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Chapitre 1

Introduction

1 Modélisation d’un plasma de tokamak

Cette thése s’inscrit en partie dans un projet de longue haleine qui consiste a construire
un tokamak afin de produire de 'énergie grace a la fusion thermonucléaire controlée. Cette
source d’énergie est inépuisable et complétement décarbonée. Un tokamak est un disposi-
tif, inventé dans les années 50, constitué¢ d’une chambre a vide torique, dans laquelle est
confiné un plasma d’hydrogéne grace a un fort champ magnétique. De nombreux tokamaks
existent dans le monde. Depuis quelques années, un projet international, le projet de to-
kamak ITER (International Thermonuclear Experimental Reactor), consiste a construire a
Cadarache dans le sud de la France un tokamak de 6 métres de diamétre, qui sera le plus
grand jamais construit. [ITER devrait produire son premier plasma d’ici 2030. ITER est un
projet expérimental. Son successeur, DEMO est prévu pour produire réellement de I'énergie.

Pour des raisons d’ingénierie, il est nécessaire de disposer de modéles numériques pour simu-
ler sur ordinateur le fonctionnement des tokamaks. Le modéle mathématique fondamental
pour les plasmas est constitué des équations de Vlasov-Poisson. [.’équation de Vlasov est une
équation de transport en temps posée dans un espace a 6 dimensions (espace des positions
et des vitesses) qui décrit ’évolution de la distribution des particules chargées. La force qui
accélére les particules contient deux composantes : une composante magnétique, imposée par
les bobines du tokamak et une composante électrique auto-consistante. Le champ électrique
est solution de ’équation de Poisson qui décrit I’évolution du potentiel électrique en fonction
de la charge. L’équation de Poisson est posée dans un espace a trois dimensions. La charge
électrique est obtenue en intégrant en vitesses la fonction de distribution des particules. Fi-
nalement, le systéme de Vlasov-Poisson est un systéme de deux équations linéaires couplées,
mais le couplage est non linéaire. La géométrie du tokamak est relativement simple, mais
c’est surtout la géométrie du champ magnétique imposée qui fixe les trajectoires des par-
ticules. Il est donc important de résoudre les équations sur des maillages adaptés a cette
géométrie, ce qui conduit & des schémas numériques finalement assez complexes. Comme
le systéme de Vlasov-Poisson est posé dans un espace a 6 dimensions, il est actuellement
impossible de le résoudre numériquement, méme sur un supercalculateur. Par conséquent,
des modéles simplifiés ou modéles réduits ont été développés afin de rendre les simulations
faisables. Le modéle de choix, qui nécessite encore une puissance de calcul conséquente, est
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le modéle gyrocinétique qui permet de passer de 6 a 5 dimensions [51]. D’autres réductions
conduisent a des modéles encore plus simples, comme le modéle dit de drift que nous étu-
dierons dans cette thése. La propriété commune des modéles réduits que nous étudierons est
que ce sont des équations de transport conservatives, dont la vitesse de transport est calcu-
lée & partir de la solution d’une équation de Poisson. L’équation de transport conservative
est un cas particulier de systéme de lois de conservation hyperbolique. L’objectif de cette
thése est donc d’étudier une nouvelle méthode numérique pour la résolution des systémes de
lois de conservation hyperboliques. Cette méthode sera particuliérement optimisée pour étre
appliquée a des équations de transport a vitesse variable pour la simulation des plasmas de
tokamak.

2 Modélisation des conditions aux bords

Le traitement des conditions aux limites est un aspect particulierement important dés qu’il
s’agit de réaliser des simulations dans des conditions réalistes. Pour un systéme hyperbolique
quelconque, le nombre de conditions & imposer en un point du bord du domaine de calcul
dépend en général de I'évolution de la solution. La facon d’imposer la condition est égale-
ment importante pour s’assurer de la stabilité et de la précision de la solution numeérique.
Un schéma parfaitement stable et d’ordre trés élevé dans le domaine de calcul peut facile-
ment retomber a 1’'ordre 1 ou devenir instable avec des conditions aux limites mal concues.
Les conditions admissibles pour les équations de transport sont relativement simples a com-
prendre : il ne faut les imposer que sur les bords du domaine de calcul ou la vitesse est
rentrante. Mais si la théorie mathématique est simple & comprendre, la pratique numérique
s’avere plus complexe.

3 Difficultés numériques

Les problémes de transport issus de la physique des plasmas de tokamak présentent cer-
taines caractéristiques particuliéres. D'une part, la taille des maillages et ’évolution rapide
des champs interdisent en pratique l'utilisation de schémas implicites pour 1’équation de
transport. L’équation de Poisson nécessite la résolution d’un systéme linéaire a chaque pas
de temps, mais la matrice de ce systéme est fixée et, en général, liée & un probléme bidi-
mensionnel dans les plans poloidaux du tokamak. Les schémas explicites imposent un pas
de temps contraint par la condition de stabilité de Courant-Friedrichs-Lewy (CFL). En pra-
tique, cette contrainte CFL, purement numérique, peut imposer des pas de temps trop petits
par rapport a la précision requise, ce qui rend les calculs trés lents. Ce probléme est particu-
lierement contraignant pour les particules rapides, correspondant aux queues de distribution,
donc peu nombreuses, qui imposent le pas de temps a toute la simulation. D’autre part, les
solutions calculées sont souvent turbulentes et présentent donc de fortes variations qui im-
posent des maillages trés fins. Il est important de maitriser aussi le signe de la fonction de
distribution, qui doit rester positive.



4. METHODES CINETIQUES POUR LE TRANSPORT 7

4 Meéthodes cinétiques pour le transport

Dans cette thése, nous allons développer une nouvelle méthode cinétique pour résoudre
les systémes hyperboliques de lois de conservation et plus particuliérement 1’équation de
transport a vitesse variable qui apparait dans les modéles de drift pour les plasmas de
tokamak. La caractéristique principale de cette méthode est qu’elle permet de construire des
schémas explicites sans CFL. Nous présenterons cette méthode, en proposerons une analyse
de stabilité, y compris en présence de conditions aux limites. Enfin, nous appliquerons cette
méthode pour des modeéles de drift issus de la physique des plasmas de tokamak.

Le plan du document est le suivant :
e Ce chapitre (Chapitre 1) constitue introduction de la thése.

e Le Chapitre 2 est consacré a la description de la méthode cinétique pour représenter un

systéme de lois de conservation. Dans [13], Bouchut introduit des modéles cinétiques
dont les inconnues sont des fonctions de distribution vectorielles. Ces fonctions de
distributions sont solutions d’un systéme d’équations de transport & vitesses constantes,
couplées par des termes de retour vers des distributions d’équilibre. Avec un bon choix
de vitesses cinétiques et des fonctions d’équilibre, le modéle cinétique peut formellement
approcher n’importe quel systéme de lois de conservation hyperbolique.
Le modéle cinétique formel contient un terme raide de retour vers I’équilibre. Ce terme
couple toutes les équations de transport et rend la résolution numérique difficile. Afin
de simplifier la résolution, il est classique d’intégrer en temps le modéle par un schéma
de splitting (ou de décomposition) o, sur un pas de temps At, nous séparons les étapes
de transport libres et de relaxation locales. Nous introduisons alors le paramétre de
relaxation w tel que 1 < w < 2. Le choix w = 1 correspond & un retour exact a I’équilibre
a la fin de chaque transport libre (projection). Le choix w = 2, dit de sur-relaxation,
est intéressant, car dans ce cas, le schéma de splitting est d’ordre 2 en temps. Dans la
suite du chapitre, nous introduisons quelques modéles cinétiques concrets qui seront
utilisés au cours de la thése.

e Dans le Chapitre 3, nous utilisons la méthode de ’équation équivalente pour prouver
la validité de la construction cinétique. Nous nous limitons au cas de la sur-relaxation
w = 2. En effet, avec ce choix, des termes raides disparaissent dans les développements
de Taylor en At. Nous obtenons ainsi les équations équivalentes des modéles concrets
du chapitre 2 dans le cas de I’équation de transport a vitesse variable. Nous validons
ensuite quantitativement cette analyse sur des cas-tests simples en 2 dimensions.

e Dans le Chapitre 4, nous développons I’analyse nécessaire dans le cas 1 < w < 2.
Dans ce cas, ’équation équivalente contient des termes raides en 1/At. Ce terme raide
exprime le retour rapide vers 0 de la variable d’écart a I’équilibre. Il est possible,
grace a une analyse de Chapman-Enskog, de supprimer la variable d’écart et d’obtenir
une équation équivalente uniquement sur la variable conservative. C’est généralement
cette équation qui est directement écrite dans I'analyse habituelle (voir [34, 24|, par
exemple).

e Dans le Chapitre 5, nous proposons une analyse alternative afin de modéliser ’effet des
termes raides de 1’équation équivalente au moyen d’une analyse double échelle. Cette
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analyse consiste a introduire deux variables de temps pour capturer 1’échelle rapide
et I’échelle lente. La solution en temps est considérée comme une fonction de deux
variables temporelles. Lorsque At — 0, nous montrons que la solution tend au sens de
la limite double échelle vers une fonction a trois variables : le temps rapide, le temps
lent et 'espace. Il est possible d’identifier 'EDP & trois variables satisfaite par cette
limite. Cette analyse permet de mieux comprendre ce qui se passe dans la couche limite
en temps pour des conditions initiales loin de 1’équilibre.

Dans le Chapitre 6, nous revenons & une analyse plus classique afin d’établir des résul-
tats de stabilité du schéma cinétique avec splitting en temps. Nous rappelons d’abord
la théorie de stabilité entropique du schéma cinétique vectoriel, établie par Bouchut
|13] et étendue par Dubois [35|. Nous montrons que cette théorie s’étend au schéma
avec sur-relaxation et aux systémes hyperboliques non linéaires. Cette analyse repose
sur un calcul d’entropies cinétiques duales. Ce calcul est en général assez compliqué.
Mais il devient beaucoup plus simple si nous nous limitons a I’équation de transport
conservative, qui est linéaire. Cette analyse permet d’analyser également la stabilité
des conditions aux limites. Nous terminons donc le chapitre avec la présentation d’une
technique qui permet d’appliquer des conditions aux limites naturelles et stables avec
le schéma cinétique vectoriel.

Nous continuons ensuite avec le Chapitre 7, qui est le premier chapitre d’application
numérique a des calculs d’instabilités en physique des plasmas. Dans ce travail (issu
d’un article présenté a la conférence FVCA 9), nous construisons un schéma cinétique
d’ordre 4 en temps et en espace pour un modéle de centre-guide couplé a une équation
de Poisson. Pour cela, nous résolvons I'étape de transport par une transformée de
Fourier discréte et nous utilisons une technique de montée en ordre palindromique
[71]. Ce schéma nous permet de calculer avec une grande précision une instabilité de
Kelvin-Helmholtz.

Dans le Chapitre 8, nous présentons des résultats tridimensionnels, obtenus avec le
schéma cinétique sur un modéle de drift. Le code tridimensionnel utilisé est parallélisé
de facon efficace grace aux bibliothéques MPI et OpenMP. L’originalité est d’utili-
ser des approximations différentes dans les directions toroidales et poloidales. Dans
les plans poloidaux, les équations cinétiques sont résolues avec des approximations de
Galerkin-Discontinu (GD) sans CFL. Cette approximation repose sur un schéma expli-
cite basé sur un graphe des taches acyclique. Dans la direction toroidale, les équations
cinétiques sont résolues avec une technique de Lattice-Boltzmann. En pratique, chaque
plan poloidal est associé¢ a un unique noeud MPI et les décalages sont simplement des
échanges MPI entre plans poloidaux, ce qui rend 'algorithme particuliérement simple.
Ce code optimisé nous permet de calculer des instabilités de type diocotron.

Le Chapitre 9 conclut la thése. Nous y présentons un travail sur la modélisation du
controle d’une population de moustiques par des lachers de moustiques infectés par la
bactérie Wolbachia. Ce travail est complétement indépendant du reste du manuscrit.



Chapitre 2

Schéma de relaxation cinétique

1 Schéma de relaxation cinétique

Comme expliqué dans 'introduction, la résolution numérique des systémes de lois de conser-
vation issus de la physique des plasmas conduit a diverses difficultés. Parmi ces difficultés,
nous pouvons noter des problémes de précision des schémas lorsqu’il y a de la turbulence
ou de forts gradients. Ensuite, il y a des problémes de cotit de calcul liés a la contrainte de
stabilité de type CFL pour les schémas explicites. Enfin, un aspect important est de pouvoir
prendre en compte de fagon stable et précise les conditions aux limites du modéle. Cette
thése est consacrée a I’étude d’une famille de schémas numeériques, les schémas cinétiques,
qui permettent de construire des schémas simples, précis et robustes.

Dans ce chapitre, nous décrivons comment représenter un systéme de lois de conservation
hyperbolique par un systéme cinétique avec un nombre fini de vitesses de transport. Ce type
de représentation imite la théorie cinétique des gaz de Boltzmann, bien qu’il s’agisse d'une
représentation purement abstraite, qui n’a en général pas de sens physique.

L’idée d’utiliser une représentation cinétique pour construire des schémas numeériques n’est
pas nouvelle. Le premier travail utilisant cette idée est sans doute di & Deshpande [29].
Il a proposé dés les années 1980 des schémas de volumes finis pour résoudre les équations
d’Euler compressibles. Le flux numérique de ces schémas est calculé a partir des distributions
Maxwelliennes en vitesse. Le modéle cinétique posséde donc une infinité de vitesses. Il n’est
pas résolu directement, mais exploité comme intermédiaire pour la construction du schéma
cinétique. D’autres auteurs ont étendu cette idée. Voir par exemple |77, 16, 25].

Les schémas de type Lattice-Boltzmann Method (LBM) reposent sur une représentation
cinétique avec un nombre fini de vitesses. Comme le nombre de vitesses est fini, il est possible
de résoudre directement les équations de transport, sans intégrer en vitesse. Cette approche
est trés intéressante, car elle permet, entre autres, de construire des schémas trés performants,
explicites, mais sans contrainte de stabilité sur le pas de temps.

Les premiers schémas LBM étaient présentés comme des approximations de la théorie ci-
nétique de Boltzmann [20, 91|. Ils permettent de résoudre les équations de Navier-Stokes
faiblement compressibles. Ils reposent sur une fonction de distribution scalaire. L’approche
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cinétique a ensuite été généralisée & n’importe quel systéme hyperbolique par Bouchut |13]
ou Aregba-Natalini |5, 6]. L’utilisation d’une fonction de distribution vectorielle permet de
représenter aussi les écoulements fortement compressibles.

Nous rappelons dans ce chapitre la théorie de Bouchut dans le cas général d’un systéme
de lois de conservation hyperbolique. L’objectif est de décrire les différentes représentations
cinétiques : D1Q2, D2Q)3, D2Q4 et D2Q)5 qui seront utilisées dans la suite de la thése et
qui seront particularisées a ’équation de transport a vitesse variable.

1.1 Systéme hyperbolique de loi de conservation

Nous nous intéressons a la résolution numérique d’un systéme de lois de conservation hyper-
bolique. Le vecteur d’inconnues est noté w(x,t) € R". Il dépend du temps t et du vecteur
d’espace € = (21,...,2%) € R ot d est la dimension de I'espace (en pratique, d = 1,2 ou

3). Nous considérons un systéme de la forme
Ow+ V- q(w) =0, (2.1)

ou q est le flux, avec ¢' : R” — R” pour i = 1,...,d. Le systéme est supposé étre hyperbo-
lique : la jacobienne du flux par rapport a w est supposée étre une matrice diagonalisable,
avec des valeurs propres réelles.

1.2 Représentation vectorielle cinétique

Afin de résoudre numériquement (2.1), nous souhaitons construire une représentation ciné-
tique de ce systéme hyperbolique.

Pour les systémes a une dimension, c’est-a-dire d = 1, et 2 vitesses cinétiques, nous verrons
que cette construction revient a la relaxation de Jin-Xin [61].

Le cas général ou d > 1 est étudié dans [13, 5, 6, 22].

Nous considérons un ensemble de n, vecteurs de R? : A = {Ay = (AL,..., AT € Rk =
1,...,n,}. Les vecteurs Ay sont appelés vitesses cinétiques. Nous supposons que le rang de
A est maximal, c’est-a-dire qu’il est égal & d. Cela impose donc que n, > d. A chaque vitesse
cinétique Ag, nous associons une inconnue cinétique f,(x,t) € R". Les inconnues cinétiques
et la donnée macroscopique w sont liées par

un
k=1
Nous considérons ensuite le systéme d’équations cinétiques

Ofi+ N Vi = (ffw)~ ), VE=1...n. (2.3

Dans ce systéme d’équations cinétiques, interviennent des fonctions cinétiques a I'équilibre,
il sur lesquelles nous allons imposer des contraintes pour que le systéme cinétique soit
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consistant avec le systéme de lois de conservation hyperbolique (2.1). En sommant les équa-
tions cinétiques (2.3) sur k, nous obtenons

Bw+ Z V) =1 (—w ¥ Z fz%w)) . (2.4

Formellement, lorsque £ — 0, nous avons f, ~ f/(w). Si nous supposons que

Ny

> F(w) = w,
k=0

alors, lorsque € — 0, (2.4) devient

dw + V - (i Akfzq(w)> = 0. (2.5)
k=1

En conclusion, lorsque ¢ — 0, le systéme cinétique (2.3) est consistant avec le systéme
hyperbolique initial (2.1) & condition que

S ) =w et glw) =3 AFI(w). (2.6)
k=1 k=1

Nous obtenons donc r(d + 1) relations de consistance vérifiées par rn, inconnues (les com-
posantes des n, vecteurs cinétiques d’équilibre fi?(w)). Le nombre de vitesses cinétiques
n, doit donc nécessairement étre supérieur ou égal a d + 1. Ces conditions de consistance
peuvent également étre écrites sous forme matricielle

Q(w) = VF“(w),

eq €q
1 (w) zp' (w)
avec F*(w) = : , Q(w) = : et V' une matrice inversible, carrée
fr(w) Zy, 1 (w)

d’ordre n,.

Les coefficients de la matrice V sont donnés par v; ; = m'~*(\;), ou les fonctions moments
m' € R[X, -+, Xy sont des polynémes sur les composantes des vitesses cinétiques.

La premiére relation de consistance (2.6) nous donne
m’A) =1 et 2z{'(w)=w,
tandis que la seconde impose

m'(A) =\ et z{%w)=q'(w), pourtouti=1,---d.
Lorsque n, > d + 1, nous disposons de n, — d — 1 degrés de liberté. Nous pouvons donc
choisir les moments m’ et leur équilibre associé z{?(w), pour tout i =d+1,...,n, — 1, de
maniére a ce que la matrice V' soit inversible.
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Finalement, nous avons la matrice Q(w) et la matrice des moments V' de la forme

w 1 1 1
¢\(w) AN
Q(w) = q’(w) et V= A{ Moo : (2.7)
=1, (w) mirt g mdh
5 (w) A

En inversant la matrice V', nous obtenons les vecteurs cinétiques d’équilibre f*(w) a partir
de la donnée macroscopique w et du flux q

F(w) =V 'Q(w). (2.8)

1.3 Splitting et sur-relaxation

Dans 'équation (2.3), le terme source BGK
L neq
g( i (w) = f)

a un intérét théorique, mais en pratique, il couple de maniére non linéaire les équations
cinétiques. Il est difficile de résoudre directement les équations de transport couplées au
terme de relaxation. Nous allons donc approcher le systéme cinétique (2.3) par une méthode
de splitting. Nous supposons que les fonctions cinétiques f,(x,t) sont connues au temps ¢
pour tout x. Nous rassemblons toutes les inconnues cinétiques f, dans le vecteur

fi

F= (2.9)

Fn,
Nous construisons un opérateur non linéaire, que nous appellerons 'opérateur de Lattice-

Boltzmann (LBO : Lattice Boltzmann Operator), M/ (At) qui prend les données cinétiques
F(-,t) au temps t et renvoie les données cinétiques au temps ¢ + At

F(.,t+ At) = M/ (ADF(-1).

L’opérateur LBO est le résultat d’'un algorithme de splitting dans lequel & chaque pas de
temps At, les variables cinétiques f vérifient les équations de transport a vitesses constantes
A, puis sont relaxées vers 1’état d’équilibre.

Etape de transport

Premiérement, nous résolvons les équations de transport au pas de temps At, pour tout
k=1,...,n,,
dgy, + Ak - Vg, =0, (2.10)



1. SCHEMA DE RELAXATION CINETIQUE 13

avec la condition initiale
9i(-,0) = fr(-,1).
Cela nous permet de calculer la variable conservative

d
i=0
Nous notons 77/ (At) Popérateur associé a cette étape de transport

THAY(F(.,t)(x)) = G(x, At), (2.11)

01‘1(;':(91 SRR )T.

Les équations de transport a vitesse constante peuvent étre résolues avec diverses méthodes.
Dans cette thése, nous testerons trois approches différentes :

e Dans les chapitres 3, 4, 5 et 6, les équations de transport seront résolues de maniére
exacte par une méthode de Lattice-Boltzmann.

e Dans le chapitre 7, nous utiliserons une méthode de Fourier.

e Dans le chapitre 8, nous exploiterons la géométrie cylindrique du tokamak. Cela nous
permettra de distinguer les vitesses cinétiques des plans poloidaux, pour lesquelles
nous utiliserons une méthode de Galerkin Discontinu, des deux vitesses de la direction
toroidale, pour lesquelles nous emploierons une méthode des caractéristiques, de type
Lattice-Boltzmann.

Etape de relaxation
Aprés I'étape de transport, nous appliquons la formule de relaxation

Fel t+ A =wfii(w(-,t+ At)) + (1 —w)g,(-, At), (2.12)
ol w € [1,2] est un paramétre de relaxation.

Si ce paramétre w = 1, nous retrouvons l’algorithme de splitting classique d’ordre 1 de
Jin-Xin, ou f, = f;(w), c’est-a-dire que les inconnues cinétiques sont projetées sur I'état
d’équilibre a la fin de chaque pas de temps. La sur-relaxation correspond a w = 2 :

fe(x,t +At) =2f (w(x,t + At)) — g,(x, At). (2.13)
Nous notons R/ l'opérateur associé a cette étape de relaxation
RI(G(., At)(x)) = wF(1 - G(x, At)) + (1 — w)G(zx, At), (2.14)

oul=1]:]&€R". Eneffet :

w(z,At) =1-G(z,At) =) g, (z,At).

k=0
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Composition

Il est bien connu (voir par exemple les travaux de Strang [38]) que lenchainement des
étapes de compositions est essentiel pour obtenir une méthode de splitting d’ordre élevé. Une
synthése des schémas de composition pour approcher des systémes d’équations différentielles
est donnée dans [71]. Par ailleurs si I’équation a approcher contient des termes raides, ce
qui est le cas de (2.3), 'approche du splitting classique de Strang ne permet pas d’obtenir
l'ordre deux en temps [61].

Par la suite, nous noterons en majuscule calligraphique les opérateurs de parameétre At
d’'un espace fonctionnel £ dans E. Par exemple, on pourra considérer £ = (LQ(Rd))n” ou
E = (CY(R)™.

Nous pouvons alors définir opérateur M/ associé & la succession d’une étape de transport
puis d’une étape de relaxation

F(z,t + At) = M/ (At)(F(z,t)).

Cet opérateur s’écrit
MI(AL) =R o T (AL, (2.15)

avec T/ lopérateur de transport défini par (2.11) et R/, l'opérateur de relaxation défini par
(2.14).

Nous pouvons également composer ces opérateurs de transport 7/ et de relaxation R/, afin
de créer 'opérateur

H(AL) =T (%) oRL o T <%) : (2.16)

ou 'opérateur

ST(At) = HS (%) oM/ (%) :

(3o (3) em (3)

Ces trois opérateurs ont des propriétés différentes pour la précision.

(2.17)

Définition 1.1. On dit qu’une famille d’opérateurs de E dans E dépendant d’un parameétre

At
WA E o E

(v0) = ven (30)
est symétrique en temps si
o Y(=At) =p(AH)7H

e (0) = 1Id, ou Id est lopérateur identité, tel que Id(f) = f.

Proposition 1.1. Dans le cas de la sur-relaxation, c¢’est-a-dire lorsque w = 2, lopérateur
ST est symétrique en temps.
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Démonstration. Vérifions les deuz conditions.
o Comme T!(=At)o TH(At) = Id et R} o RS = Id, on a ST(—At) o ST(At) = Id.
o Comme T/(0) = Id et R, o R = Id, on en déduit que S7(0) = Id.

S7 est donc bien un opérateur symétrique en temps.

Remarque 1.1. Dans la suite, nous appellerons ST "Uopérateur symétrique”, méme lorsque
w # 2.

Remarque 1.2. L opérateur H' n'est pas symétrique en temps. En effet, H/(0) = R] # Id,
la seconde condition de symétrie n'est donc pas respectée. De méme, l'opérateur M/ n'est

pas symétrique en temps car M7 (0) = RS # Id et M/ (—=At) £ MI(At)L.
On a alors le théoréme suivant, énoncé dans [71].

Théoréme 1.1. Considérons l’équation différentielle

Soit Y(At) : E — E, un opérateur symétrique en temps permettant une approximation de la
solution de cette équation. Alors, 1 est au moins d’ordre 2 en temps, c¢’est-a-dire que pour
tout x € E,

Y(A)z(t) = x(t + At) + O(AP).

Démonstration. Soit
() = f(z(t)).
Soit 1 un opérateur symétrique en temps approchant & 'ordre 1 la solution de cette équation
au temps T = NtAt. L’erreur commise sur chaque pas de temps At est donc de l'ordre de
At?
V(A)z(t) = 2(t + At) + O(AF?). (2.18)

En effectuant un développement de Taylor en t, nous avons

z(t + At) = z(t) + Ata'(t) + Athx”(t) + O(At?),
(2.19)

= (t) + MFG(0) + 2 @l @(0) + O(AR),

car en dérivant l’équation différentielle, nous avons x"(t) = f'(x(t))f(x(t)). De plus, un
développement de Taylor en At de 1 nous donne

At?

5 V" (0)z(t) + O(AE?). (2.20)

(A (t) = (0)z(t) + Aty (0)z(t) +

Comme ) est un opérateur d’ordre 1 (2.18), nous pouvons identifier les termes des équations
(2.19) et (2.20), nous obtenons
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Pour que 1 soit un opérateur d’ordre 2, il faudrait que

1 (0)a(t) = f1(x () f (). (2.21)

Comme ) est un opérateur symétrique, nous avons

P(=A)(p(At)x(t) = x(t). (2.22)
Or, en effectuant deuz développements de Taylor successifs, nous obtenons

M—NNMAWWW=¢PAﬂGﬂH¢mﬂ@+%§

= 2(t) + Atf(x(t) + Athw”(O)x@)

—Aﬁ@w+Mﬂw»¢¥w@wQ

#5500 (o(0) + At al0) + S0 0(0)) + 08

wmm@+0@ﬂ),

= (1) + M) + S O)n(t) - Atf (1)

~ ARF ) F0) + S0 0)(0) + O,

— a(t) + A (W (0)x(t) — F(@(8) f(@(t)) + O(AF).

La symétrie de Uopérateur 1p (2.22) impose donc

P(0)x(t) = f'(x(t)) f(x(t)).
La condition (2.21) pour obtenir un ordre de convergence de 2 est donc bien vérifiée lorsque
lopérateur 1) est symétrique.

Corollaire 1.1. Dans le cas de la sur-relazation w = 2, Uopérateur S est d’ordre 2 en
temps.

Définition 1.2. Un opérateur 1 est semi-symétrique en temps si 1 o Y est un opérateur
symétrique en temps.

Proposition 1.2. Lorsque w = 2, Uopérateur H' est semi-symétrique en temps.

Démonstration. Comme S’ (At) = H/S (%) o HS (%) et ST est un opérateur symétrique
lorsque w = 2 d’apres la proposition 1.1, H! est donc un opérateur semi-symétrique en
temps.

2 Vitesses cinétiques

Nous noterons DdQn,” un schéma de dimension d, avec n, vitesses cinétiques et résolvant
un systéme de lois de conservation de dimension r. Dans le cas » = 1, nous allégerons cette
notation en Dd@n,. Lorsque nous considérons un modéle & d dimensions, le vecteur cinétique
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d’équilibre f°? doit vérifier d + 1 conditions de consistance (2.6). Il est donc nécessaire que
le modéle cinétique posséde au moins d + 1 vitesses cinétiques, mais nous pouvons aussi
considérer des modéles cinétiques avec plus de vitesses, cela permet de disposer de degrés de
liberté pour obtenir un schéma avec des propriétés supplémentaires.

Dans cette section, nous présenterons les modéles cinétiques utilisés dans la suite.

2.1 Le modéle D1Q)2

Le modéle D1(Q2 comporte n, = 2 vitesses cinétiques

AM=(A), X=(-X).

A2 Al

< >
<€ >

FIGURE 2.1 : Représentation des vitesses cinétiques du modéle D1(Q)2.

La matrice des moments, défini en (2.7), est alors

V- (i _1A) . (2.23)

En inversant cette matrice, nous obtenons les vecteurs cinétiques d’équilibre

e w Ak ’ q(’lU)
V=S e

Notons que dans ce cas, le schéma obtenu est identique au schéma de relaxation de Jin-Xin

[61].

2.2 Le modéle D203

Le modéle D2Q)3 comporte n, = 3 vitesses cinétiques, uniformément réparties sur le cercle

de rayon A
A _2 _2
(2 (3 ae()
2 2

La matrice des moments est donc

1 1 1
V=I|X -5 =3 (2.24)
0 A3 A3
2 2
En inversant cette matrice, nous obtenons les vecteurs cinétiques d’équilibre
. w2 - q(w
co(ap) = 2 4 2 9(W) (2.25)

3 3A2
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>

2

A1
_—
/)\3

FIGURE 2.2 : Représentation des vitesses cinétiques du modéle D2@Q)3.

2.3 Le modéle D204

Le modéle D2Q4 comporte n, = 4 vitesses cinétiques suivant les axes cartésiens
A —A 0 0
(o) 2= () = (3) v ()

A3
A2 A1

N
>

A

A4

FIGURE 2.3 : Représentation des vitesses cinétiques du modéle D2Q)4.

Comme n, = 4 > d+ 1 = 3, nous avons un degré de liberté supplémentaire. La derniére
fonction moment est généralement définie par m3(A) = (A')? — (A?)? (voir [45]), ce qui nous
donne la matrice des moments

1 1 1 1
A =X 0 0
V= 0 0 I (2.26)
A2 N2 )
En inversant cette matrice, nous obtenons les vecteurs cinétiques d’équilibre
eq w Ak ) q('lU) mB(Ak)qu(w)
= — . 2.27

Nous choisissons généralement le moment d’équilibre 25 = 0.
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2.4 Le modéle D2Q4 twisté

Nous pouvons également considérer un modele a n, = 4 vitesses cinétiques, mais suivant les
bissectrices du plan cartésien :

= (1), 2 (3) 2= () 2 (3)
N\
AN

FIGURE 2.4 : Représentation des vitesses cinétiques du modéle D2(Q)4 twisté.

Nous choisissons généralement m3(X) = A'A? (voir [15]), ce qui nous donne la matrice des

moments
1 1 1 1

A=A =2 A
AA = =
D P S

V:

En inversant cette matrice, nous obtenons les vecteurs cinétiques d’équilibre

W Aeg(w) | mP ) (w)
k 4 4)\2 A\

2.5 Le modéle D20)5

Le modéle D2Q)5 comporte les mémes vitesses cinétiques que le modéle D2Q)4 classique,
auxquelles nous ajoutons une cinquiéme vitesse nulle.

M) 2= (@) 2= () 2 () 2= 0)

Nous utiliserons le modéle D2@Q5 uniquement dans le chapitre 7. Nous considérerons alors
un flux linéaire g(w) = vw. Nous définirons les équilibres cinétiques par

B=w (A ), pour k =1,2,3,4,

et
4

fili=w-> fi
k=1

avec ()4 = max{z,0} la partie positive.
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3 Conclusion

Dans ce chapitre, nous avons rappelé les principes de 'approximation d’un systéme de lois
de conservation par un modéle cinétique vectoriel.

Afin de calculer la solution du systéme cinétique, nous avons vu qu’il était préférable d’utiliser
un schéma de splitting qui permet de découpler le transport et la relaxation. Cette approche
permet de plus de construire trés facilement un schéma d’intégration d’ordre 2 en temps
grace a la sur-relaxation.

Enfin, nous avons passé en revue les modéles cinétiques les plus courants : D1Q)2, D204,
etc. Dans le chapitre suivant, nous allons étudier plus précisément le lien entre le modéle
cinétique et le systéme de lois de conservation. Pour cela nous utiliserons la technique de
I’équation équivalente. Cette technique permet d’établir en un certain sens la consistance de
I’approximation cinétique.



Chapter 3

Equivalent system in the general case

We have constructed in the previous chapter a general kinetic method for approximating
system of the conservation laws

Ow + V - g(w) = 0. (3.1)

We wish to analyze the solution of this system given by the kinetic relaxation scheme DdQn,,,
described in chapter 2.

To do that, we want to compute the equivalent equation of the solution of (3.1) approximated
by the symmetric operator S/ defined by 2.17 (p.14), not only on the variable w, but on the
full set of n, kinetic variables (w,Y ), with Y the flux error that we will define later.

The method of equivalent equation is a general method for proving the consistency of numeri-
cal schemes with the approximated system. It is generally based on simple but tedious Taylor
expansions. It not only allows to prove the consistency of the scheme, but also explains in
some cases the behavior of the numerical scheme by inspecting the higher order terms of the
expansion. Generally, the stability of the numerical scheme relies on an equivalent equation
containing second order diffusive terms that are not present in the original system. The
behavior of classical schemes such as the Rusanov or McCormak schemes [70, 80] is often
explained in this way. In a very cited review, Harten Lax and van Leer linked the numerical
viscosity with entropy properties of the numerical scheme and introduced the famous HLL
scheme [54]. In the framework of first order hyperbolic conservations the equivalent equation
technique is exposed for instance in the book of Leveque [65]. While the equivalent equation
gives important information on the consistency of the scheme, one must be very careful for
analyzing the stability as it is explained in [30]. Because of its importance, the equivalent
equation technique has been applied to the study of the kinetic approximation. We refer for
instance to the works of Aregba-Natalini [6], Dubois [34], Dellar [28], Graille [50], Drui & al.
[33], Courtés & al. [24].

A difficulty of the analysis of kinetic models is that they mix two features: additional hidden
variables (the scheme contains (w, YY) instead of w only), and also a stiff relaxation behavior.
In [34, 24, 50|, the analysis of the stiff relaxation and the Taylor expansion are performed
at the same time. This gives the good result, but does not allow to understand the separate

21
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effects easily. Therefore in this work we prefer to first perform the Taylor expansion, and
then the Chapman-Enskog analysis of the stiff terms. A special case is the case of an over-
relaxation with w = 2. In this case, the Taylor expansion is sufficient because the stiff terms
vanish. The case w # 2 will be treated in the next chapter.

In this chapter, we are thus first interested in the equivalent equation for the particular
case of the relaxation parameter w = 2. Indeed, in this case, the stiff term vanishes and
the operator S/ appears to be symmetric in time, and therefore, gives an approximation of
the solution of order 2 in time. We will analyze both one-dimensional and two-dimensional
kinetic models. We will detail the computation of the equivalent equation in these cases,
and will apply it for different kinetic models. Then, we will perform numerical experiments
in order to quantify the adequacy of the consistency analysis with real practical cases.

1 Computation of the equivalent system

In order to analyze the effect of the kinetic over-relaxation on the initial variable w of the

hyperbolic system (3.1), we introduce additional quantities Z, z; for k =0,...,n, — 1, such
that zo = w, called the approzimated moments, defined by
=) I
Z = : =V : (3.2)
z’l’bv—l fnv

We also introduce the fluz error y* defined by

Yo
y,=zr— 2., k=0,---,n,—1, Y = : . (3.3)

ynvfl
Because of (3.2) and (2.8) we find that
Y = V(F — F*(w)).

Let us insist that, with our definition, while Y has r rows and n, columns, it lives in a
(r x (n, — 1))-dimensional space because we always have

The main point to compute the equivalent system is then to rewrite the LBM algorithm
in the (w,Y’) variables. With the above notations, we can rewrite the transport-relaxation
algorithm as follows. We start, with a macroscopic field w(x, 0) and a flux error field Y (z, 0)
at time t = 0. From this flux error, we can compute

Z=Y +Q(w),

and then
F=VZ.
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Then we can transport the components of F' during a time step At

This defines the transport operator 7/ (At) acting on the initial field  — F(z,0). More
precisely, 77/ is unambiguously defined by (3.4), (2.9) and

(T/(AHF(-,0))(x) = F(x,At).
Finally, we return back to the (w, Y') variables by

1
w=F-| 1|, Y=VF-Q(w).

In the (w,Y’) variables, the transport step can thus be expressed in the following operator
form

w00 _ ({80 [V (V(0)+ Qu(-.0)]} -1
T (¥0) = (Viren e o atton) .

0
QQHTWAQW“WY(ﬁw+Q@MHm»§-m)'
In the (w,Y) set of variables, the relaxation step (2.13) is very simple. It writes

% (Fm) = (- Dtn) 6

thus w is continuous in time.

In the case of the over-relaxation w = 2, it becomes

thus Y oscillates around zero at the frequency 1/At.
Formula (3.5) and (3.6) define the LBM operator M in the (w,Y") variables such as

( ;3 ) (-, At) = M(At) ( 1“/’ ) (-,0),

M(At) =R, o T (At). (3.8)
We can also redefine the LBM half-symmetric operator H with

H(AL) = T(%) oR. OT<%) |

with
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In the analysis, it is better to cancel the oscillations (3.7) in the flux error Y. Instead of
analyzing the LBM operator directly, we will use the symmetric operator S defined in (2.17)
(p.14) as

S(AL) = H(AL/2) o H(AL)2).

This amounts to only observing the LBM discrete solution at the even time steps. Then

estimating the time derivative of (w,Y") by a centered finite difference, we have, on the one
hand
w

((p)eo- D D,

that we can write with the operator S

) (w) (1) =SB0 = S7(AY (“’) (1) + O(AL).

Y 2At Y

On the other hand, we can perform a Taylor expansion of

S(At) Q—A‘il(m) (i) (1),

with respect to At.

The proof of consistency is based on standard Taylor expansions. The approach is classical
in the analysis of the Lattice Boltzmann Method (LBM). See also for instance |34, 75, 33].
The calculations can be performed with Maple, using the code given in Annex B (p.169).
The equivalent system will be given in Section 2, for different kinetic models.

We will also see that the above analysis allows recovering formally the so-called sub-characteristic
condition. We will prove that, in general, the equivalent system is hyperbolic under the con-
dition that the norms |Ag| are large enough.

2 Applications

From now on, we consider a one-dimensional unknown function w € R, namely » = 1. Thus,
we are interested by the single conservation law

d
Ow + Y Bigi(w) = 0.

i=1

This is sufficient for the application that we have in mind: the transport models in plasma
physics. We are going to apply the computation of the equivalent equation described in
Section 1 to different kinetic models. We remind that in this chapter, we only consider the
case of the relaxation parameter w = 2.
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2.1 Equivalent system of the D1(Q)2 model

The equivalent system of the D1Q2 model has already been computed by Drui & al. in [33].
In this case, the equivalent system of equations is

o, (Z’) 4 (q'%w) _q,o(w)) 0, (Z”) — 0(AR). (3.9)

As stated in [33], the equivalent system is hyperbolic independently of the chosen value for
A. For recovering the sub-characteristic condition, it is necessary to analyze the higher order
terms in At.

2.2 Equivalent system of the D2()3 model

Theorem 2.1. The equivalent system of the D2Q)3 model described in Subsection 2.2 (p.17)
18

w ¢y (w) 0 0 w
Ol | + 0 %—q’l(w) 010 |w:
Yo | 0 —gw) F Yo (3.10)
¢(w) 0 0 w
+1 0 0 —3-—qi(w) |8 |y ]| =0(At).
0 P dw) Ve

Proof. We apply the computation described in Subsection 1 to the D2@Q3 model.

Using the Maple code in Annex B (p.169), we obtain the Taylor expansion of the symmetric
operator &

/ / 2
S(AL) — S-L(AL w —¢} (w)0w — gh(w)Oew + O(AL?)
( (47) N ( )> N = (¢4 (w) = $)y1 + (¢ (w) + £)Day2 + O(AL?)
Yo ¢o(w)O1y1 + 301y + 302y1 + ¢h(w)Doys + O(AL?)
This gives us the expected equivalent system. O

Remark 2.1. We can remark that, up to O(At?) terms, the first line of the system cor-
responds to our initial equation (3.1). We can also observe that, up to O(At?) terms, the
dynamics of w is independent of the flux errors Y. It means we do not need to choose Y
small to obtain a good approximation of w.

2.3 Equivalent system of the D2()4 model

In the D2Q4 model, we solve n, = 4 kinetic equations (2.3) with n, = 4 kinetic unknown
fi- Therefore, we want an equivalent system with 4 equations and 4 unknowns. As for the
previous model, we consider the equivalent system on w and the flux errors y;, but we need
to add a fourth unknown zs.
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Theorem 2.2. The equivalent system of the D2Q4 model described in Subsection 2.3 (p.18)
18

w q1(w) 0 00 w
0  —qi(w) 0 3 Y1
o | | + ! 2 19
’ Y2 0 —qlz(w) 00 ! Ya
z 0 A2 0 0 z
’ , ’ (3.11)
gh(w) 0 0 0 w
0 0 —q¢j(w) O Y1 9
+ 19) = O(At?).
0 0 —dgh(w) —% |y (A7)
0 0 —\? 0 23

Proof. We apply the computation described in Subsection 1 to the D2Q)4 model. Using the
Maple code in Annex B (p.169), we obtain the Taylor expansion of the symmetric operator

S

w — ¢ (w)Ow — ¢h(w)Dw + O(AL?)
(S(At) — S_I(At)) Y1 _ q’l (w)@lyl + q’l (w)82y2 — %(9123 + O(Atz)
2At Y2 q5(w)01y1 + gy (w)Oay2 + %3223 + O(At?)
23 —N201y1 + N 0ay2 + O(AF?)
This gives us the expected equivalent system. O

2.4 Equivalent system of the D2(Q4 twisted model

Theorem 2.3. The equivalent system of the D2Q4 twisted model described in Subsection
2.4 (p.19) is

w ¢ (w) 0 0 0 w
5 | 1 0 —q¢(w) 0 0 o, | ¥
“1y2 0 —qy(w) 0 1 Y2
z 0 0 A0 z
’ , ’ (3.12)
gh(w) 0 0 0 w
0 0 —qi(w) 1 ur | _ 2
0 0 —gylw) 0] % |y | TOB)
0 A2 0 0 23

Proof. We apply the computation described in Subsection 1 to the D2Q4 twisted model.
Using the Maple code in Annex B (p.169), we obtain the Taylor expansion of the symmetric
operator &

w —q}(w)01w — gh(w)Dw + O(AL?)
(S(At) — Sl(At)) i | | di(w)orys + ¢h(w)days — Bozs + O(AL?)
2A¢t yo | | b(w)oiyr + ¢h(w)doys — D125 + O(AL?)
Z3 —)\2(91@/2 — >\282y1 -+ O(AtQ)

This gives us the expected equivalent system. O
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3 Numerical validation of the equivalent systems

Now, we want to validate numerically the equivalent systems that we have obtained in
Section 1, in the case of a linear flux. We want to confirm that the solution of the equivalent
system is quantitatively close to the numerical solution. For this purpose, we are going to
compare the flux errors, which are the solution of our equivalent system for a given kinetic
scheme, with those computed from the solution of the initial equation (3.1) obtained with
the same kinetic model.

In practice, as Y is the error between the flux g(w) and the approximated flux z, we expect
Y to be close to 0. However, this is not a mandatory condition. Here, we are going to choose
Y with the same order of magnitude as w.

3.1 Validation of the equivalent system of the D2()3 model

First, we solve the system (3.1) using the D2@Q3 kinetic scheme. Then, we can compute the
flux error Y*" = Zkin — q(w), with Z¥™ = 57" A fr.

Secondly, we solve the equivalent system

A

aY + ({qféff)”) _0%> aY + (_O% _%—;é(q;lu()w)) BY =0, (3.13)

with a high order finite volume method, for instance. We note Y/ the solution.

We can then compare the Y*" obtained from the computation of the hyperbolic equation
and Y%/ obtained by solving the equivalent systems (3.13): as the equivalent system is an
approximation of the system solved by the D2Q3 model, Y%/ is supposed to converge toward
Y*" when Az and At converge to 0.

. . nw .,
We consider a linear flux g(w) = (v w)’ where the velocities v; and vy are constant: vy = 1
2

and v9 = 1. We choose the norm of kinetic velocities: A = 3. Let us remark that this choice
satisfy the sub-characteristic condition that we will define later, in Subsection 2.3.

We consider a square geometry 2 = [0, 1] x [0, 1]. We initialize the density and the flux error
with the Gaussian functions

|l — x| Iz — x5]*
w(x,0) = exp (_T and yi(x,0) = exp 2 )
with o = 0.05, = = (0.25,0.25) and xj = (0.5,0.5). We compare the solutions at time
T = 0.06.

We can observe in Table 3.1, that the Ly errors between Y*" and Y/ are small and decrease
when we refine the mesh. This confirms that the solution Y%/ of the equivalent equation for
the D2@Q3 model converges towards the flux error of the initial equation Y%,

3.2 Validation of the equivalent system of the D2()4 model

Now, we want to validate numerically the equivalent system of the D2(Q4 model. As for
the validation of the D2Q)3 equivalent equation in Subsection 3.1, we compare the flux error
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Mesh size

vy — b

lys” — yhin||

100 x 100
200 x 200
400 x 400
800 x 800

2.57164 x 1073
1.90878 x 1073
6.60124 x 1074
5.64567 x 1074

1.92973 x 1072
1.06497 x 1072
4.23034 x 1073
1.95625 x 1073

Table 3.1: Ly errors between the flux error computed from the hyperbolic equation solved
with the D2@Q)3 kinetic scheme and the flux error from the equivalent system, for different

mesh refinements.

Ykin

1.

0.8
0.6

”x
0.4+ ‘

0.2

Y1

yvI

0.86 *
0.72
0.58 087

-0.43
-0.29

-0.14

T T
0.0 0.2 0.4

1.0

0.8
0.6
Y2
0.4

0.2

0.0

0.0 0.2 0.4

T
0.6
1

0.6
1

T
0.8

0.8

0.86
0.72
0.58
0.43
0.29
0.14

-0.14
-0.29

-0.43

1.0

*
0.4
0
0.14
0.2
-0.29
043
0.
0.98
0.84
~-0.7
-0.56

-0.42

-0.28
0.14
0
-0.14
-0.28

1.0

0.98
0.84

0.56
0.42
0.28

0.14

-0.14

-0.28
1.0

||Ykm o Y'vf”2

1.0
0.8
0.6
”x
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Xt
1.0
0.8
0.6
”x
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
X!

0.0049
0.0044
0.0038

~0.0033

~0.0027

0.0022
0.0016
0.0011
0.00055
0

0.014
0.012
0.011

-0.0092
~-0.0077

0.0062
0.0046
0.0031
0.0015
0

Table 3.2: Flux errors Y*" and Y%/ and the norm of their difference ||Y*"—Y"/|| at T = 0.06
for a mesh of size 800 x 800.

Ykin obtained by solving the hyperbolic system (3.1) with the D2Q4 kinetic scheme with
the solution Y/ of the equivalent equation.

By using the same parameters as for the validation of the D2(Q)3 equivalent system, we obtain
the flux errors Y*™ and Y/ in Table 3.4. We can observe that Y*" and Y/ are visually
similar and the error ||Y*" — Y*/|| is small.

Mesh size | [ly" —yi [ llys” — o5 | 1287 — 257

100 x 100 | 7.78988 x 10~ | 100352 x 103 | 2.86871 x 103
200 x 200 | 1.95075 x 10~4 | 2.51593 x 104 | 7.18457 x 10~
400 x 400 | 4.87890 x 10~° | 6.29419 x 10~ | 1.79698 x 104
800 x 800 | 1.21999 x 10~ | 1.57384 x 10~5 | 4.49337 x 10~

Table 3.3: Lo

and the one computed from the equivalent systems, for different mesh sizes.

errors between the flux error and z3 computed with the kinetic model D2Q4

We can observe in Table 3.3, that the L, errors between Y*™ and Y/ are small and decrease
when we refine the mesh. This confirms that the solution Y%/ of the equivalent system
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converges towards the solution Y*™ of the hyperbolic equation (3.1).

Ykz‘n va ”Y}cm _ va“

0.46
0.4
~-0.33

-0.27

1.0

0.8

0.00011
9.6e-05
8.4e-05

0.6 ~7.2e-05

y 1 % 02 % . Q N : 6e-05

d 4.8¢-05
3.6e-05
2.4e-05
1.2e-05
0
6 0.8 1.0

0.4 0.
X1

1.0
0.79 0.0002
0.67 . 0.00018
056 0.00015

-0.00013

0.4 ~0.13

-0.2
0.066
0.2 0
-0.066
0.0 N
0.0 0.2 0.4 0.6 0.8 1.0
X!
0.0 0.2 0.4 0.6 0.8 1
X1

0.13

1.0

0.79
08 067
~0.56
0.6 -0.45
-0.34

Yz

~0.00011

8.8e-05
6.6e-05
4.4e-05
2.2e-05
0

6 0.8 1.0

1.04 16 1.0 16 1.0
13 13 0.0004
0.84 11 0.8 11 . 0.00035
L0.8 0.00031
0.6 -053 0.6 0.53 - .
z3 * ~0.27 * 0.27 B "o
0.4 ‘ Lo 0.4+ ‘ 0 .
-0.27 027
0.29 053 02+ -0.53
-0.8 -0.8
0.04
0

U
0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.
xt xt xt

0.4 ~0.23
0.11
0.2 o

0.11

-0.23

0.0

0 0.4 0.4

Xt

~0.00026

~0.00022

0.00018
0.00013
8.8e-05
4.4e-05
o

6 0.8 1.0

Table 3.4: Flux errors Y*" and Y%/ and the norm of their difference ||Y*"—Y"/|| at T = 0.06
for a mesh of size 800 x 800.

4 Conclusion

In this chapter, we have detailed our methodology to compute the equivalent system of any
kinetic split scheme when w = 2. The important facts are that:

e the computations are fully automatic and are actually performed thanks to a Computer
Algebra System (a CAS, Maple in our case);

e in the case w = 2, if one groups two successive time steps, the discrete operator is time
symmetric. This implies that the stiff terms vanish in the analysis, which becomes
easier.

e Still in the case w = 2, it is not necessary to assume the smallness of the flux error to
achieve consistency. The flux error Y oscillates around zero without damping, but the
conservative variables w are anyway approximated at order 2. It is confirmed by our
numerical experiments.

We have computed the equivalent system for different kinetic models. Then, we have numer-
ically validated these equations. We have focalized our study in the case of the relaxation



30 CHAPTER 3. EQUIVALENT SYSTEM IN THE GENERAL CASE

parameter w = 2.

In the following, in Chapter 4, we will consider any possible relaxation 1 < w < 2. The
consistency analysis is a little bit more difficult, because the stiff relaxation term does not
vanish anymore.



Chapter 4

Application to the transport equation

Previously, in Chapter 3, we have computed the equivalent system of the split kinetic system
in the case of an over-relaxation with w = 2. We have seen that it is convenient to rewrite
the kinetic system in the (w,Y’) variables. We have then shown that the kinetic system
provides a second-order approximation of the system of conservation of laws (3.1)

Ow + V- q(w) =0,

whatever the size of the flux error Y.

In this chapter, we want to generalize the equivalent equation analysis for all relaxation
parameters 1 < w < 2. In order to simplify the computation, we shall consider a linear flux
g(w) = vw. Thus, we consider the transport equation

d
orw + Z v;0;w = 0.

i=1
But we point out that the method can be extended to any non-linear system.

Actually, we shall see that we can provide two different equivalent equations. In a first step,
with the same Taylor expansion approach as in the previous chapter we get an equivalent
system involving both w and Y with stiff relaxation terms in 1/A¢. In a second step, from
this equivalent system, we can apply a Chapman-Enskog expansion to get a new equivalent
equation involving only w.

The advantage of this approach is that it is quite simple and fully "algorithmic". It also
provides equivalent equations with only first-order derivatives in time. We are aware of other
works in the literature that provide algorithms to obtain equivalent equations with higher
order time derivatives, see for instance [19, 10].

31



32 CHAPTER 4. APPLICATION TO THE TRANSPORT EQUATION

1 Equivalent system on (w,Y)

We approximate the time derivative of (w,Y’) by the centered finite difference scheme

w

) <w> (1) = (Y) S Gﬁ) — + O(A#). (4.1)

Y 2At

Let us denote the time evolution operator v, which can be M, H or S defined in (2.15)-
(2.16)-(2.17). This means that we first take w(-,t + At) = ¢ (At)w(-,t), then, we have

5 (;‘;) (1) = Y8Y ;A‘il(m) (}“;) (1) + O(AB). (4.2)

Then, we can perform a Taylor expansion of the right-hand side of this expression (using,
for instance, the Maple code given in the Annex B (p.169)). We obtain an equivalent system
of the form

) (}“j) . & (3) + izd;Biai (}“j) n Atzd: Ed:ci,jai,j (;ﬁ) — O(A#?),  (4.3)

i=1 j=1

where a and the coefficients of the matrices B; and C; ; are depending on the chosen time-
evolution operator and kinetic velocities.

We obtain equivalent systems with the same form as those obtained in Chapter 3 for the

over-relaxation case, but with an additional damping term —%; on the equation on Y. It
corresponds to a fast relaxation of Y toward 0 when w < 2, while the amplitude of Y did

not decrease in the case of w = 2.

In the next section, we show how to perform a Chapman-Enskog expansion of this system
to get a new equivalent equation involving only w.

2 Equivalent equation on w

In the case w < 2, because of the damping, we can assume that Y will be small, for instance
Y = O(At). Tt means that it exists Y such as Y = YAt, with ¥ = O(1). Inserting this
expression of Y in equation 4.3 and keeping the constant terms, we obtain the expression
for Y

At &
=— Y Bk, 1]0; O(At?), fork=1,...,n,— 1. 4.4
w= Bk N £ OB, o " (4.9
The first equation of the equivalent system (4.3) is

d ny—1 d d
Gtw—l—Zv@w—i—ZZB 1, k)0 + At YD Cij[1,1)0, 0 = O(AP),
i=1 k=1 =1 j=1

and thus replacing y by the expression (4.4), we obtain

8tw+2v8w+AtZZ( niBm I<:1]+C”[11]>6 w = O(A#?).

=1 j=1

We obtain an equivalent equation that only depends on w.
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3 Equivalent system and equation of the D1()2 model
with the operator M

In this section, we apply the general approach presented above to particular kinetic models
presented in Chapter 2.

Let us first consider the D1Q2 model and the operator M, defined in (3.8) (p.23), which
corresponds to just performing a transport and a relaxation steps during one time step

Gﬁ) (-t + At) = M(At) Gﬁ) (-,1),

with M(At) = R, o T(At). By computing the Taylor expansion of (4.2), using the Maple
code given in Annex B (p.169), we obtain the equivalent system on (w,y)

w—2
w 1 0 4 2(w—1) w
O ( > ~ A7 | w-w) + A2—v2)(2—w)  v(w?—2w+2 Ou
) At 2w-1) Y ( 2 : (2(w—1) : Y
0 0
FAL [ 0 w(w2) | O (w) = O(A?).
0 4(w—1) y

Now, let us assume that y = O(At), and that it exists § = O(1) such as y = Aty. By
replacing y by this expression in (4.5) and keeping the constant term, we obtain
(A2 — ) (2 —w)

y= 5 dyw + O(At).

(4.5)

w(2 —w)
2w —1)

It gives us

2 .2 .
y= O “Cj@’ Y Atd,w + O(A8),

By reinjecting this expression of y in the first equation of the equivalent system (4.5), we

obtain 5 (2 ) .
oyw + vo,w + w=2 W=v)w-1)

Atd,w = O(At),

2w-—1) w
which can be simplified in
L1 2 .2 2
Ow + vo,w + 375 (A — v7) At w = O(AL?).
w
We can notice that we retrieve exactly the equivalent equation given in [34, 38, 50|, or

computed with a different formalism in the Annex A.

4 Applications for the symmetric operator S

Using the same method, we are going to compute the equivalent systems on (w,Y) and
equivalent equations on w for the symmetric operator S and different kinetic models. (We
recall that & is not time-symmetric when w # 2, see remark 1.1. Our denomination is not
necessarily the best...)
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4.1 For the D1()2 model

Equivalent system in O(At?)

First, we consider the D1Q)2 model. By doing a Taylor expansion of the finite difference
scheme (4.2) with the Maple code given in Annex B (p.169), we obtain the equivalent system

on (w,y)

a(w)‘a&u_m“ﬂ‘2“+2>cv+- v L a(w)
“\y 2At(w — 1)? y (A2 — %)y, —v(w 7éu()wt?(;}2 —4w+2) | Oz Y

N (—(wz—GW+6)(A2—v2) 3v(w? — 2w + 2) )

3v(A\? —v?)(w? — 2w+ 2) —Hviw? — 3N%w? + 6v2w + 10\ %w — 6v? — 10A?

Atw(w — 2) w) 9
X mam (y) = O(At),

(4.6)

(w—2)2 (w2 —2w+2)

with v, = ST

Remark 4.1. We can check that when we consider w = 2, we retrieve the same expression
as in equation (3.9).

Equivalent equation in O(A#?)

Then, we assume that we have y = O(At). Let us write y = Atgy. We obtain

wlw —2)(w? — 2w +2)
2(w — 1)2

(A2 —v?)(w — 2)%(w? — 2w + 2)
8(w — 1)2

By simplifying, we have

(2 = o?)(w —2)

2
- Atd,w + O(AL). (4.7)

y:

By reinjecting this expression of y in the first equation of the equivalent system (4.6), we
obtain the equivalent equation on w

(w—2)*(w? — 2w +2) (A — v?)(w — 2)

oyw + vo,w + S(w —1)2 e AtO,,w
Atw(w =2) 2 2 _ 2
2w 1) (W — 6w + 6)(A° — v*) 0w = O(AL?),
which can be simplified in
Ll 1 2 2 2
Oyw + vo,w + A (A —v7) At w = O(AL?). (4.8)

We can notice that we recover the Dubois equivalent equation with a viscosity term divided
by two, which seems reasonable because we have grouped together two time steps of the
semi-symmetric operator in order to construct the symmetric operator S.
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Equivalent system and equation in O(A#?)

We can also compute the equivalent system and the equivalent equation of order At?. We
use the same methodology, but replace the approximation (4.2) of the time derivative of
(w,y) by the finite difference scheme of order At

w —S?(At) + 8S(At) — 88 HAL) + S72(AY)

(Z’) (1) + O(AtY),  (4.9)

Using the same Maple code than previously, we obtain an At® approximation of the form

0 w w w
o (© _i( )+Baz< >+At()8m( )+At2pam< ):OAt3. 4.10
t(y) At \y Y y y (A5) (410

The value of a and the coefficients of the matrices B, C' and D will be replaced later by their
values given in Maple. Now, we can assume that y = O(At), and that y = Aty. We obtain
that

CL@ = bg,lﬁxw + O(At),

which can be written as ;
y = At—=20,w + O(AL?). (4.11)
a
We also have
G/g = bg’laxw -+ At ((915@ + 6272813} + CQ,la:m:w> + O(AtQ),
which can be written as

At At?
Y= . (b2,10,w + Oy + b2 20,y) + 702,18;”10 + O(At?). (4.12)

By deriving in time the equation (4.11), and assuming that it does not break the order
hierarchy in At we have

b
Oy = At—=20,,w + O(A).
a
Using the first equation of (4.10), we have

Oy = Atb%’lax (—bi10,w + O(AL)) + O(A#2),

b2,1b11
a

= —At Dpaw + O(AP?).

Moreover, the derivation with respect to z of (4.11) gives us

Oy = At%lamw +O(AR).

By replacing in (4.12) the expression of 0,y and 9,y, we obtain an expression of y in function
of the space derivatives of w

At ba1b by ob
y = _62’183311) + At2 (% 72,111 + 2,2 2,1) a;m:w + O(Atg) (413)
a

a a? a?
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By reinjecting this expression of y in the first equation of the equivalent system on (w,y)
(4.10), we obtain

At boibiy Db
Opw+by 105w + by 20y {Tbm@xw—kAtQ (@ — 2 2 2’1) &mw}

a a? a?

b21

+ Atq 1(9 W + AtCl 285,;33 |iAt 0, w:| + AthLl@mjxw = O(Atd)

This can be simplified in
b12b21
dyw+b110,w + At +c11 | Oppw
a

bo 1 by 1b b b )
+ At? (01 27 + b12 (Czl 2001 22 21) +dy 1) Dpzew = O(AL).

a? a?

By replacing the coefficients by their values given in Maple, we obtain the equivalent equation

At 1\ .o W —bw+6, 5 _ 5
oyw + vo,w + 5 (2 — w) (A — v7) 0w + At 197 (V7 = A )00z = O(AL).
(4.14)

Remark 4.2. We can notice that when the relazation parameter w = 3 — /3 ~ 1,2679, the
dispersive term in O(At?) vanishes.

4.2 For the D2()3 model

Equivalent system on (w,Y)

We can also compute the equivalent system of the D2()3 model, using the Maple code given
in Annex B (p.169). We obtain

O .;li _W(w—2)(w2_2w+2) ;1
2At(w —1)2
Y2 i
U1 —27 0 w
+ | nCui+ AN =A) 22— 0 | |m (4.15)
71@2(21}1 + )\) 21}2’}/2 72)\ Yo
Uz 0 —2m w
+ Y1v2(201 + A) 0 7%R2ui+AN) |0 |y ]| =0(AL),
N(0A+ 207 =A%) A 207 Y2
with 7, = 16@”2—2&# and v, = —1 w4—4w( 3—64{1)22—40.;-1-2
Remark 4.3. When w = 2, the damping term vanishes, 1 = 0 and v = 5, which allows

us to retrieve the equivalent system (3.10), obtained in Chapter 3. We can notzce that, when
w = 2, the equation on w s independent of the system on Y, but it is not the case anymore
when w < 2.
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Equivalent equation on w

Now, let us assume that Y = O(At). We obtain

1 1\ (2
pi= A (a - 5) @ (01 = A) Q1w + vadhw) + O(A?),

and

At (1 1
Y2 =5 (Z B 5) (20301 +02)) Brw + (Mog + 205" = A7) Dyw) + O(A).

By reinjecting these expressions of y; and y» in the first equation of the equivalent system
(4.15), we obtain

D+ V - q(w) = % (é _ %) V- (DyVw) + O(AL), (4.16)

with the diffusion matrix

2A+v) —v?  —2vy—wvw
D3:(2( 1) — 01 502 122>'

—%Ug — V1V2 %()\—U1> — V2

Remark 4.4. We retrieve the same equivalent equation as the one given by the computation
in the Annexr A, with a diffusion term divided by two, which seems reasonable because we
have grouped together two time steps of the semi-symmetric operator in order to construct
the symmetric operator S.

4.3 For the D24 model

Equivalent system on (w,Y)

We can also compute the equivalent system on (w,Y) of the D2@Q4 model, using the Maple
code given in Annex B (p.169). We obtain

w 0 U1 2’)/1 0 0 w
a1Vl = w(w =2)(w?* = 2w+2) |y n NN =20%) 2072 0 7 o |
|y 2At(w —1)2 Y2 —20v971 —2v22 0 0 [ 7w
23 23 2220171 222y, 0 0 23
Uy 0 271 0 w
—2vivey1 0 —2v17%9 0 (0
+ 10) = O(At),
71()\2 - 21}22) 0 —2v972 —7 ? Yo (&%)
—2)\2'112’}/1 0 —2)\2’)/2 0 Z3
(4.17)
: w—2)% (w? —2w wr—4dw W —4w
with Y1 = % and Yo = ! 443(:?1; 4 +2.

Remark 4.5. When w = 2, the damping term vanishes, v, = 0 and vy, = %, which allows us
to retrieve the equivalent system (3.11), obtained in Chapter 3.
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Equivalent equation on w

As previously, we assume that Y = O(At). We obtain the equivalent equation

2 \w 2

2
D, — )‘7 —v? —Uy
4= A2 2 /-

—U12 5 — U2

O+ V - qluw) = = (l - 1) V- (DysVw) + O(A#),

with the diffusion matrix

Remark 4.6. We retrieve the same equivalent equation as the one given by the computation
in the Annex A, with a diffusion term divided by two, which seems reasonable because we
have grouped together two time steps of the semi-symmetric operator in order to construct
the symmetric operator S.

In conclusion of this section, we have computed the equivalent equations for all the kinetic
models introduced in Chapter 2. For each model, we have obtained the equivalent system on
(w,Y) and the equivalent equation on w. We shall see in Section 2 that the two equivalent
equations do not have the same stability properties and that the equivalent system on (w,Y)
gives more precise information about the stability of the model. In [14], Bouchut reviews
several stability conditions for kinetic models. According to our analysis, it seems that
the stability condition that we find for the equivalent system on (w,Y’) is as strong as the
Entropy Extension Condition (EEC) of Bouchut [11]. A possible advantage of our approach
is its purely algebraic nature, which makes it easy to compute.

5 Comparison of the equivalent system on (w,Y’) and the
equivalent equation on w for the D1()2 model

Now that we have obtained the equivalent equations, we wish to quantify numerically how
they are close to the kinetic equations. We shall compute analytic solutions of the equivalent
equations and compare them with the solutions of the kinetic equation. We shall also
compute the error between the two solutions.

Let us consider a particular solution of the form

(- ()

with £ € N and o € C.

5.1 Particular solution of the equivalent equation

If we inject this particular solution (4.18) in the equivalent equation (4.8) on w, we obtain

) B At (1 1\ 5,9 9
aw—l—zvkw——? (a—§>k ()\ —v)w.
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It gives us the value of o with respect to k and v

__ﬁ l_l 2 (\2 .2\
o= 2<w 2>k(>\ v) wk.

A particular solution of the equivalent equation (4.8) is then
SH(E-3)R (X202 tivk)t ika

w:w06_<2 w 2

In order to deal with real solutions, we compute the real part of this particular solution, that
we denote wgqg, and which is still a solution of (4.8)

Wigng = R(w) = wee™ F GO cos (k(x — vt)).

To compute the equivalent equation, we assume that we have the relation between y and
J,w given by (4.7)
(2 = v?)(w—2)

= Atd,w. 4.19
y o w (4.19)
We denote ypqrq the real part of y
YEqEq — %(y%
2 - 2 - 2 t(1 2 2 2
= Gkl C )Atk‘wge_%(ﬂ_%)k (32 )tsin(k:(x —ot)).

4w

5.2 Particular solution of the equivalent system

Now, we inject the expression of the particular solution (4.18) in the equivalent system (4.6).

We obtain .
(a12 — — A+iBk — Atc*k?) @’) =0,

At
: 00
with A = (O a)'

The previous system admits two solutions «q(k) and as(k) depending on k, which are the
eigenvalues of ;A — iBk + AtCk?. We have

1 16w* — 64w® + 96w? — 64w
At 32(w — 1)2

al(k) = + O<At0)7

and
AN2w? — 2¢% + 2)?

4w

One of the solutions, a;(k), behaves as O(x;) when At — 0, and the real part of the other
solution ay(k) behaves as O(At) when At — 0. If we compute the particular solution (4.18)
with the eigenvalue oy in O(Ait), we observe that y decreases rapidly toward O.

s (k) = ike — KAt + O(A#?).

If we consider instead, the solution given by the second eigenvalue as, y stays small and has
slower variations. We choose to keep this eigenvalue as for a relevant comparison with the
expected behavior.
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A particular solution of the equivalent system (4.6) is then

en-(5)en

To test, we compute the real part of w, that we denote wgqsys
Whgsys = R(w) = w2 cos (S(ag)t + k),
and the real part of y, denoted by yugsys

Yeqsys = N(y) = Mozt (R(yo) cos (I(ag)t + kx) — I(yo) sin ()t + kx)) .

5.3 Numerical comparison of w

We take k = 2. We choose wy = 1, and we take yo such as (wg, y0) belong to the kernel of
the matrix ;A — iBk + AtCk?.

We denote wyp the solution given by the D1Q2 model with the initialization

<ZLL§ ) (2,0) = (Zg) cos(kx).

We compute the relative L? error between the solution of the equivalent equation wgqrq and
the solution given by the D1Q2 model wyg at the final time

Nz 9
i,Nt i,Nt

Z (wLB - quEq>
i=0

Nz )

Z (wi,m>2

LB
\ 5

and the relative L? error between the solution of the equivalent system WEqsys and wip

Nx 9
i, Nt i,Nt
Z (wLB - quSys)
1=0
Nz

> (vi)

1=0

We take T" = w. We compute the solution for different amounts of time steps Nt =
16, 32,64, 128,256,512,1024 and 2048, which gives us different time steps At = %

We obtain the relative errors of Figure 4.1, for different relaxation parameters w.

The equivalent equation and the equivalent system both converge at the order 2 toward the
solution given by the D1Q2 model. When w € [1.8,2], the equivalent equation and the
equivalent system give similar accuracy. When w € [1.5,1.8], the equivalent system is a
better approximation of the solution given by the D1@Q2 model, while when w < 1.4, the
equivalent equation is more accurate.
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w =2 w=19 w=1.8
1t { —e— Equivalent Equation /_:.’“ 1wy —e— Equivalent Equation Nina Equivalent Equation -
Equivalent System # Equivalent System o Equivalent System
i T i | - order2 i ---- order 2
o 2 5] o 1w~
5 5 5
E 10 _ 4 5 107 E 10
= 4 2 =4
B ® ®
3 107 P 3 104 g 10
o 0] 107
1072 10! 102 10t 102 10!
At At At
w=1.7 w=1.6 w=1.5
w |l T Equivalent Equation /" 1-1 { —— Equivalent Equation 1wy —e— Equivalent Equation “a
Equivalent System Equivalent System Equivalent System
E order 2 E =] ~--- order 2 E 10 order 2
g 10 S o
o 5] 9 10
E E 10 g 1w
O 107 a T
(] L1 [
= 2 2 10
B .. g we ]
g g g .
10-®
10
10"
1072 10 102 10 1072 10
At At At
w=14 w=13 w=1.2
- W -
o —s— Equivalent Equation L 100 Loz
Equivalent System e 10 A A
z ---- order 2 - E z 1o
5 1w 5 10 o
s 5 5"
5 dt.' 107 5 7
g g . g 107 ) Lz
2 g —e— Equivalent Equation o —s— Equivalent Equation
10 w0 Equivalent System o Equivalent System
. ---- order 2 -~ order2
107 0t 107 107!
At At

Table 4.1: Relative L? error on w with respect to the time step At, for different relaxation

parameters w.

5.4 Numerical comparison of y

Now, we want to compute the error on the flux error y.

The flux error of the D1Q2 model yyp is given by

We can compute the relative L? errors between yr 5 and the flux error ygqg, that we assume
to have in order to compute the equivalent equation and between y;p and the solution of
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the equivalent system ypqsys

Nz 2 N 2
iNt _ iNt iNt _ i,Nt
Yis YEqEq Yus YEqSys
i=0 i=0
n
Nz 9 a d Nz 9
i, Nt i, Nt
\ Ui Y1.B
i=0 i=0

We obtain the Figure 4.2. We can observe that the flux error ygqrq given by the equivalent
equation converges at the order 1 toward the yrg given by the D1Q)2 model, while the ygqsys
given by the equivalent system converges at the order 2.

10° 10 10
> 107t e > > 107t
L2 10!
5 A 5 5
= 0 2 [ =
@ - @ @
2 1 .” ! o 2
E: o B .-~ —+— Equivalent Equation £ - —— Equivalent Equation
2 10+ /,/’ —e— Equivalent Equation 2 L Equivalent System 2 L Equivalent System
P > Equivalent System L ---- order 1 o L ---- order1
w0 ---- order 2 Wy ---- order 2 e ---- order 2
10 107! 1077 10t 107 107!
At At At
w=1.5
07+ 107! 107
> > >
c c c
o o S
[ w1072 =
g g g
a a a
[ 4 L w -
2 w0 5 > 102 5 : Lo . :
E o Equivalent Equation E P Equivalent Equation E e Equivalent Equation
2 ” Equivalent System ) P Equivalent System 2 Equivalent System
10 ot ---- order1l 107 e ---- order 1 0 A —--- order 1
_/" ---- order 2 _/" ---- order 2 e ---- order 2
107 107 107 0t 107 107
At At At
10° .
L w*{ —*— Equivalent Equation L
10 L Equivalent System &
107t 2 -
> = > ---- order 1 o
c c < 1w -
S w0 et ° ---- order 2 »
2 g 2
@ ] U
20 P g 2
E LT Equivalent Equation g 1w . Equivalent Equation E .
2 - . Equivalent System ] L Equivalent System gw
/,' ---- order 1 10 o ---- order 1
< ---- order 2 2 ---= order 2 1074
10
1072 10! 1072 1071 1072 107!
At At At

Table 4.2: Relative L? error on y with respect to the time step At, for different relaxation
parameters w.

Remark 5.1. When w = 2, the error between the flux errory given by the equivalent equation
and the one given by the D1Q2 model is constant. This is due to the fact that ypqr, is given
by (4.19), which is equal to 0 when w = 2. Indeed, when w = 2, w and y are independent,
so we do not have to assume the smallness hypothesis y = O(At) to deduce the equivalent
equation from the equivalent system.
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6 Conclusion

To conclude, in this chapter, we have proposed a generalization of the equivalent system
on (w,Y) presented in Chapter 3 for the case of a relaxation parameter w < 2. We have
shown that from this equivalent system, we can retrieve the classical equivalent equation on
w proposed in [34, 38, 50| by assuming that Y = O(At).

We have numerically compared the equivalent system on (w,y) and the equivalent equation
on w in the case of the D1Q2 model. We obtain that the equivalent system is a better
approximation of the solution w given by the kinetic model when w is close to 2, while the
equivalent equation is better when w is close to 1. For all the values of w, the equivalent
system gives more precise information on the behavior of the flux error y than the equivalent
equation.
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Chapter 5

Two-scale convergence

In this chapter, we propose a tentative analysis of the equivalent system by a two-scale
convergence analysis. The two-scale convergence is a general tool, proposed by Allaire in [1]
(see also the presentation given by Frénod in [17]), for analyzing PDEs with small parameters
generating fast oscillations. The two-scale analysis transforms the initial PDE with one time
variable ¢t and a small parameter ¢ into a PDE with two time variables ¢ and 7 and no small
parameter. The new PDE gives insights on how the slow scale and fast scale separates when
the small parameter € goes to zero. We will see that, unfortunately, our analysis is not
completely conclusive. At the end, we will try to give some possible ways to improve the
analysis.

1 Two-scale convergence

Definition 1.1. A sequence }Igm) two-scale converges to U = (;’i) of for all function
At

@ € CHR%CH[0,T);CH[0, Tmax]))), we have

T T T
war(x, t)\ t e '
/0 (Ym(a:,t)) P <az,t, _At> dt — /0 /0 Uz, t,7) - p(x,t,7)dtdr.

Y At
(4.15) and two-scale converges toward U, then there exists a vectorial function p such that

Theorem 1.1. If the sequence (wm> satisfies the equivalent equation of the D2Q)3 model

ﬂﬂ(w’t)
Uz, t,7) = | a(x, t)e’ |, (5.1)
po(x, t)es”

45
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and U satisfies the equation

U1 —2v1(T) 0
U (x,t,7) + | 71(7)(2v1 + N)(v1 = A) v2(7) (201 — A) 0 nU (x,t,7T)
Y1(7)v2(2v1 + A) 20072(7)  72(T)A
Vg 0 —271(7)
+ Y1(T)v2 (201 + N) 0 v2(7)(2v1 + A) | BU (x,t,7) = O(At),
Y1(T) (0 A + 205* = A?) y(T) A 2v972(7)
(5.2)

with

)= BBl &7 (1)

16(&) - 1)2 Tmax a
(W — 4w3 + 6w? — 4w + 2) e79T [eTTmax — ]
,YQ(T) = 2 )
4(w—1) Timax a

and
wlw —2)(w? — 2w +2)

2At(w — 1)?

a =

Remark 1.1. The previous theorem gives the two-scale convergence of the solution obtained
with the D2Q)3 model, but we can achieve a similar theorem with the D2Q4 model.

Proof. As ( s, t)> satisfy (4.15), we have
Yz, 1)

wﬁﬂ@ﬁﬂmhﬂﬁwﬁﬁ@w@@ﬁwﬂwww

By multiplying by a test function ¢ (x,¢, &) € C'(R% C}([0,T);C*([0, Tmax)))) and integrat-
ing, we obtain

/L(&iﬁ&@ )y ma (i)
DS P

By integrating by parts the previous equation, we obtain

0

U)At t 1 a ¢
: 850 w7t7_ + _87—(‘0 (mat77—> + — ©Y1 (wutv_)
R At At At At 09 (a‘:7 t, ﬁ)
t 5.4
+ZBk8kgo (m A))dmdt (54)
k=1

() oo - (D) o (er5)) =0
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As ¢ vanishes at t =0 and ¢ = T', we have

Wat . i 1 L e t
/ /RQ <Ym > O (w’t’ At) Ao @ b+ | e (m’i’ )
t
+Z Brorp <w,t, E)) dxdt = 0.
k=1

If we multiply the previous equation by At and take the two-scale limit, we obtain

0

T Tmax
/ / U(x,t,7)- | Orp(x,t,7)+a | @1 (x,t,7) dxdrdt = 0. (5.6)
R? o (T, t,7)
By integrating by parts, we obtain
T Tmax O
/ / / o.U (x,t,7) —a | Uy (x,t,7) o (x,t, 7) dedrdt
0 Jo JR Us (z,t,7) (5.7)

T
—l—/ / (U(x,t,0)p(x,t,0) — U(x, t, Tmax) (T, t, Tmax) ) dxdt = 0.
R2

Let us impose that the test functions ¢ satisfy the condition

Uz, t,0)p(x,t,0) — U(x, t, Tmax) (2, t, Tmax) = 0. (5.8)

Then we have the equation

0
U (x,t,7)=a | Ui(x,t,7) | . (5.9)
UZ(w7t7T)

The condition (5.9) leads to:
e As we have 0,Uy =0, Ugy does not depend on the variable 7.
e For i = 1,2, we have 0,U; = aU;. So we have a solution of the form U; = U(t,0)e®"

Finally, there exists p such as
MO(% t)
U(x,t,7) = | iz, t)e’ | = D(1)p(x,t), (5.10)

with the matrix

1
D(r)=10 e 0 |. (5.11)
0
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We now choose a test function ¢ which satisfies

0
Orp(x,t,7) = —a | pi(x, t,7) | . (5.12)
wolax, t,T)
Then, there exists 8 such as
00(33’ t)
p(x,t,7)= | bi(x,t)e " | = D(—7)0(x,1). (5.13)
Os(x, t)e 7

Let us remark, that the condition (5.8) is satisfied with a test function ¢ of this form. Indeed,
we have

Thereby, the equation (5.5) gives us

2
WAt t t B
/ /RQ (Ym ) <8tso (:c,u At) + ;Bkakgo (m,t, At)) dedt = 0.

By taking the two-scale limit, we have
T Tmax 2
/ / U(x,t,7) - (@go(a:, t,7)+ ZBkakgo(a:,t, 7')) dxdrdt = 0.
o Jo R2 1

Then, replacing U and ¢ respectively by (5.10) and (5.13), we obtain

/OT /Om /R 2(D(7)N(ac,t)) : (D(—T)ate)(;c,t) + Z BkD(—T)ake(x,t)> dadrdt — 0.

k=1

As B is diagonal, we have

/T /m/ pul,t) - (ate(w,t) + ZD(T)BkD(_T)akO(CB?t)> dwdrdt = 0.
o Jo R? k=1

Therefore, we have

/OT /R2 p(x,t) - (8t9(ac,t) /Oﬂnax dr + zi: (/Ormax D(T)BkD(—T)dT) ake(m,t)) dadt = 0.
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By integrating by parts, and because ¢ vanishes at ¢t =0 and ¢t =T, we have

/ /R2 <Tmax8tﬂ x,t +Zi: (/T‘“ax D(T)BkD(—T)dT) 8ku(iv,t)> - 0(x, t)dzdt = 0.

Thereby, p satisfies the equation
2 Tmax
TmaxOrps(, 1) + Z </ D(T)BkD(—T)dT> Oepr(z,t) = 0.
k=1

Finally, we have

2
WU (x,t,7) + Z MoRU (x,t,7) =0,

where M}, are the matrices

My = ——D(r) (/OTIH&XD(T)B;CD(—T)dT) D(=7).

Tm ax

As D(7) and By do not commute, we have

k —71a Rk —71a Rk
Bgoy € ™Bg, € Bo,2

1 Tmax s ,
My, = - D(r) / eraB’iO B’f,l Blf,z dr | D(=71),
max 0 €TGBIQ€,0 B]2€71 312972
Bio  72(7)Bs1 72(7)Bg,
S C LT S A
w(T)Bs, B, B,
Wit 2(7) = £5 (S22 i () -~ (=221) -

Remark 1.2. As a <0, we have lim ~i(7) =0, and lim 72( ) = +oo. This is a

Tmax —>+00 Tmax ™~

little bit disappointing, because we would have preferred to obtain a szmple limit system when
Tmax S large, which is obviously not the case here. This is probably because we have inserted
in the analysis a too simple exponential behavior, given by formula (5.9). This behavior is a
consequence of the choice of test functions satisfying (5.8). Obviously, this choice is not the
best. The test function should be chosen in order to filter the fast behavior. It would probably
be much more fruitful to choose test functions that isolate the behavior related to the rapidly
decaying mode associated to eigenvalue oy (k) (see Section (5.2)).

Remark 1.3. However, when w = 2, the two-scale analysis provides the good expected
behavior. The terms of the non-diagonal blocs of the matrices By vanish.

Consequently, in this case, we have

2
U (x,t,7) + Z BoxU (z,t,7) = 0.

k=1

Moreover, the dumping term a cancels. Therefore, D(t) = Id and the system does not
depend on T.
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2 Conclusion

In this chapter, we have provided a tentative analysis of the equivalent system of the D2Q)3
model with a two-scale convergence.

The two-scale limit gives the expected behavior in the case w = 2, with no dependency in
the fast time variable 7.

In the case w = 2, our two-scale analysis does not give very useful information. We think
that it is because our choice of test functions does not filter the good asymptotic behaviors
when At is small. We think that it is possible to improve the analysis.



Chapter 6

Numerical stability

In chapter 4, we have computed the equivalent system on (w,Y") and the equivalent equation
on w, for different kinetic models. In this chapter, we are interested in comparing the
diffusive stability condition obtained from the equivalent equation and the hyperbolicity
stability condition obtained from the equivalent system.

In the second part of this chapter, we will try to build stable boundary conditions of order
2 for these kinetic models.

1 Entropy stability of the kinetic model

1.1 Dual kinetic entropy representation

In this section, we recall the entropy theory of the kinetic representation. This theory has a
long history, see for instance |63, 73, 53, 29, 16, 25, 77]. In our context it has been analyzed
by Bouchut in [13]. However, in his work, Bouchut avoids the use of the Legendre transform.
The ideas have been rephrased in an easier way (to our opinion) in the work of Dubois [35]
with the help of the Legendre transform. Let us now recall the theory.

We consider a system of r conservation laws
Ow+ V- q(w) =0, (6.1)

that admits a Lax entropy function S(w) and a Lax entropy flux G(w) [63]. Thus S : R” — R
is strictly convex and

0S(w) +V-G(w) =0,
whenever w is a smooth solution of (6.1). This imposes that
DyS(w)Dyq(w) = D,y G(w), (6.2)

where we have denoted by D,,g(w) the Jacobian of g(w). Let us recall that the Jacobian is

the transpose of the gradient
DyS(w) = Vo, S(w) . (6.3)

Thus D,,S(w) is a row vector, while V,,S(w) is a column vector.

51
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As in Chapter 2, we consider a formal vectorial kinetic representation of that system

L e
atfk+)‘kvfk:g( kq_fk)a kzla---a”v;

where the conservative vector is the sum of the kinetic vectors
Ny
w = Z fka
k=1
and the kinetic equilibrium vectors (or Maxwellians) are functions of the conservative data

= Fifw),

For the moment, instead of recovering the equilibrium from the conservation laws (6.1) as
in Chapter 2, we assume that the equilibrium is obtained from an entropy optimization
principle. For this we introduce a microscopic entropy

Ny

% f)zzsk(fk);

where the kinetic entropies s, are strictly convex functions of the f,. The macroscopic
entropy is obtained from the resolution of the following constrained optimization problem

S(w) = min (f). (6.4)

In optimization this operation is known as an inf-convolution operation [59]. The macroscopic
entropy is the inf-convolution of the kinetic entropies. In many works, the inf-convolution
operator is denoted with a [J. We thus have:

S =s10sy...0sy, .

We denote by f7?(w) the (supposed to be unique) values of f, that achieve the minimum

w) =3 s(f(w)

If we introduce the Lagrangian

L(f,m) = Sk(fk)+m'(w_2fk>‘
k=1 k=1

then the minimizer f*/(w) and the Lagrange multiplier m(w) are characterized by

V(i) ka =w. (6.5)

These relations are simply obtained by deriving the Lagrangian with respect to f, or m.
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Let us introduce the Legendre transform |58, 59|
5°(p) = max(p - w — S(w)). 69

The components of p are called the dual variables, or entropy variables [53, 16, 25]. The
function S* is called the dual entropy. The definition of the Legendre transform (6.6) applies
to functions that are not necessarily smooth or convex. In the regular case, when S is smooth
and strictly convex on R", S* is defined implicitly by the following relations

p = VS(w(p)), (6.7)

5*(p) =p-w(p) — S(w(p)),
where we denote by - the usual dot product:

p-w(p) =p w(p) =w(p) p

In this case, it can also be shown that S** = S. Thus we have the reverse relations:
w = VS5 (p(w)),
S(w) = p(w) - w — 5" (p(w)).
We can also define the dual entropy flux by the relation
G"(p) =p - ¢'(w(p)) — G'(w(p)). (6.8)

Let us remark that we do not use the same symbol for the dual entropy (*) and the dual
flux (%), because the definitions are different. An important fact is that the knowledge of
S*(p) and G**(p) is sufficient to reconstruct the system of conservation laws (6.1). Indeed,

VG (p )—Q(w(P))+P Duwq' (w(p)) Dyw(p) — DuwG'(w(p)) Dpyw(p),
¢'(w(p)) + DwS(w) Duwq' (w(p)) Dyw(p) — DwG' (w(p)) Dpyw(p),
(because of (6.7) and (6.3))
¢'(w(p)) + DuwG' (w(p)) Dpw(p) — DuG'(w(p)) Dyw(p),

(because of (6.2)), and thus

VG (p) = ¢'(w(p)). (6.9)
In short: the gradient of the dual entropy gives the conservative variables and the gradient
of the dual flux gives the flux.

Remark: an important remark is that the change of variables p — w(p) is a way to
symmetrize the system of conservation laws. Indeed

Orw + 0,q(w) = 0,

can be rewritten

9V ,S*(p +Zav G (p) =0,
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or

DppS*(p)Oip + Y DppG™*(p)0ip = 0, (6.10)

where the Hessian matrices D,,S*(p) and D,,,G"*(p) are obviously symmetric and Dp,S*(p)
is positive definite (when S* is strictly convex). This is the Mock theorem [73]. In the
following sections, we shall often try to guess directly a symmetrization of the system of
conservation laws, rather than the full dual entropy theory to obtain the stability conditions
of the relaxation scheme.

An essential property of the inf-convolution is that the Legendre transform changes it into

a sum. We thus have N
=> si(p)
k=1

Taking the Legendre transform of (6.5) we see that the couple (f.*(w), m(w)) is solution to

= Vsi(m ka ="} (6.11)

Summing over k, we also have the Lagrange multiplier in an easier way
Ny Ny
> fil =D Vmsi(m(w
k=1 k=1

which gives us

and thus
m(w) = p(w) = VS(w).

It is remarkable that the Lagrange multiplier of the constrained optimization problem (6.5)
is simply the gradient of the macroscopic entropy.

Let us now assume the additional property
G (p) =Y _ Nisi(p). (6.12)

Then we have
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(from (6.11)) and thus, from (6.9)

¢'(w) =) N.Ji(w). (6.13)
k=

—_

We recover relation (2.6) that imposes the consistency of the kinetic model with the system
of conservation laws.

1.2 Reverse construction

Now that we have recalled the entropy theory of the kinetic representation, we can proceed
in the reverse way. We choose the equilibrium f? in such a way that the consistency relation
(6.13) is satisfied. In the previous chapters, we have seen that if we take only d + 1 kinetic
velocities Ay then this choice is generally unique. This is the case of the D1Q)2 and D2Q3
models. From the above theory, we know that f;?(w(p)) is a gradient, when it is expressed
in the entropy variables p ! We can thus find dual kinetic entropies s;(p) such that

v (w(p)) = Vpsi(p).
By Legendre transform, we can (in principle) compute the kinetic entropies sx(f,) and this
gives us the microscopic entropy

Uz

S(F) = sk(f)-

k=1

The main point in the reverse construction is to ensure that the strict convexity is preserved.
In practice, we will see that the microscopic entropy is convex under a subcharacteristic
condition.

1.3 Application to the transport equation

Let us now try to apply the above construction to the D1Q)2 model for the transport equation.
In this case
q(w) = vw, )\1 = )\7 )\2 = _)\a

and we have no free choice for choosing the equilibrium kinetic data, which are given by

€q :E g eq :E_g

For this simple linear conservation law we can take the entropy associated to the L? norm

w
The dual entropy is simply
2
R
S'(p) = 5

and the entropy variable is
p = Vy,S(w) =w.
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Thus

cq _P_ P _p_vp

From (6.11) we deduce the dual kinetic entropies

. 1 . 1
si(p) = 7(L+v/N)p*,  s5(p) = (1 —v/N)p”.
They are strictly convex under the subcharacteristic condition
A> vl (6.14)

We can then compute the kinetic entropies

A A
s1(f1) :)\—Hf%, 82(f2):mfg'
The microscopic entropy is then
A A
Z<f17f2>_)\+vf1+>\_vf2'

As expected, it is a diagonal quadratic form in the (f,, f,) variables.

Let us express the microscopic entropy with respect to the (w,y) variables. We have

w:f1+f27

and

y=Af1— - qw),
= 1= Afa—o(f1+ fa)

After simple computations, we find that the microscopic entropy is also

_ 2 2

S(w,y) =X(f1, fo) = %Jrﬁ

(6.15)
It is a convex function of w and y under the subcharacteristic condition (6.14). As expected,
it is minimal when the flux error y vanishes. In addition, in the relaxation step, the entropy
is exactly conserved when w = 2 because

S(w, (1 -w)y) =X(w, —y) = X(w,y). (6.16)

We are now in a position to prove the entropy stability of the over-relaxation scheme when
1<w<L2

Theorem 1.1. With periodic boundary conditions, or in an infinite domain, the over-
relazation scheme is entropy stable under the sub-characteristic condition (6.14) when 1 <
w < 2.
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Proof. Tt is sufficient to prove the decrease of the entropy

f@%j/Eﬁﬂ%ﬂfﬂ%ﬂ%j/%ﬁﬂﬁﬂﬂﬂﬂhwim

T

for a single time step. In the transport step, one solves
O f1, + MOu Sy, = 0,

and thus the microscopic entropies

F(t) = / s (fula. 1)),

xT

are separately conserved
Lt + A7) = SR (t).

In the relaxation step, w is not changed and
y(o,t+ A7) = (1 —w)y(e,t + At7),

because |1 —w| < 1 we see from the expression (6.15) of the entropy in the (w,y) variables
that the microscopic entropy decreases pointwise, at each x. Therefore

S(t+ A7) < L (t+ At). O

1.4 Application to a truly nonlinear system

In order to show that the approach still works for a non-linear system of conservation laws,
we try now to apply the above method to the D1()2 model for the shallow water model
where the unknowns are the water height h(z,t) and the velocity u(x,t). It reads

Ow + 0,q(w) =0,

with
. h - hu . 2
w_(hu)’ Q(w)_(huz—i—ghz/Q)’ g =9.81m/s".

We define the primitive variables
u

0w + B(v)0,v = 0,

wo-(31)

Assume that the Lax entropy S(w) = H(v) is expressed in the primitive variables, and that
the entropy flux G(w) = R(v). Then we must have

For smooth solutions, we also have

with

D,H(v)B(v) = DyR(v).
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Denoting the partial derivatives with indices we obtain

u h

( H, Hu)(g u>:(Rh R.).

We search H under the form

Because
U2
Hh—E—i—e’(h), H, = hu,
this gives
3 3h 2
u?+ue'+ghu=Rh, 2u +he' = R,
We take 5 2
U
R=h— —.
2+w+w2
Then 1o 2 "
3hu 3hu
R, = — = he'.
5 +e+g 5 5 + he

e(h) is then solution of the differential equation
e —he' +gh*/2 =0.

A solution is

gh?
h) = —.
e(h) = 2
In the end we find ) 2 .
u g u 9
S =h—+—, G =h— h*.
This allows us to compute the entropy variables
u2
p1=gh— 5 P2= (6.17)
and the reverse change of variables
2
h = p1+p27 U = Pa-
29

The equilibrium kinetic vectors are given by

W qW) ey w q(w)

) oA 7 Y% 9 2\

After some calculations, we can express this equilibrium in the entropy variables

Fo = [ (p2242p1)(A+ps)  (p22+2p1 ) (4p2A+5pa2+2p; ) }T
1 ZgX T6g) ’

49X 169X

;q _ |: (p22+2p1 ) (A—p2) (p22+2p1 ) (—4p2 A +5p22+2p1 ) :| T
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From the above theory, we know that
Zq = Vpsy,

for some dual kinetic entropies s;. This is indeed the case and after more calculations we
find

o 42" (M pa) (A= pe) (92 4 2p0)°

! 169\ ro2 169\ '

It is then possible to compute the Hessians of s} and express them in the (h,u) variables
with (6.17). We find

Au gh+ u+u?
* 29 29
Dppsl - gh+- utu? (gh—&-u2>>\+3hug+u3 )
29\ 29\
A—u —gh+ u—u?
x 2g 29
DPP82 - —gh+du—u? (gh+u2))\—3hug—u3
2g 29

The two matrices are positive definite if and only if the first diagonal terms and the deter-
minants are positive. This is equivalent to

A > ul,

A—u)?—gh>0, (A+u)*—gh>0,

A > |u| ++/gh.

This is the expected sub-characteristic condition. It is difficult to go further because the
Legendre transforms s; and sy of s} and s; are difficult to compute explicitly. However, we
can reproduce the stability proof of the linear case. The microscopic entropy is given by

S(f1, f2) = s1(f1) + s2(f)-

which is again equivalent to

Using the relations

w = f; + fo,
y:)\fl_)‘fz_Q(f1+f2)7
we deduce () ()
_w ., 9w Y _w 49w Yy
fl_2+2x+2xf2 2 2\ 2\’

Sw.y) = (S 420 L)y (02002,

For a fixed w, the minimum of the entropy is achieved for y = 0 since it corresponds to the
equilibria distribution associated to w. Therefore the macroscopic entropy is

S(w) = X(w,0).
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and

VyE(w,0) = 0.

Then, with a Taylor expansion near to y = 0, we get

S(w,y) = S(w, —y) + O(ly[*).

The relation (6.16) thus still holds but with a third-order term in y. This means that the
relaxation scheme with w = 2 is entropy preserving up to third order in y. In principle, it
is also possible to construct a scheme that preserves exactly the entropy in the non-linear
case. It is sufficient to choose the relaxation parameter w = w(w, y) in such way that

Y(w, (1 - w(w,y))y) = X(w,y). (6.18)
In practice, this would not be very interesting, one would get
w(w,y) ~ 2,
and w(w, y) would have to be computed numerically by first computing s; and s, numerically

and then by solving (6.18) also numerically.

What is interesting, however, is that the reasoning ensures the existence of a relaxation
parameter w(w,y) =~ 2, such that the whole scheme is entropy preserving. And if the
scheme is run with a smaller relaxation parameter, it is ensured to be entropy stable.

2 Stability conditions

We now consider w € R.

To analyze the stability of our kinetic model, we propose to compare two stability conditions.
First, we recall the classical diffusive stability condition, obtained by satisfying the positivity
of the diffusion term of the equivalent equation on w.

Then, we propose to compute the condition for our equivalent system on (w,Y’) to be
hyperbolic. More precisely, we are searching for a matrix that symmetries the equivalent
system. If such a matrix exists, the system is hyperbolic. We remind the proof of this
theorem in the following subsection.

2.1 Hyperbolicity condition

We consider a system of the form

d

i=1

Definition 2.1. The system (6.19) is hyperbolic if for all unit vector n € R?, the matriz
S niB; is diagonalizable in R.
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Definition 2.2. The system (6.19) is symmetrizable if it exists a symmetric positive definite

matriz P such as the matriz P (Z?Zl niBi> are symmetric.

Remark 2.1. We can simplify the previous definition: The system (6.19) is symmetrizable
if it exists a symmetric positive definite matrixz P such as the matrices PB; are symmetric
foralli=1,... d.

Theorem 2.1. A symetrizable system is hyperbolic.

Proof. Let us assume that the system (6.19) is symmetrizable. We denote B(n) = Z?Zl n;B; €
My(R). Let us note R the symmetric positive definite matrix such as R? = P~!. We have

B(n) = P"'PB(n) = R?°PB(n) = R(RPB(n)R)R™".

As PB(n) and R are symmetric, RPB(n)R is symmetric. Then RPB(n)R is diagonalizable
in R. Tt exists an orthogonal Q(n) and a real diagonal matrix D(n) such as

RPB(n)R = Q(n)D(n)Q(n)".
Consequently, we have
B(n) = R(Q(n)D(n)Q(n) )R,
= (RQ(n))D(n)(RQ)™
Finally, B(n) is diagonalizable in R. The system (6.19) is then hyperbolic. 0

2.2 The D1@Q2 model

Diffusive stability condition
We consider a linear flux g(w) = vw.

Proposition 2.1. When w # 2, the sub-characteristic diffusive stability condition of the
D1Q2 model is
lv| < A

Proof. In chapter 4, we have computed the equivalent equation on w for the D12 model
and obtained the equation (4.8)

Oyw + vo,w = % (l - %) (A2 — v} Atdw + O(AL?).
w

The equation is stable if the diffusion term is positive. As w € [1,2], the term (% — %) is
positive. The positivity of the diffusion term is then equivalent to

A2 —0? >0,

which gives us the stability condition
lu| < A
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Remark 2.2. When w = 2, the diffusion term of the equivalent equation of the D1Q)2 model
disappears, which gives us
Ow + vo,w = O(A?).

We obtain that the solution given by the D1Q2 model is an approrimation of order 2 of the
solution of the initial equation.

Remark 2.3. We retrieve the subcharacteristic stability condition (6.14) given by the entropy
stability analysis.

Hyperbolicity condition

In Chapter 4, we have found equivalent system of the form

0, (Z’) - (2) + Bo, (Z’) — 0(AY), (6.20)

0, (Z’) - % (2) + Bo, <Z’> — 0(AY), (6.21)

We can also write it

WithA:(O O).
0 a

Let us note

= &) ()
o0 @) (+G) -z () e ()0 o

o + Bo,v = 0.

Now that we do not have any damping term, we can study the hyperbolicity of this system.

1 0
P =
(O )\in2) ’

symmetrizes the equivalent system of the D1Q2 model (4.6), if the diffusive sub-characteristic
stability condition is satisfied. Consequently, the equivalent system (4.6) is hyperbolic if

We have

which gives us

Proposition 2.2. The matriz

lu| < A

Proof. We search a matrix P = (ﬁ ! ]1; 2> such as PB is symmetric and P is symmetric
2 D3
positive definite. We have

P11 D2 v a!
PB =
(pz p3> ((/\2 —v¥)m —mz> ’

_ (vp1+ ()\2 - U2)71p2 Y1P1 — VY2P2
vps + (N2 —v*)yips ap2 — vYeps )
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(w—2)?(w?—2w+2) (w4 6w’ —4w+2)
s o and =TTy

with v, =
As we want PB to be symmetric, we need to satisfy the condition
NP1 — vy2p2 = vpz + (A — v*)nps,
which is equivalent to
1 147

p3 = —()\2 — Uz)pl - U—O\Q — U2)71p2

Let us choose p, = 0 and p; = 1. We obtain

1
A2 — 2’

1 0
P = )
(0 >\2iv2 )

As its eigenvalues are 1 and ﬁ, P is definite positive if

pP3 =

and then

lv| < A

[]

Remark 2.4. We obtain the same condition on v and X\ as for the diffusive stability condition
giwen in Proposition 2.1. In this case, the diffusive analysis and the hyperbolicity analysis
gie the same stability condition.

2.3 The D2(Q)3 model

Diffusive stability condition

We consider a linear flux g(w) = <lew0>
2

Proposition 2.3. The sub-characteristic stability condition of the D2Q3 model is

A — 02 — 0% — (012 192)2 + AN(—2013 + 601192) + A2(v12 + vy2) > 0.

Remark 2.5. This condition can also be written as the intersection of
U12 + U22 < )\2,

and
N — 3012 + vp?) + 2017 — 6vvy? > 0.
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Proof. Indeed, with a linear flux, we have

At (1 1

with the diffusion matrix

Dg _ (%()\ + ’Ul) — 'U12 —%Ug — V1V2 >

—%”UQ — V1V2 %()\ — ’Ul) — U22

The eigenvalues of this diffusion matrix are

1

dio = 5

(A2 — 0% = v? £ /(112 + 192)2 + A(=2013 + 6v1v92) + A2(vy2 + 022)) :

Finally, the model D2@Q)3 is stable if Dj is positive definite, namely if d; > 0 and dy > 0. [J

Hyperbolicity condition

Proposition 2.4. The matriz

2(v12 = 201X — 3us? 4+ A?) (201 + A) 0 0
P = 0 —(’U1>\ + 2U22 — )\2) U2(2111 + )\)
0 va(2v1 + A) —(v1 — AN) (201 + A)

symmetrizes the equivalent system of the D2Q3 model (4.15), if the diffusive sub-characteristic
stability condition (2.3) is verified. Consequently, the equivalent system (4.15) is hyperbolic

if

A2 — 2 =yt — \/(v12 + 192)2 + AN(—2013 + 6v1092) + A2(v12 4 v22) > 0.

Proof.
P1 D2 D3

We are searching for a matrix P = | ps ps ps | such as PBy and PB,y are symmetric
P3 Ps Ps

and P is symmetric positive definite. When we compute the matrices PB; and PB,, the
symmetry imposes 6 equations on the unknown py, ps, p3, pa, Ps, Ps- This gives us the matrix

A (U1272U1/\73U22+)\2)p5 0 O
2 V2 ( 5 2)
. . V1 A+2v2° =) ps
P - O v2(2v1+)\) Ds ’
_ (vi=M)ps
0 Ds T

where ps must be chosen. We choose p5 = v9(2v1 + A). We obtain

2(012 = 201X — 3us? 4+ A?) (201 + A) 0 0
P = 0 —(Ul/\ + 2U22 — )\2) U2(2U1 + )\)
0 v9(2v1 + A) —(v1 — A\) (201 + N)
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The eigenvalues of P are

A
e = 5(’[}12 — 2’01)\ - 3’022 + )\2)(2111 + )‘)7

e2 =X —v1® = 02" + /(012 + 122)% + A(—2013 + 6v1122) 4+ A2 (0% + v22),

and

es = A2 — 012 — 092 — /(012 + 152)2 + AN(—=2013 + 6v1122) + N2(v12 + 52).
By noticing that es > e3 and ese3 = 2eq, we deduce that P is definite positive if e3 > 0. [
Remark 2.6. The hyperbolicity condition on vy, vo and X is the same as the diffusive stability

condition given in the Proposition 2.3. We have represented it graphically in Figure 6.1. Here
again, the diffusive analysis and the hyperbolicity analysis are equivalent.

10 -

05 1

0.0 1

vaiA

_lu -

T
-1.0  -05 0o 0.5 10
vifA

Bl stability and hyperbolicity condition

Figure 6.1: Graphic representation of the diffusive stability and hyperbolicity condition of
the D2@Q)3 model.

2.4 The D24 model

Diffusive stability condition

Proposition 2.5. The D2Q4 model is stable if v1? + 192 < ’\2—2

Proof. We have

D+ V - q(w) = % <£ _ %) V- (DsVw) + O(A?), (6.23)
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A2 2 _
with D = ( . ”1”22) .

A
—U1V2 5 — V2

The model is stable if the diffusion matrix D, is positive. Its eigenvalues are:

1
dy = - ()\2 —|jv||* - \/()\2 — [|v]|2)? = M 4 222052 + 2)\2012) and

()\2 ol + /(2 = [Jo]]2)? )\4+2)\2vg2+2)\2v12).

As dy < do, the eigenvalues are both positive if d; > 0, which means if

A
U12 + U22 < ?

m
Hyperbolicity condition
Proposition 2.6. The matriz
)\2(41}12 — )\2)<4U22 - )\2) 0 0 0
pP— 0 —2)\2(41}22 — /\2> 0 2’01(4’022 — /\2)
o 0 0 —2)\2(42112 — /\2) —2’02(41)12 — )\2) ’
0 21}1 (4@22 — )\2) —2?]2<4’U12 — )\2) —2’[)12 — 2?]22 + )\2
symmetrizes the equivalent system of the D2Q4 model (4.17), if
4max(vi?, vy%) < A2 (6.24)

Consequently, under this condition, the equivalent system (4.17) is hyperbolic.

Proof. We are searching for a matrix

P1 P2 P3 P4
p—|P2 Ps Ps P1 7
P3 Pe DPs D9

Pa P7 P9 Pio

such as PB; and PB, are symmetric and P is symmetric positive definite.

We can compute PB; and PB;. As we want these matrices to be symmetric, we obtain
conditions on the coefficients p;. We deduce that

i)?(%l - )\) (21}1 + )\)p7 0 0 0
0 —prA?/a 0 p7
P = 0 0 _ prA2(201-M)(2u1+)) U2p7(2v1 —A)( 2v1+>\)

(v1(2v2 )\)(21}24-)\)) 'U1 21}2 )\)(ZUQ—F)\
O U2p7(2111 )(2v1+)\) 2'01 +2v9 —>\2 p7
Pr (01 (202N (2021N)  2(v1(202—MN) (2024 N)
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By choosing p; = 2v1(2vy — A)(205 + A), we obtain

)\2(41212 — )\2)(41)22 - )\2) 0 0 0
p— 0 —2)\2(41}22 — )\2) 0 21)1 (4U22 — /\2)
0 0 —2)\2(4’012 — )\2> —21)2(4?)12 — )\2)
0 21]1(4’022 — )\2> —2U2<4U12 — )\2) —21)12 — 2’022 + )\2

(6.25)

As P is symmetric, according to the Sylvester’s criterion, P is positive definite if and only if
all of the leading principal minors are positive, that is to say if the following conditions are
satisfied

|P1’ = )\2<4U2 —)\2>(4’01 ) > O,
P = =200t = W)t - A2 > 0,
|Ps| = 4)\6(4v12—)\2)( )\2)2 > 0,
Py = 4)\4(41)12—)\2)3(4@22—)\2)3 > 0.
This is equivalent to
4?}12 < /\27
{42122 < M.

It can also be rewritten
4max (v1%,v9%) < A2

or
2max (|vy|, [va]) < A.

]

Remark 2.7. The hyperbolicity condition obtained is more restrictive than the diffusive
stability condition obtained in Proposition 2.5. We can see in Figure 6.2 the values of vi/A
and vy /X for which the diffusive stability condition is verified, the circle colored in yellow, are
included in the blue square, for which the hyperbolicity condition is checked. This is coherent
with the review of stability conditions given by Bouchut in [1/].

Numerical comparison of the stability conditions

As we can see in Figure 6.2, for some choice of velocity v = (v1,v2) and norm of the
kinetic velocity A, the diffusive stability condition can be satisfied, but not the hyperbolicity
condition. We want to test numerically what happened when we are in this case.

We consider a square geometry [0, 1] x [0, 1] with periodic boundary conditions. We consider
Nz = 200 space steps in both directions. We initialized w with a Gaussian function centered
in the middle of the square

w(:n, O) _ 6—80((11—0.5)2—&-(12—0.5)2)'

Let us choose v = (1,0). The stability condition is satisfied if

A> /20007 1 02?) = V2
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100

075 4

050 1

025 1

vafA

0.00 4

—0.25 A

—0.50

—0.75 A

=1.00 T T T
-1.0 -0.5 0.0 05 14

VfA

Stability condition
Bl Hyperbolicity condition

Figure 6.2: Graphic representation of the diffusive stability and hyperbolicity condition of
the D2Q4 model.

The hyperbolicity condition is satisfied if

A > 2max(|v], |ve]) = 2.

We are going to compare the solution obtained with A = 1.6, that is when the diffusive
stability condition is satisfied, but not the hyperbolicity condition, and A = 2.2, namely
when both the diffusive stability and the hyperbolicity conditions are satisfied.

We draw the solutions w(a, T') at time T' = 1, for different values of the relaxation parameter:
w=2w=16and w=2.

As we are solving the transport step of time step % with a Lattice-Boltzmann method, we
need to have the relation between the time and space step

4Ax 4
At =——= .
A ANz
Consequently, the number of time step is
T ANz
Nt=— =
At 4

and which depends on the A chosen: we do Nt = 80 time steps when A = 1.6 and Nt = 110
steps when A = 2.2.

We obtained the solution w of the Table 6.1. When A\ = 2.2, that is to say when both
the diffusive stability and the hyperbolicity conditions are verified, we obtained a Gaussian
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A=1.6 A=22
10
10 =2 100
075
08 08 08
: 0.50
0.25
06 0.6 0.6
|
04 -0.25 04 04
—0.50
D2 -0.75 02 02
-1.00
0.0 ; ' J ' 00 0.0
. . . . . 00 02 04 06 08 10
w=2 i 0.2 0.4 0.6 08 10
10 10
10 07
0.8 0.8 0.6
5
05
D& 0.6
I ||l it Il e
0.4 04 03
= 0.2
02 0.2
01
-10
0.0 0.0
0.0 0.2 04 06 08 10
10
05
0.6
08
05 D4
04 | 06 53
0.3
0.4 02
0.2
0.2 0.1
01
0.0 0.0
0.0 0.2 04 06 08 10

Table 6.1: Solutions w at time T = 1 for different values of A and w.

centered in the middle of the square, as expected. However, the closer the relaxation param-
eter w is to 1, the more the Gaussian function dampens due to the relaxation step. When
w = 2 or w = 1.6, the solutions obtained with A = 1.6, namely when the diffusive stability
condition is satisfied but not the hyperbolicity condition, are not stable. Oscillations appear
and grow over time. When w = 1.2 and A = 1.6, we obtained a solution close to the expected
Gaussian function, but a little distorted. Moreover, this solution is stable, we do not observe
any oscillations.

Remark 2.8. In the Subsection 5, we have shown numerically that the equivalent system is
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a good approximation of the D1Q2 model when w is greater than 1.5 approrimately, but not
when w is smaller. Here, although we have used the D2QQ4 model, we can guess a similar
result. The verification of the hyperbolicity condition, obtained with the equivalent system,
seems to be necessary to have a stable solution, when w takes values close to 2. Howewver,
for w = 1.2, we obtained a stable solution even if this hyperbolicity condition is not satisfied.

3 Boundary conditions
We want to solve the transport equation
ow+v-Vw =0.

We denote by s(x,t) the exact solution of this equation. We note w! the approximation of
w(iAz,nAt) by a kinetic relaxation scheme. The transport steps are solved with a Lattice-
Boltzmann Method. To simplify, we consider a regular mesh aligned with the kinetic veloc-
ities. We note (2 the geometry considered.

The error between the approximated and the exact solution is defined by

Nz
AIZ (0} — (s, T))2
i=1

Proposition 3.1. A numerical scheme converges at the order k if, when Nx — oo,

ENz

— ok

€Nz

We want to find boundary conditions that give us a second order accuracy and which are
stable.

3.1 The D1Q2 model

Boundary conditions of order 2

With the D1Q2 model defined in Subsection 2.1 (p.17), it is possible to achieve a second order
accuracy using the boundary conditions described in |33]|. Let us recall these conditions.

We denote by (f)7""* the value of the k*" kinetic unknown at the point z = iAz and at
time ¢t = (n+ 1)At after the transport step, but before the relaxation step. As the transport
step is given by a Lattice-Boltzmann method, we have

(fo)it" = (fr) -

In each border, there is one transport equation that we cannot solve, because the point
x — At is not included in the mesh. If we note n the outward unit normal vector at point
x on the boundary, then we cannot define the kinetic unknown f;(z, ¢+ At) with b € {1,2}
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such as n- A\, = —\. For example, when x is located at the left border, we cannot define f;.
At the right border, we cannot define f5. So we need to add one boundary condition at the
border to be able to define the last kinetic unknown. We denote b the index of the kinetic
velocity opposed to A,. We have n - A\; = A. Let us remark that the kinetic velocities of the
D1@Q)2 model are defined such as A\; = —A\,.

e On the inflow border, we are able to compute (fg)?ﬂ’*, but we need to impose one
condition to be able to find (f,)"*"*. We consider a Dirichlet boundary condition on
w. For that, we impose w with the exact solution at time ¢ + At

Wit = s(iAz, t + At).

Then, as we have
2

w?—i-l,* _ Z(fk:)?—i_l’*,

k=1
we obtain

(fo)i ™" = wi™ — (fpith.

e On the outflow border, we consider a Neumann condition on y, as proposed in [23]

nt+lx _  ndlx
Yi =Yi—1 -

Then, as we have

{ » ?i* (fb)?“’*:(fz)?ﬂ’*aﬂ
Yy, tow, T = Ab((fb)i "= (f3)i ’);

we obtain the equation

I (P ) = (G = ()

Then we can compute the kinetic unknown

n k 1 n * n *
(fb)i+17 = m (?/iH’ + (U + Ab)(f@)iJrL ) .

Numerical tests

Order of convergence

We consider a velocity v = 0.5, and the norm of the kinetic velocity A = 1, which respect the
D1@Q)2 diffusive stability condition defined in Proposition 2.1 and the hyperbolicity condition,
defined in Proposition 2.2. We choose a relaxation parameter w = 2. We consider a one-
dimensional space [0, 1]. We consider Nx = 64 x 27! space steps and Nt = 16 x 27! time
steps, for e =1,...,8. As we consider the time step At = ﬁ, the final time T'= NtAt =1
remains identical for all i =1,... 8.

We initialize w with the compact support function

o0 if r(x) > 1,
w(z,0) = { (1 —7r(x)?)® otherwise,
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Test case | xg
1 —0.5
2 0
3 0.5

Table 6.2: Parameters of the test cases for the D1Q)2 model.

where r(z) = @, with 0 = 0.2.
We consider 3 different test cases:
(1) The peak starts outside the segment and arrives at the left border.
(2) The peak starts at the left border and arrives in the middle of the segment.

(3) The peak starts in the middle of the segment and arrives at the right border.

=== grder 2
107% { test case 1
+— test case 2

w3id{d ™ test case 3 =
‘g‘ 107 1
o
]

1077 1

].I}-J:' 3 -—_..i'

w4 ="

10-3 10-2
fily

Figure 6.3: L? errors between the exact and the numerical solution, for different test cases,
with compact support initialization, with a Neumann boundary condition on y at the outflow
border.

We obtain the graphics of convergence of Figure 3.1. We can observe a convergence of order
2 for the three test cases.

Stability in a long time

Now, we want to test the stability in a long time. We keep Nx = 128 space steps, but we
increase the number of time steps: Nt = 32000. It gives us a final time 7" = 1000. We take
the first test case described previously, and draw the maximum of w for each time step.

We observe in Figure 6.4, that at time 7" = 1000, the sup norm ||w(7")|| of w is of order
1075, We can conclude that these boundary conditions are stable in a long time.
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Figure 6.4: Sup norm of the solution w with respect to the time, with a Neumann boundary
condition on y at the outflow border.

In conclusion, imposing the exact solution for w at the inflow border and a Neumann con-
dition on y at the outflow border leads to stable boundary conditions of order 2. This
result is only a numerical verification. Now, we will provide several tools for analyzing more
rigorously the stability of the boundary strategy.

Decrease of the entropy

Let us draw the evolution of the entropy

Nz+1 1
Z w(z;, t)* + e UQy(a:i,t)z.

We test with the first test case: the peak starts outside the interval and crosses it. We obtain
the Figure 6.5. We observe an increase of the entropy at the beginning of the simulation,
when the peak enters the interval, and then a decrease until the final time 7.

Clearly when the boundary term vanishes, i.e. when the peak does not touch the boundaries
anymore, the boundary strategy seems to lead to a scheme that is entropy diminishing.

Stable boundary conditions

Now we propose stable boundary conditions and provide two theoretical explanations of this
stability. The first explanation is based on an analysis of the boundary conditions that are
stable for the third order equivalent equation. The second explanation relies on an entropy
estimate at the boundary.

Stability analysis with the equivalent equation
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Figure 6.5: Evolution of the entropy with respect to the time (with a log scale for the vertical
axis), with a Neumann boundary condition on y at the outflow border.

In chapter 4, we have computed the equivalent equation 4.14 on w of the D1Q)2 model. We
obtained

At (11 5 o oW —6w+6, 5, B 5
Oyw-+vd,w+ 5 (2 w) (A*=v%) 0w+ At 97 (V°=A )00z = O(AL). (6.26)

We consider w = 2. Let us multiply this equation by w and integrate:

/xm woyw + v /wmu wdw = O(A?). (6.27)
To have the stability, we neengnto satisfy N
v /fmax wdyw > 0. (6.28)
By performing integration by parts, we 17:;:/6
g [wz}z:j: = g (0 (Tmaz) — W (Tmin)) = 0. (6.29)

If v > 0, we can choose w(Z,) = 0. If v < 0, we can choose W (T pq,) = 0.

Now, let us multiply Equation (6.26) by w and integrate and keep all the terms. We have

Tmax Tmax AtQ Tmax
/ woyw + v/ wow + ﬂ()\Q — 1)2)1)/ Wypew = O(AL?). (6.30)

Tmin Tmin Tmin

To achieve the stability, we can impose

At?

Q(AQ —v?)v ([wﬁmw]x’"” - / " &Ewﬁmw) > 0.

Tmin
Tmin
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As the D1Q?2 stability condition is satisfied, we have v? < A2, Let us assume that v > 0.
Then, to achieve the stability of order 2, we have w(Z:,) = 0. We need to satisfy

w(xma:v)ax;tw(xmaz) + % ((8$w(xm”l))2 - (aﬂ?w{xmaﬂ?))2) 2 0.

To obtain this inequality, we can choose 0, W (Zmez) = 0 and 0,w(ZTpmez) = 0. Moreover,
we have seen that to obtain the equivalent equation of order 3, we can assume that y can
be written as a linear combination of the space derivatives of w. In Equation (4.13), we
obtained that

At

a

boibin  bosb
Y= by 0w + AL (@ — ULl 22 2’1) Dpxw + O(AL).

a a? a?
Then, choosing 0, W (ZTmayr) = 0 and O, w (T pme,) = 0 is equivalent to choose y(xpa:) = 0.
With a similar computation, we obtain that if v < 0, we can choose y(z,) = 0.

Consequently, imposing the exact solution for w at the inflow border, and the Dirichlet
boundary condition y = 0 at the outflow border is supposed to be stable boundary conditions.
We will test numerically the stability of these boundary conditions in Section 3.1.

Stability analysis with a boundary entropy estimate

Let us consider a general diagonal quadratic form in w and y:

()69

= (14 f2)’ +a((A=v)f1— (A+v)f2)*,
= 24 2f1fa+ f24al—0)2f2 —2a(X —v) A+ v) fifa + (N +0)2f2

If we assume that the quadratic form is also diagonal in the f; variables, this gives

2f1f2 —2a(A —v)(A+v)f1f2=0.

It implies

It gives us the entropy

Y = w? + ay?,
-()- (5 £) ()
fa 0 2/ \[f)"

When we are at the border, the kinetic unknown f; is leaving the geometry, while f; is
entering. The LBM algorithm changes the entropy according to

1
¥ 34202 2 2.
o (/\2+)\bvfb >\2—)\bvfb)
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In order to obtain a stable solution, we want the entropy to decrease. In other words, we
do not want the density which is entering the geometry to be greater than the one which is
leaving it. Consequently, we want

1 2 1
A2+ o't A2 — N\

f2<o.
It gives us a stability condition on the boundary conditions

A2 + )\b'U

| fol < /\2_—/\W|f5|‘ (6.31)

Moreover, the kinetic unknowns are defined by

- )\2 + )\kv 1 )‘k:y
T o YT

fr

At an inflow border

We have
o+ fp=w.

If we choose a Dirichlet boundary condition w = 0, then we have
fo=—1%

By inserting this expression in (6.31), we obtain

2
AL
)\2—)\(71}

This equality is true if

/\bU 2 0.
As we are in an inflow border, we have
nv > 0.
Moreover, by definition of b, we have n\, = —\, which gives us
—-A
n=—.
b

We obtain that A\yv > 0. The condition of stability on the boundary is satisfied. In conclu-
sion, imposing the boundary condition w = 0 at an inflow border gives us a stable solution.
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At an outflow border

We have

)\2 +>\b'U )\2 + )\bU >\b
BTN S S (BN A A R
el ( +>\2—)\bv) oY
N
JERp WIS

fo

If we choose to impose a Dirichlet boundary condition on the flux error y = 0, we obtain

/\2 + )\bU
fo= mf 5
Inserting this expression in (6.31) gives us
/\2 —I— )\bv < /\2 —I— /\bl)
A2 — )\b’U = A2 — )\bv’
which is equivalent to
/\bU < 0.

As we are in an outflow border, this condition is satisfied. Indeed, we have

nv=——uv > 0.

Ab

We can conclude that imposing a Dirichlet boundary condition on the flux error y = 0 on
an outflow border satisfy the decrease of the entropy.

In conclusion, if we impose w with the exact solution on the inflow border and y = 0 at
the outflow border, we obtain stable boundary conditions. We retrieve the same boundary
conditions as in Section 3.1.

Moreover, we have defined a condition (6.31) to ensure the decrease of the entropy and
therefore the stability. Let us remark that inequalities on the entropy have already been
used to define boundary conditions in [39, 15].

Numerical tests

Order of convergence

Now, let us test numerically the order of convergence and the stability in a long time of the
previous boundary conditions. We reuse the test cases described in Section 3.1.

We obtain the graphics of convergence of Figure 3.1. We can observe that only the first two
test cases converge at the order 2. The third one converges at the order 1.
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Figure 6.6: L? errors between the exact and the numerical solution, for different test cases,
with compact support initialization, with a Dirichlet boundary condition on y at the outflow
border.

Stability in a long time

Now, we want to test the long time stability. We keep Nx = 128 grid points, but we increase
the number of time steps: Nt = 32000. It gives us a final time 7" = 1000. We take the first
test case described previously, and draw the maximum of w for each time step.

We observe in Figure 6.7, that the solution at time 7" = 1000, which is supposed to be null,
is of order 1075, We can conclude that these boundary conditions are stable in a long time.

In conclusion, we are imposing the exact solution for w at the inflow border and a Dirichlet
condition y = 0 at the outflow border are boundary conditions which are stable in a long
time, as we have proven in Section 3.1. However, the solution obtained with these boundary
conditions do not always achieve a convergence of order 2.

Decrease of the entropy

As for the first boundary conditions, we can draw the evolution of the entropy
Nz+1 1
2 2
i=0

We obtain the Figure 6.8. We observe an increase of the entropy at the beginning of the
simulation, when the peak enters the interval, and then, as expected, a decrease until the
final time T



3. BOUNDARY CONDITIONS 79

0.00010

000008 A

0.00006 A

[lw(E))] |

000004 A

000002

0L00000 T T
o 200 400 =00 800 1000

Figure 6.7: Sup norm of the solution w with respect to the time, with a Dirichlet boundary
condition on y at the outflow border.

3.2 The D2Q4 model
We now consider the D2Q4 model, defined in Subsection 2.3 (p.18). We denote the velocity

0= ()

First, we solve the transport equations (2.10) with respect to each kinetic velocity. Numeri-
cally, we do the translation

(fo)it = (fk)é_i e
AT

In each border, there is one transport equation that we cannot solve, because the point
x — Aty is not included in the mesh. If we note n = (n,ny) the outward normal vector
at point @ on the boundary, then we cannot define the kinetic unknown f;(x,t + At) with
be{l1,2,3,4} such as n - A, = —\. We call this border b. For example, when @ is located
at the left border, we cannot define f;: thus, the left border is the border 1. So we need to
add one boundary condition at the border to be able to define the last kinetic unknown. We
denote b the index of the kinetic velocity opposed to Ap. We have n - A; = A. Let us remark
that the kinetic velocities of the D2(Q)4 model are defined such as Ay = —Ay.

Moreover, let us notice that, as the outward normal vector n is aligned to the cartesian
mesh, one of its components is null. On the other hand, all the kinetic velocities of the

D2()4 model has one coefficient which is null. Therefore, n - A, = —X implies that we have
necessarily
no 2 (6.32)
= .

When @ is located in a corner, that is at the intersection of two borders, then, there are two
kinetic unknowns that we cannot define by solving the transport equations. At these points,
we need to impose two boundary conditions.
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Figure 6.8: Evolution of the entropy with respect to the time (with a log scale for the vertical
axis), with a Dirichlet boundary condition on y at the outflow border.

We note b, and by the indices of the two borders that form the corner, meaning we want to
find the value of f;, and f;,. To simplify the calculation later, we choose that by < by. Let
us remark that, as a corner is the intersection of a horizontal and a vertical border, we have
necessarily b; € {1,2} a horizontal border and b, € {3,4} a vertical border. We note b; and
by the other horizontal and vertical borders, which do not intersect the corner.

Stable boundary condition

Using the moment matrix of the D2Q4 model (2.26) and the definition of the flux errors
(3.3), we obtain the expression of Y from the kinetic unknowns F

Y = MF, (6.33)
with
1 1 1 1
o A — (%1 - = (%1 —U1 —U1
M = —Va —V2 A — (%) -\ — (%)
A2 A2 —\? —\?

With the matrix P defined by (6.25) which symmetries the equivalent system (4.17), we can
define a quadratic form on Y
Y -PY =Y'PY.

Using the change of variables (6.33), we obtain

Y'PY = (MF)'PMF,
—F'M"PMF,
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where 1
A 201 O O O
T 372 2\ /12 2 0 >\—12 0 0
MPM:4)\<)\ —41)2)()\ —4’01) VL 1
0 0 2 0
V2 1
R =

We obtain the entropy on the kinetic unknown f

1 1 1
) :4)\3>\2_4 2 A2—4 2 2 2 2 I ]
(f) ( ) )( U1 ) )\+2U1f1+)\_2U1f2+)\+2v2f3+A_2U2f4
Let  be a point located at the border b, but not in a corner. Then, the value of f; is

missing, and we need to define its value.

At this point x, f; is entering inside the geometry while f; is leaving outside. Then, the
entropy is given by

A A
E(a:,t—i—At) :E(a:,t)—1—4)\3()\2—41)22)()\2—4’012) ()\2—1—2)\(,'va_ )\2+2)\_Ufg)'
b

To be stable, we need the entropy to decrease with time. In other words, we do not want the
density which is entering into the geometry to be greater than the one which is leaving it.
Moreover, as A > 0 and the hyperbolicity condition of Proposition 2.6 is satisfied, meaning
4max(v,?,v2%) < A2, we want to satisfy

1 e 1
PUNED) YRR A S V)

f2 <0,

which gives us the decreasing entropy condition at the border b

)\2+2Ab"0
S o a1l 6.34

The kinetic unknown f; are given by inverting the matrix M. We have

Y1
A2 42X - v A (y2> (A)? = (A)?) =
_ 4 + k k 3

Tk eV N2 AN

Boundary conditions on inflow borders
If we are in an inflow border b, as A\, = —\;, we have

() = (A5)?) 23
21 '

w
htle=5+
If we impose w = 0 and z3 = 0, then, we have

Jo=—I%
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If we insert this equality in (6.34), we obtain

2 .
A —|—2)\b ’U>1’
)\2—{—2)\5"0
<~ /\2+2)\b-v>)\2—2)\b-v,
— MN-v=0.

As we are at an inflow boundary, we have
n-v <0,
with n an outward normal vector of this border. We remind that we have (6.32)
M
T

We can conclude that the inequality Ay - v > 0 is satisfied. The boundary condition w = 0
and z3 in inflow borders satisfies the decrease of the entropy.

n —

Boundary conditions on outflow borders

Let us consider an outflow border b. We have

Y1
A2 20, - v Ab'(yg) 202 (A2 = (A2)?) 23 A +2), -
L U s W LA YV (A2—2Ak-v)+ AN (1_A2—2Ak-v)’
A, - (3/1)
I Y A (O e D A
22— 2N, - v X X2 v
Let us denote y. = W/\F—A’Q’yg, the component of the flux error which follows the direction of

the normal vector n. If we impose the Dirichlet boundary conditions y. = 0 and z3 = 0 then

we have 2o
— + b.v —
fb_>\2—2Ab’Ufb

By inserting this expression of f; in (6.34), we obtain
‘ )\2 + 2)\1, v

< /\2+2)\b"0
A2 —2X,-v| [ AZ=2X, v
2 .
A +2)\b ’U<17
)\2—2)\b-v

— XN -v <0

As b is an outflow border, we have
n-v>0.

Then, using the equality (6.32) that n = —%, the inequality Ay - v < 0 is satisfied. In
conclusion, imposing the component of the flux error y. = 0 which follow the direction of
the normal vector n and z3 = 0 on the outflow borders gives us stable boundary conditions.
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Boundary conditions at the corners
Let us note b; and by the two borders that form the corner, such as b; < bs.

In this corner @, the difference of entropy between two time steps is
N(x,t+ At) = X(x, 1) + 4N (A2 — 405) (N — 4v,?)
A 2 2 2 A 2
(/\2 + 2Ab1 . ’Ufb1 A2 + 2A51 . ’Ufg1 + A2 -+ QAbQ . 'Ufb2 A2 4+ 2)\52 . ’Uf52 '

As previously, we want the entropy to decrease, which means

A
A2 + 2Ab1 )

A
/\2 +2>\51 -V

A
A2 + 2Ab2 v

A 2

2 2 2
fo, = f + fb2_mf52<0

One sufficient condition to achieve that is to satisfy the two inequalities

)\2+2Ab ) /\2+2Ab )
| fou] < \/mﬁglf and | fo.] < \/mﬁw- (6.35)
1 2

In the stable boundary conditions described previously for the inflow and the outflow bor-
ders, f; are defined only from f;. The two other kinetic unknowns do not interfere in the
computation.

Therefore, in the corners, we can define f3, and f3, from f7 and respectively fz with the
inflow or outflow boundary condition in function to the border.

Numerical tests

Order of convergence

We choose a square geometry, aligned with the kinetic velocities: = [0,1] x [0,1]. We
initialize w with a function with compact support

TU(.]}' T t)_ 0 ifT(.Z'l,IQ)>17
PERYTU (1= (2, 22)%)°  otherwise.

21 —20)2 1 (20 —w0)2
with 7(z1, x9) = V(e 1)J+( 277" and o = 0.4,

We consider the 7 following test cases, with the parameters of Table 3.2:

(1) The peak starts in the middle of the square and goes toward the right border.
2
3
4
5

The peak starts outside the square and arrives at the middle of the left border.
The peak starts at the middle of the square and arrives at the middle of the left border.
The peak starts at the middle of the left border and arrives at the middle of the square.

(2)
(3)
(4)
(5)

The peak starts outside the square and arrives at the left bottom left corner.
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Test case 2y ) vy Vg
1 0.5 0.5 0.8 0
2 —0.4 0.5 0.8 0
3 0.4 0.5 —0.8 0
4 0 0.5 0.8 0
5 —V2/4 | —V2/4 ] V2/2 | V2/2
6 V2/4 | V2/4 | —V2/2 | —/2/2
7 0 0 V2/2 | V2/2

Table 6.3: Parameters of the test cases for the D2Q4 model.

(6) The peak starts at the middle of the square and arrives at the left bottom left corner.
(7) The peak starts at the left bottom left corner and arrives at the middle of the square.

For all these test cases, we choose A = 2, which satisfy the hyperbolicity condition (6.24).
We choose a final time 7" = 0.5, and a number of time steps Nt = 16, 32, 64, 128.

—=— testcase 1 -

test case 2 -

- test case 3 -

—— test case 4 -
+— testcase 5

—— testcase b ="

b
e testcase 7 o~ e
o 107 order 1 _—
-l i L

: L

o
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—
4x107% Bx1077 10-2 2x107%  3Ix10°F
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Figure 6.9: L? errors between the exact and the numerical solution, for the test cases defined
in Table 3.2, with the entropy decreasing boundary conditions.

We obtain Figure 6.9. We can observe that the test cases converge at order 1.

Stability in a long time

If we compute the test case 1 with an increase of the number of time steps to Nt = 640, to
achieve the final time 7" = 20, we obtain the evolution of the maximum of w with respect to
the time in Figure 6.10. At time 7' = 20, we obtain a maximum of order 1075,

Decrease of the entropy
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Figure 6.10: Sup norm of the solution w with respect to the time (with a log scale for the
vertical axis), for the test case 1 defined in Table 3.2, with the entropy decreasing boundary
conditions.

We can also draw the entropy with respect to the time
Z Y(SE@j, t) . PY(JLL'J, t),
with P defined by (6.25), for the test case 1.

We obtain the figure 6.11. We can see that the entropy is decreasing quickly in the beginning
of the simulation when the peak is leaving the square geometry. Then, as expected, the
numerical entropy continues to decrease with time.

Boundary conditions of order 2

We would like to have boundary conditions of order 2. After many attempts, we proposed
below boundary conditions which give us numerically a convergence of order 2.

Boundary conditions on inflow borders

At the inflow borders, namely when v - n < 0, we impose w with a Dirichlet boundary
condition at the exact solution at time ¢ + At and in the point x

Wi = s((iAxy, jAxs), t 4+ At).

i,J

Then, the kinetic unknown that we need to define can be written

4

P =l = (e,
k=1
kb
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Figure 6.11: Evolution of the entropy with respect to the time (with a log scale for the
vertical axis), for the test case 1 defined in Table 3.2, with the entropy decreasing boundary

conditions.

Boundary conditions on outflow borders

At the outflow borders, namely when v - n > 0, we impose vy + voy2 with a Neumann
boundary condition. We take the value of y; and y, obtained after the transport step and
in the point & = ((i — ny)Axy, (j — ng)Axs) located inside the mesh, not at the border

n+l, +1, +1,
(Ulyl + U2y2)z] "t = (yl)? 77,1*] —na + U2(y2)? n1*j —ng*
Then, as we have
( 4
+1, +1,
wi = Y (i
k 1
1, 1, 1,
(Zh)?j *_'_UlwnJr o Z)\k fk n+ *’

(yQ)n—H ¥ + Vot n+1 * Z/\Q fk n+1 *7

2y

\

we need to solve the equation

4 4
(Ulyl + U2y2)2j17* — 1 Z /\ ( n+1 * Ty Z )\2 fk n+1 * (U12 + U22) Z(fk)nJrl *.
k=1

k=1
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We obtain
1
n+1 * Z n+1 * 2 n+1 *
n ) AL o ZA
(fb) —Ul)\l—'UQ/\2+Ul +U2 (1 k:fk’ V2 fk
k;éb k;éb
4
— (v” + v?) Z(fk)nH "= (viyr + vng)?jl *> :
k=1
kb

Boundary conditions at the corners

Now that we have defined the boundary conditions on the borders, we need to define them
on the corners. We remind that at the corners, we need to impose two boundary conditions.
We have three possible kinds of corners: the intersection of an inflow border and an outflow
border, the intersection of two inflow borders and the intersection of two outflow borders.

Intersection of an inflow and an outflow border

At the intersection of an inflow border and an outflow border, we impose a Dirichlet boundary

condition on w
Wi = s((iAxy, jAxs), t 4+ At),

%,
and a Neumann boundary condition on v y; + v9ys

(v1y1 + U2y2) = (yl):thll jne T UQ(y2)?+7zl1*J —ng*

We then have to solve
4

v

(v1iyr + vgyz)?jl = U1 Zk 1 )\l(fk)”“ * g Zk ) )\2(fk)n+1 * (7112 + 022> w?]ﬂ*

Using the fact that b, € {1,2} and by € {3,4}, and the expression of the kinetic velocities
of the D2Q4 model defined in Subsection 2.3 (p.18), we have

({fl)nJrl * (be)nJJi ¥ n+1 * (fblzzwrl J* (fbg)n+1 11
vidg, (fo )iy 702G, (fon)i " = —Ml ()i " AL ()i
+ (v + v wiy T + (Ul?h + v2y2);

ZJ

n+1,%
i3

We obtain the solution

(
n+1,% n 1, n+1,% n+1,%
(fo)i] " = m(vﬁ\ (wi ™ = ()i = ()i ™)

Fo ()i 0 AL (fr)i T = (0 4 0a?) wi T = (01y + vaya)i )

1, 1, 1, 1,%
(fo)ij :m( vy, (Wi = ()i = ()i )

—U1 A (fbl)nH — Uz)\Q (fb2>n+1 T (02 + ) w nH’ + (ny1 + Uzy2)n+1 *> :
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Intersection of two inflow borders

At the intersection of two inflow borders, we impose w with a Dirichlet boundary condition

wrf;rl " = s((iAxy, jAxg), t + Ab),

and a Dirichlet boundary condition on z3
(Zg)n{rl’* =0.

7’7]

We need to solve the system

4
:;l—l* _ Z(fk)n—l—l *7
k=1
4
1, 1,
(z3)i " = (A2 = (DD (fo)i
k=1
The solution is given by
1 1, 1,
Ll
n+1,x* n+1,%* n+1,%
(fb2)i,j = QW;; = (f@)zg .

Intersection of two outflow borders

At the intersection of two outflow borders, we propose to impose a Neumann boundary
condition on v1y; + v2y2

(Ulyl + U2y2)zj_1 (yl);ﬂ—’—nll*j no + UQ(yQ):H—nll*j no*

and a Dirichlet boundary condition on z3

(23)?7;_1’* =0.

We need to solve the system

4
n+1 * 1 n+1,* 2 n+1 * 2 2 n+1,%
(vlyl +'U2y2 i U1 E )‘k: —|—U2 E )\ (Ul +'U2 )wi,j s
1

G = ><fk>"“*.

This can be written

v (Fo)ig " 0, ()i = o)y = v (fr)i
+ (v12 + vy )w"+’ +(v1y1+v2y2)

2¥)

(o) )i = (= () -

n+1,%
i, )
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The solution is given by

p

n+1,% n+1,% n+1,% n+1,%
(fh)ij = m ( vIA- (fbl) T VA (be) T (02 4 0y?) wzj
+(ny1 + UQ?JQ)Z;H’* — 1)2>\§2 ((fbl)nH ’ (be)nJrl *) > )

(fo)i " = m< vIA- (fbl)nﬂ* — VAL (Fa)id ™+ (0 + v?) wif ™

+(v1y1 + 0292) * vl)\gl ((fbl)”Jrl ok (fb2)n+1 *> > '

\

Numerical tests

Order of convergence

We want to test the order of convergence of these boundary conditions. We are using the
same test cases than in Section 3.2, defined in Table 3.2.

—— toctcase 1
test case 2

+— test case 3
1032 { —— testcase d
«— test case S
—— tostcase b
test case 7
order 2

Lierror

107*

1077 {

4x1077 6&x107? 10-2 2x107% 3Ix10°®
A

Figure 6.12: L? errors between the exact and the numerical solution, for the test cases defined
in Table 3.2, with the second-order accurate boundary conditions.

We obtain in Figure 6.12 a convergence of order 2 for all the test cases.

Stability in a long time

Now, let us test the stability in a long time of these boundary conditions. If we compute
the test case 1 with an increase of the number of time steps to Nt = 640, to achieve the
final time T = 20, we obtain the evolution of the maximum of w with respect to the time
in Figure 6.13. At time 7' = 20, we obtain a maximum of order 10%. We can conclude that
these boundary conditions are not stable in a long time.
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Figure 6.13: Sup norm of the solution w with respect to the time (with a log scale for
the vertical axis), for the test case 1 defined in Table 3.2, with the second-order accurate
boundary conditions.

Evolution of the entropy

As previously, we draw the evolution of the entropy with time, in Figure 6.14. We observe
that the entropy decreases when the peak leaves the square, but then increases exponentially.
These boundary conditions do not respect the decrease of the entropy, and therefore are not
stable.

Projection of the second-order boundary condition on the space of the decreasing
entropy boundary conditions

In Section 3.2, we have proposed boundary conditions of order 2. Unfortunately, they do not
give us stability in a long time. In order to define the stable boundary conditions, we have
defined a decreasing entropy condition (6.34). As we want to have boundary conditions with
both properties of stability and second-order accuracy, we propose to project the second-
order boundary conditions into the space of the decreasing entropy boundary conditions.

To do that, we first apply the second-order accurate boundary conditions. We denote f,
the kinetic unknown obtained. Then, for every point located on an outflow border we check
that the decreasing boundary condition (6.34)

~ /)\2+2Ab"0 ~
< _

is satisfied. If it is not the case, we replace f, by the closest value such as this decreasing
entropy condition is satisfied, and we keep the other kinetic unknown. This is equivalent to
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Figure 6.14: Evolution of the entropy with respect to the time (with a log scale for the vertical
axis), for the test case 1 defined in Table 3.2, with the second-order accurate boundary
conditions.

computing
fo = argmin  [f, — fal,

242X, v
|fbl< WA;HUE"

fi = Ff., for i # b.

Remark 3.1. For some of our test cases, a peak is entering into the square. It implies
an increase of the entropy, coming from the inflow border. That is why we do not check
the decreasing entropy condition on the inflow border. Therefore, on inflow borders, we just
apply the second-order boundary condition.

Numerical tests

Order of convergence

Let us draw in Figure 6.15 the order of convergence for the different test cases defined in
Table 3.2, with this projection of the second-order boundary condition into the space of the
decreasing entropy boundary conditions.

We achieve a second-order accuracy for all the test cases.

Decrease of the entropy

We apply the second-order accuracy boundary conditions only when the entropy decreasing
condition is satisfied and otherwise we take a boundary condition which respects the de-
creasing entropy condition. Therefore, we expect the entropy to decrease at each time step.
Let us draw the entropy with respect to the time of the test case 1 defined in Table 3.2.
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Figure 6.15: L? errors between the exact and the numerical solution, for the test cases defined
in Table 3.2, with the projected boundary condition.

We obtain the Figure 6.16, in which we can verify the expected decrease of the entropy.

Conclusion

We can summarize the two boundary condition strategies in the following table.

Boundary conditions | Stable in a long time | Of order 2
Exact solution on w

Inflow border =0 Exact solution on w
3 pum—
Outflow border jb ' yO: 0 Neumann on v - y
3 pum—
. . Exact solution on w Exact solution on w
Corner inflow /inflow I S
3= 3=

Exact solution on w

. Exact soluti
Corner inflow /outflow | Ay-y =0 Xach Sotton ot 1

Neumann on v -y

zZ3 = 0

=0 Neumann on v - y
Corner outflow/outflow | ys =0

2g = 0 zZ3 = 0

In the first column, the decreasing entropy boundary conditions are stable but only have a
first-order accuracy. The second order boundary conditions of the second column are not
stable in a long time. By projecting these second-order boundary conditions into the space of
the decreasing entropy boundary conditions, we obtain stability and second-order accuracy.
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Figure 6.16: Evolution of the entropy with respect to the time (with a log scale for the vertical
axis), for the test cases 1 defined in Table 3.2, with the projected boundary condition, with

the projected boundary condition.
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Chapter 7

Kinetic over-relaxation method for the
convection equation with Fourier solver

1 Introduction

The kinetic over-relaxation method [22] is a time semi-discrete method based on the ap-
proximation of a non-linear convection equation by a set of linear transport equations with
constant velocities. Very efficient, CFL-less, and accurate transport solvers like Fourier
methods can be used. Moreover, the over-relaxation technic lead to second-order accuracy
in time. Fven higher order can be achieved by composition methods. In this paper, we apply
these methods to the convection equation in two-dimension and we show that it is partic-
ularly appropriate to solve the guiding center model, where the convection velocity field is
given by a solution to a Poisson equation. The guiding center model is a simplified model to
describe the two-dimensional dynamics of the charge density in a Tokamak. The particles
are confined in the toroidal room thanks to a large external magnetic field B. Among several
dynamics, this magnetic field leads to the so-called F x B drift of the particles, where E is
the self-induced electric field. This model is also equivalent to the 2d incompressible Euler
equation in the vorticity formulation. The dynamics result in very fine scale structures and
thus require very accurate solvers.

2 Kinetic over-relaxation approximation of the convec-
tion equation

We consider the following convection equation:
diplt, ) +V - (p(t,a) alt,)) = 0, (7.1)

where a(t, z) € R? is the velocity field and p(t,7) € R is the convected density.

To solve this convection equation with non-constant velocity field, the relaxation method
consists in approximating it with several transport equations at constant velocities. More
precisely, we introduce a kinetic vector f(t,x) = (fi(t,z), fo(t,z),..., fx(t,7)) € RY whose

95
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components are associated to different velocities (A1,..., ) € (R)YN. To a given kinetic
vector f(t,x), we associate a macroscopic density

p.f<t7x) = Zf1<t7x)

The numerical scheme is devised such that pg is an approximation of the solution p. To this
end, for any given density p € R, we introduce the so-called equilibrium kinetic vector ffg J
that satisfies the following consistency relations:

N N
— €q _ peq
p - Z f[ﬂ,,p},l" pa - Z )\Zf[a,pLi' (7.2)
=1 i=1

The scheme is based on a time discretization of the following equation:
d 1
0F + 3 Mduf = (£l - F)
k=1

where A, = diag((A)k, ..., (A2)x) are N x N diagonal matrices, for £ = 1,...,d, and
where £ > 0 is a small parameter that controls the distance to the equilibria set. In the
time-discretization, the time-dependent relaxation operator in the r.h.s. is replaced by a
projection onto the equilibria set or a symmetry with respect to the equilibria set or a
combination of the two.

The time semi-discretization of the over-relaxation scheme writes as follows. We start from
the equilibrium distribution associated with the initial data: f(0,z) = f[eg(o 2)po(x)- LhED,
at each time step At > 0, starting from f(¢,z), we compute f(t + At,z) in two steps:

(i) (transport step) advect the several kinetic components f; with their respective velocities
A\ € R?
f:(t—i-At,iU):fz(t,l'—AZ»\l), ViE{l,...,N},

which is also denoted in compact form: f*(t + At,.) = T(At) f(¢,.).

(ii) (over-relaxation step) compute pgiae,) and then perform the following relaxation

_ opx eq o
FE+AL) = f1(t+ At a) +w ( Tl ey ppeteney ~ 5+ AL 7)),
with w € [1,2] a given parameter, also denoted: f(t + At,.) = R, f"(t + At,.). For
w = 1, we obtain the projection onto the equilibria set and for w = 2, we get the
symmetry w.r.t the equilibria set.

The combination of these two steps writes as follows:
F(t+At,) = My(ADF(t,.), with M (At) = (Rw 0 T(At)),

Then py is a first-order approximation of the solution p to (7.1) for w < 2 and a second-order
approximation if w = 2. We refer the reader to [22, 21| as regards the corresponding equiv-
alent equation. From this equivalent equation, we can infer the so-called sub-characteristic
condition that ensures the dissipativity of the second-order term in the expansion.
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As presented in [22], higher-order time discretization can be devised by considering the
following second-order time-symmetric operator:

s (r(2) e (3) emer(3).

and then using a palindromic composition method
M, (At) = Ms(soAt) o My(s1At) o --- o My(s,At),

where s; = s,;, for i = 0,...,p. We will consider the fourth-order Suzuki scheme (p = 4)
and the sixth order Kahan-Li scheme (p = 8). We refer to [22] for the expression of the
corresponding parameters.

This numerical scheme has the advantage to concentrate all the non-linear operators in a
local step, while the transport step becomes fully linear. Therefore, CFL-less method can
be employed to make these transport steps. A semi-Lagrangian scheme has been used in
[21]. On non-Cartesian meshes, implicit Discontinuous Galerkin method with upwind fluxes
can be used as proposed in [22]. Here, we consider a Fourier discretization of the transport
equation, ensuring a spectral accuracy.

In the sequel, we will use the so-called [D2Q4] kinetic approximation (N = 4). It consists in
introducing the four velocities directed along the Cartesian axes:

I R R}

with A > 0 and then we define the kinetic equilibrium vector:
eq P pla-\) .
f[a,p},i_1+2—/\2> Vi € {1,2,3,4}

This is the only solution to consistency relations (7.2), which satisfies symmetries. The sub-
characteristic condition writes in that case: A > maxjo r1xq ||a(t, )||, where [0, 7] x €2 is the
computational domain.

We will also consider the [D2Q5] kinetic approximation (N = 5), where a fifth central null
velocity is added:

A O R C

where A\ > 0. The kinetic equilibrium vector has to satisfy consistency relations (7.2):

— f€q eq €q eq eq
P = Tapa T Jan2 T Taps T Jiapa + fiaps
Py = Mfjap1 = Tlapa) P2 =M y2 = flaga)

This system is underdetermined. As already proposed in [24] for the one-dimensional case,
we consider the following decomposition based on a flux-splitting

4
[eaq#;]’i =p (/\z : a’)+ ) Vi € {17 27 374}7 [Zqﬁ]@ =p— Z f[zq,pm )
i=1
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Figure 7.1: L? error between the exact and the numerical solution obtained as function of
the time step. Left: Comparison between ¢ = 4 (|[D2Q4]) and ¢ = 5 ([D2Q5], r = 4) for
different w. Right: Comparison between different splitting operators when using the [D2Q5]
method (r = 4) with a Kahan-Li palindromic composition and w = 2. Parameters: A = 2.1,
N, = N, = 200.

where for any v € R, vy = max{v, 0} stands for the positive part of v or can be approximated
by a smooth version v, = (v+H,(v))/2 where H,(v) are Halley’s functions defined recursively
by: Ho(z) = 1, Hyy1(z) = H.(x)(H.(z)? + 32%)/(3H,.(z)? + 2*). The sub-characteristic
condition is the same as for the [D2Q4]| approximation. As explained in [24], this scheme is
expected to be more precise and better captures unidirectional flows.

3 Numerical results

In this section, we validate the numerical scheme on two test-cases : the rotation advection
test-case and the Kelvin-Helmholtz test-case for the guiding-center model. In these two
test-cases, the transport part T(At) is discretized with a Fourier method.

Rotation test-case We consider the convection equation (7.1) where the velocity field
is given by a(x) = x'. This velocity field is divergence free: V - a = 0. Therefore, the
convection equation (7.1) is equivalent to the advection equation:

Op(t,x) +alx) - Vp(t,z) =0,

and the exact solution is just the rotation of the initial density around the origin.

In the following, we consider the domain 2 = [—1,1] x [—1, 1] and the exact solution:
1 |22(t)(z — x0)|I*
p(t,x) = o eXP (— 2 :

where 0 = 0.1 and xy = (0.5,0) and R(¢) is the rotation matrix of angle t. We use N, =
N, = 200 discretization points in each direction.

Figure 7.1 (left) shows that the [D2Q4] scheme is first order accurate with the relaxation
parameter w = 1.95. Second order accuracy is achieved with w = 2 for both [D2Q4] and
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Table 7.1: Number of time steps and execution times needed to achieve an accuracy of 1078
at time 7' = 7/2 with A = 2.1, N, = N, = 200.

Nb of Nb of Error L?  Execution
time steps transport steps time
[D2Q)5], w =2, M 172000 172000 9.258 x 107 4985.282
[D2Q)5], w =2, M, 82000 246000 9.975 x 1077 6298.363
[D2Q)5], w = 2, My, Suzuki 570 8 550 9.516 x 107 223.407
[D2Q)5], w = 2, My, Kahan-Li 190 5130 9.924 x 1077  145.426
[D2Q4], w = 2, M,, Kahan-Li 215 5 805 9.627 x 107  132.539

[D2Q5] using the M, operator. As expected, we also note that the [D2Q5] is more accurate
than the [D2Q4] scheme.

In Figure 7.1 (right), we observe that the M, operator is required to obtain the sixth-order
accuracy of the Kahan-Li composition method. Using the M; operator leads to a second
order operator and the Strang splitting M5 (At) = (T (§L) o Ryo T (4!)) to a fourth-order
accuracy only.

As regards the computational time, we observe in Table 7.1 that considering M is 1.26 times
more efficient than considering M, when w = 2. Indeed, both methods are of order 2 and
M requires less transport steps. However, using Ms, we can use the Suzuki or the Kahan-Li
composition methods that are respectively 22 and 34 times faster. For these comparisons,
we use the [D2Q)5] method. The [D2@Q4] method seems just as fast even though it requires
more transport steps. Although more accurate, the [D2Q5] is slowed down by the evaluation
of the Halley functions.

Kelvin-Helmholtz test-case We consider the guiding center model that describes the
two-dimensional dynamics of electrons resulting from the E x B drift due to a large magnetic
field. Their charge density is denoted p(¢,z) > 0 and the guiding center model writes :

op+ E*--Vp=0, (7.3)
~ANp=po—p, E=-Vo. (7.4)

where E(t,z) € R the electric field and ¢(¢,x) € R the electric potential. py(t) > 0 denotes
the ion background charge density, which is supposed homogeneous. Actually, this model
is equivalent to the 2d incompressible Euler equation in the vorticity formulation. Here we
consider a square domain €2 with periodic boundary conditions and we thus assume that
po(t) equals the average of the density over the domain: po(t) = ‘51' Jo p(t,z)dz.

Since £ = —V¢, the advection vector field E+ is divergence free. The transport equation is
thus equivalent to the conservative convection equation

Op+ V- (pET) =0, (7.5)

Unlike the previous advection equations presented so far, here the advection field depends
on the density itself. Therefore, the over-relaxation scheme is slightly modified and writes:
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(i) (transport step) f*(t + At,.) =T(At)f(t,.),

(ii) (Poisson step) compute pg4a¢, -) and then find ¢*(¢t + At,.) by solving the Poisson
equation and then a(t + At,.) = E*(t + At,.)*.

(iii) (over-relaxation step) f(t 4+ At,.) = R, f*(t + At,.).

Note that both the transport step and the Poisson equation can be solved using a Fourier
discretization in the square domain.

As already considered in |82, 85, 27|, the Kelvin-Helmholtz instability test-case consists in
considering the following initial condition:

Pinit(z,y) = sinz + £ cos(ky),

in the domain [0, 27] x [0, 27 /K|, with periodic boundary conditions, and where k£ € R is the
perturbation wave number and € > 0 is the perturbation amplitude. This is a perturbation
of the stationary solution po(x) = sinz and ¢o(x) = —sinx. According to [32], there exists a
critical wave number ks = 1 such that an instability develops only for k£ < k,. The instability
rates are not known explicitly. However, we can compute them numerically.

We look for solutions of the form
p(x,y,t) = po(x) +epr(x,y,t), do(x,t) = dpo(x) + € P1(x,y,1)

where py(2,y,t) = fi(z) exp(iky) exp(—iwt), ¢1(x,y,t) = ¢1(x) exp(iky) exp(—iwt). Follow-

ing [82], it can be proved that ¢; solves the generalized eigenvalue problem:
0h (D21 = K201 ) + gy = —w/k 9 (021 — K61 ) (7.6)
in which w/k stands for the eigenvalue. As explained in [82], it can be proved that unstable

solutions, corresponding to w/k with positive imaginary part, exist if and only if k£ < ks =
1. For k near kg, a first order approximation of the instability rate can be computed:
w/k = 2(ks — k)i. Alternatively, we can also compute the instability rate by solving (7.6)
numerically using a finite difference method. Introducing a space step Az = 1/N with N € N
and the corresponding spatial discretization of the interval [0, 1], z; = iAx, we consider the
approximate solution ®; € CV, such that (®,); ~ ¢;(z;) and which solves the following
problem

C(D+ (1-k)d) 1 =w/k (D — K’1d) @4, (7.7)

where C' = diag(cos(z1), ..., cos(xy)) is diagonal matrix and D is discrete Laplacian matrix
with periodic boundary conditions. Therefore, assembling A = C (D+ (1 — k?)Id) and
B = (D — k*Id), we just have to compute numerically the eigenvalues of the matrix B~'A
and then keep the one with the largest imaginary part.

In Figure 7.2 (left) is plotted the time evolution of the k-th Fourier mode of the potential.
The instability rate fits perfectly with the expected one obtained solving (7.7). In the middle
and right are plotted the contour lines of the density with the first-order scheme M; and
the Kahan-Li composition methods. This illustrates the need to use high order scheme to
capture the small structures.
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Figure 7.2: (Kelvin-Helmholtz, k£ = 0.95, ¢ = 107*, N, = N, = 200, At = 0.01, [D2Q5],
r =4, A = 2.02) Left: Time evolution of the k-th Fourier mode of the potential (in blue)
and the straight line with slope Im(w) = 0.08185 (in orange) with Kahan-Li, w = 2. Middle
and left: Contour lines of the density at final time 7" = 200 with w = 2, Kahan-Li (middle)
and w = 1.95, M, (right).

4 Conclusion

In this paper, we show that the kinetic over-relaxation method enables to devise numerical
schemes for the convection equation based on Fourier discretization. The proposed method
is optimally high-order accurate in space and can reach sixth order time accuracy with
the Kahan-Li composition method. Unless high order schemes require more intermediate
transport steps, the computational cost can be drastically decreased. Moreover, the method
has been extended to the non-linear guiding center model. This is the first step before
the extension to more complex advection equations like the gyro-kinetic equation in plasma
physics.
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Chapter 8

Parallel kinetic scheme for transport
equations in complex toroidal geometry

1 Introduction

Physics of tokamak raise a lot of computational challenges. Indeed, a tokamak is an experi-
mental device designed for creating hot charged particle gas: in such a device, the charged
particles are confined thanks to a large magnetic field. Their dynamics involve several multi-
scale transport phenomena, which introduces stringent constraints on the discretization pa-
rameters and requires high-order schemes. Moreover, tokamak generally has a toroidal shape
and presents a cylindrical symmetry around the vertical axis. The geometry of the poloidal
plane, however, can be complicated and unstructured meshes are required. We thus aim at
proposing an efficient numerical scheme for solving conservative transport equations in such
three-dimensional toroidal geometries.

In tokamak, the large toroidal magnetic field results in a scale separation between toroidal
and poloidal dynamics. Indeed, particles exhibit fast transport in the toroidal direction,
while the poloidal dynamics follow incompressible dynamics. Explicit numerical scheme
would impose the dependence of the time step to the mesh through the Courant-Friedrichs-
Lévy (CFL) stability condition. Thus, to avoid too small time steps, the mesh should be
perfectly adapted to the very complex three-dimensional dynamics. This is complicated in
practice because the creation of the mesh is often an independent step of the simulation.

To dissociate the issues of numerical parameters from the mesh construction, CFL-less nu-
merical methods have been proposed. For transport equations, one of the main such methods
is the semi-Lagrangian one, introduced in |85]. Each iteration consists in computing the foot
of the characteristics issued from the mesh nodes and then interpolating the solution at
these points. Several variants have been proposed, see for instance |11, 62|. This method
has been successfully used for full tokamak simulations in the Gysela code [51]. In these
simulations, the computational domain is a torus with circular sections discretized with a
polar mesh. Unfortunately, the standard semi-Lagrangian method does not easily handle
full unstructured meshes, since stability and conservation issues arise. It is therefore difficult
to extend the method to more general geometries.
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Figure 8.1: Cartesian coordinates (z1,x2,z3) and cylindrical coordinates (7, z, ¢).

Indeed, the shapes of the tokamak lead naturally to specific meshes. The domain being
axisymmetric, the mesh can be structured in the toroidal direction. However, the poloidal
sections of tokamak can be either circular like in the Tore Supra device [387] but can also have
very complex geometry. The poloidal plane of the tokamak I'TER has a so-called D-shape.
This geometry is in fact chosen to optimize the confinement. For instance, the poloidal mesh
can be constructed as a multi-patch Bézier mesh [52].

The numerical methods must naturally be adapted to such meshes both in their structure
and parallelism. After rewriting the conservative transport equation in the cylindrical coor-
dinates (r, z, p) (see Figure 8.1), very simple numerical methods can be envisaged in the ¢
direction (e.g. Fourier or semi-Lagrangian method). But more sophisticated solvers have to
be considered to deal with the transport in unstructured meshes in (r, z) planes.

In this work, we propose to adapt the CFL-less kinetic solver proposed in [22] to the toroidal
geometry. The method reuses ideas coming from the Lattice-Boltzmann Method (LBM)
[79, 20, 97, 38] or from the kinetic schemes [13, 6]. LBM have been introduced to solve the

incompressible Navier-Stokes equation as well as advection-diffusion equations while kinetic
schemes were introduced to solve hyperbolic systems. Note that generalized LBM have also
been proposed for kinetic equations [31, 32| . The main point is to replace the conservative
transport equation, where the velocity field is not constant, by a few transport equations
at constant velocities, coupled by a stiff local source term. The coupled system is then
solved with a splitting algorithm that separates the free transport steps and the stiff source
terms. The free transport steps are easier to solve, because the transport step is done at
constant velocity.

Here, we consider six constant velocities aligned to the Cartesian axes in the cylindrical
coordinates, whose magnitudes may be different in the poloidal and toroidal directions: this
is a so-called D3Q6 model. The magnitudes have to satisfy a so-called sub-characteristic
condition to ensure the stability of the numerical scheme. We would like to emphasize that
this condition does not involve the time and space discretization parameters. Taking different
magnitudes enables us to handle a different scale between transport in poloidal and toroidal
directions. Other sets of velocities have been proposed to better capture multi-scale effects
[24, 37| but stability is then more delicate to study. We also refer to |36] for recent analysis
of such schemes.

In order to make the time step independent from the possibly complicated poloidal mesh,
the transport equations at constant velocities in poloidal planes are solved using a CFL-less
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implicit DG method |22]. The implicit method has actually an explicit cost because the
transport velocities are constant: the transport scheme is just to invert a block-triangular
linear system. For the transport in the toroidal directions, since the mesh is uniform, an
exact transport solve is chosen like in Lattice-Boltzmann methods. These choices link the
time step to the toroidal space discretization but still keep it independent from the poloidal
mesh.

The whole method is conservative. Moreover, it is possible, using an adequate splitting
algorithm with a so-called over-relaxation techniques [28] to achieve second-order accuracy
in time. For Lattice Boltzmann schemes, this has been analyzed in [33]. High order spatial
discretization is considered in the poloidal planes thanks to the DG method, while transport
is exact in the toroidal direction. Thus, we finally obtain a second-order scheme well adapted
to manage different dynamics in the poloidal and toroidal directions.

The resulting scheme has also nice parallelization possibilities. In a poloidal plane, the block-
triangular linear systems resulting from the DG scheme that are well solved by an optimized
task-based implementation [7, 18]. In the toroidal direction, the transport equations are
solved by a simple shift operator. It is here implemented by simple MPI point-to-point
communications.

In the following, we first present the whole mathematical, numerical and programming con-
struction. We then verify its accuracy and efficiency with some pure transport test cases.
Finally, in order to assess the usefulness of the method in more complex framework, we
apply our transport solver to the numerical simulation of the diocotron instability in two-
dimensional and three-dimensional configurations. This plasma physics test cases require to
couple the transport solver with a Poisson solver and make the whole model non-linear.

2 'Transport equation and reformulation
We consider the following conservative transport equation:
0i0 + Vg - (ov) =0, (8.1)

where the unknown o(z, t) depends on a space variable € R3 and of the time ¢. The velocity
field v(x,t) is given. As we are interested in solving this equation in a toroidal domain,
we first rewrite an equivalent formulation in cylindrical coordinates. We then present its
approximation by a system of transport equation at constant velocities using the Lattice-
Boltzmann Method.

2.1 In cylindrical coordinates

Let us first consider an arbitrary change of coordinates @ = x(r). The Jacobian of this
change of variables is denoted by j(r) = detx/(r). In this new set of coordinates, the
transport equation (8.1) becomes:

Op+ V- (pu) =0. (8.2)
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where the new unknown p(,t) and the new velocity field u(x,t) are defined by:

j(r)o(x(r),t), (8.3)
x'(r) to(z(r), t). (8.4)
For tokamak applications, we are particularly interested in the change from Cartesian to

cylindrical coordinates. We denote by © = (1,29, 73)7 the Cartesian coordinates and by
r = (r,2,)T the cylindrical coordinates. The change of variables is given by

1 = TrCoS Y,

To = 1Sin,

xr3 = Z.
We also define the cylindrical frame
cos ¢ 0 —sin
e,=| sinp |, e=| 0], e =r cos
0 1 0

which is the columns of @’(r). Note that the vector e, is not a unit vector: its Euclidean

(
norm is equal to r. From (8.3), we define the new unknown:
plr,1) = ro(x,t).

Then we introduce the velocity fields u = (u,, u,, u,)" as defined by (8.4). It is related to v
by the following relation:

Ul(wat)
v(x,t) = | valz,t) | =u(r.t)e, +u.(r,t)e, +uy(r,t)e,.
’Ug(iB,t)

Up to a change of unknowns, the initial conservative transport equation (8.1) has an equiv-
alent conservative formulation (8.2) in cylindrical coordinates. Therefore, it is possible to
solve the transport equation in cylindrical coordinates as we were in Cartesian coordinates.
In particular equation (8.2) can be rewritten

z

o+ Vi (1)) +0u(on) =0, 55

and as proposed in this work, we can use a different discretization for the (r,z) and the ¢
coordinates. Indeed, the geometry will be supposed to be invariant in the ¢ direction, which
will allow several optimizations.

2.2 Kinetic relaxation method

For solving the transport equation (8.2), the kinetic relaxation method consists in introducing
n, unknowns fx(r,t) associated to n, constant kinetic velocities in cylindrical coordinates
A, k=0...n, — 1. The n, — 2 first velocities are used for solving the transport problem
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in the (r, z) plane and the last two velocities are used for the ¢ direction. For instance, we
can take n, = 6, with 4 velocities in the poloidal plane

Ay -\ 0 0
A(] - 0 ; )\1 - 0 5 AQ - /\p y A3 - —>\p 5
0 0 0 0

and 2 velocities in the toroidal direction

0 0
A4 = 0 3 A5 - O )
Y -\

where A\, > 0 denotes the norm of the kinetic velocities of the poloidal plane and A\, > 0
the norm of the velocities in the toroidal direction. This choice corresponds to the so-called
D3Q6 method. We could also consider only 3 velocities in the poloidal planes which would
lead to a D2Q3 method in the poloidal plane coupled to a D1Q2 method in the toroidal
direction. Then the kinetic relaxation method consists in considering the following kinetic
model

O+ N Vil = (T~ i), (8:5)

with 7 > 0 is the relaxation parameter and f;? is the so-called equilibrium kinetic distribution

defined by
eq P pu - Ak

=2 4= =5 8.7
S TWE &.7)

with w is the velocity field defined in (8.4) but here p is defined by

Nny—1

p=> f (8.8)

The equilibrium kinetic distribution is chosen such that equation (8.6) is an approximation
of equation (8.2). More precisely, in the limit where 7 goes to 0, the density p defined by
(8.8) tends to the solution to (8.2). This approximation is stable under a so-called sub-
characteristic condition. Roughly speaking, it states that the ellipsoid, whose main axes are
aligned to the kinetic speeds A, has to contain the velocity field w. More precisely, the
model is stable if all the velocities u = (u,., u., u@)T satisfy the following condition

@
U M Mo 1
22Ty

The computations are given in the appendix 6. For more details, we refer to [6, 7, 13, 22, 33].

The main interest to transform (8.5) into (8.6) is that now the transport velocities are con-
stant. This will dramatically simplify the resolution of the equations and allows designing
explicit schemes that are unconditionally stable.
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3 Transport solver

In this section we focus on the numerical schemes used for solving the transport equations
involved in the kinetic model (8.6):

Of + A - Vo fi =0, (8.9)

We want to solve them in domains with a cylindrical geometry. Indeed, we recall that, up to
a change of variable (see section (2.1)), it enables us to consider toroidal domains as required
for tokamak simulations. The starting point is thus a two-dimensional unstructured mesh of
one poloidal plane (¢ = Cst). Here it is chosen made of second order curved quadrilaterals
with eight nodes (“Q8” family in the finite element terminology). Then this mesh is extruded
in the ¢ direction leading to a uniform structured mesh of space step A in that direction.

Two different transport solvers are used. For transport in the toroidal direction, we consider
an exact solver to take advantage of the uniform mesh: this corresponds to the Lattice-
Boltzmann method (LBM). For transport in the poloidal planes, we consider an implicit
DG scheme. We first details the two numerical schemes and then briefly present their
parallelization.

3.1 Transport in the toroidal direction: LBM

Only the last two kinetic components, f, _o and f, _1, are transported in the toroidal
direction. We solve these transport equations with a simple shift, because of the structured
mesh. This writes:

(fnv—Q);‘H_l = (fnv—Q)?—lv (fnv—l);'ﬂ_l = (fnv—l)?+1a

where j refers to the poloidal planes index. This requires to link the time step to the space
step in the ¢ direction: At = Ag/\;. This is the classical algorithm used in the Lattice-
Boltzmann method.

3.2 Transport in the poloidal direction: implicit DG

Because the poloidal shape can be arbitrary, we have introduced an unstructured mesh and
thus we consider a Discontinuous Galerkin (DG) approximation for transporting the n, — 2
first kinetic components fo,..., f,,—3 whose associated kinetic velocities are poloidal. In
order to avoid stability constraints due to small mesh elements, we consider an implicit
solver.

Implicit DG formulation
The objective is to solve a two-dimensional transport equation, with constant velocity
Ohf+X-Vi.f=0.

where f and A\ refer to one of the n, — 2 first kinetic component and its associated kinetic
velocity. In each cell L, we consider polynomial basis functions 1) of degree p. For efficiency
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OLNOR

Figure 8.2: Normal vector convention.

reason, the basis functions are Lagrange polynomials based on Gauss-Lobatto quadrature
points. The transported function f is approximated in cell L by a linear expansion on the
basis functions

f(r,z,nAt) ~ fi(r,z) = Zfﬁﬂ/}f(r, z), (r,z) € L.

The unknowns are the coefficients f7 ; of the linear expansion.

In order to avoid constraining CFL conditions, we only envisage implicit solvers. We first
consider the simplest first order implicit DG approximation scheme. It reads: VL, Vi,

/ﬁ:iiw_/wiﬂ+/«xn)vwwkn)fﬂ%zo (8.10)
L At ) T e e

where the basis functions ¥ play the role of test functions, R denotes the neighbor cells
along 0L, npp is the unit normal vector on OL oriented from L to R (see Figure 8.2) and
(A-n)" =max(A-n,0), (A-n)” = min(A - n,0). We thus use an upwind numerical flux.
For more details on the DG method, we refer for instance to [56, 7]. We can rewrite (8.10)
in the matrix form

Myfi=Mpfp 't + At [ Afp = > Burfi— > Cuefp |, (8.11)
LR€AL, LRe AL,
AnLr>0 Anpr<0

where My, denotes the mass matrix, Ay, the volume advection matrix, Brg and Cpr the flux
advection matrices between cell L and downwind or upwind cells R: cell R is said to be
upwind with respect to cell L if A-n.r < 0 and downwind otherwise. Their coefficients are
given by

My);; = Z,L{ Ap)ij = A-VZ-L L

(s = [ otk (A= [V

(BLR)i,j:/ (A'nLR>¢iLw]L and  (Crr)i; :/ (A'nLRWiL%R-
oL LR

In the above formalism, we only describe a first order time scheme. In practice, we actually
use a second order implicit Crank-Nicolson time stepping. But it is very similar to the above
description.
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Figure 8.3: Left: Unstructured mesh of the disk, with a constant velocity field A (in red).
The velocity field is chosen to have a slight angle with respect to the horizontal axis to
better highlight the dependency between cells. Label 12 represent where upwind boundary
conditions should be provided. Right: Associated dependency graph. Transport is performed
from top to bottom nodes.

Downwind algorithm

One time-step of the implicit DG scheme consists in computing the distribution function at
time ", f" from the distribution function f"~! of the previous time step. From (8.10) it
is clear that one has to solve a linear system, as in any implicit scheme. However, because
the kinetic velocity A is constant and because we use the upwind numerical flux, the linear
system is triangular. It can thus be solved cell by cell, simply sweeping the mesh in the
direction of the velocity vector.

More precisely, expression (8.11) shows that the solution f™ depends only on the values of
f™in cell L and in the upwind cells. For a given velocity v we can build a dependency
graph. The vertices of the graph are associated to cells and the edges to the cells interfaces
or boundaries. We consider two fictitious additional vertices: the “upwind” vertex and the
“downwind” vertex. The dependency graph for a simple unstructured mesh and a given
constant velocity is represented in Figure 8.3. The construction can be generalized to any
unstructured mesh with flat faces. This flatness condition ensures that the kinetic velocity
crosses the faces in only one direction. This ensures that the graph does not contain loops.
For more details, we refer to [7].

For solving one transport equation for a given constant velocity A, the algorithm is then the
following;:

(i) First we perform a topological ordering of the dependency graph.

(i) First time-step: Assembly, LU decomposition and storage of the local cell matrices.
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These computations can also be redone during each time-step for saving memory (but
it is more CPU demanding).

(iii) For each cell (in topological order):
(a) Compute volume terms.
(b) Compute upwind fluxes.
(c) Solve the local linear system.
(d) Extract the results to the downwind cells.

For more details on our implementation of the implicit Discontinuous Galerkin method, we
refer to |7].

3.3 Parallelization

The whole transport solver is parallelized. We adopt different strategies for the parallelism
in the poloidal directions and for the toroidal direction.

Poloidal parallelism: task graph.

Because of the dependency graph we cannot perform all the computations in parallel. For
instance, for the mesh of Figure 8.3. it is necessary to compute the solution in Cell 9 first.
But then Cells 8 and 10 can be computed independently in parallel, etc.

The parallelization is done by a task graph approach. We have tested several implementa-
tions. For more details on the implementation, we refer for instance to [7], where the algo-
rithm is parallelized with the StarPU runtime, or to [18] where we use a specialized DAG
(Direct Acyclic Graph) clustering algorithm. The DAG algorithm relies on an OpenMP
implementation.

Toroidal parallelism: message passing

For the toroidal direction, we associate to each poloidal plane one MPI process. Thus, the
shift simply consists in an MPT send/receive operation with the neighbor poloidal planes.
This approach imposes a constraint on the time step. An alternative would be to replace
the shift by a semi-Lagrangian solver. This would imply exchanges with more neighbors and
thus more MPI communications.

4 Kinetic solver

In this section, we present the whole numerical scheme to solve the kinetic model (8.6) and
we validate it on two and three-dimensional test cases.
4.1 Splitting

The kinetic model (8.6) is solved using a splitting method. Starting from f* the kinetic
fields at time step t, = nAt, we make the following two steps to update them:
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(i) We first solve the n, free transport equations
Ocfk + Ak - Vo, =0,

using the transport solvers introduced in Section 3. We denote by f; the value of the
fields after the free transport step (8.9).

(ii) then the relaxation to the equilibrium distribution, corresponding to the right-hand
side of (8.6), is solved using an over-relaxation process as used in [50, 22, 28]. For ob-
taining the new value of the field at time step ¢,41, the kinetic fields f; are recombined
according to

T = w4 (L—w)ff. (8.12)

where w > 0 is the numerical relaxation parameter. This scheme can be formally
derived using a f-scheme for the relaxation part of Equation (8.6) and this leads to the
following relation: w = At/(7+ 6At). This relation is actually not taken into account:
the actual numerical scheme considers a given w, independent from the time step and
with no reference to the parameter 7. We refer to |24] for more details.

For w = 1, we obtained the classical transport-projection scheme. The over-relaxation
formula (8.12) enables us to obtain second order accuracy in time when the relaxation
parameter w = 2. When the relaxation parameter satisfies 1 < w < 2, then the scheme
is only first-order accurate and the time integration introduces a numerical damping. This
damping can sometimes be used for numerical stabilization purpose.

4.2 CFL condition

As we are using an implicit transport solver in the poloidal plane, we want to emphasize
that the time step is not constrained by the poloidal discretization or the poloidal speed
Ap. The only constraint comes from the choice of the shift transport solver in the toroidal
direction which imposes the relation: \;At = Ap. This implies a CFL bound for the toroidal
dynamics:

A At
tor i
n =—=1 8.13
CFL = Ay (8.13)
However, the full CFL number is defined by

full Umax Al

nopL, = min(0,, Ag) (8.14)
where 0, > 0 denotes the minimal distance between two interpolation points in the poloidal
plane and wu,., the maximal advection speed over the simulation. Unlike explicit methods,
this CFL number is not constrained by our scheme and as a consequence, 0, can be set
without stability considerations, i.e. independently of the possible advection speed in the
toroidal direction.

4.3 Boundary conditions

In the ¢ direction, the boundary conditions are naturally periodic. At the poloidal planes
boundaries, we consider Dirichlet boundary conditions. More precisely, in the DG scheme
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(8.10) if R corresponds to a boundary, then the unknown value of fr is given by

fR = feq(p7 'U/),

where p and w are imposed boundary data and f° is given by (8.7).

4.4 Validation in two-dimensional geometry

First we validate the kinetic solver described above in a single poloidal plane. We consider
the two-dimensional rotation of a Gaussian pulse. The pulse is given by

g(r.z, 0. t) = exp(=30 (" — 1)* + 2" + ¢")),
with
r’ = cos(Bt)r + sin(p5t)z,
2" = cos(ft)z — sin(St)r,
¢ =0,
and we take 8 = 1/4. This function satisfies the advection equation
Og+u-Vg=0,

with

or equivalently the conservative transport equation:
since the velocity field is divergence free: V - u = 0. We solve this equation in the disk

Q:{(T7Za90)7 (T_rt)2+22<47 90:0}

We numerically compute the above solution with two different meshes with refinement levels
of 5 and 10 (see Figure 8.5) and with n; = 500 and n; = 1000 time steps. The time step
is given by At = 2w /n,. We take A\, = 1, use polynomials of degree 2 in the DG method
and w = 2. The numerical solution is plotted at time t,,,, = 27 on Figure 8.4. We observe
that the Gaussian shape is well preserved by the LBM scheme. We also check the order of
convergence in the L? norm. The measured numerical order is here 2.405, which is consistent
with the theoretical order of convergence.

The time scheme is only second order accurate and is thus the limiting factor for the con-
vergence. Anyway we also check the spatial convergence of the scheme for higher order DG
approximation. For this, we use a sufficiently small time-step in such a way that the error
due to the time approximation is negligible. We perform simulations with two meshes with
two different refinements of 10 and 20 (see Figure 8.5). We then obtain the numerical orders
of Table 8.1, which is still consistent with the theoretical order of convergence.
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Figure 8.4: (Validation in two dimensions) Numerical solution at times ¢ = 0 (left) and
t = 27 (right) after the Gaussian pulse has done a quarter turn. Parameters of the kinetic
solver: At = 27 /n; with n, = 1000, w = 2, A\, = 1 and DG of order 2.

p num. order

1 0.997
2 2.68
3 3.772

Table 8.1: (Validation in two dimensions) Numerical order of the DG scheme for several
values of the polynomial order p. In this test, the time step is chosen in such a way that the
time error is negligible. Parameters of the kinetic solver: A\, =1, w = 2.
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4.5 Validation in a 3D periodic cylinder

Now we also activate transport in the third direction. We consider a three-dimensional
helical shift of a Gaussian pulse. The pulse is given by

g(r,z,¢,t) = exp(=30((r' — 1)* + 2% + ¢")),

with

r’ = cos(2myt)r + sin(27t)z,

2" = cos(2mt)z — sin(2myt)r,

o' =@+ pt.
We can also consider a periodic function in the z direction

g(r, z,p,t) = exp(—30((r' — 1)* 4 2'?)) sin(7y’).
and we take v = 0.04, § = 0.25. This function satisfies the transport equation
g+ V- (gu) =0,

with the divergence free velocity field

—2myz
u = 2myr
—B
The computational domain is the cylinder

Q:{(T,Z,QO), (T_Tt>2+22<47 _1:@min<§0<]—:@max}'

We consider a maximal time .., = 1. In this way, the Gaussian pulse will move a little bit,
without touching the boundaries in the ¢ direction. As stated above, parallelism is managed
by OpenMP and MPI. OpenMP is used for optimizing the transport solver in the poloidal
planes. MPI communications are used for the parallelism in the toroidal direction. We recall
that parallelism in the ¢ direction is directly linked to the number of poloidal planes, as one
MPI process is associated to each plane. If, for instance, we choose n, = 64 toroidal planes
then the space step in the ¢ direction equals

A(P _ Pmax — (pmin’
np
and there are n, MPI processes. Moreover, with a kinetic speed \; = 1 and as we are

considering LBM in the ¢ direction, the time step is given by

A
At = A—SO — 0.03125.

t

We thus have to perform n; time iterations

tmax
ny = 2 = 32.

At
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Figure 8.5: Poloidal meshes with refinements n.,s = 5, 10, 20 and 40. The disk is decomposed
into 12 patches and each patch is meshed with n?; quadrilaterals, where ny,y is the refinement
number.
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Figure 8.6: (Validation in three dimensions) L? error as a function of the refinement level.
Parameters: \, = A\, = 1, DG order p = 2.

In order to check the convergence order, we have considered three different meshes of the
poloidal plane with a refinement of 5, 10, 20 and 40, as represented in Figure 8.5. While
refining in the poloidal direction, we also refine in the toroidal direction by taking 32, 64,
128, 256 poloidal planes or equivalently MPI processes. We consider the second order DG
scheme and we take A\, = \, = 1. We compute the error in the L? norm and obtain the
error curve of Figure 8.6. The order of convergence based on the 64 and 128 refinement
levels is 2.226 (2.155 for 128-256 refinements). In this way, we have numerically validated
the expected accuracy of the full kinetic scheme.

5 Applications to plasma dynamics

In this section, we apply the transport solver to more complex test cases from plasma physics.
We consider the transport of charged particles in a tokamak along the magnetic field lines.
These charged particles create an electric field and the drift theory then implies that, in the
mean, their motion is perturbed by this electric field.

For validation purpose, we neglect curvature effect and thus consider transport models in
straight toroidal domains. Extension to curved domains will be studied in a future work.
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Moreover, next simulations consider annular poloidal planes, but there is no restriction
on the geometry of the poloidal planes. This annular geometry is chosen in order to validate
the model on classical test cases.

5.1 Drift-kinetic like model

Here we consider the following simplified model. The charge density p(r,t) is transported
according to equation (8.2) at the drift velocity

u=FE xe,+ B, (8.15)
where the electric field E is the gradient of the electric potential V/,
E=-V,V. (8.16)

and B denotes a magnetic field that is externally imposed, B = (b,, b,,b,)". In other words,

the drift velocity writes:
ov ov

—+b , —
0z " Or
The electric potential, whose derivative in the ¢ direction is neglected, is a solution to a
Poisson equation

u=(— +b.,b,)".

—AV = p, (8.17)
where the Laplacian operator acts only in the poloidal plane:
0? 0?
A=—+—.
or? * 072

We assume homogeneous Dirichlet boundary conditions for the potential. This implies that
E x e, is tangent at the boundary. If B is also tangent to the boundary, then no mass
escapes the domain. This model, made of the transport equation along B and the poloidal
drift is a very simplified drift-kinetic model with a unique parallel velocity [51]. Thus we
focus on the resolution of the transport dynamics in the spatial domain and do not consider
physical kinetic effect.

From (8.15), (8.16) and (8.17) we see that the drift velocity is obtained from a linear operator
applied to the density

u = ulp).

The drift-kinetic model can also be written

and therefore is a non-linear model.

In addition to the transport solver described above, we thus have to implement a poloidal
Poisson solver, which will be applied in each poloidal plane independently. We will test the
accuracy of the coupling between the transport and the Poisson solver. In practice, we use
a standard conforming finite element solver for the Poisson equation. The solver uses the
same mesh and the same order of basis functions as the transport solver. Once the Poisson
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equation is solved, the electric potential is computed according to (8.16). The numerical
electric field is thus generally time and space dependent and discontinuous at the interfaces
between the DG cells.

Given a stationary solution to the drift-kinetic model, a slight perturbation is applied to
this particular solution. In certain configurations one observes instabilities. The objective
of the following two test cases is to compute numerically the instability rate. In simple
geometries the instability rate can be evaluated by analytical or semi-analytical methods. It
is then possible to test the accuracy of the Lattice-Boltzmann approach. We first consider a
two-dimensional diocotron instability and then a fully three-dimensional instability.

5.2 Two-dimensional diocotron test-case

We suppose that B = (0,0,0)”. Then the solution does not depend on ¢ and we recover
the so-called guiding-center model. The problem is thus indeed two-dimensional. We note
a € RT and 6 € [0,27), the polar coordinates in the poloidal plane:

r=acosf + 1y,

z = asiné,

with 7, > 0 the radius of the torus. Here the computational domain is a circular annulus
defined by
Q={(r,z,¢),p =0 and apmin < @ < Apax} -

We will test our solver on the Diocotron test case described in |26, 67]. The density is
initialized with a continuous function

_ (a—ap)?

p(?“, Z5 P, t) = ﬁ(aa 97 t) = (1 + ECOS(]CQ)) e 207, (819)

with o > 0 and ag € (Qumin, Omax) and where ¢ > 0 and k € N* parametrize the perturba-
tion. The electric potential V' satisfies equation (8.17) with homogeneous Dirichlet boundary
conditions at o = opin and o = max-

For € = 0 this density is a solution to the drift kinetic model (8.18): indeed the density, and
thus also the potential, has a cylindrical symmetry. Then, because of (8.15), the velocity w is
parallel to the vector (—z,7) and the transport equation leaves the initial density invariant.

When € > 0, an instability may appear to depend on the parameters cuin, Qmax and ay.
In this special case, where the initial condition has cylindrical symmetry, we can estimate
the instability growth rate with a simpler one-dimensional numerical method in order to
compare it with the results of our solver. We explain now this simpler method.

Instability rate

In polar coordinates in the poloidal plane, the guiding-center model writes
1 . .
8p+ — <8aV89[> - 89V8aﬁ> —0,
o

1 - 1 ~ N
—aaa (Oé (%\/) — 5892‘/ = p. (820)
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Let (go(a), Vo)) be a stationary radial solution to this system. We look for a solution
which writes as the sum of the stationary solution and a small perturbation

pla,0,t) = pola) + e pr(a) e e,
Vi, 0,t) = Vola) + e Vi(a) e*? et

Inserting this ansatz into system (8.20), we obtain

—npele) +  (V(@)pe(a) — Velain(a)) =0, (8.21)
—V(a) — éV;(a) + z—zvk(a) = pr(a). (8.22)

Plugging (8.22) into (8.21), this system can be rewritten as the following equation

1 Y V2 1 Vi kQ  / 1~ ~/

Vi) =) (~Vi0) = SVia) + 5 Vala) ) = ~Vil@)fa),  (3:23)
which is a generalized eigenvalue problem with eigenvalue n/k. We keep the eigenvalue with

the largest imaginary part (if there exists) and the instability rate is then given by (n).

In the case (8.19), the radial solution is

- _(a—a0)?
pofa) = 5

Moreover, since ‘76 is solution to the following elliptic equation

—Vi{a) — ~Vh(a) = fo(a),

(07

we obtain the following expression
~ 1 T o — _ (a—a0)?
Viia) == — /= f 2 o2
(@) a(cl \EO‘O"“ ( Vo )*” 2 )

Vola) = /aa Vi(a)do + cs.

min

and then

The Dirichlet boundary condition Vo(amin) = 0 implies that ¢, = 0, and f/o(amax) =
0 implies that f;y“?ax Vi(a)da = 0. Therefore, we can approximate ¢; with a numerical
integration.

For finding out the unstable mode, we discretize the one-dimensional equation (8.23) using a
finite difference method over the interval [aupin, max]. We approximate the first and second
derivatives of V() by standard central differences. Finally, the solution of the equation
(8.23) is numerically solved as a generalized eigenvalue problem. Of course, the number of
discretization points is taken large enough, in order to achieve high accuracy.
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Validation

We choose apin = 1, amax = 10, and the following parameters for the initial condition (8.19):
ag = 4.5, 0 = 0.5, and k = 2. Using the method described in the above section, we obtain
that this initial condition (8.19) leads to an instability of rate 0.15215.

To validate our code, we have done a dynamic numerical simulation with the full kinetic
solver using the same parameters. We consider A\, = 7, use polynomials of degree 2 in the
DG method, a time step At = 0.0125 and a relaxation parameter w = 1.999. We consider
a mesh of size N, x Ny = 100 x 60. Density plots are given in Figure 8.7. The execution
takes approximately 1.5 hours. We define the poloidal CFL number by

pol UmaXAt

n =
CFL )
51’

with vp,q, the maximal speed and J, the minimal distance between two interpolation points.
In this case, the CFL number equals 2.35. With such a CFL number, the calculation would
be unstable with a DG explicit method. In Figure 8.8, we plot the k-th Fourier mode in 6
of the potential whose formula is given by:

1 Q'max 27 o
h(t) = —/ / e 0V (o, 0, t)dodb 8.24
( (Qmax - Oémin) o 0 ( ( )

min

and estimate the slope in the linear growth regime. We observe an instability rate of 0.15123.
This is in accordance with the theoretical instability rate.

08 0.9 1 0119 -0.00395 0111 0225
- L

Figure 8.7: (Two-dimensional diocotron test case) Density at t = 0 and ¢ = 100. Parameters:
Ap =7, DG order p = 2, At = 0.0125, w = 1.999.

5.3 Diocotron test-case in a periodic cylinder

We consider now the three dimensional drift kinetic model (8.2)-(8.15)-(8.16)-(8.17) We
choose a magnetic field B oriented in the # and ¢ directions

B = (—bgsin(0), by cos(6), b,)",
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Figure 8.8: (Two-dimensional diocotron test case) k-th Fourier mode of the potential over
time and the instability rate given by the slope of the Fourier mode between ¢ = 20 and
t = 60, compared to the theoretical instability rate. Parameters: A\, = 7, DG order p = 2,
At = 0.0125, w = 1.999.

with by > 0 and b, > 0. The computational domain is the cylinder
= {(7“727@ \ Omin < V/(r = 7¢)% + 22 < nax, 0 < 9 < L}.

We consider periodic boundary conditions in ¢ and homogeneous Dirichlet boundary condi-
tions for the potential V. We consider the following initial density

(a—ag)?

2
p(r,z,0,0) = pla,0,0,0) = (1 + € cos (k@ +€gpfﬂ)> e 207

with o > 0 and @y € (Omin, ¥max) and where ¢ > 0 and k, ¢ € N* parametrize the perturba-
tion. Like in the two-dimensional case, we first derive the eigenvalue problem for calculating
the instability rate. We show that this rate does not depend on the perturbation along ¢.

Instability rate
With cylindrical coordinates, the system (8.1)-(8.16)-(8.17) becomes

1. -~ 1. -~
875,5 — EGHV 8aﬁ + (aaav + bg) 89,5 + bwa@ﬁ =0, (825)
1 ~ 1 ~ N
—aaa(OéaaV) - 5892‘/ = p. (826)

Let (po(a), Vo(a)) be a stationary radial solution of this system, which only depends on «
and is constant along the # and z directions. We look for the equation satisfied by a small
perturbation around this stationary solution

ik ewgoe—mt 7

pla,0,0,t) = po(a) + € pra(a) e

Vi, 0, 0,t) = ‘70(&) +e Vk:,l(a) Gikeeig“’e_i"t,
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with € > 0. We plug this expression into Equations (8.25)-(8.26) and keep only the O(e)
terms. We obtain

—T}ﬁk,g(a) - gﬁg(a)vu(a) + kﬁkj(()é) (évg(a) + bg) + gﬁhg(&)b@ = 0, (827)

—é@a(af/;d(oz)) + z—zf/k,z(a) = pre(a). (8.28)

Plugging (8.28) into (8.27), we finally get

1~ l n ~ 1~ k? - 1. ~
(3750 ot 0, = ) (=VLale) = 3 Vila) + Vi) = Lih()Vala). (520
which is the same equation obtained in (8.23) for the two-dimensional case, except for the
presence of the term by + %b@. Consequently, compared to the 2D case, the eigenvalues are
only shifted by this real value and the instability rate does not change as it is equal to the
largest imaginary part of the eigenvalues.

Validation

The poloidal planes have the same dimension as in the two-dimensional test case (min = 1,
Omax = 10) while the cylinder length is taken equal to L = 200. The magnetic field is
supposed to have a large toroidal component compared with its poloidal ones: by = 0.1
and b, = 200. The distribution is initially concentrated around oy = 4.5 with a Gaussian
distribution of standard deviation ¢ = 0.5. Finally, the perturbation is taken of size ¢ = 107°
and involves modes k£ = 2 in the 0 direction and ¢ = 1 in the ¢ direction.

The numerical parameters of the simulations are as follows. Each poloidal mesh is composed
of 4 x N, x Ng =4 x 80 x 50 elements. In the toroidal direction, we use n, = 128 poloidal
planes and so 128 MPT processes. Consistently with the involved advection velocities, we
choose kinetic speeds of norm A, = 7 in the poloidal plane and A\; = 600 in the toroidal
direction. The time step is thus equal to At = L/(n,\;) = 0.002604 and the relaxation
parameter is chosen equal to w = 1.99.

Figure 8.9 shows the time evolution of the density and Figure 8.10 the density at final time
tmax = 100 for different poloidal planes. As expected, we can observe that the density in the
poloidal planes are identical up to a rotation. As time goes on, two vortices develop and lead
to fine structures in the poloidal planes as in the two-dimensional case. The computation
takes 26 hours.

We would like to emphasize that the full CFL number, defined in (8.14), takes the value
33.17. This is due to the very fast speed in the toroidal direction which is not resolved by
the poloidal plane mesh. Indeed, the minimal distance between interpolation points in the
poloidal planes equals d, = 0.01570 and the time step is not small enough to capture speed
of order 200 for this fine resolution. An explicit scheme would require either decreasing the
time step and thus increasing the toroidal discretization, or a coarser poloidal mesh at the
cost of a loss of accuracy. Consequently, explicit schemes would not be able to cope with
both the large velocity in the toroidal direction and a very fine grid in the poloidal plane.
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Figure 8.9: (Three-dimensional diocotron test case) Four successive instants of the 3D so-
lution showing cross sections of density colormaps and density isosurface colored by the
potential. Parameters: A\, =7, A\, = 600, DG order p = 2, w = 1.99, n, = 65.
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Figure 8.10: (Three-dimensional diocotron test case) Density at ty.x = 100 for the poloidal

planes ¢ = 0, ¢ = %, Y = % and ¢ = %. Parameters: A\, = 7, \; = 600, DG order p = 2,
w=1.99, n, = 128.
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Figure 8.11: (Three-dimensional diocotron test case) Instability rate observed compared to
the theoretical one. Parameters: A\, =7, \; = 600, DG order p = 2, w = 1.99, n,, = 128.
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Figure 8.12: (Three-dimensional diocotron test case) Density at ,,,, = 100 in the poloidal
plane ¢ = 0 obtained with n, = 32, n, = 64 and n, = 128. Parameters: L =1, A\, = 7,
A = 3, DG order p =2, w =1.99.

In Figure 8.11, we plot the time evolution of quantity (8.24) integrated along ¢. We compare
the theoretical instability rate computed before (see Sec. (5.3)) to the one obtained by the
three-dimensional kinetic solver. We expect an instability rate of 0.15215, and we obtain
0.15061, which again validates the kinetic solver.

When we decrease the number of MPI processes n,, the number of planes in the poloidal
direction decrease and the poloidal discretization step Ay is then smaller. Figure 8.12 shows
the densities obtained at time ¢,,,, = 100 for the poloidal plane ¢ = 0 for n, = 32, n, = 64
and n, = 128. As the number of MPI processes decreases, we observe that the solution is
less and less precise and dispersion effect are more and more present. This is mainly due
to the increase of the time step imposed by the Lattice-Boltzmann method. Other toroidal
solver will be studied in future works.

5.4 Parallel efficiency: weak scaling

Now, we want to compare the time of execution for different numbers of MPI processes n,,.
We keep the parameters used in the section 5.3, we only reduce the final time to ¢,,,, = 1, in
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Figure 8.13: (Parallel weak scaling) Time of execution according to the number of MPI
processes.

order to get shorter computations. As we have At = ﬁ, if the MPI communication time is
neglected, we expect the time to double when the number of MPT processes is multiplied by
2. We perform numerical computations with n, = 6, 12, 24, 48 and 96 MPI processes. We
obtain the CPU time evolution of Figure 8.13. We observe a correct scaling of the parallel
method when the number of MPI processes increases. We emphasize that for this test we
have deactivated the OpenMP acceleration on each MPI node. For harnessing the OpenMP
acceleration, we should run the code on a larger parallel computer.

6 Conclusion

In this work, we have proposed a new optimized numerical method for solving non-
homogeneous conservative transport equations in toroidal geometries. The method is
conservative, high-order in space and time and has the complexity of a time-explicit scheme.
It is also able to handle unstructured meshes of the poloidal plane, which is very useful for
numerical simulations in tokamaks, like ITER. Finally, it presents many features that allow
an efficient parallelization.

The method has been first validated on academic transport test cases. The method has
then been applied to more physical configurations. The transport has been coupled with a
toroidal Poisson solver for computing the electric potential generated by the charge density
motion. In this framework, we have been able to validate the method on the estimation of
diocotron instability rates.

We are currently working on the extension of the method to other physical models: with more
realistic toroidal geometries, more complex transport models, several populations of particles,
and richer gyrokinetic models. We also plan to run the solver on larger supercomputers.

Appendix A. Subcharacteristic stability condition

We consider the kinetic model (8.6). The sub-characteristic stability condition is a stability
condition associated to the equivalent equation of (8.6) in the limit 7 — 0. Indeed, in that
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asymptotic, the equivalent equation writes:
Oip+ Vo (pu) =7V, - (DV,p) + O(7?),

where the O(7) term involves a diffusion matrix given by:

)\2
?p — uf —UpU,  —Uply
2
D= U, E—ud o —usug
2
— Uy U, S —ud
We refer to [13] for the derivation of this equivalent equation. For this equation to be

L? stable, this diffusion matrix has to be positive definite: this is the sub-characteristic
condition. Here, the eigenvalues of D are

\2 1 A2 4 \2 1 A2+ N2
ti= 2 d= g (—ar B ) =g (a2 ),

A2 4+ \2 2 A2 22 22
o= \/( P ) g (w5 ) )

As d; is always positive and dy < d3, the model is stable if and only if ds > 0 or equivalently

with

A2 4+ 22

L —|ul* 2 a
3

After some easy computations, we find that this is also equivalent

w ol UG
22y

which states that all the velocity field uw have to belongs to the ellipsoid with parameters
A A A
(%% %)



Chapter 9

Optimization of spatial control strategies
for population replacement, application

to Wolbachia

This chapter is totally independant of the rest of the thesis. It presents a work carried
out in collaboration with Michel Duprez, Yannick Privat and Nicolas Vauchelet. It has
been published in ESAIM: Control, Optimisation and Calculus of Variations, in an article
entitled Optimization of spatial control strategies for population replacement, application to

Wolbachia.

Abstract: In this article, we are interested in the analysis and simulation of solutions to
an optimal control problem motivated by population dynamics issues. In order to control
the spread of mosquito-borne arboviruses, the population replacement technique consists in
releasing into the environment mosquitoes infected with the Wolbachia bacterium, which
greatly reduces the transmission of the virus to the humans. Spatial releases are then
sought in such a way that the infected mosquito population invades the uninfected mosquito
population. Assuming very high mosquito fecundity rates, we first introduce an asymptotic
model on the proportion of infected mosquitoes and then an optimal control problem to
determine the best spatial strategy to achieve these releases. We then analyze this problem,
including the optimality of natural candidates and carry out first numerical simulations in
one dimension of space to illustrate the relevance of our approach.

1 Introduction and state of the art

Aedes mosquitoes are the main vector of the transmission to human of many diseases, such
as dengue, zika, or chikungunya. Since there are still no vaccines against these diseases, the
best way to fight against them is to act on the vector population. Several techniques have
been proposed. Some approaches aim at reducing the size of the population of mosquitoes.
The use of insecticides is one of them, but its environmental consequences are too important
to be used for a long time and on a large scale. The sterile insect technique (SIT) or
the incompatible insect technique (IIT) are very promising strategies, consisting in massive

127
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releases of sterile or incompatible males, after mating with these males, the wild females will
not produce viable eggs which should reduce the size of the populations (see e.g. [11] and
references therein). This method has already been implemented successfully on the field (see
[36, 98]). Other strategies are based on genetic manipulations like, for example, the release
of insects carrying a dominant lethal (RIDL) [92, 55, 18].

However, the suppression of one population of insects might have consequences on the
environment. Then, other approaches aim at replacing the wild population of mosquitoes by
another population inoffensive to human. One strategy under investigation consists in using
the bacteria Wolbachia taking advantage of phenomena called cytoplasmic incompatibility
(CI) and pathogen interference (PI) [17, &1]. In key vector species such as Aedes aegypti, if
a male mosquito infected with Wolbachia mates with a non-infected female, the embryos die
early in development [96]. This is the so-called cytoplasmic incompatibility (CI). Moreover, it
has been observed that Aedes mosquitoes infected with some Wolbachia strains are not able
to transmit viruses like dengue, chikungunya and zika [94], this is the pathogen interference
(PI). Then, one may release mosquitoes artificially infected by Wolbachia to mate with wild
ones. Over time and if the releases are large and long enough, it can be expected that the
majority of mosquitoes will carry Wolbachia, due to cytoplasmic incompatibility. As a result
of PI, the mosquito population then has reduced vectorial competence.

In this paper, we focus on the Wolbachia strategy and investigate the question of optimizing
the spatial distribution of the releases. Several mathematical models have been proposed

for the Wolbachia technique, see e.g. [13, 14, 81, 60]. In these papers, the authors model
the time dynamics of the mosquitoes population. Then, the question of optimizing the time
of releases has been investigated e.g. in [19, 4, 12, 2|. However the spatial distribution of

mosquitoes may have an impact on the success of the strategy. It is therefore relevant to add
spatial dependence in mathematical models, which makes the study much more complicated.

In order to have a model simple enough to be tractable from a mathematical point of view,
the authors in [8] introduce a model focusing only on the proportion of Wolbachia-infected
mosquitoes, denoted p in the sequel :

pi= Nin
where n;, is the density of Wolbachia-infected mosquitoes and n,,, the density of uninfected
mosquitoes. This quantity solves a scalar reaction-diffusion equation

dp

E—DAP:f(p);

where D is a diffusion coefficient and f is a bistable function'. For this model, the conditions
to initiate the spatial spread are well-known [90]. It has been proved later in [89] that this
model may be rigorously derived from a more general system governing the dynamics of
Wolbachia-infected and Wolbachia-uninfected mosquitoes by performing a large fecundity
asymptotics.

'The wording “bistable function” means that f(0) = f(1) = 0 and there exists § € (0,1) such that
f(z)(x —0) <0on (0,1)\ {8} (in particular, one has necessarily f(6) = 0 whenever f is continuous)
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In this study, we are investigating the question of the best spatial strategy for mosquito
release, i.e., giving a certain amount of mosquitoes, we are trying to determine optimal
locations to release them in order to ensure the invasion of the environment by Wolbachia-
infected mosquitoes. If we denote u the release function, then the above model is modified
into

apg,;x) — DAp(t,z) = f(p(t,z)) +ult,z)g(p(t, z)), t€(0,T), z€Q,
81/p(t7$) = 0, t e (O)T)’ = 897 (91)
p(O,I):O, IEEQ,

where () is an open bounded connected subset of R? with a regular boundary 9. The
function ¢ is positive and vanishes when p = 1. The derivation of (9.1) will be detailed in
Section 2.

Let us summarize the main assumptions on f and g we will use in the sequel.

f is C? and of bistable type.
Denoting by 6 the only root of f in (0,1), we assume that f”(-) > 0on (0,0). (Hy,)
¢ is nonnegative, decreasing on [0, 1]. Moreover, g(1) = 0.

A first study was carried out in [3], giving rise to the first very simple numerical experiments.
In the present article, we seek to complete the results of this study, by analyzing qualitatively
the solutions and by proposing adapted numerical strategies. Let us mention that a problem
of the same nature has been investigated in [72|, mainly from a numerical point of view.
Authors characterize optimal vaccination strategies to minimizes the costs associated with
infections by the Zika virus and vaccines in the state of Rio Grande do Norte in Brazil.

In [74], an optimal control problem close to the one investigated hereafter is tackled. The
authors consider a population whose evolution is driven by a reaction-diffusion equation and
look at determining initial data submitted to L' and L* constraints, maximizing the total
size of the population. In our article, we choose to deal with a least square criterion instead
of the average criterion considered in [74] (and more recently in [68]). For reasons that will
appear later, constant solutions are natural candidate to solve the considered optimal control
problem. We show, as in [74], that for certain families of parameters, the constant functions
are local minimizers of the optimal control problem. On the other hand, we complete this
first analysis and also manage to show for our model, that these same functions can be or
not be global minimizers depending on the considered range of parameters. These results are
also illustrated numerically. Finally, it is worth mentioning that exact controllability issues
for similar reaction-diffusion systems have been investigated in [64, 69].

The outline of the paper is the following. In Section 2, we present the derivation of system
(9.1) and present the optimal control problem we are looking at. Section 3 contains the main
mathematical results of this paper. Their proofs are given in Section 4. More precisely, the
rigorous derivation of system (9.1) is explained in Section 4.1 and Section 4.2 is devoted to
the mathematical study of the optimal control problem. Finally, numerical illustrations with
the description of the numerical algorithm are provided in Section 5.
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2 Modelling

In the whole article, we will consider a given bounded connected open domain  of R?
assumed to have a Lipschitz boundary. Let 7' > 0 denote a fixed horizon of time.

2.1 Model with two compartments

In order to justify the introduced model on the proportion of Wolbachia-infected mosquitoes,
we first explain how to derive it. Let us denote n;, the density of infected mosquitoes and
Nun the density of uninfected mosquitoes. The dynamics of these quantities is governed by
the reaction-diffusion system

(
F,, N
(0 — DAYngy, = (1 — sf) (1 — f) — 0dynnin + u, in (0,7) x Q (9.2a)
(O — DAYy, = ?nun (1 ~Shy ) (1 — ?) — dynMun, in (0,7) x Q  (9.2b)
N = nj, + nup in (0,7) x Q
\aynm =0, Onu, =0, on (0,7) x 09

complemented by initial conditions n;,(t = 0,z) = nit*(z) > 0, n,,(t = 0,7) = nM(z) > 0,
where the following notations are used:

e u: instantaneous releases of Wolbachia infected mosquitoes. It is on this control that
we will act upon. At this step, we do not make the admissible space of controls precise,
this will be done in what follows;

e dy,, diy = 0dy, with 6 > 1. death rates, respectively for uninfected and infected
mosquitoes. We assume that d;, > d,, since Wolbachia decreases lifespan;

o Fun, Finy = (1 — s5)F,,: net fecundity rates, respectively for uninfected and infected
mosquitoes. We assume that F}, < F,, since Wolbachia reduces fecundity;

e ¢ : parameter without dimension quantifying the fecundity, we assume ¢ < 1 meaning
that the fecundity is considered to be large;

e s, € (0,1): cytoplasmic incompatibility parameter (fraction of uninfected females’
eggs fertilized by infected males which will not hatch). Formally, a proportion 1 — s
of uninfected female’s eggs fertilized by infected males actually hatch. Cytoplasmic
incompatibility is perfect when s, = 1;

e [: carrying capacity;
e D: dispersal coefficient.

All the constants above are assumed to be positive. Existence and uniqueness of solutions
for such reaction-diffusion system is by now well-known see e.g. [12, 78]. The equations
driving the dynamics of n;, and n,,, are bistable and monostable reaction-diffusion equations,
respectively. Note that in the reaction term of the second equation, the term —% stands
for the vertical transition of the disease whereas the coefficient s; models that this vertical

transmission may or not be perfect because of the cytoplasmic incompatibility.
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In accordance with |1], we will assume moreover that the relation
sp+0—1<dsy (9.3)

holds true. It is notable that such a parameters choice is relevant since for Wolbachia-infected
Aedes mosquitoes, and more precisely in the case of wMel strain, CI is almost perfect in
these species-strain combination (see [10]) meaning that s, is close to 1. Furthermore, such
mosquitoes typically have a slightly reduced fecundity. In that particular case, one has
sfp~0.1, 6 ~ 1.1 and s, ~ 0.9 so that (9.3) holds true.

To model optimal strategies with an adapted optimal control problem, it is convenient to
introduce the Wolbachia-infected equilibrium (n, y,, 0) for the uncontrolled system, defined
by

(M, 0) = (K(l . %)0) , (9.4)

that is (n;, 11/, 0) is a stationary solution of (9.2a)-(9.2b). A possible approach hence consists
in looking for controls steering the system as close as possible to the target state (n;, y,0).
In some sense, it stands for the research of a control strategy ensuring the persistence of
infected mosquitoes at the time horizon T'.

This leads to define the least squares functional Jp given by

1 1
Jr(u) = §/ﬂnun(T, x)? dr + 5 /Q (N — Min(T, x))+2 dz, (9.5)

where (1, ny,) denotes the unique solution to the reaction-diffusion system (9.2a). Here,
we use the notation x; = max{z,0}. Observe that the presence of this maximum in the
definition of Jr does not induce non-differentiability since the mapping x + z2 from R to
R is C!.

2.2 Reduction for large fecundity

When the fecundity is large compared to other parameters, it is relevant to consider the
asymptotics ¢ — 0, which allows us to reduce system (9.2a)—(9.2b). This reduction is
inspired by [!] where the authors consider a differential system. We first explain formally
how to reduce this system and state the main result, the rigorous approach is postponed to
Section 4.1. Since n;, and n,, will depend on ¢, we use the notation n;, and n;,,.

Formal reasoning. We investigate formally the limit as ¢ — 0 in the (9.2a)—(9.2b). From
(9.2a)-(9.2b), we expect that ng, + nS,, = K + O(¢). Then, we introduce the variables

£ € €

5_1 1_nzn+nun e __ nin
n- = K 9 p - I3 e )
€ nz’n + nun

where p® is the proportion of infected mosquitoes in the population. Consider a sequence
(u)e=o of controls. From straightforward computations from (9.2a)—(9.2b), we deduce

1 _86”5 (Eunn®(sn(p°)? — (sp+sn)p” +1) = dun((0 — 1)p° + 1)) — eu;(’
(9.6)

on® — DAn® =
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2¢eD
—ent

owp° — DAP® + . Vp© - Vn®

us(l _ps) (97)

_ pe(l _p5)(Funn5(ShpE — Sf) + (1 — 5)dun) + K(l _ 6715)‘

Letting formally € going to 0, assuming that (n®, p°, u®) converges to (n", p°, u"), we deduce
from (9.6) that the limit should satisfy the relation

dun((0 = 1)p" +1) — /K
Fun(sn(p°)? = (sy + sn)p° + 1)
Then, passing into the limit in (9.7), we deduce

n® = h(p°’, u°) := (9.8)

u’(1—p°)
—

Injecting (9.8) into this latter equation, we obtain the scalar reaction-diffusion equation for
the fraction of infected mosquitoes

at‘po - DApo - po(]- - p())(Funno(Shpo - Sf) + (1 - 5)dun) +

0ip° — DAP® = f(p°) +u’g(p°) in (0,T) x Q (9.9)
Onp® =0 on (0,7) x 09 '
with
dunsnp(l — p)(p — 0) (1 =p)(1 = snp)
fp) = —5— : (p) = 7 ) (9.10)
sip® — (sp +sp)p+ 1 K(snp® — (sp +sn)p + 1)
where we use the notation 0 = sf;;ifl. Under the assumption (9.3) on the coefficients, we

have 0 < 6 < 1. Hence equation (9.9) for u® = 0 is a bistable reaction-diffusion equation.
Remark 2.1. We claim that if the coefficients sy and s;, satisfy
(57 +sn)? < 4sy, (9.11)

and
sp+sp—2)—sp+1<0, (9.12)
then the particular functions f and g given by (9.10) satisfy assumption (Hy,).

Let us show it. Assuming that (9.11) holds true, we infer that h(p) := spp*—(s;+sp)p+1 > 0
for all p € R, which implies that f is C? and bistable. Straightforward computations yield

" _ 5dun5hw(p)
f'(p) = 20— s)h(p)

where L 32 3 | .
3 3 2 P D Sf
@/J(p)—p sf(1—1/5)—|—p sh—3p —f—g—f—T—?‘l—E—l—g—E.
Hence, " and ¢ share the same sign on (0,1). Since 6 > 1, sy € (0,1) and s, € (0,1),
one has 3 = 6(5s; + s, — s5)/0 = 0, i.e. " is increasing. We deduce that ' is
decreasing on a interval (0,a) and increasing on (a, 1) with a € [0,1]. Furthermore, one has
P'(0) = =3/0 <0 and ¢/ (1) < 0 if we assume (9.12). In that case, ¢ is decreasing on (0,1).
In addition ¢¥(0) = (0 + sy + s, — 1)/(dsp) > 0, thus, under (9.11)-(9.12), we have " >0
on (0,0). We remark that ¢ is negative on (—1/./sn,1/\/sn). Since s, € (0,1), we deduce

that g decreases on (0,1). Moreover g(1) = 0 and therefore, g is positive on (0,1).
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We introduce the notation F' for the antiderivative of f,

P
F(p) = / f(q) dg.
0
In what follows, we will assume:
30.€(0,1) | F(6.) =0. (9.13)

This assumption is necessary to guarantee that invasion of the infected population may occur
in space by local release. We will check that this assumption is satisfied for the particular
choice of parameters we will consider for the numerical experiments in Remark 5.1.

We consider system (9.2a)—(9.2b) with Neumann boundary conditions to model that the
boundary acts as a barrier, and initial conditions satisfying

n?:lit,e c LOO(Q), 0 < ninit,s’ nil?riLt,s c LOO(Q), 0 < ngit,s. (914)

n
We assume also that the initial conditions are well-prepared, i.e.

nS 4 niie = K +eK§, with || K| < C. (9.15)
A typical example of initial conditions is when the system is as the Wolbachia-free equilibrium
for which n)m"* = 0 and n"t* = K(1 — ?ﬁ) In this case, assumption (9.15) is obviously
satisfied.

Convergence result. Following the ideas in [89], where a similar asymptotic limit is
performed, we derive an asymptotic model on the proportion of infected mosquitoes, as the
fecundity rates tend to 4o0.

Theorem 2.1. Under the assumptions (9.14)—(9.15) on the initial data, let us assume
moreover that the sequence (uf) converges towards u®, weakly star in L°°((0,T) x Q) as
e \( 0. Then, up to extraction of subsequences, the solution (n°,pf) of (9.6)—(9.7) converges
towards (n° p°) as e — 0, with n® € L>((0,T) x Q), p® € L*(0,T; H'(Q)), and satisfying
(9.8) almost everywhere and (9.9)—~(9.10) in the weak sense. More precisely, we have

p° — p° strongly in L*((0,T) x Q), n® — n"weakly-star in L>((0,T) x Q),
where p° is solution to (9.9)
The proof of this theorem is postponed to Section 4.1.
Let us now define the least squares functional J given by

1 1
Tl =5 [ windot 5 [ iy = ()2 o (9.16)

m?
As a corollary of the convergence result above, let us make the asymptotic behavior of the

functional J7 precise.

where (n;,, n7,,) have been introduced at the very beginning of Section 2.2 and nj, y;, in (9.4).
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Corollary 2.2. Under the assumptions (9.14)-(9.15) on the initial data, let (u®) be a
sequence converging towards u®, weakly star in L>=((0,T) x Q) as € \ 0. Then, p*(T,")
converges towards p°(T, -) strongly in L*(Q2), and moreover, J&(u.) converges towards J9(u°)
defined by

Jo(u) = Kz/(l — (T, x))? du, (9.17)
Q
where p denotes the solution of (9.9), as e \ 0.
The proof of this result is postponed to Section 4.1.

In what follows, we will rather deal with the proportion p' to model optimal releases
strategies. The following section is dedicated to modeling issues about the optimal control
problem we will deal with.

2.3 Toward an optimal control problem

In this section, we will introduce an optimal control problem modeling optimal mosquito
releases. For this purpose, we assume all fecundity rates large, which legitimates the use of
the asymptotic model (9.9)-(9.10) introduced in Section 2.2.. We will focus on time-pulsed
releases, which will lead us to further simplify the problem.

In order not to cumulate all the difficulties related to the search for release distributions in
time and space, we will suppose that one release, which is an impulse in time?, is done at the
beginning of the experiment, i.e. u(¢,z) will be assimilated to a particular approximation of
a Dirac impulse in time, namely uo(x)0g—0)-

More precisely, we will consider as choice of release term, the function

1
uo(t’x> = 5]1[0777] (t)uo(z),

where ug € L>(Q2) will be given. Making the change of variable t = 77, and introducing p
given by p(7,z) = p°(t, z), one gets from system (9.9) that p solves

a~ ~ ~ ~
a—i— DAp =nf(p) +uog(p),  7€[0,1], z€Q.

We now provide a purely formal argument to justify the optimal control problem we will
deal with.

Letting formally n go to 0 and denoting, with a slight abuse of notation, still by p the formal
limit of the system above yields

%(T, 1) = up()g(p(r.x), T e0,1], x Q. (9.18)

Let us denote G the anti-derivative of 1/¢ vanishing at 0, namely

_ (" dg
G(p)_/o g9(q)’

2We consider Dirac measures since at the time-level of the study (namely, some generations), the release
can be considered as instantaneous.
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Then, by a direct integration of (9.18) on [0, 1], we obtain
G(p(L,2)) = GO, 7)) + uo(x),  x e

Hence we arrive at the system

% Dap= 1), te(.T), weQ

Oup(t,x) =0, x € 092, (9.19)
p(0F,) = G~ (uo(-)),
where f and g are given by (9.10).
According to (Hy,), G(0) = 0, G(17) = +o0, G is continuous in [0, 1) and strictly increasing,
G (uyg) is well defined and in [0, 1) for positive uy. Moreover 0 and 1 are subsolution and

uppersolution to (9.19), hence thanks to a standard comparison argument for parabolic
systems, the solution p to System (9.19) satisfies 0 < p(¢,z) < 1 for a.e. t € [0,T] and x € Q

(see e.g. [21]).
To take into account biological constraints on the release procedure, we will moreover assume
that the release function is such that:

e the local release of mosquitoes is bounded : 0 < ug < M a.e. in Q with M > 0;

e the total number of used mosquitoes is bounded (production limitation), reading

/ up(z) dx < C,
Q

with C' € (0, MT). Note that it is relevant to choose the parameter C' strictly lower
than MT. In the converse case, it would mean that the choice ug(-) = M is admissible,
so that the local maximal number of mosquitoes can be released (almost) everywhere
in €. Since producing infected mosquitoes has an important cost, it is reasonable from
a biological point a view to assume that such a release is not possible.

This leads to introduce the admissible set V¢ 5 given by

Vour = {uo € L*(Q),0 <uy < M ae. in Q, /
Q

wolw) dr < c}.

The goal is to be as near as possible to the equilibrium p = 1 at time 7. Let us denote (with
a slight abuse of notation) by Jr, the least squares functional defined by
1
Jn(uo) = 5 [ (1= p(T2) e
Q

Observe that coincides, up to a positive multiplicative constant, with the asymptotic
functional J? given by (9.17). The optimization problem thus reads

inf JT(UU) s (Preduced)

uoEVeo, M

where p is the solution of (9.19).

From now on and without loss of generality, we will assume in what follows that the diffusion
coefficient D is equal to 1.
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3 Main results

Constant solutions are natural candidates to solve Problem (Pequced). Indeed, it has been
observed in [3, Theorem 2.1] that in the very simple case where f(-) = 0 and G : = — z,
Problem (Prequced) has a unique solution ug, which is constant and equal to min (1, M, ﬁ)
Furthermore, as stated in the following result, constant solutions equal to M are optimal
for a given range of the parameters. We show moreover that, outside of this range, constant
functions remain critical points and show that they are still local minimizers whenever C
is small enough. We also comment on the sharpness of this result by highlighting that for
certain parameters, constant functions may not be global minimizers for Problem (Prequced)-

According to Corollary 4.7, it is enough to concentrate on the constant function equal to

Theorem 3.1. Let us assume that f and g satisfy (Hy,). Problem (Preduced) has a solution.

(i) For every M € (0,C/|Q|], the constant function Uy equal to M is the unique solution
to Problem (Preduced)-

(11) Let us assume that M|Q| > C. The constant function u(-) = C/|Q| is a critical point
for Problem (Preduced) (meaning that it satisfies the first order optimality conditions
stated in Proposition 4.6).

Furthermore, if C < |Q|G(0), there exists Kp > 0 such that for every h € L*(Q), the
second order differential of Jp at uw satisfies

and it follows that the function U is a local minimizer for Problem (Prequced)-

Let us comment on the sharpness of Theorem 3.1. As will be emphasized hereafter
and in Section 5, we do not expect that u solves Problem (Prequced) for all values of
C € (|1QG(0), M|Q]). In some case, this will be confirmed numerically, by using 7 as starting
point of optimization algorithms and obtain at convergence a nonconstant minimizer % such

that JT(’ZL) < JT(H)

Actually, even in the case C' < min{G(6), M}|Q2|, where we know from Theorem 3.1 that
the constant solution @ is a local minimizer, under some conditions on |2 and C, we
may construct non constant initial date wuy such that Jr(ug) < Jr(@), as stated below in
Proposition 4.11.

Recalling that 6. € (0, 1) is defined by foec f(p)dp = 0. We assume
G.) <M and C <|Q|G(9). (9.20)

The following result shows that under some conditions on €2, M and C, the constant function
u is not a global minimum of the optimization problem (Preduced)-

Proposition 3.2. Let us assume (9.20) and that:
e C is large enough;

o the inradius® of Q) is large enough;

3In other words, the radius of the largest ball inscribed in Q.
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e T is large enough.
Then the constant solution @ is not a global minimum for Problem (Preduced)-
A proof of this result is provided in Section 4.2.

Remark 3.1. The conditions stated in Proposition 3.2 are not sharp; the obtention of
necessary and sufficient condition for constant solution to be a global minimizers seems to
be intricate and we let it open. A related problem concerns the issue of finding sufficient and
necessary conditions guaranteeing invasion in a bistable reaction-diffusion system that is, up
to our knowledge still open, and we refer to [7)] for partial answers in this direction.

Remark 3.2. It is notable that, for the sets of parameters from [/0] below, the functions f
and g satisfy (Hy,). Indeed, the function f” vanishes once on (0,1) and its root z satisfies
0 < z ~0.466, while 6. ~ 0.582 (see Figure 9.1).

1072

1 05} 1

N ok |
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
p p P

Figure 9.1: (from left to right) Graphs of the function f, its second order derivative f” and
the function g by using the data from [16] (see Table 9.1).

4 Proofs

This section will be devoted to prove Theorem 2.1 and 3.1.

4.1 Model reduction

In this section, we will give a proof of Theorem 2.1, allowing us to reduce the system (9.2a)—
(9.2b) to a scalar reaction-diffusion equation for the proportion as the parameter € goes to 0.
It is inspired by [1] in which the authors use a model composed by two differential equations.

Uniform a priori estimates
We first establish some uniform bounds with respect to € > 0.

Lemma 4.1. Assume the assumptions of Theorem 2.1 hold. Let u® be given in Vo,
e € (0,1) and (p°,n%) be the unique solution of (9.6)—(9.7). Then,

n® is uniformly bounded in L*°([0,T] x ), and 0 < p° <1 on [0,T] x Q.
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Proof. By nonnegativity of nit* and ni™* it is standard to deduce the nonnegativity of ng,
and ng,, (Indeed 0 is a Subsolutlon for (9.2a) and for (9.2b), see e.g. |21]). Moreover, since
R, is invariant for the equation of n, and ni™' is non identically equal to zero, we deduce
that nZ, > 0 on Q x (0,7] (see e.g. [95, th. 2]) Therefore, p® is well-defined on [0, 7] x
and satisfies by definition 0 < p® < 1 on [0,7] x Q.

init

Consider the function h defined in (9.8). We remark that the denominator is positive. Let
K = max{max,cp1) h(p,0), [|n""*|| }. Let e be such that K < = (¢ 1 —goK > 0), then,
thanks to this choice, we have for 0 < e < gg

1-— 6[( ~ €
. (me((sh(ps)2 — (57 + s)p° + 1) — dun((6 — 1)p° + 1)) -
€\ eK
1—-eK ~
< - Fun(sn(p°)* = (55 + s)p” + 1)(K — h(p,0))
<0=0,K — DAK.
Hence, we have that K is a supersolution for (9.6) for any 0 < € < g9. Then n° < K for any

0<e<eg.

By the same token, we have that the negative constant min{—||n™"||o, min,e1; h(p, M)}

is a subsolution for (9.6). Thus n® is uniformly bounded from below. We deduce the uniform
bound of n° in L>(]0,7] x Q). O

Lemma 4.2. Under above assumptions, for ¢ > 0 small enough, we have the uniform

estimate ’
/ / VPP de < C (9.21)
o Ja

T
5D/ /|Vn5|2dxdt < Oy, (9.22)
0 Q

and

for some nonnegative constants C and Cj.

Proof. On the one hand, multiplying equation (9.6) by en® and integrating on 2, we get

/|n€|2dx+€D/ IVne|* do

_ /9(1—577, Y1 (Fantt (5n(0°)? = (57 + 52)p° + 1) = dun((6 — D)pF + 1)) da

1

~ % n®dx.

Since from Lemma 4.1, we know that n° and p°® are uniformly bounded in L*([0,T] x ),
we deduce (9.22) after an integration in time.

On the other hand, we fix £y > 0 small enough such that, for all € < &y, we have |n°| < C} < 1
on [0, 7] x Q for some constant C; > 0 (which is always possible thanks to Lemma 4. 1)
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Then, we multiply by p° the equation satisfied by p® (9.7) and integrate over 2, we deduce
1d
2dt Jq

pE
1 —ene

(p°)? dw + D/ |Vp*|? dx + 25D/ Vp® - Vnfdx
Q Q

1

<C3+———— [ u(t,x)dx
= 3+K(1—€001)/Q ( )

for some nonnegative constant C3. Then, using a Cauchy-Schwarz inequality, we get

1d 2 9 2eD / ,  \'? / , o\ V2
_ 3 D (3 < 3 5
57t Q(p)dﬂf+ /QIVplda: Cg+1_501(QIVp|dx QIVn|dx

1 €

From (9.22) and the well-known inequality 2ab < a® + b?, we deduce after an integration in
time

1 ) 5 T ) DCY? MT|Q|
| () de+D(1— V' 2 dadt < CoT :
2/9(]9) T < 1—800)/0 /Q‘ p’ v 2 +1—601+K(1—601)

where we recall that u® € Ve and p € [0,1]. Taking e small enough, we get the desired
estimate. O

Compactness result and proof of Theorem 2.1
We first recall the following compactness result (see [33]).

Lemma 4.3 (Aubin-Lions). Let T > 0,q € (1,00), (¥n)n @ bounded sequence in L4(0,T; H),
where H is a Banach space. If ¥, is bounded in L(0,T;V) and V' compactly embeds in H,
and if (Opy)n is bounded in L9(0,T; V") uniformly with respect to n, then (1y,)n is relatively
compact in L(0,T; H).

Proof of Theorem 2.1 We split the proof of the Theorem into several steps.

Step 1. Compactness. We use Lemma 4.3 with ¢ = 2, H = L*(Q), V = HY(Q) N L>(Q).
Then, the sequence (pf) is clearly bounded in L?*(0,7;V) from Lemma 4.1 and 4.2. The
compact embedding of V' in H is well-known from the Rellich-Kondrachov Theorem. We are
left to verify the bound on the time derivative: let ¢ € V, we denote (-,-) := (-,-)y v the
duality bracket. From equation (9.7), we get

[ 1o w.opa= [

where )¢ is the function defining the right hand side in equation (9.7), which is uniformly
bounded in L((0,T) x Q) N L>((0,T) x Q) as a direct consequence of Lemma 4.1. Then,

2

22D Gty - wnt(t) — ve (1), 60 dt.

1 5n5(t)v

(DAp®(t)

T T
/0 0, &) dt < Coll Vol / IV o

T
T Crelld]2ion / 10 220 [V 2cy
0

+ C2H¢||2L2(Q) HQ/JEH%oo((o,T)ny
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Hence, we get the required bound from Lemma 4.1 and 4.2 and estimate (9.22). We may
apply Lemma 4.3 and deduce the relative strong compactness of (p.) in L?(0,T; L*(2)).

Moreover, from the estimates in Lemma 4.1, we deduce the relative weak-star compactness
of the sequence (n.) in L>((0,T) x Q). Therefore, there exists p° € L*(0,T; H'(Q2)) and
n® € L>((0,T) x Q) such that, up to extraction of subsequences, we have p. — P strongly in
L*((0,T) x Q) and a.e., Vp. — Vp weakly in L*((0,7) x ), and n. — 7 in L>=((0,7T) x Q)
-weakx.

Step 2. Passing to the limit. We now pass to the limit in the weak formulation of equations
(9.6) and (9.7). From the weak formulation of (9.6), we deduce that for any test function
¢ € C2((0,T) x Q), we have

e /0 ' /Q (—ndyd — DnfAG) dudt
- / ' / (Emn%sh(ps)? — (s s + 1) — dun((6 — D)pf +1)) — %) b dudt
+ 5/ / Fun(sn(p)? — (55 + s0)p° + 1) — dun ((§ — 1)p* + 1)) dadt.

From the L*°-bound of Lemma 4.1, we deduce that the term of the left hand side and the last
term of the right hand side converge to 0 as € — 0. For the first term of the right hand side,
we may pass into the limit thanks to the weak convergence of n®, the strong convergence of
p°, and the weak convergence of u®. We obtain, for any ¢ € C°((0,7) x Q),

[ (a0 = o4 500+ 1) = (5 = 19+ 1) 2 )

As a consequence (9.8) is verified almost everywhere.

We are left to pass into the limit in the weak formulation of (9.7). Let ¢ € C°([0,T] x Q),
we have

25ng

// ~p° 0+ DVp* - Vo + TV V) drdlt

/ / (1 —p*)(Funn®(spp® — s5) + (1 — 0)dun qbdxdt+/ /Kl—gnf ¢ dxdt.

(9.23)

From the above convergence it is straightforward to pass into the limit into the first two
terms of the left hand side. For the third term, we use estimate (9.22), and a Cauchy-
Schwarz inequality to get

T 2¢D 2./eD o
/ / eD¢ Vp© - Vnfdxdt < \/_ 9]l IVPlL VT = 0,
0

ol—ens 1—elnfflo=

as ¢ — 0, thanks to Lemma 4.1 and 4.2.
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We may pass into the limit for the first term of the right hand side of (9.23) since (p°)
converges strongly and a.e., and (n®) converges weakly. Then, for the last term of the right
hand side of (9.23), we Verlfy

u’(1 —p°)
(- o

(u® —u®)(1 —p°) + u(p° — p°) + eu’(1 — p°)n°
K(1—en®)

( u —ul ]P))<¢dxdt +
é?nf )

IIU ||Loo|!n ||L<><>|\<25||L1
K (1 —¢l|n®]| =)

) gbda:dt‘

[u®][ = [ 6l 15 — pFl2
K(1 = el L=)

(9.24)
+ €

From the strong L? convergence of (p°) and the L> bounds in Lemma 4.1, we deduce that
the last two terms go to 0 as ¢ — 0. For the first term, we write

(uf —u)(1 =p") _ (" —u)(A —p") | (u —u")(A = p")n°
K(1 —en®) K K(1 —en®)

It is then straightforward to conclude the convergence towards 0 of the first term of the right
hand side of (9.24).

Finally, passing into the limit ¢ — 0 into (9.23), we obtain

T
/ /(_poat¢ + DV’ - V) dxdt =

/ / (1= p")(Funn®(snp® — 57) + (1 — 0)dun ¢dxdt+/ /—)(bd:ﬂdt

We conclude by using the fact that (n°, p°, u°) verifies the relation (9.8).

Proof of Corollary (2.2)

First, observe that p*(T,-) converges weakly-star to p°(7,-) in L?(Q). Indeed, the proof is
standard. Consider the variational formulation (9.23) on p® where test functions ¢ are now
chosen in C>=([0, T] x C>*(Q)) instead of C°([0,T] x Q). The variational formulation (9.23)
is then modified by the addition of

/Q (0° (T, )O(T, ) — p°(0,)$(0, )) da

in the left-hand side term. Since p°(T),-) is bounded in L*(€2) it converges weakly to some
limit in L?(Q) up to a subsequence. Passing to the limit in the variational formulation and
using Theorem 2.1 allows us to identify the closure point of p*(T,-) as p°(T,-). Finally,
by uniqueness of the closure point, we infer that the whole sequence p*(7),-) converges to
p(T, ). Since the L*(Q2)-norm is lower semicontinuous for the weak-topology, we get that

liminf/ﬂ(pE(T,x)) dmé/ﬂ(po(T,x)) dz.

e—0
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Let us multiply the equation (9.7) by p® and then, integrate it on (0,7") x €, we obtain

%/Q(pE(T))Qda:: /(mltf dx—D/ /yvp |2dx+/ /Kl—enf dr (9.25)

/ / J(Eun(spp® — sp) + (1 —0)d,) dz

— 25D/ / Vp® - Vndzx.
0 Q 1 —ens

By assumption on the initial data, we have the convergence of the first term of the right hand
side. For the second term of the right hand side, the weak convergence in L*((0,7), H'(2))
guarantee that this term is upper semi-continuous, then

T T
lim sup (—D/ /\VpEIQ dx) < —D/ /[Vpo\zdx.
e—0 0 Q 0 Q

Due to the strong convergence in L%((0,7) x Q) of the sequence (pf). and using also the
uniform bound of the sequence (n°). (see Lemma 4.1), we deduce the convergence of the
third term of the right hand side of (9.25). Using also the strong convergence of (p°). and
the weak convergence of (n®)., we get the convergence of the fourth term in the right hand
side of (9.25). Finally, from a Cauchy-Schwarz inequality we have

T c 1/2 T
ZsD/ / P Vp© - Vnfde < Ce? (/ / Ve |? dxdt) (5/ / |Vn®|? dxdt)
0o Jal—en® 0 Jo

Thanks to the estimates in Lemma 4.2, we get that this latter term goes to 0 as ¢ — 0.
Finally, we have proved that

1/2

lim sup /Q (p°(T, 2))* dz < /Q (P(T, )’ d.

e—0

It follows that |[|p*(T,-)||12() converges to [[p°(T,-)||r2@) as € N\, 0, and since p*(T,-)
converges to p°(T,-) weakly in L?(f2), it follows that this convergence is in fact strong,
whence the claim.

[t remains to investigate the convergence of J7.(u®) as € \, 0. According to Theorem 2.1 and
its proof, one has n5, (7, -)+ns, (T, -) = K—cKn®(T,-) and therefore, (n,(T,-)+n:,,(T,-)):>0
converges to K in L°°(€2). Since (p*(T')).>o converges to p(T,-) in L?(Q) as € N\, 0, it follows
that (n5,(T,-),nS,(T,)))es0 converges to (Kp°(T,-), K(1 — p*(T,-))) in L*(2). Since the
Wolbachia-infected equilibrium (nj, ,,0) converges to (K,0) as € \, 0, according to (9.4),
by passing to the limit in (9.5), it follows that J%(u®) converges, as € \, 0 to J2(u®) given
by
2 K2
Tp(u?) = (1= p"(1))" + (1= p"(1))* = K*(1 = p"(T))",

where p° denotes the solution of (9.9).
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4.2 Analysis of the optimal control problem (Preduced)
Existence of an optimal control

As a preliminary remark, note that existence of an optimal control has been shown in |3,
Theorem 1.1] in a more general setting. To make this article self-contained, we recall the
argument hereafter. The analysis to follow is valid under the assumption (H,) on f and g.
It is not restricted to the particular choice of functions f and g given by (9.10).

Lemma 4.4. Let T >0, C >0 and M > 0. Problem (Prequcea) admits a solution ug.

Proof. In what follows, we will denote by p,, the solution to Problem (9.19) associated to the
control choice ug. Let (ul)nen € (Vour)Y be a minimizing sequence for Problem (Prequced)-
Notice that, since uf belongs to Vo and the range of G is included in [0, 1], we infer
from the maximum principle that 0 < pyp(t,-) <1 for a.e. t € [0,7] so that (Jr(ug))nen is
bounded and infyev. ,, Jr(uo) is finite.

Since the class Ve s is closed for the L weak-star topology, there exists ug® € Ve such
that, up to a subsequence, u converges weakly-star to ug® in L*°. Here and in the sequel, we
will denote similarly with a slight abuse of notation a given sequence and any subsequence.

Multiplying the main equation of (9.19) by p,» and integrating by parts, we infer from the
above estimates the existence of a positive constant C' such that

1 (7T T
—/ /at(pug(t,x)Q)d:Bdt—l—D/ / |Vpug(t,x)|2da:dt <C
2Jo Ja o Jao

for every n € N, which also reads

1 _ T
5 [ )]y dosD [ [ Vgt dode < 0
Q 0 Q

for every n € N.

By using the pointwise bounds on p,n, one gets that p,r is uniformly bounded in
L?(0,T; H'(Q)). Furthermore, according to (9.19), the sequence dypyp is uniformly bounded
in L*(0,7; W~54(€Q)). The Aubin-Lions theorem (see [$3] and Lemma 4.3) yields that pyp
converges (up to a subsequence) to p> € L2(0,T; H'(2)), strongly in L*(0,T; L*(Q2)) and
weakly in L*(0,T; H'(€2)). Furthermore, using that the sequence dyp,p» is uniformly bounded
in L*(0,T; W~11(Q)) also yields that 9;p> belongs to L*(0,7; W~11(Q)). Furthermore,
reproducing the standard variational argument used in the proof of Corollary 4.1 to show
the weak convergence of p*(T, -) to p°(T,-) in L*(Q) as € \, 0, one shows that for all ¢ € [0, T,
pup (t,-) also converges weakly, up to a subsequence, to p>(t,-) in L3(92).

Passing to the limit in (9.19) yields that p™ is a weak solution to

Op™(t,x) — DAp>(t,x) = f(p>=(t,x)), t€(0,T), e,
d,p>(t,x) =0, te (0,7), z €.

It is standard that any solution to this bistable reaction-diffusion equation is continuous in
time.
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It remains to show that ul® = G(p>°(07,.)). Note first that G is convex since g is decreasing
on (0,1) under assumption (Hy,,). According to the convergence results above, since p, (0, -)
converges weakly (up to a subsequence) to p>(0,-) in L*(Q) and since uf := G(pyz(07,.)),
we get that G(p™(0,-)) = ug® and hence, p> = p,e by passing to the limit as n — +o0 in
the variational formulation on p,p.

Finally, let us show that ul® belongs to Ve . Since the derivative of G is 1/g which is
positive, GG is increasing and therefore, one has 0 < ug® < M a.e. in 2. Moreover, since
fQ uy < C rewrites (uf, 1)~ 1 < C, we immediately get that the integral condition is
satisfied by ug°.

Therefore, ug® solves Problem (Preduced)- O

First and second order optimality conditions

We now state first and second order optimality conditions. The objective is twofold: first,
we will analyze the optimality of constant solutions, and second, we will use them to derive
adapted numerical algorithms.

Definition 4.1. Let uy € Vo A function h in L®(Q) is said to be an admissible
perturbation of uy in Ve if, for every sequence of positive real numbers (e, )nen decreasing
to 0, there exists a sequence of functions h™ converging to h for the weak-star topology of
L>(Q) as n — +oo, and such that u+ e,h™ € Vo for every n € N.

Proposition 4.5. Let ug € Vo and h be an admissible perturbation. The functional Jr is
two times differentiable in the sense of Fréchet at ug and one has

dJr(ug) - h = /Qq(0+, 2)(G™Y (ug(x))h(x) de,

where q denotes the adjoint state, solving the backward p.d.e.

—0uq(t,x) — DAq(t,z) = f'(p(t, x))q(t,x),  (t,x) € (0,T) x €,
duq(t,x) =0, (t,x) € (0,T) x 09, (9.26)
q(T,xz) =p(T,z) —1 x €

and p denotes the solution to (9.19) associated to the control choice uy.

Furthermore, the second order derivative of Jr at ug reads

T
En)h) = = [ [ o> ottt ) ddo+ [ 5T ds
QJo Q
%—/q(OJ“,:zc)(G_l)"(uo(m))h(x)2 dx
Q
for every admissible perturbation h, where p denotes the solution to the linear system

Oup(t, ) — DAP(t, x) = p(t, ) f'(p(t,x)) (¢,x) € (0,T) x €,
Oup(t,z) =0 (¢, ) € (0,T) x ) (9.27)
P07, ) = (G™1)'(uo)h(z) v €.
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Proof. As a preliminary remark, we claim that for any element u of the set Vo 3 and any
admissible perturbation h, the mapping u € Ve — p € L*(0,T; H*(Q)), where p, denotes
the unique weak solution of (9.19), is differentiable in the sense of Gateaux at u in direction
h. Indeed, proving such a property is standard in calculus of variations and rests upon the
implicit function theorem.

Let u € Ve . Let h denote an admissible perturbation. Observing that p,y., solves the
system

atpu-‘r&‘h(tv Z’) - DApu-i—ah(t) I) = f(pu+6h(t7 l’)), (tv [E) € <0a T) X Q?
OyPuren(t,z) =0, (t,z) € (0,T) x 09,
pu+sh(0+>x) = G_l(u + €h($)), r €.

Let p denote the derivative of € — p(u + ¢h) at e = 0. Standard computations yield that p
solves the linearized reaction-diffusion system

dip(t,x) — DAp(t,z) = p(t, ) f'(pu(t, x)), (t,z) € (0,T) x €,
d,p(t,x) =0, (t,x) € (0,T) x 09, (9.28)
p(0*, 2) = (G71) (u(z))h(), x € Q.

Furthermore, according to the chain rule, one has

i ST+ eh) = Jr(u) _

e—0 £

dJr(u) - h = [T ) = 1)

Let us multiply the main equation of (9.28) by ¢,, and integrate then two times by parts on
(0,7") x 2. One thus gets

/OT/Q&P(t,x)qu(t,x) drdt = /OT/ Dp(t, 2)Aqu(t, x) dadt

Q
= [ [t . ©29)

Similarly, let us multiply the main equation of (9.26) by p, and integrate then by parts on
(0,7) x Q. We obtain

_/OT /Qp(t’x)at%(tvw) drdt = /0 ) /ﬂ Dp(t, 2)Aqu(t, ) dudt
+/OT/ﬂp(t,fv)f’(pu(tyx))qu(t,x) dzdt. (9.30)

By comparing (9.29) and (9.30), we infer that

/0 /Q (p(t, 2)0hqu(t, z) + Opp(t, x)qyu(t, x)) dxdt =0

leading to the following duality identity:

/Q (p(T, 2)qu (T, x) — p(0, 2)q,(0,x)) de = 0.
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By using (9.28) and (9.26), we rewrite the expression above as

| AT Ta) = 1) = [ (6 ()i, 0.2)de.

Q
Thus the desired expression of the derivative follows.

Let us now compute d*Jr(ug). Since Jr is two times differentiable, one has

d? Jp(uo)(h, h)
dJT(Uo + Eh) -h — dJT(Uo) -h

= lim
i e (07, 2)(G ) (o + k) (@) i — Jy (07 2)(GY (o)) i

I/Qc}(OﬂSC)(G1)’(Uo($))h(fc> dw+/gqu0(0+7x)h(x)2(G1)”(uo(:€))d9€,

where ¢ is given by
u ta — Yu t,
e—0 £

A standard reasoning enables us to prove that ¢ solves the linear p.d.e.

= 91l a0, + b)), () € OT) X0 g
d,i(t,x) = 0, (t.2) e (0.T) x 00, %
q(T7 aj) = p(Tv .CE), x €,

with p, the solution of the linear p.d.e. (9.27). One has
/ §(0*,2)(G™YY (uo(a) () da
Q
_ / §(0*, 2)p(0%, 2) da
QO

:/Qq'(OJr,x)p(OJr,x) d:r;—/QQ(T,:L‘)p(T, x) d:l:+/q'(T,x)p(T, x) dx

Q
T T
:// 8tp(t,x)q'(t,x)dtdx+// 8tq'(t,x)p(t,x)dtdx+/p(T, x)? dr.
aJo aJo Q

By using the main equation in Systems (9.31) and (9.27), one gets
/ G0, 2) (G (uo(x))h(z) dor = / / [DAp(t, z) + p(t, ) f'(pu(t, )] 4(t, z) dtdx
Q aJo
+ [ ] it a) = it f ottt

— P pult, 2))d(t, )] plt, 7) dide + / p(T, 2)? d.

Q
The Green formula finally yields

/Q §(0% 2) (G (uo(2))h(x) dz — /Q /0 ot )2 (pu(t 3))gu(t, 3)dtdz + /Q 5T, 2)? dr.

whence the expected expression for the second order derivative. O
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Let us now derive first and second order optimality conditions for this problem.

Proposition 4.6 (Necessary first and second orders optimality conditions). For all uy €
Ve consider ¥[ug] denote the function defined on Q by

Yluo)(-) = q(0", )G (uo(-)),
where q solves the adjoint system (9.26) associated to the control choice uy.

Let uf be a solution to Problem (Preduced). Then, there exists A € [0, +00) such that

on {ug =M}, plui] < -
on {ujy = 0}, Yluf] = =\, (9.32)
on {0 <ug <M}, Yluf]=—A

Y

(called necessary first order optimality condition) or equivalently, the function A defined by
Az € Qw— min{ui(z), max{ui(z) — M, Y[ugl(x) + A} }

vanishes identically in 2. Moreover, one has \ (fﬂ ug(z) dx — C) =0 (slackness condition,).

Moreover, the second order optimality conditions for this problem read: d*Jr(ug)(h,h) > 0
for every admissible perturbation h such that dJr(ug) - h = 0.

Proof. Let us introduce the Lagrangian functional associated to Problem (Pieduced), given by

£2(u,)\>GVC7MXR+P—>JT<U)+)\(/U—C).
Q

According to Proposition 4.5, and denoting by d,, the differential operator with respect to
the variable u, the Euler inequation associated to Problem (Prequcea) reads: dy,L(u,\)-h >0
for all admissible perturbation h of uf in {ug € L>(0,7"), 0 < ug < M a.e. in Q}. This can
be rewritten

/Q ($lug) (2) + ) h(z) dz > 0

for all functions h as above. The analysis of such optimality condition is standard in optimal
control theory (see for example [66]) and yields:

on {ug = M},  Plug] < =,

on {uy =0}, Ylug] = —A,

on {0 <wuy <M}, ¢uj]=-A\
Moreover, one has A ([, uj(z) dz — C') = 0 (slackness condition). It remains to show that
such conditions also rewrite A(-) = 0 in Q. It is straightforward that if the optimality

conditions above are satisfied, then A(-) = 0 in Q. Let us examine the converse sense,
assuming that A(-) =0 in Q. Then, for a.e. = € {uf = 0}, one has

max{ug(z) — M, lugl(x) + A} = max{—M, lug)(z) + A} > 0
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and thus, ¥[us](z) = —A. The analysis is exactly similar on the set {u§ = M}. Finally, if
denotes a Lebesgue point of the {0 < uf < M}, one has necessarily

max{ug(z) — M, Plug)(z) + A} =0

and therefore, [ug](z) = —A. This concludes the first part of this proposition. The second
part is standard (see e.g. [57]). O

We infer from this result that either the pointwise or the integral constraint is saturated by
every minimizer .

Corollary 4.7. Let uf be a solution to Problem (Prequcea). Then, one has necessarily
/ ug(z) de = min{C, M|Q|}.
Q

Proof. Let us first assume that M > C/|Q|. Let us argue by contradiction, assuming that
Jous < C. Let p (resp. ¢) denote the solution to the direct problem (9.19) (resp. the
adjoint problem (9.26)) associated to the control choice ug. According to Theorem 4.6 and
its proof, the slackness condition implies that A\ = 0. Recall that one has p(t,z) € (0,1)
for a.e. (t,x) € (0,7) x Q, as highlighted in Section 2.3, and therefore ¢(7,-) € (—1,0)
a.e. in Q. A simple comparison argument yields that ¢ is negative in (0,7") x § (see e.g.
[21]). Since G is bijective and increasing, so is G~! and we infer that v is negative in 2. By
using Theorem 4.6, we get that necessarily, uj(-) = M, which is in contradiction with the
assumption above on M and C.

The case where M < C/|Q] is solved hereafter, in the proof of Theorem 3.1. O

Optimality of constant solutions

This section is devoted to the proof the our main results, that is Therem 3.1. Let us first
show (7). The proof rests upon a simple comparison argument: one shows more precisely
that @y, solves Problem (Preducea) @s soon as it belongs to Ve which is equivalent to the
condition above on the parameters.

Let u € Vo . Let p and pyy denote the solutions to System (9.19) corresponding respectively
to the control choices u and ;.

Since u belongs to Ve and G is increasing, one has G~ (u(z)) < G™1(M) for a.e. x € Q,
meaning that p(0",-) < pp(07,-) on Q. According to the parabolic comparison principle,
we infer that p(t,-) < py(t,-) on Q, for all ¢ € [0,T), so that one gets in particular that
p(T,-) < pu(T,-) in 2, and therefore, Jr(uy) < Jr(u). Uniqueness follows from the
monotonicity of G and the comparison principle, since 0 < u < M a.e. in Q.

Let us now prove (ii). Set ¢ = C/|Q|. According to the optimality conditions (9.32), since
¢ < M, the function w identically equal to the constant c¢ satisfies the first order optimality
conditions if, and only if, there exists A € R, such that (-) = =X in Q. Since (G~1)(u(-))
is constant in €, this is equivalent to say that ¢(0",-) is constant in €.
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First, observe that, by uniqueness of the solutions to the reaction-diffusion system (9.19),
the associated solution P is constant in space. Moreover, writing p(t,-) = p(t) with a slight
abuse of notation, one easily sees that p solves the ODE

P(t) = F((1), te[0.T)
Lroh 28 933

Standard uniqueness arguments coming from the Cauchy-Lipschitz theorem show that if
p(07) ¢ {0,0,1} (the set of roots of f), then f(p(-)) does not vanish on [0, T] and has hence
a constant sign.

Note that, since ¢ # 0, one cannot have p(0") = 0. Similarly, noting that G is an
increasing bijection from [0,1) into [0,+00), we infer that one cannot have p(0") = 1.
Let p(07) € (0,0) U (0,1). Then, f(p(0")) # 0, and using that p has a constant sign, which
allows us to write

and therefore,
p(t) = F7'(t+ F(G™'(w)),

for all t € [0,T], where F' denotes an antiderivative of 1/f. Indeed, since f has a constant
sign, I is monotone and continuous, whence the existence of F~1.

Proceeding similarly for the solution g to System (9.26) associated to p = p drives us to
look for constant solutions with respect to the space variable. Let g denote such a solution
(whenever it exists). Hence, it solves

{ 7)) =—f(®)gt), telo,T],
aT)=p(T) -1

and therefore,
T
(0 = or) - sy [ rianas).
t
By uniqueness of the solution to (9.26), it follows that g solves (9.26).

Now, if p(0") = 6, meaning that @ = G(6), then p(-) = # and one has G(t) = (§ —1)eT=/'®)
for all t € [0, 7.

All in all, we get that g(0",-) is constant on  and the switching function ¢, which is
constant, reads

60 = (@@ - Dew ([ s <o

by using that p(t) € (0,1) for all ¢ € [0, T] and that G is bijective and increasing. We infer
that the first order optimality conditions are satisfied by w.
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To investigate the second order optimality conditions, it is convenient to introduce the Hilbert
basis {w, fnen+ of L*(©) made of the Neumann-Laplacian eigenfunctions defined by:

—DAw, = \w,, in €,
1 Opw, =0, on (0,7) x 09,
wy(+) = ]Q] and for n > 2, w,, solves the p.d.e. Jiy (@) d = 0,
[wnllL2(@) = 1,
where (\,,),>2 denotes the sequence of associated positive eigenvalues.

In this setting, let us expand every admissible perturbation A as

“+o00
h = a,w, with o, = (h,w,)r2q) for all n € N*.
)

n=1

Using that the solution P to (9.19) does not depend on the space variable, it is standard to
expand p as

Zanvn wy(x) for each t € (0,T), z € Q,
where v,, solves the o.d.e. vn( ) = (=X + F(B(1))) va(t) and v,,(0) = (G71)(c) so that
va(t) = (G (c) exp <—)\nt +/ f’(ﬁ(s))ds) :
0
According to Proposition 4.5, one thus computes
T
d*J h,h W(T,x)? de — ) 2 q(t) dtd
w@tm) = [ pTafar [ [ a2 o) dd
+ [ 06 (e ds
Q

-/ (ijanvnmwnx) || ) (ganvn<t>wn<x>)2f"<p< 0)alt) dida

+/Qq <Zanwnx)

Using that {wy,},en+ is orthonormal in L?*(f2), we finally get the following diagonalized
expression of the second order derivative

&> Jr(u 25

with 8,(T) = v (T / P (BT (1)t +T(O)(G)"(c).

The signature of d*>Jr(@)(h,h) seen as an infinite quadratic form with respect to h is then
directly given by the sign of the coefficients d,,. Notice that for all n € N*, one has

5.(T) = walT)? + (B(T) — 1)elo /' {(Gl)”(C)—/O FB®)e 5 P, (2 dt |
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Let us first assume that C' < |Q|G(6), meaning that (G!)(c) < 0. In that case, since D solves
(9.33), and that the three roots of f are 0, § and 1, one infers that p is a decreasing function
and that f(p) remains negative all along (0,7"). Furthermore, on (0,#), the function f” is
positive. Finally, one computes (G™1)"(c) = (G7')(¢)¢g’(G~*(c)) which is negative since so
is ¢ on (0,1). Combining all these facts, we infer that

@@~ [ G0 P02 <o
0
and since p(T") < 1, it follows that
5u(T) > (P(T) = (G (e)eh /P > 0
for every n € N*. Therefore, by setting
Kr = (p(T) = 1)(G™)"(e)els 7P >0,

we get that for every admissible perturbation h, one has

“+00

I (hh) > K Y 02 = Kb

n=1

Expanding Jp at the second order at w, it is then standard that this condition implies that
w is a local minimizer for the functional Jr.

Constant solutions are not always global minimizers

We recall the following well-known result (see [70]).

Lemma 4.8. Let a € (0.,1). There exists a unique solution, denoted v,, of the Cauchy
problem

V' (r) = d"(r) = f(v(r)), on (0,+0), v(0)=a, v'(0)=0.

Moreover, r € (0,400) +— v,(r) is decreasing, and there exists R, > 0 such that v, (R,) = 0.

In other words, this lemma states the existence of radially symmetric steady-states to
the stationary equation associated to (9.19). We then deduce the existence of stationary
subsolutions for System (9.19) that are positive and compactly supported, provided the
domain contains a large enough ball, in other words that the inradius of {2 be large enough.

Corollary 4.9. Let us assume that a ball of radius R, s compactly included in € for some
a € (0.,1), in other words that there exists O, € Q such that B(O4, R,) C Q. Then,
We 1= max{0,v,(||z — O4l|)} is a subsolution of (9.19) if, and only if G(w,) < ug.

Using that w, is a subsolution, we deduce the following comparison result.

Corollary 4.10. For any o € (0., 1) such that ) contains strictly a ball of radius R, that
is there exists O, € Q such that B(Oa, Ry) C 2, and G(w,) < wg, the solution of (9.19)
verifies p(t,+) = wq on  for any t > 0.
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Let us introduce

Cp = /QG(wa(x)) dz.

Notice that the family of subsolutions (w,), have already been used to provide a sufficient
condition on the release function to initiate propagation of infected mosquitoes [90].

Remark 4.1. It is worth mentioning that in the one dimensional case, the expressions for
R, and C,, are completely explicit:

“ dw “ 2G(w) dw
R, = s Co = .
/0 V2(F(a) — F(w)) /0 V2(F(a) — F(w))

We are now in position to prove Proposition 3.2 that we rewrite more precisely using the
notations above.

Proposition 4.11. Let us assume (9.20). Assume moreover the ezistence of o €
(0., GTH(M)] such that Q contains strictly a ball of radius R, and C, < C. Then the
constant solution uw := % 18 not a global minimizer of the optimization problem Preguced
whenever T 1s large enough.

Proof. From assumption (9.20), we have G~'(u) < 6, hence we have already seen in
Section 4.2 that the solution, denoted P, of (9.19) with initial data G~'(u) is constant
in space and decreasing with respect to time. More precisely, it solves the ODE

P=fm), BO)=G'@=ac" (%).

Hence, when ¢ — +o00, p(t) decays to 0.

For any a € (0., G~'(M)] satisfying the assumptions above, the subsolution w, defined in
Corollary 4.9 is such that G(w,) € Vo . From Corollary 4.10, if we take ug € Ve ar such that
G Yu) = wa, then for all t > O the corresponding solution to (9.19) verifies p(t,-) > w,.
Hence Jr(ug) < 5 [,(1 )2 dx.

Moreover, since p(T') — 0 as T" — +oo, we have that for T" large enough

/Q<1 —p(T))*dz = (1 - p(T))*| > /9(1 — wo(z))? dz.

Hence, 7 is not a global minimum of Jr at time 7" since Jr(up) < Jr(u) = 3 fQ (1 -
p(T))?* dz. O

Remark 4.2. If GY(M) > 0., if the inradius of ) is large enough and if C is large enough,
it is always possible to find a satisfying the assumptions of Proposition 4.11. For instance, it
suffices to choose oo = G='(M) and to take C' > Cg-1(nr) and the inradius of Q large enough
so that (9.20) holds and a ball of radius Re-1(ar) be mcluded in 2.
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5 Numerical experiments

In this section, we provide some numerical approximations of solutions for the optimal control
problem (Preduced)-

The parameter values are given in Tables 9.1 and 9.2. We will assume that 2 is an
interval (0,L), i.e. d = 1. From these tables, we deduce that sy = 0.1, § = 3, and thus
0 = Sf;;i_l = 32, System (9.19) will be discretized with an explicit Euler scheme in time and
a standard finite difference approximation of the Laplacian. In all simulations, the number
of steps in space and time will be fixed to 20 and 200 respectively (in order to satisfy the
CFL condition). The solution of the optimal control problem will be obtained by testing

and combining two approaches:

e a Uzawa type algorithm, based on the gradient computation of Prop. 4.5. It consists
in alternating at each iteration a step of minimization of the Lagrangian associated
with the problem with respect to the primal variable (ug) and a step of maximization
with respect to the Lagrange multiplier associated with the integral constraint. The
minimization step is performed with a projected gradient type method, where L*°
constraints on ug are taken into account by means of a projection operator.

e the opensource optimization routine GEKKO (see [9]) solving the optimization
problem using the IPOPT (Interior Point OPTimizer) library, a software package
for large-scale nonlinear problems by an interior-point filter line-search algorithm (see
[93]). This algorithm has been initialized with the previous control obtained by using
the aforementioned Uzawa type algorithm.

Parameter | Name Value
F,, Normalized fecundity rate for uninfected mosquitoes 1
F; Normalized fecundity rate for infected mosquitoes 0.9
dun Death rate for uninfected mosquitoes 0.27
din Death rate for infected mosquitoes 0.36
K Caring capacity 0.06
Sh Cytoplasmic incompatibility 0.9
Table 9.1: Values of the parameters used in the simulations (see [90, sec. 2])
Parameter | Name Value
T Time of experiment 40
D Diffusion coefficient 1
L =19Q| | Size of the spatial domain | 30

Table 9.2: Values of the parameters T', D and || used in the simulations

Remark 5.1. According to Remark 2.1, the assumption (Hy,) is satisfied for the particular
choices of functions f and g given by (9.10) under (9.11) and (9.12) which hold true for the
values of the parameters in Table 9.1. Furthermore, it is easy to check numerically that the
assumption (9.13) is satisfied for the values of the parameters taken from the case at hand
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(see e.g. [90]). Indeed, for the parameter values, f < 0 on (0,0), which implies that F < 0
on (0,0), and moreover F(1) > 0 (see Figure 9.1).

Let us distinguish between two cases:
Case C/|Q] > M.

In Figure 9.2, the local minimizers of Problem (Prequced) for C = 1.2 and M = 0.02 (left)
(resp. M = 0.03 (right)) obtained by using the aformentioned Uzawa and Gekko algorithms
are reported. We observe the extinction (resp. the invasion) of the population. One recovers
the theoretical result stated in item (i) of Theorem 3.1, in other words that the constant
function equal to M solves Problem (Prequced) Whenever C' > M|Q| (see Table 9.3). In this
situation, the space dependency has no impact on the time dynamics, i.e. the dynamics is
the same as if there is no diffusion. Then, since it is a bistable dynamics, when M < G(0)
there is extinction of the population, whereas there is invasion when M > G(0).

Case C/|Q2| < M.

This situation is illustrated in Figure 9.3 and 9.4 with Gekko algorithm and Figure 9.5 with
Uzawa algorithm for C' € {0.5,0.8} and M € {0.04,0.4}. We can see in Figure 9.3 that
when the number total of mosquitoes released is too low (when C' = 0.5), then the infected
population decreased until the extinction of this population. On the contrary, if the number
total of mosquitoes released is higher (when C' = 0.8), then we obtain an invasion of the
infected mosquitoes. The simulation with the Uzawa algorithm in Figure 9.5 recovers the
fact that C'/L is a local minimizer for Problem (Piequced). Indeed this algorithm seems to
converges always to this constant solution. Nevertheless, it is not a global minimum since
Gekko provides a better control as it is illustrated thanks to the values of Jr (@) reported in
Table 9.3. Moreover, we see on Figure 9.3 that invasion of the infected population seems to
occurs whereas the infected population seems to go to extinction in Figure 9.5. This is also
in concordance with the result stated in Proposition 4.11.

JT(E) Wlth JT<ﬂ> Wlth
Case Parameters Clekko Usgawa Jr(M) | Jp(C/L)

M=0.02 C=1.2 14.7 14.7 14.7

O/‘Q‘ > M M =0.03,C=1.2 3.61le-2 3.61e-2 3.61e-2
M =0.04, C=0.5 14.0 14.8 14.8
M =0.04, C =0.8 2.30 12.7 12.7

CHA <My 008 0 =05 13.8 14.8 14.8
M =0.08, C=0.8 2.25 12.7 12.7

Table 9.3: Values of local optima computed thanks to Gekko and Uzawa algorithms and
theoretical local optima
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Figure 9.2: Case C/|Q2] > M : Optimal solution p to Problem (Prequced) at time
t € {0,10,20,30,40} for C = 1.2 and M € {0.02,0.03} thanks to Gekko and Uzawa
algorithms
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Figure 9.3: Case C/|Q2] < M: Optimal solution p to Problem (Prequced) at time t €
{0, 10, 20, 30,40} for C' € {0.5,0.8} and M € {0.04,0.08} thanks to Gekko algorithm.
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Figure 9.4: Case C'/|Q?] < M: Optimal control u associated to the cases considered in Fig. 9.3,
in other words solution of Problem (Ppequced) for C' € {0.5,0.8} and M € {0.04,0.08} thanks
to Gekko algorithm
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Figure 9.5: Case C/|Q2] < M: Optimal solution p to Problem (Prequced) at time t €
{0, 10, 20, 30,40} for C' € {0.5,0.8} and M = 0.04 thanks to Uzawa algorithms

6 Perspectives

In a near future, we foresee to investigate a more involved model, closer to practical

experiments, where one aims at determining release distributions in time and space, assuming
that:

e releases are done periodically in time (for instance every week) and are impulses in
time?:

e at each release, the largest allowed amount of mosquitoes is released, corresponding
to the maximal production capacity per week (which is relevant, according to the
comparison principle).

As a consequence, we will be interested in determining the optimal way of releasing spatially
the infected mosquitoes. Considering N releases, we denote by tg =0 <t; < ... <ty_1 <T,
t; = iAT, the release times. Rewriting the L' constraint on the control as (u, 1)9/,9((0,@@) <
C, the control function reads

N-1 N-1
u(t,x) = Z Ui (2)0p=s,y,  With Z / ui(z) de < C,
=0 i=0 /9

where the pointwise constraint is modified into 0 < u;(+) < M.

The new optimal design problem reads

ueVe, v

N-—1
inf jT(ll), where u = (ui)ogigN_l, jT<ll) = JT (Z Uz()é{tt7}> (,Pf/ull)

1

and

Veu =

N-1
{u = (wi(*))o<icn-1, 0 <u; < M ae. inQ, i € {0,...,N —1}, Z / ui(x) de < C’} :
i=0 /9

4We consider Dirac measures since at the time-level of the study (namely, some generations), the release
can be considered as instantaneous.
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As done in this article, System (9.1) can be recast without source measure terms, coming
from the specific form of the control functions.

In a second time, we will also look at dropping the assumption on the frequency of releases
and determine optimal times of releases (in the spirit of |1], where a simpler ODE model
were considered).

Another interesting question is also raised by the spatial heterogeneities. Indeed, in field
experiments the environment is not homogeneous in space. Then an important issue, from
an experimental point of view, is to determine how to adapt the releases with respect to the
spacial heterogeneities to optimize the success of the replacement strategies.
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Chapitre 10

Conclusion

Dans cette thése, nous avons d’abord rappelé dans le Chapitre 2 comment représenter un
systéme de lois de conservation arbitraire avec un modeéle de relaxation cinétique. Une mé-
thode de splitting en temps avec sur-relaxation de parameétre w s’avére particulierement utile
pour calculer numériquement les solutions de ce systéme.

Nous avons ensuite proposé dans les chapitres 3 et 4 plusieurs techniques mathématiques
pour analyser la consistance et la stabilité des schémas de splitting. Nous avons construit une
méthode pour calculer d’abord un systéme d’équations aux dérivées partielles équivalentes
au schéma cinétique. Ce systéme porte sur les variables conservatives w et la variable d’écart
au flux Y. Cette méthode générale a selon nous les originalités suivantes :

Elle est complétement automatisable et ’équation peut étre obtenue par un logiciel de
calcul symbolique.

Il est souvent préférable de grouper deux pas de temps pour I'analyse, afin de réduire
les oscillations de I’écart au flux Y.

Lorsque le paramétre de relaxation w = 2, le schéma de splitting est d’ordre 2, ce qui
est bien connu. Nous avons montré que I’écart au flux n’a alors pas besoin d’étre petit
pour avoir une approximation consistante.

Lorsque le paramétre de relaxation w < 2, le systéme équivalent contient un terme de
relaxation raide en Y. Une analyse de Chapmann-Enskog permet dans un deuxiéme
temps de retrouver la consistance du modéle cinétique avec le systéme diffusif classique
sur w seul. Mais le systéme équivalent en (w,Y’) donne des informations plus précises
sur la stabilité, qui peuvent la aussi étre obtenues automatiquement.

Il semble que les informations de stabilité obtenues avec la technique du systéme
d’équations équivalentes sont les mémes que celles que 1’on obtient avec 1’analyse de
stabilité avec ’entropie.

Comme perspective, il serait intéressant d’étendre ’analyse que nous avons réalisée pour
I’équation de transport, a n’importe quel systéme hyperbolique. Il serait aussi intéressant
d’automatiser les calculs d’équations équivalentes et de stabilité a tous les ordres.

159
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Dans le Chapitre 5, nous avons tenté de réaliser une analyse double-échelle du systéme
d’équations équivalentes. Cette étude est prometteuse, mais pour l'instant, pas assez
pertinente pour modéliser correctement le comportement double-échelle du cas limite At —
0. En perspective, il serait certainement intéressant de refaire ’analyse double-échelle avec
un meilleur choix de fonction test pour mieux séparer les modes lents et rapides des solutions
du systéme équivalent.

Dans le Chapitre 6, nous avons appliqué la théorie de la stabilité entropique pour construire
des fagons stables et précises d’appliquer les conditions aux limites pour 1’équation de
transport. La difficulté est que le nombre de conditions nécessaires est différent pour le
systéme de lois de conservation et le systéme cinétique. Nous avons exploité ’analyse en
entropie pour donner un critére suffisant de stabilité. Ce critére a été validé numériquement,
mais les schémas obtenus retombent a I'ordre 1. Nous avons donc essayé de construire des
conditions limites d’ordre 2. Certaines de ces conditions sont instables en temps long. Afin
de rendre ces conditions limites d’ordre 2 stables, nous les avons projetées sur ’espace des
conditions vérifiant le critére de décroissance de I’entropie. Nous obtenons alors des conditions
limites numériquement stables et d’ordre 2.

La suite de la thése a ensuite été consacrée a des applications des analyses précédentes.

Nous avons d’abord proposé dans le Chapitre 7 une premiére étude d’instabilité avec un
modéle de drift en deux dimensions avec résolution de I’équation de transport par une
méthode de Fourier. Puis, dans le chapitre 8, nous avons réalisé des simulations en trois
dimensions du mouvement du plasma dans un tokamak. Plusieurs améliorations pourraient
étre effectuées pour rendre ces modélisations plus proches de la réalité. Nous avons considéré
un modéle simplifié de drift-cinétique. Il serait intéressant d’utiliser des modéles plus
complets pour modéliser le plasma, comme les systémes de Vlasov-Poisson ou Vlasov-
Maxwell. De plus, nous avons considéré des géométries relativement simples, avec plusieurs
plans poloidaux alignés sur une droite, obtenant ainsi une géométrie cylindrique. L’ajout
d’une courbure permettrait de modéliser un tore. Cela nécessite de prendre en compte des
termes additionnels dans I’équation de transport. Il faudrait aussi pouvoir prendre en compte
des maillages non structurés aussi dans la direction toroidale.

Le Chapitre 9 est un travail indépendant du reste de la thése. Dans ce travail nous analysons
un modéle biologique de controle de population de moustiques.



Annexes

A Calcul des équations équivalentes

Dans cette annexe, nous rappelons le calcul des équations équivalentes sur w fait dans [34, 50].
Nous verrons dans ’Annexe B comment automatiser ces calculs & ’aide de Maple.

On considére le systéme d’équations cinétiques (2.3), que l'on peut écrire sous forme
matricielle

d
1
0 = —(f“ — .
of+ ) MO f (1 (w) = £), (10.1)
k=1
o Aj sont les matrices diagonales définies par (Ag);; = AF, pour tout k¥ = 1,...,d et
1=1,...,n,. Les matrices A; sont donc commutantes.

La solution w et les flux approximatifs z; sont donnés par :
w(zx,t) =<1, f(z,t) >,
zp(x,t) =< 1, Ap f(z,t) >, pour k=1,...,d.

On considére que 'équation (10.1) est résolue par Popérateur M7 défini par 2.15 (p.14) : on
résout successivement une étape de transport, et une étape de relaxation.

L’étape de transport est donnée par

fi(x, t + At) = fi(x — NAL L), pour tout i = 1,...,n,. (10.2)

L’étape de relaxation est donnée par

flx, t+ At) = f*(x,t + At) + w (fY\w(x,t + AL)) — f*(x,t + Al)) . (10.3)

En effectuant un développement de Taylor de I’étape de transport (10.2) selon la variable t,
on obtient

d d
fr(x,t+ At) = f(x,t) — At (Z Akﬁkf(w,t)> + ATtQ (Z ApDOy, f (, t)) + O(AE%).
k=1 k=1

(10.4)
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En appliquant la fonction < 1,. > a cette égalité, on obtient

w*(x,t + At) = w(x, t) — At (Z 8kzk(a:,t)>

d (10.5)
At? 5
+ T Z < ]l,AkAlaka(iL‘,t) > +O<At )

k=1

En appliquant la fonction < 1,. > sur 'équation de relaxation (10.3), on obtient
w(z, t + At) = w*(z,t + At) + w (Z FUw* (x, t + At)) — w* (2, t + At)) :
i=1
= w*(x,t + At).

Ce qui donne, en remplagant w* dans 1’équation (10.5)

d d
At?
w(x, t+ At) = w(x,t) — At ( g 8kzk(ac,t)> + - g < 1, ANy, f (1) > +O(AF).
k=1 k=1
(10.6)

En effectuant un développement de Taylor en ¢ du terme de gauche, on obtient

At?
U)(Qf, t) + AtaﬂU(m, t) + Tattw(a:, t)

d d

A 2

— w(@, 1) — At <§ :8kzk(m,t)) + Tt S < 1 AN f (1) > +O(AL).
k=1 k=1

(10.7)

En remplagant f* par I'expression (10.4) et w(ax, t+ At) par (10.6) dans I'étape de relaxation
(10.3), on a

flx,t+ At) = f(x,t) — At (Z A0 f (e, t))

k=1

+w + O(AP?).

d d
i <w(m,t) - AtZ@kzk(a},t)> — f(@.t) + ALY Adpf(x.t)

k=1 k=1

En effectuant un développement de Taylor du membre gauche de ’équation précédente, on
obtient

_f(il?, t) + Atatf(m’ t) = f(:l:j) — At (Z Akakf(m’ t))

+ w + O(AP?).

d d
fe <w(a:,t) - Atzakzk(w,t)> — f(@,t) + ALY Ao f (1)
k=1 k=1

(10.8)
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En appliquant la fonction < 1, Aj. > a Iégalité (10.8), on obtient

d
zi(x,t) + Atz (x, t) = zj(x, t) — At <Z <1, A MOk f (2, 1) >)

k=1

d
25 <w(a:, t) — At (Z ezi(z, t))) — z;(x, 1) (10.9)

k=1

d
+ At <Z <1, AN f (2, 1) >>

+w

+ O(AP?).

Finalement, les équations (10.7) (10.8) et (10.9) nous donne le systéme
w(x,t) +Atow(x,t) + & attw(m t)
— w(w,t) — At (zkzl On(®,)) + 58 Yy < 1 A f (@, 1) >

+O(At?).

Fla,t) +ALO,f(z,t) = ( £) — At (z;j 1Ak8kf(a:,t)>
tw [f@q (w — ALY Oz, t)> Fl@t) + AL A f (1)
+O(At?).

2@ t) +Az(x,t) = z(a,t) — At (zg:1 < 1, A MO f(a, t) >)

z! (w(a:,t) — At (EZZI akzk(a:,t)>) — zj(z,1)

“+w

+At (ZZ:1 <1, A]/\kﬁkf(w, t) >> ] + O(AtQ)
(10.10)

A.1 Linéarisation

Supposons que 'on puisse écrire

w = w' 4+ Atw' + Afw?+ O(A),
z; = 2y 4+ Atzj 4+ O(A#), pour j =1,....d, (10.11)
Fo=f o+ oA O(A#?).

Remplagons w, z; et f par les développements précédents dans le systéme (10.10) et
regardons les termes obtenus pour chaque ordre.

Termes en O(1)

On ne conservant que les termes en O(1), on obtient le systéme

W' = b,
Z? — z(]). + w(zjq(wg) — z?), pour j =1,...,d,
o= 4 wfw?) - )
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On en déduit que

<
(=)
|
=d
8
S
N

Termes en O(At)

En ne conservant que les termes en O(At), on obtient le systéme

(

d
wh+ ' = wh =3, Ozl
d

fFrrofi=f'=> MNof

k=1
d
[afeq <w - Z akzk) — D MOS).,
k=1
Zjl-—f-atZ?: Zk 1<]l AAkakf >

[é‘z?q( w?) (w0 = S, 02 — 2 S < L AN > ]

\

En utilisant les équations (10.12), on obtient
O’ = =35 Ozl (W),
AFI(®) = (w—1) | Sy Asdhfeo(w)]
wlofe(w®) (w' = S dzf () - £,
020 (w) = (w—1) [Zizl < 1, A, A0, £ () >}
Fw[0z5(w?) (wh = S, 9zt w?)) - 21].

;

Ce qui donne
o = — S0, 9 (w),
L= () (wh = S 0 () ) = LOS5 (0o ()
+(1— 1) [ Aufer?)]
2= 05 (w) (w' = S, 0 (u) ) — 5025 (w)2, ()
H1- D[S < AN ) 5]

(10.12)

En remplacant 9,w” par son expression dans la premiére équation du systéme dans les autres

équations, on obtient

(O’ = =i (),
o= of et + (1= 2)[0F () (= i st () )

2} = 02" (wO)w' + (1 — 1)[9257(w") <_ >t 8kzzq(w0)>
\ Sy < LA A £ (w0) > ]

Y ey Ak FE (w® )}, (10.13)
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Termes en O(At?)

En ne conservant que les termes en O(At?), on obtient le systéme

d d
1 1
2 1 0 __ 2 1 0
w? + Gw' + §8ttw = w? — gl Opzy, + 3 < E < 1, ApNOk >> :

k=1

Ce qui équivaut a

d d
1 1
Btwl = —§att'w0 - g akZ]lC + 5 ( § < ]laAkAlak,lfo >> : (1014)
k=1

k=1

De plus, en dérivant selon t la premiére équation du systéme (10.13), on a

d
att'wo = —at [Z 8kzzq(w0)] y
k=1
d

:—Zak 9249 (w®) 3y (w")] .

En remplagant de nouveau 9;w’ par son expression dans le systéme (10.13), on obtient

Oy’ _Zak [(%k (Z@lzl >] (10.15)

En dérivant selon x; les équations en z} du systéme (10.13), on obtient, pour tout j = 1,...,d
1 d
8;z; =0; 025 (w ) w']| + (— — 1) [826‘1 (Z Oz ( )]
w
=t (10.16)

+(1-2) <Z<]l A Ak () )

En réinjectant les équations (10.15) et (10.16) dans I’équation (10.14), on obtient

o' = (— - —) (Z Ok [azk (Z 0z (w )] - Ed: < 1, ApAyOy 9 (w") >>

k=1

(10.17)

En additionnant cette équation avec la premiére équation du systéme (10.13) multipliée par
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At, on obtient

d
O [w” + Atw'] + Z O[5 (w”) + At25 (w’)w']
k=1

= At <- - —) (i lazk (Z A2 ( )] — i < 1, ApA Dy feU (") >>

k= k=1

+O(A?).

En utilisant (10.11), on obtient 1’équation équivalente sur w

0w+ Orqi(w)
k=1 )
= At (— — —> ( Zak [an (Z O (w ) + Z < 1, A N0y 4 (w) >)
k=1
+ O(AP).

A.2 Applications

Dans cette sous-partie, nous appliquerons 1’équation (A.1) aux différents modéles cinétiques
présentés dans la section 2.

Modéle D1Q)2

Pour le modéle D1@Q)2, défini dans la sous-section 2.1 (p.17), on a d =1 et

A0
w30

En appliquant les paramétres de ce modeéle a I’équation (A.1), on obtient

1 1

Ohw + 0q(w) = At (; - 5) (=0 [¢ (w)Duq(w)] + N0y < 1, U (w) >).

En se rappelant que < 1, f/(w) >= w, on obtient I’équation équivalente sur w du modéle
D1Q2

dew + Duq(w) = Al (1 - 1) (0, [(V = (¢ (w))?) D))

w 2

Modéle D2Q)3
Pour le modéle D2@Q3, défini dans la sous-section 2.2 (p.17), on a d = 2,

A 0 0 0
A=(0 =3 0 et Ap=[0 28
0 0 0

> o O
<[
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En appliquant les paramétres de ce modéle a I'équation (A.1), on obtient

dw +V - g(w)
(oo (o)

En remplacant A; et Ay par leur expression, on obtient

d
+ > <L AN O (w) >) .

k=1

d
Z < ]l,AkAlakaeq(w) >

k=1

S R V3 g | peq) | O eq | ge
= \2 <01,1[ 1q+1f2q+1f3q +731,2 [— 2q+f3q]+182,2[ 2q+f3q]>-

On rappelle que les vecteurs d’équilibre du modéle D2@Q3 sont définis par (2.25)

eq . E 2Ak’ : q(’lU)
) =3 + 2 A (10.18)

On obtient donc

d
Z < ]l,AkAlakylfeq(w) >

k=1

=2 (00 [ 4+ grn(w)] - S0 e +0ue |5 - antw) )

A2 A 1 n
—v (T e Vo).
,\qz( w) T 3q w)

De plus, on peut écrire

3o it (St )| <9 (i, A w).

Finalement, on obtient ’équation équivalente sur w du modéle D2Q)3

D+ V - g(w) = At (l _ %) V- (DyVw) + O(AL), (10.19)

w

avec la matrice de diffusion

R w) - ) —Agw) — dw)d(w)
Ps = (—gqx )= i) A= Agw) — gh(w)? ) '
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Modéle D204
Pour le modéle D2@Q4, défini dans la sous-section 2.3 (p.18), on a d = 2,

A0 00 000 0
0 —X 0 0 000 0
M=10 0 0o et M=14492 0
0 0 00 00 0 —\

En appliquant les paramétres de ce modéle a I'équation (A.1), on obtient

dw~+ V- q(w)

S (Enfoo(Ben

En remplacant A; et Ay par leur expression, on obtient

d
+ > <L AN Y (w) >) .

k=1

d
N <1 AN N (w) > = N2 (D0 [f59(w) 4[5 (w)] + B [£5(w) + S5 (w)])
k=1
2
=5 (011w + Oz pw)

car le vecteur d’équilibre fi?(w) du modéle D2Q4 est défini par (2.27)

e w Ak ' q(U))
V=g e

Finalement, on obtient ’équation équivalente sur w du modéle D2Q4

w~+V - q(w) = At (é - %) V - (D,Vw) + O(A?), (10.20)

avec la matrice de diffusion
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B Calcul des systémes équivalents et équations équiva-

lentes avec Maple

Cette annexe présente le code Maple. Dans la section B.1, les différents modéles cinétiques
utilisés (D1Q2, D2Q3 et D2Q)4) sont définis. Attention, lorsque le bloc de code commence par
##+#, il ne faut 'exécuter que si elle correspond au modéle cinétique choisi. Dans la section
B.2, les opérateurs de transport et de relaxation sont définis, ainsi que des fonctions qui
seront utiles pour séparer les différentes dérivées. Dans la section B.3, le systéme équivalent
en (w,Y’) au modéle cinétique est calculé, il est ensuite simplifié en une équation équivalente
en w dans la section B.4. La section B.5 permet de calculer la matrice P2 permettant de
diagonaliser le systéme équivalent en (w,Y"). Cette matrice devant étre définie positive, on
obtient des conditions d’hyperbolicité sur le systéme. Enfin, dans la section B.6, on effectue
un changement de variables dans les inconnues cinétiques f; sur la matrice P2 afin d’obtenir

Iexpression de 'entropie dans ces variables.

B.1 Définition des différents modéles cinétiques

> restart : with(linalg) : with(LinearAlgebra) :

> ### Pour le modéle D1Q2

nv = 2;

=1;

= (x1);

W = vector(nv, [w(x1),y1(x1)]);

Wp := vector(nv, [w, y1]);

vl := vector(2, [lambdal);

v2 := vector(2, [-lambdal);

s := (vi,v,dt) — subs(x1l = x1 — vi[l] * dt, v);
Delta := (V,dt) — [s(v1, V[1],dt),s(v2, V[2],dt)];
Q= (V,2) = [V[1], V2] + a + q1(V[1])}

M := matrix(nv, nv, [1, 1, lambda, —lambdal);

Q_.

N

> ### Pour le modéle D2Q3
nv = 3;
d:=2;
= (x1,x2);

W := vector(nv, [w(x1,x2), y1(x1,x2),y2(x1, x2)]);
Wp := vector(nv, [w,y1, y2]);
vl := vector(2, [lambda, 0]);

v2 := vector(2, [—(1/2) * lambda, (1/2) x lambda * sqrt(3)]);
v3 := vector(2, [—(1/2) * lambda, —(1/2) % lambda * sqrt(3)]);
s := (vi,v,dt) — subs(x1l = x1 — vi[l] * dt, x2 = x2 — vi[2] x dt, v);
Delta := (V,dt) — [s(v1, V[1],dt),s(v2, V[2],dt),s(v3, V[3],dt)];
Q= (V,a) — [V[1], V[2] + a* qL(V[1]), V[3] + a* q2(V[1])];

M := matrix(nv,nv, [1, 1, 1,
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lambda —(1/2) x lambda, —(1/2) % lambda,
0, (1/2) x lambda * sqrt(3), —(1/2) % lambda * sqrt(3)]);

> #H## Pour le modéle D2Q4
nv = 4;
d:=2;
= (x1,x2);
W := vector(nv, [w(x1,x2), y1(x1,x2),y2(x1, x2),z3(x1,x2)]);
Wp := vector(nv, [w,y1,y2,z3]);
vl := vector(2, [lambda, 0]);
v2 := vector(2, [~lambda, 0]);
v3 = vector(2, [0, lambda));
v4 = vector(2, [0, —lambda]);
s := (vi,v,dt) = subs(x1l = x1 — vi[l] * dt, x2 = x2 — vi[2] x dt, v);
Delta := (V,dt) — [s(v1, V[1],dt),s(v2, V[2],dt), s(v3, V[3],dt), s(v4, V]4], dt)];
Q= (V,a) = [VI], V2] + ax qL(V[1]), V[3] + a x q2(V[1]), V[4]];
M := matrix(nv,nv, [1,1,1, 1,
lambda, —lambda, 0, 0,
0,0,lambda, —lambda,
lambda?, lambda? —lambda?, —lambda?]);

B.2 Définition des opérateurs et autres fonctions

> # Si i=1, alors on retourne a, sinon, on retourne b
ind :=proc(i, a, b)
local vv:
if i = 1 then
vV i=a:
else
vv :=b:
end if:
return (vv):
end proc:

> # Opérateur de relaxation
R :=(W, omega) — vector(nv, (k) — ind(k, 1,1 — omega) - W[k]):

> # Opérateur de transport sur (w,Y)
T := (V,dt) — evalm(M& * Delta(evalm(inverse(M)& x V), dt)) :
T2 := (V,dt) - Q(T(Q(V,1),dt), —1) :

> # Développement en séries
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dev :=(pde) — vector(nv, (i) — —expand(series(pdeli],dt = 0,3))):

> # Approximation en différences finies de D, (W)
Gamma2 :=(L2,L1,W,L i,L_i2) —» (L1 —-L_1i)/2:

Gamma3 :=(L2,L1,W,L_i,L i2) — (-L2+8-L1—8-L_i+L_i2)/12:

pde :=(Gamma, dt, L2, L1, W,L_i,L._i2) —
vector(nv, (k) — Gamma(L2[k], L1[k], W[k], L _i[k], L_i2[k])/dt):

> # Supprime les dérivées et d érivées secondes de y dans v
supprl :=(y,v) — simplify(subs([D1(y)(x) = 0, Da(y)(x) = 0],v)):
suppr2 :=(y,v) —

sinplify (subs([D1.1 (v) () = 0, Dy(y) () = 0, Daa(y) (x) = 0], v)):
suppr :=(y,v) — supprl(y, suppr2(y, v)):
fs :==(v) — factor(simplify(v)):

> # Supprime les dérivées et dérivées secondes de y dans v
supprl :=proc(y, v)
local vv, k:
VV =V
fork from 1tod do
vv :=simplify (subs(Dk(y)(x) = 0,vv)):
end do:
return (vv):
end proc:
suppr2 :=proc(y, v)
local vv,1i,j:
VV =V
forifrom1toddo
forjfrom 1toddo
vv :=simplify(subs(D;;(y)(x) = 0,vv)):
end do:
end do:
return (vv):
end proc:

suppr :=(y,v) — supprl(y, suppr2(y, v)):

fs :=(v) — factor(simplify(v)):

> # Conserve dans v uniquement les dérivées et dérivées secondes de y

171
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sl _y :=proc(v,y)
local x, vv,i:
vV =V
forifrom 1tonvdo
if y # Wpli] then
vv :=suppr(Wpli], vv)
end if:
end do:
return (vv):
end proc:

> # Conserve dans v uniquement les dérivées selon x_ i
sl _i:=proc(v,i)
localii, j, k,vv:
VV =V
foriifrom 1toddo
ifii # ithen
for k from 1 tonv do
vv :=simplify (subs(Du(Wplk])(x) = 0, vv))
end do:
end if:
end do:
return vv;
end proc:

> # Supprime toutes les dérivées secondes, sauf D, ;
s2_ij :=proc(v,1i,j)
localii, jj, k, L, m, vv:
VV =V
foriifrom 1toddo
for jjfrom 1tod do
if(ii #iorjj # j)and (i = jorii # jorjj # i) then
for m from 1 tonv do
vv :=simplify (subs(Dy ;;(Wp[m])(x) = 0,vv)):
end do:
end if:
end do:
end do:
return vv;
end proc:
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B.3 Systéme équivalent en (w,Y)

> # Opérateur symétrique S
S1:=T2(R(T2(T2(R(T2(W,dt/4), omega),dt/4),dt/4), omega), dt/4):
S_i:=subs({dt = —dt,omega =1 —1/(1 — omega)},S1):

> # Systéme équivalent en O(Dt?)
pdeS1 :=pde(Gamma2,dt,0,S1,0,S 1i,0):
eS :=dev(pdeS1):

> # Pour un flux linéaire
ql :=(w) > a-w:

q2 :=(w) > b-w:

v :=[a,b]:

> # Termes en O(1/Dt)

C0 :=(e) — Matrix <nv, 1,(1,j) — fs (Coefv(\(;g%{]()i(t;)_ 1))) :
A :=C0(eS);

Termes en O(1
> 4 (1) s1_y(s1_i(coeff(eli], dt, 0), k), Wplj])

Dy (Wp[j]) (x)

C1 :=(e, k) — Matrix(nv,nv, (i,j) — fs(

):

B1 :=C1(eS, 1);
> #HH## Si d=2
B2 :=Cl1(eS, 2);

B.4 Simplification du systéme équivalent en (w,Y’) en une équation
équivalente en w

> # Expression de y selon les dérivées spatiales de w
y_Dt:=(i) — fs((—sl_y(sl_i(coeff(eS[i+ 1],dt,0),1), Wp[1])
—sl_y(sl_i(coeff(eS[i + 1],dt,0),2), Wp[1]))
/(coeff(eS[i + 1],dt, —1)) - dt - Wp[i + 1](x)):
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> HH#H# Si d=1
W_ G :=vector(nv, [w(x),y_Dt(1)]):
y_Dt(1);

> HHd Si d=2

W_ G :=vector(nv, [w(x),y_Dt(1),y_Dt(2)]):
y_Dt(1);

y_Dt(2);

> S1_G :=T2(R(T2(T2(R(T2(W _G,dt/4),omega),dt/4),dt/4),omega),dt/4):
S_i_G :=subs({dt = —dt,omega =1 —1/(1 — omega)},S1_G):

pdeS1 G :=pde(Gamma2,dt,0,S1_G,0,S_i G,0):

eS_ G :=dev(pdeSl_G):

> # Coefficient en O(1/Dt)
coeff(eS_GI[1],dt, —1);

> # Coefficient en O(1)
coeff(eS_G[1], dt, 0);

> # Coefficient en O(Dt)

.. <d7d7 )t (s2_ij(Coeff[()<f<;v()}([3,dt, 1),i,j)>) ;

B.5 Condition d’hyperbolicité

> ### Pour le modéle D1Q2

P :=matrix(2, 2, [1,0,0,p3]):

M1 :=evalm(P &« B1):

sol :=solve({M1[1,2] = M1[2,1]}, {pl,p2,p3}):
P :=factor~(evalm(subs(sol, eval(P)))):

P2 :=simplify~(evalm(subs~(p2 = 0,pl = 1, P)));

> #+## Pour le modéle D2Q3
P :=matrix(nv, nv, [pl, p2, p3, p2, p4, p5, p3, p5, pb)) :
M1 :=evalm(P &« B1): M2 :=evalm(P &« B2):

Annexes
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sol :=solve({M1[1, 2] = M1[2, 1], M1[1, 3] = M1[3, 1], M1[2, 3] = M1[3,2], M2[1,2] = M2[2, 1], M2[1,3] =

M2[3, 1], M2[2, 3] = M2[3, 2]}, {p1, p2, p3, p4, p5,p6}):
P :=factor~(evalm(subs(sol, eval(P)))):
P2 :=simplify~(evalm(subs~(p5 = b - (2a + lambda), P)));

> ### Pour le modéle D2Q4

P :=matrix(4, 4, [p1, p2, p3, p4, p2, p5, p6, p7, p3, p6, p8, p9, p4, p7, p9, p10]) :

M1 :=evalm(P &« B1): M2 ::evalm(P &x B2):

sol :=solve({M1[1, 2] = M1[2, 1] 1[1,3] = M1[3, 1], M1[2,3] = M1[3, 2], M1[1,4] = M1[4, 1], M
M1[4,2], M1[4,3] = M1[4, 3], M2[1, 2] = M2[2, 1], M2[1, 3] = M2[3, 1], M2[2, 3] = M2[3,2], M2[1,
M2[4, 1], M2[2, 4] = M2[4, 2], M2[4, 3] = M2[4, 3]}, {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}):

P :=factor~(evalm(subs(sol, eval(P)))):
P2 :=simplify~(evalm(subs~(p7 = 2 -

2

1[2,4] =
4]

- (2b — lambda) - (2 - b + lambda), P)));

B.6 Matrice d’entropie

> # Pour obtenir la matrice de passage entre F et (w,Y)
Mz to My :=proc(M)
locali,j, B:
B :=matrix(nv, nv);
forifrom 1tonvdo
for j from 1 tonv do
ifi >1landi <1+ dthen
BIi, J:= M, j] — v[i — 1]
else
BIi, i):= MIi,
end if:
end do:
end do:
return B:
end proc:

> My :=Mz_ to_ My(M):
evalm(My);

> # Matrice de 1’entropie
S :=fs~(evalm(transpose(My) &+ P2 &« My))
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Nous nous intéressons a la résolution théorique et numérique d’'un systeme de lois de
conservation
dyw +V - g(w) = 0.

Lapplication envisagée concerne la simulation des plasmas de tokamak.

Pour résoudre numériquement cette équation, nous utilisons un schéma cinétique de
relaxation DdQn,, qui I'approche avec n, équations et n, inconnues cinétiques.

Les modeles cinétiques ont 'avantage d’étre des schémas numériques efficaces basés
sur la résolution d’équations de transport a vitesse constante. Cette thése propose d’'une
part une nouvelle technique d’analyse de la stabilité de ces schémas. La méthode
classique consiste a considérer une équation équivalente avec une inconnue w. Dans
cette these, nous proposons un systeme équivalent avec n, équations et n, inconnues :
I'inconnue w de notre loi de conservation et n,, — 1 variables supplémentaires.
Lhyperbolicité de ce systéme équivalent nous donne une condition pour obtenir une solu-
tion stable. Pour certains schémas cinétiques, cette condition peut différer de la condition
sous-caractéristique diffusive déduite de I'équation équivalente classique. Nous nous in-
téressons également a la construction de conditions limites stables et avec une précision
d’ordre 2.

Ces schémas de relaxation cinétique sont appliqués a un modele de drift qui modélise
le mouvement du plasma dans un tokamak. Nous proposons d’utiliser la structure
des équations cinétiques pour construire un schéma de Galerkin Discontinu sans CFL,
qui ne nécessite pas d’inversion de matrices. Nous appliquons cette méthode a des
modélisations d’instabilités de Diocotron pour un plasma de tokamak.
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