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Titre: Contribution to the discretization of sliding mode differentiators

Résumé: Ce travail vise à concevoir des algorithmes en temps discret permettant d'estimer les dérivés successives d'un signal bruité. Dans un premier temps, nous avons introduit et analysé une réalisation explicite et implicite en temps discret du différenciateur homogène en temps continu. Le différenciateur implicite en temps discret n'est pas anticipatif et repose sur une estimation de l'unique racine positive d'un polynôme, qui dépend des états et de l'entrée du système. La stabilité de ces réalisations est étudiée en utilisant la notion d'homogénéité. Une implémentation efficace est également proposée pour réduire la complexité temporelle de l'algorithme. Dans un second temps, nous avons introduit et analysé des réalisations explicites et implicites pour le différenciateur filtré exact robuste en temps continu. Une version explicite, basée sur la discrétisation exacte des systèmes linéaires avec un bloqueur d'ordre zéro, est introduit. Cependant, la présence de termes d'ordre élevé dans la dynamique du filtre peut provoquer une instabilité de l'erreur d'estimation pour les signaux avec des dérivées non bornées. Par conséquent, une version modifiée est proposée, visant à supprimer cet inconvénient. Sur la base de ce schéma, une version implicite est dérivée. On montrera, en utilisant la propriété d'homogénéité, qu'après un temps fini, les différenciateurs explicites et implicites en temps discret préservent la précision de celui en temps continu malgré la présence de bruit de mesure. Sur la base de ces résultats, un contrôleur basé sur le différentiateur filtré est élaboré en utilisant les mesures bruitées et échantillonnées. Une analyse de la stabilité en boucle fermée est fournie pour un système de type chaîne d'intégrateurs avec mesures échantillonnées et bruitées. Des résultats de simulation sont effectués pour comparer les méthodes de discrétisation proposées avec d'autres schémas existants pour mettre en évidence, par exemple, ses avantages en termes de précision lorsque des périodes d'échantillonnage relativement grandes sont considérées. Une validation expérimentale est réalisée sur le convertisseur abaisseur de tension DC-DC.
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Motivation

Sliding-modes are widely used to design and implement observer [Utkin et al. 2009, Kim 2010, Lienhardt et al. 2007, Ren et al. 2019] due to their finite-time convergence, accuracy and robustness properties with respect to uncertainties [Utkin et al. 2009, Edwards & Spurgeon 1998]. One of its main disadvantages is the chattering effect [Levant 2010], which might be cause by measurement noise, delays, inadequate discretization and hysteresis effects [START_REF] Levant | Chattering Analysis[END_REF]].

In many control engineering applications, real-time differentiation of a noisy signal is required [Atassi & Khalil 2000, Levant 2003] (e.g., PID and output-feedback controllers, observers, supervision, ...). The main challenge concerning the design of real-time differentiators is the trade-off between exactness and noise filtration performances [Rodrigues & Oliveira 2018]. For instance, the explicit Euler differentiator amplifies the effect of measurement noise. Therefore, measurement noises with small magnitude may significantly affect the estimate of the signal derivatives. To deal with this issue, linear filters (i.e., a combination of low-pass filter and ideal differentiator) were investigated. However, they require an appropriate tuning of the parameters according to noise characteristics and only guarantee asymptotic time convergence of the differentiaton errors. To alleviate these limitations, continuous-time homogeneous differentiators based on sliding modes have been proposed to estimate the first n derivatives of a noisy signal under the assumption of athe existence of a known Lipschitz constant for the n-th derivative of the free-noise signal [Levant 2003]. Several proofs and numerical studies show that such differentiators present excellent robustness properties to bounded noises and exact finite-time convergence in the absence of noise. Furthermore, these attractive properties motivate their application in several applications [Kaveh & Shtessel 2008, Shtessel et al. 2007, Iqbal et al. 2011].

Recently, in [Levant & Livne 2019], a continuous-time filtering differentiator has been investigated to improve the accuracy compared with the standard one [Levant 2003], under a specific class of noises. Mainly, for bounded noises, it presents the same accuracy as the standard one. In contrast to the standard differentiator, the robust exact filtering differentiator rejects the effects of some large noises after a finite time. Furthermore, this differentiator can filter out unbounded noises composed of signals of global filtering order j ∈ N, where j is less than or equal to the filtering order of the differentiator.

A discrete-time version of the standard differentiator is needed to implement a controller or an observer on a digital device. However, an improper discretization may result in eliminating the properties of its continuous-time counterpart or undesirable behavior due to, for instance, numerical chattering [START_REF] Polyakov | [END_REF] or the asymptotic accuracy of the continuous-time differentiator [Livne & Levant 2014]. Therefore, some discrete-time sliding mode schemes have been introduced and applied in several works [START_REF] Polyakov | [END_REF], Drakunov & Utkin 1990[START_REF] Utkin | [END_REF], Kikuuwe & Fujimoto 2006, Su et al. 2000]. In particular, for the standard differentiator and robust exact filtering differentiator, some explicit discrete-time realizations have been proposed in [Levant & Livne 2019, Livne & Levant 2014, Koch et al. 2020, Barbot et al. 2020, Carvajal-Rubio et al. 2021a, Carvajal-Rubio et al. 2020b, Hanan Contents et al. 2020, Mojallizadeh et al. 2021] to preserve properties of the respective continuoustime system using different methodologies. The discrete-time filtering differentiator, proposed in [Levant & Livne 2019], corresponds to an Euler discretization with Taylorlike terms for the states that estimate the signal derivatives. Similarly, the scheme presented in [Hanan et al. 2020] preserves the accuracy of the filtering differentiator.

Recently, other discrete-time schemes that rely on an implicit discretization have been introduced [Brogliato et al. 2019, Luo et al. 2019, Huber et al. 2013]. It has been shown that such discrete-time realizations preserve the existing properties of the continuous-time sliding mode algorithms and reduce the numerical chattering. Contrary to many explicit discretization methods, implicit ones do not significantly reduce the performance for large sampling times in terms of robustness properties to matched perturbations and accuracy while not being sensitive to control gain variations. Nevertheless, they require a more elaborate scheme compared with their explicit counterparts. A pioneer work [Drakunov & Utkin 1990] has presented an implicit discretization for the scalar case where the disturbance is required to be known. Then, other works, [Brogliato et al. 2019, Huber et al. 2013] have introduced a time discretization of the original plant and an implicit discretization of the controller, where the unperturbed plant is analyzed to obtain a causal controller. Moreover, implicit timediscretization schemes have been derived for twisting and super-twisting controllers [Brogliato et al. 2019, Huber et al. 2019], finite-time and fixed-time systems [START_REF] Polyakov | [END_REF], where the stability properties are preserved. The implicit discrete-time super-twisting [Brogliato et al. 2019] has presented convergence to the origin in a finite number of steps for the unperturbed case.

At last, a control law often needs the derivatives of noisy signals (i.e., the measurements). Hence, several works consider the design of sliding mode differentiatorbased controllers due to finite-time property (see [Oliveira et al. 2017, Castañeda et al. 2021] for instance). However, differentiators require high gains to deal with the system uncertainties when they are used in a closed-loop. It is even more difficult when high-order differentiators are needed since it yields the sensitivity of the closedloop system with respect to measurement noise and discretization effect. It should be highlighted that the sampled-data sliding mode differentiator-based control design is not well-investigated in the literature.

Objective

The main objectives of this thesis are to design new discrete-time realizations for the continuous-time homogeneous and filtering differentiators such that they • allow for large sampling periods without a significant decrease of the performances,

• reduce the numerical chattering,

• preserve the continuous-time properties of continuous-time counterpart, for instance, the finite-time convergence and perturbation rejection,
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• provide good robustness properties with respect to measurement noises.

Furthermore, a sampled-data sliding mode differentiator based controller is designed which guarantees that the associated closed-loop discrete-time system is stable.

Contributions of the thesis

The main contributions of this work are the following

• To introduce explicit and implicit discrete-time realizations of the continuoustime homogeneous differentiator.

• To introduce explicit and implicit discrete-time realizations of the continuoustime robust exact filtering differentiator.

• The unique solution of the implicit differentiators is non-anticipative, relies on a root finding method and preserves the properties of the continuous-time differentiators.

• The stability property of the proposed schemes are analyzed using homogeneity property.

• The cubic convergence of the Halley's method for the implicit differentiator is demonstrated.

• An efficient implementation is proposed to reduce the time complexity for the implicit method.

• A sampled-data sliding mode differentiator based controller is designed.

• The link between the disturbance bound and the observer parameters of the filtering differentiator is discussed.

• A stability analysis of the closed-loop system combining the robust exact filtering observer and a saturated output feedback controller is provided for integrator chains with sampled data.

• Comparisons between the proposed implicit and explicit discrete-time realizations with other existing schemes, highlighting that the implicit scheme supersedes the explicit one are provided.

• Comparisons between the implicit discrete-time closed-loop differentiator and the explicit one [Levant & Livne 2019] are given to highlight the advantages in terms of accuracy of the proposed scheme.

• Experiments are conducted on the DC-DC buck converter to show the effectiveness of the proposed scheme.
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Organization

The thesis is divided as follows.

• In Chapter 1, some preliminaries on set-valued functions, generalized equations, homogeneous systems are recalled. Explicit and implicit discretization methods are discussed. The differentiation problem is introduced and some continuoustime differentiators are recalled. At last, some existing discrete-time realizations of the standard differentiator are reported. All these concepts will be very useful to derive the main results in the following Chapters.

• In Chapter 2, two discrete-time realizations of the homogeneous differentiator, i.e. an explicit and an implicit one, namely HEDD and HIDD are introduced. Furthermore, its main properties are studied and it is demonstrated that they preserve the accuracy of their continuous-time counterparts after a finite time.

An implementation strategy is proposed for the implicit discrete-time realization, which is non-anticipative and includes a root-finding method based on Halley's method. Different methodologies are also discussed to obtain an efficient implementation, in terms of time complexity, of the implicit discrete-time differentiator which rely on the Horner's method and the Shaw-Traub algorithm.

Simulation results using the proposed interpolation methods were carried out to show a noticeable improvement compared to a direct implementation. A comparison analysis of discrete-time realizations of the robust exact differentiator with existing ones is provided. It was shown that HIDD exhibits the best performance for a free-noise case and in the presence of noise. Furthermore, HIDD supersedes HEDD, consistent with the implicit and explicit time discretization of other continuous-time systems.

• Chapter 3 is focused on novel explicit and implicit realizations for the continuoustime robust exact filtering differentiator [Levant & Livne 2019]. First, a time discretization of the robust exact filtering differentiator based on the Matching approach is investigated. It relies on the stabilization of a pseudo linear discretetime system. Then, an explicit discrete-time filtering differentiator, based on the exact discretization of linear systems with a zero-order holder, is introduced. However, the presence of high-order terms in the filter dynamics may cause instability of the estimation error for signals with unbounded derivatives. Hence, a modified explicit discrete-time filtering differentiator is proposed, aiming to remove such a drawback of the exact discretization. Based on this scheme, an implicit version is derived. It will shown, using the homogeneity property, that after a finite time, the explicit and implicit discrete-time filtering differentiators preserve the accuracy of the continuous-time one despite the presence of measurement noise. Finally, some simulation results include comparisons between the proposed implicit and explicit discrete-time realizations with other existing schemes, highlighting that the implicit scheme supersedes the explicit one.

• In Chapter 4, the stabilization problem for perturbed chain of integrators using sampled noisy measurements is investigated. First, an implicit discrete-time

Contents

realization of the robust exact filtering differentiator is derived to include some additional terms related to the control input. An appropriate output feedback control law is then derived. The stability of the closed-loop system is studied. A comparison between the implicit discrete-time closed-loop differentiator and the explicit one [Levant & Livne 2019] is given to highlight the advantages in terms of accuracy of the proposed scheme. At last, experiments are conducted on the DC-DC buck converter to show the effectiveness of the proposed scheme.

• In Chapter 5, the obtained results are summarised and possible future research directions are given.
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CHAPTER1

Preliminaries and state of the art

In this chapter, some preliminaries, used to derive the main results in the following Chapters, are given. First, before describing some basics on time discretization, we recall some concepts and definitions related to set-valued functions and generalized equations. Then, we introduce some existing discretization methods (explicit and implicit ones). One can note that the implicit discretization of first order sliding mode schemes preserve the properties of continuous-time sliding mode one to the digital implementation setting. However, the study of high order sliding mode schemes require some concepts as homogeneity. Hence, Section 1.2 will focus on homogeneous systems, the associated convergence properties and robustness properties with respect to delays, measurement noise and disturbances. The differentiation problem is introduced in Section 1.3. Furthermore, two continuous-time homogeneous differentiators are presented (i.e., the robust exact differentiator also called standard differentiator and the robust exact filtering differentiator). One can note that the continuous-time homogeneous differentiators include integration and continuous-time measurements. To implement these differentiators on a digital device, a proper discretization is required. Hence, in Section 1.4, some existing discrete-time realizations of the standard differentiator are reported.

Time discretization

Before describing some basics on time discretization, let us recall some concepts related to set-value functions and generalized equations.

Set-valued functions

In this section, the set-valued functions and selections are defined. Both concepts are used to obtain the implicit time discretizations of Chapters 2 and 3. A set-valued function is defined as follows:

Definition 1.1 [Hiriart-Urruty & Lemaréchal 2004] A mapping F of x ∈ R n associated to a subset of R m is called a set-valued function. This mapping is represented with the notation:

R n ∋ x -→ F (x) ⊆ R m , (1.1)
Chapter 1. Preliminaries and state of the art or also as

F : R n ⇒ R m . (1.2)
The domain of F , dom(F ), is the set of x ∈ R n such that F (x) ̸ = ∅. The image of a set-valued function F is the union of all the sets F (x) ⊆ R m with x ∈ R n . The graph of F , gr(F ), is defined as the union of the sets {x} × F (x) ⊆ R n × R m , where x belongs to the domain of F . A remarkable concept related to set-valued functions is the selection of

F Definition 1.2 A selection of F is a function f : dom(F ) → R n with f (x) ∈ F (x) for all x ∈ R n .
Concerning set-valued functions, the upper semi-continuous concept is defined as follows:

Definition 1.3 A set-value function F is upper semi-continuous in x 0 ∈ R n if for any open set A such that F (x 0 ) ⊆ A, then F (x) ⊆ A for all x close enough to x 0 .

Example 1.1 An example of an upper semi-continuous in 0 is:

F (x) {0} if x ̸ = 0, [-1, 1] if x = 0.
(1.3)
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The main difference between a real valued function and a set-valued function is that a real valued function maps from one element of R n to an element in R m , whereas a set-valued maps from one element of R n to one or more elements in R m . In this work, some set-valued functions are used, e.g., the sign function and the normal cone. The first one is defined as, let x ∈ R then sign

(x) =      1 if x > 0, [-1, 1] if x = 0, -1 if x < 0.
(1.4)

Notice that sign(x) is a set-valued function because it maps from 0 to the set [-1, 1] and it is upper semi-continuous. On the other hand, the following two set-valued functions are defined [START_REF] Bachem | [END_REF]: Definition 1. 4 Let C ∈ R n be a convex and close set, then the normal cone to the set C at a point x ∈ R n is defined as:

N C (x) = ∅ if x ̸ = C, {y | ⟨y, c -x⟩ ≦ 0 ∀c ∈ C if x / ∈ C.
(1.5) Definition 1.5 A support function of a non-empty compact convex set C, is given as:

σ C (x) = sup v∈C ⟨x, v⟩.
(1.6)

Time discretization

With respect to normal cone, the support function is the set of all the normal vectors to C in x. Furthermore, the set-valued functions ∂σ C (x) (where δ denotes the subdifferential) and N C (x) are inverse mapping. The above means that:

x ∈ ∂σ C (y) ⇔ y ∈ N C (x), ∀x, y ∈ R n .

(1.7)

In particular, when C = [-1, 1] and defining the normal cone in R, σ [-1,1] (x) = |x|, ∂σ [-1,1] (x) = sign(x) = ∂|x|. Hence, the normal cone to C is given as:

N [-1,1] (x) =      R + if x = 1, 0 if x ∈ (-1, 1), R -if x = -1.
(1.8)

The inverse mapping of the set-valued function sign (1.4), is the normal cone (1.8), i.e.,

x ∈ sign(y) ⇔ y ∈ N [-1,1] (x).

(1.9)

Let C be a closed non empty convex set. The following relation is useful to solve generalized equations, which are defined hereafter:

M (x -y) ∈ -N C (x) ⇔ x = proj M [C; y],
(1.10) where x ∈ R n , y ∈ R n and M is positive definite symmetric matrix. The orthogonal projection is defined as: proj M [C; y] = argmin z∈C 1 2 (z -y) ⊤ M (z -y).

(1.11)

Let F : R n ⇒ R m be a set-valued function. F is (strictly) monotone if for any x, y ∈ dom(F) ⊆ R n (with x ̸ = y) and x ′ ∈ F(x), y ′ ∈ F(y), the following inequalities are satisfied:

x -y, x ′ -y ′ ≥ 0 ( x -y, x ′ -y ′ > 0).

(1.12) Moreover, if there exists an α > 0 such that x -y, x ′ -y ′ ≥ α∥x -y∥, (1.13)

Then, the set-valued function F is strongly monotone. Additionally, if there exists ξ > 1 such that

x -y, x ′ -y ′ ≥ α∥x -y∥ ξ , (1.14) then F is ξ-monotone in C. It is possible to determine if a set-valued function F has these properties with the following propositions [START_REF] Facchinei | Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and complementarity problems[END_REF]:

Chapter 1. Preliminaries and state of the art Proposition 1.1 [START_REF] Facchinei | Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and complementarity problems[END_REF]] A mapping F : C ⊆ R n → R n is:

• pseudo monotone in C if for all the vectors x and y ∈ C,

(x -y) T F (y) ≥ 0 ⇒ (x -y) T F (x) ≥ 0, (1.15) • monotone in C if (F (x) -F (y)) T (x -y) ≥ 0, ∀x, y ∈ C, (1.16) • strictly monotone in C if (F (x) -F (y)) T (x -y) > 0, ∀x, y ∈ C, (1.17)
• ξ-monotone in C with a ξ > 1, if there exists a constant d > 0 such that:

(F (x) -F (y)) T (x -y) ≥ d∥x -y∥ ξ , ∀x, y ∈ C, (1.18)
• strong monotone in C if there exists a constant d > 0 such that:

(F (x) -F (y)) T (x -y) ≥ d∥x -y∥ 2 , ∀x, y ∈ C. (1.19) Proposition 1.2 [Facchinei & Pang 2003] Let F : D ⊆ R n → R n be continuously differentiable in the close set D.
The following statements hold true:

• F if monotone in D if and only if its jacobian is semi definite positive for all x en D.

• F is strictly monotone in D if its jacobian is uniformly positive.

• F is strong monotone in D if and only if its jacobian is uniformly positive definite for all x in D, i.e., there exists a constant d > 0 such that:

y T JF (x)y ≥ d∥y∥ 2 , ∀y ∈ R n , ∀x ∈ D.
(1.20)

Generalized Equations

The generalized equations have some similarities with the differential equations. The main difference is that the right-side of these equations is a set-valued function. Specif-

Time discretization

ically, in the dissertation, we consider the following structure:

0 ∈ f (x) + N C (x), (1.21)
where C is a closed convex set and f : R n → R n . Equivalently, the generalized equation (1.21) can be represented as:

-f (x) ∈ N C (x). (1.22)
The generalized equation (1.21) is called variational inequality. Note that the solutions of the generalized equations have to belong to the set C. An alternative structure of the generalized equation is the following one:

x ∈ C and f (x), x ′ -x ≥ 0, ∀x ′ ∈ C. (1.23)
The following corollaries and Theorems are important for generalized equations.

Corollary 1.1.1 [START_REF] Facchinei | Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and complementarity problems[END_REF] Let C ⊆ R n be a non-empty compact convex set and f : C → R n be a continuous mapping. Then, the set of solutions of the variational inequality (1.23) is not empty and compact.

Corollary 1.1.2 [START_REF] Facchinei | Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and complementarity problems[END_REF] Let C ⊆ R n be closed and convex, and F : C → R n be continuous. If there exits a vector x ref in C such that:

F (x) T (x -x ref ) ≥ 0, ∀x ∈ C, (1.24)
then the variational inequality (1.23) has a solution.

Theorem 1.1.1 [START_REF] Facchinei | Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and complementarity problems[END_REF] Let C ⊆ R n be closed and convex and f : C → R n be continuous.

• If f is strictly monotone in C, the varitional inequality (1.23) has at least one solution.

• If f is ξ-monotone in C with ξ > 1, the variational inequality (1.23) have a unique solution.

Time discretization

Two adjectives are commonly used to characterize an integration method: explicit and implicit. In the following, we will explain these concepts and existing discretization methods.

Definition 1.6 Let

x k+1 = x k + F (t k , t k+1 , x k+1 , x k ) (1.25)
Chapter 1. Preliminaries and state of the art a temporal discretization of the continuous-time system:

ẋ = f (x, t) (1.26)
where One can mention that the implicit and semi-implicit time discretization show good results with set-valued function. Hereafter, an example of an implicit time discretization of a continuous-time system is presented.

t k = t = τ k with k = 0, 1,

Example 1.2 Let us consider the following system

ẋ = u(t) + d(x, t),
(1.27)

where d(x, t) is an unknown bounded disturbance with |d(x, t)| ≤ L and L is known. Moreover, x(0) = x 0 ∈ R. The control input u(t) is defined as: u(t) = -λ(t), λ(t) ∈ Gsign(x(t)), (1.28)
where u(t) is a selection of the set-valued function and the solution of system (1.27) is understood in the Filippov sense, i.e., in the origin x(t) = 0 there exists a value δ(t) such that u(t) = -d(x, t). Now, the system can be time discretizated using the exact discretization or the Euler method. Using the last method, one gets

x k+1 = x k + τ u k + τ d k , u k = -Gsign(x k ), (1.29) where u k is constant in t ∈ [t k , t k+1 ).
To obtain an implicit realization, a modified copy of the explicit system (1.29) is used as follows:

x k+1 = x k + τ u k+1 + τ d k , x k+1 = x k + τ u k+1 , u k+1 = -λ k+1 , λ k+1 ∈ Gsign( x k+1 ).
(1.30)

Notice that x k+1 is defined using the unperturbated system. To implement u k+1 , the unperturbed system is used and the following generalized equations are obtained:

x k+1 -x k ∈ -τ Gsign( x k+1 ), λ k+1 ∈ Gsign( x k+1 ).
(1.31)

Time discretization

or equivalently:

0 ∈ -x k+1 + x k -τ Gsign( x k+1 ), 0 ∈ -λ k+1 + Gsign( x k+1 ).
(1.32)

From the relation (1.10), one obtains the following generalized equations:

- x k+1 -x k τ G ∈ sign( x k+1 ), x k+1 ∈ N [-1,1] - x k+1 -x k τ G = -N [-1,1] x k+1 -x k τ G .
(1.33)

Let M = τ G, x = x k+1 -x k τ G , y = -x k τ G
, then using the relation (1.10), one obtains that x k+1 is given as:

proj τ G [-1, 1]; -x k τ G = argmin z∈[-1,1] 1 2 z + x k τ G τ G z + x k τ G , proj τ G [-1, 1]; -x k τ G =      -1 if x k > τ G, -x k /τ G if x ∈ [-τ G, τ G], 1 if x k < -τ G, xk+1 = x k + τ G proj τ G [-1, 1]; -x k τ G .
(1.34)

One can modify the second generalized equation in (1.31) as follows:

xk+1 ∈ N [-1,1] (λ k+1 /G) , x k + τ u k ∈ N [-1,1] (λ k+1 /G) , x k -τ λ k+1 ∈ N [-1,1] (λ k+1 /G) , λ k+1 -x k τ ∈ -N [-1,1] (λ k+1 /G) , λ k+1 G -x k τ G ∈ -N [-1,1] (λ k+1 /G) .
(1.35)

Similar to x k+1 , the selection λ k+1 is obtained with M = 1, x = λ k+1 G , y = x k τ G : λ k+1 = G proj 1 [-1, 1]]; x k τ G . (1.36)
Therefore, both variables are defined as:

xk+1 = x k + τ G proj τ G [-1, 1]; -x k τ G , u k = -λ k+1 = G proj 1 [-1, 1]; -x k τ G , proj τ G [-1, 1]; -x k τ G =      -1 if x k > τ G, -x k /τ G if x ∈ [-τ G, τ G], 1 if x k < -τ G.
(1.37) Some remarkable properties of the control law (1.37) with system (1.30) are:

• The control law u k+1 is unique and is non-anticipative. It is due to that the functions of the generalized equation are strictly monotone.

• In the unperturbed case, the origin of the discrete-time system is globally Lyapunov stable, with the same continuous-time Lyapunov function.
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• With an adequate selection of the gain G, the solutions of the perturbed system converge to the discrete-time sliding mode surface d = {(x k , u k )| x k+1 = 0} in a finite number of steps and it stays forever.

• In the sliding mode surface d , one obtains u k = -d k+1 and

x k = τ d k-1 .
Moreover, the disturbance is attenuated with a factor τ and the control law almost compensates for the disturbance with a delay τ .

• x k+1 is understood as a virtual sliding variable, and u k+1 as a selection of the set-valued function sign.

• If the trajectories of the systems are far from the origin, the explicit and implicit control laws are equal, and the difference is obtained near to the sliding surface d .

■

Homogeneous systems

It should be noted that the implicit discretization of first order sliding mode schemes preserve the properties of continuous-time sliding mode one to the digital implementation setting. However, the study of high order sliding mode schemes require some concepts as homogeneity.

Definitions and illustrative examples

An homogeneous system is invariant with respect to a coordinates-time transformation, in specific, it is a dilation symmetry.

Example 1. show the behavior of the system ẋ = -|x| 1/2 sign(x), which is homogeneous with respect to the transformation (t, x) → (αt, α 2 x) with α > 0.

The trajectory of x(t, 1) is obtained with the initial condition

x 0 = 1, while x(t, α 2 1) is obtained with the initial condition x(0) = α 2 (1) = α 2 (x 0 ), where α = 2.
Using the mapping (x) → (α 2 x), the trajectory of the system obtained with x 0 = 1 has the same values than with x 0 = α 2 . The unique difference between both trajectories is the time when these values are obtained. It is because the transformation includes the time, which is t → αt. As α = 2, then the red trajectory at time t a is obtained with the blue trajectory at time αt a = 2t a in Figure 1.2.

■

In order to present a definition of homogeneous systems, the following coordinates transformation is introduced x → Λ m (α)x, where Λ m (α) is a linear mapping R n → R n

Homogeneous systems

0 1 2 3 4 5 6 [s] 0 1 2 3 4 x x(t,1)
x(t, 2 1)

Figure 1.1: Homogeneous system with different initial conditions. defined with the following dilation matrix: .38) In this matrix, m i , which is positive, is the weight of the coordinate x i , and the vector of weights is defined as

0 1 2 3 4 5 6 [s] 0 1 2 3 4 x 2 x(t,1) x(t, 2 1) X 0.4 Y 2.56 X 0.8 Y 2.56 X 0.8 Y 1.44 X 1.6 Y 1.44 X 1.5 Y 0.24999 X 3 Y 0.25
Λ m (α) =         α m 0 0 • • • 0 0 0 α m 1 • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • α m n-2 0 0 0 • • • 0 α m n-1         . ( 1 
m = [m 0 m 1 • • • m n-2 m n-1 ] T . Furthermore, Λ m (α)
can be expressed as e m i s = α m i , where s ∈ R. The most common matrix dilation are the uniform dilation (Leonhard Euler) and the weighted matrix [Zubov 1958]. For the uniform dilation, m i = 1 and therefore Λ m (α) = αI n . In the case of the weighted dilation, Λ m (α) is defined as in Equation (1.38) where the weights could not be equal.

Concerning a function, its weight is known as homogeneity degree, which is represented as deg(x) = m i . Then, the following definition is presented [Shtessel et al. 14]:

Definition 1.7 A function f : R n → R is homogeneous of degree q ∈ R, deg(f ) = q, with a dilation Λ m , if for any α > 0, the equality f (Λ m (α)x) = α q f (x) is kept.
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1.4 Let g(x) = -x v , one can select m 0 as m 0 = 1, then deg(g) = v. If is selected as deg(x 0 ) = 3 and deg(x 1 ) = 2, the function g(x 0 , x 1 ) = -|x 0 | 1/3 sign(x 0 ) - |x 1 | 1/2 sign(x 1 ) is homogeneous of degree 1. ■
Let f and g be homogeneous functions in x ∈ R n ̸ = 0, and k be a constant then the following properties are fulfilled:

• The function f + g is an homogeneous function if and only if deg(f ) = deg(g). • If k ̸ = 0, deg(k) = 0. • deg(f g) = deg(f ) deg(g). • deg(f /g) = deg(f ) -deg(g). • deg(kf ) = deg(f ). • deg( ∂f ∂x i ) = deg(f ) -deg(x i ).
In the case of a vector field, then the following definition is presented:

Definition 1.8 A vector field f : R n → R n is homogeneous of degree q ∈ R, deg(f ) = q, with the dilation Λ m , if for any α > 0, the equality f (Λ m (α)x) = α q Λ m (α)f (x) is kept.
Example 1.5 Let the vector field f (x) and the dilation matrix Λ m defined as:

f (x) = x 2 -x 1/3 1 -|x 2 | 1/2 sign(x 2 ) , Λ m (α) = α 3 0 0 α 2 .
(1.39)

Hence deg(x 1 ) = 3 and deg(x 2 ) = 2. If deg(f ) = -1 is proposed, it is easy to see that deg(f 1 ) = deg(x 1 ) -1 = 2 and deg(f 2 ) = deg(x 2 ) -1 = 1. The above is obtained since f 1 (Λ m (α)x) = α 2 f 1 (x) and f 2 (Λ m (α)x) = αf 2 (x). ■
Concerning differential inclusions and equations, the following definition is presented: Definition 1.9 Let f : R n → R n , the differential equation:

ẋ = f (x) (1.40)
is homogeneous of degree q ∈ R, deg(f ) = q, with the dilation Λ m , if the inclusion is invariant with respect to the coordinates-time transformation G α : (t, x) → (α -q t, Λ m (α)x).

Homogeneous systems

Definition 1.10 Let the set-valued function F (x) ⊂ R n and x ∈ R n , the differential inclusion:

ẋ ∈ F (x) (1.41)
is homogeneous of degree q ∈ R, deg(F ) = q, with the dilation Λ m , if the inclusion is invariant with respect to the coordinates-time transformation G α : (t, x) → (α -q t, Λ m (α)x).

The above conditions in previous definitions are equivalent to satisfy the following equations:

f (x) = α -q Λ -1 m (α)f (Λ m (α)x), (1.42)
and in the case of differential inclusions:

F (x) = α -q Λ -1 m (α)F (Λ m (α)x).
(1.43)

Example 1.6 The following system is homogeneous system of degree -1:

ẋ1 = x 2 , ẋ2 = -|x 1 | 1/3 sign(x 1 ) -|x 2 | 1/2 sign(x 2 ),
(1.44)

where deg(x 1 ) = 3, deg(x 2 ) = 2 and deg(t) = 1. On the other hand, the system

ẋ = -x v , (1.45) is homogeneous of degree v -1 with deg(x) = 1. ■

Convergence properties

In order to investigate the properties of homogeneous systems, the globally uniformly finite-time stable and globally fixed-time stable systems are defined.

Considering the system: (1.46) where x ∈ R n , f : R n → R n is an upper semi-continuous mapping. Furthermore, it is assumed that the unique equilibrium point of the system is the origin and the solutions of the system are understood in the Filippov sense.

ẋ = f (t, x(t)), x(0) = x 0 ,
Definition 1.11 The origin of system (1.46) is globally uniformly finite-time stable if it is globally uniformly asymptotically stable and there is a locally bounded function T f : R n → R + ∪ {0}, such that the solutions of the system are kept in the origin ∀t ≥ T f (x(0)). The function T f is called the settling-time function.

Definition 1.12 The origin of system (1.46) is globally fixed-time stable if it is globally uniformly finite-time stable and its settling-time T f is globally bounded, i.e,

∃T max ∈ R + such that T f (x(0)) ≤ T max , ∀x(0) ∈ R n .
One relevant result of homogeneous systems was presented in [Bhat & Bernstein 1997] and given as follows.

Chapter 1. Preliminaries and state of the art Theorem 1.2.1 [Bhat & Bernstein 1997] Let ẋ = f (x) be a homogeneous differential equation with homogeneous degree q, and where f is a vector field f : R n → R n . The origin is a finite-time stable equilibrium point if and only if the system is asymptotically stable and q < 0.

Example 1.7 [Bhat & Bernstein 1997] Let the system:

ẋ1 = x 2 , ẋ2 = u m , (1.47)
with m > 0 and u defined as

u = -|x 1 | β sign(x 1 ) -|x 2 | β 2-β sign(x 2 )
, where β ∈ (0, 1). One can note that the system is homogeneous of negative degree (β -1) with respect to the transformation (t, x 1 , x 2 ) → (α -(β-1) t, α (2-β) x 1 , αx 2 ). The above comes from the fact that

α -(β-1) α (β-2) f 1 (α (2-β) x 1 , αx 2 ) = f 1 (x 1 , x 2 ) , α -(β-1) α -1 f 2 (α (2-β) x 1 , αx 2 ) = α -β α β (-|x 1 | β sign(x 1 ) -|x 2 | β 2-β sign(x 2 )) m , α -(β-1) α -1 f 2 (α (2-β) x 1 , αx 2 ) = f 2 (x 1 , x 2 ).
(1.48)

Using the candidate Lyapunov function V (x 1 , x 2 ) = 1 2 mx 2 2 + 2-β 2 |x 1 | 2 2-β , one gets V (x 1 , x 2 ) = -|x 2 | 1+β ≤ 0.
As the time derivative of the Lyapunov function is semidefinite negative, the invariant belonging to the setM : {(x 1 , x 2 )|x 2 = 0} is given by S : {(x 1 , x 2 )|x 1 = 0, x 2 = 0}. Therefore, from the LaSalle's invariance principle, the system is asymptotically stable. At last, from Theorem 1.2.2, the system is finite-time stable. A simulation with β = 0.5, x( 0 
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One can see that the system converges in a finite-time to the origin. If β = 1, then the system converges asymptotically but it is not finite-time stable. The above can be seen in Figure 1 Considering v = 1/3, the system is homogeneous with a negative degree and finite-time stable. The trajectories of the system is given as:

x (t, x(0)) =    |x(0)| 2 3 -2 3 t 3 2 if t ∈ 0, 3 2 |x(0)| 2 3 0 if t ≥ 3 2 |x(0)| 2 3
, (1.49)

The simulation results of the system ẋ = -|x| 1 3 sign(x), with the initial condition -2 are presented in Figure 1.5. From the above initial condition, T f (-2) = 2.3811 sec, as it can be seen in Figure 1.5. If v = 1, the system is homogeneous of degree 0 and converges exponentially to the origin, as it can be seen in Figure 1.6. [s] In the case of positive degree, e.g., v > 1. the trajectories of the system converge to a vicinity of the origin in fixed time. The settling time is independent of the initial condition. If we defined the following vicinity, the settling time can be calculated as follows:

|x(t, x(0))| < r, ∀t > 1 r v-1 (v -1)
.

(1.50)

with r > 0. In Figure 1.7 the system is simulated with v = 2 and three initial conditions. The above equation shows that for t > 1, the trajectories for any initial conditions, reach this vicinity |x(t, x(0))| < 1.

0 1 2 3 4 5 6 [s] -2 -1 0 1 2 x x(0)=-2 x(0)=300 x(0)=-100 X 0.99661 Y 1 X 0.99007 Y -0.99988 X 0.50003 Y -0.99996
Figure 1.7: Homogeneous system of degree 1.

■

The above is a property of homogeneous systems with positive degree, where the origin is locally uniformly asymptotic stable. In such case, the origin is globally uniformly practically fixed-time stable [Polyakov 2020], as defined hereafter.

Definition 1.13 [Polyakov 2011] The origin of system (1.46) is globally uniformly practically fixed-time stable if ∀r > 0 ∃T (r) > 0 : ||x(t, x(0))|| < r, ∀t ≥ T (r), ∀x(0) ∈ R n

Homogeneous systems

Additionally, with both properties (i.e. positive and negative degree), one can obtain a fixed-time stable system as illustrated in the following example.

Example 1.9 Let the system

ẋ = u, (1.51)
where u is defined as

u = -|x| 1/2 sign(x) if |x| ≤ 1, -|x| 3/2 sign(x) if |x| > 1.
(1.52)

If |x| > 1, the system trajectories are equal to the trajectories of an homogeneous system with a positive degree q = 1 2 , whereas if |x| ≤ 1, the system trajectories are equal to the trajectories of an homogeneous system with a negative degree q = -1 2 . Hence, the trajectories obtained with |x(0)| > 1 converge to the region |x| ≤ 1 at t ≤ T 1 = 2 sec, whereas the trajectories with the initial condition |x| ≤ 1 converge to the origin at t ≤ T 2 (x) = 2 |x(0)|. Therefore, for any initial condition the system converges to the origin at t c ≤ T 1 + T 2 (1) = T max = 4 sec. According to the about result, the following Figure shows the convergence to the region and the origin with different initial conditions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 [s] -2 -1 0 1 2 x x(0)=-2 x(0)=300 x(0)=-100 X 2.5857 Y 2.5e-11 X 0.58578 Y -1 X 1.8845 Y 1 X 1.7999 Y -1 X 3.8844 Y 9.5703e-11
Figure 1.8: Fixed-time stable system.

■

Robustness properties with respect to delays and measurement noise

In the case of differential homogeneous finite-time stable inclusions, they present robustness properties with respect to delays and measurement noises. The following corollary shows this property.

Corollary 1.2.1 [Levant 2005] Let ẋ ∈ F (x) ⊂ R n be a homogeneous differential inclusion with the weight vector

m = [m 1 m 2 • • • m n-1 m n ]
T , with a homogeneity degree q < 0, deg(t) = -q and where the solutions of the system are understood in the Chapter 1. Preliminaries and state of the art Filippov sense. Furthermore, the system is assumed to be globally uniformly finitetime stable and x(t) is defined for any t ≥ -ρ -q (ρ > 0), with the initial condition x(t) = ξ(t), t ∈ [-ρ -q , 0]. Consider measurement noise with magnitude β i ρ m i for each component. Then, if x(t) is any solution of the perturbed inclusion:

ẋ ∈ F (x 1 (t -ρ -q ) + β 1 ρ m 1 [-1, 1], • • • , x n (t -ρ -q ) + β n ρ mn [-1, 1]), (1.53)
the inequalities |x i | ≤ µ i ρ m i are satisfied in finite-time, where the constants µ i > 0, are independent of ρ and ξ(t).

To show the robustness properties with respect to delays and measurement noise of homogeneous systems, the following example is presented.

Example 1.10 Let the system

ẋ = u(x), u(x) = -|x| 1/3 sign(x).
(1.54)

In the presence of a bounded measurement noise ∆(t), (|∆(t)| ≤ δ with δ ≥ 0), the control input becomes u(x + ∆(t)). Hence, one obtains the following differential inclusion:

ẋ ∈ u(x + ρ 3 [-1, 1]), ρ = δ 1/3 , (1.55)
The trajectories of the system converge to a region |x| ≤ µδ. The above can be seen in Fig. 1.9. Figure 1.9: Homogeneous system with bounded measurement noise.

On the other hand, if there exists delay in the states, then the following differential inclusion is obtained:

ẋ ∈ u(x(t -ρ 2 )), ρ = (τ r ) 1/2 , (1.56)
where τ r is the measurement delay. A simulation is presented in Figure 1.10. If both are presented in the system, then the system obtains the structure:

ẋ ∈ u(x(t -ρ 2 [-1, 1]) + ρ 3 [-1, 1]), ρ = max (τ r ) 1/2 , δ 1/3 . (1.57)
The behavior of the system is showed in Figure 1.11. 

Robustness properties with respect to disturbances

Similar to Corollary 1.2.1, the following result allows to analyze the convergence of a perturbed homogeneous system. Let us define the following disturbed differential inclusion:

ẋ ∈ F (x(t), γ), x ∈ R n , γ ∈ R µ , γ = (γ 1 , γ 2 , • • • , γ η ) , γ j ∈ R µ j , , µ = µ 1 + • • • + µ η . (1.58)
where γ is the disturbance vector. Furthermore, the following assumptions are used:

• The set field F (x, γ) ⊂ R n is a non-empty compact convex set-valued function, upper-semicontinuous at all points (x, 0), x ∈ R n , 0 ∈ R µ .
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• The undisturbed inclusion ẋ ∈ F (x, 0) is finite-time stable and homogeneous of degree q < 0 where the dilation is Λ m (α), and m i > 0, m i > -q.

• The differential inclusion (1.58) is homogeneous with respect to the disturbance variable, where deg(γ j,i ) = w i,j > 0. The above means that,

F (x, γ) = α -q Λ -1 m (α)F (Λ m (α)x, α w 1,1 γ 1,1 , • • • , α wµ,µ j γ µ,µ j )
. Moreover, γ are assumed be particular elements of set-valued homogeneous disturbance, Γ(x, ρ) with a properly defined magnitude parameter ρ, which satisfies the following conditions:

• Γ i (x, ρ) is a set-valued function with non-empty compact values, x ∈ R m , ρ ≥ 0. • The disturbance satisfies the homogeneity condition ∀ α, ρ ≥ 0, ∀x ∈ R n : Γ i (Λ m (α)x, α wρ ρ) = Λ l (α)Γ i (x, ρ)
, where the weights of the dilation Λ l are positive and Γ i is vanishing with respect to ρ.

• Γ i monotonously increases with respect to the parameter ρ, in the sense that for any x the inequality, 0 ≤ ρ ≤ ρ implies that Γ i (x, ρ) ⊂ Γ i (x, ρ).

• Γ i is Hausdorff-continuous in ρ, x at the points with ρ = 0.

Additionally, the following initial condition is used in the inclusion (1.58):

x = ξ(t), t ∈ [-τ, 0], ξ ∈ Ξ(τ, ρ, x 0 ), (1.59) 
which satisfies the following assumptions:

• Ξ(τ, ρ, x 0 ), x ∈ R n , τ , ρ ≥ 0 is a set of bounded Lebesgue measurable functions of time, ξ(t) ∈ R n , t ∈ [-τ, 0], ξ(0) = x.
• Initial-condition sets satisfy the homogeneity condition in the sense that transformation establishes the one-to-one correspondence ξ(t) → Λ m (α)ξ(t) between the functions of the sets Ξ(τ, ρ, x) and Ξ(α q , α wp ρ, Λ m (α)x).

• For any x, if 0 ≤ τ ≤ τ , 0 ≤ ρ ≤ ρ then the functions Ξ(τ , ρ, x) restricted to the time [-τ, 0] include the functions of Ξ(τ, ρ, x).

• The initial conditions are uniformly continuous at τ = 0, ρ = 0.

The above initial conditions can be fulfilled if the dynamics of the system are not affected by the value of the states for t < 0. Using the above conditions the following theorem and lemma are derived.

Theorem 1.2.2 [Levant & Livne 2016] There exists constants µ i such that after a finite-time transient, indefinitely extendable solutions of the disturbed differential inclusion (1.58) enter to the region |x i (t)| ≤ µ i δ m i , ρ = max ρ 1/wp , τ 1/q and remain there.

Lemma 1.1 [Levant & Livne 2016] Let q = w p = 1, then all solutions of the disturbed differential inclusion (1.58) after a finite-time transient enter to the region |x i (t)| ≤ µ i δ m i and remain there.

Differentiation of continuous-time signals

Differentiation of continuous-time signals

In many control engineering applications, real-time differentiation of a noisy signal is required [Atassi & Khalil 2000, Levant 2003] (e.g., PID and output-feedback controllers, observers, ...). The main challenge concerning the design of real-time differentiators is the trade-off between exactness and noise filtration performances [Rodrigues & Oliveira 2018]. For instance, the explicit Euler differentiator amplifies the effect of measurement noise. Therefore, measurement noises with small magnitude can significantly affect the estimate of the signal derivatives. To deal with this issue, linear filters (i.e., a combination of low-pass filter and ideal differentiator) were investigated. However, they require an appropriate tuning of the parameters according to noise characteristics and only guarantee asymptotic time convergence of the differentiaton errors. To alleviate these limitations, different methods have been proposed, such as high gain observers [Vasiljevic & Khalil 2008], algebraic differentiators based on the analysis of the Fourier transform of the kernels [Othmane et al. 2021], homogeneous sliding mode-based differentiators [Levant 2003], fixed-time differentiator [Moreno 2021, Moulay et al. 2022] and filtering sliding mode differentiator [Levant & Livne 2019, Jbara et al. 2021].

In this section, we will recall two continuous-time homogeneous differentiators which present exact differentiation and excellent robustness properties to bounded noises and disturbances. These two differentiator will be the basis of our main contributions in the next Chapters.

Problem Statement

The objective of a differentiator is obtain the first n derivatives of a function using its measurement, which usually is noisy. This function is represented as f 0 (t), f 0 : R → R and its measurement is represented as f (t) = f 0 (t) + ∆(t), where ∆(t) is the measurement noise. To achieve this objective, the following assumptions are required. 

f +1 components, ∆(t) = ∆ 0 (t) + ∆ 1 (t) + • • • + ∆ n f (t)
, where each ∆ j (t) (possibly unbounded), j = 0, 1, • • • , n f , is a signal of global filtering order j and the jth-order integral magnitude ε j ≥ 0.

The definition of a signal of global filtering order j was presented in [Levant & Livne 2019] as follows:

Chapter 1. Preliminaries and state of the art Definition 1.14 [Levant & Livne 2019] A function ∆ j (t), ∆ j : [0, ∞) → R, is a signal of global filtering order j ≥ 0, if ∆ j is a locally integrable Lebesgue-measurable function, and there exists a globally bounded solution β j (t) of the equation β (j) j (t) = ∆ j (t). Any number exceeding sup |β j (t)| is called a jth-order global integral magnitude of ∆ j .

Here, n f is referenced as the filtering order. Note that if a noise signal satisfies Assumption 1.3.2 then it trivially satisfies Assumption 1.3.3 with n f = 0 and ε 0 = δ.

To estimate the first n derivatives of a signal f 0 (t), a state space representation is used. The state variables are defined as

x i = f (i) 0 (t) and x = x 0 x 1 x 2 • • • x n T ∈ R n+1 .
The following representation is obtained:

ẋ = Ax + e n+1 f (n+1) 0 (t); f 0 (t) = e T 1 x, (1.60) with the canonical vectors e i = [0 • • • 0 1 0 • • • 0]
T (here the element "1" is in the position i), and A is the following nilpotent matrix:

A =         0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 1 0 0 0 • • • 0         . As f (n+1) 0
(t) is unknown in system (1.60), the estimation of the state requires strong observability. Since the triple A, e n+1 , e T 1 is strongly observable [Kratz 1995], the representation (1.60) gives the possibility to estimate the time derivatives of f 0 (t) through the design of a state observer.

Robust exact sliding mode differentiator

It is worth noting that sliding mode differentiators guarantee the robust finite time estimations of the first n derivatives of a signal with bounded (n + 1)-th derivative with interesting robustness properties with respect to measurement noise.

Let us define the signed power function as follows. For γ ≥ 0 and x ∈ R, the signed power γ of x is defined as ⌊x⌉ γ = |x| γ sign(x). With the purpose of estimating the state of system (1.60), in [Levant 2003] a homogeneous continuous-time differentiator is proposed. Its non-recursive form is given as follows: (1.61) where z = z 0 z 1 z 2 . . . z n T is an estimate of the vector x in finite time and where the parameters λ i > 0 are adequate parameters [Shtessel et al. 14].

ż0 = -λ n L 1 n+1 ⌊z 0 -f (t)⌉ n n+1 + z 1 , ż1 = -λ n-1 L 2 n+1 ⌊z 0 -f (t)⌉ n-1 n+1 + z 2 , . . . żn = -λ 0 L ⌊z 0 -f (t)⌉ 0 ,

Differentiation of continuous-time signals

Remark 1.3.1 Since ⌊z 0 -f (t)⌉ 0 is a set-valued function at z 0 = f , the solutions of the system are understood in the Filippov sense [Filippov 88].

With the absence of noise, the differentiator (1.61) can be represented as: [Shtessel et al. 14]. With discrete-time measurements, z 0 -f (t) is changed with z 0 (t k ) -f (t k ) where t k ≤ t < t k+1 and t k+1 -t k = τ ≥ 0 (τ is a constant sampling time). With discrete-time measurements and in the absence of noise, the differentiator has the following accuracy z i (t) -f [Levant 2003]. If both phenomenons occur, the differentiator obtains the asymptotic accuracy |z i (t) -f Levant et al. 2017].

ż0 = -λ n L 1 n+1 ⌊z 0 -f 0 (t)⌉ n n+1 + z 1 , ż1 = -λ n-1 L 2 n+1 ⌊z 0 -f 0 (t)⌉ n-1 n+1 + z 2 , . . . żn = -λ 0 L ⌊z 0 -f 0 (t)⌉ 0 . (1.62) If Assumption 1.3.2 is satisfied, the differentiator (1.61) has the following ac- curacy z i (t) -f (i) 0 (t) = O δ (n+1-i)/(n+1)
(i) 0 (t) = O τ (n-i+1)
(i) 0 (t)| ≤ µ i Lρ n+1-i for i = 0, 1, 2, • • • , n, with ρ = max (δ/L) 1/n+1 , τ and µ i ≥ 1 [
For τ = 0 and under Assumptions 1.3.1-1.3.2, the standard differentiator has an optimal asymptotic accuracy, i.e., only µ i could be improved [Levant et al. 2017]. Nevertheless, if the signal is m-th differentiable, with m > n and f (m) 0 (t) has a Lipschitz constant L m , then, its accuracy can be improved with a differentiator of order m instead of n. Concerning the parameters µ i , their best possible values are defined by the Kolmogorov constants (µ i ≥ K i,n 2 i n+1 ) [Levant et al. 2017], which satisfy the inequalities 1 ≤ K i,n ≤ π 2 . Let us now rewrite system (1.62) using the estimation errors

σ i = z i -x i , for i = 0, 1, . . . , n.
(1.63)

Hence, differentiator (1.62) becomes

ż = Az + u (σ 0 ) , (1.64)
where u (σ 0 ) is considered as the input vector of the observer and is defined as follows:

u (σ 0 ) = [Ψ 0,n (σ 0 ) Ψ 1,n (σ 0 ) • • • Ψ n,n (σ 0 )] T , Ψ i,n (•) = -λ n-i L i+1 n+1 ⌊•⌉ n-i n+1 , Ψ n,n (•) ∈ -λ 0 Lsign(•).
(1.65) Let σ = zx be the vector of the estimations errors. Then, the dynamics of the errors can be represented as:

σ = Aσ + u (σ 0 ) -e n+1 f (n+1) 0 (t).
(1.66)
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In the absence of noise and using f (n+1) 0

(t) ∈ [-L, L], system (1.66) can be rewritten as:

σi = σ i+1 + Ψ i,n (σ 0 ) , i = 0, . . . , n -1, σn ∈ Ψ n,n (σ 0 ) + [-L, L] .
Defining σi = σ i /L and σn = σ n /L, one obtains:

σi = σi+1 + Ψ i,n (σ 0 ) L i+1 n+1 , i = 0, . . . , n -1, σn ∈ Ψ n,n (σ 0 ) L + [-1, 1] .
(1.67)

or in a compact form as:

σ ∈ C n ( σ) . (1.68)
Concerning the selection of the parameters λ i , the following assumption is considered.

Assumption 1.3.4 [Levant 2003] The parameters λ 0 , λ 1 , • • • , λ n are constants and such that the differential inclusion (1.68) is asymptotically stable.

Remark 1.3.2 Let m 0 = n + 1, m 1 = n, • • • , m n = 1, then for all α > 0, and σ ∈ R n+1 , C n (σ) = αΛ -1 m (α)C n (Λ m (α)σ).
Therefore, the differential inclusion (1.68) is invariant with respect to the transformation (t, σ) → (αt, Λ m (α) σ). Hence, the inclusion (1.68) is a homogeneous system with a homogeneous degree -1. Hence, from Assumption 1.3.4, it is finite-time stable.

Sequences of parameters λ i , which satisfy 1.3.4, are presented for any 0 ≤ n ≤ 7 in [START_REF] Levant | Filtering Differentiators and Observers[END_REF]]. On the other hand, the parameters λ i are not unique. Indeed, they can be built from any λ 0 > 1 [Levant 2003, Shtessel et al. 14]. One can obtain different sequences in [START_REF] Reichhartinger | [END_REF]] and a methodology to obtain that parameters can be found in [Jbara et al. 2020].

Robust Exact Filtering Differentiator

Recently, a novel homogeneous differentiator was presented in [Levant & Livne 2019]. Although the standard differentiator has good performance under Assumptions 1. 3.1, 1.3.2 and 1.3.4, the robust exact filtering differentiator improves the accuracy of the standard differentiator with less restrictive noise assumptions (i.e., Assumption 1.3.3). It is given as:

ẇj f (t) = Ψ j f -1,m (w 1 (t)) + w j f +1 (t), ẇn f (t) = Ψ n f -1,m (w 1 (t)) + z 0 (t) -x0 (t) , żj d (t) = Ψ n f +j d ,m (w 1 (t)) + z j d +1 (t), żn (t) = Ψ m,m (w 1 (t)) . j f = 1, 2, • • • , n f -1. j d = 0, 1, 2, • • • , n -1.
(1.69)

Differentiation of continuous-time signals

where m = n + n f , and the parameters λ j are selected as in (1.62). n f is greater than or equal to the filtering orders of the signals ∆ j (t) that compose ∆(t). For n f = 0, the robust exact filtering differentiator becomes the standard differentiator (1.62).

Using the estimation errors (1.63), one obtains:

ẇj f (t) = Ψ j f -1,m (w 1 (t)) + w j f +1 (t), ẇn f (t) = Ψ n f -1,m (w 1 (t)) + σ 0 (t) -∆ (t) , σj d (t) = Ψ n f +j d ,m (w 1 (t)) + σ j d +1 (t), σn (t) = Ψ m,m (w 1 (t)) + x (n+1) 0 (t). j f = 1, 2, • • • , n f -1. j d = 0, 1, 2, • • • , n -1.
(1.70)

Let ω j (t) be defined as:

ω j (t) = w j (t) + n f l=n f -j+1 β (l+j-n f -1) l (t), (1.71)
where β (j) j (t) = ∆ j (t). Therefore, (1.70) can be rewritten as:

ωj f (t) = Ψ j f -1,m ω 1 (t) -β (0) n f (t) + ω j f +1 (t) -β (0) n f -j f (t), ωn f (t) = Ψ n f -1,m ω 1 (t) -β (0) n f (t) + σ 0 (t) -β (0) 0 (t) , σj d (t) = Ψ n f +j d ,m ω 1 (t) -β (0) n f (t) + σ j d +1 (t), σn (t) ∈ Ψ m,m ω 1 (t) -β (0) n f (t) + [-L, L] . j f = 1, 2, • • • , n f -1. j d = 0, 1, 2, • • • , n -1.
(1.72) Let ωj = ω j /L, σj (t) = σ j (t)/L and .73) it allows to obtain the inclusions:

ρ = max ε 0 L 1 n+1 , ε 1 L 1 n+2 , • • • , ε n f L 1 m+1 , ( 1 
ωj f (t) ∈ Ψ j f -1,m ω1 (t) + ρ m+1 [-1, 1] L j f m+1 + ωj f +1 (t) + ρ m+1-j f [-1, 1] , ωn f (t) ∈ Ψ n f -1,m ω1 (t) + ρ m+1 [-1, 1] L n f m+1 + σ0 (t) + ρ n+1 [-1, 1] , σj d (t) ∈ Ψ n f +j d ,m ω1 (t) + ρ m+1 [-1, 1] L n f +j d +1 m+1 + σj d +1 (t), σn (t) ∈ Ψ m,m ω1 (t) + ρ m+1 [-1, 1] L + [-1, 1] . j f = 1, 2, • • • , n f -1. j d = 0, 1, 2, • • • , n -1.
(1.74)

The inclusions (1.74) correspond to a perturbed finite-time stable homogeneous error dynamics (1.68) of mth-order instead of nth-order. Furthermore, Chapter 1. Preliminaries and state of the art the error dynamics system (1.74) is homogeneous with respect to the transformation t, ρ, ω1 , . . . , ωn f , σ0 , . . . , σn → αt, αρ, α m+1 ω1 , . . . , α n+2 ωn f , α n+1 σ0 , . . . , ασ n , with homogeneity degree -1 and where deg (ω j ) = m + 2 -j, deg (σ j ) = n + 1 -j, deg (ρ) = 1 and deg (t) = 1. If Assumptions 1.3.1 and 1.3.3 hold, the continuous-time filtering differentiator (1.69) presents the following accuracy:

|σ j (t) | ≤ µ j Lρ n+1-j , µ j > 0, j = 0, 1, 2, • • • , n.
(1.75)

In the case of bounded noise, the accuracy (1.75) becomes (1.69). The advantage of using the robust exact filtering differentiator (1.69) instead of the standard one (1.62), is that (1.69) improves the accuracy of (1.62).

State of the art

The continuous-time robust exact differentiators given previously include integration and continuous-time measurements. To implement these differentiators on a digital device, a proper discretization is required. Hence, hereafter, some existing discretetime realizations of the standard differentiator (1.61) and the robust exact filtering differentiator (1.69) are presented. Furthermore, the differentiators proposed in [Livne & Levant 2014, Koch & Reichhartinger 2018, Koch et al. 2020], are carefully discussed in the following subsections.

Forward Euler Discretization

In the case of discrete-time measurements of the input signal f (t), the differentiator (1.61) for t ∈ [t k , t k+1 ) can be represented as:

żi = z i+1 + Ψ i,n (z 0 (t k ) -f (t k )) , i = 0, . . . , n -1, żn = Ψ n,n (z 0 (t k ) -f (t k )) .
(1.76)

By applying the one-step Euler method, the above differentiator is given by the following form:

z i,k+1 = z i,k + τ Ψ i,n (z 0,k -f k ) + τ z i+1,k , z n,k+1 = z n,k + τ Ψ n,n (z 0,k -f k ) , (1.77) where τ = t k+1 -t k > 0, z i (t k ) = z i,k , z i (t k+1 ) = z i,k+1 and f (t k ) = f k . Subtract- ing f (i) 0 (t k+1
) and using Taylor expansion of f (i) 0 (t k+1 ) with the Lebesgue-integral remainder form, it yields the following estimation error

σ i,k+1 ∈σ i,k + τ σ i+1,k + τ Ψ i,n (σ 0,k + [-δ, δ]) - τ 2 2 f (i+2) 0 (ξ i,k ) , σ n-1,k+1 ∈σ n-1,k + τ σ n,k - τ 2 2 [-L, L] + τ Ψ n-1,n (σ 0,k + [-δ, δ]) , σ n,k+1 ∈σ n,k + τ Ψ n,n (σ 0,k + [-δ, δ]) -τ [-L, L] ,
(1.78)
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where

σ i,k = z i,k -f (i) 0,k , i = 0, 1, . . . , n -2 and ξ i,k ∈ [t k , t k+1 ].
Notice that for n = 1 the above inclusion is homogeneous with respect to the transformation (t k , δ, σ 0 , . . . , σ n ) → λt k , λ n+1 δ, λ n+1 σ 0 , . . . , λσ n ,

(1.79) whereas the differentiator obtained using Euler method looses the homogeneity property for n ≥ 2. In [Livne & Levant 2014], it was demonstrated that if the unknown function f 0 (t) is n-smooth function for n ≥ 1 (i.e., |f (j) 0 (t)| ≤ D j for j = 2, 3, . . . , n, n + 1 and D n+1 = L), ∆ (t) is a Lebesgue measurable noise bounded by a constant δ, then the accuracy of the differentiator (1.77) is given by:

|z i,k -f (i) 0,k | ≤ µ i ρ n-i+1 , ρ = max j=2,3,...,n+1 τ 2 D j 1 n-j+2 , τ, δ 1 n+1
, (1.80) for i = 0, 1, . . . , n and where the coefficients µ i only depend on the differentiator parameters λ 0 , . . . , λ n , L. Notice that it does not preserve the ultimate accuracy of the differentiator (1.62) with discrete measurements.

Homogeneous Discrete-time Differentiator (HDD)

Let us consider the same assumptions as previously, i.e. the unknown function f 0 (t) is n-smooth function for n ≥ 1 (i.e., |f (j) 0 (t)| ≤ D j for j = 2, 3, . . . , n, n + 1 and D n+1 = L), ∆ (t) is a Lebesgue measurable noise bounded by a constant δ. In [Livne & Levant 2014], an explicit discretization of the homogeneous differentiator (1.61) is proposed as follows:

z k+1 = Φ (τ ) z k + τ u k , (1.81) with u k =       Ψ 0,n (z 0,k -f k ) Ψ 1,n (z 0,k -f k ) . . . Ψ n,n (z 0,k -f k )       , Φ (τ ) =          1 τ τ 2 2! • • • τ n-1 (n-1)! τ n n! 0 1 τ • • • τ n-2 (n-2)! τ n-1 (n-1)! . . . . . . . . . . . . . . . . . . 0 0 0 • • • 1 τ 0 0 0 • • • 0 1         
.

(1.82)

Then, the accuracy of the HDD (1.81) is given as:

|z i -f (i) 0 | ≤ µ i ρ n-i+1 , ρ = max τ, δ 1 n+1 , (1.83)
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where as in the Euler method, the coefficients µ i only depend on the differentiator parameters λ 0 , . . . , λ n , L. Unlike the differentiator (1.77), the differentiator (1.81) preserves the ultimate accuracy of the differentiator (1.62) with discrete measurements and the homogeneity property. At last, some robustness properties with respect to variable sampling time are guaranteed.

Matching Discrete-time Differentiator

In [Koch & Reichhartinger 2018], a discrete-time version of the differentiator (1.62) is presented. It has the following form:

z k+1 = Φ (τ ) z k + λ (σ 0,k ) σ 0,k , (1.84)
where Φ (τ ) is the same matrix as in equation (1.82). Furthermore, the matrix λ (σ 0,k ) is designed with the purpose of placing the eigenvalues of the matrix Φ (τ )-λ (σ 0,k ) e T 1 , which is the matrix present in the dynamics of the observation error dynamics obtained from (1.84):

σ k+1 = Φ (τ ) + λ (σ 0,k ) e T 1 σ k + h k , (1.85)
In order to solve the eigenvalue placement problem, the Ackerman's formula is used by mapping the continuous-time eigenvalues to the discrete-time domain and the matching approach ( [Franklin et al. 1998]). Then, λ (σ 0,k ) is given as:

λ (σ 0,k ) = χ (Φ (τ ) , σ 0,k ) S -1 o e n+1 , χ (Φ (τ ) , σ 0,k ) = n i=0 (Φ (τ ) -q i (σ 0,k ) I) , S o =       e T 1 e T 1 Φ (τ ) . . . e T 1 Φ n (τ )       , q i (σ 0,k ) = e τ p i| σ 0,k | n n+1 -1 , (1.86)
where p i are the continuous poles of the differentiator, I is the identity matrix of dimensions ((n + 1) × (n + 1)). Although, a close form can be obtained for (1.86), a more complex form can be obtained if different poles are considered.

Notice that the differentiator (1.84) has been designed for the free-noise case. For the free-noise case, it presents some relevant properties such as insensitivity to an overestimation of the parameter L, preservation of the accuracy of the continuous differentiator

(|σ i,k | = O(τ n-i+1
)) and a hyper-exponential stability (the definition can be founded in [Clempner & Yu 17]). However, there is no convergence proof in the case of measurement noise.

Generalized Homogeneous Discrete-time Differentiator (GHDD)

In [START_REF] Koch | [END_REF], a discrete-time version of the differentiator (1.62) is presented. It has the following form:

z k+1 = Φ (τ ) z k + τ P (τ ) u k ,
(1.87)
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where u k and Φ (τ ) are expressed as in equation (1.82), and with a constant sampling time τ . Furthermore, matrix P (τ ) is given as:

P (τ ) =            1 0 0 0 • • • 0 0 0 1 β 2,3 τ β 2,4 τ 2 • • • β 2,n τ n-1 β 2,n+1 τ n 0 0 1 β 3,4 τ • • • β 3,n τ n-2 β 3,n+1 τ n-1 . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 • • • 1 β n,n+1 τ 0 0 0 0 • • • 0 1            (1.88)
where the parameters β i,j are constant, such P satisfies the condition:

Φ (τ ) P (τ ) = P (τ ) (I + τ A) (1.89)
In specific, in [START_REF] Koch | [END_REF], the following matrices P (τ ) are defined for the GHDD of order n ≤ 5:

P 1 (τ ) = 1 0 0 1 P 2 (τ ) =    1 0 0 0 1 -1 2 τ 0 0 1    P 3 (τ ) =      1 0 0 0 0 1 -1 2 τ 1 3 τ 2 0 0 1 -τ 0 0 0 1      . . . P 5 (τ ) =           1 0 0 0 0 0 0 1 -1 2 τ 1 3 τ 2 -1 4 τ 3 1 5 τ 4 0 0 1 -τ 11 12 τ 2 -5 6 τ 3 0 0 0 1 -3 2 τ 7 4 τ 2 0 0 0 0 1 -2τ 0 0 0 0 0 1           (1.90)
Moreover, in [START_REF] Koch | [END_REF]], a proof of convergence even in the presence of noise has been provided. It has been demonstrated that the GHDD (1.87) preserves the ultimate accuracy of the differentiator (1.62) with discrete measurements, i.e.,

|σ i,k | ≤ µ i ρ n-i+1 , ρ = max τ, (δ/L) 1 n+1
.

(1.91)

where the coefficients µ i only depend on the differentiator parameters λ 0 , . . . , λ n , L

Implicit discretization of the standard differentiator

Recently, some implicit and semi-implicit discrete-time realizations have been investigated (see for instance [Mojallizadeh et al. 2021]). They have been obtained from Chapter 1. Preliminaries and state of the art the standard differentiator (1.61), HDD (1.81), GHDD (1.87) and the forward Euler discretization (1.77).

Implicit discrete time realization of the Arbitrary Order Standard Differentiator (I-AO-SD)

Taking into account the forward Euler discretization (1.77), the following scheme is proposed:

z i,k+1 = z i,k + τ Ψ i,n (σ 0,k+1 ) + τ z i+1,k+1 , z n,k+1 ∈ z n,k + τ Ψ n,n (σ 0,k+1 ) , (1.92) where i = 0, 1, • • • , n-1.
To obtain the implicit variable σ 0,k+1 at time t k , the following generalized equation is obtained from (1.92):

g(σ 0,k+1 ) ∈ -τ n+1 λ 0 Lsign(σ 0,k+1 ), g(σ 0,k+1 ) = σ 0,k+1 + n-1 l=0 τ l+1 λ n-l ⌊σ 0,k+1 ⌉ n-l n+1 + b k , b k = - n l=0 τ l z l,k + f k+1 , ξ(σ 0,k+1 ) = g -1 (σ 0,k+1 ).
(1.93)

Remark 1.4.1 It is important to note that the resolution of the generalized equation at time t k needs the computation of b k using f k+1 . The above implies that the differentiator needs to be implemented with a delay τ or by replacing b k with b k-1 , which reduces its accuracy [Mojallizadeh et al. 2021]. As it will be seen, the implicit differentiators presented in [Mojallizadeh et al. 2021] requires f k+1 .

From the generalized equation, one obtains the following implementation for the implicit differentiator (1.92):

• Case 1: b k < -τ n+1 λ 0 L. Hence, σ 0,k+1 > 0. In this case, it is calculated

X k = σ 1 n+1
0,k+1 and sign(σ 0,k+1 ) = ξ k = 1, where X k is the root of the following equation with respect to θ k :

θ n+1 k + n-1 l=0 τ l+1 λ n-l L l+1 n+1 θ n-l k + b k + τ n+1 L = 0. (1.94) • Case 2: b k ∈ -τ n+1 λ 0 L, τ n+1 λ 0 L . Hence, σ 0,k+1 = 0. In this case, sign(σ 0,k+1 ) = [-1, 1], and ξ k = -b k τ n+1 λ 0 L . • Case 3: b k > τ n+1 λ 0 L. Hence, σ 0,k+1 < 0. In this case, it is calculated as X k = (-σ 0,k+1 ) 1 n+1 and sign(σ 0,k+1 ) = ξ k = 1
, where X k is the root of the following equation with respect to θ k :

-θ n+1 k - n-1 l=0 τ l+1 λ n-l L l+1 n+1 θ n-l k + b k -τ n+1 L = 0.
(1.95)

Then, the I-AO-SD (1.92) is implemented with ξ k instead of sign(σ 0,k+1 ).

Conclusion Implicit homogeneous discrete-time differentiator (IHDD)

From the homogeneous discrete-time differentiator (HDD) (1.81), the following implicit scheme is proposed:

z i,k+1 = z i,k + τ Ψ i,n (σ 0,k+1 ) + n-i j=1 τ j j! z j+1,k+1 , z n,k+1 ∈ z n,k + τ Ψ n,n (σ 0,k+1 ) .
(1.96)

where i = 0, 1, • • • , n -1.
Similar to (1.93), one obtains the following generalized equation:

g(σ 0,k+1 ) ∈ -τ n+1 λ 0 Lm n sign(σ 0,k+1 ), g(σ 0,k+1 ) = σ 0,k+1 + n-1 l=0 m l τ l+1 λ n-l ⌊σ 0,k+1 ⌉ n-l n+1 + b k , b k = - n l=0 m l τ l z l,k + f k+1 , ξ(σ 0,k+1 ) = g -1 (σ 0,k+1 ).
(1.97) σ 0,k+1 and ξ k are implemented solving the generalized equation as in the previous case.

As it was mentioned previously, the main drawback of both implicit differentiators is that they require measurements at time t k+1 to estimate the state at time t k (see Remark 1.4.1). Furthermore, the convergence proof is only given in the noise-free case and assuming that f n+1 (t) = 0. In Chapters 2-3 implicit discrete-time realizations are introduced in order to alleviate these disadvantages.

Conclusion

In this chapter, some preliminaries on set-valued functions, generalized equations, homogeneous systems have been recalled. Explicit and implicit discretization methods have been discussed. The differentiation problem has been introduced and some continuous-time differentiators have been recalled. At last, some existing discrete-time realizations of the standard differentiator have been reported. All these concepts will be very useful to derive the main results in the following Chapters.

CHAPTER2

Explicit and implicit discretizations of homogeneous differentiator

A discrete-time realization of the standard differentiator is needed to implement a controller or an observer on a digital device. However, an improper discretization may result in eliminating the properties of its continuous-time counterpart or undesirable behavior due to, for instance, numerical chattering [START_REF] Polyakov | [END_REF] or the asymptotic accuracy of the continuous-time differentiator [Livne & Levant 2014]. Therefore, some discrete-time sliding mode schemes have been introduced and applied in several works [START_REF] Polyakov | [END_REF], Drakunov & Utkin 1990[START_REF] Utkin | [END_REF], Kikuuwe & Fujimoto 2006, Su et al. 2000]. In particular, for the homogeneous differentiator, some explicit discrete-time realizations have been proposed in [Livne & Levant 2014, Koch et al. 2020, Barbot et al. 2020, Mojallizadeh et al. 2021] to preserve properties of the respective continuous-time system using different methodologies.

Contrary to many explicit discretization methods, implicit ones do not significantly reduce the performance for large sampling times in terms of robustness properties to matched perturbations and accuracy while not being sensitive to control gain variations. Nevertheless, they require a more elaborate scheme compared with their explicit counterparts. A pioneer work [Drakunov & Utkin 1990] has presented an implicit discretization for the scalar case where the disturbance is required to be known. Then, other works, [Brogliato et al. 2019, Huber et al. 2013] have introduced a time discretization of the original plant and an implicit discretization of the controller, where the unperturbed plant is analyzed to obtain a causal controller. Moreover, implicit time-discretization schemes have been derived for twisting and super-twisting controllers [Brogliato et al. 2019, Huber et al. 2019], finite-time and fixed-time systems [START_REF] Polyakov | [END_REF], where the stability properties are preserved. The implicit discrete-time super-twisting [Brogliato et al. 2019] has presented convergence to the origin in a finite number of steps for the unperturbed case. A detailed comparison between explicit and implicit schemes has been given in [Huber et al. 2013]. Remarkable experimental results have been provided in [Huber et al. 2016b, Wang et al. 2015, Huber et al. 2016a, Huber et al. 16]. Such discrete-time realizations preserve the continuous-time desirable properties of the sliding mode algorithms while
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reducing numerical chattering at the output and input. Furthermore, most of the mentioned works do not significantly reduce the performance for large sampling times, allowing suitable robustness properties to matched bounded disturbances and being not sensitive to control gain variations. In contrast, the above properties may not be valid for an explicit discretization. Nevertheless, their main drawback is a more elaborate procedure than the explicit counterpart.

The main contributions of this chapter are to introduce and analyze an explicit and implicit discrete-time realization of the continuous-time homogeneous differentiator. First, an explicit discrete-time version of the continuous-time homogeneous differentiator is proposed. Based on this scheme, an implicit discrete-time differentiator is obtained. It is non-anticipative and relies on a root-finding method. Furthermore, in this paper, the properties of the proposed schemes are analyzed using homogeneity. It will be shown that the estimation errors of the explicit and implicit differentiators, as defined in this work, converge to a vicinity of the origin. An efficient implementation is also proposed to reduce the time complexity of the algorithm. At last, simulation results are performed to compare the proposed implicit discretization method with other existing schemes to highlight, for instance, its advantages in terms of accuracy when relatively large sampling periods are considered.

Explicit Discretization of the Homogeneous Differentiator (HEDD)

Let x i,k = x i (t k ) and x k = [x 0,k , . . . , x n,k ] T . Then, the system

x k+1 = Φ (τ ) x k + h k (τ ) (2.1)
is a discrete-time representation of system (1.60). It is obtained similarly to [Koch & Reichhartinger 2018] by using Taylor series expansion with Lagrange's remainders [Firey 1960]. For this system, since A is a nilpotent matrix, Φ (τ ) = e Aτ is defined as:

Φ (τ ) =          1 τ τ 2 2! • • • τ n-1 (n-1)! τ n n! 0 1 τ • • • τ n-2 (n-2)! τ n-1 (n-1)! . . . . . . . . . . . . . . . . . . 0 0 0 • • • 1 τ 0 0 0 • • • 0 1          . (2.2) If f (n+1) 0
(t) is an absolutely continuous function, then h k (τ ) is given as:

h k (τ ) = τ n+1 (n+1)! f (n+1) 0 (θ n ) τ n n! f (n+1) 0 (θ n-1 ) • • • τ f (n+1) 0 (θ 0 ) T , (2.3) with θ i ∈ (t k , t k+1 ). For a discontinuous function f (n+1) 0 (t), the equation (2.
3) is replaced with the following equation:

h k (τ ) ∈ τ n+1 (n+1)! [-L, L] τ n n! [-L, L] • • • τ [-L, L] T .
(2.4)

Explicit Discretization of the Homogeneous Differentiator (HEDD)

This result is obtained from Theorems 3.16, 7.6, and 7.7 presented in [Apostol 1967]. Similar to (2.1), system

z k+1 = Φ (τ ) z k + B * (τ ) u (σ 0,k ) , (2.5) with z i,k = z i (t k ), z k = [z 0,k , . . . , z n,k ] T , is a discrete-time representation of system (1.64). Assuming that u(σ 0 ) is constant on [t k , t k+1
), the matrix B * (τ ) is as follows:

B * (τ ) = t k+1 t k e A(t k+1 -ξ) dξ =          τ τ 2 2! τ 3 3! • • • τ n n! τ n+1 (n+1)! 0 τ τ 2 2! • • • τ n-1 (n-1)! τ n n! . . . . . . . . . . . . . . . . . . 0 0 0 • • • τ τ 2 2! 0 0 0 • • • 0 τ          . (2.6)
Thus, considering the form of Φ (τ ) in (2.2), B * (τ ) in ( 2.6) and a constant σ 0 (t) for [t k , t k+1 ), system (2.5) is an exact discretization of the differentiator (1.64) in the sense of exact discretization of linear systems [Kazantzis & Kravaris 1999]. However, in practice, the earlier assumption (σ 0 (t) is constant for [t k , t k+1 )) is not satisfied. Hence, it is only used to propose the discrete-time realization, but it is not used in its stability proof presented in the next section. Concerning the sampling time, the following assumption is used in the next sections:

Assumption 2.1.1 The sampling time τ is a positive constant and the input of the differentiator, f (t), is measured in the instant of time t k = kτ for k = 0, 1, 2, 3, • • • .
Under Assumptions 1. 3.1, 1.3.2, 1.3.4 and 2.1.1, and based on the discrete-time realization (2.5), the following discrete-time injections provide the final form for the explicit discretization of the differentiator (1.64), caller hereafter HEDD:

u (σ 0,k ) = [Ψ 0,n (σ 0,k ) Ψ 1,n (σ 0,k ) • • • Ψ n,n (σ 0,k )] T , (2.7)
where Ψ i,n (•) is defined as in the Equation (1.65).

Remark 2.1.1

The discrete-time differentiator (2.5)-( 2.7) has a similar structure to that proposed in the differentiators (1.81), (1.84) and (1.87). The main difference is that for HDD, given in eq. (1.81), B * (τ ) is given as B * (τ ) = τ I, where I is an identity matrix of appropriate dimensions, and in [Koch & Reichhartinger 2018], B * (τ ) u (σ 0,k ) are the injection terms obtained by placing the eigenvalues of the discrete-time error system. The Matching differentiator, given in eq. (1.84), can be written in the form of (2.7) with a different matrix B * (τ ). The discrete-time differentiators HDD, Matching and HEDD can be seen as particular cases of the discrete-time differentiator proposed in [Barbot et al. 2020]. Note that in [Barbot et al. 2020], the convergence of the estimation error using the explicit discrete-time differentiator (2.5) has been investigated even for variable sampling times.

Let σ i,k = σ i (t k ) and σ k = [σ 0,k , . . . , σ n,k ] T .
Using Equations (2.1) and (2.7), the discrete-time estimation error system has the form:

σ k+1 = Φ (τ ) σ k + B * (τ ) u (σ 0,k ) -h k (τ ).
(2.8)
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Furthermore, in the presence of measurement noise, the estimation error dynamics become

σ k+1 = Φ (τ ) σ k + B * (τ ) u (σ 0,k -∆ k ) -h k (τ ), (2.9) 
where

∆ k = ∆(t k ). As ∆ k ∈ [-δ, δ] and f (n+1) 0 (t) ∈ [-L, L] , one obtains σ k+1 ∈Φ (τ ) σ k + B * (τ ) u (σ 0,k + [-δ, δ]) + . . . . . . + τ n+1 (n + 1)! [-L, L] τ n n! [-L, L] • • • τ [-L, L] T = ϖ k (τ, δ, σ) .
(2.10) Lemma 2.1 The system (2.10) is homogeneous with respect to the transformation

(τ, δ, σ 0 , . . . , σ n ) → ατ, α n+1 δ, α n+1 σ 0 , . . . , ασ n , for all α ∈ R + . Proof Since Λ -1 m (α) AΛ m (α) = α -1
A, the following equalities are obtained: (2.11) 

AΛ m (α) = α -1 Λ m (α) A,
A i Λ m (α) = α -i Λ m (α) A i , (2.12) Λ m (α) Φ (τ ) = Φ (ατ ) Λ m (α) , (2.13) Λ m (α) B * (τ ) = α -1 B * (ατ ) Λ m (α) , (2.14) u α n+1 σ 0,k + -α n+1 δ, α n+1 δ = α -1 Λ m (α) u (σ 0,k + [-δ, δ]) , (2.15) (ατ ) n+1 (n + 1)! [-L, L] (ατ ) n n! [-L, L] • • • ατ [-L, L] T = . . . Λ m (α) τ n+1 (n + 1)! [-L, L] τ n n! [-L, L] • • • τ [-L, L] T . ( 2 
= n + 1, m 1 = n, • • • and m n = 1 then ϖ k ατ, α n+1 δ, Λ m (α) σ = Φ (ατ ) Λ m (α) σ k + . . . . . . + B * (ατ ) u α n+1 σ 0,k + α n+1 [-δ, δ] + . . . . . . + (ατ ) n+1 (n + 1)! [-L, L] (ατ ) n n! [-L, L] • • • ατ [-L, L] T , = Λ m (α) (Φ (τ ) σ k + B * (τ ) u (σ 0,k + [-δ, δ]) + . . . . . . + τ n+1 (n + 1)! [-L, L] τ n n! [-L, L] • • • τ [-L, L] T   , = Λ m (α) ϖ k (τ, δ, σ) .
(2.17) δ,σ) and therefore inclusion (2.10) is invariant with respect to the transformation (τ, δ, σ 0 , . . . , σ n ) → ατ, α n+1 δ, α n+1 σ 0 , . . . , ασ n and homogeneous.

From Equation (2.17), Λ -1 m (α) ϖ k ατ, α n+1 δ, Λ m (α) σ = ϖ k (τ,
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Remark 2.1.2 The discrete-time system (2.10) preserves the homogeneity degrees of the differential inclusion (1.68), i.e., deg(σ

i ) = deg(σ i,k ) = m i and deg(t) = deg(τ ) = 1.
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Now, based on the realization of the previous section, HEDD, an implicit scheme is designed.

Design of HIDD

Under Assumptions 1. 3.1, 1.3.2, 1.3.4 and 2.1.1, an implicit discretization is performed for the continuous-time differentiator (1.62). First, σ 0,k is replaced with σ 0,k+1 in Equation (2.7), i.e.,

u (σ 0,k+1 ) = [Ψ 0,n (σ 0,k+1 ) Ψ 1,n (σ 0,k+1 ) • • • Ψ n,n (σ 0,k+1 )] T . (2.18)
Therefore, the following implicit discrete-time systems are obtained:

z k+1 = Φ (τ ) z k + B * (τ ) u (σ 0,k+1 ) , σ k+1 = Φ (τ ) σ k + B * (τ ) u (σ 0,k+1 ) -h k (τ ) . (2.19)
However, one should highlight that σ 0,k+1 cannot be obtained from the second equation of (2.19) due to the impossibility to measure the state variables x 1,k , x 2,k , • • • , x n,k and vector h k (τ ). Therefore, these terms are considered as perturbations for the estimation process of σ 0,k+1 . It allows to estimate σ 0,k+1 as: [Brogliato et al. 2020] and [START_REF] Acary | [END_REF], to implement the discretetime observer (2.19), the intermediate variable σ 0,k+1 is proposed as a copy of σ 0,k+1 in Equation (2.20):

σ 0,k+1 = σ 0,k + τ Ψ 0,n (σ 0,k+1 ) + n l=1 τ l l! z l,k + τ l + 1 Ψ l,n (σ 0,k+1 ) . (2.20) Equation (2.20) is only valid for x l,k = 0 and h 0,k = 0, with l = 1, • • • , n. Similar to
σ 0,k+1 = σ 0,k + τ Ψ 0,n ( σ 0,k+1 ) + n l=1 τ l l! z l,k + τ l + 1 Ψ l,n ( σ 0,k+1 ) .
(2.21) σ 0,k+1 emulates the behavior of σ 0,k+1 with a constant f 0 (t) and without measurement noise. To compute σ 0,k+1 , from Equation (2.21) a generalized equation with unknown σ 0,k+1 is obtained:

σ 0,k+1 + a n ⌊ σ 0,k+1 ⌉ n n+1 + • • • + a 1 ⌊ σ 0,k+1 ⌉ 1 n+1 + b k ∈ -a 0 sign( σ 0,k+1 ), (2.22) where b k = -σ 0,k -n l=1 τ l l! z l,k and a l = τ n-l+1 (n-l+1)! λ l L n-l+1
n+1 , l = 0, . . . , n. A new support variable is introduced: ξ k ∈ sign( σ 0,k+1 ), which can be understood as a selection of Chapter 2. Explicit and implicit discretizations of homogeneous differentiator the set-valued signal. Now, χ n (ζ) and its inverse mapping, with ζ ∈ R. The first is defined as:

χ n (ζ) = ζ + a n ⌊ζ⌉ n n+1 + • • • + a 1 ⌊ζ⌉ 1 n+1 + b k .
(2.23)

The inverse mapping χ -1 n (y) is obtained as follows:

χ n (ζ) = ζ + a n ⌊ζ⌉ n n+1 + • • • + a 1 ⌊ζ⌉ 1 n+1 + b k = y, ζ + a n ⌊ζ⌉ n n+1 + • • • + a 1 ⌊ζ⌉ 1 n+1 = y -b k .
(2.24)

As it can be seen in the above equation, the sign of the left side is positive when ζ is positive and it is negative if

ζ is negative. Therefore, if y -b k is positive, then ζ is positive, if y -b k is negative then ζ is negative.
It allows to rewrite the left side of the above equation as: • If y > b k , then χ -1 n (y) = (r 0 ) n+1 where r 0 is the positive root of the polynomial:

• If y > b k , then ζ + a n ζ n n+1 + • • • + a 1 ζ 1 n+1 = y -b k . (2.25) • If y < b k , then ζ -a n (-ζ) n n+1 -• • • -a 1 (-ζ) 1 n+1 = y -b k . (2.26) • If y = b k , then ζ + a n ⌊ζ⌉ n n+1 + • • • + a 1 ⌊ζ⌉ 1 n+1 = 0, which implies that ζ = 0. If ζ ∈ R \ {0}
p (r) = r n+1 + a n r n + • • • + a 1 r + (b k -y) . (2.27) • If y < b k , then χ -1 n (y) = -(r 0 ) n+1 con
r 0 where r 0 is the positive root of the polynomial:

p (r) = r n+1 + a n r n + • • • + a 1 r -(b k -y) .
(2.28)

• If y = b k , then χ -1 n (y) = 0.
Polynomials (2.27) and (2.28) are obtained if the equations are equal to 0. Additionally, the change of variables implies that r is positive, and therefore ζ is defined with a positive root, and its negatives and complex roots are avoided. Moreover, (2.27) and (2.28) are polynomials without zero coefficients. As the parameters a i are positive, there is a unique change of sign in the sequence of coefficient of the polynomials (2.27) and (2.28). Hence, according to the Descartes's rule of signs [Aleksandrov et al. 1999], both polynomials have a unique positive root.
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One of the main properties of the inverse mapping χ -1 n (ζ) is that it is continuous for all ζ ∈ R, and monotonically increasing if ζ ̸ = b k . The above comes from the fact that dχn (ζ) dζ

> 0 for ζ ̸ = 0, therefore dχ -1 n (ζ) dζ > 0 for all ζ ̸ = b k ,
which is the unique point that mapping to 0 the inverse mapping.

The mapping χ n (ζ) and its inverse mapping χ -1 n (y), allow to represent the problem of calculating σ 0,k+1 and ξ k with the following generalized equations:

ξ k ∈ sign( σ 0,k+1 ) ⇔ σ 0,k+1 ∈ N [-1,1] (ξ k ), χ n ( σ 0,k+1 ) = -a 0 ξ k ⇔ σ 0,k+1 = χ -1 n (-a 0 ξ k ), χ -1 n (-a 0 ξ k ) ∈ N [-1,1] (ξ k ).
(2.29)

In summary, one has the following generalized equations:

χ n ( σ 0,k+1 ) ∈ -a 0 sign( σ 0,k+1 ), χ -1 n (-a 0 ξ k ) ∈ N [-1,1] (ξ k ) , ξ k ∈ sign( σ 0,k+1 ).
(2.30) σ 0,k+1 and ξ k correspond to the solution of the generalized equations (2.30). A graphic representation of the generalized equations (2.30) are showed in Figure (2.1), where τ = 0.5, L = 100, n = 3. The intersection between χ -1 3 (-a 0 ξ k ) and N [-1,1] (ξ k ) correspond to the solution of the generalized equations for any value of b k , in specific, the solutions is represented as

(ξ * k , σ * k+1 ) in Figure 2.1. -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 k -2 -1 0 1 2 3 -1 (-a 0 k ) 10 -3 ( k * , k+1 * ) N [-1,1] ( k ) 3 -1 (-a 0 k ) with b k =0.8 3 -1 (-a 0 k ) with b k =0 3 -1 (-a 0 k ) with b k =-0.8 Figure 2.1: Graphic representation of the generalized equation χ -1 n (-a 0 ξ k ) ∈ N [-1,1] (ξ k ) with τ = 0.5, L = 100, n = 3.
Using the properties of the inverse mapping χ -1 n (ζ), one obtains the following theorem:

Theorem 2.2.1 The generalized equation χ -1 n (-a 0 ξ k ) ∈ N [-1,1] (ξ k ) has a unique solution for any b k ∈ R.
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Proof First, the generalized equations χ -1 n (-a 0 ξ k ) ∈ N [-1,1] (ξ k ) can be rewritten as follows:

χ -1 n (-a 0 ξ k ) ∈ N [-1,1] (ξ k ) , 0 ∈ -χ -1 n (-a 0 ξ k ) + N [-1,1] (ξ k ) , 0 ∈ -χ -1 n (y) + N [-1,1] - y a 0 , 0 ∈ -χ -1 n (y) + N [-a 0 ,a 0 ] (-y) , 0 ∈ -χ -1 n (y) -N [-a 0 ,a 0 ] (y) , 0 ∈ χ -1 n (y) + N [-a 0 ,a 0 ] (y) .
(2.31)

Here the variable y is given as y = -a 0 ξ k . As 

k ∈ [-a 0 , a 0 ], dχn(ζ) -1 dζ is semi definite positive and the Corollary 1.1.2 is used, with x ref = b k . Due to the fact that χ -1 n (ζ) > 0 with ζ > 0 and χ -1 n (ζ) < 0 with ζ < 0, it can be deduce that: χ -1 n (ζ)(ζ -b k ) ≥ 0, ∀ζ ∈ [-a 0 , a 0 ], (2.32 
χ -1 n (ζ 1 )(ζ ′ -ζ 1 ) ≥ 0, χ -1 n (ζ 2 )(ζ ′ -ζ 2 ) ≥ 0, ∀ζ ′ ∈ [-a 0 , a 0 ]. ( 2 

.33)

Substituting ζ ′ with ζ 2 and ζ 1 respectively and with both inequalities, one obtains:

χ -1 n (ζ 1 )(ζ 2 -ζ 1 ) ≥ 0, χ -1 n (ζ 2 )(ζ 1 -ζ 2 ) ≥ 0, ζ 1 ̸ = ζ 2 , χ -1 n (ζ 1 )(ζ 1 -ζ 2 ) ≤ 0, -χ -1 n (ζ 2 )(ζ 1 -ζ 2 ) ≤ 0, ζ 1 ̸ = ζ 2 , χ -1 n (ζ 1 ) -χ -1 n (ζ 2 ) (ζ 1 -ζ 2 ) ≤ 0, ζ 1 ̸ = ζ 2 .
(2.34)

As χ -1 n (ζ) dζ > 0 for ζ ̸ = b k , χ -1 n (b k ) = 0, χ -1 n (ζ) > 0 for ζ > b k and χ -1 n (ζ) < 0 for ζ < b k , then: χ -1 n (ζ 1 ) -χ -1 n (ζ 2 ) (ζ 1 -ζ 2 ) > 0. ( 2 

.35)

A contradiction is obtained, and it concludes the proof.

Now the unique solution of the generalized equations (2.30) is given in the following lemma:

Lemma 2.2 Let a i > 0, σ 0,k+1 ∈ R and ξ k ∈ [-1, 1],
then the solution of the inclusions (2.30) is the unique pair ( σ 0,k+1 , ξ k ) which is defined according to the following cases:
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• If b k > a 0 , then ξ k = {-1} and σ 0,k+1 = -(r 0 ) n+1 ∈ R -where r 0 is the unique positive root of the following polynomial:

p (r) = r n+1 + a n r n + • • • + a 1 r + (-b k + a 0 ) . (2.36) • If b k ∈ [-a 0 , a 0 ], then σ 0,k+1 = 0 and ξ k = -b k a 0 .
• If b k < -a 0 , then ξ k = {1} and σ 0,k+1 = r n+1 0 ∈ R + where r 0 is the unique positive root of the following polynomial:

p (r) = r n+1 + a n r n + • • • + a 1 r + (b k + a 0 ) .
(2.37)

Proof As a result of Equation (2.23), χ (ζ) presents the following properties:

     χ (ζ) > b k if ζ > 0, χ (ζ) = b k if ζ = 0, χ (ζ) < b k if ζ < 0.
(2.38)

The following three cases are based on the values of b k and a 0 :

• Case 1: b k > a 0
From Equations (2.30) and (2.38), one can conclude that σ 0,k+1 < 0. It yields

σ 0,k+1 -a n (-σ 0,k+1 ) n n+1 -• • • -a 1 (-σ 0,k+1 ) 1 n+1 + b k = a 0 . (2.39) Defining r = (-σ 0,k+1 ) 1 n+1
, one can obtain p (r) = 0, where p (r) is the polynomial (2.36). It has only one positive root due to its structure with one sign change in the sequence coefficients. Hence, σ 0,k+1 = -(r 0 ) n+1 , where r 0 is the positive root of Equation (2.36)

. Since b k > -a 0 ξ k , for all ξ k ∈ [-1, 1], β (-a 0 ξ k ) = c for some c ∈ R -. Therefore, one obtains ξ k = {-1}. • Case 2: b k < -a 0
From Equations (2.30) and (2.38), one can conclude that σ 0,k+1 > 0. It yields

σ 0,k+1 + a n ( σ 0,k+1 ) n n+1 + • • • + a 1 ( σ 0,k+1 ) 1 n+1 + b k = a 0 .
(2.40)

As the previous case, one can demonstrate that ξ k = {1} and σ 0,k+1 = (r 0 ) n+1 where r 0 is the unique positive root of Equation (2.37).

• Case 3: b k ∈ [-a 0 , a 0 ]
From Equations (2.30) and (2.38), one can conclude that σ 0,k+1 = 0. Inclusion (2.30) yields

ξ k ∈ sign(β (-a 0 ξ k )).
(2.41)

If ξ k > -b k a 0 , Equation (2.41) becomes ξ k = {-1}. Hence, a contradiction ap- pears. Similarly, if ξ k < -b k
a 0 , a contradiction appears. Therefore, the pair 0, -b k a 0 is the unique solution. (2.37). Furthermore, for both polynomials, p(0) < 0. Therefore,
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k -a 0 ) 1 n+1 ) > 0 for polynomial (2.36) and p((-b k -a 0 ) 1 n+1 ) > 0 for
r 0 ∈ 0, (b k -a 0 ) 1 n+1 for b k > a 0 and r 0 ∈ 0, (-b k -a 0 ) 1 n+1 for b k < -a 0 .
It should be highlighted that r 0 is unique for these two cases. Therefore, σ 0,k+1 and ξ k always exist for all b k ∈ R and a 0 ̸ = 0. Additionally, the parameters a j can be calculated previous to implement the implicit differentiator, but b k has to be updated at the time instant t k .

The proposed implicit discrete-time realizations of the homogeneous differentiator are expressed as follows:

z k+1 = Φ (τ ) z k + B * (τ ) v ( σ 0,k+1 ) , v ( σ 0,k+1 ) = [Ψ 0,n ( σ 0,k+1 ) • • • Ψ n,n ( σ 0,k+1 )] T , Ψ i,n ( σ 0,k+1 ) = -λ n-i L i+1 n+1 | σ 0,k+1 | n-i n+1 ξ k .
(2.42) At time t k , the unique pair ( σ 0,k+1 , ξ k ) is computed according to Lemma 2.2. Furthermore, from Lemma 2.2, one can conclude that the proposed discrete-time differentiator (2.42) is non-anticipative. Since the discrete-time differentiator (2.42) uses ξ k instead of sign(•), v(•) is used instead of u(•) in the the discrete-time differentiator (2.42). The difference between the functions u( σ 0,k+1 ) and v( σ 0,k+1 ) comes from their evaluation at σ 0,k+1 = 0. Indeed, at σ 0,k+1 = 0, e n+1 u(

σ 0,k+1 ) ∈ [-λ 0 L, λ 0 L], whereas e n+1 v( σ 0,k+1 ) = -λ 0 Lb k a 0
. Although measurement noise is absent in Equation ( 2.21) and Lemma 2.2, in practice σ 0,k is not available. Hence, in practice, σ 0,k -∆ k is used instead of σ 0,k . This fact modifies the variable b k , the polynomials (2.36) and (2.37), and consequently, the behavior of σ 0,k+1 . The effect of the measurement noise on σ 0,k+1 is studied in the next subsection.

Implementation of HIDD

In this subsection, an implementation scheme of the algorithm of the proposed implicit discrete-time realization of the homogeneous differentiator (2.42) is presented:

Require: n ≥ 0, L, λ i , τ m ← 0 while (m ≤ n) do a m ← τ n-m+1 (n-m+1)! λ m L n-m+1 n+1 m ← m + 1 end while m ← 0 while (m ≤ n) do z m ← 0 ▷ The states z i are initialized. m ← m + 1 end while m ← 0 while (1) do f k ← f (mτ ) ▷ The measurement of f (t) is obtained.
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b k ← -(z 0 -f k ) -n l=1 τ l l! z l if (b k > a 0 ) then r ← b k -a 0 2 1/(n+1) j ← 0 while (j < 3) do ▷ Computation of the unique positive root. p ← r n+1 + a n r n + • • • + a 1 r + (-b k + a 0 ) dp ← (n + 1) r n + na n r n-1 + • • • + a 1 ddp ← n (n + 1) r n-1 + • • • + 2a 2 r ← r - 2p(dp) 2(dp) 2 -p(ddp) j ← j + 1 end while ξ k ← -1 end if if (b k < -a 0 ) then r ← -b k -a 0 2 1/(n+1) j ← 0 while (j < 3) do ▷ Computation of the unique positive root. p ← r n+1 + a n r n + • • • + a 1 r + (b k + a 0 ) dp ← (n + 1) r n + na n r n-1 + • • • + a 1 ddp ← n (n + 1) r n-1 + • • • + 2a 2 r ← r - 2p(dp) 2(dp) 2 -p(ddp) j ← j + 1 end while ξ k ← 1 end if if (b k > -a 0 ) and (b k < a 0 ) then r ← 0 ξ k ← -b k a 0 end if j ← 0 while (j ≤ n) do u j ← -λ n-j L j+1 n+1 r n-j ξ k j ← j + 1 end while j ← 0 while (j ≤ n) do ▷ The estimation at the time t = mτ are obtained z j,M = n l=j τ l-j (l-j)! z l,k + τ l-j+1 (l-j+1)! u l j ← j + 1 end while j ← 0 while (j ≤ n) do
▷ The states are updated for the next measurement. z j = z j,M j ← j + 1 end while
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The above algorithm allows to clarify how to implement the HIDD.

Stability analysis of the differentiator based on the standard differentiator

In this section the stability properties of the explicit and implicit discrete-time differentiators ((2.5) and (2.42)) are derived.

Stability analysis of the differentiator HEDD

First, the stability of the discrete-time differentiator HEDD (2.5) is studied. Based on the results obtained in [Livne & Levant 2014, Barbot et al. 2020, Levant & Livne 2016], one can obtain the following theorem:

Theorem 2.3.1
Let z k be generated with the explicit discrete-time differentiator (2.5). Under Assumptions 1.3.1-2.1.1, there exist constants µ i > 0, i = 0, 1, 2, • • • , n such that after a finite-time transient, the following inequalities are fulfilled:

|z i,k -x i,k | ≤ µ i Lρ n+1-i , ρ = max τ, δ L 1 n+1
, (2.43) where the coefficients µ i only depend on the differentiator parameters λ 0 , . . . , λ n .

It is important to mention that Theorem 2.3.1 is a particular case of Theorem 4 in [Barbot et al. 2020].

Proof Under Assumptions 1. 3.1, 1.3.2, 1.3.4, 2.1.1 and as ∆ k ∈ [-δ, δ], the error system (2.10) can be expressed as:

σ i,k+1 ∈ σ i,k + τ Ψ i,n (σ 0,k + [-δ, δ]) + n-i j=1 τ j j! σ j+i,k + . . . . . . + τ j+1 (j + 1)! Ψ j+i,n (σ 0,k + [-δ, δ]) + τ n-i+1 (n -i + 1)! [-L, L] , σ n,k+1 ∈ σ n,k + τ Ψ n,n (σ 0,k + [-δ, δ]) + τ [-L, L] ,
(2.44)
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with i = 0, 1, . . . , n -1. Using σi,k = σ i,k /L, the above inclusion can be rewritten as:

σi,k+1 ∈ σi,k + τ Ψ i,n σ0,k + -δ L , δ L L i+1 n+1 + . . . . . . + n-i j=1 τ j j! σj+i,k + τ j+1 (j + 1)! Ψ j+i,n σ0,k + -δ L , δ L L j+i+1 n+1 + τ n-i+1 (n -i + 1)! [-1, 1] , σn,k+1 ∈ σn,k + τ Ψ n,n σ0,k + -δ L , δ L L + τ [-1, 1] .
(2.45)

Define the piecewise linear continuous-time function

s (t) = [s 0 (t) s 1 (t) . . . s n (t)] T such that s (t) describes the solution of (2.45) (with s k = s (t k ) = σ (t k ))
and is defined as:

s(t) = s k + (t -t k )w k , w k ∈ G (s k , τ ) , (2.46) with G (s k , τ ) = [G 0 (s k , τ ) G 1 (s k , τ ) • • • G n (s k , τ )] T , and t ∈ [t k , t k+1 ) G i (s k , τ ) = Ψ i,n s 0,k + -δ L , δ L L i+1 n+1 + n-i j=1 τ j-1 j! s j+i,k + . . . . . . + τ j (j + 1)! Ψ j+i,n s 0,k + -δ L , δ L L j+i+1 n+1 + τ n-i (n -i + 1)! [-1, 1] , G n (s k , τ ) = Ψ n,n s 0,k + -δ L , δ L L + [-1, 1] .
Note that each solution of (2.45) satisfies (2.46) in the sense that for all t ∈ [t k , t k+1 ), there is a w k such that s (t k ) = σk for any k. Due to (2.46) and as s(t k ) presents a piecewise constant derivative, s(t k ) satisfies the following inclusion:

ṡi ∈ Ψ i,n s 0,k + -δ L , δ L L i+1 n+1 + n-i j=1 τ j-1 j! s j+i,k + . . . . . . + τ j (j + 1)! Ψ j+i,n s 0,k + -δ L , δ L L j+i+1 n+1 + τ n-i (n -i + 1)! [-1, 1] , ṡn ∈ Ψ n,n s 0,k + -δ L , δ L L + [-1, 1] .
(2.47)

Let the disturbance intensity ρ defined as ρ = max τ, (δ/L) 

ṡi ∈ Ψ i,n s 0 (t -ρ [0, 1]) + ρ n+1 [-1, 1] L i+1 n+1 + . . . . . . + s i+1 (t -ρ [0, 1]) + n-i j=2 ρ j-1 j! s j+i (t -ρ[0, 1]) [-1, 1] + . . . . . . + n-i j=1 ρ j (j + 1)! Ψ j+i,n s 0 (t -ρ [0, 1]) + ρ n+1 [-1, 1] L j+i+1 n+1 [-1, 1] . . . . . . + ρ n-i (n -i + 1)! [-1, 1] , ṡn ∈ Ψ n,n s 0 (t -ρ [0, 1]) + ρ n+1 [-1, 1] L + [-1, 1] .
(2.48)

In compact form, Equation (2.48) can be summarized as:

ṡ ∈ C (s(t -ρ[0, 1]), Γ(ρ, s(t -ρ[0, 1]))) , (2.49) where C has been defined in (1.68) and Γ (ρ, s(t)) = [Γ 0 (ρ, s(t)) Γ 1 (ρ, s(t)) • • • Γ n (ρ, s(t))] T is given as: Γ 0 (ρ, s(t)) =ρ n+1 [-1, 1] , Γ i (ρ, s(t)) = ρ n-i+1 (n -i + 2)! [-1, 1] + n-i+1 j=2 ρ j-1 j! s j+i-1 (t) [-1, 1] + . . . . . . + n-i+1 j=1 ρ j (j + 1)! Ψ j+i-1,n (s 0 (t)) L j+i n+1 [-1, 1] , Γ n (ρ, s(t)) = ρ 2! [-1, 1] + ρ 2! Ψ n,n (s 0 (t)) L [-1, 1] ,
(2.50)

for i = 1, • • • , n -1. Notice that Γ (0, s(t)) = {0}, which means that Γ (ρ, s(t)
) is vanishing with respect to ρ. Furthermore, the following equalities hold:

(λρ) n+1 [-1, 1] = λ n+1 ρ n+1 [-1, 1] , (λρ) n-i+1 (n -i + 2)! [-1, 1] = λ n-i+1 ρ n-i+1 (n -i + 2)! [-1, 1] , (λρ) j-1 j! λ n-i-j+2 s j+i-1 (t) [-1, 1] = λ n-i+1 ρ j-1 j! s j+i-1 (t) [-1, 1] , (λρ) j (j + 1)! Ψ j+i-1,n λ n+1 s 0 (t) L j+i n+1 [-1, 1] = λ n-i+1 ρ j (j + 1)! Ψ j+i-1,n (s 0 (t)) L j+i n+1 [-1, 1] .
(2.51)

Let ρ ≤ ρ, the inequality ρ n+1 ≤ ρ n+1 is obtained and therefore ρ n+1 [-1, 1] ⊂
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ρ n+1 [-1, 1].
In a similar way the following relations are obtained:

ρ n-i+1 (n -i + 2)! [-1, 1] ⊂ ρ n-i+1 (n -i + 2)! [-1, 1] , ρ j-1 j! s j+i-1 (t) [-1, 1] ⊂ ρ j-1 j! s j+i-1 (t) [-1, 1] , ρ j (j + 1)! Ψ j+i-1,n (s 0 (t)) L j+i n+1 [-1, 1] ⊂ ρ j (j + 1)! Ψ j+i-1,n (s 0 (t)) L j+i n+1 [-1, 1] . (2.

52)

As result of homogeneity property of Γ i (ρ, s), it is Hausdorff-continous (for more details see [Livne & Levant 2014]). To investigate the stability properties of the solutions of (2.49), one needs to study the properties of Γ (ρ, s (t)), which is considered as a disturbance. Using homogeneity properties and classical relations, it is straightforward to see that:

• Γ i (ρ, s (t)) is a set-valued function with non-empty compact values for s (t) ∈ R n+1 and ρ ≥ 0, for i = 0, 1, • • • , n.
• The disturbance satisfies the homogeneity condition, for all α, ρ ≥ 0, for all

s (t) ∈ R n+1 , Γ i (α -q ρ, Λ m (α) s (t)) =α n-i+1 Γ i (ρ, s (t)) with q = -1 and Γ i (0, s (t)) = {0}.
• Γ i (ρ, s (t)) monotonously increases with respect to parameter ρ in the sense that for any s (t) the inequality 0

≤ ρ ≤ ρ implies Γ (ρ, s (t)) ⊂ Γ ( ρ, s (t)).
• Γ i (ρ, s (t)) is Hausdorff-continuous in ρ, s (t) at the points with ρ = 0. , i.e., for any e i > 0 there exists ρ such that if 0 ≤ ρ ≤ ρ, ||s (t) || ≤ r then the Hausdorff distance of the set from the origin satisfies d Hs (Γ i (ρ, s (t)), {0}) ≤ e i .

From inclusion (2.49), one can easily deduce the following properties:

• The set field C (s, Γ(ρ, s)) ⊂ R n+1 is a non-empty compact convex set valued function, upper-semicontinuous at all point (s, 0), s ∈ R n+1 , 0 ∈ R n+1 .
• The undisturbed inclusion ṡ ∈ C (s, 0) is finite-time stable and homogeneous of degree q = -1. The corresponding homogeneity dilation Λ m (α): (s 0 , . . . ,

s n ) → (α m 0 s 0 , . . . , α mn s n ) defines the weights m 0 , m 1 , . . . , m n-1 , m n > 0 with m i ≥ 1. • C (s, Γ (ρ, s (t))) is homogeneous with respect to the transformation (t, s, Γ (ρ, s (t))) → (α -q t, Λ m (α) s, Λ m (α) Γ (ρ, s (t))) since C (s, Γ (ρ, s (t))) = α -q Λ -1 m (α) C (Λ m (α) s, Λ m (α) Γ (ρ, s (t))
). Since the first sampling time is performed at t 0 = 0, the dynamics of (2.49) is not affected by the state values for t < 0. Under the above properties and Theorem 1.2.4, one can deduce that after a finite-time transient, all indefinitely extendable solutions of the perturbed differential inclusion (2.49) enter and remain inside the region

|s i (t)| ≤ µ i ρ m i with µ i > 0 and ρ = max τ, δ L 1 n+1
. This concludes the proof.

From Theorem 2.3.1, one can see that the HEDD preserves the asymptotic accuracy of its continuous-time counterpart.
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Stability Analysis for HIDD

Before analyzing the stability properties of the proposed implicit discrete-time differentiator (2.42), an implicit discrete-time error system is derived. ε i,k is defined as

ε i,k = z i,k+1 -x i,k , for i = 0, 1, 2, • • • , n.
These variables allow to demonstrate the convergence of z i,k+1 to a vicinity of x i,k . If there is no estimation error on σ 0,k+1 and no noise, one can obtain:

ε 0,k = σ 0,k + τ z 1,k + τ 2 2! z 2,k + • • • + τ n n! z n,k + τ Ψ 0,n ( σ 0,k+1 ) + . . . . . . + τ 2 2! Ψ 1,n ( σ 0,k+1 ) + • • • + τ n+1 (n + 1)! Ψ n,n ( σ 0,k+1 ) .
(2.53)

Comparing Equations ( 2.21) and ( 2.53), one can deduce that σ 0,k+1 = ε 0,k . To obtain the properties of HIDD for a noisy input,

b N k is defined as b N k = b k + ∆ k , σ N 0,k+1 as: σ N 0,k+1 = σ 0,k -∆ k + τ Ψ 0,n σ N 0,k+1 + n l=1 τ l l! z l,k + τ l + 1 Ψ l,n σ N 0,k+1 , (2.54) and ξ N k ∈ sign( σ N 0,k+1 ). b N k , σ N 0,k+1
and ξ N k are the counterpart of b k , σ 0,k+1 and ξ k for a noisy input and without an estimation error of r 0 . As there is no analytical equation for the roots, an interpolation method is used to estimate r 0 and an estimation error of r 0 could be present. Following a similar process applied to obtain Lemma 2.2, σ N 0,k+1 and ξ N k are computed as:

• If b N k > a 0 , then ξ N k = {-1} and σ N 0,k+1 = -r N 0 n+1
∈ R -, where r N 0 is the unique positive root of the following polynomial:

q (r) = r n+1 + a n r n + • • • + a 1 r + -b N k + a 0 . (2.55) • If b N k ∈ [-a 0 , a 0 ], then σ N 0,k+1 = 0 and ξ N k = - b N k a 0 . • If b N k < -a 0 , then ξ N k = {1} and σ N 0,k+1 = r N 0 n+1 ∈ R +
, where r N 0 is the unique positive root of the following polynomial: 

q (r) = r n+1 + a n r n + • • • + a 1 r + b N k + a 0 . ( 2 
-∆ k ) 1 n+1 and (-σ 0,k + ∆ k ) 1 n+1
, respectively. In contrast, for the polynomials (2.36) and (2.37), its roots tend to (σ 0,k )

1 n+1
and (-σ 0,k ) 1 n+1 , therefore σ 0,k+1 tends to σ 0,k . As there is no analytical expression for the roots r 0 , in practice, they are estimated with an interpolation method. Therefore, the estimation of σ N 0,k+1 is estimated as follows:

ˆ σ N 0,k+1 =      -(r N 0 ) n+1 if b N k > a 0 0 if b N k ∈ [-a 0 , a 0 ] (r N 0 ) n+1 if b N k < -a 0 , ( 2 
.57)
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where rN 0 is the estimation of r N 0 . In a noise case and with an estimation error of r N 0 , ˆ σ N 0,k+1 and ξ N k are implemented in the implicit discrete-time realization (2.42) instead of σ 0,k+1 and ξ k . Under these conditions, ε 0,k becomes:

ε 0,k = σ 0,k -∆ k + τ Ψ 0,n ˆ σ N 0,k+1 + n l=1 τ l l! z l,k + τ l + 1 Ψ l,n ˆ σ N 0,k+1 . 
(2.58)

To determine the effect of the estimation error of r 0 and the measurement noise over the behavior of ε i,k , the variable θ k is introduced as

θ k = ε 0,k -ˆ σ N 0,k+1
, or equivalently as: 

θ k = E 1,k + E 2,k , ( 2 
E 1,k = σ N 0,k+1 -ˆ σ N 0,k+1 , E 2,k = ε 0,k -σ N 0,k+1 , E 3,k = r N 0 -rN 0 .
(2.60) for b N k < -a 0 , then rN 0 > 0 and E 3,k is bounded with

E 3,
|E 3,k | ≤ b N k -a 0 1/(n+1) or |E 3,k | ≤ -b N k -a 0 1/(n+1)
, respectively. E 1,k represents the estimation error of the variable σ N 0,k+1 and it can be represented as:

E 1,k =      -(r N 0 ) n+1 + (r N 0 -E 3,k ) n+1 if b N k > a 0 0 if b N k ∈ [-a 0 , a 0 ] (r N 0 ) n+1 -(r N 0 -E 3,k ) n+1 if b N k < -a 0 , ( 2.61) 
whereas E 2,k corresponds to the difference between ε 0,k and σ N 0,k+1 and it is given as:

E 2,k = ∆ k + n l=0 - τ l+1 (l + 1)! λ n-l L l+1 n+1 ˆ σ N 0,k+1 n-l n+1 -σ N 0,k+1 n-l n+1 , (2.62)
Note that the effect of E 3,k over E 2,k is attenuated by τ . Hence, due to the presence of measurement noise and numerical errors in the root-finding method, the following assumption is considered.

Assumption 2.3.1 rN

0 > 0 and θ(t) is a bounded noise with |θ(t)| ≤ κ for all t ≥ 0 and with an unknown real number κ > 0.
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As rN

0 > 0, one can deduce that

|E 1,k | ≤ |E 3,k | e n 1 (r N 0 ) n + • • • + e n n (E 3,k ) n-1 (r N 0 ) + (E 3,k ) n , |E 2,k | ≤ |∆ k | + τ n n! λ 1 L n n+1 |E 3,k | + . . . . . . + n-2 l=0 τ l+1 (l + 1)! λ n-l L l+1 n+1 |E 3,k | e n-l-1 1 (r N 0 ) n-l-1 + . . . . . . + • • • + e n-l-1 n-l-1 (E 3,k ) n-l-2 (r N 0 ) + (E 3,k ) n-l-1 , (2.63)
where the constants e n j are the coefficients of the well-known Pascal's triangle with a respective change of sign, i.e., e n j = (-1)

j (n+1)! j!(n-j+1)! . In equation (2.63), r N 0 = 0 for b N k ∈ [-a 0 , a 0 ]. Remark 2.3.1 Clearly, if E 3,k = 0 for all t ≥ 0, then E 1,k = 0, E 2,k = θ k = ∆ k and Assumption 2.3.1 is fulfilled. The above is satisfied if b k ∈ [-a 0 , a 0 ] for all t ≥ 0. Due to Equation (2.60), there is not a κ > 0 such that the Assumption 2.3.1 is satisfied for all τ > 0, δ > 0, z 1,k , z 2,k , . . . , z n,k , σ 0,k , E 3,k ∈ R.
However, from the continuity of the right-hand side of (2.63) with respect to E 3,k , one can deduce the following fact. For any r 0 and κ ≥ δ, there is a maximum tolerable error

M E 3,k ≥ 0 such that |θ k | ≤ κ if |E 3,k | ≤ M E 3,k . It justifies Assumption 2.3.1. Under Assumption 2.3.1, ξ N k ∈ sign( ˆ σ N 0,k+1
). It comes from the fact that rN 0 > 0 and therefore the sign of σ N k+1 depends on b N k and a 0 , in the same way that σ N 0,k+1 . As ˆ σ N 0,k+1 is implemented instead of σ 0,k+1 , v ( σ 0,k+1 ) in the discrete-time system (2.42) becomes v ˆ σ N 0,k+1 , where v(•) is defined in Equation (2.42). Due to Equations (2.59) and (2.60), and the discrete-time systems (2.1) and (2.42), σ k+1 is expressed as:

σ k+1 = Φ (τ ) σ k + B * (τ ) v (ε 0,k -θ k ) -h k (τ ) .
(2.64)

Defining ε = [ε 0,k ε 1,k . . . ε n,k ]
T the following equations are obtained:

ε k = (Φ (τ ) -I)z k + B * (τ ) v (ε 0,k -θ k ) + σ k , ε k = Φ (τ ) σ k + B * (τ ) v (ε 0,k -θ k ) + (Φ (τ ) -I) x k .
(2.65)

The above equations can be rewritten as:

ε k+1 = (Φ (τ ) -I)z k+1 + B * (τ ) v (ε 0,k+1 -θ k+1 ) + σ k+1 , ε k -(Φ (τ ) -I) x k = Φ (τ ) σ k + B * (τ ) v (ε 0,k -θ k ) .
(2.66) Equations ( 2.64) and (2.66) yield:

ε k+1 = (Φ (τ ) -I)z k+1 + B * (τ ) v (ε 0,k+1 -θ k+1 ) + Φ (τ ) σ k + . . . . . . + B * (τ ) v (ε 0,k -θ k ) -h k (τ ) , = (Φ (τ ) -I)z k+1 + B * (τ ) v (ε 0,k+1 -θ k+1 ) + ε k -. . . . . . -(Φ (τ ) -I) x k -h k (τ ) , = (Φ (τ ) -I)ε k + B * (τ ) v (ε 0,k+1 -θ k+1 ) + ε k -h k (τ ) , = Φ (τ ) ε k + B * (τ ) v (ε 0,k+1 -θ k+1 ) -h k (τ ) .
(2.67)
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Therefore, under Assumptions 1. 3.1, 1.3.2, 1.3.4, 2.1.1 and 2.3.1, the error system using the proposed implicit discrete-time differentiator (2.42) is represented as:

ε k+1 = Φ (τ ) ε k + B * (τ ) v (ε 0,k+1 -θ k+1 ) -h k (τ ) , v (ε 0,k+1 -θ k+1 ) = [Ψ 0,n (ε 0,k+1 -θ k+1 ) • • • Ψ n,n (ε 0,k+1 -θ k+1 )] T , Ψ i,n (ε 0,k+1 -θ k+1 ) = -λ n-i L i+1 n+1 |ε 0,k+1 -θ k+1 | n-i n+1 ξ N k+1 , ξ N k+1 ∈ sign(ε 0,k+1 -θ k+1 ).
(2.68) This form will be useful to study the stability properties under the discrete-time differentiator (2.42). Note that θ k+1 is considered as the measurement noise for the discretetime error system (2.68). Similarly to (2.10), as θ k+1 ∈ [-κ, κ] and f

(n+1) 0 (t) ∈ [-L, L],
the estimation error dynamics can be expressed as the following inclusion:

ε k+1 ∈Φ (τ ) ε k + B * (τ ) v (ε 0,k+1 + [-κ, κ]) + . . . . . . + τ n+1 (n + 1)! [-L, L] τ n n! [-L, L] • • • τ [-L, L] T .
(2.69)

Lemma 2. 3 The system (2.69) is homogeneous with respect to the transformation

(τ, κ, ε 0 , . . . , ε n ) → ατ, α n+1 κ, α n+1 ε 0 , . . . , αε n , for all α ∈ R + .
Proof The proof is omitted since it is similar to that of Lemma 2.1. It is important to mention that system (2.69) describes the behavior of σ N 0,k+1 , which matches with the results presented in Lemma 2.2. Indeed, from the system (2.69), one obtains

ε 0,k+1 = -h 0,k + n l=0 τ l l! ε l,k + τ l+1 (l + 1)! Ψ l,n (ε 0,k+1 -θ k+1 ) . (2.70)
Subtracting E 2,k+1 the following equations are obtained:

ε 0,k+1 -E 2,k+1 = -E 2,k+1 -h 0,k + n l=0 τ l l! ε l,k + τ l+1 (l + 1)! Ψ l,n ˆ σ N 0,k+2 , σ N 0,k+2 = -∆ k+1 -h 0,k + n l=0 τ l l! ε l,k + τ l+1 (l + 1)! Ψ l,n σ N 0,k+2 .
(2.71)

Let bN k+1 = ∆ k+1 +h 0,k -n l=0 τ l l! ε l,k . Taking into account that ε l,k = z l,k+1 -x l,k , then bN
k+1 can be expressed as:

bN k+1 = ∆ k+1 + h 0,k + n l=0 τ l l! x l,k - n l=0 τ l l! z l,k+1 = ∆ k+1 -σ 0,k+1 - n l=1 τ l l! z l,k+1 = b N k+1 .
(2.72)
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Then, σ N 0,k+2 can be expressed as:

σ N 0,k+2 = -b N k+1 + n l=0 τ l+1 (l + 1)! Ψ l,n σ N 0,k+2 . (2.73) Under Assumption 2.3.1, ξ N k+1 ∈ sign( σ N 0,k+2
). Similar to Lemma 2.2, one obtains that the behavior of σ N 0,k+2 and ξ N k+1 are given as:

• If b N k+1 > a 0 , then ξ N k+1 = {-1} and σ N 0,k+2 = -r N 0 n+1
∈ R -, where r N 0 is the unique positive root of the following polynomial:

q (r) = r n+1 + a n r n + • • • + a 1 r + -b N k+1 + a 0 . (2.74) • If b N k+1 ∈ [-a 0 , a 0 ], then σ N 0,k+2 = 0 and ξ N k+1 = - b N k+1 a 0 . • If b N k+1 < -a 0 , then ξ N k+1 = {1} and σ N 0,k+2 = r N 0 n+1 ∈ R +
, where r N 0 is the unique positive root of the following polynomial:

q (r) = r n+1 + a n r n + • • • + a 1 r + b N k+1 + a 0 . (2.75)
Now, the following theorem will establish the stability properties of the implicit discrete-time differentiator.

Theorem 2.3.2

Let z k be generated with the implicit discrete-time differentiator (2.42) and the parameters λ 0 , . . . , λ n be such that the inclusion (1.68) is finite-time stable. Under Assumptions 1. 3.1, 1.3.2, 1.3.4, 2.1.1 and 2.3.1, there exist constants µ i > 0, i = 0, 1, 2, • • • , n such that after a finite-time transient, the following inequalities are fulfilled:

|z i,k+1 -x i,k | ≤ µ i Lρ n+1-i , ρ = max τ, κ L 1 n+1 , (2.76)
where the coefficients µ i only depend on the differentiator parameters λ 0 , . . . , λ n .

Proof Using HIDD, the estimation error dynamics can be obtained from Equation (2.68):

ε i,k+1 ∈ ε i,k + τ Ψ i,n (ε 0,k + [-κ, κ]) + τ n-i+1 (n -i + 1)! [-L, L] + . . . . . . + n-i j=1 τ j j! ε j+i,k + τ j+1 (j + 1)! Ψ j+i,n (ε 0,k+1 + [-κ, κ]) , ε n,k+1 ∈ ε n,k + τ Ψ n,n (ε 0,k+1 + [-κ, κ]) + τ [-L, L] ,
(2.77)
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with i = 0, 1, . . . , n. By defining εi,k = ε i,k /L, the inclusion (2.77) can be rewritten as:

εi,k+1 ∈ εi,k + τ Ψ i,n ε0,k+1 + -κ L , κ L L i+1 n+1 + τ n-i+1 (n -i + 1)! [-1, 1] + . . . . . . + n-i j=1 τ j j! εj+i,k + τ j+1 (j + 1)! Ψ j+i,n ε0,k+1 + -κ L , κ L L j+i+1 n+1 , εn,k+1 ∈ εn,k + τ Ψ n,n ε0,k+1 + -κ L , κ L L + τ [-1, 1] .
(2.78)

As in the proof of Theorem 2.3.1, the piecewise linear continuous function

s (t) = [s 0 (t) s 1 (t) • • • s n (t)]
T is defined such that s (t) describes the solution of (2.78) (with

s k = s (t k ) = ε (t k )), i.e., s(t) = s k + (t -t k )w k , w k ∈ G (s 0,k+1 , s k , τ ) , (2.79) with G (s 0,k+1 , s k , τ ) = [G 0 (s 0,k+1 , s k , τ ) G 1 (s 0,k+1 , s k , τ ) • • • G n (s 0,k+1 , s k , τ )] T , and t ∈ [t k , t k+1 ) G i (s 0,k+1 , s k , τ ) = Ψ i,n s 0,k+1 + -κ L , κ L L i+1 n+1 + τ n-i (n -i + 1)! [-1, 1] . . . . . . + n-i j=1 τ j-1 j! s j+i,k + τ j (j + 1)! Ψ j+i,n s 0,k+1 + -κ L , κ L L j+i+1 n+1 , G n (s 0,k+1 , s k , τ ) = Ψ n,n s 0,k+1 + -κ L , κ L L + [-1, 1] .
Let the disturbance intensity ρ be defined as ρ = max τ, (κ/L) 1 n+1 , then any solution of (2.79) almost everywhere satisfies the differential inclusion (2.49). Hence, one can apply similar arguments as the proof of Theorem 2.3.1 to conclude the proof.

From Theorem 2.3.2, one can see that the HIDD preserves the asymptotic accuracy as its continuous-time counterpart, if E 3,k = 0. It becomes optimal for τ = 0 and

E 3,k = 0. From the definition of b N k , θ k and Equation (2.58): b N k = -ε 0,k + n l=0 τ l+1 (l + 1)! Ψ l,n (ε 0,k -θ k ) . (2.80)
Note that the right-hand side of the following inclusion is homogeneous with respect to the transformation (τ, κ, ε 0 , . (2.82) and both sides of inclusion (2.82) are homogeneous with respect to the transformation (τ, ε 0 , . . . , ε n ) → ατ, α n+1 ε 0 , . . . , αε n , for all α ∈ R + . (t)| ≤ L, then a better accuracy can be obtained using a differentiator of order m (instead of n) for both HEDD and HIDD, i.e., |z 

. . , ε n ) → ατ, α n+1 κ, α n+1 ε 0 , . . . , αε n , for all α ∈ R + . b N k ∈ -ε 0,k + n l=0 τ l+1 (l + 1)! Ψ l,n (ε 0,k + [-κ, κ]) . ( 2 
ε 0,k + a n ⌊ε 0,k ⌉ n n+1 + a n-1 ⌊ε 0,k ⌉ n-1 n+1 + • • • + a 1 ⌊ε 0,k ⌉ 1 n+1 + b k ∈ -a 0 sign(ε 0,k ),
i,k -x i,k | ≤ µ i Lρ m+1-i (|z i,k+1 -x i,k | ≤ µ i Lρ m+1-i ).

Toward an efficient implementation of the implicit differentiator

Recall that there is no analytical expression for the roots of polynomials of high degree and since the implicit differentiator requires to calculate the roots of a polynomial, an adequate root finding method is needed. After selecting an adequate root finding method in Subsection 2.4.1, methods to reduce time complexity of HIDD are studied in Subsection 2.4.2.

Interpolation methods

As it is mentioned previously, since there is no analytical expression for the roots of polynomials of high degree, a root-finding method is needed to implement the implicit differentiator. Here, the following interpolation methods are considered: the modified Newton-Raphson method [McDougall & Wotherspoon 2014], the Euler's method [Melman 1997] and the Halley's method [Scavo & Thoo 1995]. It is important to mention that the secant method was avoided because it can diverge. The above depends on the initial condition used. Hereafter, the order of convergence is used to compare the convergence rate of the interpolation methods [Varona 2002, Weerakoon & Fernando 2000], as described in the following definition.

Definition 2.1 [Weerakoon & Fernando 2000] Let r 0 ∈ R the root of a polynomial, r 0,j ∈ R the estimation of r 0 at iteration j, j = 0, 1, 2,

• • • . A sequence {r 0,j } is said to converge to r 0 if lim j→∞ |r 0,j -r 0 | = 0.
(2.83)
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If, in addition, there exist a constant c ≥ 0, an integer j 0 ≥ 0 and d ≥ 0 such that for all j > j 0

|r 0,j+1 -r 0 | ≤ c |r 0,j -r 0 | d , (2.84)
then {r 0,j } is said to converge to r 0 with q-order at least d. If d = 2 or 3, the convergence is said to be q-quadratic or q-cubic, respectively.

The modified Newton-Raphson method is an iteration function with an order of convergence 1+ √ 2, which uses the same number of derivatives and function evaluations as the Newton-Raphson method (with an order of convergence 2). Since the Euler's method needs the calculation of a square root at each iteration, and Halley's method presents an order of convergence 3, Euler's method is not implemented. The modified Newton-Raphson and Halley's methods were experimentally tested to find the positive root of the polynomial (2.37). Here, the following parameters are considered τ = 0.1,

n = 3, λ 0 = 1.1, λ 1 = 3.06, λ 2 = 4.16, λ 3 = 3, L = 2, b k = -a 0 -0.1 and an initial condition r 0,0 = -(a 0 + b k )/2.
The modified Halley's method reaches an absolute error estimate less than 1.111 × 10 -16 after 6 iterations, while this accuracy is obtained with the modified Newton-Raphson method after 16 iterations, as shown in Figures 2.2-2.3. It can be seen a significant increase in the estimation error when j = 1. To avoid the above behavior for the Halley's method, the following lemma is used. Lemma 2.4 [Melman 1997] Let d 3 p(r) dr 3 be continuous, dp(r) dr ̸ = 0, and

d 2 (η dp(r) dr ) -1/2 dr 2
≥ 0 on an interval J containing the root r 0 of p(r) with η = sign( dp(r) dr ). Then, the Halley's method [Scavo & Thoo 1995] converges monotonically to r 0 from any point in J using the following formula: the condition

r 0,j+1 = r 0,j - 2 dp(r) dr | r=r 0,j p(r 0,j ) 2( dp(r) dr | r=r 0,j ) 2 -d 2 p(r) dr 2 | r=r 0,j p(r 0,j ) (2.
d 2 (η dp(r) dr ) -1/2 dr 2 ≥ 0 is equivalent to:   3 2 
d 2 p(r) dr 2 2 - dp(r) dr d 3 p(r) dr 3   ≥ 0. (2.86)
For n < 8, the above condition is invariant with respect to τ and L for polynomials (2.36) and (2.37). For the parameter λ i given in [START_REF] Levant | Filtering Differentiators and Observers[END_REF]], condition (2.86) is fulfilled. Furthermore, for simple roots, the Halley's method is a third-order method [Scavo & Thoo 1995, McNamee & Pan 2013], which implies that:

|r 0,j+1 -r 0 | ≤ c |r 0,j -r 0 | 3 , (2.87)
with an error constant given as follows:

c = 3 d 2 p(r) dr 2 | r=r 0 2 -2 dp(r) dr | r=r 0 d 3 p(r) dr 3 | r=r 0 12 dp(r) dr | r=r 0 2 .
(2.88)

Methodologies to reduce the time complexity

Here, we analyse the time complexity of the implicit differentiator in order to find an efficient way for its implementation, the results in this subsection were published in [Carvajal-Rubio et al. 2021b]. In specific, in this subsection the time complexity of HIDD will be reduced. First, the variables ϕ i and b * i,j are defined as:

ϕ i = τ i-1 (i -1)! , b * i,j = τ j+1-i (j + 1 -i)! λ n-j+1 L j n+1 ,
(2.89)

for i = 1, 2, • • • , n + 1 and j = i, i + 1, i + 2, • • • , n + 1.
It allows to rewrite (2.42) as follows:
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• If b k > a 0 , z i,k+1 = z i,k + b * i+1,i+1 r n-i 0 + . . . . . . + n j=i+1 ϕ j-i+1 z j,k + b * i+1,j+1 r n-j 0 , i = 0, 1, • • • , n.
(2.90)

• If b k ∈ [-a 0 , a 0 ], z 0,k+1 = z 0,k + b k + n j=1 ϕ j+1 z j,k , z i,k+1 = z i,k + b * i+1,n+1 b k a 0 + n j=i+1 ϕ j-i+1 z j,k , i = 1, 2, • • • , n.
(2.91)

• If b k < -a 0 , z i,k+1 = z i,k -b * i+1,i+1 r n-i 0 + . . . . . . + n j=i+1 ϕ j-i+1 z j,k -b * i+1,j+1 r n-j 0 , i = 0, 1, • • • , n.
(2.92)

Direct Evaluation

The number of additions and subtractions, N A1 , and the number of multiplications and divisions, N M 1 , needed to evaluate z 0,k+1 , z 1,k+1 , z 0,k+1 and z n,k+1 directly, after obtaining r 0 , are as follows:

N A1 (n) = (n + 1) 2 , N M 1 (n) = n 3 6 + n 2 - 1 6 n -1.
(2.93)

Therefore, taking into account the (n + 1) assignments of the states z i,k+1 , the time complexity is given as:

T 1 (n) = n 3 6 + 2n 2 + 17 6 n + 1, (2.94)
which is a cubic time. On the other hand, the Halley's method is used recursively at each iteration. To evaluate the derivatives, one could store the following variables to reduce the number of operations,

c n+1 = n + 1, c i = ia i , for i = 1, 2, • • • , n, d n+1 = n(n + 1), d i = i(i -1)a i , for i = 2, 3, • • • , n.
(2.95)
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Furthermore, j is defined as the number of iterations used to estimate r 0 . Then the number of additions, subtractions, multiplications and divisions used to evaluate the polynomials and its derivatives are given as:

N A2 (n) = j (3n + 1) , N M 2 (n) = j 3 2 n 2 + 3 2 n .
(2.96)

In the following, we consider that j = 3. Therefore, taking into account the value assignments, the evaluation of (2.85) yields to the time complexity

T 2 (n) = 9 2 n 2 + 27 2 n + 46. (2.97)
where one of the operations is a (n + 1)-th root and a for-loop is considered. Hence, the complexity of the algorithm is cubic and is defined as:

T (n) = n 3 6 + 13 2 n 2 + 110 6 n + 48. (2.98)
where the multiplications and subtraction needed to evaluate b k are taken into account.

It is important to note that time complexity (2.98) is defined for b k / ∈ [-a 0 , a 0 ].

Horner Method

Although the use of variables ϕ i , b * i,j , c i , d i reduces the number of basic operations, it does not reduce the time complexity of the discrete-time realization (2.42) with respect to n. Based on the Horner's method, one could calculate z i,k+1 as follows:

• If b k > a 0 z i,k+1 = z i,k + n j=i+1 ϕ j-i+1 z j,k + . . . . . . + (• • • (( b * i+1,i+1 )r 0 + b * i+1,i+2 ) • • • )r 0 + b * i+1,n+1 . i = 0, 1, • • • , n. (2.99) • If b k < -a 0 z i,k+1 = z i,k + n j=i+1 ϕ j-i+1 z j,k -. . . . . . -(• • • (( b * i+1,i+1 )r 0 + b * i+1,i+2 ) • • • )r 0 -b * i+1,n+1 . i = 0, 1, • • • , n.
(2.100) This methodology presents the following number of basic operations:

N A3 (n) = (n + 1) 2 , N M 3 (n) = n(n + 1).
(2.101)
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As Φ(τ ) and B(τ ) are Toeplitz matrices [START_REF] Bai | [END_REF]], the time complexity to evaluate z i,k+1 could be reduce to a linearithmic one (n log n) using the discrete Fourier transform. This alternative could be analyzed in the future. To evaluate the polynomials and its derivatives, n is considered greater than one. In the following, two methodologies based on Horner's method are analyzed. The first one is based on the evaluation of the polynomials and its derivatives as follows:

p (r) = (• • • ((r + a n )r + a n-1 ) • • • )r + a 0 ± b k , dp(r) dr = (• • • ((c n+1 r + c n )r + c n-1 ) • • • )r + c 1 , d 2 p(r) dr 2 = (• • • ((d n+1 r + d n )r + d n-1 ) • • • )r + d 2 .
(2.102)

The methodology (2.102) needs the following number of basic operations:

N A4 (n) = j (3n + 1) , N M 4 (n) = j (3n -1) . (2.103)
Similar to (2.97), one obtains:

T 4 (n) = 18n + 43. (2.104)
However, one could take advantage of the evaluation of p(r) to evaluate dp(r) dr and d 2 p(r) dr 2

with the following methodology for n ≥ 2:

F i+1 = rF i + a n-i-1 , dF i+1 = rdF i + F i+1 , ddF i+1 = rddF i + dF i+1 ,
(2.105)

for i = 0, • • • , n -3, with F 0 = r + a n , dF 0 = r + F 0 , ddF 0 = r + dF 0 .
Using these variables, one gets:

F n-1 = rF n-2 + a 1 , p(r) = rF n-1 + a 0 ± b k , dp(r) dr = rdF n-2 + F n-1 , d 2 p(r) dr 2 = 2ddF n-2 .
(2.106)

It increases the number of assignments and additions but reduces the number of multiplications. Therefore, one obtains the following time complexity: 

T 5 (n) = 36n + 55. ( 2 

Shaw-Traub Algorithm

Similar to the methodology (2.106), an algorithm was proposed in [Shaw & Traub 1974] to compute the normalized derivatives,

1 i! d i p(r)
dr i . Note that the Horner's method is a special case of this algorithm. It allows to reduce the number of multiplications while increasing the number of divisions, assignments and additions. In the following, a modified algorithm which relies on the Shaw-Traub algorithm is described:

t 1 = r, t i = t i-1 r, for i = 2, 3, • • • , n; T -1 i = a n-i t n-i , for i = 0, 1, • • • , n -1; T -1 n = a 0 ± b k , T 0 0 = t n r, T 1 1 = T 0 0 , T 2 2 = T 0 0 ; T j i = T j-1 i-1 + T j i-1 , for j = 0, 1, 2; i = j + 1, • • • , n + 1; p(r) = T 0 n+1 , dp(r) dr = T 1 n+1 t 1 , d 2 p(r) dr 2 = 2 T 2 n+1 t 2 .
(2.110)

Since T 0 0 = T 1 1 = T 2 2
, two assignments could be avoided if T 0 0 is used instead of T 1 1 and T 2 2 . Then, algorithm (2.110) presents a linear time complexity given as:

T 6 (n) = 30n + 70. (2.111)
Applying the algorithms (2.99), (2.100) and (2.110), HIDD presents a quadratic time complexity, given as:

T (n) = 2n 2 + 36n + 74.
(2.112)

It is important to mention that in [Shaw & Traub 1975], the best parameters for the family of algorithms presented in [Shaw & Traub 1974] were founded. Then, the time complexity (2.112) could be reduced tuning its parameters but not its order. As the Halley's method does not use higher-order derivatives, we do not consider the algorithm presented in [START_REF] Jong | An improved bound on the number of multiplications and divisions necessary to evaluate a polynomial and all its derivatives[END_REF], which improves the algorithm proposed in [Shaw & Traub 1974] for the n + 1 normalized derivatives.

Simulation results using the interpolation methods in terms of complexity

In this subsection, we only focus on the complexity analysis for the proposed algorithms. Hereafter, two numerical studies are presented. The first one corresponds to a comparison of the number of required basic operations for each algorithm. 

Simulation 1

The time complexity of the different methodologies are evaluated for 2 ≤ n ≤ 30. The results are presented in Figure 2.4. One can see that the algorithm with less basic operations is the half-Horner algorithm. Furthermore , the Shaw-Traub and full-Horner algorithms have less basic operations than the direct evaluation for n > 4. It is important to highlight the huge difference between the direct evaluation and the other algorithms for a large value of n.

Simulation 2

Now, the time complexity of the algorithms are compared. Furthermore, an algorithm which does not use the parameters defined in Equations (2.89) and (2.95) is simulated. It is similar as the direct evaluation without the parameters ϕ i , b * i,j , c i and d i . In the following, n = 3, n = 7 and n = 10 are considered. The noisy signal and the constants defined in (2.89) and (2.95) are computed offline. The sampling time is selected as τ = 0.001 sec and the simulated time is selected as t = 2000, 10000, 25000, 50000 sec. Simulations are performed using MATLAB, with a computer processing unit Intel Core i7-9750H and RAM memory of 8GB. The results are presented in Tables 2.1-2.3. The most efficient methods with respect to the computing time are the half-Horner and full-Horner algorithms. They both present a similar performance for n = 3, n = 7 and n = 10. They reduce the computing time more than 25 times for n = 10 as seen in Table 2.3. For n = 3, the direct evaluation has a better performance than the Shaw-Traub algorithm whereas for n = 10, the Shaw-Traub algorithm reduces the computing time compared to the direct evaluation. The above facts match with the computed time complexity. From the above results, the Half-Horner method is used in the next subsection.
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Comparative simulation results between the proposed discrete-time differentiators and existing ones

This section aims to show a comparison study between the proposed HEDD, HIDD, and other existing discrete-time differentiators. The first one is the HDD, given in eq. (1.81), which preserves the asymptotic accuracy. The second one is the GHDD,

Comparative simulation results

given in eq. (1.87), which also preserves the asymptotic accuracy. The last one is the Matching differentiator, given in eq. (1.84), which uses a nonlinear eigenvalue placement. Although it preserves the asymptotic accuracy for the noise-free case and is insensitive to an overestimation of L, a convergence proof has not been investigated in the presence of noise.

In the following simulations, σ i,k is used for HEDD, HDD, GHDD, and Matching, whereas ε i,k is used for HIDD because for the first differentiators z k gives an estimate of x k whereas for HIDD z i,k+1 gives an estimate of x i,k . To compare these differentiators, indexes Y i and y i are proposed, i.e., the maximum absolute error (MAE)

Y i = max {|σ i,k | ∈ R|t min ≤ t k ≤ t max } , Y i = max {|ε i,k | ∈ R|t min ≤ t k ≤ t max } , (2.113)
while y i is the root mean square error (RMSE), which is given as: .114) or for HIDD .115) where τ k max = t max and τ k min = 10 sec.

y i = kmax l=k min (σ i,l ) 2 k max -k min + 1 , ( 2 
y i = kmax l=k min (ε i,l ) 2 k max -k min + 1 , ( 2 
From the results presented in Subsection 2.4.1, the Halley's method [Scavo & Thoo 1995] is used as an iteration function to implement the HIDD. Furthermore, r 0,k is calculated recursively using only 3 iterations, with initial conditions r 0,0 = ((b k -a 0 )/2) 1/(n+1) and r 0,0 = ((-b k -a 0 )/2) 1/(n+1) for Cases 1 and 3, respectively.

Simulation I: Noise-free case

This simulation shows the performance of the five previously mentioned differentiators in a noise-free case with a constant sampling time τ = 0.1 sec. The noise-free signal is f 0 (t) = sin (t) -cos (0.5t) for t ∈ [0 sec, 80 sec]. Here and in the following simulations, the functions f (i) 0 (t) are calculated analytically. For the differentiator, the parameters are n = 3, L = 2, λ 0 = 1.1, λ 1 = 3.06, λ 2 = 4.16, λ 3 = 3, p 0 = -1.15849269 + 0.56444913i, p 1 = -1.15849269 -0.56444913i, p 2 = -0.6253073 + 0.96639542i, and p 3 = -0.6253073 -0.96639542i, where p i are the poles assigned for the Matching differentiator [Koch & Reichhartinger 2018]. Here, the previous p i are used because it allows to perform a fair comparison. The initial condition for each differentiator is z 0 = [0, 0, 0, 0] T . 
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Comparative simulation results

Table 2.4 presents a numerical comparison. Here, the smallest maximum absolute error and RMSE are the metrics in consideration. Each column shows the results of those two error metrics for the HIDD, HEDD, HDD, GHDD, and the matching pole method. For this case, HIDD presents the best performance, except for the last time derivative. Moreover, HEDD presents better results than those obtained using the HDD. Nevertheless, GHDD enables to obtain better results than HEDD. 

HIDD

Simulation II: Noise-free case with different sampling times

To show the asymptotic accuracy of the differentiators in the noise-free case, it is performed a sequence of simulations with f 0 (t) = sin (t) -cos (0.5t) under different sampling times τ ∈ [0.00001 sec, 1 sec], logarithmically spaced points were used, 50 for each figure. For each simulation, the maximum absolute error is computed while considering τ as constant. The parameters λ i , L, n, p i and initial conditions z 0 are the same as in Simulation I. Here, t max = 50 sec. The corresponding results are depicted in Figures 2.7a-2.7d.
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[s] For a sampling time in [0.0007 sec, 1 sec], a reduction of the sampling time corresponds to a reduction of Y i for each differentiator, as it can be seen from the asymptotic accuracy. Furthermore, the smallest Y 0 , Y 1 , Y 2 are obtained using HIDD for almost each sampling time. Concerning Y 3 , for τ ∈ [0.0003 sec, 0.65 sec], the smallest value is obtained using HIDD, whereas for τ > 0.7 sec and τ ∈ [0.00002 sec, 0.0002 sec], it is obtained with the Matching approach. One can note that for the function and its first two derivatives, one can obtain with HIDD and a given sampling time a similar accuracy as the one obtained using other differentiators with a lower sampling time. Finally, below τ = 0.0001 sec, a similar accuracy is obtained using any differentiator. Moreover, a sampling time lower than 0.0001 sec does not present a significant improvement in terms of accuracy of the differentiators due to the accuracy of the class double from MATLAB.

Simulation III: Differentiation with measurement noise and different sampling times

Here, the performance of the differentiators with measurement noise and under different sampling times is studied. The parameters, initial conditions, and f 0 (t) are the same as in the previous subsection. The noise is given as ∆(t) ∼ i.i.d. N (0, 0.01 2 ). This simulation is performed as in Simulation II, i.e., the maximum absolute error Y i is computed for each sampling time. The corresponding results are shown in Figures 2.8a-2.8d. It can be seen that the discrete-time differentiators present asymptotic accuracy. As in the previous simulation, they present a similar Y i for τ < 0.01 sec. For
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f 0 (t), its first two derivatives, and τ > 0.003 sec, the best performance is obtained using HIDD.
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Conclusion

In this Chapter, we have introduced and analyzed two discrete-time realizations of the homogeneous differentiator, i.e. an explicit and an implicit one, namely HEDD and HIDD. They are based on the methodology used to obtain an exact discretization of linear systems with a zero-order hold. It was shown that the error dynamics of both discrete-time differentiators are homogeneous to their respective transformations, and they preserve the accuracy of their continuous-time counterparts after a finite time.

An implementation strategy was proposed for the implicit discrete-time realization, which is non-anticipative and includes a root-finding method based on Halley's method. Different methodologies were also discussed to obtain an efficient implementation, in terms of time complexity, of the implicit discrete-time differentiator which rely on the Horner's method and the Shaw-Traub algorithm. Simulation results using the proposed interpolation methods were carried out to show a noticeable improvement compared to a direct implementation. At last, a detailed comparative study with HDD (1.81), GHDD (1.87) and Matching differentiator (1.84) was performed in simulation.

It was shown that HIDD exhibits the best performance for a free-noise case and in the presence of noise. Furthermore, HIDD supersedes HEDD, consistent with the implicit and explicit time discretization of other continuous-time systems.

In the next Chapter, we will investigate the discrete-time realization of the fil-
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tering differentiator to improve the performances in terms of rejection of the effects of large measurement noises.

CHAPTER3

Explicit and implicit discretizations of the filtering differentiator

Introduction

As discussed in the previous Chapter, it is of paramount importance to be able to differentiate a noisy signal. Recently, in [Levant & Livne 2019], a continuous-time filtering differentiator (a sliding mode differentiator coupled to a filter) has been investigated to improve the accuracy compared with the standard one (discussed in the previous Chapter), under a specific class of noises. Mainly, for bounded noises, it presents the same accuracy as the standard one. In contrast to the standard differentiator, the robust exact filtering differentiator rejects the effects of some large noises after a finite time. Furthermore, this differentiator can filter out unbounded noises composed of signals of global filtering order j ∈ N, where j is less than or equal to the filtering order of the differentiator.

As for the homogeneous differentiator, a discrete-time version of the robust exact filtering differentiator is needed for the implementation on a digital device. For instance, the discrete-time filtering differentiator, proposed in [Levant & Livne 2019], corresponds to an Euler discretization with Taylor-like terms for the states that estimate the signal derivatives. Similarly, the scheme presented in [Hanan et al. 2020] preserves the accuracy of the filtering differentiator. Furthermore, in the absence of noise, with an overestimated value of the Lipschitz constant of the n-th derivative of a signal and using enough large algorithm parameters, it presents the same properties as with the non-overestimated value of the Lipschitz constant of its n-th derivative.

The main contribution of this Chapter is to derive and study novel explicit and implicit realizations for the continuous-time robust exact filtering differentiator [Levant & Livne 2019]. First, a time discretization of the robust exact filtering differentiator based on the Matching approach is investigated. It relies on the stabilization of a pseudo linear discrete-time system. Then, an explicit discrete-time filtering differentiator, based on the exact discretization of linear systems with a zero-order holder, is introduced. However, the presence of high-order terms in the filter dynamics may cause instability of the estimation error for signals with unbounded derivatives. Hence, Chapter 3. Explicit and implicit discretizations of the filtering differentiator a modified explicit discrete-time filtering differentiator is proposed, aiming to remove such a drawback of the exact discretization. Based on this scheme, an implicit version is derived. It will shown, using the homogeneity property, that after a finite time, the explicit and implicit discrete-time filtering differentiators preserve the accuracy of the continuous-time one despite the presence of measurement noise. Finally, some simulation results include comparisons between the proposed implicit and explicit discrete-time realizations with other existing schemes, highlighting that the implicit scheme supersedes the explicit one.

Discretization of the Robust Exact Filtering Differentiator Based on the Matching Approach

In this section, a differentiator is proposed using the differentiator (1.69) and the methodology proposed in [Koch & Reichhartinger 2018]. The results in section were published in [Carvajal-Rubio et al. 2020a]. As in [Koch & Reichhartinger 2018], for a free-noise case (∆(t) = 0), the error system can be given as a pseudo linear system [START_REF] Ghane | Eigenstructure-based analysis for non-linear autonomous systems[END_REF]:

ẇ σ = E w σ -e m+1 f (n+1) 0 (t), E =           -λ m L 1 m+1 |w 1 | -1 m+1 1 0 • • • 0 -λ m-1 L 2 m+1 |w 1 | -2 m+1 0 1 • • • 0 . . . . . . . . . • • • . . . -λ 1 L m m+1 |w 1 | -m m+1 0 0 • • • 1 -λ 0 L|w 1 | -1 0 0 • • • 0           , ( 3.1) 
where

E ∈ R (m+1)×(m+1) , w = w 1 w 2 • • • w n f T and σ = [σ 0 σ 1 • • • σ n ] T . The characteristic equation of E is P (s) = s m+1 + λ m L 1 m+1 |w 1 | -1 m+1 s m + λ m-1 L 2 m+1 |w 1 | -2 m+1 s m-1 + • • • + λ 0 L|w 1 | -1
. Its roots can be calculated by using the equation:

|w 1 | 1 m+1 s m+1 + λ m L 1 m+1 |w 1 | 1 m+1 s m + • • • + λ 0 L = 0. (3.2)
Therefore, the m + 1 roots s j of (3.2) can be calculated from the following polynomial:

Q(b) = b m+1 + λ m L 1 m+1 b m + • • • + λ 0 L. (3.3)
Then, s j is calculated as

s j = |w 1 | -1 m+1 b j
, where b j corresponds to the roots of polynomial (3.3). Now, z j,k+1 is proposed as a copy of x j,k+1 in the discrete-time system (2.1) with an injection term Γ j+n f +1,k w 1,k :

z j,k+1 = n l=j τ l-j (l -j)! z l,k + Γ j+n f +1,k w 1,k , j = 0, 1, 2, • • • , n.
(3.4)

Discretization of the filtering differentiator based on the Matching Approach

Obviously, h j,k (τ ) in (2.4), is omitted because it is not available. Please note that Γ j+n f +1,k will be defined later. Based on Euler discretization, w j,k+1 is proposed as:

w j,k+1 = w j,k + τ w j+1,k + Γ j,k w 1,k , w n f ,k+1 = w n f ,k + τ (z 0,k -f (t)) + Γ n f ,k w 1,k , j = 1, 2, • • • , n f -1. (3.5)
Using equations (3.4)- (3.5), the discrete-time differentiator is summarized as:

w k+1 z k+1 = Σ(τ ) w k z k -τ e n f ,m f (t) + Γ k w 1,k , (3.6)
where m+1) . Note that the first n f rows of Σ(τ ) only present 1, 0 and τ terms. Similarly to the continuous-time system error, the discrete-time error system (3.6) can be represented as:

w k = w 1,k w 2,k • • • w n f ,k T , z k = [z 0,k z 1,k • • • z n,k ] T , Γ k = [Γ 1,k Γ 1,k • • • Γ m+1,k ] T , Σ(τ ) is given as: Σ(τ ) =                  1 τ 0 • • • 0 0 0 0 • • • 0 0 1 τ • • • 0 0 0 0 • • • 0 . . . . . . . . . • • • . . . . . . . . . . . . • • • . . . 0 0 0 • • • 1 τ 0 0 • • • 0 0 0 0 • • • 0 1 τ τ 2 2! • • • τ n n! 0 0 0 • • • 0 0 1 τ • • • τ (n-1) (n-1)! . . . . . . . . . • • • . . . . . . . . . . . . • • • . . . 0 0 0 • • • 0 0 0 0 • • • 1                  , (3.7) with Σ(τ ) ∈ R (m+1)×(
w k+1 σ k+1 = Σ(τ ) + Γ k e T 1,m w k σ k - 0 h k (τ )
, (3.8) where

σ k = [σ 0,k σ 1,k • • • σ n,k ] T , and h k (τ ) = [h 0,k (τ ) h 1,k (τ ) • • • h n,k (τ )]
T . Let d j be the desired eigenvalues of the discrete-time system. Then, the desired polynomial is given as

P d (r) = m+1 j=1
(r -d j ) and for a matrix case

P d (Σ(τ )) = m+1 j=1 (Σ(τ ) -d j I).
The desired polynomial evaluated at Σ(τ

) + Γ k e T 1,m is given by P d (Σ(τ ) + Γ k e T 1,m ) = (Σ(τ ) + Γ k e T 1,m ) m+1 + m j=0 α j (Σ(τ ) + Γ k e T 1,m ) j
. Therefore, we obtain the following equation:

P d (Σ(τ ) + Γ k e T 1,m ) = P d (Σ(τ )) + [ * • • • * Γ k ] S. (3.9)
Due to the Cayley-Hamilton theorem P d (Σ(τ ) + Γ k e T 1,m ) = 0 and therefore, Γ k can be calculated as:

Γ k = -P d (Σ(τ ))S -1 e m+1,m ,
(3.10)
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where

S =         e T 1,m e T 1,m Ψ(τ ) e T 1,m Ψ 2 (τ ) . . . e T 1,m Ψ m (τ )         (3.11)
Now, the objective is to select adequate roots d j . In order to emulate the behavior of the continuous-time system, a mapping of the continuous-time domain to the discrete-time domain is used. One can use different approaches, Euler with d j = 1 + τ s j , matching with d j = e τ s j and bilinear with d j = 1+s j τ / 21-s j τ /2 ones, to name a few [Perdikaris 1991]. As s j = |w 1 | -1 m+1 b j , Euler and bilinear approaches have a singularity at w 1 = 0. Hence, the Matching approach is used:

d j = e τ s j = e τ |w 1 | -1 m+1 b j .
(3.12)

Explicit discrete-time realization of the robust exact filtering differentiator (EDFD and MEDFD)

Assumptions 1. 3.1, 1.3.3, 1.3.4 and 2.1.1, are not enough to obtain an adequate realization of the filtering differentiator. Similar to [Levant & Livne 2019], the following assumption is considered.

Assumption 3.3.1 The sampled measurement noise consists of n

f + 1 components, ∆ k = ∆(t k ) = ∆ 0,k + ∆ 1,k + • • • + ∆ n f ,k , where each ∆ j,k , j = 0, 1, • • • , n f (possibly unbounded)
, is a discretely sampled signal of global filtering order j and jth-order integral magnitude ε j ≥ 0.

Definition 3.1 A discretely sampled signal ∆ j,k : R + → R is said to be a signal of global sampling filtering order j ≥ 0 and global jth order integral sampling magnitude ε j ≥ 0 if for each admissible sequence t k there exists a discrete vector signal

β j,k = β 0 j,k β 1 j,k • • • β j j,k T ∈ R j+1 , k = 0, 1, • • • , which satisfies: β l j,k+1 -β l j,k = τ β l+1 j,k , l = 0, 1, • • • , j -1, β j j,k = ∆ j,k , β 0 j,k ≤ ε j . (3.13)
With respect to the parameter β l j,k , the superscript l of β l j,k does not indicate an exponentiation or differentiation. It is important mentioning that a discretely sampled signal of the global filtering order j is defined using difference equations whereas a signal of the global filtering order j is defined using differential equations.

Explicit discrete-time realization of the filtering differentiator

Similar to HEDD, the following explicit differentiator, which is called EDFD, is obtained:

w j f ,k+1 = τ (n f -j f +1) (n f -j f + 1)! (z 0,k -f k ) + n f l=j f τ (l-j f ) (l -j f )! w l,k + . . . . . . + n l=1 τ n f -j f +l+1 (n f -j f + l + 1)! z l,k + m+1 l=j f τ (l-j f +1) (l -j f + 1)! Ψ l-1,m (w 1,k ) , z j d ,k+1 = n l=j d τ (l-j d ) (l -j d )! z l,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (w 1,k ) , j f = 1, 2, • • • , n f . j d = 0, 1, 2, • • • , n. (3.14)
Note that the consideration of constant input using a zero-order hold is only used to derive equation (3.14). It is clear that such assumption does not hold in practice. Hence, (3.14) is not an exact discretization of (1.69). Furthermore, it is important to highlight that this discrete-time scheme contains the terms τ (l-j d ) (l-j d )! z l,k in the equations of z j d ,k+1 . It was shown that such terms are important to obtain an adequate discretization of the standard differentiator [Livne & Levant 2014, Koch et al. 2020, Carvajal-Rubio et al. 2019]. Contrary to the standard differentiator, the high-order terms τ n f -j f +l+1

(n f -j f +l+1)! z l,k in the equations of the filtering part may cause instability of the estimation error for signals with unbounded derivatives. This will be detailed in the next section. To remove this drawback, these terms are omitted and the following modified explicit discrete-time filtering differentiator, referenced as MEDFD, is obtained,

w j f ,k+1 = τ (n f -j f +1) (n f -j f + 1)! (z 0,k -f k ) + n f l=j f τ (l-j f ) (l -j f )! w l,k + . . . . . . + m+1 l=j f τ (l-j f +1) (l -j f + 1)! Ψ l-1,m (w 1,k ) , z j d ,k+1 = n l=j d τ (l-j d ) (l -j d )! z l,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (w 1,k ) , j f =1, 2, • • • , n f . j d = 0, 1, 2, • • • , n. (3.15)
The properties of the discrete-time system (3.15) will be presented and analyzed in detail in the following sections of this chapter.
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Implicit discrete-time realization of the robust exact filtering differentiator (MIDFD)

Design of MIDFD

Taking into consideration the explicit discrete-time realization (3.15), its implicit counterpart is given as:

w j f ,k+1 = τ (n f -j f +1) (n f -j f + 1)! (z 0,k -f k ) + n f l=j f τ (l-j f ) (l -j f )! w l,k + m+1 l=j f τ (l-j f +1) (l -j f + 1)! Ψ l-1,m (w 1,k+1 ) , z j d ,k+1 = n l=j d τ (l-j d ) (l -j d )! z l,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (w 1,k+1 ) , j f =1, 2, • • • , n f . j d = 0, 1, 2, • • • , n. (3.16)
To implement (3.16), w 1,k+1 needs to be calculated at time t k . From (3.16), one obtains

w 1,k+1 = τ n f n f ! (z 0,k -f k ) + n f l=1 τ (l-1) (l -1)! w l,k + m+1 l=1 τ l l! Ψ l-1,m (w 1,k+1 ) . (3.17)
Since the right-hand side of Equation ( 3.17) depends on w 1,k+1 , it cannot be used to implement (3.16). Let a j and b k be defined as: (3.18) with j = 0, 1, 2, • • • , m. Therefore, one obtains the following generalized equation with an unknown w 1,k+1 ). To obtain equations that allow to calculate w 1,k+1 and ξ k at time t k , the following generalized equations need to be solved

a j = τ m-j+1 (m -j + 1)! λ j L m-j+1 m+1 , b k = - τ n f n f ! (z 0,k -f k ) - n f l=1 τ (l-1) (l -1)! w l,k ,
w 1,k+1 + a m ⌊w 1,k+1 ⌉ m m+1 + • • • + a 1 ⌊w 1,k+1 ⌉ 1 m+1 + b k ∈ -a 0 sign(w 1,k+1
χ m (w 1,k+1 ) ∈ -a 0 sign(w 1,k+1 ), χ -1 m (-a 0 ξ k ) ∈ N [-1,1] (ξ k ) , ξ k ∈ sign(w 1,k+1 ). (3.20) For ζ ∈ R, χ (ζ) is defined as: χ m (ζ) = ζ + a m ⌊ζ⌉ m m+1 + • • • + a 1 ⌊ζ⌉ 1 m+1 + b k , (3.21)
Similar to the HIDD, the following lemma allows to calculate w 1,k+1 and ξ k at the time t k .

Lemma 3.1 Let a j > 0, w 1,k+1 ∈ R and ξ k ∈ [-1, 1].
Then the unique solution of the inclusions (3.20) is the pair (w 1,k+1 , ξ k ) which is defined in the following three cases:

Implicit discrete-time realization of the filtering differentiator

• If b k > a 0 , then ξ k = {-1} and w 1,k+1 = -(r 0 ) m+1
, where r 0 is the unique positive root of the following polynomial:

p (r) = r m+1 + a m r m + • • • + a 1 r + (-b k + a 0 ) . (3.22) • If b k ∈ [-a 0 , a 0 ], then w 1,k+1 = 0 and ξ k = -b k a 0 . • If b k < -a 0 , then ξ k = {1} and w 1,k+1 = r m+1 0
, where r 0 is the unique positive root of the following polynomial:

p (r) = r m+1 + a m r m + • • • + a 1 r + (b k + a 0 ) . (3.23)
The proof is similar to the proof of Lemma 2.2. The proposed implicit discretetime realization of the homogeneous continuous-time differentiator (1.69), referenced as MIDFD, is given as:

w j f ,k+1 = τ (n f -j f +1) (n f -j f + 1)! (z 0,k -f k ) + n f l=j f τ (l-j f ) (l -j f )! w l,k + . . . . . . + m+1 l=j f τ (l-j f +1) (l -j f + 1)! Ψl-1,m (w 1,k+1 ) , z j d ,k+1 = n l=j d τ (l-j d ) (l -j d )! z l,k + τ (l-j d +1) (l -j d + 1)! Ψn f +l,m (w 1,k+1 ) , Ψj,m (w 1,k+1 ) = -λ m-j L j+1 m+1 |w 1,k+1 | m-j m+1 ξ k , j f = 1, 2, • • • , n f . j d = 0, 1, 2, • • • , n. (3.24)
where the pair (w 1,k+1 , ξ k ) is calculated according to Lemma 3.1. Note that at w 1,k+1 = 0, ῡ0,m (w Remark 3.4.2 Similar to other implicit realizations [Huber et al. 2019], at w 1,k+1 = 0, the injection terms ῡj,m (w 1,k+1 ) are insensitive to L and λ j .

1,k+1 ) = λ 0 Lb k a 0 = (m+1)!b k τ m+1 whereas υ 0,m (w 1,k+1 ) ∈ [-λ 0 L, λ 0 L].

Remark 3.4.3

The main difference between MEDFD, MIDFD, and the presented in [Levant & Livne 2019, Hanan et al. 2020] are the high-order terms τ (l-j f ) (l-j f )! w l,k and its inputs. Contrary to the differentiator presented in [Hanan et al. 2020], the differentiators MEDFD, EDFD, MIDFD and [Levant & Livne 2019] do not add new tuning parameters.
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Implementation of MIDFD

In this subsection, an implementation scheme of the MIDFD differentiator is presented as follows:

Require: n, n f ≥ 0, L, λ i , τ m ← 0 while m ≤ n + n f do a m ← τ n-m+1 (n-m+1)! λ m L n-m+1 n+1 m ← m + 1 end while m ← 0 while m ≤ n do z m ← 0 ▷ The states z i are initialized. m ← m + 1 end while m ← 0 while m ≤ n f do w m ← 0 ▷ The states w i are initialized. m ← m + 1 end while m ← 0 while mτ ≤ t max do f k ← f (mτ ) ▷ The measurement of f (t) is obtained. b k ← -τ n f n f ! (z 0 -f k ) - n f l=1 τ (l-1) (l-1)! w l if b k > a 0 then r ← b k -a 0 2 1/(n+n f +1) j ← 0 while j < 3 do
▷ The positive root is calculated using Halley's method.

p ← r n+n f +1 + a n+n f r n+n f + • • • + a 1 r + (-b k + a 0 ) dp ← (n + n f + 1) r n+n f + (n + n f )a n+n f r n+n f -1 + • • • + a 1 ddp ← (n + n f ) (n + n f + 1) r n+n f -1 + • • • + 2a 2 r ← r - 2p(dp) 2(dp) 2 -p(ddp) j ← j + 1 end while ξ k ← -1 end if if b k < -a 0 then r ← -b k -a 0 2 1/(n+n f +1) j ← 0 while j < 3 do ▷ The positive root is calculated using Halley's method. p ← r n+n f +1 + a n+n f r n+n f + • • • + a 1 r + (b k + a 0 ) dp ← (n + n f + 1) r n+n f + (n + n f )a n+n f r n+n f -1 + • • • + a 1 ddp ← (n + n f ) (n + n f + 1) r n+n f -1 + • • • + 2a 2 r ← r - 2p(dp) 2(dp) 2 -p(ddp)
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j ← j + 1 end while ξ k ← 1 end if if b k > -a 0 and b k < a 0 then r ← 0 ξ k ← -b k a 0 end if j ← 0 while j ≤ n + n f do u j ← -λ n+n f -j L j+1 n+n f +1 r n+n f -j ξ k j ← j + 1 end while j ← 1 while j ≤ n f do w j,M ← τ (n f -j+1) (n f -j+1)! (z 0 -f k ) + n f l=j τ (l-j) (l-j)! w l + n+n f +1 l=j τ (l-j+1) (l-j+1)! u l-1 j ← j + 1 end while j ← 0 while j ≤ n do ▷ The estimation at the time t = (m + 1)τ are obtained z j,M = n l=j τ l-j (l-j)! z l,k + τ l-j+1
(l-j+1)! u l j ← j + 1 end while j ← 0 while j ≤ n do ▷ The states are updated for the next measurement. w j = w j,M z j = z j,M j ← j + 1 end while end while

Stability analysis of the differentiator based on the standard differentiator

In this section, the stability of the matching discrete-time filtering differentiator, the explicit discrete-time realization (EDFD and MEDFD) and the implicit one (MIDFD) are studied.
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Stability analysis of the matching discrete-time filtering differentiator

Theorem 3.5.1

Let the matching discrete-time differentiator (3.6) with Γ k defined as (3.10), d j defined as (3.12). Under Assumptions 1.3.1, 1.3.4 and considering no measurement noise ∆(t) = 0, if RE (b j ) < 0, then the trajectories of the observation error system (3.8) converge to a neighborhood of the origin and remain within this neighborhood, defined as:

w k σ k ≤ K ||h k (τ )|| . (3.25)
where K is defined in the proof.

Note that the roots b j can be selected independently of λ j and L from Theorem 3.5.1. This allows to implement the differentiator even if

L is unknown. Furthermore, if b j are selected as b 1 = b 2 = b 3 = • • • = b m+1 , Γ k presents a less complex equation than with b j ̸ = b j+1 . Proof Let E = Σ(τ ) + Γ k e T
1,m . Consider the candidate Lyapunov function defined as:

V k = w k σ k T P w k σ k , ( 3.26) 
where P is a real positive definite matrix defined such that

E T P E -P = -Q, (3.27) 
with Q be a real positive definite matrix and λ min (Q) > 1. From Equations (3.8) and (3.26), one gets

V k+1 -V k = - w k σ k T Q w k σ k + 0 h k (τ ) T P 0 h k (τ ) -. . . . . . -2 w k σ k T E T P E 0 h k (τ )
.

(3.28)

Using inequality C T D + D T C ≤ C T ΛC + D T Λ -1 D,
where C, D ∈ R n×m and Λ ∈ R n×n is any positive definite matrix, the following inequality is obtained:

V k+1 -V k ≤ (λ max (E) + λ max (P )) ||h k (τ )|| 2 -(λ min (Q) -1) w k , σ k 2 .
(3.29)
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Therefore with the condition

w k σ k > K ||h k (τ )|| , K = λ max (E) + λ max (P ) λ min (Q) -1 , (3.30) one obtains V k+1 -V k < 0.
This concludes the proof.

Stability analysis of the modified explicit discrete-time filtering differentiator (MEDFD)

Contrary to [Levant & Livne 2019] where the following change of variables is proposed

ωj f ,k =   w j f ,k + j f -1 l=0 β l n f +l-j f +1,k   /L, j f = 1, • • • , n f , (3.31)
the following one is used in this work,

ω n f -j f +1,k = w n f -j f +1,k + j f j=1 d j j f τ j f -j (j f -j + 1)! n f l=j β l-j l,k , j f = 1, • • • , n f .
(3.32) Constants d j j f are given in Table 3.1 for j f ≤ 8. The summations

n f l=1 β l-1 l,k
are added to cancel the noise components

β 1 1,k , β 2 2,k , • • • , β n f n f ,k in the equation ω n f ,k+1
. At the same time, the noise components and the above summations except τ β 0 1,k and τ 2

2! β 0 0,k , have to be canceled in the equation of ω n f -1,k+1 . They are canceled with two summations in the change of variables of w n f -1,k . Regarding the remainder w n f -j f +1,k , they are proposed recursively in a similar way. Let z k be generated with the modified explicit discrete-time filtering differentiator (3.15) with n f > 0. Under Assumptions 1. 3.1, 1.3.4, 3.3.1, there exist constants µ j d > 0 such that after a finite-time transient, the following inequalities are verified:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j f = 1 1 - - - - - - - j f = 2 1 1 - - - - - - j f = 3 1 2 1 - - - - - j f = 4 1 7 2 3 1 - - - - j f = 5 1 6 15 2 4 1 - - - j f = 6 1 31 3 18 13 5 1 - - j f = 7 1 18 43 40 20 6 1 - j f = 8 1
|z j d ,k -x j d ,k | ≤ µ j d Lρ n+1-j d , ρ = max τ, max 0≤j≤n f ε j L 1 n+j+1 , ( 3.33) 
where j d = 0, 1, • • • , n and the coefficients µ j d only depend on the parameters λ 0 , . . . , λ m .

Proof From the systems (2.1) and (3.15), the error dynamics are given as:

w j f ,k+1 = τ (n f -j f +1) (n f -j f + 1)! (σ 0,k -∆ k ) + n f l=j f τ (l-j f ) (l -j f )! w l,k + m+1 l=j f τ (l-j f +1) (l -j f + 1)! Ψ l-1,m (w 1,k ) , σ j d ,k+1 = -h j,k + n l=j d τ (l-j d ) (l -j d )! σ l,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (w 1,k ) , j f =1, 2, • • • , n f , j d = 0, 1, 2, • • • , n. (3.34)
Then, with the change of variables (3.32), and with ωj,k = ω j,k /L and σj,k = σ j,k /L, one obtains the following inclusions:

ωj f ,k+1 ∈ ωj f ,k + τ Ψ j f -1,m (•) L j f m+1 + τ n f -j f +1 (n f -j f + 1)! σ0,k + - ε 0 L , ε 0 L + . . . . . . + n f l=j f +1 τ l-j f (l -j f )! ωl,k + d n f -l+2 n f -j f +1 - ε n f -l+1 L , ε n f -l+1 L + . . . . . . + m+1 l=j f +1 τ l-j f +1 (l -j f + 1)! Ψ l-1,m (•) L l m+1 , ωn f ,k+1 ∈ ωn f ,k + τ Ψ n f -1,m (•) L n f m+1 + τ σ0,k + - ε 0 L , ε 0 L + . . . . . . + m+1 l=n f +1 τ l-n f +1 (l -n f + 1)! Ψ l-1,m (•) L l m+1 , σj d ,k+1 ∈ σj d ,k + τ Ψ n f +j d ,m (•) L n f +j d +1 m+1 + τ n+1-j d (n + 1 -j d )! [-1, 1] + . . . . . . + n l=j d +1 τ (l-j d ) (l -j d )! σl,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (•) L n f +l+1 m+1 , σn,k+1 ∈ σn,k + τ Ψ m,m (•) L + τ [-1, 1] , j f = 1, 2, • • • , n f -1, j d = 0, 1, 2, • • • , n -1.
(3.35)
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From the change of variable for w 1,k and Definition 3.1, the argument of Ψ j,m (•) in Equation (3.35) is given as:

ω1,k + n f l=1 g n f l τ n f -l - ε l L , ε l L , (3.36)
where the constants g

n f l , for 1 ≤ n f ≤ 6
, are presented in Table 3.2. Moreover, the following equations are applied with the purpose of obtain only 

β 0 j,• in the argument of Ψ j,m (•) τ β 1 j,k =β 0 j,k+1 -β 0 j,k , τ 2 β 2 j,k =τ (β 1 j,k+1 -β 1 j,k ) = β 0 j,k+2 -2β 0 j,k+1 + β 0 j,k , τ 3 β 3 j,k =β 0 j,k+3 -3β 0 j,k+2 + 3β 0 j,k+1 -β 0 j,k , . . . (3.37) l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 n f = 1 1 - - - - - n f = 2 1 2 3 2 - - - - n f = 3 1 6 1 1 - - - n f = 4 1 24 7 12 8 3 1 - - n f = 5
n f l for 1 ≤ n f ≤ 6.

Let s(t) be a piecewise linear continuous-time function, which is given as

s(t) = [s 0 (t) s 1 (t) s 2 (t) • • • s m (t)],
and describes the solution of (3.35) 

(s j f -1,k = s j f -1 (t k ) = ωj f ,k and s n f +j d ,k = s n f +j d (t k ) = σj d ,k for j f = 1, 2, . . . , n f and j d = 0, 1, • • • , n). Therefore, s(t) can be expressed as s(t) = s k + (t -t k )Ω k , Ω k ∈ G(s k , τ ),
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where t ∈ [t k , t k+1 ) and G(s k , τ ) = [G 0 (s k , τ ) G 1 (s k , τ ) • • • G m (s k , τ )] T is given as: G j f -1,k+1 ∈ Ψ j f -1,m (•) L j f m+1 + s j f ,k + d n f -j f +1 n f -j f +1 - ε n f -j f L , ε n f -j f L + . . . . . . + n f +1 l=j f +2 τ l-j f -1 (l -j f )! s l-1,k + d n f -l+2 n f -j f +1 - ε n f -l+1 L , ε n f -l+1 L + . . . . . . + m+1 l=j f +1 τ l-j f (l -j f + 1)! Ψ l-1,m (•) L l m+1 , G n f -1,k+1 ∈ Ψ n f -1,m (•) L n f m+1 + s n f ,k + - ε 0 L , ε 0 L + m+1 l=n f +1 τ l-n f (l -n f + 1)! Ψ l-1,m (•) L l m+1 , G n f +j d ,k+1 ∈ Ψ n f +j d ,m (•) L n f +j d +1 m+1 + τ n-j d (n + 1 -j d )! [-1, 1] + . . . . . . + n l=j d +1 τ (l-j d -1) (l -j d )! s n f +l,k + τ (l-j d ) (l -j d + 1)! Ψ n f +l,m (•) L n f +l+1 m+1 , G m,k+1 ∈ Ψ m,m (•) L + [-1, 1] , j f = 1, 2, • • • , n f -1, j d = 0, 1, 2, • • • , n -1. (3.38) 
As s(t) presents a piecewise constant derivative, s(t) satisfies the inclusion ṡ ∈ G(s k , τ ) for t ̸ = t k . Each solution of ṡ ∈ G(s k , τ ) satisfies the following inclusions
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almost everywhere:

ṡj f -1 (t) ∈ s j f (t -ρ[0, 1]) + Ψ j f -1,m (•) L j f m+1 + n f +1 l=j f +1 d n f -l+2 n f -j f +1 ρ m+1-j f (l -j f )! [-1, 1] + . . . . . . + n f +1 l=j f +2 ρ l-j f -1 (l -j f )! s l-1 (t -ρ[0, 1])[-1, 1] + m+1 l=j f +1 ρ l-j f (l -j f + 1)! Ψ l-1,m (•) L l m+1 [-1, 1], ṡn f -1 (t) ∈ Ψ n f -1,m (•) L n f m+1 + s n f (t -ρ[0, 1]) + ρ n+1 [-1, 1] + . . . . . . + m+1 l=n f +1 ρ l-n f (l -n f + 1)! Ψ l-1,m (•) L l m+1 [-1, 1], ṡn f +j d (t) ∈ Ψ n f +j d ,m (•) L n f +j d +1 m+1 + s n f +j d +1 (t -ρ[0, 1]) + ρ n-j d (n + 1 -j d )! [-1, 1] + . . . . . . + n l=j d +2 ρ (l-j d -1) (l -j d )! s n f +l (t -ρ[0, 1]) [-1, 1] + . . . . . . + n l=j d +1 ρ (l-j d ) (l -j d + 1)! Ψ n f +l,m (•) L n f +l+1 m+1 [-1, 1], ṡm-1 (t) ∈ Ψ m-1,m (•) L m m+1 + s m (t -ρ[0, 1]) + ρ 2! [-1, 1] + ρ 2! Ψ m,m (•) L [-1, 1], ṡm (t) ∈ Ψ m,m (•) L + [-1, 1] , ρ = max τ, max 0≤j≤n f ε j L 1 n+j+1 , j f = 1, 2, • • • , n f -1, j d = 0, 1, 2, • • • , n -2. (3.39)
where the argument of

Ψ j,m (•) in (3.39) is s 0 (t -ρ[-1, 1]) + n f l=1 g n f l ρ m+1 [-1, 1] . (3.40)
As in the previous stability analysis, there are two key points in this structure. The first one is that if ρ = 0, the above inclusions becomes the inclusion (1.68) with m instead of n. The second one is that the above inclusion can be represented as:

ṡ(t) ∈ C m (s(t -ρ[0, 1]), Γ(ρ, s(t -ρ[0, 1]))) , ( 3.41) 
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where

Γ(ρ, s(t)) = [Γ 0 (ρ, s(t)) Γ 1 (ρ, s(t)) • • • Γ m (ρ, s(t))] T with Γ 0 (ρ, s(t -ρ[0, 1])) = n f l=1 g n f l ρ m+1 [-1, 1] , Γ j f (ρ, s(t -ρ[0, 1])) = n f +1 l=j f +2 ρ l-j f -1 (l -j f )! s l-1 (t -ρ[0, 1])[-1, 1] + . . . . . . + n f +1 l=j f +1 d n f -l+2 n f -j f +1 ρ m+1-j f (l -j f )! [-1, 1] + m+1 l=j f +1 ρ l-j f (l -j f + 1)! Ψ l-1,m (•) L l m+1 [-1, 1], Γ n f (ρ, s(t -ρ[0, 1])) = ρ n+1 [-1, 1] + m+1 l=n f +1 ρ l-n f (l -n f + 1)! Ψ l-1,m (•) L l m+1 [-1, 1], Γ n f +j d +1 (ρ, s(t -ρ[0, 1])) = ρ n-j d (n + 1 -j d )! [-1, 1] + . . . . . . + n l=j d +2 ρ (l-j d -1) (l -j d )! s n f +l (t -ρ[0, 1]) [-1, 1] + n l=j d +1 ρ (l-j d ) (l -j d + 1)! Ψ n f +l,m (•) L n f +l+1 m+1 [-1, 1], Γ m (ρ, s(t -ρ[0, 1])) = ρ 2! [-1, 1] + ρ 2! Ψ m,m (•) L [-1, 1], ρ = max τ, max 0≤j≤n f ε j L 1 n+j+1 , j f = 1, 2, • • • , n f -1, j d = 0, 1, 2, • • • , n -2.
(3.42) Note that Γ j (ρ, s(t)) satisfies the homogeneity condition, i.e., for all α > 0, ρ ≥ 0 and s(t

) ∈ R m+1 , Γ j (α -q ρ, α m+1 s 0 (t), α m s 1 (t), • • • , αs m (t)) = α m-j+1 Γ j (ρ, s 0 (t), s 1 (t), • • • , s m (t)) with q = -1 and j = 0, • • • , m. Although Γ j (ρ, s 0 (t), s 1 (t), • • • , s m (t)) was used instead of Γ j (ρ, s(t)), hereafter only Γ j (ρ, s(t))
is used and deg(s j (t)) = m+1-j. Furthermore, it is straightforward to see that for all s(t) ∈ R m+1 , Γ j (ρ, s(t)) satisfies the same properties as in Theorem 2.3.1 and 2.3.2. On the other hand, the undisturbed inclusion (3.41) satisfies the same properties than unperturbed system in the proofs of Theorem 2.3.1 y 2.3.2. Additionally,the inclusion (3.41) is not affected by the state values for t < 0. Hence, using Theorem 1 from [Levant & Livne 2016] and the properties of C m (s(t), Γ(ρ, s(t))) and Γ j (ρ, s(t)), one can deduce that after a finite-time transient, all indefinitely extendable solutions of the perturbed differential inclusion (3.41) enter and remain inside the region |s j (t)| ≤ µ j ρ m+1-j with µ j > 0. Therefore, |σ j,k | ≤ µ j ρ n+1-j and the accuracy (3.33) is obtained.

From Theorem 3.5.2, one can deduce that MEDFD presents the same accuracy as the robust exact filtering differentiator for enough small sampling time. For bounded noise and enough small sampling time, MEDFD has an asymptotically optimal accuracy. Finally, it is shown that the proposed explicit discrete-time realization (3.15) preserves the homogeneity property of its continuous-time counterpart. To this end,

Stability analysis of the differentiator based on the standard differentiator

let ρ be defined as .43) Similar to (3.35), one obtains that ωj f ,k and σj d ,k satisfy the inclusion

ρ = max ε 0 L 1 n+1 , ε 1 L 1 n+2 , • • • , ε n f L 1 m+1 . ( 3 
ωj f ,k+1 ∈ ωj f ,k + τ Ψ j f -1,m (•) L j f m+1 + τ n f -j f +1 (n f -j f + 1)! σ0,k + ρn+1 [-1, 1] + . . . . . . + n f l=j f +1 τ l-j f (l -j f )! ωl,k + d n f -l+2 n f -j f +1 ρm+2-l [-1, 1] + . . . . . . + m+1 l=j f +1 τ l-j f +1 (l -j f + 1)! Ψ l-1,m (•) L l m+1 , ωn f ,k+1 ∈ ωn f ,k + τ Ψ n f -1,m (•) L n f m+1 + τ σ0,k + ρn+1 [-1, 1] + . . . . . . + m+1 l=n f +1 τ l-n f +1 (l -n f + 1)! Ψ l-1,m (•) L l m+1 , σj d ,k+1 ∈ σj d ,k + τ Ψ n f +j d ,m (•) L n f +j d +1 m+1 + τ n+1-j d (n + 1 -j d )! [-1, 1] + . . . . . . + n l=j d +1 τ (l-j d ) (l -j d )! σl,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (•) L n f +l+1 m+1 , σn,k+1 ∈ σn,k + τ Ψ m,m (•) L + τ [-1, 1] , j f = 1, 2, • • • , n f -1, j d = 0, 1, 2, • • • , n -1, (3.44) 
where the argument of Ψ •,m (•) is given as Proof With the transformation

ω1,k + n f l=1 g n f l τ n f -l ρn+l+1 [-1, 1] . ( 3 
τ, ρ, ω1 , • • • , ωn f , σ0 , • • • , σn → ατ, αρ, α m+1 ω1 , . . . , α n+2 ωn f , α n+1 σ0 , . . . , ασ n , (3.46) 
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for all α > 0, the following equalities are obtained

n f l=1 g n f l (ατ ) n f -l (αρ) n+l+1 [-1, 1] = α m+1 n f l=1 g n f l τ n f -l ρn+l+1 [-1, 1] , Ψ j,m α m+1 ω1,k + n f l=1 g n f l τ n f -l ρn+l+1 [-1, 1] = . . . α m-j Ψ j,m ω1,k + n f l=1 g n f l τ n f -l ρn+l+1 [-1, 1] , (ατ ) n f -j f +1 α n+1 σ0,k + ρn+1 [-1, 1] = α m+2-j f τ n f -j f +1 σ0,k + ρn+1 [-1, 1] , n f l=j f +1 (ατ ) l-j f (l -j f )! α m+2-l ωl,k + d n f -l+2 n f -j f +1 ρm+2-l [-1, 1] = . . . α m+2-j f n f l=j f +1 τ l-j f (l -j f )! ωl,k + d n f -l+2 n f -j f +1 ρm+2-l [-1, 1] , n l=j d +1 (ατ ) (l-j d ) (l -j d )! α n+1-l σl,k = α n+1-j d n l=j d +1 τ (l-j d ) (l -j d )! σl,k , (ατ ) n+1-j d (n + 1 -j d )! [-1, 1] = α n+1-j d τ n+1-j d (n + 1 -j d )! [-1, 1] . (3.47)
Therefore, both sides of the inclusions (3.44) have the same homogeneity degree with the same transformation.

Stability analysis of the modified implicit discrete-time filtering differentiator (MIDFD)

The modified implicit discrete-time filtering differentiator (3.24) requires an estimation of r 0 (i.e., the roots of polynomials (3.22) and (3.23)). However, since there is no analytical expression for these roots, an interpolation method is needed to estimate r 0 . Let the estimate of r 0 denoted as r0 and the associated estimation error as:

E 1,k = r 0 -r0 . (3.48)
From Lemma 3.1, it is clear that there exists an estimation error for w 1,k . Let the estimate of w 1,k denoted as ŵ1,k+1 and the associated estimation error as

E 2,k = w 1,k+1 -ŵ1,k+1 . 
(3.49)
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It can be expressed as

E 2,k =      -(r 0 ) m+1 + (r 0 -E 1,k ) m+1 if b k > a 0 0 if b k ∈ [-a 0 , a 0 ] (r 0 ) m+1 -(r 0 -E 1,k ) m+1 if b k < -a 0 , E 2,k =        E 1,k e m 1 r m 0 + • • • + e m m E m-1 1,k r 0 + E m 1,k if b k > a 0 0 if b k ∈ [-a 0 , a 0 ] -E 1,k e m 1 r m 0 + • • • + e m m E m-1 1,k r 0 + E m 1,k if b k < -a 0 , ( 3.50) 
where e m j are the coefficients of the well-known Pascal's triangle with a respective change of sign, i.e., e m j = (-1) j (m+1)! j!(m-j+1)! . From Equation (3.50), one can deduce that E 2,k is a continuous function of E 1,k and is equal to zero if E 1,k = 0. Therefore, for any κ ≥ 0 and r 0 , there is a maximum tolerable error

M E 1,k > 0 such that |E 2,k | ≤ κ if |E 1,k | ≤ M E 1,k . Indeed, M E 1,k depends on b k
and a j . Hence, it depends on w j,k , σ 0 , ∆ k , τ , L, n f , λ j and m. Taking into account the estimation error of r 0 , the following assumption is presented. Assumption 3.5.1 It is assumed that r0 > 0 and that the estimation error E 2,k is bounded by a constant κ > 0, i.e., |E 2,k | ≤ κ.

With the previous assumption, the following theorem can be derived.

Theorem 3.5.3

Let z k be generated with the modified implicit discrete-time filtering differentiator (3.24) with n f > 0. Under Assumptions 1. 3.1, 1.3.4, 3.3.1, 3.5.1, there exist constants µ j d > 0 such that after a finite-time transient, the following inequalities are verified:

|z j d ,k -x j d ,k | ≤ µ j d Lρ n+1-j d , ρ = max τ, κ L 1 m+1 , max 0≤j≤n f ε j L 1 n+j+1
, (3.51) where j d = 0, 1, • • • , n and the coefficients µ j d only depend on the differentiator parameters λ 0 , . . . , λ m .

Proof Similarly to Theorem 3.5.2, for systems (2.1) and (3.24), the error dynamics Chapter 3. Explicit and implicit discretizations of the filtering differentiator are given as:

w j f ,k+1 = τ (n f -j f +1) (n f -j f + 1)! (σ 0,k -∆ k ) + n f l=j f τ (l-j f ) (l -j f )! w l,k + . . . . . . + m+1 l=j f τ (l-j f +1) (l -j f + 1)! Ψl-1,m ( ŵ1,k+1 ) , σ j d ,k+1 = -h j,k + n l=j d τ (l-j d ) (l -j d )! σ l,k + τ (l-j d +1) (l -j d + 1)! Ψn f +l,m ( ŵ1,k+1 ) , Ψj,m ( ŵ1,k+1 ) = -λ m-j L j+1 m+1 | ŵ1,k+1 | m-j m+1 ξ k , j f = 1, 2, • • • , n f . j d = 0, 1, 2, • • • , n. (3.52)
Due to the inclusion ξ k ∈ sign( ŵ1,k+1 ) and the fact that ξ k is not affected by E 1,k , Ψj,n ( ŵ1,k+1 ) = Ψ j,n ( ŵ1,k+1 ) and Ψm,m ( ŵ1,k+1 ) ∈ Ψ m,m ( ŵ1,k+1 ) for j = 0, 1, 2, • • • , m -1. Hence, using the change of variables (3.32), one can obtain:

ωj f ,k+1 ∈ ωj f ,k + τ Ψ j f -1,m (•) L j f m+1 + τ n f -j f +1 (n f -j f + 1)! σ0,k + - ε 0 L , ε 0 L + . . . . . . + n f l=j f +1 τ l-j f (l -j f )! ωl,k + d n f -l+2 n f -j f +1 - ε n f -l+1 L , ε n f -l+1 L + . . . . . . + m+1 l=j f +1 τ l-j f +1 (l -j f + 1)! Ψ l-1,m (•) L l m+1 , ωn f ,k+1 ∈ ωn f ,k + τ Ψ n f -1,m (•) L n f m+1 + τ σ0,k + - ε 0 L , ε 0 L + . . . . . . + m+1 l=n f +1 τ l-n f +1 (l -n f + 1)! Ψ l-1,m (•) L l m+1 , σj d ,k+1 ∈ σj d ,k + τ Ψ n f +j d ,m (•) L n f +j d +1 m+1 + τ n+1-j d (n + 1 -j d )! [-1, 1] + . . . . . . + n l=j d +1 τ (l-j d ) (l -j d )! σl,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (•) L n f +l+1 m+1 , σn,k+1 ∈ σn,k + τ Ψ m,m (•) L + τ [-1, 1] ,
(3.53)

where j f = 1, 2, • • • , n f , j d = 0, 1, 2, • • • , n and the argument of υ j,m (•) in (3.53) is given as ω1,k+1 + - κ L , κ L + n f l=1 g n f l τ n f -l - ε l L , ε l L , (3.54) with constant g n f l
as in Table 3.2. Similarly to proof of Theorem 3.5.2, using the homogeneity property, one can easily deduce inequality (3.51).

Stability analysis of the differentiator based on the standard differentiator

From Theorem 3.5.3, one can deduce that MIDFD presents the same accuracy as the robust exact filtering differentiator for enough small sampling time and κ. Furthermore, with the above conditions and a discretely sampled signal of global filtering order 0 (bounded noise), MIDFD has an asymptotically optimal accuracy. Ultimately, it is showed that MIDFD preserves the homogeneity property of its continuous-time counterpart. Similar to (3.35) and (3.44), the following inclusion is obtained: (3.55) where the arguments of Ψ •,m (•) and ρ are given as: 

ωj f ,k+1 ∈ ωj f ,k + τ Ψ j f -1,m (•) L j f m+1 + τ n f -j f +1 (n f -j f + 1)! σ0,k + ρn+1 [-1, 1] + . . . . . . + n f l=j f +1 τ l-j f (l -j f )! ωl,k + d n f -l+2 n f -j f +1 ρm+2-l [-1, 1] + . . . . . . + m+1 l=j f +1 τ l-j f +1 (l -j f + 1)! Ψ l-1,m (•) L l m+1 , ωn f ,k+1 ∈ ωn f ,k + τ Ψ n f -1,m (•) L n f m+1 + τ σ0,k + ρn+1 [-1, 1] + . . . . . . + m+1 l=n f +1 τ l-n f +1 (l -n f + 1)! Ψ l-1,m (•) L l m+1 , σj d ,k+1 ∈ σj d ,k + τ Ψ n f +j d ,m (•) L n f +j d +1 m+1 + τ n+1-j d (n + 1 -j d )! [-1, 1] + . . . . . . + n l=j d +1 τ (l-j d ) (l -j d )! σl,k + τ (l-j d +1) (l -j d + 1)! Ψ n f +l,m (•) L n f +l+1 m+1 , σn,k+1 ∈ σn,k + τ Ψ m,m (•) L + τ [-1, 1] , j f = 1, 2, • • • , n f -1, j d = 0, 1, 2, • • • , n -1.
ω1,k+1 + ρm+1 [-1, 1] + n f l=1 g n f l τ n f -l ρn+l+1 [-1, 1] , ρ = max κ L 1 m+1 , max 0≤j≤n f ε j L 1 n+j+1 . ( 3 

Stability analysis of the explicit discrete-time filtering differentiator (EDFD)

In this subsection, it is assumed that |x j,k | ≤ D j for j = 1, • • • , n where D j is a constant. It should be highlighted that MEDFD and MIDFD do not require this assumption.

Theorem 3.5.4

Let z k be generated with the explicit discrete-time filtering differentiator (3.14), with n f > 0. Furthermore, let x l,k be bounded by D l with l = 1, • • • , n. Under Assumptions 1. 3.1, 1.3.4, 3.3.1, there exist constants µ j d > 0 such that after a finite-time transient, the following inequalities are fulfilled:

|z j d ,k -x j d ,k | ≤ µ j d Lρ n+1-j d , ρ = max τ, max 0≤j≤n D j L 1 n+j+1 , max 0≤j≤n f ε j L 1 n+j+1
, (3.57) where j d = 0, 1, • • • , n and the coefficients µ j d only depend on the differentiator parameters λ 0 , . . . , λ m .

Proof From Equations (2.1) and (3.14), the following discrete-time error system is obtained

w j f ,k+1 = - τ (n f -j f +1) (n f -j f + 1)! ∆ k + m+1 l=j f τ (l-j f +1) (l -j f + 1)! υ l-1,m (w 1,k ) + . . . . . . + n f l=j f τ (l-j f ) (l -j f )! w l,k + n l=1 τ n f -j f +l+1 (n f -j f + l + 1)! (σ l,k + x l,k ) , z j d ,k+1 = n l=j d τ (l-j d ) (l -j d )! z l,k + τ (l-j d +1) (l -j d + 1)! υ n f +l,m (w 1,k ) , (3.58) with j f = 1, 2, • • • , n f , j d = 0, 1, 2, • • • , n.
The remainder of the proof is similar to the proofs presented in Theorems 3.5.2 and 3.5.3. It is evident that the terms τ n f -j f +l+1 (n f -j f +l+1)! z l,k in the equations of filtering part may cause instability of the estimation error for signals with unbounded derivatives. In such case, the EDFD loses the accuracy of the continuous-time robust exact the the filtering differentiator. Nevertheless, if D j and the sampling time are sufficiently small, EDFD presents the same accuracy as the robust exact filtering differentiator. At last, one can mention that an implicit scheme can be proposed based on EDFD. However, it will depend on D j .

Comparison between the discrete-time differentiator based on the robust exact filtering differentiator

Comparison between the discrete-time differentiator based on the robust exact filtering differentiator

The realizations obtained from the differentiator (1.69) are compared in this section, which are EDFD (3.14), MEDFD (3.15) and MIDFD (3.24). Additionally, the discretetime differentiators presented in [Levant & Livne 2019] and [Hanan et al. 2020], are added to this comparison. They are the differentiator DFD [Levant & Livne 2019] and ADFD [Hanan et al. 2020].

Simulation I: Noise-free case

In this simulation, f 0 (t) = Note that the ADFD is mainly useful when L is overestimated, which is not the case in this simulation. According to Theorems 3.5.2 and 3.5.3, the estimation errors for MEDFD and MIDFD converge to a vicinity of the origin after a finite time. Furthermore, as shown in Figure 3.2, b k and r 0 remain bounded according to Remark 3.5.1. Furthermore, as x 1,k , x 2,k and x 3,k are unbounded, the estimation error for EDFD increases as t increases, conforming to Theorem 3.5.4. As it can be seen in Table 3.3, the best estimations are obtained with the proposed MIDFD, followed by MEDFD. 

Simulation II: Differentiation with measurement noise

In this simulation, x 0 (t) = sin(3t) + cos(2t) -sin(t). The simulation parameters are n f = 7, n = 3, τ = 0.002 sec, ∆(t) ∼ i.i.d. N (0, 0.1 2 ), k L = 300 and L = 90. The parameters λ j and initial conditions w T 0 z T 0 are selected as in the previous simulation. t min = 2 sec and t max = 10 sec. The corresponding results are presented in Figure 3.3 and Table 3.4. The behavior of the estimation errors for MEDFD, MIDFD, and EDFD corresponds to the theoretical results given in Theorems 3.5.2,3.5.3,3.5.4. Indeed, the estimation errors for MEDFD, MIDFD, EDFD converge to a vicinity of the origin after a finite time. As it can be seen in Table 3.4 and Figure 3.3, the best performance is obtained using MIDFD.

Comparison between the discrete-time differentiator based on the robust exact filtering differentiator

Simulation III: Differentiation with measurement noise and different sampling times

In this simulation, f 0 (t) = sin(3t) + cos( 

Simulation IV: Differentiation with large measurement noise

This simulation aims to show that the differentiator MIDFD has a better performance than DFD, in the noise case. In this simulation, the differentiator and filtering order are selected as n = 3 and n f = 4, with the parameters T = 0.001s, L = 2, λ 0 = 1.1, λ 1 = 14.13, λ 2 = 88.78, λ 3 = 295.74, λ 4 = 455.4, λ 5 = 281.37, λ 6 = 84.14 and λ 7 = 12. The input signal is f 0 (t) = sen(()t) -cos(0.5t) and the measurement noise is defined with β 0 j,k = ε 0 (-1) k , with ε 0 = 0.01. As it can been seen in Figure 3.5, MIDFD obtains has a good estimation of the signal and its derivatives, in contrast to DFD, which has a constant error when they obtains its respective accuracy. However, it is important to mention that DFD improve its accuracy reducing the sampling time. 

Simulation V: Simulation with different signals

This simulation is used to show the performance of the differentiators with different signals, then f 0 (t) is defined as:

f 0 (t) =            t 4 25 if t < 5s 25 + ln 1 t-4 if 5s ≤ t < 15s 22.6021 + 5sen(t -15) if 15s ≤ t < 40s 1.9403 + 20e -t 2 +20
if 40s ≤ t 

Conclusion

In this Chapter, we have introduced and analyzed four discrete-time realizations of the robust exact filtering differentiator, i.e. explicit and implicit ones, namely MIDFD, MEDFD, EDFD and Matching ones. A time discretization, relying on the stabilization of a pseudo linear discrete-time system has been proposed using the matching approach. EDFD, based on the methodology used to obtain an exact discretization of linear systems with a zero-order hold, has been investigated. It does not preserve the continuous-time differentiator properties for signals with unbounded derivatives due to high-order terms in the filter dynamics. Hence, MEDFD and MIDFD has been proposed to preserve the homogeneity property and the accuracy of its continuoustime counterpart after a finite-time. MIDFD is an implicit discrete-time realization that is non-anticipative. At last, a detailed comparative study with DFD [Levant & Livne 2019] and ADFD [Hanan et al. 2020], was performed in simulation, highlighting that the implicit scheme supersedes the explicit one.

In the next Chapter, we will investigate the design of an appropriate output feedback controller using the proposed discrete-time realization of the robust exact filtering differentiator.

CHAPTER4

Output Feedback Stabilization of Integrator Chains using MIDFD

Introduction

Many control engineering applications require a real-time estimate of the time derivatives of a noisy sampled signal. Indeed, a control law often needs the derivatives of noisy signals (i.e., the measurements). Hence, several works consider the design of sliding mode differentiator-based controllers due to finite-time property (see [Oliveira et al. 2017, Castañeda et al. 2021] for instance). However, differentiators require high gains to deal with the system uncertainties when they are used in a closed-loop. It is even more difficult when high-order differentiators are needed since it yields the sensitivity of the closed-loop system with respect to measurement noise and discretization effect. It should be highlighted that the sampled-data sliding mode differentiator-based control design is not well-investigated in the literature.

In this Chapter, we will restrict our study to the stabilization problem for perturbed chain of integrators using sampled noisy measurements. A discrete-time observer is needed to design a sampled-data output feedback controller. In the previous Chapter, a discrete-time version of the filtering differentiator [Levant & Livne 2019] is derived to compensate for the effects of some large noises after a finite time. In this Chapter, we include some additional terms related to the control input in the discretetime differentiator. This enables to avoid to increase the value of L. Furthermore, the convergence of the observer to a vicinity of the origin is ensured for any initial conditions. Besides, it can be proved, using the homogeneity property, that the proposed discrete-time realization preserves the accuracy of the continuous-time robust exact filtering differentiator despite measurement noise. Then, the sampled-data sliding mode differentiator based controller is designed. From this design, various challenging issues arise:

• How can we design an appropriate saturated output feedback controller to guarantee that the associated closed-loop discrete-time system is stable?

• What is the link between the accuracy of the observer and the convergence region for the trajectories of the closed-loop system?

Chapter 4. Output Feedback Stabilization of Integrator Chains using MIDFD

In this Chapter, we will give answers to these questions. The main contributions are as follows:

• A sampled-data implicit sliding mode differentiator-based observer is investigated.

• The link between the disturbance bound and the observer parameters of the filtering differentiator is discussed.

• A stability analysis of the closed-loop system combining the robust exact filtering observer and a saturated output feedback controller is provided for integrator chains with sampled data.

• A comparison between the implicit discrete-time closed-loop differentiator and the explicit one [Levant & Livne 2019] is given to highlight the advantages in terms of accuracy of the proposed scheme.

• Experiments are conducted on the DC-DC buck converter to show the effectiveness of the proposed scheme.

The results presented in this Chapter were published in [Alarcón-Carbajal et al. 2022] and [Carvajal-Rubio et al. 2022]. The organization of this Chapter is as follows. In Section 4.2, the considered problem (i.e., stabilization problem for perturbed chain of integrators using sampled noisy measurements) is mathematically formalized. Section 4.3 is focused on the design of the output feedback control law. First, an implicit discrete-time realization of the robust exact filtering differentiator will be derived to include some additional terms related to the control input. The temporal discretization of the continuous-time closed-loop system will be also introduced. The stability of the closed-loop system is studied in Section 4.4. In order to show its performance, simulations and experimental results are presented in Section 4.5 and Section 4.6, respectively. The conclusion is presented in Section 4.6.

Problem statement

Let us consider the stabilization problem for perturbed chain of integrators, described by the following dynamics

ẋ = Ax + e n+1 (d(t) + u(t)) ; y(t k ) = x0,k = x 0 (t k ) + ∆(t k ), (4.1)
where the state is [Bhat & Bernstein 1998]. Higher order sliding mode control can also be seen as the stabilization problem of an auxiliary system described as a perturbed chain of integrators built from the output and its higher time derivatives [START_REF] Emel'yanov | High-order sliding modes in control systems[END_REF]].

x = x 0 x 1 x 2 • • • x n T ∈ R n+1 , the control input is u(t) ∈ R

Output feedback control design

The control objective is to stabilize system (4.1) using the discrete-time noisy measurement y(t k ). Therefore, the states of the system can be estimated using the MIDFD differentiator.

Output feedback control design

To achieve the control objective, let us consider the implicit discrete-time realization of the robust exact filtering differentiator (MIDFD) given in (3.24). Here, in order to avoid the increase of L, we include some additional terms related to the control input in the discrete-time differentiator. The proposed differentiator becomes as follows:

w j f ,k+1 = τ (n f -j f +1) (n f -j f + 1)! (z 0,k -y(t k )) + n f l=j f τ (l-j f ) (l -j f )! w l,k + m+1 l=j f τ (l-j f +1) (l -j f + 1)! Ψl-1,m (w 1,k+1 ) , z j d ,k+1 = τ (n-j d +1) (n -j d + 1)! u k + n l=j d τ (l-j d ) (l -j d )! z l,k + τ (l-j d +1) (l -j d + 1)! Ψn f +l,m (w 1,k+1 ) , j f =1, 2, • • • , n f . j d = 0, 1, 2, • • • , n. (4.2) with Ψj,m (w 1,k+1 ) = -λ m-j L j+1 m+1 |w 1,k+1 | m-j m+1 ξ k
The observer is implemented according to Lemma 3.1, where a j and b k are calculated using Equations (3.18). Moreover, L is selected such that L ≥ D. This requires to ensure that the control input u(t) remains bounded in order to stabilize system (4.1) using the noisy signal y(t k ). With the estimation z j,k obtained in (4.2), an output feedback saturated controller is proposed as,

u(t) =      C if v k ≥ C, v k if -C < v k < C, -C if v k ≤ -C, ∀t ∈ [t k , t k+1 ), (4.3) 
(4.4) with v k = KZ k . (4.5)
Without the saturation constraint given by |u(t)| ≤ C, the controller becomes

u(t) = v k ∀t ∈ [t k , t k+1 ). Vector Z k = [z I,k z 0,k z 1,k • • • z n,k ] T ∈ R n+2
is defined using the estimated state obtained from the implicit discrete-time filtering observer (4.2). Furthermore, variable z I,k is an approximation of t 0 x 0 (α)dα using a forward Euler integration, i.e., z I,k+1 = z I,k + τ z 0,k , (4.6) with z I,0 = 0. The control parameters are given by K t) is bounded, one can set the observer parameter L = D. In this case, the implicit discrete-time differentiator (4.2) estimates in finite-time the states x j,k (i.e., the n time derivatives of x 0 ). Furthermore, one can use a differentiator order greater than n, if ẍn (t) is bounded and its bound is known.

= [k I k 0 k 1 • • • k n ] ∈ R n+1 . Note that v k in (4.
To select an adequate gain, K, a discrete-time analysis is performed. From Taylor's series [Apostol 1967], one obtains the following realizations of x i (t):

x 0 (t k+1 ) = x 0 (t k ) + (t k+1 -t k )x 1 (t k ) + • • • + (t k+1 -t k ) n n! x n (t k ) + (t k+1 -t k ) n+1 (n + 1)! ẋn (t k ), x 1 (t k+1 ) = x 1 (t k ) + (t k+1 -t k )x 2 (t k ) + • • • + (t k+1 -t k ) n-1 (n -1)! x n (t k ) + (t k+1 -t k ) n n! ẋn (t k ), . . . x n (t k+1 ) = x n (t k ) + (t k+1 -t k ) ẋn (t k ). (4.7)
The above equations can be rewritten as follows:

x 0 (t k+1 ) = x 0 (t k ) + τ x 1 (t k ) + • • • + τ n n! x n (t k ) + τ n+1 (n + 1)! (u(t k ) + d(t k )) , x 1 (t k+1 ) = x 1 (t k ) + τ x 2 (t k ) + • • • + τ n-1 (n -1)! x n (t k ) + τ n n! (u(t k ) + d(t k )) , . . . x n (t k+1 ) = x n (t k ) + τ (u(t k ) + d(t k )) .
(4.8)

The addition of the terms u k on the discrete-time observer (4.2) allows to obtain the same discrete-time error than the discrete-time differentiator (3.16) in the previous Chapter. Therefore, from Theorem 3.5.3, the discrete-time observer converges to a vicinity of the origin in finite-time and preserves its accuracy. L does not depends on u(t). From equations (4.8) and (4.6), the following discrete-time realization is obtained:

X k+1 = Φ(τ )X k + B(τ ) (u k + d k ) + τ σ 0,k e 1 , X k = [z I (t k ) x 0 (t k ) x 1 (t k ) • • • x n (t k )] T , ( 4.9) 
where Φ(τ ) and B(τ ) are defined as:

Φ (τ ) =             1 τ 0 0 • • • 0 0 0 1 τ τ 2 2! • • • τ n-1 (n-1)! τ n n! 0 0 1 τ • • • τ n-2 (n-2)! τ n-1 (n-1)! . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 • • • 1 τ 0 0 0 0 • • • 0 1             , B (τ ) =            0 τ n+1 (n+1)! τ n n! . . . τ 2 2! τ            T . ( 4 

.10)

As the implicit discrete-time observer (4.2) is implemented with a constant sampling time, the control law (4.3) is implemented using the same sampling time. Additionally, without saturation constraint, the closed-loop system (4.9) can be represented

Stability analysis of the output feedback controller

as follows: (4.11) with

X k+1 = Ω(τ )X k + F k ,
Ω (τ ) =              1 τ • • • 0 τ n+1 (n+1)! k I 1 + τ n+1 (n+1)! k 0 • • • τ n n! + τ n+1 (n+1)! k n τ n n! k I τ n n! k 0 • • • τ n-1 (n-1)! + τ n n! k n . . . . . . . . . . . . τ 2 2! k I τ 2 2! k 0 • • • τ + τ 2 2! k n τ k I τ k 0 • • • (1 + τ k n )              , ( 4.12) 
and

F k = τ σ 0,k τ n+1 (n+1)! (E k + d k ) • • • τ (E k + d k ) T , ( 4.13) 
where

E k = k 0 σ 0,k + k 1 σ 1,k + • • • + k n σ n,k .
Note that each element of matrix F k is bounded after a finite-time and their bounds are defined by the parameters µ j , which depend on the parameters λ j and the methodology used to estimate x j,k . Then, K is selected such that the magnitude of the n + 1 eigenvalues of Ω(τ ) have norm lower than 1 and k

I < 0, k 0 < 0, k 1 < 0, • • • , k n < 0.

Stability analysis of the output feedback controller

Before anaylis the propoerties of the proposed output feedback controller, let us introduce the following definitions:

• t k 0 is the lowest time instant such that u(t) is saturated for any measurement time greater to t k 0 and previous t k 2 , i.e., |v k | ≥ C for any t k with t k 0 ≤ t k < t k 2 .

• t k 1 is the time instant when the discrete-time filtering observer (4.2) obtains and keeps the accuracy (3.51).

• t k 2 is the time instant such that v k is unsaturated and for the previous measurement time v k was saturated, i.e., |v

k 2 | < C at t k 2 and |v k | ≥ C for t k with t k 0 ≤ t k < t k 2 .
• t k 3 is the time instant when |v k 3 | < C and the discrete-time filtering observer (4.2) obtains and keeps the accuracy (3.51).

• v(t) is the continuous-time function analogous to v k , defined as: Let system (4.1) under the controller u(t) defined as in (4.3) and using the implicit discrete-time filtering observer (4.2). K is selected such that the magnitude of the n + 1 eigenvalues of Ω(τ ) have norm lower than one and k I < 0, 

v(t) = K [z I (t) x 0 (t) x 1 (t) • • • x n (t)] T , zI (t) = z I,k , for t ∈ [t k , t k+1 ). ( 4 
k 1 < 0, • • • , k n < 0. If |v k | ≥ C at the time instant t k 1 , |σ j d ,k | and τ are such that: |v(t k 2 )| + |E k | < C, ( 4 
(C + D) ≥ ẋn (t) ≥ (C -D), (C + D)(t -t k 0 ) + x n (t k 0 ) ≥ x n (t) ≥ (C -D)(t -t k 0 ) + x n (t k 0 ). ( 4 

.16)

Since ẋn-1 = x n and integrating ẋn-1 :

x n-1 (t) ≤ (C + D) (t -t k 0 ) 2 2 + (t -t k 0 )x n (t k 0 ) + x n-1 (t k 0 ), x n-1 (t) ≥ (C -D) (t -t k 0 ) 2 2 + (t -t k 0 )x n (t k 0 ) + x n-1 (t k 0 ). ( 4 

.17)

The above process can be repeated and one obtains: 

x n-i (t) ≥ (C -D) (t -t k 0 ) i+1 (i + 1)! + i j=0 (t -t k 0 ) i-j (i -j)! x n-j (t k 0 ), x n-i (t) ≤ (C + D) (t -t k 0 ) i+1 (i + 1)! + i j=0 (t -t k 0 ) i-j (i -j)! x n-j (t k 0 ). (4.18) for i = 0, 1, 2, • • • , n. For all t k , with t k 2 ≥ t k ≥ t k 1 , z I,k satisfies: z I,k+1 -z I,k ≥ τ   (C -D) (t k -t k 0 ) n+1 (n + 1)! + n j=0 (t k -t k 0 ) n-j (n -j)! x n-j (t k 0 )   + τ σ 0,k , z I,k+1 -z I,k ≤ τ   (C + D) (t k -t k 0 ) n+1 (n + 1)! + n j=0 (t k -t k 0 ) n-j (n -j)! x n-j (t k 0 )   + τ σ 0,k . ( 4 
|v(t k 2 )| + |E k | < C. ( 4 

.20)

The above condition implies that |v k | < C at the time instant t k 2 . Furthermore, this condition can be rewritten as two conditions:

k I z I,k + n i=0 k n-i (C -D) (t k 2 -t k 0 ) i+1 (i + 1)! + k n-i i j=0 (t k 2 -t k 0 ) i-j (i -j)! x i (t k 0 ) + |E k | ≤ C k I z I,k + n i=0 k n-i (C + D) (t k 2 -t k 0 ) i+1 (i + 1)! + k n-i i j=0 (t k 2 -t k 0 ) i-j (i -j)! x i (t k 0 ) + |E k | ≤ C (4.21)
A similar demonstration can be done for the case v k ≤ -C at time t k 1 .

Theorem 4.4.1 shows that after the discrete-time observer (4.2) obtains the asymptotic accuracy and if u(t) is saturated at time t k 1 then |v k | < C after a finite time t k 2 . The following step gives the required conditions to keep unsaturated u(t) and system (4.9) stable. These conditions are presented in the following theorem. Let system (4.1) under the controller u(t) defined as in (4.3), where K is given in Theorem 4.4.1. Let P and Q be symmetric positive definite matrix of dimensions (n + 1) × (n + 1), with Ω(τ ) T P Ω(τ ) -P = -Q and P such that λ min (Q) > 1. If |v k | < C at time t k 3 , and C satisfies the following conditions:

C > |E k | + |k I + k 0 + k 1 + • • • + k n | (λ max (P Ω(τ )Ω(τ ) T P + P )) (λ min (Q) -1) ∥F k ∥ 2 , C > KΩ i (τ )X k 3 + i-1 j=0 KΩ j (τ )F k 3 +i-j-1 . (4.22)
for all t k > t k 3 and i = 0, 1, 2, . . ., then the discrete-time system (4.9) is stable and

|v k | < C for all t k ≥ t k 3 .
Proof Let us consider the discrete-time Lyapunov function

V k = X T k P X k . ( 4 

.23)

From the Lyapunov function, one obtains 

V k+1 -V k =X T k Ω(τ ) T P Ω(τ ) -P X k + 2X T k Ω(τ ) T P F k + F k P F k . ( 4 
V k+1 -V k ≤ -X T k QX k + X T k X k + F T k P Ω(τ )Ω(τ ) T P + P F k , V k+1 -V k ≤ -(λ min (Q) -1) ∥X k ∥ 2 2 + λ max (P Ω(τ )Ω(τ ) T P ) + λ max (P ) ∥F k ∥ 2 2 . (4.25) It implies that V k+1 -V k is negative if: ∥X k ∥ 2 ≥ (λ max (P Ω(τ )Ω(τ ) T P + P )) (λ min (Q) -1) ∥F k ∥ 2 . ( 4 

.26)

Equation (4.26) defines the convergence region of the discrete-time system. Therefore, to keep an unsaturated control law, C must satisfy at least the following condition:

C > |v k | = |KZ k | = |k I z I,k + k 0 x 0,k + k 1 x 1,k + • • • + k n x n,k + E k | C > |E k | + |(k I + k 0 + k 1 + • • • + k n )| (λ max (P Ω(τ )Ω(τ ) T P + P )) (λ min (Q) -1) ∥F k ∥ 2 (4.27)
The above inequality has to be satisfied for all t k > t k 3 , but |E k | and ∥F k ∥ 2 are bounded for those time instants. Furthermore, without saturation, the solution of the discrete-time system (4.11) is given as

X k 3 +i = Ω i (τ )X k 3 + i-1 j=0 Ω j (τ )F k 3 +i-j-1 , (4.28)
where X k 3 is X k at the measurement time t k 3 and i = 1, 2, • • • . From Equations (4.5) and (4.28)

v k 3 +i = E k 3 +i-1 + KΩ i (τ )X k 3 + i-1 j=0 KΩ j (τ )F k 3 +i-j-1 . ( 4 

.29)

To keep an unsaturated control law u(t), C has to satisfy: (4.2). Furthermore, for a given C, the linear system cannot be stabilized globally using the controller (4.5) if the input is limited.

C > KΩ i (τ )X k 3 + i-1 j=0 KΩ j (τ )F k 3 +i-j-1 + |E k 3 +i-1 |. ( 4 

Simulation results

Equation (4.26) implies that ∥X k ∥ 2 is bounded. Theorems 4.4.1 and 4.4.2 allow to show the stability of the continuous-time system (4.1) using the discrete-time law control (4.3). Furthermore, if for t k 1 the conditions in Theorem 4.4.2 are satisfied, then t k 2 becomes t k 3 . However, a small enough sampling time is required because E k and F k depend on it. It is important to note that there is not a value of C such that the discrete-time system is stable for any initial condition X k 3 , it comes from the conditions in Theorem 4.4.1. On the other hand, reducing the value of |k

I + k 0 + k 1 + • • • + k n |
allows to reduce the minimum value of C.

Simulation results

To show the effectiveness of the proposed sampled-data sliding mode differentiator based controller, several scenarios are investigated. In this section, the root mean square value of the states and its maximum absolute value are selected as indexes of comparison. The maximum absolute value (MAV) of a state x i (t) after 50 sec is given as:

M AV = max {|x i (t j )| ∈ R|t j = 50 sec +jτ s } , ( 4.31) 
where τ s is the simulation time, j = 1, 

E = max {|E k | ∈ R|50 sec < t k ≤ t max } and M F = max {∥F k ∥ 2 ∈ R|50 sec < t k ≤ t max } .

Simulation I: Second Order System

In this simulation, the following uncertain system is studied: (4.33) where the state is x = x 0 x 1 T ∈ R 2 , the control input is u(t) ∈ R and the discrete-time output measurement is y(t k ) ∈ R. The measurement noise ∆ k = ∆(t k ) is normally distributed random signal with mean 0 and variance 5 and the perturbation is d(t) = 0.5 sin(0.01t). The sampling period is constant, i.e., τ = t k+1 -t k = 0.001 sec.

ẋ0 (t) = x 1 (t), ẋ1 (t) = d(t) + u(t), y(t k ) = x 0 (t k ) + ∆(t k ),

Chapter 4. Output Feedback Stabilization of Integrator Chains using MIDFD

The output feedback saturated controller is given by

u(t) =      C if v k ≥ C v k if -C ≤ v k ≤ C -C if v k ≤ -C , ∀t ∈ [t k , t k+1 ), v k = k I z I,k + k 0 z 0,k + k 1 z 1,k , z I,k+1 = z I,k + τ z 0,k . (4.34) Vector Z k = [z I,k z 0,k z 1,k ] T ∈ R 3
is defined using the estimated state obtained from the implicit discrete-time filtering observer (4.2) with L = 0.5, n = 1, n f = 1 and λ j are selected as in [START_REF][END_REF], which is given as:

w 1,k+1 =w 1,k + τ (z 0,k -x0,k ) -τ λ 2 L 1 3 |w 1,k+1 | 2 3 ξ k - τ 2 2 λ 1 L 2 3 |w 1,k+1 | 1 3 ξ k - τ 3 6 λ 0 Lξ k , z 0,k+1 =z 0,k + τ z 1,k + τ 2 2 u k -τ λ 1 L 2 3 |w 1,k+1 | 1 3 ξ k - τ 2 2 λ 0 Lξ k , z 1,k+1 =z 1,k + τ u k -τ λ 0 Lξ k , ( 4.35) 
where ξ k and w 1,k+1 are calculated according to Lemma 3.1, its respective polynomials are defined as: For comparison purposes, we have also depicted the results obtained by replacing the implicit discrete-time filtering observer (3.16) with the explicit discrete-time differentiator, which was presented in [Levant & Livne 2019], with the additional terms used in (4.2). It is important to note that both discrete-time observers have different inputs but the same ∆(t k ). The initial condition of the system is X 0 = [20 -5] T and Z 0 = [0 0 0] T . Results are presented in Figures 4.1 x 1 (t) using the Explicit Differentiator.

p (r) = r 3 + a 2 r 2 + a 1 r + (-b k + a 0 ) , p (r) = r 3 + a 2 r 2 + a 1 r + (b k + a 0 ) , (4.36) with a 0 = τ 3 6 λ 0 L, a 1 = τ 2 2 λ 1 L 2 3 , a 2 = τ λ 2 L
x 1 (t) using the Implicit Differentiator.

x 0 (t) using the Explicit Differentiator.

x 0 (t) using the Implicit Differentiator. .2 shows that the discrete-time observers give a robust estimate in finitetime of x(t) in spite of the presence of measurement noise. Furthermore, it can be seen in Fig. 4.1 that the closed-loop system is stable. It is worth noting that the results with the implicit observer supersede the implicit one. In order to compare the results obtained with both discrete-time observers, the root mean square value of the states and its maximum absolute value after 50 sec are presented in 

Simulation II: Third Order System

The following third order uncertain system is analyzed: 4.37) where the state is

(t) = x 1 (t), ẋ1 (t) = x 2 (t), ẋ2 (t) = sin (0.001x 1 (t)) + u(t), y(t k ) = x 0 (t k ) + ∆(t k ), ( 
x = x 0 x 1 x 2 T ∈ R 3 , u(t) ∈ R and y(t k ) ∈ R. The mea- surement noise ∆ k = ∆(t k
) is normally distributed random signal with mean 0 and variance 5 and the perturbation is d(t) = sin 0.001x 0 (t). The sampling period is constant, i.e., τ = t k+1 -t k = 0.0001s. For the system (4.37), the discrete-time filtering differentiator based output feedback saturated controller is given by parameters, eigenvalues of Ω(τ ) are 0.9988+0.0095i, 0.9988-0.0095i, 0.9986+0.0045i, and 0.9986 -0.0045i. On the other hand, initial condition of the system and implicit observer are given by X 0 = [15 -15 25] T and Z 0 = [0 15 -15 25] T . The results are presented in . x 1 (t)

u(t) =      C if v k ≥ C v k if -C ≤ v k ≤ C -C if v k ≤ -C , ∀t ∈ [t k , t k+1 ), v k = k I z I,k + k 0 z 0,k + k 1 z 1,k + k 2 z 2,
x 0 (t) 4.4: Simulation results for the third-order system (4.37) with the control law (4.37) using the implicit observer.

Simulation III: Sampling time and initial conditions

In this simulation, the second-order system (4.33) is used with ∆(t) = 10 sin(10000t). The gains of Simulation I, the controller (4.34) and sampling time are kept as in Simulation I. First, Table 4.2 summarizes the behavior of the system with different initial conditions. As it can be seen in Figure 4.5, at time 2.543 sec the law control is saturated, according to Theorem 4.4.2, at time 3.408 sec the system is unsaturated with X k 3 = [-33.29 0.4681] T and it is kept in this way. In the case of X k 3 = [200 -100] T the system is unstable.

Concerning the effects of the sampling time, they can be seen in Figure 4.6. If the sampling time is reduced then the bounds of the estimation errors are reduced, and therefore the indexes of comparison are reduced. The above depends on the discretetime signal β j,k and its bounds δ j .

Experimental Results

Problem statement

The DC-DC buck converter, depicted in Fig. 4.7, consists of a DC input source V s , a controlled ideal switch W s , a rectifier diode D 1 , a filtering inductor L i , a filtering capacitor C p , a load resistance R, and the equivalent series resistances (ESR) R c and R L i of the capatictor and the inductor, respectively.

Here, the control objective is that the output voltage V o (t) converges to a desired constant voltage V ref . Let us define the output voltage error as

x 0 (t) = V o (t) -V ref .
Based on the Kirchhoff's circuit laws, using the large-signal average model of the DC-DC buck converter [START_REF] Fadil | [END_REF], Moreno-Valenzuela 2020, Bacha et al. 2014], the dynamics of the output voltage error can be written as a chain of integrators as ẋ0 (t) =x 1 (t), 

ẋ1 (t) = - 1 L i C p x 0 (t) - 1 RC p x 1 (t) + V s L i C p u(t) - V ref L i C p ,

Experimental results

The experimental platform consists of the DC-DC buck converter, the digital control device and the signal conditioning subsystems (i.e. anti aliasing filter and MOSFET drivers). The digital platform selected to execute the control algorithm is the dSPACE DS1104 Controller Board. A 16-bit resolution is used for analog-to-digital conversion, and the resolution of the digital pulse-width modulator is 50 ns. Serial communication between the dSPACE platform and ControlDesk software is used to monitor the DC-DC buck converter variables. In order to avoid frequency distortion in the voltage control loop due to the aliasing effect, a second-order Chebyshev low-pass filter with -20 dB of attenuation gain is used. The analog filter implementation is performed through a non-inverting Sallen-Key topology with OPA4187. The DC-DC buck converter switches are ultra-low on-resistance power MOSFET IRF3710 driven via dual low side driver IR4427 to minimize propagation times and a pair of 6N135 high-speed photo-coupler to isolate the control signal from the power section. The corresponding experimental setup is given in Fig. 4.8

In the following simulation, the system parameters are as follows: R = 30Ω, C p = 512µF, L i = 255.81µH, V s = 12V. This operating point is selected because the value of R produces that the current in the inductor decreases almost to zero (discontinuous The experimental results are presented in Figure 4.9. Despite the presence of measurement noise, one can see in Figure 4.9 that the proposed controller and observer allow to track the desired reference output voltage. Notice that the proposed scheme shows good performances (e.g. the settling time and overshoot are small enough). Additionally, one can note that the proposed controller enters the saturation region of u k min . Nevertheless, the control objective is still achieved.

Conclusion

In this Chapter, an output feedback controller has been proposed using an implicit discrete-time observer for perturbed chain of integrators using sampled noisy measurements. We have included some additional terms related to the control input in the discrete-time implicit robust exact filtering differentiator. The convergence of the observer to a vicinity of the origin has been ensured for any initial conditions. Then, the sampled-data sliding mode differentiator based controller has been designed. A convergence analysis has been performed, where some conditions on the control gains have been given. A comparison between implicit and explicit discrete-time schemes for a second-order system has been presented. Similar to the results obtained in the simulation of Chapters 2 and 3, the closed-loop implicit differentiator has shown better results than the explicit one. The behavior of the second-order system for different initial conditions and sampling times has been also investigated in the simulation, where the performance index improves if the sampling time is reduced. A simulation for a third-order system has been presented, where it has been showed to be stable for its respective initial conditions. Furthermore, the proposed controller and observer have been implemented for a DC-DC buck converter, where it has been shown that it successfully manages the control objective in spite of the presence of measurement noise. 

CHAPTER5

General Conclusions and Perspectives

General conclusions

In this thesis, we have desgined discrete-time realizations for the continuous-time homogeneous differentiator (1.61) and filtering differentiator (1.69). Additionally, the generalized equations related to the implicit realizations are solved, it was demonstrated that they have a unique solution and the schemes are non-anticipative. The proposed discrete-time differentiators (HEDD, HIDD, MEDFD and MIDFD) preserve the continuous time properties of the continuous-time counterpart. They provide good robustness properties with respect to measurement noises and allow for large sampling periods without a significant decrease of the performances. Stability analysis has been given using homogeneity concept. Furthermore, a sampled-data sliding mode differentiator based controller has been designed. It has been guaranteed that the associated closed-loop discrete-time system is stable. As the implicit discrete-time differentiators require to estimate the roots of the polynomials, root finding methods have been proposed and studied. Simulation results showed that the Halley's method can be used with only three iterations and it was selected to implement the implicit differentiators. Furthermore, in this thesis, it was demonstrated that the Halley's method converge with a order of convergence 3 for the initial condition proposed in Chapter 2. Since the drawback of the implicit discretizations is the number of needed operations, methods to reduce the time complexity were investigated in Chapter 2, where the best methods was the Half-Horner method. As a root finding method is used, there exists an estimation error when the implicit differentiator is implemented. The above fact is taken into account in the convergence proof and its effects at time t k are given in the variable θ k in both discrete-time differentiators. The variable θ k is attenuated by the sampling time. At last, both implicit discrete-time differentiators are robust to bounded numerical errors in the root-finding methods. Contrary to the implicit discrete-time differentiators presented in [Mojallizadeh et al. 2021], HIDD and MIDFD do not require that f n+1 0,k = 0 to obtain a convergence of the estimation errors to the origin. Furthermore, in [Mojallizadeh et al. 2021], it was not demonstrated the convergence of the implicit discrete-time realizations based on the standard differentiator.

Numerical results were presented to show the performance of the differentiators

Chapter 5. General Conclusions and Perspectives

proposed in this thesis (HEDD, HIDD, EDFD, Matching, MEDFD, MIDFD) and in the literature (HDD, GHDD, Matching, DFD, ADFD). Different conditions were considered in terms of signal functions, sampling times and measurement noise. It can be seen in 2 and 3 that the implicit discrete-time differentiators supersede the explicit realizations. On the other hand, in 4 MIDFD has been modified and studied in closed-loop with an output feedback controller for perturbed chain of integrators using sampled noisy measurements. The convergence conditions of the closed-loop system were given. A comparison between implicit and explicit discrete-time schemes for a second-order system has been presented in 4. Similar to the results obtained in the simulation of Chapters 2 and 3, the closed-loop implicit differentiator has shown better results than the explicit one. Furthermore, the proposed controller and observer have been implemented for a DC-DC buck converter, where it has been shown that it successfully manages the control objective in spite of the presence of measurement noise.

Future perspectives

In this work, some problems related to implicit-time discretization were solved (e.g., implicit realizations of the robust standard differentiator and filtering differentiator for any order, stability proof taking into account measurement noises and numerical errors, closed-loop scheme combining a saturated controller and an implicit observer with its stability analysis, ...). However, as it is mentioned in [Brogliato & Polyakov 2020],

there are still open problems related to our implicit discrete-time realization, for instance, the consideration of non-constant sampling time. Then, future works should be focused on the study of the behavior of the implicit differentiators with non-constant sampling time, and its behavior in closed loop systems using an appropriate discretetime controller, which requires the estimation of the signal derivatives. An example of the above is the trajectory tracking problem. Since, the implicit discrete-time realizations were compared with existing discrete-time realizations of the standard differentiator and the robust exact filtering differentiator, then, a comparative analysis of both realizations with other observers is important (e.g., Kalman filter, linear, non-homogeneous and Alien differentiators, ...).

Additionally, the implicit discrete-time realizations provide finite-time stability of the observation error. However, its convergence time depends on the initial condition. Hence, large values of initial errors (|σ 0,0 |, |σ 1,0 |, • • • , |σ n,0 |) implies a large value of the settling-time. Then, one could attempt to obtain an implicit fixed-time or predefined stable differentiator to avoid large values of the settling time.

Systems with a large sampling time, appear in many real-time applications. In this thesis, it is shown that the performance of the implicit differentiators supersede to the performance of the explicit one. Although MIDFD was implemented for a DC-DC buck converter, one could consider many other applications, for instance, mobile robots with a limited sampling time.

One important fact is than the MIDFD takes a measurement at time t k and an estimation is obtained for t k+1 and the HIDD obtains an estimation at time t k . A 5.2. Future perspectives similar effect is obtained with the implicit differentiators obtained from the standard differentiator [Mojallizadeh et al. 2021], where they require to use a measurement at time t k+1 to be implemented. Then, is it possible to obtain a discrete-time differentiator from the standard differentiator? and what is the reason? It may be an other interesting research study. 
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  k is the estimation error of the roots r N 0 , and it is considered equal to zero for b N k ∈ [-a 0 , a 0 ]. E 3,k depends on the implemented root-finding method, the initial condition of the estimate, τ and b N k . Nevertheless, if its estimation converges monotonically to r N 0 , and its initial condition belong to 0, b N k -
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 2 Figure2.5: Estimation of f 0 (t) and its first 3 derivatives, where the functions are shown with a black line, HIDD with a blue line, HEDD with a green line, HDD with a red line, GHDD with a cyan line and Matching with a magenta line.
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  Furthermore, as r 0 is positive, then for b k / ∈ [-a 0 , a 0 ], ῡj,m has the alternative form ῡj,m (w 1,k+1 ) = -λ m-j L j+1 m+1 r m-j 0 ξ k . With this form, one avoids to calculate the roots |w 1It is important to mention that MIDFD and Lemma 3.1, are valid for n f > 0. In the case of n f = 0, HIDD (2.42) is used instead of it.

  1: Value of d j j f for 1 ≤ j f ≤ 8.

Lemma 3 . 2

 32 The explicit discrete-time realization(3.15) preserves the homogeneity property of its continuous-time counterpart.
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 33 The implicit discrete-time filtering differentiator(3.24) preserves the homogeneity property of its continuous-time counterpart.Proof The proof is similar to the presented one for Lemma 3.2. Remark 3.5.1 b k can be represented as a function of ωj f ,k , σ0,k , τ and β 0 j,• . Then, b k satisfies an inclusion which is homogeneous. Hence, after the finite-time transient mentioned in Theorem 3.5.3, b k and r 0 are bounded. Explicit and implicit discretizations of the filtering differentiator

  t 4 + sin(t) and ∆(t) = 0. The simulation parameters are n f = 7, n = 3, τ = 0.005 sec, L = 25 and k L = 1000. The parameters λ j are selected as in [Jbara et al. 2020], λ 0 = 1.1, λ 1 = 36.3354, λ 2 = 586.7823, λ 3 = 5025.3982, λ 4 = 19894.4668, λ 5 = 31601.1491, λ 6 = 24295.4978, λ 7 = 8907.9978, λ 8 = 1908.4659, λ 9 = 251.9857 and λ 10 = 20. In this simulation, t max = 100 sec and the same initial conditions w T 0 z T 0 are used for each differentiator, w T 0 z T 0 = [0 0]. For the two performance indexes, it is selected t min = 25 sec (i.e., at this time, the discrete-time differentiation errors, except for the EDFD, have already converged to a vicinity of the origin). The corresponding results are given in Figure 2.6 and Table 3.3.

  (a) Estimation error of the signal. (b) Estimation error of the first derivative. (c) Estimation error of the second derivative. (d) Estimation error of the third derivative.

Figure 3 .

 3 Figure 3.1: Estimation error of the signal and its derivatives in Simulation I.

Figure 3 . 2 :

 32 Figure 3.2: b k and r 0 for MIDFD in Simulation II.
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 33 Figure 3.3: Estimation error of the signal and its derivatives in Simulation II.
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 3 2t) -sin(t) with ∆(t) = 5 cos(10 8 t) and under different sampling times τ ∈ [0.000005 sec, 0.1 sec], in specific, 25 logarithmically spaced points were used. Contrary to the previous simulations, Y j is plotted with different sampling times. The simulation parameters are n f = 3, n = 3, k L = 10 5 , L = 90, λ 0 = Explicit and implicit discretizations of the filtering differentiator 1.1, λ 1 = 9.91, λ 2 = 43.6484, λ 3 = 101.9548, λ 4 = 110.0817, λ 5 = 47.6904, λ 6 = 10, t min = 5 sec and t max = 15 sec. Initial conditions are selected as w T 0 z T 0 = [0 0]. The corresponding results are presented in Figure 3.4. As it can be seen in Figure 3.4, the best performance is obtained using MIDFD for almost any signal and sampling time. MAE of the third derivative.
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 3 initial conditions, parameters λ j , n f and n are selected as in Simulation I and II. L = 10 and ∆(t) = 0. Concerning the functions, they have a bounded forth derivativeChapter Explicit and implicit discretizations of the filtering differentiatorfor almost any time (t ̸ = 5, 15, 40). Moreover, since, there is a switch of functions, its estimations errors are changing. The results are presented in, where the best estimations are obtained with MIDFD. Estimation of the second derivative.
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 38 Figure 3.8: Estimation errors of the input and its derivatives.
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 3 and b k = -w 1,k -τ (z 0,k -x0,k ). Using Theorems 4.4.1 and 4.4.2, the controller parameters are selected as C = 50 and K = [k I k 0 k 1 ] T = [-0.1 -0.6 -0.4] T . Hence, eigenvalues of Ω(τ ) are 0.9981, 0.9979 + 0.0069i and 0.9979 -0.0069i.
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  |E k | and ∥F k ∥ 2 .
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 42 Figure 4.2: Simulation results for the second-order system (4.33) with the control law (4.34) using the implicit and explicit observers.
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 4 Figure 4.2 shows that the discrete-time observers give a robust estimate in finitetime of x(t) in spite of the presence of measurement noise. Furthermore, it can be seen in Fig.4.1 that the closed-loop system is stable. It is worth noting that the results with the implicit observer supersede the implicit one. In order to compare the results obtained with both discrete-time observers, the root mean square value of the states and its maximum absolute value after 50 sec are presented in Table4.1. Furthermore, according to definition of |E k | and ∥F k ∥ 2 both are bounded, then its maximum value after 50 sec is presented as ME and MF in Table4.1.
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  k , z I,k+1 = z I,k + τ z 0,k .(4.38) Similar to Simulation I,Z k = [z I,k z 0,k z 1,k z 2,k ] T ∈ R 4 isdefined using the estimated state obtained from the implicit discrete-time filtering observer(4.2). Its parameters are given by L = 1, n = 2, n f = 1 and λ j given in[START_REF][END_REF], which is given as:w 1,k+1 =w 1,k + τ (z 0,k -x0,k ) -τ λ 3 L Lξ k , z 0,k+1 =z 0,k + τ z 1,k + τ Lξ k , z 1,k+1 =z 1,k + τ z 2,k + τ Lξ k , z 2,k+1 =z 2,k + τ u k -τ λ 0 Lξ k , (4.39)where ξ k and w 1,k+1 are calculated according to Lemma 3.1, its respective polynomials are defined as:p (r) = r 4 + a 3 r 3 + a 2 r 2 + a 1 r + (-b k + a 0 ) , p (r) = r 4 + a 3 r 3 + a 2 r 2 + a 1 r + (b k + a 0 ) , k = -w 1,kτ (z 0,k -x0,k ).Using Theorem 4.4.1 and 4.4.2, the controller parameters are selected as C = 20 and K = [k I k 0 k 1 k 2 ] T = [-0.2 -0.3 -1.2 -0.5] T . Due to the above 4.5. Simulation results
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  Figure 4.4: Simulation results for the third-order system (4.37) with the control law (4.37) using the implicit observer.
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 45 Figure 4.5: Simulation results for the second-order system (4.33).
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 4 Figure 4.8: Experimental setup using the DC-DC buck converter.

  Reference tracking error and its estimation.

Figure 4 . 9 :

 49 Figure 4.9: Experimental results with the DC-DC buck converter.
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  Set of negative real numbers. • proj M [C; y] Orthogonal projection at a point y ∈ R n , for a positive definite matrix M and a closed non empty convex set C.

	• R	Set of real numbers.
	• N C (x)	Normal cone to the set C at a point x ∈ R n .
	• σ C (x)	Support function of a non-empty compact convex set C
		at a point x ∈ R n .
	• R +	Set of positive real numbers.
	• R -	
	• sign(x)	Set-valued function sign.
	• τ	Sampling time.
	• Λ m (α)	Dilation matrix.
	• n	Number of estimated derivatives.
	• f 0 (t)	Function at least n times differentiable.
	• ∆(t)	Measurement noise.
	• e i	Canonical vectors i.
	• K i,n	Kolmogorov constants.
	• σ i	Estimation error of the derivative i.
	• λ i	
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Assumption 1.3.1 The function f 0 (t) is at least n times differentiable, and its n-th derivative has a known constant Lipschitz L ≥ 0. Assumption 1.3.2 The measurement noise

  

	∆(t) is a bounded Lebesgue measurable
	noise, i.e., there exists δ ≥ 0 such that |∆(t)| ≤ δ.	
	From Assumption 1.3.1, one can deduce that f 0 (n+1)	(t) ∈ [-L, L] for almost any
	time. Additionally, the following assumption about the measurement noise can be used
	instead of Assumption 1.3.2 to improve the estimation of the standard differentiator.
	Assumption 1.3.3 ([Levant & Livne 2019]) The measurement noise consists of n

  .56) One can mention that in the absence of noise, the polynomials (2.36) and (2.37) are the same as the polynomials (2.55) and(2.56). Note that if τ tends to zero, the roots of the polynomials (2.55) and (2.56) tend to (σ 0,k

  .59) which is constant during the time interval [t k , t k+1 ). Here, E 1,k , E 2,k and E 3,k are defined as:

Remark 2.3.3

  It is important to note that for HEDD z k estimates x k , whereas for HIDD z k+1 estimates x k . Therefore, ε i,k is the estimation error between z i,k+1 and x i,k at time t k . Nevertheless, z i,k+1 is available at time t k plus the time required to compute z i,k+1 . On the other hand, as σ 0,k almost compensates n l=1 τ l l! z l,k , it could tend to infinity for signals with unbounded derivatives. However, Theorem 2.3.2 implies, under its respective assumptions, that ε i,k converges to a vicinity defined by(2.76). If there exists a known constant m > n such that |f

	Remark 2.3.4

Explicit and implicit discretizations of homogeneous differentiator

  

		.107)
	Using the methodologies (2.99), (2.100) and (2.102) a quadratic time complexity
	is obtained, i.e.	
	T (n) = 2n 2 + 24n + 46.	(2.108)

If

(2.106

) is used instead of (2.102), the quadratic time complexity is given as:

T (n) = 2n 2 + 42n + 58.

(2.109)
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Table 2 .

 2 1: Computing time of the algorithms for n = 3 and τ = 0.001 sec.

		2000 sec	10000 sec 25000 sec 50000 sec
	Evaluation			
	without ϕ i ,	0.5963 sec 2.990 sec 7.470 sec 15.059 sec
	b * i,j , c i and d i			
	Direct			
	Evaluation	0.3578 sec 1.783 sec 4.475 sec 9.027 sec
	Half-Horner 0.3494 sec 1.753 sec 4.411 sec 8.896 sec
	Full-Horner 0.3496 sec 1.756 sec 4.407 sec 8.908 sec
	Shaw-Traub 0.3852 sec 1.922 sec 4.813 sec 9.661 sec
		2000 sec 10000 sec 25000 sec 50000 sec
	Evaluation			
	without ϕ i ,	6.791 sec 33.808 sec 85.045 sec 169.95 sec
	b * i,j , c i and d i			
	Direct			
	Evaluation	0.486 sec 2.414 sec	6.035 sec	12.51 sec
	Half-Horner 0.466 sec 2.286 sec	5.729 sec	11.61 sec
	Full-Horner 0.457 sec 2.293 sec	5.763 sec	11.51 sec
	Shaw-Traub 0.503 sec 2.46 sec	6.210 sec	12.718 sec
	Table 2.2: Computing time of the algorithms for n = 7 and τ = 0.001 sec.
		2000 sec	10000 sec 25000 sec 50000 sec
	Evaluation			
	without ϕ i ,	14.312 sec 71.6 sec	179.37 sec 358.09 sec
	b * i,j , c i and d i			
	Direct			
	Evaluation	0.831 sec	4.192 sec 10.33 sec	20.527 sec
	Half-Horner 0.5437 sec 2.75 sec	6.858 sec	13.692 sec
	Full-Horner 0.5631 sec 2.807 sec 6.997 sec	14.139 sec
	Shaw-Traub 0.6101 sec 3.097 sec 7.767 sec	15.464 sec

Table 2 . 3

 23 

: Computing time of the algorithms for n = 10 and τ = 0.001 sec.

Table 2 .

 2 10 -5 1.51 × 10 -3 2.34 × 10 -3 5.73 × 10 -4 2 × 10 -3 Y 1 9.16 × 10 -4 2.13 × 10 -2 2.582 × 10 -2 8.51 × 10 -3 2.28 × 10 -2 10 -6 7.39 × 10 -4 1.03 × 10 -32.06 × 10 -4 9.8 × 10 -4 y 1 3.59 × 10 -4 1.01 × 10 -2 1.23 × 10 -23.27 × 10 -3 1.18 × 10 -2 y 2 1.09 × 10 -2 7.78 × 10 -2 9.2 × 10 -23.44 × 10 -2 8.24 × 10 -2

		HEDD	HDD	GHDD	Matching
	Y 0 1.23 × Y 2 2.25 × 10 -2 0.17	0.21	8.06 × 10 -2 0.15
	Y 3 0.351	0.79	0.83	0.6	0.54
	y 0 3.91 × y 3 0.15	0.33	0.37	0.24	0.34

4: Indexes Y i and y i for each discrete-time differentiator.

Table 3 .

 3 2: Value of g
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	MAE/RMSE DFD EDFD MEDFD MIDFD	ADFD
	Y 0	5.19	9999.16 1.25	2.32 × 10 -2 5.2
	Y 1	21.88 306.87	7.33	0.37	21.94
	Y 2	43.99 26.56	20.8	2.98	44.15
	Y 3	47.3	32.44	32.28	12.65	47.44
	y 0	4.97	4364.33 1.19	1.58 × 10 -2 4.97
	y 1	21.32 160.75	6.95	0.27	21.32
	y 2	42.81 23.4	19.62	2.32	42.81
	y 3	45.75 30.44	30.39	10.58	45.75

Table 3 .

 3 3: Indexes Y j and y j for each discrete-time differentiator in Simulation I.

Table 3 .

 3 4: Indexes Y j and y j for each discrete-time differentiator in Simulation II.

	MAE/RMSE DFD EDFD	MEDFD	MIDFD	ADFD
	Y 0	0.56	0.18	0.19	0.12	0.56
	Y 1	5.53	2.43	2.42	1.46	5.53
	Y 2	25.01 15.18	15.15	10.04	25.01
	Y 3	57.8	54.66	55.06	42.99	57.80
	y 0	0.32	9.04 × 10 -2 9.42 × 10 -2 4.51 × 10 -2 0.32
	y 1	3.11	1.30	1.31	0.65	3.11
	y 2	14.26 8.58	8.58	5.32	14.26
	y 3	33.06 29.28	29.29	23.92	33.06

  and the discrete-time output measurement is y(t k ) ∈ R. The measurement noise ∆ k = ∆(t k ) satisfies Assumption 3.3.1 and the perturbation d(t) is bounded by a known constant, i.e., |d(t)| ≤ D.

	Remark 4.2.1 It can be noted that system (4.1) includes motorized actuators or
	robotic arms with n = 2

Output Feedback Stabilization of Integrator Chains using MIDFD

  5) is a classical PID control law for the case of n = 1.

	Since d(

Remark 4.3.1 Although a forward Euler integration is used in (4.6), one can use other approximations.

Chapter 4.
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  instants t k 0 , t k 1 , t k 2 and t k 3 are measurement times but t f could not be a measurement time. As it will be demonstrated hereafter, t k 1 , t k 3 and t f are finite. On the other hand, t k 2 is finite due to the results presented in Theorem 3.5.3. Furthermore, t k 0 , t k 1 and t k 2 satisfy that t k 0 ≤ t k 1 < t k 2 . Now, the main results are presented:

.14) • t f is the time instant after t k 0 and t k 1 such that v(t f ) < C. Chapter 4.

  .15)with j d = 0, 1, • • • , n and E k at time t k 2 , then |v k | < C at time t k 2 .

Proof Let us consider the case v k ≥ C at time t k 1 . Then, on the time interval t k 0 ≤ t < t k 2 , one can see that the state x n (t) satisfies the differential equation ẋn (t) = d(t) + C and, as |d(t)| ≤ D and u(t) = C, one obtains:

4. Stability analysis of the output feedback controller

  Due to inequalities(4.18) and(4.19), C -D > 0 and C + D > 0, then v(t) < C at time t f , which is finite. Now, it is considered the value of v k for the measurement time after t f , which is t k 2 . Note that t k 2 ∈ [t f , t f + τ ]. The estimation errors |σ j d ,k |, with j d = 0, 1, • • • , n,and the sampling time τ have to be small enough to satisfy the following condition:

.19) 4.

Output Feedback Stabilization of Integrator Chains using MIDFD

  

	One can deduce that

.24) Chapter 4.

Table 4 .

 4 1. Furthermore, according to definition of |E k | and ∥F k ∥ 2 both are bounded, then its maximum value after 50 sec is presented as ME and MF in Table 4.1.

	RMSV Implicit Observer Explicit Observer
	x 0 (t)	0.5053	2.626
	x 1 (t)	0.1688	0.3108
	MAV	Implicit Observer Explicit Observer
	x 0 (t)	0.9034	3.9769
	x 1 (t)	0.5431	0.5603
		Implicit Observer Explicit Observer
	ME	0.4912	2.8915
	MF	0.01077	0.04898

Table 4 .

 4 1: Root mean square value and Maximum absolute value of the states.

Chapter 4. Output Feedback Stabilization of Integrator Chains using MIDFD (x

  0 (0), x 1 (0)) RMSV x 0 (t) RMSV x 1 (t) MAV x 0 (t)

	(20,-5)	0.371839	0.040175	0.568306
	(30,5)	0.371783	0.043403	0.577819
	(40,-10)	0.372305	0.043728	0.578355
	(50,-25)	0.373469	0.047986	0.582988
	(200,-100)	-	-	-
	(x 0 (0), x 1 (0))	MAV x 1 (t)	ME	MF
	(20,-5)	0.080351	0.107837	0.000609
	(30,5)	0.125534	0.108019	0.000609
	(40,-10)	0.108718	0.107837	0.000609
	(50,-25)	0.130512	0.107837	0.000609
	(200,-100)	-	-	-

Table 4 .

 4 2: Behavior of the system for initial conditions X k 3 .

  Cp u(t) is the control input or duty cycle and ∆(t) represents measurement noise.

	(4.41)
	y(t) =V o (t) + ∆(t),
	Vs
	L i
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