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Simulation numérique de matériaux hétérogènes non-linéaires: Intelligence artificielle et
méta-modèles de comportement

Résumé : L’innovation technologique s’appuie de plus en plus sur l’utilisation des matériaux hétérogènes pour
des domaines de pointe (Énergies renouvelables, aéronautique, biomécanique). L’utilisation de ces matériaux
est devenue incontournable en raison de leur excellentes propriétés mécaniques spécifiques. Cependant,
le comportement thermomécanique résultant de ces microstructures est très complexe. Il présente des
mécanismes de déformation non-linéaires dont l’identification demeure un véritable challenge. D’autre part,
le comportement de ces matériaux est fortement dépendant du couple matériau-microstructure, il s’agit
donc d’une problématique de modélisation multi-échelles. Des approches standard comme la méthode FE2

ont été largement développées dans la littérature pour la simulation de la réponse mécanique de structures
hétérogènes. Néanmoins, l’utilisation de cette méthode reste dans la plupart des cas très coûteuse en terme
de temps de calcul et nécessite parfois des ressources informatiques assez robustes. Ce projet de thèse a
donc pour objectif de repenser en profondeur le paradigme de la simulation multi-échelles du comportement
mécanique des structures architecturés. En combinant Intelligence Artificielle (IA), thermodynamique des
matériaux et simulation numérique du comportement de structures, nous avons l’ambition de développer et
valider des modèles hybrides permettant de simuler, avec un gain de calcul très important, le comportement
multi-échelle de structures hétérogènes. L’objectif est donc d’effectuer en quelques minutes, sur un ordinateur
de bureau, des simulations prenant plusieurs jours sur des centres de calcul intensif.
Mots-clés : Intelligence Artificielle, Modélisation multi-échelle, Matériaux hétérogènes, Homogénéisation,
Réseaux de neurones artificiels

Numerical simulation of heterogeneous materials combining Artificial Intelligence and
physics-based modeling

Abstract: The new industrial constraints are nowadays pushing the limits of materials in terms of mechanical
properties for advanced application fields (renewable energy, healthcare, transport). One solution to adapt
the material properties to target applications is to rely on heterogeneous materials due to their excellent
specific characteristics (high strength-to-weight ratio, energy absorption, mechanical resistance). However,
the design of such structures can be challenging given the complexity of material mechanical responses when
multiple physical mechanisms are involved at different length scales. Consequently, the evaluation of the
resulting mechanical behaviors requires powerful numerical tools capable of solving highly non-linear multiscale
problems. Standard methodologies including multi level finite element approaches FE2 have been extensively
developed in literature to simulate the macroscopic responses of heterogeneous structures. Nevertheless,
the use of such methods still suffers from the high computational costs, therefore preventing it from being
efficiently applied to multiscale structural analysis. The main objective of the present thesis is to propose
a complete change of paradigm in the design and simulation of complex heterogeneous structures using
hybrid models that combine physical knowledge and Artificial Neural Networks (ANN) based approaches. By
adopting this strategy, we have observed a drastic downscale of the expected computational cost as well as
the possibility of conducting expensive simulations on desktop computers instead of HPC clusters.
Keywords: Artificial Intelligence, Multiscale modeling, Heterogeneous materials, Homogenization, Artificial
Neural Networks
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General Introduction

The use of heterogeneous materials has increasingly became more indispensable for advanced engineer-
ing applications, including renewable energy, healthcare and aerospace. For instance, composite materials
have gained major prominence in the aeronautical industry due to their excellent and distinctive mechani-
cal properties, which allow to design lightweight structures while maintaining high performance and meet-
ing safety requirements. In addition, the use of composites presents a significant environmental impact in
terms of energetic efficiency and CO2 emissions reduction. The emergence of cellular architectured mate-
rials has also revolutionized a wide spectrum of engineering fields. Due to their high strength-to-weight
ratio and significant energy absorption capabilities, lattice-type architectured structures can be employed
for many applications, and their tunable mechanical properties is particularly suitable in biomechanics
to conceive orthopedic implants. Through the optimization of microstructures topology, architectured
prostheses can be designed in an optimal fashion to ensure a compatibility with human bones. Moreover,
they provide both the appropriate porosity and mechanical strength to the bone tissue as well as the
necessary lightness that allows the prosthesis to withstand significant loading conditions. The major
growth of this type of materials is mainly due to the significant development of topological optimization
and additive manufacturing methods which enable the production of quite complex shapes that were not
accessible with traditional methods such as machining and casting processes.

However, modeling the thermomechanical response of heterogeneous structures can be very chal-
lenging due to many factors: First, the mechanical behavior resulting from the microstructures is very
complex to identify as multiple physical mechanisms are usually involved at different length scales. Local
material behaviors are particularly governed by strongly non-linear dissipative phenomena that requires
a proper identification of the constitutive laws. In addition, multiscale modeling strategies are necessarily
required to have a better understanding of the effect of the microstructure on the macroscopic response.
Consequently, the evaluation of heterogeneous structures mechanical behaviors requires the development
of advanced and powerful numerical tools, capable of taking into consideration the micro-macro inter-
action in real time and predicting accurately the resulting global response. Among these computational
approaches, the multi level finite element method FE2 [Feyel 1999] have been extensively developed in the
literature for multiscale structural analysis. This full field approach based on periodic homogenization
theory, consist on attributing a Representative Volume Element (RVE) to each Gauss integration point.
The estimation of the overall response is then obtained by solving micro and macro problems simultane-
ously through localization and homogenization principles. Although FE2 remains more advantageous in
terms of execution time compared to direct FE simulations on fully meshed heterogeneous structures, it
is clear that such modeling strategy also suffers from numerous limitations given the following reasons:
as described in the above mentioned FE2 procedure, nonlinear problems are solved simultaneously on
both micro and macro scales using Newton Raphson iterative schemes. This process is commonly time
consuming due to the treatment of material non-linearities in each microscopic computation and at each
iteration. In addition, other considerations may increase the computational time including the number of
Gauss integration points, the complexity of loading conditions, the number of increments and the meshing
resolution of the RVE and the macrostructure. Therefore, all these considerations may sometimes hinder
FE2 approach from being efficiently applicable to structural analysis.
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In the wake of the Fourth Industrial Revolution (4IR or Industry 4.0), numerous technological innova-
tions are currently impacting a large span of our society from autonomous vehicles, robotics, the Internet
of Things (IoT) and 3D printing. Artificial Intelligence (AI) is one of the most prominent technologies
driving the Industry 4.0 through Machine Learning (ML) and Deep Learning (DL). For instance, machine
learning had profoundly influenced the healthcare system in recent years, supporting the industry’s tran-
sition from traditional methods. Through the development of comprehensive algorithms and softwares,
doctors are currently assisted by ML in the diagnosing of patients and diseases. The impressive progress
in the field of AI are only a reflection of the exponential growth of computing resources and the availability
of massive amount of data. In material science, the recent developments in experimental measurement
techniques have enabled the generation of large databases of material behaviors that can be used for con-
stitutive models identification. On the other hand, the significant advances in computational capabilities
have facilitated the production of extensive quantities of numerical simulations data. Therefore, the data
availability, considered as the main source of the enrichment for AI models, is no longer a major obstacle.
From this perspective, the employment of machine learning and deep learning has considerably attracted
the interest of the material science community. The essence of ML and DL techniques lies in their ability
to quickly predict target mechanical responses or material properties after conducting a training phase.
Such methods also find their interest in computational mechanics to accelerate multiscale simulations of
heterogeneous materials. As discussed previously, the evaluation of the mechanical response of complex
architectured structures is very challenging, the traditional methodologies to perform these simulations
such as FE2 require costly computing resources. The integration of deep learning approaches in solid
mechanics numerical solvers can be considered as a promising alternative way to overcome these issues.

In that sense, the main purpose of this thesis is to propose a change of paradigm in the design
and simulation of complex heterogeneous structures using hybrid models that combine
physical knowledge and Artificial Neural Networks (ANN) based approaches. To address this
objective, the present manuscript has been structured into two parts and four chapters.

Part.I: Hybrid approaches to predict nonlinear mechanical behaviour of materials using
Artificial Neural Network and physics based modeling.

- Chapter 1: The first chapter of this manuscript is dedicated to a state or art review regarding the
use of machine learning techniques and data driven approaches in material science and for engineering
applications. First, the main ML training strategies are presented including Supervised Learning (SL),
Unsupervised Learning (UL), Semi Supervised Learning (SSL) and Reinforcement Learning (RL). The
use of a specific learning algorithm depends on the the problem to be addressed and the nature of
available data. In the second section of this chapter, a general overview of the application of ML methods
in mechanics of materials is highlighted. Based on the recent contributions from the material science
community, numerous practical examples including constitutive modeling and multiscale modeling are
discussed.

- Chapter 2: In this chapter, we aimed to develop a hybrid physics-AI based model to predict non-
linear mechanical behaviors of dissipative materials. By introducing a specific Neural Network architecture
called Thermodynamically Consistent Recurrent Neural Networks (ThC-RNN), this work proposes a new
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paradigm for the simulation of dissipative materials under complex loading conditions. The design of
such architecture allows to take into account the material loading history subjected to multi-axial and
non-proportional loading paths, similarly to internal variables for homogeneous materials. In addition, a
special focus is given to the respect of thermodynamics principles in the ThC-RNN model by introducing
specific thermodynamical constraints during the training phase. Finally, the model’s reliability is tested
on different plasticity models once the training is completed.

Part.II: Multiscale modeling of heterogeneous materials using Artificial Neural Networks
based approaches

- Chapter 3: In the third chapter of this manuscript, an investigation was carried out to verify
hybrid models capabilities to predict the effective properties of heterogeneous materials. A hybrid model
ANN − φ is developed by combining Artificial Neural Networks and micromechanical modeling. The
homogenization approach used in this study is mainly based on Eshelby’s inclusion problem. ANN − φ

predictive capabilities of composite materials homogenized properties and local behaviors is investigated.
The accuracy of the obtained results are compared with concurrent numerical estimations.

- Chapter 4: The last chapter of this manuscript is devoted to the development of new numerical
modeling strategies using deep neural networks to accelerate multiscale simulation of architectured ma-
terials. A so called FE-LSTM approach is designed for multiscale modeling of heterogeneous structures
by combining Finite Element method (FE) and Long Short Term Memory (LSTM) neural networks. The
developed approach is tested on several examples of 3D architectured structures under proportional and
non proportional loading paths. The obtained results with FE-LSTM are compared with FE2 method in
terms of accuracy and computational costs savings (execution time, required memory, CPU usage). The
last section of this chapter presents a a first attempt of using multi-inputs neural networks architectures
combining convolutional neural networks and multilayer perceptrons to predict the effective properties
of architectured materials. Through the development of a CNN-MLP model, the achievable capabilities
of such neural networks architectures that takes into account data of different nature (images, numerical
data, sequences) are investigated.
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1.1 Introduction

Historically, the development of material science has undergone regular advances over the centuries
regarding the challenges and the adopted strategies to deal with engineering problems. Beginning with
empirical modeling where scientists relied solely on observation and experimentation to describe phys-
ical phenomena, theoretical modeling allowed to formalize properly these physical laws using adequate
mathematical expressions. Since the 19th century, significant progress has been made in material science
thanks to Augustin-Louis Cauchy, the pioneer of continuum mechanics who established a complete frame-
work to characterize the mechanical behaviour of materials and structures. The governing equations of
this framework includes the kinematic relations, conservation laws (for mass, momentum and energy)
and lastly materials constitutive models which are restricted by physical laws and thermodynamics prin-
ciples. Another major breakthrough in material science is the development of micromechanics to deal
with the mechanical behavior of heterogeneous materials commonly employed for various engineering
applications. While the theoretical approaches provided a solid foundation in structural mechanics, the
resolution of engineering problems was not always achievable using analytical methods especially when
dealing with complex non-linear behaviors. The emergence of the computational era has revolutionized the
field of mechanical engineering, allowing to overcome many restrictive assumptions regarding microstruc-
tures geometrical properties, material behaviors and problems dimension. For instance, the advent of
computational methods including Finite Element Analysis (FEA) has enabled engineers to address het-
erogeneous material problems with more realistic microstructures including architectured materials with
non-linear mechanical behaviors, therefore keeping a full and detailed description of the microstructure
contrary to micromechanical models. However, the high computational costs constitute a major issue
often encountered when using this type of approach particularly for multiscale simulations.

More recently, a new paradigm is attracting the attention of the research community, Data science and
its incorporation in the field of mechanical engineering. The impressive growth of big data and Artificial
Intelligence (AI) algorithms including Machine learning and Deep learning have considerably impacted a
wide spectrum of material science, offering new insights and perspectives for engineers and scientist and
giving more flexibility and freedom in material design. The main concept behind AI based approaches
lies in their fast and powerful predictive capabilities of target mechanical behaviors or properties after
a training phase on materials data sets. Nowadays, Data availability, considered as the primary source
of AI models enrichment, is no longer an obstacle thanks to the recent development of experimental
measurement techniques and current computing capabilities, thus allowing to generate a large quantity
of experimental data or numerical simulations. With the aim of optimizing the mechanical behavior
of complex multi functional structures, a promising alternative to the conventional methods is to fit a
machine learning model using these generated data to explore massive design spaces in a short amount of
time. An additional application scope of such Data driven approaches is the acceleration of computational
methods in solid mechanics. As mentioned previously, multiscale simulations of complex architectured
materials using Finite Element Analysis require expensive computing resources that have a significant
energetic impact. An alternative way to approach this problem is the incorporation of machine learning
algorithms in the numerical solvers. More specifically, the general idea would be to substitute the rather
costly numerical estimations by a surrogate model that provides rich interpolation spaces. By adopting
this strategy, we could envision the possibility of downscaling the computational costs of complex, non-
linear and multiscale simulations during the online phase, once the machine learning model is trained
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with an offline database.

Despite the great success of artificial intelligence-based approaches, it is worth mentioning that these
methods are mostly considered as "black boxes", sometimes lacking any explanation or interpretation of
why a machine made a specific decision or predicted a specific value for a certain quantity of interest. The
reason lies in the fact that a machine learning model is simply a mathematical tool that relies on a set of
data to map any non-linear function after a learning phase. Even if the data comes from physical models,
the algorithm itself does not have any scientific knowledge in its architecture or during the training process.
As the complexity of physical systems increases, the generation of large data sets is required to calibrate
the model, a task that is not always achievable given the high computational costs. Moreover, even if the
issue of generating large databases do not arise, the compatibility of model’s predictions with physical
principles is not always guaranteed since they are purely data-driven. A new promising way to enhance
the robustness of AI based models is to rely on Hybrid approaches by incorporating scientific knowledge
and physical principles in the design of ML algorithms. The main motivation of this hybridization in
mechanics is to benefit from the valuable knowledge in materials science that has been developed over
centuries and which provides a fine description of physical mechanisms in complex materials that can not
easily be captured with regular ML techniques. As shown in Figure 1.1, a hybrid model can be defined
as the combination of a ML technique trained on a set of data resulting from numerical simulations (or
experimental tests) in which physical laws are integrated simultaneously in the core of the AI algorithm
either in the architecture design or during model training process. The development of such hybrid models
can potentially be beneficial for many engineering applications given the reliability of the predictions that
are physically consistent, while at the same time compensating for the lack of model training data.

Figure 1.1: An illustrative diagram of a hybrid model combining an AI based method, a set of computa-
tional training data and physical laws resulting from theoretical frameworks
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The first chapter of this manuscript is devoted to a state of art regarding the use of ML techniques
and Data driven approaches in material science. A general overview of the application of such methods in
mechanics is presented. Several examples and cases of study including constitutive modeling, multiscale
modeling are discussed based on the recent contributions from the material science community in this
research area.

1.2 Machine learning algorithms for engineering science applications

In this section, we review recent developments and scientific achievements in the use of data driven
techniques, including machine learning, in material science. Several topics will be explored in this review
and various practical examples in mechanics will be discussed such as Data-driven constitutive modeling,
Data-driven computational mechanics, Data-driven multiscale homogenization and Hybrid modeling. Be-
fore addressing the aforementioned applications, it is first necessary to properly define a machine learning
algorithm and its associated workflow while solving a given problem. Machine learning is a set of algo-
rithms and statistical methods implemented in computer systems whose objective is to perform specific
tasks without requiring any prior programming. This implies that ML models are only enhanced by past
experiences where the machine draw inferences from patterns in relevant data. This process involves a
learning phase using mathematical optimization methods that adjusts systems parameters to establish
reliable predictive models. Machine learning algorithms training techniques can be divided into four
main categories: Supervised learning, Unsupervised learning, Semi-supervised learning and Reinforcement
learning.

1.2.1 Supervised Learning (SL)

Supervised learning consists on using labeled data to train machine learning models. Each input of
the training database is associated with a label or a ground truth, the objective of the algorithm is to
learn the correspondence between inputs and outputs by solving an optimization problem i.e. minimizing
the error between the predicted values and the target values. The principle of supervised learning is
illustrated in figure 1.2. This learning technique is widely used for solving various ML tasks including
regression and classification problems. For classification, this could be for instance in medical diagnostics,
fraud detection or image recognition. For regression, the are also many applications such as population
growth prediction, market forecasting or materials durability prediction in mechanics.

Figure 1.2: An illustrative diagram of supervised learning
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1.2.2 Unsupervised Learning (UL)

Unsupervised learning handles unlabeled data sets where the main goal is to identify undetected
patterns and trends in the data. Unsupervised learning can be employed for various applications such as
clustering or dimensionality reduction. Cluster analysis is a statistical method that aims on grouping the
data into clusters based on their degree of similarity or shared characteristics. Dimensionality reduction
consists on finding a reduced representation of high dimensional data, it can be applied in the context
of model order reduction using various algorithms such as Proper Orthogonal Decomposition (POD)
[Kerschen et al. 2005] or Proper Generalized Decomposition (PGD) [Chinesta et al. 2014]. Unsupervised
learning can be applied to a variety of tasks such as medical imaging, big data visualization and anomaly
detection using Generative Adversarial Networks (GANs).

Figure 1.3: An illustrative diagram of unsupervised learning

1.2.3 Semi-Supervised Learning (SSL)

Semi-supervised learning is a technique that bridges supervised and unsupervised learning by using a
small portion of labeled data and a high portion of unlabeled data to train predictive machine learning
models. The main concept of this method can be illustrated in figure 1.4, the first step of the semi
supervised learning workflow is to train an initial model using a small subset of labeled data via supervised
methods. The second step is to use the partially trained model to make predictions for the rest of unlabeled
data which constitute the big portion of the database. The third step is where pseudo labels are generated
as predictions of the initial classifier. Afterwards, the small subset of labeled data is merged with the
most confident pseudo labels to create a new labeled database, then a new improved classifier is trained
based on this data with the help of a supervised technique. This process is performed for several iterations
with more confident pseudo labels being added each time until achieving an optimal performance. The
main advantage of semi supervised learning is to overcome the limitations related to the labeling of large
databases which is a resource-intensive and time consuming manual operation.

1.2.4 Reinforcement Learning (RL)

Reinforcement learning is a new paradigm of training ML models where the objective is to learn from
successive experiments through a trial-error process. Typically in reinforcement learning, an "agent" is
interacting with an "environment" to solve a given problem. Contrary to the supervised and unsupervised
learning, RL is an interactive approach where the "agent" explores several solutions while observing the
reaction of its "environment" and trying to adapt its behavior to find the optimal strategy. As shown
in figure 1.5, for each action At in the environment, a reward Rt is attributed to the agent and its state
St is updated based on its previous interaction and exploration. This type of learning is often used for
autonomous cars, and for video game design. A concrete example is AlphaGo, a deep AI from Google
that has defeated Lee Sedol the world champions at the game of Go using reinforcement learning.

The choice of a machine learning model depends mainly on the problem to be solved. For regression
and classification problems, supervised learning is the most appropriate learning technique. As shown in
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Figure 1.4: An illustrative diagram of semi-supervised learning

Figure 1.5: An illustrative diagram of reinforcement learning

the figures 1.6 and 1.7, several SL-based algorithms can be applied for regression, such as Feed Forward
Neural Networks (FFNN), Recurrent Neural Networks (RNN), decision trees, random forest, and Gaus-
sian process regression (GPR). For classification applications, Convolutional Neural Networks (CNN) are
currently the most robust technique for computer vision. Clustering and dimensionality reduction prob-
lems require unsupervised learning algorithms such as K-means, Support Vector Machine (SVM), and
model order reduction methods.
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Figure 1.6: An overview of some machine learning techniques and data driven approaches for solving
regression problems

Figure 1.7: An overview of some machine learning techniques and data driven approaches for solving
classification and clustering problems
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1.3 An overview of using Data driven and Machine learning techniques
in material science

1.3.1 Linear regression

Linear regression models are considered the most basic and elementary predictive machine learning
algorithms. Despite their simplicity in terms of implementation, they can sometimes be effective for solv-
ing specific problems such as identifying relationships between different variables. For instance, medical
scientists often use linear regression models to understand the correlation between drug dosage and blood
pressure of patients. A linear model consists in identifying a linear relationship between a set of data
points X = (Xi)1⩽i≤n and an output Y = (Y i)1⩽i⩽n. For a given data point Xi with d features, the
predicted output Y i

p is expressed as:

Y i
p =

d∑
j=0

ωjx
i
j = W TXi,

where W is the weight column vector.

By defining a loss function L that measures the error between the predicted values Y i and target
values Y i

p , the vector W can be obtained by solving a mathematical optimization problem i,e minimizing
L. The most common loss is the Mean Square Error (MSE):

L =
1

n

n∑
i=1

(
Y i
p − Y i

)2
=

1

n

n∑
i=1

 d∑
j=0

ωjx
i
j − Y i

2

The most encountered issue of regression algorithms is overfitting. This problem occurs when the
model is only performing well on training data but is unable to generalize on unseen data. To overcome
this issue, regularisation can be used to reduce the effect of overfitting by adding a penalty term to
the loss. Two regularized models are commonly used in linear regression, Least Absolute Shrinkage and
Selection Operator (LASSO) [Tibshirani 1996] and Ridge regression [Cortes et al. 2012]:

Least Absolute Shrinkage and Selection Operator (LASSO) regression or L1 regularisa-
tion:

LLasso =
1

n

n∑
i=1

(
Y i
p − Y i

)2
+ λ∥W∥L1 =

1

n

n∑
i=1

(
Y i
p − Y i

)2
+ λ

d∑
j=1

|wj | (1.1)

Ridge regression or L2 regularisation:

LRidge =
1

n

n∑
i=1

(
Y i
p − Y i

)2
+ λ∥W∥L2 =

1

n

n∑
i=1

(
Y i
p − Y i

)2
+ λ

d∑
j=1

w2
j (1.2)

As shown in equations 1.1 and 1.2, Ridge and Lasso regression models constrain the norm of the
vector W by adding a penalty term λ when the coefficients take larger values. By shrinking the weights



Chapter 1. State of the art 15

coefficients, this regularisation techniques can significantly reduce models complexity, multicollinearity
and prevent overfitting.

Linear regression methods are among the first machine learning models used for engineering material
design due to their capabilities of identifying some relationships between different mechanical properties.
For instance, [Doreswamy 2011] applied a regression analysis to predict linear relationships between the
yield strength and tensile strength for a variety of metals and polymers. This study suggests the possibility
of using material databases to fit a simple linear models to determine certain mechanical properties that
are difficult to obtain experimentally. Another study by [Pavlina & Van Tyne 2008] revealed that using
regression analysis, there exists a correlation of yield strength and tensile strength with hardness for a
certain group of steel materials. However, this correlation is linear only for a certain range of yield and
tensile strength values and above a certain threshold these mechanical properties are totally uncorrelated.
The limitations of linear regression models were recently highlighted by [Zhao et al. 2021] for a study
that aims to establish a relationship between chemical composition, aging time, and target mechanical
properties such as hardness of copper alloys. Four machine learning algorithms were tested including linear
regression, Support Vector Regression (SVR), regression trees and Gaussian Process Regression (GPR).
The linear regression was found to be the least accurate compared to other models. This is an expected
result given the complexity of material behavior. Hence, this reinforce the need of robust algorithms
when dealing with complex non-linear material problems. In [Yang et al. 2019], LASSO algorithm has
been compared with several machine learning models such as polynomial regression, random forest and
feed forward neural networks to predict the elastic properties of silicate glasses. This application which
involved dynamics simulation databases to train the aforementioned ML algorithms, showed that neural
networks were the highest in terms of accuracy. LASSO was found to be slightly less precise than the
other models but offered better interpretability and simplicity.

1.3.2 Feed Forward Neural Networks (FFNN)

Feed Forward Neural Networks (FFNN) also called Multi Layer Perceptrons (MLP) are known to be
one of the fundamental architectures of Artificial Neural Networks (ANN) [Bebis & Georgiopoulos 1994].
Artificial Neural Networks are currently at the center of Deep Learning (DL) revolution due to their
powerful capabilities to solve complex and highly non-linear problems. Deep learning represents a branch
of machine learning methods capable of mimicking the actions of the human brain through artificial neural
networks.

Inspired by the structure of biological neurons, ANN are capable of learning and executing tasks with
high levels of abstraction. The major growth of DL methods has led to rapid and significant advances in
many fields including speech recognition, computer vision and automated language processing. Figure 1.8
illustrates the relationship between different branches and disciplines of AI, including machine learning
and deep learning. The first neural network architecture was the perceptron created by Rosenblatt in 1958
[Rosenblatt 1958] for machines supervised tasks. Then, hidden layers have been progressively added to the
architecture to learn complex non-linear relationships between inputs and outputs. The effect of stacking
multiple layers in the ANN architecture led to the development of Deep Neural Networks (DNN). The
most common DNN architectures are FFNN which are introduced in this subsection, Recurrent neural
networks (RNN) for processing sequential data, and convolutional neural networks (CNN) commonly
used for images processing which will be detailed in the next subsection.
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Figure 1.8: An overview of the different branches of AI and its relationship to Machine learning and Deep
learning

Feed forward neural networks are a multiple fully connected layers Neural Networks whose information
flow is propagated only in the forward direction from the inputs to the outputs. Multi Layer Perceptrons
are able to learn the representation in the training data and how to best relate it to the outputs that
needs to be predicted. Mathematically, they are capable of learning any mapping function and identifying
complex non-linear relationships between input and output data sets. MLP have indeed been proven to
be a universal approximation algorithm [Hornik et al. 1989]. Figure 1.9 shows an example of a FFNN
with an input layer of four input parameters, three fully connected hidden layers and an output layer
with three output parameters.

Figure 1.9: An example of a feed forward neural network architecture
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Multi layer perceptrons training procedure is described as follows. MLP maps inputs into the corre-
sponding outputs by tuning model’s parameters. MLP consists of L layers of neurons and for each layer
l = 1, ..., L, a neuron i is linked to every neuron j from the previous layer l − 1 by the weight ωl

ij . As
shown in figure 1.10, the input xli of the neuron i can be expressed using the weighted sum of all outputs
of previous layer al−1

i and the bias bli.

xli =

n∑
j=1

ωl
ija(x

l−1
j ) + bli

The output of the neuron i is defined by a non linear activation function a that governs the threshold
at which the neuron is activated and its contribution for the next layer l+1. Several non linear functions
can be used as activations to solve deep learning problems. Sigmoid, Rectified Linear Unit (ReLU),
SoftPlus, Hyperbolic Tangent (TanH) and Exponential Linear Unit (ELU) are examples of the most
commonly used activation functions:

• Exponential Linear Unit (ELU):

a(x) =

{
α(ex − 1) for x < 0

x for x ⩾ 0

• Rectified Linear Unit (ReLU):

a(x) =

{
0 for x < 0

x for x ⩾ 0

• SoftPlus:

a(x) = ln(1 + ex)

• Hyperbolic Tangent (TanH):

a(x) =
ex − e−x

ex + e−x

• Sigmoid:

a(x) =
1

1 + e−x

Using the activation function a, the output of the neuron i is given by:

ali = a(xli) = a(

n∑
j=1

ωl
ija(x

l−1
j ) + bli)

The same procedure is applied to calculate the outputs of each neurons in the layer l+1 until reaching
the last layer L.
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Figure 1.10: A representation of the forward propagation in a neuron i of a multilayer perceptron

Building a Feed Forward Neural Network requires the definition of model’s hyperparameters which are
among activation functions, optimizers or the number of hidden neurons. Model’s hyperparameters are
the set of parameters that needs to be chosen before the training phase. Thus, the selection of the right
combination is a crucial step since this choice has a direct impact on model’s accuracy. Hyperparameter
optimization [Bergstra et al. 2011] often involves experimentation using methods such as Grid Search or
Random Search.

Grid Search [Bergstra et al. ] consists on evaluating the model for each possible combination of tested
hyperparameters and selecting the set of parameters which provides the most accurate predictions. In
order to avoid overfitting [Caruana et al. 2001], the best parameters are selected based on cross-validation
score [Browne 2000]. By contrast, Random Search [Bergstra & Bengio ] sets up a grid of hyperparameter
values and selects random combinations to train the model. This approach allows to explicitly control the
attempted number of parameter combinations which are set based on time or computational resources.

To measure the neural network’s accuracy, a loss function L needs to be defined. The loss function
estimates the error between predicted values by ANN yp and given output data ytrue. For regression
problems, Mean Squared Error (MSE) or Mean Absolute Error loss functions can be used:

LMSE =
1

N

N∑
k=1

(y(k)p − y
(k)
true)

2

LMAE =
1

N

N∑
k=1

|y(k)p − y
(k)
true|

N is the total number of training data.

For classification problems, cross entropy loss functions are employed. The word entropy has a statis-
tical interpretation as it measures the randomness in processed data, and the cross entropy is a measure of
the difference of randomness between the predictions and the targets. For two-classes classification prob-
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lems, Binary Cross Entropy (BCE) loss function LBCE is commonly used. For multi classes classifications
problems, Multi-Class Cross Entropy (MCCE) loss functions LMCCE are employed.

LBCE = −
N∑
k=1

y
(k)
true log

(
y(k)p

)
+
(
1− y

(k)
true

)
log

(
1− y(k)p

)

LMCCE = −
C∑ N∑

k=1

y
(k)
true log(y

(k)
p )

N is the total number of training data, C is the number of predicted classes.

If the divergence of the predictions from the actual targets increases, the cross-entropy loss increases.
Minimizing the cross-entropy loss functions consists in finding the best model parameters for which the
difference in randomness between the predictions and the targets tends towards zero.

The main objective of Neural Network’s training phase is to calibrate the weights ω and biases b

by solving an optimization problem i.e, minimize the loss function. For this purpose, back-propagation
algorithm [Lecun 2001a] is used. Back-propagation is the essence of Neural Network’s training, this
algorithm is used to train the ANN through a chain rule method by computing the partial derivative
of the loss function with respect to the weights ωij and biases bi. After each forward pass through the
network, backpropagation performs a backward pass while adjusting the model’s parameters by a gradient
descent technique [Ruder 2017]. Gradient descent optimization algorithms compute the gradient of loss
function with respect to the weights and biases and updates them after each Epoch1 k with a learning
rate η,

ω
(k+1)
ij = ω

(k)
ij − η

∂L
∂ωl

ij

, b
(k+1)
ij = b

(k)
ij − η

∂L
∂blij

This learning process is iterated until the minimum of loss function is reached. However, it is very
common that neural networks encounter difficulties during training with traditional descent gradient
techniques. A common problem with these optimization algorithms is that they can bounce around in
the search space of optimization problems that have curvatures and noisy gradients, and they can get stuck
in flat areas of the search space that have no gradient. To overcome this issue, gradient descent techniques
with Adaptative Learning Rates or Momentum are introduced. Momentum is an extension to the gradient
descent optimization algorithm that allows to build inertia in relevant directions of search space and
overcome the oscillations of noisy gradients and coast across flat spots of the search space (figure 1.11).
The most common adaptative learning rates optimization algorithms are RMSProp [Ruder 2017], Adam
[Kingma & Ba 2014], AdaGrad [Duchi et al. 2011] and Nesterov accelerated gradient [Botev et al. 2016].

The use of ANN as surrogates has been proven to be a reliable tool for several applications including
structural analysis, constitutive modeling and multi-scale modeling. The first application of neural net-
works in material science was in 1991 where [Ghaboussi et al. 1991] used a multilayer perceptron to model
the mechanical behavior of concrete under monotonic biaxial loading and compressive uniaxial loading.
[Furukawa & Yagawa 1998] proposed an implicit viscoplastic constitutive model using a neural network

1One Epoch is when the entire training samples are passed forward and backward through the ANN only one time
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Figure 1.11: The effect of adding momentum to gradient descent techniques when trying to reach global
minima [Ruder 2017]

that takes as inputs the current viscoplastic strain, internal variables and current stress, then predict
the current rates of change of the viscoplastic strain and material internal variables. Another extension
of ANN to rate dependant materials modeling has been proposed by [Jung & Ghaboussi 2006]. This
study consists of the implementation of a neural network, trained to capture viscoelasticity, in a finite
element code and then applied to structural analysis of concrete. Using Neural Networks backpropagation
algorithm as a replacement for numerical procedures, [Waszczyszyn & Ziemiański 2001] treated several
problems regarding elastoplasticity such as the bending analysis of elastoplastic beams and detection
of damage in steel beams. [Zhang & Mohr 2020] reformulated the standard return-mapping algorithm
by substituting the non linear procedures (used to compute stress-strain relationships and elastoplastic
tangent matrix) with a feed forward neural network. This method has been employed for the prediction
of Von Mises plasticity with isotropic hardening. In a recent study, [Ali et al. 2019] applied an MLP
architecture to predict stress-strain responses and texture evolution of polycrystalline metals under shear
and tension loading. As shown in figure 1.12, the computation time saving was estimated at 10000 by
adopting this approach. Similarly, [Shen et al. 2020] used an ANN model to predict plastic yield surfaces
for porous materials with different loading states and different porosity coefficients. [Settgast et al. 2019a]
also applied a feed forward neural networks as a constitutive model to describe deformation behavior of
open-cell foams under proportional loading paths, the computational time saving factor was also estimated
at 10000 during this study.

According to recent studies, artificial neural networks have proven to be reliable and effective methods
for engineering material design due to their capabilities to accurately predict target material properties.
For instance, a feed forward neural network has been employed by [Ravinder et al. 2020] to capture the
associated non-linear composition–property relationships of oxide glasses. By training this model on a
large database containing glass compositions, the neural network is able to predict accurately a variety
of mechanical properties including Young’s modulus, hardness and shear modulus. In another study
conducted by [Liu et al. 2020], ANN have been used in a fracture mechanics framework to predict the
toughness of polysilicon materials. The high predictive capability of deep neural networks, even when
trained on small datasets, has been highlighted by [Ouyang et al. 2021] to predict concrete’s strength as
a function of the material mixture proportions. This study showed that ANN are able to quickly and
successfully learn input-output relationships compared to other machine learning algorithms.

A few recent contributions have also demonstrated that deep learning methods can be integrated
into a computational homogenization framework to accelerate multiscale simulations. For example,
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Figure 1.12: Tensile and shear <1 1 1> pole figures comparison between crystal plasticity simulations and
ANN under 10% strain for AA6063 – T6 polycrystal (left figure). Runtime comparison between crystal
plasticity and ANN (right figure) [Ali et al. 2019]

[Le et al. 2015] used a neural network to compute the mechanical behavior of elastic non-linear het-
erogeneous structures under proportional loading paths. The approach involved replacing the strain
energy density of the homogenized material with a response surface predicted by an ANN. The derivation
of this effective potential allowed to obtain the macroscopic constitutive law. As shown in figure 1.13,
this method was applied to compute the mechanical response of a multi-scale composite structure. The
ANN-based approach was compared with a FE2 reference solution. The obtained results showed a very
good correspondence between the two solutions, and the online computational time saving factor was
estimated to be 120.

Another example of substituting the energy density of heterogeneous materials by an ANN-based ap-
proach was studied by [Minh Nguyen-Thanh et al. 2020]. This method was applied to the computational
homogenization of non-linear elastic structures with finite strain. This study demonstrated that the mul-
tilayer perceptron, trained on a database of FFT simulations, showed excellent predictive capabilities
of the macroscopic potentials. This approach was then applied to compute the mechanical behavior of
heterogeneous structures such as multiscale membranes. The comparison between the obtained results
with full field solutions and by ANN based model have revealed good agreements, thus allowing to be
potentially incorporated in a computational homogenization framework. The robustness and reliability
of deep learning methods in computational homogenization was also highlighted in another study con-
ducted by [Lu et al. 2018] to characterize the non-linear electric conduction in random graphene-polymer
nanocomposites. This data driven approach involved using an ANN-based surrogate to construct the
effective electrical constitutive law after a training phase on RVE non-linear electrical conduction simula-
tions. By adopting this approach, the online speed up factor was estimated to be 104, thus significantly
reducing the computational time compared to regular FE2 method. However, it is worth mentioning that
the conducted studies by [Le et al. 2015, Lu et al. 2018, Minh Nguyen-Thanh et al. 2020] were limited to
non-dissipative materials under proportional loading paths, thus leading to a significant simplification of
the problem.
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Figure 1.13: Geometry and boundary conditions of a two-scale heterogeneous composite structure (left
figure). Comparison between the von mises stress obtained by an FE2 reference solution and by an ANN
based approach (right figure) [Le et al. 2015]

1.3.3 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN or ConvNets) are a type of deep neural networks intended
for processing data that has a known grid-like topology such as images, audio files, time series and
signals. For example, an image can be considered as a 2D grid of pixels and a time-series data can be
assimilated as a 1D grid of samples at regular time intervals. The term "convolutional neural network"
refers to the application of a linear mathematical operation called "convolution". By performing this
operation, CNN are able to extract features and find patterns in many types of data and can be applied
for instance in image classification or object detection. In recent years, CNN have been widely used in
various fields, especially in computer vision. The major advances in self-driving vehicles, facial recognition
and robotics are only the consequence of significant progress of artificial intelligence based approaches
including convolutional neural networks.

In material design, CNN ability to capture and extract features from data is an attractive property
that material science can take advantage of. ConvNets are therefore well suited for applications that
have traditionally required human intervention, such as image segmentation. In a study conducted by
[Strohmann et al. 2019], CNN have been used for X-ray tomographic images segmentation of complex
3D Al-Si microstructures. The results of this study demonstrated that the entire operation time for
segmentation using the trained ConvNet was reduced to less than 1% of the time required by human
segmentation without a loss of accuracy. [Bertoldo et al. 2021] have also developed a CNN based model
called modular U-Net for automated segmentation of composites X-ray tomography images. As shown in
figure 1.14, the CNN architecture (modular U-net) is trained to segment 3D X-ray tomography images
of a three-phase glass fiber reinforced Polyamide 66 resulting from synchrotron tests. The achieved
performances by this type of architecture have shown promising results in the adoption of CNN-based
models for automated X-ray tomography segmentation tasks. Furthermore, it has been shown that this
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Figure 1.14: The CNN architecture (Modular U-Net) applied for X-Ray tomography images segmentation
(left figure). Glass fiber reinforced Polyamide 66 tomography and segmentation results by CNN on test
data set, blue represents voxels correctly classified as fiber (hatched), yellow as porosity (contours), and
red represents misclassifications (right figure) [Bertoldo et al. 2021]

approach can be potentially integrated to automate synchrotron X-ray tomography processing workflows.

Although CNN are universally recognized for solving classification problems, they can be also be
employed to solve non linear regression problems where the predicted features are continuous and not
categorical. A concrete example to illustrate this application is a study carried out by [Yang et al. 2018]
to establish the structure-properties relationship of high contrast composite materials using 3D-CNN. As
shown in figure 1.15, a 3D ConvNet, trained on a database of composites RVEs voxels, is applied to cap-
ture non-linear relationship between the microstructure and its homogenized properties. Results from this
study showed that the 3D CNN can outperform a traditional approach by nearly 54% in terms of validation
errors. Another similar study by [Liu et al. 2015] showed the possibility of extracting features from mi-
crostructure by 3D CNN to capture elastic localization relationships in high contrast composite materials.
Other examples of application of ConvNets for the prediction of the effective behavior of heterogeneous
materials are investigated in [Liu et al. 2017, Cecen et al. 2018, Wang et al. 2020, Chen et al. 2020]. 3D
ConvNets have also been used to solve more complex problems in fracture mechanics. In a study con-
ducted by [Pierson et al. 2019], 3D ConvNets were used to predict the microstructure-sensitive evolution
of 3D fatigue crack surface of Al-Mg-Si alloys. By training a 3D CNN on microstructural and microme-
chanical data from uncracked polycrystals and by using some prior knowledge of crack initiation, the
model was able to accurately predict fatigue crack paths.
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Figure 1.15: Database of composites RVEs and 3D CNN architecture to predict the macroscopic effective
stiffness (left figure). Correlation plots between predicted values and target values using 3D CNN and
physics inspired approach (right figure). [Yang et al. 2018]

1.3.4 Decision Trees & Random Forest

A decision tree [Quinlan 1986] is a non-parametric supervised learning technique that consists of
establishing feature-targets relationships using simple decision rules. It has a hierarchical tree structure,
composed of a root node, decision nodes and leaf nodes. The root node is the node at the top of the
tree that start the graph, it contains a feature that best splits the dataset. Decision nodes is where the
variables are evaluated and leaf nodes are the final nodes of the tree that do not have any children and
where the predictions are made. Decision tree learning uses a divide-and-conquer strategy by performing
a greedy search to identify optimal division points in a tree. This splitting process is then repeated from
root to leafs, recursively until each leaf is associated with a class, which is the output of the predictor.
Being one of the most intuitive machine learning algorithms, decision trees can be applied for both
regression and classification tasks due to their capabilities to handle categorical and numerical data. The
main advantage that decision trees offer over black box machine learning algorithms is interpretability, it
creates an easy to digest representation of decision making, allowing to better understand why a decision
was made. Figure 1.16 shows an example of a binary classification problem of red and green dots based
on their coordinates with decision trees. The model starts with a root node and then splits the dataset
recursively using the decision nodes (condition X ≤ Xi or Y ≤ Yi) until reaching pure leaf nodes (classify
red or green), if a data sample satisfies the condition at a decision node then it moves to the left child,
else it moves to the right until it reaches a leaf node where the predicted class is assigned.

The training process of decision trees for classification problems begins with the determination of the
root node that contains the feature that best splits the dataset. This operation is conducted by computing
the associated entropy of each feature using equation 1.3 and then keeping the feature with the lowest
value. Entropy is a measure of impurity and heterogeneity of a node, its value ranges from 0 (pure) and
1 (impure), a leaf node is a pure node with zero entropy.
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E(S) =
C∑
i=1

−pi log2 pi, (1.3)

where C is the total number of classes and pi is the probability of class i.

Afterward, an information Gain (IG) is calculated for every possible split, this metric given by equation
1.4 represents an average of all entropy values based based on a specific split.

IG = E( parent )−
∑

wiE ( child i) (1.4)

where wi is the relative size of a child i with respect to the parent.

The main objective is to determine the best split feature and threshold that maximises the information
gain. The model performs a greedy search, goes through all the input features and their unique values,
computes the information gain for each combination, and records the best feature and the best threshold
for each node. In this way, the tree is built recursively. The recursion process could continue indefinitely,
in that case some exit conditions can be specified such as the maximum depth and minimum samples at
the node.

Figure 1.16: An example of a binary decision tree classifier

Despite the concept simplicity behind decision trees, their use remains rather limited due to some
drawbacks. Decision trees are generally prone to overfitting and highly sensitive to the training data,
which means that small variations within the data can result in a different decision tree, thus they are a
high variance estimators. The idea behind the creation of Random Forest (RF) [Breiman 2001] was to
address the aforementioned challenges. Random forest is a collection of multiple random decision trees
(hence the nomination of random forest) that gathers the predictions of several decision trees and create
a final result using an averaging mechanism (mean values for regression problems and majority vote for
classification problems). The process of combining results from multiple models is called aggregation.
The way random forest handles overfitting and high variance problems better than decision trees is due
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to bootstrapping and random feature selection. These two random processes with aggregating are the
main cause of the name behind "Random forest". Bootstrapping is the operation of taking a random
sample of that data that will be assigned and used for each decision tree. Bootstrapping ensures that
same data are note used for every tree, it helps the model to be less sensitive to the original training data.
Random feature selection consists of choosing a random set of features instead of all input features. The
random feature selection helps to reduce the correlation between the trees, if all the features are used
every time for each tree, this will lead to the same decision nodes and the trees will act very similarly.
Figure 1.17 shows an example of a random forest with n decision tree to solve a binary classification
problem. Each test data point is passed through each tree while saving the associated predictions, then
the predicted class is obtained through majority voting.

Figure 1.17: An illustration of a random forest with n decision trees to solve a binary classification
problem
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Despite the various advantages of using tree-based regressors and classifiers in terms of interpretability
and performance, these methods are still not widely used in the materials science community compared
to black-box machine learning algorithms. Nevertheless, it is noteworthy that decision trees and random
forest have achieved high performances in the applications in which they have been used. For instance,
RF algorithm have been used by [Yang et al. 2019] to predict the elastic properties of silicate glasses.
As shown in figure 1.18, a RF algorithm with 200 decision trees, trained on a silicate glass molecular
composition database, offers a robust interpolation capability for both the training set and the test set
given the obtained values of R2 parameter. Furthermore, the model does not yield to any noticeable
overfitting while being at the same time easy to interpret. Another study conducted by Bulgarevich et Al
in [Bulgarevich et al. 2018, Bulgarevich et al. 2019] showed the great potential of tree-based algorithms
to solve classification problems. In this study, an RF algorithm is trained to automatically label various
steel materials microstructures (Ferrite/Pearlite, Ferrite/Pearlite/Bainite, and Bainite/Martensite type
microstructures) obtained by optical microscopy images. The obtained accuracy by RF was around 99%
which exceed the performances achieved by other ML algorithms including Native Bayes, K-Means, K-
Nearest Neighbors and Logistic Regression. Regression-tree based algorithms have also been applied by
[Liu et al. 2020] to solve fracture mechanics problems. In this study, a random forest based metamodel
was established to measure fracture toughness of pre-notched pentagonal cross-section cantilevers as a
function of specimen geometric dimensions. This study showed that a deep random forest with 512
decision trees of depth equal to 8 gave an average absolute percentage error of nearly 2%.

Figure 1.18: RF training and test accuracy as a function of the number of trees considered in each model
(left figure). Comparison between the Young’s modulus values predicted by RF algorithm and computed
by molecular dynamics simulations (right figure) [Yang et al. 2019]

1.3.5 Hybrid models

In this chapter, we have highlighted the recent massive use of machine learning methods in various
areas of material science and mechanical engineering to investigate complex phenomena. Whether it
is for solving regression problems such as constitutive modeling and multiscale modeling or for solving
classification problems such as image segmentation, these methods have shown great potential and have
considerable advantages over traditional methods. However, all regression-based machine learning algo-
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rithms discussed so far are purely data-driven, meaning that they rely solely on data to approximate
non-linear behaviors after a training phase. As discussed in 1.1, these approaches, considered as black
boxes, do not always guarantee reliable predictions in terms of physical consistency, and their applica-
tion in engineering sciences can therefore be questionable. To overcome these limitations, material science
community has recently become increasingly attractive to the development of hybrid models that integrate
scientific knowledge and physical principles into the design of machine learning algorithms. Therefore,
a hybrid model can be defined as the combination of a ML technique trained on a set of data resulting
from numerical simulations (or experimental tests) in which physical laws are integrated simultaneously
in the core of the AI algorithm either in the architecture design or during model training process.

One of the first developed hybrid approaches is the Data Driven Computational Mechanics (DDCM)
framework proposed by Kirchdoerfer and Ortiz [Kirchdoerfer & Ortiz 2016]. The general concept behind
DDCM is to solve Boundary Value Problems (BVP) by substituting empirical materials constitutive equa-
tions with a database of material data points, derived from experimental tests or numerical simulations,
while ensuring compatibility and equilibrium conditions. This new paradigm allows to directly integrate
material data into numerical computations while bypassing completely material constitutive laws that
require calibration step of material parameters which are often not easily identifiable. The DDCM solver
consists in minimizing the distance function F (see equation 1.5) between two pairs of strain-stress fields
(ε̄, σ̄) and (ε̄′, σ̄′).

F (ε̄,σ) = min
(ε′,σ′)∈D̄

1

2

∫
Ω

((
ε̄− ε̄′

)
: C :

(
ε̄− ε̄′

)
+
(
σ − σ′) : C−1

:
(
σ − σ′)) dΩ (1.5)

(ε̄′, σ̄′) is the pair corresponding to the material response derived from material database D̄ and (ε̄, σ̄)

is the pair that represents the body mechanical state that is constrained by equilibrium and compatibility
conditions. As shown in figure 1.19, the DDCM solver aims to find for each material point of the body
a mechanical state closest to the material dataset that satisfies the above mentioned conservation laws,
this closest point is thus retained as a solution.

Figure 1.19: The difference between traditional computational mechanics (left figure) and Data driven
computational mechanics (right figure)
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In recent years, DDCM-based approaches have begun to attract community interest, providing a new
avenue for solving engineering problems for which large material databases are available. The DDCM
framework was first applied to solve linear elasticity problems [Kirchdoerfer & Ortiz 2016] even in the
case of noisy material datasets [Kirchdoerfer & Ortiz 2017]. This data-driven approach was then ex-
tended to solve more complex problems, including non-linear elasticity [Nguyen & Keip 2018], computa-
tional plasticity [Ibañez et al. 2018], finite strain elasticity [Platzer et al. 2021], dynamics with noisy data
[Kirchdoerfer & Ortiz 2018] and multiscale analysis [Xu et al. 2020].

Recent studies have also attempted to hybridize deep learning methods by incorporating physical
knowledge into the core of neural network architectures. We recall that the success of deep learning
methods lies in the fact that they are universal approximators capable of solving complex and highly
non-linear problems. However, the "universal approximator" property comes at a cost, i.e., neural net-
works models must be deep enough and trained with sufficient data to capture complex behavior. As
the complexity of the physical phenomena increases, the generation of large data sets is required to cal-
ibrate model parameters. This task is not always feasible due to the high computational costs of this
process. Furthermore, even if the issue of generating large databases does not arise, the model’s predic-
tion compatibility with physical principles is not always guaranteed since they are purely data-driven.
Therefore, the main motivation behind hybrid models in mechanics is to take advantage of the valuable
material science knowledge that has been developed over the centuries. This background provides a fine
description of physical mechanisms in complex materials that cannot be easily captured by standard ML
techniques. In this regard, a new kind of DNN based models called Physics Informed Neural Networks
(PINNs) [Raissi et al. 2019] has emerged in recent years for the resolution of non-linear Partial Differen-
tial Equations (PDEs). This new paradigm integrates the underlying physical laws in the form of PDEs
with artificial neural networks to approximate the corresponding solutions. The main difference between
PINNs and standard feed forward neural networks lies in the design of the network architecture and the
definition of loss functions. Figure 1.20 shows a typical PINN framework to solve non-linear PDEs with
Dirichlet boundary conditions.

Figure 1.20: PINNs architecture to solve non-linear PDEs with Dirichlet boundary conditions
[Yuan et al. 2022]
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Considering an n-order partial differential equation given by the following system:

λ
∂nu(x, t)

∂xn
+ f(x, t) = 0

u(0, t) = φ(0, t)

u(x, 0) = g(x, 0)

(1.6)

where u(x, t) is the unknown solution, φ(0, t) is the Dirichlet boundary condition at x = 0 and g(x, 0)

is the initial condition at t = 0.

The DNN part of the PINN architecture takes the position xi and the time ti as inputs and returns
the predicted solution of the PDE upred (xi, ti). Then by using the automatic differentiation algorithm of
FFNN, the partial derivatives of upred (xi, ti) with respect to xi and ti are computed. Theses quantities
will serve to calculate the residuals mean squared errors of PDE MSEu, boundary conditions MSEφ and
initial conditions MSEg. Furthermore, a penalty term MSEr is added to the total loss MSEΣ. This
regularization term is responsible for forcing the predictions to satisfy the governing equation of the BVP.
The expression of the above mentioned loss function is given by:

MSEu =
1

Nu

Nu∑
i=1

(
upred (xi, ti)− uexact (xi, ti))

2

MSEφ =
1

Nφ

Nφ∑
i=1

(upred (0, ti)− φ (0, ti))
2

MSEg =
1

Ng

Ng∑
i=1

(upred (xi, 0; )− g (xi, 0))
2

MSEr =
1

Nu

Nu∑
i=1

(
λ
∂nupred (xi, ti)

∂xn
+ f (xi, ti)

)2

MSEΣ = MSEu +MSEφ +MSEg +MSEr

where Nu,Nφ,Ng are the number of training sampling points of the equation domain, boundary
conditions and initial conditions respectively. uexact (xi, ti), φ (0, ti) and g (xi, 0) are the exact values at
the sampling points for the solution u, Dirichlet boundary conditions and initial condition respectively.

The training process of the PINN model consists in minimizing the loss function MSEΣ which is
penalized by a regularization term that constraint the predictions to satisfy the problem governing equa-
tions.

Successful applications of PINNs models have been highlighted in [Cai et al. 2021] to solve heat trans-
fer equations including convection and multi-physics problems, and in [Cai et al. 2022] to solve fluid me-
chanics problems with a particular focus on Navier Stokes equations. In material science, a new class of
artificial neural networks called Thermodynamic-based Neural Network (TANN) [Masi et al. 2021] has
been recently developed for material points constitutive modeling. This approach, inspired by PINNs
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models that benefit from the automatic differentiation property, allows to encode the thermodynamics
principles in the ANN architecture to obtain consistent predictions with the laws of physics. The general
concept of TANN consists on training a feed forward neural network on two scalar quantities: free energy
potential and the dissipation rate. Then using the automatic differentiation properties in a similar way to
PINNs, the relationship between the free energy and the stress on one hand and the dissipation rate and
the internal variables on the other hand can be computed using the derivation operators. By adopting
such methodology, the model does not require an identification of the underlying thermodynamic laws
during the training process as they are already incorporated in the TANN architecture. TANNs have
been applied to predict the mechanical responses of elastoplastic materials with strain hardening and
strain softening, the preliminary results shows that TANNs can achieve higher accuracy than standard
ANN approaches. The integration of the laws of thermodynamics in the ANN core have significantly
improved the model generalization capabilities, especially for unseen test datasets.

According to recent studies conducted by [Settgast et al. 2019b, Malik et al. 2021], hybrid approaches
have also been extended for multiscale analysis to describe the macroscopic behavior of 3D foam structures
under proportional loading paths. This hybrid scale bridging approach has proven to be more efficient
and reliable for capturing complex inelastic responses of cellular structures compared to the rather costly
traditional methods including FE2. The originality of this approach lies in the fact that the formulation
of the constitutive laws using plasticity frameworks is employed at both the micro and macro scales.
In addition, neural networks are used to approximate the macroscale yield function and flow directions
to obtain a complete formulation of the macroscopic problem. To assess the robustness of this hybrid
approach, several numerical examples on Wheire-Phelan foam structures have been performed and the
obtained results have shown model’s reliability for capturing stress-strain relationships for different loading
cases and the evolution of internal state variables.

1.4 Conclusion

The first chapter of this manuscript was dedicated to a state of art review regarding the use of Data-
Driven and machine learning approaches for material science and engineering applications. Numerous
practical examples of such applications have been highlighted in this chapter, including multiscale analysis,
constitutive modeling, material design and durability. According to the contributions of the mechanics
of materials community in this research area, it has been proven that this type of approach has a great
potential to solve complex engineering problems in a fast and efficient way compared to traditional
methods. The adopted strategy for treating mechanics of materials problems with a machine learning
based technique relies mainly on three necessary steps. First, a well defined research problem (regression,
classification or clustering ?) that cannot be easily addressed with the conventional methods. Then,
a generated database with sufficient samples obtained from computational simulations or experimental
tests. The data can be labeled or unlabeled depending on the adopted training technique. The last step
involves the choice of the most suitable ML algorithm since different training strategies can be considered
depending on the problem to be addressed such as supervised learning technique for regression and
classification problems or unsupervised learning for clustering applications. Special attention has also
been given in this chapter to the use of hybrid approaches combining ML techniques and physics-based
knowledge to enhance the robustness of AI-based methods. This new paradigm allows to take into
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account fundamental physical laws when predicting complex mechanical behaviors. In that sense, the
next chapter of this manuscript aims at proposing a new hybrid physics-AI based model to predict non-
linear mechanical behaviors of dissipative materials.
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2.1 Introduction

The recent development of data-driven approaches to overcome the computational costs limitations is
attracting the interest of the material science community. The use of Artificial Neural Networks (ANN) as
surrogate models has been proven to be a reliable tool for several applications including structural analysis,
constitutive modeling and multi-scale modeling. This is due to fact that ANN are considered to be a
universal approximation algorithms capable of learning any mapping function and identifying complex
non-linear relationships. For a specific class of problems where data is available, the development of
such models can be a promising substitute for traditional numerical methods for multiscale structural
analysis (Finite Element Analysis, FFT methods) which often require important computational costs.
As presented in chapter 1, different ANN models and architectures have been developed to deal with the
challenges of mechanics of materials. The most common one being the Multi Layer Perceptron (MLP)
presented in 1.3.2. The MLP architecture has been used by several authors as a surrogate for constitutive
modeling applications [Furukawa & Yagawa 1998, Waszczyszyn & Ziemiański 2001, Settgast et al. 2019a,
Ali et al. 2019]. However, we would like to point out that these studies have been conducted on a
particular case which is the proportionality of the loading paths, thus leading to a significant simplification
of the problem. According to [Gorji et al. 2020], it has been shown that feed forward neural networks are
not adapted for history-dependant constitutive modeling. Using an MLP as a non linear constitutive law
surrogate for dissipative materials under non-proportional loading paths is very challenging given that
no direct relationship exists between the mechanical state at the current step and at the previous time
step. Thus, the loading history is not taken into account in that case as we recall that the information
flow is propagated only in the forward direction for feed forward neural networks. The above stated issue
can be solved by introducing a specific ANN architecture known as Recurrent Neural Network (RNN)
where the loading history dependency can be taken into consideration. RNN [Jain & Medsker 1999] are
designed to handle temporal sequences using its "memory". Unlike MLP, RNN inputs are not only
related to the inputs at the current time step, but also to the outputs from all the previous steps. This
type of architecture have been extensively applied in tasks such as speech recognition, text generation
or machine translation. For material science applications, RNN based architectures have been recently
employed for constitutive modeling of plasticity and thermo-viscoplasticity, respectively [Gorji et al. 2020,
Abueidda et al. 2021].

While RNN based methods have shown high potential as reliable tools for modeling path dependant
behaviors, we recall that data driven techniques in general including RNN are approximation algorithms
considered as "Black box" that maps inputs data into outputs after a training process. This lack of
physical consistency can present major limitations on model’s reliability when the explicit forms of the
governing physical laws are not taken into consideration while making predictions. Therefore, the use
of "Black box" models for engineering applications can sometimes be questionable when the respect of
physical laws is not guaranteed. To overcome this limitation, the development of hybrid models with a
full use of data and physics can potentially provide reliable results in terms on ANN generalization ability
as well as a physical consistency. For this purpose, a hybrid Thermodynamically Consistent Recurrent
Neural Network (ThC-RNN) is developed by incorporating physics-based loss functions to train a Stacked
Long Short Term Memory (LSTM) network. To the best of our knowledge, only one attempt have been
made by [Daw et al. 2017] for lake temperature modeling with physics guided MLP Neural Networks using
a similar approach to the one presented in this manuscript. Recently, F.Masi et Al [Masi et al. 2021] have
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also developed a Thermodynamic-based ANN (TANN) for constitutive modeling. The main differences
between the two approaches will be discussed in 2.3.3. The main objective of this chapter is to investigate
the effect of combining physical laws and particularly thermodynamics laws with RNN based models for
dissipative materials constitutive modeling.

For that propose, the present chapter is organized as follows: First, the thermodynamic framework
of dissipative materials constitutive modeling is presented in Section 2.2. This framework allows to ex-
press properly the governing physical laws that need to be incorporated with AI based models. Next,
a brief recall of the thermodynamic foundations of two constitutive laws is given for the Elastoplasticity
with isotropic hardening and Chaboche plasticity model with an isotropic hardening and two non-linear
kinematic hardening [Lemaitre & Chaboche 1990]. In Section 2.3, the basic principle of RNN is briefly
recalled and selection procedure of the suitable RNN architecture for each constitutive law is presented.
The essence of RNN model’s training procedure which is the Back Propagation Through Time (BPTT) is
explained along with the methodology of introducing physics based laws during model’s training phase.
Section 2.4 shows a comparison between the predicted mechanical behavior with a standard RNN model
and ThC-RNN to highlight the effect of the thermodynamic consistency on models accuracy. The ap-
plication of ThC-RNN model in a Finite Element analysis framework to simulate structures in real-life
conditions is also presented. Finally, some concluding remarks are given in Section 2.5.

2.2 Thermodynamic formulation of constitutive laws for dissipative ma-
terials

The present section is dedicated to briefly recall the thermodynamic foundations of constitutive mod-
eling. All the following constitutive models are based on the thermodynamics of irreversible processes
with the formalism described in [Maugin 1999] by Maugin. The necessary equations resulting from this
formalism will be presented with the notations used in chapter 2 monograph of Chatzigeorgiou et al
[Chatzigeorgiou et al. 2018]. The thermodynamic quantities used in this chapter are:

- γloc : the local generated entropy or the intrinsic dissipation in the material.
γloc is given by equation 2.1 (first principle of thermodynamics) and must satisfy the inequality 2.2

as a result of the application of the second law of thermodynamics:

γloc = σ : ε̇+ θη̇ − Ė, (2.1)

γloc ≥ 0. (2.2)

- σ : the second order Cauchy stress tensor.
- ε̇ : the second order strain tensor rate.
- E : the internal energy per unit of volume.
- θ : the absolute temperature.
- η : the entropy per unit of volume.
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Using a free energy potential, γloc can be expressed by equation 2.3:

γloc = −∂Ψ

∂ζ
: ζ̇, γloc ≥ 0. (2.3)

- Ψ : Helmholtz free energy potential.
- ζ : the set internal state variables.
Helmholtz free energy potential can be split into a recoverable and a irrecoverable part as expressed

in equation 2.4, as proposed in [Chatzigeorgiou et al. 2018].

Ψ(ε, θ, ζ) = Ψr(ε, θ, ζ) + Ψir(θ, ζ). (2.4)

- Ψr : the part of the internal energy that can be restored during a thermomechanical loading path
even if it is followed by a change in the state variables.

- Ψir : the part of the internal energy which permanently changes with the internal variables ζ.

According to the decomposition given by equation 2.4, the stress and strain tensors are only defined
from the recoverable part of Ψ.

σ =
∂Ψr

∂ε
. (2.5)

The intrinsic dissipation γloc is defined from both parts using equations 2.3 and 2.4.

γloc = −∂Ψr

∂ζ
: ζ̇ − ∂Ψir

∂ζ
: ζ̇. (2.6)

The total mechanical power Ẇm can be decomposed into 3 terms as expressed in equation 2.7:

Ẇm = Ẇr
m + Ẇir

m + Ẇd
m. (2.7)

- Ẇr
m : the recoverable part of the total mechanical power.

Ẇr
m = σ : ε̇+

∂Ψr

∂ζ
: ζ̇. (2.8)

- Ẇir
m : the irrecoverable part of the total mechanical power.

Ẇir
m =

∂Ψir

∂ζ
: ζ̇. (2.9)

- Ẇd
m : the dissipative part of the total mechanical power.

Ẇd
m = γloc = −∂Ψr

∂ζ
: ζ̇ − ∂Ψir

∂ζ
: ζ̇. (2.10)

- Ẇm : the total mechanical power.

Ẇm = σ : ε̇. (2.11)
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Once the thermodynamic framework of material constitutive modeling is established and the mechan-
ical and energetic quantities are expressed as a function of free energy potentials, the methodology is
applied to formulate the associated constitutive law of dissipative materials. Two examples are presented
in the following subsections, the Elastoplasticity with isotropic hardening and Chaboche plasticity model
with combined isotropic hardening and two non-linear kinematic hardening.

2.2.1 Elastoplasticity with isotropic hardening

Under small deformations assumptions, the total strain ε for elastoplastic material under pure me-
chanical loading is additively decomposed into an elastic term εe and a plastic term εp.

ε = εe + εp. (2.12)

The associated Helmholtz free energy potential of an elastoplastic material with isotropic hardening
can be split into a recoverable part Ψr and an irrecoverable part Ψir. Ψr depends on the total strain ε and
the plastic strain εp. Ψir is expressed in terms of an internal variable p corresponding to the accumulated
plastic strain.

Ψ(ε, εp, p) = Ψr (ε, εp) + Ψir(p), (2.13)

Ψr (ε, εp) =
1

2
[ε− εp] : L : [ε− εp] , (2.14)

Ψir(p) = f(p). (2.15)

L is the elastic stifness tensor and f(p) is the elastoplastic hardening function.

Using equations 2.5 and 2.6, the associated constitutive equation and the intrinsic dissipation are
given by the following expressions:

σ = L : [ε− εp] , (2.16)

γloc = −∂Ψr

∂εp
: ε̇p − ∂Ψir

∂p
ṗ = σ : ε̇p − fpṗ, (2.17)

where fp = ∂f/∂p.

For Von Mises type material with exponential isotropic hardening, the yield surface is given by:

Φ = σvM − fp − σY = σvM −Hpn − σY , (2.18)

H and n are the hardening parameter and exponent respectively. σY is the yield stress limit and σvM

is the Von Mises equivalent stress.

σvM =

√
3

2
σdev : σdev, σdev = σ − 1

3
trσI. (2.19)
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Using the convex analysis for generalized standard materials [Halphen & Nguyen 1975], the evolution
of the plastic strain using the flow rule is given by the following set of equations:

ε̇p = ṗΛ, Λ =
∂Φ

∂σ
=

3

2

σdev

σvM
. (2.20)

The Kuhn-Tucker conditions define the non-linear problem to be solved:

Φ ≤ 0, ṗ ≥ 0, Φṗ = 0. (2.21)

The corresponding mechanical powers for elastoplastic materials with an exponential isotropic hard-
ening can be expressed using the definitions given in equations 2.8,2.9 and 2.10:

Ẇr
m = σ : ε̇+

∂Ψr

∂εp
: ε̇p = σ : [ε̇− ε̇p] , (2.22)

Ẇir
m =

∂Ψir

∂p
ṗ = Hpnṗ, (2.23)

Ẇd
m = −∂Ψr

∂εp
: ε̇p − ∂Ψir

∂p
ṗ = σ : ε̇p −Hpnṗ, (2.24)

2.2.2 Chaboche plasticity model with a combined isotropic hardening and two non-
linear kinematic hardening

The present Chaboche plasticity model is a constitutive law combining an isotropic and two non-linear
kinematic hardening. This superposition results in a translation and an expansion of material elastic
domain. Ψr depends on the total strain ε, the plastic strain εp and the second order tensors a1 and a2

related to the kinematic hardening. Ψir is expressed in terms of the internal variable p corresponding to
the accumulated plastic strain.

Ψ(ε, εp,a1,a2, p) = Ψr (ε, εp,a1,a2) + Ψir(p), (2.25)

Ψr (ε, εp,a1,a2) =
1

2
[ε− εp] : L : [ε− εp]

+
1

3
C1a1 : a1 +

1

3
C2a2 : a2,

(2.26)

Ψir(p) = H(p). (2.27)

The back stress tensors X1 and X2 are related to a1 and a2 by the following expression:

X1 =
2

3
C1a1 , X2 =

2

3
C2a2, (2.28)

X = X1 +X2. (2.29)

The evolution equations of the kinematic variables X1 and X2 depends on the accumulated plastic
strain p:
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Ẋ1 =
2

3
C1ε̇

p −D1X1ṗ, (2.30)

Ẋ2 =
2

3
C2ε̇

p −D2X1ṗ. (2.31)

C1,D1,C2,D2 are material parameters related with kinematic hardening, the terms D1X1ṗ and D2X1ṗ

correspond to the material softening effect.

The evolution of the isotropic hardening function H(p) as a function of the accumulated plastic strain
p is given by the following equation:

Ḣ = b(Q−H)ṗ. (2.32)

The parameter Q is defined as the asymptotic value of the elastic limit and b is a parameter related
to the rate of evolution of the elastic limit.

Using equations 2.5 and 2.6, the associated constitutive equation and the intrinsic dissipation are
given by the following expressions:

σ = L : [ε− εp] , (2.33)

γloc = −∂Ψr

∂εp
: ε̇p − ∂Ψr

∂a1
: ȧ1 −

∂Ψr

∂a2
: ȧ2 −

∂Ψir

∂p
ṗ

γloc = σ : ε̇p −X1 : ȧ1 −X2 : ȧ2 −
∂H

∂p
ṗ.

(2.34)

For combined isotropic and kinematic hardening, the yield surface is given by the form:

Φ = J(σ −X)−Hp − σY , (2.35)

where

J(σ −X) =

√
3

2
[σ −X]′ : [σ −X]′

[σ −X]′ = σ −X − 1

3
tr(σ −X)I

Hp = ∂H/∂p = b(Q−H).

Using the convex analysis for generalized standard materials, the evolution of the plastic strain for a
material obeying Von Mises criterion is given by the following set of equations:

ε̇p = ṗΛ, Λ =
3[σ −X]′

2J(σ −X)
. (2.36)

The Kuhn-Tucker conditions define the non-linear problem to be solved:

Φ ≤ 0, ṗ ≥ 0, Φṗ = 0. (2.37)
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The corresponding work rates for Chaboche plasticity model can be expressed using the definitions
given in equations 2.8,2.9 and 2.10:

Ẇr
m = σ :

[
ε̇− ε̇P

]
+X1 : ȧ1 +X2 : ȧ2, (2.38)

Ẇir
m =

∂H

∂p
ṗ, (2.39)

Ẇd
m = σ : ε̇p −X1 : ȧ1 −X2 : ȧ2 −

∂H

∂p
ṗ. (2.40)

2.3 Thermodynamically Consistent Recurrent Neural Networks (ThC-
RNN)

2.3.1 Neural Network architecture selection

As discussed in the introduction, the MLP neural network architecture is not suitable to treat history
dependant behaviors given that no direct relationship exists between the network inputs at a current time
step and its outputs from the previous time steps. To overcome this challenge, the RNN architecture
is introduced as a reliable model capable of handling this history dependency. Figure 2.1 represents
an illustration of the RNN architecture. The set of variables (xt, yt, ht) are inputs, outputs and hidden
state vectors at the time step t respectively. (Wx,Wy,Wh) are the weight matrix related to each of the
variables. As shown in figure 2.1, the computation of the output vector yt at the time step t requires
both variables xt the input vector at the current step t and ht−1 the hidden state at the previous time
step t− 1. The hidden state variable h plays a major role by taking into account the history dependency
as it allows the network to carry the information from previous time steps onto future predictions. For
path dependant plasticity, we would like that h contains some information about the current plastic state
of the material, in the same way internal variables like accumulated plastic strains or back-stress tensors,
does in classical elastoplastic constitutive laws.

Figure 2.1: Recurrent Neural Network basic architecture
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The training process of RNN is based on Backpropagation Through Time (BPTT) [Werbos 1990]
algorithm. When dealing with long sequences inputs, RNN training may suffer from a common phe-
nomenon known as vanishing and exploding gradients. To solve this problem, Long Short Term Memory
(LSTM) Neural Network has been introduced in [Hochreiter & Schmidhuber 1997]. LSTM architecture
has been proven to be a successful formulation of RNN as it is based on a gating mechanism, allowing
the network to control the flow of information within its gates. As shown in figure 2.2, a basic LSTM cell
consist on four main gates, an input gate (to update and add new information), a forget gate (to decide
which information is kept or forgotten from the previous accumulated information), a memory gate (to
provide the network with a Long term memory of past events) and an output gate (to predict the next
hidden state). At each time step, the information flow is regulated into and out of the LSTM cell using
the four gates.

The input vector to the LSTM unit at the time step t is xt ∈ Rd and the output vector is ht ∈ Rh

where the superscripts d and h refer to the dimension of inputs and outputs features respectively. The
LSTM unit is composed of a memory cell state ct ∈ Rh, an input gate it ∈ Rh, an output gate ot ∈ Rh,
a forget gate ft ∈ Rh and a memory cell candidate c̃t. The compact forms of LSTM gates are given by
the following expressions :

ft = σ̃(Wfxt + Ufht−1 + bf ), (2.41)

it = σ̃(Wixt + Uiht−1 + bi), (2.42)

ot = σ̃(Woxt + Uoht−1 + bo), (2.43)

c̃t = tanh(Wcxt + Ucht−1 + bc), (2.44)

ct = ft ⊙ ct−1 + it ⊙ c̃t. (2.45)

The operator ⊙ denotes the element-wise product, σ̃ is the sigmoid function and tanh is the hyperbolic
tangent function.

σ̃(x) =
1

1 + e−x
,

tanh(x) =
ex − e−x

ex + e−x
.

Wf , Wi, Wo, Wc, Uf , Ui, Uo and Uc are weight matrix, bf , bi, bo, bc are bias vector parameters. W ∈
Rh×d, U ∈ Rh×h and b ∈ Rh are the set of parameters which needs to be learned during backpropagation
process. The output vector from the LSTM cell can finally be expressed using the following expression:

ht = ot ⊙ tanh(ct) (2.46)

where the initial values are c0 = 0 and h0 = 0.
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Figure 2.2: Architecture of a Basic LSTM Neural Network unrolled through time

In this study, a stacked LSTM architecture has been used instead of a model with a single LSTM
cell. Adding multiple LSTM cells increase the depth of the network, thus enhancing its capabilities to
capture more complex behaviors. We recall that the success of deep learning techniques is commonly
attributed to the hierarchy that exists between its layers, where each layer performs a specific part of
the task and passes it on to the next. Therefore, increasing the depth of the neural network appears to
be important when dealing with complex non-linear problems. The selection of the suitable model has
been also justified by conducting an hyperparameter study by comparing the predictive capabilities of a
single cell and two cells LSTM models respectively. The obtained results in this hyperparameter analysis
will be presented later in 2.4.1.1. Figure 2.3 represents an example of a Stacked LSTM architecture.
The model is composed of two LSTM cells, LSTM1 and LSTM2, as well as a Dense layer for outputs
predictions. Each LSTM layer gate is governed by the equations summarized in Table 2.1. W i, U i and
bi, i ∈ [1, 2] denotes LSTM1 and LSTM2 gates weight matrix and bias vectors respectively. WD and bD

are the corresponding weight matrix and bias for the Dense layer.

Figure 2.3: Architecture of a Stacked LSTM Neural Network with two LSTM cells unrolled through time
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Table 2.1: Governing Equations in the Stacked LSTM Neural Network

Stacked LSTM1 Layer LSTM2 Layer Dense Layer
LSTM Layers

Input Xt h1t h2t

Equations

f1
t = σ̃

(
W 1

fXt + U1
fh

1
t−1 + b1f

)
i1t = σ̃

(
W 1

i Xt + U1
i h

1
t−1 + b1i

)
o1t = σ̃

(
W 1

oXt + U1
oh

1
t−1 + b1o

)
c̃1t = tanh

(
W 1

c Xt + U1
c h

1
t−1 + b1c

)
c1t = f1

t ⊙ c1t−1 + i1t ⊙ c̃1t

h1t = o1t ⊙ tanh
(
c1t
)

f2
t = σ̃

(
W 2

f h
1
t + U2

fh
2
t−1 + b2f

)
i2t = σ̃

(
W 2

i h
1
t + U2

i h
2
t−1 + b2i

)
o2t = σ̃

(
W 2

o h
1
t + U2

oh
2
t−1 + b2o

)
c̃2t = tanh

(
W 2

c h
1
t + U2

c h
2
t−1 + b2c

)
c2t = f2

t ⊙ c2t−1 + i2t ⊙ c̃2t

h2t = o2t ⊙ tanh
(
c2t
)

Yt =

tanh
(
WDh2t + bD

)

2.3.2 Constitutive modeling of dissipative materials using RNN

Figure 2.4: Stacked LSTM Neural Network archi-
tecture to predict Elastoplastic with isotropic hard-
ening constitutive model

Figure 2.5: Stacked LSTM Neural Network archi-
tecture to predict Chaboche constitutive model

A Stacked LSTM Neural Network has been developed for dissipative materials path dependant plas-
ticity modeling. The model have been tested on the two studied cases of constitutive laws: Elastoplasticity
with isotropic hardening and Chaboche plasticity model with combined isotropic hardening and two non-
linear kinematic hardening. Figures 2.4 and 2.5 represents the Stacked LSTM architecture corresponding
to each material constitutive equation. For both models, the input parameters in each time step t are
the incremental strain tensor components Xt = (¯̄εt). At each time step t, the output Yt is given by the
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set of variables Yt = (¯̄σt, ζt, Ct) which includes the stress tensor components ¯̄σt, the internal variables
of each constitutive law ζt and the fourth order tangent operator Ct. For the Elastoplastic with isotropic
hardening constitutive equation, ζt contains the accumulated plastic strain pt and plastic strain tensor
components ¯̄εpt , thus ζt = (¯̄εpt , pt). For the Chaboche plasticity model, in addition to pt and ¯̄εpt , the set of
internal variables ζt depends on the second order tensors (¯̄a1t , ¯̄a2t ) related to the kinematic hardening and
Hp

t the derivative of the hardening function with respect to p, therefore ζt = (¯̄a1t , ¯̄a
2
t , ¯̄ε

p
t , H

p
t , pt).

2.3.3 Thermodynamically Consistent RNN training

The training process of RNN is based on Back Propagation Through Time (BPTT) technique which
is the application of the back propagation algorithm [Lecun 2001b] to time sequences. Back propagation
technique is applied to train the ANN through a chain rule method by computing the partial derivative
of a loss function with respect to model’s parameters (weights and bias). After each forward pass through
the network, back propagation performs a backward pass while adjusting the weights and bias by gradient
descent technique. As shown in Figure 2.6, BPTT algorithm for a classical RNN consists on updating
model’s parameters (Wx,Wh,Wy).

Figure 2.6: Back propagation through time of an RNN architecture

To measure the RNN predictive capabilities, a loss function L is introduced. For each time step t, a
loss Lt is defined as the error between the RNN predicted values yp and true output data ytrue. For the
studied problem, the Mean Squared Error (MSE) loss function is used:

Lt =
1

N

N∑(
y
(p)
t − y

(true)
t

)2
, (2.47)

where N is the total number of training data.
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The total Loss function L of the entire network can be defined as the sum of each time step Loss Lt.

L =
∑

Lt. (2.48)

Gradient descent technique consists on computing loss function gradients with respects to RNN trained
parameters (Wx,Wh,Wy) and updates it after each Epoch k with a learning rate η by the following
expression:

W
(k+1)
ij = W

(k)
ij − η

∂L
∂Wij

. (2.49)

From figure 2.6, the expression of the hidden state ht and the output yt for a standard RNN without
taking into account the bias b is given by:

ht = σ̃(Wxxt +Whht−1), (2.50)

yt = tanh(Wyht). (2.51)

The computation of the partial derivatives ( ∂Lt
∂Wy

, ∂Lt
∂Wh

, ∂Lt
∂Wx

) required for the application of the gradient
descent technique:

• Computation of ∂Lt
∂Wy

:

∂Lt

∂Wy
=

∂Lt

∂yt

∂yt
∂Wy

,

∂Lt

∂Wy
= (y

(p)
t − y

(true)
t )× (1− tanh2(Wyht)).

• Computation of ∂Lt
∂Wh

:

∂Lt

∂Wh
=

∂Lt

∂yt

∂yt
∂ht

∂ht
∂Wh

.

The computation of ∂ht
∂Wh

requires a special focus as the hidden state ht depends on both Wh and ht−1,
and the computation of the previous hidden state ht−1 also depends on Wh. Thus the parameter Wh is
shared across all the previous time steps. Thus, the computation of ∂ht

∂Wh
using the chain rule yields to

the following recursive expression:

∂ht
∂Wh

=
∂σ̃(Wxxt +Whht−1)

∂Wh
+

∂σ̃(Wxxt +Whht−1)

∂ht−1

∂ht−1

∂Wh
.

For the sake of simplicity, we set the following variables (at,bt,ct) where:

at =
∂ht
∂Wh

,

bt =
∂σ̃(Wxxt +Whht−1)

∂Wh
,

ct =
∂σ̃(Wxxt +Whht−1)

∂ht−1
.
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The gradient computation satisfy the following recursive equation:

at = bt + ctat−1.

The simplification of this recursive equation leads to the final expression of at:

at = bt +
t−1∑
i=1

 t∏
j=i+1

cj

 bi.

Thus, ∂ht
∂Wh

is expressed as follows:

∂ht
∂Wh

=
∂σ̃(Wxxt +Whht−1)

∂Wh
+

t−1∑
i=1

 t∏
j=i+1

∂σ̃(Wxxj +Whhj−1)

∂hj−1

 ∂σ̃(Wxxi +Whhi−1)

∂Wh
.

• Computation of ∂Lt
∂Wx

:

∂Lt

∂Wx
=

∂Lt

∂yt

∂yt
∂ht

∂ht
∂Wx

.

The same above methodology is adopted to compute the term ∂ht
∂Wx

:

∂ht
∂Wx

=
∂σ̃(Wxxt +Whht−1)

∂Wx
+

t−1∑
i=1

 t∏
j=i+1

∂σ̃(Wxxj +Whhj−1)

∂hj−1

 ∂σ̃(Wxxi +Whhi−1)

∂Wx
.

For the LSTM models or Stacked LSTM, the same reasoning behind BPPT workflow can be applied.
The minimization of the loss function by gradient descent technique is based on the computation of the
partial derivatives of the loss w.r.t the weights and bias associated to each cell gate.

Regarding the training process of RNN based models using BPPT, we would like to point out that
the minimization of only an objective function such as MSE (See Eq 2.47) does not necessarily ensure
predictions that are consistent with the knowledge of physical laws. In this study, a new physics-based
loss function Lφ

t is proposed to ensure model’s thermodynamic consistency for each time step t. Lφ
t is

defined as follows :

Lφ
t =

1

N

N∑
(y

(p)
t − y

(true)
t )2 + λReLU(−γloc), (2.52)

where γloc is the intrinsic dissipation at each time step t.
For Elastoplastic with isotropic hardening constitutive model, we recall that:
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γloc = σ : ε̇p −Hpnṗ.

For Chaboche plasticity with combined isotropic and two non-linear kinematic hardening model:

γloc = σ : ε̇p −X1 : ȧ1 −X2 : ȧ2 −
∂H

∂p
ṗ.

The function ReLU is the Rectified Linear Unit defined as follows :

ReLU(x) =
{

0 for x < 0

x for x ⩾ 0

The total loss function Lφ of the model is defined as the sum of Lφ
t over all the time steps,

Lφ =
∑

Lφ
t . (2.53)

It can be seen from equation 2.52, that Lφ
t can be split into two terms : The first term 1

N

∑N (y
(p)
t −

y
(true)
t )2 is the common MSE that measures the mean quadratic error between the predicted values and

true values. The second term is where the thermodynamic consistency is taken into account during
ANN training phase. λReLU(−γloc) is a physical based term that penalize the loss when the dissipative
mechanical work rate has negative value, it can be seen as a physical part that constraint the model to
respect the second principle of thermodynamics during the training phase for all the time steps. λ is an
hyperparameter that controls the degree of regularization in the model. The effect of the physical term
during training can be summarized as follows :

• if γloc > 0 then ReLU(−γloc) = 0 (No penalty on the Loss function).

• if γloc < 0 then ReLU(−γloc) = −γloc (Add a penalty term to constraint the loss when a physical
inconsistency is occuring).

RNN seems very suited for independent time sequences of data, such as non-proportional loadings.
As discussed in the introduction, F.Masi et al [Masi et al. 2021] have also developed a Thermodynamic-
based ANN (TANN) for constitutive modeling. The main differences between the two approaches is
related to the choice of the neural network architecture and to the training strategy. F.Masi et al used
an MLP architecture and proceeded to the training of TANN by the minimization of the thermodynamic
quantities (e.g, free energy potential) which they used its derivatives afterwards to compute the stress
tensor components. In our approach, the main quantity of interest (for numerical simulation of structures)
is the prediction of the mechanical fields. The thermodynamic consistency is introduced as a regularization
term to ensure that the dissipated mechanical power predicted by the RNN is always positive.
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2.4 Results and discussion

2.4.1 Comparison between a Standard Stacked LSTM and ThC-RNN model for
constitutive modeling for Elastoplasticity with isotropic hardening

The following subsection is dedicated to the comparison between ThC-RNN model and a Standard
Stacked LSTM model to assess the effect of incorporating a thermodynamic consistency on model’s
reliability. The two models share the same ANN architecture as described in figure 2.4 but differs in
terms of the adopted training process. The Standard Stacked LSTM is trained by minimizing the MSE
defined in equation 2.48 and ThC-RNN is trained using Lφ loss function expressed in equation 2.52 and
2.53. The models are tested for a case of a material obeying an Elastoplastic with isotropic hardening
constitutive law. The tested material is a titanium alloy Ti-6Al-4V modeled using a power law hardening.
The corresponding mechanical properties are given in Table 2.2.

Table 2.2: Mechanical properties of titanium alloy Ti-6Al-4V

Material parameter Value
Young’s modulus E 113800 MPa
Poisson’s ratio ν 0.34
Yield Stress σY 1000 MPa
Hardening parameter H 1600 Mpa
Plastic hardening exponent n 0.5

Afterward, the database D preparation strategy is described as follows: 10000 multi-axial; non pro-
portional loading path samples are generated using an open source software in mechanics and materials
Simcoon [Prulière & Chemisky 2022]. The input parameters are the in-plane strain tensor components
¯̄εt = (εt11, ε

t
22, ε

t
12) evolving incrementally through 300 time steps. To generate non-proportional loading

paths, the loading is divided into 3 blocks of 100 time steps. Each block correspond to a linear pro-
portional loading path where the final value of each strain tensor component is chosen randomly from
the interval [−0, 05, 0.05]. Figure 2.7 shows some examples of loading paths used as training data. The
generated samples are then split into training T , validation V and test T data sets. Training data
(90% of total samples) are used during model’s learning process. Then, to verify the training procedure
accuracy, a subset (20%) is chosen randomly from training data after each learning iteration and used as
a validation data. Finally, test data set (10%) are the unseen samples during the training process, the
model’s predictive and generalization capabilities are evaluated on this set of data.

In addition, special attention was paid to the distribution of the database to ensure that the plastic
strains are much larger than the elastic strain for all the training samples, this is necessary to investigate
the model approximation quality of material non-linear behavior. As shown in the histograms of figure
2.8, the computed stresses are induced on average by plastic strains during 200 time steps and by elastic
strains during only 100 time steps for a loading of 300 time steps.
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Figure 2.7: Examples of multi-axial and non proportional loadings paths samples used as training data

Figure 2.8: Histograms of elastic and inelastic strain components repartition on the database

2.4.1.1 Prediction of material mechanical response using a Standard Stacked LSTM

Once the database generation has been achieved, we proceeded to the training process of the model
with only Mean Squared Error as a loss function. The model implementation is performed in Python
with the help of Keras library [Chollet et al. 2015] and Google’s Tensorflow API [Abadi et al. 2015].
Six configurations of LSTM architectures have been tested by varying two hyperparameters : first the
activation function of the output dense layer and then the number of LSTM layers in the network, the
main objective is to fix these two hyperparameters to obtain the most reliable model. Figure 2.9 shows
the evolution of the metric Normalized Mean Squared Error (NMSE) for both training and validation
data sets for all the six tested architectures. According to figure 2.9 and table 2.3, it has been found that
an architecture with two LSTM layers (Stacked LSTM) and an hyperbolic tangent activation function in
the output dense layer (Config 6) is the most reliable one as the training and validation errors are the
lowest compared to the others configurations. Furthermore, it can be seen that Config 6 learning process
can be achieved rapidly, as an exponential decrease of the errors is observed during the first epochs.
This decrease was followed by a loss value stabilization after nearly 100 epochs. Finally, the obtained
NMSE on the last epoch is under 1% for the training error and around 2, 2% for the validation error.
This disparity in error values shows that the Standard Stacked LSTM model is potentially suffering from
the overfitting problem, but without having a very large effect on model’s performance since the NMSE
values are relatively low.
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Figure 2.9: Evolution of training (left figure) and validation errors (right figure) as a function of Epochs
during Stacked LSTM training for the tested LSTM configurations

Table 2.3: Evaluation of LSTM configurations training and validation performances

LSTM Number of hidden Output layer Training Validation loss
Configuration LSTM layers activation function loss NMSE (%) NMSE (%)

Config 1 1 ReLU 10.20 % 10.38 %
Config 2 2 ReLU 4.13 % 4.29 %
Config 3 1 Sigmoid 8.19 % 8.36 %
Config 4 2 Sigmoid 3.21 % 3.35 %
Config 5 1 Hyperbolic tangent 6.17 % 6.43 %
Config 6 2 Hyperbolic tangent 0.41 % 2.2 %

To assess the generalization and predictive capabilities of the Standard Stacked LSTM after the
training phase, the model is evaluated on new multi-axial and non proportional loading paths (test data
set) to predict the resulting mechanical response. Figure 2.10 shows a comparison between model’s
predicted stress-strain responses and the target values obtained via Simcoon simulations. At first sight,
it can be observed that the general trend of the stress components is well captured by the Stacked LSTM
despite the complexity of the loading conditions. Note that this performance could not be achieved with
basic LSTM model with a single cell, which justify the need of stacking LSTM cells for reliable predictions.
The quantification of model’s global predictive quality can be demonstrated with the use of the correlation
plots shown in figure 2.10 where the coefficient of determination R2 is very close to 1 for all the predicted
responses. Furthermore, the model is also able to predict the change in stress-strain response from the
elastic to the plastic domain. This first results proves the potential of RNN as a surrogate model capable
of modeling history dependant mechanical behaviors, giving the possibility to potentially substitute time
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integration schemes of systems of Partial Derivative Equations (PDE) with an AI based model.

Figure 2.10: Prediction of Stress-Strain responses with a Standard Stacked LSTM model on test data set
& Correlation plots between model’s predicted values and target values

However, even if the coefficient of determination R2 is close to 1 regarding the mechanical responses,
we recall that this coefficient only provide a global estimation on model’s reliability as it includes all the
contributions from all the predicted values with respect to target values (See Equation 2.54).

R2 = 1−
∑N

k=1(y
(k)
true − y

(k)
p )2∑N

k=1(y
(k)
true − ȳtrue)2

, (2.54)

- y(k)
true : True values of test data set

- ȳtrue : Mean value of ytrue
- y(k)

p : Predicted values by the ANN
- N : Number of time steps

Thus, it might seem more interesting to investigate model’s accuracy when it comes to local behaviors
at specific increments. As shown in figure 2.10, a presence of small noise during the transition from the
elastic domain to the plastic domain can be observed from most configurations on test data set, these
oscillations after direction change can have a negative impact regarding the convergence of numerical
simulations. Furthermore, we noticed that the prediction of the shear stress components σ12 were not
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accurate compared to the normal stress components in certain time steps, but still follows the general
trend of the response.

The verification of model’s thermodynamic consistency is highlighted by predicting the various me-
chanical work rates regarding the Elastoplastic with isotropic hardening constitutive law. Figure 2.11
presents a comparison between the predicted recoverable, irrecoverable, dissipative mechanical work rates
by the Standard Stacked LSTM model and the target values. As we recall that a proper formulation of
dissipative materials constitutive laws must follow the thermodynamic principles, it can be observed from
figure 2.11 that the predicted dissipative mechanical work rate is negative during some time steps even if
the overall prediction still follows the general trend of the target dissipation. Based on the thermodynamic
framework of dissipative materials developed in Section 2.2, this result contradicts the second principle
of thermodynamics that state that the local generated entropy should always be greater than zero while
a dissipative mechanism occur. Thus, the respect of the second principle could not be achieved using the
Standard Stacked LSTM model with only a MSE as loss function. Using a physics-guided RNN model
’ThC-RNN’, the following subsection aims at investigating the effect of incorporating physical based con-
straints during Stacked LSTM training process to potentially satisfy the governing physical laws and to
achieve a thermodynamic consistency.

Figure 2.11: Evaluation of various mechanical work rates with a Standard Stacked LSTM model on an
example of test data set

2.4.1.2 Prediction of the mechanical response using a ThC-RNN - Effect of the Thermo-
dynamic consistency on model’s accuracy

The developed ThC-RNN architecture is based on a Stacked LSTM model with a physics-based loss
function whose expression in each time step t is given by Equation 2.52. ThC-RNN is trained with
the same amount of data as the previous model presented in subsection 2.4.1.1. The objective being to
verify ThC-RNN capabilities to accurately predict the mechanical behavior regarding the Elastoplastic
with isotropic hardening constitutive law as well as the respect of the thermodynamic principles when
computing the mechanical work rate partition (recoverable part, irrecoverable part and dissipative part).

Figure 2.12 present ThC-RNN predicted stress and the target response under a test data loading
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path. Compared to the previous model, it can be deduced that ThC-RNN ensure a better performance
while predicting the stress-strain responses. Using ThC-RNN model, the transition from the elastic to the
plastic domain is smooth for the majority of the test data set contrary to the previous model where small
noise was observed. The incorporation of thermodynamic consistency also led to stable responses after
change of directions. Figure 2.13 describe the evolution of the predicted internal variable p which is the
accumulated plastic strain. As shown in the correlation plot from figure 2.13, an excellent agreement is
observed between ThC-RNN predicted values and the targets for p, ThC-RNN model is therefore capable
of capturing accurately the evolution of this state variable. Therefore, we can assume that incorporation
of the physical laws during the training phase has a beneficial effect on model accuracy. Our assumption
to explain this result is that ThC-RNN is forced to regulate the predicted quantities in order to verify
the second principle of thermodynamics which is introduced as a physical constraint on the loss function.

To properly highlight the effect of the physical knowledge on model’s reliability, it might be more
interesting to evaluate the various mechanical work rates as done previously. Figure 2.14 shows a com-
parison between ThC-RNN predicted mechanical work rates and the target values. Fig. 2.15 shows a
comparison between the predicted mechanical work rates with a standard stacked LSTM model and with
ThC-RNN on the same example of test data. Regarding the dissipative mechanical work rate, it can
be noticed that the model is at least thermodynamically consistent as the intrinsic dissipation is always
greater or equal to zero with the respect to all the time steps. We recall that using the first model, the

Figure 2.12: Prediction of Stress-Strain responses with ThC-RNN model on an example of test data set
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Figure 2.13: Prediction of accumulated plastic strain p using ThC-RNN on an example of test data set

Figure 2.14: Evaluation of various mechanical work rates with ThC-RNN model on an example of test
data set

Figure 2.15: Comparison between the prediction of various mechanical work rates with Standard Stacked
LSTM model and ThC-RNN on the same example of test data

second principle constraint was not always guaranteed due to the lack of any governing physical law on
model’s implementation. The obtained results with ThC-RNN provides evidence that the incorporation



Chapter 2. Thermodynamically consistent Recurrent Neural Networks for dissipative
materials constitutive modeling 55

Figure 2.16: Evaluation of the total mechanical work rates with ThC-RNN model on an example of test
data set

of physics based loss functions along with sufficient data can reduce significantly the impact of physical
inconsistencies on model’s accuracy. However, as we analyzed the prediction quality for all the tested
data, we observed a presence of some discrepancies on the predicted irrecoverable and dissipative me-
chanical work rate during some time steps, this mismatch can also be highlighted in figure 2.16 where the
error between the predicted total dissipation and the target value is around 10%. The main hypothesis to
explain this difference is the propagation of errors as the computation of W r

m and W d
m is based on several

quantities including the internal variables, plastic strain and stress tensor components. The prediction
errors of those outputs, even of low values, may induce an amplification of the error when computing
W r

m and W d
m. Therefore, the training process of ThC-RNN model using Lφ

t loss function certainly ensure
the respect of the dissipation positivity condition but does not necessarily guarantee that the predicted
dissipative mechanical work rate will match the target one. A potential solution to overcome this problem
will be to add a term on the objective function Lφ

t that minimize the error between the predicted and the
target mechanical work rates similarly to the Mean Absolute Error (MAE) or the Mean Squared Error
(MSE) loss functions.

The generalization capabilities of ThC-RNN are verified by evaluating the model on a subset of the
database (10%) where a new type of loading condition is tested: Non-proportional paths with non-linear
steps (i.e, sinusoidal shape). We recall that the training database was only composed of non-proportional
loadings with linear steps, the samples with sinusoidal shapes steps were never seen by the model during
the training phase. Figure 2.17 shows some examples of the predicted stress-strain responses by ThC-RNN
with this new type of loading condition. Based on the obtained results in figure 2.17, it can be observed
that the model achieved a good generalization ability, the overall mechanical response are well captured by
the model despite the complexity of the loading paths. However, the predicted response under sinusoidal
based steps was less accurate than the results of a loading with linear steps, the obtained prediction error
for the first case was 3.6% contrary to the second case where the error does not exceed 0.1% .This result
is completely expected as neural networks are known to have less precise extrapolation capabilities.
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Figure 2.17: Prediction of Stress-Strain responses with ThC-RNN model on two examples of test data
set : Case of non-proportional loadings with sinusoidal shape steps

2.4.2 Prediction of the mechanical behavior for Chaboche plasticity model using
ThC-RNN

Through an example of an Elastoplastic with isotropic hardening material constitutive law, it has
been proven in subsection 2.4.1.2 that using a physics guided Stacked LSTM model results in a sig-
nificant improvement on model’s performance as well as its physical consistency. Given those primary
results, it might be interesting to further explore ThC-RNN capabilities when dealing with more complex
mechanical behaviors involving many physical mechanisms. In that sense, Chaboche plasticity model can
be a suitable case study as it combines two non-linear kinematic hardening mechanisms as well as an
isotropic hardening. Furthermore, several internal variables are required to describe the material me-
chanical behavior including the accumulated plastic strain p and the back stress tensors X1 and X2.
The main objective of this subsection is to verify ThC-RNN predictive capabilities of the mechanical
responses and the internal state variables. Furthermore, a special focus will be given to the respect of
the thermodynamic consistency.

For this purpose, a database containing 10000 multi-axial, non-proportional loading paths is generated
with the Simcoon library. The same data preparation strategy is followed as the previous case example
(isotropic plasticity). The mechanical properties of the tested material are summarized in Table 2.4. The
identification of those parameters from experimental testing is carried out using a specific optimization
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Table 2.4: Mechanical properties of the tested material

Material parameter Value
Young’s modulus E 140000 MPa
Poisson’s ratio ν 0.3
Yield Stress σY 57.86 MPa
Parameter Q 280.48 Mpa
Parameter b 7.60
Parameter C1 31194.68 Mpa
Parameter D1 176.12
Parameter C2 435376.84 Mpa
Parameter D2 5367.40

module on Simcoon library. ThC-RNN neural network architecture is illustrated in Figure 2.5 and the
model’s training process with BPTT consist on the minimization the loss function Lφ given in Equation
2.52 and 2.53.

After the completion of the training phase, the model is evaluated on the test data set to verify its
reliability on unseen loading configurations. For the mechanical responses, it appears that ThC-RNN
performs accurately when predicting the material stress state with respect to the strain driven loading
as shown in figure 2.18. This result provide a first insight of ThC-RNN capabilities when dealing with
complex non linear constitutive laws.

Figure 2.18: Prediction of Stress-Strain responses with ThC-RNN model on an example of test data set
for Chaboche Plasticity model

As for the thermodynamic consistency, the same procedure is adopted as previously by comparing
the predicted mechanical work rates with the the target ones. It can be seen from figures 2.19 and
2.20, that the predicted local and total mechanical work rates are very well captured by ThC-RNN
and most importantly, the positivity of the intrinsic dissipation is guaranteed during all the time steps.
Furthermore, as pointed in the previous case study, it can be observed that the predicted values of W d

m

can present a slight difference compared to the targets for specific time steps, however the general trend
is still captured accurately. The obtained results gives a supplementary evidence that the combination of
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physical knowledge with the high potential of RNN as a powerful surrogate for treating history dependant
behaviors can ensure models with high accuracy even while dealing with complex mechanical behaviors.

Figure 2.19: Evaluation of various mechanical work rates with ThC-RNN model on an example test data
set for Chaboche Plasticity model

Figure 2.20: Evaluation of Total mechanical work rates with ThC-RNN model on an example of test data
set for Chaboche Plasticity model

Finally, ThC-RNN predictive capabilities of the internal state variables such as the accumulated plastic
strain p and the kinematic hardening variables X1 and X2 are highlighted in Figures 2.21, 2.22 and 2.23.
An excellent agreement can be observed between the predictions and the targets regarding all the state
variables. The evolution of the back stress tensors components related to the kinematic hardening are
well captured by ThC-RNN in addition to the accumulated plastic strain p. A reliable prediction of
the internal variables is important given that the computation of the mechanical work rates is mainly
based on those quantities. Moreover, it can be deduced that the presence of many internal variables that
describes material behavior did not have an impact on ThC-RNN reliability for the Chaboche plastic law
which is a very interesting result that emphasize the high potential of physics-guided RNN models.
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Figure 2.21: Prediction of accumulated plastic strain p using ThC-RNN on an example of test data set
for Chaboche Plasticity model

Figure 2.22: Prediction of the kinematic hardening variable X1 components using ThC-RNN on an
example of test data set for Chaboche Plasticity model

Figure 2.23: Prediction of the kinematic hardening variable X2 components using ThC-RNN on an
example of test data set for Chaboche Plasticity model

2.4.3 Prediction of the continuum tangent modulus components

The last subsection is dedicated to investigate ThC-RNN effectiveness to predict the tangent modulus
components Ctan

ij . This analysis may prove its usefulness when this kind of models is employed as
a surrogate for accelerating multiscale finite element simulations where the computation of the tangent
matrix is required to obtain the homogenized responses. For this purpose, ThC-RNN model also included
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the tangent matrix as an output as shown in its architecture from Figure 2.4. Note that even though
we used ThC-RNN model as a surrogate for predicting Ctan components, the physical consistency has
absolutely no effect on those predictions as no governing physical law was incorporated regarding this
outputs, the training process in that case is mainly based on the data and the Stacked LSTM model
capability of capturing the history dependency. Figure 2.24 illustrates an example of tangent modulus
components predictions with ThC-RNN for the Elastoplastic with isotropic hardening constitutive law.
Similarly to all the previous outputs, the model still keeps its reliability when predicting all the tangent
matrix components. The transitions from the elastic to the plastic domains are very smooth and very well
captured by the model without involving any significant noise that might violate the positivity condition
of the matrix. This result prove that RNN based models can be potentially considered as an efficient
and reliable tools for the computation of the tangent matrix, offering new possibilities of employment
especially in the multiscale analysis.

Furthermore, predicting Ctan with RNN offers a significant advantage in terms of the computational
time saving compared to the existing methods. For instance, using a non linear homogenization method
such as FE2 [Feyel 1999], the computation of the effective tangent matrix is required for coupling the
micro and macro scales to predict structures macroscopic response. The determination of the macro-
scopic tangent matrix for periodic homogenization can be achieved for example using the FEM-based
perturbation technique [Zhu et al. 2020]. We recall that for non linear homogenization problems with
FE2 method, Ctan is computed on each time increment and for each Gauss integration point, this pro-
cess may potentially be costly in terms of the required computational time. Thus, the ability to predict
accurately and quickly Ctan components will assess the possibility to train RNN based networks on unit
cells FE simulations to perform efficient multi-scale structure analysis. An alternative solution to com-
pute Ctan could also be the use of Automatic Differentiation Method offered by the computational graph
of the neural network. Considering classical Neural Network (Multi-Layer Perceptron), the Automatic
Differentiation Method could indeed provide the direct connection between the input and output through
backpropagation. However, in the case of Recurrent Neural network, the computation of the jacobian
matrix is more difficult to isolate due to the strong dependency of the memory carried out through the
neural network. The total derivative of stress with respect to strain (including the internal variation) is
much more difficult to assess since there is no criterion that one can rely to compute the relationship
between internal variable variation and strain variation, like in classical elastic-plastic models (where the
consistency condition is utilized).
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Figure 2.24: Prediction of the tangent modulus components on an example of test data set for the
Elastoplastic with isotropic hardening constitutive law on an example of test data
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2.4.4 Application to Finite Element Analysis

Figure 2.25: Geometry, boundary conditions and mesh of an elastoplastic 4 nodes bending beam

To assess the usefulness and the validity of the developed approach, ThC-RNN model is coupled with
a Finite Element Method (FEM) framework to simulate structures considering standard loading tests.
A case study of an elastoplastic 4 point bending test is considered, the mechanical properties of the
tested structure are given in Table 2.2. Figure 2.25 illustrates the geometry, boundary conditions and
the meshing of the tested structure. The beam is subjected to a displacement-controlled loading on its 2
top nodes at L

4 and 3L
4 . The incorporation of ThC-RNN model as surrogate of the material constitutive

law is done in a similar way to the User Material subroutines in Finite Element codes. For each time
increment t, each material Gauss integration point is subjected to an incremental strain (εtij ,∆εij), the
material mechanical state is then stored in the memory gate ct of the trained RNN (similarly to the
internal state variables), the input gate it, forget gate ft and output gate ot are updated to compute the
next hidden state ht which contains the predicted stress components σt

ij and the tangent matrix Ctan
ij .

Using the predicted outputs, the structure global equilibrium is verified using Newton-Raphson iterative
scheme until the convergence of the simulation. In this study, ThC-RNN model was integrated with an
open source FE code Fedoo [Prulière & Chemisky 2022].

In order to verify the model’s reliability and efficiency when coupled with a FEM approach, the
same simulation is conducted using a FE approach which uses the original material constitutive law.
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The results of the FE simulation are then compared to the predicted mechanical behavior with ThC-
RNN. Figures 2.26,2.27,2.28,2.29,2.30 and 2.31 shows a comparison of the Von-Mises stress σVM , stress
magnitude σM , normal stress components σXX , σY Y , σZZ and shear stress component σxy distributions
respectively obtained using pure FE simulation and by the coupling of ThC-RNN with FE framework.
Several aspects have been verified and served as a basis for comparison between the two models, the
addressed points are summarized as follows:

i) In terms of convergence, the simulation with ThC-RNN model achieved a numerical convergence
with the same Newton Raphson tolerance as the finite element model. This result emphasizes the model’s
accuracy especially when predicting the tangent operators, because an error in the tangent matrix would
have led to a lack of convergence of the Newton Raphson resolution.

ii) For both models, the symmetry property of the stress fields distribution is conserved since the
studied problem is symmetric in terms of geometry, boundary conditions and loading conditions.

iii) As for the precision of the predicted numerical values, an excellent agreement is observed between
ThC-RNN model and FE simulation for the following stress components σVM ,σM ,σXX ,σZZ and σXY ,
the obtained maximum error between the two model does not exceed 3 % for all these components.
However, it can be seen from figure 2.29 that σY Y is slightly less accurate compared to FE solution, an
overestimation by ThC-RNN of σY Y can be noticed, resulting to residuals error of nearly 6% in some
Gauss points which is higher than the obtained residuals for the other stress components.

Regarding the strain fields, figures 2.32,2.33,2.34,2.35 shows the distribution of the strain magnitude
εM , normal strain components εXX ,εY Y and shear strain component εXY respectively obtained by FE
simulation and by ThC-RNN model. The same remarks concerning the respect of the strain field sym-
metries and model’s precision can be highlighted for all the predicted components. Overall, a very good
agreement between both simulations is observed given the low values of residuals. Furthermore, it is
shown from 2.33,2.34,2.35 that all the strain components remains in the range of the training data (i.e
included in the interval [−0, 05, 0.05]), if the inputs are outside of that range, this could lead to inaccurate
predictions or a failure in the convergence simulation. This particular point is very important to assess
as Neural Networks are known to have poor extrapolation capabilities.

To conclude this subsection, it has been demonstrated that this type of RNN based approaches can
be integrated into a finite element framework provided that certain points are checked:

i) verify the generalization capability of the model and its accuracy when predicting the tangent
operators and the mechanical responses.

ii) Ensure that the model inputs remain in range of training data.
iii) Incorporate physical based laws in the model training process to regularize the predicted outputs

and to achieve a thermodynamic consistency.
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Figure 2.26: Comparison of the Von-Mises stress distribution σVM obtained by a pure FE approach that
uses material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)

Figure 2.27: Comparison of the stress magnitude distribution σM obtained by a pure FE approach that
uses material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)

Figure 2.28: Comparison of the normal stress distribution σXX obtained by a pure FE approach that uses
material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)
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Figure 2.29: Comparison of the normal stress distribution σY Y obtained by a pure FE approach that uses
material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)

Figure 2.30: Comparison of the normal stress distribution σZZ obtained by a pure FE approach that uses
material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)

Figure 2.31: Comparison of the shear stress distribution σXY obtained by a pure FE approach that uses
material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)

Figure 2.32: Comparison of the strain magnitude distribution εM obtained by a pure FE approach that
uses material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)
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Figure 2.33: Comparison of the normal strain distribution εXX obtained by a pure FE approach that uses
material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)

Figure 2.34: Comparison of the normal strain distribution εY Y obtained by a pure FE approach that uses
material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)

Figure 2.35: Comparison of the shear strain distribution εXY obtained by a pure FE approach that uses
material original law (left figure) and by the integration of ThC-RNN as a surrogate in FE simulation
(right figure)



Chapter 2. Thermodynamically consistent Recurrent Neural Networks for dissipative
materials constitutive modeling 67

2.5 Conclusions

Within this chapter, the potential of a hybrid physics-RNN model (ThC-RNN) is investigated to
be utilized as a reliable and consistent surrogate for dissipative materials constitutive modeling. This
hybrid model has been developed by combining a specific RNN architecture (Stacked LSTM) and physics
based constraint resulting from thermodynamical formulation of the model. The obtained results showed
the excellent predictive capabilities of ThC-RNN regarding several mechanical quantities (stress-strain
responses, mechanical work rates, state variables, tangent matrix) compared to a standard RNN model
used as a black-box. The robustness of ThC-RNN comes primarily from the high potential of the Stacked
LSTM model which can be considered as a powerful tool to capture path dependant behaviors. On
the other hand, the incorporation of the governing physical laws during the training phase provided
relevant results with respect to the thermodynamic consistency. The present work provides a first insight
of the achievable capabilities of physics guided deep learning techniques to treat engineering problems.
While this study was only focusing on dissipative materials constitutive modeling, it might be interesting
to test the proposed approach on different application fields where a relationship exist between the
physical constraints and the physical quantities predicted by the surrogate model. Note that even if
the computational time savings are not highlighted during this study given that the existing numerical
methods for non-linear constitutive model are already fast enough, this work can be considered as proof
of concept for potential future works where physics guided RNN are applied for finite elements multiscale
analysis. However, an additional challenge has to be faced when using such approach for multi-scale
simulation as there is no closed form of the second law the thermodynamics at the RVE scale which may
also include many internal state variables. Several approaches are worth to be investigated (e.g, using
averaging methods) to establish some physical constraints which are connected to the predicted average
mechanical fields.

To conclude the first part of this manuscript, we first reviewed through a state of the art survey
different machine learning approaches for engineering science applications. Based on recent contributions
from the material science community, we have highlighted the major potential of this type of approaches to
address complex mechanics of materials challenges including multifunctional material design, constitutive
modeling and multiscale modeling. A particular emphasis has been devoted to Deep learning techniques,
which is justified by the fact that artificial neural networks have strong capabilities to learn and perform
advanced tasks with a high level of abstraction. In addition, according to the study conducted in chapter
2, the choice of deep neural networks and particularly recurrent neural networks has been proven to be the
most suitable architecture to solve internal variables problems of heterogeneous materials under complex
loading states, which is the main objective of this thesis. Hence, the following part of this manuscript
is dedicated to multiscale modeling of heterogeneous materials using Artificial Neural Networks based
approaches.
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General Introduction

Homogenization methods have been extensively studied by various researchers since the end of the
19th century to deal with the mechanical behavior of heterogeneous materials [Voigt 1887, Reuss 1929,
Hill 1963, Hashin 1983]. This type of materials is commonly used in the engineering field to design for
instance composite structures intended for the automotive, aeronautic or biomechanical industries. Ho-
mogenization approaches consist in identifying the overall mechanical behavior at the macro scale i.e

the effective properties from the knowledge of microstructure characteristics (size and orientations of the
particles, constitutive laws,etc). The first homogenization models date back to Voigt and Reuss work
[Voigt 1887, Reuss 1929]. While these approaches lead to a simplification of the localization tensors re-
quired for the evaluation of effective properties, they generally do not provide an accurate description
of material behavior as they are insensitive to heterogeneities shape and orientation. To take into ac-
count the interaction between different phases of the heterogeneous material as well as the effect of the
microstructure on macroscopic responses, other more accurate approaches have therefore been proposed.
Among these so-called multi-scale methods, mean field approaches and full-field approaches are commonly
used.

i) Mean-field approaches as Mori-Tanaka sheme [Mori & Tanaka 1973] or Self-consistent scheme
[Hill 1965] estimate the overall behavior of the heterogeneous material using average stress and strain for
each material phase. These homogenization schemes rely heavily on Eshelby’s single inclusion solution
[Eshelby 1957, Eshelby 1959]. Eshelby’s treatment of the inclusion problem is considered a milestone in
the development of the micromechanics of random media. In 1957, John D. Eshelby provided a complete
solution to the elastic field inside and outside ellipsoidal inclusions subjected to a prescribed eigenstrain
in an infinite medium [Eshelby 1957, Eshelby 1959]. Many applications in the analysis and design of
composite materials are based on Eshelby’s solution, as the ellipsoidal shape is very versatile and can
be used to represent various shapes of heterogeneous materials, including spheres and cylindrical wires
[Withers 1989, Duan et al. 2006].

ii) Full-field approaches, based on the theory of periodic homogenization, estimate the overall behavior
of the equivalent homogeneous material through the definition of a Representative Volume Element (RVE).
Their advantages are mainly their ability to predict non-linear behaviors of structures at different scales
for any type of periodic microstructure. Among these approaches, we can cite for instance the multi-scale
method FE2 developed by F.Feyel [Feyel 1999].

In Part.II of the present manuscript, we propose to incorporate AI based approaches into homoge-
nization schemes for multiscale modeling of heterogeneous structures. For both of the aforementioned
homogenization techniques, two deep learning models will be developed with different objectives. In
Chapter 3, a hybrid model ANN-φ combining multilayer perceptrons and a micromechanical scheme is
designed for fast exploration of the elastic response of composite materials. In Chapter 4, deep neural
networks are integrated into a framework of full-field approaches to accelerate multiscale simulations of
architectured materials.
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3.1 Introduction

Despite its efficiency for several microstructure often encountered in composite materials, the use of
mean-field homogenization approaches to determine the effective properties of heterogeneous materials
with large number of phases can lead to very long computational time. This limitation comes from the
fact that Eshelby’s tensors are generally estimated with numerical approaches [Gavazzi & Lagoudas 1990].
To overcome this challenge, Artificial Neural Network (ANN) can be an excellent candidate to reduce
computational time. In the present work, a hybrid model combining Artificial Neural Networks and a
micromechanical scheme is developed to predict the effective properties of heterogeneous materials with
many phases. The choice to use a hybrid approach instead of pure numerical estimations or ANN only
based modeling is justified by the following assertions:

i) As mentioned previously, a numerical estimation of the effective properties of an heterogeneous
material with many phases time consuming since a numerical computation of Eshelby’s tensor is required
for each heterogeneity.

ii) It is difficult to design a generic model based only on Neural Networks to predict the effective
stiffness tensor L̄. Indeed, in this case, the ANN architecture and more precisely its input neurons number
is a variable parameter and depends necessarily on the number of phases of the heterogeneous material.
Moreover, if we assume that each phase in an heterogeneous medium with N inhomogeneity is described
by m parameters including geometric and mechanical properties, the ANN will be defined by m × N

inputs, and therefore an enormous amount of training data would be required for configurations with
many phases. However, the proposed methodology is of utmost interest in the case of a large number of
heterogeneities with different features (particles orientation, mechanical properties). Short fiber reinforced
polymers parts are an illustrative example of such structure. Such material will be investigated later in
this work.

The hybrid approach proposed in this study consists in splitting the problem in two parts. First, an
Artificial Neural Network is built to quickly predict Eshelby’s tensor S from the knowledge of ellipsoidal
inclusion geometry and mechanical properties of the matrix. Then, a micromechanical homogenization
scheme, here the so-called Mori-Tanaka [Mori & Tanaka 1973] is used to determine the effective stiffness
tensor after a proper calculation of each phase localization tensor. A second objective is to study the
balance of this hybrid modeling approach between computational time saving, prediction reliability and
feasibility for treating heterogeneous materials with many phases. The main advantage of the proposed
hybrid approach in comparison to pure ANN based material models is its ability to easily treat high
dimensional inputs problems. Pure ANN approaches are generally used as surrogates to predict directly
the quantities of interest. This solution is conceivable when the number of input neurons is very low
for and therefore training those ANN models in a low dimensional space is feasible. In contrast, a pure
ANN model can not be applied to the present problem as described in point ii), hence the use of a
hybrid approach to predict first Eshelby’s tensor of each heterogeneous material phase, then computing
the effective elastic properties with a micromechanical homogenization scheme. In addition, this study
can be viewed as a proof of concept of the use of hybrid approaches for heterogeneous materials modeling.

The present chapter is organized as follows: Eshelby’s inclusion problem and Inhomogeneity problem
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are presented in section 3.2. These 2 problems constitute an essential framework for the rest of the
study since the applied homogenization approach depends mainly on Eshelby’s solution. In Section
3.3, hybrid model ANN − φ architecture is introduced. The building procedure of ANN − φ model is
explained. In particular, details are given about database generation, hyperparameters tuning and feature
scaling. Section 3.4 presents the results of this study. First, the predictive capability of the ANN − φ is
highlighted. ANN− φ model is then used in an illustrative example to predict the effective properties of
Random Oriented Fiber Composite. A parametric analysis is finally performed to determine the effective
behavior of heterogeneous materials with various ellipsoidal inclusions geometries and matrix properties.
This section shows the model’s efficiency in terms of reliability and computational time saving. Finally,
ANN−φ is compared to another hybrid model ANN2−φ where the neural network is trained on a strain
interaction database instead of Eshelby’s tensors. Some concluding remarks are given in Section 3.5.

3.2 Eshelby’s problem

3.2.1 Eshelby’s ellipsoidal inclusion problem

The Eshelby inclusion problem considers an inclusion Ω in an infinite elastic body V with elastic stiffness
tensor L0. An inclusion is a region where uniform eigenstrain ε∗ appears. ε∗ corresponds to the stress-free
strain if Ω was separated from its surrounding elastic matrix. ε∗ is considered generally inelastic, resulting
for instance from thermal expansion and phase transformation. Notice that both the inclusion and the
matrix have the same elastic stiffness tensor L0 (Figure 3.1).

Figure 3.1: Eshelby’s inclusion problem

Eshelby has proven that the strain ε field in the inclusion is uniform and can be expressed using the
fourth-order Eshelby tensor S such that:

εij = Sijklε
∗
kl in Ω (3.1)

Given the Eshelby tensor S, the stress field inside the inclusion σ can be obtained:

σij = L0
ijkl(εkl − ε∗kl) = L0

ijkl(Sklmnε
∗
mn − ε∗kl) (3.2)

The fourth order tensor S relates the eigenstrain ε∗ to the constrained strain ε, which is the actual
strain of the inclusion when embedded in the matrix. S depends on inclusion shapes and material
properties L0. Considering an ellipsoidal inclusion with semi-axes a1,a2,a3 (Figure 3.2), the integral form
of S is given by the formula [Mura 1987]:
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Figure 3.2: Ellipsoidal inclusion with semi-axes a1, a2, a3

Sijkl =
L0
mnkl

8π

∫ 1

−1

∫ 2π

0
(Gimjn +Gjmin)dωdζ3 (3.3)

with
Gijkl = ζ̂kζ̂lZ

−1
ij , Zik = L0

ijklζ̂j ζ̂l

ζ̂1 =
√
1− ζ3

cosω

a1
, ζ̂2 =

√
1− ζ3

sinω

a2
, ζ̂3 =

ζ3
a3

For special inclusion geometries and isotropic materials, analytical form of S can be found in
[Mura & Barnett 1983]. For anisotropic materials and ellipsoidal inclusions, the Eshelby tensor is com-
puted numerically using Gauss quadrature method [Gavazzi & Lagoudas 1990], Eshelby’s tensor compo-
nents are given using equation 3.4. For the case of isotropic ellipsoidal inclusions, a reduced elliptical
integral form can be found in [Mura 1987]. In this case, if a numerical evaluation of Eshelby tensor is still
required, the expected computational time required for the numerical integration is significantly reduced
[Barthélémy 2020].

Sijkl =
L0
mnkl

8π

M∑
p=1

N∑
q=1

[Gimjn(ωq, ζ3q) +Gjmin(ωq, ζ3q)]Wpq (3.4)

where M×N are the number of Gauss integration points along spherical coordinates, (ωq, ζ3q) and Wpq

are the computed Gauss-Legendre quadrature points and weights matrix respectively [Swarztrauber 2003].
This numerical evaluation significantly increase the computational cost of S but allows to evaluate it for
anisotropic inclusions.

3.2.2 Inhomogeneity problem and Eshelby’s equivalent inclusion principle

The inhomegeneity problem considers a small inhomogeneity Ω with elastic stiffness tensor L1 in an
infinite elastic body V with material properties L0. In the far field, V is subjected to uniform surface
traction T⃗ such as T⃗ = σ0 · n⃗. The displacement u of any material point x located in the far field can be
expressed using strain tensor ε0 such as u = ε0 · x. The inhomogeneity problem can thus be stated using
the following set of equations :
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Figure 3.3: Illustration of Eshelby’s equivalence principle: Inhomogeneity problem split into two problems
(1) and (2)

∂σij
∂xj

= 0 in V

σij =

{
L0
ijklεkl in V − Ω

L1
ijklεkl in Ω

T⃗ = σ0 · n⃗ and u = ε0 · x in far field

(3.5)

The problem (3.5) can be solved using Eshelby’s equivalence principle [Eshelby 1961] shown in Fig-
ure 3.3. According to this principle, (3.5) can be expressed as the sum of two simpler problems (1) and
(2) :

(1) : A boundary value problem with uniform surface traction T⃗ at the far field, where the inhomo-
geneity Ω has the same elastic properties L0 as V . The solution of this problem is expressed as uniform
stress σ0 and strain ε0 fields inside the entire body V .

(2) : A boundary value problem with zero surface tractions, where the inhomogeneity is replaced
by an inclusion with the same shape but of mechanical properties L0

ijkl as the rest of the body V . To
compensate for the material change between the inhomogeneity and the inclusion, prescribed eigenstrain
ε∗ is attributed to the inclusion. According to Eshelby’s inclusion problem, the strain field inside Ω can
be evaluated using Eshelby’s fourth tensor S:

ε̃ij = Sijklε
∗
kl in Ω (3.6)

The principle of superposition holds in this case as all the problems stated above are elastic, which
means that the solution of (3.3) is the sum of the two problems (1) and (2). Inside the inhomogeneity
Ω, the total stress and strain fields are expressed,

σij = σ0
ij + σ̃ij in Ω

εij = ε0ij + ε̃ij in Ω

According to [Eshelby 1961], it can be proven that the total strain inside the inhomogeneity is ex-
pressed using a fourth order tensor T :
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Figure 3.4: Architecture of ANN-φ : A hybrid model combining Artificial Neural Networks and microme-
chanical homogenization using Mori-Tanaka scheme

εij = Tijklε
0
kl in Ω (3.7)

where T is called strain interaction tensor. T depends on the computed Eshelby’s tensor S and
mechanical properties of the inhomoheneity L1 and the matrix L0,

Tijkl = (Iijkl + Sijpq(L
0
pqmn)

−1(L1
mnkl − L0

mnkl))
−1 (3.8)

where Iijkl denotes the fourth order symmetric identity tensor.

3.3 ANN-φ : A hybrid model combining Artificial Neural Networks and
micromechanical modeling

The architecture of the proposed hybrid model ANN-φ can be split into two parts. First, an Artificial
Neural Network is built to predict Eshelby’s tensor components Sijkl from the knowledge of ellipsoidal
inclusion geometry and mechanical properties of the matrix. Then, a micromechanical homogenization
scheme such as Mori-Tanaka [Mori & Tanaka 1973] is used to determine the strain concentration tensors
Ar associated with each inhomogeneity r of the heterogeneous medium. Ar is estimated from the predicted
Eshelby’s tensor Sr. Finally, the effective stiffness tensor L̄ is evaluated using mechanical properties Lr

and strain concentration tensor Ar of each phase. The Figure 3.4 shows the architecture of ANN-φ.

For the present problem, the ANN architecture shown in figure 3.5 is used. This MLP consists on
three parts: an input layer of medium’s mechanical properties and inclusions geometrical attributes, 2
hidden layers and an output layer with 12 neurons of non zero Eshelby’s tensor components for isotropic
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mediums. The optimal number of hidden layers, hidden neurons and activation function are obtained by
performing an hyperparameter analysis which will be discussed in details in subsection 3.3.

Figure 3.5: Structure of the Multi Layer Perceptron (MLP) used in the study

3.3.1 Database Preparation

A database containing Eshelby’s tensor components corresponding to different configurations was gener-
ated using an open source software in mechanics and materials Simcoon [Chemisky 2018]. As mentioned
in section 3.2, Eshelby’s tensor S depends on the geometric parameters (a1, a2, a3) of the ellipsoidal in-
clusion (Figure 3.2) as well as on mechanical properties of the matrix L0. For isotropic medium, the
stiffness tensor L0 can be expressed using Bulk modulus K and Shear modulus µ which also represents
the eigenvalues of L0,

L0
ijkl = 3KPH

ijkl + 2µPD
ijkl (3.9)

with
PH
ijkl =

1

3
δijδkl, P

D
ijkl =

1

2
(δikδjl + δilδjk)−

1

3
δijδkl

In order to better control the number of parameters in the Neural Network’s input layer, the geometric
and mechanical properties are expressed in adimensional forms by introducing the ratios K

µ ,
a1
a3
, a2a3 . This

choice is justified by the fact that Eshelby’s tensor is calculated in an infinite medium, therefore an
adimensional representation is more significant since the Eshelby’s tensor computation will only depends
on the scale ratio of each physical quantity. The ratio K

µ is always defined due to the positivity of L0.

The strategy of database D generation is described as follows: 1 million samples are generated using
Simcoon. Regarding the precision of the numerical method, a maximum difference of 0.25% has been
observed in the components of Eshelby tensor when computed in the case of a cylindrical geometry with
100 × 100 integration points in the ellipsoid (most unfavorable case). As for the numerical parameters
required to generate Eshelby tensors database, 100x100 Gauss integration points have been used. In-
creasing the number of integration points beyond theses values didn’t show any significant improvement
on Eshelby’s tensor components. The inputs K

µ ,
a1
a3
, a2a3 are set on the interval [10−2, 102] and are chosen
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randomly on a logarithmic space. Then, samples are split into training T , validation V and test T data
sets. Training data are used during ANN’s learning process in order to fit the parameters of the model
(weights and bias). Then, to verify the accuracy of the training procedure, a subset (20%) is chosen
randomly from training data after each Epoch and used as the validation data. Finally, test data set are
the samples that have never been used in training, the purpose is to provide an unbiased evaluation of
the model once it is trained and to verify its capability to generalize.

The last step of data pre-processing phase consist in the Feature Scaling. Rescaling the data before
training is necessary since the scale and distribution of input and output variables may be distinct. This
scale difference may increase the difficulty of the problem as the model may suffer from instability during
training process. Several normalization techniques can be used as Min-Max Scaler or Standard Scaler
[Wan 2019]. In this study, the last scaling technique is used. Standardization is a transformation that
centers the data by removing the mean value m of each feature and then dividing it by its standard
deviation σ.

z =
x−m

σ

Standardization can drastically improve the model’s performance. For instance, if a feature has a
variance that is orders of magnitude larger than others, it might dominate the loss function and make
Neural Network unable to learn from other features correctly as expected.

3.3.2 Hyperparameters tuning

In this study, a Grid Search with Cross validation score is applied to the model. The aim is to find
the combination of hidden neurons number and activation function allowing to have the most reliable
prediction. This parametric analysis has been performed on a subset of data (10000 samples) using
GridSearchCV tool of Sci-kit learn library [Pedregosa et al. 2011]. To tune hidden neurons number,
several approaches proposed in the literature have been tested, and are presented in Table 3.1 where Ni

and No are the input and output neurons number respectively, Np is the input sample number and NL

is the number of hidden layers. As for activations, 5 functions have been tried out (Sigmoid, Rectified
Linear Unit (ReLU), SoftPlus, Hyperbolic Tangent (TanH) and Exponential Linear Unit (ELU).

Table 3.1: Various approaches for fixing hidden neurons number in Neural Networks

Method Number of hidden neurons
[Tamura & Tateishi 1997] Nh = NiNo/2

[Zhang et al. 2003] Nh = 2Ni/(Ni + 1)

[Ke & Liu 2008] Nh = (Ni +
√
Np)/NL

[Shibata & Ikeda 2009] Nh =
√
NiNo

[Sheela & Deepa 2013] Nh = (4N2
i + 3)/(N2

i − 8)

The minimization of model’s Mean Squared Error (MSE) on validation data was chosen as a crite-
rion to select the optimal parameters. As shown in Figure 3.6, the parametric analysis shows that the
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hyperbolic tangent activation function and 25 hidden neurons per layer provides a minimum value of the
error for a Neural Network with 2 hidden layers. The optimal number of hidden neurons is obtained via
[Ke & Liu 2008] method. This pair of parameters is further used to train the model with the entire data
set.

Figure 3.6: Determination of model’s optimal hyperparameters using Grid Search method

Figure 3.7: Determination of model’s optimal number of hidden layers

The determination of the optimal number of hidden neurons was a subject of an another parametric
study once the activation function and the method fixing hidden neurons number were found. Various
number of hidden layers were tested (1 to 5 layers) and the optimal number is found to be 2 layers
according to Figure 3.7. Thus, increasing hidden layers number does not necessarily improve model’s



Chapter 3. Estimation of the effective properties of heterogeneous materials using
Artificial Neural Networks and micromechanical models 82

reliability because of the vanishing gradient problem. This problem is often encountered when training
ANN models with gradient-based optimizers using backpropagation algorithm. As explained in subsection
3.2, backpropagation consists on updating model’s parameters (weights and biases) by computing the
partial derivative of the loss function with respect to the weights and biases with the chain rule method.
In some cases, the gradients values can be vanishingly insignificant and therefore preventing model’s
parameters from changing its values. For instance, a sigmoid activation function has gradients in the
range (0,12), multiplying N of these gradient values to update the weights and biases in an N layer neural
network could prevent the first layers from changing its parameters values when N is very high as the
resulting gradient values tends towards 0.

3.4 Results and discussion

3.4.1 Prediction of Eshelby’s tensor S by ANN approach

Once Eshelby’s tensor training database is prepared and Neural Network hyperparameters are tuned,
we proceed to the training phase of the ANN. The model implementation was done in Python language
with the use of the Google’s TensorFlow library [Abadi et al. 2015]. Figure 3.8 describe the evolution of
Normalized Mean Squared Error (NMSE) on training and validation set as a function of Epochs. First,
we can notice a fast convergence of the ANN model and Loss stabilization after 10 Epochs. In addition,
the obtained NMSE on the last Epoch are in order of 10−2% for training set and 10−3% for validation set.
Those low values shows that the ANN model achieved a good performance after training and has been
prevented from overfitting as the validation error is very low. Even if it is very common for the validation
error to be greater than the training error for most ANN models, the error values obtained in this study
(0.017% and 0.0031%) are insignificant with respect to the numerical noise. The only information to
retain in that case is that the model was sufficiently well trained and prevented from overfitting as the
validation error is also very low. The values indicated here cannot be interpreted to compare the training
accuracy with respect to validation accuracy.

Figure 3.8: Evolution of training and validation errors as a function of Epochs during ANN training
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The model was then evaluated on a test data set to verify its predictive ability on samples, other
than training data. To quantify the predictive quality of the model, the coefficient of determination (R2)
introduced in Equation.2.54. This coefficient measures the accuracy of fitting by giving an indication of
how well the test data are predicted by the model.

For each Eshelby’s tensor test component, a correlation plot between ANN predicted values and true
values is presented in Figure 3.9. An excellent agreement between predictions and targets is shown from
the plots as R2 values are very close to 1 for all the components. It is found that the designed model
is very reliable and can be used to rapidly predict Eshelby’s tensor for a given ellipsoid geometry and
medium mechanical properties. These results can be used as inputs to the hybrid model in order to
predict the effective mechanical behavior of heterogeneous materials with many phases. An illustration
of this approach is provided in the next section.

Figure 3.9: Correlation plots between ANN predicted values and target values for each Eshelby’s tensor
test component

3.4.2 Illustrative Example: Prediction of effective properties of Random Oriented
Fiber Composite

Results of the previous section have demonstrated the predictive capability of Neural Network model.
This ANN is then coupled with a physical homogenization model to predict the effective behavior of a
random oriented fiber composite. As shown in Figure 3.10, the studied composite material consists of an
Isotropic Epoxy matrix Ω0 of volume V0 and N Transversely Isotropic Carbon fibers Ωr of volume Vr, with
r ∈ [1, N ]. The volume fraction cr of each phase is defined by cr =

Vr
V with Ω = Ω0 ∪Ω1 ∪2 ∪...Ωr ∪ ...ΩN

and V = V0 + V1 + ... + Vr + ... + VN . The mechanical properties of the matrix and the fibers are
summarized in Table 3.2. Each fiber is considered as a different phase because of the different orientation
which lead to mechanical properties.
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Figure 3.10: Studied Random Oriented Fiber Composite

Table 3.2: Properties of AS4 carbon fibre and Hercules 3501-6 epoxy matrix [Mccartney 2017]

Material parameter Value
Matrix Young’s modulus Em 4.2 GPa
Matrix Poisson’s ratio νm 0.34
Matrix volume fraction cm 0.7
Fibre longitudinal Young’s modulus Ef

L 225 GPa
Fibre transverse Young’s modulus Ef

T 15 GPa
Fibre longitudinal Poisson’s ratio νfL 0.2
Fibre transverse Poisson’s ratio νfT 0.07
Fibre longitudinal shear modulus µf

L 15 GPa
Fibre transverse shear modulus µf

T 7 GPa
Fibre Total volume fraction cf 0.3
Fibre Number N 1000

To determine the effective elastic stiffness tensor of the composite material, it is necessary to evaluate
the strain concentration tensor Ar for each phase. We recall that Ar relates the average strain on the rth

inhomogeneity ε̄r with the average strain of the entire composite material ε̄:

ε̄rij = Ar
ijklε̄kl

With the help of the strain concentration tensors, the effective elastic stiffness tensor is given by the
following expression:

L̄ijkl =
N∑
r=0

crL
r
ijmnA

r
mnkl (3.10)

To determine the expressions of the strain concentration tensors, Mori-Tanaka homogenization scheme
is used [Mori & Tanaka 1973]. This approach is based on the Eshelby single-inclusion solution where Ar

is given by:
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Ar
ijkl = T r

ijmn(c0Imnkl +
N∑
i=1

ciT
i
mnkl)

−1 (3.11)

where
T r
ijkl = (Iijkl + Sr

ijpq(L
0
pqmn)

−1(Lr
mnkl − L0

mnkl))
−1

The Figure 3.11 shows a comparison between the composite effective properties obtained by
ANN-φ model and by numerical estimation of L̄ (using the numerical integration proposed in
[Gavazzi & Lagoudas 1990] to compute the Eshelby tensor, then computing T r

ijkl, A
r
ijkl and L̄ijkl from

the expressions above). We can notice that ANN-φ predicted values are almost similar to the ones esti-
mated numerically and each component relative error do not exceed 3 % as described in table 3.3. These
results show that the proposed model have a strong potential to predict the homogenized behavior of
heterogeneous materials.

Figure 3.11: Comparison between ANN-φ predicted effective stiffness tensor L̄ and numerical estimation
of L̄

An interesting feature of a hybrid ANN-φ model relies in its capability to predict not only the effective
response, but also the average mechanical fields in each phase. The determination of local response such
as phase local stress is indeed necessary during the design of composite structures to predict certain local
phenomena such as damage. The model’s ability to accurately predict the local stresses of each phase
when the composite is subjected to a global unit uniaxial stress state is evaluated therefore:

σ̄ =



σ11 = 0

σ22 = 0

σ33 = 1

σ12 = 0

σ13 = 0

σ23 = 0
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Figure 3.12: Correlation plots between numerical estimations σNum
Vm and ANN-φ predicted Von Mises

Stress σANN−φ
Vm of each composite heterogeneity

Figure 3.12 shows the correlation plot between the equivalent Von Mises stress σANN−φ
Vm predicted by

ANN−φ and its numerical estimation σNum
Vm . Note that the Von-Mises stress is chosen here for illustration

only, obviously not adapted to predict the failure of carbon fibers. An excellent correspondence between
the two quantities is observed since the coefficient of determination R2 is very close to 1. The model
is able to accurately simulate the components of concentration tensors which are required to evaluate
mechanical fields, considering mean field micro-mechanical models.
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Table 3.3: Comparison between ANN-φ predicted effective stiffness tensor L̄ and numerical estimations

Effective moduli Predicted values L̄NN
ij Numerical RE =

∣∣∣∣ L̄NN
ij −L̄Num

ij

L̄Num
ij

∣∣∣∣
with ANN-φ values L̄Num

ij

L̄11 (GPa) 20.13 20.45 1.58 %
L̄12 (GPa) 9.22 9.32 1.07 %
L̄13 (GPa) 12.45 12.59 1.1 %
L̄21 (GPa) 9.22 9.32 0.05 %
L̄22 (GPa) 20.19 20.51 1.61 %
L̄23 (GPa) 12.23 12.36 1.07 %
L̄31 (GPa) 11.94 11.97 0.2 %
L̄32 (GPa) 11.73 11.75 0.16 %
L̄33 (GPa) 40.98 41.77 1.81 %
L̄44 (GPa) 5.44 5.56 2.02 %
L̄55 (GPa) 6.77 6.93 2.36 %
L̄66 (GPa) 6.55 6.71 2.29%
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3.4.3 Parametric analysis: Prediction of effective properties of heterogeneous ma-
terials with various ellipsoidal inclusions geometries and material properties

Through an illustrative example of a composite material, the excellent capability of the hybrid model
to predict some quantities as effective homogenized properties and local stresses has been highlighted in
the previous section. However, it is recalled here that for the case of inhomogeneities with cylindrical
geometry (fibers), an analytical solution of Eshelby’s tensor can be obtained. The previous example
is considered as a test case to evaluate the proposed hybrid model reliability. In this section, more
general cases where the numerical estimation of effective properties can be quite costly are investigated.
These cases correspond to heterogeneous materials with various shape of ellipsoidal inclusions and where
a numerical computation of Eshelby’s tensor is necessarily required. For this purpose, two parametric
analysis were performed to predict the heterogeneous material effective stiffness tensors using ANN-φ:

i) First, the effect of inclusions geometry on the effective properties is investigated by varying the
semi-axis ellipsoids ratios a1/a3 and a2/a3 in a range between 10−2 and 102. The mechanical properties
of the inhomogenities and the matrix are fixed to those of AS4 carbon fiber and Hercules 3501-6 epoxy
matrix mentioned in Table 3.2. The volume fraction of inclusions is kept at cf = 0.3. Figures 3.13 and
3.14 show a comparison between ANN-φ predicted effective stiffness tensor components and its numerical
estimations for various ellipsoid geometries.

ii) For the second parametric study, the geometry and mechanical properties of the inclusions are fixed
and matrix Bulk modulus K and Shear modulus µ vary from 103 Mpa to 105 Mpa. Similarly, the purpose
is to verify ANN-φ model reliability when predicting the homogenized behavior of an heterogeneous
material with different matrix mechanical properties. Figures 3.15 and 3.16 show a comparison between
ANN-φ predicted effective stiffness tensor components and its numerical estimations for different values
of K and µ.

It can be seen from figures 3.13,3.14,3.15 and 3.16 that effective stiffness tensor components are very
well predicted by the ANN-φ model for most configurations given the low value of residuals. It can also
be mentioned that the areas with high residuals in figures 3.15 and 3.16 correspond to configurations
where effective stiffness tensor components have near zero values, and therefore insignificant. Few specific
cases from figure 3.13 and 3.14 can be highlighted where the error is relatively large compared to other
configurations (around 10%). The main hypothesis to explain these discrepancies is the propagation of
errors. Eshelby’s tensors prediction errors, even of low values, can propagate during the computation of
the effective tensor which is a combination of each phase localization tensors. Moreover, the computation
of strain interaction tensor T from predicted Eshelby’s tensor S involves intermediate operations as
product or inverse of matrix which may induce a propagation and an amplification of the error. Hybrid
models can thus suffer from this phenomenon, hence the need to have accurate Neural Network models
to reduce this effect as much as possible.
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Figure 3.13: Comparison between ANN-φ predicted effective stiffness tensor components and its numerical
estimation for different ellipsoidal inclusions
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Figure 3.14: Comparison between ANN-φ predicted effective stiffness tensor components and its numerical
estimation for different ellipsoidal inclusions
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Figure 3.15: Comparison between ANN-φ predicted effective stiffness tensor components and its numerical
estimation for different matrix mechanical properties
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Figure 3.16: Comparison between ANN-φ predicted effective stiffness tensor components and its numerical
estimation for different matrix mechanical properties
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Table 3.4: Offline computational time

Offline computations ANN Training Time Database generation
Computational time 17 min 9.72 h

One of the main objectives of this study is computational time saving when computing the effective
properties of heterogeneous materials with many different phases. For both ANN-φ and numerical esti-
mations, figure 3.17 shows the evolution of required online computational time as a function of number
of inhomogeneities in the material. It can be observed that an increase in the number of material phases
N leads to significant computational times with a pure numerical approach. As for ANN-φ, running
time of the proposed model is almost insensitive to the number of inhomogeneities, resulting in a online
computational time savings by a factor of nearly 2000 for 104 phases in the heterogeneous material as
shown in figure 3.18. Thus, the ANN-φ model is efficient in terms of computational time savings as
well as its predictive capabilities. As for offline computations which include ANN training time and the
generation of 1 million samples, the results are presented in Table 3.4. It can be seen that the total offline
computational time is nearly 10 hours split between ANN training time and Database generation. At
the beginning, it is very common that databases creation and model’s training would take a significant
amount of time for the majority of deep learning problems. Once this phase is completed, the goal is to
use those models to quickly predict several quantities of interest. For instance, we recall that ANN-φ is of
utmost interest when parametric study of the microstructure (by varying ellipsoids geometry) or medium
mechanical properties are performed to predict the effective properties of the heterogeneous material.

Figure 3.17: Runtime comparison between ANN-φ
model and numerical estimations

Figure 3.18: Online computational time saving
factor as a function of number of phases
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3.4.4 Comparison between ANN − φ and ANN2 − φ

Figure 3.19: Architecture of ANN2 − φ : A hybrid model combining Artificial Neural Networks and
micromechanical homogenization using Mori-Tanaka scheme

It has been noticed in section 3.4.3 that the relative error between ANN − φ predicted values and
numerical estimations could reach values up to 10% for some configurations of heterogeneous materials.
Even if Neural Network model is very accurate in terms of predicting Eshelby’s tensors components,
propagation of errors can occur during the computation of the effective tensor L̄. We recall that L̄

depends on strain interaction tensor T . The latter is computed using the predicted Eshelby’s tensor (See
equation (3.8)) which involves some inverse operations that can be the source of error propagation. In
this section, the aim is to investigate the possibility of reducing the propagation of errors by training a
Neural Network directly on a strain interaction tensors Database T instead of Eshelby’s tensors S. For this
purpose, a new hybrid model ANN2−φ is introduced as shown in figure 3.19. ANN2−φ input parameters
are mechanical properties of isotropic matrix (K,µ), ellipsoidal inclusions geometric ratios (ar1/ar3, ar2/ar3)
and inhomogeneities transversely isotropic material properties (EL, ET , GLT , νTT , νTL). EL and ET are
longitudinal and transverse Young Modulus respectively, νTT , νTL are Poisson’s ratios for loading along
the longitudinal axis and transverse axis respectively and GLT is shear modulus. Note that ANN2 − φ

requires more input parameters, which substantially could complexify the training process. ANN2 − φ

model is trained on a strain interaction tensor database with 1 million samples. An hyperparameter
analysis has also been conducted for ANN2−φ model and it has been found that the couple of parameters
that minimize the validation error are an hyperbolic tangent for the activation function and a number
of hidden neurons fixed by [Ke & Liu 2008] which are the same couple of hyperparameters used to train
ANN − φ.
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Figure 3.20: Evolution of training and validation errors as a function of Epochs during ANN2−φ training

Figure 3.20 describes the evolution of training and validation NMSE during training phase. It is
observed that the obtained NMSE for training and validation data during the last Epoch are 4.6% and
5.03% respectively, which are higher values compared to the ANN−φ model where training and validation
errors were of the order of 10−2% and 10−3% respectively. After training phase, the model is evaluated
on the data set to check its prediction reliability. Figure 3.21 shows the correlation plots between ANN
predicted values and target values. For the majority of strain interaction tensor components, it can be
seen that the ANN predicted values are very well correlated with targets values. However, some important
deviations from the expected result can be noticed for some values of T31,T32 and T33. It is expected
that these discrepancies may impact the reliability of the entire hybrid model ANN2 − φ as propagation
of errors is more likely to occur in this case when computing the effective behavior of heterogeneous
materials.

To assess the predictive capability of the entire model, ANN2 − φ is used to predict the effective
stiffness tensor for a Random Oriented Composite material similar to the one studied in subsection
3.4.2. Figure 3.22 shows a comparison between composite effective properties obtained by ANN − φ,
ANN2 −φ models and by numerical estimation of L̄. We can notice major differences between predicted
and numerical estimated values. As described in Table 3.5, Relative Errors (RE) for the significant terms
of L̄ reached values up to 40% contrary to the obtained results with ANN − φ where RE did not exceed
4%.

This investigation showed that training Neural Network on a strain interaction tensors database do
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Figure 3.21: Correlation plots between ANN predicted values and target values for each strain interaction
tensor test component

not necessarily improve hybrid model performance and will conversely decrease the model accuracy and its
predictive capability. Several assumptions can be made to explain this results. First is the number of input
parameters of ANN2−φ is larger than the one in ANN−φ model. We recall that ANN2−φ depends on the
geometry of inclusions and both mechanical properties of matrix and inhomogenities (9 parameters for an
isotropic matrix and transversely isotropic inhomogenities), whereas ANN−φ model trained on Eshelby’s
tensor database depends only on matrix mechanical properties and ellipsoids geometry (3 parameters
for an isotropic matrix). Solving this problem in a 9 dimensional space is obviously more challenging
compared to a three dimensional space, and therefore a significant amount of data may be required to
improve the Neural Network reliability. The second assumption can be the behavior complexity of the
strain interaction tensor which depends on one hand on the inclusions geometry and matrix material
properties (Non linear term S(L0)−1 in equation 3.8) and on the other hand on the contrast between the
two materials defined by the term L− L0 in equation 3.8.

This investigation also demonstrated that ANN − φ model trained on Eshelby’s tensors database is
the most suitable for a reliable prediction of the effective behavior of heterogeneous materials. Another
advantage of the ANN−φ model is that inclusions properties are not fixed as Eshelby’s tensor only depends
on matrix mechanical properties, which gives freedom to evaluate the effective behavior of heterogeneous
materials with several inhomogenities properties from isotropic to anisotropic cases. Note that ANN2−φ

model is nearly 8 times faster than ANN−φ, but the obtained residual error RE2 values (See Table 3.5)
renders the ANN2 − φ model not suitable for practical engineers design applications.
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Figure 3.22: Comparison between ANN2−φ predicted effective stiffness tensor L̄ and numerical estimation
of L̄

Table 3.5: Comparison between ANN2 −φ, ANN−φ predicted effective stiffness tensors L̄NN2
ij and L̄NN

ij

respectively and numerical estimation of L̄ L̄Num
ij

Effective L̄NN2
ij L̄NN

ij L̄Num
ij RE1 =

∣∣∣∣ L̄NN
ij −L̄Num

ij

L̄Num
ij

∣∣∣∣ RE2 =

∣∣∣∣ L̄NN2
ij −L̄Num

ij

L̄Num
ij

∣∣∣∣
moduli

L̄11 (GPa) 19.29 21.51 21.82 1.42 % 11.56 %
L̄12 (GPa) 11.75 9.71 9.90 1.91% 18.73 %
L̄13 (GPa) 12.79 12.73 12.55 1.43 % 1.86 %
L̄21 (GPa) 11.47 9.87 9.95 0.80 % 15.26 %
L̄22 (GPa) 18.57 20.31 20.54 1.11 % 9.58 %
L̄23 (GPa) 12.35 12.38 12.41 0.24 % 0.49 %
L̄31 (GPa) 16.71 12.21 12.03 1.49 % 38.89 %
L̄32 (GPa) 16.63 12.03 11.78 2.12 % 41.19 %
L̄33 (GPa) 30.18 38.89 39.69 1.86 % 23.95 %
L̄44 (GPa) 3.78 5.76 5.98 3.67 % 36.78 %
L̄55 (GPa) 4.14 6.71 6.84 1.90 % 39.51 %
L̄66 (GPa) 4.10 6.66 6.79 1.91 % 39.54%
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3.5 Conclusions

In this study, the predictive capability of hybrid models for homogenization purposes is investigated.
Combining Artificial Neural Networks and micromechanical modeling, a hybrid model is proposed to
predict effective properties of heterogeneous materials. The ANN−φ model showed an excellent predictive
capability of various quantities related to homogenization such as the effective behavior of composite
structures or local stresses in different heterogeneous material phases. The robustness of this model comes
primarily from Neural Network’s reliability when predicting Eshelby’s tensors S. Throughout this study,
the obtained results with ANN−φ model are compared with numerical estimations which are often costly
in computational time. The use of a hybrid approach in this work provided a good compromise between
model’s reliability and computational time saving which estimated by a factor that can reach 2000 in the
case of a very large number of inhomogeneities in the heterogeneous material (104). However, for most of
practical applications, the computational time for even non optimized integration method is much faster
if the ANN training process is taken into account. It is further shown that the choice of the physical
quantity to be predicted by the ANN model should be selected wisely. Indeed, the avoidance of i) a large
number of Neural Network’s input parameters; ii) the prediction of a strongly non-linear response and
iii) the presence of strong contrast in output data should always be considered. The usefulness of hybrid
approaches combining ANN and micromechanical based modeling is here attested as a potential efficient
and reliable tool to deal with homogenization problems. If the current investigations are performed on
elastic materials without considering any mechanical properties change over time, such method would find
very interesting applications in the numerical investigation of damage of heterogeneous materials. For
instance, the computation of the stiffness reduction within the matrix that could be due to the appearance
of cracks within the matrix could are often represented by penny-shape ellipsoid with an aspect ratio that
may evolve within time, as it has been shown that the crack shape and orientation influences the stiffness
tensor components [Praud et al. 2017]. Hybrid AI-physics micromechanical models would find interesting
applications in downscaling multiscale simulation of Fiber reinforced Composites, especially considered
injected or molded parts where the microstructural arrangement of reinforcements would differ depending
on the position. A straightforward application is the determination of fatigue damage criteria of composite
structures based on local stress criteria (e.g. the interfacial stress between the reinforcements and the
matrix) considering a complex loading case of a structural part simulated using Finite Element Simulation.
Such methodology has shown strong prediction capabilities [Bidaine et al. 2015], but requires an intense
computational time. The proposed approach would allow to drastically reduce the computational time
in such situations. Perspectives of the proposed work include the investigation of the benefits of such
methodology in the two presented applications.

This first study performed in a context of heterogeneous materials homogenization constitutes a proof
of concept of the employment of hybrid methods for multi-scale modeling. Inspired by the approach
adopted in this chapter, where micromechanical models were combined with multilayer perceptron neu-
ral networks to estimate homogenized properties with mean-field methods, the next step of this work
proposes to extend this methodology to address more complex problems, thus pushing further the achiev-
able performances of such approaches. Therefore, the next chapter of this manuscript aims to combine
Recurrent Neural Networks with full-field methods such as FE2 to accelerate numerical simulations of
non-linear heterogeneous materials and more specifically of architectural materials under complex loading
conditions.
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4.1 Introduction

The new industrial constraints are nowadays pushing the limits of materials in terms of mechanical
properties for advanced application fields (renewable energy, healthcare, transport). One solution to
adapt the material properties to specific application, is to rely on architectured structures that can be
manufactured from additive process. The design of such structures can be challenging given the complexity
of material mechanical responses when multiple physical mechanisms are involved at different length
scales. Consequently, the evaluation of the resulting mechanical behaviors requires powerful numerical
tools capable of solving highly non-linear multiscale problems. Among those computational models,
the Finite Element and FFT methods have been extensively developed in the literature for multiscale
structural analysis. However, it is very common that the numerical simulations with finite element analysis
requires high computational costs especially when the microstructure is taken into account and non-linear
material behaviors are occurring. To overcome this challenge, multilevel homogenization schemes such as
the FE2 method developed by Feyel [Feyel 1999, Feyel 2003] are commonly used. The FE2 method, based
on periodic homogenization theory, consists on associating a unit cell representing the Representative
Volume Element (RVE) to each Gauss integration point. The estimation of the overall behavior at the
macroscale is then performed by finite elements computations at the microscale. This multiscale approach
has been used for instance by Tikarrouchine et al [Tikarrouchine et al. 2018, Tikarrouchine et al. 2019]
to determine the macroscopic mechanical response of composite materials exhibiting non linear elasto-
viscoplastic and thermo-viscoplastic behaviors. Although the FE2 method can contributes to reduce the
required computational time compared to direct numerical simulations, the employment of such modeling
strategy remains in most cases computationally expensive due to the treatment of material non-linearities
such as plasticity and damage.

In the present chapter, we propose to develop a numerical modeling strategy using deep neural net-
works in order to overcome the aforementioned restrictions and difficulties related to multiscale modeling
of heterogeneous materials. Based on the previous chapters of this manuscript, machine learning ap-
proaches and more specifically artificial neural networks have demonstrated their strong capabilities as
powerful and efficient surrogates capable of capturing material highly non-linear mechanisms as well as
drastically reducing simulation time costs. Therefore, the main objective of this study would be to extend
and adapt ANN based methods for multiscale simulations of non-linear architectured materials. Figure
4.1 describe the overall modeling strategy for multiscale simulations of architectured structures using
deep neural networks. First, a training phase on architectured mesostructures is performed to predict
the homogenized mechanical responses at the meso scale. A variety of parameters can be considered
as model’s inputs such as the geometry of the architectured material, mechanical properties or loading
history. Then, a mesostructure is associated to each macroscopic material point (or Gauss integration
point) whose characteristics may vary depending on the inputs mentioned above. The ANN based model
is then applied to predict the homogenized response of each unit cell which is used afterwards to obtain
the macroscopic behavior of the architectured structure in a rather fast way, this process is repeated until
the global equilibrium of the structure is reached. This approach can be considered as a new paradigm
of heterogeneous materials multiscale simulation where the resolution of the micro problems with tradi-
tional methods is no longer required but replaced by deep neural networks, thus resulting in a significant
computational cost savings in terms of execution time and computing resources (memory and CPU).
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Figure 4.1: Multiscale modeling strategy of architectured structures using deep neural networks

While the general idea behind the incorporation of AI based approaches in multiscale frameworks
is described in figure 4.1, specific considerations need to be addressed regarding the choice of the most
suitable neural network architectures. According to the study conducted in chapter 2, the robustness
of Recurrent Neural Networks has been highlighted as a reliable surrogate capable of handling path de-
pendant behaviors. While chapter 2 was only focused on modeling non-linear mechanical behaviors of
material points using RNN based models, the present chapter proposes to extend this reasoning to archi-
tectured structures under complex loading conditions (multi-axial and non proportional loading paths).
As presented in the state of art chapter, some contributions based on multi layer perceptrons architectures
have also been applied in a computational homogenization framework to accelerate multiscale simulations
[Le et al. 2015, Lu et al. 2018, Minh Nguyen-Thanh et al. 2020]. However, we recall that aforementioned
studies were limited to non-dissipative materials under proportional loading paths, thus leading to a sig-
nificant simplification of the problem. The present work differs from the previous studies in terms of the
employed ANN architecture where RNN are used instead of MLP to take into account the loading history
of dissipative architectured structures.

The fourth chapter of this manuscript is structured as follows: In section 4.2, a brief introduction to
the design, properties and application fields of architectured materials is presented. Then, the theoretical
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framework of periodic media computational homogenization and the basic principle of the multilevel
finite element method (FE2) are recalled. The main objective of section 4.2 is to establish the theoretical
foundations behind multiscale modeling approaches whose principles constitute the core of computational
homogenization even when combined with deep neural networks. Section 4.3 presents the design of FE-
LSTM: an approach that combines the FE method and LSTM neural networks for architectured structures
multiscale modeling. The entire workflow of FE-LSTM model from database generation, hyperparameters
selection, training to validation is detailed in this section. Afterwards, the application of FE-LSTM
model to the multiscale analysis of architectured structures in real life condition is illustrated in section
4.4. Several examples of 3D architectured structures are considered and the obtained results with FE-
LSTM model are compared with the FE2 approach in terms of accuracy and computational costs savings
(execution time, required memory, CPU usage). In section 4.5, we present a first attempt of using multi-
inputs neural networks architectures combining convolutional neural networks and multilayer perceptrons
to predict the effective properties of architectured materials. This investigation provide a first insight
of the achievable capabilities of multi-inputs neural networks that takes into account data of different
natures (images, continuous numerical data, discrete numerical data). Finally, some concluding remarks
are given in section 4.6.

4.2 Theoretical framework of computational homogenization

4.2.1 Architectured materials - A brief introduction

According to the definition of Michael Ashby [Ashby 2013], the term architectured materials refers to
the association of a multitude of materials, or of a unique material and space (geometry), designed in a
smart way to possess attributes that cannot be achieved by the constituents alone. This hybridization
process allows to expand materials property spaces by filling the empty gaps in Ashby plots [Ashby 1999].
As shown from figure 4.2 of Young’s modulus - density space chart, filling the "holes" areas enables to
design lightweight structures with high mechanical performances, therefore pushing the limits of using
multifunctional materials for advanced industrial application while minimizing production costs. Ar-
chitectured materials encompasses particulate and fibrous composites, woven and sandwich structures,
foams and architected cellular materials including strut-based lattices and Triply Periodic Minimal Sur-
faces (TPMS) based lattices. Figure 4.3 shows some examples of architectured cellular materials such as
octet-truss, hexagonal honeycomb lattices, TPMS gyroid and spherical gyroid. Architectured materials
can also be categorized according to their mode of spatial organization. The associated microstructures
are divided into two major categories: periodic and stochastic. Periodic microstructures are defined by
a regular unit cell that is reproduced in a two-dimensional or three-dimensional spaces. Periodic archi-
tectured structures such as octet truss lattices structures are represented by the dimensions and shapes
of their elementary cells. Stochastic microstructures such as foams are designed with random cell shapes
that cannot be characterized by a generic pattern, but by a statistical averages of these shapes. In sum-
mary, the use of architectured materials in structures design allows to overcome the challenges related to
mass minimization and production costs optimization while ensuring very high levels of requirements in
terms of mechanical performance. They are particularly useful for the creation of new types of materials
with interesting properties such as auxeticity [Dirrenberger et al. 2011] or for designing structures where
the requirements in terms of mechanical properties and stiffness have already been achieved but with less
material. Therefore, the development of this type of technology is crucial and essential for the industry
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of the future.

Figure 4.2: Ashby’s material selection chart of Young’s modulus - density [Ashby 2013]

Figure 4.3: Some examples of cellular architectured materials including strut-based lattices and TPMS
based lattices. Source : https://github.com/3MAH/microgen

https://github.com/3MAH/microgen
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Architectured materials are currently used in various fields of application, particularly in the automo-
tive, aeronautics and biomechanics industries. In the field of transportation, one of the main objectives
would be a to decrease part’s mass in order to reduce energy consumption. By optimizing specific perfor-
mances, the use of architectured materials has also a favorable environmental impact in terms of energy
efficiency induced by the lightening of structures. Another interesting feature of certain types of materials,
such as foams, is their ability to absorb energy during collisions and to modulate vibrations amplitudes.

In biomechanics, the current solutions to design bone prosthesis are based on metal alloys such as
titanium. These alloys exhibit excellent corrosion and fatigue resistance capabilities as well as a good
strength/weight ratio. However, clinical experiments have shown interface problems. In fact, the contact
between the bone and the prosthesis is affected by a significant local stress gradient due to the incompat-
ibility of their mechanical responses. This phenomenon induces a reabsorption in the bone, which causes
the failure of the prosthesis. Lattice-type architectured materials are an interesting alternative of this
type of application [Coelho et al. 2011, Fernandes et al. 2012]. They provide the appropriate porosity
used for biological functions such as the transport of nutriments, mechanical strength of bone tissue and
mechanical biocompatibility. Therefore, prostheses designed with gradient based properties architectured
materials (Figure 4.4) ensure prosthesis stability and compatibility with bone tissues.

Figure 4.4: An illustration of a hip implant with a gradient based properties architectured structure.
Source: https://www.orlandoortho.com/anterior-approach-total-hip-replacement-surgery-2/

4.2.2 Periodic homogenization for heterogeneous media

Homogenization techniques consists in identifying a global mechanical behavior at the macroscopic
scale i.e the effective mechanical response given the microstructure characteristics (mechanical properties,
geometry, size, orientation, volume fraction, constitutive laws). As shown in figure 4.5, the objective is to
define an equivalent homogeneous medium having an identical average mechanical response (stress and
strain fields) to the heterogeneous structure.

https://www.orlandoortho.com/anterior-approach-total-hip-replacement-surgery-2/
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Figure 4.5: Schematic representation of the homogenization principles

An heterogeneous medium is considered triply periodic when it is defined by a repeating unit cell
representative of the microstructure in all spatial directions. The theory of periodic homogenization is
valid provided that scale separation conditions between the microscale and macroscale are verified. At
the microscale, an RVE can be defined as a material volume sufficiently large enough to be statistically
representative to the microstructure. At the macroscale, the structure is considered as a virtual homo-
geneous medium where each macroscopic material point can be associated to a RVE. The assumption of
scale separation is valid as long as the characteristic size of the unit cell (microstructure) is several orders
of magnitude smaller than the dimensions of the macrostructure.

As defined by [Hill 1967], the connection between the macroscopic quantities (σ̄, ε̄) and their micro-
scopic counterparts (σ, ε) is obtained through volume averaging over the RVE Ω of volume V :

σ̄ = ⟨σ⟩ = 1

V

∫
Ω
σdV, (4.1)

ε̄ = ⟨ε⟩ = 1

V

∫
Ω
εdV. (4.2)

Under small strain theory assumptions, average stress and average strain theorems state that the stress
and strain averages within the RVE are equal to the applied uniform traction and linear displacement on
its boundary respectively. These theorems can be proven using the divergence theorem.

The average stress theorem can be stated as follows: Considering that a traction vector t(x) = σ0·n(x)
is applied at each material point x of the RVE boundary ∂Ω, with n(x) the outward normal vector to



Chapter 4. Accelerating Multiscale simulations of architectured materials using Deep
Neural Networks 106

∂Ω, then the volume average of stress inside the RVE is given by:

1

V

∫
Ω
σdV = σ0 (4.3)

A stress field σ satisfying this condition is defined as "statically admissible" [Nguyen 1988].

The average strain theorem can be stated as follows: Considering that a linear displacement vector
u(x) = ε0 · x is applied at each material point x of the RVE boundary ∂Ω, then the volume average of
strain inside the RVE is given by:

1

V

∫
Ω
εdV = ε0 (4.4)

A strain field ε satisfying this condition is defined as "kinematically admissible" [Nguyen 1988].

Assuming that the boundary ∂Ω of a periodic RVE is subjected to periodicity conditions, meaning
that the displacement field u (x) of any material point with a position vector x can be expressed by an
affine part ε̄ · x and a periodic fluctuating displacement field ũ:

u (x) = ε̄ · x+ ũ. (4.5)

The periodic fluctuating quantity ũ remains the same for each pair of opposite nodes on the RVE
boundary. As shown in figure 4.6, the displacement field of two opposite nodes i and j with a position
vector x+ and x− respectively is expressed as:

u
(
x+

)
= ε̄ · x+ + ũ (4.6)

u
(
x−) = ε̄ · x− + ũ (4.7)

In that case, each pair of opposite nodes are linked by the following kinematic equation [Suquet 1987]:

u
(
x+

)
− u

(
x−) = ∇u ·∆x, (4.8)

which reduces to Eq. 4.9 under small strains:

u
(
x+

)
− u

(
x−) = ε̄ · (x+ − x−), (4.9)

Given the aforementioned periodicity conditions, the volume average of the strain inside the RVE is
expressed by:

1

V

∫
Ω
εdV = ε̄ (4.10)

The mechanical energy equivalence between the microscopic and the macroscopic scales is obtained by
Hill-Mandel lemma [Hill 1967]. Considering a kinematically admissible strain ε and statically admissible
stress σ, this fundamental theorem states that micro-macro energy equivalence

⟨σ : ε⟩ = ⟨σ⟩ : ⟨ε⟩ = σ̄ : ε̄, (4.11)
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is satisfied as long as one of the following conditions are verified on the boundary ∂Ω of the RVE:
uniform tractions, linear displacements and periodicity conditions.

Hill-Mandel lemma allows to properly define an "equivalent homogeneous medium" with an effective
stiffness C̄ = ⟨C⟩ as expressed by Eq.4.12 which uses Eq.4.11:

⟨ε : C : ε⟩ = ⟨ε⟩ : ⟨C⟩ : ⟨ε⟩ = ε̄ : C̄ : ε̄ (4.12)

Figure 4.6: Schematic representation of two opposite nodes at the boundary of an octet-truss RVE

In summary, the determination of the effective behavior of an heterogeneous material with periodic
homogenization techniques relies mainly on two steps: a localization step where adapted boundary con-
ditions (especially periodic conditions) are applied on the RVE and an homogenization step where the
macroscopic response is obtained through volume averaging. These two steps repeated at each time step
allows to establish the constitutive relationship between the macroscopic stress σ̄ and the macroscopic
strain ε̄. This procedure will be detailed in the next section in the context of the multilevel finite element
method FE2.

4.2.3 Multilevel finite element method (FE2)

To compute the effective non-linear response of heterogeneous structures while taking into account
microstructures mechanical behavior, multilevel homogenization schemes such as the FE2 method is
commonly applied [Feyel 1999, Feyel 2003]. This approach, based on periodic homogenization theory,
consists on solving the micro and macro problems simultaneously through localization and homogenization
principles. The governing micro macro problem set of equations and scale coupling are summarized in
4.1 and 4.2 respectively. As shown in figure 4.7, first an RVE is associated to each macrostructure
Gauss integration point, then localization is performed to solve the periodic boundary value problem
at the microscopic scale providing the RVE geometry and local constitutive equation, and finally the
homogenization step is applied to obtain the macroscopic response. The main advantage such approach
lies in the fact that an explicit form of the macroscopic constitutive law is not required while solving
the macro problem, the relationship between σ̄ and ε̄ is established solely through scale transition by
computing the appropriate average quantities and the macroscopic tangent operators.
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Figure 4.7: Schematic representation of the micro-macro scale transition in FE2 method

Table 4.1: Microscale and macroscale governing set of equations

Control equations Macroscale problem Microscale problem

Equilibrium div σ̄ + b̄ = 0 divσ = 0

Kinematics ε̄ = 1
2

(
∇ū+ t∇ū

)
ε̄ = 1

2

(
∇u+ t∇u

)
Stress-Strain ∆σ̄ = C̄tan : ∆ε̄ ∆σ = Ctan : ∆ε

incremental constitutive law

Table 4.2: Scale coupling set of equations

Control equations Scale coupling

Periodic boundary conditions ∆u+ −∆u− = ∆ε̄ · (x+ − x−)

Homogenization σ̄ = ⟨σ⟩ = 1
V

∫
Ω σdV
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The resolution of non-linear multiscale problems with FE2 method is traditionally done in an in-
cremental way using implicit resolution schemes such as Newton-Raphson at both scales. Figure 4.8
illustrates the key steps to compute incrementally the macroscopic fields using the concept of periodic
homogenization. At each time step (n), the local equilibrium problem is solved for every macroscopic
Gauss integration point where an unit cell is associated. The macroscopic strain increment ∆ε̄ and
periodic boundary conditions are applied to the RVE (localization step). Then, the BVP problem is
iteratively solved using FE method and the microscopic quantities

(
ε(n), σ(n), ζn

)
are updated for each

microscopic Gauss point.
(
ε(n), σ(n)

)
are the micro strain and stress at the time step n respectively, ζn

is the set of internal state variables at the time step n. Finally, the macroscopic stress σ̄(n+1) is com-
puted through volume averaging of the microscopic stresses (homogenization step) and the incremental
macroscopic tangent operator C

(n+1)
tan is obtained with perturbation techniques for example. Once the

macroscopic quantities (σ̄(n+1),C(n+1)
tan ) are calculated, the global equilibrium is checked. If the macro-

scopic convergence is not satisfied, a new macro strain increment ∆ε̄
′ is provided by the FE solver and

the local problem is solved once again. This process is performed until numerical convergence is achieved
at both scales. In that case the multiscale analysis proceeds to the next time increment (n+ 1).

Figure 4.8: Schematic representation of the FE2 key steps while solving multiscale problems incrementally

Although the FE2 can be considered as an attractive alternative compared to direct FE simulations
on fully meshed heterogeneous structures, it is clear that this modeling strategy also suffers from some
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limitations given many factors. As described in the above mentioned FE2 procedure, non-linear problems
are solved for both the micro and macro scales using iterative schemes. This process is usually expensive
due to the treatment of material non-linearities. In addition, other considerations may increase this com-
putational time including the number of Gauss integration points, the complexity of loading conditions,
the number of iterations and the meshing resolution of the RVE. Therefore, all these parameters may
sometimes prevent this approach from being efficiently applied to structural analysis [Lange et al. 2021].
In the next section, we propose to develop a new numerical modeling strategy using a deep neural networks
based method (FE-LSTM) in order to overcome the aforementioned restrictions.

4.3 FE-LSTM: A multiscale approach combining the FE method and
LSTM neural networks for heterogeneous structures modeling

4.3.1 FE-LSTM architecture design

The purpose of the present work is to elaborate a novel modeling strategy to accelerate multiscale
simulations of heterogeneous structures using deep neural networks. The developed approach, called FE-
LSTM, combines the finite element method and an LSTM recurrent neural network to solve multiscale
problems. The principle of this methodology is to treat the microscopic and macroscopic problems
separately: Unlike the FE2 method, the FE resolution of the microscopic problems is no longer required
and the computation of the RVE effective response is predicted by an LSTM trained on a database of
offline micro computations. Using the predicted macroscopic fields, a finite element analysis is conducted
to verify the global equilibrium at the macroscale, this process is then performed until the achievement
of numerical convergence. From the above description of FE-LSTM, it is obvious that the approach is
heavily inspired by the FE2 method as it mostly rely on the same workflow. However, the main advantage
of FE-LSTM lies in the massive computational time savings when solving the microscopic problems. This
performance can only be achieved with a reliable surrogate such as deep neural networks. Based on
the studies conducted in chapter 2, the robustness of LSTM have been highlighted as a powerful tool
capable of handling path dependent behaviors and accurately capturing complex and highly non-linear
behaviors, hence the employment of such architecture to approximate the effective material responses in
this multiscale framework.

The general workflow of the FE-LSTM approach is summarized in figure 4.9, this illustration describe
the key steps to compute the macroscopic fields incrementally. First, an RVE is associated to all Gauss
integration points. The macroscopic fields

(
ε̄(n), σ̄(n)

)
are known at the time increment (n), a macro

strain increment ∆ε̄ is then applied to the unit cell. ∆ε̄ is added to ε̄(n) to compute ε̄(n+1) which is the
input of the LSTM neural network. As shown in figure 4.10, the corresponding architecture is a Stacked
LSTM composed of two LSTM layers and a dense layer at the end. This neural network takes ε̄(n+1) as an
input, then stores the material mechanical state in its memory gate, updates the input gate, forget gate,
output gate, values to compute the next hidden state which is contains the effective stress and tangent
operator

(
σ̄(n+1),C

(n+1)
tan

)
. Using these predicted quantities for all the Gauss integration points, the

global equilibrium is checked using a FE analysis. Similarly to the FE2 approach, if the convergence test
is not successful, a new macro strain increment will be provided by the FE solver and new macroscopic
fields will be predicted by the LSTM model. This process is performed until the satisfaction of numerical
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convergence and then the multiscale analysis proceeds to the next time increment.

Figure 4.9: FE-LSTM general workflow to compute the effective mechanical response of non-linear het-
erogeneous structures

Figure 4.10: Stacked LSTM Neural Network architecture to predict the homogenized response of the RVE
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4.3.2 Architectured materials database generation

The calibration of the LSTM model parameters requires an offline training phase involving a database
of numerical simulations on the RVE. Before proceeding to the description of the database generation
strategy, some clarifications needs to be addressed regarding the main hypothesis of this study. First, the
microstructure geometry is similar everywhere in the macrostructure, so that the same RVE is associated
to all Gauss integration points. The corresponding microstructure is an octet-truss architectured material
whose geometry and periodic mesh are illustrated in figure 4.3.2. The geometrical and mechanical prop-
erties of the constitutive material which is a titanium alloy Ti-6Al-4V are summarized on table 4.3. The
non-linear microscopic constitutive equation is an elastoplastic law with isotropic hardening. Therefore,
the only varying parameters while conducting RVE simulations is the applied loading conditions which
are characterised by the evolution of the macroscopic strain tensors ε̄(n).

Table 4.3: Mechanical properties of titanium alloy
Ti-6Al-4V and geometrical properties of the consid-
ered octet truss

Material parameter Value
Young’s modulus E 113800 MPa
Poisson’s ratio ν 0.34
Yield Stress σY 1000 MPa
Hardening parameter H 1600 Mpa
Plastic hardening exponent n 0.5
External cylinders radius Re 0.1
Internal cylinders radius Ri 0.05

Figure 4.3.2: Geometry and mesh of the octet
truss RVE (Number of nodes: 1694, Number

of elements: 8284)

The adopted strategy to generate the database D is described as follows: 10000 samples of micro-
scopic RVE simulations, subjected to periodic boundary conditions and to multi-axial and non propor-
tional loading paths, are generated using a finite element software Fedoo which relies on the Simcoon
library to solve the constitutive equations [Prulière & Chemisky 2022]. The necessary resources to ex-
ecute the simulations were provided by the computing facilities MCIA (Mésocentre de Calcul Intensif
Aquitain) of Université de Bordeaux. The applied loading conditions on RVE boundaries are three-
dimensional and can be expressed in terms of the six components of the macroscopic strain tensor
ε̄(n) = [ε̄

(n)
11 , ε̄

(n)
22 , ε̄

(n)
33 , ε̄

(n)
12 , ε̄

(n)
13 , ε̄

(n)
23 ]. To generate non-proportional loading paths, the total number of

time steps, which is fixed at 100, is divided into 4 steps of 25 increments. This number of increments
which is smaller than the one used to generate the database in Chapter 2 results in a compromise be-
tween a reasonable computational time, a good convergence of the Newton Raphson algorithm (too big
increments can leads to convergence difficulties) and a sufficient number of time iterations for an efficient
training. Each step is linear and the bounds values of each macroscopic strain are chosen randomly
from the interval I = [−5%, 5%]. Figure 4.11 shows some examples of 3D loading path configurations
used as training data. Some results of unit cells finite element computations are illustrated in figure
4.12: the associated microscopic fields are subsequently homogenized to obtain the macro fields. Finally,
the database D is constructed using the set of macroscopic quantities (ε̄, σ̄,Ctan) which are fed as time
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sequences to train the LSTM model. As usually, D is split into a training set T (90% of total samples),
a validation set V (20% of T ) and a test set T (10% of total samples).

Figure 4.11: Examples of multi-axial and non proportional loading conditions for RVE finite element
simulations

Figure 4.12: Examples of simulated octet-truss using FE analysis, the corresponding homogenized fields
are used as training data

4.3.3 Model training phase and hyperparameters selection

Following the database generation and features scaling, the next step is the training process of LSTM
models. For this purpose, two LSTM models have been created to predict separately each quantity of
interest, i.e the macroscopic stress σ̄ and the macroscopic tangent stiffness Ctan. This approach is much
more practical than creating the same model to predict both quantities as they are of different nature, and
thus capturing the non-linear behaviors may require different parameter adjustments dependant on the
complexity of each model. Models implementation was carried out using Keras library [Chollet et al. 2015]
and Tensorflow API [Abadi et al. 2015]. Six different configurations of LSTM architectures were tested
by varying three activation functions (ReLU, Hyperbolic tangent and Sigmoid) and the number of LSTM
layers. This hyperparameter study aims to identify the most reliable model that minimizes training and
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validation errors. The common Mean Squared Error (MSE) was employed as a loss function and Adam
(optimizer with adaptative moment) was used as an optimization algorithm.

Figure 4.13: Evolution of training (left figure) and validation errors (right figure) for the tested LSTM
configurations (Prediction of the macroscopic stress)

Table 4.4: Evaluation of LSTM configurations training and validation performances for the macroscopic
stress-strain responses prediction

ANN Number of hidden Output layer Training Validation loss
Configuration LSTM layers activation function loss NMSE (%) NMSE (%)

Config 1 2 Relu 0.011 % 0.009 %
Config 2 3 Relu 0.007 % 0.006%
Config 3 2 Sigmoid 0.013 % 0.011 %
Config 4 3 Sigmoid 0.009 % 0.008 %
Config 5 2 Hyperbolic tangent 0.013 % 0.013 %
Config 6 3 Hyperbolic tangent 0.011 % 0.010 %

For the prediction of macroscopic stress tensors, the evolution of training and validation Normalized
Mean Squared Error (NMSE) metric are shown in figure 4.13 for all the six tested configurations. It
can be noticed from the corresponding graphs that the learning process is achieved rapidly regardless
of the choice of the activation or the number of LSTM layers. A significant decrease in the errors is
observed during the first epochs, followed by a loss stabilization after nearly 20 epochs. The minimum
values of training and validation loss obtained through all the learning process are summarized in table
4.4. We can observe that the error values are almost the same for all configurations (order of magnitude
of 10−2%). Furthermore, these low error values are an evidence that the model has achieved excellent
training performances. Even though different activation functions and number of LSTM layers can be



Chapter 4. Accelerating Multiscale simulations of architectured materials using Deep
Neural Networks 115

used to approximate the macroscopic stress-strain response, the first configuration has been chosen to
fix model hyperparameters. This choice is justified by the following reasons: First, two LSTM layers
instead of three are sufficient to obtain a good approximation. An increase of number of layers does
not necessarily improve model performance. In addition, the prediction of the quantities of interest is
much faster using a small number of layers, which is consistent with the objectives of the study. For
the activation function selection, the Rectified Linear Unit ReLU is computationally more efficient in
backpropagation compared to Sigmoid and Hyperbolic tangent functions as it only takes the maximum
between the input and zero value. The required training time with ReLU is nearly three times faster
than training with Sigmoid or Hyperbolic tangent. Furthermore, ReLU activation is more suitable for
overcoming vanishing gradient problems, thus allowing LSTM models to learn faster and perform better.

Figure 4.14: Evolution of training (left figure) and validation errors (right figure) for the tested LSTM
configurations (Prediction of the macroscopic tangent matrix)

Table 4.5: Evaluation of LSTM configurations training and validation performances for the tangent matrix
predictions

ANN Number of hidden Output layer Training Validation loss
Configuration LSTM layers activation function loss NMSE (%) NMSE (%)

Config 1 2 Relu 0.41 % 0.42 %
Config 2 3 Relu 0.39 % 0.40 %
Config 3 2 Sigmoid 0.72 % 0.72 %
Config 4 3 Sigmoid 0.51 % 0.51 %
Config 5 2 Hyperbolic tangent 0.53 % 0.55 %
Config 6 3 Hyperbolic tangent 0.42 % 0.44 %

Regarding the training process on macroscopic tangent operators, the same observations apply to
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this model about the loss evolution and the errors order of magnitude being almost the same for all
configurations. However, it can be noticed that the resulting errors are much larger compared to the
values obtained with the previous model. This disparity can be explained by certain assumptions, the
first one being the complexity of the non-linear behavior of the tangent operators. Secondly, the number
of the predicted outputs (21 components of the symmetric part of the tangent matrix) is much higher
than the number of macroscopic stress components. When the number of outputs is large, it is very
common to experience overfitting problems, which are induced by the fact that the model tends to
attribute certain attention (larger weights) to some neurons associated to specific outputs compared to
the others. Finally, the numerical noise resulting from the computation of tangent operators (especially
for the insignificant components) can also be a cause of error amplification. However, it is important to
note that training and validation error values regarding this quantity of interest are still very low (0.4%
for the first configuration), thus not having a significant effect on the model’s reliability.

4.3.4 Prediction of the macroscopic mechanical behavior of Octet-Truss structures

In order to evaluate the performance and the generalization capabilities of LSTM models, it is crucial
to verify their predictive accuracy on the test dataset T . We recall that this batch of data (10% of
total samples) was never employed during the training phase, hence it is a good indicator to determine
if the model suffers from potential overfitting. Figure 4.16 present an example of the LSTM predicted
macroscopic stress-strain response in comparison to the corresponding RVE finite element solution under
a multi-axial and non proportional loading path shown in figure 4.15. The obtained results in this example
shows an excellent agreement between the predicted macroscopic stress components and the target values.
The model assess a strong capability to capture the non-linear responses despite the complexity of the
loading condition. In addition, it can be seen from figure 4.16 graphs a complete absence of numerical
noise during a change of direction in the stress-strain curves, which is advantageous for the convergence of
multiscale simulations. To quantify the model’s accuracy on the entire test data samples, we use the Mean
Absolute Percentage Error (MAPE) metric expressed by Eq.4.13. The resulting MAPE for the prediction
of macroscopic stress-strain responses is found to be equal to 0.27%. As a consequence the LSTM model
achieved a very high accuracy rate (≈ 99%). This finding emphasizes once again the potential of RNN
based models as reliable surrogates capable of capturing history dependant non-linear behaviors. This
preliminary outcome is very encouraging for the next step of this study where LSTM shall be integrated
in a multiscale approach within the FE-LSTM framework.

MAPE =
1

N

N∑
k=1

∣∣∣y(k)true − y
(k)
p

∣∣∣
|y(k)true |

× 100 (4.13)

- y(k)
true : Target values

- y(k)
p : Predicted values

- N : Total number of test samples
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Figure 4.15: The applied multi-axial and non proportional loading path on RVE boundaries for an example
of test data

Figure 4.16: LSTM predicted macroscopic stress-strain response in comparison to the RVE FE simulation
for an example of test data

We also assess the reliability of the second model for the prediction of macroscopic tangent matrix
Ctan. A good evaluation of the tangent operators is critical for the computation of non-linear hetero-
geneous structures within Newton-Raphson framework. Figure 4.17 illustrates the comparison between
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tangent modulus components predictions and the target values from simulation for an example of test
data. We can observe from this example a good correspondence between the two quantities, the general
trend of the tangent moduli components is well captured by the LSTM during all the time steps. However,
the level of accuracy obtained for this quantity of interest is not as high as the precision achieved for the
stress components, which is completely expected given the discussion in the above subsection 4.3.3. In
addition, it can be noticed from figure 4.17 graphs a presence of small noise especially in the first time
increments, we can assume that vanishing gradient phenomena is potentially manifested in this area.
Nevertheless, it is important to note that these errors do not have a large influence on the overall model
reliability, the evidence is that the obtained MAPE on the test data samples is equal to 2.57%, which is
still a low value.

Figure 4.17: LSTM predicted macroscopic tangent matrix components in comparison to the RVE FE
simulation for an example of test data (Only the symmetric part and the significant components are
showed)

To conclude this section, we have presented the general framework of the FE-LSTM approach which
consists in replacing the FE resolution of the microscopic problem by an LSTM surrogate. This approach
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aims at accelerating multiscale simulations of non-linear heterogeneous structures. In the next section,
we propose to apply this approach for the structural analysis of 3D architected structures in real life
conditions. Since the RVE loading states are a priori unknown during multiscale simulations, the challenge
that arises is whether LSTM models have the ability to generalize the macroscopic behavior when the
RVE are subjected to loading paths that are not necessary based on linear steps employed in the training
process.

4.4 Applications of FE-LSTM model in multiscale analysis of 3D archi-
tectured structures

4.4.1 First validation test: Standard architectured specimen under tensile loading

In this first example, we propose to evaluate the FE-LSTM approach on a 3D architectured structure.
For this purpose, a standard specimen subjected to uniaxial tensile loading is considered as a validation
test. The macrostructure geometry, mesh and boundary conditions are presented in figure 4.18. The
specimen is meshed using 4-node tetrahedral elements TET4 with 4 Gauss integration points per element
and the entire mesh consist of 5100 Gauss points. For the microstructure, the same octet-truss used
during the training phase of LSTM models is considered as the RVE. The numerical implementation of
the FE-LSTM approach was performed in Python using a dedicated script that was integrated with Fedoo
finite element code [Prulière & Chemisky 2022]. The incorporation of LSTM models as a surrogate of the
macroscopic constitutive law is done in a similar way to the User Material subroutines in FE codes. Once
the LSTM training phase is completed, the corresponding trained weight matrices and bias vectors are
saved for each LSTM cell gates. These quantities are then used to compute incrementally the macroscopic
response within the LSTM framework by updating the appropriate cell gates and memory. Finally, the
predicted outputs are processed by Fedoo FE solver and the structure global equilibrium is verified using
Newton-Raphson iterative scheme. This process is executed until the convergence of the solution.

Figure 4.18: Geometry, mesh and boundary conditions of the tested architectured specimen under tensile
loading
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Figure 4.19: Comparison between the macroscopic stress fields σ̄ obtained by FE2 and by FE-LSTM of
a standard architectured specimen under tensile loading
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The FE-LSTM approach is applied to compute the effective mechanical behavior of the architectured
specimen under tensile loading. The same multiscale simulation is conducted using a concurrent FE2

method in order to validate the developed approach. Figure 4.19 illustrates the distribution of the
macroscopic Von Mises stress σ̄VM , normal stress (σ̄XX , σ̄ZZ) and shear stress σ̄XZ obtained by FE2

and FE-LSTM. First of all, we would like to point out that the simulation convergence analysis has
been achieved using the same Newton-Raphson tolerance as the FE2 method. This preliminary result
highlights the predictive capability of LSTM models especially when computing the macroscopic tangent
modulus which are used to verify the structure global equilibrium. As for the accuracy of the predicted
macroscopic fields, it can be seen from Fig. 4.19 that a very good agreement is achieved by FE-LSTM
compared to FE2 for all macroscopic stress components. The stress localization in the specimen reduced
section is well captured by the FE-LSTM model and the predicted macroscopic stress fields σ̄XX in the
loading direction are consistent with the resulting values obtained by FE2. In addition, we report the
average normalized error (MAPE in Eq.4.13) between FE-LSTM predicted stress components and the
target values using FE2 in table 4.7. The reliability of the FE-LSTM model is clearly demonstrated in this
case of application given the low MAPE values especially for the uniaxial macroscopic stress σ̄XX . Based
on these encouraging preliminary results, we propose to apply the developed approach on a complex 3D
architectured structure as detailed in the next subsection.

Table 4.6: Macroscopic stress components MAPE values

Macroscopic stress components Stress σ̄VM Stress σ̄XX Stress σ̄ZZ Stress σ̄XZ

MAPE (%) 0.02 % 0.01 % 2.04 % 0.44 %

4.4.2 Application to a complex architectured structure under proportional and non
proportional loading paths

4.4.2.1 Case of a proportional loading path

In order to illustrate the flexibility of the FE-LSTM approach when applied to complex structures,
two application cases of a non-standard architectured specimens under proportional and non-proportional
loading are tested in this subsection. The first example consists of a 3D specimen, with a rather unusual
shape containing several holes, subjected to a uniaxial tensile loading. The macrostructure geometry, mesh
and boundary conditions are presented in Fig. 4.20. Dirichlet boundary conditions are applied to the the
heterogeneous structure. One extremity is fixed while the other is subjected to a displacement-controlled
loading. The specimen is meshed using 4-node tetrahedral elements TET4 with 4 Gauss integration points
per element and the full mesh is composed of 13400 Gauss points. The computation of the macroscopic
mechanical response of the heterogeneous structure is performed with FE-LSTM model and using FE2

method. Both approaches are compared according to different criteria including the accuracy of the
mechanical fields, simulation time and the required memory usage. Since the FE2 method is very time
consuming, the corresponding simulation is conducted using only 10 time increments while FE-LSTM is
performed using 100 time increments. The analysis results are presented in the figures 4.21 and 4.22.
Figure 4.21 illustrates the distribution of the macroscopic Von Mises stress σ̄VM , normal stress σ̄XX ,σ̄Y Y
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and shear stress σ̄XY obtained by FE2 and FE-LSTM. Regarding the macroscopic strain fields, figure
4.22 shows the distribution of the normal strain components (ε̄XX , ε̄Y Y ) and shear strain component ε̄XY

respectively obtained by FE2 and by FE-LSTM.

Figure 4.20: Geometry, mesh and boundary conditions of an architectured specimen with holes under
tensile loading

As it can be seen from both figures, an excellent correspondence is observed between the macroscopic
fields predicted by FE-LSTM model and the targets computed by FE2. Despite the complexity of the
geometry, the developed model is able to accurately predict the non-linear homogenized response of the
architectured structure. Similarly to the FE2 approach, FE-LSTM is also capable of taking into account
the effect of the microstructure on the overall mechanical response of the macrostructure. In addition,
we can notice from the distribution of the macroscopic stress field in the loading direction σ̄XX a stress
concentration effect due to the presence of holes. This stress localization is also captured by the FE-
LSTM in the specimen reduced cross-sectional area and its neighboring holes, which is expected given
the applied boundary conditions. In terms of values accuracy of the predicted macroscopic fields, a very
good agreement between the two approaches can be observed as well, given the low error values (MAPE)
reported in table 4.7. Furthermore, the maximum deviation of the macroscopic stress σ̄XX between FE-
LSTM and FE2 for a Gauss point is at worst equal to 1%, which remains a reasonable error. From the
distribution of the macroscopic strain fields shown in figure 4.22, we can verify that the strain components
remain in the range of training data i.e in the interval I = [−5%, 5%]. As neural networks are known to
have poor extrapolation capabilities, it is always important to check this condition since a deformation
state outside the training database could result in inaccurate predictions or a failure in convergence of
the simulation.

We recall that the main objective of this study is the acceleration of multiscale simulations, therefore
a breakdown of the offline and online computational costs is required to highlight the efficiency of the
developed approach FE-LSTM. In table 4.8, the offline computing stage is given by the LSTM training
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Table 4.7: Macroscopic stress components MAPE values

Macroscopic stress components Stress σ̄VM Stress σ̄XX Stress σ̄Y Y Stress σ̄XY

MAPE (%) 0.03 % 0.03 % 1.58 % 1.97 %

Table 4.8: Offline computational costs breakdown

Offline computations Database generation LSTM training

Computational time 70 hours 5.5 hours

phase and the database generation step. The LSTM training time (5.5 hours) remains acceptable since
ReLU was used as an activation. This function is computationally more efficient in backpropagation
compared to sigmoid or hyperbolic tangent, the training time is also three time faster. The database
generation was carried out using the computing facilities of the cluster MCIA, 10 machines of 32 CPU
each were involved in the creation of the database, parallel computing was also included in this process.
The resulting computational time for this phase is 70 hours. Although this offline procedure remains
expensive, major speed up can be achieved during the online computing stage. In addition, once the model
is trained, it can be applied to any heterogeneous structure having the same microstructure. In contrast,
the FE2 method require solving once again non-linear problems on each macroscopic integration point at
each iteration for any new simulation. FE-LSTM based approaches are therefore more interesting in the
design of heterogeneous structures for examples, as they allow to quickly perform parametric analysis by
varying the structure geometry or the loading conditions with respect to the desired performances.

For the online computing stage, table 4.9 summarizes the required computational time and memory
usage for both approaches FE-LSTM and FE2. The simulation of the heterogeneous structure took nearly
5 days using FE2 while it only took 102 seconds using FE-LSTM, thus resulting in a computational time
saving factor of 4235. This speed up factor is actually underestimated since only 10 time steps are used in
the FE2 simulation unlike the FE-LSTM model where 100 increments are applied. In reality, this factor
can reach an order of 40 000 for two simulations performed with the same number of time steps, which
is very highly significant. However, we would like to point out that the FE2 approach used in this study
has not been optimized for parallel computing, but we nevertheless believe that the speed up factor will
not be affected too much, as the simulations with the developed method are performed within seconds.
The achievable gains with FE-LSTM are not only related to the gain in computational time, but also to
the computing resources. As shown in table 4.9, FE2 simulation required a memory usage of 1.07 TB
while the FE-LSTM only used 120 MB. The FE2 simulation involved the use of a bigmem machine of
3TB RAM from the MCIA cluster, which is not always affordable. In contrast, the FE-LSTM simulation
could be carried out in a desktop computer without any need for expensive computing resources.
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Table 4.9: Online computational costs breakdown: The simulation of the non-linear architectured struc-
ture is performed using 100 time increments with FE-LSTM and 10 time increments with FE2

FE2 FE-LSTM Computational time Memory usage
simulation simulation saving factor saving factor

Online simulation time 5 days 102 seconds 4235 –

Memory usage 1.07 TB 120 MB – 8917
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Figure 4.21: Comparison between the macroscopic stress fields σ̄ obtained by FE2 and by FE-LSTM of
a standard architectured specimen with holes under tensile loading
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Figure 4.22: Comparison between the macroscopic strain fields ε̄ obtained by FE2 and by FE-LSTM of
a standard architectured specimen with holes under tensile loading
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4.4.2.2 Case of a non-proportional loading path

Within this second case of application, we aim to evaluate the reliability of the FE-LSTM approach for
heterogeneous structures subjected to non-proportional loading. The same non-standard architectured
specimen with several holes is considered as before, the only change is the applied loading conditions. The
macrostructure geometry, mesh and boundary conditions are presented in Fig 4.23. Dirichlet boundary
conditions are applied to the heterogeneous structure, one extremity is fixed while the other is subjected
to a displacement controlled loading involving tensile and shear. This non-proportional path is composed
of a tensile and a shear loading step with a final displacement value of ūX = 0.035mm and ūY = 0.015mm

respectively, followed by an unloading phase with displacement of ūX = 0.02mm and ūY = 0.01mm. The
simulation of the macroscopic response of the architectured structure is only performed using FE-LSTM.
The FE2 simulation was not conducted due to computational resources limitations. In fact, the latter
required a simulation time of 10 days on the MCIA cluster for a total of 20 time increments (10 for
the loading step and 10 for the unloading step), unfortunately the reservation of computing machines
was limited to one week especially for bigmem computers. However, we would like to remind that the
FE-LSTM approach has already been validated previously through two case of applications.

Figure 4.23: Geometry, mesh and boundary conditions of an architectured specimen with holes under
tensile and shear loading/unloading conditions

The resulting macroscopic Von Mises stress σ̄VM , normal stress σ̄XX ,σ̄Y Y and shear stress σ̄XY

obtained with FE-LSTM are presented in Fig.4.24. The stress fields distribution on the architectured
specimen are given at the end of tensile/shear loading and unloading steps. In absence of a FE2 reference
solution, we evaluate the numerical results in a qualitative way by verifying different aspects. First, the
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model achieved numerical convergence with the same Newton-Raphson tolerance as used in the previous
applications. This first outcome indicate that the predicted macroscopic tangent operators are potentially
well predicted by LSTM model despite the complexity of loading conditions (non-proportional) compared
to a simple uniaxial tensile test (proportional). For the distribution of the stress fields in the specimen,
the results seems qualitatively reasonable considering the loading conditions. Due to the effect of tension,
a stress concentration is observed in the specimen reduced cross-sectional area and in its neighboring
holes. The effect of combining shear and tension is also captured by the model given the high stress
state in zone A (see Fig.4.24), this reduced area is subject to a maximum stress as expected considering
the specimen geometry and loading conditions. In the unloading phase, the stress fields are also quite
smooth, thus indicating a good numerical convergence. A stress concentration is also observed around
the central hole (Zone B in Fig.4.24) with a rather particular distribution due to the shear unloading
effect. Based on the present findings, we can assume that FE-LSTM can also be adapted for solving
history-dependent multiscale problems, provided that the loading states remains in the LSTM training
range. All the examples presented in this section constitute a proof of concept of the use of FE-LSTM
approaches to accelerate multiscale simulations of heterogeneous structures. However, it should be kept
in mind that many parameters can influence the approach reliability, in particular the microstructure
behavior complexity which sometimes may require a lot of data to train the LSTM models. In this
study, only octet-truss architected structures with a plastic and isotropic hardening constitutive law were
considered without geometric non linearities. Therefore it will be interesting in the future to test this
approach by considering several architectured materials such as TPMS with their associate constitutive
behavior and including the geometric non linearities in the model (which will highly increase the database
generation cost and model complexity).
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Figure 4.24: The distribution of macroscopic stress fields σ̄ obtained by FE-LSTM at the end of the
loading and unloading steps
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4.4.3 Illustration of the achievable capabilities with FE-LSTM model for highly
refined meshed architectured structures

The last example of this section is intended to illustrate the achievable performance by FE-LSTM
approaches for heterogeneous structures with highly refined mesh. This investigation is motivated by
the following reason: Refined meshes (sometimes involving millions of degrees of freedom) and small
increments are sometimes required to ensure a numerical convergence structures with complex geometry
and boundary conditions. As a consequence, the corresponding computational times can be extremely
long. In addition, this kind of simulations are very demanding in terms of computing resources (memory,
number of CPUs). It requires sometimes the usage of high performance machines with characteristics that
are not easily accessible. We propose here, through a concrete illustrative example, to show the possibility
of conducting this kind of multiscale simulations without the use of dedicated numerical resources, i.e
only with a desktop computer using the FE-LSTM approach. The example considered in this study is a
bracket whose geometry, associated RVE, mesh and boundary conditions are given in figure 4.25. The
bracket is meshed using 4-node tetrahedral elements TET4 with 4 Gauss integration points per element.
The macrostructure mesh is composed of 282824 Gauss points, which is indeed a very fine mesh. The
heterogeneous structure is fixed on one extremity (Face B) and subjected to a compressive loading at the
other end (Face A). In figure 4.26, the Von Mises stress σ̄VM distribution on the architectured bracket is
given. Qualitatively speaking, the obtained results seem very accurate and consistent given the applied
loading and boundary conditions. The stress concentration around the central hole is well captured by
FE-LSTM model and the distribution of the stress fields is rather smooth.

Figure 4.25: Geometry, mesh and boundary conditions of an architectured bracket under a compressive
load



Chapter 4. Accelerating Multiscale simulations of architectured materials using Deep
Neural Networks 131

Figure 4.26: Macroscopic Von Misses stress σ̄VM distribution

As shown in table 4.10, the execution of this simulation with FE-LSTM model took 35 minutes (using
100 time increments). On the other hand, the same simulation would have taken 105 days using a classic
FE2 with only 10 time steps, thus resulting in a speedup of 4320. Furthermore, if both simulations are
conducted with the same number of time increments, this computational time saving factor could be
estimated at nearly 40000. This factor is calculated based on the required computational time of FE2 in
the previous examples (standard specimen in subsection 4.4.1 and specimen with holes in subsection 4.4.2).
Note that this factor assumes that FE2 was not optimized for parallel computing and without specific
treatment. Another interesting feature of FE-LSTM approach is that the total simulation time including
database generation, training phase (5hours) and online simulation (35 min) is still insignificant compared
to required FE2 computational time (105 days). In this kind of application that involves highly refined
meshes, there exists a threshold at which it is more interesting to train an LSTM model using a limited
number of microscopic evaluations than to perform the entire multiscale simulation using FE2. In terms of
memory usage, the required RAM to compute the homogenized response is estimated 22.58 TB with FE2

while FE-LSTM only need 2.5 GB, which is compatible with typical desktop computers characteristics.
22 TB of RAM makes the simulation challenging to carry out as even bigmem machines are usually
limited to 3 TB of RAM. Conducting this type of multiscale simulation require specific treatment of the
memory and usually involve domain decomposition methods. To conclude this subsection, we highlighted
through an illustrative example the flexibility of FE-LSTM approach for applications involving highly
refined (sometimes exaggerated) meshes. Even for these extreme cases, the FE-LSTM method is not
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Table 4.10: The required computational time and memory usage to simulate the non-linear response of
an architectured bracket structure using FE2 and FE-LSTM

FE2 FE-LSTM Computational time Memory usage
simulation simulation saving factor saving factor

Required simulation time 105 days 35 minutes 4320 –

Memory usage 22.58 TB 2.5 GB – 9032

affected by a significant increase in computational time: the multiscale simulations are still executed
within minutes. In addition, they can be easily conducted on desktop computers without the need for
clusters or high performance machines.

4.5 A first attempt of using multi-inputs neural networks architectures
combining ConvNets and MLP to predict the effective properties
of architectured materials

4.5.1 CNN-MLP architecture design

In the previous sections, we have highlighted the predictive capabilities of FE-LSTM based approaches
to compute the non-linear behavior of heterogeneous materials. However, we recall that this framework
was only applicable under specific conditions: the microstructure (octet-truss) geometry, material proper-
ties and constitutive equation was kept the same in all the macrostructure. The only changed parameter
was the applied loading conditions on the RVE characterized by the evolution of the macroscopic strain
tensor. Therefore, FE-LSTM framework can be applied to any heterogeneous structure provided that
microstructure shares the same geometry and material properties. This can be perceived as a potential
limitation since flexibility is required while designing heterogeneous structures. For instance, it might be
interesting to determine the effect of varying the microstructure topology and material properties on the
overall structure behavior. This type of parametric analysis requires reliable models capable of handling
multiple data of different natures to quickly predict the corresponding quantities of interest. From this
perspective, several deep neural network architectures, which take as inputs different types of data, have
been developed in the literature for specific applications. For example, Multi Layer Perceptrons (MLP)
are designed to deal with numeric/continuous values, Recurrent Neural Networks (RNN) are specialized
in handling sequences and Convolutional Neural Networks (CNN or ConvNets) are intended for images
processing. In this section, a first attempt of using a multi-inputs neural networks architecture is con-
ducted to predict the effective properties of architectured materials. The objective is to develop a new
model combining a ConvNet and a MLP capable of handling mixed data. To the best of our knowledge,
such methodology have never been investigated before in literature for material science applications.
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In this work, we aim to establish the relationship between the geometrical/material properties of an
architectured material and its effective elastic properties by a CNN-MLP model. CNN-MLP architecture
design and general workflow are summarized in figure 4.27. This model is composed of a convolutional
neural network and two multi-layers perceptrons. The CNN takes as an input the image of an octet-truss
lattice structure having different geometrical parameters such as the diameter of its constituents (inner
and outer cylinders). On the other hand, the first feed forward neural network MLP1 takes another
type of data consisting of isotropic materials mechanical properties given by the Young’s modulus E

and Poisson ratio ν. Afterwards, CNN and MLP1 outputs are concatenated and fed to another multi
layer perceptron MLP2 which is intended for predicting the effective stiffness tensor components. As a
result, CNN-MLP aims to predict the homogenized properties of octet-truss architectured structures only
from the knowledge of material properties and an image of the CAD file. By training CNN-MLP model,
the meshing phase and FE simulations are no longer required to compute these quantities of interest.
Through this case of application, we would like to establish a first proof of concept on the use multi-inputs
deep neural networks to treat heterogeneous materials homogenization problems.

Figure 4.27: CNN-MLP architecture design to predict the effective properties of octet-truss architectured
materials

Let us get into the details of each deep neural network architecture on the CNN-MLP model. The
first part of CNN-MLP is composed of a convolutional neural network whose architecture including the
number and types of layers are illustrated in figure 4.28. ConvNets are a type of ANN capable of extracting
features and finding patterns in data that has a known grid-like topology such as images, which consist
of a 2D grid of pixels. CNN are inspired by the organization of the visual cortex: its architecture can
be analogously seen as neurons connectivity pattern in the human brain. ConvNets have been widely
used recently in various engineering fields, particularly in computer vision and image analysis. The
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significant advances in self driving vehicles, facial recognition and robotics are a consequence of the major
development of AI based approaches including convolutional neural networks. In figure 4.28, the CNN
takes as an input a (240 × 240) pixel image of an octet-truss lattice structure and then process it by
applying multiple mathematical operations called convolutions and pooling operations. A CNN model is
usually formed by stacking several convolutional and pooling layers whose functions are described below:

• Convolutional layer: Convolutional layers are designed to extract important features from the
input images using a set of convolutional filters. Their role is to reduce the images into a form which
is easier to process, without losing critical features or important information. In this layers, a linear
mathematical operation called convolution is applied between an image I and a Kernel/Filter K of
a specific size N×N . The convolution operation I∗K consists on sliding the filter K over the image
and then applying a dot product between K and the parts of the input image with respect to the
size of the filter N ×N . Figure 4.29 shows an example of a convolution operation between an image
of (7× 7) pixels and a filter of size (3× 3). After the convolution operations, non linear activation
functions such as ReLU are commonly used to break up linearity. In the CNN-MLP architecture,
3 convolutional layers with 32, 64 and 64 filters of size (3× 3) are used (see figure 4.28).

• Pooling layers: Convolutional layers are commonly followed by pooling layers. Their primary role
is to optimize the number of parameters by decreasing the dimension of convoluted feature maps,
this allows to reduce the computational costs. This operation can be performed using two types
of pooling methods, Max Pooling and Average Pooling. An example of Max Pooling is given in
figure 4.30, the maximum value of each (2 × 2) block is taken from the input feature to construct
the pooling layer. In Average Pooling, the average is computed in each blocks. In CNN-MLP
architecture, 3 Max pooling layers with (2× 2) blocks are employed (see figure 4.28). The last step
in ConvNets is flattening, this operation consist on taking 3D tensors resulting from convolution
and pooling operations and then convert it into one dimensional array. This is important since
multi layer perceptrons can only handle 1D arrays.

Figure 4.28: CNN architecture design in CNN-MLP model
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Figure 4.29: An example of a convolution operation between an image of (7 × 7) pixels and a filter of
(3× 3) size

Figure 4.30: An example of (2× 2) Max Pooling process

4.5.2 Database generation and training process

The database generation of CNN-MLP model is processed as follows: First, 100 octet-truss mi-
crostructures with different geometrical parameters are generated using a python library Microgen
[Prulière & Chemisky 2022]. Using a dedicated script, Microgen allows to create each microstructure
geometry using CadQuery, a python library that builds 3D CAD models. The resulting microstructures
are then meshed using GMSH [Geuzaine, Christophe and Remacle, Jean-Francois ]. In the present work,
the type of architectured structure is fixed to the octet-truss lattices, the changed parameters are the
radius of the external Re and internal Ri cylinders that compose the octet-truss. Re and Ri are chosen
randomly from the interval IR = [0.02, 0.2]. Figure 4.31 shows examples of the architectured samples with
various Re and Ri values used as training data. Once the 3D CAD models are created, a 2D (240× 240)
pixels image of the microstructure is generated and saved as .png file, which is the input the ConvNet. As
shown from figure 4.31 images, the octet-truss position is set in a view where maximum information about
the microstructure geometry and patterns can be captured by the CNN model. The next step consists on
conducting 1000 FE simulations for each generated octet-truss while varying the elastic properties E and
ν. The input parameter E is chosen randomly on a logarithmic space from in interval IE = [104, 107]. On
the other hand Poisson ratio ν follows a uniform distribution within a range of Iν = [0.01, 0.49]. Using a
specific module in Fedoo FE code, the resulting homogenized stiffness matrices are computed and stored
in the database. In total, 100000 samples (100 microstructure × 1000 FE simulation) are used to train
the CNN-MLP model, the images ares processed by the CNN and the material properties serve as the
MLP inputs.



Chapter 4. Accelerating Multiscale simulations of architectured materials using Deep
Neural Networks 136

Figure 4.31: Examples of Octet-truss architectured materials with different geometrical parameters used
as training images data

Following the database generation phase, we proceed to the training process of CNN-MLP model.
All the programs were implemented in Python 3 with the help of Keras library [Chollet et al. 2015]
and Tensorflow API [Abadi et al. 2015]. The database was split into a training set T (90% of total
samples), a validation set V (20% of T ) and a testing set T (10% of total samples). The training phase
requires a parameter calibration of each deep neural network that constitute the CNN-MLP model. For
the multilayer perceptrons MLP1 and MLP2, the hidden layers weights matrices and bias vectors are
adjusted after each epoch. Regarding the CNN, the trained parameters are the filters pixel values, which
are learned by minimizing a cost function using backpropagation algorithm. In this application, the Mean
Squared Error (MSE) was employed as a loss function and Adam (optimizer with adaptative moment)
was used as an optimizer. Before starting the training process, T was first partitioned into 90 batches of
1000 samples each. This choice is explained by the fact that it is impossible to feed CNN-MLP with the
entire data set (90000 image samples) because of the high memory requirements. The data is therefore
divided into several sets that will progressively enrich CNN-MLP model during the learning phase. The
evolution of CNN-MLP training and validation MSE with respect to epochs is illustrated in figures 4.32
and 4.33 respectively. One can notice from figure 4.32 a regular decrease of the MSE as more batches
are fed into the neural network, thus indicating that CNN-MLP is able to capture additional information
and new patterns from images for each provided set. Regarding the validation error (see figure 4.33), the
MSE evolution is much more noisy and exhibits a different behavior compared to the training MSE, the
error decrease is not stable and consistent with respect to the supplied batches. However, this pattern
only lasts during the first 50 batches where the model is attempting to adjust model parameters. In
the last 40 batches, the validation MSE trend is considerably more steady and consequently it reaches
an error value of order of magnitude 10−3 at the end of batch 90. This resulting MSE is similar to the
training error, thus indicating that CNN-MLP has successfully achieved a good generalization capability
and has been prevented from overfitting.
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Figure 4.32: Evolution of CNN-MLP training MSE as a function of epochs for several batches of data

Figure 4.33: Evolution of CNN-MLP validation MSE as a function of epochs for several batches of data
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4.5.3 Numerical results

In order to assess CNN-MLP reliability and generalization capabilities while predicting the effective
properties of new microstructures with various material properties, it is crucial to evaluate its performance
on the test dataset T . To quantify CNN-MLP model accuracy on all the tested data, the metric Mean
Absolute Percentage Error (MAPE) is evaluated. Figure 4.34 shows the computed MAPE values for each
effective stiffness tensor component predicted by the CNN-MLP. It can be observed from figure 4.34 that
the errors order of magnitude is almost similar for all the components with a maximum value of nearly
8.5%. This first finding is an evidence that CNN-MLP has been potentially prevented from overfitting
problems. If this were not the case, the model would have the tendency to assign certain attention
(larger weights) to given neurons associated to specific outputs compared to the others, therefore large
discrepancies in MAPE values would have been observed as a consequence. In addition, the resulting errors
remains reasonable given the complexity of the problem. We recall that CNN-MLP involves three different
neural network architectures with hundred of thousands of trainable parameters. Even though, the model
still achieved an acceptable performance with a relatively small quantity of data compared to the required
amount of data (sometimes involving millions of images) to train CNN models. Figure 4.35 illustrates
some test data examples of the predicted effective tensor components by CNN-MLP in comparison to FE
simulations. As shown in figure 4.35, a good agreement is obtained between both quantities. Through
this application, CNN have shown a great potential of capturing higher-order spatial correlations and
patterns from images microstructure. This outcome assess the high capabilities of ConvNets as reliable
computer vision models capable of establishing structure-property linkages for architectured materials.
By calibrating the appropriate pixel values of CNN filters and combining them with the fully connected
neural networks MLP1 and MLP2, CNN-MLP demonstrated its ability to solve both a classification and
a regression problem simultaneously.

Figure 4.34: Evaluation of the MAPE values for each CNN-MLP predicted components of the effective
stiffness tensor on all the test data
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Figure 4.35: CNN-MLP predicted effective stiffness tensor components in comparison to the targets
obtained by FE simulation for three examples of test data
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In the last section of this chapter, we have established through a practical case of study the potential
of multi-inputs deep neural networks to predict the effective properties of architectured materials. This
proof of concept offers the possibility of extending this methodology to address more complex problems,
thus pushing further the achievable performances with such approach. For instance, we could envision
the combination of ConvNets with LSTM neural networks to simulate a wide range of architectured
materials. Given an initial 2D or 3D image of the microstructure and a time sequence corresponding to
the applied mechanical loading, CNN-LSTM can be used to predict the evolution of the heterogeneous
material mechanical response. However, training of this type of models will necessarily require a significant
amount of data. To overcome this challenge, several approaches can be adopted such as Image Data
Augmentation. This technique consists on artificially increasing the size of the database by creating
modified versions of the training images. By applying specific transformations such as zooms, rotation
and shifts, new variations of the images can be used to expand the dataset. This means that new versions
of the same images are likely to be seen by the model during the training process, and therefore CNN
would be able to capture as much information about the microstructure patterns as possible. Furthermore,
we recall that ConvNets are capable of learning features that are invariant to their location in the image,
thus rendering the data augmentation technique very effective for convolutional neural networks.

4.6 Conclusions

The last chapter of the present manuscript was dedicated to the development of new numerical mod-
eling strategies using deep neural networks to accelerate multiscale simulation of architectured materials.
Through the design of the so called FE-LSTM approach, we have highlighted the strong capabilities of
such method to accurately and quickly predict the effective mechanical response of heterogeneous struc-
tures under proportional and non proportional loading paths. In order to demonstrate the flexibility
of FE-LSTM approach, several architectured structures from simple to complex macroscopic geometries
have been tested. The obtained results were very promising given the excellent agreement between the
predicted macroscopic fields by FE-LSTM and by FE2 simulations. The main advantage of such approach
lies in the fact that once the training process of the RNN is achieved, FE-LSTM can be applied to any
heterogeneous structure having the same microstructure. In contrast, the multi-level FE2 method requires
solving once again non-linear problems on each Gauss point at each iteration for any new simulation.
As a result, massive computational costs saving factors have been achieved. In terms of execution time,
FE-LSTM simulations can be run within seconds compared to several days with FE2, thus resulting in a
speedup factors of nearly 40000. In addition, the simulations can be easily conducted on desktop com-
puters without requiring high computing resources. We have demonstrated that the resulting memory
usage can reach saving factors up to 10000. Finally, a first attempt of using multi-inputs neural networks
have been carried out to predict the effective properties of architectured materials. A CNN-MLP model
combining convolutional neural networks and multi layer perceptrons have been developed to establish
microstructure-property linkages of octet-truss structures. The main motivation behind this application
was to demonstrate the achievable capabilities with such methodology that involves data from different
natures to predict several quantities of interest. To the best of our knowledge, such approach have never
been investigated before for material science applications. Therefore, this present work findings constitute
a first proof of concept of combining multiple deep neural networks architectures that takes mixed data
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as inputs and predict the corresponding mechanical fields and homogenized properties as outputs.





Conclusion and perspectives

Within this thesis, we aimed at developing novel modeling strategies of the nonlinear mechanical
behavior of heterogeneous materials using hybrid approaches that combines physical knowledge and deep
learning based methods. This sort of techniques can be perceived as a change of paradigm compared
to traditional solutions which remains sometimes limited for structural analysis applications. Various
artificial neural network architectures have been explored from Multi Layer Perceptrons (MLP), Recurrent
Neural Networks (RNN) and Convolutional Neural Networks (CNN). Each model has been employed to
address a specific challenge in the numerical simulation of heterogeneous structures.

For the sake of clarity, we present, in the form of a list, the major contributions of this thesis.

• We have proposed a new and original approach to train ANN models by introducing regularization
constraints based on physical laws. In Chapter 2, a Thermodynamically Consistent Recurrent Neu-
ral Network (ThC-RNN) model has been developed to serve as a potential surrogate for dissipative
materials constitutive modeling. This hybrid approach consists on combining a specific RNN ar-
chitecture called Long Short Term Memory (LSTM) with thermodynamical laws. The robustness
of ThC-RNN comes primarily from the powerful predictive capabilities of LSTM to capture history
dependant behaviors as well as overcoming vanishing gradient problems. In addition, the incorpo-
ration of physical laws and specifically the second law of thermodynamics in the training process
have provided relevant and consistent results compared to pure black-box RNN. ThC-RNN model
reliability have been tested on different plasticity models including elastoplasticity with isotropic
hardening and Chaboche plasticity model with a combined isotropic hardening and two nonlinear
kinematic hardening. It has been shown that thermodynamic consistency have improved signifi-
cantly ThC-RNN predictive capabilities considering several quantities of interest including stress
and tangent stiffness tensors components, internal state variables and mechanical work rate par-
tition (recoverable part, irrecoverable part and dissipative part). Finally, we demonstrated that
ThC-RNN can be integrated into a FEM framework to simulate structures under real-life condi-
tions provided that certain points are verified: 1) Check models generalization capabilities when
predicting the tangent operators and mechanical responses, 2) Verify that ThC-RNN inputs remain
in the training range to avoid inaccurate predictions or a failure in the convergence of simulation, 3)
Incorporate physics based laws into model training process to regularize the predicted mechanical
fields with respect to thermodynamic consistency.

• Hybrid models potential for homogenization applications have been highlighted. Through the devel-
opment of ANN-φ, a hybrid approach combining feed forward neural networks and Mori-Tanaka mi-
cromechanical scheme, we aimed at evaluating the reliability of such method to predict the effective
properties of heterogeneous materials. ANN-φ consisted in splitting the homogenization problem
into two parts. First, a MLP is designed to quickly predict Eshelby’s tensors from the knowledge of
ellipsoidal inclusion geometric and material properties. The predicted outputs are used afterwards
to compute localization and effective stiffness tensors within Mori-Tanaka homogenization scheme.
The use of this hybrid model have provided a good compromise between predictions reliability and
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computational time saving which can reach a factor of 2000 in the case of heterogeneous materials
with a large number of heterogeneities.

• We elaborated a novel modeling strategy to accelerate multiscale simulations of heterogeneous mate-
rials using deep neural networks. The developed approach, called FE-LSTM, consists on combining
the finite element method and LSTM recurrent neural networks to solve multiscale problems. In
contrast to FE2 method, the FE resolution of the microscopic problems is no longer required within
FE-LSTM framework, the computation of RVE homogenized response is directly predicted by an
LSTM trained on a database of offline micro simulations. Consequently, the main advantage of FE-
LSTM lies in the massive computational time and resources saving when solving the microscopic
problems. To assess the validity and reliability of the developed approach, FE-LSTM has been
evaluated on several 3D architectured structures from rather simple to complex geometries under
proportional and non proportional loading conditions. The obtained results have demonstrated FE-
LSTM high predictive capabilities, an excellent agreement has been found between the macroscopic
fields predicted by FE-LSTM and the targets computed by FE2. The usefulness of such approach
lies in the fact that one the RNN training process is performed, FE-LSTM can be applied to simulate
nonlinear behaviors of any heterogeneous structure having the same microstructure used in training.
By performing parametric analysis while testing a variety of macroscopic geometries and loading
conditions, such approach find its interest in the design of heterogeneous structures as it allows to
conduct multiple multiscale simulations in a short amount of time. In terms of execution time, we
have highlighted through the previous application that FE-LSTM simulation are performed within
seconds compared to days with FE2, thus resulting in computational time saving factors of nearly
40000. Furthermore, they can be easily conducted on desktop computers without the need for
HPC clusters.

• We established a first proof of concept of using multi-inputs neural networks architectures combining
Convolutional Neural Networks (CNN) and Multi Layer Perceptrons (MLP) to predict the effective
properties of architectured materials. We have shown that it is possible to simulate the homogenized
behavior of heterogeneous structures only from the knowledge of the microstructure image and
the numerical values of the material properties, therefore without the need of a mesh or a FE
simulation. To the best of our knowledge, such methodology have never been investigated before
for material science applications. In chapter 4, CNN-MLP model have been developed to determine
microstructure-property linkages of octet-truss structures. The ConvNet is intended for images
processing of Octet-truss lattice structures having different geometrical parameters. On the other
hand, the MLP part takes as inputs another type of data which is materials mechanical properties.
CNN and MLP outputs are concatenated and fed to another feed forward neural network which is
designed to predict the effective properties of the Octet-Truss. The obtained results were promising,
the errors order of magnitude remained reasonable despite the complexity of the treated problem.
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The modeling strategies developed in the present thesis have led to considerable advances in the
numerical simulation of heterogeneous structures. Nevertheless, several research directions are still to be
explored in order to push further the achievable performances with such methodologies. The prospects
of this thesis are detailed as follows:

1. The incorporation of physical based laws in the training process of FE-LSTM approaches similarly
to ThC-RNN model. Even though FE-LSTM achieved very promising performances based only
on RNN high predictive capabilities and abilities to capture history dependant behaviors, such ap-
proach may potentially face some limitation when applied to complex microstructures with strongly
nonlinear material laws. The introduction of physics in the training phase is therefore required for
the regularization of the solution. However, an additional challenge has to be faced when using such
approach for multiscale analysis as there is no closed form of the second law of thermodynamics
at the RVE scale contrary to a material point case with a well defined constitutive law. A poten-
tial solution to overcome this issue is to add a new constraint on the loss function based on the
macroscopic mechanical work. Using the micro-macro energy equivalence (Hill-Mandel lemma), the
idea would be to constraint the quantity σ̄ : ∆ε̄ to be equal to ∆W̄m during the training process.
∆W̄m correspond to the incremental macroscopic mechanical work at the RVE scale which can be
computed by FE analysis and stored in the data base. By forcing the connection between σ̄ : ∆ε̄

and ∆W̄m during the training phase, it is possible to provide an additional information about the
macroscopic fields, which could result in more accurate solutions compared to pure RNN approach.

2. Although the present study focused only on octet-truss lattices with an elastoplastic and isotropic
hardening constitutive law, it will be more valuable to conduct further testing on several archi-
tectured materials such as Triply Periodic Minimal Surfaces (TPMS) with their associate material
laws. The generalization capabilities of LSTM neural networks are worth to be investigated for
more complex behaviors including rate dependant constitutive laws such as viscoelasticity and vis-
coplasticity. Moreover, the incorporation of geometric non linearities in simulations is likely to lead
to additional challenges regarding the database generation costs and model selection. Therefore,
such cases require further investigation to properly define the domain of validity and the limitations
of the developed approach. As more testing is performed, FE-LSTM reliability can be assessed
further.

3. Define a quantification of uncertainties strategy for deep learning methods using Bayesian techniques
similarly to Gaussian Random Process (GRP). The deployment of deep learning based approaches
in structural analysis requires the development of a well defined methodology capable of measuring
the uncertainties inherited from each step of the process (data collection, pre-processing, hyper-
parameter selection etc ...).

4. Extend the CNN-MLP approach to address more complex problems. A potential application would
be to combine ConvNets with LSTM neural networks to simulate a wide range of architectured
materials accounting for their non linear behavior. Given an initial 2D or 3D image of the mi-
crostructure and a time sequence corresponding to the applied mechanical loading, CNN-LSTM
can be used to predict the non linear evolution of the heterogeneous material mechanical response.
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Contexte et problématique

L’utilisation de matériaux hétérogènes devient de plus en plus indispensable pour les applications
d’ingénierie de pointe, notamment dans les domaines des énergies renouvelables, de la santé et de
l’aérospatiale. Par exemple, les matériaux composites ont acquis une grande importance dans l’industrie
aéronautique en raison de leurs propriétés mécaniques spécifiques, permettant de concevoir des struc-
tures légères tout en maintenant des niveaux de performances élevées et en répondant aux exigences de
sécurité. En outre, l’utilisation des composites présente un impact environnemental significatif en termes
d’efficacité énergétique et de réduction des émissions de CO2. L’émergence des matériaux architecturés
cellulaires a également révolutionné un large éventail de domaines d’ingénierie. En raison de leur rapport
résistance/poids élevé et de leurs importantes capacités d’absorption énergétique, les structures architec-
turées peuvent être utilisées, par exemple, en biomécanique pour concevoir des implants orthopédiques.
En optimisant la topologie des microstructures, les prothèses architecturées peuvent être conçues de
manière optimale pour garantir leur compatibilité avec les os humains. De plus, ils fournissent à la fois
la porosité et la résistance mécanique appropriées au tissu osseux, ainsi que la légèreté nécessaire pour
permettre à la prothèse de résister à des conditions de charge très élevés. La croissance considérable de
ce type de matériaux est principalement due au développement significatif des méthodes d’optimisation
topologique et de fabrication additive qui permettent la production de formes assez complexes non ac-
cessibles avec les méthodes traditionnelles telles que les procédés d’usinage et de moulage.

Cependant, la simulation du comportement thermomécanique des structures hétérogènes peut s’avérer
très complexe en raison de multiples facteurs: Premièrement, le comportement mécanique résultant des
microstructures est très difficile à identifier en raison de la présence de différents mécanismes physiques
impliqués à différentes échelles. Le comportement local est notamment régi par des phénomènes dissipatifs
fortement non linéaires qui nécessitent une identification appropriée des lois constitutives. En outre,
l’utilisation des stratégies de modélisation multi-échelles s’avère nécessaires pour une compréhension fine
de l’effet des microstructures sur le comportement macroscopique. Par conséquent, l’évaluation de la
réponse mécanique des structures hétérogènes nécessite le développement d’outils puissants et avancés de
simulation numérique, capables de prendre en compte l’interaction micro-macro et de prédire avec haute
fidélité la réponse globale résultante. Parmi ces approches numériques, la méthode des éléments finis au
carré FE2 [Feyel 1999] a été largement développée dans la littérature pour l’analyse des structures multi-
échelle. Cette approche à champ complet basée sur la théorie de l’homogénéisation périodique, consiste
à attribuer un Volume Élémentaire Représentatif (VER) à chaque point d’intégration de Gauss, puis
l’estimation de la réponse globale est obtenue en résolvant les problèmes micro et macro simultanément
par les principes de localisation et d’homogénéisation. Bien que FE2 demeure plus avantageuse en termes
de temps de calcul par rapport aux simulations FE directes sur des structures hétérogènes entièrement
maillées, il est clair que cette stratégie de modélisation souffre également de nombreuses limitations pour
les raisons suivantes: Comme décrit dans la procédure FE2 ci-dessus, des problèmes non linéaires sont
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résolus simultanément à l’échelle micro et macro en utilisant des schémas itératifs Newton Raphson. Ce
processus est souvent très coûteux en temps de calcul en raison du traitement des non-linéarités pour
chaque calcul microscopique et à chaque itération. De plus, d’autres considérations peuvent augmenter
d’avantage les temps de simulation, notamment le nombre de points d’intégration de Gauss, la complexité
des conditions de chargement, le nombre d’incréments et la résolution de maillage du VER et de la
macrostructure. Par conséquent, le recours à la méthode FE2 peut s’avérer limité en calcul de structure
compte tenu de tous ces facteurs.

Au vu de la quatrième révolution industrielle (Industrie 4.0), l’innovation technologique présente
actuellement un grand impact sur la société : véhicules autonomes, robotique, Internet des objets (IoT)
et impression 3D. L’intelligence artificielle (IA) est l’une des technologies les plus marquantes de l’industrie
4.0 grâce à l’apprentissage automatique (Machine Learning ML) et à l’apprentissage profond (Deep Learn-
ing DL). À titre d’exemple, l’apprentissage automatique a considérablement marqué le système de santé
au cours des dernières années. À travers le développement d’algorithmes ML et de logiciels exhaustifs, les
médecins bénéficient désormais de l’assistance de l’IA pour le diagnostic des patients et des maladies. Les
progrès remarquables réalisés dans le domaine de l’IA ne sont que le reflet de la croissance exponentielle
des ressources informatiques et de la disponibilité massive de données. Dans le domaine de la science des
matériaux, les développements récents des techniques de mesure expérimentale permettent la génération
de bases de données importantes de comportements de matériaux. D’autre part, les progrès significat-
ifs des capacités de calcul facilitent la production de grandes quantités de simulations numériques. Par
conséquent, la disponibilité des données, considérée comme la principale source d’enrichissement des mod-
èles IA, ne représente plus un obstacle majeur. Dans cette perspective, l’utilisation de l’apprentissage
automatique et de l’apprentissage profond a considérablement suscité l’intérêt de la communauté des sci-
ences des matériaux. L’essence des techniques ML et DL réside dans leur capacité à prédire rapidement
des réponses mécaniques cibles après une phase d’apprentissage. Ces méthodes trouvent également leur
utilité en mécanique numérique pour accélérer les simulations multi-échelles de matériaux hétérogènes.
Comme évoqué précédemment, l’évaluation de la réponse mécanique de structures architecturées com-
plexes représente un véritable défi, les méthodologies traditionnelles pour réaliser ces simulations telles
que FE2 sont très coûteuse en temps de calcul et nécessitent des ressources informatiques parfois inac-
cessibles. L’intégration d’approches d’apprentissage profond dans les solveurs numériques de mécanique
des solides est une alternative prometteuse pour surmonter ces difficultés.

Dans cette optique, ce projet de thèse a pour objectif de repenser en profondeur le paradigme de
la simulation multi-échelles du comportement mécanique des structures architecturés. En combinant
Intelligence Artificielle (IA), thermodynamique des matériaux et simulation numérique du comportement
de structures, nous avons l’ambition de développer et valider des modeles hybrides permettant de simuler,
avec un gain de calcul très important, le comportement multi-échelle de structures hétérogènes. L’objectif
serait donc d’effectuer en quelques minutes, sur un ordinateur de bureau, des simulations prenant plusieurs
jours sur des centres de calcul intensif. Pour répondre à ces objectifs, ce manuscrit de thèse a été structuré
en deux parties et quatre chapitres.
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Chapitre 1: État de l’art

Le premier chapitre de ce manuscrit de thèse a été dédié à une revue bibliographique concernant
l’utilisation des techniques d’apprentissage automatique et des approches dites "Data Driven" en sci-
ence des matériaux et dans les applications d’ingénierie. Dans un premier temps, les principales méth-
odes d’apprentissage en machine learning sont présentées, notamment l’apprentissage supervisé (Super-
vised Learning SL), l’apprentissage non supervisé (Unsupervised Learning UL), l’apprentissage semi-
supervisé (Semi Supervised Learning SSL) et l’apprentissage par renforcement (Reinforcement Learning
RL). L’utilisation d’un algorithme spécifique dépend du problème à traiter et de la nature des données
accessibles. Dans la deuxième section de ce chapitre, un aperçu général de l’application des méthodes
basées sur l’IA en mécanique des matériaux est mis en évidence. Sur la base des contributions récentes
de la communauté de la science des matériaux, de nombreux exemples pratiques incluant la modélisation
constitutive et la modélisation multi-échelle sont discutés.

Chapitre 2: Prédiction du comportement mécanique non linéaire de
matériaux dissipatifs sous chargements non proportionnels avec des
Réseaux de Neurones Récurrents Thermodynamiquement Consistants

Dans le chapitre 2, un modèle réseau de neurones récurrent thermodynamiquement consistant (ThC-
RNN) a été développé afin de servir comme métamodèle pour la modélisation constitutive de matériaux
dissipatifs. Cette approche hybride consiste à combiner une architecture spécifique de RNN appelée Long
Short Term Memory (LSTM) avec des lois thermodynamiques. La robustesse du ThC-RNN provient
principalement des grandes capacités prédictives des LSTM pour capturer des comportements dépendant
de l’histoire de chargement ainsi que pour surmonter les problèmes de vanishing gradient. En outre,
l’incorporation de lois physiques, et plus particulièrement la deuxième loi de la thermodynamique, dans
le processus d’apprentissage a permis d’obtenir des résultats pertinents et cohérents comparé aux RNN
de type boîte noire. La fiabilité du modèle ThC-RNN a été testée sur différents modèles de plastic-
ité, notamment l’élastoplasticité avec écrouissage isotrope et le modèle de plasticité de Chaboche avec
un écrouissage isotrope combiné à deux écrouissages cinématiques non linéaires. Il a été prouvé que la
consistance thermodynamique permet d’améliorer de manière significative les capacités prédictives de
ThC-RNN en considérant plusieurs quantités d’intérêt, comme les tenseurs de contrainte, matrices tan-
gentes, variables internes et la partition du puissances mécaniques. Finalement, il a été démontré que le
modèle ThC-RNN est en mesure d’être intégré dans un cadre élément finis pour simuler le comportement
mécanique de structures à condition de vérifier certains points : 1) Vérifier les capacités de généralisation
des modèles lors de la prédiction des opérateurs tangents et des réponses mécaniques, 2) S’assurer que
les données d’entrées sont situés dans la base d’apprentissage afin d’éviter des problèmes au niveau de la
convergence des solution, 3) Incorporer des lois basées sur la physique dans le processus d’apprentissage
pour régulariser les champs mécaniques prédits en respectant à la consistance thermodynamique.
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Chapitre 3: Estimation des propriétés effectives de matériaux
hétérogènes par des approches hybrides combinant réseaux de neurones
artificiels et modèles micromécaniques

Ce chapitre avait pour objectif d’investiguer la capacité de modèles hybrides à prédire les propriétés effec-
tives de matériaux hétérogènes. Un modèle hybride ANN-φ a été développé en combinant des réseaux de
neurones artificiels et un schéma d’homogénéisation micromécanique. L’approche d’homogénéisation util-
isée dans cette étude est principalement basée sur le problème d’inclusion d’Eshelby. Une attention partic-
ulière est portée à la construction du réseau de neurones à travers le choix des hyperparamètres du modèle
(fonctions d’activation, nombre de neurones dans les couches intermédiaires, algorithmes d’optimisation).
Une base de données de tenseurs d’Eshelby est générée en variant les propriétés matérielles du milieu
hétérogène ainsi que les paramètres géométriques des inclusions. Le modèle ANN-φ, une fois entraîné
sur une base de tenseurs d’Eshelby, a démontré d’excellentes capabilités prédictives du comportement
mécanique effectif de matériaux hétérogènes. Les résultats obtenus avec le modèle ANN-φ ont été ensuite
comparés pour divers cas d’étude à des estimations numériques souvent coûteuses en termes de temps de
calcul. Les résultats présentés dans ce travail ont montré que le modèle hybride développé a conduit à
un gain de temps de calcul significatif de l’ordre de 99,9% tout en conservant sa précision et sa fiabilité
lors de l’estimation des propriétés effectives de matériaux hétérogènes.

Chapitre 4: Accélération des simulations multi-échelles de structures ar-
chitecturés avec des approches basée sur les réseaux de neurones profond

Dans le dernier chapitre de ce manuscrit, nous avons élaboré une nouvelle stratégie de modélisation pour
accélérer les simulations multi-échelles de matériaux hétérogènes en utilisant des réseaux de neurones pro-
fonds. L’approche développée, appelée FE-LSTM, consiste à combiner la méthode des éléments finis et les
réseaux de neurones récurrents de type LSTM pour résoudre des problèmes multi-échelles. Contrairement
à la méthode FE2, la résolution éléments finis des problèmes microscopiques n’est plus requise dans le
cadre de FE-LSTM, la réponse homogénéisée du VER est directement prédite par un LSTM entraîné sur
une base de données offline. En conséquence, le principal avantage de FE-LSTM réside dans le gain massif
au niveau des temps de calcul et de ressources lors de la résolution des problèmes microscopiques. Afin
d’évaluer la validité et la fiabilité de l’approche développée, FE-LSTM a été testé sur plusieurs structures
architecturées en 3D. Les résultats obtenus ont démontré les capacités prédictives élevées de la méthode,
un excellent accord a été obtenu entre les champs macroscopiques prédits par FE-LSTM et les simulations
par FE2. L’utilité de cette approche réside dans le fait qu’une fois le processus d’apprentissage du RNN
effectué, FE-LSTM peut être appliqué pour simuler les comportements non linéaires de toute structure
hétérogène ayant la même microstructure que celle utilisée lors de l’apprentissage. En termes de temps
d’exécution, nous avons mis en évidence que les simulations FE-LSTM sont réalisées en quelques secondes
contre plusieurs jours avec FE2, ce qui se traduit par des facteurs de gain de temps de calcul proches de
40000. De plus, elles peuvent être facilement réalisées sur des ordinateurs de bureau sans avoir recours
à des mésocentres de calcul intensif. Finalement, nous avons établi une première preuve de concept de
l’utilisation d’architectures de réseaux neuronaux à entrées multiples combinant des réseaux neuronaux
convolutionnels (CNN) et des perceptrons multicouches (MLP) pour prédire les propriétés effectives des
matériaux architecturés. Nous avons montré qu’il est possible de simuler le comportement homogène
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de structures hétérogènes uniquement à partir de la connaissance de l’image de la microstructure et des
valeurs numériques des propriétés des matériaux. Un modèle CNN-MLP a été développé pour établit les
liens entre la microstructure et les propriétés des structures de type octet-truss.

Perspectives des travaux de thèse

Les stratégies de modélisation développées dans le cadre de ce projet de thèse ont conduit à des avancées
considérables dans la simulation numérique des structures hétérogènes. Néanmoins, plusieurs directions
de recherche sont à explorer. Les perspectives de ce travail de recherche sont détaillées comme suit:

• L’incorporation de lois physiques dans le processus d’apprentissage du modèle FE-LSTM de façon
similaire au modèle ThC-RNN. Bien que FE-LSTM ait atteint des performances très prometteuses
en se basant uniquement sur les capacités prédictives des réseaux de neurones récurrents à capturer
des comportements dépendant de l’histoire de chargement, une telle approche peut s’avérer très lim-
itée en considérant des lois de comportements complexes et fortement non linéaires. L’introduction
de la physique dans la phase d’apprentissage est par conséquent nécessaire pour la régularisation
des champs mécaniques. Cependant, un défi supplémentaire doit être relevé lors de l’utilisation de
FE-LSTM en analyse multi-échelle. En effet, il n’existe pas de forme explicite du second principe
de la thermodynamique à l’échelle du VER, contrairement au cas du point matériel avec une loi
constitutive bien définie. Une solution potentielle pour surmonter ce problème est d’ajouter une
nouvelle contrainte sur la fonction coût en sa basant sur le travail mécanique macroscopique. En
utilisant l’équivalence d’énergie micro-macro (lemme de Hill-Mandel), l’idée serait d’appliquer une
contrainte sur la quantité σ̄ : ∆ε̄ pour être égale à ∆W̄m pendant le processus d’apprentissage.
∆W̄m correspondent au travail mécanique macroscopique incrémental à l’échelle du VER qui peut
être calculé par analyse élements finis et stocké dans la base de données. En imposant la connexion
entre σ̄ : ∆ε̄ et ∆W̄m pendant la phase d’entraînement, il est possible de fournir une information
supplémentaire sur les champs macroscopiques, ce qui pourrait aboutir à des solutions plus précises
par rapport à une approche RNN pure.

• Bien que cette étude ne se soit appliqué que sur des matériaux architecturés de type octet-truss
avec une loi de comportement élastoplastique avec écrouissage isotrope, il serait plus judicieux
d’effectuer des tests supplémentaires sur plusieurs matériaux architecturés tels que les TPMS avec
leurs lois matérielles associées. Les capacités de généralisation des réseaux neuronaux LSTM sont à
analyser pour des comportements plus complexes, y compris les lois constitutives dépendant de la
vitesse de déformation, comme la viscoélasticité et la viscoplasticité. De plus, l’incorporation des
non-linéarités géométriques dans les modèle est susceptible de conduire à des défis supplémentaires
concernant les coûts de génération de bases de données. Par conséquent, ces cas nécessitent une
étude plus approfondie pour définir précisément le domaine de validité et les limites de l’approche
développée.

• Définir une stratégie de quantification des incertitudes pour les méthodes d’apprentissage profond
en utilisant des techniques bayésiennes similaires à la méthode des processus gaussien aléatoires.
Le déploiement d’approches basées sur l’apprentissage profond en analyse de structure nécessite
le développement d’une méthodologie bien définie capable de mesurer les incertitudes héritées de
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chaque étape du processus (collecte de la base de données, pré traitement, sélection des hyper-
paramètres etc ...).

• Généraliser l’approche CNN-MLP pour traiter des problèmes plus complexes. Une application
potentielle serait de combiner les réseaux de neurones de convolutions avec les réseaux neuronaux
LSTM pour simuler une large gamme de matériaux architecturés en tenant compte de leur comporte-
ment non linéaire. Étant donné une image initiale 2D ou 3D de la microstructure et une séquence
temporelle correspondant au chargement mécanique appliquée, le réseau CNN-LSTM peut servir à
prédire l’évolution non linéaire de la réponse mécanique du matériau hétérogène.
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