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Résumé. De nos jours, I'apprentissage semi-supervisé basé sur les graphes (GB-SSL)
est un domaine en plein essor pour classer les nocuds d’un graphe avec un nombre
extrémement faible de nceuds labélisés. Cependant, les algorithmes GB-SSL ont deux
limites générales : la premieére est la complexité mémoire/temps qui se présente dans
tous les algorithmes GB-SSL de pointe sur de larges graphes. En particulier, la forte
consommation de mémoire se produit dans les réseaux de convolution de graphes et conduit
a des problemes d’OOM (Out of Memory) sur GPU ou RAM,; la seconde apparait dans tous
les algorithmes GB-SSL basés sur la perte de régularisation Laplacienne. La contribution
majeure de cette thése est divisée en deux parties afin de proposer des stratégies qui
garantiraient d’éviter les restrictions mentionnées ci-dessus. Dans la premiere partie de
cette these, nous proposons un nouvel algorithme linéaire appelé Markov-Batch Stochastic
Approximation (MBSA) pour résoudre le PageRank Personnalisé. MBSA met & jour
des lots de nceuds et propose un compromis significativement meilleur que les autres
modeles linéaires entre la consommation de mémoire et le taux de convergence pour
un résultat de classification optimal. Ensuite, nous proposons un nouveau réseau de
convolution de graphes a échelle, appelé MBSA-NN, qui intéegre notre MBSA linéaire. Le
MBSA-NN évite les problemes d’OOM et réduit considérablement la consommation de
temps et de mémoire sur GPU et RAM. Nous avons appliqué le MBSA-NN & plusieurs
grands ensembles de données, et nous avons montré qu’il peut traiter des graphes avec
plus de 10M nceuds et 2M de caractéristiques en une minute sur une machine standard,
y compris le temps de prétraitement, d’apprentissage et d’inférence. De plus, nous
montrons qu’il a une consommation mémoire/temps significativement améliorée et une
précision compétitive par rapport aux meilleurs algorithmes de mise a I’échelle GB-SSL
les plus récents. La deuxieme partie de cette theése se concentre sur les solutions aux
problemes de perte de régularisation du Laplacien. Pour cette raison, nous proposons
un nouveau cadre appelé Graph Diffusion & PCA (GDPCA). Ce cadre combine une
analyse en composantes principales modifiée avec la perte supervisée classique et la perte
de régularisation laplacienne. GDPCA permet de traiter le cas ou la matrice d’adjacence
présente des Arétes binaires et évite la Malédiction de la dimensionnalité. De plus,
GDPCA peut étre appliqué a des ensembles de données non graphiques, tels que des
images, en construisant un graphe de similarité. En outre, nous proposons un cadre qui
intégre PageRank SSL dans un modele génératif (GenPR). GenPR joint l'entrainement
de la représentation de I'espace latent des nceuds et la propagation des labels a travers
la matrice d’adjacence repondérée par les similarités des nceuds dans 'espace latent.
Nous démontrons qu'un modele génératif peut améliorer la précision et réduire le nombre

d’étapes d’itération pour PageRank SSL. En outre, nous montrons comment intégrer



MBSA dans le cadre de GenPR pour fournir le régime de formation par lots de GenPR.
Enfin, nous proposons un cadre SSL flexible basé sur I'empilement des algorithmes
GDPCA et de Zoetrope Genetic Programming dans un nouveau cadre : PaZoe. Ce cadre
d’auto-labélisation montre que les algorithmes basés sur les graphes et les algorithmes
non basés sur les graphes améliorent conjointement la qualité des prédictions et sont
plus performants que chaque composant pris séparément. Nous montrons également
que PaZoe surpasse les algorithmes SSL de pointe sur des jeux de données réels. Notez
que I'un des ensembles de données a été généré par nos soins, en prenant les données
d’un équipement industriel clagsé pour imiter les moteurs a courant continu pendant leur
fonctionnement.

Mots clés. Apprentissage Semi-Supervisé, Réseaux de Neurones, Approximation

Stochastique, Personalized PageRank
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Abstract. Nowadays, graph-based semi-supervised learning (GB-SSL) is a fast-
growing area of classifying nodes in a graph with an extremely low number of labelled
nodes. However, the GB-SSL algorithms have two general limitations: the first is
the memory/time complexity that arises in all state-of-the-art GB-SSL algorithms on
extremely large graphs. In particular, the high memory consumption occurs in graph
convolution networks and leads to Out of Memory (OOM) issues on GPU or RAM; (ii)
the second one appears in all GB-SSL algorithms based on Laplacian regularization loss.
This thesis’ major contribution is divided into two parts in order to suggest strategies that
would guarantee to avoid the restrictions mentioned above. In the first part of this thesis,
we propose a novel linear algorithm called Markov-Batch Stochastic Approximation
(MBSA) for solving Personalized PageRank. MBSA updates nodes batches and proposes
a significantly better tradeoff between memory consumption and convergence rate for an
optimal classification result than other linear models. Then, we propose a novel scaling
graph convolution network, denoted as MBSA-NN, which embeds our linear MBSA.
MBSA-NN avoids OOM issues and significantly reduces time and memory consumption
on GPU and RAM. We applied MBSA-NN on several very large datasets, and we showed
that it can handle graphs with more than 10M nodes and 2M of features under one
minute on one standard machine, including preprocessing, training and inference time.
Furthermore, we show that it has significantly improved memory/time consumption
and competitive accuracy concerning the latest best GB-SSL scaling algorithms. The
second part of this thesis focuses on solutions to Laplacian regularization loss issues. For
that reason, we propose a novel framework called Graph Diffusion & PCA (GDPCA).
This framework combines a modified Principal Component Analysis with the classical
supervised loss and Laplacian regularization loss. GDPCA allows handling the case
where the adjacency matrix presents through Binary edges and avoids the Curse of
dimensionality. Also, GDPCA can be applied to non-graph datasets, such as images,
by constructing a similarity graph. Furthermore, we propose a framework that embeds
PageRank SSL in a generative model (GenPR). GenPR joint training of nodes latent
space representation and label spreading through the reweighted adjacency matrix by
node similarities in the latent space. We demonstrate that a generative model can improve
accuracy and reduce the number of iteration steps for PageRank SSL. Moreover, we show
how to embed MBSA into the GenPR framework for providing the batch training regime
of GenPR. Finally, we propose a flexible SSL framework based on stacking GDPCA
and Zoetrope Genetic Programming algorithms into a novel framework: PaZoe. This
self-labelling framework shows that graph-based and non-graph based algorithms jointly

improve the quality of predictions and outperform each component taken alone. We also
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show that PaZoe outperforms state-of-the-art SSL algorithms on real datasets. Note
that the one of the datasets was generated in house, taking data from industrial graded
equipment to mimic DC motors during operation.

Key words. Semi-Supervised Learning, Neural Networks, Stochastic Approximation,

Personalized PageRank
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Chapter 1

Introduction

This introductory chapter provides an overview of the graph-based semi-supervised
learning (GB-SSL) domain that motivates and forms various problems studied in this
thesis. This chapter is structured as follows: i) at the beginning, we show the general idea,
which lies under the hood of semi-supervised learning and explain the highly demanded
applications of the GB-SSL; ii) we present an overview of existing fast-growing directions
in the GB-SSL with a detailed explanation of the difference in their sub-directions; iii)
then, we define the existing general critical /non-critical and specific limitations in the
GB-SSL domain and list the set of goals we wish to achieve; iv) finally, we state the

thesis contributions and present how they are organized in the following chapters.
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1.1 General overview of Semi-supervised learning

Semi-supervised learning (SSL) is widely used to solve classification tasks with an
extremely low amount of labelled data points. Nowadays, the area of SSL for classification
tasks consists of two main research areas: the graph-based SSL (GB-SSL), where besides
the object features, we can utilise the graph structure of data (e.g., citation and social
networks where features are words from paper/post and edges are citations between
papers/posts etc.) and non-graph based SSL (e.g., an image where we have just the
image features, classification of time series etc.). The main ideas of these two areas are

presented below:

e The graph-based SSL (GB-SSL) algorithms rely on a classical diffusion-based
idea that uses the graph structure to spread the node class information. The
principal diffusion-based algorithms are Label Propagation (LP) [3], PageRank SSL
(PRSSL) [4], manifold regularization (ManiReg) [5]. More complex modifications of
classical diffusion-based idea lean on graph convolution networks’ application. The
graph convolution networks convolve the graph structure with node features for the
classification. The principal graph convolution algorithms are Graph Convolution
Network (GCN) [6], Graph attention network (GAT) [7], the jumping knowledge
network with concatenation (JK) [8], and Graphite [7]. Figure 1.1 shows the
difference between the diffusion-based idea and the idea of graph convolution

networks;

e The non-graph based SSL (non-GB-SSL) algorithms are based on the idea of
extending default classification loss (e.g. hinge loss, cross-entropy) by customized
semi-supervised regularization, such as in the transductive SVM (TSVM) [9], SSL
logistic regression [10] or on the idea of the similarity learning as in K-nearest
neighbours (KNN) [11]. For the non-graph based SSL, the complex modifications of
the above ideas are based on applying the neural networks to blend the unsupervised
and supervised losses. In particular, the unsupervised loss can be defined as
variational autoencoder (VAE) loss, and the supervised loss can consider the
classification loss as in the semi-supervised VAE (VAESSL) [12], the AtlasRBF [10]

and contractive autoencoder (CAE) [13].

We would like to point out that the current work focuses on resolving issues in the
graph-based semi-supervised learning (GB-SSL) since, nowadays, GB-SSL is a fast-growing
area of research. In particular, GB-SSL algorithms are widely used for various tasks in real

life: Scientific paper classification in citation networks [6,14] where articles are nodes and
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Figure 1.1: Comparison of (a) diffusion-based idea of label spreading through the graph
versus (b) convolution of the graph structure with node features (boxes denote the
features); 1 is an initial step; (a) 2 is a spreading of label to neighbour nodes, (b) 2 is a
hidden dimension representation of features convoluted with graph structure; (c) 3 is a
final prediction.

citations are edges between articles with labels being the topics of articles; Classification of
medical studies, where collecting labelled nodes is an expensive procedure [15]; Predicting
the damaged equipment in the factory [16]. This case is highly demanded since the
damaged equipment is a rare incident and collecting many of them is dangerous and
expensive for production manufactory; Moreover, GB-SSL is helpful in post labelling in
social networks [14,17,18] since it allows to make an automatic post labelling, relying
on a small number of labelled posts. In other words, GB-SSL avoids expenses on
crowdsourcing [19] and collecting a high number of labelled posts for supervised learning;
Furthermore, GB-SSL is useful in detecting protein functions in different biological

protein-protein interactions [20].

1.2 Overview of GB-SSL algorithms

An overview of the current, rapidly expanding GB-SSL research directions is provided in

this section. We provide these directions as a composite of various research sub-directions,
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each of which has unique research and practical characteristics. We specifically highlight
the key concept for each sub-direction and list the most recent, top algorithms.

The structure of this section is as follows: the first part explains the idea of Classical
diffusion-based algorithms as an original fundamental direction of GB-SSL. Note that
classical diffusion-based algorithms are scalable for large graphs; the next part defines
Graph convolution networks as a direction of GB-SSL, which combines the linear Classical
diffusion-based algorithms with convolution neural networks for increasing accuracy; the
last part describes the recent high demand direction of GB-SSL named Scaling algorithms.

Also, note that the aforementioned GB-SSL directions have the following general
limitations: (i) Classical diffusion-based algorithms consume much less computational
and memory complexity during training than Scaling algorithms. However, they lose to
both Scaling algorithms and Graph convolution networks in classification accuracy in
practice; (i) Graph convolution networks are limited to small, sparse graph applications,
because Out-Of-Memory (OOM) issues arise on large graphs; (iii) Scaling algorithms
have high computational complexity, and in worst! cases, some of them face an OOM
issue. Moreover, scaling algorithms do not guarantee an high accuracy close to graph
convolution networks.

Due to the aforementioned limitations, the primary goal of this thesis is to develop
scaling algorithms that will prevent critical OOM issues and significantly lessen memory
and computational cost in comparison to current scaling techniques. We pay special
attention to reducing memory and computational complexity from the point of allowing
training on the low computational power of extremely large graphs. In addition, we
develop scaling algorithms in this thesis that, when compared to existing scaling algorithms
and graph convolution networks, might provide competitive classification accuracy in
real-world applications. Additionally, we propose a novel diffusion-based and graph
convolution frameworks that can improve classification accuracy in real-world problems.
It should be noted that the goals of this thesis and the specific descriptions of the

limitations mentioned above are presented in the following Section 1.3.

1.2.1 Classical diffusion-based algorithms

The main idea of classical diffusion-based algorithms is to recover the classes of node by

spreading the information about labelled nodes through the graph to label unlabeled

nodes. Classical diffusion-based algorithms have the following two sub-directions:
Linear transformation. This sub-direction leads to spreading the node classes from

labelled nodes to unlabelled ones by minimizing Standard Laplacian loss as in [21], the

1The critical case described is in Section 1.3
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Normalized Laplacian loss as in Label Propagation (LP) [3], the generalization Personal-
ized PageRank as in PageRank SSL (PRSSL) [4] and distributed stochastic approximation
for semi-supervised learning (DSA-SSL) [2], the novel graph regularization algorithm
based on random matrix theory as in Semi-Supervised Learning for Large Dimensional
Data (SSL-LDD) [22]. Note that the SSL-LDD [22] solves the specific Curse of dimen-
stonality issue in Laplacian regularization loss by replacing of the standard Laplacian
regularization by centered similarity matrix. However, SSL-LDD shows perceptible results
mostly in the case of binary clustering and classification of non-graph data.

Nonlinear transformation. This sub-direction considers nonlinear transformation
of node features to spread them through the sample of their neighbour nodes further
and minimize Laplacian regularization loss for this transformation. This sub-direction
contains the following principal algorithms, such as manifold regularization (ManiReg) [5],
Planetoid [23], DeepWalk [24] or EmbedNN [25].

1.2.2 Graph convolution networks

Graph convolution networks apply the convolution property of the graph structure
with node features for the classification of unlabeled nodes. More precisely, graph
convolution networks compute the dot product of the adjacency matrix with the nonlinear
transformation of node features for the classification. The principal graph convolution
networks are divided into the classical nonlinear, generative and deep graph convolution
networks, which are presented below:

Classical nonlinear graph convolution networks. This sub-direction convolves the
graph adjacency matrix with nonlinear transformed node features for node classification.
The main idea was proposed in the Graph Convolution Network (GCN) [6]. The latest
works are: Graph attention network (GAT) [7], Gated attention network (GAAN) [26],
GraphStar [27] propose combining GCN with attention mechanism [28]. The attention
mechanism in graphs data expresses the important indicator of neighbour node features
for a labelled node during training. Another novel algorithm, denoted as approximated
Personalized graph neural network (APPNP) [14]. APPNP generalizes and improves the
performance of the GCN by growing its complexity, including repeating Powerlteration [29]
steps from PRSSL? algorithm during training. Moreover, note that there exist different
nonlinear modifications of APPNP in the literature, among which are [6,30-32].

Generative graph convolution networks. This sub-direction combines the nonlinear
graph convolution networks with the generative model such as Variational Autoencoder

(VAE) [33]. In particular, the latent representation of nodes features/edges from the

2(Classical diffusion-based algorithm
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generative VAE model is applied for enrichment of the graph convolution network.
Examples of these models are: Generative PageRank (GenPR) [18], Graphite [31], Graph
stochastic neural network (GSNN) [34], Bayesian Graph Neural network (BGCN) [35],
the latent space model or stochastic block for GCN [36].

Deep graph convolution networks. This sub-direction proposes various architectures
of neural networks for enhancing the GCN performance based on increasing the model
depth. The principal deep graph convolution networks are: AS-GCN [37], DeepGCN [38],
JK-net [39], MixHop [40], Snow-ball [41], DAGNN [42], GCNII [43], DropEdge [44] and
Bayesian-GDC [45]. Note that the above algorithms propose adaptive residual learning
framework [46,47] from computer vision to graph convolution networks. Indeed, residual
learning simplifies the network computation across a high number of layers. Furthermore,
some of the aforementioned algorithms customize the dropout regularization technique [48]

concerning graphs data.

1.2.3 Scaling algorithms

Scaling algorithms is a recent fast-growing high demand research direction for GB-
SSL designed to overcome Out-Of-Memory (OOM) issues in the mentioned Graph
convolution networks and provide in practice the high classification accuracy against
Classical diffusion-based algorithms. In particular, most scaling algorithms focus on
scaling Graph convolution networks on extremely large graphs such as Amazon (2M
nodes, classifying products by category) and Mag-coarse (10M nodes, classifying papers
by field of study). However, note that some scaling algorithms [49, 50] avoid the OOM
issues on GPU by high resource power on RAM, making them vulnerable to OOM issues
on RAM during training on small computers. The principal sub-directions of scaling
algorithms are present below:

Nodes-neighbours selection. There are two main ideas for selecting the nodes-
neighbours: i) determine the best neighbours to represent the labelled nodes during the
training. PPRGO [51] and PinSage [52] apply an importance score to each neighbour
node of the labelled node; ii) uniformly sample a fixed number of neighbours for the
labelled nodes in a batch per training iteration as in Graph-S [53] and VR-GCN [54].

Subgraph-sampling. This sub-direction focuses on developing various subgraph
sampling algorithms to guarantee the connectivity of nodes in subgraphs for further
enhancement of neural network batch training. The principal algorithms in Subgraph-
sampling are: Shadow-GNN [55], Graph-Saint [56], Cluster-GCN [57]. In particular, the
latest best Shadow-GNN [55] outperforms the Graph-Saint and Cluster-GCN regarding

classification accuracy and computational complexity. The Shadow-GNN shows profitable
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results since it relies on shallow sampling subgraphs with 2-3 neighbour nodes for labelled
nodes. However, Shadow-GNN requires more neural network layers for better node
representation than the number of nodes in the subgraph, which lengthens training
time. Additionally, Shadow-GNN could lose classification accuracy in contrast to graph
convolution networks like APPNP and GCN since it approximates the GCN on a whole
graph with an error. It should be noted that all of the approaches mentioned above
create batch ensembling methods to broaden the representation for labelled nodes.

Model simplification. Model simplification algorithms make the node features propa-
gate through the graph at the first step and then apply the multi-layer perceptron for
training on the batch of updated node features. The latest best algorithms for model
simplification are: Simple graph convolution (SGC) [58], Approximate Graph Propagation
(AGP) [49], Graph neural network via Bidirectional Propagation (GBP) [50] and Graph
Diffusion Convolution (GDC) [59]. More precisely, the aforementioned algorithms solve
the Personalized PageRank problem for computing a feature propagation matrix and
further use it for training a multi-layer perceptron in a batch regime.

Layer sampling. The neural network’s layer sampling algorithms employ various
sampling techniques of neighbour nodes from the previous layer. To avoid doing additional
weight matrix computations for each node in the training batch, this concept takes
advantage of historical activations of the previous layer. In particular, different Layer
sampling algorithms modify this idea in various ways: for example, GraphSAGE [53]
makes uniform node sampling from the previous layer neighbours; another work proposed
S-GCN [54] algorithm, which limits the number of neighbouring nodes by demanding only
two boost nodes from the last layer; the studies FastGCN [60] LADIES [61] propose to
make node sampling independently for each layer; the latest GNNAutoScale (GAS) [62]
algorithm combines node sampling from the previous layer on GPU with nodes from the
RAM from the last training step. In other words, GAS utilizes all neighbours for labelled

nodes during training.

1.3 Problems and Goals

This section explains the common critical and non-critical problems of GB-SSL algorithms
and is structured as follows: the first sub-section presents the substantial critical compu-
tational and memory limitations that arise in each GB-SSL direction; the next sub-section
outlines the specific problems that arise in the classical diffusion-based algorithms and
the common non-critical problems that exist in most of the state-of-the-art GB-SSL

algorithms; the last sub-section summarizes the main goals of this work.
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1.3.1 Computational and memory critical limitations

Most GB-SSL algorithms, such as [2,4,23,25], focus on solving the following Personalized
PageRank (PPR) linear system:

(I—aA)Z =(1-a)y, (1.1)

where A = D9AD! = [glj]?]11 € R™" is a regularized adjacency matrix, D =
diag(D; ;)" is a degree matrix with D;; = Z?Zl A g, A= 1[4

matrix, Y = [¥;]”_, is a matrix that represents labels, « is a regularization parameter

ij= is an adjacency
and Z = [Z;]7_, € R"*¢ is a classification result.

Classical diffusion-based algorithms. While the direct computation of the solution of
the System (1.1) results in a O(n®) computational complexity in [4], proposes the classical
diffusion-based algorithm named as PageRank Semi-Supervised learning (PRSSL). PRSSL
solves System (1.1) by application of the PowerIteration method which reduced complexity

to O(n?) or even to a smaller complexity in sparse graphs:
78 = AZ + (1 —a)Y (1.2)

where Z! € R"*¢ is a classification result at iteration ¢, t € [0, ..., 7—2] with 7, the number
of iterations is typically much less than n. Also, in [4], it is proved that PRSSL (1.3.1)
converges to the explicit solution Z* of (1.1). However, PRSSL has a high computational
and memory complexity per iteration on large dense graphs. Furthermore, since PRSSL
does not utilize node features during training, it loses to graph convolution networks in
terms of classification accuracy.

The other known approaches try to reduce even further this computational complexity
of System (1.1), e.g. by means of sampling schemes or updating nodes by batch (see [63] for
a comprehensive survey), among which we can cite: Jacobian over relaxation (JOR) [64],
Randomized Kaczmarz (RK) [1], Doubly Stochastic Block Gauss-Seidel (DSBGS) [65],
Randomized Block Gauss-Seidel (RBGS) [66] algorithms. At each iteration, these
algorithms update either the current node or a batch of nodes by their neighbors.
Alternatively, the distributed stochastic approximation approach for semi-supervised
learning (DSA-SSL) proposed in [2] consists in updating the current node from another
single neighbor node at each iteration. This allows one to solve the memory and
computational complexity issues of Powerlteration method (1.3.1), but results in a slow
convergence rate to the optimal classification result.

In general, the linear classical diffusion-based algorithms can be very efficient from

the point of memory consumption on large sparse graphs. However, their classification
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accuracy is limited in practice mainly because System (1.1) does not account for the node
features, only the adjacency matrix. Moreover, some of them require high computational
complexity (e.g. PRSSL O(n?), Randomized Kaczmarz O(n) per iteration), which can
be critical at dense large graphs. At the same time, the nonlinear classical diffusion-
based algorithms have a higher classification accuracy than linear ones since they embed
nonlinear node features while minimizing Laplacian regularization loss. However, they
consume much more memory and training time for computing Laplacian regularization
loss over all neighbours of the labelled node.

Graph convolution networks. In order to improve the nodes’ classification accuracy
in practice and take into account the input features without minimization of Laplacian
regularization loss for reducing training time, graph convolution networks were developed,
such as APPNP [14]. They consist in nesting the recurrent equation (1.3.1) inside a

neural networks as follows:

Z° = ReLU(XW ) )W(,
7 =aAZ"+ (1 —a)2° (1.3)
77 = softmaz(aAZ™ ' + (1 — ) Z°)

where ReLU(-) is an activation function and W(to) € R¥>™m and W(tl) € R™*€ are trainable
dense weight matrices at time t for converting input node features from d-space into
hidden m-space and from hidden m-space into classes c-space, 7 is the number of
Powerlteration steps. The Powerlteration method in (2.8) for updating the nodes by
combining hidden representations of their neighbours leads to increased computational
complexity and critical OOM issues on GPUs on large graphs. In particular, computing
the hidden representation for a current node features demands combining the hidden
representation of its neighbours, and the neighbours, for its part, have to consider the
hidden information of their neighbours, and so forth (see Figure 1.2). The above process
makes costly neighbourhood growth, which grows exponentially with each extra layer.
For that reason, many proposed graph convolution networks, such as [6,18,30,31] and
DeepGCN [38], JK-net [39], MixHop [40], DAGNN [42], GCNII [43], DropEdge [44],
focus on small, sparse adjacency matrices with restrictions on the exponential growth
of neighbour nodes. Note that this behaviour also leads to OOM issues on GPU, as in
GCN, APPNP and other latest algorithms (AS-GCN [37], DeepGCN [38], JK-net [39],
MixHop [40], DAGNN [42], GCNII [43], DropEdge [44] and Bayesian-GDC [45]).
Scaling algorithms. Moreover, we emphasize that the different types of scaling
algorithms developed to scale graph convolution networks have their memory and com-

putational bottlenecks:
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Figure 1.2: Computation step of Graph Convolution Network (boxes denote the hidden
representation of the node features): 1 is a current node; 2 Three neighbour nodes to the
current node; 3 Five neighbour nodes to the previous set of neighbour nodes; 4 The last
n neighbour nodes to the previous set of neighbour nodes.

For example, the latest best model simplification algorithms, such as AGP [49], and
GBP [50], resolve OOM issues at GPU for graph convolution networks and outperform
the SGC [67] in memory and computational complexity by avoiding the use of PI during
training. However, they do not guarantee the convergence to the exact solution of
System (1.1). Moreover, they update one-node features by their neighbours, increasing
the memory and computational complexity on large dense graphs with large feature
d-space. The second bottleneck leads to OOM issues at RAM when d and n are extremely
large. In particular, the OOM issues arise in the case when the number of neighbour
nodes is close to n, then for update requires keeping the dense feature matrix X in RAM
memory. However, these algorithms avoid this issue by high computational power (e.g.
for AGP [49], use 512 GB RAM).

In case of layer sampling FastGCN, LADIES have a high computation complexity
during training. In particular, the training complexity depends linearly on the number
of node samples for each layer. In practice, during the training, the above algorithms
mostly require much more nodes than the average node degree in the graph. The latest
GNNAutoScale (GAS) algorithm utilizes a small number of neighbour nodes for labelled
nodes on GPU (without sampling). The rest of the neighbours it extracts from RAM
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and keeps the embeddings from the previous training step. This strategy of separating
the memory consumption resolves the issue with computation complexity, however it
leads to the issues with increasing memory on RAM. The worst-case scenario of this
issue, which might cause OOM on RAM, is when the network has a deep architecture
with many hidden dimensions and the number of neighbour nodes is near to the number
of nodes in the graph.

Also, note that the subgraph-sampling algorithms such as: Cluster-GCN has an OOM
issue on GPU in the worst case when the number of clusters is equal to one, and the
behaviour of this algorithm starts to be equivalent to the behaviour of GCN. Cluster-GCN
defines the cluster as a group of connected nodes in a graph that can be used like a batch
during the training process; The Graph-Saint requires keeping in memory all neighbours
for labelled nodes during the sampling (per iteration of training), which can increase the
computational complexity and face the OOM on GPU in the same worst-case as for GAS.

Furthermore, note that graph convolution networks as well as scaling algorithms such
as model simplification and nodes-neighbour selection have computational complexity
issues because most of them [2,4,6,14,17,31,49-51,67] rely on the computation of
Personalized PageRank (PPR) [68] by Powerlteration [69] method or Jacobian over
relaxation (JOR) [64] like methods. In particular, Powerlteration updates one node by the
information from its neighbors and these neighbors are updated by the information from
their neighbors, etc. This leads to an implicit increase of the computational complexity
at: the preprocessing/training step when a node is updated by combining features/latent
representations of its neighbors as in approximate personalized propagation of neural
predictions (APPNP) [14], graph convolutional network (GCN) [6], GBP [50], SGC [67],
AGP [49]; the inference step when the node is updated by classification results from its
neighbors as in PPRGO [51] or Graphite [31].

Critical example. We want to draw attention to the critical computational problems
that might prevent different GB-SSL algorithms from successfully training on a sizable
dataset on a single standard computer. For that reason we consider MAG-coarse dataset
[51] which contains n = 12M nodes and d = 7M of feature. Moreover, we used GPU
GeForce 1070 (8 GB) with 32 GB RAM for computation. Note that we do not take
into account the linear and nonlinear classical diffusion-based algorithms since, in fact,
they lose in practice to graph convolution networks and scaling techniques in terms of
classification accuracy. Below we explain issues that arise in graph convolution networks

and scaling algorithms on the MAG-coarse dataset:

e Graph Convolution Networks (GCN, APPNP, GAT, etc.) have OOM on GPU
since they need to keep in GPU memory the dense matrix W(to) € R™M>m with
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m = 32 3 and compute the dot products of E(XW(tO)) where X € R12MxTM ap4
A € R12MX12M 416 sparse. This dot product is crucial because it must combine
the hidden representations of a current node’s neighbors in order to compute the
hidden representation for that node’s characteristics. The neighbors, in turn, must

take into account the hidden information of their neighbors, and so on;

e Scaling algorithms: Model simplification (AGP, SGC, GBP) have a OOM issue
on RAM since these algorithms make transformation of node features matrix by
Powerlteration method as in X! = @ AX! + (1 — @)X, which means that their
require to keep in memory the dense result Xt € RIZMXTM 5 Subgraph-sampling
(Graph-Saint, Shadow-GCN) have a high computational complexity (3 —8 hours per
epoch) due to the fact that they are required to make subgraph sampling at each
iteration. Also, Graph-Saint has an OOM on GPU. In particular, during training,
it stuck on the batch with labelled nodes, which requires a subgraph with their
neighbour nodes with the number close to 12 M; Layer-sampling (GAS) has an
OOM on RAM because during training it requires to keep in memory and to update
across epochs the dense matrices with nodes embedding (e.g. dense embedding
matrices X (%?m, X (”SC or dense trainable weight matrices Wé?m, W(T)XC for 0 and
1 layers respectively). In particular, this dense matrices required to keep in memory
in case if we want to update labelled nodes by their neighbours and the number of
neighbour nodes is close to n; Nodes-neighbour sampling (PPRGO) has an O(n?)

computational complexity at inference since it uses the Powerlteration method.

Finally, based on the aforementioned issues and bottlenecks in the existing critical example,

we can emphasise the following general critical problems, which remain unresolved for all
GB-SSL directions:

1. Out-of-memory (OOM) RAM/GPU issues:OOM issues occur because graph convo-
lution networks spread the information through the whole graph, which requires
keeping in memory a complete graph and information about embeddings [6, 14]
from neural network layers for all nodes. Even more, it could arises in the worst
cases of scaling algorithms (e.g. AGP, Graph-Saint, GAS);

2. High computational complexity: Most of scaling algorithms resolve OOM issues on
GPU but require a high computational complexity [49,56,57] and do not provide ac-
curacy close to graph convolution networks [51]. The high computational complexity

in most of the scaling algorithms is connected with the complicated nodes sampling

3is an optimal value defined in [51]
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strategies for batches during the training (e.g. Graph-Saint, GAS) or application
of JOR-like methods for computation PageRank at preprocessing/inference step (
e.g. AGP, PPRGO). Moreover, linear classical diffusion-based algorithms consume
much less memory during the training than scaling algorithms. However, most
of them require high computational complexity (e.g. PRSSL O(n?), Randomized

Kaczmarz O(n) per iteration).

1.3.2 Specific Laplacian regularization and general non-critical GB-SSL problems

This section highlights the specific problems associated with adjustments of Laplacian
regularization loss in classical diffusion-based algorithms and general non-critical issues
present for all GB-SSL algorithms. Note that solutions to these problems are valuable from
the practical point of view since they mainly impact classification accuracy, explainability
of classification results and versatility of applications on real datasets. Moreover, these
problems do not block the training process, opposite to computational /memory limitations
issues.

Most of the works in classical diffusion-based algorithms focus on the linear transfor-
mation of Laplacian regularization loss [4,23,25] and consider the following minimization

loss function:

Zéﬁl&iygk{zzz‘liﬂ@—ZngJrMZHZi—Y%H%}a (1.4)
=1

i=1 j=1

where p is a Lagrangian multiplier, n is the number of nodes, A = [A4;, ]]Z’]":l is an adjacency
matrix, Z = [Z;]}_, is a classification result and Y = [Y;]?_, is a matrix that represents
labels. The first part of the objective in (1.4) is a Laplacian regularization, which penalizes
nodes connected from different classes, while the second part is a supervised classification
loss.

Other [5,25,70,71] works focus on the nonlinear transformation of Laplacian regular-
ization loss and propose to take into account the node features and consider different

modifications of the nonlinear Laplacian regularization loss:

'Clap(xyy) = ,C(f($), y) + :u['reg(Xv A)
= L(f(@), )+ 1S Aigll () — ()2, (1.5)

1,J

where the first part of the above equation £(f(x),y) is a supervised loss for the labelled part

of the graph and the second part L,¢4(X, A) is the extension of Laplacian regularisation
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loss. 9(+) is some nonlinear function from the neural network layer. This type of loss
works in batch mode and during training can take into account the information about
the graph as well as about the nodes’ features.

We should emphasize that for the presented above modifications of Laplacian regular-

ization loss (1.4), (1.5) exist the following specific problems:

1. Binary edges (A;; =0 or A; ; =1 ) are a poor reflection of node similarity which
can lead to a weak estimation of the Laplacian regularization. For instance, A; ; = 1
does not provide the information about impact of cited paper j on the citing one
i; Even more, A; ; = 0 may show that author ¢ did not cite the paper j, but he
could have used some information from it. The special case of this issue arises
in the case of utilization of labelled dangling nodes for training. In particular,
the labelled dangling nodes will make a feeble impact during the training, which
leads to losing performance in terms of accuracy. Also, we underline that this issue
vanishes in graphs where nodes are connected only inside their classes and do not
have cross edges between different classes. Even more, we would like to note that
binary edges could negatively impact classification accuracy in practice even on
graph convolution networks and scaling algorithms, which do not use the latent

representation of edges;

2. Curse of dimensionality- arises when A is replaced by a similarity matrix W =
[h(Xi, Xj)]7 =1 € R™™ with a positive definite kernel i(-) and d — oo where
X = [X;]]~ is a matrix of node features and d is the node features dimension. This
replacement presents in [4,22] and it is made to avoid the sparsity of A. This issue
is especially noticeable in the case of paper classification, for example, based on
the Heaps law [72], the d-space of features (bag-of-words [73]) is increasing with
respect to the number and length of papers. This issue is critical for the linear

transformation (1.4).

Finally, we want to highlight the general non-critical problems that arise in most
state-of-the-art GB-SSL algorithms:

1. Versatility limitations - the loss functions (1.4), (1.5) as well as graph convo-
lution networks (e.g. APPNP (2.8)) and scaling algorithms do not support the
semi-supervised learning on the universal type of datasets since they require the
information about graph structure [6,12,23,74]. This general limitation under-
lines that the GB-SSL algorithms do not maintain competitive performance in not

graph-based areas. On the opposite side, the non-graph based SSL algorithms
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such as TSVM and VAESSL [12] do not guarantee the competitive performance on
graph-based data;

2. Explainability - is the last and more general problem that is critical nowadays in
the machine learning domain. We underline this problem in our work so far as the
GB-SSL algorithms are in demand in such natural fields as medicine and factories

4 where the transparency of predictions is also one of the essential requirements.

1.3.3 Goals

Based on the descriptions of problems mentioned in the above subsections, we want
to emphasize the necessity of looking for a solution for Computational and Memory
limitations in GB-SSL. This limitation is more critical than the other problems because
it can block the application of algorithms on large datasets at the beginning, which leads
to skipping the solutions for the rest of the problems. Moreover, Computational and
Memory limitations are critical to the equipment required for training. In particular,
the computation on extremely large graphs increases energy training costs (and thus
the carbon footprint) due to a long time continuous usage of local computing resources
with high powerful GPU and RAM and the additional cost of transmitting data over
long-distance links in case of training the models in web-cloud or on a distributed cluster.
Energy considerations for GB-SSL have been investigated in a few recent papers in
different setups [75-77].

In this regard, our work aims to resolve the common critical GB-SSL algorithms
issues with computational and memory limitations and also propose solutions for the rest
of the common non-critical problems in GB-SSL. This order of goals allows us to propose:
at first, the algorithm for significantly reducing computational and memory complexity
in comparison with the latest scaling algorithms, and then, next, the frameworks for
resolving specific and common non-critical GB-SSL problems, which can be scaled by

algorithm from the first step.

1.4 Contributions

This section explains our work’s main contributions and focuses on the goals defined in
the previous section. The structure of this section is as follows: (i) The first sub-section
defines the principal contribution of this work Markov-Batch Stochastic Approximation

(MBSA) algorithm which focuses on the solution of computational and memory critical

4GB-SSL in evidence-based medicine and prediction of broken equipment on the factory.
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limitations; (ii) The following two sub-sections define the solutions to the specific Laplacian
regularization problem and general non-critical problems from the viewpoints of classical
diffusion-based algorithms and graph convolution networks, respectively; (iii) The last
sub-section shows how the novel diffusion-based algorithm suggested in this work may
be used to handle practical issues like identifying the unbalanced states of engines in a

manufacturing facility.

1.4.1 Markov-Batch Stochastic Approximation algorithm

We propose a novel Markov-Batch Stochastic Approximation (MBSA) algorithm for
graph-based semi-supervised learning based on the stochastic approximation theory.
We provide a theoretical analysis of MBSA with proof of stability and convergence to
the desired Personalized PageRank (PPR) solution. We also show that MBSA can be
used in the asynchronous parallel regime. In addition, we provide a multi-threading
implementation on C++ for MBSA. We show on various datasets that MBSA outperforms
the linear Jacobian over relaxation (JOR) [64], Randomized Kaczmarz (RK) [1], Doubly
Stochastic Block Gauss-Seidel (DSBGS) [65], Randomized Block Gauss-Seidel (RBGS) [66]
algorithms, reaching higher performance in a shorter computational time. Moreover,
we show an insight that the fast recovery of the PPR order goes to the best accuracy
faster than searching for an exact PPR solution. We adapted MBSA for batch training of
graph convolution networks (e.g. APPNP, GCN) and named it MBSA-NN. Furthermore,
we show the theoretical results for MBSA-NN on its convergence to a local minimum
of graph convolution network on a complete graph. We applied MBSA-NN on several
extremely large datasets and show that it can handle graphs with more than n ~ 10M°
nodes and d = 2M of node features under one minute on one standard machine, including
preprocessing, training and inference time. Furthermore, we demonstrate that it greatly
reduces memory and time consumption and offers competitive accuracy performance
compared to the most recent top scaling algorithms. In particular, it consumes 10 times
fewer nodes per batch at training than PPRGO and reduces memory consumption by
50% at the inference against PPRGO. Finally, we provide an open-access implementation
of MBSA-NN on Python3.8 with Tensorflow v2, one thread MBSA on Python3.8 and
multi-thread MBSA on C+4+.

5M stands for million.
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1.4.2 Graph diffusion & PCA

We propose a novel diffusion-based algorithm named as Graph diffusion & PCA (GDPCA)
framework aiming at solving the Curse of dimensionality, Binary edges and Versatility
limitations issues. The main idea of GDPCA relies on joint minimization of a reorga-
nized principal component analysis (PCA) loss and linear transformation of Laplacian
regularization loss (1.4). Also, we provide a theoretical analysis of GDPCA performance
with proof that GDPCA provides an explicit solution to the proposed minimization loss
problem. We apply it to real datasets and show that GDPCA is the best among classical
diffusion-based state-of-the-art algorithms and has comparable performance with graph
convolution networks with significantly lower computational complexity. Moreover, we
show that GDPCA can also be applied to datasets with no explicit graph structure,
such as images, and that it outperforms classical diffusion-based algorithms and graph
convolution network algorithms on this dataset. Furthermore, we show that GDPCA can
be scalable by MBSA for providing low computational complexity. Finally, we provide
the implementation of GDPCA on Python3.8 in open access.

1.4.3 Generative PageRank

We propose a novel graph convolution inductive/ transductive framework, created by
embedding PageRank-SSL (PRSSL) [4] in generative model named as Generative PageR-
ank (GenPR). We show that the generative model can be used to reweight edges in the
adjacency matrix to improve the nodes classification and solve Curse of dimensionality,
Binary edges and Versatility limitations problems. Also, we explain that training in
the transductive or inductive regimes helps to manage the computational complexity by
separating training of nodes’ low dimensional representation against nodes classification.
Moreover, we show that GenPR improves the interpretability of neural network classifi-
cation results based on the information about nodes’ similarity in the latent space. In
particular, it helps to resolve Fxplainability issue. GenPR provides results that outper-
form the recently proposed graph convolution networks and reduces the number of steps

of PageRank [68] to obtain more accurate classification accuracy than APPNP.

1.4.4 GDPCA and Zoetrope Genetic Programming for detecting imbalanced
states of engines

We propose a flexible SSL framework based on the stacking of PageRank & PCA (GDPCA)
(enabling self-labelling [78]) and Zoetrope Genetic Programming (ZGP) [79] named as

PaZoe. Note that we adapt PaZoe framework to sensor data. This self-labelling framework
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shows that graph-based (e.g. GDPCA) and non-graph based (e.g ZGP) algorithms jointly
improve the quality of predictions and outperform each component taken alone. We also
show that PaZoe outperforms state-of-the-art GB-SSL and non-GB-SSL algorithms on
three time-series datasets where two of which are public domain gesture datasets and
the third one we generated from scratch based on a DC motor® for the classification of
the type of motor imbalance at different rotation speeds. The third set was generated
in house, taking data from industrial graded equipment to mimic DC motors during
operation. Two other datasets, including gesture recordings, were taken from the public
domain. The GDPCA part of PaZoe implemented on Python3.8 and generated dataset

for DC motor are available in open access.
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Chapter 2

Related work

This chapter defines the latest state-of-the-art (SOTA) algorithms close to this work and
covers GB-SSL and non-GB-SSL branches. We highlight the findings that served as our
inspiration for this investigation. The sections below are organized in the following way:
i) at the beginning, we present the latest SOTA algorithm for solving the Personalized
PageRank (PPR) problem in a batchwise regime; ii) the next section shows the latest
best SOTA scaling algorithms. In particular, this section presents the closest algorithms
to our work with the latest result from node-neighbour selection and model simplification
sub-directions of GB-SSL scaling algorithms; iii) finally, we show the main idea, which lies
under the linear transformations in most classical diffusion-based algorithms. Moreover,
we explain the classical graph convolution networks, which embed the graph structure
directly to neural network architecture to avoid the computation of the Laplacian
regularization loss. Also, we show the SOTA algorithm in the non-GB-SSL, which will

be extended in our work for application in batchwise graph-based cases.
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2.1 Batch algorithms for PPR

Since in the previous Chapter 1, we defined that the solution of Personalized PageRank
(PPR) problem is an essential problem nowadays [2,4,23,25]. In this section, we show

the newest SOTA batchwise solutions for the following PPR linear system:

(I—ad)Z=(1-a), (2.1)
where A = D9AD! = [ﬁ”]?]”:l € R™"™ is a regularized adjacency matrix and

D = diag(D; ;)}"_, is a degree matrix with D;; = Z?:l A; ;. In particular, in this section,

we consider two latest batchwise Gauss-Seidel algorithms much similar to this work.

2.1.1 Doubly Stochastic Block Gauss-Seidel

We present the novel batchwise Gauss-Seidel algorithm with exponential learning rate
named as Doubly Stochastic Block Gauss-Seidel (DSBGS). Let {I1, I2, ..., Is} and

{J1,J2, ..., Js} denote the partition of rows and columns of adjacency matrix where s is the
number of partitions and Uf_,I; =V, ;NI; = 0. Let P = {I, >, ..., I} x {Ji1, Ja, ..., Js }.

Algorithm 1: Doubly Stochastic Block Gauss-Seidel (DSBGS) [65]
INPUT :A,Y, P, a, 0,08

1 INITIALIZE: A, 70 =Y;

2 for t < 0 to 7 do

3 Pick (I, J) ~ P with probability ”ﬁ}ﬁl‘%; where A ; € A;
F

AT T
I%JAI,JI:,I

A7, 1%

4 Update Zt = zt-1 - 3 (aAZ™L — (1 - a)Y)

5 end

This algorithm guarantees the exponential convergence rate to the exact solution of
System (2.1). Moreover, DSBGS proposes batchwise updating strategie per iteration.
However, it has the following main bottleneck: the batch I, which updates the batch J,
utilizes the information from all of its neighbour nodes (see the line 4 in Algorithm 1).
In the worst case, it can lead to increased time and memory consumption on extremely

large graphs where the degree of nodes is close to the number of nodes.

2.1.2 Randomized Block Gauss-Seidel

Another latest batchwise Gauss-Seidel algorithm named Randomized Block Gauss-Seidel

(RBGS) also has an exponential convergence rate. However, RBGS is much simpler
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than DSBGS from the point of the partition selection since RBGS performs the uniform
partition selection and computes partitioning only over columns. In other words, RGBS

use only {Jy, Jo, ..., Js} partitions over columns of the adjacency matrix.

Algorithm 2: Randomized Block Gauss-Seidel (RBGS) [66]
INPUT :A Y, «

1 INITIALIZE: A, Z2°=Y, "= (1— )Y — (I — aA) 2",

2 for t < 0 to 7 do

3 Pick J uniformly from {Ji, Ja, ..., Js};

4 Create block of (I — aﬁ)[.”ﬂ € (I —ad);

5 Generate F € R™*% where bs is a size of partition and Vi € {1,...,bs} the iz,
column of E is E ;, has all zeros with a 1 in the ¢;th position, where ¢; is
the ¢th entry in the selected J;

6 Zt=7"1 4+ B(I - ag){ J]Tt_l, where (I — ag){ ;) is the Moore-Penrose

pseudoinverse of matrix (I — ad)( 5
7 rt=(1-a)Y —(I—-ad)zt
8 end

This algorithm defines the most straightforward uniform strategy of partition selection
contrary to DSBGS. Also, it guarantees the exponential convergence rate to the exact
solution of the System (2.1). Note that RBGS avoids keeping in memory the probability
of partition intersections as made in DSBGS (see P in Algorithm 1). This option is helpful
from the point of partitioning large graphs, where we can have a relatively big dense
matrix of the probability of partition intersections. However, RBGS has the following
bottlenecks similar to DSBGS: 1) it computes the Moore-Penrose pseudoinverse of the
bloc matrix, increasing the time and memory complexity, especially on large graphs. (see
the line 6 in Algorithm 2); 2) the updates in the line 6 and 7 in Algorithm 2 use the
information from all of J partition neighbour nodes. These issues are as well as in DSBGS
(Algorithm 1) can increasing time and memory consumption during computations on

large graphs.

2.2 Scaling algorithms

This section defines the latest best state-of-the-art scaling algorithms close to our work.
In detail, we describe the novel high performance sub-directions of scaling algorithms,

such as model simplification and nodes-neighbour selection.
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2.2.1 Model simplification

The model simplification focuses on separating the step of feature propagation against
training multi-layer perceptron in the batch regime. In particular, the latest algorithms
such as Approximate Graph Propagation (AGP) [49] and Graph neural network via
Bidirectional Propagation (GBP) [50] solve the system (2.1) for updating the matrix
of nodes features X for its further use in multi-layer perceptron. It means that in
(2.1) instead of Y the above-mentioned algorithms use X where the updated matrix
of nodes features is Z € R™ <. These algorithms have higher classification accuracy
than mentioned above linear algorithms. Also, they resolve the OOM issues on GPU
for graph convolution networks and outperform the SGC [67] algorithm in memory
and computational complexity due to avoiding of Powerlterations method for feature
spreading. However, they have the following bottlenecks: 1) do not guarantee the exact
solution of System (2.1). It means that these algorithms do not provide optimal feature
embeddings contrary to embeddings which the exact solution of System (2.1) can have.
Notably, compared to the remainder sub-direction of scaling algorithms, this might
demonstrate the weakest accuracy; 2) update one node by their neighbours which leads
to increasing of the memory and computational complexity on large graphs with large
d. The second bottleneck in the worst case leads to OOM issues at RAM in the case of
extremely large graphs where there are nodes with the number of neighbours close to n
and with a large number of features d. It should be noted that by keeping track of the
decline in the number of residual neighbour nodes, Randomized AGP lowers the number
of neighbours per node update. The large memory consumption peaks at the beginning
of iterations are still present despite this, though. Since all nodes have high residuals
at the beginning, the high peaks appear during the initial iterations, which increases

computing complexity because of neighbour sampling.

2.2.2 Nodes-neighbours selection

The latest best representative of nodes-neighbours selection algorithms is PPRGO [51].
PPRGO focuses on applying an approximated Personalized PageRank (PPR) [80] for
selecting the top k£ PPR neighbors for each labeled node and further use them in the
neural network training process. PPRGO avoids the OOM issues on RAM because it
does not apply updating node features as in GBP and AGP. However, PPRGO has the
following bottlenecks: 1) in each batch, requires bs x k nodes, bs being the batch size,
leading in the worst case (viz. dense adjacency matrix) to a total of 16384 nodes for the
optimal values bs = 512 and k = 32 defined in their work [51]. Indeed, they show that the
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performance is improved by using as many neighbors as possible. furthermore, since the
top £ PPR neighbors represent each labeled node, it reduces the variety of labeled node
representation; 2) finally, at the training step, PPRGO is slower than AGP and GBP and
loses to them in terms of accuracy. This issue arises because AGP and GBP support the
training process on a fixed number of nodes in a batch, contrary to PPRGO, where the
number of nodes in a batch depends on k; 3) finally, PPRGO applies the Powerlteration
method at the inference step. This behaviour at inference increases the memory, and
computational complexity on large graphs since node classification results are spread

through a complete graph.

2.3 Classical graph-based & Non-Graph based SSL algorithms

We need to acknowledge that the frameworks proposed in Sections 4, 5 were inspired
by the results of the Personalized PageRank application for SSL [4] and Variational
Autoencoder (VAE) [33] extension for SSL [12]. Indeed, we considered the following
algorithms as a good ground for solving the limitations with Laplacian regularization

problems.

2.3.1 Classical diffusion-based algorithm

PageRank Semi-Supervised learning

One of the main components of the frameworks GDPCA (see Chapter 4) and GenPR
(see Chapter 5) proposed in this work is the PageRank-based method for semi-supervised

learning [4]. The work [4] minimizes the following function

N

N N
min{ 3° 3" AlID; 2 - DI 40y DEZ - 2
i=1 j=1 i1

with respect to the matrix of classification results Z. The first part of the minimization
function in (2.2) is a Laplacian regularization, which penalizes nodes connected from
different classes, while the second part is a supervised classification loss. The above

optimization problem has an explicit solution proposed in [4]:

H 2 1
Zp=-—F (-2 Oy 2.3
k 2+u( 2+u) k (2:3)

where A = D9ADI! = [Z”]?jn:l € R™ ™ is a regularized adjacency matrix and D =

diag(D; ;)" is a degree matrix with D;; = Z?:l A; j. In particular, from equation (2.3)
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we derive: the Standard Laplacian method if o = 1; the PageRank method if ¢ = 0 and

the Normalized Laplacian method if o = 1/2. Let us denote o = ﬁ and rearrange the
terms in (2.3) to obtain the power iteration [29] like algorithm for iterative calculation of

the classification function:
Zh =aAZ' M+ (1 - )Yy, k=1,2,.., (2.4)

where Z' is a result of the t-th iteration, smoothly changing the node labels during
t > 0 iterations. This algorithm avoids the O(n?) computational complexity of exact
computation PageRank. Also, it can be applied to data with or without graph structure.
Particularly, if a graph structure is not given to us, we can calculate the similarity matrix
W from the feature space. For instance, W can be constructed using the Radial Basis
Function (RBF):

Wiy = exp(=|X; — X;12/d). (2.5)

However, PRSSL has the following issues: 1) since PRSSL is based on the Powerltera-
tion method, then it takes O(n?) computational complexity per iteration, which leads to
increasing the computation time on the large dense graphs; 2) the case of binary edges in
a graph leads to a weak estimation of the Laplacian regularization loss in PRSSL. For
instance, this problem is significant when most of the available labelled nodes are dangling,
making a feeble estimation of the Laplacian regularization loss; 3) the computation of
node similarity in W (2.5) becomes indiscernible in the high-dimensional cases because
the difference between a maximum (maxg) and a minimum (ming) Euclidean distances

goes to zero when the dimension increases [81], i.e.,

mazxg

<ﬁ ! —Q<4%L d — oo.
ming

2.3.2 Graph convolution networks
Graph convolution network

The main idea proposed in Graph Convolution Network (GCN) [6] rely on the dot product
of adjacency matrix A and the nonlinear transformation of features X for the classification.
In particular, this dot product makes a representation of nodes through the sum of the
nonlinearly transformed features of their neighbour nodes for further transformation of
these representations into classification results. GCN proposes directly encoding the graph
structure in neural network architecture and computing only supervised classification

loss without the Laplacian regularization loss. The architecture of GCN presented below:
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Z = softmax(ReLU(AXW{y) )W) (2.6)

Zij . .
where ReLU(-) = max(0,-) and softmaz(Z; ;) = Zf%]z] are an activation functions
j=1Xp"*
and W(to) € R¥X™ and W(tl) € R™*¢ are trainable weight matrices at time ¢ for converting
input node features form d-space into hidden m-space and from hidden m-space into
classes c-space. This architecture is trained through minimization of the following function

over available labelled nodes:

ny
min {112 - ¥il*} 2.7
oo {21 - v (27)
where n; is the number of labelled nodes. Note that the quadratic loss function in (2.7)

can be replaced by any other classification loss function.

Approximated Personalized graph neural network

The generalized latest version of GCN is proposed in a novel algorithm named ap-
proximated Personalized graph neural network (APPNP) [14]. In particular, APPNP
generalizes and improves the performance of the GCN by growing its complexity, includ-
ing the repeating Powerlteration steps from PRSSL! algorithm during training. The
architecture of APPNP consists in nesting the recurrent equation (2.4) inside a neural

networks as follows:

ZO = ReLU(XW(tO))W(tl)
ZT = aAZ" + (1 —a)2° (2.8)
Z7 = softmaz(0AZT + (1 — a)2Z°)

where 7 is the number of Powerlteration steps. Note that training of APPNP rely on
minimization the same loss function as in GCN (2.7). Since during the training, APPNP
and GCN exclude the minimization of the Laplacian regularization, making their training
process faster than in classical diffusion-based algorithms with nonlinear transformations
such as Planetoid, DeepWalk or EmbedNN. However, APPNP and GCN compute the
hidden representation for current node features by combining the hidden representation of
its neighbours, and the neighbours, for their part, have to consider the hidden information

of their neighbours, and so forth. In particular, this behaviour of combining hidden

! Classical diffusion-based algorithm
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neighbour representations requires keeping in memory the dense matrix with the hidden
representation of nodes X W(to) if the number of neighbours is close to n, which particularly
leads to increased computational complexity and critical OOM issues on GPUs on large

graphs.

2.3.3 Non-Graph based algorithm

VAE for semi-supervised learning

Another principal component of GenPR framework (see Chapter 5) with respect to
PRSSL is variational autoencoder (VAE) for semi-supervised learning [12]. For the
definition of VAE, we are using the following assumptions:

Assume that the set of points X are i.i.d. samples of variable z. It is also assumed
that x is generated with respect to a latent continuous random variable z in two steps
(e.g., see [33]):

1. a value for z; is generated from some prior distribution py(z) ;
2. a value for z; is generated from conditional distribution py(z|z).

Hence, we have the following generative model with parameters 6:

po(x, 2) = po(2)pe(x|2) (2.9)

where the posterior density gg(z|z) = %&(f@

However, under above assumption, we can apply the main idea of VAE [33] using a

is typically intractable.

variational approximation posterior g4(z|z;) to the true posterior pg(z|z;) with parameters
¢. This calculation is based on the minimization of the variational lower bound (ELBO),

which consists of two parts:
1. Kullback-Leibler divergence (D) between gy (z|z;) and pg(z2);

2. conditional expectation Ey, (.|, of log pe(x|z) under condition of the approximation

posterior gg(z|z;).
UG, ¢, i) = —Drr(ge(2|zi)||po(2))

+ Eqg, (22 [log po(zil2)]

Let us assume that the prior pg(z) is the isotropic multidimensional Gaussian distribution
po(2) = N(2;0,1) with the expectation equal to 0 and with the covariance matrix equal
to 1.
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Moreover, let us apply the reparameterisation trick for the calculation of the approx-
imation posterior gy(z|z;). Then, the variational approximation gy(z|z;) to the true

posterior py(z|x;) becomes:

46(2|xi) ~ zig, zip = (w;) + o(2;) © €,
er ~ N(0,71)

o(z) Oep—o(zj) Oe, = 0 Va,z;€ X
7—0

where ® is an element-wise product and u(z;) and o(z;) are the encoding results from
MLP.

Then under the above assumption we obtain:

S

U(B, 6.) = 3 (1 + log (03 (0)

j=1

— (pj(x1))? = (05 (20)))
| K

t ; log po(wi|zik)

where s is the dimension of the latent variable z and K is the number of samples of
the new values from posterior (by default K = 1). The work [12] proposes to extend
the generative model (5.3) by including the information about the labelled nodes in the
following way:

a6 (2lyir i) = N (2|u(ys, @), 0% (7))

(2.10)
4 (ylz) = Cat(y|ms(x))

using the semi-supervised loss:

»Cssl(xa y) = Z Q¢(y|x)Eq¢(y,z\x) [log pG(CU‘y: Z)
() (2.11)

+log po(y) +log p(z) — log q4(z|z,y)]

where Cat(y|mg(z)) is the multinomial distribution of class labels, my(x) is the output
from MLP. Finally, based on the combination of (2.10), (2.11) loss functions, we can train
VAE in a semi-supervised way. Note that this algorithm supports batchwise training
strategies, which positively impacts the memory complexity during the training. However,
the loss (2.11) has the following main limitations: This method works better for classifying
the data without a predetermined graph structure. This specifically indicates that this

approach does not ensure competitive performance on datasets built on graphs.
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Chapter 3

Markov-Batch Stochastic

Approximation algorithm

Since computational and memory limitations remain present issues in all directions of
GB-SSL, we would like to make the following contribution. In this section, we first
propose a novel linear algorithm called Markov-Batch Stochastic Approximation (MBSA)
for solving Personalized PageRank (PPR), which updates nodes by batch and proposes a
significantly better tradeoff between memory consumption and convergence rate to an
optimal classification result compared with other linear models. Then, we suggest a novel,
non-linear scaling graph convolution neural network called MBSA-NN that embeds linear
MBSA to avoid memory concerns and greatly cut down on processing time and memory
use. We applied MBSA-NN on several very large datasets and show that it can handle
graphs with more than 107 nodes and 2 x 108 of features in under one minute on one
standard machine, including preprocessing, training and inference time. Furthermore, we
show that it has significant improvements in terms of memory and time consumption
and comparable performance in terms of accuracy with respect to the latest best scaling
algorithms. In particular, it consumes 10 times less nodes per batch at training than the
only algorithm without out-of-memory issues (PPRGO) on our experiment, and reduces

the memory consumption by 50% at inference.

This chapter is divided into four parts, each of which has its own sections. These
parts are organized in the following way: i) we begin by defining the novel Markov-Batch
Stochastic Approximation (MBSA) algorithm with theoretical evidence of its convergence
to the exact solution of PPR. Additionally, we demonstrate how MBSA could work in a
parallel asynchronous regime (pMBSA) and describe the specifics of its C++ development.

The experimental results from the point of convergence rate to the exact classification
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results and the memory/time consumption during training are also included in this
part. Finally, we demonstrate the MBSA ablation analysis; ii) the next part defines
the adaptation of MBSA into graph convolution networks and proposes the MBSA-NN
algorithm. We state that the locally optimal solution of the graph convolution network
on the whole graph is almost surely reached by MBSA-NN. In addition, we compare
MBSA-NN with the most recent top graph scaling and graph convolution networks in
this part for accuracy, memory use, and time on GPU and RAM; iii) the modification of
MBSA and MBSA-NN based on uniform batch sampling is suggested in the following
section. Moreover, we theoretically verify in this section that the convergence of MBSA
and MBSA-NN described in earlier sections holds with this alteration. Also, we compare
the accuracy, memory, and time consumption on the GPU and RAM for this modification;
iv) finally, the last part contains the proof of the theorems defined in the previous parts.
Also, this part shows the details of experiments with information about parameters of

algorithms, links on GitHub repositories, datasets and the technical environment.
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3.1 Markov-Batch Stochastic Approximation (MBSA)

The problem of solving System (3.1) in a pure batch regime with a guarantee of an exact
solution and lowering memory and computation complexity while maintaining a high
accuracy on large graphs is still up for debate with regard to the various GB-SSL neural

network and linear algorithm architectures that are currently in use.

(I-aA)Z=(1-aq)Y, (3.1)
where A = D9AD1 = [Z”]:L]":l € R™" is a regularized adjacency matrix and

D = diag(D; ;) is a degree matrix with D;; = Z;‘Zl A, Y = [V, is a matrix
that represents labels, I is the identity matrix, « is a regularization parameter and

Z = [Z;]}_, € R™*¢ is a classification result.

Therefore, this section presents a novel linear algorithm called Markov-Batch Stochas-
tic Approximation (MBSA) that avoids OOM issues. The primary goal of the MBSA
algorithm is to solve System (3.1) by updating the batch of nodes with another currently
available batch of nodes. This strategy is opposed to the existing nodes updating strate-
gies: as mentioned in previous section, in DSA-SSL, the nodes are updated one by one;
in JOR and approximated PPR, each node is updated by its neighbors; in DSBGS and
RBGS, batches of nodes are updated by their neighbors; and in RK, the current node is
used to update its neighbors. Figure 3.1 illustrates these updating strategies. Updating
batches with batches makes MBSA inherently more efficient than its competitors. Besides
the choice of updating nodes from batches, MBSA also differs from existing algorithms

in the way nodes are updated, as we will see in the sequel.

Let’s first establish the notation that will be required for the MBSA algorithm’s
further explanation. Let G = (V, ) be an undirected and unweighted graph, with n = |V
the number of nodes and e = |£| the number of edges. Let V; and V,, denote the sets
of labeled and unlabeled nodes, with n; = |V;| and n, = |V,| the number of labeled
and unlabeled nodes respectively. From the adjacency matrix A = [A”]?]”:l e R™x™
representing the graph, and the degree matrix D = diag(D; ;)" ; with D;; = Z?Zl Aij,
we define the regularized adjacency matrix A as A = D9ADI1 = [g”]?]":l € R,
where ¢ is a regularization parameter taking values in {0,0.5,1}. Finally, the graph G
contains information both from the matrix of node features X = [X;]?_,; € R"* where d
is the number of input features, and from the matrix of node classes Y = [V;]_; € R™*¢,

where ¢ is the number of classes.
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3.1.1 Selection of batches

We outline the MBSA rule of picking a batch of nodes every iteration in this subsection.
Let § = {S;}{_; be a set of non-intersecting batches where S; is a uniformly sampled
batch of nodes without repetition and s = [{%] is the number of batches with a predefined
batch size bs. Then we denote by Ags, s, the submatrix of adjacency matrix A on the
selected batches. P = [P ;|7 ,_
P ; =||As;s;ll11 and D = diag(D; ;)7 is the diagonal matrix where D;; = Z;:l P ;.
Finally, P = D~'P is the transition probability matrix between the batches.

1 is the matrix of the number of edges between batches

DSA-SSL

Figure 3.1: Comparison of various strategies for nodes updates, where JOR is a Jacobian
over relaxation, RK is a Randomized Kaczmarz [1] and DSA-SSL [2] is a distributed
stochastic approximation. The nodes in the red circles will be updates. The blue circles
mean the nodes which will be used for updating the nodes in the red circles.

In MBSA, the batches are selected as follows. Let A; be the index of the batch chosen
from S at time ¢. Then, at time ¢ + 1, the next batch index A;y1 is chosen from the rule:

P(Ap1|Ar) = Qap Apias (3.2)

where @ = (1— 6)15+ ¢ E'is the irreducible counterpart of P , F € R%*¢ is an all-one matrix
and € € (0,1) is a damping factor [68]. The first part of @ gives a higher probability of
selecting a batch with a large number of edges in common with the current one, while
the second part selects a batch with very few edges between them, which in turn allows
to update all the batches in S during the 7 iterations. This update rule renders {A;} an
A-valued Markov chain.

3.1.2 Node update

We now move to describe the way nodes are updated in our algorithm. Indeed, it is
more complex than Powerlteration or JOR in the sense that it updates a batch of nodes
by another batch of nodes chosen by rule Eq. (3.2) per iteration instead of using all
neighbour nodes (e.g. Figure 3.1). However, this allows MBSA to have a fixed number of
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nodes in a batch depending on bs during the iteration. In other words, MBSA avoids
the memory bottleneck where the node for the update has a number of neighbour nodes
close to n.

MBSA is defined in Algorithm 3 and relies on the following additional parameter
n(t) = 1/(1 4 t)7, corresponding to the step size for the node updates where v € (0, 1] is

a parameter of step length regularization.

Algorithm 3: Markov-Batch Stochastic Approximation (MBSA)
INPUT :A,Y,P, Q.6 a,rt,bs, ey

1 INITIALIZE: A, Z°=Y, S, A, = A ;
2 for t < 0 to 7 do
3 Pick A;41 with probability @ 4,,4,.;

QAt,AH_l P-Ata-At+1

53 OLZ- A~¢1'Zt-
s 2 = 2l ()i € Sa, )t ( e Tzt (1 a)Yz);

5 Ay = Apya;

6 end

3.1.3 Theoretical analysis

Finally, another important aspect of MBSA is that it converges almost surely to the

exact solution of Eq. (3.1), as stated in Theorem 1.

Theorem 1: Consider MBSA (Algorithm 3) and suppose that n(t) = 1/(1 + t)7 with
v € (0,1]. Then, Z! converges almost surely to Z;:

788 78 ast—ooVie{l,...,n},
where Z7 is the desired solution of (3.1).

Proof. The proof of Theorem 1 relies on techniques from ordinary differential equations
(ODE) and is given in Section 3.10. In particular we define h(Z!) = (¢tA—1)Z +(1—a)Y
as an ODE of MBSA. O

Finally, note that an investigation of the impacts of the 7, € on the step length
regularization and the analysis of an optimal bs for MBSA was undertaken, and its results

can be seen in Section 3.3.
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3.2 The asynchronous parallel MBSA (pMBSA)

Now, we want to show the asynchronous parallel analog of MBSA (Algorithm 3):

Remark 1: Let us redefine the ODE of Algorithm 3 as: Z = Q(t)h(Z?), where Q(t) =
diag(Q(t)i)i—, is a diagonal matrix with strictly positive entries on the diagonal. Then
using observations from Section 6.4 and Theorem 12.1 from Chapter 12 of [82], the ODE
has the same asymptotic behaviour as Z = h(Z*). This means that Theorem 1 holds even
for Z = Q(t)h(Z") as well. In other words we can run Algorithm 3 in an asynchronous

parallel mode at each time ¢ and denote it as pMBSA.

With respect to Remark 1 (Theorem 1) we can run MBSA (Algorithm 3) in an
asynchronous parallel mode. Indeed, at each time ¢, we have Q(t);; = 1,Vj € {Siym
where S* = {S!}, is a set of batches for updates over m parallel threads at time ¢, and
Q(t);; = 0, otherwise. Also, note that SEH is sampled according to Rule 3.2 with respect
to the previous batch indices A; chosen from S!. It means that MBSA can updates
several different batches A; in parallel at time ¢. We represent the MBSA algorithm in

the parallel regime below in Algorithm 4 where m is the number of threads and the cycle

Algorithm 4: parallel Markov-Batch Stochastic Approximation (pMBSA)
INPUT :A,Y,6,a,7,bs,m

1 INITIALIZE: A, 20 =Y, St;

2 for t + 0 to 7 do

3 for A; to St do

4 Pick A;;1 with probability @ 4, 4,.,, for generation of Sttt
. P4, adjes A7}
5 7 =zt nt)I{i € SAt}Qj’; jifl ( ﬁ:; —— Zt+ (1—-a)Y; |;
, Apy
6 end
7 St — St—i—l;
8 end

over A; indexes from S? computes parallel by m threads at time ¢.

3.2.1 Details of parallel implementation on C++

pMBSA was implemented in the multithreading regime in C++, with function and data
binding using Cython. For this implementation, we are using the Eigen! mathematical

library. Eigen is a C++ template library for linear algebra. To eliminate the overhead

"https://eigen.tuxfamily.org/index.php?title=Main_Page
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of copying large amounts of computational data between Python and C++ code, we
used Eigen :: Mapstruct for application in C++ structures allocated in Python, which
avoids the temporary objects, copy constructors, etc. Also, we have involved the SIMD
instructions [83] such as AVX and SSE2 for the optimization, which is available in the
Eigen library.

Note that we resolved the collisions with resource locking by keeping in memory
two matrices: Z! at the current moment ¢ for reading and Z!*! for writing. This
modification holds the correctness of the pMBSA algorithm. The synchronization of
these matrices occurs after each cycle of parallel updates of batches. Note that m threads
run simultaneously, where m is the number of physical processor cores. We need to point
out that the synchronization operation requires copying a contiguous memory segment
and is very fast in C++. The sparse graph matrices had to be pre-processed in Python,
split into batches and serialized in advance, for use in C++, due to differences in the
storage formats of sparse matrices. This is a reasonably cheap operation, but due to the
preliminary division of the feature matrix into batches, multiple extractions of a sparse
submatrix are not required.

Finally, in Section 3.4 we compare the C+4 implementation with Python3.8 and show
that multithreading implementation on C++ m times faster than one thread Python

implementation.

3.3 Ablation studies of MBSA

3.3.1 Impact of v and ¢ on convergence rate

In order to analyze the effect of the step size regularization parameter v and € on
MBSA performance, we consider the following grids of values: v € [0.1,0.3,0.5,0.7,0.9],
e €[0.1,0.5,0.9], and fix the other parameters 7 = 500 and bs = 512. Moreover, for stable
estimation of convergence rate we repeat 50 times experiments of convergence MBSA for
each pair of v and e. Also, the exact solution Z* of System (3.1) is taken as reference for

the best classification accuracy:
Z* = (I —aA)" (1 - ). (3.3)

Figure 3.2 displays the evolution of accuracy during training for different values of €
(columns) and of v (colored lines). Note that the accuracy computed in the following

way:
Accuracy(Z!,Y*) = >i—o H{argmax(Z;) = argmax(Y;")}
n Y
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Figure 3.2: Average accuracy of MBSA for each pair of step size power ~ €
[0.1,0.3,0.5,0.7,0.9] and damping factor € € [0.1,0.5,0.9] at each 50 interaction (x-
axis). The blue line shows the classification accuracy of exact solution (3.3). The black
dashed line shows the first time of convergence. Impact of power of step size v and
damping factor € on convergence to best accuracy.
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Figure 3.3: Average minimum number of iterations min(t) (right y-axis, lines) and
number of edges between batches (mean(P)) (left y-axis, boxes) over 50 random runs of
MBSA for each batch size bs (x-axis).

where argmax(-) returns the index of the maximum value in the row, I{-} is an indicator
function and Y™ is a matrix of ground truth labels. It shows that MBSA converges faster
to the best classification accuracy with a large step size e.g. v =0.3 in n(t) = (1 4+¢)™"
and with a small damping factor (¢ = 0.1). Our intuition behind this observation is
large step sizes perform intensive updates of nodes from Sy, by S4,,,, while taking
@ with a small € allows selecting a subset S4,,, with more edges with S4,, and thus
improves the update of nodes in the batch. Also note that we can get convergence with a
high oscillation to large a step size (e.g. v = 0.1, Figure 3.2). For this reason, in next
experiments, we consider v = 0.3 as an optimal power for step size since it leads to a

faster a more stable convergence than others.

3.3.2 Impact of batch size on convergence rate

We now analyze the impact of the batch size bs on the minimum number of iterations
necessary to get classification accuracy equal to that of exact solution (3.3). In order
to do so, we set v = 0.3 and ¢ = 0.1 based on the previous experiment, and we
consider bs € [256,512,768,1024]. Figure 3.3 shows that the minimum number of
iterations decreases with respect to the batch size, while the mean value of edges between
batches (mean(P)) increases. This finding is based on the obvious intuition that the
more edges between batches Sy, and S4,., we have, the more likely it is that we
will update every node in batch S4,, which accelerates updating of every node in the

graph. In particular, Figure 3.3 shows that if mean(P) is close to bs then MBSA
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converges faster to the exact solution in terms of classification accuracy (e.g. for Cora-
ML: bs = 512; mean(P) = 445; min(t) = 221.34). Since min(7) significantly decreasing
even with small batch size (e.g. bs = 512), we propose to use the following equation for
minimal optimal batch size:

n

Y — 4
Smin median(D)’ (3.4)

where we recall that n is the number of nodes and median(D) is the median value of
node degree over the graph. In particular, this rule (3.4) holds for Cora-ML (n = 2810,
median(D) =5, bs .. = 562) and Citeseer (n = 2110, median(D) = 3, bs} . = 703)
with respect to results on Figure 3.3. We assume that a low median degree requires using

a large batch size to guarantee that mean(P) ~ bs.

3.4 Experimental results for MBSA
3.4.1 Convergence analysees
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Figure 3.4: Convergence analysis.

In this subsection, we analyze the behavior of MBSA with respect to other updating

strategies from the literature, namely Jacobian over relaxation (JOR), Double Stochastic
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part Gauss-Seidel (DSBGS) [65], Randomized Kaczmarz (RK) [1] and Randomized part
Gauss-Seidel (RBGS) [66]. Note that we excluded DSA-SSL from the comparison due to
its extremely slow convergence rate. The results comparison of MBSA with other linear
algorithms on Cora-ML and Citeseer are presented in Figure 3.4 in terms of convergence
rate to the accuracy of exact solution of System (3.1) (top); Kendall’s tau [84] coefficient,
giving a rank correlation score between the exact solution and the solution from the
algorithms (middle, values close to 1 corresponds to total agreement). Note that for the
computation of Kendall’s tau we flattened the Z¢ and Z* in arrays with n * ¢ elements.

Then, we apply the following equation for estimating Kendall’s tau:

(P-Q)
sqrt(P+Q+T)«(P+Q+U))

tau =

where P is the number of concordant pairs, Q the number of discordant pairs, T the
number of ties only in Z!, and U the number of ties only in Z*; and error of the solution
of linear system (3.1) (bottom). In particular, the error is computed using Frobenius
matrix norm:

Error = ||(I — aA)Z! — (1 — )Y ||p

Each quantity is averaged over all runs. Figure 3.4 shows that MBSA outperforms the
other algorithms in terms of fast recovery of the accuracy and PPR rank (Kendall’s tau
correlation), seconded by RBGS. On the other hand, we can see that MBSA’s error for
System (3.1) is lower than most algorithms, except RBGS. These graphs show that to
obtain good classification accuracy, it is more important to rapidly recover the PPR order
rather than find the best approximation of the exact solution, unlike what was initially
assumed in [4,23,71].

3.4.2 Memory vs Time tradeoff

Here, we compare the memory and computation time requirements of MBSA and other
linear methods. For example, Figure 3.5 shows the comparison of MBSA with the
aforementioned algorithms in terms of the average peak of memory consumption in
7 = 500 iterations and average minimum number of iterations for convergence to the
accuracy of the exact solution. The minimum number of iterations min(t) gives the
moment where the algorithm’s accuracy is equal to the accuracy of the exact solution
of System (3.1) on the test set, averaged over all runs. In particular, Figure 3.5 shows
that MBSA converges at least two times faster to the accuracy of the exact solution of
System (3.1) than RBGS (e.g. Citeseer: MBSA min(t)=280.45; RBGS min(t)=576.31).

Moreover, it consumes a small amount of memory since it updates a sparse batch of
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Figure 3.5: Average memory consumption (MiB, left y-axis, bars-log) per iteration and
mean minimum iterations (right y-axis, lines-log, min(t)) over 50 random runs for each
algorithms (x-axis).

nodes per iteration. Finally, Figure 3.5 shows that MBSA offers an optimal very good
tradeoff between memory consumption and convergence rate with respect to other linear
batch algorithms. The implementation details of the algorithms we took for comparison,
a description of the computation environment, the definition of optimal parameters of
algorithms for experiments and dataset statistics are in Section 3.11. The implementation
of linear algorithms, MBSA on Python, pMBSA on C++ and links on datasets in

experiments are available in Section 3.11 as well.

3.5 MBSA for graph convolution networks

This section discusses how MBSA can be used in existing graph convolution network
algorithms both at the training and inference steps to overcome memory issues and
decrease time consumption. We propose to adapt MBSA for the computation of PPR in
a graph convolution network due to the following properties: i) compared to other linear
batch algorithms, MBSA has the best memory use and convergence rate (see Figure 3.5);
ii) MBSA avoids keeping in memory of the whole adjacency matrix and updating the
nodes through the latent representations of its neighbours as is done, e.g. in GCN and
APPNP;
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3.5.1 Training step

In a similar fashion than is done in APPNP (see Chapter 2), we propose to embed the
MBSA updates of the classification results into a graph convolution network (e.g. a
multi-layer perceptron). Here, the use of MBSA allows to make this update batchwise and
thus overcome memory issues and decrease time consumption while holding guarantees of
convergence to the exact solution of PPR. The intuition for adaptation of MBSA for graph
convolution neural networks is lying on the idea to update the hidden representation
features of one batch of nodes by the hidden representation of features from another
batch of nodes. This adaptation of MBSA we named as MBSA-NN. The full algorithm of
MBSA-NN is defined in Algorithm 5 and relies on the following parameters: W(to) € Rdxm
and W(tl) € R™*€ are trainable weight matrices at time ¢ for converting input node features
form d-space into hidden m-space and from hidden m-space into classes c-space which
are training by minimizing of the convex classification loss L(-,-) as in APPNP, GCN,
PPRGO etc.; 3 is the step size for computing the gradient weight matrices Wt (1t
() and TM(.) are layer activation functions which can be defined T'®)(-) = ReLU ("),

M () = softmazx(-).

Algorithm 5: MBSA-NN
INPUT : A Y, X,a,~, T

1 for t < 0 to 7 do

) Pick A1 with probability Q4, 4, ,;
3 Zj=1{j € Sa, TOXGWH)WE);
+ Zi=I{i € Sa HTO X W )Wy );

Qay, Ay Py, a4

s 2 = Zlpgt){ie Sy A o< apy M4 Zf);
6 Ls,, < I{i € Sa LY, TW(ZIT) + LV, rM(z)) ;

oL oL
T (WL W) « update by 8 ( o S*‘) gradient step;

(0) » (1) OW (o) » OW/,
8 Ay = A1
v (W Why) = W, Wi
10 end

3.5.2 Theoretical analysis

Moreover, note that MBSA-NN defined in Algorithm 5 converges almost surely to the

locally optimal solution of graph convolution network on the entire graph, as stated in
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Theorem 2.

Theorem 2: Consider MBSA-NN (Algorithm 5) and suppose that n(t) = (l%rt)'y where

~v € (0,1], % — 0 where S is the step size for computing the gradient weight matrices

WO WO, Then, Z! converges almost surely to AT (XiWi0))"W))*):
Zf LN F(l)(g(F(U)(XiW(’B))W(*I))) ast —ooVie{l,...,n},

where W(’B), W(*l) are locally optimal solutions of L(-,-) found by computing the gradient
steps.

Proof. The proof of Theorem 2 relies on the comparison of two ordinary differential
equations (ODE) and is given in Section 3.10. In particular, we define that h(Z?) =
ATO(XW, )W) — Z" is an ODE of MBSA-NN. O
Remark 2: In our actual experiments, the number of iterates was not too large and a

very small (relative to 7(¢)) constant 5(¢) =  seemed to suffice.

3.5.3 Implementation details

Since only labeled nodes are used by neural networks to calculate classification loss, we

take into account the following remark:

Remark 3: Let us redefine the ODE of Algorithm 5 as h(Z!) = Q(t)(A(FO(XW{O))W(tl)) —

Z"), where Q(t) = diag(Q(t)i )™, is a diagonal matrix with strictly positive entries on
the diagonal at each time ¢. Then by Remark 1 and the results from Chapter 6.4 and
Corollary 2.1 in Chapter 2 of [82] the h(Z') = Q(t)(A(T*(X W) )W(,)) — Z) has the
Z%). Indeed, Theorem 2

same asymptotic behaviour as h(Z!) = (A(FO(XWtO))Wt

15 W) —
holds even for h(Z') = Q(t)(A(FO(XW(tO))W@)) - ZY).

The Remark 3 allows us to use the diagonal matrix Q(t) in the following way:
Q(t)ii =1VieV;, Q(t)i; =0, otherwise. In other words, it allows to make the following
modifications in MBSA-NN (Algorithm 5):

1. we reduce the number of unlabelled nodes to the number of neighbour nodes of
labelled nodes. This reduction aims at skipping the unlabelled nodes, which do not
have connections with labelled ones and cannott impact their updating process.

The unlabeled neighbour nodes are denoted as Vy;

2. we generate two sets of non-intersecting batches of labelled and unlabeled nodes:
S = {S}Y_, and &' = {S/}%, where S and &' are sets of uniformly sampled
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ML

batches of nodes without repetition from V; and V,,, respectively, and u = [ o

[l = (%W are the number of batches in each set;

3. we recompute the number of edges between the aforementioned sets of batches

L
P = [Pj,k]j,2:1-

Then, with respect to the modifications above, we can rewrite MBSA-NN as described in

the following Algorithm 6.

Algorithm 6: MBSA-NN (for implementation)
INPUT : ZL Y, X, «, v, epochs

1 for t + 0 to 7 do
2 for S4, € S do

3 Pick A1 from S’ by rule (3.2) with respect to the recomputed P;
4 Zj=1{j € Sy, YTOX;WhH)W);
5 Zi = I{i € Sa T (XW ) )W y);
5 . A ;7Z;

t+1 _ 7t . N Pag A J€SAy .y T t].
6 Z;T =2+ n(t){i € SZ}QAM‘Hrl X Bay s ZZ>,
7 Lg, i€ Sa LY, TD(ZI) + £(Y;, TW(Z)) 5

tt+1 t+1 OLs,, 95, .
8 (W(O) ,W(;S ) <= update by B | o7, g7~ | eradient step;
(0) (1)

’ Wy W) = Wig) Wiy
10 end
11 end

Note that Remark 3 shows that Theorem 2 holds for Algorithm 6 even in case when
n; < ny. In particular, it means that at stochastic step in Algorithm 6 can updates
only V; nodes per iteration, this is critical for computation of L(-,-) and still guaranties
that Theorem 2 holds. Also, note that Algorithm 5 as well as Algorithm 6 do not
have a fixed number of necessary neighbors for labeled nodes, making the regularized
matrix Zi,j Vi € Sa,,Vj € Sa,,, sparser than the one used in PPRGO [51]. Moreover,
Algorithm 5 and Algorithm 6 require only [2 % bs| nodes at each step compared to [bs x k]
in PPRGO [51], where k is the number of neighbors for each labeled node from bs or
[bs *n] in AGP [49] in the worst case of preprocessing. Furthermore, MBSA-NN does not
make a neighbour node sampling per iteration as Graph-Saint [56], significantly reducing
the computational complexity at training. In particular, it is because MBSA-NN makes
the batch partitioning (S) at the preprocessing step, and during the training, it relies
on the simple batch sampling defined in the Rule (3.2). More generally, MBSA-NN can
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be used in any graph convolution networks relying on Powerlteration method [6,14,31],
making such algorithms scalable for large graphs. For example, we propose to scale
APPNP by replacing the stochastic part of MBSA-NN with the following convolution

layer:

Py, Ay y ZjeSAt_H al; ;i Z;

Zi = Zi+nt)I{i € Sa,} +(1—a)Z (3.5)

Q.At,.At-H PAt’AtJrl

Then, the loss function in MBSA-NN will be Ls,, < I{i € S, }L(Y;, r((Z;)). In the
sequel, we denote this modification of MBSA-NN as MBSA-APPNP.

3.5.4 Inference step

Inference can be also expensive in graph convolution networks, especially when the
number of non-zero edges in the adjacency matrix is huge. This issue in inference appears
for instance in PPRGO, APPNP and GCN as they apply the Powerlteration method
to spread logits through the graph. Indeed, Powerlteration updates all the nodes from
all their neighbors during iterations, which takes both time and memory. In order to
speed up the inference of Algorithms 5,6 we use pMBSA in parallel regine (see Remark 1,

Algorithm 4) to spread the logits (softmaxz(Y')) through the graph.

3.5.5 Limitation

Algorithms 3, Algorithms 4, Algorithm 5 and Algorithm 6 do not support the uniform
batch selection strategy, which leads to the necessity to compute the transition probability
matrix between batches P. This considered as an limitation due to the fact that the
dimension of matrix P*** where s = [ 4] is the number of batches depends on number
of nodes and batch size. In particular, this can leads to a computational and memory
issue if we consider the extremely large graphs with small batch sizes. This is possible to
avoid by modification of these algorithms with P = [ISZ]]ZS j—1 is the transition probability
matrix such that ]Bm- = 1/s where s = C% is a number of batches and C?* denotes the
bs-combinations out of n. However, in such a case, we cannot guarantee the theoretical

convergence to the optimal solution. In Section 3.8 we proposed solution of this limitation.
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Figure 3.6: Training step for Reddit: Average number of edges between labelled and
unlabelled nodes in batch (left y-axis, boxes) and Accuracy (%, right y-axis, lines) over
50 random runs for each batch size (bs, x-axis).

3.6 Ablation studies of MBSA-NN

3.6.1 Impact of v and bs on the accuracy of MBSA-NN

This subsection focuses on estimating the impact of the step and the batch sizes on
the training of MBSA-NN. Because of that we show our experimental results with the
following parameters: bs € [128,256,512,1024]; v € [0.3,0.5,0.7]; 7 = 500 and € = 0.
Moreover, for stable performance estimation, we repeat 10 times experiments for each
pair of v and bs. For the sake of generality during the following experiments for inference
we use one thread MBSA (Algorithm 3).

Figure 3.6 shows that increasing the number of edges between labelled and unlabelled
nodes in batches mainly impacts accuracy as well as increasing the power of step size
~. The intuition under this result is based on the fact that the training of MBSA-NN
focuses on updating the labelled nodes, and the more edges we have between labelled
and unlabelled nodes, the better representation for labelled nodes we get. Moreover,
Figure 3.6 shows that good accuracy is achievable even with a small bs = 512 where the
number of edges between labelled and unlabelled nodes equals the batch size. Note that

this result repeats the intuition of convergence rate of MBSA in Figure 3.3.
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3.6.2 Impact of MBSA/pMBSA at inference on the accuracy of MBSA-NN

In this subsection, we assess the effects of MBSA and pMBSA at the inference of
classification results, specifically how they affect the performance (accuracy) of MBSA-
NN and MBSA-APPNP in the inference. During these experiments, we considered two
modifications of the inference MBSA-NN and MBSA-APPNP: one-thread MBSA with
7 = 120; parallel multithread pMBSA over max number of cores? with 7 = 20. Note that
for a fair comparison, we used the same neural network hyper-parameters for MBSA-NN
and MBSA-APPNP as in the state-of-the-art architecture of APPNP.

Table 3.1 shows that the parallel inference (pMBSA) provides the competitive results
in all of the cases for MBSA-NN and MBSA-APPNP. In particular, this means that
pPMBSA keeps the accuracy close to MBSA and reduces the number of iterations m = 6
times where m is the number of threads, which experimentally guarantee that Remark 1
holds.

Table 3.1: Average Accuracy (%) in one thread (o) vs six threads (p) regimes of MBSA
at inference over 10 repetitions.

CORA* ‘ PUBMED ‘ YELP ‘ REDDIT ‘ OGBN* ‘ Mag*

MBSA-NN(0) 62.1 763 | 34.9 | 19.1 33.2 | 70.2
MBSA-NN(P) 59.1 76.8 | 32.7 | 19.7 27.7 | 70.1
MBSA-APPNP(0) | 62.0 759 | 312 | 27.7 302 | 63.7
MBSA-APPNP(p) | 58.6 76.4 | 36.0 | 27.7 26.3 | 60.2

3.7 Experimental results for MBSA-NN

Now, we investigate the MBSA-NN performance, time and memory consumption com-
pared to the most recent best scaling state-of-the-art algorithms. In order to do this, we
compare the MBSA-NN to alternative scaling algorithms on extremely large datasets
and demonstrate how it resolves the out-of-memory issues on CoraFull [85], Pubmed [86],
Yelp [56], Reddit [87] OGBN-products [88] and MAG-coarse [51] datasets. A descriptive
statistic, details of data preprocessing and references for the datasets used in this section

are provided in Section 3.11.

26 cores in Intel Corel7
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3.7.1 Performance (Accuracy)

The MBSA-NN (Algorithm 5) has been compared with the recent bests: neighbor selection
PPRGO [51], model simplification AGP [49], layer sampling (GAS) [62] and subgraph
sampling Graph-Saint [56] which also work in a batch regime and outperform other
scaling algorithms such as SGC, clusterGCN, GBP, and FastGCN , on large graphs.
Please take note that we did not observe Shadow-GNN [55] since there was a critical
incompatibility between the environment necessary for Shadow-GNN and the environment
used to compute MBSA-NN and the other algorithms. Also, we compare MBSA-NN with
APPNP to see the holds of Theorem 2 in practice. In particular, we want to answer the
question: Does the batchwise stochastic approximation in the graph convolution network
performs as well as the graph convolution network on the complete graph? The results
in terms of accuracy are presented in Table 3.2 where Cora*, OGBN* and Mag* are a
CoraFull, OGBN-products and MAG-coarse datasets respectively.

Table 3.2: Average Accuracy (%) over 5 random train/validation/test splits where § is a
notation for OOM and | is a OOM(GPU) | OOM(RAM) respectively.

| Cora* | PuBMED | YELP | REDDIT |
APPNP | 57.9+0.08 | 79.0£0.13 | Tt | Tt |
PPRGO 59.3+0.39 | 75.3+252 | 36.6+2.67 | 22.3+0.69
AGP 59.9+0.67 | 73.04+2.88 | 36.4+3.42 it
GRAPH-SAINT 58.74+0.58 | 73.6£2.15 | ]42.1 £4.65 | §[35.4 £ 0.61
GAS 60.4+0.46 | 77.1+2.46 | 51.6 +5.87 | 34.7 4+ 1.42
MBSA-NN 62.4+0.64 | 77.3+3.13 | 37.3+5.39 | 35.9+0.45
MBSA-NN(P) 59.4+0.29 | 75.74+3.91 | 34.6+486 | 35.8=+0.30
MBSA-APPNP | 62.0+0.24 | 76.4 +2.85 | 37.2+4.61 | 27.7+1.32
PPRGO-MBSA | 60.7+0.48 | 77.1+£2.77 | 35.7+3.72 | 26.9+0.66

| | OGBN* | MAG*

| APPNP I
PPRGO 35.5+£1.04 | 71.0=+0.86
AGP 38.6 + 2.13 il
Graph-Saint 1139.2 £1.92 It
GAS 52.4+1.37 ik
MBSA-NN 42.9+£2.25 | 74.3 £2.35
MBSA-NN(p) | 36.9+1.35 | 70.14+2.43
MBSA-APPNP | 30.2+1.44 | 63.7+2.32
PPRGO-MBSA | 37.0+1.67 | 75.1+0.75
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All algorithms in Table 3.2 were run on GPU, except for Graph-Saint which resulted
in OOM issues on GPU on several datasets (Reddit, Yelp, OGBN* Mag*) and was
thus run on a CPU. Table 3.2 shows the average results after 5 runs of the algorithms
on different train/ validation /test splits. For comparison’s sake Table 3.2 contains
additional results concerning the use of PPRGO for training and one thread MBSA for
inference (instead of Powerlteration), denoted as PPRGO-MBSA; MBSA-APPNP as
example of scaling APPNP by MBSA-NN (3.5). Also, note that Table 3.2 shows the
best accuracy for MBSA-NN with one thread MBSA and for MBSA-NN(p) with parallel
MBSA at inference. The information about hyper-parameters of algorithms in Table 3.2
and description of the technical environment are in Section 3.11.

Table 3.2 provides the comparison in terms of accuracy, from which we can draw the
following analysis. First, it shows that MBSA-NN resolves the OOM issues of APPNP
on large graphs while retaining its performance. Second, it has a competitive accuracy
with respect to the latest scaling algorithms. We can safely assume that MBSA-NN
would be even more competitive in terms of accuracy if its parameters were optimally
tuned, due to the batch selection strategy (3.2) and the stochastic step size n(t). Finally,
replacing the inference step in PPRGO with MBSA (PPRGO-MBSA) positively impacts
the accuracy of PPRGO. All in all, the results in Table 3.2 highlight the flexibility and
quality of MBSA with its ability to scale graph convolution networks (e.g. training in
MBSA-NN, MBSA-APPNP) at no loss in accuracy, and to improve other existing scaling
algorithms (e.g. inference in PPRGO-MBSA) at inference.

3.7.2 Memory vs Time tradeoff
Training step

We now compare MBSA-NN to its competitors in terms of computational and memory
complexity. For a fair comparison, we retained the minimum average accuracy obtained
for each dataset from Table 3.2. We repeated 10 times the training of each algorithm for
each dataset until they achieved this minimal accuracy and stored the quantities of interest
at that point. Fig. 3.7 displays the mean GB (GPU) memory and time consumption
during preprocessing, training and inference over all datasets in Table 3.2. Fig. 3.7
shows that MBSA-NN outperforms everywhere in terms of GPU memory consumption
and overall running time with one thread/parallel MBSA at inference. The superior
performance of MBSA is especially noticeable on large datasets such as Yelp, OGBN*
(OGBN-products) and MAG*(MAG-coarse), where the absence of a bar for Graph-Saint,
AGP and GAS corresponds to OOM issues (in the case of AGP, due to the storage in
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® MBSA-NN ® PPRGO * AGP ® Graph-Saint * GAS

CoraFull Pubmed Reddit Yelp OGBN* Mag*

Figure 3.7: Comparison of scaling algorithm w.r.t. Average GPU Memory (GB, left
y-axis, bars-logs) and Time (sec., right y-axis, lines) for each dataset over 10 runs. Red
non-dash/dash lines are one thread/parallel MBSA receptively.

memory of a dense batch of the feature matrix). Note that only PPRGO and MBSA-NN
have handled the MAG* dataset. The improvement of MBSA-NN(~ 1.3GB) in terms of
GPU memory on that dataset may look less impressive compared to PPRGO (~ 2.5GB)
since it primary consumption of GPU comes from training the dense trainable weight
matrix Wy € R*M*™ where M is for millions and m is the hidden layer’s dimension.
Finally, Fig. 3.7 shows that MBSA-NN not only reduces the memory consumption but it

also takes less than one minute to run on MAG-coarse (~ 103 nodes and 2) features).

Table 3.3 presents details on the RAM memory consumption vs time during prepro-
cessing/training (PR/TR) and inference (IN) steps. Note that Table 3.3 shows the time
consumption of MBSA-NN with MBSA and pMBSA at inference. Also, Table 3.3 shows
that the number of nodes in batch for PPRGO is always greater than in MBSA-NN, since
PPRGO takes k = 32 neighbour nodes for each (bs = 512) labeled nodes in each batch.
On the contrary, MBSA-NN apply everywhere a fixed number of nodes in a batch (2x512)
which allows it to have a stable training time. The worst case of batch generation for
PPRGO (bs *32) occurs with Cora* dataset which has a more dense graph. In particular,
PPRGO uses 14810 nodes per batch in average on Cora®, which is 10 times higher than
MBSA-NN, leading to a significant increase in training time and memory consumption
on RAM as well as on GPU.

3M is a million.
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Table 3.3: Average Memory (MB, RAM)/Time(sec.) complexity at preprocessing/training
(PR/TR), inference (IN) steps.

CORA* PUBMED

PR/TR | IN | PR/TR | IN |
PPRGO 430/12.3 28/0.1 372/1.4 39/0.1
AGP 2248 / 62.3 140/1.45 2616.32/ 48.3 | 1023/0.21
GRAPH-SAINT 745/123.2 44/0.4 516/15.2 42/ 0.5
GAS 38/1172.6 25/ 0.3 13/95.6 15/0.07
MBSA-NN(p) | 19/2.1 | 16/0.08(0.07) | 7/0.92 | 8/0.07(0.05) |

OGBN* MAG*

pr/tr | in | pr/tr | in
PPRGO 378/2.3 1372 /15.4 | 371/42.1 2440/53.7
AGP 5140/113.4 | 426/ 11.7 | OOM OOM
Graph-Saint 9472/7514 805/518 OOM OOM
GAS 367/1568.4 412/4.6 OOM OOM

MBSA-NN(p) | 357/1.9 | 382/8.9(3.8) | 356/12.1 | 482/59.8(34.1)

Inference step

Another main bottleneck occurs during inference, which is why we compare memory
and time consumption PPRGO with MBSA-NN during inference in Table 3.3 (IN). It
shows that pMBSA at inference consumes significantly less memory over all datasets
than PPRGO. This is due to the use of batch learning with pMBSA instead of using the
complete graph with PI. The diffe