
HAL Id: tel-04042245
https://theses.hal.science/tel-04042245

Submitted on 23 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable algorithms for graph-based semi-supervised
learning with embedding

Mikhail Kamalov

To cite this version:
Mikhail Kamalov. Scalable algorithms for graph-based semi-supervised learning with embedding.
Artificial Intelligence [cs.AI]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4079�. �tel-
04042245�

https://theses.hal.science/tel-04042245
https://hal.archives-ouvertes.fr

Mise a l’échelle des algorithmes pour

l’apprentissage semi-supervisé basé sur des

graphes avec le plongement

Mikhail Kamalov

Inria Sophia Antipolis - Méditerranée

Présentée en vue de l’obtention

du grade de docteur en Informatique

d’Université Côte d’Azur

Dirigée par : Konstantin Avrachenkov

Soutenue le : 1 Décembre 2022

Devant le jury, composé de :

Marianne Clausel, Université de Lorraine, Rapporteur

Khalid Benabdeslem, Université Claude Bernard Lyon 1, Rapporteur

Auréelie Boisbunon, Ericsson, Examinateur

Paulo Gonçalves, Inria Rhone-Alpes, Examinateur

Christophe Crespelle, I3S, Université Côte d’Azur, Examinateur

Jonathan Daeden, MyDataModels, Invité

Konstantin Avrachenkov, Inria Sophia-Antipolis, Directeur de thèse

Scalable algorithms for graph-based

semi-supervised learning with embedding

Jury:

President

Christophe Crespelle Professor I3S, Université Côte d’Azur

Reviewers

Marianne Clausel Professeur Université de Lorraine

Khalid Benabdeslem Associate Professeur Université Claude Bernard Lyon 1

Examiners

Aurélie Boisbunon Docteure Ericsson

Paulo Gonçalves Directeur de Recherche Inria Rhone-Alpes

Christophe Crespelle Professeur I3S, Université Côte d’Azur

Invited

Jonathan Daeden Docteur MyDataModels company

Director

Konstantin Avrachenkov Directeur de Recherche Inria Sophia-Antipolis

Résumé. De nos jours, l’apprentissage semi-supervisé basé sur les graphes (GB-SSL)

est un domaine en plein essor pour classer les nœuds d’un graphe avec un nombre

extrêmement faible de nœuds labélisés. Cependant, les algorithmes GB-SSL ont deux

limites générales : la première est la complexité mémoire/temps qui se présente dans

tous les algorithmes GB-SSL de pointe sur de larges graphes. En particulier, la forte

consommation de mémoire se produit dans les réseaux de convolution de graphes et conduit

à des problèmes d’OOM (Out of Memory) sur GPU ou RAM; la seconde apparâıt dans tous

les algorithmes GB-SSL basés sur la perte de régularisation Laplacienne. La contribution

majeure de cette thèse est divisée en deux parties afin de proposer des stratégies qui

garantiraient d’éviter les restrictions mentionnées ci-dessus. Dans la première partie de

cette thèse, nous proposons un nouvel algorithme linéaire appelé Markov-Batch Stochastic

Approximation (MBSA) pour résoudre le PageRank Personnalisé. MBSA met à jour

des lots de nœuds et propose un compromis significativement meilleur que les autres

modèles linéaires entre la consommation de mémoire et le taux de convergence pour

un résultat de classification optimal. Ensuite, nous proposons un nouveau réseau de

convolution de graphes à échelle, appelé MBSA-NN, qui intègre notre MBSA linéaire. Le

MBSA-NN évite les problèmes d’OOM et réduit considérablement la consommation de

temps et de mémoire sur GPU et RAM. Nous avons appliqué le MBSA-NN à plusieurs

grands ensembles de données, et nous avons montré qu’il peut traiter des graphes avec

plus de 10M nœuds et 2M de caractéristiques en une minute sur une machine standard,

y compris le temps de prétraitement, d’apprentissage et d’inférence. De plus, nous

montrons qu’il a une consommation mémoire/temps significativement améliorée et une

précision compétitive par rapport aux meilleurs algorithmes de mise à l’échelle GB-SSL

les plus récents. La deuxième partie de cette thèse se concentre sur les solutions aux

problèmes de perte de régularisation du Laplacien. Pour cette raison, nous proposons

un nouveau cadre appelé Graph Diffusion & PCA (GDPCA). Ce cadre combine une

analyse en composantes principales modifiée avec la perte supervisée classique et la perte

de régularisation laplacienne. GDPCA permet de traiter le cas où la matrice d’adjacence

présente des Arêtes binaires et évite la Malédiction de la dimensionnalité. De plus,

GDPCA peut être appliqué à des ensembles de données non graphiques, tels que des

images, en construisant un graphe de similarité. En outre, nous proposons un cadre qui

intègre PageRank SSL dans un modèle génératif (GenPR). GenPR joint l’entrâınement

de la représentation de l’espace latent des nœuds et la propagation des labels à travers

la matrice d’adjacence repondérée par les similarités des nœuds dans l’espace latent.

Nous démontrons qu’un modèle génératif peut améliorer la précision et réduire le nombre

d’étapes d’itération pour PageRank SSL. En outre, nous montrons comment intégrer

i

MBSA dans le cadre de GenPR pour fournir le régime de formation par lots de GenPR.

Enfin, nous proposons un cadre SSL flexible basé sur l’empilement des algorithmes

GDPCA et de Zoetrope Genetic Programming dans un nouveau cadre : PaZoe. Ce cadre

d’auto-labélisation montre que les algorithmes basés sur les graphes et les algorithmes

non basés sur les graphes améliorent conjointement la qualité des prédictions et sont

plus performants que chaque composant pris séparément. Nous montrons également

que PaZoe surpasse les algorithmes SSL de pointe sur des jeux de données réels. Notez

que l’un des ensembles de données a été généré par nos soins, en prenant les données

d’un équipement industriel classé pour imiter les moteurs à courant continu pendant leur

fonctionnement.

Mots clés. Apprentissage Semi-Supervisé, Réseaux de Neurones, Approximation

Stochastique, Personalized PageRank

ii

Abstract. Nowadays, graph-based semi-supervised learning (GB-SSL) is a fast-

growing area of classifying nodes in a graph with an extremely low number of labelled

nodes. However, the GB-SSL algorithms have two general limitations: the first is

the memory/time complexity that arises in all state-of-the-art GB-SSL algorithms on

extremely large graphs. In particular, the high memory consumption occurs in graph

convolution networks and leads to Out of Memory (OOM) issues on GPU or RAM; (ii)

the second one appears in all GB-SSL algorithms based on Laplacian regularization loss.

This thesis’ major contribution is divided into two parts in order to suggest strategies that

would guarantee to avoid the restrictions mentioned above. In the first part of this thesis,

we propose a novel linear algorithm called Markov-Batch Stochastic Approximation

(MBSA) for solving Personalized PageRank. MBSA updates nodes batches and proposes

a significantly better tradeoff between memory consumption and convergence rate for an

optimal classification result than other linear models. Then, we propose a novel scaling

graph convolution network, denoted as MBSA-NN, which embeds our linear MBSA.

MBSA-NN avoids OOM issues and significantly reduces time and memory consumption

on GPU and RAM. We applied MBSA-NN on several very large datasets, and we showed

that it can handle graphs with more than 10M nodes and 2M of features under one

minute on one standard machine, including preprocessing, training and inference time.

Furthermore, we show that it has significantly improved memory/time consumption

and competitive accuracy concerning the latest best GB-SSL scaling algorithms. The

second part of this thesis focuses on solutions to Laplacian regularization loss issues. For

that reason, we propose a novel framework called Graph Diffusion & PCA (GDPCA).

This framework combines a modified Principal Component Analysis with the classical

supervised loss and Laplacian regularization loss. GDPCA allows handling the case

where the adjacency matrix presents through Binary edges and avoids the Curse of

dimensionality. Also, GDPCA can be applied to non-graph datasets, such as images,

by constructing a similarity graph. Furthermore, we propose a framework that embeds

PageRank SSL in a generative model (GenPR). GenPR joint training of nodes latent

space representation and label spreading through the reweighted adjacency matrix by

node similarities in the latent space. We demonstrate that a generative model can improve

accuracy and reduce the number of iteration steps for PageRank SSL. Moreover, we show

how to embed MBSA into the GenPR framework for providing the batch training regime

of GenPR. Finally, we propose a flexible SSL framework based on stacking GDPCA

and Zoetrope Genetic Programming algorithms into a novel framework: PaZoe. This

self-labelling framework shows that graph-based and non-graph based algorithms jointly

improve the quality of predictions and outperform each component taken alone. We also

iv

show that PaZoe outperforms state-of-the-art SSL algorithms on real datasets. Note

that the one of the datasets was generated in house, taking data from industrial graded

equipment to mimic DC motors during operation.

Key words. Semi-Supervised Learning, Neural Networks, Stochastic Approximation,

Personalized PageRank

v

Acknowledgements

I want to start by expressing my gratitude to Konstantin, my adviser, for his kindness

and all of the helpful guidance and knowledge. Also, I want to say great thanks to the

MyDataModels company for supporting my PhD. I am very happy that I had a chance to

work with so many brilliant, kind and smart peoples such as Ingrid, Boris, Magomed from

MyDataModels and, Abhishek, Tarek, Othman, Guilherme, Max, Chuan, Kishor, from

Inria. Also, I want to thank our team assistant Jane for her kind help in many important

matters. Special thanks to Aurélie, Jonathan and Andrei for insightful criticism of my

works and for support with adaptation in France. Also, to Professor Borkar for so fruitful

collaboration during my internship at IIT Bombay.

I am very grateful to the people who supported me despite the distance. I would like

to thank my grandparents, Ludmila, Tatiana, Yurii, my mother Natalia, mother-in-law

Olga, and father-in-law Andrei. Especially thanks to my grandfather Yakov who cared

about me regardless of whatever and continues to care about me even from heaven.

I am also fortunate enough to have friendships that helped me a lot in reviewing my

works, especially Yulia, Sergey, Vladimir Sasha, Tatiana, Ilya and Vladimir. Additional

thanks to the advisor of my master thesis Vladimir Dobrynin for his goodness and all

of the valuable knowledge. Moreover, I am really grateful to my close friends for never

giving up on me, no matter what, specially Rodion, Yurii and Jenya. Thank you all.

Finally and most significantly, I would like to dedicate this thesis to my wife and

son, Alena and Mikhail, my closest people in the world and my staunchest defenders and

supporters. I can never express my gratitude to them enough for all that they have done

and given up for me to be here. This thesis is to them, for them, and because of them.

vii

Contents

Résumé [Français] . i

Abstract . iv

Acknowledgements . vii

Contents . ix

List of Figures . xii

List of Tables . xvii

List of Notations . xx

1 Introduction 1

1.1 General overview of Semi-supervised learning 2

1.2 Overview of GB-SSL algorithms . 3

1.2.1 Classical diffusion-based algorithms 4

1.2.2 Graph convolution networks . 5

1.2.3 Scaling algorithms . 6

1.3 Problems and Goals . 7

1.3.1 Computational and memory critical limitations 8

1.3.2 Specific Laplacian regularization and general non-critical GB-SSL

problems . 13

1.3.3 Goals . 15

1.4 Contributions . 15

1.4.1 Markov-Batch Stochastic Approximation algorithm 16

1.4.2 Graph diffusion & PCA . 17

1.4.3 Generative PageRank . 17

1.4.4 GDPCA and Zoetrope Genetic Programming for detecting imbal-

anced states of engines . 17

2 Related work 19

2.1 Batch algorithms for PPR . 20

2.1.1 Doubly Stochastic Block Gauss-Seidel 20

2.1.2 Randomized Block Gauss-Seidel 20

2.2 Scaling algorithms . 21

ix

Contents

2.2.1 Model simplification . 22

2.2.2 Nodes-neighbours selection . 22

2.3 Classical graph-based & Non-Graph based SSL algorithms 23

2.3.1 Classical diffusion-based algorithm 23

2.3.2 Graph convolution networks . 24

2.3.3 Non-Graph based algorithm . 26

3 Markov-Batch Stochastic Approximation algorithm 29

3.1 Markov-Batch Stochastic Approximation (MBSA) 31

3.1.1 Selection of batches . 32

3.1.2 Node update . 32

3.1.3 Theoretical analysis . 33

3.2 The asynchronous parallel MBSA (pMBSA) 34

3.2.1 Details of parallel implementation on C++ 34

3.3 Ablation studies of MBSA . 35

3.3.1 Impact of γ and ϵ on convergence rate 35

3.3.2 Impact of batch size on convergence rate 37

3.4 Experimental results for MBSA . 38

3.4.1 Convergence analysees . 38

3.4.2 Memory vs Time tradeoff . 39

3.5 MBSA for graph convolution networks . 40

3.5.1 Training step . 41

3.5.2 Theoretical analysis . 41

3.5.3 Implementation details . 42

3.5.4 Inference step . 44

3.5.5 Limitation . 44

3.6 Ablation studies of MBSA-NN . 45

3.6.1 Impact of γ and bs on the accuracy of MBSA-NN 45

3.6.2 Impact of MBSA/pMBSA at inference on the accuracy of MBSA-NN 46

3.7 Experimental results for MBSA-NN . 46

3.7.1 Performance (Accuracy) . 47

3.7.2 Memory vs Time tradeoff . 48

3.8 Uniform MBSA . 50

3.8.1 Node update . 51

3.8.2 Training step . 51

3.9 Experimental results for uMBSA-NN . 52

3.9.1 Accuracy vs Memory/Time tradeoff 52

3.10 Proofs . 54

3.10.1 Theorem 1 . 54

3.10.2 Theorem 2 . 56

x

Contents

3.10.3 Remark 4 . 59

3.11 Experimental details . 59

3.11.1 State-of-the-art (SOTA) algorithms 59

3.11.2 Parameters . 60

3.11.3 Technical environment and links on implementations 61

3.11.4 Dataset description . 62

3.11.5 Implementation details . 63

4 Graph-Diffusion & PCA framework 65

4.1 Graph-diffusion with reorganized PCA loss 67

4.1.1 PCA for binary clustering (PCA-BC) 68

4.1.2 Generalization of PCA-BC for GB-SSL 69

4.1.3 Theoretical analysis . 69

4.2 Graph-Diffusion & PCA (GDPCA) . 72

4.2.1 Scaling of GDPCA by Markov-Batch Stochastic Approximation . . 73

4.3 Ablation studies of GDPCA . 73

4.3.1 Significance of the covariance matrix 73

4.3.2 Generation of synthetic adjacency matrix 74

4.3.3 Hyperparameters selection . 74

4.4 Experimental results for GDPCA . 76

4.4.1 Performance (Accuracy) . 76

4.4.2 Memory vs Time tradeoff . 76

4.5 Proofs . 77

4.5.1 Proposition 1 . 77

4.5.2 Proposition 2 . 79

4.6 Experimental details . 79

4.6.1 State-of-the-art (SOTA) algorithms 79

4.6.2 Parameters . 79

4.6.3 Datasets description . 80

5 Generative PageRank 83

5.1 Generative PageRank (GenPR) . 84

5.1.1 Intuition of GenPR . 84

5.1.2 Objective function of GenPR . 85

5.1.3 Architecture of GenPR . 86

5.1.4 Scaling GenPR by Markov-Batch Stochastic Approximation 88

5.2 Experimental results for GenPR . 89

5.2.1 Performance (Accuracy) & Explainability 89

5.2.2 Memory vs Time tradeoff . 90

5.2.3 Denoising . 91

xi

Contents

5.3 Experimental details . 91

5.3.1 Technical environment & Implementations 91

5.3.2 State-of-the-art (SOTA) algorithms 91

5.3.3 Parameters . 92

6 PaZoe:classifying time series with few labels 97

6.1 PageRank & PCA & Zoetrope Genetic Programming (PaZoe) 98

6.1.1 PageRank & Principal component analysis (PRPCA) 98

6.1.2 Zoetrope Genetic Programming . 99

6.1.3 PaZoe strategy . 100

6.2 Experimental results for PaZoe . 101

6.2.1 DC motor data collection . 102

6.2.2 Data utilization strategy . 105

6.2.3 Performance (Accuracy) & Computational complexity 105

7 Conclusion 109

xii

List of Figures

1.1 Comparison of (a) diffusion-based idea of label spreading through the

graph versus (b) convolution of the graph structure with node features

(boxes denote the features); 1 is an initial step; (a) 2 is a spreading of

label to neighbour nodes, (b) 2 is a hidden dimension representation of

features convoluted with graph structure; (c) 3 is a final prediction. 3

1.2 Computation step of Graph Convolution Network (boxes denote the hidden

representation of the node features): 1 is a current node; 2 Three neighbour

nodes to the current node; 3 Five neighbour nodes to the previous set

of neighbour nodes; 4 The last n neighbour nodes to the previous set of

neighbour nodes. 10

3.1 Comparison of various strategies for nodes updates, where JOR is a

Jacobian over relaxation, RK is a Randomized Kaczmarz [1] and DSA-

SSL [2] is a distributed stochastic approximation. The nodes in the red

circles will be updates. The blue circles mean the nodes which will be used

for updating the nodes in the red circles. 32

3.2 Average accuracy of MBSA for each pair of step size power γ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]

and damping factor ϵ ∈ [0.1, 0.5, 0.9] at each 50 interaction (x-axis). The

blue line shows the classification accuracy of exact solution (3.3). The

black dashed line shows the first time of convergence. Impact of power of

step size γ and damping factor ϵ on convergence to best accuracy. 36

3.3 Average minimum number of iterations min(t) (right y-axis, lines) and

number of edges between batches (mean(P)) (left y-axis, boxes) over 50

random runs of MBSA for each batch size bs (x-axis). 37

3.4 Convergence analysis. 38

xiii

List of Figures

3.5 Average memory consumption (MiB, left y-axis, bars-log) per iteration

and mean minimum iterations (right y-axis, lines-log, min(t)) over 50

random runs for each algorithms (x-axis). 40

3.6 Training step for Reddit: Average number of edges between labelled and

unlabelled nodes in batch (left y-axis, boxes) and Accuracy (%, right

y-axis, lines) over 50 random runs for each batch size (bs, x-axis). 45

3.7 Comparison of scaling algorithm w.r.t. Average GPU Memory (GB, left

y-axis, bars-logs) and Time (sec., right y-axis, lines) for each dataset over

10 runs. Red non-dash/dash lines are one thread/parallel MBSA receptively. 49

4.1 The intuition behind PCA-BC: 1) Transpose X and visualise the nodes with

the maximum and minimum covariance (cov(·)) in between; 2) Normalize

transposed X and find the direction of maximum covariance by PCA. . . 69

4.2 Mean value of U1 (the direction of maximum variance in the PCA) on 100

sets of random synthetic data. 70

4.3 Classification steps of GDPCA based on solution (4.5): a - find the minimal

k components, b - labeling objects by the information from Ui, c - find

the centroids of classes by X̂UT . 71

4.4 Estimate different adjacency matrix for GDPCA. 75

4.5 Hyperparameter selection for GDPCA. 75

4.6 Computational time of 50 completed trainings on CPU. 78

5.1 The I-inductive (a) and T-transductive (b) architectures of GenPR. 88

5.2 Average accuracy of GenPR (I) inductive, GenPR (T) transductive and

APPNP over the t-iteration steps. 92

5.3 Sample nodes from Citeseer data set: a - A before GenPR, where colored

nodes are labeled and grey are unlabeled, straight black edges are citations

between nodes (papers); b - A′ after GenPR, where all colored nodes are

result from F t, and color of an edges by weights from A′ (cyan is a lower

weights, maroon is a higher weights); c - the result of filtering lower weight

edges for the node 545. 93

5.4 Average computational (milliseconds, right axis, lines) and memory (MiB,

left axis, bars) complexity per training iteration in epoch over 100 runs

for each algorithm (legend, header) on each dataset (x-axis). For this

experiment we consider batch GenPR-MBSA (Algorithm 10, b = 512). . . 94

5.5 Sample of MNIST images denoising (the left column are original images,

the right column are images after denoising). 95

xiv

List of Figures

6.1 Illustration of ZGP’s model construction with me = mm = 3. For the sake

of readability, the third fusion, generating (E”2, E”3) from (E′
2, E

′
3) is not

represented. Note that Z3 = E”3 as no element is left for a fusion. 100

6.2 PaZoe sequence: 1) Generation of graph structure; 2) Self-labelling by

PRPCA; 3): 3a) Stack X with PRPCA predictions; 3b) ZGP training; 4)

Final predictions from ZGP. Note, X and units therein, refer to the dc

motor dataset. 101

6.3 Datasets: UWaveGesture (UWave), Gesture WIImote (WII). 102

6.4 STMicroelectronics (STM) acquisition board:Nucleo G431RB ST L6230

with a GBM2804H brushless motor and STM SensorTile. 103

6.5 The five imbalance states vs the balance state of the DC motor. 104

6.6 Computational complexity of PaZoe. 107

xv

List of Tables

3.1 Average Accuracy (%) in one thread (o) vs six threads (p) regimes of

MBSA at inference over 10 repetitions. 46

3.2 Average Accuracy (%) over 5 random train/validation/test splits where ‡
is a notation for OOM and ‡|‡ is a OOM(GPU) | OOM(RAM) respectively. 47

3.3 Average Memory (MB, RAM)/Time(sec.) complexity at preprocess-

ing/training (PR/TR), inference (IN) steps. 50

3.4 Average: Time (sec.), Memory(GB), Accuracy(%) over runs of the al-

gorithms on 50 random train/validation/test splits. The modifications

of PPRGO and uMBSA-NN are: PPRGO‡ has k = 32, and PPRGO∗

has k = 2; uMBSA-NN‡ has τ = 100 at inference, and uMBSA-NN∗ has

τ = 20 at inference. 53

3.5 Optimal MBSA-NN hyper-parameters in terms of Accuracy (Tables 3.23.4). 61

3.6 Optimal MBSA-NN hyper-parameters in terms of memory and computa-

tional complexity (Table 3.3). 61

3.7 Environment of latest SOTA scaling algorithms. 62

3.8 Implementation links. 62

3.9 Datasets statistic (large connected component). 63

4.1 Average accuracy (%), ▲ denotes the statistical significance for p < 0.05. . 74

4.2 Classification accuracy (%) comparison with linear algorithms. 76

4.3 Classification accuracy (%) comparison with neural network algorithms. . 77

4.4 Comparison of computational complexity, where l is the number of layers,

n is the number of nodes, d is the number of features, r is the number

sampled neighbors per node; ϕ is the number of random walks; p is the

walk length; w is the window size; m is a representation size; k is the

number of classes; bs is a batch size; e′ is the number of non-zero elements

in matrix (Dσ−1AD−σ + δSD−2σ+1) and e′bs is a submatrix of matrix e′. . 77

xvii

List of Tables

4.5 Dataset statistic. 82

5.1 Average accuracy (%) on citation graphs. △ and ▲ denote the statistical

significance (t-test) of GenPR for p < 0.05 and p < 0.01, respectively,

compared to the APPNP. 90

5.2 Accuracy on MNIST. 91

5.3 Implementation links. 93

5.4 Dataset statistics. 95

6.1 Dataset statistics . 105

6.2 Accuracy for the DC motor dataset with various feature sets 107

6.3 Accuracy for DC motor, WII and UWave datasets 108

xviii

List of Notations

xx

List of Notations

Symbol Meaning

G = (V, E) an undirected and unweighted graph
n = |V| the number of nodes
e = |E| the number of edges
Vl the set of labeled nodes
Vu the sets of unlabeled nodes
nl = |Vl| the number of labeled nodes
nu = |Vu| the number of unlabeled nodes
A = [Ai,j]

n,n
i,j=1 ∈ Rn×n the adjacency matrix

D = diag(Di,i)
n
i=1 the degree matrix

Di,i =
∑n

j=1Ai,j an element of the degree matrix

Ã = D−δADδ−1 = [Ãi,j]
n,n
i,j=1 ∈ Rn×n a regularized adjacency matrix

δ ∈ {0, 1, 0.5} a regularization parameter
X = [Xi]

n
i=1 ∈ Rn×d a matrix of node features

d the number of input features
Y = [Yi]

n
i=1 ∈ Rn×c a matrix of node classes

c the number of classes
W t

(l) ∈ Rd×m a trainable weight matrix

m the size of latent space representation of node features
l the number of the layer in neural network;
t the number of iterations

xxi

Chapter 1

Introduction

This introductory chapter provides an overview of the graph-based semi-supervised

learning (GB-SSL) domain that motivates and forms various problems studied in this

thesis. This chapter is structured as follows: i) at the beginning, we show the general idea,

which lies under the hood of semi-supervised learning and explain the highly demanded

applications of the GB-SSL; ii) we present an overview of existing fast-growing directions

in the GB-SSL with a detailed explanation of the difference in their sub-directions; iii)

then, we define the existing general critical/non-critical and specific limitations in the

GB-SSL domain and list the set of goals we wish to achieve; iv) finally, we state the

thesis contributions and present how they are organized in the following chapters.

1

1.1. GENERAL OVERVIEW OF SEMI-SUPERVISED LEARNING 2

1.1 General overview of Semi-supervised learning

Semi-supervised learning (SSL) is widely used to solve classification tasks with an

extremely low amount of labelled data points. Nowadays, the area of SSL for classification

tasks consists of two main research areas: the graph-based SSL (GB-SSL), where besides

the object features, we can utilise the graph structure of data (e.g., citation and social

networks where features are words from paper/post and edges are citations between

papers/posts etc.) and non-graph based SSL (e.g., an image where we have just the

image features, classification of time series etc.). The main ideas of these two areas are

presented below:

• The graph-based SSL (GB-SSL) algorithms rely on a classical diffusion-based

idea that uses the graph structure to spread the node class information. The

principal diffusion-based algorithms are Label Propagation (LP) [3], PageRank SSL

(PRSSL) [4], manifold regularization (ManiReg) [5]. More complex modifications of

classical diffusion-based idea lean on graph convolution networks’ application. The

graph convolution networks convolve the graph structure with node features for the

classification. The principal graph convolution algorithms are Graph Convolution

Network (GCN) [6], Graph attention network (GAT) [7], the jumping knowledge

network with concatenation (JK) [8], and Graphite [7]. Figure 1.1 shows the

difference between the diffusion-based idea and the idea of graph convolution

networks;

• The non-graph based SSL (non-GB-SSL) algorithms are based on the idea of

extending default classification loss (e.g. hinge loss, cross-entropy) by customized

semi-supervised regularization, such as in the transductive SVM (TSVM) [9], SSL

logistic regression [10] or on the idea of the similarity learning as in K-nearest

neighbours (KNN) [11]. For the non-graph based SSL, the complex modifications of

the above ideas are based on applying the neural networks to blend the unsupervised

and supervised losses. In particular, the unsupervised loss can be defined as

variational autoencoder (VAE) loss, and the supervised loss can consider the

classification loss as in the semi-supervised VAE (VAESSL) [12], the AtlasRBF [10]

and contractive autoencoder (CAE) [13].

We would like to point out that the current work focuses on resolving issues in the

graph-based semi-supervised learning (GB-SSL) since, nowadays, GB-SSL is a fast-growing

area of research. In particular, GB-SSL algorithms are widely used for various tasks in real

life: Scientific paper classification in citation networks [6,14] where articles are nodes and

1.2. OVERVIEW OF GB-SSL ALGORITHMS 3

Figure 1.1: Comparison of (a) diffusion-based idea of label spreading through the graph
versus (b) convolution of the graph structure with node features (boxes denote the
features); 1 is an initial step; (a) 2 is a spreading of label to neighbour nodes, (b) 2 is a
hidden dimension representation of features convoluted with graph structure; (c) 3 is a
final prediction.

citations are edges between articles with labels being the topics of articles; Classification of

medical studies, where collecting labelled nodes is an expensive procedure [15]; Predicting

the damaged equipment in the factory [16]. This case is highly demanded since the

damaged equipment is a rare incident and collecting many of them is dangerous and

expensive for production manufactory; Moreover, GB-SSL is helpful in post labelling in

social networks [14,17,18] since it allows to make an automatic post labelling, relying

on a small number of labelled posts. In other words, GB-SSL avoids expenses on

crowdsourcing [19] and collecting a high number of labelled posts for supervised learning;

Furthermore, GB-SSL is useful in detecting protein functions in different biological

protein-protein interactions [20].

1.2 Overview of GB-SSL algorithms

An overview of the current, rapidly expanding GB-SSL research directions is provided in

this section. We provide these directions as a composite of various research sub-directions,

1.2. OVERVIEW OF GB-SSL ALGORITHMS 4

each of which has unique research and practical characteristics. We specifically highlight

the key concept for each sub-direction and list the most recent, top algorithms.

The structure of this section is as follows: the first part explains the idea of Classical

diffusion-based algorithms as an original fundamental direction of GB-SSL. Note that

classical diffusion-based algorithms are scalable for large graphs; the next part defines

Graph convolution networks as a direction of GB-SSL, which combines the linear Classical

diffusion-based algorithms with convolution neural networks for increasing accuracy; the

last part describes the recent high demand direction of GB-SSL named Scaling algorithms.

Also, note that the aforementioned GB-SSL directions have the following general

limitations: (i) Classical diffusion-based algorithms consume much less computational

and memory complexity during training than Scaling algorithms. However, they lose to

both Scaling algorithms and Graph convolution networks in classification accuracy in

practice; (ii) Graph convolution networks are limited to small, sparse graph applications,

because Out-Of-Memory (OOM) issues arise on large graphs; (iii) Scaling algorithms

have high computational complexity, and in worst1 cases, some of them face an OOM

issue. Moreover, scaling algorithms do not guarantee an high accuracy close to graph

convolution networks.

Due to the aforementioned limitations, the primary goal of this thesis is to develop

scaling algorithms that will prevent critical OOM issues and significantly lessen memory

and computational cost in comparison to current scaling techniques. We pay special

attention to reducing memory and computational complexity from the point of allowing

training on the low computational power of extremely large graphs. In addition, we

develop scaling algorithms in this thesis that, when compared to existing scaling algorithms

and graph convolution networks, might provide competitive classification accuracy in

real-world applications. Additionally, we propose a novel diffusion-based and graph

convolution frameworks that can improve classification accuracy in real-world problems.

It should be noted that the goals of this thesis and the specific descriptions of the

limitations mentioned above are presented in the following Section 1.3.

1.2.1 Classical diffusion-based algorithms

The main idea of classical diffusion-based algorithms is to recover the classes of node by

spreading the information about labelled nodes through the graph to label unlabeled

nodes. Classical diffusion-based algorithms have the following two sub-directions:

Linear transformation. This sub-direction leads to spreading the node classes from

labelled nodes to unlabelled ones by minimizing Standard Laplacian loss as in [21], the

1The critical case described is in Section 1.3

1.2. OVERVIEW OF GB-SSL ALGORITHMS 5

Normalized Laplacian loss as in Label Propagation (LP) [3], the generalization Personal-

ized PageRank as in PageRank SSL (PRSSL) [4] and distributed stochastic approximation

for semi-supervised learning (DSA-SSL) [2], the novel graph regularization algorithm

based on random matrix theory as in Semi-Supervised Learning for Large Dimensional

Data (SSL-LDD) [22]. Note that the SSL-LDD [22] solves the specific Curse of dimen-

sionality issue in Laplacian regularization loss by replacing of the standard Laplacian

regularization by centered similarity matrix. However, SSL-LDD shows perceptible results

mostly in the case of binary clustering and classification of non-graph data.

Nonlinear transformation. This sub-direction considers nonlinear transformation

of node features to spread them through the sample of their neighbour nodes further

and minimize Laplacian regularization loss for this transformation. This sub-direction

contains the following principal algorithms, such as manifold regularization (ManiReg) [5],

Planetoid [23], DeepWalk [24] or EmbedNN [25].

1.2.2 Graph convolution networks

Graph convolution networks apply the convolution property of the graph structure

with node features for the classification of unlabeled nodes. More precisely, graph

convolution networks compute the dot product of the adjacency matrix with the nonlinear

transformation of node features for the classification. The principal graph convolution

networks are divided into the classical nonlinear, generative and deep graph convolution

networks, which are presented below:

Classical nonlinear graph convolution networks. This sub-direction convolves the

graph adjacency matrix with nonlinear transformed node features for node classification.

The main idea was proposed in the Graph Convolution Network (GCN) [6]. The latest

works are: Graph attention network (GAT) [7], Gated attention network (GAAN) [26],

GraphStar [27] propose combining GCN with attention mechanism [28]. The attention

mechanism in graphs data expresses the important indicator of neighbour node features

for a labelled node during training. Another novel algorithm, denoted as approximated

Personalized graph neural network (APPNP) [14]. APPNP generalizes and improves the

performance of the GCN by growing its complexity, including repeating PowerIteration [29]

steps from PRSSL2 algorithm during training. Moreover, note that there exist different

nonlinear modifications of APPNP in the literature, among which are [6, 30–32].

Generative graph convolution networks. This sub-direction combines the nonlinear

graph convolution networks with the generative model such as Variational Autoencoder

(VAE) [33]. In particular, the latent representation of nodes features/edges from the

2Classical diffusion-based algorithm

1.2. OVERVIEW OF GB-SSL ALGORITHMS 6

generative VAE model is applied for enrichment of the graph convolution network.

Examples of these models are: Generative PageRank (GenPR) [18], Graphite [31], Graph

stochastic neural network (GSNN) [34], Bayesian Graph Neural network (BGCN) [35],

the latent space model or stochastic block for GCN [36].

Deep graph convolution networks. This sub-direction proposes various architectures

of neural networks for enhancing the GCN performance based on increasing the model

depth. The principal deep graph convolution networks are: AS-GCN [37], DeepGCN [38],

JK-net [39], MixHop [40], Snow-ball [41], DAGNN [42], GCNII [43], DropEdge [44] and

Bayesian-GDC [45]. Note that the above algorithms propose adaptive residual learning

framework [46,47] from computer vision to graph convolution networks. Indeed, residual

learning simplifies the network computation across a high number of layers. Furthermore,

some of the aforementioned algorithms customize the dropout regularization technique [48]

concerning graphs data.

1.2.3 Scaling algorithms

Scaling algorithms is a recent fast-growing high demand research direction for GB-

SSL designed to overcome Out-Of-Memory (OOM) issues in the mentioned Graph

convolution networks and provide in practice the high classification accuracy against

Classical diffusion-based algorithms. In particular, most scaling algorithms focus on

scaling Graph convolution networks on extremely large graphs such as Amazon (2M

nodes, classifying products by category) and Mag-coarse (10M nodes, classifying papers

by field of study). However, note that some scaling algorithms [49,50] avoid the OOM

issues on GPU by high resource power on RAM, making them vulnerable to OOM issues

on RAM during training on small computers. The principal sub-directions of scaling

algorithms are present below:

Nodes-neighbours selection. There are two main ideas for selecting the nodes-

neighbours: i) determine the best neighbours to represent the labelled nodes during the

training. PPRGO [51] and PinSage [52] apply an importance score to each neighbour

node of the labelled node; ii) uniformly sample a fixed number of neighbours for the

labelled nodes in a batch per training iteration as in Graph-S [53] and VR-GCN [54].

Subgraph-sampling. This sub-direction focuses on developing various subgraph

sampling algorithms to guarantee the connectivity of nodes in subgraphs for further

enhancement of neural network batch training. The principal algorithms in Subgraph-

sampling are: Shadow-GNN [55], Graph-Saint [56], Cluster-GCN [57]. In particular, the

latest best Shadow-GNN [55] outperforms the Graph-Saint and Cluster-GCN regarding

classification accuracy and computational complexity. The Shadow-GNN shows profitable

1.3. PROBLEMS AND GOALS 7

results since it relies on shallow sampling subgraphs with 2-3 neighbour nodes for labelled

nodes. However, Shadow-GNN requires more neural network layers for better node

representation than the number of nodes in the subgraph, which lengthens training

time. Additionally, Shadow-GNN could lose classification accuracy in contrast to graph

convolution networks like APPNP and GCN since it approximates the GCN on a whole

graph with an error. It should be noted that all of the approaches mentioned above

create batch ensembling methods to broaden the representation for labelled nodes.

Model simplification. Model simplification algorithms make the node features propa-

gate through the graph at the first step and then apply the multi-layer perceptron for

training on the batch of updated node features. The latest best algorithms for model

simplification are: Simple graph convolution (SGC) [58], Approximate Graph Propagation

(AGP) [49], Graph neural network via Bidirectional Propagation (GBP) [50] and Graph

Diffusion Convolution (GDC) [59]. More precisely, the aforementioned algorithms solve

the Personalized PageRank problem for computing a feature propagation matrix and

further use it for training a multi-layer perceptron in a batch regime.

Layer sampling. The neural network’s layer sampling algorithms employ various

sampling techniques of neighbour nodes from the previous layer. To avoid doing additional

weight matrix computations for each node in the training batch, this concept takes

advantage of historical activations of the previous layer. In particular, different Layer

sampling algorithms modify this idea in various ways: for example, GraphSAGE [53]

makes uniform node sampling from the previous layer neighbours; another work proposed

S-GCN [54] algorithm, which limits the number of neighbouring nodes by demanding only

two boost nodes from the last layer; the studies FastGCN [60] LADIES [61] propose to

make node sampling independently for each layer; the latest GNNAutoScale (GAS) [62]

algorithm combines node sampling from the previous layer on GPU with nodes from the

RAM from the last training step. In other words, GAS utilizes all neighbours for labelled

nodes during training.

1.3 Problems and Goals

This section explains the common critical and non-critical problems of GB-SSL algorithms

and is structured as follows: the first sub-section presents the substantial critical compu-

tational and memory limitations that arise in each GB-SSL direction; the next sub-section

outlines the specific problems that arise in the classical diffusion-based algorithms and

the common non-critical problems that exist in most of the state-of-the-art GB-SSL

algorithms; the last sub-section summarizes the main goals of this work.

1.3. PROBLEMS AND GOALS 8

1.3.1 Computational and memory critical limitations

Most GB-SSL algorithms, such as [2,4,23,25], focus on solving the following Personalized

PageRank (PPR) linear system:

(I − αÃ)Z = (1− α)Y, (1.1)

where Ã = D−δADδ−1 = [Ãi,j]
n,n
i,j=1 ∈ Rn×n is a regularized adjacency matrix, D =

diag(Di,i)
n
i=1 is a degree matrix with Di,i =

∑n
j=1Ai,j , A = [Ai,j]

n,n
i,j=1 is an adjacency

matrix, Y = [Yi]
n
i=1 is a matrix that represents labels, α is a regularization parameter

and Z = [Zi]
n
i=1 ∈ Rn×c is a classification result.

Classical diffusion-based algorithms. While the direct computation of the solution of

the System (1.1) results in a O(n3) computational complexity in [4], proposes the classical

diffusion-based algorithm named as PageRank Semi-Supervised learning (PRSSL). PRSSL

solves System (1.1) by application of the PowerIteration method which reduced complexity

to O(n2) or even to a smaller complexity in sparse graphs:

Zt+1 = αÃZt + (1− α)Y (1.2)

where Zt ∈ Rn×c is a classification result at iteration t, t ∈ [0, . . . , τ−2] with τ , the number

of iterations is typically much less than n. Also, in [4], it is proved that PRSSL (1.3.1)

converges to the explicit solution Z∗ of (1.1). However, PRSSL has a high computational

and memory complexity per iteration on large dense graphs. Furthermore, since PRSSL

does not utilize node features during training, it loses to graph convolution networks in

terms of classification accuracy.

The other known approaches try to reduce even further this computational complexity

of System (1.1), e.g. by means of sampling schemes or updating nodes by batch (see [63] for

a comprehensive survey), among which we can cite: Jacobian over relaxation (JOR) [64],

Randomized Kaczmarz (RK) [1], Doubly Stochastic Block Gauss-Seidel (DSBGS) [65],

Randomized Block Gauss-Seidel (RBGS) [66] algorithms. At each iteration, these

algorithms update either the current node or a batch of nodes by their neighbors.

Alternatively, the distributed stochastic approximation approach for semi-supervised

learning (DSA-SSL) proposed in [2] consists in updating the current node from another

single neighbor node at each iteration. This allows one to solve the memory and

computational complexity issues of PowerIteration method (1.3.1), but results in a slow

convergence rate to the optimal classification result.

In general, the linear classical diffusion-based algorithms can be very efficient from

the point of memory consumption on large sparse graphs. However, their classification

1.3. PROBLEMS AND GOALS 9

accuracy is limited in practice mainly because System (1.1) does not account for the node

features, only the adjacency matrix. Moreover, some of them require high computational

complexity (e.g. PRSSL O(n2), Randomized Kaczmarz O(n) per iteration), which can

be critical at dense large graphs. At the same time, the nonlinear classical diffusion-

based algorithms have a higher classification accuracy than linear ones since they embed

nonlinear node features while minimizing Laplacian regularization loss. However, they

consume much more memory and training time for computing Laplacian regularization

loss over all neighbours of the labelled node.

Graph convolution networks. In order to improve the nodes’ classification accuracy

in practice and take into account the input features without minimization of Laplacian

regularization loss for reducing training time, graph convolution networks were developed,

such as APPNP [14]. They consist in nesting the recurrent equation (1.3.1) inside a

neural networks as follows:

Z0 = ReLU(XW t
(0))W

t
(1)

Zτ+1 = αÃZτ + (1− α)Z0

Zτ = softmax(αÃZτ−1 + (1− α)Z0)

(1.3)

where ReLU(·) is an activation function and W t
(0) ∈ Rd×m and W t

(1) ∈ Rm×c are trainable

dense weight matrices at time t for converting input node features from d-space into

hidden m-space and from hidden m-space into classes c-space, τ is the number of

PowerIteration steps. The PowerIteration method in (2.8) for updating the nodes by

combining hidden representations of their neighbours leads to increased computational

complexity and critical OOM issues on GPUs on large graphs. In particular, computing

the hidden representation for a current node features demands combining the hidden

representation of its neighbours, and the neighbours, for its part, have to consider the

hidden information of their neighbours, and so forth (see Figure 1.2). The above process

makes costly neighbourhood growth, which grows exponentially with each extra layer.

For that reason, many proposed graph convolution networks, such as [6,18,30,31] and

DeepGCN [38], JK-net [39], MixHop [40], DAGNN [42], GCNII [43], DropEdge [44],

focus on small, sparse adjacency matrices with restrictions on the exponential growth

of neighbour nodes. Note that this behaviour also leads to OOM issues on GPU, as in

GCN, APPNP and other latest algorithms (AS-GCN [37], DeepGCN [38], JK-net [39],

MixHop [40], DAGNN [42], GCNII [43], DropEdge [44] and Bayesian-GDC [45]).

Scaling algorithms. Moreover, we emphasize that the different types of scaling

algorithms developed to scale graph convolution networks have their memory and com-

putational bottlenecks:

1.3. PROBLEMS AND GOALS 10

Figure 1.2: Computation step of Graph Convolution Network (boxes denote the hidden
representation of the node features): 1 is a current node; 2 Three neighbour nodes to the
current node; 3 Five neighbour nodes to the previous set of neighbour nodes; 4 The last
n neighbour nodes to the previous set of neighbour nodes.

For example, the latest best model simplification algorithms, such as AGP [49], and

GBP [50], resolve OOM issues at GPU for graph convolution networks and outperform

the SGC [67] in memory and computational complexity by avoiding the use of PI during

training. However, they do not guarantee the convergence to the exact solution of

System (1.1). Moreover, they update one-node features by their neighbours, increasing

the memory and computational complexity on large dense graphs with large feature

d-space. The second bottleneck leads to OOM issues at RAM when d and n are extremely

large. In particular, the OOM issues arise in the case when the number of neighbour

nodes is close to n, then for update requires keeping the dense feature matrix X in RAM

memory. However, these algorithms avoid this issue by high computational power (e.g.

for AGP [49], use 512 GB RAM).

In case of layer sampling FastGCN, LADIES have a high computation complexity

during training. In particular, the training complexity depends linearly on the number

of node samples for each layer. In practice, during the training, the above algorithms

mostly require much more nodes than the average node degree in the graph. The latest

GNNAutoScale (GAS) algorithm utilizes a small number of neighbour nodes for labelled

nodes on GPU (without sampling). The rest of the neighbours it extracts from RAM

1.3. PROBLEMS AND GOALS 11

and keeps the embeddings from the previous training step. This strategy of separating

the memory consumption resolves the issue with computation complexity, however it

leads to the issues with increasing memory on RAM. The worst-case scenario of this

issue, which might cause OOM on RAM, is when the network has a deep architecture

with many hidden dimensions and the number of neighbour nodes is near to the number

of nodes in the graph.

Also, note that the subgraph-sampling algorithms such as: Cluster-GCN has an OOM

issue on GPU in the worst case when the number of clusters is equal to one, and the

behaviour of this algorithm starts to be equivalent to the behaviour of GCN. Cluster-GCN

defines the cluster as a group of connected nodes in a graph that can be used like a batch

during the training process; The Graph-Saint requires keeping in memory all neighbours

for labelled nodes during the sampling (per iteration of training), which can increase the

computational complexity and face the OOM on GPU in the same worst-case as for GAS.

Furthermore, note that graph convolution networks as well as scaling algorithms such

as model simplification and nodes-neighbour selection have computational complexity

issues because most of them [2, 4, 6, 14, 17, 31, 49–51, 67] rely on the computation of

Personalized PageRank (PPR) [68] by PowerIteration [69] method or Jacobian over

relaxation (JOR) [64] like methods. In particular, PowerIteration updates one node by the

information from its neighbors and these neighbors are updated by the information from

their neighbors, etc. This leads to an implicit increase of the computational complexity

at: the preprocessing/training step when a node is updated by combining features/latent

representations of its neighbors as in approximate personalized propagation of neural

predictions (APPNP) [14], graph convolutional network (GCN) [6], GBP [50], SGC [67],

AGP [49]; the inference step when the node is updated by classification results from its

neighbors as in PPRGO [51] or Graphite [31].

Critical example. We want to draw attention to the critical computational problems

that might prevent different GB-SSL algorithms from successfully training on a sizable

dataset on a single standard computer. For that reason we consider MAG-coarse dataset

[51] which contains n = 12M nodes and d = 7M of feature. Moreover, we used GPU

GeForce 1070 (8 GB) with 32 GB RAM for computation. Note that we do not take

into account the linear and nonlinear classical diffusion-based algorithms since, in fact,

they lose in practice to graph convolution networks and scaling techniques in terms of

classification accuracy. Below we explain issues that arise in graph convolution networks

and scaling algorithms on the MAG-coarse dataset:

• Graph Convolution Networks (GCN, APPNP, GAT, etc.) have OOM on GPU

since they need to keep in GPU memory the dense matrix W t
(0) ∈ R

7M×m with

1.3. PROBLEMS AND GOALS 12

m = 32 3 and compute the dot products of Ã(XW t
(0)) where X ∈ R̃12M×7M and

Ã ∈ R̃12M×12M are sparse. This dot product is crucial because it must combine

the hidden representations of a current node’s neighbors in order to compute the

hidden representation for that node’s characteristics. The neighbors, in turn, must

take into account the hidden information of their neighbors, and so on;

• Scaling algorithms: Model simplification (AGP, SGC, GBP) have a OOM issue

on RAM since these algorithms make transformation of node features matrix by

PowerIteration method as in X̃t+1 = αÃX̃t + (1− α)X, which means that their

require to keep in memory the dense result X̃t ∈ R12M×7M ; Subgraph-sampling

(Graph-Saint, Shadow-GCN) have a high computational complexity (3−8 hours per

epoch) due to the fact that they are required to make subgraph sampling at each

iteration. Also, Graph-Saint has an OOM on GPU. In particular, during training,

it stuck on the batch with labelled nodes, which requires a subgraph with their

neighbour nodes with the number close to 12 M; Layer-sampling (GAS) has an

OOM on RAM because during training it requires to keep in memory and to update

across epochs the dense matrices with nodes embedding (e.g. dense embedding

matrices X̃n×m
(0) , X̃n×c

(1) or dense trainable weight matrices W d×m
(0) , Wm×c

(1) for 0 and

1 layers respectively). In particular, this dense matrices required to keep in memory

in case if we want to update labelled nodes by their neighbours and the number of

neighbour nodes is close to n; Nodes-neighbour sampling (PPRGO) has an O(n2)

computational complexity at inference since it uses the PowerIteration method.

Finally, based on the aforementioned issues and bottlenecks in the existing critical example,

we can emphasise the following general critical problems, which remain unresolved for all

GB-SSL directions:

1. Out-of-memory (OOM) RAM/GPU issues:OOM issues occur because graph convo-

lution networks spread the information through the whole graph, which requires

keeping in memory a complete graph and information about embeddings [6, 14]

from neural network layers for all nodes. Even more, it could arises in the worst

cases of scaling algorithms (e.g. AGP, Graph-Saint, GAS);

2. High computational complexity: Most of scaling algorithms resolve OOM issues on

GPU but require a high computational complexity [49,56,57] and do not provide ac-

curacy close to graph convolution networks [51]. The high computational complexity

in most of the scaling algorithms is connected with the complicated nodes sampling

3is an optimal value defined in [51]

1.3. PROBLEMS AND GOALS 13

strategies for batches during the training (e.g. Graph-Saint, GAS) or application

of JOR-like methods for computation PageRank at preprocessing/inference step (

e.g. AGP, PPRGO). Moreover, linear classical diffusion-based algorithms consume

much less memory during the training than scaling algorithms. However, most

of them require high computational complexity (e.g. PRSSL O(n2), Randomized

Kaczmarz O(n) per iteration).

1.3.2 Specific Laplacian regularization and general non-critical GB-SSL problems

This section highlights the specific problems associated with adjustments of Laplacian

regularization loss in classical diffusion-based algorithms and general non-critical issues

present for all GB-SSL algorithms. Note that solutions to these problems are valuable from

the practical point of view since they mainly impact classification accuracy, explainability

of classification results and versatility of applications on real datasets. Moreover, these

problems do not block the training process, opposite to computational/memory limitations

issues.

Most of the works in classical diffusion-based algorithms focus on the linear transfor-

mation of Laplacian regularization loss [4,23,25] and consider the following minimization

loss function:

min
Z∈Rn×k

{ n∑
i=1

n∑
j=1

Ai,j ||Zi − Zj ||22 + µ
n∑
i=1

||Zi − Yi||22
}
, (1.4)

where µ is a Lagrangian multiplier, n is the number of nodes, A = [Ai,j]
n,n
i,j=1 is an adjacency

matrix, Z = [Zi]
n
i=1 is a classification result and Y = [Yi]

n
i=1 is a matrix that represents

labels. The first part of the objective in (1.4) is a Laplacian regularization, which penalizes

nodes connected from different classes, while the second part is a supervised classification

loss.

Other [5, 25, 70, 71] works focus on the nonlinear transformation of Laplacian regular-

ization loss and propose to take into account the node features and consider different

modifications of the nonlinear Laplacian regularization loss:

Llap(x, y) = L(f(x), y) + µLreg(X,A)

= L(f(x), y) + µ
∑
i,j

Ai,j ||ψ(xi)− ψ(xj)||2, (1.5)

where the first part of the above equation L(f(x), y) is a supervised loss for the labelled part

of the graph and the second part Lreg(X,A) is the extension of Laplacian regularisation

1.3. PROBLEMS AND GOALS 14

loss. ψ(·) is some nonlinear function from the neural network layer. This type of loss

works in batch mode and during training can take into account the information about

the graph as well as about the nodes’ features.

We should emphasize that for the presented above modifications of Laplacian regular-

ization loss (1.4), (1.5) exist the following specific problems:

1. Binary edges (Ai,j = 0 or Ai,j = 1) are a poor reflection of node similarity which

can lead to a weak estimation of the Laplacian regularization. For instance, Ai,j = 1

does not provide the information about impact of cited paper j on the citing one

i; Even more, Ai,j = 0 may show that author i did not cite the paper j, but he

could have used some information from it. The special case of this issue arises

in the case of utilization of labelled dangling nodes for training. In particular,

the labelled dangling nodes will make a feeble impact during the training, which

leads to losing performance in terms of accuracy. Also, we underline that this issue

vanishes in graphs where nodes are connected only inside their classes and do not

have cross edges between different classes. Even more, we would like to note that

binary edges could negatively impact classification accuracy in practice even on

graph convolution networks and scaling algorithms, which do not use the latent

representation of edges;

2. Curse of dimensionality- arises when A is replaced by a similarity matrix W =

[h(Xi,Xj)]
n
i,j=1 ∈ Rn×n with a positive definite kernel h(·) and d → ∞ where

X = [Xi]
n
i=1 is a matrix of node features and d is the node features dimension. This

replacement presents in [4, 22] and it is made to avoid the sparsity of A. This issue

is especially noticeable in the case of paper classification, for example, based on

the Heaps law [72], the d-space of features (bag-of-words [73]) is increasing with

respect to the number and length of papers. This issue is critical for the linear

transformation (1.4).

Finally, we want to highlight the general non-critical problems that arise in most

state-of-the-art GB-SSL algorithms:

1. Versatility limitations - the loss functions (1.4), (1.5) as well as graph convo-

lution networks (e.g. APPNP (2.8)) and scaling algorithms do not support the

semi-supervised learning on the universal type of datasets since they require the

information about graph structure [6, 12, 23, 74]. This general limitation under-

lines that the GB-SSL algorithms do not maintain competitive performance in not

graph-based areas. On the opposite side, the non-graph based SSL algorithms

1.4. CONTRIBUTIONS 15

such as TSVM and VAESSL [12] do not guarantee the competitive performance on

graph-based data;

2. Explainability - is the last and more general problem that is critical nowadays in

the machine learning domain. We underline this problem in our work so far as the

GB-SSL algorithms are in demand in such natural fields as medicine and factories
4, where the transparency of predictions is also one of the essential requirements.

1.3.3 Goals

Based on the descriptions of problems mentioned in the above subsections, we want

to emphasize the necessity of looking for a solution for Computational and Memory

limitations in GB-SSL. This limitation is more critical than the other problems because

it can block the application of algorithms on large datasets at the beginning, which leads

to skipping the solutions for the rest of the problems. Moreover, Computational and

Memory limitations are critical to the equipment required for training. In particular,

the computation on extremely large graphs increases energy training costs (and thus

the carbon footprint) due to a long time continuous usage of local computing resources

with high powerful GPU and RAM and the additional cost of transmitting data over

long-distance links in case of training the models in web-cloud or on a distributed cluster.

Energy considerations for GB-SSL have been investigated in a few recent papers in

different setups [75–77].

In this regard, our work aims to resolve the common critical GB-SSL algorithms

issues with computational and memory limitations and also propose solutions for the rest

of the common non-critical problems in GB-SSL. This order of goals allows us to propose:

at first, the algorithm for significantly reducing computational and memory complexity

in comparison with the latest scaling algorithms, and then, next, the frameworks for

resolving specific and common non-critical GB-SSL problems, which can be scaled by

algorithm from the first step.

1.4 Contributions

This section explains our work’s main contributions and focuses on the goals defined in

the previous section. The structure of this section is as follows: (i) The first sub-section

defines the principal contribution of this work Markov-Batch Stochastic Approximation

(MBSA) algorithm which focuses on the solution of computational and memory critical

4GB-SSL in evidence-based medicine and prediction of broken equipment on the factory.

1.4. CONTRIBUTIONS 16

limitations; (ii) The following two sub-sections define the solutions to the specific Laplacian

regularization problem and general non-critical problems from the viewpoints of classical

diffusion-based algorithms and graph convolution networks, respectively; (iii) The last

sub-section shows how the novel diffusion-based algorithm suggested in this work may

be used to handle practical issues like identifying the unbalanced states of engines in a

manufacturing facility.

1.4.1 Markov-Batch Stochastic Approximation algorithm

We propose a novel Markov-Batch Stochastic Approximation (MBSA) algorithm for

graph-based semi-supervised learning based on the stochastic approximation theory.

We provide a theoretical analysis of MBSA with proof of stability and convergence to

the desired Personalized PageRank (PPR) solution. We also show that MBSA can be

used in the asynchronous parallel regime. In addition, we provide a multi-threading

implementation on C++ for MBSA. We show on various datasets that MBSA outperforms

the linear Jacobian over relaxation (JOR) [64], Randomized Kaczmarz (RK) [1], Doubly

Stochastic Block Gauss-Seidel (DSBGS) [65], Randomized Block Gauss-Seidel (RBGS) [66]

algorithms, reaching higher performance in a shorter computational time. Moreover,

we show an insight that the fast recovery of the PPR order goes to the best accuracy

faster than searching for an exact PPR solution. We adapted MBSA for batch training of

graph convolution networks (e.g. APPNP, GCN) and named it MBSA-NN. Furthermore,

we show the theoretical results for MBSA-NN on its convergence to a local minimum

of graph convolution network on a complete graph. We applied MBSA-NN on several

extremely large datasets and show that it can handle graphs with more than n ≈ 10M5

nodes and d ≈ 2M of node features under one minute on one standard machine, including

preprocessing, training and inference time. Furthermore, we demonstrate that it greatly

reduces memory and time consumption and offers competitive accuracy performance

compared to the most recent top scaling algorithms. In particular, it consumes 10 times

fewer nodes per batch at training than PPRGO and reduces memory consumption by

50% at the inference against PPRGO. Finally, we provide an open-access implementation

of MBSA-NN on Python3.8 with Tensorflow v2, one thread MBSA on Python3.8 and

multi-thread MBSA on C++.

5M stands for million.

1.4. CONTRIBUTIONS 17

1.4.2 Graph diffusion & PCA

We propose a novel diffusion-based algorithm named as Graph diffusion & PCA (GDPCA)

framework aiming at solving the Curse of dimensionality, Binary edges and Versatility

limitations issues. The main idea of GDPCA relies on joint minimization of a reorga-

nized principal component analysis (PCA) loss and linear transformation of Laplacian

regularization loss (1.4). Also, we provide a theoretical analysis of GDPCA performance

with proof that GDPCA provides an explicit solution to the proposed minimization loss

problem. We apply it to real datasets and show that GDPCA is the best among classical

diffusion-based state-of-the-art algorithms and has comparable performance with graph

convolution networks with significantly lower computational complexity. Moreover, we

show that GDPCA can also be applied to datasets with no explicit graph structure,

such as images, and that it outperforms classical diffusion-based algorithms and graph

convolution network algorithms on this dataset. Furthermore, we show that GDPCA can

be scalable by MBSA for providing low computational complexity. Finally, we provide

the implementation of GDPCA on Python3.8 in open access.

1.4.3 Generative PageRank

We propose a novel graph convolution inductive/ transductive framework, created by

embedding PageRank-SSL (PRSSL) [4] in generative model named as Generative PageR-

ank (GenPR). We show that the generative model can be used to reweight edges in the

adjacency matrix to improve the nodes classification and solve Curse of dimensionality,

Binary edges and Versatility limitations problems. Also, we explain that training in

the transductive or inductive regimes helps to manage the computational complexity by

separating training of nodes’ low dimensional representation against nodes classification.

Moreover, we show that GenPR improves the interpretability of neural network classifi-

cation results based on the information about nodes’ similarity in the latent space. In

particular, it helps to resolve Explainability issue. GenPR provides results that outper-

form the recently proposed graph convolution networks and reduces the number of steps

of PageRank [68] to obtain more accurate classification accuracy than APPNP.

1.4.4 GDPCA and Zoetrope Genetic Programming for detecting imbalanced

states of engines

We propose a flexible SSL framework based on the stacking of PageRank & PCA (GDPCA)

(enabling self-labelling [78]) and Zoetrope Genetic Programming (ZGP) [79] named as

PaZoe. Note that we adapt PaZoe framework to sensor data. This self-labelling framework

1.4. CONTRIBUTIONS 18

shows that graph-based (e.g. GDPCA) and non-graph based (e.g ZGP) algorithms jointly

improve the quality of predictions and outperform each component taken alone. We also

show that PaZoe outperforms state-of-the-art GB-SSL and non-GB-SSL algorithms on

three time-series datasets where two of which are public domain gesture datasets and

the third one we generated from scratch based on a DC motor6 for the classification of

the type of motor imbalance at different rotation speeds. The third set was generated

in house, taking data from industrial graded equipment to mimic DC motors during

operation. Two other datasets, including gesture recordings, were taken from the public

domain. The GDPCA part of PaZoe implemented on Python3.8 and generated dataset

for DC motor are available in open access.

6GBM2804H with Nucleo G431RB ST L6230

Chapter 2

Related work

This chapter defines the latest state-of-the-art (SOTA) algorithms close to this work and

covers GB-SSL and non-GB-SSL branches. We highlight the findings that served as our

inspiration for this investigation. The sections below are organized in the following way:

i) at the beginning, we present the latest SOTA algorithm for solving the Personalized

PageRank (PPR) problem in a batchwise regime; ii) the next section shows the latest

best SOTA scaling algorithms. In particular, this section presents the closest algorithms

to our work with the latest result from node-neighbour selection and model simplification

sub-directions of GB-SSL scaling algorithms; iii) finally, we show the main idea, which lies

under the linear transformations in most classical diffusion-based algorithms. Moreover,

we explain the classical graph convolution networks, which embed the graph structure

directly to neural network architecture to avoid the computation of the Laplacian

regularization loss. Also, we show the SOTA algorithm in the non-GB-SSL, which will

be extended in our work for application in batchwise graph-based cases.

19

2.1. BATCH ALGORITHMS FOR PPR 20

2.1 Batch algorithms for PPR

Since in the previous Chapter 1, we defined that the solution of Personalized PageRank

(PPR) problem is an essential problem nowadays [2,4,23,25]. In this section, we show

the newest SOTA batchwise solutions for the following PPR linear system:

(I − αÃ)Z = (1− α)Y, (2.1)

where Ã = D−δADδ−1 = [Ãi,j]
n,n
i,j=1 ∈ Rn×n is a regularized adjacency matrix and

D = diag(Di,i)
n
i=1 is a degree matrix with Di,i =

∑n
j=1Ai,j . In particular, in this section,

we consider two latest batchwise Gauss-Seidel algorithms much similar to this work.

2.1.1 Doubly Stochastic Block Gauss-Seidel

We present the novel batchwise Gauss-Seidel algorithm with exponential learning rate

named as Doubly Stochastic Block Gauss-Seidel (DSBGS). Let {I1, I2, ..., Is} and

{J1, J2, ..., Js} denote the partition of rows and columns of adjacency matrix where s is the

number of partitions and ∪si=1Ii = V , Ii ∩ Ij = ∅. Let P = {I1, I2, ..., Is}×{J1, J2, ..., Js}.

Algorithm 1: Doubly Stochastic Block Gauss-Seidel (DSBGS) [65]

INPUT :A, Y , P , α, δ, β

1 INITIALIZE: Ã, Z0 = Y ;
2 for t← 0 to τ do

3 Pick (I, J) ∼ P with probability
||ÃI,J ||2F
||Ã||2F

; where ÃI,J ∈ Ã;

4 Update Zt = Zt−1 − β I:,J Ã
T
I,JI

T
:,I

||ÃI,J ||2F
(αÃZt−1 − (1− α)Y)

5 end

This algorithm guarantees the exponential convergence rate to the exact solution of

System (2.1). Moreover, DSBGS proposes batchwise updating strategie per iteration.

However, it has the following main bottleneck: the batch I, which updates the batch J ,

utilizes the information from all of its neighbour nodes (see the line 4 in Algorithm 1).

In the worst case, it can lead to increased time and memory consumption on extremely

large graphs where the degree of nodes is close to the number of nodes.

2.1.2 Randomized Block Gauss-Seidel

Another latest batchwise Gauss-Seidel algorithm named Randomized Block Gauss-Seidel

(RBGS) also has an exponential convergence rate. However, RBGS is much simpler

2.2. SCALING ALGORITHMS 21

than DSBGS from the point of the partition selection since RBGS performs the uniform

partition selection and computes partitioning only over columns. In other words, RGBS

use only {J1, J2, ..., Js} partitions over columns of the adjacency matrix.

Algorithm 2: Randomized Block Gauss-Seidel (RBGS) [66]

INPUT :A, Y , α

1 INITIALIZE: Ã, Z0 = Y , r0 = (1− α)Y − (I − αÃ)Z0;
2 for t← 0 to τ do
3 Pick J uniformly from {J1, J2, ..., Js};
4 Create block of (I − αÃ)[.,J] ∈ (I − αÃ);

5 Generate E ∈ Rn×bs where bs is a size of partition and ∀i ∈ {1, ..., bs} the ith
column of E is E[.,i], has all zeros with a 1 in the cith position, where ci is
the ith entry in the selected J ;

6 Zt = Zt−1 + E(I − αÃ)†[.,J]r
t−1, where (I − αÃ)†[.,J] is the Moore-Penrose

pseudoinverse of matrix (I − αÃ)[.,J]
7 rt = (1− α)Y − (I − αÃ)Zt

8 end

This algorithm defines the most straightforward uniform strategy of partition selection

contrary to DSBGS. Also, it guarantees the exponential convergence rate to the exact

solution of the System (2.1). Note that RBGS avoids keeping in memory the probability

of partition intersections as made in DSBGS (see P in Algorithm 1). This option is helpful

from the point of partitioning large graphs, where we can have a relatively big dense

matrix of the probability of partition intersections. However, RBGS has the following

bottlenecks similar to DSBGS: 1) it computes the Moore-Penrose pseudoinverse of the

bloc matrix, increasing the time and memory complexity, especially on large graphs. (see

the line 6 in Algorithm 2); 2) the updates in the line 6 and 7 in Algorithm 2 use the

information from all of J partition neighbour nodes. These issues are as well as in DSBGS

(Algorithm 1) can increasing time and memory consumption during computations on

large graphs.

2.2 Scaling algorithms

This section defines the latest best state-of-the-art scaling algorithms close to our work.

In detail, we describe the novel high performance sub-directions of scaling algorithms,

such as model simplification and nodes-neighbour selection.

2.2. SCALING ALGORITHMS 22

2.2.1 Model simplification

The model simplification focuses on separating the step of feature propagation against

training multi-layer perceptron in the batch regime. In particular, the latest algorithms

such as Approximate Graph Propagation (AGP) [49] and Graph neural network via

Bidirectional Propagation (GBP) [50] solve the system (2.1) for updating the matrix

of nodes features X for its further use in multi-layer perceptron. It means that in

(2.1) instead of Y the above-mentioned algorithms use X where the updated matrix

of nodes features is Z ∈ Rn×d. These algorithms have higher classification accuracy

than mentioned above linear algorithms. Also, they resolve the OOM issues on GPU

for graph convolution networks and outperform the SGC [67] algorithm in memory

and computational complexity due to avoiding of PowerIterations method for feature

spreading. However, they have the following bottlenecks: 1) do not guarantee the exact

solution of System (2.1). It means that these algorithms do not provide optimal feature

embeddings contrary to embeddings which the exact solution of System (2.1) can have.

Notably, compared to the remainder sub-direction of scaling algorithms, this might

demonstrate the weakest accuracy; 2) update one node by their neighbours which leads

to increasing of the memory and computational complexity on large graphs with large

d. The second bottleneck in the worst case leads to OOM issues at RAM in the case of

extremely large graphs where there are nodes with the number of neighbours close to n

and with a large number of features d. It should be noted that by keeping track of the

decline in the number of residual neighbour nodes, Randomized AGP lowers the number

of neighbours per node update. The large memory consumption peaks at the beginning

of iterations are still present despite this, though. Since all nodes have high residuals

at the beginning, the high peaks appear during the initial iterations, which increases

computing complexity because of neighbour sampling.

2.2.2 Nodes-neighbours selection

The latest best representative of nodes-neighbours selection algorithms is PPRGO [51].

PPRGO focuses on applying an approximated Personalized PageRank (PPR) [80] for

selecting the top k PPR neighbors for each labeled node and further use them in the

neural network training process. PPRGO avoids the OOM issues on RAM because it

does not apply updating node features as in GBP and AGP. However, PPRGO has the

following bottlenecks: 1) in each batch, requires bs× k nodes, bs being the batch size,

leading in the worst case (viz. dense adjacency matrix) to a total of 16384 nodes for the

optimal values bs = 512 and k = 32 defined in their work [51]. Indeed, they show that the

2.3. CLASSICAL GRAPH-BASED & NON-GRAPH BASED SSL ALGORITHMS 23

performance is improved by using as many neighbors as possible. furthermore, since the

top k PPR neighbors represent each labeled node, it reduces the variety of labeled node

representation; 2) finally, at the training step, PPRGO is slower than AGP and GBP and

loses to them in terms of accuracy. This issue arises because AGP and GBP support the

training process on a fixed number of nodes in a batch, contrary to PPRGO, where the

number of nodes in a batch depends on k; 3) finally, PPRGO applies the PowerIteration

method at the inference step. This behaviour at inference increases the memory, and

computational complexity on large graphs since node classification results are spread

through a complete graph.

2.3 Classical graph-based & Non-Graph based SSL algorithms

We need to acknowledge that the frameworks proposed in Sections 4, 5 were inspired

by the results of the Personalized PageRank application for SSL [4] and Variational

Autoencoder (VAE) [33] extension for SSL [12]. Indeed, we considered the following

algorithms as a good ground for solving the limitations with Laplacian regularization

problems.

2.3.1 Classical diffusion-based algorithm

PageRank Semi-Supervised learning

One of the main components of the frameworks GDPCA (see Chapter 4) and GenPR

(see Chapter 5) proposed in this work is the PageRank-based method for semi-supervised

learning [4]. The work [4] minimizes the following function

min
Z

{ N∑
i=1

N∑
j=1

Ai,j ||Dσ−1
i,i Zi. −Dσ−1

j,j Fj.||2 + µ
N∑
i=1

D2σ−1
i,i ||Zi. − Yi.||2

}
(2.2)

with respect to the matrix of classification results Z. The first part of the minimization

function in (2.2) is a Laplacian regularization, which penalizes nodes connected from

different classes, while the second part is a supervised classification loss. The above

optimization problem has an explicit solution proposed in [4]:

Z.k =
µ

2 + µ
(I − 2

2 + µ
Ã)−1Y.k (2.3)

where Ã = D−δADδ−1 = [Ãi,j]
n,n
i,j=1 ∈ Rn×n is a regularized adjacency matrix and D =

diag(Di,i)
n
i=1 is a degree matrix with Di,i =

∑n
j=1Ai,j . In particular, from equation (2.3)

2.3. CLASSICAL GRAPH-BASED & NON-GRAPH BASED SSL ALGORITHMS 24

we derive: the Standard Laplacian method if σ = 1; the PageRank method if σ = 0 and

the Normalized Laplacian method if σ = 1/2. Let us denote α = µ
2+µ and rearrange the

terms in (2.3) to obtain the power iteration [29] like algorithm for iterative calculation of

the classification function:

Zt.k = αÃZt−1
.k + (1− α)Y.k, k = 1, 2, ..., (2.4)

where Zt.k is a result of the t-th iteration, smoothly changing the node labels during

t ≥ 0 iterations. This algorithm avoids the O(n3) computational complexity of exact

computation PageRank. Also, it can be applied to data with or without graph structure.

Particularly, if a graph structure is not given to us, we can calculate the similarity matrix

W from the feature space. For instance, W can be constructed using the Radial Basis

Function (RBF):

Wi,j = exp(−||Xi −Xj ||2/d). (2.5)

However, PRSSL has the following issues: 1) since PRSSL is based on the PowerItera-

tion method, then it takes O(n2) computational complexity per iteration, which leads to

increasing the computation time on the large dense graphs; 2) the case of binary edges in

a graph leads to a weak estimation of the Laplacian regularization loss in PRSSL. For

instance, this problem is significant when most of the available labelled nodes are dangling,

making a feeble estimation of the Laplacian regularization loss; 3) the computation of

node similarity in W (2.5) becomes indiscernible in the high-dimensional cases because

the difference between a maximum (maxd) and a minimum (mind) Euclidean distances

goes to zero when the dimension increases [81], i.e.,

P
[∣∣∣maxd
mind

− 1
∣∣∣ < ε

]
→ 1, d→∞.

2.3.2 Graph convolution networks

Graph convolution network

The main idea proposed in Graph Convolution Network (GCN) [6] rely on the dot product

of adjacency matrix A and the nonlinear transformation of features X for the classification.

In particular, this dot product makes a representation of nodes through the sum of the

nonlinearly transformed features of their neighbour nodes for further transformation of

these representations into classification results. GCN proposes directly encoding the graph

structure in neural network architecture and computing only supervised classification

loss without the Laplacian regularization loss. The architecture of GCN presented below:

2.3. CLASSICAL GRAPH-BASED & NON-GRAPH BASED SSL ALGORITHMS 25

Z = softmax(ReLU(ÃXW t
(0))W

t
(1)) (2.6)

where ReLU(·) = max(0, ·) and softmax(Zi,j) = expZi,j∑c
j=1 exp

Zi,j
are an activation functions

and W t
(0) ∈ Rd×m and W t

(1) ∈ Rm×c are trainable weight matrices at time t for converting

input node features form d-space into hidden m-space and from hidden m-space into

classes c-space. This architecture is trained through minimization of the following function

over available labelled nodes:

min
W(0),W(1)

{ nl∑
i=1

||Zi − Yi||2
}

(2.7)

where nl is the number of labelled nodes. Note that the quadratic loss function in (2.7)

can be replaced by any other classification loss function.

Approximated Personalized graph neural network

The generalized latest version of GCN is proposed in a novel algorithm named ap-

proximated Personalized graph neural network (APPNP) [14]. In particular, APPNP

generalizes and improves the performance of the GCN by growing its complexity, includ-

ing the repeating PowerIteration steps from PRSSL1 algorithm during training. The

architecture of APPNP consists in nesting the recurrent equation (2.4) inside a neural

networks as follows:

Z0 = ReLU(XW t
(0))W

t
(1)

Zτ+1 = αÃZτ + (1− α)Z0

Zτ = softmax(αÃZτ−1 + (1− α)Z0)

(2.8)

where τ is the number of PowerIteration steps. Note that training of APPNP rely on

minimization the same loss function as in GCN (2.7). Since during the training, APPNP

and GCN exclude the minimization of the Laplacian regularization, making their training

process faster than in classical diffusion-based algorithms with nonlinear transformations

such as Planetoid, DeepWalk or EmbedNN. However, APPNP and GCN compute the

hidden representation for current node features by combining the hidden representation of

its neighbours, and the neighbours, for their part, have to consider the hidden information

of their neighbours, and so forth. In particular, this behaviour of combining hidden

1Classical diffusion-based algorithm

2.3. CLASSICAL GRAPH-BASED & NON-GRAPH BASED SSL ALGORITHMS 26

neighbour representations requires keeping in memory the dense matrix with the hidden

representation of nodes XW t
(0) if the number of neighbours is close to n, which particularly

leads to increased computational complexity and critical OOM issues on GPUs on large

graphs.

2.3.3 Non-Graph based algorithm

VAE for semi-supervised learning

Another principal component of GenPR framework (see Chapter 5) with respect to

PRSSL is variational autoencoder (VAE) for semi-supervised learning [12]. For the

definition of VAE, we are using the following assumptions:

Assume that the set of points X are i.i.d. samples of variable x. It is also assumed

that x is generated with respect to a latent continuous random variable z in two steps

(e.g., see [33]):

1. a value for zi is generated from some prior distribution pθ(z) ;

2. a value for xi is generated from conditional distribution pθ(x|z).

Hence, we have the following generative model with parameters θ:

pθ(x, z) = pθ(z)pθ(x|z) (2.9)

where the posterior density qθ(z|x) = pθ(z)pθ(x|z)
pθ(x)

is typically intractable.

However, under above assumption, we can apply the main idea of VAE [33] using a

variational approximation posterior qϕ(z|xi) to the true posterior pθ(z|xi) with parameters

ϕ. This calculation is based on the minimization of the variational lower bound (ELBO),

which consists of two parts:

1. Kullback-Leibler divergence (DKL) between qϕ(z|xi) and pθ(z);

2. conditional expectation Eqϕ(z|xi) of log pθ(x|z) under condition of the approximation

posterior qϕ(z|xi).

U(θ, ϕ, xi) = −DKL(qϕ(z|xi)||pθ(z))

+ Eqϕ(z|xi)[log pθ(xi|z)]

Let us assume that the prior pθ(z) is the isotropic multidimensional Gaussian distribution

pθ(z) = N (z; 0, I) with the expectation equal to 0 and with the covariance matrix equal

to I.

2.3. CLASSICAL GRAPH-BASED & NON-GRAPH BASED SSL ALGORITHMS 27

Moreover, let us apply the reparameterisation trick for the calculation of the approx-

imation posterior qϕ(z|xi). Then, the variational approximation qϕ(z|xi) to the true

posterior pθ(z|xi) becomes:

qϕ(z|xi) ∼ zi,k, zi,k = µ(xi) + σ(xi)⊙ ϵk,

ϵk ∼ N (0, τI)

σ(xi)⊙ ϵk − σ(xj)⊙ ϵk →
τ→0

0 ∀ xi, xj ∈ X

where ⊙ is an element-wise product and µ(xi) and σ(xi) are the encoding results from

MLP.

Then under the above assumption we obtain:

U(θ, ϕ, xi) =
1

2

s∑
j=1

(1 + log((σ2j (xi)))

− (µj(xi))
2 − (σ2j (xi)))

+
1

K

K∑
k=1

log pθ(xi|zi,k)

where s is the dimension of the latent variable z and K is the number of samples of

the new values from posterior (by default K = 1). The work [12] proposes to extend

the generative model (5.3) by including the information about the labelled nodes in the

following way:

qϕ(z|yi, xi) = N (z|µ(yi, xi), σ
2(xi))

qϕ(y|x) = Cat(y|πϕ(x))
(2.10)

using the semi-supervised loss:

Lssl(x, y) =
∑
(x,y)

qϕ(y|x)Eqϕ(y,z|x)[log pθ(x|y, z)

+ log pθ(y) + log p(z)− log qϕ(z|x, y)]

(2.11)

where Cat(y|πϕ(x)) is the multinomial distribution of class labels, πϕ(x) is the output

from MLP. Finally, based on the combination of (2.10), (2.11) loss functions, we can train

VAE in a semi-supervised way. Note that this algorithm supports batchwise training

strategies, which positively impacts the memory complexity during the training. However,

the loss (2.11) has the following main limitations: This method works better for classifying

the data without a predetermined graph structure. This specifically indicates that this

approach does not ensure competitive performance on datasets built on graphs.

2.3. CLASSICAL GRAPH-BASED & NON-GRAPH BASED SSL ALGORITHMS 28

Chapter 3

Markov-Batch Stochastic

Approximation algorithm

Since computational and memory limitations remain present issues in all directions of

GB-SSL, we would like to make the following contribution. In this section, we first

propose a novel linear algorithm called Markov-Batch Stochastic Approximation (MBSA)

for solving Personalized PageRank (PPR), which updates nodes by batch and proposes a

significantly better tradeoff between memory consumption and convergence rate to an

optimal classification result compared with other linear models. Then, we suggest a novel,

non-linear scaling graph convolution neural network called MBSA-NN that embeds linear

MBSA to avoid memory concerns and greatly cut down on processing time and memory

use. We applied MBSA-NN on several very large datasets and show that it can handle

graphs with more than 107 nodes and 2× 106 of features in under one minute on one

standard machine, including preprocessing, training and inference time. Furthermore, we

show that it has significant improvements in terms of memory and time consumption

and comparable performance in terms of accuracy with respect to the latest best scaling

algorithms. In particular, it consumes 10 times less nodes per batch at training than the

only algorithm without out-of-memory issues (PPRGO) on our experiment, and reduces

the memory consumption by 50% at inference.

This chapter is divided into four parts, each of which has its own sections. These

parts are organized in the following way: i) we begin by defining the novel Markov-Batch

Stochastic Approximation (MBSA) algorithm with theoretical evidence of its convergence

to the exact solution of PPR. Additionally, we demonstrate how MBSA could work in a

parallel asynchronous regime (pMBSA) and describe the specifics of its C++ development.

The experimental results from the point of convergence rate to the exact classification

29

30

results and the memory/time consumption during training are also included in this

part. Finally, we demonstrate the MBSA ablation analysis; ii) the next part defines

the adaptation of MBSA into graph convolution networks and proposes the MBSA-NN

algorithm. We state that the locally optimal solution of the graph convolution network

on the whole graph is almost surely reached by MBSA-NN. In addition, we compare

MBSA-NN with the most recent top graph scaling and graph convolution networks in

this part for accuracy, memory use, and time on GPU and RAM; iii) the modification of

MBSA and MBSA-NN based on uniform batch sampling is suggested in the following

section. Moreover, we theoretically verify in this section that the convergence of MBSA

and MBSA-NN described in earlier sections holds with this alteration. Also, we compare

the accuracy, memory, and time consumption on the GPU and RAM for this modification;

iv) finally, the last part contains the proof of the theorems defined in the previous parts.

Also, this part shows the details of experiments with information about parameters of

algorithms, links on GitHub repositories, datasets and the technical environment.

3.1. MARKOV-BATCH STOCHASTIC APPROXIMATION (MBSA) 31

3.1 Markov-Batch Stochastic Approximation (MBSA)

The problem of solving System (3.1) in a pure batch regime with a guarantee of an exact

solution and lowering memory and computation complexity while maintaining a high

accuracy on large graphs is still up for debate with regard to the various GB-SSL neural

network and linear algorithm architectures that are currently in use.

(I − αÃ)Z = (1− α)Y, (3.1)

where Ã = D−δADδ−1 = [Ãi,j]
n,n
i,j=1 ∈ Rn×n is a regularized adjacency matrix and

D = diag(Di,i)
n
i=1 is a degree matrix with Di,i =

∑n
j=1Ai,j , Y = [Yi]

n
i=1 is a matrix

that represents labels, I is the identity matrix, α is a regularization parameter and

Z = [Zi]
n
i=1 ∈ Rn×c is a classification result.

Therefore, this section presents a novel linear algorithm called Markov-Batch Stochas-

tic Approximation (MBSA) that avoids OOM issues. The primary goal of the MBSA

algorithm is to solve System (3.1) by updating the batch of nodes with another currently

available batch of nodes. This strategy is opposed to the existing nodes updating strate-

gies: as mentioned in previous section, in DSA-SSL, the nodes are updated one by one;

in JOR and approximated PPR, each node is updated by its neighbors; in DSBGS and

RBGS, batches of nodes are updated by their neighbors; and in RK, the current node is

used to update its neighbors. Figure 3.1 illustrates these updating strategies. Updating

batches with batches makes MBSA inherently more efficient than its competitors. Besides

the choice of updating nodes from batches, MBSA also differs from existing algorithms

in the way nodes are updated, as we will see in the sequel.

Let’s first establish the notation that will be required for the MBSA algorithm’s

further explanation. Let G = (V , E) be an undirected and unweighted graph, with n = |V|
the number of nodes and e = |E| the number of edges. Let Vl and Vu denote the sets

of labeled and unlabeled nodes, with nl = |Vl| and nu = |Vu| the number of labeled

and unlabeled nodes respectively. From the adjacency matrix A = [Ai,j]
n,n
i,j=1 ∈ Rn×n

representing the graph, and the degree matrix D = diag(Di,i)
n
i=1 with Di,i =

∑n
j=1Ai,j ,

we define the regularized adjacency matrix Ã as Ã = D−δADδ−1 = [Ãi,j]
n,n
i,j=1 ∈ Rn×n,

where δ is a regularization parameter taking values in {0, 0.5, 1}. Finally, the graph G
contains information both from the matrix of node features X = [Xi]

n
i=1 ∈ Rn×d, where d

is the number of input features, and from the matrix of node classes Y = [Yi]
n
i=1 ∈ Rn×c,

where c is the number of classes.

3.1. MARKOV-BATCH STOCHASTIC APPROXIMATION (MBSA) 32

3.1.1 Selection of batches

We outline the MBSA rule of picking a batch of nodes every iteration in this subsection.

Let S = {Si}si=1 be a set of non-intersecting batches where Si is a uniformly sampled

batch of nodes without repetition and s = ⌈ nbs⌉ is the number of batches with a predefined

batch size bs. Then we denote by ASi,Sj the submatrix of adjacency matrix A on the

selected batches. P = [Pi,j]
s
i,j=1 is the matrix of the number of edges between batches

Pi,j = ||ASi,Sj ||1,1 and D̃ = diag(D̃i,i)
n
i=1 is the diagonal matrix where D̃i,i =

∑s
j=1 Pi,j .

Finally, P̃ = D̃−1P is the transition probability matrix between the batches.

Figure 3.1: Comparison of various strategies for nodes updates, where JOR is a Jacobian
over relaxation, RK is a Randomized Kaczmarz [1] and DSA-SSL [2] is a distributed
stochastic approximation. The nodes in the red circles will be updates. The blue circles
mean the nodes which will be used for updating the nodes in the red circles.

In MBSA, the batches are selected as follows. Let At be the index of the batch chosen

from S at time t. Then, at time t+ 1, the next batch index At+1 is chosen from the rule:

P (At+1|At) = QAt,At+1 , (3.2)

where Q = (1−ϵ)P̃+ ϵ
sE is the irreducible counterpart of P̃ , E ∈ Rs×s is an all-one matrix

and ϵ ∈ (0, 1) is a damping factor [68]. The first part of Q gives a higher probability of

selecting a batch with a large number of edges in common with the current one, while

the second part selects a batch with very few edges between them, which in turn allows

to update all the batches in S during the τ iterations. This update rule renders {At} an

A-valued Markov chain.

3.1.2 Node update

We now move to describe the way nodes are updated in our algorithm. Indeed, it is

more complex than PowerIteration or JOR in the sense that it updates a batch of nodes

by another batch of nodes chosen by rule Eq. (3.2) per iteration instead of using all

neighbour nodes (e.g. Figure 3.1). However, this allows MBSA to have a fixed number of

3.1. MARKOV-BATCH STOCHASTIC APPROXIMATION (MBSA) 33

nodes in a batch depending on bs during the iteration. In other words, MBSA avoids

the memory bottleneck where the node for the update has a number of neighbour nodes

close to n.

MBSA is defined in Algorithm 3 and relies on the following additional parameter

η(t) = 1/(1 + t)γ , corresponding to the step size for the node updates where γ ∈ (0, 1] is

a parameter of step length regularization.

Algorithm 3: Markov-Batch Stochastic Approximation (MBSA)

INPUT :A, Y , P̃ , Q, δ, α, τ , bs, ϵ, γ

1 INITIALIZE: Ã, Z0 = Y , S, At = A0 ;
2 for t← 0 to τ do
3 Pick At+1 with probability QAt,At+1 ;

4 Zt+1
i = Zti + η(t)I{i ∈ SAt}

P̃At,At+1

QAt,At+1

(
α
∑

j∈SAt+1
Ãi,jZ

t
j

P̃At,At+1

− Zti + (1− α)Yi

)
;

5 At = At+1;

6 end

3.1.3 Theoretical analysis

Finally, another important aspect of MBSA is that it converges almost surely to the

exact solution of Eq. (3.1), as stated in Theorem 1.

Theorem 1: Consider MBSA (Algorithm 3) and suppose that η(t) = 1/(1 + t)γ with

γ ∈ (0, 1]. Then, Zti converges almost surely to Z∗
i :

Zti
a.s.−−→ Z∗

i as t→∞ ∀i ∈ {1, . . . , n},

where Z∗
i is the desired solution of (3.1).

Proof. The proof of Theorem 1 relies on techniques from ordinary differential equations

(ODE) and is given in Section 3.10. In particular we define h(Zt) = (αÃ−I)Zt+(1−α)Y

as an ODE of MBSA.

Finally, note that an investigation of the impacts of the γ, ϵ on the step length

regularization and the analysis of an optimal bs for MBSA was undertaken, and its results

can be seen in Section 3.3.

3.2. THE ASYNCHRONOUS PARALLEL MBSA (PMBSA) 34

3.2 The asynchronous parallel MBSA (pMBSA)

Now, we want to show the asynchronous parallel analog of MBSA (Algorithm 3):

Remark 1: Let us redefine the ODE of Algorithm 3 as: Ż = Q(t)h(Zt), where Q(t) =

diag(Q(t)i,i)
n
i=1 is a diagonal matrix with strictly positive entries on the diagonal. Then

using observations from Section 6.4 and Theorem 12.1 from Chapter 12 of [82], the ODE

has the same asymptotic behaviour as Ż = h(Zt). This means that Theorem 1 holds even

for Ż = Q(t)h(Zt) as well. In other words we can run Algorithm 3 in an asynchronous

parallel mode at each time t and denote it as pMBSA.

With respect to Remark 1 (Theorem 1) we can run MBSA (Algorithm 3) in an

asynchronous parallel mode. Indeed, at each time t, we have Q(t)j,j = 1,∀j ∈ {Sti}mi=1,

where St = {Sti}mi=1 is a set of batches for updates over m parallel threads at time t, and

Q(t)j,j = 0, otherwise. Also, note that St+1
i is sampled according to Rule 3.2 with respect

to the previous batch indices At chosen from St. It means that MBSA can updates

several different batches At in parallel at time t. We represent the MBSA algorithm in

the parallel regime below in Algorithm 4 where m is the number of threads and the cycle

Algorithm 4: parallel Markov-Batch Stochastic Approximation (pMBSA)

INPUT :A, Y , δ, α, τ , bs, m

1 INITIALIZE: Ã, Z0 = Y , St;
2 for t← 0 to τ do
3 for At to St do
4 Pick At+1 with probability QAt,At+1 , for generation of St+1;

5 Zt+1
i = Zti + η(t)I{i ∈ SAt}

P̃At,At+1

QAt,At+1

(
α
∑

j∈SAt+1
Ãi,jZ

t
j

P̃At,At+1

− Zti + (1− α)Yi

)
;

6 end
7 St = St+1;

8 end

over At indexes from St computes parallel by m threads at time t.

3.2.1 Details of parallel implementation on C++

pMBSA was implemented in the multithreading regime in C++, with function and data

binding using Cython. For this implementation, we are using the Eigen1 mathematical

library. Eigen is a C++ template library for linear algebra. To eliminate the overhead

1https://eigen.tuxfamily.org/index.php?title=Main Page

3.3. ABLATION STUDIES OF MBSA 35

of copying large amounts of computational data between Python and C++ code, we

used Eigen :: Mapstruct for application in C++ structures allocated in Python, which

avoids the temporary objects, copy constructors, etc. Also, we have involved the SIMD

instructions [83] such as AVX and SSE2 for the optimization, which is available in the

Eigen library.

Note that we resolved the collisions with resource locking by keeping in memory

two matrices: Zt at the current moment t for reading and Zt+1 for writing. This

modification holds the correctness of the pMBSA algorithm. The synchronization of

these matrices occurs after each cycle of parallel updates of batches. Note that m threads

run simultaneously, where m is the number of physical processor cores. We need to point

out that the synchronization operation requires copying a contiguous memory segment

and is very fast in C++. The sparse graph matrices had to be pre-processed in Python,

split into batches and serialized in advance, for use in C++, due to differences in the

storage formats of sparse matrices. This is a reasonably cheap operation, but due to the

preliminary division of the feature matrix into batches, multiple extractions of a sparse

submatrix are not required.

Finally, in Section 3.4 we compare the C++ implementation with Python3.8 and show

that multithreading implementation on C++ m times faster than one thread Python

implementation.

3.3 Ablation studies of MBSA

3.3.1 Impact of γ and ϵ on convergence rate

In order to analyze the effect of the step size regularization parameter γ and ϵ on

MBSA performance, we consider the following grids of values: γ ∈ [0.1, 0.3, 0.5, 0.7, 0.9],

ϵ ∈ [0.1, 0.5, 0.9], and fix the other parameters τ = 500 and bs = 512. Moreover, for stable

estimation of convergence rate we repeat 50 times experiments of convergence MBSA for

each pair of γ and ϵ. Also, the exact solution Z∗ of System (3.1) is taken as reference for

the best classification accuracy:

Z∗ = (I − αÃ)−1(1− α)Y. (3.3)

Figure 3.2 displays the evolution of accuracy during training for different values of ϵ

(columns) and of γ (colored lines). Note that the accuracy computed in the following

way:

Accuracy(Zt, Y ∗) =

∑n
i=0 I{argmax(Zti) = argmax(Y ∗

i)}
n

,

3.3. ABLATION STUDIES OF MBSA 36

Figure 3.2: Average accuracy of MBSA for each pair of step size power γ ∈
[0.1, 0.3, 0.5, 0.7, 0.9] and damping factor ϵ ∈ [0.1, 0.5, 0.9] at each 50 interaction (x-
axis). The blue line shows the classification accuracy of exact solution (3.3). The black
dashed line shows the first time of convergence. Impact of power of step size γ and
damping factor ϵ on convergence to best accuracy.

3.3. ABLATION STUDIES OF MBSA 37

Figure 3.3: Average minimum number of iterations min(t) (right y-axis, lines) and
number of edges between batches (mean(P)) (left y-axis, boxes) over 50 random runs of
MBSA for each batch size bs (x-axis).

where argmax(·) returns the index of the maximum value in the row, I{·} is an indicator

function and Y ∗ is a matrix of ground truth labels. It shows that MBSA converges faster

to the best classification accuracy with a large step size e.g. γ = 0.3 in η(t) = (1 + t)−γ

and with a small damping factor (ϵ = 0.1). Our intuition behind this observation is

large step sizes perform intensive updates of nodes from SAt by SAt+1 , while taking

Q with a small ϵ allows selecting a subset SAt+1 with more edges with SAt , and thus

improves the update of nodes in the batch. Also note that we can get convergence with a

high oscillation to large a step size (e.g. γ = 0.1, Figure 3.2). For this reason, in next

experiments, we consider γ = 0.3 as an optimal power for step size since it leads to a

faster a more stable convergence than others.

3.3.2 Impact of batch size on convergence rate

We now analyze the impact of the batch size bs on the minimum number of iterations

necessary to get classification accuracy equal to that of exact solution (3.3). In order

to do so, we set γ = 0.3 and ϵ = 0.1 based on the previous experiment, and we

consider bs ∈ [256, 512, 768, 1024]. Figure 3.3 shows that the minimum number of

iterations decreases with respect to the batch size, while the mean value of edges between

batches (mean(P)) increases. This finding is based on the obvious intuition that the

more edges between batches SAt and SAt+1 we have, the more likely it is that we

will update every node in batch SAt , which accelerates updating of every node in the

graph. In particular, Figure 3.3 shows that if mean(P) is close to bs then MBSA

3.4. EXPERIMENTAL RESULTS FOR MBSA 38

converges faster to the exact solution in terms of classification accuracy (e.g. for Cora-

ML: bs = 512;mean(P) = 445;min(t) = 221.34). Since min(τ) significantly decreasing

even with small batch size (e.g. bs = 512), we propose to use the following equation for

minimal optimal batch size:

bs∗min =
n

median(D)
, (3.4)

where we recall that n is the number of nodes and median(D) is the median value of

node degree over the graph. In particular, this rule (3.4) holds for Cora-ML (n = 2810,

median(D) = 5, bs∗min = 562) and Citeseer (n = 2110, median(D) = 3, bs∗min = 703)

with respect to results on Figure 3.3. We assume that a low median degree requires using

a large batch size to guarantee that mean(P) ∼ bs.

3.4 Experimental results for MBSA

3.4.1 Convergence analysees

Figure 3.4: Convergence analysis.

In this subsection, we analyze the behavior of MBSA with respect to other updating

strategies from the literature, namely Jacobian over relaxation (JOR), Double Stochastic

3.4. EXPERIMENTAL RESULTS FOR MBSA 39

part Gauss-Seidel (DSBGS) [65], Randomized Kaczmarz (RK) [1] and Randomized part

Gauss-Seidel (RBGS) [66]. Note that we excluded DSA-SSL from the comparison due to

its extremely slow convergence rate. The results comparison of MBSA with other linear

algorithms on Cora-ML and Citeseer are presented in Figure 3.4 in terms of convergence

rate to the accuracy of exact solution of System (3.1) (top); Kendall’s tau [84] coefficient,

giving a rank correlation score between the exact solution and the solution from the

algorithms (middle, values close to 1 corresponds to total agreement). Note that for the

computation of Kendall’s tau we flattened the Zt and Z∗ in arrays with n ∗ c elements.

Then, we apply the following equation for estimating Kendall’s tau:

tau =
(P −Q)

sqrt((P +Q+ T) ∗ (P +Q+ U))

where P is the number of concordant pairs, Q the number of discordant pairs, T the

number of ties only in Zt, and U the number of ties only in Z∗; and error of the solution

of linear system (3.1) (bottom). In particular, the error is computed using Frobenius

matrix norm:

Error = ||(I − αÃ)Zt − (1− α)Y ||F

Each quantity is averaged over all runs. Figure 3.4 shows that MBSA outperforms the

other algorithms in terms of fast recovery of the accuracy and PPR rank (Kendall’s tau

correlation), seconded by RBGS. On the other hand, we can see that MBSA’s error for

System (3.1) is lower than most algorithms, except RBGS. These graphs show that to

obtain good classification accuracy, it is more important to rapidly recover the PPR order

rather than find the best approximation of the exact solution, unlike what was initially

assumed in [4, 23,71].

3.4.2 Memory vs Time tradeoff

Here, we compare the memory and computation time requirements of MBSA and other

linear methods. For example, Figure 3.5 shows the comparison of MBSA with the

aforementioned algorithms in terms of the average peak of memory consumption in

τ = 500 iterations and average minimum number of iterations for convergence to the

accuracy of the exact solution. The minimum number of iterations min(t) gives the

moment where the algorithm’s accuracy is equal to the accuracy of the exact solution

of System (3.1) on the test set, averaged over all runs. In particular, Figure 3.5 shows

that MBSA converges at least two times faster to the accuracy of the exact solution of

System (3.1) than RBGS (e.g. Citeseer: MBSA min(t)=280.45; RBGS min(t)=576.31).

Moreover, it consumes a small amount of memory since it updates a sparse batch of

3.5. MBSA FOR GRAPH CONVOLUTION NETWORKS 40

Figure 3.5: Average memory consumption (MiB, left y-axis, bars-log) per iteration and
mean minimum iterations (right y-axis, lines-log, min(t)) over 50 random runs for each
algorithms (x-axis).

nodes per iteration. Finally, Figure 3.5 shows that MBSA offers an optimal very good

tradeoff between memory consumption and convergence rate with respect to other linear

batch algorithms. The implementation details of the algorithms we took for comparison,

a description of the computation environment, the definition of optimal parameters of

algorithms for experiments and dataset statistics are in Section 3.11. The implementation

of linear algorithms, MBSA on Python, pMBSA on C++ and links on datasets in

experiments are available in Section 3.11 as well.

3.5 MBSA for graph convolution networks

This section discusses how MBSA can be used in existing graph convolution network

algorithms both at the training and inference steps to overcome memory issues and

decrease time consumption. We propose to adapt MBSA for the computation of PPR in

a graph convolution network due to the following properties: i) compared to other linear

batch algorithms, MBSA has the best memory use and convergence rate (see Figure 3.5);

ii) MBSA avoids keeping in memory of the whole adjacency matrix and updating the

nodes through the latent representations of its neighbours as is done, e.g. in GCN and

APPNP;

3.5. MBSA FOR GRAPH CONVOLUTION NETWORKS 41

3.5.1 Training step

In a similar fashion than is done in APPNP (see Chapter 2), we propose to embed the

MBSA updates of the classification results into a graph convolution network (e.g. a

multi-layer perceptron). Here, the use of MBSA allows to make this update batchwise and

thus overcome memory issues and decrease time consumption while holding guarantees of

convergence to the exact solution of PPR. The intuition for adaptation of MBSA for graph

convolution neural networks is lying on the idea to update the hidden representation

features of one batch of nodes by the hidden representation of features from another

batch of nodes. This adaptation of MBSA we named as MBSA-NN. The full algorithm of

MBSA-NN is defined in Algorithm 5 and relies on the following parameters: W t
(0) ∈ Rd×m

and W t
(1) ∈ Rm×c are trainable weight matrices at time t for converting input node features

form d-space into hidden m-space and from hidden m-space into classes c-space which

are training by minimizing of the convex classification loss L(·, ·) as in APPNP, GCN,

PPRGO etc.; β is the step size for computing the gradient weight matrices W (0)t, W (1)t;

Γ(0)(·) and Γ(1)(·) are layer activation functions which can be defined Γ(0)(·) = ReLU(·),
Γ(1)(·) = softmax(·).

Algorithm 5: MBSA-NN

INPUT : Ã, Y , X, α, γ, τ

1 for t← 0 to τ do
2 Pick At+1 with probability QAt,At+1 ;

3 Z̃j = I{j ∈ SAt+1}(Γ(0)(XjW
t
(0))W

t
(1));

4 Z̃i = I{i ∈ SAt}(Γ(0)(XiW
t
(0))W

t
(1));

5 Zt+1
i = Zti + η(t)I{i ∈ SAt}

P̃At,At+1

QAt,At+1
×

(∑
j∈SAt+1

Ãi,jZ̃j

P̃At,At+1

− Zti

)
;

6 LSAt
← I{i ∈ SAt}L(Yi,Γ

(1)(Zt+1
i)) + L(Yi,Γ

(1)(Z̃i)) ;

7 (W t+1
(0) ,W

t+1
(1))← update by β

(
∂LSAt

∂W t
(0)

,
∂LSAt

∂W t
(1)

)
gradient step;

8 At = At+1 ;

9 (W t
(0),W

t
(1)) = (W t+1

(0) ,W
t+1
(1))

10 end

3.5.2 Theoretical analysis

Moreover, note that MBSA-NN defined in Algorithm 5 converges almost surely to the

locally optimal solution of graph convolution network on the entire graph, as stated in

3.5. MBSA FOR GRAPH CONVOLUTION NETWORKS 42

Theorem 2.

Theorem 2: Consider MBSA-NN (Algorithm 5) and suppose that η(t) = (1
1+t)

γ where

γ ∈ (0, 1], β
η(t) → 0 where β is the step size for computing the gradient weight matrices

W (0), W (1). Then, Zti converges almost surely to Γ(1)(Ã(Γ(0)(XiW(0))
∗W(1))

∗):

Zti
a.s.−−→ Γ(1)(Ã(Γ(0)(XiW

∗
(0))W

∗
(1))) as t→∞ ∀i ∈ {1, . . . , n},

where W ∗
(0),W

∗
(1) are locally optimal solutions of L(·, ·) found by computing the gradient

steps.

Proof. The proof of Theorem 2 relies on the comparison of two ordinary differential

equations (ODE) and is given in Section 3.10. In particular, we define that h(Zt) =

Ã(Γ0(XW t
(0))W

t
(1))− Z

t is an ODE of MBSA-NN.

Remark 2: In our actual experiments, the number of iterates was not too large and a

very small (relative to η(t)) constant β(t) ≡ β seemed to suffice.

3.5.3 Implementation details

Since only labeled nodes are used by neural networks to calculate classification loss, we

take into account the following remark:

Remark 3: Let us redefine the ODE of Algorithm 5 as h(Zt) = Q(t)(Ã(Γ0(XW t
(0))W

t
(1))−

Zt), where Q(t) = diag(Q(t)i,i)
n
i=1 is a diagonal matrix with strictly positive entries on

the diagonal at each time t. Then by Remark 1 and the results from Chapter 6.4 and

Corollary 2.1 in Chapter 2 of [82] the h(Zt) = Q(t)(Ã(Γ0(XW t
(0))W

t
(1)) − Z

t) has the

same asymptotic behaviour as h(Zt) = (Ã(Γ0(XW t
(0))W

t
(1))− Z

t). Indeed, Theorem 2

holds even for h(Zt) = Q(t)(Ã(Γ0(XW t
(0))W

t
(1))− Z

t).

The Remark 3 allows us to use the diagonal matrix Q(t) in the following way:

Q(t)i,i = 1 ∀i ∈ Vl, Q(t)i,i = 0, otherwise. In other words, it allows to make the following

modifications in MBSA-NN (Algorithm 5):

1. we reduce the number of unlabelled nodes to the number of neighbour nodes of

labelled nodes. This reduction aims at skipping the unlabelled nodes, which do not

have connections with labelled ones and cannott impact their updating process.

The unlabeled neighbour nodes are denoted as Vun;

2. we generate two sets of non-intersecting batches of labelled and unlabeled nodes:

S̃ = {S̃i}li=1 and S ′ = {S ′i}ui=1 where S̃ and S ′ are sets of uniformly sampled

3.5. MBSA FOR GRAPH CONVOLUTION NETWORKS 43

batches of nodes without repetition from Vl and Vun, respectively, and u =
⌈ |Vun|

bs

⌉
,

l =
⌈ |Vl|
bs

⌉
are the number of batches in each set;

3. we recompute the number of edges between the aforementioned sets of batches

P = [Pj,k]
l,u
j,k=1.

Then, with respect to the modifications above, we can rewrite MBSA-NN as described in

the following Algorithm 6.

Algorithm 6: MBSA-NN (for implementation)

INPUT : Ã, Y , X, α, γ, epochs

1 for t← 0 to τ do

2 for S̃At ∈ S̃ do
3 Pick At+1 from S ′ by rule (3.2) with respect to the recomputed P ;

4 Z̃j = I{j ∈ S ′At+1
}(Γ(0)(XjW

t
(0))W

t
(1));

5 Z̃i = I{i ∈ S̃At}(Γ(0)(XiW
t
(0))W

t
(1));

6 Zt+1
i = Zti + η(t)I{i ∈ S̃i}

P̃At,At+1

QAt,At+1
×

(∑
j∈SAt+1

Ãi,jZ̃j

P̃At,At+1

− Zti

)
;

7 LS̃At
← I{i ∈ S̃At}L(Yi,Γ

(1)(Zt+1
i)) + L(Yi,Γ

(1)(Z̃i)) ;

8 (W t+1
(0) ,W

t+1
(1))← update by β

(
∂LS̃At

∂W t
(0)

,
∂LS̃At

∂W t
(1)

)
gradient step;

9 (W t
(0),W

t
(1)) = (W t+1

(0) ,W
t+1
(1))

10 end

11 end

Note that Remark 3 shows that Theorem 2 holds for Algorithm 6 even in case when

nl ≪ nu. In particular, it means that at stochastic step in Algorithm 6 can updates

only Vl nodes per iteration, this is critical for computation of L(·, ·) and still guaranties

that Theorem 2 holds. Also, note that Algorithm 5 as well as Algorithm 6 do not

have a fixed number of necessary neighbors for labeled nodes, making the regularized

matrix Ãi,j ∀i ∈ SAt ,∀j ∈ SAt+1 sparser than the one used in PPRGO [51]. Moreover,

Algorithm 5 and Algorithm 6 require only ⌈2 ∗ bs⌉ nodes at each step compared to ⌈bs ∗ k⌉
in PPRGO [51], where k is the number of neighbors for each labeled node from bs or

⌈bs ∗ n⌉ in AGP [49] in the worst case of preprocessing. Furthermore, MBSA-NN does not

make a neighbour node sampling per iteration as Graph-Saint [56], significantly reducing

the computational complexity at training. In particular, it is because MBSA-NN makes

the batch partitioning (S) at the preprocessing step, and during the training, it relies

on the simple batch sampling defined in the Rule (3.2). More generally, MBSA-NN can

3.5. MBSA FOR GRAPH CONVOLUTION NETWORKS 44

be used in any graph convolution networks relying on PowerIteration method [6,14,31],

making such algorithms scalable for large graphs. For example, we propose to scale

APPNP by replacing the stochastic part of MBSA-NN with the following convolution

layer:

Z̃i = Z̃i + η(t)I{i ∈ SAt}
P̃At,At+1

QAt,At+1

×

∑j∈SAt+1
αÃi,jZ̃j

P̃At,At+1

+ (1− α)Z̃i

 (3.5)

Then, the loss function in MBSA-NN will be LSAt
← I{i ∈ SAt}L(Yi,Γ

(1)(Z̃i)). In the

sequel, we denote this modification of MBSA-NN as MBSA-APPNP.

3.5.4 Inference step

Inference can be also expensive in graph convolution networks, especially when the

number of non-zero edges in the adjacency matrix is huge. This issue in inference appears

for instance in PPRGO, APPNP and GCN as they apply the PowerIteration method

to spread logits through the graph. Indeed, PowerIteration updates all the nodes from

all their neighbors during iterations, which takes both time and memory. In order to

speed up the inference of Algorithms 5,6 we use pMBSA in parallel regine (see Remark 1,

Algorithm 4) to spread the logits (softmax(Ỹ)) through the graph.

3.5.5 Limitation

Algorithms 3, Algorithms 4, Algorithm 5 and Algorithm 6 do not support the uniform

batch selection strategy, which leads to the necessity to compute the transition probability

matrix between batches P̃ . This considered as an limitation due to the fact that the

dimension of matrix P̃ s×s where s = ⌈ nbs⌉ is the number of batches depends on number

of nodes and batch size. In particular, this can leads to a computational and memory

issue if we consider the extremely large graphs with small batch sizes. This is possible to

avoid by modification of these algorithms with P̃ = [P̃i,j]
s
i,j=1 is the transition probability

matrix such that P̃i,j = 1/s where s = Cbsn is a number of batches and Cbsn denotes the

bs-combinations out of n. However, in such a case, we cannot guarantee the theoretical

convergence to the optimal solution. In Section 3.8 we proposed solution of this limitation.

3.6. ABLATION STUDIES OF MBSA-NN 45

Figure 3.6: Training step for Reddit: Average number of edges between labelled and
unlabelled nodes in batch (left y-axis, boxes) and Accuracy (%, right y-axis, lines) over
50 random runs for each batch size (bs, x-axis).

3.6 Ablation studies of MBSA-NN

3.6.1 Impact of γ and bs on the accuracy of MBSA-NN

This subsection focuses on estimating the impact of the step and the batch sizes on

the training of MBSA-NN. Because of that we show our experimental results with the

following parameters: bs ∈ [128, 256, 512, 1024]; γ ∈ [0.3, 0.5, 0.7]; τ = 500 and ϵ = 0.

Moreover, for stable performance estimation, we repeat 10 times experiments for each

pair of γ and bs. For the sake of generality during the following experiments for inference

we use one thread MBSA (Algorithm 3).

Figure 3.6 shows that increasing the number of edges between labelled and unlabelled

nodes in batches mainly impacts accuracy as well as increasing the power of step size

γ. The intuition under this result is based on the fact that the training of MBSA-NN

focuses on updating the labelled nodes, and the more edges we have between labelled

and unlabelled nodes, the better representation for labelled nodes we get. Moreover,

Figure 3.6 shows that good accuracy is achievable even with a small bs = 512 where the

number of edges between labelled and unlabelled nodes equals the batch size. Note that

this result repeats the intuition of convergence rate of MBSA in Figure 3.3.

3.7. EXPERIMENTAL RESULTS FOR MBSA-NN 46

3.6.2 Impact of MBSA/pMBSA at inference on the accuracy of MBSA-NN

In this subsection, we assess the effects of MBSA and pMBSA at the inference of

classification results, specifically how they affect the performance (accuracy) of MBSA-

NN and MBSA-APPNP in the inference. During these experiments, we considered two

modifications of the inference MBSA-NN and MBSA-APPNP: one-thread MBSA with

τ = 120; parallel multithread pMBSA over max number of cores2 with τ = 20. Note that

for a fair comparison, we used the same neural network hyper-parameters for MBSA-NN

and MBSA-APPNP as in the state-of-the-art architecture of APPNP.

Table 3.1 shows that the parallel inference (pMBSA) provides the competitive results

in all of the cases for MBSA-NN and MBSA-APPNP. In particular, this means that

pMBSA keeps the accuracy close to MBSA and reduces the number of iterations m = 6

times where m is the number of threads, which experimentally guarantee that Remark 1

holds.

Table 3.1: Average Accuracy (%) in one thread (o) vs six threads (p) regimes of MBSA
at inference over 10 repetitions.

Cora* Pubmed Yelp Reddit OGBN* Mag*

MBSA-NN(o) 62.1 76.3 34.9 19.1 33.2 70.2
MBSA-NN(p) 59.1 76.8 32.7 19.7 27.7 70.1

MBSA-APPNP(o) 62.0 75.9 37.2 27.7 30.2 63.7
MBSA-APPNP(p) 58.6 76.4 36.0 27.7 26.3 60.2

3.7 Experimental results for MBSA-NN

Now, we investigate the MBSA-NN performance, time and memory consumption com-

pared to the most recent best scaling state-of-the-art algorithms. In order to do this, we

compare the MBSA-NN to alternative scaling algorithms on extremely large datasets

and demonstrate how it resolves the out-of-memory issues on CoraFull [85], Pubmed [86],

Yelp [56], Reddit [87] OGBN-products [88] and MAG-coarse [51] datasets. A descriptive

statistic, details of data preprocessing and references for the datasets used in this section

are provided in Section 3.11.

26 cores in Intel CoreI7

3.7. EXPERIMENTAL RESULTS FOR MBSA-NN 47

3.7.1 Performance (Accuracy)

The MBSA-NN (Algorithm 5) has been compared with the recent bests: neighbor selection

PPRGO [51], model simplification AGP [49], layer sampling (GAS) [62] and subgraph

sampling Graph-Saint [56] which also work in a batch regime and outperform other

scaling algorithms such as SGC, clusterGCN, GBP, and FastGCN , on large graphs.

Please take note that we did not observe Shadow-GNN [55] since there was a critical

incompatibility between the environment necessary for Shadow-GNN and the environment

used to compute MBSA-NN and the other algorithms. Also, we compare MBSA-NN with

APPNP to see the holds of Theorem 2 in practice. In particular, we want to answer the

question: Does the batchwise stochastic approximation in the graph convolution network

performs as well as the graph convolution network on the complete graph? The results

in terms of accuracy are presented in Table 3.2 where Cora*, OGBN* and Mag* are a

CoraFull, OGBN-products and MAG-coarse datasets respectively.

Table 3.2: Average Accuracy (%) over 5 random train/validation/test splits where ‡ is a
notation for OOM and ‡|‡ is a OOM(GPU) | OOM(RAM) respectively.

Cora* Pubmed Yelp Reddit

APPNP 57.9± 0.08 79.0± 0.13 ‡|‡ ‡|‡

PPRGO 59.3± 0.39 75.3± 2.52 36.6± 2.67 22.3± 0.69
AGP 59.9± 0.67 73.0± 2.88 36.4± 3.42 ‡|‡
Graph-Saint 58.7± 0.58 73.6± 2.15 ‡|42.1± 4.65 ‡|35.4± 0.61
GAS 60.4± 0.46 77.1± 2.46 51.6± 5.87 34.7± 1.42

MBSA-NN 62.4± 0.64 77.3± 3.13 37.3± 5.39 35.9± 0.45
MBSA-NN(p) 59.4± 0.29 75.7± 3.91 34.6± 4.86 35.8± 0.30
MBSA-APPNP 62.0± 0.24 76.4 ±2.85 37.2± 4.61 27.7± 1.32
PPRGO-MBSA 60.7± 0.48 77.1± 2.77 35.7± 3.72 26.9± 0.66

OGBN* MAG*

APPNP ‡|‡ ‡|‡

PPRGO 35.5± 1.04 71.0± 0.86
AGP 38.6± 2.13 ‡|‡
Graph-Saint ‡|39.2± 1.92 ‡|‡
GAS 52.4± 1.37 ‡|‡

MBSA-NN 42.9± 2.25 74.3± 2.35
MBSA-NN(p) 36.9± 1.35 70.1± 2.43
MBSA-APPNP 30.2± 1.44 63.7± 2.32
PPRGO-MBSA 37.0± 1.67 75.1± 0.75

3.7. EXPERIMENTAL RESULTS FOR MBSA-NN 48

All algorithms in Table 3.2 were run on GPU, except for Graph-Saint which resulted

in OOM issues on GPU on several datasets (Reddit, Yelp, OGBN*, Mag*) and was

thus run on a CPU. Table 3.2 shows the average results after 5 runs of the algorithms

on different train/ validation /test splits. For comparison’s sake Table 3.2 contains

additional results concerning the use of PPRGO for training and one thread MBSA for

inference (instead of PowerIteration), denoted as PPRGO-MBSA; MBSA-APPNP as

example of scaling APPNP by MBSA-NN (3.5). Also, note that Table 3.2 shows the

best accuracy for MBSA-NN with one thread MBSA and for MBSA-NN(p) with parallel

MBSA at inference. The information about hyper-parameters of algorithms in Table 3.2

and description of the technical environment are in Section 3.11.

Table 3.2 provides the comparison in terms of accuracy, from which we can draw the

following analysis. First, it shows that MBSA-NN resolves the OOM issues of APPNP

on large graphs while retaining its performance. Second, it has a competitive accuracy

with respect to the latest scaling algorithms. We can safely assume that MBSA-NN

would be even more competitive in terms of accuracy if its parameters were optimally

tuned, due to the batch selection strategy (3.2) and the stochastic step size η(t). Finally,

replacing the inference step in PPRGO with MBSA (PPRGO-MBSA) positively impacts

the accuracy of PPRGO. All in all, the results in Table 3.2 highlight the flexibility and

quality of MBSA with its ability to scale graph convolution networks (e.g. training in

MBSA-NN, MBSA-APPNP) at no loss in accuracy, and to improve other existing scaling

algorithms (e.g. inference in PPRGO-MBSA) at inference.

3.7.2 Memory vs Time tradeoff

Training step

We now compare MBSA-NN to its competitors in terms of computational and memory

complexity. For a fair comparison, we retained the minimum average accuracy obtained

for each dataset from Table 3.2. We repeated 10 times the training of each algorithm for

each dataset until they achieved this minimal accuracy and stored the quantities of interest

at that point. Fig. 3.7 displays the mean GB (GPU) memory and time consumption

during preprocessing, training and inference over all datasets in Table 3.2. Fig. 3.7

shows that MBSA-NN outperforms everywhere in terms of GPU memory consumption

and overall running time with one thread/parallel MBSA at inference. The superior

performance of MBSA is especially noticeable on large datasets such as Yelp, OGBN*

(OGBN-products) and MAG*(MAG-coarse), where the absence of a bar for Graph-Saint,

AGP and GAS corresponds to OOM issues (in the case of AGP, due to the storage in

3.7. EXPERIMENTAL RESULTS FOR MBSA-NN 49

Figure 3.7: Comparison of scaling algorithm w.r.t. Average GPU Memory (GB, left
y-axis, bars-logs) and Time (sec., right y-axis, lines) for each dataset over 10 runs. Red
non-dash/dash lines are one thread/parallel MBSA receptively.

memory of a dense batch of the feature matrix). Note that only PPRGO and MBSA-NN

have handled the MAG* dataset. The improvement of MBSA-NN(∼ 1.3GB) in terms of

GPU memory on that dataset may look less impressive compared to PPRGO (∼ 2.5GB)

since it primary consumption of GPU comes from training the dense trainable weight

matrix W0 ∈ R2M×m, where M is for millions and m is the hidden layer’s dimension.

Finally, Fig. 3.7 shows that MBSA-NN not only reduces the memory consumption but it

also takes less than one minute to run on MAG-coarse (≈ 10M3 nodes and 2M features).

Table 3.3 presents details on the RAM memory consumption vs time during prepro-

cessing/training (PR/TR) and inference (IN) steps. Note that Table 3.3 shows the time

consumption of MBSA-NN with MBSA and pMBSA at inference. Also, Table 3.3 shows

that the number of nodes in batch for PPRGO is always greater than in MBSA-NN, since

PPRGO takes k = 32 neighbour nodes for each (bs = 512) labeled nodes in each batch.

On the contrary, MBSA-NN apply everywhere a fixed number of nodes in a batch (2∗512)

which allows it to have a stable training time. The worst case of batch generation for

PPRGO (bs ∗ 32) occurs with Cora* dataset which has a more dense graph. In particular,

PPRGO uses 14810 nodes per batch in average on Cora*, which is 10 times higher than

MBSA-NN, leading to a significant increase in training time and memory consumption

on RAM as well as on GPU.

3M is a million.

3.8. UNIFORM MBSA 50

Table 3.3: Average Memory (MB, RAM)/Time(sec.) complexity at preprocessing/training
(PR/TR), inference (IN) steps.

Cora* Pubmed
pr/tr in pr/tr in

PPRGO 430/12.3 28/0.1 372/1.4 39/0.1
AGP 2248 / 62.3 140/1.45 2616.32/ 48.3 1023/0.21
Graph-Saint 745/123.2 44/0.4 516/15.2 42/ 0.5
GAS 38/1172.6 25/ 0.3 13/95.6 15/0.07

MBSA-NN(p) 19/2.1 16/0.08(0.07) 7/0.92 8/0.07(0.05)

OGBN* MAG*
pr/tr in pr/tr in

PPRGO 378/2.3 1372 /15.4 371/42.1 2440/53.7
AGP 5140/113.4 426/ 11.7 OOM OOM
Graph-Saint 9472/7514 805/518 OOM OOM
GAS 367/1568.4 412/4.6 OOM OOM

MBSA-NN(p) 357/1.9 382/8.9(3.8) 356/12.1 482/59.8(34.1)

Inference step

Another main bottleneck occurs during inference, which is why we compare memory

and time consumption PPRGO with MBSA-NN during inference in Table 3.3 (IN). It

shows that pMBSA at inference consumes significantly less memory over all datasets

than PPRGO. This is due to the use of batch learning with pMBSA instead of using the

complete graph with PI. The difference is significant on the OGBN* and MAG* datasets:

PPRGO uses ∼ 1.3GB and ∼ 2.3GB in RAM over 15 and 53 seconds, compared to

∼ 0.38GB and ∼ 0.48GB over 3.8 and 34.1 seconds with pMBSA. The implementation

of MBSA-NN and MBSA-APPNP on Python3.8 (Tensorflow2.0) and links on datasets in

experiments are provided in Section 3.11.

3.8 Uniform MBSA

Since MBSA and MBSA-NN have a limitation based (see Subsection 3.5.5) on the

necessity of computing the transition probability matrix between batches P̃ , we propose

to replace the Rule 3.2 with the uniform batch selection strategy. Furthermore, we

propose this new strategy because neural networks use labelled nodes from batches to

compute classification loss during training.

3.8. UNIFORM MBSA 51

3.8.1 Node update

In order to make a node update step and ensure that each batch contains labelled nodes,

we replace the Rule (3.2) for choosing At+1 in MBSA by a uniform transition probability

between batches:

Zt+1
i = Zti + η(t)I{i ∈ SAt}

 ∑
j∈SAt+1

αÃi,jZ
t
j

2∗bs
n

− Zti + (1− α)Yi

 (3.6)

where η(t) is defined as in Theorem 1, Si = U(2 ∗ bs,V) is a batch of nodes which we

assume it contains bs labelled and unlabelled nodes respectively where U(·, ·) is a function

of uniform sampling without repetitions of 2 ∗ bs nodes from V , s = C2∗bs
n is a number of

batches where C2∗bs
n the denotes the (2 ∗ bs)-combinations out of n and P̃ = [P̃i,j]

s
i,j=1 is

the transition probability matrix such that P̃i,j = 1/s (viz. P̃At,At+1 = QAt,At+1). Note

that we define P̃i,j = 1/s in order to avoid computation of the number of edges between

all possible batches (C2∗bs
n). In other words, since P̃i,j = 1/s ∀i, j ∈ {1, ..., s} we do not

need to compute and keep in memory this matrix.

Remark 4: If Zti is updated using the uniform transition probability between batches

defined by equation (3.6), then Zti → Z∗
i with the same conditions as in Theorem 1. The

proof is given in Section 3.10.

Since Remark 4 is based on uniform transition probability between batches then we

assume that batches at each timestamp can be defined as SAt = SAt+1 = [U(bs,Vu),Sl]
which is the concatenation of bs unlabelled and labelled nodes respectively where Sl =

U(bs,Vl) is a sample of labelled nodes. Note that if bs > Vl then Sl = U(|Vl|,Vl). This

ensures that each batch contains labelled nodes for the computation of the categorical

cross-entropy loss L.

3.8.2 Training step

Now we propose a way to adopt uniform MBSA for scaling graph convolution networks.

Due to the above conclusions from Remark 4, Equation (3.6) can be adapted for neural

networks as in Algorithm 7, that we call uMBSA-NN. Note that uMBSA-NN (Algorithm 7)

has the same opportunities as MBSA-NN (Algorithm 5) such as: the fixed number of

necessary neighbors for labelled nodes, making the regularized matrix ÃSAt ,SAt+1
sparser

than the one used in PPRGO. In particular it requires only 2 ∗ bs nodes per iteration; also,

uniform MBSA can be used in any graph convolution networks relying on PowerIteration

method [6,14,31], making such algorithms scalable for large graphs. Furthermore, uniform

3.9. EXPERIMENTAL RESULTS FOR UMBSA-NN 52

Algorithm 7: uMBSA-NN

INPUT : Ã, Y , X, α, γ, epochs

1 for t← 0 to epochs do
2 Sl = U(bs,Vl);
3 SAt = SAt+1 = [U(bs,Vu),Sl];
4 Z̃j = I{j ∈ SAt+1}(Γ(0)(XjW

t
(0))W

t
(1));

5 Z̃i = I{i ∈ SAt}(Γ(0)(XiW
t
(0))W

t
(1));

6 Z̃t+1
i = Z̃ti + η(t)I{i ∈ Si}

(∑
j∈SAt+1

αÃi,jZ̃j

2∗bs
n

− αZ̃ti

)
;

7 LS̃At
← I{i ∈ SAt}L(Yi,Γ

(1)(Z̃t+1
i)) ;

8 (W t+1
(0) ,W

t+1
(1))← update by β

(
∂LSAt

∂W t
(0)

,
∂LSAt

∂W t
(1)

)
gradient step;

9 (W t
(0),W

t
(1)) = (W t+1

(0) ,W
t+1
(1))

10 end

MBSA and consequently uMBSA-NN have their superiority which is based on the to

avoid the computation and keeping in memory the matrix P̃ contrary to MBSA and

MBSA-NN based on sampling Rule 3.2.

3.9 Experimental results for uMBSA-NN

In this subsection, we analyze the differences between uMBSA-NN and MBSA-NN in

terms of total RAM memory usage as the number of nodes used during training for

both is the same. It should be noted that the preprocessing stage in MBSA-NN and

uMBSA-NN focuses on calculating matrix P. Also, emphasize that the memory usage and

training time on GPU won’t change since the neural network architecture of uMBSA-NN

remains the same as MBSA-NN.

3.9.1 Accuracy vs Memory/Time tradeoff

The results in terms of accuracy, time and memory complexity are presented in Table 3.4.

Note that the values for memory and time include all steps, namely preprocessing, training

and inference. Also, Table 3.4 contains for comparison’s sake: PPRGO with k = 2, which

guarantee that PPRGO will use the same number of nodes in batch as uMBSA-NN

during the training (viz. bs ∗ k = 512 ∗ 2 = 1024); uMBSA-NN with τ = 20 for reducing

the number of iterations for inference by MBSA (Algorithm 4); all of the algorithms in

comparison use the number epochs equal to 200. Table 3.4 shows that uMBSA-NN keeps

3.9. EXPERIMENTAL RESULTS FOR UMBSA-NN 53

Table 3.4: Average: Time (sec.), Memory(GB), Accuracy(%) over runs of the algorithms
on 50 random train/validation/test splits. The modifications of PPRGO and uMBSA-NN
are: PPRGO‡ has k = 32, and PPRGO∗ has k = 2; uMBSA-NN‡ has τ = 100 at inference,
and uMBSA-NN∗ has τ = 20 at inference.

CoraFull Pubmed Reddit
Time Mem. Acc. Time Mem. Acc. Time Mem. Acc.

APPNP 7.2 2.1 57.9 4.3 1.9 79.0 - OOM -
AGP 63.5 2.4 59.9 48.6 3.7 73.0 68.4 10.3 13.8
PPRGO‡ 14.1 0.6 59.3 1.7 0.4 75.3 14.1 1.5 22.3
PPRGO∗ 4.2 0.5 56.0 1.0 0.4 73.7 12.7 1.5 18.6

MBSA-NN 2.1 0.04 62.4 0.9 0.01 77.3 2.5 0.8 35.9
uMBSA-NN‡ 2.1 0.02 61.1 0.9 0.01 75.7 2.2 0.6 33.7
uMBSA-NN∗ 1.9 0.02 60.3 0.7 0.01 75.5 1.8 0.6 32.3

the same computation complexity (Time (s.)) through all datasets by batch training

(bs ∗ 2) and batch inference (3.4). At the same time, PPRGO uses bs ∗k nodes in training,

k = 32 being the number of neighbour nodes for each labelled node, and the complete

graph with n nodes in inference due to the use of PowerIteration. In particular, Table 3.4

shows that PPRGO with the same batch size k = 2 as uMBSA-NN loses accuracy for

all datasets and significantly consumes more time on CoraFull and Reddit with respect

to uMBSA-NN (τ = 100, τ = 20). Moreover, we can see that uMBSA-NN outperforms

PPRGO even with k = 32 in terms of time, memory, and accuracy, significantly noticeably

on CoraFull and Reddit datasets. We conjecture that uMBSA-NN as well as MBSA-NN

gains accuracy because uniform batch sampling allows considering all neighbors for

labelled nodes during training. On the contrary, the training process of PPRGO is based

only on the top k PPR neighbor nodes.

Note that uMBSA-NN maintains competitive accuracy compared to the other most

recent best scaling algorithms while only outperforming them in terms of time and

memory complexity. The accuracy reduction occurs in uMBSA-NN as a result of a

uniform selection of unlabelled nodes for updating labelled ones, which does not ensure

that the unlabelled nodes will have a large number of connections with labelled ones.

On the other hand, uMBSA-NN can beat MBSA-NN in terms of memory and time

consumption across all datasets because of the uniform batch sampling. Finally, given

that accuracy remains competitive with the other scaling algorithms, we can observe that

uMBSA-NN presents an accuracy vs. time/memory complexity tradeoff.

The implementation of uMBSA-NN on Python3.8 (Tensorflow2.0), links on datasets

in experiments with parameters details for algorithms in Table 3.4 and description of the

3.10. PROOFS 54

technical environment are in Section 3.11.

3.10 Proofs

3.10.1 Theorem 1

Proof. Let us introduce an Ordinary Differential Equation (ODE) for analysis of Algo-

rithm 3, viz., Żi = h(Zti) where

h(Zti) = E

[
P̃At,At+1

QAt,At+1

(
α

P̃At,At+1

∑
j∈SAt+1

Ãi,jZ
t
j − Zti + Ỹi

)∣∣∣∣∣i ∈ SAt

]
.

Let Ỹi = (1− α)Yi. Then

h(Zti) = I{i ∈ SAt}

(∑
At+1∈A

QAt,At+1

P̃At,At+1

QAt,At+1

×

(
α
∑

{j∈SAt+1
} αÃi,jZ

t
j

P̃At,At+1

− Zti + Ỹi

))

= I{i ∈ SAt}

(
n∑
j=1

αÃi,jZ
t
j − Zti + Ỹi

)
.

Since ⊔sk=1Sk = [1, ..., n], above transforms to:

h(Zt) = (αÃ− I)Zt + (1− α)Y. (3.7)

M(i)t+1 is a martingale difference sequence uncorrelated with the past and can be

considered as noise:

M(i)t+1 =
α
∑

j∈SAt+1
Ãi,jZ

t
j

QAt,At+1

−
n∑
j=1

αÃi,jZ
t
j . (3.8)

Rewrite Algorithm 1 as a stochastic approximation algorithm:

Zt+1
i = Zti + η(t)I{i ∈ SAt}

(
n∑
j=1

αÃi,jZ
t
j − Zti + Ỹi +M(i)t+1

)
. (3.9)

Then, following the results from Corollary 4 and Theorem 7 in Chapters 2 and 3

resp. of [82] we can prove Theorem 1 by showing the fulfillment of the corresponding

3.10. PROOFS 55

assumptions from [82]:

1. As required in [82], Z∗ is a globally asymptotically stable equilibrium of the above

ODE, because this is a stable linear system. If Z∗ is a solution of the Eq. (3.1) then

Z∗ = BZ∗ + Ỹ where B = αÃ and Ỹ = (1−α)Y . Also, if h(Z∗) = 0 then Z∗ is a globally

asymptotically stable equilibrium point of (3.1).

2. A1, in Chapter 2 of [82]: The map h(x) : Rn → Rn is Lipschitz for some 0 < λ <∞:

Let Γ = diag(π1, . . . , πn) with π = [π1, . . . , πi, . . . , πn] denote the stationary probabil-

ity vector on diagonal where πi = ψ(i,t)
t , ψ(i, t) =

∑t
m=0{i ∈ SAm}. The limiting ODE

(3.7) can be derived as:

ẋ(t) = Γ(h(x(t))) = Γ((αÃx(t)− x(t) + (1− α)Y))

= (F (x(t))− x(t)) = FΓ (x(t))− x(t),

where FΓ(x) = (I − Γ)x+ ΓF (x). Then,

||FΓ(x)− FΓ(y)||w ≤ max
i

[
(1− πi)

∣∣∣∣(xi − yi)wi

∣∣∣∣
+ πi

∣∣∣∣∣
∑n

j=1 αÃi,j(xj − yj)
wi

∣∣∣∣∣
]
≤ max

i

[
(1− πi)

∣∣∣∣xi − yiwi

∣∣∣∣
+ πiλ||x− y||w

]
≤ λ̂||x− y||w,

where λ̂ = maxi(1− (1−λ)πi). Thus FΓ is also a contraction w.r.t. || · ||w, hence Lipschitz.

3. A2 in Chapter 2 of [82]: Step sizes {η(t)} are positive scalars satisfying
∑∞

t=0 η(t) =

∞ and
∑∞

t=0 η(t)2 <∞.

This holds due to our assumption about η(t) = 1/(1 + t)γ ; γ ∈ (0, 1]. Based on latest

results from Theorem 1.1 and Theorem 1.2 in [89] the
∑∞

t=0 η(t)2 <∞ can be replaced

by limt→∞ η(t) = 0 and Zti will still converges almost surely to Z∗
i .

4. A3 in Chapter 2 of [82]: E[M(i)t+1] = 0 and E[||M(i)t+1||2] ≤ K(1 + ||Zti ||2) for

some constant K > 0.

Based on results from (3.8),

E[M(i)t+1|As, s ≤ t] =
n∑
j=1

αÃi,jZ
t
j −

n∑
j=1

αÃi,jZ
t
j = 0,

3.10. PROOFS 56

i.e., M(i)t is a martingale difference sequence. Also:

|M(i)t+1| ≤ 1 +

∣∣∣∣∣
n∑
j=1

αÃi,jZ
t
j

∣∣∣∣∣.
Then: E[||M(i)t+1||2] ≤ K(1 + ||Zti ||2). Thus the assumption holds.

5. A5 in Chapter 3 of [82]: Scaled limit hc(x) = h(cx)
c , x ∈ Rn exists and satisfies

hc(x)→ h∞(x) as c→∞, uniformly on compacts for some h∞ ∈ C(Rn). Furthermore,

the O.D.E. ẋ(t) = h∞(x(t)) has the origin as it is unique globally asymptotically stable

equilibrium.

To ensure that this condition applies in our case let us consider the case for one

element:

lim
c→∞

(∑n
i=1,i ̸=j αÃi,jZ

t
j + cαÃi,iZ

t
i − cZti + Ỹi

c

)

= lim
c→∞

(
cαÃti,iZ

t
i

c
− cZti

c

)
= αÃti,iZ

t
i − Zti .

Thus hc(x)→ h∞(x) for suitably defined h∞ uniformly on compacts. Furthermore, the

limiting O.D.E. is a homogeneous linear system with a nonsingular coefficient matrix,

so has the origin as the unique globally asymptotically stable equilibrium. Hence the

assumption holds.

Since we fulfill all required assumptions, it follows from the results of Chapter 2, [82]

that Zt generated by Algorithm 3 converges to Z∗ as t→∞ with probability one.

3.10.2 Theorem 2

Proof. The proof relies on comparison of two ordinary differential equations. The first

ODE from Algorithm 5 is Żi = h(Zti), where

h(Zti) = E

[
P̃At,At+1

QAt,At+1

(
1

PAt,At+1

∑
j∈SAt+1

Ãi,j(Γ
(0)(XjW

t
(0))W

t
(1))− Z

t
i

)
|i ∈ SAt

]
. (3.10)

3.10. PROOFS 57

Thus

Żti = h(Zti) = I{i ∈ SAt}

(∑
At+1∈A

QAt,At+1

P̃At,At+1

QAt,At+1

×

(∑
{j∈SAt+1

} Ãi,j(Γ
(0)(XjW

t
(0))W

t
(1))

P̃At,At+1

− Zti

))

= I{i ∈ SAt}

(
n∑
j=1

Ãi,j(Γ
(0)(XjW

t
(0))W

t
(1))− Z

t
i

)
.

Since ⊔si=kSk = [1, ..., n] then the above ODE transforms to:

Żt = h(Zt) = Ã(Γ0(XW t
(0))W

t
(1))− Z

t. (3.11)

M(i)t+1 is a martingale difference sequence uncorrelated with the past and can be

considered as noise:

M(i)t+1 =

∑
j∈SAt+1

Ãi,j(Γ
(0)(XjW

t
(0))W

t
(1))

QAt,At+1

−
n∑
j=1

Ãi,j(Γ
(0)(XjW

t
(0))W

t
(1)). (3.12)

Rewrite Algorithm 5 in a form of stochastic approximation algorithm where Fi(W
t
(0),W

t
(1)) =∑n

j=1 Ãi,j(Γ
(0)(XjW

t
(0))W

t
(1)):

Zt+1
i = Zti + η(t)I{i ∈ SAt}

(
Fi(W

t
(0),W

t
(1))− Z

t
i +M(i)t+1

)
(3.13)

Let us define the second stochastic approximation algorithm as follows:

Denote λti = Fi(W
t
(0),W

t
(1)). W

t+1
(0) ,W

t+1
(1) can be calculated by gradient descent. Note

that we choose the gradient descent method just for simplicity of explanation in proof,i.e.

(W t+1
(0) ,W

t+1
(1)) = (W t

(0),W
t
(1))− β∇L(Yi,Γ

(1)(Zt+1
i)))

Then, we have

λt+1
i = λti − β∇L(Yi,Γ

(1)Zt+1
i)

= λti + η(t)I{i ∈ SAt}

(
λti − λti −

β

η(t)
∇L(Yi,Γ

(1)(Zt+1
i)) + o(1)

)
.

(3.14)

Let us compute the difference between Zt+1
i and λt+1

i :

3.10. PROOFS 58

Zt+1
i − λt+1

i = Zti − λti

+ η(t)I{i ∈ SAt}

(
Fi(W

t
(0),W

t
(1))− Z

t
i − λti + λti

+M(i)t+1 +
β

η(t)
∇L(Yi,Γ

(1)(Zt+1
i)) + o(1)

)
.

(3.15)

Since λti = Fi(W
t
(0),W

t
(1)), we have

Zt+1
i − λt+1

i = Zti − λti + η(t)I{i ∈ SAt}

(
−(Zti − λti)

+M(i)t+1 +
β

η(t)
∇L(Yi,Γ

(1)(Zt+1
i)) + o(1)

)
.

(3.16)

Denote yti = Zti − λti. Then,

yt+1
i = yti + η(t)I{i ∈ SAt}

(
−yti +M(i)t+1 +O

(
β

η(t)

))

= (1− η(t))yti + η(t)O

(
β

η(t)

)
.

(3.17)

If we choose β = β(t) satisfying β(t)
η(t) → 0, the updates of W t

(0),W
t
(1) happen on a slower

time scale. Hence we freeze them at a constant value W(0),W(1), for the purposes of

analyzing the iteration (3.17). The limiting ODE for (3.17) then is ẏ(t) = −y(t), which

has the zero vector as its unique globally asymptotically stable equilibrium. The analysis

of two time scale stochastic approximation of section 6.1 of [82] applies and leads to

Zti − λti = Zti −Fi(W t
(0),W

t
(1))→ 0 a.s. In turn the analysis of ibid. for the slow timescale

iterate for W t
(0),W

t
(1) implies that it is nothing but a gradient descent for the loss function

E
[
L(QY,QF (W t

(0),W
t
(1)))

]
w.r.t. W(0),W(1)where Q = diag(Qi,i)

n
i=1 is a diagonal matrix with strictly positive entries

on the diagonal, that arises out of sampling. Thus it will converge a.s. to a local minimum

of the loss function, i.e., a locally optimal W ∗
(0),W

∗
(1). In turn, Zti − λti → 0 a.s. implies

3.11. EXPERIMENTAL DETAILS 59

that

Zti
a.s.−−→

n∑
j=1

Ãi,j(Γ
(0)(XjW

∗
(0))W

∗
(1)) as t→∞ ∀i ∈ {1, . . . , n},

3.10.3 Remark 4

Proof. Since, for Remark 4 the ODE corresponding to (3.6) is:

h(Zti) = E

[(∑
j∈SAt+1

∑n
j=1 αÃi,jZ

t
j

2∗bs
n

− Zti + Ỹi

)
|i ∈ SAt

]

= I{i ∈ SAt}QAt,At+1C
2∗bs−1
n−1

(∑n
j=1 αÃi,jZ

t
j

2∗bs
n

)
− Zti + Ỹi

= I{i ∈ SAt}
n∑
j=1

αÃi,jZ
t
j − Zti + Ỹi

and martingale:

M(i)t+1 =

∑n
j=1 αÃi,jZ

t
j

2∗bs
n

−
n∑
j=1

αÃi,jZ
t
j

Then, it is easy to see that all assumptions from proof of Theorem 1 (Subsection 1) also

fulfill for (3.6) and Zt converges to Z∗ when t→∞ with probability one.

3.11 Experimental details

3.11.1 State-of-the-art (SOTA) algorithms

We compare MBSA (Algorithm 3) with other updating strategies from the literature,

namely Jacobian over Relaxation (JOR), Double Stochastic Block Gauss-Seidel (DSBGS)

[65], Randomized Kaczmarz (RK) [1] and Randomized Block Gauss-Seidel (RBGS)

[66].Note that we excluded DSA-SSL [2] from the comparison due to its extremely slow

convergence rate.

To show the advantages of MBSA-NN (Algorithm 5), MBSA-APPNP (Eq. (3.5))

and uMBSA-NN(Algorithm 7) in terms of computation time, memory complexity and

accuracy, we consider the latest best SOTA scaling algorithms such as: neighbor selection

PPRGO [51], model simplification AGP [49], subgraph sampling Graph-Saint [56], layer

sampling GNNAutoScale (GAS) [62]. Note that all of the aforementioned algorithms work

in a batch regime and outperform other scaling algorithms such as SGC, clusterGCN,

3.11. EXPERIMENTAL DETAILS 60

GBP, and FastGCN [60], on extremely large graphs. Also, we compare MBSA-APPNP

with APPNP to see the impact of batch training on the scaling of this algorithm.

3.11.2 Parameters

Note that for the comparison with MBSA, we speed up the implementation of RBGS

algorithm (see details in Subsection 3.11.5). We compute MBSA with γ = 0.3 and ϵ = 0.1,

based on an initial study of the impact of the parameters in Section 3.3. We have used

the optimal step size 0.9 and 15 for JOR and DSBGS, respectively, from their works. For

a fair comparison between DSBGS, RBGS and MBSA, we set the batch size to the same

value bs = 512. Moreover, for all of these algorithms, we used α = 0.9 since it often gives

a high classification accuracy [14].

For achieving consistency between APPNP and MBSA-NN, we took two layers

architecture for neural network and a random jump α = 0.9. Moreover, for MBSA-NN

we used the same batch size bs = 512 as in PPRGO. Also, for MBSA-NN we defined: L2

regularization to 5 · 10−4, power of step size for training and inference γ = 0.3, optimal

batch size for inference for each dataset computed by equation (3.4), damping factor for

inference ϵ = 0.1 and learning rate 0.005. The values for γ, ϵ and τ have been selected the

same as the above optimal parameters for comparison with MBSA. Moreover, for pMBSA

we used 6 cores for parallel computation. The rest best hyper-parameters for MBSA-NN

in terms of accuracy (Tables 3.2,3.4) we have selected by the 5 fold cross-validation

grid search for each dataset separately. These hyper-parameters were selected from the

following range:

• Training: activation function Γ(0)(·) ∈ {relu, selu, leaky relu}, dropout ∈ {0.1, 0.5},
β ∈ {1, 1

QAt,At+1
}, d ∈ {32, 64, 128, 256, 512};

• Inference: MBSA τ ∈ {100, 300}, pMBSA τ ∈ {30, 90}.

.

Table 3.5 shows the selected MBSA-NN hyper-parameter for each dataset, which was

used further for computations in Tables 3.2,3.4.

Moreover, the results in Tables 3.2,3.4 for PPRGO, AGP, GAS, APPNP and Graph-

Saint were achieved by computing these algorithms with the best hyper-parameters

defined in their works. Note that in PPRGO-MBSA for the MBSA at the inference, we

choose parameters as for inference in MBSA-NN (Table 3.5). Also, take notice that the

hyper-parameters we utilized for uMBSA-NN and MBSA-APPNP (Tables 3.2,3.4) were

the same as the best for the MBSA-NN. Finally, for consistency of training process across

3.11. EXPERIMENTAL DETAILS 61

Table 3.5: Optimal MBSA-NN hyper-parameters in terms of Accuracy (Tables 3.23.4).

Parameters Cora* Pubmed Reddit Yelp OGBN* MAG*

Γ(0)(·) leaky relu leaky relu selu relu relu relu
dropout 0.1 0.1 0.1 0.5 0.5 0.5

β 1 1 1
QAt,At+1

1 1 1

d 128 512 512 128 512 32
MBSA τ 100 100 100 300 300 300

pMBSA τ 30 30 30 90 90 90

MBSA-NN, PPRGO, APPNP, AGP, GAS and Graph-Saint on all datasets, we did not

use early stopping and computed only validation loss at each epoch during 200 epochs.

Table 3.6: Optimal MBSA-NN hyper-parameters in terms of memory and computational
complexity (Table 3.3).

min Cora* Pubmed OGBN* MAG*

Algorithm Graph-Saint AGP PPRGO PPRGO
Accuracy (%) 58.7± 0.58 73.0± 2.88 35.5± 1.04 71.0± 0.86

epochs 38± 3.84 17± 4.72 148± 1.61 197± 2.14
MBSA τ 10± 2.31 4± 2.91 82± 1.93 98± 3.03

MBSA(p) τ 13± 1.51 3± 1.77 23± 2.11 28± 1.84

For a fair comparison in terms of memory and computational complexity, we retained

the minimum average accuracy obtained for each dataset from Table 3.2. We repeated

10 times the training of each algorithm for each dataset until they achieved this minimal

accuracy and stored the quantities of interest at that point. Table 3.6 shows the average

minimum number of epochs and iterations for training and inference of MBSA-NN for

achieving a minimal accuracy over datasets presented (Table 3.2). In particular, Table 3.6

shows the parameters for MBSA-NN required to convergence to the minimal accuracy for

each dataset (Table 3.2) with extremely small consumption of memory and computational

complexity (Table 3.3).

3.11.3 Technical environment and links on implementations

The technical environment for our experiments is presented in Table 3.7. In particular,

Table 3.7 shows the difference in technical requirements between MBSA-NN and the

latest best SOTA scaling algorithms. The Table 3.7 shows that MBSA-NN requires

almost two times fewer resources everywhere. Moreover, note that the implementations

3.11. EXPERIMENTAL DETAILS 62

of the algorithms for experiments are available by the links provided in Table 3.8.

Table 3.7: Environment of latest SOTA scaling algorithms.

Algorithm GPU Nvidia CPU Intel RAM

PPRGO [51] 1080Ti: 11 GB 5 cores 64 GB
AGP [49] RTX8000: 48 GB Xeon: 40 cores 512 GB
Graph-Saint [56] Tesla P100: 16 GB Dual Xeon 40 cores 512GB
GAS [62] 2080Ti Tesla P100: 11 GB — 64 GB

MBSA-NN 1070: 7 GB 7 cores 32 GB

Table 3.8: Implementation links.

Methos URL

APPNP https://github.com/gasteigerjo/ppnp
PPRGO https://github.com/TUM-DAML/pprgo tensorflow
Graph-Saint https://github.com/GraphSAINT/GraphSAINT
AGP https://github.com/wanghzccls/AGP-Approximate Graph Propagation
GAS https://github.com/rusty1s/pyg autoscale

Finally, implementations of MBSA-NN (Tenwsorflow v2), MBSA (Python 3.8),

pMBSA (C++) and other linear algorithms are available on google drive link4. The

implementation of uMBSA-NN (Tensorflow v2) is available on the github link5.

3.11.4 Dataset description

For each dataset, we extracted large connected components as in [6,14], which avoids cases

with unconnected batches. We treated the citation links of these datasets as undirected

edges. We regularizes the adjacency matrices with δ = 0.5 since it has been shown to

give high performance [6]. The feature matrix X has been generated for each dataset by

a bag-of-words [73] model. Moreover, X is used without normalization and it is sparse

for CoraFull, Pubmed and MAG-coarse, and dense for the others. We used 20 labeled

nodes from each class as a train set. The validation sets for the experiments with MBSA-

NN contains twice as many nodes as in the training set, sampled uniformly (without

repetition), while for the experiments with MBSA, we just used the remaining nodes as

test set. Finally, the experiments are repeated with 5 random splits for each dataset to

show stable results. Table 3.9 presents the dataset statistics, where the notations Cora*,

4https://drive.google.com/drive/folders/1i3tcV9zHtH20tAs3CCCWXdqeFA6kfcou?usp=sharing
5https://github.com/KamalovMikhail/wsdm2022

3.11. EXPERIMENTAL DETAILS 63

OGBN* and MAG* are used to improve readability in place of CoraFull, OGBN-products

and MAG-coarse datasets respectively.

Table 3.9: Datasets statistic (large connected component).

Dataset n e d c

Cora-ML [90] 2,810 15,962 - 7
Citeseer [91] 2,110 7,388 - 6

Cora∗ [85] 18,800 125,370 8,710 70
Pubmed [85] 19,717 88,648 500 3
Reddit [87] 232,965 114,615,892 602 41
Yelp [56] 703,655 13,927,667 300 21
OGBN∗ [88] 2,385,902 123,612,734 100 47
MAG∗ [51] 10,541,560 265,219,994 2,784,240 8

The datasets in the experimental sections are available below links:

Cora* [85], Pubmed [85], Reddit [87] :

https://github.com/TUM-DAML/pprgo tensorflow/tree/master/data

Yelp [56], OGBN* [88] :

https://drive.google.com/drive/folders/1zycmmDES39zVlbVCYs88JTJ1Wm5FbfLz

MAG* [51] :

https://figshare.com/articles/dataset/mag scholar/12696653

Cora-ML [90], Citeseer [91]:

https://github.com/gasteigerjo/ppnp/tree/master/ppnp/data

3.11.5 Implementation details

All linear algorithms have been implemented in a sparse regime to reduce memory con-

sumption. Moreover, we implemented the node partitioning method for BSA, RBGS, and

DSBGS, making the implementation of these algorithms faster than with application of

default numpy partitioner. Furthermore, for RBGS we employed the following equations:

AτZ
′ = r;Zt+1 = Zt + EZ ′T (3.18)

instead of:

Zt+1 = Zt + EA†
τr (3.19)

where A†
τ is a pseudo inverse matrix. Note that E and Aτ are sparse and first equation

in (3.18) can be solved for sparse matrices which significantly reduce memory and time

3.11. EXPERIMENTAL DETAILS 64

consumption than in the case of A†
τ (e.g. for 2 iterations (3.18) consumes 2.3 MiB, and

(3.19) consumes 120 MiB). The detail notation can be found in [[66], p.370].

Chapter 4

Graph-Diffusion & PCA framework

This chapter presents a novel framework called Graph diffusion & PCA (GDPCA) is

proposed in the context of semi-supervised learning on graph structured data. By a

combination of a modified principal component analysis with the traditional supervised

loss, Laplacian regularization in GDPCA, the Curse of Dimensionality is avoided and

the scenario where the adjacency matrix represented via Binary edges is handled. This

framework can be applied to non-graph datasets as well, such as images by constructing

similarity graph. GDPCA enhances the local graph structure through node covariance,

which improves node classification. Furthermore, the proposed combination of Laplacian

regularization and a reorganized PCA loss is guaranteed to have an explicit solution by

our framework. Additionally, we demonstrate that, on a variety of datasets, GDPCA

beats the most recent best state-of-the-art (SOTA) classical diffusion based methods.

Even more, we show that our framework performs similarly to SOTA graph convolution

networks while having a much lower computational complexity.

The following sections make up this chapter: i) the Graph-Diffusion & PCA (GDPCA)

framework is initially defined with a theoretical study. Particularly, we show the theoreti-

cal analysis of GDPCA, which claims that our framework explicitly resolves the Laplacian

PCA loss. Additionally, this section illustrates how the MBSA algorithm scales the

GDPCA framework (see Chapter 3); ii) GDPCA’s ablation studies and experimental

comparisons with the latest best SOTA classical diffusion-based algorithms and graph

convolution networks are shown in the next section. Additionally, this section demon-

strates how GDPCA performs better on both graph and non-graph data than traditional

diffusion-based and non-graph based SSL methods. Furthermore, we demonstrate that

GDPCA is highly accurate even when applied to the actual dataset including the COVID

Clinical Trials. iii) as a last step, we demonstrate GDPCA’s propositional proofs and

provide experimental information. We also go into depth about how we crawled, collected,

65

66

and processed the present COVID Clinical Trials data for our studies. Moreover, this

section provides information on the datasets, algorithms, and technological environment

that were used.

4.1. GRAPH-DIFFUSION WITH REORGANIZED PCA LOSS 67

4.1 Graph-diffusion with reorganized PCA loss

Let’s first establish the notation that will be required for the GDPCA framework’s further

explanation. In graph-based SSL, the data consists of the feature matrix X = [Xi]
n
i=1,

where Xi = (Xi,j)
d
j=1 lies in a d-dimensional feature space (e.g. from bag-of-words [73]),

and of the label matrix Y = [Yi,j]
n,k
i,j=1 such that Yi,j = 1 if Xi ∈ Cj and Yi,j = 0

otherwise, {C1, . . . , Ck} being a set of k classes. The aim of semi-supervised learning is to

estimate Y by a classification result Z = [Zi,j]
n,k
i,j=1 when there is a low number of labels

available, while X contains information for both labeled and unlabeled observations. We

also assume that the dataset (X,Y) can be represented through the undirected graph

G = (V, E), with n = |V| the number of nodes with features (e.g. papers) and e = |E|
is the number of edges (e.g. citations). Let A = [Ai,j]

n,n
i,j=1 denote the adjacency matrix

associated with the G, and D = diag(Di,i) be a diagonal matrix with Di,i =
∑n

j=1Ai,j .

Since most of the classical diffusion-based algorithms (see Chapter 1) focus on mini-

mizing the combination of Laplacian and standard classification losses (Loss function 4.1).

This section proposes a novel framework that minimizes the losses mentioned below

from the point of resolving issues like Binary edges and Curse of dimensionality (see

Chapter 1).

min
Z∈Rn×k

{ n∑
i=1

n∑
j=1

Ai,j ||Zi − Zj ||22 + µ

n∑
i=1

||Zi − Yi||22
}
, (4.1)

where µ is a Lagrangian multiplier, n is the number of nodes, A = [Ai,j]
n,n
i,j=1 is an

adjacency matrix, Z = [Zi]
n
i=1 is a classification result and Y = [Yi]

n
i=1 is a matrix that

represents labels.

This work’s current point is the opposite of the point of the latest works [4,23,25] that

focus on increasing accuracy. Particularly, this work is motivated by the idea that principal

component analysis (PCA) can solve at least the Curse of dimensionality issue. Different

works [92–96] consider a transformation of the matrix of node features X ∈ Rn×d by

principal components XUT = Z to the classification results, where U ∈ Rd×k is a matrix

of principal component vectors from PCA. Instead, we consider principal components

which are straightforwardly related to the classification result (U ∈ Rk×n, UT = Z), as

explained in the sequel.

One of the main ideas of this work is that the nodes from different classes have high

covariance. This idea lies under the hood of Linear Discriminant Analysis (LDA) [97],

which was developed for supervised learning. We extend this idea so that it can also be

applied in both unsupervised (PCA-BC) and semi-supervised learning (GDPCA).

4.1. GRAPH-DIFFUSION WITH REORGANIZED PCA LOSS 68

4.1.1 PCA for binary clustering (PCA-BC)

In this section, we restrict the setting to the case where no labels are available, and where

the nodes come from two clusters.

Assumption 1: Let us assume that the feature matrix X is sampled from the Gaussian

distribution:

X1, . . . , Xn
2
∼ N (µ1, C) and Xn

2
+1, . . . , Xn ∼ N (µ2, C), (4.2)

where C is the covariance matrix and µ1, µ2 are the expectations of classes C1 and

C2 respectively. Furthermore, let ||C||2 = O(1), ||µ1 − µ2||2 = O(1) and expectations

has an identical values through the all coordinates (e.g. µ1 = [0.1, 0.1, 0.1, ...], µ2 =

[0.8, 0.8, 0.8, ...]). Moreover, we have the ratio c0 = n/d be bounded away from zero for

large d.

Remark 5: The assumptions ||C||2 = O(1) and ||µ1 − µ2||2 = O(1) are needed to save

the essential variations in d linearly independent directions and define a non-trivial

classification case for extremely large d. In particular, this assumption allows us to work

with bag-of-words [73] where the d-space is increasing with respect to the number and

the length of papers, which leads to the Curse of dimensionality issue.

Based on the proof of Theorem 2.2 in [98] and the above restrictions on X, there

exists a connection between the binary clustering problem and the PCA loss function

objective given by:

max
U∈Rk×n

||X̄UT ||22, s. t. UTU = 1 (4.3)

where X̄ = [X̄T
i]di=1 ∈ Rd×n with X̄T

i = XT
i − 1

d

∑d
j=1X

T
j ; U = [Ui]

k
i=1 ∈ Rk×n is a

matrix of principal component vectors. Moreover, Ui=1 = U1 = (U1,j)
n
j=1 is the direction

of maximum variance, and it can be considered as clustering results in the following

way: if U1,j ⩾ median(U1) then Xj ∈ C1 otherwise Xj ∈ C2. Figure 4.1 illustrates

the idea that the covariance between nodes from different classes is high. We further

demonstrate the applicability of PCA on the binary clustering task with a small numerical

experiment. We generated several synthetic datasets (4.2) with various ratios c0 and

fixed values for expectation (µ1 = (0.5, . . . , 0.5); µ2 = (0.1, . . . , 0.1);) and covariance

matrix (C = diag(0.1)) with n
2 the number of nodes in each class: n = 100, d = 1000,

c0 = 0.1; n = 1000, d = 100, c0 = 10. The code of these experiments is publicly available

through a GitHub repository 1. Figure 4.2 shows examples of how U1 discriminates the

1https://github.com/KamalovMikhail/GDPCA

4.1. GRAPH-DIFFUSION WITH REORGANIZED PCA LOSS 69

Figure 4.1: The intuition behind PCA-BC: 1) Transpose X and visualise the nodes with
the maximum and minimum covariance (cov(·)) in between; 2) Normalize transposed X
and find the direction of maximum covariance by PCA.

two classes, even for large d-spaces.

4.1.2 Generalization of PCA-BC for GB-SSL

We propose to modify the Loss function (4.1) by adding the reorganized PCA loss (the

minus sign being necessary to account for the maximization of the covariance between

classes). The optimization problem thus consists in:

min
Z∈Rn×k

n∑
i=1

n∑
j=1

Ai,j ||Dσ−1
ii Zi −Dσ−1

jj Zj ||22

+µ
n∑
i=1

D2σ−1
ii ||Zi − Yi||22 − 2δ||X̄Z||22

} (4.4)

where δ is a penalty multiplier and σ is the parameter controlling the contribution of

node degree. We control the contribution of a node degree through the diagonal matrix

D to the power in Loss function (4.4) based on the work in [4].

4.1.3 Theoretical analysis

It should be noticed that in Loss function (4.4) we do not require the orthogonality

condition ZTZ = 1 as in Loss function (4.3). An interesting feature of Loss function (4.4)

4.1. GRAPH-DIFFUSION WITH REORGANIZED PCA LOSS 70

Figure 4.2: Mean value of U1 (the direction of maximum variance in the PCA) on 100
sets of random synthetic data.

is that there exists an explicit solution given by the following proposition.

Proposition 1: When Loss function (4.4) is convex, the explicit solution is given by:

Z =
(
I − α

(
Dσ−1AD−σ + δSD−2σ+1

))−1
(1− α)Y, (4.5)

where α = 2/(2 +µ), I ∈ Rn×n is the identity matrix and S = X̄T X̄
(d−1) ∈ Rn×n is the sample

covariance matrix (Figure 4.3).

Proof. The proof is based on the explicit solution of the first order optimization problem

for the Loss function 4.4. The details of this proof are in Section 4.5

Remark 6: Proposition 1 provides the global minimum of Problem (4.4) in cases where it

is convex, which occurs when the matrix

I − α
(
Dσ−1AD−σ + δSD−2σ+1

)
has positive eigenvalues (Theorem 1 in [99]). This

condition can be achieved by values of δ such that the sum in brackets will not be upper

then 1 and α always less than 1.

Direct matrix inversion in Equation (4.5) can be avoided thanks to efficient iterative

methods such as the PowerIteration (PI) or the Generalized minimal residual (GMRES)

[100] methods. PI consists in iterative matrix multiplications2 and can be applied

when the spectral radius verifies ρ(α(Dσ−1AD−σ+ δSD−2σ+1)) < 1. GMRES consists in

2Z = α
(
Dσ−1AD−σ + δSD−2σ+1

)
Z + (1− α)Y

4.2. GRAPH-DIFFUSION & PCA (GDPCA) 71

Figure 4.3: Classification steps of GDPCA based on solution (4.5): a - find the minimal
k components, b - labeling objects by the information from Ui, c - find the centroids of
classes by X̂UT

approximating the vectors’ solution in Krylov subspace instead of explicit matrix inversion.

In practice, PI is more convenient for the computation of Eq. (4.5) as it converges faster

to the best classification accuracy and it can be computed in a distributed regime over

nodes [101, p. 135]. The accuracy is computed by comparing maximum values per row

between label matrix Y and classification results Z. Furthermore, instead of explicitly

computing the spectral radius mentioned above, we can use the following proposition.

Proposition 2: Suppose that SD−2σ+1 has only real eigenvalues λ1, λ2, . . . , λn. Then the

inequality ρ
(
α
(
Dσ−1AD−σ + δSD−2σ+1

))
< 1 can be transformed into a simpler one:

1 + δγ < 1/α (4.6)

where γ is the maximum singular value of SD−2σ+1 and δ is the penalty multiplier in

Equation (4.5).

Proof. The proof is based on the properties of the sum of spectral radii. The details of

this proof are in Section 4.5

Remark 7: In order to speed up the computation of singular values, we can use the

randomized Singular Value Decomposition (SVD) [102]. Inequality (4.6) can then be

rewritten as 1 + δ(γ + ϵ) < 1/α, where ϵ is the tolerance of the randomized SVD. The

computational complexity of the randomized SVD is C +O(n), where C is the cost of

matrix-vector multiplications.

4.2. GRAPH-DIFFUSION & PCA (GDPCA) 72

Algorithm 8: GDPCA (Graph diffusion & PCA)

1 INPUT: X, A, Y , σ, α, δ, I, τ , ϵ;
2 INITIALIZE:

3 X̄T
i = XT

i − 1
d

∑d
j X

T
j ∀i ∈ (1, . . . , n); S = X̄T X̄

d−1

4 γ = randomizedSV D(SD−2σ+1)
5 IF: 1 + δ(γ − ϵ) < 1/α:
6 Z = PI(α(Dσ−1AD−σ + δSD−2σ+1), (1− α)Y, I)
7 ELSE:
8 Z = GMRES((I − α(Dσ−1AD−σ + δSD−2σ+1)), (1− α)Y, τ, I)

4.2 Graph-Diffusion & PCA (GDPCA)

Algorithm 8 gives the outline of our novel Graph diffusion & PCA (GDPCA) framework

derived from Propositions 1 and 2. GDPCA uses the following setup: I is the number of

iterations, τ is the tolerance in GMRES, δ is a Lagrangian multiplier, σ is the parameter

controlling the contribution of node degree and ϵ is the tolerance in randomized SVD.

Note also that Proposition 1 simplifies to the known results of PRSSL [4] for the

value δ = 0. GDPCA can thus be seen as a generalization of PRSSL enriching the default

random walk matrix Dσ−1AD−σ thanks to the sample covariance matrix S. Notice

that S is retrieved from PCA loss in Loss function (4.4). This enrichment of the binary

weights (Ai,j = 0 or Ai,j = 1) by node covariance allows bypassing the issue with Binary

edges. Similarly, we assume that our framework solves the Curse of dimensionality

issue thanks to the use of PCA loss. Moreover, note that Proposition 1 can provides

several semi-supervised learning methods with various σ which can be used in GDPCA

(Algorithm 8) such as:

1. if σ = 0.5 we got the Normalized Laplacian method with PCA regularization:

Z =
(
I − α

(
D−0.5AD−0.5 + δS

))−1
(1− α)Y (4.7)

2. if σ = 1, we got the random walk normalized Laplacian (PageRank) with PCA

regularization:

Z =
(
I − α

(
AD−1 + δSD−1

))−1
(1− α)Y (4.8)

3. if σ = 0, we got the Standard Laplacian method with PCA regularization:

Z =
(
I − α

(
D−1A+ δSD

))−1
(1− α)Y (4.9)

4.3. ABLATION STUDIES OF GDPCA 73

4.2.1 Scaling of GDPCA by Markov-Batch Stochastic Approximation

In this subsection, we show that the results from Chapter 3 can apply to the scaling

of GDPCA. In particular, this application relies on the following assumption, if the

Proposition 2 executes, then GDPCA utilises the PowerIteration method, which we can

replace by the MBSA. In other words, subject to the fulfilment of Proposition 2, we can

rewrite the GDPCA (Algorithm 8) in the following batchwise regime:

Algorithm 9: GDPCA-MBSA

INPUT :A, Y , δ, α, I, bs, ϵ, γ

1 INITIALIZE: Ã, Z0 = Y , S, At = A0 ;

2 X̄T
i = XT

i − 1
d

∑d
j X

T
j ∀i ∈ (1, . . . , n); S = X̄T X̄

d−1

3 P̃ , Q;
4 for t← 0 to I do
5 Pick At+1 with probability QAt,At+1 ;

6 Zt+1
i = Zti + η(t)I{i ∈ SAt}

P̃At,At+1

QAt,At+1

(
α
∑

j∈SAt+1
Bi,jZ

t
j

P̃At,At+1

− Zti + (1− α)Yi

)
;

7 At = At+1;

8 end

where B = [Bi,j]
n
i=1,j=1 = D−05AD−05 + δSD and I is the number of iterations. Note

that this regime of GDPCA avoids the OOM issues on the extremely large graphs. We

want to emphasize that the issue with OOM in GDPCA can arise when we have to keep

in memory dense covariance matrix S for calculating PowerIteration on extremely large

graphs. However, thanks to MBSA, we can process in GDPCA only a small submatrix of

the covariance matrix S per iteration, which can be read from SSD in an online regime.

4.3 Ablation studies of GDPCA

4.3.1 Significance of the covariance matrix

In this experiment, the aim is to verify that the use of the covariance matrix S actually

leads to an improvement. In order to do so, we compare GDPCA with PRSSL (δ = 0) and

other values of δ, as well as with variants of GDPCA where S is replaced with the following

efficient similarity matrices: WCOS =
[COS(Xi,Xj)]

n,n
i,j=1

d−1 and WRBF =
[RBF (Xi,Xj)]

n,n
i,j=1

d−1 .

Table 4.1 displays the average accuracies of each variant along with their statistical

significance evaluated with t-tests. It shows that using S in GDPCA is significantly

better on the Cora, Citeseer and Pubmed datasets, where it outperforms the others at

4.3. ABLATION STUDIES OF GDPCA 74

least by 7%, 8% and 3% respectively. Notice that Table 4.2 contains accuracy on a test

set of fixed dataset splits: as in [23] for Citeseer, Cora, Pubmed and Covid Clinical Trials

(CCT) datasets; as in [103] for MNIST dataset, and Table 4.1 has accuracy on test sets

averaged over 50 random splits. All experiments mentioned above are available through

a GitHub repository3.

Table 4.1: Average accuracy (%), ▲ denotes the statistical significance for p < 0.05.

GDPCA GDPCA PRSSL GDPCA GDPCA
Dataset δ = 1 (S) δ = 10−3 (S) δ = 0 δ = 1 (WCOS) δ = 1 (WRBF)

Cora 77.3 ▲ 71.8 69.8 70.1 68.3
Citeseer 73.0 ▲ 65.1 44.8 64.8 44.5
Pubmed 68.7 75.8 ▲ 67.9 72.6 71.1
CCT 60.4 ▲ 54.5 55.6 54.2 56.2
MNIST 62.5 85.3▲ 82.6 60.6 59.2

4.3.2 Generation of synthetic adjacency matrix

For selecting the best synthetic adjacency matrix for GDPCA, we have considered three

standard distances, such as Cosine, Minkowski, Dice and the number of neighbours

from 1 till 14 for KNN algorithm. The accuracy of GDPCA on above parameters on

the validation set for MNIST and CCT datasets are shown in Figure 4.4. Figure 4.4

shows that the best GDPCA accuracy on the validation set is obtained with the use

of 7 neighbours and Dice distance for the CCT dataset is obtained with the use of 7

neighbours and Cosine distance for the MNIST dataset.

4.3.3 Hyperparameters selection

We adjusted the parameters for GDPCA on the synthetic dataset generated from the

multivariate normal distribution with the following parameters:

µ1 = [1., 1., 1., 1., ..., 1.], µ2 = [−1.,−1.,−1.,−1., ...,−1.], C1 = C2 = I, nl = 100,

nu = c0 ∗ 100 with d = 1000, nl = 100, nu = 5000. We utilize the mentioned above

parameters taking into account Assumption 1. Note that for each combination of

γ ∈ {0.5, 0, 1} and α ∈ {0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} we repeat GDPCA

3https://github.com/KamalovMikhail/GDPCA

4.3. ABLATION STUDIES OF GDPCA 75

Figure 4.4: Estimate different adjacency matrix for GDPCA.

1000 times. Figure 4.5 presents the medians accuracy of GDPCA. In particular, Figure 4.5

shows that the best performance GDPCA achieves as a Standard Laplacian method

(δ = 1) with α = 0.001.

Figure 4.5: Hyperparameter selection for GDPCA.

4.4. EXPERIMENTAL RESULTS FOR GDPCA 76

Table 4.2: Classification accuracy (%) comparison with linear algorithms.

Dataset Cora Citeseer Pubmed CCT MNIST

TSVM [9] 57.5 64.0 62.2 – 83.2
KNN [104] 43.9 47.4 63.8 57.1 74.2
LP [71] 68.0 45.3 63.0 53.5 34.2
ManiReg [5] 59.5 60.1 70.7 – –
PRSSL [4] 69.3 45.9 68.4 55.8 87.2

GDPCA 77.7 73.1 76.1 61.1 88.4
GDPCA-MBSA 75.3 70.5 72.3 58.3 86.5

4.4 Experimental results for GDPCA

4.4.1 Performance (Accuracy)

The comparisons in terms of accuracy (%) are presented in Table 4.2 and Table 4.3. Ta-

ble 4.2 shows that GDPCA outperforms other state-of-the-art (SOTA) classical diffusion-

based algorithms, especially it is significantly better on the Cora, Citeseer and Pubmed,

where it outperforms the others by 8%, 9%, 5% respectively, and even outperforms the

linear non-graph based algorithms such as Transductive SVM (TSVM) and KNN. Also,

note that even scaled GDPCA-MBSA mostly outperforms SOTA classical diffusion-based

algorithms and fair outperforms the linear non-graph based algorithms. Moreover, Ta-

ble 4.3 shows that our linear GDPCA framework as well as GDPCA-MBSA provides

performance that is close to the best SOTA graph convolution networks. Note that

GDPCA has a fixed explicit solution (4.5) as opposed to the graph convolution networks,

which depend on the layer’s weights initialization process. Furthermore, we want to

underline that Table 4.2 and Table 4.3 show that GDPCA has a good performance on

standard Cora, Citeseer, Pubmed and MNIST as well as on real dataset Covid Clinical

Trials (CCT). It is critical to point out that as GDPCA shows high accuracy on both

graph-based and non-graph-based datasets, Versatility limitations can be addressed using

GDPCA. For instance, in Chapter6, we demonstrate how semi-supervised learning on

time series data can be accomplished using the GDPCA modification.

4.4.2 Memory vs Time tradeoff

We finish this experimental section by comparing the computational complexity of

GDPCA with the SOTA algorithms that obtained the most similar performance, namely

GCN and Planetoid. The computational complexity of GDPCA is O(In2k) in the case of

4.5. PROOFS 77

Table 4.3: Classification accuracy (%) comparison with neural network algorithms.

Dataset Cora Citeseer Pubmed CCT MNIST

SemiEmb [25] 59.0 59.6 71.1 – –
DeepWalk [24] 67.2 43.2 65.3 – –
Planetoid [23] 75.7 64.7 77.2 – –
GCN [6] 81.5 70.3 79.0 55.2 81.4

GDPCA 77.7 73.1 76.1 61.1 88.4
GDPCA-MBSA 75.3 70.5 72.3 58.3 86.5

Table 4.4: Comparison of computational complexity, where l is the number of layers, n is
the number of nodes, d is the number of features, r is the number sampled neighbors per
node; ϕ is the number of random walks; p is the walk length; w is the window size; m is
a representation size; k is the number of classes; bs is a batch size; e′ is the number of
non-zero elements in matrix (Dσ−1AD−σ + δSD−2σ+1) and e′bs is a submatrix of matrix
e′.

Algorithm GCN GDPCA GDPCA-MBSA Planetoid

time O(led+ ln2dm) O(In2k) O(I(bs)2k) O(ϕnpw(m+m log n))
Memory O(lnd+ ld2) O(e′) O(e′bs) O(nld2)

PowerIteration, and O(Ink) in the case of GMRES. Since we can replace PowerIteration

with MBSA, the complexity can reduce almost n times (bs≪ n). Moreover, note that

GMRES can be distributed over classes. The comparison of GDPCA framework with GCN

and Planetoid algorithms in big-O notation is presented in Table 4.4. Figure 4.6 provides

the time (in seconds) of 50 completed trainings on CPU (1.4GHz quad-core Intel Core i5)

for each algorithms. It shows a clear advantage of GDPCA over the GCN and Planetoid

especially with GMRES, in terms of computational time. Note that datasets description,

parameters of algorithms for comparison and links on datasets/implementations of

algorithms are in Section 4.6.

4.5 Proofs

4.5.1 Proposition 1

Proof. This proof uses the same strategy as the proof of Proposition 2 in [4]. Rewriting

Problem (4.4) in matrix form with the standard Laplacian L = D −A and

4.5. PROOFS 78

Figure 4.6: Computational time of 50 completed trainings on CPU.

with Zi, Yi ∈ Rn×1:

Q(Z) = 2

k∑
i=1

ZTi D
σ−1LDσ−1Zi

+ µ
k∑
i=1

(Zi − Yi)TD2σ−1(Zi − Yi)

− δ
k∑
i=1

ZiSZ
T
i

where S = X̄T X̄/(d− 1) ∈ Rn×n. Considering Q(Z)
∂Z = 0:

2ZT (Dσ−1LDσ−1 +Dσ−1LTDσ−1)

+ 2µ(Z − Y)TD2σ−1

− δZT (S + ST) = 0

Multiplying by D−2σ+1 and replacing L = D −A results in:

ZT (2I − 2Dσ−1AD−σ

+ µI − 2δSD−2σ+1)− µY T = 0

4.6. EXPERIMENTAL DETAILS 79

Taking out the µ over the parentheses and transposing the equation:

Z =
µ

(2 + µ)
(I − 2

(2 + µ)
(Dσ−1AD−σ + δSD−2σ+1))−1Y

Finally, the desired result is obtained with α = 2/(2 + µ).

4.5.2 Proposition 2

Proof. Apply Theorem 1 of sums of spectral radii [105] for the following inequality:

ρ(Dσ−1AD−σ + δSD−2σ+1) ≤ ρ
(
Dσ−1AD−σ)+ ρ(δSD−2σ+1) < 1/α

based on the fact that spectral radius of a matrix similar to the stochastic matrix is equal

to 1 (Gershgorin bounds):

1 + δρ(SD−2σ+1) < 1/α

apply the Theorem 7 [106] for replacing ρ(SD−2σ+1) by the γ maximum singular value

of SD−2σ+1 we obtain the desired result in (4.6).

4.6 Experimental details

4.6.1 State-of-the-art (SOTA) algorithms

As some of the SOTA algorithms cannot be applied to all types of datasets, we consider

specific SOTA algorithms depending on the datasets. For the graph-structured Citeseer,

Cora and Pubmed datasets, we compare GDPCA to the LP [71] and ManiReg [5]

linear graph diffusion algorithms and to the SemiEmb [25], Planetoid [23], GCN [6] and

DeepWalk [24] graph convolution-based neural networks. For MNIST, we compared it to

the transductive SVM (TSVM) [9] and KNN [104] linear algorithms, and to the GCN

neural network. Finally, for CCT, we compared it to the linear LP [71], KNN [104], and

PRSSL [4], and to GCN.

4.6.2 Parameters

Accuracy for non-reproduced benchmarks

Since for training and estimation of the GDPCA framework, we use the train/validation/test

split strategy for Citeseer, Pubmed, Cora and CCT datasets as in [23] we can use the

accuracy of SOTA algorithms from work [23]. In particular, we can take the accuracy of

LP [71], ManiReg [5], TSVM [9], SemiEmb [25], Planetoid [23] algorithms from work [23],

4.6. EXPERIMENTAL DETAILS 80

and the GCN [6], DeepWalk [24] algorithm’s accuracy from work [6]. Since for MNIST

dataset we use the train/validation/test split strategy as in [103] we can use the value of

accuracy of KNN [104] and TSVM [9] algorithms from work [103].

Algorithm parameters for reproduced benchmarks

We trained LP,PRSSL, KNN and GCN on CCT and MNIST datasets with the best

hyperparameters defined in the articles describing these algorithms: LP [71] RBF (·)
kernel function; GCN [6] 0.5 dropout rate, 5 · 10−4 L2 regularization, 16 hidden units and

200 epochs; KNN parameters selected by Randomized Search [107] for Cora, Citeseer,

Pubmed and CCT datasets.

For a fair model comparison between GDPCA, PRSSL and GCN, we replaced A by

A+ I as was done in [6,23]. Also, for GDPCA and PRSSL we fixed α = 0.9 and σ = 1

on all datasets as it was shown in [4] that these parameters provide the best accuracy

result for PRSSL. We trained GDPCA on Cora, Citeseer and CCT with δ = 1, I = 10,

τ = 10−3, ϵ = 10−3, and the same for MNIST and Pubmed but changing the value of δ to

10−3. We selected these specific I, ϵ, τ parameters by Random Search algorithm [107] as

a trade-off between fast computation with GMRES and PowerIteration and accuracy on

the validation set. Moreover, for MNIST and CCT we generated a synthetic adjacency

matrix A by KNN with respect to the results from Ablation studies 4.3. In particular,

we generated synthetic adjacency matrices based on the following parameters of KNN

for datasets: for CCT - Dice distance and 7 nearest neighbours; for MNIST - Cosine

distance and 7 nearest neighbours. We used these synthetic adjacency matrices for the

training of GDPCA, PRSSL and GCN algorithms. It is important to note that the same

hyperparameters utilized for MBSA in the experimental section of Chapter 3 were also

used for MBSA in GDPCA-MBSA.

4.6.3 Datasets description

In this part of work, we consider two types of datasets: datasets with an underlying

graph structure, and datasets that are non-graph based. The latter allow us to test the

flexibility of our framework.

Graph-based datasets.

We consider the citation networks datasets of Cora, Citeseer, and Pubmed [108]. These

datasets have bag-of-words [73] representation for each node (paper) features and a

4.6. EXPERIMENTAL DETAILS 81

citation network between papers. The citation links are considered as edges in the

adjacency matrix A. Each paper has a class label (Xi ∈ Cj).

Non-graph based datasets.

Images. We consider the standard MNIST image dataset [109] composed of square 28×28

pixel grayscale images of handwritten digits from 0 to 9. Besides, we flattened square

pixels in 784 d-space features for this dataset. Text data. Covid clinical trials (CCT)

crawled dataset. We consider a second non-graph based dataset which we prepared

and processed from the ClinicalTrials resource4 from summaries of evidence-based [110]

clinical trials on COVID. This dataset is particularly important given the current need

from medical experts on this topic. We analyzed 1001 xml files as follows:

1. the feature matrix X was generated from a bag-of-words model based on the

descriptive fields “official title”, “brief summary”, “detailed description”, “eligibility”;

2. the label matrix Y was generated from the field “masking”, which takes values in

(Open, Blind)5, as it is one of the essential parameters of evidence-based medicine

EBM [111]. The type of masking corresponds to the way of conducting clinical

trials: the Open way is a less expensive and complicated procedure than the Blind

one.

Note that the CCT dataset could be useful to other researchers who wish to improve

even further the labeling of COVID clinical trials. The registration procedure of clinical

trial is useful when authors forget to create masking tag for their work. Particularly after

analyzing 1001 xml files, we found that from 3557 clinical trials 1518 of them do not have

a masking tag.

As the non-graph based datasets do not have a predefined graph structure, we apply

the K-nearest neighbours (KNN) [104] algorithm to generate the adjacency matrix. In

Ablation studies 4.3, we show on validation sets of MNIST and CCT datasets how the

choice of distances and number of neighbours for the generation of the adjacency matrix

by KNN influence GDPCA. We followed the strategy for train/validation/test splitting

as in [23] for Pubmed, Citeseer, Cora and CCT, and as in [103] for MNIST. The above

datasets and code with GDPCA are available through a GitHub repository6. Table 4.5

provides a description of these datasets, where LR = nl/n is the learning rate with nl

the number of labeled nodes.
4https://clinicaltrials.gov/ct2/resources/download#DownloadMultipleRecords
5In order to simplify the labeling process, we replaced the long description of masking by a shorter

version (e.g. Single Blind (Participant, Investigator) by Blind).
6https://github.com/KamalovMikhail/GDPCA

4.6. EXPERIMENTAL DETAILS 82

Table 4.5: Dataset statistic.

Citeseer Cora Pubmed CCT MNIST

n 3327 2708 19717 2039 50000
e 4732 5492 44338 – –
k 6 7 3 2 10
d 3703 1433 500 7408 784
LR 0.036 0.052 0.003 0.019 0.002
c0 0.898 1.889 39.43 0.275 63.77

Chapter 5

Generative PageRank

Nowadays, graph convolution networks are a rapidly growing research direction in graph-

based semi-supervised learning. At the same time, the recently proposed graph convolution

networks employ a default adjacency matrix with binary weights on edges (citations),

which results in the loss of the nodes (papers) similarity information. Therefore, in

this chapter, we offer a framework that aims to include PageRank into a generative

model called GenPR. Through the reweighted adjacency matrix and node similarities

in the latent space, this framework enables cooperative training of the node’s latent

space representation and label spreading. In particular, we describe how a generative

model might enhance precision and lessen the number of PageRank SSL iterations.

Furthermore, we show that GenPR supports batchwise training by application of Markov-

Batch Stochastic approximation algorithm. On four open citation graph data sets,

we further demonstrate that GenPR beats the best graph convolution networks and

enhances the interpretability of classification findings. Finally, we demonstrate that

GenPR performs well on datasets that are not graph-based, such as picture datasets (e.g.

MNIST).

The main goal of this chapter is as follows. We propose the GenPR framework, with

an emphasis on the simultaneous enhancement of classification accuracy and node latent

space representation. We demonstrate how the PageRank-based method’s classification

results are favourably impacted by the reweighted existing adjacency matrix by the

similarity matrix in latent space. Additionally, we demonstrate that GenPR uses fewer

PageRank PowerIteration steps and considerably outperforms the most recent state-

of-the-art (SOTA) graph convolution networks on all datasets. Last but not least, we

demonstrate how GenPR may be used to analyze and explain the classification results.

83

5.1. GENERATIVE PAGERANK (GENPR) 84

5.1 Generative PageRank (GenPR)

Let’s first establish the notation that will be required for the GenPR framework’s further

explanation. The standard input for graph-based SSL algorithms is a graph G = (V, E)

with n = nl + nu = |V| nodes (papers) where nl and nu are the number of labelled

and unlabelled nodes respectively, e = |E| edges (citations), A = [Ai,j]
n,n
i,j=1 ∈ Rn×n

is the adjacency matrix and X = (xi,j)
n,d
i,j=1 is a matrix of nodes where each node

xi = (xi,1, . . . , xi,d) ∈ Rd has a feature representation in d-space. In the context of

citation graphs X is a bag-of-words representation for the nodes (papers). Moreover,

each node belongs to one of c classes {C1, . . . , Cc}. Also we have the labels matrix

Y = (yi,j)
n,c
i,j=1 ∈ Rn×c such that yi,j = 1 if xi ∈ Cj and yi,j = 0 otherwise.

5.1.1 Intuition of GenPR

Before we go into the details of our framework, let us define the motivation and intuition

behind GenPR. The main idea of GenPR is to resolve the following Binary edges issue:

1. adjacency matrix with edge: Ai,j = 1 does not provide the information about

impact of cited paper j on the citing one i;

2. adjacency matrix with edge: Ai,j = 0 may show that author i did not cite the paper

j, but he could have used some information from it.

Let us define additional useful notation for the GenPR intuition: xi ∈ X is a i.i.d.

samples of some continuous random variable x, then an output of multi layer perceptron

(MLP) Y ∗ = [y∗i]
n
i=1 ∈ Rn×c is a sample from random variable y∗ given x as an input;

Z = [zi]
n
i=1 ∈ Rn×d′ where zi is a latent representations of each node xi sampled from

latent random variable z in d′-space; W = [wi,j]
n
i,j=1 ∈ Rn×n is a similarity matrix where

each element wi,j = h(zi, zj), ∀zi, zj ∈ Z is an output of some positively defined kernel

h; A′ = A + γW is a reweighted adjacency matrix A with a regularization parameter

γ ∈ [0, 1] for W ; D′
i,i =

∑n
j=1A

′
i,j is a diagonal matrix.

Let us redefine the recurrent formula of PRSSL [4] using Y ∗ at each training epoch

as a replacement of real labels Y = Y ∗:

F t = αD′(−σ)A′D′(σ−1)F t−1 + (1− α)Y ∗; (5.1)

where F t = [F ti]
n
i=1 ∼ [ypri,j]

n,c
i,j=1 ∈ Rn×c. Here ypri = (ypri,1, . . . , y

pr
i,c) is a sample from

random variable ypr since (5.1) is a transformation of the random variable y∗ and

F 0 = Y ∗.

5.1. GENERATIVE PAGERANK (GENPR) 85

Then assume that F t will improve the accuracy of Y ∗ by using the information of

nodes similarity in latent space during the t-th iterations. We named it the PageRank

spreading assumption. Moreover, we propose to use Y ∗ as a new labels. Let us notice

that and y∗ ∼ ypr due to the PowerIteration PageRank property ||F t−Y ∗||1 ≤ 1
1−α ||F

1−
Y ∗||1 [112](Property 12). This allows us consistently use the aforementioned PageRank

spreading assumption in training process of the generative model:

p(x, y∗, z) ≈ p(x|z, ypr)p(ypr)p(z) (5.2)

where p(·) is a PDF of a random variable.

5.1.2 Objective function of GenPR

In this subsection we consider the inductive regime of GenPR which allows us to train

jointly the generative model (5.2) and PRSSL (5.1). Before we go into details of GenPR,

we have to define the central assumption of Variational Autoencoder (VAE), which is

also used in VAE for SSL [12] :

Assumption 2: Assume that the set of points X are i.i.d. samples of variable x. It is also

assumed that x is generated with respect to a latent continuous random variable z in

two steps (e.g., see [33]):

1. a value for zi is generated from some prior distribution pθ(z);

2. a value for xi is generated from conditional distribution pθ(x|z).

Hence, we have the following generative model with parameters θ:

pθ(x, z) = pθ(z)pθ(x|z) (5.3)

where the posterior density qθ(z|x) = pθ(z)pθ(x|z)
pθ(x)

is typically intractable.

However, under above assumption, we can apply the main idea of VAE [33] using a

variational approximation posterior qϕ(z|xi) to the true posterior pθ(z|xi) with parameters

ϕ.

Now let us define GenPR objective function. It is obtained by maximizing the

variational lower bound of the data log-likelihood of (5.2) with variance ϕ and generative

θ parameters [33]:

log p(x, y∗) ≥ Eqϕ(z|x,y∗)
[

log pθ(x|z, ypr)
]

+ Eqϕ(z|x,y∗)
[

log pθ(y
pr)
]
−DKL(p(z)||qϕ(z|x, y∗))

(5.4)

5.1. GENERATIVE PAGERANK (GENPR) 86

where qϕ(z|y∗, x) = N (z|µ(y∗, x), σ2(x)) is a multivariate Gaussian distribution parameter-

ized by µ(y∗, x) and σ(x) that are inferred from neural netowrk (NN) layers for expectation

and variance respectively; pθ(x|z, ypr) = fθ(z, y
pr) is a nonlinear transformation of z and

ypr by NN layer; pθ(y
pr) = PR(y∗, µ(y∗, x), A) is a linear transformation of y∗ by (5.1)

(the NN layer version will be defined in the next Subsection 5.1.3), p(z) = N (z|0, I) is a

multivariate Gaussian distribution and DKL(·||·) is the Kullback-Leibler divergence.

Since we can trade the quality generation of x for the quality of ypri and estimate ypri
using the information from the labelled nodes, we can use β ∈ [0, 1] as a weight parameter

for pθ(x|z, ypr) and the categorical crossentropy U(F t, Y) =
∑nl

i=1

∑c
j=1(yi,j · log(ypri,j))

for ypri estimation. Thus, we obtain from (5.4) the final inductive (I) GenPR objective

function:

L(θ, ϕ, x, Y) = βEqϕ(z|x,y∗)
[

log pθ(x|z, ypr)
]

+ log pθ(y
pr)

−DKL(p(z)||qϕ(z|x, y∗))− U(F t, Y)
(5.5)

The difference between inductive (I) and transductive (T) regimes of GenPR is that

transductive GenPR does not use the proposition that y∗ is a new labels and an objective

function looks as follows:

LT (θ, ϕ, x, Y) = βEqϕ(z|x)
[

log pθ(x|z)
]

−DKL(p(z)||qϕ(z|x))− U(F t, Y)
(5.6)

.

5.1.3 Architecture of GenPR

Since we have defined the objective function of GenPR (5.5) we can explain the GenPR

layers architecture. The part of z inference contains the following layers:

Y ∗ = πθ(X); πθ(X) = h1(XW1 +B1) (5.7)

µ(X,Y ∗) = hµ(concat(X,Y ∗)Wµ +Bµ) (5.8)

σ(X) = hσ(XWσ +Bσ) (5.9)

where h. and B. are activation functions and biases for neural networks (NN) layers

respectively; W1 ∈ Rd×c, Wµ ∈ R(d+c)×d′ and Wσ ∈ Rd×d′ are trainable weight matrices

of MLP (5.7), expectation (5.8) and variance (5.9) for a NN layer respectively; (mi)
n
i=1 =

µ(X,Y ∗) is an output of (5.8) layer with mi ∈ Rd′ ; concat(·, ·) is a matrix concatenation

column-wise.

5.1. GENERATIVE PAGERANK (GENPR) 87

To avoid the issues with high variance of the gradient estimation of

Eqϕ(z|x,y∗)
[

log pθ(x|z, ypr)
]

by Monte Carlo method, we follow [33] in using the repa-

rameterization trick to compute a low-variance gradient estimator for qϕ(z|x, y∗):

qϕ(z|x, y∗) ∼ Z, Z = µ(X,Y ∗) + σ(X)⊙ ϵ, ϵ ∼ N (0, I) (5.10)

where ⊙ is an element-wise product and ϵ is a random variable.

Now we can define (5.1) as a sequential sublayers in PR(Y ∗, µ(Y ∗, X), A):

1. the reweighting of A:

wi,j = h
(
mi,mj

)
; ∀ wi,j ∈W ; (5.11)

A′ = A+ γW = [A′
i,j]

n,n
i=1,j=1; (5.12)

where γ is a parameter of involvement W in reweighting of A within the range [0, 1]

and A′
i,j is an element of matrix A′. Here we compute the similarities between the

outputs of (5.8) because we assume that the expectation of the latent variable z

more correctly defines the differences between nodes in latent space.

2. the regularization of A′:

Â′ = D′(−σ)A′D′(σ−1); D′
i,i =

n∑
j=1

A′
i,j (5.13)

where σ is a parameter for selection of regularization type: σ = 1 is a Standard

Laplacian; σ = 0 is a PageRank; σ = 1/2 is a Normalized Laplacian;

3. the redefined PRSSL [4]:

F t = αÂ′F t−1 + (1− α)Y ∗; t ≥ 0; (5.14)

where F 0 = Y ∗ (5.7) and F t is a result of the t-th iterations, smoothly changing

the node labels Y ∗ during iterations.

The final layer is the reconstruction of nodes (papers) X̂ = fθ(Z,F
t) where X̂ =

[x̂i]
n
i ∈ Rn×d:

fθ(Z,F
t) = h2(concat(Z,F

t)W2 +B2) (5.15)

where W2 ∈ R(d′+c)×d, B2 are weight and bias for x generation pθ(x|z, ypr) = fθ(z, y
pr).

We can turn to transductive regime of the aforementioned GenPR layers architecture by

using modified loss as in (5.6). The Figure 5.1 presents the difference between inductive

(I) and transductive (T) GenPR architectures.

5.2. EXPERIMENTAL RESULTS FOR GENPR 88

Figure 5.1: The I-inductive (a) and T-transductive (b) architectures of GenPR.

5.1.4 Scaling GenPR by Markov-Batch Stochastic Approximation

It is important to note that the main bottleneck of GenPR arises in redefined PRSSL (5.14),

which means that GenPR updates the nodes by PowerIteration algorithms and requires

keeping in memory the full adjacency matrix and matrices of node features and weights.

In the worst scenario, this bottleneck of GenPR can lead to OOM issues on large graphs.

In order to resolve the aforementioned issue, we propose to apply MBSA algorithm for

scaling GenPR framework. In particular, we propose to utilize the rule of batch selections

and nodes update strategy of MBSA for scaling GenPR in the Algorithm 10:

Note that for reducing computational complexity in GenPR-MBSA we simplify the

regularization of reweighted adjacency matrix step (5.13) replacing it with simple matrix

normalization:
Ai,j+γh(mi,mj)∑

j∈SAt+1
Ai,j+γh(mi,mj)

. Additionally, take notice that GenPR-MBSA

maintains the same architecture as GenPR, with the exception that all blocks in Figure 5.1

work under a batch regime, and the block for PR is swapped out for the MBSA nodes

update strategy. Experimental results for GenPR-MBSA are provided in the following

section.

5.2. EXPERIMENTAL RESULTS FOR GENPR 89

Algorithm 10: GenPR-MBSA

INPUT : A, Y , X, α, γ, τ

1 for t← 1 to τ do
2 Pick At+1 with probability QAt,At+1 ;
3 y∗i = I{i ∈ {SAt ∪ SAt+1}}πθ(xi);
4 mi = I{i ∈ {SAt ∪ SAt+1}}µ(xi, y

∗
i);

5 zi = I{i ∈ {SAt ∪ SAt+1}}mi + σ(xi)⊙ ϵ;

6 F ti = F t−1
i + η(t)I{i ∈ SAt}

P̃At,At+1

QAt,At+1

7 ×
(

1

P̃At,At+1

∑
j∈SAt+1

Ai,j+γh(mi,mj)∑
j∈SAt+1

Ai,j+γh(mi,mj)
y∗j − F

t−1
i

)
;

8 x̂i = I{i ∈ SAt}fθ(zi, F ti);
9 LSAt

← I{i ∈ SAt}L(θ, ϕ, xi, yi);

10 (W1,Wµ,Wσ,W2)← update by gradient step ∇LSAt
;

11 At ← At+1 ;

12 end

5.2 Experimental results for GenPR

5.2.1 Performance (Accuracy) & Explainability

Performance (Accuracy)

Tables 5.1 shows that the performance of the classification based only on the default

adjacency matrix A or on the node features X leads to loss of classification quality because

we do not use all available information. In the case of the combination of X and A, GenPR

significantly and consistently outperform the others due to the intuition that default A

contains incomplete information about nodes similarity. Moreover, Table 5.1 shows that

the scaled GenPR by MBSA (GenPR-MBSA) save the high accuracy and outperforms

the rest algorithms. In particular, Table 5.1 presents that inductive GenPR-MBSA (I)

not only keep the high accuracy but also outperforms non-batch GenPR on Cora-ML and

MSA datasets. Furthermore, Table 5.2 shows that GenPR keeps the high performance

and outperforms the latest state-of-the-art algorithms on datasets without default graph

structure, which means that GenPR allows avoiding the Versatility limitations.

Explainability

Note that the inductive version of GenPR/GenPR-MBSA outperforms the transductive

one on Citeseer, Cora-ML and MSA datasets. In particular, since we have reached the

5.2. EXPERIMENTAL RESULTS FOR GENPR 90

Table 5.1: Average accuracy (%) on citation graphs. △ and ▲ denote the statistical
significance (t-test) of GenPR for p < 0.05 and p < 0.01, respectively, compared to the
APPNP.

Input Algorithms Citeseer Cora-ML Pubmed MSA

A
PRSSL 71.21 78.12 72.51 76.12
LP 45.32 68.31 63.12 65.32

X M2 70.81 79.22 77.6 86.12

X,A

Planetoid 64.71 75.78 77.23 92.88
APPNP 75.74 85.09 79.71 93.28
GAT 75.43 84.41 77.73 91.18
GCN 75.31 83.52 78.65 92.09
Graphite 71.04 82.12 79.31 92.53
GenPR (I) 77.18 ▲ 85.52 △ 80.09 △ 94.08 ▲

GenPR (T) 76.91△ 86.19 ▲ 81.13 ▲ 93.81 △

GenPR-MBSA (I) 77.03 86.22 80.74 95.38
GenPR-MBSA (T) 75.61 84.32 79.06 92.45

best results with GenPR (I) and γ = 1 for Citeseer, it means that latent information is

helpful for reweighting the default adjacency matrix A (citation graph). In other words,

Figure 5.3 (c) shows that GenPR can be used for the explanation of classification results,

by filter the edges by weight and observe nodes with more influence on considered one (e.g.

node 545). We have to underline that Figure 5.3 shows the way how GenPR can be used

to solve the Explainability of the classification result issue defined in the Introduction.

5.2.2 Memory vs Time tradeoff

Figure 5.2 shows that GenPR outperforms APPNP not only in terms of accuracy, but

also in number of PowerIteration steps, because GenPR takes less steps to converge for

better accuracy than APPNP. Moreover, GenPR is less complex than APPNP because it

uses just one layer for MLP rather than 2 in APPNP. Additionally, Figure 5.4 shows that

GenPR-MBSA outperforms the latest state-of-the-art algorithms such as GCN, APPNP,

Planetoid and Graphite in terms of memory and time consumption. Even more, Figure 5.4

presents that GenPR-MBSA is significantly reducing the memory and time consumption

of default non-batch GenPR. Note that dataset/environment description, parameters of

algorithms for comparison and links on datasets/implementations of algorithms are in

Section 5.3.

5.3. EXPERIMENTAL DETAILS 91

Table 5.2: Accuracy on MNIST.

Algorithm MNIST

KNN 74.19
TSVM 83.19
CAE 86.53
MTC 87.97
M1 + TSVM 88.18
M2 88.03
GenPR-MBSA 89.8 ± 0.7
GenPR 91.8 ± 0.9

5.2.3 Denoising

During the experiments with the MNIST dataset, we discovered the positive side effect

of GenPR, which allows making image denoising by applying the inductive GenPR. In

particular, this makes it possible since GenPR training the VAE part concerning the

PageRank classification results, which includes the graph’s structure during the training.

The inference of VAE from GenPR is given by the generative model pθ(x|z, ypr) with

parameter θ which involves training of GenPR. Figure 5.5 shows the effect of denoising

where the left column is the original image and the right column is an image inferred

from the VAE part of the inductive GenPR. This side effect can explain by adding the

class information spread through PageRank to the latent variable. In future work will be

interesting to estimate the impact of PageRank on the denoising process in GenPR.

5.3 Experimental details

5.3.1 Technical environment & Implementations

The computations for GenPR, GCN, Planetoid, Graphite and APPNP for estimation on

computational complexity was done on CPU (1.4GHz quad-core Intel Core i5), RAM (16

GB), and we took implementation provided by the authors Table 5.3.

5.3.2 State-of-the-art (SOTA) algorithms

For conducting an experiment in the graph-based SSL area we have taken following

citation-graph data sets: Citeseer, Cora-ML, Pubmed, MS-Academic (MSA). The de-

scription and statistics of data sets is available in Table 5.4. These datasets are available

5.3. EXPERIMENTAL DETAILS 92

Figure 5.2: Average accuracy of GenPR (I) inductive, GenPR (T) transductive and
APPNP over the t-iteration steps.

here1. As a baseline algorithms for citation networks we have considered: the classical

diffusion-based linear algorithms (LP [3], PRSSL [4]); the recent graph convolution - based

NN (Planetoid [23], GCN [6], GAT [7], APPNP [14]); the deep generative model (M2 [12],

Graphite [31]). In addition to that, for experiments on the image dataset (MNIST) we

took M1, M2 [12] the modifications of VAE SSL, trunsductive SVM (TSVM) [9], manifold

tangent classifier (MTC) [10], KNN and contractive auto-encoders (CAE) from [12].

5.3.3 Parameters

To avoid overfitting issue we applied in all experiments L2 regularization with parameter

λ = 0.05 for weights W., dropout for Â′ with rate dr = 0.5 at each PowerIteration step

and learning rate l = 0.001 for Adam optimizer. Moreover, we have used the random

1https://github.com/klicperajo/ppnp/tree/master/ppnp/data

5.3. EXPERIMENTAL DETAILS 93

Figure 5.3: Sample nodes from Citeseer data set: a - A before GenPR, where colored
nodes are labeled and grey are unlabeled, straight black edges are citations between
nodes (papers); b - A′ after GenPR, where all colored nodes are result from F t, and color
of an edges by weights from A′ (cyan is a lower weights, maroon is a higher weights); c -
the result of filtering lower weight edges for the node 545.

Table 5.3: Implementation links.

Methos URL

APPNP https://github.com/gasteigerjo/ppnp
Planetoid https://github.com/kimiyoung/planetoid
GCN https://github.com/tkipf/gcn
Graphite https://github.com/ermongroup/graphite
M1, M2 https://github.com/dpkingma/nips14-ssl/
GAT https://github.com/Diego999/pyGAT

GenPR https://github.com/KamalovMikhail/GenPRmac

train-test-validation splitting strategy described in [14] and repeated experiments on

each data set 500 times. For a fair model comparison we have made an architecture

and parameters of GenPR/GenPR-MBSA that are very close to APPNP and GCN. In

particular, for all data sets use the intermediate embedding layer f0(X) = relu(XW0+B0)

with W0 ∈ Rd×d̂ as the input for (5.7) with d̂ = 64, W1 ∈ Rd̂×c and h1(·) = softmax(·),
d′ = 64 in (5.8) and (5.9), σ = 0.5 and t = 4 in (5.13), B. = 0. In (5.14) for MSA α = 0.8,

for Cora-ML, Pubmed and Citeseer α = 0.9.

We have selected the specific parameters of GenPR for the non-batch regime and

with MBSA (GenPR-MBSA) by the 5 fold cross-validation grid-search2. For all data

sets GenPR/GenPR-MBSA use h(mi,mj) = (mT
i mj)

3 in (5.11) and β = 0.001 in (5.5)

and (5.6). More precisely, for GenPR we have used: for Citeseer: γ = 1 in (5.12),

2https://scikit-learn.org/stable/modules/grid search.html

5.3. EXPERIMENTAL DETAILS 94

Figure 5.4: Average computational (milliseconds, right axis, lines) and memory (MiB, left
axis, bars) complexity per training iteration in epoch over 100 runs for each algorithm
(legend, header) on each dataset (x-axis). For this experiment we consider batch GenPR-
MBSA (Algorithm 10, b = 512).

hµ(·) = hσ(·) = relu(·) in (5.8) and (5.9), h2(·) = sigmoid(·) in (5.15); for Cora-ML,

Pubmed and MSA: γ = 0.001 in (5.12), and h.(·) = linear(·); for MNIST: γ = 1 in

(5.12), and h2(·) = softmax(·); for GenPR-MBSA we have used: for all citation networks

hµ(·) = hσ(·) = linear(·), γ = 0.05 in (5.12), and h2(·) = softmax(·); for MNIST: γ = 0.9

in (5.12), and h2(·) = softmax(·). Moreover, we emphasize that for MBSA (GenPR-

MBSA), we used the same best values of hyper-parameters as defined in ablation studies

of MBSA in Chapter 3 (e.g. γ = 0.3, ϵ = 0.1, bs∗min = n
median(D) , τ = 100). Additionally,

note that the performance for the latest state-of-the-art algorithms in Tables 5.1, 5.2 was

achieved by computing these algorithms with the best hyper-parameters defined in their

works.

5.3. EXPERIMENTAL DETAILS 95

Figure 5.5: Sample of MNIST images denoising (the left column are original images, the
right column are images after denoising).

Table 5.4: Dataset statistics.

Parameters Citeseer Cora-ML Pubmed MSA MNIST

Nodes 2110 2810 19717 18333 10000
Edges 3668 7981 44324 81894 -
Classes 6 7 3 15 10
Features 3703 2879 500 6805 784
Label rate 0.036 0.047 0.003 0.016 0.01

5.3. EXPERIMENTAL DETAILS 96

Chapter 6

PaZoe:classifying time series with few

labels

Semi-Supervised Learning (SSL) on graph-based datasets is a rapidly growing area of

research, but its application to time series is difficult due to the time dimension. We

propose a flexible SSL framework based on the stacking of PageRank, PCA (GDPCA,

Chapter 4) and Zoetrope Genetic Programming (ZGP) algorithms into a novel framework:

PaZoe. This self-labelling framework shows that graph-based and non-graph based

algorithms jointly improve the quality of predictions and outperform each component

taken alone. We also show that PaZoe outperforms state-of-the-art SSL algorithms on

three time series datasets close to real world conditions. A first set was generated in

house, taking data from industrial graded equipment in order to mimick DC motors

during operation. Two other datasets, which include the recording of gestures, were

taken from the public domain.

The following sections make up this chapter: (i) we start out by describing the key

insight that drives our PaZoe framework. Additionally, we highlight this framework’s

primary elements and describe its training strategy; (ii) finally, we demonstrate that, for

time series data, PaZoe outperforms both cutting-edge graph-based and non-graph-based

SSL algorithms in terms of accuracy and computational complexity. Additionally, we

describe the process through which we gathered the dataset, which includes the many

imbalanced states of the real motor. We further demonstrate that PaZoe maintains great

performance with varied particular motor specifications.

97

6.1. PAGERANK & PCA & ZOETROPE GENETIC PROGRAMMING (PAZOE) 98

6.1 PageRank & PCA & Zoetrope Genetic Programming (PaZoe)

Before we go into details of our framework, let us define the central intuition behind it.

Our idea is based on the assumption that any type of data can be represented through

a graph structure. Since GDPCA (see Chapter 4) outperforms the graph-based as well

as non-graph based SSL algorithms, we use it in PaZoe to extend the training set to

the self-labelling regime [78]. Additionally, take notice that in this study, we utilize a

particular GDPCA learning technique based on Standard Laplacian that we have named

PageRank PCA (PRPCA). Then, we assume that training on PRPCA predictions in

a supervised regime will enable the Zoetrope mechanism in ZGP to extract meaningful

information. We combine these two algorithms on the basis of this supposition.

Let’s first establish the notation that will be required for the PaZoe framework’s

further explanation. Let X = [Xi]
n
i=1 ∈ Rn×d be the matrix of input features, with

dimension d and total number of observations n. Then let {C1, . . . , Ck} be the set of k

classes, and Y = [Yi]
n
i=1 be a label matrix where Yi = (Yi,j)

k
j=1, such that Yi,j = 1 if

Xi ∈ Cj and Yi,j = 0 otherwise. Y is composed of two parts: a labelled one of size nl,

and an unlabelled one of size nu, typically for SSL nl ≪ nu and Yi being the null vector

for all unlabelled data. We also define the following graph-based setup which will be

used in the sequel: A = [Ai,j]
n,n
i,j=1 is an adjacency matrix, D = diag(Di,i) is a diagonal

matrix with Di,i =
∑n

j=1Ai,j . The problem of semi-supervised classification is to find

an accurate classification result Ŷ = [Ŷi]
n
i=1 for Y , with Ŷi = (Ŷi,j)

k
j=1, based on both

labelled and unlabelled data where the amount of labelled data is extremely low.

6.1.1 PageRank & Principal component analysis (PRPCA)

The main idea of PRPCA is to enrich the adjacency matrix A by the information of

estimated covariance between objects S ∈ Rn×n. This enrichment allows spreading

information about labelled objects to unlabelled ones. This means that even in the

absence of edge between two objects where Ai,j = 0, we can still spread the information

about labels between these objects weighted by their covariance value. The explicit

classification solution of PRPCA is given by

Ŷ =
(
I − α

(
AD−1 + δSD−1

))−1
(1− α)Y (6.1)

where δ ∈ (0, 1) sets the influence of S on A and α ∈ (0, 1) is the random jump parameter

for PageRank. Let us note that in the normalised Ŷ if
(
AD−1 + δSD−1

)
is a stochastic

6.1. PAGERANK & PCA & ZOETROPE GENETIC PROGRAMMING (PAZOE) 99

matrix, equation 6.1 is an explicit PageRank [68] problem. The classification solution

6.1 is obtained through the differentiation of the combination Laplacian regularization1,

supervised2 and PCA3 losses. Note that the computation of the matrix inversion can

be avoided, thanks to numerical iterative methods [15]. PRPCA presents the following

interesting and practical features: first, it has an explicit classification solution (Eq. 6.1)

enabling the interpretation of the object’s values in each column of Y as the value of its

importance in that particular class/column, through the PageRank model; second, it

can work in a distributed regime, handling the high amount of unlabelled data without

memory issues; and finally, it can support the online learning regime, appending data from

a new observed sensor as a new object in a graph and labeling it through its neighbours.

6.1.2 Zoetrope Genetic Programming

The Zoetrope Genetic Programming (ZGP) algorithm is a genetic programming approach

for symbolic regression (GPSR) which iteratively evolves mathematical formulae towards

the one that best fits the data. The particularity of ZGP among symbolic regression

methods lies in its formula construction, which allows efficient computations and prevents

models to overgrow and become complex, a common drawback in GPSR. This construction

mechanism is illustrated in Figure 6.1 and works as follows. First, a number me of elements

(E1, . . . , Eme) are randomly selected among input features (resp. random constants),

with a 90% (resp. 10%) probability. Then, these elements undergo mm “maturation steps”

or “stages”, which consists in applying the fusion operation

f(Ei, Ej) = r ·1 (Ei, Ej) + (1− r) ·2 (Ei, Ej),

on couples of elements, where i, i = 1, 2 are operators4 uniformly chosen in a predefined

set O, and r = U [0, 1]; the result of f(Ei, Ej) replaces either Ei or Ej . At the end of

the mm stages, the matured elements – called “zoetropes” and denoted by (Z1, . . . , Zme) –

are linearly combined via multinomial logistic regression penalized by Elastic net [113];

this last step allows to jointly select the most relevant zoetropes and optimally estimate

their weights. The operator set can be adapted to the problem at hand, but is typically

taken as O = {+,−,×, /, cos, sin, sqrt}.
Genetic programming considers models as individuals of a “species”, and evolves

them with random perturbations (mutations) and by mating pairs into new individuals

1Laplacian regularization:
∑n

j=1 Ai,j ||Ŷi − Ŷj ||22
2Supervised loss:

∑n
i=1 ||Ŷi − Yi||22

3PCA loss: ||X̄Ŷ ||22
4In case 1 or 2 is unary, only Ei is taken into account

6.1. PAGERANK & PCA & ZOETROPE GENETIC PROGRAMMING (PAZOE)100

(crossover). ZGP’s mutation and crossover are also nonstandard in GPSR: the mutation

consists in selecting couples of models, and replace the worst one with a ”mutant” of

the first one, while the crossover consists in selecting the best and worst in a pool of mt

models, and randomly propagate elements and fusions of the best to the worst model.

Note that the ”worst” and “best” models are defined with respect to their accuracy on the

training set. At the end of each iteration, all the models are evaluated on the validation

set, and the best ever is stored. Also, like PRPCA, ZGP can work in distributed regime.

For the complete description of the algorithm, see [79].

Figure 6.1: Illustration of ZGP’s model construction with me = mm = 3. For the sake
of readability, the third fusion, generating (E”2, E”3) from (E′

2, E
′
3) is not represented.

Note that Z3 = E”3 as no element is left for a fusion.

6.1.3 PaZoe strategy

Our PaZoe framework is given in Algorithm 11 and consists in three main sequential

steps:

1. Transforming data into graph structure. For non-graph based datasets, where no

adjacency matrix A is available, we first generate a synthetic graph structure and

retrieve A by K-nearest neighbours (KNN) with Euclidean distance;

2. Labelling the unlabelled data. We then compute PRPCA based on the input matrix

X and the adjacency matrix A. Predictions generated by PRPCA consider the

graph structure, which could be valuable for stacking with existing object features

X for further training of ZGP. Also, self-labelling [78] by PRPCA predictions

extends the training set for further ZGP training in the supervised regime;

3. Classifying and recovering the boundary formulae. We stack the input data X

with the predictions from PRPCA and feed the augmented dataset to ZGP for

supervised training (where train/test split of dataset is 70%/30%).

6.2. EXPERIMENTAL RESULTS FOR PAZOE 101

This framework is applicable to any kind of data. In order to adapt it to temporal

data obtained from sensors, we propose to modify step 1 of PaZoe as follows: we first

separately train a KNN algorithm and generate different adjacency matrices for each

type of features, e.g. the magnetometer5 and the gyroscope6 in the DC motor dataset

(see next section for details); then we linearly combine these adjacency matrices into the

final one. Similarly in PRPCA, we compute the covariance between objects separately

for each feature.

The outline of PaZoe with the modification for sensor data is illustrated in Figure 6.2.

The PRPCA part of the code is publicly available through this link7. As for ZGP, we

used an open source version of the proprietary algorithm, which is still under testing and

has not been released yet.

Figure 6.2: PaZoe sequence: 1) Generation of graph structure; 2) Self-labelling by PRPCA;
3): 3a) Stack X with PRPCA predictions; 3b) ZGP training; 4) Final predictions from
ZGP. Note, X and units therein, refer to the dc motor dataset.

6.2 Experimental results for PaZoe

We apply the PaZoe framework on three time series datasets, the first generated for

this work, the others obtained from the public domain. DC motor dataset (RPM) −

5Xmga ∈ Rn×dmga where dmga is dimension of magnetometer
6Xdps ∈ Rn×ddps where ddps is dimension of gyroscope
7https://github.com/KamalovMikhail/PaZoe

6.2. EXPERIMENTAL RESULTS FOR PAZOE 102

Algorithm 11: PaZoe

1 INPUT: X,A, Y , α, δ ;
2 INITIALIZE: ;

3 X̄T
i = XT

i − 1
d

∑d
j X

T
j ∀i ∈ (1, . . . , n);

4 S = X̄T X̄
d−1 ;

5 IF: A = NaN :
6 A = KNN(X)

7 Ŷ =
(
I − α

(
AD−1 + δSD−1

))−1
(1− α)Y

8 X̂ = stack(X, Ŷ)

9 Ŷ = ZGP (X̂, Ŷ ,mp,mi,me,mm,mt)

generated with six classes of imbalance failure on a real motor, by collecting data from

a sensor tile (see next section); UWaveGesture (UWave) [114] − with eight classes of

gestures from (x, y, z) accelerometer features; Gesture WIImote (WII) [115] − with

ten classes of gestures from (x, y, z) accelerometer features by Nintendo Wiimote (see

Figure 6.3).

Figure 6.3: Datasets: UWaveGesture (UWave), Gesture WIImote (WII).

6.2.1 DC motor data collection

In order to profit from a real dataset on motor failures, we conducted our own experiment

to simulate anomalies of DC motors in a production environment. These are later used

as classification targets with labelled data generated for training. Motor axis imbalance

were generated by loading weights onto a disk plate mounted on top of the motor at

varying distances from its axis. In particular, the five imbalanced states of DC motor

6.2. EXPERIMENTAL RESULTS FOR PAZOE 103

are present in Figure 6.5. The dataset was obtained with industrially graded equipment

made of a STMicroelectronics (STM) acquisition board (Figure 6.4), a STM SensorTile

with three sensors - accelerometer, magnetometer and gyroscope - and a SD card for

data storage. The three components (x, y, z) of each sensor signal were acquired at the

default rate of 20 Hz, kept throughout.

Figure 6.4: STMicroelectronics (STM) acquisition board:Nucleo G431RB ST L6230 with
a GBM2804H brushless motor and STM SensorTile.

As environmental variables (temperature, pressure, and humidity) vary over time

scales orders of magnitude lower than the dynamic variables, the former were only recorded

during preliminary measurements along the day (no further samples were collected during

the campaigns). To rule out any daily variations, all measurements taken in the morning

were repeated in the afternoon under identical conditions. To account for potential

drifts (systematic errors) blank measurements were taken in the absence of loads, at the

beginning and at the end of each campaign. These comparisons did not show significant

differences. We recorded three rotation speeds, 620, 420 and 220 RPM. We chose these

speeds to show how the performances tend to drop the lower the speed, making the

6.2. EXPERIMENTAL RESULTS FOR PAZOE 104

Figure 6.5: The five imbalance states vs the balance state of the DC motor.

discrimination of anomalies more difficult.

The three sensor quantities and units are as follows:

• Accelerometer (mg) - acceleration values in units of mg, where g = 9.81 m/s2 is the

gravity acceleration. Here mg, along one of the axis measures as much as O(1000

mg) = 1 g whereas the other axes display values which are less by a factor O(50);

• Magnetometer (mGa) - generally used for tracking of moving objects - with values

in mGa, where ’Ga’ means gauss and 1 gauss = 10−4T . The acquisition board is

quoted for a 50 gauss magnetic field dynamic range ;

• Gyroscope (DPS) - measures rotations in DPS (deg. per seconds), e.g., one needs

to convert to rad/s if time or geometric calculations are needed. (ex. 2xPIxR etc).

STM claims 0.01 dps/sqrt(Hz) accuracy;

The duration of each experiment is close to one (∼ 1) minute.8

8Each datapoint has a timestamp dd/mm/yyyy hh:mm:ss.xxx, with differences between adjacent
points from 2 to 5 ms around the nominal 50 ms. As the time scale is approximately uniform, the absolute
value of the time can be safely ignored and timestamps swapped for indexes as necessary.

6.2. EXPERIMENTAL RESULTS FOR PAZOE 105

6.2.2 Data utilization strategy

We used the following train/test split strategy for all of these datasets: 20 labelled objects

for each class for training and the rest for testing. Note that all these datasets are

balanced, e.g. the number of objects in each class is similar. This strategy is standard

for SSL learning algorithms [116], [3]. Also, we have to mention that for the DC motor

dataset, we considered objects as sensor quantities (e.g. accelerometer, magnetometer,

gyroscope) at each moment in time (recording individual data points). In other words,

the length of time series (l) for the DC motor dataset was equal to l = 1. In practice, it

allows us to check the motor’s state and signal imbalance failures at any moment. This

is because the position of the motor is stable but, at a successive time instant it might

not be.

Since WII and UWave datasets have only observations from accelerometers, we

considered an object as a time series with length equal to the motion’s length (e.g.

following the time evolution of the three different coordinates, (x, y, z) during the

complete gesture recording). These three datasets, summarised in Table 6.1, and the code

for their processing are available through the provided link9. Note that in Table 6.1 the

number of observation for 620, 420, 220 rpm datasets is close to 6100. This is because the

sensor tile collected with a small number of missing values at the end of each observation

time (∼ 1 minute), which leads to slightly unequal number of observations for each type

of rpm.

Table 6.1: Dataset statistics

620,420,220 RPM UWave Wii

n No. observations ∼6100 4478 1000
nl No. labels 120 160 200
nl/n Ratio of labels ∼ 1.9% 3.6% 20%
l Sequence length 1 315 326
k No. classes 6 8 10
d No. features 9 315 326

6.2.3 Performance (Accuracy) & Computational complexity

For a fair comparison, we used three types of algorithms: (1) GB-SSL such as label

propagation (LP), PageRank & PCA (PRPCA) and graph convolution network (GCN)

(is a neural network); (2) non-GB-SSL, such as logistic regression (LR) and K-Nearest

9https://github.com/KamalovMikhail/PaZoe

6.2. EXPERIMENTAL RESULTS FOR PAZOE 106

Neighbours (KNN); and (3) supervised algorithms such as Support-vector machine (SVM),

ZGP and the combination of algorithms such as PRPCA & LR (PaLR) and PRPCA &

SVM (PaSVM). For each of these algorithms, we took the best hyperparameters defined

in their respective works and for PRPCA we used α = 0.9, δ = 10−3. We use accuracy as

the performance metric since all datasets are balanced. We report the average accuracy

on the test set, taken over 20 random splits (k-folds strategy).

The results of PaZoe on the DC motor dataset obtained with various features com-

binations are presented in Table 6.2. It shows that the best classification accuracy

is achieved by using magnetometer (mGa) or gyroscope (dps) with respect to RPM.

Since magnetometer (mGa) and gyroscope (dps) separately provide a high classification

accuracy for the DC motor dataset, we use the best of them for each RPM (ie. dps for

620, 420 rpm and mGa for 220 RPM) to train the rest of the algorithms. We believe that

in order to improve the performance on 220rpm dataset, we should extend the length of

the considered time series (instead of l = 1, because the increased number of observations

should improve the classification results). Furthermore, Figure 6.6 shows that PaZoe

outperforms the LP, GCN and LR in terms of computational complexity. Note that

results in Figure 6.6 base on the 20 completed trainings on CPU(1.4GHz quad-core Intel

Core i5).

The rest results of PaZoe compared with all the other algorithms on the DC motor

dataset are shown in Table 6.3, along with the performance on the WII and UWave

datasets. Several comments can be made on those results: first, PRPCA clearly outper-

forms the other SSL algorithms on all three datasets; second, combining PRPCA with

a supervised classification algorithm only leads to an improvement with ZGP (PaZoe);

third, PaZoe considerably outperforms its separate components (PRPCA, ZGP) as well

as the rest of the SSL and supervised algorithms on all three datasets, even with only

one sensor (accelerometer) in the gesture datasets.

6.2. EXPERIMENTAL RESULTS FOR PAZOE 107

Figure 6.6: Computational complexity of PaZoe.

Table 6.2: Accuracy for the DC motor dataset with various feature sets

RPM Algorithm dps, mGa, mg mGa mg dps mGa,dps

620

PRPCA 61.2 19.2 44.2 71.6 68.2
ZGP 48.9 16.2 35.7 60.1 63.2
PaLR 18.4 17.2 19.5 42.9 18.8
PaSVM 46.7 17.0 41.2 65.8 66.4
PaZoe 65.6 97.0 96.8 98.8 79.3

420

PRPCA 38.8 60.8 28.3 66.2 51.8
ZGP 62.4 64.6 29.2 62.3 65.2
PaLR 18.0 28.7 22.7 35.2 17.9
PaSVM 18.7 51.1 26.0 52.5 44.2
PaZoe 63.5 96.2 95.2 97.8 67.2

220

PRPCA 30.6 66.3 20.1 29.5 37.2
ZGP 20.2 18.5 16.8 26.1 27.1
PaLR 18.5 16.4 17.1 19.0 17.4
PaSVM 19.8 61.2 18.8 16.5 33.0
PaZoe 36.2 94.2 90.6 93.1 44.8

6.2. EXPERIMENTAL RESULTS FOR PAZOE 108

Table 6.3: Accuracy for DC motor, WII and UWave datasets

Dataset 620RPM 420RPM 220RPM WII UWave

PRPCA 71.6 66.2 66.3 67.8 70.1
LP 31.2 17.2 16.6 15.2 12.4
KNN 28.6 33.9 60.1 23.7 58.8
GCN 16.9 21.6 18.3 16.7 18.3
ZGP 60.1 62.3 26.1 14.6 17.4
LR 29.7 27.9 16.8 52.9 55.8
SVM 64.1 38.9 25.6 43.3 68.3

PaLR 42.9 35.2 16.4 34.9 62.8
PaSVM 65.8 52.5 61.2 37.3 69.1
PaZoe 98.8 97.8 94.2 71.8 72.3

Chapter 7

Conclusion

In this thesis, we have proposed batchwise linear and neural network solutions for the

main problems with memory and computational limitations, which arise in all directions

of graph-based semi-supervised algorithms (GB-SSL) area. In particular, we have

shown that the Markov-batch stochastic approximation (MBSA) and its application

for scaling graph convolution networks (MBSA-NN) significantly reduce the memory

and computational complexity of RAM and GPU. Furthermore, we have proved that

the solutions of Personalised PageRank and Graph Convolution Network (GCN) are

reached by MBSA and MBSA-NN, respectively. Additionally, we have discovered and

investigated generic Laplacian regularization issues, which are encountered by both graph

convolution networks and the majority of classical diffusion-based algorithms. To avoid

the Laplacian regularization problems, we have defined the linear (Graph-diffusion &

PCA, GDPCA) and non-linear (GenPR) frameworks. We have also demonstrated that

the suggested GDPCA and GenPR frameworks may be scaled by the MBSA algorithm

without sacrificing performance or memory efficiency. Finally, we have demonstrated how

the GDPCA framework suggested in this thesis may be modified for the use on a real

dataset while guaranteeing minimal computational cost and good accuracy.

In the first part of this work, we have proposed a novel stochastic approximation

algorithm called Markov-Batch Stochastic Approximation (MBSA) resolving the Person-

alized PageRank (PPR) problem, which can be used by itself as a linear algorithm or

within graph convolution networks. We have proved the convergence of MBSA to the

exact solution of PPR and experimentally showed that MBSA outperforms other linear

algorithms such as JOR, RBGS, DSBGS and RK in terms of ordinal convergence rate to

an optimal classification result and consumes a small amount of memory. Specifically,

we have shown that it is more important to rapidly recover the PPR ranking than find

the exact solution’s best approximation. Also, we have analysed the convergence of

109

110

MBSA with a uniform batch selection strategy to avoid the limitation in the computation

of a matrix with the number of edges between batches. Moreover, we have adapted

the MBSA algorithm to scale existing graph convolution networks on large graphs and

named it as MBSA-NN. In particular, we have proved the convergence of MBSA-NN to

a local minimum of the graph convolution network on the entire graph, with MBSA-NN

solving the critical out-of-memory (OOM) and computational issues by the significant

reduction of memory and time consumption with respect to the latest scaling algorithms.

Moreover, we have shown on the APPNP algorithm that MBSA-NN can scale other

graph convolution networks based on PPR. We have also shown that MBSA could be

used in the inference part of scaling algorithms. For instance, using it in PPRGO results

in a decrease in both computation time and memory consumption.

In the next part of the thesis, we have proposed a novel minimization problem for

semi-supervised learning that can be applied to both graph-structured and non-graph

based datasets. We have provided an explicit solution to the problem, leading to a new

linear framework called Graph diffusion & PCA. This framework allows to overcome the

Curse of dimensionality, through the use of reorganized PCA, and the Binary edges, by

considering the covariance matrix, which are both common issues in algorithms base on

Laplacian regularizsation loss. Furthermore, we have described how MBSA algorithm

might scale GDPCA, and we experimentally demonstrated that the scaled version of

GDPCA (GDPCA-MBSA) maintains the same level of accuracy as the default GDPCA.

Note that we have demonstrated the impact of these improvements in experiments

on several datasets with and without an underlying graph structure. We have also

compared it to state-of-the-art algorithms and showed that GDPCA, GDPCA-MBSA

clearly outperforms the other linear graph-based diffusion algorithms in terms of accuracy.

As for the comparison with neural networks, the experiments showed that the performance

(accuracy) are similar, while GDPCA has a significantly lower computational time in

addition to providing an explicit solution.

In the following part of the thesis, we have proposed a graph-based SSL (I)/(T)

framework created by embedding PRSSL in generative model VAE. Based on the ex-

perimental findings, we have demonstrated that the generative model application for

PRSSL can be used to understand the classification results, which may be utilized to

address the Explainability issue, in addition to improving label spreading. We have also

shown that GenPR significantly and consistently outperforms all other algorithms on

every dataset and requires less number of PageRank PowerIteration steps. Also, we

have embedded MBSA into GenPR, which can be executed in both the transductive

and inductive training modes in batch training. Moreover, GenPR-MBSA demonstrates

111

lower computation complexity than the other competing methods with keeping a high

performance (accuracy). Furthermore, we have shown that GenPR and GenPR-MBSA

support training with or without default graph structure in the datasets, which allows

applying these frameworks to avoid of Versatility limitations.

Finally, we have shown that the problem of label scarcity in data gathered from

industrial equipment under working conditions is addressed by generating labels via an

efficient SSL algorithm (PRPCA). Its outcomes are then fed into the genetic program-

ming approach for symbolic regression (GPSR) based algorithm ZGP, which provides

interpretable predictions expressed by a mathematically explicit formula. The working

of the two algorithms has been briefly explained, and their joint use is described as the

PaZoe framework. It has been shown that the use of this stacked framework provides a

combined performance which overcomes the two algorithms individually. These results

have been obtained on realistic data, partly generated for this purpose with industrially

graded equipment, partly on sensor data available from the public domain. We have

observed that similarly to other SSL algorithms (like LP, GCN, KNN), PaZoe does not

assume any kind of data distribution (or even requires the data to be i.i.d.), while it

performs better than those.

We conclude that, compared to the most advanced state-of-the-art GB-SSL methods,

the algorithms and frameworks we have presented in this study offer good performance

in practice and considerably lower memory and computational complexity on a variety

of types of data. Additionally, all of the algorithms, frameworks and newly collected

datasets that were suggested in this thesis are freely accessible and can be used in future

investigations. In the future, we consider investigating an extension of our Markov-Batch

Stochastic Approximation algorithm by applying a more complex batch selection strategy

as in the linear case for MBSA in neural networks MBSA-NN. In particular, we are

planning to apply the recurrent batch of nodes updating strategy for MBSA, which we

hope can be adapted for memory and time complexity reduction in recurrent neural

networks.

112

Bibliography

[1] S. Karczmarz, “Angenaherte auflosung von systemen linearer glei-chungen,” Bull.

Int. Acad. Pol. Sic. Let., Cl. Sci. Math. Nat., pp. 355–357, 1937.

[2] K. Avrachenkov, V. S. Borkar, and K. Saboo, “Distributed and asynchronous

methods for semi-supervised learning,” in International Workshop on Algorithms

and Models for the Web-Graph. Springer, 2016, pp. 34–46.

[3] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with label

propagation,” CMU Technical report, 2002.

[4] K. Avrachenkov, A. Mishenin, P. Gonçalves, and M. Sokol, “Generalized optimiza-

tion framework for graph-based semi-supervised learning,” in Proceedings of the

2012 SIAM International Conference on Data Mining. SIAM, 2012, pp. 966–974.

[5] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples,” Journal of machine

learning research, vol. 7, no. Nov, pp. 2399–2434, 2006.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” in 5th International Conference on Learning Representations. ICLR,

2017.

[7] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph

attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[8] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Repre-

sentation learning on graphs with jumping knowledge networks,” in International

Conference on Machine Learning. PMLR, 2018, pp. 5453–5462.

[9] T. Joachims, “Transductive inference for text classification using support vector

machines,” in Icml, vol. 99, 1999, pp. 200–209.

113

BIBLIOGRAPHY 114

[10] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits

in natural images with unsupervised feature learning,” 2011.

[11] J. Goldberger, G. E. Hinton, S. Roweis, and R. R. Salakhutdinov, “Neighbourhood

components analysis,” Advances in neural information processing systems, vol. 17,

2004.

[12] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised

learning with deep generative models,” in Advances in neural information processing

systems, 2014, pp. 3581–3589.

[13] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-

encoders: Explicit invariance during feature extraction,” in Icml, 2011.

[14] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph

neural networks meet personalized pagerank,” arXiv preprint arXiv:1810.05997,

2018.

[15] K. Avrachenkov, A. Boisbunon, and M. Kamalov, “Graph diffusion & pca framework

for semi-supervised learning,” in The 15th Learning and Intelligent Optimization

(LION), 2021.

[16] M. Kamalov, A. Boisbunon, C. Fanara, I. Grenet, and J. Daeden, “Pazoe: classifying

time series with few labels,” in 2021 29th European Signal Processing Conference

(EUSIPCO). IEEE, 2021, pp. 1561–1565.

[17] E. Buchnik and E. Cohen, “Bootstrapped graph diffusions: Exposing the power of

nonlinearity,” in Abstracts of the 2018 ACM International Conference on Measure-

ment and Modeling of Computer Systems, 2018, pp. 8–10.

[18] M. Kamalov and K. Avrachenkov, “Genpr: Generative pagerank framework for

semi-supervised learning on citation graphs,” in Conference on Artificial Intelligence

and Natural Language. Springer, 2020, pp. 158–165.

[19] J. W. Vaughan, “Making better use of the crowd: How crowdsourcing can advance

machine learning research.” J. Mach. Learn. Res., vol. 18, no. 1, pp. 7026–7071,

2017.

[20] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning (chapelle, o. et

al., eds.; 2006)[book reviews],” IEEE Transactions on Neural Networks, vol. 20,

no. 3, pp. 542–542, 2009.

BIBLIOGRAPHY 115

[21] D. Zhou and C. J. Burges, “Spectral clustering and transductive learning with

multiple views,” in Proceedings of the 24th international conference on Machine

learning. ACM, 2007, pp. 1159–1166.

[22] X. Mai and R. Couillet, “Consistent semi-supervised graph regularization for high

dimensional data,” The Journal of Machine Learning Research, vol. 19, no. 1, pp.

3074–3100, 2019.

[23] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised learning

with graph embeddings,” ser. Proceedings of Machine Learning Research, vol. 48.

New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 40–48.

[24] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social

representations,” in Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining, 2014, pp. 701–710.

[25] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via semi-

supervised embedding,” in Neural networks: Tricks of the trade. Springer, 2012,

pp. 639–655.

[26] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated atten-

tion networks for learning on large and spatiotemporal graphs,” arXiv preprint

arXiv:1803.07294, 2018.

[27] H. Lu, S. H. Huang, T. Ye, and X. Guo, “Graph star net for generalized multi-task

learning,” 2019.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” Advances in neural information

processing systems, vol. 30, 2017.

[29] R. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der gleichungsauflösung.”

ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte

Mathematik und Mechanik, vol. 9, no. 1, pp. 58–77, 1929.

[30] B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet neural network,”

in International Conference on Learning Representations, 2019.

[31] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative modeling

of graphs,” in International conference on machine learning. PMLR, 2019, pp.

2434–2444.

BIBLIOGRAPHY 116

[32] X. Zhang, Y. He, N. Brugnone, M. Perlmutter, and M. Hirn, “Magnet: A neural

network for directed graphs,” Advances in Neural Information Processing Systems,

vol. 34, 2021.

[33] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proceedings

of the 2nd International Conference on Learning Representations. ICLR, 2013.

[34] H. Wang, C. Zhou, X. Chen, J. Wu, S. Pan, and J. Wang, “Graph stochastic neural

networks for semi-supervised learning,” Advances in Neural Information Processing

Systems, vol. 33, pp. 19 839–19 848, 2020.

[35] S. Pal, S. Malekmohammadi, F. Regol, Y. Zhang, Y. Xu, and M. Coates, “Non

parametric graph learning for bayesian graph neural networks,” in Conference on

uncertainty in artificial intelligence. PMLR, 2020, pp. 1318–1327.

[36] J. Ma, W. Tang, J. Zhu, and Q. Mei, “A flexible generative framework for graph-

based semi-supervised learning,” Advances in Neural Information Processing Sys-

tems, vol. 32, 2019.

[37] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards fast

graph representation learning,” Advances in neural information processing systems,

vol. 31, 2018.

[38] G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go as deep

as cnns?” in Proceedings of the IEEE/CVF international conference on computer

vision, 2019, pp. 9267–9276.

[39] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Repre-

sentation learning on graphs with jumping knowledge networks,” in International

Conference on Machine Learning. PMLR, 2018, pp. 5453–5462.

[40] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyun-

yan, G. Ver Steeg, and A. Galstyan, “Mixhop: Higher-order graph convolutional

architectures via sparsified neighborhood mixing,” in international conference on

machine learning. PMLR, 2019, pp. 21–29.

[41] S. Luan, M. Zhao, X.-W. Chang, and D. Precup, “Break the ceiling: Stronger

multi-scale deep graph convolutional networks,” Advances in neural information

processing systems, vol. 32, 2019.

BIBLIOGRAPHY 117

[42] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Proceedings

of the 26th ACM SIGKDD international conference on knowledge discovery & data

mining, 2020, pp. 338–348.

[43] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolu-

tional networks,” in International Conference on Machine Learning. PMLR, 2020,

pp. 1725–1735.

[44] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph

convolutional networks on node classification,” arXiv preprint arXiv:1907.10903,

2019.

[45] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield, K. Narayanan,

and X. Qian, “Bayesian graph neural networks with adaptive connection sampling,”

in International conference on machine learning. PMLR, 2020, pp. 4094–4104.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.

[47] ——, “Identity mappings in deep residual networks,” in European conference on

computer vision. Springer, 2016, pp. 630–645.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[49] H. Wang, M. He, Z. Wei, S. Wang, Y. Yuan, X. Du, and J.-R. Wen, “Approximate

graph propagation,” arXiv preprint arXiv:2106.03058, 2021.

[50] M. Chen, Z. Wei, B. Ding, Y. Li, Y. Yuan, X. Du, and J.-R. Wen, “Scalable graph

neural networks via bidirectional propagation,” arXiv preprint arXiv:2010.15421,

2020.

[51] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais, B. Rózemberczki,

M. Lukasik, and S. Günnemann, “Scaling graph neural networks with approximate

pagerank,” in Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2020, pp. 2464–2473.

[52] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,

“Graph convolutional neural networks for web-scale recommender systems,” in

BIBLIOGRAPHY 118

Proceedings of the 24th ACM SIGKDD international conference on knowledge

discovery & data mining, 2018, pp. 974–983.

[53] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” Advances in neural information processing systems, vol. 30, 2017.

[54] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional networks

with variance reduction,” in Proceedings of the 35th International Conference on

Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and

A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 942–950.

[55] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan, V. Prasanna,

L. Jin, and R. Chen, “Decoupling the depth and scope of graph neural networks,”

Advances in Neural Information Processing Systems, vol. 34, 2021.

[56] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “GraphSAINT:

Graph sampling based inductive learning method,” in International Conference on

Learning Representations, 2020.

[57] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-gcn: An

efficient algorithm for training deep and large graph convolutional networks,” in

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, 2019, pp. 257–266.

[58] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph

convolutional networks,” in International conference on machine learning. PMLR,

2019, pp. 6861–6871.

[59] J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves graph

learning,” arXiv preprint arXiv:1911.05485, 2019.

[60] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph convolutional

networks via importance sampling,” arXiv preprint arXiv:1801.10247, 2018.

[61] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent importance

sampling for training deep and large graph convolutional networks,” Advances in

neural information processing systems, vol. 32, 2019.

[62] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec, “Gnnautoscale: Scalable

and expressive graph neural networks via historical embeddings,” in International

Conference on Machine Learning. PMLR, 2021, pp. 3294–3304.

BIBLIOGRAPHY 119

[63] S. Park, W. Lee, B. Choe, and S.-G. Lee, “A survey on personalized pagerank

computation algorithms,” IEEE Access, vol. 7, pp. 163 049–163 062, 2019.

[64] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical

methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[65] K. Du and X. Sun, “A doubly stochastic block gauss-seidel algorithm for solving

linear equations,” arXiv preprint arXiv:1912.13291, 2019.

[66] W. M. WU, “Convergence of the randomized block gauss-seidel method,” 2018.

[67] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph

convolutional networks,” in International conference on machine learning. PMLR,

2019, pp. 6861–6871.

[68] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:

Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[69] I. Ipsen and R. M. Wills, “Analysis and computation of google’s pagerank,” in

7th IMACS international symposium on iterative methods in scientific computing,

Fields Institute, Toronto, Canada, vol. 5, no. 8, 2005.

[70] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with

local and global consistency,” in Advances in neural information processing systems,

2004, pp. 321–328.

[71] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian

fields and harmonic functions,” in Proceedings of the 20th International conference

on Machine learning (ICML-03), 2003, pp. 912–919.

[72] R. Baeza-Yates and G. Navarro, “Block addressing indices for approximate text

retrieval,” Journal of the American Society for Information Science, vol. 51, no. 1,

pp. 69–82, 2000.

[73] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.

[74] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining, 2016, pp. 855–864.

[75] S. Liang, Y. Wang, C. Liu, L. He, L. Huawei, D. Xu, and X. Li, “Engn: A high-

throughput and energy-efficient accelerator for large graph neural networks,” IEEE

Transactions on Computers, vol. 70, no. 9, pp. 1511–1525, 2020.

BIBLIOGRAPHY 120

[76] J. Chen, G. Lin, J. Chen, and Y. Wang, “Towards efficient allocation of graph

convolutional networks on hybrid computation-in-memory architecture,” Science

China Information Sciences, vol. 64, no. 6, pp. 1–14, 2021.

[77] T. Baruah, K. Shivdikar, S. Dong, Y. Sun, S. A. Mojumder, K. Jung, J. L. Abellán,

Y. Ukidave, A. Joshi, J. Kim et al., “Gnnmark: A benchmark suite to characterize

graph neural network training on gpus,” in 2021 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS). IEEE, 2021, pp. 13–23.

[78] I. Triguero, S. Garćıa, and F. Herrera, “Self-labeled techniques for semi-supervised

learning: taxonomy, software and empirical study,” Knowledge and Information

systems, vol. 42, no. 2, pp. 245–284, 2015.

[79] A. Boisbunon, C. Fanara, I. Grenet, J. Daeden, A. Vighi, and M. Schoenauer,

“Zoetrope genetic programming for regression,” in Genetic and Evolutionary Com-

putation Conference (GECCO), 2021.

[80] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using pagerank

vectors,” in 2006 47th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’06). IEEE, 2006, pp. 475–486.

[81] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is “nearest neighbor”

meaningful?” in International conference on database theory. Springer, 1999, pp.

217–235.

[82] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint. Springer,

2009, vol. 48.

[83] S. Jubertie, K. Peou, G. Quintin, and F. Dupros, “Portability across arm neon

and sve vector instruction sets using the nsimd library: a case study on a seismic

spectral-element kernel,” in HPCS 2020, 2021.

[84] M. G. Kendall, “The treatment of ties in ranking problems,” Biometrika, vol. 33,

no. 3, pp. 239–251, 1945.

[85] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs: Unsuper-

vised inductive learning via ranking,” arXiv preprint arXiv:1707.03815, 2017.

[86] J. Yang and J. Leskovec, “Defining and evaluating network communities based on

ground-truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–213,

2015.

BIBLIOGRAPHY 121

[87] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on

large graphs,” arXiv preprint arXiv:1706.02216, 2017.

[88] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,

“Open graph benchmark: Datasets for machine learning on graphs,” Advances in

neural information processing systems, vol. 33, pp. 22 118–22 133, 2020.

[89] G. Thoppe and V. Borkar, “A concentration bound for stochastic approximation

via alekseev’s formula,” Stochastic Systems, vol. 9, no. 1, pp. 1–26, 2019.

[90] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating the construc-

tion of internet portals with machine learning,” Information Retrieval, vol. 3, no. 2,

pp. 127–163, 2000.

[91] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Col-

lective classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93,

2008.

[92] E. Bair, T. Hastie, D. Paul, and R. Tibshirani, “Prediction by supervised principal

components,” Journal of the American Statistical Association, vol. 101, no. 473, pp.

119–137, 2006.

[93] R. Johnson and T. Zhang, “Graph-based semi-supervised learning and spectral

kernel design,” IEEE Transactions on Information Theory, vol. 54, no. 1, pp.

275–288, 2008.

[94] A. Ritchie, C. Scott, L. Balzano, D. Kessler, and C. S. Sripada, “Supervised

principal component analysis via manifold optimization,” in 2019 IEEE Data

Science Workshop (DSW). IEEE, 2019, pp. 6–10.

[95] F. Roli and G. L. Marcialis, “Semi-supervised pca-based face recognition using

self-training,” in Joint IAPR International Workshops on Statistical Techniques

in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition

(SSPR). Springer, 2006, pp. 560–568.

[96] C. Walder, R. Henao, M. Mørup, and L. Hansen, Semi-Supervised Kernel PCA,

ser. IMM-Technical Report-2010-10. Technical University of Denmark, DTU

Informatics, Building 321, 2010.

[97] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals

of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

BIBLIOGRAPHY 122

[98] C. Ding and X. He, “K-means clustering via principal component analysis,” in

Proceedings of the twenty-first international conference on Machine learning, 2004,

p. 29.

[99] R. M. Freund, “Quadratic functions, optimization, and quadratic forms,” 2004.

[100] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for

solving nonsymmetric linear systems,” SIAM Journal on scientific and statistical

computing, vol. 7, no. 3, pp. 856–869, 1986.

[101] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical

methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[102] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions,”

SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[103] S. Rifai, Y. N. Dauphin, P. Vincent, Y. Bengio, and X. Muller, “The manifold

tangent classifier,” Advances in neural information processing systems, vol. 24, pp.

2294–2302, 2011.

[104] E. Fix, Discriminatory analysis: nonparametric discrimination, consistency proper-

ties. USAF school of Aviation Medicine, 1951.

[105] M. Zima, “A theorem on the spectral radius of the sum of two operators and its

application,” Bulletin of the Australian Mathematical Society, vol. 48, no. 3, pp.

427–434, 1993.

[106] O. Rojo, R. Soto, and H. Rojo, “Bounds for the spectral radius and the largest

singular value,” Computers & Mathematics with Applications, vol. 36, no. 1, pp.

41–50, 1998.

[107] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.”

Journal of machine learning research, vol. 13, no. 2, 2012.

[108] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Col-

lective classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93,

2008.

[109] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

BIBLIOGRAPHY 123

[110] I. Masic, M. Miokovic, and B. Muhamedagic, “Evidence based medicine–new

approaches and challenges,” Acta Informatica Medica, vol. 16, no. 4, p. 219, 2008.

[111] S. J. Day and D. G. Altman, “Blinding in clinical trials and other studies,” Bmj,

vol. 321, no. 7259, p. 504, 2000.

[112] C. Brezinski and M. Redivo-Zaglia, “The pagerank vector: properties, computa-

tion, approximation, and acceleration,” SIAM Journal on Matrix Analysis and

Applications, vol. 28, no. 2, pp. 551–575, 2006.

[113] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,”

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67,

no. 2, pp. 301–320, 2005.

[114] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uWave: Accelerometer-

based personalized gesture recognition and its applications,” Pervasive and Mobile

Computing, vol. 5, no. 6, pp. 657–675, 2009.

[115] J. Guna, I. Humar, and M. Pogačnik, “Intuitive gesture based user identification

system,” in 35th International Conference on Telecommunications and Signal

Processing (TSP). IEEE, 2012, pp. 629–633.

[116] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” in 5th International Conference on Learning Representations (ICLR),

2017.

	Résumé [Français]
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Notations
	1 Introduction
	1.1 General overview of Semi-supervised learning
	1.2 Overview of GB-SSL algorithms
	1.2.1 Classical diffusion-based algorithms
	1.2.2 Graph convolution networks
	1.2.3 Scaling algorithms

	1.3 Problems and Goals
	1.3.1 Computational and memory critical limitations
	1.3.2 Specific Laplacian regularization and general non-critical GB-SSL problems
	1.3.3 Goals

	1.4 Contributions
	1.4.1 Markov-Batch Stochastic Approximation algorithm
	1.4.2 Graph diffusion & PCA
	1.4.3 Generative PageRank
	1.4.4 GDPCA and Zoetrope Genetic Programming for detecting imbalanced states of engines

	2 Related work
	2.1 Batch algorithms for PPR
	2.1.1 Doubly Stochastic Block Gauss-Seidel
	2.1.2 Randomized Block Gauss-Seidel

	2.2 Scaling algorithms
	2.2.1 Model simplification
	2.2.2 Nodes-neighbours selection

	2.3 Classical graph-based & Non-Graph based SSL algorithms
	2.3.1 Classical diffusion-based algorithm
	2.3.2 Graph convolution networks
	2.3.3 Non-Graph based algorithm

	3 Markov-Batch Stochastic Approximation algorithm
	3.1 Markov-Batch Stochastic Approximation (MBSA)
	3.1.1 Selection of batches
	3.1.2 Node update
	3.1.3 Theoretical analysis

	3.2 The asynchronous parallel MBSA (pMBSA)
	3.2.1 Details of parallel implementation on C++

	3.3 Ablation studies of MBSA
	3.3.1 Impact of γ and ε on convergence rate
	3.3.2 Impact of batch size on convergence rate

	3.4 Experimental results for MBSA
	3.4.1 Convergence analysees
	3.4.2 Memory vs Time tradeoff

	3.5 MBSA for graph convolution networks
	3.5.1 Training step
	3.5.2 Theoretical analysis
	3.5.3 Implementation details
	3.5.4 Inference step
	3.5.5 Limitation

	3.6 Ablation studies of MBSA-NN
	3.6.1 Impact of γ and bs on the accuracy of MBSA-NN
	3.6.2 Impact of MBSA/pMBSA at inference on the accuracy of MBSA-NN

	3.7 Experimental results for MBSA-NN
	3.7.1 Performance (Accuracy)
	3.7.2 Memory vs Time tradeoff

	3.8 Uniform MBSA
	3.8.1 Node update
	3.8.2 Training step

	3.9 Experimental results for uMBSA-NN
	3.9.1 Accuracy vs Memory/Time tradeoff

	3.10 Proofs
	3.10.1 Theorem 1
	3.10.2 Theorem 2
	3.10.3 Remark 4

	3.11 Experimental details
	3.11.1 State-of-the-art (SOTA) algorithms
	3.11.2 Parameters
	3.11.3 Technical environment and links on implementations
	3.11.4 Dataset description
	3.11.5 Implementation details

	4 Graph-Diffusion & PCA framework
	4.1 Graph-diffusion with reorganized PCA loss
	4.1.1 PCA for binary clustering (PCA-BC)
	4.1.2 Generalization of PCA-BC for GB-SSL
	4.1.3 Theoretical analysis

	4.2 Graph-Diffusion & PCA (GDPCA)
	4.2.1 Scaling of GDPCA by Markov-Batch Stochastic Approximation

	4.3 Ablation studies of GDPCA
	4.3.1 Significance of the covariance matrix
	4.3.2 Generation of synthetic adjacency matrix
	4.3.3 Hyperparameters selection

	4.4 Experimental results for GDPCA
	4.4.1 Performance (Accuracy)
	4.4.2 Memory vs Time tradeoff

	4.5 Proofs
	4.5.1 Proposition 1
	4.5.2 Proposition 2

	4.6 Experimental details
	4.6.1 State-of-the-art (SOTA) algorithms
	4.6.2 Parameters
	4.6.3 Datasets description

	5 Generative PageRank
	5.1 Generative PageRank (GenPR)
	5.1.1 Intuition of GenPR
	5.1.2 Objective function of GenPR
	5.1.3 Architecture of GenPR
	5.1.4 Scaling GenPR by Markov-Batch Stochastic Approximation

	5.2 Experimental results for GenPR
	5.2.1 Performance (Accuracy) & Explainability
	5.2.2 Memory vs Time tradeoff
	5.2.3 Denoising

	5.3 Experimental details
	5.3.1 Technical environment & Implementations
	5.3.2 State-of-the-art (SOTA) algorithms
	5.3.3 Parameters

	6 PaZoe:classifying time series with few labels
	6.1 PageRank & PCA & Zoetrope Genetic Programming (PaZoe)
	6.1.1 PageRank & Principal component analysis (PRPCA)
	6.1.2 Zoetrope Genetic Programming
	6.1.3 PaZoe strategy

	6.2 Experimental results for PaZoe
	6.2.1 DC motor data collection
	6.2.2 Data utilization strategy
	6.2.3 Performance (Accuracy) & Computational complexity

	7 Conclusion

