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Résumé
Dans cette thèse, on étudie le nombre chromatique à distance 2 des graphes épars, à savoir, les

graphes planaires et les graphes avec degré moyen maximum borné. Les bornes supérieures sont
obtenues en repoussant les limites de la méthode du déchargement. En particulier, on la combine
avec la méthode du potentiel. De plus, on développe un outil d’assistance par ordinateur pour
la procédure de déchargement. On fournit aussi des constructions pour les bornes inférieures sur
le nombre chromatique à distance 2. Finalement, on étudie les variantes, à savoir, la coloration
r-nuancée, la coloration injective et la coloration du carré exact.
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Abstract
In this thesis, we study the 2-distance chromatic number of sparse graphs, namely, planar

graphs and graphs with bounded maximum average degree. Upper bounds are obtained by pushing
the limits of the discharging method. In particular, we combine it with the potential method.
Further, we develop a computer assistance framework for the discharging procedure. We also
provide constructions for lower bounds of the 2-distance chromatic number. Finally, we study
variants, namely r-hued coloring, injective coloring, and exact square coloring.
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Overview of the results in the thesis

In this thesis, we focus on the problem of 2-distance coloring of sparse graphs. Research on
other subjects that was done during the thesis is also summarized in this overview. This manuscript
does not present the proof of every result but the corresponding contribution can be found in the
Appendix.

2-distance coloring of sparse graphs

In 1969, Kramer and Kramer introduced the notion of 2-distance coloring [80, 81]. This notion
generalizes the “proper” constraint (that does not allow two adjacent vertices to have the same
color) in the following way: a 2-distance k-coloring is such that no pair of vertices at distance at
most 2 have the same color. The 2-distance chromatic number of G, denoted by χ2(G), is the
smallest integer k such that G has a 2-distance k-coloring. Similarly to proper k-list-coloring, one
can also define 2-distance k-list-coloring. We denote χ2

`(G) the 2-distance list chromatic number
of G.

For a graph G, we denote ∆(G) the maximum degree of a graph G. One can observe that, for
any graph G, ∆(G) + 1 ≤ χ2(G) ≤ ∆2(G) + 1. The lower bound is trivial since, in a 2-distance
coloring, every neighbor of a vertex v with degree ∆(G), and v itself must have a different color.
As for the upper bound, a greedy algorithm shows that χ2(G) ≤ ∆2(G) + 1. Moreover, that upper
bound is tight for some graphs like the cycle on five vertices or the Petersen graph.

By nature, (2-distance) list colorings and the (2-distance) list chromatic number of a graph
depend a lot on the number of vertices in the neighborhood of every vertex. More precisely, the
“sparser” a graph is, the lower its (2-distance) chromatic number will be. One way to quantify the
sparsity of a graph is through its maximum average degree. The maximum average degree mad(G)
is the maximum, over all subgraphs H of G, of 2|E(H)|

|V (H)| . Another way to measure the sparsity is
through the girth, i.e. the length of a shortest cycle. We denote g(G) the girth of G. Intuitively,
the higher the girth of a graph is, the sparser it gets. These two measures are actually linked in
the case of planar graphs (see Proposition 2).

A graph is planar if one can draw its vertices with points on the plane, and edges with curves
intersecting only at its endpoints. When G is a planar graph, Wegner conjectured in 1977 that
χ2(G) becomes linear in ∆(G):

Conjecture 1 (Wegner [117]). Let G be a planar graph with maximum degree ∆. Then,

χ2(G) ≤


7, if ∆ ≤ 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,⌊

3∆
2

⌋
+ 1, if ∆ ≥ 8.

The upper bound for the case where ∆ ≥ 8 is tight. Recently, the case ∆ ≤ 3 was proved by
Thomassen [114], and by Hartke et al. [66] independently. For ∆ ≥ 8, Havet et al. [68] proved that
the bound is 3

2∆(1 + o(1)), where o(1) is as ∆→∞ (this bound holds for 2-distance list-colorings).
Wegner’s conjecture motivated extensive researches on 2-distance chromatic number of sparse

graphs, planar graphs with high girth or graphs with upper bounded maximum average degree.

Proposition 2 (Folklore). For every planar graph G, (mad(G)− 2)(g(G)− 2) < 4.

As a consequence, any theorem with an upper bound on mad(G) can be translated to a
theorem with a lower bound on g(G) under the condition that G is planar. Many results for χ2

have the following form: “every graph G of mad(G) ≤ m0 and ∆(G) ≥ ∆0 satisfies χ2(G) ≤
∆(G) + c(m0,∆0) where c(m0,∆0) is a small constant depending only on m0 and ∆0”. By
Proposition 2, these results can be restated on planar graphs with girth g ≥ g0(m0) where g0
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g0

χ2(G) ∆ + 1 ∆ + 2 ∆ + 3 ∆ + 4 ∆ + 5 ∆ + 6 ∆ + 7 ∆ + 8

3 ∆ = 3 ∆ = 4
4 ∆ = 4
5 ∆ ≥ 107 ∆ ≥ 339 ∆ ≥ 312 ∆ ≥ 15 ∆ ≥ 12 ∆ 6= 7, 8 ∆ ≥ 3
6 ∆ ≥ 17 ∆ ≥ 9 ∆ ≥ 3
7 ∆ ≥ 16 ∆ ≥ 10 ∆ ≥ 6 ∆ = 4
8 ∆ ≥ 9 ∆ ≥ 6 ∆ ≥ 3
9 ∆ ≥ 7 ∆ ≥ 5
10 ∆ ≥ 6 ∆ ≥ 4
11
12 ∆ ≥ 5 ∆ ≥ 3
13
14 ∆ ≥ 4
. . .

21 ∆ ≥ 3

Bảng 1: The latest results with a coefficient 1 before ∆ in the upper bound of χ2.

depends on m0. In Table 1, we summarize the latest results on the 2-distance chromatic number
of planar graphs with high girth.

For example, the result from line “7” and column “∆ + 1” reads: “every planar graph G of
girth at least 7 and of maximum degree ∆ at least 16 satisfies χ2(G) ≤ ∆ + 1”. The highlighted
results are the contribution of this thesis, the corresponding statements are listed below.

[84] If G is a planar graph with g(G) ≥ 21, then χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 3.

[85] If G is a graph with mad(G) < 18
7 , then χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 7.

[88] If G is a planar graph with g(G) ≥ 8, then χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 9.

[87] If G is a planar graph with g(G) ≥ 10, then χ2(G) ≤ ∆(G) + 2 for ∆(G) ≥ 4.

[86] If G is a graph with mad(G) < 8
3 , then χ2(G) ≤ ∆(G) + 2 for ∆(G) ≥ 6.

[86] If G is a graph with mad(G) < 14
5 , then χ2(G) ≤ ∆(G) + 2 for ∆(G) ≥ 10.

[90] If G is a graph with g(G) ≥ 8, then χ2(G) ≤ ∆(G) + 3 for ∆(G) ≥ 3.

[82] If G is a graph with mad(G) < 8
3 , then χ2

` (G) ≤ ∆(G) + 3 for ∆(G) ≥ 4.

[82] If G is a graph with mad(G) < 14
5 , then χ2

` (G) ≤ ∆(G) + 3 for ∆(G) ≥ 6.

[89] If G is a planar graph with g(G) ≥ 4 and ∆(G) = 4, then χ2
` (G) ≤ ∆(G) + 7.

The details of the proofs and the techniques involved in proving them is discussed in Chapter 2
and Chapter 3 of this manuscript.

In Chapter 4, we discuss the constructions of non 2-distance colorable graphs (for a given
number of colors) when the girth is too small. More precisely, we contribute the following to the
existing constructions.
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[84] There exists a planar graph G with g(G) ≥ 11, ∆(G) = 3, and χ2(G) ≥ ∆(G) + 2.

[87] There exists a planar graph G with g(G) ≥ 4 and χ2(G) ≥ ∆(G) + 3.

[87] There exists a planar graph G with g(G) ≥ 5, ∆(G) = 4, and χ2(G) ≥ ∆(G) + 3.

[90] There exists a planar graph G with g(G) ≥ 6, ∆(G) = 3, and χ2(G) ≥ ∆(G) + 3.

Finally, in Chapter 5, we present the following variants of 2-distance colorings: r-hued coloring,
injective coloring, and exact square coloring.

r-hued coloring

The “2-distance” condition in 2-distance colorings requires that vertices at distance at most
two have different colors. In other words, all neighbors of the same vertex must have different
colors. This condition was generalized recently and the notion of r-hued coloring was introduced
by Montgomery [98]. Let r, k ≥ 1 be two integers. An r-hued k-coloring of the vertices of G is
a proper k-coloring of the vertices, such that all vertices are r-hued. A vertex is r-hued if the
number of colors in its open neighborhood NG(v) = {x|xv ∈ E} is at least min{dG(v), r}. The
r-hued chromatic number of G, denoted χr(G), is the smallest integer k so that G has an r-hued
k-coloring.

It is indeed a generalization of 2-distance colorings which corresponds to the case r ≥ ∆, as all
vertices in the same neighborhood have different colors. More generally, its link to proper coloring
and 2-distance coloring resides in the following equation:

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χ∆(G) = χ∆+1(G) = · · · = χ2(G) (1)

Similar to the 2-distance chromatic number, the r-hued chromatic number is linear in r when
it comes to planar graphs. In 2014, Song et al. proposed a generalization of Wegner’s conjecture:

Conjecture 3 (Song et al. [108]). Let G be a planar graph. Then,

χr(G) ≤


r + 3, if 1 ≤ r ≤ 2,
r + 5, if 3 ≤ r ≤ 7,
b3r

2 c+ 1, if r ≥ 8.

One can note that the case r = 1 corresponds to the Four Color Theorem [3, 4] ; additionally,
by taking r = ∆(G), Conjecture 3 implies Wegner’s conjecture except for the case r = 3. Moreover,
the only extremal known examples reaching the upper bounds of Conjecture 3 are the same as for
Wegner’s conjecture.

The case of r = 2 was proved by Chen et al. in [33]. Song and Lai [109] proved that, if r ≥ 8,
then every planar graph verifies χr(G) ≤ 2r + 16. Similar to 2-distance coloring, the coefficient
before r in this upper bound becomes 1 for planar graphs with a higher girth (or graphs with
lower mad).

Our contribution to the existing knowledge about r-hued coloring is the following.

Theorem 4 ([88]). If G is a planar graph with g(G) ≥ 8, then χr(G) ≤ r + 1 for r ≥ 9.

Injective and exact square colorings

This work was done in collaboration with Kenny Štorgel.
An injective coloring of a graph G is a coloring of the vertices of G in which every pair of

vertices with a common neighbor receive distinct colors. An exact square coloring of a graph G
is a coloring of the vertices of G in which every pair of vertices at distance exactly two receive



vii

distinct colors. This can also be extended to list-coloring. We denote χi`, the list injective chromatic
number, and χ#2

` the list exact square chromatic number.
Unlike the 2-distance coloring, both the injective coloring and the exact square coloring are

not necessarily proper, i.e. adjacent vertices can receive the same color, provided that they satisfy
certain conditions. For instance, in the exact square coloring two vertices can be colored with
the same color if they are adjacent, and in the injective coloring two vertices can be colored with
the same color if they are adjacent and do not share a common neighbor. It is therefore easy to
observe that every 2-distance coloring is an injective coloring, and every injective coloring is an
exact square coloring. Thus, for every graph G we have the following chain of inequalities:

χ#2(G) ≤ χi(G) ≤ χ2(G).

Moreover, χ#2(G) = χi(G) in the case of triangle-free graphs, i.e. graphs in which adjacent
vertices cannot share a common neighbor.

The injective coloring was first introduced in 2002 by Hahn et al. [64]. The authors proved
that for every graph G, ∆(G) ≤ χi(G) ≤ ∆2(G)−∆(G) + 1. They also characterized the regular
graphs which achieve the lower bound and the graphs which attain the upper bound. In 2005,
Doyon et al. [49] presented the first results on injective colorings of planar graphs and later, Chen
et al. [32] proved that for every K4-minor free graph G, χi(G) ≤ d3

2∆(G)e and in the same paper
posed the following conjecture.

Conjecture 5 (Chen et al. [32]). Let G be a planar graph with maximum degree ∆. Then,

χi(G) ≤
⌈3

2∆
⌉
.

In 2015, the conjecture was disproved in general by Lužar and Škrekovski [95]. As a result,
they proposed a new conjecture.

Conjecture 6 (Lužar, Škrekovski [95]). Let G be a planar graph with maximum degree ∆. Then,

χi(G) ≤


5, if ∆ ≤ 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,⌊

3
2∆
⌋

+ 1, if ∆ ≥ 8.

Note that since the injective coloring is a relaxation of the 2-distance coloring, proving
Conjecture 1 would prove Conjecture 6, except in the case of subcubic graphs, i.e. the class of
graphs with maximum degree 3. Brimkov et al. [21] proved that 5 colors suffice for subcubic planar
graphs with girth at least 6. If true, then the conjectured upper bound for subcubic graphs is also
tight (see, e.g., [95]).

Finally, the study of the exact distance p-powers of graphs was started by Simić [107] and
exact p-distance colorings have first been studied in [101]. This parameter received an increasing
attention in the last decade (see [20, 59, 70, 103]).

The following is our contribution to injective and exact square coloring.

Theorem 7 ([89]). If G is a planar graph with ∆(G) = 4, then χi`(G) ≤ ∆(G) + 7.

Theorem 8 ([89]). If G is a planar graph with g(G) ≥ 4 and ∆(G) = 4, then χ#2
` (G) =

χi`(G) ≤ ∆(G) + 5.

Theorem 9 ([89]). If G is a planar graph with ∆(G) = 4, then χ#2
` (G) ≤ ∆(G) + 6.
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Research on other topics

During the three years of my Ph.D., I had the opportunities to collaborate with researchers
from France, Slovenia, and Spain. During these collaborations, I worked on other research topics
that are not related to 2-distance coloring.

The 3-color Problem and precoloring extensions

This work was done in collaboration with Kenny Štorgel and Borut Lužar.
The Four Color Theorem provides an upper bound on the chromatic number of any planar graph,

but determining which graphs achieve the equality is an NP-complete problem [43]. Consequently,
searching for properties of (planar) graphs that guarantee 3-colorability is a very vibrant field
(see, e.g., [13] for a survey). It turns out that triangles play an important role in this decision
problem. Indeed, a cornerstone theorem of Grötzsch [62] states that every triangle-free planar
graph is 3-colorable. Consequently, the focus turned to investigating ways in which triangles can
appear in 3-colorable planar graphs. For example, for any planar triangulation, Heawood [69]
showed that it is 3-colorable if and only if all of its vertices have even degrees.

Some triangles can be allowed in general planar graphs while maintaining 3-colorability:
Havel [67] conjectured that a 3-colorable planar graph can contain arbitrarily many triangles as
long as they are sufficiently far apart and Steinberg [111] conjectured that allowing triangles while
forbidding cycles of length 4 and 5 is a sufficient condition for a planar graph to be 3-colorable.
While Havel’s conjecture has been proved by Dvořák et al. [50], Steinberg’s conjecture has been
refuted by Cohen-Addad et al. [35].

Another direction of research is focused on planar graphs with a small number of triangles.
Grünbaum [63], Aksenov [1], then Borodin et al. [15] all provided proofs that a planar graph may
contain three triangles and still retain 3-colorability.

The authors of [15] also presented short proofs of several other extensions of the Grötzsch
Theorem, which guarantee 3-colorability of graphs being close to triangle-free planar graphs,
improving upon multiple previous results.

We introduce new results about 3-colorability of planar graphs with small number of triangles
and some precolored vertices, improving further on the results in [15].

Theorem 10 ([83]). Let G be a planar graph with at most one triangle. Then each coloring of
any two non-adjacent vertices can be extended to a 3-coloring of G.

The result is tight in terms of the number of precolored vertices and in terms of the number of
triangles

Theorem 11 ([83]). Let G be a planar graph with at most one triangle and let H be a graph
such that G = H − v for some vertex v of degree at most 3 in H, which is adjacent with at
most two vertices of the triangle in G if it exists. Then H is 3-colorable.

Again, the result is tight in terms of the number of precolored vertices and in terms of the
number of triangles as well as in terms of the number of neighbors of v on the triangle.

Theorem 12 ([83]). Let G be a planar graph with at most one triangle and let f be a face of
G of length at most 4. Then each 3-coloring of f can be extended to a 3-coloring of G.

This result is tight in terms of the size of f .
Let K ′4 be the graph obtained from K4 by subdividing once the three edges incident with a

vertex v. We call a graph K ′4-free if it does not contain K ′4 as a subgraph in such a way that the
vertex v of K ′4 has degree 3 also in G. It is easy to see that the vertices in the neighborhood of v
cannot be colored with a same color.
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Theorem 13 ([83]). Let G be a K ′4-free planar graph with at most one triangle. Then, for every
vertex of degree at most 3 with an independent neighborhood, a precoloring of its neighbors
with the same color can be extended to a 3-coloring of G.

This result is tight in terms of the degree of a vertex and in terms of the number of triangles.
Other than improving upon existing results, one motivation for the above-mentioned results

was a conjecture on adynamic coloring of planar graphs with one triangle. An adynamic coloring
is a proper vertex coloring of a graph G such that, for at least one vertex of degree at least 2
(denoted 2+-vertex), all of its neighbors are colored with a same color. Clearly, to admit such a
coloring, G must have at least one 2+-vertex v with an independent neighborhood, i.e. v is not
incident to a triangle.

In [116] by Šurimová et al., it was proved that every triangle-free planar graph admits an
adynamic 3-coloring. On the other hand, there are planar graphs with two triangles that need
4 colors. Regarding planar graphs with one triangle, the authors of [116] conjectured that they
are 3-colorable as soon as they contain a 2+-vertex with an independent neighborhood. Using the
previous results, we answer the conjecture in affirmative.

Theorem 14 ([83]). Every planar graph with at most one triangle and a 2+-vertex with an
independent neighborhood is adynamically 3-colorable.

Cops and Robber

This work was done in collaboration with Valentin Bartier, Laurine Bénéteau, Marthe Bonamy,
and Jonathan Narboni.

Cops and Robber is a pursuit-evasion two-player turn-based game between the cops and the
robber. In the first round, each cop chooses a starting vertex, then the robber chooses its starting
vertex. Then, at each round, each cop chooses to move to an adjacent vertex, or to stay on its
current vertex, then the robber has a similar choice. The cops win if after a finite number of
rounds, a cop occupies the same vertex as the robber. The robber wins if he can indefinitely avoid
the cops. The cop number of a graph G, which is denoted by c(G), is the minimum number of
cops needed to guarantee that they have a winning strategy. Albeit being very simple, this game
is related to fundamental questions regarding the structural properties of graphs (see [10], [11]
and [9] for a survey, and additional background on this game).

Here, we consider a new variant of this game, namely Zombies and Survivor, defined in [58] by
Fitzpatrick et al. as follows: zombies take the place of the cops and the survivor takes the place
of the robber. The zombies, being of limited intelligence, have a very simple objective in each
round – to move closer to the survivor. Therefore, each zombie must move along some shortest
path joining itself and the survivor. We say that the zombies capture the survivor if one of the
zombies moves onto the same vertex as the survivor. In this version, zombies may have a choice
as to which shortest path to follow, if there are multiple ones. Similarly to Cops and Robber,
the zombie number of a graph G is the minimum number of zombies needed to ensure that the
survivor will be eventually captured, and is denoted by z(G).

Recall that a Cartesian product G�H of graphs G = (V (G), E(G)) and H = (V (H), E(H)) is a
graph such that the vertices is the Cartesian product V (G)×V (H) = {(u, v)|u ∈ V (G), v ∈ V (H)}
and the edges is the set {((u, u′), (v, v′))|u = v and (u′, v′) ∈ E(H), or u′ = v′ and (u, v) ∈ E(G)}.

We proved the following theorems.

Theorem 15 ([5]). For all graphs G and H, z(G�H) ≤ z(G) + z(H).

Theorem 16 ([5]). Over all graphs G, the ratio z(G)
c(G) can be arbitrarily large.

These answers two questions asked as well as improved upon multiple results in [58].



x

Feedback vertex sets in (directed) graphs of bounded degeneracy or treewidth

This work was done in collaboration with Petru Valicov and Kolja Knauer.
A set F ⊆ V (G) of vertices of a (directed) graph G, is a feedback vertex set if deleting F results

in a (directed) graph without (directed) cycles. The complement of a feedback vertex set is called
acyclic set. Deciding whether a graph has a feedback vertex set of a given size is NP-complete [73].

Because of its hardness, a natural class to study the minimum size of a feedback vertex set are
sparse (directed) graphs. A particular example are planar graphs. The size of a minimum feedback
vertex set in a planar graph is (famously) conjectured to be at most half the vertices by Albertson
and Berman [2]. Up to date the best-known upper bound is 3

5n achieved through acyclic colorings
with Borodin’s result [12]. This conjecture remains open even in the directed setting. Note that,
in this setting, it is a weakening of the Neumann-Lara conjecture.

Conjecture 17 (Neumann-Lara [100]). Every planar oriented graph can be vertex-partitioned
into two acyclic sets.

Further, it is known that if true this bound is best-possible [78]. Moreover, it is noteworthy
that the best known upper bound coincides with the above mentioned 3

5n from the undirected
setting [12].

Another class that has received attention in the directed setting are tournaments. Already
Stearns [110] and Erdős and Moser [53] have shown that any tournament on n vertices admits
a feedback vertex set of size n− blog2(n)c − 1, while there are tournaments where no feedback
vertex set on less than n− 2blog2(n)c− 1 vertices exists. More precise bounds for small values of n
have been obtained by Sanchez-Flores [105, 106], Neiman et al. [99], and Lidický and Pfender [93].

We focus on the class of (directed) graphs of bounded treewidth or degeneracy. Here, the
treewidth or degeneracy of a directed graph is simply the treewidth or degeneracy of its underlying
undirected graph. Recall that every graph of treewidth k also has degeneracy k. In the undirected
setting, the minimum feedback vertex set of graphs of bounded treewidth has been determined
by Fertin et al. [57]: for a graph of order n, treewidth k, the size of a minimum feedback vertex
set is at most k−1

k+1n and this bound is best-possible. Moreover, for odd degeneracy k it is easy to
achieve the same upper bound. However, for even degeneracy the same argument only yields an
upper bound of k

k+2n, and a lower bound of k−1
k+1n. Indeed, Borowiecki et al. [17] show that the

true value for k = 2 is 2
5n which lies strictly between the above bounds.

Our main contribution here is to construct for any even k a family of graphs of degeneracy k,
whose members of large order n have minimum feedback vertex sets whose size comes arbitrarily
close to 3k−2

3k+4n. Let n(G) be the number of vertices of G and f(G) be the size of a minimum
feedback vertex set of G.

Theorem 18 ([77]). For every even k there exists a family of k-degenerate graphs (Gi)i∈N such
that n(Gi) = 3k+6

2 + i3k+4
2 and f(Gi) = 3k−2

2 + i3k−2
2 .

On the other hand we know that there exists no graphs of order n and even degeneracy k
whose minimum feedback vertex set is of size k

k+2n.

Proposition 19 ([77]). For every even k ≥ 2 there is a graph G with degeneracy k, n(G) =
(k+2)k

2 + 1 and f(G) = k2

2 .

In the directed setting, to our knowledge, apart from the above mentioned results in planar
digraphs and tournaments, no classes of given degeneracy or treewidth have been studied previously.
We give an upper bound for the smallest feedback vertex sets of n-vertex graphs of degeneracy k.

Theorem 20 ([77]). Let D be a k-degenerate directed graph, we have f(D) ≤ k−1
k+1n(D) and

the inequality is strict when k is odd.
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For k = 2 and k = 3, this yields tight bounds 1
3n and 1

2n, respectively. For k = 2, the directed
triangle is a simple example reaching the upper bound and for k = 3, the construction from [78]
yields 1

2n for degeneracy 3. Unlike the undirected setting, we know that there exists no graph of
order n and odd degeneracy k whose minimum feedback vertex set is of size k−1

k+1n.
We also present constructions [77] for digraphs with large minimum feedback vertex set

and given small degeneracy or treewidth that improve on the bounds obtained from using just
tournaments from [105, 106, 99].

For general treewidth, by taking disjoint unions of the tournaments, one can find n-vertex
digraphs of treewidth k and f ≥ k−2blog2(k+1)c

k+1 n [53]. However, we show that on general graphs of
treewidth k one can force slightly larger minimum feedback vertex sets.

Theorem 21 ([77]). For every k, there exists a family of directed graphs (Di)i∈N of treewidth
k, such that n(Di) = k + 2 + i(k + 1) and f(Di) ≥ (i+ 1)(k − 2blog(k)c).

On the other hand, we show that every n-vertex digraph of treewidth k has a feedback vertex
set of size at most k

k+3n.

Theorem 22 ([77]). If G has treewidth k, then f(G) ≤ k
k+3n(G).
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Introduction

We start out with some definitions and an introduction to the motivation behind the study of
2-distance coloring on sparse graphs as well as the discharging method, the main tool that we will
be using throughout the thesis.

1.1 Definitions and notations

A (simple) graph G is a pair (V,E) of finite sets such that E is a set of pairs of elements of V .
The elements of V are called the vertices of G, and the elements of E are called the edges of G.
The set of vertices of a graph G is denoted by V (G). The set of edges of a graph G is denoted by
E(G). The order of a graph G is |V (G)|, the number of elements of V (G). The size of G is |E(G)|.

Consider a graph G and let u and v be two vertices in V (G). We also say that u and v are two
vertices of G. An edge {u, v}, denoted by uv, is incident to the vertices u and v, and these vertices
are the endpoints of uv. We say that u and v are adjacent if they are incident to the same edge. The
neighbors of u are the vertices that are adjacent to u. The set of neighbors of u is called the open
neighborhood of u and is denoted by NG(u). The closed neighborhood of u is NG[u] = NG(u)∪ {u}.
By default, when we say the neighborhood of u, we mean the open neighborhood NG(u) unless
specified otherwise. For all set S ⊆ V (G), NG[S] = ⋃

s∈S NG[s] is the closed neighborhood of S,
and NG(S) = NG[S] \ S is the open neighborhood of S. The degree of u is dG(u) = |NG(u)|. For
an integer k, a k-vertex, k+-vertex, or k−-vertex denote a vertex with degree k, at least k, or at
most k respectively. Similarly, given a vertex u, a d-neighbor, d+-neighbor, or d−-neighbor denote
a neighbor of u with degree d, at least d, or at most d respectively. For two integers k, l with k ≤ l
and a vertex u, a (k↔ l)-vertex ((k↔ l)-neighbor) is a vertex (neighbor of u) with degree between
k and l included. The minimum degree of G is δ(G) = minu∈V (G) dG(u). The maximum degree of
G is ∆(G) = maxu∈V (G) dG(u). The average degree of G is ad(G) = 2|E(G)|

|V (G)| . A graph where every
vertex has degree d is called a d-regular graph.

A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). For a set
S ⊆ V (G), the subgraph induced by S in G is G[S] = (S,E(G) ∩ (S × S)). We denote G− S the
graph G[V (G)\S]. For simplicity, we denote G−{u} by G−u for a vertex u of G. For conciseness,
we will also use G − s1s2 . . . sn instead of G − {s1, s2, . . . , sn} when there is no ambiguity. For
a set T ⊆ E(G), we denote G − T the graph (V (G), E(G) \ T ). Similarly, for simplicity, we
denote G− {e} by G− e for an edge e ∈ E(G). For a set T of pairs of elements of V such that
F ∩ E(G) = ∅, we define G+ T = (V (G), E(G) ∪ T ). Sometimes, we abuse this previous notation
when we add a set of vertices S to G by writing G+ S; in such a case, we define exactly the edges
that are added to G. The maximum average degree of G, denoted by mad(G), is the maximum
over ad(H) for all H subgraph of G.

A path P in G is a sequence of distinct vertices u0, u1, . . . , uk+1 such that uiui+1 is an edge
for every 0 ≤ i ≤ k. The vertices u0 and uk+1 are called the endvertices of P . A d-endvertex, d+-

2
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endvertex, or d−-endvertex denote an endvertex with degree d, at least d, or at most d respectively.
The vertices ui for 1 ≤ i ≤ k are the inner vertices of P . The length of a path is k + 1 if it has k
inner vertices. The graph consisting of only one path of length k is denoted by Pk. The distance
between two vertices u and v is the length of a shortest path (i.e. path with minimum length)
with endvertices u and v. A graph G is connected if there exists a path between every pair of
vertices of G. The components of a graph are its maximum connected subgraphs. The maximum
distance in a connected graph is called the diameter of the graph. A path is a thread when the
inner vertices are all 2-vertices. For an integer k, a k-thread, k+-thread, or k−-thread denote a
thread with exactly k, at least k, or at most k inner vertices respectively. A (k1, k2, . . . , kd)-vertex
is a d-vertex that is incident with d different threads where the ith thread is a ki-thread for all
1 ≤ i ≤ d. A cycle C in G is a sequence of distinct vertices u1, u2, . . . , uk such that uiui+1 is an
edge for every 0 < i < k and u1uk is an edge. For an integer k ≥ 3, a k-cycle, k+-cycle, or k−-cycle
denote a cycle on exactly k, at least k, or at most k vertices respectively. The length of a k-cycle
is k. The graph consisting of only one k-cycle is denoted by Ck. The girth of G, denoted by g(G),
is the length of its smallest cycle.

An independent set (resp. a clique) of a graph G is a set of vertices such that no (resp. every)
pair of vertices are adjacent to one another. The size of the biggest independent set (resp. clique)
of G is denoted α(G) (resp. ω(G)). A graph whose set of vertices is a clique is a complete graph.
For an integer k ≥ 1, the complete graph on k vertices is denoted by Kk. A graph is bipartite if
its set of vertices can be partitioned into two disjoint sets A and B where every edge has exactly
one endpoint in A (the other is in B). A forest is a graph with no cycles. The girth of a forest is
considered to be infinite. A tree is a connected forest. A rooted tree is a tree where exactly one
vertex is called the root of the tree. In a rooted tree, we can define a parent-children relationship
recursively between two adjacent vertices. The root is the parent of all of its neighbors. Once a
vertex u has a parent v, u is called the child of v and u is in turn the parent of all vertices in
N(u) \ {v}. The grandparent (resp. a grandchild) of a vertex in a rooted tree is the parent of its
parent (resp. a child of one of its child). These notions are well-defined in a tree since there are no
cycles.

Let k ≥ 1 be an integer. A k-coloring φ of a graph G is a function from V (G) to the set
of integers {1, 2, . . . , k}, called set of colors, that assigns to each vertex of V (G) a color from
{1, 2, . . . , k}. A coloring also defines a natural vertex partition of V (G) into disjoint sets called
color classes. A proper coloring is a coloring where every color class is an independent set. For
an integer d ≥ 1, a d-distance coloring is a coloring where each color class is a set of vertices
where every pair of vertices are at distance at least d+ 1 from one another. Hence proper coloring
corresponds to 1-distance coloring. The chromatic number of a graph G, denoted by χ(G), is
the smallest integer k such that G has a proper k-coloring. The d-distance chromatic number of
G, denoted by χd(G), is the smallest integer k such that G has a d-distance k-coloring. Given a
graph G, a list assignment L is a function that maps each vertex u ∈ V (G) to a list of colors L(u)
which is a set of integers. We say that G is L-list-colorable or L-choosable if there exists a proper
coloring φ of G such that φ(u) ∈ L(u) for all u ∈ V (G). A k-list assignment is a list assignment
L where |L(v)| ≥ k for every vertex v ∈ V (G). If G is colorable for every k-list assignment, then
we say that G is k-list-colorable or k-choosable. The list chromatic number or choice number of a
graph G, denoted by χ`(G), is the smallest integer k such that G is k-choosable. The notion of
d-distance colorings can be extended to a list version. We say that G is d-distance k-list-colorable
or d-distance k-choosable if for every k-list assignment L, there exists a d-distance coloring φ of G
such that φ(u) ∈ L(u) for all u ∈ V (G). The d-distance list chromatic number of G, denoted by
χd` (G), is the smallest integer k such that G has a d-distance k-list-coloring.

A notion that is closely related to distance coloring is the power of graphs. We denote by Gd,
the dth power of G, the graph on V (G) where u and v are adjacent if they are at distance at most
d in G for all u and v in V (G). Given a graph G and a type of coloring (for example a d-distance
coloring), we can define the conflict graph of G as the graph with the same vertices of V (G) and
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there exists an edge between two vertices u and v if they must have different colors. Observe that
the conflict graph of G for a proper coloring is G itself. The conflict graph of G for a 2-distance
coloring is G2, also called the square of G. In general, the conflict graph of G for a d-distance
coloring Gd. We say that two vertices of G see each other in a type of coloring if they are adjacent
in the corresponding conflict graph.

Since we are paying special attention to 2-distance coloring, we will also define the following
notions. Given a graph G, for each vertex u ∈ V (G), the 2-distance (open) neighborhood of v,
denoted by N∗G(v), is the set of vertices at distance at most 2 from v not including v. We also
define d∗G(v) = |N∗G(v)|.

Each graph has an embedding on a surface where its vertices can be represented with distinct
points and its edges with curves between its endpoints. A graph is planar if it has an embedding
on the plane where its edges only intersect at their endpoints. A plane graph is a planar embedding
of a planar graph. In a plane graph, a face f is a maximum connected surface that do not contain
any edges or vertices. The set of edges and vertices that are in contact with f is the boundary
of f . Vertices and edges in the boundary of f are incident to f . Two faces are adjacent if their
boundaries share an edge. The degree of a face f , denoted by d(f), is the number of edges in its
boundary and the edges that are not in the boundary of any other faces are counted twice. A
d-face, d+-face, or d−-face denote a face with degree d, at least d, or at most d respectively. The
set of faces of a graph G is denoted by F (G). For convenience, starting now, we will identify a
face f with its boundary. Of course, this definition of a face also holds for surfaces other than a
plane but for this thesis, we are concentrating on plane graphs.

For all of the notations defined above, we will drop the subscript and/or the argument when it
is clear from context. And for general drawing conventions, black vertices will have their degree
represented and white vertices may have a higher degree than what is drawn unless specified
otherwise. Some figures will also contain extra information, in which case, their meaning will be
specified.

1.2 Proper coloring
When talking about graph coloring, one has to mention the famous Four Color Theorem.

Theorem 1.1 (Appel et al. [3, 4]). Every planar graph is 4-colorable.
This theorem started as a conjecture by Francis Guthrie in 1852 who was trying to color a

map of English counties such that no regions sharing a border can be colored the same. This
question was brought, by Francis’ brother, to the attention of De Morgan and subsequently the
mathematical community at large. Many attempted to prove this conjecture but failed. One such
famous attempt was due to Kempe in 1879 and for a decade, the Four Color Conjecture was
accepted as the Four Color Theorem. However, in 1890, it returned to being a conjecture when
Heawood pointed out an error in Kempe’s proof but his method was still valid to prove that any
planar graph is 5-colorable. This problem remained open for almost a century until 1976 when
it was proven by Appel et al. [3, 4] using the discharging method with computer assistance. In
1997, Robertson et al. simplified the proof using the same method [104]. Later on, this proof was
verified by Gonthier using Coq [61].

The Four Color Conjecture and in turn the Four Color Theorem motivated a lot of research in
graph colorings and also popularized the discharging method.

For proper colorings, we have the following upper bound for any graph G: χ(G) ≤ ∆(G) + 1.
This upper bound is trivial as one can color the vertices greedily by picking for a vertex, a color
that is not present in its neighborhood. This bound is easily reached for any graph G containing a
clique of size ∆(G) + 1. A more refined version of this upper bound is Brooks’ Theorem.
Theorem 1.2 (Brooks [22]). Every connected graph G satisfies χ(G) ≤ ∆(G) excepted when
G = K∆(G)+1 or G is an odd cycle for which ∆(G) + 1 colors are necessary.
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The upper bound in Brooks’ Theorem is also reached for an infinite amount of graphs (any
graph containing a clique of size ∆). Intuitively, the “proper constraint” means that the chromatic
number of a graph depends on the number of vertices in the neighborhood of every vertex. This
was illustrated above by the upper bound using the maximum degree. Thus, the question of
coloring “sparser” graphs comes very naturally.

Proper coloring in sparse graphs

An initial observation one can have is that the maximum degree might not be a good measure
of the “density” of the graph as it might only have one vertex with very high degree for example.
A slightly better measure of “sparseness” is the average degree which is simply a ratio of number
edges over number of vertices in the graph. One can be even more precise with the maximum
average degree which guarantees a better “distribution” of the edges (avoiding cases where there
is a “dense” subgraph and a very sparse rest of the graph which decreases the average degree).
This intuition is confirmed by the following result by Szekeres and Wilf.

Theorem 1.3 (Szekeres, Wilf [112]). Let G be a graph and λ(G) be any real valued function on
G with the following properties:

• λ(G) ≥ δ(G).

• For any subgraph H of G, λ(H) ≤ λ(G).

Then, χ(G) ≤ λ(G) + 1.

The maximum average degree clearly verifies the two properties of λ in Theorem 1.3. Thus, we
have the following corollary.

Corollary 1.4. For every graph G, χ(G) ≤ mad(G) + 1.

In this sense, the class of planar graphs is the most famous class of sparse graphs. Intuitively,
the constraint of not having edge crossings in a planar drawing of the graph limits the number of
edges you can have given the number of vertices. Euler’s formula quantifies this sparseness exactly
using an object that is specific to graphs that are embeddable on surfaces without edges crossing:
its faces. Euler’s formula applied to a connected plane graph G says:

|V (G)|+ |F (G)| − |E(G)| = 2. (1.1)

This equation means that the number of edges is basically equal to the number of vertices and
faces in a connected planar graph G. One intuitive way to understand this equation is by drawing
G starting with the vertices. Then, whenever we draw a new edge between two vertices, we either
visit a new vertex or close off a region which becomes a new face.

Using Euler’s formula, when |V (G)| ≥ 3, the fact that every face of a planar graph has degree
at least 3 (as we only consider simple graphs), and that ∑f∈F (G) d(f) = 2|E(G)|, we can deduce
that |E(G)| ≤ 3|V (G)| − 6. This yield an average degree less than 6 and the same holds for the
maximum average degree as any subgraph of a planar graph is also planar by definition. In other
words, on average, a vertex in a planar graph has less than 6 neighbors.

While a planar graph can have an arbitrary maximum degree, its bounded maximum average
degree drops the upper bound on the chromatic number from ∆ + 1 to at most 7 by Corollary 1.4.
The Four Color Theorem suggests that there exists something more than just bounded maximum
average degree (mad < 6) for planar graphs since we drop from 7 to 4 colors. Moreover, K5 is a
non-planar graph (|E(K5)| = 10 > 3|V (K5)| − 6 = 9) with χ(K5) = mad(K5) + 1 = 5 < 6. So,
even though bounding maximum average degree is a good way to decrease the chromatic number,
planar graphs contain more structural properties than just bounded mad.
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Proper list-coloring

Another recurring notion of coloring throughout this thesis is list-coloring. Since a proper
coloring is a proper list-coloring where every list is the same, we obtain the following inequality:

χ(G) ≤ χ`(G).

At first glance, it is unclear that χ` can be much larger than χ as one might think that it is easier
to obtain a proper coloring if our vertices have very different list of colors. However, Erdős et al.
showed that the gap between the chromatic number and the choice number can be arbitrarily
large.

Theorem 1.5 (Erdős et al. [55]). For every integer k, there exists a bipartite graph G with
χ`(G) ≥ k.

By definition, a bipartite graph is 2-colorable where the two classes of colors constitutes the
partition of the set of vertices. However, Theorem 1.5 shows that we can obtain a very large choice
number despite the graph being 2-colorable.

For planar graphs, Vizing conjectured that every planar graph is 5-choosable in 1975, and this
statement was proved by Thomassen in 1994:

Theorem 1.6 (Thomassen [113]). Every planar graph is 5-choosable.

Theorem 1.6 along with the Four Color Theorem implies that we have a gap of at most 1
between the chromatic and the choice number for planar graphs. This gap was confirmed to be
exactly 1 around the same time. In 1979, Erdős et al. conjectured that there are planar graphs
which are not 4-choosable and this was proven by Voigt in 1993.

Theorem 1.7 (Voigt [115]). There exists a planar graph G with χ`(G) ≥ 5.

1.3 2-distance coloring

In 1969, Kramer and Kramer introduced the notion of d-distance coloring [80, 81] for an
integer d ≥ 1. This notion generalizes proper coloring which can be seen as 1-distance coloring.
Throughout the years, an extensive amount of research has been done on distance coloring, most of
which concentrated on the first interesting case after d = 1, which is naturally 2-distance coloring,
one of the focus this thesis.

Similarly to proper coloring, one can also bound the 2-distance chromatic number by using the
maximum degree of the graph. Observe that, for any graph G, ∆(G) + 1 ≤ χ2(G) ≤ ∆(G)2 + 1.
The lower bound is trivial since, in a 2-distance coloring, every neighbor of a vertex v with degree
∆, and v itself must have a different color. For the upper bound, a greedy coloring algorithm
shows that χ2(G) ≤ ∆(G)2 + 1, i.e. it suffices to color a vertex differently from every colored
vertex in its 2-distance neighborhood which is of size at most ∆(G)2. This bound is reached by
Moore graphs of type (∆, 2), which are ∆-regular graphs with diameter 2 and ∆2 + 1 vertices. In
other words, Moore graphs are the graphs whose square are complete graphs. For example, the
cycle C5 and the Petersen graph are graphs of type (2, 2) and (3, 2) respectively (See Figure 1.1).

However, Hoffman and Singleton proved that there exists only a finite number of such graphs
[71]. Similar to Brooks’ Theorem for proper coloring, there exist Brooks-like results for powers of
graphs [102] showing that the number of graphs reaching this trivial upper bound is finite for a
a given power and maximum degree. For the case of 2-distance coloring, Cranston and Rabern
proved the following.

Theorem 1.8 (Cranston, Rabern [39]). If G is not a Moore graph, then χ2(G) ≤ ∆(G)2 − 1.
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(i) The Moore graph of type
(2,2): the odd cycle C5.

(ii) The Moore graph of type
(3,2): the Petersen graph.

(iii) The Moore graph of type
(7,2): the Hoffman-Singleton
graph.

Hình 1.1: Examples of Moore graphs for which χ2 = ∆2 + 1.

While there is a finite number of graphs reaching the trivial upper bound, Mckay et al. built a
family of graphs of diameter 2 of order 8

9(∆ + 12)2 [97] for an infinite number of ∆. Any graph
containing such subgraphs will have a 2-distance chromatic number that is quadratic in the
maximum degree.

2-distance choosability

As a 2-distance coloring is also a proper coloring of the square, we have χ2(G) = χ(G2). The
same can be said for list coloring. Thus, we also have the same inequality between the 2-distance
chromatic number and the 2-distance choice number:

χ2(G) ≤ χ2
` (G).

Given what we know about the gap between the chromatic number and the choice number, one
might suspect that the same will hold for their 2-distance version. However, it is unclear that this
is true as constructions of bipartite graphs like in Theorem 1.5 fail when we consider a coloring of
the square of the graph. In 2001, Kostoshka and Woodall even conjectured that these two numbers
are one and the same [79]. This was known as the List Square Coloring Conjecture. In 2013, Kim
and Park gave infinitely many counterexamples to the conjecture, going as far as showing that
χ2
` − χ2 can be arbitrarily large.

Theorem 1.9 (Kim, Park [74]). For every prime number p ≥ 3, there exists a graph G such that
χ2
` (G)− χ2(G) ≥ p− 1.

While we also get a big gap between the choice number and the chromatic number for 2-distance
coloring, the construction proposed in [74] is very dense and is far from being planar. Up to our
knowledge, the List Square Coloring Conjecture is still open for planar graphs.

2-distance coloring of sparse graphs

Corollary 1.4, which gives a Brooks-like result for proper coloring, bounds the chromatic
number in terms of the maximum average degree. This justifies the intuition of studying sparser
graphs. However, we do not have an equivalent version for 2-distance coloring. Indeed, a tree,
which has mad < 2, can have an arbitrarily large maximum degree and thus an arbitrarily large
2-distance chromatic number (χ2 ≥ ∆ + 1) compared to the maximum average degree.

Despite this observation, in 1977, Wegner conjectured that χ2(G) becomes linear in ∆(G) for
a planar graph G.
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Conjecture 1.10 (Wegner [117]). Let G be a planar graph with maximum degree ∆. Then,

χ2(G) ≤


7, if ∆ ≤ 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,⌊

3∆
2

⌋
+ 1, if ∆ ≥ 8.

These conjectured upper bounds would be tight due to the constructions in Figures 1.2 and 1.3.
Recently, the case ∆ ≤ 3 was proved by Thomassen [114], and by Hartke et al. [66] independently.
For ∆ ≥ 8, Havet et al. [68] proved that the bound is 3

2∆(1 + o(1)), where o(1) is as ∆→∞ (this
bound even holds for 2-distance list-colorings). These results confirmed the intuition for sparse
graphs where the upper bound on χ2 dropped by a factor of ∆.

(i) ∆ = 3 and χ2 ≥ 7. (ii) ∆ = 4 and χ2 ≥ 9. (iii) ∆ = 5 and χ2 ≥ 10.
(iv) 6 ≤ ∆ ≤ 7 and
χ2 ≥ ∆ + 5.1

Hình 1.2: Constructions by Wegner in [117].

b∆
2 c − 1 vertices d∆

2 e vertices

b∆
2 c vertices

(i) A graph with girth 3 and χ2 = b 3∆
2 c+ 1

(drawn for ∆ = 8).

b∆
2 c vertices d∆

2 e vertices

b∆
2 c vertices

(ii) A graph with girth 4 and χ2 = b 3∆
2 c

(drawn for ∆ = 8).

Hình 1.3: Graphs with χ2 ≈ 3
2∆ [117].

While planarity seems to not be reduced to bounded maximum average degree in the case of
proper coloring, the same is not trivial for 2-distance coloring. However, we can also show that
structural properties of planar graphs, even when “squared”, contributes more than just bounded
mad. Indeed, consider the Petersen graph where we remove one vertex. The resulting graph has
∆ = 3, mad = 8

3 and χ2 = 8 while it was proven that planar graphs with ∆ = 3 are 2-distance
7-colorable. Moreover, the graph in Figure 1.2(i) where we add an edge between two 2-vertices is
planar, has ∆ = 3, mad = 20

7 > 8
3 , and χ2 = 7. This seems to indicate that we need to exploit the

difference between planar graphs and general graphs with bounded mad. One such difference is
the presence of faces. This is one of the driving ideas of results that will be discussed in this thesis.

1The dashed edges are included for ∆ = 7 and are not for ∆ = 6.
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Although the passage from general to planar graphs decreased the quadratic bound to a linear
bound in ∆, there is still a gap between the lower bound of ∆+1 and the upper bound of b3

2∆c+1.
The study of graph classes that fit in this gap became an extensive field of research in 2-distance
coloring (see Table 1.1). The most natural next step in this direction is to decrease the maximum
average degree even further, or alternatively restrict the class of planar graphs by increasing its
girth, to obtain sparser graphs. Intuitively, in a planar graph, the higher the girth is, the further
away the vertices are from one another. This intuition is quantifiable through Proposition 1.11,
which also links the two measures of sparseness, girth and mad, in the case of planar graphs: the
higher the girth of our planar graph is, the smaller its mad is.

Proposition 1.11 (Folklore). For every connected planar graph G with finite girth, (mad(G)−
2)(g(G)− 2) < 4.

Chứng minh. Let H be a subgraph of G such that mad(G) = ad(H) = 2|E(H)|
|V (H)| . Euler’s formula

states that: |E(H)| − |V (H)|+ 2 = |F (H)|. Since∑
f∈F (H)

g(H) ≤
∑

f∈F (H)
d(f)

|F (H)|g(H) ≤ 2|E(H)|

|F (H)| ≤ 2|E(H)|
g(H)

We have

|E(H)| − |V (H)| < 2|E(H)|
g(H)

2g(H)
|V (H)| |E(H)| − 2g(H) < 4|E(H)|

|V (H)|
mad(G)g(H)− 2g(H) < 2 mad(G)

mad(G)g(H)− 2g(H)− 2 mad(G) + 4 < 4
(mad(G)− 2)(g(H)− 2) < 4

Since g(H) ≥ g(G) and mad(G)− 2 > 0 as G has finite girth, (mad(G)− 2)(g(G)− 2) < 4.

One might think that a high girth plays a big role in the sparseness of the graph but the proof
of Proposition 1.11 relies heavily on Euler’s formula, in other words, the planarity of the graph. In
fact, in 1959, Erdős already proved that there is no relationships between the chromatic number
and the girth of the graph in the general case.

Theorem 1.12 (Erdős [54]). For every integers k and l, there exists a graph G with g(G) ≥ k
and χ(G) ≥ l.

Theorem 1.12 implies that a high girth alone does not suffice to decrease the mad of a graph
or it would contradict Corollary 1.4.

Before moving on, we will take a look at some easy cases. Proposition 1.11 only holds for graphs
with finite girth. To be exhaustive, we turn our attention to graphs with infinite girth, which
are forests by definition. In this case, their 2-distance chromatic number reaches the minimum
possible value.

Proposition 1.13. For every forest T , χ2(T ) = ∆(T ) + 1.

Chứng minh. Suppose by contradiction that there exists a vertex-minimal forest T for which
χ2(T ) ≥ ∆(T ) + 2. Since T is a forest, there exists a 1-vertex t. We can color T − t with ∆(T ) + 1
colors by the minimality of T . We can extend this coloring to t by choosing a color that does
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not appear in its 2-distance neighborhood. This is possible as t only sees at most ∆(T ) colored
vertices. Thus, we obtain a 2-distance ∆(T ) + 1-coloring of T , which is a contradiction. So, for
every forest T , χ2(T ) ≤ ∆(T ) + 1. Combining this with the lower bound on χ2 for every graph,
we obtain the desired result.

The case when ∆ = 2 is also easily solved by Proposition 1.14 and its upper bound is reached
by C5.

Proposition 1.14. For every graph G with ∆(G) ≤ 2, χ2(G) ≤ 5.

Chứng minh. Suppose by contradiction that there exists a vertex-minimal graph G with ∆(G) ≤ 2
and χ2(G) ≥ 6. If G is a forest, then χ2(G) ≤ 3 due to the previous proposition. Thus, G is a cycle
as it is connected by minimality. However, there is a contradiction as every cycle is 2-distance
5-colorable.

Indeed, we argue by induction on the order of the cycle. If a cycle C has at most 5 vertices, then
χ2(C) ≤ 5. Now consider a cycle C with at least 6 vertices, we remove one vertex u and connect its
two neighbors with an edge. By induction hypothesis, there exists a 2-distance 5-coloring ψ of that
smaller cycle. Now, we define the following coloring φ for C. For every vertex v of C−u, we choose
φ(v) = ψ(v) and for φ(u) we choose a color that does not appear in its 2-distance neighborhood.
This is possible since we have 5 colors and d∗(u) = 4. Moreover, since ψ is a 2-distance 5-coloring
of C − u where we added an edge between the neighbors of u, φ is a 2-distance 5-coloring of C by
construction.

To fill the gap between ∆ + 1 and b3
2∆c + 1, many results are of the following form: every

graph G of mad(G) ≤ m0 and ∆(G) ≥ ∆0 satisfies χ2(G) ≤ ∆(G) + c(m0,∆0) where c(m0,∆0) is
a small constant depending only on m0 and ∆0. Moreover, for a planar graph G, any theorem with
an upper bound on mad(G) can be translated to a theorem with a lower bound on g(G) thanks to
Proposition 1.11. More precisely, planar graphs with girth at least g has mad < 2g

g−2 . Thus, as a
corollary, we have the same results on planar graphs of girth g ≥ g0(m0) where g0 depends on
m0. Table 1.1 shows the state of the art (of positive and negative results), up to our knowledge,
on the 2-distance chromatic number of planar graphs with fixed girth, either proven directly for
planar graphs with high girth or came as a corollary of a result on graphs with bounded maximum
average degree.

The positive results in Table 1.1 are read as follows. For example, the result from line “7” and
column “∆ + 1” reads: “every planar graph G of girth at least 7 and of maximum degree ∆ at
least 16 satisfies χ2(G) ≤ ∆ + 1”.

Below, we list all of the negative results corresponding to the crossed out cases in Table 1.1.

• Girths 3 to 6 in column “∆ + 1” correspond to Proposition 1.15.

• Girth 11 in column “∆ + 1” correspond to Proposition 1.16.

• Girths 3 and 4 in column “∆ + 2” correspond to Proposition 1.17.

• Girths 5 and 6 in column “∆ + 2” correspond to Propositions 1.18 and 1.19.

• Girth 3 in column “∆ + 3” correspond to Figure 1.2(i).

• Girth 3 in column “∆ + 4” correspond to Figures 1.2 and 1.3.

• The remaining crossed out values in rows “3” and “4” correspond to Figure 1.3.

Every highlighted result in Table 1.1 are part of our contribution to this field of research.
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g0

χ2(G) ∆ + 1 ∆ + 2 ∆ + 3 ∆ + 4 ∆ + 5 ∆ + 6 ∆ + 7 ∆ + 8

3 ∆ = 3 [114, 66]
����∆ ≥ 42 3 ����∆ ≥ 103

����∆ ≥ 123
����∆ ≥ 143 ∆ = 4[18]

����∆ ≥ 163

4 ����∆ ≥ 84
����∆ ≥ 104

����∆ ≥ 124
����∆ ≥ 144 ∆ = 4 [89]

����∆ ≥ 164 ����∆ ≥ 184

5 ∆ ≥ 107 [6]6
����∆ = 4 [87] ∆ ≥ 339 [48] ∆ ≥ 312 [47] ∆ ≥ 15 [26]5 ∆ ≥ 12 [25]6 ∆ 6= 7, 8 [47] ∆ ≥ 3 [46]

6 ∆ ≥ 17 [8]8
����∆ = 3 [90] ∆ ≥ 9 [25]6 ∆ ≥ 3 [28]

7 ∆ ≥ 16 [72]6 ∆ ≥ 10 [86]8 ∆ ≥ 6 [82]7 ∆ = 4 [36]7
8 ∆ ≥ 9 [88]5 ∆ ≥ 6 [86]8 ∆ ≥ 3 [90]
9 ∆ ≥ 7 [85]8 ∆ ≥ 5 [24]7
10 ∆ ≥ 6 [72]6 ∆ ≥ 4 [87]
11 ����∆ = 3 [84]
12 ∆ ≥ 5 [72]6 ∆ ≥ 3 [16]6
13
14 ∆ ≥ 4 [7]8
. . .

21 ∆ ≥ 3 [84]

Bảng 1.1: The latest results with a coefficient 1 before ∆ in the upper bound of χ2.

Below are the statements of our (positive) results, some are proven for larger graph classes
(bounded mad instead of planar graphs with high girth) or for the list version of the problem.

[84] If G is a planar graph with g(G) ≥ 21, then χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 3.

[85] If G is a graph with mad(G) < 18
7 , then χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 7.

[88] If G is a planar graph with g(G) ≥ 8, then χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 9.

[87] If G is a planar graph with g(G) ≥ 10, then χ2(G) ≤ ∆(G) + 2 for ∆(G) ≥ 4.

[86] If G is a graph with mad(G) < 8
3 , then χ2(G) ≤ ∆(G) + 2 for ∆(G) ≥ 6.

[86] If G is a graph with mad(G) < 14
5 , then χ2(G) ≤ ∆(G) + 2 for ∆(G) ≥ 10.

[90] If G is a graph with g(G) ≥ 8, then χ2(G) ≤ ∆(G) + 3 for ∆(G) ≥ 3.

[82] If G is a graph with mad(G) < 8
3 , then χ2

` (G) ≤ ∆(G) + 3 for ∆(G) ≥ 4.

[82] If G is a graph with mad(G) < 14
5 , then χ2

` (G) ≤ ∆(G) + 3 for ∆(G) ≥ 6.

[89] If G is a planar graph with g(G) ≥ 4 and ∆(G) = 4, then χ2
` (G) ≤ ∆(G) + 7.

These results were proven using the discharging method for which the basics will be presented
in Section 1.4. In Chapter 2 and Chapter 3, we will present some of these results that will highlight
more interesting ideas and nuances in 2-distance coloring as well as the discharging method in
general. However, every proof will be available in their corresponding articles in the Appendixes.

In Chapter 4, we will discuss the negative results presented below along with their implications
on the hardness of some related decision problems. Finally, in Chapter 5, we will present some
variants of 2-distance colorings along with our contributions.

2Figure 1.2
3Figure 1.3(i)
4Figure 1.3(ii)
5Corollaries of more general colorings of planar graphs.
6Corollaries of 2-distance list-colorings of planar graphs.
7Corollaries of 2-distance list-colorings of graphs with a bounded maximum average degree.
8Corollaries of 2-distance colorings of graphs with a bounded maximum average degree.
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Proposition 1.15 (Dvořák et al. [51]). For every integer d ≥ 2, there exists a planar graph G
with g(G) = 6, ∆(G) = d, and χ2(G) ≥ d+ 2.

Proposition 1.16 ([84]). There exists a planar graph G with g(G) ≥ 11, ∆(G) = 3, and
χ2(G) ≥ ∆(G) + 2.

Proposition 1.17 ([87]). There exists a planar graph G with g(G) ≥ 4 and χ2(G) ≥ ∆(G) + 3.

Proposition 1.18 ([87]). There exists a planar graph G with g(G) ≥ 5, ∆(G) = 4, and χ2(G) ≥
∆(G) + 3.

Proposition 1.19 ([90]). There exists a planar graph G with g(G) ≥ 6, ∆(G) = 3, and χ2(G) ≥
∆(G) + 3.

1.4 The discharging method
The method that is employed to obtain almost all upperbounds in Table 1.1 and all of our

(positive) results is the discharging method.
The discharging method is a very common tool used for proving coloring results on sparse

graphs. At heart, it is a counting argument that guarantees the existence of (easily) colorable
structures in a given sparse graph. Such structures are commonly named reducible configurations
as they cannot appear in a minimal counterexample to a desired theorem. A typical counting
argument in the discharging method consists in translating the global sparseness of the graph into
local weights, called charges. For instance, a charge can be the degree of a vertex or the size of
a face (when the graph is planar). The goal then is to obtain, through a clever redistribution of
these charges, a contradiction by showing that there exists a reducible configuration in a minimal
counterexample. This redistribution is done via discharging rules. See the survey of Cranston and
West [40] for more detailed explanations.

To illustrate the method, we will prove the following result.

Theorem 1.20 ([82]). If G is a graph with mad(G) < 8
3 , then χ2

` (G) ≤ ∆(G) + 3 for ∆(G) ≥ 4.

The first step is to assume by contradiction that there exists a counterexample to Theorem 1.20.
More precisely, we consider a graph G, minimizing the number of vertices, with mad(G) < 8

3 ,
∆(G) ≥ 4, and χ2

` (G) ≥ ∆(G) + 4.
Using the fact that G is a minimal counterexample, we can deduce some structural properties

of G and more precisely, some reducible configurations. Since we will always consider 2-distance
list-colorings, we will omit “2-distance” for conciseness. For this section, as a drawing convention,
next to each vertex, we will indicate a lower bound on the number of available colors given a
certain precoloring from the context.

Structural properties of G

Lemma 1.21. Graph G is connected.

Chứng minh. If G is not connected, then a component of G would be a smaller counterexample,
which contradicts its minimality.

We start by lower bounding the minimum degree of G.

Lemma 1.22. δ(G) ≥ 2.

Chứng minh. By Lemma 1.21, δ(G) ≥ 1 or G would be a single isolated vertex which is (∆ + 3)-
list-colorable. If G contains a 1-vertex v, then we can simply remove such vertex and color the
resulting graph, which is possible by minimality of G. Then, we add v back and color v (at most
∆ constraints and ∆ + 3 available colors in its list).
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By Lemma 1.22, G cannot have vertices with too low degrees, we will also see (Lemmas 1.23
to 1.25) that G cannot have adjacent vertices with low degrees.

Lemma 1.23. Graph G has no 2+-threads.

Chứng minh. Suppose that G contains a 2-thread uvwx (see Figure 1.4). We color G− {v, w} by
minimality of G. Observe that v and w each sees at most ∆ + 1 colors so they have at least two
available colors left each. For example for v, u and its colored neighborhood forbid at most ∆(G)
colors and x forbids one more; hence there remains two available colors for v. Thus, we can easily
extend the coloring to v and w.

u v

2

w

2

x

Hình 1.4: A 2+-thread.

In the same vein, we inspect sparse structures where a lot of vertices with low degree are close
together.

Lemma 1.24. Graph G has no (1, 1, 1)-vertices.

Chứng minh. Suppose by contradiction that there exists a (1, 1, 1)-vertex u with three 2-neighbors
u1, u2, and u3 (see Figure 1.5). We color G− {u, u1, u2, u3} by minimality of G, then we extend
this coloring to the remaining vertices by coloring u1, u2, u3, and u in this order. Observe that
this possible since each ui has 3 available colors and u has ∆ ≥ 4 available colors.

u1

3
u

4

u3

3

u3 3

Hình 1.5: A (1, 1, 1)-vertex.

Lemma 1.25. Graph G has no (1, 0+, 0)-vertices that are adjacent to a (1, 1, 0)-vertex.

Chứng minh. Suppose by contradiction that there exists a (1, 0+, 0)-vertex u with a 2-neighbor v
and a (1, 1, 0)-neighbor w. Let the 2-neighbors of w be w1 and w2 (see Figure 1.6).

First, observe that if two adjacent 3-vertices share a common 2-neighbor, for example, if u is
also adjacent to w1, then we color G− {u,w,w1} by minimality of G and finish by coloring u, w,
and w1 in this order. This is possible since we have ∆ + 3 colors and ∆ ≥ 4. Hence, all named
vertices are distinct.

Now, we color G− {u, v, w,w1, w2} by minimality. Let L(x) be the list of available colors left
for a vertex x ∈ {u, v, w,w1, w2}. Since we have ∆ + 3 colors and ∆ ≥ 4, |L(v)| ≥ 2, |L(u)| ≥ 2,
|L(w)| ≥ 4, |L(w1)| ≥ 3, and |L(w2)| ≥ 3. We remove the extra colors so that |L(x)| reaches the
lower bound for each x ∈ {u, v, w,w1, w2}. Consider the two following cases.

• If L(u) 6= L(v), then we color u with c ∈ L(u) \L(v). We finish by coloring w1, w2, w, and v
in this order.
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• If L(u) = L(v), we color w1 with c ∈ L(w1) \ L(u) (which is possible since |L(w1)| = 3 and
|L(u)| = 2). Then, we color w with d ∈ L(w) \ (L(u)∪ {c}) (which is possible as |L(w)| = 4).
Finally, we finish by coloring w2, u, and v in this order.

We thus obtain a valid coloring of G, which is a contradiction.

u

2
w

2

w1
5

(i) Two 3-vertices sharing a 2-neighbor.

v

2
u

2
w

4

w2

3

w1 3

(ii) A (1, 0+, 0)-vertex u that is adjacent to a (1, 1, 0)-vertex w.

Hình 1.6: Reducible configurations from Lemma 1.25.

Lemma 1.26. Graph G has no 3-vertices with two (1, 1, 0)-neighbors and another 3-neighbor.

Chứng minh. Suppose by contradiction that there exists a 3-vertex u with two (1, 1, 0)-neighbors
v and w and another 3-neighbor t. Let v1 and v2 (resp. w1 and w2) be v’s (resp. w’s) 2-neighbors
(see Figure 1.7).

If v and w share a common 2-neighbor, say v1 = w1, then we color G− {u, v, w, v1, v2, w2} by
minimality of G and finish by coloring u, v, w, v2, w2, and v1 in this order. This is possible since
we have ∆ + 3 colors and ∆ ≥ 4. Note that this coloring also works when v2 = w2. Hence, all
named vertices are distinct.

Now, we color G− {u, v, w,w1, w2} by minimality. Let L(x) be the list of available colors left
for a vertex x ∈ {u, v, w,w1, w2}. Since we have ∆ + 3 colors and ∆ ≥ 4, |L(u)| ≥ 2 (as d(t) = 3),
|L(v)| ≥ 2, |L(w)| ≥ 4, |L(w1)| ≥ 3, and |L(w2)| ≥ 3. Note that we obtain the same lower bounds
on the lists of colors as in Lemma 1.25. Thus, the exact same proof holds and we have a valid
coloring of G, which is a contradiction.

v2

3

v

5
u

4

w

5

w2

3

v1
7

t

(i)

v2 v

2
u

2
w

4

w2

3

v1
t

w1 3

(ii)

Hình 1.7: A 3-vertex u with two (1, 1, 0)-neighbors v, w, and another 3-neighbor t.

After studying the structural properties of G, we have eliminate sparse (colorable) structures
from G. Now, we aim to prove that G is sparse enough to contain at least one of these structures,
which is a contradiction. To do so, we will use a discharging procedure which is the main tool of
the discharging method.
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Discharging rules

First, we translate G’s sparseness into local charges as follows. Since mad(G) < 8
3 , we have∑

u∈V (G)
(3d(u)− 8) < 0 (1.2)

We assign to each vertex u the charge µ(u) = 3d(u)− 8. To prove the non-existence of G, we
will redistribute the charges preserving their sum and obtaining a non-negative total charge, which
will contradict Equation (1.2). This redistribution will be done via the following discharging rules:

R0 Every 3+-vertex gives 1 to each of its 2-neighbors.

R1 Every 4+-vertex gives 1 to each of its 3-neighbors.

R2 Every (0, 0, 0)-vertex gives 1 to each of its (1, 1, 0)-neighbors.

3+3+
1 1

R0.

34+

1

R1.

3+

3+ 3+

3+1

R2.

Hình 1.8: Discharging rules (the white vertices are labeled with their degree).

Verifying that charges on each vertex are non-negative

Let µ∗ be the assigned charges after the discharging procedure. In what follows, we will prove
that:

∀u ∈ V (G), µ∗(u) ≥ 0.
Let u ∈ V (G).
Case 1: If d(u) = 2, then u receives charge 1 from each endvertex of the 1-thread it lies on by

R0 (as there are no 2+-threads by Lemma 1.23). Thus, we get

µ∗(u) = µ(u) + 2 · 1 = 3 · 2− 8 + 2 = 0.

Case 2: If d(u) = 3, then µ(u) = 3 ·3−8 = 1. Since there are no 2+-threads due to Lemma 1.23
and no (1, 1, 1)-vertices due to Lemma 1.24, we have the following cases.

• If u is a (1, 1, 0)-vertex, then u gives 1 to each of its two 2-neighbors by R0. At the same
time, u also receives 1 from its 3+-neighbor v by R1 or R2 as v is either a 4+-vertex or a
(0, 0, 0)-vertex by Lemma 1.25. To sum up,

µ∗(u) ≥ 1− 2 · 1 + 1 = 0.

• If u is a (1, 0, 0)-vertex, then u only gives 1 to its 2-neighbor by R0. Hence,

µ∗(u) ≥ 1− 1 = 0.

• If u is a (0, 0, 0)-vertex, then u only gives charge to (1, 1, 0)-vertices by R2. Let t, v, and w
be u’s 3+-neighbors.
If u is adjacent to a 4+-neighbor, then it receives 1 by R1 and at worst, it gives 1 to each of
the two other neighbors by R2. As a result,

µ∗(u) ≥ 1 + 1− 2 · 1 = 0.
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If u is adjacent to three 3-vertices, then at most one of them can be a (1, 1, 0)-vertex due to
Lemma 1.26. So, u only gives at most 1 to a (1, 1, 0)-neighbor by R2. Consequently,

µ∗(u) ≥ 1− 1 = 0.

Case 3: If 4 ≤ d(u) ≤ ∆, then, at worst, u gives 1 to each of its neighbors by R0 and R1. As
a result,

µ∗(u) ≥ 3d(u)− 8− d(u) ≥ 2 · 4− 8 = 0.

To conclude, we started with a charge assignment with a negative total sum, but after the
discharging procedure, which preserved this sum, we end up with a non-negative one, which is a
contradiction. In other words, there exists no counter-examples to Theorem 1.20.



Chương 2

The potential method

In this chapter, we discuss one of the limits of the discharging method and how we push this
limit further with the potential method.

The idea with the discharging method is to show that a graph with bounded mad is sparse
enough to contain a colorable structure. In practice, we try to color sparse structures to prove
that they are reducible configurations. For dense structures, the vertices in the graph naturally
contain more charges as our charge assignment often increases with their degree. This allows a
redistribution of charges in order to obtain a non-negative final sum more easily. Hence, the limit
of this method comes from structures that are not sparse enough to be reducible but also not
dense enough to have sufficient charge. In this context, the potential method helps reducing denser
structures.

Reducing a configuration (with set of vertices) S, in a minimal counter-example G, often
implies the extension a precoloring of G− S. Until now, we have always assumed the worst case
scenario for the precoloring of G− S. In order to avoid the worst case scenario, we need to add
some vertices and edges, say a set T , to G− S but we might run into the risk of increasing our
maximum average degree, i.e. G− S + T is not in the same class of bounded mad. The potential
method introduces a potential function that quantifies precisely the maximum average degree of
G − S and G − S + T . This helps with introducing constraint on the precoloring to avoid the
worst case scenario while staying in the same class of graphs.

With the help of the potential method, we will prove the following theorem.

Theorem 2.1 ([85]). If G is a graph with mad(G) < 18
7 , then G is 2-distance (∆(G)+1)-colorable

for ∆(G) ≥ 7.

Since Bonamy et al. has already proven in [7] that:

Theorem 2.2 (Bonamy et al. [7]). If G is a graph with mad(G) < 18
7 , then G is list 2-distance

(∆(G) + 1)-colorable for ∆(G) ≥ 8.

We will prove the following, which is a stronger version with mad(G) ≤ 18
7 instead of mad(G) <

18
7 :

Theorem 2.3. If G is a graph with mad(G) ≤ 18
7 , then G is 2-distance (∆(G) + 1)-colorable for

∆(G) = 7.

To prove Theorem 2.3, let us define the potential function, which is the key to the potential
method.

Definition 2.4. Let A ⊆ V (G), we define ρG(A) = 9|A| − 7|E(G[A])|.

Definition 2.5. We define the potential function ρ∗G(A) = min{ρG(S)|A ⊆ S ⊆ V (G)} for all
A ⊆ V (G).

17
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Note that ρ∗G(A) ≥ 0 for all A ⊆ V (G) if and only if mad(G) ≤ 18
7 . Thus, we will prove the

following equivalent version of Theorem 2.3.

Theorem 2.6. Let G be a graph such that ρ∗G(A) ≥ 0 for all A ⊆ V (G), then G is 2-distance
(∆(G) + 1)-colorable for ∆(G) = 7.

First, let us start by studying some elementary operations with the potential function.

2.1 Elementary operations with the potential function

In this section, we will prove some useful inequalities, that will be used repeatedly in our proof,
involving this potential function on a graph G with mad(G) ≤ 18

7 .
We start with some simple observations that come as a consequence of the definition of the

potential function.
Let A,S ⊆ V (G) such that A ⊆ S. Since any K ⊆ V (G) that contains S will also contain A,

by definition of ρ∗G, we have:
ρ∗G(S) ≥ ρ∗G(A). (2.1)

Let A ⊆ V (G) and H be a subgraph of G that contains A. Since any subset S ⊆ V (H) that
contains A is also a subset of V (G), by definition of ρ∗G, the following ensues:

ρ∗H(A) ≥ ρ∗G(A). (2.2)

Let A,B ⊆ V (G). Since |A|+ |B| = |A ∪B|+ |A ∩B| and |E(G[A])|+ |E(G[B])| ≤ |E(G[A ∪
B])|+ |E(G[A ∩B])|, we have ρG(A) + ρG(B) ≥ ρG(A ∪B) + ρG(A ∩B).

Now, let A ⊆ S ⊆ V (G) and B ⊆ T ⊆ V (G) such that ρG(S) = ρ∗G(A) and ρG(T ) = ρ∗G(B).
By the previous observation, we have ρ∗G(A) + ρ∗G(B) = ρG(S) + ρG(T ) ≥ ρG(S ∪ T ) + ρG(S ∩ T ).
Since (A ∪B) ⊆ (S ∪ T ) and (A ∩B) ⊆ (S ∩ T ), by definition of ρ∗G, we have the following:

ρ∗G(A) + ρ∗G(B) ≥ ρ∗G(A ∪B) + ρ∗G(A ∩B). (2.3)

Now, we come to the most important property of the potential function. Let A and S be
disjoint subsets of V (G) such that S contains (at least) every vertex (not in A) that is adjacent to
a vertex in A. We denote E(A,S) the set of edges between vertices of A and S (see Figure 2.1).

By definition, ρG(A∪S) = 9|A∪S|−7|E(G[A∪S])| = 9(|A|+ |S|)−7(|E(G[A])|+ |E(G[S])|+
|E(A,S)|) = (9|S|− 7|E(G[S])|) + (9|A|− 7|E(G[A])|)− 7|E(A,S)| = ρG(S) + ρG(A)− 7|E(A,S)|.
Since mad(G) ≤ 18

7 , we know that ρG(A ∪ S) ≥ 0. Thus, ρG(S) ≥ 7|E(A,S)| − ρG(A). Observe
that S ⊆ V (G − A) and the previous inequality holds for any K ⊆ V (G − A) that contains S.
Moreover for every K that contains S we have |E(A,S)| = |E(A,K)| by definition of S. Hence,
the following also holds:

ρ∗G−A(S) ≥ 7|E(A,S)| − ρG(A). (2.4)

In practice, when we remove a certain structure A from a minimal counterexample G. We try
to color G−A then extend this coloring to G to prove that A is a reducible configuration. However,
sometimes, there exists a worst case scenario where the coloring of G−A is not extendable to G.
Equation (2.4) quantifies the increase of potential (which is the interesting case) of NG(A) when
we remove A. In other words, we know how much “sparser” the “surrounding” of A gets when
we remove A. This allows us to replace A with another “good” structure, say A′ (see Figure 2.1),
that can decrease that potential while staying non-negative which means that we stay in the same
class of mad. In terms of coloring, it means that H = G−A+A′ has mad ≤ 18

7 , is smaller than
G, and is thus colorable. Moreover, the presence of A′ imposes some constraints on the coloring of
NG(A) which might allow us to avoid the worst case scenario and to extend the coloring to G.
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S

G

A → A′

S

H

Hình 2.1: Replacing a configuration A with a “good” structure A′.

The following lemmas show how we can add threads between two vertices depending on their
(positive) potential.

Lemma 2.7. Suppose graph H verifies mad(H) ≤ 18
7 . Let k ≥ 0 and u, v ∈ V (H). Moreover

assume that ρ∗H({u, v}) ≥ 7− 2k. Let H ′ = H +P be the graph obtained from H in which we add
a k-thread P between u and v (P is just an edge when k = 0), then mad(H ′) ≤ 18

7 (equivalently,
∀T ⊆ V (H ′), ρH′(T ) ≥ 0).

Chứng minh. Indeed, every subset S ⊆ V (H ′) that does not contain any vertex or edges of P is a
subset of V (H) so ρH′(S) = ρH(S) ≥ 0. Now, consider a vertex set T , intersecting with P , with
the minimum potential. Observe that vertices in T have degree, in H ′[T ], at least 2. Otherwise, it
suffices to remove a vertex of degree 0 or 1 from T and we obtain a set with lower potential (which
contradicts the minimality of ρ(T )) as removing an isolated vertex decreases the potential by 9 and
removing a vertex of degree 1 decreases the potential by 9− 7 = 2. Consequently, T must contain
the whole thread P as well as u, v. Observe that T − P is a subset of V (H) that contains u, v and
ρH′(T ) = ρH(T−P )+9k−7(k+1) = ρH(T−P )+2k−7 ≥ ρ∗H({u, v})+2k−7 ≥ 7−2k+2k−7 = 0.

Observation 2.8. Let 0 ≤ k ≤ 3, observe that in the proof of Lemma 2.7, adding a k-thread P
between u and v in H decreases the potential of every set containing {u, v} by at most 7− 2k in
H+P . In other words, for every S ⊆ V (H+P ) such that {u, v} ⊆ S, ρ∗H+P (S) ≥ ρ∗H(S−P )−(7−2k)
(S − P still contains {u, v}).

Lemma 2.9. LetH be a graph, u, v ∈ V (H) and 0 ≤ k ≤ 3. LetH ′ = H+P be the graph obtained
from H in which we add a k-thread P between u and v (P is just an edge when k = 0), then for
every A ⊆ V (H), ρ∗H(A) = ρ∗H′(A) or ρ∗H′(A) ≤ ρ∗H(A) ≤ ρ∗H(A ∪ {u, v}) ≤ ρ∗H′(A) + (7− 2k).

Chứng minh. First, by Equation (2.2), ρ∗H(A) ≥ ρ∗H+P (A). Let us consider S ⊆ V (H + P ) such
that A ⊆ S and ρH+P (S) = ρ∗H+P (A). Note that ρH+P (S) = ρ∗H+P (S) since ρH+P (S) ≥ ρ∗H+P (S)
by definition of ρ∗, and ρH+P (S) ≤ ρ∗H+P (S) or else, it means there exists T such that A ⊆ S ⊂ T
and ρH+P (T ) < ρH+P (S) = ρ∗H+P (A) which is a contradiction.

If {u, v} 6⊆ S, then S ⊆ V (H) as S cannot intersect P by minimality of ρH+P (S) (or else it
would contain a vertex, of degree 0 or 1 in H ′[S], whose removal would decrease the potential).
Thus, ρH(S) = ρH+P (S). As a result, ρ∗H(A) ≤ ρH(S) = ρH+P (S) = ρ∗H+P (A).

If {u, v} ⊆ S, then S contains P by minimality of ρH+P (S) (or else by adding P to S, we would
decrease the potential by 7(k+ 1)− 9k = 7− 2k ≥ 1). By Observation 2.8, ρ∗H(S−P )− (7− 2k) ≤
ρ∗H+P (S). So, by Equation (2.1), ρ∗H(A) ≤ ρ∗H(A ∪ {u, v}) ≤ ρ∗H(S − P ) ≤ ρ∗H+P (S) + (7− 2k) =
ρH+P (S) + (7− 2k) = ρ∗H+P (A) + (7− 2k).

From now on, we will write ρ∗G(v0v1 . . . vi) instead of ρ∗G({v0, v1, . . . , vi}) for conciseness. Also,
for a graph H, we will say mad(H) ≤ 18

7 instead of “for all S ⊆ V (H), ρ∗H(S) ≥ 0” which is
equivalent.
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2.2 Structural properties of a minimal counterexample
Since the whole chapter will be about 2-distance coloring, from now on, when we say “to color”

a vertex, it means to color such vertex differently from all of its colored neighbors at distance at
most two. Similarly, any considered coloring will be a 2-distance coloring. As a drawing convention,
dashed edges and vertices represent threads that we might add after removing some structure from
the graph in the context. We will also label some white vertices with information about its degree.

Let G be a counterexample to Theorem 2.6 with the fewest number of vertices plus edges. In
other words, G has ∆(G) = 7, mad(G) ≤ 18

7 , and χ2(G) ≥ ∆(G) + 2 = 9. Once again, we start by
studying the structural properties of G to find reducible configurations.

We start by lower bounding the minimum degree in G.

Lemma 2.10. Graph G is connected.

Chứng minh. Otherwise a connected component of G would be a smaller counterexample.

Lemma 2.11. δ(G) ≥ 2.

Chứng minh. By Lemma 2.10, δ(G) ≥ 1. If G contains a 1-vertex v, then we can simply remove
the unique edge incident to v and color the resulting graph, which is possible by minimality of G.
Then, we add the edge back and recolor v (at most 7 constraints and 8 colors).

Here, we show that a vertex cannot have too many neighbors with a small 2-distance neighbor-
hood or it would be reducible.

Lemma 2.12. Let w be a vertex of V that is adjacent to k vertices ui (k ≤ d(w)), each satisfying
d∗(ui) ≤ ∆ + i− 1 for 1 ≤ i ≤ k. Then we have d∗(w) ≥ ∆ + k + 1.

Chứng minh. Suppose by contradiction that w is adjacent to ui with d∗G(ui) ≤ ∆ + i − 1 for
1 ≤ i ≤ k, but d∗G(w) ≤ ∆ + k (see Figure 2.2). We remove the edges wui for 1 ≤ i ≤ k. By
minimality of G, let φH be a coloring of H = (V,E \ {wu1, . . . , wuk}).

w

1

u1
k + 1

u2
k

uk
2

...

Hình 2.2: Next to each vertex is the number of available colors left when G− {w, u1, u2 . . . , uk} is
already colored.

We extend φ to G as follows :

1. We define φG(v) = φH(v) for all v ∈ V \ {w, u1, . . . , uk}.

2. We choose φG(w) a color that does not appear in Fw = N∗G(w) \ {u1, . . . , uk}. We have
|Fw| = d∗G(w)− k. By hypothesis, we have d∗G(w) ≤ ∆ + k and thus |Fw| ≤ ∆. Thus, we can
color w since we have ∆ + 1 colors.

3. One by one, from k to 1, we choose φG(ui) a color that does not appear in Fui = N∗G(ui) \
{u1, . . . , ui−1}. Since d∗G(ui) ≤ ∆+i−1, we have |Fui | = d∗G(ui)−(i−1) ≤ (∆+i−1)−(i−1) =
∆. So, there remains at least one color for ui.
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Hence the obtained coloring φG is a 2-distance coloring of G, which is a contradiction.

Observation 2.13. Let w be a vertex of V that is adjacent to k vertices ui, each satisfying
d∗(ui) ≤ 7 = ∆ (≤ ∆ + i − 1) for 1 ≤ i ≤ k. Then we have d∗(w) ≥ ∆ + k + 1 = 8 + k due to
Lemma 2.12.

Using Observation 2.13, we can deduce some properties of sparse structures like threads in G.

Lemma 2.14. Graph G has no 4+-threads.

Chứng minh. Suppose G contains a 4-thread v0v1 . . . v5 (see Figure 2.3). Then, d∗(v2) = d∗(v3) =
4 ≤ ∆ which contradicts Observation 2.13.

v5v0 v4v3v2v1

Hình 2.3: A 4-thread.

Lemma 2.15. A 3-thread has two distinct endvertices and both have degree ∆.

Chứng minh. Suppose that G contains a 3-thread v0v1 . . . v4 (see Figure 2.4).
If v0 = v4, then we color H = G− {v1, v2, v3} by minimality of G and extend the coloring to

G by coloring greedily v1 and v3 who has two available colors each and finish with v2 who only
sees three colors.

Now, suppose that v0 6= v4, since d∗(v2) = 4 ≤ ∆, we have d∗(v3) ≥ ∆ + 2 due to Observa-
tion 2.13. Moreover, d∗(v3) = d(v4) + 2, so d(v4) ≥ ∆. The same holds for v0 by symmetry.

v4v0 v3v2v1

Hình 2.4: A 3-thread.

Lemma 2.16. At least one of the endvertices of a 2-thread has degree ∆ or both of them have
degree ∆− 1. The endvertices of a 2-thread are also distinct.

Chứng minh. Consider a 2-thread v0v1v2v3 (see Figure 2.5) where d(v0) ≤ d(v3).
If v0 = v3, then we color H = G− {v1, v2} by minimality of G and extend the coloring to G

by coloring greedily v1 and v2 who has two available colors each.
Now, suppose that v0 6= v3. Suppose by contradiction that d(v3) ≤ ∆− 1 and d(v0) ≤ ∆− 2.

Since d(v0) ≤ ∆− 2, d∗(v1) = d(v0) + 2 ≤ ∆. So, by Observation 2.13, d∗(v2) = d(v3) + 2 ≥ ∆ + 2
meaning that d(v3) ≥ ∆, which is a contradiction.

v3v0 v2v1

Hình 2.5: A 2-thread.

Lemma 2.17. Let uvwx be a 2-thread. If d(u) = 7 and d(x) ≤ 6, then u cannot be adjacent to x.
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Chứng minh. Suppose by contradiction that u is adjacent to x. Let H = G−{v, w}. By minimality
of G, we color H, then we finish by coloring v then w in this order.

Lemma 2.18. Let v ∈ V such that 3 ≤ d(v) ≤ b∆+1
2 c. Then v cannot be a (2, 1+, 1+, . . . , 1+)-

vertex.

Chứng minh. Suppose thatG contains a vertex v with 3 ≤ d(v) ≤ b∆+1
2 c that is a (2, 1+, 1+, . . . , 1+)-

vertex. Let w be a neighbor of v that belongs to a 2-thread (see Figure 2.6). We have d∗(w) = d(v)+2
and d∗(v) = 2d(v). Moreover, as d(v) ≤ b∆+1

2 c, it follows that d∗(w) ≤ ∆ since ∆ > 3. Thus,
d∗(v) ≥ ∆ + 2 by Observation 2.13. Since d(v) is an integer and 2d(v) ≥ ∆ + 2, d(v) ≥ d∆+2

2 e
which contradicts d(v) ≤ b∆+1

2 c.

vw

Hình 2.6: A (2, 1+, . . . , 1+)-vertex v with 3 ≤ d(v) ≤ b∆+1
2 c.

Now, we reduce some sparse structures surrounding high degree vertices.

Lemma 2.19. Let u be a 7-vertex that is incident to six 2-threads where the other endvertices
are 5−-vertices. Then, u cannot be incident to a 3-thread, a (2, 2, 0)-vertex or another 2-thread
where the other endvertex is a 6−-vertex.

Chứng minh. Suppose by contradiction that u is incident to six 2-threads where the other end-
vertices are 5−-vertices and that u is also incident to a 3-thread, or a (2, 2, 0)-vertex, or another
2-thread where the other endvertex is a 6−-vertex (see Figure 2.7).

u

8

2 9
5−

3 10
5−

4 11
5−

5 12
5−

6 13
5−

7 14
5−

115

1
15

16

1

x

15
6−
y

Hình 2.7: The order in which the coloring will be extended to G is indicated above the vertices.

First, observe that u is distinct from the other endvertex of its incident 3-thread due to
Lemma 2.15 and from the endvertices of the 2-threads incident to its (2, 2, 0)-neighbor due to
Lemma 2.17.

Consider H = G− ({u} ∪N∗G(u)). By minimality of G, there exists a coloring of H that we
will extend to G by coloring the vertices in the order indicated in Figure 2.7 with the specification
that in the case where u is incident to another 2-thread with a 6−-endvertex y, u’s 2-neighbor x
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on this thread will be colored with the same color as a colored neighbor of y. The indicated order
verifies at each step that the considered vertex sees at most seven colors. Thus, we obtain a valid
coloring of G which is a contradiction.

Observe that until the proof of Lemma 2.19, all lemmas hold for a list version of the coloring.
However, when we repeat a color on x that appears on some other colored vertex, we need a
non-list version of the coloring. The same type of arguments will be used in future lemmas, thus
the result is restricted to non-list 2-distance coloring.

Lemma 2.20. A 6-vertex cannot be incident to six 2-threads where the other endvertices are
6-vertices.

Chứng minh. Consider H the graph G where we removed the 6-vertex u and all 2-vertices on the
2-threads incident to u. Consider the internal 2-vertices p1 and p2 on a 2-thread incident to u (see
Figure 2.8). We color the 2-vertex p2 at distance 2 from u, which has at least two available colors,
and a 2-neighbor x of u (at distance 3 from p2), which has seven available colors, with the same
color by the pigeonhole principle (as we have 8 colors in total). Now, we color all other 2-vertices
at distance 2 from u, then u. Finally, we color all vertices of NG(u) by finishing with p1 which
now sees eight colored vertices but two of them share the same color.

6
u

x
6

6

p1p2
6 . . .

Hình 2.8: A 6-vertex u incident to six 2-threads with 6-endvertices.

Now, we take a look at a sparse structure that is right at the limit of not being sparse enough
to be reducible directly but not dense enough to have enough charges for our future discharging
procedure. The configuration at issue is 3-threads. We start by showing that 3-threads in G form
a forest-like structure.

Lemma 2.21. Graph G has no cycles consisting of 3-threads.

Chứng minh. Suppose that G contains a cycle consisting of k 3-threads (see Figure 2.9). We
remove all vertices v4i+1, v4i+2, v4i+3 for 0 ≤ i ≤ k − 1. Consider a coloring of the resulting graph.
We color v1, v3, v5, . . . , v4k−1, which is possible since each of them has at least two choices of colors
(as d(v0) = d(v4) = · · · = d(v4(k−1)) = ∆ due to Lemma 2.15) and by 2-choosability of even cycles.
Finally, it is easy to color greedily v2, v6, . . . , v4k−2 since they each have at most four forbidden
colors.
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v4

v0

v3

v2

v1

v4j

v4(j+1)v4k−1

Hình 2.9: A cycle consisting of consecutive 3-threads.

Without the use of the potential function, results that came before ours had to deal with
arbitrarily large forests of 3-threads. However, we show that the size of these structures are
relatively “small” with the following three lemmas.

Lemma 2.22. Let 1 ≤ k ≤ 3 and up1 . . . pkv be a k-thread in G and let P = {p1, . . . , pk}. If
ρ∗G−P (u) ≤ ρ∗G−P (v), then ρ∗G−P (v) ≥ 1.

Chứng minh. Suppose by contradiction that ρ∗G−P (v) = ρ∗G−P (u) = 0 (recall that ρ∗G−P (u) ≥ 0
since mad(G) ≤ 18

7 ). Then, by Equation (2.3), 0 = ρ∗G−P (v) + ρ∗G−P (u) ≥ ρ∗G−P (uv). However,
by Equation (2.4), ρ∗G−P (uv) ≥ 7|E(P, {u, v})| − ρG(P ) ≥ 7 · 2 − (9 · 3 − 7 · 2) = 1, which is a
contradiction.

Lemma 2.23. Let up1p2p3v and vp′1p
′
2p
′
3w be two consecutive 3-threads in G and let P =

{p1, p2, p3} and P ′ = {p′1, p′2, p′3}. Then ρ∗G−P (u) = ρ∗G−P ′(w) = 0.

Chứng minh. Note that by Lemma 2.15 and Lemma 2.21, u, v, and w are pairwise distinct and
d(u) = d(v) = d(w) = ∆ = 7. Let H = G− (P ∪ P ′). We add the 3-thread up′′1p′′2p′′3w in H and let
P ′′ = {p′′1, p′′2, p′′3} and let H + P ′′ be the resulting graph (see Figure 2.10).

Suppose that ρ∗H(uw) ≥ 1. Then, by Lemma 2.7 with k = 3, mad(H + P ′′) ≤ 18
7 . Observe

that |V (H + P ′′)|+ |E(H + P ′′)| < |V (G)|+ |E(G)|, so H + P ′′ is colorable with a coloring ψ by
minimality of G. We define φ a coloring of G as follows:

• If x ∈ V (H), then φ(x) = ψ(x).

• Let φ(p1) = ψ(p′′1) and φ(p′3) = ψ(p′′3).

• Observe that p3 and p′1 can be colored. Otherwise, they have to see the same seven colors
at distance at most 2. Since they see the same 6 colored vertices in v ∪ NG(v) \ {p3, p

′
1}

(as d(v) = ∆ = 7 by Lemma 2.15), φ(p1) must be the same as φ(p′3), which is impossible
because φ(p1) = ψ(p′′1) 6= ψ(p′′3) = φ(p′3).

• Finally, p2 and p′2 can be colored greedily since they see at most 4 different colors at distance
2 each.

As ψ is a valid coloring of H + P ′′, φ is a valid coloring of G, which is a contradiction.
Suppose that ρ∗H(uw) = 0 (recall that ρ∗H(uw) ≥ 0 since H is a subgraph of G). By Equa-

tion (2.1), ρ∗H(uw) ≥ ρ∗H(u) and by Equation (2.2), ρ∗H(u) = ρ∗G−(P∪P ′)(u) ≥ ρ∗G−P (u). Hence,
0 ≤ ρ∗G−P (u) ≤ ρ∗H(uw) = 0. Symmetrically, the same holds for ρ∗G−P ′(w).
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p′1u vp3p2p1 p′2 p′3 w

p′′1
p′′2

p′′3

Hình 2.10: Two consecutives 3-threads.

Lemma 2.24. Graph G has no three consecutive 3-threads.

Chứng minh. Suppose by contradiction that G has three consecutive 3-threads up1p2p3v, vp′1p′2p′3w,
and wp′′1p′′2p′′3x. Let P ′ = {p′1, p′2, p′3}. By applying Lemma 2.23 to up1p2p3v and vp′1p′2p′3w, we get
ρ∗G−P ′(w) = 0. By applying Lemma 2.23 to vp′1p′2p′3w and wp′′1p′′2p′′3x, we get ρ∗G−P ′(v) = 0. This is
impossible due to Lemma 2.22.

Due to Lemma 2.24, the 3-threads in G have a “star-like” structure. Moreover, with Lemma 2.23,
we know that the extremities of these stars must be dense. Thus, we can avoid some sparse
configurations in their surroundings.

Before moving on, we make an useful coloring observation that comes as a consequence of
Hall’s Theorem.

Theorem 2.25 (Hall [65]). A bipartite graph with partition sets A and B admits a matching (set
of non incident edges) that covers every vertex of A if and only if for every set S ⊆ A, |N(S)| ≥ |S|.

Observation 2.26. Let u1, u2, . . . , uk be k vertices that are pairwise at distance at most two and
let Li be the list of available colors of ui for 1 ≤ i ≤ k. Consider the bipartite graph H where
V (H) = {u1, . . . , uk} ∪ {1, 2, . . . , 8} and E(H) = {(ui, k)|k ∈ Li} (see Figure 2.11 for an example).
By Hall’s Theorem, if for all 1 ≤ l ≤ k, for all i1, i2, . . . , il, | ∪lj=1 Lij | ≥ l, then u1, u2, . . . , uk are
colorable, each with a color from its list.

u1

u2

u3

u4

u5

u6

u7

u8

1

2

3

4

5

6

7

8

Hình 2.11: The thick edges form a matching that gives a valid coloring of {u1, . . . , u8}.

In other words, if there are more available colors for any subset of vertices than the size of
that subset, then we can color every vertex with a different color. Such a coloring is, in particular,
a 2-distance coloring.
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Lemma 2.27. Let u be a 7-vertex and up1p2v be a 2-thread incident to u and let P = {p1, p2}. If
ρ∗G−P (u) ≤ ρ∗G−P (v), then u cannot be incident to six other 2-threads where the other endvertices
are 5−-vertices.

Chứng minh. Suppose by contradiction that u is incident to seven 2-threads, say uqiq
′
ivi for

1 ≤ i ≤ 6 and up1p2v. Note that by Lemma 2.16, u is distinct from v. Let H = G− ({qi, q′i|1 ≤
i ≤ 6} ∪ {p1, p2, u}).

Consider A = {qi, q′i|1 ≤ i ≤ 6} ∪ {p1, p2, u} and S = {v, v1, v2, . . . , v6}. Using Equation (2.4),
we can lower bound the potential of S when we remove A. This potential is high enough (equivalently,
S is “sparse enough” in G− A) that when we add a 2-thread P between vertices of S, we still
stay in the same class of bounded mad and we can use a coloring of G−A+ P (which is smaller
than G) to define a coloring for G (avoiding the worst case scenario given by a coloring of G−A).
See Figure 2.12.

u

q1 q′1
5−
v1

q6 q′6
5−
v6

p1p2v
. . .

p′1
p′2

ASG

Hình 2.12: A 7-vertex incident to 2-threads, six of which have 5−-endvertices.

More formally, we claim that:

Claim 2.28. For all 1 ≤ i ≤ 6, ρ∗H(vvi) ≤ 2.

Chứng minh. W.l.o.g. suppose by contradiction that ρ∗H(vv1) ≥ 3. We add the 2-thread vp′1p′2v1 in
H and let P ′ = {p′1, p′2} and let H + P ′ be the resulting graph. Since ρ∗H(vv1) ≥ 3, by Lemma 2.7
with k = 2, mad(H +P ′) ≤ 18

7 . By minimality of G, there exists a coloring ψ of H +P ′. We define
φ a coloring of G as follows:

• If x ∈ V (H), then φ(x) = ψ(x).

• Let φ(p2) = ψ(p′1).

• Note that d∗G(q′i) ≤ 7 since dG(vi) ≤ 5 for all 1 ≤ i ≤ 6. As a result, we can always color
them last.

• Let L(x) be the list of available colors left for a vertex x. Observe that we have |L(p1)| ≥ 6
and |L(u)|, |L(q1)|, . . . , |L(q6)| ≥ 7. By Observation 2.26, the only way these eight vertices
are not colorable is if |L(p1)∪L(u)∪L(q1)∪ · · · ∪L(q6)| ≤ 7. As a result, |L(u)∪L(q1)| = 7
and |L(u)|, |L(q1)| ≥ 7. In other words, L(u) = L(q1) . However, u sees φ(p2) = ψ(p′1) 6=
ψ(v1) = φ(v1) which q1 sees. So L(u) 6= L(q1).

We obtain a valid coloring of G which is a contradiction.

First, recall that ρ∗G−P (u) ≤ ρ∗G−P (v) and by Lemma 2.22, ρ∗G−P (v) ≥ 1. As a result, ρ∗H(v) ≥
ρ∗G−P (v) ≥ 1 by Equation (2.2).
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Now, by Claim 2.28, we have ∑6
i=1 ρ

∗
H(vvi) ≤ 2 · 6 = 12. However, by Equation (2.3), then

Equation (2.4) and the fact that ρ∗H(v) ≥ 1, we have ∑6
i=1 ρ

∗
H(vvi) ≥ ρ∗H(vv1 . . . v6) + 5ρ∗H(v) ≥

12 + 5 · 1 = 17. That contradiction completes the proof of Lemma 2.27.

Lemma 2.29. Consider u a 7-vertex that is incident to a unique 3-thread up1p2p3v and let
P = {p1, p2, p3}. If ρ∗G−P (u) ≤ ρ∗G−P (v), then u is incident to at most two 2-threads where the
other endvertices are 5−-vertices.

Chứng minh. Note that by Lemma 2.15, u and v are distinct vertices and d(u) = d(v) = 7. Suppose
by contradiction that u is incident to at least three 2-threads uq1q

′
1v1, uq2q

′
2v2, and uq3q

′
3v3 where

v1, v2, and v3 have degree at most 5. Note that by Lemma 2.16, u is distinct from vi for all
1 ≤ i ≤ 3. Let H = G − {p1, p2, p3, q1, q

′
1, q2, q

′
2, q3, q

′
3}. Recall that ρ∗G−P (u) ≤ ρ∗G−P (v) and by

Lemma 2.22, ρ∗G−P (v) ≥ 1. As a result, ρ∗H(v) ≥ ρ∗G−P (v) ≥ 1 by Equation (2.2).

u q2 q′2
5−
v2

q1 q′1
5−
v1

q3 q′3
5−
v3

p1p2p3v

p′1

p′2

Hình 2.13: A 7-vertex incident to a 3-thread and three 2-threads which have 5−-endvertices.

We claim the following:

Claim 2.30. For all 1 ≤ i ≤ 3, ρ∗H(vvi) ≤ 2 and ρ∗H(uv) ≤ 6.

Chứng minh. Let us prove Claim 2.30 by contradiction.
First, suppose w.l.o.g. that ρ∗H(vv1) ≥ 3. We add the 2-thread vp′1p′2v1 in H, let P ′ = {p′1, p′2},

and let H+P ′ be the resulting graph. Since ρ∗H(vv1) ≥ 3, by Lemma 2.7 with k = 2, mad(H+P ′) ≤
18
7 . By minimality of G, there exists a coloring ψ of H +P ′. We define φ a coloring of G as follows:

• If x ∈ V (H), then φ(x) = ψ(x).

• Let φ(p3) = ψ(p′1).

• Note that d∗G(q′i) ≤ ∆ = 7 since dG(vi) ≤ 5 for all 1 ≤ i ≤ 3. As a result, we can always color
them last. The same holds for p2 since d∗G(p2) = 4.

• The only vertices left uncolored are p1, q1, q2, q3 and each of them has at least three available
colors left. By Observation 2.26, they can be colored unless they have exactly the same
three available colors each. Since they all see the same four colors in NH(u) ∪ {u} and
φ(p3) = ψ(p′1) 6= ψ(v1) = φ(v1), p1 and q1 cannot have the same three available colors.

We obtain a valid coloring φ of G, so ρ∗H(vvi) ≤ 2 for all 1 ≤ i ≤ 3.
Now, suppose that ρ∗H(uv) ≥ 7. We add the edge e = uv in H. Since ρ∗H(uv) ≥ 7, by Lemma 2.7

with k = 0, mad(H + e) ≤ 18
7 . By minimality of G, there exists a coloring ψ of H + e. We define φ

a coloring of G as follows:
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• If x ∈ V (H), then φ(x) = ψ(x).

• Let φ(p3) = ψ(u).

• Note that d∗G(q′i) ≤ ∆ = 7 since dG(vi) ≤ 5 for all 1 ≤ i ≤ 3. As a result, we can always color
them last. The same holds for p2 since d∗G(p2) = 4.

• We color q1, q2, q3 which is possible since they have at least three available colors each.

• We finish by coloring p1 which sees eight colored vertices but since it sees φ(u) = φ(p3) twice,
it has at least one available color left.

We obtain a valid coloring φ of G, so ρ∗H(uv) ≤ 6. Thus, Claim 2.30 is true.

By Claim 2.30, we get ρ∗H(uv)+∑3
i=1 ρ

∗
H(vvi) ≤ 6+3·2 = 12. However, by Equation (2.3) then by

Equation (2.4) and recall that ρ∗H(v) ≥ 1, we get ρ∗H(uv)+∑3
i=1 ρ

∗
H(vvi) ≥ ρ∗H(uvv1v2v3)+3ρ∗H(v) ≥

10 + 3 · 1 = 13 which is a contradiction. That completes the proof of Lemma 2.29.

Lemma 2.31. Consider u a 7-vertex that is incident to a unique 3-thread up1p2p3v and let
P = {p1, p2, p3}. If ρ∗G−P (u) ≤ ρ∗G−P (v), then u has a neighbor that is neither a (2, 2, 0)-vertex
nor a 2-vertex belonging to a 2-thread.

u

q1 q′1 v1

qk q′k vk

w1

r1 r′1 w′1

s1 s′1 w′′1

wl

rl r′l w′l

sl s′l w′′l

p1p2p3v

. . .

. . .

Hình 2.14: A 7-vertex that is incident to a 3-thread, k 2-threads, and l (2, 2, 0)-vertices where
k + l = 6.

Chứng minh. Suppose by contradiction that u is incident to k 2-threads uqiq′ivi for 1 ≤ i ≤ k and
adjacent to l (2, 2, 0)-vertices wj for 1 ≤ j ≤ l where k + l = 6. For all 1 ≤ j ≤ l, let wjrjr′jw′j and
wjsjs

′
jw
′′
j be the 2-threads incident to wj . Due to Lemma 2.15, Lemma 2.16, and Lemma 2.17, u

is distinct from v, v1, . . . , vk, w1, . . . , wl, w
′
1, . . . , w

′
l, w
′′
1 , . . . , w

′′
l and for all 1 ≤ j ≤ l, wj is distinct

from w′1, . . . , w
′
l, w
′′
1 , . . . , w

′′
l .

We claim that:

Claim 2.32. For all subgraph H of G− P , ρ∗H(v) ≥ 1.

Chứng minh. Indeed, recall that ρ∗G−P (u) ≤ ρ∗G−P (v) and by Lemma 2.22, ρ∗G−P (v) ≥ 1. As a
result, ρ∗H(v) ≥ ρ∗G−P (v) ≥ 1 by Equation (2.2).
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Now we will prove the lemma for each possible value of 0 ≤ k ≤ 6.
Suppose that k = 0.

Let H = G− ({u, p1, p2} ∪ {wj , rj , sj |1 ≤ j ≤ 6}). By minimality of G, there exists a coloring of
H. We will extend this coloring to G:

• If x ∈ V (H), then φ(x) = ψ(x).

• Note that d∗G(p2) = 4 and d∗G(rj) = d∗G(sj) = 5 for all 1 ≤ j ≤ 6, so we can always color
them last.

• We color w1, w2, . . . , w6 since they have six available colors each.

• We color p1 then u.

We obtain a valid coloring of G so k 6= 0.
Suppose that k = 1.

Let H = G − ({u, p1, p2, p3, q1, q
′
1} ∪ {wj , rj , sj |1 ≤ j ≤ 5}). We add the 3-thread vp′1p

′
2p
′
3v1 in

H, let P ′ = {p′1, p′2, p′3} and let H + P ′ be the resulting graph. Since ρ∗H(vv1) ≥ ρ∗H(v) ≥ 1 by
Equation (2.1) and Claim 2.32, we get mad(H + P ′) ≤ 18

7 by Lemma 2.7. By minimality of G,
there exists a coloring ψ of H. We will extend ψ to a coloring φ of G:

• If x ∈ V (H), then φ(x) = ψ(x).

• Let φ(p3) = ψ(p′1) and φ(q′1) = ψ(p′3).

• Note that d∗G(p2) = 4 and d∗G(rj) = d∗G(sj) = 5 for all 1 ≤ j ≤ 5 so we can always color them
last.

• We color w1, w2, . . . , w5, and q1 since they have six available colors each.

• We can color u and p1 unless they have exactly the same color left which is impossible since
they see the same six colors in {φ(w1), φ(w2), . . . , φ(w5), φ(q1)} and p1 sees φ(p3) = ψ(p′1) 6=
ψ(p′3) = φ(q′1) which u sees.

We obtain a valid coloring of G so k 6= 1.
Suppose that k ≥ 2.

Let H = G− ({u, p1, p2, p3} ∪ {qi, q′i|1 ≤ i ≤ k}). Note that mad(H) ≤ 18
7 since H is a subgraph

of G.
First, observe that by minimality of G, there exists a coloring ψ of H. If we can define a coloring

φ that extends ψ to G, then we obtain a contradiction. So, let us see the potential problems.

• First, if x ∈ V (H) \ {wj , rj , sj |1 ≤ j ≤ l}, then we repeat the same colors for x. Thus, let
φ(x) = ψ(x).

• For all 1 ≤ i ≤ k, we might have only one choice of colors for q′i so we color them accordingly.
The same holds for p3.

• Since d∗G(p2) = 4 and d∗G(rj) = d∗G(sj) = 5 for all 1 ≤ j ≤ l, we can always color them last.

• The remaining uncolored vertices are exactly NG(u) ∪ {u}. Let L(x) be the list of avail-
able colors left for a vertex x. Observe that |L(u)| ≥ 8 − k ≥ 2, |L(q1)|, . . . , |L(qk)| ≥ 6,
|L(w1)|, . . . , |L(wk)| ≥ 6, and |L(p1)| ≥ 7.

• Due to Observation 2.26, the only two reasons that make these eight remaining vertices
uncolorable are the following:
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– We have seven vertices in NG(u)∪{u}\{p1} but |L(u)∪L(q1)∪· · ·∪L(qk)∪L(w1)∪· · ·∪
L(wl)| ≤ 6. Since |L(q1)|, . . . , |L(qk)|, |L(w1)|, . . . , |L(wk)| ≥ 6, we have L(q1) = · · · =
L(qk) = L(w1) = · · · = L(wl) and |L(q1)| = 6. In other words, q1, . . . , qk, w1, . . . , wk
all see the same two colors. More precisely, {φ(q′1), φ(v1)} = · · · = {φ(q′k), φ(vk)} =
{φ(r′1), φ(s′1)} = · · · = {φ(r′l), φ(s′l)}.

– Or, we have eight vertices in NG(u)∪{u} but |L(u)∪L(p1)∪L(q1)∪· · ·∪L(qk)∪L(w1)∪
· · ·∪L(wl)| ≤ 7. Since |L(p1)| ≥ 7, we have |L(p1)| = 7. Moreover, L(q1), . . . , L(qk), L(w1), . . . , L(wk) ⊆
L(p1). In other words, q1, . . . , qk, w1, . . . , wk all see φ(p3). More precisely, φ(p3) ∈
{φ(q′i), φ(vi)} for all 1 ≤ i ≤ k and φ(p3) ∈ {φ(r′j), φ(s′j)} for all 1 ≤ j ≤ l.

To solve these two problems, the idea is to add two threads (or edges) to H, each one preventing
one problem. If we can add these two threads, then we can define a valid coloring φ of G, thus
obtaining a contradiction. As a consequence, we cannot add both threads. However, it results in
an upper bound on the potential of the endvertices of the added threads. In Claims 2.33 to 2.36,
we show these upper bounds by using this technique of adding two threads to the graph H and
constructing a valid coloring of G. Once we obtain all of these inequalities on the potential in H
of v, v1, . . . , vk, w1, . . . , wl, we show, for each value of k, that the obtained set of inequalities is not
feasible, thus obtaining a contradiction.

Claim 2.33. For k ≥ 2 and j ≥ 1, if there exists 1 ≤ i 6= i′ ≤ k and 1 ≤ j ≤ l such that
ρ∗H(vivi′) ≥ 3 and ρ∗H(vwj) ≥ 7, then ρ∗H(vwjvivi′) ≤ 9.

Chứng minh. Suppose by contradiction that, w.l.o.g., ρ∗H(v1v2) ≥ 3, ρ∗H(vw1) ≥ 7, and ρ∗H(vw1v1v2) ≥
10. We add the 2-thread v1p

′
1p
′
2v2 in H, let P ′ = {p′1, p′2}, and let H + P ′ be the resulting graph.

Since ρ∗H(v1v2) ≥ 3, we get mad(H + P ′) ≤ 18
7 by Lemma 2.7. Observe that ρ∗H+P ′(vw1) ≥ 7,

otherwise, by Lemma 2.9, we get 6 ≥ ρ∗H+P ′(vw1) = ρ∗H(vw1) ≥ 7 or 10 ≤ ρ∗H(vw1v1v2) ≤ 6+3 = 9
which are both contradictions. Now, we add the edge e = vw1 in H + P ′ and by Lemma 2.7, we
have mad(H + P ′ + e) ≤ 18

7 . By minimality of G, there exists a coloring ψ of H + P ′ + e. We
define φ a coloring of G as follows:

• If x ∈ V (H) \ {wj , rj , sj |1 ≤ j ≤ l}, then φ(x) = ψ(x).

• We color q′i for all 3 ≤ i ≤ k since they all have at least one available color each.

• Let φ(p3) = φ(w1) = ψ(w1), φ(q′1) = ψ(p′1), and φ(q′2) = ψ(p′2).

• Note that d∗G(p2) = 4 and d∗G(rj) = d∗G(sj) = 5 for all 1 ≤ j ≤ l, so we can always color
them last.

• We color u who has at least two available colors left as u sees φ(q′1), . . . , φ(q′k), and φ(w1).

• Then, we color w2, . . . , wl and q3, . . . , qk since there are three of them and each one has at
least three available colors left.

• Now, we color q1 and q2 which each has at least one color left. These colors are different
since q1 and q2 see the same five colors in {φ(u), φ(w1), . . . , φ(wl)} and {φ(q3), . . . , φ(qk)}
and q1 sees {φ(q′1), φ(v1)} = {ψ(v1), ψ(p′1)} 6= {ψ(p′2), ψ(v2)} = {φ(q′2), φ(v2)} which q2 sees.

• We color p1 since it sees eight colored vertices but two of them, namely w1 and p3 have the
same color.

We obtain a valid coloring of G which is a contradiction.

Claim 2.34. For k ≥ 1 and j ≥ 2, if there exist 1 ≤ i ≤ k and 1 ≤ j 6= j′ ≤ l such that
ρ∗H(vwj′) ≥ 7 and ρ∗H(viwj) ≥ 7, then ρ∗H(vwj′viwj) ≤ 13.
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Chứng minh. Suppose by contradiction that, w.l.o.g., ρ∗H(vw2) ≥ 7, ρ∗H(v1w1) ≥ 7, and ρ∗H(vw2v1w1) ≥
14. We add the edge e = vw2 in H and let H + e be the resulting graph. Since ρ∗H(vw2) ≥ 7, we
get mad(H + e) ≤ 18

7 by Lemma 2.7. We have ρ∗H+e(v1w1) ≥ 7, otherwise, by Lemma 2.9, we get
6 ≥ ρ∗H+e(v1w1) = ρ∗H(v1w1) ≥ 7 or 14 ≤ ρ∗H(vw2v1w1) ≤ 6+7 = 13 which are both contradictions.
Now, we add the edge e′ = v1w1 in H + e. So, by Lemma 2.7, we have mad(H + e+ e′) ≤ 18

7 . By
minimality of G, there exists a coloring ψ of H + e+ e′. We define φ a coloring of G as follows:

• If x ∈ V (H) \ {wj , rj , sj |1 ≤ j ≤ l}, then φ(x) = ψ(x).

• We color q′i for all 2 ≤ i ≤ k since they all have at least one available color each.

• Let φ(p3) = φ(w2) = ψ(w2) and φ(w1) = φ(q′1) = ψ(q′1).

• Note that d∗G(p2) = 4 and d∗G(rj) = d∗G(sj) = 5 for all 1 ≤ j ≤ l, so we can always color
them last.

• We color u who has at least two available colors.

• Then, we color w3, . . . , wl and q2, . . . , qk since there are three of them and each one has three
available colors left.

• Now, we color q1 which sees eight colored vertices but two of them, namely w1 and q′1 have
the same color.

• Similarly, we can color p1 since it sees eight colored vertices but two of them, namely w2
and p3 have the same color.

We obtain a valid coloring of G which is a contradiction.

Claim 2.35. For k ≥ 3, if there exist three distinct integers 1 ≤ i, i′, i′′ ≤ k, ρ∗H(vvi′′) ≥ 3 and
ρ∗H(vivi′) ≥ 3, then ρ∗H(vvivi′vi′′) ≤ 5.

Chứng minh. Suppose by contradiction that, w.l.o.g., i = 1, i′ = 2, i′′ = 3. In other words,
ρ∗H(vv3) ≥ 3, ρ∗H(v1v2) ≥ 3, and ρ∗H(vv1v2v3) ≥ 6. We add the 2-thread v1p

′
1p
′
2v2 in H and let

P ′ = {p′1, p′2}. Since ρ∗H(v1v2) ≥ 3, we get mad(H+P ′) ≤ 18
7 by Lemma 2.7. We have ρ∗H+P ′(vv3) ≥

3, otherwise, by Lemma 2.9, we get 2 ≥ ρ∗H+P ′(vv3) = ρ∗H(vv3) ≥ 3 or 6 ≤ ρ∗H(v1v2vv3) ≤ 2+3 = 5
which are both contradictions. Now, we add the 2-thread vp′′1p′′2v3 in H +P ′ and let P ′′ = {p′′1, p′′2}.
So, by Lemma 2.7, we have mad(H + P ′ + P ′′) ≤ 18

7 . By minimality of G, there exists a coloring
ψ of H + P ′ + P ′′. We define φ a coloring of G as follows:

• If x ∈ V (H) \ {wj , rj , sj |1 ≤ j ≤ l}, then φ(x) = ψ(x).

• We color q′i for all 4 ≤ i ≤ k since they all have at least one available color each.

• Let φ(p3) = ψ(p′′1), φ(q′3) = ψ(p′′2), φ(q′1) = ψ(p′1), and φ(q′2) = ψ(p′2).

• Note that d∗G(p2) = 4 and d∗G(rj) = d∗G(sj) = 5 for all 1 ≤ j ≤ l, so we can always color
them last.

• Let L(x) be the list of available colors left for a vertex x. Observe that we have |L(u)| ≥ 2,
|L(w1)|, . . . , |L(wl)|, |L(q1)|, . . . , |L(qk)| ≥ 6 and |L(p1)| ≥ 7. By Observation 2.26, the only
two ways these eight vertices are not colorable is the following:

– We have seven vertices u,w1, . . . , wl, q1, . . . , ql but |L(u)∪L(w1)∪· · ·∪L(wl)∪L(q1)∪· · ·∪
L(ql)| ≤ 6. However, this is not possible since q1 sees {φ(q′1), φ(v1)} = {ψ(v1), ψ(p′1)} 6=
{ψ(p′2), ψ(v2)} = {φ(q′2), φ(v2)} which q2 sees. So, |L(q1) ∪ L(q2)| ≥ 7.
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– We have |L(u) ∪ L(p1) ∪ L(w1) ∪ · · · ∪ L(wl) ∪ L(q1) ∪ · · · ∪ L(ql)| ≤ 7. However, this
is not possible since p1 sees φ(p3) = ψ(p′′1) /∈ {ψ(p′′2), ψ(v3)} = {φ(q′3), φ(v3)} which q3
sees. So, |L(p1) ∪ L(q3)| ≥ 8.

We obtain a valid coloring of G which is a contradiction.

Claim 2.36. For k ≥ 2 and j ≥ 1, if there exists 1 ≤ i 6= i′ ≤ k and 1 ≤ j ≤ l such that
ρ∗H(vvi′) ≥ 3 and ρ∗H(viwj) ≥ 7, then ρ∗H(vvi′viwj) ≤ 9.

Chứng minh. Suppose by contradiction that, w.l.o.g., ρ∗H(vv2) ≥ 3, ρ∗H(v1w1) ≥ 7, and ρ∗H(vv2v1w1) ≥
10. We add the 2-thread vp′1p

′
2v2 in H and let P ′ = {p′1, p′2}. Since ρ∗H(vv2) ≥ 3, we get

mad(H + P ′) ≤ 18
7 by Lemma 2.7. We have ρ∗H+P ′(v1w1) ≥ 7, otherwise, by Lemma 2.9, we

get 6 ≥ ρ∗H+P ′(vw1) = ρ∗H(v1w1) ≥ 7 or 10 ≤ ρ∗H(vv2v1w1) ≤ 6 + 3 = 9 which are both contradic-
tions. Now, we add the edge e = v1w1 in H+P ′. So, by Lemma 2.7, we have mad(H+P ′+e) ≤ 18

7 .
By minimality of G, there exists a coloring ψ of H +P ′+ e. We define φ a coloring of G as follows:

• If x ∈ V (H) \ {wj , rj , sj |1 ≤ j ≤ l}, then φ(x) = ψ(x).

• We color q′i for all 3 ≤ i ≤ k since they all have at least one available color each.

• Let φ(p3) = ψ(p′1), φ(q′2) = ψ(p′2), and φ(q′1) = φ(w1) = ψ(w1).

• Note that d∗G(p2) = 4 and d∗G(rj) = d∗G(sj) = 5 for all 1 ≤ j ≤ l, so we can always color
them last.

• Let L(x) be the list of available colors left for a vertex x. Observe that we have |L(u)| ≥ 2,
|L(w2)|, . . . , |L(wl)|, |L(q1)|, . . . , |L(qk)| ≥ 5, and |L(p1)| ≥ 6. By Observation 2.26, the only
two ways these seven vertices are not colorable is the following:

– We have six vertices u,w2, . . . , wl, q1, . . . , ql but |L(u) ∪ L(w1) ∪ · · · ∪ L(wl) ∪ L(q1) ∪
· · · ∪ L(ql)| ≤ 5. However, this is not possible since q1 sees only three colored vertices:
v1, q′1, and w1 and φ(q′1) = φ(w1). So, |L(q1)| ≥ 6.

– We have |L(u) ∪ L(p1) ∪ L(w1) ∪ · · · ∪ L(wl) ∪ L(q1) ∪ · · · ∪ L(ql)| ≤ 6. However, this
is not possible since p1 sees φ(p3) = ψ(p′1) /∈ {ψ(p′2), ψ(v2)} = {φ(q′2), φ(v2)} which q2
sees. So, |L(p1) ∪ L(q2)| ≥ 7.

We obtain a valid coloring of G which is a contradiction.

Given Claims 2.33 to 2.36, we can show upper bounds on the potential on some subsets of
vertices of G. However, due to Equation (2.4), the lower bounds on the potential of these subsets
exceed the upper bounds, which is a contradiction.

First, recall that H = G− ({u, p1, p2, p3} ∪ {qi, q′i|1 ≤ i ≤ k}) and observe that:

Observation 2.37. For 0 ≤ i ≤ k and 0 ≤ j ≤ l, by applying Equation (2.4) to the graph
G− {up1, uqi+1, . . . , uqk, uwj+1, . . . , uwl} with A = {u} ∪ {qx, q′x|1 ≤ x ≤ i} and S = {v1, . . . , vi,
w1, . . . , wj}, we have ρ∗H(S) ≥ 3i + 7j − 9. Similarly, by applying Equation (2.4) to the graph
G − {uqi+1, . . . , uqk, uwj+1, . . . , uwl} with A = {u, p1, p2, p3} ∪ {qx, q′x|1 ≤ x ≤ i} and S =
{v, v1, . . . , vi, w1, . . . , wj}, ρ∗H(S) ≥ 3i+ 7j − 8.

Indeed, by Equation (2.4), we obtain the first inequality through the following calculations:

ρ∗H(S) ≥ 7(i+ j)− (9(2i+ 1)− 7 · 2i)
≥ 7i+ 7j − (18i+ 9− 14i)
≥ 7i+ 7j − 18i− 9 + 14i
≥ 3i+ 7j − 9
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Similarly, we can obtain the second equation through the same kind of calculations.
Now, we consider the different values of 2 ≤ k ≤ 6.
For k = 2:

• Suppose that ρ∗H(vwj) ≤ 6 for all 1 ≤ j ≤ 4.
As a result, for all 1 ≤ i ≤ 2, ρ∗H(vw1)+· · ·+ρ∗H(vw4)+ρ∗H(vvi) ≤ 6·4+ρ∗H(vvi) = 24+ρ∗H(vvi).
We also have ρ∗H(vw1) + · · ·+ ρ∗H(vw4) + ρ∗H(vvi) ≥ ρ∗H(vviw1 . . . w4) + 4ρ∗H(v) ≥ 3 · 1 + 7 ·
4− 8 + 4ρ∗H(v) ≥ 23 + 4 · 1 = 27 where the first inequality corresponds to Equation (2.3),
the second one to Observation 2.37, and the third one to Claim 2.32 (from now on, we will
repeat the same scheme). So, ρ∗H(vvi) ≥ 27− 24 = 3 for all 1 ≤ i ≤ 2.
Suppose there exist 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4 such that ρ∗H(viwj) ≥ 7. Say w.l.o.g. that
ρ∗H(v2w2) ≥ 7, then by Claim 2.36, ρ∗H(vv1v2w2) ≤ 9. Thus, we get ρ∗H(vv1v2w2)+ρ∗H(vw1)+
ρ∗H(vw3) + ρ∗H(vw4) ≤ 9 + 3 · 6 = 27. However, by Equation (2.3), Observation 2.37 then
Claim 2.32, we have ρ∗H(vv1v2w2) + ρ∗H(vw1) + ρ∗H(vw3) + ρ∗H(vw4) ≥ ρ∗H(vv1v2w1 . . . w4) +
3ρ∗H(v) ≥ 3 · 2 + 7 · 4− 8 + 3ρ∗H(v) ≥ 26 + 3 = 29.
So, for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4, ρ∗H(viwj) ≤ 6. Thus, we get ρ∗H(v1w1) + ρ∗H(v2w2) +
ρ∗H(vw3) + ρ∗H(vw4) ≤ 4 · 6 = 24. However, by Equation (2.3), Observation 2.37 then
Claim 2.32, we have ρ∗H(v1w1) + ρ∗H(v2w2) + ρ∗H(vw3) + ρ∗H(vw4) ≥ ρ∗H(vv1v2w1 . . . w4) +
ρ∗H(v) ≥ 3 · 2 + 7 · 4− 8 + ρ∗H(v) ≥ 26 + 1 = 27.

• Suppose w.l.o.g. that ρ∗H(vw1) ≥ 7.

– Suppose that for all 1 ≤ i ≤ 2 and 2 ≤ j ≤ 4, we have ρ∗H(viwj) ≤ 6.
As a result, ρ∗H(v2w2) + ρ∗H(v1w3) + ρ∗H(v1w4) + ρ∗H(v1w1) ≤ 3 · 6 + ρ∗H(v1w1) = 18 +
ρ∗H(v1w1). Moreover, by Equation (2.3) then Observation 2.37, ρ∗H(v2w2) + ρ∗H(v1w3) +
ρ∗H(v1w4) + ρ∗H(v1w1) ≥ ρ∗H(v1v2w1 . . . w4) + 2ρ∗H(v1) ≥ 3 · 2 + 7 · 4− 9 = 25. So, we get
ρ∗H(v1w1) ≥ 25− 18 = 7.
Suppose there exists 2 ≤ j ≤ 4 such that ρ∗H(vwj) ≥ 7. Say w.l.o.g. that ρ∗H(vw2) ≥ 7,
then by Claim 2.34, ρ∗H(v1w1vw2) ≤ 13. We get ρ∗H(v1w1vw2)+ρ∗H(v2w3)+ρ∗H(v2w4) ≤
13 + 2 · 6 = 25. However, by Equation (2.3) then Observation 2.37, ρ∗H(v1w1vw2) +
ρ∗H(v2w3) + ρ∗H(v2w4) ≥ ρ∗H(vv1v2w1 . . . w4) + ρ∗H(v2) ≥ 3 · 2 + 7 · 4− 8 = 26.
So, ρ∗H(vwj) ≤ 6 for all 2 ≤ j ≤ 4. We get ρ∗H(vw2) + ρ∗H(v1w3) + ρ∗H(v2w4) ≤ 3 · 6 = 18.
However, by Equation (2.3) then Observation 2.37, ρ∗H(vw2) + ρ∗H(v1w3) + ρ∗H(v2w4) ≥
ρ∗H(vv1v2w2w3w4) ≥ 3 · 2 + 7 · 3− 8 = 19.

– Suppose that there exist 1 ≤ i ≤ 2 and 2 ≤ j ≤ 4 such that ρ∗H(viwj) ≥ 7. Say w.l.o.g.
ρ∗H(v2w2) ≥ 7.
By Claim 2.34, ρ∗H(vw1v2w2) ≤ 13. As a result, by Equation (2.3) then Observation 2.37,
we get ρ∗H(vw1v2w2) + ρ∗H(v1w3) + ρ∗H(v1w4) ≥ ρ∗H(vv1v2w1 . . . w4) + ρ∗H(v1) ≥ 3 · 2 +
7 · 4− 8 = 26. So, ρ∗H(v1w3) + ρ∗H(v1w4) ≥ 26− 13 = 13 and ρ∗H(v1w3) ≥ 7 w.l.o.g.
By Claim 2.34, ρ∗H(vw1v1w3) ≤ 13. As a result, by Equation (2.3) then Observation 2.37,
we get ρ∗H(vw1v2w2) + ρ∗H(vw1v1w3) + ρ∗H(v1w4) ≥ ρ∗H(vv1v2w1 . . . w4) + ρ∗H(vw1) +
ρ∗H(v1) ≥ 3 · 2 + 7 · 4− 8 + 7 = 33. So, ρ∗H(v1w4) ≥ 33− 2 · 13 = 7.
By Claim 2.34, ρ∗H(vw1v1w4) ≤ 13. Finally, we have ρ∗H(vw1v2w2) + ρ∗H(vw1v1w3) +
ρ∗H(vw1v1w4) ≤ 3 · 13 = 39. However, by Equation (2.3) then Observation 2.37,
ρ∗H(vw1v2w2)+ρ∗H(vw1v1w3)+ρ∗H(vw1v1w4) ≥ ρ∗H(vv1v2w1 . . . w4)+2ρ∗H(vw1)+ρ∗H(v1)
≥ 3 · 2 + 7 · 4− 8 + 2 · 7 = 40.

For k = 3:
Suppose that ρ∗H(vwj) ≤ 6 for all 1 ≤ j ≤ 3.

Let {i, i′, i′′} be any permutation of {1, 2, 3}, ρ∗H(vw1) + ρ∗H(vw2) + ρ∗H(vw3) + ρ∗H(vivi′) ≤
3 · 6 + ρ∗H(vivi′) = 18 + ρ∗H(vivi′). Moreover, by Equation (2.3), Observation 2.37 then Claim 2.32,
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ρ∗H(vw1) +ρ∗H(vw2) +ρ∗H(vw3) +ρ∗H(vivi′) ≥ ρ∗H(vvivi′w1w2w3) + 2ρ∗H(v) ≥ 3 ·2 + 7 ·3−8 + 2 = 21.
So, we get ρ∗H(vivi′) ≥ 21− 18 = 3.

If ρ∗H(vvi′′) ≥ 3, then by Claim 2.35, ρ∗H(vvivi′vi′′) ≤ 5. Since ρ∗H(vvivi′vi′′) = ρ∗H(vv1v2v3),
we get ρ∗H(vw1) + ρ∗H(vw2) + ρ∗H(vw3) + ρ∗H(vv1v2v3) ≤ 3 · 6 + 5 = 23. However, by Equa-
tion (2.3), Observation 2.37 then Claim 2.32, ρ∗H(vw1) + ρ∗H(vw2) + ρ∗H(vw3) + ρ∗H(vv1v2v3) ≥
ρ∗H(vv1v2v3w1w2w3) + 3ρ∗H(v) ≥ 3 · 3 + 7 · 3− 8 + 3 = 25.

Observe the previous argument holds for any permutation of {i, i′, i′′} = {1, 2, 3}. So ρ∗H(vvi′′) ≤
2 for all 1 ≤ i′′ ≤ 3. Thus, we get ρ∗H(vw1) +ρ∗H(vw2) +ρ∗H(vw3) +ρ∗H(vv1) +ρ∗H(vv2) +ρ∗H(vv3) ≤
3·6+3·2 = 24. However, by Equation (2.3), Observation 2.37 then Claim 2.32, ρ∗H(vw1)+ρ∗H(vw2)+
ρ∗H(vw3)+ρ∗H(vv1)+ρ∗H(vv2)+ρ∗H(vv3) ≥ ρ∗H(vv1v2v3w1w2w3)+5ρ∗H(v) ≥ 3 ·3+7 ·3−8+5 = 27.

Now, suppose there exists 1 ≤ j ≤ 3 such that ρ∗H(vwj) ≥ 7. Say w.l.o.g. that ρ∗H(vw1) ≥ 7.

• Suppose that there exist 1 ≤ i ≤ 3 and 2 ≤ j ≤ 3 such that ρ∗H(viwj) ≥ 7. Say w.l.o.g. that
ρ∗H(v3w3) ≥ 7. By Claim 2.34, ρ∗H(vw1v3w3) ≤ 13.

– If ρ∗H(v1v2) ≤ 2, then ρ∗H(vw1v3w3) + ρ∗H(v1v2) + ρ∗H(v2w2) ≤ 13 + 2 + ρ∗H(v2w2) =
15 + ρ∗H(v2w2). By Equation (2.3) then Observation 2.37, ρ∗H(vw1v3w3) + ρ∗H(v1v2) +
ρ∗H(v2w2) ≥ ρ∗H(vv1v2v3w1w2w3) + ρ∗H(v2) ≥ 3 · 3 + 7 · 3 − 8 = 22. So, ρ∗H(v2w2) ≥
22− 15 = 7.
By Claim 2.34, ρ∗H(vw1v2w2) ≤ 13. Thus, we get ρ∗H(vw1v2w2) + ρ∗H(vw1v3w3) +
ρ∗H(v1v2) ≤ 2 · 13 + 2 = 28. However, by Equation (2.3) then Observation 2.37,
ρ∗H(vw1v2w2) + ρ∗H(vw1v3w3) + ρ∗H(v1v2) ≥ ρ∗H(vv1v2v3w1w2w3) + ρ∗H(vw1) + ρ∗H(v2) ≥
3 · 3 + 7 · 3− 8 + 7 = 29.

– If ρ∗H(v1v2) ≥ 3, then by Claim 2.33, ρ∗H(vw1v1v2) ≤ 9. So, we get ρ∗H(vw1v1v2) +
ρ∗H(vw1v3w3) + ρ∗H(v2w2) ≤ 9 + 13 + ρ∗H(v2w2) = 22 + ρ∗H(v2w2). By Equation (2.3)
then Observation 2.37, ρ∗H(vw1v1v2)+ρ∗H(vw1v3w3)+ρ∗H(v2w2) ≥ ρ∗H(vv1v2v3w1w2w3)+
ρ∗H(vw1) + ρ∗H(v2) ≥ 3 · 3 + 7 · 3− 8 + 7 = 29. As a result, ρ∗H(v2w2) ≥ 29− 22 = 7.
By Claim 2.34, ρ∗H(vw1v2w2) ≤ 13. Thus, ρ∗H(vw1v3w3) + ρ∗H(vw1v2w2) + ρ∗H(vw1v1v2)
≤ 2 · 13 + 9 = 35. However, by Equation (2.3) then Observation 2.37, ρ∗H(vw1v3w3) +
ρ∗H(vw1v2w2) + ρ∗H(vw1v1v2) ≥ ρ∗H(vv1v2v3w1w2w3) + 2ρ∗H(vw1) + ρ∗H(v2) ≥ 3 · 3 + 7 ·
3− 8 + 2 · 7 = 36.

• Suppose that ρ∗H(viwj) ≤ 6 for all 1 ≤ i ≤ 3 and 2 ≤ j ≤ 3.

If ρ∗H(v1v2) ≥ 3, then by Claim 2.33, ρ∗H(vw1v1v2) ≤ 9. Thus, ρ∗H(vw1v1v2) + ρ∗H(v2w2) +
ρ∗H(v3w3) ≤ 9 + 2 · 6 = 21. However, by Equation (2.3) then Observation 2.37, ρ∗H(vw1v1v2) +
ρ∗H(v2w2) + ρ∗H(v3w3) ≥ ρ∗H(vv1v2v3w1w2w3) + ρ∗H(v2) ≥ 3 · 3 + 7 · 3− 8 = 22.

So, ρ∗H(v1v2) ≤ 2. Thus, ρ∗H(v1v2) + ρ∗H(v2w2) + ρ∗H(v3w3) ≤ 2 + 2 · 6 = 14. Moreover, by
Equation (2.3) then Observation 2.37, ρ∗H(v1v2)+ρ∗H(v2w2)+ρ∗H(v3w3) ≥ ρ∗H(v1v2v3w2w3)+
ρ∗H(v2) ≥ 3 · 3 + 7 · 2− 9 + ρ∗H(v2) = 14 + ρ∗H(v2). As a result, ρ∗H(v2) ≤ 14− 14 = 0. However,
ρ∗H(v1w2) + ρ∗H(v3w3) + ρ∗H(v2) ≤ 2 · 6 + 0 = 12 and by Equation (2.3) then Observation 2.37,
ρ∗H(v1w2) + ρ∗H(v3w3) + ρ∗H(v2) ≥ ρ∗H(v1v2v3w2w3) ≥ 3 · 3 + 7 · 2− 9 = 14.

For k = 4:
If ρ∗H(v1v2) ≤ 2 and ρ∗H(v3v4) ≤ 2, then ρ∗H(v1v2) + ρ∗H(v3v4) + ρ∗H(w1) + ρ∗H(w2) ≤ 4 + ρ∗H(w1) +
ρ∗H(w2). Moreover, by Equation (2.3) then Observation 2.37, ρ∗H(v1v2) + ρ∗H(v3v4) + ρ∗H(w1) +
ρ∗H(w2) ≥ ρ∗H(v1v2v3v4w1w2) ≥ 3 · 4 + 7 · 2− 9 = 17. As a result, ρ∗H(w1) + ρ∗H(w2) ≥ 17− 4 = 13.
So, ρ∗H(w1) ≥ 7 w.l.o.g. and by Equation (2.1), ρ∗H(w1vi) ≥ 7 for all 1 ≤ i ≤ 4.

At the same time, ρ∗H(v1v2) +ρ∗H(v3v4) +ρ∗H(vw2) ≤ 4 +ρ∗H(vw2). Moreover, by Equation (2.3)
then Observation 2.37, ρ∗H(v1v2) + ρ∗H(v3v4) + ρ∗H(vw2) ≥ ρ∗H(vv1v2v3v4w2) ≥ 3 · 4 + 7− 8 = 11.
As a result, ρ∗H(vw2) ≥ 11− 4 = 7.



2.2. STRUCTURAL PROPERTIES OF A MINIMAL COUNTEREXAMPLE 35

By Claim 2.34, we get ρ∗H(vw2w1vi) ≤ 13 for all 1 ≤ i ≤ 4. As a result, we have ρ∗H(v1v2) +
ρ∗H(v3v4) + ρ∗H(vw1w2v1) ≤ 2 · 2 + 13 = 17. However, by Equation (2.3) then Observation 2.37,
ρ∗H(v1v2) + ρ∗H(v3v4) + ρ∗H(vw1w2v1) ≥ ρ∗H(vv1v2v3v4w1w2) + ρ∗H(v1) ≥ 3 · 4 + 7 · 2− 8 = 18.

Thus, we can suppose w.l.o.g. that ρ∗H(v1v2) ≥ 3.

• Suppose that ρ∗H(vw1) ≤ 6 and ρ∗H(vw2) ≤ 6.

– Suppose that ρ∗H(vv3) ≤ 2 and ρ∗H(vv4) ≤ 2.
Then ρ∗H(vw1) + ρ∗H(vw2) + ρ∗H(vv3) + ρ∗H(vv4) + ρ∗H(v1) + ρ∗H(v2) ≤ 2 · 6 + 2 · 2 +
ρ∗H(v1) + ρ∗H(v2) = 16 + ρ∗H(v1) + ρ∗H(v2). Moreover, by Equation (2.3), Observa-
tion 2.37 then Claim 2.32, ρ∗H(vw1)+ρ∗H(vw2)+ρ∗H(vv3)+ρ∗H(vv4)+ρ∗H(v1)+ρ∗H(v2) ≥
ρ∗H(vv1v2v3v4w1w2)+3ρ∗H(v) ≥ 3 ·4+7 ·2−8+3 ·1 = 21. As a result, ρ∗H(v1)+ρ∗H(v2) ≥
21−16 = 5. So, ρ∗H(v1) ≥ 3 w.l.o.g. and by Equation (2.1) ρ∗H(v1vi) ≥ 3 for all 2 ≤ i ≤ 4.
If ρ∗H(vv2) ≥ 3, then ρ∗H(vv2v1v3) ≤ 5 and ρ∗H(vv2v1v4) ≤ 5 by Claim 2.35. As a
result, 22 = 2 · 6 + 2 · 5 ≥ ρ∗H(vw1) + ρ∗H(vw2) + ρ∗H(vv2v1v3) + ρ∗H(vv2v1v4) ≥
ρ∗H(vv1v2v3v4w1w2) + ρ∗H(vv1v2) + 2ρ∗H(v) ≥ 3 · 4 + 7 · 2 − 8 + 3 + 2 · 1 = 23 by
Equation (2.3), Observation 2.37 then Equation (2.1) and Claim 2.32.
If ρ∗(vv2) ≤ 2, then 18 = 3·2+2·6 ≥ ρ∗H(vv2)+ρ∗H(vv3)+ρ∗H(vv4)+ρ∗H(vw1)+ρ∗H(vw2) ≥
ρ∗H(vv2v3v4w1w2)+4ρ∗H(v) ≥ 3·3+7·2−8+4·1 = 19 by Equation (2.3), Observation 2.37
then Claim 2.32.

– Suppose w.l.o.g. that ρ∗H(vv3) ≥ 3.
Then, by Claim 2.35, ρ∗H(vv3v1v2) ≤ 5. As a result, ρ∗H(vv3v1v2)+ρ∗H(vw1)+ρ∗H(vw2)+
ρ∗H(vv4) ≤ 5 + 2 · 6 + ρ∗H(vv4) = 17 + ρ∗H(vv4). Moreover, by Equation (2.3), Ob-
servation 2.37 then Claim 2.32, ρ∗H(vv3v1v2) + ρ∗H(vw1) + ρ∗H(vw2) + ρ∗H(vv4) ≥
ρ∗H(vv1v2v3v4w1w2) + 3ρ∗H(v) ≥ 3 · 4 + 7 · 2− 8 + 3 · 1 = 21. So, ρ∗H(vv4) ≥ 21− 17 = 4.
Thus, by Claim 2.35, ρ∗H(vv4v1v2) ≤ 5. Finally, 22 = 2 · 6 + 2 · 5 ≥ ρ∗H(vw1) +
ρ∗H(vw2) + ρ∗H(vv3v1v2) + ρ∗H(vv4v1v2) ≥ ρ∗H(vv1v2v3v4w1w2) + ρ∗H(vv1v2) + 2ρ∗H(v) ≥
3 · 4 + 7 · 2− 8 + 3 + 2 · 1 = 23 by Equation (2.3), Observation 2.37 then Equation (2.1),
and Claim 2.32.

• Suppose w.l.o.g. that ρ∗H(vw1) ≥ 7, by Claim 2.33, ρ∗H(vw1v1v2) ≤ 9.
If ρ∗H(v3v4) ≥ 3, then by Claim 2.33, ρ∗H(vw1v3v4) ≤ 9. As a result, ρ∗H(vw1v1v2) +
ρ∗H(vw1v3v4)+ρ∗H(vw2) ≤ 2·9+ρ∗H(vw2) = 18+ρ∗H(vw2). Moreover, by Equation (2.3), Obser-
vation 2.37 then Claim 2.32, ρ∗H(vw1v1v2) +ρ∗H(vw1v3v4) +ρ∗H(vw2) ≥ ρ∗H(vv1v2v3v4w1w2) +
ρ∗H(vw1) + ρ∗H(v) ≥ 3 · 4 + 7 · 2 − 8 + 7 + 1 = 26. So, ρ∗H(vw2) ≥ 26 − 18 = 8. Thus,
by Claim 2.33, ρ∗H(vw2v3v4) ≤ 9. Finally, 18 = 2 · 9 ≥ ρ∗H(vw1v1v2) + ρ∗H(vw2v3v4) ≥
ρ∗H(vv1v2v3v4w1w2) + ρ∗H(v) ≥ 3 · 4− 7 · 2− 8 + 1 = 19 by Equation (2.3), Observation 2.37,
and Claim 2.32.
If ρ∗H(v3v4) ≤ 2, then we get ρ∗H(vw1v1v2) + ρ∗H(v3v4) + ρ∗H(vw2) ≤ 9 + 2 + ρ∗H(vw2) =
11+ρ∗H(vw2). Moreover, by Equation (2.3), Observation 2.37 then Claim 2.32, ρ∗H(vw1v1v2)+
ρ∗H(v3v4) + ρ∗H(vw2) ≥ ρ∗H(vv1v2v3v4w1w2) + ρ∗H(v) ≥ 3 · 4 + 7 · 2− 8 + 1 = 19. As a result,
ρ∗H(vw2) ≥ 19 − 11 = 8 and by Claim 2.33, ρ∗H(vw2v1v2) ≤ 9. Finally, 20 = 2 · 9 + 2 ≥
ρ∗H(vw1v1v2)+ρ∗H(vw2v1v2)+ρ∗H(v3v4) ≥ ρ∗H(vv1v2v3v4w1w2)+ρ∗H(vv1v2) ≥ 3·4+7·2−8+3 =
21 by Equation (2.3), Observation 2.37, and Equation (2.1).

For k = 5:

• Suppose that ρ∗H(vw1) ≤ 6.
As a result, ρ∗H(vw1)+ρ∗H(vv1v2v3v4v5) ≤ 6+ρ∗H(vv1v2v3v4v5). Moreover, by Equation (2.3),
Observation 2.37 then Claim 2.32, ρ∗H(vw1) + ρ∗H(vv1v2v3v4v5) ≥ ρ∗H(vv1v2v3v4v5w1) +
ρ∗H(v) ≥ 3 · 5 + 7− 8 + 1 = 15. So, ρ∗H(vv1v2v3v4v5) ≥ 15− 6 = 9.
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By Equation (2.3), Observation 2.37 then Claim 2.32, ∑5
i=1 ρ

∗(vvi) ≥ ρ∗H(vv1v2v3v4v5) +
4ρ∗H(v) ≥ 9 + 4 = 13. So, there exists 1 ≤ i ≤ 5 such that ρ∗H(vvi) ≥ 3.

Say w.l.o.g. that ρ∗(vv1) ≥ 3.

If ρ∗(vivj) ≤ 2 for all 2 ≤ i 6= j ≤ 5, then ρ∗H(v2v3) + ρ∗H(v4v5) + ρ∗H(vw1) ≤ 2 · 2 + 6 = 10.
However, by Equation (2.3), Observation 2.37 then Claim 2.32, ρ∗H(v2v3) + ρ∗H(v4v5) +
ρ∗H(vw1) ≥ ρ∗H(vv2v3v4v5w1) ≥ 3 · 4 + 7− 8 = 11.

So, there exist 2 ≤ i 6= j ≤ 5 such that ρ∗H(vivj) ≥ 3. Say w.l.o.g. that ρ∗H(v2v3) ≥ 3.

By Claim 2.35, ρ∗H(vv1v2v3) ≤ 5. Moreover, by Equation (2.3), Observation 2.37 then
Claim 2.32, ρ∗H(vv1v2v3) + ρ∗H(vw1) + ρ∗H(v4v5) ≥ ρ∗H(vv1v2v3v4v5w1) + ρ∗H(v) ≥ 3 · 5 + 7−
8 + 1 = 15. As a result, 5 + 6 + ρ∗H(v4v5) ≥ ρ∗H(vv1v2v3) + ρ∗H(vw1) + ρ∗H(v4v5) ≥ 15. In
other words, ρ∗H(v4v5) ≥ 15− 11 = 4.

By Claim 2.35, ρ∗H(vv1v4v5) ≤ 5. As a result, ρ∗H(vv1v2v3) + ρ∗H(vv1v4v5) + ρ∗H(vw1) ≤
2 · 5 + 6 = 16. However, by Equation (2.3), Observation 2.37 then Claim 2.32, ρ∗H(vv1v2v3) +
ρ∗H(vv1v4v5) + ρ∗H(vw1) ≥ ρ∗H(vv1v2v3v4v5w1) + ρ∗H(vv1) + ρ∗H(v) ≥ 3 · 5 + 7− 8 + 3 + 1 = 18.

• Suppose that ρ∗H(vw1) ≥ 7.
If ρ∗H(vivj) ≤ 2 for all 1 ≤ i 6= j ≤ 5, then ρ∗H(v1v2) + ρ∗H(v3v4) + ρ∗H(v5v1) ≤ 3 · 2 = 6.
Moreover, by Equation (2.3) then Observation 2.37 ρ∗H(v1v2) + ρ∗H(v3v4) + ρ∗H(v5v1) ≥
ρ∗H(v1v2v3v4v5) + ρ∗H(v1) ≥ 3 · 5− 9 + ρ∗H(v1) = 6 + ρ∗H(v1). So, ρ∗H(v1) ≤ 6− 6 = 0. Sym-
metrically, ρ∗H(vi) ≤ 0 for all 2 ≤ i ≤ 5. However, by Equation (2.3) then Observation 2.37,
0 ≥∑5

i=1 ρ
∗
H(vi) ≥ ρ∗H(v1v2v3v4v5) ≥ 3 · 5− 9 = 6. So, w.l.o.g. ρ∗H(v1v2) ≥ 3.

By Claim 2.33, ρ∗H(vw1v1v2) ≤ 9. Moreover, by Equation (2.3), Observation 2.37 then
Claim 2.32, ρ∗H(vw1v1v2)+ρ∗H(v3v4)+ρ∗H(v3v5) ≥ ρ∗H(vv1v2v3v4v5w1)+ρ∗H(v3) ≥ 3·5+7−8 =
14. As a result, 9 + ρ∗H(v3v4) + ρ∗H(v3v5) ≥ ρ∗H(vw1v1v2) + ρ∗H(v3v4) + ρ∗H(v3v5) ≥ 14. In
other words, ρ∗H(v3v4) + ρ∗H(v3v5) ≥ 14− 9 = 5. So, w.l.o.g. ρ∗H(v3v4) ≥ 3.

By Claim 2.33, ρ∗H(vw1v3v4) ≤ 9. Moreover, by Equation (2.3), Observation 2.37 then
Claim 2.32, ρ∗H(vw1v1v2) + ρ∗H(vw1v3v4) + ρ∗H(v3v5) ≥ ρ∗H(vv1v2v3v4v5w1) + ρ∗H(vw1) +
ρ∗H(v3) ≥ 3 · 5 + 7− 8 + 7 = 21. As a result, 2 · 9 + ρ∗H(v3v5) ≥ ρ∗H(vw1v1v2) + ρ∗H(vw1v3v4) +
ρ∗H(v3v5) ≥ 21. In other words, ρ∗H(v3v5) ≥ 21− 18 = 3.

By Claim 2.33, ρ∗H(vw1v3v5) ≤ 9. As a result, ρ∗H(vw1v1v2) + ρ∗H(vw1v3v4) + ρ∗H(vw1v3v5) ≤
3 · 9 = 27. However, by Equation (2.3), Observation 2.37 then Claim 2.32, ρ∗H(vw1v1v2) +
ρ∗H(vw1v3v4)+ρ∗H(vw1v3v5) ≥ ρ∗H(vv1v2v3v4v5w1)+2ρ∗H(vw1)+ρ∗H(v3) ≥ 3 ·5+7−8+2 ·7 =
28.

For k = 6:
By Equation (2.3), Observation 2.37 then Claim 2.32, ∑6

i=1 ρ
∗
H(vvi) ≥ ρ∗H(vv1v2v3v4v5v6) +

5ρ∗H(v) ≥ 3 · 6− 8 + 5 = 15. So, there exists 1 ≤ i ≤ 6 such that ρ∗H(vvi) ≥ 3.
Say w.l.o.g. that ρ∗H(vv1) ≥ 3.
If ρ∗H(vivj) ≤ 2 for all 2 ≤ i 6= j ≤ 6, then ρ∗H(v2v3)+ρ∗H(v4v5)+ρ∗H(v6v2) ≤ 3 ·2 = 6. Moreover,

by Equation (2.3) then Observation 2.37, ρ∗H(v2v3) + ρ∗H(v4v5) + ρ∗H(v6v2) ≥ ρ∗H(v2v3v4v5v6) +
ρ∗H(v2) ≥ 3 · 5− 9 + ρ∗H(v2). So, ρ∗H(v2) ≤ 6− 6 = 0. Symmetrically, ρ∗H(vi) ≤ 0 for all 2 ≤ i ≤ 6.
However, by Equation (2.3) then Observation 2.37, 0 ≥∑6

i=2 ρ
∗
H(vi) ≥ ρ∗H(v2v3v4v5v6) ≥ 3 ·5−9 =

6. So, there exist 2 ≤ i 6= j ≤ 6 such that ρ∗H(vivj) ≥ 3.
Say w.l.o.g. that ρ∗H(v2v3) ≥ 3.
By Claim 2.35, ρ∗H(vv1v2v3) ≤ 5. Moreover, by Equation (2.3) then Observation 2.37, ρ∗H(vv1v2v3)+

ρ∗H(v4v5) + ρ∗H(v4v6) ≥ ρ∗H(vv1v2v3v4v5v6) + ρ∗H(v4) ≥ 3 · 6 − 8 = 10. As a result, ρ∗H(v4v5) +
ρ∗H(v4v6) + 5 ≥ ρ∗H(vv1v2v3) + ρ∗H(v4v5) + ρ∗H(v4v6) ≥ 10. In other words, ρ∗H(v4v5) + ρ∗H(v4v6) ≥
10− 5 = 5. So w.l.o.g. ρ∗H(v4v5) ≥ 3.



2.2. STRUCTURAL PROPERTIES OF A MINIMAL COUNTEREXAMPLE 37

By Claim 2.35, ρ∗H(vv1v4v5) ≤ 5. Moreover, by Equation (2.3) then Observation 2.37, ρ∗H(vv1v2v3)+
ρ∗H(vv1v4v5) + ρ∗H(v4v6) ≥ ρ∗H(vv1v2v3v4v5v6) + ρ∗H(vv1) + ρ∗H(v4) ≥ 3 · 6− 8 + 3 = 13. As a result,
ρ∗H(v4v6) + 2 · 5 ≥ ρ∗H(vv1v2v3) + ρ∗H(vv1v4v5) + ρ∗H(v4v6) ≥ 13. So, ρ∗H(v4v6) ≥ 13− 10 = 3.

By Claim 2.35, ρ∗H(vv1v4v6) ≤ 5. As a result, ρ∗H(vv1v2v3)+ρ∗H(vv1v4v5)+ρ∗H(vv1v4v6) ≤ 3·5 =
15. However, by Equation (2.3) then Observation 2.37, ρ∗H(vv1v2v3)+ρ∗H(vv1v4v5)+ρ∗H(vv1v4v6) ≥
ρ∗H(vv1v2v3v4v5v6) + 2ρ∗H(vv1) + ρ∗H(v4) ≥ 3 · 6− 8 + 2 · 3 = 16.

Lemma 2.38. Consider u a 7-vertex that is incident to a unique 3-thread up1p2p3v and let
P = {p1, p2, p3}. Suppose that ρ∗G−P (u) ≤ ρ∗G−P (v), that u is adjacent to at least one 2-thread
where the other endvertex is a 5−-vertex, and that u is adjacent to exactly one vertex x where
d∗G(x) ≤ 12. Then, u has another neighbor that is neither a (2, 2, 0)-vertex nor a 2-vertex belonging
to a 2-thread.

Chứng minh. Suppose by contradiction that u is incident to a unique 3-thread up1p2p3v, to a unique
neighbor x where d∗G(x) ≤ 12, to k 2-threads uqiq′ivi for 1 ≤ i ≤ k where k ≥ 1 and dG(v1) ≤ 5, and l
(2, 2, 0)-vertices wj for 1 ≤ j ≤ l where each wj is incident to two 2-threads wjrjr′jw′j and wjsjs′jw′′j ,
and finally k+ l = 5 (see Figure 2.15). Due to Lemma 2.15, Lemma 2.16, Lemma 2.17, and the fact
that we have no multi-edges, u is distinct from v, x, t, v1, . . . , vk, w1, . . . , wl, w

′
1, . . . , w

′
l, w
′′
1 , . . . , w

′′
l ,

and the endvertices of the 1-thread and 2-thread incident to x when x is a (2, 1, 0)-vertex. Similarly,
for all 1 ≤ j ≤ l, wj is distinct from w′1, . . . , w

′
l, w
′′
1 , . . . , w

′′
l .

Let H = G− ({u, p1, p2, p3} ∪ {qi, q′i|1 ≤ i ≤ k}).

u

q1 q′1
5−
v1

q2 q′2 v2

qk q′k vk

w1

r1 r′1 w′1

s1 s′1 w′′1

wl

rl r′l w′l

sl s′l w′′l

p1p2p3v

x

. . .

. . .

p′1

p′2

Hình 2.15: A 7-vertex that is incident to a 3-thread, k 2-threads, l (2, 2, 0)-vertices, and a vertex x
where k + l = 5 and d∗G(x) ≤ 12.

We claim that:

Claim 2.39. For all 1 ≤ i ≤ k and 1 ≤ j ≤ l, ρ∗H(vvi) ≤ 2, ρ∗H(vwj) ≤ 6, and ρ∗H(vx) ≤ 6.

If Claim 2.39 holds, then we have the following. Recall that ρ∗G−P (u) ≤ ρ∗G−P (v) and by
Lemma 2.22, ρ∗G−P (v) ≥ 1. As a result, ρ∗H(v) ≥ ρ∗G−P (v) ≥ 1 by Equation (2.2). By Claim 2.39,
we have∑k

i=1 ρ
∗
H(vvi)+∑l

j=1 ρ
∗
H(vwj)+ρ∗H(vx) ≤ 2k+6l+6 = 16+4l. However, by Equation (2.3),
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then by Equation (2.4) and the fact that ρ∗H(v) ≥ 1, we also have ∑k
i=1 ρ

∗
H(vvi) +∑l

j=1 ρ
∗
H(vwj) +

ρ∗H(vx) ≥ ρ∗H(vxv1 . . . vkw1 . . . wl) + 5ρ∗H(v) ≥ 14 + 4l + 5 = 19 + 4l which is contradiction.
Now, let us prove Claim 2.39.
First, suppose that ρ∗H(vvi0) ≥ 3 for 1 ≤ i0 ≤ k. We add the 2-thread vp′1p

′
2vi0 in H,

let P ′ = {p′1, p′2} and let H + P ′ be the resulting graph. Since ρ∗H(vvi0) ≥ 3, by Lemma 2.7,
mad(H+P ′) ≤ 18

7 . By minimality of G, there exists a coloring ψ of H+P ′. We define φ a coloring
of G as follows:

• If y ∈ V (H) \ ({x} ∪ {wj , rj , sj |1 ≤ j ≤ l}), then φ(y) = ψ(y).

• Let φ(q′i0) = ψ(p′2) unless i0 = 1 and φ(p3) = ψ(p′1).

• We color q′i for all i 6= i0 and 2 ≤ i ≤ k since they all have at least one available color each.

• Note that d∗G(p2) = 4, d∗G(q′1) = dG(v1) + 2 ≤ 5 + 2 = 7, and d∗G(rj) = d∗G(sj) = 5 for all
1 ≤ j ≤ l so we can always color them last.

• Let L(y) be the list of available colors left for a vertex y. Observe that we have |L(u)| ≥
8−(k−1)−3 ≥ 1, |L(x)| ≥ 3 (since x sees d∗G(x)−7 ≤ 5 colored vertices), |L(p1)|, |L(q1)| ≥ 7
and |L(w1)|, . . . , |L(wl)|, |L(q2)|, . . . , |L(qk)| ≥ 6. By Observation 2.26, these eight vertices
are colorable unless |L(u) ∪ L(x) ∪ L(p1) ∪ L(q1) ∪ · · · ∪ L(qk) ∪ L(w1) ∪ · · · ∪ L(wl)| = 7.
However, p1 sees φ(p3) = ψ(p′1) /∈ {ψ(p′2), ψ(vi0)} = {φ(q′i0), φ(vi0)} which qi0 sees when
i0 6= 1. And when i0 = 1, p1 sees φ(p3) = ψ(p′1) 6= ψ(v1) = φ(v1) which q1 sees. In both
cases, we have |L(p1) ∪ L(qi0)| ≥ 8.

We obtain a valid coloring of G so ρ∗H(vvi) ≤ 2 for all 1 ≤ i ≤ k.
Now, suppose that ρ∗H(vz) ≥ 7 for z = x or z = wj0 for 1 ≤ j0 ≤ l. We add the edge e = vz in

H and let H + e be the resulting graph. Since ρ∗H(vz) ≥ 7, by Lemma 2.7, mad(H + e) ≤ 18
7 . By

minimality of G, there exists a coloring ψ of H + e. We define φ a coloring of G as follows:

• If y ∈ V (H) \ ({x} ∪ {wj , rj , sj |1 ≤ j ≤ l}), then φ(y) = ψ(y).

• Let φ(p3) = φ(z) = ψ(z).

• We color q′i for all 2 ≤ i ≤ k since they all have at least one available color each.

• Note that d∗G(p2) = 4, d∗G(q′1) = dG(v1) + 2 ≤ 5 + 2 = 7, and d∗G(rj) = d∗G(sj) = 5 for all
1 ≤ j ≤ l so we can always color them last.

• Hence, it remains to colorNG(u)∪{u}\{z}. Let L(y) be the list of available colors left for a ver-
tex y. Observe that we have |L(u)| ≥ 8−(k−1)−1−2 ≥ 1, |L(x)| ≥ 2 if z = wj0 (since x sees
d∗G(x)− 6 ≤ 6 colored vertices), |L(q1)| ≥ 6 and |L(w1)|, . . . , |L(wl)|, |L(q2)|, . . . , |L(qk)| ≥ 5.
Since there are six uncolored vertices without counting p1, by Observation 2.26, we can color
all of these vertices except p1.

• Finally, we can color p1 since it sees eight colored vertices but it sees φ(p3) = φ(z) twice.

We obtain a valid coloring of G so ρ∗H(vwj) ≤ 6 for all 1 ≤ j ≤ l and ρ∗H(vx) ≤ 6.

2.3 Discharging procedure
In this section, we will define a discharging procedure that contradicts the structural properties

of G (Lemmas 2.12 to 2.38) showing that G does not exist. First, we will give a name to some
special vertices in G.

Definition 2.40 (Small, medium, and large 2-vertex). A 2-vertex v is said to be
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• large if it is adjacent to two 3+-vertices,

• medium if it is adjacent to exactly one 2-vertex,

• small if it is adjacent to two 2-vertices.

Definition 2.41 (Bridge vertices). We call a large 2-vertex, a 1-thread bridge if it has a 3-
neighbor and a 6+-neighbor. We call two adjacent medium 2-vertices, a 2-thread bridge if one has
a 5−-neighbor and the other a 7-neighbor.

Definition 2.42 (Sponsor vertex). Due to Lemma 2.21 and Lemma 2.24, the 3-threads in G form
a forest of stars. We can thus define the root of each tree in the forest as follows:

• If a tree is a star with at least two 3-threads, then the root will be the center of the star.

• If a tree has only one 3-thread, then let sp1p2p3r be such a 3-thread and P = {p1, p2, p3}.
Suppose w.l.o.g. that ρ∗G−P (r) ≥ ρ∗G−P (s). Then, r will be the root (chosen arbitrarily if
ρ∗G−P (r) = ρ∗G−P (s)).

We call a vertex a sponsor if it is a non-root endvertex of a 3-thread. To each sponsor is assigned
the small 2-vertex on the 3-thread connecting it to the root.

Observation 2.43. In Definition 2.42, the root of a star and the root of a matching are chosen
“differently”. However, if we consider a 3-thread belonging to a star, due to Lemma 2.22 and
Lemma 2.23, the center of the star will always have a higher potential than the sponsor endvertex
in the subgraph where we removed the internal 2-vertices of the 3-thread.

Since we have mad(G) ≤ 18
7 , we must have∑

v∈V (G)
(7d(v)− 18) ≤ 0 (2.5)

We assign to each vertex v the charge µ(v) = 7d(v)− 18. To prove the non-existence of G, we
will redistribute the charges preserving their sum and obtaining a positive total charge, which will
contradict Equation (2.5). We will do so via the following discharging rules:

R0 (see Figure 2.16):

(i) Every 3+-vertex gives 2 to each adjacent large 2-neighbor, and 4 to each adjacent
medium 2-neighbor.

(ii) Every sponsor gives 4 to its assigned small 2-neighbor.
(iii) Every 6+-vertex gives 1 to each adjacent 1-thread bridge.
(iv) Every 7-vertex gives 1

2 to each adjacent 2-thread bridge.

R1 (see Figure 2.17):

(i) Every 6+-vertex gives 4 to each adjacent (2,2,0)-neighbor.
(ii) Every 5+-vertex gives 5

2 to each adjacent (2,1,0)-neighbor.
(iii) Every 4+-vertex gives 1 to each adjacent (1,1,0)-neighbor and 1

2 to each adjacent
(2,0,0)-neighbor.

(iv) Every 1-thread bridge gives 1 to its 3-neighbor.

R2 (see Figure 2.18):
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(i) Every 5+-vertex gives 1
2 to each (2,2,2,0)-neighbor.

(ii) Every 2-thread bridge gives 1
2 to its 5−-neighbor.

3+3+

73+

66

77

22

44

44

44

(i)

7

sponsor

7

root 4

(ii) sponsor case.

36+
1

(iii) 1-thread bridge case.

5−7

1
2

(iv) 2-thread bridge case.

Hình 2.16: R0.
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(i) (2, 2, 0) case.
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(ii) (2, 1, 0) case.
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3+

3+

4+

7
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1

1
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(iii) (1, 1, 0) and (2, 0, 0) case.

36+
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1

(iv) 1-thread bridge case.

Hình 2.17: R1.

5+ 7

7
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1
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(i) (2, 2, 2, 0) case.

5−7

1
2

(ii) 2-thread bridge case.

Hình 2.18: R2.
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In the following two subsections, we will first prove that every vertex ends up with a non-
negative charge after the discharging procedure. Thus, by Equation (2.5), every vertex must have
exactly charge 0 which will be proven to be impossible.

Verifying that charges on each vertex are non-negative

Let µ∗ be the assigned charges after the discharging procedure. In what follows, we prove that:

∀v ∈ V (G), µ∗(v) ≥ 0.

Case 1: d(v) = 2.
We have µ(v) = −4. Vertex v receives 4 by R0(i) and R(0ii). Now if v belongs to a 1-thread (resp.
2-thread) bridge, then it also gives 1 (resp. 1

2) to a 3-vertex (resp. 5−-vertex) by R1(iv) (resp.
R2(ii)), but it also receives 1 (resp. 1

2) from R0(iii) (resp. R0(iv)). In all cases, µ∗(v) = 0.

Case 2: d(v) = 3.
Vertex v only gives away charges by R0(i): 4 (resp. 2) in the case of a 2-thread (resp. in the case
of a 1-thread) and receives charges by R1 and R2(ii). Recall µ(v) = 3. By Lemma 2.18, v is not a
(2, 1+, 1+)-vertex. Let us examine all possible configurations for v.

• Suppose that v is a (2, 2, 0)-vertex. Let v1, v2, and u be the two 2-neighbors and 3+-neighbor
of v respectively. Since v1 and v2 satisfy d∗(v1) = d∗(v2) = 5 ≤ ∆, by Observation 2.13,
d∗(v) ≥ 10 and d∗(v) = d(u) + 4, so d(u) ≥ 6. By R1(i), v receives 4 from u. Due to
Lemma 2.16 and by R2(ii), v also receives charge 1

2 twice from incident 2-thread bridges. In
total, we have

µ∗(v) ≥ 3− 4 · 2 + 4 + 2 · 1
2 = 0.

• Suppose that v is a (2, 1, 0)-vertex. Let v1, v2, and u be the two 2-neighbors (where v1
belongs to the 1-thread and v2 belongs to the 2-thread) and the 3+-neighbor of v respectively.
As previously, due to Lemma 2.16 and by R2(ii), v receives 1

2 from the incident 2-thread
bridge. Vertex v2 has d∗(v2) = 5 ≤ ∆. By Observation 2.13, d∗(v) ≥ 9 and d∗(v) = d(u) + 4,
so d(u) ≥ 5. Hence, v receives 5

2 from u by R1(ii). So,

µ∗(v) ≥ 3− 4− 2 + 1
2 + 5

2 = 0.

• Suppose that v is a (2, 0, 0)-vertex. Let u1, u2, and v1 be the two 3+-neighbors and the
2-neighbor of v respectively. Since d∗(v1) = 5 ≤ ∆. By Observation 2.13, d∗(v) ≥ 9 and
d∗(v) = d(u1) + d(u2) + 2, so d(u1) + d(u2) ≥ 7. We can assume w.l.o.g. that d(u1) ≥ 4, thus
v receives 1

2 from u1 by R1(iii). Due to Lemma 2.16 and by R2(ii), v also receives 1
2 from

the incident 2-thread bridge. So,

µ∗(v) ≥ 3− 4 + 1
2 + 1

2 = 0.

• Suppose that v is a (1, 1, 1)-vertex. Let vv′v′′ be a 1-thread incident to v. We have d∗(v) =
6 ≤ ∆. It follows that d∗(v′) ≥ 9 by Observation 2.13 and as d∗(v′) = d(v′′) + 3, we have
d(v′′) ≥ 6, meaning that v′ is a 1-thread bridge. Thus, vertex v gives 2 to each 2-neighbor
by R0(i) and receives 1 from each 2-neighbor by R1(iv). We have

µ∗(v) ≥ 3− 3 · 2 + 3 · 1 = 0.
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• Suppose that v is a (1, 1, 0)-vertex. Let vv1w1 and vv2w2 be the two 1-threads incident to v
and let u be the 3+-neighbor of v.

If d(u) = 3, then d∗(v) = 7 ≤ ∆. By Observation 2.13, d∗(v1) ≥ 9. As d∗(v1) = d(w1) + 3,
we have d(w1) ≥ 6 meaning that v receives 1 from v1 by R1(iv) (and from v2 by symmetry).
Hence,

µ∗(v) ≥ 3− 2 · 2 + 2 · 1 = 1.

If d(u) ≥ 4, then v receives 1 from u by R1(iii). And so,

µ∗(v) ≥ 3− 2 · 2 + 1 = 0.

• Suppose that v is a (1−, 0, 0)-vertex, then at worst, we have

µ∗(v) ≥ 3− 2 = 1.

Case 3: d(v) = 4.
Vertex v may give 4 (resp. 2, 1, 1

2) by R0(i) in the case of a 2-thread (resp. R0(i) in the case of a
1-thread, R1(iii) in the case of a (1,1,0)-neighbor, R1(iii) in the case of a (2,0,0)-neighbor). Recall
µ(v) = 10.

By Lemma 2.18, v is not a (2, 1+, 1+, 1+)-vertex. Hence, v is incident to at most three 2-threads:

• If v is a (2, 2, 2, 0), then let v1, v2, v3 be the 2-neighbors along the three 2-threads and u
the last neighbor. Since d(vi) = 6 ≤ ∆ for all 1 ≤ i ≤ 3, by Observation 2.13, d∗(v) ≥ 11.
Moreover, d∗(v) = d(u) + 6 so d(u) ≥ 5. By R2(i), v receives 1

2 from u. Due to Lemma 2.16
and by R2(ii), v also receives 1

2 from each incident 2-thread bridge. So,

µ∗(v) ≥ 10− 3 · 4 + 1
2 + 3 · 1

2 = 0.

• If v is a (2, 2, 1−, 0), then let v1, v2 be the 2-neighbors along the two 2-threads and u1, u2
the other two neighbors. Since d(v1) = d(v2) = 6 ≤ ∆, by Observation 2.13, d∗(v) ≥ 10.
Moreover, d∗(v) = d(u1) +d(u2) + 4 so d(u1) +d(u2) ≥ 6. Due to Lemma 2.16 and by R2(ii),
v also receives 1

2 from each incident 2-thread bridge.

If d(u1) = 2, then d(u2) ≥ 4. So,

µ∗(v) ≥ 10− 2 · 4− 2 + 2 · 1
2 = 1.

If d(u1) ≥ 3 and d(u2) ≥ 3, then at worst,

µ∗(v) ≥ 10− 2 · 4− 2 · 1 + 2 · 1
2 = 1.

• If v is a (2, 1−, 1−, 0), then at worst

µ∗(v) ≥ 10− 4− 2 · 2− 1 = 1.

• If v is a (1−, 1−, 1−, 1−), then at worst

µ∗(v) ≥ 10− 4 · 2 = 2.
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Case 4: d(v) = 5.
Vertex v may give 4 (resp. 2, 5

2 , 1,
1
2 ,

1
2) by R0(i) in the case of a 2-thread (resp. R0(i) in

the case of a 1-thread, R1(ii), R1(iii) in the case of a (1,1,0)-neighbor, R1(iii) in the case of a
(2,0,0)-neighbor, R2(i)). Recall µ(v) = 17.

If v is a (2, 2, 2, 2, 0+), then let v1, v2, v3, v4 be the 2-neighbors along the four 2-threads and
u the last neighbor. Since d(vi) = 7 ≤ ∆ for all 1 ≤ i ≤ 4, by Observation 2.13, d∗(v) ≥ 12.
Moreover, d∗(v) = d(u) + 8 so d(u) ≥ 4. Finally,

µ∗(v) ≥ 17− 4 · 4− 1
2 = 1

2 .

If v is a (2, 2−, 2−, 1−, 1−), then v may give at most 4, 4, 4, 5
2 ,

5
2 along incident edges ; so

µ∗(v) ≥ 17− 3 · 4− 2 · 5
2 = 0.

If v is a (1−, 1−, 1−, 1−, 1−), then v may give at most 5
2 along each incident edge ; so

µ∗(v) ≥ 17− 5 · 5
2 = 9

2 .

Case 5: d(v) = 6.
Observe that v never gives away more than 4 along any edge. Indeed, it may give 4 (resp. 3, 4,
5
2 , 1,

1
2 ,

1
2) by R0(i) in the case of a 2-thread (resp. R0(i) and R0(iii) in the case of a 1-thread,

R1(i), R1(ii), R1(iii) in the case of a (1,1,0)-neighbor, R1(iii) in the case of a (2,0,0)-neighbor,
R2(i)). Recall that µ(v) = 24. So, at worst we have

µ∗(v) ≥ 24− 6 · 4 = 0.

Case 6: d(v) = 7.
Observe that every rule except for R1(iv) and R2(ii) may apply to v and recall that µ(v) = 31.
Observe that, when v is not a sponsor, the largest amount of charge that v can send away along
an edge is 9

2 which only happens in the case of a 2-thread bridge by R0(i) and R0(iv).

• Suppose that v is not incident to a 3-thread. The case where v is incident to seven 2-thread
bridges is impossible due to Lemma 2.19. It follows that,

µ∗(v) ≥ 31− 6 · 9
2 − 4 = 0.

• Suppose that v is incident to a 3-thread, then:

– Suppose that v is not a sponsor. Then, v gives only 4 to a medium 2-neighbor on a
3-thread and nothing to the small 2-neighbor at distance 2. Due to Lemma 2.19, v
cannot be also incident to six 2-thread bridges. So, at worst, we have

µ∗(v) ≥ 31− 4− 5 · 9
2 − 4 = 1

2 .

– Suppose that v is a sponsor. Then, by definition, v is incident to a unique 3-thread. So,
v gives 4 to its medium 2-neighbor and 4 to its small 2-neighbor at distance 2, which is
a total of 8 that v sends away along the 3-thread.
Suppose that v is not incident to any 2-thread bridge. Observe that v gives 4 to a
neighbor only by R0(i) in the case of a 2-thread and R1(i) in the case of a (2, 2, 0)-
neighbor. By Observation 2.43 and Lemma 2.31, a sponsor has a neighbor different
from a (2, 2, 0)-vertex, a 2-vertex on a 2-thread and a 2-vertex on a 3-thread. In other
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words, v gives less than 4 to a vertex, which is at most 3 (by R0(i) and R0(iii) in the
case of a 1-thread bridge and less than 3 in the other cases). Thus, at worst, we have

µ∗(v) ≥ 31− 8− 3− 5 · 4 = 0.

Suppose that v is incident to a 2-thread bridge. Vertex v is incident to at most two
2-thread bridges due to Observation 2.43 and Lemma 2.29 (v gives away 9

2 along each
of these 2-thread bridges). Due to Observation 2.43 and Lemma 2.31, at least one of v’s
neighbors is not a 2-vertex belonging to a 2-thread or a 3-thread, nor a (2, 2, 0)-vertex.
So v gives less than 4 to at least one neighbor.
If v gives less than 4 to two neighbors, then we have

µ∗(v) ≥ 31− 8− 2 · 9
2 − 2 · 3− 2 · 4 = 0.

So v gives less than 4 to exactly one neighbor. If that amount is at most 2, then at
worst, we have

µ∗(v) ≥ 31− 8− 2 · 9
2 − 2− 3 · 4 = 0.

So that amount must be more than 2, so it must be 5
2 by R1(ii) in the case of a

(2, 1, 0)-neighbor, or 3 by R0(i) and R0(iii) in the case of a 1-thread bridge. Both of
these cases cannot occur by Lemma 2.38.

Proving the non-existence of G.

In the previous subsection, we have proven that every vertex has a non-negative amount of
charge after the discharging procedure. Since the discharging rules preserve the total amount of
charge and the total is non-positive by Equation (2.5), every vertex must have exactly charge 0.
Consequently, we have the following:

• There are no 3-threads since the endvertex of a 3-thread that is not a sponsor always has at
least charge 1

2 due to Case 6.

• There are no 7-vertices. Indeed, since there are no 3-threads, a 7-vertex v, with final charge
0, must be incident to six 2-thread bridges (where v gives away 9

2 along each thread) and be
adjacent to a (2, 2, 0)-vertex or a 2-vertex belonging to a 2-thread (where v gives 4 in each
case). The former is impossible due to Lemma 2.19. In the latter, the endvertex u of the
2-thread, which is not a bridge, must be a 7-vertex by Lemma 2.19. Since u also has charge
0, u must also be incident to six 2-thread bridges, which is not possible due to Lemma 2.27.

• There are no 4-vertices or 5-vertices. Indeed, since there are no 7-vertices, due to Lemma 2.16,
a 4-vertex or 5-vertex cannot be incident to a 2-thread. So by Case 3 and Case 4, they
always have at least charge 2.

• There are no 6-vertices. Indeed, by Case 5, a 6-vertex, with final charge 0, must give 4
to each of its neighbors. In other words, its neighbors must be (2, 2, 0)-vertices (which is
impossible by Lemma 2.16 and the fact that we have no 7-vertices) or 2-vertices belonging
to 2-threads (where the other endvertices are 6-vertices for the same reason). However, by
Lemma 2.20, we cannot have a 6-vertex that is incident to six 2-threads with 6-endvertices.

• There are no 3-vertices. Indeed, if we take a closer look at Case 2, we can observe the
following:

– There are no 3-vertices incident to a 2-thread by Lemma 2.16 and the fact that we
have no 7-vertices.
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– There are no (1, 1, 1)-vertices since the other endvertices of the 1-threads are 6+-vertices
and we have no 6+-vertices.

– There are no (1, 1, 0)-vertices. Indeed, the 3+-neighbor must be a 3-vertex since there
are no 4+-vertices, and as a result, the (1, 1, 0)-vertex has at least charge 1 left.

– There are no (1−, 0, 0)-vertices since they always have at least charge 1 left.

Finally, G has only 2-vertices so G must be a cycle which is 2-distance 8-colorable. That completes
the proof of Theorem 2.6.



Chương 3

Computer assisted discharging
procedures

One of the limits of the discharging method is achieved when one needs to consider a large
amount of case distinctions in a proof. This happens essentially for two main reasons: the coloring
of a configuration involves a complicated case analysis, or the set of reducible configurations
needed in the proof is too large. Using computer assistance seems to be the most natural way to
overcome this hurdle.

The most famous example of computer assistance in the discharging procedure is the proof of
the Four Color Theorem. Showing that a configuration is reducible is very dependent on the type
of coloring. On the other hand, generating a set of unavoidable configurations is more dependent
on the class of graphs. In this chapter, we present an algorithm that, given a particular set of
discharging rules, generates all to-be-reduced configurations for planar graphs. We implemented
this algorithm and applied it to show the following theorem. The source code can be found at
https://gite.lirmm.fr/discharging/planar-graphs.

Theorem 3.1. Let G be a planar subcubic graph with girth g ≥ 8. Then χ2(G) ≤ 6.

We wish to highlight that, even though a large part of this chapter deals with the technicality
of this particular problem, our algorithm is independent from the coloring problem. Indeed, we
propose an efficient encoding of local structures of planar graphs with respect to a discharging
procedure. Using this encoding we show how to filter out the “problematic” configurations in
order to obtain a proof. We first show how to use these ideas in the case of 2-distance coloring
(see Section 3.3.2) and then give the general idea of how to use our algorithm and computer
program for other problems (see Section 3.4).

The main idea of the proof is to use a charge distribution that concentrates the charges on
vertices and the only faces with negative charge are of length 8. With the assistance of a computer
program, we list each possible close neighbourhoods around a face of length 8. For each of these
neighborhoods, our algorithm shows that either it contains a reducible configuration or it can get
enough charge from its incident vertices (Section 3.3.2).

In this chapter, we always consider a 2-distance 6-coloring. Thus, for a vertex v, we denote
L(v) the set of available colors from {a, b, c, d, e, f}. We also use Hall’s Theorem (Observation 2.26)
very often.

3.1 Useful observations and lemmas

Before diving into the proof of Theorem 3.1, we show some colorable and non-colorable config-
urations, that is graphs together with lists of available colors for each vertex. These observations
will be extensively used in Section 3.2.

46
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For this section, a vertex v will be labeled with its name. Additionally, when a lower bound on
|L(v)| is known, it will be depicted on the figure. For example, the graph depicted in Figure 3.1i
is a path v1v2v3v4 with the following size of lists of available colors: |L(v1)| ≥ 2, |L(v2)| ≥ 3,
|L(v3)| ≥ 2, |L(v4)| ≥ 2.

Lemma 3.2. The graphs depicted in Figures 3.1i to 3.1xv are 2-distance colorable.

Chứng minh. In the proofs of this section, whenever the size of a list |L(v)| ≥ k we assume that
|L(v)| = k by arbitrarily removing the extra colors from the list. One can easily observe that these
proofs will hold for the case when |L(v)| > k.

We will give the proofs for each figure in order:
Proof of Figure 3.1i. If v1 and v4 can be colored with the same color, then finish by coloring v3,
v2 in this order. Otherwise, since L(v1) ∩ L(v4) = ∅ we have |L(v1) ∪ L(v4)| ≥ 4, so one can apply
Hall’s Theorem.

(�)

Proof of Figure 3.1ii. If L(v4) 6= L(v5), then color v5 with x /∈ L(v4) and get Figure 3.1i, so we are
done. Otherwise, color v3 with a color y /∈ L(v5)∪L(v4). Then color v1, v2, v4, v5, in this order. (�)

Proof of Figure 3.1iii. If L(v1) 6= L(v3), then color v1 with x /∈ L(v3) and get Figure 3.1ii.
Otherwise, color v2 with a color y /∈ L(v3) ∪ L(v1), then color v3, v4, v5, v6 using Figure 3.1i and
finish by coloring vertex v1. (�)

Proof of Figure 3.1iv. Observe that L(v3) = L(v4) because if not we color v4 with x /∈ L(v3) and
we get Figure 3.1i. Thus color v′3 with y /∈ L(v3) and get Figure 3.1i again. (�)

Proof of Figure 3.1v. If L(v2) 6= L(v4), then one could color v4 with x /∈ L(v2), then by Figure 3.1i
we are done. Otherwise, since |L(v′3)| ≥ 3, color v′3 with a color y /∈ L(v4) ∪ L(v2). Then again by
Figure 3.1i we are done. (�)

Proof of Figure 3.1vi. Observe that there exists x ∈ L(v′3) \ L(v2). Thus x ∈ L(v4) as otherwise
one could color v′3 with x and get Figure 3.1ii. Hence x ∈ L(v5), as otherwise one could color v4
with x, color vertices v1, v2, v3, v

′
3 by Figure 3.1i and finish by coloring vertex v5. Therefore, we

color v′3 and v5 with x and we get Figure 3.1i. (�)

Proof of Figure 3.1vii. First observe that L(v1) ⊂ L(v′2). Otherwise, we define the following
coloring φ. By coloring v3 with x /∈ L(v1) and coloring v4, v′3 and v2 in this order, if we cannot
finish the coloring, then both v1 and v′2 must have the same remaining color y. Moreover, it means
L(v1) = {y, φ(v2)} ⊂ L(v′2) = {y, φ(v2), x} while L(v1) 6⊂ L(v′2).

Now, suppose L(v3) 6= L(v′2) and color vertex v3 with y /∈ L(v′2) ⊃ L(v1). Then color v4, v′3, v2,
v1, v′2 in this order. Therefore L(v3) = L(v′2) ⊃ L(v1) and we color v2 with z /∈ L(v3) and finish
by coloring v4, v′3, v3, v1, v′2 in this order. (�)

Proof of Figure 3.1viii. First note that L(v4) = L(v5) as otherwise by coloring v5 with x /∈ L(v4)
we get Figure 3.1vii. If L(v5) ⊂ L(v′3), then we color vertex v3 with y /∈ L(v′3) and v1, v′2, v2, v4, v5,
v′3 in this order. We conclude that |L(v′3) \ L(v5)| ≥ 2. Thus by replacing L(v′3) with L(v′3) \ L(v5)
and L(v3) with L(v3) \ L(v5), we can color vertices v1, v2, v′2, v3, v′3 by Figure 3.1v and finish by
coloring vertices v4 and v5. (�)

Proof of Figure 3.1ix. Suppose L(v2) 6= L(v′3). Then restrict the list of colors of v3 to L(v3)\L(v1),
color vertices v3, v4, v′4, v5, and v6 by Figure 3.1v and finish by coloring v′3, v2, and v1 in this
order. Therefore, we have L(v2) = L(v′3). Now, if L(v5) 6= L(v6), then we color vertex v4 with
x /∈ L(v′3), color v5 and v6 (because theirs lists are different) and finish by coloring v′4, v3, v1, v2,
and v′3 in this order. Thus we have L(v5) = L(v6). Color vertex v3 with y /∈ L(v2) = L(v′3). If
y ∈ L(v6), then color vertex v6 with y and finish by coloring v5, v′4, v4, v1, v2, v′3 in this order. If
y /∈ L(v6) = L(v5), then color v′4, v4, v5, v6 by Figure 3.1i and finish by coloring v1, v2, v′3 in this
order. (�)
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v1 v2 v3 v4

2 3 2 2
(i)

v1 v2 v3 v4 v5

2 3 3 2 2
(ii)

v1 v2 v3 v4 v5 v6

2 3 2 3 3 2
(iii)

v1 v2 v3 v4

2 4 2

v′3

3

2

(iv)

v1 v2 v3 v4

2 2 4

v′3

3

2

(v)

v1 v2 v3 v4 v5

2 2 4

v′3

3

3 2

(vi)

v1 v2 v3 v4

2 4

v′2

3

3

v′3

3

2

(vii)

v1 v2 v3 v4 v5

2 4

v′2

3

4

v′3

3

2 2

(viii)

v1 v2 v3 v4 v5 v6

2 3 4

v′3

3

4

v′4

3

2 2

(ix)

v1 v2 v3 v4 v5

2 3 5

v′32

v′′3

2

4

v′4

3

2

(x)

v1 v2 v3 v4 v5 v6

2 2 5 4

v′4

2

2 2
(xi)

v1 v2 v3 v4 v5 v6

2 2 4 4

v′4

3

2 2
(xii)

v1 v2 v3 v4 v5 v6

2 2 3 4 2 2
(xiii)

v1 v2 v3 v4 v5 v6 v7

2 2 3 3 3 3 2
(xiv)

v1 v2 v3 v4 v5 v6 v7

2 2 4 3 3 2 2
(xv)

v1 v2 v3 v4 v5 v6

2 4 6 4 2 2

v′2
3

v′4
3

v′34

v′′32 v′′′33

(xvi)

Hình 3.1: Useful 2-distance colorable configurations (Lemma 3.2).
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Proof of Figure 3.1x. If L(v1) 6⊂ L(v2), then by coloring v1 with y /∈ L(v2) we get Figure 3.1viii.
Hence, we have w.l.o.g. L(v1) = {a, b} and L(v2) = {a, b, c}.

If L(v2) 6⊂ L(v3), then we restrict L(v3) to L(v3) \ L(v2). Observe that |L(v3) \ L(v2)| ≥ 3.
Now, we look at the two following cases:

• When L(v′3) = L(v′′3), we color v3 with x /∈ L(v′3) and then v5, v′4, v4, v′3, v′′3 , v2, v1 in this
order.

• When L(v′3) 6= L(v′′3), we color v′′3 with y /∈ L(v′3) and we obtain Figure 3.1v. We color v2
and v1 last.

So, L(v2) ⊂ L(v3). We can thus assume w.l.o.g. that L(v3) = {a, b, c, d, e}.
If d /∈ L(v′3) ∪ L(v′′3), then we color v3 with d, then v5, v′4, v4, v′3, v′′3 , v2, v1 in this order. The

same holds for e. So, we must have {d, e} ⊆ L(v′3) ∪ L(v′′3).
If L(v′3) = L(v′′3), then due to the previous observation, L(v′3) = L(v′′3) = {d, e}. In this case,

we color v3 with c, then v5, v′4, v4, v′3, v′′3 , v2, v1 in this order. As a result, L(v′3) 6= L(v′′3).
If L(v′3) ⊂ L(v2), then we must have L(v′′3) = {d, e}. We then color v3 with d, then v′′3 , v5, v′4,

v4, v′3, v2, v1 in this order.
If L(v′3) 6⊂ L(v3), then f ∈ L(v′3). We color v′3 with f , then v′′3 and v5. We can then finish

coloring v1, v2, v3, v4, v′4 by Figure 3.1ii. We can thus assume w.l.o.g that d ∈ L(v′3).
If c /∈ L(v′3), then we color v2 with c, v4 with x ∈ L(v4) \L(v′3), and v5, v′4, v3, v1 in this order.

We can finish by coloring v′3 and v′′3 since L(v′3) 6= L(v′′3). So, c ∈ L(v′3).
To summarize the previous observations, we have L(v1) = {a, b}, L(v2) = {a, b, c}, L(v3) =

{a, b, c, d, e}, L(v′3) = {c, d} and e ∈ L(v′′3). We color v′′3 with e. We restrict L(v3) to {c, d}. We
color v′3, v3, v4, v′4, v5 by Figure 3.1v. Finally, we finish by coloring v2 and v1 in this order. (�)

Proof of Figure 3.1xi. If L(v2) 6= L(v1), then color v2 with x /∈ L(v1), color vertices v′4, v4, v5, v6
by Figure 3.1i and finish with v3 and v1. If L(v2) = L(v1), then by restricting the list of colors of
v3 to L(v3) \L(v2), we color vertices v3, v4, v′4, v5, v6 by Figure 3.1v and finish with v2 and v1. (�)

Proof of Figure 3.1xii. Observe that L(v1) = L(v2) since otherwise one could color v1 with
x /∈ L(v2) and get Figure 3.1vi. Therefore, we restrict the list of colors of v3 to L(v3) \ L(v2). We
color then v3, v4, v′4, v5, v6 by Figure 3.1v and finish with v2 and v1. (�)

Proof of Figure 3.1xiii. If L(v5) 6= L(v6), then by coloring v6 with x /∈ L(v5), one could finish by
Figure 3.1ii. Thus L(v5) = L(v6) and we restrict the list of colors of v4 to L(v4) \ L(v5), color
vertices v1, v2, v3, v4 by Figure 3.1i and finish with v5 and v6. (�)

Proof of Figure 3.1xiv. Observe that L(v1) = L(v2) as otherwise by coloring v2 with x /∈ L(v1),
one could color v3, v4, v5, v6, v7 by Figure 3.1ii and finish by coloring v1. Therefore, color v3 with
y /∈ L(v2) ∪ L(v1), color v4, v5, v6, v7 by Figure 3.1i and finish by coloring v2, v1 in this order. (�)

Proof of Figure 3.1xv. Note that L(v6) = L(v7) as otherwise by coloring v7 with x /∈ L(v6) one
could finish by Figure 3.1xiii. Hence color v5 with y /∈ L(v7) ∪ L(v6), then color v1, v2, v3, v4 by
Figure 3.1i and finish with v6, v7. (�)

Proof of Figure 3.1xvi. If it is possible to color v1 and v5 with the same color, then after coloring
v6, we get Figure 3.1x. Hence L(v1)∩L(v5) = ∅. If it is possible to color v5 and v′2 with a common
color, then after coloring v6, we get again Figure 3.1x. Hence L(v′2) ∩ L(v5) = ∅. Symmetrically,
we have L(v′′3) ∩ L(v5) = ∅ and L(v′′′3 ) ∩ L(v5) = ∅.

Now, since we are considering a 6-coloring, we restrict the list of colors of v3 to L(v3) = L(v5)
and color vertices v3, v4, v′4, v5, v6 by Figure 3.1v. We finish by coloring the remaining vertices in
the following order: v1, v2, v′2, v′3, v′′3 , v′′′3 . (�)
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In Figures 3.2 to 3.5 we provide several useful non-colorable configurations. The important
fact is that the non-colorable configurations can force the lists of colors on some vertices.

Lemma 3.3. The graphs depicted in Figure 3.2(i) to Figure 3.5(i) are 2-distance colorable
unless their lists of available colors are exactly as indicated (up to renaming) in Figure 3.2(ii) to
Figure 3.5(ii) respectively.

v1 v2 v3

1 2 2

v1 v2 v3

2 1 2
(i) Initial configurations.

v1 v2 v3

L(v1) ⊆ {a, b} {a, b} {a, b}

v1 v2 v3

{a, b} L(v2) ⊆ {a, b} {a, b}

(ii) Forced lists of colors.

Hình 3.2: A non-colorable graph on 3 vertices.

v2 v3 v4

v1

2

3 3 2

v2 v3 v4

v1

2

3 2 3

(i) Initial configurations.

v2 v3 v4

v1

L(v1) ⊆ {a, b, c}

{a, b, c} L(v3) ⊆ {a, b, c} {a, b, c}

v2 v3 v4

v1

L(v1) ⊆ {a, b, c}

{a, b, c} {a, b, c} L(v4) ⊆ {a, b, c}

(ii) Forced lists of colors.

Hình 3.3: A non-colorable graph on 4 vertices.

v2 v3 v4 v5

v1

2

3 3 2 2
(i) Initial configuration.

v2 v3 v4 v5

v1

L(v1) ⊆ {a, b, c}

{a, b, c} {a, b, c} L(v4) ⊆ {a, b, c}

(ii) Forced lists of colors.

Hình 3.4: A non-colorable graph on 5 vertices.

v1 v2 v3 v4 v5

2 2 4 2 2
(i) Initial configuration.

v1 v2 v3 v4 v5

{a, b} {a, b} {a, b, c, d} {c, d} {c, d}

(ii) Forced lists of colors.

Hình 3.5: A non-colorable graph on 5 vertices.

Proof of Figure 3.2. By Hall’s Theorem, if |L(v1)∪L(v2)∪L(v3)| ≥ 3, then the graph is 2-distance
colorable. Hence the forced lists in Figure 3.2ii follow. (�)
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Proof of Figure 3.3. By Hall’s Theorem, if |L(v1) ∪ L(v2) ∪ L(v3) ∪ L(v4)| ≥ 4, then the graph is
2-distance colorable. Hence the forced lists in Figure 3.3ii follow. (�)

Proof of Figure 3.4. First, observe that if |L(v1)| ≥ 4 or |L(v2)| ≥ 4, we can color the other vertices
by Figure 3.1i and finish with v1 or v2 respectively. If L(v4) ≥ 4, then we obtain Figure 3.1iv.
Similarly, if |L(v3)| ≥ 4, then we obtain Figure 3.1v.

Also note that if |L(v5)| ≥ 3, then either v1, v2, v3, v4 can be colored and we color v5 last. Or
they cannot be colored and by Figure 3.3ii, we have Figure 3.4ii.

We will show that if v1, v2, v3, v4 are colorable, then the whole configuration is colorable (v5
included). Thus, they cannot be colored and by Figure 3.3 (since all four vertices see each other at
distance two), we obtain Figure 3.4ii.

So, let us assume that v1, v2, v3, v4 are colorable, in which case, |L(v1)∪L(v2)∪L(v3)∪L(v4)| ≥ 4
and |L(v5)| = 2.

If L(v5) ⊆ L(v4), then we restrict L(v3) to L(v3) \ L(v5) and observe that |L(v1) ∪ L(v2) ∪
(L(v3) \L(v5))∪L(v4)| = |L(v1)∪L(v2)∪L(v3)∪L(v4)| ≥ 4 since L(v5) ⊆ L(v4). So, we can color
v1, v2, v3, v4 and finish by coloring v5.

If L(v5) 6⊆ L(v4), then we restrict L(v4) to L(v4) \ L(v5). If |L(v1) ∪ L(v2) ∪ L(v3) ∪ (L(v4) \
L(v5))| ≥ 4, then we can color v1, v2, v3, v4 and finish with v5. Thus, |L(v1)∪L(v2)∪L(v3)∪(L(v4)\
L(v5))| = 3 and we can assume w.l.o.g. that L(v1) ⊆ L(v2) = L(v3) = {a, b, c} and d ∈ L(v4)∩L(v5)
(which exists otherwise L(v4) \ L(v5) = L(v4) and |L(v1) ∪ L(v2) ∪ L(v3) ∪ (L(v4) \ L(v5))| =
|L(v1)∪L(v2)∪L(v3)∪L(v4)| ≥ 4). Now, it suffices to color v4 with d, then color v5, v1, v3, v2 in
this order. (�)

Proof of Figure 3.5. First, observe that if |L(v1)| ≥ 3, then we can color the other vertices by
Figure 3.1i and color v1 last. If |L(v2)| ≥ 3, then we obtain Figure 3.1ii. Symmetrically, the same
holds for L(v4) and L(v5). If |L(v3)| ≥ 5, we can color v1, v2, v4, v5, v3 in this order.

Now, let us try to color the configuration. If L(v1) 6= L(v2), then color v1 with a /∈ L(v2) and
get Figure 3.1i. Therefore we have L(v1) = L(v2) and symmetrically L(v4) = L(v5). Finally, if
L(v1) ∪ L(v5) 6= L(v3), then one could color v3 with b /∈ L(v1) ∪ L(v5) and finish by coloring v1,
v2, v4, v5 in this order. Hence the lists in Figure 3.5ii follow. (�)

Lemma 3.4. If there exists a coloring φ of the configuration from Figure 3.5i where φ(v1) 6= φ(v5),
then there exists a coloring φ′ such that φ(v1) 6= φ′(v1) or φ(v5) 6= φ′(v5).

Chứng minh. Suppose that the configuration from Figure 3.5i is colorable with φ where φ(v1) = a,
φ(v5) = b and a 6= b. Suppose by contradiction that for every coloring φ′ of Figure 3.5i, φ′(v1) = a
and φ′(v5) = b.

Let L(v1) = {a, x}. We color v1 with x. Since there exist no valid colorings φ′ where φ′(v1) = x,
the remaining configuration must not be colorable. So x ∈ L(v2), otherwise, we can color v2, v3,
v4, v5 by Figure 3.1i. Let L(v2) = {x, y}. Moreover, x, y ∈ L(v3). Otherwise, we color v1 with x,
v2 with y and finish by coloring v4, v5, v3 in this order.

Symmetrically, the same holds for v5. Let L(v5) = {b, x′}, then we must have L(v4) = {x′, y′}
and x′, y′ ∈ L(v3).

Observe that when we color v1 with x and v2 with y, the remaining configuration is not
colorable so by Figure 3.2, the remaining list of colors for v3 must be the same as L(v5), thus
L(v3) = {x, y, b, x′}. Symmetrically, if instead we color v5 with x′ and v4 with y′, then the remaining
list of colors for v3 must be the same as L(v5), thus L(v3) = {x′, y′, a, x}. We conclude that
{x, x′, b, y} = {x, x′, a, y′}. In other words, a = y and b = y′. Thus, we have L(v1) = L(v2) = {a, x},
L(v4) = L(v5) = {b, x′} and L(v3) = {a, x, b, x′}. By Figure 3.5, we know that this configuration
is not colorable, which is a contradiction as there exists a valid coloring φ.
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3.2 Structural properties of a minimal counterexample
Let G be a counterexample to Theorem 3.1 with the minimum number of vertices, namely

a planar subcubic graph with g(G) ≥ 8 and χ2(G) ≥ 7. For this and the following sections, the
degree of a vertex will always be represented exactly in the figures so every vertex will be labeled
with their name instead of being black or white.

First, G clearly verifies the following properties.

Lemma 3.5. Graph G is connected.

Lemma 3.6. δ(G) ≥ 2.

Lemma 3.7. Graph G has no k-threads with k ≥ 2.

Chứng minh. Assume by contradiction that G has a k-thread with k ≥ 2. We remove the 2-vertices
of this thread and color the resulting graph. One can easily see that such coloring is greedily
extendable to the removed 2-vertices.

In order to simplify the reading of this chapter later on, the figures of the reducible configurations
contain captions that will be explained later in Section 3.3.2.

In each of the reducible configurations, we define S as the set of all vertices labeled vi, v′i,
v′′i or v′′′i , where i is a positive integer. In order to prove the reducibility of S we consider a
2-distance coloring φ of G−S (by induction hypothesis) and show how to extend φ to G leading to
a contradiction. In each figure, the number drawn next to a vertex of S in the figure corresponds
to the number of available colors in the precoloring extension of G− S.

Since G has girth g ≥ 8, one can easily observe that G[S]2 = G2[S] for each configuration in
Figure 3.6. In other words, there are no extra conflicts between vertices in S than the conflicts in
G[S]. Unlike the configurations of Figure 3.6, in those of Figure 3.8, some pair of vertices may
see each other in G while they are at distance at least 3 in the subgraph induced by S, that is
sometimes G[S]2 6= G2[S].

Lemma 3.8. Graph G does not contain the configurations depicted in Figure 3.6.

Chứng minh. We will give the proofs for each figure in order:
Proof of Figure 3.6i. Color arbitrarily vertex v′2 and then get Figure 3.1ii. (�)

Proof of Figure 3.6ii. Direct implication of Figure 3.1viii. (�)

Proof of Figure 3.6iii. Direct implication of Figure 3.1vii. (�)

Proof of Figure 3.6iv. To prove this configuration, we redefine the set S to be {v1, v2, v3}. Consider
a 2-distance coloring φ of G− S. If φ is extendable to G, then we are done. Thus the available
colors of vertices in S correspond to Figure 3.2. More precisely, L(v2) ⊆ L(v1) = L(v3) = {a, b}.
Now, uncolor vertices v4, v5, v6, and v′5 and observe that the numbers of available colors of the
non-colored vertices of G are the ones depicted in Figure 3.6iv.

Without loss of generality we may assume that φ(v4) = c and φ(v5) = d. Consequently, after
the uncoloring of vertices v4, v5, v6, and v′5, we have L(v3) = {a, b, c, d} and L(v1) = {a, b}. If
we can choose a color x /∈ {c, d} for v4 and color vertices v5, v6 and v′5, then due to Figure 3.2,
we can finish the coloring of v1, v2, and v3. Observe that when v4 is colored x, the remaining
number of available colors for v′5, v5, and v6 are at least 2 for each vertex. By Figure 3.2), we
know that v′5, v5, and v6 must all have the same two remaining colors {y, z}. Thus, initially,
L(v′5) = L(v5) = L(v6) = {x, y, z} ∈ {a, b, c, d, e, f}. Note that φ(v4) = c /∈ {x, y, z}, otherwise φ
would not be a valid coloring of G− S. Now, we color v4 with c, v5 with a color different from d,
then v′5 and v6. Finally, due to Figure 3.2 we can finish by coloring v1, v2, v3 since the lists of
available colors for v1 and v3 are not the same anymore. (�)

Proof of Figure 3.6v. Direct implication of Figure 3.1xi. (�)
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Proof of Figure 3.6vi. Color v′3 with a color a /∈ L(v′′3), and color v4, v5 in order. Then color
vertices v1, v2, v3, v′2, v′′2 , v′′′2 by Figure 3.1vii and finish by coloring v′′′3 and v′′3 in this order. (�)

Proof of Figure 3.6vii and Figure 3.6viii. Direct implication of Figure 3.1xvi for Figure 3.6viii.
As for Figure 3.6vii, it suffices to see that by adding an imaginary vertex v6 adjacent to v5 with
any list of colors that verifies |L(v6)| ≥ 2, Figure 3.1xvi gives us a valid coloring for vertices of
Figure 3.6vii. (�)

v1 v2 v3 v4 v5

3 4 5 2 2

v′23

(i) 1c1a1, 1c1c.

v1 v2 v3 v4 v5

3 4 4

v′33

2 2

v′23

(ii) 1c0c0a1, 1c0c0c, 1a0b1, 1b0c.

v1 v2 v3 v4

3 4 4

v′33

3

v′23

(iii) 1c0c1, 1b1.

v1 v2 v3 v4 v5 v6

2 2 4 3 3 3

v′53

(iv) 1a1a0c1, c1a0c1, 1a1b, c1b.

v1 v2 v3 v4 v5 v6

2 2 5 4 2 2

v′43

(v) 1a1c0a1, c1c0a1, 1a1c0c, c1c0c.

v1 v2 v3 v4 v5

3 5 5 2 2

v′2
4

v′′23

v′′′2
3

v′34

v′′33

v′′′3
3

(vi) 1b0b0a1, 1b0b0c, 1c0c0b0a1,
1c0c0b0c.

v1 v2 v3 v4 v5

3 4 6 4 3

v′2
3

v′4
3

v′34

v′′33 v′′′33

(vii) 1c0b0c1.

v1 v2 v3 v4 v5 v6

3 4 6 4 2 2

v′2
3

v′4
3

v′34

v′′33 v′′′33

(viii) 1c0b0c0a1, 1c0b0c0c.

Hình 3.6: Reducible configurations in Lemma 3.8.

Lemma 3.9. Graph G does not contain the configurations depicted in Figure 3.7.

Chứng minh.
Proof of Figure 3.7i. Here, we redefine S = {v0, v1, v2, v3, v4}. By Figure 3.5, L(v0) = L(v1) =
{a, b}, L(v3) = L(v4) = {c, d} and L(v2) = {a, b, c, d}. Therefore, we can assume w.l.o.g that v6 is
colored e. Since |L(v0)| = 2, all of the colored vertices that v0 sees must be colored differently.
The same holds for v4. However, it means that v2 does not see the color e, which is impossible
since L(v2) = {a, b, c, d}. (�)

Proof of Figure 3.7ii. Note that G[S]2 = G2[S]. We first prove three important observations.
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• L(v7) 6= L(v′6). Suppose the contrary and color v7, v6, v′6, v5, v′5, v4, v3 by Figure 3.1viii.
Now if v0, v1, and v2 are colorable, then we are done. Thus according to Figure 3.2, we can
assume that L(v1) ⊂ L(v0) = L(v2). But then, since by our assumption L(v7) = L(v′6), we
permute the colors of v′6 and v7 so that L(v0) 6= L(v2) and we are done.

• L(v3) ⊂ L(v2) ⊃ L(v4). If not, then color v3 and v4 such that |L(v2)| ≥ 3. Recall that
L(v7) 6= L(v′6). Hence we color v′5, v5, v6, v′6, v7 by Figure 3.4. We finish by coloring v1, v0,
v2 in this order.

• L(v1) ∩ L(v4) = ∅. By contradiction, suppose a ∈ L(v1) ∩ L(v4). We will show the following
observations.

– a /∈ L(v′6). If a ∈ L(v′6), then we color v1, v4 and v′6 with a. Then, we color v3. After
that, we color v′5, v5, v6, v7 by Figure 3.1i and we finish by coloring v0 and v2 in this
order.

– a ∈ L(v7). If a /∈ L(v7), then we color v1 and v4 with a. Then, we color v3. After
that, we color v′5, v5, v6, v′6, v7 by Figure 3.4 (recall that L(v′6) 6= L(v7)) and finish by
coloring v0 and v2 in this order.

– a ∈ L(v′5). If a /∈ L(v′5), then we color v4 and v7 with a. Then, we color v3. Finally, we
finish by coloring v1, v2, v0, v6, v5, v′6, v′5 in this order.

– |L(v3) \ {a}| = 1. Otherwise, we color v4 and v7 with a. Then, we color v5 in such a
way that v3 has at least 2 colors left. After that, we color v′5, v5, v6, v7 in this order.
Finally, we finish by coloring v3, v2, v1, v0 by Figure 3.1i.

Thus, we color v′5, v3, and v7 with a, then we color the remaining vertices in the following
order: v4, v2, v1, v0, v6, v5, v′6.

Since L(v1) ∩ L(v4) = ∅, we assume w.l.o.g. that L(v4) ⊆ {a, b, c} and L(v1) = {d, e, f}. As
L(v3) ⊂ L(v2) ⊃ L(v4), there exists a color, say d, in L(v1) such that after coloring v1 with d, we
have |L(v2)| ≥ 4 and |L(v3)|, |L(v3)| ≥ 2. In conclusion, we color v1 with d, v7, v6, v′6, v5, v′5, v4,
v3 by Figure 3.1viii and finish by coloring v0 and v2 in this order.

(�)

Proof of Figure 3.7iii. If v′2 sees v′6, then they are at distance exactly 2 and share a common
neighbor, say v8. Then vertices v′6, v8, v′2, v2, v3, v4, v5, v6 correspond to the reducible configuration
of Figure 3.7i.

Therefore, we can assume that G[S]2 = G2[S]. Color v2 with x /∈ L(v′2) and color greedily v1.
Then color vertices v4, v5, v′5, v6, v′6, v7, v0 by Figure 3.1viii and finish by coloring v3 and v′2 in
this order. (�)

Proof of Figure 3.7iv. If v′′5 sees v1 by sharing a common neighbor, say v8, then vertices v′′′5 , v′5,
v′′5 , v8, v1, v2, v0 form the reducible configuration of Figure 3.6iv. The case when v′′′5 sees v1 is
symmetric.

Therefore, we can suppose that G[S]2 = G2[S]. First we show that L(v1)∩L(v7) = ∅. Suppose
the contrary and color v1 and v7 with a same color. Then restrict L(v5) to L(v5) \L(v′′5 ) and color
vertices v6, v5, v4, v′4, v3 by Figure 3.1v. Finish by coloring vertices v′5, v′′′5 , v′′5 , v7, v2, v0 in this
order.

Observe that L(v1) ⊂ L(v0). Therefore, since L(v1) ∩ L(v7) = ∅ and since we are doing a
6-coloring, we conclude that L(v′7) 6⊂ L(v0).

We color v′5 with x /∈ L(v′′5) and v6, v5, v4, v′4, v3 by Figure 3.1iv. Then we color v′′′5 and v′′5
in this order. Observe the remaining uncolored vertices are v′7, v7, v0, v1, and v2. If the lists of
available colors of these vertices, do not correspond to Figure 3.5, then we are done. And it is
indeed the case, since the only colored vertex seen by both v0 and v′7 is v6, and since initially
L(v′7) 6⊂ L(v0). (�)
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Proof of Figure 3.7v. We have G[S]2 = G2[S]. Color vertices v0 and v4 with the same color by
pigeonhole principle and then v3, v1, and v2 in this order. The remaining vertices can be colored
by Figure 3.1x.

(�)

Proof of Figure 3.7vi. If v′3 sees v′7, then they must be at distance exactly 2 since G has girth
8. Say v8 is their common neighbor, then v0, v7, v′7, v8, v′3, v3, v2, and v1 form the reducible
configuration from Figure 3.7i.

Thus, we have G[S]2 = G2[S]. First, observe that |L(v′7)| = |L(v′5)| = |L(v′6)| = 3 and we will
prove the following:

• L(v6) = L(v′7). Otherwise, color v6 differently from L(v′7), then color v1 and v2 in this order.
Color v′5, v5, v4, v3, and v′3 by Figure 3.1xiii. Finish by coloring v7, v0, and v′7 in this order.

• L(v6) = L(v′5). Otherwise, color v6 differently from L(v′5), then color v′7, v7, v0, v1, and v2
by Figure 3.1ii. Finish by coloring v′3, v3, v5, v4, and v′5 in this order.

• L(v1) ∩L(v′7) = ∅. Otherwise, color v1 and v′7 with x ∈ L(v1) ∩L(v′7). Then, color v2 and v6.
Color v′5, v5, v4, v3, and v′3 by Figure 3.1xiii. Finish by coloring v7 and v0 in this order.

Using the equalities above, we have the following. Color v7 differently from L(v6) and L(v′7). Now,
color v1 and v4 with the same color, which is possible since v4 has all six colors available. Observe
that, since L(v1) ∩ L(v′7) = ∅ and L(v′7) = L(v6) = L(v′5), v6 and v5 still have the same amount of
available colors remaining. Finish by coloring v2, v′3, v3, v5, v6, v′5, v0, and v′7 in this order.

(�)

Proof of Figure 3.7vii. Note that G[S]2 = G2[S]. Here, we redefine S = {v0, v1, v
′
1, v2}. Consider

φ a coloring of G − S. Note that if φ is extendable to G, then we have a contradiction. Thus,
L(v0) = L(v1) = L(v′1) = L(v2) = {a, b, c} by Figure 3.3. Now, we uncolor v3, v4, v′4, v5, v6, v′6,
v7 and note that the number of available colors correspond to what is depicted in Figure 3.7vii.
We assume w.l.o.g. that L(v0) = {a, b, c, d, e} where d = φ(v7) and e = φ(v6). Observe that
L(v′6) 6= L(v7), otherwise, we can permute the colors of v′6 and v7 in φ and extend φ to G as L(v0)
would no longer be {a, b, c}. Symmetrically, L(v3) 6= L(v′4).

If d /∈ L(v′6), then we can color v7 with d, v6 with x 6= e, v5, then v3, v4, v′4 by Figure 3.2 since
L(v3) 6= L(v′4), and finish by coloring v′6. As L(v0) 6= {a, b, c}, φ is extendable to G.

Now, d ∈ L(v′6). In which case, there exists y ∈ L(v7) \ L(v′6). So we color v7 with y, v6
with z 6= d, v5, then v3, v4, v′4 and finish by coloring v′6. Finally, φ is extendable to G because
L(v0) 6= {a, b, c}.

(�)

Lemma 3.10. Graph G does not contain the configurations depicted in Figure 3.8.

Chứng minh. Proof of Figure 3.8i. If v1 does not see v7, then the proof is a direct implication of
Figure 3.1xv. If v1 sees v7, then they must be at distance exactly 2 since G has girth at least 8
and therefore |L(v1)| ≥ 3 and |L(v7)| ≥ 3. We color v1 such that v2 has at least 2 colors left. We
then obtain Figure 3.1xiii. (�)

Proof of Figure 3.8ii. If v1 sees v′6, then they must be at distance exactly 2 since G has girth at
least 8. Say v0 is their common neighbor, then v′6, v0, v1, . . . , v6 form the reducible configuration
from Figure 3.7i. If v1 sees v7, then they share a common neighbor v0 and v1, v2, v3, v4, v5, v′5, v6,
v′6, v7, v8, v0 form the reducible configuration from Figure 3.7ii. If v2 sees v8, then they share a
common neighbor v′2 and v8, v′2, v2, v1, v3, v4, v5, v′5, v6, v′6, v7 form the reducible configuration
from Figure 3.7iii.
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v0

v1

v2

v3

v4

v5

v6

v7

2

4

2

22

(i) 1a1a1a0a0a.

v0

v1

v2

v3

v4

v5

v6

v7

4

4
32

2

v′5

3

4

v′6 3

4
3

(ii) 1a1a0a0c0c0a.

v0

v1

v2

v3

v4

v5

v6

v7

4

5 3

v′23

4

3

v′5

3

4

v′6 3

4
3

(iii) 1a0c1a0c0c0a.

v0

v1

v2

v3

v4

v5

v6

v7

5

4
33

v′4

3

4

v′5

v′′5

v′′′5 4

3

3

5
3

v′7
3

4

(iv) 1a1a0c0b0a0c.

v0

v1

v2

v3

v4

v5

v6

v7

5

4
32

2

v′5

3

4

v′6

v′′6v′′′6

4

33

6

v′7
3

5

(v) 1a1a0a0c0b0c.

v0

v1

v2

v3

v4

v5

v6

v7

56

2
2

v′3

3

4

v′5

3

4
3

v′7
3

4

(vi) 1a0a0c1c0a0c.

v0

v1

v2

v3

v4

v5

v6

v7

5

5

v′1
3

53

v′4

3

3

3

v′6 3

3
3

(vii) 1c1a0c0a0c0a.

Hình 3.7: Reducible configuration in Lemma 3.9.

If v1 sees v8, they must be at distance exactly 2 since both are 2-vertices and there are no
2-threads due to Lemma 3.7. Thus, 3 ≤ |L(v1)|, |L(v8)| ≤ 4. If we can color v2 such that v1 has at
least 3 colors left, then we can color v4, v5, v′5, v6, v′6, v7, v8 by Figure 3.1viii and finish by coloring
v3 and v1 in this order. Therefore, |L(v1)| = 3 and L(v2) ⊆ L(v1). We color v3 with x /∈ L(v1).
Then, we color v4, v5, v′5, v6, v′6, v7 by Figure 3.1vii and finish by coloring v8, v2, and v1 in this
order.

Now, G[S]2 = G2[S]. If we can color v2 such that v1 has at least 2 colors left, then we can color
v4, v5, v′5, v6, v′6, v7, v8 by Figure 3.1viii, and finish by coloring v3 and v1 in this order. Therefore,
L(v1) = L(v2) and |L(v1)| = 2. We restrict L(v3) to L(v3) \ L(v1). Then, we color v3, v4, v5, v′5,
v6, v′6, v7, v8 by Figure 3.1ix and finish by coloring v2 and v1 in this order.
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Proof of Figure 3.8iii. If v′′3 sees v7, then they must be at distance exactly 2 since G has girth 8.
Say v8 is their common neighbor, then v′′3 , v′3, v′′′3 , v8, v7, v6, v′6 form the reducible configuration
from Figure 3.8i. Note that the cases when v′′′3 sees v7, or v′′3 sees v′6, or v′′3 sees v7 are symmetric.

Observe that since v1 cannot see both v′6 and v7, we can assume that v1 does not see v′6. Note
that in this case |L(v′6)| = 3. Thus we restrict L(v5) to L(v5) \ L(v′6) and L(v4) to L(v4) \ L(v′′4).
We color vertices v5, v4, v3, v2, v1, v′3, v′′3 , v′′′3 by Figure 3.1x. Then finish by coloring v′5, v′4, v′′′4 ,
v′′4 , v6, v7, v′6 in this order. (�)

v1 v2 v3 v4 v5 v6 v7

2 2 4 3 4 2 2

(i) 1a1a1c, 1a1a1a1, c1a1c.

v1 v2 v3 v4 v5 v6 v7 v8

2 2 4 3 4 4 2 2

v′53 v′63

(ii) c1a0c0c0c.

v1 v2 v3 v4 v5 v6 v7

2 2 5 6 5 4 3

v′3

4
v′′3

3

v′′′33

v′44

v′′43 v′′′43

v′53 v′6 3

(iii) 1a0b0b0c0c1, 1a0b0b0b1, c0b0b0b1, c0b0b0c0c1.

Hình 3.8: Reducible configurations in Lemma 3.10.

Lemma 3.11. Consider the configuration in Figure 3.9. If v3, v4, v5, v6, and v7 are colorable,
but the configuration as a whole is not, then L(v3) = L(v4) = L(v6) = L(v7) = L(v1) \ L(v′1) and
|L(v3)| = 2.

v0

v1

v2

v3

v4

v5

v6

v7

5

5

4

v′1
3

52

2

2
2

Hình 3.9: 1c1a0a1a0a.

Chứng minh. First, observe that we have G[S]2 = G2[S]. We color v3, v4, v5, v6, and v7. Observe
that |L(v0)| = |L(v2)| = |L(v′1)| = 3 and |L(v1)| ≥ 3. So, the remaining vertices are not colorable
if and only if L(v0) = L(v1) = L(v′1) = L(v2) = {a, b, c} w.l.o.g. due to Figure 3.3.

Now, let {d, e} = L(v1) \ L(v′1) and uncolor v3, v4, v5, v6, and v7. Due to our previous
observations, we can assume w.l.o.g. that v3 and v7 must have been colored d and e respectively.
Moreover, due to Lemma 3.4, since we know that v3, v4, v5, v6, and v7 are colorable, there exists
another coloring of these vertices where v3 is not colored d or v7 is not colored e. As v0, v1, v′1,



58 CHƯƠNG 3. COMPUTER ASSISTED DISCHARGING PROCEDURES

and v2 must remain uncolorable, we know that v3 must have been colored e and v7 colored d. So,
we know that {d, e} ⊆ L(v3) and {d, e} ⊆ L(v7). In addition, when v3 was colored d (resp. e), d
(resp. e) must be in L(v2) or we would have had |L(v2)| ≥ 4 after the coloring of v3, v4, v5, v6,
and v7. In other words, L(v2) = {a, b, c, d, e}. Symmetrically, the same holds for L(v0). Knowing
that L(v2) = {a, b, c, d, e}, when v3 was colored d (resp. e), v4 must have been colored e (resp. d).
So we get {d, e} ⊆ L(v4). Similarly, the same holds for L(v6). Finally, if any of v3, v4, v6, or v7 has
another available color x /∈ {d, e}, we could have colored that vertex with x, and finish coloring
the rest of the configuration due to Figure 3.5 and Figure 3.3, which is impossible. Consequently,
we have L(v3) = L(v4) = L(v6) = L(v7) = L(v1) \ L(v′1) = {d, e}.

Lemma 3.12. The configurations in Figure 3.10 are colorable.

v0

v1

v2

v3

v4

v5

v6

v7

5

5

6

v′1
3

53

4

4
3

v′4

3

v′′4u′′4

3

4

v8

u8
3

5

v′′6

u′′6 3

4 v′6
3

(i)

v0

v1

v2

v3

v4

v5

v6

v7

5

5

6

v′1
3

53

4

4
3

v′4

2

v′′4 2

v8

4

v′′6

2 v′6
2

(ii)

v0

v1

v2

v3

v4

v5

v6

v7

5

5

5

v′1
3

53

4

2
2

v′4

v′′4 2
2

(iii)

Hình 3.10: Reducible configurations in Lemma 3.12.

Chứng minh. The outline of each proof uses the same conventions as before.
Proof of Figure 3.10i. If v′1 = u8, then |L(v′1)| = |L(v8)| = |L(v1)| = 6. Now, consider the two
following cases:

• If there exists x ∈ L(v3) ∩ L(v7), then color v3 and v7 with x. Color v′′6 such that u′′6 still
has 3 colors remaining, then v′6 and v6 in this order. Color v4, v′4, v′′4 , and u′′4 by Figure 3.1i.
Finish by coloring v5, v8, u′′6, v′1 (= u8), v0, v2, and v1 in this order.
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• If L(v3) ∩ L(v7) = ∅, then we show the following. Suppose that there exists a coloring φ of
v′4, v′′4 , u′′4, v8, v′6, v′′6 , and u′′6 such that v3, v4, v5, v6, and v7 are colorable afterwards. Then,
we obtain the configuration from Lemma 3.11 where v3, v4, v5, v6, and v7 are colorable but
L(v3) ∩ L(v7) = ∅. Thus, we can finish the coloring.
Now, we show the existence of φ. We can start by coloring v′′4 such that u′′4 still has 3 colors
remaining. Similarly, color v6 such that v7 still has 3 colors remaining. Then, we can color
v′4, v4, v3, v5, v′6, v7, v′′6 , u′′6, v8, and u′′4 in this order. This coloring restricted to v′4, v′′4 , u′′4,
v8, v′6, v′′6 , and u′′6 gives us φ such that v3, v4, v5, v6, and v7 are colorable afterwards.

Now, v′1 6= u8. Observe that v′1 might see u′′4 and if it does, then they must be at distance
exactly 2 since G has no 2+-threads due to Lemma 3.7. Symmetrically, the same holds if v′1 sees
u′′6. The following colorings will still work when v′1 sees u′′4 or u′′6.

Consider the two following cases:

• If |L(v3) ∩ L(v7)| ≥ 2, say {d, e} ⊂ L(v3) ∩ L(v7), then let x ∈ L(v3) \ {d, e}. We restrict
L(v′4) to L(v′4) \ {x} and we color v′6 differently from {d, e}. Color v′4, v′′4 , u′′4, v8, u8, v′′6 , and
u′′6 by Figure 3.1viii.
Observe that we obtain the configuration from Figure 3.7vii where v3, v4, v5, v6, and v7
are colorable by Figure 3.5 since L(v3) and L(v7) will have at least one color in common.
Moreover, we will have either L(v7) = {d, e} and x ∈ L(v3) \ {d, e}, or |L(v7)| ≥ 3, both of
which means that the remaining configuration is colorable by Lemma 3.11.

• If |L(v3) ∩ L(v7)| ≤ 1, then we show the following. Suppose that there exists a coloring φ
of v′4, v′′4 , u′′4, v8, u8, v′6, v′′6 , and u′′6 such that v3, v4, v5, v6, and v7 are colorable afterwards.
Then, we obtain the configuration from Lemma 3.11 where v3, v4, v5, v6, and v7 are colorable
but |L(v3) ∩ L(v7)| ≤ 1. Thus, we can finish the coloring.
Now, we show the existence of φ. We can start by coloring v′′4 such that u′′4 still has 3 colors
remaining. Similarly, color v6 such that v7 still has 3 colors remaining. Then, color v′6. Color
u′′6, v′′6 , v8, and u8 by Figure 3.1i. Finish by coloring v′4, u′′4, v4, v3, v5, and v7 in this order.
This coloring restricted to v′4, v′′4 , u′′4, v8, u8, v′6, v′′6 , and u′′6 gives us φ such that v3, v4, v5,
v6, and v7 are colorable afterwards.

(�)

Proof of Figure 3.10ii. If v′1 sees v′′4 , then they must be at distance exactly 2 since G has girth 8.
Say v is their common neighbor, then v′1, v1, v0, v2, v3, v4, v5, v′4, v′′4 , and v form the reducible
configuration from Figure 3.7vii. Symmetrically, the same holds if v′1 sees v′′6 .

So we have G[S]2 = G2[S].
We redefine S = {v0, v1, v

′
1, v2} and let φ be the coloring of the rest of the graph. Now we

uncolor the rest of the configuration and we have the corresponding list of colors as in Figure 3.10ii.
After coloring v′4, v′′4 , v8, v′′6 , and v′6 with φ, the remaining colors for v3, v4, v6, v7 must

be the same two colors, say {d, e} (determined by L(v1) \ L(v′1)), or the whole configuration
would be colorable by Lemma 3.11. We can also deduce that L(v3) = {d, e, φ(v′4)}. Similarly,
L(v7) = {d, e, φ(v′6)}. Now, thanks to Lemma 3.4, we know there exists another coloring φ′ of v′4,
v′′4 , v8, v′′6 , and v′6 such that φ′(v′4) 6= φ(v′4) or φ′(v′6) 6= φ(v′6). Say w.l.o.g. that φ′(v′4) 6= φ(v′4). As
a result, v3, v4, v5, v6, and v7 is colorable by Figure 3.5 and L(v3) 6= {d, e} so the configuration is
colorable by Lemma 3.11. (�)

Proof of Figure 3.10iii. If v′1 sees v′′4 , then they must be at distance exactly 2 since G has girth
8. Say v is their common neighbor, then v′′4 , v, v′1, v1, v2, v3, v4, and v′4 form the reducible
configuration from Figure 3.7i.

Now, we have G[S]2 = G2[S].
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We redefine S = {v0, v1, v
′
1, v2} and let φ be the coloring of the rest of the graph. Now we

uncolor v3, v4, v′4, v′′4 , v5, v6, and v7 and we have the corresponding list of colors as in Figure 3.10iii.
Let {d, e} ⊆ L(v6).
If {d, e} ⊆ L(v3), then we color v′4 differently from L(v3) \ {d, e} and color v′′4 . As a result, v3,

v4, v5, v6, and v7 are colorable by Figure 3.5 and L(v3) 6= {d, e} ⊆ L(v6) so the configuration is
colorable by Lemma 3.11.

If {d, e} 6⊆ L(v3), then since v3, v4, v′4, v′′4 , v5, v6, and v7 was colorable with φ, we recolor v′4
and v′′4 with φ(v′4) and φ(v′′4) respectively. Now, observe that v3, v4, v5, v6, and v7 are colorable
but L(v3) 6= L(v6) so the configuration is colorable by Lemma 3.11. (�)

The rest of the configurations along with their proofs can be found in (Lemma 10 of) our
paper [90] that is in the Appendix. It follows the same scheme as Lemma 3.9 and uses Section 3.1
as well as the previous lemmas. There are more than 30 configurations and their proofs are
quite tedious, but do not contribute extra value to what we already know, even though they are
necessary.

Due to the large amount of configurations, we have started out by coloring these configurations
by computer (by testing all precoloring of the set of vertices separating our configuration from the
rest of the graph) but this process was very time consuming. Moreover, there are tricks that can
be done manually (restricting the considered set of vertices in the configurations, uncoloring then
recoloring part of the configuration) that can hardly be replicated by computer. Concretely, it
means that not all precoloring is a possible precoloring of a proper subgraph of G and we cannot
know which precoloring to test, which not to with our naive approach. Thus, we opted to prove
the reducibility of every configuration “manually”.

3.3 Discharging procedure

Charge distribution: Euler’s formula can be rewritten as

∑
v∈V (G)

(7
2d(v)− 9

)
+

∑
f∈F (G)

(d(f)− 9) = −18. (3.1)

We assign to each vertex v the charge µ(v) = 7
2d(v) − 9 and to each face f the charge

µ(f) = d(f)− 9. To prove the non-existence of G, we will redistribute the charges preserving their
sum and obtaining a non-negative total charge, which will contradict Equation (3.1).

To do so, we will divide the discharging procedure into multiple rounds. In the first round, we
will redistribute the charges only between the vertices of G, resulting in a non-negative amount
of charge on each vertex. For the second round, first observe that µ(f) = d(f)− 9 ≥ 0 for every
face f of size at least 9. Therefore, since g(G) ≥ 8 and µ(f) = −1 for every 8-face f , we will
redistribute the remaining charges on each vertex over the non-reducible 8-faces to obtain a
non-negative amount of charge on faces. The third round is there to patch up some remaining
problems surrounding faces that still have a negative charge after the second round. Thus, we
will get a non-negative total of charge, which is a contradiction to Equation (3.1). In our proof,
we have to consider a large number of non-reducible 8-faces. To handle this, we will provide a
computer procedure that checks the remaining charge on each non-reducible 8-face. In order to
define this procedure, we will present an encoding of the 8-faces, the reducible configurations, and
the discharging rules.

3.3.1 First round: vertices to vertices

We define the following discharging rules on the vertices of G :
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R0 A 3-vertex gives 1 to a 2-neighbor.

R1 A 3-vertex gives 1
2 to a (1,1,0)-neighbor.

R2 A 3-vertex gives 1
2 to a (1,1,1)-vertex at distance 2.

We will now calculate the exact amount µ∗(v) of charges that v ends up with after applying
R0, R1, and R2.

Case d(v) = 2: Recall that the initial charge for v is µ(v) = 7
2d(v) − 9 = −2. By Lemma 3.7,

v can only have 3-neighbors. According to the discharging rules, v receives 1 from each of its
neighbor by R0 and does not give any charge away. Thus, v ends up with

µ∗(v) = −2 + 2 · 1 = 0.

Case d(v) = 3: Recall that the initial charge is µ(v) = 7
2d(v)− 9 = 3

2 .

• Suppose v is a (1, 1, 1)-vertex.
Every neighbor of v is a 2-vertex so only R0 and R2 may apply. However, due to Figure 3.6i,
there is no (1, 1, 0+)-vertices at distance 2 from v. So, v does not give away any charge to
distance 2 3-vertices but only receives instead by Lemma 3.7. Thus, by R0 and R2, we have

µ∗(v) = 3
2 − 3 · 1 + 3 · 1

2 = 0.

• Suppose v is a (1, 1, 0)-vertex.
Due to Figure 3.6i, there is no (1, 1, 1)-vertices at distance 2 from v so R2 does not apply.
Due to Figure 3.6iii, v cannot have a (1, 1, 0)-neighbor. So, v does not give away any charge
to 3-vertices but only receive by R1 instead. Thus, by R0 and R1, we have

µ∗(v) = 3
2 − 2 · 1 + 1

2 = 0.

• Suppose v is a (1, 0, 0)-vertex.

– If v has a (1, 1, 0)-neighbor, then v cannot have another (1, 0+, 0)-neighbor due to
Figure 3.6ii. By Figure 3.6iv, v cannot share a common 2-neighbor with a (1, 1, 0+)-
vertex at distance 2 so R2 does not apply. Hence, by R0 and R1, we have

µ∗(v) = 3
2 − 1− 1

2 = 0.

– If v sees a (1, 1, 1)-vertex at distance 2, then v can only see exactly one such vertex. By
Figure 3.6iv, v cannot have (1, 1, 0)-neighbor so R1 does not apply. Thus, by R0 and
R2, we have

µ∗(v) = 3
2 − 1− 1

2 = 0.

– If v does not have a (1, 1, 0)-neighbor and does not see a (1, 1, 1)-vertex at distance 2,
then only R0 applies and we have

µ∗(v) = 3
2 − 1 = 1

2 .

• Suppose v is a (0, 0, 0)-vertex.
Observe that R0 and R2 cannot apply since v does not have any 2-neighbor and cannot see
a (1, 1, 1)-vertex at distance 2. So, only R1 can apply and by Figure 3.6vii, v cannot have
three (1, 1, 0)-neighbors. Consequently,
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– If v has exactly two (1, 1, 0)-neighbors, then we have

µ∗(v) = 3
2 − 2 · 1

2 = 1
2 .

– If v has exactly one (1, 1, 0)-neighbor, then we have

µ∗(v) = 3
2 −

1
2 = 1.

– If v has no (1, 1, 0)-neighbors, then we have

µ∗(v) = 3
2 .

Below, we recapitulate the remaining charges of each type of 3-vertex v (as 2-vertices are at
0) after applying R0, R1, and R2. In Figures 3.11 to 3.17, the 2-vertices will be filled while the
3-vertices will not be.

w1 v

w2

w3

Hình 3.11: (1,1,1).
w1, w2, w3 6= (1, 1, 0+).
µ∗(v) = 0.

u1 v

w2

w3

Hình 3.12: (1,1,0).
u1 6= (1, 1, 0).
w2, w3 6= (1, 1, 1).
µ∗(v) = 0.

w1 v

u2

u3

Hình 3.13: (1,0,0).
w1 6= (1, 1, 1).
u2, u3 6= (1, 1, 0).
µ∗(v) = 1

2 .

w1 v

u2 w′′2

u3

w′2

(i) w1 6= (1, 1, 0+).
u3 6= (1, 0+, 0).

w1 v

u2

u3

w′1

w′′1

(ii) u2, u3 6= (1, 1, 0).

Hình 3.14: (1,0,0).
µ∗(v) = 0.

u1 v

u2

u3

Hình 3.15: (0,0,0).
u1, u2, u3 6= (1, 1, 0).
µ∗(v) = 3

2 .

u1 v

u2 w′′2

u3

w′2

Hình 3.16: (0,0,0).
u1, u3 6= (1, 1, 0).
µ∗(v) = 1.

u1 v

u2 w′′2

u3

w′2

w′′3
w′2

Hình 3.17: (0,0,0).
u1 6= (1, 1, 0).
µ∗(v) = 1

2 .
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v
µ∗(v) 3

2 1 1
2 0

(1,1,1) fig. 3.11
(1,1,0) fig. 3.12
(1,0,0) fig. 3.13 fig. 3.14
(0,0,0) fig. 3.15 fig. 3.16 fig. 3.17

Bảng 3.1: Available amount of charges for each type of 3-vertex after applying R0-R2.

3.3.2 Second round: vertices to faces

Recall that µ∗(v) is the remaining charge of v after applying rules R0-R2. We define the
following discharging rules between the vertices and 8-faces of G:

R3 If a 3-vertex v is not a (1, 0, 0)-vertex, then it gives µ∗(v)
n1

to each incident 8-face, where n1 is
the number of incident 8-faces.

R4 For a (1, 0, 0)-vertex v, let n2 be the number of 8-faces incident to v and to its 2-neighbor.
Vertex v gives µ∗(v)

n2
to each of these n2 8-faces.

Observe that 0 ≤ n1 ≤ 3 and 0 ≤ n2 ≤ 2. Recall that, given a face f , the initial amount
of charge is µ(f) = d(f) − 9. So, all k-faces with k ≥ 9 have a positive charge. Moreover, after
applying R3-R4, every 3-vertex v will have a remaining charge of at least µ∗(v)− ni · µ

∗(v)
ni

= 0
for 1 ≤ i ≤ 2.

As a result, it remains to verify that every 8-face f will receive at least charge 1 so that its
final charge will be µ∗(f) ≥ µ(f)− 9 + 1 = 8− 8 = 0.

To generate every possible 8-face efficiently, we introduce the following encoding of a configu-
ration around an 8-face.

Encoding a face f :

• For every pair of consecutive 3-vertices in clockwise order, count the number of 2-vertices
in between. We obtain a circular sequence of integers in clockwise order of length equal to
the number of 3-vertices of f . Since G has no 2+-threads by Lemma 3.7, each integer is in
{0, 1}. Observe that there are at most as many ways to write this sequence of integers as
the number of 3-vertices of f . Indeed, we can choose any 3-vertex v as a starting point and
start counting the number of 2-vertices between v and the next 3-vertex in clockwise order.
We choose as representative the first one in the lexicographic order where 1 precedes 0 and
call it the number-word of f .

v0

v1

v2

v3

v4

v5

v6

v7

1

1

0

0

0 0

(i) 110000.

v0

v1

v2

v3

v4

v5

v6

v7

1

00

1

0 0

(ii) 100100.

Hình 3.18: Examples of number-words on 8-faces.
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Examples:

– Take the 8-face in Figure 3.18i as an example. We consider the 3-vertices in clockwise
order starting at any 3-vertex, say v1. We get v1, v3, v4, v5, v6, v7. Now, we count the
number of 2-vertices between two consecutives vertices in that sequence. More precisely,
there is one 2-vertex (v2) in between v1 and v3, then none between v3 and v4, and so
on. This gives us the sequence of numbers 100001. Had we chosen another starting
3-vertex (say v3) we would have obtained another sequence (000011). Among all of
these different sequences, we choose the one that comes first in the lexicographic order
where 1 comes before 0. And that sequence is 110000, the number-word of f , which
corresponds to the starting 3-vertex v7.

– We can do the same with the 8-face in Figure 3.18ii. The number-word for f is 100100.
Observe that this sequence can be obtained by taking, in clockwise order, either v7 or
v3 as a starting point.

• Due to our discharging rules, we are interested in configurations around 3-vertices. So, given
a 3-vertex v on f , we choose the following letters to encode the neighborhood outside f of v:

– c means that v has a 2-neighbor outside f .
– b means that v has a (1, 1, 0)-neighbor outside f .
– a represents the rest of the possible neighbors of v. In other words, the neighbor of v

outside f is a 3-vertex that is not a (1, 1, 0)-vertex.

Observe that there may be multiple starting 3-vertices that give the same number-word
for f . Given one possible starting 3-vertex of the number-word nw, we insert between each
pair of consecutive integers of nw the letter encoding of the neighborhood outside f of the
corresponding 3-vertex. We obtain an alternating sequence fw of integers and letters for
each starting 3-vertex.
Among the possible alternating sequences fw, we choose the one where the subsequence of
letters is the smallest in alphabetical order. We call this alternating sequence the full-word
of f and the corresponding subsequence of letters the letter-word of f .

v0

v1

v2

v3

v4

v5

v6

v7

v′4

v′′4

v′′′4

v′5 v′7

1

1

0

0

0 0

aa

b

c

a

c

(i) 1a1a0b0c0a0c.

v0

v1

v2

v3

v4

v5

v6

v7

v′3

v′5 v′7

1

a
0a0

c

1

c
0 a 0

a

(ii) 1a0a0c1c0a0a.

Hình 3.19: Examples of full-words on 8-faces.

Examples:

– Take the 8-face f in Figure 3.19i as an example. It is the same face as in Figure 3.18i,
this time with more information about the neighborhood of the 3-vertices outside of
f . Observe that when we do not have extra information about the neighborhood of a
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3-vertex outside of f (it could be a, b, or c), we will denote it a for now and explain it
later on. We consider the neighborhood of each 3-vertex, starting with the one that
comes right after the first number, which is the 3-vertex v1. In order, they corresponds
to the letters a, a, b, c, a, c, which give us the letter-word aabcac. Finally, we combine
these the number-word and the letter-word into the full-word 1a1a0b0c0a0c.

– We can do the same with the 8-face in Figure 3.19ii, which is the face in Figure 3.18ii
with extra information. When we choose the letter-word for f , we need to consider two
encodings, one that starts with the 3-vertex that comes right after v7 in clockwise order,
namely v1, or the one after v3, namely v5. These give us two sequence of letters aaccaa
and caaaac respectively. For our letter-word, we choose the first one in alphabetical
order, which is aaccaa. Finally, we get the full-word 1a0a0c1c0a0a.

Observation 3.13. Each face has a unique encoding full-word and each full-word uniquely defines
a face.

Under each 8-cycle of Figures 3.7 and 3.9, you have the corresponding encoding of the reducible
configuration if it were an 8-face.

In what follows we explain the generation of all possible 8-faces, how to check which ones are
reducible and which ones will obtain enough charge from its incident 3-vertices by R3 and R4.
The corresponding pseudocode is summarized in Algorithm 1.
Algorithm 1: Filtering forbidden and dischargeable full-words corresponding to faces
with a given size.
Data: forbidden_subwords, dictionary_of_charges, number_words, alphabet,

target_charge.
Result: The list of full-words that are not forbidden nor dischargeable.

1 foreach number_word ∈ number_words do
2 n = length of number_word;
3 letter_words = set of words of size n in alphabet;
4 foreach letter_word ∈ letter_words do
5 build full_word from number_word and letter_word;
6 if full_word does not contain a subword in forbidden_subwords then
7 Compute the charge of full_word using dictionary_of_charges;
8 if charge < target_charge then
9 Write full_word to output;

10 end
11 end
12 end
13 end

Since G has no 2+-threads and f has length 8, there can be at most four 2-vertices on f .
On the other hand, given a number-word nw of f , the number of 2-vertices of f is given by the
number of 1s in nw. Therefore, one can easily check the following observation:

Observation 3.14. The only possible number-words for 8-faces in G are 1111, 11100, 11010,
110000, 101000, 100100, 1000000, and 00000000.

Since the process of generating these number-words is done naively and it is not the main
focus of the algorithm, we will not go into technical details. However, the script is available at
https://gite.lirmm.fr/discharging/planar-graphs. For this case, the set of number-words
is small enough that it can even be checked manually.

Now, for each number-word nw, we can generate all possible sequences of letters in {a, b, c}
with the same length as nw that we will then interlace with nw to create an alternating sequence

https://gite.lirmm.fr/discharging/planar-graphs
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corresponding to a full-word (line 5 of Algorithm 1). Observe that during this process of generation,
we may obtain several words representing the same face and only one of them is the unique
full-word encoding f . This has no influence on the correctness of our algorithm, only on the time
complexity, as some faces might be checked multiple times. Here, it is possible to identify the
symmetries in the generated words in order to keep the unique full-words. However, in practice, at
least for our case, this subroutine adds complications with minimal time gain.

The list of full-words described above corresponds to all possible neighborhoods at distance at
most 2 of an 8-face. We filter out every neighborhood that either contains a reducible configuration
(line 6 of Algorithm 1), or has enough charge available for its 8-face by R3 and R4 (line 8 of
Algorithm 1).

In order to check that the corresponding subgraph of a full-word contains a reducible configura-
tion, we encode the latter using similar conventions as for the neighborhood of the 8-faces. Indeed,
the considered configuration is encoded as seen from an incident face. Thus, one configuration may
have multiple different encodings (depending on the incident faces) and we call these encodings
forbidden subwords. A full-word that contains a forbidden subword is forbidden.

Since we always consider the worst case scenario, if a forbidden subword contains a letter a,
then one can always build two other (“weaker”) forbidden subwords by replacing this a by b or c.
Therefore, whenever we consider a forbidden subword containing a, we also implicitly consider the
other “weaker” subwords. See Figures 3.6 to 3.8 where the captions contain all possible forbidden
(“strong”) subwords of each reducible configuration. In a general case, one can define a different
symbol (another letter, say d for example) that can be rewritten as multiple different letters (here
a, b, and c). Our choice was a for simplicity.

In the code implementation of Algorithm 1, we define a forbidden subword as a regular
expression and rewriting rule (formal grammar) in which a can be rewritten as b or c.

Observation 3.15. In a forbidden subword, a can mean a, b, or c in a real encoding.

Now, recall that a full-word is actually circular and is read in clockwise order. Thus, in order to
check whether it is forbidden, one has to check if it contains a forbidden subword or its mirror. Once
we removed the forbidden subword, we are ready to move on to the next step of the algorithm.

The next step (lines 7-8 of Algorithm 1) is to check, for every full-word fw, whether the
3-vertices of the corresponding subgraph give enough charge to f according to R3 and R4 (at
least a total charge 1). If it is the case, then we say that fw is dischargeable. Similar to the
encoding of the reducible configurations, we can also encode into a dictionary the configurations
from Figures 3.11 to 3.17. The encoding of each entry of the dictionary corresponds to a possible
neighborhood of a 3-vertex, along with µ∗(v)

3 for the worst case scenario in R3 (Figures 3.11, 3.12
and 3.15 to 3.17) and µ∗(v)

2 for R4 (Figures 3.13 and 3.14). To work with integers, we multiply by
12 the charge of each vertex and each face of G. In Table 3.2, we detail the dictionary entries for
each configuration.

fig. 3.11 fig. 3.12 fig. 3.13 fig. 3.14i fig. 3.14ii fig. 3.15 fig. 3.16 fig. 3.17
1c1 : 0 1a1 : 0 1a0 : 3 1b0 : 0 0a1c1 : 0 0a0 : 6 0b0 : 4 0b0c1 : 2

1c0 : 0 0c0 : 0 1a0c1 : 0 0a0c1 : 4 1c0a0c1 : 2

Bảng 3.2: The dictionary of charges. Each entry is written as “<encoding> : <charge>”.
Every value was multiplied by 12 to get an integer.

Observe that, in our case, every encoding in a dictionary entry starts and ends with a number.
Thus, we have the following observation.

Observation 3.16. The encoding in a dictionary entry always has odd length.
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As a consequence, the 3-vertex v that holds the charge in the encoding of a dictionary entry
corresponds to:

• either the letter in the middle when it has length 3 or 7,

• or the letter in second position when it has length 5.

Once again, each encoding can be read from left to right or right to left. Note that one has to
be mindful of the position of v when reading an encoding of length 5 from right to left.

In order to count the total amount of charge that an 8-face will receive from its 3-vertices, the
algorithm consists of sliding a window of odd length across the circular full-word. We start with
the window of the largest possible length (7 according to our dictionary) in order to have the most
information about the neighborhood of v. At each step, it searches for the corresponding encoding
(or its mirror) in the dictionary and if it exists, it marks the position as “discharged” and adds the
corresponding amount of charge to its total amount. For a given window size, if the corresponding
subword is not in the dictionary, then it means that the dictionary entry corresponding to v must
have an encoding of smaller length (recall that the dictionary entries are exhaustive). Then, it
suffices to verify that the total amount is at least 12 (target_charge) since we multiplied every
charge by 12. In such a case, we know that our 8-face will end up with a non-negative amount of
charge.

3.3.3 Third round: faces to faces

We ran Algorithm 1 to compute the outcome of the second round of discharging. The only
remaining type of face which was output by the algorithm corresponds to the face f in Figure 3.20
with full-word 1c1a0a1a0a. We define another discharging rule R5 to take care of this last case.

R5 Let f and f ′ be as depicted in Figure 3.20. If f ′ is an 8-face, then f ′ gives 1
2 to f .

v0

v1

v2

v3

v4

v5

v6

v7

v′1v′3

v′4

v′6

v′7

f

f ′

Hình 3.20: v′3, v′4, v′6, v′7 6= (1, 1, 0).

We show that after applying R5, we get µ∗(f) ≥ 0 and µ∗(f ′) ≥ 0. Recall that 8-faces have
starting charge −1.

First of all, by Figure 3.13 and R4, if f ′ is not an 8-face, then v4 and v6 each give 1
2 to f . So,

µ∗(f) ≥ −1 + 2 · 1
2 = 0.
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If f ′ is an 8-face, then v4 and v6 each give 1
4 to f by Figure 3.13 and R4, and f ′ gives f 1

2 by R5.
Thus,

µ∗(f) ≥ −1 + 2 · 1
4 + 1

2 = 0.

Now, let us show that µ∗(f ′) ≥ 0. We know that f ′ is an 8-face so µ(f ′) = −1 and f ′ gives 1
2

to f by R5.
Let f ′ = v′4v4v5v6v

′
6v
′′
6v8v

′′
4 . By Figure 3.10iii, v′′4 cannot be a 2-vertex so it must be a 3-vertex.

Symmetrically, v′′6 must also be a 3-vertex. By Figure 3.10ii, v8 must also be a 3-vertex. Observe
that R5 can thus only apply once to f ′. Let u′′4, u′′6, and u8 be the neighbors that do not lie on f ′
of v′′4 , v′′6 , and v8 respectively.

Observe that v4 and v6 each give 1
4 to f ′ by Figure 3.13 and R4. Moreover, since v′4 cannot

have a 2-neighbor by Figure 3.10iii, v′4 gives at least 1
3 to f ′ by Figures 3.15 and 3.16 and R3.

Symmetrically, the same holds for v′6. We conclude with the following cases:

• If u′′4 (or u′′6) is a 3-vertex, then v′′4 (or v′′6) gives at least 1
3 to f ′ by Figures 3.15 and 3.16

and R3. To sum up,
µ∗(f ′) ≥ −1− 1

2 + 2 · 1
4 + 3 · 1

3 = 0.

• If u′′4 and u′′6 are 2-vertices, then u8 must be a 3-vertex by Figure 3.10i. In that case, v8 gives
at least 1

3 to f ′ by Figures 3.15 and 3.16 and R3. To sum up,

µ∗(f ′) ≥ −1− 1
2 + 2 · 1

4 + 3 · 1
3 = 0.

To conclude, we started with a negative total amount of charge on the vertices and faces of
G by Equation (3.1) and after our discharging procedures, which preserve the total amount of
charge, we ended up with a non-negative amount of charge on each vertex and face of G. This is a
contradiction, so G does not exist and this ends the proof of Theorem 3.1.

3.4 Generalization of the discharging algorithm
In Section 3.3.2, we presented an algorithm (Algorithm 1) that automates the discharging

procedure with a given set of reducible configurations. This becomes extremely helpful for proofs
where the discharging procedure involves a large case analysis. For the input we efficiently encode
a face, the set of reducible configurations, as well as the amount of charge of a vertex depending
on its neighborhood. The corresponding computer program was written in Python 3.7. The source
code and its documentation is publically available on https://gite.lirmm.fr/discharging/
planar-graphs. In the case of Theorem 3.1, the execution time takes few seconds on a standard
machine. In order to show how to use our computer program, we provide another example on the
public repository proving the 2-distance 8-choosability of planar graphs with maximum degree 4
and girth at least 7, one of the results by Cranston et al. in [36].

Our approach can be applied to other problems on planar graphs by concentrating charges
on the vertices of the graph when the distribution of charges is made (according to the Euler
formula). First, one can try to obtain a non-negative sum of charges on the vertices (by realizing
an easy discharging procedure for example). This concentrates the difficulty of the problem on
the second round of discharging. In that round, one has to redistribute the remaining charge of
the vertices to the faces with negative charge and that is where our algorithm can come in handy.
Note that the way our algorithm is designed, a vertex can also take charge from a face by giving it
a negative charge.

The encoding of a face with a number-word and a letter-word can be done in the same way. In
our case, since G has no 2+-threads, the number-word of a face is composed of integers in {0, 1}.
But this alphabet can be extended to {0, 1, . . . , k − 1} if G has no k+-threads. Observe that one

https://gite.lirmm.fr/discharging/planar-graphs
https://gite.lirmm.fr/discharging/planar-graphs
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can partition a face into i-threads (0 ≤ i ≤ k − 1) and consider that each thread contains only
one endvertex. Therefore, in order to obtain the starting number-words for a face of size d(f), it
suffices to decompose d(f) into sums where each term corresponds to the number of vertices in an
i-thread. As for the letter-words, it suffices to choose a letter for each different neighborhood of
interest outside the considered face. In our case, three letters are sufficient but one can always
work with a larger alphabet to suit the considered problems. Once the convention for the encoding
of a face is fixed, the reducible configurations and entries of the dictionary of charges can be done
in the same way.

There are a few details to note about the entries of the dictionary. First, the position of the
vertex v holding the charge must be in the center of the entry (or just left of the center). Second,
the encoding has to start and end with a number. These properties can be guaranteed by extending
the encoding with every possible sequence up to a certain length. Finally, one has to be mindful
that v is in the center when the length of the encoding is congruent to 3 modulo 4, and left of the
center when it is congruent to 1 modulo 4.

Moreover, we would like to note that, when a discharging procedure along with the given
reducible configurations do not prove the desired result, Algorithm 1 returns a sufficient set of
missing configurations (to be reduced). This helps to pinpoint the possible difficulty of the proof
using the discharging method. In practice, start with a simple discharging procedure and reduce
the missing configurations returned by Algorithm 1. If there are non-reducible configurations left,
then refine the discharging procedure. Repeat the process until a sufficient set of discharging
rules and reducible configurations is reached. In particular, this is how we obtained the reducible
configurations in the proof of Theorem 3.1. In that sense, Algorithm 1 is not only a tool to verify
a proof but also a tool to assist the research process.



Chương 4

Building planar graphs with high g
and χ2

Most of the research done in 2-distance coloring of planar graphs with high girth (Table 1.1)
have been focused on providing upper bounds on g0 or ∆0 for the following questions.

Question 4.1. For a given constant c0 and ∆0 (resp. g0), what is the smallest g0 (resp. ∆0) such
that every planar graph G with g(G) ≥ g0 and ∆(G) ≥ ∆0 verifies χ2(G) ≤ ∆(G) + c0?

However, there is also another approach to Question 4.1, that is to find lower bounds on g0
(resp. ∆0) for a fixed ∆0 (resp. g0). These bounds are obtained from constructions with high
girth and high 2-distance chromatic number. Apart from some small graphs initially provided by
Wegner, there are few other constructions improving those lower bounds. That shows that we still
lack a deep understanding of the behaviors of 2-distance colorings despite the simplicity in its
concept.

Proposition 4.2 (Dvořák et al. [51]). For every integer d ≥ 2, there exists a planar graph G with
g(G) = 6, ∆(G) = d, and χ2(G) ≥ d+ 2.

v

u

z2z1 z3

y2y1 y3

x2x1 x3

w

∆− 1 vertices

∆− 1 vertices

Hình 4.1: A graph with girth 6 and χ2 ≥ ∆ + 2 (drawn for ∆ = 4) [51].

To match these efforts in finding graphs with high girth and high 2-distance chromatic number,
we proved the following negative results.

70
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Proposition 4.3 ([87]). There exists a planar graph G with g(G) ≥ 4 and χ2(G) ≥ ∆(G) + 3.

Proposition 4.4 ([87]). There exists a planar graph G with g(G) ≥ 5, ∆(G) = 4, and χ2(G) ≥
∆(G) + 3.

Proposition 4.5 ([84]). There exists a planar graph G with g(G) ≥ 11, ∆(G) = 3, and χ2(G) ≥
∆(G) + 2.

Proposition 4.6 ([90]). There exists a planar graph G with g(G) ≥ 6, ∆(G) = 3, and χ2(G) ≥
∆(G) + 3.

The graphs in Propositions 4.3 to 4.4 are provided in Figure 4.2(i) and (ii) respectively.

v

u

∆− 1 vertices

(i) A graph with girth 4 and χ2 ≥ ∆ + 3.

u1

u2

u3

u4

u7

u5
u6

u′2

(ii) A graph with ∆ = 4, girth 5, and χ2 ≥ 7.

Hình 4.2: Graphs with χ2 ≥ ∆ + 3.

Building a non 4-colorable subcubic planar graph of girth 11

In [52], Dvor̆ák et al. presented a non 4-colorable, planar, and subcubic graph with girth at
least 9. The main building block of that graph relies upon an interesting property of 4-colorings of
paths of length 5. Using the same property we managed to build a non 4-colorable planar subcubic
graph of girth 11.

Lemma 4.7. Let H be a subcubic graph of girth at least 11 and φ a 4-coloring of H. Let
u1u2u3u4u5u6 be a path of length 5 in H, if φ(u1) = φ(u6), then φ(u2) = φ(u5).

Chứng minh. Since H has girth at least 11, all vertices are distinct (see Figure 4.3). Suppose by
contradiction that φ(u1) = φ(u6) but φ(u2) 6= φ(u5). W.l.o.g. we set φ(u1) = φ(u6) = a, φ(u2) = b,
and φ(u5) = c. Since u3 sees u1, u2, and u5, colored respectively a, b, and c, it must be colored d.
Finally, u4 sees u2, u3, u5, and u6, colored respectively by b, d, c, and a. Thus, u4 is non-colorable,
which is a contradiction since φ is a 4-coloring of H.
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u1

a

u2

b

u3

d

u4 u5

c

u6

a

Hình 4.3: A non-valid coloring of H in
Lemma 4.7.

u1

a

u2

b

u3

c

u4

d

u5

b

u6

a

u′1
a

u′2

u′3

u′4

u′′1
a

u′′2

u′′3

u′′4

v1 c

v0 a

Hình 4.4: A non-valid coloring of H in
Lemma 4.8.

Lemma 4.8. Let H be a subcubic graph of girth 11 and φ a 4-coloring of H. Let u1u2u3u4u5u6,
u3u

′
1u
′
2u
′
3u
′
4v1, u4u

′′
1u
′′
2u
′′
3u
′′
4v1 be paths of length 5 in H. Let v0 /∈ {u′4, u′′4} be adjacent to v1. If

φ(u1) = φ(u6) = φ(v0), then φ(u2) = φ(u5) = φ(v1).

Chứng minh. Since H has girth 11, all vertices are distinct (see Figure 4.4). We assume w.l.o.g.
that φ(u1) = φ(u6) = φ(v0) = a. By Lemma 4.7, since φ(u1) = φ(u6), we must have φ(u2) = φ(u5).
W.l.o.g. we set φ(u2) = φ(u5) = b. As a result, we have {φ(u3), φ(u4)} = {c, d}. We assume w.l.o.g.
that φ(u3) = c and φ(u4) = d. Now, suppose by contradiction that φ(v1) = c. By Lemma 4.7,
since φ(u3) = φ(v1), we must have φ(u′1) = φ(u′4) = a. However, this is impossible since u′4 sees v0
which is colored a. By symmetry, the same argument holds when φ(v1) = d. Finally, since v1 also
sees v0, thus φ(v1) /∈ {a, c, d}, and so φ(v1) = b = φ(u2) = φ(u5).

Lemma 4.9. The graph G 6=(u, v) in Figure 4.5i has the following properties:

• G 6=(u, v) is planar and subcubic.

• G 6=(u, v) has girth 11.

• The distance in G 6=(u, v) between u and v is 7.

• Every 4-coloring φ of G 6=(u, v) satisfies φ(u) 6= φ(v).

Chứng minh. One can verify that G 6=(u, v) is planar, subcubic, has girth 11, and that the distance
between u and v is 7 thanks to Figure 4.5i. It remains to prove that φ(u) 6= φ(v) for every 4-coloring
φ of G 6=(u, v).

Suppose by contradiction that there exists a 4-coloring φ such that φ(u) = φ(v) = a. We can
assume w.l.o.g. that φ(u1) = b, φ(u2) = c, and φ(v5) = d. Since u6 sees v which is colored a, we
distinguish the following cases based on φ(u6):

• If φ(u6) = b, then φ(u5) = φ(u2) = c by Lemma 4.7 as φ(u6) = φ(u2). As a result,
φ(v1) = d. Since v2 and v4 both see b and d, we have {φ(v2), φ(v4)} = {a, c}. Now, v3 sees
{φ(v1), φ(v2), φ(v4), φ(v5)} = {d, a, c}, so φ(v3) = b. Finally, v7 sees {φ(v2), φ(v3), φ(v4)} =
{a, b, c}, hence φ(v7) = d. However, this is impossible since φ(u1) = φ(u6) = φ(v3) = b, thus
φ(u2) = φ(u5) = φ(v7) = c by Lemma 4.8.

• If φ(u6) = c, then we have the two following cases:



73

u v
u1

u2

u3 u4

u5

u6

v1

v2

v3

v4

v5

v7

t4 w4

t3 w3

t2 w2

t1 w1

v8 t′′4

t′′3

t′′2

t′′1t′4

t′3

t′2

t′1

v6w′′4

w′′3

w′′2

w′′1 w′4

w′3

w′2

w′1

(i) The gadget G 6=(u, v) in Lemma 4.9.

u v
G 6=

(ii) Simplified draw-
ing of G 6=(u, v).

Hình 4.5: G 6=(u, v).

– If φ(v1) = b, then φ(v2) = φ(v5) = d by Lemma 4.7 as φ(v1) = φ(u1). As a result,
φ(u5) = d and φ(v6) = a. Since v3 and v4 both see b and d, we have {φ(v3), φ(v4)} =
{a, c}. Now, v7 sees {φ(v2), φ(v3), φ(v4)} = {d, a, c}, so φ(v7) = b. Since u3 sees b, c, and
d, φ(u3) = a and consequently, φ(u4) = b and φ(w1) = c. However, this is impossible
since φ(u4) = φ(v7) = φ(v1) = b, thus φ(w1) = φ(w4) = φ(v6) = a by Lemma 4.8.

– If φ(v1) = d, then φ(u5) = b. Since v2, v3, and v4 all see d, {φ(v2), φ(v3), φ(v4)}
= {a, b, c}. As a result, φ(v7) = d. Both u3 and u4 see b and c, so {φ(u3), φ(u4)} = {a, d}.
Since w1 sees {φ(u3), φ(u4), φ(u5)} = {a, d, b}, φ(w1) = c. Due to Lemma 4.8, we must
have φ(u4) = a. Otherwise, φ(u4) = d = φ(v7) = φ(v1) and φ(w1) = φ(w4) = φ(v6) = c
which is impossible since v6 sees u6 colored c. Thus, φ(u3) = d and φ(t1) = b. However,
this is also impossible since φ(u3) = φ(v7) = φ(v5) = d, thus φ(t1) = φ(t4) = φ(v8) = b
by Lemma 4.8 and v8 sees u1 colored b.

• If φ(u6) = d, then φ(v1) = φ(v4) by Lemma 4.7 as φ(u6) = φ(v5). Since v4 sees b and d
and v1 sees a and d, φ(v4) = φ(v1) = c. As a result, φ(u5) = b and φ(v8) = a. Both v2 and
v3 see c and d, so {φ(v2), φ(v3)} = {a, b}. Now, v7 sees {φ(v2), φ(v3), φ(v4)} = {a, b, c}, so
φ(v7) = d. Since u4 sees d, b, and c, φ(u4) = a and consequently, φ(u3) = d and φ(t1) = b.
However, this is impossible since φ(u3) = φ(v7) = φ(v5) = d, thus φ(t1) = φ(t4) = φ(v8) = a
by Lemma 4.8.

Lemma 4.10. The graph G′6=(u, v) in Figure 4.6i has the following properties:
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• G′6=(u, v) is planar and subcubic.

• G′6=(u, v) has girth 11.

• The distance in G′6=(u, v) between u and v is 10.

• Every 4-coloring φ of G′6=(u, v) satisfies φ(u) 6= φ(v).

u
vw1w2

w3

w4

G 6=

G 6=

(i) The gadget G′6=(u, v) in Lemma 4.10.

u v
G′6=

(ii) Simplified draw-
ing of G′6=(u, v).

Hình 4.6: G′6=(u, v).

Chứng minh. One can verify that G′6=(u, v) is planar, subcubic, has girth 11, and that the distance
between u and v is 10 thanks to Figure 4.6i and Lemma 4.9. It remains to prove that φ(u) 6= φ(v)
for every 4-coloring φ of G′6=(u, v). Suppose by contradiction that there exists a 4-coloring φ of
G′6=(u, v) such that φ(u) = φ(v), say φ(u) = a. We only need to observe that w3 and w4 cannot
be colored a thanks to G 6=(u, v) and w1 and w2 cannot be colored a since they see v. This is a
contradiction as we have four vertices at distance two pairwise but only three colors left.

Lemma 4.11. The graph G=(u, v) in Figure 4.7i has the following properties:

• G=(u, v) is planar and subcubic.

• G=(u, v) has girth 11.

• The distance in G=(u, v) between u and v is 3.

• Every 4-coloring φ of G=(u, v) satisfies φ(u) = φ(v).

u t1 t2 vw1w2

w3

w4

G 6=

G 6=

(i) The gadget G=(u, v) in Lemma 4.11.

u v
G=

(ii) Simplified draw-
ing of G=(u, v).

Hình 4.7: G=(u, v).
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Chứng minh. One can verify that G=(u, v) is planar, subcubic, has girth 11, and that the distance
between u and v is 3 thanks to Figure 4.7i and Lemma 4.11. It remains to prove that φ(u) = φ(v)
for every 4-coloring φ of G=(u, v). Let φ be a 4-coloring of G=(u, v), we can assume w.l.o.g. that
φ(u) = a, φ(t1) = b, φ(t2) = c, and φ(w1) = d. Observe that v sees t1 and w1 colored respectively
b and d. Moreover, due to Lemma 4.10, φ(v) 6= φ(t2) = c as G=(u, v) contains G′6=(t2, v). As a
result, we must have φ(v) = a = φ(u).

u v

G′6=

G=

Hình 4.8: A non-4-colorable planar subcubic graph of girth 11.

As a direct consequence of Lemma 4.10 and Lemma 4.11, we get the following lemma.

Lemma 4.12. The graph G in Figure 4.8 is a planar subcubic graph of girth 11 with χ2(G) ≥ 5.

In [52], the authors also proved the NP-completeness of the problem of deciding if a planar
subcubic graph of girth 9 is 4-colorable using a gadget that can reproduce colors at a far enough
distance to preserve the girth condition. The same proof can be adapted directly to prove the
NP-completeness of deciding if a planar subcubic graph of girth 11 is 4-colorable by using a
concatenation of G=(u, v) to get a large enough distance. This fact also points out the difficulty
of characterizing planar graphs that are 2-distance colorable (for a given number of colors) even
when we have restrictions on its maximum degree and girth.

The behaviors of 2-distance colorings that we have observed in this chapter raise an interesting
question concerning the plausibility of Conjecture 1.10. Indeed, given a maximum degree, the
number of vertices of a planar graph of diameter 2 is bounded and Conjecture 1.10 comes from
an intuition on that maximum number of vertices. These intuitions were confirmed by Fellows et
al. [56] who proved Conjecture 1.10 for planar graphs with diameter at most 2 and ∆ ≥ 8 and
by Dai et al. [42] who proved the conjecture for the remaining cases (∆ < 8). Thus, one might
believe that Conjecture 1.10 indicates that the conflicts and difficulties in 2-distance coloring do
not come from vertices that are far away from each other but rather neighborhoods with a small
diameter. This intuition seems to be false as we have seen, in this chapter, that it is possible to
create conflicts between vertices at arbitrary distance.

At the same time, the conjectured bounds could be the right threshold where there are enough
colors for the problem to become easy. To illustrate this phenomenon more clearly, a comparison
with proper coloring can be drawn. Indeed, the maximum number of vertices in a planar graph
with diameter 1 is 4, which is also the sufficient amount of colors to color any planar graph properly
by the Four Color Theorem. However, the problem of deciding if a planar graph is 3-colorable
becomes NP-complete. So, one might believe that the same type of results holds for 2-distance
coloring. More precisely, for a given maximum degree, the maximum number of vertices in a planar
graph with diameter 2 can also be the sufficient amount of colors to 2-distance color a planar
graph of any diameter, but the decision problem on χ2 is NP-complete when we are below that
threshold. This is already proven for planar subcubic graphs. Indeed, the maximum number of
vertices in a planar subcubic graph of diameter 2 is 7, which is also the sufficient amount of colors
to 2-distance color any planar subcubic graphs [114, 66]. However, as we have seen in this chapter,
the problem of deciding if a planar subcubic graphs is 4-colorable becomes NP-complete even
when we are restricted to graphs with high girth.
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Other variants of 2-distance coloring

In this chapter, we present some works that have been done on other variants of 2-distance
coloring, namely r-hued coloring, injective coloring, and exact square coloring.

5.1 r-hued coloring
The “2-distance constraint” in 2-distance colorings requires that vertices at distance at most

two have different colors. In other words, all neighbors of the same vertex must have different
colors. This condition was generalized recently and the notion of r-hued coloring was introduced
by Montgomery [98]. Let r, k ≥ 1 be two integers. An r-hued k-coloring (also called r-dynamic
k-coloring in the literature) of the vertices of G is a proper k-coloring of the vertices, such
that all vertices are r-hued. A vertex is r-hued if the number of colors in its neighborhood
NG(v) = {x|xv ∈ E} is at least min{dG(v), r}. The r-hued chromatic number of G, denoted χr(G),
is the smallest integer k so that G has an r-hued k-coloring.

It is indeed a generalization of 2-distance colorings which corresponds to the case r ≥ ∆, as all
vertices in the same neighborhood will have different colors. More generally, its link to proper
coloring and 2-distance coloring resides in the following equation:

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χ∆(G) = χ∆+1(G) = · · · = χ2(G) (5.1)

Examples of r-hued colorings are given in Figure 5.1.

5

1

1

3

4 5 1

4

3
(i) A 2-hued 5-coloring which is not a 2-
distance coloring.

6

1

2

3

4 5 6

4

5
(ii) A 5-hued 6-coloring which is also a 2-
distance coloring.

Hình 5.1: The vertices are labeled with their color.

Similar to the 2-distance chromatic number, the r-hued chromatic number is linear in r when
it comes to planar graphs. In 2014, Song et al. proposed a generalization of Conjecture 1.10:

Conjecture 5.1 (Song et al. [108]). Let G be a planar graph. Then,

χr(G) ≤


r + 3, if 1 ≤ r ≤ 2,
r + 5, if 3 ≤ r ≤ 7,
b3r

2 c+ 1, if r ≥ 8.
76
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One can note that the case r = 1 corresponds to the Four Color Theorem [3, 4] ; additionally,
by taking r = ∆(G), Conjecture 5.1 implies Conjecture 1.10 except for the case r = 3. Moreover,
the only extremal known examples reaching the upper bounds of Conjecture 5.1 are the same as
for Conjecture 1.10 (see Figure 1.3(i)).

The case of r = 2 has been proven by Chen et al. [33]. Song and Lai [109] proved that, if r ≥ 8,
then every planar graph verifies χr(G) ≤ 2r + 16. Similar to 2-distance coloring, the coefficient
before r in this upper bound becomes 1 for graphs with a higher girth. Table 5.1 shows all latest
results of the following form: let r and r0 be integers such that r ≥ r0, every planar graph G of
girth g(G) ≥ g0 satisfies χr(G) ≤ r + c(g0, r0), where c(g0, r0) is a constant depending only on g0
and r0.

g0

χr(G)
r + 1 r + 2 r + 3 r + 4 r + 5 r + 6 r + 7 . . . r + 10

3 r = 2 [33] r = 3 [94]
4
5 r ≥ 15 [26]1 all r [26]
6 r ≥ 3 [91]
7 r = 2 [76]2 r = 3 [75]2
8 r ≥ 9
9 r ≥ 8 [27]2 r = 3 [75]2
10 r ≥ 6 [27]2
11
12 r ≥ 5 [27]2
13
14 r = 3 [34]

Bảng 5.1: The latest results with a coefficient 1 before r in the upper bound of χr.

The result from the “9” line and “r + 1” column reads “for r ≥ 8, every planar graph G of
girth at least 9 satisfies χr(G) ≤ r + 1”. Since an r-hued coloring is a 2-distance coloring when
r ≥ ∆, some results for 2-distance colorings come from r-hued colorings. Similarly to 2-distance
colorings, many of these results also come from r-hued list-colorings, or r-hued colorings of graphs
with a bounded maximum average degree.

We are interested in the case χr(G) = r+ 1 (as r+ 1 is a trivial lower bound for χr(G) as soon
as the graph contains a vertex of degree at least r). In particular, we were looking for the smallest
integer r such that a planar graph of girth at least 8 can be r-hued colored with r + 1 colors, with
the aim to find a sufficiently good lower bound to obtain a new result on 2-distance coloring.

Our result on r-hued coloring is the following.

Theorem 5.2 ([88]). If G is a planar graph with g(G) ≥ 8, then χr(G) ≤ r + 1 for r ≥ 9.

Hence for r = ∆, we obtain the following theorem.

Theorem 5.3 ([88]). If G is a planar graph with g(G) ≥ 8, then χ2(G) ≤ ∆(G) + 1 for ∆(G) ≥ 9.

Proof of Theorem 5.2

Here, we employ more “traditional” discharging proof techniques while also focusing on faces
to exploit the planarity of the graph.

Let us now consider G a counterexample to Theorem 5.2 with the fewest number of edges and
vertices. The purpose of the proof is to prove that G cannot exist.

1Corollaries of results on r-hued list-colorings of planar graphs.
2Corollaries of results on r-hued list-colorings of graphs with a bounded maximum average degree.



78 CHƯƠNG 5. OTHER VARIANTS OF 2-DISTANCE COLORING

Structural properties of G

When we deal with vertices with degree less than r, the behavior of the r-hued coloring is
similar to a 2-distance coloring, thus we obtain very similar structural results. As for vertices with
degree larger than r, it is often easier to color the configuration as we have have less constraints
than 2-distance coloring.

This can be illustrated with some initial assumptions on G. Without loss of generality, we can
assume that G is connected. Moreover, δ(G) ≥ 2. Otherwise, we can simply remove the unique
edge incident to such vertex v and color the resulting graph with an r-hued coloring φ, which is
possible due to the minimality of |E(G)|. Then, we add the edge back and check the degree of
v’s unique neighbor x in G. If d(x) ≤ r, then we can choose a color for v different from x’s and
all of its neighbors’ to maintain the r-hued property of the coloring. Here, we also need to check
the case where d(x) > r. In this case, x is already r-hued, so it suffices to choose a color for v
different from φ(x).

In a similar fashion, the proofs of Lemmas 5.4 to 5.9 are very similar to that of Lemmas 2.12
to 2.18 and Lemma 2.21, and will thus be omitted (these proofs can be found in the corresponding
article [88] in the Appendices).

Lemma 5.4. Let w be a vertex of G that is adjacent to k vertices ui (k ≤ d(w)), each satisfying
d∗(ui) ≤ r + i− 1 for 1 ≤ i ≤ k. Then we have d∗(w) ≥ r + k + 1.

Lemma 5.5. Graph G has no 4+-threads.

Lemma 5.6. Both endvertices of a 3-thread have degree r.

Lemma 5.7. At least one of the endvertices of a 2-thread has degree r or both of them have
degree r − 1.

Lemma 5.8. Graph G has no cycles consisting of 3-threads.

Lemma 5.9. Let v be a vertex such that 3 ≤ d(v) ≤ b r+1
2 c. Then v cannot be a (2, 1+, 1+, . . . , 1+)-

vertex.

Lemma 5.10. Graph G does not contain the configurations depicted by Figure 5.2.
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w

(i) d(w) ≤ r− 2.
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(ii)

x

a
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u

v

w
v′′

u′
u′′

w′
w′′

(iii)

x

a

b

c

y

u

v

w

v′

v′′
a′ b′ c′

w′′

a′′

b′′

c′′

(iv) d(w) ≤ r − 4.

Hình 5.2: Configurations of Lemma 5.10.

Chứng minh. Recall that the endvertex of a 3-thread always have degree r by Lemma 5.6. Also,
at least one endvertex of a 2-thread has degree r unless they both have degree r− 1 by Lemma 5.7.
Thus, x, y, and v′′ always have degree r in what follows (r ≥ 9).
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(a) Consider the configuration depicted on Figure 5.2(i) where d(w) ≤ r − 2.
By minimality of G, let φ be an r-hued coloring of G′ = G− {a, b, u, v}. Let us start coloring
a and u. Both vertices have r − 2 + 1 = r − 1 restrictions coming from x. Additionally, a
(resp. u) has one restriction from c (resp. w). As φ(c) 6= φ(w) (since d(y) = r), one can color a
and u with two distinct colors. Finally, b and v can always be 2-distance colored since b only
has four restrictions on its number of colors, and v always has at least one choice of color as
d(w) ≤ r − 2. The obtained coloring is r-hued. That contradiction completes the proof.

(b) Consider the configuration depicted on Figure 5.2(ii).
By minimality of G, let φ be an r-hued coloring of G′ = G−{a, b, c, u, v, w, a′, b′, c′, v′}. Observe
first that, since d∗(b) < r + 1, d∗(v) < r + 1, d∗(b′) < r + 1, vertices b, v, b′ can be 2-distance
colored at the end. Vertices a, u, a′ have the same r− 2 restrictions coming from x ; they must
be colored with the last three available colors, say α1, α2, α3. Similarly c and w (resp. c′ and v′)
have the same r − 1 restrictions coming from y (resp. v′′) ; they must be colored with the last
two available colors, say β1 and β2 (resp. γ1 and γ2). Now, if β1 does not occur in {α1, α2, α3},
then one can sequentially color c with β1, then w, v′, u, c′, a′, and a. So by symmetry, we
have {β1, β2} ⊂ {α1, α2, α3} and {γ1, γ2} ⊂ {α1, α2, α3}. It follows that {β1, β2} and {γ1, γ2}
have at least one common element, say β1 = γ1. Hence we color the vertices as follows : c
with β1, w with β2, v′ with γ1 = β1, c′ with γ2 (which may be equal to β2), a′ with β1, a with
β2, and u with the color of {α1, α2, α3} \ {β1, β2}. That leads to an r-hued coloring of G, a
contradiction.

(c) Consider the configuration depicted on Figure 5.2(iii).
By minimality of G, let φ be an r-hued coloring of G′ = G − {a, b, c}. Since d∗(b) < r + 1,
d∗(v) < r + 1, d∗(u′) < r + 1, d∗(w′) < r + 1, b can be 2-distance colored and the vertices v,
u′, w′ can be 2-distance recolored at the end if necessary. Vertex a (resp. c) has r restrictions
coming from x and u (resp. y and w). If a and c can be colored differently, then we obtain an
r-hued coloring of G. So, they must have the same available color left, say α. Without loss of
generality, say φ(u) = β and φ(w) = γ. Since φ is r-hued, α, β, γ are all distinct. Moreover
at least one of u′′ and w′′ has a color distinct from α ; by symmetry say φ(u′′) 6= α. We now
recolor u with α, we color a with β, c with α, we 2-distance color b and as well u′, v, w′ if
necessary. That leads to an r-hued coloring of G, a contradiction.

(d) Consider the configuration depicted on Figure 5.2(iv) where d(w) ≤ r − 4.
By minimality of G, let φ be an r-hued coloring of G′ = G−{a′, b′, c′}. Recall that d(w) ≤ r−4
; so d∗(v) < r + 1. The same holds for d∗(b) and d∗(b′), so vertices v, b, b′ can be 2-distance
recolored at the end. Vertex a′ (resp. c′) has r restrictions coming from x, a, u (resp. v′′, v′, c′′).
If a′ and c′ can be colored differently, then we can obtain an r-hued coloring of G. So, they
must have the same available color left, say α. Let β be the color of u and γ the one of a.
Since φ is r-hued, α, β, γ are all distinct. If φ(c) 6= α, then we recolor a with α, a′ with γ, and
c′ with α. It follows that φ(c) = α. Now observe that, as d(y) = d(v′′) = r, we have φ(w) 6= α
and φ(v′) 6= α (as α is the available color for c′). So we recolor u with α ; we color a′ with β
and c′ with α. It remains to 2-distance recolor v if necessary and to 2-distance color b′. That
leads to an r-hued coloring of G, a contradiction.

Lemma 5.11. Given a (2, 1, 0)-vertex v having a 7-neighbor, the endvertex of the 1-thread
(distinct from v) is a 8+-vertex.

Chứng minh. Suppose G contains a (2, 1, 0)-vertex v having three neighbors a, b, c such that a
belongs to a 2-thread, b belongs to a 1-thread vbd, and such that c has degree 7 and d has degree
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at most 7. See Figure 5.3. Let φ be an r-hued coloring of G′ = G− {a, b, v}. Let us sequentially
2-distance color v, b, and a. The obtained coloring is r-hued, a contradiction.

v

a

b d

c

Hình 5.3: A (2, 1, 0)-vertex having a 7-neighbor.

Discharging procedure

Before defining our discharging rules, we will define some special vertices.

Definition 5.12 (Small, medium, and large 2-vertex). A 2-vertex v is said to be

• large if it is adjacent to two 3+-vertices,

• medium if it is adjacent to exactly one 2-vertex,

• small if it is adjacent to two 2-vertices.

Definition 5.13 (Bridge vertex). A large 2-vertex is called a bridge if it has a 3-neighbor and a
8+-neighbor.

Definition 5.14 (Sponsor). Consider the set of 3-threads in G. By Lemma 5.6, the endvertices
of every 3-threads are r-vertices and by Lemma 5.8, the graph induced by the edges of all the
3-threads of G is a forest F . For each tree of F , we choose an arbitrary root. Each small 2-vertex
v is assigned a unique sponsor which is the r-vertex corresponding to the grandson of v. See
Figure 5.4.

rootsponsor

Hình 5.4: The sponsor assignment in a tree consisting of 3-threads.

Definition 5.15 (Special and non-special vertices). A (3↔5)-vertex is said to be special if it has
at least two r-neighbors and non-special otherwise.

We first assign to each vertex v the charge µ(v) = 3d(v) − 8 and to each face f the charge
µ(f) = d(f)− 8. Since ∑v∈V (G)(3d(v)− 8) +∑

f∈F (G)(d(f)− 8) = −16 by Euler’s formula, the
total sum of the charges is negative. We then apply the following discharging rules.
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Vertices to vertices:

R0 (see Figure 5.5):

(i) Every 3+-vertex gives 1 to its large 2-neighbors, and 2 to its medium 2-neighbors.
(ii) Every sponsor gives 1 to its small 2-neighbors.
(iii) Every 8+-vertex gives 1 to its adjacent bridges.

R1 (see Figure 5.6):

(i) Every 8+-vertex gives 2 to its 3-neighbors.
(ii) Every (5↔7)-vertex v gives 1 to its 3-neighbors.
(iii) Every bridge gives 1 to its 3-neighbor.

R2 (see Figure 5.7):

(i) Every 8+-vertex gives 2 to its 4-neighbors.
(ii) Every (6↔7)-vertex gives 1 to its 4-neighbors.

R3 (see Figure 5.8): Every 8+-vertex gives 2 to its 5-neighbors.

R4 (see Figure 5.9): Every special vertex gives 1 to its r-neighbors.

Vertices to faces:

R5 (see Figure 5.10): Each 8-face f = v1v2 . . . v8 with d(v1) = d(v7) = r, 3 ≤ d(v4) ≤ 5 and
d(v2) = d(v3) = d(v5) = d(v6) = 2, receives charge 1

2 from v1 and v7.

R6 (see Figure 5.13): Let f = xabcywvu be an 8-face where xabcy is a 3-thread.

(i) If xuvw is a 2-thread with d(w) ≥ r − 1, then y gives 1
2 to f .

(ii) If xuv is a 1-thread with d(v) ≥ 4, then x gives 1
2 to f .

(iii) If xuv is a 1-thread with d(v) = 3 and d(w) ≤ 5, then v gives 1
2 to f .

(iv) If xuv is a 1-thread with d(v) = 3 and d(w) ≥ 6, y gives 1
2 to f .

(v) If d(u) ≥ 6 and d(w) ≥ 3, then x gives 1
2 to f .

(vi) If 4 ≤ d(u) ≤ 5 and d(w) ≥ 3, then u gives 1
2 to f .

(vii) If d(u) = 3 and d(v) ≥ 3, then u gives 1
2 to f .

(viii) If u is a (1, 1, 0)-vertex, or a (1, 0, 0)-vertex, with d(v) = 2, and d(w) ≥ 3, then u gives
1
2 to f .

Faces to faces:

R7 (see Figure 5.11): Let f = xabcywvu be an 8-face where xabcy is a 3-thread, and u and w
are (2, 1, 0)-vertices (with the 1-thread in common). Let u′, u′′, and u′′′ (resp. w′, w′′, and
w′′′) be, respectively, the 1-distance, 2-distance and 3-distance neighbor of u (resp. w) along
its incident 2-thread. We also suppose that u′′′ 6= w′′′. Let f ′ be the 9+-face incident to
u′′′u′′u′uvww′w′′w′′′. Face f ′ gives 1

2 to f .

Faces to vertices:

R8 (see Figure 5.12): Each face f gives 1
2 to each of its incident small 2-vertices3.

R9 (see Figure 5.10): Each 8+-face f incident to a path v1v2 . . . v7 as described in R5 gives 1 to
v4.

3f gives 1
2 twice to a small 2-vertex if that vertex is only incident to f .
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Hình 5.5: R0.
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Hình 5.10: R5 and R9.
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(viii) u is a (1, 1, 0)-vertex,
or a (1, 0, 0)-vertex.

Hình 5.13: R6.

Verifying that charges on vertices and faces are non-negative

Let µ∗ be the assigned charges after the discharging procedure. In what follows, we prove that:

∀x ∈ V (G) ∪ F (G), µ∗(x) ≥ 0

.

Faces

Let f be a face of G. Recall that µ(f) = d(f) − 8. We consider two cases according to the
length of f :

Case 1: d(f) ≥ 9.
Note that f may give 1

2 (resp. 1
2 , 1) by R7 (resp. R8, R9). By R9 (resp. R8, R7), face f may

give 1 (resp. 1
2 ,

1
2) at most d(f)

6 (resp. d(f)
4 , d(f)

8 ) times. Observe that in Figures 5.10 to 5.12 except
the r-vertices (u′′, w′′, x1, x5, v1, v7), all other vertices are pairwise distinct. Therefore, assuming
that R9 (resp. R8, R7) is applied i (resp. j, k) times, we must have d(f) ≥ 6i+ 4j + 8k.

Observe that: µ∗(f) ≥ d(f)−8− i− j
2 −

k
2 ≥ 6i+4j+8k−8− i− j

2 −
k
2 ≥ 5i+ 7

2j+ 15
2 k−8 ≥ 0

when i ≥ 2 or k ≥ 2 or j ≥ 3 or (j ≥ 1 and i = 1) or (j ≥ 1 and k = 1) or (i = 1 and k = 1).
Now observe that for the remaining cases: µ∗(f) ≥ d(f)− 8− i− j

2 −
k
2 ≥ 1− i− j

2 −
k
2 ≥ 0 when

(i, j, k) = (1, 0, 0) or (i, j, k) = (0, 0, 1) or (i, j, k) = (0, 2−, 0). It follows that µ∗(f) ≥ 0.

Case 2: d(f) = 8.
Suppose f is not incident to a 3-thread. It follows that f is involved only inR5 andR9. Observe that
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if R9 applies, thenR5 applies. In all cases, we have either µ∗(f) ≥ d(f)−8+2·12−1 = 8−8+1−1 = 0
or µ∗(f) ≥ µ(f) ≥ 0.

Suppose that f is incident to a 3-thread. By Lemma 5.8, f has only one such thread on its
boundaries. Face f gives once 1

2 by R8 (and R9 cannot be applied). We show now that f receives
1
2 by R6 or R7. Let f = xabcywvu where xabcy is a 3-thread.

• If f is also incident to a 2-thread of the form xuvw, then f gets 1
2 byR6(i) (see Figure 5.13(i)).

Note that the case where d(w) ≤ r − 2 does not occur by Lemma 5.10(i).

µ∗(f) ≥ d(f)− 8− 1
2 + 1

2 = 8− 8− 1
2 + 1

2 = 0.

• If f is incident to a 1-thread of the form xuv, then f gets 1
2 by R6(ii), (iii), or (iv) (see

Figure 5.13(ii), (iii), (iv))).
µ∗(f) ≥ 0− 1

2 + 1
2 = 0.

• If f is incident to a 1-thread of the form uvw and d(u) > 3, then f gets 1
2 from R6(v) or (vi)

(see Figure 5.13(v), (vi)). If d(u) = 3, then u is either a (1, 1, 0)-vertex, or a (1, 0, 0)-vertex,
or a (2, 1, 0)-vertex. By symmetry, the same reasoning holds for w. If one of them is a
(1, 1, 0)-vertex, or a (1, 0, 0)-vertex, then f gets 1

2 by R6(viii) (see Figure 5.13(viii)). If
both of them are (2, 1, 0)-vertices, then we are in Configuration R7 (see Figure 5.11) with
u′′′ 6= w′′′ by Lemma 5.10(iii). In that case, f also receives 1

2 . So, we have in all cases:

µ∗(f) ≥ 0− 1
2 + 1

2 = 0.

• In the remaining case, f receives 1
2 by R6(v), (vi) or (vii) (see Figure 5.13(v), (vi), (vii)).

µ∗(f) ≥ 0− 1
2 + 1

2 = 0.

Vertices

Observation 5.16. Consider a special (3↔5)-vertex u adjacent to an r-vertex v. It follows that
R4 applies, so u gives 1 to v. In return, if d(u) = 3 (resp. d(u) = 4, d(u) = 5), then v gives 2 to
u by R1(i) (resp. R2(i), R3). Additionally, u may give 1

2 (at most twice) along uv to incident
faces by R6(vi), (vii) or (viii) (see Figure 5.14). To sum up, when R4 applies, u does not lose
charge along uv, as in the worst case 2− 1− 2 · 1

2 = 0. Moreover, when R6 does not apply, u gains
2− 1 = 1.

3↔5u r v

(R6(vi-viii))

1 (R4)

2 (R1(i)/R2(i)/R3)

1
2

1
2

Hình 5.14: The charge distribution whenR4 applies. Dashed arrows indicate the possible application
of R6.
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Case 1: d(v) ≥ 8.
Suppose first that d(v) 6= r. Observe that v is involved in R0(i) and (iii), R1(i), R2(i), R3 and v
gives at most 2 to each adjacent vertex by R0(i), R1(i), R2(i), R3 or a combination of R0(i)
and (iii) (in the case of a bridge). Hence,

µ∗(v) ≥ 3d(v)− 8− 2d(v) = d(v)− 8 ≥ 0.

Suppose now that d(v) = r. Additionally, v also gives charges to faces by R5 and R6 and to
sponsored small 2-vertices by R0(ii). Using the same idea as before, we show that v gives at most
2 along each incident edge.

When R5 is applied to v, w.l.o.g. v1 = v in Figure 5.10, one sends 1
2 to f via the edge v1v8.

The edge v1v8 belongs to two faces, hence v1v8 may be involved twice by R5. If v8 has degree at
least 6, then no additional charges transit via v1v8. If v8 is a (3↔5)-vertex, then v1 gives 2 to v8
by R1(i), R2(i), and R3, but it receives 1 by R4 since v8 would be special as v1, v7 are r-vertices.
If v8 has degree 2, then only 1 may transit by R0(i). In all cases, at most 2 transits from v1 along
v1v8.

Consider now that R6 is applied to v. As previously, we show that the charge 1
2 is given to

f via a particular edge on which at most 2 transits. Rule R6 is applied to v in the cases R6(i),
R6(ii), R6(iv), and R6(v). Observe that no charges are given to 6+-vertices. Hence charge 1

2
transits (at most twice) along edge yw in R6(i) and R6(iv), along edge xu in R6(v). In case
R6(ii), charge 1

2 transits (at most twice) along edge xu and x = v gives 1 to u by R0(i). Again at
most 2 transits along each incident edge.

Finally, vertex v can sponsor at most one small 2-vertex by the definition of the sponsor
relation and R0(ii). It follows that:

µ∗(v) ≥ 3d(v)− 8− 2d(v)− 1
≥ d(v)− 9 = r − 9 ≥ 0

Case 2: d(v) = 7.
Observe that v may send 1 by R1(ii), R2(ii), and R0(i) in the case of the 1-thread, and may
send 2 by R0(i) in the case of the 2-thread. As µ(v) = 13, µ∗(v) ≥ 0 except in the case where v is
incident to seven 2-threads, but in that case d∗(v) = 14, contradicting Lemma 5.4 (that implies
d∗(v) ≥ 17).

Case 3: d(v) = 6.
Vertex v may give 1 (resp. 2, 1, 1) by R0(i) in the case of the 1-thread (resp. R0(i) in the case
of the 2-thread, R1(ii), R2(ii)). As µ(v) = 10, µ∗(v) ≥ 0 except in the case where v gives 2 to
each of five of its neighbors and gives at least 1 to its last neighbor, but in that case d∗(v) ≤ 14,
contradicting Lemma 5.4 (that implies d∗(v) ≥ 15).

Case 4: d(v) = 5.
Vertex v may give 1 (resp. 2, 1, 1, 1

2) by R0(i) in the case of the 1-thread (resp. R0(i) in the case
of the 2-thread, R1(ii), R4 when it is a special vertex, and R6(vi)) and may receive 2 (resp. 1)
by R3(i) (resp. R9). Recall µ(v) = 7.

Suppose that R6(vi) is applied to v (v plays the role of u in Figure 5.13(vi)). Let us use the
notations of Figure 5.13(vi). Hence u gives 1

2 to f (let say via the edge ux). It may give 1 to x
by R4 (if u is special), and receives 2 from x by R3. Moreover R6(vi) may be applied to the
two faces incident to ux. When we sum the charges transiting along ux, u may give at most
2 · 1

2 − 2 + 1 = 0. Hence in the following we consider that, if R6(vi) is applied to u, no charges are
transferred along ux.

By Lemma 5.9, v is not a (2, 1+, 1+, 1+, 1+)-vertex. Hence v is incident to at most four 2-threads.
If v is incident to four 2-threads, then v receives 1 from three incident faces by R9 and may give
at most 2, 2, 2, 2, 1 along incident edges ; so µ∗(v) ≥ 7 + 3 − 4 · 2 − 1 = 1. If v is incident to
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exactly three 2-threads, then v receives at least 1 by R9 and may give at most 2, 2, 2, 1, 1 along
incident edges ; so µ∗(v) ≥ 7 + 1− 3 · 2− 2 · 1 = 0. If v is incident to at most two 2-threads, then
µ∗(v) ≥ 7− 2 · 2− 3 · 1 = 0.

Case 5: d(v) = 4.
Vertex v may give 1 (resp. 2, 1, 1

2) by R0(i) in the case of the 1-thread (resp. R0(i) in the case
of the 2-thread, R4, R6(vi)) and may receive 2 (resp. 1, 1) by R2(i) (resp. R2(ii), R9). Recall
µ(v) = 4. Similar to 5-vertices, if R6(vi) is applied to v, then no charges are transferred along
the edge linking v and the r-vertex. By Lemma 5.9, v is not a (2, 1+, 1+, 1+)-vertex. Hence, v is
incident to at most three 2-threads.

If v is incident to three 2-threads, then v is not special, v receives 1 from two incident faces by
R9 and gives 2, 2, 2, 0 along incident edges ; so µ∗(v) = 4 + 2 · 1− 3 · 2 = 0.

Suppose now that v is incident to two 2-threads. If v is not incident to a 1-thread, then we are
done as µ∗(v) = 4 − 2 · 2 = 0 whether v is special or not due to Observation 5.16. So consider
that v is incident to exactly one 1-thread by Lemma 5.9 and so is not special. The 3+-neighbor
of v has degree at least 6 (otherwise it contradicts Lemma 5.4, d∗(v) ≤ 11 while we must have
d∗(v) ≥ 12), then it gives at least 1 to v by R2 and so µ∗(v) ≥ 4 + 1− 2 · 2− 1 = 0.

Finally assume that v is incident to at most one 2-thread. If v gives at most one along each
incident edge, then we are done (as µ∗(v) ≥ 4− 4 · 1 ≥ 0). So assume that v gives 2 to one of its
neighbors. In that case, it means that R0(i) applied and v is thus incident to exactly one 2-thread.
Since v is not a (2, 1+, 1+, 1+)-vertex, it may be incident to at most two 1-threads. If v is incident to
a 2-thread and two other 1-threads, then v is not special. Hence we have µ∗(v) ≥ 4− 2− 1− 1 ≥ 0.

Case 6: d(v) = 3.
Vertex v may give 1 (resp. 2, 1

2 , 1) by R0(i) in the case of the 1-thread (resp. R0(i) in the case of
the 2-thread, R6, R4) and may receive 2 (resp. 1, 1, 1) by R1(i) (resp. R1(ii), R1(iii), R9). Recall
µ(v) = 1. By Lemma 5.9, v is not a (2, 1+, 1+)-vertex. Let us examine all possible configurations
for v.

• Suppose that v is a (2, 2, 0)-vertex. Let v1, v2, and u be the two 2-neighbors and 3+-neighbor
of v respectively. Since v is not special, R4 does not apply. Vertex v does not fall into any
configuration of R6, so R6 does not apply. Vertex v gives 2 to each of its 2-neighbors by
R0(i). By Lemma 5.7, the other endvertices of the two 2-threads are r-vertices; so v falls
into the configuration in R9 and receives 1 from an incident face. Moreover, v1 and v2 satisfy
d∗(vi) = 5 ≤ r (i = 1, 2). By Lemma 5.4, d∗(v) ≥ 12 and d∗(v) = d(u) + 4, so d(u) ≥ 8. By
R1(i), v receives 2 from u. In total, we have

µ∗(v) ≥ 1− 2 · 2 + 1 + 2 = 0.

• Suppose that v is a (2, 1, 0)-vertex. Let v1, v2, and u be the two 2-neighbors (where v1
belongs to the 2-thread and v2 belongs to the 1-thread) and 3+-neighbor of v respectively.
As previously, v is not special. Vertex v1 has d∗(v1) = 5 ≤ r. By Lemma 5.4, d∗(v) ≥ 11,
and d∗(v) = d(u) + 4, so d(u) ≥ 7. It follows that R6 does not apply (in particular R6(iii)).

If d(u) ≥ 8, then v receives 2 from u by R1(i). Hence, by R0(i) and R1(i), we have:

µ∗(v) ≥ 1− 2− 1 + 2 = 0.

If d(u) = 7, then v receives 1 from u by R1(ii). Moreover, the neighbor of v2 (different from
v) has degree at least 8 by Lemma 5.11. Hence v receives 1 from v2 by R1(iii). It follows
that:

µ∗(v) ≥ 1− 2− 1 + 1 + 1 = 0.
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• Suppose that v is a (2, 0, 0)-vertex. Let x1, x2 be the 0-thread neighbors of v and v1 be the
2-thread neighbor of v.
Suppose first that v is not concerned by R6(vii) (i.e. v only gives charge to vertices). Vertex
v1 satisfies d∗(v1) = 5 ≤ r. By Lemma 5.4, d∗(v) ≥ r+ 2. Since d∗(v) = d(x1) + d(x2) + 2, we
have d(x1) + d(x2) ≥ r ≥ 9. W.l.o.g. x1 has degree at least 5. Note that, if v is non-special,
then R4 does not apply and v receives at least 1 from x1 by R1(i) or R1(ii); if v is special,
then d(x1) = d(x2) = r, v gives 1 to x1 and x2 by R4 and receives 2 from x1 and x2 by
R1(i). In both case, we can consider that v receives at least 1 from x1. So

µ∗(v) ≥ 1− 2 + 1 = 0.

Suppose now that R6(vii) is applied to v. Observe that R6(vii) is applied once. If v is
non-special, then v receives 2 from its r-neighbor by R1(i); if it is special, by the same
arguments as in the previous paragraph, we can consider that v receives 1 from both x1 and
x2 (by R1(i) and R4). So

µ∗(v) ≥ 1− 2− 1
2 + 2 > 0.

• Suppose that v is a (1, 1, 1)-vertex. Note that only R0(i), R1(iii), and R6(iii) may concern
v. Vertex v gives 1 to each 2-neighbor by R0(i) and 1

2 to at most one incident face by R6(iii)
and Lemma 5.10(ii). Let vxw be a 1-thread incident to v. We have d∗(v) = 6 ≤ r. It follows
that d∗(x) ≥ 11 by Lemma 5.4 and as d∗(x) = d(w) + 3, we have d(w) ≥ 8, meaning that
R1(iii) applies. Thus,

µ∗(v) ≥ 1− 3 · 1− 1
2 + 3 · 1 > 0.

• Suppose that v is a (1, 1, 0)-vertex. Let vv1w1 and vv2w2 be the two 1-threads incident to v
and let u be the 3+-neighbor of v. Note that v is not special, and it may be concerned by
R0(i), R1, R6(iii), and R6(viii).
Suppose first that v is not concerned by R6 (i.e. v only gives charge to vertices). By R0(i),
v gives 1 to each of its 2-neighbors.
If d(u) ≥ 5, then we have by R1(i) and R1(ii):

µ∗(v) ≥ 1− 2 · 1 + 1 = 0.

If d(u) ≤ 4, then d∗(v) = 8 ≤ r. By Lemma 5.4, d∗(v1) ≥ 11. As d∗(v1) = d(w1) + 3, we have
d(w1) ≥ 8 meaning that v receives 1 from v1 by R1(iii) (and from v2 by symmetry). Hence,

µ∗(v) ≥ 1− 2 · 1 + 2 · 1 > 0.

Suppose that R6(iii) or R6(viii) is applied to v.
Assume we are in configuration R6(viii). Vertex v gives 1 to each of its 2-neighbors and 1

2
to at most three incident faces (by a combination of R6(iii) and R6(viii)), and receives 2
from u by R1(i). If it gives charge to three faces, then w1 and w2 are also endvertices of a
3-thread, meaning that they are of degree r ≥ 8. By R1(iii), v receives 1 from each bridge
v1 and v2. Thus,

µ∗(v) ≥ 1− 2 · 1− 3 · 1
2 + 2 + 2 · 1 > 0.

Now, if v only gives charge to at most two faces, then we have:

µ∗(v) ≥ 1− 2 · 1− 2 · 1
2 + 2 = 0.
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Assume we are in configuration R6(iii) (only, otherwise we are in the previous case). Let us
reuse the notation of Figure 5.13. Observe that either w has degree 2 and u and w are two
bridges (since x and y are r-vertices), or w is a (3↔5)-vertex and the endvertices of the
1-threads incident to v (different from v) are 8+-vertices by Lemma 5.4 implying that the
2-neighbors of v are bridges. Hence if R6(iii) is applied at most twice, we have by R0(i)
and R1(iii):

µ∗(v) ≥ 1− 2 · 1− 2 · 1
2 + 2 · 1 = 0.

Now, if R6(iii) is applied three times, then we obtain the configuration depicted by Fig-
ure 5.2(iv) which is forbidden by Lemma 5.10.

• Suppose that v is a (1, 0, 0)-vertex. Let u, v1, and v2 be its 2-neighbor and the two 3+-
neighbors of v, respectively. First note that each time R4 applies, by Observation 5.16, in
the worst case, the total number of charges transferred via vv1 and vv2 is 0. So,

µ∗(v) ≥ 1− 1 = 0

Suppose now that R6(iii), (vii) or (viii) is applied to v (which is not special).
If R6(vii) or R6(viii) is applied to v, then (at least) one of the 3+-neighbors of v is an
r-vertex. So v gains 2 by R1(i). It follows that

µ∗(v) ≥ 1− 1− 3 · 1
2 + 2 > 0.

Suppose now only R6(iii) is applied to v. Observe that R6(iii) may be applied at most twice.
Vertex v receives 1 from the bridge by R1(iii). Hence,

µ∗(v) ≥ 1− 1− 2 · 1
2 + 1 = 0.

• Suppose that v is a (0, 0, 0)-vertex. If R4 is applied (i.e. v is special), then v does not need
any charge by Observation 5.16. Suppose that v is not special. Vertex v may give charge to
faces only by R6(vii) and in that case it receives 2 from its r-neighbor by R1(i). It follows
that:

µ∗(v) ≥ 1− 3 · 1
2 + 2 > 0.

Case 7: d(v) = 2.
We have µ(v) = −2. Vertex v receives 2 by R0(i) unless v is a small 2-vertex. When v is small,
it receives 1 from its sponsor by R0(ii) and twice 1

2 from incident faces by R8. Now if v is a
bridge, then it also gives 1 to a 3-vertex by R1(iii), but it also receives 1 from R0(iii). In all cases,
µ∗(v) = 0.

To sum up, we have proven that we started out with a negative total number of charge, and
after the discharging procedure that preserves this sum, we end up with a non-negative one, a
contradiction. That completes the proof of Theorem 5.2.

5.2 Injective and exact square coloring
A 2-distance coloring can also be seen as a proper coloring of such that every pair of vertices

with a common neighbor receive distinct colors. If we remove the proper constraint on the coloring,
then we get what is called an injective coloring. The injective chromatic number, denoted by χi(G),
is the smallest integer k such that there exists an injective coloring of G with k colors. We can
also extend these notions to list coloring.
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The injective coloring was first introduced in 2002 by Hahn et al. [64]. The authors proved
that for every graph G, ∆ ≤ χi(G) ≤ ∆2 −∆ + 1. They also characterized the regular graphs
which achieve the lower bound, and the graphs which attain the upper bound. In 2005, Doyon et
al. [49] presented the first results on injective colorings of planar graphs and later Chen et al. [32]
posed the following conjecture.

Conjecture 5.17 (Chen et al. [32]). Let G be a planar graph with maximum degree ∆. Then,

χi(G) ≤
⌈3

2∆
⌉
.

As injective coloring is less restrictive, one might believe that it will require less colors than
2-distance coloring. However, in 2015, Lužar and Škrekovski [95] refuted this false intuition and
Conjecture 5.17 was proven to be incorrect. In their paper, they presented an infinite family of
planar graphs with small maximum degree (between 4 and 7), or of even maximum degree, for
which Conjecture 5.17 is false. For ∆ ∈ {4, 5, 6, 7} they proved that there exist planar graphs
which require ∆ + 5 colors and for ∆ ≥ 8 they proved that there exist planar graphs which
require b3

2∆c+ 1 colors, which is one more color than the conjectured bound. Finally, the authors
proposed a conjecture which closely resembles Wegner’s conjecture with the only difference being
the subcubic case.

Conjecture 5.18 (Lužar, Škrekovski [95]). Let G be a planar graph with maximum degree ∆.
Then,

χi(G) ≤


5, if ∆ ≤ 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,⌊

3
2∆
⌋

+ 1, if ∆ ≥ 8.

Note that since injective coloring is a relaxation of the 2-distance coloring, proving Wegner’s
conjecture would prove Conjecture 5.18 (except in the case of subcubic graphs). Brimkov et al. [21]
proved that 5 colors suffice for subcubic planar graphs with girth at least 6, but in general the
case when ∆ = 3 is still open. If true, then the conjectured upper bound for subcubic graphs is
also tight (see [95]). For the sake of completeness we present a table summarizing the latest known
results regarding the injective chromatic number of planar graphs for different girth values like
what we did for 2-distance coloring.

Table 5.2 is read as follows. For example, the result from line “7” and column “∆” reads:
“every planar graph G of girth at least 7 and of ∆ at least 16 satisfies χi(G) ≤ ∆ + 1”. The
highlighted results are part of our contribution.

The negative results are the following:

• Girth 3 to 6 in column “∆” correspond to Figure 5.15.

• Girth 10 in column “∆” corresponds to the existence of a subcubic graph with girth 10 and
χi ≥ 4 [96].

• Similar constructions for girth 3 in columns “∆ + 1” to “∆ + 4” are presented in [32] and [95].

• Girth 3 and columns “∆ + 5” to “∆ + 7” correspond to the existence of a planar graph with
girth 3 and χi ≥ b3

2∆c+ 1 for all ∆ ≥ 8 [95].

• Girth 4 and columns “∆ + 1” to “∆ + 7” correspond to the existence of a planar graph with
girth 4 and χi ≥ d3

2∆e for all ∆ ≥ 3 [96].
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g0

χi ∆ ∆ + 1 ∆ + 2 ∆ + 3 ∆ + 4 ∆ + 5 ∆ + 6 ∆ + 7

3 ����∆ ≥ 4 [95] ����∆ ≥ 4 [95]
∆ = 3 [32] ����∆ ≥ 4 [95] ����∆ ≥ 10 [95] ����∆ ≥ 12 [95] ����∆ ≥ 14 [95]

∆ = 4

4 ����∆ ≥ 4 [96] ����∆ ≥ 6 [96] ����∆ ≥ 8 [96]
∆ = 3 [32] ����∆ ≥ 10 [96] ����∆ ≥ 12 [96]

∆ = 4 ����∆ ≥ 14 [96] ����∆ ≥ 16 [96]

5 ∆ = 3 [32]
∆ ≥ 35 [45] ∆ ≥ 11 [23] ∆ ≥ 11 [23] ∆ ≥ 3 [45]

6 ∆ ≥ 17 [44] ∆ = 3 [21]
∆ ≥ 8 [30] ∆ ≥ 3 [44]

7 ∆ ≥ 16 [14] ∆ ≥ 7 [29] ∆ = 3 [96]
∆ ≥ 4 [38]

8 ∆ ≥ 10 [14] ∆ ≥ 5 [30]
9 ∆ ≥ 9 [31] ∆ ≥ 4 [41]

10 ∆ ≥ 6 [14]
����∆ = 3 [96] ∆ ≥ 3 [96]

11
12 ∆ ≥ 5 [14]
13 ∆ ≥ 4 [41]
19 ∆ ≥ 3 [96]

Bảng 5.2: Summary of the latest results with a coefficient 1 before ∆ in the upper bound of χi.

∆ vertices

Hình 5.15: A graph with girth 6 and χi ≥ ∆ + 1 (drawn for ∆ = 3) [96].

Another natural relaxation in p-distance coloring is by replacing “at most” in the constraint
that “every pair of vertices at distance at most p must receive distinct colors” by “exactly”. This
gave birth to the study of exact p-distance colorings [101]. This parameter received an increasing
attention in the last decade ([20, 59, 70, 103]). In [59], Foucaud et al. began the first systematic
study of the exact square coloring (exact 2-distance coloring) with respect to the maximum degree.
In their paper they considered the exact square coloring for some specific classes of subcubic
graphs.

We denote χ#2(G), the exact square chromatic number, is the smallest integer k such that
there exists an exact square coloring of G with k colors. By definition, an injective coloring is
also an exact square coloring as vertices at distance 2 must share a common neighbor. Thus,
exact square coloring is also a relaxation of injective coloring (see Figure 5.16 for examples of a
comparison of these colorings). Hence, we obtain the following chain of inequalities:

χ#2(G) ≤ χi(G) ≤ χ2(G).

Moreover, χ#2(G) = χi(G) in the case of triangle-free graphs, i.e., graphs in which no pair of
adjacent vertices share a common neighbor. Consequently, all the results in Table 5.2, except for
the row corresponding to girth at least 3, also hold for exact square coloring.
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4 1

2

3

(i) A 2-distance coloring.

1 1

2

3

(ii) An injective coloring.

2 1

1

1

(iii) An exact square coloring.

Hình 5.16: A 2-distance coloring, injective coloring, and exact square coloring of the same graph.

Below are our results for injective and exact square colorings.

Theorem 5.19 ([89]). If G is a planar graph with ∆(G) = 4, then χi`(G) ≤ ∆(G) + 7.

Theorem 5.20 ([89]). If G is a planar graph with g(G) ≥ 4 and ∆(G) = 4, then χ#2
` (G) =

χi`(G) ≤ ∆(G) + 5.

Theorem 5.21 ([89]). If G is a planar graph with ∆(G) = 4, then χ#2
` (G) ≤ ∆(G) + 6.

The proofs of these results rely heavily on faces of the considered planar graphs and none
of them, even in their non-list version, can be extended to non-planar graphs as there exists a
4-regular bipartite graph on 26 vertices with χ2 = χi = χ#2 = 13 (see Figure 5.17). However,
this graph has mad = 4 while some of our results are on planar graphs with girth 4 which
have mad < 2·4

4−2 = 4 so one might think that it might be extendable to graphs with mad < 4.
Unfortunately, in this case, removing any vertex of the graph in Figure 5.17 will yield a graph
with mad < 4 and χ#2 ≥ 12, which still proves that these results are “optimal” in the sense that
planarity is needed not only for sparseness.

Hình 5.17: A 4-regular bipartite graph on 26 vertices with χ#2 = 13.
Graph6 string of the graph: Ys_?????????????GwA?wOGoco?WQ?gK?‘I?G‘O?dO?AIG?Ac_?AX???

In this chapter, we will only present the proof of Theorem 5.20 as the other proofs also follow
similar ideas. Every proof can be found in the Appendix.

Let G be a counterexample to Theorem 5.20 minimizing the number of edges plus vertices.
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5.2.1 Structural properties of G

In this section, we abuse the list notation L to mean the remaining list of colors for non-colored
vertices in a precoloring of G.

Observe that since g(G) ≥ 4, whenever two vertices are adjacent, they do not see each other
(they do not share a common neighbor). Otherwise, G would contain a 3-cycle. As a result, an
injective coloring of G is also an exact square coloring as only vertices at distance exactly 2 see
each other.

Lemma 5.22. δ(G) ≥ 2.

Chứng minh. If G contains a 1-vertex v, then we can simply remove v and color the resulting
graph, which is possible by minimality of G. Then, we add v back and extend the coloring, since v
shares a neighbor with at most 3 other vertices and we have 9 colors in total.

We do not have enough colors to reduce a 2-vertex directly. However, the presence of such a
“small” vertex guarantees that its neighbors must have a large neighborhood. From now on, for
every vertex u ∈ V (G), we denote d#2(u) the number of vertices at distance exactly 2 from u.

Lemma 5.23. If a 4-vertex u in G is adjacent to a 2-vertex, then d#2(u) ≥ 9.

Chứng minh. Suppose by contradiction that u is a 4-vertex that is adjacent to a 2-vertex v and
d#2(u) ≤ 8. Then, color G− {v} by minimality and uncolor u. Vertex u sees as many colors as
d#2(u) ≤ 8, so it is colorable. Finish by coloring v which sees only d#2(v) ≤ 6 colors.

Lemma 5.24. Graph G cannot contain the following configurations:

(i) Two adjacent 3−-vertices.

(ii) A 4-vertex adjacent to two 2-vertices.

(iii) A 4-vertex adjacent to a 2-vertex and two 3-vertices.

(iv) A 2-vertex incident to a 4-cycle.

(v) A 3-vertex incident to two 4-cycles.

(vi) A 4-vertex u adjacent to a 2-vertex and a 3-vertex v, and uv is incident to a 4-cycle.

u v

(i)

u

(ii)

u

(iii)

u

(iv)

u

(v)

u v

(vi)

Hình 5.18: Reducible configurations in Lemma 5.24.
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Chứng minh. We separate the proof into four parts based on the configurations.

(i) Suppose by contradiction that there exist two adjacent 3−-vertices u and v. Color G− {uv}
by minimality. Uncolor u and v. Observe that d#2(u) ≤ 8. The same holds for v. Thus, u
and v are colorable.

(iv) Suppose by contradiction that there exists a 2-vertex u incident to a 4-cycle. Color G− {u}
by minimality. Observe that the two neighbors of u will also have different colors in G since
they are at distance 2 in G− {u}. Thus, we only need to color u which sees only d#2(u) ≤ 5
colors.

(v) Suppose by contradiction that there exists a 3-vertex u incident to two 4-cycles. Let e be the
edge incident to u that is incident to both cycles. Color G− {e} by minimality and uncolor
u. Observe that every pair of neighbors of u are still at distance 2 in G− {e}. Thus, we only
need to color u which sees only d#2(u) ≤ 7 colors.

(ii), (iii), and (vi) Observe that the 4-vertex u with the 2-neighbor in these configurations always
verifies d#2(u) ≤ 8, which is impossible due to Lemma 5.23.

Thus, if G contains any of the above configurations, then χi`(G) ≤ 9, a contradiction.

Before continuing with proving some more structural results, we first give some additional
useful definitions and observations.

Definition 5.25 (Good and bad faces). We call a 5-face bad if it is incident to a 2-vertex and a
3-vertex. Additionally, we call a 5+-face good, if it is not a bad 5-face.

The following observation is a direct consequence of Lemma 5.24(i).

Observation 5.26. A 2-vertex and a 3-vertex on a bad 5-face f in G must be at distance 2 and
they are the only 3−-vertices on f .

Hình 5.19: A bad face.

To further help us with the proofs, we now divide 3−-vertices into three different types.

Definition 5.27 (Small, medium, and large 3−-vertices). We call a 3−-vertex small, if it is either
a 2-vertex or a 3-vertex incident to a bad 5-face and a 4-face. A 3-vertex is called medium, if it is
incident to either a bad 5-face or a 4-face. Finally, a 3-vertex is called large, if it is neither medium
nor small.

Due to Lemma 5.24(vi) we have the following observation.

Observation 5.28. A 4-face in G, adjacent with a bad 5-face f and incident to a small 3-vertex
v, cannot be incident to the common neighbor of v and the 2-vertex on f .
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u

u

(i) A small vertex u.

u
u

5+-face

5+-face

(ii) A medium vertex u.

Hình 5.20: Small and medium 3−-vertices.

We are now ready to prove some structural properties regarding bad 5-faces.

Lemma 5.29. Let f = v1v2v3v4v5 be a bad 5-face in G where v1 is the 3-vertex and v3 is the
2-vertex. Let f ′ = v′1v

′
2v
′
3v
′
4v
′
5 6= f be another 5-face incident to v1 = v′1. Then, we have the

following:

• If f ′ is incident to v1v2, then f ′ does not contain any other 3−-vertices (distinct from v1).

• If f ′ is incident to v1v5, then f ′ does not contain any other small vertices (distinct from v1).

v5

v4

v3

4
v2

1

v1

2

v′5

v′4
2

v′3

Case 1.

v2

v3

v4

v5

v1

v′2

v′3

v′4

Case 2.

Hình 5.21: Reducible configurations from Lemma 5.29.

Chứng minh. We assume w.l.o.g. that v′1 = v1. Since g(G) ≥ 4, every vertex of f and f ′ (except
for the two common vertices that are v1 and one of its neighbor) is distinct.

Suppose by contradiction that f ′ contains (another) small vertex different from v1.
Case 1: Supposef ′ is incident to v1v2, say v′2 = v2. First, observe that d(v′3) = 4 due to

Lemma 5.24(iii) and d(v′5) = 4 due to Lemma 5.24(i). Thus, v′4 must be a 3−-vertex. Color
G−{v3} and uncolor v1, v2, and v′4. Observe that |L(v1)| ≥ 2, |L(v2)| ≥ 1, |L(v3)| ≥ 4, |L(v′4)| ≥ 2.
Therefore, we can color v2, v′4, v1, and v3 in this order.

Case 2: Suppose f ′ is incident to v1v5, say v′5 = v5. By Lemma 5.24(i), v′2 cannot be a small
vertex, and at most one of v′3 and v′4 can be. Thus, we have the following two cases:

• If v′4 is a 3−-vertex, then color G−{v3} and uncolor v1, v4, and v′4. Observe that |L(v1)| ≥ 3,
|L(v4)| ≥ 1, |L(v3)| ≥ 4, |L(v′4)| ≥ 2. Therefore, we can color v4, v′4, v1, and v3 in this order.

• If v′3 is a 3−-vertex, then recall that v′3 is a small vertex.

– If v′3 is a small 3-vertex, then it is incident to a bad 5-face f ′′ 6= f ′ (since f ′ is a good
face) and a 4-face. If f ′′ is incident to v′2v′3, then the 4-face must be incident to v′3v′4.
By Lemma 5.24(iii, vi), f ′′ cannot be incident to a 2-vertex, which is a contradiction.
Thus, f ′′ must be incident to v′3v′4. By Lemma 5.24(vi), the 2-vertex incident to f ′′
must be adjacent to v′4. However, in this case, we can use the same proof as in Case 1
from the point of view of v′3, f ′′, and f ′ instead.
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– If v′3 is a 2-vertex, then we color G−{v3} and uncolor every vertex on f and f ′. Observe
that the remaining list of colors for these vertices have size: |L(v1)| ≥ 5, |L(v2)| ≥ 3,
|L(v3)| ≥ 5, |L(v4)| ≥ 2, |L(v5)| ≥ 2, |L(v′2)| ≥ 3, |L(v′3)| ≥ 5, and |L(v′4)| ≥ 2.
Moreover, if we can color v2, v4, v5, v′2, and v′4, then we can always finish by coloring
v1, v′3, and v3 in this order.
If L(v4) and L(v5) have a common color c, then we color them with c and color v′4, v2,
and v′2 in this order. The same holds for L(v′4) and L(v5). As a result, |L(v4)∪L(v5)| ≥ 4
and |L(v′4) ∪ L(v5)| ≥ 4.
If L(v4) and L(v′2) have a common color c, then we proceed as follows. Suppose v4 and
v′2 do not see each other, then we color them with c. Recall that L(v′4) ∩ L(v5) = ∅. So,
we can color v′4, v2, and v5 in this order. The same holds for L(v′4) and L(v2). As a
result, if L(v4) and L(v′2) share a color, then v4 must see v′2. The same holds for v′4 and
v2. By planarity, v2, v4, v′2, and v′4 must share a common neighbor u. However, this is
impossible since v3 would be a 2-vertex incident to the 4-cycle v2v3v4u contradicting
Lemma 5.24(iv). Finally, we must have |L(v4) ∪ L(v′2)| ≥ 5 or |L(v′4) ∪ L(v2)| ≥ 5.
Finally, we have |L(v4)∪L(v5)| ≥ 4, |L(v′4)∪L(v5)| ≥ 4, and at least one of the following
two inequalities: L(v4) ∪ L(v′2)| ≥ 5 or |L(v′4) ∪ L(v2)| ≥ 5. Therefore, we can always
color v2, v4, v5, v′2, and v′4 by Hall’s theorem.

Thus, we can conclude that χi`(G) ≤ 9, a contradiction.

Finally, we show that small vertices cannot be close to each other from the perspective of a
face of size at least 6.

Definition 5.30 (Facial-distance). Let f = u1u2 . . . ud(f) be a face in F (G), and let ui and uj be
vertices incident to f . The facial-distance on f between ui and uj is their distance on the cycle
u1u2 . . . ud(f) (which is min(i− j(mod d(f)), j − i(mod d(f)))).

Lemma 5.31. Two small vertices incident to a same 6+-face f in G are at facial-distance at least
3 on f .

Chứng minh. By Lemma 5.24(i), small vertices cannot be adjacent. By Lemma 5.24(ii), two
2-vertices must be at distance at least 3. We only need to check if a small 3-vertex and a 2-vertex,
or two small 3-vertices can be at facial-distance 2 on f . Let f = v1v2v3v4 . . . is a 6+-face.

Suppose that v1 is a 2-vertex and v3 a small 3-vertex. Observe that v2v3 cannot be incident to
a 4-face by Lemma 5.24(vi), so v3v4 must be incident to a 4-face and v2v3 is incident to a bad
5-face (different from f since f is a 6+-face). However, due to Lemma 5.24(ii, vi), the bad 5-face
incident to v2v3 cannot be incident to a 2-vertex, which is a contradiction.

Now, suppose that v1 and v3 are small 3-vertices. They must both be incident to some 4-faces
and bad 5-faces. If v3v4 is incident to a 4-face, then v2v3 must be incident to a bad 5-face. However,
by Lemma 5.24(i, iii, vi), this 5-face cannot be incident to any 2-vertex. As a result, v2v3 must be
incident to a 4-face. By symmetry, v1v2 is also incident to a 4-face. Additionally, v3v4 must be
incident to a bad 5-face. By Lemma 5.24(vi), the 2-vertex u on this bad 5-face must be adjacent
to v4. Now, color G − {u} and uncolor v4 and v2. Observe that |L(v4)| ≥ 1, |L(v2)| ≥ 2, and
|L(u)| ≥ 3. Thus, we can finish by coloring v4, v2, and v3 in this order.
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v3

v2

f
v1 v2

f
v3

v4

v1

v2

f

v3

v4

v1

v4

v3

v2

f
v1

Hình 5.22: Reducible configurations in Lemma 5.31.

5.2.2 Discharging procedure

We assign to each vertex the charge µ(v) = d(v) − 4, and to each face µ(f) = d(f) − 4. By
Euler’s formular, we have ∑v∈V (G) µ(v) +∑

f∈F (G) µ(f) = −8. To get a contradiction, we apply
the following rules in the discharging procedure:

R0 Every 5+-face f gives 1 to each 2-vertex.

R1 Every good 5+-face f gives 1 to each small 3-vertex.

R2 Every good 5+-face f gives 1
2 to each medium 3-vertex.

R3 Every 5+-face f gives 1
3 to each large 3-vertex.

u

f

1

Hình 5.23:
R0.

u

f

1

Hình 5.24: R1.

u

f

1
2 u

f

1
2

Hình 5.25: R2.

f
1
3

Hình 5.26:R3.

Let µ∗ be the assigned charges after the discharging procedure. In what follows, we will prove
that:

∀x ∈ V (G) ∪ F (G), µ∗(x) ≥ 0.

Vertices

Let u be a vertex in V (G). Vertex u has degree at least 2 by Lemma 5.22. Recall that ∆(G) = 4
and µ(u) = d(u)− 4.
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Case 1: If d(u) = 4, then u does not give any charge. So,

µ∗(u) = µ(u) = d(u)− 4 = 0.

Case 2: If d(u) = 3, then µ(u) = d(u)− 4 = −1 and we have the following cases:
• If u is a small 3-vertex, then u is incident to one good 5+-face due to Lemma 5.24(v) and

Lemma 5.29. By R1, we have
µ∗(u) ≥ −1 + 1 = 0.

• If u is a medium 3-vertex, then it is incident to two good 5+-faces due to Lemma 5.24(v)
and Lemma 5.29. By R2, we have

µ∗(u) ≥ −1 + 2 · 1
2 = 0.

• If u is a large 3-vertex, then by definition, u is incident to only 5+-face. Thus, by R3, we
have

µ∗(u) ≥ −1 + 3 · 1
3 = 0.

Case 3: If d(u) = 2, then u has to be incident to only 5+-faces due to Lemma 5.24(iv). By
R0, we have

µ∗(u) ≥ 2− 4 + 2 · 1 = 0.

Faces

Let f be a face in F (G). Recall that µ(f) = d(f) − 4 and d(f) ≥ 4 since g(G) ≥ 4. Let i0,
i1, i2, and i3 be respectively the number of times f gives charge by R0, R1, R2, and R3. We
distinguish the following cases.

Case 1: d(f) ≥ 7
Let u and v be two small vertices on f . By Lemma 5.31, u and v must be at facial-distance at least
3 on f . As a result, the neighbors of u and v on f are distinct. Moreover, due to Lemma 5.24(i),
those neighbors are 4-vertices. Thus, we also have i2 + i3 ≤ d(f)−3(i0 + i1). Due to Lemma 5.24(i),
we also have i2 + i3 ≤ 1

2d(f). Consequently, i2 + i3 ≤ min(d(f)− 3(i0 + i1), 1
2d(f)).

We claim that f gives at most 5
12d(f) charge away. Indeed, recall that f gives i0 + i1 + 1

2 i2 + 1
3 i3

by R0, R1, R2, and R3. By the above inequalities,
• if d(f)− 3(i0 + i1) ≤ 1

2d(f), then i0 + i1 ≥ 1
6d(f). Moreover, we get

i0 + i1 + 1
2 i2 + 1

3 i3 ≤ i0 + i1 + 1
2(i2 + i3)

≤ i0 + i1 + 1
2(d(f)− 3(i0 + i1))

≥ 1
2(d(f)− (i0 + i1))

≥ 1
2(d(f)− 1

6d(f))

≥ 5
12d(f)

• if d(f)− 3(i0 + i1) > 1
2d(f), then i0 + i1 <

1
6d(f). Moreover, we get

i0 + i1 + 1
2 i2 + 1

3 i3 ≤ i0 + i1 + 1
2(i2 + i3)

≤ 1
6d(f) + 1

2 ·
1
2d(f)

≥ 5
12d(f)
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To conclude, we have

µ∗(f) ≥ d(f)− 4− 5
12d(f) ≥ 7

12d(f)− 4 ≥ 0

since d(f) ≥ 7.
Case 2: d(f) = 6

Similar to the previous case, two small vertices cannot be at facial-distance 2 on f by Lemma 5.31.
As a result, we get i0 + i1 ≤ 2. Moreover, by Lemma 5.24(i), two 3−-vertices cannot be adjacent,
so we get i0 + i1 + i2 + i3 ≤ 3⇔ i2 + i3 ≤ 3− (i0 + i1). Now, we distinguish the following cases.

• Suppose i0 + i1 = 2. Observe that, since small vertices cannot share neighbors on f and their
neighbors are all 4-vertices, we have exactly two 3−-vertices on f . In other words, i2 + i3 = 0.
Recall that µ(f) = d(f)− 4 = 2 and that f gives i0 + i1 + 1

2 i2 + 1
3 i3 by R0, R1, R2, and

R3. Thus,
µ∗(f) ≥ 2− (i0 + i1 + 1

2 i2 + 1
3 i3) = 2− 2 + 0 = 0.

• Suppose i0 + i1 ≤ 1. We get

µ∗(f) ≥ 2− (i0 + i1 + 1
2 i2 + 1

3 i3) ≥ 2− (i0 + i1 + 1
2(3− (i0 + i1))) ≥ 1

2 −
1
2(i0 + i1) ≥ 0.

Case 3: d(f) = 5
Recall that µ(f) = d(f)− 4 = 1. Observe that we have the following inequalities.

• i0 + i1 + i2 + i3 ≤ 2 since there are no adjacent 3−-vertices by Lemma 5.24(i).

• i0 ≤ 1 due to Lemma 5.24(ii).

• i1 ≤ 1 due to Lemma 5.29.

Recall that f gives i0 + i1 + 1
2 i2 + 1

3 i3.

• If i0 = 1, then either f is incident to a 3-vertex, in which case, it is a bad 5-face and R1,
R2, R3 do not apply (by definition of a bad face), or it is not incident to any 3-vertex. In
both cases, i1 + i2 + i3 = 0. So,

µ∗(f) ≥ 1− (i0 + i1 + 1
2 i2 + 1

3 i3) ≥ 1− (1 + 0) = 0.

• If i0 = 0 and i1 = 1, then f cannot be incident to any other (than the small 3-vertex)
3−-vertices due to Lemma 5.29. As a result, i2 + i3 = 0. So,

µ∗(f) ≥ 1− (i0 + i1 + 1
2 i2 + 1

3 i3) ≥ 1− (1 + 0) = 0.

• If i0 = i1 = 0, then

µ∗(f) ≥ 1− (i0 + i1 + 1
2 i2 + 1

3 i3) ≥ 1− (0 + 1
2 · 2) = 0.

Case 4: d(f) = 4
Recall that µ(f) = d(f)− 4 = 0. Since f does not give any charge, we have

µ∗(f) = µ(f) = 0.

We started with a negative total charge, but after the discharging procedure, which preserved
the total sum, we end up with a non-negative total sum. In other words, there exist no counter-
examples to Theorem 5.20.
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Conclusion

In this thesis, we discussed two main aspects of the problem of 2-distance coloring of sparse
graphs: the technical aspects of the proofs that relate more to the class of graphs, and the difficulty
of understanding the behavior of 2-distance coloring.

Starting with the proof techniques, in Chapter 2, the potential method helped more configura-
tions, thus improving the previously known results. However, our usage of the potential function
remains quite rudimentary as it is only a reformulation of the constraint on the maximum average
degree. It is also only related to the class of graphs (with bounded maximum average degree) and
does not exploit the properties of the coloring. Designing a better suited potential function by
using knowledge of critical graphs for the parameters of the coloring (see for instance [37]) seems
to be the next step in this direction.

In Chapter 3, we exploited the presence of faces in planar graphs with the help of computer
assistance. It seems very natural to apply these ideas to graphs that are embeddable on orientable
surfaces with a higher genus. For these classes of graphs, Euler’s formula (|V | − |E|+ |F | = 2− 2γ
where γ is the genus of the graph) also provides a bound on the number of edges compared to the
number of vertices and faces in the graph, which lends itself well to using the discharging method.

Recently, Bousquet et al. [19] proposed a linear programming approach to automatically
look for a discharging proof. Similar to our algorithm, this implementation can return a set of
to-be-reduced configurations that will help with the research process and there are also restrictions
on the type of rules that can be implemented. In our case, there are less constraints on the set
of rules that can be defined and the algorithm consists in generating all cases and verifying if
such set suffices. Whereas, the upside of algorithm in [19] is the capability of finding the rules
automatically. However, this process is not fully autonomous as part of the rules has to be decided
manually to limit the number of cases the algorithm has to go through. While these ideas of
automatic discharging only work for colorings with local constraints, they contribute towards the
next step for the discharging method: automatic proofs.

For 2-distance coloring, in Chapter 4, we discussed how there was a lack of constructions of
planar graphs with high 2-distance chromatic number which fundamentally stems from a lack of
understanding of the behavior of this type of coloring. Since the intuition for Wegner’s Conjecture
comes from planar graphs with diameter 2, the next step towards a better understanding of the
coloring and towards proving the conjecture in the general case is to study the 2-distance chromatic
number of planar graphs with a fixed diameter.

Either confirming or disproving Wegner’s Conjecture for 2-distance coloring of planar graphs
will also provide a better insight into general distance coloring and get us closer to answering
another one of Wegner’s Conjectures:

Conjecture 6.1 ([117]). For all integers k ≥ 1 and ∆ ≥ 3,

max
{G|∆(G)=∆}

χk(G) = max
{G|∆(G)=∆}

ω(Gk).
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While Conjecture 6.1 holds for k = 1 thanks to Brook’s theorem (Theorem 1.2), the case k = 2
is only solved for ∆ ∈ {2, 3, 4, 5, 7} [39].

Moreover, the same type of question can be asked for exact distance coloring. In this context,
we have the following trivial upper bound: for any graph G, ω(G#2) ≤ ∆2(G)−∆(G) + 1. The
existence of graphs reaching this upper bound is still an open question for ∆ ≥ 11 [92]. Additionally,
the existence of these graphs is equivalent to the existence of finite projective geometries [60]
which are conjectured to exist only when ∆ + 1 is a prime number.
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[50] Z. Dvořák, D. Krá̌l, and R. Thomas. Three-coloring triangle-free graphs on surfaces V.
Coloring planar graphs with distant anomalies. J. Combin. Theory Ser. B, 150:244–269,
2021.
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[63] B. Grünbaum. Grötzsch’s theorem on 3-coloring. Michigan Math. J., 10:303–310, 1963.
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