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CHAPTER

1
Introduction

The Boltzmann is magnificent. I have almost finished
it. He is a masterly expounder. I am firmly convinced
that the principles of the theory are right, which means
that I am convinced that in the case of gases we are
really dealing with discrete mass points of definite finite
size, which are moving according to certain conditions

Albert Einstein
Private letter [163]
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1.3 Some kinetic models of interest in this thesis . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Other topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Notations and functional setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Modern societies face major challenges in science, technology and industry, induced by the com-
plexity of our dynamically evolving world. Examples are pollution, traffic and mobility, financial
systems, climate and disease spreading, to name but a few. In all these domains, mathematical
models and computer simulations are indispensable tools, because they allow designing and opti-
mizing systems using virtual (simulated) prototypes, in situations where physical prototypes can be
impossible, unethical or impractical. Many of the systems above consist of large numbers of par-
ticles that interact in a highly non-intuitive way. In pollution, these particles can be fine dust or
aerosol particles, in mobility they are individual vehicles, in financial systems, they are individual
banks or even consumers, etc. Current challenges force scientists to take into account with more
detail the precise interactions between individual particles, as these directly influence the behavior
that emerges at the macroscopic scale of interest. However, to date, computer simulation of such
interacting particle systems is usually done with highly approximate (macroscopic) models to re-
duce the computational complexity. An intermediate approach to address the coarseness of these
macroscopic models consists of using a so-called kinetic description of the system.



2 CHAPTER 1. INTRODUCTION

Kinetic theory is a cornerstone of modern physics. It can be traced back to the works in thermo-
dynamics of Daniel Bernoulli, Amedeo Avogadro and Sadi Carnot in the late eighteenth and early
nineteenth centuries [17, 12, 53]. One of the earliest mathematical contributions to what would be
later called the kinetic theory of rarefied gases is not due to Ludwig Boltzmann, but to James Clerk
Maxwell in one of his first essays [165]. In that work, Maxwell studied the stability of Saturn’s rings,
and concluded that for such large structures to be stable, they must be composed of “independent
satellites”, interacting by collisions. Note that this essay was published more than 15 years before
the seminal works by the same Maxwell and of course Boltzmann [166, 30], that would properly
introduce what we now know as the Boltzmann equation for rarefied gases. It is historically the first
mathematical occurrence of a kinetic equation.

Kinetic equations were hence first used to represent a gas as a set of particles undergoing instan-
taneous collisions interspersed with ballistic motion. Nowadays, these models appear in a variety of
sciences and applications, such as astrophysics, aerospace and nuclear engineering, semiconductors,
fusion processes in plasmas, as well as biology, finance and social sciences. The common mathemat-
ical structure of such models consists in a combination of a linear transport term with one or more
stiff, nonlinear interaction terms, which together dictate the time evolution of the distribution of
particles in a six-dimensional position-velocity phase space.

This dissertation is devoted to the study of multi-scale kinetic equations, both theoretically and
numerically. These equations usually take the form of Boltzmann-like systems. More precisely, for a
given nonnegative initial condition f0, they describe the evolution of a particle distribution function
f ε = f ε(t, x , v), for t ≥ 0, x ∈ Ω ⊂ Rd for d ≤ 3 and v ∈ Rd , solution to the scaled, initial-boundary
value problem 

εα
∂ f ε

∂ t
+ v · ∇x f

ε =
1

εβ
Q( f ε),

f ε(0, x , v) = f0(x , v),

(1.1)

where the collision operator Q will be described in the next sections and ε is a small parameter
describing the rarefaction of the gas. The open set Ω is a bounded Lipschitz-continuous domain of
Rd , which means that the model (1.1) will also have to be supplemented with boundary conditions.
The nonnegative parameters α and β will allow to study different types of asymptotic behaviors.

This problematic has inspired the research I have carried out so far. The following sections will
describe these problems with more details, providing an overview of the state of the art in kinetic
theory. The next chapters will then focus on some of the works I authored after my PhD thesis
(i.e. since October 2012). More precisely,

• Chapter 2 presents the works [FPR15, PR17, DLNR18, PR21, PR22] which concern spectral
methods for various kinetic models;

• Chapter 3 reviews the works [GdSMM+15, JR17, CHMR21] I carried out on the topic of gran-
ular gases;

• Chapter 4 reviews theworks [FR15,MRS17,MRS19, BHR20, BR22] I co-authored on Asympto-
tic-Preserving and related numerical methods.

Each of these three main chapters, albeit related, are mostly independent. They are concluded with
some open perspectives. Some works which couldn’t fit in these three large categories will be briefly
presented at the end of this current introductory Chapter.
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1.1 On kinetic equations and related models

Kinetic equations now cover a very wide array of physically and biologically relevant systems. We
shall present in this Section some of the models I worked on since defending my PhD.

Consider a system of indistinguishable particles contained in a domain Ω observed on a time interval
[0,T) with T ∈ [0,∞]. There are three levels of description of this type of many-particle system.

1.1.1 Microscopic scale

In classical mechanics, a system of N particles of mass 1 can be completely described by their po-
sitions (X i(t))i∈{1,...,N} and velocities (Vi(t))i∈{1,...,N} at time t ∈ [0,T]. The dynamics of i-th particle,
governed by its interaction with the environment and the other particles is given by Newton’s equa-
tions of motion [156]

∀i = 1, . . . ,N ,


dX i

dt
(t) = Vi(t) ,

dVi

dt
(t) = Fi(t, X i(t), Vi(t)) .

(1.2)

In the second equation Fi(t, X i(t), Vi(t)) denotes the force field at time t on particle i which is located
at X i(t) and has velocity Vi(t). If particles are interacting with one another, then the force field Fi

depends on the positions and velocities of the other particles. Typically, if the particles interact
through an interaction potential φ (for instance through gravitational or electrostatic interactions),
then

Fi(t, X i , Vi) = −
∑
j 6=i

∇φ(X i(t)− X j(t)) .

This makes (1.2) a system of 2N coupled ordinary differential equations. In a gas or a plasma the
number N of particles is typically of the size of the Avogadro number, that is N ≈ 6.1023 per mole.
The size of this system of equations makes it almost impossible to extract any relevant qualitative
information of the dynamics or perform numerical simulations of the system. Therefore, while it
allows for an exhaustive description of the physical system, the microscopic scale is intractable in
practice.

1.1.2 Macroscopic scale

Macroscopic models result in the continuous descriptions of matter. Instead of considering each
discrete particle, one applies Newton’s laws to infinitesimal volumes in the space domain Ω [157].
This leads to partial differential equations on macroscopic observable quantities such as the

• Macroscopic density ρ : (t, x) 7→ ρ(t, x) ∈ [0,∞);
• Mean velocity u : (t, x) 7→ u(t, x) ∈ Rd ;
• Temperature T : (t, x) 7→ T(t, x) ∈ [0,∞).

In the context of gas dynamics the equations linking these quantities are for instance the Euler or
Navier-Stokes equations. An example of suchmacroscopic model is Euler’s equations of compressible
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gas dynamics, in the case of a perfect monoatomic gas in dimension d = 3, which are given by
∂tρ +∇x · (ρu) = 0 ,

∂t(ρu) +∇x · (ρu⊗u) +∇x(ρT) = 0 ,

∂t(ρ(
1

2
|u|2 + 3

2
T)) +∇x · (ρu(

1

2
|u|2 + 5

2
T)) = 0 ,

(1.3)

While the complexity of the microscopic scale stems from the huge number of equations, it
comes in the macroscopic viewpoint from the infinite dimensional dynamics. Such models are well-
suited for practical use since qualitative analysis as well as numerical simulations are (difficult but)
tractable. Nevertheless in some applications, such as the description of the reentry of a shuttle in
the high atmosphere or of a plasma in a tokamak, too much of the information of the microscopic
scale has been lost and a more precise mathematical description is needed.

1.1.3 Mesoscopic scale and kinetic formalism

The mesoscopic scale is an intermediate viewpoint between the microscopic and the macroscopic
scale. In this scale, the system at time t can be described statistically in the single particle phase
space, by considering the distribution function f ≡ f (t, x , v) that is the number density of particles
which are located at the position x ∈ Ω and have velocity v ∈ Rd at time t. More precisely, if ω ⊂ Ω
and V ⊂ Rd are (measurable) subsets of the space and velocity domains, then the total number of
particles to be found in ω with velocities in V at time t is∫∫

ω×V
f (t, x , v)dx dv .

Velocity moments and global quantities. The kinetic distribution function is related to macro-
scopic quantities through velocity moments. The latter thus plays a very important role in kinetic
theory. More precisely, from a given distribution function f , one can define the related macroscopic
density

ρ(t, x) =

∫
Rd

f (t, x , v)dv , (1.4)

current density

j(t, x) =

∫
Rd

v f (t, x , v)dv ∈ Rd , (1.5)

mean velocity

u(t, x) =
1

ρ(t, x)

∫
Rd

v f (t, x , v)dv =
j(t, x)
ρ(t, x)

∈ Rd , (1.6)

temperature

T(t, x) =
1

d ρ(t, x)

∫
Rd
|v −u(t, x)|2 f (t, x , v)dv , (1.7)

and local kinetic energy

E(t, x) =
1

2

∫
Rd
|v|2 f (t, x , v)dv =

�
1

2
|u(t, x)|2 + d

2
T(t, x)

�
ρ(t, x) . (1.8)
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By integrating some velocity moments in the space variable, one obtains global quantities (which
depend only on time) of the given physical system such as the total mass / total number of particles1

M(t) =

∫∫
Ω×Rd

f (t, x , v)dv dx =

∫
Ω

ρ(t, x) dx , (1.9)

and the global entropy of the system

H(t) =

∫
Ω×Rd

f (t, x , v) log( f (t, x , v))dx dv . (1.10)

Free transport and linear Vlasov equation. The simplest kinetic equation, describing a popula-
tion of particles travelling on straight lines at constant speed without any interaction is given by the
so-called free transport equation

∂t f (t, x , v) + v · ∇x f (t, x , v) = 0 . (1.11)

If the particles are all subject to a given external force F ≡ F(t, x , v) and are not interacting with
one another, then the kinetic equation driving the system is the linear Vlasov equation

∂t f (t, x , v) + v · ∇x f (t, x , v) +∇v · (F(t, x , v) f (t, x , v)) = 0 . (1.12)

The microscopic counterpart of this equation is Newton’s system (1.2) with Fi = F for all i ∈
{1, . . . ,N}. Actually in this simple setting the link between the microscopic and mesoscopic scale can
be made rigorous easily. Indeed from (1.2) we can define the empirical distribution

µN(t) =
N∑

i=1

λiδ(X i(t),Vi(t)) ,

where for (x , v) ∈ Ω×Rd , δ(x ,v) is the Dirac distribution at (x , v) in the phase space and λi ∈ R. In
particular, if the trajectories (X i(t), Vi(t)) ∈ Ω×Rd , i = 1, . . .N solve Newton’s equations (1.2) with
an external force Fi = F, the empirical distribution µN solves the linear Vlasov equation (1.12) in
D′((0,T)×Ω×Rd).

Maxwellian distribution. One very important object in kinetic theory is the so-called Maxwellian
distribution function. It is given by the following Gaussian with mass ρ ∈ R, average u ∈ Rd and
covariance matrix TId

M(ρ,u,T)(v) =
ρ

(2πT)d/2
exp

�
−|v −u|2

2T

�
. (1.13)

Physically, if the particle velocity density is given by (1.13), then the gas is said to be at local ther-
modynamical equilibrium or just local equilibrium.

The Maxwellian links the mesoscopic scale to the macroscopic scale. More precisely, if ρ, u and
T are given smooth functions and the function

(t, x , v) 7→ M(ρ(t,x),u(t,x),T(t,x))(v) .

solves the free transport equation (1.11) then (ρ,u, T) solves the compressible Euler system (1.3).
1We recall that the mass of one particle has been taken equal to one.



8 CHAPTER 1. INTRODUCTION

1.2 The Boltzmann equation

When we start from a system of particles without interactions between particles, the linear Vlasov
equation naturally arises. In the case of interacting particles, one can derive (at least formally,
sometimes rigorously [106, 135, 192]) nonlinear kinetic models in the limit N→∞. The problem
of the rigorous mathematical derivation of nonlinear kinetic models from microscopic dynamics is
still a largely open and an important research problem, that can be traced back to Hilbert2.

Briefly, from the position and velocities of the N particles, one introduces the joint distribution
function for all of the particles FN(t, x1, . . . , xN, v1, . . . , vN)which will solve a Liouville equation. Then,
by integration, one writes an equation on the single particle distribution, defined by the marginal

f
(1)
N
(t, x , v) =

∫
(Rd×Rd )N−1

FN(t, x , x2, . . . , xN, v, v2, . . . , vN)dx2 . . . dxN dv2 . . . dvN ,

and tries to take limits as N→∞ to obtain an equation on f = lim f
(1)
N

. The single particle distribu-
tion will actually be linked to other marginals, f (2)

N
≡ f

(2)
N
(t, x , v, y,w), . . . , f (N)

N
= FN of FN through the

so-called BBGKY hierarchy of equations. Several assumptions are necessary to achieve this limiting
process, one being the molecular chaos assumption, stating that at the limit particles are uncorre-
lated f

(2)
N
∼ f ⊗ f ≡ f (t, x , v) f (t, y,w) as N→∞. Depending on scaling assumptions made in the

limiting process and on the initial microscopic system under consideration, two types of models may
arise at the limit.

• The first class of model that can be obtained is called mean-field kinetic equations, or mean-
field Vlasov equations [136]. This type of kinetic equation describes the collective effect on
one particle of every other particles. Often this assumption is called long range interactions.
Since it is not the main topic of this dissertation, the interested reader can consult [200, 178,
184, 177, 136].

• The second type of model is called collisional kinetic equations, or Boltzmann type equations
[106]. In contrast to mean field models, collisional kinetic equations arise from microscopic
dynamics with short range interactions. Instead of collective effects, the important part here is
binary interactions between pairs of particles.

Hybrid models which combine the features of Vlasov and Boltzmann equations are also frequently
used in applications and studied mathematically as well.

The Boltzmann equation is a well-known and important collisional kinetic model for a dilute gas
of particles interacting at short distance. For instance it can be used to describe the air in the high
atmosphere where molecules only interact when they collide. It is one of the main model studied in
this dissertation.

Underlying assumptions. In order to derive the equation in its seminal 1872 paper [30], Boltz-
mann made several assumptions, which we are going to briefly recall here:

2“As to the axioms of the theory of probabilities, it seems to me desirable that their logical investigation should be
accompanied by a rigorous and satisfactory development of the method of mean values in mathematical physics, and in
particular in the kinetic theory of gases. ... Boltzmann’s work on the principles of mechanics suggests the problem of
developing mathematically the limiting processes, there merely indicated, which lead from the atomistic view to the laws
of motion of continua.” D. Hilbert [126]
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Figure 1.1: Geometry of elastic collisions.

The first assumption is that particles interact via binary collisions. This has to be understood in the
sense that two particles trajectories are strongly deviated in a short time if they become close to one
another. Implicitly, we assume that the gas is dilute enough that the effect of interactions involving
more than two particles can be neglected.

Moreover, collisions are localized in space and time, namely they are happening at given point
(t, x).

The collisions are elastic, namely momentum and kinetic energy are conserved. Let v′ and v′∗ ∈ Rd
be the pre-collisional (before collisions) and v, v∗ ∈ Rd post-collisional velocities (after collisions).
Then we assume that �

v + v∗ = v′ + v′∗ ,
|v|2 + |v∗|2 = |v′|2 + |v′∗|2 . (1.14)

Observe that this is a system of d + 1 scalar equations with 2d scalar unknowns so we expect to
describe all solutions thanks to d − 1 scalar parameters. There are several ways to define solutions.
A first way is the so called ω-representation�

v′ = v − (ω · (v − v∗))ω ,

v′∗ = v∗ + (ω · (v − v∗))ω ,
(1.15)

for a given ω ∈ Sd−1. A second way is the so-called σ-representation
v′ = v + v∗

2
+σ
|v − v∗|

2
,

v′∗ =
v + v∗
2
−σ |v − v∗|

2
,

(1.16)

where σ ∈ Sd−1. On Fig. 1.1, the geometry relating these quantities is illustrated in the phase space.

Besides, collisions are assumed to be microreversible. It means that the microscopic dynamics is
reversible, namely unchanged by changing the sign of time and velocity.

Finally, Boltzmann made themolecular chaos assumption: the velocities of two particles which are
about to collide are uncorrelated. Mathematically it means that the joint probability distribution of
two particles velocities is given by the tensor product of the probability distribution of the velocity
of a single particle. See the book [106] for an extensive discussion on this topic.
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The equation and its basic properties. From there the Boltzmann equation can be (at least for-
mally) derived. It describes the evolution of f and reads with nonscaled variables as

∂t f + v · ∇x f =QB( f , f ) , (1.17)

whereQB denotes the collision operator. It is a non-local bilinear integral operator acting on functions
in the velocity variable only. It reads for any φ and ψ ∈ C0c (Rd),

QB(φ,ψ) =

∫∫
Rd×Sd−1

�
φ(v′)ψ(v′∗)−φ(v)ψ(v∗)

�
B(v − v∗,σ)dv∗ dσ , (1.18)

where v′, v′∗, v, v∗ ∈ Rd and σ ∈ Rd−1 are related by (1.16).

In addition, the collision kernel B has the general form

B(v − v∗,σ) = |v − v∗|Σ(|v − v∗|, cosθ ) , with Σ > 0 (1.19)

whereΣ is the cross-section corresponding to interparticle force and θ is the deviation angle satisfying
cos(θ ) =

¬
v−v∗|v−v∗| ,σ

¶
. This term conserves a trace of the type of interaction between particles at the

microscopic level.

Let us observe that provided that the angular cross-section is integrable on the unit sphere (the
so-called Grad’s cut-off assumption [121]), the collision operator is formally the difference between
two terms

QB(φ,ψ) =Q+B(φ,ψ)−Q−B(φ,ψ) ,
where

Q+B(φ,ψ) =
∫∫
Rd×Sd−1

Bφ′ψ′∗ dv∗ dσ , Q−B(φ,ψ) = φ
∫
Rd
ψ∗
�∫
Sd−1

Bdσ

�
dv∗ ,

where we used the shorthand notation f∗, f ′ and f ′∗ to designate f (v∗), f (v′) and f (v′∗) respectively.
From this decomposition the time derivative of the distribution is the sum of three contributions

in the Boltzmann equation (1.17). As in the Vlasov equation the term v · ∇x f (t, x , v) accounts for
the transport of particles in the physical space at their velocity v. The gain term Q+B( f , f )(t, x , v)
accounts for the increase of particles with velocity v from all the collisions between pairs of particles
with velocities v′ and v′∗. The loss term −Q+B( f , f )(t, x , v) stands for the decrease of particles with
velocity v due to collisions with particles with velocity v∗, thus changing the velocities of the pair by
v′ and v′∗.
The Boltzmann equation conserves mass, momentum and kinetic energy thanks to the following

property of the collision kernel: for all φ, ψ and ϕ ∈ C0c (Rd),∫
Rd

QB(φ,ψ)(v)ϕ(v)dv =
1

2

∫∫∫
Rd×Rd×Sd−1

φψ∗
�
ϕ′ +ϕ′∗ −ϕ −ϕ∗

�
B(u,σ)dv dv∗ dσ . (1.20)

As a consequence, for all f ∈ L∞(R3) and i = 1, . . . , d,∫
Rd

QB( f , f )dv =

∫
Rd

QB( f , f ) vi dv =

∫
Rd

QB( f , f ) |v|2 dv = 0 . (1.21)

These are the only functions of v with such properties. We call them collisional invariants. They
allow us to show Boltzmann’s celebrated H-Theorem [211]:
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Theorem 1.2.1 (H-Theorem). Let f = f (t, x , v) be a smooth solution to Boltzmann equation (1.17).
Let us define the kinetic entropy as

H[ f ](t, x) :=
∫
Rd

f (t, x , v) (log( f (t, x , v))− 1) dv , (1.22)

and the entropy dissipation as

I[ f ](t, x) :=
∫
Rd

v f (t, x , v) (log( f (t, x , v))− 1) dv . (1.23)

One has the following entropy dissipation inequality:

∂

∂ t
H[ f ](t, x) +∇x · I[ f ](t, x)≤ 0. (1.24)

Moreover, H[ f ] = 0 if and only if f is a Maxwellian distribution M.

Most of the results presented in this manuscript will deal with the properties of the solutions to
the Boltzman equation, in both the theoretical and numerical points of view, and in many regimes
of interests. Before entering into these details, let us present some less classical kinetic models, that
will also be studied in these chapters.

1.3 Some kinetic models of interest in this thesis

1.3.1 The BGK Operator

A collision operator which has the same properties of conservation of moments and dissipation of
entropy of the Boltzmann operator is the BGK operator [20], and its Ellipsoidal Statistical (ES-BGK)
extension [8]. It consists in replacing the bilinear collision operator QB by a nonlinear relaxation
operator, which matches the same hydrodynamic limit than the Boltzmann operator. The advantage
is essentially computational, since it is very easy to compute this operator numerically, compared to
the full Boltzmann operator.

Let us define the so-called stress tensor as

ρ f Θ f (t, x) =

∫
R3
(v −u)⊗ (v −u) f (t, x , v) dv.

Therefore the temperature is related to the stress tensor as T = Trace(Θ f )/3. We finally introduce
the corrected tensor

T f (t, x) =
�
(1− β)T I + β Θ f

�
(t, x),

which can be viewed as a linear combination of the initial stress tensor Θ f and of the isotropic stress
tensor T I developed by a Maxwellian distribution. The parameter −∞ < β < 1 is used to modify
the value of the Prandtl number through the formula

0 ≤ Pr =
1

1− β ≤ +∞ for β ∈ (−∞ , 1).

The correct Prandtl number for a monoatomic gas of hard spheres is equal to 2/3, namely obtained
here for β = −1/2 whereas the classical BGK operator, obtained for β = 0, has a Prandtl number
equal to 1.
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To define the ESBGK operator, we introduce a corrected Gaussian G[ f ] defined by

G[ f ] =
ρÆ

det(2πT f )
exp

�
−(v −u)T −1

f
(v −u)

2

�
and the corresponding collision operator is now

QBGK( f ) = ν (G[ f ] − f ) , (1.25)

where ν is the collision frequency from the Boltzmann operator, namely ν=Q−B( f ,M).

1.3.2 The granular gases equation

A granular gas is a set of particles which interacts by energy dissipating collisions also known as
inelastic collisions. This inelasticity is characterized using a collision mechanics where mass and
momentum are conserved and kinetic energy is dissipated. Thus, the collision phenomenon is a
non-microreversible process. The velocities of the colliding pairs (v, v∗) and (v′, v′∗) are related by

v′ = v − 1+ e

2
((v − v∗) ·σ)σ, v′∗ = v∗ +

1+ e

2
((v − v∗) ·σ)σ,

where σ ∈ Sd−1 and the constant e ∈ [0,1] is the dissipation parameter, known as restitution coeffi-
cient. One has  v′ + v′∗ = v + v∗,

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− e2

2
|(v − v∗) ·σ|2 ≤ 0.

(1.26)

This microscopic mechanism allows us to describe the granular collision operator QI: for all φ, ψ
and ϕ ∈ C0c (Rd),∫

Rd
QI(φ,ψ)ϕ dv :=

1

2

∫
Rd×Rd×Sd−1

|v − v∗|φ∗ψ
�
ϕ′ + ϕ′∗ − ϕ − ϕ∗

�
dσdv dv∗. (1.27)

Taking ϕ(v) = 1, v and |v|2 in (1.27), the relations (1.26) yield conservation of mass and mo-
mentum at the kinetic level and dissipation of kinetic energy. The decrease of the energy, together
with conservation of positivity, mass and momentum, imply that the equilibria of the collision oper-
ator are Dirac distributions ρδu(v) where the density ρ and momentum ρu are prescribed by the
initial condition. A major difficulty with this equation is the lack of decaying entropy functional: a
discussion on this question can be found in my work [GdSMM+15], described in Chapter 3.

1.3.3 Multiple species Boltzmann equation

Amultiple species gas mixture (such as the rarefied upper atmosphere) can be described by a system
of N Boltzmann equations (1.1), coupled through the collision operators describing inter- and intra-
species collisions:

∂ fi

∂ t
+ v · ∇x fi = Qi(F), ∀1≤ i ≤ N. (1.28)

The density of each specie is given by fi, and F= ( f1, . . . , fN). The multiple-species collision operator
is given by a sum of Boltzmann operators (1.18)

Qi(F) :=
N∑
j=1

QB( fi , f j), (1.29)



1.3. SOME KINETIC MODELS OF INTEREST IN THIS THESIS 13

where inter-species collisions are given by
v′ = 1

mi +m j

�
miv +m jv∗ +m j|v − v∗|σ

�
,

v′∗ =
1

mi +m j

�
miv +m jv∗ −mi |v − v∗|σ

�
.

The nonnegative quantity mi denotes the molecular mass of the specie i. A whole hierarchy of
reduced ES-BGK-type equations for this model also exists, we refer the interested reader to the
recent review paper [123].

Whereas the mathematical properties of the classical Boltzmann equation for a single specie gas
and its derivation from Newtonian dynamics are now quite well known, such questions on the multi-
ple species case are still open. Themost recent theoretical results on this topic come from the series of
papers [44, 43], that prove existence, uniqueness, positivity and exponential trend to equilibrium for
the full nonlinear multi-species Boltzmann equation (1.28) in a perturbative, polynomially-weighted
and isotropic L1vL

∞
x setting.

On the numerical level, the most advanced numerical methods use a Fourier approach: a fast
spectral algorithm recently introduced in [217] to numerically compute the collision operator (1.29).
Nevertheless, the numerical method introduced by these authors is not capable of dealing with
the stiff regimes of small ε or large mass ratios mi/m j. The paper [BR22] presented in Chapter 4
solves this problem, by using a novel strategy of time integration, the so-called Projective Integration
framework.

1.3.4 Quantum Boltzmann equation

The Nordheim equation (or quantum Boltzmann equation) models the time evolution of a phase-
space density f = f (t, x , k), describing the probability to find at time t ≥ 0 a quantum particle
localized at the infinitesimal position dx dk, where x ∈ Ω ⊂ R3 and k ∈ R3. The quantity k desig-
nates the energy level of the particle and corresponds to the “velocity” variable v in (1.1). Its total
momentum is then given by p = ħhk, where ħh is the reduced Planck constant.

This equation was first formulated by Uehling and Uhlenbeck in the seminal paper [210], starting
from a classical Boltzmann equation with heuristic arguments. It can be used to model both bosons
and fermions gases, possibly trapped by the confining potential V. The quantum collision operator
can be expressed as:

Q( f )(k) =
∫
R9
δ0
�
k+ k∗ − k′ − k′∗)

�
δ0
�
E+ E∗ − E′ − E′∗

�
�
f ′∗ f ′ (1±ħhf ) (1±ħhf∗)− f∗ f

�
1±ħhf ′� �1±ħhf ′∗ �� dk∗ dk′ dk′∗, (1.30)

where E(x , k) := V(x) + |k|2/2 is the total energy of the boson/fermion. Taking pluses in (1.30)
corresponds to the boson case (namely integer spin particles such as photons), whereas minuses
corresponds to the fermion case (half-integer spin particles such as electrons or protons). This col-
lision operator preserves mass, momentum and kinetic energy by construction.

Due to its high dimensionality, the study of the full quantum Boltzmann equation is still widely
open. The equation is indeed posed in the usual six-dimensional kinetic phase space. Moreover, the



14 CHAPTER 1. INTRODUCTION

collision operator is defined by a seven-fold integral (thanks to the Dirac deltas) itself. This causes a
lot of difficulty, both theoretically and numerically. For example, in the space homogeneous (namely
f = f (t, k)) bosonic case, it is well known that the particle distribution function f can develop finite
time blow-up (weak convergence towards Dirac deltas even if the kinetic energy is conserved), the
so-called Bose-Einstein condensation.

The study of the main mathematical properties of the collision operator (1.30) has been done
in [90, 164, 45], allowing to understand almost completely the Cauchy problem (existence, sta-
bility, creation and propagation of moments, convergence towards the equilibrium) in the space
homogeneous setting, without confining potential. The recent breakthrough [91] proved rigorously
the Bose-Einstein condensation in the bosonic case, under very mild hypotheses on the moments
of the initial condition. Nevertheless, the precise blowup behavior (localization of the explosion,
rates, etc.) is still open. Finally, the theoretical study of the full space dependent problem is also
mostly open, apart from some recent results concerning the anisotropic setting and Bose-Einstein
condensates that can be found in [162].

The numerical study of this equation is also difficult for all these reasons. The first attempt to
compute numerically the collision operator, in a simplified setting (taking advantage of some very
specific symmetry properties) was done in the work [185]. Extensions of this idea were introduced
in [131] by exploiting the convolution-like structure of the collision operator. This approach is
similar to [MPR13] for the classical Boltzmann equation. The full extent of this convolution idea was
used in [98], allowing to write a fast (spectral) method able to compute the full collision operator
with the “reasonably low” numerical cost of O(N5 log(N)) operations, where N is the number of
unknowns in each velocity dimension, and with spectral accuracy. Extension of this method to
the space inhomogeneous case was then done in the series of works [132, 130] for the fermionic
(electrons) case only. Nevertheless, these works only deal with the simplified 1-dimensional (1d) in
x , 2-dimensional in k setting and use an approximation of the collision operator (1.30). Even the
slightly more realistic 1d in x , 3d in k case was never tackled up to our knowledge, not to mention
the full 3d in x , 3d in k case. One should also note the earlier attempts from [140, 148], where a
diffusive relaxation system was used, as an approximation of the full equation (1.1).

1.3.5 Run-and-tumble chemotactic motion.

The Othmer, Dumbar and Alt kinetic equation [183] describes biological phenomena of bacterial
chemotactic motion such as Escherichia Coli or Bacillus Subtilis using a collisional kinetic equation of
the form (1.1), with a relaxation-like collision operator. It describes the population of bacteria with a
probability distribution function f (t, x , v), where the kinetic variable v is usually bounded, because
it models the bacterial velocity. It can be written as the following, nonlinear kinetic equation:

∂ f

∂ t
+ v · ∇x f =

∫
V

T[S](x , v, v′) f ′ dv′ −
∫
V

T[S](x , v′, v) f dv′, (1.31)

−∆S+ S=
∫
V

f (t, x , v)dv.

It also fits in the collisional framework (1.1), even though the collision operator, of linear Boltzmann
type, is supplementedwith a Poisson equation. The nonlinearity is due to the coupling of the nutrient
quantity S with this Poisson equation, describing the nutrient consumption by the bacteria. The
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kernel T describes the rate of jump and reorientation of the bacteria, giving its name to the “run-
and-tumble” model. The core of the modeling for this class of equations then relies on this tumbling
kernel. This topic has been for example summarized in the review paper [202].

This model has been investigated mathematically in the landmark paper [194], and has since
generated a huge interest from the mathematical biology community. Some of its mathematical
properties are now well known, and have been summarized in the paper [50]. In particular, after
diffusive scaling, its fluid dynamic limit is given by the Patlak-Keller-Segel equation, which is known
to exhibits complex blow-up behaviors.

Nevertheless, its numerical approximations are still not completely understood. Let us mention
the AP, but first order in time numerical method introduced in [58] for dealing with some very
simplified tumbling kernels only, in first dimension of space and velocity. Another first order scheme
was then introduced in [104] and has the advantage of being able to deal with the two dimensional
case (in space and velocity) with a rigorous treatment of the boundary conditions. This scheme
is however not AP. Finally, the recent work [49] introduced a new numerical method using Case’s
orthogonal polynomial, which is high order in the velocity space.

1.4 Other topics

The works [RT16, EKR20, BDMR20, MR21, BLRT22] will not be exposed in this Habilitation. Let
me give here a few words about their content.

The work [RT16] deals with an extension of the so-called Rescaling Velocity Method that I in-
troduced during my PhD Thesis in [FR13]. In this paper, we discuss kinetic descriptions of flocking
models, of the so-called Cucker-Smale [68] and Motsch-Tadmor [176] types. These models are
given by Vlasov-type equations where the interactions taken into account are only given long-range
bi-particles interaction potential. We introduce a new exact rescaling velocity method, which extend
the one introduced in [FR13] to mean field models. It allows in particular to observe numerically
the flocking behavior of the solutions to these equations, without a need of remeshing or taking a
very fine grid in the velocity space. To stabilize the exact method, we also introduce a modification
of the classical upwind finite volume scheme which preserves the physical properties of the solution,
such as momentum conservation. We present an analysis of the new finite volume fluxes, as well as
numerical simulations of this new method on both toy and full models.

In [EKR20], in collaboration with A. El Keurti, we propose a a new finite volume method for com-
puting numerical approximations of a system of nonlocal transport equation modeling interacting
species. This system can be seen as a nonlocal extension of the classical Lotka-Volterra equations.
This method is based on the work [73], where the nonlocal continuity equations are treated as
conservative transport equations with a nonlocal, nonlinear, rough velocity field. We analyze some
properties of the method, and illustrate the results with numerical simulations.

In [BDMR20], in collaboration with S. Billiard, M. Derex and L. Maisonneuve, we develop a new
mathematical model that aims to describe the dynamics of knowledge creation and propagation
among interacting individuals. Understanding how knowledge is created and propagates within
groups is crucial to explain how human populations have evolved through time. Computers, space-
ships and scientific theories have not been invented by single, isolated individuals. Instead, they
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result from a collective process by which innovations are gradually added to an existing pool of
knowledge, most often over multiple generations [41, 190]. The ability to learn from others (so-
cial learning) is pivotal to this process because it allows innovations to be passed from individual
to individual and from generation to generation. Anthropologists have relied on different theoret-
ical models to address this question. In this work, we introduce a mathematically oriented model
that shares properties with individual based approaches, inhomogeneous Markov chains and learn-
ing algorithms, such as those introduced in [67, 68]. After deriving the model, we study some of
its mathematical properties, and establish theoretical and quantitative results in a simplified case.
Finally, we run numerical simulations to illustrate some properties of the model.

In [MR21], we consider with A. Mouton a Fourier spectral method for the Boltzmann-Nordheim
equation (1.30). This equation, modeled on the seminal Boltzmann equation, describes using a
statistical physics formalism the time evolution of a gas composed of bosons or fermions. Using the
spectral-Galerkin algorithm introduced in [98], together with some novel parallelization techniques
and rescaling in velocity, we investigate some of the conjectured properties of the large time be-
havior of the solutions to this equation. In particular, we show that this numerical method is able
to reproduce very accurately some of the main mathematical features of this equation, including
the convergence towards singular steady states. These phenomena are known in the literature as
Fermi-Dirac saturation and Bose-Einstein condensation).

In [BLRT22], in collaboration with S. Billiard, H. Leman and V.-C. Tran, we study a stochastic
individual-based model of interacting plant and pollinator species through a bipartite graph: each
species is a node of the graph, an edge representing interactions between a pair of species. The
dynamics of the system depends on the between- and within-species interactions: pollination by
insects increases plant reproduction rate but has a cost which can increase plant death rate, de-
pending on pollinators density. Pollinators reproduction is increased by the resources harvested
on plants. Each species is characterized by a trait corresponding to its degree of generalism. This
trait determines the structure of the interactions graph and the quantity of resources exchanged
between species. Our model includes in particular nested or modular networks. Deterministic ap-
proximations of the stochastic measure-valued process by systems of ordinary differential equations
or integro-differential equations are established and studied as in [105], when the population is
large or when the graph is dense and can be replaced with a graphon. The long-time behaviors of
these limits are studied and central limit theorems are established to quantify the difference between
the discrete stochastic individual-based model and the deterministic approximations. Finally, study-
ing the continuous limits of the interaction network and the resulting PDEs, we show that nested
plant-pollinator communities are expected to collapse towards a coexistence between a single pair
of species of plants and pollinators.

1.5 Notations and functional setting

Here follows a list of useful concepts and notations which will be used throughout the manuscript.

Partial derivatives.

• Given a smooth scalar function ψ : I×Ω→ R for some open sets I ⊂ R and Ω ⊂ Rd for d ∈ N∗,
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we define the partial derivative of ψ with respect to y by

∂ψ

∂ y
ou ∂yψ.

• The gradient of ψ with respect to the vector X ∈ Ω will be denoted by

∇Xψ =
�
∂x i
ψ
�
i∈{1,...,d} .

• The laplacian of ψ with respect to X ∈ Ω will be denoted by

∆Xψ =∇X · ∇xψ =
d∑

i=1

∂ 2x i
ψ.

• In the case where the smooth function ψ : I × Rd → Rd is vector valued, its divergence with
respect to X ∈ Ω is denoted by

divXψ =∇X ·ψ =
d∑

i=1

∂x i
ψi .

Some functional spaces.

• Let d ∈ N∗, p ∈ [1,+∞], q ∈ R+, m : Rd → R+ integrable and f : Rd → R measurable. The
weighted Lebesgue space Lp(m) is defined using the weighted norm

‖ f ‖p
Lp(m) :=

∫
Rd
| f (x)|p m(x)dx .

It will be denoted by Lp, Lp(dx) or Lp(Rd) when m= 1.
• In the case where m(x) = 〈x〉 :=p1+ |x |2, we shall use the shorthand notation L

p
q, defined by

the norm
‖ f ‖p

L
p
q

:=

∫
Rd
| f (x)|p 〈x〉p q dx ,

• For s ∈ N, the polynomially weighted Sobolev space Ws,p
q is defined through the norm

‖ f ‖p
W

s,p
q

:=
∑
|k|≤s

∫
Rd

��∂ k f (x)
��p 〈x〉p q dx .

• The case p = 2 is denoted as the Sobolev space Hs
q :=Ws,2

q . It can be equivalently defined using
Fourier transform with the norm

‖ f ‖2
Hs

q
:= ‖F ( f 〈·〉s)‖L2q .

• The space Mq is the space of the measures on Rd with finite moments up to order q.

Fourier transforms.

• The space of orthogonal polynomials of degree at most N ≥ 0 over Rd is defined as

PN = Span
�
eik·v | −N ≤ k j ≤ N, j = 1, . . . , d.

	
.

The orthogonal projector onto this space is denoted by PN. In particular, one has for any f ∈ L2
〈 f −PN f ,φ〉= 0, ∀ φ ∈ PN,

where 〈·, ·〉 is the canonical inner product of L2.
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• The Fourier transform of a function f : Rd → R is defined by

F( f )(ξ) :=
∫
Rd

f (X) eiX·ξ dX, ∀ξ ∈ Rd .

One can also use the shorthand notation bf (ξ) := F( f )(ξ).
• For any multi-index k = {k1, . . . , kd} ∈ Zd , the kth Fourier coefficient of an L−periodic function

f : [−L, L]d → R is given by

�fk =
1

2L

∫
[−L,L]d

f (x) e−i πL x ·k dx .

For a given N ∈ N∗, the truncated Fourier series of f is given by

fN(x) =
∑
−N≤k≤N

�fk e
i π
L
x ·k, ∀x ∈ [−L, L]d .

Convolutions.

• Given two integrable functions ψ1,ψ2 : Rd → R, their convolution ∗X with respect to the vari-
able X ∈ Rd is given by

ψ1 ∗X ψ2(X) :=

∫
Rd
ψ1(X− Y)ψ2(Y) dY, ∀X ∈ Rd .

• Given N ∈ N∗ and two N−periodic sequences u, v, their discrete periodic convolution ∗N is given
by

(u1 ∗N u2)k =
N∑
j=1

u j vk− j , ∀k ∈ {1, . . . ,N}.

Miscellaneous concepts.

• The tensor product of two vectors a, b ∈ Rd is the square matrix a⊗b defined by (a⊗ b)i, j = ai b j

• An operator T : X→ Y bounded between two Banach spaces is said to be a Fredholm operator
if dimkerT <∞ and codimkerT <∞.
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Spectral Methods

“When I finally got home and told my wife, she said:
‘Are you crazy? There were bombs in the computer, and
you rushed in?’ ” Dr. Lax recalled. “I said: ‘I was so
angry. I wanted to save the computer.’ ”

Peter Lax
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Contents
2.1 From kinetic equations to Discrete Velocity Models . . . . . . . . . . . . . . . . . . . . 20
2.2 Fourier-Galerkin spectral methods for the Boltzmann equation . . . . . . . . . . . . . 21
2.3 Structure preserving spectral methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Towards high performance computing applications . . . . . . . . . . . . . . . . . . . . 36
2.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

This chapter is based on the works [FPR15, PR17, DLNR18, PR21, PR22], written in collaboration
with Giacomo Dimarco, Francis Filbet, Raphaël Loubère, Jacek Narski, and Lorenzo Pareschi. Some
parts are largely borrowed from these papers.

Any deterministic numerical method for the computation of Boltzmann-like collision operators
requires to work on a bounded velocity space. The approach considered for the majority of the
collision operators we presented in Chapter 1 consists in adding some non physical binary collisions
by periodizing the particle distribution function and the collision operator, and then using Fourier
series to compute the truncated operator. This implies the loss of some local invariants, but a careful
periodization allows at least the preservation of mass. This periodization is the basis of spectral
methods, which are a large part of my work since my PhD.

Fourier techniques (also known as Fourier spectral methods) for the resolution of the Boltzmann
equation have been first introduced independently in [186] and in [24], but were already evoked
in the seminal paper [25]. They have since been investigated by a lot of authors, mathematicians,
physicists and engineers, slowly percolating into the different communities as one of the methods
of interest along Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC) [187, 188,
101, 108, 98, 216, 218, 217, 107, 128]. We will review in this Chapter some of the more striking
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results on the approximation of collisional, Boltzmann-like collision operator that were obtained
recently, as well as some of my contribution on this topic. Unless stated otherwise, the problems
studied won’t be scaled, and the Knudsen number ε = 1 through all this Chapter.

2.1 From kinetic equations to Discrete Velocity Models

In order to introduce a numerical method for the full kinetic equation (1.1), let us truncate the
velocity space by fixing some given bounds and set a cubic grid in velocity space of N points with
∆v the grid step which is taken equal in each direction. The continuous distribution function f is
then replaced by a vector whose components are assumed to be approximations of the distribution
function f at locations vk: efk(t, x)≈ f (t, x , vk).

The discrete velocity kinetic model consists then in a set of N evolution equations in the velocity space
for efk, 1≤ k ≤ N, of the form

∂t efk + vk · ∇x
efk = Q(efk), (2.1)

where Q(efk) is a suitable approximation of the collision operator Q( f ) at location k. Observe that,
due to the truncation of the velocity space and to the finite number of points with which f is dis-
cretized, the moments of the discrete distribution function efk are such that

eU(t, x) =∑
k

φk
efk(t, x)∆v 6= U(t, x), (2.2)

with φk = (1, vk, |vk|2) the discrete collision invariants, i.e. they are no longer those given by the
continuous distribution f .

Since it is not the purpose of this Chapter, we are now free to introduce a discretization of the
physical space intoM control volumes. Further we define a time discretization tn+1 = tn+∆t starting
at t0, where ∆t is the time step defined by an opportune CFL condition. The time index n varies
between 0 and Nt so that the final time is tfinal = tnt = t0 +Nt∆t.

Each equation of system (2.1) is solved by a time splitting procedure. We recall here a first order
splitting approach: first a transport step solves the left-hand side, whereas a collision stage solves
the right-hand side using the solution from the transport step as initial data:

Transport stage −→
¨
∂t fk + vk · ∇x fk = 0,

fk(0) = f n
k
;

Collision stage −→
¨
∂t f

n+1
k
= Q( f n+1

k
),

f n+1
k
(0) = fk(∆t).

In this Chapter we shall mainly focus on the discretization of the so-called space homogeneous
collision stage

∂ f

∂ t
=Q( f , f ). (2.3)
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2.2 Fourier-Galerkin spectral methods for the Boltzmann equation

In this Section, we will consider the full Boltzmann collision operator (1.20), and present a general
method to build Fourier spectral approximation of this object. This method is prototypical of other
types of collision operators, that will be described later with less details.

2.2.1 The classical spectral method

The first step to construct our spectral discretization is to truncate the integration domain of the
Boltzmann integral (1.18) as done for the distribution f . As a consequence, we suppose the distri-
bution function f to have compact support on the ball B0(R) of radius R centered in the origin.

Proposition 2.2.1. Let the distribution function f be compactly supported on the ball B0(R) of radius
R centered in the origin, then

Supp (QB( f , f )(v)) ⊂ B0(
p
2R).

In particular, one can introduce a collision operator with cutoff by setting

QR( f , g)(v) =

∫∫
B0(R)×Sd−1

�
f (v′)g(v′∗)− f (v)g(v∗)

�
B(v − v∗,σ)dv∗ dσ , ∀v ∈ Rd .

In order to write a spectral approximation which avoids superposition of periods, it is then suf-
ficient that the distribution function f (v) is restricted on the cube [−T,T]d with T ≥ (2 + p2)R.
Successively, one should assume f (v) = 0 on [−T,T]d \B0(R) and extend f (v) to a periodic function
on the set [−T,T]d . Let observe that the lower bound for T can be improved. For instance, the choice
T = (3+

p
2)R/2 guarantees the absence of intersection between periods where f is different from

zero [187]. However, since in practice the support of f increases with time, we can just minimize
the errors due to aliasing.

To further simplify the notation, let us take T = π and hence R= λπ with λ = 2/(3+
p
2) in the

following. We then obtain a spectral quadrature of our collision operator by projecting it onto the
space of trigonometric polynomials of degree less or equal to N, i.e.

�Qk =

∫
[−π,π]d

QR( fN, fN)e
−ik·v dv, k = −N, . . . ,N. (2.4)

By substituting the expression of the truncated Fourier series fN in (2.4) one gets after some com-
putations

�Qk =
N∑

l,m=−N
l+m=k

�fl
�fmβ(l,m), k = −N, . . . ,N, (2.5)

where β(l,m) = �B(l,m)− �B(m,m) are given by

�B(l,m) =

∫
B0(2λπ)

∫
Sd−1
|q|σ(|q|, cosθ )e−i(l·q++m·q−) dωdq. (2.6)

with
q+ =

1

2
(q+ |q|ω), q− = 1

2
(q− |q|ω). (2.7)



22 CHAPTER 2. SPECTRAL METHODS

Let us notice that the naive evaluation of (2.5) requiresO(n2) operations, where n= Nd . This causes
the spectral method to be computationally very expensive, especially in dimension three. In order
to reduce the number of operations needed to evaluate the collision integral, we shall introduce an
FFT-based, convolution approach to our spectral method.

2.2.2 A good domain truncation is tricky

We shall now approximate the collision operator on a bounded domain starting from a representa-
tion which somehow conserves more symmetries of the collision operator when one truncates it in
a bounded domain. We have the following Carleman-like representation

Lemma 2.2.2. Introducing the change of variables x = rσ/2, y = v∗ − v − x the collision operator
(1.18) can be rewritten in the form

Q( f , f )(v) =
∫

x∈Rd

∫
y∈Rd

eB(x , y)δ(x · y) [ f (v + y) f (v + x)− f (v + x + y) f (v)] dx dy,

where eB(x , y) = eB(|x |, |y|) = 2d−1 B
� |x |p|x |2 + |y|2 ,Æ|x |2 + |y|2

�
(|x |2 + |y|2)− d−2

2 . (2.8)

We shall show that such representation yields better properties of the Fourier spectral method after
truncation.

Let us consider the bounded domain DT = [−T,T]d (0< T < +∞). There are two possibilities of
truncation to reduce the collision process in a box. First one can remove the collisions connecting
with some points out of the box. This is the natural preliminary stage for deriving conservative
schemes based on the discretization of the velocity. In this case there is no need for a truncation on
the modulus of x and y since we impose them to stay in the box. (even if for some computational
reason it could be useful to impose this truncation even in this case). It yields

Qtr( f , f )(v) =
∫ ∫�

x , y ∈Rd | v+x , v+y, v+x+y ∈DT

	 eB(x , y)δ(x · y)
[ f (v + y) f (v + x)− f (v + x + y) f (v)] dx dy

defined for v ∈ DT. One can easily check that the following weak form is satisfied by this operator∫
Qtr( f , f )ϕ(v)dv =

1

4

∫ ∫ ∫�
v, x , y ∈Rd | v, v+x , v+y, v+x+y ∈DT

	 eB(x , y)δ(x · y)
f (v + x + y) f (v) [ϕ(v + y) +ϕ(v + x)−ϕ(v + x + y)−ϕ(v)] dv dx dy (2.9)

and this implies conservation of mass, momentum and energy as well as the H-theorem on the
entropy. The problem of this truncation on a bounded domain is the fact that we have changed the
collision kernel itself by adding some artificial dependence on v, v∗, v′, v′∗. In this way convolution-like
properties are broken.

A different approach consists in truncating the integration in x and y by setting them to vary
in B0(R). For a compactly supported function f with support B0(S), we take R = S in order to
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obtain all possible collisions. Since we aim at using the FFT algorithm to evaluate the resulting
quadrature approximation, and hence make use of periodic distribution functions, we must take
into account the aliasing effect due to periods superposition in the Fourier space. As for the spectral
method a geometrical argument shows that using the periodicity of the function it is enough to take
T ≥ (3+p2)S/2 to prevent intersections of the regions where f is different from zero.

The operator now reads

QR( f , f )(v) =

∫
x∈B0(R)

∫
y∈B0(R)

eB(x , y)δ(x · y) [ f (v + y) f (v + x)− f (v + x + y) f (v)] dx dy

for v ∈ DT. The interest of this representation is to preserve the real collision kernel and its proper-
ties.

In order to understand the possible effect of periods’ superposition we can rely on the following
weak form valid for any function ϕ periodic on DT∫

DT

QR( f , f )ϕ(v)dv =
1

4

∫
v∈DT

∫
x∈B0(R)

∫
y∈B0(R)

eB(x , y)δ(x · y)
f (v + x + y) f (v) [ϕ(v + y) +ϕ(v + x)−ϕ(v + x + y)−ϕ(v)] dv dx dy. (2.10)

About the conservation properties one can show that

1. The only invariant ϕ is 1: it is the only periodic function on DT such that

ϕ(v + y) +ϕ(v + x)−ϕ(v + x + y)−ϕ(v) = 0

for any v ∈ DT and x⊥y ∈ BR. It means that the mass is locally conserved but not necessarily
the momentum and energy.

2. When f is even there is global conservation of momentum, which is 0 in this case. Indeed
QR preserves the parity property of the solution, which can be checked using the change of
variable x →−x , y →−y.

3. The collision operator satisfies formally the H-theorem∫
v∈Rd

QR( f , f ) log( f )dv ≤ 0.

4. If f has compact support included in BS with T ≥ (3+p2)S/2 and R= S, then no unphysical
collisions occur and thus mass, momentum and energy are preserved. Obviously this compact-
ness is not preserved with time since the collision operator spreads the support of f by a factorp
2.

To sum up one could say that the lack of conservation originates from the fact that the geometry of
the collision does not respect the periodization.

We quantified the lack of conservation recently:

Proposition 2.2.3 (Prop. 2.2 from [PR22]). Assume that the solution to problem (2.3) satisfies
for δ� 1

f (v, t)≤ δ, v ∈ [−π,π]d \B0(R)
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with R= λπ. Then, one has the bound for Φ(v) = (1, v1, . . . , vd , |v|2)T
∫
[−π,π]d

QR( f , f )Φ(v) dv


2

≤ Cδ, (2.11)

where C= C( f , R) and ‖ · ‖2 denotes the euclidean norm of the vector.

2.2.3 The fast spectral method

The main idea to develop a more efficient algorithm is to use the representation (2.10). Taking
ϕ(v) = eik·v yields the following new spectral quadrature formula

�Qk =
N∑

l,m=−N
l+m=k

�βF(l,m) �fl �fm, k = −N, ...,N (2.12)

where �βF(l,m) = �BF(l,m)− �BF(m,m) are now given by

�BF(l,m) =

∫
B0(R)

∫
B0(R)

eB(x , y)δ(x · y) ei(l·x+m·y) dx dy. (2.13)

Now, in order to reduce the number of operation needed to evaluate (2.12), we look for a convolution
structure. The aim is to approximate each �βF(l,m) by a sum

�βF(l,m)'
A∑

p=1

αp(l)α
′
p(m),

where A represents the number of finite possible directions of collisions. This finally gives a sum of A
discrete convolutions and, consequently, the algorithm can be computed in O(AN log2N) operations
by means of standard FFT technique [198].

In order to get this convolution form, we make the decoupling assumption

eB(x , y) = a(|x |) b(|y|). (2.14)

This assumption is satisfied if eB is constant. This is the case of Maxwellian molecules in dimension
two, and hard spheres in dimension three, the two most used cases. Indeed, using the variable hard
sphere kernel in (2.8), one has

eB(x , y) = 2d−1Cα(|x |2 + |y|2)− d−α−2
2 ,

so that eB is constant if d = 2, α= 0 and d = 3, α= 1.

We start by dealing with dimension 2 and eB= 1, i.e. Maxwellian molecules. Here we write x and
y in spherical coordinates x = ρe and y = ρ′e′ to get using (2.13)

�BF(l,m) =
1

4

∫
S1

∫
S1
δ(e · e′)

�∫ R

−R
eiρ(l·e) dρ

� �∫ R

−R
eiρ
′(m·e′) dρ′

�
de de′.

Then, denoting φ2
R
(s) =

∫ R

−R eiρs dρ, for s ∈ R, we have the explicit formula

φ2
R
(s) = 2RSinc(Rs).
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Plugging it in the expression of �BF(l,m) and using its parity properties yields

�BF(l,m) =

∫ π

0

φ2
R
(l · eθ )φ2

R
(m · eθ+π/2) dθ .

Finally, a regular discretization of A equally spaced points θp = πp/A of the unit sphere, which is
spectrally accurate because of the periodicity of the function [151], gives

�BF(l,m) =
π

M

A∑
p=1

αp(l)α
′
p(m), (2.15)

with
αp(l) = φ

2
R
(l · eθp), α′p(m) = φ2

R
(m · eθp+π/2).

Concerning the 3D case with a hard-sphere collision kernels, taking a spherical parametrization
(θ ,ϕ) of e ∈ S2+ and uniform grids of respective size A1 and A2 for θ and ϕ (again spectrally accurate
because of the periodicity of the function) leads to the following quadrature formula for �BF(l,m)

�BF(l,m) =
π2

A1A2

A1,A2∑
p,q=0

αp,q(l)α
′
p,q(m)

where
αp,q(l) = φ

3
R,a

�
l · e(θp ,ϕq)

�
, α′p,q(m) =ψ3

R,b

�
Πe⊥(θp ,ϕq)

(m)
�
,

φ3
R,a(s) =

∫ R

−R
ρ a(ρ) eiρs dρ, ψ3

R,b
(s) =

∫ π

0

sinθ φ3
R,b
(s cosθ ) dθ ,

and for all p and q

(θp,ϕq) =
�
pπ

A1

,
qπ

A2

�
.

2.2.4 Stability and consistency

First, let us recall some classical results for Fourier approximations [198]. When no ambiguity with
other spaces are possible, the space Hr

p will denote the subspace of Hr containing only periodic
functions.

• Since the projection operator PN is self-adjoint on L2, the following property holds

〈PN f ,ϕ〉= 〈 f ,PNϕ〉= 〈PN f ,PNϕ〉 ∀ f , ϕ ∈ L2p([−π,π]d).
• By Parseval’s identity, one has for any f ∈ L2p([−π,π]d)

‖ f ‖2
L2p
= (2π)d

∞∑
k=−∞

| �fk|2, ‖ fN‖2L2p = (2π)d
N∑

k=−N
| �fk|2.

• If f ∈ Hr
p([−π,π]d), one has the following spectral accuracy property: There is C> 0 such that

‖ f − fN‖Hr
p
≤ C

Nr
‖ f ‖Hr

p
.

In particular, the moments of fN are also spectrally accurate: for φ ∈ L2p([−π,π]d), one has

|〈 f ,φ〉 − 〈 fN,φ〉| ≤ ‖φ‖L2p‖ f − fN‖Hr
p
≤ C

Nr
‖φ‖L2p‖ f ‖Hr

p
.
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Using these classical results and some regularity properties of the truncated Boltzmann operator,
one can prove the spectral consistency of the Fourier spectral methods:

Theorem 2.2.4 ([187]). Let f ∈ Hr
p([−π,π]d), r ≥ 0 then there is C> 0 such thatQR( f , f )−QR

N
( fN, fN)


2
≤ C

Nr

�
|| f ||Hr

p
+
QR( fN, fN)


Hr

p

�
. (2.16)

This theorem can be immediately extended to the fast spectral method thanks to the spectral ac-
curacy of the numerical quadrature rules for periodic functions from [151]. Moreover, the seminal
stability result [100] can be used to prove the stability and large time behavior of spectral meth-
ods for the Boltzmann equation. For that, let us first introduce a perturbed, truncated Boltzmann
equation 

∂ f

∂ t
=QR( f , f ) + Pε( f ),

f (v, 0) = f0,ε(v), v ∈ [−π,π]d ,
(2.17)

where the perturbation Pε( f ) is smooth and “balanced”, in the following sense :

Definition 2.2.1. A family of operators Pε is said to be a stable perturbation of the Boltzmann equa-
tion if it verifies the following properties:

1.
∫
Pε( f ) dv = 0;

2. there exists r ≥ 1, C1, Cr ≥ 0 such that(‖Pε( f )‖L1 ≤ C1‖ f ‖L1‖ f ‖L1 ,
‖Pε( f )‖Hr

p
≤ Cr‖ f ‖L1‖ f ‖Hr

p
.

(2.18)

3. there exists a function ϕ(ε) which goes to 0 when ε goes to 0 and such that

‖Pε( f )‖Hr
p
≤ ϕ(ε), ∀r ≥ 1.

Note that both classical and spectral Fourier method can be written in this framework, with

Pε( fN, fN) = PNQR( fN, fN)−QR( fN, fN).

One then has the stability and trends to equilibrium result for (2.17):

Theorem 2.2.5 (Thm 3.1 of [100]). Let us consider the perturbed truncated Boltzmann equation
(2.17), with a stable family of perturbations (Pε) satisfying the hypotheses of Definition 2.2.1. Let
f0 ∈ Hr

p for r > d/2 be a nonzero, nonnegative function and ( f0,ε) ∈ L1 ∩ L2p be a family of smooth
perturbations of f0: ∫

[−π,π]d
f0,ε dv =

∫
[−π,π]d

f0 dv, ‖ f0 − f0,ε‖L1 ≤ψ(ε), (2.19)

where ψ(ε) goes to 0 when ε goes to 0.

Then there exists ε0 depending only on the truncation parameter R, the collision kernel B, the constant
in Definition 2.2.1 and ‖ f0‖Hr

p
such that, for any ε ∈ (0,ε0),
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1. there exists a unique global smooth solution fε to (2.17);
2. for any k < r, fε(t, ·) ∈ Hk

p, uniformly in time;
3. the quantity of negative values of fε vanishes when ε goes to 0;
4. for any T > 0, the solution fε of (2.17) converges in L∞([0,T];Hr

p) towards a solution f to the
unperturbed equation (2.3) when ε goes to 0;

5. as time goes to infinity, the solution fε converges in Hr
p towards a piecewise constant equilibrium

m∞ defined by the initial mass.

Note that there are other more recent stability results, see [6, 129], but they do not cover the very
critical point of the large-time behavior of the methods.

2.3 Structure preserving spectral methods

Although spectrally accurate, we have seen that Fourier spectral approaches does not preserve some
of the conservations embedded in the collision operator (such as kinetic energy), and more impor-
tantly the Maxwellian equilibria. Indeed, such smooth distributions are not contained in the space
of orthogonal polynomials. We shall present in this Section some strategies developed to deal with
these problems.

2.3.1 Equilibrium preserving Fourier spectral methods

In order to improve the representation of the equilibria, an easy way is to rewrite the equation
considered in such a way that the equilibria of the new models are zeros, quantities that we al-
ways figure in the approximation spaces. This strategy was introduced in the works [FPR15, PR17,
PR21]. Although the method applies in principle to any evolution equation which possesses a global
Maxwellian-type equilibrium and a polynomial nonlinearity, here we describe the method in the
case of the homogeneous Boltzmann equation.

Let us start with the decomposition
f =M+ g, (2.20)

with M the local Maxwellian equilibrium and g such that
∫
Rd gϕ dv = 0, ϕ = 1, v, |v|2. When

inserted into a Boltzmann-type collision operator, the decomposition (2.20) gives

Q( f , f ) = LM(g) +QB(g, g). (2.21)

where L(M, g) = QB(g,M) +QB(M, g) is a linear operator. There are two major features in the
decomposition (2.21):

1. it embeds the identity QB(M,M) = 0;
2. the steady state of (2.21) is given by g = 0.

This type of micro-macro decomposition has been used e.g. in [159] to develop numerical methods
which preserve asymptotic behaviors of some kinetic models.

To illustrate ourmethod, let us consider now the space homogenous equation (2.3) that we rewrite
using the micro-macro decomposition as

∂ g

∂ t
= LM(g) +QB(g, g), f =M+ g. (2.22)
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We then write after truncation the Fourier spectral approximation of this micro-macro equation as
∂ gN
∂ t
= LR

N
(MN, gN) +Q_NR(gN, gN), fN =MN + gN, (2.23)

where MN = PNM, gN = PNg, LR
N
(MN, gN) = PNLR

MN
(gN) and QR

N
(gN, gN) = PNQR(gN, gN) is either

the classical of fast Fourier spectral approximation given by (2.12).

It is immediate to show that

Proposition 2.3.1. The function gN ≡ 0 is an admissible local equilibrium of the scheme (2.23) and
therefore fN =MN is a local equilibrium state.

Spectral accuracy. Let us show that (2.23) is a spectrally accurate approximation to (2.22) pro-
vided that MN is a spectrally accurate approximation of M. This is clearly guaranteed if initially the
support is large enough. Note that due to space homogeneity, M does not change in time and so
does MN. It is interesting to observe that the only difference between scheme (2.23) and the usual
spectral method developed on the original formulation

∂ fN

∂ t
=
∂ gN
∂ t

=QR
N
( fN, fN),

= LR
N
(MN, gN) +QR

N
(gN, gN) +QR

N
(MN,MN)

(2.24)

is due to the constant (in time) term QR
N
(MN,MN) 6= 0, which, as we will prove, is spectrally small

and is not present in (2.23).

Since the Maxwellian M is smooth, its spectral projection MN is spectrally small. One then has
using Theorem 2.2.4 the spectral accuracy of the steady state preserving formulation

Theorem 2.3.2 (Theorem 2 from [FPR15]). Let f ∈ Hr
p([−π,π]3), r ≥ 0 thenQR( f , f )−LR

N
(MN, gN)−QR

N
(gN, gN)


2
≤ C

Nr

�‖ f ‖Hr
p
+ ‖M‖Hr

p

+
QR( fN, fN)


Hr

p

+
QR(MN,MN)


Hr

p

�
.

Stability. The equilibrium preserving method (2.22) can be written in the perturbed framework
(2.17) as 

∂ fN

∂ t
= PNQ( fN, fN)−PNQ(MN,MN) = PNQ( fN +MN, fN −MN),

fN(v, 0) = PN f0(v).
(2.25)

Assuming that the solution f to the homogeneous Boltzmann equation (2.3) remains bounded in
L1 at all times1, we proved the stability of the equilibrium preserving method in [PR21].

Theorem 2.3.3 (Theorem 3.1 from [PR21]). Consider a nonnegative initial data f0 ∈ Hk
p([π,π]

d)
for k > d/2 and assume that there exists a nonnegative constant K with

‖ f (t) +M‖L1 ≤ K, ∀t ≥ 0 (2.26)

where f is the associated solution to (2.25). There exists N0 ∈ N such that for all N ≥ N0:
1This result is yet to be proved, and is also an assumption in the paper [100].
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Figure 2.1: Comparison of the classical and equilibrium preserving spectral methods. Rel-
ative entropy H( f |M)(t) (left) and L2 error ‖ f (t)− fBKW(t)‖2 (right).

1. There is a unique global smooth solution fN to the problem (2.25);
2. for any r < k, there exists Cr > 0 such that

‖ fN(t, ·)‖Hr ≤ Cr ;

3. fN converges to a solution f of equation (2.3) with spectral accuracy, uniformly in time.

2.3.2 Numerical simulations of the equilibrium preserving method

We present in this Section some numerical examples of the equilibrium preserving method, first for
the Boltzmann equation, and then for some other models as in [PR17].

The Boltzmann equation Let us consider the space homogeneous Boltzmann equation in dimen-
sion 2, with Maxwell molecules:

B(cosθ , |v − v∗|) = 1

2π
. (2.27)

We compare the classical spectral method to the equilibrium preserving one. For this, we use an
exact solution to the homogeneous Boltzmann equation, the so-called Bobylev-Krook-Wu (BKW)
solution [25]. It is given by

fBKW(t, v) =
exp(−v2/2S)

2πS2

�
2S− 1+ 1− S

2S
v2
�

with S= S(t) = 1− exp(−t/8)/2.
For the resolution of the Boltzmann equation (2.3), we use the fast spectral method with N = 32

half-modes in each direction of the box [−8,8]2. We take M = 8 angular discretizations2. Here,
we insists that both the classical and steady-states preserving methods rely on the same numerical
algorithm. The only difference between the two is the presence of some constant in time terms. In
particular, both methods have the same computational cost, namely O

�
MN log2N

�
.

2This is enough because of the spectral accuracy of quadrature methods for periodic functions.
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Fig. 2.1 presents a comparison between both methods for the relative entropy of the solution f

with respect to the global Maxwellian M

H( f |M)(t) :=
∫
Rd

f (t, v) log
�
f (t, v)
M(v)

�
dv, (2.28)

and the absolute L2 error between the numerical solution f (t, v) and the exact one fBKW(t, v). We
observe that for both quantities, the behavior of the equilibrium preserving method is better than
the classical one. In particular, the former method achieves a nice monotonous decay of the relative
entropy, without the large time increase of the classical spectral method. This is due to the fact that
the equilibrium of this latter methods are constants. The behavior of the L2 error is also monotonous
for the steady-state preserving method, which is not the case for the classical one.

Note that the temperature of the solution given by Fourier spectral methods is not preserved,
but grows almost linearly. At t = 50, the conservation error is of the order 10−4. In contrast,
the equilibrium preserving spectral methods improve greatly this behavior: although not perfectly
conserved, the temperature of the solution has only deviated from a factor 10−7 from the exact
quantity.

The porous medium equation We applied in [PR17] the micro-macro strategy to obtain an equi-
librium preserving numerical method for the nonlinear porous medium equation (in self-similar
form)

∂tu=∇x · (x u) +∆x (u
m) . (2.29)

It is well known (see [57] for a comprehensive review) that the equilibria to this equation are given
by the so-called Barrenblatt-Pattle distribution

ueq(x) =
�
C− m− 1

2m
|x |2

�1/(m−1)
+

, ∀x ∈ Ω,
where the constant C depends on the initial condition, and insures mass preservation. The solution
to (2.29) converges exponentially fast toward this equilibrium profile.

In all our simulations, we will take m = 5 in the equation, and consider d = 2, Ω = [−10,10]×
[−10,10] as the computational domain, with an explicit solver needing a parabolic time step. The
initial datum is chosen as:

uin(x) = |x |2e−|x |2/2.
We take Nx = Ny = 64 points in each of the space dimensions. We compare the numerical results
obtained with a first order non equilibrium-preserving upwind scheme SU (see [61]), its equilibrium
preserving counterpart REU, and some second order, equilibrium preserving methods: the fully
upwind FU (see [19]) and the Scharfetter-Gummel SG schemes (see [195]).

In Fig. 2.2, we compute the relative entropy

H (u|ueq) := −
∫
Ω

�
(u− ueq) +

2

m− 1 (u
m − (ueq)m)

�
dx ,

and the L1 error for these four schemes. The quantities are expected to converge exponentially fast
toward 0, and we can moreover compute the decay rate for the L1 error, namely according to [57]

‖u(t)− ueq‖L1 ≤ C exp

�
− d(m− 1) + 2
(d + 2)m− d

t

�
.
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Figure 2.2: Porous medium. Time evolution of the relative entropy (left) and L1 error (right),
for the classical upwind (blue pluses), residual equilibrium upwind (green crosses),
fully upwind (cyan arrows) and Scharfetter-Gummel (red y’s) schemes.

As is expected again, the classical upwind (blue crosses) saturates, not being able to reach the
machine 0, because of a wrong numerical equilibrium. On the contrary, the other three schemes
behave properly regarding to their equilibrium preserving properties: they all succeed to capture
the Barrenblatt-Pattle distribution. Nevertheless, we notice that only the fully upwind scheme (cyan
arrows) from [19] is able to capture the correct decay rate. Our equilibrium preserving scheme
converges too fast toward the equilibrium. According to other simulations in [PR17], we believe
that this could be improved by switching to another numerical scheme, such as basic central dis-
cretization.

These observations are confirmed by Fig. 2.3, which presents in log scale the time evolution of the
solution u(t, x , 0) for x ∈ [−10,10] to (2.29) given by the standard upwind (a), residual equilibrium
upwind (b) and fully upwind (c, for a reference solution) schemes. We observe that even if the rate
of convergence is not correct, the use of a micro-macro equilibrium preserving approach allows the
upwind scheme to compute very nicely the Barenblatt-Pattle distribution, the L∞ error being of the
same order of magnitude than the one obtained with the fully upwind scheme.

In [PR17], the same equilibrium preserving approach was used also with systems of hyperbolic
conservation laws such as the shallow water equation, allowing to build well-balanced schemes,
provided that one has an analytical expression of the equilibrium state of the system.

2.3.3 Moment preserving Fourier spectral methods

Although the micro-macro-based, equilibrium preserving approach allows for a correct reconstruc-
tion of the equilibrium with the Fourier spectral methods, such approach requires the knowledge of
said equilibrium. Moreover, it does not solve the problem of the loss of collisional invariants such as
the kinetic energy. To solve this problem we introduced a new approach in [PR22] which consists
in changing the spectral projection PN to constrain the conserved quantities. It is reminiscent of
the works [29] and [108] for finite difference discretizations of the Fourier transformed Boltzmann
equation.

Moment constrained Fourier approximation. We want to define a different projection operator
on the space of trigonometric polynomials, P c

N
: L2p([−π,π]d)→ PN such that it satisfies the moment
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Figure 2.3: Porous medium. Trend to equilibrium (log scale) of the solutions obtained with
the standard upwind (a), residual equilibrium upwind (b), and fully upwind (c)
schemes, at y = 0.

constraints
〈P c

N
f ,Φ〉= 〈 f ,Φ〉, Φ = (1, v1, . . . , vd , |v|2)ᵀ ∈ Rd+2,

while preserving the convergence properties of the finite Fourier series.

By analogies with Fourier series, it is natural to consider the following constrained best approxi-
mation problem in the space of trigonometric polynomials

f c
N
= argmin

n
‖gN − f ‖2

L2p
: gN ∈ PN, 〈gN,Φ〉= 〈 f ,Φ〉

o
. (2.30)

Since such a gN is a trigonometric polynomial, we can represent it in the form gN =
∑N

k=−N �gke
ik·v ,

and then by Parseval’s identity

‖gN − f ‖2
L2p
= (2π)d

∞∑
k=−∞

|�gk − �fk|2,

where we assumed �gk = 0, |k j|> N, j = 1, . . . , d.

Note that, since conservation of moments is built in gN, one necessarily needs that

〈gN,Φ〉= (2π)d
N∑

k=−N
�gk �Φk = 〈 f ,Φ〉. (2.31)

The minimization problem (2.30) can be solved using the Lagrange multiplier method. One can
prove the following property [PR22]:
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Definition 2.3.1. For f ∈ L2p, let us set U = (ρ,ρu, E)ᵀ = 〈 f ,Φ〉 and UN = (ρN,ρuN,ρeN)> = 〈 fN,Φ〉,
where Φ(v) = (1, v1, . . . , vd , |v|2)ᵀ. One can define a conservative projection P c

N
f = f c

N
in PN, where f c

N

is given by

f c
N
=

N∑
k=−N

�f c
k
eik·v , (2.32)

where the moment constrained Fourier coefficient are defined as

�f c
k
= �fk + �C

ᵀ
k
(U−UN), �C

ᵀ
k
=

1

(2π)d
�Φ
ᵀ
k

�
N∑

h=−N
�Φh

�Φ
ᵀ
h

�−1
. (2.33)

Using this moment constrained projection, we were able to generalize the spectral accuracy of the
usual Fourier projection:

Theorem 2.3.4 (Theorem 3.4 of [PR22]). If f ∈ Hr
p([−π,π]d), where r ≥ 0 is an integer, we have

‖ f − f c
N
‖Hr

p
≤ CΦ

Nr
‖ f ‖Hr

p
(2.34)

where the constant CΦ ≥ 0 depends on the spectral radius of the matrix 〈Φ,Φᵀ〉, and on ‖Φ‖2
2,L2p
=∑d+2

j=1 ‖Φ j‖2L2p where Φ j, j = 1, . . . , d + 2 are the components of the vector Φ.

The conservative best approximation in least square (2.33) can be represented in terms of the
standard projection PN as

P c
N
f = PN f +

N∑
k=−N

�C
ᵀ
k
〈 f −PN f ,Φ〉.

The above representation emphasizes the analogies with the L2 minimization problem solved in
[108]. The main difference is represented by the continuous representation of the solution in the
space of trigonometric polynomials which permits to demonstrate spectral accuracy of the resulting
approximation. Note also that the same conservative projection remains valid even when performing
mesh changes, for example by reducing or increasing the number of modes by keeping moment
conservation and spectral accuracy.

Application to the Boltzmann equation. We define the moment constrained Fourier approxima-
tion of the truncated Boltzmann operator as the solution to the following problem

QR,c
N
( f , f ) = argmin

n
‖gN −QR( f , f )‖2

L2p
: gN ∈ PN, 〈gN,Φ〉= 0

o
, (2.35)

or equivalently

QR,c
N
( f , f ) = PNQ

R( f , f )−
N∑

k=−N
�C
ᵀ
k
〈PNQR( f , f ),Φ〉. (2.36)

The constrained, Fourier projected, homogeneous Boltzmann equation then reads
∂ f c

N

∂ t
=QR,c

N
( f c
N
, f c
N
),

f c
N
(v, 0) = P c

N
f0(v), v ∈ [−π,π]d .

(2.37)
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Let us underline that (2.36) differs from the conservative projection in Definition 2.3.1 in the sense
that the constrained minimization problem (2.35) is solved with respect to the physical conservation
laws of the collision term in the whole space and not in the periodic box. A direct application of
Definition 2.3.1, for which we have proved the spectral accuracy property in Theorem 2.3.4, will
lead to the projected operator

eQR,c
N
( f , f ) = PNQR( f , f ) +

N∑
k=−N

�C
ᵀ
k
〈QR( f , f )−PNQR( f , f ),Φ〉. (2.38)

It is therefore clear that some smallness on 〈QR( f , f ),Φ〉 is necessary in order to prove spectral
consistency of (2.37). According to Prop. 2.2.3, this is guaranteed if the solution satisfy a smallness
assumption outside the ball B0(R).

Theorem 2.3.5 (Theorem 4.2 of [PR22]). Let f ∈ L2p([−π,π]d) be such that for δ > 0 there exists
R= R(δ) providing the following smallness estimate on the moments of the truncated collision term〈QR( f , f ),Φ〉

2
≤ eCδ. (2.39)

Then for any r ≥ 1, there exists a constant C= C (‖ f ‖L2 , R, r) such thatQR( f , f )−QR,c
N
( f c
N
, f c
N
)

L2p
≤ C

 
‖ f − f c

N
‖L2p +

‖QR( f c
N
, f c
N
)‖Hr

p

Nr
+δ

!
.

Theorem 2.3.5 states that the rate of convergence of the moment constrained spectral approxi-
mation of the truncated Boltzmann collision operator depends on the regularity of the distribution
f (which is usual, see [100]), and on the smallness of the moments of the truncated collision term
evaluated at f (which is new). From a practical viewpoint, this is equivalent to assume a suitable
decay of the tails of the initial data and a computational domain large enough to guarantee minimal
loss of the collision invariants.

Corollary 2.3.6. Let f ∈ Hr
p([−π,π]d) for a given r ≥ 1 be such that there exist R= R(r,N) providing

estimate (2.39) with δ = δ′N−r . There exists a constant C= C
�‖ f ‖Hr

p
, R
�
such thatQR( f , f )−QR,c

N
( f c
N
, f c
N
)

L2
≤ C

Nr

�‖ f ‖Hp
r
+ ‖QR( f c

N
, f c
N
)‖Hr

p
+δ′

�
.

Note that, achieving consistency and spectral accuracy for increasing values ofN requires a vanish-
ing error in terms of moments of the collision operator and, as a consequence, a truncation domain
which depends on the number of modes N. This agrees well with the intuition that a larger com-
putational support has to be used when the number of modes is increased as already observed in
practice in [187].

After investigating the consistency of the moment preserving spectral methods, it is natural to
wonder whether the constrained projection impacts the stability and long time behavior properties
of the new spectral approach. We have the following Theorem.

Theorem 2.3.7 (Theorem 4.5 of [PR22]). Let us consider an initial condition f0 ∈ Hk
p([−π,π]d)≥

0 for a given k ≥ d/2 such that there exist R = R(k,N) providing an uniform in time estimate (2.39)
for the solution f (t, v) to problem (2.3) with δ = δ′N−k+r for any r < k. Assume that this f (t, ·) ∈ L1
for all t. There exists N0 ∈ N depending on the Hk

p norm of f0 and on the spectral radius of the matrix
〈Φ,ΦT〉 such that for all N ≥ N0:
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Figure 2.4: Moment preserving spectral method. Time evolution of ‖ fN −M‖L2 for the BKW
solution, using N = 322 (left) and N = 642 (right).

1. There is a unique global smooth solution f c
N
to the problem (2.37);

2. For any r < k, there exists Cr > 0 such that

‖ f c
N
(t, ·)‖Hr

p
≤ Cr ;

3. this solution in everywhere positive for time large enough;
4. this solution f c

N
(t, ·) converges to a solution f (t) of the truncated Boltzmann equation (2.3) with

spectral accuracy, uniformly in time;

As in Section 2.3.1, the proof follows the perturbative framework developed in [100]. The main
difference is that the constrained method preserves not only mass, but also momentum and kinetic
energy, on the finite hypercube [−π,π]d , without an H-theorem-like decay of the Boltzmann entropy
a priori. As such, the equilibria of this new operator are not necessarily Gaussian (not even explicit),
and one will not be able to perform the same spectral analysis of the linearized collision operator as
was done in [100] to study its long time behavior. In addition, to recover spectral accuracy we need
a smallness assumption on the error in the moments approximation of the collision term.

Numerical simulations. Let us now apply the conservative approximation to the fast spectral
method for the Boltzmann equation by reproducing the test case of the Equilibrium Preserving
method from Section 2.3.1, with the BKW initial data. For the velocity discretization, we choose
Ω = [−12,12]2, N = 642 then 1282 points andM = 8 angular discretizations. Because the problem is
not stiff, we use an explicit Runge-Kutta method of order 4 in time, with∆t = 0.01. We compare the
fast spectral (FS) method with the moment preserving fast spectral (MPFS) method. We shall also
compare our numerical experiments with the equilibrium preserving fast spectral (EPFS) method,
and by taking a combination of the two approaches where we apply the equilibrium preserving
method together with the moment preserving technique. Note that, this latter approach (referred
to as MEPFS) preserves not only the moments but also the local Maxwellian equilibrium state.

Fig. 2.4 presents the time evolution of the L2 error of the solution fN with respect to the equilibrium
distributionM, where we observe an exponential convergence towardsM. The behavior of the EPFS
method is better than the classical FS which saturates around 10−9, but both are outperformed
by almost two order of magnitude by the new moment constrained MPFS method. Adding the
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equilibrium preserving feature to this latter method slightly improve its accuracy, and the MEPFS
scheme outperforms all the others in very large time. Moreover, and as expected, we also noticed in
[PR22] that the new MPFS method preserves the moments up to machine precision.

2.4 Towards high performance computing applications

Boltzmann equation, as well as some related collisional kinetic models, have as we seen a lot of prac-
tical application in physics, biology and engineering. As such, having robust and efficient numerical
methods is not enough: one also needs these methods to be implemented efficiently, in order to
obtain relevant numerical results.

The Fast Kinetic Solver (FKS) has been developed in the series of works [74, 75, 76, 77], culmi-
nating in our work [DLNR18] to provide a large platform able to perform deterministic numerical
simulations of many kinetic models in the full 3D/3D setting. This latter paper present the imple-
mentation of the fast spectral method in this platform. The FKS is based on the classical discrete
velocity models (DVM) approach. As an alternative to finite volume strategies, the FKS platform
focuses on semi-Lagrangian approaches [102] for the transport part. The main goal is to tackle the
challenges related to the high dimensionality of the equations and with the difficulties related to
the approximation of the collision integral.

In order to overcome the problem of this excessive computational cost, the Lagrangian technique
exactly solves the transport step on the entire domain, without reprojecting the solution on the grid
at each time step. The FKS approach was shown to be an efficient way to solve linear transport
equations, and it has permitted the simulation of full six dimensions problems on a single processor
machine [75]. Unfortunately the solutions computed with this method are limited to a first order
in space and time precision.

Combining opportunely this semi-Lagrangian method with the fast spectral approach we have
developed a method for solving the Boltzmann equation up to the six dimensional case for unsteady
flows. In order to obtain such result we have constructed a parallel version of our algorithm taking
advantages of Graphical-Processor-Unit (GPU) under CUDA language. The results from [DLNR18]
presented in this Section show that we are nowadays ready and able to use kinetic equations to
simulate realistic multidimensional flows. Up to our knowledge this is one of the first examples in
literature of solution of the full multidimensional Boltzmann equation by means of deterministic
schemes. Our main limitation to run extensive simulations remains at the present moment the lack
of memory capacity due to the use of shared memory machines.

The semi-Lagrangian solver. The FKS belongs to the family of so-called semi-Lagrangian schemes
which are typically applied to a Discrete Velocity Model (DVM) approximation of the original kinetic
equation (1.1). Here, we shall present it to solve the Free Transport stage

∂t fk + vk · ∇x fk = 0.

We introduce a Cartesian uniform grid in the three dimensional physical space made of M points
with ∆x a scalar which represents the grid step (the same in each direction) in the physical space.
Let f 0

j,k
be the point-wise values at time t0 of the distribution f , f 0

j,k
= f (x j , vk, t

0). The idea is to
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solve the transport stage continuously in space. To this aim we define at the initial time the function
f
0

k(x) as a piecewise continuous function for all x ∈ Ω j, where Ω j = [x j−1/2; x j+1/2] and Ω =
⋃

j Ω j.

Hence starting from data f
0

k, j at time index 0, the exact solution of (1.1) is simply

f
∗,1
k = f

0

k(x − vk∆t), ∀x ∈ Ω.
In other words, the entire function f

0

k is advected with velocity vk during ∆t unit of time and the
∗ superscript indicates that only the transport step has been solved so far. The extension of this
procedure to the generic time step n gives

f
∗,n+1
k = f

n

k(x − vk∆t), ∀x ∈ Ω, (2.40)

where now, the key observation is that the discontinuities of the piecewise function f
n

k(x) do not lie
on the interfaces of two different cells. Instead, the positions of the discontinuities depend entirely
on the previous advection step and thus they may be located anywhere in the physical space. This
means that if only the linear transport equation has to be solved, this approach gives the exact
solution to the equation if the initial data is truly a piecewise constant function initially centered on
the spatial mesh. As a direct consequence this part of the scheme is unconditionally stable, positive
and conservative.

The collision steps. The effect of the collisional step is to change the amplitude of f k(x). The idea
is to solve the collision operator locally on the grid points, and, successively, extend these computed
values to the full domain Ω. Thus we need to solve the following ordinary differential equation

∂t f j,k =Q( f j,k), (2.41)

where f j,k = f (x j , vk, t), for all velocities of the lattice k = 1, . . . ,N and grid points j = 1, . . . ,M.
The initial data for solving this equation is furnished by the result of the transport step obtained
by (2.40) at points x j of the mesh at time tn+1 = tn +∆t, i.e. f

∗,n+1
k (x j), for all k = 1, . . . ,N, and

j = 1, . . . ,M. Then, the solution of (2.41), locally on the grid points, reads if, for simplicity, a forward
Euler scheme is used as

f n+1
j,k
= f
∗,n+1
j,k

+ ∆tQ( f ∗,n+1
j,k

), (2.42)

where f
∗,n+1
j,k

= f
∗,n+1
k (x j). To compute Q, we use the fast spectral method presented in Section

2.2.3.

Numerical simulations. The work [DLNR18] consists in many numerical simulations to assess the
validity and the quality of the FKS platform. We chose here to present some of the most advanced
and computationally advanced ones.

Re-entry test in two dimensions with changing angle of attack in time. This test is inspired from
re-entry test cases described in [77]. The computational domain is set to Ω = [0;4]× [0;4]. Within
this domain we initiate three static objects, two small rectangles upfront ([x0; x1] × [y0; y1] and
[x0; x1]× [y ′0; y ′1]) and one larger one behind ([x ′

0
; x ′

1
]× [(y0+ y ′

0
)/2; (y1+ y ′

1
)/2]) where x0 = 1.5,

x1 = 1.7, x ′
0
= 1.8, x ′

1
= 2, y0 = 1.7, y1 = 1.95, y ′

0
= 2.05, y ′

1
= 2.3. The computational mesh in

physical space is made of 800× 800 square cells. The velocity space is [−10,10] and is discretized
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with 322 points. The initial density is set to ρ(t = 0) = 1, the velocity (ux ,uy)(t = 0) = (3,0) and the
temperature to T(t = 0) = 1 everywhere. The final time is set to tfinal = 10. On the boundaries with
the objects reflective boundary conditions are employed. Inflow boundary conditions are imposed
to the west boundary whereas outflow boundary conditions are set elsewhere. The inflow boundary
conditions are evolving in time and equal to

(ux ,uy)BC(t) =


(3,0) if 0≤ t ≤ t1

(
p
9− g2(t), g(t)) if t1 ≤ t ≤ t2

(3
p
2

2 , 3
p
2

2 ) if t2 ≤ t ≤ tfinal

(2.43)

where t1 = 3/2, g(t) = t − t1 and t2 = 3
p
2/2+ t1. Given these initial data, we expect a detached

shock wave to occur upfront the objects and some complex wave pattern behind them. Moreover,
setting the inflow boundary conditions to (2.43) splits the simulation into three stages. The first
stage consists in the inflow boundary conditions facing the objects up to t1. For this stage the
upfront detached shock and the complex flow structure behind the objects are formed but they are
not yet steady. Next, for the second stage, the inflow boundary condition is changing its direction
by smoothly increasing the y component of (ux ,uy)BC(t) up to t = t2. Note that this mimics a
modification of the angle of attack of the objects with time. This change modifies the entire flow
structure. Last, for the third stage the inflow boundary condition is fixed to (ux ,uy)BC = (u0, v0) up
to the final time. As such the flow reaches an almost steady state.

In Fig. 2.5, we compare the BGK results (top row) with the Boltzmann ones (middle row) for
intermediate iterations 4500, 12000 and 20000 for ε = 10−2 for the temperature. The bottom row
presents the differences between the two models’ temperature. The color legend is the same for the
first two rows for both Figures, while for the bottom rows they are shown in the pictures.

The total amount of CPU time needed to compute the Ncycle = 26000 cycles for the BGK solution
is 14.5h, while for Boltzmann model is 304h= 12.67d. The ratio is of the order 21 in favor of
BGK. However, even if Boltzmann results demand a large amount of CPU time, we have seen that
discrepancies do exist with respect to BGK model and in some cases, especially far from equilibrium,
they cannot be ignored.

Three dimensional re-entry test case. The computational domain is set to Ω = [0,2]3 with a static
cuboid placed in the center (see Fig. 2.6). The velocity space is [−10,10]3 and discretized with 323

points. The relaxation parameter is set to ε = 0.3. The initial density ρ is set to 1, the temperature
T = 1 while the initial velocity is given by (ux ,uy ,uz) = (2,0,0). The final time is set to tfinal = 0.6

leading to 379 time steps. The inflow boundary conditions are imposed on the left boundary (x = 0)
while outflow boundary conditions on the remaining part of the boundary are imposed. Hard sphere
molecules are considered for Boltzmann while for the BGK model the frequency ν is taken equal to
µ= Cα4π(2λπ)α. The results are shown for the temperature and the density in Fig. 2.6.

From the analysis of such results it clearly emerges a difference in the profiles of the macroscopic
quantities between the two models. We now analyze the performances. This test case was run
on the EOS supercomputer at CALMIP, Toulouse France. The supercomputer is equipped with 612

computational nodes, each of them containing two Intel® Ivybridge 2.8GHz 10 core CPUs and 64 GB
of RAM. Each CPU is equipped with 25MB of cache memory. The code was compiled with gcc-5.3.0
and executed on 90 computational nodes. That is to say, on 1800 computational cores in parallel. In
the case of the Boltzmann collision operator the Fast Fourier Transforms were computed by means
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Figure 2.5: Two dimensional re-entry test case for ε = 10−2. M = 800× 800 spatial cells and
N = 322 velocity cells. BGK model (top row) Boltzmann model (middle row), differ-
ence between the two models (bottom row) at iterations 4500, 12000 and 20000.
Temperature profile.

of the fftw library, version 3.3.4. The total runtime was equal to t = 93713s (26h) for the Boltzmann
model. This is equivalent to 46000 computational hours (3.25 years) on a sequential machine. On
the other hand, the runtime for the BGK model was only t = 2174s (0.6h) with a ratio 43 in favor
of the simpler relaxation model.

The communications and MPI synchronization take 38% of the computational time for BGK equa-
tion. On the other hand, for the Boltzmann model the time spent on communications and syn-
chronization amounts merely to 3.4% of the total runtime. This is due to extreme computational
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BGK-Boltzmann

BGK Boltzmann

Figure 2.6: Three dimensional re-entry test case for ε = 0.3. M = 90×90×90 spatial cells and
N = 323 velocity cells. BGK model (left column), Boltzmann model (right column)
at time tfinal = 0.6. Top row: temperature field with velocity streamlines, bottom
row: isosurfaces of the density.

complexity of the three dimensional Boltzmann collision kernel.
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2.5 Perspectives

Moment preserving spectral method for the Landau equation. The Landau equation is obtained
by taking the grazing collision limit of the Boltzmann equation. This equation is used in plasma
physics to model for example collisional plasmas in tokamacs. As such, it is extremely important to
be able to simulate accurately and efficiently the solutions to this equation. Fourier spectral methods
for this model have been designed, see e.g. [97]. They suffer the same lack of conservation than
for the Boltzmann equation. Using our moment constraining approach could be a way to fix this
problem.

Moment preserving spectral methods for arbitrary polynomial expansion. Any family of or-
thogonal polynomials over a weighted L2 space can generate a spectral methods. Such families
includes Hermite polynomials, Laguerre Polynomials, Sonine polynomials and so on [198]. The
spectral methods obtained for each family have their own pros and cons, but never preserve the
moments. An extension of our constraining approach to any family of orthogonal polynomials could
solve this problem. This seems doable, with the use of general Hilbertian strategies.

Fast Kinetic Solver with geometry. A natural followup of the FKS work is now to improve the
order in space of the semi-Lagrangian solver, and to be able to consider more complex geometries.
This would require a very large computer engineering overhaul of the full FKS code. Extension to
gas mixtures should also be desirable, but even more computationally costly.
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CHAPTER

3
On the Granular Gases Equation

There are some questions in Astronomy, to which we
are attracted rather on account of their peculiarity,
as the possible illustration of some unknown principle,
than from any direct advantage which their solution
would afford to mankind.

James Clerk Maxwell
On the stability of the motion of Saturn’s rings[165]
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This chapter is based on the works [GdSMM+15, JR17, CHMR21], written in collaboration with
Jose Antonio Carrillo, Maria Isabel Garcia de Soria, Jingwei Hu, Pierre-Emmanuel Jabin, Zheng Ma,
Stéphane Mischler, Clement Mouhot and Emmanuel Trizac. Some parts are largely borrowed from these
papers.

Granular gases have been initially introduced to describe the nonequilibrium behavior of materials
composed of a large number of unnecessarily microscopic particles, such as grains or sand. These
particles form a gas, interacting via energy dissipating inelastic collisions. Statistical mechanics
description of particle systems through inelastic collisions faces basic derivation problems such as
the inelastic collapse [168], i.e. infinite many collisions in finite time. Nevertheless, the kinetic
description of rapid granular flows [137, 115] has been able to compute transport coefficients for
hydrodynamic descriptions successfully used in situations that are a long way from their supposed
limits of validity, to describe, for instance, shock waves in granular gases [38], clustering [56],
and the Faraday instability for vibrating thin granular layers [95, 38, 37, 55]. A large amount of
practical systems can be described as a granular gas, such as for example spaceship reentry in a
dusty atmosphere (Mars for instance), planetary rings [145, 9] and sorting behavior in vibrating
layers of mixtures. A lot of other examples can be found in [69, 46].
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Usually, a granular gas is composed of 106 to 1016 particles. The study of such a system will
then be impossible with a direct approach, and we shall adopt a kinetic point of view, studying the
behavior of a one-particle distribution function f , depending on time t ≥ 0, space x ∈ Ω ⊂ Rdx

and velocity v ∈ Rd , for dx ≤ d ∈ {1,2,3}. The statistical mechanics description of the system has
been then admitted in the physical community as the tool to connect the microscopic description
to macroscopic system of balance laws in rapid granular flows [137, 115, 117] as in the classical
rarefied gases [60]. In this first section, we shall review some basics on the inelastic Boltzmann
equation, and present the mathematical state of the art since the previous review paper on the
subject [212].

3.1 The granular gases equation

Microscopic dynamics. The microscopic dynamics can be summarized with the following hy-
potheses:

1. The particles interact via binary collisions. More precisely, the gas is rarefied enough so that
collisions between 3 or more particles can be neglected.

2. These binary collisions are localized in space and time. In particular, all the particles are
considered as point particles, even if they describe macroscopic objects.

3. Collisions preserve mass and momentum, but dissipate a fraction 1− e of the kinetic energy in
the impact direction, where the inelasticity parameter e ∈ [0,1] is called restitution coefficient:

v′ + v′∗ = v + v∗,

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− e2

2
|(v − v∗) ·ω|2 ≤ 0,

(3.1)

with ω ∈ Sd−1 being the impact direction. Using these conservations, one has the following
two possible parametrizations (see also Fig. 3.2) of the post-collisional velocities, as a function
of the pre-collisional ones:

• The ω-representation or reflection map, given for ω ∈ Sd−1 by
v′ = v − 1+ e

2
((v − v∗) ·ω)ω,

v′∗ = v∗ +
1+ e

2
((v − v∗) ·ω)ω. (3.2)

• The σ-representation or swapping map, given for σ ∈ Sd−1 by
v′ = v + v∗

2
+
1− e

4
(v − v∗) +

1+ e

4
|v − v∗|σ,

v′∗ =
v + v∗
2
− 1− e

4
(v − v∗)− 1+ e

4
|v − v∗|σ. (3.3)

Remark 3.1.1. Taking e = 1 in both (3.2) and (3.3) yields the classical energy-conservative elastic
collision dynamics, as illustrated in Fig. 3.1.

The geometry of collisions is more complex than the classical elastic one. Indeed, fixing v, v∗ ∈ Rd ,
denote by

Ω± :=
v + v∗
2
± 1− e

2
(v∗ − v), O :=

v + v∗
2
=

v′ + v′∗
2

.
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ω

v

v∗

v
′

∗

v
′

Figure 3.1: Geometry of the inelastic collision in the physical space (green is elastic, red is in-
elastic).

Then if u := v − v∗ is the relative velocity, one has

|Ω− − v′|= |Ω+ − v′∗|= 1+ e

2
|u|,

namely v′ ∈ S (Ω−, |u|(1+ e)/2) and v′∗ ∈ S (Ω+, |u|(1+ e)/2), where S(x , r) is the sphere centered in
x and of radius r (see also Fig. 3.2, to be compared with Fig. 1.1).

bv b v∗b
O

b

Ω+

b
Ω−

b
v′

b

v′

∗

b
v′

b v′

∗

θ

σ

h

ω

Figure 3.2: Geometry of the inelastic collision in the phase space (dashed lines represent the
elastic case).

Restitution coefficient. The physics literature is quite divided on the question of whether the
restitution coefficient e should be a constant or not [46]. Although most of the early mathematical
results on the topic consider a constant e [212], it seems that this case is only realistic in dimension
1 of velocity (the so-called “collisional cannon” described in [46, Chapter 4] is a famous counter-
example). The true realistic case considers that e depends on the relative velocity |v − v∗| of the
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colliding particles. Even more precisely, it must be close to the elastic case 1 for small relative
velocities (namely no dissipation, elastic case), and decay towards 0 when this relative velocity is
large. The first mathematical result on this direction can be found in [207], where

e(|v − v∗|) = 1

1+ c |v − v∗|γ , (3.4)

for a nonnegative constant c characterizing the inelasticity strength (c = 0 being elastic), and γ ∈ R.
Another important case is the so-called viscoelastic hard spheres one, thoroughly studied mathe-

matically in a series of papers [4, 23, 5], where e is given by the implicit relation

e(|v − v∗|) + a|v − v∗|1/5e(|v − v∗|)3/5 = 1, (3.5)

for a > 0. More details on the derivation of this expression can be found in [46, Chapter 3].

Finally, the case e = 0 describes sticky collisions: the normal component of the kinetic energy being
completely dissipated during impact, the particles stick and travel together in the tangent direction
after impact. A derivation of the model from the microscopic dynamics on the line can be found in
[42, 87].

Remark 3.1.2. This model is meaningful even in dimension 1, which is not the case for elastic colli-
sions. Indeed, such monodimensional collisions are only

{v′, v′∗}= {v, v∗},
meaning that the particle velocities are either swapped or preserved. The particles being indistin-
guishable, nothing happens1. In the 1d inelastic case, the collisions are given using (3.3) by

{v′, v′∗}= {v, v∗} or
n
v + v∗
2
± e

2
(v − v∗)

o
depending on the value of σ ∈ {±1}.

The granular gases operator: Weak form. Using the microscopic hypotheses (1–2–3), one can
derive the granular gases collision operator QI , by following the usual elastic procedure [212]. Its
weak form in the σ-representation is given by∫

Rd
QI( f , f )(v)ψ(v) dv =

1

2

∫
Rd×Rd×Sd−1

f∗ f
�
ψ′ +ψ′∗ −ψ−ψ∗

�
B(|v − v∗|, cosθ , E( f )) dσdv dv∗,

(3.6)

where the collision kernel is typically of the form B(|u|, cosθ , E( f )) = Φ(|u|)b(cosθ , E( f )), and E( f )
is the kinetic energy of f , namely its second moment in velocity, the postcollisional velocities are
computed by (3.3), and θ is the angle between σ and u. We shall assume in all the following of this
section that the collision kernel is of generalized hard sphere type, namely

B(|u|, cosθ , E)) = Φ(|u|)bb(cosθ , E) = |u|λ b(cosθ )Eγ, (3.7)

where λ ∈ [0,1] (λ = 0 being the simplified Maxwellian pseudo-molecules case and λ = 1 the more
relevant hard sphere case), γ ∈ R and the angular cross section b verifies

0< β1 ≤ b(x)≤ β2 <∞, ∀x ∈ [−1,1]. (3.8)
1Because of that, the elastic collision operator is simply equal to 0 for a one-dimensional velocity space, the Boltzmann

equation reducing only to the free transport equation.
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Remark 3.1.3. Note that we assumed that the collision kernel B in (3.6) depends on the relative
velocity, the angle of collision, and on E( f ). These former dependencies are quite classical, but the
latter is not. Nevertheless, it makes a lot of sense physically speaking, as one can see in [Rey12].

The weak form in the ω-representation can be written analogously as∫
Rd

QI( f , f )(v)ψ(v) dv =
1

2

∫
Rd×Rd×Sd−1

f∗ f
�
ψ′ +ψ′∗ −ψ−ψ∗

�
eB(|u|, cosθ , E( f )) dωdv dv∗,

(3.9)

where the postcollisional velocities are computed by (3.2), θ is the angle between ω and u, and

eB(|u|, cosθ , E) = |u|λeb(cosθ )Eγ
with eb(t) = 3|t|b(1 − 2t2) for −1 ≤ t ≤ 1 by the change of variables between the σ- and the ω-
representation, see [52] for details.

The granular gases operator: Strong form. Deriving a strong form of QI with the reflection
map in the ω-representation is a matter of a change of variables. However, deriving a strong form
of QI is not as easy as in the elastic case in the σ-representation since the collisional transform
(v, v∗,σ)→ (v′, v′∗,σ) is not an involution and we have to go through the ω-representation, see [52]
for details.

More precisely, given the restitution coefficient e = e(|u|) depending on the relative velocity of the
particles u = v − v∗, we assume the collisional transform’s Jacobian for (3.2) is J(|u|, cosθ ) 6= 0 for
all z. Notice J = e in the constant restitution case. It is in general a complicated expression of the
relative speed r = |u| and s = cosθ involving e and its derivative. Then, the precollisional velocities
read as

′v = v − 1+ e

2e
((v − v∗) ·ω)ω,

′v∗ = v∗ +
1+ e

2e
((v − v∗) ·ω)ω. (3.10)

The final strong from of the operator is QI( f , f )(v) = Q+I ( f , f )(v)− f (v)L( f )(v) with the loss part
of the operator given by

L( f )(v) =

∫
Rd×Sd−1

eB(|v − v∗|, cosθ , E( f )) f∗ dωdv∗

and the gain part of the operator in strong form written as

Q+I ( f , f )(v) =
∫
Rd×Sd−1

eΦ+e (|u|, cosθ )eb+e (cosθ ) Eγ

J(|u|, cosθ )
′ f ′ f∗ dωdv∗, (3.11)

with eΦ+e (r, s) and eb+e (s) given by

eb+e (s) = eb� sp
e2 + (1− e2)s2

�
, (3.12)
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and eΦ+e (r, s) = Φ� reÆe2 + (1− e2)s2
�
=
�
r

e

Æ
e2 + (1− e2)s2

�λ
. (3.13)

Similarly, one can derive the following σ-representation:

L( f )(v) =

∫
Rd×Sd−1

B(|v − v∗|, cosθ , E( f )) f∗ dσdv∗
and

Q+I ( f , f )(v) =
∫
Rd×Sd−1

Φ+e (|u|, cosθ )b+e (cosθ ) Eγ

J(|u|, cosθ )
′ f ′ f∗ dσdv∗, (3.14)

with Φ+e (r, s) and b+e (s) given by

b+e (s) = b

�
(1+ e2)s− (1− e2)
(1+ e2)− (1− e2)s

� p
2p

(1+ e2)− (1− e2)s
, (3.15)

and

Φ+e (r, s) = Φ
�

rp
2e

Æ
(1+ e2)− (1− e2)s

�
=
�

rp
2e

Æ
(1+ e2)− (1− e2)s

�λ
. (3.16)

In these expressions, the precollisional velocities are given in the σ-representation by

′v = v + v∗
2
+
1− e

4e
(v − v∗) +

1+ e

4e
|v − v∗|σ,

′v∗ =
v + v∗
2
− 1− e

4e
(v − v∗)− 1+ e

4e
|v − v∗|σ. (3.17)

The granular gases collision operator has then the same structure of the elastic Boltzmann oper-
ator under Grad’s cutoff assumption, namely it can be seen as the difference between the inelastic
gain term Q+I ( f , f ) and the loss term f L( f ), which depends only on the chosen collision kernel, but
not on the inelasticity.

We shall call granular gases equation, or inelastic Boltzmann equation, the collisional equation
(1.1) with the collision operator QI:

εα
∂ f ε

∂ t
+ v · ∇x f

ε =
QI( f ε, f ε)

εβ
. (3.18)

Remark 3.1.4. Another popular approach to describe granular gases uses an Enskog-type collision
operator. It is more relevant physically because it allows to keep the particles’ radii δ positive, hence
delocalizing the collision2. The strong form of the collision operator in the constant restitution
coefficient case is given by

QE( f , f )(x , v) = δ
d−1

∫
Rd×Sd−1

(eΦ+e (|u|, cosθ )eb+e (cosθ )G(ρ+)e
′ f+ ′ f∗

−G(ρ−) f− f∗) dωdv∗,
(3.19)

where we used the shorthand notation

g±(x) := g(x ±δω),
2Note that using a BBGKY approach [106] to derive (3.11) is not expected to succeed, because among other prob-

lems the macroscopic size of the particles composing a granular gas is incompatible with the Boltzmann-Grad scaling
assumption.
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and G is the local collision rate (also known as the correlation rate, see [212]). The global existence
of renormalized solutions for the full granular gases equation (3.18) with the collision operator
(3.19) has been established for both elastic and inelastic collisions in [92]. Existence and L1(dx dv)
stability of such solutions has been proved in [220], for close to vacuum initial datum.

3.1.1 Cauchy theory of the granular gases equation

The space homogeneous setting. Most of the rigorous mathematical results concerning the gran-
ular gases equation are obtained in the space homogeneous setting, where f = f (t, v) is the solution
to ∂t f =

QI( f , f )
ε

,

f (0, v) = fin(v),
(3.20)

for a given scaling parameter ε > 0.

The first existence results for solution to (3.20) can be found in [26, 27]. These works deal with
the generalized Maxwellian pseudo-molecule kernel (3.7) λ = 0, b ≡ 1 and γ= 1/2, with a velocity
dependent restitution coefficient e = e(|v− v∗|). Such a model allows to use some Fourier techniques
to deal with the collision operator, altogether with the correct large time behavior for the kinetic
energy, the so-called Haff’s cooling Law (3.26), and the correct hydrodynamic limit (3.31). The
main result of these works is the global well-posedness of the solutions to (3.20) in L1

2
(R3), the

convergence towards equilibrium, and the contraction in different metrics for the equation.

The physically relevant case of the hard sphere kernel λ = 1, γ = 0 was first considered in [207,
161] in the unidimensional case. This work establishes the global existence of measure solutions
with finite kinetic energy for this problem. It also investigates the quasi-elastic 1− e2 ∼ ε→ 0 limit
of the model, a nonlinear McNamara-Young-like friction equation.

The tail behavior of the equilibrium solution to the granular gases equation with a thermal bath
∆v f was investigated in many papers, the main ones being [89, 28]:

Theorem 3.1.1 (From [28] and [89]). Let F(v) ≥ 0 for v ∈ Rd be a solution to the stationary
equation

QI(F,F) +∆vF= 0

with all polynomial moments in velocity. Then,

F(v)∼|v|→∞ exp (−|v|α) ,
with α= 1 in the Maxwellian molecules case and α= 3/2 in the hard spheres case.

Indeed, the thermal bath gives an input of kinetic energy, preventing the appearance of trivial Dirac
delta equilibria. It uses a careful estimate of the inelastic entropy production (3.23), and a fixed
point argument for the existence and uniqueness of solutions.

The work [174] establishes the global well posedness of the granular gases equation without a
thermal bath, for a general case of collision kernel (including (3.7)) and velocity dependent restitu-
tion coefficients:
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Theorem 3.1.2 (Theorem 1.4 of [174]). Let 0 ≤ fin ∈ L13∩ ∈ BV4. Then for any T ∈ (0,Tc), where
Tc := sup {T > 0 : E( f )(t)> 0, ∀ t < T} is the so-called blowup time, there exists an unique nonnegative
solution f ∈ C(0,T; L1

2
) ∩ L∞(0,T;L1

3
) of (3.20). It preserves mass and momentum, and converges in

the weak-* topology of measures towards a Dirac delta.

Their proof relies on careful estimates of the collision operator QI in Orlicz space (specially the
L logL space of finite entropy measures).

Remark 3.1.5. The related (but still mostly open) problem of the propagation of chaos was consid-
ered in [175] for a very simplified inelastic collision operator with a thermal bath.

Cauchy problem in the space dependent setting. The case of the space inhomogeneous setting3

has been much less investigated.

The first result can be found in [15] in one dimension of space and velocity. This work establishes
the existence and uniqueness of mild (perturbative) solutions, first for small L1(dx dv) initial data,
and then for compactly supported initial data. The main argument is reminiscent from a work due
to Bony in [32] concerning discrete velocity approximation of the Boltzmann equation in dimension
1.

The global existence of mild solutions in the general R3x ×R3v setting, for a large class of velocity-
dependent restitution coefficient, but for initial data close to vacuum, was obtained in [7]. The proof
is based on a Kaniel-Shinbrot iteration on a very small functional space. The stability in L1(R3x ×R3v)
under the same assumptions was established in [219]. Finally the existence and convergence to
equilibrium in T3x ×R3v for a weakly inhomogeneous granular gas4 with a thermal bath was proved
in [209], using a perturbative approach.

3.1.2 Large time behavior

Macroscopic properties of the granular gases operator. Modeling-wise, the main microscopic
difference between a granular gas and a perfect molecular gas is the dissipation of the kinetic energy.
Using the weak form (3.6) among with the microscopic relations (3.1) of the inelastic collision
operator yields ∫

Rd
QI( f , f )(v)

 1

v

|v|2

 dv =

 0

0

−D( f )

 ,

where D( f )≥ 0 is the energy dissipation functional, which depends only on the collision kernel:

D( f ) :=

∫
Rd×Rd

f f∗∆ (|v − v∗|, E( f )) dv dv∗. (3.21)

The quantity ∆ (|u|, E) is the so-called energy dissipation rate, given using (3.1) by

∆ (|u|, E) := 1− e2

4

∫
Sd−1
|u ·ω|2 B(|u|, cosθ , E) dω ≥ 0, ∀e ∈ [0,1]. (3.22)

3Physically more realistic, in part because of the spontaneous loss of space homogeneity that has been observed in
[116].

4Namely, the initial condition is chosen with a lot of exponential moments in velocity, and close to a space homogeneous
profile.
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This dissipation of kinetic energy has a major consequence on the behavior of the solutions to
the granular gases equation. Combined with the conservation of mass and momentum, it implies
(at least formally) an explosive behavior, namely convergence in the weak-* topology of solutions to
(3.18) towards Dirac deltas, centered in the mean momentum u:

f (t, ·)*δv=u, t →∞.

As for the entropy, it is not possible to obtain any entropy dissipation for this equation, in order
to precise this large time behavior. Indeed taking ψ(v) = log f (v) in (3.6) yields∫

Rd
QI( f , f )(v) log f (v) dv =

1

2

∫
Rd×Rd×Sd−1

f∗ f
�
log

�
f ′ f ′∗
f f∗

�
− f ′ f ′∗

f f∗
+ 1

�
B dσdv dv∗

+
1

2

∫
Rd×Rd×Sd−1

�
f ′∗ f ′ − f∗ f

�
B dσdv dv∗. (3.23)

The first term in (3.23), the elastic contribution, is nonpositive: this is Boltzmann’s H-Theorem 1.2.1.
Nevertheless, the second term has no sign: it is 0 only in the elastic case (because of the involutive
elastic collisional transformation (v, v∗,σ)→ (v′, v′∗,σ)). Boltzmann’s entropy

H( f ) =
∫
Rd

f (v) log f (v) dv

is then not dissipated by the solution of the granular gases equation if e < 1.

Kinetic energy dissipation and the Haff’s cooling Law. In the space homogeneous setting with
no thermostat, no entropy has been found, even numerically. One has then to use other macroscopic
quantities to study the large time behavior of solutions to (3.18). Because of its explicit dissipation
functional, kinetic energy is a good candidate for this. Moreover, being related to the variance, it
allows to measure the concentration in velocity of the solution.

In order to have an explicit bound for the energy dissipation, let us assume that the collision kernel
is of the general type (3.7). Using polar coordinates, it is straightforward to compute the dissipation
rate (3.22):

∆ (|u|, E) = b1
1− e2

4
|u|λ+2Eγ, b1 =

��Sd−2��∫ π

0

cos2(θ ) sind−3(θ ) b(cos(θ )) dθ <∞ (3.24)

Using the conservation of mass and momentum, one can always assume that the initial condition is
of unit mass and zero momentum. Plugging (3.24) into (3.21) then yields using Hölder and Jensen
inequalities

d

d t
E( f )(t)≤ −b1 1− e2

4
E( f )1+γ+λ/2(t). (3.25)

In particular, one will have the following large time behaviors: Setting Ce = b1ρ (1− e2)/4 and
α := γ+ 1/2,

• Maxwellian pseudo-molecules (λ = γ= 0) decay exponentially fast towards the Dirac delta :

E( f )(t) = E ( fin) e
−Ce t ;

Notice that the inequality in (3.25) is an identity for this case.
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• Hard spheres (λ = 1, γ= 0) exhibit the seminal quadratic Haff’s cooling Law [124]:

E( f )(t)≤ �E ( fin)−1/2 +Ce t/2
�−2

. (3.26)

• Anomalous gases (γ 6= 0) exhibit more general behaviors:

E( f )(t)≤


(E ( fin)

α +Ceα t)−
1
α if γ > −1/2 (α > 0, finite time extinction);

E ( fin) e
−Ce t if γ= −1/2;

(E ( fin)
α −Ceα t)−

1
α if γ < −1/2 (α < 0).

All of these formal results have been proven to be rigorous and sharp, with explicit lower bounds, in
[26, 27] for the Maxwellian and hard sphere cases [171], and in [Rey12] for the anomalous cases.
Extension to the viscoelastic case can be found in [5], where the energy is shown to behave as

E( f )(t)∼t→∞ C (1+ t)−5/3.

All these papers share a common approach of proof, using the fact that the space homogeneous
granular gases equation admits a self-similar behavior. Hence, introducing some well chosen time-
dependent scaling function ω and τ, the distribution f is written as

f (t, v) =ω(t)d g (τ(t),ω(t) v) ,

to take into account the concentration in the velocity variables5. The rescaled function g is then
solution to the granular gases equation, with an anti-drift term in velocity:

∂t g +∇v · (v g) =QI(g, g).

Using some regularity estimates of the gain term of QI “à la” Lions/Bouchut-Desvillettes [34] and
some new Povzner-like estimates [3], [171] then obtains a lower bound for the energy of g, yielding
the generalized Haff’s law by coming back to f .

Remark 3.1.6. In the viscoelastic case, note that the rescaling in velocity induces a time dependency
on the restitution coefficient, complicating the proof of the Haff’s cooling law [4]. It is also the case
in the anomalous setting [Rey12], where the rescaling function depends nonlinearly on the solution
f .

The question of the uniqueness, stability and exponential return to an universal equilibrium profile
(related to the very important question of hypocoercivity discussed in Chapter 4, see [213]) of the
self-similar solutions has then been fully addressed in the series of work [172, 173], for a constant
restitution coefficient, with and without a thermal bath.

3.1.3 Compressible hydrodynamic limits

Let us consider in this subsection the hyperbolic scaling (α = 0, β = 1) of the granular gases equa-
tion:

∂ fε

∂ t
+ v · ∇x fε =

1

ε
QI( fε, fε). (3.27)

5One can see the velocity scaling function ω as the inverse of the variance of the distribution f . This scaling is then
a continuous “zoom” on the blowup, and can be used to develop numerical methods for solving the full granular gases
equation, see [FR13, RT16].
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Determining the precise hyperbolic limit ε→ 0 of equation (3.27) is a fundamental, yet very difficult
question.

Indeed, for the elastic case e = 1, one simply has to use the fact that the equilibria of the collision
operator are at the thermodynamical equilibrium (gaussian distributions) and the conservation of
mass, momentum and kinetic energy to obtain the classical compressible Euler-Fourier system (1.3).
Because of the trivial Dirac equilibria, this question is more intricate for the true inelastic case.

Pressureless Euler dynamics. Adopting the same approach as in the elastic case, one can formally
plug the “equilibrium” Dirac deltas in the pressure to obtain the following pressureless Euler system:

∂ ρ

∂ t
+ div(ρu) = 0,

∂ (ρu)
∂ t

+ div (ρu⊗u) = 0.

(3.28)

This system can describe various interesting physical situations, such as galactic clusters, but is no-
toriously difficult to study mathematically. Its solution are in general ill-posed, as classical solutions
cannot exists for large times and weak solutions are not unique.

In the unidimensional case, it is however possible to recover a well posed theory by imposing a
semi-Lipschitz condition on u. This theory was introduced in [35], and later extended in [36] and
[133]. We cite below the main result of [133]

Theorem 3.1.3 (From [133]). For any ρ0 ≥ 0 in M1(R) and any u0 ∈ L2(ρ0), there exists ρ ∈
L∞(R+,M1(R)) and u ∈ L∞(R+, L2(ρ)) solution to (3.28) in the sense of distribution and satisfying
the semi-Lipschitz Oleinik-type bound

u(t, x)− u(t, y)≤ x − y

t
, for a.e. x > y. (3.29)

Moreover the solution is unique if u0 is semi-Lipschitz or if the kinetic energy is continuous at t = 0∫
R
ρ(t, dx) |u(t, x)|2 −→

∫
R
ρ0(dx) |u0(x)|2, as t → 0.

The proof of Th. 3.1.3 is quite delicate, relying on duality solutions. For this reason, we only explain
the rational behind the bound (3.29), which can be seen very simply from the discrete sticky particles
dynamics. We refer in particular to [42] for the limit of this sticky particles dynamics as N→∞.

Consider N particles on the real line. We describe the ith particle at time t > 0 by its position x i(t)
and its velocity vi(t). Since we are dealing with a one dimensional dynamics, we can always assume
the particles to be initially ordered

x in
1
< x in

2
< . . .< x in

N
.

The dynamics is characterized by the following properties

1. The particle i moves with velocity vi(t): d
d t x i(t) = vi(t).

2. The velocity of the ith particle is constant, as long as it does not collide with another particle:
vi(t) is constant as long as x i(t) 6= x j(t) for all i 6= j.



54 CHAPTER 3. ON THE GRANULAR GASES EQUATION

3. The velocity jumps when a collision occurs: if at time t0 there exists j ∈ {1, . . . ,N} such that
x j(t0) = x i(t0) and x j(t) 6= x i(t) for any t < t0, then all the particles with the same position
take as new velocity the average of all the velocities

vi(t0+) =
1

| j|x j(t0) = x i(t0)|
∑

j|x j(t0)=x i(t0)

v j(t0−).

Note in particular that particles having the same position at a given time will then move together at
the same velocity. Hence, only a finite number of collisions can occur, as the particles aggregates.

This property also leads to the Oleinik regularity. Consider any two particles i and j with x i(t)>
x j(t). Because they occupy different positions, they have never collided and hence x i(s) > x j(s) for
any s ≤ t. If neither had undergone any collision then x i(0) = x i(t)− vi(t) t > x j(0) = x j(t)− v j(t) t
or �

vi − v j
�
+�

x i − x j

�
+

<
1

t
, (3.30)

where x+ := max(x , 0). It is straightforward to check that (3.30) still holds if particles i and j had
some collisions between time 0 and t.

As one can see this bound is a purely dispersive estimate based on free transport and the ex-
act equivalent of the traditional Oleinik regularization for Scalar Conservation Laws, see [182]. It
obviously leads to the semi-Lipschitz bound (3.29) as N→∞.

We extended this result to the one dimensional (in space and velocity) granular gases equation
(3.27) in [JR17]. The basic idea of the proof of this work is to compare the granular gases dynamics
to the pressureless gas system (3.28). The main difficulty is to show that fε becomes monokinetic at
the limit (see also the very recent paper [94]). This is intimately connected to the Oleinik property
(3.29), just as this property is critical to pass to the limit from the discrete sticky particles dynamics.

Unfortunately it is not possible to obtain (3.29) directly. Contrary to the sticky particles dynamics,
this bound cannot hold for any finite ε (or for any distribution that is not monokinetic). This is the
reason why it is very delicate to obtain the pressureless gas system from kinetic equations (no matter
how natural it may seem). Indeed we are only aware of one other such example in [144].

One of themain contributions of [JR17] is a complete reworking of the Oleinik estimate, still based
on dispersive properties of the free transport operator v ∂x but compatible with kinetic distributions
that are not monokinetic, through the introduction of a new, global nonlinear energy. The main
result in this paper is the following:

Theorem 3.1.4 (Theorem 1.3 from [JR17]). Consider a sequence of weak solutions

( fε)ε ∈ L∞([0, T], Lp(RxRv))

for some p > 2 and with total mass 1 to the granular gases Eq. (3.27) such that all initial v-moments
are uniformly bounded in ε, some moment in x is uniformly bounded, and f 0ε is, uniformly in ε, in
some Lp for p > 1. Then any weak-* limit f of fε is monokinetic, f = ρ(t, x)δ(v − u(t, x)) for a.e. t,
where ρ, u are a solution in the sense of distributions to the pressureless system (3.28) while u has the
Oleinik property (3.29).
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Quasi-elastic limit. The physical community usually considers another approach, that is assuming
that the granular gas is in a quasi-elastic 1−e2 ∼ ε→ 0 setting. This was first proposed in [137], using
an approach very similar to the seminal Grad’s 13 moments closure for rarefied gas dynamics. The
difficulty of a hydrodynamic description of granular materials has been addressed in well reasoned
terms in [114], and as already discussed in the introduction, the hydrodynamic equations obtained
with the kinetic theory of granular gases have been shown to be insightful well beyond their supposed
limit of validity, i.e., away from the quasi-elastic limit assumption with external sources of energy.
In fact, assuming that solutions of the kinetic problem do not deviate from being Gaussians, one can
then obtain in the hard sphere case the following quasi-elastic compressible Euler system



∂ ρ

∂ t
+ div(ρu) = 0,

∂ (ρu)
∂ t

+ div (ρ (u⊗u) + ρ T I) = 0,

∂W

∂ t
+ div (u (E + ρ T)) = −Kρ T3/2.

(3.31)

This is a compressible Euler-type system, which dissipates the kinetic energy thanks to its nonzero
right hand side. The particular expression of this RHS allows, after integration in space, to recover
the correct Haff’s cooling Law.

The assumption that the solutions are not far from Gaussians obviously degenerates in a free
cooling granular gas at some point leading to the so-called clustering instability studied by means
of (3.31), see for instance [56] and the references therein. In fact, this assumption can be shown
to be valid in the quasi-elastic limit, see [173] for a rigorous justification of this property. It has
been used successfully as a scaling factor in [FR13] for the rescaling velocity method. Physicists
argue that this assumption is also generically true in practical experiments with external sources of
energy such as the shock waves in granular flows under gravity [189], clustering [127], the Faraday
instability for vibrating thin granular layers [95, 170, 55], and many other applications, see [143]
and the references therein.

Passing from the granular gases equation (3.18) to (3.31) has not been established properly. It
can still be done formally under the weak inelasticity hypothesis 1−e2 ∼ ε, see [208]. This particular
scaling insures that the granular gases operator converges towards the elastic Boltzmann operator, as
was shown rigorously in [172] in the space homogeneous setting. Moreover, it allows to characterize
the equilibrium distribution of the limit operator, which is Gaussian.

A first step towards a rigorous compressible hydrodynamic limit is available in [Rey13], where the
study of the spectrum of the heated granular gases operatorQI+τ∆v, linearized with respect to the
equilibrium described in [173], is done. For small inelasticity 1−e2 ∼ 0, this work provides a spectral
decomposition, and more importantly the existence and computation of eigenvalue branches. This
work generalizes the seminal paper [88] on the spectrum of the linearized Boltzmann operator in
L2 to the L1 and inelastic setting.

Other types of fluid limits (such as viscous limits) of the granular gases equation have been de-
scribed in the review paper [84] and in the recent survey [109] for many different physical regimes,
but none has been rigorously established. To illustrate the kind of equations obtained through these
procedures, we write the generalized Navier-Stokes compressible equations for granular media in
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conservative form, see [55], as

∂ ρ

∂ t
+∇ · (ρu) = 0,

∂ (ρu)
∂ t

+∇ · [ρ (u⊗u)] =∇ · P+ρ F,
∂ E

∂ t
+∇ · [uW] = −∇ · q+ P : E+u · (∇ · P)− γ+ρu · F.

(3.32)

The symbol F stands for external forces applied to the system. The constitutive relations for the
momentum and heat fluxes write, as usual,

Pi j =

�
−p+

�
λ− 2

3
µ

�∑
i

Eii

�
δi j + 2µEi j

for the stress tensor, with Ei j =
1
2

�
∂Ui

∂ x j
+
∂U j

∂ x i

�
. The thermal conductivity relates linearly the heat flux

q to the temperature gradient, q = −χ∇T.
A first attempt to derive rigorously these equations of compressible Navier-Stokes type was done

in the paper [51] using singular perturbations of the collision operator QI and a central manifold
approach inspired from [96]. The fact is that transport coefficients for compressible Navier-Stokes
like equations can be derived by moment closures under different assumptions and these equations
are able to recover realistic phenomena in granular gases, see [109].

3.2 Spectral methods for the granular gases operator

Due to the complexity of the inelastic Boltzmann collision operator QI( f , f ), numerical simulation
of granular gases is challenging and mostly done at the particle level. Over the past decade, the
Fourier spectral method for this model has received a lot of popularity for its high accuracy and
relatively low computational cost.

The first attempt was made in [179] for the one-dimensional model. Later in [101, 108], [FR13],
both two and three dimensional cases were considered. Although the implementation details may
differ, the essential ideas in these works are the same, that is, utilizing the translational invariance of
the collision operator and convolution property of the Fourier basis to write the collision operator as a
weighted convolution in the Fourier space. In this way, theO(N3d) cost per evaluation of the collision
operator in the Galerkin framework (sinceQI( f , f ) is quadratic) is readily reduced toO(N2d), where
N is the number of basis used in each velocity dimension. Even though this reduction is dramatic
compared to other spectral basis, numerical implementation of the “direct” Fourier spectral method
is still computationally demanding; what makes it worse is that the method also requires O(N2d)
memory to store the precomputed weights, which quickly becomes a bottleneck as N increases.
Recently, a fast Fourier spectral methodwas introduced in [128], wherein the key idea is to shift some
offline precomputed items to online computation so that the weighted convolution in the original
method can be rendered into a few pure convolutions to be evaluated efficiently by the fast Fourier
transform (FFT). As a result, both the computational complexity and the memory requirement in
the direct Fourier method are reduced.

In this section, we briefly review the original direct Fourier spectral method proposed in [101]
and then its fast version introduced in [128]. To this end, we shall work on the σ-representation
(3.3).
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3.2.1 The direct Fourier spectral method

We first perform a change of variable v∗→ g = v − v∗ in (3.6) to obtain∫
Rd

QI( f , f )(v)ψ(v)dv =

∫
Rd

∫
Rd

∫
Sd−1

B(|g|,σ · �g) f (v) f (v − g)
�
ψ(v′)−ψ(v)�dσdg dv,

where
v′ = v − 1+ e

4
(g − |g|σ).

We then assume that f has a compact support: Suppv( f ) ≈ B0(S). Hence it suffices to truncate the
infinite integral in g to a larger ballwith radius R= 2S:∫
Rd

QI( f , f )(v)ψ(v)dv =

∫
Rd

∫
B0(R)

∫
Sd−1

B(|g|,σ · �g) f (v) f (v − g)
�
ψ(v′)−ψ(v)�dσdg dv. (3.33)

Next we restrict v to a cubic computational domain DL = [−L, L]d , and approximate f by a truncated
Fourier series fN. The constant L should be chosen at least as L≥ (3+p2)S/2 to avoid aliasing, see
[101] for more details. Now substituting fN into (3.33) and choosing ψ(v) = e−i πL k·v, we can obtain
the k-th mode of the collision operator as

�Qk =
N∑

l,m=−N
l+m=k

G(l,m) �fl �fm, (3.34)

where the weight G(l,m) is given by

G(l,m) =

∫
BR

e−i πL m·g
�∫
Sd−1

B(|g|,σ · �g)�ei πL 1+e
4
(l+m)·(g−|g|σ) − 1�dσ�dg.

In the original spectral method [101], the weight G(l,m) is precomputed and stored since it is
independent of the solution f which leads to a memory requirement of O(N2d). During the online
computation, the weighted sum (3.34) is directly evaluated whose complexity is O(N2d).

3.2.2 The fast Fourier spectral method

The Carleman representation is trickier to obtain in the inelastic case compared to the elastic one
described in Chapter 2. Nevertheless, in order to reduce the complexity of the direct spectral method
as well as to alleviate its memory requirement, the idea introduced in [128] is also to render the
weighted convolution (3.34) into a pure convolution so that it can be computed efficiently by the
FFT.

In the granular case, the way to achieve this is through the low-rank approximation of G(l,m)

G(l,m)≈
Np∑
p=1

αp(l +m)βp(m), (3.35)

where αp and βp are some functions to be determined and the number of terms Np in the expansion
is small. Then (3.34) becomes

�Qk ≈
Np∑
p=1

αp(k)
N∑

l,m=−N
l+m=k

�fl
�
βp(m) �fm

�
, (3.36)
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where the inner summation is a pure convolution of two functions �fl and βp(m) �fm. Hence the total
complexity to evaluate �Qk (for all k) is brought down to O(NpN

d logN), i.e., a few number of FFTs.

Specifically, we first split G(l,m) into a gain term and a loss term:

G(l,m) = Ggain(l,m)−Gloss(m),

where

Ggain(l,m) :=

∫
BR

e−i πL m·g
�∫
Sd−1

B(|g|,σ · �g)ei πL 1+e
4
(l+m)·(g−|g|σ) dσ

�
dg,

and

Gloss(m) :=

∫
BR

e−i πL m·g
�∫
Sd−1

B(|g|,σ · �g)dσ
�
dg.

Note that the loss term is readily a function of m, hence no approximation/decomposition is actually
needed. This suggests to evaluate the loss term of the collision operator by a precomputation of
Gloss(m) and then compute

�Q−
k
=

N∑
l,m=−N
l+m=k

�fl
�
G(m) �fm

�
by FFT. For the gain term, to get a decomposition of form (3.35), we introduce a quadrature rule to
discretize g, then Ggain(l,m) can be approximated as

Ggain(l,m)≈
∑
ρ,�g

wρw�g ρ
d−1e−i πL ρm·�gF(l +m,ρ, �g), (3.37)

where ρ := |g| ∈ [0,R] is the radial part of g and �g ∈ Sd−1 is the angular part, and wρ and w�g are
the corresponding quadrature weights. The function F is given by

F(l +m,ρ, �g) :=

∫
Sd−1

B(ρ,σ · �g)ei πL ρ 1+e
4
(l+m)·(�g−σ) dσ. (3.38)

With this approximation, the gain term of the collision operator can be evaluated as

�Q+
k
≈∑
ρ,�g

wρw�g ρ
d−1 F(k,ρ, �g)

N∑
l,m=−N
l+m=k

�fl

�
e−i πL ρm·�g �fm

�
,

which is in the same form as explained in (3.36).

As for the quadratures, the radial direction ρ can be approximated by the Gauss-Legendre quadra-
ture. Since the integrand in (3.37) is oscillatory on the scale of O(N), the number of quadrature
points needed for ρ should be O(N). The angular direction in 2D can be discretized using simple
rectangular rule which is expected to yield spectral accuracy due to the periodicity. In the 3D case,
we choose to use the spherical design [215] which is the near optimal quadrature on the sphere.

To summarize, the total complexity to evaluate �Qk is O(MNd+1 logN), where M is the number of
points used on Sd−1 and M� Nd−1. Furthermore, the only quantity that needs to be precomputed
and stored is (3.38), which in the worst scenario only requires O(MNd+1) memory.
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N CPU GPU

8 7.68ms 5.89ms
16 61.2ms 5.97ms
32 546ms 12.1ms
64 5.38s 109ms

Table 3.1: Average running time per evaluation of the collision operator in 3D. Comparison be-
tween the CPU and GPU-parallelized implementation for various Ns.

3.3 Numerical experiments and results

The accuracy and efficiency of the fast spectral method hav been validated in [128]. In this section,
we present some numerical experiments that were performed in [CHMR21] to demonstrate the
potential of the method in predicting some mathematical theories.

We consider the following spatially homogeneous equation with a thermal bath:

∂t f =QI( f , f ) + τ∆v f , (3.39)

where τ is the parameter describing the strength of the thermal bath. Notice that it is not necessarily
related to the inelasticity parameter e, contrarily to e.g. [173]. The thermal bath ∆v f will also be
discretized using the Fourier spectral method and Runge-Kutta method is used for time marching.

For the collision operator, we consider the simplified variable hard sphere kernel

B(|g|,σ · �g, E) = Cλ|g|λ, 0≤ λ ≤ 1, (3.40)

where Cλ > 0 is some constant (namely (3.7) with b = Cλ and γ= 0.

For Maxwell molecules, given the initial condition f0(v) whose macroscopic quantities are ρ0, u0
and T0, the density and velocity are conserved so ρ(t) = ρ0, u(t) = u0 and the temperature will
evolve as

T(t) =
�
T0 − 8τ

1− e2

�
exp

�
−ρ0(1− e2)

4
t

�
+

8τ

1− e2
, (3.41)

We could see
lim
t→∞T(t) =

8τ

1− e2
.

As in [128], this analytical formula of temperature works as the reference solution to ensure the
correctness of the numerical solution.

From the implementation perspective, we dramatically improve the efficiency of the fast spectral
method by using GPU via Nivida’s CUDA. As shown in Table 3.1, GPU version is up to 15 times faster
than CPU version depending on different Ns.

Test 1. Investigation of tail behavior of the equilibrium in 2D We compare the different tail
behaviors of the equilibrium solutions for the Maxwell molecules collision kernel (2.27) and for the
hard spheres collision kernel

B(|g|,σ · �g) = |g|/(2π)



60 CHAPTER 3. ON THE GRANULAR GASES EQUATION

6 4 2 0 2 4 6
v1

10 6

10 4

10 2

100

ln
f

(v
1,

0.
17

)

e = 0.5
e = 0.7
e = 0.3
y = 2.75|v1| + 2

4 3 2 1 0 1 2 3 4
v1

10 6

10 5

10 4

10 3

10 2

10 1

100

ln
f

(v
1,

0.
17

)

e = 0.5
e = 0.7
e = 0.3
y = 1.8|v1|3/2 + 0.7

Figure 3.3: Test 1. The equilibrium profile of e = 0.3,0.5, 0.7 with heat bath τ= 0.1, initial data
is the flat function (3.45). Left: Semi-log plot of f∞(v1, 0.17) = f (t = 55, v1, 0.17)
for Maxwell molecules. Right: Semi-log plot of f∞(v1, 0.17) = f (t = 55, v1, 0.17)
for hard spheres. The red lines are the reference profiles. Numerical parameters:
N2

v
= 128× 128, Nρ = 32, M�g = 16, R= 20, L= 5(3+

p
2) and ∆t = 0.01.

in 2D. To see the tail we need higher resolution in velocity space so the velocity mesh is increased
to N2

v = 128 × 128. We plot the profile in vx (v1) by choosing a fixed vy (v2) for different es (0.3,
0.5 and 0.7). From Fig. 3.3, we see that the numerical scheme generates overpopulated equilibrium
tails: the Maxwell molecules case behaves like

f∞(v)∼ e−α|v| ,

and the hard spheres ones behaves like

f∞(v)∼ e−α|v|3/2 .

These results corresponds accurately to what was predicted theoretically in [89, 28] (summarized
in Theorem 3.1.1).

Test 2. 3D hard sphere. This test is more related to physics, by simulating the so-called “Haff’s
cooling Law” (3.26). The initial data used is a Maxwellian with nonzero bulk velocity

f0(v) =
ρ0

(2πT0)3/2
e−(v−u0)2 , (3.42)

where ρ0 = 1, T0 = 2 and u0 = (0.5,−0.5,0)T. We consider the hard spheres collision kernel in 3D,
namely

B=
1

4π
|g|.

In the first two tests, we consider a realistic set-up where the restitution coefficient e depends on
the distance of the relative velocity, i.e., e is a function of ρ = |g| instead of a constant,

e(ρ) =
e0 − 1
2

tanh(ρ − 4) + e0 + 1
2

,

where 0 < e0 < 1. This allows to mimic the physically relevant visco-elastic hard spheres case (see
also (3.5)). We numerically evaluate the temperature and the results for e0 = 0.2 are shown in
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Fig. 3.4. Compared with the cases where e is constant, we observe a slight slower decay of the
temperature.

Another parameter that may affect the decay rate of temperature is the variable hard spheres
exponent λ from (3.7). In Fig. 3.5 we show that, in the presence of thermal bath, for e = 0.5 but
with λ = 1 (hard spheres), λ = 0.5 and λ = 0 (Maxwellian molecules), the decay rate of temperature
will decrease after certain time (notice the slopes after t = 5).

Finally, with the thermal bath τ= 0.1, we numerically evaluate the temperature up to time tfinal =
20 for various values of restitution coefficients. The time evolution of T is shown in Fig. 3.6 where
one can observe the transition of decays from e = 0.5 to e = 0.95 (near elastic case).

Test 3. Numerical dissipation of the Boltzmann’s entropy We have seen that adding a drift term
∇v (v f ) or a thermal bath ∆v f in velocity yields numerical entropy dissipation. These results were
investigated thoroughly in my paper [GdSMM+15], that will be briefly presented in this Section.
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Introduce the Kullback-Leibler distance (also called relative entropy) between the time dependent
velocity distribution f and its long time limit f∞:

H ( f | f∞) =
∫

f (t, v) log
�
f (t, v)
f∞(v) .

�
dv. (3.43)

A convexity argument shows again that this quantity is nonnegative and is expected by construction
to vanish at long times. Our central conjecture is that it does so monotonously in time, i.e. dH/d t <
0.

We have implemented in [GdSMM+15] three complementary and independent simulation tech-
niques to assess and illustrate our central statement that dH/d t < 0: a spectral approach, the Direct
Simulation Monte Carlo (DSMC) technique and Molecular Dynamics (MD) simulations.

• The spectral method is the one described in Section 3.2.
• The DSMC method is widely used in the present context, in aeronautics, and in microfluidics

[21]: N particles follow a Kac’s walk in velocity space and in the limit of large N, the corre-
sponding first marginal f evolves according to the Boltzmann equation [175]. The method is
Monte Carlo in spirit, and thus of stochastic nature.

• In the MD simulations the exact equations of motion are integrated, starting from a given
initial configuration of N grains in a finite simulation box of volume, V, with periodic boundary
conditions. This method does not rely on the validity of a kinetic description and by comparing
to the outcome of DSMC, provides a stringent test of the theory and predictions under scrutiny.
In particular, the spatial dependence is fully accounted for within MD –unlike in the DSMC
approach used where spatial homogeneity is enforced from the outset– and does not rely on
the molecular chaos assumption. If N→∞ and in the low-density limit (or more precisely, in
the Grad’s limit) the first marginal is expected to fulfill the Boltzmann equation.

In the simulations, the evolution of the one-particle distribution function has been measured for
the two models, the Gaussian and stochastic thermostats, using different values of the inelasticity
and starting with different initial velocity distributions. With that, the functionalH can be computed
through Eq. (3.43), where the knowledge of the late time distribution f∞ is required. Hence, H
cannot be obtained “on the flight”, but is computed after f∞ has been measured in the simulations.
We have taken the grain’s mass, m, as the unit of mass and the initial temperature, T(0), as the
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Figure 3.7: Test 3. Left) First marginal of the DSMC results with the initial data (3.44) (black
solid line) and e = 0.9, N = 1000. The results have been averaged over 105 realiza-
tions. The distribution is plotted for different values of the number of collisions per
particle τ. The bell-shaped red solid line corresponds to the distribution at the end
of the simulation (τ' 14). Right) Corresponding evolution ofH(t). Inset: linear-log
scale.

unit of temperature. In the MD simulations the unit of length is the diameter of the particle, σ. We
always considered a two-dimensional system of N = 1000 disks. The spectral method is used in 2

dimensions of the velocity space, with 64 modes in each space directions. It is known that such a
number of modes gives a very good accuracy, thanks to the spectral convergence of the method. The
Gaussian thermostat case has been studied by DSMC and MD, while the stochastic thermostat has
been addressed via DSMC and spectral methods.

Fig. 3.7 displays DSMC results for a system with dissipation parameter e = 0.90 heated by the
Gaussian thermostat with B chosen to have unit stationary temperature. The results have been
averaged over 105 realizations and the initial distribution has been taken asymmetric with three
peaks:

fin(v) =
3

6
δ(v − u1) +

2

6
δ(v − u2) +

1

6
δ(v − u3), ∀v ∈ R2, (3.44)

u2 =
1

3

�
T(0)
m

�1/2�1
1

�
, u1 = −3u2, u3 = 5u2.

In the left side of the figure, the first marginal of f has been plotted for different values of the
number of collisions per particle, τ. Clearly, the behavior of H(t) on the right hand side is com-
patible with an asymptotic vanishing for t →∞, which simply indicates that f tends towards f∞.
More interestingly, H is nonincreasing from the shortest to the largest times one can reach in the
simulations.

In Fig. 3.8, a comparison between MD and DSMC results is shown for a system with e = 0.80.
The initial distribution is the same asymmetric distribution as in the previous case. The results have
been averaged over 5 × 103 realizations in the two types of simulations. The density in the MD
simulations is n= 0.005σ−2, which corresponds to a rather dilute system. The excellent agreement
between MD and DSMC is important, not only because it again points to the monotonicity of H(t)
but also because the MD algorithm provides a reference benchmark (“true dynamics”), which does
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Figure 3.8: Test 3. Evolution ofH(t) as a function of the number of collisions per particle for MD
and DSMC simulations, with the initial distribution (3.44) and e = 0.8, N = 1000.
The results have been averaged over 5× 103 realizations. Inset: linear-log scale.

Figure 3.9: Test 3. Left) DSMC results of the time evolution ofH(τ) for the stochastic thermostat
with e = 0.9, starting with the flat distribution (3.45). Right) Results for e = 0.95.

not rely on the hypothesis leading to the Boltzmann equation, and in particular does not a priori
assume the system to be homogeneous. Let us mention that we have observed the same qualitative
features for a large gamut of initial conditions (symmetric around the velocity origin or asymmetric)
and different values of the inelasticity in the whole range, 0< e < 1.

In Fig. 3.9, DSMC results are shown for a system heated by the stochastic thermostat. We have
considered two values of the inelasticity, e = 0.9 and e = 0.95, with an amplitude of the noise, ξ,
such that the stationary temperature is 8.80T(0) for e = 0.9 and 17.13T(0) for e = 0.95. In the two
cases, we have started with the same initial flat distribution:

f (v, 0) =


1

4w2
, if vx ∈ [−w,w] and vy ∈ [−w,w]

0, otherwise
(3.45)

with w=
�
6T(0)
m

�1/2
. The results have been averaged over 105 trajectories. Clearly, as in the previous

case, the functionalH decays monotonically for all times. Again, as in the Gaussian thermostat case,
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Figure 3.10: Test 3. Left) Time evolution of the entropy for the nonlinear Boltzmann equation
with stochastic thermostat, solved with the spectral scheme (M = 64), for e = 0.25

(solid line) and e = 0.1 (dotted line), starting with the assymetric, three sharp
peaks. Right) Same, for the flat initial distribution.

the same qualitative behavior is obtained for other initial conditions and values of the inelasticity.

Finally, we present in Fig. 3.10 the evolution ofH for small normal restitution coefficients, namely
e = 0.1 (almost sticky particles) and e = 0.25, in the stochastic thermostat case. The spectral scheme
is used for these simulations. We show our results for both the assymetric distribution (3.44) com-
posed of three peaks (left) and for the flat distribution (3.45) (right). As in the other simulations,
we observe in all these cases a monotone decay of the entropy functional H. Thanks to the accuracy
of the spectral scheme, and owing to its deterministic nature, we can observe this decay up to the
machine precision. Although it may be due to numerical artifacts (this behavior can be also observed
in the elastic case e = 1), this decay seems to follow two exponential regimes, a very fast one in short
time followed by a slower one in larger time. Nevertheless, these decays are always exponential.

All the simulation results point in the same direction: the functional H defined by Eq. (3.43) can
be a good Lyapunov functional for the free-cooling case (Gaussian thermostat) and for the stochastic
thermostat.

3.4 Perspectives

As we have seen, the granular gases equation is now pretty well understood in the space homoge-
neous setting, but not that much in the general space dependent case, specially in multiD. As such,
the following questions would be very interesting to be addressed.

Pressureless Euler limit in the multidimensional case. We have seen that the fluid limit of the
granular gases equation in one dimension of space and velocity towards the pressureless Euler system
as been established in [JR17]. One of the main tools of the proof is the introduction of the following
new nonlinear functional: for any η, µ > 0, k ≥ 1 and f solution to (1.1) with d = 1,

Lη,µ,k( f )(t) :=
∫
(v − v∗)k+2+
(x − y +η)k

χµ(x − y) f (t, x , v) f (t, y, v∗) dv dv∗ dx dy, (3.46)

where the function χµ is a smooth, non-centered approximation of the Heaviside function. We
showed that the uniform boundedness of Lη,µ,k( f ε) implies the monokineticity of f ε. This functional
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is a kinetic extension of the sticky particle strategy from [42], and is reminiscent of the so-called
Bony-Cercignani functional, used in [32, 59, 22]. Unfortunately, the techniques used for bounding
(3.46) are really unidimensional.

Generalizing this hydrodynamic limit result to the higher dimensional setting is then an open
problem. One could try first to extend it to the two dimensional Vicsek flocking model introduced
in [72]:

∂t f + v · ∇x f +∇v ·
�
Πv⊥

I f (t, x)

|I f (t, x)|
�
=∆v f ,

I f (x , t) =

∫∫
R2×S1

K (|y − x |) f (t, y, v∗)dy dv∗,

where the velocity is defined on the one-dimensional sphere S1. The operator Πe denotes the or-
thogonal projection on a vector e and K is an interaction potential. This mean-field equation has
a dissipative structure similar to the one of the granular gases equation (1.27), and its solutions
converge formally toward Dirac deltas in large times. One could try to extend the functional (3.46)
to the scaled version of this equation, by first using a simple parametrization of the unit sphere. It
would allow to obtain a fluid description of this model and prove a mathematically rigorous hydro-
dynamic limit toward this new model.

This strategy being successful, one could then tackle the true granular gases model in dimension
2 and 3, by extending an idea introduced in [197]. Indeed, this recent paper presents the first
multidimensional generalization of the Cercignani-Bony functional. This could be used to generalize
(3.46) to any dimensions.

Numerical simulations of planetary rings formation. It is largely believed in the physics commu-
nity that the good way to describe planetary rings formations is to use granular gases. Nevertheless,
to the best of my knowledge, such a system as never been simulated properly using a collisional ki-
netic approach (see [145, 63]). This is in particular due to the fact that the granular gases equation
exhibits at the same time concentration in velocity, which means that the grids have to be very re-
fined, and the high dimensionality of its collision operator which makes simulations very costly. The
first problem has been resolved in my series of works [FR13, RT16], but the other one was open until
the introduction of the fast algorithm that I have presented in this Chapter. I believe that combining
these two tools would be the key to allow to perform simulations of planetary rings formation.
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This chapter is based on the works [FR15, MRS17, MRS19, BHR20, BR22], written in collaboration
with Rafael Bailo, Marianne Bessemoulin-Chatard, Francis Filbet, Maxime Herda, Ward Melis, and
Giovanni Samaey. Some parts are largely borrowed from these papers.

One of the reasons the Boltzmann equation gained so much importance in the twentieth century
is that it is one the main tools to rigorously derive the equations of fluid dynamics such as the Euler
or Navier-Stokes systems (both compressible and incompressible, see e.g. [60]). These models are
obtained as asymptotic regime(s) of the space inhomogenous kinetic equations, leading in a reduc-
tion of complexity from mesoscopic, kinetic models to macroscopic, fluid ones. Such asymptotic
regimes can be reached by taking the large time limit t →∞ of the general kinetic equation (1.1).
Equivalently, dimensional scaling techniques1 can also help studying this problem, by taking the
small parameter limit ε → 0 for different types of scaling parameters α and β . We shall present in
this Chapter some techniques that have been introduced to deal with these limits qualitatively and
quantitatively, both theoretically and numerically.

1Such as taking et := εt and ex := εx , namely to consider the system at large scales in time and space.
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4.1 Hydrodynamic limits of kinetic equations

Physically-relevant problems usually involves regimes of validity. These regimes are characterized
by the relative size of some dimensionless numbers (such as the Mach or Reynolds ones in fluid
dynamics). The main such quantity in kinetic theory is the so-called Knudsen number ε, and it
somehow characterizes the average number of collisions that one particle undergoes in a typical
amount of time.

We call hydrodynamic limit of the Boltzmann equation any limit ε → 0 of the solution f ε to the
scaled equation (1.1) in the hyperbolic scaling α = 0, β = 1 (namely any highly collisional limit of
the kinetic equation considered). Note that formally, multiplying (1.1) by ε and taking the ε → 0

limit means (if everything remains bounded) that the limiting distribution f 0 will be a zero of the
collision operator Q, a Maxwellian distribution. All the difficulty of studying such limits will be to
characterize properly the description of this equilibrium, and more precisely the fluctuations around
it.

4.1.1 Chapman-Enskog expansion

We shall present one of the techniques introduced to study hydrodynamic limits, in the case of the
Boltzmann collision operator. Part of the content of this Section is going to be formal. The interested
reader on this topic can consult the book [193] and the reference therein.

Let us consider a solution f ε to the scaled Boltzmann equation (1.1). According to the conserva-
tive properties of the collision operator QB, one has

∂tρ
ε + divx(ρ

ε uε) = 0,

∂t(ρ
ε uε) + divx

�∫
Rd

v ⊗ v f ε(v)dv

�
= 0Rd ,

∂tE
ε + divx

�∫
Rd

1

2
|v|2v f ε(v)dv

�
= 0,

(4.1)

where we defined

(ρε,uε, Eε) =

∫
Rd

f ε(v)

�
1, v1, . . . , vd ,

|v|2
2

�
dv; Tε =

1

d ρε

∫
Rd

f ε(v) |v −uε|2 dv.

Now, assuming that the distribution f ε is close to equilibrium thanks to the H-theorem, we can do
formally the Chapman-Enskog expansion

f ε = Mρε ,uε ,Tε
�
1+ ε g(1) + ε2 g(2) + . . .

�
, (4.2)

where the fluctuations g(i) for i ≥ 0 designate a function that depends smoothly on the moment
vector (ρε,uε, Tε)ᵀ and any finite number of its derivatives with respect to the x-variable at the
same point (t, x), and on the v-variable.

Integrating (4.2) with respect to the first powers of v and using the conservative properties of the
collision operator QB, the fluctuations have to verify that∫

R3
g(i)(v)

�
1, v1, . . . , vd ,

|v|2
2

�
dv = 0

ᵀ
Rd+2 .
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Conservation of momentum. Denoting by c(v) = v −uε the local velocity of a particle, one has

v ⊗ v = c ⊗ c + 2uε ⊗ c +uε ⊗uε.

Since the first moment of f ε is exactly ρuε, the second equation in (4.1) yields

∂t(ρ
ε uε) +∇x · (P( f ε) +ρε uε ⊗uε) = 0, (4.3)

where the pressure tensor P(g) is given by

P(g) :=
∫
Rd

c(v)⊗ c(v)g(t, x , v)dv.

Conservation of energy. Since
∫
Rd c(v) f

ε(v)dv = 0, it comes that∫
Rd
|v|2v f ε(v)dv = 2q( f ε) +uε

�
tr (P( f ε)) +ρ|uε|2�+ 2uε · P( f ε),

where the heat flux vector q(g) has been defined by

q(g) :=
1

2

∫
Rd
|c(v)|2c(v) g(v)dv.

Using the fact that tr (P( f ε)) = dρε Tε = 2Eε−ρε|uε|2, one gets the conservation law for the energy:

∂t E
ε + divx (q( f

ε) + Eεuε +uε · P( f ε)) = 0. (4.4)

Hence, one can rewrite (4.1) as
∂tρ

ε + divx(ρ
ε uε) = 0,

∂t(ρ
ε uε) + divx

�
ρεuε ⊗uε +ρεTε

�
I+ �Aε

��
= 0Rd ,

∂tE
ε + divx

�
1

2
ρε|uε|2uε +ρεTε

�
d + 2
2

I+ �Aε
�

uε +ρε(Tε)d/2�Bε
�
= 0,

(4.5)

where the traceless matrix �A
ε ∈ Md and the vector �Bε ∈ Rd are given uniquely in terms of the

fluctuations
�
g(i)
�
i
:

�A
ε
:=

1

ρε

∫
Rd
A(V)

�
f ε(v)−Mρε ,uε ,Tε

�
dv, A(V) = V⊗V− |V|2

d
I,

�B
ε
:=

1

ρε

∫
Rd
B(V)

�
f ε(v)−Mρε ,uε ,Tε

�
dv, B(V) =

1

2

�|V|2 − (d + 2)�V, (4.6)

and where we used the shorthand
V(v) =

v −up
T

.

Therefore, depending on the order in ε of the truncation of the series (4.2), one will obtain different
hydrodynamic descriptions of the fluid. Characterizations of the perturbations g(i) will then be
needed. In particular, one will need to be able to evaluate expressions of the form

QB
�
Mρε ,uε ,Tε

�
1+ ε g(i)

�
,Mρε ,uε ,Tε

�
1+ ε g(i)

��
.

A precise understanding of the linear part of this expression will then be of paramount importance.
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4.1.2 On the linearized Boltzmann operator

Relative entropy and L1 norm. We shall adopt a perturbative approach for studying the linearized
Boltzmann operator. In particular, for a given Maxwellian distribution M, we shall consider the
Hilbert space L2 (M), endowed with its natural inner product

(h, g)L2(M) =

∫
Rd

h(v) g(v)M(v)dv , ∀g,h ∈ L2 (M) .

This scalar product is adapted to the study of perturbations of the thermodynamical equilibria. In-
deed, it is strongly related to the relative entropy (2.28) of the systemwith respect to the equilibrium
of Q. Using some convexity arguments, one has the following

Theorem 4.1.1 (Csiszár-Kullback-Pinsker inequality [112]). Let f , g ∈ L1 �Rd� such that f , g ≥ 0

and ‖ f ‖L1 = ‖g‖L1 = 1. Then, it holds that

‖ f − g‖L1 ≤ 2H[ f |g] ,
where the constant 2 is optimal.

This quantity is then particularly interesting to control the trends to equilibrium of f ε. It is also
linked to the L2 (M) norm. More precisely, if f ε is close to M, say that there is ε � 1 such that
f ε =M (1+ εg), by Taylor expansion one has

H [ f ε|M] (t) = ε2
2

∫
Rd
‖g(t, x , ·)‖L2(M) dx + o

�
ε2
�
.

This yields up to terms of order 3 in ε that

d

d t
H[ f |M](t) = ε2

2

d

d t

∫
Rd
‖g(t, x , ·)‖L2(M) dx ,

=

∫
Rd

�
ε2 ∂t g, g

�
L2(M) dx . (4.7)

Understanding the time evolution of the fluctuation is then essential to study the large time behav-
ior/small ε limit of the Boltzmann equation.

The linearized Boltzmann operator. Let M be a Maxwellian distribution. We define the lin-
earized Boltzmann operator for g ∈ L2 (M) by

LMg :=
1

M
(QB (M,M g) +QB (M g,M)) . (4.8)

In particular, one has for any v ∈ Rd

LMg(v) =

∫∫
Rd×Sd−1

�
g ′∗ + g ′ − g∗ − g

�
M∗ B(v − v∗,σ)dv∗ dσ , (4.9)

where we used the fundamental property of the Maxwellian that

M(v)M(v∗) =M(v′)M(v′∗).
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Now, if M is a global equilibrium (namely it depends only on v), and if f ε = M (1+ εg) is a
solution to the scaled Boltzmann equation (1.1), since QB(M,M) = 0 one has that

∂t g + v · ∇x g = LMg + εQB(Mg,Mg) .

Neglecting the quadratic term (of order ε) gives the so-called linearized Boltzmann equation, whose
solutions approximate the equilibrium fluctuations.

Using the identity (4.9), it is straightforward that the null space of the linearized operator LM is
made of the collisional invariants:

kerLM = Span
�
1, v1, . . . , vd , |v|2

	
.

Using Grad’s angular cutoff assumption, one can also decompose the linearized Boltzmann oper-
ator as a sum of a (local) multiplication operator and a (nonlocal) integral operator:

LMg(v) = Kg(v)− ν(v) g(v) , ∀v ∈ Rd . (4.10)

where the collision frequency ν is a radially symmetric function with polynomial grows at infinity,
given by

ν(v) =

∫∫
Rd×Sd−1

M∗ B(v − v∗,σ)dv∗ dσ , ∀v ∈ Rd , (4.11)

and the operator K is compact on L2 (M) [121]. As a consequence, one has the following classical
result [60]:

Theorem 4.1.2. The operator LM is an unbounded, maximal, nonpositive, self-adjoint Fredholm op-
erator on L2(M). Its domains contains all the continuous functions of v with polynomial growth at
infinity.

The nonpositiveness and self-adjointness of LM means that if g ∈ Dom (LM), one has

(LMg, g)L2(M) ≤ 0.

This corresponds to a linearized version of the nonpositiveness of the entropy in the H-Theorem.
More precisely, if g is solution to the linearized Boltzmann equation

∂t g + v · ∇x g = LM(g),

and f ε =M(1+ ε f ), one has according to (4.7) that

d

d t
H [ f ε|M] (t) =

∫
Rd
(LMg, g)L2(M) (t)dx ≤ 0 , ∀t ≥ 0 .

The relative entropy and the L2(M) norm of the fluctuation are then a dissipated energy of the
linearized Boltzmann equation.
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Spectrum of the scaled, linearized Boltzmann equation. Analyzing the spectrum of the lin-
earized Boltzmann equation is then important to understand correctly the asymptotic behaviors of
the Boltmann equation. In general, the linearized Boltzmann operator has a spectrum that consists
of (i) a non-empty essential (purely continuous) part that is entirely determined by the continuous
spectrum of −ν(|v|)I, and (ii) a set of discrete eigenvalues that is influenced by the operator K, see,
for instance [13]. In contrast, the spectrum of the linear kinetic relaxation operators and linearized
BGK operator only consists of discrete eigenvalues. However, for Maxwellian particles with angular
cut-off and, in particular, for pseudo-Maxwellian particles, it is known from [121] that the spectrum
of LM contains only discrete eigenvalues spread inside the interval [−ν(0), 0].

Assuming that the perturbation gε is not small with respect to ε, the linearized Boltzmann equa-
tion reads

∂t g
ε + v · ∇x g

ε = −1
ε
(ν(|v|)I −K) gε.

Let us apply the Fourier transform in the physical space: since the collision operator depends only
on the velocity magnitude |v|, the only difference in the equation will be that the free transport term
v · ∇x will become a multiplication operator (by iγ · v, where γ is the spatial Fourier variable). One
can then write the Fourier-transformed linear Boltzmann equation as:

∂th
ε =

1

ε
Khε − (ν(|v|)/ε + i εγ · v)hε, (4.12)

where hε is the Fourier transform in space of gε. Hence, the evolution of hε is given by a compact
perturbation of a (complex-valued) multiplication operator. It was proven in a series of papers (see
also [Rey13]) that the spectrum of this Fourier-transformed collision operator has the following
behavior as a function of |γ| and ε:
Theorem 4.1.3 ([181], Section 2, and [88], Theorem 3.1). The spectrum of the RHS of equation
(4.12) consists of an essential part Σe located to the left of a vertical line of negative real part and a
discrete spectrum Σd composed of:

• fast modes: eigenvalues located at a distance at least 1/ε to the left of the imaginary axis;
• an essential spectrum located in an half-plane Σe even farther away on the left off the imaginary

axis;
• slow modes: if |ε| � 1, there are exactly d + 2 eigenvalues branches given by:

λ( j)(|γ|) := iλ
( j)
1
ε|γ| −λ( j)

2
ε2|γ|2 +O

�
ε3|γ|3� , j ∈ {0, . . . , d + 2},

for explicit constants λ( j)
1
∈ R and λ( j)

2
> 0.

A sketch of this result can be found in Fig. 4.1.

Proof. We shall give a very short sketch of the lengthy proof of this result, for ε = 1 (the general
result is obtained by a scaling argument). Let us denote by Lγ the Fourier-transformed, linearized
Boltzmann operator:

Lγh= Kh− (ν(|v|) + i γ · v) h.
This linear operator is the sum of the compact operator K in L2 and of a multiplication operator
Mγ. According to Weyl’s Theorem, its spectrum in L2 is then composed of the spectrum of Mγ and
of discrete eigenvalues. Since Mγ is a multiplication operator, its spectrum is the numerical range of
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Figure 4.1: Spectrum of the Fourier transformed linearized Boltzmann operator, for small radial
frequencies.

the function v 7→ −ν(|v|)− i γ · v. Since Mγ is uniformly bounded by below by a negative constant
[60], its spectrum is then located on the half-plane Σe. Moreover, since v 7→ −ν(|v|)− i γ · v is not
unto, this spectrum is only composed of essential, continuous spectrum. The discrete part is located
on the rightmost part of this set.

Concerning this discrete part, if λγ is an eigenvalue, with associated (nonzero) eigenfunction
hγ ∈ L2, one has

Khγ − (ν(|v|) + i γ · v +λ) hγ = 0

Taking the inner product of this expression with hγ yields:

λ = −
�
ν(v)− 〈Khγ,hγ〉L2

‖hγ‖2L2
�
− iγ
〈v, |hγ|2〉L2
‖hγ‖2L2

.

The careful study of the dependency of this relation on |γ| yields the result.

All these properties will now be used to determine precisely a hierarchy of fluid description,
depending on the order of truncation in the Chapman-Enskog expansion (4.2).

4.1.3 Hierarchy of fluid descriptions

Zeroth order: compressible Euler system. Truncating (4.2) at the zeroth order, namely replacing
f ε by a Maxwellian distribution, one has �Aε = 0Md

and �B
ε = 0Rd Hence, the moments (ρ,u, T) are

solution to the compressible Euler system (1.3):
∂tρ

ε + divx(ρ
ε uε) = 0,

∂t(ρ
ε uε) + divx (ρ

εuε ⊗uε +ρεTε) = 0Rd ,

∂tE
ε + divx

�
1

2
ρε|uε|2uε + d + 2

2
ρεTεuε

�
= 0.

We notice in particular that the Maxwellian distribution in (4.2) is independent on ε.
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First order: compressible Navier-Stokes system. Going to the next order in ε, we plug the ex-
pansion (4.2) in the Boltzmann equation (1.1):

∂

∂ t

�
Mρε ,uε ,Tε

�
1+ ε g(1)

��
+ v · ∇x

�
Mρε ,uε ,Tε

�
1+ ε g(1)

��
=

1

ε
QB

�
Mρε ,uε ,Tε

�
1+ ε g(1)

�
,Mρε ,uε ,Tε

�
1+ ε g(1)

��
.

Gathering the powers of ε, and using the fact that the Maxwellian distribution is an equilibrium of
the collision operator, the fluctuation g(1) is a solution to

∂tMρ,u,T + v · ∇xMρ,u,T = Mρ,u,T LMρ,u,T
g(1) +O(ε), (4.13)

where (ρ,u, T) are the unknowns to be determined and LM is the linearized collision operator
around the Maxwellian distributionMρ,u,T given by (4.8). The evolution of such a local Maxwellian
distribution with respect to the free transport flow is computed as follow

∂tMρ,u,T + v · ∇xMρ,u,T =

Mρ,u,T

�
∂tρ + v · ∇xρ +

1p
T
(V · ∂tu+V⊗ v :∇xu) +

1

2T

�|V|2 − d
�
(∂tT+ v · ∇xT)

�
.

Then, using the conservation laws (4.5), we replace the time derivatives by spatial ones, and drop
the terms of order ε in (4.13). After some tedious but elementary computations, one finds that

LMρ,u,T
g(1) =

�
A(V) : D(u) + 2B(V) · ∇x

p
T
�
, (4.14)

where A, B and V are defined in (4.6) and the traceless deformation tensor D of u is given by

D(u) =∇xu+ (∇xu)ᵀ − 2

d
(divx u) I.

Since the collisional invariants span the null space of the linearized operator LMρ,u,T
, one has that

A(V),B(V)⊥ kerLMρ,u,T
.

The linearized operator LMρ,u,T
being Fredholm, it is invertible on the orthogonal of its kernel. Using

(4.14), it yields
g(1) = L−1Mρ,u,T

(A(V) : D(u)) + 2L−1Mρ,u,T

�
B(V) · ∇x

p
T
�
. (4.15)

We can then plug this expression into the definition (4.6) to obtain [160] that
�A
ε

NS
:=
ε

ρ

∫
Rd
A(V) g(1)(v)dv = −ε µ

ρ T
D(u),

�B
ε

NS
:=
ε

ρ

∫
Rd
B(V) g(1)(v)dv = −ε κ

ρ Td/2
∇xT.

(4.16)

The scalar quantities µ and κ in (4.16), respectively the viscosity and the thermal conductivity, are
given by

µ := −T
∫
Rd
A(V) : L−1Mρ,u,T

(A(V)) (v)dv, κ := −T
∫
Rd
B(V) ·L−1Mρ,u,T

(B(V)) (v)dv.
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They depend on the collision kernel of the model. For example, for the Boltzmann operator in the
hard sphere case γ = 1 and d = 3, there exists (see e.g. [118]) some positive constants µ0, κ0 such
that µ = µ0

p
T and κ = κ0

p
T. In that case, the evolution of the macroscopic quantities at first

order with respect to ε is given by the compressible Navier-Stokes equations
∂tρ + divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗u+ρ T I) = ε divx (µD(u)) ,

∂tE+ divx (u (E+ρ T)) = ε divx (µD(u) ·u+ κ∇xT) .

(4.17)

Second order: Burnett equations. Pushing the expansion (4.2) at second order in ε, we can
use the same type of argument that for the compressible Navier-Stokes system to obtain another
correction of the compressible Euler equations: the Burnett system. Although this system is ill-
posed [118], the computation of its coefficients is still possible. In the simplified, BGK, 3D case, one
has according to [201]:

�A
ε

Burnet t :=
1

ρ

∫
R3
A(V)

�
ε g(1)(v) + ε2g(2)(v)

�
dv

= −ε µ
ρ T

D(u)− 2ε2 µ2
ρ2T2

§
− T

ρ
Hessx(ρ) +

T

ρ2
∇xρ ⊗∇xρ − 1

ρ
∇xT⊗∇xρ

+ (∇xu) (∇xu)ᵀ − 1

3
D(u)divx(u) +

1

T
∇xT⊗∇xT

ª
; (4.18)

�B
ε

Burnet t :=
1

ρ

∫
R3
B(V)

�
ε g(1)(v) + ε2g(2)(v)

�
dv

= −ε κ

ρ T3/2
∇xT− ε2 µ2

ρ2T5/2

§
+
25

6
(divx u)∇xT

− 5

3
[Tdivx (∇xu) + (divx u)∇xT+ 6 (∇xu)∇xT]

+
2

ρ
D(u)∇x (ρ T) + 2Tdivx (D(u)) + 16D(u)∇xT

ª
. (4.19)

4.2 Asymptotic Preserving numerical methods

We have seen that kinetic equations have a large variety of mathematically interesting and physi-
cally relevant asymptotic behavior. Developing numerical methods that are able to accurately re-
produce such behaviors is then crucial when dealing with applications, whether theoretical or with
an engineering goal. Nevertheless, because of the high dimensionality of the phase space (up to
7 dimensions), this can become a real challenge to develop implicit methods able to deal with the
different time scales of the problems.

Historically, two different approaches are generally used to tackle kinetic equations numerically:
deterministic methods, such as finite volume, semi-Lagrangian and spectral schemes [81], and prob-
abilistic methods, such as Direct SimulationMonte Carlo (DSMC) schemes [21]. Bothmethodologies
have strengths and weaknesses. Deterministic methods can normally reach high orders of accuracy.
Nevertheless, stochastic methods are often faster, especially for solving steady problems, but, typi-
cally, exhibit lower convergence rates and difficulties in describing non-stationary and slow motion
flows. In this Section, we will present deterministic strategies for solving kinetic equations while
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Figure 4.2: The AP diagram (h denotes the size of the discretization)

keeping the correct large time or small parameters behaviors. Such methods are called Asymptotic
Preserving (AP).

From a numerical analysis point of view, the need to deal with large times or small parameters is
related to stiffness in the equation. Such stiffness is usually characterized by the (small) mean free
path ε, and becomes infinite when ε tends to zero. In that limit, a limiting macroscopic equation
emerges in terms of a few moments of the particle distribution (density, momentum, energy); the
full particle distribution then relaxes infinitely quickly to a Maxwellian distribution defined by these
low-order moments. There is currently a large research effort in the design of algorithms that are
uniformly stable in ε and approach a scheme for the limiting equation when ε tends to 0. The
general principle of AP schemes can be roughly summarized as the commutative diagram presented
in Fig. 4.2.

In the framework of kinetic equations, AP schemes first appeared two decades ago, on the one
hand for kinetic semiconductors models in two papers, [147] for the linear BGK equation and [196]
for the linear Boltzmann equation, and on the other hand for relaxation models (e.g. two velocities
Goldstein-Taylor) in the article [141]. See the review papers [139, 81] for a large overview of the
topic.

Here, we briefly review some achievements using different strategies. In [138, 142], separating
the distribution function f into its odd and even parts in the velocity variable results in a coupled
system of transport equations where the stiffness appears only in the source term, allowing to use a
time-splitting technique with implicit treatment of the source term; see also related work in [148,
149]. Implicit-explicit (IMEX) schemes are an extensively studied technique to tackle this kind of
problems, see [10, 99] and references therein. See also the recent results in this setting to deal with
nonlinear collision kernels in [80], and an extension to hyperbolic systems in a diffusive limit is
given in [33]. A different approach, based on well-balanced methods, was introduced by Gosse and
Toscani [119, 120], see also [48]. When the collision operator allows for an explicit computation, an
explicit scheme can be obtained subject to a classical diffusion CFL condition by splitting the particle
distribution into its mean value and the first-order fluctuations in a Chapman-Enskog expansion
form [113]. Also closure by moments, e.g. [65], can lead to reduced systems for which time-
splitting provides new classes of schemes [54]. Alternatively, a micro-macro decomposition based on
a Chapman-Enskog expansion has been proposed [159], leading to a system of transport equations
that allows to design a semi-implicit scheme without time splitting. A non-local procedure based on
the quadrature of kernels obtained through pseudo-differential calculus was proposed in [18].
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I will present in the following sections some approaches that I have developed on this topic over
the last few years.

4.2.1 Projective integration

A robust and fully explicit method that was developed recently and allows for time integration of
(two-scale) stiff systemswith arbitrary order of accuracy in time is called projective integration (PInt).
I have devoted quite some time on this topic over the last few years, and this Section will summarize
after an introduction on the topic some of my contributions on this topic.

PInt was proposed in [110] for stiff systems of ordinary differential equations with a clear gap
in their eigenvalue spectrum. In such stiff problems, the fast modes, corresponding to the Jacobian
eigenvalues with large negative real parts, decay quickly, whereas the slow modes correspond to
eigenvalues of smaller magnitude and are the solution components of practical interest. PInt allows
a stable yet explicit integration of such problems by first taking a few small (inner) steps using a
step size δt with a simple, explicit method, until the transients corresponding to the fast modes
have died out, and subsequently projecting (extrapolating) the solution forward in time over a large
(outer) time step of size ∆t � δt. In [154], PInt was analyzed for kinetic equations with a diffusive
scaling. An arbitrary order version, based on Runge-Kutta methods, has been proposed recently in
[152], where it was also analyzed for kinetic equations with an advection-diffusion limit. In [153],
the scheme was used to construct a explicit, flexible, arbitrary order method for general nonlinear
hyperbolic conservation laws, based on relaxation from a kinetic equation. Alternative approaches
to obtain a higher-order PInt scheme have been proposed in [158, 191]. These methods fit within
recent research efforts on numerical methods for multiscale simulation [86, 146].

We do not call PInt methods AP as such, because we cannot explicitly evaluate the scheme for ε = 0

to obtain a classical numerical scheme for the limiting equation. Nevertheless, PInt and telescopic
PInt methods share important features with APmethods. In particular, their computational cost does
(in many cases) not depend on the stiffness of the problem. To be specific, it was shown in [169], for
linear kinetic equations, that the number of inner time steps at each level of the telescopic hierarchy
is independent of the small-scale parameter ε, as is the step size of the outermost integrator. The only
parameter in the method that may depend on ε is the number of levels in the telescopic hierarchy.
For systems in which the spectrum of the collision operator falls apart into a set of clearly separated
clusters (each corresponding to a specific time scale), the number of levels equals the number of
spectral clusters. In this situation, the computational cost is completely independent on ε. When
the collision operator represents a continuum of time scales, the number of PInt levels increases
logarithmically with ε.

PInt is a method that is tailored to problems with exactly two distinct time scales. As such, in the
context of kinetic equations, it matches nicely with the spectral properties of a linear BGK equation,
as was shown in [154]. PInt combines a few small time steps with a naive (inner) timestepping
method (here, a direct forward Euler discretization) with a much larger (projective, outer) time
step. The idea is sketched in Fig. 4.3.

Inner integrators. At the innermost level, we introduce a uniform time mesh with time step δt
and discrete time instants tk = kδt. At this level, we choose the (explicit) forward Euler method
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Figure 4.3: Sketch of projective integration. At each time step , an explicit method is applied
over a number of small time steps so as to stably integrate the fast modes. As soon
as these modes are sufficiently damped, the solution is extrapolated using a much
larger time step (dashed lines).

with time step δt, for which we will, later on, use the shorthand notation:

f k+1 = Sδt( f
k) = f k +δtDt( f

k), k = 0,1, . . . , (4.20)

where Dt is the right hand side of the kinetic equation considered, namely a possible semidiscretized
operator acting on f k. It will depend on the numerical methods chosen for approximating space and
velocity.

The purpose of the inner integrator is to capture the fastest components in the numerical solution
to the kinetic equation (1.1), and to sufficiently damp these out. We only require the innermost
integrator to be stable for these components. The size of the inner time step δt and the required
number of inner steps K will depend on the spectral properties of the semidiscretization of the
equation considered. It will then strongly depend on the model. A lengthy discussion on this topic
was made in [MRS19] (and summarized in Section 4.1.2), but for relaxation kinetic models, δt will
be comparable with ε and K will be less than 3, as was showed in [154] for a simplified model.

Outer integrators. In equation (1.1), the small parameter ε leads to a classical time step restriction
of the form δt = O(εα+β ) for the inner integrator. However, as ε goes to 0, we obtain a limit of the
form (4.1), for which a standard finite volume/forward Euler method only needs to satisfy a CFL
stability restriction of the form ∆t ≤ C∆x , with C a constant that depends on the specific choice of
the scheme.

In [154], it was proposed to use a PInt method to accelerate such a brute-force integration; the
idea, originating from [110], is the following. Starting from a computed numerical solution f n at
time tn = n∆t, one first takes K+ 1 inner steps of size δt using (4.20), denoted as f n,k+1, in which
the superscripts (n, k) denote the numerical solution at time tn,k = n∆t + kδt. The aim is to obtain
a discrete derivative to be used in the outer step to compute f n+1 = f n+1,0 via extrapolation in time:

f n+1 = f n,K+1 +Mδt
f n,K+1 − f n,K

δt
,

where M = ∆t/δt − (K + 1). The size of the (macroscopic) extrapolation step ∆t will result from
the spectral analysis of the collision operator considered.
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Higher-order projective Runge-Kutta (PRK) methods have been constructed [152, 153] by replac-
ing each time derivative evaluation ks in a classical Runge-Kutta method by K + 1 steps of an inner
integrator as follows:

s = 1 :


f n,k+1 = f n,k +δtDt( f

n,k), 0≤ k ≤ K

k1 =
f n,K+1 − f n,K

δt

2≤ s ≤ S :


f n+cs ,0
s = f n,K+1 + (cs∆t − (K+ 1)δt)

s−1∑
l=1

as,l

cs
kl ,

f n+cs ,k+1
s = f n+cs ,k

s +δtDt( f
n+cs ,k
s ), 0≤ k ≤ K

ks =
f
n+cs ,K+1
s − f

n+cs ,K
s

δt

f n+1 = f n,K+1 + (∆t − (K+ 1)δt)
S∑

s=1

bsks.

To ensure consistency, the Runge-Kutta matrix a = (as,i)Ss,i=1, weights b= (bs)Ss=1, and nodes c =
(cs)Ss=1 satisfy the conditions 0≤ bs ≤ 1 and 0≤ cs ≤ 1, as well as:

S∑
s=1

bs = 1,

S−1∑
i=1

as,i = cs, 1≤ s ≤ S.

4.2.2 Telescopic projective integration

In general, the stiff kinetic equation contains more than two distinct time scales. In this section, we
therefore describe an extension of PInt, called telescopic projective integration (TPInt) and introduced
in [111], that can handle multiple time scales. This method has been studied in the context of linear
BGK equations with multiple relaxation times in [169].

TPInt employs a number of projective integrator levels, which, starting from a base (innermost)
integrator, are wrapped around the previous level integrator [111]. In this way, a hierarchy of
projective integrators is formed in which each level (except the innermost and outermost ones)
fulfills both an inner and outer integrator role. This generalizes the idea of PInt, which contains only
one projective level wrapped around an inner integrator. On that account, in the TPInt framework,
the PInt method is called a level-1 TPInt method. The idea of a level-3 TPInt method with K = 2 on
each projective level is sketched in Fig. 4.4. The different level integrators in a TPInt method can in
principle be selected independently from each other, but in general one selects a first order explicit
scheme (the forward Euler scheme) for all but the outermost integrator level, whose order is chosen
to meet the accuracy requirements dictated by the problem.

Innermost integrator We intend to integrate the kinetic equation considered using a uniform time
mesh with time step h0 and discrete time instants tk = kh0. The innermost integrator of the TPInt
method is chosen to be the forward Euler (FE) method,

f k+1 = f k + h0Dt( f
k).

In the sequel, we use the following shorthand notation:

f k+1 = S0( f
k) (k = 0,1, . . .),
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Figure 4.4: A level-3 TPInt method drawn for three outermost time steps h3 (bottom row) with
K = 2 on all projective levels. The dots correspond to different time points at which
the numerical solution is calculated. The time step and projective step size of each
level `= 0, . . . , 2 are denoted by h` and M`, respectively.

in which S0 denotes the time stepper with corresponding time step h0. Also in the TPInt method,
the purpose of the innermost integrator is only to capture the fastest components in the numerical
solution of the considered equation, and to sufficiently damp these out. As a consequence, it is
ill-advised to use higher-order methods for the innermost integrator, see [169] for a more detailed
discussion.

Projective (outer) levels The TPInt method employs in general L nested levels of projective in-
tegration that are constructed around the innermost integrator. In [111], the method has been
introduced in a recursive way. Here, following [169], we describe the method in an alternative way,
to make the presentation more similar to that of classical PInt.

To keep track of the time instant at which the numerical solution is computed throughout the TPInt
method and at the same time desiring a compact notation, in what follows, we employ superscript
triplets of the form (`,n, k`)where ` denotes the integrator level ranging from 0 (innermost) to L−1,
n represents the index of the current outermost integrator time tn = nhL, and k` corresponds to the
iteration index of the integrator on level `. The numerical time on each level `= 0, . . . , L− 1 is then
defined as (see also Fig. 4.4):

t`,n,k` = nhL +
L−1∑
`′=`

k`′h`′ . (4.21)

Notice that, for a certain level `, this time requires the iteration indices k`′ of all its outer integrators.
Therefore, it incorporates a memory that keeps up with the current time instants at which the outer
integrators of a given level ` integrator have arrived at and is necessary to take into account to
correctly reflect the numerical time of the solution on each level `.

Starting from a computed numerical solution f n at time tn = nhL, one first takes K0 + 1 steps of
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size h0 with the innermost integrator:

f 0,n,k0+1 = S0( f
0,n,k0) (0≤ k0 ≤ K0), (4.22)

in which f 0,n,k0 corresponds to the numerical solution at time t0,n,k0 calculated by the innermost
integrator. Since all outer integrator iteration indices k`′ , `′ = 1, . . . , L−1 are initially zero in (4.21),
we have t0,n,k0 = nhL + k0h0. The repeated action (4.22) of the innermost integrator is depicted by
small black arrows in the upper row of Fig. 4.4, for which we chose K0 = 2.

In the TPInt framework, the scheme is set up from the lowest level up to the highest level. The aim
is to obtain a discrete derivative to be used on each level to eventually compute f n+1 = f 0,n+1,0 via
extrapolation in time. Using the innermost integrator iterations (4.22), we perform the extrapolation
by a projective integrator on level 1, written as:

f 1,n,1 = f 0,n,K0+1 + (M0h0)
f 0,n,K0+1 − f 0,n,K0

h0
, (4.23)

which corresponds to the projective forward Euler (PFE) method. In (4.23), f 1,n,1 represents the
numerical solution at time t1,n,1 calculated by one iteration of the first level projective integrator.
Since k1 = 1 and all its outer integrator iteration indices k`′ , `′ = 2, . . . , L− 1 are still zero in (4.21),
we have t1,n,1 = nhL + h1. One step of the first level integrator is visualized by a large green arrow in
the upper row of Fig. 4.4. By repeating this idea, we construct a hierarchy of projective integrators
on levels `= 1, . . . , L− 1, given by:

f `,n,k`+1 = f `−1,n,K`−1+1 + (M`−1h`−1)
f `−1,n,K`−1+1 − f `−1,n,K`−1

h`−1
, (4.24)

in which, on each level `, we iterate over k` = 0, . . . , K`. In (4.24), f `,n,k` denotes the numerical
solution at time t`,n,k` calculated by the projective integrator on level `. According to (4.21), this
time depends on the values k`′ , `′ = `+ 1, . . . , L− 1 of all of its outer integrators. In Fig. 4.4, these
projective integrator steps are shown by long arrows for each level ` = 1, . . . , 3. Ultimately, the
outermost integrator on level L computes f n+1 as:

f n+1 = f L−1,n,KL−1+1 + (ML−1hL−1)
f L−1,n,KL−1+1 − f L−1,n,KL−1

hL−1
. (4.25)

Since the outermost integrator (4.25) also constitutes a PFE scheme, the telescopic method resulting
from the hierarchy of projective levels (4.24)-(4.25) is called telescopic projective forward Euler
(TPFE).

It is straightforward to implement higher-order extensions of the outermost integrator, as is done
in [152]. We mention the projective Runge-Kutta methods of order 2 and 4, leading to TPRK2
and TPRK4 method in the telescopic case. In general, the outermost integrator in a TPRK method
replaces each time derivative evaluation ks in a classical Runge-Kutta method by KL−1 + 1 steps of
its inner integrator on level L− 1.

4.2.3 Parameters for projective and telescopic projective integration

It still remains to select appropriate parameter values for the PInt and TPInt methods. These are de-
termined by ensuring that all eigenvalues of the kinetic problem under study fall within the stability
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Figure 4.5: Asymptotic stability region for the projective forward Euler integrator, with M =
∆t/δt − (K+ 1).

region of the full projective method. In Section 4.1.2 and [MRS19], we showed that the spectra of
the linearized kinetic equations either appear in two stationary eigenvalue disks (linearized BGK
equation with ν = 1) or are continuously spread along (a part of) the negative real axis (linearized
BGK equation with ν = ρ and linearized Boltzmann equation). Let us summarize below the main
results on these topics, from [153, 169].

Stationary, well-separated spectrum. For the linearized BGK equation with ν = 1, it was shown
in [153] that the spectrum consists of two stationary, well-separated eigenvalue clusters (a fast and
slow, dominant cluster). To accommodate these two clusters, the method parameters of PInt can be
selected such that its stability region splits up into two parts.

1. First, the inner integrator time step δt is chosen corresponding to the fastest time scale of the
problem, which is of the order of ε. This centers one stability region of the projective method
around the fast eigenvalues.

2. Next, the number of inner integrator time steps K is chosen such that all fast eigenvalues lie
inside this stability region. In [153], it was proven that we require K ≥ 2.

3. Last, the outer integrator time step ∆t is selected such that all dominant eigenvalues fall into
the second stability region of the projective method.

Since both K and∆t are independent of the small-scale parameter ε, the resulting projective method
has a cost that is also independent of ε, which becomes increasingly advantageous for ε → 0. Fig.
4.5 summarizes this parameters choice.

Continuously spread spectrum. When considering the linearized BGK equation with ν= ρ, part
of the spectrum varies continuously over the negative real axis. This also holds true for the lin-
earized Boltzmann equation [Rey13], or mixtures of species [44], see Fig. 4.1. In this case, we
require that the stability region of the numerical method does not split up but instead comprises
the entire negative real axis up to the fastest eigenvalue of the problem (a numerical method with
this property is termed [0,1]-stable). Here, for simplicity, we assume that the fastest eigenvalue at
t = 0 corresponds to the fastest possible eigenvalue for all other times t > 0. Since [0,1]-stable PInt
methods lose practically all of their potential speed-up, [0,1]-stable TPInt methods can be designed
with much higher speed-ups. We describe the strategy that was used in [169], to which we refer for
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Figure 4.6: Asymptotic stability region for the telescopic projective forward Euler integrator.

more details.

1. Similarly to PInt, the innermost integrator time step h0 of the TPInt method is chosen corre-
sponding to the fastest time scale, which is of the order of ε/maxx ρ(x , 0).

2. Next, we fix the outermost time step we would like to use, taking into account a CFL-like
stability constraint, as follows: hL = C∆x .

3. Before choosing the number of projective levels, we decide on the number of inner integrator
time steps K, which we consider to be fixed on each projective level. For each chosen value of
K there is a corresponding maximal value of M such that the stability region does not split up,
see [111].

4. The required number of projective levels L to obtain a [0,1]-stable telescopic method is com-
puted as:

L≈ log(hL) + log(1/h0)
log(M+ K+ 1)

. (4.26)

5. For the given values of h0, hL, K and L adapt the value of M on the different projective levels
such that the following equation:

hL =
L−1∏
`=0

(M` + K+ 1)h0 (4.27)

is valid.

For a [0,1]-stable telescopic method, the values of hL, M` and K are independent of ε. However,
as indicated by equation (4.26), the number of projective levels increases as O(log(1/ε)). As a
consequence, the cost of a [0,1]-stable TPIntmethod is not completely ε-independent. However, the
dependence is rather modest. Fig. 4.6 summarizes this parameters’ choice.

4.2.4 Applications to single species gases

PInt and TPint where successfully used in the series of works [MRS17, MRS19] to simulate nu-
merically solutions to the nonlinear BGK and Boltzmann equations. The collision frequency is the
coefficient ν from (4.11) appearing in the former operator.

BGK in 1D/1D. We consider a Sod-like test case for x ∈ [0,1] for the BGK equation (1.1) with the
collision operator QBGK (1.25) in 1D/1D. It consists of an initial centered Riemann problem with the
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following left and right state values:ρLuL

TL

 =
10
1

 ,

ρRuR

TR

 =
0.1250

0.25

 . (4.28)

The initial distribution f ε(0, x , v) is then chosen as the Maxwellian distribution corresponding to
the above initial macroscopic variables. We impose outflow boundary conditions and perform sim-
ulations for t ∈ [0,0.15]. As velocity space, we take the interval [−8,8], which we discretize on
a uniform grid using J = 80 velocity nodes. Below we regard three gas flow regimes, ε = 10−1
(kinetic regime), ε = 10−2 (transitional regime) and ε = 10−5 (fluid regime), and for each regime,
we compare solutions for two cases of collision frequency ν in the BGK equation (1.25), ν = 1 and
ν= ρ.

Direct integration (ε = 10−1 and ε = 10−2). In the kinetic (ε = 10−1) and transitional (ε = 10−2)
regimes, we compute the numerical solution for ν= 1 and ν= ρ using the fourth order Runge-Kutta
(RK4) time discretization with time step δt = 0.1∆x . The results are shown in Fig. 4.7 for ν = 1

(left) and ν= ρ (right), where we display the density ρ, macroscopic velocity u and temperature T
at t = 0.15. In addition, we plot the heat flux q. The different regimes are shown by blue (kinetic)
and purple (transitional) dots. The red line in each plot denotes the limiting (ε → 0) solution of
each macroscopic variable, which all converge to the solution of the Euler system (1.3) with ideal
gas law P = ρT and heat flux q = 0.

PInt (ε = 10−5 and ν= 1). In the fluid regime (ε = 10−5), direct integration schemes such as RK4
become too expensive due to a severe time step restriction, which is required to ensure stability of
the method. Exploiting that the spectrum of the linearized BGK equation with ν= 1 resembles that
of the linear kinetic models used in [153], we construct a PInt method to accelerate time integration
in the fluid regime. As inner integrator, we select the forward Euler time discretization with δt =
ε. As outer integrator, we choose the fourth-order projective Runge-Kutta (PRK4) method, using
K = 2 inner steps and an outer step of size ∆t = 0.4∆x . Fig. 4.7 (left) shows the macroscopic
observables in the fluid regime for ν= 1 at t = 0.15 (green dots). From this, we observe that the BGK
solution is increasingly dissipative for increasing values of ε since the rate with which f ε converges
to its equilibrium becomes slower. In contrast, for sufficiently small ε, relaxation to thermodynamic
equilibrium occurs practically instantaneous and the Euler equations (1.3) yield a valid description.
Since this is a hyperbolic system, it allows for the development of sharp discontinuous and shock
waves which are clearly seen in the numerical solution.

Telescopic projective integration (ε = 10−5 and ν= ρ). Next, we repeat the above experiment taking
ν= ρ in the BGK equation. We now design a TPIntmethod, since, for this choice of ν, the spectrum of
the linearized BGK equation is spread along the negative real axis and is time-dependent. Therefore,
the previous two-scale nature becomes a multi-scale problem. We construct a [0,1]-stable TPRK4
method consisting of 2 projective levels with FE as innermost integrator with time step h0 = ε,
constant K = 6 on each level and an outermost time step h2 = 0.4∆x . The extrapolation step sizesM
on each level are calculated asM = {14.24,11.83}. The results are shown by green dots in figure 4.7
(right). We conclude that the effect of choosing ν = ρ primarily manifests itself in the transitional
regime (ε = 10−2), for which the relaxation rate is not too slow nor too fast. Moreover, it is seen
that this choice of collision frequency does not alter the hydrodynamic limit of the BGK equation,
which is captured correctly by the telescopic scheme.
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Figure 4.7: BGK in 1D/1D. We take ν = 1 (left) and ν = ρ (right) at t = 0.15 for the Sod tube
(4.28). RK4 is used for ε = 10−1 (blue dots) and ε = 10−2 (purple dots) with δt =
0.1∆x . The PRK4 (left) and level-2 TPRK4 (right) methods are used for ε = 10−5
(green dots). Red line: limit solution (ε→ 0).

In this numerical test, the speed-up factor between the naive RK4 implementation and the PInt
method is 130.3.It is 8.2 between RK4 and TPInt.

BGK and Boltzmann in 1D/2D. We perform the Sod test (4.28) of the previous section in 1D/2D,
for the BGK and Boltzmann operators. As velocity space, we take the domain [−8,8]2, which we
discretize on a uniform grid using Jx = Jy = 32 velocity nodes along each dimension. In all simu-
lations, space is discretized using the WENO2 spatial discretization with ∆x = 0.01. We compare
again solutions in the transitional ε = 10−2 and fluid ε = 10−5 regimes, for BGKwith ν= 1, BGK with
ν = ρ and Boltzmann with pseudo-Maxwellian particles. To approximate the Boltzmann collision
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operator, we apply the fast spectral method described in Chapter 2 using Nθ = 4 discrete angles.

Direct integration (ε = 10−2). In the transitional regime, we perform all simulations using the RK4
method with time step δt = 0.1∆x , for which we display the results in Fig. 4.8 (left) for BGK with
ν = 1 (blue dots), BGK with ν = ρ (green dots) and the Boltzmann equation (red dots). From
this, we observe that the BGK solution with ν= ρ is closer to the Boltzmann solution than the BGK
solutionwith ν= 1. This is as expected, since the BGK equationwith ν= ρ correctly captures the loss
term of the Boltzmann collision operator, see 1.3.1. Moreover, the discrepancy between Boltzmann
and BGKwith ν= ρ increases for higher order moments of f ε; while the density appears to coincide,
the heat flux reveals a clear difference between the models.
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Figure 4.8: BGK and Boltzmann in 1D/2D. We take ε = 10−2 (left) and ε = 10−5 (right) at
t = 0.15 for the Sod tube (4.28). Blue dots: BGK with ν = 1; green dots: BGK with
ν = ρ; red dots: Boltzmann. For ε = 10−2, RK4 with δt = 0.1∆x . For ε = 10−5,
PRK4 (blue dots) and level-2 TPRK4 (green and red dots) methods.
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Projective methods (ε = 10−5). In the fluid regime, the RK4 method becomes too expensive. To
that end, for BGK with ν = 1, we design a PRK4 method with FE as inner integrator using δt = ε,
K = 2 inner steps and∆t = 0.4∆x . Due to the multi-scale nature of both the BGK relaxation operator
with ν= ρ and the Boltzmann collision operator, we construct a [0,1]-stable level-2 TPRK4 method
for both models using the FE scheme as innermost integrator with h0 = ε. We set K = 4 constant on
each level, compute the extrapolation step sizes as M = {14.24,11.83}, and choose the outermost
time step as h2 = 0.4∆x . The results can be seen in Fig. 4.8 (right). For all models, the PInt and
TPInt methods display the expected hydrodynamic limit.

In these numerical tests, the speed-up factor between a naive RK4 implementation and the PInt
method for the PRK4 method for the BGK model with constant relaxation is 133.3. The speedup for
the TPRK4 method for the BGKmodel with nonconstant relaxation rate and the Boltzmann equation
is 13.

A Kelvin-Helmoltz like instability problem. Here, we consider the BGK equation in 2D/2D with
constant collision frequency ν = 1, for the so-called Kelvin-Helmoltz instability. This phenomenon
occurs when two fluids of different densities and in thermodynamic equilibrium move at different
speeds. Such system will exhibit turbulent, unstable vortices at the interface between the two fluids,
because of the velocity shear [214]. In order for these instabilities to develop, the Reynolds number
of the fluids considered must be large. Using the von Karman relation [199], which states that
the Reynolds number is inversely proportional to the Knudsen number ε, we choose the very small
Knudsen number ε = 5 · 10−5 along with the following initial condition inspired from [167]:

ρ1
ux
1

u
y

1

T1

 =


1

0.5

0.01 sin (4πx)
1

 (y ≥ 0),


ρ2
ux
2

u
y

2

T2

 =


2

−0.5
0.01 sin (4πx)

1

 (y < 0). (4.29)

The initial distribution f ε(0, x , v) is chosen as the Maxwellian corresponding to these moments. We
impose periodic and outflow boundary conditions along the x- and y-directions, respectively, and
we perform simulations for t ∈ [0,1.6]. As velocity space, we take the domain [−8,8]2, which we
discretize on a uniform grid using Jx = Jy = 30 velocity nodes along each dimension. We discretize
space using the WENO2 method on [−0.5,0.5]× [−0.5,0.5] with Ix = I y = 100.

Since we consider again the BGK equation with constant collision frequency ν = 1, the spectrum
of the linearized BGK operator consists of two eigenvalue clusters. Therefore, we construct a PInt
method to speed up simulation in time, the PRK4 method with FE as inner integrator. The inner
time step is fixed as δt = ε and we use K = 3 inner steps in each outer integrator iteration. The
outer time step is chosen as ∆t = 0.45∆x . The simulated density and pressure at time t = 0.4, 0.9
and 1.6 are displayed in Fig. 4.9.

In this numerical test, the speed-up factor between a naive RK4 implementation and the PInt
method is 22.5.

Boltzmann in 2D/2D. As a last experiment, we concentrate on the Boltzmann equation with
pseudo-Maxwellian particles in 2D/2D. As initial configuration for the gas, we consider the double



88 CHAPTER 4. ASYMPTOTIC BEHAVIORS OF NUMERICAL KINETIC EQUATIONS

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4
y

Density

1

1.5

2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Pressure

0.8

1

1.2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

y

1

1.5

2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.8

1

1.2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x

y

1

1.5

2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x

0.8

1

Figure 4.9: BGK in 2D/2D. Density (left) and pressure (right) of the Kelvin-Helmoltzm-like
instability at times t = 0.6 (first row), 0.9 (second row) and 1.6 (third row).

Sod shock test, that is, for (x , y) ∈ [−0.5,0.5]2, we set:ρ1u1

T1

 =
0.10

1

 (x y ≤ 0),

ρ2u2

T2

 =
10
1

 (otherwise). (4.30)

The initial distribution f ε(0, x , v) is then chosen as the Maxwellian distribution corresponding to
the above macroscopic variables. We impose outflow boundary conditions along both dimensions
and perform simulations for t ∈ [0,0.16]. As velocity space, we take the domain [−8,8]2, which we
discretize on a uniform grid with Jx = Jy = 32 velocity nodes along each dimension. Furthermore,
we discretize the spatial domain using theWENO2 spatial discretization with Ix = I y = 64 grid points
along each dimension, and we fix ε = 5 · 10−5. The Boltzmann collision operator is approximated
again using the fast spectral method with Nθ = 4 discrete angles.
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For the time simulation of the Boltzmann equation, we apply a level-2 TPRK4 method with FE
as innermost integrator using h0 = ε as innermost time step. We set K = 3 constant on each level
and compute the extrapolation step sizes as M = {6.66,4.80}. The outermost time step is chosen as
∆t = 0.3∆x . In Fig. 4.10, we plot various macroscopic observables of interest at t = 0.16: density,
macroscopic velocity along x , kinetic energy and temperature. Then, pressure and the Mach number
are obtained, respectively, as P= ρT and Ma= |u|/pT.

In this test, the speed-up factor between a naive RK4 implementation and the TPInt method is
5.9.

Boltzmann equation in 2D/2D (level-2 TPRK4 + WENO2)
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Figure 4.10: Boltzmann in 2D/2D. We choose the Maxwellian pseudo-molecule kernel at t =
0.16 for a double Sod shock test (4.30). Velocity space is discretized using Jx =
Jy = 32. We applied a level-2 TPRK4 method with FE as innermost integrator and
h0 = ε = 5 · 10−5 together with WENO2 with Ix = I y = 64.
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4.2.5 Applications to gas mixtures

In this section, we apply our PInt and TPInt schemes to various physical scenarios of multiple species
gases, in order to showcase the robustness and versatility of the methods. We shall then solve
numerically the kinetic equation (1.1) with the BGK approximation of the multiple species collision
operator (1.29) from [123]. All the figures are taken from [BR22].

Mixture Sod Tube & ExtremeMass Ratios (1D/1D) We shall employ here a setting inspired from
the classical Sod Tube. Firstly, we entertain an analogue of the Riemann problem which involves
two initially separate gases, whose solution can be constructed in the same fashion as that of the
classical problem; see the appendix for the derivation. Secondly, rather than solving a multifluid
Euler system, we solve the corresponding problem for the multispecies BGK model, and compare its
moments to the aforementioned analytic solution, exploiting the limiting behaviour of the kinetic
equation..

Mixture Sod Tube. We will consider two gases in a one-dimensional domain Ω = (0,1). The
mass ratio m2/m1 and Knudsen number will vary through the examples. The initial configuration
will emulate a Riemann problem with left state (ρL,uL, TL) = (1,0,1) and right state (ρR,uR,PR) =
(2−3, 0, 2−5), where the left state is entirely comprised of the first gas, and the right state of the
second. To that end, we prescribe their initial distributions as Maxwellians with moments�

ρ1 = (1−δ)ρL, ρ2 = δρL, u1 = u2 = vL, T1 = T2 = TL, if x ≤ 0.5;

ρ1 = δρR, ρ2 = (1−δ)ρR, u1 = u2 = vR, T1 = T2 = TR, if x > 0.5.
(4.31)

Ideally, we would set δ = 0, but this leads to an ill-defined temperature, so we let δ = 10−5. This
pattern will also be used in later experiments whenever a density is zero. We henceforth refer to
this problem as the mixture Sod Tube problem.

To begin, we verify the behavior of this problem in the hydrodynamic limit. We will compute
numerically the solution with datum (4.31) with mass ratio m2/m1 = 1, for three different values of
the Knudsen number: ε = 10−1, 10−2, and 10−6. The larger values of epsilon do not pose significant
stiffness, so a direct integration method can be used; for ε = 10−6, we resort to a telescopic two-level
method.

The solution is computed over the time interval t ∈ (0,0.15). The domain Ω is discretized with
∆x = 2−10, and the velocity space is set as (−20,20), with∆v = 2−4. For the direct method employed
on the larger values of ε, we let∆t = 1.53× 10−5. In the telescopic method, we choose h0 = 5× 10−7,
h1 = 2× 10−6, and h2 = 6.1× 10−5, and step numbers K0 = 1 and K1 = 6. We impose no-flux
boundary conditions.

Fig. 4.11 shows the numerical solutions superimposed on the analytical limiting solution. As the
Knudsen number decreases, the moments of the solution approach the correct hydrodynamic limit.

A CPU Benchmark. We now revisit the problem (4.31) to conduct a CPU benchmark. We will
solve the problem for ε = 10−5, ε = 10−6, and ε = 10−7 with the telescopic method as well as the
direct method, and compare the measured and theoretical computational times. The domain Ω is
discretized with ∆x = 2−8, and the velocity space is set as (−20,20), with ∆v = 2−4. For the direct
method, we let ∆t = ε/2. In the telescopic method, we choose h0 = ε/2, h1 = 2ε, and h2 =∆x/16,
and step numbers K0 = 1 and K1 = 6. We impose no-flux boundary conditions.
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Figure 4.11: Mixture Sod Tube. Numerical solutions with decreasing Knudsen number and unit
mass ratio. The solutions approach the correct ε→ 0 limit.

Table 4.1 shows the CPU time of each simulation, the real improvement factor (the ratio of CPU
times of the direct method to the telescopic method), and the theoretical improvement factor. The
theoretical factor is overly optimistic, as it assumes that the projection steps have negligible com-
putational cost; nevertheless, the telescopic method is faster for ε = 10−5 and vastly superior for
smaller values of the Knudsen number.

Extreme Mass Ratios. It is of great interest to attempt the numerical solution of problems with
extremely large mass ratios. Indeed, a simple mixture of Ar and He exhibits a mass ratio of 10,
which can be a problem for some numerical methods, as noted in [217]. Their method can deal
with mass ratios up to 35; however, ratios twice as large can easily be found in other scenarios, such
as mixtures of H2 and Xe.

We will demonstrate the behavior of our scheme in the context of a hydrodynamic limit under an

ε CPU Time (s) Improvement factor

Direct Telescopic Real Theoretical
10−5 54 47 1.15 3.49

10−6 508 47 1.08× 101 3.49× 101
10−7 5660 48 1.18× 102 3.49× 102

Table 4.1: Mixture Sod tube. CPU Time (rounded to nearest second) and improvement factor
for the benchmark of the mixture Sod tube.
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Physical Phase space discretization Time discretization

m1 1 ∆x 2.5× 10−2 K0 1

m2 5 ∆y 2.5× 10−2 K1 6

ε 10−5 ∆v 2.5× 10−1 h0 5× 10−6 (= ε/2)
h1 2× 10−5 (= 2ε)
h2 1.25× 10−3 (=∆x/20)

Table 4.2: Parameters for the shock-bubble interaction test.

extrememass ratio. Conveniently, the asymptotic behavior of the mixture Sod Tube problem remains
unchanged if we assume that the gases have different molecular masses; therefore, it remains a
suitable validation case.

We solve the problem for mass ratios m2/m1 = 5, 30, and 100, in the hydrodynamic regime and
compare the solutions. We let ε = 10−6. The spatial discretization is done as before. The velocity
space is set as (−60,60), with ∆v = 2−4; such large domain is unnecessary for the smaller mass
ratios, but will be required for m2/m1 = 100. We again choose h0 = 5× 10−7, h1 = 2× 10−6, and
h2 = 6.1× 10−5, though this time we set K0 = 1 and K1 = 14; again, the large step number is only
required for the larger mass ratios. In order to justify our velocity discretization, we will also solve
the m2/m1 = 100 case with varying velocity spaces (−Lv , Lv), for Lv = 40, 60, and 80, keeping the
rest of the parameters fixed.

In all cases we deal with the large velocity supports directly. The recent work [47] has used a
rescaling velocity approach reminiscent of [FR13] to overcome the same issue, but their strategy
remains limited to mass ratios up to 20.

Fig. 4.12 shows the numerical solutions, again superimposed on the limiting solution. The effects
of the extreme mass ratios can be seen at point of contact discontinuity (the boundary between
the two gases), magnified in the figure. The left column shows the solutions with various mass
ratios; the overall hydrodynamic limit is captured well. However, the interfacial effects are more
pronounced as the mass ratio increases, and will require a smaller Knudsen number before they
become imperceptible. The right column shows the effect of the choice of velocity domain in the
solution: Lv = 40 leads to widespread error, whereas Lv = 60 recovers the correct behavior, and is
in fact indistinguishable from Lv = 80.

Shock-Bubble Interaction (2D/2D). We investigate the interaction between a traveling shock and
a smooth stationary bubble. This is a multispecies adaptation of a one-species test case proposed in
[206]; the original test has been used to validate numerical schemes, including PInt [MRS19].

We will consider a mixture of two gases with mass ratio m2/m1 = 5 in a rectangular domain Ω =
(−1.5,3)× (−1.5,1.5). The Knudsen number is chosen in the hydrodynamic regime, ε = 10−5. The
initial configuration of the first (lighter) gas is a normal shock wave of Mach number 2 propagating
in the positive x-direction. Its initial distribution is chosen as the Maxwellian corresponding to the
following Riemann datum:�

ρ1 = 2, u1,x = 1.414, u1,y = 0, T1 = 2.5, if x ≤ −1;
ρ1 = 1, u1,x = 0, u1,y = 0, T1 = 1, if x > −1. (4.32)
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Figure 4.12: Extreme mass ratios. Left: higher mass ratios yield slower hydrodynamic conver-
gence. Right: high mass ratios require larger velocity domains (−Lv , Lv) in order
to capture the correct behaviour.

The second (heavier) gas is initially stationary: a Maxwellian with density

ρ2(0, x) = exp(−16|x − x0|2). (4.33)

The temperatures of both gases around the bubble are chosen equal to each other and in such a way
that there is unit total pressure.

Numerically, the domain Ω is discretized with ∆x = ∆y = 2.5× 10−2 (180 × 120 cells). The
velocity space is set as (−12,12)2, with ∆v = 2.5× 10−1 (962 cells). In total, the phase space is
discretized with 199,065,600 cells. We impose outflow boundary conditions.

The solution is computed over the time t ∈ (0,1.5). We employ the telescopic two-level method,
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Figure 4.13: Shock-bubble interaction. evolution of the first (lighter) species. Left: datum.
Middle: shock interacts with bubble. Right: pressure waves arise as a result of the
shock-bubble interaction. Simulation parameters can be found in Table 4.2.

with step sizes h0 = 5× 10−6, h1 = 2× 10−5, and h2 = 1.25× 10−3, and step numbers K0 = 1 and
K1 = 6. The inner steps follow the pattern 4h0 = 2ε = h1. The outermost step is restricted by the
stability of the transport scheme, rather than the PInt. The use of TPInt decreases the computational
cost by a factor of S ' 18. This factor, considering the fine and high-dimensional mesh employed
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Physical Phase space discretization Time discretization

m1 1 ∆x 2.5× 10−4 K0 1

m2 5 ∆y 2.5× 10−4 (=∆x) K1 6

ε 10−6 ∆v 2.5× 10−1 h0 5× 10−7 (= ε/2)
h1 2× 10−6 (= 2ε)
h2 6.25× 10−5 (=∆x/4)

Table 4.3: Parameters for the Richtmyer-Meshkov instability test.

here, is extremely beneficial, reducing the simulation time from a matter of days to a matter of
hours!

Fig. 4.13 shows the evolution of the first (lighter) gas at several times. The shock travels to
meet the bubble; when they meet, the central (y ' 0) portion of the shock is slowed down. As the
shock traverses the bubble, two pressure waves are formed: one traveling upstream, appears as a
reflection from the initial shock-bubble interaction; the second, traveling downstream, arises as the
shock surrounds the obstacle and both “arms” meet behind the bubble.

Richtmyer-Meshkov Instability (2D/2D). We conclude with the so-called Richtmyer-Meshkov
instability. This is a phenomenon which takes place when the perturbed interface between a thin
and a dense gas is momentarily accelerated by a passing shock. The misalignment of the pressure
gradient (due to the shock) and the density gradient induces vorticity, which leads to the formation
of a mushroom-like interface. A more detailed physical background, as well as experimental images,
can be found in [11].

We shall consider two gases with mass ratio m2/m1 = 5 in a rectangular domain Ω = (−0.5,0.5)×
(0,0.5). The Knudsen number is here chosen as ε = 10−6 in order to correctly resolve the instability.
The gases are initially separate: the first (lighter) gas occupies the x ≤ b(y) region, with a perturbed
boundary given by x = −10−2 sin(20πy), whereas the second (heavier) gas lies in the rest of the
domain. The initial configuration of the first gas is a normal shock wave of Mach number 1.21
propagating in the positive x-direction. Its initial distribution is chosen according to the following
Riemann datum:�

ρ1 = 1.268, u1,x = 0.256, u1,y = 0, p1 = 0.809, if x ≤ s0;

ρ1 = 1, u1,x = 0, u1,y = 0, p1 = 0.5, if x > s0;
(4.34)

s0, the initial position of the shock, is a negative constant. The second gas is initially stationary, with
density ρ2 = 5, and pressure p2 = 0.5 to ensure the boundary is initially not forced. The initial
distribution of the gases are the Maxwellians corresponding to these moments. For convenience,
in order to avoid the interface leaving the domain, all the horizontal velocities are decreased by
7× 10−2.

Numerically, the domain Ω is discretized with∆x =∆y = 2.5× 10−4 (400×200 cells). The veloc-
ity space is set as (−4,4)2, with ∆v = 2.5× 10−1 (322 cells). In total, the phase space is discretized
with 81,920,000 cells. We impose outflow boundary conditions.

The solution is computed over the time t ∈ (−0.02,1.0). We choose the negative initial time
and let s0 = 2.42× 10−2 so that the shock crosses the x = 0 line exactly at t = 0. We employ the
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Figure 4.14: Richtmyer-Meshkov instability: density of the second species and modulus of the
total momentum. Left: after the initial shock interaction, vortices arise. Right: the
interface is deformed into a mushroom-like shape. Simulation parameters can be
found in Table 4.3.

telescopic two-level method, with step sizes h0 = 5× 10−7, h1 = 2× 10−6, and h2 = 6.25× 10−5,
and inner steps K0 = 1 and K1 = 6. Once more, the inner steps follow the pattern 4h0 = 2ε = h1

and the outermost step is restricted by the hyperbolic CFL condition. The use of TPInt decreases the
computational cost by a factor of S' 9.

Fig. 4.14 shows the density of the heavier gas and the modulus of the total momentum of the
system at two different times. The gas interface is seen deforming as it develops a mushroom-like
shape. Vortices are visible on either side of the perturbation, and much of the system’s momentum
is found at the interface.

4.3 Discrete Hypocoercivity

Investigating the theoretical behavior of numerical methods is also important to assess their valid-
ity. We will present in this Section a work that was done in [BHR20] to establish the exponential
decay to equilibrium of the numerical solutions of toy kinetic equations, by mimicking the strategies
developed for proofs in the continuous settings.
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4.3.1 L
2−Hypocoercivity

Because of the overall gradient flow structure (in the x − v–phase space) of equation (1.1) with the
linear Fokker-Planck operator, or the relaxation structure with the linearized Boltzmann operator
[RT13], one can naturally believe that the solutions to this equation will exhibit a relaxation towards
some global2 Maxwellian equilibrium M. This is a classical problem, which can be traced back to
the seminal work of Hörmander [134] on the hypoellipticity of linear operators.

The first partial proof of this large time behavior can be found in [16]. It was then proved for
a very large class of collision operators (with or without confinement in velocity) in [125], and in
the series of papers [83, 39] (see also the references therein) that for a suitable norm, the rate of
convergence towards the equilibrium is exponential: there exists some constants λ > 0 and C ≥ 1

such that
‖ f (t)−M‖X ≤ C‖ f0 −M‖X e−λt ,

in a well chosen Hilbert space X . We shall call this type of behavior hypocoercivity [213] (the case
C= 1 corresponding to classical coercive behavior).

A very robust proof for establishing such a result can be found in the paper [83]. It uses a so-called
“modified entropy functional” defined for a solution f ε to (1.1) as:

H( f ε(t)) =
1

2
‖ f ε(t)‖2

L2(M−1) + ηε
2 〈 jε,∂xφε〉L2x , (4.35)

where φε is solution to the Poisson equation −∂ 2x xφε = ρε. It is shown in [83] that for small enough
η, this functional is equivalent to the norm on L2

�
M−1

�
, and that if f ε is of finite mass and velocity,

H( f ε(t)) decays exponentially fast toward the global Maxwellian equilibrium, at a rate which is
essentially independent on ε on the diffusive scaling α = β = 1. Note the strong link between this
result and the solution to the full Boltzmann equation, through the analysis we have made in Section
4.1.2.

We extended in [BHR20] this result to the fully discrete setting for both the BGK and the Fokker-
Planck equations. This is closely related to the recent result [85], which established a discrete
hypocoercivity property in H1

�
M−1

�
for the Fokker-Planck equation. Let us present our results in

the BGK case.

4.3.2 The full implicit scheme

In [BHR20], we introduced numerical schemes for Equation (1.1) in both the Fokker-Planck and
the BGK cases. The schemes are of finite volume type [93], meaning that they are based on an
approximation of the fluxes appearing in the integrated version of (1.1) on each cell Ki j. In the
time variable we choose a backward Euler discretization so that we have almost for free some AP
properties.

The mesh. We first restrict the velocity domain to a bounded symmetric segment [−v?, v?], since it
is not possible in practice to implement a numerical scheme on an unbounded domain. We consider
a primal mesh of this interval composed of 2L control volumes arranged symmetrically around v = 0.

2due also to the mixing properties of the free transport operator on the torus.
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Figure 4.15: Discretization of the velocity domain.

We thus get 2L+1 distinct interface points denoted by v j+ 1
2
(for consistency with usual finite volume

notations) with j = −L, . . . , L. In this way

v−L+1/2 = −v? , v1/2 = 0 , v j+1/2 = −v− j+1/2 ∀ j = 0, . . . , L .

The cells of the primal mesh are given by

V j := (v j− 1
2
, v j+ 1

2
) , j ∈ J := {−L+ 1, . . . , L}.

Each cell V j has length ∆v j = v j+ 1
2
− v j− 1

2
and midpoint v j. At the level of cells, the symmetry of the

velocities reads v j = −v− j+1 for all j = 1, . . . , L. We also define the dual mesh with cells

V∗
j+1/2 := (v j , v j+1) , j ∈ J ∗ := {−L, . . . , L} ,

with v−L := v−L+1/2 = −v? and vL+1 := vL+1/2 = v?. The length of the dual cell V∗
j+1/2 is ∆v j+1/2 =

v j+1 − v j. Notations introduced are illustrated in Fig. 4.15.

In space, we consider a discretization of the torus T into N subintervals

Xi := (x i− 1
2
, x i+ 1

2
) , i ∈ I := Z/NZ

of length ∆x i and centers x i. In what follows, we assume that N is odd. Indeed, this assumption
is natural to obtain, among others, a discrete Poincaré inequality on the torus with our choice of
discrete gradients, as explained in [BHR20].

The control volumes in phase space are defined by

Ki j := Xi × V j , ∀(i, j) ∈ I ×J .

The size of the phase-space discretization is defined by δ = max(∆x ,∆v) where ∆x and ∆v are
the maximum of (∆x i)i∈I and (∆v j) j∈J respectively. Finally, we set ∆t > 0 the time step, and we
define tn = n∆t for all n≥ 0.

First of all, we discretize the initial datum fin by

f 0i j =
1

∆x i∆v j

∫∫
Ki j

f (0, x , v)dx dv, ∀(i, j) ∈ I ×J .

Discrete Maxwellians. The equilibria of the discrete BGK operator, the discrete Maxwellians, are
defined in the following way: we assume that we are given cell valuesM= (M j) j∈J ∈ RJ satisfying
the following assumptions

M j > 0 , M j = M− j+1 , ∀ j = 1, . . . , L ;∑
j∈J

M j∆v j = 1 ;

0 < m
2
≤ m∆v

2
≤ m2 , m∆v

4
≤ m4 ,

(4.36)
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where for k ∈ N
m∆v

k
:=

∑
j∈J
|v j|kM j∆v j

and m
2
, m2, m4 are some universal constants.

Fully discrete BGK equation. In the case of the BGK operator, the scheme is given as follows. For
all i ∈ I, j ∈ J , n≥ 0,

ε∆x i∆v j( f
n+1
i j − f n

i j ) +∆t

�
Fn+1

i+ 1
2
, j
−Fn+1

i− 1
2
, j

�
=
∆t

ε
∆x i∆v j

�
ρn+1

i M j − f n+1
i j

�
, (4.37)

where the numerical flux Fn+1
i+ 1

2
, j
is defined by

Fn+1
i+ 1

2
, j
= v j

f n+1
i+1, j + f n+1

i j

2
∆v j , ∀ j ∈ J , ∀i ∈ I , (4.38)

and for all i ∈ I and n≥ 0, the discrete macroscopic density is given by the centered approximation

ρn
i :=

∑
j∈J
∆v j f

n
i j . (4.39)

Existence and uniqueness of a solution to the fully implicit scheme (4.37) is established as a
by-product of some discrete “entropy” estimate.

4.3.3 The discrete AP and hypocoercivity properties

Our discrete AP and hypocoercivity results can be summarized in the following Theorem.

Theorem 4.3.1 (Theorems 1 and 2 of [BHR20]). Let us consider a discrete Maxwellian satisfying
(4.36), and assume that the number of points N in the space discretization is odd. Then there are
constants C ≥ 1 and β > 0 such that for all ε ∈ (0,1), all ∆t ≤ ∆tmax and all initial data ( f 0

i j
)i∈I, j∈J ,

the solution
�
f n
i j

�
i∈I, j∈J ,n∈N of (4.37) satisfies the following properties.

• Unconditional stability in the diffusion limit. there is ρn = (ρn
i
)i∈I for all n ≥ 0 such that

when ε→ 0 one has
f n
ε −→ ρnM in RI×J , for all n≥ 1

and the limit satisfies a finite difference scheme for the heat equation with initial data ρ0
i
=∑

j∈J ∆v j f
0
i j
.

• Discrete hypocoercivity. One has for any n f n −µ f M

2,γ
≤ C

 f 0 −µ f M

2,γ

e−
β
2
tn . (4.40)

Moreover, the constants C and β do not depend on the size of the discretization δ, and ∆tmax > 0 can
be chosen arbitrarily.

The ‖·‖2,γ denotes a discretized L2
�
M−1

�
norm. Note that we also proved an analogous result for

a Chang-Cooper-like discretization [62] of the Fokker-Planck operator.
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Strategy of proof. In [BHR20], we adapted the strategy of proof of [83]. For this we introduced
a discrete modified entropy functional which reads

H( f n) :=
1

2
‖ f n‖2

2,γ +ηε
2
∑
i∈I
∆x iJ

n
i (Dxφ)

n
i +

ηε2

2

∑
i∈I
∆x i

�
(Dxφ)ni − (Dxφ)n−1i

�2
∆t

, (4.41)

where η > 0 will be determined later and (φn
i
)i∈I is the solution of the following discrete Poisson

equation

−(Dxφ)ni+1 − (Dxφ)ni−1
2

= ∆x iρ
n
i , ∀i ∈ I, (4.42)∑

i∈I
∆x iφ

n
i = 0. (4.43)

This discrete version of the modified entropy functional has an additional third term compared
to (4.35). It is of order O(∆t) and thus consistent with 0, so that taking limits in the discretization
parameters, we recover (at least formally at this stage) the continuous modified entropy (4.35). It
does not perturb the adaptation of the strategy of [83]. In particular, one has the following discrete
energy estimate that allows to assess the well-posedness of the fully implicit numerical method and
the validity of the AP property:

Lemma 4.3.2 (Discrete “energy” estimate). Let us consider a discrete Maxwellian satisfying (4.36)
and let ( f n

i j
)i∈I, j∈J ,n∈N solve the scheme (4.37)). Then for every n≥ 0 ,

‖ f n+1‖2
2,γ − ‖ f n‖2

2,γ

2∆t
+

1

ε2
‖ f n+1 −ρn+1M‖2

2,γ ≤ 0 . (4.44)

In particular one has

max

�
sup
n≥0
‖ f n‖2

2,γ,
2

ε2

∞∑
n=1

∆t ‖ f n −ρnM‖2
2,γ

�
≤ ‖ f 0‖2

2,γ . (4.45)

We also have discrete estimates on the solution to the discrete Poisson equation (φi)i∈I:

Lemma 4.3.3 (Discrete elliptic estimates). Under the assumptions of Theorem 4.3.1, one has

‖Dxφ
n‖2 ≤ CP ‖ρn‖2 , ∀n≥ 0, (4.46)(Dxφ)n+1i
− (Dxφ)ni
∆t


2

≤ ‖Jn+1i ‖2 , ∀n≥ 0, (4.47)

where CP is the discrete Poincaré constant.

Finally, these two results allow to obtain the decay of the modified entropy functional, which is
the core of the proof of the discrete hypocoercivity result:

Proposition 4.3.4. Under the assumptions of Theorem 4.3.1, there is η2 > 0 such that for all ε ≤ 1,
∆t ≤∆tmax and η ≤ η2,

H( f n+1)−H( f n)
∆t

+ K(η)
�‖ f n+1 −ρn+1M‖2

2,γ + ‖ρn+1‖2
2

� ≤ 0 , ∀n≥ 1 ,

with K(η) = 1
2 min

�
1−ηm2,ηm2

�
.
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A very robust implementation, as well as many numerical simulations are also available in the
main paper. They confirm the interests of our strategy of mimicking continuous properties to design
numerical methods.

4.4 Hybridization through domain indicators

The last technique we will present is this Chapter is a different paradigm of AP schemes, that was
presented in [FR15]. It consists in using the theoretical Chapman-Enskog expansion to design a
so-called hybrid kinetic/fluid scheme with an automatic domain-decomposition criterion allowing to
identify accurately spatial zones were the fluid equations are more relevant than the kinetic ones,
and conversely. For the sake of computational efficiency, we will present a space decomposition
which minimizes the size of the kinetic layer, allowing to take advantage of the low computational
cost of numerical methods for fluid systems. As far as possible, this method will also be non-intrusive
for the solvers. More precisely, except for the implementation of the domain decomposition indica-
tors, it will be independent on the kinetic and fluid solvers, which will not necessitate deep mod-
ifications. The macroscopic description will always by of the compressible type, and the regime of
interest will be the hydrodynamic α= 0, β = 1 one.

4.4.1 Domain indicators

There are several different works about hybrid methods for the BGK and Boltzmann equations (1.1)
in the literature, the largest part relying on the same domain decomposition technique introduced
in [40]. This paper uses a macroscopic criterion to pass from the hydrodynamic description (easy
to compute numerically, but inaccurate near shocks or boundary layers) to the kinetic one (com-
putationally expansive but accurate in most of the situations). This criterion is based on the local
Knudsen number of the problem: when this quantity is below a (problem-dependent) threshold, the
kinetic description is used. The first practical use of this method is due to [150], by using a discrete
velocity model of the Boltzmann equation for the kinetic part, and a kinetic scheme for the hydro-
dynamic part. It has been more recently used in [79, 70], with a Monte-Carlo solver for solving the
kinetic equation and a finite volume method for the macroscopic ones.

The hydrodynamic breakdown indicator introduced in [203] is also very close to the previous
criterion, as it is based on the viscous and heat fluxes of the Navier-Stokes equation, through a
Grad’s 13-moments expansion. It has been used for deterministic solver in [71, 204, 205]. Some
hybrid deterministic/kinetic approaches were then used in [2, 78, 66] to solve the more complex
Vlasov-Poisson-BGK system.

Nevertheless, these criteria, being based only on a macroscopic criterion, prevent the domain
decomposition technique to accurately deal with cases where the spatial variations are small, but
the regime is far from the thermodynamical equilibria. We then need criteria in both regimes: one to
know when the hydrodynamic description breaks down, and another one to know when the kinetic
description is actually in hydrodynamic regime. We shall use the Chapmann-Enskog expansion
presented in Section 4.1.1.
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From Fluid to Kinetic: the Moment Realizability Criterion. Let f ε be a solution to the scaled
kinetic equation (1.1) in the hydrodynamic scaling. The matrix Aε and the vector Bε defined in (4.6)
will allow us to define our hydrodynamic break down criterion, using an idea from [160].

Let us define the (reduced) moment realizability matrix by setting

V := I+Aε − 2

3Cε
B
ε ⊗ Bε (4.48)

where C̄ε is the dimensionless fourth order moment of f ε:

C̄ε :=
2

3ρ

∫
R3

� |V|2
2
− 3

2

�2
f ε(v)dv.

One can show (see [FR15]) that the fluctuations in the Chapman-Enskog expansion (4.2) of f ε are
small if, and only if, V is a positive definite matrix. It allows to define a criterion to determine the
appropriate model – fluid or kinetic – to be used, based on the signe of the eigenvalues of V.

For example, let us consider the zeroth order model with respect to ε, the compressible Euler
system. We have that AEuler = 0M3

, BEuler = 0R3 , and C̄ε = 1 and then

VEuler := V1 = I.

On the other hand, consider the first order model, that is the compressible Navier-Stokes system.
By cutting the Chapman-Enskog expansion (4.2) at the first order with respect to ε (i.e. Navier-
Stokes order), we can compute explicitly the matrix Vε. We have in this case using the expressions
(4.16) and by symmetry arguments that C̄ε = 1, and

VNS := Vε = I− ε µ
ρT

D (u)− ε22
3

κ2

ρ2T3
∇xT⊗∇xT, (4.49)

where (ρ,u, T) are solution to the Navier-Stokes equations (4.17).

Hence, we claim that the compressible Euler system is correct when the matrix VNS behaves like
the matrix VEuler = I, that is, it is positive definite and if its eigenvalues are close to 1 or not: The
Euler description of the fluid will be considered incorrect if

|λNS− 1|> η0, ∀λNS ∈ Sp(VNS), (4.50)

where η0 is a small parameter (here we take η0 = 10−2).
More generally, we denote by f ε

k
the kth order truncation of the Chapman-Enskog expansion (4.2):

f ε
k
:=Mρ,u,T

�
1+ ε g(1) + ε2 g(2) + . . .+ εk g(k)

�
. (4.51)

For a given truncation (4.51) of order k, we will say that the fluid model associated is incorrect at
point (t, x) if we have

|λεk −λεk+1 |> η0, ∀λεk ∈ Sp(Vεk), λεk+1 ∈ Sp(Vεk+1). (4.52)

This strategy has been more recently refined for more complex kinetic equations in [103], and
by my PhD student Tino Laidin for the Vlasov-BGK model in the diffusive scaling in [155], with a
rigorous numerical analysis of the hybrid method.
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From Kinetic to Fluid. Knowing the full kinetic description of a gas, there exists a large number
of methods to decide how far this gas is from the thermal equilibrium, namely the fluid regime. We
decide to use a simple comparison between the kinetic density f ε, solution to the collisional equation
(1.1) and the truncated Chapman-Enskog distribution f ε

k
given by (4.51), whose moments match

the one of f ε, and whose order k corresponds to the order of the macroscopic model considered.

Our criterion is then the following: The kinetic description at point (t, x) corresponds to an hy-
drodynamic closure of order k if  f ε(t, x , ·)− f ε

k
(t, x , ·)

L1v
≤ δ0, (4.53)

where δ0 is a small parameter (we take δ0 = 10−4) and if the eigenvalues of the moment realizability
matrix Vεk computed using the moments of f ε does not verify the criterion (4.52).

If k = 1 (Compressible Euler setting), this criterion corresponds to the natural one

‖ f ε(t, x , ·)−Mε
ρ,u,T(t, x , ·)‖L1 ≤ δ0,

namely to check if the system is locally at the thermodynamic equilibrium or not.

In particular, if we perform the Chapman-Enskog expansion (4.2) of f ε, the criterion (4.53) cor-
responds to the fact that the remainder term in this expansion is small in L1 norm, because it is then
given by ∑

n>k

εi g(i)(t, x , ·)

L1v

≤ δ0.

4.4.2 Numerical simulations

We take in all the simulations dx = 1. In particular, the moment realizability matrices Vεk are
diagonal. In the e.g. Navier-Stokes case, it is given by

VNS =


1− ε µ

ρT
∂xu

x − ε2 κ2

ρ2T3
(∂xT)

2 0 0

0 1+ ε
µ

ρT
∂xu

x 0

0 0 1+ ε
µ

ρT
∂xu

x

 ,

where u = (ux ,uy ,uz). We can then read its eigenvalues on its diagonal. The criterion for k = 0 for
a fluid cell to be kinetic at the next iteration is then����ε µρT∂xux + ε2

κ2

ρ2T3
(∂xT)

2

����≤ η0 or
����ε µρT∂xux

����≤ η0. (4.54)

Using the expression of the Burnett coefficients (4.18)-(4.19), we can easily write the same type or
criterion for the Navier-Stokes closure k = 1.

Let us present some numerical simulations of the non homogeneous 1D×3D BGK equation (1.25),
for the one dimensional Sod tube problem. We will compare them with the numerical solution
obtained by solving the full kinetic equation on a fine mesh. We have computed an approximation
for different Knudsen numbers from rarefied regime up to the fluid limit and report the results for
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Figure 4.16: Hybrid Sod tube with ε = 10−2: Order 0 (Euler); Density, mean velocity and
temperature at times t = 0.05, 0.10 and 0.20.

ε = 10−2 and 10−3. The time integrator is the RK4 method and the space integrator is a WENO2
method.

On the one hand, in Fig. 4.16 and 4.18, we plot the results obtained in the rarefied regime with
ε = 10−2, for the zeroth order model, namely the Euler dynamics. The kinetic reference solution
is computed with 200 × 128 × 32 × 21 cells in phase space, the fluid reference solution with 200

points whereas the hybrid scheme is used with 100 points in x and the size of the velocity grid is
32×32×32 points. We observe that the fluid solution is far from the kinetic one, which was expected
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Figure 4.17: Hybrid Sod tube with ε = 10−2: Order 1 (CNS); Density, mean velocity and tem-
perature at times t = 0.05, 0.10 and 0.20.

since the Knudsen number is large. Nevertheless, the hybrid scheme behaves very nicely in this case,
detecting correctly the non-equilibrium zone and the solution is close to the kinetic one. This error
is mainly due to the application of the Euler equations for which the heat flux is zero (hence some
errors in this particular quantity, see Fig. 4.18). Then, in Fig. 4.17 and 4.19, we perform the same
simulations for the first order, Compressible Navier-Stokes (CNS) model. Although the fluid solution
is still far from the kinetic one, we observe that the result of the kinetic solver is in almost perfect
agreement with the reference solution, even in large time. This can also be observed in the values
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of the heat flux, which are close to the reference ones.
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Figure 4.18: Hybrid Sod tube with ε = 10−2: Order 0 (Euler); heat flux at times t = 0.05, 0.10,
0.15 and 0.20.
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Figure 4.19: Hybrid Sod tube with ε = 10−2: Order 1 (CNS); heat flux at times t = 0.05, 0.10,
0.015 and 0.20.
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Test Sod 10−2 Sod 10−3 Blast 10−2 Blast 5 · 10−3 Blast 10−3
Euler 0.03 0.03 0.02 0.02 0.02
CNS 0.08 0.09 0.1 0.1 0.11
BGK 113 120 160 161 158

Hybrid (Euler) 61.2 20.1 57 11 0.12
Hybrid (CNS) 25.6 4.9 23 18 3.3

Table 4.4: Comparison of the computational times (sec), t = 0.10, Nx = 100, Nv = 323.

Concerning the computational times for the same configuration (Nx = 100 and Nv = 323), the
hybrid schemes, both zeroth and first order, are more efficient than the kinetic models. Indeed, we
ran in the paper [FR15] an extensive amount on simulations, with many different models, test cases
and values of the Knudsen number. We reproduce the speed up test in Table 4.4.

4.5 Perspectives

Projective integration of the kinetic Keller-Segel model. We have seen that PInt and TPInt are
good strategies to develop (almost) AP numerical integrator for a very large class of kinetic equation,
in both the hydrodynamic and diffusive scaling, and with very lightly intrusive ways. One particular
model still resisting the development of general purpose AP strategy is the Run-and-tumble chemo-
tactic model (1.31). In the diffusive scaling, it was shown in particular that its diffusive limit is
the seminal Patlak-Keller-Segel equation. Nevertheless, some open questions remain on the blowup
behavior of this limit for a certain range of the initial parameters. Having a robust AP scheme would
help answer these questions.

There is only a handful numerical methods AP in the diffusive limit for this model [58, 64],
but they are limited to very restricted cases because of the use of an odd-even decomposition of
the initial data, with local grid refinement for taking the blowup into account. Nevertheless, a
high order “spectral” method in velocity for this model has been recently introduced in [49], using
orthogonal polynomials. We plan to use this solver in velocity and the PInt approach introduced in
[MRS19, BR22] in time to write arbitrarily high order methods for the run-and-tumble model.

In order to prove the convergence, a study of the spectral structure of this chemotaxis model is
envisaged: this is expected to be a difficult problem, because of the possibility of blowup in finite
time for this model, which complicates the spectral analysis. Nevertheless, some of the techniques
developed in [Rey13] would come in handy.

Projective integration of the granular gases equation. As was pointed out in [Rey13], the gran-
ular gases equation with a thermal bath shares a lot of spectral properties with the Boltzmann
equation. In particular, the spectrum of such equation separates into a series of clusters, and the
use of a TPInt integrator could provide an AP scheme for this model. This would be a true novelty,
because no such time integrator exists for granular gases.
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Discrete hypocoercivity with confinement. A natural followup of the results of [BHR20] on dis-
crete hypocoercivity will be the adjunction of a mean-field-like confinement term in the kinetic
equation, for the study of the numerical drift-diffusion limit

∂tρ +∇x · J = 0,where J = −∇xρ +ρ∇xV,

−∆xV = ρ.

and for obtaining a discrete hypocoercivity result on the whole space. This could also be done by
generalizing the results of [83]. This direction of work is part of the PhD thesis of Tino Laidin.
Generalizing this results to the linearized Vlasov-Poisson-BGK equation could then be envisaged,
using the ideas introduced in [1].

This modified entropy technique has already been extended to study the large time behavior
of many other phenomena modeled by collisional kinetic equations. Let us mention for example
the Fokker-Planck-like equation used to model the extrusion of synthetic fiber on a conveyer belt
described in [82]; the modeling with equation (1.31) of bacteria such as E. Coli moving via biased
velocity jumps in [50]; or the system of BGK-like nonlinear equations describing the behavior of two
chemical reactants produced by the decay of another specie introduced in [180]. We believe that
these are also candidates models for extending our discrete entropy approach to build numerical
methods exhibiting the correct numerical trend to equilibrium.

Hybrid schemes for mixtures. The development of a systematic technique to derive hierarchy
of hybrid numerical methods in [FR15] opens a large number of followups. It has already been
extended to the multidimensional in space case with high order Discontinuous Galerkin method in
[103] for the ES-BGK model. It has also been analysed in the simplified linear BGK case in [155].

Extension to mixtures seems pretty straightforward, because the correct Chapman-Enskog ex-
pansion has been established recently in [31]. This would allow for the development of regime
indicators as in [FR15] for more realistic models of gas mixtures. Extension to complex geometries
in space would also be very interesting in that context, in order to model realistic situations such
as the atmospheric reentry of a space shuttle. A very heavy computational engineering effort would
also be required for the development of an efficient code for this problem.
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Résumé

Cette habilitation couvre une grande partie des recherches effectuées depuis mon doctorat. Les
principales questions que je me suis posées concernent le champ de la modélisation, de l’analyse et
des simulations numériques de systèmes composés d’un grand nombre de particules ou agents en in-
teraction, grâce à l’utilisation d’équations cinétiques collisionnelles comme l’équation de Boltzmann,
l’équation des gaz granulaires, ou des modèles cinétiques de comportement collectifs. Ces modèles
décrivent de nombreuses situations complexes et vitales pour le monde moderne, comme par exem-
ple la pollution, les transports ou les maladies. Les comprendre mathématiquement, les analyser, et
savoir les résoudre numériquement de manière précise et efficace est un problème important.

Avec mes collaborateurs scientifiques, nous avons donc travaillé sur trois grandes thématiques qui
sont présentées dans ce texte. La première concerne le développement de nouvelles méthodes spec-
trales pour calculer efficacement et avec la plus grande précision possible les opérateurs dits de colli-
sion qui interviennent dans ces modèles, les analyser et les implémenter efficacement. La deuxième
concerne la compréhension de l’équation des gaz granulaires, modèle encore très largement ouvert
et incompris, et notamment ses limites hydrodynamiques de type compressibles. La troisième, enfin,
concerne l’étude des comportements asymptotiques en temps longs et petits paramètres de ces équa-
tions, et le développement de méthodes numériques préservant ces comportements, les méthodes
dites AP.

Abstract

This habilitation thesis covers a large part of the research I have carried out since the end of my
PhD training. This work has been essentially aimed at modeling, analyzing and simulating systems
composed of a large number of interacting particles or agents. These systems can be described
through the framework of collisional kinetic equations, such as the seminal Boltzmann’s equation,
the granular gases equations, or kinetic systems of collective behavior. Such models describes com-
plex and sometimes vital situations in amodern, evolving world, such as pollution, traffic and disease
spreading, to name but a few. To understand them mathematically, to analyze them, and to be able
to solve them accurately and efficiently with numerical methods is an important modern problem.

With my scientific collaborators, we have worked on three main topics that are presented in this
text. The first one concerns the development of new spectral methods to calculate efficiently and
with the highest possible accuracy the so-called collision operators which intervene in these models,
to analyze them and to implement them efficiently. The second one concerns the understanding of
the granular gas equation, a model which is still largely open and misunderstood, and in particular
its hydrodynamic limits of the compressible type. The third, finally, concerns the study of asymptotic
behaviors in long time and small parameters of these equations, and the development of numerical
methods preserving these behaviors, the so-called AP methods.
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