that few over-
shoots occur at the road intersection with some moving objects in the scene, see Fig. 3.9.
The ego-motion at the road intersection will cause inadequate overlapping of subsequent
LiDAR scans for state estimation, and the scan matching convergence can not be guaran-
teed in this situation. Besides, the existence of the moving object further complicates the
point cloud registration process and may lead to inconsistency in uncertainty estimation.

To rectify the misaligned point clouds, the pose-graph global optimization technique
proposed in [89] is applied to reduce the local drifts, see Fig. 3.10. A pose graph is for-
mulated with nodes representing the poses and edges representing pairwise registration,
and then the deviated poses are penalized and smoothed with the global pose-graph opti-

71



Chapter 3 – LiDAR-based Perception and State Estimation

(a) Frame 108 in the KITTI sequence 05

(b) Frame 500 in the KITTI sequence 05

(c) Frame 1514 in the KITTI sequence 05

Figure 3.9 – Partially overlapped point clouds at the road intersection degrade the scan
matching performance which corresponds to the overshoots in Fig. 3.8
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Figure 3.10 – Overview of the proposed uncertainty modeling integrated in the pose graph
optimization

mization. The results in Fig. 3.11, indicate that pose-graph optimization can significantly
improve the pose estimation accuracy and scene mapping consistency, where the point
clouds are well registered with high fidelity.
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(a) The main parking scene visualization with the
front camera

(b) The main parking scene reconstruction with the
VLP-16 LiDAR

Figure 3.11 – The main parking area scene mapping and self-positioning with the VLP-16
LiDAR at the Centrale Nantes Campus (LS2N 00)

3.3 3D LiDAR-based Objects Detection

For the intelligent vehicle perception system, identifying the surrounding objects plays
an important role for the decision-making. Compared with the 2D objects detection on
the image plane, 3D objects detection with the LiDAR sensor has the advantages of better
object size recognition and spatial range prediction. In this section, both the unsupervised
and supervised object detection approaches will be detailed and discussed.

Before the era of deep learning with neural networks, Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [90] is a well-known approach for point cloud
clustering and objects detection. The DBSCAN clustering algorithm aims to recursively
classify the points into the same group when are within the given clustering search radius.
The points that do not belong to any cluster are labeled as noise to be filtered out. The
two hyper-parameters for the DBSCAN clustering are ε and n, which are the radius to
aggregate the neighboring points and the minimum number of points required to form
the dense clusters. The DBSCAN clustering algorithm is superior to the conventional
KMeans method [91] since it can effectively recognize arbitrarily formed clusters without
knowing the number of clusters beforehand. In order to efficiently segment the 3D objects
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(a) The kitti HDL-64E LiDAR point cloud visualiza-
tion

(b) The objects detection results with the DBSCAN
clustering algorithm for the kitti dataset

Figure 3.12 – The 3D objects detection from the kitti HDL-64E LiDAR point cloud with
the DBSCAN clustering algorithm

from the background scene for the intelligent vehicle application, the point cloud pre-
processing such as voxel down-sampling and ground points removal in the Section 3.1
are indispensable. Nonetheless, it needs to be noted that the DBSCAN clustering is
essentially an unsupervised algorithm and it can only segment the scene into several
regions according to the point cloud density distribution. As we can see from the Fig.
3.12, the parked cars are labeled with different colors for objects clustering. However, the
tree brands and vertical walls, which are not considered as traffic participants, are also
segmented from the background. The clustered regions lack semantic labels, which makes
the scene understanding and decision-making tasks not trivial. Moreover, the detection
results degrade a lot when the point cloud is sparse with the VLP-16 LiDAR, see Fig. 3.13.
Therefore, the unsupervised objects detection results can only serve as the preliminary
baseline and are not suitable for the real applications.

In order to overcome these difficulties, substantial research efforts have been made to
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3.3. 3D LiDAR-based Objects Detection

(a) The LS2N VLP-16 LiDAR point cloud visualiza-
tion

(b) The objects detection results with the DBSCAN
clustering algorithm for the LS2N dataset

Figure 3.13 – The 3D objects detection from the LS2N VLP-16 LiDAR point cloud with
the DBSCAN clustering algorithm

learn the 3D feature representation and topological connection from LiDAR point clouds
for the end-to-end 3D objects detection. The learning-based method is more applicable
than the clustering-based method for different scenarios with different traffic participants.
After the training process, the learning-based method has no hyper-parameters to tune
in the application which is superior to the clustering-based method. Moreover, the ob-
ject labels can also be identified during neural inference, which facilitates the contextual
understanding of the scene. PointNet [92] is a pioneering unified neural network pipeline
that transforms the unordered LiDAR point clouds into a canonical representation, where
the encoded point-wise features are invariant to certain transformations. Then, the global
feature vector can be obtained after the symmetric max pooling function. And the final
segmentation and classification heads which are made of the Fully Connected Network
(FCN) layers, take in the global feature vector and provide the ultimate detection out-
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puts. VoxelNet [93] is another milestone for efficient 3D objects detection, which extracts
feature vector representation directly from equally partitioned 3D voxel grids. The novel
Voxel Feature Encoding (VFE) layer allows inter-point interaction within a voxel, which
helps to characterize the local 3D shape information. After that, the convolutional middle
layers aggregate the local voxel features and enrich the descriptive volumetric representa-
tion. At last, a Region Proposal Network (RPN) is responsible to generate the 3D objects
detection results. However, the inference time of VoxelNet is too long to be deployed in
real-time systems. PointPillars [94] is also a representative approach that quantizes the
original point cloud into vertical pillars instead of voxels representation for the efficient
feature extraction. The pillar-wise encoding of features avoids the computationally ex-
pensive 3D convolutions and 2D convolutional backbones can be directly applied to the
pseudo image for the high-dimension neural inference. For the detection head, the Single
Shot Detector (SSD) [95] is adopted to regress the orientated 3D bounding boxes along
with their semantic labels, which enables inference at 62 Hz. The benchmarks results
shown in [94] suggest that PointPillars is an appropriate encoding for objects detection
in point clouds and the sample detection result can be seen from Fig. 3.14. Neverthe-

Figure 3.14 – The PointPillars 3D objects detection reuslts with the kitti HDL-64E LiDAR
point cloud

less, since the 3D bounding boxes usually have different dimensions and orientations,
the anchor-based 3D detectors may encounter the difficulty in regressing the 3D oriented
bounding boxes from the axis-aligned 2D ones. We can observe from Fig. 3.14 that
the orientation of the predicted bounding boxes are a bit biased due to the predefined
bounding boxes anchors. Thus, the CenterPoint framework [96] is proposed to align the
bounding boxes with the center-based representation. The CenterPoint network follows
the well-known encoder-decoder architecture pipeline, where the point clouds height and
intensity information are encoded in the Bird-Eye-View (BEV) map representation. A
resnet-based backbone is used to extract features on the flattened BEV images, which
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is followed by the center heatmap head and property regression heads. Specifically, the
center heatmap head helps to locate the object centers and infer their semantic classes.
And the attributes of objects’ 3D size and yaw orientation can be obtained from the up-
scaled feature maps with the property regression heads. The outputs of the CenterPoint
network are expressed as {(Ci

x, C
i
y, C

i
z), (Li,W i, H i), θi, Si}i=1...n, which represent center

coordinates, dimensions, heading angles and semantic classes (vehicles, cyclists or pedes-
trians) of n detected objects respectively. The center-based 3D object detection captures
real-scale range and shapes of the objects through rotationally invariant points, which is
more robust during the ego-turning phases, see Fig. 3.15.

Figure 3.15 – The LiDAR-based 3D object detection results with the CenterPoint network
at the road intersection. The red LiDAR points are in the front camera field of view [96]

3.4 Summary

In this chapter, for the sake of overcoming the weakness of individual LiDAR-based
direct or feature-based methods, we propose a hybrid semi-direct scan matching approach
in Section 3.1 to guarantee convergence in challenging environments such as undergoing
the high-speed motion and traveling in repetitive, feature-less environments. On this
basis, extensive registration results on city, residential, highway, and parking scenarios
with the relative fitness and RMSE metrics are presented and discussed. The superiority
of the proposed semi-direct LiDAR-based scan matching method is validated with both
HDL-64E and VLP-16 velodyne LiDARs. It is demonstrated that the proposed approach
outperforms the state-of-the-art and achieves the leading results with 68.3 % average rel-
ative fitness and 5.71 cm average RMSE, respectively. At the same time, scan matching
uncertainty is modeled in Section 3.2 as well to evaluate the final convergence accuracy.
Furthermore, we also analyze the possible sources that may lead to scan matching diver-
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gence in various scenarios. It is demonstrated that ground points and dynamic objects
such as vehicles or pedestrians are the main causes of pose estimation accuracy decrease.
It is also noticed that significant errors frequently occur near the road intersections and
in highway scenarios, where it is more likely to come across the dynamic vehicles and
the geometric information is not adequate for reliable state estimation. Thus, we explore
the unsupervised and supervised methods for 3D objects detection in Section 3.3. As our
current approach only exploits the geometric cues for pose estimation, we will focus on
leveraging semantic information to develop more efficient outliers rejection mechanisms,
which further ameliorates the scan matching accuracy and robustness with the presence
of several moving objects in the following Chapter 4.
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Chapter 4

LIDAR-VISION FUSION-BASED

PERCEPTION AND STATE ESTIMATION

In the previous Chapters, the visual and range sensors are employed individually for
the environment perception and state estimation. In this thesis, environment perception
specifically refers to moving objects segmentation and state estimation stands for concur-
rent ego-pose estimation and map points registration. The Light Detection and Ranging
(LiDAR) and the camera sensors are commonly employed to measure the changes in the
environment, on which basis, the high-level tasks such as object detection, ego-motion
estimation and obstacle avoidance could be performed. The strength and weakness of
individual visual and range sensors have been discussed in Section 1.1. And the com-
plementary features of the visual and range sensors encourage us to adaptively combine
them for robust perception and state estimation, which efficiently compensates for the
individual sensing modality weakness. Sensor fusion allows different sensors to work col-
laboratively and enables a more reliable perception of the surroundings, which facilitates
the full autonomy for the intelligent vehicles.

4.1 Semantic-Guided LiDAR-Vision Moving Objects
Segmentation

With the advent of deep learning, object detection based on neural networks could
be applied to predict the object position and class on the image plane [42] and 3D point
clouds [97] [96] in an end-to-end manner. These neural inference frameworks are mature
and can achieve the real-time performance for object detection, which facilitates the on-
board integration. Nonetheless, for the objects with the same class, their states of motion
(static or dynamic) are not distinguished during the neural inference. Indeed, moving
objects are considered as the most unstable traffic participants, which will corrupt the ego-
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motion estimation and mapping process. Thus, more attention should be given to them
when designing an intelligent vehicle system. In this Section, more attention is paid on
the problem of moving objects segmentation, which is primarily concerned with the traffic
participants such as pedestrians, cyclists and vehicles. A LiDAR-Vision fusion approach
is proposed to combine the LiDAR-based semantic cues and vision-based geometric clues
to identify the objects position and state of motion jointly.

The visual sensors provide dense texture and color information of the scene, which
facilitates the geometric correspondence establishment and contextual understanding. In
[98], a purely geometric mono-vision based approach is proposed for moving objects seg-
mentation in challenging urban areas. The epipolar, trifocal tensor, and structure consis-
tency constraints are flexibly combined to classify the pixel-wise non-static points. The
dynamic pixels are then clustered by the connected components labeler for instance-level
moving objects segmentation. The optical flow consistency analysis also helps to segment
the moving objects from the static background. In [99], the dynamic objects are identified
with optical flow-based point trajectories clustering and these moving objects are then ex-
cluded from dense SLAM estimation in dynamic environments. In [100], the Flow Vector
Bound (FVB) constraint is combined with graph-based clustering for incremental motion
segmentation. Nonetheless, the aforementioned methods only leverage geometric infor-
mation for the object clustering, which often fails in complex scenes. A novel Semantic-
Guided RANSAC approach is thus presented in [101] for moving objects segmentation in
heavy traffic scenarios. The semantic constraint provides potential moving objects prior
and the geometric epipolar residuals are used for the final moving objects verification,
which exhibits promising results. Despite of the efficient moving objects segmentation on
the visual image plane, the scale metric remains ambiguous, which can be solved by the
integration of stereo vision system [102] or range-based sensors [103]. For LiDAR-based
perception and ego-motion estimation, robust kernels are commonly adopted to ease the
negative impact of outliers. The identified outliers could then be clustered to construct
the moving objects in the scene. It is shown in [104] that, the outlier filters such as Tukey,
Huber and Cauchy kernels could greatly mitigate the outliers effect for point clouds reg-
istration. Besides, the data-driven ResNet50-based method is proposed in [105] to infer
the point-wise probability of being dynamic with only a single frame. On this basis, the
scene reconstruction module takes the network output of dynamic objects probability for
static components mapping. Then, the SpSequenceNet is designed in [106] to operate
directly on 4D point clouds (consecutive 3D point clouds) for moving objects segmenta-
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tion. Both the spatial and temporal information of LiDAR point clouds are exploited
to extract the motion status. However, the SpSequenceNet training and prediction are
computationally intensive due to the massive point clouds size. Recently, an innovative
range image-based algorithm named Removert is presented in [107]. In the Removert
framework, the dynamic objects are pruned from the query LiDAR scans via scan-to-map
consistency check. Meanwhile, the pre-built map is corrected with the multi-scale false
prediction reverting. As the prior map is not trivially accessible, the map-free method in
[108] inputs the inter-frame range-image residuals to the semantic segmentation networks
for the real-time class-agnostic moving objects segmentation. Nonetheless, the end-to-end
network needs the ground truth binary masks for training that are quite time-consuming
to prepare and refine. In order to overcome the individual sensor limitations, the hybrid
methods which take advantage of the LiDAR and visual sensors are proposed in [103]
[109] [110] [111]. The stereo vision systems are adopted in [103] to improve the object de-
tection and tracking results of the LiDAR-based perception. Specifically, the vision-based
system confirms the surrounding objects existence and their dynamic behavior are better
modeled due to the dense visual measurements. In [109], the vision-based segmentation
result is fused with the planar LiDAR-based prediction, which achieves an improving 2D
Intersection-Over-Union (IOU) rate on the Bird-Eye-View (BEV) plane. Besides, the
RGB images are converted to a polar-grid representation in [110], which augments the
LiDAR point clouds with the color information for the efficient semantic segmentation. A
novel architecture to fuse the precise LiDAR depth information and ERFNet-based visual
semantics is presented in [111], which is shown to obtain satisfying objects segmentation
results both on the image and BEV plane.

In this section, the proposed LiDAR-Vision fusion approach for real-time moving ob-
jects segmentation is detailed. Its overall pipeline is shown in Fig. 4.1. To start with,
the LiDAR measurements are used to extract the 3D regions of interest (ROI) for mov-
able objects prediction. Then, with the given calibration parameters, 2D ROI on the
image plane can be generated via the 3D-2D perspective projection. In order to deter-
mine the state of motion for the potentially moving objects, the temporal consistency
check is conducted via the optical flow tracking and epipolar geometry. Subsequently,
the instance-level moving objects are back-projected in the LiDAR point clouds for 3D
moving objects detection.

Both the visual camera and LiDAR sensors can be applied to detect objects in the
scene, with only different description formats for the detected targets. Generally, the
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Figure 4.1 – Overview of the proposed LiDAR-Vision fusion approach for moving objects
segmentation and state estimation

multi-layer LiDAR sensor is more advantageous for the objects detection task owing to its
wider FOV, precise night-vision and long-range perception capabilities. In the proposed
approach, the center-based framework CenterPoint [96] is chosen to locate the movable
objects and identify their semantic classes in the LiDAR point clouds. The motivation to
leverage the CenterPoint framework for movable objects prediction is detailed in Section
3.3. However, due to the inherent LiDAR emission mechanism and resolution issues, the
3D LIDAR point clouds will become increasingly sparse when the objects are far away
from the local sensor frame. This makes the state of motion decision-making extremely
difficult and drives the adoption of the sensor fusion approach to improve the detection
results. In order to develop the LiDAR-Vision fusion approach, it is essential to transform
the LiDAR-based detection results from the LiDAR frame FL to the image frame FI (see
Fig. 4.2). It is assumed that the sensors are well synchronized and pre-calibrated with
known extrinsic and intrinsic parameters. The perspective projection first takes eight
corners FL{xi}i=1...8 of the 3D bounding box expressed in FL, and left-multiplies them
with the LiDAR-Camera rigid transformation matrix CTL and image projection matrix
IPC sequentially to get the corner coordinates in FI .

FIxi =I PC ·C TL ·FL xi (4.1)

Then the 2D bounding box boundaries can be extracted trivially from the span of the
corner coordinates FI{xi}i=1...8. It is notable that the perspective projection constructs the
one-to-one mapping correspondences for the 3D bounding box in FL and 2D bounding
box in FI , which provides the possibility for the bounding box back-projection. And
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during the 3D-2D perspective projection, the semantic labels of detected objects remain
unchanged.

(a) CenterPoint-based 3D objects detection result

(b) The projection of the detection results on the image plane

Figure 4.2 – The LiDAR-based 3D objects prediction and the corresponding projection
on the image plane

Given the predicted regions of interest with the LiDAR measurements, the visual
multi-view geometry provides a sanity check for the moving objects segmentation valida-
tion. To start with, the Shi-Tomasi corners features [28], which remain invariant under the
rotation, translation and scaling operation, are detected in the image frame. Then, the
detected features are associated with the pyramidal Lucas-Kanade optical flow tracking
[54] between two consecutive image frames. And the optical flow backward check is also
implemented to reduce the risks of mismatching. During the optical flow-based tracking,
if the features lying on the movable objects (rendered in green, shown in Fig. 4.2) are
not semantically consistent across two frames, they will be directly identified as dynamic
points. After that, the matched features which belong to the background (rendered in
blue, see Fig. 4.3), are used to estimate the fundamental matrix F̂ within the RANSAC
framework [6]. Since the movable objects points (rendered in green, see Fig. 4.3) are
excluded from the estimation, the RANSAC process will converge quickly and provide a
reliable fundamental matrix estimation. With the paired background points (xi,x′i)i=1...n
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and the estimated fundamental matrix F̂, the corresponding epipolar line l′i ∼ F̂ xi with
reduced coefficients [ai, bi, ci]T can be obtained. The Signed Epipolar Distance (SED)
dSEDi from the point x′i = (u′i, v′i) to line l′i is calculated as:

dSEDi = aiu
′
i + biv

′
i + ci√

a2
i + b2

i

(4.2)

Assuming that the measurement noise is normally distributed, then the calculated signed
epipolar distance {dSEDi }i=1...n will follow the Gaussian distribution as shown in Fig. 4.4,
which lays the basis for outlier rejection. As the fundamental matrix transformation
compensates the inter-frame ego-motion on the image plane, the static points will have
close to zero (noise corruption) SEDs. On the contrary, the points on moving objects
tend to get the SEDs exceeding the sigma rule bounds, which will be classified as outliers
and segmented from the static background. Nonetheless, it also needs to be mentioned

Figure 4.3 – The background corner points (rendered in blue) are tracked with sparse
optical flow and are used for robust fundamental matrix estimation

that for objects following the degenerate motions within the epipolar plane, the epipolar
constraint alone is not sufficient. This kind of degenerate motion usually happens when the
ego-vehicle is following the moving object forward and constantly maintains the straight-
line motion. In this case, the Flow Vector Bound (FVB) constraint [112] can be leveraged
to detect such moving points with low SEDs. Given the sequential images, the pixels
parallax dFV Bi of paired points (xi,x′i) between two consecutive frames can be computed
as:

x′i −KRK−1xi = 1
z
Kt

dFV Bi =
∣∣∣x′i −KRK−1xi

∣∣∣ (4.3)

where the scalar z represents depth value and the matrices K, R and t stand for the
camera intrinsics, inter-frame rotation and translation respectively. With a set of matched
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Figure 4.4 – The Signed Epipolar Distance distribution of background points (rendered
in blue)

background points {(xi,x′i)i=1...n}, their parallax bound [dFV Bmin , d
FV B
max ] can be easily found

by Eq. 4.3. For the points with degenerate motions, if their parallax value is not within
the interval of [dFV Bmin , d

FV B
max ], they will also be labeled as dynamic outliers.

The vision-based MOS validation further exploits the underlying geometric and se-
mantic cues, to identify the truly dynamic points lying on the movable objects. The
combination of semantic, epipolar and FVB constraints allows for better MOS recogni-
tion even in degenerated cases. From the statistical point of view, the likelihood of an
object being dynamic depends on proportion of outliers lying inside, on which basis, the
instance-level MOS probability can be obtained. In this thesis, the threshold of 50% is
set for the instance-level MOS decision making. It means that for each movable object, if
there are more than 50% of the points inside are classified as mobile, the object itself will
be considered as a dynamic object. Then, the object bounding box 2D-3D back-projection
as depicted in Fig. 4.6, is implemented to get the depth information. And all the points
inside the truly moving objects (rendered in red, shown in Fig. 4.5) will be cleared for the
following robust ego-motion estimation and consistent scene mapping. In brief, 2D-3D
instance-level MOS algorithm can be summarized as:

85



Chapter 4 – LiDAR-Vision Fusion-based Perception and State Estimation

Algorithm 3 2D-3D Instance-Level MOS Algorithm
Input: Predicted Movable Objects ROI {Ri}2D

i=1...r

Output: Validated MOS {Si}2D, 3D
i=1...s

1: Detect the Shi-Tomasi corners and track them with LK-optical flow between two
consecutive image frames.

2: Estimate the fundamental matrix F̂ with the feature matches belonging to the back-
ground.

3: Compute the SED residual distribution (µSED, σSED) using Eq. 4.2 and the flow
vector bound [dFV Bmin , d

FV B
max ] using Eq. 4.3 for the background points.

4: Check the motion status of points inside {Ri}2D
i=1...r based on the semantic, epipolar

and FVB constraints.
5: Classify the movable object {Ri}2D as validated dynamic object {Si}2D if the propor-

tion of outliers in {Ri}2D exceeds the threshold 50%.
6: Implement the {Si}2D back-projection to obtain {Si}3D.
7: Exclude the points inside {Si}3D for the following robust ego-motion estimation and

consistent scene mapping.

Figure 4.5 – The 2D instance-level moving objects segmentation (rendered in red), along
with their probability of being dynamic

Figure 4.6 – The 3D instance-level moving objects segmentation via back-projection, and
all the points inside will be classified as outliers

The ability to segment dynamic components in surrounding environments is essential
for the intelligent transportation system. In the proposed approach, the movable objects
ROI are predicted with the CenterPoint neural network. Then, the visual multi-view
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geometry constraints provide a sanity check for instance-level MOS validation. Such a
combination allows for better recognition, which is capable of detecting tiny objects (see
Fig. 4.7) and even partially occluded objects (see Fig. 4.5). The right-side vehicle in
Fig. 4.5 is occluded on the image plane, which is quite difficult to detect with only visual
hints. Nonetheless, the high-resolution LiDAR sensor receives the reflection from part of
occluded vehicle and manages to predict its existence, as depicted in Fig. 4.6. Moreover,
it is demonstrated in Fig. 4.7 that, the epipolar constraint compensates the vehicle ego-
motion which accurately classifies the parked car as static. And the flow vector bound
constraint efficiently helps to identify the dynamic vehicle performing degenerate motions
on the lane, which facilitates better contextual understanding of the drivable area.

Figure 4.7 – The tiny moving object with degenerate motions (move along the epipolar
plane) is successfully segmented with the FVB constraint

Figure 4.8 – The static car parked on the roadside (in blue) and dynamic car driving on
the lane (in red) are distinguished and back-projected to the 3D LiDAR scan

4.2 Semantic-Guided LiDAR-Vision Ego-motion Es-
timation and Scene Mapping

The robust ego-motion estimation is driven by the reliable correspondence matches
across frames, where the estimated transformation jTi tends to minimize the overall dis-
tance between the paired correspondences {(Pi ⇔ Pj) ∈ M}. In the proposed pipeline,
the 3D LiDAR scans are iteratively matched with the point-to-plane metric to deduce the
vehicle ego-motion, which reaches centimeter-level precision as shown in Chapter 3. How-
ever, the existence of dynamic objects in the scene tends to cause the scan misalignment,
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thus degrading the registration accuracy of sequential LiDAR scans. In order to mitigate
the impact of outliers in the objective function F(jTi) minimization, the robust kernel
[104] functions ρ(rij) adaptively adjust the weights of the matches with large residuals,
where rij is the point-to-line ICP residuals.

F(jTi) =
∑

(Pi,Pj)∈M
ρ((Pj −j TiPi)nj) (4.4)

where (Pi ⇔ Pj) are the correspondences belonging to the matched points set M, and nj
is the normal vector around Pj for calculating the point-to-plane distance. Nevertheless,
the kernel-based Iterative Closest Point (ICP) method is not sufficient to handle the
constant dynamic objects corruption. To solve this problem, the proposed approach
distinguishes the instance-level moving objects as in Section 4.1, with the semantic-guided
LiDAR-Vision information fusion. With the segmented moving objects back-projected to
the 3D LiDAR scans, the weighting coefficients ρ(·) for the paired points lying inside
the dynamic objects are uniformly assigned as zero, which further reduces the influence
of dynamic objects in challenging scenarios. Moving objects are considered as the most
unstable traffic participants, which will corrupt the ego-motion estimation and mapping
process. Since the moving objects are not temporally consistent, they do not belong to
the permanent components of the scene. Therefore, moving objects should be eliminated
from the mapping process in order to build a consistent representation of the scene, as
shown in Fig. 4.9. The reconstructed static map will promote high-level tasks such as
map-based localization and path planning. In order to align the LiDAR scans in the
global frame, the poses from the ego-motion estimation thread will then be leveraged for
static point clouds registration.

The effectiveness of the proposed sensor fusion-based ego-motion estimation system
is validated with the the KITTI dataset [55]. The experimental evaluations are con-
ducted with the challenging city category sequences 1, which were recorded in heavy
traffic hours. The LiDAR-Camera sensor setup is adopted with the known calibration
parameters, where the 64-layer Velodyne HDL-64E LiDAR gives accurate range infor-
mation and the RGB-camera provides more contextual knowledge of the scene. In the
KITTI dataset, only the front-view images are provided. So the focus is paid only on the
moving objects segmentation and static scene mapping within the visual sensor field of
view. The semantic-guided LiDAR-Vision fusion approach efficiently reduces the outliers

1. http://www.cvlibs.net/datasets/kitti/raw_data.php?type=city
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Figure 4.9 – The ghosting effect of a moving car is greatly reduced due to the semantic-
guided moving objects segmentation and removal

effect in the 3D LiDAR scan matching. In order to quantify the performance of LiDAR
scan matching, the evaluation metrics of Relative Fitness (RF) and Relative Root Mean
Square Error (RMSE) of the inlier correspondences {I} are used. They are defined as
in the Section 3.1. It is shown in Tab 4.1 and Tab 4.2 that, the proposed semantic-
guided MOS approach achieves the leading results of 77.9% average fitness and 7.65 cm
RMSE respectively. Since the optimization-based ego-motion estimation is usually built
upon the static environment assumption. The presence of dynamic objects in the scene
may degrade the ego-motion estimation and complicate the map maintenance task. A
two-stage prediction-then-validation pipeline is thus designed to segment instance-level
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objects in the scene. It is more efficient than the traditional kernel-based methods, since
the analysis concentrates on the ROIs instead of the whole points clouds. Compared to
the end-to-end DL-methods, the proposed approach relieves from motion segmentation
ground truth annotation and training. The multiple constraints combination also en-
sures the robustness of dynamic outliers rejection in complex situations, such as handling
objects with degenerated motions.

Table 4.1 – Semantic-guided ICP Registration Results Benchmarking with RF(%)

Dataset
Methods Tukey Huber Cauchy Ours

2011_09_26_13 57.2% 55.6% 55.6% 57.7%
2011_09_26_17 94.7% 94.7% 94.7% 95.7%
2011_09_26_18 78.9% 79.5% 79.1% 80.2%

Average 76.9% 76.6% 76.5% 77.9%

Table 4.2 – Semantic-guided ICP Registration Results Benchmarking with RMSE (CM)

Dataset
Methods Tukey Huber Cauchy Ours

2011_09_26_13 10.18 10.37 10.39 9.98
2011_09_26_17 5.73 5.75 5.75 5.66
2011_09_26_18 7.37 7.41 7.41 7.31

Average 7.76 7.84 7.85 7.65

4.3 Loosely Coupled LiDAR-Vision Odometry

Accurate ego-motion estimation and a good knowledge of the surrounding environ-
ment are crucial for autonomous driving. On autonomous vehicles, the range-based Li-
DAR and/or vision-based stereo cameras are commonly deployed to perform the task
of ego-motion estimation. The most frequently used sensors (Camera and LiDAR) have
their own merits and weaknesses under different working conditions as described in the
beginning of Chapter 4. Thus, the fusion of range and visual sensors allows to compen-
sate respective shortcomings and achieves reliable ego-motion estimation results. The
main challenge for long-term ego-motion estimation is error accumulation, especially in
environmentally degenerate scenarios. The fusion of range and visual sensors could re-
strict the local uncertainties and allow to confine the odometry drift. ORB-SLAM [9] is
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regraded as a typical representative of vision-based SLAM. Oriented FAST and Rotated
BRIEF (ORB) features are extracted and matched for real-time ego-motion estimation,
and meanwhile the Bag-Of-Words (BOW) [113] dictionary is queried for loop closure and
drift cancellation. This method can accurately localize the mobile platform and create a
sparse feature map of its surroundings with limited computation resources. ORB-SLAM2
is proposed in [12] with stereo observations based back-end which solves the scale ambigui-
ties for trajectory estimation. LiDAR scan-matching is a fundamental process to estimate
platform motion and to create a 3D map with the laser scanner. A popular approach for
LiDAR based localization is LOAM [15]. It conducts Iterative Closest Point (ICP) scan-
matching for 3D point clouds registration, which is followed by a global scan-to-map
alignment in order to reduce local errors. Feature alignment problem can be solved using
the well known Levenberg–Marquardt optimizer. Despite the success and popularity of
ORB2 SLAM [12] and LOAM [15], they are in fact deterministic algorithms. They do
not effectively handle the sources of uncertainty. As a result, they provide overconfident
ego-motion estimation results across frames. In this section, a loosely coupled sensor
fusion approach is proposed for vehicle localization with range and visual sensors. Mea-
surement uncertainties for visual and range sensors are properly defined for ego-motion
estimation. Backward covariance propagation [33] is utilized to transform the covariance
from measurement domain to estimation domain. At the same time, forward covariance
propagation is leveraged to transform the uncertainty from manifold space to Euclidean
space. The covariance intersection filtering [114] enables adaptive fusion of the two sensors
given their respective uncertainties.

Stereo Images Feature Matching Visual Odometry

LiDAR Scans

Scan Matching

Lidar Mapping and

scan to map matching
Updated Odometry

10 Hz 10 Hz

1 Hz

10 Hz

LiDAR Odometry Fused Odometry10 Hz

10 Hz
Covariance
Intersection

Figure 4.10 – Overview of the proposed loosely-coupled sensor fusion scheme
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In Fig.4.10, it can be seen that the proposed sensor fusion framework starts with a
descriptor-based visual feature tracking module to estimate vehicle ego-motion. Mean-
while, LiDAR distance-based scan-to-scan matching runs in parallel for ego-motion esti-
mation. Backward covariance propagation transforms the uncertainty from measurement
space to estimation space, which helps to obtain the uncertainty of frame-to-frame ego-
motion estimation for both sensor modalities. Covariance intersection filtering ensures
that the uncertainty of state does not expand after the sensor fusion, which combines
two frame-to-frame poses elegantly. Then, the robustified pose is used for LiDAR point
cloud registration. Scan-to-map matching afterwards further reduces local drift caused by
frame-to-frame estimation. The updated odometry is the final output which is published
at 10Hz frequency.

To denote coordinate systems, the convention in the Section 4.1 is followed to use
uppercase letter to indicate different coordinate frames. In visualization and sensor fusion
steps, the vehicle pose is expressed with 3D translation and RPY Euler angle rotation.
However, in order to avoid singularity problem, optimization is made on their manifold
with the Lie algebra. In the following, coordinate systems being used are explained.

— Camera sensor coordinate system FCt at timestamp t is defined at the camera op-
tical center. The x-axis, y-axis and z-axis point rightward, downward and forward
respectively as the camera configuration in [55].

— LiDAR sensor coordinate system FLt at timestamp t is defined at the LiDAR
scanner center. The x-axis, y-axis and z-axis point forward, leftward, and upward
respectively as the LiDAR configuration in [55].

— World coordinate system FW is defined as FC0 which is the initial frame of the
camera coordinate system, and lidar-camera extrinsics CTL is assumed to be known
beforehand.

In feature-based stereo vision odometry, key points with local descriptors are matched
to deduce the camera motion with scale metrics. Providing camera intrinsics K, stereo
feature points belonging to the previous frame are triangulated in the first step. And then
transformed triangulated points are re-projected via the perspective projection operation
Prl(·), Prr(·) onto the left and right images respectively considering the 6 dof ego-motion
estimation variable Θ̂FCt−1

FCt
:

FIt x̂i =

 Prl
(
K, Θ̂FCt−1

FCt
, FIt−1 xi

)
Prr

(
K, Θ̂FCt−1

FCt
, FIt−1 xi

)
 (4.5)
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where FIt x̂i = (ûi,l, v̂i,l, ûi,r, v̂i,r)T is the prediction in the current frame and FIt−1 xi =
(ui,l, vi,l, ui,r, vi,r)T is its correspondence in the previous frame. In general, the optimal
relative camera transformation can be estimated by minimizing the weighted squared
error of measurements and predictions.

Θ∗FCt−1
FCt

= argmin
Θ

FCt−1
FCt

F(x, ΘFCt−1
FCt

) = argmin
Θ

FCt−1
FCt

Nc∑
i=1

∥∥∥FItxi − FIt x̂i∥∥∥2

Σ
(4.6)

where ‖ · ‖2
Σ is the Mahalanobis distance with Σ−1

xi as the information matrix for the ith
measurement. To handle estimation parameters that do not belong to Euclidean spaces,
the common strategy is to transfer the error minimization to its corresponding manifold.
In this thesis, iterative optimization update for estimated parameters is made using Lie
algebraic perturbation model [36]. Operator � is a generalization of the normal addition
operator, which is defined as δε� Θ̂ , exp(δε)Θ̂, then J̃i(Θ̂) can be written as

J̃i(Θ̂) = ∂ei(δε� Θ̂)
∂δε

∣∣∣∣∣∣
δε→0

(4.7)

As a result, the evenberg-Marquardt algorithm can be applied without considering addi-
tional constraint such as rotation matrix orthogonality.

The same way in LiDAR odometry, edge and planar LiDAR points are tracked to
recover the LiDAR pose. For each LiDAR scan point, local curvature c is computed to
evaluate its smoothness considering the surrounding area. Let S be a group of points in
the vicinity of xi in the same scan layer.

c = 1
|S| ·

∥∥∥FLtxi∥∥∥
∥∥∥∥∥∥
∑

j∈S,j 6=i

(
FLtxi − FLtxj

)∥∥∥∥∥∥ (4.8)

Edge and planar points are defined based on c values. The edge line constructed by two
edge points at previous frame (FLt−1 xj, FLt−1 xl) ∈ FLt−1E forms the correspondence of
FLtxi. FLt−1 xj and FLt−1 xj are selected according to nearest neighbor criteria and they
belong to different scan layers to increase the point-to-line fitting robustness. The planar
patch represented by three points at previous frame (FLt−1 xj, FLt−1 xl, FLt−1 xm) ∈ Ht−1

forms the correspondence of FLtxi. It is assumed that the closest neighbor of FLtxi is
denoted as FLt−1 xj. FLt−1 xl, FLt−1 xm are second and third nearest neighbors of FLtxi, one
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Edge point

Planar point

Relative pose across frames

Projection across frames

Figure 4.11 – Scheme of edge and planar LiDAR points correspondence projection

belonging to the same scan layer of FLt−1 xj, and the other in the consecutive scan layer
of FLt−1 xj . With the corresponding relationship of the feature points in hand, according
to Fig. 4.11, the distance from a feature point to its correspondence can be calculated,
where |·| stands for the norm value.

dE =

∣∣∣(FLtxi − FLt−1 xj
)
×
(
FLtxi − FLt−1 xl

)∣∣∣∣∣∣FLt−1 xj − FLt−1 xl
∣∣∣ (4.9)

dH =

∣∣∣∣∣∣
(
FLtxi − FLt−1 xj

)((
FLt−1 xj − FLt−1 xl

)
×
(
FLt−1 xj − FLt−1 xm

))∣∣∣∣∣∣∣∣∣(FLt−1 xj − FLt−1 xl
)
×
(
FLt−1 xj − FLt−1 xm

)∣∣∣ (4.10)

The optimal LiDAR relative pose can be obtained by minimizing the weighted sum
squared distances of edge and planar points to their correspondences. Σx−1

Ei
and Σx−1

Hi

stand for the information matrix of Eith edge and Hith planar measurement points and
the same optimization strategy is taken as in feature-based stereo vision odometry

Θ∗FLt−1
FLt

= argmin
Θ

FLt−1
FLt

NE∑
Ei=1

dEiΣx−1
Ei
dEi +

NH∑
Hi=1

dHiΣx−1
Hi
dHi (4.11)

Robust ego-motion estimation should be able to provide the uncertainty information
associated with the vehicle pose estimates. The sensor fusion phase is driven by the
uncertainties in the estimation domain. Thus, the uncertainties coming from visual and
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range sensors are analyzed via forward and backward covariance propagation. Although
the optimal relative pose can be obtained by minimizing Eq. 4.6, its accuracy also depends
on the precision of the corresponding feature points, more specifically, the level of the
image pyramid they belong to. The image pyramid [115] is a series of image collections
whose resolution gradually decreases in the shape of a pyramid. The image pyramid can
be sequentially matched to ensure scale invariance during feature tracking. In this thesis,
the image pyramid has 8 levels with the same scale factor 1.2 between two consecutive
levels. It is assumed that all points considered in the optimization procedure are well-
matched pixel features with only zero mean Gaussian noise N(0,ΣV

xi), with σxui,l(r)
=

σxvi,l(r)
= 1.2level−1 as standard deviation for ith measurement. Jacobian matrix J̃i(Θ∗) is

defined in Eq. 4.7, and it converts the uncertainty from measurement space to estimation
space. Since the optimize is implemented on manifold, let ε = log(Θ∗) a 6D vector in the
Lie algebra space. Then the Jacobian matrix Jm2e = ∂eε

∂ε
is mandatory to propagate the

covariance from manifold space to Euclidean space for data visualization and fusion. The
uncertainty of frame-to-frame relative pose ΣV

Θ∗ can be obtained through Eq. 4.12 and
the result is shown in Fig. 4.12.

ΣV
Θ∗ = JVm2e(

Nc∑
i=1

(J̃V
′

i (Θ∗)ΣV
xi
−1J̃Vi (Θ∗)))−1JV

′

m2e (4.12)

In this thesis, a Velodyne HDL-64E is used which provides a (0◦ ∼ 360◦) azimuth field
of view (θ) and (−24.9◦ ∼ 2◦) elevation field of view (φ). According to official velodyne
data sheet, range accuracy can reach up to 2 cm which is quite small compared with
its range limit 120 m. Hence, each measurement is treated equally and measurement
uncertainty ΣL

xi can be set as identity matrix for each point. Based on such assumption,
the uncertainty of scan-to-scan relative pose ΣL

Θ∗ can be obtained through Eq. 4.13 and
the result is shown in Fig. 4.13.

ΣL
Θ∗ = JLm2e(

NE+NH∑
i=1

(J̃L
′

i (Θ∗)ΣL
xi
−1J̃Li (Θ∗)))−1JL

′

m2e (4.13)

Covariance intersection [114] is a variant of Gaussian process sensor fusion which can
combine two estimates under unknown correlations. The covariance intersection combi-
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Figure 4.12 – Visual sensor pose estimation uncertainty along tx and tz for KITTI sequence
01

nation formulas are given by

Σfused
Θ =

(
ω
(
ΣL

Θ

)−1
+ (1− ω)

(
ΣV

Θ

)−1
)−1

Θfused = Σfused
Θ

(
ω
(
ΣL

Θ

)−1
ΘL + (1− ω)

(
ΣV

Θ

)−1
ΘV

) (4.14)
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Figure 4.13 – Range sensor pose estimation uncertainty along tx and tz for KITTI sequence
01

where ω ∈ [0, 1] minimizes trace of the fused covariance matrix Σfused
Θ at each step. If

the Jacobian matrix is near singular, probably because of local minimal occurrence or
individual sensor failure, then inverting J̃′i(Θ∗)Σ−1

xi J̃i(Θ∗) will lead to unreliable uncer-
tainty estimation marked as black dash lines in Fig. 4.12. Covariance intersection can
ensure that the resulting estimate is conservative, which efficiently filters out the unstable
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estimation. In order to simplify the fusion parameterization, only planar translation tx

and tz and yaw angle ry are fused and updated (see Fig. 4.14). The fused pose will better
register the lidar map points and the multi-level voxel scan-to-map matching as in [23] is
adopted to reduce the frame-to-frame estimation drift.

The KITTI dataset [55] contains stereo sequences and Velodyne HDL-64E LiDAR
point clouds captured in urban and highway environments. The metric of average relative
translation error trel proposed in [55] is used for evaluation purpose. The relative trans-
lation error trel measures the relative pose differences, which is suitable to evaluate the
trajectories with various distances. Let FWΘi and FW Θ̂i be the reference and estimated
ego-vehicle poses in the world frame, where i is the timestamp for each pose. The refer-
ence and estimated relative poses can be expressed as ∆i,j and ∆̂i,j, which are defined as
follows:

∆i,j = (FWΘi)−1 · FWΘj

∆̂i,j = (FW Θ̂i)−1 · FW Θ̂j,

trel = ‖(∆i,j)−1 · ∆̂i,j‖2

(4.15)

To have a fair comparison, the ORB SLAM2 loop closure module is deactivated. Three
typical sequences 01 (Highway), 02 (Urban+Country) and 07 (Urban) are chosen from
KITTI dataset to make analysis and detailed quantitative result is shown in Tab. 4.3 2.
The evaluation computes the relative translation errors for all possible subsequences of
length and errors are measured in percent according to the average of those values. The
proposed Loosely-Coupled Vision-LiDAR Odometry(LC-VLO) outperforms state-of-the
art approaches for challenging trajectory in sequence 01. When driving on a highway sce-
nario, few distinctive visual features are available (see Fig. 4.15), which makes descriptor-
based feature tracking erroneous and thus causes poor pose estimation for visual sensor.
Due to the uncertainty analysis and covariance intersection, the proposed approach en-
sures a consistent odometry estimation even in lack of usable visual features and moving
at high speed (see Fig. 4.16(a)). In sequence 02, the proposed loosely coupled odometry
is not as good as the ORB-SLAM2 due to the absence of horizontal lines or planes to
constrain the drift along the vertical axis in the scan-to-map matching step. However,
it does efficiently prevent large divergence occurrence like in A-LOAM 3 method. The
large divergence mainly results from A-LOAM’s inappropriate distance-based matching
strategy. Far edge points are more likely to be mismatched when encountering large ro-

2. The sequence 08 is not evaluated due to ground truth flaw with manual inspection
3. Advanced implementation of LOAM, https://github.com/HKUST-Aerial-Robotics/A-LOAM
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Figure 4.14 – Intersection fusion of planar translation tx and tz and yaw angle ry
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tational motion. It happens at the middle of sequence 02 where A-LOAM method loses
the tracking of features and fails to confine the estimation error (see Fig. 4.16(b)). Un-
certainty analysis is able to detect the potential deficiencies in the early scan-to-scan step
and mitigate feature misalignment problem. The LC-VLO is superior to ORB-SLAM2
and A-LOAM for sequence 07, which shows that multi-level voxel scan-to-map matching
procedure is indispensable to reduce frame-to-frame estimation drift (see Fig. 4.16(c)).
Overall, the proposed LC-VLO adaptively fuses vision and LiDAR estimation, which is
able to improve estimation performance for individual sensor degenerate cases, especially
for the challenging KITTI sequence 01 and 02.
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Figure 4.15 – KITTI sequence 01: Few distinctive ORB visual features for tracking on
the highway scenario

4.4 Summary

Reliable 3D perception is fundamental for localization, mapping and path-planning
tasks of the autonomous driving. The proposed semantic-guided method fully exploits
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Figure 4.16 – Estimated trajectory and ground-truth for KITTI 01, 02 and 07 sequences
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Table 4.3 – Comparison of relative pose accuracy (%).

Sequence
Metric trel ORB-SLAM2 A-LOAM LC-VLO

00 0.88% 0.77% 0.74%
01 1.40% 2.27% 0.84%
02 0.79% 4.91% 1.50%
03 0.77% 1.24% 0.87%
04 0.45% 1.23% 1.08%
05 0.61% 0.70% 0.43%
06 0.73% 0.62% 0.58%
07 0.90% 0.63% 0.50%
08 –% –% –%
09 0.90% 1.09% 1.01%
10 0.59% 1.69% 0.52%

the range sensing capabilities of the multi-layer LiDAR for accurate objects detection,
while levering the merits of image rich texture to determine state of motion. In this sec-
tion, the effectiveness of the proposed approach to segment moving objects is highlighted
by the comparison with the traditional robust kernel-based outlier rejection methods.
The proposed approach is benchmarked with three city category sequences in the KITTI
dataset, which outperforms the kernel-based methods and achieves the leading results of
77.9% average fitness and 7.65 cm RMSE respectively. Extensive qualitative and quanti-
tative results demonstrate that, the proposed semantic-guided MOS helps to robustify the
pose estimation process in challenging heavy traffic scenarios. Besides, the ghosting effect
in scene reconstruction process is remarkably eliminated thanks to the moving objects
removal.

Moreover, a loosely-coupled sensor fusion approach is developed, which efficiently
combines complementary visual and range sensor information to estimate the vehicle ego-
motion. Descriptor-based and distance-based matching strategies are respectively applied
to visual and range measurements for feature tracking. Nonlinear optimization optimally
estimates the relative pose across consecutive frames and an uncertainty analysis using
forward and backward covariance propagation is made to model the estimation accuracy.
Covariance intersection filter paves the way for us to loosely couple stereo vision and Li-
DAR odometry considering respective uncertainties. The proposed approach is evaluated
with KITTI dataset which shows its effectiveness to fierce rotational motion and tempo-
rary absence of visual features, achieving the average relative translation error of 0.84% for
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the challenging 01 sequence on the highway. This results from the anisotropic uncertainty
modeling in the sensor fusion step, that does not misrepresent the potential errors. Since
the sensor fusion is performed in a loosely-coupled manner, each sensor modality can be
easily replaced according to personalized demands, which makes the proposed approach
very flexible. As the current approach does not consider loop closure, more focus can be
put on exploiting visual semantic hints for robust feature tracking and place recognition
to further ameliorate the localization accuracy in the future.
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Chapter 5

CONCLUSION AND PERSPECTIVES

The reliable environment perception plays an important role in the autonomous driving
system. As long as the intelligent vehicle has a good understanding of its surroundings, it
can perform high-level tasks such as state estimation and motion planning under secure
conditions. Hereby, state estimation incorporates both the ego-vehicle poses and map
points location. This thesis concentrates on the moving objects detection and ego-motion
estimation for the intelligent vehicles equipped with the camera and LiDAR sensors. In
this Chapter, based on the obtained results in previous chapters, a synthesis of the thesis
content will be given, which is followed by the future perspectives for the autonomous
vehicle robust perception and state estimation module design.

5.1 Thesis Synthesis

To begin with, the vision-based perception pipeline is introduced in Chapter 2, where
the mono-vision system is deployed to estimate the camera poses and reconstruct the
sparse scene components jointly. It is demonstrated that the bundle adjustment embed-
ded SfM approach exhibits good performance in indoor static environments. However, for
the outdoor dynamic scenes, the presence of moving objects may pose a great challenge for
the data association problem. For the state estimation task, the moving objects are con-
sidered as the noise, and should be filtered out beforehand. To address the issue of moving
objects existence, the semantic-guided RANSAC approach is developed to associate the
semantic information to the geometric entities. The moving objects are seamlessly iden-
tified with the combined epipolar and flow vector bound constraints. It is shown that
the flow vector bound is indispensable to detect the moving objects which perform the
degenerate motions. The semantic-guided RANSAC proves to be an efficient way to reject
instance-level outliers, which meanwhile facilitates the estimation model convergence. In
order to overcome the depth loss problem of mono-vision perception, the stereo-vision
system estimates the pixel depth with the disparity and baseline distance. The 3D point
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triangulation can be performed instantly with left-right image matching, which is more
stable than the mono-vision triangulation with consecutive frames in aggressive motion
cases. Given the 3D map points, the camera motion can be estimated with the 3D-2D
reprojection residual error minimization. For the motion estimation uncertainty mod-
eling, the backward covariance propagation is used to transform the uncertainty from
the measurement domain to the estimation domain. The uncertainty quantification can
reflect the estimation confidence and accuracy, on which basis, the sensor fusion can be
implemented.

Then, the LiDAR sensor which is based on the laser reflection for the range mea-
surement is used for environment perception and ego-motion estimation, in Chapter 3.
Compared to visual sensors, LiDAR is invariant to the illumination conditions and its om-
nidirectional field of view enables scale-aware full pose estimation and precise 3D scene
mapping. The relative transformation can be obtained by tightly aligning the consecutive
dense point clouds. In Chapter 3, the investigations are conducted within the ICP frame-
work for the laser scans alignment. Both direct and feature-based LiDAR scan matching
approaches are benchmarked in various contexts, which includes parking, urban, and
highway scenarios. In order to guarantee the scan matching performances in scenarios
with scarce geometric information and fast ego-vehicle motion, an adaptive semi-direct
scan matching method is proposed together with an alignment uncertainty quantification,
which facilitates robust pose estimation and consistent scene reconstruction. To rectify
the misaligned point clouds, the pose-graph optimization technique is applied to reduce
the local drifts. A pose graph is formulated with edges representing pairwise registration,
and then the deviated poses are penalized and smoothed with the global pose-graph op-
timization. The obtained results indicate that pose-graph optimization can significantly
improve the pose estimation accuracy and scene mapping consistency, where the point
clouds are well registered with high fidelity. Furthermore, the proposed semi-direct scan
matching is tested on both the public KITTI and self-recorded LS2N datasets. It is
demonstrated that this proposed approach outperforms the state-of-the-art and achieves
the leading results with the RF and RMSE metrics. Additionally, for better understand-
ing of the scene, the objects are segmented from the background with both model-based
and learning-based methods. The detected 3D objects are considered as independent traf-
fic participants and their 3D spatial location perception ensures the autonomous vehicle
operation security in complex traffic scenes.

In the end, the complementary visual and range sensors are combined in Chapter 4, to
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compensate individual sensing modality shortcomings. The sensor fusion and integration
ensures the reliability of the autonomous vehicle perception system and facilitates the
uncertainty-aware ego-motion state estimation. In Chapter 4, a semantic-guided LiDAR-
vision fusion approach is proposed for efficient moving objects segmentation and robust
ego-motion estimation. The proposed pipeline utilizes the LiDAR-based semantic segmen-
tation as a prior and vision-based geometric information for validation. The effectiveness
of this semantic-guided approach to segment moving objects is highlighted by the compar-
ison with the traditional robust kernel-based outlier rejection methods. The approach is
benchmarked with city category sequences in the KITTI dataset, which outperforms the
kernel-based methods by a large margin. The robust ego-motion estimation is driven by
the reliable correspondence matches across frames. And the existence of dynamic objects
in the scene tends to cause the scan misalignment, thus degrading the registration accu-
racy of sequential LiDAR scans. Moving objects are considered as the most unstable traffic
participants, which will corrupt the localization and mapping process. Since the moving
objects are not temporally consistent, they do not belong to the permanent components
of the scene. Therefore, moving objects should be eliminated from the mapping process
in order to build a consistent representation of the scene. It proves that the proposed
semantic-guided MOS helps to robustify the pose estimation process in challenging heavy
traffic scenarios. Besides, the ghosting effect in scene reconstruction process is remark-
ably eliminated due to the moving objects removal. And the reconstructed static map will
promote high-level tasks such as map-based localization and path planning. Afterwards,
a loosely-coupled sensor fusion approach is developed in Section 4.3, which efficiently
combines complementary visual and range sensor information to estimate the vehicle ego-
motion. Descriptor-based and distance-based matching strategies are respectively applied
to visual and range measurements for feature tracking. Nonlinear optimization optimally
estimates the relative pose across consecutive frames and an uncertainty analysis using
forward and backward covariance propagation is made to model the estimation accuracy.
Uncertainty analysis is able to detect the potential deficiencies in the early scan-to-scan
step and mitigate feature misalignment problem. Covariance intersection filter paves the
way for us to loosely couple stereo vision and LiDAR odometry considering respective
uncertainties. The proposed approach is evaluated with KITTI dataset, which shows its
effectiveness to fierce rotational motion and temporary absence of visual features. This
results from our anisotropic uncertainty modeling in the sensor fusion step, that does not
misrepresent the potential errors. Since we perform the sensor fusion in a loosely-coupled
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manner, each sensor modality can be easily replaced according to personalized demands,
which makes our approach very flexible.

To conclude, the emerging autonomous vehicle will bring great transformation for the
entire transportation industry. And for effective perception of the surroundings, multiple
exteroceptive sensors need to be installed onboard. The different sensing modalities can
capture different aspects of the world. Among them, the visual cameras are capable of
recognizing the color and texture information of the scene. While, the LiDAR sensor is
more robust for the range measurement collection. For the perception system, the multi-
sensor measurement redundancy ensures the sensing reliability and accuracy. Meanwhile,
it also requires efficient data processing and decision-making. Depending on the specific
application scenarios and financial budgets, the sensor setup varies. However, the com-
mon issue to address before implementing the sensor fusion is to quantify the estimation
uncertainty for individual sensor. In this thesis, accurate uncertainty modeling is achieved
for both the vision-based and range-based estimation, which provides the possibility for
adaptive sensor fusion. Moreover, when it comes to urban environments, pure geomet-
ric information is insufficient for the autonomous vehicle to have a comprehensive scene
understanding. Thus, the semantic cues are exploited in this thesis for moving objects
segmentation. The geometric and semantic information fusion helps to reject the outliers
in the ego-motion estimation and scene mapping tasks, which also pushes the development
of full autonomy intelligent vehicles.

5.2 Future Work

This thesis is dedicated to leveraging the camera and LiDAR sensors for the scene
perception and ego-motion estimation. The LiDAR-vision fusion approach is explored in
detail, where the semantic information and geometric constraints are combined for robust
moving objects segmentation and ego-vehicle pose estimation. Despite the promising re-
sults that have been obtained, there are still some perspectives to make the improvement.

1. Extrinsic Calibration. In this thesis, we assume that the extrinsic parameters
between the cameras and LiDAR sensors are well calibrated and remain unchanged.
However, this assumption does not hold for long-term autonomous vehicle maneu-
vering. Therefore, regular extrinsic parameters calibration and synchronization
are necessary when the sensor fusion system is on the run. And integrating the
calibration pipeline into the perception system should be prioritized whenever the
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multi-sensor measurements are fused.

2. IMU Integration. Inertial Measurement Unit (IMU) consists of a gyroscope to
measure the angular velocity and an accelerometer to measure the linear accelera-
tion. This type of inertial sensor estimates the ego-motion via the pre-integration
[116] of angular velocity and linear acceleration, which is not affected by the illumi-
nation changes or the extreme weather condition. The inertial measurements can
complement the state estimation whenever the feature tracking process fails. Ad-
ditionally, the metric scale can be accurately recovered from the IMU measurement
as long as the IMU bias is corrected. More efficient outliers rejection mechanisms
that incorporate the IMU pre-integration can also be studied to further ameliorate
the state estimation accuracy and robustness with the presence of several moving
objects in the scene.

3. Active Perception. The ego-motion estimation in this thesis is restricted to
passively extracting the environment information without any motion planning.
While, active perception means that the autonomous vehicle can actively execute
certain control commands, in order to reduce the estimation uncertainty. The
control command is chosen in a predicted finite set by considering the motion
constraints, in order to avoid cases such as the sudden decrease of inter-frame
overlapping areas. And it is encouraged for the autonomous vehicle to drive to the
previously visited area (loop closure), in order to correct the self-localization drift
and to gain the confidence in the estimation results. At the same time, the semantic
cues can also be used to identify the visited places, which boosts consistent state
estimation and mapping.

4. Mutual Communication. In order to efficiently explore the large-scale unknown
environment, multiple agents can collaborate to implement the perception task
within each divided local area. The submaps can be built in the vicinity of each
agent, and the local maps can be merged into a global one when the agents come
across. The global pose graph can also be formed, with the nodes representing
the agents’ poses in each separated portion. The mutual communication can be
achieved by the global consensus-based map representation and pose graph opti-
mization.
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Titre : Perception et estimation d’état basées sur plusieurs capteurs pour les véhicules auto-
nomes

Mot clés : Perception de l’environnement, Estimation d’état, Analyse d’incertitude, Fusion de

capteurs, Véhicules autonomes

Résumé : Percevoir ou comprendre les en-
vironnements environnants est indispensable
pour construire des systèmes d’aide à la
conduite ou des véhicules autonomes. Dans
cette thèse, nous étudions l’approche de fu-
sion de capteurs pour le problème de locali-
sation et de cartographie simultanées (SLAM)
avec des capteurs visuels et de distance com-
plémentaires. Afin de prendre des décisions
conservatrices et d’augmenter la sécurité de
manœuvre des véhicules autonomes, l’ana-
lyse d’incertitude de l’estimation de la pose est
également mise en œuvre. Le système SLAM

traditionnel suppose des scènes statiques, ce
qui est vulnérable dans le contexte d’environ-
nements extérieurs dynamiques. Ainsi, nous
introduisons une approche basée sur les don-
nées pour exploiter les informations séman-
tiques qui interprètent la séquence de mesure
à travers les cadres, ce qui distingue effica-
cement les objets en mouvement des objets
statiques. Nous testons les algorithmes pro-
posé sur des données réelles de trafic urbain
et d’aires de stationnement, qui présente des
résultats prometteurs.

Title: Multi-Sensor based Perception and State Estimation for Autonomous Vehicles

Keywords: Environment perception, State estimation, Uncertainty analysis, Sensor fusion,

Autonomous vehicles

Abstract: Perceiving or understanding the
surrounding environments is indispensable
for building driving assistant systems or au-
tonomous vehicles. This thesis studies the
sensor fusion approach for the simultane-
ous localization and mapping (SLAM) problem
with complementary visual and range sen-
sors. In order to make conservative deci-
sions and increase autonomous vehicle ma-
neuvering security, the uncertainty analysis
of the pose estimation is also implemented.

The traditional SLAM system has the assump-
tion of static scenes, which is vulnerable in
the context of dynamic outdoor environments.
Thus, we introduce a data-driven approach
to exploit the semantic information that in-
terprets the measurement sequence across
the frames, which efficiently distinguishes the
moving objects from the static ones. We test
the proposed algorithms on real-life data of ur-
ban traffic and parking areas, which presents
promising results.
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