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General Introduction

This manuscript is the result of my years at the Institut Pasteur, where I built upon
work initiated during an internship in 2018. During my time at the Institut Pasteur
I have worked on two very distinct subjects:

1. The study of drug resistance mutations in HIV sequences with machine learn-
ing.

2. The study of sequence transformation functions to improve long-read mapping.

These two subjects, though distinct, do share some common characteristics: mainly
that they are based on sequence data and specifically alignments. Although the
research on drug resistance in HIV was conducted before that on long-read mapping,
I have forgone the chronological ordering of my work in this manuscript for the sake
of thematic coherence. Through the organization of this manuscript, I have tried to
link all the facets of my PhD work, and it is my hope that readers will be able to
follow the flow without too much jumping around.

This manuscript is articulated around seven chapters, listed as follows:

1. An introduction to biological sequence data, how it is obtained and specific
characteristics and problems inherent to long reads.

2. An introduction to sequence alignment, and how and why read-mapping is
performed.

3. A presentation of my work on sequence transformation functions to improve
long-read mapping, which was written as a standalone research article.

4. An introduction to machine learning on biological sequence data, with a focus
on techniques used later in the manuscript.

5. An introduction to viruses and HIV in particular, with a focus on proteins
important to drug resistance.

6. A presentation of my work on drug resistance in HIV, which was written and
published as a standalone research article.

7. A short introduction to deep learning in sequence alignment and perspectives
to the work presented in chapter 3.
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During this thesis, my work on finding drug resistance mutations with machine
learning resulted in two publications: a first author article describing our method
published in PLOS Computational Biology as well as a co-first author review article
published in Current Opinion in Virology.

The second half of my PhD work, on improving read-mapping resulted in a first-
author paper, presented at the RECOMB-SEQ 2022 conference and to be published
in the iScience proceedings of that conference.

In 2020, during the early stages of the COVID-19 pandemic and the lockdowns, I
participated in some work resulting in the COVID-Align web-service and a middle-
authorship in the corresponding Bioinformatics publication. This work also led
to middle-authorship in an article concerning the origins of SARS-CoV-2 in the
Comptes Rendus. Biologies journal of the French Science Academy.
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1. What is Sequence Data ?

1.1. Biological sequences, a primer

To fully understand the work that was done during this thesis, as well as the choices
that were made, some basic knowledge of molecular biology and genetics is needed.
If you are already familiar with biological sequences, feel free to skip ahead to section
1.2.

1.1.1. What is DNA ?

DesoxyriboNucleic Acid (DNA) is one of the most important molecules there is,
without it complex life as we know it is impossible. It contains all the genetic
information of a given organism, that is to say all the information necessary for the
organism to: 1) function as a living being and 2) make a perfect copy of itself. This
is the case for the overwhelming majority of living organisms on planet earth, from
elephants to potatoes, to micro-organisms like bacteria.

DNA is a polymer, composed of monomeric units called nucleotides. Each nucleotide
is composed of ribose (a five carbon sugar) on which are attached a phosphate group
as well as one of four nucleobases: Adenine (A), Cytosine (C), Guanine (G) of
Thymine (T). These four types of nucleotide monomers link up with one-another,
through phosphate-sugar bonds, creating a single strand of DNA. The ordered se-
quence of these four types of nucleotides in strand encodes all the genetic information
necessary for the organism to function. Nucleotides in a strand form strong com-
plementary bonds with nucleotides from another strand, A with T and C with G.
These bonds allow two strands of DNA to form the double-helix structure of DNA1

shown in Figure 1.1. The specificity of nucleotide bonds ensure that the two strands
of the double helix are complementary and that the information contained in one
strand can be recovered from the other. This ensures a certain structural stability
to the DNA molecule and a way to recover the important information that could be
lost due to a damaged strand.

The amount of DNA necessary to encode the information varies greatly from or-
ganism to organism: 5400 base pairs (5.4kBp) for the 𝜑𝑋174 phage,2 4.9MBp for
Escherichia coli,3 3.1GBp for Homo sapiens4 all the way up to almost 150GBp for
Paris japonica, a Japanese mountain flowering plant.5 While very small genome size
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Figure 1.1.: Double-helix structure of DNA.
Each strand of DNA has a phosphate-sugar backbone on which are attached nu-
cleobases. The two strands are linked by complementary bonds between the nucle-
obases of different strands (A bonding with T and C bonding with G), encoding the
same information of both strands.

tend to occur in smaller, simpler organisms, genome size does not correlate with
organism complexity.6

1.1.2. From Information to action

1.1.2.1. Proteins, their structure and their role

The double stranded DNA molecules present in the cells of a living organism contain
information only; in order for the organism to live, this information must be read and
translated into actions. Most of the actions necessary for “life” are taken by large
molecules called proteins, they have a very wide range of functions from catalyzing
reactions in the cell to giving it structure.7

Proteins are macromolecules that are made up of one or several chains of amino
acids. These chains then link together and fold up in a specific three dimensional
structure, giving the protein the shape it needs to fulfill its goal. This structure is
determined by the sequence of amino acids, and a given protein can be identified by
this amino acid sequence.7

This sequence is directly dependent on the information contained in the DNA. First
the DNA is transcribed in a similar, but single stranded, molecule called RNA
(Ribonucleic Acid) which encodes the same sequence. This RNA molecule is then
translated into a protein by the following process:8

1. Nucleotides in the RNA sequence are read in groups of three called codons.
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2. These codons are read sequentially along the RNA molecule.
3. Each codon corresponds to an amino acid, according to the genetic code.
4. The sequence of codons in RNA (and by extension DNA) determines the se-

quence of amino acids.
5. The translation process is stopped when a specific type of codon (a “Stop”

codon) is read.

With four types of nucleotides and codons grouping three nucleotides there are
43 = 64 possible codons. However, as stated above, proteins are only made up of 20
different amino acids, meaning that several different codons correspond to the same
amino acid. This gives the translation process a certain robustness to errors that
can occur when the DNA is copied to create a new cell, or when it is transformed
into RNA prior to protein translation.

The portion of DNA that is read to create the protein is said to be “coding”, and is
called a gene. There are several thousands of genes in the human genome9 resulting
in proteins executing thousands of different functions in a cell. In human beings,
coding DNA represents only 1% to 2% of the total genome.10,11 The large majority
of the DNA in a human being is not translated into proteins, a portion of it has
a regulatory role, controlling transcription and translation, but the role remains
unknown for the rest of the human genome.12,13

1.1.2.2. Making mistakes

Going from DNA sequence to protein is quite a complicated process involving several
steps, it is therefore possible for a mistake to happen. There are several mechanisms
to avoid mistakes and alteration of the genetic information: the complementary
nature of the two strands of DNA, the redundant nature of the genetic code as well
as error correction mechanisms in the molecules (called “polymerases”) that read
and write DNA and RNA being some of them. Despite all that, some errors in the
nucleic acid (DNA and RNA) or protein sequences still make it through, these are
called mutations.

1.1.2.2.1. Where can mistakes happen ? There are several sources of error that
can alter genetic information:14

• DNA replication: When a cell divides, or when an organism reproduces,
the DNA molecule must be copied in order to preserve and transmit genetic
information. This process has a very low rate of errors, with as low as one error
for every billion to every hundred billion of replicated base pairs.15 This is due
to the fact that the DNA polymerase (the protein responsible for copying DNA
molecules), has a relatively low error rate to start with, but mostly to the error
correcting mechanisms that are present in certain cells and bacteria.16
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• RNA transcription: Since errors in RNA transcripts are less important than
in replicated DNA, RNA polymerases have a much higher error rate than their
DNA counterparts. This error rate has been estimated to be between four
errors for each million17 to two errors for each hundred thousand18 transcribed
bases.

• Protein translation: The process of translating RNA to a protein is done by
proteins called ribosomes. This is a very error prone process with a mistrans-
lation rate estimated to be of the order of one error for every 10,000 codons
translated19

• Other mutagenic events: Many external events and factors have been
shown to provoke mutations in exposed DNA such as Ionizing radiation,20
UV rays,21 toxins,22 heat stress,23 cold stress24 or oxidative stress.25

While RNA transcription and protein translation are much more error prone pro-
cesses than DNA replication, the errors induced only alter the expression of the
genetic information. The effects of these errors are localized to the cells where they
happen and are not transmitted to offspring. However these transcription errors are
not unimportant and increased transcription error rates have been hypothesized to
cause severe neurological symptoms in pediatric cohorts.26

1.1.2.2.2. What kind of errors are possible? In biological sequences (nucleic acids
and proteins), mutations can result from one of three error modes:

• Substitutions, where the original base unit (nucleotide or amino acid) is
mistakenly replaced by another one, for instance inserting an A instead of a
G during RNA transcription.

• Insertions,where a new base unit not present in the original sequence is added
to the newly synthesized biological sequence.

• deletions, where a base unit from the original sequence is skipped and not
taken into account when synthesizing the new sequence.

While these three types of errors occur both in nucleic acids and proteins there are
some things to consider about the consequences of nucleic acid mutations on protein
synthesis. Due to the redundant nature of the genetic code mentioned in Section
1.1.2.1, some substitutions in the nucleic acid sequence will result in the same protein
sequence and therefore not have altered protein activity. Some mutations however
will result in a substitution at the amino acid level which could potentially lead to
a physicochemically altered or even non-functional protein. Finally, insertion and
deletion errors (collectively called indels) can have big consequences on resulting
proteins. Inserting or deleting nucleotides in multiples of three will result in the
insertion/deletion of amino acids in the protein, any other length of indel will result
in what is called a frameshift mutation.27 These mutations causes changes in all
the codons following the mutation, potentially resulting in a completely different
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amino-acid sequence, including premature stop codon apparition as shown in Figure
1.2.

Figure 1.2.: Effect of frameshift mutations.
The deletion of a single C (highlighted in red) in the original DNA sequence leads
to a change in the codons read during translation. The original codons (shown
in green, with corresponding amino acids, above the sequence) translate to the
functional protein MLIRG.... The new codons caused by the deletion (shown in
blue, with corresponding amino acids, below the sequence), induce a premature
STOP codon leading to a non-functional protein M. The Serine and Valine codons
are not translated due to the STOP codon.

1.1.2.2.3. What effect can mutations have ? As we stated above, some mutations
in DNA may have no repercussions, some others can lead to non-functional proteins.
In some cases mutations can be associated with a trait in the mutated individual. For
example a single mutation in a gene linked with coagulation can lead to pathological
Leiden thrombophilia,28 a single amino acid deletion in the CFTR protein leads to
(the very deadly) cystic fibrosis,29 and many mutations have been linked to complex
diseases like type 2 diabetes.30,31 All mutational effects are not necessarily bad for
the organism though, and mutations are essential for bacteria32 or viruses like HIV33

to develop resistance to treatment (more on that in Chapters 5 and 6).

While some mutations, have had their mechanisms and consequences thoroughly
studied, in many cases mutations are simply linked to a trait. Since it is easier
to show correlation than causation, and that the former does not necessarily imply
the latter, it is important to further study mutations of notice to understand their
potential consequences.

1.2. Obtaining sequence data

In many fields, especially in computational biology, we need to know what genetic
information the studied organism has. That is to say: what is the exact sequence
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of nucleotides that make up its DNA? The process of figuring out this sequence
is, perhaps unsurprisingly, called sequencing. A sequence that is produced by this
process is called a sequencing read or, more commonly, just a read.

1.2.1. Sanger sequencing, a breakthrough

The first widely used sequencing method was developed in 1977.34 Sanger et al. de-
vised a simple method to read the sequence of nucleotides that make up a DNA
sequence known as chain termination sequencing or simply Sanger sequencing (rep-
resented in Figure 1.3). Although this method is now mostly obsolete, it established
some key concepts in sequencing, some of which are in action in the most modern
sequencers.

To understand Sanger sequencing, one must first understand how to synthesize DNA.
As we stated in Section 1.1.1, DNA is built up from building blocks that we called nu-
cleotides, more specifically deoxynucleotide triphosphates or dNTPs. These dNTPs
are made up of a sugar (deoxyribose), a nucleobase (A, T, G or C) and 3 phos-
phate groups. By successively adding these dNTPs at the end of an existing DNA
molecule, we extend it, linking one of the phospates of the dNTP to an oxygen
atom on the last nucleotide of the DNA molecule. Let us now consider a dideoxynu-
cleotide triphosphate (ddNTP), which is identical to a dNTP except we remove a
specific oxygen atom. This ddNTP can be added to the growing molecule of DNA
like regular dNTPs, but since it is missing that one oxygen atom no more dNTPs
or ddNTPs can be added to the DNA molecule after this one. The elongation is
terminated and we call these ddNTPs chain-terminators. This combination of DNA
synthesis followed by termination are at the heart of Sanger sequencing.

It is important to note that dNTPs and ddNTPs refer to nucleotides with any
nucleobase. We can refer to specific dNTPs by replacing the “N” with the base
of choice. For example, dATP refers to the dNTP that has adenine as a base.
Similarly we have dCTP, dGTP and dTTP (as well as ddATP, ddCTP, ddGTP and
ddTTP).

1. The first step of Sanger sequencing (and most sequencing methods) is to am-
plify the DNA molecule we wish to sequence, i.e. make many copies of it
(usually through a process called PCR). These clones of the sequence are then
separated into their two complementary strands one of which will be used as
a template for the sequencing steps.

2. The second step is to prepare 4 different sequencing environments (think of
it as 4 test tubes). In each environment we introduce an equal mix of the 4
dNTPs, that will be used to elongate new DNA molecules from the amplified
templates, and a single type of ddNTP. So in the first test tube we will have
only ddATP, ddCTP in the second, et cetera. In addition, these ddNTP are
marked, at first with radioactive isotopes, and later on, as the technology
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matured, with dyes. This marking means that we can observe the location of
these ddNTPs later on.

3. Then an equal portion of the template is introduced in each environment with
DNA polymerases (that will add the nucleotides to elongate a sequence that
is complementary to the template), and short specific DNA molecules called
primers that are necessary for the polymerases to start synthesizing new DNA.

4. During synthesis the chain is elongated with dNTPs by the polymerase and
the reaction stops once a ddNTP is incorporated. At the end of this process
we have plenty of fragments of DNA in each test tube, and we know that these
fragments end with a specific base in a given environment. For example, in the
test tube where we added ddATP, we know that all the fragments end with an
A, and that we have all the possible fragments that start at the beginning of
the template and end with an A. If the template is AACTA, then the fragments
we would get in the ddATP test tube would be A, AA, and AACTA.

5. Then, a sample from each environment is taken and deposited on a gel, each
in its own lane. A process called electrophoresis is then used to separate the
fragments according to their weight. By applying an electrical current to the
gel, the fragments of DNA will migrate away from where they were deposited
along their lane in the gel. Lighter, shorter DNA fragments will travel further
than heavier ones. We then get clusters of fragments ordered by weight (and
therefore by length) called bands. With the marked ddNTP we can reveal
these bands in the gel.

6. We know that: 1) bands are ordered by length; 2) consecutive bands corre-
spond to the addition of a single nucleotide; 3) in a specific lane fragments
corresponding to a band end with a specific base. This knowledge is enough
to deduce the sequence of the template. An example gel is shown in Figure
1.3.

This process allowed Sanger et al. to sequence the first genome, of a 𝜑𝑋174 bacterio-
phage, in 1977.2 Although revolutionary, this method was costly, time consuming
and labor intensive. Adjustments to this method were made in order to make it
faster and less expensive. An important step was to change the way ddNTPs were
marked. By using fluorescent markers, each base having a distinct “color”, we can
eliminate the need to have 4 different environments and lanes in the gel.35,36 This
also paved the way for automating sequencing, each fluorescently marked band can
be excited with a laser, and the resulting specific wavelength can be recorded by op-
tical systems and the corresponding base automatically deduced37 (Also see Figure
1.3). Other improvements were made such as using capillary electrophoresis instead
of gel electrophoresis.

These gradual improvements to the Sanger sequencing protocol made it possible
to sequence longer and more accurate reads, with the latest technologies resulting
in reads reaching 1 ,000 base pairs with an accuracy of 99.999%.38 These improve-
ments also resulted in a lower cost for sequencing, which was greatly decreased from
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Figure 1.3.: Overview of the sanger sequencing protocol.
A) The sequence to read and all the generated fragments, with highlighted ddNTP
chain terminators, ordered by molecular weight (i.e. length). B) Classical Sanger
sequencing. The fragments are separated by electrophoresis and the lighter frag-
ments travel further from the wells at the botom of the gel. Each lane in the gel
correpsonds to a specific ddNTP. The radioactivly marked ddNTPs appear as black
band in the gel and we can reconstruct the sequence by reading the bands from
top to bottom, the column in which the band appears indicating which base is at
each position. C) Automated Sanger sequencing. The fragments are also separated
by electrophoresis, as in panel B. Chain terminators are marked with fluorescent
markers. When excited by a laser, each ddNTP emits a specific wavelength. This
is read by an optical sensor and the corresponding ddNTP is recorded. By exciting
each band we can quickly deduce the sequence.

around $1000 per base-pair39 to only $0.5 per kilobase.38 Finally these technological
improvements also increased the throughput of sequencing machines from around 1
kilobase per day39 to 120 kilobases per hour.40

Despite these improvements, for ambitious endeavors such as the human genome
project, sequencing was a massive undertaking: the first human genome is estimated
to have cost between 500 million and 1 billion US dollars to sequence.41

1.2.2. Next-generation sequencing

Thanks to these large sequencing projects and the genomics field in general, the
richness and usefulness of sequence data was made ever more apparent. This growing
need of sequence data ushered in a new era of sequencing with the development of
many new sequencing methods designed to have a higher throughput and a lower cost
than Sanger sequencing. This second generation of sequencing technologies is often
referred to as Next-Generation Sequencing (NGS) or Massively parallel sequencing.
While there are different technologies, they share a few common key points:42
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• As with Sanger sequencing, we first need to amplify and clone the DNA tem-
plate. However, since these technologies result in shorter reads than Sanger
sequencing, the DNA we want to sequence must first be randomly broken up
into small template fragments before being amplified.

• The amplified template fragments are attached to some sort of solid support,
resulting in a physical support with billions of template fragments attached to
it.

• As in Sanger sequencing, DNA molecules, complementary to the template
fragments, are elongated. This happens for billions of fragments at the same
time (hence the “massively parallel” epithet).

• The addition of specific nucleotides to a chain are detected in real time, and
there is no permanent chain termination. There is no need for the long step of
electrophoresis. These detections are simultaneous for all the molecules being
elongated at once.

The result of these steps is a very large number of short reads. With data analysis
these short reads can be used to deduce longer sequences and eventually a frag-
mented approximation of the original whole genome sequence through a process
called assembly.

The main NGS method is called “sequencing by synthesis”, developed by a company:
Illumina. It is commonly referred to as Illumina sequencing. This method is based on
reversible chain terminators, developed at the Institut Pasteur in the 90’s.43 These
are marked dNTPs that can be used to elongate DNA molecules, but that have an
additional molecular group that makes them terminators by default. However this
terminating group can be removed once the NTP is included in a DNA molecule
allowing the elongation process to continue. These dNTPs are fluorescently marked
and when excited with a laser they emit light with a distinctive color. During
Illumina sequencing, these reversible chain terminators are included to millions of
fragments at the same time, stopping elongation. At this point all the fragments are
excited with a laser and an optical system takes a picture of the emitted colors for
all the fragments at once. In this image, a pixel loosely corresponds to a sequenced
fragment, and its color to the most recently added dNTP. The terminating groups are
then cleaved and the process can start over by incorporating a new batch of reversible
terminators. By observing the successive images we can deduce the sequence of
added nucleotides for each sequenced fragment and obtain all of our reads.

Another NGS method is called pyrosequencing, commercialized by 454 Life Sci-
ences. Contrary to Illumina sequencing, this method does not use reversible chain
terminators. Instead it uses a special enzyme called luciferase that emits light as
specific dNTPs are added. This process is repeated for the 4 dNTPs (similarly to
Sanger sequencing) and from the light emissions we can deduce the sequence of
nucleotides.44
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These technologies yield reads around 150 nucleotides for Illumina and 400nt for py-
rosequencing.45 This is much shorter than the 1kB reads obtainable with the latest
Sanger sequencing technologies. However the throughputs are much higher:40 2.5 to
12.5 Gigabases per hour for Illumina and 30 Megabases per hour for pyrosequencing.
Costs are also quite low: $0.07 and $10 per Megabase for Illumina and pyrosequenc-
ing respectively. The per-base sequencing accuracies are also quite high, up to 99.9%
for both Illumina46 and pyrosequencing.40 A summary of the key characteristics for
various sequencing technologies can be found in Table 1.1. The lower cost and higher
throughput has made the Illumina sequencing technology the dominant one. The
company estimates that 90% of the world’s sequencing data was generated with
Illumina machines in 2015.47

1.2.3. Long read sequencing

Although NGS technologies revolutionized the sequencing world, recent efforts have
been made to get longer reads. These third-generation methods generate reads of
tens of kilobases and are commonly called long-read sequencing method. Long reads
have a host of applications48 for which short NGS reads might not be well suited: De
novo assembly of large complex genomes, studying complex repetitive regions such
as centromeres or telomeres or detection of structural variants. They have recently
been used to assemble the first truly complete human genome, including telomeric
and centromeric regions.4

The two available long read technologies are: Single Molecule Real Time sequencing
(SMRT), commercialized by Pacific Biosciences (PacBio) and Nanopore sequencing,
commercialized by Oxford Nanopore Technologies (ONT). While these technologies
are quite different, they both result in much longer reads than even Sanger sequenc-
ing in real time, without the need for chain terminators or separate sequencing
reactions, all with a high throughput and at a reasonably low cost.

SMRT sequencing was first developed in 2009,49 before being commercialized and
furthered by PacBio. The basic principle is as follows:

1. Fragment and amplify DNA to obtain a very large number of DNA templates.
2. Link both strands of each DNA template together with known sequences called

bell adapters. Denature the DNA to create a single stranded, circular DNA
molecule.

3. Primers and polymerases are attached to the circular molecule specifically on
one of the bell adapters.

4. Add the circular DNA template, primer, polymerases complexes to a SMRT
chip. This chip is essentially a large aluminium surface with hundreds of thou-
sands of microscopic wells called Zero-Mode Waveguides (ZMWs) only 100nm
in diameter.50 The polymerases are chemically bonded to the bottom of each
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of these ZMWs so we effectively get a single DNA template and polymerase
per well.

5. Fluorescently marked dNTPs are incorporated progressively in each of the
wells. When a marked dNTP is incorporated in the newly synthesized DNA
brand, light of a specific wavelength is emitted.

6. The size of these ZMWs make the detection of the fluorescence possible with
an optical system. Incorporation of dNTPs in each ZMW can be detected
simultaneously in a parallel fashion and the resulting sequences deduced.

Nanopore sequencing, thought of in the eighties, further developed along the years51
and first commercialized by ONT in 2014,52 is completely different from all the se-
quencing technologies previously mentioned. Where all the other ones are based on
synthesizing a complementary DNA strand and detecting specific dNTP incorpora-
tion in some way or another, there is no synthesis in nanopore sequencing. The
principle relies on feeding a single strand of a DNA template through a small hole
in a membrane, a nanopore, at a controlled speed. As the nucleotides go through
the nanopore, an electric current is formed between both sides of the membrane.
This current can be measured and is specific to the succession of 5 to 6 nucleotides
inside the nanopore channel at any given time. By looking at the evolution of the
electric current as the DNA strand goes through the nanopore, we can deduce the
sequence of nucleotides through a process called base calling. Base calling is usually
done with machine learning methods, mainly artificial neural networks.53 In the flow
cells used in ONT sequencers, there are hundreds of thousands of nanopores, spread
out over a synthetic membrane, allowing for massively parallel sequencing as well.
Theoretically, since this method is not based on synthesis, the upper limit for read
length is only limited by the length of the template, and in practice ONT sequencing
produces the longest reads.

Both technologies yield long reads, the median and highest read lengths being 10
kilobases and 60 kilobases respectively for PacBio sequencing.54 For nanopore the
median read lengths of 10 to 12 kilobases55,56 are similar to PacBio, but in it can also
yield ultra-long reads of 1 up to 2.3 megabases long.57–59 The length of the reads and
parallel nature of these two technologies allow these sequencers to have truly massive
throughputs. PacBio sequencers can sequence between 2 and 11 gigabases per hour
and ONT from 12.5 gigabases per hour, up to a staggering 260 gigabases per hour
using the latest ONT PromethION machines.56 The cost of sequencing with these
machines, while higher than for Illumina sequencers, remains reasonably affordable
at $0.32 and $0.13 per megabase for PacBio and ONT respectively.60 These charac-
teristics are summarized in Table 1.1 along with other sequencing technologies.

The length, throughput and sequencing cost of both these technologies paint a pretty
picture, and indeed they have proved useful in many settings, but sequencing accu-
racy is a problem with these technologies. The per-base sequencing accuracy has
been estimated to be between 85% and 92% for PacBio sequencers and 87% to 98%
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technology read length (nt) throughput (nt/hour) cost ($/Mb) accuracy
Sanger 1 000 120 103 $500 99.999%
Illumina 150 2.5-12.5 109 $0.07 99.9%
Pyrosequencing 400 30 106 $10 99.9%
PacBio SMRT 10 000 (up to 60 000) 2-11 109 $0.32 85-92%
Nanopore 12 000 (up to 2.5 106) 12.5-260 109 $0.13 87-98%

Table 1.1.: Comparison of sequencing technology characteristics.
Characteristics for the latest sequencers were used for the Sanger sequencing entry.
The length is given in nucleotides, throughputs in sequenced nuctleotides per hour
and cost in US dollars per megabase.

for ONT machines.56,61,62 This accuracy is much lower than either Sanger sequenc-
ing or Illumina reads. Characterizing, correcting and accounting for these errors is
widely studied and it will be discussed in more detail in Sections 1.3 and 1.4.

While most of the mentioned technologies can also be adapted and used to sequence
RNA instead of DNA,63,64 directly sequencing proteins remains a challenge. The se-
quence of amino acids making up a protein is usually deduced from the codons in se-
quenced DNA or RNA after detection of potentially coding regions called open read-
ing frames (ORFs). Development of methods to directly sequence protein molecules
using mass spectrometry was started not very long after Sanger sequencing65 and
improved.66 New methods are still being developed67 but protein sequencing remains
a challenge.

1.3. Sequencing errors, how to account for them ?

Sequencing technologies are not perfect. They make mistakes, as we can see from the
accuracy rates reported in Section 1.2. For technologies based on nucleic acid syn-
thesis (i.e. everything except ONT), since they use polymerases it stands to reason
that the same three types of errors, described in Section 1.1.2.2, occur: substitutions,
insertions and deletions. For long read technologies though, most of the errors do
not come from the polymerase, but from signal processing used to deduce the se-
quence. Since both technologies execute single molecule sequencing, the signal to
noise ratio is low68,69 making base calling more complicated.

This explains the discrepancy in error rates between short and long read sequencing
technologies: the former getting as low as 10-4 or 10-5 after computational process-
ing70 where the latter are between 10% and 15%. This high error rate long reads is
bothersome and many efforts have been made to lower this error rate, computation-
ally and technologically.
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1.3.1. Error correction methods

The long read error-correction literature and toolset is rich and active.71–73 There
are two main ways to correct errors: 1) hybrid methods where high-accuracy short
reads are used, and 2) non-hybrid methods where only the long-reads are used.

In Non-hybrid methods,71,74 by finding regions that overlap fairly well between reads
and taking the consensus of the overlapped regions (i.e. the majority nucleotide at
each position), some errors can be eliminated. In many analyses and sequencing
data processing pipelines, the first step is to break up the reads into all possible
overlapping subsequences of length 𝑘 called 𝑘-mers (e.g the 3-mers of ATTGC are
ATT, TTG and TGC). Rare 𝑘-mers in the read dataset, i.e. 𝑘-mers that appear
only a handful of times in all the reads, are likely the result of an error and filtering
them out can improve analysis. One or both of these procedures are implemented in
several pieces of commonly used software such as assembler like wtdbg2,75 and canu76
or standalone long-read correctors like daccord.77 In some cases, errors are corrected
not on the raw reads but after having assembled the long reads into long continuous
sequences (contigs), this process is called polishing. The ntEdit polisher78 also
filters out rare 𝑘-mers to correct errors. The Arrow79 and Nanopolish80 polishers
correct the assembly using the raw PacBio and ONT long reads respectively, and
Racon81 can use bot types of long-reads to polish assemblies.

Hybrid methods, as their name suggest, make use of short reads to correct errors in
long reads. By finding similar regions between the short and long reads we can use
the higher accuracy of short reads to correct the long ones. This is implemented in
many pieces of software proovread,82 Jabba,83 PBcR84 or LoRDEC.85 Short reads can
also be used to polish long read assemblies with tools like Pilon.86 The first com-
plete human genome was assembled and polished using many different sequencing
technologies including PacBio, ONT and Illumina technologies.4

1.3.2. More accurate sequencing methods

While a lot of effort is being put into error correction, another angle of attack to
lower the error rate of long reads is to improve the sequencing technology.

In 2019, PacBio introduced HiFi reads, based on a circular consensus (CCS) tech-
nique.87 During SRMT sequencing the 2 strands are linked together by bell adapters
to form a circular DNA template (c.f. Section 1.2.3), the central idea of CCS is to
sequence this molecule multiple times by going over the circle more than once. In
the resulting long sequence the known bell adapter sequences can be removed, and
a consensus sequence can be built from the multiple passes over the same DNA tem-
plate. This results in long-read accuracies of 99.8% to 99.9%.56,87 This works because
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PacBio sequencing errors are mostly randomly distributed along the sequenced tem-
plate (more on that in Section 1.4.2). Therefore it is unlikely that the same error
will appear in multiple passes over the same template portion.

For ONT sequencing, most improvement efforts have been focused on base-callers.
These tools were originally based on Hidden Markov Models88 (HMMs), but grad-
ually they have been shifting over to neural network based deep learning meth-
ods53,74,89,90 with faster inference times and better performance.

Similarly to PacBio HiFi reads, ONT developed 2D, and 1D2 sequencing. In 2D
sequencing, both strands of the DNA molecule to sequence are linked with a hairpin
adapter to form one long sequence. Each strand is sequenced once and a consensus is
built from these 2 passes.91 1D2 sequencing operates in a similar fashion but without
the need for a hairpin adapter.92 2D sequencing produces reads with 97% accuracy
albeit much shorter than standard 1D sequencing.91 Recently, Oxford Nanopore
Technologies announced the release of a new technology they call duplex. Using
new chemistry, a new basecaller and sequencing of both strands (similarly to 2D
and 1D2) they announce raw read accuracies of 99.3%.93 Pre-printed research seems
to confirm these numbers with one experiment yielding duplex reads with a 99.9%
accuracy.94

A technologically agnostic method using unique molecular identifiers added during
the template preparation phase, and consensus sequencing has been shown, in spe-
cific contexts, to improve the accuracies of both ONT and PacBio CCS long reads
to 99.59% and 99.93% respectively.95

Finally, new sequencing technologies are being developed, like built in error-
correction short-read technologies yielding error-free reads of up to 200 nucleotides
long.96 Illumina also recently announced its own high-throughput, high-accuracy
long-read sequencing technology in 2022,97 although details about the performance
and technology are scarce.

1.4. The special case of homopolymers

Despite improvement in error correction methods and sequencing technologies, cer-
tain genetic patterns are particularly difficult to process, homopolymers are one such
pattern.

1.4.1. Homopolymers and the human genome

Homopolymers consist of a stretch of repeated nucleotides (i.e. ≥ 2) occurring at
some point in the genome. For example, the sequence AAAA is a length 4 adenine
homopolymer. In the complete human genome assembly (CHM13 v1.1 from the
T2T consortium4), 50% of its three gigabases are in homopolymers of size 2 or more,
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and 10% are in homopolymers of length equal or greater than 4. As can be seen
in Figure 1.4, short and medium length homopolymers make up a significant part
of the genome. In a previous GRCh38 human genome assembly, more than 1.9
megabases are in homopolymers of length 8 or higher,98 representing about 1‰ of
that assembly. The longest homopolymer run in the CHM13 v1.1 assembly is 86
(90 in GRCh3898).
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Figure 1.4.: Homopolymer fraction of the whole human genome by ho-
mopolymer length.
The homopolymer counts were calculated from the T2T consortium full human
genome assembly CHM13 v1.1. This figure was inspired by Figure 3b of reference.98

In the human genome, homopolymers tend to occur more often in adenine and
thymine runs than guanine and cytosine. There are are approximately twice as
many nucleotides within A or T homopolymers (481 Mb and 484 Mb) than G or C
(278 Mb and 279 Mb). This discrepancy is even more pronounced when looking at
homopolymers longer than four nucleotides (c.f. Figure 1.5).

1.4.2. Homopolymers and long reads

Unfortunately, homopolymers are a source of errors in sequencing, particularly for
long-read technologies. While substitutions seem to be randomly distributed along
the reads for PacBio and ONT, the main error mode seems to be indels in homopoly-
meric sections, i.e. reading the same nucleotide several times or skipping over one
of the repeated nucleotides. Many studies show that homopolymeric indels are the
main type of error for PacBIO SMRT and ONT long-read sequencing.68,99–101 This
is even the case for PacBio HiFi reads, while the circular consensus approach elim-
inates the randomly distributed substitutions but homopolymer indels remain.87 It
seems that ONT reads are more prone to this type of error than PacBIo.56 The rate
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Figure 1.5.: Distribution of homopolymer lengths per base in the human
genome, for homopolymers of length ≥ 4.
The homopolymer counts were calculated from the T2T consortium full human
genome assembly CHM13 v1.1.

of these errors is independent of the length of the homopolymer for ONT, but it
rises with homopolymer length for short-read and PacBio technologies.102

1.4.3. Accounting for homopolymers

The fact that they make up a significant part of the human genome, and that they
are a source of errors for long read technologies means that homopolymers warrant
special attention and care. Methods have been devised and implemented, specifically
to counter homopolymer-linked errors.

1.4.3.1. Specific error correction

Homopolymer errors are taken under special consideration during assembly polishing
when using certain tools like HomoPolish,103 NanoPolish80 or Pilon.86 Methods to
improve base calling of homopolymer stretches have been developed for nanopore
sequencing,104,105 and implemented in state of the art base-callers such as guppy or
scrappie.53

Steps before sequencing can also be taken in order to reduce the effect of these errors,
like avoiding homopolymers in barcode sequences106,107 or during the development
of DNA based storage systems.108
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Improving the sequencing technologies can also be a solution, by reducing the num-
ber of homopolymer errors straight from the source. The latest ONT chemistry
R.10 reportedly improves accuracy in homopolymer rich regions.74,109 Non-biological
solid-state nanopores also reduces errors in homopolymers.110,111

1.4.3.2. Homopolymer compression, a nifty trick

Homopolymer-errors can be harmful for downstream analyses such as read-mapping
(c.f. Chapter 3). However, in many cases, reads cannot be re-sequenced with newer
technologies, or base-called with better base callers. Only the read sequences poten-
tially containing homopolymer errors, are available for usage. In order to account
for this sort of error, a simple pre-processing trick was developed: homopolymer
compression (HPC).

The idea is very simple: for any sequence, replace a repeated run of any nucleotide
(i.e. homopolymers) by a single occurrence of that nucleotide. This means that
after going through HPC the sequence AAACTGGG will yield the sequence ACTG.
This simple pre-processing step, applied to all the reads and sequences to analyze,
removes all indels in homopolymers, and can resolve some ambiguities (c.f. Figure
1.6). It can also remove legitimate information contained in homopolymers, but the
trade-off with the reduced error rate has been deemed advantageous.

HPC has been implemented in many sequence bioinformatics software tools. The
HiCanu,112 MDBG,113 wtdbg2,75 shasta114 assemblers all use HPC under the hood
to provide better assemblies, and HPC was used to assemble the complete human
genome sequence.4 The first published usage of HPC, was actually in the CABOG as-
sembler115 developed for pyrosequencing reads. HPC has also been implemented for
other tasks, like clustering,116 long read error correction with LSC117 and LSCPlus,118
alignment with minimap2119 and winnowmap2,120 or specific analysis pipelines for
satellite tandem repeats.121

1.5. Conclusion

I hope, after reading this chapter, you will agree with me that sequencing is funda-
mental for furthering our knowledge of biological processes, organisms and Life in
general. And as such, the sequencing field is still very active with new technologies
being developed to improve the current technologies in various aspects. Illumina
promises high accuracy long reads with Infinity97 and PacBio is developing its own
short read sequencing technology, moving away from sequencing by synthesis.122,123

aHomopolymer indels can be harmful in opposite circumstances as well. Let us consider, for
example, a read that should correspond to several repetitions of a conserved motif. Homopolymer
indels can artificially resolve an ambiguity by making the read unique and prefer a specific
repetition of the motif or entirely misplace the read.
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Figure 1.6.: Homopolymer compression can help resolve ambiguities due
to sequencing errors.
A read with homopolymer related sequencing errors can be homologous to two dif-
ferent regions of the reference genome, with one discrepancy for each region. After
applying HPC, this ambiguity is properly accounted for and the read is homologous
to only one region. This figure, however, only shows one way homopolymers can be
detrimental and others are possiblea.

Finally, efforts are also being made to make sequencing more affordable and avail-
able in a greater number settings with Ultima genomics promising accurate short
reads for as low as $1 per gigabase.124

With all these technological improvements we are approaching an era where sequenc-
ing is easy and quick, opening the door for massive projects like Tara Oceans125 or
the BioGenome project126 to better understand biodiversity. Routine whole-genome
sequencing could also usher in an era personalized medicine.127

Despite all these advancements, sequencing errors remain an obstacle to certain
analyses. This is particularly true for the ever more used and useful long reads, and
the important fraction of genomes made up of homopolymers. Detecting, removing
or accounting for these errors in some way is a crucial step to improve any analysis
based on sequencing data, and to make sure that no theory or conclusion are built
upon erroneous sequence data.

Finally, it is important to note (at least for the remainder of this thesis) that, from a
computational standpoint, a biological sequence is simply a succession of letters and
a set of reads is simply a text file. Therefore, many analyses and data processing
methods are inspired or directly transposed from the field of text algorithmics.
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2. Aligning Sequence Data

2.1. What is an alignment ?

In biology, comparison is at the heart of many studies: between individuals, between
species, between sequencing runs, etc… In order to do this at a fine-grained level and
extract knowledge from it, we need to compare what is comparable, this is where
sequence alignment steps in. In broad terms, during sequence alignment, we aim to
find regions similar to each other in two or more sequences and group them together.
When this process is done with only two sequences it is called a pairwise alignment.
When three or more sequences are used it is called multiple alignment. We will first
focus on pairwise alignment as it is used as the basis for the more complex multiple
alignment.

2.1.1. Why align ?

The first question we might ask ourselves is why align at all? If we want to compare
two sequences there are plenty of distances and metrics out there to use. Something
like the Hamming distance128 is very quick and easy to compute by comparing
characters two by two. It is however ill-suited to our needs in biology: it can handle
substitutions but indels induce very large Hamming distances. Indeed, insertions
and/or deletions shift one of the sequences, compared to the other, and introduce
many character-to-character differences that could be explained by a single indel.

For example, let us consider the two following sequences: ATGTGCAGTA and
AGTGCAGTAC. if we count the differences character by character, except the first pair
of A, all the characters are different (c.f. below). However, if we consider that the
first T was deleted and a C was inserted at the end of the second sequence then
we can see that none of the characters are actually different. In order to represent
insertions and deletions gaps are inserted in the sequences as seen below:

ATGTGCAGTA-
A-GTGCAGTAC

This problem of comparing two sequences with insertions or deletions is a fairly well-
studied one in text algorithmics: the string-edit problem.129 Some metrics like the
Levenshtein distance130 and the edit distance129 exist and are closely related to the
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pairwise sequence alignment problem, finding the minimal number of substitution,
insertion of deletion operations to go from one sequence to the other.

Sequence alignments have many downstream uses. They are the basis of compara-
tive genomics131 and are used to infer evolutionary relationships, phylogenetic tree
reconstruction methods usually take multiple sequence alignments as input.132–136
Sequence alignments have been used to study protein structure137,138 and func-
tion.139,140 They can be used to correct sequencing errors82,84,141 or detect structural
variations in genomes.142,143 All this to say that they are absolutely fundamental
to the field of computational biology and errors in alignments can lead to errors
somewhere down the line.

2.1.2. How to align two sequences ?

There are two approaches for pairwise alignment:144 global alignment, where the
entirety of both sequences is used, and local alignment, where we only seek to find
regions in each sequence that are most similar to each other. Global alignment
is used when the two sequences are expected to be quite similar (e.g. comparing
two related proteins), whereas local alignment is mostly used when we expect the
sequences to be fairly different but with highly similar regions, like genomes of two
distantly related species that share a highly conserved region.

The seminal method for global pairwise alignment was the Needleman-Wünsch al-
gorithm145 based on a dynamic programming method. A decade later, the Smith-
Waterman algorithm146 was developed with similar ideas to perform local alignment.
Both are still used today for pairwise alignment.

Dynamic programming is often used to solve complex problems by breaking it into
smaller sub-problems and solving each one optimally and separately,147,148 it is par-
ticularly useful when we wish to have a precise alignment between 2 sequences.

2.1.2.1. Global alignment

The fundamental algorithm for globally aligning two sequences is the Needleman-
Wünsch (NW) algorithm.145 The goal is finding the alignment with 1) the lowest
edit-distance or 2) the highest alignment score. These two are equivalent so in this
section we will maximize the alignment score.

The first thing we need to know is how to compute a score on a given alignment.
To do this, we assign costs to each operation. Usually matches (i.e. aligning two
identical characters) are given a positive cost and mismatches or indels a negative
cost. If we assign a cost of +1 to a match and a cost of -1 to mismatches and indels
then the alignment presented above in Section 2.1.1 would have an alignment score
of 9 - 2 = 7 (9 matches and two indels).
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The NW algorithm is based on a simple recurrence relation: the optimal alignment
score of two sequences 𝑆1 and 𝑆2 of lengths 𝑛 and 𝑚 respectively is the maximum
of:

1. The optimal alignment score of 𝑆1[1, 𝑛 − 1]a and 𝑆2[1, 𝑚 − 1] plus the cost of
a match or mismatch between the 𝑛𝑡ℎ character of 𝑆1 and the 𝑚𝑡ℎ character
of 𝑆2

2. The optimal alignment score of 𝑆1 and 𝑆2[1, 𝑚 − 1] plus the cost of an indel

3. The optimal alignment score of 𝑆1[1, 𝑛 − 1] and 𝑆2 plus the cost of an indel

This simple relation can be used to compute optimal global alignment score for
two sequences. However, if it is implemented naively it can be very inefficient as
the number of scores to compute grows exponentially with sequence lengths, and
many intermediary alignment scores need to be computed many times. This is
where dynamic programming comes in: these intermediary costs are pre-computed
in an efficient manner and one can then deduce the optimal alignment from these.
This pre-computing step is usually represented as filling out a matrix, whose rows
and columns represent the characters in each sequence to be aligned, with partial
alignment scores.

If 𝑆1 represents the rows of the matrix, and 𝑆2 the columns, the value 𝐶(𝑖, 𝑗) of a
cell (𝑖, 𝑗) of this matrix represents the optimal alignment score between 𝑆1[1, 𝑖] and
𝑆2[1, 𝑗]. In the recurrence relation described above the alignment score as depen-
dent on the optimal alignment scores of subsequences, when filling out the dynamic
programming matrix we proceed in the inverse fashion by using the scores of short
subsequences to build up the scores of progressively longer sequences.

We will go here through a short example showing how the NW algorithm is used to
align two short sequences: 𝑆1 =ACCTGA and 𝑆2 =ACGGA. The first step is to represent
the dynamic programming matrix, prefix each sequence with an empty character and
label the rows of the matrix with one of the sequences and the columns with the
other (this extra row and column at the beginning of each sequence are indexed as
column and row 0). In this matrix, due to the recurrence relation stated above, the
score of a particular cell, 𝐶(𝑖, 𝑗), is the maximum of:

1. The score in the diagonally adjacent cell 𝐶(𝑖−1, 𝑗−1) plus the cost of a match
or mismatch between 𝑆1[𝑖] and 𝑆2[𝑗].

2. The score of the cell to the left 𝐶(𝑖, 𝑗 − 1) plus the cost of an indel
3. The score of the cell on top 𝐶(𝑖 − 1, 𝑗) plus the cost of an indel

Therefore, in order to compute 𝐶(𝑖, 𝑗) we need to know the three values of 𝐶(𝑖−1, 𝑗−
1), 𝐶(𝑖 − 1, 𝑗) and 𝐶(𝑖, 𝑗 − 1). This is the reason why we start with an extra column

aHere I am using an index starting at 1 and inclusive, so 𝑆1[1, 𝑛 − 1] represents the first 𝑛 − 1
characters. If 𝑆1 = 𝐴𝐵𝐶𝐷 then 𝑆1[1; 3] = 𝐴𝐵𝐶
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and row at the beginning of each sequence that we can fill out with the increasing
costs of indels. In our case since the cost of an indel is -1, this row and column are
filled out with decreasing relative integers, as can be seen in Figure 2.1A.

From this starting point we can fill out the dynamic programming matrix with all
the alignment scores. To compute 𝐶(1, 1) we have three possible values:

1. 𝐶(0, 0) plus the cost of a match between 𝑆1[1] = 𝐴 and 𝑆2[1] = 𝐴: 0 + 1 = 1
2. 𝐶(0, 1) plus the cost of an indel: −1 − 1 = −2
3. 𝐶(0, 1) plus the cost of an indel: −1 − 1 = −2

By taking the maximum out of these three values we can fill out the matrix cell with
𝐶(1, 1) = 1. By continuing this process until we fill out the whole matrix we obtain
the scores visible in Figure 2.1A. This is enough if we only want to compute the
optimal global alignment score between 𝑆1 and 𝑆2, contained in cell (𝑛, 𝑚). If we
want to deduce the operations leading to it, and therefore the alignment itself, we
need to keep track of which operation we made to get a specific score. The easiest
way to do that is to also consider this matrix as a graph where each cell is a vertex.
When we compute the score of cell (𝑖, 𝑗) we add an edge from this cell to the previous
cell that was used to compute 𝐶(𝑖, 𝑗). In our example above, we obtained 𝐶(1, 1)
from a match and 𝐶(0, 0), so we can add an edge in our graph going from cell (1, 1)
to cell (0, 0). The filled out matrix with the graph edges represented as arrows can
be seen in Figure 2.1B.

Figure 2.1.: Example global alignment with the Needleman-Wunsch algo-
rithm.
This figure represents three different steps in the NW algorithm, with a match cost
of +1, a mismatch cost of -1 and an indel cost of -1. A) the matrix is initialized with
𝑆1 as the columns and 𝑆2 as the rows. Column and row 0 are filled out. B) The
dynamic programming matrix is filled out, and the alignment graph is constructed.
C) The alignment graph is traversed from the vertex in the bottom right cell to
the vertex in the top left cell. Each of the three possible paths corresponds to an
optimal global alignment, represented on the right.
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Once this matrix (and corresponding graph) is filled out, we can deduce the alignment
by following a path through the graph starting at cell (𝑛, 𝑚) to cell (0, 0). A diagonal
edge starting at (𝑖, 𝑗) indicates a match or mismatch between 𝑆1[𝑖] and 𝑆2[𝑗], a
vertical edge indicates a gap in 𝑆2 and a horizontal edge a gap in 𝑆1. This can lead
to several optimal alignments if there are several such paths in the graph. In our
case, this algorithm yields three equally optimal global alignments shown in Figure
2.1C.

This algorithm although guaranteed to result in an optimal alignment, has a time
complexity of 𝒪(𝑛𝑚) where 𝑛 and 𝑚 are the lengths of the sequences to align.144
Some methods have been proposed to speed up,149 however the complexity is still
𝒪(𝑛𝑚/ log(𝑛)). Lower bounds have been studied and there is not much optimization
to be done if optimal exact alignment is needed.150,151 If we want to do better we
have to rely on heuristics.

Another issue is space complexity since we need to store the matrix, the space
complexity is also 𝒪(𝑛𝑚). If we wish to align 2 human genomes we would need to
store ≈ 1019 matrix cells, which would amount to 10 Exabytes of storage (i.e. the
storage scale of a data-center) if we use 8bit integers. However, in practice, we
can do much better than that, and construct an optimal alignment in linear space
complexity 𝒪(𝑛 + 𝑚)152 meaning we would only need a couple gigabytes to store
the matrix for 2 human genomes. This resulted in an improved global alignment
algorithm, the Myers-Miller algorithm,153 implemented in the EMBOSS stretcher
alignment software.154

2.1.2.2. Local alignment

In global alignment two full sequences are aligned to each other. In local alignment
the goal is to find the optimal alignment of two subsequences from these parent
sequences. The main algorithm for locally aligning is the Smith-Waterman (SW)
algorithm,146 developed a decade later than NW.

The two algorithms are very similar, SW also relies on first building the dynamic
programming matrix with the same parametrizable costs for matches, mismatches
and indels as NW. One key difference is that the optimal scores in the matrix are
bound by 0 so they cannot become negative. We only store edges in the alignment
graph if the starting cell has an alignment score > 0.

In this new formulation, the score in cell 𝐶(𝑖, 𝑗) is the maximum of the following
values:

1. The score in the diagonally adjacent cell 𝐶(𝑖−1, 𝑗−1) plus the cost of a match
or mismatch between 𝑆1[𝑖] and 𝑆2[𝑗].

2. The score of the cell to the left 𝐶(𝑖, 𝑗 − 1) plus the cost of an indel.
3. The score of the cell on top 𝐶(𝑖 − 1, 𝑗) plus the cost of an indel.
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4. 0.

If we use the SW algorithm to locally align the two example sequences 𝑆1 and 𝑆2
and the same costs as used above, we obtain the dynamic programming matrix and
graph shown in Figure 2.2.

Figure 2.2.: Example local alignment with the Smith-Waterman algorithm.
Two sequences 𝑆1 and 𝑆2 (the same as in Figure 2.1) are locally aligned. A match
has a cost of +1, a mismatch a cost of -1 and indels a cost of -1. A) The dynamic
programming matrix is filled out and the alignment graph constructed. Alignment
scores are constrained to be non-negative. B) We find paths in the graph between
the vertex with the maximal score and one with a score of 0. Here there are two
such paths resulting in two optimal local alignments represented on the right.

The traceback part to determine the optimal alignment is very similar to NW, how-
ever instead of starting at cell (𝑛, 𝑚), we start at the cell in with the maximal
alignment score and follow the path back until we arrive at a cell with an alignment
score of 0. In the example shown in Figure 2.2, two cells contain the maximal align-
ment score of 2. Tracing back from these cells gives two optimal local alignments
between 𝑆1 and 𝑆2: AC to AC and GA to GA.

Since the SW algorithm is so similar to NW it has the same quadratic time and
space complexity. However, the same optimization can be used to bring it down
to a linear space complexity.144 These optimizations resulted in the Huang and
Miller algorithm,155 implemented in the EMBOSS Lalign tool,154 and the Waterman
Eggert algorithm.156

Both the NW and the SW algorithms are implemented in many different software
tools and are used widely to perform pairwise alignments of short sequences.154,157,158
Some versions even benefit from hardware acceleration with version implemented for
specific CPU instruction sets159 or GPUs160 to substantially speed up alignment.
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2.1.3. Scoring and substitution models

In the examples used above to present the NW and SW algorithms, we used a
very simple cost function: a match has a cost of +1 while mismatches and indels
have a cost of -1. This is really the simplest cost function we can use but also
the crudest. In many cases it may be interesting to infuse this cost function with
biological knowledge. For example some substitutions occur more rarely than others
in nature so it would stand to reason to penalize those more than other, more
common, substitutions.

These biology-aware cost functions usually take the form of a matrix, called scoring
or substitution matrix, often corresponding to an underlying evolutionary model.
When using these matrices, matches and mismatches between specific characters
are given. For example the cost of aligning an A and a G might be lower than
aligning that same A with a T. A lot of different substitution matrices have been
developed especially for protein alignments,161 developed with different techniques
and underlying models and with different intended applications.

The earliest and simplest substitution matrices are match/mismatch matrices. They
are effectively what we used above, where all matches are given a fixed positive score
and all mismatches a fixed negative score. In our examples above the correspond-
ing substitution matrix would be a four by four matrix with ones on the diagonal
indicating matches and -1 everywhere else. These are simple and useful, but when
dealing with proteins, they have a severe limitation as they ignore the biology of
amino acids.

In order to reflect this biological reality of proteins, new substitution matrices were
developed using Log-odds models based on the fact that substitutions in amino acids
are not equiprobable, and some mutations between related amino acids (e.g. I and
L) are much more common than others. Two of the most widely used substitution
matrices, PAM and BLOSUM matrices, were built this way. The score for aligning
residue 𝑖 with residue 𝑗 is given by the matrix entry 𝑆𝑖𝑗 by looking at the background
frequencies (i.e. how often one expects to see a particular residue in a sequence) of
𝑖 and 𝑗 denoted 𝑝𝑖 and 𝑝𝑗 respectively and the frequency 𝑞𝑖𝑗 with which 𝑖 and 𝑗 are
aligned in accurate biological alignments. With these values we can compute the
substitution score 𝑠𝑖𝑗 as a Log-odds:161

𝑆𝑖,𝑗 = log( 𝑞𝑖𝑗
𝑝𝑖𝑝𝑗

)

This Log-odds formulation yields values with nice properties for sequence alignment.
𝑞𝑖𝑗 can be thought of as the probability of the alignment between amino acids 𝑖 and
𝑗 resulting from a substitution, and 𝑝𝑖𝑝𝑗 is the probability under the null hypothesis
that both of these amino acids were aligned randomly. Therefore the log of the ratio
is negative when the random alignment is more frequent (meaning the substitution
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is unlikely), and positive when the substitution is likely. Both 𝑝𝑖 and 𝑝𝑗 are easy
to compute from available biological sequence data, the real work in developing a
Log-odds based substitution matrix is to estimate 𝑞𝑖𝑗 values, and that is often done
using biologically accurate protein sequence alignments.

The PAM matrix, developed in 1978,162 is one such matrix. A point accepted mu-
tation (PAM) is defined as the substitution of one amino acid by another that is
accepted by natural selection (i.e. visible along the branch of a phylogenetic tree).
Dayhoff et al. also defined a PAM as an evolutionary distance, where two sequences
distant by one PAM are expected to have one amino acid substitution per one hun-
dred residues, which is equivalent to expecting a substitution at 1% of positions. To
develop their matrix, Dayhoff et al. used phylogenetic trees built on 71 families of
closely related proteins and counted the PAMs that appeared in these trees. This
resulted in a matrix 𝐴 where 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = the number of times a substitution be-
tween amino acids 𝑖 and 𝑗 was observed in the trees. By using trees built on closely
related sequences, Dayhoff et al. could be fairly certain that the observed substi-
tutions were the result of a single mutation and not many subsequent mutations
over long evolutionary times. From this matrix 𝐴, Dayhoff et al. reconstructed the
mutation probability 𝑀1 where entries 𝑀1,𝑖𝑗 represent the probability of amino acid
𝑗 being replaced by amino acid 𝑖 after an interval of 1 PAM. Entries of this matrix
are computed as follows:

𝑀1,𝑖𝑗 = 𝜆𝑚𝑗𝐴𝑖𝑗
∑𝑖 𝐴𝑖𝑗

if 𝑖 ≠ 𝑗 (2.1)

𝑀1,𝑖𝑗 = 1 − 𝜆𝑚𝑗 if 𝑖 = 𝑗 (2.2)

here 𝑚𝑗 is the observed mutability of amino acid 𝑗, and 𝜆 is a constant factor used
to tune the matrix so that it reflects mutation rates corresponding to 1 PAM where
99% of positions are unchanged, which means that the diagonal of 𝑀1 must sum
to 0.99. By assuming that evolution follows a Markov process it is simple to derive
the mutation matrices for sequences separated by greater evolutionary distances.
The 𝑀𝑛 matrix, corresponding to a distance of 𝑛 PAMs is equal to 𝑀𝑛

1 . Finally
the 𝑞𝑖𝑗 values can be derived with 𝑞𝑖𝑗 = 𝑝𝑗𝑀𝑖𝑗. By choosing different values of 𝑛
for the mutation matrix we can estimate scoring matrices for sequences that are
at varying evolutionary distances from one another. The correspondence between
PAMs and the observed proportion of different residues is not one to one, therefore
a distance of 250 PAMs corresponds to around only about 20% of identical residues
where a distance of 180 PAMs corresponds to around 27% identical residues.161,162
Therefore the PAM250 matrix, derived from 𝑀250, is suited to align more distantly
related proteins than the PAM180 for example. By changing the mathematical model
underlying the estimate of mutation probabilities, PAM-like matrices163 were later
developed based on the same principles.
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The other main type of substitution matrix is the BLOSUM matrix (Block Substi-
tution matrix), developed in 1992.164 Instead of using whole, closely-related, protein
sequences like the PAM matrices, the values of 𝑞𝑖𝑗 were estimated on highly con-
served segments, called blocks, across whole protein families. The 𝑞𝑖𝑗 values are then
estimated as the number of time amino acids 𝑖 and 𝑗 are aligned divided by the
number of total amino acid pairs in the alignment. Therefore 𝑞𝑖𝑗 is the observed
frequency of the aligned pair of amino acids 𝑖 and 𝑗 in all the conserved blocks.
As with PAM matrices, several BLOSUM matrices were constructed, designed for
aligning sequences with different evolutionary distances. The BLOSUM62 matrix
was estimated on blocks in aligned sequences that are at most 62% identical, BLO-
SUM80 on sequences that are at most 80% identical. Therefore, inversely to the
PAM matrices, the higher the number of the BLOSUM matrix the more suited it is
to align more closely related sequences.

PAM and BLOSUM matrices have fairly broad use-cases and are widely used in
alignment. However, many other protein substitution models exist. Instead of us-
ing log-odds, some substitution models were developed by estimating scores with
maximum-likelihood approaches.165,166 Some matrices were developed with very spe-
cific usage conditions in mind, tailored to specific types of proteins like transmem-
brane,167,168 disordered169 or polar/non-polar170 proteins. Some matrices were devel-
oped to align sequences from specific organisms like P. falciparum171 (responsible for
malaria) or HIV.172 A substitution matrix was even developed in 2005 specifically
for global rather than local alignment.173

This wealth of protein substitution matrices reflects the biological and evolutionary
diversity of proteins, however substitution matrices for aligning DNA sequences are
much less common. Some work has been done to derive matrices similar to PAM
matrices from DNA alignments.174 Codon substitution matrices175,176 have been de-
veloped as well, although they are used in DNA sequence alignment, ultimately they
use knowledge derived from protein alignments.

2.1.4. Dealing with gaps

In the NW and SW examples of Section 2.1.2, as with the simplistic match/mismatch
costs, we used a very simple cost of insertions and deletions: any indel has a cost
of -1. As was the case with substitutions, this does not reflect the biological reality
very well.

In biology, when insertions or deletions occur it is more likely that the indel will span
several nucleotides rather than just one.177 This means that longer gap stretches are
more likely than many individual gaps. For example, the two alignments below have
the same number of matches, mismatches, and gaps. The second one is more likely
since it is the result of a single insertion (or deletion) of AGGT rather than multiple
independent indels.
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AGGAGGTTCG AGGAGGTTCG
A-G-G-T-CC AGG----TCC

The first approach to take this into account was to try and optimize the gaps more
generally178 over the whole aligned sequence. However, even with dynamic program-
ming, this has at best a time complexity of 𝒪(𝑛2𝑚).179 In 1982, Gotoh proposed
affine gap costs.180 With this model there are two separate costs associated to indels:
1) the gap open cost and 2) the gap extend cost. Usually the costs are set up so
that opening a new gap is more costly than extending it, meaning that longer gap
stretches are favored over many short indels. The other major advantage is that
with Gotoh’s algorithm time complexity is back down to 𝒪(𝑛𝑚). The algorithm was
further refined by Altschul et al..181

Over the years different types of gap costs were developed and tested like the logarith-
mic gap costs proposed by Waterman182 and improved by Miller and Myers183 which
turned out to be less accurate than affine gap costs184). A bi-linear gap cost was
also proposed to replace the affine cost,185 with a breakpoint at gaps of length three,
the size of a codon. As more and more sequence data became available, similarly to
what happened with substitution matrices, empirical profile-based models derived
from this data were developed.186 Some of these penalties leverage structural infor-
mation and context for proteins.187,188 A context dependent gap penalty depending
on the hydrophobicity of aligned residues is implemented in Clustal X,189 one of
the most widely used sequence aligners. Although quite complex and empirically
derived, these profile-based penalties show limited improvement over the affine and
bi-linear penalties.190

More recently, methodological and algorithmic developments have resulted in the
WaveFront algorithm (WFA) for pairwise alignment.191 This algorithm computes a
NW alignment with affine gap costs with a much lower time complexity of 𝒪(𝑛𝑠),
where 𝑠 is the alignment score, reducing the quadratic relationship to sequence length
to a linear one. This algorithm is also easily vectorizable and can take advantage
of hardware acceleration, making its implementation run between 10 to 300 times
faster than alternative methods depending on the testing context.191

2.2. How to speed up pairwise alignment ?

The NW and SW algorithms, as well as their improvements, are proven to be op-
timal.192 However, when dealing with large sequences, which are more and more
common, or when having to do many pairwise alignments, they become limiting due
to their time and space complexity. In many cases, to get around these limitations,
optimality is left aside in favor of heuristics and approximate methods speeding up
alignment.
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2.2.1. Changing the method

One of the early approaches to speed up alignment was to focus on speeding up the
dynamic programming which is the time and space consuming step of the NW and
SW algorithms. Bounded dynamic programming193 is one such approach, in some
works it is also called banded dynamic programming. By making the assumption
that the majority of alignment operations are matches and mismatches instead of
indels we can make a hypothesis about the alignment graph. Most probably, the path
in the graph corresponding to the optimal alignment will be around the diagonal
of the dynamic programming matrix, and scores far away from the diagonal are
probably not needed. By making these assumptions a lot of the scores of the matrix
do not need to be computed, speeding up the execution and leading to a sparse
dynamic programming matrix (shown in Figure 2.3). This approach was used to
speed up alignment early on in 1984.194 The advantage of this method is that the
optimal alignment can be found very efficiently. If there are many indels in the
optimal alignment, this algorithm is not guaranteed to run faster than NW.

Figure 2.3.: Bounded dynamic programming to speed up alignment.
The dynamic programming matrix is shown here, only values in the blue section are
computed, speeding up the process. Here the optimal path in the alignment graph,
shown in red, is included entirely in the bounds. Adapted from.195

More “exotic” methods have also been used successfully for sequence alignment. Fast
Fourier Transform (FFT) are used in the MAFFT aligner196 in order to quickly find
homologous segments between two sequences. These homologous regions can be
used as the basis for alignment. MAFFT, primarily a multiple sequence aligner (c.f.
Section 2.4 below), can also be used for pairwise alignment.
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2.2.2. Seed and extend with data structures

In parallel to the development of new alignment algorithms, another way of sub-
stantially speeding up pairwise alignment is the so-called “seed and extend” method.
This is based on the observation that a pairwise alignment most likely has several
short subsequences that are almost identical in both sequences to align. These ho-
mologous subsequences, seeds, can be used to initialize an alignment that can be
extended in both directions with dynamic programming until we have a suitable
alignment.

This method can be used for 1) local alignment, where seeds indicate possible local
matches which can be extended in local alignments; or 2) for global alignment where
the seeds anchor the dynamic programming matrix, limiting the number of cells to
fill out as shown in Figure 2.4. In both cases this approach follows the divide and
conquer philosophy and extending seeds or filling out the dynamic programming
matrix between anchors can be done independently and in parallel.

Figure 2.4.: Divide and conquer to speed up alignment.
Here anchors are used to speed up alignment. Anchors are shown as dark blue dots
in the dynamic programing matrix. Only values in blocks between anchors, shown
in blue, need to be computed. The majority of the matrix can be left empty. The
optimal path in the resulting alignment graph must go through each anchor and is
shown in red. Adapted from.195

This type of approach can also be used for many-to-one local alignments: either
trying to find homologies between a query sequence and a database of sequences, or
to find several local alignments in a large reference sequence like in read-mapping
(see Section 2.3.1). In these many-to-one scenarios it is useful to index seeds in data
structures that allow rapid querying and compact storage. This general framework
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has proven to be quite flexible with many different ways to pick seeds197 and many
different data structures to index them.198

2.2.2.1. 𝑘-mers and hash tables

2.2.2.1.1. The BLAST algorithm One of the early methods for very quick heuris-
tic alignment is the Basic Local Alignment Search Tool: BLAST.199 It is widely used
to this day to find homologous sequences in large databases and, as such, is one of
the most cited papers of all time with over 100,000 citations. It is available as a
web service hosted by the NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Over the year many different versions for different use cases have been developed like
BLASTP for protein sequences or BLASTN and MEGABLAST for nucleic acid sequences.

In our description of the BLAST algorithm, we will have a target and a query sequence
that we wish to align.

1. For both sequences we build a hash table that uses subsequences of length 𝑘,
called 𝑘-mers, as keys and their position in the whole sequence as values.

2. The hash tables are then scanned to check for exact matches between 𝑘-mers
in the target and query sequences, called hits.

3. The positions of the hits in the target and query sequences are used to seed a
candidate local alignment.

4. The candidate local alignments are extended in both directions from the seed
with the SW algorithm. If the alignment score reaches a value under a specified
threshold, the alignment stops and the candidate is discarded.

By selecting the right size 𝑘 of the seeds (by default 11 when aligning nucleotides, 3
when aligning amino acids) as well as the alignment score threshold, one can adjust
the sensitivity of the method at the cost of runtime.

It might not seem very useful to pre-compute the target hash-table for a single
target. However, in practice BLAST is used to find local alignments between a query
sequence and a very large number of target sequences; databases hosted by NCBI
have hundreds of millions of target sequences (https://ftp.ncbi.nlm.nih.gov
/blast/db/), at these scales pre-computing the target database saves an enormous
amount of time.

Over time, several improvements have been developed for BLAST. PSI-BLAST200 it-
eratively refines the alignments, Gapped BLAST200and BLASTZ201 use spaced seeds,
introduced in the PatternHunter method,202 corresponding to seeds where not all
characters match, increasing sensitivity. By sorting the target sequences it is possi-
ble to stop earlier and gain some speed as well.203 The Diamond aligner204 increase
alignment speed by using double indexing and thus leveraging CPU cache and re-
ducing time waiting for memory or disk access, improving alignment speed up to
360-fold over BLAST in later version.205
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FASTA,206 an improvement on FASTP,207 is another method for local alignment, sim-
ilar to BLAST. 𝑘-mers for the target and query sequence are indexed in a hash table
and hits are found between the two sequences. The 𝑘-mers used in the FASTA tool
are usually shorter than for BLAST, so instead of initializing an alignment at a single
hit, FASTA identifies regions in both sequences that have a high density of hits, keep-
ing the best 10. These regions are then scored using matrices discussed in Section
2.1.3 and high scoring regions are combined to build an approximate alignment. An
optimal version of this alignment is then computed using the SW algorithm with
banded dynamic programming.

Both FASTA and BLAST are very fast. It only takes a couple of seconds to find
approximate local alignments between a hundred query sequences208 in a database
of over eighty million target sequences.209 Attempting this task with standard SW
or NW algorithms would be much slower210 but would yield more sensitive, optimal
alignments.211

2.2.2.1.2. Other algorithms One of the problems with such an approach is the size
of the index, indeed storing all the 𝑘-mers of a length 𝑛 sequence would require a
maximum of (𝑛−𝑘+1)⋅𝑘 characters as the hash table keys, if all 𝑘-mers are distinct.
This space constraint is acceptable for very large scale homology search tools on
hosted web services such as NCBI BLAST, on a personal computer this can easily
exceed memory capacity. Storing the hash table on disk has drastic consequences on
query times, therefore methods to reduce the storage needs of these data structures
were developed.

One of the ways to make everything fit in memory is to not store all 𝑘-mers. One
way is through the use of so-called minimizers, introduced independently in 2003212
and 2004.213 Given a window of 𝑤 consecutive 𝑘-mers and an ordering, a (𝑤, 𝑘)
minimizer is the “smallest” 𝑘-mer in the window w.r.t. the chosen ordering. Let us
consider the following window of 3-mers with 𝑤 = 4: TGACAT, yielding the following
3-mers: TGA, GAC, ACA, CAT. Following a simple ordering, such as the lexicographical
ordering (i.e. alphabetical order), the “smallest” 3-mer, and our (4, 3) minimizer,
would be ACA, and only this one would be sampled and added to our hash table.
Minimizers have interesting properties: adjacent windows often share a minimizer
(see Figure 2.5) and if two strings have a 𝑤 − 𝑘 + 1 sequence in common then they
are guaranteed to share a (𝑤, 𝑘) minimizer.213 These properties make minimizers
very useful for the seed and extend alignment strategy and they are used in several
aligners such as minimap214 and minimap2,119 mashmap2215 and winnowmap.120

While the lexicographical ordering is easy to conceptualize, and the one proposed
initially by Roberts et al., it has an undesirable characteristic: it tends to select
simpler 𝑘-mers with repeated A at the beginning. As discussed in Section 1.4.2,
repeated stretches of nucleotides are prone to sequencing errors and as such are not
ideal for seeding alignments. Furthermore, when the window shifts 𝑘-mers at the

36



2.2. HOW TO SPEED UP PAIRWISE ALIGNMENT ?

Figure 2.5.: 𝑘-mer minimizers in action.
A) The 3-mers are shown under a window of size 𝑤 = 4 𝑘-mers. The (4, 3) minimizer
according to the lexicographical ordering is highlighted in red. B) All the 𝑤 = 4
windows of 3-mers are shown underneath the sequence. (4, 3) minimizers of each
window are highlighted in red. Here both 3-mer minimizer are shared by 4 windows.
Adapted from.213

beginning of successive are likely to be selected as minimizers without being shared
between windows, meaning that we sample more 𝑘-mers than needed. Roberts et al.
proposed an alternative ordering based on nucleotide frequencies,213 however this is
also not ideal. Different orderings have been studied and those based on universal
hitting sets,216 or random orderings (such as the ones defined by a hash function)
have more desirable properties than the lexicographical ordering.217 A minimizer
ordering based on frequency of appearance of 𝑘-mers has also been shown to provide
well-balanced partitioning of 𝑘-mer sets.218

Over the years more strategies have been developed to sample 𝑘-mers and reduce
the data structure size for efficient sequence alignment, such as syncmers,219 strobe-
mers220 or a combination of both.221 These novel seed sampling strategies allow
for sparser seed sampling, smaller data structures and therefore faster alignment
software.

2.2.2.2. Exact matches and suffix trees

While 𝑘-mer seeds have shown success it is not the only way to implement a seed
and extend alignment method. The other way to seed alignments is through maxi-
mal exact matches (MEMs) which is the longest possible exact match between two
sequences. MEMs can be found with data structures like suffix trees,222 suffix ar-
rays223,224 or FM indices.225

Suffix trees have long been used for pattern matching applications,129 the AVID
aligner226 uses them to find maximal exact matches between two sequences to anchor
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a global alignment. MUMmer2227 uses suffix trees to find unique maximal unique
matches (MUMs) to anchor alignments.

Suffix trees, although very useful, have quadratic space complexity w.r.t. to the
length of the indexed sequence.129 This is fine for small bacterial or viral genomes.
However, in the age of whole genome sequencing and the human genome project, it
is inadequate. Therefore some aligners have switched data structures to use suffix
arrays. In fact, it is possible to replace suffix trees with these more space efficient
suffix arrays in any algorithm.228 Newer versions of MUMmer229 have made this choice
and now use suffix arrays for improved performance. It is important to note that
compact versions of suffix trees have been created that are also linear in space to se-
quence length,230 however in practice suffix arrays take up less space for comparable
query times.223

Finally another data structure that is widely used is the so-called FM index proposed
in 2000225 and based on the Burrows-Wheeler transform.231 The FM index is very
memory efficient,232 but this comes at the cost of some efficiency in index lookup
operations, although some work has been done to improve this.233 As such, FM-
indices have been used in many aligners such as BWT-SW,234 BWA235 and BWA-SW,236
BWA-MEM,237 CUSHAW238 or bowtie2.239

The seed and extend paradigm has been very useful in the field of genomics to
deal with the scale of data and keep up with sequencing technologies. Some newer
alignment algorithms like the WFA algorithm mentioned above, have even been used
in such a context.240

Finally, some methodological development have been aimed towards improving align-
ment sensitivity instead of speed. One of these methods, fairly well studied in gen-
eral, and in the context of alignment, are hidden markov models (HMMs). In certain
circumstances PairHMMs, HMMs used for pairwise alignment, can be mathemati-
cally equivalent to NW.241 HMMs have been used for sequence alignment in many
software tools like HHsearch,242 HMMer243 or MCALIGN2244 which is used to efficiently
search for alignments in large databases of sequences.

2.3. The specificities of read-mapping

Read-mapping is a special case of pairwise alignment and the focus of Chapter 3, it
stands to reason that we use this section to explain the stakes and challenges of the
read-mapping task.

2.3.1. What is read-mapping ?

Read-mapping, or sometimes read-alignment is the process of comparing a sequenc-
ing read to a reference sequence and finding the region in the reference homologous
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to the read. Sometimes, mappers only output the position where this region starts
in the reference but more often than not, they output local or semi-global align-
ments between the reads and the reference. In semi-global alignment, two sequences
are globally aligned but indels at the end and beginning of each sequence are not
penalized, this can be useful to detect overlap between two sequences, or align two
sequences of very different sizes.

Read-mapping is often the first step of many bioinformatics analysis pipelines, and
as such is often crucial. Therefore it makes sense that this is a very active field with
many reviews245–249 and some benchmarking procedures250 to compare tools.

From a technical and algorithmic standpoint, the task of mapping many sequencing
reads to a single reference lends itself very well to the “divide and conquer” approach
presented in Section 2.2.2. Indexing the reference beforehand and using this index as
a database to align can lead to substantial execution speed gains. As a matter of fact,
many of the aligners presented in Section 2.2.2 are actually read-mappers that can
also do pairwise alignment. As such most implement the seed-and-extend paradigm
with hash-tables like minimap2;119 FM-indices like BWT-SW,234 bowtie2,239 BWA,235
BWA-SW,236 BWA-MEM237 and CUSHAW;238 or even other divide and conquer approaches
like Kart.251 As sequencing technologies yield longer and more numerous reads, these
heuristics become more important if we wish to be able to analyze this data. This
can be partly mitigated through hardware acceleration.252–255

2.3.2. Challenges of read-mapping

Read-mapping, as one might expect, is no easy task. The length of recent sequencing
reads and their numbers are of course challenging, but algorithmic tricks described
above can help. There are other aspects of sequencing data that make read-mapping
as hard as it is.

Sequencing technologies, although they have improved over time, can still make er-
rors, and these errors can lower the homology between reads and reference, making
mapping harder.129 This is particularly true of long reads where the error rate is
higher. To mitigate that some specific long-read mappers take these errors into
account when aligning a read to the reference. Some mappers are tied to a spe-
cific sequencing technology like BLASR256 or lordFAST257 for PacBIO reads, and
GraphMap258 for ONT. Some however, like NGMLR,259 MashMap260 or DuploMap,261 are
technology agnostic and can work with any type of long-read. This might not be
needed forever though as sequencing accuracy is growing with every new generation
of sequencers. Since homopolymer-linked indels are still common in long-read se-
quencing (cf. Section 1.4.2) many modern read-mappers, designed to work with long
reads, include some option to use homopolymer compression (c.f. Section 1.4.3.2).

While the technology producing reads can complicate the read-mapping tasks, some
regions of the genome are intrinsically harder to map to. This is particularly true of
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repetitive regions like telomeres or centromeres.249 Repetitive regions mean a lot of
potential homologous regions between a read and the reference, producing a lot of
seed hits, increasing the runtime of the aligners and lowering the overall confidence
in read-placement. Some tools have been developed specifically to deal with such
regions. Winnowmap120 and Winnowmap2,262 assign a weight to 𝑘-mers that might be
sampled as minimizers. By under-weighting frequently appearing 𝑘-mers they can
improve performance in repetitive regions. TandemMapper263 was designed to map
long reads to the extra-long tandem repeats (ETRs) present in centromeric regions.
It does not use minimizers, like Winnowmap it selects less frequent 𝑘-mers as potential
seeds to deal with the repetitiveness and improve the mapping accuracy. Long reads
are also much easier to map to repetitive regions since they can span over them, or
overlap with more complex regions.48,56

Some challenges however are linked to implementation rather than sequencing data.
Some efforts have been done to provide quality scores to mappings in order to easily
assess their quality and therefore usefulness. This score, called mapping quality, is
defined as −10 log10(𝑝), usually rounded to the nearest integer, where 𝑝 corresponds
to the probability of the read being mismapped. It was introduced in the MAQ soft-
ware264 but has been implemented in many read-mappers like BWA,235 bowtie2239 or
minimap2119 since it was added as part of the widely-used SAM file format specifica-
tion.265

While the mapping quality score is standardized, each read-mapper has a different
way of estimating 𝑝, the mismap probability. This creates differences in the reported
qualities: e.g. the maximum quality that bowtie2 can assign is 42, BWA's is 37 and
minimap's is 60.266 This of course means that comparing mapping quality values
between read-mappers is not necessarily meaningful. Furthermore in some cases this
mapping quality is not very reflective of the alignment accuracy,245 as such alterna-
tive approaches have been explored: through a new genome mappability score,267
simulations268 or even machine learning.269

In conclusion, as a crucial step in many bioinformatics pipelines, read-mapping is a
markedly active field with a lot of work in increasing mapping accuracy and speeding
up alignment. However, despite all this work, some challenges remain. Further im-
proving mapping is possible and doing so could result in more accurate downstream
analyses and avoid drawing some erroneous conclusions.

2.4. Multiple sequence alignment

Up until now we have only considered pairwise alignment where we want to find
homologies between a pair of sequences. In many cases though, it is helpful to
compare more than two sequences together, this is where multiple sequence alignment
(MSA) steps-in. It is an essential task in many bioinformatics and comparative
biology analyses.270
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We saw earlier that with dynamic programming and algorithms like NW or SW it is
possible to compute an optimal pairwise alignment. For MSA, the task of comput-
ing the optimal alignment is, unfortunately, NP-hard,271,272 with an exponentially-
growing time and space complexity in the number of sequences to align. Therefore,
heuristics and approximations are needed from the start in order to get anything
meaningful.

An early method, and easy to conceptualize, is the so-called center star alignment
method.195 In this approach, a single sequence is chosen to be the center sequence.
After this each other sequence is aligned to the center sequence and the pairwise
alignments are merged, conserving gaps that were inserted. The center sequence is
often chosen to be as similar to the other sequences as possible. For this, all pairwise
distances between sequences are needed implying a quadratic distance computation
step. The pairwise alignments are independent so this approach is easy to parallelize.
Some software, like HAlign273 use center star alignment to produce MSAs. This
method, however, is quite sensitive to the choice of the center sequence. Bad pairwise
alignments can lower the accuracy of the overall MSA by conserving gaps.

2.4.1. Progressive alignment

One of the most widely used multiple sequence alignment approach is progressive
alignment.274 Similarly to the center star algorithm, the progressive algorithm re-
duces the MSA problem to independent pairwise alignments. The first step is to
build a phylogenetic tree from the sequences to align, representing the evolutionary
relationship between sequences, called the guide tree. Starting from the leaves, that
correspond to single sequences, pairwise align the sequences and store the alignment
(or profile) in the parent node. Going up from the leaves to the roots, align sequences
together, then sequences to profiles if needed and finally profiles together, merging
alignments as we progress up the tree. The final multiple sequence alignment is
obtained when this process reaches the root. Profiles at inner nodes of the tree are
aligned to each other to conserve gaps. A representation of this process is shown in
Figure 2.6.

In many cases a matrix of pairwise distances is needed to construct the guide tree,
if we choose the edit distance, 𝑛(𝑛 − 1)/2 pairwise alignments are needed to get this
matrix. With a large number of sequences, or long sequences this is not possible in
a reasonable amount of time. Therefore, computing of distance matrices through
alignment-free methods, usually based on 𝑘-mers, is often used as input to the tree
building method.275,276

Tree reconstruction methods from the distance matrix like UPGMA277 or neighbor-
joining278 can be quite time consuming when dealing with a large set of sequences.
To counteract this, some multiple sequence aligners also use heuristic methods to
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Figure 2.6.: Overview of the progressive alignment process.
A) sequences to align, B) guide tree constructed from distances between sequences
in panel A, C) Alignment steps along the guide tree and resulting MSA at the root
of the tree. Adapted from144

approximate a guide tree. MAFFT,196 for example, uses PartTree279 method to ap-
proximate the tree, and clustal Omega280 uses an embedding method281 to do so.

Although this method is a good heuristic as the guide tree can capture complex re-
lationships between sequences, progressive alignment can still suffer from problems
similar to center star alignment: mainly gap propagation. If an early alignment is
erroneous and introduces spurious gaps, then these are propagated throughout the
MSA. As it is said in the seminal progressive alignment paper: “once a gap, always a
gap”.274 Iterative refinement of the MSA270 was proposed as a solution to this prob-
lem. A possible approach is to recompute a guide tree from the alignment and run
the whole progressive alignment procedure on the new guide tree, but this is very
time consuming and is not practical with the large sequence sets available today.
Therefore, the iterative procedure consists of taking an MSA obtained through pro-
gressive alignment and splitting it horizontally in two alignments of 𝑛/2 sequences
each. In each half, the sites composed exclusively of gaps are removed and the two
alignments merged through profile alignment. After the realignment of both halves,
a scoring metric is computed and as long as this metric improves, repeat the previous
steps. There are several of these metrics, the most commonly used is the probably
the sum of pairs score282 or its weighted variant.283 There exist other scores like
log-odds and correlation284 or a consistency based score.285

42



2.4. MULTIPLE SEQUENCE ALIGNMENT

Most of the widely used multiple sequence aligners some form of progressive align-
ment with iterative refinement: T-Coffee286 which uses a consistency score for refine-
ment, MUSCLE,287,288 MAFFT,196 ProbCons289 which uses a formal HMM to compute
consistency and the various CLUSTAL incarnations280,290,291 which are some of the
most cited papers of all times.

2.4.2. Other methods

While the progressive alignment algorithm has been at the root of some of the most
widely used alignment software, other methods to produce MSAs have been explored
over the years.

One common other method for creating multiple alignment, whether through profile-
profile alignment or sequence-profile alignments are HMMs. Several tools HMMs to
generate an alignment such as HMMer,243 MSAProbs292 or COVID-align.293 In some
cases, the HMM based approach has similar performance to clustalW.294

Other methods have focused on speeding up the dynamic programming part of
aligning multiple sequences. This can be done using simulated annealing,295–297
which can also be used to speed up HMM training.294 Genetic algorithms have also
been used to construct MSAs,298 increasing the speed at which this is possible.299
Several tools use genetic algorithms like VGDA,300 GAPAM301 and SAGA.302

With the recent focus on SARS-CoV 2, some specific multiple sequence aligners have
been developed to create very large multiple sequence alignments. They often take
advantage of the fact that this virus mutates quite slowly meaning that most of the
available sequences have very high homology. Furthermore, as the epidemic was
tracked in near real time since its beginning, we know the original sequence at the
root of the pandemic. Leveraging this knowledge, it is possible to build a profile
from aligning new sequences to the ancestral sequence and aligning new sequences
to this profile using HMMs like what is done in COVID-align.293 The NextAlign303
software even forgoes aligning to a profile and creates massive MSAs (millions of
sequences) by aligning new sequences to the ancestral sequence using banded SW
alignment, the gap penalties are enriched with biological knowledge and dependent
on the position within the sequence.

Recently, Garriga et al. introduced the regressive alignment method,304 where in-
stead of traversing a guide tree from leaf to root, it goes the other way, aligning
the more distant sequences first before merging MSAs. Using this approach, they
managed to create an MSA of 1.4 million sequences with improved accuracy over
progressive methods.

Since multiple sequence alignments are so useful in comparative biology, and that
there is such a vast array of methods to construct them it stands to reason that are
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many resources to help practitioners make their choice. There are many reviews and
benchmarking datasets and procedures to do so.305–309

2.5. Conclusion

Sequence alignment, multiple or pairwise, is a fundamental part of the bioinfor-
matician’s toolkit. Comparing sequences and finding homologies is at the root of
many fields because of the wealth of evolutionary information contained in align-
ments. As such it is paramount to have the best possible sequence alignments in
any situation.

As we have seen now, although we have methods guaranteed to give us optimal
pairwise and multiple sequence alignments, they are not practically useful for deal-
ing with sequences at today’s scale. Therefore, most sequence aligners rely on,
sometimes numerous, heuristics and approximations. From substitution models to
seeding techniques, all these are not necessarily reflective of the biological reality
contained within the sequences to align. Each of these heuristics or models is a step
where biases and approximations can happen, building up along and over sequences.
Therefore, there must be room for improvement.

Having methods that are both fast and accurate are now more necessary than ever
with the ever growing scale and number of publicly available sequences. Furthermore,
in the “age of pandemics”, accurate alignment methods are indispensable to track
and keep an eye on disease spread across the globe, in real-time.
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3. Contribution 1: Improving Read
Alignment by Exploring a Sequence
Transformation Space

Recall that, when using long-read sequencing technologies, sequencing errors are
more frequent than when using short-read sequencing. The most common of these
sequencing errors are linked to homopolymers (1.4.2). In read-mapping analyses, a
short sequence is globally aligned to a much longer reference sequence. Mapping
long-reads can help bridge some gaps in knowledge and solve problems impossible
to solve with shorter reads, however sequencing errors complicate an already com-
plicated task (2.3). Homopolymer compression (1.4.3.2) has been successfully used
to mitigate some of the effects of these errors and improve long-read mapping anal-
yses. There might, however, be rooom for improvement and alternative sequence
transformation procedures that improve long-read mapping more than homopolymer
compression.

This chapter was written as an article titled: “Mapping-friendly sequence
reductions: going beyond homopolymer compression”. It is currently in
press for the iScience proceedings of the RECOMB-SEQ 2022 conference and is
presented as is, without any modification from the submitted version. The author
list, complete with affiliations is given below:

Luc Blassel1,2*, Paul Medvedev3,4,5, Rayan Chikhi1

1 Sequence Bioinformatics, Department of Computational Biology, Institut Pasteur,
Paris, France
2 Sorbonne Université, Collège doctoral, Paris, France
3 Department of Computer Science and Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
4 Department of Biochemistry and Molecular Biology, Pennsylvania State Univer-
sity, University Park, Pennsylvania, United States of America
5 Center for Computational Biology and Bioinformatics, Pennsylvania State
University, University Park, Pennsylvania, United States of America
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Highlights

• Mapping-friendly sequence reductions (MSRs) are functions that transform
DNA sequences.

• They are a generalization of the concept of homopolymer compression.

• We show that some well-chosen MSRs enable more accurate long read mapping.

Graphical abstract

Abstract

Sequencing errors continue to pose algorithmic challenges to methods working with
sequencing data. One of the simplest and most prevalent techniques for ameliorat-
ing the detrimental effects of homopolymer expansion/contraction errors present in
long reads is homopolymer compression. It collapses runs of repeated nucleotides,
to remove some sequencing errors and improve mapping sensitivity. Though our
intuitive understanding justifies why homopolymer compression works, it in no way
implies that it is the best transformation that can be done. In this paper, we ex-
plore if there are transformations that can be applied in the same pre-processing
manner as homopolymer compression that would achieve better alignment sensi-
tivity. We introduce a more general framework than homopolymer compression,
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called mapping-friendly sequence reductions. We transform the reference and the
reads using these reductions and then apply an alignment algorithm. We demon-
strate that some mapping-friendly sequence reductions lead to improved mapping
accuracy, outperforming homopolymer compression.

3.1. Introduction

Sequencing errors continue to pose algorithmic challenges to methods working with
read data. In short-read technologies, these tend to be substitution errors, but in
long reads, these tend to be short insertions and deletions; most common are expan-
sions or contractions of homopolymers (i.e. reporting 3 As instead of 4).101 Many
algorithmic problems, such as alignment, become trivial if not for sequencing er-
rors.129 Error correction can often decrease the error rate but does not eliminate
all errors. Most tools therefore incorporate the uncertainty caused by errors into
their underlying algorithms. The higher the error rate, the more detrimental its
effect on algorithm speed, memory, and accuracy. While the sequencing error rate
of any given technology tends to decrease over time, new technologies entering the
market typically have high error rates (e.g. Oxford Nanopore Technologies). Find-
ing better ways to cope with sequencing error therefore remains a top priority in
bioinformatics.

One of the simplest and most prevalent techniques for ameliorating the detrimental
effects of homopolymer expansion/contraction errors is homopolymer compression
(abbreviated HPC). HPC simply transforms runs of the same nucleotide within a
sequence into a single occurrence of that nucleotide. For example, HPC applied
to the sequence AAAGGTTA yields the sequence AGTA. To use HPC in an align-
ment algorithm, one first compresses the reads and the reference, then aligns each
compressed read to the compressed reference, and finally reports all alignment lo-
cations, converted into the coordinate system of the uncompressed reference. HPC
effectively removes homopolymer expansion/contraction errors from the downstream
algorithm. Though there is a trade-off with specificity of the alignment (e.g. some of
the compressed alignments may not correspond to true alignments) the improvement
in mapping sensitivity usually outweighs it.119

The first use of HPC that we are aware of was in 2008 as a pre-processing step for 454
pyrosequencing data in the Celera assembler.115 It is used by a wide range of error-
correction algorithms, e.g. for 454 data,310 PacBio data,117 and Oxford Nanopore
data.311 HPC is used in alignment, e.g. by the widely used minimap2 aligner.119 HPC
is also used in long-read assembly, e.g. HiCanu,112 SMARTdenovo,312 or mdBG.113
HPC is also used for clustering transcriptome reads according to gene family of
origin.116 Overall, HPC has been widely used, with demonstrated benefits.

Though our intuitive understanding justifies why HPC works, it in no way implies
that it is the best transformation that can be done. Are there transformations

47



CHAPTER 3

that can be applied in the same pre-processing way as HPC that would achieve
better alignment sensitivity? In this work, we define a more general notion which
we call mapping-friendly sequence reductions. In order to efficiently explore the
performance of all reductions, we identify two heuristics to reduce the search space
of reductions. We then identify a number of mapping-friendly sequence reductions
which are likely to yield better mapping performance than HPC. We evaluate them
using two mappers (minimap2 and winnowmap2) on three simulated datasets (whole
human genome, human centromere, and whole Drosophila genome). We show that
some of these functions provide vastly superior performance in terms of correctly
placing high mapping quality reads, compared to either HPC or using raw reads.
For example, one function decreased the mapping error rate of minimap2 by an
order of magnitude over the entire human genome, keeping an identical fraction of
reads mapped.

We also evaluate whether HPC sensitivity gains continue to outweigh the specificity
cost with the advent of telomere-to-telomere assemblies.4 These contain many more
low-complexity and/or repeated regions such as centromeres and telomeres. HPC
may increase mapping ambiguity in these regions by removing small, distinguishing,
differences between repeat instances. Indeed, we find that neither HPC nor our
mapping-friendly sequence reductions perform better than mapping raw reads on
centromeres, hinting at the importance of preserving all sequence information in
repeated regions.

3.2. Results

3.2.1. Streaming sequence reductions

We wish to extend the notion of homopolymer compression to a more general func-
tion while maintaining its simplicity. What makes HPC simple is that it can be
done in a streaming fashion over the sequence while maintaining only a local con-
text. The algorithm can be viewed simply as scanning a string from left to right
and, at each new character, outputting that character if and only if it is different
from the previous character. In order to prepare for generalizing this algorithm, let
us define a function 𝑔HPC ∶ Σ2 → Σ ∪ {𝜀} where Σ is the DNA alphabet, 𝜀 is the
empty character, and

𝑔HPC(𝑥1 ⋅ 𝑥2) = {𝑥2 if 𝑥1 ≠ 𝑥2
𝜀 if 𝑥1 = 𝑥2

Now, we can view HPC as sliding a window of size 2 over the sequence and at each
new window, applying 𝑔HPC to the window and concatenating the output to the
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growing compressed string. Formally, let 𝑥 be a string, which we index starting
from 1. Then, the HPC transformation is defined as

𝑓(𝑥) = 𝑥[1, ℓ − 1] ⋅ 𝑔(𝑥[1, ℓ]) ⋅ 𝑔(𝑥[2, ℓ + 1]) ⋯ 𝑔(𝑥[|𝑥| − ℓ + 1, |𝑥|]) (3.1)

where ℓ = 2 and 𝑔 = 𝑔HPC. In other words, 𝑓 is the concatenation of the first ℓ − 1
characters of 𝑥 and the sequence of outputs of 𝑔 applied to a sliding window of length
ℓ over 𝑥. The core of the transformation is given by 𝑔 and the size of the context
ℓ, and 𝑓 is simply the wrapper for 𝑔 so that the transformation can be applied to
arbitrary length strings.

With this view in mind, we can generalize HPC while keeping its simplicity by 1)
considering different functions 𝑔 that can be plugged into Equation (3.1) increasing
the context that 𝑔 uses (i.e. setting ℓ > 2). Formally, for a given alphabet Σ and
a context size ℓ, a function 𝑇 mapping strings to strings is said to be an order-
ℓ Streaming sequence reduction (abbreviated SSR) if there exists some 𝑔 ∶ Σℓ →
Σ ∪ {𝜀} such that 𝑇 = 𝑓 .
Figure 3.1A shows how an SSR can be visualized as a directed graph. Observe that
an order-ℓ SSR is defined by a mapping between |Σ|ℓ inputs and |Σ| + 1 outputs.
For example, for ℓ = 2, there are 𝑛 = 16 inputs and 𝑘 = 5 outputs. Figure 3.1B
visualizes HPC in this way.

Since we aim to use SSRs in the context of sequencing data, we need to place
additional restrictions on how they handle reverse complements. For example, given
two strings 𝑥 (e.g. a read) and 𝑦 (e.g. a substring of the reference), a mapper might
check if 𝑥 = 𝑅𝐶(𝑦). When strings are pre-processed using an SSR 𝑓 , it will end
up checking if 𝑓(𝑥) = 𝑅𝐶(𝑓(𝑦)). However, 𝑥 = 𝑅𝐶(𝑦) only implies that 𝑓(𝑥) =
𝑓(𝑅𝐶(𝑦)). In order to have it also imply that 𝑓(𝑥) = 𝑅𝐶(𝑓(𝑦)), we need 𝑓 to be
commutative with RC, i.e. applying SSR then RC needs to be equivalent to applying
RC then SSR. We say that 𝑓 is RC-insensitive if for all 𝑥, 𝑓(𝑅𝐶(𝑥)) = 𝑅𝐶(𝑓(𝑥)).
Observe that HPC is RC-insensitive.

3.2.2. Restricting the space of streaming sequence reductions

To discover SSRs that improve mapping performance, our strategy is to put them all
to the test by evaluating the results of an actual mapping software over a simulated
test dataset reduced by each SSR. However, even with only 16 inputs and 5 outputs,
the number of possible 𝑔 mappings for order-2 SSRs is 516 ≈ 1.5 ⋅ 1011, which is pro-
hibitive to enumerate. In this section, we describe two ideas for reducing the space
of SSRs that we will test. In subsection 3.2.2.1, we show how the restriction to RC-
insensitive mappings can be used to reduce the search space. In subsection 3.2.2.2,
we exploit the natural symmetry that arises due to Watson-Crick complements to
further restrict the search space.
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Figure 3.1.: Representing and counting Streaming sequence reductions.
A: General representation of an order-2 Streaming sequence reduction as a mapping
of 16 input dinucleotides, to the 4 nucleotide outputs and the empty character 𝜀.
B: Homopolymer compression is an order-2 SSR. All dinucleotides except those
that contain the same nucleotide twice map to the second nucleotide of the pair.
The 4 dinucleotides that are the two same nucleotides map to the empty character
𝜀. C: Our RC-core-insensitive order-2 SSRs are mappings of the 6 representative
dinucleotide inputs to the 4 nucleotide outputs and the empty character 𝜀. The 4
dinucleotides that are their own reverse complement are always mapped to 𝜀. The
remaining 6 dinucleotides are mapped to the complement of the mapped output of
the reverse complement dinucleotide input. For example, if AA is mapped to C, then
TT (the reverse complement of AA) will be mapped to G (the complement of C). D:
Number of possible SSR mappings under the different restrictions presented in the
main text. All mappings from 16 dinucleotide inputs to 5 outputs (as in panel A) are
represented by the outermost circle. All RC-core-insensitive mappings (as in panel
C) are represented by the medium circle. All RC-core-insensitive mappings with
only one representative of each equivalence class are represented by the innermost
circle.

These restrictions reduce the number of order-2 SSRs to only , making it feasible to
test all of them. Figure 3.1D shows an overview of our restriction process.

3.2.2.1. Reverse complement-core-insensitive streaming sequence reductions

Consider an SSR defined by a function 𝑔, as in Equation (3.1). Throughout this
paper we will consider SSRs that have a related but weaker property than RC-
insensitive. We say that an SSR is RC-core-insensitive if the function 𝑔 that defines
it has the property that for every ℓ-mer 𝑥 and its reverse complement 𝑦, we have
that either 𝑔(𝑥) is the reverse complement of 𝑔(𝑦) or 𝑔(𝑥) = 𝑔(𝑦) = 𝜀. We will
restrict our SSR search space to RC-core-insensitive reductions in order to reduce
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the number of SSRs we will need to test.

Let us consider what this means for the case of ℓ = 2, which will be the focal point of
our experimental analysis. There are 16 ℓ-mers(i.e. dinucleotides) in total. Four of
them are their own reverse complement: AT, TA, GC, CG. The RC-core-insensitive
restriction forces 𝑔 to map each of these to 𝜀, since a single nucleotide output cannot
be its own reverse complement. This leaves 12 ℓ-mers, which can be broken down into
6 pairs of reverse complements. For each pair, we can order them in lexicographical
order and write them as (𝐴𝐴, 𝑇 𝑇 ), (𝐴𝐶, 𝐺𝑇 ), (𝐴𝐺, 𝐶𝑇 ), (𝐶𝐴, 𝑇 𝐺), (𝐶𝐶, 𝐺𝐺), and
(𝐺𝐴, 𝑇 𝐶). Defining 𝑔 can then be done by assigning an output nucleotide to the
first ℓ-mer in each of these pairs (Figure 3.1C). For example, we can define an SSR
by assigning 𝑔(𝐴𝐴) = 𝐶, 𝑔(𝐴𝐶) = 𝐶, 𝑔(𝐴𝐺) = 𝐴, 𝑔(𝐶𝐴) = 𝐴, 𝑔(𝐶𝐶) = 𝑇 , and
𝑔(𝐺𝐴) = 𝐺. As an example, let us apply the corresponding SSR to an example read
𝑟:

𝑟 = TAAGTTGA 𝑓(𝑅𝐶(𝑟)) = TCACCTG
𝑓(𝑟) = TCAGGTG 𝑅𝐶(𝑓(𝑟)) = CACCTGA

𝑅𝐶(𝑟) = TCAACTTA

Observe that the first ℓ−1 nucleotides of 𝑟 (shown in red) are copied as-is, since we do
not apply 𝑔 on them (as per Equation (3.1)). As we see in this example, this implies
that 𝑓(𝑅𝐶(𝑟)) is not necessarily equal to 𝑅𝐶(𝑓(𝑟)); thus an RC-core-insensitive SSR
is not necessarily an RC-insensitive SSR. However, an RC-core-insensitive SSR has
the property that for all strings 𝑟, we have 𝑓(𝑅𝐶(𝑟))[ℓ, |𝑟|]) = 𝑅𝐶(𝑓(𝑟))[1, |𝑟|−ℓ+1].
In other words, if we drop the ℓ−1 prefix of 𝑓(𝑅𝐶(𝑟)) and the ℓ−1 suffix of 𝑅𝐶(𝑓(𝑟)),
then the two strings are equal. Though we no longer have the strict RC-insensitive
property, this new property suffices for the purpose of mapping long reads. Since
the length of the read sequences will be much greater than ℓ (in our results we will
only use ℓ = 2), having a mismatch in the first or last nucleotide will be practically
inconsequential.

It is important to note though that there may be other RC-insensitive functions
not generated by this construction. For instance, HPC cannot be derived using this
method (as it does not map the di-nucleotides AT,TA,GC and CG to 𝜀), and yet it
is RC-insensitive.

We can count the number of RC-core-insensitive SSRs. Let us define 𝑖(ℓ) the number
of input assignments necessary to fully determine the RC-core-insensitive SSR; one
can think of this as the degrees-of-freedom in choosing 𝑔. As we showed, for ℓ = 2,
we have 𝑖(ℓ) = 6. The number of RC-core-insensitive SSRs is then 5𝑖(ℓ). Therefore,
for ℓ = 2, instead of 516 possible mappings we have at most 56 ≈ 1.5 ⋅ 104 RC-
core-insensitive mappings (Figure 3.1D). For an odd ℓ > 2, there are no ℓ-mers
that are their own reverse complements, hence 𝑖(ℓ) = 4ℓ/2. If ℓ is even then there
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are 4ℓ/2 inputs that are their own reverse complements (i.e. we take all possible
sequences of length ℓ/2 and reconstruct the other half with reverse complements).
Thus, 𝑖(ℓ) = (4ℓ − 4ℓ/2)/2.

3.2.2.2. Equivalence classes of SSRs

Non mapping-related preliminary tests led us to hypothesize that swapping 𝐴 ↔ 𝑇
and/or 𝐶 ↔ 𝐺, as well as swapping the whole 𝐴/𝑇 pair with the 𝐶/𝐺 pair in the
SSR outputs would have a negligible effect on performance. In other words, we
could exchange the letters of the output in a way that preserves the Watson-Crick
complementary relation. Intuitively, this can be due to the symmetry induced by
reverse complements in nucleic acid strands, though we do not have a more rigorous
explanation for this effect. In this section, we will formalize this observation by
defining the notion of SSR equivalence. This will reduce the space of SSRs that we
will need to consider by allowing us to evaluate only one SSR from each equivalence
class.

Consider an RC-core-insensitive SSR defined by a function 𝑔, as in Equation (3.1).
An ℓ-mer is canonical if it is the not lexicographically larger than its reverse comple-
ment. Let 𝐼 be the set of all ℓ-mers that are canonical. Such an SSR’s dimension 𝑘
is the number of distinct nucleotides that can be output by 𝑔 on inputs from 𝐼 (not
counting 𝜀). The dimension can range from 1 to 4. Next, observe that 𝑔 maps all
elements of 𝐼 to one of 𝑘 + 1 values (i.e. Σ ∪ 𝜀). The output of 𝑔 on ℓ-mers not in
𝐼 is determined by its output on ℓ-mers in 𝐼 , since we assume the SSR is RC-core-
insensitive. We can therefore view it as a partition of 𝐼 into 𝑘 + 1 sets 𝑆0, …, 𝑆𝑘,
and then having a function 𝑡 that is an injection from {1, … , 𝑘} to Σ that assigns
an output letter to each partition. Further, we permanently assign the output letter
for 𝑆0 to be 𝜀. Note that while 𝑆0 could be empty, 𝑆1, … , 𝑆𝑘 cannot be empty by
definition of dimension. For example, the SSR used in Section 3.2.2.1 has dimen-
sion four and corresponds to the partition 𝑆0 = {}, 𝑆1 = {𝐴𝐺, 𝐶𝐴}, 𝑆2 = {𝐶𝐶},
𝑆3 = {𝐴𝐴, 𝐴𝐶}, 𝑆4 = {𝐺𝐴}, and to the injection 𝑡(1) = 𝐴, 𝑡(2) = 𝑇 , 𝑡(3) = 𝐶, and
𝑡(4) = 𝐺.

Let IsComp(𝑥, 𝑦) be a function that returns true if two nucleotides 𝑥, 𝑦 ∈ Σ∪{𝜀} are
Watson-Crick complements, and false otherwise. Consider two SSRs of dimension 𝑘
defined by 𝑆0, … , 𝑆𝑘, 𝑡 and 𝑆′

0, , 𝑆′
𝑘, 𝑡′, respectively. We say that they are equivalent

iff all the following conditions are met:

• 𝑆0 = 𝑆′
0,

• there exists a permutation 𝜋 of {1, … , 𝑘} such that for all 1 ≤ 𝑖 ≤ 𝑘, we have
𝑆𝑖 = 𝑆′

𝜋(𝑖),

• for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, we have IsComp(𝑡(𝑖), 𝑡(𝑗)) = IsComp(𝑡′(𝜋(𝑖)), 𝑡′(𝜋(𝑗))).
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One can verify that this definition is indeed an equivalence relation, i.e. it is reflexive,
symmetric, and transitive. Therefore, we can partition the set of all SSRs into
equivalence classes based on this equivalence relation. One caveat is that a single
SSR defined by a function 𝑔 may correspond to multiple SSRs of the form 𝑆0, … , 𝑆𝑘, 𝑡.
However, these multiple SSRs are equivalent, hence the resulting equivalence classes
are not affected. Furthermore, we can assume that there is some rule to pick one
representative SSR for its equivalence class; the rule itself does not matter in our
case.

Figure 3.2 shows the equivalence classes for ℓ = 2, for a fixed partition. An equiv-
alence class can be defined by which pair of classes 𝑆𝑖 and 𝑆𝑗 have complementary
outputs under 𝑡 and 𝑡′. Let us define 𝑜(𝑘) as the number of equivalence classes for
a given partition and a given 𝑘. Then Figure 3.2 shows that 𝑜(1) = 1, 𝑜(2) = 2 and
𝑜(3) = 𝑜(4) = 3. There are thus only 9 equivalence classes for a given partition.

Figure 3.2.: SSR equivalence classes for a fixed partition of the inputs.
𝑆0 is always assigned 𝜀, so it is represented by a gray node. A blue link between
𝑆𝑖 and an 𝑆𝑗 denotes that IsComp(𝑡(𝑖), 𝑡(𝑗)) = true. The equivalence classes are
determined by the Watson-Crick complementary relationships between the rest of
the parts, i.e. by all the possible ways to draw the blue links.

3.2.2.3. Counting the number of restricted SSRs

In this section, we derive a formula for the number of restricted SSRs, i.e. SSRs that
are RC-core-insensitive and that are representative for their equivalence class. Con-
sider the class of RC-core-insensitive SSRs with dimension 𝑘. In subsection 3.2.2.1,
we derived that the degrees-of-freedom in assigning ℓ-mers to an output is 𝑖(ℓ) = 4ℓ/2
if ℓ is odd and 𝑖(ℓ) = (4ℓ − 4ℓ/2)/2 if ℓ is even. Let 𝐶(ℓ, 𝑘) be the number of ways
that 𝑖(ℓ) ℓ-mers can be partitioned into 𝑘 + 1 sets 𝑆0, … , 𝑆𝑘, with 𝑆1, … , 𝑆𝑘 required
to be non-empty. Then, in subsection 3.2.2.2, we have derived 𝑜(𝑘), the number of
SSR equivalence classes for each such partition. The number of restricted SSRs can
then be written as

𝑁(ℓ) =
4

∑
𝑘=1

𝐶(ℓ, 𝑘) ⋅ 𝑜(𝑘) (3.2)
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To derive the formula for 𝐶(ℓ, 𝑘), we first recall that the number of ways to partition
𝑛 elements into 𝑘 non-empty sets is known as the Stirling number of the second kind
and is denoted by {

𝑛
𝑘}.313 It can be computed using the formula

{𝑛
𝑘} = 1

𝑘!
𝑘

∑
𝑖=0

(−1)𝑖(𝑘
𝑖)(𝑘 − 𝑖)𝑛

Let 𝑗 be the number of the 𝑖(ℓ) ℓ-mers that are assigned to 𝑆0. Note this does not
include the ℓ-mers that are self-complementary that are forced to be in 𝑆0. Let
𝐶(ℓ, 𝑘, 𝑗) be the number of ways that 𝑖(ℓ) ℓ-mers can be partitioned into 𝑘 + 1 sets
𝑆0, … , 𝑆𝑘, such that 𝑗 of the ℓ-mers go into |𝑆0| and 𝑆1, … , 𝑆𝑘 to are non-empty. We
need to consider several cases depending on the value of 𝑗:

• In the case that 𝑗 = 0, we are partitioning the 𝑖(ℓ) inputs among non-empty
sets 𝑆1, … , 𝑆𝑘. Then 𝐶(ℓ, 𝑘, 𝑗) = {

𝑖(ℓ)
𝑘 }.

• In the case that 1 ≤ 𝑗 ≤ 𝑖(ℓ) − 𝑘, there are (
𝑖(ℓ)

𝑗 ) ways to choose which 𝑗 ℓ-mers
are in 𝑆0, and {

𝑖(ℓ) − 𝑗
𝑘 } ways to partition the remaining ℓ-mers into 𝑆1, … , 𝑆𝑘.

Hence, 𝐶(ℓ, 𝑘, 𝑗) = (
𝑖(ℓ)

𝑗 ){
𝑖(ℓ) − 𝑗

𝑘 }.

• In the case that 𝑗 > 𝑖(ℓ) − 𝑘, it is impossible to partition the remaining 𝑘
(or fewer) ℓ-mers into 𝑆1, … , 𝑆𝑘 such that the sets are non-empty. Recall that
as we assume the dimension is 𝑘, each set must contain at least one element.
Hence, 𝐶(ℓ, 𝑘, 𝑗) = 0.

Putting this together into Equation (3.2), we get

𝑁(ℓ) =
4

∑
𝑘=1

𝑜(𝑘)({𝑖(ℓ)
𝑘 } +

𝑖(ℓ)−𝑘
∑
𝑗=1

(𝑖(ℓ)
𝑗 ){𝑖(ℓ) − 𝑗

𝑘 })

For ℓ = 2, we have 𝑁(2) = 2, 135 restricted SSRs, which is several orders of magni-
tude smaller than the initial 516 possible SSRs and allows us to test the performance
of all of them. For order-3 SSRs we get 𝑁(3) = 2.9 ⋅ 1021 which much smaller than
the full search space of 543 ≈ 5.4 ⋅ 1044, for order-4 SSRs we get a similar reduc-
tion in search space with 𝑁(4) = 9.4 ⋅ 1084 as opposed to the full search space of
544 ≈ 8.6⋅10178. For these higher order SSRs, although the restricted search space is
much smaller than the full original one, it is still too large to exhaustively search.
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Figure 3.3.: Illustration of how a respective mapq threshold is chosen for
each of our evaluated MSRs.
The orange dot shows the error rate and fraction of reads mapped for HPC at mapq
threshold 60. Anything below and to the right of this point is strictly better than
HPC 60, i.e. it has both a lower error rate and higher fraction of reads mapped.
If an evaluated MSR does not pass through this region, then it is discarded from
further consideration. In the figure, the blue MSR does pass through this region,
indicating that it is better than HPC 60. We identify the leftmost point (marked as
a blue dot) and use the mapq threshold at that point as the respective threshold.

3.2.3. Selection of mapping-friendly sequence reductions

We selected a set of “promising” SSRs starting from all of the SSRs enumerated in
Section 3.2.2, that we call mapping-friendly sequence reductions (abbreviated MSR).
The selection was performed on a 0.5x coverage read set, simulated from a whole
human genome assembly.4The transformed reads were mapped to the transformed
reference using minimap2 and paftools mapeval119 was used to compute a map-
ping error rate. Note that overfitting SSRs to a particular genome is acceptable in
applications where a custom SSR can be used for each genome. Yet in this work,
the same set of selected SSR will be used across all genomes.

For each evaluated SSR, we selected, if it exists, the highest mapq threshold for
which the mapped read fraction is higher and the mapping error rate is lower than
HPC at mapq 60 (0.93 and 2.1 ⋅ 10−3 respectively), Figure 3.3 illustrates the idea.
Then we identified the 20 SSRs that have the highest fraction of reads mapped
at their respective thresholds. Similarly we identified the 20 SSRs with the lowest
mapping error rate. Finally we select the 20 SSRs that have the highest percentage
of thresholds “better” than HPC at mapq 60; i.e. the number of mapq thresholds for
which the SSR has both a higher fraction of reads mapped and lower mapping error
rate than HPC at a mapq threshold of 60, divided by the total number of thresholds
(=60).

The union of these 3 sets of 20 SSRs resulted in a set of 58 “promising” MSRs.
Furthermore, we will highlight three MSRs that are “best in their category”, i.e.
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• MSRF: The MSR with the highest fraction of mapped reads at a mapq thresh-
old of 0.

• MSRE: The MSR with the lowest mapping error rate at its respective mapq
threshold.

• MSRP: The MSR with the highest percentage of mapq thresholds for which
it is “better” than HPC at mapq 60.

Figure 3.4 shows the actual functions MSRF, MSRE, MSRP. An intriguing property
is that they output predominantly As and Ts, with MSRP assigning only 2 input
pairs to the G/C output whereas MSRE and MSRF assign only one. Additionally,
MSRE and MSRP both assign the {CC,GG} input pair to the deletion output 𝜀
removing any information corresponding to repetitions of either G or C from the
reduced sequence. Overall this means the reduced sequences are much more AT-
rich than their raw counterparts, but somehow information pertinent to mapping is
retained

Figure 3.4.: Graph representations of our highlighted MSRs: MSRE,
MSRF, and MSRP.
MSRE has the lowest error rate of among MSRs at the highest mapq threshold for
which it performs better than HPC at mapq 60, MSRF has the highest fraction of
reads mapped at mapq 60 and MSRP has the highest percentage of mapq thresh-
olds for which it outperforms HPC at mapq 60. The grayed out nodes represent
the reverse complement of input dinucleotides and outputs, as in Figure 3.1C. For
example for MSRE, AA is mapped to T, so TT is mapped to A.

The 58 selected MSRs, as well as HPC and the identity transformation (denoted
as raw), were then evaluated on larger read-sets simulated from 3 whole genome
references: a whole human genome assembly,4 a whole Drosophila melanogaster
genome assembly314 and a synthetic centromeric sequence263 (see STAR Methods
for more details).

56



3.2. RESULTS

3.2.4. Mapping-friendly sequence reductions lead to lower mapping
errors on whole genomes

Across the entire human genome, at high mapping quality thresholds (above 50),
our selected 58 MSRs generally have lower mapping error rate than HPC and raw
Figure 3.5A and Table 3.1. This is not surprising, as we selected those MSRs partly
on the criteria of outperforming HPC at mapq 60; however, it does demonstrate
that we did not overfit to the simulated reads used to select the MSRs.

Figure 3.5.: Performance of our 58 selected mapping-friendly sequence re-
ductions across genomes on reads simulated by nanosim.
Panel A) shows the whole human genome assembly, B) the subset of mapped reads
from panel B that originate from repetitive regions, and C) the “TandemTools” syn-
thetic centromeric reference sequence. We highlighted the best-performing mapping-
friendly sequence reductions as MSR E, F and P, respectively in terms of cumulative
mapeval error rate, fraction of reads mapped, and percentage of better thresholds
than HPC. Each point on a line represents, from left to right, the mapping quality
thresholds 60, 50, 40, 30, 20, 10 and 0. For the first point of each line, only reads
of mapping quality 60 are considered, and the y value represents the rate of these
reads that are not correctly mapped, the x value represents the fraction of simulated
reads that are mapped at this threshold. The next point is computed for all reads
of mapping quality ≥ 50, etc. The rightmost point on any curve represents the map-
ping error rate and the fraction of mapped reads for all primary alignments. The
x-axes are clipped for lower mapped read fractions to better differentiate HPC, raw
and MSRs E, F and P.

Mapping quality is only an indication from the aligner to estimate whether a read
mapping is correct, and according to Figure 3.5A the mapping error rate of most
MSRs is low even for mapping qualities lower than 60. Therefore, we choose to
compare MSR-mapped reads with lower mapping qualities against raw or HPC-
mapped reads with the highest (60) mapping quality (which is the mapping quality
thresholds most practitioners would use by default).
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Table 3.1 shows that the three selected MSRs outperform both HPC and raw in
terms of mapping error rate, with similar fractions of mapped reads overall. For
example on the human genome, at mapq≥ 50, MSRF, MSRP and MSRE all map
more reads than either HPC or raw at mapq=60, and MSRP and MSRE also have
mapping error rates an order of magnitude lower than either HPC or raw.

To evaluate the robustness of MSRs E, F and P we investigated the impact of
mapping to a different organism or using another mapper. To this effect we repeated
the evaluation pipeline in these different settings:

• Using the Drosophila melanogaster whole genome assembly as reference and
mapping with minimap2

• Using the whole human genome assembly as reference but mapping with
winnowmap2(version 2.02).120 The same options as minimap2 were used, and
k-mers were counted using meryl,315 considering the top 0.02% as repetitive
(as suggested by the winnowmap2 usage guide).

MSRs E, F and P behave very similarly in both of these contexts compared to
HPC/raw: by selecting mapped reads with mapq≥ 50 for the three MSRs we obtain
a similar fraction of mapped reads with much lower error rates (Table 3.1). A
noticeable exception is the winnowmap2 experiment, where a larger fraction of raw
reads are mapped than any other MSR and even HPC. A more detailed results table
can be found in Table A.1, and a graph of MSR performance on the whole Drosophila
genome in Figure A.6. As Figure A.6 shows, we also evaluated these MSRs on a
whole Escherichia coli (Genbank ID U00096.2) genome, where we observed similar
results, albeit the best MSRs do not seem to be one of our three candidates. This
might mean that specific MSRs are more suited to particular types of genomes.

Whole human genome Whole human genome Whole Drosophila genome
minimap2 winnowmap2 minimap2

mapq fraction error fraction error fraction error
HPC 60 0.935 +0% 1.85e-03 + 0% 0.894 +0% 1.43e-03 + 0% 0.957 +0% 2.27e-03 + 0%
raw 60 0.921 −1% 1.86e-03 + 0% 0.932 +4% 1.75e-03 +23% 0.958 +0% 2.27e-03 − 0%

MSRF 50 0.938 +0% 1.29e-03 −30% 0.886 −1% 3.82e-04 −73% 0.960 +0% 1.37e-03 − 39%
MSRE 50 0.936 +0% 1.17e-04 −94% 0.820 −8% 8.93e-05 −94% 0.954 −0% 0.00 −100%
MSRP 50 0.938 +0% 4.15e-04 −78% 0.845 −6% 1.14e-04 −92% 0.957 +0% 8.11e-04 − 64%

Table 3.1.: Performance of MSRs, HPC, and raw mappings across different
mappers and reference sequences.
For each reference sequence and mapper pair, we report the fraction of reads mapped
(“fraction” columns), the paftools mapeval mapping error rate (“error” columns).
The percentage differences are computed w.r.t to the respective HPC value. For
HPC and the raw these metrics were obtained for alignments of mapping quality of
60. For MSRs E, F and P these metrics were obtained for alignments of mapping
quality ≥ 50.
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3.2.5. Mapping-friendly sequence reductions increase mapping quality
on repeated regions of the human genome

To evaluate the performance of our MSRs specifically on repeats, we extracted the
reads for which the generating region overlapped with the repeated region of the
whole human genome by more than 50% of the read length. We then evaluated the
MSRs on these reads only. Repeated regions were obtained from https://t2t.gi
.ucsc.edu/chm13/hub/t2t-chm13-v1.1/rmsk/rmsk.bigBed.

We obtained similar results as on the whole human genome, with MSRs E, F and
P performing better than HPC at mapq 50 (Figure 3.5B). At a mapq threshold of
50, the mapping error rate is 53%, 31%, and 39% lower than HPC at mapq 60 for
MSRs E, F and P respectively, while the fraction of mapped reads remains slightly
higher. At mapq=60, raw has an mapping error rate 40% lower than HPC but the
mapped fraction is also 17% lower.

3.2.6. Raw mapping improves upon HPC on centromeric regions

On the “TandemTools” centromeric reference, HPC consistently maps a smaller
fraction of reads than raw, across all mapping quality thresholds (Figure 3.5C).
Additionally, the mapping error rate for raw is often inferior to that of HPC. The
same is true for our selected MSRs: most of them have comparable performance to
HPC, but none of them outperform raw mapping (Figure 3.5C).

We conjecture this is due to the highly repetitive nature of centromeres. HPC likely
removes small unique repetitions in the reads and the reference that might allow
mappers to better match reads to a particular occurrence a centromeric pattern.
Mapping raw reads on the other hand preserves all bases in the read and better
differentiates repeats. Therefore it seems inadvisable to use HPC when mapping
reads to highly repetitive regions of a genome, such as a centromere.

3.2.7. Positions of incorrectly mapped reads across the entire human
genome

To study how MSRs E, F, and P improve over HPC and raw mapping in terms of
mapping error rate on the human genome, we selected all the primary alignments
that paftools mapeval reported as incorrectly mapped. For HPC and raw, only
alignments of mapping quality equal to 60 were considered. To report a comparable
fraction of aligned reads, we selected alignments of mapping quality ≥ 50 for MSRs.
We then reported the origin of those incorrectly mapped reads on whole human
genome reference, shown per-chromosome in Figure 3.6.
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Origin of incorrectly mapped reads on chromosome
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Figure 3.6.: Histogram of the original simulated positions for the incor-
rectly mapped reads using minimap2 at high mapping qualities across the
whole human genome, for several transformation methods.
For a given chromosome, each row represents the number of simulated reads starting
at that particular region. The dark gray rectangle represents the position of the cen-
tromere for that chromosome, obtained from annotations provided by the T2T con-
sortium (http://t2t.gi.ucsc.edu/chm13/hub/t2t-chm13-v1.1/). Similarly for chro-
mosomes 13, 14, 15, 21 and 22, a lighter gray rectangle represents the position of
the “stalk” satellites also containing repetitive regions. For HPC and raw reads only
alignments of mapping quality 60 were considered. To provide a fair comparison,
alignments with mapping qualities ≥ 50 were considered for MSRs E, F and P.

We observe that erroneously mapped reads are not only those from centromeres,
and instead originate from many other genomic regions. MSRs E and P have a
markedly lower number of these incorrect mappings than either HPC or raw, with
1118 incorrect mappings for raw mappings and 1130 for HPC as opposed to 549,
970 and 361 for MSRs E, F and P respectively. This stays true even for difficult
regions of the genome such as chromosome X, where raw and HPC have 70 incorrect
mappings as opposed MSRs E and P that have 39, and 27 errors respectively.
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We also investigated where all simulated reads were mapped on the whole human
genome assembly, for raw, HPC and MSRs E,F and P in Figures A.1 through A.5.
The correctly mapped reads are, as expected, evenly distributed along each chromo-
some. The incorrectly mapped reads are however unevenly distributed. For most
chromosomes there is a sharp peak in the distribution of incorrectly mapped reads,
located at the position of the centromere. For the acrocentric chromosomes, there
is a second peak corresponding to the “stalk” satellite region, with an enrichment of
incorrectly mapped reads. This is expected since both centromeres and “stalks” are
repetitive regions which are a challenge for mapping. For chromosomes 1, 9 and 16
however the majority of incorrectly mapped reads originate in repeated regions just
after the centromere.

3.3. Discussion

We have introduced the concept of mapping-friendly sequence reduction and shown
that it improves the accuracy of the popular mapping tool minimap2 on simulated
Oxford Nanopore long reads.

We focused on reads with high mapping quality (50-60), as it is a common practice
to disregard reads with low mapping quality.261,316,317 However across all mapped
reads (mapq≥ 0), HPC and our MSRs have lower mapping accuracies than raw
reads, consistent with the recommendation made in minimap2 to not apply HPC
to ONT data. Despite this, we newly show the benefit of using HPC (and our
MSRs) with minimap2 on ONT data when focusing on high mapping quality reads.
Furthermore MSRs provide a higher fraction of high-mapq reads compared to both
raw and HPC, as shown on the human and Drosophila genomes.

A natural future direction is to also test whether our MSRs perform well on mapping
Pacific Biosciences long reads. Furthermore, it is important to highlight that our
sampling of MSRs is incomplete. This is of course due to only looking at functions
having 𝑙 = 2, but also to the operational definition of RC-core-insensitive functions,
and finally to taking representatives of equivalence classes. An interesting future
direction would consist in exploring other families of MSRs, especially those that
would include HPC and/or close variations of it.

Additionally, our analyses suggests to not perform HPC on centromeres and other
repeated regions, hinting at applying sequence transformations to only some parts
of the genomes. We leave this direction for future work.
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3.4. Limitations of this study

Our proposed MSRs improve upon HPC at mapq 60, both in terms of fraction of
reads mapped and mapping error rate on whole human, Drosophila melanogaster,
and Escherichia coli genomes. We chose these sequences because they were from
organisms that we deemed different enough, however it would be interesting to verify
if our proposed MSRs are still advantageous on even more organisms, e.g. more
bacterial or viral genomes. This would allow us to assess the generalizability of our
proposed MSRs.

We made the choice of using simulated data to be able to compute a mapping error
rate. Some metrics, such as fraction of reads mapped might still be informative with
regards to the mapping performance benefits of MSRs, even on real data. Evaluating
the MSRs on real data might be more challenging but would offer insight into real-
world usage of such pre-processing transformations.

The hypothesis we made in subsection 3.2.2.2 was derived from non mapping-related
tests, it helped us reduce the search space and find MSRs. Testing if this hypothesis
holds true on mapping tasks would help us make sure we are not missing some
potentially well-performing SSRs by discarding them at this stage.

Finally, the restrictions we imposed to define RC-core-insensitive MSRs though in-
tuitively understandable are somewhat arbitrary, so exploring a larger search space
might be beneficial. Alternatively for higher order MSRs, even with our restric-
tions, the search spaces remain much too large to be explored exhaustively. To
mitigate this problem, either further restrictions need to be found, or an alternative,
optimization-based exploration method should be implemented.
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Method details

3.4.0.1. Datasets

The following three reference sequences were used for evaluation:

1. Whole human genome: This reference sequence is a whole genome
assembly of the CHM13hTERT human cell line by the Telomere-to-Telomere
consortium.4 We used the 1.1 assembly release (Genbank Assembly ID
GCA_009914755.3).

2. Whole Drosophila genome: This reference sequence is a whole genome
assembly of a Drosophila melanogaster, release 6.35 (Genbank Assembly ID
GCA_000001215.4).314

3. Synthetic centromeric sequence: This sequence was obtained from the
TandemTools mapper test data.263 It is a simulated centromeric sequence that
is inherently difficult to map reads to. Appendix A.1 describes how it was
constructed, and it is downloadable from https://github.com/lucblassel/
TandemTools/blob/master/test_data/simulated_del.fasta

3.4.0.2. Simulation pipeline

Given a reference sequence, simulated reads were obtained using nanosim318 with
the human_NA12878_DNA_FAB49712_guppy_flipflop pre-trained model, mimicking
sequencing with an Oxford Nanopore instrument. The number of simulated reads
was chosen to obtain a theoretical coverage of whole genomes around 1.5x, this
resulted in simulating ≈ 6.6 ⋅ 105 reads for the whole human genome and ≈ 2.6 ⋅ 104

reads for the whole Drosophila genome. Since the centromeric sequence is very short,
we aimed for a theoretical coverage of 100x which resulted in ≈ 1.3 ⋅ 104 simulated
reads.

For each evaluated SSR, the reads as well as the reference sequence were reduced
by applying the SSR to them. The reduced reads were then mapped to the reduced
reference using minimap2119 with the map-ont preset and the -c flag to generate
precise alignments. Although HPC is an option in minimap2 we do not use it and
we evaluate HPC as any of the other SSRs by transforming the reference and reads
prior to mapping. The starting coordinates of the reduced reads on the reduced
reference were translated to reflect deletions incurred by the reduction process. The
mapping results with translated coordinates were filtered to keep only the primary
alignments. This process was done for each of our SSRs as well as with HPC and
the original untransformed reads (denoted as raw).
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3.4.0.3. Evaluation pipeline

We use two metrics to evaluate the quality of a mapping of a simulated read set.
The first is the fraction of reads mapped, i.e. that have at least one alignment. The
second is the mapping error rate, which is the fraction of mapped reads that have
an incorrect location as determined by paftools mapeval.119 This tool considers
a read as correctly mapped if the intersection between its true interval of origin,
and the interval where it has been mapped to, is at least 10% of the union of both
intervals.

Furthermore, we measure the mapping error rate as a function of a given mapping
quality threshold. Mapping quality (abbreviated mapq) is a metric reported by the
aligner that indicates its confidence in read placement; the highest value (60) indi-
cates that the mapping location is likely correct and unique with high probability,
and a low value (e.g. 0) indicates that the read has multiple equally likely candidate
mappings and that the reported location cannot be trusted. The mapping error
rate at a mapq threshold 𝑡 is then defined as the mapping error rate of reads whose
mapping quality is 𝑡 or above. For example, the mapping error rate at 𝑡 = 0 is the
mapping error rate of the whole read set, while the mapping error rate at 𝑡 = 60 is
the mapping error rate of only the most confident read mappings. Observe that the
mapping error rate decreases as 𝑡 increases.
All experiments performed for this article are implemented and documented as
nextflow workflows available in this project’s repository (https://github.com
/lucblassel/MSR_discovery). These workflows may be used to rerun experiments
and reproduce results. The repository also contains a Rmarkdown notebook to gen-
erate all figures and tables in the main text and supplemental information from the
pipeline outputs.

Supplementary information

Supporting Information can be found in Appendix A
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4. Learning From Sequences and
Alignments

Sequences and sequence alignments are very rich sources of information. As was
stated in Chapters 2 and 3, many downstream analyses rely on sequence align-
ments.

In whole genome assembly, where sequencing reads are combined together to de-
duce the genome sequence, pairwise sequence alignment is used, both in reference-
based319,320 and de novo321,322 assembly. It has also been used to deduce protein
function.323 Pairwise alignment, has been used for sequence clustering116 as well as
detecting genetic324 and structural variants.325,326 Multiple sequence alignments are
also very widely used, mainly in phylogenetic analyses where the evolutionary his-
tory of a set of sequences are studied and represented as trees,327,328 but they have
also been used extensively in protein structure prediction.329

More recently, as computational power and datasets have grown, more and more
machine learning methods are being used on sequence alignments in order to gain
biological insight. In this chapter, we will explore how this can be done, as an
introduction to Chapter 6 where we present an application: predicting HIV drug
resistance mutations.

4.1. What to learn ?

One of the first questions one might ask themselves when wishing to use machine
learning with sequence data is “what can I learn?”. A simplistic answer to this
question would be “a lot of things” as the following section will strive to show. To
choose what we learn we must first choose a learning paradigm.

4.1.1. Supervised learning from biological sequences

Supervised learning is one of the main machine learning paradigms, where we have
data that consists of a collection of input and output pairs (e.g. a DNA sequence
and an associated species). By feeding these pairs to our algorithm of choice, it
will learn to predict the output based on the input alone. This is a very powerful
way of learning something interesting. We can consider the link between inputs and
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outputs as extra knowledge that the dataset creator or curator can infuse in the
learning algorithm. Within the supervised learning paradigm there are two possible
tasks: regression and classification.

4.1.1.1. Regression tasks

For regression tasks, the outputs of our input-output pairs are encoded by a continu-
ous numerical value. Regression models will therefore output continuous real values.
Fortunately, many interesting continuous values can be computed from aligned se-
quences, and in many cases, machine learning models can be trained to predict these
variables.

Regression methods have been used to predict drug response in cancer patients330
and resistance levels to drugs in HIV.331 These methods are also extensively used in
protein structure prediction where they are trained to predict residue angles or values
in protein contact maps from aligned sequences,332–336 or directly from an MSA.137
Regression algorithms have been used to predict protein fitness in silico337–339 to
speed up protein engineering, and make some processes like drug development faster
and cheaper. They have also been used in many other tasks such as predicting gene
expression levels340 or predicting multiple sequence alignment scores.341

In many cases these methods use an encoded representation of the sequences (c.f.
Section 4.3) as input, but some represent the inputs as values computed from align-
ments. For example, protein structure can be predicted from contact maps342 derived
from MSAs, and gene expression levels can be predicted from lists of mutations that
are obtained through alignment to a reference sequence.340 This last approach is also
used in Chapter 6 to predict drug resistance in HIV.

4.1.1.2. Classification tasks

For classification tasks, the outputs of our input-output pairs are categorical in
nature and often represented as discrete integer values. Originally, most classification
methods were designed for binary classification with only two possible outputs: a
“positive” and a “negative” class. This is a simpler problem to solve than multiclass
classification problems where more than two outputs are possible. Most methods
that can handle binary classification have been adapted to multiclass classification.

In biology, categorizing and classifying is often at the root of several research prob-
lems. As such, machine learning classifiers have obvious applications and have been
widely used with sequence data as inputs. Classifiers have been used to predict if
a particular virus343,344 (also Chapter 6), or bacteria345,346 is resistant to antiviral
or antimicrobial drugs respectively. Some classifier models have also been used to
predict characteristics at positions in a sequence, like methylation site prediction347
or splicing site detection.348 This type of approach has also been applied for sequence
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labeling tasks, where each token of a sequence (amino acids, codons, …), is assigned
a label using classifiers. This has been applied to protein secondary structure predic-
tion349 where each residue is assigned a label (𝛼-helix or 𝛽-sheet), or gene prediction
where stretches of the sequence are classified as part of a gene or not.350,351 Base
calling for Nanopore sequencing data (mentioned in 1.2.3), is also a sequence label-
ing task, although the sequence is made up of voltages and the assigned labels are
nucleotides. Finally, classifiers have also been used to predict more general charac-
teristics of a given sequence, like the cellular localization352 and putative function353
of proteins, or the cellular localization of gene expression data.354

I have presented here, only a fraction of what is possible to learn from sequences
in the supervised learning paradigm. I hope you will agree with me that there is
no shortage of problems in computational biology that are suited to this sort of
approach. By using machine learning, instead of more formal statistical approaches,
there is a lower amount of upfront assumptions and the algorithm is tasked with
figuring out what features of the data are important or not for the task at hand.

4.1.2. Unsupervised learning from biological sequences

The second main machine learning paradigm is called, by contrast to supervised
learning, unsupervised learning. In this paradigm we do not have input-output pairs
but only inputs. The goal of unsupervised machine learning methods is to extract
some structure or patterns from the given input without additional guidance.

One of the main tasks in the unsupervised learning paradigm is clustering, wherein
similar inputs are grouped together, methods like 𝑘-means or hierarchical cluster-
ing355 often use some type of distance metric between inputs to define clusters of
similar inputs. Clustering can be used for classification tasks, indeed if some charac-
teristics of sequences in a given cluster are known then we can make the assumptions
that sequences in the same cluster will be similar and share these characteristics.
This has been used to group proteins in families.356 Clustering methods can also be
used to remove duplicate or near-duplicate sequences in datasets.357 Phylogenetic
trees can be considered as a specific type of clustering methods, and they have been
used to group biological sequences.358

One of the main obstacles to clustering biological sequences is the need for comput-
ing distances between sequences. As stated in Chapter 2, obtaining a biologically
relevant distance metric between two sequences, such as the edit-distance, is no easy
task. Additionally, in many cases, all pairwise distances are needed for clustering,
meaning at least a quadratic time and space complexity for a naive clustering algo-
rithm. Two approaches can be used to resolve this problem: devise methods that do
not need all pairwise distances,359 or find a way to speed up distance computation.
Some methods have been developed to devise distance metrics that are biologically
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relevant and less expensive to compute than the edit-distance: like the hashing based
MASH360 or dashing,361 or the neural network based NeuroSEED.362

Unsupervised learning can also be used without clustering. For example, unsuper-
vised methods based on maximum likelihood approaches have been used to predict
mutational effects in protein sequence363 as well as predict recombination hotspots
in human genomic sequences.364

In many cases, unsupervised learning can be done as a preliminary dimensionality
reduction step to a supervised learning task. Indeed biological data is often high-
dimensional, and it is often useful to lower the amount of dimensions to speed up
computations. Some unsupervised methods can reduce the number of dimensions
while retaining most of the information. One such method, Principal Component
Analysis (PCA), is widely used. PCA has been applied to distance matrices to
compute phylogenetic trees,365 and work has been done to apply PCA directly to
MSAs without needing to go through a distance matrix.366 PCA is also widely used
in clustering applications.367–370

4.1.3. Others paradigms

More recently, other learning paradigms have gained popularity in machine learning
circles. Within the semi-supervised paradigm, a small amount of labelled data (i.e.
input-output pairs) is included in a large un-labelled dataset, and methods can
leverage both. This approach has been used to predict drug to protein interactions371
and predict the secondary structure of specific transmembrane proteins.372

In the self-supervised paradigm, models are first trained on a proxy task that hope-
fully makes use of important information in the data. Through this pre-training
step, self-supervised models extract important information from the data and create
internal features and models that can then be leveraged in a supervised or unsuper-
vised fine-tuning task. This paradigm has exploded lately within the field of natural
language processing and machine translation with the rise of transformers, but has
also been widely used to create protein language models like ProtBert373 and ex-
tract information from disordered protein regions.374 We will look at self-supervised
learning in a little more detail in Chapter 7.

Finally, the end-to-end learning paradigm designates the process of chaining several
machine learning tasks together and optimizing the algorithms simultaneously using
the error from the loss of the last task of the group. This has been successfully
used to predict protein-protein interaction surfaces in three dimensions375 as well as
predict micro-RNA targets sequences.376 This paradigm can also be used in a task-
based fashion, where a differentiable loss function is crafted on a traditionally non-
machine learning task and used to train preceding models. This has been explored
for sequence alignment and is further detailed in Chapter 7
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4.2. How to learn ?

Machine learning regroups a multitude of techniques and methods to extract knowl-
edge and make data-driven predictions. In this section, we will quickly go over some
of the main supervised-learning methods, and go into more detail for techniques
used in Chapter 6: logistic regression, naive Bayes and random forests.

4.2.1. General setting

Supervised machine learning is an optimization process. A given algorithm, which
I will refer to as a model, has an associated loss function that can be evaluated on a
dataset. This loss represents how well the model is predicting outputs from inputs
on known input-output pairs. Through an iterative process, this loss is optimized
(in our case minimized) over all pairs forming a dataset. Often, in the literature,
loss and cost are used interchangeably.377 I will favor loss in the following sections.

There is no shortage of loss functions,378 some of them are specifically crafted for
a given model while some are widely used in regression tasks like the Root Mean
Square Error (RMSE). Others like the cross-entropy loss are used in classification
tasks.

After training a machine learning model on a dataset, it is often important to com-
pute a performance measure to get an idea of how well this model is performing. We
could do this on the same data on which the model was trained, this would however
be wrong. Indeed, it gives an unfair advantage to the model since it predicts out-
puts from examples it has already seen. Furthermore, it gives us no insight into the
generalizability of the model since it could just learn the dataset by heart, getting a
perfect score on it while being completely useless on new unseen data. This situation
is known as overfitting,355 shown in Figure 4.1. Since being able to predict outcomes
on unseen data is the main goal of a machine learning model, we need another way
of measuring model performance. The way machine learning practitioners can mea-
sure the performance of their model in a more unbiased manner is by separating
the dataset into two parts before even starting to train the model: one part (usually
the majority of the data) is used as the training set, and the other as the testing set.
Logically, the training set is used to train the model while the testing set is used to
evaluate the performance of the model after training.

As there is a multitude of loss functions, there are many performance metrics to as-
sess how the model is doing on the testing data, especially for classification tasks.379
For regression, RMSE is also widely used as a performance metric, along with the
Mean Absolute Error (MAE). For classification, accuracy is the most widely used
performance metric. Accuracy is the ratio of the number of correctly classified ex-
amples divided by the total number of examples. Accuracy has also been adapted to
specific settings like unbalanced data where the different possible output classes are
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Figure 4.1.: Overfitting behaviour in loss functions.
The two curves show how the loss calculated on the training set (blue) and the testing
set (red) evolve as training time increases. At first both decrease showing that the
model learns informative and generalizable features. At some point, training loss
keeps decreasing and testing loss increases, meaning that the model is learning over-
specific features on the training set and is no longer generalizable: it is overfitting.

not represented equally.380 The testing set must stay completely separate from the
training set and decisions about model settings or input features used must be made
without help of the testing data. If these stringent conditions are not respected
this can lead to data leakage and artificially increase performance of the model on
the testing data, giving us a biased view of the model’s performance and generaliz-
ability.381 This leaking of testing data into the training process is a common pitfall
of machine learning.382 To remedy to this problem, a separate dataset is often re-
served and used as a validation set, in order to provide some estimation of model
performance without using the testing set.

In many cases, machine learning models have a number of parameters that guide
model behavior. These parameters are chosen before training and are different from
the internal parameters of the model that are optimized during training. As such,
they are often called hyper-parameters. These could, for example, be the number of
levels in a decision tree, a learning rate, or a stopping threshold. The value of these
hyper-parameters is often very influential on model performance. However, setting
hyper-parameter values based on the model’s test set performance would lead to
data leakage as stated earlier, and using a separate validation set can lead to small
training sets. To still be able to tune hyper-parameters for optimal performance, and
keep a large training set, 𝑘-fold cross-validation is used.355 In this setting, shown in
Figure 4.2, the testing set is set aside before model training and reserved for the
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final model performance evaluation. The training set is then further subdivided into
𝑘 equally-sized subsets, called folds. Each of the 𝑘 folds is then used to create a
what is called a validation split: the fold acting as a within-split testing set and the
rest of the general training set is used as the within-split training set. This results
in 𝑘 pairs of disjoint training and testing sets, and each example of the general
training data is used exactly once in a within-split testing set. An idea of the model
performance can be obtained by measuring performance on the within-split testing
sets and averaging the measures. This cross-validation performance can be used
to inform hyper-parameter value choice without using the reserved testing set and
avoiding data leakage.

Figure 4.2.: Example of data splits into training, testing and validation
sets with 6-fold cross-validation.
In this setting, the whole data set is first split into a training and testing set. The
testing set is kept separate to assess final model performance. The training set is split
into 6 folds resulting in 6 splits. In each split of the training set, the correspoding
fold is used as the within-split test set (green), and the rest of the training set
is used as the within-split training set (blue). You can get an idea of the model
performance by averaging measures on within-split testing sets and adjusting hyper-
parameters accordingly, without using the global, reserved testing set. Adapted from
https://scikit-learn.org/stable/modules/cross_validation.html

This is the general setting in which a lot of the supervised learning approaches in com-
putational biology reside, e.g. cross-validation was used to tune hyper-parameters
for the models in Chapter 6.

4.2.2. Tests and statistical learning

Some of the simplest models possible are derived from statistics and based on prob-
abilities. One such way to classify data is with a statistical test, like Fisher’s exact
test383 or a 𝜒2 test,384 depending on the number of training examples. If one of
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the input variables is significantly related to the output then one can make a crude
prediction on the output based solely on the value of one input variable. By testing
several features and predicting the output from a set of significantly related input
variables (e.g. through a vote), then prediction accuracy can be improved. This
approach is used as a baseline in the study presented in Chapter 6. It is, however,
not very sophisticated and does not have the best predictive power.

A model that fits more squarely in the process of supervised learning described above
is linear regression. This regression model assumes that the output value results from
a linear combination of the input features and an intercept value. The coefficients
of this linear combination and the intercept are the parameters that the models
optimizes during the learning process. Often, the loss function used to fit this model
is the RMSE mentioned above. The gradient of the RMSE w.r.t. all the coefficients
of the model is easily derived and can be used for optimization. Since this model
is very simple there is an exact analytical solution to find the minimum gradient
value.355 However, in some cases a gradient descent approach can be beneficial to
train this model. This model has also been adapted to binary classification, by
considering that the output value results from a linear combination of input models,
passed through a logistic function. The resulting model is called logistic regression,
and is one of the classifiers used in Chapter 6. Equations (4.1) and (4.2) show the
mathematical model of linear and logistic regression respectively. In these equations,

̂𝑦(𝑖) represents the predicted output of the ith example and 𝑥(𝑖)
𝑗 the jth variable of the

ith example input. 𝜃0 is the intercept and 𝜃𝑗 the coefficient corresponding to the jth
input variable.

̂𝑦(𝑖) = 𝜃0 +
𝑘

∑
𝑗=1

𝜃𝑗 ⋅ 𝑥(𝑖)
𝑗 (4.1)

̂𝑦(𝑖) = 1
1 + 𝑒−(𝜃0+∑𝑘

𝑗=1 𝜃𝑗⋅𝑥(𝑖)
𝑗 )

(4.2)

The model in Equation (4.1) outputs a continuous value used in regression, and the
model in Equation (4.2) outputs a continuous value bounded between 0 and 1, that
we can consider a probability of being in one of the classes. With this probability it
is easy to classify a given example in one of the two classes. It is easy to extend the
logistic regression model to multiclass classification, by training several models and
predicting the class with the maximal probability.

These linear models are simple, but can achieve good performance. They can, how-
ever, be prone to overfitting. This often translates into very large values for the 𝜃
coefficients. In order to counter this, regularized versions of linear and logistic re-
gression were introduced by adding the weights to the loss function in some way. By
adding the coefficient values to the loss they are kept small through the optimization
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process, reducing the risk of overfitting. The two main regularization strategies are
the ridge385 and Lasso386 penalties.

The final supervised model I will present in this section is the Naive Bayes classifier.
As its name indicates, it is based on Bayes’ theorem of conditional probabilities. By
making a strong assumption, that all variables of the input examples are mutually
independent, we can derive the probability of the ith input example belonging to
class 𝐶𝛼 as:

𝑝(𝐶𝛼|𝑥(𝑖)
1 , … , 𝑥(𝑖)

𝑘 ) = 𝑍 ⋅ 𝑝(𝐶𝛼)
𝑘

∏
𝑗=1

𝑝(𝑥(𝑖)
𝑗 |𝐶𝛼) (4.3)

With 𝑍 a constant that can be computed from the training data. Therefore it is
very easy to use this to build a classifier by computing the probabilities of an exam-
ple belonging to a class for all possible classes in the training data and assign the
one with the maximal probability. In practice this is a very flexible model, since
any probability distribution can be used for each feature and class. The parame-
ters of these distributions can be learned with a maximum likelihood approach for
example. This model builds upon the naive assumption (hence the name) that all
input variables are mutually independent. This assumption is very often violated,
especially in biological sequence data where independence is not at all guaranteed
by the evolutionary process. This model is, however, quite robust to this, and stays
performant despite the violations of this assumption.387,388

4.2.3. More complex methods

While these simple methods are quite useful in many settings, more complex meth-
ods were developed. One of the most popular methods, up until fairly recently, were
Support Vector Machines (SVM). This classifier was first developed in 1982389 and it
functions by finding the optimal separation hyperplane between 2 classes, i.e. a linear
boundary in high-dimensional space between training examples of two classes. What
made it so popular is when it was associated with the so-called kernel trick.390,391
With the kernel trick, training examples that cannot be linearly separated can be
cheaply projected into a higher dimensional space, where linear separation is pos-
sible. This made SVMs very powerful and popular, and it was quickly adapted
for regression tasks as well.392 The main model that will interest us in this section
however is not the SVM.

Random forests are another very popular model used for both classification and
regression. As it is used in Chapter 6, we will go over it in more detail. Developed
in the early 2000’s,393 it builds upon previous work: Classification And Regression
Trees (CART).394 CART decision trees are very useful for supervised learning tasks.
To use CART trees, start at the root and at each node there is a condition on a
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single input feature. This condition decides if the considered example goes to the
right child or the left child. By traversing this tree, choosing the path through the
conditions at all the nodes met by the example, we can assign the example to one
of the leaves, corresponding to a class or a predicted value. An example of such a
tree is given in Figure 4.3.

Figure 4.3.: Example of a decision tree for DNA data.
Here we have a dataset of 4 DNA sequences 𝑆1, … , 𝑆4. Each sequence has 4 input
variables 𝑥1, … , 𝑥4, and an output variable 𝑦 indicating the strain of a sequence.
Each sequence can be classified by the decision tree on the right by following a path,
from root to leaf, according to the conditions in internal nodes. The predicted strains
are shown in the leaves. Sequences that end up in a given leaf node are indicated
underneath that leaf node. This tree can classify these 4 sequences perfectly.

It is actually quite simple to build CART trees, the whole methods lies upon the
principle of minimizing impurity (or maximizing purity) on a given input variable
in child nodes. Impurity can be defined in many ways:355 for regression it is often
the Residual Sum of Squares (RSS), for classification it is often the Gini index or
an entropy measure. Regardless of the chosen metric, a high impurity denotes a
heterogeneous collection of examples and a low impurity indicates a homogeneous
set of examples. When building the tree, recursively from the root, we find the
condition, and the input variable on which the condition relies, by looking at all
possible splits and choosing the one that decreases impurity the most in the child
nodes. This process is continued recursively until the leaves are completely pure
(likely resulting in overfitting) or until a certain stopping condition is met (e.g. purity
threshold, maximum depth, …). To avoid overfitting, trees can also be pruned after
the building phase. CART trees have the distinct advantage of being interpretable:
it is easy to figure out why an input has been assigned to a certain class, which can
be very useful in biology or medicine.395

Despite these good properties, it is easy to overfit with decision trees, and small
changes to the training data can induce large changes in the resulting tree,355,395
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hurting interpretability. This is why the Random Forest (RF) model was created.
RFs are essentially an ensemble of decision trees, a forest, built from the training
data. To build one of the decision trees in a random forest, the training data is
first bootstrapped: a new training set is sampled with replacement from the original
training data with the same number of examples. This process is called bagging
for “bootstrap aggregating”. With this procedure, each decision tree is built from
slightly different training data and will therefore likely be slightly different. An
additional step to ensure some variability between the trees is in the choice of the
splitting condition at each tree node. Where, in CART trees, all input variables are
considered to find the optimal split, in RF trees, only a random subset of the input
variables are considered at each node. This results in a set of decision trees that are
all trained from slightly different data, with slightly different features at each node
but that all have the same task on the training data. We can get a prediction from
all these trees, by taking the majority predicted class for classification trees, or the
average of predictions for regression trees.

All these measures to reduce the variance linked to decision trees, and to yield more
generalizable models, make random forests very popular. They are often very com-
petitive and often have better performance than the models presented above.396,397
Furthermore, by only considering a subset of features at each tree node, RF often
deals better with high-dimensional data than other methods.397 Further refinements
to the algorithm such as boosting, where misclassified examples are more likely to
be selected in the bagging training sets have been very useful as well.

Deep learning has been used more frequently and more broadly to get good results
across a large number of tasks. This is also true in biological contexts. However,
Chapter 6 does not make use of deep learning methods so they will no be discussed
here. A short introduction to deep learning will be presented in Chapter 7.

4.3. Pre-processing the alignment for machine learning

By now you will surely have noticed that all the models I presented above (with
the exception of RFs) need to be trained on a collection of numerical variables, i.e.
numerical vectors. Biological sequences, however, are not vectors of numbers. We
therefore need to transform our sequences of letters into numerical sequences that
we can feed to the machine learning model in this digestible form. Most supervised
machine learning algorithms expect a matrix as input, where the rows are individual
training examples and the columns numerical variables. A vector where each entry
corresponds to an expected output value is used during training. In this section, I
will present a few encoding methods, that transform a multiple sequence alignment
in a matrix. Most of the encoding methods are not defined on an alignment, but
on sequences alone. However, to represent these sequences they often need to have
the same length, and for models to learn anything meaningful the values in features
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should encode the same information across sequences. Therefore, prior to the encod-
ing methods described below the sequences often need to be aligned to each other
so that a specific position in a sequence is homologous to that position in all other
training sequences.

4.3.1. General purpose encodings

The letters making up biological sequences are a form of categorical data. This
type of variable is not specific to biology and as such, there exists many encoding
schemes398 to transform categorical variables into numerical vectors.

The most basic, and conceptually simple way to do so is to use the labeling scheme,
often called ordinal encoding. Each level of the categorical variable is assigned an
integer label. For example, when dealing with DNA sequences, we could have A=1,
C=2, G=3 and T=4. This scheme outputs vectors that have the same size as the
input sequence and going from the sequence to the encoded vector (and vice versa)
is very easy. This encoding scheme has been used to predict resistance levels of HIV
to antiviral drugs from sequencing data.331 There is, however, a major disadvantage
with using this method. As its name indicates, ordinal encoding implies that there is
an order to the categorical variable levels (e.g. T>A) which, by definition, does not
exist.399–401 Another option is to use what I will refer to as binary labeling, where
the categorical levels are first assigned an integer label which is then converted to
a binary vector. If we use the ordinal DNA encoding from above and convert it to
binary vectors we would get: A=[0, 0], C=[0, 1], G=[1, 0] and T=[1, 1]. This type
of representation is frequently used to represent gapless sequences, like 𝑘-mers, in
a compressed form402,403 (a character now only needs 2 bits instead of a full byte).
For amino acids, since there are more characters, this encoding yields vectors of 5
bits.404 Fundamentally, this encoding scheme has the same problem as the ordinal
encoding, creating an order that does not exist, although with the order being split
into separate values it can mitigate this effect a little bit.

One of the most widely used categorical encoding schemes, One-Hot encoding (OHE)
(sometimes called orthonormal encoding405), does not have this ordering issue. The
way OHE works is by creating a sparse binary vector of length 𝑑 to represent a
variable with 𝑑 levels (for DNA 𝑑 = 4). If the ith level of the categorical variable
is to be encoded, then the ith position in the vector is set to 1 and the rest set to
0. For example, if we consider that A is the first level of our variable then OHE
would yield the following vector: [1, 0, 0, 0]. This encoding scheme has been used
from the 1980’s406 to now,407 and is the scheme used in Chapter 6. The performance
of OHE can be on par with ordinal encoding,408 but it is easily interpretable, which
is often very important in biology since there is a one to one correspondence between
a categorical value and a numerical feature. The main problem with OHE is that
it tends to increase the number of features quite a lot, since the encoded vector
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representation of a length 𝑛 sequence is of length 𝑛 × 𝑑. An example comparing
Ordinal, Binary and One-Hot encodings can be seen in Figure 4.4.

Figure 4.4.: Example of 3 general categorical encoding schemes.
Two sequences, ATCG and TAAT are shown encoded in three different encoding
schemes: ordinal, binary and one-hot encoding. In the ordinal encoding, each char-
acter is assigned an integer value, here A=0, C=1, G=3 and T=4. In the binary
encoding, these integer values are encoded with 2 bits. In the one-hot encoding
scheme, a character corresponds to a sparse vector indicating which level of the vari-
able is present: here A=[1,0,0,0]. Ordinal encoding preserves the dimension of the
sequence while binary and one-hot encoding result in vectors with a bigger dimen-
sion than the original sequence.

These three general purpose encodings are but some of many,398 and since categorical
variables are often used in machine learning applications, these encodings are often
available in widely used software libraries.409

4.3.2. Biological sequence-specific encodings

While the general-purpose encoding schemes presented above work well enough in
practice, some specific encoding methods were developed to include some biological
information in the sequence encodings that hopefully machine learning models will
be able to leverage during training. These encodings have mostly been developed for
encoding protein sequences, using physicochemical properties of amino acids.404

AAIndex410 is a public database containing amino acid indices, i.e. sets of 20 nu-
merical values (one for each AA) measuring some physicochemical property. There
is a wide range of these indices, from hydrophobicity to flexibility or residue volume
measures. By selecting an informative subset of 9 of these measures,411 an amino
acid can be represented by a length 9 numerical vector. In some cases, amino acids
can be represented by all the 566 properties of AAIndex, and through PCA the
dimension of the resulting numerical vectors can be reduced.412 This biological se-
quence specific encoding has been implemented in a software library for biological
sequence encoding.413

Another biological sequence-specific encoding is based on the Amino Acid classifi-
cation Venn diagram defined by Taylor in 1986,414 which groups amino acids into
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eight different groups based on physicochemical properties: aliphatic, aromatic, hy-
drophobic, polar, charged, positive, small and tiny. With this classification, a single
amino acid can be represented by a vector of length 8, each element representing
a group, set to one when the amino acid belongs to the group and to zero when
it does not. This encoding method was used as early as 1987 to predict secondary
structures of proteins.415 Later on, another five groups were proposed and used to
encode each amino acid with longer vectors.416

A third encoding method, named BLOMAP,417 encodes sequences based on values
from the BLOSUM62 substitution matrix presented in Section 2.1.3. BLOMAP
is defined by using a non-linear projection algorithm to generate vectors of length
five, that capture the similarity measures contained in BLOSUM62. This encoding
has been used to successfully predict cleavage sites of the HIV-1 protease405,417 (c.f.
Section 5.3.2.2). Other encodings such as OETMAP418 have been derived from
BLOMAP.

These three encodings are far from being the only ones specific to biological sequence.
Many other encoding schemes were developed to learn from this type of sequence
data. Some schemes do not encode positional data, and as such, can be applied
to unaligned sequences. The simplest of these would be to represent a sequence
by its amino acid, or 𝑘-mer frequencies. The latter is often referred to as 𝑛-gram
encoding419 and widely used, although with very short 𝑘-mers since the dimension of
the encoding grows exponentially with 𝑘. With 20 amino acids, this encoding results
in vectors that have a length of 20𝑘. Other encoding schemes use codon information
to encode amino acids. One such scheme was proposed in,404 where an amino acid is
represented by a directed graph where vertices are nucleotides and edges represent
paths needed to represent codons that code for that amino acid. This graph can then
be converted to a 16-dimensional vector by flattening the corresponding adjacency
matrix and used as an encoding method.

During the work that led to Chapter 6, several encoding methods were tested: Or-
dinal, Binary, OHE, AAIndex and Group encodings. The same two training sets of
sequences were encoded using each of these methods, and 10 RF models were trained
on each of the encoded datasets, om a binary classification task. Accuracy, precision
and recall metrics were used to evaluate the performance of the RF on each encoded
dataset. According to these metrics, the RF model had the best performance on
the datasets encoded with OHE. OHE, also has the advantage of being more easily
interpretable. As such, it was chosen for the work presented in Chapter 6.

Other encodings have been used to convert a biological sequence into a single real
value. An encoding method based on chaos game theory420 allows for a bijective
mapping between the DNA sequence set and the real numbers set. This encoding
is not specific to alignments and can be used to do alignment-free comparisons, as
such it has been used often in bioinformatics applications.421 Recently, this encoding
scheme has been used to classify SARS-CoV2 sequences,422 predict anti-microbial
resistance from sequence data345 and for phylogenetic analysis.423
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In recent years algorithmic developments, computing power increase and the massive
amounts of available data have made deep learning methods useful, possible to train
and very popular. This has given rise to new sequence encoding methods, that are
learned on the training data. These are often referred to as embeddings rather than
encodings. Since these learned embeddings are not used in Chapter 6, for the sake
of thematic coherence I will not be mentioning them here. I will, however, go over
these embedding methods shortly in Chapter 7.

4.4. Conclusion

Alignments, and the sequences within them, are rich sources of information, that
have long been exploited widely for many different types of analyses. With the
rise of machine learning in the last years, it is logical that machine learning models
have been applied more and more frequently to biological sequence data. Machine
Learning is a wide field with many different methods and paradigms. Even simple
methods like linear regression or naive Bayes can be very useful, and more complex
models like random forests have been able to make very good predictions on biolog-
ical data. The model is not the only variable to take into account when looking to
apply machine learning methods on sequence data. Different encoding methods will
yield different vector representations, with different characteristics and applications.
Special care must therefore be given to the choice of biological sequence encoding
scheme, prior to starting a machine learning analysis.
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5. Viruses, HIV and Drug Resistance

5.1. What are viruses ?

Viruses occupy a strange place in the tree of life, with many debating if they are
actually alive or not. André Lwoff gave what is probably the most fitting defini-
tion: “viruses are viruses”.424 Despite this ambiguity, viruses share some common
characteristics which allow us to define them as intracellular parasites:425

1. Viruses have some type of genetic information, contained in DNA or RNA.
2. This genetic information is protected by some form of envelope.
3. They use the cellular machinery of host cells to make copies of themselves.

While we all know that viruses can be pathogenic and dangerous (the recent example
of SARS-CoV2 springs to mind), that is not necessarily the case. Some viruses like
GBV-C426 or certain strains of H5N1 Influenza427 are non pathogenic and essentially
harmless.

Viruses have been discovered for all three domains of life: Eukaryota, Bacteria and
Archea. In Eukaryota many viruses have been discovered for animals (both verte-
brate428 and invertebrate429), plants,430 protozoa,431 chromista432 and even fungi.433
Bacterial viruses known as phages have been known to exists since the beginning of
the 20th century.434,435 These bacteriophages are being considered as a therapeutic
alternative to antibiotics436,437 which could help with multi-drug-resistant bacterial
pathogens. Archea are also known to have their own viral infections.438,439

Strangely even viruses of viruses seem to exist, such as the plant satellite virus440,441
or hepatitis delta virus.442,443 These “viroids” do not infect viral hosts per se but
they cannot replicate on their own. Replication must happen during co-infection
with a larger virus. More recently, true viruses of viruses called virophages have
been discovered. These virophages like sputnik444 or zamilon445 specifically infect
giant viruses.

There is a huge diversity of viruses affecting all types of life, and new viruses are
being discovered all the time.446 This diversity hints at a rich and long evolutionary
history. When and where viruses originated is still under study447,448 and we might
never know how they emerged. It is, however, believed that they may have played
an important role in the emergence of eukaryotic cells.449 This co-evolution between
virus and host cell shows a strong link between the two organisms and some parts
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of the human genome are likely of ancient viral origin.450,451 It has been estimated
that 1% to 8% of the human genome are endogenous retroviral sequences.452,453

The rich diversity of viruses is reflected in the variety of genetic information support,
replication strategy, physical and genomic size, as well as shape. The differences in
genetic information support and replication strategy form the basis of the Baltimore
virus classification system454 , still used today455 to classify virus lineages.

As stated above, all viruses have some genetic information. This information is
stored either as DNA or as RNA, which is the molecule of choice for 70% of human
pathogenic viruses456 (HIV and SARS-CoV 2 are RNA viruses).

For DNA viruses, the molecule can be double-stranded as for Herpesvirus,457,458
single-stranded like in the case of Papillomavirus459 or even circular in the case of
the Hepatitis B virus.460 This molecular diversity is also present in RNA viruses
where the RNA molecule can be double-stranded like for Rotavirus,461 or single-
stranded. Furthermore, for single-stranded RNA viruses the strand can either be
positive (i.e. can be directly translated into a protein) like the Hepatitis C virus462
or Poliovirus;463,464 conversely there are negative-strand RNA viruses, for which the
complementary strand of RNA must be synthesized before translation into a protein,
such as the Influenza or Measles viruses.465

This diversity in genetic information support implies a necessary diversity in repli-
cation strategy. The main replication strategies are as follows:466

• The RNA molecule is directly copied as RNA. This is the strategy followed
by single-stranded RNA coronaviruses,467 Dengue viruses468 or Hepatitis C
virus.469

• The DNA molecule is directly replicated as DNA. this can happen for both
single-stranded DNA viruses like Papillomavirus470and double-stranded DNA
viruses like Herpes simplex virus.471

• The DNA molecule is replicated by going through an RNA intermediary like
Hepatitis B virus.472

• The RNA molecule is replicated by going through a DNA intermediary. This
strategy is used by retroviruses that integrate this viral DNA intermediary
into the host DNA, like HIV-1 (see Section 5.2.2).

Finally, the genetic diversity of viruses is reflected in their physical characteristics:
viruses come in all shapes and sizes. Physical size range from 17nm for plant satel-
lite viruses473 to the giant, 400nm Mimivirus.474 Genomic size is also quite variable.
There is a stark contrast between the 860 bp Circovirus SFBeef and the 2.5 Mbp
Pandoravirus salinus genomes.475 Viruses also come in a variety of shapes:476 icosa-
hedral for HIV, helical for the tobacco mosaic virus or a distinctive head-tail shape
for bacteriophages.
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Although there are a large number of viruses, and many of them are of great im-
portance for human health, we will now focus on one virus of particular importance:
Human Immunodeficiency Virus otherwise known as HIV.

5.2. Getting to know HIV

5.2.1. Quick presentation of HIV

HIV is a single-stranded RNA retrovirus that is responsible for the Acquired Immune
Deficiency Syndrome (AIDS) pandemic that has been around for the last couple
decades. This virus is transmitted through sexual contact or through blood. Sexual
activity is the largest transmission factor followed by intravenous drug use.477,478

HIV infects cells of the host immune system, specifically CD4 T-cell lymphocytes
and destroys them due to its replication process.479 CD4 T-cells are an essential part
of the immune system response, helping fight against infection in humans. An HIV
infection typically starts with an asymptomatic phase that can last years, followed
by a growth in viral replication leading to a decrease in CD4 cells which progresses
into AIDS.480 During AIDS, when the CD4 cell count is low enough, opportunistic
diseases such as pneumonia or tuberculosis481 can easily infect the host, leading to
death when the immune system is weak enough.

HIV/AIDS is one of the deadliest pandemics in history, estimated to have lead to the
death of 36 million people.482 In 2010 approximately 33 million people were infected
with HIV,483 2.6 million of which were due to new infections, and 1.8 million died
of AIDS. Most of the new infections happened in economically developing regions
of the world, 70% of them coming from sub-Saharan Africa.483 As of 2020, these
numbers have decreased with “only” 1.5 million new infections and 680,000 AIDS
deaths, which is encouraging from a public health perspective.

The HIV-1 virus was discovered simultaneously in 1983 by Françoise Barré-Sinoussi,
Luc Montagnier484 and Robert Gallo.485 There exists a second HIV-2 virus discov-
ered shortly after HIV-1,486 it is however less transmissible than HIV-1 which is
largely responsible for the global HIV/AIDS pandemic.487 In Africa in 2006, HIV-1
infections were rising where HIV-2 were declining.488

While both viruses are of zoonotic origin, from transmissions of Simian Immunod-
eficiency Virus (SIV) from primates to humans, HIV-1 most likely originates from
an SIV present in chimpanzees,489–491 and HIV-2 from an SIV present in Sooty
mangabeys.492–494

Several independent such transmissions have resulted in 4 lineages of HIV-1 labeled
groups M, N, O and P495 (similarly HIV-2 is split into groups A to H also resulting
from independent zoonotic transmissions). Groups N and P have been identified
in only a handful of individuals in Cameroon, and group O is estimated to a few
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thousand cases in western Africa. The majority of the pandemic is due to viruses
from group M.

The most recent common ancestor, i.e. the putative virus that founded group M, is
estimated to have originated in what is now the Democratic Republic of Congo496–498
at some point between 1910 and 1931.496,499,500

Group M is further subdivided into 9 subtypes each with distinct genetic charac-
teristics, labeled A to K.491,501 Like in many viruses,502 when 2 genetically different
strains of HIV co-infect a single host there is a risk of genetic recombination leading
to a new strain.503 During recombination, a new genome is formed from parts of the
original genomes. This can lead to new strains that can spread and form lineages of
their own. HIV strains resulting from recombination are called Circulating Recom-
binant Forms (CRFs). There are currently 118 identified HIV-1 CRFs in the Los
Alamos National Laboratory HIV sequence database504 (1 for HIV-2). Many unique
recombinant forms (URFs) also exist. URFs and CRFs are both the result of intra-
host genetic recombination a URF becomes a CRF once it has been identified in
at least three epidemiologically independent infected individuals.505 Recombination
can be particularly bothersome, complicating evolutionary analyses,506 facilitating
the emergence of drug resistance and hindering vaccine development.507

While subtype C represented almost half of global infections from 2004 to 2007,
subtype B is the majority subtype in richer countries of North America and Western
Europe508 where sequencing efforts are more common. This accounts for an over-
representation of subtype B sequences in public databases such as the Los Alamos
sequence database where 54% of sequences are of the B subtype and only 15% are
C.509

5.2.2. The replication cycle of HIV

The virus’s replication cycle and its immune-cell host specificity are what makes
it particularly dangerous. This replication cycle can broadly be categorized into 9
separate steps510,511 shown in Figure 5.1.

1. An HIV virion binds itself to the CD4 host cell through membrane proteins.

2. The virion envelope and host cell membrane fuse together, allowing the viral
genetic material and proteins to enter the host cell.

3. The viral RNA is reverse-transcribed into viral DNA.

4. The viral DNA is integrated into the host cell genome.

5. The integrated viral DNA is transcribed by the host cell machinery into mul-
tiple copies of viral RNA.

6. The viral RNA is translated into immature viral polyproteins.
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7. The viral polyproteins are cleaved to form individual viral proteins.

8. The newly synthesized viral RNA and viral proteins gather around the host-
cell membrane which starts budding to create a new virion.

9. Once the budding is complete, the virion is released from the host cell and
matures before being able to infect other CD4 cells and replicate again.

The successive infection of CD4 cells by HIV virions leads to cellular death due to
inflammatory response and/or activation of apoptosis.512,513 The gradual depletion
of CD4 cells in the infected individual’s body lead to the suppression of the immune
system, and eventually to AIDS.

Figure 5.1.: Main steps of HIV-1 replication cycle.
The HIV virion contains viral RNA and three essential proteins: Reverse Transcrip-
tase (RT) represented in red, Integrase (IN) represented in cyan and Protease (PR)
represented in yellow.

5.2.3. Genetics of HIV

The replication cycle described in Section 5.2.2 is made possible by the 15 proteins
of HIV. These proteins are coded by 9 separate genes.514 An overview of the HIV
proteins, their structure and localization within the viral particle can be seen in
Figure 5.2.

The HIV genome is made up of three main genes each coding for polyproteins and six
genes coding for proteins with regulatory or accessory roles. The three polyproteins
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correspond to long chains of amino acids which are subsequently cleaved at specific
positions to produce separate viral proteins.

The gag (“group-specific-antigen”) gene codes for the Gag polyprotein which, once
cleaved, results in four proteins with mainly structural roles:

• The Matrix protein (MA or p17) lines the internal surface of the virion mem-
brane, maintaining the shape and structural integrity of the virion.

• The Capsid protein (CA or p24) forms an inner core (the capsid) inside the
virion around the viral RNA. It helps protect the viral genetic information.

• The Nucleocapsid protein (NC or p7) binds with the viral RNA inside the
capsid, stabilizing the molecule and further protecting the genetic information.

• The p6 protein is a small, largely unstructured protein515 that is suspected of
playing a role in virion budding and release from the host cell at the end of
the replication cycle.516,517

The pol (“polymerase”) gene codes for the Pol polyprotein. After cleaving, this
results in three essential viral enzymes at the heart of the replication cycle:

• The Protease (PR) is responsible for cleaving the Gag, Pol and Env polypro-
teins to get the individual viral proteins. Without it, the individual viral
proteins cannot come into being and therefore cannot function, stopping viral
replication.

• The Reverse Transcriptase (RT or p51/p66) is responsible for synthesizing
viral DNA from the viral RNA template contained in the virion. This is the
first step in hijacking the cellular machinery for replication. Without viral
DNA, HIV replication is impossible.

• The Integrase (IN) is responsible for integrating the viral DNA produced by RT
in to the host cell DNA. Once the viral DNA is inside the host genome it can be
transcribed and then translated (as described in Section 1.1) to produce new
copies of the viral RNA and proteins. Without this integration step the viral
genetic information cannot be expressed and the replication cycle is stopped.

These three proteins are of particular importance and we will go into more detail
about them in Section 5.3.2.

The env (“envelope”) gene codes for Env, the third and last polyprotein. The two
resulting proteins coat the membrane of the virion and are responsible for binding
with the CD4 host cells.

• The Surface protein (SU or gp120) binds to receptors on the surface of CD4
cells and allows the virion to attach itself to the host cell.518 It also enables
membrane fusion, the essential first step in the viral replication cycle.519
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• The Transmembrane protein (TM or gp41) anchors SU into the virion mem-
brane.

The 6 remaining genes all code for single proteins. Two of these have essential
regulatory roles and the remaining four accessory roles.

The tat (“trans-activator of transcription”) gene codes for Tat, the first essential
regulatory protein. Tat activates and promotes transcription leading to more nu-
merous and longer copies of the viral RNA.520 The rev (for “regulator of virion”)
gene codes for Rev, the second essential regulatory protein. Rev helps transcribed
viral RNA exit the nucleus of the host cell in order to be translated to viral proteins
or be packaged in new, budding virions.521

The remaining four accessory genes are as follows: nef (“negative regulatory factor”)
code for the Nef protein which prevents the production of the CD4 cellular defense
proteins increasing infectivity;522 vif (“viral infectivity factor”) codes for the Vif
protein which also increases viral infectivity;523 vpu (“viral protein U”) codes for
Vpu which likely helps during release of new virions523,524 as well as preventing
production of CD4 in the host cell. It is not believed to be present in the mature
virion as it binds to host cellular membranes;525 vpr (“viral protein R”) likely helps
viral DNA enter the host cell nucleus and prevents the natural host cell reproduction
cycle.526

The existence of a 10th HIV-1 gene was suggested in 1988,527 overlapping the env
gene and coding for proteins on the other strand of viral DNA than the other genes.
This putative gene was named asp (“antisense protein”) and Asp transcripts were
isolated during an HIV-1 infection in 2002.528 The function of this protein is still
unknown but it has been shown to have a strong evolutionary correlation with HIV-1
group M responsible for the pandemic.529 This Asp protein is still a source of debate
and is under active research.530

5.3. Drug resistance in HIV

Although the HIV/AIDS pandemic has been very deadly around the world, we are
not completely defenseless against it. The first antiretroviral therapy (ART) drugs
were made available in the late eighties, only a couple years after discovering the
virus. ART reduce the viral load in an HIV positive patient reducing its trans-
missibility.532 While ART is not a cure for an HIV infection it has been shown to
drastically reduce mortality and morbidity.533 ART is estimated to have saved the
lives of 9.5 million individuals between 1995 and 2015.534
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Figure 5.2.: Structure and main components of a mature HIV-1 virion.
Structural proteins MA, CA, SU and TM are represented in Blue, functional enzymes
RT, IN and PR in pink, RNA binding proteins Rev, Tat and NC in orange and
accessory proteins Vif, Nef, Vpr and Vpu in green. Viral RNA is shown in yellow.
The phospholipd membrane of the virion is shown in a light purple color. The p6
protein is not represented as it is largely unsctructured. Vpu is not believed to be
present in the HIV virion.
Figure adapted from PDB101531 (PDB101.rcsb.org, CC By 4.0 License, detailed list
of structures used available in Appendix Appendix B).

90

https://PDB101.rcsb.org


5.3. DRUG RESISTANCE IN HIV

5.3.1. A quick history of ART

The first available anti-HIV drug was Zidovudine (ZDV, also known as azidothymi-
dine or AZT) approved by the FDA for usage in the USA in 1987,535 a few years
only after the discovery of the virus. This drug was a reverse transcriptase inhibitor
(RTI) therefore preventing the viral RNA from being transcribed into viral DNA. Un-
fortunately, 3 years later, strains of HIV resistant to ZDV were circulating.536 This
rapid emergence of resistance to treatment is common for HIV537 due to its very
high evolution rate538 allowing it to explore many possible mutations in response to
selective pressures, as well as the frequent occurrence of genetic recombination.539
To counter this resistance new drugs were rapidly developed and, between 1988 and
1995, four more RTIs were approved by the FDA. Using a combination of these
drugs was also shown to be effective and led to a slower rise of resistance.540

Then, focus was shifted to the development of a new type of drug: Protease Inhibitors
(PI). Between 1995 and 1997, 4 of them were approved. These, taken in combination
with RTI made it harder for the virus to develop resistance.541 A new class of RTIs
was also explored, Non-Nucleoside RTIs (NNRTIs) that block the RT action in
another manner than the previously approved Nucleoside RTIs (NRTIs). When
taken in combination with other drugs they are also highly effective.542 As the years
advanced even more drug targets were explored, with 5 Integrase inhibitors (INSTI)
being approved since 2007,543 A Fusion Inhibitor (FI) in 2003,544 and 3 other Entry
inhibitors (EI)545,546 since 2007 all targeting different steps in the replication cycle
of HIV (see Table B.1 and Figure 5.3).

In response to the rapid emergence of resistance in HIV when treated with a single
drug, clinicians started systematically treating HIV with a combination of multiple
drugs targeting different proteins, as early as 1996. This is now referred to as
highly active antiretroviral combination therapy (HAART, also known as tritherapy).
HAART usually consists of 2 NRTIs coupled with another drug: NNRTI or PI at
first and later FI or INSTI.547 As of 2008, 22 anti-HIV single drugs were approved by
the FDA,548 and 27 as of today. This large array of available drugs made HAART
possible and gave options to clinicians to switch targets when the multi-resistant
HIV emerged. It is important to note here that, while high-income countries had
access to this large panel of antiviral drugs, in most lower-income countries that was
not the case. This meant that drug switching and second-linea drug regimens were
rarely possible in these countries, leading to multi-resistant viruses.549

With the advent of HAART, patients had access to more potent treatments. How-
ever, the complexity of treatment regimens grew. They often involved several pills
a day, taken at precise intervals. Complex drug regimens have been associated
with poorer treatment adherence.550,551 This can lead to poor treatment outcome,
as well as the emergence of multi-resistant HIV strains552 and their spread within

aWhen the anti-HIV therapy starts clinicians use first-line drug regimens, if this treatment is
changed due to resistance emergence then the second-line regimen is used.
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the population. To avoid this issue, increasingly more single pill regimens are being
developed with a staggering 7 new drugs approved by the FDA in 2018. These single
pill regimens greatly reduce the burden of adherence for patients, leading to better
therapeutic outcomes, and reduced healthcare costs.553
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Figure 5.3.: Timeline of ART single drug FDA approvals.
Colored by drug type: Nucleoside Reverse transcriptase inhibitors (NRTI), Non-
Nucleoside Reverse transcriptase inhibitors (NNRTI), Protease Inhibitors (PI), In-
tegrase inhibitors (INSTI), Entry Inhibitors (EI) and pharmacokinetic enhancers
(PE). Fixed Dose Combination (FDC) single pill regimens are also shown.
* RPV is often also used as a pharmacokinetic enhancer in combination with other
drugs.
†These drugs are no longer approved by the FDA or no longer recommended as first
line regiment treatment.
Information collected from https://hivinfo.nih.gov/understanding-
hiv/fact-sheets/fda-approved-hiv-medicines, https://hivinfo.nih.
gov/understanding-hiv/infographics/fda-approval-hiv-medicines and
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.
See also Table B.1.

Most recently, some studies explored using some of these single pill regimens (such as
Truvada, c.f. Table B.1) as prophylactics, called Pre-exposure prophylaxis (PrEP).
Putting uninfected but at risk populations on ART, before any known exposure,
has been shown to effectively lower the risk of infection.554–556 When adherence is
maintained, this risk reduction has been estimated to be between 44% and 100%.557
As of 2022, Truvada is the only authorized drug for PrEP in Europe.558 Descovy
and Apretude are also authorized for PrEP in the USA.559

All of these drugs are widely used and are by now very well studied, therefore
detailed guidelines on all the aspects of ART; when to start, which drugs to use,
when to change drugs; are issued and updated regularly by practitioners560 and
global instances561 alike.
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5.3.2. Main mechanisms of viral proteins, antiretroviral drugs and
associated resistance.

Each ART drug targets a specific protein. Most of them target one of the three
pol proteins: RT, PR and IN. The structure of these proteins is inherently linked
to their function, and as such is essential to take into account when developing
ART. Similarly, the structure of these proteins is very important when studying the
resistance mechanisms developed by the virus.562,563 In this section we will go over
the main structural elements and how they relate to treatment and resistance, for
RT, IN and PR.

5.3.2.1. Reverse transcriptase

The reverse transcriptase protein is the most targeted protein, in number of ART
drugs (c.f. Figure 5.3 and Table B.1). The mature protein is formed of two subunits:
p51 and p66. These two subunits are translated from the same section of the pol
gene, and have the same amino acid sequence, but p51 is cleaved and is shorter than
p66. The p66 subunit contains the active sites of RT whereas p51 plays a mainly
structural role.

The p66 sububit can be separated into 5 domains.564 The “fingers”, “palm”, and
“thumb” domains are linked together and folded to form a canal through which the
RNA template and newly synthesized viral DNA can pass through. The polymerase
active site, responsible for incorporating nucleotides to the viral DNA molecule, is
situated in the “palm” domain at the bottom of the canal. The “RNase” domain of
RT contains a secondary active site responsible for cleaving the viral RNA template
from the viral DNA so that the RT can fill out the complementary strand of viral
DNA before integration into the host genome. The final “connection” domain is
simply a link between the “RNase” and the “thumb” domains. A three dimensional
view of RT with these domains highlighted can be seen in Figure 5.4.

Reverse Transcriptase inhibitors can be separated into two classes: Nucleoside RTIs
(NRTIs) and Non-Nucleoside RTIs (NNRTIs). They inhibit the action of RT in two
disctinct manners:

• NRTIs are analogues of free nucleotides in the host cell. They competitively
inhibit RT and can be used to elongate the viral DNA chain. Once an NRTI
is incorporated, further elongation of the DNA molecule is impossible and
the viral DNA cannot be synthesized anymore. This is similar to the chain
terminating nucleotides introduced in Section 1.2.

• NNRTIs bind to a specific region of the p51 subunit: the Non Nucleoside
Inhibitor Binding Pocket (NNIBP) (A view of RT with the NNIBP visible is
shown in Figure 6.4). This pocket, although it is on the p51 subunit is spatially
situated very close to the polymerase active site. NNRTIs bind to the NNIBP
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Figure 5.4.: 3D structure of HIV-1 Reverse-transcriptase.
The different domains of the p66 subunit are labeled and shown in different shades of
blue and green. The structural p51 subunit is shown in orange. The RNA template
is shown in dark gray and the newly synthesized DNA strand in light gray. The
polymerase active site is shown in red, although mostly hidden by the RNA template.
The 3D visualization was produced with Illustrate565 using the 2hmi PDB structure.
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to change the conformation of the active site, lowering its flexibility,566 and
thus non-competitively inhibiting the action of RT.

Research has been conducted into inhibition of the RNase active site of RT567,568

which could also inhibit the action of RT. There is, however, to this day, no approved
treatment that inhibits the RNase action of RT.

Drug resistance mutations (DRMs) that arise in HIV from the selective pressures
resulting from RTI exposure can similarly be grouped into two categories: NRTI
and NNRTI resistance mutations.

NRTI resistance mutations can further be subcategorized into two groups.569,570 The
first type of NRTI resistance mutations are mutations that prevent the incorporation
of NRTIs into the viral DNA molecule. M184V and M184I, indicating the replace-
ment, at site number 184, of a Methionine by a Valine or an Isoleucine respectively,
are very common NRTI resistance mutations. These V and I amino acids have a
different structure than the original M, interfering with the incorporation of lamidu-
vine (3TC) but not dNTP.571 The second type of mutation, allows RT to remove
an incorporated NRTI from the viral DNA to resume synthesis. Thymidine Analog
Mutations (TAMs), M41L, D67N, K70R, L210W, T215Y/F and K219Q/E confer
resistance to azidothymidine (AZT) through this mechanism.572,573

Similarly, NNRTI resistance mutations work via several different mechanisms.574,575
Some NNRTI resistance mutations, like Y181C, lower the affinity of the NNIBP to
NNRTIs preventing binding of drugs to RT. Others, like K103N change the con-
formation of the p51 subunit, making the NNIBP disappear. NNRTI resistance
mutations are particularly dangerous because they often confer cross-resistance to
multiple NNRTIs without affecting the polymerase action very much,562 giving rise
to viruses that are both fit and highly resistant. This is contrast to NRTI resistance
mutations that generally incur a fitness cost for the virus, lowering its efficacy.576

5.3.2.2. Protease

The Protease protein, also a major drug target for ART, cleaves the gag and pol
polyproteins in order to produce functional viral proteins, essential to replication. It
has a symmetric, dimeric, structure. That is to say: it is composed of two identical
chains of amino acids.577,578 A structural view of PR is shown in Figure 5.5.

These two chains are folded in order to create a “tunnel” through which the polypro-
teins enter. In the middle of this “tunnel”, at the bottom, is the active site. The
active site is composed of two Aspartate residues, one on each chain. Using wa-
ter, they can provoke a chemical reaction that cleaves the polyprotein at a specific
position.579
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The roof of the “tunnel” is formed by the flaps, a flexible region from each of the
two chains that can open or close the “tunnel”.580 These flaps most likely control the
access of polyproteins to the active site.581,582

Figure 5.5.: 3D structure of HIV-1 Protease.
The two identical chains are colored in orange and blue shades respectively. The
flexible flaps form the the “roof” of a tunnel, at the bottom of which is the active
site: 2 Asp residues, one on each chain. The 3D visualization was produced with
Illustrate565 using the 2p3b PDB structure.

All the approved Protease Inhibitors (PIs) share a similar mode of action. Each PI
binds to the active site of the PR, denying access to the “tunnel” for polyproteins,
and stopping the catalytic action of PR.583,584 Tipranavir, one of the more recent
PIs, also binds with the flaps.584

According to Prabu-Jeyabalan et al., PR does not recognize the specific sequence
of the polyprotein cleavage site but rather its shape.585 They proposed an inhibitor
based on the shape of all polyproteins combined, which establishes more bonds with
PR, making it supposedly more efficient586 than current approved PIs.

As is the case with RTIs, when under selective pressure due to PIs, the virus tends
to develop PI associated DRMs. Most PI resistance mutations result in an enlarged
“tunnel”. This tends to lower the affinity of the PIs to the active site, but also the
affinity of polyproteins, lowering the fitness of the virus significantly.541 In addition,
some mutations on the gag polyprotein seem to lower the efficacy of PIs, although
the underlying mechanism is not well known.541

96

https://www.rcsb.org/structure/2P3B


5.3. DRUG RESISTANCE IN HIV

Some mutations in the flaps of PR have also been shown to confer PI resistance. It
seems likely that these mutations change conformation of the flaps, opening them
and leading to the release of inhibitors from the active site.587

5.3.2.3. Integrase

The integrase protein is the third major anti-retroviral drug target. It is responsible
for integrating the viral DNA into the host genome. IN is a tetramer composed of
four identical amino acid chains.588,589 Each of these chains contain three domains
linked together by flexible linker sequences: the N-terminal domain, the catalytic
core and the C-terminal domain. In each tetramer, two chains provide the active
site for the integration reaction while the other two have a mostly structural role.
It is probable that the N-terminal domain, which is very conserved, is necessary
for stable tetramerization of IN monomers.590 This tetrameric structure is shown in
Figure 5.6.

Figure 5.6.: 3D structure of an Integrase.
This Integrase tetramer is binded with viral (red) and host (orange) DNA, linked to
the two light blue functional subunits via the C-terminal domain. The active site
formed by the the catalytic cores of the two functional subunits (not visible in this
representation), is where the strand transfer reaction will take place. The two dark
blue IN subunits have a structural role. This figure was adapted from the PDB 101
molecule of the month Integrase entry by David S. Goodsell and the RCSB PDB
(https://pdb101.rcsb.org/motm/135) with a CC By 4.0 license.
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Several steps are needed in order to integrate the viral DNA with the host genome.591
First, IN binds to the both ends of the viral DNA, using the C-terminal domains,
forming a closed loop. Secondly, both ends of the viral DNA molecule are then
prepared for integration by the catalytic core. Third, the host DNA is captured
with C-terminal domains. Then, the strand-transfer is done within the catalytic
core: the host DNA is cut in two places and a single strand from each end of the
viral DNA are attached to these two breakpoints. Finally, the IN tetramer detaches
from the linked molecules and the final steps necessary to create a single hybrid
DNA molecule are done by the host cellular machinery. A graphical representation
of this process can be found in Figure 1 of Maertens et al. (2022).591

Integrase Strand Transfer Inhibitors (INSTIs), as their name indicates, block the
strand transfer reaction. They achieve this by strongly binding to the active site of
the IN tetramer after it has formed a complex with the viral DNA.591,592 In doing
so, INSTIs prevent the IN / viral DNA complex from binding to the host DNA,
effectively preventing strand transfer.

In the presence of INSTIs during therapy, once more, the HIV virus develops re-
sistance mutations over time. These mutations all lower affinity of IN to INSTIs,
preventing bonding.591,593 Since most INSTIs behave similarly, this means that cross-
resistance to INSTIs is quite common for INSTI DRMs.593,594 Again, these muta-
tions tend to lower the overall viral fitness necessitating secondary compensatory
mutations to restore fitness.593,594

5.3.2.4. Other drug targets

For now, resistance has not been observed for novel drugs like entry inhibitors. This
might be because the genetic barrier to resistance is higher and not enough time has
passed since their introduction for resistance to emerge.

For all the other drug targets however, as stated earlier in this section, resistance
is documented and problematic. Resistance has even been detected for PrEP which
is prophylactic.595,596 This seems to be rare however, and mostly due to unknown
pre-treatment HIV infections.597

5.3.3. Consequences of resistance on global health

HIV resistance to ART drugs is problematic from a global health perspective. Indeed,
circulation of resistant strains of HIV within populations can lead to treatment-naive
individuals that will not respond well to treatment.

More concerning, is the fact that transmission of resistant strains of HIV between
treatment-naive individuals is the main mode of resistance transmission in the
UK598,599 and Switzerland.600 This treatment-naive to treatment-naive transmission
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is particularly insidious since it can go undetected and creates long lasting drug
resistant strain reservoirs in the treatment-naive population. This of course is dan-
gerous since some infected individuals might experience poor therapeutic outcomes
and even treatment failure when administered first line regimens.601 To avoid this,
genotypic resistance testing has become standard practice when choosing the ther-
apeutic strategy in high-income countries, but more effort must be done to make
resistance testing less expensive and more cost-efficient in lower and middle income
countries.602

Although the transmitted drug resistance described above is problematic, a large
portion of DRMs incur a fitness cost for the resistant strain.603,604 This means that,
although they are selected when exposed to the evolutionary pressure of ART, when
the treatment is interrupted there is another pressure leading these costly mutations
to disappear. This reversion is commonly observed after interruption of treatment,
however the median reversion times vary widely from 1 to 13 years605 depending
on the severity of the fitness loss and type of mutation. This means that, although
reversion can possibly lead to loss of resistance, this can potentially take a long time
and possibly longer than the treatment interruption.

In practice, it is therefore very important to keep an eye on all drug resistance
mutations, their population dynamics, and spread as well as their presence or absence
in a particular strain before starting treatment.

5.3.4. Finding DRMs b

Finding and categorizing mutations as DRMs is an important task in light of the
public health implications mentioned in Section 5.3.3. As such, this is an active part
of the HIV research field.

The most important thing needed in order to study DRMs is, of course, viral se-
quences. To facilitate the search for DRMs, several sequence databases exist. Se-
quences are often linked to metadata related to the treatment status of the patient
from which the sequence was obtained. This metadata can be quite variable: from
a coarse level binary indicator of treatment to a finely detailed list of all treatments
received and associated phenotypic measurements like viral load.

Databases like the UK-CHIC,607 UK HIV drug resistance database (https://ww
w.hivrdb.org.uk/) and Swiss cohort study (https://www.shcs.ch/) host se-
quences on a national level, although access can be granted to international re-
searchers. Other databases like the PANGEA database608 host sequences from mul-
tiple countries in sub-Saharan Africa. The Stanford HIV drug resistance database
(https://hivdb.stanford.edu/) hosts HIV sequences with some phenotypic
data.33,609 Finally some database only host sequences, such as the Los Alamos HIV

bThis sections build upon a review I participated in during my PhD606
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sequence database (http://www.hiv.lanl.gov/). However, with few specific treat-
ment or resistance related metadata,610 these have less direct applicability to the
DRM search task.

Some databases, like the Stanford HIV resistance database also store specific knowl-
edge about known resistance mutations, keeping and regularly updating lists of clini-
cally important DRMs as well as their impact on ART.611,612 Additionally, Stanford
also offers tools for clinicians to do genotypic resistance testing with interpretable
results.613

The first step of mutations discovery is usually some kind of statistical association
analysis611,614 where the association between treatment status (coarse of fine grained)
and specific mutations is statistically tested. This is usually done with Fisher as-
sociation tests615,616 or correlation testing with the Spearman correlation.617 This
results in a list of mutations that are significantly associated with a given treatment
and corresponding p-values.

Since, on a given sequence dataset, several mutations are usually tested at once, this
can lead to inflated false positives618 and spurious associations.619 Fortunately, this
is a well studied problem and many methods exist to control this effect by control-
ling the Familywise Error Rate (FWER) e.g. with the Bonferroni procedure,620 or
the False Discovery Rate (FDR) e.g. with the Benjamini-Hochberg procedure.621
These methods are often applied when testing for resistance association.615,622,623
However, these correction methods are a double-edged sword, some of them can be
very conservative and lead to falsely rejecting true associations.624 In some stud-
ies on resistance, phylogenetic correlation between the sequences is also accounted
for.625,626

Statistical testing on treatment status, while informative, can only associate a mu-
tation with a treatment. In order to actually validate whether a mutation causes
resistance or not, biological analyses are needed.611,614 The easiest of these are in
vitro analyses where live viruses are subjected to a phenotypical assay. These as-
says measure the susceptibility of HIV viruses to a wide array of drugs, which can
then be statistically associated with genetic traits like specific mutations. These
assays like phenosense627 or antivirogram628 are widely used.629–631 Viruses can be
obtained from clinical isolates,632 or viruses with specific mutations can be manu-
factured with site directed mutagenesis.633,634 In vivo studies can be conducted by
sequencing viruses from patients failing ART, following over time and studying the
association between their treatment response and HIV genetics.635,636

More recently, as sequence database grow bigger and bigger (The UK-CHIC database
contains more than 80,000 HIV sequences with treatment status), methods based
on statistical and machine learning are being used to study resistance. Most ap-
proaches rely on training models to predict some type of resistance: either classifying

100

http://www.hiv.lanl.gov/


5.4. CONCLUSION

sequences as resistant or not331,637 of predicting a phenotypic response like fold resis-
tance compared to wild type.638 Initial approaches were mainly designed for clinical
testing, rather than new DRM search, and distributed via web services.639,640

Initially these approaches were based on models like decision trees,641 SVMs639 or
logistic regression.642 Over time the use of more complex models such as neural
networks has increased, with increased prediction accuracy.638

By analyzing the important features used by trained models to predict resistance, it
is possible to find features corresponding to mutations, that are useful for predicting,
and therefore likely associated with, drug resistance (see Chapter 6). With the
improvement in methods to interpret and extract features from complex models such
as deep neural networks, this approach has been used with deep learning models.331
This novel way of finding resistance associated mutations has the potential to uncover
complex mutational effects that simple association testing cannot.

5.4. Conclusion

Viruses are surprisingly complex in light of their apparent simplicity. They are
ubiquitous and present an extreme diversity. Whether they are pathogenic or not,
the role of viruses in a myriad of processes and niches make them interesting and
important to study. The sequences of these viruses, although small can be very
useful for evolutionary as well as clinical analyses.

Although the study of viruses as a whole is very useful, HIV is particularly important
to study. The impact of the HIV pandemic on global health has been severe, both in
Lower and Higher income countries. It is therefore paramount to fully understand
the underlying mechanisms and evolutionary adaptations of this virus. Its high
mutation rate allows it to quickly explore evolutionary alternatives when exposed
to drugs, making anti HIV therapy a complex endeavor.

Fortunately, with large scale sequencing efforts it is possible to study and track
these evolutionary adaptations to treatments. This allows us to adapt therapeutic
strategies as well as develop new compounds and approaches. In this context, study-
ing and finding the virus’s mutational processes is paramount. This is especially
important when studying resistance to RTIs as they form the backbone of first line
regimen combination therapies, and are the most common type of anti-HIV drug.
This process is made easier by the large scale sequence repositories now available,
and the usage of machine and statistical learning to leverage that data.
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6. Contribution 2: Inferring Mutation
Roles From Sequence Alignments
Using Machine Learning

As we have seen in Sections 5.2.1 and 5.3.3, the HIV pandemic is a widespread
threat to public health which can have very serious consequences at the infected
individual’s level and at the population scale. Despite many advances in drug devel-
opment, fundamental research in new drug targets drug resistance mutations arise
very quickly in response to antiretroviral therapy. This is especially important in
lower income countries where the drug switching options are less numerous and give
rise to multi-resistant viruses. In order to manage this global pandemic, surveying
the viral infections, finding and categorizing new drug resistance mutations is very
important. One such way to do this is to use HIV viral sequences, obtained from
patients, and use their alignment as input for statistical and machine learning meth-
ods (c.f. Chapter 4 and Section 5.3.4). In this chapter, I will present some work
done on studying drug resistance mutations in HIV sequences using a large sequence
alignment and machine learning methods.

This chapter was written as an article titled: “Using Machine Learning
and Big Data to Explore the Drug Resistance Landscape in HIV”.
It was originally published in August 2021, in PLoS Computational Biology
(doi:10.1371/journal.pcbi.1008873) and is presented as is, without any modification
from the published version. The author list, complete with affiliations is given
below:

Luc Blassel1,2*, Anna Tostevin3, Christian Julian Villabona-Arenas4,5, Martine
Peeters6, Stéphane Hué4,5, Olivier Gascuel1,7# On behalf of the UK HIV Drug
Resistance Database∧

1 Unité de Bioinformatique Évolutive, Institut Pasteur, Paris, France
2 Sorbonne Université, Collège doctoral, Paris, France
3 Institute for Global Health, UCL, London, UK
4 Department of Infectious Disease Epidemiology, London School of Hygiene and
Tropical Medicine, London, UK
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5 Centre for Mathematical Modelling of Infectious Diseases, London School of Hy-
giene and Tropical Medicine, London, UK
6 TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Uni-
versité de Montpellier, Institut de Recherche pour le Développement, INSERM,
Montpellier, France
7 Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 - Muséum
National d’Histoire Naturelle, CNRS, SU, EPHE and UA, Paris, France

# Current address: Institut de Systématique, Evolution, Biodiversité (ISYEB),
UMR 7205 - Muséum National d’Histoire Naturelle, CNRS, SU, EPHE and UA,
Paris, France
* luc.blassel@pasteur.fr (LB)
* olivier.gascuel@mnhn.fr (OG)
∧ Membership list can be found in the acknowledgments section

Abstract

Drug resistance mutations (DRMs) appear in HIV under treatment pressure. DRMs
are commonly transmitted to naive patients. The standard approach to reveal new
DRMs is to test for significant frequency differences of mutations between treated
and naive patients. However, we then consider each mutation individually and can-
not hope to study interactions between several mutations. Here, we aim to leverage
the ever-growing quantity of high-quality sequence data and machine learning meth-
ods to study such interactions (i.e. epistasis), as well as try to find new DRMs.

We trained classifiers to discriminate between Reverse Transcriptase Inhibitor (RTI)-
experienced and RTI-naive samples on a large HIV-1 reverse transcriptase (RT)
sequence dataset from the UK (𝑛 ≈ 55, 000), using all observed mutations as binary
representation features. To assess the robustness of our findings, our classifiers
were evaluated on independent data sets, both from the UK and Africa. Important
representation features for each classifier were then extracted as potential DRMs. To
find novel DRMs, we repeated this process by removing either features or samples
associated to known DRMs.

When keeping all known resistance signal, we detected sufficiently prevalent known
DRMs, thus validating the approach. When removing features corresponding to
known DRMs, our classifiers retained some prediction accuracy, and six new muta-
tions significantly associated with resistance were identified. These six mutations
have a low genetic barrier, are correlated to known DRMs, and are spatially close
to either the RT active site or the regulatory binding pocket. When removing both
known DRM features and sequences containing at least one known DRM, our clas-
sifiers lose all prediction accuracy. These results likely indicate that all mutations
directly conferring resistance have been found, and that our newly discovered DRMs
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are accessory or compensatory mutations. Moreover, apart from the accessory na-
ture of the relationships we found, we did not find any significant signal of further,
more subtle epistasis combining several mutations which individually do not seem
to confer any resistance.

Author summary

Almost all drugs to treat HIV target the Reverse Transcriptase (RT) and Drug resis-
tance mutations (DRMs) appear in HIV under treatment pressure. Resistant strains
can be transmitted and limit treatment options at the population level. Classically,
multiple statistical testing is used to find DRMs, by comparing virus sequences of
treated and naive populations. However, with this method, each mutation is consid-
ered individually and we cannot hope to reveal any interaction (epistasis) between
them. Here, we used machine learning to discover new DRMs and study potential
epistasis effects. We applied this approach to a very large UK dataset comprising
≈ 55, 000 RT sequences. Results robustness was checked on different UK and African
datasets.

Six new mutations associated to resistance were found. All six have a low genetic
barrier and show high correlations with known DRMs. Moreover, all these muta-
tions are close to either the active site or the regulatory binding pocket of RT. Thus,
they are good candidates for further wet experiments to establish their role in drug
resistance. Importantly, our results indicate that epistasis seems to be limited to
the classical scheme where primary DRMs confer resistance and associated muta-
tions modulate the strength of the resistance and/or compensate for the fitness cost
induced by DRMs.

6.1. Introduction

Drug resistance mutations (DRMs) arise in Human Immunodeficiency Virus-1
(HIV-1) due to antiretroviral treatment pressure, leading to viral rebound and
treatment failure.643,644 Furthermore, drug-resistant HIV strains can be transmitted
to treatment-naive individuals and further spread throughout the population over
time.598,599,645 These transmitted resistant variants limit baseline treatment options
and have clinical and public health implications worldwide. Almost all drugs to
treat HIV target the reverse transcriptase (RT), encoded by the pol gene. Lists
of DRMs are regularly compiled and updated by experts in the field, based on
genotype analyses and phenotypic resistance tests or clinical outcome in patients
on ART.646–648 However, with the developement of new antiretroviral drugs that
target RT but also other regions of the pol gene like protease or integrase, and the
use of anti-retrovirals in high risk populations by pre-exposure prophylaxis (PREP),
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it is important to further our understanding of HIV polymorphisms and notably
the interactions between mutations and epistatic effects.

Among known DRMs, some mutations, such as M184V, directly confer resistance
to antiretrovirals, more precisely the commonly used NRTI, 3TC (lamivudine) and
FTC (emtricitabine), and are called primary or major drug resistance mutations,
while some mutations like E40F have an accessory role and increases drug resistance
when appearing alongside primary DRMs. Moreover, some mutations like S68G
seem to have a compensatory role, but are not known to confer any resistance nor
modulate resistance induced by primary DRMs. All of these mutations might have
different functions in the virus, but they are all known to be associated with drug
resistance phenomena. Therefore, during the rest of this article we will refer to all
of these known mutations as resistance associated mutations (RAMs), rather than
DRMs which is too specific, and our goal will be to search for new RAMs and study
the interactions between known RAMs and the new ones.

Classically, new RAMs have been found using statistical testing and large multi-
ple sequence alignments (MSA) of the studied protein.615,649 Tests are performed
for mutations of interest on a given MSA to check if they are associated with the
treatment status and outcome of the individual the viral sequences were sampled
from. The test significance is corrected for multiple testing as all mutations asso-
ciated to every MSA position is virtually a resistance mutation and tested. After
this preliminary statistical search, the selected mutations are scrutinized to remove
the effects of phylogenetic correlation (i.e. typically counting two sequences which
are identical or closely related due to transmission rather than independent acquisi-
tion twice650) and check that the same mutation occurred several times in different
subtypes and populations being treated with the same drug. Then, these mutations
can be further experimentally tested in vitro or in vivo to validate phenotypic resis-
tance. This method has worked well, but by design it is not ideal for studying the
effect of several mutations at once, since if we have to test all couples or triplets of
mutations, we quickly lose statistical power when correcting for multiple testing,624
due to the large number of tests to perform. Moreover, phylogenetic correlation is
again a critical issue with such an approach.

Machine learning has been extensively used to predict resistance to antiretrovirals
from sequence data. There are two main approaches to predicting resistance from
sequence data. Regression, where machine learning models are trained to predict the
value of a drug resistance indicator, typically 𝐼𝐶50 fold change in response to a given
drug651 or other indicators from phenotypic resistance assays such as PhenoSense.652
Many methods have been used to predict a resistance level: Support Vector Ma-
chines (SVMs),653 k-Nearest Neighbors (KNN) and Random Forests (RFs),654 and
more recently Artificial Neural Networks (ANNs).638,655 Alternatively, this task has
also been approached as a classification problem. Given a certain threshold on a
phenotypic resistance measure, sequences are given a label of ”resistant” or ”suscep-
tible” to a certain drug. Machine learning classifiers are then trained to predict that
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label. For this task, SVMs and decision trees have been used,639,656 ensemble clas-
sifier chains642,657 and also ANNs.658 Most recently Steiner et al.331 have used Deep
Learning Architectures to predict resistance status (i.e. classification) from sequence
data. Since phenotypic assays are more complicated and costly to perform than sim-
ple genotyping, there is a limited number of sequences paired with a resistance level.
This is the main limitation of these studies since machine learning methods typically
benefit from a large amount of training data. This is especially true for deep neu-
ral networks which can need hundreds of thousands of training samples for certain
tasks and architectures. However, despite this limitation, approaches proposed in
these studies seem to have fairly good predictive accuracy. It is important to note
that all of these studies aim to predict if a given sequence is resistant or not to a
given drug, they do not aim to find new potential RAMs. Although Steiner et al.331
have checked that known DRM positions are captured by their models and found
several positions potentially associated to resistance, it is not the main goal of their
method.

It is accepted in machine learning that there is a trade-off between model accuracy
and model interpretability. In these previous studies the goal was to make the most
accurate predictions possible, using complex models such as SVMs and ANNs, there-
fore sacrificing interpretability. Here, we have a different approach, using simpler
models that might be less accurate but whose predictions we can understand and
interpret. We train these models to discriminate RTI-naive from RTI-experienced se-
quences. Without the need for phenotypic data, we are able to use much larger HIV-1
RT sequence datasets from the UK (𝑛 ≈ 55, 000) (http://www.hivrdb.org.uk/)
and Africa (𝑛 ≈ 4, 000).615 By using interpretable models, we can extract mutations
that are important for determining if a sequence is treated or not and potentially
find new mutations potentially associated to resistance. Furthermore, we aim to de-
tect associations between mutations and their effect on antiretroviral resistance in
order to study potential underlying epistasis. The African and UK datasets are very
different both from genetic and treatment history standpoints, therefore training
classifiers on the UK dataset and testing them on the African one, should guarantee
the robustness of our findings and greatly alleviate phylogenetic correlation effects.
In the following sections, we first describe the data then the methods used. Our re-
sults include the assessment of the performance of our classifiers even when trained
on data devoid of any known resistance-associated signal; as well as a description of
the main features (prevalence and correlation to known mutations, genetic barrier
and structural analysis) of six potentially resistance associated mutations, newly
discovered thanks to our approach. These results and perspectives are discussed in
the concluding section.
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6.2. Materials and methods

6.2.1. Data

In this study, we used all the drug resistance mutations that appeared in the Stan-
ford HIV Drug resistance database, both for NRTI (Nucleoside Reverse Transcrip-
tase Inhibitors; https://hivdb.stanford.edu/dr-summary/comments/NRTI/)
and NNRTI (Non Nucleoside RTI; https://hivdb.stanford.edu/dr-summary/co
mments/NNRTI/) as known RAMs. To discover new RAMs, assess their statistical
significance and study potential epistatic effects, we used two datasets of HIV-1 RT
sequences. A large one (𝑛 = 55, 539) from the UK HIV Drug Resistance Database
(http://www.hivrdb.org.uk/) and a smaller (𝑛 = 3, 990) one from 10 different
western, eastern and central African countries.615 In the UK dataset, sequences from
RTI-naive individuals formed the majority class with 41,921 sequences (75%). In the
African dataset, both classes were more balanced with 2,316 RTI-naive sequences
(58%). In the UK dataset, RTI-naive sequences had at least one known RAM in 25%
of cases, most likely due to transmissions to naive patients or undisclosed treatment
history, against 48% in RTI-experienced sequences, thus making the discrimination
between the RTI-experienced and RTI-naive sequences particularly difficult. In the
African dataset this distribution was more contrasted, with only 14% of RTI-naive
sequences having at least one known RAM, versus 83% of RTI-experienced sequences.
The African dataset was also much more genetically diverse with 24 different sub-
types and CRFs compared to the 2 subtypes (B and C) that we retained for this
study from the UK cohort. The majority of the sequences from the African dataset
were samples from Cameroon (27%), Democratic Republic of Congo (17%), Burundi
(15%), Burkina Faso (13%) and Togo (11%).

It is important to note that RTI-experienced sequences in both of these datasets can
be considered as resistant to treatment. Since the viral load was sufficiently high to
allow for sequencing of the virus, we can consider that the ART has failed. However,
in some cases this resistance might be caused by non adherence to ART, rather than
by the presence of RAMs, therefore adding some noise to the relationship between
treatment status and resistance.

In addition to differences in size, balance between RTI-naive and experienced classes,
and the genetic difference between the UK and African datasets, there are also
significant differences resulting from differing treatment strategies. In the UK and
other higher income countries, the treatment is often tailored to the individual with
genotype testing, which result in specific treatment as well as thorough follow-ups
and high treatment adherence. In the African countries of the dataset that we
used, the treatment is ZDV/ d4T (NRTI) + 3TC (NRTI) + NVP/EFV (NNRTI)
in most cases,615 and this treatment is generalized to the affected population, with
poorer follow-up and adherence than in the UK. This discrepancy could lead to
different mutations arising in both datasets, however since the treatment strategy is
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UK Africa
size 55539 3990

RTI naive with known RAMs 11429 (21%) 318 (8%)
without known RAMs 30492 (55%) 1998 (50%)

RTI experienced with known RAMs 6633 (12%) 1388 (35%)
without known RAMs 6985 (13%) 286 (7%)

sequences with ≥ 2 known RAMs 8034 (14%) 1308 (33%)
max known RAM number 13 17
Median known RAM number 1 3
number of subtypes / CRFs 2 24

subtypes / CRFs A 0 (0%) 472 (12%)
B 37806 (68%) 64 (2%)
C 17733 (32%) 702 (18%)
CRF02 AG 0 (0%) 1477 (37%)

Table 6.1.: Summary of the UK and African datasets.
Percentages are computed with regards to the size of the considered dataset (e.g.
21% of the sequences of the UK dataset are RTI-naive and have at least one known
RAM). The median number of RAMs was computed only on sequences that had at
least one known RAM.

a combination of both NRTI and NNRTI drug classes, as in many countries, similar
RAMs arise.615 Furthermore, there is potentially more uncertainty in the African
dataset than in the UK. For example some individuals may have unofficially taken
antiretroviral drugs, but still identify themselves as RTI-naive, or report having
some form of ART while not having been treated for HIV.659 All of this explains the
high prevalence of multiple resistance in the African data set: the median number of
RAMs in sequences containing at least one RAM is 3 in the African sequences, while
it is 1 in UK sequences (Table 6.1). Thus, we can say that African sequences are
highly resistant, with possibly different mutations and epistatic effects, compared to
their UK counterparts.

All these differences between the two datasets helped us to assess the generalizability
of our method and the robustness of the results. That is to say, if signal extracted
from the UK dataset was still relevant on such a different dataset as the African one,
we could be fairly reassured in regard to the biological and epidemiological relevance
of the observed signal.

Sequences in both African and UK datasets were already aligned. In order to avoid
overly gappy regions of our alignment we selected only positions 41 to 235 of RT
for our analysis. We used the Sierra web service (https://hivdb.stanford.edu/p
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age/webservice/) to get amino acid positions relative to the reference HXB2 HIV
genome. This allowed us to determine all the amino acids present at each reference
position in both datasets, among which we distinguished the “reference amino acids”
for each position, corresponding to the B and C subtype reference sequences obtained
from the Los Alamos sequence database (http://www.hiv.lanl.gov/). All the
other, non-reference amino acids are named “mutations” in the following, and the
set of mutations was explored to reveal new potential RAMs.

To train our supervised classification methods,386,660,661 the sequence data needed to
be encoded to numerical vectors. A common and intuitive way to do so is to create a
single feature in the dataset for each position of the sequence to encode. Each amino
acid is then assigned an integer value, and an amino acid sequence is represented
by a succession of integers corresponding to each amino acid. There is, however,
one drawback with this method: by assigning an integer value to amino acids, we
transform a categorical variable into an ordinal variable. Any ordering of amino
acids is hard to justify and might introduce bias. To avoid this, we represented
each sequence by a binary vector using one-hot encoding. For each position in the
sequence to be encoded, amino acids corresponding to mutations are mapped to a
binary vector denoting its presence or absence in the sequence. For example, at site
184, amino acids M, G, I, L, T and V are present in the UK dataset. After encoding
we will have 5 binary features corresponding to the M184G, M184I, M184L, M184T
and M184V mutations. We did not encode the reference amino acid M, but only the
mutated amino acids. With this method each mutation in the dataset (𝑛 = 1, 318)
corresponds to a single feature. Some of these features corresponded to known RAMs
(e.g., M184I and M184V) and are named (known) RAM features in the following
(𝑛 = 121). This encoding allows the classifiers to consider specific mutations and
potentially link them to resistance.

6.2.2. Classifier training

In order to find new potential RAMs, we first followed the conventional multiple
testing approach.615 We first used Fisher exact tests to identify which of these muta-
tions were significantly associated with anti-retroviral treatment. All the resulting
p-values were then corrected for multiple testing using the Bonferroni correction.662
Those for which the corrected p-value was ≤ 0.05 were then considered as signifi-
cantly associated with treatment and potentially implicated in resistance.

This method was complemented by our parallel, machine learning based approach.
In order to extract potential RAMs, we trained several classifiers to discriminate be-
tween RTI-experienced and RTI-naive sequences represented by the binary vectors
described above. This classification task does not need any phenotypic resistance
measure, allowing us to use much larger and more readily available datasets than
other machine learning based approaches previously mentioned. Once the classifiers

110

https://hivdb.stanford.edu/page/webservice/
https://hivdb.stanford.edu/page/webservice/
http://www.hiv.lanl.gov/


6.2. MATERIALS AND METHODS

were trained, we extracted the most important representation features, which cor-
responded to potentially resistance-associated mutations (PRAM in short). To this
aim we chose three interpretable supervised learning classification methods so as to
be able to extract those features:

1. Multinomial naive Bayes (NB), which estimates conditional probabilities of
being in the RTI-experienced class given a set of representation features;663
the higher (≈ 1.0) and the lower (≈ 0) conditional probabilities correspond to
the most important features.

2. Logistic regression (LR) with L1 regularization (LASSO)386 which assigns
weights to each of the features, whose sign denotes the importance to one of
the 2 classes, and whose absolute value denotes the weight of this importance.

3. Random Forest (RF) , which has feature importance measures based on the
Gini impurity in the decision trees.393

Interpretability was the main driver behind our classification method choice, with the
conditional probabilities of NB, the weight or LR and the importance values of RF,
we can easily extract which mutations are driving the discrimination of RT sequences.
This is why we did not choose to use ANNs which could have led to an increase in
accuracy at the cost of interpretability.355,664,665 Moreover, these three classification
methods have the potential to detect epistatic effects. With RF, the discrimination
is based on the combination of a few features (i.e. mutations), while with LR the
features are weighted positively or negatively, thus making it possible to detect
cumulative effects resulting from a large number of mutations, which individually
have no discrimination power. Naive Bayes is a very simple approach, generally
fairly accurate, and in between the two others in terms of explanatory power.661

In order to be able to compare all these approaches in a common framework, we
devised a very simple classifier out of the results of the Fisher exact tests. This
”Fisher classifier” (FC) predicts a sequence as RTI-experienced if it has at least one
of the mutations significantly associated to treatment. In this way, we were able to
compute metrics for all classification methods and compare their performance.

It is important to note that in all of these approaches we chose to discriminate RTI-
naive from RTI-experienced sequences, regardless of the type of RTI received. One of
the reasons is that we did not have detailed enough treatment history for sequences in
the UK and African datasets. Moreover, even without segmenting by treatment type,
the size of the training set and the power of our classification methods were both high
enough to be able to detect all kinds of resistance associated mutations. We shall
see (Result section) that we were able to determine the likely treatment involved by
further examining the important extracted features and comparing them to known
RAMs. Furthermore, since the treatment strategies are so different between the UK
and African sequences, training on sequences having received different treatments
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Signal removal level Trained on Tested on
None UK, subtype B (37806) UK, subtype C (17733)

UK, subtype C (17733) UK, subtype B (37806)
UK, subtypes B & C (55539) Africa, all subtypes (3990)

Known RAM
features re-
moved

UK, subtype B (37806) UK, subtype C (17733)
UK, subtype C (17733) UK, subtype B (37806)
UK, subtypes B & C (55539) Africa, all subtypes (3990)Known RAM

features & se-
quences with
≥ 1 known
RAM removed

UK, subtype B (24422) UK, subtype C (13055)
UK, subtype C (13055) UK, subtype B (24422)
UK, subtypes B & C (37477) Africa, all subtypes (2284)

Table 6.2.: All training and testing datasets used during this study.
The number of sequences in each dataset is shown in parentheses

should increase the robustness of our classifiers and the relevance of the mutations
selected as potentially associated to resistance.

To avoid phylogenetic confounding factors (e.g. transmitted mutations within a spe-
cific country or region), and avoid finding mutations potentially specific to a given
subtype, we split the training and testing sets by HIV-1 M subtype. This resulted
in training a set of classifiers on all subtype B sequences of the UK dataset and
testing them on subtype C sequences from the UK dataset, training another set of
classifiers on the subtype C sequences of the UK dataset and testing on the subtype
B sequences from the UK dataset, as well as training a final set of classifiers on the
whole UK dataset, but testing it on the smaller African dataset with a completely
different phylogenetic makeup and treatment context.615 Furthermore, in order to
identify novel RAMs and study the behavior of the classifiers, we repeated this
training scheme on both datasets, each time removing resistance-associated signal
incrementally: first by removing all representation features corresponding to known
RAMs from the dataset, and second by removing all sequences that had at least
one known RAM. This resulted in each type of classifier being trained and tested 9
times, on radically different sets to ensure the interpretability and robustness of the
results (see Table 6.2).

6.2.3. Measuring classifier performance

To compare the performance of our classifiers we used balanced accuracy,380 which
is the average of accuracies (i.e. percentages of well-classified sequences) computed
separately on each class of the test set. This score takes into account, and corrects
for, the imbalance between RTI-naive and RTI-experienced samples, which would
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lead to a classifier always predicting a sequence as RTI-naive getting a classical ac-
curacy score of up to 77% (i.e. the frequency of naive sequences in the UK dataset).
We also computed the adjusted mutual information (AMI) between predicted and
true sequence labels, which is a normalized version of MI allowing comparison of
performance on differently sized test sets.150 Additionally, mutual information (MI)
was used to compute p-values and assess the significance of the classifiers’ predic-
tive power. The probabilistic performance of the classifiers was evaluated using
an adapted Brier score660 more suited to binary classification, which is the mean
squared difference between the actual class (coded by 1 and 0 for the RTI-experienced
and RTI-naive samples respectively) and the predicted probability of being RTI-
experienced. This approach refines the standard accuracy measure by rewarding
methods that well approximate the true status of the sample (eg. predicting a prob-
ability of 0.9 while the true status is 1); conversly, binary methods (predicting 0
or 1, but no probabilities) will be penalized if they are often wrong. The Brier ap-
proach thus assigns better scores to methods that recognize their ignorance than to
methods producing random predictions.

6.3. Results

6.3.1. Classifier performance & interpretation

As can be seen in Fig 6.1A and 6.1B, when all RAM features and sequences were
kept in the training and testing sets, classifiers had good prediction accuracy, with
the machine learning classifiers slightly outperforming the “Fisher” classifier. When
removing RAM features from the training and testing sets, the classifiers retained a
significant prediction accuracy, especially with the African data set and its multiple
RAMs that are observed in a large number of sequences (but removed in this ex-
periment). In this configuration the ML classifiers had a similar performance to the
“Fisher” classifier, except for the random forest that is slightly less accurate, likely
due to overfitting. Also, when removing sequences that had known RAMs, every
classifier lost all prediction accuracy, and none could distinguish RTI-naive from
RTI-experienced sequences. Regarding the Brier sore, we see the advantage of the
machine learning classifiers over the “Fisher” classifier, which is worse than random
predictions when known RAMs are removed. The ability of machine learning classi-
fiers to quantify the resistance status should be an asset for many applications.

The fact that classifiers retained prediction accuracy after removing known RAM
corresponding features suggests that there was some residual, unknown resistance-
associated signal in the data. The fact that this same power was non-existent when
removing the known RAM-containing sequences from the training and testing sets,
indicates that this residual signal was contained in these already mutated sequences.
This suggests that the mutations that are found in the RAM removed experiment
(see list below) are most likely accessory mutations that accompany known RAMs.
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A) B)

C)

Figure 6.1.: Classifier Performance on UK and African datasets.
NB: naive Bayes, LR: Logistic Regression with Lasso regularization, RF: Random
Forest, FC: Fisher Classifier, RD: Agnostic random probabilistic classifier (this
classifier predicts, as the probability of a sample belonging to a class, the frequency
of that class in the training data). A) Adjusted mutual information (higher is
better) between ground truth and predictions by classifiers trained on dataset with
all features (blue), without features corresponding to known RAMs (orange) and
without RAM features and without sequences that have at least 1 known RAM
(green). Hatching indicates the training set on which a classifier was trained and the
testing set on which the performance was measured. The expected value for a null
classifier is 0, and 1 for a perfect classifier and a * denotes that the p-value derived
from mutual information is ≤ 0.05. For example when trained with all features all
the classifiers have a significative MI. Conversly when removing RAM features and
RAM sequences none of the classifiers have a significative MI and only LR trained on
the entirety of the UK dataset has an AMI > 10−3 B) Balanced Accuracy score, i.e.
average of accuracies per-class (higher is better) for the same classifiers as in a). The
red line at 𝑦 = 0.5 is the expected balanced accuracy for a null classifier that only
predicts the majority class as well as a random uniform (i.e. 50/50) classifier. C)
Brier score, which is the mean squared difference between the sample’s experience
to RTI and the predicted probability of being RTI experienced (lower is better), for
the same classifiers as in A) and B).
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This also suggests that all primary DRMs (i.e., that directly confer antiretroviral
resistance) have been identified, which is reassuring from a public health perspec-
tive.

The performance discrepancy between the UK and African test sets can be explained
by several factors. Firstly, African sequences that have known RAMs are more likely
to have multiple RAMs, and thus more (known and unknown) resistance-associated
features than their UK counterparts (c.f. Table 6.1). This means that resistant
African sequences are easier to detect even when removing known RAMs. Secondly,
RTI-naive sequences in the UK test sets are more likely to have known RAMs than
their African counterparts (c.f. Table 6.1) and therefore more companion mutations.
This means that the RTI-naive sequences in the UK test set are more likely to be
misclassified as RTI-experienced than in the African test set.

6.3.2. Additional classification results

The fact that, when looking at classifiers trained without known RAMs , “Fisher”
classifiers perform as well as the machine learning ones, leads us to believe that
there is little interaction between mutations that would explain resistance better
than taking each mutation separately. It is therefore likely that the kind of epistatic
phenomena we were looking for, combining several mutations that do not induce any
resistance when taken separately, do not come into play here. We are in a classical
scheme where primary DRMs confer resistance and associated mutations reinforce
the strength of the resistance and/or compensate for the fitness cost induced by
primary DRMs.

It is important to remember that in the previous section we were trying (as usual,
e.g. see615) to find novel mutations associated with resistance by discriminating RTI-
naive from RTI-experienced sequences, both with the statistical tests and the classi-
fiers. However, this is intrinsically biased and noisy. Indeed, a RTI-naive sequence is
not necessarily susceptible to RTIs as a resistant strain could have been transmitted
to the individual. Conversely, an RTI-experienced sequence may not be resistant
to treatment, due to poor ART adherence for example. We must therefore keep
in mind that the noisy nature of the relationship between resistance and treatment
status is partly responsible for the lower performance of classifiers trained on the
UK sequences with reduced signal.

Moreover, as all the additional resistance signal we detected is associated to the
sequences having at least one known RAM (see above), we performed another anal-
ysis trying to discriminate between the sequences having at least one known RAM
and those having none. The goal was to check that the mutations we discovered
by discriminating RTI-experienced from RTI-naive samples, are truly accessory and
compensatory mutations. As can be seen in Fig 6.2A and 6.2B, the classifiers trained
to discriminate sequences that have at least one known RAM from those that have
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none, on datasets from which all features corresponding to known RAMs were re-
moved, perform much better than classifiers trained to discriminate RTI-experienced
from RTI-naive sequences. This increase in performance is especially visible for clas-
sifiers tested on UK sequences (more difficult to classify than the African ones, see
above), with an AMI often almost one order of magnitude higher for the known-RAM
presence/absence classification task. This further reinforces our belief that all there
is a fairly strong residual resistance-signal in sequences that contain known RAMs,
due to new accessory and compensatory mutations identified by our classifiers and
Fisher tests. As a side note, Logistic regression (LR) consistently outperforms other
classifiers, a tendency already observed in Fig 6.1.

6.3.3. Identifying new mutations from classifiers

We assessed the importance of each mutation in the learned internal model of all
the classifiers, in the setting where all known RAMs have been removed from the
training dataset. For the Fisher classifier, we used one minus the p-value of the
exact Fisher test as the importance value, therefore the more significantly associ-
ated mutations have the higher importance value and were ranked first. For a given
classification task, we ranked each mutation according to the appropriate impor-
tance value for each classifier (see above), trained on the B or C subtypes, with
the highest importance value having a rank of 0. We then computed the average
rank for each mutation and each classification task (RTI-naive/RTI-experienced and
RAM present/RAM absent). This gave us, for each classification task, a ranking of
mutations potentially associated with resistance that took into account the impor-
tance given to this new mutation by each classifier trained on this task. Mutations
that were in the 10 most important mutations for both of the classification tasks
were considered of interest. Based on these criteria we selected the following poten-
tially resistance-associated mutations (w.r.t. the HXB2 reference genome): L228R,
L228H, E203K, D218E, I135L and H208Y. These mutations are referred to as “new
mutations” in the rest of this study.

To check the epistatic nature of these selected mutations we computed the relative
risk 𝑅𝑅(𝑛𝑒𝑤, 𝑋) between a new mutation and a binary character 𝑋. 𝑅𝑅(𝑛𝑒𝑤, 𝑋)
was computed from the contingency table between 𝑛𝑒𝑤 and 𝑋 as follows:

X present X absent
new present A B
new absent C D

𝑅𝑅(𝑛𝑒𝑤, 𝑋) = 𝐴
𝐴 + 𝐶 ÷ 𝐵

𝐵 + 𝐷

The RR gives us a measure for how over-represented each of our new mutations is
in sequences that have the 𝑋 character compared to those that don’t.
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Figure 6.2.: Discrimination between sequences having at least one RAM,
and those having none on sequences with training features corresponding
to known RAMs removed.
NB: naive Bayes, LR: Logistic Regression with Lasso regularization, RF: Random
Forest, FC: Fisher Classifier. A) Adjusted mutual information (higher is better) for
classifiers trained without features corresponding to known RAMs. The classifiers
are either trained to discriminate RTI-naive from RTI-experienced sequences (blue),
or sequences with at least one known RAM from sequences that have none (orange).
Hatching and braced annotations indicate the training and testing sets resulting
in a given performance measure. B) Balanced accuracy, i.e. average of accuracies
per-class for the same classifiers as in A) (higher is better). The red line at 𝑦 = 0.5
is the expected value for a classifier only predicting the majority class as well as a
random uniform (50/50) classifier.
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To get a general idea of this over-representation, for each new mutation we com-
puted 𝑅𝑅(𝑛𝑒𝑤, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) comparing the prevalence of the new mutation in RTI-
experienced and RTI-naive sequences. We also computed 𝑅𝑅(𝑛𝑒𝑤, 𝑤𝑖𝑡ℎ𝑅𝐴𝑀) com-
paring the prevalence the new mutation in sequences having at least one known RAM
and sequences that have none. Both of these RRs are shown in Table 6.3 for each
new mutation.

We then computed 𝑅𝑅(𝑛𝑒𝑤, 𝑅𝐴𝑀) for each known RAM present in more than 0.1%
of UK sequences and the new mutations. In Fig 6.3 we see the RRs for which the
lower bound of the 95% confidence interval, computed on 1000 bootstrap samples
from the UK dataset, was greater than 4.

6.3.4. Detailed analysis of potentially resistance-associated mutations

As can be seen in Table 6.3, all of these new mutations except for I135L, are
highly over-represented in RTI-experienced sequences and sequences that already
have known RAMs, with lower bounds on the 95% RR CI always greater than 5, and
often exceeding 10. When looking at the RRs computed for individual RAMs on the
UK dataset (Fig 6.3), this impression is confirmed with very high over-representation
of these new mutations potentially associated with resistance in sequences that have
a given known RAM, with 95% RR lower CI bounds sometimes greater than 80
(H208Y/L210W and D218E/D67N), and most of the time greater than 10. with
the noticeable exception of I135L where only 2 known RAMs give RRs with lower
CI bounds greater than 4. The RRs computed on the African dataset (C.1) tell a
similar story albeit with smaller RR values due to a smaller number of occurrences
of both new mutations and known RAMs.

The genetic barrier to resistance for each of these new mutations is quite low, with
a minimum of 1 base change for each of them (Table 6.3 ). We also computed the
average codon distance (i.e. number of different bases), weighted by the prevalence
of wild and mutated codons at the given positions in the UK (Table 6.3 ) and Africa
(Table C.5) datasets, and in each case the average codon distance was always close
to 1. In other words, at the amino acid level these mutations are expected to be
relatively frequent. However, their frequencies are much higher in treated/with-
RAM sequences than in naive/without-RAM ones (Table 6.3 ). Moreover, if we
look at the BLOSUM62 scores (Table 6.3 ), some of these mutations induce some
substantial changes in physicochemical properties, most notably at site 228, which
reinforces again the likelihood that these mutations are associated with resistance.
These metrics were also computed for all known RAMs (Table 6.3 ). For all these
metrics, and the 6 new potential RAMs, values are contained between the 5th and
95th percentiles computed on known RAMs, except for the BLOSUM score of L228H
that corresponds to a drastic physicochemical change.
To gain more insight on these new mutations we also observed their spatial location
on the 3-D HIV-1 RT structure using PyMol.666 HIV-1 RT is a heterodimer with two
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codon distance UK
𝑅𝑅(𝑛𝑒𝑤, 𝑋)

min avg B62 count 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑎𝑛𝑦 𝑅𝐴𝑀 p-value

L228R 1 1.16 -2 227 (0.4%) 18.1 115.7 3.4 ⋅ 10−31
[12.9;27.3] [55.1;507.3]

E203K 1 1.31 1 256 (0.5%) 11 20.1 1.1 ⋅ 10−14
[8.2;15.1] [13.7;32.1]

D218E 1 1 2 168 (0.3%) 13.1 27 3.3 ⋅ 10−10
[9.0;19.6] [16.3;57.0]

L228H 1 1.12 -3 287 (0.5%) 6.4 9.2 4.4 ⋅ 10−16
[5.1;8.4] [6.9;12.6]

I135L 1 1.16 2 540 (1.0%) 1.8 2.4 5.9 ⋅ 10−08
[1.5;2.1] [2.0;2.8]

H208Y 1 1.10 2 205 (0.4%) 8.8 14.9 1.2 ⋅ 10−05
[6.5;12.5] [9.9;23.6]

RAMs 1 1.35 0 58 (0.1%) 8.3 26.4 3.1 ⋅ 10−2

[1;2] [1;2.44] [-2;3] [2;1842] [0.6;∞] [1.4;∞] [2.3 ⋅ 10−58;1]

Table 6.3.: Analysis of new potential RAMs.
Codon distance: For each new mutation we computed the minimum number of
nucleotide mutations to go from the wild amino acid codons to those of the mu-
tated amino acid, as well as the average codon distance between both amino acids,
weighted by the prevalence of each wild and mutated codon at the given position
in the UK dataset. B62: BLOSUM62 similarity values (e.g. D218E = 2, reflect-
ing that E and D are both negatively charged and highly similar). Count: We
looked at the number of occurrences of each new potential RAM in the UK dataset
and the corresponding prevalence in parentheses. Relative risks: We computed
𝑅𝑅(𝑛𝑒𝑤, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) (e.g. L228R is 18.1 times more prevalent in RTI-experienced
sequences compared to RTI-naive sequences in the UK dataset). We also com-
puted 𝑅𝑅(𝑛𝑒𝑤, 𝑎𝑛𝑦 𝑅𝐴𝑀) (e.g. L228R is 115.7 times more prevalent in sequences
that have at least one known RAM than in sequences that have none in the UK
dataset). The 95% confidence intervals shown under each RR were computed with
1000 bootstrap samples of size 𝑛 = 55, 000 drawn with replacement from the whole
UK dataset. p-values: Fisher exact tests were done on the African dataset (to
avoid confounding effects due to phylogenetic correlation) to see if each of these new
mutations were more prevalent in RTI-experienced sequences. The same metrics
were computed for all known RAMs, the median values are shown in the last two
lines of this table, as well as the 5th and 95th percentiles which are shown under-
neath. 𝑅𝑅(𝑅𝐴𝑀, 𝑎𝑛𝑦 𝑅𝐴𝑀) values were computed for any RAM except itself to
avoid always having infinite ratios.

119



CHAPTER 6

0

20

40

60

80

Y
1
8
1
C

K
2
1
9
R

T
2
1
5
Y

L
2
1
0
W

M
4
1
L L
1
0
0
I

K
2
1
9
E

K
7
0
R
Y
1
1
5
F

A
6
2
V

T
2
1
5
F

M
1
8
4
V

K
1
0
3
N T
6
9
D F
2
2
7
L

V
1
0
8
I

M
2
3
0
L

E
4
4
D

K
1
0
1
E

K
6
5
R
L
7
4
I

T
6
9
N
L
7
4
V

K
2
1
9
Q

G
1
9
0
A

A
9
8
G

D
6
7
N

G
1
9
0
S V
7
5
M

L288R

L
7
4
I

K
2
1
9
E

K
7
0
R

T
2
1
5
F

D
6
7
N

K
2
1
9
Q

T
6
9
D

L
2
1
0
W

M
4
1
L

Y
1
8
1
C

T
2
1
5
Y

E
4
4
D

V
7
5
M

A
9
8
G
D
6
7
G

V
1
0
8
I

G
1
9
0
A L
1
0
0
I

M
1
8
4
V
V
7
5
I

L
7
4
V
K
2
1
9
R

Q
1
5
1
M

T
6
9
N

K
1
0
3
N

V
1
1
8
I

A
6
2
V

Y
1
8
8
L

K
1
0
1
E

L288H

10

20

30

40

50

60

70

E
4
4
D

D
6
7
N

L
2
1
0
W

K
2
1
9
R

K
7
0
R

V
7
5
M

T
2
1
5
Y

M
4
1
L

M
1
8
4
V
K
2
1
9
E
L
7
4
I

K
2
1
9
Q

T
6
9
D

V
1
0
8
I
F
2
2
7
L

L
7
4
V

Y
1
8
1
C

A
9
8
G

G
1
9
0
A
L
1
0
0
I

M
1
8
4
I

K
1
0
3
N

V
1
1
8
I

E203K

A
9
8
G

P
2
2
5
H

I135L

0

25

50

75

100

125

150

175

L
2
1
0
W

E
4
4
D

M
4
1
L

T
2
1
5
Y
V
7
5
M

K
2
1
9
R

D
6
7
N

T
6
9
D

L
7
4
V

A
9
8
G

K
2
1
9
N

L
7
4
I

F
2
2
7
L

V
1
1
8
I

M
1
8
4
V

V
1
0
8
I

G
1
9
0
A

Y
1
8
1
C

K
7
0
R

K
2
1
9
Q

L
1
0
0
I

T
2
1
5
F M
2
3
0
L

Y
1
8
8
L

H
2
2
1
Y

H208Y

D
6
7
N

K
2
1
9
Q

K
7
0
R

T
2
1
5
F L
7
4
I

M
4
1
L

T
2
1
5
V

K
2
1
9
E

L
2
1
0
W

T
2
1
5
Y
V
7
5
M

M
1
8
4
V

E
4
4
D

T
6
9
N

Y
1
8
1
C
K
2
1
9
R

L
7
4
V
L
1
0
0
I

V
1
0
8
I

T
6
9
D

A
9
8
G G
1
9
0
S

K
2
1
9
N

G
1
9
0
A

K
1
0
3
N

D218E

NRTI

NNRTI

Other

Figure 6.3.: Relative risk of the new mutations with regards to known
RAMs on the UK dataset.
(i.e. the prevalence of the new mutation in sequences with a given known RAM
divided by the prevalence of the new mutation in sequences without this RAM).
RRs were only computed for mutations (new and RAMs) that appeared in at least
0.1% (=55) sequences. 95% confidence intervals, represented by vertical bars, were
computed with 1000 bootstrap samples of UK sequences. Only RRs with a lower CI
boundary greater than 4 are shown. The shape and color of the point represents the
type of RAM as defined by Stanford’s HIVDB. Blue circle: NRTI, orange square:
NNRTI, green diamond: Other. RR values are shown from left to right, by order of
decreasing values on the lower bound of the 95% CI.
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subunits translated from the same sequence with different lengths and 3-D structures.
The smaller p51 subunit (440 AAs) has a mainly structural role, while the larger
p66 (560 AAs) subunit has the active site at positions 110, 185 and 186. The
p66 subunit also has a regulatory pocket behind the active site: the non-nucleoside
inhibitor binding pocket (NNIBP) formed of several sites of the p66 subunit as well
as site 138 of the p51 subunit. Nucleoside RT Inhibitors (NRTI) are nucleotide
analogs and bind in the active site, blocking reverse transcription. Non-Nucleoside
RT Inhibitors (NNRTI) bind in the NNIBP, changing the protein conformation and
blocking reverse transcription. More details on the structure and function of HIV-1
RT can be found in.564 A general view of where the new mutations are situated with
regards to the other important sites of HIV-1 RT is shown in Fig 6.4, and is detailed
below.

Figure 6.4.: Structure of HIV-1 RT with highlighted important sites.
The p66 subunit is colored dark gray and the p51 subunit white. The active site
is highlighted in blue, and the NNIBP is highlighted in yellow. The sites of new
mutations are colored in red.

6.3.4.1. L228R / L228H

L228R is the most important of these new mutations according to the feature im-
portance ranking done above. This is reflected in the very high over-representation
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in RTI-experienced sequences and sequences with known RAMs shown in Table 6.3 .
When looking at the detailed RRs shown in Fig 6.3, we observe that L228R presents
high RR values with mainly NRTI RAMs, but also with NNRTI RAMs such as
Y181C and L100I, and this is even more so h for RRs computed on the African
dataset (C.1). L228H is very similar in all regards to L228R, however its highest
RRs are exclusively with NRTI RAMs.

Site 228 of the p66 subunit is located very close to the active site of RT, where NRTIs
operate (Figs 6.4 and C.3) which could explain the role that L228R and L228H seem
to have in NRTI resistance. However, site 228 of the p66 subunit is also between
sites 227 and 229 which are both part of the NNIBP. Furthermore, both L228H
and L228R have very low BLOSUM62 score, of -3 and -2 respectively (Table 6.3 ).
Arginine (R) and Histidine (H) are both less hydrophobic that Leucine (L), and have
positively charged side-chains. This important change in physicochemical properties
could explain the role they both seem to have in NRTI resistance. However, while
both Arginine and Histidine are larger than Leucine, Arginine is also fairly larger
than Histidine, which is aromatic. This difference between both residues might
explain the association L228R seems to have with NNRTI resistance that L228H
does not have.

6.3.4.2. E203K / H208Y

Both E203K and H208Y are highly over-represented in RTI-experienced sequences
and sequences with known RAMs. They both have high RR values for NRTI RAMs.
Furthermore the most highly valued RAM RRs in Fig 6.3, are very similar for E203K
and H208Y. Structurally they are close to each other on an alpha helix which is close
to the active site.

Both E203K and H208Y have positive, albeit not maximal, BLOSUM62 scores,
meaning they are fairly common substitutions. However, these mutations induce
some change in physicochemical properties with Tyrosine (Y) being less polar than
Histidine (H), and the change from Glutamic Acid (E) to Lysine (K) corresponding
to a change from a negatively charged side chain to a positively charged one.

All this, combined with their structural proximity and the shared high RR values
for single RAMs, suggests a similar role in NRTI resistance.

6.3.4.3. I135L

In Table 6.3 and Fig 6.3, we observe that I135L has the lowest RR values of all the
new mutations, with CI bounds lower than 2 in Table 6.3’s general RRs. However, it
is the most prevalent of the new mutations. If we look at the detailed RRs of Fig 6.3,
we see that I135L is significantly over-represented in sequences with NNRTI RAMs,
specifically A98G and P225H. Structurally this makes sense: On the p66 subunit,
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site 135 is on the outside, far from both the active site and the NNIBP. However,
site 135 on the p51 subunit is located very close to the NNIBP (Figs 6.3 and C.2).

The BLOSUM62 score for this substitution is quite high (Table 6.3), which is ex-
pected since both residues are very similar to one another, differing only by the
positioning of one methyl group. However, Leucine (L) is less hydrophobic than
Isoleucine (I), despite they are still both classified as hydrophobic residues (Table
C.5).

The proximity between site 135 and the pocket in which NNRTI RAMs bind, as well
as the high RR values for these NNRTI RAMs leads us to believe that I135L could
play a subtle accessory role in NNRTI resistance, either by enhancing the effect of
some NNRTI RAMs (typically, A98G and P225H), or by compensating for loss of
fitness.

6.3.4.4. D218E

D218E is also highly over-represented in both RTI-experienced sequences and se-
quences with known RAMs. It has infinite RR values in the African dataset (Ta-
ble 6.3), because it is quite rare in this dataset, and all of its 25 occurrences are
in sequences that have at least one known RAM and are RTI-experienced. In fact,
from the UK dataset we can see that D218E has some of the highest RR values for
individual RAMs (along with H208Y). The majority of these very high RR values
occur for NRTI RAMs. Site 218 on the p66 subunit is quite close to the RT active
site, which could explain the role D218E seems to have in NRTI resistance. Aspartic
acid (D) and Glutamic acid (E) are very similar amino acids, both acidic with neg-
atively charged side-chains, as reflected in their fairly high BLOSUM62 score, the
main difference between both being molecular weight, with E being slightly larger
than D.

6.4. Discussion and perspectives

Our method has allowed us to identify six mutations that might play a role in
drug resistance in HIV. These mutations are significantly over-represented in RTI-
experienced sequences, as well as sequences exhibiting at least one other known RAM.
The fact that models trained on the UK are still performant on such a different
dataset as the African one strongly suggests that the learned classifier models have
acquired generalized knowledge on resistance. For all of these new mutations their
spatial positioning on HIV-1 RT is consistent with our conclusions, as all were either
close to the active site or the regulatory binding pocket.

Some of the mutations we have identified as potentially associated with resistance
have been mentioned in previous studies. L228R/H have been observed before667
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and were suggested to be associated with reduced susceptibility to didanosine.668,669
I135L has been observed in sequences with reduced susceptibility to NNRTIs.670
H208Y has been associated with NNRTI and NRTI resistance671 and it has been sug-
gested that it has an accessory role in NRTI resistance.672 E203K, D218E, L228RH
and H208Y have all been mentioned in673 as probably linked to phenotypic resistance
to NRTI and NNRTI.

However, none of these mutations has been experimentally confirmed as conferring
or helping with drug resistance to the best of our knowledge. The fact that we
find them again with a big data analysis of highly different sequences and involved
statistical selection procedure combining multiple testing and machine learning, and
that we have very high significance, clearly indicates their potential role in resistance.
Therefore, we believe they are sufficiently linked to drug resistance that they garner
a closer inspection either in-vitro or in-vivo to determine the mechanisms that could
allow them to play a role in resistance.

With our machine classifiers we seem to have found some RAMs of an accessory
nature, over-represented in sequences already containing known RAMs. This is a
form of epistasis, where the interaction between the main RAM and the accessory
RAM is important. However, we did not manage to find subtler forms of epista-
sis, in our dataset, where two mutations separately have no effect on resistance but
have an effect together. This is partly indicated by the fact that there is a limited
performance gap between the Fisher exact tests and more sophisticated classifiers,
that are able to reveal significant association of mutations, while each individual
mutation has low prediction power. However, one advantage of machine learning
classifiers, is that they are probabilistic, meaning that they can give more nuanced
insights into the nature or resistance level of a given sequence than the classical bi-
nary presence/absence of RAMs approach. In this regard logistic regression appears
as a method of choice, showing similar or better performance than other classifiers,
and an easy interpretation that is facilitated by the lasso regularization which per-
forms a simple feature selection and retains the most important ones. Similar results
were already observed on other sequence analysis tasks.674 In order to investigate the
second form of epistasis further we tested each pair of mutations in the UK dataset
(𝑛 = 867, 903) with Fisher exact tests to see if they were linked to treatment status.
In order to mitigate the effects of phylogenetic correlation which are sure to have an
effect in this type of setting, we tested the pairs that were significantly associated to
treatment (𝑛 = 1, 309) again on the African dataset. We also compared these results
to the Fisher exact tests executed for each single mutation. We did not find any pair
of mutations that was significantly associated, to treatment where neither member
were significantly associated individually. Moreover, we only found 3 significantly
associated pairs of mutations that did not include at least one known RAM, and
they all included one of our newly found potential RAM: L228R + I142V, L228R +
F214L and L228H + F214L (see appendix C.6 for details).

With therapeutic strategies targeting multiple proteins that are now used, there
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might be some epistatic effects with other regions of the HIV genome that are
targeted by some of the drugs. These potential effects however, lie outside the scope
of this study.

Because of the lack of detailed treatment history metadata, we did not distinguish
mutations arising from NRTIs or NNRTIs. We believe that a large amount of high
quality sequence data, along with a sufficiently detailed log of treatments and drugs
the sequences were exposed to, could allow us to use our machine-learning approach
to find mutations related to specific drugs and thus furthering our knowledge of HIV
drug resistance, giving clinicians more tools to manage and help infected patients.
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7. Learning Alignments, an Interesting
Perspective

Recently, machine learning methods have been increasingly applied to the process
of alignment. Using this framework to “learn” an optimal sequence alignment algo-
rithm might lead to better performance with less design biases.

7.1. Deep learning and sequences

As many of these techniques are based on deep learning, which I did not introduce
in Chapter 4, I will first present deep learning very shortly. I will then introduce the
concept of learned sequence embeddings which could become very useful for machine
sequence alignment.

7.1.1. Intro to deep learning

Deep learning is the process of learning using neural networks. Neural networks all
started in 1958 when Rosenblatt proposed the perceptron.675 This learning algorithm
was loosely inspired by biological neurons, which led to the name: neural networks.
The perceptron takes as input 𝑛 values, these are used in a weighted sum that is then
fed through an activation function. The output of this function is the output of the
perceptron. Originally, to replicate biological neurons, the activation function was a
step function where, the perceptron has an output only if the weighted sum crosses a
given threshold. This structure is often represented through a computational graph
as in Figure 7.1. By tuning the weights of the inputs, the perceptron can be used
to solve linear separation problems.

The perceptron could only be used on simple linear separation problems, but it was
discovered that by linking several perceptrons together, mimicking a biological brain,
more complex problems could also be solved. These structure, called multilayer
perceptrons (MLP), are organized in layers where the outputs of perceptrons on a
layer are used as inputs by perceptrons is the next layer (c.f. Figure 7.2). The
perceptrons, when in this form, are often called neurons, and the MLP a neural
network (NN). These neural networks are organized in layers, with an input and
output layer on either end, and hidden layers in the middle. With the large number
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Figure 7.1.: Computational graph of a perceptron.
Here, 𝑛 inputs {𝑥1, … , 𝑥𝑛} are passed into the perceptron where they are summed,
weighted by 𝑤1, … , 𝑤𝑛. This sum is then fed through the perceptron’s activation
function 𝑓 (here a binary step function) which gives the output 𝑦 of the perceptron.
Often the sum is implicitely considered part of the activation function, and will be
represented as a single node in computational graphs.

of weights to tune, these models were very difficult to train and therefore not very
practically useful.

There was a great resurgence of these models in the nineties due to the invention
of backpropagation.676 By replacing the step functions of neurons with continuous,
differentiable activation functions like sigmoids or hyperbolic tangents, a gradient
of the output could be computed w.r.t each weight. This made gradient descent
procedures possible for automatically learning the optimal weights from data as
(c.f. Section 4.1.1). With this method, neural networks could be efficiently trained
on complex classification and regression problems.677 It was also proven that with
hidden layers, neural networks are universal function approximators,678–680 suitable
for all types of tasks. One notable caveat for neural networks is, due to the large
amount of weights to tune, that they require large amounts of training data, which
also explains their low usage before the internet and accompanying data explosion.

In the following years, NNs saw an large increase in usage, with more complex
architectures like convolutional neural networks (CNN) achieving state of the art
results in computer vision tasks.681,682 By representing an input variable as a linear
combination of its neighbors, some form of contextual information can be passed to
the NN and improve performance. CNNs can also have good results in non computer-
vision tasks like: drug resistance prediction,331 protein subcellular localization,352 or
epidemiological model parameter estimation.683

More recently, as computational power and the amount of training data grew,
larger and deeper (i.e. more hidden layers) architectures were able to be trained
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Figure 7.2.: Computational graph of a multilayer perceptron.
This MLP, also called feedforward neural network, has 𝑛 inputs {𝑥1, … , 𝑥𝑛} repre-
sented as the input layer, 2 hidden layers of 3 neurons each and an output layer of
2 neurons (e.g. suitable for binary classification). It is fully connected meaning that
each node of a given layer is used as input for every neuron of the following layer.
Each edge in this graph corresponds to a weight which are the tunable parameters
during the training process.
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and achieved state of the art performance in many fields: image recognition with
deep CNNs like Alexnet684 or Resnet,685 translation with Recurrent NNs686 and
Transformers687 (more on that in Section 7.1.2) or protein structure prediction with
Alphafold2.137

7.1.2. Learned sequence embeddings

An area that in which deep learning has recently proved particularly useful, is the
creation of relevant learned embeddings. These embeddings, similarly to the en-
codings discussed in Section 4.3, transform a sequence of categorical tokens in a
numerical vector which can then be used in machine learning tasks. By learning
these embeddings, the hope is that the resulting vector will retain the most impor-
tant information in the sequence and some contextual information.

7.1.2.1. 𝑥-2vec

Learned embeddings were mainly developed in the field of natural language process-
ing (NLP), where machine learning algorithms use text, in languages such as En-
glish or French, as input. In this contexts, simple encodings like OHE are not very
practical because of the very high dimensionality of a language. For example, the
Merriam-Webster English dictionary contains 470,000 words688 so to encode a single
word with OHE would result in a 470,000-dimensional sparse vector. Encoding a
whole text or even a single sentence is wildly unpractical. Therefore, as a field, NLP
needed to come up with ways of efficiently representing words in lower-dimensional
vectors than naive encoding methods, while retaining semantic meaning.

One of the early methods for creating such embeddings is called word2vec,689,690
proposed by researchers at Google, that learns a word-embedding on a particular
text corpus. This method is designed to make embeddings that contain semantically
relevant information. An example given in the article is that the vector correspond-
ing to 𝑣𝑒𝑐(𝑀𝑎𝑑𝑟𝑖𝑑)−𝑣𝑒𝑐(𝑆𝑝𝑎𝑖𝑛)+𝑣𝑒𝑐(𝐹𝑟𝑎𝑛𝑐𝑒) should be very similar to the vector
𝑣𝑒𝑐(𝑃 𝑎𝑟𝑖𝑠), and that similar words should result in similar vectors.

The way this method works is by considering a word within its context, i.e. a window
of length 𝑘 centered around the word. In a corpus of words (i.e. our training data),
each word is encoded as a One Hot Vector, which is possible since the corpus contains
only a subset of the words in the English language. A neural network is then trained
on one of two tasks:691

• Continuous bag of words: where the word is predicted given the context of the
word as input

• Skip-gram: where the context is predicted given the encoded word vector
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After having sufficiently trained the neural network on the corpus on one of these
tasks, one of the hidden layers of the network can be extracted and used as a vector
representation of the input word, this results in an embedding method that is specific
to a given corpus and the embedded vectors can be used in downstream learning
tasks.

word2vec was very successful and widely used in the field of NLP, it is perhaps no
surprise that the ideas behind it were adapted and reused in the field of bioinfor-
matics. dna2vec692 uses similar ideas and was used to embed 𝑘-mers, and predict
methylation sites on DNA sequences.693 Similar embedding methods like seq2vec694
as well as bioVec (including the protein specific protVec)695 were also developed
to embed whole biological sequences. They were successfully used in biological se-
quence classification problems.696

7.1.2.2. The attention revolution

While word2vec was widely used for many NLP tasks where word embeddings were
needed, a lot of interesting developments on word embeddings were made in the field
of automated machine translation. In this application, the desired embedding char-
acteristics are slightly different. While semantic relevance is useful, in machine trans-
lation the embedding method needs to be able to capture dependencies, e.g. within
a sentence where the link between the subject and the verb must be captured even
though they are not necessarily next to each other. This was initially done by using
recurrent neural networks, called RNNs or LSTMs, but they were hard to train and
had trouble properly capturing long-range dependencies.697

One of the most successful methods developed for this task is the transformer,687
also created by Google researchers. The main mechanisms of the transformer is the
self-attention mechanisms: each input token, usually encoded as a One-Hot vector,
is represented as a weighted sum of all the other tokens in a sequence (here a token
is a word and the sequence is a sentence). The weights of this sum are trained along
with the rest of this network. By stacking several of these self-attention blocks,
transformers can learn to represent and leverage long-range dependencies. These
transformers are made of an encoder module that learns the token embedding, and
a decoder module that makes predictions when fed embedded tokens sequentially.
This mechanism, attention, and the transformer in general have had very success-
ful applications in machine translation, while being easier to train than recurrent
networks.698

This architecture was used to create very large pre-trained language models, that is
to say models that perform word embedding. These models like BERT699 or GPT-3700
are huge, with millions or even billions of learned weights, and have been trained on
huge quantities of data in order to produce word embeddings useful in a wide range
of contexts. BERT was trained using Masked Language Modelling (MLM), where
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some percentage of the tokens (words) in an input sequence (sentence) are replaced
by a special [MASK] token, and the model is trained to predict the whole sentence,
effectively guessing what words are missing based on the context of the whole se-
quence. This process allows the model to learn relevant dependencies between tokens
in the training data.

As was the case with word2vec, these methods have been adapted to bioinformatics
tasks with state of the art results, proving the versatility of the transformer model.
Several protein language models similar to BERT were trained on various training
sets of protein data like ProGen,701 ProGen2702 and ProtBERT.373 These large protein
language models have been studied and interesting properties have been observed.703
Some specific characteristics of proteins can be inferred from these models without
specifying them in the training step. For example, protein language models seem to
learn some information about the protein structure and attention maps can be used
to infer residue contact maps.704–706 Similarly these models capture some information
about protein function,707 mutational effects,708 evolutionary characteristics709 and
can even be used to generate new protein with desired properties.701 Some large
language models have also been trained on DNA sequences like DNABert710 and also
seem to capture some information without explicit specification during training, like
variant effects.711

While, these protein language models have shown very useful for embedding single
sequences, some developments have been made to embed multiple sequence align-
ments as learning inputs. In some cases this is done by including information on
the alignment in the tokens and then using a regular language model to embed
them.712 In the case of the MSA transformer,713 the attention mechanism was ex-
tended to include a weighted sum between aligned sequences effectively taking the
alignment into account when embedding sequences. An attention-like mechanism
was also used to train a protein structure prediction model directly on MSAs.714
Similarly, by pre-training language models on profiles derived from MSAs, some
information about the alignment can be included in the resulting embeddings.715 Fi-
nally aligned sequences can be used as inputs in a regular transformer as was done
DeepConsensus,716 a transformer-based polisher to decrease the error rate PacBio
HiFi reads even further. Finally the EvoFormer model included in AlphaFold2,137
which embeds MSAs to predict protein structure, is partly responsible for the leap in
performance between the two generations of the AlphaFold model, and the current
protein structure prediction revolution.717

It is important to note that while these transformer models are very powerful and
useful in practice, their complexity and size makes them very hard to study and
understand what they actually learn. There is work to peek inside this “black
box”, notably by interpreting the learned attention maps718 and decipher biologically
relevant information contained within.
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7.2. Learning sequence alignment

With the success of deep learning methods in learning informative and effective
embeddings from sequences, it is maybe natural to try and see if similar methods
can learn how to align sequences to each other.

7.2.1. Predicting a substitution matrix

One approach is to learn a position-specific scoring matrix (PSSM), which assigns an
alignment cost not between two amino-acids but between two specific residues of the
sequences (i.e. an amino acid/position pair). Therefore, when aligning a sequence
of length 𝑚 and another of length 𝑛, we can use a standard alignment method such
as NW or SW with an 𝑚 × 𝑛 PSSM.

One approach, used in the SAdLSA model719 used CNNs to refine an input PSSM.
The model is trained on experimentally validated structural alignments. A starting
PSSM is created from both sequences with PSI-BLAST,200 and fed through a deep
CNN, which outputs a refined PSSM. This learned matrix is used with a SW algo-
rithm to locally align the two sequences. This alignment is then compared to the
structural alignment to compute a loss and train the model.

Some methods rely on protein language model embeddings coupled with differen-
tiable alignment algorithms to learn a PSSM in an end-to-end fashion. DeepBLAST
is one such model.720 It was trained on 1.5 million structural alignments obtained
from the PDB database.721 The sequences are embedded using a pre-trained LSTM-
based protein language model. These embeddings are fed through LSTM networks
to predict a match scoring and gap scoring PSSMs. These matrices are then used
in a differentiable variant of the NW algorithm, that can be used to backpropagate
the alignment error through the network and learn relevant parameters. RNNs and
LSTMs were also used to predict PSSMs by Guo et al. albeit with the goal of protein
structure prediction rather than alignment.722

The DEDAL model723 implements similar ideas. It predicts matching, gap-open and
gap-extend PSSMs from a pair of sequences, that can be used in a classical alignment
method, in this case a SW algorithm. In this model, a transformer-based embedding
network is used to embed each residue of both sequences. Then each possible pair
of embedded residues from both sequences is used to predict specific gap-open, gap-
extend and match scores used to build the PSSMs. The DEDAL model is trained on
three tasks at once:

1. Masked language modelling (c.f. Section 7.1.2.2) to train the transformer-
based embedding model on 30 million sequences from the UniRef50
database.724
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2. A homology detection task where the whole model is trained to predict if a
pair of sequences are evolutionarily related or not. This was done on pairs
of sequences extracted from the 1.2 million sequences of the Pfam-A seed
database.725

3. An alignment task, where the whole model is trained to align two sequences
using the authors’ differentiable variant of the SW algorithm to backpropa-
gate the alignment error through the network and tune the parameters. This
training task was also done using aligned sequence pairs from the Pfam-A seed
database.

Trained on the three tasks at once, the DEDAL model predicts PSSMs leading to good
alignments overall. However, where it really shines and outperforms other methods
is on alignments of remote homologs. Classical alignment algorithms can struggle
when the similarity between two sequences dips below a certain threshold, DEDAL
is able to pick up on this remote homology and produce a sensible and accurate
alignment.

The learned alignment module726 also uses a differentiable variant of the SW algo-
rithm to learn a scoring matrix. Sequences are encoded as OHE vectors and fed
embedded with simple convolutions, to predict a “context-specific” scoring matrix.
This module is used to build MSAs where, similarly to the center star alignment, all
target sequences are aligned to a single query sequence. This model was validated by
including it in the Alphafold2 model and seeing the improvement in performance
for certain protein structure prediction tasks.

7.2.2. Predicting an alignment

Predicting a PSSM is one way of learning to align. However, an alignment algorithm
still needs to be used in order to obtain aligned sequences. It might be possible to
directly output an alignment between input sequences. As stated above, transform-
ers have been particularly useful in automated translation, and one could construe
the alignment problem as translating from an unaligned sequence “language” to an
aligned sequence “language”. This is exactly the idea behind BetaAlign, a recently
developed transformer model used for pairwise and multiple sequence alignment.727
For example, the two sequences AAG and ACGG can be represented as a single “sen-
tence”: AAG|ACGG with the | special token denoting a separation between sequences.
Aligned sequences output by the transformer can then be represented as a succession
of aligned pairs: AAAC-GGG corresponding to the following alignment:

AA-G
ACGG

The authors trained this model on millions of simulated alignments, of two to ten
sequences, generated with different underlying evolutionary models, in the same
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fashion that regular transformers are trained for machine translation. The au-
thors trained models for protein and DNA sequence alignment on these simulated
datasets, containing sequences around 40 residues long. According to some mea-
sures, BetaAlign outperforms widely used multiple sequence aligners such as MUSCLE,
CLUSTALW or T-Coffee, especially on nucleotide sequence alignment. This model was
also trained to deal with longer sequences, generating MSAs of 5 sequences between
500 and 1000 residues long. In this setting BetaAlign performs on par with most
widely used aligners.

While BetaAlign is an interesting step in the direction of learned alignment methods,
and a good proof of concept, it seems to be efficient only on a low number of
short sequences. This is mostly due to the attention mechanism at the heart of
transformers.

7.2.3. The attention limitation

While the transformer architecture has revolutionized the field of machine transla-
tion, and proved to be useful in sequence-related bioinformatics tasks, the attention
mechanism at its heart presents some problems. The main problem is that by in-
cluding a weighted sum of all input tokens in the embedding of a specific token,
the time and space complexity of the attention mechanism is quadratic in sequence
length. This is particularly problematic in biological tasks where DNA and protein
sequences can be much longer than a typical sentence, in any spoken language. This
limitation is mentioned in the articles for both the DEDAL and BetaAlign models
described above.

This problem is not inherent to biology and many different approaches to counter
it have been proposed in other fields where transformer usage is prevalent. The
Linformer728 and Nyströmformer729 architectures both present different approxima-
tions of the attention mechanism that scale linearly w.r.t. sequence length both in
time and memory. Others yet have tried to make the attention process produce
sparse matrices, reducing the memory requirements.730,731 Others have tried adjust-
ing the attention span, i.e. the number of tokens taken into account in the attention
mechanism, with an adaptive attention span732 or long-short range attention.733 Fi-
nally, with some change the operations in the attention mechanism, the Reformer
model reduces the memory requirements to a linear complexity by replacing a dot
product operation.734

Some improvements to the attention mechanism have also been tried in a biolog-
ical context. Choromanski et al. propose the Performer model that uses a fast
attention mechanism,735 based on orthogonal random features and trained on an
protein MLM task. With this approach, the attention mechanism scales linearly
with the sequence length rather than quadratically. Another team used factored
attention in their model trained on protein structure prediction.736 They show that
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with this mechanism, fewer parameters need to be tuned, lowering the memory and
time requirements, while retaining structurally relevant information.

7.2.4. Predicting read-mappings

In the read-mapping setting, the methods described above are of limited use. This
is due to some intrinsic characteristics of read-mapping: mainly the size discrepancy
between reads and the reference sequence, as well as the length of the reference
sequence. Some work has been done however on including machine learning methods
into the read-mapping process.

One first approach is to learn data structures, called learned indices, used to store
potential seeds in the seed and extend framework. These learned indices are trained
to replicate the output of a particular data structure. This approach was first
proposed in 2018,737 although it was not implemented then. The BWA-MEME738 read-
mapper uses a learned index that predicts positions in a suffix array. This approach
is also the one used by the Sapling algorithm.739 Learned indices have also been used
to predict a position in an FM-index.740 These learned indices lower the memory cost
and execution time costs by eliminating the need to build the whole data structure
and only storing a reduced amount of information. Furthermore it is well adapted to
read-mapping since it only needs to be trained once on a specific reference sequence
that can be used anytime reads need to be mapped to this reference.

Another approach where machine learning has proven useful is in learning a seed
selection scheme. DeepMinimizer741 is one such method, where neural networks
are trained to select appropriate minimizers from a DNA sequence. This approach
results in minimizers (c.f. Section 2.2.2.1.2) with optimal density, that is to say they
are spread out evenly over the whole sequence lowering the memory and time costs of
building a seed index. Similarly, although not a direct application of read mapping,
deep learning has been used to predict candidate alignment sites in mRNA-miRNA
pairs, a similar task to seed selection.742

Finally, the pre-processing function framework of MSRs presented in Chapter 3
could also be extended with machine learning methods. Learning connections in
the graphs representing MSRs could allow the exploration of the large function
spaces of higher-order MSRs. Alternatively some sequence-to-sequence models like
transformers could also be used to learn a pre-processing function. To learn an
appropriate pre-processing function in an end-to-end fashion, a differentiable read-
mapping algorithm is needed. Differentiable versions of the NW and SW could be
used in read-mappers, but differentiable seeding and seed-selection processes are also
needed.

136



7.3. Conclusion

Deep learning is a powerful framework for sequence-based tasks. The recent trans-
former architecture has shown an unprecedented ability to capture within-sequence
dependencies and learn relevant information. This ability has made them domi-
nant in the NLP field, particularly machine translation. Transformers and large
language models have shown some power in biological sequence processing and se-
quence alignment. However, the attention mechanism that makes these models so
successful has limitations, especially w.r.t. input sequence length. Some approaches
and approximations, have been proposed to lower the time and memory complexity
of the attention mechanism, but these improvements have yet to be implemented in
a sequence alignment task. In the special case of read-mapping, even with improved
attention mechanisms, the size discrepancy between reference and reads, as well as
the often very large scale of the reference sequence, make transformer based embed-
ding approaches impractical. Learned data structures and seeding schemes might
be one of the approaches to improve read alignment.





Global Conclusion

During my PhD I focused on two separate problems both pertaining to biological
sequence data. I focused, on the one hand, on improving long-read mapping perfor-
mance, and on the the other hand, on searching for drug resistance mutations in a
large, annotated, HIV multiple sequence alignment.

Improving read-mapping with MSRs

Homopolymer linked errors are the most common error mode in long-reads for
both ONT and PacBio sequencing technologies. A common way to mitigate the
deleterious effects these errors have on downstream analyses is by using a pre-
processing method on the reads and reference sequence: HPC. We developed a
new pre-processing framework, defining transformation functions called streaming
reduction functions (SSRs). We show that a subset of 58 of these SSRs, that we call
mapping-friendly sequence reductions (MSRs), improve mapping-accuracy on simu-
lated Nanopore long-reads over a whole human genome assembly when compared to
HPC or no pre-processing. This improvement in mapping-accuracy is also seen when
using whole D. melanogaster or E. coli genomes as references, and does not come at
the cost of fewer mapped reads. We also show that these MSRs improve mapping
accuracy over repeated regions of the whole human genome. In very low complex-
ity regions of the genome however, such as centromeres, with short, conserved and
widely repeated motifs, any pre-processing function (MSR or HPC) is harmful, and
keeping the untransformed sequence data is better for the read-mapping task.

In this work, in order to be able to explore the whole SSR function space, we limited
ourselves to what we called order-2 SSRs, which consider all pairs of nucleotides
as inputs during the sequence pre-processing procedure. It could be interesting to
explore higher order SSRs that consider 𝑙-mers of nucleotides as inputs. This however
leads to a much larger function space. To be able to explore it efficiently we need
more biologically informed ways to restrict it, or a way to formulate this exploration
as an optimization problem. This optimization approach might be very useful, but
one of the main obstacles is the design of a suitable objective function on the read-
mapping problem which should, ideally, be differentiable. Differentiable alignment
algorithms exist, however read-mapping methods often use heuristics that can be
a challenge to include in a loss function. The optimization approach could also be
applied to learn MSRs, either by learning connections in the graph representation of

139



MSRs, or by learning a pre-processing function using sequence to sequence models
like transformers. This approach , while exciting, would also require a carefully
designed objective function with differentiability properties.

It would also be interesting to apply these MSRs and see if they generalize to other
long-read related tasks like clustering or assembly. To evaluate the impact MSRs
have on these tasks, some metrics to assess the quality of the produced outputs are
needed. Finally, evaluating these MSRs on real data is needed to get a real-world idea
of their applicability and usefulness, however evaluating the improvements MSRs
might bring to read-mappings without knowing the ground-truth is a challenge.

Searching for resistance mutations in HIV

The global HIV pandemic has been a major public health issue for the last 40
years, claiming more than 30 million victims. Over the years, many anti-retroviral
drugs have been developed, targeting most major proteins that are part of the virus’
replication cycle. These drugs have helped make the illness manageable in many
situations. However, due to HIV’s very high mutation rate, most available drugs
quickly induce corresponding resistance mutations in the viral population. This is
especially true in lower income countries where the diversity of available treatments
is lower than in high-income regions, leading to the emergence of multi-resistant
virus strains. This in turn can have severe repercussions on public health where
resistant strains can be transmitted and spread through the treatment-naive popu-
lation. We used several machine learning methods in order to explore the resistance
landscape of HIV in the UK and Africa, with the goal to find novel drug resistance
mutations. By using a large UK dataset of partial HIV-1 Reverse Transcriptase (RT)
sequences, we trained three machine learning algorithms to discriminate treatment-
naive from treatment-experienced sequences. The classifiers we used, namely naive
Bayes, LASSO-regularized logistic regression and random forest, all have built-in
measure that allow us to examine which variables in the input are important to
classification. By encoding single mutations as single variables we were able to de-
termine which mutations are used by the classifier models to determine if a sequence
was exposed to treatment or not.

In order to find novel resistance mutations we removed all mutations that are known
to be associated to drug resistance from the training data. In this setting classifiers
were statistically significantly better than random, indicating that the models were
picking up on residual resistance-associated signal in the training data. Conversely,
when removing sequences that were known to contain resistance mutations from the
training data, in addition to known resistance-associated features, the classifiers were
no better than random. This indicates that all the residual resistance-associated sig-
nal that we previously found is contained in sequences that already have known drug
resistance mutations. This would indicate that the mutations we identify from our



trained classifiers are accessory in nature and occur only in conjunction with known
drug resistance mutations, and that all the primary mutations directly conferring
resistance have most likely been found, which is reassuring from a public health
perspective.

We identified 6 novel resistance-associated mutations of RT: L228R, L228H, E203K,
I135L, H208Y and D218E. We examined the spatial position of these mutations on
a structural model of HIV-1 RT, and observed that they were either close to the
active site or the allosteric regulation site targeted by RT inhibitors. Furthermore,
we used a simple classifier built from mutations found to be significantly associated
with treatment using Fisher tests and correcting for multiple-testing. This simple
procedure yielded results with an accuracy on par with the more complex models we
also trained. We interpreted this fact to mean that complex epistatic phenomena,
where a group of mutations have a bigger effect on resistance than the sum of
individual effects, are not at play here.

In order to be sure that the mutations we identified do have some role in drug resis-
tance, they should be experimentally studied. This experimental confirmation can
be conducted in vivo or in vitro to study their mechanism and action w.r.t. to asso-
ciated drugs. In order to try and confirm these results, or identify more mutations it
would also be interesting to conduct this machine learning procedure with a larger
dataset and more sensitive methods like deep learning, although some care should
be taken when extracting important features from these complex models. Replicat-
ing this procedure with more metadata, like viral load, or in restricted groups, like
cohorts of patients that have received a specific treatment, could also bring insight
in how some of the mutations are related to treatment. Finding sufficiently large
datasets filling these conditions might be a challenge. Finally, this approach could
also be applied to other viral species, like the Hepatitis C virus, where sequence data
is abundant and public health benefits evident.

Final words

In conclusion, I hope by this point you will agree with me that sequence and se-
quence alignment data is fundamental and one of the most useful data types in
bioinformatics analyses. As such, any method to improve the sequence quality, the
alignment process or the interpretation of alignments is important. Improving these
aspects can help researchers down the line gain more insight, and a more accurate
representation, of crucial biological processes. This is especially important with the
advent of the “age of pandemics” and tracking by sequencing where very large quan-
tities of sequence data will have to be analyzed quickly and with accuracy, all with
high stakes. I hope that, with this work, I have contributed, at least a little, to this
field and to the advancement of knowledge.





A. Supporting Information for
“Mapping-Friendly Sequence
Reductions: Going Beyond
Homopolymer Compression”

A.1. “TandemTools” dataset generation

This dataset was obtained by taking a human X chromosome HOR sequence, con-
catenating it 500 times with added mutations in order to obtain an approximately
1 Mbp long sequence. Then 1200 reads were simulated from the sequence using
nanosim318 and assembled using a centromere-tailored pipeline.743 A 10kbp deletion
was then added to this assembly. The resulting sequence is the one we refer to as
the “Centromeric sequence”.
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A.2. MSR performance comparison

Table A.1.: Comparing performance of MSRs on the whole human
genome, whole Drosophila melanogaster genome, repeated regions of the
whole human genome and synthetic centromeric sequence.
Results using minimap2119 and winnowmap2.120 The number of simulated reads for
each reference sequence is given in parentheses and called 𝑛. Results are reported
for mapq thresholds of 60, 50 and 0. The best performance for each category is
highlighted in bold. The percentage difference are computed w.r.t HPC at each
given threshold.

mapq=60 mapq≥ 50 any mapq
mapping friendly sequence reduction fraction error fraction error fraction error

Whole Drosophila melanogaster genome - minimap2 (n = 25 764)
HPC 0.957 +0% 2.27e-03 + 0% 0.963 +0% 2.34e-03 + 0% 0.998 +0% 1.48e-02 + 0%
raw 0.958 +0% 2.27e-03 − 0% 0.962 −0% 2.34e-03 + 0% 0.997 −0% 1.17e-02 −21%
MSRF 0.952 −1% 1.18e-03 − 48% 0.960 −0% 1.37e-03 − 41% 0.998 +0% 1.36e-02 − 8%
MSRE 0.946 −1% 0 −100% 0.954 −1% 0 −100% 0.998 +0% 1.53e-02 + 3%
MSRP 0.950 −1% 4.90e-04 − 78% 0.957 −1% 8.11e-04 − 65% 0.998 −0% 1.39e-02 − 6%

Whole Drosophila melanogaster genome - winnowmap2 (n = 25 764)
HPC 0.923 +0% 1.51e-03 + 0% 0.930 +0% 1.59e-03 + 0% 0.989 +0% 1.50e-02 + 0%
raw 0.949 +3% 1.92e-03 +27% 0.954 +3% 1.99e-03 +26% 0.995 +1% 1.33e-02 −12%
MSRF 0.918 −1% 1.27e-03 −16% 0.925 −0% 1.30e-03 −18% 0.987 −0% 1.37e-02 − 9%
MSRP 0.905 −2% 1.33e-03 −12% 0.912 −2% 1.53e-03 −3% 0.983 −1% 1.40e-02 − 7%
MSRE 0.905 −2% 1.42e-03 − 6% 0.912 −2% 1.49e-03 − 6% 0.983 −1% 1.44e-02 − 4%

Synthetic centromeric sequence - minimap2 (n = 12 673)
HPC 0.870 +0% 1.36e-03 + 0% 0.964 +0% 1.56e-03 + 0% 1.000 +0% 9.00e-03 + 0%
raw 0.936 +8% 1.86e-03 + 36% 0.984 +2% 2.09e-03 + 34% 1.000 +0% 4.50e-03 −50%
MSRE 0.885 +2% 3.39e-03 +149% 0.962 −0% 3.53e-03 +127% 1.000 +0% 1.20e-02 +33%
MSRF 0.850 −2% 2.04e-03 + 50% 0.968 +0% 2.12e-03 + 36% 1.000 +0% 6.63e-03 −26%
MSRP 0.898 +3% 1.58e-03 + 16% 0.968 +0% 1.79e-03 + 15% 1.000 +0% 9.78e-03 + 9%

Synthetic centromeric sequence - winnowmap2 (n = 12 673)
HPC 0.775 + 0% 1.32e-03 + 0% 0.822 +0% 1.82e-03 + 0% 0.997 +0% 8.37e-02 + 0%
raw 0.850 +10% 2.04e-03 +54% 0.890 +8% 1.95e-03 + 7% 0.999 +0% 4.60e-02 −45%
MSRE 0.795 + 2% 2.28e-03 +73% 0.846 +3% 2.52e-03 +38% 0.997 −0% 6.96e-02 −17%
MSRF 0.820 + 6% 1.83e-03 +38% 0.867 +6% 2.27e-03 +25% 0.997 −0% 5.97e-02 −29%
MSRP 0.780 + 1% 1.62e-03 +22% 0.829 +1% 2.09e-03 +15% 0.997 −0% 8.65e-02 + 3%

Whole human genome - minimap2 (n = 655 594)
HPC 0.935 +0% 1.85e-03 + 0% 0.942 +0% 1.85e-03 + 0% 1.000 +0% 1.46e-02 + 0%
raw 0.921 −1% 1.86e-03 + 0% 0.927 −2% 1.86e-03 + 1% 0.998 −0% 1.29e-02 −11%
MSRE 0.926 −1% 6.92e-05 −96% 0.936 −1% 1.17e-04 −94% 0.999 −0% 1.76e-02 +20%
MSRP 0.929 −1% 2.20e-04 −88% 0.938 −0% 4.15e-04 −78% 0.999 −0% 1.55e-02 + 6%
MSRF 0.930 −1% 1.09e-03 −41% 0.938 −0% 1.29e-03 −30% 1.000 −0% 1.51e-02 + 4%

Whole human genome - winnowmap2 (n = 655 594)
HPC 0.894 + 0% 1.43e-03 + 0% 0.902 +0% 1.49e-03 + 0% 0.988 +0% 1.92e-02 + 0%
raw 0.932 + 4% 1.75e-03 +23% 0.937 +4% 1.79e-03 +20% 0.994 +1% 1.43e-02 −26%
MSRF 0.874 − 2% 2.81e-04 −80% 0.886 −2% 3.82e-04 −74% 0.984 −0% 1.94e-02 + 1%
MSRE 0.795 −11% 6.33e-05 −96% 0.820 −9% 8.93e-05 −94% 0.971 −2% 2.08e-02 + 9%
MSRP 0.826 − 8% 8.68e-05 −94% 0.845 −6% 1.14e-04 −92% 0.975 −1% 2.11e-02 +10%

Whole Human genome (repeated regions) - minimap2 (n = 68 811)
HPC 0.619 + 0% 3.29e-04 + 0% 0.656 + 0% 3.10e-04 + 0% 0.998 +0% 7.79e-02 + 0%
raw 0.514 -17% 1.98e-04 -40% 0.539 -18% 2.16e-04 -30% 0.981 -2% 6.69e-02 -14%
MSRF 0.601 - 3% 2.18e-04 -34% 0.640 - 2% 2.27e-04 -27% 0.998 -0% 8.15e-02 + 5%
MSRE 0.618 - 0% 1.41e-04 -57% 0.658 + 0% 1.55e-04 -50% 0.997 -0% 8.23e-02 + 6%
MSRP 0.616 - 1% 1.18e-04 -64% 0.656 + 0% 1.99e-04 -36% 0.997 -0% 8.31e-02 + 7%

Whole Human genome (repeated regions) - winnowmap2 (n = 68 811)
HPC 0.525 + 0% 1.24e-03 + 0% 0.557 + 0% 1.49e-03 + 0% 0.950 +0% 1.19e-01 + 0%
raw 0.648 +23% 1.26e-03 + 1% 0.672 +21% 1.49e-03 + 0% 0.968 +2% 8.09e-02 -32%
MSRF 0.482 - 8% 1.63e-03 +31% 0.516 - 7% 1.83e-03 +23% 0.940 -1% 1.21e-01 + 2%
MSRE 0.366 -30% 6.35e-04 -49% 0.405 -27% 9.32e-04 -37% 0.911 -4% 1.38e-01 +17%
MSRP 0.415 -21% 9.45e-04 -24% 0.451 -19% 1.16e-03 -22% 0.920 -3% 1.39e-01 +17%



A.3. Analyzing read origin on whole human genome
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Figure A.1.: Origin of correctly and incorrectly mapped raw reads.
Distribution of the origin of correctly and incorrectly mapped simulated reads (in
teal and red respectively) on the different chromosomes of the whole human genome.
The dark grey rectangle for each chromosome represents the centromere of that
chromosome. The lighter gray rectangle on chromosomes 13, 14, 15, 21 and 22
correspond to satellites denoted as “stalk”, another repetitive region.
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Figure A.2.: Origin of correctly (teal) and incorrectly (red) mapped reads,
transformed with HPC.
Distribution of the origin of correctly and incorrectly mapped simulated reads (in
teal and red respectively) on the different chromosomes of the whole human genome.
The dark grey rectangle for each chromosome represents the centromere of that
chromosome. The lighter gray rectangle on chromosomes 13, 14, 15, 21 and 22
correspond to satellites denoted as “stalk”, another repetitive region.
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Figure A.3.: Origin of correctly (teal) and incorrectly (red) mapped reads,
transformed with MSRE.
Distribution of the origin of correctly and incorrectly mapped simulated reads (in
teal and red respectively) on the different chromosomes of the whole human genome.
The dark grey rectangle for each chromosome represents the centromere of that
chromosome. The lighter gray rectangle on chromosomes 13, 14, 15, 21 and 22
correspond to satellites denoted as “stalk”, another repetitive region.



21 22 X

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

original starting position of simulated read

de
ns

ity
 o

f r
ea

ds

Figure A.4.: Origin of correctly (teal) and incorrectly (red) mapped reads,
transformed with MSRP.
Distribution of the origin of correctly and incorrectly mapped simulated reads (in
teal and red respectively) on the different chromosomes of the whole human genome.
The dark grey rectangle for each chromosome represents the centromere of that
chromosome. The lighter gray rectangle on chromosomes 13, 14, 15, 21 and 22
correspond to satellites denoted as “stalk”, another repetitive region.
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Figure A.5.: Origin of correctly (teal) and incorrectly (red) mapped reads,
transformed with MSRF.
Distribution of the origin of correctly and incorrectly mapped simulated reads (in
teal and red respectively) on the different chromosomes of the whole human genome.
The dark grey rectangle for each chromosome represents the centromere of that
chromosome. The lighter gray rectangle on chromosomes 13, 14, 15, 21 and 22
correspond to satellites denoted as “stalk”, another repetitive region.



A.4. Performance of MSRs on the Drosophila genome

A) Whole Drosophila genome B) Whole E. coli genome
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Figure A.6.: Results of the paftools mapeval evaluation on reads simu-
lated and mapped to whole Drosophila melanogaster and Escherichia
coli (Genbank ID U00096.2) genomes.
MSRs E, F and P are shown in different shades of blue to differentiate them from
other MSRs. Reads were simulated with nanosim, and mapped with minimap2.

https://www.ncbi.nlm.nih.gov/nuccore/U00096.2


A.5. Key resource table

REAGENT or RE-
SOURCE

SOURCE IDENTIFIER

Deposited Data
T2T CHM13 v1.1, whole
human genome assembly

(Nurk et al., 2022) Genbank accession number
GCA_009914755.3

Release 6 plus ISO1
MT, whole drosophila
melanogaster genome as-
sembly

(Adams et al.,
2000)

Genbank accession number
GCA_000001215.4

Synthetic centrormeric se-
quence

(Mikheenko et al.,
2020)

https://github.com/ablab/TandemTools
/blob/master/test_data/simulated_del
.fasta

Escherichia coli str. K-12
substr. MG1655, complete
genome

(Blattner et al.,
1997)

Genbank accession number U00096.2

Coordinates of repeated re-
gions of the CHM13 whole
genome assembly

Telomere to
Telomere consor-
tium

https://t2t.gi.ucsc.edu/chm13/hub/t2
t-chm13-v1.1/rmsk/rmsk.bigBed

Software and Algorithms
minimap2 v2.22-r1101 (Li, 2018) https://github.com/lh3/minimap2
Winnowmap v2.0 (Jain et al., 2020) https://github.com/marbl/Winnowmap
NanoSim v3.0.0 (Yang et al., 2017) https://github.com/bcgsc/NanoSim
Bedtools v2.30.0 (Quinlan et al.,

2010)
https://github.com/arq5x/bedtools2

Meryl v1.0 (Rhie et al., 2020) https://github.com/marbl/Winnowmap
Analysis pipelines This paper https://doi.org/10.5281/zenodo.68596
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B. Supporting Information for “HIV and
DRMs”

B.1. Detailed list of HIV-1 protein structures used for figure
generation.

The images for HIV-1 structures used in Figure 5.2 were obtained from: https:
//cdn.rcsb.org/pdb101/learn/resources/structural-biology-of-hiv/.
They are licensed under a Creative Commons By 4.0 license which allows reuse and
adaptation for non commercial use.

PDB structure IDs:

• SU and TM: 4nco

• MA: 1hiw

• CA: 3h47

• NC: 1a1t

• RT: 1hys (for Figure 5.2) and 2hmi (for Figure 5.4)

• IN: 1ex4

• PR: 1hpv

• Vpu: 1pi7 and 1vpu

• Vif : 3dcg

• Vpr: 1esx

• Nef : 1avv and 1qa5

• Rev: 1etf

• Tat: 1biv and 1jfw

B.2. List of all antiretroviral drugs
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Name Brand name Abbreviation Class Approval date
zidovudine retrovir ZDV NRTI 1987-03-19
didanosine† videx ddI NRTI 1991-10-09
zalcitabine† hivid ddC NRTI 1992-06-19
stavudine† zerit d4T NRTI 1994-06-24
lamivudine epivir 3TC NRTI 1995-11-17
saquinavir invirase SQV PI 1995-12-06
ritonavir* norvir RTV PI 1996-03-01
indinavir† crixivan IDV PI 1996-03-13
neviparine viramune NVP NNRTI 1996-06-21
nelfinavir† viracept NFV PI 1997-03-14
delavirdine† rescriptor DLV NNRTI 1997-04-04
combivir combivir 3TC+ZDV FDC 1997-09-27
efavirenz sustiva EFV NNRTI 1998-09-17
abacavir ziagen ABC NRTI 1998-12-17
amprenavir† agenerase APV PI 1999-04-15
kaletra kaletra LPV+RTV FDC 2000-09-15
didanosine-ec† videx-ec ddI-EC NRTI 2000-10-31
trizivir trizivir ABC+3TC+ZDV FDC 2000-11-14
tenofovir-df viread TDF NRTI 2001-10-26
enfuvirtide fuzeon T-20 FI 2003-03-13
atazanavir reyataz ATC PI 2003-06-20
emtricitabine emtriva FTC NRTI 2003-07-02
fosamprenavir lexiva FPV PI 2003-10-20
epzicom epzicom ABC+3TC FDC 2004-08-02
truvada truvada FTC+TDF FDC 2004-08-02
tipranavir aptivus TPV PI 2005-06-22
darunavir prezista DRV PI 2006-06-23
atripla atripla EFV+FTC+TDF FDC 2006-07-12
maraviroc selzentry MVC CA 2007-08-06
raltegravir isentress RAL INSTI 2007-10-12
etravirine intelence ETR NNRTI 2008-01-18
neviparine-xr viramune-xr NVP-XR NNRTI 2011-03-25
rilpivirine edurant RPV NNRTI 2011-05-20
complera complera FTC+RPV+TDF FDC 2011-08-10
stribild stribild EVG+COBI+FTC+TDF FDC 2012-08-27
dolutegravir tivicay DTG INSTI 2013-08-12
triumeq triumeq ABC+DTG+3TC FDC 2014-08-22
elvitegravir† vitekta EVG INSTI 2014-09-14
cobicistat tybost COBI PE 2014-09-24
evotaz evotaz ATV+COBI FDC 2015-01-29
prezcobix prezcobix DRV+COBI FDC 2015-01-29



genvoya genvoya EVG+COBI+FTC+TAF FDC 2015-11-05
odefsey odefsey FTC+RPV+TAF FDC 2016-03-01
descovy descovy FTC+TAF FDC 2016-04-04
raltegravir isentress-hd RAL INSTI 2017-05-26
juluca juluca DTG+RPV FDC 2017-11-21
symfi-lo symfi-lo EFV+3TC+TDF FDC 2018-02-05
biktarvy biktarvy BIC+FTC+TAF FDC 2018-02-07
cimduo cimduo 3TC+TDF FDC 2018-02-28
ibalizumab-uiyk trogarzo TNX-355 PAI 2018-03-06
symfi symfi EFV+3TC+TDF FDC 2018-03-22
symtuza symtuza DRV+COBI+FTC+TAF FDC 2018-07-17
delstrigo delstrigo DOR+3TC+TDF FDC 2018-08-30
doravirine pifeltro DOR NNRTI 2018-08-30
temixys temixys 3TC+TDF FDC 2018-11-16
dovato dovato DTG+3TC FDC 2019-04-08
dolutegravir tivicay-pd DTG INSTI 2020-06-12
fostemsavir rukobia FTR AI 2020-07-02
cabenuva cabenuva CAB+RPV FDC 2021-01-22
cabotegravir vocabria CAB INSTI 2021-01-22

Table B.1.: List of all antiretroviral drugs used in HIV therapy.
Zidovudine (ZDV) is also referred to as Azidothymidine (AZT) in litterature, Fixed
Dose combinations (i.e. single pills combining multiple drugs) are referred to by
their commercial name, the composition of these can be seen in the abbreviation.
Drugs were ordered by FDA approval date.
AI: Attachment Inhibitor, CA: CCR5 Antagonist, FDC: Fixed Dose Combination,
FI: Fusion Inhibitor, INSTI: Integrase Inhibitor NNRTI: Non-Nucleoside Reverse
Transcriptase Inhibitor, NRTI: Nucleoside Reverse Transcriptase Inhibitor, PE:
Pharmacokinetic Enhancer, PAI: Post-Attachment Inhibitor, PI: Protease Inhibitor.
AI, CA, FI and PAI can be grouped in a class of Entry inhibitors.
* Although Ritonavir is originally a PI it is now mainly used as a PE to boost the
action of other drugs.
†These drugs are no longer available or recommended in HIV treatment guidelines.
They may still be used in FDC regimens.
Adapted from https://hivinfo.nih.gov/understanding-hiv/infographics/f
da-approval-hiv-medicines and https://hivinfo.nih.gov/understanding-
hiv/fact-sheets/fda-approved-hiv-medicines

https://hivinfo.nih.gov/understanding-hiv/infographics/fda-approval-hiv-medicines
https://hivinfo.nih.gov/understanding-hiv/infographics/fda-approval-hiv-medicines
https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines
https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines




C. Supporting Information for “Using
Machine Learning and Big Data to
Explore the Drug Resistance
Landscape in HIV”

C.1. S1 Appendix (Technical appendix).

C.1.1. Data

C.1.1.1. Data Availability

The policy of the UK HIV Drug Resistance Database is to make DNA sequences avail-
able to any bona fide researcher who submits a scientifically robust proposal, pro-
vided data exchange complies with Information Governance and Data Security Poli-
cies in all the relevant countries. This includes replication of findings from published
studies, although the researcher would be encouraged to work with the main author
of the published paper to understand the nuances of the data. Enquiries should be
addressed to iph.hivrdb@ucl.ac.uk in the first instance. More information on
the UK dataset is also available on the UK CHIC homepage: www.ukchic.org.uk.
Amino acid sequences are made available along with a metadata file.
The West and central African dataset is available as supplementary information
along with a metadata file containing HIV subtype, treatment information and
known RAM presence/absence for each sequence.
Predictions made for each sequence of both datasets, by all of the trained classifiers
are made available as part of the supplementary data as well as synthetic results
from which the figures of the paper were drawn. The importance values for each
mutation and each trained classifier are also made available.
All the data and metadata files made available are hosted in the online repository
linked to this project at the following URL:
github.com/lucblassel/HIV-DRM-machine-learning/tree/main/data
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C.1.1.2. Data Preprocessing

For both the African and UK datasets, the sequences were truncated to keep sites
41 to 235 of the RT protein sequence before encoding. This truncation was needed
to avoid the perturbation to classifier training due to long gappy regions at the
beginning and end of the UK RT alignment caused by shorter sequences. These
positions were determined with the Gblocks software744 with default parameters,
except for the Maximum number of sequences for a flanking position, set to 50,000,
and the Allowed gap positions, which was set to “All”. The encoding was done with
the OneHotEncoder from the category-encoders python module.409

C.1.2. Classifiers

We used classifier implementations from the scikit-learn python library,745
RandomForestClassifier for the random forest classifier, MultinomialNB for
Naïve Bayes and LogisticRegressionCV for logistic regression.
RandomForestClassifier was used with default parameters except:

• "n_jobs"=4
• "n_estimators"=5000

LogisticRegressionCV was used with the following parameters:

• "n_jobs"=4
• "cv"=10
• "Cs"=100
• "penalty"=’l1’
• "multi_class"=’multinomial’
• "solver"=’saga’
• "scoring"=’balanced_accuracy’

MultinomialNB was used with default parameters.

For the Fisher exact tests, we used the implementation from the scipy python li-
brary,746 and corrected p-values for multiple testing with the statsmodels python
library747 using the "Bonferroni" method.

C.1.3. Scoring

To evaluate classifier performance several measures were used. We computed
balanced accuracy instead of classical accuracy, because it can be overly optimistic,
especially when assessing a highly biased classifier on an unbalanced test set.380The
balanced accuracy is computed using the following formula, where 𝑇 𝑃 and 𝑇 𝑁 are
the number of true positives and true negatives respectively, and 𝐹𝑃 and 𝐹𝑁 are



the number of false positives and false negatives respectively:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1
2 ( 𝑇 𝑃

𝑇 𝑃 + 𝐹𝑃 + 𝑇 𝑁
𝑇 𝑁 + 𝐹𝑁 )

We also computed adjusted mutual information (AMI). We chose it over mutual
information (MI) because it has an upper bound of 1 for a perfect classifier
and is not dependent on the size of the test set, allowing us to compare the
performance for differently sized test sets.150 The adjusted mutual information
of variables 𝑈 and 𝑉 is defined by the following formula, where 𝑀𝐼(𝑈, 𝑉 )
is the mutual information between variables 𝑈 and 𝑉 , 𝐻(𝑋) is the entropy of
the variable 𝑋 (= 𝑈 or 𝑉 ) and 𝐸{𝑀𝐼(𝑈, 𝑉 )} is the expected MI, as explained in.748

𝐴𝑀𝐼(𝑈, 𝑉 ) = 𝑀𝐼(𝑈, 𝑉 ) − 𝐸{𝑀𝐼(𝑈, 𝑉 )}
1
2 [𝐻(𝑈) + 𝐻(𝑉 )] − 𝐸{𝑀𝐼(𝑈, 𝑉 )}

MI was used to compute the 𝐺 statistic, which follows the chi-square distribution
under the null hypothesis.749 This was used to compute p-values for each of our
classifiers and assess the significance of their performance. 𝐺 is defined by equation
below, where 𝑁 is the number of samples.

𝐺 = 2 ⋅ 𝑁 ⋅ 𝑀𝐼(𝑈, 𝑉 )

Finally, to check the probabilistic predictive power of the classifiers we also
computed the Brier score which is the mean squared difference between the ground
truth and the predicted probability of being of the positive class for every sequence
in the test set (therefore lower is better for this metric). The Brier score is
defined in equation below, where 𝑝𝑡 is the predicted probability of being of the posi-
tive class for sample 𝑡 and 𝑜𝑡 is the actual class (0 or 1, 1=positive class) of sample 𝑡:

𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 = 1
𝑁

𝑁
∑
𝑡=1

(𝑝𝑡 − 𝑜𝑡)2

We used the following implementations from the scikit-learn python library745 with
default options:

• balanced_accuracy_score
• mutual_info_score
• adjusted_mutual_info_score
• brier_score_loss

We used the relative risk to observe the relationship between one of our new muta-
tions and a binary character 𝑋 such as treatment status or presence/absence of a



known RAM.

𝑅𝑅(𝑛𝑒𝑤, 𝑋) = 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 (𝑛𝑒𝑤 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∣ 𝑋 = 1)
𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 (𝑛𝑒𝑤 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∣ 𝑋 = 0)

= |(𝑛𝑒𝑤 = 1) ∩ (𝑋 = 1)|
|(𝑋 = 1)| ÷ |(𝑛𝑒𝑤 = 1) ∩ (𝑋 = 0)|

|(𝑋 = 0)|



C.2. S1 Fig.

Figure C.1.: Relative risks of the new mutations with regards to known
RAMs on the African dataset.
(i.e. the prevalence of the new mutation in sequences with a given RAM divided by
the prevalence of the new mutation in sequences without the RAM). RRs were only
computed for mutations (new and RAMs) that appeared in at least 30 sequences,
which is why RRs were not computed for H208Y and D218E. 95% confidence in-
tervals, represented by vertical bars, were computed with 1000 bootstrap samples
of the African sequences. Only RRs with a lower CI boundary greater than 2 are
shown. The shape and color of the point represents the type of RAM as defined
by Stanford’s HIVDB. Blue circle: NRTI, orange square: NNRTI, green diamond:
Other. For the RR of L228H with regards to M184V, the upper CI bound is infinite.
The new RAMs have high RR values for known RAMs similar to those obtained on
the UK dataset. We also arrive at similar conclusions, I135L being associated with
NNRTIs, E203K and L228H to NRTI and L228R to both. RR values are shown
from left to right, by order of decreasing values on the lower bound of the 95% CI.



C.3. S2 Fig.

Figure C.2.: Closeup structural view of the entrance of the NNIBP of
HIV-1 RT.
The p66 subunit is colored in dark gray, the p51 subunit in light gray. The NNIBP
is highlighted in yellow. The active site is colored in blue. We can see the physical
proximity of I135 (red) to the entrance of the NNIBP. We can also see how L228
(red) is between 2 AAs of the NNIBP.



C.4. S3 Fig.

Figure C.3.: Closeup structural view of the active site of HIV-1 RT.
The p66 subunit is colored in dark gray, the p51 subunit in light gray. The active
site is highlighted in blue. The NNIBP is colored in yellow. L228, E203 and D218
(red) are also very close on either side of the active site.



C.5. S1 Table.



rank codon distance UK Africa
B62

Dayhoff
category
shift

Change in

count ratio count ratio p-value net
charge polarity hydrophobicity

index
molecular
weightT/N W/W min UK Africa 𝜌(𝑛𝑒𝑤, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 𝜌(𝑛𝑒𝑤, 𝑤𝑖𝑡ℎ 𝑅𝐴𝑀) 𝜌(𝑛𝑒𝑤, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 𝜌(𝑛𝑒𝑤, 𝑤𝑖𝑡ℎ 𝑅𝐴𝑀)

L228R 0 0 1 1.16 1.21 227 (0.4%) 18.1 [12.9;27.3] 115.7 [55.1;507.3] 98 (2.5%) 32.5[15.4;147.1] 42.4 [17.8;∞] 2.0E-30 -2 e → d 1 5.6 -0.93 43.03
E203K 1 1 1 1.31 1.33 256 (0.5%) 11.0 [8.2;15.1] 20.1 [13.7;32.1] 56 (1.4%) 14.1[6.7;71.9] 17.4 [8.2;83.7] 6.4E-14 1 c → d 2 -1 0.68 -0.94
D218E 2 3 1 1 1 168 (0.3%) 13.1 [9.0;19.6] 27.0 [16.3;57.0] 25 (0.6%) ∞ [∞;∞] ∞ [∞;∞] 2.0E-09 2 c → c 0 -0.7 0.01 14.03
L228H 3 4 1 1.12 1.17 287 (0.5%) 6.4 [5.1;8.4] 9.2 [6.9;12.6] 53 (1.3%) 23.1[9.4;∞] 34.1 [12.0;∞] 2.7E-15 -3 e → d 0 5.5 -0.92 23.99
I135L 4 6 1 1.16 1.13 540 (1.0%) 1.8 [1.5;2.1] 2.4 [2.0;2.8] 134(3.4%) 2.6 [1.8;3.8] 2.4 [1.7;3.4] 2.6E-07 2 e → e 0 -0.3 -0.69 0
H208Y 8 9 1 1.10 1.12 205 (0.4%) 8.8 [6.5;12.5] 14.9 [9.9;23.6] 13 (0.3%) ∞ [∞;∞] ∞ [∞;∞] 7.3E-05 2 d → f 0 -4.2 1.27 26.03

Table C.1.: Detailed view of the characteristics of new potential RAMs.
Rank: For each new mutation we computed the aggregate feature importance ranks for the RTI-naive / RTI-experienced and
known RAM present / known RAM absent classification tasks. Codon distance: We computed the minimum number of
nucleotide mutations to go from the wild amino acid codons to those of the mutated amino acid, as well as the average codon
distance between both amino acids, weighted by the prevalence of each wild and mutated codon in the UK and the African
datasets. Count (both UK and Africa): We looked at the number of apparitions of each new potential RAM in the
UK and African datasets and the corresponding prevalence in parentheses. Ratio (both UK and Africa): We computed
the prevalence ratio 𝜌(𝑛𝑒𝑤, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) (e.g. L228R is 18.1 times more prevalent in RTI-experienced sequences compared
to RTI-naive sequences in the UK dataset). We also computed the prevalence ratio 𝜌(𝑛𝑒𝑤, 𝑎𝑛𝑦𝑅𝐴𝑀) (e.g. L228R is 115.7
times more prevalent in sequences that have at least one known RAM than in sequences that have none in the UK dataset).
The 95% confidence intervals shown under each ratio were computed with 1000 bootstrap samples of size 𝑛 = 55, 000 drawn
with replacement from the whole UK dataset (The same procedure was done on the African dataset with size 𝑛 = 3990).
p-values: Fisher exact tests were done on the African dataset to see if each of these new mutations were more prevalent in RTI-
experienced sequences; p-value were corrected with the Bonferroni method for the six simultaneous tests. B62: BLOSUM62
similarity values (e.g. D218E = 2, reflecting that E and D are both negatively charged and highly similar). Dayhoff
category shift: The change in Dayhoff amino acid category is written thusly: “starting category → ending category”. These
categories are as follows: a: Sulfur polymerization. b: Small, c: Acid and amide, d: Basic, e: Hydrophobic and f: aromatic.
Physico-chemical change: Change in physicochemical properties was obtained by subtracting the property value of the
wil-type amino acid from the mutated amino acid. All values were obtained from the AAindex database410



C.6. S2 Appendix. (Fisher exact tests)

Fisher exact tests on pairs of mutations. A detailed explanation of the pro-
cedure followed to test pairs of mutations for association with treatment. Detailed
numerical results are also given.

In order to study epistasis further we conducted conducted Fisher exact tests be-
tween every pair of mutations in the UK dataset (𝑛 = 867, 903) and the treatment
status, corrected the p-values with the Bonferroni method with an overall risk level
𝛼 = 0.05.
Out of these tests, 1, 309 pairs were significantly associated with treatment status.
424 out of 1, 309 these pairs were two known RAMs, 806 of these pairs contained one
known RAM and only 79 tests had pairs involving no known RAM at all. Further-
more out of these 1, 309 significantly associated pairs, 829 contained two mutations
that were significantly associated to treatment when testing mutations one by one.
In 478 pairs, one of the two mutations is associated to treatment on its own, and
the remaining 2 pairs, none of the mutations were significantly associated with treat-
ment on their own.
These 2 pairs were K103R + V179D and T165I + K173Q. The first pair, is a
pair of known RAMs and this interaction is characterized in the HIVDb database
(https://hivdb.stanford.edu/dr-summary/comments/NNRTI/). The second pair
is made up of new mutations, and the corrected p-value is 0.02. In the Standford
HIVDB, T165I has been associated to a reduction in EFV susceptibility.
Out of the 1, 309 pairs significantly associated to treatment, 151 contained at least
one of our 6 new potential RAMs, in 6 cases the pair was made up of 2 of them.
In the UK dataset, phylogenetic correlation is likely very impactful with regards to
these tests. Indeed, the sequences are far from being independent. In order to alle-
viate this effect we decided to test the sigficative pairs again on the African dataset,
and once more correct with the Bonferroni procedure.
Out of the 1, 309 tests 294 have significative p-values after correction. Out of these
221 pairs were composed of 2 mutations individually significatively associated with
treatment. The remaining 73 pairs had one mutation significantly associated with
treatment.
Out of the 221 significative tests, 156 pairs were composed of 2 known RAMS while
135 had one known RAM in the pair. The remaining 3 pairs that do not contain
a known RAM all contained either L228R or L228H which are both part of our 6
potential RAMS.

C.7. S1 Data.

Archive of figure generating data. A zip archive containing the processed data
used to generate each panel of the main figures.

https://hivdb.stanford.edu/dr-summary/comments/NNRTI/


https://doi.org/10.1371/journal.pcbi.1008873.s007 (ZIP)

C.8. S2 Data.

List of known DRMs. A .csv file containing all the known RAMs used
in this project as well as the corresponding feature name in the encoded
datasets. Obtained from (hivdb.stanford.edu/dr-summary/comments/NRTI/) and
(hivdb.stanford.edu/dr-summary/comments/NNRTI/).

https://doi.org/10.1371/journal.pcbi.1008873.s008 (CSV)

https://doi.org/10.1371/journal.pcbi.1008873.s007
https://hivdb.stanford.edu/dr-summary/comments/NRTI/
https://hivdb.stanford.edu/dr-summary/comments/NNRTI/
https://doi.org/10.1371/journal.pcbi.1008873.s008
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Abstract
From sequences to knowledge, improving and learning from sequence alignments.

In this thesis we study two important problems in computational biology, one pertaining to primary analysis of
sequencing data, and the second pertaining to secondary analysis of sequences to obtain biological insights using
machine-learning. Sequence alignment is one of the most powerful and important tools in the field of computational
biology. Read alignment is often the first step in many analyses like structural variant detection, genome assembly
or variant calling. Long read sequencing technologies have improved the quality of results across all these analyses.
They remain, however, plagued by sequencing errors and pose algorithmic challenges to alignment. A prevalent
technique to reduce the detrimental effects of these errors is homopolymer compression, which targets the most
common type of long-read sequencing error. We present a more general framework than homopolymer compression,
which we call mapping-friendly sequence reductions (MSR). We then show that some of these MSRs improve the
accuracy of read alignments across whole human, drosophila and E. coli genomes. Improvements in sequence align-
ment methods are crucial for downstream analyses. For instance, multiple sequence alignments are indispensable
when studying resistance in viruses. With the ever growing quantity of annotated, high-quality multiple sequence
alignments it has become possible and useful to study drug resistance in viruses with machine learning methods.
We used a very large multiple sequence alignment of British HIV sequences to train multiple classifiers to discrim-
inate between treatment-naive and treatment-experienced sequences. By studying important classifier features we
identified resistance-associated mutations. We then removed known drug resistance associated signal from the data
before training, keeping classifying power, and identified 6 novel resistance associated mutations. Further study
indicated that these were most likely accessory in nature and linked to known resistance mutations.

Keywords: Alignment, Genomics, Machine Learning, Biological sequences

Résumé

Des séquences au savoir, améliorer et apprendre des alignements de séquences.

Dans cette thèse nous étudierons deux problèmes importants en bioinformatique, le premier concernant l’analyse
primaire de données de séquencage, et le second concernant l’analyse secondaire de séquence par apprentissage
automatique en vue d’obtenir des connaissances biologiques. L’alignement de séquences est l’un des outils les
plus puissants et les plus importants dans le domaine de la biologie computationnelle. L’alignement de lectures
de séquencage est souvent la première étape de nombreuses analyses telles que la détection de variations de struc-
ture, ou l’assemblage de génomes. Les technologies de séquençage à longue lectures ont amélioré la qualité des
résultats pour toutes ces analyses. Elles sont, cependant, riches en erreurs de séquençage et posent des prob-
lèms algorithmiques à l’alignement. Une technique répandue pour réduire les effets néfastes de ces erreurs est
la compression d’homopolymères. Cette technique cible le type d’erreur de séquençage à longue lectures le plus
fréquent. Nous présentons une technique plus générale que la compression d’homopolymères, que nous appelons
les ”mapping-friendly sequence reductions” (MSR). Nous montrons ensuite que certaines de ces MSRs améliorent
la précision des alignements de lecture sur des génomes entiers d’humain, de drosophile et d’E. coli. L’amélioration
des méthodes d’alignment de séquences est cruciale pour les analyses en aval. Par exemple, les alignements de
séquences multiples sont indispensables pour étudier la pharmaco-résistance des virus. Grâce à la quantité toujours
croissante d’alignements de séquences multiples annotés et de haute qualité, il est aujourd’hui devenu possible et
utile d’étudier la résistance des virus à l’aide de méthodes d’apprentissage automatique. Nous avons utilisé un très
grand alignement de séquences multiples de séquences de VIH britanniques et entraîné plusieurs classificateurs pour
distinguer les séquences non-traitées des séquences traitées. En étudiant les variables importantes aux classifica-
teurs, nous identifions des mutations associées à la résistance. Nous avons ensuite supprimé des données, avant
l’entraînement, le signal de pharmaco-résistance connu. Nous conservons le pouvoir discriminant des classificateurs,
et avons identifié 6 nouvelles mutations associées à la résistance. Une étude plus approfondie a montré que celles-ci
étaient très probablement accessoires et liées à des mutations de résistance connues.

Mots clés: Alignement, Génomique, Machine Learning, Séquence biologiques
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