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Abstract

This thesis presents experimental studies performed with ultracold samples of
atomic dysprosium. The electronic properties of dysprosium lead to a large magnetic
moment, a large total angular momentum J = 8 in the electronic ground state
and a rich spectrum of narrow optical transitions with non-negligible tensor light
shifts. Our work relies on using lasers tuned close to such transitions to manipulate
atomic spin states and we begin by briefly describing a set of experiments that study
the entanglement of non-classical states prepared in the ground level manifold, by
explicitly partitioning the system via optical coupling.

The main focus of this manuscript is the realisation of artificial gauge fields for
the motion of neutral atoms. The simulation of a quantum Hall system benefits
from the large spin in the electronic ground level, which we interpret as a synthetic
lattice with 2J + 1 = 17 sites. These lattice sites are coupled by two-photon Raman
transitions using counter-propagating laser beams, where the net momentum acquired
in a hopping process is equivalent to a spatially varying Aharonov-Bohm phase.
Combining spin couplings with different hopping ranges, we effectively engineer an
atomic cylinder with a cyclic axis composed of three sites and a uniform radial field,
yielding a quantum Hall effect on its surface. We control an additional longitudinal
magnetic flux that pierces the cylinder and realise Laughlin’s topological charge
pump, a quantised particle transport process related to the integer quantum Hall
effect. We measure the first Chern number, a topological invariant, and confirm the
non-trivial topology of our system of non-interacting particles.

We also present preliminary experimental results on quantum Hall physics in
four dimensions by optically coupling two independent synthetic dimensions encoded
in the atomic spin to two spatial ones. We then describe theoretically the role of
interatomic interactions on the atomic Hall cylinder and highlight their properties
along the synthetic dimension. Finally, we discuss a proposal for the realisation of
an artificial gauge field for the motion of dysprosium atoms in real space, mediated
by the coupling between the internal and external degrees of freedom.



Résumé

Cette thèse présente des études expérimentales réalisées avec des échantillons
ultrafroids de dysprosium atomique. Les propriétés électroniques du dysprosium
conduisent à un grand moment magnétique, un grand moment angulaire total J = 8
dans l’état fondamental électronique et un riche spectre de transitions optiques fines
avec des décalages lumineux tensoriels non négligeables. Notre travail repose sur
l’utilisation de lasers accordés à proximité de telles transitions pour manipuler les
états de spin atomiques. Nous commençons par décrire brièvement un ensemble
d’expériences qui étudient l’intrication d’états non classiques préparés dans le niveau
fondamental, en partitionnant explicitement le système via un couplage optique.

L’objet principal de ce manuscrit est la réalisation de champs de jauge artificiels
pour le mouvement d’atomes neutres. La simulation d’un système de Hall quantique
est facilitée par le grand spin dans le niveau électronique fondamental, que nous
interprétons comme un réseau synthétique avec 2J + 1 = 17 sites. Ces sites du réseau
sont couplés par des transitions Raman à deux photons à l’aide de faisceaux laser
contrapropageants, où l’impulsion acquise dans un processus de saut est équivalente
à une phase d’Aharonov-Bohm variant dans l’espace. En utilisant une combinaison
de couplages de spin de différentes portées, nous préparons de manière effective un
cylindre atomique avec un axe cyclique composé de trois sites et un champ radial
uniforme, produisant un effet Hall quantique sur sa surface. Nous contrôlons un flux
magnétique longitudinal supplémentaire qui perce le cylindre et réalisons l’expérience
de pompe topologique de Laughlin, un processus de transport quantifié de particules
lié à l’effet Hall quantique entier. Nous mesurons le premier nombre de Chern, un
invariant topologique, et confirmons la topologie non triviale de notre système de
particules en l’absence d’interaction.

Nous présentons également des résultats expérimentaux préliminaires sur la
physique de Hall quantique à quatre dimensions en couplant optiquement deux
dimensions synthétiques indépendantes encodées dans le spin atomique à deux di-
mensions spatiales. Nous décrivons ensuite théoriquement le rôle des interactions
interatomiques sur le cylindre de Hall atomique et mettons en évidence leurs pro-
priétés dans la dimension synthétique. Enfin, nous discutons une proposition pour la
réalisation d’un champ de jauge artificiel pour le mouvement des atomes de dyspro-
sium dans l’espace réel, induit par le couplage entre les degrés de liberté internes et
externes.
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Introduction

Quantum physics has proven to be an effective theory for predicting the behaviour
of the elementary constituents of our universe. Its application to macroscopic systems
has been fruitful for the study of intriguing collective effects, as outlined in the
publication entitled "More is different" [1]. The symmetries of physical laws play a
central role in the description of these systems, as does the concept of spontaneous
symmetry breaking which allows for states that do not respect the underlying
symmetry. Ferromagnetism in materials such as iron and the crystallisation of atoms
to form solids belong to this class of states.

The discovery of robust plateaus of conductivity in a two-dimensional electron gas
subjected to a magnetic field [2], now called the integer quantum Hall effect, initiated
new theoretical investigations of the electronic quantum states and highlighted a
new classification of the phases of matter. It led to an interdisciplinary exchange
between physics and a field of mathematics called topology, first highlighted by the
seminal contribution of Thouless, Kohmoto, Nightingale and Nijs (TKNN) [3] on the
quantisation of conductivity in two-dimensional metals. The topology defines classes
of systems that are geometrically similar, meaning that they can be continuously
deformed into each other. The classification is based on topological invariants defined
for the system as a whole and having integer values, such as the genus of a connected
three-dimensional surface.

This concept now permeates many areas of physics and is at the heart of what
are called topological insulators [4–6]. These systems are normal insulators with
a gapped bulk but host gapless edge modes that are topologically protected and
insensitive to disorder, due to the absence of states for backscattering [7]. They
have been proposed for robust topologically-protected applications, most notably
in photonics [8] and quantum computing [9]. The two-dimensional topological
insulators all belong to a single class represented by the well-known quantum spin
Hall insulator [10–13], the counterpart of the two-dimensional quantum Hall system
with time-reversal symmetry. Ongoing research is now focusing on systems with
three or more dimensions, e.g. those hosting Weyl points [14], which are classified
according to their dimensionality [15] and integer invariants, such as a Z2 topological
invariant for systems with time-reversal symmetry [4, 16]. This classification is also
valid for topological superconductors, where the boundaries possess Majorana bound
states [17].

Laughlin’s seminal contribution to the integer quantum Hall effect [18] emphasized
that signatures of topological states are accessible using pumping, a process of particle
transport in periodically-driven potentials. His work considers a cylindrical geometry
with a radial magnetic field and a tunable magnetic flux that pierces the cylinder, as
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∆Φ∥ = Φ0
Φ0

B⊥

ℓmag

⟨∆x⟩ = ℓmag

Figure 1 – Laughlin’s argument for the quantisation of the conductivity.
Scheme of a two-dimensional electronic system in a cylindrical geometry,
with a radial magnetic field B⊥, yielding a quantum Hall effect, and a
longitudinal magnetic field producing a magnetic flux Φ∥ threading the
cylinder. The orange area, pierced by one flux quantum Φ0, defines the
length ℓmag separating localised electronic states. The threading of a single
flux quantum ∆Φ∥ = Φ0 shifts electron occupations, causing electrons to be
pumped from one edge to the other, corresponding to a quantised center-of-
mass displacement ⟨∆x⟩ = ℓmag.

represented in Fig. 1. There, a cyclic variation of the Hamiltonian via the control of
the magnetic flux induces a quantised motion of particles, provided that the dynamic
is adiabatic. The motion is protected by the non-trivial topological invariant that
characterises the filled bands. His approach has been extended to a broader class
of pumps [19, 20] and studied on various platforms, using photonic waveguides [21],
quantum dots [22, 23] or cold atoms [24, 25].

Cold atoms are at the heart of this research because of our ability to control
them at the level of the single atom or photon [26]. This field of research has
expanded after technological breakthroughs with the development of laser sources
used for trapping and cooling [27] of atomic samples towards quantum degeneracy [28].
Ultracold atoms are relevant candidates to put into practice the idea first proposed
by Feynman [29], to simulate a quantum system by mapping its Hamiltonian on
another system with finer control. Condensed-matter models have been investigated
using cold atoms, benefiting from the ability to easily tune experimental knobs, such
as the interatomic interactions, and the measurement of microscopic observables. For
example, optical lattices [30], periodic potentials made of light, and neutral fermionic
atoms play the role of an ionic crystal potential and electrons respectively. In the
limit of deep potentials, these systems simulate the Fermi-Hubbard model [31], which
can host strongly-correlated states similar to those involved in high-temperature
superconductivity in cuprates [32].

The study of quantum Hall physics with cold atoms cannot be implemented
directly with a magnetic field due to their neutral charge. This limitation has
been overcome by engineering systems in which the particle motion is governed
by an analogue of the magnetic field for a charged particle, a so-called artificial
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Figure 2 – Realisation of Laughlin’s topological charge pump in an atomic
system. Panel (a): Scheme of our realisation of an atomic Hall cylinder with
a longitudinal axis x and three sites r = 0, 1 and 2, cyclically-coupled with a
controllable phase φ that plays the role of the longitudinal magnetic flux. A
radial magnetic field induces a Hall effect on the surface of the cylinder and
the orange area is threaded by a flux quantum Φ0. Panel (b): Displacement
of the center-of-mass along x as a function of the threaded longitudinal
magnetic flux ∆Φ∥. The measurements are averaged over the Brillouin zone
to probe the first Chern number C, the topological invariant characterising
the ground band of the system.

gauge field. For example, quantum Hall systems have been implemented using
rotating Bose-Einstein condensates [33, 34] and atoms in shaken lattices [35, 36].
An alternative road uses the mediation of the spin by light coupling to the external
degrees of freedom to engineer an artificial gauge field [37]. These platforms have
reached the regime where interatomic interactions modify the quantum states with
the appearance of vortices arranged in an Abrikosov lattice [38], similar to vortices
in type-II superconductors subjected to a magnetic field. An extension of these
approaches toward non-abelian gauge fields requires spin-orbit coupling between the
quasi-degenerate internal states and the atomic motion, which has been realised in
two-dimensional systems [39] and recently in three-dimensional ones [40].

Another approach for the simulation of topological systems relies on the engi-
neering of a hybrid system composed of spatial and synthetic dimensions, where
the latter can refer to dimensions encoded in the internal degrees of freedom of
the atoms for example [41, 42]. An external coupling can connect electronic states
of an atom, which are reinterpreted as sites of a one-dimensional lattice with a
hopping term between neighbours. Artificial gauge fields in such systems have been
produced using two-photon optical transitions, which couple the internal states with a
complex spatially-dependent hopping phase similar to an Aharonov-Bohm phase [43,
44]. Synthetic dimensions also facilitate the exploration of systems with dimensions
greater than three or with more complex geometry [45], by using a combination of
couplings of different ranges for instance.
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Atoms with a large total angular momentum in the ground state are well-suited
to such applications, as the corresponding large synthetic dimension allows the
exploration of both the bulk and edge modes in the presence of an artificial gauge
field [46]. Lanthanide atoms, such as dysprosium with a total angular momentum
J = 8 in its ground state, have a complex electronic structure characterised by the
presence of narrow optical transitions away from broad ones. Compared to alkali
atoms where such isolated transitions cannot be found, the regime of strong spin
coupling with limited heating is accessible. Dysprosium atoms also benefit from the
non-negligible tensor polarisability in the vicinity of narrow transitions that expands
our spin-coupling toolbox and from the presence of long-range anisotropic magnetic
dipole-dipole interactions which enriches the accessible phases of matter [47]. In
this thesis, we focus on our experimental engineering of an atomic Hall cylinder,
with a cyclic dimension of three sites encoded in the internal degrees of freedom of
dysprosium atoms, and on our realisation of Laughlin’s topological charge pump,
summarised in Fig. 2.

Chapter 1 describes the key properties of dysprosium atoms and their interest for
the implementation of artificial gauge fields. We provide the basic elements
of the light-matter interaction, which is at the heart of all the experiments
carried out during this thesis. We briefly present the laser systems that we use
for the manipulation of dysprosium atoms, and in particular their frequency
locking using atomic references that was developed early in the thesis.

Chapter 2 focuses on the experimental apparatus that produces a cold atomic
sample. We owe a great debt to all the former members of our research group
who built the experiment and contributed to its successive upgrades. Some
recent changes, such as the transverse cooling of the atomic jet, the active
compensation of magnetic field fluctuations and the processing of recorded
absorption images, are detailed. We give an overview of our experimental
techniques to characterise off-resonant laser beams, which have been regularly
used for the installation of new beams.

Chapter 3 briefly presents our work on entanglement in quantum states. We
interpret the large spin of dysprosium atoms as a set of virtual qubits of spin
1/2, symmetric upon particle exchange, and encode non-classical states. The
notion of entanglement in these states is clarified by optically partitioning the
spin into two subsystems. We also study the robustness of the entanglement in
paradigmatic states upon decoherence via the loss of a qubit pair in a random
state.

Chapter 4 introduces the basic theoretical elements related to the quantum Hall
effect. We start with the notion of Berry curvature and Berry phase, which play
a similar role to that of a magnetic field and an Aharonov-Bohm phase. The Hall
effect, with its classical form and its quantum counterpart, is then presented.
We focus on the case of the cylindrical geometry, related to our experimental
realisation of a quantum Hall cylinder. Finally, following Laughlin’s argument
for the quantisation of the conductivity in a Hall system, we introduce the
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notion of topological pumping and relate its properties to those of a higher-
dimensional system.

Chapter 5 details our protocol for encoding two synthetic dimensions in the large
total angular momentum of a single dysprosium atom. Using spin couplings of
different ranges, the internal degrees of freedom are effectively described as a
cylinder with a cyclic dimension of three sites. We discuss the validity of this
picture and show how it can be used for the implementation of a Hall cylinder.

Chapter 6 reports on our experimental realisation of an atomic Hall cylinder. We
characterise the ground band of the system and its first excitations, and then
probe the transverse response to a force, typical of a charged particle in a
magnetic field. We perform Laughlin’s topological charge pump experiment, by
controlling the effective magnetic flux that pierces the cylinder, and measure
the non-trivial topological invariant associated with the ground band, the first
Chern number.

Chapter 7 discusses extensions of our realisation of an atomic Hall cylinder. Initial
experimental results on the engineering of a Hall system in four dimensions are
presented, which proves our ability to manipulate two independent synthetic
dimensions encoded in the spin of the atoms. We then discuss prospects toward
many-body states in the presence of interatomic interactions in our quantum
Hall cylinder with a synthetic dimension and in real space using an artificial
gauge field mediated by the atomic spin.





1
Dysprosium and its interaction with light

In this Chapter, we describe some of the peculiar properties of dysprosium atoms
that emerge from their electronic structure, such as the large total angular momentum
in the ground state, the large magnetic moment and the dense electronic spectrum.
We introduce the light-matter interaction, at the heart of the manipulation of the
external and internal degrees of freedom of the atoms with coherent sources of light.
We briefly present our laser systems and the spectroscopy techniques adapted to
optical transitions with wide linewidths, similar to the D2 lines of rubidium atoms,
as well as much narrower linewidths in the 1 − 100 kHz regime.

1.1 Dysprosium properties
Dysprosium is a rare-earth metal in the lanthanide line of the periodic table,

with an atomic number Z = 66. Outside of the field of ultracold atoms, dysprosium
is used for its magnetic properties in a few applications ranging from permanent
magnets to magnetic data storage in a hard disk for example. Its characteristics
stem from its complex electronic structure, which we will describe below. At ambient
temperature, this metal has a low vapour pressure and oxidises in an air atmosphere.
Due to its high melting point of 1412 ◦C, dysprosium requires a high temperature to
evaporate into a gaseous sample. Seven stable isotopes exist in nature, with four
of them in large and similar abundance: two fermionic and two bosonic ones. This
is advantageous for the study of ultracold samples of different quantum statistics
but also for the preparation of mixtures. In this thesis, we use the bosonic isotope
162Dy, whose background s-wave scattering length is better suited than that of 164Dy
to reach quantum degeneracy.

The electronic structure of dysprosium can be written:

[Xe]4f 106s2,

relative to xenon. This situation, referred to as a submerged shell, means that the 6s
shell is fully filled with two electrons while the lower-lying 4f shell is still partially
filled with 10 electrons out of 14 accessible orbitals. The four unpaired electrons
result in a net electronic spin S = 2 and an orbital angular momentum L = 6, and
the electronic ground state of dysprosium has a total electronic angular momentum
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λ Γ/2π TD Erec/h

421.3 nm 32.2MHz 772 µK 6.95 kHz

626.1 nm 135 kHz 3.2 µK 3.14 kHz

696.0 nm 1.4 kHz 2.54 kHz

832.8 nm 11 kHz 1.78 kHz

J ′ = 7 J ′ = 8 J ′ = 9

J = 8

696.0 nm

832.8 nm

626.1 nm

421.3 nm

Figure 1.1 – Table: List of transitions of dysprosium atoms with their
wavelengths, natural linewidths, Doppler temperatures and recoil energies.
Panel: Energy spectrum with the four optical transitions that are used or
studied in the work presented in this thesis.

J = 8. The bosonic isotopes have a zero nuclear spin and therefore a total atomic
angular momentum F = J = 8 in the electronic ground state, while the fermionic
isotopes have a non-trivial nuclear spin I = 5/2, which induces an additional splitting
into hyperfine levels ranging from F = 11/2 to F = 21/2.

1.1.1 Electronic transitions
The electronic structure also leads to a complex structure of excited electronic

states, as electrons in both the 6s and 4f shells are allowed to be promoted to
higher orbitals. We show in Fig. 1.1 a tiny fraction of the energy spectrum with the
optical transitions that have been exploited during this thesis, as well as some of
their characteristics. The difference in nuclear mass between isotopes gives rise to
an isotopic shift, proportional to the mass difference, typically of the order of a few
GHz for optical transitions.

Two optical transitions, at λblue = 421.3 nm and λred = 626.1 nm, respectively
called blue and red transitions, are used to laser cool and image dysprosium atoms.
Their very different linewidths, Γ421 = 2π × 32 MHz and Γ626 = 2π × 136 kHz, make
them complementary as they are suitable for different purposes. These transitions
correspond to the promotion of an electron from the filled 6s orbital to a 6p orbital,
corresponding to an electronic state of total angular momentum J ′ = J + 1 = 9.
The red transition, classified as an intercombination line, has a narrow linewidth
and is favourable for the implementation of a cold magneto-optical trap and spin
manipulation. The blue transition has a wider linewidth and is more suitable for
applications requiring a high cycling rate, such as Zeeman slowing and imaging, due
to the short lifetime of the excited level. The three transitions at 696.0 nm, 832.8 nm
and 626.1 nm, coupling to excited states with total angular momentum J ′ = J − 1,
J and J + 1 respectively, have narrow linewidths of the order of 10 kHz and are
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favourable for the implementation of spin-dependent light shifts. They are accessible
with the lasers available in our experiment and the different total angular momenta
J ′ offer various options for our experimental protocols. Other optical transitions, for
example at λ = 741 nm [48], have been manipulated and studied by other groups.

1.1.2 Magnetic properties
The magnetic properties of dysprosium are also derived from its electronic

structure. The magnetic moment µ is given by:

µ = mgJµB, (1.1)

with m the spin projection on the quantisation axis, gJ the Landé g-factor (with
gJ = 1.242 in the electronic ground state with J = 8 [49]) and µB the Bohr magneton.
The strong magnetic moment of dysprosium atoms comes from the scaling of µ as J ,
for a fully polarised atom with m = J . It reaches µ = 9.93µB in this case, compared
to µ = 1µB for rubidium (Rb), µ = 6.98µB for erbium (Er) and µ = 9.94µB for
terbium (Tb), which is the maximum value for a single element.

The presence of an external magnetic field Bz along z lifts the degeneracy of the
magnetic sublevels of a J-manifold. The levels, indexed by their azimuthal angular
momentum m along z with an integer −J ≤ m ≤ J , acquire a linear Zeeman shift:

E(m) = mgJµBBz. (1.2)

This relation is valid for all electronic states and the g-factors for the excited states
coupled via the blue and red transitions are 1.22 and 1.29 respectively. For the
ground state with gJ = 1.242, a bias field of 1 G corresponds to a Zeeman splitting of
2π × 1.738 MHz. The difference in g-factors between the ground and excited states
plays a role when tuning near-resonant laser beams close to an optical transition, in
the presence of a magnetic field.

1.1.3 Interactions
Interactions [50, 51] play a central role in the phenomenology of Bose-Einstein

condensates, due to the low kinetic energy of the condensed particles. The interaction
between dysprosium atoms results from short-range van der Waals forces proportional
to the electronic polarisability of the particles and long-range interactions between
magnetic dipoles.

Two atoms located at a distance r feel a weak attractive force known as the van
der Waals force, which scales as −C6/r

6, with the van der Waals coefficient C6. It
competes with the strong Coulomb repulsion from the electronic orbitals at smaller
distances, which scales as C12/r

12 with C12 a positive coefficient. At low energy, for
bosons, the interaction between the particles simplifies to a contact potential1:

Vs(r) = 4πℏ2as

M
δ(r), (1.3)

1This potential leads to a divergence of the scattering amplitude for wavefunctions with a
singularity at the origin [52], which is resolved by considering the pseudo-potential Vpp(r) =
gsδ(r)∂r[rψ(r)]r=0.
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with r the relative position of the two particles, as the s-wave scattering length, M
the mass of atomic dysprosium and δ(r) the Dirac delta function. The potential is
repulsive (attractive) for a positive (negative) scattering length as, with a contact
coupling strength defined as gs = 4πℏ2as/M . The background value of the s-wave
scattering length is known to date only for two atoms polarised in the same extremal
magnetic sublevel m = −8 and equals a(bg)

s = 126(10)a0, with a0 the Bohr radius. It
can be tuned to arbitrary positive and negative values in the vicinity of a Feshbach
resonance [53, 54], which occurs when the eigenenergies of the closed and open
channels get close and molecular bound states are formed. Due to the difference in
spin composition between the two channels, the relative eigenenergies depend on the
norm of the magnetic field, which tunes the scattering length as [54]:

as(Bz) = a(bg)
s

(
1 − ∆

Bz −B0

)
. (1.4)

where B0 is the position of the resonance, at which the scattering length diverges,
and ∆ is the width of the resonance, such that the scattering length cancels out at
Bz = B0 + ∆. Dysprosium and other lanthanide atoms, such as erbium, exhibit a
large choice of Feshbach resonances [55, 56], due to the complexity of their electronic
structure. For the bosonic isotope 162Dy, narrow resonances are available for low
magnetic fields [56, 57].

Due to the large magnetic moment of dysprosium atoms, the interactions between
magnetic dipoles are non-negligible, compared to the s-wave interactions. The dipolar
interaction obeys:

Vdd(r, θ) = µ0µ
2

4π
1 − 3 cos2 θ

r3 , (1.5)

with r the relative position of the two particles and θ the angle between the ori-
entation of the dipoles, set by the quantisation axis, and the vector r. We de-
fine the characteristic length add = µ0µ

2M/(12πℏ2) and the coupling strength
gdd = 4πℏ2add/M = µ0µ

2/3, in a similar way to as and gs. Interestingly, this in-
teraction is long-range and anisotropic, which strongly modifies the physics of the
interacting particles.

The ratio of the lengths add/as characterises the interplay between these two
types of interactions at low energy. The competition between them is explored in
other experiments with lanthanide atoms. Beyond mean-field effects, such as the
repulsive Lee-Huang-Yang (LHY) energy [58, 59] resulting from quantum fluctuations,
can become dominant if the ratio add/as is tuned to approximately cancel out the
mean-field effects given by the dipolar and contact interactions. This idea is similar
to other proposals [60, 61] with binary mixtures of tunable inter- and intra-species
interactions for example. At high densities, the LHY energy stabilises the mean-field-
induced collapse of the cloud. In recent years, the corresponding phase of matter,
called self-bound quantum droplets, has been experimentally studied using dipolar
gases [47, 62].

In addition to the elastic collisions described above, the dipole-dipole interaction
also induces dipolar relaxation, which is due to inelastic two-body collisions. During
a collision, two atoms can decay to lower magnetic sublevels with a release of the
corresponding magnetic Zeeman energy, proportional to the strength of the bias
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magnetic field. This energy is converted into kinetic energy, which causes heating and
possibly losses if it exceeds the trap depth. For bosonic dysprosium, the timescale is
of the order of a few ms for a magnetic field of 1 G, and strongly depends on the
quantum state of the atoms.

1.2 Light-matter interaction
The manipulation of gaseous samples, as we know it today, has been triggered by

the development of lasers [63], emitters of coherent light at high optical powers, and
particularly of frequency-adjustable lasers. Initial breakthroughs in this field, making
use of the resonant coupling of light with atoms, include the laser cooling of atoms,
their trapping in magneto-optical traps and the discovery of sub-Doppler cooling
techniques [27, 64, 65]. The ability to reach much lower temperatures, by several
orders of magnitude, relies on the use of conservative trapping forces [66], based
on the off-resonant coupling with light which does not involve either absorption or
spontaneous emission of photons. In its most general form, the coupling between a
light field and an atom writes:

H = −d · E (1.6)

where d is the atomic dipole operator and E is the light field.
In this Section, we present the basics of the light-matter interaction and derive

the formulae and methods that are at the heart of our ability to prepare cold samples
of atomic dysprosium and manipulate their internal and external degrees of freedom.
We consider resonant fields and then off-resonant fields in a perturbative approach.

1.2.1 Master equation: resonant coupling with light
The resonant coupling of light with a two-level atom (with an energy difference

ωge) can be understood from the following simple picture. An atom, initially in the
ground state, absorbs a photon from a light field if the photon angular frequency
ω is sufficiently close to the electronic transition at ωge. The atom is promoted to
the excited state and acquires a net momentum kick ℏk (for a wavevector k = ω/c),
due to the conservation of energy and momentum. The Schrödinger equation for
a two-level system in the presence of a classical light field predicts that the atom
coherently evolves from the ground state to the excited state and then back to the
ground state. The latter process can be thought of as a re-emission of a photon
coherently with the field, associated with the transition from the excited to the
ground state and a net momentum kick −ℏk. This is called a Rabi oscillation, i.e.
an oscillation of the spin polarisation defined as the difference in occupancy of the
ground and excited levels, at the Rabi angular frequency Ω0 proportional to the light
intensity. Starting with an electron fully polarised in the ground state, a π-pulse
transfers it to the excited state while a 2π-pulse does not modify the spin state.
A π/2-pulse prepares a coherent superposition of the two levels with equal weight.
These three pulses corresponds to pulse times of T/2, T and T/4 respectively, with
T = 2π/Ω0 the period of the Rabi oscillation. This process is fully coherent and the
resulting spin state at any time is a pure state, assuming that the initial state is
pure. Starting from the ground state, the light field couples it to the excited state,
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whose population evolves as:

Pe(t) = Ω2
0

Ω2
R

sin(ΩRt)2 (1.7)

with ΩR =
√

Ω2
0 + ∆2 the generalised Rabi angular frequency. On resonance, it is

equal to the Rabi angular frequency Ω0 and the population in the excited state
reaches one for a π-pulse, which corresponds to a full population inversion. Rabi
oscillations are generalisable to multilevel atoms, by taking into account the effect of
the light polarisation and the Clebsch-Gordan coefficients that arise from angular
momentum coupling.

In a real system, an electron in an excited state can decay to the ground state in
an incoherent process accompanied by the emission of a photon in a random light
mode, called spontaneous emission. The rate of occurrence of such an event is given
by the linewidth of the excited level Γ, which is inversely related to the average time
an electron remains in the excited state. If the linewidth of the electronic level is
of the order of or greater than the Rabi frequency, it modifies the Rabi oscillations
that are no longer long-lived. This competition is at the heart of the laser cooling
techniques. The process of photon absorption is coherent and associated with a net
momentum transfer along the propagation axis of the light field, while spontaneous
emission is incoherent and accompanied by an isotropic momentum kick. On average
(meaning that we consider a large number of photon absorption cycles followed by
spontaneous emission), the spontaneous emission does not modify the mean value of
the atom momentum. Therefore, the atoms undergo a succession of momentum kicks
along the propagation axis of the light field, which promotes them to the excited
state before decaying back due to spontaneous emission. Overall, resonant light,
together with spontaneous emission acting on a short timescale, affects the external
degrees of freedom of an atom. Optical transitions to an excited level with a short
lifetime, typically on the order of a few nanoseconds, such as the blue transition at
421.3 nm for dysprosium, are well suited to this application. The effect of the light
beam can be effectively rewritten as an external force, called the radiation pressure
force [67], exerted on the motion of the atoms as:

Frad(r) = ℏk
Γ
2

s

1 + s+ 4δ(r)2/Γ2 , (1.8)

for a beam of wavevector k. It depends on the natural linewidth Γ, the saturation
parameter s = I/Is (Is the saturation intensity) and the local detuning:

δ(r) = ∆ − k · v(r) + δµB(r)/ℏ. (1.9)

The local detuning contains the absolute laser detuning ∆, the Doppler shift for an
atom moving at v(r) and the Zeeman effect for a local magnetic field B(r), taking
into account the difference in the g-factor between the ground and excited states as
δµ = µ′ − µ = µB(gJ ′mJ ′ − gJmJ). For the right choice of parameters, this force is
a damping force that slows down the atoms. In the simplest schemes, it requires a
negative detuning, while a positive detuning is associated with heating. The limit
of laser cooling with resonant light comes from the nature of spontaneous emission.
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It acts as a random walk in momentum space, which keeps the average momentum
unchanged but increases its variance. This induces a heating of the atoms that
competes with the cooling effect. The lowest achievable temperature is called the
Doppler limit and is proportional to the linewidth of the optical transition, which
favours the use of narrow optical transitions such as the red one at 626.1 nm for
dysprosium. This approach with an effective force is valid for two-level atoms, or
multi-level atoms with a cycling transition, but it does not describe the internal state
of the atoms.

Since spontaneous emission is an incoherent process that cannot be written in
a Hamiltonian form, we turn to the framework of the so-called master equation.
Lindblad master equation [68, 69] is well suited for the study of open systems [70],
with applications in quantum computation [71, 72] for example. It describes the
coupling of such systems to their environment, such as spontaneous emission coupling
an atom to an infinity of available field modes. The possibly mixed spin states are
represented by density matrices and evolve under the effect of a unitary Hamiltonian
term and of incoherent processes, represented by the so-called Lindblad operators.
Three operators, corresponding to the dimension of the Hilbert space of a photon
polarisation, fully describe the spontaneous emission for a multi-level atom, due to
the isotropic character of the emission. These operators are sometimes also called
jump operators and the optical Bloch equations are a well-known example of the
treatment of this problem for two-level systems, where a single jump operator is
considered.

In a general case, the master equation in Lindblad form reads as follows:

∂tρ = − i
ℏ

[H0, ρ] +
∑

i

(
CiρC

†
i − 1

2C
†
iCiρ− 1

2ρC
†
iCi

)
(1.10)

where H0 is the unitary Hamiltonian term, containing for example the Zeeman field
and the light-matter interaction, and the Ci operators are the Lindblad operators
corresponding to incoherent processes. The Lindblad operator for spontaneous
emission in a two-level system using the Pauli matrix formalism is written C =

√
Γσ−

with Γ the linewidth of the excited state. If we consider only the Hamiltonian part
of the evolution, we recover the quantum Liouville equation for a closed system, the
generalisation of the Schrödinger equation for density matrices. In the presence of
incoherent processes, this type of equation is generally impossible to solve analytically
and numerical approaches are required. The usual algorithms for solving sets of
coupled differential equations can be used if the Hilbert size is not too large, but
we also point out the existence of other numerical methods such as the quantum
Monte-Carlo wavefunction method [73, 74]. In our case, the size of the Hilbert space
that we will consider with the ground and excited manifolds is of the order of 4J = 32
(more precisely (2J + 1) + (2J ′ + 1) with J ′ = J − 1, J or J + 1), which is tractable.

As an example, we consider a dysprosium atom, initially in its ground state
|J,m = −J⟩ in the presence of a bias magnetic field along z, which we subject
to resonant light at 626.1 nm (with J ′ = J + 1), propagating along x with linear
polarisation along z. The light beam only induces π-transitions that couple spin
states in the J- and J ′-manifolds with the same azimuthal angular momentum m.
Given the initial state, we expect coherent Rabi oscillations between |J,m = −J⟩ and



24 1. Dysprosium and its interaction with light

. . .

. . .

J = 8

J ′ = 9

m
−9 −8 −7 0 0.5 1

0

1

pulse area [2π]

⟨v
x
⟩
[v

re
c
]

(a) (b)

Figure 1.2 – Panel (a): Scheme of the resonant coupling between the J-
and J ′-manifolds using light at 626.1 nm (with J ′ = J + 1). The relevant
transition for atoms initially polarised in |J,m = −J⟩ is highlighted by red
arrows. Panel (b): Evolution of the mean velocity of the atoms as a function
of the pulse area. The dotted line is obtained by numerically solving the
master equation taking into account the spontaneous emission from the
excited level.

|J ′,m′ = −J⟩, as sketched in Fig. 1.2(a). For clock transitions with long lifetimes,
the atoms in the excited state are shelved for long enough times and are not affected
by the imaging light, that couples the ground state to another excited state. The
proportion of atoms in the excited states is measured as a change in the number of
atoms imaged. However, the lifetime of 1.2 µs in the excited level associated with the
transition at 626.1 nm is too short compared to the typical duration of our imaging
pulse of the order of tens of microseconds. Instead, we measure the Rabi flops by
recording the mean velocity of the atoms, after a time-of-flight expansion of 5.1 ms,
which oscillates between zero and the recoil velocity vrec = ℏk/M .

We choose a high Rabi angular frequency to limit the effect of spontaneous
emission during the resonant light pulse. We realise a π-pulse in 62 ns, which is
much smaller than the lifetime in the excited state. At such short times, the pulses
are at the limit of the rising time of the AOM that shapes the pulse. We account
for the non-linear response of the AOM by recording the pulse shape on a fast
photodiode2 with a bandwidth of 600 MHz and measuring the pulse area instead.
The full evolution of the mean velocity as a function of the pulse area is presented
in Fig. 1.2(b). We observe deviations that can be explained by taking into account
spontaneous emission, whose effect is small but not negligible on this timescale. Our
numerical simulations are performed by solving the master equation including the
coherent resonant light coupling and the incoherent decay of the excited state by
spontaneous emission. We treat the external degrees of freedom of the atoms in a
semi-classical way. A transition to a metastable state with a longer lifetime would
allow for long-lived Rabi oscillations, not limited by spontaneous emission.

2FPD610-FS-VIS, Menlo Systems
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1.2.2 Light shifts: off-resonant coupling with light
Off-resonant light negligibly populates the excited states, but it still affects

the atoms by inducing a dipole force, which derives from a conservative potential
proportional to the intensity of the light field. Away from all resonances, only
the blues transitions with a wide linewidth significantly contribute and the shift
is spin-independent. In the vicinity of a well-separated transition, the dipole force
derives mainly from the single transition and is spin-dependent for the correct choice
of light polarisation. In this Section, we briefly derive the expression of the AC Stark
shift for a multi-level atom, taking into account a single transition, and we highlight
the advantages of the electronic structure of lanthanide atoms over alkali species.

According to Eq. 1.6, considering at first a two-level atom (with an energy
difference ℏωge) in the presence of a monochromatic light field E at angular frequency
ω, the light-matter potential reads:

VLS = |E|2

4 | ⟨e|d · ϵ|g⟩ |2 1
∆ + iΓ/2 , (1.11)

where ϵ is the light polarisation, d is the electric dipole operator, ∆ = ω − ωeg is the
detuning from the transition, Γ is the natural linewidth and the light field is written
as:

E = 1
2Ee−iωt + cc. (1.12)

We have used the second-order perturbation theory and the rotating wave approxi-
mation to neglect the fast oscillating terms [75].

The potential has both real and imaginary parts, which have different physical
consequences. The real part gives rise to a conservative potential [76]:

Udip = − Re(α(ω)) |E|2

4 = − Re(α(ω)) I

2ϵ0c
, (1.13)

where we define the frequency-dependent atomic polarisability α(ω). The potential
is attractive or repulsive depending on the sign of the detuning (red or blue detuning,
respectively). In the presence of the light field, the atoms feel a force F = −∇Udip.
The profile of the light intensity I(r) opens up various possibilities, such as the
implementations of optical tweezers with tightly-focused beams or optical lattices
with interfering counter-propagating beams. The imaginary part is related to the
non-conservative part of the interaction and represents the photon scattering, as the
atoms undergo cycles of absorption and spontaneous emission despite the shift from
resonance. It is therefore related to the heating of the atoms and its rate reads as
follows:

Γsc = Im(α(ω)) |E|2

2ℏ = Im(α(ω)) I

ℏϵ0c
. (1.14)

Away from all resonances, the light-matter interaction for dysprosium atoms
reduces to a spin-independent term, which is similar to the case of a two-level system.
The corresponding dipole force is associated with a background polarisability, arising
mainly from the broad transitions around 400 nm. At infrared frequencies, much
lower than the optical transitions, where commercial lasers with high optical powers
are available, around 1064 nm, the polarisation α1064

s = 184.0(24)α0 [77] (with
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Figure 1.3 – Coefficients α0, α1 and α2, corresponding to the scalar, vector
and tensor components of the light shift respectively, for J = 8 and J ′ =
−J + 1, J and J + 1.

α0 = 4πϵ0a
3
0 the polarisability unit) has a positive real part, which creates an

attractive potential. For a Gaussian beam propagating along z, with a focal point at
z = 0 a beam waist w0, the intensity profile is given by:

I(r) = I(r, z) = I0

(
w0

w(z)

)2

exp
(

−2 r2

w(z)2

)
, (1.15)

where r is the distance from the propagation axis, around which the intensity is
cylindrically symmetric. The typical distance for the variation of intensity along r is
set by the beam radius:

w(z) = w0

√
1 +

(
z

zR

)2
, (1.16)

where the Rayleigh range zR = πw2
0/λ defines the scale of intensity variation along

z. For beam waists of the order of tens of micrometres and visible or near-infrared
light, zR ≫ w0 and the trapping effect is quite loose along the propagation axis. The
intensity I0 at the centre of the beam at the focal point (r = 0) is related to the
optical power P as follows:

I0 = 2P
πw2

0
. (1.17)

Using the harmonic approximation around the position of the intensity maximum at
r = 0, assuming that the cloud dimensions are much smaller than the typical scales
of the beam, the dipole potential reads:

Udip(r, z) ≈ −U0 + M

2 (ω2
rr

2 + ω2
zz

2) with


ωr =

√
4U0

Mw2
0
,

ωz =
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2U0

Mz2
R

,

(1.18)

where we define the radial and longitudinal trap angular frequencies ωr and ωz, using
the trap depth U0 = −Udip(r = 0).

We now consider a situation where the light field is tuned in the vicinity of an
electronic transition, such that the spin-dependent terms are significant. We turn to
a framework adapted to a multi-level atom [75]. The AC Stark shift, for a single
transition, reduces to a simple formula that we will use throughout this thesis to
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derive the spin-dependent Hamiltonian from light-matter interaction:

VLS = 3πc2Γ
2ω3

0

I

∆0

[
α01̂ − iα1(ϵ∗ × ϵ) Ĵ

2J

+α2
3[(ϵ∗ · Ĵ)(ϵ · Ĵ) + (ϵ · Ĵ)(ϵ∗ · Ĵ)] − 2Ĵ2

2J(2J − 1)

]
,

(1.19)

with ϵ the light polarisation, Γ the transition linewidth, ω0 the laser frequency, ∆0
the detuning to resonance and I the laser intensity. We introduce the light-shift for
Clebsch-Gordan coefficients equal to unity:

V0 = 3πc2Γ
2ω3

0

I

∆0
. (1.20)

The three terms, with prefactors α0, α1 and α2, are called the scalar, vector and
tensor, or rank-0, -1 and -2, components of the light shift respectively. The values of
the prefactors are given in Fig. 1.3 for the three accessible values of total angular
momentum J ′ with single-photon transitions. Compared to the case of alkali atoms,
the vector and tensor contributions are not dominated by the scalar one [78]. The
scalar part is spin-independent and is at the heart of the dipole force that we derived
above. The vector part is non-zero for circular polarisations only and is associated
with rank-1 spin coupling. The tensor part provides rank-2 spin coupling terms and
cancels out for a total spin J = 1/2, e.g. for Rb atoms.

As we have seen in the two-level case, there is also an incoherent scattering
of photons due to residual populations of excited states. When working in the
vicinity of a narrow transition to induce strong spin-dependent couplings, the photon
scattering depends on all components of the polarisability of this transition but also
on the scalar polarisability originating from the broad transitions. The advantage of
lanthanide atoms over alkali atoms lies in the availability of narrow transitions far
from the broad ones (D1 and D2 lines for Rb, and blue transitions around 400 nm
for Dy for example). It allows for strong coupling with limited heating, which is
essential for the realisation of artificial gauge fields for interacting particles, that
typically requires timescales of the order of a few seconds [79].

1.3 Spectroscopy
In this Section, we briefly describe some parts of our laser systems and focus

on the spectroscopy of the blue and red transitions. These two transitions are used
for applications, such as cooling or imaging, that require frequency tuning close to
the optical transition with a precision roughly fixed by the natural linewidth of the
excited state. For this purpose, we actively adjust the absolute frequency of our
lasers using a feedback loop scheme based on an atomic reference. During this thesis,
we modified the frequency locking schemes and used a hollow cathode lamp, instead
of the atomic jet.

1.3.1 Blue transition
We briefly describe our blue laser setup. Our commercial source consists of a

diode laser at 840 nm whose light is amplified and then frequency doubled using a
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non-linear crystal in a bow-tie cavity. Since its initial installation, it has deteriorated
and we now only get ≈ 300 mW at 421.3 nm. This laser, referred to as the master
laser in the following, provides blue light at different frequencies for Zeeman slowing,
imaging, spectroscopy and transverse cooling. For independent control of the relative
frequencies and optical powers of the beams, we use three acousto-optic modulators
(AOM) in double-path configuration for transverse cooling, imaging and spectroscopy.
To maximise the light power for Zeeman slowing, we use a single-path AOM. The
four paths are coupled to fibres for improved stability. The transverse cooling setup,
which uses an additional laser diode, seeded by the master laser, will be described in
more detail in the next Chapter.

The different uses of the blue laser are all related to the resonant coupling of
the light field with the atoms. This requires the frequency of the master laser to
be stabilised around the resonance, at the level of the natural linewidth. We use a
stable reference for the atomic transition and we apply a feedback loop to a piezo
actuator, which finely controls the absolute frequency of the master laser. Possible
candidates for stable references are ultra-stable cavities or dysprosium atoms directly.
Previously, we used the atomic jet of our experiment as a reference. To decouple the
different parts of our setup, we now use a see-through cathode lamp3, dedicated to
frequency locking. The lamp is a small glass cell containing a buffer gas of argon and
two electrodes, the cathode of which is made of dysprosium. A current is sent to the
anode and cathode and excites a vapour of atoms, which we probe using resonant
light.

Our frequency-locking protocol is based on a Doppler-free and background-free
technique, called modulation spectroscopy. It derives from the well-known saturated
spectroscopy techniques [80] that involve two counter-propagating beams called the
probe and pump beams. The probe beam is sent to a photodiode after passing
through the atoms and gives almost 100% absorption close to resonance when the
pump beam is switched off. Due to the Doppler effect, the width of the transition is
significantly broadened, an effect that is even stronger in a cathode lamp than in an
atomic jet with a narrow transverse velocity distribution. In saturated spectroscopy,
the pump beam is much stronger than the probe beam and promotes atoms to the
excited states, when tuned on resonance. Owing to the Doppler shift, which is of
opposite sign for counter-propagating beams, the two beams are simultaneously
resonant with atoms with zero velocity only. On one side, atoms at zero velocity
are not accessible for excitation by the probe beam, which strongly reduces the
absorption of this beam. On the other side, atoms with non-zero velocity contribute
to the absorption of the probe beam in the same way, regardless of the pump intensity.
The absorption spectrum of the probe beam is thus modified by the pump beam with
the appearance of a sub-Doppler dip, whose width is given by the natural linewidth
of the optical transition and is not limited by the Doppler broadening.

A periodic modulation at frequency 15 MHz is applied to the pump beam using an
electro-optical modulator4 (EOM) and transferred to the probe beam via a four-wave
mixing process. Since this process is mediated by the atoms interacting with both
light beams, thus the ones having zero velocity, the modulated component of the

3Heraeus hollow cathode lamp
4EO-T15T3-VIS, Qubig
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Figure 1.4 – Spectroscopy of the blue transition at 421.3 nm. Panel (a):
Scheme of the optical setup for modulation spectroscopy involving two
counter-propagating beams, denoted probe and pump beams. A polarising
beam splitter, with a half-waveplate, controls the relative intensities of
the two paths. The pump beam is phase-modulated by an electro-optical
modulator (EOM). The modulation is transferred to the probe beam by a
four-wave mixing process, whose signal after the cathode lamp is recorded
on a photodiode (PD). Panel (b): Absorption signal of the probe beam in
the presence of the pump beam, measured on the PD, as a function of the
frequency. Panel (c): Corresponding error signal, after demodulation. The
origin of the frequencies is set to the resonance for 162Dy. The transitions
for the bosonic isotopes 162Dy and 164Dy are highlighted by vertical grey
dotted lines.

signal recorded on the photodiode only contains the sub-Doppler feature of interest.
We demodulate the signal using a home-made lock-in amplifier and extract an error
signal, which features a zero-crossing at the optical transition and is Doppler-free.
In practice, due to the isotopic shifts, we observe a forest of zero-crossing features
with widths given by the natural linewidth of the transition, corresponding to the
different bosonic isotopes and hyperfine levels of fermionic isotopes. Factors limiting
the width of the error signal are the pressure broadening of the cathode lamp due
to the buffer gas and the power broadening that occurs at high light intensities. It
is advantageous to work with a low current in the lamp and a low power for the
probe and pump beams, but this reduces the size of the error signal. We choose
our experimental parameters, such as a waist of 0.39 mm and approximately equal
powers of the order of 400 µW corresponding to a saturation parameter of 2.9, based
on the competition between these effects. In Fig. 1.4, we show the optical setup and
the measured saturated spectroscopy as well as the corresponding error signal after
demodulation. Two Lamb dips are visible in the absorption signal and correspond
to the two most abundant bosonic isotopes, while additional sub-Doppler features
appear in the error signal.
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1.3.2 Red transition
The resonant light at 626.1 nm, used for the MOT, the Doppler cooling stage and

spectroscopy, is generated using a sum-frequency generation setup. Two infrared
lasers at 1050 nm and 1550 nm, are amplified using fibre amplifiers. The two beams,
both with an optical power of 5 W, are focused onto a non-linear crystal5, which
converts the two photons from each into a single photon at 626.1 nm. The crystal,
whose temperature is precisely tuned to meet the phase matching condition, has a
maximum conversion efficiency of 75.5 mW/W2 corresponding to a maximum output
power of 1.89 W, but we routinely reach 1 W only. The light is then split into
three paths, which are individually controlled by AOMs and are all fibred. Most
of the optical power is dedicated to the six MOT beams, after passing through a
single-path AOM. The remaining power is used for spectroscopy and Doppler cooling
before loading in the crossed dipole traps. The sum-frequency generation setup is
duplicated using two other fibre amplifiers with respective powers 10 W and 5 W,
which yields an output power of 1.5 W, which is directly fibred. This second laser,
whose frequency is simply measured by a wavelength-metre6, is used for off-resonant
light coupling, with a detuning of typically 10 GHz ≈ 105 Γred, and does not require
frequency stabilisation.

The requirements for the frequency stabilisation of the resonant laser at 626.1 nm
are much more difficult to fulfil than those of the laser at 421.3 nm, due to the
difference by two orders of magnitude between the natural linewidths of the corre-
sponding excited levels. Other groups have chosen to use ultra-stable cavities in a
vacuum environment as a reference. Similarly to the frequency-locking of the blue
laser, our current implementation uses the atomic jet of dysprosium atoms as a
reference. The narrowness of the natural linewidth has several consequences. The
absorption or fluorescence signal when the atoms are illuminated by light is weak.
The saturation intensity scales as the inverse of the linewidth and power broadening
can be a limiting factor. Electronic noise from the demodulating setup can also affect
the laser linewidth. Our current setup is based on saturated absorption spectroscopy,
measured on the fluorescence signal instead of the absorption signal, with modulated
retro-reflected beams. This is applied to the atomic jet exiting our atomic source
because the Doppler broadening is limited in the transverse directions and the optical
accesses facilitate the interrogation of a large number of atoms. The beam modulation
is performed at 40 kHz and the demodulation is realised by a commercial lock-in
amplifier7. The error signal has a Doppler-free feature corresponding to the Lamb
dip, but has a non-zero background originating from Doppler broadening. It is used
to feedback a piezo actuator of the 1050 nm seed laser, which actively stabilises the
laser frequency.

Following the same procedure as for the blue laser, we implement a modulation
spectroscopy setup on a see-through cathode lamp, which yields an error signal
visible in Fig. 1.5(a). The signal is quite faint however, compared to our error signal
on the atomic jet. One limitation stems from the geometry of the lamp, which
forces us to work with small beam waists and thus large saturation parameters. A

5Periodically Poled Lithium Niobate (PPLN) crystal
6Highfiness WS6-200 wavelength-metre
7SR510 Lock-in amplifier, SRS
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Figure 1.5 – Spectroscopy of the red transition at 626.1 nm. Panel (a):
Error signal as a function of the red laser frequency, using modulation
spectroscopy with an optical setup similar to Fig. 1.4(a). The origin of the
frequencies is set to the resonance for 162Dy and we focus on the two main
zero-crossings corresponding to 162Dy and 164Dy, marked by grey dotted
lines. Panel (b): Scheme of the optical setup for shelving spectroscopy. It
involves a retro-reflected beam at λred and a beam at λblue with a single
passage through the cathode lamp. The red beam is frequency modulated
by an AOM (not represented here) and shelves atoms to the electronic
excited state. The blue beam probes the remaining atoms with an increased
sensitivity due to its wide linewidth and its absorption signal is recorded on
a photodiode (PD). Dichroic mirrors (DM) combine the two paths in the
cathode lamp and then separate them. Panel (c,d): Absorption signal of the
blue beam in the presence of the retro-reflected red beam and corresponding
error signal, as a function of the frequency, around the resonance for 162Dy,
using shelving spectroscopy.

possibility to increase the size of the error signal with limited noise is an alternative
technique, well-suited for intercombination lines, called shelving spectroscopy [81].
This bichromatic technique benefits from a narrow transition to obtain a sub-Doppler
feature, whose width is limited by the natural linewidth, and from a wide transition
to maximise the absorption-emission cycles that increase the recorded signal. A
modulated retro-reflected beam around 626.1 nm is shined upon the atoms and
promotes them in the excited state. A single blue beam, which is resonant with
the optical transition at 421.3 nm, passes through the atoms but only part of the
atoms contribute to the absorption of the beam as the remaining ones are shelved to
a state inaccessible to the red laser. Maximum power of blue light is transmitted
when the red laser is close to resonance and efficiently excites the atoms. As with
saturated spectroscopy, a sub-Doppler feature is visible on resonance, because of the
retro-reflection of the red beam. The gain in signal originates from the interrogation
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of whether the atoms have been shelved by the wide transition instead of the narrow
transition, and is thus of the order of Γblue/Γred. A first signal has been observed on
the cathode lamp and we show both the absorption signal on the blue transition and
the error signal in Fig. 1.5(c,d), while sweeping the frequency of the red laser across
the transition, with a blue laser locked on resonance. We observe a zero-crossing
corresponding to the 162Dy isotope, surrounded by a Doppler-broadened feature,
which is reminiscent of saturated spectroscopy. The corresponding optical setup is
sketched in Fig. 1.5(b). Since then, the setup has been replicated on the atomic jet of
dysprosium atoms, where the optical access allows for a less constrained optimisation
of the beam parameters, but the demodulating setup is not yet completed.



2
Description of the experimental setup

This Chapter describes the successive steps of the experimental cycle which
consists of preparing an ultracold sample of dysprosium atoms, carrying out a chosen
experiment and probing the atoms destructively. The vast majority of the setup was
built by the original students on the experiment [82, 83], with significant contributions
from all former members of the group. We present a brief introduction to Bose-
Einstein condensation while discussing the tools for reaching low temperatures.
We also highlight some selected steps that have been implemented during this
thesis. We present the set of experimental techniques that we routinely use for the
characterisation of off-resonant light beams.

2.1 Experimental timeline
Each experimental cycle consists of a succession of timesteps with precise objec-

tives, which are achieved through variations in numerous physical parameters. The
control over a large number of electronic devices is performed via an interface called
Cicero, connected to a chassis. It supplies analog and digital outputs that trigger
devices and adjust their parameters. Wave generators are controlled using Python
scripts for the preparation of arbitrary waveforms, taking as inputs the variables of
the Cicero interface. The sequence cycle lasts about 22 s and is kept constant for
stability, regardless of the experiment. The successive steps have timescales ranging
from tens of nanoseconds to a few seconds.

To reach temperatures as low as a fraction of µK, the atoms are trapped using light
potentials that decouples them from the temperature of the ambient environment.
The ultra-high vacuum system, with pressures down to less than 10−10 mbar in the
final stages of the cycle, reduces the probability of collisions with residual particles
and limits collision-induced losses. Differential pumping before the glass cell, where
the cold atomic samples are manipulated, significantly improves the lifetime compared
to the previous stages. We show the vacuum system in Fig. 2.1, with some indicated
stages.
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Figure 2.1 – Simplified scheme of the vacuum system. Atoms are emitted
by the effusion cell and then cooled and trapped, before transport to the
science cell. We focus on the successive parts of the setup that are involved
in the experimental sequence. The different stages are described in Section
2.1.

Effusion oven
An evaporation oven1 heats solid pieces of pure dysprosium to about 1100 ◦C

where a vapour forms inside the oven and exits through a millimetre-sized hole.
At this temperature, the atoms have a most probable velocity of about 500 ms−1.
Despite several cooling devices, the oven heats surrounding vacuum pieces to almost
100 ◦C, which is detrimental to the quality of the vacuum. Fortunately, dysprosium
atoms exhibit a getter property as they coat the walls of the vacuum system and
residual particles stick to them. This counteracts the negative effect of the high
temperature and lowers the vacuum pressure.

Transverse cooling
The hole of the oven barely collimates the atomic jet that propagates horizontally.

The atoms actually have a fairly wide transverse velocity distribution and a significant
proportion of them stick to the walls of the vacuum system. To maximise the number
of atoms that will be accessible to laser trapping, we first apply laser cooling of the
transverse motion of the atoms, so-called transverse cooling. We use two-dimensional
molasses, consisting of two counter-propagating beams, whose frequency is red-
detuned from the broad transition at 421.3 nm. We will present this step in detail
in Section 2.1.1.

Zeeman slowing
In the next step, we reduce the longitudinal velocity of the atoms down to the

capture velocity of our magneto-optical trap of about 8 ms−1 in a region of 50 cm
using laser cooling. We shine a single circularly-polarised beam at 421.3 nm, with

1DFC-40-10-WK-2B, Createc
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an optical power of about 60 mW, resonant with the cycling transition between the
extremal |J,m = −J⟩ and |J ′,m = −J ′⟩ states. The initial velocity corresponds
to a Doppler shift on the blue transition of k · v/(2π) ≈ 36 Γblue, and the capture
velocity of the magneto-optical trap to less than the natural linewidth Γblue. The
laser cooling technique presented in Section 1.2.1 requires the laser beam to be in the
vicinity of the optical transition, within Γblue typically. To maintain this resonant
condition as the atoms are slowed down, we add a spatially-varying magnetic field
with water-cooled wires carrying large currents. The so-called Zeeman slower is in a
spin-flip configuration with the magnetic field crossing zero. It minimises the current
through the coils and requires a beam with large detuning ≈ −15 Γblue from the
transition for atoms at rest, which reduces the photon scattering for atoms that have
been successfully cooled down.

Magneto-optical trap
Atoms with reduced velocities are then trapped in a magneto-optical trap (MOT),

consisting of six beams, counter-propagating in pairs, and two coils in anti-Helmoltz
configuration. It operates on the intercombination line at 626.1 nm with a narrow
linewidth and thus a low Doppler limit TDL = ℏΓred/(2kB) ≈ 3.2 µK, compared to
the D2 lines of rubidium atoms for example with linewidths in the MHz range. The
coils create a magnetic gradient whose zero-crossing theoretically gives the position
of the trap centre. For dysprosium and other lanthanide species, the large mass of
the atoms results in a non-negligible gravitational contribution that competes with
the trapping induced by light and magnetic forces. The equilibrium position of the
MOT is located below the zero-crossing, where the magnetic field is non-zero and
the degeneracy of the ground state manifold is lifted. The MOT equilibrates in this
position and is spin-polarised by the laser beams, which has been further studied in
our group [84]. The loading of the MOT is realised in two steps: an initial loading
with high light intensities and sideband modulation to broaden the laser linewidth,
and a compression of the MOT by removing the modulation and decreasing the
beam intensities. We load our MOT in 15 s, followed by compression in 400 ms, and
trap 5 × 107 atoms at a temperature of T = 15 µK, five times larger than the Doppler
limit.

Loading in crossed dipole traps
The atoms are loaded in conservative traps, in which the minimum temperature

is no longer limited by the recoil energy associated with the absorption and emission
of a photon. We first load the atoms in a single dipole trap at 1070 nm using a 50 W
multi-mode laser. The atoms are displaced from the MOT chamber to a glass cell,
depicted in Fig. 2.2, with multiple optical accesses, precise magnetic field control
and improved vacuum due to differential pumping. The focal point of the laser
beam is shifted over a distance of 28 cm using a magnetic-levitating translation stage
which varies the length of the optical path [83]. The efficiency of the loading and
transport stages is about 1 − 10% and we obtain about 106 atoms in the glass cell at
a temperature slightly above 100 µK. The limiting factors are here the volume of the
optical dipole trap relative to the size of the MOT, the collisional lifetime in the MOT
chamber and the low trapping frequency along the transport axis, set by the Rayleigh
range ≈ 3.6 mm. Possible alternatives for the transport stage include optical lattices
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Figure 2.2 – Scheme of the science cell, presenting the multiple axes of the
laser beams. The glass cell and a part of the tube that connects it to the
MOT chamber are shown in grey, as well as the rectangular magnetic coils
surrounding the glass cell. The position of the atoms is indicated by a shaded
blue cloud at the centre of the cell. The dipole traps, the imaging beams, the
Doppler beam the Raman beams are depicted by small brown, large blue,
large red and small red arrows respectively. The Raman beams are tuned
out of resonance in the vicinity of the 626.1 nm optical transition. The paths
of Raman 1 and Raman 3 have also been used for the implementation of
resonant coupling (at 626.1 nm) and spin-dependent light shifts (at 696.0 nm
and 832.8 nm) respectively.

with control of the frequency difference of the counter-propagating beams to displace
the atoms while taking advantage of the strong axial confinement [85, 86].

After transport, we apply Doppler cooling using a single vertical red-detuned
beam at 626.1 nm for a short duration of 40 ms. The parameters of this cooling
scheme take into account the difference in polarisabilities between the ground and
excited states, which depend on the polarisation and intensity of the optical dipole
trap, as previously studied in depth [87]. The temperature of the cloud decreases
with some atom losses due to light-assisted inelastic collisions, and we gain a factor
of two in the collisional rate, which is more favourable to the evaporation scheme.

We transfer the atoms from the single transport beam to crossed dipole traps
(cODTs). A pair of beams, from single-mode lasers at 1064 nm of 45 W and 10 W
powers, intersect at the focal point of the transport beam, with waists of about
25 µm. We time modulate the position of one of two dipole traps at a frequency of
50 kHz, much higher than any trap frequency. This effectively increases the width of
the beam and thus the overlap with the transport beam, which is quite elongated due
to the loose longitudinal confinement in a Gaussian beam. The transfer is achieved
by ramping down the power of the transport dipole trap.
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Evaporation cooling
We then reduce the trap depths of the crossed dipole traps to perform evaporation

cooling towards quantum degeneracy. The principle of forced evaporation is to let
the high energy atoms escape the trap while elastic collisions ensure thermalisation
of the remaining atoms. It leads to a decrease in the average energy per particle.
The timescale of the reduction of the trap depth must be long enough to allow for
thermalisation, but it must remain short to limit the effect of background-collisional
losses. We compensate for gravity during the evaporation state using a magnetic
field gradient. The dipolar relaxation is negligible because the atoms are polarised in
the ground state |m = −J⟩, which is ensured by a vertical magnetic field of typically
1 G. The latter sets the magnetic Zeeman energy splitting which remains larger than
the thermal energy kBT throughout the evaporation, thus minimising population in
the first magnetic excited state |m = −J + 1⟩.

The quantitative estimation of the efficiency of the cooling relies on the increase
of the phase space density (PSD) [88]. It is related to the ratio of the thermal
de Broglie wavelength λdB, which characterises the typical width of the individual
atomic wavefunction, to the inter-particle distance set by the atomic density n:

D = nλ3
dB with λdB =

√
2πℏ2

MkBT
. (2.1)

Quantum effects typically occur when the atomic wavefunctions start to overlap, i.e.
when the PSD is of the order of unity. In the case of three-dimensional harmonic
trapping of average trap frequency ω = (ωxωyωz)1/3, the PSD reads as follows:

D = N

(
ℏω
kBT

)3

. (2.2)

In the case of a non-interacting Bose gas, at a fixed atom number, the population of
the ground state for the external degrees of freedom becomes macroscopic below a
temperature called the critical temperature, as the chemical potential approaches
the energy of the lowest energy state. This mechanism [50, 89], called Bose-Einstein
condensation, occurs when the PSD increases beyond the limit of ζ(3) ≈ 1.202 for
harmonic traps (or ζ(3/2) ≈ 2.612 in uniform systems). A Bose-Einstein condensate
is a phase of particles obeying bosonic statistics with a large fraction of particles
occupying the lowest-energy quantum state. It also features long-range coherence
throughout the condensate which can be represented by a macroscopic wavefunction.
At such a low kinetic energy, the interaction effects cannot be neglected and modify
the properties of the quantum state. Interacting Bose gases at zero temperature
are well described using the Gross-Pitaeiskii equation in the mean-field regime for
weak interactions and Bogoliubov theory to study the elementary excitations of the
condensate. Beyond mean-field effects become important at increasing densities.

Bose-Einstein condensation of 162Dy atoms has been achieved in our group [87],
and many other experiments have reached the quantum degeneracy regime with
various bosonic and fermionic isotopes [90–93]. Currently, we routinely prepare
thermal clouds of 5 × 104 atoms at temperatures ranging from 0.2 to 0.5 µK. In this
regime, on the timescale of our experiments of less than a few milliseconds, contact
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Figure 2.3 – Panels (a,b): Example of a single-shot optical density in (b),
reconstructed from the two successive images with and without atoms, on
the left and right panel (a) respectively. This optical density is obtained
by absorption imaging on a magneto-optical trap. Panel (c): Example of
the optical density for a coherent state of magnetisation ⟨Ĵz⟩ ≈ 0 with
single-spin resolution, imaged after a time-of-flight expansion with a strong
magnetic gradient. We show the corresponding spin distribution Πm on the
Dicke basis, calculated from the optical density.

interactions are negligible and we are working in a regime of single-body physics.
The atoms can be considered as simultaneous realisations of the same experiment
and only act as an averaging mechanism.

Absorption imaging with single-spin resolution
We perform absorption imaging either in situ or after a time-of-flight expansion

to record the position distribution or the velocity distribution respectively. We shine
resonant light on the atomic sample and measure the light distribution on a CCD
camera. The atoms absorb photons by undergoing successive cycles of absorption
and spontaneous emission. They appear as a shadow on the image recorded on the
camera.

We use the transition at 421.3 nm with a wide natural linewidth to maximise the
number of absorption-emission cycles and increase the sensitivity of the detection
of the atoms. Due to the short lifetime of 5 ns in the excited state, for a saturation
parameter of one, a thousand photons are typically absorbed by a single atom in 40 µs,
the typical pulse duration in the experiments presented here. This type of imaging
integrates the atomic distribution of the atoms n(x, y, z) along the propagation axis
of the imaging beam. Using Beer-Lambert law for an incoming beam propagating
along z, of intensity I0(x, y) in the low-intensity regime, the intensity after passing
through the atoms reads:

I(x, y) = I0(x, y)e−σ0
∫

dz n(x,y,z), (2.3)

with σ0 the effective cross-section which characterises the coupling of the atoms with
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the resonant light. This formula can be extended to include saturation effects at
higher light intensity [94]. By recording two successive images with and without
atoms for the same imaging pulse parameters, we compute the so-called optical depth
(OD), proportional to the integrated density distribution:

OD(x, y) = σ0

∫
dz n(x, y, z) = log I0(x, y)

I(x, y) . (2.4)

We then derive various observables such as the atom number or the mean position of
the cloud in the (x, y) plane, using the integrated density distribution.

Most of our measurements record the velocity distribution by allowing the cloud
to expand for a given time, which maps the velocity distribution of the atoms
before their release onto the density distribution probed by absorption imaging. In
addition to this expansion, we can apply a strong linear magnetic field gradient of
the order of 50 G/cm−1 for a duration of 2.2 ms. This Stern-Gerlach gradient creates
a uniform spin-dependent force, whose expression immediately derives from the
magnetic Zeeman energy splitting. Each atom in the quantum state |ψ⟩ is projected
on a single Zeeman sublevel state |J,m⟩, with integer −J ≤ m ≤ J , with probability
Πm = | ⟨ψ|J,m⟩|2. This basis of spin states is also called the Dicke basis. In the
absence of interatomic interactions, each atom corresponds to a single realisation of
the same experiment and, after projection with the magnetic gradient, we record the
spin-resolved velocity distribution, obtained from typically 104 simultaneous runs of
the same experiment due to the large atom number. We obtain the spin projection
distribution Πm from a single-shot measurement by counting the fraction of atoms
in each of the 2J + 1 = 17 resolved velocity distributions.

Observables related to the external degrees of freedom, such as the temperature of
the atomic cloud, are also computed from measurements of the density distribution
after a time-of-flight expansion. They require a precise calibration of the magnification
of the imaging setup, which depends mainly on the choice of lenses and the size
of the camera pixels. The magnification is measured in a dedicated experiment
using two-photon optical transitions that couple neighbouring spin states with
a net momentum kick ±2ℏk, with k the laser wavevector. For atoms initially
at rest and polarised in |m = −8, v = 0⟩, the accessible states are of the form
|m, v = (m+ 8)ℏk/M⟩ for a Dicke state m (−J ≤ m ≤ J integer) with a velocity
v along the propagation axis of the laser beams. We prepare the atoms in a
superposition state with a significant proportion in |m = 0, v = 16ℏk/M⟩, obtained
by eight successive two-photon transitions, and then switch off the spin coupling. We
resolve the m = 0 component alone by projecting the quantum state on the Dicke
basis using a Stern-Gerlach magnetic gradient. We record the centre-of-mass of this
component, which is insensitive to residual magnetic gradients in the glass cell, as a
function of the expansion time. We deduce the velocity of this state, whose expected
value v = 16ℏk/M allows us to calibrate the imaging setup.

2.1.1 Transverse cooling
In this Section, we further discuss the transverse cooling stage [95, 96] which

aims at collimating the atomic jet. It reduces the width of the transverse velocity
distribution and increases the number of atoms that pass through the Zeeman slower
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Figure 2.4 – Panel (a): Scheme of the transverse cooling setup with two
orthogonal retro-reflected laser beams at 421.3 nm. The beams intersect
at the centre of the vacuum system, with eight optical accesses at this
position, and affect the transverse velocity distribution of atoms propagating
along the axis (axis x on the scheme), orthogonal to the two beams. The
polarisations of the forward and backward beams are controlled using a pair
of waveplates and a single quarter-waveplate respectively. Panel (b): Gain
factor in the number of atoms loaded in the MOT with the transverse cooling
stage, compared to without it, as a function of the frequency detuning of
the beams. This measurement is performed for a short MOT loading time,
in the linear regime. Optimal cooling is achieved at about −0.8 Γblue, for
fixed parameters such as the saturation parameter or the magnetic field.

and reaches the MOT capture region with a finite transverse size of typically 1 cm. A
bare collimation is designed at the exit of the effusion oven by a tube of centimetric
length and millimetric diameter. The transverse velocity distribution of the hot
atoms is still quite wide and a significant part of them is lost on the walls of the
vacuum system. A gain factor of typically 5 in the number of atoms loaded in
the MOT has been measured in various dysprosium or erbium experiments using
two-dimensional optical molasses consisting of two orthogonal retro-reflected laser
beams tuned to the red side of the broad transition at 421.3 nm, in the absence of a
magnetic field [97–100].

Our group also implemented this cooling stage in the early days of the experiment
and achieved a gain factor of 4. For unknown reasons, this has degraded up to the
point where the optical setup was completely rebuilt but we did not obtain any
significant gain, despite several successive attempts. We therefore decided to try
again following the same approach but with more control over the relevant parameters.
A first study was performed along a single axis with independent control of the
counter-propagating beams, instead of using a single retro-reflected beam. It confirms
that transverse cooling, albeit small, is obtained for beams of equal intensity.

We switch to the usual configuration with a pair of orthogonal retro-reflected
beams. The optical setup of the blue laser at 421.3 nm is rebuilt such that we can
vary the frequency of the transverse cooling beam across the resonance and up to
approximately −1.5 Γblue from the resonance. We also add three magnetic coils with
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Figure 2.5 – Panel (a): Number of atoms loaded in the MOT after re-
compression as a function of the loading time, with and without transverse
cooling (TC), in blue and red respectively. Exponential fits of the data are
represented by dashed lines. A vertical arrow indicates the loading time
at which the optimisation of the transverse cooling parameters has been
performed, in the linear regime at short times. Panel (b): Gain factor in
the number of atoms loaded in the MOT with transverse cooling compared
to without it, as a function of the saturation parameter of the beams. The
dashed line is a linear fit.

several windings to control the norm and orientation of the magnetic field at the
position of the atoms. The coils are made up of 15 turns and are located about
10 cm from the transverse cooling region. They typically produce 1 G for a current
of 10 A. A semiconductor laser diode2, seeded by 5 mW from the master laser at
421.3 nm, provides 100 mW of blue light with a non-Gaussian beam shape, which is
coupled into a fibre. The output beam with a waist of 4 mm has an optical power of
50 mW, equally split into two paths. The injection locking of the diode is optimised
using the transmission signal on a Fabry-Perot cavity3 and its stability is improved
by automatically adjusting the current through the diode at the beginning of each
experimental cycle. The polarisations of the forward beams are independently tuned
by a half-waveplate and a quarter-waveplate. After passing through the atoms, the
forward beams are reflected off a mirror and go through a quarter-waveplate twice
before reaching the atoms again. We geometrically align the forward beams with
respect to the optical windows and then the backward beams by coupling them back
into the fibre. A scheme of the optical setup is shown in Fig. 2.4(a).

The resonance of the transition is independently calibrated with a beam in a single
path, which pushes the atoms away and strongly reduces the number of atoms in the
MOT. We measure the number of atoms in the MOT at a short loading time of 4 s to
be in the linear regime of the loading curve and compare it in the presence or absence
of the transverse cooling beams. We vary the relevant parameters and converge to
an optimum atom number at a detuning of −0.8 Γblue, with a gain factor of 4.25
compared to the same loading time without transverse cooling, as shown in Fig. 2.4(b).

2LD-0425-0120-1, Thorlabs
3SA210-3B (FSR 10 GHz, finess > 150), Thorlabs
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The optimum corresponds to beams in the so-called lin⊥lin configuration, with a
saturation parameter of 1.7. The coils create a non-zero magnetic field of about
B = (0.7, 0.25, 0.75)G along the three axes defined in Fig. 2.4(a), which does not affect
the nearby spectroscopy at 626.1 nm or Zeeman slowing. However, it is possible that
the applied magnetic field simply compensates for residual stray fields originating
from nearby pumps for example. We study in detail the dependence of the gain
factor as a function of the magnetic field and the polarisations of the forward and
backward beams around the optimum, in Appendix B.

We compare the loading in the compressed MOT with and without transverse
cooling in Fig. 2.5(a). In both cases, the number of atoms increases according to an
exponential law that saturates at long times. We deduce that the atom number is
multiplied by a factor of 4.5(1) in the linear regime at short times. At long times,
the saturated atom number is increased by a factor of 3.4(1). Future improvements
include the use of a second laser diode to double the optical power in each beam.
To estimate the expected gain in this situation, we measure the atom number in
the MOT as a function of the saturation parameter. For the chosen waist, we reach
s = I/Isat ≈ 1.7 at maximum power and the variation of the atom number is linear
and may start being sublinear at the highest optical power. At higher optical power,
we should use cylindrical lenses to increase the beam diameter along the propagation
axis of the atomic jet only while maintaining the saturation parameter close to one.

2.1.2 Imaging improvement
In this Section, we describe our algorithm for reducing noise and removing fringes

in the computed optical densities. We first recall the formula for the calculation of
an OD in the low-intensity regime:

OD(x, y) = log I0(x, y)
I(x, y) , (2.5)

from two images taken with (I) and without (I0) atoms. In practice, we also record
an additional image without imaging light, which we subtract from the two images
I0 and I, in order to remove stray light and electronic background noise. In the
following, we assume that this subtraction has been performed for all images.

We notice significant noise in the background of the ODs in the absence of
atoms, as well as clear patterns such as fringes or circles whose position and visibility
can vary from one shot to another. This is partly due to fluctuations in the light
intensity and mechanical instabilities of the imaging setup. This can be prevented
by minimising the time interval between the successive snapshots and ensuring that
the optics are clean. Fluctuations in the light intensity can be accommodated by
rescaling the image I0 based on a region away from the position of the atomic cloud.

A more general approach to this problem is to construct an alternative image
to I0, denoted Ĩ0 in the following, which is as close as possible to the image I, in a
region without atoms but close to the atomic cloud. Our algorithm follows the ideas
of the so-called best reference image algorithm [101], which considers a set of N1

images without atoms {I(n)
0 }n. We distinguish a region R0 where atoms are expected

and a region R1 in the vicinity. We compute the autocorrelation matrix Ξ of this
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Figure 2.6 – Panel (a): Standard deviation of the optical density pixels,
calculated for each of 300 experimental sequences, with the standard com-
putation of the OD based on Eq. 2.4 (blue dots), with the first part of the
algorithm presented in Section 2.1.2 only (red squares) and with the full
algorithm (green diamonds), labelled with b, c and d respectively. Panels
(b,c,d): Average of the ODs of the experimental sequences, corresponding to
the three methods to compute ODs used in panel (a). The colour map is
identical for all three panels. We use experimental sequences without atoms
to highlight the effect of our algorithm on the background noise.

set, based on the region R1 without atoms, as:

Ξn,n′ =
∑

x,y∈R1

I
(n)
0 (x, y)I(n′)

0 (x, y), (2.6)

and invert it. For each image I, we compute its autocorrelation with all images in
the set {I(n)

0 }n in the region R1, which forms a column vector C of size N1. We
construct the best reference image Ĩ0 corresponding to I, as a linear combination of
the {I(n)

0 }n images:
Ĩ0(x, y) =

∑
1≤n≤N1

DnI
(n)
0 (x, y), (2.7)

with the column vector D = Ξ−1C, using the inverse of the autocorrelation matrix.
This construction of Ĩ0 minimises the least-square distance to the image I in the
region R1.

This algorithm strongly reduces the background noise and the contrast of the
fringes. We estimate this quantitatively by computing the standard deviation of
each OD for the pixels in the region R0, using an experimental sequence where we
load no atom on purpose, and compare this quantity for the OD calculated with
I0 or Ĩ0. We observe a significant reduction in standard deviation using the best
reference algorithm in Fig. 2.6(a). Another approach to highlighting residual defects
in the ODs, that may be below the noise, is to average them. We obtain an averaged
optical density OD and compare it, for ODs computed with and without the best
reference algorithm in Fig. 2.6(b,c). The noise reduction is significant but we observe
residual patterns, which are problematic in some of our analyses. This is particularly
relevant when we extract higher-order moments of the velocity distribution, which
are highly sensitive to individual pixel values.
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We apply a second algorithm directly to the ODs, to minimise this background.
In practice, we construct a set of N2 ODs without atoms, deliberately performing
experimental cycles that do not trap atoms. Then, we follow the basic ideas of
the first protocol, applied to the pixels of the ODs in a zone R2, where atoms are
not expected. For each OD with atoms, we construct an optical density S̃ that
minimises the least-square distance to the OD in the region R2 and subtracts it from
the OD. The standard deviation of the OD is only slightly reduced after this stage
(see Fig. 2.6(a)), but we observe a significant reduction in the patterns that were
visible when averaging the ODs. We show the average optical density OD computed
with the full algorithm in Fig. 2.6(d) to highlight the reduction of background noise.

For more details about the dependence of these algorithms on certain parameters
such as the number of images or the size of the region R1, we refer to Appendix C,
where we also provide a schematic representation of the algorithm.

2.1.3 Magnetic field control
Atoms with large magnetic moments require special care of the magnetic field at

all stages, especially for cooling and spin manipulation. We control the magnetic
field at each stage of the experimental cycle using several sets of coils. Three sets
of coils (coils C) in Helmoltz configuration surround most of the optical table and
create a uniform magnetic field over the MOT chamber and the glass cell. They are
used for the compensation of stray fields at the position of the atomic cloud in the
glass cell. Three other sets of coils (coils A) of smaller size are mounted in a cage
around the glass cell and generate the static bias field that the atoms feel, with the
surrounding coils compensating for all other components. These coils are shown in
grey in Fig. 2.2. Additional coils in anti-Helmholtz configuration create a magnetic
gradient along z to compensate for gravity during evaporation cooling. A single coil
under the glass cell produces a strong magnetic gradient for a short time, which
allows for the spin-resolved detection of the atoms.

Our procedure for cancelling the ambient static magnetic field, which may origi-
nate from the Earth’s magnetic field or surrounding fixed magnetic elements, is as
follows. We use a three-axis flux-gate probe, with a precision of 1 mG over a range
of 1 G, positioned about 10 cm away from the glass cell. First, we roughly cancel out
the ambient static field based on the probe signal, using coils C. In the second stage,
we cancel the residual stray fields at the position of the atoms using the atomic cloud
itself as a probe. We apply a small bias field along z of norm Bz = 20 mG, using the
coils A. In the presence of residual stray fields along x or y at the position of the
atoms, the total magnetic field before the measurement is aligned along an axis n ̸= z
and the atoms are polarised in the state |−J⟩n. At such a weak field, the strong
magnetic gradient along z applied during the time-of-flight expansion defines the
quantisation axis and suddenly projects the atoms on the magnetic Zeeman sublevels
defined with respect to z. This leads to non-zero populations in the excited Zeeman
sublevels |m > −J⟩z that we cancel out by tuning the coils C. Once this is done,
the magnetic field is aligned with z and has contributions from the bias field and a
possible residual stray field. We estimate this stray field by measuring the norm of
the magnetic field using radio-frequency spectroscopy or Ramsey interferometry, and
then compensate for it using the coils C.
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Figure 2.7 – Panel (a,b): Spin distribution Πm and magnetisation ⟨Ĵz⟩ of
a coherent state using Ramsey interferometry, as a function of the waiting
time tz between the two π/2-pulses. The magnetisation oscillates at the
Larmor frequency 137.7(4) kHz, corresponding to a bias magnetic field of
79.3(2) mG. The waiting time tz is corrected based on the signal from a
flux-gate probe to account for residual magnetic field fluctuations. Panel (c):
Standard deviation of the magnetic field in the glass cell, measured using the
magnetic probe in blue dots and the atoms with Ramsey interferometry in
red squares, as a function of the gain of the active open-loop compensation
scheme.

Ramsey interferometry combines our spin-resolved measurement technique with
spin rotations. In a two-level system, the norm of the magnetic field can be measured
using a linear combination of the two states with equal weight. In the Bloch sphere
representation, such a state is polarised along the equatorial plane. The evolution
in the presence of a magnetic field along z is a precession of the state around the z
axis, which leaves the state along the equatorial plane. The angular frequency of
the precession is set by the Larmor angular frequency δz = µBgJBz/ℏ and provides
a direct measurement of the magnetic field norm. Since the rotating states are
not distinguishable by spin projection along z, we perform a spin rotation which is
equivalent to measuring the spin projections along an axis of the equatorial plane.
The precession around z maps onto oscillation of the magnetisation ⟨Ĵz⟩. Our
protocol involves the following sequence of rotations:

R = Ry(π/2)Rz(ϕ)Ry(π/2) (2.8)

where the operators Ra(θ) = exp(iθJa) are the rotation operators of angle θ around
the axis a, with a = x, y or z. Starting with atoms polarised in the spin state
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|−J⟩z, the first y-rotation transfers them onto the equatorial plane of the generalised
Bloch sphere. The z-rotation corresponds to the precession of angle ϕ = δztz around
the bias field of norm Bz, which is controlled by varying the time tz. The second
y-rotation, followed by a projection of the spin along z, amounts to projecting the
spin state along x. We observe oscillations in the magnetisation, which we compute
from the spin distribution as:

⟨Ĵz⟩ =
∑
m

mΠm, (2.9)

and show in Fig. 2.7(a,b), along with the full spin projection distribution. The
y-rotations are produced by a pulsed magnetic field along y, of duration 5 µs. For
a vertical bias field Bz ≈ 79 mG, the z-rotation occurring during the pulse is not
negligible as δz ≈ 2π×138 kHz, with a period of 7.2 µs. This simply adds a phase shift
to the magnetisation oscillations, unimportant for the determination of the Larmor
frequency and independently calibrated. The contrast of the oscillations decreases at
long times, with a coherence time of the order of a few hundred microseconds, and is
limited by magnetic field fluctuations.

The magnetic field fluctuations are recorded on the magnetic probe along z with
a rms value of 2 mG and a timescale of ≈ 1 s, which are correlated with Ramsey
interferometry measurements. The main cause of the magnetic field instability is
the nearby Paris metro line. We use an open-loop scheme based on the signal of the
magnetic probe along z and back-action from additional metre-sized coils in Helmoltz
configuration along the vertical axis. We adjust the strength of the compensating
field by varying a gain factor and minimise the rms value of the fluctuations down
to 0.4 mG, which is confirmed by simultaneously recording the probe signal and
performing Ramsey interferometry in Fig. 2.7(c). In our protocol using Ramsey
interferometry, we fix the waiting time to a time tz with zero magnetisation, where
the derivative of the magnetisation is maximal. A fluctuation ϵz of the Larmor
angular frequency leads to a linear variation in the magnetisation ±Jϵztz, which is
amplified at long times. For the data presented in Fig. 2.7(c), we work at 70 mG
and choose tz =13.4 µs, such that a fluctuation of 1 mG maps on a shift of the
magnetisation of about 1.2, above our detection noise.

2.2 Preparation of laser beams
The work presented in this thesis involves spin-dependent light shifts produced

by laser beams, whose frequency lies in the vicinity of narrow optical transitions.
In addition to a laser at 626.1 nm, which is not locked because its detuning from
resonance is set to be on the order of a few GHz, we also use a Titanium:Sapphire (Ti-
Sapph) laser with a tunable wavelength ranging from 695 nm to 1005 nm, to address
transitions at 696.0 nm and 832.8 nm. This allows us to work with spin-dependent
light shifts of various relative scalar, vector and tensor contributions, depending on
the difference in total angular momenta J ′ − J = −1, 0 or 1. In this Section, we
present our techniques to characterise off-resonant laser beams.

All the beams are fibred for better long-term stability. Before the fibre, a laser
beam passes through an AOM which controls both its frequency and its power. For
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applications requiring particularly short pulses, we focus the beam in the AOM
crystal to improve its time response with raising times in the nanosecond range.
The first order of the light coming out of the AOM is coupled into a fibre and we
control the AOM using radiofrequency signals of controlled intensity and frequency.
After the fibre, the polarisation of the collimated beam is cleaned by a polarising
beam splitter and a beam sampler sends a tiny fraction of light onto a photodiode
for intensity control. The beam waist is magnified by a telescope and a lens with
a focal length of around 50 cm focuses the beam on the atomic cloud with a beam
waist of approximately 50 µm. The lens is mounted on a single-axis translation
stage to tune the focal point of the beam. A two-axis mirror with piezo actuators is
positioned after the lens and controls the position of the beam on the atomic plane,
with a precision of the order of a fraction of micrometre. A half-waveplate and a
quarter-waveplate, before the focusing lens, control the polarisation of the beam.
After aligning the beam on the atomic cloud and finely tuning the focal point, we
measure the parameters of the beam using a set of experimental techniques, described
below.

Two complementary techniques provide information about the trap depth of the
beam for a given polarisation ϵ, in the repulsive and attractive regime, for positive
and negative detunings respectively. In these experiments, summarised in Fig. 2.8,
we consider atoms polarised in |−J⟩ with a vertical magnetic field of norm > 1 G. It
pins the atoms in their initial spin state even when the spin-coupling light is switched
on and we measure the expectation value of the light potential ⟨VLS⟩ for a spin state
|−J⟩. For red-detuned light, the trapping potential is attractive and we observe
oscillations of the centre-of-mass in the transverse plane of the laser beam. The
radial angular frequency is given by ωr = (4 ⟨VLS⟩ /Mw2

0)1/2 (see Eq. 1.18) for a beam
waist of w0. For a blue-detuned light, the repulsive potential expels the atoms and
the energy conservation implies that the potential energy ⟨VLS⟩ is transformed into
kinetic energy Mv2/2 as the atoms leave the light potential. For a well-centred beam,
the atoms form a ring whose radius increases linearly in time with a velocity given
by the acquired kinetic energy. We measure the distribution with an imaging beam
propagating either along the repulsive beam or along an orthogonal axis, depending
on the optical access. In the former case, we observe a ring while in the latter case,
we observe the transverse projection of a ring that features two main peaks whose
half distance is roughly the radius of the ring.

An additional experiment with positive detuning provides further insight into the
trap depth and is performed on a much shorter timescale with a pulse duration in the
10 − 100 µs range, compared to a few milliseconds in the previous two experiments.
We off-centre the beam by half the waist such that the force F = −∇VLS is maximal
and proportional to ⟨VLS⟩ /w0. The atoms acquire a velocity v = Ft with t the
pulse duration that we measure after a time-of-flight expansion. By combining
the measurements of the trap depth presented above and the measurement of the
force, we obtain an estimate of the beam waist, independently of the intensity and
polarisation of the beam.

This protocol also provides information on the polarisation ϵ if we extend it to
the case of a coherent state polarised along any direction n. A coherent state with
orientation n parametrised by the spherical angles (θ, ϕ) has significant projection
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Figure 2.8 – Panel (a): Scheme of a single off-resonant light beam propa-
gating along z, centred on an atomic cloud. We distinguish the cases with
negative detuning in (b,c) and positive detuning in (d,e,f,g). Panel (b): The
red-detuned beam creates an attractive potential with a trapping angular
frequency ωr (see Eq. 1.18) in the (x, y) plane. Panel (c): Oscillation of the
centre-of-mass position ⟨x⟩ as a function of time, with angular frequency
ωr, and its fit in dashed line. Panel (d): The blue-detuned beam creates a
repulsive potential of trap depth ⟨VLS⟩, that repels the atoms radially. Panels
(e,f): Examples of atoms subjected to this potential after a time-of-flight
expansion, imaged along z and x respectively. Panel (g): Radius r of the
exploded cloud as a function of the expansion time. A linear fit (dashed
line) gives the velocity of the expansion, related to the trap depth ⟨VLS⟩ by
energy conservation.

probabilities Πm along magnetic Zeeman sublevels |m⟩, with m close to J cos θ. We
prepare such a state using the magnetic rotations introduced for Ramsey interferom-
etry in Section 2.1.3, with an angle θ ranging from 0 to π. We pulse the repulsive
force and measure the velocity distribution, after time-of-flight expansion in the
presence of a strong magnetic field. The single-spin resolution allows us to measure
the expectation value of the force for each Dicke state |m⟩ independently. From
these measurements, we deduce the quantity Qm = ⟨m|VLS|m⟩ /V0, with V0 defined
in Eq. 1.20, for each integer −J ≤ m ≤ J , which depends on the total angular
momentum of the excited level and on the polarisation only. Systematic errors in V0
can be corrected using the global constraint ∑m Qm = (2J + 1)/3, fixed by the spin
algebra. As in all previous experiments in this Section, we maintain a magnetic field
large enough to hamper spin dynamics during the light pulse.
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Figure 2.9 – Panel (a): Scheme of a single off-resonant light beam prop-
agating along z with negative detuning, off-centred from the position of
the atomic cloud by half its waist. The atoms feel the force that derives
from the gradient of the repulsive potential. It is related to the coefficients
Qm = ⟨m|VLS|m⟩ /V0 defined for the Dicke basis. We take the example of
a circularly-polarised beam with polarisation σ−. Panel (b): Example of
a single image with single-spin resolution after expansion, for a coherent
state with polar angle θ = 100◦. We measure the displacement of the centre-
of-mass of the atoms for each significantly populated spin state m. Panel
(c): Qm coefficients, measured using coherent states spanning all magnetic
Zeeman sublevels. In the inset, we highlight the vanishing expectation values
of the light shift for m = −J and −J + 1, which are dark states for the σ−
polarisation.

In Fig. 2.9, we give the example of a circularly-polarised beam propagating along
z at 696.0 nm, coupling the electronic ground state to an excited state with a total
angular momentum J ′ = J − 1. The light shift is diagonal in the Dicke basis defined
by the orientation of the bias magnetic field along z and has a tensor contribution
which is quadratic in Ĵz:

VLS = V0

[(
α0 + α2

J + 1
2(2J − 1)

)
1̂ − α1

1
2J Ĵz − α2

3
2J(2J − 1) Ĵ

2
z

]
, (2.10)

for a σ− polarisation ϵ = (ex − iey)/
√

2. For the transition at 696.0 nm, the light
shift reduces to:

VLS = V0
(Ĵz + J)(Ĵz + J − 1)

2J(2J + 1) , (2.11)

and cancels out for the two states |m = −J⟩ and |m = −J + 1⟩ with vanishing
Qm = ⟨m|VLS|m⟩ /V0 coefficients. These states, called dark states, do not couple
to light, which protects them from decoherence by spontaneous emission. Dark
states arise for specific choices of optical transition and polarisation and have been
considered in a wide range of applications [102, 103], including the implementation of
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Figure 2.10 – Panel (a): Evolution of the spin distribution Πm under the
one-axis twisting Hamiltonian ℏχĴ2

x , with χ ≈ 2π × 0.9 MHz, induced by a
beam with linear polarisation ϵ = ex, in the presence of a bias magnetic field
Bz ≈ 50 mG. Panel (b): Corresponding evolution of the spin variance ∆J2

z

with a maximum at t ≈ 0.28 µs highlighted by a vertical dotted grey line.
The corresponding spin state, a coherent superposition with nearly equal
maximum populations in |m = ±J⟩, is referred to as a cat state and is shown
above. Panel (c): Evolution of the spin distribution Πm as a function of the
pulse time t. The light shift is induced by a single beam with polarisation
ϵ = cos θ ez + sin θ ey with fixed θ. Panel (d): Fit of the spin distribution in
(c) taking into account defects in the polarisation, notably a deviation of θ
or an additional phase between the two linear components that introduces a
polarisation ellipticity.

artificial gauge fields [79, 104]. We show a single-shot absorption image for a coherent
state of polar angle θ ≈ 100◦ and the resulting values of Qm, combining measurements
of coherent states with various orientations spanning the whole Bloch sphere. We
zoom in on the states close to m = −J and point out that both |m = −J⟩ and
|m = −J + 1⟩ have vanishing expectation values of the light shift, as expected for
dark states.

Information about the polarisation of the beam can also be obtained in a com-
pletely different type of experiment, in the presence of a much weaker bias field
of typically 50 mG, which does not dominate the spin-changing couplings. Atoms
initially polarised in |−J⟩ are subjected to short pulses of light on the microsecond
timescale and their spin state evolves with time. We give some examples:
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A beam at 696.0 nm with linear polarisation ϵ = ex, producing a spin-changing
light shift:

VLS = V0

[(
α0 − α2

J + 1
2J − 1

)
1̂ + α2

3
J(2J − 1) Ĵ

2
x

]
. (2.12)

The first term is diagonal in the Dicke basis and contributes only to a spin-
independent potential. The second term of the form ℏχĴ2

x realises the so-
called one-axis twisting Hamiltonian, well-known for the generation of spin
squeezing [105–107]. At short times χt ≈ 0.05, the spin state is squeezed
while remaining gaussian, with a reduction of a spin projection quadrature at
the expense of an increase in the orthogonal one. At intermediate times, the
spin distribution is featureless and these states are referred to as oversqueezed
states. At time χt = π/2, the state forms a coherent superposition of the
stretched states |m = ±J⟩, which is called a Schrödinger cat state. We show
the spin evolution and the measured cat-like state in Fig. 2.10(a,b), as well as
the evolution of the variance ∆J2

z . The cat-like state has residual populations
in other spin states than the stretched states, due to the non-zero bias magnetic
field.

A beam at 626.1 nm with linear polarisation ϵ = cos θ ez + sin θ ey with θ =
acos

(
1/

√
3
)

≃ 55◦, which is used for the implementation of an atomic Hall
cylinder. The induced light shift is similar to the case of ex polarisation
associated with the one-axis twisting Hamiltonian described above, although
with the change of operator Ĵx → cos θĴz + sin θĴy. Due to the bias field
and the spin projection along z, we do not record the same spin evolution as
for a polarisation ex but recognise interference patterns that are typical of
coherent state superpositions. The evolution of the measured spin projection
distribution is shown in Fig. 2.10(c), together with a fit in (d). We fit the
distribution Πm using the theoretical formula for the spin coupling allowing for
a systematic error in the coupling strength V0 and accounting for defects in the
polarisation. We use the more general polarisation ϵ = cos θ ez + eiϕ sin θ ey

with an additional phase ϕ between the two linear components, related to
the polarisation ellipticity. The three parameters V0, θ and ϕ are essential to
reproduce the experimental data with the numerical simulations.

A circularly-polarised beam at 696.0 nm propagating along the axis of the bias
magnetic field. It induces no spin evolution for an initial spin state |−J⟩
because the light shift is diagonal in the basis of Zeeman sublevels |m⟩, as
shown in Eq. 2.10.

This Chapter has described our experimental setup and how it can be used for the
manipulation of spin systems. In the next Chapter, we present a project about the
notion of entanglement in a large spin system, which relies on the optical coupling
to excited levels with different total angular momentum J ′. This work illustrates
some of the off-resonant light shifts described above.





3
Partitioning dysprosium’s electronic spin to

reveal entanglement

This Chapter briefly describes our work on the notion of entanglement in non-
classical states prepared in the electronic spin of dysprosium atoms. We refer
interested readers to the thesis of Tanish Satoor for a more detailed discussion.

This work has been published in the following publication [108]:
Partitioning dysprosium’s electronic spin to reveal entanglement in non-classical
states
T. Satoor*, A. Fabre*, J.-B. Bouhiron, A. Evrard, R. Lopes, S. Nascimbene
Physical Review Research 3 (1), 043001 (2021)
* These authors contributed equally
The full text of the article is available in Appendix A.

Entanglement is a fundamental property of quantum mechanics, which involves
non-classical correlations between the constituents of the total system and expresses
non-locality. Schrödinger described entanglement as a "spooky" feature of quantum
compounds and a situation where "the best possible knowledge of a whole does not
include the best possible knowledge of its parts" [109]. First highlighted in a seminal
work by Einstein, Podolsky and Rosen [110], a test of its existence was proposed
by Bell [111] with a set of inequalities and has been experimentally realised since
then [112]. More recently, the interest in this notion has renewed with developments
in quantum technologies, including applications in quantum computing [113, 114],
and has been highlighted by the 2022 Nobel Prize.

The notion of entanglement has been extensively studied in the context of many-
body systems [115]. Experimental contributions include systems of distinguishable
components, such as photonic systems [116], superconductors [117], trapped ions [118]
and Rydberg atom arrays [119], producing highly entangled states of tens of qubits.
The ability to individually probe and even address the particles facilitates the
observation of entanglement. In systems of indistinguishable particles, such as an
ensemble of interacting atoms [120], where individual addressing is not possible,
entanglement in the many-body quantum state is revealed by global properties, such
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as the squeezed spin quadrature [106, 121–123] and the quantum enhancement of
metrological sensitivity [107, 124, 125].

In this Section, we describe our study of non-classical correlations and entangle-
ment within dysprosium’s large spin J = 8, based on its formal equivalence with
a system of N = 2J indistinguishable qubits of spin 1/2, symmetric upon particle
exchange. Large-spin systems are known to host quantum states with non-classical
correlations [126–128]. However, the notion of entanglement is disputable as long
as the angular momentum J is conserved, since the set of qubits cannot be parti-
tioned. For this reason, our work contributes to a discussion about non-classicality
and entanglement in systems of indistinguishable constituents [129]. We first recall
some basic elements about the description of entanglement and its observation. We
then develop our protocol to partition our system into subsystems of 2(J − 1) and
2 qubits, using the optical coupling to an excited state with angular momentum
J ′ = J − 1, which encodes the remaining 2 qubits in the photon polarisation. In
a complementary set of experiments, starting with a quantum state in an excited
level with spin J ′ = J + 1, we study the effect of decoherence and interpret the
spontaneous emission of a photon as the loss of a qubit pair in a random state.

3.1 Notion of entanglement

A pure state is said to be entangled if it cannot be expressed as a product state with
respect to a partition in subsystems A and B as |ϕA⟩⊗ |ϕB⟩, contrary to the so-called
separable states. This definition generalises to the case of mixed states, represented
by a density matrix. In general, the determination of the degree of entanglement
is challenging because it requires non-linear operations [130]. Interestingly, for a
two-qubit system, a measure of entanglement called the concurrence [131] has an
explicit form that simplifies its computation. In systems with a larger number
of components, an alternative approach relies on simply proving the presence of
entanglement. For quantum states close to a known entangled state, an entanglement
witness [132] can be constructed by comparison between the two. Another criterion
for entanglement is based on the property of separable states that the global state
is more disordered than its parts [133]. This translates into a condition on the
sign of the conditional entropy defined with respect to a partition. The inequality
S(A|B) ≡ S(A,B) − S(B) < 0 proves the presence of entanglement for any choice
of entropy measure S. In our experiments, we use the Rényi entropy of infinite
order [134], or min-entropy, S∞(ρ) = − log λmax(ρ) where λmax(ρ) is the maximum
eigenvalue of the density matrix ρ, which corresponds to the maximum possible
overlap of ρ with a pure state.

An essential characteristic of multipartite systems arises from the existence of
inequivalent classes of entanglement, which exhibit different properties. This was
first highlighted in three-qubit systems [135, 136], which host two inequivalent
entanglement classes represented by the so-called GHZ state, or N00N state or
Schrödinger cat state depending on the context, and the W state [137–139]. These
two classes also exist in systems with a larger number N = 2J of compounds, with
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the equivalent Schrödinger cat state and W state:

|W ⟩ = 1√
N

( |↑↓↓ · · ·⟩ + |↓↑↓ · · ·⟩ + |↓↓↑ · · ·⟩ + · · · ) = |J,m = −J + 1⟩

|cat⟩ = 1√
2

( |↓↓↓ · · ·⟩ + |↑↑↑ · · ·⟩) = 1√
2

( |J,m = −J⟩ + |J,m = J⟩)
(3.1)

We used the formal equivalence between the quantum states of N = 2J particles of
spin 1/2 with particle-exchange symmetry and those of the Zeeman J-manifold, to
represent these two states using the Dicke basis. These paradigmatic states have
attracted considerable attention and have been realised in various platforms. On
one side, the W state hosts pairwise entanglement and is known for its robustness
against decoherence and in particular particle loss. On the other side, the cat state
is often described as maximally entangled and features what is referred to as genuine
multipartite entanglement, which strongly suffers from decoherence. A hallmark of
this state is that any of its subsystems is classical.

3.2 Pair Husimi function
Our protocol to probe entanglement upon partition of the spin J in the electronic

ground state relies on its interpretation as a system of N = 2J qubits with spin
1/2 in a state symmetric upon particle exchange. In this analogy, a state of the
Dicke basis |J,m⟩ is composed of J − m qubits in |↓⟩z and J + m qubits in |↑⟩z.
We perform a 2(J − 1) : 2 partition via the coupling to an excited level of spin
J ′ = J − 1. The light polarisation can be represented as a symmetric two-qubit
state, with a total angular momentum L = 1, via its decomposition on the three
usual polarisations σ± and π. The coupling to light is polarisation-dependent and
proportional to ⟨ϵ∗|ρpair|ϵ∗⟩ with |ϵ∗⟩ the complex-conjugate of the polarisation state
and ρpair = Tr2J ′(ρ) the pair density matrix, obtained by tracing out the remaining
2J ′ qubits. This can be understood in the case of resonant light as an annihilation
process with the removal of qubit pair in state |ϵ∗⟩ upon absorption of a photon in
state |ϵ⟩. In practice, our measurements are performed using off-resonant light shifts
with a σ− polarisation, corresponding to |ϵ∗⟩ = |↑↑⟩z. For this choice of polarisation,
the expectation value z ⟨ϵ∗|ρpair|ϵ∗⟩ = ⟨↑↑|ρpair|↑↑⟩z is also known as the pair Husimi
function Qpair(z) along the direction z, related to the probability of finding two qubits
in |↑⟩z. This function completely characterises the qubit pair state when known
along all directions n. In the light shift context, it is simply written ⟨V ⟩ /V0, with
⟨V ⟩ the light shift computed for the density matrix ρ and the σ− polarisation. For a
state of the Dicke basis |J,m⟩, we recover the Qm coefficients introduced in Section
2.2, whose measurements were presented in Fig. 2.9. Since they form a basis of the
Hilbert space in the J-manifold, we can deduce the pair Husimi function of any
quantum state along an axis n from the measurements of the spin distribution:

Qpair(n) =
∑
m

QmΠm(n). (3.2)

Interestingly, we can compute the tools presented in Section 3.1 using the pair
Husimi function only. On one hand, the non-classical character of the qubit pair
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Figure 3.1 – Panel (a): Measured spin projection probabilities Πm as a
function of the polar angle θ, for the W state. The upper panel represents
the considered spin-J state on the Bloch sphere, the red circle indicates
the spanned measurement projection axis. Panel (b): Pair Husimi function
Qpair computed from the data in (a). The line corresponds to the expected
function Qpair(θ) for the W state. Panel (c): Distribution Cn of non-classical
correlations as a function of the polar angle θ. The points with Cn > 0
evidence the non-classicality of the qubit pairs of the W state.

state is equivalent to finding an orientation n for which the non-classical measure
Cn = 1 −

(√
Qpair(n) +

√
Qpair(−n)

)2
is strictly positive, similarly to the bipartite

entanglement witness [140]. The concurrence of the qubit pair is then expressed as
the maximum of the non-classical measure Cn, measured for all orientations. This
relation was conjectured and numerically checked for randomly generated states [141].
On the other hand, the conditional entropy requires the computation of two terms.
The entropy of the qubit pair state is deduced from the quantum tomography of the
state [142], reconstructed from the pair Husimi function along all possible orientations.
The entropy of the state of the total system is estimated by techniques that are
suited to the entanglement class to which the quantum state belongs.

3.3 Entanglement in the W and cat states
We focus on two paradigmatic states, the W state and the Schrödinger cat state,

for which we first compute the pair Husimi function. The W state is prepared by
applying a strong quadratic light shift, diagonal in the Dicke basis and acting on all
spin states except the two spin states |m = −J⟩ and |m = −J + 1⟩ as in Eq. 2.11.
The resulting energy splitting between neighbouring Dicke states is uneven and
increases with m, and we can restrict the dynamics to the two dark states. Starting
with atoms polarised in |m = −J⟩, a resonant radio-frequency π-pulse brings the
system to |m = −J + 1⟩ with a maximum fidelity with the W state of 0.91(1).
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Figure 3.2 – Panel (a): Measured spin projection probabilities Πm for a cat
state, as a function of the polar angle θ. The azimuthal angle ϕ = 0.86(5) rad
is chosen such that the two coherent state Husimi functions destructively
interfere for odd m values around θ = π/2. Panel (b): Distribution Cn
inferred from the probabilities shown in (a). The solid line is the expected
variation for a perfect cat state. Panel (c): Projection probabilities Πm

measured after a Larmor rotation of angle ϕ followed by a second non-linear
evolution. Panel (d): Evolution of the mean sign of even projections ⟨Σ⟩
deduced from (c). The solid line is a fit with a Fourier series.

The cat state is prepared using the one-axis twisting Hamiltonian in Eq. 2.12, with
parameters similar to the example of Fig. 2.10(c,d). We confirm dominant population
of the stretched states Π−J = 0.38(2) and ΠJ = 0.42(2).

The prepared W state features a measured concurrence of its qubit pairs of
C = 0.089(5), smaller than the maximal value of 1/J = 0.125 due to experimental
defects in the state preparation. The strictly positive value of the concurrence
demonstrates the non-classicality of a qubit pair of the W state that highly breaks
the symmetry between the basis states |↑⟩z and |↓⟩z. The measurement of the spin
distribution along all axes n and the resulting non-classical measure Cn are presented
in Fig. 3.1. Using the projection probability Π−J+1 = 0.91(1) with the Dicke state
|m = −J + 1⟩ as a lower bound on the maximum overlap λmax(ρ) with a pure state
and state tomography for the estimation of λmax(ρpair), we deduce the conditional
entropy S∞(2J ′|2) < −0.03(1), a proof of the entanglement of the W state.

For the prepared cat state, the non-classical measure Cn remains negative for all
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orientations n and its pair density matrix does not exhibit a non-classical behaviour,
which is a characteristic feature of genuine multipartite entanglement. The calculation
of the conditional entropy requires an estimate of the maximum eigenvalue λmax(ρ),
for which a lower bound follows from the overlap with a perfect cat state O =
(Π−J + ΠJ + 2|ρ−J,J |)/2. The extremal coherence |ρ−J,J | can be measured from any
observable upon Larmor rotation around z. The Fourier coefficient at the frequency
2J times the Larmor frequency contains the information about the extremal coherence,
independently from other coherences [143]. We consider an observable based on
repeating a non-linear operation, the one-axis twisting evolution used to produce a
cat state. We choose the operator Σ defined as the sign of the spin projection on
even states as an observable, benefiting from the parity symmetry of the one-axis
twisting Hamiltonian. It gives a lower bound of 0.247(5) on λmax(ρ), which leads to a
condition entropy S∞(2J ′|2) < −0.12(3) when combined with the tomography of the
pair density matrix. This proves entanglement more evidently than for the W state.

3.4 Decoherence via qubit pair loss
In a complementary set of experiments, we consider the effect of decoherence

on the entanglement of the total system and the non-classical character of the pair
density matrix. We focus on decoherence upon qubit pair loss that naturally appears
in our system via spontaneous emission from an electronic excited level of spin
J ′ = J + 1 to the ground level of spin J , with two virtual qubits missing. For
an entangled quantum state ρ′ in the excited level, taking into account the three
polarisation components e−, ez and e+, corresponding to σ−, π and σ+ respectively,
the state after spontaneous emission reads:

ρ =
∑

eu=e−,ez ,e+

⟨eu|ρ′|eu⟩ = Tr2 ρ
′, (3.3)

corresponding to the loss of an arbitrary qubit pair. The spontaneously emitted
photon has an arbitrary polarisation which encodes the state of the removed qubit
pair. We do not retrieve the photon but record the spin state ρ after decay.

The preparation of quantum states in the excited level relies on the resonant
optical coupling to the transition at 626.1 nm, for a given choice of initial quantum
state in the ground level and light polarisation. We perform a π-pulse that promotes
the atoms to the electronic level with a fidelity of 0.98, which we check by measuring
the mean velocity along the propagation axis of the resonant field as a function
of the pulse duration. An example of Rabi oscillation monitored via the atom
recoil upon light absorption is shown in Chapter 1, in Fig. 1.2, in the case of atoms
initially polarised in |J,m = −J⟩ with π-polarised resonant light. This protocol
prepares a W state in the excited level |J ′,m′ = −J ′ + 1⟩, which we probe via
measurements of the spin state in the ground level, after waiting for spontaneous
emission to occur. We mainly measure populations in the two states |J,m = −J⟩ and
|J,m = −J + 1⟩, as expected from the selection rule |m′ −m| ≤ 1 for single-photon
processes, with a larger population in the W state. We compare our measurements
with the expected spin state after decay and take into account the defects in the
state preparation due to spontaneous emission during the resonant pulse, by solving
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Figure 3.3 – Panel (a): Scheme of the preparation of the Schrödinger
cat state in the excited electronic level. Given the small values of their
Clebsch-Gordan coefficients, we neglect the couplings between |m = ±8⟩
to |m′ = ±7⟩. Panel (b): Scheme of the subsequent spontaneous emission.
Panel (c): Spin projection probabilities, as a function of the phase ϕ of the
Larmor rotation before the second non-linear evolution. Panel (d): Evolution
of the corresponding sign observable ⟨Σ⟩, together with a fit with a Fourier
series.

the master equation for the two electronic levels following the treatment in Section
1.2.1. We quantify the non-classical character of qubit pairs by measuring the pair
Husimi function and computing the non-classical measure along z. This gives a lower
bound on the concurrence C = 0.104(3), to be compared to the expected concurrence
C = 1/(J + 1) ≈ 0.111 in the initial state. This highlights the robustness of the
pairwise non-classical behaviour of the W state.

We now contrast this property with the fragility of coherent superpositions
of distant states in phase space [144]. The preparation of a cat state consists of
producing a cat state in the ground manifold and then applying resonant light
with a linear polarisation along x, which predominantly couples the stretched states
|m = ±J⟩ to the states |m′ = ±J ′⟩. Using the non-linear protocol with the sign
observable Σ, we estimate the extremal coherence |ρ−J,J | to be 0.006(10), indicating
an absence of coherence. Associated with the populations measured in the stretched
states, the conditional entropy is positive and does not demonstrate entanglement.
The complete loss of coherence can be interpreted by the spontaneous emission from
|m′ = −J ′⟩ or |m′ = J ′⟩ by a photon with σ− or σ+ polarisation respectively. Since
these polarisations are orthogonal, the photon polarisation holds complete ’which
path’ information [145, 146] about the spin state, which destroys the coherence
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between the two paths.
A natural extension of this work involves the retrieval of the spontaneously

emitted photon whose polarisation is entangled with the quantum state in the
ground level. The photon can be sent over large distances and used as a resource for
entanglement manipulation and quantum communication [147, 148]. This Chapter
has demonstrated an application of spin-dependent light shifts to manipulate a purely
spin system. In the following Chapters, we will discuss the emerging physics when the
spin degree of freedom is coupled to a spatial dimension, which effectively engineers
an artificial gauge field for neutral particles.



4
Theory of the two-dimensional quantum

Hall effect

Quantum Hall systems belong to a class of topological insulators that break the
time-reversal symmetry. Their central position stems from the early experimental
discovery of the quantised conductivity in metals [2]. The problem of charged particles
subjected to a magnetic field has been investigated extensively in experiments and
with various theoretical approaches. The effect of a magnetic field can be reformulated
in terms of a complex phase for the particle wavefunction with physical consequences,
the so-called Aharonov-Bohm phase [149]. Its effect is observable in interference
experiments such as the well-known case of a double-slit experiment with charged
particles passing around an infinite solenoid, where this phase cannot be gauged
away. In modern physics, it is reinterpreted as a geometric phase over a closed
contour, referred to as a Berry phase, a more general concept for periodically-driven
systems [150].

In the first Section, we derive the Berry phase from the evolution of a wavefunction
under a time-periodic Hamiltonian. This geometric phase, analogous to the Aharonov-
Bohm phase for a charged particle, opens the way toward the implementation of
gauge fields for neutral particles using the adiabatic following of a dressed state.
We will discuss this approach from an experimental point of view in Chapter 7. In
the second Section, we describe the physics of a Hall system, in the classical and
quantum cases. We focus on the quantised transverse response, at the source of
the integer quantum Hall effect. Arguments supporting the quantisation and its
robustness arise from different approaches. The third Section treats this problem
in cylindrical geometry, which connects to our implementation of an atomic Hall
cylinder. The fourth Section is dedicated to topological pumps, where a quantised
current is observed under periodic driving of an external parameter. We relate this
concept to topological insulators in higher dimensions, where the quantisation of the
bulk response is protected by the topology of the system. We conclude this Chapter
with a brief presentation of the fractional quantum Hall states, in the presence of
repulsive interactions.
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Figure 4.1 – Panel (a): A closed loop (C ) in parameter space M, represented
as a two-dimensional space parametrised as (λ1, λ2). The direction of the
evolution of the parameter in time is represented by an arrow. Panel (b):
The spectrum of the Hamiltonian Hλ along the closed loop depicted in panel
(a), parametrised by time varying from 0 to the cycle duration T . Due to
the time periodicity (λ(T ) = λ(0)), the eigenenergies at t = 0 and t = T
are equal. The adiabatic theorem requires the absence of energy crossing for
the band where the particle is initialised, as is depicted for the lowest band
here.

4.1 Geometric phase
We first introduce the notion of the geometric phase, generally referred to as

Berry phase [150]. This notion is related to the description of the adiabatic evolution
of a quantum system under a time-periodic Hamiltonian. Briefly, a quantum system
in a given eigenstate ψn(t) (with label n and associated energy En(t)) of a time-
dependent Hamiltonian H(t) remains in this eigenstate under adiabatic evolution,
while acquiring a complex phase. The first contribution to this phase is trivial and
comes from the time integration of the energy (divided by ℏ) of the instantaneous
eigenstate; it is the so-called dynamical phase as it directly depends on the time
evolution. The second contribution is the Berry phase and cannot be gauged out for
a closed-loop evolution. It is a gauge-invariant property of the system, which is thus
physical and measurable. This phase is also called the geometric phase because it
depends on the path followed in the parameter space, but not on the time-dependence
of the evolution.

4.1.1 Adiabatic theorem
We consider an Hamiltonian Hλ, parametrised by the (possibly multidimensional)

parameter λ that lives in a parameter space M, as represented in Fig. 4.1(a). We
study the evolution of quantum states under a time-variation of the parameter λ(t).
In particular, we focus on an evolution of the parameter which is arbitrarily slow
and follows a closed loop in the space M with a period T : λ(T ) = λ(0).

The evolution under a time-dependent Hamiltonian is generally non-trivial. How-
ever, due to the slow variation in parameter space, the quantum adiabatic theorem
describes it simply: if the system is initiated in an eigenstate of the Hamiltonian at
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time t = 0, the quantum state remains in the corresponding instantaneous eigenstate
of the Hamiltonian Hλ(t), under the assumption that there is no gap closing during
the evolution. This requires that the eigenstate remains non-degenerate at all times
t during the evolution.

Now, in the case of cyclic evolution, if the quantum state is initially an eigenstate
of Hλ(0), the adiabatic theorem implies that the final quantum state must be the
same as the initial quantum state, up to a phase:

|ψ(T )⟩ = eiΦ |ψ(0)⟩ . (4.1)

As mentioned previously, two terms contribute to the accumulated phase Φ, as we
will calculate in the following. An explicit condition for the validity of the adiabatic
theorem will be derived. We follow a standard derivation using the adiabatic
theorem [151, 152]. We explicitly define the eigenstates of the Hamiltonian Hλ: ψ(n)

λ ,
associated with the eigenenergies E(n)

λ , labelled by the integer n (see Fig. 4.1(b)).
At each time t, we decompose the quantum state on the basis of instantaneous
eigenstates:

|ψ(t)⟩ =
∑

n

cn(t) |ψ(n)
λ(t)⟩ . (4.2)

The quantum state evolves according to the Schrödinger equation:

iℏd |ψ(t)⟩
dt = Hλ(t) |ψ(t)⟩ . (4.3)

In the following, for simplicity, we do not explicitly indicate the time-dependences.
By projecting onto the instantaneous eigenstates ⟨ψ(m)

λ | ·, for integers m, we obtain
the equations:

iℏ
(
ċn + ℏ

∑
m

λ̇ ⟨ψ(m)
λ |∇λψ

(n)
λ ⟩ cm

)
= E

(n)
λ cn. (4.4)

We rewrite it as a system of coupled linear differential equations of the coefficients
cn(t):

iℏċn = E
(n)
λ cn − ℏ

∑
m

α
(n,m)
λ cm with α

(n,m)
λ = iλ̇ ⟨ψ(m)

λ |∇λψ
(n)
λ ⟩ , (4.5)

where |∇λψ
(n)
λ ⟩ ≡

(
∂λ1 |ψ(n)

λ ⟩ , ∂λ2 |ψ(n)
λ ⟩ , . . .

)
. For simplicity, we also use the fol-

lowing compact form, which should be understood as a shortcut for the complete
expression written above: α(n,m)

λ = i ⟨ψ(m)
λ |∂tψ

(n)
λ ⟩.

Intuitively, |∂tψ
(n)
λ ⟩ corresponds to the modified eigenstate labelled n, under the

effect of an infinitesimal time variation of the parameter λ(t). Its inner product
⟨ψ(m)

λ |∂tψ
(n)
λ ⟩ with the eigenstate labelled m characterizes the coupling between

the two eigenstates due to the time-dependence of the Hamiltonian. This coupling
strength must be compared to other natural scales of the system such as the energy dif-
ference between eigenstates. The smallest energy scale is given by the smallest energy
difference between the energy level n and all the others: ℏω(n,min)

λ = minm |E(n)
λ −E(m)

λ |.
At zeroth order, the adiabatic approximation consists in neglecting the coupling
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between the different eigenstates under the condition: maxm |α(n,m)
λ | ≪ ω

(n,min)
λ . The

system of coupled differential equations significantly simplifies:

iℏċn(t) =
(
E

(n)
λ − ℏα(n,n)

λ

)
cn(t),

ċm(t) = 0 for m ̸= n.
(4.6)

As we neglect all couplings between the eigenstates, only one eigenstate is
populated during the time evolution. Now, by integrating Eq. 4.6, we get two phases
that contribute to the evolution:

ċn(t) = eiΦdyneiΦgeocn(0) with


Φdyn = 1

ℏ

∫
C
E

(n)
λ dt,

Φgeo =
∫ λ(t)

λ(0)
A(n)

λ dλ,

(4.7)

where we introduced the so-called Berry connection:

A(n)
λ = i ⟨ψ(n)

λ |∇λψ
(n)
λ ⟩ . (4.8)

The state after a time t is modified with respect to the initial state only by a phase
factor with two distinct contributions. The dynamic phase Φdyn comes from the
time integration of the energy of the instantaneous eigenstate along the parameter
path, and as a consequence, it depends on the time evolution along the path. The
geometric phase Φgeo does not, however, depend on time, but only on the path in
parameter space. At a given time t, these phases could be cancelled out by the right
choice of gauge transformation. However, for a closed path in parameter space, the
accumulated phase cannot be gauged out. The expression for the geometric phase
along a closed loop can be rewritten using Stokes theorem:

Φgeo =
∮

C
A(n)

λ dλ =
∫∫

Σ
Ω(n)

λ dn, (4.9)

where we have defined the so-called Berry curvature (for a three-dimensional param-
eter space):

Ω(n)
λ = ∇λ × A(n)

λ

= i ⟨∇λψ
(n)
λ | × |∇λψ

(n)
λ ⟩ .

(4.10)

An alternative formulation of the Berry curvature is based on a summation
over all other eigenstates which is numerically more tractable. As such, the Berry
curvature can be seen as a local description of the residual effect of the eigenstates
that have been projected out in the quantum adiabatic theorem. Using the closure
relation ∑n |ψ(n)

λ ⟩⟨ψ(n)
λ | = 1 and the eigenvalue equation Hλ |ψ(n)

λ ⟩ = E
(n)
λ |ψ(n)

λ ⟩, the
Berry curvature between two coordinates µ and ν of the multidimensional parameter
space reads as follows:

Ω(n)
λ,µν = i

∑
n′ ̸=n

⟨ψ(n)
λ |∂λµHλ|ψ(n′)

λ ⟩ ⟨ψ(n′)
λ |∂λνHλ|ψ(n)

λ ⟩ + (µ ↔ ν)(
E

(n′)
λ − E

(n)
λ

)2 (4.11)
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The Berry connection A(n)
λ is a gauge-dependent quantity as, under a gauge

transformation of the form |ψ(n)
λ ⟩ → eiζ(λ)/ℏ |ψ(n)

λ ⟩ with ζ(λ) an arbitrary smooth
function, it is replaced by:

A(n)
λ → A(n)

λ − ∇λζ(λ). (4.12)

Considering the rotational of this equation, we immediately obtain that the
Berry curvature Ω(n)

λ is gauge-invariant. Then, along a given path C from λi to λf ,
the geometric phase changes as: Φgeo → Φgeo + ζ(λi) − ζ(λf). For a closed loop
λi = λf , since a quantum-mechanical wavefunction must be single-valued, we get
that ζ(λi) − ζ(λf ) has to be an integer multiple of 2π. This reasoning demonstrates
that the geometric phase along a closed loop, or Berry phase, Φgeo is a gauge-invariant
physical quantity. This phase can also be related to the model of charged particles
(of charge q) in the presence of a magnetic field B(r), deriving from a vector potential
A(r). The particle wavefunction has a conserved norm, but accumulates a phase
along a closed loop, called the Aharonov-Bohm phase:

ΦAB = q

ℏ

∮
C

A(r)dr = q

ℏ

∫∫
Σ

B(r)dn. (4.13)

This analogy with the physics of a charged particle in a magnetic field extends to
the Berry connection and curvature. In particular, in the case where the parameter
λ is the particle position r, we have the direct correspondence between the Berry
connection and a vector potential and between the Berry curvature and the associated
magnetic field, up to a factor q, the particle charge, as we will see in the next Section.

In the derivation above, we have assumed that there is no energy crossing between
the eigenstate of interest and any of the other eigenstates of the Hamiltonian. In
Eq. 4.11, we notice that terms of the summation diverge at energy crossings. An
extension of this approach is to consider sets of degenerate eigenstates. In this
case, the dynamic is no longer restricted to a single eigenstate, but to a subspace
spanned by these degenerate eigenstates. This naturally leads to non-abelian Berry
curvatures [151].

4.1.2 Adiabatic following of a dressed state
This approach has been extensively used in the context of artificial gauge fields

with the notion of adiabatic following of a dressed state [153–155]. The light-matter
interaction mediates an effective Hamiltonian of the motion of neutral particles that
mimics the effect of a magnetic field on charged particles. The Berry phase acquired
along a given path is associated with a gauge field with a scalar potential W and a
vector potential A, such that, in the limit of slow dynamics of the external degrees
of freedom, the Hamiltonian for the centre-of-mass reads:

Hc.o.m. = (p − A(r))2

2M + W(r) + E0(r) + Vext(r), (4.14)

where M is the atomic mass, q = 1 is the effective charge of the particle, E0 is the
energy of the spin part of the Hamiltonian and Vext is a spin-independent potential. In
experiments with neutral particles, in the presence of interactions, vortex lattices have
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been observed in cold atoms [37] and spin-orbit coupling has been engineered [156]
using dressed states. We will revisit this approach in Chapter 7 where we will discuss
a possible implementation in our experiment. The strength of the artificial magnetic
field, which increases with J , benefits from the large spin J = 8 of dysprosium atoms
in their electronic ground state, especially compared to past implementations of a
similar protocol with alkali atoms.

Here we derive how the Berry phase leads to an artificial gauge [79, 153, 157]. The
treatment that we perform follows the adiabatic approximation where we explicitly
separate the internal and external degrees of freedom. We assume a time-independent
but spatially-varying external field U(r) that couples the internal states, such that
we parametrise the Hamiltonian by the position λ = r.

H =
(

p2

2M + Vext(r)
)
1̂ + U(r), (4.15)

with 1̂ the identity operator acting on the internal Hilbert space only and Vext a
potential that does not depend on the internal state. We describe the wavefunction
of an atom |ψ(r, t)⟩ as a spinor and the Schrödinger equation projected on a single
internal state becomes:

iℏ∂tϕl =
∑

n

⟨χl|
p2

2M |χn⟩ + Elϕl + Vext with |ψ(r, t)⟩ =
∑

l

ϕl(r, t) |χl(r)⟩ ,

(4.16)
where |χl(r)⟩ is the local eigenstate (indexed by an integer l) of the potential
U(r) acting on the internal states only, taken at the position r, associated with
the energy El(r), and ϕl(r, t) is the time-dependent probability amplitude of an
atom to be in the internal state indexed l, at the position r. We obtain a system
of coupled differential equations of the probability amplitudes ϕl(r, t), which we
solve using the adiabatic approximation for an atom initialised in an eigenstate
indexed by l. This approximation is valid in the case of a sufficiently slow motion
of the atom such that the coupling with the other internal eigenstates is negligible.
Under this assumption, only the eigenstate labelled by the integer l is populated:
ϕl(r, t) ̸= 0. Our problem reduces from a system of coupled differential equations
to a single differential equation where we simply need to compute the kinetic term
⟨χl| p2(ϕl |χl⟩)/(2M). The Hamiltonian for the amplitude ϕl(r, t) in the internal
state l has the compact form:

Hl = (p − Al)2

2M + Wl + El + Vext, with


Al = iℏ ⟨χl|∇χl⟩ ,

Wl = ℏ2

2M
∑
n̸=l

| ⟨∇χn|χl⟩|2.
(4.17)

The vector Al is the Berry connection, playing the role of a vector potential for a
particle of charge q = 1. The energy Wl is an additional potential, called scalar
potential, which accounts for the kinetic energy of the micromotion induced by the
presence of all the other eigenstates, although not populated. This interpretation
is reminiscent of the one we provided for the adiabatic theorem. Indeed, even
when the adiabatic condition is well satisfied and only one eigenstate of the internal
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Hamiltonian is populated, the structure of the spectrum created by the spatially-
varying potential manifests itself in the dynamics of the particle through the vector
potential, with a phase accumulation along a given path, and through the scalar
potential, with a spatially-varying energy term.

In particular, proposals have studied the case of a dark state that is not coupled
to light, such that El = 0. Dark states are experimentally favourable as the internal
energy term can be energetically dominant otherwise and it suppresses light-induced
heating for implementations using light-matter coupling. Here, we focused on the
case of non-degenerate states, where abelian vector potentials appear. As stated
earlier, extending the discussion to a set of degenerate states, which have to be
treated on equal footing, non-abelian gauge fields can be designed [157].

4.2 Hall effect
Quantum Hall systems are considered as archetypal examples of topological

insulators, which break the time-reversal symmetry, and their study could provide a
better understanding of the physics of topological insulators. Part of the peculiarity
of Hall physics derives from its (apparent) simplicity, as the problem is easily
formulated. Interest in this topic has not faded over the decades, as open questions
remain in the description of the behaviour of strongly-interacting particles in the
presence of a strong magnetic field. Key properties of these systems include quantised
transverse responses [158] and the occurrence of chiral edge modes protected from
backscattering [7], which have been both predicted and experimentally observed in
various platforms ranging from solid-state physics to photonics, or cold atoms [159–
163].

In the following, we start with a description of the classical Hall effect and then
move on to the quantum Hall effect, with a brief reminder of the textbook treatment
of the problem in the Landau gauge. We give arguments supporting the quantisation
of the conductivity. We mention that the extension of our arguments to realistic
situations, such as in metallic samples, is however not straightforward, and we refer
to theoretical approaches that demonstrate the quantisation of the Hall conductivity
in the presence of edges and disorder, for non-interacting electrons. This Section is
significantly inspired by the following references [164–167].

4.2.1 Classical Hall system
We now describe the classical motion of an electron as a point-like particle of mass

M and charge q = −e, with e the elementary charge, whose position is constrained
to evolve in a (x, y) plane. A magnetic field B = Bez and a uniform electric field
E = Eey are applied. The classical trajectory immediately derives from the equation
of motion of the electron, with the Lorenz force:

M v̇ = q(v × B + E). (4.18)

The particle motion, represented in Fig. 4.2, is a superposition of a cyclotron oscilla-
tion, set by the cyclotron angular frequency ωc = e|B|/M , and a velocity drift along
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Figure 4.2 – Cyclotron orbit of a negatively charged particle in the presence
of a magnetic field B, in the absence of an electric field in panel (a) and
the presence of an electric field pointing along y in panel (b). The orbits
are computed using the classical equations of motion, for arbitrarily chosen
initial velocities, phase and radius. The cyclotron motion shows no net
drift when averaging it over a period of 2π/ωc, while a uniform electric field
induces a linear drift of the position along the direction orthogonal to the
electric and magnetic fields.

vdrift = E × B/B2 = E/Bx:

x(t) = x0 −R sin(ωct+ ϕ) + Et/B,
y(t) = y0 +R cos(ωct+ ϕ),

(4.19)

where the initial position (x0, y0), the oscillation radius R and the phase ϕ can take
any value a priori.

Although in the absence of a magnetic field, the electric field accelerates a
charged particle along its direction, we note that the drift occurs along an axis
that is orthogonal to both the magnetic and electric fields. On average, in the
absence of impurities, there is no net position drift induced by the cyclotron motion
(by averaging its contribution over a period of the cyclotron angular frequency).
Then the only contribution is the transverse drift induced by the electric field in
combination with the magnetic field, and the electronic current density, for a system
with a uniform electronic density ne, reads: j = neqv = neqE/Bx. The conductivity
describes the (linear) conversion of an electric field into a current density j = σE,
such that we obtain zero longitudinal conductivity and σxy = neq/B. This formula
does not indicate the formation of conductivity plateaus.

4.2.2 Quantum Hall system
The Hamiltonian in quantum mechanics, when considering only its orbital part

and not the spin part of the electron, is given by:

H = (p − qA(r))2

2M (4.20)

where A(r) is a vector potential associated with the magnetic field B = ∇×A(r). The
velocity operator is derived from the Heisenberg equation of motion v = i/ℏ[H, r] =
(p − qA(r))/M , and we define the kinetic momentum π = Mv. Compared to the
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canonical momentum p, its components do not commute: [πx, πy] = iℏqB = −iℏ2/ℓ2
m

with ℓm =
√
ℏ/(e|B|) the so-called magnetic length.

In the absence of a magnetic field, the translations are generated by the momentum
operator, whose components commute. Now, in the presence of a uniform magnetic
field, the system is still translationally invariant, which imposes that the translation
operator commutes with the Hamiltonian. The two natural momentum operators
that have appeared so far, namely the canonical one p and the kinetic one π, do
not commute with the Hamiltonian. The correct generator of magnetic translations,
which commutes with the Hamiltonian of Eq. 4.20, has been introduced by Brown
and Zak [168, 169] for the symmetric gauge, and then extended to any gauge [170]:

κ = p − q(A − B × r) = π + qB × r. (4.21)
It is also referred to as the pseudomomentum and defines the magnetic translation
operator T (δ) = exp(−iδ · κ/ℏ), for a position vector δ. To prove that the pseudomo-
mentum does generate the magnetic translation group, we check that the operators
T (δ) commute with the Hamiltonian. Using the usual commutation relations of
the position and momentum operators1, we show that the two components of the
pseudomomentum do not commute [κx, κy] = −iℏqB and that the commutators
for the three components of the kinetic momentum and pseudomomentum verify
[πi, κj] = 0 (i, j = x, y, z). As a consequence, the pseudomomentum κ and the
generated translation operators commute with the Hamiltonian.

These commutation relations imply the non-commutation of the translation
operators of vectors ri (i = 1,2) if these vectors are not collinear:

T (r1)T (r2) = T (r2)T (r1) exp
(
−i(r1 × r2)z/ℓ

2
m

)
, (4.22)

using the Baker–Campbell–Hausdorff formula. Now, if we consider a parallelepipedic
path that forms a closed loop T (−r1)T (−r2)T (r1)T (r2), using the commutation
relation, we simply get a phase term exp(−i(r1 × r2)z/ℓ

2
m), which is analogous to an

Aharonov-Bohm phase accumulated along a closed loop.

4.2.3 Landau gauge
The Hamiltonian of Eq. 4.20 can be diagonalised in different choices of gauge

that are all related to the same physical properties. In this Section, we recall a
well-known treatment of the quantum Hall effect, while the next Section will present
an approach that is less frequently found in textbooks and directly connects to our
implementation of an atomic Hall cylinder. Here, we consider this system in the
so-called Landau gauge, where the vector potential is oriented along y and varies
linearly as a function of x, as A(r) = Bxey:

H = p2
x

2M + (py − qBx)2

2M . (4.23)

In this gauge choice, the magnetic translation operators along x and y reduce to the
following expressions:

Tx0 = exp
(

−ix0(px − qBy)
ℏ

)
and Ty0 = exp

(
−iy0py

ℏ

)
, (4.24)

1[ri, f(p)] = iℏ∂pi
f , [pi, f(r)] = −iℏ∂ri

f
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Figure 4.3 – Panel (a): Landau levels whose energies correspond to a one-
dimensional oscillator of angular frequency ωc. The macroscopic degeneracy
D of each level is indicated. Panels (b): Density distribution of the ground
state, computed in the Landau gauge as an eigenstate of κy, indexed by its
wavevector ky = 1/ℓm. The state is extended along y and peaked along x at
the position xky = kyℓ

2
m.

associated with κx = px − qBy and κy = py respectively.
We can now look for eigenstates of the Hamiltonian as common eigenstates of

either κx or κy (but not of the two since they do not commute). In the following,
we start by using the translation invariance along y, i.e. of the commutation
of the Hamiltonian with py = κy. We look for eigenstates that are plane waves
along y, characterised by a momentum ky, times a function of the position x only:
Ψky(r) = eikyyψky(x). Using this ansatz in Eq. 4.23, the function ψky(x) is a solution
of the eigenvalue equation of the one-dimensional harmonic oscillator of angular
frequency ωc, the cyclotron angular frequency that we have already introduced in
the classical case, and centre xky = kyℓ

2
m.

The density distribution of the ground state is translationally invariant along y
as expected for a plane wave, but shows a peak along x at the position xky , as shown
in Fig. 4.3(b) for ky = 1/ℓm. We notice that no kinetic energy is associated with the
momentum ky and that the effect of ky is simply to shift the centre position of the
one-dimensional oscillator. We can compute the Ψ(n)

ky
(r) eigenfunctions, associated

to the n-th Landau level, using the n-th Hermite polynomials Hn, and in particular
for the lowest Landau level (LLL) for n = 0:

Ψ(n)
ky

(r) ∝ eikyyHn(x− xky) exp
(

−
(x− xky)2

2ℓ2
m

)
,

Ψ(0)
ky

(r) ∝ eikyy exp
(

−
(x− xky)2

2ℓ2
m

)
.

(4.25)

The energy spectrum does not vary as a function of ky, which is related to the fact
that a change in ky simply shifts the wavefunction along x. It is composed of equally
spaced bands of energies En = ℏωc(n+ 1/2) with integer n ≥ 0. These energy levels
are called Landau levels and are represented in Fig. 4.3(a). The energy gap between
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Figure 4.4 – Landau levels in the presence of an electric field along x which
induces a linear slope of the bands as a function of momentum ky.

successive levels is equal to ℏ times the cyclotron angular frequency. A key feature
of Hall physics appears in the reduction from a two-dimensional Hamiltonian to a
one-dimensional harmonic oscillator, which leads to flat bands and to a macroscopic
degeneracy of each Landau level.

To estimate this degeneracy, we temporally consider a particle in a rectangular
box of size Lx × Ly. Assuming periodic conditions along y, the momentum ky can
only take discrete values ky = n2π/Ly with integer n. We note that this implies that
the distance between neighbouring oscillators is 2πℓ2

m/Ly, which becomes arbitrarily
small as the sample size Ly is increased. Now the box constrains the centre of the
oscillators to the bounds 0 ≤ xky ≤ Lx, which leads to 0 ≤ ky ≤ Lx/ℓ

2
m. Since the

momentum ky takes only discrete values, we compute the degeneracy:

D ≈ LxLy

2πℓ2
m

= SB

Φ0
, (4.26)

where S = LxLy is the area of the sample and 2πℓ2
m is the area of the disk that is

threaded by a flux quantum Φ0 = h/e, for the magnetic field B. Consequently, the
degeneracy is the number of flux quanta Φ0 threaded by a magnetic field B through
the sample of surface S. In other words, there is exactly one electronic state per flux
quantum in the sample.

4.2.4 Effect of a uniform electric field
We consider an additional force qEx via an electric field along x. The ansatz

with a plane wave along y for the eigenfunction is still valid. From the classical
case, we expect a position drift along an axis that is orthogonal to the magnetic and
electric fields. We diagonalise the Hamiltonian and compute the expectation value
of the velocity along y from the derivative of the energy with respect to ky, up to a
factor of 1/ℏ. In the presence of a uniform electric field along x, the total energy
acquires a ky-linear dependence with the additional terms: qEkyℓ

2
m − ME2/(2B2),

as shown in Fig. 4.4(a). This is related to the fact that the effect of the force is
to shift the centre of the harmonic oscillator along x: x → x + ME/(qB2) in the
Hermite polynomial. We obtain a velocity drift ⟨vy⟩n,ky

= ∂ℏky ⟨H⟩ = sgn(q)E/B,
whose orientation is given by the sign of the particle charge. We assume that the ν
lowest Landau levels are filled and sum up the contributions for all wavevectors ky.
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Since the contributions are independent of both the band index n and the wavevector
ky, we simply count the number of states that participate in the conductivity:

Iy = νDq ⟨vy⟩
Ly

, (4.27)

where we again consider a rectangular box of size Lx × Ly to make sense of the
degeneracy, but we do not consider edge effects. The electric voltage drop across the
sample along x being Vx = ELx, we finally get the transverse conductivity:

σxy = Iy

Vx

= ν
q2

h
, (4.28)

and the longitudinal conductivities σxx and σyy are zero. The transverse conductivity
is quantised in units of q2/h and this corresponds to the quantum Hall plateaus first
observed in metals [171], which is generally referred to as the integer quantum Hall
effect.

4.3 Quantum Hall effect in cylindrical geometry
4.3.1 Landau gauge revisited

In the previous Section, we have followed the most common approach in the
literature to treat the quantum Hall effect in the Landau gauge (0, Bx, 0). We
codiagonalised the Hamiltonian and the momentum κy = py, taking advantage of
the translation invariance of the system along x. However, as we pointed out, an
alternative approach allows us to look for eigenstates as common eigenstates of the
Hamiltonian and of the other component of the pseudomomentum κx = px − qBy =
px + ℏy/ℓ2

m. Similarly to the approach in the previous Section, the ground state
wavefunctions are characterised by a wavevector kx:

Ψ(0)
kx

(r) ∝ ei(kx+y/ℓ2
m)x exp

(
−(y − ykx)2

2ℓ2
m

)
, (4.29)

with ykx = −kxℓ
2
m. The density profile of these states is extended along x and peaked

along y at the position ykx , and is represented in Fig. 4.5(a) for kx = 0. We also recover
the energy spectrum composed of Landau levels, with a macroscopic degeneracy,
which stems from the y-translation of the eigenfunction when the wavevector kx is
changed.

The reason why we prefer this basis of eigenstates is related to our implementation
of a quantum Hall cylinder with atomic dysprosium and will become clearer with the
following argument. We consider the effect of an additional term in the Hamiltonian,
which couples states |Ψkx⟩ and |Ψkx+K⟩, for a given pseudomomentum difference
K. Such a coupling can be realised by a periodic potential of spatial periodicity
2π/K along the axis defined by the translation generator κx. Due to the flatness
of the ground band, related to the macroscopic degeneracy of the Landau levels,
states of the ground band with momenta differing by K are strongly coupled by
this periodic potential. Its effect is similar to that of the textbook example of a
sinusoidal lattice on the band structure of a free electron. Using the Bloch theorem,
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Figure 4.5 – Panel (a): Density distribution of an eigenstate Ψkx of the
system with open boundary conditions along y, with infinite y dimension, at
kx = 0 such that the state is extended along x and peaked at y = −kxℓ

2
m = 0.

Panels (b,c): Density distribution of a state ϕqx for the system with periodic
boundary conditions along y, for the two extreme regimes Ly ≪ ℓm in (b)
and Ly ≫ ℓm in (c). The circumferences Ly = 0.25

√
2πℓm and 2

√
2πℓm are

compared to the density distribution of Ψkxof typical width ℓm, in panel (a)
with two arrows labelled (b) and (c) respectively. The density distributions
are periodic along x of period ∆x and we show two unit cells only.

the relevant quantum number is a quasimomentum qx defined on a Brillouin zone of
size K. The initially infinite flat ground band is folded inside the Brillouin zone and
the periodic potential opens energy gaps which lift the degeneracy. This splits the
folded ground band into a succession of flat bands, whose energy differences are set
by the coupling strength. The eigenstates of the lowest energy band inherit from
the discrete translation invariance of the periodic potential and are therefore linear
combinations of an infinite number of eigenstates |Ψkx⟩ of the Hamiltonian without
2π/K-periodic potential, with equal real weights: |ϕqx⟩ ∝ ∑

n |Ψkx=qx+nK⟩. Here,
we consider only the lowest Landau level and drop the ·(0) notation. The summation
involves states that are peaked along y at positions ykx = −qxℓ

2
m − nK/ℓ2

m (with
integers n), such that they are equally spaced with inter-distance Ly = K/ℓ2

m. The
regular spacing and the infinite number of eigenstates involved in the summation
dictate that these states are y-periodic of period Ly. They can be represented on a
cylinder of circumference Ly, with y playing the role of the cyclic dimension.

To make the analogy with a cylindrical geometry explicit, we do not consider the
term coupling states with different pseudomomenta, but add periodic boundary con-
ditions along y instead. As we have already noticed when computing the degeneracy
of the Landau levels, this leads to discrete values of the wavevector kx, set by the
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circumference of the cylinder that we call Ly. Since the eigenstates |Ψkx⟩ are peaked
along y at positions that linearly depend on kx, they are located at equally-spaced
positions along y. Now, the eigenvectors of κx are not periodic functions of y, but we
can easily propose a family of Ly-periodic functions along y as a linear combination
of the eigenstates Ψ(0)

kx
:

|ϕqx⟩ ∝
∑

n

|Ψkx=qx+nLy/ℓ2
m

⟩ , (4.30)

for the lowest Landau level only. We stress that we recover the wavefunction
defined on a plane for a Landau Hamiltonian with an additional term coupling the
eigenstates with a pseudomomentum varying by K = Ly/ℓ

2
m. The difference in

pseudomomentum K = Ly/ℓ
2
m defines the size of the Brillouin zone, on which the

conserved quasimomentum qx is defined. We check that we have constructed the
correct number of eigenstates by calculating the degeneracy of the ground band. We
consider a finite size Lx along x which imposes that the momentum is a multiple of
2π/Lx. The constraint given by the size of the Brillouin zone leads to the relation
involving the degeneracy: D2π/Lx = Ly/ℓ

2
m, which is consistent with our result

in Eq. 4.26.
We discuss the properties of this family of quantum states. We first investigate

their density profiles nqx(x, y), which are both x- and y-periodic with periods ∆x =
2π/K and Ly respectively. The two-dimensional plane is thus paved by a unit cell
of area ∆xLy = 2πℓ2

m which corresponds to the area threaded by exactly one flux
quantum. The effect of varying qx is simply to translate the density profile at qx = 0
along y by a quantity −qxℓ

2
m such that: nqx(x, y) = n0(x, y + qxℓ

2
m).

The states Ψkx involved in the definition of the |ϕqx⟩ wavefunctions in Eq. 4.30
have different momenta kx = qx + nK, with n integer, regularly spaced by K. These
states are infinite along x and peaked at ykx , which vary by exactly the circumference
of the cylinder Ly for neighbouring indices n. They also have phases that depend
on kx. In the limit of large Ly ≫ ℓm, the y-spacing Ly between the states Ψkx is
much larger than the typical size of the wavefunctions, so that they do not overlap.
Therefore, there is no interference from the phase differences and the density of the
states |ϕqx⟩ is extended along x and reaches its maximum along y at the positions
yqx = −qxℓ

2
m (modLy), as expected from the connection to an infinite system with

open boundary conditions. In the opposite limit, called the thin-torus limit, with
Ly ≪ ℓm, the states Ψkx significantly overlap and the phase differences matter.
In the system with periodic boundary conditions, the states are extended along
y and x-periodic of period ∆x with localised density peaks at positions that are
integer multiples of ∆x. Indeed, at these positions xs = s∆x with s integer, the
interferences are constructive because einKxs = eins2π = 1 while, at other x-positions,
the contributions destructively interfere. Deep in the thin-torus limit, the orbitals
are well separated along x. The density distributions of the |ϕqx=0⟩ state in the two
limits are displayed in Fig. 4.5(b,c).

We now focus on the intermediate regime Ly =
√

2πℓm, where the cylinder
circumference is on the order of the magnetic length that sets the extent of the Ψkx

along y. The density distributions are represented in Fig. 4.6(a) for two values of the
quasimomentum qx = 0 and 0.25K. A change of qx shifts all Ψkx=qx+nK states by
the same displacement along y, which thus also translates the density distribution of
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Figure 4.6 – Panel (a): Density distributions of the |ϕqx⟩ state, for qx = 0
and 0.25K (top and bottom panels respectively), for the circumference
Ly =

√
2πℓm. Panel (b): Velocity distributions ρqx(vx, y) for the same states.

Panel (c): y-distribution as a function of the quasimomentum qx in the first
Brillouin zone. The black dots indicate the two qx states whose density and
velocity distributions are displayed in the left panels. The y-distribution
winds once around the cyclic coordinate y, as the quasimomentum qx is
tuned from one side of the Brillouin zone to the other, which is typical of
the transverse response of a charged particle in a quantum Hall system.

|ϕqx⟩ by the same amount. This is visible in the density distributions of Fig. 4.6(a).
We also show in Fig. 4.6(b) the velocity distributions ρqx(vx, y) for the same states,
given by the formula:

ρqx(vx, y) =
∑

n

δ

[
vx − Mℓm

ℏ

(
qx + y + nLy

ℓ2
m

)]
exp

−1
2

(
vx
Mℓm

ℏ

)2
 , (4.31)

which simply derives from the conservation of quasimomentum, where δ is the delta
function. We see that the velocity is bounded along x and its mean value remains
zero.

Using the density distributions, we reconstruct the y-distribution as a function of
the quasimomentum, which we plot in Fig. 4.6(c). We observe a transverse response
of the system as the y-distribution winds exactly once around the circumference of
the y axis when qx is tuned from one side of the Brillouin zone to the other, which is
equivalent to applying a force along x. This transverse response is characteristic of
the presence of electric and magnetic fields for charged particles.

4.3.2 Laughlin’s argument
Historically, the cylindrical geometry was first investigated by Laughlin to justify

the quantisation of the Hall conductivity. His argument relies on the gauge invariance
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of quantum mechanics, in this geometry. Compared to the situation in the previous
Section, we consider edges along x (0 ≤ x ≤ Lx). The system is a cylinder of
circumference Ly, whose surface is pierced by an orthogonal magnetic field of norm
B, in the presence of a driving electric field along x. We remind that the vector
potential is written A = (0, Bx, 0) in the Landau gauge. We add a solenoid that
passes through the hole of the cylinder. We assume that it is of infinite length so that
no magnetic field leaks out of the solenoid. A scheme of the cylinder with an infinite
solenoid is depicted in Fig. 4.7. Since the magnetic field at the surface of the cylinder
is unchanged, the threading of a magnetic flux Φ in the solenoid inside the cylinder can
be incorporated as an additional vector potential (0,−Φ/Ly, 0). We verify that this
additional vector potential preserves the gauge-invariant electric and magnetic fields.
Nevertheless, it contributes to the physics of the system similarly to an Aharonov-
Bohm phase as we consider a closed loop that winds around the cylinder. We also
notice that the total vector potential can be rewritten as (0, B(x − Φ/(LyB)), 0),
which immediately highlights that the flux Φ is equivalent to a translation along x. If
one were to adiabatically thread a flux quantum Φ0 = h/e, the wavefunctions would
be displaced by Φ0/(LyB), which equals the x-period ∆x of the density distributions
of the |ϕqx⟩ states. This means that it maps the density distribution onto itself and
that the electrons occupying each orbital have been pumped to the neighbouring
orbital.

From an alternative point of view, a change in flux ∆Φ modifies the vector
potential and can be seen as a gauge transformation, which in turn changes the
wavefunction only up to a phase. Let us make this explicit:

|ψ(r)⟩ → eiqζ(r)/ℏ |ψ(r)⟩ , with ζ(r) = y∆Φ/Ly

A(r) → A(r) − ∇rζ(r) = A(r) − ∆Φ/(2πR)y
Φ → Φ + ∆Φ

(4.32)

An interesting consequence of the additional phase in the wavefunction above appears
when we consider a cyclic dimension y. The wavefunction satisfies ψ(x, y + Ly) =
ψ(x, y), and this condition must also hold after the gauge transformation ψ(x, y +
Ly) exp(iqζ(x, y + Ly)/ℏ) = ψ(x, y) exp(iqζ(x, y)/ℏ). Moreover, the wavefunctions
at y and y + Ly are necessarily equal up to a phase factor that is an integer multiple
of 2π. As a consequence, if the phase change ∆Φ is an integer multiple of Φ0, it
can be gauged away by an appropriate gauge transform and the wavefunction is not
modified, except for a complex phase. This is consistent with our statement above
that each orbital is shifted onto the next one, whenever a flux Φ0 is inserted. The
single-particle spectrum is also invariant under this operation.

Considering the Hamiltonian HΦ, with its ground state ϕΦ of energy EΦ, where
Φ is a smoothly varied external parameter, we get that the total current Iy is the
expectation value of the derivative of the total Hamiltonian with respect to Φ,
following Laughlin’s derivation. Using the Hellman-Feynman theorem2, we obtain
that Iy = ⟨∂ΦHΦ⟩ = ∂ΦEΦ. This assumes that the evolution is slow enough and
that there is no gap closing, as in the adiabatic theorem (see Section 4.1), and it

2The Hellman-Feynman theorem states that the variation of the total energy of a system, induced
by the variation of a parameter λ of the Hamiltonian Hλ, is given by ∂λEλ = ⟨ψλ|∂λHλ|ψλ⟩, for
an eigenstate |ψλ⟩.
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Φ

∆x

Figure 4.7 – The cylindrical version of a two-dimensional Hall system, as
first envisioned by Laughlin in his seminal paper [18]. The cylinder is pierced
by an infinite solenoid which controls an axial flux Φ. The x-periodicity, of
period ∆x, of the electronic wavefunction (with orbitals being represented
by filled Gaussians) is indicated.

corresponds to the effect of an electromotive force around the cylinder. Then, we
replace the derivative by a differential (which is equivalent to an average over all
possible boundary conditions [172]), considering a finite flux difference ∆Φ = h/q
and ν filled Landau levels. If there is a voltage difference Vx between the two edges
along x, the energy cost of the pumping is qνVx, by simply counting the number of
pumped particles (one per occupied Landau level, as we saw above whenever a flux
Φ0 is threaded). We recover the expression of the conductivity of Eq. 4.28:

σxy = Iy

Vx

= ν
q2

h
. (4.33)

In the next Section, we introduce the concept of Thouless pump, which is a
generalisation of the charge pump that we described above with the control over an
axial magnetic flux. It naturally relates the quantisation in Laughlin’s argument
to a topological invariant of the system, the so-called first Chern number in two-
dimensional systems.

As a side note, we point out that we did not provide a definite proof of the
quantisation of the conductivity for arbitrary geometry and boundary conditions, nor
treat the case of disorder and interactions. Arguments, based on the mobility gap
for bulk states and on the chirality of the edge states, justify the partial insensitivity
of the integer quantum Hall effect against these variations [172]. We mention the
existence of a mathematical proof in the non-interacting case, using the framework
of noncommutative geometry [173].

4.4 Topological pumping
The concept of topological pumping originated from a seminal paper in 1983 [19],

in the context of the quantum Hall effect, and was first experimentally explored
in quantum dots [22, 23]. It has been extended to a wider class of pumps that
are characterised by a topological invariant. Thouless considers an electron gas
subjected to a magnetic field, placed in a spatially-periodic potential, and the slow
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and periodic modulation in time of the potential induces a quantised transport, even
in the absence of an electric field. This situation is reminiscent of the Archimedes
screw, a spiral tube, which pumps water from one side of the screw to the other by
continuously rotating it. However, this effect is based solely on classical physics and
no quantisation is derived from the topology of the system [174]. In the case of a
Thouless pump, the amount of pumped particles is protected from small changes in
the pumping parameters or even disorder, as it is bound to a topological invariant.
This quantisation follows from arguments similar to those of the integer quantum
Hall effect. There is a correspondence between a topological pump in low dimensions
and a higher-dimensional non-trivial topological system, where the time-modulated
parameters of the low-dimensional system play the role of artificial dimensions.
Topological pumps thus realise dynamical implementations of higher-dimensional
topological systems. This connection, called dimensional extension [17], has been
experimentally investigated first in the case of one-dimensional topological pumping,
related to the two-dimensional quantum Hall effect [21, 24, 25].

This correspondence can be recovered from different points of view. A common one
is based on the Bloch theorem, such that one can define localised Wannier functions
from the delocalised Bloch functions. This allows one to compute a position shift
of the Wannier wavefunctions when varying an external parameter, which is closely
related to the concept of electric polarisation in crystalline solids [175, 176]. However,
we decide to follow a treatment based on the adiabatic theorem taken at a higher
order with respect to Section 4.1 [151, 152, 177]. For simplicity, we will show this
correspondence for a topological charge pump in a one-dimensional system, whose
quantisation is analogous to the quantised response to a force in a two-dimensional
system.

4.4.1 Quantised charge pumping in a one-dimensional system
We consider a gas of electrons in a one-dimensional lattice potential, of period a

along x, that will be subjected to a time-periodic modulation. The Bloch theorem
decomposes the eigenfunction into a plane wave with wavevector qx defined in a
Brillouin zone of size 2π/a and a x-periodic function with same period a as the
potential: |ψ(n)

qx
⟩ = eiqxx |u(n)

qx
⟩. The |u(n)

qx
⟩ wavefunctions are eigenstates of the qx-

representation of the Hamiltonian. Up to the first order in the rate of change of the
Hamiltonian, the wavefunctions are:

|ϕ(n)
qx

⟩ = |u(n)
qx

⟩ − iℏ
∑

n′ ̸=n

⟨u(n′)
qx

|∂tu
(n)
qx

⟩
E

(n)
qx − E

(n′)
qx

|u(n′)
qx

⟩ , (4.34)

where we used the compact notation |∂tu
(n)
qx

⟩, previously defined in Eq. 4.5. We then
compute the average velocity of a state of wavevector qx in the n-th band, still up to
first order in the adiabatic approximation:

v(n)
qx

= ∂ℏqE
(n)
qx

− i
(

⟨∂qxu
(n)
qx

|∂tu
(n)
qx

⟩ − ⟨∂tu
(n)
qx

|∂qxu
(n)
qx

⟩
)
,

= ∂ℏqxE
(n)
qx

− Ω(n)
qx,t.

(4.35)

We used successively the definition of the velocity operator as the commutator of
the Hamiltonian operator with the position operator, the effect of the momentum
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operator on the Bloch wavefunctions, the completeness relation for the basis of states
{ |u(n′)

qx
⟩}n′ and the definition of the Berry curvature Ω(n)

qx,t defined in a parameter
space (qx, t). We obtain two contributions to the velocity: the velocity due to the
variation of the energy in a single band, which is simply the group velocity, and
the so-called anomalous velocity [178, 179]. It is interesting to note that, when
averaged over a Brillouin zone (which is equivalent to uniformly filling the band), the
contribution of the group velocity cancels out, owing to the periodicity of the band
spectrum. The induced adiabatic velocity is then only given by the first-order term
in the adiabatic theorem, and we immediately deduce the mean displacement over a
full cycle (of duration T ) of the time-periodic modulation of the external parameter:

v(n) = − a

2π

∫
BZ

dqxΩ(n)
qx,t,

∆x(n) = − a

2π

∫ T

0
dt
∫

BZ
dqxΩ(n)

qx,t.
(4.36)

We have found an expression for the particle transport for the n-th band over a
modulation cycle, which depends on a gauge-invariant quantity that is well defined
for all parameters spanning the parameter space. The Gauss-Bonnet-Chern theorem
states that the integral of the adiabatic curvature over a two-torus is quantised
(i.e. an multiple integer of an integration factor determined by the boundary limits
of the parameter space). Here, the two-torus parameter space is parametrised by
the wavevector qx defined over a Brillouin zone of size 2π/a and by time with a
periodicity of T . This way, we define the so-called first Chern number C ∈ Z, a
topological invariant that originates from the mathematics of fibre bundles:

∆x(n) = −aC. (4.37)

Experimentally, however, the measurement of the Berry curvature, a local gauge-
invariant property of the system, may be of interest as it contains more information
than its average over the Brillouin zone, the Chern number [180]. Actually, a non-zero
Berry curvature can have significant consequences even when the Chern number is
trivial (equal to zero), because of the anomalous velocity. This type of pumping
is generally referred to as geometrical pumping and no quantisation of topological
origin is expected.

Topological pumping is directly related to the integer quantum Hall effect, whose
robustness also relies on the non-trivial Chern number characterising the Landau
levels. Interestingly, at the interface between two systems with different Chern
numbers, for example between a Hall system and vacuum (which is topologically
trivial C = 0), the Chern number exhibits a discontinuity since it only takes integer
values. This discontinuity occurs when there is a gap closing at the interface, which
leads to a singularity in the Berry curvature. As a consequence, there are gapless
states at the edges, whose main features are their chirality and the absence of states
for backscattering: states on opposite edges of a sample propagate along the boundary
in opposite directions, even in the presence of small disorder. We also mention that
this topological notion has also been explored with two-dimensional periodic systems.
The single-particle spectrum is organised in successive bands, similar to the Landau
levels, and a topological invariant, called the TKNN invariant in this context [3], is



80 4. Theory of the two-dimensional quantum Hall effect

−1 −0.5 0 0.5 1
x [2π/ωx]

V
(x
,t
)
[a
.u
.]

0

0.5

1

t
[T

]

Figure 4.8 – A sliding potential, as imagined by Thouless in its seminal
paper, along x. The different coloured lines represent the variations of the
potential as a function of time. The potentials at different times are lifted up
for better visibility. A wavepacket, represented by a blue dot, is initialised
at the bottom of a well of the potential and is dragged towards the right as
the potential slides. After the period T , the potential returns to its initial
shape, but the wavepacket position has shifted from one well to the next.

associated with the response of the system when the Berry curvature is averaged
over the two-dimensional Brillouin zone.

The simplest example of a pumping process is a sliding potential, which is related
to Laughlin’s pump experiment, where the flux insertion through the cylinder tunes
the position of the electronic orbitals. The intuition is that, when the periodic
potential is sliding, while keeping its shape unchanged, the electrons follow the
potential adiabatically. Since there is exactly one state per unit cell for each occupied
Landau level, the particle transport over one cycle of the sliding process amount to
the number of occupied Landau level, which corresponds to a Chern number of +1
for each Landau level. The quantisation relies on the adiabaticity criterion, assumed
in the adiabatic theorem, which is given by the smallest gap to the other bands
during the time evolution. The deviations to the quantisation are exponentially small
in the cycle period T [181, 182].

This differs from the classical case of a sliding potential, where the particle
motion obeys the equation Mẍ = −∂xVsliding(x, t) = V0ωx sin(ωtt− ωxx), where the
potential Vsliding has a period d = 2π/ωx in space and T = 2π/ωt in time. This
evolution is easily solved in the reference frame moving at v = ωt/ωx, where the
equation of motion simplifies to a pendulum equation θ̈ + ω2

0 sin(θ) = 0 for the
variable θ = ωxx − ωtt, with ω2

0 = V0ω
2
x/M . The drift x of the particle position is

written as a sum of a linear drift term, which is quantised at multiples of the cycle
time T , and of an oscillation governed by θ. This oscillation does not necessarily
reach zero at multiples of the cycle time. However, for a slow evolution ωt ≪ ω0, the
oscillation of θ becomes small and the oscillation amplitude scales as 1/T , which is
to be compared to the exponentially small correction in the quantum case due to the
presence of an energy gap. For more complicated periodic and periodically-driven
potentials (e.g. a superlattice where a double well is contained in a single unit cell),
the pumping expected from a classical evolution may differ from the quantum case
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in an even more striking way [174].

4.4.2 Quantised response to a force in a two-dimensional system
We now want to highlight the similarity of a topological pump, as illustrated

above, with a higher-dimensional system. We consider a particle evolving in a
two-dimensional periodic potential, such that the single-particle spectrum consists of
a succession of bands according to Bloch theorem. This can be easily generalised
in the presence of a magnetic field by considering magnetic translation operators
such that the spectrum is composed of the so-called magnetic Bloch bands [183].
The particle is initially prepared in a Bloch wavefunction at quasimomentum q0 in
the n-th band. We now apply a force F = Fex, similarly to applying an electric
field in a Hall system. We want to derive the evolution of the particle velocity.
To do so, the same argument as in the case of topological pumping, namely the
adiabatic approximation up to first order, applies. We write the wavefunction at a
time t using Eq. 4.34 and first need to compute the term |∂tu

(n)
q ⟩ (where we have

just replaced qx by q as a generalisation to higher dimensions). Using a unitary
transformation to incorporate the effect of the force as an effective vector potential,
we can show that the instantaneous eigenstates are Bloch states at all times, and we
find that the wavevector q evolves as:

ℏ
dq
dt = F. (4.38)

This is known as Bloch oscillations: the quasimomentum q uniformly spans the
Brillouin zone along x for a uniform and time-independent force F = Fex and its
evolution is periodic. We immediately deduce that ℏ |∂tu

(n)
q ⟩ = F |∂qxu

(n)
q ⟩. We do

not provide the full derivation after this stage, for it relies on the same arguments
as in the case of the topological pump. We again obtain that the velocity has two
components [184], the group velocity and the anomalous velocity:

v(n)
q = ∇ℏqE

(n)
k − 1

ℏ
Ω(n)

q × F. (4.39)

The expression of the anomalous velocity highlights the analogy between the Berry
curvature and a magnetic field on charged particles. We now consider particles
uniformly filling the ground band (e.g. fermions accumulating in the ground state
with the Fermi energy lying in the gap between the ground and the first excited
band), such that the relevant velocity is obtained after averaging over the Brillouin
zone. The contribution of the group velocity cancels out as mentioned earlier. We
obtain a current along y proportional to the force applied along x and define the
conductivity as the transverse response to the force:

σ̃xy = Jy

Fx

= 1
h

1
2π

∫∫
BZ

Ωqd2q. = 1
h

C, (4.40)

with C the Chern number associated to the topology of the ground band.
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4.5 Fractional quantum Hall effect
The so-called fractional quantum Hall effect was discovered in 1982 [185], in

an attempt to reproduce the initial observation of the integer quantum Hall effect.
Conductivity plateaus were observed at fractional fillings of Landau levels [186],
in addition to integer fillings. These observations were realised at high magnetic
fields such that the energy scale related to the magnetic field is very high. This
induces an accumulation of electrons in the lowest Landau level only, and the Fermi
energy lies within this level. The presence of conductivity plateaus indicates some
protection from energy gaps, as we have already seen in the case of the integer
quantum Hall effect. However, at partial filling of a single Landau level, due to the
macroscopic degeneracy, the system is gapless, unless electron-electron interaction
plays a role. Because of the flatness of the bands, the interactions are necessarily
non-perturbative and their effect is crucial in the description of the quantum states.
An energy gap arises from the Coulomb interaction between charged particles in the
same Landau level, and the fractional quantum Hall effect corresponds to a problem
of strongly-correlated fermions, which is challenging to solve.

Theoretical works [187–189] have addressed the issue of describing such phases of
matter and have shown that a fractional quantum Hall state is an incompressible
electron liquid, with gapped collective excitations in the bulk, and gapless edge
modes. The excitations, called abelian anyons, have fractional particle numbers
and statistics [190]. The problem has been particularly studied in the case of small
rational filling fractions. An ansatz solution was proposed by Laughlin [191] for
the specific case of the lowest Landau level with a partial filling fraction ν = 1/3,
which is generalisable to a filling fraction ν = 1/m with odd integer m for fermionic
particles. In the symmetric gauge, the so-called Laughlin wavefunction is written:

Ψν=1/m({zj}j=1...N) =
∏
j<k

(zj − zk)m exp
(

−1
4

N∑
i=1

|zi|2
)
. (4.41)

The exponential part in the expression of the wavefunction simply derives from the
solution of the one-body wavefunction in the ground band. The polynomial term was
proposed following some prescriptions such as the anti-symmetry of the wavefunction
for fermions under the exchange of two particles, the Pauli exclusion principle and
the fluid incompressibility. It corresponds to a state of uniform density in the bulk,
up to a radius at which the density smoothly goes to zero. This state contains
vortices that are not localised.

For other filling fractions, other ex-nihilo constructions have proven successful
in describing certain conductivity plateaus, such as the composit fermion construc-
tion [192] or the Moore-Read wavefunction (or Pfaffian state) [193]. The Read-Rezayi
wavefunction [194] is relevant for the filling fraction 5/2 and well suited for topological
computing where the system is topologically protected from decoherence. Such a
state is also interesting for the study of non-abelian phases because its quasiparticle
excitations obey non-abelian statistics [195].

Experimental observation of these strongly-correlated phases of matter has been
a challenge in recent decades and some proposals have focused on cold atoms
using spin-orbit coupled internal states. These systems naturally realise synthetic
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Figure 4.9 – Fractional state at filling 1/3, in a cylindrical geometry with
circumference Ly. The orbitals are peaked at discrete positions along x with
a distance between neighbouring orbitals ∆x = 2πℓ2

m/Ly. The presence of
repulsive interaction, such as Coulomb interaction for electrons, leads to the
filling of one every three orbitals, as depicted by the filled Gaussians in grey.

ladders of connected one-dimensional wires with complex phases that play the role
of Aharonov-Bohm phases. The mimimal example of this approach is a two-leg
ladder system using two coupled internal states, which is a quasi-one-dimensional
version of a two-dimensional quantum Hall system. This particular configuration can
also be realised in experiments with superlattices. The connection between strongly-
correlated states in these geometries and fractional quantum Hall states has been
theoretically investigated [196–198]. The treatment of these systems simplify when
considering a cylindrical geometry, such as a system infinite along x and periodic of
length Ly along y [199].

The case of an infinitely small circumference Ly is solvable even in the presence
of interactions and is referred to as Tao-Thouless limit [200]. As we saw in the
Landau gauge in Section 4.2.3, the eigenstates, parametrised by the wavevector ky,
are extended along y and localised along x. In the thin-torus limit where Ly ≪ ℓm,
corresponding to a vanishing periodic dimension, the orbitals are well-separated
along x and the system can be reinterpreted as a one-dimensional lattice. A basis
for the many-body wavefunctions is given by simply counting whether or not there
is a particle on each orbital { |n1, ..., nN⟩}ni∈{0,1} for N accessible orbitals in the
system. We now consider the effect of interactions such as Coulomb interaction
for electrons. Such a two-body interaction can be written as a combination of
terms that act on lattice sites at different distances, with or without hopping and
exchange of position. In the thin torus limit, only one component contributes and
the interaction simplifies to an electrostatic repulsive interaction. It has been shown
that the eigenstates are simply states of the basis given above, where the number
of filled orbitals is given by the filling ratio [199, 201]. In particular, it is easy to
explicit the ground state for a filling fraction ν = 1/m: it amounts to placing one
particle every m sites, which obviously minimises the repulsive interaction. This
situation is depicted in Fig. 4.9 for m = 3. This construction generates three-fold
degenerate states, with broken translational symmetry along x, which are usually
referred to as charge-density waves. Such a state is a precursor of the Laughlin state
at filling fraction 1/3, in a system of finite size. A connection between the two states
is expected at increasing circumference Ly, as the cylindrical system approaches a
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two-dimensional Hall system.
Signatures of fractional quantum Hall states could be accessible from their chiral

currents on the edges or topological fractional pumping [202–204]. Recent works
have started to investigate the role of interactions in Thouless pumps [205–208], and
in particular with synthetic dimensions [209, 210].

In this Chapter, we have seen that topological pumping is a relevant tool for
probing the global properties of a topological insulator in higher dimensions. The
historical thought experiment developed by Laughlin to explain the integer quantum
Hall effect has not, however, been experimentally realised as it requires the engineering
of a cyclic dimension and the control of a magnetic flux threaded through the cylinder.
In the next Chapter, we describe our approach to simulating a quantum Hall system
in a cylindrical geometry, by coupling the internal and external degrees of freedom
of ultracold atoms.



5
Synthetic dimensions encoded in a single

large spin

In this Chapter, we will introduce the concept of synthetic dimensions, namely
the use of the internal degrees of freedom of a system as an effective additional
dimension. It has attracted interest over the past decade in a variety of experimental
platforms, in particular in the context of spin-orbit coupling and quantum Hall
physics. After reviewing some proposals on different platforms, we focus on the
experiments with cold atoms that exploit the electronic total angular momentum
of an atom as an effective dimension. We present in detail our recent proposal to
encode two dimensions in the spin of a single atom, including a cyclic one. This
paves the way for our realisation of an atomic Hall cylinder and for the study of
quantum Hall physics in higher dimensions.

This proposal has been published in the following article [211]:
Simulating two-dimensional dynamics within a large-size atomic spin
A. Fabre, J.-B. Bouhiron, T. Satoor, R. Lopes, S. Nascimbene
Physical Review A 105, 013301 (2022)

5.1 Definition and motivation
Synthetic dimensions have developed as widespread tools to address open questions

about topological insulators. Limitations in reaching arbitrary geometries and
dimensions appear when considering spatial dimensions only [212], which has slowed
down experimental investigations of physics in dimensions higher than three or
non-planar geometries. A strength of the synthetic dimensions approach lies in the
facilitated engineering of gauge fields. The Spielman group has provided evidence of
this flexibility by implementing gauge fields in a two-dimensional system consisting
of a spatial dimension and a synthetic dimensions [44] or of spatial dimensions only,
with the gauge field being mediated by the spin [37].

A synthetic dimension is a non-spatial dimension that is treated similarly to usual
spatial ones. Spatial dimensions are naturally continuous ones when considering
a particle moving along an axis. But the dynamics of particles can be effectively
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Figure 5.1 – Panels (a,b): Constructing a synthetic dimension from a set
of states. The upper panel represents the connectivity approach: adequate
physical connections of sites effectively engineer two- or three-dimensional
lattices. The lower panel represents the encoding of an additional dimension
on each site of a lattice by coupling internal degrees of freedom. Panels (c,d):
Examples of synthetic dimensions. The upper panel represents the coupling
of momentum states n2ℏk labelled by integers n, with laser wavevector k,
by two-photon optical transitions. The lower panel depicts a single photonic
ring resonator, which hosts discrete frequency modes propagating along
the same direction (coloured arrows) with equally-spaced frequencies nf
labelled by integers n > 0, with f the smallest frequency mode. An external
perturbation Ω couples the neighbouring modes.

restricted to discrete positions by the use of lattices, such that spatial dimensions
can also be deemed discrete. This naturally arises in many models that are effective
descriptions of complicated Hamiltonians, such as the Hubbard model. In condensed-
matter physics, the crystalline structure of atomic nuclei generates a periodic potential
for electrons, which, in the so-called tight-binding limit, can be reinterpreted as a
discrete lattice with an on-site interaction and a hopping process between sites. In
most proposals, the synthetic dimensions are additional discrete dimensions.

Two paths are generally followed to define a synthetic dimension. They have
in common the idea of connectivity: a lattice is simply a set of states that are
connected according to a geometrical rule. The first approach considers that any set
of states can be reinterpreted as a D-dimensional lattice, with arbitrary D, regardless
of their position in space, if they are properly connected [213–215]. Theoretically,
any dimension and any geometry are accessible with this approach, which however
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requires a large amount of engineering. Indeed, the number of links in the D-
dimensional lattice scales as ND with N the number of sites per axis. To achieve
complex geometries, these ND connections must be individually realised. The second
strategy considers nodes as lattice sites according to natural labelling. This labelling
becomes relevant when a coupling between them is implemented. What we mean
by "natural" is that coupling schemes, usually involving nearest- or next-nearest-
neighbours, exist and that they affect all nodes at once. Typical examples are
spin states which are readily coupled using vector light shifts, or ring resonators
positioned in line such that tunnelling is only allowed between neighbours. The
geometry of the synthetic space arises directly from the coupling scheme and complex
structures which involve novel topological states can be realised under the right
choice of coupling [45, 216]. Interestingly, some key features of quantum Hall systems,
e.g. spatially-dependent hopping phases for the implementation of artificial gauge
fields, are naturally implemented along synthetic dimensions, because the coupling
between states is externally applied. More generally, the flexibility in the external
coupling facilitates the engineering of topological systems [212, 217]. We schematically
represent these two approaches in Fig. 5.1(a,b).

An alternative route, that we already mentioned in Section 4.4, studies high-
dimensional physics in a lower-dimensional space, considering parameters of the
Hamiltonian as coordinates along an additional axis. There is a deep connection
between topological pumps in low dimensions and higher-dimensional models through
the procedures of dimensional reduction or extension. The pump parameters can
be interpreted as momenta along fictitious dimensions, thus effectively increasing
the dimensionality of the problem. This approach has been the subject of extensive
theoretical analysis, in particular for quantum Hall systems [19, 218]. However, in
the mathematical mapping between the two systems of different dimensions, the
dynamic along the parameter dimensions is effectively frozen, such that the full
dynamics of the high-dimensional system cannot be accessed.

5.2 Short review
The concept of synthetic dimension has a rich history, with key contributions

from theory and experiments in the last ten years. In this Section, we describe some
proposals and experimental realisations in different fields of physics. We focus on
photonic systems, which have been strikingly successful, and on cold atom systems,
as they are the closest to the approach of our group. Two examples of experimental
techniques are shown in Fig. 5.1(c,d).

5.2.1 Photonics
In photonics, several proposals have paved the way toward the implementation of

synthetic dimensions. For example, the frequency modes of light propagating in a
cavity, the orbital angular momentum states of light circulating in a ring resonator,
or the arrival times of multiple pulses are candidate sets of states to engineer a
synthetic dimension [217, 219, 220].

We will briefly discuss the case of frequency modes in a multi-mode cavity,
e.g. a ring resonator. In a ring geometry, the resonance conditions give rise to
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frequency eigenmodes that form an almost equally spaced frequency comb. Temporal
modulation of the resonator refractive index, at the frequency corresponding to the
mode spacing, effectively induces hopping processes between the modes, interpreted
as sites of a discrete lattice. This constitutes a building block in experiments
where many ring resonators are coupled together, via spatial tunnelling of light in
a given frequency mode between neighbouring resonators. By constructing spatial
D-dimensional lattices of such resonators, with 0 ≤ D ≤ 3, exploiting the cavity
modes of each resonator as a synthetic dimension leads to simulating a (D + 1)-
dimensional lattice. Further control of the modulation phases of the resonators
induces hopping along the synthetic lattice with complex phases that are spatially
dependent, which is a key feature of many topological systems. Such a property
leads naturally to gauge fields and to the exploration of the physics of particles
subjected to a magnetic field in lattices, e.g. the 2D Harper-Hofstadter model using
a (1 + 1)-dimensional system. In Fig. 5.1(d), we schematically show a resonator ring
with frequency modes of light circulating clock-wise. An external time-dependent
perturbation of strength Ω modulates the refractive index of the resonator and
induces coupling between neighbouring frequency modes. Modulation at higher
integer multiples of the spacing between the frequency modes leads to the simulation
of models with higher dimensionality [221].

5.2.2 Cold atoms
The use of internal degrees of freedom as sites along a synthetic axis was first

introduced in the context of cold atoms [41], with extensions towards the realisation
of quantum Hall systems [42] and complex geometries [45]. A common approach is
to consider a set of electronic states and couple them with single- or two-photon
transitions, whether these states are clock states or hyperfine states. Another
approach relies on the coupling of external degrees of freedom, considering for
example momentum states or harmonic modes as sites of a synthetic lattice.

A momentum-space lattice is created by selecting momentum states using counter-
propagating laser beams with well-chosen frequency differences. Semi-classically, the
atoms experience the absorption of a photon in a beam, followed by the re-emission
of a photon in a counter-propagating beam. This process leaves the electronic
state of the atom unchanged, but induces a momentum shift of 2ℏk for beams of
wavevectors ±k. Starting from atoms at rest, it couples a discrete set of momentum
states pn = 2nℏk, with an integer n, with nearest-neighbour hopping only. Since
the energy dispersion is quadratic in the momentum p of the atoms, the energy
difference between coupled momentum states does not vary linearly as a function
of n. Each transition can be individually addressed, which provides additional
flexibility in the coupling strength and relative phases of the two-photon processes.
This approach is depicted in Fig. 5.1(c) where two-photon processes, addressing each
transition n ↔ n+1 independently, are driven by laser fields with adjusted frequency
differences. Several synthetic dimensions can be created with this protocol by adding
beams along orthogonal directions. However, the number of frequency components
to connect all the states in a D-dimensional lattice scales as LD, with L the number
of sites per axis. This greatly complicates experimental realisations of large-size and
high-dimensional lattices, but recent realisations have managed to realise one- and
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two-dimensional momentum-space lattices [222, 223].
Alternative approaches have been developed, including the eigenmodes of a

harmonic oscillator [224–226] or the orbitals of a lattice [227]. The former uses
the eigenmodes |n⟩ (labelled by integers n ≥ 0) of a quantum harmonic oscillator
along x, of angular frequency ω. The nearest-neighbour harmonic eigenmodes, with
equally-spaced eigenenergies, can be coupled by a temporally-modulated perturbation
along the axis of the harmonic trap. The latter involves the orbital degree of freedom
of an optical lattice, where the orbital states are coupled by two-photon Raman
transitions. Under appropriate conditions, the spatially-modulated hopping phases
engineer a non-zero effective magnetic flux per unit cell of the lattice.

Finally, the implementation of synthetic dimensions within the total angular
momentum J of an atom generally relies on the interpretation of each Zeeman
sublevel |J,m⟩ as a site of a one-dimensional lattice of total size 2J + 1 with open
boundary conditions. The coupling of nearest or next-nearest neighbouring sites can
easily be achieved using the vector or tensor parts of the light-matter coupling. This
is facilitated if the energy spacing between neighbouring states does not vary (which
is true in the absence of a quadratic Zeeman term for example). However, due to
variations in the matrix elements of the light shift, the couplings are not uniform
across the whole synthetic dimension. Another approach, which is reminiscent of the
momentum state protocol, considers a few isolated states among all the available
electronic states and couples them by pair independently. This requires lifting the
energies of the unused states away from resonance with the driving fields and also
adjusting the energy difference between coupled states to avoid any crosstalk. After
properly shaping the electronic landscape, a finite lattice can be designed with
independent control of the coupling strengths and relative hopping phases. This
also opens the way toward less conventional geometries, such as periodic boundary
conditions by coupling extremal sites of the lattice. Initial experimental realisations
include two- and three-leg ladder systems, consisting of a small discrete synthetic
dimension and an infinite spatial dimension [43, 44, 228, 229], before a generalisation
to a larger synthetic dimension [46].

5.3 Protocol for encoding two independent dimensions in a single spin
5.3.1 Introduction

We now describe a different protocol that applies to atoms with a large spin
J , in which we encode two synthetic dimensions. A combination of low-rank spin
couplings, up to rank 2, effectively decouples the dynamics of the spin projection
m and the remainder r of its Euclidian division by 3. These two coordinates act as
the two orthogonal coordinates describing the surface of a cylinder with a discrete
axis of finite size with open boundary conditions and a discrete cyclic dimension
composed of three sites. To do this, let us consider the following Hamiltonian:

H = −Ua
Ĵ+

J
− Ub

Ĵ2
−

J(J − 1/2) + hc. (5.1)

The two terms, which we will refer to as process (a) and process (b) in the following,
couple the nearest- and next-nearest neighbours respectively with strengths Ua and Ub.
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Figure 5.2 – Panel (a): Nearest- and next-nearest-neighbour couplings for
some spin projection m states, from Eq. 5.1. Panel (b): Representation of the
connected sites m as a two-dimensional lattice with additional connections
between the edge sites. Panel (c): Representation of the Dicke states |m⟩
on a cylinder with coordinates (m, r).

The other coefficients in their expressions are relevant only to simplify calculations.
For |m| ≤ J − 2, both processes act as discrete translations along the m states,
whereas near the extremal states m = ±J , they cannot induce hopping as no spin
state exists beyond. Nevertheless, even for states close to m = 0, the ladder operators
have m-dependent hopping amplitudes, owing to the Clebsch-Gordan coefficients.
This variation is however small enough to preserve the interpretation of the spin
ladder operators as discrete translations. The effect of the Clebsch-Gordan coefficients
manifests itself by favouring states that minimise the Hamiltonian of Eq. 5.1, in
our system, states with a zero mean magnetic projection along z. This effectively
restricts the dynamics to spin states close to m = 0, thus suppressing the effect of
the finite edges.

The two processes act differently on the two coordinates: both Ĵ+ and Ĵ2
− increase

r by 1, while the former increases m by 1 and the latter decreases m by 2. Based
on this, the resulting dynamic does not show an obvious decoupling between m and
r. However, the combination of the processes induces transitions between magnetic
levels |m⟩ with non-trivial cycles m → m+ 1 → m+ 2 → m which wind once around
r. These cycles are thus independent of the magnetic projection m, within the range
of populated spin states close to m = 0, and are encoded in the division remainder r
modulo 3. Here, we already have an intuition of the dynamics of the system: the
coordinate r encodes the evolution along these cycles and the dynamic along m
is constrained by the variation of energy as the energy is minimal when the mean
magnetisation is zero.

A condition for independent dynamics along both axes does not naturally arise
from this picture. Here, we first provide a hand-waving argument, treating m and r
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as continuous variables and approximating the action of the two processes as follows:

Ĵ+ + Ĵ−

J
ψ(m, r) ≃ ψ(m+ 1, r + 1) + ψ(m− 1, r − 1)

≃ (2 + ∂2
m + 2∂m∂r + ∂2

r )ψ(m, r),
Ĵ2

+ + Ĵ2
−

J(J − 1/2)ψ(m, r) ≃ ψ(m+ 2, r − 1) + ψ(m− 2, r + 1)

≃ (2 + 4∂2
m − 4∂m∂r + ∂2

r )ψ(m, r).

(5.2)

We have Taylor-expanded the two-variable quantities ψ(m, r) up to second-order.
In each process, the first-order terms have cancelled out such that we end up with
a combination of zero- and second-order terms only. The full Hamiltonian is then
expressed as:

H = −2(Ua + Ub) − (Ua + 4Ub)∂2
m − (Ua + Ub)∂2

r − 2(Ua − 2Ub)∂m∂r. (5.3)

Decoupled dynamics along the two directions m and r are obtained for the specific
ratio Ub/Ua = 1/2, since the ∂m∂r term vanishes, and these two dimensions can be
considered orthogonal. For this ratio, denoting U = Ua = 2Ub, the total Hamiltonian
is then written:

H

U
= −6 − 9∂2

m − 3∂2
r . (5.4)

The dynamic associated with this Hamiltonian is that of a particle on a cylinder
parametrised by an axial coordinate m and a cyclic azimuthal coordinate r. Two
effective masses, inversely proportional to the coupling strength U , characterise the
motion along these two axes. In the following sections, we will assume that the
coupling ratio is fixed to 1/2 and denote U = Ua = 2Ub. The effect of a deviation of
the coupling ratio from this condition will be regularly revisited.

5.3.2 Semi-classical treatment
We now perform a precise treatment of the dynamic. For a sufficiently large

total spin J ≫ 1, it is well reproduced by a semi-classical analysis of the problem.
We restrict the accessible states to the linear combinations of coherent spin states.
The coherent spin states that we denote |θ, ϕ⟩ are maximally polarised along an axis
parametrised by spherical angles (θ, ϕ). In this approach, we replace the spin operators
by their classical counterparts (Ĵx, Ĵy, Ĵz) = (J sin θ cosϕ, J sin θ sinϕ, J cos θ).

The associated energy functional, plotted in Fig. 5.3(a), is therefore:

E(θ, ϕ) = ⟨θ, ϕ|H|θ, ϕ⟩
= −2U sin θ cosϕ− U sin2 θ cos(2ϕ).

(5.5)

It features three extrema oriented along the equatorial plane of the Bloch sphere
(θ = π/2), with a zero mean magnetic projection along z, confirming the intuitive
picture derived in the previous section. They are pointing along maximally distant
axis: ϕ = 0, 2π/3 and 4π/3. For a large enough total spin J , the overlap between these
states decreases to almost zero and the three states can be viewed as orthogonal states,
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Figure 5.3 – Panel (a): We show the energy functional calculated for a
coupling ratio Ub/Ua = 1/2. We identify its extrema by three marks: the
red + sign for the single minimum at ϕ = 0 and the green crosses for the
two maxima at ϕ = 2π/3 and 4π/3. Panel (b): We compare the energy
spectrum obtained from the diagonalisation of the potential of Eq. 5.1 (blue
solid lines) and the predictions from the effective harmonic spectra Eϕ,n

(red and green solid lines, corresponding to panel (a)). We denote ×2 the
eigenvalues that are degenerate or almost degenerate, for more clarity.

although, strictly speaking, they are not. Among the three states, |θ = π/2, ϕ = 0⟩,
oriented along x, is the unique minimum of the energy functional.

We now expand the Hamiltonian in the vicinity of an extremum of the energy
functional. To treat the three states in a similar way, we consider spin operators in
a rotated basis (J̃x, J̃y, J̃z), where J̃i = U †ĴiU with U = exp

(
iϕĴz

)
, a spin rotation

of angle ϕ around z. In this way, each state |θ = π/2, ϕ⟩ is oriented along J̃x in the
corresponding rotated basis. Assuming that the spin states remain highly polarised
along J̃x when varying the state energy by a small amount only, one can approximate
J̃x ≃ J such that the commutator

[
J̃z, J̃y

]
becomes:

[
ℏJ̃z,−

ℏJ̃y

J

]
= iℏ J̃x

J
≃ iℏ. (5.6)

The operators ℏJ̃z and (−ℏJ̃y/J) are canonically conjugated and we interpret the
former as a position operator along the spin projection ladder and the latter as its
associated momentum operator.

Now that we have some intuition about the problem, we follow a treatment
making use of a bosonic Holfstein-Primakoff transformation [230] to express the spin
operators in terms of a bosonic degree of freedom. For simplicity, we only consider
the expansion around the minimum |θ = π/2, ϕ = 0⟩, which points along Ĵx. By
introducing a bosonic annihilation operator a and considering spins highly polarised
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along Ĵx:
Ĵx = J − a†a,

Ĵz − iĴy =
√

2J − a†aa,

Ĵz + iĴy = a†
√

2J − a†a.

(5.7)

Then at the lowest order in 1/J , the two operators

ℏĴz = ℏ
√
J

2 (a+ a†) and − ℏJ̃y

J
= iℏ

√
1

2J (a† − a) (5.8)

map to the position and momentum operators of the harmonic oscillator associated
with the annihilation operator a. We find back the same commutator as in Eq. 5.6.
Compared to the simple approach where we would expand the Hamiltonian in terms
of two canonically-conjugated operators ℏĴz and (−ℏĴy/J), the advantage of the
Holfstein-Primakoff transformation is that it can be written at higher orders in 1/J .
We now expand the Hamiltonian in power series of 1/J up to the first order. We get
for the two processes:

Ha/U = −2 + 2
J
a†a,

Hb/U = −1
2

1
J(J − 1/2)

[
2J(J − 1/2) + J(−6a†a+ a†2 + a2) + 2(a†a)2

]
≃ −1 + 1

2J (6(a†a) − a†2 − a2).

(5.9)

Overall, we obtain at first order:

H/U ≃ −3 + 10(a†a) − a2 − a†2

J
. (5.10)

Such a quadratic Hamiltonian can be diagonalised using a Bogoliubov transfor-
mation, by defining new bosonic operators:

b = ua+ va† and b† = v∗a+ u∗a†, (5.11)

with u2 − v2 = 1 to satisfy the correct normalisation. The Hamiltonian has the
canonical form for the choice: u = (1/2 + 5/(4

√
6))1/2 and v = −

√
u2 − 1.

H = E0 + ℏωb†b with


E0 =

(
−3 + 2

√
6 − 5
2J

)
U,

ℏω = 2
√

6
J

U.

(5.12)

The treatment of the Hamiltonian in the vicinity of the two maxima (ϕ = 2π/3
and 4π/3) is similar, up to a rotation of the spin operators basis as described above.
The difference only stems from an additional factor −0.5 in the final expression of the
energy for the two maxima. Noticing that cosϕ equals −0.5 for the two extrema and
1 for the minimum, the effective Hamiltonian can be recast into a single expression:

Hϕ = (E0 + ℏωb†b) cosϕ. (5.13)
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Figure 5.4 – Panel (a): Effective system consisting of three coupled sites
|r⟩ with an additional harmonic degree of freedom n (represented up to
n = 2 for simplicity). Right panels: spin projection Πm for the three states
r = 0, 1, 2, for n = 0 (b), n = 1 (c) and n = 2 (d). The states r = 0, 1, 2 are
encoded in the colors (blue, red and green respectively), while the quantum
numbers n = 0, 1, 2 are encoded in the lineshape (solid, dashed, dotted lines
respectively).

It is diagonal in the basis of Fock states |ϕ, n⟩ with the associated harmonic spectra:
Eϕ,n = (E0 + ℏωn) cosϕ. The eigenstates are easily constructed from the ground
states |ϕ, n = 0⟩ by applying the raising operator n times: |ϕ, n⟩ = b†n |ϕ, n = 0⟩.

This harmonic spectrum is only relevant to describe the dynamics of the system
at low and high energies, but not in the intermediate energy regime. This approach
is slightly unconventional since we are treating the low- and high-energy regimes
similarly, which is not physical. However, this will become justified when we couple
the internal states to a spatial degree of freedom such that all three |ϕ, n = 0⟩ states
are involved in the low-energy dynamics. For now, restricting the spin dynamics
to the semi-classical spectrum, we interpret it as the spectrum of a particle in a
two-dimensional space.

For a given angle ϕ, the E0 + ℏωn part describes a one-dimensional motion
with harmonic trapping along the m coordinate, with an energy minimum for a
spin pointing along J̃x in the corresponding rotated basis. Then, for a fixed n, the
cosϕ term is reminiscent of the dispersion relation E(q) ∼ −2t cos(qa) of a particle
evolving on a one-dimensional ring lattice of length L, where t is the tunnelling
strength and a is the lattice constant. The quasi-momentum q takes the discrete
values 2πj/L, with 0 ≤ j < L/a an integer. By analogy, in our system, the three
discrete angles ϕ play the role of the momenta conjugated to a cyclic dimension of
length L/a = 3. For a fixed value of n, this motivates the definition of a basis of
three position states {|r, n⟩}r=0,1,2, which are related to the momentum states by
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inverse Fourier transform:

|r, n⟩ = 1√
3

∑
ϕ=0, 2π

3 , 4π
3

e−iϕr |ϕ, n⟩ . (5.14)

The variable r represents the position along the cyclic dimension. This notation
is justified and consistent with the initial definition of the coordinate r from the
remainder of m modulo 3. Indeed, the three states |r, n⟩ have a peculiar form when
projected along the z axis. Their spin projection probabilities Πm only involve spin
projections m such that m = r (mod 3). This arises from the structure of the three
states |ϕ, n⟩, which are obtained from |ϕ = 0, n⟩ by a spin rotation around z of angle
ϕ. Projecting |r, n⟩ on an arbitrary spin state |m⟩ (−8 ≤ m ≤ 8), which is an
eigenstate of Ĵz, we obtain:

⟨m|r, n⟩ = 1√
3

 ∑
ϕ=0, 2π

3 , 4π
3

e−iϕ(r−m)

 ⟨m|ϕ = 0, n⟩ , (5.15)

where ∑ϕ(e−iϕ)(r−m) equals 3 when m = r (mod 3) and 0 when m ̸= r (mod 3). The
projection of the coherent state |ϕ = 0, n⟩ on the Dicke basis gives the envelope for
the spin projection probabilities of the three |r, n⟩ states, with maximal probabilities
close to m = 0.

In Fig. 5.4, we show the spin projection probabilities Πm for the states |r, n⟩ for
the three positions r = 0, 1, 2 and the smallest values of n. The intuition we have
developed in this Section is summarised in this graph: the |r, n⟩ states involve only
spin projections m such that m = r (mod 3) and we recognise the typical shape of
the lowest energy eigenstates of a one-dimensional harmonic oscillator, labelled by
the positive integer n.

We can recast the diagonal Hamiltonian of Eq. 5.13 in terms of the position states:

Hϕ =
∑

ϕ=0, 2π
3 , 4π

3

(E0 + ℏωb†b) cosϕ |ϕ⟩ ⟨ϕ|

=
∑
n≥0

∑
ϕ=0, 2π

3 , 4π
3

(E0 + nℏω) cosϕ |ϕ, n⟩ ⟨ϕ, n|

=
∑
n≥0

2∑
r=0

E0 + nℏω
2 |r + 1, n⟩ ⟨r, n| + hc

(5.16)

This Hamiltonian describes a particle on a cylinder, with harmonic trapping
along the axis m and free dynamics along the azimuthal direction r (albeit with a
coupling that depends on the quantum number n of the harmonic trapping).

5.3.3 Excitations
We now provide examples of decoupled dynamics along the two coordinates m

and r. We start in the ground state of the Hamiltonian and apply a perturbation
that induces a non-zero velocity along one of the two directions. The velocities along
the two axes are defined as follows.
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Figure 5.5 – We study the effect of perturbations along one of the two axes
m (left column) and r (right column). The upper panels are representations
of the applied perturbation in the |m⟩z basis. In panel (d), the different
colours represent the time-dependent perturbation at different times −αt = 0,
π/2, π and 3π/2, in blue, red, green and yellow respectively. It highlights
the temporal periodicity of the perturbation and also its m-periodicity at
each time. We then present the spin dynamics following the application
of a perturbation. The middle panels show the spin distribution Πm as a
function of time. The lower panels show the evolution of the mean velocities
⟨vm⟩ (dashed blue lines) and ⟨vr⟩ (solid red lines) for the same dynamics.

As usual, the velocity operator along m can be constructed from the position
operator along this axis, which is simply Ĵz, and is defined, using the Heisenberg
picture, as:

vm ≡ i
ℏ
[
H, Ĵz

]
= Ua

iĴ+

J
+ Ub

−2iĴ2
−

J(J − 1/2) + hc.
(5.17)

The case of the coordinate r is not so trivial. Since it is cyclic, it can be viewed as
an angular variable, which cannot be expressed in terms of a Hermitian operator [231,
232]. However, the velocity operator along r is well defined. We give here qualitative
arguments for its construction. Following the usual derivation of a velocity operator,
we compute the commutator of the Hamiltonian with a position operator along the
synthetic axis, such as exp

(
i2π

3 Ĵz

)
which is indeed cyclic in r. However, this term is
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not Hermitian, so we consider its anticommutator with the Hermitian conjugate of
the position operator along r:

vr ≡ i
ℏ

1√
3

{
exp

(
−i2π3 Ĵz

)
,
[
H, exp

(
i2π3 Ĵz

)]}

= Ua
iĴ+

J
+ Ub

iĴ2
−

J(J − 1/2) + hc.
(5.18)

Intuitively, one can understand the final formula by first looking at the velocity along
m and then replacing the i coefficients based on the effect of the spin operators on the
coordinate r, instead of m. Ĵ+ and Ĵ2

− both increase r by 1, such that we associate
them with i. However, Ĵ2

− decreases m by 2, which explains the −2i coefficient in
the expression for the velocity vm along m.

Let us start with an excitation along the m coordinate only, applied on the
ground state of the Hamiltonian |ϕ = 0, n = 0⟩. A Zeeman field pointing along z,
V

(m)
pert = VzĴz corresponds to a linear potential in m. In the perturbative regime with
Vz ≪ 1, since it is a low-rank spin operator, we expect no coupling with the two
other |ϕ, n = 0⟩ states, and thus no dynamics along r. If we apply a perturbation of
this form on |ϕ = 0, n = 0⟩, it will rotate the spin state along z, thus retaining θ but
slightly changing ϕ toward a state of the form |ϕ ∝ Vz, n = 0⟩. This is equivalent
to pulling a particle in a harmonic trap away from the stationary position. This
results in an oscillation of the position along the m coordinate, i.e. the magnetisation
⟨Ĵz⟩, and an out-of-phase oscillation of the velocity along this axis, i.e. ⟨vm⟩. If
we apply an instantaneous kick along m, we observe the spin dynamics depicted
in Fig. 5.5(a,b). As anticipated, no dynamic along r is observed.

Now, as for the definition of vr, finding a perturbation along r that conserves m
is more challenging, especially from an experimental point of view where we mostly
consider spin couplings of rank less than 2. Due to the distance between the three
|ϕ, n = 0⟩ states in phase space, we consider a high-order coupling operator, such as:

V
(r)

pert(t) = Vr cos(2πr/3 − αt). (5.19)

It corresponds to a perturbation in r at the speed 3α/(2π), which is diagonal in
the |m⟩z projection state basis. It drives the system to a non-zero velocity ⟨vr⟩ ≠ 0.
The three |ϕ, n = 0⟩ states are coupled by the perturbation and a modulation of
the spin distribution Πm modulo 3 is visible. In Fig. 5.5(c,d), we show the spin
dynamics following the perturbation. The non-zero velocity ⟨vr⟩ is conserved, which
is compatible with the absence of trapping along this axis, and the velocity along m
remains negligible.

5.3.4 Uncoupled dynamics
We study the effect of varying the coupling ratio away from the decoupling value

1/2. We seek to understand more deeply the interpretation of our system as a
cylinder with harmonic trapping along the longitudinal axis.

We vary the coupling ratio and simulate the dynamics under the effect of a
perturbation along either m or r. In Fig. 5.6(a), we show how the velocity along
the unperturbed axis is modified as a function of the coupling ratio. For the case
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Figure 5.6 – Panel (a): For the two types of kick described in the main text,
we show a quantity related to the dynamics along the axis that is not excited.
For a kick along m, we plot the ratio of the amplitude of the oscillations
of ⟨vr⟩ and of the amplitude of those of ⟨vm⟩. For a kick along r, we plot
the ratio of the mean value of ⟨vm⟩ and of the mean value of ⟨vr⟩ after the
perturbation is turned off. Panels (b,c): We show the mean velocities during
the spin dynamics after a perturbation along m and r, in the upper and
lower panels respectively, for a coupling ratio Ub/Ua = 0.4 ̸= 1/2.

of a perturbation along m, since we expect velocity oscillations due to the trapping
along m, we present the ratio of the oscillation amplitudes of ⟨vr⟩ and ⟨vm⟩. For
the case of a perturbation along r, we show the ratio of ⟨vm⟩ and of ⟨vr⟩, averaged
over a short period just after switching off the perturbation. We observe in both
situations a minimum around the coupling ratio of 1/2. As we move away from
it, the interpretation of uncoupled dynamics along the two axes no longer holds.
This matches our hand-waving approach, treating m and r as continuous variables,
where we have stated that the independence of the dynamics along these two axes is
ensured at a coupling ratio of 1/2. We also interpret this as the result of the peculiar
treatment of low- and high-energy regimes on an equal footing. We will contrast this
behaviour with that in the presence of a coupling between the internal states and a
spatial dimension in Section 5.4, where the low-energy picture is preserved.

In the following Section, we present our proposal to engineer a quantum Hall
system by coupling the internal and external degrees of freedom of an atom. We
engineer a Hall cylinder, made of a spatial dimension and of the cyclic coordinate r,
while the coordinate m remains frozen.

5.4 Application: A two-dimensional Hall cylinder
The dynamics presented in Section 5.3, characteristic of a particle on a cylinder,

can be enriched by coupling to a spatial dimension. Raman processes, involving
two beams with opposite wavevectors ±k, induce spin transitions together with a
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momentum kick ±2k, leading to a one-dimensional spin-orbit coupling.
Consider two laser beams counter-propagating along a spatial axis x, driving

two-photon optical transitions. The couplings inherit a spatially-dependent phase
e±i2kx from the laser beam interference and the Hamiltonian of the system reads:

H = Mv2
x

2 + V,

V = −
[
Ua
Ĵ+

J
+ Ub

Ĵ2
−

J(J − 1/2)

]
ei2kx + hc,

(5.20)

where vx is the velocity along the x axis, k is the norm of the laser wavevector k and
M is the atomic mass. We define the corresponding recoil velocity vrec = ℏk/M and
the recoil energy Erec = ℏ2k2/(2M).

As in Section 5.3, let us see the effect of the two processes on the two synthetic axes
m and r. The two processes increasing the remainder r are commonly associated
with a phase accumulation −2kx, proportional to the position x, leading to an
effective gauge field in the (x, r) plane. Conversely, the wavefunction acquires phases
of opposite sign ±2kx under the effect of the two processes increasing m, such that
it is not clear at this stage whether there can be a gauge field in the (x,m) plane.
We note however that, at vanishing coupling strength for one of the two processes,
we expect a magnetic field in the (x,m) plane [46], indicating a relation between the
presence of a magnetic field and the coupling strength ratio.

Following the semi-classical treatment in the purely spin case, we derive the
energy functional as a function of the real position x:

E(x, θ, ϕ) = −2U sin θ cos(ϕ− 2kx) − U sin2 θ cos(2ϕ+ 2kx). (5.21)

Interestingly, at the coupling ratio 1/2, for all positions x, it still features three
extrema for θ = π/2 and ϕ = 0, 2π/3 and 4π/3. The energy functional is x-periodic
with a period λ/2 (with λ = 2π/k the laser wavelength) and the |ϕ = 0, 2π/3, 4π/3⟩
states are minima for the positions x = 0, λ/6, λ/3 respectively, reaching equal
minimum energy. Contrary to the purely spin case, the three spin states |ϕ⟩ play
equivalent roles at low energy, within a cell of size λ/2.

By expanding the spin operators around the three extrema, at a given position x,
we obtain the effective Hamiltonian:

Veff =
∑

ϕ=0, 2π
3 , 4π

3

(E0 + ℏωb†b) cos(ϕ− 2kx)

=
∑
n≥0

∑
ϕ=0, 2π

3 , 4π
3

(E0 + nℏω) cos(ϕ− 2kx) |ϕ, n⟩ ⟨ϕ, n|

=
∑
n≥0

2∑
r=0

E0 + nℏω
2 e−i2kx |r + 1, n⟩ ⟨r, n| + hc

(5.22)

where we have defined the |r, n⟩ position states, as conjugated to the momentum
states |ϕ, n⟩.

The energy spectrum Eϕ,n = (E0 + nℏω) cos(ϕ− 2kx) has two parts: a harmonic
degree of freedom, defined by n, and a cosine term which plays the role of a lattice
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Figure 5.7 – Panel (a): Spectra as a function of position x for the coupling
ratio Ub/Ua = 1/2, in black dots for the total potential V (x) and in solid
lines for the effective potentials Vϕ,n(x) (n = 0, 1, 2 in orange, cyan and
yellow respectively), for ϕ = 0, 2π/3 and 4π/3. Panels (b,c): Study of the
deviation from the coupling ratio 1/2 in the semi-classical picture, keeping
Uc =

√
UaUb constant. The extremal cases Ub = 0 and Ua = 0 correspond to

arctan(Ub/Ua)/(π/2) equal to 0 and 1 respectively. The upper panel show
the variation of the minimum of the energy functional E(θ, ϕ) as a function
of position x and coupling ratio Ub/Ua. The common energy minima, at
positions x that are integer multiples of λ/6, are marked with black dots.
In the lower panel, we plot the angle ϕmin at which the minimum of the
energy functional is reached as a function of both the coupling ratio and
the position. The black lines correspond to the three positions marked by
black dots in the upper panel. The vertical grey line marks the coupling
ratio Ub/Ua = 1/2.

potential. The angle ϕ defines the position of the energy minima along x, as mentioned
earlier. The potential in Eq. 5.22 describes the hopping dynamics along r, with a
x-dependent complex phase that mimics the Aharonov-Bohm phase associated with
a magnetic field in the xr plane. This interpretation becomes explicit when deriving
the energy spectrum at first order in ϕ − 2kx, with |E0| ≫ ℏω. The full atom
dynamics, described by the effective Hamiltonian Heff = p2

x/2M + Veff, then maps to
the motion of a charged particle on a Hall cylinder along x and r, with an additional
harmonic degree of freedom n. In Fig. 5.7(a), we compare the position-dependent
spectra obtained from the diagonalisation of the exact coupling operator in Eq. 5.20
and the effective model Veff given by Eq. 5.22, at Ub/Ua = 1/2. The two lowest energy
bands of the exact spectrum are well reproduced by the effective model and some
deviations are visible for n higher than 2.

Let us now consider a departure from the coupling ratio Ub/Ua = 1/2. The
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Figure 5.8 – Study of the effect of an additional term VzĴz. We numerically
determine the functional energy minimum as a function of position x and field
strength Vz, and the angle (θmin, ϕmin) for which the minimum is reached.
For all field strengths, the minimum of the functional energy minima is
reached for the positions xj = jλ/6, with integers j. Panel (a): Angle θmin
as a function of Vz. Panel (b): Angle ϕmin as a function of Vz and x. In both
panels, the solid lines are obtained at the positions xj.

purely spin case taught us that the dynamics along the two synthetic axes are
no longer decoupled. In Fig. 5.7(b,c), we see that, whatever the ratio, the energy
functional always has global minima at the positions xj = jλ/6, with integers j
(marked by black dots). For these positions, the energy functional minimum is
always reached, at θ = π/2, for the same angle ϕj = j2π/3 (mod 2π). Overall, the
lowest energy states are reached at positions that are integer multiples of λ/6, for
the three angles ϕ = 0, 2π/3, 4π/3, whatever the coupling ratio. We conclude that
the low-energy physics is unchanged, for coupling ratios deviating from 1/2, and
that the interpretation with three sites r remains valid, although the picture with an
additional independent harmonic degree of freedom n partially breaks down.

We also point out that the two extreme cases Ua = 0 or Ub = 0 are also visible
in Fig. 5.7(b). There, the energy of the ground state does not vary with the x-position,
which is related to the absence of breaking of the continuous translation symmetry.
Indeed, when only one of the two processes is present, the spatial dependence of the
hopping phases can be gauged out with an appropriate unitary transformation.

The robustness of the interpretation at low energy goes hand in hand with the
robustness against magnetic field fluctuations. We consider an additional term in the
Hamiltonian VzĴz, a Zeeman term corresponding to a magnetic field along z. We only
study the effect of magnetic fluctuations along the z axis because, in the rotating
wave approximation (see Section 6.2 for details on our implementation of processes
(a) and (b) using light-matter coupling within the rotating wave approximation), the
contributions from magnetic fields along the x and y axes oscillate rapidly and average
out to zero. In Fig. 5.8, we show the angles (θmin, ϕmin) for which the functional
energy minima are reached, as a function of the position x and the field strength
Vz. We note that, again, the physics at low energy always occurs in the vicinity of
positions that are integer multiples of λ/6, for the three angles ϕ = 0, 2π/3, 4π/3.
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Figure 5.9 – Panel (a): Band structure for Ub = 0. The spatially-dependent
phases of Ĵ+e−i2kx + hc can be incorporated as a vector potential with the
unitary transformation U = ei2kx̂Ĵz , such that px is a conserved quantum
number. We show the unfolded band structure and the folded band structure
in the first Brillouin zone of size 6k (defined from the magnetic translation
symmetry of the full Hamiltonian with non-zero Ub). The shaded areas high-
light the successive Brillouin zones. Panel (b): Band structures calculated
using the actual potential V (x) (black dots) and the effective ones Vϕ,n(x),
with n = 0, 1, 2 (orange, cyan and yellow lines), at Ub/Ua = 1/2. The process
(b) induces coupling between momentum states with spacing 6k, such that a
gap opens in the folded picture at increasing Ub and a band structure with
quasi-flat bands appears.

However, we observe a departure from the angle θ = π/2 as the VzĴz term tends to
polarise the spin along the z axis, i.e. towards θ = 0 or π depending on the sign of Vz.
For reasonable values of Vz, typically of the order of Erec, as shown in Fig. 5.8, the
picture at low energy holds and we expect only a shift of the mean spin projection
along z, which does not endanger the interpretation of the system as a cylinder.

We validate the description of our system as a quantum Hall cylinder, by compar-
ing the band structure of the exact Hamiltonian of Eq. 5.20 and the effective model
of Eq. 5.22. Both models are invariant under the discrete magnetic translation:

Tmag = Tx(λ/6)Rz(−2π/3), (5.23)

which combines a λ/6-translation along x and a rotation of the spin around z of
angle −2π/3. This symmetry leads to the conservation of the quasi-momentum:

qx ≡ Mvx

ℏ
+ 2kĴz (mod 6k), (5.24)



5.4 Application: A two-dimensional Hall cylinder 103

defined over the magnetic Brillouin zone −3k ≤ qx < 3k, of size 6k. The Hamiltonian
spectra are organised in magnetic Bloch bands, illustrated in Fig. 5.9(b), for a
coupling strength U = 12Erec. This Hamiltonian can be understood starting from the
Hamiltonian with kinetic energy and process (a) only. The application of the unitary
transformation U = ei2kx̂Ĵz incorporates the x-dependent phase in the kinetic energy
as a non-zero vector potential 2ℏkĴz, such that the momentum px = Mvx/ℏ+2kĴz is
a conserved quantity. We show in Fig. 5.9(a) the resulting band structure. The effect
of process (b), in this gauge choice, is to couple momentum states in a given band
that are distant by 6k. To make this more transparent, we fold the band structure for
Ub = 0, in a Brillouin zone of size 6k, centred on px = 0 (successive Brillouin zones
are represented by the grey shaded areas in Fig. 5.9(a)). Crossings at the edges of the
Brillouin zone, involving momentum states with a momentum difference of 6k, are
avoided in the presence of process (b). As Ub is increased, the gaps are opened and
the ground band splits into a succession of bands that flattens. The large number of
crossings for the ground band, at energies below the first excited band, for Ub = 0,
leads to a large number of quasi-flat bands in the resulting spectrum for the total
Hamiltonian.

We compare this spectrum with that of the effective model in Fig. 5.9(b), which
reproduces well the very flat lowest bands for n = 0, 1, 2. This confirms the relevance
of the description of low-energy dynamics as that of a quantum Hall cylinder.

Generalisations
The above protocol can be generalised to a cylinder with a different number of

sites along the cyclic dimension. For example, using only vector light shifts, one can
design a two-leg system, albeit without spatially-dependent hopping phase. A less
trivial example is to replace the rank-2 spin coupling with a higher-rank spin operator
to obtain a cylinder with a larger circumference. Spin coupling of rank strictly higher
than 2 cannot be produced by simply applying a DC light shift, but they can be
engineered by temporal modulation for example [233]. Periodically-driven systems,
at a high frequency compared to all the relevant energies, can be described by an
effective Hamiltonian with possibly non-trivial spin couplings, albeit associated with
a micromotion. The most natural extension is to prepare a cylinder with 4 sites
along the cyclic coordinate, using a Ĵ3

+ coupling. Interestingly, this system could be a
building block to study two-dimensional models of topological insulators that do not
break the time-reversal symmetry, characterised by a non-trivial Z2 invariant [16].
These topological insulators require an even number of states, and the smallest
non-trivial case can be realised with only 4 sites, coupled together. In this Section,
we consider couplings of general rank f ≥ 1.

We consider the Hamiltonian H = Mv2
x/2+V with a spatially-dependent potential

V :
V = −

[
Ua
Ĵ+

J
− Ub

Ĵf
−

Jf−1(J − 1/2)

]
ei2kx + hc. (5.25)

In a semi-classical approach, the generalisation of Eq. 5.21 to an energy functional
for a spin coupling of rank f and a coupling ratio Ub/Ua = 1/f , is:

E(θ, ϕ) = −2U sin θ cos(ϕ− 2kx) − 2U 1
f

sinf (θ) cos(fϕ+ 2kx), (5.26)
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with U = Ua = fUb.
The local extrema of the energy functional are obtained for the f+1 coherent states

pointing along the equatorial plane (θ = π/2) of azimuthal angle ϕ = k2π/(f + 1)
with integer 0 ≤ k ≤ f . By expanding the Hamiltonian in the vicinity of these states,
we obtain an equivalent of the effective picture presented in the previous Section:
our system maps to the motion of a charged particle on a Hall cylinder defined by
the coordinates x and r, of circumference f + 1.

Let us consider two extremal cases. On the one hand, the highest non-trivial
order of the spin coupling is reached at f = 2J , where the Ĵf

± terms couple the
two edge states of the Zeeman manifold |J,±J⟩ only. This produces a Hall cylinder
with the largest cyclic dimension composed of 2J + 1 sites. In this configuration,
the sites of the cylinder are the Dicke states, highly non-classical states, and the
semi-classical approach obviously breaks down. On the other hand, we expect very
few modifications to our scheme (with f = 2) when we simply consider f = 3, for
which we obtain a cylinder with 4 sites. Intuitively, this arises from the ratio between
the coupling rank and the total spin f/J , which varies very little and remains much
less than one.

5.5 Interactions in synthetic dimensions
We mentioned earlier that synthetic dimensions are treated on an equal footing

with spatial dimensions, but we must point out an important difference between
them. In hybrid systems based on internal degrees of freedom such as electronic
states of atoms, the interactions are typically infinite-range along the synthetic
dimension, while being generally short-range along spatial coordinates. Indeed,
spin-changing collisions m1,m2 → m3,m4 are allowed for a priori arbitrary spin
states mi (i = 1, 2, 3, 4). The peculiar nature of interactions in hybrid systems, in
particular its strong anisotropy, leads to exotic phases of matter [217]. It complicates
the analogy with standard models, for which analogue simulation is much awaited.
For example, it is still a debate whether fractional quantum Hall states could be
observed in systems with synthetic dimensions [234]. Still, some implementations
of synthetic dimensions may feature finite-range interaction. For example, in the
approach based on eigenmodes of a harmonic quantum oscillator, interactions decay
algebraically [224] with distance along the synthetic axis. Another approach rather
tunes the range of the interaction along a synthetic dimension. For example, in the
case of a Hall ribbon where the dimension with edges is encoded in the Zeeman
manifold of the electronic ground state of an atom [46], the addition of a magnetic
field gradient can spatially separate the different Zeeman states. Compensated by
a harmonic trap along the direction of the gradient, the atoms remain confined
and the spatial distributions of the different Zeeman sublevels are shifted, thus
effectively ensuring short-range interactions along the synthetic axis. More generally,
interactions along synthetic dimensions can be shaped by mixing trotterisation
techniques and multiple Feshbach resonances [235].

Even if the range of the interactions is a limitation in reaching strongly-interacting
phases of matter in quantum Hall systems and requires specific protocols to circumvent
it, it can be favourable to study other systems. Among possible candidates for the
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implementation of synthetic dimensions, alkaline-earth-like fermionic atoms, such as
strontium or ytterbium, with SU(N) symmetric interactions in their ground state
with pure nuclear spin [236], have attracted attention recently, following successes in
bringing them to quantum degeneracy [237, 238]. This symmetry is connected to
high-energy physics for the description of quarks and to condensed-matter physics
with unconventional magnetic states, for example. In the latter, an emblematic
model, the Fermi-Hubbard model, has a generalisation to interactions with SU(N)
symmetry [239, 240], originally studied for transition-metal oxides and recently
studied using ultracold atoms [241, 242].

The variety of implementations of synthetic dimensions thus leads to a wide range
of types of interactions, and we will revisit this topic in further detail in Chapter 7
for our implementation of a Hall cylinder.

We have shown how two synthetic dimensions can be encoded in the spin of a
single atom using a combination of spin couplings of different ranges. In the next
Chapter, we present our implementation of an atomic Hall cylinder using a cyclic
synthetic dimension coupled with a spatial one and probe its topology. We extend
our protocol to realise a four-dimensional Hall system in Chapter 7, benefiting from
the two synthetic dimensions encoded in the large spin of dysprosium atoms.





6
Realisation of Laughlin’s topological charge

pump

This Chapter is dedicated to the experimental realisation of topological pumping
in an atomic Hall cylinder, engineered using the approach described in Chapter 5.

This work has been published in the following article [243]:
Laughlin’s Topological Charge Pump in an Atomic Hall Cylinder
A. Fabre, J.-B. Bouhiron, T. Satoor, R. Lopes, S. Nascimbene
Physical Review Letters 128, 173202 (2022)

The Hall cylinder, first envisioned by Laughlin in his argument for the quantisation
of the integer quantum Hall effect, consists of a radial magnetic field B⊥, yielding
the Hall effect, and an axial field B∥ along x, which threads the cylinder with a
flux Φ∥. As presented in Section 4.2.3, the electronic states are localised along the
longitudinal axis and there is one accessible state per magnetic flux quantum Φ0.
This defines the length ℓmag of the magnetic unit cell, with each cell being filled with
exactly one electron for a filled ground band. Laughlin’s thought experiment consists
of performing an adiabatic cycle by threading one flux quantum ∆Φ∥ = Φ0 through
the cylinder. The full cycle shifts the electronic occupations by exactly ℓmag and
maps the final electronic state back onto the initial state. A single electron is pumped
from one edge to the other, or equivalently the centre-of-mass position is displaced
by ℓmag. The topology of the system protects the quantised electronic motion along
the cylinder from perturbations that do not close the energy gap between the ground
band and the excited ones.

In recent years, there have been a few realisations of cylindrical geometry using the
internal states of cold atoms to encode a cyclic dimension. Li et al [244] exploits four
internal levels, assembled in two pairs that form two minimal planar two-dimensional
Hall systems using two-photon Raman transitions. Microwave fields connect the
edges of the two planar systems, synthesising a Hall cylinder, with a plaquette size of
half the length associated with the net momentum transfer of the Raman transitions.
An axial field is tunable in this implementation. Han et al [245] considers a fermionic
one-dimensional lattice, coherently manipulating three hyperfine levels while the
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∆Φ∥ = Φ0

Φ0

B⊥

ℓmag

Figure 6.1 – Scheme of a two-dimensional electronic system in a cylindrical
geometry, with a radial B⊥ magnetic field, yielding a quantum Hall effect,
and a longitudinal B∥ magnetic field, producing a magnetic flux Φ∥ threading
the cylinder. The orange area, pierced by one magnetic flux quantum Φ0,
defines the length ℓmag separating localised electronic states. The threading
of one flux quantum ∆Φ∥ = Φ0 shifts electron occupations, causing electrons
to be pumped from one edge to the other.

other levels are kept far off-resonant. The implementation of the radial magnetic
field also derives from two-photon transitions that couple the three states with
individual control of the phases and coupling strengths. The momentum transfer
of the Raman processes is adjusted to induce a uniform phase per plaquette that
is commensurate with the lattice spacing. The properties of the system are probed
via quench dynamics. Liang et al [246] also considers a one-dimensional lattice and
implements a synthetic cylinder using the three levels of the electronic ground state
manifold of rubidium atoms in |F = 1⟩, rendered insensitive to fluctuations of the
magnetic field by continuous dynamical decoupling [247]. The commensurability of
the acquired phase per plaquette is controlled by the net momentum transfer of the
Raman transitions through the use of a tunable laser.

Similarly to some of these experiments, we first imagined using three cyclically-
coupled magnetic sublevels (m = −J , −J+1 and −J+2, for example) of the electronic
ground state manifold of dysprosium atoms. In this configuration, two-photon optical
transitions induce hopping between the three states with spatially-varying phases,
thus implementing a radial magnetic field in a cylindrical system, infinite along a
spatial dimension and cyclic along a synthetic dimension of three sites. The other
magnetic sublevels are lifted away from resonance using a non-linear light shift,
induced by an off-resonant circularly-polarised beam. However, in the absence of
a technique such as continuous dynamical decoupling, numerical simulations for
experimentally reasonable parameters predict that the magnetic fluctuations on the
order of 0.4 mG on our experiment substantially alter the band structure and the
spin composition of the states of the ground band. The ground band is not flat
and becomes asymmetric. Even if the topological invariant of the ground band
protects the quantisation of transport, we expect significant fluctuations of local
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(a)

(b)

(c)

Figure 6.2 – Previous realisations of Hall cylinders using internal states to
engineer both the cyclic dimension consisting of three or four coupled sites
and the artificial gauge field. Figures extracted from Li et al [244] (a), Han
et al [245] (b) and Liang et al [246] (c).

properties such as the Berry curvature, which complicates our understanding of
Bloch oscillations or geometrical pumping. From a technical point of view, the
coupling of the three magnetic sublevels is very asymmetric due to the Clebsch-
Gordan coefficients. More specifically, it requires a high laser intensity to couple the
states |−J⟩ and |−J + 2⟩, which increases the trapping (or anti-trapping) effect of
the beam. Unwanted transitions, that are however favoured by the Clebsch-Gordan
coefficients, can affect the atoms for large coupling strengths. For these reasons, we
turned to another scheme, whose basic idea has been presented in Chapter 5. The
observables of interest are insensitive to magnetic field fluctuations and the band
structure is favourable with a flat ground band and large energy gaps, for reasonable
coupling strengths.

We first describe the laser configuration that produces the required spin-changing
processes. We remind the form of the Hamiltonian at low energy. Following the
approach to topological pumping described in Section 4.4, we describe the topological
properties of the system and how to access them in our experimental realisation.
We present the parameters that control the quantum state. In addition, we show
bandgap measurements that probe the first excitations of our system and highlight
the peculiar properties of the engineered Hall cylinder. We then perform a series
of experiments to measure the transverse response of the system and probe the
topology of the system from different points of view. On one hand, under the
application of a force along the spatial dimension, we observe a winding along the
cyclic synthetic dimension in two related experiments. On the other hand, we study
the response to the threading of an axial flux, equivalent to an electromotive force
along the synthetic dimension, which realises the thought experiment first envisioned
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by Laughlin. Our observations are consistent with the non-trivial quantisation of
the topological invariant of the ground band, the first Chern number. We also
access local properties of the system via geometrical pumping, related to the Berry
curvature. Finally, these measurements are validated by a study of the adiabaticity
of the responses when the parameters are changed.

6.1 Experimental setup
For the experiments presented in this Chapter, we use a thermal gas of about

4 × 104 atoms, at a temperature of T = 0.54(3) µK. We emphasise that the large
number of atoms acts only as an averaging mechanism and we remain in a regime of
single-body physics. Indeed, the interactions between atoms are negligible for the
corresponding atomic density on the timescale of our measurements. A magnetic field
is aligned along z, with a norm of 231(1) mG, and induces a linear Zeeman splitting
δz = 2π × 401(2) kHz that lifts the degeneracy between the magnetic sublevels m
(with integer m with −J ≤ m ≤ J) of the electronic ground state manifold. Spin
transitions of first and second order, coupling nearest- and next-nearest-neighbour
magnetic sublevels, as required in the protocol of Chapter 5, are implemented with
two-photon optical transitions, using a pair of laser beams, counter-propagating
along x, as depicted in Fig. 6.4(a). The atoms evolve in three dimensions, but the
spin-orbit coupled dynamics, induced by the net momentum kick associated with
spin-changing transitions, are limited to the x-direction. The dynamics along the
two other axes are governed by the trapping (or anti-trapping) effect induced by
the focused laser beams and by gravity only and are separable from the spin-orbit
coupled dynamic along x. As a consequence, we can consider our physical system as
a one-dimensional one.

Each beam is linearly polarised along e1 = cos θ ez + sin θ ey and e2 = cos θ ez −
sin θ ey for the laser beams 1 and 2, which propagate along x and −x respectively.
They are represented in Fig. 6.4(b). Their waist w ≃ 60 µm is much larger than the
rms size σ ≃ 3 µm of the atomic gas, such that the light intensity can be considered
uniform. The laser frequencies are set in the vicinity of the atomic resonance of
wavelength λ = 626.1 nm, with the associated wavevector k = 2π/λ, coupling the
electronic ground state to an excited level with total angular momentum J ′ = J + 1.
We note at this point that the bias magnetic field along z is large enough to prevent
Bragg processes, that couple different momentum states while keeping the spin state
unchanged. More precisely, the magnetic Zeeman splitting verifies the condition
δz ≃ 128Erec/ℏ ≫ ℏ(2k)2/(2M) = 4Erec/ℏ, the right term being the kinetic energy
difference between an atom at rest and an atom with shifted momentum ±2k in the
same spin state.

6.1.1 From a Hall ribbon...
This set of laser beams has been used in our group to realise a Hall ribbon [46],

before the work presented here. We briefly describe the experiment that probed the
topology of a two-dimensional system of coordinates (x,m) with sharp edges along
the synthetic axis at m = ±J . Two-photon Raman transitions are resonant with
processes coupling nearest-neighbour spin states m → m+ 1, with a net momentum
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Figure 6.3 – Realisation of an atomic Hall ribbon. Panel (a): Two-photon
optical transitions induced by the interference of two counter-propagating
laser beams, coupling all neighbouring spin states. Panel (b): Resulting Hall
ribbon with (x,m) coordinates. We focus on two m states and show the unit
cell pierced by a magnetic flux quantum Φ0 in blue. Spatially-dependent
hopping phases associated with the process m → m + 1 are indicated in
red. Panel (c): Energy spectrum of the synthetic Hall ribbon. Panel (d):
Measured local Hall currents along x under the effect of a potential along
the synthetic axis. We observe a transverse response, consistent with a
quantised Hall response in the bulk of the system, close to m = 0, indicated
by a vertical dashed blue line.

kick −2k, as shown in Fig. 6.3(a). The resulting spatially-varying hopping phases,
highlighted in Fig. 6.3(b), are equivalent to Aharonov-Bohm phases associated with
an artificial gauge field. They define a unit cell of shape ∆x× ∆m = λ/2 × 1 which
is pieced by a magnetic flux quantum. Using a succession of unitary transformations
and approximations that we will derive in detail in the following Sections for the
atomic Hall cylinder, the total Hamiltonian reads:

H =ℏ2(px − 2kĴz)2

2M + V (x) +Bz
Ĵ2

z

J2 ,

V (x) = − t

[
Ĵ+

J
+ hc

]
.

(6.1)

We define the coupling strength t from the intensities of the two laser beams and the
strength Bz of the quadratic Ĵ2

z term, which stems from the angle of linear polarisation
θ. A key feature of this Hamiltonian is that the momentum px = Mvx/ℏ + 2kĴz is a
conserved quantity, that originates from the correlation between kicks along x and
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Figure 6.4 – Description of the laser setup and spin couplings. Panel (a):
Scheme of an atom subjected to two laser beams, counter-propagating along
x. The frequencies of the beams are detuned from the optical transition
at 626.1 nm. The beam propagating along +x contains two frequency
components, that interfere with the second beam, such that they are resonant
with processes changing the spin by ±1 and ±2 respectively. Panel (b):
Representation of the linear polarisation angles of the two laser beams,
parametrised by an angle θ from the z axis defined as the direction of the
bias magnetic field Bz (aligned with the gravity axis). Panel (c): Optical
transitions induced by the two-photon processes involving either of the two
sets of counter-propagating laser beams. They induce Ĵ± and Ĵ2

± transitions
between all nearest- and next-nearest-neighbour spin states.

hopping along m. For the choice of linear polarisation angle θ = 45◦ and a positive
detuning from the transition, the quadratic term compensates the curvature of the
ground band, which becomes quasi-flat. The band structure, shown in Fig. 6.3(c),
strongly resembles Landau levels in the presence of edges.

The topology of the system can be probed by applying a force along the synthetic
dimension m by adjusting the laser frequency difference and measuring the transverse
response along the real dimension x. In the presence of gapless edges, the topological
character of the ground band cannot be probed as it is a global quantity, but key
signatures are observable away from the edges, in the gapped bulk region. In this
realisation of an atomic Hall ribbon, a central region hosts bulk physics due to the
large size of the synthetic dimension, which derives from the large total angular
momentum J = 8. The local topology can be probed by measuring Hall currents that
characterises the local response to a force, as shown in Fig. 6.3(d). It depends on the
local properties of the system as it is not a topologically-protected quantity like the
Chern number. Still, we observe that the Hall current approaches its quantised value
over a region centred around m = 0, far from the edges at m = ±J . As we have
seen in Chapter 4, the study of bulk physics with a transverse response characterised
by a topological invariant is facilitated in the cylindrical geometry where edges are
absent. In this case, it is possible to measure the Chern number of the ground band
by probing the global transverse response to a force.
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6.1.2 ...to a Hall cylinder
We consider a modification of the optical setup presented for the Hall ribbon,

to engineer an atomic Hall cylinder. The configuration of laser frequencies now
ensures that the atoms undergo a momentum kick −2k upon either resonant process
m → m+ 1 or m → m− 2. We immediately see that the momentum px is no longer
a conserved quantity, compared to the case of a Hall ribbon, where we have the
first process only. However, both processes conserve the quantity Mvx/ℏ + 2kr with
r ≡ m (mod 3), which defines a quasi-momentum with a periodicity 6k and is at the
heart of our implementation of a Hall cylinder.

The laser 2 is monochromatic at frequency ω2 while the laser 1 has two frequency
components ω1a and ω2a, close to ω2 − δz and ω2 + 2δz, that induce first- and second-
order spin couplings respectively. The resonant processes induced by the laser beams
are shown in Fig. 6.4(c). The laser beams are red detuned from the resonance by
∆0 ≃ −2π×22 GHz. The two beams and the two frequency components contribute to
a spin-independent light shift, that tends to confine the atoms in high-intensity regions,
and to a quadratic light shift of the magnetic sublevels proportional to (3 cos2 θ−1)m2,
which we cancel by setting the polarization angle to θ = acos

(
1/

√
3
)

≃ 55◦. The
detailed derivation of the Hamiltonian is given in the next Section.

6.2 Derivation of the Hamiltonian
The Hamiltonian that determines the dynamics of an atom has the expression:

H = H0 + VLS, (6.2)
where H0 contains the kinetic and Zeeman terms and VLS describes the light-matter
interaction. Using the general formula for off-resonant light in Eq. 1.19, these terms
take the form:

H0 = Mv2

2 + ℏδzĴz,

VLS = γ

[
α0|E|21̂ − iα1(E∗ × E) Ĵ

2J

+α2
3[(E∗ · Ĵ)(E · Ĵ) + (E · Ĵ)(E∗ · Ĵ)] − 2|E|2Ĵ2

2J(2J − 1)

]
,

(6.3)

where δz is the magnetic Zeeman angular frequency, E is the light field amplitude,
and γ is the coefficient that converts light intensity in light coupling amplitude, based
on the characteristics of the optical transition and of the detuning of the laser from
resonance:

V0 = γI = 3πc2Γ
2ω3

0

I

∆0
, (6.4)

with Γ the transition linewidth, ω0 the laser frequency, ∆0 the detuning to resonance
and I the laser intensity. The total light field amplitude is the sum of the contributions
of the three laser beams:

E1a = E1aei(kx−ω1at+φ1a)e1,

E1b = E1bei(kx−ω1bt+φ1b)e1,

E2 = E2ei(−kx−ω2t+φ2)e2,

(6.5)
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where Es, ωs, φs are the field amplitude, angular frequency and phase for laser beam
s (with s = 1a, 1b or 2). The relative detunings of the beams are chosen such that the
interferences of beam 2 with beam 1a and 1b are close to resonance with two-photon
optical transitions changing the spin m by ±1 and ±2 respectively. They are defined
as:

ω1a − ω2 = −δz + δa,

ω1b − ω2 = 2δz + δb,
(6.6)

with δa and δb the detunings from the two resonances.
The explicit derivation of the Hamiltonian is rather cumbersome. For clarity,

we identify different contributions that are treated separately. The terms in the
Hamiltonian originate either from each beam independently (in which case they
are proportional to the beam intensity and there is no spatial or time dependence)
or from the interference between two of the three beams. Among these terms, we
separately treat the diagonal terms in m, involving spin operators that are multiples
of Ĵz, and the off-diagonal terms. We first apply a unitary transformation

U = eiδztĴz , (6.7)

which amounts to considering the spin states in a basis that rotates at the angular
frequency δz around z. This cancels out the Zeeman term in the total Hamiltonian
and the Hamiltonian is transformed as:

H → UHU †, (6.8)

which only affects off-diagonal terms because all diagonal terms commute with Ĵz and
thus with U . All off-diagonal operators that appear in the light-matter Hamiltonian
can be written as linear combinations of powers of the spin ladder operators Ĵ±,
possibly multiplied by powers of Ĵz that anyway commutes with U . The ladder
operators transform as:

Ĵ± → e±iδztĴ±. (6.9)
We then apply the rotating wave approximation (RWA), which neglects the

fast oscillating terms that appear in this rotating frame. This approximation is
valid as long as |δs| ≪ δz (s = a or b) and |Vs/ℏ| ≪ δz (s = 1a, 1b or 2). We set
δz ≃ 128Erec/ℏ and we choose the potentials on the order of a few times the recoil
energy and vary the detunings from resonance up to a dozen times the recoil angular
frequency, which fulfils the criteria of the RWA. For the diagonal terms, which are
not modified under the unitary transformation, we neglect all time-dependent terms.
We are left with three terms that originate from each beam independently:

Vdiag = (V1a + V1b + V2)
[(
α0 + α2

J + 1
2J − 1

3 sin2 θ − 1
2

)
1̂

+ α2
3

2J(2J − 1)(3 cos2 θ − 1)Ĵ2
z

]
= (V1a + V1b + V2)α01̂,

(6.10)

where Vs is the light coupling amplitude for beam s (s = 1a, 1b or 2), from Eq. 6.4.
The simplification from the first equality to the second assumes a polarisation angle
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θ = acos
(
1/

√
3
)
, which cancels out the Ĵ2

z term. The scalar polarisability α0 for the
optical transition at 626 nm, from J to J+1, equals α0 = (2J+3)/(3(2J+1)) = 19/51.
For red detuned laser beams (∆0 < 0), given the sign of α0, the diagonal part of the
potential is attractive.

For the non-diagonal terms, we keep only two types of terms: those that come
from the interference of laser 1a and 2 and change the spin m by ±1 and those
that originate from the interference of laser 1b and 2 and modify the spin m by
±2. Indeed, after the unitary transform, the other terms necessarily oscillate at an
angular frequency multiple of δz and vanishes in the RWA. Among the remaining
terms, we neglect the fast oscillating terms at angular frequencies ≃ 2δz (from the
process (a)) or ≃ 4δz (from the process (b)) and obtain:

Vnon-diag = − ta

[
Ĵ+

J
e−i2kxeiδatei(φ1a−φ2+π/2) + hc

]

− tb

[
Ĵ2

−
J2 e−i2kxeiδbtei(φ1b−φ2) + hc

]
.

(6.11)

The phase difference between the two processes can be gauged away such that we
retain hereafter a single phase φ ≡ φ1a −φ2 +π/2 = φ1b −φ2. The coupling strengths
ta and tb are given by:

ta =
√
V1aV2

J(2J + 3)
4(J + 1)(2J + 1) sin(2θ),

tb =
√
V1bV2

J2

4(J + 1)(2J + 1) sin2 θ.

(6.12)

The time dependence of the non-diagonal part of the Hamiltonian can be sup-
pressed with the right choice of transformations. First, we consider the motion of
the atoms in a reference frame moving at velocity v∗ relative to the laboratory frame.
Then, we apply a second gauge transformation defined by the unitary operator:

U = e−i∆tJz . (6.13)

The non-diagonal terms are transformed as follows:

Vnon-diag = − ta

[
Ĵ+

J
e−i2kxeiδateiφe−i∆te−i2kv∗t + hc

]

− tb

[
Ĵ2

−
J2 e−i2kxeiδbteiφei2∆te−i2kv∗t + hc

]
.

(6.14)

The time-dependence of the two terms is cancelled out by the choice of parameters:

v∗ = 2δa + δb

6k ,

∆ = δa − δb

3 ,

(6.15)
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Figure 6.5 – Spin-velocity distribution in the laboratory frame. Accessible
states via the processes (a) and (b), in a two-dimensional parameter space,
defined by the spin state m (with −J ≤ m ≤ J integer) and the velocity
vx along x. We show the coupling transitions that are induced by the
processes (a) and (b), for the spin-momentum state |m = 1,Mvx = 0⟩ that
corresponds to na = −nb = 3.

and the total Hamiltonian in the moving frame becomes:

H =Mv2
x

2 + V (x) + ℏ∆Ĵz,

V (x) = − ta

[
Ĵ+

J
e−i2kxeiφ + hc

]

− tb

[
Ĵ2

−
J2 e−i2kxeiφ + hc

]
,

(6.16)

where we have removed the momentum components along y and z from the kinetic
energy term, because of the separable dynamics along these axes. In the moving
frame, with this unitary transformation, the potential V (x) does not depend on time
and contains the spin-changing transitions with x-dependent hopping phases. The
two parameters (v∗,∆) can be controlled by varying the relative frequencies of the
three laser beams. The parameter ∆ plays the role of a Zeeman field. When ∆ is set
to zero, this Hamiltonian reduces to the one of Eq. 5.20 in Section 5.4. We recall that
this Hamiltonian is invariant under the discrete magnetic translation, which leads
to the conservation of the quasi-momentum: qx ≡ Mvx/ℏ + 2kĴz (mod 6k), defined
over the magnetic Brillouin zone −3k ≤ qx < 3k of size 6k.

A time-dependent frame velocity v∗ results in an inertial force Fx = M∂tv
∗ along

the real dimension x, in the moving frame. We also notice that, in this picture,
fluctuations in the magnetic field along z translate into fluctuations in the Zeeman
field ∆ only, but do not affect v∗.

The potential V (x) of the Hamiltonian in the laboratory frame couples together
spin states whose spin projection m varies by ±1 (process (a)) or ±2 (process
(b)) and whose momentum differs by ±2k. As a consequence, for atoms initially
at rest and polarised in |m = −J⟩, the available states under these couplings are
the spin-momentum states { |m,Mvx⟩} satisfying m = −J + na − 2nb and Mvx =
−2ℏk(na + nb), with na, nb integers and −J ≤ −J + na − 2nb ≤ J . We note
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that this is valid in the laboratory frame, whatever the frequency detunings, and
thus whatever the parameters (v∗,∆). Indeed, the set of available states derives
from the spin-orbit coupling and the restriction to the processes (a) and (b) in the
RWA. As a consequence, we expect the observation of peaks in the spin-velocity
distributions, at fixed positions in the laboratory frame. The pattern of these peaks
is displayed in Fig. 6.5, along with the allowed transitions for the spin-momentum
state |m = 1,Mvx = 0⟩.

Throughout this chapter, numerical simulations of the band structure and of the
dynamics of the atoms are performed for comparison with experimental observations.
For that purpose, we consider the Hamiltonian of Eq. 6.16 after making a gauge
transformation acting on position instead of time:

U = ei2kxĴz . (6.17)

This gauge transformation transfers the momentum kick associated with a spin
change as an artificial vector potential that depends on the spin projection along z.
We obtain the spin-orbit coupled Hamiltonian:

H =ℏ2(px − 2kĴz)2

2M + V (x) + ℏ∆Ĵz,

V (x) = − ta

[
Ĵ+

J
eiφ + hc

]

− tb

[
Ĵ2

−
J2 e−i6kxeiφ + hc

]
.

(6.18)

The spatially-dependent hopping phase involved in the process (a) is suppressed,
while the process (b) couples spin states m ↔ m± 2 with a momentum kick ±6k. By
setting the coupling tb to zero, we recover the Hamiltonian corresponding to the Hall
ribbon with coordinates (x,m) and an orthogonal magnetic field 2ℏk for a particle
of effective charge q = 1. In this picture, the process (b) term couples momentum
states with momentum difference K = ±6k, which is reminiscent of the approach
developed in Section 4.3.1. We expect this coupling term to induce a periodicity of
the wavefunctions along m of period Lr = 3, at the origin of our implementation of
a cylinder with a radial magnetic field.

The potential V (x) is periodic along x, with a period λ/6. Using Bloch theorem,
we write the wavefunction in real space as:

ψqx(x) = eiqxxuqx(x), (6.19)

indexed by the quasimomentum qx defined on a Brillouin zone of size 6k, with uqx(x)
a x-periodic function of period 2π/(6k). We carry out a Fourier series development
of the periodic function uqx which gives:

ψqx(x) =
∑

n

ei(qx+n6k)xcqx,n, (6.20)

with complex coefficients cqx,n, indexed by integers n. In fact, these terms are also
indexed by the spin state m as we have only considered the spatial dependence
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of the state in the above expression of the wavefunction. Writing the Schrödinger
equation associated with the total Hamiltonian from Eq. 6.18 for a quasimomentum
qx, we obtain a set of coupled linear equations for the coefficients cqx,n,m. The kinetic
term with spin-orbit coupling and the diagonal terms of the light-matter interaction
are diagonal in both n and m. The terms of the process (a) do not modify the
Fourier index n because they are not associated with a net momentum kick in this
picture, and they are diagonal in n. Process (b) is associated with a net momentum
kick ±6k, which amounts to changing the index n by ±1. The Ĵ2

± terms appear
in off-diagonal terms, close to the diagonal blocks. Overall, the set of differential
equations governing the cqx,n,m coefficients is written as a matrix:



E(qx, n− 1, Ĵz)1̂

−ta
(
Ĵ+

J
eiφ + hc

) −tb
Ĵ2

−
J2 eiφ 0

−tb
Ĵ2

+
J2 e−iφ

E(qx, n, Ĵz)1̂

−ta
(
Ĵ+

J
eiφ + hc

) −tb
Ĵ2

−
J2 eiφ

0 −tb
Ĵ2

+
J2 e−iφ

E(qx, n+ 1, Ĵz)1̂

−ta
(
Ĵ+

J
eiφ + hc

)



...

n− 1

n

n+ 1

...

(6.21)

where we have only represented the Hilbert space for three indices n− 1, n and n+ 1.
Each block has a size (2J + 1) × (2J + 1) as, for a given quasimomentum qx and
index n, there are 2J + 1 coefficients cqx,n,m that correspond to the different spin
states −J ≤ m ≤ J . The diagonal of the matrix contains the kinetic terms:

E(qx, n, Ĵz) = ℏ2(qx + 6kn− 2kĴz)2

2M . (6.22)

The matrix is infinite as the index n can a priori take any value. However, for realistic
states, only some indices contribute significantly. In practice, we truncate the number
of indices to nmax = 11 and the size of the Hilbert space is then nmax × (2J+1) = 187.
We check that increasing nmax does not modify the band spectrum and the dynamics.

As a side remark, the simulation of the dynamics of the atoms beyond RWA
requires other theoretical tools, such as Floquet theory, which treats time-oscillating
terms in a similar way to the Bloch theorem for spatially-periodic potentials.

6.3 Low-energy approximation
We briefly remind the form of the low-energy dynamics, restricting the system

to the three coherent states |θ, ϕ⟩ pointing along the equator (θ = π/2) at angles
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ei(φ−2kx)
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Figure 6.6 – Low-energy emergent cyclic dimension. Three sites r = 0, 1
and 2 are cyclically coupled with x-dependent hopping phases φ− 2kx. The
spatially-dependent hopping phases are equivalent to an Aharonov-Bohm
phase that is acquired when a particle evolves on a cylinder, and correspond
to an artificial radial magnetic field B⊥. The length ℓmag is defined as the
x-distance that delimits a slice of the cylinder whose radial surface is pierced
by one flux quantum Φ0.

ϕ = 0, 2π/3 and 4π/3. We follow the treatment in Section 5.4 and get the effective
potential:

Veff(x) = −2t
∑

ϕ=0, 2π
3 , 4π

3

cos(2kx− ϕ) ⟨ϕ|ϕ⟩ , (6.23)

where t = ta + tb(1 − 1/(2J)). As already pointed out, this is reminiscent of the
potential involved in the Harper equation when solving the Hofstadter model of
a charged particle evolving on a square lattice pierced by a magnetic field. The
similarity allows us to identify the angle ϕ with the quasi-momentum qr along a
synthetic dimension denoted r. This leads to the definition of the |r⟩ position states
by inverse Fourier transform of the |ϕ⟩ states, as:

|r⟩ = 1√
3

∑
ϕ=0, 2π

3 , 4π
3

e−iϕr |ϕ⟩ . (6.24)

Writing the potential using these states, the Hamiltonian contains hopping terms
between neighbouring sites |r⟩, with a complex x-dependent hopping phase, that
simulates a radial magnetic field B⊥ = 2ℏk for a unit particle charge:

Veff(x) = −t
2∑

r=0

(
ei(φ−2kx) |r + 1⟩⟨r| + hc

)
. (6.25)

Together with the kinetic energy term Mv2
x/2, it describes the motion of a particle on

a cylinder discretised along its circumference, as schematically represented in Fig. 6.6.
The radial magnetic field defines a length ℓmag = λ/6, such that the magnetic flux
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Φ⊥ = ℓmagLrB⊥ through a portion of cylinder of length ℓmag equals the flux quantum
Φ0 = h, for a particle of effective charge q = 1.

In Fig. 5.7(a), in Section 5.4, the position spectrum of the potential exhibits a
periodic subwavelength modulation [248]. Within a cell of size λ/2, three energy
minima are equally spaced, at a distance of ℓmag = λ/6, and each minimum is reached
for a corresponding |ϕ⟩ state. This translates into modulations of the in-situ density
profiles of states in the ground band. We note, that in a continuous Hall cylinder,
already described in Chapter 4, the Bloch states exhibit a periodic pattern of x-period
∆x = Lr/ℓ

2
m along x. The centre-of-mass of the distribution along r is controlled

by the quasimomentum qx and the x-positions are fixed. In our system, owing to
the discretisation of the synthetic dimension r, we expect dips in the density profiles
and cancellations of the density only when the vortices are exactly located at a site
r. Given our effective radial magnetic field, we obtain the following correspondence
with the variables defined in Section 4.3:

B⊥ = 2ℏk, K = 6k,
q = 1, Lr ≡ Kℓ2

m = 3,

ℓm =
√

1
2k , ℓmag ≡ ∆x = 2π

K
= λ

6 .
(6.26)

6.4 Topology of the ground band
The total Hamiltonian in Eq. 6.16 has a conserved quantity, the quasimomentum

qx ≡ Mvx/ℏ+2kĴz (mod 6k), defined over the magnetic Brillouin zone −3k ≤ qx < 3k.
The dynamics can thus be reduced to a Hamiltonian H(qx, φ) parametrised by the
couple (qx, φ) which varies on the torus [−3k, 3k[×[0, 2π/3[. The conserved quantities
qx and φ play the role of conjugate variables to the positions along x and r respectively.
As we have shown in Chapter 4, the topological character of the ground band is
determined by the value of the Chern number:

C = 1
2π

∫ 3k

−3k
dqx

∫ 2π/3

0
Ωqx,φdφ, (6.27)

where we introduce the Berry curvature which characterises the local properties of
the band:

Ωqx,φ = i
∑
n≥1

⟨ψ(0)
qx,φ|vx|ψ(n)

qx,φ⟩ ⟨ψ(n)
qx,φ|vr|ψ(0)

qx,φ⟩ − hc
(E(0)

qx,φ − E
(n)
qx,φ)2

. (6.28)

We define the velocities vx = ∂qxH and vr = ∂φH and the Bloch states |ψ(n)
qx,φ⟩ of

the band n, of energy E(n)
qx,φ. In our system, Bloch states of the same band n and

quasimomentum qx, but different φ, can be mapped on each other by a spatial
translation. Hence, they share the same Berry curvature, which thus only depends
on qx. Integrating over φ, we obtain:

C = 1
Lr

∫ 3k

−3k
Ωqxdqx, (6.29)

with Lr = 3 the circumference of the cylinder. For the coupling strengths ta and tb
used in our experiments, the Berry curvature is extremely flat, equal to 1/(2k) for all
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quasimomenta with a relative variation less than 10−4. Its integral yields a non-trivial
Chern number C = 1. The flatness of the Berry curvature is a consequence of the
continuous translation symmetry along x, making our system similar to continuous
two-dimensional systems with flat Landau levels. In contrast, discrete lattice systems,
such as Hofsdtater and Haldane models [249, 250], or previous implementations of
synthetic Hall cylinders [244–246], exhibit dispersive bands with inhomogeneous
Berry curvatures.

Our realisation of Laughlin’s thought experiment follows the idea behind the
derivation of the Chern number. We plan on performing geometric pumping with a
periodic driving of φ for states of all quasimomenta qx, prepared in the ground band,
thus measuring the Berry curvature. The average of this local quantity over the
magnetic Brillouin zone characterises the topological character of the ground band.

6.5 Ground state preparation
Our experimental protocols all start with the preparation of the ground state

of the Hamiltonian with t(exp)
a = 11.5(3)Erec and t

(exp)
b = 7.1(2)Erec, at the Zeeman

field ∆ = 0. The final coupling strengths are chosen as a compromise that originates
from the experimental constraints. Their ratio tb/ta is close enough to the ratio 1/2,
highlighted in Chapter 5, to facilitate the interpretation of our experiments with
independent dynamics along the m and r dimensions. The topological character of
the ground band does not depend strongly on the coupling ratio, except for extreme
situations where either of the two processes has vanishing a coupling strength, as
can be seen in Fig. 6.7(a,b). However, we point out that the interpretation of
some measurements using the effective model requires tb/ta ≃ 1/2. For example,
spectroscopic measurements, involving not only the ground band but also the excited
ones, are sensitive to the coupling ratio. In Fig. 6.7(b), we observe that the effective
model predicts well the energy spectrum of the exact Hamiltonian for sufficiently
large coupling tb.

The coupling strengths are large enough to obtain flat bands, characterised
by small bandwidths, which resemble the Landau levels of an infinite continuous
system. Fig. 6.7(a) shows the band structure for three values of tb. At zero coupling
strength tb = 0, the spin-distribution has no qx-periodicity, which can be deduced
from Eq. 6.18. The equation has no spatial periodicity as the spatially-dependent
hopping phases have been included as an artificial vector potential proportional to
the spin projection along z by a suitable unitary transform. It corresponds to the
physics of a Hall ribbon, that we briefly presented in Section 6.1.1. In the opposite
limit with a large coupling tb, we observe that the spin structure of the ground band
becomes less sharp, which complicates the measurement of the occupancy of each
r state. This translates into smaller visibility of the oscillations of the populations
of the r states in the lower panels. Experimentally, the flatness of the ground band
facilitates the measurement of the anomalous velocity, as the group velocity cancels
out. Large coupling strengths also ensure large gaps to the excited bands, which set
the minimum timescale of variations of parameters to be adiabatic and thus facilitate
the dynamic manipulation of quantum states. Our choice of coupling strengths
derives from these competing effects. We also check that the band structure is
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Figure 6.7 – Panel (a): Band structure (upper panels) and ground band
properties (m- and r-distributions in the middle and lower panels respectively,
with the states r = 0, 1 and 2 represented by blue, red and green lines
respectively) for three values of coupling strength tb/t

(exp)
b = 0, 0.5 and 1,

from left to right. Panel (b): Gaps to the excited states at quasimomentum
qx = 0, as a function of tb/t(exp)

b . The black and dashed red lines are
computed from the total Hamiltonian and the effective model respectively.
Panels (c,d): Bandwidth of the ground band as a function of the Zeeman
field ∆ and of the strength Bz of a quadratic spin term Ĵ2

z respectively.

only slightly modified under magnetic fluctuations along z, which translates into
fluctuations of the Zeeman field ∆ only. As an example, we show the variation of
the bandwidth of the ground band as a function of the Zeeman field in Fig. 6.7(c).
Typical magnetic fluctuations are below 0.4 mG, which corresponds to a Zeeman
field below 0.5Erec/ℏ and marginally affects the band structure. As a final check,
we consider a deviation of the linear polarisations of the beams from the angle
acos

(
1/

√
3
)
, which translates into a non-zero quadratic spin term Ĵ2

z within RWA.
In Fig. 6.7(d), we plot the bandwidth as a function of the strength Bz of this diagonal
spin term. Given our precision on the estimation of the polarisation angles and the
zero derivative of the bandwidth around Bz = 0, we assume that the quadratic term
Ĵ2

z cancels out in the following.
Initially, the atoms have a zero mean velocity ⟨vx⟩ = 0 in the laboratory frame.
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⟨Ĵ
z
⟩

−0.4 0 0.4
−2

0

2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fxt/ℏ [k]

⟨q
x
⟩−

⟨q
x
⟩ i

[k
]

ta,tb

∆

v∗

t
T1 T2 T3

(a)

(b)

(c)

Figure 6.8 – Panel (a): Scheme of the dynamic control of the parameters
(ta, tb,∆, v∗) to adiabatically prepare a quasimomentum state in the ground
band of the total Hamiltonian. Three steps of lengths T1, T2 and T3 consist
of successive ramps of the coupling strengths, then of the Zeeman field and
finally of the velocity of the moving frame. Panel (b): Spin distribution
Πm and magnetisation ⟨Ĵz⟩ as a function of the Zeeman field ∆ for a
fixed quasi-momentum ⟨qx⟩i ≃ 2k. The solid line represents the expected
magnetisation for the ground state of the Hamiltonian of Eq. 6.16. The
inset highlights the central region around ∆ = 0, where the relation is linear
and independent of the quasimomentum. Panel (c): Evolution of the mean
quasi-momentum ⟨qx⟩ during a Bloch oscillation, compared to the expected
law ⟨qx⟩ (t) = ⟨qx⟩i + Fxt/ℏ (mod 6k).

We set the initial laser frequencies such that the frame velocity v∗ cancels, and
the Zeeman field is set to ∆ = 16Erec/ℏ. Thus, the mean quasi-momentum reads
⟨qx⟩i = M ⟨vx⟩i /ℏ + 2k ⟨Ĵz⟩i (mod 6k) = 2k. For the initial set of parameters
(v∗,∆) = (0, 16Erec/ℏ), the system is gapped and the theoretical ground state
remains almost fully polarised in |m = −J⟩ for coupling strengths ranging from zero
to their final values. We first adiabatically dress the atoms by the spin couplings and
increase the light intensities to their final values in T1 = 100 µs, following a linear
ramp. We then ramp the Zeeman field ∆ towards zero in T2 = 480 µs, following a
quadratic profile that reaches ∆ = 0 with a zero slope which reduces diabatic effects.
This ramp duration is a compromise to ensure adiabaticity while minimising spin-
changing collisions occurring on the timescale of a few milliseconds. The minimum
value of the gap to the first excited band ∆Emin ≃ 5Erec sets the timescale for
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adiabaticity τ = ℏ/∆Emin ≃ 10 µs, much shorter than the chosen ramp duration. We
confirm the adiabaticity of the successive ramps using a numerical simulation of the
atomic dynamics, which predicts an overlap with the ground band after the ramp
above 97%. The sequence is summarised in Fig. 6.8(a).

The adiabatic loading is experimentally verified by probing the system as a
function of ∆, for a fixed reference frame v∗ = 0. For ∆ ̸= 0, we expect the system to
exhibit a non-zero magnetisation ⟨Ĵz⟩. Its measurement, shown in Fig. 6.8(b), is in
agreement with the theory. For ∆ = 0, the residual fluctuations of the magnetisations
are measured from shot to shot and are correlated to the signal on a magnetic probe
close to the atomic gas. A deviation from the expected magnetic field translates into
a contribution to the Zeeman field ∆, which linearly controls the magnetisation in
the region close to ∆ = 0.

At this stage, the gas is loaded in the ground band of the Hamiltonian with
∆ = 0, with v∗ = 0, corresponding to a mean quasimomentum ⟨qx⟩i = 2k. The
final step of the state preparation is to reach the desired quasimomentum state
in the ground band. We use the approach that we originally described in Section
4.4 and apply a force Fx along x to induce Bloch oscillations, using the laser
frequencies. The dynamic control of the velocity v∗ induces an inertial force in
the accelerated reference frame Fx = M∂tv

∗. Therefore, the mean quasimomentum
evolves as ⟨qx⟩ (t) = ⟨qx⟩i + Fxt/ℏ (mod 6k), which we use to prepare the desired
quasimomentum state. We prepare states with quasimomenta spanning the Brillouin
zone of size 6k, centred on the initial quasimomentum qx = 2k, in order to limit the
duration of this step. We use an s-shaped ramp of quasimomentum which smoothly
turns the force on and off and as a consequence minimises diabatic effects. The
maximal ramp duration, used to reach the edges of the Brillouin zone centred on
qx = 2k, is set to T

(max)
3 = 200 µs. We show in Fig. 6.8(c) the measured values

of mean quasimomentum, as the velocity v∗ is tuned, which agrees well with the
expected variation.

6.6 First excitations of the system
We study the low-energy excitations of the system, which are of two types: the

excitations described by the effective Hall cylinder model, which assume that the
spin states remain in the |r⟩-manifold with three sites, and the excitations leaving
this subspace.

To probe the excitations of the effective Hall cylinder model, we apply a kick
along x using a short pulse of the force Fx. In practice, we abruptly tune the laser
frequencies to change v∗ while keeping ∆ = 0. As shown in Fig. 6.9(a), we measure
an oscillation of the mean velocity ⟨vx⟩, associated with an energy gap of 16.1(1)Erec.
This value is close to the expected 15.7Erec, corresponding to the gap to the third
excited band of the full model. We recall that this band is well approximated by the
effective model, as shown in the band structures of Fig. 6.7(a,b) computed for the
experimental coupling strengths. The abrupt change of v∗ by vrec ensures that the
kick remains perturbative and that no other band is significantly populated, which
is confirmed by numerical simulations. During this evolution, the magnetization
⟨Ĵz⟩ remains close to zero, as expected for an excitation within the |r⟩ spin states.
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⟨Ĵ
z
⟩

kick along x

quench of ∆

−0.1 0 0.1 0.2

1

1.5

2

2.5

⟨x⟩ [ℓmag]

⟨r
⟩

0

20

40

60

t
[µ
s]

(a)

(b)

(c)

Figure 6.9 – First excitations of the system, induced by a kick along x (blue
dots) or by a quench of the Zeeman field ∆ (red dots). Panels (a,b): Mean
velocity along x and mean magnetisation ⟨Ĵz⟩ as a function of time after the
perturbation. The solid lines are obtained from fitting experimental data.
Panel (c): Cyclotron orbit, induced by a kick along x, plotted in the (x, r)
plane. We compute the mean position ⟨x⟩ by numerically integrating the
mean velocity along x and the mean position ⟨r⟩ from the spin distributions.
The colour of the dots encodes the time variation.

Moreover, we can integrate the x-velocity to obtain the mean position along the
physical dimension x and compute the mean position along r, obtained from the spin
distributions by summing up the contributions of spin states m = r (mod 3). We
plot the evolution of these quantities as a function of time in Fig. 6.9(c) and obtain
a closed circular orbit on the surface of the cylinder parametrised by (x, r), which is
similar to a cyclotron orbit in the bulk of a quantum Hall system.

We also study the excitation to the first excited band, which involves spin states
outside the |r⟩-manifold and is well reproduced by the ground state of the effective
model for the harmonic quantum number n = 1. To promote the atoms to this band,
we prepare a state in the ground band with a non-zero Zeeman field ∆, such that it
exhibits a non-zero magnetization ⟨Ĵz⟩. We then quench the Zeeman field to zero and
measure the subsequent evolution of the x-velocity and magnetisation. We quench
the Zeeman field by 0.4Erec/ℏ to remain in the perturbative regime. We measure
an oscillation of the magnetisation with a longer period, as well as a modulation of
the amplitude of the oscillations, in Fig. 6.9(a,b). We interpret this as a beat note
between two oscillations of frequencies set by two energy gaps. Such a feature is
visible if the residual population in another excited band is not small enough. We fit
the evolution of the x-velocity using a sum of two oscillations, and the component
of the largest amplitude corresponds to an energy gap of 6.7(1)Erec, close to the
expected value of 6.2Erec.

Despite residual evolutions of magnetisation and x-velocity, in the first and second
experiments respectively, we observe experimentally the decoupling between the
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dimension r, coupled to the physical dimension x, and the dimension m. Residual
effects may arise from the excitations that are not strictly perturbative or from the
small deviation of the coupling strength ratio from tb/ta = 1/2. The example of
the kick along the real dimension, which triggers oscillations of the mean position
along the synthetic dimension r, also demonstrates how the coupling to a physical
dimension simplifies the manipulation of the cyclic dimension, compared to the
purely spin case that requires highly non-linear spin couplings (see Section 5.3.3).

These excitations can also be understood from a simple model of the dynamics
of the effective Hall cylinder model. We define the velocity operators along x, r and
m (generalising the formula for the two synthetic dimensions in Section 5.3.3):

vx = px

M
,

vr = ta
ℏ

(
ie−i2kx Ĵ+

J
+ hc

)
+ tb

ℏ

(
ie−i2kx Ĵ

2
−
J2 + hc

)
,

vm = ta
ℏ

(
ie−i2kx Ĵ+

J
+ hc

)
+ tb

ℏ

(
−2ie−i2kx Ĵ

2
−
J2 + hc

)
.

(6.30)

The evolution of the expectation value of an operator O is governed by the Ehrenfest
theorem: ∂t ⟨O⟩ = ⟨[O, H] ⟩ /(iℏ). As a consequence of this theorem, the velocity
along x follows the simple relation:

∂t ⟨vx⟩ = −2vrec ⟨vr⟩ , (6.31)

while the velocities along the synthetic dimensions r and m evolve according to:

∂t ⟨vr⟩ ≃ 2kta
ℏ

〈
e−i2kx Ĵ+

J
+ hc

〉
+ 2ktb

ℏ

〈
e−i2kx Ĵ

2
−
J2 + hc

〉
,

∂t ⟨vm⟩ ≃ 2kta
ℏ

〈
e−i2kx Ĵ+

J
+ hc

〉
− 22ktb

ℏ

〈
e−i2kx Ĵ

2
−
J2 + hc

〉
.

(6.32)

where we neglected the mean values of the spin operators scaling as 1/J at most. We
restrict the discussion to the spin states in the |r⟩ manifold. Since the states of the
ground band with a Zeeman field ∆ = 0 minimise energy with e−i2kxĴ+/J + hc ≃
e−i2kxĴ2

−/J
2 + hc ≃ 2, we obtain the following approximate dynamics along r and m:

∂t ⟨vr⟩ ≃ 4k
ℏ

(ta + tb) ⟨vx⟩ ,

∂t ⟨vm⟩ ≃ 4k
ℏ

(ta − 2tb) ⟨vx⟩ .
(6.33)

As a consequence, the coupling ratio tb/ta = 1/2 cancels out the dynamics along m,
when we apply a perturbation that couples the states within the subspace spanned
by the three |r⟩ states only. We also recover oscillations of ⟨vx⟩ at angular frequency
4
√
Erec(ta + tb)/ℏ2 ≃ 17.3Erec/ℏ, which is compatible with the calculated spectrum

and our measurements. The oscillations of the velocities along the two dimensions
are in quadrature, and the coupled differential equations predict cyclotron orbits in
the (x, r) plane, as observed in Fig. 6.9(c).
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6.7 Transverse response to a real force
In this Section, we study the transverse response of the system to a force along

the physical dimension x. Two sets of experiments are conducted: the first one
probes the properties of the ground band, indicating a winding along the synthetic
dimension when a force along x is applied, and the second one measures the velocity
along r, as a response to a force for different quasimomentum states.

6.7.1 Measurement of the mean position along r
The first experiments measure the velocity and spin distributions for ground states

whose quasimomenta span a whole Brillouin zone. These states are prepared using
the protocol presented in Section 6.5, using Bloch oscillations. The quasimomentum
varies through the Brillouin zone, as the time-dependent velocity v∗ induces an
inertial force along x in the reference frame. The force is adiabatically turned on
and off to maximise the overlap with the ground state of the system at all times.

Our analysis of the recorded data for various quasimomenta obeys the following
procedure. We filter the experimental runs based on the signal on the magnetic probe
close to atoms, which reduces the noise on the Zeeman field ∆. The optical densities
of this set of experiments are computed using our protocol that reduces imaging
defects and background patterns, described in Section 2.1.2. We split the velocity
distribution recorded for each quasimomentum ⟨qx⟩ in 17 stripes, corresponding to
the 17 magnetic sublevels, thanks to the spatial separation induced by the Stern-
Gerlach magnetic gradient along the gravity axis during the free expansion of the
cloud. The velocity distribution along the gravity axis z is not relevant, as the
dynamic along this axis is separable from the spin-orbit coupling along x. The
decoupling of the horizontal and vertical distributions authorises to average the
pixels of the ODs along the vertical axis, with any weighting function, for each of
the 17 distributions. Since the distribution along z is that of a thermal cloud, we
choose a Gaussian function, centred on the mean vertical velocity, to maximise the
signal-to-noise ratio. We obtain a set of 17 one-dimensional velocity distributions for
each mean quasimomentum ⟨qx⟩. An example is shown in Fig. 6.10(a).

Our measurements of the spin-velocity distribution, with varying parameters
(v∗,∆), are consistent with peaks located at fixed positions in the laboratory frame,
as expected in Fig. 6.5. The peaks are broadened due to the finite initial temperature
of the cloud of 0.54(3) µK, corresponding to a thermal momentum width σqx ≃ 1.3k.
We shift the velocity distributions by the velocity v∗, which corresponds to ⟨qx⟩, to
consider the distributions in their reference frame. This operation requires precise
control of the laser frequencies and the calibration of the imaging setup (see Section
2.1) to convert pixel positions in the recorded ODs into velocities in the moving frame.
The frequency differences, between the beams 1a and 2 and the beams 1b and 2, are
dynamically generated by signal generators and checked using an optical beating,
recorded on a fast photodiode. Typical deviations and shot-to-shot variations from
the desired frequency differences are less than a few kHz, a small fraction of the
recoil frequency associated with the wavevector 2k. The spin-averaged velocity
distributions are all centred around vx = 0.

In the moving frame, the diffraction peaks are shifted from the fixed positions in
the laboratory frame by v∗, which is not restricted to discrete values. Three examples
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Figure 6.10 – Averaging and deconvolution of velocity distributions. Panels
(a,b,c): Spin-resolved velocity distributions measured for ⟨qx⟩ ≃ −2k, 0, 2k
(a, b, c respectively), in the moving frame. Panel (d): Velocity distribution
averaged over all ⟨qx⟩ uniformly spanning a Brillouin zone. The contribution
for a given qx can be extracted by selecting the velocity components given
by Eq. 6.34 (example of qx = 0 shown as red lines).

of spin-velocity distributions in the moving frame for different quasimomentum state
are given in Fig. 6.10(a,b,c). As a consequence, when averaging the distributions,
the pattern of peaks disappears, as in Fig. 6.10(d). We point out that the pattern of
peaks is identical in the moving frame when we consider states with v∗ differing by
multiples of 6vrec exactly, that have the same quasimomenta.

For a Bloch state of quasimomentum qx, we recall that the velocity takes discrete
values only, at:

vx = ℏ
M

(qx − 2km+ 6ks), (6.34)

with s integer, for each spin projection m, a consequence of the conservation of
the quasimomentum. In our system, the thermal broadening of momentum leads
to a continuous spin-resolved velocity distribution. Importantly, Eq. 6.34 shows
that different quasimomentum states contribute to distinct velocities in the spin-
resolved velocity distribution. First, this means that each experimental shot contains
information about states whose quasimomentum lies in a range close to ⟨qx⟩. Second,
the thermal broadening can be deconvolved, leading to velocity and spin distributions
resolved in quasimomentum. In practice, to treat all quasimomenta equally, we
average the spin-resolved velocity distribution for various values of ⟨qx⟩ uniformly
spanning the first Brillouin zone. We then deconvolve the data by selecting the
velocity components for a given qx from the averaged spin-resolved distribution,
according to Eq. 6.34. The selection of velocity components associated to each
spin state is represented in Fig. 6.10(d) for the quasimomentum state with qx = 0.
From this procedure, we obtain the deconvolved velocity and spin distributions as a
function of the quasimomentum qx for ∆ = 0.

The velocity distribution, plotted in Fig. 6.11(b) as a function of qx, exhibits a
period 2k, similar to the case of a simple λ/2-periodic lattice. The mean velocity
⟨vx⟩, shown as a red line, remains close to zero. Since it is related to the slope of
the ground-band energy ∂qxE0(qx) = ℏ ⟨vx⟩, this shows that the band is quasi-flat.
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Figure 6.11 – Ground band characterisation. Panel (a): Spin projection
probabilities Πm measured as a function of qx. The red solid line stands
for the mean spin projection ⟨Ĵz⟩. Panel (b): Distribution of discrete
velocity components vx = ℏ(qx + 2ks)/M (with integer s) for states of
quasi-momentum qx. The red solid line shows the mean velocity ⟨vx⟩. Panel
(c): Probabilities Pr of projection on r = m (mod 3). The blue circles, red
squares and green diamonds correspond to r = 0, 1 and 2 respectively. The
statistical error bars, computed from a bootstrap random sampling analysis,
are smaller than the symbols. The lines are calculated from the expected
band structure.

In fact, the band flatness is protected from perturbations, such as external magnetic
field fluctuations, by the zero net magnetisation of the |r⟩ spin states. A similar
effect has been used in another implementation of a Hall cylinder using dynamical
decoupling techniques [246].

The probabilities Πm of projection on each sublevel m, in Fig. 6.11(a), reveal
a longer periodicity 6k, corresponding to the full extent of the magnetic Brillouin
zone. This experimentally confirms the spatial separation of the magnetic orbitals
ℓmag = 2π/(6k) = λ/6. The Πm measurements also give access to the probabilities
Pr of projection on the synthetic coordinate r, by summing the Πm distributions
with m = r (mod 3). The summation is schematically represented using coloured
links between the distributions in m and r in Fig. 6.11(a,c). The qx-variation of
these distributions reveals a chirality, typical of the Hall effect: when increasing
the momentum by 2k, the Pr distributions cycle along the synthetic dimension in a
directional manner, as Pr → Pr+1 [248, 251]. We stress that such a drift does not
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occur on the mean spin projection ⟨Ĵz⟩, represented as a red line in Fig. 6.11(a),
which remains uniform and close to zero. Our measurements reveal features that we
have already highlighted in Section 4.3.1, in Fig. 4.6. In particular, we observe that
a change of quasimomentum qx is associated with a global shift of the r-distribution,
while the shape of the distribution is not modified.

6.7.2 Measurement of the mean velocity along r
The adiabatic r-drift occurring during Bloch oscillations provides a first insight

into the topological character of the lowest energy band, similar to the quantized
flow of the Wannier function charge centres in Chern insulators [158]. To quantify
this drift, one cannot rely on the mean r position, which is ill-defined for a cyclic
dimension [232]. Experimentally, the problem of reconstructing the mean position
along the cyclic dimension also stems from the reduced visibility of the oscillation
of Pr for increasing coupling strengths. This is a consequence of the small size of
the cyclic dimension, which leads to density distributions that wind around the
cylinder as in Fig. 4.6. Instead, in a complementary set of experiments, the r-drift is
reconstructed by integrating the anomalous velocity ⟨vr⟩ induced by the force Fx

driving the Bloch oscillations. In the weak force limit, the mean velocity ⟨vr⟩ is
expected to be proportional to the force and to the local Berry curvature Ωqx , as
follows:

⟨vr⟩ = 1
ℏ

ΩqxFx. (6.35)

The operator vr is well-defined, but the measurement of its expectation value is
not as straightforward as for the mean r-position. For this purpose, we conduct a
separate experiment, in which we adiabatically induce a large force along x. We use
a cubic-shaped quasimomentum ramp, set by the reference frame velocity v∗, that
corresponds to a quadratic ramp of the force, with a zero slope at the beginning to
minimise diabatic effects. We vary the shape of the ramp to prepare quasimomentum
states spanning a whole Brillouin zone while keeping the final force Fx = 0.18 ℏ2k/µs
constant. The duration of the ramp varies from 25 µs to 75 µs and, during the ramp
of the force which induces a drift of quasimomentum, we span between 0.5 and
1.5 times the size of the Brillouin zone. We suddenly switch off the force Fx, and
the centre-of-mass undergoes a cyclotron oscillation, with the x- and r-velocities
oscillating in quadrature. More precisely, the rate of change of the x-velocity gives
access to the r-velocity, via the exact relation:

∂t ⟨vx⟩ = −2vrec ⟨vr⟩ , (6.36)

that we have already derived with the Ehrenfest theorem in Eq. 6.31. Hence, the
velocity ⟨vr⟩ induced by the force Fx is given by the initial slope of ⟨vx⟩. The
reconstruction of ⟨vr⟩ from our measurements of the oscillations of the velocity after
abruptly turning off the force is shown in Fig. 6.12(a). We show in Fig. 6.12(b) the
measured Berry curvature for different values of the mean quasi-momentum ⟨qx⟩.
The measurements are consistent with a flat Berry curvature. The error bars are
dominated by the differentiation operation used to extract the velocity ⟨vr⟩ from
the x-velocity oscillations.
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Figure 6.12 – Panel (a): Evolution of the mean velocity ⟨vx⟩ immediately
after switching off the force Fx (red squares), fitted with a damped sine (solid
line). The velocity ⟨vr⟩ is obtained from the initial slope of the fit (dashed
line). Panel (b): Berry curvature measured from the r-velocity induced by a
force Fx (red squares), compared to the expected value Ωqx = 1/(2k) (solid
line). Panel (c): Centre-of-mass displacement ⟨∆r⟩ as a function of the
quasi-momentum shift ∆qx induced by a force Fx (red squares), together
with a linear fit (red line).

The adiabatic r-drift acquired for a duration T reads as follows:

⟨∆r⟩ (T ) =
∫ T

0
dt ⟨vr⟩ (t)

=
∫ qx(T )

qx(0)
Ωqxdqx,

(6.37)

where we used the equation of variation of the quasimomentum during a Bloch
oscillation with a fixed force Fx: qx(t) = qx(0) +Fxt/ℏ. Hence, the drift accumulated
over a period simply equals CLr, using the expression of the Chern number as an
integral of the Berry curvature in Eq. 6.29. This expression links the quantisation of
the winding along r during a Bloch oscillation to the Chern number characterising
the ground-band topology.

We reconstruct the centre-of-mass drift ⟨∆r⟩, upon integration of our measure-
ments of ⟨vr⟩ for quasimomenta spanning the Brillouin zone for a constant force
Fx, and show that it indeed varies linearly with the quasi-momentum variation ∆qx,
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in Fig. 6.12(c). Now the drift accumulated over a Brillouin zone reads:

⟨∆r⟩
Lr

= 0.97(5), (6.38)

compatible with a unit winding around the cylinder of circumference Lr = 3. The
displacement along r occurring over a Bloch oscillation cycle is thus quantised,
providing a first manifestation of the non-trivial band topology.

6.8 Laughlin’s topological charge pump
We now characterise the global band topology by implementing Laughlin’s charge

pump experiment and extend the protocol to reveal the local geometrical properties.
To simulate the axial magnetic field used to drive the pump, we interpret the complex
phase φ involved in the r-hoppings in Eq. 6.16 as the Peierls phase associated with a
field B∥ threading the cylinder with a flux:

Φ∥ = 3φ
2πΦ0. (6.39)

The importance of the axial flux in cylindrical geometries has also been highlighted
in the context of localisation measurements [252]. We vary Φ∥ by adjusting the
phase difference φ between the laser electric fields involved in the spin transitions.
The flux is increased linearly in time at a rate Φ̇∥ = 0.41 Φ0/µs, corresponding to
a fixed non-zero velocity v∗ according to the simple formula: Φ̇∥/Φ0 = 6kv∗/(2π).
This step is preceded and followed by ramp-up and ramp-down phases of the rate
using s-shaped profiles of duration T . This duration is long enough to ensure the
adiabaticity of the process.

We drive the pump by slowly ramping the phase φ, and measure the induced
shift of the centre-of-mass along the real dimension x. In situ density distributions,
from which the centre of mass is extracted, are shown in Fig. 6.13(a). The recorded
distribution corresponds to the convolution of the position distribution with the point
spread function of our imaging system, which significantly magnifies the distribution.
We count the threading of phase Φ∥ during the phase of linear flux insertion only,
such that the overall drift during the ramp-up and ramp-down steps is unimportant.
We also perform an independent verification by implementing the same experimental
sequence with Φ̇∥ = 0, which consists in keeping the reference frame velocity fixed to
its initial value v∗ = 0 during the three steps. We confirm that there is no visible
drift in this case.

The experiment is performed for various values of the quasi-momentum ⟨qx⟩
uniformly spanning the magnetic Brillouin zone. The qx-averaged drift, shown
in Fig. 6.13(c), is consistent with a linear variation:

⟨∆x⟩
ℓmag

= C
Φ∥

Φ0
with C = 1.00(4), (6.40)

in agreement with the expected quantisation of transport characterised by the Chern
number C = 1. Our experiments also give access to the anomalous drift of individual



6.9 Adiabaticity of the pumps 133

⟨∆x⟩

−500 0 500

x [ℓmag]

y
[ℓ
m
a
g
]

−3 −2 −1 0 1 2 3
0

1

⟨qx⟩ [k]

Ω
q x

[1
/
(2
k
)]

∆Φ∥

∆x

0 50 100
0

50

100

∆Φ∥ [Φ0]
⟨∆
x
⟩
[ℓ
m
a
g
]

(a)

(b)

(c)

Figure 6.13 – Panel (a): In situ density distributions with and without
pumping, in the lower and upper panels respectively. The centre-of-mass
without pumping is used as a reference and we measure the displacement
⟨∆x⟩ induced by the pumping process. Panel (b): Berry curvature Ωqx

measured as a function of the mean quasi-momentum ⟨qx⟩ (blue circles).
The solid line is the expected Berry curvature, which is not distinguishable
from the constant value Ωqx = 1/(2k). Panel (c): Displacement of the centre
of mass ⟨∆x⟩ induced by an axial magnetic flux Φ∥ and averaged over the
magnetic Brillouin zone (blue cicles). The blue line is a linear fit.

quasimomentum states, proportional to the Berry curvature Ωqx that quantifies the
local geometrical properties of quantum states [180]. As shown in Fig. 6.13(b), the
measured Berry curvature is flat within error bars, consistent with theory, which
predicts Ωqx = 1/(2k) with negligible qx-variation.

6.9 Adiabaticity of the pumps
The quantisation of topological pumps is protected by an energy gap separating

the ground and excited bands and requires only a slow variation of the pump control
parameters. In this Section, we present a study of the adiabaticity of the two
topological pumps considered in the previous Sections.

6.9.1 Adiabaticity of the pump with a force along x
The first topological pump studied in our work consists of a motion along the

synthetic dimension r induced by a force Fx along the real dimension x. We
numerically study how the adiabaticity of the ramp of the force depends on the



134 6. Realisation of Laughlin’s topological charge pump

Fx

∆r

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

Fx [2ℏk µs−1]

⟨v
r
⟩
[µ
s−

1
]

0 20 40 60 80 100

0.2

0.6

1

T [µs]

∆
x
/
ℓ m

a
g

∆
Φ
∥/
Φ
0

∆Φ∥

∆x

T

Φ̇∥Fx

tt

(b)(a)

(g)

Figure 6.14 – Adiabaticity of topological pumps. Panel (a): Velocity ⟨vr⟩
along the synthetic dimension measured as a function of the applied force
Fx. The solid line is the expected linear relation expected for small forces,
and the dashed line is obtained by a numerical simulation of the atom
dynamics. Panel (b): Drift of the atomic cloud induced by a flux insertion
∆Φ∥ ≃ 83 Φ0 as a function of the duration T . The flux insertion rate is
set to Φ̇∥ = 0.41 Φ0/µs, with ramp-up and ramp-down steps of duration
T . The solid line is the displacement expected in the adiabatic regime for
geometrical pumping with Ωqx = 1/(2k) and the dashed line is obtained by
a numerical simulation.

parameters of the ramp, which include its shape, its duration and the final value
of v∗. We choose a quadratic ramp of the force, realised by a cubic ramp of the
parameter v∗. We fix the final quasimomentum qx and vary the duration of the
ramp only, which sets the final force. We measure the velocity ⟨vy⟩ induced by the
force Fx via the initial slope of ⟨vx⟩, as in Fig. 6.12(a). We show in Fig. 6.14(a) the
mean velocity ⟨vr⟩ as a function of Fx. For Fx ≤ 0.25 ℏ2k/µs, the r-velocity varies
linearly with Fx, in agreement with the expected adiabatic response. The deviations
observed for larger forces are well accounted for by a numerical simulation of the
atomic dynamics. The measurements shown in Fig. 6.12 use a force Fx = 0.18 ℏ2k/µs,
well within the adiabatic regime.

6.9.2 Adiabaticity in Laughlin’s topological charge pump
Laughlin’s topological charge pump, as realised in this work, is driven by inserting

a longitudinal magnetic flux Φ∥. The flux insertion rate Φ̇∥ is set by the parameter
v∗. It is first ramped up according to an s-shaped profile of duration T , then kept
at a fixed value for a controlled duration such that the longitudinal magnetic flux
varies linearly in time, and finally ramped down according to an s-shaped profile of
the same duration T . This sequence and the shape of the ramping profile are chosen
to minimise diabatic effects and maximise the overlap of the quantum state with the
ground state of the total Hamiltonian at all times, based on numerical simulations.
We experimentally study the effect of the duration T of the ramp profiles. We show
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in Fig. 6.14(b) the ratio of the mean atom displacement ⟨∆x⟩ and of the longitudinal
magnetic flux Φ∥, as a function of the ramp time T . For slow ramps T ≥ 50 µs, the
displacement is compatible with the value given by the Berry curvature Ωqx ≃ 1/(2k).
Deviations are observed for faster ramps in agreement with a numerical simulation
of the atom dynamics. The measurements shown in Fig. 6.13 are performed with a
ramp duration T = 100 µs, in the adiabatic regime.

Our implementation of a quantum Hall cylinder and the subsequent realisation of
Laughlin’s charge pump experiment by periodic driving of the longitudinal magnetic
flux provide a new experimental perspective on the integer quantum Hall effect.
Measurements along the synthetic cyclic dimension highlight the peculiar geometry
of our system. The cylindrical geometry constrains our system to bulk physics only,
facilitating the measurement of the topological invariant of the system, the first
Chern number. In the next Chapter, we will benefit from the large spin of dysprosium
atoms to exploit the two synthetic dimensions described in Chapter 5 and engineer
a four-dimensional system. It exhibits global properties associated with another
topological invariant called the second Chern number.

The work presented here is restricted to the single-atom regime, where the role
of interactions is negligible over the timescale of our experiments. We will discuss
the role of interactions in the next Chapter, on systems with synthetic and spatial
dimensions.





7
Beyond the non-interacting atomic Hall

cylinder

This Chapter explores extensions of our study of the integer quantum Hall
effect in an atomic Hall system. We present a generalisation to a four-dimensional
space benefiting from the encoding of two synthetic dimensions in the large spin of
dysprosium atoms in their electronic ground state. The two synthetic dimensions
m and r are coupled to two spatial dimensions with two-photon Raman transitions,
which engineer a four-dimensional topological system. We experimentally probe
the ground band parametrised by a two-dimensional quasimomentum and reveal
some characteristic bulk and edge properties. The second part of this Chapter is
dedicated to the theoretical study of Hall systems with interacting particles. We
first discuss the role of interactions in the atomic Hall cylinder with the synthetic
dimension r. We then turn to possible future implementations of a Hall system in
spatial dimensions with an artificial gauge field mediated by the internal degree of
freedom of the atoms and enhanced by the large spin J = 8.

7.1 A quantum Hall system in four dimensions
Systems of dimensionality higher than three have first been under scrutiny by the-

orists to understand the fundamental interactions [253, 254] or quantum gravity [255,
256]. They are also involved in the description of the two-dimensional quasicrystals,
non-periodic structures with long-range order [21]. Possible applications, such as
one-way fibre or optical isolator, have emerged in photonics from the robust and
directional edge modes that appear in topological systems and are protected by
topological invariants such as the first or second Chern numbers [161, 257, 258]. The
topic of topological insulators has also motivated research toward high dimensions.
Dimensionality plays a prominent role in their classification [259] and novel phases of
matter are expected in systems with more than three dimensions, whose realisation
should be facilitated by the combination of synthetic dimensions and spatial ones.

Recently, alternative approaches have tackled specific questions in high-dimensional
systems using synthetic dimensions only. On one side, multiterminal Josephson junc-
tions [260] with n leads are related to phenomena in n− 1 dimensions. They have
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been used to study Weyl points [261–264], where a semimetal bandstructure exhibits
an energy gap closing with a linear dispersion relation. These conic structures,
similar to the Dirac points in graphene [265], are topologically protected from a gap
opening. On the other side, atoms using four internal states [266], superconducting
qubits coupled to a cavity [267] or NV centres in diamond with a triplet ground
state [268] have been used to study gauge theories from high-energy physics, without
the need for spatial dimensions. Following Dirac’s seminal work on monopoles [269],
some gauge field theories have been linked to the existence of monopole solutions in
high-dimensional spaces. The modern interpretation of monopoles is connected to
Berry curvature and Berry phase and their topological nature is related to invariants,
such as the first Chern number for a Dirac monopole or the second Chern number
for a Yang monopole [270].

Our approach with atomic dysprosium focuses on quantum Hall systems, i.e.
topological insulators with explicit time-reversal symmetry breaking via the presence
of a magnetic field. The first natural extension of our atomic Hall cylinder is the
three-dimensional quantum Hall effect [271–273], which has been recently realised in a
condensed-matter system [274]. It involves three first Chern numbers, associated with
each of the three orthogonal planes of the material, such that the topology is essentially
related to only two dimensions. Novel phenomena appear when adding a pair of
dimensions to a two-dimensional Hall system, and this keeps being true whenever
a pair is added. Four-dimensional [255, 275, 276] and six-dimensional [277, 278]
Hall effects have been predicted. The former has been explored in two-dimensional
pumps using dimensional reduction [279, 280] and a small instance has been realised
using electronic circuits [281]. The topology of a d = 2n-dimensional Hall system
is classified by one or more m-th Chern numbers with m ≤ n, which characterise
the m-th order perturbative response to an electromagnetic perturbation, and is
associated with the presence of conducting hyperedges. In four dimensions, the
second Chern number is a topological invariant that cannot be reduced to that
of a two-dimensional system and the conducting modes are three-dimensional. In
this Section, we describe our implementation of a four-dimensional Hall system
using two synthetic dimensions encoded in the spin of dysprosium atoms and our
characterisation of its ground band.

7.1.1 Experimental setup
Our experimental protocol closely follows our implementation of an atomic Hall

cylinder with the coupling to an additional spatial dimension. We consider two pairs
of counter-propagating beams at 626.1 nm, aligned along the orthogonal axes x and
z. The first pair of beams is involved in the process (a) coupling m → m+ 1 and the
second one in process (b) coupling m → m−2, with net momentum kicks −2kex and
−2kez respectively. Here, m is the spin projection along z (−J ≤ m ≤ J , m integer).
The non-trivial cycle on the coordinate r ≡ m (mod 3) now involves the successive
processes r x→ r + 1 x→ r + 2 z→ r + 3 = r, associated with a total momentum kick
−2k(2ex +ez) and the absence of drift along m. A force along 2ex +ez thus performs
periodic Bloch oscillations with a chiral behaviour of the coordinate r while a force
oriented along ex − ez creates a Hall drift along m only, as the increase in velocity is
compensated by light-induced momentum kicks. These behaviours can be interpreted
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Figure 7.1 – Panel (a): Scheme of an atom subjected to a pair of counter-
propagating laser beams in the (x, z) plane, which couples its motion with its
internal degrees of freedom. The total angular momentum J = 8 encodes two
synthetic dimensions given by the magnetic projection m and its remainder
r = m (mod 3), leading to a synthetic space of cylindrical geometry. The
magnetic field is oriented along z. Panel (b): Spin-changing transitions
induced by the four laser beams. The pair of counter-propagating beams
along x (z) couple nearest-neighbour (next-nearest-neighbour) spin states,
with a net momentum kick along its propagation axis. Panel (c): Dispersion
relation plotted as a function of the momentum p, for six values of the
quasimomentum q. The ground band is represented by blue lines.

as the effect of two magnetic fields coupling two pairs of axes of a four-dimensional
system defined by the coordinates (x, z,m, r).

In our implementation, a non-zero bias field is oriented along z. The process (a)
is produced by the same beams as in the Hall cylinder described in Section 6.1 with
only one frequency component per beam. We recall that the two polarisations are
e1 = cos θ ez + sin θ ey and e2 = cos θ ez − sin θ ey for the laser beams propagating
along x and −x respectively, with θ = acos

(
1/

√
3
)

≃ 55◦. The choice of this angle θ
cancels the quadratic Ĵ2

z term imparting from the tensor polarisability. The vertical
beams are aligned with the magnetic field and realise the process (b). They have
opposite circular polarisations, e± for the beam propagating along ±z. Since the
processes (a) and (b) respectively involve rank-1 and -2 spin couplings, we choose
the relative frequencies of the two pairs of beams as:

ω+x − ω−x = −δz + ϵx,

ω+z − ω−z = 2δz + ϵz,
(7.1)

with ωs the absolute frequency of the beam s (s = ±x or ±z) and ϵx and ϵz the
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detunings from the two resonances.
We apply the rotating wave approximation and discard all fast oscillating terms.

The light shifts induced by the two pairs read as follows:

V
(x)

LS = (V+x + V−x)
(
α0 − α2

J + 1
2J − 1

)
1̂ − tx

(
e−i2kxeiϵxteiϕx

Ĵ+

J
+ hc

)
,

V
(z)

LS = (V+z + V−z)
[(
α0 + α2

J + 1
2(2J − 1)

)
1̂ − α2

3
2J(2J − 1) Ĵ

2
z

]

− tz

(
e−i2kzeiϵzteiϕz

Ĵ2
−
J2 + hc

)
+ (V+z − V−z)α1

1
2J Ĵz,

(7.2)

where Vs is the light coupling amplitude for beam s (s = ±x or ±z), from Eq. 6.4
with a detuning ∆0 from the optical transition. We use red-detuned beams with
∆0 = −2π× 8 GHz. The spin-independent contributions are dominated by the scalar
terms that create an attractive potential. A scalar term and a quadratic term Ĵ2

z

in V
(x)

LS cancel for our choice of polarisation angle θ = acos
(
1/

√
3
)
. We choose

Vz ≡ V+z = V−z to suppress the additional linear Zeeman term from V
(z)

LS . The
coupling strengths tx and tz are given by:

tx =
√

|V+xV−x| J(2J + 3)
4(J + 1)(2J + 1) sin(2θ),

tz =
√

|V+zV−z| J2

2(J + 1)(2J + 1) .
(7.3)

The quadratic term in V
(z)

LS reads qzĴ
2
z /J

2 with qz = sgn(∆0)2tx.
We consider the atomic dynamics in a moving frame at velocity v∗ defined as

v∗ = (ϵxex + ϵzez)/2k. The Hamiltonian becomes time-independent and strongly
resembles that of the atomic Hall cylinder in Eq. 6.16, except for the spatially-
dependent phases that depend on both x and z:

H =Mv2

2 + V (r) + qz
Ĵ2

z

J2 + V11̂,

V (r) = − tx

[
Ĵ+

J
eiϕx + hc

]
− tz

[
Ĵ2

−
J2 eiϕz + hc

]
,

(7.4)

where v is the atomic velocity in the moving frame at v∗ and ϕs = −2ks is the
relative phase of the two laser beams involved in each Raman process s = x or z.
The energy V1 is the spin-independent potential created by the four beams. The
optical transitions induce correlated dynamics in spin and velocity such that the
canonical momentum is conserved p = Mv/ℏ + 2kmex (mod K). The reciprocal
lattice vector K = 2k(2ex +ez) is the opposite of the momentum kick imparted in the
non-trivial cycle described earlier r x→ r + 1 x→ r + 2 z→ r + 3 = r. In the following,
we decompose the momentum as P = pX + qY with Y ∥ K, such that the first
Brillouin zone is defined by |q| < K/2, p arbitrary. More precisely, we define the
vectors of the orthonormal basis X = (ex − 2ez)/

√
5 and Y = (2ex + ez)/

√
5.
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7.1.2 Ground band characterisation
We start with atoms at rest in the laboratory frame, initially polarised in

|m = −J⟩, the ground state in the presence of the magnetic field oriented along z with
a norm of 223 mG, corresponding to a Larmor angular frequency δz = 2π × 388 kHz.
We adiabatically ramp up the laser intensities to generate the spin couplings, with
initial detunings ϵx = −7.15Erec/ℏ and ϵz = 14.3Erec/ℏ, in 100 µs. In the corre-
sponding moving frame at v∗ = −8vrecX, the atoms initially at rest are loaded in
the quasimomentum state with p = −15.16k and q = −0.89k, such that the atoms
essentially remain in |−J⟩.

We then proceed to a ramp of frequencies that amounts to applying an inertial
force in the moving frame and tuning the quasimomentum. To reduce the duration
of the ramp and maintain adiabaticity, the ramp follows a trajectory that avoids
the parts of the spectrum where the gap to the first excited state shrinks, as shown
in Fig. 7.2(b). These regions are located at the edges along m and correspond to
Bragg reflections when a force is applied along Y. We apply forces along X, then
Y and finally X again, and the successive steps of the ramp have zero slopes of the
velocity of the moving frame at their edges to turn the force on and off with minimal
diabatic effects. When the desired quasimomentum state is reached, we reduce the
coupling strengths by a factor of 0.7 and reach the final values t(exp)

x = 5.69(6)Erec
and t(exp)

z = 5.1(2)Erec in 200 µs. The preparation protocol lasts up to 1.5 ms, limited
by the energy gap on the order of 4.5Erec in the bulk.

We first check that the measured mean quasi-momentum follows the ramp of
the force. This allows us to perform the deconvolution of the signal, similarly to
our procedure for the atomic Hall cylinder. The main difference stems from the
two-dimensional dynamic of the atoms, which complicates the image analysis. In
particular, the spin separation using the magnetic gradient and the z-dynamics are
recorded on the same axis of the camera, so we independently calibrate the effect of
the Stern-Gerlach gradient for all Dicke states |m⟩. We also perform independent
experiments to estimate the directions of the propagation axes of the two pairs of
beams on our imaging system.

More complexity arises from the position drifts that occur in the lab frame during
the application of the inertial forces. This effect is small for the data presented
in Chapter 6. Indeed, for the spin-velocity distribution measurements during Bloch
oscillations in the Hall cylinder, we prepare a quasimomentum state ⟨qx⟩ = 2k with
zero velocity in both the moving and laboratory frames. The states at the edge of
the first Brillouin zone are reached in 200 µs and have acquired a velocity of 1.5vrec
in the laboratory frame. The ramp leads to a position drift of typically 0.5 µm
along the propagation axis of the Raman beams, corresponding to 0.06vrec in the
velocity distribution, since it is measured after a 2.3 ms-long expansion. However,
in our four-dimensional Hall system, depending on the prepared quasimomentum
state, the position drifts range from 5 µm to 50 µm, i.e. a shift of 0.5 − 5.5vrec
in the velocity distribution measurements. We take these drifts into account by
measuring the centre-of-mass at a short expansion time of 0.1 ms, to subtract it
from the spin-resolved velocity distribution measurements. Moreover, the position
drifts are not negligible compared to the waists of the Raman beams and occur
in the (x, z) plane where the laser beams give rise to transverse confinements, of
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Figure 7.2 – Panel (a): Scheme of the dynamic control of the parameters
(tx, tz, v∗

X , v
∗
Y ) to adiabatically prepare a quasimomentum state in the ground

band of the total Hamiltonian. Five steps of lengths Ti with integer 1 ≤ i ≤ 5,
consist of successive ramps of the parameters. Panel (b): Energy gap from
the ground state to the first excited state, numerically computed for the
maximal values of the coupling strengths during the ramp. We show the
paths followed in parameter space to reach a given quasimomentum state
without crossing regions with small gaps. Panel (c): Absolute value of the
position drifts that occur during the loading protocol, as a function of the
final quasimomentum state, numerically computed based on the experimental
ramps.

frequencies ωtrap
x = 2π×78 Hz and ωtrap

z = 2π×163 Hz, measured for atoms polarised
in |m = −J⟩. The trapping potentials induce a force as the atoms leave the centre
of the beams, as well as gravity along the z axis only. Both forces are of the order
of 10−3ℏk/µs and are a small correction to the force that we apply, typically in the
range of 10−2 − 10−1ℏk/µs.

Similarly to the Hall cylinder, we apply a deconvolution algorithm to measure
the properties of the ground band. In this set of measurements, the atomic cloud has
an initial temperature of 0.26 µK, corresponding to a momentum width σp ≃ 0.6k.
For a Bloch state with a quasimomentum P, the velocity belongs to an infinite set
of discrete values:

v = ℏ
M

(P − 2kmex + sK), (7.5)

with s an integer. States with different quasimomenta (modulo K) have velocities
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Figure 7.3 – Panel (a): Velocity distributions for each spin projection states,
averaged over all prepared mean quasimomentum states. Deconvolution is
performed on these images by exploiting the quasimomentum conservation.
Panels (b,c,d,e): Distribution of the magnetisation ⟨m⟩ = ⟨Ĵz⟩, the mean
position along the r axis using the formula ⟨r⟩ = 3/(2π) arg ⟨exp(i2πm/3)⟩
and the mean velocities along the two orthogonal axes X and Y, as a function
of the quasimomentum P = Mv/ℏ + 2kmex (mod K).

at different values, which authorises the deconvolution of the signal. We average
the spin-resolved velocity distributions measured for mean quasimomentum states
spanning the whole Brillouin zone and interpreted in their reference frame. We obtain
a set of 2J + 1 = 17 two-dimensional distributions from which we reconstruct the
properties of each quasimomentum state. In Fig. 7.3(a), we plot these distributions
P (m, vX , vY ) with coordinates vX and vY . We observe that the velocities are always
bounded along Y . The velocities along X are bounded in the bulk of the system for
m close to zero, while a ballistic motion is visible on the both edges near m ≈ ±J
with a chirality typical of Hall systems.

We show our measurements of the mean positions ⟨m⟩ and ⟨r⟩ along the synthetic
axes and of the mean velocities along the X and Y axes in Fig. 7.3(b-e). For a force
oriented along ex − ez ∝ X, the increase of velocity due to the force is compensated
by light-induced momentum kicks, which come together with an increase in the
mean spin projection ⟨m⟩. This corresponds to a Hall drift along m. This behaviour
contrasts with the case of a force along 2ex + ez ∝ Y, the direction of the reciprocal
lattice vector K, with a winding along the cyclic axis r and a constant magnetisation.
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In the bulk, the mean velocity remains much lower than the recoil velocity, which
underlines the quasi-flatness of the ground band. At the edges of the system where
the stretched states |±J⟩ are predominantly populated, we recover a non-zero
mean velocity, whose X component linearly increases with p, while the Y velocity
remains low. This behaviour is characteristic of an anisotropic edge mode of a
four-dimensional quantum Hall system, which can be viewed as a collection of
one-dimensional conduction channels oriented along X.

Our characterisation of the ground band contains the response to a force applied
in any direction in the (x, z) plane. It is possible to reconstruct the components of the
Berry curvature defined on the four-dimensional space [184, 282], which represents
the local response of the system to a force. Due to the presence of gapless edge
modes, the topology of the ground band appears when considering the bulk of the
system only. Similarly to the two-dimensional Hall effect with edges [46], we can
define a quantity that locally probes the topology of the system and coincides with
the second Chern number for a system of infinite size. The quantisation of the second
Chern number can also be directly checked from the non-linear response to both an
electric force and a magnetic perturbation. These complementary studies will be the
subject of a dedicated publication.
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7.2 Interactions in an atomic Hall cylinder
In this Section, we discuss the role of interactions in our implementation of an

atomic Hall cylinder with a synthetic cyclic dimension. We first briefly describe
the interactions in a spinor Bose-Einstein condensate from a general point of view.
We then restrict ourselves to a simplified model of the interactions based on the
characteristic of the ground band of our system. We then analyse the ground state for
interacting particles using a tight-binding model that approximates the Hamiltonian
of our system and using numerical simulations of the Gross-Pitaevskii equation valid
for pure Bose-Einstein condensates. For well-chosen parameters, we observe that the
ground state is a one-dimensional precursor of vortex lattices.

7.2.1 Spinor Bose-Einstein condensates
Our description of short-range interactions, such as van der Waals interactions,

in Section 1.1.3 focuses on the case of spinless particles or, equivalently, of spin-
polarised particles in an extremal coherent spin state, such as |m = −J⟩, in binary
collisions owing to the small density of the atomic gas. In general, colliding atoms can
be found in any spin state and the states of the atoms after interacting are obtained
from symmetry considerations. The inclusion of internal degrees of freedom in the
scattering process enriches the phenomenology of ultracold atoms with the occurrence
of exotic phases mixing superfluidity and magnetism [283, 284] for example. Such
ultracold gases are referred to as spinor Bose-Einstein condensates [285, 286] and
the general form of their scattering potential reads as follows:

Vs(r) = Vspin ⊗ δ(r), (7.6)

where we simplify the writing of the pseudo-potential to the Dirac function. We
still restrict ourselves to the low-energy regime where rotationally-symmetric s-wave
scattering dominates and imposes the conservation of the total angular momentum
F of the colliding pair. The exchange symmetry for indistinguishable bosons in the
case of s-wave scattering constrains the total angular momentum to even values only.
Therefore, the colliding atoms interact through independent spin-F channels (with
0 ≤ F ≤ 2J even) and we decompose the interaction term on these channels as:

Vspin =
2J∑

F=0
even

gFPF , (7.7)

where PF = ∑F
M=−F |F ,M⟩⟨F ,M| is the projector onto the subspace with total

angular momentum F and gF = 4πℏ2aF/M is the interaction strength of the spin-F
channel, characterised by the scattering length aF .

Spinor physics has been particularly studied for spin-1 condensates [287, 288]
where the interaction between two atoms is given by c01̂ + c2J1 · J2. It results in
collision-driven spin-mixing dynamics, where two atoms initially in the sublevel
|m = 0⟩ can coherently and reversely scatter into a pair of atoms in the opposite
stretched states |m = ±1⟩. The coherent dynamics has a frequency set by the
interaction parameter c2, that depends on the two scattering lengths a0 and a2, and
has first been observed in spinor condensates of rubidium and sodium atoms [289–
292].
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Dysprosium atoms can be employed to explore spinor physics with a large spin
J = 8. The interaction of pairs of atoms via s-wave scattering is fully described by the
J+1 = 9 scattering lengths associated with the different independent spin channels. A
pair of spin-polarised atoms in |−J⟩ interacts through the spin-2J channel only, which
depends on a single scattering length a16. This is the only scattering length known to
date and equals a16 = 126(10)a0, as introduced in Section 1.1.3. The other scattering
lengths could be measured using photoassociation spectroscopy [293], from the rate
of energy redistribution in a confined atomic cloud via two-body collisions [294] or
from the rate of collision-driven coherent spin dynamics for example. Interestingly
from the point of view of synthetic dimensions, the spin-exchange interaction terms
such as (m1,m2) → (m1 − 1,m2 + 1) can be viewed as correlated tunnellings along
the synthetic lattice made of the 2J + 1 Dicke states.

7.2.2 Restriction to the atomic Hall cylinder
We restrict the discussion to the spin states involved in our implementation of

an atomic Hall cylinder at low energy and analyse the role of s-wave interactions
and magnetic dipole-dipole interactions. The states of the ground band decompose
on a set of three coherent states |θ = π/2, ϕ⟩ with ϕ = 0, 2π/3 and 4π/3, which
play the role of momentum states along the synthetic cyclic axis r. Because of the
symmetry upon spin rotation of angle 2π/3 around z, the collision of a pair of atoms
is restricted to a single channel ϕ, ϕ′ → ϕ, ϕ′ which preserves the number of atoms in
each coherent state. As we have already pointed out, atoms in the same coherent
states interact only through the spin-2J channel, characterised by the scattering
length a ≡ a2J . The symmetry upon spin rotation of angle 2π/3 around z also implies
that the interaction of atoms in different coherent states is given by a single yet
unknown scattering length a′, given by a linear combination of the 2J + 1 scattering
lengths aF , whatever the two coherent states among the three possible pairs. The
two scattering lengths a and a′ can be arbitrarily tuned using a bias magnetic field
in the vicinity of a Feshbach resonance.

The magnetic dipole-dipole interactions are described by the potential:

Vdd(r) = µ0(gJµB)2

4π
J1 · J2 − 3(J1 · er)(J2 · er)

r3 , (7.8)

with er = r/r. In the case of two spin-polarised atoms with a common orientation,
it simplifies to the formula in Eq. 1.5, which depends on the distance between the
particles and the relative angle between the orientation of the magnetic dipoles and
the vector r. Here, we consider the case of two atoms initially in coherent states |ϕ⟩
and |ϕ′⟩. The vanishing expectation value of the spin operator ⟨ϕ1|J|ϕ0⟩ ≈ 10−5, for
coherent states with θ = π/2 and azimuthal angle separated by 2π/3, imposes that
the magnetic dipole-dipole interaction conserves the spin states ϕ, ϕ′ → ϕ, ϕ′. This
process also preserves the population in each coherent state. We now restrict the
dynamics to a one-dimensional system along the axis x of propagation of the Raman
beams. The dynamic along the transverse axes can be frozen by means of strong
transverse confinement using optical lattices, for example. In a one-dimensional
system, the magnetic dipole-dipole interaction can be incorporated as a contact
interaction [295], with a dependence on the orientation of the magnetic dipoles. Its
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derivation can be found in Appendix D. We distinguish two contributions depending
on whether the two colliding atoms are initially in the same state or not, which
correspond to modifications of the a and a′ scattering lengths in the contact potential
respectively. Overall, the interaction between a pair of atoms, restricted to the
ground states of the atomic Hall cylinder, is fully described by only two parameters,
that we can control using Feshbach resonances.

To obtain the ground state of the system in the presence of both types of
interactions, we consider two approaches: an approximate tight-binding model
similar to the extended Bose-Hubbard model, treated in the deep-well limit without
global coherence, and an exact simulation of the stationary solution for a pure
Bose-Einstein condensate using an imaginary time evolution of the Gross-Pitaevskii
equation.

Tight-binding model
We recall the effective Hamiltonian of the atomic Hall cylinder in the momentum

state basis:
H =Mv2

x

2 + Veff(x),

Veff(x) = − 2t
∑

ϕ=0, 2π
3 , 4π

3

cos(2kx− ϕ) |ϕ⟩⟨ϕ| ,
(7.9)

where t ≈ ta + tb = 18.6(4), with ta and tb the coupling strengths associated with
the processes (a) and (b) involving rank-1 and rank-2 spin couplings respectively.
Since the effective potential is diagonal in the momentum state basis { |ϕ⟩} and
spatially-periodic with period π/k, we can separate the Hamiltonian into three
subspaces and apply the Bloch theorem with the formation of a band spectrum with
three-fold degeneracy. We define a quasimomentum qx defined on a Brillouin zone
of size 2k and the corresponding Bloch states ψϕ

qx
(x). The three-fold degeneracy

is the sign of the invariance upon magnetic translation of the exact potential, as
defined in Section 6.2, with a corresponding three times larger Brillouin zone and no
degeneracy.

The Fourier components of the Bloch states are solutions of the well-known
eigenvalue equation of a spinless particle in a lattice of peak-to-peak amplitude 4t
and period π/k = λ/2. Each state ϕ has a corresponding lattice with a minimum
at ϕ/2k and the three lattices are shifted with respect to each other by λ/6, a
third of the lattice period. An alternative description uses the so-called Wannier
basis whose states are localised around the lattice sites. The Wannier wavefunctions
are defined from the Bloch basis by a discrete Fourier transformation. In a one-
dimensional system, we can choose them to be real functions that exponentially
decay away from the lattice sites. This basis is particularly relevant in the case
of a deep lattice potential with 4t ≫ Erec, which exhibits quasi-flat bands. For
example, our realisation of the atomic Hall cylinder lies deep in this regime, with
4t ≈ 75Erec ≫ Erec.

We decompose the Hamiltonian on the Wannier basis and restrict the Hilbert
space to the ground band only, which is valid for ultracold atoms with zero population
in the higher orbitals. We introduce the annihilation operator âs for a particle in
the Wannier state centred on the site Rs = sπ/3k (s integer). More precisely,
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we introduce three sets of operators for each ϕ states corresponding to the site
Rϕ

j = jλ/2 + ϕ/2k (j integer), that we rewrite as the âs operators centred on the
sites Rs = Rϕ

j = sλ/6. While the Hamiltonian is diagonal in the Bloch basis, it has
off-diagonal terms in the Wannier basis that we interpret as hopping terms from
one site to another. The coupling between lattice sites decreases rapidly with the
distance between them because the Wannier functions are sharply peaked at the
lattice sites. In the so-called tight-binding limit for a very deep lattice potential, we
only keep the on-site term and the coupling between neighbouring sites j ↔ j + 1, or
equivalently s ↔ s+ 3. We discard the on-site term as it is uniform over all lattice
sites and obtain the tight-binding Hamiltonian:

HTB = − J1
∑

s

(â†
s+3âs + hc). (7.10)

The tunneling energy can be computed from the Wannier wavefunctions or, equiv-
alently, from the energy spectrum of the ground band. To a good approximation,
it equals a quarter of the residual bandwith of the quasi-flat ground band. Tunnel-
ing between more distant sites is strongly reduced, by several orders of magnitude
compared to J1.

We want to treat the two interaction terms for spin states in the same coherent
state or in two different coherent states, from Section 7.2.2, in the Wannier basis.
Their expression is facilitated by the fact that a Wannier function centered on Rs

with s = 3j + i (with the quotient j and the remainder i of the Euclidian division
of s by 3) is associated with a single coherent state |ϕ = i2π/3⟩. Due to the decay
of the Wannier functions far from the lattice site, we only keep the two dominant
terms:

Vint =U0
∑

s

n̂s(n̂s − 1)
2 + U1

∑
s

n̂sn̂s+1,

U0 =g
∫

dx|w(x)|4 with g = 4πℏ2a

M
,

U1 =g′
∫

dx|w(x)|2|w(x+ λ/6)|2 with g′ = 4πℏ2a′

M
,

(7.11)

with n̂s = â†
sâs the occupation number at site s and w(x) the Wannier function

centred on R = 0. The Wannier function at site s can be deduced from the Wannier
function w(x) centred on x = 0 by translation wRs(x) = w(x−Rs). The first term
of the Hamiltonian is an on-site interaction term for a pair of colliding atoms in
the same coherent state, governed by the scattering length a. The second one is an
interaction term for two atoms in neighbouring sites at distance λ/6, that correspond
to different coherent states, and it is thus characterised by the scattering length a′.

The many-body Hamiltonian reads as follows:

H = − J1
∑

s

(â†
s+3âs + hc) + U0

∑
s

n̂s(n̂s − 1)
2 + U1

∑
s

n̂sn̂s+1, (7.12)

with J1, U0 and U1 positive. The ratio U1/U0 can be tuned using Feshbach resonances
affecting the scattering lengths a and a′. This Hamiltonian is similar to the extended
Bose-Hubbard model and contains the same on-site and nearest-neighbour interaction
terms. Their difference stems from the range of the hopping term. However, when the
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Figure 7.4 – Panel (a): Representation of the terms of the tight-binding
Hamiltonian, where the lattices at the position of the minima (every λ/6)
are well-approximated by harmonic oscillators with atoms lying in their
ground state only. The J1 terms couple sites separated by λ/2, i.e. s ↔ s+3
with integer s. The onsite and nearest-neighbour energy costs U0 and U1 are
represented with grey shaded areas. Panel (b): Phase diagram in the atomic
limit (J1 ≪ U0, U1), with respect to the chemical potential µ/U0 and the
ratio of energy costs U1/U0. The phases are characterised by the occupation
number of the odd and even sites (neven, nodd). We represent the occupation
of a few lattice sites for the charge-density-wave phase (1, 0) (or (0, 1)) at
half filling µ/U0 = 0.5 and the Mott insulator phase (1, 1) at unit filling
µ/U0 = 1.

interaction energies dominate J1 ≪ U0, U1 which is valid in the regime of deep lattices,
the two models become identical and the phase diagram is well established [296,
297]. In the atomic limit J1 ≪ U0, U1, we expect Mott insulator or charge-density-
wave phases with vanishing condensate order parameters. The Mott insulator
phase corresponds to a uniform number of particles per site, i.e. a Fock state at
each site, while a charge-density-wave phase is characterised by a breaking of the
translation symmetry with different occupation numbers in odd and even states.
We label these phases by the integer occupation numbers (neven, nodd) in even and
odd lattice sites. In particular, the charge-density-wave phase with alternating sites
with zero and unit occupations can be viewed as a one-dimensional precursor of the
two-dimensional Laughlin state, both of them occurring at half filling. The phase
diagram expected in the atomic limit is shown in Fig. 7.4 as a function of the chemical
potential µ and the ratio of interaction energies U1/U0. The intermediate limit with
a non-negligible tunnelling J1 hosts superfluid phases, which can be treated using
a variational minimisation of ⟨Ψ|H − µN̂ |Ψ⟩ with the so-called Gutzwiller ansatz
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for the many-body wavefunction |Ψ⟩ [298], which is written as a product state of
coherent superpositions of Fock states at each site. In such a treatment, the chemical
potential µ is defined as the Lagrange multiplier in the grand canonical ensemble,
to force the conservation of the total atom number N̂ = ∑

s n̂s in the minimisation
procedure.

Gross-Pitaevskii equation
The dynamic of a pure Bose-Einstein condensate in the mean-field regime of

interactions is governed by the so-called Gross-Pitaevskii equation [299], a time-
dependent generalisation of the Schrödinger equation with non-linear terms arising
from the interactions. We describe the quantum state of our system by a spinor
classical field whose components correspond to the different states of the synthetic
space. Since we restrict our analysis to the low energy regime with only three
populated coherent states |ϕ⟩, we consider a spinor with three components ψi(x, t),
with 0 ≤ i < 3 integer corresponding to |ϕ = i2π/3⟩. The ground state is given by
the stationary solutions of the equation:(

− ℏ2

2M∇2
r + V

(i)
ext(r) + gN |ψi(r, t)|2

)
ψi(r, t)+g′N

∑
j ̸=i

|ψj(r, t)|2ψj(r, t) = iℏ∂ψi(r, t)
∂t

,

(7.13)
for a wavefunction normalised to unity

∫
dr∑j |ψj(r, t)|2 = 1. The interaction

coupling strengths g = 4πℏ2a/M and g′ = 4πℏ2a′/M correspond to interactions
between atoms in the same coherent state and in different states respectively. The
external potential V (i)

ext projected on the state |ϕ = i2π/3⟩ has two contributions:

V
(i)

ext(r) =
∑

s=x,y,z

1
2Mωss

2 − 2t cos(2kx− ϕ). (7.14)

where the first one corresponds to a three-dimensional harmonic trap with angular
frequencies ωs (s = x, y, z) and the second one is the spin coupling, which is diagonal
in the |ϕ⟩ states.

We compute the stationary ground state solutions of the multi-component Gross-
Pitaevskii equation using evolution in imaginary time [300]. When the on-site
interaction term g dominates, we observe a total density modulation of period λ/6
along x and a modulation of period λ/2 when considering each ϕ state independently,
as shown in the left panels of Fig. 7.5. The energy cost of having several atoms at
the same position favours the uniform occupancy of a large number of lattice sites.
The trapping potential reduces the population in sites far from the centre of the trap.
In the limit of small interaction g and small confinement, the density in the vicinity
of each lattice minimum is well approximated by a Wannier function.

The interaction term g′ for spin states in different coherent states induces an
energy cost for atoms on neighbouring Wannier sites, separated by λ/6, as the overlap
of the corresponding Wannier functions is non-zero. It also adds an energy cost for
atoms on more distant sites, the smallest distance being λ/3, which is smaller by more
than two orders of magnitude due to the fast decay of the Wannier function away from
their centre. This interaction term favours the alternation of sites with high and low
occupancies, with a spontaneous translation symmetry breaking, and creates a total
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Figure 7.5 – Numerical simulations of the ground state by evolving the
Gross-Pitaevskii equation in imaginary time, with the effective model with
three internal states ϕ, for the two limits g ≫ g′ and g ≪ g′ on the left and
right sides respectively. We plot the density of the ground state wavefunctions
along x for all three internal states. In the limit of large contact interactions
for atoms in different ϕ states, there is a breaking of the discrete translation
invariance and the ground state is a charge-density-wave phase.

density modulation of period λ/3, instead of λ/6. For an infinite system along x with
translation invariance, i.e. in the absence of a trapping potential, the ground state of
the system is two-fold degenerate with either even or odd Wannier sites having a lower
occupancy. The presence of a trapping potential lifts the degeneracy and favours
one of the two configurations. When the interaction term g′ dominates, the ground
state is a charge-density-wave, as can be seen in the right-hand panels of Fig. 7.5.
Experimentally, the discrete translation symmetry breaking can be probed in the
density profile using high-resolution imaging at the length scale of λ/6 ≈ 100 nm or
in the momentum distribution recorded after a time-of-flight expansion, with the
observation of additional peaks.
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1
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Figure 7.6 – Scheme of two counter-propagating beams 1 and 2, propagating
along ±z and with opposite circular polarisations inducing σ± transitions
respectively. They are off-centred along y by a distance d from each other.
The spatial dependence of the total polarisation along y creates a non-zero
artificial gauge field orthogonal to the (y, z) plane.

7.3 Artificial gauge fields with large spin atoms
In this Section, we move away from the concept of synthetic dimensions and

consider the implementation of an artificial gauge field for the motion of neutral par-
ticles, mediated by light-matter coupling. The realisation of topologically-protected
many-body states is still pending and requires the preparation of phases with a
small number of particles on the order of the number of magnetic fluxes. In this
regime with a filling fraction on the order of unity, strongly-correlated many-body
states, such as a Laughlin state at half filling, could be accessed. A first step towards
fractional quantum Hall states is the preparation of phases with interacting particles,
at large filling fractions where a mean-field approach holds. This corresponds to
the regime that we described in this Chapter using the Gross-Pitaevskii equation
for example, by treating the interaction on the wavefunction as the effect of a bath
of surrounding atoms. The phenomenology of this regime is well established with
the appearance of vortices that pierce the sample and allow the magnetic flux to
pass through, similarly to type-II superconductivity. Vortices are local minima of
the density, characterised by a winding of the wavefunction around their core by a
non-trivial integer multiple of 2π [299, 301]. The vortices have a repulsive interaction
that favours the formation of a vortex lattice, such as the well-known Abrikosov
lattice [38]. We also mention that the presence of vortices has also been investigated
theoretically in higher dimensions [302].

This regime of interactions has been initially explored with ultracold atoms using
rotating Bose-Einstein condensates [33, 34, 303–305], where the Sagnac phase in the
rotating frame plays the role of the Aharonov-Bohm phase. It has been followed
by experiments with dressed states using light coupling between internal states,
pioneered in the Spielman group [37]. The spatial dependence of the ground state
leads to an artificial vector potential for the motion of particles in real space. In their
work, they use a magnetic gradient such that there is a spatially-varying Zeeman
splitting which modifies the local ground state. Since then, this scheme has been
extended to the case of large-spin atoms [306, 307].

Our proposal follows an alternative approach to design the required spatial
dependence of the ground state, using off-centred counter-propagating beams [155].
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of the ground state with the mean projection ⟨Ĵz⟩ in solid lines (bottom
panels), as a function of the position y in units of the waist of the beams w0,
for the three possible values of the total angular momentum J ′ of the excited
level (J − 1, J and J + 1 from left to right). The numerical simulations are
performed in the limit of infinite coupling V0 for which the spin couplings
dominate the kinetic energy. If the ground state is two-fold degenerate, we
plot the population of the ground state of even parity.

This leads to a smooth variation of the light polarisation over a distance set by the
waists and separation of the beams. In this Section, we discuss the feasibility of this
proposal and the differences induced by the choice of the optical transition to an
excited electronic level with a total angular momentum J ′. This study is initiated
by the recent installation of a pair of counterpropagating beams at 626.1 nm with
J ′ = J + 1 along the gravity axis with opposite circular polarisations, which we use
for our implementation of a four-dimensional quantum Hall system.

We consider this problem for any value of J ′ for generality and work at zero
field to suppress the effect of dipolar relaxation. The experimental configuration is
represented in Fig. 7.6. The two beams 1 and 2 have the same angular frequency ω0
and a transverse Gaussian profile A(y) determined by their beam waist w0. They
propagate along ±z, with opposite circular polarisations σ±. They are off-centred by
∓d/2, with typically d = w0/2, such that the total light field reads as follows:

E(x, y) =
√
A1(y)2 + A2(y)2e−iω0t

(
cos θ(y)

2 eikzϵ+ + e−φ sin θ(y)
2 e−ikzϵ−

)
, (7.15)

with the relative phase between the two beams φ and the two transverse profiles
A1(y) = A(y + d/2) and A2(y) = A(y − d/2). We define the mixing angle θ(y) from
the relation tan(θ(y)/2) = A2(y)/A1(y). Far from the centre along y, the angle θ(y)
approaches 0 for negative y and π for positive y, corresponding to a dominant effect of
the beam 1 or 2 respectively, and the ground state is one of the stretched states |±J⟩.



154 7. Beyond the non-interacting atomic Hall cylinder

At the centre y = 0, both beams equally contribute and the ground state depends
on the Clebsch-Gordan coefficients and thus on the value of J ′. We plot the energy
spectrum and the spin distribution of the ground state as a function of the y-position,
for the three values of J ′, in Fig. 7.7. The calculations are performed in the purely
spin case, in the absence of coupling between internal and external states, a situation
that may seem artificial at first but whose relevance will be revealed later. The beams
only couple states of the same parity m ↔ m+ 2 with two-photon optical transitions
involving one σ+ photon and one σ− photon, which preserves the parity of the state.
This leads to an almost two-fold degeneracy of the ground states for y ≈ 0, with two
states of even and odd parities. For J ′ = J − 1, the degeneracy is exact for all angles
θ(y) whereas for J ′ = J + 1 it is only approximate and occurs over a wide range,
until the ground state gets polarised in either of the stretched states. For J ′ = J
the branch with even parity remains the true ground state for all values of θ(y), and
the first excited state has odd parity and an eigenenergy which approaches that of
the ground state in the vicinity of y = 0. The ground state at the centre y = 0 has
distinct properties depending on the spin J ′ since it is the single state |0⟩x for J ′ = J
and the pair of coherent superpositions ( |−8⟩x ± |+8⟩x)/

√
2 of the stretched states

along x, for J ′ = J ± 1. Moreover, the cases J ′ = J and J ′ = J − 1 have one and
two dark states respectively for this choice of light polarisations, meaning that the
ground states are not coupled to light and do not suffer from heating due to residual
population in the excited state, an interesting feature for practical implementation.

We consider the full Hamiltonian which contains the kinetic energy and a coupling
between the spin and the motion along the z axis. After applying a gauge transfor-
mation with the unitary operator U = exp

(
−ikzĴz

)
and without approximation, the

total Hamiltonian is given by:

H = ℏ2p
2
x + p2

y + (pz + kĴz)2

2M + VLS(y)

VLS(y) = UṼLS(x, y)U †

= V (y)
[(
α0 + α2

J + 1
2(2J − 1)

)
1̂ + α1 cos θ(y) 1

2J Ĵz

+α2
3

4J(2J − 1)
(
sin θ(y)(Ĵ2

+ + Ĵ2
−) − 3Ĵ2

z

)]
(7.16)

with the spatially-varying coupling strength V (y) = (A1(y)2 + A2(y)2)3πc2Γ/(2ω3
0∆)

corresponding to a unit Clebsch-Gordan coefficient. We denote V0 its maximum
value when considering a single beam. The VLS(y) term is obtained from the coupling
ṼLS(x, y) induced by the two beams, by the gauge transformation which removes
the x-dependence and incorporates it into the kinetic term. We discarded the phase
difference φ in the equation above. The momentum pz = Mvz/ℏ−kĴz is a conserved
quantity and the Hamiltonian can be co-diagonalised with it.

The very large coupling regime, where the spin coupling dominates the kinetic
energy, is insightful in the understanding of our problem. In this limit, the ground
state of the system is simply given by the spin couplings, which we have already
computed in Fig. 7.7. It can also be obtained from the energy spectrum calcultated
as a function of pz, as we show in Fig. 7.8(a) for a given y-position. We consider
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⟨Ĵ
z
⟩

−0.4 −0.2 0 0.2 0.4

0

0.5

1

y [w0]

B x
×
2
π
(λ
/
2)

2
[h
]

(a)

(b)

(c)

(d)

Figure 7.8 – Artificial gauge field for J ′ = J . Panel (a): Energy spectrum
computed for a coupling V0 = 105Erec at the position y = −0.1w0 (marked
in the other panels by a vertical dotted grey line), as a function of the
conserved momentum pz. We extract the minimum pmin(y), corresponding
to the effective vector potential. Panels (b,c,d): Effective scalar potential
(b), vector potential (c) and magnetic field (d) obtained from simulations of
the energy spectrum, as a function of the position y. The effective magnetic
field is expressed by its flux on a disk of radius λ/2, in units of the flux
quantum h for a particle of effective charge q = 1.

the transition to J ′ = J , for a very large coupling V0 = 105Erec. This regime is
accessible using our Ti-Sapph laser in the vicinity of the transition at 832.8 nm, with
two beams of identical waist w0 = 50 µm and a total optical power P = 4 W. The
ground band has a dispersive shape and features a single minimum at a momentum
denoted pmin(y) for each position y. We can expand the energy spectrum around this
value as E0(y) + (pz − pmin(y))2/(2M). The energy E0(y) contains the light shift of
the ground state and an additional contribution. Interestingly, the former cancels out
for the case of a dark state, such as a state of the ground band for J ′ = J in the large
coupling regime, and we are left with the latter only, referred to as an effective scalar
potential. The momentum pmin(y) corresponds to an effective vector potential Az(y),
constant along z but varying along y. The spatial dependence induces an artificial
gauge field with amplitude Bx = ∂yAz(y), orthogonal to the (y, z) plane. We plot
the effective scalar potential, vector potential and magnetic field in Fig. 7.8(b,c,d).
The effective magnetic field is peaked close to the centre y = 0 and varies over a
distance of typically d of the order of tens micrometres.
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This effective magnetic field can be recovered using the formalism of the adiabatic
following of a dressed state, as initially described in Section 4.1.2. We recall the
effective spinless Hamiltonian for the motion of the atoms:

Hdressed = (p − A)2

2M + W + E0 + Vext,

with


A = iℏ ⟨χ̃0|∇χ̃0⟩ ,

W = ℏ2/(2M)
∑
n ̸=0

| ⟨∇χ̃n|χ̃0⟩ |2,

(7.17)

with the external spin-independent potential Vext, such as a harmonic trap, and the
expectation value of the light shift for the ground state E0, which is zero for a dark
state. We define the local eigenstates of the spin coupling term ṼLS(y, z) at a given
position |χ̃l⟩ = |χ̃l(y, z)⟩, with l an integer index of the eigenstates. The artificial
scalar and vector potentials can be rewritten in terms of the spin operators. We
apply the gauge transformation defined earlier with unitary operator U and define
the wavefunctions |χl(y)⟩ = U |χ̃l(y, z)⟩, which are eigenstates of the spin coupling
VLS(y). The gauge transformation suppresses the z-dependence of the eigenstates.
We neglect the terms that arise from the spatial variation of |χl(y)⟩. This can be
seen as a consequence of the length scale of variation of the ground state along z
and y, respectively set by typically λ/2 ≈ 400 nm, due to the interference of the two
laser beams, and the distance d = w0/2 ≈ 20 µm. As a consequence, the vector and
scalar potential are given by:

A(y) = Az(y)ez = −ℏk ⟨Ĵz⟩ ez,

W(y) = ∆J2
zErec,

(7.18)

where we used the closure relation ∑l |χl⟩⟨χl| = 1̂. The spin operators are evaluated
for the ground state |χ0(y)⟩. The scalar potential creates a repulsive potential
centred on y = 0, where the artificial gauge field is maximal. Experimentally, it
can be compensated by an attractive potential, such as a harmonic or quartic trap
with an off-resonant beam or a dipole trap. The artificial gauge field originates
from the spatial variation of the vector potential and we obtain Bx(y) = −ℏk∂y ⟨Ĵz⟩
along x, which exactly follows the shape of the scalar potential as a function of y.
The linear variation of the vector potential over typically 0.1w0 ≈ 5 µm leads to a
uniform magnetic field in this region. The large total angular momentum J = 8
boosts the strength of the effective magnetic field, which scales as J2. However, it
simultaneously enhances the scalar potential by the same factor, in the microkelvin
regime for dysprosium atoms. In the limit of very large spin coupling, the ground
state is given from the diagonalisation of the purely spin coupling VLS(y) only, and
the energy E0(y) = ⟨VLS(y)⟩ (zero for a dark state), the effective scalar and vector
potentials can be computed directly using Eq. 7.18.

We now focus on the two other possible values of the total angular momentum
of the excited state J ′ = J ± 1. An open question concerns the role of the two-fold
degeneracy of the ground state in the effective picture for the dressed atoms. The
degeneracy of a set of n states can lead to a non-abelian vector potential, described
by a non-diagonal n× n matrix and not a scalar anymore. In our scheme though,
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Figure 7.9 – Gauge field for J ′ = J − 1, for two values of the transverse
magnetic field Bx of 0 mG and 0.3 mG (about half of the rms value of the
magnetic field fluctuations on our experiment) in the left and right panels
respectively. Upper panels: Density of the ground Bloch states in the (yz)
plane. We restrict the z axis to a region of length λ/2 due to the periodicity
of the total Hamiltonian. Lower panels: Energy spectrum computed for a
coupling V0 = 105Erec at position y = −0.1w0, as a function of the conserved
quasimomentum qz in the first Brillouin zone. Each visible band is quasi-
two-fold degenerate.

the vector potential is trivial as it is proportional to the diagonal operator Ĵz, and
we do not expect new phenomena compared to the case J ′ = J . The degeneracy
of the ground states however has a hazardous effect as it facilitates their coupling
by small external perturbations. In particular, a perturbation breaking the parity
conservation along z, such as a real magnetic field along x, couples the two ground
states. This effect is strengthened at y = 0 where the ground states are coherent
superpositions of opposite stretched states along x. Such superpositions of states
that are far in phase space are particularly sensitive to transverse magnetic fields
and are strongly modified in their presence. Therefore, a transverse magnetic field
has a non-perturbative effect on the system.

We estimate this effect by considering a small magnetic perturbation H̃pert = δxĴx.
After the gauge transformation, the perturbation becomesHpert = (δx/2)(Ĵ+e−ikz+hc)
and couples the neighbouring spin states with momentum difference ±k along z.
It breaks the translation invariance along z and the Bloch theorem states that a
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quasimomentum qz defined on a Brillouin zone of size k is conserved. The two
dispersive degenerate ground bands are coupled and split into a succession of two-
fold degenerate bands with gap openings set by the strength of the perturbation.
We compare the situation without perturbation and in the presence of a small
magnetic field of Bx = 0.3 mG, below the rms value of the residual fluctuations of
magnetic field on our experimental setup, in Fig. 7.9. For simplicity, we consider the
transition to J ′ = J − 1 such that we benefit from the local dark states to enter
the regime of very large spin coupling, without suffering from the high heating rate
and the strong repulsive potential originating from E0(y) = ⟨VLS⟩. We numerically
compute the band spectrum in the first Brillouin zone and show the densities of the
Bloch states at the minimum of the ground band, for all y-positions. We observe a
modulation of the state density of period λ/2 along z and a gap opening of the order
of the recoil energy in the presence of a magnetic field of Bx = 0.3 mG, as shown
in Fig. 7.9(b). The gap opening complicates the interpretation of the spatially-varying
momentum of the energy minimum as an effective vector potential. Indeed, the
ground band becomes quasi-flat, with a bandwidth of the order of h × 0.01 kHz,
lower than the typical chemical potential µ ≈ h× 0.1 − 1 kHz in experiments with
degenerate gases. Moreover, fluctuations of the transverse field induce variations of
the density modulation, which would not be reproducible. These arguments question
the practical implementation of this scheme in our experiment using a transition
to J ′ = J ± 1, but this remains an open issue. Possible workarounds include the
reduction of the field fluctuations using magnetic shielding or more advanced active
compensation with additional flux-gate probes for example.

We have discussed the implementation of an artificial gauge field for neutral
particles in real space, mediated by an optical coupling between the internal and
external degrees of freedom of the atoms. The transition to an excited level with
spin J ′ = J appears to be a convincing candidate as it features local ground states
that are non-degenerate dark states. They do not couple to the light field which
reduces heating. It allows for a longer lifetime in the trapping potential, a necessary
condition for the observation of matter phases where interactions play a significant
role, as in vortex lattices.
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Quantum spins of mesoscopic size are a well-studied playground for engineering nonclassical states. If the
spin represents the collective state of an ensemble of qubits, its nonclassical behavior is linked to entanglement
between the qubits. In this paper, we report on an experimental study of entanglement between two subsystems of
dysprosium’s electronic spin. Its ground state, of angular momentum J = 8, can formally be viewed as a set of 2J
qubits symmetric upon exchange. To access entanglement properties, we partition the spin by optically coupling
it to an excited state J ′ = J − 1, which removes a pair of qubits in a state defined by the light polarization.
Starting with the well-known W and squeezed states, we extract the concurrence of qubit pairs, which quantifies
their nonclassical character. We also directly demonstrate entanglement between the 14- and 2-qubit subsystems
via an increase in entropy upon partition. In a complementary set of experiments, we probe decoherence of a
state prepared in the excited level J ′ = J + 1 and interpret spontaneous emission as a loss of a qubit pair in a
random state. This allows us to contrast the robustness of nonclassical pairwise correlations of the W state with
the fragility of the coherence involved in a Schrödinger cat state. Our findings open up the possibility to engineer
novel types of entangled atomic ensembles, in which entanglement occurs within each atom’s electronic spin as
well as between different atoms. Qubit ensembles with large entanglement depth could then be realized with a
few atoms only, facilitating the scaling up of quantum-enhanced sensors.

DOI: 10.1103/PhysRevResearch.3.043001

I. INTRODUCTION

Entanglement is a hallmark of nonclassical behavior in
compound quantum systems. Minimal entangled systems of
qubit pairs, as realized with correlated photon pairs, play a
central role in testing the foundations of quantum mechanics
[1,2]. Entanglement can also be engineered in many-particle
systems [3], such as an ensemble of interacting atoms [4].
In this case, the atoms are not individually addressable, and
quantum correlations are indirectly revealed by measuring
global properties, such as a squeezed spin projection quadra-
ture [5–8] or via the quantum enhancement of magnetic
sensitivity [9–11]. State-of-the-art experiments on photonic
systems [12], superconducting qubits [13], trapped ions [14],
and Rydberg atom arrays [15] can now produce highly entan-
gled states of tens of individually identifiable qubits, in which
entanglement is more readily observable.

Besides quantum state tomography, a wide array of meth-
ods have been developed for the detection of entanglement
[16,17]. In two-qubit systems, the degree of entanglement is
quantified by the concurrence [18,19]. Its direct measurement
remains challenging since it requires nonlinear operations on
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Published by the American Physical Society under the terms of the
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the prepared state [20–23], and it was so far only achieved for
photon pairs in pure quantum states [21]. In the case of multi-
partite systems, the study of entanglement is cumbersome due
to the existence of distinct classes of entanglement [24]. It
is often revealed using entanglement witnesses, by measuring
the fidelity with respect to a given entangled state [25]—the
method being limited to simple enough target states.

In this paper, we study quantum entanglement between
subsystems of the electronic spin of dysprosium atoms, of
angular momentum J = 8 in its ground state and prepared
in nonclassical spin states. Quantum states with nonclassical
correlations have been extensively studied in single large-spin
systems, including photon qutrits [26], ground-state atomic
spins [27,28], molecules [29], and Rydberg atoms [30]. In
the formal analogy between a spin J and a set of 2J qubits
symmetric upon exchange [31], nonclassicality goes hand in
hand with entanglement between the virtual qubits. However,
as long as the angular momentum J is conserved, the qubit
ensemble cannot be partitioned, and the relevance of entan-
glement is disputable. Here, we use an optical coupling to
an excited electronic state of angular momentum J ′ = J − 1
to partition the 16-qubit ensemble associated with the spin
J , giving access to entanglement. The virtual absorption of
a photon is interpreted as the annihilation of a qubit pair
in a state defined by the light polarization, leaving a set of
14 qubits in the excited electronic level [see Fig. 1(a)]. This
process thus realizes a partition of the electronic spin J in
two subsystems—the excited electronic spin J ′ = J − 1 and
the photon angular momentum L = 1. We use this partition
to probe entanglement in nonclassical spin states, either by
characterizing nonclassical behavior of qubit pairs via the

2643-1564/2021/3(4)/043001(14) 043001-1 Published by the American Physical Society
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FIG. 1. Scheme of the experiments manipulating qubit pairs in
the electronic spin of dysprosium. An electronic spin of angular mo-
mentum J can be viewed as a set of 2J virtual qubits symmetric upon
exchange. (a) The coherent coupling to an excited state J ′ = J − 1
with σ− polarized light probes the probability to find a qubit pair
polarized in |↑ ↑〉z. (b) The spontaneous emission from an excited
state J ′ = J + 1 removes a random pair of qubits.

measurement of concurrence or by revealing an increase in
entropy upon partition. We extend this protocol to probe de-
coherence in states prepared in an excited electronic level
J ′ = J + 1 [see Fig. 1(b)]. There, the spontaneous emission
of a photon drives the system to the electronic ground state
J , which corresponds to the removal of a qubit pair randomly
drawn from the initial state. We reveal the robustness of non-
classical pairwise correlations with respect to qubit loss, as
well as the fragility of coherence in Schrödinger cat states.

This paper is organized as follows. We present in Sec. II
the experimental protocol used to measure the properties
of qubit pairs extracted from the electronic spin, based on
the polarization dependence of the light-spin interaction. In
Sec. III, we investigate the nonclassical character of these
qubit pairs via the measurement of the concurrence of the
reduced two-qubit density matrix and apply it to a W state
and a squeezed state. In Sec. IV, we investigate the increase
of entropy upon the 14|2 partition as a proof of entanglement
for W and Schrödinger cat states, by studying the mixed
nature of the reduced two-qubit density matrix. In Sec. V,
we study the decoherence upon the loss of a qubit pair trig-
gered by spontaneous emission. We show that nonclassical
pairwise correlations are robust with respect to the extraction
of qubits. In contrast, the coherence of a Schrödinger cat state
is completely destroyed upon qubit loss, due to the complete
which path information carried by the spontaneously emitted
photon’s polarization. In another superposition state, we show
the existence of a quantum jump leaving the path information
hidden, such that maximal-order coherence remains visible.
Finally, we present a possible extension of our work to en-
sembles of dysprosium atoms entangled together using an
optical resonator. Such systems would combine entanglement
between atoms and within each electronic spin, allowing one
to scale up entanglement depth and its application to quantum-
enhanced sensing.

II. PAIR HUSIMI FUNCTION MEASUREMENT

A. Probing pairs via light coupling

The electronic ground state J = 8 can be interpreted as the
sum of 2J = 16 virtual spin-1/2s, in a state symmetric upon
exchange. We discuss here the partition of this qubit ensem-
ble, prepared in a state ρ, through the coupling to an excited
electronic level, of angular momentum J ′ = 7. As sketched
in Fig. 1(a), the coupling to the excited manifold is induced
by light close to the optical transition, via the absorption of a
photon. The photon polarization ε defines an L = 1 quantum
state |ε〉 that can be considered as a symmetric two-qubit state.
We restrict ourselves here to the case of a circular polarization
σ−, which corresponds to qubits polarized in |↓↓〉z. Since the
excited state contains only 2J ′ = 14 qubits, two qubits are
removed upon photon absorption. The conservation of angular
momentum requires these removed qubits to be polarized in
|↑↑〉z, the time-reversed state of the absorbed photon’s polar-
ization. The excited state ρ ′ can be then written as a projected
state ρ ′ = 〈↑↑|zρ|↑ ↑〉z. The probability for a pair chosen
from the 16 qubits to be polarized in |↑↑〉z then reads

Qpair(ez ) = Trρ ′,

defining the pair Husimi function along the direction ez.
Hence the light absorption properties of the electronic spin J
can be linked to the properties of its two-qubit reduced density
matrix.

To probe this behavior, we measure the light shift V
induced by an off-resonant light beam close to the con-
sidered optical transition. The light shift, being induced by
virtual photon absorption processes, is proportional to the pair
Husimi function, as

V/V0 = Qpair(ez ), V0 = (dE )2

h̄�
,

where d = 〈J − 1||d||J〉 is the reduced dipole matrix element,
E is the light electric field amplitude, and � is the detuning
from resonance.

B. Application to Dicke states

We illustrate our method by measuring the value of the
Husimi function Qpair(ez ) for an arbitrary Dicke state |m〉
(with −J � m � J), which we denote Qm hereafter.

All our experiments are performed on a cloud of 1.0(1) ×
105 dysprosium atoms (of the bosonic isotope 162Dy), held
in an optical dipole trap at a temperature T = 0.54(3) μK.
The results described in this paper can be understood by
considering a single atom, with the ensemble acting as an
averaging mechanism only. The experimental scheme for the
Qm measurement is shown in Fig. 2(a). We prepare the atoms
in a coherent state |m = J〉n polarized along a direction n,
parametrized by the spherical angles (θ, φ). The polar an-
gle θ determines the projection probabilities �m along the
Dicke states |m〉, which are significant for values of m close
to J cos θ . We then push the atomic cloud by applying an
off-centered laser beam, with circular σ− polarization and
blue detuning with respect to an optical transition at 696 nm.
The intensity gradient then leads to a force along x propor-
tional to the light shift [Fig. 2(a)]. After this kick, a magnetic
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FIG. 2. Husimi function measurement for Dicke states.
(a) Scheme of the light shift measurement. We measure the force
induced on the atoms by an off-centered laser beam, blue detuned
with respect to the optical resonance. (b) Image of an atomic gas
prepared in a coherent state of polar angle θ � 100◦. The atoms
are kicked along x by the laser beam. Subsequently, we apply a
magnetic field gradient separating the magnetic sublevels |m〉 along
z during time of flight. The dashed line indicates the mean x position
in the absence of the repulsive laser beam. (c) Probability Qm for
a qubit pair taken in the Dicke state |m〉 to be in |↑↑〉z, deduced
from the kick amplitudes. In all figures, error bars represent the 1σ

statistical uncertainty (here smaller than the blue circles). The black
lines are the theoretical values of Eq. (1).

field gradient is applied to spatially separate the different m
components along z, which allows us to retrieve the light
shift experienced by each Dicke state independently. After a
2.3-ms time of flight, we image the atoms and measure the
x displacement for each Dicke state |m〉 that is significantly
populated, and hence their values Qm. A typical absorption
image is shown in Fig. 2(b). Repeating this measurement for
various angles θ , we measure the light shifts for all projections
m and infer the Qm values shown in Fig. 2(c) [32].

Our measurements are consistent with an absence of light
shift for the states |m = −J〉 and |m = −J + 1〉; that is, these
states are dark with respect to the J → J ′ = J − 1 optical
transition for σ− polarized light. In terms of the underlying
qubits, the state |m = −J〉 only contains |↓〉z-polarized qubits,
while the state |m = −J + 1〉 has a single qubit in |↑〉z. In both
cases, a qubit pair cannot be found polarized in |↑↑〉z; hence
Q−J = Q−J+1 = 0.

More generally, a Dicke state |m〉 is composed of J − m
qubits in |↓〉z and J + m qubits in |↑〉z [33]. The probability
to pick a pair |↑↑〉z simply reads

Qm =
(

J + m

2

)/(
2J

2

)
= (J + m)(J + m − 1)

2J (2J − 1)
, (1)

in good agreement with our measurements.
We use these measurements to probe the Husimi function

of states lacking z rotation symmetry. For this, we measure

their projection probabilities �m(n) along n by combining
a spin rotation and a Stern-Gerlach projective measurement
along z. We then infer the Husimi function by weighting these
probabilities with the Qm values, as

Qpair(n) =
∑

m

Qm�m(n). (2)

In the following, we use the theoretical values of Eq. (1)
rather than the measured ones to avoid propagating systematic
errors.

C. Coherent and W states

We first apply the above protocol to the quasiclassical
coherent spin state |m = −J〉 and the W state |m = −J + 1〉.
The coherent state can be viewed as a set of 2J qubits po-
larized in |↓〉z, forming a nonentangled product state. The W
state, which hosts a single qubit in |↑〉z, is a paradigmatic state
of a fundamental class of entanglement [24], which has been
realized and studied in various settings [34–41].

In our experiment, the atoms are initially spin polarized
in the coherent state |m = −J〉. To produce the W state,
we confine the system to the two spin states |m = −J〉 and
|m = −J + 1〉 by applying a strong quadratic light shift acting
on the other spin states only, leading to a constrained quantum
Zeno dynamics [42–44]. An additional resonant radio-
frequency π pulse then brings the system to |m = −J + 1〉.
The quadratic light shift is produced using the 696-nm laser
beam with a σ− polarization, leading to positive energy shifts
for all Dicke states |m〉, except for m = −J and −J + 1. We
reach a maximum W-state fidelity of 0.91(1), with residual
overlaps on other Dicke states below 4% [45].

We report in Figs. 3(a) and 3(b) the measured projection
probabilities �m(θ ) for these two states. For a given projec-
tion m, the coherent-state probabilities feature a single peak
centered on the expected maximum at θm = arccos(m/J ),
shown as red lines. For the W-state probabilities, we observe a
double-peaked distribution for all nonstretched states m 
= ±J .
This behavior results from the interference between two pro-
cesses, depending on whether the spin |↑〉z is projected on
|↑〉θ or |↓〉θ . The first (second) process dominates for θ � 0
(θ � π ), and the two processes destructively interfere at θm,
as observed in our data.

We combine these measurements to infer the pair Husimi
functions using Eq. (2), finding good agreement with theory
for both states [see Fig. 3(c)]. In particular, for the coherent
state, our data match well the probability Qpair(θ ) = sin4(θ/2)
that two qubits in |↓〉z are projected in |↑〉θ . In the following
sections we use these measurements to probe entanglement
properties.

III. NONCLASSICALITY OF QUBIT PAIRS

Our first characterization of entanglement of the 2J-qubit
state consists in revealing the nonclassical character of qubits
pairs extracted from it.

A. Measure of nonclassicality via the concurrence

The collective state ρpair of a qubit pair symmetric upon
exchange can be written as the state of an angular momentum
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FIG. 3. Qubit pair properties of coherent and W states. (a) and (b) Measured spin projection probabilities �m as a function of the polar
angle θ , for a coherent spin state (a) and for the W state (b). The red vertical lines indicate the expected maxima for the coherent state,
also corresponding to minima for the W state. The top panels represent the considered spin-J states on the Bloch sphere, where the red
circles indicate the spanned measurement projection axis. (c) Pair Husimi function Qpair computed from the (a) and (b) data (blue circles
and red squares, respectively). The lines correspond to the expected functions Qpair(θ ) for the coherent and W states (red and blue lines).
(d) Distribution Cn of nonclassical correlations as a function of the polar angle θ . The points Cn > 0 measured for the W state evidence
nonclassicality.

L = 1. Drawing an analogy with quantum optics [46,47], it
will be called classical if it can be expressed as a statistical
mixture of quasiclassical coherent states [48], as

ρ
(classical)
pair =

∑
n

wn||n〉〈n||, (3)

where ||n〉 is a spin-1 coherent state pointing along n, and
wn � 0,

∑
n wn = 1. Coherent states are the only pure states

that satisfy the equality

Z (n) ≡ 2
〈
L2

n

〉 − 〈Ln〉2 − 1 = 0 (4)

for arbitrary measurement axis n. Then it follows by convexity
that Z (n) � 0 for classical states. As shown in Ref. [48],
the existence of a strictly negative value Z (n) constitutes a
necessary and sufficient criterion of nonclassicality.

To apply this criterion to our system, we use the connection
between the mean values of spin projection and the Husimi
function of qubit pairs extracted from the electronic spin J ,

〈Ln〉 = Qpair(n) − Qpair(−n),〈
L2

n

〉 = Qpair(n) + Qpair(−n),

leading to the expression Z (n) = α Cn, where we introduce
the coefficient α = (

√
Qpair(−n) − √

Qpair(n))2 − 1 and the
distribution

Cn = 1 − (
√

Qpair(−n) + √
Qpair(n))2.

The parameter α being negative, nonclassicality is character-
ized by the existence of a direction n for which Cn is strictly
positive. This criterion of nonclassicality is equivalent to the
bipartite entanglement witness established in Ref. [49].

We show in Fig. 3(d) the distribution Cn computed from the
measured Husimi functions, for the coherent and W states. For
these states, symmetric upon rotations around z, we expect Cn
to only depend on the polar angle θ of the measurement axis
[50]. For the coherent state, the measured Cn remains close to
zero for all angles θ . Indeed, qubit pairs drawn from this state

form themselves a spin-1 coherent state, for which Cn vanishes
according to Eq. (4). For the W state, Cn takes significantly
positive values for θ close to 0 and π , showing a nonclassical
character.

We now show that the distribution Cn can be used to
quantify the degree of nonclassicality of a quantum state,
defined by its distance from the set of nonclassical states [51].
For a system of two qubits, this geometrical measure can be
directly expressed in terms of the concurrence C [52], the
most common measure of pairwise entanglement [18,19]. In
our system, qubit pairs should be considered as indivisible
quantum objects, such that the concurrence only measures the
amount of nonclassical correlations. The concurrence can be
explicitly written in terms of the density matrix, but it does
not correspond to a directly accessible physical observable.
Remarkably, the distribution Cn can be used to retrieve the
concurrence, as

C = max
[
0, max

n
Cn

]
.

This relation was conjectured and numerically checked for
randomly generated states in Ref. [53].

For the W state realized in the experiment, the measured
Cn takes its maximum for θ = 0 leading to a concurrence C =
0.089(5). This value is about 71% of the maximum possible
value C = 1/J = 0.125 in a system of 2J qubits symmetric
upon exchange [54], which would be reached for the W state
in the absence of experimental imperfections. In our system,
the concurrence is limited by the residual population �−J+2 �
0.03 in the Dicke state |m = −J + 2〉 that originates from
spin-changing collisions between atoms in |m = −J + 1〉.

B. Pairwise correlations in a squeezed state

Nonclassical correlations between qubit pairs play a central
role in the squeezing of a spin projection quadrature [55]. In
this section we extend the measurement of qubit pair proper-
ties to a squeezed spin state, which we produce via a nonlinear
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FIG. 4. Qubit pair properties for a squeezed state. (a) and
(b) Measured spin projection probabilities �m for a squeezed spin
state, as a function of the polar angle θ with azimuthal angles φmin

(a) and φmax (b). (c) Spin projection uncertainty �Jn computed from
the (a) and (b) data (blue circles and red squares, respectively).
The lines correspond to the projection uncertainties expected for the
targeted spin state. (d) Distribution Cn of nonclassical correlations as
a function of θ .

spin dynamics. We apply a h̄χJ2
x spin coupling, generated

by the spin-dependent light shift of the 696-nm laser beam,
using a linear polarization ex [56]. This coupling induces a
twisting of the spin distribution, leading to the squeezing of a
spin projection quadrature [55], as first implemented in atomic
Bose-Einstein condensates [8,9]. In our experiment, we apply
a nonlinear coupling of strength χ = 2π×32.1(4) kHz for
a duration t � 700 ns, in the presence of a z magnetic field
B = 75(1) mG.

In contrast to the Dicke states discussed above, the spin
projection probabilities are no longer invariant around z. We
show in Figs. 4(a) and 4(b) the probabilities �m(θ, φ) for
two azimuthal angles φmin = −0.4(2) rad and φmax = φmin +
π/2, which feature minimal and maximal spin projection
uncertainties, respectively. For θ = π/2, a minimum spin pro-
jection uncertainty �Jmin = 0.92(16) is measured at φmin [see
Fig. 4(c)], in agreement with the value �Jmin = 0.85 expected
for an optimally squeezed state (within the one-axis twisting
dynamics). We report in Fig. 4(d) the corresponding distribu-
tion Cn. The measured Cn takes its maximum for θ = π/2 and
φ = φmin, i.e., along the squeezed quadrature direction. This

maximum gives a value for the concurrence C = 0.058(6), in
agreement with the expected value of 0.055.

Our measurements can be used to check the direct link
between quadrature squeezing and nonclassical pairwise cor-
relations [57]. Indeed, for the states reached via the one-axis
twisting dynamics, one expects the concurrence to be ex-
pressed in terms of the minimum spin projection uncertainty,
as

C = 1 − 2�J2
min/J

2J − 1
. (5)

From the measured projection quadrature, we calculate a
value of 0.053(5) for the right-hand side of Eq. (5), in agree-
ment with the direct measurement of the concurrence.

IV. PROBING ENTANGLEMENT VIA
THE SUBSYSTEM ENTROPY

So far, we studied the entanglement of 2J-qubit states via
the nonclassical character of their qubit pairs. In this section,
we access entanglement more directly, by probing whether a
given state of the spin J = 8 is separable with respect to the
14|2 partition performed by the photon absorption. For this,
we use the fact that for a separable state, the global state
is more disordered than its parts [58]. More precisely, we
quantify disorder via the Rényi entropy of infinite order (also
called the min-entropy), defined as [59]

S∞(ρ) = − ln λmax(ρ),

where λmax is the maximum eigenvalue of the density ma-
trix ρ. This eigenvalue corresponds to the maximum possible
overlap of ρ with a pure state. To reveal entanglement within
a state ρ of the collective spin J , it is thus sufficient to show
that the entropy of the reduced pair state ρpair is strictly higher
than that of the original state ρ, i.e., if the conditional entropy
satisfies [58]

S∞(14|2) ≡ S∞(ρ) − S∞(ρpair ) < 0.

A. Entanglement of the W state

The evaluation of the pair state entropy S∞(ρpair ) is based
on the tomography of the pair density matrix [60]. Full in-
formation on the density matrix is contained in the Husimi
function Qpair(n). We fit the measured Husimi function by a
spherical harmonic expansion

Qpair(n) = 1

3
+

√
4π

3

2∑
�=1

�∑
m=−�

λ�,mY m
� (n) (6)

and infer the density matrix as

ρpair = 1

3
1+

1∑
m=−1

λ1,mLm +
2∑

m=−2

λ2,mQm, (7)

where the Lm and Qm matrices correspond to the L = 1
angular momentum components and quadrupole moments,
respectively (see Appendix B).
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FIG. 5. Characterization of entanglement in a Schrödinger cat state. (a) Measured spin projection probabilities �m for a cat state, as a
function of the polar angle θ . The azimuthal angle φ = 0.86(5) rad is chosen such that the two coherent-state Husimi functions destructively
interfere for odd m values around θ = π/2. (b) Distribution Cn inferred from the probabilities shown in (a) (blue circles). The solid line is the
expected variation for a perfect cat state. (c) Projection probabilities �m measured along equatorial directions (θ = π/2) parametrized by the
azimuthal angle φ. (d) Evolution of the mean parity 〈P〉 deduced from (c). (e) Projection probabilities �m measured after a Larmor rotation of
angle φ followed by a second nonlinear evolution. (f) Evolution of the mean sign of even projections 〈〉 deduced from (e). The solid lines in
(d) and (f) are fits with a Fourier series.

We apply this protocol to the W state, taking into account
the slight variation of the Husimi function Qpair(n) with re-
spect to the azimuthal angle φ in the prepared state [50]. We
infer a density matrix

ρpair �
⎛
⎝ 0.88 0.01 + 0.05i −0.01 − 0.01i

0.01 − 0.05i 0.12 0.01i
−0.01 + 0.01i −0.01i 0

⎞
⎠,

with typically 1% statistical uncertainty. The reconstructed
density matrix matches well the expected one

ρpair =
⎛
⎝7/8 0 0

0 1/8 0
0 0 0

⎞
⎠.

Diagonalization of the reconstructed density matrix gives a
maximum eigenvalue λmax(ρpair ) = 0.882(5).

We now consider the global spin-J state. The pro-
jection probability �−J+1 = 0.91(1) with the Dicke state
|m = −J + 1〉 provides a lower bound on the maximum over-
lap λmax(ρ) with pure states.

Combining these results together, we obtain

S∞(14|2) < −0.03(1).

Its negative value shows that the prepared state is not separa-
ble with respect to a 14|2 partition, and is thus entangled.

B. Entanglement of a Schrödinger cat state

We now consider the case of a Schrödinger cat state,
for which the effect of the 14|2 partition is more striking.
Schrödinger cat states, which constitute archetypal states with

highly nonclassical properties, have been realized in different
types of experiments [30,56,61–77].

The cat state considered here is the coherent superposition
of two quasiclassical spin states |m = ±J〉 [78]. To produce
it, we use the one-axis twisting dynamics discussed above,
with a stronger nonlinear coupling χ = 2π×1.25 MHz and
a reduced magnetic field B = 53.7(1) mG. After showing
quadrature squeezing at short times (t ∼ 10 ns), the spin
quadratures collapse to a featureless spin distribution, be-
fore a revival at a time tcat = π/(2χ ) = 200 ns, at which
the system forms a coherent superposition of stretched states
|m = ±J〉 [56].

In Fig. 5(a), we show the measured probabilities �m(n)
for various polar angles θ with a fixed azimuthal angle
φ. For θ = 0, we confirm the dominant population of the
two stretched states, with �−J = 0.38(2) and �J = 0.42(2).
When varying θ , the distribution is a superposition of the
contributions of each of the two coherent states forming the
cat state. Interestingly, we observe an interference between
the two distributions when they overlap, i.e., for θ � π/2.
As shown in Fig. 5(c), the interference pattern depends on
the azimuthal angle φ, with an alternation between even- and
odd-m projections of period 2π/(2J ) [79].

We first test whether a qubit pair extracted from this state
features nonclassical behavior. We expect the distribution
Cn to be rotationally invariant around z and thus study its
variation with the polar angle θ in Fig. 5(b) [80]. Our mea-
surements are consistent with Cn < 0 for all angles θ , showing
that the reduced two-qubit state is classical. This measurement
highlights the well-known property of this state that any of its
subsystems is classical.
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We now extend the tomography protocol to the cat state
and obtain the reduced two-body density matrix

ρpair �
⎛
⎝ 0.46 −0.01i −0.03 + 0.05i

0.01i 0.05 −0.01i
−0.03 − 0.05i 0.01i 0.49

⎞
⎠,

which we compare with the expected matrix

ρpair =
⎛
⎝1/2 0 0

0 0 0
0 0 1/2

⎞
⎠ (8)

obtained for a perfect cat state. We compute the maximum
eigenvalue λmax(ρpair ) = 0.53(1) of the reconstructed matrix.

In order to reveal entanglement in the prepared state,
we evaluate its overlap with perfect cat states |cat(α)〉 =
(|m = −J〉 + eiα|m = J〉)/

√
2, which constitute a family of

pure quantum states. The simple form of these states in the
Dicke basis allows us to express the overlap with a state ρ as

Oα = ρ−J,−J + ρJ,J + 2 Re(ρ−J,J eiα )

2
,

where the diagonal elements ρm,m correspond to the spin pro-
jection probabilities �m. The overlap Oα takes its maximum
value O for α = − arg ρ−J,J , with

O = �−J + �J + 2|ρ−J,J |
2

.

We present two protocols giving a lower bound on the ex-
tremal coherence |ρ−J,J |, both based on the measurement of
an observable A defined on the spin J . We consider its mean
value in a state obtained after the cat state preparation, fol-
lowed by a Larmor rotation around z of angle φ, as

〈A〉(φ) =
∑
m,m′

am,m′ρm′,mei(m′−m)φ.

The extremal coherence can be singled out by measuring the
Fourier coefficient A2J = |aJ,−Jρ−J,J | at frequency 2J [77,79].
We will use observables that can take values in the interval
[−1, 1] only, such that |aJ,−J | � 1. The coefficient A2J then
provides a lower bound on the extremal coherence |ρ−J,J |.

The first observable we consider is the parity P of
the spin projection along an equatorial direction n ⊥ ez—
an observable commonly used to characterize cat states
[64,65,69,70,75–77]. We fit its oscillation, shown in Fig. 5(d),
with a Fourier series, from which we get the Fourier coeffi-
cient P2J = 0.26(1). The second observable uses a nonlinear
evolution, obtained by repeating the one-axis twisting evolu-
tion used to produce the cat state [56,81–84] [see the scheme
in Fig. 5(e)]. In the absence of imperfections, the system is
brought to a superposition sin(Jφ)|m= − J〉+ cos(Jφ)|m=J〉,
which allows us to extract the maximal coherence from the
projection probabilities in stretched states only. The projec-
tion probabilities measured with this protocol are shown in
Fig. 5(e). In practice, we observe residual probabilities in
other projection values m, with m even only, as expected from
parity symmetry. We thus use an observable  defined as the
sign of the spin projection on even states, with

〈〉 =
∑

m even

sgn(m)�m.

Its oscillation, shown in Fig. 5(f), gives a Fourier coefficient
2J = 0.247(5). The advantage of the second method will
become clear when we consider a more complex quantum
state in the next section.

The two protocols lead to comparable estimates of the
extremal coherence. Using the measured probabilities �±J

quoted above, we infer a lower bound on the overlap O �
0.66(2) and thus on the eigenvalue λmax(ρ). Together, these
measurements provide a conditional entropy

S∞(14|2) < −0.23(3),

which proves entanglement more evidently than for the
W state. We note that the requirement O > λmax(ρpair ) =
0.53(1), which we used to demonstrate the nonseparability of
the 14|2 partition, is consistent with the entanglement witness
O > 0.5 extensively used for cat states [25].

V. DECOHERENCE UPON QUBIT LOSS

We now consider the removal of a pair of qubits ran-
domly drawn from the electronic spin, irrespective of its
quantum state. For this purpose, we prepare a quantum state
of interest ρ ′ in an excited level of angular momentum
J ′ = 9, corresponding to a symmetric state of 2J ′ = 18 qubits
[see Fig. 1(b)]. The spontaneous emission of a photon drives
the system to the ground state J = 8, which has two missing
qubits. Since the emitted photon can carry an arbitrary po-
larization, the process allows for three independent quantum
jumps associated with the polarizations e−, ez, e+, with e± =
(ex ± iey)/

√
2. The ground-state density matrix then reads

ρ =
∑

eu=e−,ez,e+

〈eu|ρ ′|eu〉,

which can be simply written as

ρ = Tr2ρ
′,

corresponding to the loss of an arbitrary qubit pair.

A. Robustness of pairwise quantum correlations

We first investigate the effect of particle loss on a W state
prepared in an excited electronic level of angular momen-
tum J ′ = J + 1, coupled to the ground state with an optical
transition of wavelength 626 nm. To produce the state |m′ =
−J ′ + 1〉 in the excited level, we start in the coherent state
|m = −J〉 of the lowest energy manifold and use π polar-
ized resonant light to couple the system to the desired state
[see Fig. 6(a)]. As shown in Fig. 6(b), we monitor the Rabi
oscillation via the atom recoil upon light absorption. The
comparison with a master equation model taking into account
spontaneous emission during the Rabi flopping allows us to
estimate a fidelity of 0.98 for a pulse duration tpulse � 62 ns—
the excited state lifetime being τexc � 1.2 μs [85].

Following the light pulse, we wait for spontaneous emis-
sion to occur before measuring the spin state in the ground
level. We observe significant populations only in the states
|m = −J〉 and |m = −J + 1〉, as expected from the selection
rule |m′ − m| � 1. The state |m = −J + 1〉 is dominantly
populated, showing that, in most cases, the |↑〉 excitation of
the W state is not removed upon the loss of a qubit pair. The
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FIG. 6. Loss of a qubit pair in a W state. (a) Scheme for the
preparation of the W state in the excited electronic level. (b) Evolu-
tion of the mean atom velocity acquired due to the photon absorption
recoil, as a function of the light pulse duration. The dashed line is
a model taking into account spontaneous emission during the pulse.
(c)–(e) Top panels: expected states, with a scheme of spontaneous
emission in (d) showing the Clebsch-Gordan coefficients for the two
possible quantum jumps. Bottom panels: spin projection probabili-
ties in the absence of the resonant light pulse (c), for a π pulse (d),
and for a 2π pulse (e). The solid lines are the probabilities expected
for a perfect W state, while the dashed lines use the same model as
in (b).

projection probabilities, shown in Fig. 6(d), are close to the
expected values �−J+1 = 1/(J + 1) and �−J = 1 − �−J+1,
with a residual difference mostly explained by the imperfect
state preparation.

The nonclassicality of qubit pairs in the final state is probed
via the distribution Cn introduced in Sec. III A. We remind
the reader that Cn is obtained from the spin projection prob-
abilities along n. Since its maximum value is expected to
be reached along z, we only consider projections along this
direction, and obtain Cz = 0.104(3). This value provides a
lower bound on the qubit pair concurrence, expected to be
C = 1/(J + 1) � 0.111 in the initial state. The proximity of
the initial state concurrence and the measured one after decay
illustrates that losing qubits does not alter nonclassicality of
the remaining qubit pairs [24].

B. Fragility of macroscopic coherence

We contrast this behavior with the fragility of entanglement
in coherent superpositions of states distant in phase
space [86].

We consider two examples, namely, a cat state |ψ1〉 =
(|m′ = −J ′〉 + |m′ = J ′〉)/

√
2 and the superposition |ψ2〉 =

(|m′ = −J ′ + 1〉+|m′ = J ′−1〉)/
√

2. Their preparation
consists in producing a cat state in the ground manifold
(|m = −J〉 + |m = J〉)/

√
2 (see Sec. IV B) and then applying

resonant light to couple it to the excited manifold. The
state |ψ1〉 is produced using an x-linear polarization
ex = (e+ + e−)/

√
2, which dominantly couples the stretched

states |m = ±J〉 to states |m′ = ±J ′〉 [see Fig. 7(a)].
Couplings to states |m′ = ±(J ′ − 2)〉 also occur, albeit
with very small Clebsch-Gordan coefficients, such that these
processes can be neglected [87]. The state |ψ2〉 is obtained
using a z-linear polarization [see Fig. 7(d)]. In both cases, a
coherent Rabi oscillation is observed when varying the pulse
duration, and the fidelity of the preparation is limited by that
of the cat state in the ground level. We show in Appendix C
that the coherence of the superposition is maintained during
Rabi flopping, by studying the states reached after 2π pulses.

We study the effect of qubit loss, triggered by sponta-
neous emission, on the superposition states |ψ1〉 and |ψ2〉.
For the cat state |ψ1〉, we only expect the population of
the stretched states |m = ±J〉 [see Fig. 7(b)]. To check the

FIG. 7. Loss of a qubit pair from superposition states. (a) Preparation method for the Schrödinger cat state |ψ1〉 in the excited electronic
level. Given the small values of their Clebsch-Gordan coefficients, we neglect the couplings between |m = ±8〉 and |m′ = ±7〉. (b) Scheme of
the subsequent spontaneous emission. (c) Top panel: spin projection probabilities measured in the xy plane, as a function of the azimuthal angle
φ. Bottom panel: The corresponding sign observable 〈〉, together with a fit with a Fourier series. The y-axis range has been reduced compared
with Fig. 5(f) to highlight the absence of oscillation. (d)–(f) show the same information for the superposition state |ψ2〉 = (|m′ = −8〉 +
|m′ = 8〉)/

√
2.
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coherence between them, we measure the sign observable
〈〉 as a function of the azimuthal angle φ, as in Sec. IV B.
As shown in the bottom panel of Fig. 7(c), its oscillation is
completely washed out, with a measured Fourier component
2J = 0.006(10), indicating an absence of coherence. For
the superposition state |ψ2〉, we observe dominant projection
probabilities in the states |m = ±(J − 1)〉, corresponding to
the spontaneous emission of a σ∓ polarized photon, respec-
tively [see Fig. 7(e)]. We do not measure any significant
variation of these probabilities with the azimuthal angle φ,
excluding coherence between them. We also measure resid-
ual projection probabilities in the stretched states |m = ±J〉,
which occur via the spontaneous emission of a π polarized
photon. The advantage of the sign observable  becomes
clear here: It allows one to test the coherence between the
states |m = ±J〉, without being perturbed by the atoms popu-
lating odd-m states. The measured probabilities in stretched
states coherently oscillate as a function of the angle φ

[see Fig. 7(f)]. More quantitatively, the sign observable, which
involves even m only, evolves with a Fourier component
2J = 0.024(1).

The complete loss of coherence when starting in the cat
state |ψ1〉 can be interpreted as follows. The spontaneous de-
cay involves two orthogonal polarizations, with a σ+ polarized
photon emitted when starting in the component |m′ = −J ′〉,
while a σ− polarized photon is associated with the decay of
the state |m′ = J ′〉 [see Fig. 7(b)]. The photon polarization
thus holds complete which path information on the spin state
polarization—a term referring to Einstein’s version of the
double-slit interference experiment [88,89]. In this case, the
coherence between the different paths is erased after sponta-
neous emission.

For the state |ψ2〉, the most probable quantum jumps corre-
spond to the emission of σ+ and σ− polarized photons, which
carry information about the state polarization [see Fig. 7(e)].
In contrast, the quantum jump associated with the emission
of a π polarized photon does not give this information, which
explains the residual coherence. The measured Fourier coef-
ficient 2J corresponds to 9.7(5)% of the value measured in
the absence of the excitation. This reduction is consistent with
the probability 1/(J + 1) � 11.1% of scattering a π polarized
photon for the considered state, showing that this channel fully
preserves coherence.

VI. SUMMARY AND OUTLOOK

In this paper, we show that the 2J-qubit ensemble associ-
ated with an atomic electronic spin J can be partitioned via the
optical coupling to an excited level J ′ = J − 1. Among these
qubits, 2J − 2 of them constitute the excited level, and the re-
maining two are annihilated by the absorbed photon, in a state
defined by the light polarization. We investigate this process
using atomic dysprosium and use it to probe entanglement in
nonclassical states of spin J = 8. We fully characterize the
nonclassical character of its reduced two-qubit state and study
the increase of entropy upon partition as a smoking gun for
entanglement.

In a second set of experiments, we consider the partition
of an angular momentum J ′ = J + 1 of an excited electronic
state. There, a random qubit pair is extracted by spontaneous

FIG. 8. Proposed scheme for entangling several Dy atoms in
an optical resonator. An off-resonant optical cavity in the strong-
coupling regime couples an ensemble of N atoms together. For σ+
polarized cavity light, the total spin projection along z is conserved,
and the cavity mediates the coherent exchange of ↑ qubit excita-
tions between atoms. Such couplings can be used to stabilize a W
state, with a single ↑ excitation symmetrically shared between the
N×(2J ) qubits.

emission towards the ground state J . We show that nonclassi-
cal pairwise correlations are robust to particle loss. In contrast,
we observe that coherent superpositions of states distant in
phase space are very fragile.

In this paper, the study of light-spin interaction is lim-
ited to measurements of the electronic spin. A first extension
would be to collect the spontaneously emitted photon, whose
polarization is entangled with the electronic spin, as for exper-
iments performed with trapped ions, atoms in optical cavities,
or solid-state qubits [90–93]. One would thus explicitly access
the which path information carried by the photon upon spon-
taneous emission of a Schrödinger cat state. More generally,
the photon would allow one to couple qubit pairs from the
electronic spin J = 8 to “flying qubits,” which could then be
manipulated to entangle distant atoms [94], and generalize
quantum communication schemes to a mesoscopic degree of
freedom [95].

Another interesting perspective would be to place the
atomic gas in an optical cavity. The electronic spin J of a
single atom would be coherently coupled to the cavity light
mode, leading to a compound light-spin object [96]. For
an atomic ensemble, the cavity light would also couple the
electronic spins together, similarly to standard ensembles of
spin-1/2 atoms coupled to optical cavities [4,97,98]. For a set
of N dysprosium atoms—each hosting 2J qubits—the size of
the Hilbert space would be (2J + 1)N , much smaller than the
size 22JN for the same number of qubits realized with spin-
1/2 atoms. This favorable scaling will mitigate decoherence
effects associated with, for example, particle loss.

To be more concrete, we show in Fig. 8 an example of an
application, with an ensemble of N atoms coupled to σ+ po-
larized cavity light. The light mediates the coherent exchange
of |↑〉 excitations among the atoms, which could serve to
stabilize a W state with one excitation symmetrically shared
among N × (2J ) qubits. Such many-body entangled states
could feature a strong quantum enhancement of magnetic
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sensitivity [99,100] or serve as a playground for studies of
decoherence.
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APPENDIX A: DEVIATION FROM z ROTATION
SYMMETRY IN THE W AND CAT STATES

The W state |m = −J + 1〉 is invariant upon rotations
around z, such that all observables should depend on the
polar angle θ only. In practice, the state prepared close to
the W state is not perfectly rotationally symmetric, because

FIG. 9. Deviation from z rotation symmetry in the prepared W
state. (a) and (b) Projection probabilities �m as a function of the
polar angle θ , for φ1 = 0.36(5) rad and φ2 = φ1 − π/2. (c) Pair
Husimi functions Qpair inferred from the (a) and (b) data (blue circles
and red squares, respectively). The error bars represent the statistical
uncertainty from a bootstrap random sampling analysis. The line
corresponds to the expected variation for the W state. (d) Distribution
Cn as a function of θ . The two azimuthal angles φ1 and φ2 are chosen
to minimize and maximize the measured Cn, respectively.

FIG. 10. Deviation from z rotation symmetry in the prepared
Schrödinger cat state. (a) Pair Husimi functions Qpair as a function
of the polar angle θ , for φ1 = 3.3(1) rad and φ2 = φ1 − π/2 (blue
circles and red squares, respectively). The line corresponds to the
expected variation for a perfect cat state. (b) Distribution Cn as a
function of θ deduced from the data in (a).

of a residual coherent admixture with other Dicke states. We
measure a small φ variation of the measured probability dis-
tributions �m(n), as well as the pair Husimi function Qpair

and distribution Cn deduced from them. We show in Fig. 9 the

FIG. 11. (a) Scheme of the 2π Rabi oscillation starting in a
Schrödinger cat state of the electronic ground level, for an x-
polarized laser excitation. (b) Top panel: spin projection probabilities
measured in the xy plane, as a function of the azimuthal angle φ.
Bottom panel: the corresponding sign observable 〈〉, together with
a fit with a Fourier series. (c) and (d) show the same information for
a z-polarized laser excitation.
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measured data for two azimuthal angles φ1 = 0.36(5) rad and
φ2 = φ1 − π/2, for which Cn is minimized and maximized,
respectively. The data shown in Fig. 3 of the main text corre-
spond to an average over φ, the error bars taking into account
this dispersion.

The cat state |m = −J〉 + |m = J〉 is not rotationally in-
variant. Yet, its reduced two-body density matrix, given by
Eq. (8), is invariant such that the pair Husimi function Qpair

and distribution Cn should depend on θ only. As for the W
state, we measure a slight variation of these quantities with
φ, as shown in Fig. 10. Since we focus on extracting the
concurrence from the maximum of Cn, we show in the main
text the data measured for an azimuthal angle φ1 = 3.3(1) rad
that maximizes Cn.

APPENDIX B: SPIN-1 TOMOGRAPHY USING
THE PAIR HUSIMI FUNCTION

The Husimi function of a spin-1 quantum state ρ expands
on the spherical harmonics Y m

� with � = 1, 2 and |m| � �,
as written in Eq. (6). This linear decomposition allows us to
retrieve the density matrix ρ, as given by Eq. (7), where we
introduce the operators

L0 = Lz, (B1)

L±1 = ∓(Lx ± iLy)/
√

2, (B2)

Q0 =
√

5

3

(
3L2

z − 2
)
, (B3)

Q±1 = ∓
√

5

2
[(Lx ± iLy)Lz + Lz(Lx ± iLy)], (B4)

Q±2 =
√

5

2
(Lx ± iLy)2. (B5)

APPENDIX C: COHERENCE OF SUPERPOSITION
STATES DURING RABI FLOPPING

The preparation of superposition states in the excited
electronic state, as studied in Sec. V B, uses coherent Rabi
oscillations, starting in a Schrödinger cat state of the ground
electronic level (|m = −J〉 + |m = J〉)/

√
2. To check that co-

herence is maintained during the Rabi oscillation, we study it
after a 2π excitation, by measuring the oscillation of the sign
observable 〈〉.

As shown in Fig. 11, we find that the coherence |ρ−J,J |, es-
timated by the Fourier component 2J , is reduced to 0.202(2)
[0.211(6)] for the x-polarized (z-polarized) excitation, i.e.,
above 80% of the value obtained with no Rabi pulse. These
measurements confirm that coherence is preserved during the
Rabi oscillation.
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M. Wieśniak, and A. Zeilinger, Experimental non-classicality
of an indivisible quantum system, Nature (London) 474, 490
(2011).

[27] S. Chaudhury, S. Merkel, T. Herr, A. Silberfarb, I. H. Deutsch,
and P. S. Jessen, Quantum Control of the Hyperfine Spin of a
Cs Atom Ensemble, Phys. Rev. Lett. 99, 163002 (2007).

[28] T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S.
Sørensen, and E. S. Polzik, Spin Squeezing of Atomic En-
sembles via Nuclear-Electronic Spin Entanglement, Phys. Rev.
Lett. 101, 073601 (2008).

[29] D. Gatteschi and R. Sessoli, Quantum tunneling of mag-
netization and related phenomena in molecular materials,
Angew. Chem. Int. Ed. 42, 268 (2003).

[30] A. Facon, E.-K. Dietsche, D. Grosso, S. Haroche, J.-M.
Raimond, M. Brune, and S. Gleyzes, A sensitive electrom-
eter based on a Rydberg atom in a Schrödinger-cat state,
Nature (London) 535, 262 (2016).

[31] E. Majorana, Atomi orientati in campo magnetico variabile,
Nuovo Cim. 9, 43 (1932).

[32] In practice, since the light shift amplitudes strongly vary with
m, we vary the pulse duration in the range 10–100 μs and the
detuning in the range 50 MHz to 1 GHz, in order to keep sim-
ilar displacements for all m states (except the dark states). For
the smallest detunings, we take into account the corrections
to the second-order light shifts. The uncertainties in the laser
beam waist w = 40(5) μm and in the excited state lifetime
τ � 11 μs [101] lead to a systematic error. We correct an
overall 20% error using the constraint

∑
m Qm = (2J + 1)/3,

which states that in a completely undetermined state, a sym-
metric qubit pair has 1/3 chance to be in |↑↑〉.

[33] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[34] K. S. Choi, A. Goban, S. B. Papp, S. J. van Enk, and H. J.
Kimble, Entanglement of spin waves among four quantum
memories, Nature (London) 468, 412 (2010).

[35] F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, Entangled
states of more than 40 atoms in an optical fiber cavity, Science
344, 180 (2014).

[36] R. McConnell, H. Zhang, J. Hu, S. Ćuk, and V. Vuletić, Entan-
glement with negative Wigner function of almost 3,000 atoms
heralded by one photon, Nature (London) 519, 439 (2015).

[37] M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, Co-
herence and Rydberg Blockade of Atomic Ensemble Qubits,
Phys. Rev. Lett. 115, 093601 (2015).

[38] J. Zeiher, P. Schauß, S. Hild, T. Macrì, I. Bloch, and C. Gross,
Microscopic Characterization of Scalable Coherent Rydberg
Superatoms, Phys. Rev. X 5, 031015 (2015).

[39] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-
kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O.
Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, Scalable
multiparticle entanglement of trapped ions, Nature (London)
438, 643 (2005).

[40] F. Fröwis, P. C. Strassmann, A. Tiranov, C. Gut, J. Lavoie, N.
Brunner, F. Bussières, M. Afzelius, and N. Gisin, Experimen-
tal certification of millions of genuinely entangled atoms in a
solid, Nat. Commun. 8, 907 (2017).

[41] Y. Pu, Y. Wu, N. Jiang, W. Chang, C. Li, S. Zhang, and L.
Duan, Experimental entanglement of 25 individually accessi-
ble atomic quantum interfaces, Sci. Adv. 4, 3931 (2018).

[42] P. Facchi and S. Pascazio, Quantum Zeno Subspaces,
Phys. Rev. Lett. 89, 080401 (2002).

[43] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S.
Cataliotti, F. Caruso, and A. Smerzi, Experimental realization
of quantum Zeno dynamics, Nat. Commun. 5, 3194 (2014).

[44] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche,
J.-M. Raimond, M. Brune, and S. Gleyzes, Confined quantum
Zeno dynamics of a watched atomic arrow, Nat. Phys. 10, 715
(2014).

[45] The W-state fidelity is mostly limited by inelastic collisions
between atoms, which redistribute the spin among neighboring
m states.

[46] E. C. G. Sudarshan, Equivalence of Semiclassical and Quan-
tum Mechanical Descriptions of Statistical Light Beams,
Phys. Rev. Lett. 10, 277 (1963).

[47] R. J. Glauber, Coherent and Incoherent States of the Radiation
Field, Phys. Rev. 131, 2766 (1963).

[48] O. Giraud, P. Braun, and D. Braun, Classicality of spin states,
Phys. Rev. A 78, 042112 (2008).

[49] J. K. Korbicz, J. I. Cirac, and M. Lewenstein, Spin Squeezing
Inequalities and Entanglement of N Qubit States, Phys. Rev.
Lett. 95, 120502 (2005).

[50] While the W state is rotationally symmetric around z, we
observe in the prepared state a small but significant variation
of the projection probabilities with the azimuthal angle φ. We
show in Figs. 3(b)–3(d) the φ-averaged values of our mea-
surements. The variation with φ of the measured quantities is
taken into account in the error bars and is explicitly shown in
Appendix A.

[51] M. Hillery, Nonclassical distance in quantum optics,
Phys. Rev. A 35, 725 (1987).

[52] T.-C. Wei and P. M. Goldbart, Geometric measure of entan-
glement and applications to bipartite and multipartite quantum
states, Phys. Rev. A 68, 042307 (2003).

[53] J. Vidal, Concurrence in collective models, Phys. Rev. A 73,
062318 (2006).

[54] M. Koashi, V. Bužek, and N. Imoto, Entangled webs: Tight
bound for symmetric sharing of entanglement, Phys. Rev. A
62, 050302(R) (2000).

[55] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A
47, 5138 (1993).

[56] T. Chalopin, C. Bouazza, A. Evrard, V. Makhalov, D. Dreon,
J. Dalibard, L. A. Sidorenkov, and S. Nascimbene, Quantum-
enhanced sensing using non-classical spin states of a highly
magnetic atom, Nat. Commun. 9, 4955 (2018).

[57] X. Wang and B. C. Sanders, Spin squeezing and pairwise
entanglement for symmetric multiqubit states, Phys. Rev. A
68, 012101 (2003).

043001-12



PARTITIONING DYSPROSIUM’S ELECTRONIC SPIN TO … PHYSICAL REVIEW RESEARCH 3, 043001 (2021)

[58] R. Horodecki and M. Horodecki, Information-theoretic as-
pects of inseparability of mixed states, Phys. Rev. A 54, 1838
(1996).

[59] R. Konig, R. Renner, and C. Schaffner, The operational mean-
ing of min- and max-entropy, IEEE Trans. Inf. Theory 55,
4337 (2009).

[60] V. I. Man’ko and O. V. Man’ko, Spin state tomography, J. Exp.
Theor. Phys. 85, 430 (1997).

[61] C. Monroe, D. Meekhof, B. King, and D. J. Wineland, A
“Schrödinger cat” superposition state of an atom, Science 272,
1131 (1996).

[62] M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C.
Wunderlich, J. M. Raimond, and S. Haroche, Observing the
Progressive Decoherence of the “Meter” in a Quantum Mea-
surement, Phys. Rev. Lett. 77, 4887 (1996).

[63] J. R. Friedman, V. Patel, W. Chen, S. Tolpygo, and J. E.
Lukens, Quantum superposition of distinct macroscopic states,
Nature (London) 406, 43 (2000).

[64] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer,
C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J.
Wineland, and C. Monroe, Experimental entanglement of four
particles, Nature (London) 404, 256 (2000).

[65] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad,
J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer,
R. Ozeri, R. Reichle, and D. J. Wineland, Creation of a
six-atom ‘Schrödinger cat’ state, Nature (London) 438, 639
(2005).

[66] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier,
Generating optical Schrödinger kittens for quantum informa-
tion processing, Science 312, 83 (2006).

[67] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K.
Mølmer, and E. S. Polzik, Generation of a Superposition of
Odd Photon Number States for Quantum Information Net-
works, Phys. Rev. Lett. 97, 083604 (2006).

[68] S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune,
J.-M. Raimond, and S. Haroche, Reconstruction of non-
classical cavity field states with snapshots of their decoher-
ence, Nature (London) 455, 510 (2008).

[69] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,
W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and
R. Blatt, 14-Qubit Entanglement: Creation and Coherence,
Phys. Rev. Lett. 106, 130506 (2011).

[70] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H.
Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, Ob-
servation of eight-photon entanglement, Nat. Photon. 6, 225
(2012).

[71] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik,
E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, Observation of quantum state collapse and revival
due to the single-photon Kerr effect, Nature (London) 495, 205
(2013).

[72] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing,
Rev. Mod. Phys. 89, 035002 (2017).

[73] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su,
C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li,
N.-L. Liu, C.-Y. Lu, and J.-W. Pan, 18-Qubit Entanglement
with Six Photons’ Three Degrees of Freedom, Phys. Rev. Lett.
120, 260502 (2018).

[74] E. K. Dietsche, A. Larrouy, S. Haroche, J. M. Raimond, M.
Brune, and S. Gleyzes, High-sensitivity magnetometry with a

single atom in a superposition of two circular Rydberg states,
Nat. Phys. 15, 326 (2019).

[75] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q. Guo,
Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D.-W.
Wang, H. Wang, and S.-Y. Zhu, Generation of multicomponent
atomic Schrödinger cat states of up to 20 qubits, Science 365,
574 (2019).

[76] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang,
S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui,
M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M.
Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation
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B
Appendix: Transverse cooling

We present the dependence of the efficiency of the transverse cooling with respect
to a few experimental parameters: the currents through the three coils that fully
control the magnetic field at the position of the atoms and the waveplates that define
the polarisation of the forward linearly-polarised beam and the backward beam. We
also show a calibration of the frequency of the transverse cooling beams based on
the atomic resonance at 421.3 nm.
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Figure B.1 – Panels (a,b,c,d,e): Gain factor from transverse cooling in the
atom number in the MOT with a loading time of 4 s, as a function of the
current in the three coils and the half-waveplate angle of the forward beam
with linear polarisation and the quarter-waveplate angle of the backward
beam. For all parameters, we scan the frequency detuning and extract the
gain factor at maximum. Panel (f): Frequency detuning scan with a single
forward beam at low power, to calibrate the atomic resonance.



C
Appendix: Imaging improvement

We schematically describe our algorithm for the improvement of the quality of
the absorption images and how it depends on a few parameters.
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Figure C.1 – Panel (a): Scheme representing an image recorded on the
CCD camera. The region R0 is the region of interest containing atoms. The
regions R1 and R2 do not contain atoms and are used for the two steps of
the image algorithm. Panels (b,c): Schematic representations of the two
steps of the algorithm. In (b), an image Ĩ0 is constructed from a set of
images without atoms based on its proximity in the region R1 with the
image I that contains the atomic signal of interest. We compute the optical
density OD1 using Ĩ0. In (c), an optical density S̃ is constructed from a
set of ODs without atoms based on its proximity in the region R2 with the
optical density OD1. We subtract S̃ from OD1.
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Figure C.2 – Panels (a,b,c): Study of the parameter of the first step of
the image algorithm. Reduction of the standard deviation of the pixels in
the optical density computed with our algorithm compared to the standard
method, as a function of the size N1 of the set of images {I(n)

0 }, the size of
the region R1 characterised by the distance d1 and the size of the extension
of the set {I(n)

0 } by shifted such images by a few pixels in any direction, to
artificially increase the size of the set. The black lines indicate the standard
method. Panel (d): Study of the second step of the image algorithm.
Reduction of the standard deviation of the pixels in the averaged optical
density OD using the full algorithm for each OD compared to the standard
method, as a function of the size N2 of the set of ODs without atoms. The
blue line indicates the case of using the first step of the algorithm only. In
all panels, we use experimental sequences without atoms to easily compare
the background noise.



D
Appendix: Magnetic dipole-dipole

interaction

We derive the expression of the magnetic dipole-dipole interaction at low energy
in our implementation of an atomic Hall cylinder. In general, it is described by the
potential:

Vdd(r) = µ0(gJµB)2

4π
J1 · J2 − 3(J1 · er)(J2 · er)

r3 , (D.1)

with er = r/r. We restrict the motion of the particles to a one-dimensional system
along the axis x of propagation of the Raman beams. At low energy, the spin states
are in the ground band of the system and decompose on the three coherent states
|ϕ⟩, with an azimuthal angle ϕ = 0, 2π/3 and 2π/4, and a polar angle θ = π/2. The
interaction becomes:

⟨ϕ, ϕ′|Vdd|ϕ, ϕ′⟩ (x) = µ0(gJJµB)2

4π
cos(ϕ− ϕ′) − 3 cos(ϕ) cos(ϕ′)

x3 , (D.2)

where we used the expectation value of the spin vector operator ⟨ϕ|J|ϕ⟩ = J(cosϕ ex+
sinϕ ey). The atoms are subjected to a bias magnetic field which sets a Larmor
angular frequency δz, at which the spin states precess around z. An initial spin
state |ϕ⟩ evolves as |ϕ+ δzt⟩ as a function of time t. This leads to a time-dependent
interaction term −3 cos(ϕ+ δzt) cos(ϕ′ + δzt). We average out the fast-oscillating
term which gives −(3/2) cos(ϕ− ϕ′) and the total magnetic dipole-dipole interaction
writes:

⟨ϕ, ϕ′|Vdd|ϕ, ϕ′⟩ (x) = −1
2
µ0(gJJµB)2

4π
cos(ϕ− ϕ′)

x3 . (D.3)

It can take two different values depending on the |ϕ− ϕ′| = 0 or 2π/3, corresponding
to the interaction for atoms in the same coherent state or in different coherent states
respectively.





Résumé détaillé

La physique quantique s’est révélée être une théorie efficace pour prédire le
comportement des constituants élémentaires de notre univers. Son application aux
systèmes macroscopiques a été fructueuse pour l’étude d’effets collectifs, comme
le souligne la publication intitulée "More is different" [1]. Les symétries des lois
physiques jouent un rôle central dans la description de ces systèmes, tout comme
le concept de brisure spontanée de symétrie qui permet d’obtenir des états qui ne
respectent pas la symétrie sous-jacente. Le ferromagnétisme dans des matériaux tels
que le fer et la cristallisation des atomes pour former des solides appartiennent à
cette classe d’états.

La découverte de plateaux de conductivité dans un gaz d’électrons bidimensionnel
soumis à un champ magnétique [2], désormais appelé effet Hall quantique entier, a
initié de nouvelles recherches théoriques sur les états quantiques électroniques et mis
en évidence une nouvelle classification des phases de la matière. Cela a conduit à un
échange interdisciplinaire entre la physique et un domaine des mathématiques appelé
topologie, mis en évidence pour la première fois par la contribution de Thouless,
Kohmoto, Nightingale et Nijs (TKNN) [3] sur la quantification de la conductivité
dans les métaux bidimensionnels. La topologie définit des classes de systèmes qui
sont géométriquement similaires, ce qui signifie qu’ils peuvent être déformés de façon
continue des uns vers les autres. Cette classification est basée sur des invariants
topologiques définis pour le système dans son ensemble et ayant des valeurs entières,
comme le genre d’une surface tridimensionnelle connectée, c’est-à-dire son nombre
d’anses ou de trous.

Ce concept imprègne désormais de nombreux domaines de la physique et est
au cœur de ce que l’on appelle les isolants topologiques [4–6]. Ces systèmes sont
des isolants normaux en volume mais accueillent des modes conducteurs sur les
bords qui sont topologiquement protégés et insensibles au désordre, en raison de
l’absence d’états accessibles pour la rétrodiffusion [7]. Ils ont été proposés pour des
applications robustes topologiquement protégées, notamment en photonique [8] et en
informatique quantique [9]. Les isolants topologiques bidimensionnels appartiennent
tous à une classe unique représentée par l’effet Hall quantique de spin [10–13], le
pendant de l’effet Hall quantique bidimensionnel avec une symétrie par renversement
du temps. Les recherches en cours se concentrent maintenant sur les systèmes à
trois dimensions ou plus, par exemple ceux qui possèdent des points de Weyl [14],
qui sont classés en fonction de leur dimensionnalité [15] et des invariants entiers,
comme un invariant topologique Z2 pour les systèmes à symétrie par renversement
du temps [4, 16]. Cette classification est également valable pour les supraconducteurs
topologiques, où les bords possèdent des états liés de Majorana [17].
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La contribution séminale de Laughlin à l’effet Hall quantique entier [18] a souligné
que les signatures des états topologiques sont accessibles par pompage, un processus
de transport de particules dans des potentiels déformés périodiquement. Son travail
considère une géométrie cylindrique avec un champ magnétique radial et un flux
magnétique longitudinal accordable. Une variation cyclique de l’hamiltonien via le
contrôle du flux magnétique induit un mouvement quantifié de particules, à condition
que la dynamique soit adiabatique. Le mouvement est protégé par l’invariant
topologique non trivial qui caractérise les bandes remplies. Son approche a été
étendue à une classe plus large de pompes [19, 20] et étudiée sur diverses plateformes,
utilisant des guides d’ondes photoniques [21], des points quantiques [22, 23] ou des
atomes froids [24, 25].

Les atomes froids sont au cœur de cette recherche en raison de notre capacité à les
contrôler au niveau de l’atome unique, ainsi qu’à l’aide d’un photon unique [26]. Ce
domaine de recherche s’est élargi après des percées technologiques avec le développe-
ment de sources laser utilisées pour le piégeage et le refroidissement d’échantillons
atomiques [27] vers le régime de dégénérescence quantique [28]. Les atomes ultra-
froids sont des candidats pertinents pour mettre en pratique l’idée proposée pour
la première fois par Feynman [29], de simuler un système quantique en faisant
correspondre son hamiltonien à un autre système avec un contrôle plus fin. Des
modèles de matière condensée ont été étudiés à l’aide d’atomes froids, bénéficiant de
la possibilité de régler facilement certains paramètres expérimentaux, tels que les
interactions interatomiques, et de la mesure des observables microscopiques. Par
exemple, les réseaux optiques [30], des potentiels périodiques constitués de lumière, et
les atomes fermioniques neutres jouent respectivement le rôle d’un potentiel cristallin
ionique et des électrons. Dans la limite des potentiels profonds, ces systèmes simulent
le modèle de Fermi-Hubbard [31], qui peut accueillir des états fortement corrélés
similaires à ceux impliqués dans la supraconductivité à haute température dans les
cuprates [32].

L’étude de la physique de Hall quantique avec des atomes froids ne peut être mise
en œuvre directement avec un champ magnétique en raison de leur charge neutre.
Cette limitation a été surmontée dans des systèmes dans lesquels le mouvement des
particules est régi par un analogue du champ magnétique pour une particule chargée,
un champ de jauge artificiel. Par exemple, des systèmes de Hall quantique ont été
mis en œuvre en utilisant des condensats de Bose-Einstein en rotation [33, 34] et des
atomes dans des réseaux secoués [35, 36]. Une autre voie utilise la médiation du spin
par un couplage optique aux degrés de liberté externes pour créer un champ de jauge
artificiel [37]. Ces plateformes ont atteint le régime où les interactions interatomiques
modifient les états quantiques avec l’apparition de vortex organisés en un réseau
d’Abrikosov [38], similaire aux vortex dans les supraconducteurs de type II soumis à
un champ magnétique. Une extension de ces approches vers des champs de jauge
non-abéliens nécessite un couplage spin-orbite entre les états internes quasi-dégénérés
et le mouvement atomique, qui a été réalisé dans des systèmes bidimensionnels [39]
et récemment dans des systèmes tridimensionnels [40].

Une autre approche pour la simulation de systèmes topologiques repose sur la
création d’un système hybride composé de dimensions spatiales et synthétiques,
où ces dernières peuvent faire référence aux dimensions encodées dans les degrés
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de liberté internes des atomes par exemple [41, 42]. Un couplage externe peut
connecter les états électroniques d’un atome, qui sont réinterprétés comme des sites
d’un réseau unidimensionnel avec un terme de saut entre voisins. Des champs de
jauge artificiels dans de tels systèmes ont été produits en utilisant des transitions
optiques à deux photons, qui couplent les états internes avec une phase de saut
complexe dépendant de l’espace, similaire à une phase d’Aharonov-Bohm [43, 44]. Les
dimensions synthétiques facilitent également l’exploration de systèmes de dimensions
supérieures à trois ou de géométrie plus complexe [45], en utilisant une combinaison
de couplages de différentes portées par exemple.

Les atomes ayant un grand moment angulaire total dans l’état fondamental
sont bien adaptés à de telles applications, car la grande dimension synthétique
correspondante permet d’explorer à la fois les modes en volume et de bord en présence
d’un champ de jauge artificiel [46]. Les atomes de la famille des lanthanides, tels
que le dysprosium avec un moment angulaire total J = 8 dans son état fondamental,
ont une structure électronique complexe caractérisée par la présence de transitions
optiques fines éloignées des transitions larges. Par rapport aux atomes alcalins où de
telles transitions isolées ne peuvent être trouvées, le régime de couplage fort avec un
chauffage limité est accessible. Les atomes de dysprosium bénéficient également d’une
polarisabilité tensorielle non-négligeable au voisinage des transitions étroites qui
élargit notre boîte à outils de couplage de spin et de la présence d’interactions dipôle-
dipôle magnétiques anisotropes à longue portée qui enrichit les phases de la matière
accessibles [47]. Dans cette thèse, nous nous concentrons sur notre implémentation
expérimentale d’un cylindre de Hall atomique, avec une dimension cyclique de trois
sites encodés dans les degrés de liberté internes des atomes de dysprosium, et sur
notre réalisation de la pompe topologique de Laughlin.

Le chapitre 1 décrit les propriétés clés des atomes de dysprosium et leur intérêt
pour la mise en œuvre de champs de jauge artificiels. Les atomes de dysprosium
ont un grand moment magnétique et un grand moment angulaire total dans le
niveau fondamental. Le spectre électronique contient une grande variété de
transitions avec des largeurs de raies allant de l’ordre du Hz à quelques dizaines
de MHz, qui sont accessibles avec des lasers visibles ou infrarouges. Elles sont
bien adaptées à la manipulation des degrés de liberté internes et externes des
atomes, comme le refroidissement par laser et la manipulation du spin. Nous
présentons les éléments de base de l’interaction lumière-matière, qui est au cœur
de toutes les expériences réalisées au cours de cette thèse. Nous présentons
brièvement les systèmes laser que nous utilisons pour la manipulation des
atomes de dysprosium, et en particulier leur verrouillage en fréquence à l’aide
de références atomiques qui a été développé au début de la thèse.

Le chapitre 2 se concentre sur le dispositif expérimental qui produit un échantillon
atomique froid. Nous avons une grande dette envers tous les anciens membres
de notre groupe de recherche qui ont construit l’expérience et contribué à ses
mises à jour successives. Le cycle expérimental complet est présenté, partant
d’un jet atomique chaud d’atomes de dysprosium jusqu’à un gaz d’atomes
froids piégés proche de la condensation de Bose-Einstein. Nous mentionnons les
techniques successives de refroidissement et de piégeage, utilisant le couplage
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lumineux résonnant pour le ralentissement Zeeman et pour le piégeage dans
un piège magnéto-optique, et le couplage lumineux hors résonance pour le
piégeage dans des pièges conservatifs et le refroidissement par évaporation.
Certains changements récents sont détaillés. Nous décrivons le refroidissement
transverse du jet atomique avec une mélasse optique qui augmente le nombre
d’atomes chargés dans le piège magnéto-optique d’un facteur 4, la compensation
active des fluctuations du champ magnétique à l’aide d’une sonde magnétique,
qui permet d’atteindre un écart type du champ magnétique le long de l’axe
vertical de 0.4 mG, et le traitement des images d’absorption pour éliminer les
franges et réduire le bruit de fond. Nous donnons un aperçu des techniques
expérimentales qui permettent de caractériser les faisceaux laser hors résonance
et qui ont été régulièrement utilisées pour l’installation de nouveaux faisceaux.
Ces techniques donnent des informations sur l’amplitude du couplage lumineux,
la taille du faisceau et sa polarisation.

Le chapitre 3 présente brièvement nos travaux sur l’intrication dans les états quan-
tiques. Nous interprétons le grand spin des atomes de dysprosium comme un
ensemble de qubits virtuels de spin 1/2, symétriques par échange de particules,
et codant des états non classiques. Nous nous concentrons sur deux états
paradigmatiques de deux classes distinctes d’intrication, les états W et chat de
Schrödinger. La notion d’intrication dans les états codés est clarifiée en parti-
tionnant optiquement le spin en deux sous-systèmes. Nous montrons que l’état
total est plus désordonné que ses parties pour ces deux états, ce qui prouve
qu’ils sont intriqués. Nous étudions également la robustesse de l’intrication
dans ces états lors de la décohérence par la perte d’une paire de qubits dans
un état aléatoire. Ceci est réalisé en préparant des états non-classiques dans
un niveau électronique excité avec un moment angulaire total J ′ = J + 1,
qui contient virtuellement deux qubits supplémentaires. L’émission spontanée
projette l’état sur le niveau électronique fondamental, ce qui correspond à la
perte d’une paire de qubits dans un état aléatoire. Notre série d’expériences
met en contraste la robustesse de l’intrication par paires dans l’état W avec la
fragilité de l’intrication dans l’état chat.

Le chapitre 4 introduit les éléments théoriques de base liés à l’effet Hall quantique.
Nous commençons par les notions de courbure de Berry et de phase de Berry, qui
jouent un rôle similaire à celles de champ magnétique et de phase d’Aharonov-
Bohm. Cette idée est centrale dans la mise en œuvre de champs de jauge
artificiels pour les particules neutres à l’aide d’un habillage optique. L’effet Hall,
avec sa forme classique et son pendant quantique, est ensuite présenté. Nous
nous concentrons sur le cas de la géométrie cylindrique, lié à notre réalisation
expérimentale d’un cylindre de Hall quantique. Enfin, en suivant l’argument de
Laughlin pour la quantification de la conductivité dans un système de Hall, nous
introduisons la notion de pompage topologique et relions ses propriétés à celles
d’un système de dimension supérieure. Le cas des fermions en interaction est
brièvement discuté, avec l’apparition d’états de Hall quantiques fractionnaires.

Le chapitre 5 détaille notre protocole de codage de deux dimensions synthétiques
dans le grand moment angulaire total d’un seul atome de dysprosium, après
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une brève revue des dimensions synthétiques avec un accent sur la photonique
et les atomes froids. En utilisant des couplages de spin de différentes portées,
les degrés de liberté internes sont effectivement décrits comme un cylindre avec
une dimension cyclique de trois sites. Des simulations numériques mettent en
évidence la dynamique indépendante le long des deux dimensions du cylindre
effectif. Nous discutons de la validité de cette image et de sa robustesse face à
des variations des paramètres. Ce protocole peut être utilisé pour la création
d’un cylindre de Hall, en couplant la dimension synthétique cyclique à une
dimension spatiale. Nous présentons un modèle effectif valide à basse énergie
avec trois sites couplés cycliquement, qui capture les principales caractéristiques
de l’hamiltonien complet.

Le chapitre 6 présente notre réalisation expérimentale d’un cylindre de Hall atom-
ique, fondée sur la proposition décrite dans le chapitre précédent. Nous
caractérisons la bande fondamental du système et ses premières excitations,
liées au modèle effectif à trois sites. Nous sondons ensuite la réponse transverse
à une force le long de la dimension spatiale, typique d’une particule chargée
dans un champ magnétique, dans deux séries d’expériences. Cela fournit une
première preuve de la quantification de la réponse transverse du système. Nous
réalisons l’expérience de pompe topologique de Laughlin, en contrôlant le flux
magnétique effectif qui perce le cylindre, et nous mesurons le déplacement du
nuage atomique lorsque le flux est augmenté. Nous obtenons une estimation
expérimentale de l’invariant topologique non trivial associé à la bande fonda-
mental, le premier nombre de Chern, en faisant la moyenne de nos mesures sur
des états couvrant uniformément toute la zone de Brillouin.

Le chapitre 7 traite des extensions de notre réalisation d’un cylindre de Hall
atomique. Les premiers résultats expérimentaux sur la création d’un système
de Hall à quatre dimensions sont présentés, ce qui prouve notre capacité à
manipuler deux dimensions synthétiques indépendantes encodées dans le spin
des atomes. Le dispositif expérimental est détaillé ainsi que la caractérisation de
la bande fondamentale, qui met en évidence la réponse transverse aux forces le
long des axes spatiaux. Nous discutons ensuite des perspectives vers des états à
plusieurs corps en présence d’interactions interatomiques. Premièrement, nous
considérons l’effet des interactions sur notre cylindre de Hall quantique avec une
dimension synthétique et nous caractérisons l’état fondamental attendu dans
des expériences réalistes. Ensuite, nous détaillons un protocole pour préparer
un champ de jauge artificiel en espace réel, médié par un habillage lumineux,
pour des atomes neutres à grand spin et nous analysons l’effet du choix des
transitions optiques utilisées pour les transitions Raman à deux photons qui
implémentent le champ de jauge.
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and M. Lewenstein, “Synthetic gauge fields in synthetic dimensions”, Physical
Review Letters 112, 043001 (2014) (cited on pages 13, 88, 183).

43M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P.
Zoller, M. Inguscio, M. Dalmonte, and L. Fallani, “Observation of chiral edge
states with neutral fermions in synthetic hall ribbons”, Science 349, 1510–1513
(2015) (cited on pages 13, 89, 183).

https://doi.org/10.1038/415039a
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1007/s10948-012-1637-7
https://doi.org/10.1007/s10948-012-1637-7
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.050403
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1038/nature08609
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1016/0022-3697(57)90083-5
https://doi.org/10.1126/science.aaf6689
https://doi.org/10.1126/science.abc0105
https://doi.org/10.1103/PhysRevLett.108.133001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8736


190 Bibliography

44B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, “Visualizing
edge states with an atomic bose gas in the quantum hall regime”, Science 349,
1514–1518 (2015) (cited on pages 13, 85, 89, 183).

45O. Boada, A. Celi, J. Rodríguez-Laguna, J. I. Latorre, and M. Lewenstein, “Quan-
tum simulation of non-trivial topology”, New Journal of Physics 17, 045007 (2015)
(cited on pages 13, 87, 88, 183).

46T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dalibard, R. Lopes, and
S. Nascimbene, “Probing chiral edge dynamics and bulk topology of a synthetic
hall system”, Nature Physics 16, 1017–1021 (2020) (cited on pages 14, 89, 99, 104,
110, 144, 183).

47L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and T.
Pfau, Dipolar physics: a review of experiments with magnetic quantum gases, Jan.
2022, arXiv:2201.02672 [cond-mat.quant-gas] (cited on pages 14, 20, 183).

48M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling
transition in atomic dysprosium”, Physical Review A 83, 012510 (2011) (cited on
page 19).

49W. C. Martin, R. Zalubas, and L. Hagan, Atomic energy levels - the rare-earth
elements (Jan. 1978) (cited on page 19).

50L. Pitaevskii and S. Stringari, Bose-einstein condensation and superfluidity, First
(Oxford University PressOxford, Jan. 2016) (cited on pages 19, 37).

51C. J. Pethick and H. Smith, Bose–einstein condensation in dilute gases, Second
(Cambridge University Press, Sept. 2008) (cited on page 19).

52M. Olshanii and L. Pricoupenko, “Rigorous approach to the problem of ultraviolet
divergencies in dilute bose gases”, Physical Review Letters 88, 010402 (2001)
(cited on page 19).

53S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle, “Observation of feshbach resonances in a bose–einstein condensate”,
Nature 392, 151–154 (1998) (cited on page 20).

54C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold
gases”, Reviews of Modern Physics 82, 1225–1286 (2010) (cited on page 20).

55A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C. Makrides, A. Petrov,
and S. Kotochigova, “Quantum chaos in ultracold collisions of gas-phase erbium
atoms”, Nature 507, 475–479 (2014) (cited on page 20).

56T. Maier, H. Kadau, M. Schmitt, M. Wenzel, I. Ferrier-Barbut, T. Pfau, A. Frisch,
S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino, C. Makrides, E. Tiesinga,
A. Petrov, and S. Kotochigova, “Emergence of chaotic scattering in ultracold er
and dy”, Physical Review X 5, 041029 (2015) (cited on page 20).

57K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, “Observation of low-field
fano-feshbach resonances in ultracold gases of dysprosium”, Physical Review A
89, 020701 (2014) (cited on page 20).

https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1088/1367-2630/17/4/045007
https://doi.org/10.1038/s41567-020-0942-5
https://arxiv.org/abs/2201.02672
https://doi.org/10.1103/PhysRevA.83.012510
https://doi.org/10.1103/PhysRevLett.88.010402
https://doi.org/10.1038/32354
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1038/nature13137
https://doi.org/10.1103/PhysRevX.5.041029
https://doi.org/10.1103/PhysRevA.89.020701
https://doi.org/10.1103/PhysRevA.89.020701


191

58T. D. Lee and C. N. Yang, “Many-body problem in quantum mechanics and
quantum statistical mechanics”, Physical Review 105, 1119–1120 (1957) (cited on
page 20).

59T. D. Lee, K. Huang, and C. N. Yang, “Eigenvalues and eigenfunctions of a bose
system of hard spheres and its low-temperature properties”, Physical Review 106,
1135–1145 (1957) (cited on page 20).

60A. Bulgac, “Dilute quantum droplets”, Physical Review Letters 89, 050402 (2002)
(cited on page 20).

61D. S. Petrov, “Quantum mechanical stabilization of a collapsing bose-bose mixture”,
Physical Review Letters 115, 155302 (2015) (cited on page 20).

62F. Böttcher, J.-N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D. Graham, M. Guo, T.
Langen, and T. Pfau, “New states of matter with fine-tuned interactions: quantum
droplets and dipolar supersolids”, Reports on Progress in Physics 84, 012403
(2020) (cited on page 20).

63T. H. Maiman, “Stimulated optical radiation in ruby”, Nature 187, 493–494 (1960)
(cited on page 21).

64S. Chu, “Nobel lecture: the manipulation of neutral particles”, Reviews of Modern
Physics 70, 685–706 (1998) (cited on page 21).

65C. N. Cohen-Tannoudji, “Nobel lecture: manipulating atoms with photons”, Re-
views of Modern Physics 70, 707–719 (1998) (cited on page 21).

66S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of
optically trapped atoms”, Physical Review Letters 57, 314–317 (1986) (cited on
page 21).

67C. J. Foot, Atomic physics, Oxford Master Series in Physics (Oxford University
Press, Oxford, New York, Nov. 2004) (cited on page 22).

68G. Lindblad, “On the generators of quantum dynamical semigroups”, Communi-
cations in Mathematical Physics 48, 119–130 (1976) (cited on page 23).

69V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynam-
ical semigroups of n-level systems”, Journal of Mathematical Physics 17, 821–825
(1976) (cited on page 23).

70A. Rivas and S. F. Huelga, Open quantum systems, SpringerBriefs in Physics
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) (cited on page 23).

71D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for
quantum computation”, Physical Review Letters 81, 2594–2597 (1998) (cited on
page 23).

72B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Prepa-
ration of entangled states by quantum markov processes”, Physical Review A 78,
042307 (2008) (cited on page 23).

73J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative
processes in quantum optics”, Physical Review Letters 68, 580–583 (1992) (cited
on page 23).

https://doi.org/10.1103/PhysRev.105.1119
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRevLett.89.050402
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1088/1361-6633/abc9ab
https://doi.org/10.1088/1361-6633/abc9ab
https://doi.org/10.1038/187493a0
https://doi.org/10.1103/RevModPhys.70.685
https://doi.org/10.1103/RevModPhys.70.685
https://doi.org/10.1103/RevModPhys.70.707
https://doi.org/10.1103/RevModPhys.70.707
https://doi.org/10.1103/PhysRevLett.57.314
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevLett.68.580


192 Bibliography

74H. Carmichael, An open systems approach to quantum optics: lectures presented
at the université libre de bruxelles october 28 to november 4, 1991, edited by H.
Araki, E. Brézin, J. Ehlers, U. Frisch, K. Hepp, R. L. Jaffe, R. Kippenhahn, H. A.
Weidenmüller, J. Wess, J. Zittartz, and W. Beiglböck, Vol. 18, Lecture Notes in
Physics Monographs (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993) (cited
on page 23).

75F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “Dynamical polarizability of
atoms in arbitrary light fields: general theory and application to cesium”, The
European Physical Journal D 67, 92 (2013) (cited on pages 25, 26).

76R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for
neutral atoms”, in Advances in atomic, molecular, and optical physics, Vol. 42,
edited by B. Bederson and H. Walther (Academic Press, Jan. 2000), pp. 95–170
(cited on page 25).

77C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, S. Tzanova, E. Kirilov, and R.
Grimm, “Accurate determination of the dynamical polarizability of dysprosium”,
Physical Review Letters 120, 223001 (2018) (cited on page 25).

78I. H. Deutsch and P. S. Jessen, “Quantum-state control in optical lattices”, Physical
Review A 57, 1972–1986 (1998) (cited on page 27).
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ABSTRACT 

 

This thesis presents experimental studies performed with ultracold samples of atomic dysprosium. The 

electronic properties of dysprosium lead to a large magnetic moment, a large total angular momentum J=8 in the 

electronic ground state and a rich spectrum of narrow optical transitions with non-negligible tensor light shifts. Our 

work relies on using lasers tuned close to such transitions to manipulate atomic spin states and we begin by briefly 

describing a set of experiments that study the entanglement of non-classical states prepared in the ground level 

manifold, by explicitly partitioning the system via optical coupling. 

The main focus of this manuscript is the realisation of artificial gauge fields for the motion of neutral atoms. 

The simulation of a quantum Hall system benefits from the large spin in the electronic ground level, which we 

interpret as a synthetic lattice with 2J+1=17 sites. These lattice sites are coupled by two-photon Raman transitions 

using counter-propagating laser beams, where the net momentum acquired in a hopping process is equivalent to 

a spatially varying Aharonov-Bohm phase. Combining spin couplings with different hopping ranges, we effectively 

engineer an atomic cylinder with a cyclic axis composed of three sites and a uniform radial field, yielding a quantum 

Hall effect on its surface. We control an additional longitudinal magnetic flux that pierces the cylinder and realise 

Laughlin's topological charge pump, a quantised particle transport process related to the integer quantum Hall 

effect. We measure the first Chern number, a topological invariant, and confirm the non-trivial topology of our 

system of non-interacting particles. 

We also present preliminary experimental results on quantum Hall physics in four dimensions by optically 

coupling two independent synthetic dimensions encoded in the atomic spin to two spatial ones. We then describe 

theoretically the role of interatomic interactions on the atomic Hall cylinder and highlight their properties along the 

synthetic dimension. Finally, we discuss a proposal for the realisation of an artificial gauge field for the motion of 

dysprosium atoms in real space, mediated by the coupling between the internal and external degrees of freedom. 

MOTS CLÉS 

 

Gaz quantiques, système topologique, effet Hall quantique 

RÉSUMÉ 

 

Cette thèse présente des études expérimentales réalisées avec des échantillons ultrafroids de dysprosium 

atomique. Les propriétés électroniques du dysprosium conduisent à un grand moment magnétique, un grand 

moment angulaire total J=8 dans l'état fondamental électronique et un riche spectre de transitions optiques fines 

avec des décalages lumineux tensoriels non négligeables. Notre travail repose sur l'utilisation de lasers accordés 

à proximité de telles transitions pour manipuler les états de spin atomiques. Nous commençons par décrire 

brièvement un ensemble d'expériences qui étudient l'intrication d'états non classiques préparés dans le niveau 

fondamental, en partitionnant explicitement le système via un couplage optique. 

L'objet principal de ce manuscrit est la réalisation de champs de jauge artificiels pour le mouvement 

d'atomes neutres. La simulation d'un système de Hall quantique est facilitée par le grand spin dans le niveau 

électronique fondamental, que nous interprétons comme un réseau synthétique avec 2J+1=17 sites. Ces sites du 

réseau sont couplés par des transitions Raman à deux photons à l'aide de faisceaux laser contrapropageants, où 

l'impulsion acquise dans un processus de saut est équivalente à une phase d'Aharonov-Bohm variant dans 

l'espace. En utilisant une combinaison de couplages de spin de différentes portées, nous préparons de manière 

effective un cylindre atomique avec un axe cyclique composé de trois sites et un champ radial uniforme, produisant 

un effet Hall quantique sur sa surface. Nous contrôlons un flux magnétique longitudinal supplémentaire qui perce 

le cylindre et réalisons l'expérience de pompe topologique de Laughlin, un processus de transport quantifié de 

particules lié à l'effet Hall quantique entier. Nous mesurons le premier nombre de Chern, un invariant topologique, 

et confirmons la topologie non triviale de notre système de particules en l'absence d'interaction. 

Nous présentons également des résultats expérimentaux préliminaires sur la physique de Hall quantique 

à quatre dimensions en couplant optiquement deux dimensions synthétiques encodées dans le spin atomique à 

deux dimensions spatiales. Nous décrivons ensuite théoriquement le rôle des interactions interatomiques sur le 

cylindre de Hall atomique et mettons en évidence leurs propriétés dans la dimension synthétique. Enfin, nous 

discutons une proposition pour la réalisation d'un champ de jauge artificiel pour le mouvement des atomes de 

dysprosium dans l'espace réel, induit par le couplage entre les degrés de liberté internes et externes. 

KEYWORDS 

 

Quantum gases, topological system, quantum Hall effect 
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