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Titre: Contribution to the discretization of sliding mode differentiators

Résumé: Ce travail vise à concevoir des algorithmes en temps discret permettant d’estimer les dérivés
successives d’un signal bruité. Dans un premier temps, nous avons introduit et analysé une réalisation explicite
et implicite en temps discret du différenciateur homogène en temps continu. Le différenciateur implicite en
temps discret n’est pas anticipatif et repose sur une estimation de l’unique racine positive d’un polynôme, qui
dépend des états et de l’entrée du système. La stabilité de ces réalisations est étudiée en utilisant la notion
d’homogénéité. Une implémentation efficace est également proposée pour réduire la complexité temporelle de
l’algorithme. Dans un second temps, nous avons introduit et analysé des réalisations explicites et implicites pour
le différenciateur filtré exact robuste en temps continu. Une version explicite, basée sur la discrétisation exacte
des systèmes linéaires avec un bloqueur d’ordre zéro, est introduit. Cependant, la présence de termes d’ordre
élevé dans la dynamique du filtre peut provoquer une instabilité de l’erreur d’estimation pour les signaux avec des
dérivées non bornées. Par conséquent, une version modifiée est proposée, visant à supprimer cet inconvénient.
Sur la base de ce schéma, une version implicite est dérivée. On montrera, en utilisant la propriété d’homogénéité,
qu’après un temps fini, les différenciateurs explicites et implicites en temps discret préservent la précision de
celui en temps continu malgré la présence de bruit de mesure. Sur la base de ces résultats, un contrôleur basé
sur le différentiateur filtré est élaboré en utilisant les mesures bruitées et échantillonnées. Une analyse de la
stabilité en boucle fermée est fournie pour un système de type chaîne d’intégrateurs avec mesures échantillonnées
et bruitées. Des résultats de simulation sont effectués pour comparer les méthodes de discrétisation proposées
avec d’autres schémas existants pour mettre en évidence, par exemple, ses avantages en termes de précision
lorsque des périodes d’échantillonnage relativement grandes sont considérées. Une validation expérimentale est
réalisée sur le convertisseur abaisseur de tension DC-DC.

Mots-Clés: Discrétisation implicite; Différenciateur robuste; Modes glissants à temps dis-
cret; Systèmes homogènes; Différenciation en ligne; Contrôle du mode coulissant; Stabilisation
du retour de sortie.

Title: Contribution to the discretization of sliding mode differentiators

Abstract: This work aims to design discrete-time realization to estimate the successive time derivatives
of a noisy signal. Explicit and implicit realizations in discrete-time of the continuous-time homogeneous differ-
entiator are introduced and analyzed. The discrete-time implicit differentiator is non anticipative and relies on
an estimate of the unique positive root of a polynomial, which depends on the states and the input of the system.
The stability of these realizations is studied using the notion of homogeneity. An efficient implementation is also
proposed to reduce the time complexity of the implicit version. Secondly, we introduced and analyzed explicit
and implicit realizations for the continuous-time robust exact filtering differentiator. An explicit version, based
on the exact discretization of linear systems with a zero order hold, is introduced. However, the presence of
high order terms in the filter dynamics can cause instability of the estimation error for signals with unbounded
derivatives. Therefore, a modified version is proposed, aimed at eliminating this drawback. Based on this
scheme, an implicit version is derived. It is shown, using the property of homogeneity, that after a finite time,
the explicit and implicit realizations preserve the accuracy of the continuous counterpart despite the presence
of measurement noise. Based on these results, a controller based on the filtered differentiator is built using
the sampled noisy measurements. A closed-loop stability analysis is provided for a chain-of-integrators system
with sampled and noisy measurements. Simulation results are performed to compare the proposed discretiza-
tion methods with other existing schemes to highlight, for instance, its advantages in terms of accuracy when
relatively large sampling periods are considered. An experimental validation is carried out on the DC-DC buck
converter.

Keywords: Implicit discretization; Robust differentiator; Discrete-time sliding modes; Ho-
mogeneous Systems; Online differentiation; Sliding mode control; Output feedback stabilization.
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Motivation

Sliding-modes are widely used to design and implement observer [Utkin et al. 2009,
Kim 2010, Lienhardt et al. 2007, Ren et al. 2019] due to their finite-time convergence,
accuracy and robustness properties with respect to uncertainties [Utkin et al. 2009, Ed-
wards & Spurgeon 1998]. One of its main disadvantages is the chattering effect [Lev-
ant 2010], which might be cause by measurement noise, delays, inadequate discretiza-
tion and hysteresis effects [Levant 2010].

In many control engineering applications, real-time differentiation of a noisy sig-
nal is required [Atassi & Khalil 2000, Levant 2003] (e.g., PID and output-feedback
controllers, observers, supervision, ...). The main challenge concerning the design of
real-time differentiators is the trade-off between exactness and noise filtration perfor-
mances [Rodrigues & Oliveira 2018]. For instance, the explicit Euler differentiator
amplifies the effect of measurement noise. Therefore, measurement noises with small
magnitude may significantly affect the estimate of the signal derivatives. To deal with
this issue, linear filters (i.e., a combination of low-pass filter and ideal differentiator)
were investigated. However, they require an appropriate tuning of the parameters
according to noise characteristics and only guarantee asymptotic time convergence
of the differentiaton errors. To alleviate these limitations, continuous-time homoge-
neous differentiators based on sliding modes have been proposed to estimate the first
n derivatives of a noisy signal under the assumption of athe existence of a known Lip-
schitz constant for the n-th derivative of the free-noise signal [Levant 2003]. Several
proofs and numerical studies show that such differentiators present excellent robust-
ness properties to bounded noises and exact finite-time convergence in the absence of
noise. Furthermore, these attractive properties motivate their application in several
applications [Kaveh & Shtessel 2008, Shtessel et al. 2007, Iqbal et al. 2011].

Recently, in [Levant & Livne 2019], a continuous-time filtering differentiator has
been investigated to improve the accuracy compared with the standard one [Lev-
ant 2003], under a specific class of noises. Mainly, for bounded noises, it presents
the same accuracy as the standard one. In contrast to the standard differentiator,
the robust exact filtering differentiator rejects the effects of some large noises after a
finite time. Furthermore, this differentiator can filter out unbounded noises composed
of signals of global filtering order j ∈ N, where j is less than or equal to the filtering
order of the differentiator.

A discrete-time version of the standard differentiator is needed to implement
a controller or an observer on a digital device. However, an improper discretization
may result in eliminating the properties of its continuous-time counterpart or unde-
sirable behavior due to, for instance, numerical chattering [Polyakov et al. 2019] or
the asymptotic accuracy of the continuous-time differentiator [Livne & Levant 2014].
Therefore, some discrete-time sliding mode schemes have been introduced and applied
in several works [Polyakov et al. 2019, Drakunov & Utkin 1990, Utkin 1994, Kiku-
uwe & Fujimoto 2006, Su et al. 2000]. In particular, for the standard differentiator
and robust exact filtering differentiator, some explicit discrete-time realizations have
been proposed in [Levant & Livne 2019, Livne & Levant 2014, Koch et al. 2020, Bar-
bot et al. 2020, Carvajal-Rubio et al. 2021a, Carvajal-Rubio et al. 2020b, Hanan
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et al. 2020, Mojallizadeh et al. 2021] to preserve properties of the respective continuous-
time system using different methodologies. The discrete-time filtering differentiator,
proposed in [Levant & Livne 2019], corresponds to an Euler discretization with Taylor-
like terms for the states that estimate the signal derivatives. Similarly, the scheme
presented in [Hanan et al. 2020] preserves the accuracy of the filtering differentiator.

Recently, other discrete-time schemes that rely on an implicit discretization have
been introduced [Brogliato et al. 2019, Luo et al. 2019, Huber et al. 2013]. It has
been shown that such discrete-time realizations preserve the existing properties of the
continuous-time sliding mode algorithms and reduce the numerical chattering. Con-
trary to many explicit discretization methods, implicit ones do not significantly reduce
the performance for large sampling times in terms of robustness properties to matched
perturbations and accuracy while not being sensitive to control gain variations. Nev-
ertheless, they require a more elaborate scheme compared with their explicit counter-
parts. A pioneer work [Drakunov & Utkin 1990] has presented an implicit discretiza-
tion for the scalar case where the disturbance is required to be known. Then, other
works, [Brogliato et al. 2019, Huber et al. 2013] have introduced a time discretiza-
tion of the original plant and an implicit discretization of the controller, where the
unperturbed plant is analyzed to obtain a causal controller. Moreover, implicit time-
discretization schemes have been derived for twisting and super-twisting controllers
[Brogliato et al. 2019, Huber et al. 2019], finite-time and fixed-time systems [Polyakov
et al. 2019], where the stability properties are preserved. The implicit discrete-time
super-twisting [Brogliato et al. 2019] has presented convergence to the origin in a finite
number of steps for the unperturbed case.

At last, a control law often needs the derivatives of noisy signals (i.e., the mea-
surements). Hence, several works consider the design of sliding mode differentiator-
based controllers due to finite-time property (see [Oliveira et al. 2017, Castañeda
et al. 2021] for instance). However, differentiators require high gains to deal with
the system uncertainties when they are used in a closed-loop. It is even more difficult
when high-order differentiators are needed since it yields the sensitivity of the closed-
loop system with respect to measurement noise and discretization effect. It should be
highlighted that the sampled-data sliding mode differentiator-based control design is
not well-investigated in the literature.

Objective

The main objectives of this thesis are to design new discrete-time realizations for the
continuous-time homogeneous and filtering differentiators such that they

• allow for large sampling periods without a significant decrease of the perfor-
mances,

• reduce the numerical chattering,

• preserve the continuous-time properties of continuous-time counterpart, for in-
stance, the finite-time convergence and perturbation rejection,

Jose Eduardo Carvajal Rubio Page 3
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• provide good robustness properties with respect to measurement noises.

Furthermore, a sampled-data sliding mode differentiator based controller is designed
which guarantees that the associated closed-loop discrete-time system is stable.

Contributions of the thesis

The main contributions of this work are the following

• To introduce explicit and implicit discrete-time realizations of the continuous-
time homogeneous differentiator.

• To introduce explicit and implicit discrete-time realizations of the continuous-
time robust exact filtering differentiator.

• The unique solution of the implicit differentiators is non-anticipative, relies on a
root finding method and preserves the properties of the continuous-time differ-
entiators.

• The stability property of the proposed schemes are analyzed using homogeneity
property.

• The cubic convergence of the Halley’s method for the implicit differentiator is
demonstrated.

• An efficient implementation is proposed to reduce the time complexity for the
implicit method.

• A sampled-data sliding mode differentiator based controller is designed.

• The link between the disturbance bound and the observer parameters of the
filtering differentiator is discussed.

• A stability analysis of the closed-loop system combining the robust exact filtering
observer and a saturated output feedback controller is provided for integrator
chains with sampled data.

• Comparisons between the proposed implicit and explicit discrete-time realiza-
tions with other existing schemes, highlighting that the implicit scheme super-
sedes the explicit one are provided.

• Comparisons between the implicit discrete-time closed-loop differentiator and the
explicit one [Levant & Livne 2019] are given to highlight the advantages in terms
of accuracy of the proposed scheme.

• Experiments are conducted on the DC-DC buck converter to show the effective-
ness of the proposed scheme.

Jose Eduardo Carvajal Rubio Page 4
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Organization

The thesis is divided as follows.

• In Chapter 1, some preliminaries on set-valued functions, generalized equations,
homogeneous systems are recalled. Explicit and implicit discretization methods
are discussed. The differentiation problem is introduced and some continuous-
time differentiators are recalled. At last, some existing discrete-time realizations
of the standard differentiator are reported. All these concepts will be very useful
to derive the main results in the following Chapters.

• In Chapter 2, two discrete-time realizations of the homogeneous differentiator,
i.e. an explicit and an implicit one, namely HEDD and HIDD are introduced.
Furthermore, its main properties are studied and it is demonstrated that they
preserve the accuracy of their continuous-time counterparts after a finite time.
An implementation strategy is proposed for the implicit discrete-time realiza-
tion, which is non-anticipative and includes a root-finding method based on Hal-
ley’s method. Different methodologies are also discussed to obtain an efficient
implementation, in terms of time complexity, of the implicit discrete-time dif-
ferentiator which rely on the Horner’s method and the Shaw-Traub algorithm.
Simulation results using the proposed interpolation methods were carried out to
show a noticeable improvement compared to a direct implementation. A com-
parison analysis of discrete-time realizations of the robust exact differentiator
with existing ones is provided. It was shown that HIDD exhibits the best per-
formance for a free-noise case and in the presence of noise. Furthermore, HIDD
supersedes HEDD, consistent with the implicit and explicit time discretization
of other continuous-time systems.

• Chapter 3 is focused on novel explicit and implicit realizations for the continuous-
time robust exact filtering differentiator [Levant & Livne 2019]. First, a time
discretization of the robust exact filtering differentiator based on the Matching
approach is investigated. It relies on the stabilization of a pseudo linear discrete-
time system. Then, an explicit discrete-time filtering differentiator, based on
the exact discretization of linear systems with a zero-order holder, is introduced.
However, the presence of high-order terms in the filter dynamics may cause in-
stability of the estimation error for signals with unbounded derivatives. Hence,
a modified explicit discrete-time filtering differentiator is proposed, aiming to
remove such a drawback of the exact discretization. Based on this scheme, an
implicit version is derived. It will shown, using the homogeneity property, that
after a finite time, the explicit and implicit discrete-time filtering differentiators
preserve the accuracy of the continuous-time one despite the presence of mea-
surement noise. Finally, some simulation results include comparisons between
the proposed implicit and explicit discrete-time realizations with other existing
schemes, highlighting that the implicit scheme supersedes the explicit one.

• In Chapter 4, the stabilization problem for perturbed chain of integrators using
sampled noisy measurements is investigated. First, an implicit discrete-time
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realization of the robust exact filtering differentiator is derived to include some
additional terms related to the control input. An appropriate output feedback
control law is then derived. The stability of the closed-loop system is studied. A
comparison between the implicit discrete-time closed-loop differentiator and the
explicit one [Levant & Livne 2019] is given to highlight the advantages in terms
of accuracy of the proposed scheme. At last, experiments are conducted on the
DC-DC buck converter to show the effectiveness of the proposed scheme.

• In Chapter 5, the obtained results are summarised and possible future research
directions are given.
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CHAPTER1
Preliminaries and state of the art
In this chapter, some preliminaries, used to derive the main results in the following
Chapters, are given. First, before describing some basics on time discretization, we
recall some concepts and definitions related to set-valued functions and generalized
equations. Then, we introduce some existing discretization methods (explicit and im-
plicit ones). One can note that the implicit discretization of first order sliding mode
schemes preserve the properties of continuous-time sliding mode one to the digital im-
plementation setting. However, the study of high order sliding mode schemes require
some concepts as homogeneity. Hence, Section 1.2 will focus on homogeneous systems,
the associated convergence properties and robustness properties with respect to delays,
measurement noise and disturbances. The differentiation problem is introduced in Sec-
tion 1.3. Furthermore, two continuous-time homogeneous differentiators are presented
(i.e., the robust exact differentiator also called standard differentiator and the robust
exact filtering differentiator). One can note that the continuous-time homogeneous
differentiators include integration and continuous-time measurements. To implement
these differentiators on a digital device, a proper discretization is required. Hence, in
Section 1.4, some existing discrete-time realizations of the standard differentiator are
reported.

1.1 Time discretization

Before describing some basics on time discretization, let us recall some concepts related
to set-value functions and generalized equations.

1.1.1 Set-valued functions

In this section, the set-valued functions and selections are defined. Both concepts are
used to obtain the implicit time discretizations of Chapters 2 and 3. A set-valued
function is defined as follows:

Definition 1.1 [Hiriart-Urruty & Lemaréchal 2004] A mapping F of x ∈ Rn asso-
ciated to a subset of Rm is called a set-valued function. This mapping is represented
with the notation:

Rn ∋ x 7−→ F (x) ⊆ Rm, (1.1)
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or also as

F : Rn ⇒ Rm. (1.2)

The domain of F , dom(F ), is the set of x ∈ Rn such that F (x) ̸= ∅. The image of
a set-valued function F is the union of all the sets F (x) ⊆ Rm with x ∈ Rn. The
graph of F , gr(F ), is defined as the union of the sets {x} × F (x) ⊆ Rn × Rm, where
x belongs to the domain of F . A remarkable concept related to set-valued functions
is the selection of F

Definition 1.2 A selection of F is a function f : dom(F ) 7→ Rn with f(x) ∈ F (x)
for all x ∈ Rn.

Concerning set-valued functions, the upper semi-continuous concept is defined as fol-
lows:

Definition 1.3 A set-value function F is upper semi-continuous in x0 ∈ Rn if for
any open set A such that F (x0) ⊆ A, then F (x) ⊆ A for all x close enough to x0.

Example 1.1 An example of an upper semi-continuous in 0 is:

F (x)
{

{0} if x ̸= 0,

[−1, 1] if x = 0.
(1.3)

■

The main difference between a real valued function and a set-valued function is
that a real valued function maps from one element of Rn to an element in Rm, whereas
a set-valued maps from one element of Rn to one or more elements in Rm. In this
work, some set-valued functions are used, e.g., the sign function and the normal cone.
The first one is defined as, let x ∈ R then

sign(x) =


1 if x > 0,

[−1, 1] if x = 0,

−1 if x < 0.

(1.4)

Notice that sign(x) is a set-valued function because it maps from 0 to the set
[−1, 1] and it is upper semi-continuous. On the other hand, the following two set-valued
functions are defined [Bachem et al. 2012]:

Definition 1.4 Let C ∈ Rn be a convex and close set, then the normal cone to the set
C at a point x ∈ Rn is defined as:

NC (x) =
{

∅ if x ̸= C,

{y | ⟨y, c− x⟩ ≦ 0 ∀c ∈ C if x /∈ C.
(1.5)

Definition 1.5 A support function of a non-empty compact convex set C, is given as:

σC(x) = sup
v∈C
⟨x, v⟩. (1.6)
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With respect to normal cone, the support function is the set of all the normal vec-
tors to C in x. Furthermore, the set-valued functions ∂σC(x) (where δ denotes the
subdifferential) and NC (x) are inverse mapping. The above means that:

x ∈ ∂σC(y)⇔ y ∈ NC(x), ∀x, y ∈ Rn. (1.7)

In particular, when C = [−1, 1] and defining the normal cone in R, σ[−1,1](x) = |x|,
∂σ[−1,1](x) = sign(x) = ∂|x|. Hence, the normal cone to C is given as:

N[−1,1] (x) =


R+ if x = 1,

0 if x ∈ (−1, 1),
R− if x = −1.

(1.8)

The inverse mapping of the set-valued function sign (1.4), is the normal cone (1.8),
i.e.,

x ∈ sign(y)⇔ y ∈ N[−1,1](x). (1.9)

Let C be a closed non empty convex set. The following relation is useful to solve
generalized equations, which are defined hereafter:

M(x− y) ∈ −NC(x)⇔ x = projM [C; y], (1.10)

where x ∈ Rn, y ∈ Rn and M is positive definite symmetric matrix. The orthogonal
projection is defined as:

projM [C; y] = argminz∈C

1
2(z − y)⊤M(z − y). (1.11)

Let F : Rn ⇒ Rm be a set-valued function. F is (strictly) monotone if for any
x, y ∈ dom(F) ⊆ Rn (with x ̸= y) and x′ ∈ F(x), y′ ∈ F(y), the following inequalities
are satisfied:

〈
x− y, x′ − y′〉 ≥ 0 (

〈
x− y, x′ − y′〉 > 0). (1.12)

Moreover, if there exists an α > 0 such that

〈
x− y, x′ − y′〉 ≥ α∥x− y∥, (1.13)

Then, the set-valued function F is strongly monotone. Additionally, if there exists
ξ > 1 such that

〈
x− y, x′ − y′〉 ≥ α∥x− y∥ξ, (1.14)

then F is ξ-monotone in C. It is possible to determine if a set-valued function F has
these properties with the following propositions [Facchinei & Pang 2003]:
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Proposition 1.1

[Facchinei & Pang 2003] A mapping F : C ⊆ Rn 7→ Rn is:

• pseudo monotone in C if for all the vectors x and y ∈ C,

(x− y)T F (y) ≥ 0⇒ (x− y)T F (x) ≥ 0, (1.15)

• monotone in C if

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ C, (1.16)

• strictly monotone in C if

(F (x)− F (y))T (x− y) > 0, ∀x, y ∈ C, (1.17)

• ξ-monotone in C with a ξ > 1, if there exists a constant d > 0 such that:

(F (x)− F (y))T (x− y) ≥ d∥x− y∥ξ, ∀x, y ∈ C, (1.18)

• strong monotone in C if there exists a constant d > 0 such that:

(F (x)− F (y))T (x− y) ≥ d∥x− y∥2, ∀x, y ∈ C. (1.19)

Proposition 1.2

[Facchinei & Pang 2003] Let F : D ⊆ Rn 7→ Rn be continuously differentiable
in the close set D. The following statements hold true:

• F if monotone in D if and only if its jacobian is semi definite positive for
all x en D.

• F is strictly monotone in D if its jacobian is uniformly positive.

• F is strong monotone in D if and only if its jacobian is uniformly positive
definite for all x in D, i.e., there exists a constant d > 0 such that:

yT JF (x)y ≥ d∥y∥2, ∀y ∈ Rn, ∀x ∈ D. (1.20)

1.1.2 Generalized Equations

The generalized equations have some similarities with the differential equations. The
main difference is that the right-side of these equations is a set-valued function. Specif-
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ically, in the dissertation, we consider the following structure:

0 ∈ f(x) +NC(x), (1.21)

where C is a closed convex set and f : Rn 7→ Rn. Equivalently, the generalized equation
(1.21) can be represented as:

−f(x) ∈ NC(x). (1.22)

The generalized equation (1.21) is called variational inequality. Note that the solutions
of the generalized equations have to belong to the set C. An alternative structure of
the generalized equation is the following one:

x ∈ C and
〈
f(x), x′ − x

〉
≥ 0, ∀x′ ∈ C. (1.23)

The following corollaries and Theorems are important for generalized equations.

Corollary 1.1.1 [Facchinei & Pang 2003] Let C ⊆ Rn be a non-empty compact convex
set and f : C 7→ Rn be a continuous mapping. Then, the set of solutions of the
variational inequality (1.23) is not empty and compact.

Corollary 1.1.2 [Facchinei & Pang 2003] Let C ⊆ Rn be closed and convex, and
F : C 7→ Rn be continuous. If there exits a vector xref in C such that:

F (x)T (x− xref ) ≥ 0, ∀x ∈ C, (1.24)

then the variational inequality (1.23) has a solution.

Theorem 1.1.1

[Facchinei & Pang 2003] Let C ⊆ Rn be closed and convex and f : C 7→ Rn be
continuous.

• If f is strictly monotone in C, the varitional inequality (1.23) has at least
one solution.

• If f is ξ-monotone in C with ξ > 1, the variational inequality (1.23) have
a unique solution.

1.1.3 Time discretization

Two adjectives are commonly used to characterize an integration method: explicit and
implicit. In the following, we will explain these concepts and existing discretization
methods.

Definition 1.6 Let

xk+1 = xk + F (tk, tk+1, xk+1, xk) (1.25)
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a temporal discretization of the continuous-time system:

ẋ = f(x, t) (1.26)

where tk = t = τk with k = 0, 1, · · · , and the difference between tk+1 and tk is the
sampling time τ . Hence,

• A time discretization is implicit if F in Equation (1.25), depends only on the
quantities tk, tk+1, xk+1.

• A time discretization is explicit if F in Equation (1.25), depends only on the
quantities tk, tk+1, xk.

• A time discretization is semi-implicit (half-implicit) if F in Equation (1.25),
depends only on the quantities tk, tk+1, xk, xk+1.

One can mention that the implicit and semi-implicit time discretization show
good results with set-valued function. Hereafter, an example of an implicit time dis-
cretization of a continuous-time system is presented.

Example 1.2 Let us consider the following system

ẋ = u(t) + d(x, t), (1.27)

where d(x, t) is an unknown bounded disturbance with |d(x, t)| ≤ L and L is known.
Moreover, x(0) = x0 ∈ R. The control input u(t) is defined as:

u(t) = −λ(t), λ(t) ∈ Gsign(x(t)), (1.28)

where u(t) is a selection of the set-valued function and the solution of system (1.27) is
understood in the Filippov sense, i.e., in the origin x(t) = 0 there exists a value δ(t)
such that u(t) = −d(x, t). Now, the system can be time discretizated using the exact
discretization or the Euler method. Using the last method, one gets

xk+1 = xk + τuk + τdk,

uk = −Gsign(xk),
(1.29)

where uk is constant in t ∈ [tk, tk+1). To obtain an implicit realization, a modified
copy of the explicit system (1.29) is used as follows:

xk+1 = xk + τuk+1 + τdk,

x̃k+1 = xk + τuk+1,

uk+1 = −λk+1,

λk+1 ∈ Gsign(x̃k+1).

(1.30)

Notice that x̃k+1 is defined using the unperturbated system. To implement uk+1, the
unperturbed system is used and the following generalized equations are obtained:

x̃k+1 − xk ∈ −τGsign(x̃k+1),
λk+1 ∈ Gsign(x̃k+1).

(1.31)

Jose Eduardo Carvajal Rubio Page 14



1.1. Time discretization

or equivalently:

0 ∈ −x̃k+1 + xk − τGsign(x̃k+1),
0 ∈ −λk+1 + Gsign(x̃k+1).

(1.32)

From the relation (1.10), one obtains the following generalized equations:

− x̃k+1 − xk

τG
∈ sign(x̃k+1),

x̃k+1 ∈ N[−1,1]

(
− x̃k+1 − xk

τG

)
= −N[−1,1]

(
x̃k+1 − xk

τG

)
.

(1.33)

Let M = τG, x = x̃k+1−xk

τG , y = − xk
τG , then using the relation (1.10), one obtains that

x̃k+1 is given as:

projτG

[
[−1, 1];− xk

τG

]
= argminz∈[−1,1]

1
2
(
z + xk

τG

)
τG

(
z + xk

τG

)
,

projτG

[
[−1, 1];− xk

τG

]
=


−1 if xk > τG,

−xk/τG if x ∈ [−τG, τG],
1 if xk < −τG,

x̃k+1 = xk + τG projτG

[
[−1, 1];− xk

τG

]
.

(1.34)

One can modify the second generalized equation in (1.31) as follows:

x̃k+1 ∈ N[−1,1] (λk+1/G) ,

xk + τuk ∈ N[−1,1] (λk+1/G) ,

xk − τλk+1 ∈ N[−1,1] (λk+1/G) ,

λk+1 − xk
τ ∈ −N[−1,1] (λk+1/G) ,

λk+1
G − xk

τG ∈ −N[−1,1] (λk+1/G) .

(1.35)

Similar to x̃k+1, the selection λk+1 is obtained with M = 1, x = λk+1
G , y = xk

τG :

λk+1 = G proj1
[
[−1, 1]]; xk

τG

]
. (1.36)

Therefore, both variables are defined as:

x̃k+1 = xk + τG projτG

[
[−1, 1];− xk

τG

]
,

uk = −λk+1 = G proj1
[
[−1, 1];− xk

τG

]
,

projτG

[
[−1, 1];− xk

τG

]
=


−1 if xk > τG,

−xk/τG if x ∈ [−τG, τG],
1 if xk < −τG.

(1.37)

Some remarkable properties of the control law (1.37) with system (1.30) are:

• The control law uk+1 is unique and is non-anticipative. It is due to that the
functions of the generalized equation are strictly monotone.

• In the unperturbed case, the origin of the discrete-time system is globally Lya-
punov stable, with the same continuous-time Lyapunov function.
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• With an adequate selection of the gain G, the solutions of the perturbed system
converge to the discrete-time sliding mode surface ∑d = {(xk, uk)|x̃k+1 = 0} in
a finite number of steps and it stays forever.

• In the sliding mode surface ∑d, one obtains uk = −dk+1 and xk = τdk−1.
Moreover, the disturbance is attenuated with a factor τ and the control law almost
compensates for the disturbance with a delay τ .

• x̃k+1 is understood as a virtual sliding variable, and uk+1 as a selection of the
set-valued function sign.

• If the trajectories of the systems are far from the origin, the explicit and implicit
control laws are equal, and the difference is obtained near to the sliding surface∑

d.

■

1.2 Homogeneous systems

It should be noted that the implicit discretization of first order sliding mode schemes
preserve the properties of continuous-time sliding mode one to the digital implemen-
tation setting. However, the study of high order sliding mode schemes require some
concepts as homogeneity.

1.2.1 Definitions and illustrative examples

An homogeneous system is invariant with respect to a coordinates-time transformation,
in specific, it is a dilation symmetry.

Example 1.3 Figures 1.1-1.2 show the behavior of the system ẋ = −|x|1/2sign(x),
which is homogeneous with respect to the transformation (t, x) 7→ (αt, α2x) with α > 0.
The trajectory of x(t, 1) is obtained with the initial condition x0 = 1, while x(t, α21) is
obtained with the initial condition x(0) = α2(1) = α2(x0), where α = 2.

Using the mapping (x) 7→ (α2x), the trajectory of the system obtained with x0 = 1
has the same values than with x0 = α2. The unique difference between both trajectories
is the time when these values are obtained. It is because the transformation includes
the time, which is t 7→ αt. As α = 2, then the red trajectory at time ta is obtained with
the blue trajectory at time αta = 2ta in Figure 1.2.

■

In order to present a definition of homogeneous systems, the following coordinates
transformation is introduced x 7→ Λm(α)x, where Λm(α) is a linear mapping Rn 7→ Rn
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Figure 1.1: Homogeneous system with different initial conditions.
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Figure 1.2: Comparison of the trajectories under the coordinate transformation.

defined with the following dilation matrix:

Λm(α) =



αm0 0 · · · 0 0
0 αm1 · · · 0 0
...

... . . . ...
...

0 0 · · · αmn−2 0
0 0 · · · 0 αmn−1

 . (1.38)

In this matrix, mi, which is positive, is the weight of the coordinate xi, and the
vector of weights is defined as m = [m0 m1 · · · mn−2 mn−1]T . Furthermore,
Λm(α) can be expressed as emis = αmi , where s ∈ R. The most common matrix dila-
tion are the uniform dilation (Leonhard Euler) and the weighted matrix [Zubov 1958].
For the uniform dilation, mi = 1 and therefore Λm(α) = αIn. In the case of the
weighted dilation, Λm(α) is defined as in Equation (1.38) where the weights could not
be equal.

Concerning a function, its weight is known as homogeneity degree, which is
represented as deg(x) = mi. Then, the following definition is presented [Shtessel
et al. 14]:

Definition 1.7 A function f : Rn → R is homogeneous of degree q ∈ R, deg(f) = q,
with a dilation Λm, if for any α > 0, the equality f(Λm(α)x) = αqf(x) is kept.
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Example 1.4 Let g(x) = −xv, one can select m0 as m0 = 1, then deg(g) = v. If is
selected as deg(x0) = 3 and deg(x1) = 2, the function g(x0, x1) = −|x0|1/3sign(x0) −
|x1|1/2sign(x1) is homogeneous of degree 1.
■

Let f and g be homogeneous functions in x ∈ Rn ̸= 0, and k be a constant then
the following properties are fulfilled:

• The function f + g is an homogeneous function if and only if deg(f) = deg(g).

• If k ̸= 0, deg(k) = 0.

• deg(fg) = deg(f) deg(g).

• deg(f/g) = deg(f)− deg(g).

• deg(kf) = deg(f).

• deg( ∂f
∂xi

) = deg(f)− deg(xi).

In the case of a vector field, then the following definition is presented:

Definition 1.8 A vector field f : Rn → Rn is homogeneous of degree q ∈ R, deg(f) =
q, with the dilation Λm, if for any α > 0, the equality f(Λm(α)x) = αqΛm(α)f(x) is
kept.

Example 1.5 Let the vector field f(x) and the dilation matrix Λm defined as:

f(x) =
(

x2

−x
1/3
1 − |x2|1/2 sign(x2)

)
,

Λm(α) =
[

α3 0
0 α2

]
.

(1.39)

Hence deg(x1) = 3 and deg(x2) = 2. If deg(f) = −1 is proposed, it is easy to see that
deg(f1) = deg(x1)− 1 = 2 and deg(f2) = deg(x2)− 1 = 1. The above is obtained since
f1(Λm(α)x) = α2f1(x) and f2(Λm(α)x) = αf2(x). ■

Concerning differential inclusions and equations, the following definition is pre-
sented:

Definition 1.9 Let f : Rn → Rn, the differential equation:

ẋ = f(x) (1.40)

is homogeneous of degree q ∈ R, deg(f) = q, with the dilation Λm, if the inclu-
sion is invariant with respect to the coordinates-time transformation Gα : (t, x) 7→
(α−qt, Λm(α)x).
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Definition 1.10 Let the set-valued function F (x) ⊂ Rn and x ∈ Rn, the differential
inclusion:

ẋ ∈ F (x) (1.41)

is homogeneous of degree q ∈ R, deg(F ) = q, with the dilation Λm, if the inclu-
sion is invariant with respect to the coordinates-time transformation Gα : (t, x) 7→
(α−qt, Λm(α)x).

The above conditions in previous definitions are equivalent to satisfy the following
equations:

f(x) = α−qΛ−1
m (α)f(Λm(α)x), (1.42)

and in the case of differential inclusions:

F (x) = α−qΛ−1
m (α)F (Λm(α)x). (1.43)

Example 1.6 The following system is homogeneous system of degree −1:

ẋ1 = x2,

ẋ2 = −|x1|1/3sign(x1)− |x2|1/2 sign(x2),
(1.44)

where deg(x1) = 3, deg(x2) = 2 and deg(t) = 1. On the other hand, the system

ẋ = −xv, (1.45)

is homogeneous of degree v − 1 with deg(x) = 1. ■

1.2.2 Convergence properties

In order to investigate the properties of homogeneous systems, the globally uniformly
finite-time stable and globally fixed-time stable systems are defined.

Considering the system:

ẋ = f(t, x(t)), x(0) = x0, (1.46)

where x ∈ Rn, f : Rn → Rn is an upper semi-continuous mapping. Furthermore, it is
assumed that the unique equilibrium point of the system is the origin and the solutions
of the system are understood in the Filippov sense.

Definition 1.11 The origin of system (1.46) is globally uniformly finite-time sta-
ble if it is globally uniformly asymptotically stable and there is a locally bounded func-
tion Tf : Rn → R+ ∪ {0}, such that the solutions of the system are kept in the origin
∀t ≥ Tf (x(0)). The function Tf is called the settling-time function.

Definition 1.12 The origin of system (1.46) is globally fixed-time stable if it is
globally uniformly finite-time stable and its settling-time Tf is globally bounded, i.e,
∃Tmax ∈ R+ such that Tf (x(0)) ≤ Tmax, ∀x(0) ∈ Rn.

One relevant result of homogeneous systems was presented in [Bhat & Bern-
stein 1997] and given as follows.
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Theorem 1.2.1

[Bhat & Bernstein 1997] Let ẋ = f(x) be a homogeneous differential equa-
tion with homogeneous degree q, and where f is a vector field f : Rn → Rn.
The origin is a finite-time stable equilibrium point if and only if the system is
asymptotically stable and q < 0.

Example 1.7 [Bhat & Bernstein 1997] Let the system:

ẋ1 = x2,

ẋ2 = u

m
,

(1.47)

with m > 0 and u defined as u = −|x1|βsign(x1) − |x2|
β

2−β sign(x2), where β ∈ (0, 1).
One can note that the system is homogeneous of negative degree (β−1) with respect to
the transformation (t, x1, x2) 7→ (α−(β−1)t, α(2−β)x1, αx2). The above comes from the
fact that(

α−(β−1)
) (

α(β−2)
)

f1(α(2−β)x1, αx2) = f1 (x1, x2) ,

(
α−(β−1)

) (
α−1

)
f2(α(2−β)x1, αx2) = α−β αβ(−|x1|βsign(x1)− |x2|

β
2−β sign(x2))

m
,(

α−(β−1)
) (

α−1
)

f2(α(2−β)x1, αx2) = f2(x1, x2).
(1.48)

Using the candidate Lyapunov function V (x1, x2) = 1
2mx2

2 + 2−β
2 |x1|

2
2−β , one gets

V̇ (x1, x2) = −|x2|1+β ≤ 0. As the time derivative of the Lyapunov function is semi-
definite negative, the invariant belonging to the setM : {(x1, x2)|x2 = 0} is given by
S : {(x1, x2)|x1 = 0, x2 = 0}. Therefore, from the LaSalle’s invariance principle, the
system is asymptotically stable. At last, from Theorem 1.2.2, the system is finite-time
stable. A simulation with β = 0.5, x(0) = (1,−2) and m = 2 is presented in Figure
1.3.
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-1
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Figure 1.3: Homogeneous system with negative degree.
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One can see that the system converges in a finite-time to the origin. If β = 1,
then the system converges asymptotically but it is not finite-time stable. The above can
be seen in Figure 1.4.
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Figure 1.4: Homogeneous system with homogeneity degree 0.

■

Example 1.8 Let the system ẋ = −|x|vsign(x), which is homogeneous of degree v−1.
Considering v = 1/3, the system is homogeneous with a negative degree and finite-time
stable. The trajectories of the system is given as:

x (t, x(0)) =


(
|x(0)|

2
3 − 2

3 t
) 3

2 if t ∈
[
0, 3

2 |x(0)|
2
3
)

0 if t ≥ 3
2 |x(0)|

2
3

, (1.49)

The simulation results of the system ẋ = −|x|
1
3 sign(x), with the initial condition

−2 are presented in Figure 1.5. From the above initial condition, Tf (−2) = 2.3811 sec,
as it can be seen in Figure 1.5.

0 1 2 3 4 5 6 7 8 9 10

[s]

-2

-1.5

-1

-0.5

0

0.5

x

x
1

X 2.3811

Y 1.1144e-08

Figure 1.5: Homogeneous system with homogeneous degree −2/3.

If v = 1, the system is homogeneous of degree 0 and converges exponentially to
the origin, as it can be seen in Figure 1.6.
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0 2 4 6 8 10 12 14 16 18 20
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x
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Figure 1.6: Homogeneous system of degree 0.

In the case of positive degree, e.g., v > 1. the trajectories of the system converge
to a vicinity of the origin in fixed time. The settling time is independent of the initial
condition. If we defined the following vicinity, the settling time can be calculated as
follows:

|x(t, x(0))| < r, ∀t >
1

rv−1(v − 1) . (1.50)

with r > 0. In Figure 1.7 the system is simulated with v = 2 and three initial con-
ditions. The above equation shows that for t > 1, the trajectories for any initial
conditions, reach this vicinity |x(t, x(0))| < 1.

0 1 2 3 4 5 6

[s]

-2

-1

0

1

2

x

x(0)=-2

x(0)=300

x(0)=-100X 0.99661

Y 1

X 0.99007

Y -0.99988

X 0.50003

Y -0.99996

Figure 1.7: Homogeneous system of degree 1.

■

The above is a property of homogeneous systems with positive degree, where
the origin is locally uniformly asymptotic stable. In such case, the origin is globally
uniformly practically fixed-time stable [Polyakov 2020], as defined hereafter.

Definition 1.13 [Polyakov 2011] The origin of system (1.46) is globally uniformly
practically fixed-time stable if ∀r > 0 ∃T (r) > 0 : ||x(t, x(0))|| < r, ∀t ≥ T (r),
∀x(0) ∈ Rn
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Additionally, with both properties (i.e. positive and negative degree), one can
obtain a fixed-time stable system as illustrated in the following example.

Example 1.9 Let the system

ẋ = u, (1.51)

where u is defined as

u =
{
−|x|1/2sign(x) if |x| ≤ 1,

−|x|3/2sign(x) if |x| > 1.
(1.52)

If |x| > 1, the system trajectories are equal to the trajectories of an homogeneous
system with a positive degree q = 1

2 , whereas if |x| ≤ 1, the system trajectories are
equal to the trajectories of an homogeneous system with a negative degree q = −1

2 .
Hence, the trajectories obtained with |x(0)| > 1 converge to the region |x| ≤ 1 at
t ≤ T1 = 2 sec, whereas the trajectories with the initial condition |x| ≤ 1 converge to
the origin at t ≤ T2(x) = 2

√
|x(0)|. Therefore, for any initial condition the system

converges to the origin at tc ≤ T1 + T2(1) = Tmax = 4 sec. According to the about
result, the following Figure shows the convergence to the region and the origin with
different initial conditions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 [s]

-2

-1

0

1

2

x

x(0)=-2

x(0)=300

x(0)=-100

X 2.5857

Y 2.5e-11

X 0.58578

Y -1

X 1.8845

Y 1

X 1.7999

Y -1

X 3.8844

Y 9.5703e-11

Figure 1.8: Fixed-time stable system.

■

1.2.3 Robustness properties with respect to delays and measurement
noise

In the case of differential homogeneous finite-time stable inclusions, they present ro-
bustness properties with respect to delays and measurement noises. The following
corollary shows this property.

Corollary 1.2.1 [Levant 2005] Let ẋ ∈ F (x) ⊂ Rn be a homogeneous differential
inclusion with the weight vector m = [m1 m2 · · · mn−1 mn]T , with a homogeneity
degree q < 0, deg(t) = −q and where the solutions of the system are understood in the
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Filippov sense. Furthermore, the system is assumed to be globally uniformly finite-
time stable and x(t) is defined for any t ≥ −ρ−q (ρ > 0), with the initial condition
x(t) = ξ(t), t ∈ [−ρ−q, 0]. Consider measurement noise with magnitude βiρ

mi for each
component. Then, if x(t) is any solution of the perturbed inclusion:

ẋ ∈ F (x1(t− ρ−q) + β1ρm1 [−1, 1], · · · , xn(t− ρ−q) + βnρmn [−1, 1]), (1.53)

the inequalities |xi| ≤ µiρ
mi are satisfied in finite-time, where the constants µi > 0,

are independent of ρ and ξ(t).

To show the robustness properties with respect to delays and measurement noise
of homogeneous systems, the following example is presented.

Example 1.10 Let the system

ẋ = u(x),
u(x) = −|x|1/3sign(x).

(1.54)

In the presence of a bounded measurement noise ∆(t), (|∆(t)| ≤ δ with δ ≥ 0), the
control input becomes u(x + ∆(t)). Hence, one obtains the following differential inclu-
sion:

ẋ ∈ u(x + ρ3[−1, 1]),
ρ = δ1/3,

(1.55)

The trajectories of the system converge to a region |x| ≤ µδ. The above can be seen in
Fig. 1.9.

0 5 10 15
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0
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x

Medición

Estado x(t)

Figure 1.9: Homogeneous system with bounded measurement noise.

On the other hand, if there exists delay in the states, then the following differen-
tial inclusion is obtained:

ẋ ∈ u(x(t− ρ2)),
ρ = (τr)1/2,

(1.56)

where τr is the measurement delay. A simulation is presented in Figure 1.10.
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Figure 1.10: Homogeneous system with measurement delay.

If both are presented in the system, then the system obtains the structure:

ẋ ∈ u(x(t− ρ2[−1, 1]) + ρ3[−1, 1]),

ρ = max
{

(τr)1/2 , δ1/3
}

.
(1.57)

The behavior of the system is showed in Figure 1.11.
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Figure 1.11: Homogeneous system with measurement noise and delay.

■

1.2.4 Robustness properties with respect to disturbances

Similar to Corollary 1.2.1, the following result allows to analyze the convergence of
a perturbed homogeneous system. Let us define the following disturbed differential
inclusion:

ẋ ∈ F (x(t), γ), x ∈ Rn, γ ∈ Rµ,

γ = (γ1, γ2, · · · , γη) , γj ∈ Rµj , , µ = µ1 + · · ·+ µη.
(1.58)

where γ is the disturbance vector. Furthermore, the following assumptions are used:

• The set field F (x, γ) ⊂ Rn is a non-empty compact convex set-valued function,
upper-semicontinuous at all points (x, 0), x ∈ Rn, 0 ∈ Rµ.
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• The undisturbed inclusion ẋ ∈ F (x, 0) is finite-time stable and homogeneous of
degree q < 0 where the dilation is Λm(α), and mi > 0, mi > −q.

• The differential inclusion (1.58) is homogeneous with respect to the distur-
bance variable, where deg(γj,i) = wi,j > 0. The above means that, F (x, γ) =
α−qΛ−1

m (α)F (Λm(α)x, αw1,1γ1,1, · · · , αwµ,µj γµ,µj ).
Moreover, γ are assumed be particular elements of set-valued homogeneous distur-
bance, Γ(x, ρ) with a properly defined magnitude parameter ρ, which satisfies the
following conditions:

• Γi(x, ρ) is a set-valued function with non-empty compact values, x ∈ Rm, ρ ≥ 0.

• The disturbance satisfies the homogeneity condition ∀ α, ρ ≥ 0, ∀x ∈ Rn :
Γi(Λm(α)x, αwρρ) = Λl(α)Γi(x, ρ), where the weights of the dilation Λl are
positive and Γi is vanishing with respect to ρ.

• Γi monotonously increases with respect to the parameter ρ, in the sense that for
any x the inequality, 0 ≤ ρ ≤ ρ̂ implies that Γi(x, ρ) ⊂ Γi(x, ρ̂).

• Γi is Hausdorff-continuous in ρ, x at the points with ρ = 0.
Additionally, the following initial condition is used in the inclusion (1.58):

x = ξ(t), t ∈ [−τ, 0], ξ ∈ Ξ(τ, ρ, x0), (1.59)

which satisfies the following assumptions:
• Ξ(τ, ρ, x0), x ∈ Rn, τ , ρ ≥ 0 is a set of bounded Lebesgue measurable functions

of time, ξ(t) ∈ Rn, t ∈ [−τ, 0], ξ(0) = x.

• Initial-condition sets satisfy the homogeneity condition in the sense that trans-
formation establishes the one-to-one correspondence ξ(t)→ Λm(α)ξ(t) between
the functions of the sets Ξ(τ, ρ, x) and Ξ(αq, αwpρ, Λm(α)x).

• For any x, if 0 ≤ τ ≤ τ̂ , 0 ≤ ρ ≤ ρ̂ then the functions Ξ(τ̂ , ρ̂, x) restricted to the
time [−τ, 0] include the functions of Ξ(τ, ρ, x).

• The initial conditions are uniformly continuous at τ = 0, ρ = 0.
The above initial conditions can be fulfilled if the dynamics of the system are not

affected by the value of the states for t < 0. Using the above conditions the following
theorem and lemma are derived.

Theorem 1.2.2

[Levant & Livne 2016] There exists constants µi such that after a finite-time
transient, indefinitely extendable solutions of the disturbed differential inclusion
(1.58) enter to the region |xi(t)| ≤ µiδ

mi , ρ = max
{

ρ1/wp , τ1/q
}

and remain
there.

Lemma 1.1 [Levant & Livne 2016] Let q = wp = 1, then all solutions of the disturbed
differential inclusion (1.58) after a finite-time transient enter to the region |xi(t)| ≤
µiδ

mi and remain there.
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1.3 Differentiation of continuous-time signals

In many control engineering applications, real-time differentiation of a noisy signal
is required [Atassi & Khalil 2000, Levant 2003] (e.g., PID and output-feedback con-
trollers, observers, ...). The main challenge concerning the design of real-time dif-
ferentiators is the trade-off between exactness and noise filtration performances [Ro-
drigues & Oliveira 2018]. For instance, the explicit Euler differentiator amplifies the
effect of measurement noise. Therefore, measurement noises with small magnitude
can significantly affect the estimate of the signal derivatives. To deal with this issue,
linear filters (i.e., a combination of low-pass filter and ideal differentiator) were inves-
tigated. However, they require an appropriate tuning of the parameters according to
noise characteristics and only guarantee asymptotic time convergence of the differen-
tiaton errors. To alleviate these limitations, different methods have been proposed,
such as high gain observers [Vasiljevic & Khalil 2008], algebraic differentiators based
on the analysis of the Fourier transform of the kernels [Othmane et al. 2021], ho-
mogeneous sliding mode-based differentiators [Levant 2003], fixed-time differentiator
[Moreno 2021, Moulay et al. 2022] and filtering sliding mode differentiator [Levant &
Livne 2019, Jbara et al. 2021].

In this section, we will recall two continuous-time homogeneous differentiators
which present exact differentiation and excellent robustness properties to bounded
noises and disturbances. These two differentiator will be the basis of our main contri-
butions in the next Chapters.

1.3.1 Problem Statement

The objective of a differentiator is obtain the first n derivatives of a function using
its measurement, which usually is noisy. This function is represented as f0(t), f0 :
R → R and its measurement is represented as f(t) = f0(t) + ∆(t), where ∆(t) is the
measurement noise. To achieve this objective, the following assumptions are required.

Assumption 1.3.1 The function f0(t) is at least n times differentiable, and its n-th
derivative has a known constant Lipschitz L ≥ 0.

Assumption 1.3.2 The measurement noise ∆(t) is a bounded Lebesgue measurable
noise, i.e., there exists δ ≥ 0 such that |∆(t)| ≤ δ.

From Assumption 1.3.1, one can deduce that f
(n+1)
0 (t) ∈ [−L, L] for almost any

time. Additionally, the following assumption about the measurement noise can be used
instead of Assumption 1.3.2 to improve the estimation of the standard differentiator.

Assumption 1.3.3 ([Levant & Livne 2019]) The measurement noise consists of nf +1
components, ∆(t) = ∆0(t) + ∆1(t) + · · · + ∆nf

(t), where each ∆j(t) (possibly un-
bounded), j = 0, 1, · · · , nf , is a signal of global filtering order j and the jth-order
integral magnitude εj ≥ 0.

The definition of a signal of global filtering order j was presented in [Levant &
Livne 2019] as follows:
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Definition 1.14 [Levant & Livne 2019] A function ∆j(t), ∆j : [0,∞)→ R, is a signal
of global filtering order j ≥ 0, if ∆j is a locally integrable Lebesgue-measurable function,
and there exists a globally bounded solution βj(t) of the equation β

(j)
j (t) = ∆j(t). Any

number exceeding sup |βj(t)| is called a jth-order global integral magnitude of ∆j.

Here, nf is referenced as the filtering order. Note that if a noise signal satisfies
Assumption 1.3.2 then it trivially satisfies Assumption 1.3.3 with nf = 0 and ε0 = δ.

To estimate the first n derivatives of a signal f0(t), a state space repre-
sentation is used. The state variables are defined as xi = f

(i)
0 (t) and x =[

x0 x1 x2 · · · xn

]T
∈ Rn+1. The following representation is obtained:

ẋ = Ax + en+1f
(n+1)
0 (t); f0(t) = eT

1 x, (1.60)

with the canonical vectors ei = [0 · · · 0 1 0 · · · 0]T (here the element “1” is in the
position i), and A is the following nilpotent matrix:

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
0 0 0 · · · 0

 .

As f
(n+1)
0 (t) is unknown in system (1.60), the estimation of the state requires strong

observability. Since the triple
(
A, en+1, eT

1

)
is strongly observable [Kratz 1995], the

representation (1.60) gives the possibility to estimate the time derivatives of f0 (t)
through the design of a state observer.

1.3.2 Robust exact sliding mode differentiator

It is worth noting that sliding mode differentiators guarantee the robust finite time
estimations of the first n derivatives of a signal with bounded (n + 1)−th derivative
with interesting robustness properties with respect to measurement noise.

Let us define the signed power function as follows. For γ ≥ 0 and x ∈ R, the
signed power γ of x is defined as ⌊x⌉γ = |x|γ sign(x). With the purpose of estimating
the state of system (1.60), in [Levant 2003] a homogeneous continuous-time differen-
tiator is proposed. Its non-recursive form is given as follows:

ż0 = −λnL
1

n+1 ⌊z0 − f (t)⌉
n

n+1 + z1,

ż1 = −λn−1L
2

n+1 ⌊z0 − f (t)⌉
n−1
n+1 + z2,

...
żn = −λ0L ⌊z0 − f (t)⌉0 ,

(1.61)

where z =
[

z0 z1 z2 . . . zn

]T
is an estimate of the vector x in finite time and

where the parameters λi > 0 are adequate parameters [Shtessel et al. 14].
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Remark 1.3.1 Since ⌊z0 − f (t)⌉0 is a set-valued function at z0 = f , the solutions of
the system are understood in the Filippov sense [Filippov 88].

With the absence of noise, the differentiator (1.61) can be represented as:

ż0 = −λnL
1

n+1 ⌊z0 − f0 (t)⌉
n

n+1 + z1,

ż1 = −λn−1L
2

n+1 ⌊z0 − f0 (t)⌉
n−1
n+1 + z2,

...
żn = −λ0L ⌊z0 − f0 (t)⌉0 .

(1.62)

If Assumption 1.3.2 is satisfied, the differentiator (1.61) has the following ac-
curacy

∣∣∣zi (t)− f
(i)
0 (t)

∣∣∣ = O
(
δ(n+1−i)/(n+1)

)
[Shtessel et al. 14]. With discrete-time

measurements, z0 − f (t) is changed with z0 (tk) − f (tk) where tk ≤ t < tk+1 and
tk+1 − tk = τ ≥ 0 (τ is a constant sampling time). With discrete-time mea-
surements and in the absence of noise, the differentiator has the following accu-
racy

∣∣∣zi (t)− f
(i)
0 (t)

∣∣∣ = O
(
τ (n−i+1)

)
[Levant 2003]. If both phenomenons occur,

the differentiator obtains the asymptotic accuracy |zi(t) − f
(i)
0 (t)| ≤ µiLρn+1−i for

i = 0, 1, 2, · · · , n, with ρ = max
{

(δ/L)1/n+1, τ
}

and µi ≥ 1 [Levant et al. 2017].
For τ = 0 and under Assumptions 1.3.1-1.3.2, the standard differentiator has

an optimal asymptotic accuracy, i.e., only µi could be improved [Levant et al. 2017].
Nevertheless, if the signal is m-th differentiable, with m > n and f

(m)
0 (t) has a Lipschitz

constant Lm, then, its accuracy can be improved with a differentiator of order m

instead of n. Concerning the parameters µi, their best possible values are defined
by the Kolmogorov constants (µi ≥ Ki,n2

i
n+1 )[Levant et al. 2017], which satisfy the

inequalities 1 ≤ Ki,n ≤ π
2 .

Let us now rewrite system (1.62) using the estimation errors

σi = zi − xi, for i = 0, 1, . . . , n. (1.63)

Hence, differentiator (1.62) becomes

ż = Az + u (σ0) , (1.64)

where u (σ0) is considered as the input vector of the observer and is defined as follows:

u (σ0) = [Ψ0,n (σ0) Ψ1,n (σ0) · · · Ψn,n (σ0)]T ,

Ψi,n (·) = −λn−iL
i+1
n+1 ⌊·⌉

n−i
n+1 ,

Ψn,n (·) ∈ −λ0Lsign(·).

(1.65)

Let σ = z − x be the vector of the estimations errors. Then, the dynamics of the
errors can be represented as:

σ̇ = Aσ + u (σ0)− en+1f
(n+1)
0 (t). (1.66)
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In the absence of noise and using f
(n+1)
0 (t) ∈ [−L, L], system (1.66) can be rewritten

as:

σ̇i = σi+1 + Ψi,n (σ0) , i = 0, . . . , n− 1,

σ̇n ∈ Ψn,n (σ0) + [−L, L] .

Defining σ̄i = σi/L and σ̄n = σn/L, one obtains:

˙̄σi = σ̄i+1 + Ψi,n (σ̄0)
L

i+1
n+1

, i = 0, . . . , n− 1,

˙̄σn ∈
Ψn,n (σ̄0)

L
+ [−1, 1] .

(1.67)

or in a compact form as:

˙̄σ ∈ Cn (σ̄) . (1.68)

Concerning the selection of the parameters λi, the following assumption is con-
sidered.

Assumption 1.3.4 [Levant 2003] The parameters λ0, λ1, · · · , λn are constants and
such that the differential inclusion (1.68) is asymptotically stable.

Remark 1.3.2 Let m0 = n + 1, m1 = n, · · · , mn = 1, then for all α > 0, and
σ̄ ∈ Rn+1, Cn (σ̄) = αΛ−1

m (α)Cn (Λm(α)σ̄). Therefore, the differential inclusion
(1.68) is invariant with respect to the transformation (t, σ̄) 7→ (αt, Λm (α) σ̄). Hence,
the inclusion (1.68) is a homogeneous system with a homogeneous degree −1. Hence,
from Assumption 1.3.4, it is finite-time stable.

Sequences of parameters λi, which satisfy 1.3.4, are presented for any 0 ≤ n ≤ 7
in [Levant 2018]. On the other hand, the parameters λi are not unique. Indeed, they
can be built from any λ0 > 1 [Levant 2003, Shtessel et al. 14]. One can obtain different
sequences in [Reichhartinger et al. 2017] and a methodology to obtain that parameters
can be found in [Jbara et al. 2020].

1.3.3 Robust Exact Filtering Differentiator

Recently, a novel homogeneous differentiator was presented in [Levant & Livne 2019].
Although the standard differentiator has good performance under Assumptions 1.3.1,
1.3.2 and 1.3.4, the robust exact filtering differentiator improves the accuracy of the
standard differentiator with less restrictive noise assumptions (i.e., Assumption 1.3.3).
It is given as:

ẇjf
(t) = Ψjf −1,m (w1(t)) + wjf +1(t),

ẇnf
(t) = Ψnf −1,m (w1(t)) + z0(t)− x̄0 (t) ,

żjd
(t) = Ψnf +jd,m (w1(t)) + zjd+1(t),

żn(t) = Ψm,m (w1(t)) .

jf = 1, 2, · · · , nf − 1. jd = 0, 1, 2, · · · , n− 1.

(1.69)
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where m = n + nf , and the parameters λj are selected as in (1.62). nf is greater than
or equal to the filtering orders of the signals ∆j(t) that compose ∆(t). For nf = 0, the
robust exact filtering differentiator becomes the standard differentiator (1.62).

Using the estimation errors (1.63), one obtains:

ẇjf
(t) = Ψjf −1,m (w1(t)) + wjf +1(t),

ẇnf
(t) = Ψnf −1,m (w1(t)) + σ0(t)−∆ (t) ,

σ̇jd
(t) = Ψnf +jd,m (w1(t)) + σjd+1(t),

σ̇n(t) = Ψm,m (w1(t)) + x
(n+1)
0 (t).

jf = 1, 2, · · · , nf − 1. jd = 0, 1, 2, · · · , n− 1.

(1.70)

Let ωj(t) be defined as:

ωj(t) = wj(t) +
nf∑

l=nf −j+1
β

(l+j−nf −1)
l (t), (1.71)

where β
(j)
j (t) = ∆j(t). Therefore, (1.70) can be rewritten as:

ω̇jf
(t) = Ψjf −1,m

(
ω1(t)− β(0)

nf
(t)
)

+ ωjf +1(t)− β
(0)
nf −jf

(t),

ω̇nf
(t) = Ψnf −1,m

(
ω1(t)− β(0)

nf
(t)
)

+ σ0(t)− β
(0)
0 (t) ,

σ̇jd
(t) = Ψnf +jd,m

(
ω1(t)− β(0)

nf
(t)
)

+ σjd+1(t),

σ̇n(t) ∈ Ψm,m

(
ω1(t)− β(0)

nf
(t)
)

+ [−L, L] .

jf = 1, 2, · · · , nf − 1. jd = 0, 1, 2, · · · , n− 1.

(1.72)

Let ω̄j = ωj/L, σ̄j(t) = σj(t)/L and

ρ = max
[(

ε0
L

) 1
n+1

,

(
ε1
L

) 1
n+2

, · · · ,

(
εnf

L

) 1
m+1

]
, (1.73)

it allows to obtain the inclusions:

˙̄ωjf
(t) ∈

Ψjf −1,m
(
ω̄1(t) + ρm+1 [−1, 1]

)
L

jf
m+1

+ ω̄jf +1(t) + ρm+1−jf [−1, 1] ,

˙̄ωnf
(t) ∈

Ψnf −1,m
(
ω̄1(t) + ρm+1 [−1, 1]

)
L

nf
m+1

+ σ̄0(t) + ρn+1 [−1, 1] ,

˙̄σjd
(t) ∈

Ψnf +jd,m
(
ω̄1(t) + ρm+1 [−1, 1]

)
L

nf +jd+1
m+1

+ σ̄jd+1(t),

˙̄σn(t) ∈ Ψm,m
(
ω̄1(t) + ρm+1 [−1, 1]

)
L

+ [−1, 1] .

jf = 1, 2, · · · , nf − 1. jd = 0, 1, 2, · · · , n− 1.

(1.74)

The inclusions (1.74) correspond to a perturbed finite-time stable homoge-
neous error dynamics (1.68) of mth-order instead of nth-order. Furthermore,
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the error dynamics system (1.74) is homogeneous with respect to the transforma-
tion

(
t, ρ, ω̄1, . . . , ω̄nf

, σ̄0, . . . , σ̄n

)
7→
(
αt, αρ, αm+1ω̄1, . . . , αn+2ω̄nf

, αn+1σ̄0, . . . , ασ̄n

)
,

with homogeneity degree −1 and where deg (ω̄j) = m + 2 − j, deg (σ̄j) = n + 1 − j,
deg (ρ) = 1 and deg (t) = 1. If Assumptions 1.3.1 and 1.3.3 hold, the continuous-time
filtering differentiator (1.69) presents the following accuracy:

|σj (t) | ≤ µjLρn+1−j , µj > 0, j = 0, 1, 2, · · · , n. (1.75)

In the case of bounded noise, the accuracy (1.75) becomes (1.69). The advantage of
using the robust exact filtering differentiator (1.69) instead of the standard one (1.62),
is that (1.69) improves the accuracy of (1.62).

1.4 State of the art

The continuous-time robust exact differentiators given previously include integration
and continuous-time measurements. To implement these differentiators on a digital
device, a proper discretization is required. Hence, hereafter, some existing discrete-
time realizations of the standard differentiator (1.61) and the robust exact filtering
differentiator (1.69) are presented. Furthermore, the differentiators proposed in [Livne
& Levant 2014, Koch & Reichhartinger 2018, Koch et al. 2020], are carefully discussed
in the following subsections.

1.4.1 Forward Euler Discretization

In the case of discrete-time measurements of the input signal f (t), the differentiator
(1.61) for t ∈ [tk, tk+1) can be represented as:

żi = zi+1 + Ψi,n (z0 (tk)− f (tk)) , i = 0, . . . , n− 1,

żn = Ψn,n (z0 (tk)− f (tk)) .
(1.76)

By applying the one-step Euler method, the above differentiator is given by the fol-
lowing form:

zi,k+1 = zi,k + τΨi,n (z0,k − fk) + τzi+1,k,

zn,k+1 = zn,k + τΨn,n (z0,k − fk) ,
(1.77)

where τ = tk+1 − tk > 0, zi(tk) = zi,k, zi(tk+1) = zi,k+1 and f (tk) = fk. Subtract-
ing f

(i)
0 (tk+1) and using Taylor expansion of f

(i)
0 (tk+1) with the Lebesgue-integral

remainder form, it yields the following estimation error

σi,k+1 ∈σi,k + τσi+1,k + τΨi,n (σ0,k + [−δ, δ])− τ2

2 f
(i+2)
0 (ξi,k) ,

σn−1,k+1 ∈σn−1,k + τσn,k −
τ2

2 [−L, L] + τΨn−1,n (σ0,k + [−δ, δ]) ,

σn,k+1 ∈σn,k + τΨn,n (σ0,k + [−δ, δ])− τ [−L, L] ,

(1.78)
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where σi,k = zi,k − f
(i)
0,k, i = 0, 1, . . . , n − 2 and ξi,k ∈ [tk, tk+1]. Notice that for n = 1

the above inclusion is homogeneous with respect to the transformation

(tk, δ, σ0, . . . , σn) 7→
(
λtk, λn+1δ, λn+1σ0, . . . , λσn

)
, (1.79)

whereas the differentiator obtained using Euler method looses the homogeneity prop-
erty for n ≥ 2. In [Livne & Levant 2014], it was demonstrated that if the unknown func-
tion f0 (t) is n-smooth function for n ≥ 1 (i.e., |f (j)

0 (t)| ≤ Dj for j = 2, 3, . . . , n, n + 1
and Dn+1 = L), ∆ (t) is a Lebesgue measurable noise bounded by a constant δ, then
the accuracy of the differentiator (1.77) is given by:

|zi,k − f
(i)
0,k| ≤ µiρ

n−i+1,

ρ = max
j=2,3,...,n+1

{(
τ

2Dj

) 1
n−j+2

, τ, δ
1

n+1

}
,

(1.80)

for i = 0, 1, . . . , n and where the coefficients µi only depend on the differentiator
parameters λ0, . . . , λn, L. Notice that it does not preserve the ultimate accuracy of the
differentiator (1.62) with discrete measurements.

1.4.2 Homogeneous Discrete-time Differentiator (HDD)

Let us consider the same assumptions as previously, i.e. the unknown function f0 (t)
is n-smooth function for n ≥ 1 (i.e., |f (j)

0 (t)| ≤ Dj for j = 2, 3, . . . , n, n + 1 and
Dn+1 = L), ∆ (t) is a Lebesgue measurable noise bounded by a constant δ. In [Livne
& Levant 2014], an explicit discretization of the homogeneous differentiator (1.61) is
proposed as follows:

zk+1 = Φ (τ) zk + τuk, (1.81)

with

uk =


Ψ0,n (z0,k − fk)
Ψ1,n (z0,k − fk)

...
Ψn,n (z0,k − fk)

 ,

Φ (τ) =



1 τ τ2

2! · · · τn−1

(n−1)!
τn

n!
0 1 τ · · · τn−2

(n−2)!
τn−1

(n−1)!
...

...
... . . . ...

...
0 0 0 · · · 1 τ

0 0 0 · · · 0 1


.

(1.82)

Then, the accuracy of the HDD (1.81) is given as:

|zi − f
(i)
0 | ≤ µiρ

n−i+1,

ρ = max
{

τ, δ
1

n+1
}

,
(1.83)
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where as in the Euler method, the coefficients µi only depend on the differentiator
parameters λ0, . . . , λn, L. Unlike the differentiator (1.77), the differentiator (1.81) pre-
serves the ultimate accuracy of the differentiator (1.62) with discrete measurements
and the homogeneity property. At last, some robustness properties with respect to
variable sampling time are guaranteed.

1.4.3 Matching Discrete-time Differentiator

In [Koch & Reichhartinger 2018], a discrete-time version of the differentiator (1.62) is
presented. It has the following form:

zk+1 = Φ (τ) zk + λ (σ0,k) σ0,k, (1.84)

where Φ (τ) is the same matrix as in equation (1.82). Furthermore, the matrix λ (σ0,k)
is designed with the purpose of placing the eigenvalues of the matrix Φ (τ)−λ (σ0,k) eT

1 ,
which is the matrix present in the dynamics of the observation error dynamics obtained
from (1.84):

σk+1 =
[
Φ (τ) + λ (σ0,k) eT

1

]
σk + hk, (1.85)

In order to solve the eigenvalue placement problem, the Ackerman’s formula is used by
mapping the continuous-time eigenvalues to the discrete-time domain and the matching
approach ([Franklin et al. 1998]). Then, λ (σ0,k) is given as:

λ (σ0,k) = χ (Φ (τ) , σ0,k) S−1
o en+1,

χ (Φ (τ) , σ0,k) =
n∏

i=0
(Φ (τ)− qi (σ0,k) I) ,

So =


eT

1
eT

1 Φ (τ)
...

eT
1 Φn (τ)

 , qi (σ0,k) = eτpi|σ0,k|
n

n+1 −1
,

(1.86)

where pi are the continuous poles of the differentiator, I is the identity matrix of
dimensions ((n + 1)× (n + 1)). Although, a close form can be obtained for (1.86), a
more complex form can be obtained if different poles are considered.

Notice that the differentiator (1.84) has been designed for the free-noise case.
For the free-noise case, it presents some relevant properties such as insensitivity to
an overestimation of the parameter L, preservation of the accuracy of the continuous
differentiator (|σi,k| = O(τn−i+1)) and a hyper-exponential stability (the definition can
be founded in [Clempner & Yu 17]). However, there is no convergence proof in the
case of measurement noise.

1.4.4 Generalized Homogeneous Discrete-time Differentiator
(GHDD)

In [Koch et al. 2020], a discrete-time version of the differentiator (1.62) is presented.
It has the following form:

zk+1 = Φ (τ) zk + τP (τ) uk, (1.87)
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where uk and Φ (τ) are expressed as in equation (1.82), and with a constant sampling
time τ . Furthermore, matrix P (τ) is given as:

P (τ) =



1 0 0 0 · · · 0 0
0 1 β2,3τ β2,4τ2 · · · β2,nτn−1 β2,n+1τn

0 0 1 β3,4τ · · · β3,nτn−2 β3,n+1τn−1

...
...

...
... . . . ...

...
0 0 0 0 · · · 1 βn,n+1τ

0 0 0 0 · · · 0 1


(1.88)

where the parameters βi,j are constant, such P satisfies the condition:

Φ (τ) P (τ) = P (τ) (I + τA) (1.89)

In specific, in [Koch et al. 2020], the following matrices P (τ) are defined for the
GHDD of order n ≤ 5:

P1 (τ) =
[

1 0
0 1

]

P2 (τ) =

 1 0 0
0 1 −1

2τ

0 0 1



P3 (τ) =


1 0 0 0
0 1 −1

2τ 1
3τ2

0 0 1 −τ

0 0 0 1


...

P5 (τ) =



1 0 0 0 0 0
0 1 −1

2τ 1
3τ2 −1

4τ3 1
5τ4

0 0 1 −τ 11
12τ2 −5

6τ3

0 0 0 1 −3
2τ 7

4τ2

0 0 0 0 1 −2τ

0 0 0 0 0 1



(1.90)

Moreover, in [Koch et al. 2020], a proof of convergence even in the presence of
noise has been provided. It has been demonstrated that the GHDD (1.87) preserves
the ultimate accuracy of the differentiator (1.62) with discrete measurements, i.e.,

|σi,k| ≤ µiρ
n−i+1,

ρ = max
{

τ, (δ/L)
1

n+1
}

.
(1.91)

where the coefficients µi only depend on the differentiator parameters λ0, . . . , λn, L

1.4.5 Implicit discretization of the standard differentiator

Recently, some implicit and semi-implicit discrete-time realizations have been inves-
tigated (see for instance [Mojallizadeh et al. 2021]). They have been obtained from
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the standard differentiator (1.61), HDD (1.81), GHDD (1.87) and the forward Euler
discretization (1.77).

Implicit discrete time realization of the Arbitrary Order Standard Differ-
entiator (I-AO-SD)

Taking into account the forward Euler discretization (1.77), the following scheme is
proposed:

zi,k+1 = zi,k + τΨi,n (σ0,k+1) + τzi+1,k+1,

zn,k+1 ∈ zn,k + τΨn,n (σ0,k+1) ,
(1.92)

where i = 0, 1, · · · , n−1. To obtain the implicit variable σ0,k+1 at time tk, the following
generalized equation is obtained from (1.92):

g(σ0,k+1) ∈ −τn+1λ0Lsign(σ0,k+1),

g(σ0,k+1) = σ0,k+1 +
n−1∑
l=0

(
τ l+1λn−l ⌊σ0,k+1⌉

n−l
n+1

)
+ bk,

bk = −
n∑

l=0
τ lzl,k + fk+1,

ξ(σ0,k+1) = g−1(σ0,k+1).

(1.93)

Remark 1.4.1 It is important to note that the resolution of the generalized equation at
time tk needs the computation of bk using fk+1. The above implies that the differentia-
tor needs to be implemented with a delay τ or by replacing bk with bk−1, which reduces
its accuracy [Mojallizadeh et al. 2021]. As it will be seen, the implicit differentiators
presented in [Mojallizadeh et al. 2021] requires fk+1.

From the generalized equation, one obtains the following implementation for the
implicit differentiator (1.92):

• Case 1: bk < −τn+1λ0L. Hence, σ0,k+1 > 0. In this case, it is calculated

Xk = σ
1

n+1
0,k+1 and sign(σ0,k+1) = ξk = 1, where Xk is the root of the following

equation with respect to θk:

θn+1
k +

n−1∑
l=0

(
τ l+1λn−lL

l+1
n+1 θn−l

k

)
+ bk + τn+1L = 0. (1.94)

• Case 2: bk ∈
[
−τn+1λ0L, τn+1λ0L

]
. Hence, σ0,k+1 = 0. In this case,

sign(σ0,k+1) = [−1, 1], and ξk = − bk
τn+1λ0L

.

• Case 3: bk > τn+1λ0L. Hence, σ0,k+1 < 0. In this case, it is calculated as
Xk = (−σ0,k+1)

1
n+1 and sign(σ0,k+1) = ξk = 1, where Xk is the root of the

following equation with respect to θk:

−θn+1
k −

n−1∑
l=0

(
τ l+1λn−lL

l+1
n+1 θn−l

k

)
+ bk − τn+1L = 0. (1.95)

Then, the I-AO-SD (1.92) is implemented with ξk instead of sign(σ0,k+1).
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Implicit homogeneous discrete-time differentiator (IHDD)

From the homogeneous discrete-time differentiator (HDD) (1.81), the following implicit
scheme is proposed:

zi,k+1 = zi,k + τΨi,n (σ0,k+1) +
n−i∑
j=1

τ j

j! zj+1,k+1,

zn,k+1 ∈ zn,k + τΨn,n (σ0,k+1) .

(1.96)

where i = 0, 1, · · · , n − 1. Similar to (1.93), one obtains the following generalized
equation:

g(σ0,k+1) ∈ −τn+1λ0Lmnsign(σ0,k+1),

g(σ0,k+1) = σ0,k+1 +
n−1∑
l=0

(
mlτ

l+1λn−l ⌊σ0,k+1⌉
n−l
n+1

)
+ bk,

bk = −
n∑

l=0
mlτ

lzl,k + fk+1,

ξ(σ0,k+1) = g−1(σ0,k+1).

(1.97)

σ0,k+1 and ξk are implemented solving the generalized equation as in the previous case.
As it was mentioned previously, the main drawback of both implicit differentia-

tors is that they require measurements at time tk+1 to estimate the state at time tk

(see Remark 1.4.1). Furthermore, the convergence proof is only given in the noise-free
case and assuming that fn+1(t) = 0. In Chapters 2-3 implicit discrete-time realizations
are introduced in order to alleviate these disadvantages.

1.5 Conclusion

In this chapter, some preliminaries on set-valued functions, generalized equations, ho-
mogeneous systems have been recalled. Explicit and implicit discretization meth-
ods have been discussed. The differentiation problem has been introduced and some
continuous-time differentiators have been recalled. At last, some existing discrete-time
realizations of the standard differentiator have been reported. All these concepts will
be very useful to derive the main results in the following Chapters.
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CHAPTER2
Explicit and implicit
discretizations of homogeneous
differentiator
A discrete-time realization of the standard differentiator is needed to implement a con-
troller or an observer on a digital device. However, an improper discretization may
result in eliminating the properties of its continuous-time counterpart or undesirable
behavior due to, for instance, numerical chattering [Polyakov et al. 2019] or the asymp-
totic accuracy of the continuous-time differentiator [Livne & Levant 2014]. Therefore,
some discrete-time sliding mode schemes have been introduced and applied in several
works [Polyakov et al. 2019, Drakunov & Utkin 1990, Utkin 1994, Kikuuwe & Fuji-
moto 2006, Su et al. 2000]. In particular, for the homogeneous differentiator, some
explicit discrete-time realizations have been proposed in [Livne & Levant 2014, Koch
et al. 2020, Barbot et al. 2020, Mojallizadeh et al. 2021] to preserve properties of the
respective continuous-time system using different methodologies.

Contrary to many explicit discretization methods, implicit ones do not signifi-
cantly reduce the performance for large sampling times in terms of robustness proper-
ties to matched perturbations and accuracy while not being sensitive to control gain
variations. Nevertheless, they require a more elaborate scheme compared with their
explicit counterparts. A pioneer work [Drakunov & Utkin 1990] has presented an im-
plicit discretization for the scalar case where the disturbance is required to be known.
Then, other works, [Brogliato et al. 2019, Huber et al. 2013] have introduced a time
discretization of the original plant and an implicit discretization of the controller,
where the unperturbed plant is analyzed to obtain a causal controller. Moreover, im-
plicit time-discretization schemes have been derived for twisting and super-twisting
controllers [Brogliato et al. 2019, Huber et al. 2019], finite-time and fixed-time sys-
tems [Polyakov et al. 2019], where the stability properties are preserved. The im-
plicit discrete-time super-twisting [Brogliato et al. 2019] has presented convergence
to the origin in a finite number of steps for the unperturbed case. A detailed com-
parison between explicit and implicit schemes has been given in [Huber et al. 2013].
Remarkable experimental results have been provided in [Huber et al. 2016b, Wang
et al. 2015, Huber et al. 2016a, Huber et al. 16]. Such discrete-time realizations pre-
serve the continuous-time desirable properties of the sliding mode algorithms while
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reducing numerical chattering at the output and input. Furthermore, most of the
mentioned works do not significantly reduce the performance for large sampling times,
allowing suitable robustness properties to matched bounded disturbances and being
not sensitive to control gain variations. In contrast, the above properties may not
be valid for an explicit discretization. Nevertheless, their main drawback is a more
elaborate procedure than the explicit counterpart.

The main contributions of this chapter are to introduce and analyze an explicit
and implicit discrete-time realization of the continuous-time homogeneous differentia-
tor. First, an explicit discrete-time version of the continuous-time homogeneous differ-
entiator is proposed. Based on this scheme, an implicit discrete-time differentiator is
obtained. It is non-anticipative and relies on a root-finding method. Furthermore, in
this paper, the properties of the proposed schemes are analyzed using homogeneity. It
will be shown that the estimation errors of the explicit and implicit differentiators, as
defined in this work, converge to a vicinity of the origin. An efficient implementation
is also proposed to reduce the time complexity of the algorithm. At last, simulation
results are performed to compare the proposed implicit discretization method with
other existing schemes to highlight, for instance, its advantages in terms of accuracy
when relatively large sampling periods are considered.

2.1 Explicit Discretization of the Homogeneous Differen-
tiator (HEDD)

Let xi,k = xi (tk) and xk = [x0,k, . . . , xn,k]T . Then, the system

xk+1 = Φ (τ) xk + hk (τ) (2.1)

is a discrete-time representation of system (1.60). It is obtained similarly to [Koch
& Reichhartinger 2018] by using Taylor series expansion with Lagrange’s remainders
[Firey 1960]. For this system, since A is a nilpotent matrix, Φ (τ) = eAτ is defined as:

Φ (τ) =



1 τ τ2

2! · · · τn−1

(n−1)!
τn

n!
0 1 τ · · · τn−2

(n−2)!
τn−1

(n−1)!
...

...
... . . . ...

...
0 0 0 · · · 1 τ

0 0 0 · · · 0 1


. (2.2)

If f
(n+1)
0 (t) is an absolutely continuous function, then hk (τ) is given as:

hk (τ) =
[

τn+1

(n+1)!f
(n+1)
0 (θn) τn

n! f
(n+1)
0 (θn−1) · · · τf

(n+1)
0 (θ0)

]T
, (2.3)

with θi ∈ (tk, tk+1). For a discontinuous function f
(n+1)
0 (t), the equation (2.3) is

replaced with the following equation:

hk (τ) ∈
[

τn+1

(n+1)! [−L, L] τn

n! [−L, L] · · · τ [−L, L]
]T

. (2.4)
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This result is obtained from Theorems 3.16, 7.6, and 7.7 presented in [Apostol 1967].
Similar to (2.1), system

zk+1 = Φ (τ) zk + B∗ (τ) u (σ0,k) , (2.5)

with zi,k = zi (tk), zk = [z0,k, . . . , zn,k]T , is a discrete-time representation of system
(1.64). Assuming that u(σ0) is constant on [tk, tk+1), the matrix B∗ (τ) is as follows:

B∗ (τ) =
∫ tk+1

tk

eA(tk+1−ξ)dξ =



τ τ2

2!
τ3

3! · · · τn

n!
τn+1

(n+1)!
0 τ τ2

2! · · · τn−1

(n−1)!
τn

n!
...

...
... . . . ...

...
0 0 0 · · · τ τ2

2!
0 0 0 · · · 0 τ


. (2.6)

Thus, considering the form of Φ (τ) in (2.2), B∗ (τ) in (2.6) and a constant σ0(t)
for [tk, tk+1), system (2.5) is an exact discretization of the differentiator (1.64) in the
sense of exact discretization of linear systems [Kazantzis & Kravaris 1999]. However,
in practice, the earlier assumption (σ0(t) is constant for [tk, tk+1)) is not satisfied.
Hence, it is only used to propose the discrete-time realization, but it is not used in
its stability proof presented in the next section. Concerning the sampling time, the
following assumption is used in the next sections:

Assumption 2.1.1 The sampling time τ is a positive constant and the input of the
differentiator, f(t), is measured in the instant of time tk = kτ for k = 0, 1, 2, 3, · · · .

Under Assumptions 1.3.1, 1.3.2, 1.3.4 and 2.1.1, and based on the discrete-time
realization (2.5), the following discrete-time injections provide the final form for the
explicit discretization of the differentiator (1.64), caller hereafter HEDD:

u (σ0,k) = [Ψ0,n (σ0,k) Ψ1,n (σ0,k) · · · Ψn,n (σ0,k)]T , (2.7)

where Ψi,n (·) is defined as in the Equation (1.65).

Remark 2.1.1 The discrete-time differentiator (2.5)-(2.7) has a similar structure to
that proposed in the differentiators (1.81), (1.84) and (1.87). The main difference
is that for HDD, given in eq. (1.81), B∗ (τ) is given as B∗ (τ) = τI, where I is
an identity matrix of appropriate dimensions, and in [Koch & Reichhartinger 2018],
B∗ (τ) u (σ0,k) are the injection terms obtained by placing the eigenvalues of the
discrete-time error system. The Matching differentiator, given in eq. (1.84), can be
written in the form of (2.7) with a different matrix B∗ (τ). The discrete-time differen-
tiators HDD, Matching and HEDD can be seen as particular cases of the discrete-time
differentiator proposed in [Barbot et al. 2020]. Note that in [Barbot et al. 2020], the
convergence of the estimation error using the explicit discrete-time differentiator (2.5)
has been investigated even for variable sampling times.

Let σi,k = σi (tk) and σk = [σ0,k, . . . , σn,k]T . Using Equations (2.1) and (2.7), the
discrete-time estimation error system has the form:

σk+1 = Φ (τ) σk + B∗ (τ) u (σ0,k)− hk(τ). (2.8)
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Furthermore, in the presence of measurement noise, the estimation error dynamics
become

σk+1 = Φ (τ) σk + B∗ (τ) u (σ0,k −∆k)− hk(τ), (2.9)

where ∆k = ∆(tk). As ∆k ∈ [−δ, δ] and f
(n+1)
0 (t) ∈ [−L, L] , one obtains

σk+1 ∈Φ (τ) σk + B∗ (τ) u (σ0,k + [−δ, δ]) + . . .

. . . +
[

τn+1

(n + 1)! [−L, L] τn

n! [−L, L] · · · τ [−L, L]
]T

= ϖk (τ, δ, σ) .
(2.10)

Lemma 2.1 The system (2.10) is homogeneous with respect to the transformation
(τ, δ, σ0, . . . , σn) 7→

(
ατ, αn+1δ, αn+1σ0, . . . , ασn

)
, for all α ∈ R+.

Proof Since Λ−1
m (α) AΛm (α) = α−1A, the following equalities are obtained:

AΛm (α) = α−1Λm (α) A, (2.11)
AiΛm (α) = α−iΛm (α) Ai, (2.12)
Λm (α) Φ (τ) = Φ (ατ) Λm (α) , (2.13)
Λm (α) B∗ (τ) = α−1B∗ (ατ) Λm (α) , (2.14)

u
(
αn+1σ0,k +

[
−αn+1δ, αn+1δ

])
= α−1Λm (α) u (σ0,k + [−δ, δ]) , (2.15)[

(ατ)n+1

(n + 1)! [−L, L] (ατ)n

n! [−L, L] · · · ατ [−L, L]
]T

= . . .

Λm (α)
[

τn+1

(n + 1)! [−L, L] τn

n! [−L, L] · · · τ [−L, L]
]T

. (2.16)

Equation (2.12) is obtained from Equation (2.11) when it is multiplied by A

recursively. Equations (2.13) and (2.14) are obtained from Equations (2.3), (2.6) and
(2.12), whereas Equation (2.15) is obtained from Equation (2.7). Let m0 = n + 1,
m1 = n, · · · and mn = 1 then

ϖk

(
ατ, αn+1δ, Λm (α) σ

)
= Φ (ατ) Λm (α) σk + . . .

. . . + B∗ (ατ) u
(
αn+1σ0,k + αn+1 [−δ, δ]

)
+ . . .

. . . +
[

(ατ)n+1

(n + 1)! [−L, L] (ατ)n

n! [−L, L] · · · ατ [−L, L]
]T

,

= Λm (α) (Φ (τ) σk + B∗ (τ) u (σ0,k + [−δ, δ]) + . . .

. . . +
[

τn+1

(n + 1)! [−L, L] τn

n! [−L, L] · · · τ [−L, L]
]T
 ,

= Λm (α) ϖk (τ, δ, σ) .

(2.17)

From Equation (2.17), Λ−1
m (α) ϖk

(
ατ, αn+1δ, Λm (α) σ

)
= ϖk (τ, δ, σ)

and therefore inclusion (2.10) is invariant with respect to the transformation
(τ, δ, σ0, . . . , σn) 7→

(
ατ, αn+1δ, αn+1σ0, . . . , ασn

)
and homogeneous.
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Remark 2.1.2 The discrete-time system (2.10) preserves the homogeneity degrees of
the differential inclusion (1.68), i.e., deg(σ̄i) = deg(σi,k) = mi and deg(t) = deg(τ) =
1.

2.2 Implicit Discretization of the Homogeneous Differen-
tiator (HIDD)

Now, based on the realization of the previous section, HEDD, an implicit scheme is
designed.

2.2.1 Design of HIDD

Under Assumptions 1.3.1, 1.3.2, 1.3.4 and 2.1.1, an implicit discretization is performed
for the continuous-time differentiator (1.62). First, σ0,k is replaced with σ0,k+1 in
Equation (2.7), i.e.,

u (σ0,k+1) = [Ψ0,n(σ0,k+1) Ψ1,n(σ0,k+1) · · · Ψn,n(σ0,k+1)]T . (2.18)

Therefore, the following implicit discrete-time systems are obtained:

zk+1 = Φ (τ) zk + B∗ (τ) u (σ0,k+1) ,

σk+1 = Φ (τ) σk + B∗ (τ) u (σ0,k+1)− hk (τ) .
(2.19)

However, one should highlight that σ0,k+1 cannot be obtained from the second equation
of (2.19) due to the impossibility to measure the state variables x1,k, x2,k, · · · , xn,k and
vector hk (τ). Therefore, these terms are considered as perturbations for the estimation
process of σ0,k+1. It allows to estimate σ0,k+1 as:

σ0,k+1 = σ0,k + τΨ0,n (σ0,k+1) +
n∑

l=1

τ l

l!

(
zl,k + τ

l + 1Ψl,n (σ0,k+1)
)

. (2.20)

Equation (2.20) is only valid for xl,k = 0 and h0,k = 0, with l = 1, · · · , n.
Similar to [Brogliato et al. 2020] and [Acary et al. 2012], to implement the discrete-
time observer (2.19), the intermediate variable σ̃0,k+1 is proposed as a copy of σ0,k+1
in Equation (2.20):

σ̃0,k+1 = σ0,k + τΨ0,n (σ̃0,k+1) +
n∑

l=1

τ l

l!

(
zl,k + τ

l + 1Ψl,n (σ̃0,k+1)
)

. (2.21)

σ̃0,k+1 emulates the behavior of σ0,k+1 with a constant f0(t) and without measurement
noise. To compute σ̃0,k+1, from Equation (2.21) a generalized equation with unknown
σ̃0,k+1 is obtained:

σ̃0,k+1 + an ⌊σ̃0,k+1⌉
n

n+1 + · · ·+ a1 ⌊σ̃0,k+1⌉
1

n+1 + bk ∈ −a0sign(σ̃0,k+1), (2.22)

where bk = −σ0,k−
∑n

l=1
τ l

l! zl,k and al = τn−l+1

(n−l+1)!λlL
n−l+1

n+1 , l = 0, . . . , n. A new support
variable is introduced: ξk ∈ sign(σ̃0,k+1), which can be understood as a selection of
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the set-valued signal. Now, χn (ζ) and its inverse mapping, with ζ ∈ R. The first is
defined as:

χn (ζ) = ζ + an ⌊ζ⌉
n

n+1 + · · ·+ a1 ⌊ζ⌉
1

n+1 + bk. (2.23)

The inverse mapping χ−1
n (y) is obtained as follows:

χn (ζ) = ζ + an ⌊ζ⌉
n

n+1 + · · ·+ a1 ⌊ζ⌉
1

n+1 + bk = y,

ζ + an ⌊ζ⌉
n

n+1 + · · ·+ a1 ⌊ζ⌉
1

n+1 = y − bk.
(2.24)

As it can be seen in the above equation, the sign of the left side is positive when ζ is
positive and it is negative if ζ is negative. Therefore, if y − bk is positive, then ζ is
positive, if y− bk is negative then ζ is negative. It allows to rewrite the left side of the
above equation as:

• If y > bk, then

ζ + anζ
n

n+1 + · · ·+ a1ζ
1

n+1 = y − bk. (2.25)

• If y < bk, then

ζ − an(−ζ)
n

n+1 − · · · − a1(−ζ)
1

n+1 = y − bk. (2.26)

• If y = bk, then ζ + an ⌊ζ⌉
n

n+1 + · · ·+ a1 ⌊ζ⌉
1

n+1 = 0, which implies that ζ = 0. If
ζ ∈ R \ {0} then the left side of the equation is positive or negative but is not 0.

Defining r as r = ζ
1

n+1 and r = (−ζ)
1

n+1 in the first two cases respectively, one
defines the inverse mapping χ−1

n (ζ) as follows:

• If y > bk, then χ−1
n (y) = (r0)n+1 where r0 is the positive root of the polynomial:

p (r) = rn+1 + anrn + · · ·+ a1r + (bk − y) . (2.27)

• If y < bk, then χ−1
n (y) = − (r0)n+1 con r0 where r0 is the positive root of the

polynomial:

p (r) = rn+1 + anrn + · · ·+ a1r − (bk − y) . (2.28)

• If y = bk, then χ−1
n (y) = 0.

Polynomials (2.27) and (2.28) are obtained if the equations are equal to 0. Ad-
ditionally, the change of variables implies that r is positive, and therefore ζ is defined
with a positive root, and its negatives and complex roots are avoided. Moreover, (2.27)
and (2.28) are polynomials without zero coefficients. As the parameters ai are positive,
there is a unique change of sign in the sequence of coefficient of the polynomials (2.27)
and (2.28). Hence, according to the Descartes’s rule of signs [Aleksandrov et al. 1999],
both polynomials have a unique positive root.
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One of the main properties of the inverse mapping χ−1
n (ζ) is that it is continuous

for all ζ ∈ R, and monotonically increasing if ζ ̸= bk. The above comes from the fact
that dχn(ζ)

dζ > 0 for ζ ̸= 0, therefore dχ−1
n (ζ)
dζ > 0 for all ζ ̸= bk, which is the unique

point that mapping to 0 the inverse mapping.
The mapping χn(ζ) and its inverse mapping χ−1

n (y), allow to represent the prob-
lem of calculating σ̃0,k+1 and ξk with the following generalized equations:

ξk ∈ sign(σ̃0,k+1)⇔ σ̃0,k+1 ∈ N[−1,1](ξk),
χn(σ̃0,k+1) = −a0ξk ⇔ σ̃0,k+1 = χ−1

n (−a0ξk),
χ−1

n (−a0ξk) ∈ N[−1,1](ξk).
(2.29)

In summary, one has the following generalized equations:

χn (σ̃0,k+1) ∈ −a0sign(σ̃0,k+1),
χ−1

n (−a0ξk) ∈ N[−1,1] (ξk) ,

ξk ∈ sign(σ̃0,k+1).
(2.30)

σ̃0,k+1 and ξk correspond to the solution of the generalized equations (2.30). A graphic
representation of the generalized equations (2.30) are showed in Figure (2.1), where
τ = 0.5, L = 100, n = 3. The intersection between χ−1

3 (−a0ξk) and N[−1,1] (ξk)
correspond to the solution of the generalized equations for any value of bk, in specific,
the solutions is represented as (ξ∗

k, σ∗
k+1) in Figure 2.1.
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Figure 2.1: Graphic representation of the generalized equation χ−1
n (−a0ξk) ∈

N[−1,1] (ξk) with τ = 0.5, L = 100, n = 3.

Using the properties of the inverse mapping χ−1
n (ζ), one obtains the following

theorem:

Theorem 2.2.1

The generalized equation χ−1
n (−a0ξk) ∈ N[−1,1] (ξk) has a unique solution for

any bk ∈ R.
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Proof First, the generalized equations χ−1
n (−a0ξk) ∈ N[−1,1] (ξk) can be rewritten as

follows:

χ−1
n (−a0ξk) ∈ N[−1,1] (ξk) ,

0 ∈ −χ−1
n (−a0ξk) +N[−1,1] (ξk) ,

0 ∈ −χ−1
n (y) +N[−1,1]

(
− y

a0

)
,

0 ∈ −χ−1
n (y) +N[−a0,a0] (−y) ,

0 ∈ −χ−1
n (y)−N[−a0,a0] (y) ,

0 ∈ χ−1
n (y) +N[−a0,a0] (y) .

(2.31)

Here the variable y is given as y = −a0ξk. As dχn(ζ)
dζ > 0 with ζ ̸= bk, and from

Preposition 1.1.1 and Theorem 1.1.2, one can demonstrate that if bk /∈ [−a0, a0] then
χ−1

n (ζ) is strictly monotone and therefore the generalized equation has at least one
solution. With bk ∈ [−a0, a0], dχn(ζ)−1

dζ is semi definite positive and the Corollary 1.1.2
is used, with xref = bk. Due to the fact that χ−1

n (ζ) > 0 with ζ > 0 and χ−1
n (ζ) < 0

with ζ < 0, it can be deduce that:

χ−1
n (ζ)(ζ − bk) ≥ 0, ∀ζ ∈ [−a0, a0], (2.32)

and from Corollary 1.1.2, the generalized equation has a solution. Ultimately, it is
demonstrated that this solution is unique. In order to demonstrate it, it is assumed
that there are two different solutions of the generalized equations, ζ1, and ζ2, it implies
that:

χ−1
n (ζ1)(ζ ′ − ζ1) ≥ 0, χ−1

n (ζ2)(ζ ′ − ζ2) ≥ 0, ∀ζ ′ ∈ [−a0, a0]. (2.33)

Substituting ζ ′ with ζ2 and ζ1 respectively and with both inequalities, one obtains:

χ−1
n (ζ1)(ζ2 − ζ1) ≥ 0, χ−1

n (ζ2)(ζ1 − ζ2) ≥ 0, ζ1 ̸= ζ2,

χ−1
n (ζ1)(ζ1 − ζ2) ≤ 0, −χ−1

n (ζ2)(ζ1 − ζ2) ≤ 0, ζ1 ̸= ζ2,(
χ−1

n (ζ1)− χ−1
n (ζ2)

)
(ζ1 − ζ2) ≤ 0, ζ1 ̸= ζ2.

(2.34)

As χ−1
n (ζ)
dζ > 0 for ζ ̸= bk, χ−1

n (bk) = 0, χ−1
n (ζ) > 0 for ζ > bk and χ−1

n (ζ) < 0 for
ζ < bk, then: (

χ−1
n (ζ1)− χ−1

n (ζ2)
)

(ζ1 − ζ2) > 0. (2.35)

A contradiction is obtained, and it concludes the proof.

Now the unique solution of the generalized equations (2.30) is given in the fol-
lowing lemma:

Lemma 2.2 Let ai > 0, σ̃0,k+1 ∈ R and ξk ∈ [−1, 1], then the solution of the inclu-
sions (2.30) is the unique pair (σ̃0,k+1, ξk) which is defined according to the following
cases:
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• If bk > a0, then ξk = {−1} and σ̃0,k+1 = − (r0)n+1 ∈ R− where r0 is the unique
positive root of the following polynomial:

p (r) = rn+1 + anrn + · · ·+ a1r + (−bk + a0) . (2.36)

• If bk ∈ [−a0, a0], then σ̃0,k+1 = 0 and ξk =
{
− bk

a0

}
.

• If bk < −a0, then ξk = {1} and σ̃0,k+1 = rn+1
0 ∈ R+ where r0 is the unique

positive root of the following polynomial:

p (r) = rn+1 + anrn + · · ·+ a1r + (bk + a0) . (2.37)

Proof As a result of Equation (2.23), χ (ζ) presents the following properties:
χ (ζ) > bk if ζ > 0,

χ (ζ) = bk if ζ = 0,

χ (ζ) < bk if ζ < 0.

(2.38)

The following three cases are based on the values of bk and a0:

• Case 1: bk > a0

From Equations (2.30) and (2.38), one can conclude that σ̃0,k+1 < 0. It yields

σ̃0,k+1 − an (−σ̃0,k+1)
n

n+1 − · · · − a1 (−σ̃0,k+1)
1

n+1 + bk = a0. (2.39)

Defining r = (−σ̃0,k+1)
1

n+1 , one can obtain p (r) = 0, where p (r) is the polyno-
mial (2.36). It has only one positive root due to its structure with one sign change
in the sequence coefficients. Hence, σ̃0,k+1 = − (r0)n+1, where r0 is the positive
root of Equation (2.36). Since bk > −a0ξk, for all ξk ∈ [−1, 1], β (−a0ξk) = c for
some c ∈ R−. Therefore, one obtains ξk = {−1}.

• Case 2: bk < −a0

From Equations (2.30) and (2.38), one can conclude that σ̃0,k+1 > 0. It yields

σ̃0,k+1 + an (σ̃0,k+1)
n

n+1 + · · ·+ a1 (σ̃0,k+1)
1

n+1 + bk = a0. (2.40)

As the previous case, one can demonstrate that ξk = {1} and σ̃0,k+1 = (r0)n+1

where r0 is the unique positive root of Equation (2.37).

• Case 3: bk ∈ [−a0, a0]
From Equations (2.30) and (2.38), one can conclude that σ̃0,k+1 = 0. Inclusion
(2.30) yields

ξk ∈ sign(β (−a0ξk)). (2.41)

If ξk > − bk
a0

, Equation (2.41) becomes ξk = {−1}. Hence, a contradiction ap-
pears. Similarly, if ξk < − bk

a0
, a contradiction appears. Therefore, the pair(

0,
{

−bk
a0

})
is the unique solution.
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Remark 2.2.1 It could be noted that p((bk − a0)
1

n+1 ) > 0 for polynomial (2.36) and
p((−bk − a0)

1
n+1 ) > 0 for (2.37). Furthermore, for both polynomials, p(0) < 0. There-

fore, r0 ∈
[
0, (bk − a0)

1
n+1
]

for bk > a0 and r0 ∈
[
0, (−bk − a0)

1
n+1
]

for bk < −a0.
It should be highlighted that r0 is unique for these two cases. Therefore, σ̃0,k+1 and
ξk always exist for all bk ∈ R and a0 ̸= 0. Additionally, the parameters aj can be
calculated previous to implement the implicit differentiator, but bk has to be updated at
the time instant tk.

The proposed implicit discrete-time realizations of the homogeneous differentia-
tor are expressed as follows:

zk+1 = Φ (τ) zk + B∗ (τ) v (σ̃0,k+1) ,

v (σ̃0,k+1) = [Ψ0,n (σ̃0,k+1) · · · Ψn,n (σ̃0,k+1)]T ,

Ψi,n(σ̃0,k+1) = −λn−iL
i+1
n+1 |σ̃0,k+1|

n−i
n+1 ξk.

(2.42)

At time tk, the unique pair (σ̃0,k+1, ξk) is computed according to Lemma 2.2.
Furthermore, from Lemma 2.2, one can conclude that the proposed discrete-time dif-
ferentiator (2.42) is non-anticipative. Since the discrete-time differentiator (2.42) uses
ξk instead of sign(·), v(·) is used instead of u(·) in the the discrete-time differentiator
(2.42). The difference between the functions u(σ̃0,k+1) and v(σ̃0,k+1) comes from their
evaluation at σ̃0,k+1 = 0. Indeed, at σ̃0,k+1 = 0, en+1u(σ̃0,k+1) ∈ [−λ0L, λ0L], whereas
en+1v(σ̃0,k+1) =

{
−λ0Lbk

a0

}
. Although measurement noise is absent in Equation (2.21)

and Lemma 2.2, in practice σ0,k is not available. Hence, in practice, σ0,k − ∆k is
used instead of σ0,k. This fact modifies the variable bk, the polynomials (2.36) and
(2.37), and consequently, the behavior of σ̃0,k+1. The effect of the measurement noise
on σ̃0,k+1 is studied in the next subsection.

2.2.2 Implementation of HIDD

In this subsection, an implementation scheme of the algorithm of the proposed implicit
discrete-time realization of the homogeneous differentiator (2.42) is presented:
Require: n ≥ 0, L, λi, τ

m← 0
while (m ≤ n) do

am ← τn−m+1

(n−m+1)!λmL
n−m+1

n+1

m← m + 1
end while
m← 0
while (m ≤ n) do

zm ← 0 ▷ The states zi are initialized.
m← m + 1

end while
m← 0
while (1) do

fk ← f(mτ) ▷ The measurement of f(t) is obtained.
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bk ← − (z0 − fk)−
∑n

l=1
τ l

l! zl

if (bk > a0) then
r ←

(
bk−a0

2

)1/(n+1)

j ← 0
while (j < 3) do ▷ Computation of the unique positive root.

p← rn+1 + anrn + · · ·+ a1r + (−bk + a0)
dp← (n + 1) rn + nanrn−1 + · · ·+ a1
ddp← n (n + 1) rn−1 + · · ·+ 2a2
r ← r − 2p(dp)

2(dp)2−p(ddp)
j ← j + 1

end while
ξk ← −1

end if
if (bk < −a0) then

r ←
(

−bk−a0
2

)1/(n+1)

j ← 0
while (j < 3) do ▷ Computation of the unique positive root.

p← rn+1 + anrn + · · ·+ a1r + (bk + a0)
dp← (n + 1) rn + nanrn−1 + · · ·+ a1
ddp← n (n + 1) rn−1 + · · ·+ 2a2
r ← r − 2p(dp)

2(dp)2−p(ddp)
j ← j + 1

end while
ξk ← 1

end if
if (bk > −a0) and (bk < a0) then

r ← 0
ξk ← − bk

a0
end if
j ← 0
while (j ≤ n) do

uj ← −λn−jL
j+1
n+1 rn−jξk

j ← j + 1
end while
j ← 0
while (j ≤ n) do ▷ The estimation at the time t = mτ are obtained

zj,M =
∑n

l=j
τ l−j

(l−j)!zl,k + τ l−j+1

(l−j+1)!ul

j ← j + 1
end while
j ← 0
while (j ≤ n) do ▷ The states are updated for the next measurement.

zj = zj,M

j ← j + 1
end while
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end while

The above algorithm allows to clarify how to implement the HIDD.

2.3 Stability analysis of the differentiator based on the
standard differentiator

In this section the stability properties of the explicit and implicit discrete-time differ-
entiators ((2.5) and (2.42)) are derived.

2.3.1 Stability analysis of the differentiator HEDD

First, the stability of the discrete-time differentiator HEDD (2.5) is studied. Based on
the results obtained in [Livne & Levant 2014, Barbot et al. 2020, Levant & Livne 2016],
one can obtain the following theorem:

Theorem 2.3.1

Let zk be generated with the explicit discrete-time differentiator (2.5). Under
Assumptions 1.3.1-2.1.1, there exist constants µi > 0, i = 0, 1, 2, · · · , n such
that after a finite-time transient, the following inequalities are fulfilled:

|zi,k − xi,k| ≤ µiLρn+1−i,

ρ = max
{

τ,

(
δ

L

) 1
n+1
}

,
(2.43)

where the coefficients µi only depend on the differentiator parameters λ0, . . . , λn.

It is important to mention that Theorem 2.3.1 is a particular case of Theorem 4
in [Barbot et al. 2020].

Proof Under Assumptions 1.3.1, 1.3.2, 1.3.4, 2.1.1 and as ∆k ∈ [−δ, δ], the error
system (2.10) can be expressed as:

σi,k+1 ∈ σi,k + τΨi,n (σ0,k + [−δ, δ]) +
n−i∑
j=1

τ j

j! σj+i,k + . . .

. . . + τ j+1

(j + 1)!Ψj+i,n (σ0,k + [−δ, δ]) + τn−i+1

(n− i + 1)! [−L, L] ,

σn,k+1 ∈ σn,k + τΨn,n (σ0,k + [−δ, δ]) + τ [−L, L] ,

(2.44)
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with i = 0, 1, . . . , n− 1. Using σ̄i,k = σi,k/L, the above inclusion can be rewritten as:

σ̄i,k+1 ∈ σ̄i,k + τ
Ψi,n

(
σ̄0,k +

[
− δ

L , δ
L

])
L

i+1
n+1

+ . . .

. . . +
n−i∑
j=1

τ j

j! σ̄j+i,k + τ j+1

(j + 1)!
Ψj+i,n

(
σ̄0,k +

[
− δ

L , δ
L

])
L

j+i+1
n+1

+ τn−i+1

(n− i + 1)! [−1, 1] ,

σ̄n,k+1 ∈ σ̄n,k + τ
Ψn,n

(
σ̄0,k +

[
− δ

L , δ
L

])
L

+ τ [−1, 1] .

(2.45)

Define the piecewise linear continuous-time function s (t) =
[s0(t) s1(t) . . . sn(t)]T such that s (t) describes the solution of (2.45) (with
sk = s (tk) = σ̄ (tk)) and is defined as:

s(t) = sk + (t− tk)wk,

wk ∈ G (sk, τ) ,
(2.46)

with G (sk, τ) = [G0 (sk, τ) G1 (sk, τ) · · · Gn (sk, τ)]T , and t ∈ [tk, tk+1)

Gi (sk, τ) =
Ψi,n

(
s0,k +

[
− δ

L , δ
L

])
L

i+1
n+1

+
n−i∑
j=1

τ j−1

j! sj+i,k + . . .

. . . + τ j

(j + 1)!
Ψj+i,n

(
s0,k +

[
− δ

L , δ
L

])
L

j+i+1
n+1

+ τn−i

(n− i + 1)! [−1, 1] ,

Gn (sk, τ) =
Ψn,n

(
s0,k +

[
− δ

L , δ
L

])
L

+ [−1, 1] .

Note that each solution of (2.45) satisfies (2.46) in the sense that for all t ∈
[tk, tk+1), there is a wk such that s (tk) = σ̄k for any k. Due to (2.46) and as s(tk)
presents a piecewise constant derivative, s(tk) satisfies the following inclusion:

ṡi ∈
Ψi,n

(
s0,k +

[
− δ

L , δ
L

])
L

i+1
n+1

+
n−i∑
j=1

τ j−1

j! sj+i,k + . . .

. . . + τ j

(j + 1)!
Ψj+i,n

(
s0,k +

[
− δ

L , δ
L

])
L

j+i+1
n+1

+ τn−i

(n− i + 1)! [−1, 1] ,

ṡn ∈
Ψn,n

(
s0,k +

[
− δ

L , δ
L

])
L

+ [−1, 1] .

(2.47)

Let the disturbance intensity ρ defined as ρ = max
{

τ, (δ/L)
1

n+1
}

. Any solution
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of inclusion (2.46) almost everywhere satisfies the differential inclusion:

ṡi ∈
Ψi,n

(
s0 (t− ρ [0, 1]) + ρn+1 [−1, 1]

)
L

i+1
n+1

+ . . .

. . . + si+1 (t− ρ [0, 1]) +
n−i∑
j=2

ρj−1

j! sj+i (t− ρ[0, 1]) [−1, 1] + . . .

. . . +
n−i∑
j=1

ρj

(j + 1)!
Ψj+i,n

(
s0 (t− ρ [0, 1]) + ρn+1 [−1, 1]

)
L

j+i+1
n+1

[−1, 1] . . .

. . . + ρn−i

(n− i + 1)! [−1, 1] ,

ṡn ∈
Ψn,n

(
s0 (t− ρ [0, 1]) + ρn+1 [−1, 1]

)
L

+ [−1, 1] .

(2.48)

In compact form, Equation (2.48) can be summarized as:

ṡ ∈ C (s(t− ρ[0, 1]), Γ(ρ, s(t− ρ[0, 1]))) , (2.49)

where C has been defined in (1.68) and Γ (ρ, s(t)) =
[Γ0 (ρ, s(t)) Γ1 (ρ, s(t)) · · · Γn (ρ, s(t))]T is given as:

Γ0 (ρ, s(t)) =ρn+1 [−1, 1] ,

Γi (ρ, s(t)) = ρn−i+1

(n− i + 2)! [−1, 1] +
n−i+1∑

j=2

ρj−1

j! sj+i−1 (t) [−1, 1] + . . .

. . . +
n−i+1∑

j=1

ρj

(j + 1)!
Ψj+i−1,n (s0 (t))

L
j+i
n+1

[−1, 1] ,

Γn (ρ, s(t)) = ρ

2! [−1, 1] + ρ

2!
Ψn,n (s0 (t))

L
[−1, 1] ,

(2.50)

for i = 1, · · · , n − 1. Notice that Γ (0, s(t)) = {0}, which means that Γ (ρ, s(t))
is vanishing with respect to ρ. Furthermore, the following equalities hold:

(λρ)n+1 [−1, 1] = λn+1ρn+1 [−1, 1] ,

(λρ)n−i+1

(n− i + 2)! [−1, 1] = λn−i+1 ρn−i+1

(n− i + 2)! [−1, 1] ,

(λρ)j−1

j! λn−i−j+2sj+i−1 (t) [−1, 1] = λn−i+1 ρj−1

j! sj+i−1 (t) [−1, 1] ,

(λρ)j

(j + 1)!
Ψj+i−1,n

(
λn+1s0 (t)

)
L

j+i
n+1

[−1, 1] = λn−i+1 ρj

(j + 1)!
Ψj+i−1,n (s0 (t))

L
j+i
n+1

[−1, 1] .

(2.51)

Let ρ ≤ ρ̃, the inequality ρn+1 ≤ ρ̃n+1 is obtained and therefore ρn+1 [−1, 1] ⊂
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ρ̃n+1 [−1, 1]. In a similar way the following relations are obtained:

ρn−i+1

(n− i + 2)! [−1, 1] ⊂ ρ̃n−i+1

(n− i + 2)! [−1, 1] ,

ρj−1

j! sj+i−1 (t) [−1, 1] ⊂ ρ̃j−1

j! sj+i−1 (t) [−1, 1] ,

ρj

(j + 1)!
Ψj+i−1,n (s0 (t))

L
j+i
n+1

[−1, 1] ⊂ ρ̃j

(j + 1)!
Ψj+i−1,n (s0 (t))

L
j+i
n+1

[−1, 1] .

(2.52)

As result of homogeneity property of Γi (ρ, s), it is Hausdorff-continous (for more
details see [Livne & Levant 2014]). To investigate the stability properties of the solu-
tions of (2.49), one needs to study the properties of Γ (ρ, s (t)), which is considered as a
disturbance. Using homogeneity properties and classical relations, it is straightforward
to see that:

• Γi (ρ, s (t)) is a set-valued function with non-empty compact values for s (t) ∈
Rn+1 and ρ ≥ 0, for i = 0, 1, · · · , n.

• The disturbance satisfies the homogeneity condition, for all α, ρ ≥ 0, for all
s (t) ∈ Rn+1, Γi (α−qρ, Λm (α) s (t)) =αn−i+1Γi (ρ, s (t)) with q = −1 and
Γi (0, s (t)) = {0}.

• Γi (ρ, s (t)) monotonously increases with respect to parameter ρ in the sense that
for any s (t) the inequality 0 ≤ ρ ≤ ρ̃ implies Γ (ρ, s (t)) ⊂ Γ (ρ̃, s (t)).

• Γi(ρ, s (t)) is Hausdorff-continuous in ρ, s (t) at the points with ρ = 0. , i.e., for
any ei > 0 there exists ρ̃ such that if 0 ≤ ρ ≤ ρ̃, ||s (t) || ≤ r then the Hausdorff
distance of the set from the origin satisfies dHs (Γi(ρ, s (t)), {0}) ≤ ei.

From inclusion (2.49), one can easily deduce the following properties:

• The set field C (s, Γ(ρ, s)) ⊂ Rn+1 is a non-empty compact convex set valued
function, upper-semicontinuous at all point (s, 0), s ∈ Rn+1, 0 ∈ Rn+1.

• The undisturbed inclusion ṡ ∈ C (s, 0) is finite-time stable and homogeneous of
degree q = −1. The corresponding homogeneity dilation Λm (α): (s0, . . . , sn) 7→
(αm0s0, . . . , αmnsn) defines the weights m0, m1, . . . , mn−1, mn > 0 with mi ≥ 1.

• C (s, Γ (ρ, s (t))) is homogeneous with respect to the transformation
(t, s, Γ (ρ, s (t))) 7→ (α−qt, Λm (α) s, Λm (α) Γ (ρ, s (t))) since C (s, Γ (ρ, s (t))) =
α−qΛ−1

m (α) C (Λm (α) s, Λm (α) Γ (ρ, s (t))).

Since the first sampling time is performed at t0 = 0, the dynamics of (2.49) is not
affected by the state values for t < 0. Under the above properties and Theorem 1.2.4,
one can deduce that after a finite-time transient, all indefinitely extendable solutions of
the perturbed differential inclusion (2.49) enter and remain inside the region |si(t)| ≤

µiρ
mi with µi > 0 and ρ = max

{
τ,
(

δ
L

) 1
n+1
}

. This concludes the proof.

From Theorem 2.3.1, one can see that the HEDD preserves the asymptotic accuracy
of its continuous-time counterpart.
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2.3.2 Stability Analysis for HIDD

Before analyzing the stability properties of the proposed implicit discrete-time differ-
entiator (2.42), an implicit discrete-time error system is derived. εi,k is defined as
εi,k = zi,k+1 − xi,k, for i = 0, 1, 2, · · · , n. These variables allow to demonstrate the
convergence of zi,k+1 to a vicinity of xi,k. If there is no estimation error on σ̃0,k+1 and
no noise, one can obtain:

ε0,k = σ0,k + τz1,k + τ2

2! z2,k + · · ·+ τn

n! zn,k + τΨ0,n (σ̃0,k+1) + . . .

. . . + τ2

2! Ψ1,n (σ̃0,k+1) + · · ·+ τn+1

(n + 1)!Ψn,n (σ̃0,k+1) .

(2.53)

Comparing Equations (2.21) and (2.53), one can deduce that σ̃0,k+1 = ε0,k. To obtain
the properties of HIDD for a noisy input, bN

k is defined as bN
k = bk + ∆k, σ̃N

0,k+1 as:

σ̃N
0,k+1 = σ0,k −∆k + τΨ0,n

(
σ̃N

0,k+1

)
+

n∑
l=1

τ l

l!

(
zl,k + τ

l + 1Ψl,n

(
σ̃N

0,k+1

))
, (2.54)

and ξN
k ∈ sign(σ̃N

0,k+1). bN
k , σ̃N

0,k+1 and ξN
k are the counterpart of bk, σ̃0,k+1 and ξk for

a noisy input and without an estimation error of r0. As there is no analytical equation
for the roots, an interpolation method is used to estimate r0 and an estimation error of
r0 could be present. Following a similar process applied to obtain Lemma 2.2, σ̃N

0,k+1
and ξN

k are computed as:

• If bN
k > a0, then ξN

k = {−1} and σ̃N
0,k+1 = −

(
rN

0

)n+1
∈ R−, where rN

0 is the
unique positive root of the following polynomial:

q (r) = rn+1 + anrn + · · ·+ a1r +
(
−bN

k + a0
)

. (2.55)

• If bN
k ∈ [−a0, a0], then σ̃N

0,k+1 = 0 and ξN
k =

{
− bN

k
a0

}
.

• If bN
k < −a0, then ξN

k = {1} and σ̃N
0,k+1 =

(
rN

0

)n+1
∈ R+, where rN

0 is the unique
positive root of the following polynomial:

q (r) = rn+1 + anrn + · · ·+ a1r +
(
bN

k + a0
)

. (2.56)

One can mention that in the absence of noise, the polynomials (2.36) and (2.37) are
the same as the polynomials (2.55) and (2.56). Note that if τ tends to zero, the roots of
the polynomials (2.55) and (2.56) tend to (σ0,k −∆k)

1
n+1 and (−σ0,k + ∆k)

1
n+1 , respec-

tively. In contrast, for the polynomials (2.36) and (2.37), its roots tend to (σ0,k)
1

n+1

and (−σ0,k)
1

n+1 , therefore σ̃0,k+1 tends to σ0,k. As there is no analytical expression for
the roots r0, in practice, they are estimated with an interpolation method. Therefore,
the estimation of σ̃N

0,k+1 is estimated as follows:

ˆ̃σN

0,k+1 =


−(r̂N

0 )n+1 if bN
k > a0

0 if bN
k ∈ [−a0, a0]

(r̂N
0 )n+1 if bN

k < −a0

, (2.57)
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where r̂N
0 is the estimation of rN

0 . In a noise case and with an estimation error of rN
0 ,

ˆ̃σN

0,k+1 and ξN
k are implemented in the implicit discrete-time realization (2.42) instead

of σ̃0,k+1 and ξk. Under these conditions, ε0,k becomes:

ε0,k = σ0,k −∆k + τΨ0,n

(
ˆ̃σN

0,k+1

)
+

n∑
l=1

τ l

l!

(
zl,k + τ

l + 1Ψl,n

(
ˆ̃σN

0,k+1

))
. (2.58)

To determine the effect of the estimation error of r0 and the measurement noise over
the behavior of εi,k, the variable θk is introduced as θk = ε0,k − ˆ̃σN

0,k+1, or equivalently
as:

θk = E1,k + E2,k, (2.59)

which is constant during the time interval [tk, tk+1). Here, E1,k, E2,k and E3,k are
defined as:

E1,k = σ̃N
0,k+1 − ˆ̃σN

0,k+1,

E2,k = ε0,k − σ̃N
0,k+1,

E3,k = rN
0 − r̂N

0 .

(2.60)

E3,k is the estimation error of the roots rN
0 , and it is considered equal to zero for

bN
k ∈ [−a0, a0]. E3,k depends on the implemented root-finding method, the initial

condition of the estimate, τ and bN
k . Nevertheless, if its estimation converges mono-

tonically to rN
0 , and its initial condition belong to

[
0,
(
bN

k − a0
)1/(n+1)

]
for bN

k > a0

and
[
0,
(
−bN

k − a0
)1/(n+1)

]
for bN

k < −a0, then r̂N
0 > 0 and E3,k is bounded with

|E3,k| ≤
(
bN

k − a0
)1/(n+1)

or |E3,k| ≤
(
−bN

k − a0
)1/(n+1)

, respectively. E1,k represents
the estimation error of the variable σ̃N

0,k+1 and it can be represented as:

E1,k =


−(rN

0 )n+1 + (rN
0 − E3,k)n+1 if bN

k > a0
0 if bN

k ∈ [−a0, a0]
(rN

0 )n+1 − (rN
0 − E3,k)n+1 if bN

k < −a0

, (2.61)

whereas E2,k corresponds to the difference between ε0,k and σ̃N
0,k+1 and it is given as:

E2,k = ∆k +
n∑

l=0
− τ l+1

(l + 1)!λn−lL
l+1
n+1

(⌊
ˆ̃σN

0,k+1

⌉ n−l
n+1
−
⌊
σ̃N

0,k+1

⌉ n−l
n+1

)
, (2.62)

Note that the effect of E3,k over E2,k is attenuated by τ . Hence, due to the
presence of measurement noise and numerical errors in the root-finding method, the
following assumption is considered.

Assumption 2.3.1 r̂N
0 > 0 and θ(t) is a bounded noise with |θ(t)| ≤ κ for all t ≥ 0

and with an unknown real number κ > 0.

Jose Eduardo Carvajal Rubio Page 55



Chapter 2. Explicit and implicit discretizations of homogeneous differentiator

As r̂N
0 > 0, one can deduce that

|E1,k| ≤ |E3,k|
∣∣∣en

1 (rN
0 )n + · · ·+ en

n(E3,k)n−1(rN
0 ) + (E3,k)n

∣∣∣ ,
|E2,k| ≤ |∆k|+

τn

n! λ1L
n

n+1 |E3,k|+ . . .

. . . +
n−2∑
l=0

τ l+1

(l + 1)!λn−lL
l+1
n+1 |E3,k|

∣∣∣en−l−1
1 (rN

0 )n−l−1 + . . .

. . . + · · ·+ en−l−1
n−l−1(E3,k)n−l−2(rN

0 ) + (E3,k)n−l−1
∣∣∣ ,

(2.63)

where the constants en
j are the coefficients of the well-known Pascal’s triangle with a

respective change of sign, i.e., en
j = (−1)j (n+1)!

j!(n−j+1)! . In equation (2.63), rN
0 = 0 for

bN
k ∈ [−a0, a0].

Remark 2.3.1 Clearly, if E3,k = 0 for all t ≥ 0, then E1,k = 0, E2,k = θk = ∆k and
Assumption 2.3.1 is fulfilled. The above is satisfied if bk ∈ [−a0, a0] for all t ≥ 0. Due
to Equation (2.60), there is not a κ > 0 such that the Assumption 2.3.1 is satisfied for
all τ > 0, δ > 0, z1,k, z2,k, . . . , zn,k, σ0,k, E3,k ∈ R. However, from the continuity of the
right-hand side of (2.63) with respect to E3,k, one can deduce the following fact. For
any r0 and κ ≥ δ, there is a maximum tolerable error ME3,k

≥ 0 such that |θk| ≤ κ if
|E3,k| ≤ME3,k

. It justifies Assumption 2.3.1.

Under Assumption 2.3.1, ξN
k ∈ sign(ˆ̃σN

0,k+1). It comes from the fact that r̂N
0 > 0

and therefore the sign of σ̃N
k+1 depends on bN

k and a0, in the same way that σ̃N
0,k+1. As

ˆ̃σN

0,k+1 is implemented instead of σ̃0,k+1, v (σ̃0,k+1) in the discrete-time system (2.42)

becomes v

(
ˆ̃σN

0,k+1

)
, where v(·) is defined in Equation (2.42). Due to Equations (2.59)

and (2.60), and the discrete-time systems (2.1) and (2.42), σk+1 is expressed as:

σk+1 = Φ (τ) σk + B∗ (τ) v (ε0,k − θk)− hk (τ) . (2.64)

Defining ε = [ε0,k ε1,k . . . εn,k ]T the following equations are obtained:

εk = (Φ (τ)− I)zk + B∗ (τ) v (ε0,k − θk) + σk,

εk = Φ (τ) σk + B∗ (τ) v (ε0,k − θk) + (Φ (τ)− I) xk.
(2.65)

The above equations can be rewritten as:

εk+1 = (Φ (τ)− I)zk+1 + B∗ (τ) v (ε0,k+1 − θk+1) + σk+1,

εk − (Φ (τ)− I) xk = Φ (τ) σk + B∗ (τ) v (ε0,k − θk) .
(2.66)

Equations (2.64) and (2.66) yield:

εk+1 = (Φ (τ)− I)zk+1 + B∗ (τ) v (ε0,k+1 − θk+1) + Φ (τ) σk + . . .

. . . + B∗ (τ) v (ε0,k − θk)− hk (τ) ,

= (Φ (τ)− I)zk+1 + B∗ (τ) v (ε0,k+1 − θk+1) + εk − . . .

. . .− (Φ (τ)− I) xk − hk (τ) ,

= (Φ (τ)− I)εk + B∗ (τ) v (ε0,k+1 − θk+1) + εk − hk (τ) ,

= Φ (τ) εk + B∗ (τ) v (ε0,k+1 − θk+1)− hk (τ) .

(2.67)
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Therefore, under Assumptions 1.3.1, 1.3.2, 1.3.4, 2.1.1 and 2.3.1, the error system using
the proposed implicit discrete-time differentiator (2.42) is represented as:

εk+1 = Φ (τ) εk + B∗ (τ) v (ε0,k+1 − θk+1)− hk (τ) ,

v (ε0,k+1 − θk+1) = [Ψ0,n (ε0,k+1 − θk+1) · · · Ψn,n (ε0,k+1 − θk+1)]T ,

Ψi,n (ε0,k+1 − θk+1) = −λn−iL
i+1
n+1 |ε0,k+1 − θk+1|

n−i
n+1 ξN

k+1,

ξN
k+1 ∈ sign(ε0,k+1 − θk+1).

(2.68)

This form will be useful to study the stability properties under the discrete-time differ-
entiator (2.42). Note that θk+1 is considered as the measurement noise for the discrete-
time error system (2.68). Similarly to (2.10), as θk+1 ∈ [−κ, κ] and f

(n+1)
0 (t) ∈ [−L, L],

the estimation error dynamics can be expressed as the following inclusion:

εk+1 ∈Φ (τ) εk + B∗ (τ) v (ε0,k+1 + [−κ, κ]) + . . .

. . . +
[

τn+1

(n + 1)! [−L, L] τn

n! [−L, L] · · · τ [−L, L]
]T

.
(2.69)

Lemma 2.3 The system (2.69) is homogeneous with respect to the transformation
(τ, κ, ε0, . . . , εn) 7→

(
ατ, αn+1κ, αn+1ε0, . . . , αεn

)
, for all α ∈ R+.

Proof The proof is omitted since it is similar to that of Lemma 2.1.

Remark 2.3.2 System (2.69) preserves the homogeneity degrees of the differential
inclusion (1.68), i.e., deg(σ̄i) = deg(εi,k) = mi and deg(t) = deg(τ) = 1. How-
ever, it is not homogeneous with respect to the transformation (τ, δ, σ0, . . . , σn) 7→(
ατ, αn+1δ, αn+1σ0, . . . , ασn

)
.

It is important to mention that system (2.69) describes the behavior of σ̃N
0,k+1,

which matches with the results presented in Lemma 2.2. Indeed, from the system
(2.69), one obtains

ε0,k+1 = −h0,k +
n∑

l=0

τ l

l! εl,k + τ l+1

(l + 1)!Ψl,n (ε0,k+1 − θk+1) . (2.70)

Subtracting E2,k+1 the following equations are obtained:

ε0,k+1 − E2,k+1 = −E2,k+1 − h0,k +
n∑

l=0

τ l

l! εl,k + τ l+1

(l + 1)!Ψl,n

(
ˆ̃σN

0,k+2

)
,

σ̃N
0,k+2 = −∆k+1 − h0,k +

n∑
l=0

τ l

l! εl,k + τ l+1

(l + 1)!Ψl,n

(
σ̃N

0,k+2

)
.

(2.71)

Let b̄N
k+1 = ∆k+1 +h0,k−

∑n
l=0

τ l

l! εl,k. Taking into account that εl,k = zl,k+1−xl,k,
then b̄N

k+1 can be expressed as:

b̄N
k+1 = ∆k+1 + h0,k +

n∑
l=0

τ l

l! xl,k −
n∑

l=0

τ l

l! zl,k+1 = ∆k+1 − σ0,k+1 −
n∑

l=1

τ l

l! zl,k+1 = bN
k+1.

(2.72)
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Then, σ̃N
0,k+2 can be expressed as:

σ̃N
0,k+2 = −bN

k+1 +
n∑

l=0

τ l+1

(l + 1)!Ψl,n

(
σ̃N

0,k+2

)
. (2.73)

Under Assumption 2.3.1, ξN
k+1 ∈ sign(σ̃N

0,k+2). Similar to Lemma 2.2, one obtains
that the behavior of σ̃N

0,k+2 and ξN
k+1 are given as:

• If bN
k+1 > a0, then ξN

k+1 = {−1} and σ̃N
0,k+2 = −

(
rN

0

)n+1
∈ R−, where rN

0 is the
unique positive root of the following polynomial:

q (r) = rn+1 + anrn + · · ·+ a1r +
(
−bN

k+1 + a0
)

. (2.74)

• If bN
k+1 ∈ [−a0, a0], then σ̃N

0,k+2 = 0 and ξN
k+1 =

{
− bN

k+1
a0

}
.

• If bN
k+1 < −a0, then ξN

k+1 = {1} and σ̃N
0,k+2 =

(
rN

0

)n+1
∈ R+, where rN

0 is the
unique positive root of the following polynomial:

q (r) = rn+1 + anrn + · · ·+ a1r +
(
bN

k+1 + a0
)

. (2.75)

Now, the following theorem will establish the stability properties of the implicit
discrete-time differentiator.

Theorem 2.3.2

Let zk be generated with the implicit discrete-time differentiator (2.42) and
the parameters λ0, . . . , λn be such that the inclusion (1.68) is finite-time stable.
Under Assumptions 1.3.1, 1.3.2, 1.3.4, 2.1.1 and 2.3.1, there exist constants
µi > 0, i = 0, 1, 2, · · · , n such that after a finite-time transient, the following
inequalities are fulfilled:

|zi,k+1 − xi,k| ≤ µiLρn+1−i,

ρ = max
{

τ,

(
κ

L

) 1
n+1
}

,
(2.76)

where the coefficients µi only depend on the differentiator parameters λ0, . . . , λn.

Proof Using HIDD, the estimation error dynamics can be obtained from Equation
(2.68):

εi,k+1 ∈ εi,k + τΨi,n (ε0,k + [−κ, κ]) + τn−i+1

(n− i + 1)! [−L, L] + . . .

. . . +
n−i∑
j=1

τ j

j! εj+i,k + τ j+1

(j + 1)!Ψj+i,n (ε0,k+1 + [−κ, κ]) ,

εn,k+1 ∈ εn,k + τΨn,n (ε0,k+1 + [−κ, κ]) + τ [−L, L] ,

(2.77)
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with i = 0, 1, . . . , n. By defining ε̄i,k = εi,k/L, the inclusion (2.77) can be rewritten as:

ε̄i,k+1 ∈ ε̄i,k + τ
Ψi,n

(
ε̄0,k+1 +

[
− κ

L , κ
L

])
L

i+1
n+1

+ τn−i+1

(n− i + 1)! [−1, 1] + . . .

. . . +
n−i∑
j=1

τ j

j! ε̄j+i,k + τ j+1

(j + 1)!
Ψj+i,n

(
ε̄0,k+1 +

[
− κ

L , κ
L

])
L

j+i+1
n+1

,

ε̄n,k+1 ∈ ε̄n,k + τ
Ψn,n

(
ε̄0,k+1 +

[
− κ

L , κ
L

])
L

+ τ [−1, 1] .

(2.78)

As in the proof of Theorem 2.3.1, the piecewise linear continuous function s (t) =
[s0(t) s1(t) · · · sn(t)]T is defined such that s (t) describes the solution of (2.78) (with
sk = s (tk) = ε̄ (tk)), i.e.,

s(t) = sk + (t− tk)wk,

wk ∈ G (s0,k+1, sk, τ) ,
(2.79)

with G (s0,k+1, sk, τ) = [G0 (s0,k+1, sk, τ) G1 (s0,k+1, sk, τ) · · · Gn (s0,k+1, sk, τ)]T ,
and t ∈ [tk, tk+1)

Gi (s0,k+1, sk, τ) =
Ψi,n

(
s0,k+1 +

[
− κ

L , κ
L

])
L

i+1
n+1

+ τn−i

(n− i + 1)! [−1, 1] . . .

. . . +
n−i∑
j=1

τ j−1

j! sj+i,k + τ j

(j + 1)!
Ψj+i,n

(
s0,k+1 +

[
− κ

L , κ
L

])
L

j+i+1
n+1

,

Gn (s0,k+1, sk, τ) =
Ψn,n

(
s0,k+1 +

[
− κ

L , κ
L

])
L

+ [−1, 1] .

Let the disturbance intensity ρ be defined as ρ = max
{

τ, (κ/L)
1

n+1
}

, then any
solution of (2.79) almost everywhere satisfies the differential inclusion (2.49). Hence,
one can apply similar arguments as the proof of Theorem 2.3.1 to conclude the proof.

From Theorem 2.3.2, one can see that the HIDD preserves the asymptotic accu-
racy as its continuous-time counterpart, if E3,k = 0. It becomes optimal for τ = 0 and
E3,k = 0. From the definition of bN

k , θk and Equation (2.58):

bN
k = −ε0,k +

n∑
l=0

τ l+1

(l + 1)!Ψl,n (ε0,k − θk) . (2.80)

Note that the right-hand side of the following inclusion is homogeneous with respect
to the transformation (τ, κ, ε0, . . . , εn) 7→

(
ατ, αn+1κ, αn+1ε0, . . . , αεn

)
, for all α ∈ R+.

bN
k ∈ −ε0,k +

n∑
l=0

τ l+1

(l + 1)!Ψl,n (ε0,k + [−κ, κ]) . (2.81)

Equation (2.80) and the results of Theorem 2.3.2 allow deducing that after the
finite-time transient mentioned in Theorem 2.3.2, bN

k is bounded. Therefore, after
this finite-time transient, r0 is bounded. Furthermore, from the above fact and as
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bN
k = −σ0,k +

∑n
l=1

τ l

l! zl,k, one can deduce that σ0,k almost compensates
∑n

l=1
τ l

l! zl,k

after the finite-time transient. Moreover, in the ideal case, the generalized equation
(2.22) becomes:

ε0,k + an ⌊ε0,k⌉
n

n+1 + an−1 ⌊ε0,k⌉
n−1
n+1 + · · ·+ a1 ⌊ε0,k⌉

1
n+1 + bk ∈ −a0sign(ε0,k), (2.82)

and both sides of inclusion (2.82) are homogeneous with respect to the transformation
(τ, ε0, . . . , εn) 7→

(
ατ, αn+1ε0, . . . , αεn

)
, for all α ∈ R+.

Remark 2.3.3 It is important to note that for HEDD zk estimates xk, whereas for
HIDD zk+1 estimates xk. Therefore, εi,k is the estimation error between zi,k+1 and
xi,k at time tk. Nevertheless, zi,k+1 is available at time tk plus the time required
to compute zi,k+1. On the other hand, as σ0,k almost compensates ∑n

l=1
τ l

l! zl,k, it
could tend to infinity for signals with unbounded derivatives. However, Theorem 2.3.2
implies, under its respective assumptions, that εi,k converges to a vicinity defined by
(2.76).

Remark 2.3.4 If there exists a known constant m > n such that |f (m+1)
0 (t)| ≤ L,

then a better accuracy can be obtained using a differentiator of order m (instead of n)
for both HEDD and HIDD, i.e., |zi,k−xi,k| ≤ µiLρm+1−i (|zi,k+1−xi,k| ≤ µiLρm+1−i).

2.4 Toward an efficient implementation of the implicit
differentiator

Recall that there is no analytical expression for the roots of polynomials of high degree
and since the implicit differentiator requires to calculate the roots of a polynomial,
an adequate root finding method is needed. After selecting an adequate root finding
method in Subsection 2.4.1, methods to reduce time complexity of HIDD are studied
in Subsection 2.4.2.

2.4.1 Interpolation methods

As it is mentioned previously, since there is no analytical expression for the roots of
polynomials of high degree, a root-finding method is needed to implement the implicit
differentiator. Here, the following interpolation methods are considered: the modi-
fied Newton-Raphson method [McDougall & Wotherspoon 2014], the Euler’s method
[Melman 1997] and the Halley’s method [Scavo & Thoo 1995]. It is important to
mention that the secant method was avoided because it can diverge. The above de-
pends on the initial condition used. Hereafter, the order of convergence is used to
compare the convergence rate of the interpolation methods [Varona 2002, Weerakoon
& Fernando 2000], as described in the following definition.

Definition 2.1 [Weerakoon & Fernando 2000] Let r0 ∈ R the root of a polynomial,
r0,j ∈ R the estimation of r0 at iteration j, j = 0, 1, 2, · · · . A sequence {r0,j} is said
to converge to r0 if

lim
j→∞

|r0,j − r0| = 0. (2.83)
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If, in addition, there exist a constant c ≥ 0, an integer j0 ≥ 0 and d ≥ 0 such that for
all j > j0

|r0,j+1 − r0| ≤ c |r0,j − r0|d , (2.84)

then {r0,j} is said to converge to r0 with q-order at least d. If d = 2 or 3, the conver-
gence is said to be q-quadratic or q-cubic, respectively.

The modified Newton-Raphson method is an iteration function with an order of
convergence 1+

√
2, which uses the same number of derivatives and function evaluations

as the Newton-Raphson method (with an order of convergence 2). Since the Euler’s
method needs the calculation of a square root at each iteration, and Halley’s method
presents an order of convergence 3, Euler’s method is not implemented. The modified
Newton-Raphson and Halley’s methods were experimentally tested to find the positive
root of the polynomial (2.37). Here, the following parameters are considered τ = 0.1,
n = 3, λ0 = 1.1, λ1 = 3.06, λ2 = 4.16, λ3 = 3, L = 2, bk = −a0 − 0.1 and an initial
condition r0,0 = −(a0 +bk)/2. The modified Halley’s method reaches an absolute error
estimate less than 1.111×10−16 after 6 iterations, while this accuracy is obtained with
the modified Newton-Raphson method after 16 iterations, as shown in Figures 2.2-2.3.
It can be seen a significant increase in the estimation error when j = 1. To avoid the
above behavior for the Halley’s method, the following lemma is used.
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0
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-16

Figure 2.2: Roots obtained with two different interpolation methods.

Lemma 2.4 [Melman 1997] Let d3p(r)
dr3 be continuous, dp(r)

dr ̸= 0, and d2
(

(η dp(r)
dr

)−1/2
)

dr2 ≥
0 on an interval J containing the root r0 of p(r) with η = sign(dp(r)

dr ). Then, the
Halley’s method [Scavo & Thoo 1995] converges monotonically to r0 from any point in
J using the following formula:

r0,j+1 = r0,j −
2dp(r)

dr |r=r0,j p(r0,j)
2(dp(r)

dr |r=r0,j )2 − d2p(r)
dr2 |r=r0,j p(r0,j)

(2.85)

As dp(r)
dr > 0 for polynomials (2.36) and (2.37) on the intervals J =[

0, (bk − a0)
1

n+1
]

and J =
[
0, (−bk − a0)

1
n+1
]

respectively, then η = 1. Therefore,
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Figure 2.3: Evaluation of the polynomial using the estimated roots using two different
interpolation methods.

the condition d2
(

(η dp(r)
dr

)−1/2
)

dr2 ≥ 0 is equivalent to:3
2

(
d2p(r)

dr2

)2

− dp(r)
dr

d3p(r)
dr3

 ≥ 0. (2.86)

For n < 8, the above condition is invariant with respect to τ and L for polynomials
(2.36) and (2.37). For the parameter λi given in [Levant 2018], condition (2.86) is
fulfilled. Furthermore, for simple roots, the Halley’s method is a third-order method
[Scavo & Thoo 1995, McNamee & Pan 2013], which implies that:

|r0,j+1 − r0| ≤ c |r0,j − r0|3 , (2.87)

with an error constant given as follows:

c =
3
(

d2p(r)
dr2 |r=r0

)2
− 2dp(r)

dr |r=r0
d3p(r)

dr3 |r=r0

12
(

dp(r)
dr |r=r0

)2 . (2.88)

2.4.2 Methodologies to reduce the time complexity

Here, we analyse the time complexity of the implicit differentiator in order to find an
efficient way for its implementation, the results in this subsection were published in
[Carvajal-Rubio et al. 2021b]. In specific, in this subsection the time complexity of
HIDD will be reduced. First, the variables ϕi and b̄∗

i,j are defined as:

ϕi = τ i−1

(i− 1)! ,

b̄∗
i,j = τ j+1−i

(j + 1− i)!λn−j+1L
j

n+1 ,

(2.89)

for i = 1, 2, · · · , n + 1 and j = i, i + 1, i + 2, · · · , n + 1. It allows to rewrite (2.42) as
follows:
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• If bk > a0,

zi,k+1 = zi,k + b̄∗
i+1,i+1rn−i

0 + . . .

. . . +
n∑

j=i+1
ϕj−i+1zj,k + b̄∗

i+1,j+1rn−j
0 ,

i = 0, 1, · · · , n.

(2.90)

• If bk ∈ [−a0, a0],

z0,k+1 = z0,k + bk +
n∑

j=1
ϕj+1zj,k,

zi,k+1 = zi,k + b̄∗
i+1,n+1

(
bk

a0

)
+

n∑
j=i+1

ϕj−i+1zj,k,

i = 1, 2, · · · , n.

(2.91)

• If bk < −a0,

zi,k+1 = zi,k − b̄∗
i+1,i+1rn−i

0 + . . .

. . . +
n∑

j=i+1
ϕj−i+1zj,k − b̄∗

i+1,j+1rn−j
0 ,

i = 0, 1, · · · , n.

(2.92)

Direct Evaluation

The number of additions and subtractions, NA1, and the number of multiplications
and divisions, NM1, needed to evaluate z0,k+1, z1,k+1, z0,k+1 and zn,k+1 directly, after
obtaining r0, are as follows:

NA1(n) = (n + 1)2,

NM1(n) = n3

6 + n2 − 1
6n− 1.

(2.93)

Therefore, taking into account the (n + 1) assignments of the states zi,k+1, the time
complexity is given as:

T1(n) = n3

6 + 2n2 + 17
6 n + 1, (2.94)

which is a cubic time. On the other hand, the Halley’s method is used recursively at
each iteration. To evaluate the derivatives, one could store the following variables to
reduce the number of operations,

cn+1 = n + 1,

ci = iai, for i = 1, 2, · · · , n,

dn+1 = n(n + 1),
di = i(i− 1)ai, for i = 2, 3, · · · , n.

(2.95)
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Furthermore, j̄ is defined as the number of iterations used to estimate r0. Then
the number of additions, subtractions, multiplications and divisions used to evaluate
the polynomials and its derivatives are given as:

NA2(n) = j̄ (3n + 1) ,

NM2(n) = j̄

(3
2n2 + 3

2n

)
.

(2.96)

In the following, we consider that j̄ = 3. Therefore, taking into account the value
assignments, the evaluation of (2.85) yields to the time complexity

T2(n) = 9
2n2 + 27

2 n + 46. (2.97)

where one of the operations is a (n + 1)-th root and a for-loop is considered. Hence,
the complexity of the algorithm is cubic and is defined as:

T (n) = n3

6 + 13
2 n2 + 110

6 n + 48. (2.98)

where the multiplications and subtraction needed to evaluate bkare taken into account.
It is important to note that time complexity (2.98) is defined for bk /∈ [−a0, a0].

Horner Method

Although the use of variables ϕi, b̄∗
i,j , ci, di reduces the number of basic operations, it

does not reduce the time complexity of the discrete-time realization (2.42) with respect
to n. Based on the Horner’s method, one could calculate zi,k+1 as follows:

• If bk > a0

zi,k+1 = zi,k +
n∑

j=i+1
ϕj−i+1zj,k + . . .

. . . + (· · · ((b̄∗
i+1,i+1)r0 + b̄∗

i+1,i+2) · · · )r0 + b̄∗
i+1,n+1.

i = 0, 1, · · · , n.

(2.99)

• If bk < −a0

zi,k+1 = zi,k +
n∑

j=i+1
ϕj−i+1zj,k − . . .

. . .− (· · · ((b̄∗
i+1,i+1)r0 + b̄∗

i+1,i+2) · · · )r0 − b̄∗
i+1,n+1.

i = 0, 1, · · · , n.

(2.100)

This methodology presents the following number of basic operations:

NA3(n) = (n + 1)2,

NM3(n) = n(n + 1).
(2.101)

Jose Eduardo Carvajal Rubio Page 64



2.4. Toward an efficient implementation of the implicit differentiator

As Φ(τ) and B(τ) are Toeplitz matrices [Bai et al. 2000], the time complexity
to evaluate zi,k+1 could be reduce to a linearithmic one (n log n) using the discrete
Fourier transform. This alternative could be analyzed in the future. To evaluate the
polynomials and its derivatives, n is considered greater than one. In the following, two
methodologies based on Horner’s method are analyzed. The first one is based on the
evaluation of the polynomials and its derivatives as follows:

p (r) = (· · · ((r + an)r + an−1) · · · )r + a0 ± bk,

dp(r)
dr

= (· · · ((cn+1r + cn)r + cn−1) · · · )r + c1,

d2p(r)
dr2 = (· · · ((dn+1r + dn)r + dn−1) · · · )r + d2.

(2.102)

The methodology (2.102) needs the following number of basic operations:

NA4(n) = j̄ (3n + 1) ,

NM4(n) = j̄ (3n− 1) .
(2.103)

Similar to (2.97), one obtains:

T4(n) = 18n + 43. (2.104)

However, one could take advantage of the evaluation of p(r) to evaluate dp(r)
dr and d2p(r)

dr2

with the following methodology for n ≥ 2:

Fi+1 = rFi + an−i−1,

dFi+1 = rdFi + Fi+1,

ddFi+1 = rddFi + dFi+1,

(2.105)

for i = 0, · · · , n − 3, with F0 = r + an, dF0 = r + F0, ddF0 = r + dF0. Using these
variables, one gets:

Fn−1 = rFn−2 + a1,

p(r) = rFn−1 + a0 ± bk,

dp(r)
dr

= rdFn−2 + Fn−1,

d2p(r)
dr2 = 2ddFn−2.

(2.106)

It increases the number of assignments and additions but reduces the number of mul-
tiplications. Therefore, one obtains the following time complexity:

T5(n) = 36n + 55. (2.107)

Using the methodologies (2.99), (2.100) and (2.102) a quadratic time complexity
is obtained, i.e.

T (n) = 2n2 + 24n + 46. (2.108)

If (2.106) is used instead of (2.102), the quadratic time complexity is given as:

T (n) = 2n2 + 42n + 58. (2.109)
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Shaw–Traub Algorithm

Similar to the methodology (2.106), an algorithm was proposed in [Shaw & Traub 1974]
to compute the normalized derivatives, 1

i!
dip(r)

dri . Note that the Horner’s method is a
special case of this algorithm. It allows to reduce the number of multiplications while
increasing the number of divisions, assignments and additions. In the following, a
modified algorithm which relies on the Shaw–Traub algorithm is described:

t1 = r, ti = ti−1r, for i = 2, 3, · · · , n;
T −1

i = an−itn−i, for i = 0, 1, · · · , n− 1;
T −1

n = a0 ± bk,

T 0
0 = tnr, T 1

1 = T 0
0 , T 2

2 = T 0
0 ;

T j
i = T j−1

i−1 + T j
i−1, for j = 0, 1, 2; i = j + 1, · · · , n + 1;

p(r) = T 0
n+1,

dp(r)
dr

=
T 1

n+1
t1

,
d2p(r)

dr2 = 2
T 2

n+1
t2

.

(2.110)

Since T 0
0 = T 1

1 = T 2
2 , two assignments could be avoided if T 0

0 is used instead of
T 1

1 and T 2
2 . Then, algorithm (2.110) presents a linear time complexity given as:

T6(n) = 30n + 70. (2.111)

Applying the algorithms (2.99), (2.100) and (2.110), HIDD presents a quadratic
time complexity, given as:

T (n) = 2n2 + 36n + 74. (2.112)

It is important to mention that in [Shaw & Traub 1975], the best parameters
for the family of algorithms presented in [Shaw & Traub 1974] were founded. Then,
the time complexity (2.112) could be reduced tuning its parameters but not its order.
As the Halley’s method does not use higher-order derivatives, we do not consider the
algorithm presented in [De Jong & Van Leeuwen 1975], which improves the algorithm
proposed in [Shaw & Traub 1974] for the n + 1 normalized derivatives.

2.4.3 Simulation results using the interpolation methods in terms of
complexity

In this subsection, we only focus on the complexity analysis for the proposed algo-
rithms. Hereafter, two numerical studies are presented. The first one corresponds to a
comparison of the number of required basic operations for each algorithm. The second
one is a comparison of the computing time for the four methodologies proposed in this
work. The methodology given by (2.85), (2.90), (2.91), (2.92) and a direct evaluation
of the polynomials is referenced as direct evaluation, the methodology given by (2.85),
(2.91) (2.99), (2.100) and (2.102) is referenced as half-Horner algorithm, the method-
ology given by (2.85), (2.91), (2.99), (2.100) and (2.106) is referenced as full-Horner
algorithm and (2.85), (2.91), (2.99), (2.100) and (2.110) is referenced as Shaw-Traub
algorithm.
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Figure 2.4: Comparison of the number of required basic operations for each algorithm.

Simulation 1

The time complexity of the different methodologies are evaluated for 2 ≤ n ≤ 30.
The results are presented in Figure 2.4. One can see that the algorithm with less
basic operations is the half-Horner algorithm. Furthermore , the Shaw-Traub and full-
Horner algorithms have less basic operations than the direct evaluation for n > 4. It is
important to highlight the huge difference between the direct evaluation and the other
algorithms for a large value of n.

Simulation 2

Now, the time complexity of the algorithms are compared. Furthermore, an algorithm
which does not use the parameters defined in Equations (2.89) and (2.95) is simulated.
It is similar as the direct evaluation without the parameters ϕi, b̄∗

i,j , ci and di. In the
following, n = 3, n = 7 and n = 10 are considered. The noisy signal and the constants
defined in (2.89) and (2.95) are computed offline. The sampling time is selected as
τ = 0.001 sec and the simulated time is selected as t = 2000, 10000, 25000, 50000 sec.
Simulations are performed using MATLAB, with a computer processing unit Intel Core
i7-9750H and RAM memory of 8GB. The results are presented in Tables 2.1-2.3. The
most efficient methods with respect to the computing time are the half-Horner and
full-Horner algorithms. They both present a similar performance for n = 3, n = 7
and n = 10. They reduce the computing time more than 25 times for n = 10 as
seen in Table 2.3. For n = 3, the direct evaluation has a better performance than
the Shaw-Traub algorithm whereas for n = 10, the Shaw-Traub algorithm reduces the
computing time compared to the direct evaluation. The above facts match with the
computed time complexity.
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2000 sec 10000 sec 25000 sec 50000 sec
Evaluation
without ϕi, 0.5963 sec 2.990 sec 7.470 sec 15.059 sec
b̄∗

i,j , ci and di

Direct
Evaluation 0.3578 sec 1.783 sec 4.475 sec 9.027 sec
Half-Horner 0.3494 sec 1.753 sec 4.411 sec 8.896 sec
Full-Horner 0.3496 sec 1.756 sec 4.407 sec 8.908 sec
Shaw-Traub 0.3852 sec 1.922 sec 4.813 sec 9.661 sec

Table 2.1: Computing time of the algorithms for n = 3 and τ = 0.001 sec.

2000 sec 10000 sec 25000 sec 50000 sec
Evaluation
without ϕi, 6.791 sec 33.808 sec 85.045 sec 169.95 sec
b̄∗

i,j , ci and di

Direct
Evaluation 0.486 sec 2.414 sec 6.035 sec 12.51 sec
Half-Horner 0.466 sec 2.286 sec 5.729 sec 11.61 sec
Full-Horner 0.457 sec 2.293 sec 5.763 sec 11.51 sec
Shaw-Traub 0.503 sec 2.46 sec 6.210 sec 12.718 sec

Table 2.2: Computing time of the algorithms for n = 7 and τ = 0.001 sec.

2000 sec 10000 sec 25000 sec 50000 sec
Evaluation
without ϕi, 14.312 sec 71.6 sec 179.37 sec 358.09 sec
b̄∗

i,j , ci and di

Direct
Evaluation 0.831 sec 4.192 sec 10.33 sec 20.527 sec
Half-Horner 0.5437 sec 2.75 sec 6.858 sec 13.692 sec
Full-Horner 0.5631 sec 2.807 sec 6.997 sec 14.139 sec
Shaw-Traub 0.6101 sec 3.097 sec 7.767 sec 15.464 sec

Table 2.3: Computing time of the algorithms for n = 10 and τ = 0.001 sec.

From the above results, the Half-Horner method is used in the next subsection.

2.5 Comparative simulation results between the pro-
posed discrete-time differentiators and existing ones

This section aims to show a comparison study between the proposed HEDD, HIDD,
and other existing discrete-time differentiators. The first one is the HDD, given in
eq. (1.81), which preserves the asymptotic accuracy. The second one is the GHDD,
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given in eq. (1.87), which also preserves the asymptotic accuracy. The last one is
the Matching differentiator, given in eq. (1.84), which uses a nonlinear eigenvalue
placement. Although it preserves the asymptotic accuracy for the noise-free case and
is insensitive to an overestimation of L, a convergence proof has not been investigated
in the presence of noise.

In the following simulations, σi,k is used for HEDD, HDD, GHDD, and Matching,
whereas εi,k is used for HIDD because for the first differentiators zk gives an estimate of
xk whereas for HIDD zi,k+1 gives an estimate of xi,k. To compare these differentiators,
indexes Yi and yi are proposed, i.e., the maximum absolute error (MAE)

Yi = max {|σi,k| ∈ R|tmin ≤ tk ≤ tmax} ,

Yi = max {|εi,k| ∈ R|tmin ≤ tk ≤ tmax} ,
(2.113)

while yi is the root mean square error (RMSE), which is given as:

yi =

√√√√ kmax∑
l=kmin

(σi,l)2

kmax − kmin + 1 , (2.114)

or for HIDD

yi =

√√√√ kmax∑
l=kmin

(εi,l)2

kmax − kmin + 1 , (2.115)

where τkmax = tmax and τkmin = 10 sec.
From the results presented in Subsection 2.4.1, the Halley’s method [Scavo &

Thoo 1995] is used as an iteration function to implement the HIDD. Furthermore,
r0,k is calculated recursively using only 3 iterations, with initial conditions r0,0 =
((bk − a0)/2)1/(n+1) and r0,0 = ((−bk − a0)/2)1/(n+1) for Cases 1 and 3, respectively.

2.5.1 Simulation I: Noise-free case

This simulation shows the performance of the five previously mentioned differentiators
in a noise-free case with a constant sampling time τ = 0.1 sec. The noise-free signal is
f0 (t) = sin (t)− cos (0.5t) for t ∈ [0 sec, 80 sec]. Here and in the following simulations,
the functions f

(i)
0 (t) are calculated analytically. For the differentiator, the parameters

are n = 3, L = 2, λ0 = 1.1, λ1 = 3.06, λ2 = 4.16, λ3 = 3, p0 = −1.15849269 +
0.56444913i, p1 = −1.15849269 − 0.56444913i, p2 = −0.6253073 + 0.96639542i, and
p3 = −0.6253073 − 0.96639542i, where pi are the poles assigned for the Matching
differentiator [Koch & Reichhartinger 2018]. Here, the previous pi are used because
it allows to perform a fair comparison. The initial condition for each differentiator is
z0 = [0, 0, 0, 0]T .
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Figure 2.5: Estimation of f0(t) and its first 3 derivatives, where the functions are
shown with a black line, HIDD with a blue line, HEDD with a green line, HDD with
a red line, GHDD with a cyan line and Matching with a magenta line.

The corresponding results are presented in Figures 2.5a-2.5d. Here, the discrete-
time differentiator errors converge to a vicinity of the origin at a similar time. This
can be better seen in Figures 2.6a-2.6d.
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Figure 2.6: Estimation error of the signal and its first 3 derivatives (HIDD blue line,
HEDD green line, HDD red line, GHDD cyan line, Matching magenta line)
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Table 2.4 presents a numerical comparison. Here, the smallest maximum absolute
error and RMSE are the metrics in consideration. Each column shows the results of
those two error metrics for the HIDD, HEDD, HDD, GHDD, and the matching pole
method. For this case, HIDD presents the best performance, except for the last time
derivative. Moreover, HEDD presents better results than those obtained using the
HDD. Nevertheless, GHDD enables to obtain better results than HEDD.

HIDD HEDD HDD GHDD Matching
Y0 1.23× 10−5 1.51× 10−3 2.34× 10−3 5.73× 10−4 2× 10−3

Y1 9.16× 10−4 2.13× 10−2 2.582× 10−2 8.51× 10−3 2.28× 10−2

Y2 2.25× 10−2 0.17 0.21 8.06× 10−2 0.15
Y3 0.351 0.79 0.83 0.6 0.54

y0 3.91× 10−6 7.39× 10−4 1.03× 10−3 2.06× 10−4 9.8× 10−4

y1 3.59× 10−4 1.01× 10−2 1.23× 10−2 3.27× 10−3 1.18× 10−2

y2 1.09× 10−2 7.78× 10−2 9.2× 10−2 3.44× 10−2 8.24× 10−2

y3 0.15 0.33 0.37 0.24 0.34

Table 2.4: Indexes Yi and yi for each discrete-time differentiator.

2.5.2 Simulation II: Noise-free case with different sampling times

To show the asymptotic accuracy of the differentiators in the noise-free case, it is
performed a sequence of simulations with f0 (t) = sin (t) − cos (0.5t) under different
sampling times τ ∈ [0.00001 sec, 1 sec], logarithmically spaced points were used, 50
for each figure. For each simulation, the maximum absolute error is computed while
considering τ as constant. The parameters λi, L, n, pi and initial conditions z0 are the
same as in Simulation I. Here, tmax = 50 sec. The corresponding results are depicted
in Figures 2.7a-2.7d.
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Figure 2.7: Maximum absolute error of the discrete-time differentiators for each esti-
mation under different sampling times.

For a sampling time in [0.0007 sec, 1 sec], a reduction of the sampling time corre-
sponds to a reduction of Yi for each differentiator, as it can be seen from the asymptotic
accuracy. Furthermore, the smallest Y0, Y1, Y2 are obtained using HIDD for almost
each sampling time. Concerning Y3, for τ ∈ [0.0003 sec, 0.65 sec], the smallest value
is obtained using HIDD, whereas for τ > 0.7 sec and τ ∈ [0.00002 sec, 0.0002 sec], it
is obtained with the Matching approach. One can note that for the function and its
first two derivatives, one can obtain with HIDD and a given sampling time a similar
accuracy as the one obtained using other differentiators with a lower sampling time.
Finally, below τ = 0.0001 sec, a similar accuracy is obtained using any differentiator.
Moreover, a sampling time lower than 0.0001 sec does not present a significant im-
provement in terms of accuracy of the differentiators due to the accuracy of the class
double from MATLAB.

2.5.3 Simulation III: Differentiation with measurement noise and dif-
ferent sampling times

Here, the performance of the differentiators with measurement noise and under differ-
ent sampling times is studied. The parameters, initial conditions, and f0(t) are the
same as in the previous subsection. The noise is given as ∆(t) ∼ i.i.d. N (0, 0.012).
This simulation is performed as in Simulation II, i.e., the maximum absolute error Yi

is computed for each sampling time. The corresponding results are shown in Figures
2.8a-2.8d. It can be seen that the discrete-time differentiators present asymptotic ac-
curacy. As in the previous simulation, they present a similar Yi for τ < 0.01 sec. For
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f0(t), its first two derivatives, and τ > 0.003 sec, the best performance is obtained
using HIDD.
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Figure 2.8: Maximum absolute errors vs sampling time.

2.6 Conclusion

In this Chapter, we have introduced and analyzed two discrete-time realizations of the
homogeneous differentiator, i.e. an explicit and an implicit one, namely HEDD and
HIDD. They are based on the methodology used to obtain an exact discretization of
linear systems with a zero-order hold. It was shown that the error dynamics of both
discrete-time differentiators are homogeneous to their respective transformations, and
they preserve the accuracy of their continuous-time counterparts after a finite time.
An implementation strategy was proposed for the implicit discrete-time realization,
which is non-anticipative and includes a root-finding method based on Halley’s method.
Different methodologies were also discussed to obtain an efficient implementation, in
terms of time complexity, of the implicit discrete-time differentiator which rely on
the Horner’s method and the Shaw-Traub algorithm. Simulation results using the
proposed interpolation methods were carried out to show a noticeable improvement
compared to a direct implementation. At last, a detailed comparative study with HDD
(1.81), GHDD (1.87) and Matching differentiator (1.84) was performed in simulation.
It was shown that HIDD exhibits the best performance for a free-noise case and in the
presence of noise. Furthermore, HIDD supersedes HEDD, consistent with the implicit
and explicit time discretization of other continuous-time systems.

In the next Chapter, we will investigate the discrete-time realization of the fil-
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tering differentiator to improve the performances in terms of rejection of the effects of
large measurement noises.
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CHAPTER3
Explicit and implicit
discretizations of the filtering
differentiator

3.1 Introduction

As discussed in the previous Chapter, it is of paramount importance to be able to dif-
ferentiate a noisy signal. Recently, in [Levant & Livne 2019], a continuous-time filtering
differentiator (a sliding mode differentiator coupled to a filter) has been investigated
to improve the accuracy compared with the standard one (discussed in the previous
Chapter), under a specific class of noises. Mainly, for bounded noises, it presents the
same accuracy as the standard one. In contrast to the standard differentiator, the
robust exact filtering differentiator rejects the effects of some large noises after a finite
time. Furthermore, this differentiator can filter out unbounded noises composed of
signals of global filtering order j ∈ N, where j is less than or equal to the filtering
order of the differentiator.

As for the homogeneous differentiator, a discrete-time version of the robust ex-
act filtering differentiator is needed for the implementation on a digital device. For
instance, the discrete-time filtering differentiator, proposed in [Levant & Livne 2019],
corresponds to an Euler discretization with Taylor-like terms for the states that es-
timate the signal derivatives. Similarly, the scheme presented in [Hanan et al. 2020]
preserves the accuracy of the filtering differentiator. Furthermore, in the absence of
noise, with an overestimated value of the Lipschitz constant of the n-th derivative of
a signal and using enough large algorithm parameters, it presents the same properties
as with the non-overestimated value of the Lipschitz constant of its n-th derivative.

The main contribution of this Chapter is to derive and study novel explicit and
implicit realizations for the continuous-time robust exact filtering differentiator [Levant
& Livne 2019]. First, a time discretization of the robust exact filtering differentiator
based on the Matching approach is investigated. It relies on the stabilization of a
pseudo linear discrete-time system. Then, an explicit discrete-time filtering differen-
tiator, based on the exact discretization of linear systems with a zero-order holder,
is introduced. However, the presence of high-order terms in the filter dynamics may
cause instability of the estimation error for signals with unbounded derivatives. Hence,
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a modified explicit discrete-time filtering differentiator is proposed, aiming to remove
such a drawback of the exact discretization. Based on this scheme, an implicit ver-
sion is derived. It will shown, using the homogeneity property, that after a finite
time, the explicit and implicit discrete-time filtering differentiators preserve the accu-
racy of the continuous-time one despite the presence of measurement noise. Finally,
some simulation results include comparisons between the proposed implicit and explicit
discrete-time realizations with other existing schemes, highlighting that the implicit
scheme supersedes the explicit one.

3.2 Discretization of the Robust Exact Filtering Differ-
entiator Based on the Matching Approach

In this section, a differentiator is proposed using the differentiator (1.69) and the
methodology proposed in [Koch & Reichhartinger 2018]. The results in section were
published in [Carvajal-Rubio et al. 2020a]. As in [Koch & Reichhartinger 2018], for
a free-noise case (∆(t) = 0), the error system can be given as a pseudo linear system
[Ghane & Menhaj 2013]:[

ẇ

σ̇

]
= E

[
w

σ

]
− em+1f

(n+1)
0 (t),

E =



−λmL
1

m+1 |w1|
−1

m+1 1 0 · · · 0
−λm−1L

2
m+1 |w1|

−2
m+1 0 1 · · · 0

...
...

... · · ·
...

−λ1L
m

m+1 |w1|
−m

m+1 0 0 · · · 1
−λ0L|w1|−1 0 0 · · · 0


,

(3.1)

where E ∈ R(m+1)×(m+1), w =
[
w1 w2 · · · wnf

]T
and σ = [σ0 σ1 · · · σn]T .

The characteristic equation of E is P (s) = sm+1 + λmL
1

m+1 |w1|
−1

m+1 sm +
λm−1L

2
m+1 |w1|

−2
m+1 sm−1 + · · · + λ0L|w1|−1. Its roots can be calculated by using the

equation: (
|w1|

1
m+1 s

)m+1
+ λmL

1
m+1

(
|w1|

1
m+1 s

)m
+ · · ·+ λ0L = 0. (3.2)

Therefore, the m+1 roots sj of (3.2) can be calculated from the following polynomial:

Q(b) = bm+1 + λmL
1

m+1 bm + · · ·+ λ0L. (3.3)

Then, sj is calculated as sj = |w1|
−1

m+1 bj , where bj corresponds to the roots of polyno-
mial (3.3).

Now, zj,k+1 is proposed as a copy of xj,k+1 in the discrete-time system (2.1) with
an injection term Γj+nf +1,kw1,k:

zj,k+1 =
n∑

l=j

τ l−j

(l − j)!zl,k + Γj+nf +1,kw1,k,

j = 0, 1, 2, · · · , n.

(3.4)
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Obviously, hj,k(τ) in (2.4), is omitted because it is not available. Please note
that Γj+nf +1,k will be defined later. Based on Euler discretization, wj,k+1 is proposed
as:

wj,k+1 = wj,k + τwj+1,k + Γj,kw1,k,

wnf ,k+1 = wnf ,k + τ(z0,k − f(t)) + Γnf ,kw1,k,

j = 1, 2, · · · , nf − 1.

(3.5)

Using equations (3.4)-(3.5), the discrete-time differentiator is summarized as:[
wk+1
zk+1

]
= Σ(τ)

[
wk

zk

]
− τenf ,mf(t) + Γkw1,k, (3.6)

where wk =
[
w1,k w2,k · · · wnf ,k

]T
, zk = [z0,k z1,k · · · zn,k]T , Γk =

[Γ1,k Γ1,k · · · Γm+1,k]T , Σ(τ) is given as:

Σ(τ) =



1 τ 0 · · · 0 0 0 0 · · · 0
0 1 τ · · · 0 0 0 0 · · · 0
...

...
... · · ·

...
...

...
... · · ·

...
0 0 0 · · · 1 τ 0 0 · · · 0
0 0 0 · · · 0 1 τ τ2

2! · · · τn

n!
0 0 0 · · · 0 0 1 τ · · · τ (n−1)

(n−1)!
...

...
... · · ·

...
...

...
... · · ·

...
0 0 0 · · · 0 0 0 0 · · · 1


, (3.7)

with Σ(τ) ∈ R(m+1)×(m+1). Note that the first nf rows of Σ(τ) only present 1, 0 and
τ terms. Similarly to the continuous-time system error, the discrete-time error system
(3.6) can be represented as:[

wk+1
σk+1

]
=
(
Σ(τ) + ΓkeT

1,m

) [ wk

σk

]
−
[

0
hk(τ)

]
, (3.8)

where σk = [σ0,k σ1,k · · · σn,k]T , and hk(τ) = [h0,k(τ) h1,k(τ) · · · hn,k(τ)]T . Let
dj be the desired eigenvalues of the discrete-time system. Then, the desired polynomial

is given as Pd(r) =
m+1∏
j=1

(r − dj) and for a matrix case Pd(Σ(τ)) =
m+1∏
j=1

(Σ(τ)− djI).

The desired polynomial evaluated at Σ(τ) + ΓkeT
1,m is given by Pd(Σ(τ) + ΓkeT

1,m) =

(Σ(τ) + ΓkeT
1,m)m+1 +

m∑
j=0

αj(Σ(τ) + ΓkeT
1,m)j . Therefore, we obtain the following

equation:

Pd(Σ(τ) + ΓkeT
1,m) = Pd(Σ(τ)) + [∗ · · · ∗ Γk] S. (3.9)

Due to the Cayley–Hamilton theorem Pd(Σ(τ) + ΓkeT
1,m) = 0 and therefore, Γk can

be calculated as:

Γk = −Pd(Σ(τ))S−1em+1,m, (3.10)
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where

S =



eT
1,m

eT
1,mΨ(τ)

eT
1,mΨ2(τ)

...
eT

1,mΨm(τ)

 (3.11)

Now, the objective is to select adequate roots dj . In order to emulate the
behavior of the continuous-time system, a mapping of the continuous-time domain
to the discrete-time domain is used. One can use different approaches, Euler with
dj = 1 + τsj , matching with dj = eτsj and bilinear with dj = 1+sjτ/2

1−sjτ/2 ones, to name

a few [Perdikaris 1991]. As sj = |w1|
−1

m+1 bj , Euler and bilinear approaches have a
singularity at w1 = 0. Hence, the Matching approach is used:

dj = eτsj = eτ |w1|
−1

m+1 bj . (3.12)

3.3 Explicit discrete-time realization of the robust exact
filtering differentiator (EDFD and MEDFD)

Assumptions 1.3.1, 1.3.3, 1.3.4 and 2.1.1, are not enough to obtain an adequate real-
ization of the filtering differentiator. Similar to [Levant & Livne 2019], the following
assumption is considered.

Assumption 3.3.1 The sampled measurement noise consists of nf + 1 components,
∆k = ∆(tk) = ∆0,k + ∆1,k + · · · + ∆nf ,k, where each ∆j,k, j = 0, 1, · · · , nf (possibly
unbounded), is a discretely sampled signal of global filtering order j and jth-order
integral magnitude εj ≥ 0.

Definition 3.1 A discretely sampled signal ∆j,k : R+ → R is said to be a signal of
global sampling filtering order j ≥ 0 and global jth order integral sampling magnitude
εj ≥ 0 if for each admissible sequence tk there exists a discrete vector signal βj,k =[
β0

j,k β1
j,k · · · βj

j,k

]T
∈ Rj+1, k = 0, 1, · · · , which satisfies:

βl
j,k+1 − βl

j,k = τβl+1
j,k , l = 0, 1, · · · , j − 1,

βj
j,k = ∆j,k,

∣∣∣β0
j,k

∣∣∣ ≤ εj .
(3.13)

With respect to the parameter βl
j,k, the superscript l of βl

j,k does not indicate an
exponentiation or differentiation. It is important mentioning that a discretely sampled
signal of the global filtering order j is defined using difference equations whereas a
signal of the global filtering order j is defined using differential equations.
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Similar to HEDD, the following explicit differentiator, which is called EDFD, is
obtained:

wjf ,k+1 = τ (nf −jf +1)

(nf − jf + 1)!(z0,k − fk) +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k + . . .

. . . +
n∑

l=1

τnf −jf +l+1

(nf − jf + l + 1)!zl,k +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!Ψl−1,m (w1,k) ,

zjd,k+1 =
n∑

l=jd

τ (l−jd)

(l − jd)!zl,k + τ (l−jd+1)

(l − jd + 1)!Ψnf +l,m (w1,k) ,

jf = 1, 2, · · · , nf . jd = 0, 1, 2, · · · , n.

(3.14)

Note that the consideration of constant input using a zero-order hold is only
used to derive equation (3.14). It is clear that such assumption does not hold in
practice. Hence, (3.14) is not an exact discretization of (1.69). Furthermore, it is
important to highlight that this discrete-time scheme contains the terms τ (l−jd)

(l−jd)! zl,k

in the equations of zjd,k+1. It was shown that such terms are important to obtain
an adequate discretization of the standard differentiator [Livne & Levant 2014, Koch
et al. 2020, Carvajal-Rubio et al. 2019]. Contrary to the standard differentiator, the
high-order terms τ

nf −jf +l+1

(nf −jf +l+1)!zl,k in the equations of the filtering part may cause in-
stability of the estimation error for signals with unbounded derivatives. This will be
detailed in the next section. To remove this drawback, these terms are omitted and the
following modified explicit discrete-time filtering differentiator, referenced as MEDFD,
is obtained,

wjf ,k+1 = τ (nf −jf +1)

(nf − jf + 1)!(z0,k − fk) +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k + . . .

. . . +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!Ψl−1,m (w1,k) ,

zjd,k+1 =
n∑

l=jd

τ (l−jd)

(l − jd)!zl,k + τ (l−jd+1)

(l − jd + 1)!Ψnf +l,m (w1,k) ,

jf =1, 2, · · · , nf . jd = 0, 1, 2, · · · , n.

(3.15)

The properties of the discrete-time system (3.15) will be presented and analyzed in
detail in the following sections of this chapter.
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3.4 Implicit discrete-time realization of the robust exact
filtering differentiator (MIDFD)

3.4.1 Design of MIDFD

Taking into consideration the explicit discrete-time realization (3.15), its implicit coun-
terpart is given as:

wjf ,k+1 = τ (nf −jf +1)

(nf − jf + 1)!(z0,k − fk) +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!Ψl−1,m (w1,k+1) ,

zjd,k+1 =
n∑

l=jd

τ (l−jd)

(l − jd)!zl,k + τ (l−jd+1)

(l − jd + 1)!Ψnf +l,m (w1,k+1) ,

jf =1, 2, · · · , nf . jd = 0, 1, 2, · · · , n.

(3.16)

To implement (3.16), w1,k+1 needs to be calculated at time tk. From (3.16), one
obtains

w1,k+1 = τnf

nf ! (z0,k − fk) +
nf∑
l=1

τ (l−1)

(l − 1)!wl,k +
m+1∑
l=1

τ l

l! Ψl−1,m (w1,k+1) . (3.17)

Since the right-hand side of Equation (3.17) depends on w1,k+1, it cannot be used
to implement (3.16). Let aj and bk be defined as:

aj = τm−j+1

(m− j + 1)!λjL
m−j+1

m+1 , bk = −τnf

nf ! (z0,k − fk)−
nf∑
l=1

τ (l−1)

(l − 1)!wl,k, (3.18)

with j = 0, 1, 2, · · · , m. Therefore, one obtains the following generalized equation with
an unknown w1,k+1

w1,k+1 + am ⌊w1,k+1⌉
m

m+1 + · · ·+ a1 ⌊w1,k+1⌉
1

m+1 + bk ∈ −a0sign(w1,k+1). (3.19)

Now, a new support variable ξk ∈ sign(w1,k+1) is introduced. The variable ξk represents
a selection of the set-valued function sign(w1,k+1). To obtain equations that allow to
calculate w1,k+1 and ξk at time tk, the following generalized equations need to be solved

χm (w1,k+1) ∈ −a0sign(w1,k+1), χ−1
m (−a0ξk) ∈ N[−1,1] (ξk) , ξk ∈ sign(w1,k+1).

(3.20)
For ζ ∈ R, χ (ζ) is defined as:

χm (ζ) = ζ + am ⌊ζ⌉
m

m+1 + · · ·+ a1 ⌊ζ⌉
1

m+1 + bk, (3.21)

Similar to the HIDD, the following lemma allows to calculate w1,k+1 and ξk at the
time tk.

Lemma 3.1 Let aj > 0, w1,k+1 ∈ R and ξk ∈ [−1, 1]. Then the unique solution of the
inclusions (3.20) is the pair (w1,k+1, ξk) which is defined in the following three cases:
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• If bk > a0, then ξk = {−1} and w1,k+1 = − (r0)m+1, where r0 is the unique
positive root of the following polynomial:

p (r) = rm+1 + amrm + · · ·+ a1r + (−bk + a0) . (3.22)

• If bk ∈ [−a0, a0], then w1,k+1 = 0 and ξk =
{
− bk

a0

}
.

• If bk < −a0, then ξk = {1} and w1,k+1 = rm+1
0 , where r0 is the unique positive

root of the following polynomial:

p (r) = rm+1 + amrm + · · ·+ a1r + (bk + a0) . (3.23)

The proof is similar to the proof of Lemma 2.2. The proposed implicit discrete-
time realization of the homogeneous continuous-time differentiator (1.69), referenced
as MIDFD, is given as:

wjf ,k+1 = τ (nf −jf +1)

(nf − jf + 1)!(z0,k − fk) +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k + . . .

. . . +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!Ψ̄l−1,m (w1,k+1) ,

zjd,k+1 =
n∑

l=jd

τ (l−jd)

(l − jd)!zl,k + τ (l−jd+1)

(l − jd + 1)!Ψ̄nf +l,m (w1,k+1) ,

Ψ̄j,m (w1,k+1) = −λm−jL
j+1
m+1 |w1,k+1|

m−j
m+1 ξk, jf = 1, 2, · · · , nf .

jd = 0, 1, 2, · · · , n.

(3.24)

where the pair (w1,k+1, ξk) is calculated according to Lemma 3.1. Note that at w1,k+1 =
0, ῡ0,m (w1,k+1) =

{
λ0Lbk

a0

}
=
{

(m+1)!bk

τm+1

}
whereas υ0,m (w1,k+1) ∈ [−λ0L, λ0L]. Fur-

thermore, as r0 is positive, then for bk /∈ [−a0, a0], ῡj,m has the alternative form
ῡj,m (w1,k+1) = −λm−jL

j+1
m+1 rm−j

0 ξk. With this form, one avoids to calculate the roots
|w1,k+1|

j
m+1 .

Remark 3.4.1 It is important to mention that MIDFD and Lemma 3.1, are valid for
nf > 0. In the case of nf = 0, HIDD (2.42) is used instead of it.

Remark 3.4.2 Similar to other implicit realizations [Huber et al. 2019], at w1,k+1 =
0, the injection terms ῡj,m (w1,k+1) are insensitive to L and λj.

Remark 3.4.3 The main difference between MEDFD, MIDFD, and the presented in
[Levant & Livne 2019, Hanan et al. 2020] are the high-order terms τ

(l−jf )

(l−jf )! wl,k and its
inputs. Contrary to the differentiator presented in [Hanan et al. 2020], the differen-
tiators MEDFD, EDFD, MIDFD and [Levant & Livne 2019] do not add new tuning
parameters.

Jose Eduardo Carvajal Rubio Page 81



Chapter 3. Explicit and implicit discretizations of the filtering differentiator

3.4.2 Implementation of MIDFD

In this subsection, an implementation scheme of the MIDFD differentiator is presented
as follows:
Require: n, nf ≥ 0, L, λi, τ

m← 0
while m ≤ n + nf do

am ← τn−m+1

(n−m+1)!λmL
n−m+1

n+1

m← m + 1
end while
m← 0
while m ≤ n do

zm ← 0 ▷ The states zi are initialized.
m← m + 1

end while
m← 0
while m ≤ nf do

wm ← 0 ▷ The states wi are initialized.
m← m + 1

end while
m← 0
while mτ ≤ tmax do

fk ← f(mτ) ▷ The measurement of f(t) is obtained.
bk ← − τ

nf

nf ! (z0 − fk)−
∑nf

l=1
τ (l−1)

(l−1)! wl

if bk > a0 then
r ←

(
bk−a0

2

)1/(n+nf +1)

j ← 0
while j < 3 do ▷ The positive root is calculated using Halley’s method.

p← rn+nf +1 + an+nf
rn+nf + · · ·+ a1r + (−bk + a0)

dp← (n + nf + 1) rn+nf + (n + nf )an+nf
rn+nf −1 + · · ·+ a1

ddp← (n + nf ) (n + nf + 1) rn+nf −1 + · · ·+ 2a2

r ← r − 2p(dp)
2(dp)2−p(ddp)

j ← j + 1
end while
ξk ← −1

end if
if bk < −a0 then

r ←
(

−bk−a0
2

)1/(n+nf +1)

j ← 0
while j < 3 do ▷ The positive root is calculated using Halley’s method.

p← rn+nf +1 + an+nf
rn+nf + · · ·+ a1r + (bk + a0)

dp← (n + nf + 1) rn+nf + (n + nf )an+nf
rn+nf −1 + · · ·+ a1

ddp← (n + nf ) (n + nf + 1) rn+nf −1 + · · ·+ 2a2

r ← r − 2p(dp)
2(dp)2−p(ddp)
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j ← j + 1
end while
ξk ← 1

end if
if bk > −a0 and bk < a0 then

r ← 0
ξk ← − bk

a0
end if
j ← 0
while j ≤ n + nf do

uj ← −λn+nf −jL
j+1

n+nf +1 rn+nf −jξk

j ← j + 1
end while
j ← 1
while j ≤ nf do

wj,M ← τ
(nf −j+1)

(nf −j+1)!(z0 − fk) +
∑nf

l=j
τ (l−j)

(l−j)! wl +
∑n+nf +1

l=j
τ (l−j+1)

(l−j+1)!ul−1
j ← j + 1

end while
j ← 0
while j ≤ n do ▷ The estimation at the time t = (m + 1)τ are obtained

zj,M =
∑n

l=j
τ l−j

(l−j)!zl,k + τ l−j+1

(l−j+1)!ul

j ← j + 1
end while
j ← 0
while j ≤ n do ▷ The states are updated for the next measurement.

wj = wj,M

zj = zj,M

j ← j + 1
end while

end while

3.5 Stability analysis of the differentiator based on the
standard differentiator

In this section, the stability of the matching discrete-time filtering differentiator, the
explicit discrete-time realization (EDFD and MEDFD) and the implicit one (MIDFD)
are studied.
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3.5.1 Stability analysis of the matching discrete-time filtering differ-
entiator

Theorem 3.5.1

Let the matching discrete-time differentiator (3.6) with Γk defined as (3.10), dj

defined as (3.12). Under Assumptions 1.3.1, 1.3.4 and considering no measure-
ment noise ∆(t) = 0, if RE (bj) < 0, then the trajectories of the observation
error system (3.8) converge to a neighborhood of the origin and remain within
this neighborhood, defined as:∣∣∣∣∣

∣∣∣∣∣
[

wk

σk

]∣∣∣∣∣
∣∣∣∣∣ ≤ K ||hk (τ)|| . (3.25)

where K is defined in the proof.

Note that the roots bj can be selected independently of λj and L from Theorem
3.5.1. This allows to implement the differentiator even if L is unknown. Furthermore,
if bj are selected as b1 = b2 = b3 = · · · = bm+1, Γk presents a less complex equation
than with bj ̸= bj+1.

Proof Let E =
(
Σ(τ) + ΓkeT

1,m

)
. Consider the candidate Lyapunov function defined

as:

Vk =
[

wk

σk

]T

P

[
wk

σk

]
, (3.26)

where P is a real positive definite matrix defined such that

ET P E − P = −Q, (3.27)

with Q be a real positive definite matrix and λmin(Q) > 1. From Equations (3.8) and
(3.26), one gets

Vk+1 − Vk = −
[

wk

σk

]T

Q

[
wk

σk

]
+
[

0
hk(τ)

]T

P

[
0

hk(τ)

]
− . . .

. . .− 2
[

wk

σk

]T

ET P E

[
0

hk(τ)

]
.

(3.28)

Using inequality CT D + DT C ≤ CT ΛC + DT Λ−1D, where C, D ∈ Rn×m and
Λ ∈ Rn×n is any positive definite matrix, the following inequality is obtained:

Vk+1 − Vk ≤ (λmax(E) + λmax (P )) ||hk(τ)||2 − (λmin(Q)− 1)
∣∣∣∣∣∣[ wk, σk

]∣∣∣∣∣∣2 .

(3.29)
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Therefore with the condition
∣∣∣∣∣
∣∣∣∣∣
[

wk

σk

]∣∣∣∣∣
∣∣∣∣∣ > K ||hk (τ)|| ,

K =
√

λmax(E) + λmax(P )
λmin(Q)− 1 ,

(3.30)

one obtains Vk+1 − Vk < 0. This concludes the proof.

3.5.2 Stability analysis of the modified explicit discrete-time filtering
differentiator (MEDFD)

Contrary to [Levant & Livne 2019] where the following change of variables is proposed

ω̄jf ,k =

wjf ,k +
jf −1∑
l=0

βl
nf +l−jf +1,k

 /L, jf = 1, · · · , nf , (3.31)

the following one is used in this work,

ωnf −jf +1,k = wnf −jf +1,k +
jf∑

j=1
dj

jf

τ jf −j

(jf − j + 1)!

nf∑
l=j

βl−j
l,k ,

jf = 1, · · · , nf .

(3.32)

Constants dj
jf

are given in Table 3.1 for jf ≤ 8. The summations
∑nf

l=1 βl−1
l,k

are added to cancel the noise components β1
1,k, β2

2,k, · · · , β
nf

nf ,k in the equation ωnf ,k+1.
At the same time, the noise components and the above summations except τβ0

1,k and
τ2

2! β0
0,k, have to be canceled in the equation of ωnf −1,k+1. They are canceled with two

summations in the change of variables of wnf −1,k. Regarding the remainder wnf −jf +1,k,
they are proposed recursively in a similar way.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
jf = 1 1 — — — — — — —
jf = 2 1 1 — — — — — —
jf = 3 1 2 1 — — — — —
jf = 4 1 7

2 3 1 — — — —
jf = 5 1 6 15

2 4 1 — — —
jf = 6 1 31

3 18 13 5 1 — —
jf = 7 1 18 43 40 20 6 1 —
jf = 8 1 127

4
207
2

243
2 75 57

2 7 1

Table 3.1: Value of dj
jf

for 1 ≤ jf ≤ 8.
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Theorem 3.5.2

Let zk be generated with the modified explicit discrete-time filtering differen-
tiator (3.15) with nf > 0. Under Assumptions 1.3.1, 1.3.4, 3.3.1, there exist
constants µjd

> 0 such that after a finite-time transient, the following inequali-
ties are verified:

|zjd,k − xjd,k| ≤ µjd
Lρn+1−jd , ρ = max

{
τ, max

0≤j≤nf

(
εj

L

) 1
n+j+1

}
, (3.33)

where jd = 0, 1, · · · , n and the coefficients µjd
only depend on the parameters

λ0, . . . , λm.

Proof From the systems (2.1) and (3.15), the error dynamics are given as:

wjf ,k+1 = τ (nf −jf +1)

(nf − jf + 1)!(σ0,k −∆k) +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!Ψl−1,m (w1,k) ,

σjd,k+1 =− hj,k +
n∑

l=jd

τ (l−jd)

(l − jd)!σl,k + τ (l−jd+1)

(l − jd + 1)!Ψnf +l,m (w1,k) ,

jf =1, 2, · · · , nf , jd = 0, 1, 2, · · · , n.

(3.34)

Then, with the change of variables (3.32), and with ω̄j,k = ωj,k/L and σ̄j,k = σj,k/L,
one obtains the following inclusions:

ω̄jf ,k+1 ∈ ω̄jf ,k + τ
Ψjf −1,m(·)

L
jf

m+1

+ τnf −jf +1

(nf − jf + 1)!

(
σ̄0,k +

[
−ε0

L
,
ε0
L

])
+ . . .

. . . +
nf∑

l=jf +1

τ l−jf

(l − jf )!

(
ω̄l,k + d

nf −l+2
nf −jf +1

[
−

εnf −l+1

L
,
εnf −l+1

L

])
+ . . .

. . . +
m+1∑

l=jf +1

τ l−jf +1

(l − jf + 1)!
Ψl−1,m(·)

L
l

m+1
,

ω̄nf ,k+1 ∈ ω̄nf ,k + τ
Ψnf −1,m(·)

L
nf

m+1
+ τ

(
σ̄0,k +

[
−ε0

L
,
ε0
L

])
+ . . .

. . . +
m+1∑

l=nf +1

τ l−nf +1

(l − nf + 1)!
Ψl−1,m(·)

L
l

m+1
,

σ̄jd,k+1 ∈ σ̄jd,k + τ
Ψnf +jd,m (·)

L
nf +jd+1

m+1

+ τn+1−jd

(n + 1− jd)! [−1, 1] + . . .

. . . +
n∑

l=jd+1

τ (l−jd)

(l − jd)! σ̄l,k + τ (l−jd+1)

(l − jd + 1)!
Ψnf +l,m (·)

L
nf +l+1

m+1

,

σ̄n,k+1 ∈ σ̄n,k + τ
Ψm,m (·)

L
+ τ [−1, 1] ,

jf = 1, 2, · · · , nf − 1, jd = 0, 1, 2, · · · , n− 1.

(3.35)
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From the change of variable for w1,k and Definition 3.1, the argument of Ψj,m (·)
in Equation (3.35) is given as:

ω̄1,k +
nf∑
l=1

g
nf

l τnf −l
[
−εl

L
,
εl

L

]
, (3.36)

where the constants g
nf

l , for 1 ≤ nf ≤ 6, are presented in Table 3.2. Moreover, the
following equations are applied with the purpose of obtain only β0

j,· in the argument of
Ψj,m (·)

τβ1
j,k =β0

j,k+1 − β0
j,k,

τ2β2
j,k =τ(β1

j,k+1 − β1
j,k) = β0

j,k+2 − 2β0
j,k+1 + β0

j,k,

τ3β3
j,k =β0

j,k+3 − 3β0
j,k+2 + 3β0

j,k+1 − β0
j,k,

...

(3.37)

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
nf = 1 1 — — — — —
nf = 2 1

2
3
2 — — — —

nf = 3 1
6 1 1 — — —

nf = 4 1
24

7
12

8
3 1 — —

nf = 5 1
120

1
4

5
4

121
6

51
40 —

nf = 6 1
120

31
360

3
4

13
6

5
4

91
90

Table 3.2: Value of g
nf

l for 1 ≤ nf ≤ 6.

Let s(t) be a piecewise linear continuous-time function, which is given as
s(t) = [s0(t) s1(t) s2(t) · · · sm(t)], and describes the solution of (3.35) (sjf −1,k =
sjf −1(tk) = ω̄jf ,k and snf +jd,k = snf +jd

(tk) = σ̄jd,k for jf = 1, 2, . . . , nf and jd =
0, 1, · · · , n). Therefore, s(t) can be expressed as s(t) = sk + (t− tk)Ωk, Ωk ∈ G(sk, τ),
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where t ∈ [tk, tk+1) and G(sk, τ) = [G0(sk, τ) G1(sk, τ) · · · Gm(sk, τ)]T is given as:

Gjf −1,k+1 ∈
Ψjf −1,m(·)

L
jf

m+1

+
(

sjf ,k + d
nf −jf +1
nf −jf +1

[
−

εnf −jf

L
,
εnf −jf

L

])
+ . . .

. . . +
nf +1∑

l=jf +2

τ l−jf −1

(l − jf )!

(
sl−1,k + d

nf −l+2
nf −jf +1

[
−

εnf −l+1

L
,
εnf −l+1

L

])
+ . . .

. . . +
m+1∑

l=jf +1

τ l−jf

(l − jf + 1)!
Ψl−1,m(·)

L
l

m+1
,

Gnf −1,k+1 ∈
Ψnf −1,m(·)

L
nf

m+1
+ snf ,k +

[
−ε0

L
,
ε0
L

]
+

m+1∑
l=nf +1

τ l−nf

(l − nf + 1)!
Ψl−1,m(·)

L
l

m+1
,

Gnf +jd,k+1 ∈
Ψnf +jd,m (·)

L
nf +jd+1

m+1

+ τn−jd

(n + 1− jd)! [−1, 1] + . . .

. . . +
n∑

l=jd+1

τ (l−jd−1)

(l − jd)! snf +l,k + τ (l−jd)

(l − jd + 1)!
Ψnf +l,m (·)

L
nf +l+1

m+1

,

Gm,k+1 ∈
Ψm,m (·)

L
+ [−1, 1] ,

jf = 1, 2, · · · , nf − 1, jd = 0, 1, 2, · · · , n− 1.

(3.38)

As s(t) presents a piecewise constant derivative, s(t) satisfies the inclusion ṡ ∈
G(sk, τ) for t ̸= tk. Each solution of ṡ ∈ G(sk, τ) satisfies the following inclusions
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almost everywhere:

ṡjf −1(t) ∈ sjf
(t− ρ[0, 1]) +

Ψjf −1,m(·)

L
jf

m+1

+
nf +1∑

l=jf +1
d

nf −l+2
nf −jf +1

ρm+1−jf

(l − jf )! [−1, 1] + . . .

. . . +
nf +1∑

l=jf +2

ρl−jf −1

(l − jf )!sl−1(t− ρ[0, 1])[−1, 1] +
m+1∑

l=jf +1

ρl−jf

(l − jf + 1)!
Ψl−1,m(·)

L
l

m+1
[−1, 1],

ṡnf −1(t) ∈
Ψnf −1,m(·)

L
nf

m+1
+ snf

(t− ρ[0, 1]) + ρn+1[−1, 1] + . . .

. . . +
m+1∑

l=nf +1

ρl−nf

(l − nf + 1)!
Ψl−1,m(·)

L
l

m+1
[−1, 1],

ṡnf +jd
(t) ∈

Ψnf +jd,m (·)

L
nf +jd+1

m+1

+ snf +jd+1 (t− ρ[0, 1]) + ρn−jd

(n + 1− jd)! [−1, 1] + . . .

. . . +
n∑

l=jd+2

ρ(l−jd−1)

(l − jd)! snf +l (t− ρ[0, 1]) [−1, 1] + . . .

. . . +
n∑

l=jd+1

ρ(l−jd)

(l − jd + 1)!
Ψnf +l,m (·)

L
nf +l+1

m+1

[−1, 1],

ṡm−1(t) ∈ Ψm−1,m (·)
L

m
m+1

+ sm (t− ρ[0, 1]) + ρ

2! [−1, 1] + ρ

2!
Ψm,m (·)

L
[−1, 1],

ṡm(t) ∈ Ψm,m (·)
L

+ [−1, 1] ,

ρ = max
{

τ, max
0≤j≤nf

(
εj

L

) 1
n+j+1

}
, jf = 1, 2, · · · , nf − 1, jd = 0, 1, 2, · · · , n− 2.

(3.39)

where the argument of Ψj,m (·) in (3.39) is

s0(t− ρ[−1, 1]) +
nf∑
l=1

g
nf

l ρm+1 [−1, 1] . (3.40)

As in the previous stability analysis, there are two key points in this structure.
The first one is that if ρ = 0, the above inclusions becomes the inclusion (1.68) with
m instead of n. The second one is that the above inclusion can be represented as:

ṡ(t) ∈ Cm (s(t− ρ[0, 1]), Γ(ρ, s(t− ρ[0, 1]))) , (3.41)
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where Γ(ρ, s(t)) = [Γ0(ρ, s(t)) Γ1(ρ, s(t)) · · · Γm(ρ, s(t))]T with

Γ0(ρ, s(t− ρ[0, 1])) =
nf∑
l=1

g
nf

l ρm+1 [−1, 1] ,

Γjf
(ρ, s(t− ρ[0, 1])) =

nf +1∑
l=jf +2

ρl−jf −1

(l − jf )!sl−1(t− ρ[0, 1])[−1, 1] + . . .

. . . +
nf +1∑

l=jf +1
d

nf −l+2
nf −jf +1

ρm+1−jf

(l − jf )! [−1, 1] +
m+1∑

l=jf +1

ρl−jf

(l − jf + 1)!
Ψl−1,m(·)

L
l

m+1
[−1, 1],

Γnf
(ρ, s(t− ρ[0, 1])) = ρn+1[−1, 1] +

m+1∑
l=nf +1

ρl−nf

(l − nf + 1)!
Ψl−1,m(·)

L
l

m+1
[−1, 1],

Γnf +jd+1(ρ, s(t− ρ[0, 1])) = ρn−jd

(n + 1− jd)! [−1, 1] + . . .

. . . +
n∑

l=jd+2

ρ(l−jd−1)

(l − jd)! snf +l (t− ρ[0, 1]) [−1, 1] +
n∑

l=jd+1

ρ(l−jd)

(l − jd + 1)!
Ψnf +l,m (·)

L
nf +l+1

m+1

[−1, 1],

Γm(ρ, s(t− ρ[0, 1])) = ρ

2! [−1, 1] + ρ

2!
Ψm,m (·)

L
[−1, 1],

ρ = max
{

τ, max
0≤j≤nf

(
εj

L

) 1
n+j+1

}
, jf = 1, 2, · · · , nf − 1, jd = 0, 1, 2, · · · , n− 2.

(3.42)

Note that Γj(ρ, s(t)) satisfies the homogeneity condition, i.e., for all α >

0, ρ ≥ 0 and s(t) ∈ Rm+1, Γj(α−qρ, αm+1s0(t), αms1(t), · · · , αsm(t)) =
αm−j+1Γj(ρ, s0(t), s1(t), · · · , sm(t)) with q = −1 and j = 0, · · · , m. Although
Γj(ρ, s0(t), s1(t), · · · , sm(t)) was used instead of Γj(ρ, s(t)), hereafter only Γj(ρ, s(t))
is used and deg(sj(t)) = m+1−j. Furthermore, it is straightforward to see that for all
s(t) ∈ Rm+1, Γj(ρ, s(t)) satisfies the same properties as in Theorem 2.3.1 and 2.3.2.

On the other hand, the undisturbed inclusion (3.41) satisfies the same proper-
ties than unperturbed system in the proofs of Theorem 2.3.1 y 2.3.2. Additionally,
the inclusion (3.41) is not affected by the state values for t < 0. Hence, using The-
orem 1 from [Levant & Livne 2016] and the properties of Cm(s(t), Γ(ρ, s(t))) and
Γj(ρ, s(t)), one can deduce that after a finite-time transient, all indefinitely extendable
solutions of the perturbed differential inclusion (3.41) enter and remain inside the re-
gion |sj(t)| ≤ µjρm+1−j with µj > 0. Therefore, |σ̄j,k| ≤ µjρn+1−j and the accuracy
(3.33) is obtained.

From Theorem 3.5.2, one can deduce that MEDFD presents the same accuracy as
the robust exact filtering differentiator for enough small sampling time. For bounded
noise and enough small sampling time, MEDFD has an asymptotically optimal accu-
racy. Finally, it is shown that the proposed explicit discrete-time realization (3.15)
preserves the homogeneity property of its continuous-time counterpart. To this end,
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let ρ̄ be defined as

ρ̄ = max
{(

ε0
L

) 1
n+1

,

(
ε1
L

) 1
n+2

, · · · ,

(
εnf

L

) 1
m+1

}
. (3.43)

Similar to (3.35), one obtains that ω̄jf ,k and σ̄jd,k satisfy the inclusion

ω̄jf ,k+1 ∈ ω̄jf ,k + τ
Ψjf −1,m(·)

L
jf

m+1

+ τnf −jf +1

(nf − jf + 1)!
(
σ̄0,k + ρ̄n+1 [−1, 1]

)
+ . . .

. . . +
nf∑

l=jf +1

τ l−jf

(l − jf )!
(
ω̄l,k + d

nf −l+2
nf −jf +1ρ̄m+2−l [−1, 1]

)
+ . . .

. . . +
m+1∑

l=jf +1

τ l−jf +1

(l − jf + 1)!
Ψl−1,m(·)

L
l

m+1
,

ω̄nf ,k+1 ∈ ω̄nf ,k + τ
Ψnf −1,m(·)

L
nf

m+1
+ τ

(
σ̄0,k + ρ̄n+1 [−1, 1]

)
+ . . .

. . . +
m+1∑

l=nf +1

τ l−nf +1

(l − nf + 1)!
Ψl−1,m(·)

L
l

m+1
,

σ̄jd,k+1 ∈ σ̄jd,k + τ
Ψnf +jd,m (·)

L
nf +jd+1

m+1

+ τn+1−jd

(n + 1− jd)! [−1, 1] + . . .

. . . +
n∑

l=jd+1

τ (l−jd)

(l − jd)! σ̄l,k + τ (l−jd+1)

(l − jd + 1)!
Ψnf +l,m (·)

L
nf +l+1

m+1

,

σ̄n,k+1 ∈ σ̄n,k + τ
Ψm,m (·)

L
+ τ [−1, 1] ,

jf = 1, 2, · · · , nf − 1, jd = 0, 1, 2, · · · , n− 1,

(3.44)

where the argument of Ψ·,m(·) is given as

ω̄1,k +
nf∑
l=1

g
nf

l τnf −lρ̄n+l+1 [−1, 1] . (3.45)

Lemma 3.2 The explicit discrete-time realization (3.15) preserves the homogeneity
property of its continuous-time counterpart.

Proof With the transformation

(
τ, ρ̄, ω̄1, · · · , ω̄nf

, σ̄0, · · · , σ̄n

)
7→
(
ατ, αρ̄, αm+1ω̄1, . . . , αn+2ω̄nf

, αn+1σ̄0, . . . , ασ̄n

)
,

(3.46)
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for all α > 0, the following equalities are obtained

nf∑
l=1

g
nf

l (ατ)nf −l (αρ̄)n+l+1 [−1, 1] = αm+1
nf∑
l=1

g
nf

l τnf −lρ̄n+l+1 [−1, 1] ,

Ψj,m

(
αm+1

(
ω̄1,k +

nf∑
l=1

g
nf

l τnf −lρ̄n+l+1 [−1, 1]
))

= . . .

αm−jΨj,m

(
ω̄1,k +

nf∑
l=1

g
nf

l τnf −lρ̄n+l+1 [−1, 1]
)

,

(ατ)nf −jf +1 αn+1
(
σ̄0,k + ρ̄n+1[−1, 1]

)
= αm+2−jf τnf −jf +1

(
σ̄0,k + ρ̄n+1[−1, 1]

)
,

nf∑
l=jf +1

(ατ)l−jf

(l − jf )! αm+2−l
(
ω̄l,k + d

nf −l+2
nf −jf +1ρ̄m+2−l [−1, 1]

)
= . . .

αm+2−jf

nf∑
l=jf +1

τ l−jf

(l − jf )!
(
ω̄l,k + d

nf −l+2
nf −jf +1ρ̄m+2−l [−1, 1]

)
,

n∑
l=jd+1

(ατ)(l−jd)

(l − jd)! αn+1−lσ̄l,k = αn+1−jd

n∑
l=jd+1

τ (l−jd)

(l − jd)! σ̄l,k,

(ατ)n+1−jd

(n + 1− jd)! [−1, 1] = αn+1−jd
τn+1−jd

(n + 1− jd)! [−1, 1] .

(3.47)

Therefore, both sides of the inclusions (3.44) have the same homogeneity degree with
the same transformation.

3.5.3 Stability analysis of the modified implicit discrete-time filtering
differentiator (MIDFD)

The modified implicit discrete-time filtering differentiator (3.24) requires an estimation
of r0 (i.e., the roots of polynomials (3.22) and (3.23)). However, since there is no
analytical expression for these roots, an interpolation method is needed to estimate r0.
Let the estimate of r0 denoted as r̂0 and the associated estimation error as:

E1,k = r0 − r̂0. (3.48)

From Lemma 3.1, it is clear that there exists an estimation error for w1,k. Let the
estimate of w1,k denoted as ŵ1,k+1 and the associated estimation error as

E2,k = w1,k+1 − ŵ1,k+1. (3.49)
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It can be expressed as

E2,k =


−(r0)m+1 + (r0 − E1,k)m+1 if bk > a0

0 if bk ∈ [−a0, a0]
(r0)m+1 − (r0 − E1,k)m+1 if bk < −a0

,

E2,k =


E1,k

(
em

1 rm
0 + · · ·+ em

mEm−1
1,k r0 + Em

1,k

)
if bk > a0

0 if bk ∈ [−a0, a0]
−E1,k

(
em

1 rm
0 + · · ·+ em

mEm−1
1,k r0 + Em

1,k

)
if bk < −a0

,

(3.50)

where em
j are the coefficients of the well-known Pascal’s triangle with a respective

change of sign, i.e., em
j = (−1)j (m+1)!

j!(m−j+1)! . From Equation (3.50), one can deduce that
E2,k is a continuous function of E1,k and is equal to zero if E1,k = 0. Therefore, for
any κ ≥ 0 and r0, there is a maximum tolerable error ME1,k

> 0 such that |E2,k| ≤ κ

if |E1,k| ≤ME1,k
. Indeed, ME1,k

depends on bk and aj . Hence, it depends on wj,k, σ0,
∆k, τ , L, nf , λj and m. Taking into account the estimation error of r0, the following
assumption is presented.

Assumption 3.5.1 It is assumed that r̂0 > 0 and that the estimation error E2,k is
bounded by a constant κ > 0, i.e., |E2,k| ≤ κ.

With the previous assumption, the following theorem can be derived.

Theorem 3.5.3

Let zk be generated with the modified implicit discrete-time filtering differen-
tiator (3.24) with nf > 0. Under Assumptions 1.3.1, 1.3.4, 3.3.1, 3.5.1, there
exist constants µjd

> 0 such that after a finite-time transient, the following
inequalities are verified:

|zjd,k − xjd,k| ≤ µjd
Lρn+1−jd , ρ = max

{
τ,

(
κ

L

) 1
m+1

, max
0≤j≤nf

{(
εj

L

) 1
n+j+1

}}
,

(3.51)

where jd = 0, 1, · · · , n and the coefficients µjd
only depend on the differentiator

parameters λ0, . . . , λm.

Proof Similarly to Theorem 3.5.2, for systems (2.1) and (3.24), the error dynamics
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are given as:

wjf ,k+1 = τ (nf −jf +1)

(nf − jf + 1)!(σ0,k −∆k) +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k + . . .

. . . +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!Ψ̄l−1,m (ŵ1,k+1) ,

σjd,k+1 = −hj,k +
n∑

l=jd

τ (l−jd)

(l − jd)!σl,k + τ (l−jd+1)

(l − jd + 1)!Ψ̄nf +l,m (ŵ1,k+1) ,

Ψ̄j,m (ŵ1,k+1) = −λm−jL
j+1
m+1 |ŵ1,k+1|

m−j
m+1 ξk, jf = 1, 2, · · · , nf .

jd = 0, 1, 2, · · · , n.

(3.52)

Due to the inclusion ξk ∈ sign(ŵ1,k+1) and the fact that ξk is not affected by
E1,k, Ψ̄j,n (ŵ1,k+1) = Ψj,n (ŵ1,k+1) and Ψ̄m,m (ŵ1,k+1) ∈ Ψm,m (ŵ1,k+1) for j =
0, 1, 2, · · · , m− 1. Hence, using the change of variables (3.32), one can obtain:

ω̄jf ,k+1 ∈ ω̄jf ,k + τ
Ψjf −1,m(·)

L
jf

m+1

+ τnf −jf +1

(nf − jf + 1)!

(
σ̄0,k +

[
−ε0

L
,
ε0
L

])
+ . . .

. . . +
nf∑

l=jf +1

τ l−jf

(l − jf )!

(
ω̄l,k + d

nf −l+2
nf −jf +1

[
−

εnf −l+1

L
,
εnf −l+1

L

])
+ . . .

. . . +
m+1∑

l=jf +1

τ l−jf +1

(l − jf + 1)!
Ψl−1,m(·)

L
l

m+1
,

ω̄nf ,k+1 ∈ ω̄nf ,k + τ
Ψnf −1,m(·)

L
nf

m+1
+ τ

(
σ̄0,k +

[
−ε0

L
,
ε0
L

])
+ . . .

. . . +
m+1∑

l=nf +1

τ l−nf +1

(l − nf + 1)!
Ψl−1,m(·)

L
l

m+1
,

σ̄jd,k+1 ∈ σ̄jd,k + τ
Ψnf +jd,m (·)

L
nf +jd+1

m+1

+ τn+1−jd

(n + 1− jd)! [−1, 1] + . . .

. . . +
n∑

l=jd+1

τ (l−jd)

(l − jd)! σ̄l,k + τ (l−jd+1)

(l − jd + 1)!
Ψnf +l,m (·)

L
nf +l+1

m+1

,

σ̄n,k+1 ∈ σ̄n,k + τ
Ψm,m (·)

L
+ τ [−1, 1] ,

(3.53)

where jf = 1, 2, · · · , nf , jd = 0, 1, 2, · · · , n and the argument of υj,m(·) in (3.53) is
given as

ω̄1,k+1 +
[
−κ

L
,

κ

L

]
+

nf∑
l=1

g
nf

l τnf −l
[
−εl

L
,
εl

L

]
, (3.54)

with constant g
nf

l as in Table 3.2. Similarly to proof of Theorem 3.5.2, using the
homogeneity property, one can easily deduce inequality (3.51).
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From Theorem 3.5.3, one can deduce that MIDFD presents the same accuracy as the
robust exact filtering differentiator for enough small sampling time and κ. Further-
more, with the above conditions and a discretely sampled signal of global filtering
order 0 (bounded noise), MIDFD has an asymptotically optimal accuracy. Ultimately,
it is showed that MIDFD preserves the homogeneity property of its continuous-time
counterpart. Similar to (3.35) and (3.44), the following inclusion is obtained:

ω̄jf ,k+1 ∈ ω̄jf ,k + τ
Ψjf −1,m(·)

L
jf

m+1

+ τnf −jf +1

(nf − jf + 1)!
(
σ̄0,k + ρ̄n+1 [−1, 1]

)
+ . . .

. . . +
nf∑

l=jf +1

τ l−jf

(l − jf )!
(
ω̄l,k + d

nf −l+2
nf −jf +1ρ̄m+2−l [−1, 1]

)
+ . . .

. . . +
m+1∑

l=jf +1

τ l−jf +1

(l − jf + 1)!
Ψl−1,m(·)

L
l

m+1
,

ω̄nf ,k+1 ∈ ω̄nf ,k + τ
Ψnf −1,m(·)

L
nf

m+1
+ τ

(
σ̄0,k + ρ̄n+1 [−1, 1]

)
+ . . .

. . . +
m+1∑

l=nf +1

τ l−nf +1

(l − nf + 1)!
Ψl−1,m(·)

L
l

m+1
,

σ̄jd,k+1 ∈ σ̄jd,k + τ
Ψnf +jd,m (·)

L
nf +jd+1

m+1

+ τn+1−jd

(n + 1− jd)! [−1, 1] + . . .

. . . +
n∑

l=jd+1

τ (l−jd)

(l − jd)! σ̄l,k + τ (l−jd+1)

(l − jd + 1)!
Ψnf +l,m (·)

L
nf +l+1

m+1

,

σ̄n,k+1 ∈ σ̄n,k + τ
Ψm,m (·)

L
+ τ [−1, 1] , jf = 1, 2, · · · , nf − 1,

jd = 0, 1, 2, · · · , n− 1.

(3.55)

where the arguments of Ψ·,m(·) and ρ̄ are given as:

ω̄1,k+1 + ρ̄m+1 [−1, 1] +
nf∑
l=1

g
nf

l τnf −lρ̄n+l+1 [−1, 1] ,

ρ̄ = max
{(

κ

L

) 1
m+1

, max
0≤j≤nf

{(
εj

L

) 1
n+j+1

}}
.

(3.56)

Lemma 3.3 The implicit discrete-time filtering differentiator (3.24) preserves the ho-
mogeneity property of its continuous-time counterpart.

Proof The proof is similar to the presented one for Lemma 3.2.

Remark 3.5.1 bk can be represented as a function of ω̄jf ,k, σ̄0,k, τ and β0
j,·. Then,

bk satisfies an inclusion which is homogeneous. Hence, after the finite-time transient
mentioned in Theorem 3.5.3, bk and r0 are bounded.
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3.5.4 Stability analysis of the explicit discrete-time filtering differen-
tiator (EDFD)

In this subsection, it is assumed that |xj,k| ≤ Dj for j = 1, · · · , n where Dj is a
constant. It should be highlighted that MEDFD and MIDFD do not require this
assumption.

Theorem 3.5.4

Let zk be generated with the explicit discrete-time filtering differentiator (3.14),
with nf > 0. Furthermore, let xl,k be bounded by Dl with l = 1, · · · , n. Under
Assumptions 1.3.1, 1.3.4, 3.3.1, there exist constants µjd

> 0 such that after a
finite-time transient, the following inequalities are fulfilled:

|zjd,k − xjd,k| ≤ µjd
Lρn+1−jd ,

ρ = max
{

τ, max
0≤j≤n

{(
Dj

L

) 1
n+j+1

}
, max

0≤j≤nf

{(
εj

L

) 1
n+j+1

}}
,

(3.57)

where jd = 0, 1, · · · , n and the coefficients µjd
only depend on the differentiator

parameters λ0, . . . , λm.

Proof From Equations (2.1) and (3.14), the following discrete-time error system is
obtained

wjf ,k+1 = − τ (nf −jf +1)

(nf − jf + 1)!∆k +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!υl−1,m (w1,k) + . . .

. . . +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k +
n∑

l=1

τnf −jf +l+1

(nf − jf + l + 1)! (σl,k + xl,k) ,

zjd,k+1 =
n∑

l=jd

τ (l−jd)

(l − jd)!zl,k + τ (l−jd+1)

(l − jd + 1)!υnf +l,m (w1,k) ,

(3.58)

with jf = 1, 2, · · · , nf , jd = 0, 1, 2, · · · , n. The remainder of the proof is similar to the
proofs presented in Theorems 3.5.2 and 3.5.3.

It is evident that the terms τ
nf −jf +l+1

(nf −jf +l+1)!zl,k in the equations of filtering part may
cause instability of the estimation error for signals with unbounded derivatives. In
such case, the EDFD loses the accuracy of the continuous-time robust exact the the
filtering differentiator. Nevertheless, if Dj and the sampling time are sufficiently small,
EDFD presents the same accuracy as the robust exact filtering differentiator. At last,
one can mention that an implicit scheme can be proposed based on EDFD. However,
it will depend on Dj .
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3.6 Comparison between the discrete-time differentiator
based on the robust exact filtering differentiator

The realizations obtained from the differentiator (1.69) are compared in this section,
which are EDFD (3.14), MEDFD (3.15) and MIDFD (3.24). Additionally, the discrete-
time differentiators presented in [Levant & Livne 2019] and [Hanan et al. 2020], are
added to this comparison. They are the differentiator DFD [Levant & Livne 2019] and
ADFD [Hanan et al. 2020].

3.6.1 Simulation I: Noise-free case

In this simulation, f0(t) = t4 + sin(t) and ∆(t) = 0. The simulation parameters are
nf = 7, n = 3, τ = 0.005 sec, L = 25 and kL = 1000. The parameters λj are selected
as in [Jbara et al. 2020], λ0 = 1.1, λ1 = 36.3354, λ2 = 586.7823, λ3 = 5025.3982,
λ4 = 19894.4668, λ5 = 31601.1491, λ6 = 24295.4978, λ7 = 8907.9978, λ8 = 1908.4659,
λ9 = 251.9857 and λ10 = 20. In this simulation, tmax = 100 sec and the same initial
conditions

[
wT

0 zT
0

]
are used for each differentiator,

[
wT

0 zT
0

]
= [0 0]. For the two

performance indexes, it is selected tmin = 25 sec (i.e., at this time, the discrete-time
differentiation errors, except for the EDFD, have already converged to a vicinity of the
origin). The corresponding results are given in Figure 2.6 and Table 3.3.

(a) Estimation error of the signal. (b) Estimation error of the first derivative.

(c) Estimation error of the second derivative. (d) Estimation error of the third derivative.

Figure 3.1: Estimation error of the signal and its derivatives in Simulation I.
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MAE/RMSE DFD EDFD MEDFD MIDFD ADFD
Y0 5.19 9999.16 1.25 2.32× 10−2 5.2
Y1 21.88 306.87 7.33 0.37 21.94
Y2 43.99 26.56 20.8 2.98 44.15
Y3 47.3 32.44 32.28 12.65 47.44
y0 4.97 4364.33 1.19 1.58× 10−2 4.97
y1 21.32 160.75 6.95 0.27 21.32
y2 42.81 23.4 19.62 2.32 42.81
y3 45.75 30.44 30.39 10.58 45.75

Table 3.3: Indexes Yj and yj for each discrete-time differentiator in Simulation I.

Note that the ADFD is mainly useful when L is overestimated, which is not
the case in this simulation. According to Theorems 3.5.2 and 3.5.3, the estimation
errors for MEDFD and MIDFD converge to a vicinity of the origin after a finite time.
Furthermore, as shown in Figure 3.2, bk and r0 remain bounded according to Remark
3.5.1. Furthermore, as x1,k, x2,k and x3,k are unbounded, the estimation error for
EDFD increases as t increases, conforming to Theorem 3.5.4. As it can be seen in
Table 3.3, the best estimations are obtained with the proposed MIDFD, followed by
MEDFD.
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(a) bk.
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r 0

r
0

(b) r0.

Figure 3.2: bk and r0 for MIDFD in Simulation II.

3.6.2 Simulation II: Differentiation with measurement noise

In this simulation, x0(t) = sin(3t) + cos(2t) − sin(t). The simulation parameters
are nf = 7, n = 3, τ = 0.002 sec, ∆(t) ∼ i.i.d. N (0, 0.12), kL = 300 and L = 90.
The parameters λj and initial conditions

[
wT

0 zT
0

]
are selected as in the previous

simulation. tmin = 2 sec and tmax = 10 sec. The corresponding results are presented
in Figure 3.3 and Table 3.4.
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(a) Estimation error of the signal.
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(b) Estimation error of the first derivative.
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(c) Estimation error of the second derivative.
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(d) Estimation error of the third derivative.

Figure 3.3: Estimation error of the signal and its derivatives in Simulation II.

MAE/RMSE DFD EDFD MEDFD MIDFD ADFD
Y0 0.56 0.18 0.19 0.12 0.56
Y1 5.53 2.43 2.42 1.46 5.53
Y2 25.01 15.18 15.15 10.04 25.01
Y3 57.8 54.66 55.06 42.99 57.80
y0 0.32 9.04× 10−2 9.42× 10−2 4.51× 10−2 0.32
y1 3.11 1.30 1.31 0.65 3.11
y2 14.26 8.58 8.58 5.32 14.26
y3 33.06 29.28 29.29 23.92 33.06

Table 3.4: Indexes Yj and yj for each discrete-time differentiator in Simulation II.

The behavior of the estimation errors for MEDFD, MIDFD, and EDFD corre-
sponds to the theoretical results given in Theorems 3.5.2, 3.5.3, 3.5.4. Indeed, the
estimation errors for MEDFD, MIDFD, EDFD converge to a vicinity of the origin
after a finite time. As it can be seen in Table 3.4 and Figure 3.3, the best performance
is obtained using MIDFD.

3.6.3 Simulation III: Differentiation with measurement noise and dif-
ferent sampling times

In this simulation, f0(t) = sin(3t) + cos(2t)− sin(t) with ∆(t) = 5 cos(108t) and under
different sampling times τ ∈ [0.000005 sec, 0.1 sec], in specific, 25 logarithmically spaced
points were used. Contrary to the previous simulations, Yj is plotted with different
sampling times. The simulation parameters are nf = 3, n = 3, kL = 105, L = 90, λ0 =
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1.1, λ1 = 9.91, λ2 = 43.6484, λ3 = 101.9548, λ4 = 110.0817, λ5 = 47.6904, λ6 = 10,
tmin = 5 sec and tmax = 15 sec. Initial conditions are selected as

[
wT

0 zT
0

]
= [0 0].

The corresponding results are presented in Figure 3.4. As it can be seen in Figure 3.4,
the best performance is obtained using MIDFD for almost any signal and sampling
time.
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Figure 3.4: Maximum Absolute Error.

3.6.4 Simulation IV: Differentiation with large measurement noise

This simulation aims to show that the differentiator MIDFD has a better performance
than DFD, in the noise case. In this simulation, the differentiator and filtering order
are selected as n = 3 and nf = 4, with the parameters T = 0.001s, L = 2, λ0 = 1.1,
λ1 = 14.13, λ2 = 88.78, λ3 = 295.74, λ4 = 455.4, λ5 = 281.37, λ6 = 84.14 and λ7 = 12.
The input signal is f0(t) = sen(()t) − cos(0.5t) and the measurement noise is defined
with β0

j,k = ε0(−1)k, with ε0 = 0.01. As it can been seen in Figure 3.5, MIDFD obtains
has a good estimation of the signal and its derivatives, in contrast to DFD, which has
a constant error when they obtains its respective accuracy. However, it is important
to mention that DFD improve its accuracy reducing the sampling time.
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Figure 3.5: Input of the differentiator.
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Figure 3.6: Estimation of the input and its derivatives.

3.6.5 Simulation V: Simulation with different signals

This simulation is used to show the performance of the differentiators with different
signals, then f0(t) is defined as:

f0(t) =


t4

25 if t < 5s
25 + ln

(
1

t−4

)
if 5s ≤ t < 15s

22.6021 + 5sen(t− 15) if 15s ≤ t < 40s
1.9403 + 20e− t

2 +20 if 40s ≤ t

(3.59)

The initial conditions, parameters λj , nf and n are selected as in Simulation I and II.
L = 10 and ∆(t) = 0. Concerning the functions, they have a bounded forth derivative
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for almost any time (t ̸= 5, 15, 40). Moreover, since, there is a switch of functions, its
estimations errors are changing. The results are presented in Figures 3.7-3.8, where
the best estimations are obtained with MIDFD.
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Figure 3.7: Estimation of the input and its derivatives.
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Figure 3.8: Estimation errors of the input and its derivatives.
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3.7 Conclusion

In this Chapter, we have introduced and analyzed four discrete-time realizations of the
robust exact filtering differentiator, i.e. explicit and implicit ones, namely MIDFD,
MEDFD, EDFD and Matching ones. A time discretization, relying on the stabiliza-
tion of a pseudo linear discrete-time system has been proposed using the matching
approach. EDFD, based on the methodology used to obtain an exact discretization
of linear systems with a zero-order hold, has been investigated. It does not preserve
the continuous-time differentiator properties for signals with unbounded derivatives
due to high-order terms in the filter dynamics. Hence, MEDFD and MIDFD has been
proposed to preserve the homogeneity property and the accuracy of its continuous-
time counterpart after a finite-time. MIDFD is an implicit discrete-time realization
that is non-anticipative. At last, a detailed comparative study with DFD [Levant &
Livne 2019] and ADFD [Hanan et al. 2020], was performed in simulation, highlighting
that the implicit scheme supersedes the explicit one.

In the next Chapter, we will investigate the design of an appropriate output
feedback controller using the proposed discrete-time realization of the robust exact
filtering differentiator.

Jose Eduardo Carvajal Rubio Page 103



Chapter 3. Explicit and implicit discretizations of the filtering differentiator

Jose Eduardo Carvajal Rubio Page 104



CHAPTER4
Output Feedback Stabilization of
Integrator Chains using MIDFD

4.1 Introduction

Many control engineering applications require a real-time estimate of the time deriva-
tives of a noisy sampled signal. Indeed, a control law often needs the derivatives of
noisy signals (i.e., the measurements). Hence, several works consider the design of
sliding mode differentiator-based controllers due to finite-time property (see [Oliveira
et al. 2017, Castañeda et al. 2021] for instance). However, differentiators require high
gains to deal with the system uncertainties when they are used in a closed-loop. It is
even more difficult when high-order differentiators are needed since it yields the sensi-
tivity of the closed-loop system with respect to measurement noise and discretization
effect. It should be highlighted that the sampled-data sliding mode differentiator-based
control design is not well-investigated in the literature.

In this Chapter, we will restrict our study to the stabilization problem for per-
turbed chain of integrators using sampled noisy measurements. A discrete-time ob-
server is needed to design a sampled-data output feedback controller. In the previous
Chapter, a discrete-time version of the filtering differentiator [Levant & Livne 2019] is
derived to compensate for the effects of some large noises after a finite time. In this
Chapter, we include some additional terms related to the control input in the discrete-
time differentiator. This enables to avoid to increase the value of L. Furthermore, the
convergence of the observer to a vicinity of the origin is ensured for any initial condi-
tions. Besides, it can be proved, using the homogeneity property, that the proposed
discrete-time realization preserves the accuracy of the continuous-time robust exact fil-
tering differentiator despite measurement noise. Then, the sampled-data sliding mode
differentiator based controller is designed. From this design, various challenging issues
arise:

• How can we design an appropriate saturated output feedback controller to guar-
antee that the associated closed-loop discrete-time system is stable?

• What is the link between the accuracy of the observer and the convergence region
for the trajectories of the closed-loop system?



Chapter 4. Output Feedback Stabilization of Integrator Chains using MIDFD

In this Chapter, we will give answers to these questions. The main contributions are
as follows:

• A sampled-data implicit sliding mode differentiator-based observer is investi-
gated.

• The link between the disturbance bound and the observer parameters of the
filtering differentiator is discussed.

• A stability analysis of the closed-loop system combining the robust exact filtering
observer and a saturated output feedback controller is provided for integrator
chains with sampled data.

• A comparison between the implicit discrete-time closed-loop differentiator and
the explicit one [Levant & Livne 2019] is given to highlight the advantages in
terms of accuracy of the proposed scheme.

• Experiments are conducted on the DC-DC buck converter to show the effective-
ness of the proposed scheme.

The results presented in this Chapter were published in [Alarcón-Carbajal
et al. 2022] and [Carvajal-Rubio et al. 2022]. The organization of this Chapter is as fol-
lows. In Section 4.2, the considered problem (i.e., stabilization problem for perturbed
chain of integrators using sampled noisy measurements) is mathematically formalized.
Section 4.3 is focused on the design of the output feedback control law. First, an
implicit discrete-time realization of the robust exact filtering differentiator will be de-
rived to include some additional terms related to the control input. The temporal
discretization of the continuous-time closed-loop system will be also introduced. The
stability of the closed-loop system is studied in Section 4.4. In order to show its perfor-
mance, simulations and experimental results are presented in Section 4.5 and Section
4.6, respectively. The conclusion is presented in Section 4.6.

4.2 Problem statement

Let us consider the stabilization problem for perturbed chain of integrators, described
by the following dynamics

ẋ = Ax + en+1 (d(t) + u(t)) ; y(tk) = x̄0,k = x0(tk) + ∆(tk), (4.1)

where the state is x =
[

x0 x1 x2 · · · xn

]T
∈ Rn+1, the control input is u(t) ∈ R

and the discrete-time output measurement is y(tk) ∈ R. The measurement noise
∆k = ∆(tk) satisfies Assumption 3.3.1 and the perturbation d(t) is bounded by a
known constant, i.e., |d(t)| ≤ D.

Remark 4.2.1 It can be noted that system (4.1) includes motorized actuators or
robotic arms with n = 2 [Bhat & Bernstein 1998]. Higher order sliding mode con-
trol can also be seen as the stabilization problem of an auxiliary system described as
a perturbed chain of integrators built from the output and its higher time derivatives
[Emel’Yanov et al. 1996].
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The control objective is to stabilize system (4.1) using the discrete-time noisy
measurement y(tk). Therefore, the states of the system can be estimated using the
MIDFD differentiator.

4.3 Output feedback control design

To achieve the control objective, let us consider the implicit discrete-time realization
of the robust exact filtering differentiator (MIDFD) given in (3.24). Here, in order to
avoid the increase of L, we include some additional terms related to the control input
in the discrete-time differentiator. The proposed differentiator becomes as follows:

wjf ,k+1 = τ (nf −jf +1)

(nf − jf + 1)!(z0,k − y(tk)) +
nf∑

l=jf

τ (l−jf )

(l − jf )!wl,k +
m+1∑
l=jf

τ (l−jf +1)

(l − jf + 1)!Ψ̄l−1,m (w1,k+1) ,

zjd,k+1 = τ (n−jd+1)

(n− jd + 1)!uk +
n∑

l=jd

τ (l−jd)

(l − jd)!zl,k + τ (l−jd+1)

(l − jd + 1)!Ψ̄nf +l,m (w1,k+1) ,

jf =1, 2, · · · , nf . jd = 0, 1, 2, · · · , n.

(4.2)

with
Ψ̄j,m (w1,k+1) = −λm−jL

j+1
m+1 |w1,k+1|

m−j
m+1 ξk

The observer is implemented according to Lemma 3.1, where aj and bk are calcu-
lated using Equations (3.18). Moreover, L is selected such that L ≥ D. This requires to
ensure that the control input u(t) remains bounded in order to stabilize system (4.1)
using the noisy signal y(tk). With the estimation zj,k obtained in (4.2), an output
feedback saturated controller is proposed as,

u(t) =


C if vk ≥ C,

vk if −C < vk < C,

−C if vk ≤ −C,

∀t ∈ [tk, tk+1), (4.3)

(4.4)

with
vk = KZk. (4.5)

Without the saturation constraint given by |u(t)| ≤ C, the controller becomes
u(t) = vk ∀t ∈ [tk, tk+1). Vector Zk = [zI,k z0,k z1,k · · · zn,k]T ∈ Rn+2 is defined
using the estimated state obtained from the implicit discrete-time filtering observer
(4.2). Furthermore, variable zI,k is an approximation of

∫ t
0 x0(α)dα using a forward

Euler integration, i.e.,
zI,k+1 = zI,k + τz0,k, (4.6)

with zI,0 = 0. The control parameters are given by K = [kI k0 k1 · · · kn] ∈ Rn+1.
Note that vk in (4.5) is a classical PID control law for the case of n = 1.

Remark 4.3.1 Although a forward Euler integration is used in (4.6), one can use
other approximations.
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Since d(t) is bounded, one can set the observer parameter L = D. In this case,
the implicit discrete-time differentiator (4.2) estimates in finite-time the states xj,k

(i.e., the n time derivatives of x0). Furthermore, one can use a differentiator order
greater than n, if ẍn(t) is bounded and its bound is known.

To select an adequate gain, K, a discrete-time analysis is performed. From
Taylor’s series [Apostol 1967], one obtains the following realizations of xi(t):

x0(tk+1) = x0(tk) + (tk+1 − tk)x1(tk) + · · ·+ (tk+1 − tk)n

n! xn(tk) + (tk+1 − tk)n+1

(n + 1)! ẋn(tk),

x1(tk+1) = x1(tk) + (tk+1 − tk)x2(tk) + · · ·+ (tk+1 − tk)n−1

(n− 1)! xn(tk) + (tk+1 − tk)n

n! ẋn(tk),

...
xn(tk+1) = xn(tk) + (tk+1 − tk)ẋn(tk).

(4.7)

The above equations can be rewritten as follows:

x0(tk+1) = x0(tk) + τx1(tk) + · · ·+ τn

n! xn(tk) + τn+1

(n + 1)! (u(tk) + d(tk)) ,

x1(tk+1) = x1(tk) + τx2(tk) + · · ·+ τn−1

(n− 1)!xn(tk) + τn

n! (u(tk) + d(tk)) ,

...
xn(tk+1) = xn(tk) + τ (u(tk) + d(tk)) .

(4.8)

The addition of the terms uk on the discrete-time observer (4.2) allows to obtain the
same discrete-time error than the discrete-time differentiator (3.16) in the previous
Chapter. Therefore, from Theorem 3.5.3, the discrete-time observer converges to a
vicinity of the origin in finite-time and preserves its accuracy. L does not depends on
u(t). From equations (4.8) and (4.6), the following discrete-time realization is obtained:

Xk+1 = Φ(τ)Xk + B(τ) (uk + dk) + τσ0,ke1,

Xk = [zI(tk) x0(tk) x1(tk) · · ·xn(tk)]T ,
(4.9)

where Φ(τ) and B(τ) are defined as:

Φ (τ) =



1 τ 0 0 · · · 0 0
0 1 τ τ2

2! · · · τn−1

(n−1)!
τn

n!
0 0 1 τ · · · τn−2

(n−2)!
τn−1

(n−1)!
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 τ

0 0 0 0 · · · 0 1


, B (τ) =



0
τn+1

(n+1)!
τn

n!
...

τ2

2!
τ



T

. (4.10)

As the implicit discrete-time observer (4.2) is implemented with a constant sam-
pling time, the control law (4.3) is implemented using the same sampling time. Addi-
tionally, without saturation constraint, the closed-loop system (4.9) can be represented
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as follows:

Xk+1 = Ω(τ)Xk + Fk, (4.11)

with

Ω (τ) =



1 τ · · · 0
τn+1

(n+1)!kI

(
1 + τn+1

(n+1)!k0
)
· · ·

(
τn

n! + τn+1

(n+1)!kn

)
τn

n! kI
τn

n! k0 · · ·
(

τn−1

(n−1)! + τn

n! kn

)
...

... . . . ...
τ2

2! kI
τ2

2! k0 · · ·
(
τ + τ2

2! kn

)
τkI τk0 · · · (1 + τkn)


, (4.12)

and

Fk =
[

τσ0,k
τn+1

(n+1)! (Ek + dk) · · · τ (Ek + dk)
]T

, (4.13)

where Ek = k0σ0,k + k1σ1,k + · · · + knσn,k. Note that each element of matrix Fk is
bounded after a finite-time and their bounds are defined by the parameters µj , which
depend on the parameters λj and the methodology used to estimate xj,k. Then, K

is selected such that the magnitude of the n + 1 eigenvalues of Ω(τ) have norm lower
than 1 and kI < 0, k0 < 0, k1 < 0, · · · , kn < 0.

4.4 Stability analysis of the output feedback controller

Before anaylis the propoerties of the proposed output feedback controller, let us intro-
duce the following definitions:

• tk0 is the lowest time instant such that u(t) is saturated for any measurement
time greater to tk0 and previous tk2 , i.e., |vk| ≥ C for any tk with tk0 ≤ tk < tk2 .

• tk1 is the time instant when the discrete-time filtering observer (4.2) obtains and
keeps the accuracy (3.51).

• tk2 is the time instant such that vk is unsaturated and for the previous mea-
surement time vk was saturated, i.e., |vk2 | < C at tk2 and |vk| ≥ C for tk with
tk0 ≤ tk < tk2 .

• tk3 is the time instant when |vk3 | < C and the discrete-time filtering observer
(4.2) obtains and keeps the accuracy (3.51).

• v̄(t) is the continuous-time function analogous to vk, defined as:

v̄(t) = K [z̄I(t) x0(t) x1(t) · · · xn(t)]T ,

z̄I(t) = zI,k, for t ∈ [tk, tk+1).
(4.14)

• tf is the time instant after tk0 and tk1 such that v̄(tf ) < C.
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Time instants tk0 , tk1 , tk2 and tk3 are measurement times but tf could not be a
measurement time. As it will be demonstrated hereafter, tk1 , tk3 and tf are finite. On
the other hand, tk2 is finite due to the results presented in Theorem 3.5.3. Furthermore,
tk0 , tk1 and tk2 satisfy that tk0 ≤ tk1 < tk2 . Now, the main results are presented:

Theorem 4.4.1

Let system (4.1) under the controller u(t) defined as in (4.3) and using the
implicit discrete-time filtering observer (4.2). K is selected such that the mag-
nitude of the n + 1 eigenvalues of Ω(τ) have norm lower than one and kI < 0,
k1 < 0, · · · , kn < 0. If |vk| ≥ C at the time instant tk1 , |σjd,k| and τ are such
that:

|v̄(tk2)|+ |Ek| < C, (4.15)

with jd = 0, 1, · · · , n and Ek at time tk2 , then |vk| < C at time tk2 .

Proof Let us consider the case vk ≥ C at time tk1. Then, on the time interval
tk0 ≤ t < tk2, one can see that the state xn(t) satisfies the differential equation ẋn(t) =
d(t) + C and, as |d(t)| ≤ D and u(t) = C, one obtains:

(C + D) ≥ ẋn(t) ≥ (C −D),
(C + D)(t− tk0) + xn(tk0) ≥ xn(t) ≥ (C −D)(t− tk0) + xn(tk0).

(4.16)

Since ẋn−1 = xn and integrating ẋn−1:

xn−1(t) ≤ (C + D)(t− tk0)2

2 + (t− tk0)xn(tk0) + xn−1(tk0),

xn−1(t) ≥ (C −D)(t− tk0)2

2 + (t− tk0)xn(tk0) + xn−1(tk0).
(4.17)

The above process can be repeated and one obtains:

xn−i(t) ≥
(C −D) (t− tk0)i+1

(i + 1)! +
i∑

j=0

(t− tk0)i−j

(i− j)! xn−j(tk0),

xn−i(t) ≤
(C + D) (t− tk0)i+1

(i + 1)! +
i∑

j=0

(t− tk0)i−j

(i− j)! xn−j(tk0).
(4.18)

for i = 0, 1, 2, · · · , n. For all tk, with tk2 ≥ tk ≥ tk1, zI,k satisfies:

zI,k+1 − zI,k ≥ τ

(C −D) (tk − tk0)n+1

(n + 1)! +
n∑

j=0

(tk − tk0)n−j

(n− j)! xn−j(tk0)

+ τσ0,k,

zI,k+1 − zI,k ≤ τ

(C + D) (tk − tk0)n+1

(n + 1)! +
n∑

j=0

(tk − tk0)n−j

(n− j)! xn−j(tk0)

+ τσ0,k.

(4.19)
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Due to inequalities (4.18) and (4.19), C −D > 0 and C + D > 0, then v̄(t) < C

at time tf , which is finite. Now, it is considered the value of vk for the measurement
time after tf , which is tk2. Note that tk2 ∈ [tf , tf + τ ]. The estimation errors |σjd,k|,
with jd = 0, 1, · · · , n, and the sampling time τ have to be small enough to satisfy the
following condition:

|v̄(tk2)|+ |Ek| < C. (4.20)

The above condition implies that |vk| < C at the time instant tk2. Furthermore, this
condition can be rewritten as two conditions:∣∣∣∣∣∣kIzI,k +

n∑
i=0

kn−i(C −D)(tk2 − tk0)i+1

(i + 1)! + kn−i

i∑
j=0

(tk2 − tk0)i−j

(i− j)! xi(tk0)

∣∣∣∣∣∣ + |Ek| ≤ C

∣∣∣∣∣∣kIzI,k +
n∑

i=0
kn−i(C + D)(tk2 − tk0)i+1

(i + 1)! + kn−i

i∑
j=0

(tk2 − tk0)i−j

(i− j)! xi(tk0)

∣∣∣∣∣∣ + |Ek| ≤ C

(4.21)

A similar demonstration can be done for the case vk ≤ −C at time tk1.

Theorem 4.4.1 shows that after the discrete-time observer (4.2) obtains the
asymptotic accuracy and if u(t) is saturated at time tk1 then |vk| < C after a fi-
nite time tk2 . The following step gives the required conditions to keep unsaturated
u(t) and system (4.9) stable. These conditions are presented in the following theorem.

Theorem 4.4.2

Let system (4.1) under the controller u(t) defined as in (4.3), where K is given
in Theorem 4.4.1. Let P and Q be symmetric positive definite matrix of di-
mensions (n + 1) × (n + 1), with Ω(τ)T P Ω(τ) − P = −Q and P such that
λmin(Q) > 1. If |vk| < C at time tk3 , and C satisfies the following conditions:

C > |Ek|+ |kI + k0 + k1 + · · ·+ kn|
√

(λmax(P Ω(τ)Ω(τ)T P + P ))
(λmin(Q)− 1) ∥Fk∥2 ,

C >

∣∣∣∣∣∣KΩi(τ)Xk3 +
i−1∑
j=0

KΩj(τ)Fk3+i−j−1

∣∣∣∣∣∣ .
(4.22)

for all tk > tk3 and i = 0, 1, 2, . . ., then the discrete-time system (4.9) is stable
and |vk| < C for all tk ≥ tk3 .

Proof Let us consider the discrete-time Lyapunov function

Vk = XT
k P Xk. (4.23)

From the Lyapunov function, one obtains

Vk+1 − Vk =XT
k

(
Ω(τ)T P Ω(τ)− P

)
Xk + 2XT

k Ω(τ)T P Fk + FkP Fk. (4.24)
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One can deduce that

Vk+1 − Vk ≤−XT
k QXk + XT

k Xk + F T
k

(
P Ω(τ)Ω(τ)T P + P

)
Fk,

Vk+1 − Vk ≤− (λmin(Q)− 1) ∥Xk∥22 +
(
λmax(P Ω(τ)Ω(τ)T P ) + λmax(P )

)
∥Fk∥22 .

(4.25)

It implies that Vk+1 − Vk is negative if:

∥Xk∥2 ≥
√

(λmax(P Ω(τ)Ω(τ)T P + P ))
(λmin(Q)− 1) ∥Fk∥2 . (4.26)

Equation (4.26) defines the convergence region of the discrete-time system.
Therefore, to keep an unsaturated control law, C must satisfy at least the following
condition:

C > |vk| = |KZk| = |kIzI,k + k0x0,k + k1x1,k + · · ·+ knxn,k + Ek|

C > |Ek|+ |(kI + k0 + k1 + · · ·+ kn)|
√

(λmax(P Ω(τ)Ω(τ)T P + P ))
(λmin(Q)− 1) ∥Fk∥2

(4.27)

The above inequality has to be satisfied for all tk > tk3, but |Ek| and ∥Fk∥2 are
bounded for those time instants. Furthermore, without saturation, the solution of the
discrete-time system (4.11) is given as

Xk3+i = Ωi(τ)Xk3 +
i−1∑
j=0

Ωj(τ)Fk3+i−j−1, (4.28)

where Xk3 is Xk at the measurement time tk3 and i = 1, 2, · · · . From Equations (4.5)
and (4.28)

vk3+i = Ek3+i−1 + KΩi(τ)Xk3 +
i−1∑
j=0

KΩj(τ)Fk3+i−j−1. (4.29)

To keep an unsaturated control law u(t), C has to satisfy:

C >

∣∣∣∣∣∣KΩi(τ)Xk3 +
i−1∑
j=0

KΩj(τ)Fk3+i−j−1

∣∣∣∣∣∣+ |Ek3+i−1|. (4.30)

for i = 1, 2, · · · . This concludes the proof.

Remark 4.4.1 Considering the case of an unbounded u(t) and K is selected as in
Theorem 4.4.2, the implicit discrete-time observer (4.2) converges to a vicinity of the
origin for any initial condition x(0) ∈ Rn with L > D. Therefore the closed loop system
(4.1)-(4.6) is globally stable. Additionally, if d(t) and u(t) are n1 times differentiable,
one can use n + n1 instead of n, which improves the accuracy of the discrete-time
observer (4.2). Furthermore, for a given C, the linear system cannot be stabilized
globally using the controller (4.5) if the input is limited.
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Equation (4.26) implies that ∥Xk∥2 is bounded. Theorems 4.4.1 and 4.4.2 allow
to show the stability of the continuous-time system (4.1) using the discrete-time law
control (4.3). Furthermore, if for tk1 the conditions in Theorem 4.4.2 are satisfied, then
tk2 becomes tk3 . However, a small enough sampling time is required because Ek and
Fk depend on it. It is important to note that there is not a value of C such that the
discrete-time system is stable for any initial condition Xk3 , it comes from the conditions
in Theorem 4.4.1. On the other hand, reducing the value of |kI + k0 + k1 + · · · + kn|
allows to reduce the minimum value of C.

4.5 Simulation results

To show the effectiveness of the proposed sampled-data sliding mode differentiator
based controller, several scenarios are investigated. In this section, the root mean
square value of the states and its maximum absolute value are selected as indexes of
comparison. The maximum absolute value (MAV) of a state xi(t) after 50 sec is given
as:

MAV = max {|xi(tj)| ∈ R|tj = 50 sec +jτs} , (4.31)

where τs is the simulation time, j = 1, · · · , (tmax − 50)/τs, and tmax is the maximum
time of simulation. In Simulation I and II, τs is selected such that τs < τ , τs =
0.00005 sec and τs = 0.00001 sec are used in Simulation I and II respectively. The root
mean square value (RMSV) of xi(t) after 50 sec is defined as follows:

RMSV =

√√√√√(tmax−50)/τs∑
j=1

(xi(jτs + 50))2

(tmax − 50)/τs
. (4.32)

On the other hand, two new index are related to the controller (4.3).
They are defined as ME = max {|Ek| ∈ R|50 sec < tk ≤ tmax} and MF =
max {∥Fk∥2 ∈ R|50 sec < tk ≤ tmax} .

4.5.1 Simulation I: Second Order System

In this simulation, the following uncertain system is studied:

ẋ0(t) = x1(t),
ẋ1(t) = d(t) + u(t),
y(tk) = x0(tk) + ∆(tk),

(4.33)

where the state is x =
[

x0 x1
]T
∈ R2, the control input is u(t) ∈ R and the

discrete-time output measurement is y(tk) ∈ R. The measurement noise ∆k = ∆(tk) is
normally distributed random signal with mean 0 and variance 5 and the perturbation
is d(t) = 0.5 sin(0.01t). The sampling period is constant, i.e., τ = tk+1− tk = 0.001 sec.
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The output feedback saturated controller is given by

u(t) =


C if vk ≥ C

vk if −C ≤ vk ≤ C

−C if vk ≤ −C

, ∀t ∈ [tk, tk+1),

vk = kIzI,k + k0z0,k + k1z1,k,

zI,k+1 = zI,k + τz0,k.

(4.34)

Vector Zk = [zI,k z0,k z1,k]T ∈ R3 is defined using the estimated state obtained
from the implicit discrete-time filtering observer (4.2) with L = 0.5, n = 1, nf = 1 and
λj are selected as in [Hanan et al. 2021], which is given as:

w1,k+1 =w1,k + τ (z0,k − x̄0,k)− τλ2L
1
3 |w1,k+1|

2
3 ξk −

τ2

2 λ1L
2
3 |w1,k+1|

1
3 ξk −

τ3

6 λ0Lξk,

z0,k+1 =z0,k + τz1,k + τ2

2 uk − τλ1L
2
3 |w1,k+1|

1
3 ξk −

τ2

2 λ0Lξk,

z1,k+1 =z1,k + τuk − τλ0Lξk,

(4.35)

where ξk and w1,k+1 are calculated according to Lemma 3.1, its respective polynomials
are defined as:

p (r) = r3 + a2r2 + a1r + (−bk + a0) ,

p (r) = r3 + a2r2 + a1r + (bk + a0) ,
(4.36)

with a0 = τ3

6 λ0L, a1 = τ2

2 λ1L
2
3 , a2 = τλ2L

1
3 and bk = −w1,k − τ (z0,k − x̄0,k). Using

Theorems 4.4.1 and 4.4.2, the controller parameters are selected as C = 50 and K =
[kI k0 k1]T = [−0.1 − 0.6 − 0.4]T . Hence, eigenvalues of Ω(τ) are 0.9981,
0.9979 + 0.0069i and 0.9979− 0.0069i.

For comparison purposes, we have also depicted the results obtained by replacing
the implicit discrete-time filtering observer (3.16) with the explicit discrete-time dif-
ferentiator, which was presented in [Levant & Livne 2019], with the additional terms
used in (4.2). It is important to note that both discrete-time observers have different
inputs but the same ∆(tk). The initial condition of the system is X0 = [20 − 5]T and
Z0 = [0 0 0]T . Results are presented in Figures 4.1-4.2.
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Figure 4.1: States of the system.
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Figure 4.2: Simulation results for the second-order system (4.33) with the control law
(4.34) using the implicit and explicit observers.

Figure 4.2 shows that the discrete-time observers give a robust estimate in finite-
time of x(t) in spite of the presence of measurement noise. Furthermore, it can be seen
in Fig. 4.1 that the closed-loop system is stable. It is worth noting that the results
with the implicit observer supersede the implicit one. In order to compare the results
obtained with both discrete-time observers, the root mean square value of the states
and its maximum absolute value after 50 sec are presented in Table 4.1. Furthermore,
according to definition of |Ek| and ∥Fk∥2 both are bounded, then its maximum value
after 50 sec is presented as ME and MF in Table 4.1.

RMSV Implicit Observer Explicit Observer
x0(t) 0.5053 2.626
x1(t) 0.1688 0.3108
MAV Implicit Observer Explicit Observer
x0(t) 0.9034 3.9769
x1(t) 0.5431 0.5603

Implicit Observer Explicit Observer
ME 0.4912 2.8915
MF 0.01077 0.04898

Table 4.1: Root mean square value and Maximum absolute value of the states.

4.5.2 Simulation II: Third Order System

The following third order uncertain system is analyzed:
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ẋ0(t) = x1(t),
ẋ1(t) = x2(t),
ẋ2(t) = sin (0.001x1(t)) + u(t),
y(tk) = x0(tk) + ∆(tk),

(4.37)

where the state is x =
[

x0 x1 x2
]T
∈ R3, u(t) ∈ R and y(tk) ∈ R. The mea-

surement noise ∆k = ∆(tk) is normally distributed random signal with mean 0 and
variance 5 and the perturbation is d(t) = sin 0.001x0(t). The sampling period is con-
stant, i.e., τ = tk+1 − tk = 0.0001s. For the system (4.37), the discrete-time filtering
differentiator based output feedback saturated controller is given by

u(t) =


C if vk ≥ C

vk if −C ≤ vk ≤ C

−C if vk ≤ −C

, ∀t ∈ [tk, tk+1),

vk = kIzI,k + k0z0,k + k1z1,k + k2z2,k,

zI,k+1 = zI,k + τz0,k.

(4.38)

Similar to Simulation I, Zk = [zI,k z0,k z1,k z2,k]T ∈ R4 is defined using the estimated
state obtained from the implicit discrete-time filtering observer (4.2). Its parameters
are given by L = 1, n = 2, nf = 1 and λj given in [Hanan et al. 2021], which is given
as:

w1,k+1 =w1,k + τ (z0,k − x̄0,k)− τλ3L
1
4 |w1,k+1|

3
4 ξk −

τ2

2 λ2L
2
4 |w1,k+1|

2
4 ξk − . . .

. . .− τ3

6 λ1L
3
4 |w1,k+1|

1
4 ξk −

τ4

24λ0Lξk,

z0,k+1 =z0,k + τz1,k + τ2

2 z2,k + τ3

6 uk − τλ2L
2
4 |w1,k+1|

2
4 ξk − . . .

. . .− τ2

2 λ1L
3
4 |w1,k+1|

1
4 ξk −

τ3

6 λ0Lξk,

z1,k+1 =z1,k + τz2,k + τ2

2 uk − τλ1L
3
4 |w1,k+1|

1
4 ξk −

τ2

2 λ0Lξk,

z2,k+1 =z2,k + τuk − τλ0Lξk,

(4.39)

where ξk and w1,k+1 are calculated according to Lemma 3.1, its respective polynomials
are defined as:

p (r) = r4 + a3r3 + a2r2 + a1r + (−bk + a0) ,

p (r) = r4 + a3r3 + a2r2 + a1r + (bk + a0) ,
(4.40)

with a0 = τ4

24 λ0L, a1 = τ3

6 λ1L
3
4 , a2 = τ2

2 λ2L
2
4 , a3 = τλ3L

1
4 and bk = −w1,k −

τ (z0,k − x̄0,k).
Using Theorem 4.4.1 and 4.4.2, the controller parameters are selected as C = 20

and K = [kI k0 k1 k2]T = [−0.2 − 0.3 − 1.2 − 0.5]T . Due to the above
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parameters, eigenvalues of Ω(τ) are 0.9988+0.0095i, 0.9988−0.0095i, 0.9986+0.0045i,
and 0.9986− 0.0045i. On the other hand, initial condition of the system and implicit
observer are given by X0 = [15 − 15 25]T and Z0 = [0 15 − 15 25]T . The results
are presented in Figures 4.3-4.4.
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Figure 4.4: Simulation results for the third-order system (4.37) with the control law
(4.37) using the implicit observer.

4.5.3 Simulation III: Sampling time and initial conditions

In this simulation, the second-order system (4.33) is used with ∆(t) = 10 sin(10000t).
The gains of Simulation I, the controller (4.34) and sampling time are kept as in
Simulation I. First, Table 4.2 summarizes the behavior of the system with different
initial conditions. As it can be seen in Figure 4.5, at time 2.543 sec the law control is
saturated, according to Theorem 4.4.2, at time 3.408 sec the system is unsaturated with
Xk3 = [−33.29 0.4681]T and it is kept in this way. In the case of Xk3 = [200 − 100]T
the system is unstable.

Concerning the effects of the sampling time, they can be seen in Figure 4.6. If
the sampling time is reduced then the bounds of the estimation errors are reduced, and
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(x0(0), x1(0)) RMSV x0(t) RMSV x1(t) MAV x0(t)
(20,-5) 0.371839 0.040175 0.568306
(30,5) 0.371783 0.043403 0.577819
(40,-10) 0.372305 0.043728 0.578355
(50,-25) 0.373469 0.047986 0.582988
(200,-100) - - -
(x0(0), x1(0)) MAV x1(t) ME MF
(20,-5) 0.080351 0.107837 0.000609
(30,5) 0.125534 0.108019 0.000609
(40,-10) 0.108718 0.107837 0.000609
(50,-25) 0.130512 0.107837 0.000609
(200,-100) - - -

Table 4.2: Behavior of the system for initial conditions Xk3 .

therefore the indexes of comparison are reduced. The above depends on the discrete-
time signal βj,k and its bounds δj .

4.6 Experimental Results

4.6.1 Problem statement

The DC-DC buck converter, depicted in Fig. 4.7, consists of a DC input source Vs,
a controlled ideal switch Ws, a rectifier diode D1, a filtering inductor Li, a filtering
capacitor Cp, a load resistance R, and the equivalent series resistances (ESR) Rc and
RLi of the capatictor and the inductor, respectively.

Here, the control objective is that the output voltage Vo(t) converges to a desired
constant voltage Vref. Let us define the output voltage error as

x0(t) = Vo(t)− Vref.

Based on the Kirchhoff’s circuit laws, using the large-signal average model of the DC-
DC buck converter [El Fadil et al. 2009, Moreno-Valenzuela 2020, Bacha et al. 2014],
the dynamics of the output voltage error can be written as a chain of integrators as

ẋ0(t) =x1(t),

ẋ1(t) =− 1
LiCp

x0(t)− 1
RCp

x1(t) + Vs

LiCp
u(t)− Vref

LiCp
,

y(t) =Vo(t) + ∆(t),

(4.41)

Vs
LiCp

u(t) is the control input or duty cycle and ∆(t) represents measurement noise.

4.6.2 Experimental results

The experimental platform consists of the DC-DC buck converter, the digital control
device and the signal conditioning subsystems (i.e. anti aliasing filter and MOSFET
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Figure 4.5: Simulation results for the second-order system (4.33).
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Figure 4.6: ME and MF for different sampling time.

drivers). The digital platform selected to execute the control algorithm is the dSPACE
DS1104 Controller Board. A 16-bit resolution is used for analog-to-digital conversion,
and the resolution of the digital pulse-width modulator is 50 ns. Serial communica-
tion between the dSPACE platform and ControlDesk software is used to monitor the
DC-DC buck converter variables. In order to avoid frequency distortion in the voltage
control loop due to the aliasing effect, a second-order Chebyshev low-pass filter with
-20 dB of attenuation gain is used. The analog filter implementation is performed
through a non-inverting Sallen–Key topology with OPA4187. The DC-DC buck con-
verter switches are ultra-low on-resistance power MOSFET IRF3710 driven via dual
low side driver IR4427 to minimize propagation times and a pair of 6N135 high-speed
photo-coupler to isolate the control signal from the power section. The corresponding
experimental setup is given in Fig. 4.8

In the following simulation, the system parameters are as follows: R = 30Ω, Cp =
512µF, Li = 255.81µH, Vs = 12V. This operating point is selected because the value
of R produces that the current in the inductor decreases almost to zero (discontinuous
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Figure 4.7: DC-DC buck converter.

conduction mode). The measurement noise is assumed to satisfy Assumption 3.3.1.
The sampling period is constant, i.e., τ = tk+1 − tk = 0.000025s. The desired output
voltage changes between Vre = 3.3V and Vre = 7V.

The control parameters are chosen as L = 750, C = Vs
LiCp

, n = 1, nf = 1, λj are
as in Simulation I and K = [kI k0 k1]T = [−0.5 − 0.025 − 0.00002]T . Note that in
this case, C is a structural system constraint due to the maximum value of the duty
cycle. From Theorem 4.4.2, system (4.41) under the controller u(t) defined as in (4.3),
with the implicit discrete-time differentiator (3.16), is stable.

The experimental results are presented in Figure 4.9. Despite the presence of
measurement noise, one can see in Figure 4.9 that the proposed controller and observer
allow to track the desired reference output voltage. Notice that the proposed scheme
shows good performances (e.g. the settling time and overshoot are small enough).
Additionally, one can note that the proposed controller enters the saturation region of
ukmin

. Nevertheless, the control objective is still achieved.

4.7 Conclusion

In this Chapter, an output feedback controller has been proposed using an implicit
discrete-time observer for perturbed chain of integrators using sampled noisy mea-
surements. We have included some additional terms related to the control input in
the discrete-time implicit robust exact filtering differentiator. The convergence of the
observer to a vicinity of the origin has been ensured for any initial conditions. Then,
the sampled-data sliding mode differentiator based controller has been designed. A
convergence analysis has been performed, where some conditions on the control gains
have been given. A comparison between implicit and explicit discrete-time schemes
for a second-order system has been presented. Similar to the results obtained in the
simulation of Chapters 2 and 3, the closed-loop implicit differentiator has shown better
results than the explicit one. The behavior of the second-order system for different
initial conditions and sampling times has been also investigated in the simulation,
where the performance index improves if the sampling time is reduced. A simulation
for a third-order system has been presented, where it has been showed to be stable
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Figure 4.8: Experimental setup using the DC-DC buck converter.

for its respective initial conditions. Furthermore, the proposed controller and observer
have been implemented for a DC-DC buck converter, where it has been shown that
it successfully manages the control objective in spite of the presence of measurement
noise.
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Figure 4.9: Experimental results with the DC-DC buck converter.
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CHAPTER5
General Conclusions and
Perspectives

5.1 General conclusions

In this thesis, we have desgined discrete-time realizations for the continuous-time ho-
mogeneous differentiator (1.61) and filtering differentiator (1.69). Additionally, the
generalized equations related to the implicit realizations are solved, it was demon-
strated that they have a unique solution and the schemes are non-anticipative. The
proposed discrete-time differentiators (HEDD, HIDD, MEDFD and MIDFD) preserve
the continuous time properties of the continuous-time counterpart. They provide good
robustness properties with respect to measurement noises and allow for large sampling
periods without a significant decrease of the performances. Stability analysis has been
given using homogeneity concept. Furthermore, a sampled-data sliding mode differen-
tiator based controller has been designed. It has been guaranteed that the associated
closed-loop discrete-time system is stable. As the implicit discrete-time differentiators
require to estimate the roots of the polynomials, root finding methods have been pro-
posed and studied. Simulation results showed that the Halley’s method can be used
with only three iterations and it was selected to implement the implicit differentiators.
Furthermore, in this thesis, it was demonstrated that the Halley’s method converge
with a order of convergence 3 for the initial condition proposed in Chapter 2. Since the
drawback of the implicit discretizations is the number of needed operations, methods
to reduce the time complexity were investigated in Chapter 2, where the best methods
was the Half-Horner method. As a root finding method is used, there exists an estima-
tion error when the implicit differentiator is implemented. The above fact is taken into
account in the convergence proof and its effects at time tk are given in the variable θk in
both discrete-time differentiators. The variable θk is attenuated by the sampling time.
At last, both implicit discrete-time differentiators are robust to bounded numerical
errors in the root-finding methods. Contrary to the implicit discrete-time differentia-
tors presented in [Mojallizadeh et al. 2021], HIDD and MIDFD do not require that
fn+1

0,k = 0 to obtain a convergence of the estimation errors to the origin. Furthermore,
in [Mojallizadeh et al. 2021], it was not demonstrated the convergence of the implicit
discrete-time realizations based on the standard differentiator.

Numerical results were presented to show the performance of the differentiators
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proposed in this thesis (HEDD, HIDD, EDFD, Matching, MEDFD, MIDFD) and
in the literature (HDD, GHDD, Matching, DFD, ADFD). Different conditions were
considered in terms of signal functions, sampling times and measurement noise. It
can be seen in 2 and 3 that the implicit discrete-time differentiators supersede the
explicit realizations. On the other hand, in 4 MIDFD has been modified and studied
in closed-loop with an output feedback controller for perturbed chain of integrators
using sampled noisy measurements. The convergence conditions of the closed-loop
system were given. A comparison between implicit and explicit discrete-time schemes
for a second-order system has been presented in 4. Similar to the results obtained in
the simulation of Chapters 2 and 3, the closed-loop implicit differentiator has shown
better results than the explicit one. Furthermore, the proposed controller and observer
have been implemented for a DC-DC buck converter, where it has been shown that
it successfully manages the control objective in spite of the presence of measurement
noise.

5.2 Future perspectives

In this work, some problems related to implicit-time discretization were solved (e.g.,
implicit realizations of the robust standard differentiator and filtering differentiator for
any order, stability proof taking into account measurement noises and numerical errors,
closed-loop scheme combining a saturated controller and an implicit observer with its
stability analysis, ...). However, as it is mentioned in [Brogliato & Polyakov 2020],
there are still open problems related to our implicit discrete-time realization, for in-
stance, the consideration of non-constant sampling time. Then, future works should be
focused on the study of the behavior of the implicit differentiators with non-constant
sampling time, and its behavior in closed loop systems using an appropriate discrete-
time controller, which requires the estimation of the signal derivatives. An example of
the above is the trajectory tracking problem.

Since, the implicit discrete-time realizations were compared with existing
discrete-time realizations of the standard differentiator and the robust exact filtering
differentiator, then, a comparative analysis of both realizations with other observers is
important (e.g., Kalman filter, linear, non-homogeneous and Alien differentiators, ...).

Additionally, the implicit discrete-time realizations provide finite-time stability of
the observation error. However, its convergence time depends on the initial condition.
Hence, large values of initial errors (|σ0,0|, |σ1,0|, · · · , |σn,0|) implies a large value of the
settling-time. Then, one could attempt to obtain an implicit fixed-time or predefined
stable differentiator to avoid large values of the settling time.

Systems with a large sampling time, appear in many real-time applications. In
this thesis, it is shown that the performance of the implicit differentiators supersede
to the performance of the explicit one. Although MIDFD was implemented for a DC-
DC buck converter, one could consider many other applications, for instance, mobile
robots with a limited sampling time.

One important fact is than the MIDFD takes a measurement at time tk and an
estimation is obtained for tk+1 and the HIDD obtains an estimation at time tk. A
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similar effect is obtained with the implicit differentiators obtained from the standard
differentiator [Mojallizadeh et al. 2021], where they require to use a measurement at
time tk+1 to be implemented. Then, is it possible to obtain a discrete-time differen-
tiator from the standard differentiator? and what is the reason? It may be an other
interesting research study.
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