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Enfin, il est un rôle de l'ombre récompensé par aucun titre, son travail lors de cette thèse a pourtant été tellement important. Je remercie celle qui est devenue ma femme, Lucie, d'avoir supporté la vie avec le thésard torturé que je suis. Je suis impatient (pour changer) de reprendre une vie plus sereine avec toi. 82 successful launches in a row! That was the impressive statistic of the Ariane 5 launcher at the beginning of the year 2018. This reliability rate is guaranteed by high level of requirement for each part of the rocket. The first and second floor space engines (Figure 1.1), Vulcain 2 and HM-7 which will be replaced by Vulcain 2.1 and Vinci on Ariane 6 in 2020, have key roles in the propulsion phase and their reliability determines that of the whole system.

To ensure a thrust higher than 1300 kN for Vulcain and 180 kN for Vinci, the design of the components of these space engines, called safe-life, must demonstrate, among other things, their ability to tolerate variations in the manufacturing process and the material properties. The justification can be performed using computational experiments to ensure the strength of the components according to several failure modes. Among these, the potential presence of a defect (metallurgical origin or caused by the manufacturing process) must be taken into account to validate the space engine. This approach is commonly called the Damage Tolerance (DT). In a conservative way, the DT hypothesis leads to consider each defect as a crack which is the worst condition. The component's vibrations seen during the lifetime of a space engine can generate the crack propagation leading to the failure before the end of the launcher's mission. The DT justification requires a Fracture Mechanics (FM) numerical analysis with static or cyclic loading. DT computational models are mainly subjected to uncertainties about the localization, the size, the shape of the crack, the elastic and fracture material properties, the multi-sources loading and the geometry of the component. To deal with these, a common approach consists in a deterministic evaluation with conservative hypothesis such as the worst localization, orientation and size of the crack with the worst material properties and the maximization of the loading. However, the addition of hypotheses generally leads to study extreme configurations defined with an almost null probability of occurrence. Moreover, this implies an unknown conservatism which can lead to an over-sizing of the design disregarding the engine efficiency. In this thesis, the goal is to limit the accumulation of hypotheses and consequently, to quantify the conservatism of the design by assessing the reliability of a component according to the DT failure modes, using probabilistic approaches. Therefore, the proposed reliability analysis approach is designed to give the probability of failure considering stochastic models as inputs.

PROBLEMATICS

3

Problematics

This thesis aims at developping a methodology to assess the reliability of DT for space engine components, using numerical crack analysis tools. As shown in • characterization of uncertainties defining input stochastic models using available data,

Model Uncertainties

Width

• reliability evaluation to assess the probability of failure by propagating the uncertainties in the DT model.

The compatibility of the methodology with the aerospace industrial context is also expected in terms of confidence of the results and restitution time. The definition of this methodology is confronted to four obstacles, specific to the space engine context, detailed in the following sections.

Low rate of flights

The quality of the results obtained from the reliability methodology is mainly driven by the ability of the input stochastic models to describe the uncertainties.

In the DT context, these are divided into four classes: the geometry, the material properties, the loading and the considered defect. The construction of associated stochastic models is strongly driven by the statistical data. Tracks are engaged to CHAPTER 1. INTRODUCTION collect it. Nevertheless, in the space engine components context, the low rate of flights (≈ 6 per year) and manufacturing leads to small databases. The statisticalbased identification methods generally used are limited by the small sample size to provide a representative model. However, for some uncertain parameters, there exist expert judgments, based on experience favoring modelization choices. Therefore, the proposed methodology must take into account the different sources of information to build consistent stochastic models.

Possible time consuming damage tolerance model

The DT hypothesis leads to consider the defect as a crack. This strong consideration implies to work in the FM framework. Numerical simulations are developed to describe the phenomenon of the crack propagation with different levels of accuracy. The DT simulation could be performed using analytical or virtual charts which are fast to evaluate and cover most of the simple crack cases. However, the validity of these models is limited for complex and specific cases. These are solved using numerical approaches such as Finite Element Method (FEM) and eXtended Finite Element Method (XFEM) which are CPU time consuming (several hours) depending on the accuracy of the model. That makes impossible the use of classical reliability methods based on an important number of DT simulations.

The idea to treat these points is to identify the boundary between safe and failure domains using surrogate-based approaches. These techniques reduce the time of restitution using the calls to the DT simulations only to the construction of the surrogate.

Important requirement about the safety of the components

The space engine components must satisfy important safety requirement. This implies to consider a low probability (< 10 -6 ) framework. Starting from stochastic model of the input parameters of the DT, the reference reliability method is the Monte Carlo Simulation (MCS) which consists in repeating several times an experiment (e.g. a numerical simulation) with different set of parameters and analysing how many times the model fails. Even if it is a robust approach, its main drawback comes from the important number of experiments, around billions (> 10 8 ), required to ensure a good level of accuracy (10%) for the estimator of the low probability of failure. It is conflicting with the goal to assess the reliability within an acceptable time in an industrial context. The proposed methodology must assess low probabilities (< 10 -6 ) limiting the time of restitution by reducing the number of DT model evaluations.

OUTLINE

Mixed quantitative and qualitative output information

During the thesis an additional difficulty has appeared coming from the DT dedicated tools. The output information of a DT evaluation has the specificity to be quantitative in case of a safe component and qualitative for a failed one because the computational hypotheses are not satisfied. The use of gradient-based methods or regression approximation techniques are limited by this consideration.

The DT reliability assessment methodology must therefore take into account the mixed information considering the simultaneous use of both regression and classification surrogate-based approaches.

Outline

The current chapter presents the motivations to propose a methodology to assess the reliability for the damage tolerance of space engine components. The idea is to replace the worst case deterministic approach to deal with the uncertainties by a probabilistic one to provide the probability of failure and, consequently, quantify the conservatism of the design. The four main obstacles identified due to the space engine context have to be treated reviewing the existing approaches and proposing new ones when necessary.

Chapter 2 introduces the notions implied by the consideration of the DT reliability problem. The DT procedure for the justification of space engine components is detailed. Based on the use of FM numerical tools such as XFEM, DT integrates Failure Assessment Diagram (FAD) to assess the safe or failed state of a component. The feature of the DT assessment output is to give a quantitative value for safe component and qualitative information for failed one because the considered Linear Elastic Fracture Mechanics (LEFM) hypothesis is not satisfied in the failure region. This thesis proposes to treat the uncertainties defining the DT reliability problem. A review of the existing tools to define the complete methodology is presented. Classical identification methods to characterize the reliability inputs are detailed such as Bayesian inferences which couple the scarce data due to the low rate of flights with the available expert judgment. It is completed by explanation about sensitivity analysis methods. The probability of failure is then studied analysing the advantages and limitations of classical reliability methods: MCS, First Order Reliability Method (FORM)/Second Order Reliability Method (SORM), and low probability dedicated ones: Importance Sampling (IS) and Subset Simulation (SS). The possible use of costly DT model implies to limit the number of simulations. The use of regression and classification CHAPTER 1. INTRODUCTION surrogates is explored for the approximation of the boundary between the failed and safe domains, so-called Limit State (LS), focusing respectively on the Kriging and the Support Vector Machine (SVM). As the goal is to reduce the frequency of the DT model calls, the adaptive sampling of experiments for low probability assessment is reviewed. This review shows the limitations of the surrogate-based techniques in case of mixed quantitative/qualitative information for the low probability assessment.

Chapter 3 presents a complete reliability sensitivity analysis of a crack beam in traction to identify the significant variables, as a preliminary work of the DT reliability methodology. The reliability sensitivity indices are directly extracted from FORM. However, gradient-based optimization techniques fail to get the Most Probable Failure Point (MPFP) required to compute FORM outputs, due to the qualitative information coming from failed experiments. The work of this thesis proposes to replace gradient-based optimization techniques by a Surrogate-Based Optimization (SBO) one because the genetic algorithm of SBO does not need the gradient information to converge to the MPFP. The surrogate is used to reduce the number of model evaluations. FORM with SBO is applied on the defined test case to get reliability sensitivity indices which are compared with ones of the DT output. Moreover, the influence of the chosen distribution for significant variables on the reliability is studied. Finally, the comparison of the influence of the choice of the loading formulation, prescribed force or displacement, on the reliability is performed using FORM with SBO.

Chapter 4 presents an original contribution of this thesis, proposing Adaptive Regression and Classification using Subset Simulation (ARC-Sub) DT reliability methodology based on the hybridization of regression and classification surrogates with SS. The qualitative and quantitative information is treated combining Kriging regression and SVM classification to limit the number of model evaluations. These are coupled using SS principle to assess low targeted probabilities (< 10 -6 ). For the first subset steps, in the regression phase, when dataset contains quantitative values only, a Kriging model is built with an usual enrichment strategy (clustering, Adaptive Kriging (AK)) to improve the accuracy of intermediate subset thresholds. When the custom-built transition criteria are satisfied, ARC-Sub switches to the classification phase. Ones the dataset contains qualitative experiments, a SVM separator is coupled with an original enrichment strategy which consists in a misclassification tournament between exploration and exploitation based on the Probabilistic Support Vector Machine (PSVM) information. Note that, even if choices are done in the thesis, this methodology is modular according to surrogates, enrichment strategies and stopping criteria.

OUTLINE

Chapter 5 benchmarks ARC-Sub methods on several test cases of an increasing complexity. Firstly, analytical test cases are studied to identify the ability of ARC-Sub to detect disconnected failure regions. Then, it is tested on DT beam cases to compare with the existing approaches available for this kind of problems. Finally, ARC-Sub is applied on the industrial-level XFEM model of the TEG blade support to give information about the conservatism of the existing approach.

General conclusions and perspectives about the achievements of this work are given in Chapter ??.

This thesis gave rise to several communications: 

Chapter 2

Damage tolerance reliability

Introduction

As detailed in the introduction (Chapter 1), the goal of this thesis is to develop a methodology for reliability assessment of Damage Tolerance (DT) for space engine components. The approach is based on a sequence of ingredients: Failure Assessment Diagram (FAD), Linear Elastic Fracture Mechanics (LEFM), eXtended Finite Element Method (XFEM), Monte Carlo Simulation (MCS), First Order Reliability Method (FORM), Importance Sampling (IS), Subset Simulation (SS), subsequently introduced in this chapter.

Damage tolerance justification for space engine components

The DT analysis for space engine context consists in checking if the potential presence of undetected flaws does not affect the mechanical strength, leading to the failure of the component. We make a conservative hypothesis to consider each defect as a crack which implies to work in the Fracture Mechanics (FM) field. The use of numerical models for justification leads to deal with uncertainties which must be taken into account for the validation of the design. This section presents the DT principle which conducts to the associated reliability problem.

Damage tolerance criteria

As mentioned above, by some hypotheses, DT analysis has to prevent the impact of potential defects. Its results have to assess if the component is safe of failed according to one of DT failure modes. Therefore, an indicator value is defined to 10 CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW qualify the DT state of the components.

Considering DT in the scope of crack analysis, the theory of linear elastic stress analysis can predict the redistribution of stresses caused by the introduction of a crack under LEFM hypothesis [START_REF] Tada | The Stress Analysis of Cracks Handbook[END_REF][START_REF] Suresh | Fatigue of materials[END_REF], assuming that the non-linear deformation around the front of crack is limited to a "small" zone. The crack deformation may be represented by three main modes illustrated in Figure 2.1:

• The mode I is the opening mode, the crack is opened in the direction normal to the crack plane.

• The mode II is the in-plane sliding mode, the crack faces are mutually sheared in the crack plane, in the direction normal to the crack front.

• The mode III is the in-plane shearing mode, the crack is sheared in the crack plane, in the direction parallel to the crack front. The stress state in the vicinity of the crack tip can be characterized by the Stress Intensity Factors (SIFs) K I , K II and K III associated to each mode. Note that, for simple structures, the expressions are given by [START_REF] Tada | The Stress Analysis of Cracks Handbook[END_REF]. The three modes are combined

Mode I Opening

Mode II

K eq = K 2 I + K 2 II + K 2 III 1 -ν . (2.1)
In cases where cracks are re-oriented by the principal stress trajectories towards the opening mode, the mode I is predominant implying K eq ≈ K I . Considering this single parameter SIF approach, it is possible to define a failure criterion K r to ensure that K eq does not exceed the fracture toughness material property

K IC K eq ≤ K IC ⇒ K r = K eq K IC ≤ 1. (2.2)
This criterion is commonly used to assess the crack state of a component.

In DT for space engine components, a second criterion is introduced to prevent the failure due to the plastification of the remaining ligament defined as the section between the front of the crack and the closest opposite free surface as shown in Figure 2.2. The criterion is expressed as

L r = σnom σflow ≤ σref σflow , (2.3)
where σnom is a non-physical stress value resulting from loads applied to the remaining ligament, σref and σflow are reference values, functions of the material properties σp0.2 and σm , which are respectively the yield and the ultimate tensile stresses.

Closest free surface

Remaining ligament Crack front Figure 2.2: Scheme of the remaining ligament concept corresponding to the red section, situated between the front of the crack and the closest free surface.

Both criteria (2.2) and (2.3) are not independent because a plastic zone around the front of the crack can interfere with the plastification failure mode, increasing CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW the risk of failure. The R-6 rule [START_REF] Milne | Assessment of the integrity of structures containing defects[END_REF] defines the interaction between both criteria using FAD with abscissa L r and ordinate K r . Figure 2.3 presents a typical Failure Assessment Line (FAL) separating the safe from the failure zone. Note that the FAL is defined according to the specification of an application field (spatial, nuclear . . . ). In this document, it is expressed as

K FAL r = K r - 0.3 + 0.7 exp -L 6 r 1 + 0.5L 2 r for: L r ≤ 1 0.3 + 0.7 exp -L 6 r √ 1.5 L -1 2 r for: L r < L max r 0 for: L r ≥ L max r (2.4)
In the FAD, the point B is the intersection of the FAL with the line passing by the origin and the point A defined by coordinates (L r , K r ). The FAD margin M FAD is used to assess the state of the component

M FAD ∝ |OB| |OA| -1 . (2.5) If M FAD ≤ 0 the component is rejected, otherwise it is accepted.

Fracture Mechanics analysis

The crack consideration leads to perform FM analysis to compute DT criteria considering LEFM hypothesis. The FM tools are classed according to the complexity of the studied crack. The beam representation computation is nearly instantaneous whereas the more complex representations require significant CPU cost. Note that M FAD is determined in both cases by post-processing.

Beam representation

By conservative hypotheses, reducing study to representative beams, the DT criteria can be computed analytically using the SIF expression [START_REF] Tada | The Stress Analysis of Cracks Handbook[END_REF] with analytical stress values. They also may be determined by dedicated tools such as NASGRO (NASGRO, 2014) which work as virtual charts based on Finite Element Method (FEM) computations.

XFEM

In case of a complex model, e.g., a model with the contribution of the second and third crack modes, FEM approaches are required. Among them, XFEM approaches [START_REF] Bordas | Enriched finite elements and level sets for damage tolerance assessment of complex structures[END_REF][START_REF] Bordas | Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment[END_REF][START_REF] Wyart | Three-dimensional crack analysis in aeronautical structures using the substructured finite element/extended finite element method[END_REF] Considering a mesh of a component, the displacement field is approximated CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW using the classical finite element expression

v h (x) = i∈Υ 1 v i ς i (x) (2.6)
where Υ 1 is the set of nodes of the domain, v i are the degrees of freedom of node i, ς i are the associated shape functions. As shown in Figure 2.4, the idea of XFEM is to include the crack without re-meshing by defining a level-set region which is the zone of influence of the crack. It is performed by introducing, for the nodes around the crack, two types of enrichment functions:

• one to characterize the discontinuity of the displacement field for the nodes of elements cut by the crack (square nodes in Figure 2.4),

• one to include the LEFM asymptotic solution for nodes of elements near the crack front (circle nodes in Figure 2.4).

In the levet-set domain (Figure 2.4), the displacement becomes

v h (x) = i∈Υ 1 v i ς i (x) + j∈Υ 2 v b j ς j (x)F H (x) + k∈Υ 3 ς k (x) 4 l=1 v c(l) k F l (x) (2.7)
where Υ 2 is the set of nodes whose shape function support is cut by the crack, Υ 3 is the set of nodes whose shape function support contains the crack front (in dashed green on Figure 2.4), F H (x) models the discontinuity of the crack associated with the jump v b j , F l (x) is the crack tip enrichment function associated with the additional degrees of freedom v c(l) k . More details about the XFEM three dimensional crack analysis are given in [START_REF] Wyart | Three-dimensional crack analysis in aeronautical structures using the substructured finite element/extended finite element method[END_REF]. This approach has the advantage to not require re-meshing for a converged mesh. It has been applied in several industrial aeronautical applications [START_REF] Dompierre | Crack propagation methodology under complex loadings[END_REF].

Crack propagation

DT aims at ensuring the safety of a component during its whole lifetime. Because cyclic loads can be viewed by the component, crack propagation phenomenon may be deduced. In FM field, this is described by graphs with in abscissa the SIF variation ∆K, and the increment of crack growth by cycle as ordinate. The crack propagation may be divided in three stages (Figure 2.5):

• The stage I corresponds to the transition between absence of propagation below the threshold value K th and the initiation of the crack propagation. The Paris law, focusing on the second phase description, is the simplest way to define the crack propagation phenomenon. The stages I and III are integrated using two thresholds to respectively start and stop the crack growth. More sophisticated formulations [START_REF] Forman | Behavior of surface and corner cracks subjected to tensile and bending loads in Ti-6Al-4V alloy[END_REF][START_REF] Elber | The significance of fatigue crack closure[END_REF]) fit the complete crack propagation curves introducing the three phases in the propagation equation. This
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implies to consider more material parameters which have to be identified from experiments. As shown by the flowchart presented in Figure 2.6, the dedicated tools work according to a specific DT procedure detailed as follows:

Damage tolerance procedure

1. A crack propagation model is defined by the set of input parameters describing the geometry, material properties, loads and the considered crack. The goal is to ensure the safety of the component for a targeted lifetime N targeted .

2. For the crack propagation, the FM analysis is performed, M FAD is computed as proposed in Section 2.2.1 and the cycle number N propag is updated. Note, that the FM models are governed by the crack increment.

3. The stopping criteria M FAD ≤ 0 or N propag = N targeted are checked. If neither is satisfied, Step 2 is repeated.

For safe components M FAD ≥ 0 obtained after the recommended number of cycles N targeted , has a quantitative meaning. However, when path crosses the FAL, the simulation has to stop as the LEFM hypothesis is not verified anymore, and the M FAD ≤ 0 values have no physical meaning, the result yielding a qualitative value indicating failure. Figure 2.7 illustrates the different paths of two crack propagation cases: one for a safe component and one for a rejected one.

L r 0 0.5 1

K r 0.5 1 Accepted Rejected FAL Figure 2
.7: FAD: The dashed dotted blue line with triangle markers shows the cycles for a safe component and allows the computation of the FAD margin at every step. The purple dashed line with square markers presents the steps for a failed component, the FAD margin is not quantifiable beyond the FAL due to the LEFM hypothesis.

Deterministic design approach

In this thesis, we consider deterministic DT model meaning that for the same input values, the outputs are equal and, moreover, conservative hypotheses avoid a wrong classification of an unsafe component. The use of DT numerical models implies the consideration of uncertainties about the input parameters and the model itself. The uncertainties are concentrated in the inputs of the model and concern geometry, material properties, loads and the localization and the shape of the considered crack.

In the deterministic approach, the design ensures the safety of a component considering the worst case approach [START_REF] Greenwood | A new tolerance analysis method for designers and manufacturers[END_REF]. Extreme values of inputs are employed to perform DT analysis. If M FAD ≤ 0 the component is rejected, otherwise, it is accepted. This strategy generally conducts to conservatism because the worst conditions coupled with safety margins, while not guaranteeing the safest design, can generate non quantifiable over-sizing.

Damage tolerance reliability problem

The reliability analysis aims at quantifying the safety of the structure by the probability

P f = Prob (F DT ) (2.9)
of the DT failure event F DT . In the framework of the probability theory [START_REF] Kolmogorov | Foundations of the Theory of Probability[END_REF], the stochastic models are functions of random variables X, characterized by the Probability Density Functions (PDFs) f X associated to probability laws, grouped in random vector X. The assessment of P f requires that a component is characterized by a performance function G(X) defined as G(X) > 0 in the safe domain and G(X) ≤ 0 in the failure one. In the present work the failure event

F DT leads to consider G(X) ≡ M FAD (X).
(2.10) Therefore, the DT reliability problem is written as

P f = P (G(X) ≤ 0) = P (M FAD (X) ≤ 0). (2.11)
The reliability problem is decomposed into two parts:

• the identification of stochastic models to define the inputs X i , i = 1, . . . , d,

• the reliability evaluation to assess the probability of failure (2.9).

The following sections present the tools to assess the reliability of a component.

Existing works for FAD reliability analysis

Several works in the nuclear field (Y. Lin, Xie, and X. [START_REF] Lin | Probabilistic fracture failure analysis of nuclear piping containing defects using R6 method[END_REF][START_REF] Lin | Expert system for integrity assessment of piping containing defects[END_REF] couple FAD diagram with the classical reliability methods (Section 2.4.1). These methods require prohibitive number of damage tolerance evaluations, e.g. a probability of 10 -3 needs 10 5 evaluations for a 10% confidence level.

To solve this point, [START_REF] Lee | The reliability estimation of pipeline using FORM, SORM and Monte Carlo simulation with FAD[END_REF] and [START_REF] Varfolomeev | A Critical Evaluation of Methods for Computing Small Failure Probabilities for Ductile Piping Components[END_REF] propose efficient approximate methods (Section 2.4.2). However, the FAD assessment has to be modified to smooth the performance function to obtain gradient information. Based on this consideration, [START_REF] Walz | Probabilistic fracture mechanics assessment of flaws in turbine disks including quality assurance procedures[END_REF] underline some difficulties of these techniques and present a complete reliability analysis computing the probability of failure and the associated sensitivities in the quality assurance procedures of a turbine disk. [START_REF] Zhou | Improved reliability analysis method based on the failure assessment diagram[END_REF] develops a methodology based on kernel density estimation by directly estimating the PDF of L r and K r in the FAD. Nevertheless, this approach targets high probability of failure around 10 -1 . In a similar context, [START_REF] Altamura | Reliability assessment of high cycle fatigue under variable amplitude loading: Review and solutions[END_REF] and [START_REF] Altamura | Reliability of structural components under variable amplitude high cycle fatigue[END_REF] propose a complete review and study of the DT reliability inputs and classical methods developed for low probability assessment (Section 2.4.4). The considered performance also takes into account both DT criteria, but using the SINTAP/FITNET procedure [START_REF] Koçak | FITNET fitness-for-service procedure: an overview[END_REF] and not the FAD margin principle. The object of our work is to propose a reliability methodology without modifying the DT assessment procedure.

Identification of stochastic models

The reliability problem requires random variables as inputs. In the scope of the probability theory, the identification aims at characterizing random variables X by their distribution, based on the accessible knowledge. Classical distributions such as normal, uniform, log-normal or Weibull are generally employed because they are driven by few distribution parameters ϑ. In the following sections, we present tools used to identify these parameters. Note that, in the space context, statistical data are restricted because there are only around 6 flights for Ariane 5 rocket each year and a campaign to extract lacking data is financially expensive.

Statistical inference

The statistical inference aims at fitting ϑ only based on the data available. In this context, methods are developed to obtain representative distribution depending on the size of the data sample.

Method of moments

The moments approach is based on the expectation, related to the mean, (2.13) and the higher order moments such as the skewness and the kurtosis. In most of the cases, these moments are functions of distribution parameters and they can CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW also be estimated using a data sample. Therefore, the distribution parameters may be determined using the obtained estimators. The accuracy of the results depends on the quality of the estimators which is in relationship with the data sample size. This approach is considered accurate enough when the size of the sample is > 100 to ensure the convergence of the moments estimators. This is not obvious in the aerospace application context due to limited number of flights. Figure 2.8 gives the flowcharts of the method of moments. Considering that the statistical data sample size is higher than 100, this methods only requires an equation solver to provide the distribution parameters. 

E[X] = xf X (x)dx, (2.12) the variance Var[X] = E (X -E[X]) 2 ,

Data sample x

Estimate

Maximum likelihood estimation

The Maximum Likelihood Estimation (MLE) is an alternative statistical inference technique based on the likelihood function [START_REF] Fisher | Statistical methods for research workers[END_REF] which provides information about the probability to obtain a sample considering a parameter ϑ

L(ϑ|x) = n i=1 f X (x (i) |ϑ).
(2.14)

The goal of the MLE is to identify the law parameter vector ϑ * which maximizes this function

ϑ * (x) = arg max ϑ L(ϑ|x). (2.15)
This product optimization problem is generally simplified into a sum minimization by the transformationlog L(ϑ|x). The MLE requires sample sizes generally > 20 to give representative results which is smaller than the moments approach.

The flowchart of the likelihood method is detailed in Figure 2.9 and it underlines the need of an optimization solver. As the optimization problem (2.15) is unconstrained and can be multi-modal, genetic algorithms seem adapted to get the best distribution parameters.

Data sample x

Build the likelihood function L(ϑ|x)

Solve the optimization problem max ϑ L(ϑ|x)

ϑ *
Optimization solver Figure 2.9: Flowchart of the maximum likelihood estimation method.

Bayesian inference

Above identification methods consider only representative statistical data. However, when the data sample size is restricted (< 20), it is possible to integrate the knowledge provided by the expert judgment. Bayesian inference couples both sources of information associating the information of the likelihood function of the data with an a priori density function of ϑ which translates the expert judgment. As described in [START_REF] Kruschke | Doing Bayesian data analysis: A tutorial introduction with R[END_REF][START_REF] Hoff | A first course in Bayesian statistical methods[END_REF], by the Bayes theorem, the a posteriori density function f ϑ|X given by

f ϑ|X (ϑ|x) = L(ϑ|x)f ϑ (ϑ) ∞ -∞ L(ϑ|x)f ϑ (ϑ)dϑ =Constant ∝ L(ϑ|x)f ϑ (ϑ) (2.16
) may be sampled using Markov-Chain Monte Carlo (MCMC) [START_REF] Andrieu | An introduction to MCMC for machine learning[END_REF]. The impact of the data sample on the a posteriori distribution increases with the sample size. It means that for small size samples, the a posteriori f ϑ|X distribution is mainly driven by the a priori f ϑ , given by the expert judgment, otherwise, the likelihood function L(ϑ|x) strongly conditions the a prosteriori CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW distribution.

Because the choice of the a priori distribution can be significant, this distribution should be informative, when the knowledge is important. If the knowledge is scarce (only interval, sign...), the principle of maximum entropy [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] provides a less informative law which is generally the uniform distribution of the probability on a given interval.

The principle of the Bayesian inference technique is illustrated in Figure 2.10. The difference with classical statistical inferences comes from two kinds of inputs: the statistical data and the expert judgment. For the identification of the parameters, a MCMC is required. 

Generate a posteriori f ϑ|X (ϑ|x) ∝ L(ϑ|x)f ϑ (ϑ) a prioiri f ϑ (ϑ)

Expert judgment

Build

Conclusion about inferences

The choice of the inference techniques for building input law distributions of the DT problem clearly depends on the size of the data sample. If the size is higher than 100, the method of moments seems adapted due to its simplicity of implementation. However, due to the low rate of space flights, the DT input variables are generally characterized by a low sample size. Three cases are considered:

• If the sample size is higher than 20, the maximum likelihood technique is able to provide an accurate estimation of the law parameters by solving an optimization problem.

• If the data sample size is lower than 20, it is possible to exploit the expert judgment to identify the input parameters using Bayesian inference [START_REF] Rappel | Bayesian inference for the stochastic identification of elastoplastic material parameters: Introduction, misconceptions and insights[END_REF].

• If there is no sample available, only the expert judgment defines the distribution law.

The obtained distribution law parameters can be validated using statistical goodness-of-fit tests such as Kolmogorov-Smirnov (Massey Jr, 1951) or Anderson-Darling [START_REF] Anderson | A test of goodness of fit[END_REF] tests. Nevertheless, the quality of these tests is also driven by the sample size.

In the aerospace context, when data sample size is frequently lower than 20, expert judgment has a key role for the definition of input distribution laws using, when data is available, Bayesian inferences.

Sensitivity analysis

Sections 2.3.1 and 2.3.2 show that the size of available data sample has a significant impact on the quality of random variables serving as input to DT problem. In the aerospace context, data samples are generally small due to low rates of flight and increasing the data sample size is pricey and time-consuming. Moreover, variables have unequal contribution on the reliability output. Some of them are significant and it should be interesting to concentrate effort to collect data.

Knowing the contribution of individual input variables, the reliability problem may be simplified in two ways [START_REF] Saltelli | Sensitivity analysis in practice: a guide to assessing scientific models[END_REF]):

• Input variables are sorted according to their contribution on the output to reduce the dimension of the problem considering less significant ones as fixed.

• The dispersion of the output can be reduced by minimizing the variability of most significant inputs.

In the scope of sensitivity analysis, as proposed by [START_REF] Jacques | Contributions à l'analyse de sensibilité et à l'analyse discriminante généralisée[END_REF], the methods are classed according to the provided information:

• The screening methods [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF] qualitatively sort the inputs according to their influence on the output, without requiring numerous evaluations, to identify the most significant ones. Due to its speed, the screening is adopted to explore the model before applying more accurate methods.

• The local sensitivity methods provide quantitative information by sensitivity indexes based on partial derivatives computed in the vicinity of a specified design point.

• The global sensitivity methods, reviewed in [START_REF] Iooss | A review on global sensitivity analysis methods[END_REF], aim at providing quantitative sensitivity information on the whole range of an input parameter. These methods, described in the following, underline the global influence of inputs on the model.

These methods can be employed in the scope of the reliability analysis, but, because there are two values of interest, the probability of failure and the performance function, a new level of sensitivity classification is defined according to the focused ouputs [START_REF] Lemaire | Structural Reliability[END_REF]):

• The mechanical sensitivities for the performance function G(X) underline the impact of input variabilities on the outputs of the model.

• As suggested by their name, the reliability sensitivities provide information about the influence of input random variables on the probability of failure P f .

The following sections present these two kinds of sensitivities.

Mechanical sensitivities

The mechanical sensitivities, which are related to the performance function G(X), are generally associated with the global sensitivities.

Based on the ANalysis of VAriance (ANOVA) decomposition [START_REF] Efron | The jackknife estimate of variance[END_REF][START_REF] Archer | Sensitivity measures, ANOVA-like techniques and the use of bootstrap[END_REF] and considering independent random variables, [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] proposes to decompose the variance as [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] are then defined to measure the influence of the input variabilities on the output variance. The first order Sobol index is expressed as

Var [G(X)] = d i=1 V i (G(X)) + d i=1 d j=i+1 V ij (G(X)) + • • • + V 1...d (G(X)) (2.17) where V i = Var [E[G(X)|X i ]], V ij = Var [E[G(X)|X i , X j ]] -V i -V j , etc.. The Sobol indexes
s i = Var [E [G(X)|X i ]] Var [G(X)] (2.18)
whereas the total indexes are set as

s Tot i = Var [E [G(X)|X ∼i ]] Var [G(X)] (2.19)
where X ∼i is a vector with only the variable i fixed. These indexes are estimated by Monte Carlo implying high number of model evaluations (→ 10 5 for 1% of the confidence of the variance estimator). As shown by [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF] and Blatman and Sudret (2010a), these indexes may be represented as products of the Polynomial Chaos (PC) decomposition and the number of model evaluations can be reduced (≈ 10 2 ). The approach ANalysis of COVAriance (ANCOVA) [START_REF] Caniou | Global sensitivity analysis for nested and multiscale modelling[END_REF] treats the case of correlated variables.

These variance based indexes quantify the influence of the variable X i on the variance of the performance function G(X) without taking into account the other stationary moments such as the mean or the skewness. Borgonovo [START_REF] Borgonovo | A new uncertainty importance measure[END_REF] has developed density based indexes b comparing the output density f Y with the conditional density f Y |X i such as

b i = 1 2 E X i [ i (X i )] = 1 2 |f X i (x i ) i (x i )| dx i (2.20) with: i = f Y (y) -f Y |X i (y) dy.
(2.21)

The indexes are generally computed by double Monte Carlo estimation loops: one for the densities f Y and f Y |X i and one for the expectation. Improvement of the accuracy implies an important number of model evaluations which may be reduced by a PC surrogate [START_REF] Caniou | Distribution-based global sensitivity analysis using polynomial chaos expansions[END_REF].

These mechanical sensitivity indexes are complementary because they provide different information which must be analyzed jointly. The confrontation of Sobol indexes with Borgonovo indexes can underline variables which do not influence the output variance but are significant on the output mean. Figure 2.11 shows that if only Sobol indexes are computed, it is possible to miss the mean translation which is put into evidence by Borgonovo indexes.

Reliability sensitivities

Reliability sensitivities quantify the influence of the random variable parameters on the probability of failure by evaluating the derivative

d i = ∂P f ∂ϑ i . (2.22)
This derivative gives the influence of the variation, and the associated direction by the sign, of one unit of the distribution parameter without regarding the difference of scale between input parameters. Therefore, elasticities are developed in order to quantify the variation of one per cent of the distribution parameter
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e i ∝ ϑ ∂P f ∂ϑ i .
(2.23)

The derivatives can be computed by finite difference which requires to perform several reliability analyses. To avoid the potential time consuming re-evaluation of P f , these indexes can be directly extracted from the reliability analysis without any additional performance function evaluations as described in Section 3.3.

Reliability analysis

For the Damage Tolerance (DT) problem, once the input random variables are defined and the significant ones are determined, the reliability analysis aims at evaluating the probability of failure, for a given performance function G(X), here M FAD , considering random vector X as input. As illustrated in Figure 2.12, the physical input space X is divided into:

• a safe region S where G(X) > 0,

• one or several failure regions F where G(X) < 0,
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• the boundary between regions, called limit state, G(X) = 0.

5 -3 -5 -3 -1 1 3 5 G ( x ) = 0 G(x) < 0 G(x) > 0 F S x 1 x 2 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 H(u) = 0 H(u) < 0 H(u) > 0 F S 1 0 - 1 1 0 - 3 1 0 - 6 1 0 - 9 u 1 u 2 Figure 2
.12: Exemple performance function G(X) in the physical space X for two random variables on the left. On the right, mapping into the standard space U where all the random variables are uncorrelated and ∼ N (0, 1). The light blue area is the failure domain. In the DT application, this region provides a qualitative information. The continuous blue line is the Limit State (LS) separating the failure F and safe S regions.

The probability of a realization in the failure domain requires computing the integral

P f = F f X (x)dx. (2.24)
Because only the sign of the performance function is considered

P f = +∞ -∞ I G(X)≤0 f X (x)dx = E I G(X)≤0 (2.25)
with the indicator function I G(X)≤0 defined as

I G(X)≤0 = 1 if G(X) ≤ 0 0 otherwise (2.26)
Considering the formulation (2.24), the reliability problem may be considered as similar to a classification one. Working in the initial physical space X implies to consider random variables with different types of distribution, different scales (e.g. the defect size follows a CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW uniform distribution between bounds of several millimeters whereas the Young's Modulus is defined by a normal law with a mean of several GPa) and possible correlations between variables. These properties are obstacles for reliability methods based on the approximation or the sampling.

Therefore, the iso-probabilistic Nataf transformation T [START_REF] Liu | Multivariate distribution models with prescribed marginals and covariances[END_REF], maps the problem into a so-called standard space U where all input variables follow an uncorrelated normal distribution law with zero mean and a unit standard deviation U ∼ N (0; I d ) as shown in Figure 2.12.

In the case of independent physical random variables, the relation is

Φ (u) = F X (x) , (2.27) T is defined as u T -→ x ⇐⇒ u = Φ -1 (F X (x)) .
(2.28)

Note that the relation is linear for X following a normal distribution.

The case of dependent physical random variables is treated by the Nataf transformation considering the standard input as a function of a vector of physical random variables [START_REF] Lemaire | Structural Reliability[END_REF]. The dependence between variables can also be defined using copulas detailed in [START_REF] Lebrun | An innovating analysis of the Nataf transformation from the copula viewpoint[END_REF]. Note, that the Nataf transformation is restrictive because it implies to consider only Gaussian copulas for the correlation.

In this thesis, the performance function G(X) is set as H(U ) and the probability of failure is defined as

P f = Ω F φ(u)du = +∞ -∞ I H(U )≤0 φ(u)du.
(2.29)

The following reliability methods and the associated techniques are expressed in the standard space.

The integral in Eq. (2.29) for P f assessment is generally not directly computed. The following section presents a list of the main reliability methods guiding to the proposed contribution of this thesis.

Note that other methods such as directional sampling [START_REF] Bjerager | Probability integration by directional simulation[END_REF][START_REF] Ditlevsen | Directional simulation in Gaussian processes[END_REF][START_REF] Grooteman | An adaptive directional importance sampling method for structural reliability[END_REF], line sampling [START_REF] Angelis | Advanced Line Sampling for efficient robust reliability analysis[END_REF] or parallel Monte Carlo based sampling methods, such as Sequential Monte Carlo [START_REF] Doucet | An introduction to sequential Monte Carlo methods[END_REF][START_REF] Del Moral | Sequential monte carlo samplers[END_REF][START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF], accelerating Monte Carlo with derivatives [START_REF] Hauseux | Accelerating Monte Carlo estimation with derivatives of high-level finite element models[END_REF] and moving particles (Walter, 2.4. RELIABILITY ANALYSIS 29 2015), are subject of recent research even if they imply important numbers of simulations for a low probability assessment. Note [START_REF] Chabridon | Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty[END_REF] proposes a new paradigm to estimate the probability of failure consider uncertainties about distribution parameters.

Monte Carlo sampling

As shown in Eq. (2.29), the idea of the reliability analysis is to compute the expectation of the indicator function Eq. (2.26). The Monte Carlo Simulation (MCS) [START_REF] Ditlevsen | Structural reliability methods[END_REF][START_REF] Lemaire | Structural Reliability[END_REF] aims at estimating P f by computing the indicator function of a n MC -size sample distributed according to φ(u). The estimator Pf of P f is given as

Pf = 1 n MC n MC i=1 I G(X)≤0 (x (i) ) (2.30)
which is, using the Central Limit Theorem, associated with a coefficient of variation

cv Pf ≈ 1 -Pf Pf × n MC . (2.31)
The quality of the estimator, inversely proportional to cv Pf , increases with the number of simulations n MC . The main limitations of MCS come from the number of required simulations to ensure sufficient confidence in the P f estimation (Figure 2.13). A 10% confidence level of a targeted probability ≈ 10 -p is obtained by performing ≈ 10 p+2 performance function evaluations, e.g. for Pf ≈ 10 -6 , 10 8 simulations are expected. Despite the required count of simulations, MCS (Figure 2.14) is considered as the reference due to its robustness and versatility. Note that, due to the independence of the model evaluations, they may be performed in parallel.

FORM/SORM

As suggested, the reliability problem may be seen as a classification one, consisting in the search of the boundary between the failure and safe domains. From this point of view, the First Order Reliability Method (FORM) and Second Order Reliability Method (SORM) aim at approximating the limit state by a hyperplane or quadratic surface allowing to directly compute P f (Figure 2.16). These methods are based on the Hasofer Lind index [START_REF] Hasofer | Exact and invariant second-moment code format[END_REF]) Several gradient-based techniques have been developed to limit the number of model evaluations required by the optimization solver (Figure 2.15), such as Hasofer-Lind-Rackwitz-Fiessler [START_REF] Hasofer | Exact and invariant second-moment code format[END_REF][START_REF] Rackwitz | Structural reliability under combined random load sequences[END_REF] or improved Hasofer-Lind-Rackwitz-Fissler (Y. [START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF]. Following the determination of the MPFP (Figure 2.16), FORM approximates the limit state by a hyper-plane crossing the point P * defined by the normal --→ P * O. The linear approximation H of the limit state at the MPFP u * , shown in Figure 2.16, is given by the first order Taylor expansion

β = u * , ( 2 
HFORM (u) = H(u * ) =0 +∇ u H(u * )(u -u * ) + O(u).
(2.34) Following the linear hypothesis, P f is obtained as

P FORM f = Φ (-β) . (2.35) -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 H(u) = 0 H(u) < 0 H(u) > 0 F S 1 0 - 1 1 0 - 3 1 0 - 6 1 0 - 9 u 1 u 2 Figure 2
.14: Scheme of the MCS method principle. DT model evaluations are performed for all the red points.

FORM is an efficient method to assess small probabilities because it requires simulations only to solve the MPFP optimization problem. In addition to P FORM f which is exact if the true limit state is linear, FORM provides some importance factor products allowing to directly obtain reliability sensitivities detailed in Section 2.4.2. FORM, which requires a constrained optimization solver, has the advantage of introducing the reliability index β which is a key value for the Reliability Based Design Optimization (RBDO) in engineering practice. The strong linear approximation hypothesis of the limit state may have sense for mechanical problems when the variables follow independent normal distributions but it can generate a source of inaccuracy. In SORM [START_REF] Fiessler | Quadratic limit states in structural reliability[END_REF][START_REF] Breitung | Asymptotic approximations for multinormal integrals[END_REF] , 1998). Moreover, because the MPFP is based on the Euclidean distance measure, the application of these approaches is limited in high dimensional cases (Z. [START_REF] Wang | Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis[END_REF]. Finally, the strong assumptions on the shape of the limit state may generate an unknown error on the P f assessment and, therefore, these methods require additional sampling to check the considered hypotheses.

Importance sampling

MCS is considered as the most robust reliability method because it requires just to increase the number simulations to converge to the value of P f . However,

-5 -3 -1 1 3 5 -5 -3 -1 1 3 5 H(u) = 0 H(u) < 0 H(u) > 0 F S β H S O R M ( u ) = 0 HF O R M ( u ) = 0 1 0 - 1 1 0 - 3 1 0 - 6 1 0 - 9 P * u 1 u 2 Figure 2
.16: Scheme of the FORM/SORM principle.

due to the sampling centered on the mean of the random variables, an important number of DT model evaluations are not useful for the LS identification. To reduce the number of simulations, variance reduction techniques adapt the sampling to estimate P f by identifying the neighbourhood of LS defined as the zone of interest. Importance Sampling (IS) [START_REF] Schuëller | A critical appraisal of methods to determine failure probabilities[END_REF][START_REF] Melchers | Importance sampling in structural systems[END_REF] proposes a reformulation of Eq. (2.24)

P f = +∞ -∞ I G(X)≤0 f X (x) h(x) h(x)dx = E I G(X)≤0 f X (x) h(x) (2.36) to give the estimator Pf = 1 n IS n IS i=1 I G(X)≤0 (x (i) ) f X (x (i) ) h(x (i) ) , (2.37)
where h(x) is the preferential joint distribution which is optimally set as

h(x) = I G(X)≤0 f X (x) P f . (2.38) CHAPTER 2.
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Note that the optimal h(x) requires knowledge about P f (Figure 2.17). The common proposition is a Gaussian density centered on the MPFP [START_REF] Melchers | Importance sampling in structural systems[END_REF][START_REF] Schuëller | A critical appraisal of methods to determine failure probabilities[END_REF] obtained by FORM (Figure 2.18). Following a FORM analysis, this method allows to improve the accuracy of P f estimator requiring several thousands simulations for P f ≈ 10 -6 which is reduced comparing with a crude MCS. However, this approach supposes that there is a unique MPFP point, and its efficiency is limited in high dimension (S. [START_REF] Au | Important sampling in high dimensions[END_REF]. The principle of IS is presented in Figure 2.17 In recent years, the interest for IS with Cross-Entropy optimization has grown [START_REF] Boer | A Tutorial on the Cross-Entropy Method[END_REF] to tackle the limitation of the classical IS in high dimension (Z. [START_REF] Wang | Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis[END_REF]. Non parametric density methods are also proposed to assess the preferential density [START_REF] Morio | Extreme quantile estimation with nonparametric adaptive importance sampling[END_REF].
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.18: Scheme of the IS principle. DT model evaluations are performed for all the red points.

Subset simulation

Based on the adaptive sampling concept, IS reduces the number of simulations, but it requires knowledge about P f . Moreover, as suggested by the variation ratio estimator Eq. (2.31) for MCS, the quality of the estimator is governed both by the number of simulations and the P f value. Starting from this statement, the variance reduction based method, Subset Simulation (SS) (S.-K. [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF], estimates a rare event by a subsequence of conditional intermediate events defined with higher probability using adaptive sampling. Note that specific attention is given to the description of SS in this section because this method is the basis of the proposed contribution of this thesis (Chapter 4) due to appealing properties such as low assessment without any prior knowledge of P f .

Considering a finite sequence of s intermediate thresholds q

(1)

th > • • • > q (s)
th = 0 associated with the subset sequence of failure events F 1 ⊂ • • • ⊂ F s , the probability CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW of failure is expressed as (2.39) where p i are the intermediate probabilities defined as

P f = P (F 1 ) s i=2 P (F i |F i-1 ) = s i=1 p i ,
p i = P H(u) ≤ q (i)
th .

(2.40)

The thresholds q

(i)
th , i = 1, . . . , s-1 are obtained by quantile estimation considering a fixed value of p i , which is generally set to 0.1 (Figure 2.20). The last SS step occurs when q

(s) th ≤ 0, q (s)
th is therefore set at 0 and

p s = P (H(u) ≤ 0) .
(2.41)

Probabilities pi , i = 1, . . . , s are estimated as in Eq. (2.30) with the indicator function I H(U )≤q (i) th . Note that, for i = 1, . . . , s -1, pi = 0.1 because the threshold is fixed. The associated coefficient of variation δ i is given by

δ i = 1 -p i n SS p i (1 + γ i ), (2.42)
where γ i is a correlation coefficient between the i-th sample and the previous one which is set to γ 1 = 0 for the first SS step.

The global SS P f estimator is expressed as

Pf = s i=1 pi (2.43)
with a coefficient of variation δ SS bounded as

s i=1 δ 2 i ≤ δ SS ≤ s i=1 s j=1 δ i δ j .
(2.44) More details about these estimators are given in (S.-K. [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF]. The flowchart of the SS is presented in Figure 2.19. The main challenge of SS is the subset sampling which consists in finding the density U ∼ h (i) to determine the intermediate conditional probabilities p i . The first step of SS is equivalent to the MCS (Section 2.4.1) considering an initial threshold q (0) th to get P (F 1 ) = p 1 = 0.1 based on a sample generated according to the initial probability density. Then, at each step, a subset sample is generated Estimate the intermediate threshold q to obtain P (F i |F i-1 ), according to the subset density, inspired from the optimal density of IS Eq. (2.38),

(i) th P (H(u (i) SS ) ≤ q (i) th ) = 0.1 q (i) th ≤ 0? s = i and q (s) th = 0 p s = P (H(u (s) SS ) ≤ 0) End: P f = P f × p s p i = P (H(u (i) SS ) ≤ q (i) th ) and P f = P f × p i i = i + 1 Generate an intermedi- ate SS population u (i) SS
h (i) (u) ∝ I H(U )≤q (i-1) th φ(u).
(2.45)

This density can be directly obtained knowing φ(u) and I H(U )≤q (i-1) th , but the rejection ratio, based on H(U ) ≤ q (i-1) th

, seems too important implying a significant number of model evaluations. Therefore, S.-K. [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] propose to generate the i-th subset sample u (i) by Markov-Chain Monte Carlo (MCMC) methods using the modified Metropolis-Hastings algorithm (Figure 2.21). Con-

-5 -3 -1 1 3 5 -5 -3 -1 1 3 5 H(u) = q th H(u) = 0 H(u) < 0 H(u) > 0 F S 1 0 - 1 u 1 Figure 2
.20: Scheme of the SS principle. All the points are evaluated. The red ones represent the 10% lower M FAD to define the new threshold (green area). The red points are kept to generate a new population in the green area by MCMC. This step is repeated until more than 10% of the population is in the failure domain (blue area).

sidering a germ population selected from the i -1-th sample u (i-1) such as

u (i-1) ≤ q (i-1) th
, the principle of this approach is to generate randomly a candidate from each individual of the seed population and test two accept/reject conditions, concerning respectively the chain without model evaluation, and the performance function value which requires a DT assessment. If one of the tests fails the 1 3 5 The new candidate (red polygone) is evaluated and if its M FAD is higher than q th (green area), it is rejeted and is replaced by the seed in the new population. The new candidate (blue star) is evaluated and if its M FAD is lower than q th (green area) it is included in the new population.

1 3 5 H(u) = q th H(u) = 0 H(u) < 0 H(u) > 0 F S 1 0 - 1 u 1
candidate is replaced by the seed. The seed population is updated and the step is repeated until n

(i) SS ≥ n (i-1)
SS . Note that, the indicator term I H(U )≤q (i-1) th implies "burned" damage model evaluations when H(U ) > q (i-1) th because these candidates are not kept. Moreover, due to the double accept/ratio test, intermediate samples can contain duplicate individuals, especially when the dimension increases. [START_REF] Papaioannou | MCMC algorithms for subset simulation[END_REF] and S.-K. [START_REF] Au | Rare event simulation in finite-infinite dimensional space[END_REF] propose conditional sampling algorithms to improve the acceptance rate.

SS is well adapted to low probability estimation because the number of model evaluations is reduced to n ≈ -log P f × n SS , setting p i = 0.1, significantly lower than MCS. Nevertheless, even if SS also provides a confidence level of the obtained CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW estimator, the number of evaluations required to efficiently provide the probability of failure is still important.

Limit state surrogates based on quantitative and qualitative data

As described in the previous Section 2.4, the MCS, FORM, SORM, IS and SS reliability methods show limitations to solve the DT reliability problem (2.29):

• they do not take into account performance functions providing mixed quantitative (M FAD > 0) and qualitative (M FAD ≤ 0) information,

• the expected level of confidence for targeted low probability implies an important number of potentially CPU time consuming DT model evaluations.

To overcome these obstacles, we consider surrogate approaches [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF], adapted for the reliability context. Surrogates are emulators which aim at replacing an expensive model assessment for the targeted application. The number of model evaluations, also called experiments, and which are grouped in a Design of Experiments (DoE), is reduced, because they are only required to fit the surrogate. As detailed in Section 2.4, the reliability problem consists in computing the expectation of an indicator function I H(U)≤0 . The LS identification H(U) = 0, has a key role to solve this problem. Therefore, to limit the number of model evaluations, the idea is to use surrogate model to build an approximation of the LS. This section firstly presents the regression and classification surrogate concepts.

Then, because they are used for this thesis contribution, the Kriging regression is briefly introduced to deal with quantitative information of M FAD , and the Support Vector Machine (SVM) classification to deal with qualitative information. Note, that both methods are combined to fit the LS in Chapter 4.

Regression and classification

Due to the mixed quantitative and qualitative information of M FAD , two kinds of surrogate strategies may be distinguished for the LS identification.

• Regression: On the one hand, as the reliability is based on the performance function assessment H(U) ≤ 0, an approximation of H(U) ≤ 0 can be obtained by a regression surrogate. The reliability problem becomes

P f = E I H(U)≤0 ≈ E I H(U)≤0 .
(2.46)

The approximate LS is obtained by solving the following problem

H(U) ≈ 0, H(U) = 0.
(2.47)

The advantage of this approach is the global approximation of the performance function which allows to localize the failure domains and the shape of the LS. Nevertheless, in the DT case, regression may be employed only when the information is quantitative such as M FAD > 0. Difficulties appear when dealing with M FAD ≤ 0, because the information is only qualitative. Therefore, the surrogate can be efficient in the safe region but looses its interest when failed experiments appear.

• Classification: On the other hand, classification surrogate approaches allow to directly approximate the LS (or separator) of the DoE divided into two classes which are failed M FAD ≤ 0 or safe M FAD > 0 experiments. This approach has the advantage to deal with qualitative information of M FAD as long as the components may be classified as safe or failed. However, typical classification methods do not take into account the value in the DoE but only the sign. This limits the identification of failure domains if the DoE does not contain failed experiments.

J.-M. [START_REF] Bourinet | Reliability analysis and optimal design under uncertainty -Focus on adaptive surrogate-based approaches[END_REF] provides an extensive review of surrogates in the reliability context.

Regression surrogates

There exist different kinds of regression based surrogate such as the classical Response Surface Model (RSM) [START_REF] Bucher | A fast and efficient response surface approach for structural reliability problems[END_REF]; S.-H. [START_REF] Kim | Response surface method using vector projected sampling points[END_REF][START_REF] Das | Cumulative formation of response surface and its use in reliability analysis[END_REF][START_REF] Gayton | CQ2RS: a new statistical approach to the response surface method for reliability analysis[END_REF][START_REF] Roussouly | A new adaptive response surface method for reliability analysis[END_REF][START_REF] Zhang | Diffuse response surface model based on moving Latin hypercube patterns for reliabilitybased design optimization of ultrahigh strength steel NC milling parameters[END_REF], the extension of the SVM to the regression Support Vector Regression (SVR) [START_REF] Smola | A tutorial on support vector regression[END_REF] or the Polynomial Chaos (PC) for reliability assessment (Blatman and Sudret, 2010b;[START_REF] Lebon | Fat Latin Hypercube Sampling and Efficient Sparse Polynomial Chaos Expansion for Uncertainty Propagation on Finite Precision Models: Application to 2D Deep Drawing Process[END_REF][START_REF] Lebon | Fat Latin Hypercube Sampling and Efficient Sparse Polynomial Chaos Expansion for Uncertainty Propagation on Finite Precision Models: Application to 2D Deep Drawing Process[END_REF]. In this thesis, due to its speficities appealing on the reliability context, a brief focus on the Kriging [START_REF] Matheron | Traité de géostatistique appliquée[END_REF][START_REF] Krige | A statistical approach to some mine valuation and allied problems on the Witwatersrand: By DG Krige[END_REF] where µ Hkrig is the mean trajectory and σ Hkrig is the associated standard deviation of the prediction. It presents the following advantages:

• The Kriging interpolates the DoE allowing an exact classification of evaluated experiments.

• In addition to a regression given by the mean of the GP, Kriging provides a covariance function which may be employed to identify how to improve the DoE or to give the confidence bound of the regression.

• The best hyper parameters are obtained by solving a likelihood optimization problem which may be less time consuming than classical cross validation techniques.

The shape of the Kriging approximation is driven by the kernel used for the covariance. Figure 2.22 shows the application of the commonly used Gaussian or Matern kernels for the M FAD approximation. Even if Kriging is used to treat the reliability classification problem, it is based on the regression of the performance function. As shown in Figure 2.22, Kriging is efficient to predict the M FAD > 0 in the zone A when it deals with the quantative information. However, the qualitative information M FAD < 0 impacts the prediction's quality of the LS because there as oscillation around M FAD ≈ 0 in the critical zone B which limits the clearly LS identification. This trouble can be corrected using extrapolation to use efficient Kriging-based reliability methods [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF][START_REF] Dubourg | Metamodel-based importance sampling for the simulation of rare events[END_REF][START_REF] Bect | Bayesian subset simulation[END_REF]. Nevertheless, in this thesis, the choice is done to not modify the M FAD assessment to make easier the adaptation of different Fracture Mechanics (FM) tools.

Support Vector Machine (SVM) for classification

The presence of qualitative information for the M FAD assessment requires the use of classification approaches. Introduced by [START_REF] Vapnik | Theory of Pattern Recognition[END_REF], the supervised learning technique SVM is popular in image processing. Due to its capability to identify the optimal separator, SVM seems in line to approximate the limit state in the reliability problem [START_REF] Hurtado | Structural reliability: statistical learning perspectives[END_REF].

Linear SVM

Based on a DoE, results of DT are divided into two classes

c(u) = sign(H(u)),
(2.49) SVM allows to build a hyper-plane (Figure 2.23)

HSVM = w, u + b = 0, (2.50)
where w is the normal vector and b is the threshold parameter. SVM aims at determining the optimal hyper-plane which maximizes the uncertain region, called the SVM margin, which is the largest distance between the separator and the nearest experiments from both classes. The blue points are evaluated. The "true" M FAD is the dashed blue curve and the Kriging prediction mean is the continuous red line. Grey area represents the 95% confidence bounds of the Kriging prediction. Note that the regression seems accurate in the zone A (M FAD > 0) but there is discrepancy in the zone B (M FAD < 0) due to the horizontal segment below M FAD = 0 (dashed dotted black line).

Primal and dual form for optimization

By transformations [START_REF] Hurtado | Structural reliability: statistical learning perspectives[END_REF], the previous statement leads to the following primal optimization problem min

w,b w 2 s.t c ( w, u + b) ≥ 1 (2.51)
where the constraint ensures that all the experiments are well classified. The experiments for which the equality constraint c ( w, u + b) = 1 is active, are called the support vectors because the hyper-plane is only constructed on them. The Lagrangian associated to the above constrained optimization problem is

L(w, b, γ) = w 2 - n i=1 γ i [c ( w, u + b) -1] (2.52)
where γ are the Lagrange multipliers. Karush-Kuhn-Tucker conditions imply that

w = n i=1 γ i c i u (i) .
(2.53)
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Integrating this in the optimization problem (2.51) yields the dual form

max γ n i=1 γ i - 1 2 n i=1 n j=1 γ i γ j c i c j u (i) , u (j) s.t γ i ≥ 0 n i=1 γ i c i = 0.
(2.54)

Because the constraints are active for the support vectors, the associated Lagrangian multipliers γ are not equal to zero. The choice of the kernel defines the form of the separator HSVM implying the optimization of the kernel parameters. Note that the Gaussian kernel is the most popular one.

Soft margin

Even if they are efficient, linear and non-linear SVM are not always able to perfectly separate classes in, e.g., the case of experimental noisy data. To ensure the construction of an optimal separator, the concept of soft margin [START_REF] Gunn | Support vector machines for classification and regression[END_REF] is defined authorizing the misclassification, rewriting, in the linear case (Figure 2.25) the SVM optimization problem as min

w,b w 2 + C n i=1 ξ i s.t c ( w, u + b) ≥ 1 -ξ i ξ i ≥ 0 (2.56)
where C is the cost parameter which specifies the separator transgression and ξ is the loss parameter associated to each experiment. The selection of these parameters may be deterministic or obtained by solving an optimization problem.

Probabilistic SVM

The binary information provided by the SVM is completed by [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF] the probability of a point to belong to class. It proposes the following sigmoid formulation

P (+1|u) = 1 1 + exp(A HSVM (u) + B) (2.57)
where A and B are deterministic PSVM parameters obtained by maximum likelihood. The model is mainly based on the distance to the separator expressed by the term HSVM (u). [START_REF] Basudhar | Constrained efficient global optimization with support vector machines[END_REF] improve this model by introducing the notion of both-class experiment distance ( Distance PSVM, DPSVM)

P (+1|u) = 1 1 + exp A HSVM (u) + B d - d + +τ PSVM - d + d -+τ PSVM (2.58)
where τ PSVM is a conditioning parameter and d + and d -are respectively the distances to the closest positive and negative experiments. Consequently, it is possible to define the probability of misclassification P mc by

P mc = 1 -P (+1|u) if HSVM (u) ≤ 0 P (+1|u) if HSVM (u) ≤ 0 .
(2.59) [START_REF] Basudhar | Adaptive explicit decision functions for probabilistic design and optimization using support vector machines[END_REF] include this notion in order to compute reliability Monte Carlo estimator.

Adaptive enrichment of the Design of Experiments

The construction of a surrogate is based on a sample, called the Design of Experiments (DoE), where the numerical experiments are evaluated. As the surrogate is trained on the DoE, this latter has a key role in its definition. Therefore, it must be adaptively enriched according to both the problem and the surrogate.

The surrogate is commonly trained on an initial DoE of n DOE model evaluations. It is possible to randomly generate experiments according to the joint probability f X (or φ(u) in the standard space), nevertheless, the DoE may suffer of lack of accuracy because some parts of the domain may be uncovered. The full factorial approach consists in defining a grid on the input space. This approach is quickly limited when the dimension increases because the grid size grows exponentially with the dimension. The Latin Hypercube Sampling (LHS) [START_REF] Helton | Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[END_REF]) DoE technique proposes, also based on a grid, to limit the number of evaluated experiments while keeping a good covering of the input space. Following the same goal to reduce the number of evaluations, the Centroidal Voronoï Tesselation (CVT) [START_REF] Du | Centroidal Voronoi tessellations: Applications and algorithms[END_REF] generates a DoE using clustering to identify the k-means centers of a sample.

Despite the improvements of initial DoE techniques to cover the input space with a limited number of evaluations, the DoE can suffer a lack of accuracy in the zone of interest which is, in the reliability context, around the limit state with the highest probability. Inspired by the Efficient Global Optimization (EGO) [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] surrogate-based optimization method with an adaptive enrichment at each step, active learning techniques for reliability are developped to improve the accuracy of the surrogate. This section presents the learning function principle and techniques to identify the new experiments to enrich the DoE.

Learning function

The learning function concept is based on a function that provides information to improve the accuracy of the surrogate in the zone of interest. In recent years, several criteria to measure how to enhance the surrogate have been developed. Some of them are presented in the following.
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Distance criterion

Common to all surrogate approaches, the distance criterion

L dist (u) = min u DoE u -u DoE (2.60)
is based on the observation that the quality of surrogate prediction decreases with the distance from the closest point of the DoE. The validity of this approach is driven by the dimension of the problem d. If it is too high (d > 20), the Euclidian distance is not meaningful because all the points tend to be at the same distance.

Kriging-based criterion

Specific learning functions have been developed for the Kriging surrogate. Inspired by the principle of EGO [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF], [START_REF] Bichon | Efficient global reliability analysis for nonlinear implicit performance functions[END_REF] proposes to define the improvement function I q (u) = (u) qmin Hkrig u) -q th , (u) .

(2.61)

The expected improvement is considered as a criterion [START_REF] Bichon | Efficient global reliability analysis for nonlinear implicit performance functions[END_REF])

L EFF (u) = E [I q (u)] .
(2.62)

Note that this criterion allows to select points that are close to the threshold with the largest Kriging variance. The Efficient Global Reliability Analysis (ERGA) [START_REF] Bichon | Efficient global reliability analysis for nonlinear implicit performance functions[END_REF] conducts to select the candidate which maximizes this criterion.

Also based on the Kriging surrogate, Echard, Gayton, and Lemaire (2011) consider that the main goal of reliability surrogate is to correctly predict the sign of the sample assessing the following Adaptive Kriging (AK) learning function

L AK (u) = µ Hkrig (u) -q th σ Hkrig (u) . (2.63)
It translates the probability of misclassification in the Gaussian Process (GP) framework, computing the distance in standard deviation from the Kriging mean to the targeted threshold q th . The best candidate is the one which minimizes the AK learning function. The last Kriging criterion is able to identify threshold only using the predicted outputs of the surrogate. Due to its simplicity, it is appealing for the Limit State (LS) identification.

SVM-based criteria

As detailed in Section 2.5.3, the Support Vector Machine (SVM) surrogate gives a separator of a DoE according to classes. This is associated with a SVM margin which is the uncertain zone between the support vectors. [START_REF] Hurtado | Structural reliability: statistical learning perspectives[END_REF] proposes to consider the SVM margin as a learning function

L M SVM (u) = 1 if: HSVM (u) < 1, 0 otherwise . (2.64)
Note that this learning function can lead to an important number of candidates. Moreover, the SVM margin is only built on support vectors without taking account of the distance from the DoE.

Inspired by the AK criterion, Pan and Dias (2017) develop the Adaptive Support Vector Machine (ASVM) learning function

L ASVM (u) = HSVM (u) d(u) (2.65)
with HSVM (u) = HSVM (u) max | HSVM (u)| where HSVM (u) is the continuous value of the SVM separator, and d(u) = d (u) max |d(u)| where d(u) is the distance with the DoE. It works similarly to the AK criterion, HSVM (u) plays the role of the Kriging mean, and d(u) the role of the variance. Nevertheless, HSVM (u) being the projection on the SVM feature space it has no physical meaning, and its use can be limited for complex LS.

Other criteria

The previous paragraphs presented a non-exhaustive list of reliability criteria for the surrogate improvement. We can also mention more advanced criteria based on the one-step-look-ahead strategy which consists in anticipating the improvement integrating the candidate to the DoE, such as the targeted integrated mean squared error [START_REF] Picheny | Adaptive Designs of Experiments for Accurate Approximation of a Target Region[END_REF], the misclassification error [START_REF] Balesdent | Kriging-based adaptive importance sampling algorithms for rare event estimation[END_REF], and Stepwise Uncertainty Reduction (SUR) [START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF] strategies which define a learning function depending on the targeted problem. Most of them are based on the Kriging surrogate, but in this thesis, the notion of qualitative information given by M FAD ≤ 0, is taken into account using SVM.

Candidate selection

Based on the above criteria, there are the different ways to select the new experiment:

• Population selection: The population selection techniques (Figure 2.26) evaluate the learning criterion on a population and select the best individual. It is, for example, employed in the AK-Monte Carlo Simulation (MCS) [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF] where I(u) is the improvement function and w(u) is the associated weight. This approach is adapted for parallel update and does not need to compute the integral of the improvement function. [START_REF] Dubourg | Adaptive surrogate models for reliability analysis and reliability-based design optimization[END_REF] proposes to couple it with a clustering selection technique to select the most significant candidates.

Candidate density

Sample new candidate Other methods of selection, not detailed here, include the Global Sensitivity Analysis-enhanced Surrogate (GSAS) [START_REF] Hu | Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis[END_REF] which selects the new experiment using the sensitivity of the improvement between several candidates.

u new

Quality assessment

The reliability analysis aims at providing the value of the probability of failure P f . Simulation-based methods such as MCS, Importance Sampling (IS) and Subset Simulation (SS) give an estimator of P f with a confidence index which generally decreases with the number of Damage Tolerance (DT) model evaluations. Moreover, First Order Reliability Method (FORM) or Second Order Reliability Method (SORM) are not able to inform about the quality of the P f assessment.

In addition to the estimator error, surrogates present an additional source of uncertainty about the quality of the model prediction, mainly related to the distribution and the size of the DoE. To improve the quality of the surrogate prediction, the DoE is enriched as described above to satisfy a stopping criterion. Even if a common criterion to stop the enrichment may be a limited number of DT model evaluations, other stopping criteria are developed to identify when the quality of improvement is sufficient. The following paragraphs list the main stopping criteria used for the reliability assessment using Kriging or SVM.

Misclassification stopping criteria

The surrogate used for the LS identification predicts the sign of a sample. Several stopping criteria have been developed to ensure that the misclassification is limited • The AK stopping criterion proposed by [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF] is based on the associated learning function Eq. (2.63) which must exceed a threshold value for the whole sample

E AK = min u L AK (u) ≥ 2 (2.67)
This criterion ensures that the sample has a probability to be well classified higher than Φ(-2) ≈ 97.7%. Following the AK enrichment strategy, the criterion is directly evaluated.

• As suggested in [START_REF] Pan | An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation[END_REF], the SVM separator is given with a SVM margin. Therefore, the criterion

E ASVM = n i=1 I | HSVM (u)|≤1 n (2.68)
estimates the ratio of the sample which has an uncertain sign. The enrichment is stopped when the ratio, which is generally exponentially smoothed, is lower than a target value.

• The concept of margin is also used by [START_REF] Dubourg | Adaptive surrogate models for reliability analysis and reliability-based design optimization[END_REF] to assess a stopping criterion based on the pseudo confidence ratio between the bounds of P f such as

p -1 f (1-α) ≤ P f ≤ p +1 f (1-α) .
(2.69)

These bounds, based on the confidence of the predicted sign of the sample, are directly obtained for Kriging using the mean and the variance, whereas, a time consuming bootstrap approach is required for SVM [START_REF] Lacaze | Active machine learning for computational design and analysis under uncertainties[END_REF].

Sign switching stopping criteria

Another approach to define stopping criteria consists in quantifying the improvement of the surrogate implied by the new experiments in the DoE. The sign switching stopping criterion

E sign = n i=1 I sign H(k) SVM (u) -sign H(k-1) SVM (u) ≥0 n (2.70)
compares the sign of the sample between two iterations of the enrichment strategy. Note, that this criterion may be exponentially smoothed (E sign (iteration) ≈ A exp(-B × iteration)) . The enrichment is stopped when the value is lower than a threshold value related to the size of the sample.

the same principle. For low probability, Echard, Gayton, Lemaire, and Relun (2013) couple the AK procedure with the IS methods (AK-IS), whereas [START_REF] Huang | Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation[END_REF] associate AK with SS (AK-SS). This approach is adapted to treat system reliability problem as AK-SYStem (AK-SYS) [START_REF] Fauriat | AK-SYS: An adaptation of the AK-MCS method for system reliability[END_REF]. Recently, [START_REF] Lelièvre | AK-MCSi: A Kriging-based method to deal with small failure probabilities and timeconsuming models[END_REF] improved the classical AK-MCS by developing a complete methodology to assess low probability by coupling AK and a weighted k-means enrichment strategy.

2SMART

For low probability assessment, Subsets by Support-vector Margin Algorithm for Reliability esTimation (2SMART) (J. [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and support vector machines[END_REF] 

Others methods

Both kinds of methods presented above combine reliability methods and surrogates for the probability of failure assessment. Recently, SS based surrogate strategies have been developed for the rare event estimation such as the Bayesian SS [START_REF] Bect | Bayesian subset simulation[END_REF] which couples Bayesian approaches with GP, or the Adaptive Support Vector Regression (SVR)-SS (ASVR-SS) (J. [START_REF] Bourinet | Rare-event probability estimation with adaptive support vector regression surrogates[END_REF] which proposes a complete methodology coupling SVR with a three phases enrichment process. Note, that these methods reduce by one order of magnitude the number of model simulations comparing with 2SMART using regression surrogates. a qualitative one if M FAD < 0. Uncertainties are, nowadays, treated with the deterministic worst case approach. To quantify the conservatism of the design, DT reliability assessment is considered to determine the probability of failure.

Conclusions

This part detailed tools available to define a complete methodology for the DT reliability assessment. The definition of stochastic input models is conditioned by the scarce data available due to the low rate of flights. Several methods are proposed to directly fit the data sample if the size allows that, or to couple with the notion of expert judgment using Bayesian inferences. To improve the data collection, sensitivity analysis is detailed to identify significant variables.

The reliability methods to assess the probability of failure are presented. The classical MCS is not able to estimate low probability for computational reasons because the number of required DT model evaluations is prohibitive. On the other hand, approximation techniques such FORM/SORM encounter difficulties to deal with the mixed qualitative and quantitative information. SS is adapted for rare event estimation, but it still requires an important number of simulations.

The idea is to use surrogate to identify the LS, limiting the number of model evaluations grouped in a DoE. As the reliability problem is seen as a classification one, both regression and classification surrogates can be used. Moreover, adaptive enrichment techniques of the DoE are detailed to improve the accuracy of the prediction. Despite a review of the existing methods summarized in Table 2.1, the properties of the DT problem lead to propose, in Chapter 4, a dedicated methodology for low probability assessment, treating mixed information with surrogates.

Chapter 3

Damage tolerance reliability sensitivities

Introduction

The Damage Tolerance (DT) problem, detailed in Section 2.2, leads to consider variability of the input parameters conducting to probabilistic approaches. These uncertainties are generally described using stochastic models driven by random variables. In space engine context, the statistical data are limited due to the low rate of flights. Moreover, a campaign to collect data is time and money consuming. These make difficult the use of statistical inferences and imply a strong correlation between the reliability outputs and the expert judgment. This chapter presents a complete mechanical and reliability sensitivity analysis, to identify significant variables for a simple DT beam test case. This application is considered as representative engineering practice, under the assumption that the principal stresses re-orient the crack towards the opening mode I, allowing to treat the DT of a more complex component as the study of a beam case. As the outputs of DT analysis can be qualitative for M FAD ≤ 0 or quantitative for M FAD > 0, a specific optimization strategy for performing First Order Reliability Method (FORM) is proposed to obtain reliability sensitivities within a limited number of DT model evaluations.

Description of the beam in traction test case

The representative traction crack beam test case is illustrated in Figure 3.1. This case can be modeled analytically, by the NASGRO form, or numerically, using a 2D eXtended Finite Element Method (XFEM) model. The choice of the Paris law allows to illustrate the procedure of determining significant crack growth parame- The use of numerical modeling for damage tolerance leads to consider variability of four classes of random variables:

• The beam geometry is driven by the width W and the thickness t. In the component design context, dimensions are defined by tolerance bounds related to the manufacturing process corresponding to the difference between extreme allowable values. In the absence of a measure list of these dimensions, distributions of geometric random variables are considered as uniform within the tolerance interval.

• The material properties considered in DT are the Young modulus E, the yield limit stress σp0.2 , the ultimate tensile stress σm , the Fracture toughness K IC and the Paris coefficients C and m. Following sample data analyses integrating the expert judgment, the properties σm , σp0.2 , σp0.2 and K IC are characterized by independent normal distributions with different variation ratios. As shown experimentally by [START_REF] Virkler | The statistical nature of fatigue crack propagation[END_REF], Figure 3.2, the crack propagation is subjected uncertainties. For fixed initial crack size, with the same considered loads, the speed of the crack growth is different due to various distributions of intragranular orientations. Therefore, the
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crack propagation driven parameters C and m are considered as random.

Nevertheless, there is a strong correlation between both due the experimental determination. In the first step, we propose to consider a single parameter m as random, and then propagate the uncertainty to C using a deterministic relationship. The goal is to underline the importance of the propagation of significant parameters on the reliability.

• The loading is defined by a cyclic traction force applied to the upper boundary of the beam. The force intensity is considered as a random variable following a normal law with a 10% variation ratio. We suppose this distribution, because loading is generally obtained using specifications coming from the rocket launcher and no statistical data are directly available.

• The defect is a through crack defined by the size parameter considered as a random variable. Expert judgment proposes different distributions with several parameters according to the cause of the defect. Nevertheless, without any data for defect lower than the resolution of the Non Destructive Testing (NDT) detection, we choose to represent the defect size according to the non-informative uniform distribution bounded by 0 and the NDT detection limit. Indeed, if NDT detects a defect, the component is directly rejected. [START_REF] Virkler | The statistical nature of fatigue crack propagation[END_REF]. 

Reliability sensitivity analysis

As mentioned in Section 2.4.2, in addition to providing the probability of failure P f with a restricted number of model evaluations, FORM provides, by a direct post-treatment, information about the influence of input parameters as detailed below.

FORM outputs

The principle of FORM is given in Section 2.4.2. In the standard space U, the Limit State (LS) is approximated by a hyper-plane passing by the Most Probable Failure Point (MPFP) P * and normal to the line between the origin O and P * . The MPFP coordinates u * are obtained by solving an optimization problem (2.33) to define the reliability index β = u * and the probability of failure -β). FORM also provides sensitivity information.

P FORM f = Φ(
The MPFP coordinates can be expressed as

u * = αβ, (3.1)
where α is the unit vector of the hyper-plane, also called director cosines vector,

α = ∇H(u * ) ∇H(u * ) (3.2)
that measures the contribution of random variable on the reliability index in the standard space U. In case of independent variables in the physical space X, α i
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is considered as the influence coefficient of the variable X i . When there are correlations between physical input random variables, these influence coefficients are expressed as

η = α J T D X α J T D X (3.3)
where J T is the Jacobian and

D X = diag [σ X i ] , i = 1, . . . , d.
Reliability sensitivity information is derived from these influence coefficients

α i = ∂β ∂U | u * (3.4)
such as the influence of the distribution parameters ϑ ik on the reliability index

∂β ∂ϑ ik = ∂β ∂u i ∂u i ∂ϑ ik = -η i ∂T ∂ϑ ik , (3.5)
where k is an incremental integer from 1 to the number of required distribution parameters. The reliability sensitivity indices become

d ik = ∂P f ∂ϑ ik . = -φ(-β) ∂β ∂ϑ ik . (3.6)
As mentioned in Section 2.3.4, these indices quantify the influence of the variation of one unit of the distribution parameter. To deal with the different scales of variables, elasticities

e ik = σ U i d ik , (3.7)
quantifying the influence of one per cent variation of the distribution parameters, are favored. Reliability sensitivity indices and elasticities depend only on the determination of the MPFP by FORM optimization without requiring additional DT model evaluations.

FORM optimization

The FORM optimization problem (2.33) is generally solved using gradientbased optimization methods such as the Hasofer-Lind-Rackwitz-Fiessler algorithm (HLRF) [START_REF] Hasofer | Exact and invariant second-moment code format[END_REF][START_REF] Rackwitz | Structural reliability under combined random load sequences[END_REF] which are based on the iterative gradient evaluation ∇H(u).

The Failure Assessment Diagram (FAD) margin M FAD performance function, obtained after DT procedure of the cracked beam in traction case, is illustrated in Figure 3.3 for two random variables. In the safe region, where M FAD > 0, the M FAD decreases in the direction of the failure region where gradient ∇M FAD ≈ 0 corresponding to a plateau phenomenon due to the availability of the qualitative information M FAD ≤ 0 only. Note that the M FAD is really steep with an important gradient around the LS when M FAD > 0. The HLRF gradient-based optimization algorithm fails when the experiment is located in the failure region due to null gradient. This plateau phenomenon may be tackled using the improved HLRF (Y. [START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF] optimization algorithm which computes a new step length at each optimization iteration. Therefore, by setting a step length to avoid failure region, it is possible to get the MPFP. Nevertheless, the discontinuity of the gradient around the LS has an influence on the stability of the convergence and generates, in the test case, more than thousand DT model evaluations.

Note that the convergence difficulties of FORM optimization algorithm are also underlined by [START_REF] Walz | Probabilistic fracture mechanics assessment of flaws in turbine disks including quality assurance procedures[END_REF] who propose to use several starting points and to smooth the FAD assessment.

FORM with surrogate-based optimization

As described above, the gradient-based optimization is limited for FORM DT reliability assessment. Hence, genetic (or evolutionary) algorithms [START_REF] Michalewicz | Evolutionary algorithms for constrained engineering problems[END_REF], not requiring gradient information, are plausible candidates to search the MPFP. Nevertheless, basic genetic algorithms require a high number of simulations to converge [START_REF] Rackwitz | Reliability analysis-a review and some perspectives[END_REF] 

Carlo Simulation (MCS).

As it is possible to use surrogate-based reliability methods (Section 2.5) the same principle is applied in the optimization context to replace costly model simulations by surrogate predictions considered as instantaneous. We apply the Surrogate-Based Optimization (SBO) algorithm of the Minamo platform [START_REF] Sainvitu | Global optimization with expensive functions-Sample turbomachinery design application[END_REF] developed by Cenaero. The methodology, illustrated in Figure 3.5, works as follows:

1. Firstly, the FORM optimization problem (2.33) is built coupling the objective function (here the distance between the the origin and the MPFP) and the inequality constraint function (here the performance function) which must be less or equal than zero.

2. Then, a initial DoE is generated and the DT model is evaluated to optimally sample the standard space. Note that the quality of the surrogate is in a relationship with the size of the DoE.

3. Radial Basis Function (RBF) surrogates [START_REF] Bishop | Neural networks for pattern recognition[END_REF] of objectives and constraints responses are trained on the DoE to define a global objective.

4. Based on an evolutionary optimization strategy, a sample of individuals is evaluated using the surrogate. 5. An optimal point is determined based on the sample of individuals. The DT model is evaluated at this point to enrich the DoE and to ensure that the best point satisfies the constraints.

3.4. RESULTS OF SENSITIVITY ANALYSIS 67 6. Stopping criteria which are typically a maximum number of iterations or the distance between subsequent approximate optimal points, are checked:

• If criteria are satisfied, stop the optimization process.

• Otherwise, return to the step 3 with more training points.

This approach has the advantage to converge without gradient information and requires an order of magnitude less DT evaluations than simulation-based reliability methods. The main limitation of the SBO is the choice of the convergence criteria not based on a maximum number of optimization iterations. We can imagine a criteria consisting in defining a number of following iterations without any improvement.

Results of sensitivity analysis

Using the SBO strategy, FORM is employed to solve the DT reliability sample problem and to compute reliability sensitivities. This section presents the results of sensitivity analyses of the beam in traction test case introduced in Section 3.2. Firstly, a complete sensitivity analysis, with mechanical and reliability indices, is proposed. Then, the influence of the kind of distribution random variable is studied and finally, the impact of the imposed effort or displacement loading formulation is inquired. FORM with SBO is used then to assess the reliability sensitivities and elasticities (Figure 3.7 Figure 3.8). In our case, mechanical sensitivities and reliability elasticities yield the same three significant variables. FORM with SBO strategy reduces the number of DT evaluations with mechanical sensitivity analysis. Moreover, it directly identifies the most significant variables on the probability of failure. Therefore, for a costly CPU model, we favor the use of FORM outputs for the preliminary sensitivity analysis. Note that, to improve the accuracy of the reliability analysis, some efforts must be applied to model the uncertainties related to the significant variables. Whereas, for the material properties which are not significant, an important data collection is not required as these parameters may be considered as fixed.

Crack beam test sensitivity analysis

Comparison of input distribution influence

One of the main steps to define the methodology to assess the DT reliability of space engine components is the modeling of uncertain input parameters. These random variables are defined by distribution law using statistical data and expert judgment when data sample is too small (< 20). In this case, there are two possibilities:

• There exists an a priori distribution, called "expert judgment", about the random variable.

• There is no a priori, non-informative laws are considered as the expert judgment.

The influence of the expert distribution impacts the input model and the results of the reliability analysis. The confidence in the expert judgment is primary.

To showcase the consequences of experts' choices about the input distribution laws, FORM with SBO is applied to determine the influence of the type of the distribution laws on the probability of failure.

Crack size distribution influence

The crack size is one of the most significant parameters for the DT reliability. It is determined using NDTs characterized by a limit of detection defined with a confidence. In most of the cases, cracks do not exceed the limit of detection and statistical data are not available. Due to the lack of information, the common approach consists in defining the crack size by a uniform distribution between zero and the limit of detection. Nevertheless, experts discuss the density of defects size distribution being more important for small sizes at microscopic scale,
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characterized by the log-normal distribution with parameters depending on the manufacturing process and the origin of the defects.

The goal of the study is to analyze the difference between log-normal or uniform distributions. Several distributions are tested. To include the notion of NDT detection limit, truncated distributions are also tested. The value of interest is the probability of failure obtained by FORM with SBO. Table 3.2 sums up the results for each configuration. The non truncated log-normal distribution implies the highest probability of failure because the defect size may be important but it is more relevant to consider truncated ones because the high crack sizes are detected and the component is rejected. In the truncated log-normal cases, the results are close to the uniform case. The choice of the uniform distribution seems to be justified because, under the limit of detection, no strong hypothesis is done.

Distribution

Reliability index β

Probability of failure P f a ∼ U[0 mm; 0.5 mm] 3.23 6.20 × 10 -4 a ∼ log N (0.3 mm; 1 mm) 0.99 1.15 × 10 -1 a ∼ log N (0.3 mm; 0.3 mm) 1.75 3.99 × 10 -2 a ∼ log N (0.3 mm; 0.1 mm) 3.08 1.02 × 10 -3 a ∼ log N (0.25 mm; 0.14 mm) 2.66 3.87 × 10 -3 a ∼ log N (0.25 mm; 0.14 mm) ∈ [0.0; 0.5] 3.41 3.18 × 10 -4 a ∼ log N (0.25 mm; 0.14 mm) -0.25mm ∈ [0.0; 0.5] 3.66 1.25 × 10 -4

Table 3.2: Probability of failure according to the different defect size distributions tested for the analytical case.

Influence of force intensity distribution

The loading, characterized here by the force intensity, is one of the most significant variables influencing both the performance function and the probability of failure. Two stochastic models of this parameter are compared

• a normal distribution wih a 10% variation ratio,

• a uniform one with bounds which ensure the same means and variance as the previous one.

Both distributions are represented in Figure 3.10 while Table 3.3 gives the probabilities of failure obtained using FORM with SBO. The normal distribution allows 
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73 extreme loads which are not seen with the uniform one because of the truncating. As suggested by sensitivity results, these extreme values has a strong on the probability of failure explaining why the reliability is lower considering the normal distribution. Therefore, as the distribution law influences the reliability outputs, the characterization of the loading requires a specific attention. Table 3.3: Probability of failure according to different loading distributions tested for the analytical case.

Influence of crack propagation parameter distribution

As expected, the sensitivity analysis reveals the influence of the crack propagation parameters on the reliability controlling the vicinity of the crack. Generally, material parameters are considered following normal distributions. Nevertheless, this assumption makes possible realization of a negative material parameter which has no physical sense. To deal with this issue, it is suggested to consider the log-normal distribution. Both distributions are compared setting the same mean and variance. Even if they seem graphically similar as shown in Figure 3.11, the reliability outputs in Table 3.4 are different. It is explained by the fact that due to a small gap between tails of distributions, the log-normal allows more extreme values than the normal one. Therefore, because the probability of failure is generally concentrated around these tails, the log-normal distribution has a lower reliability than the normal one. For the following, we consider the normal distribution if the standard deviation is small enough to avoid negative values. 

Sensitivity analysis of displacement and force driven case

To compare the influence of random variables according to the displacement or stress loading formulations, models similar to the one in Section 3.2 are defined considering the same set of random variables, the only difference consisting in application of boundary condition at the upper boundary segment (Figure 3.12). The intensity of loads is adjusted for the same order of magnitude of displacement according to σ = ∆l h E.

(3.8)
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a a H H W W F ∆l (a) (b) E, σp0.2 , σm K IC , C, m E, σp0.2 , σm K IC , C, m x y Figure 3
.12: Scheme of the prescribed force (left) and displacement (right) boundary conditions for the beam test cases.

FORM with SBO is applied to the XFEM DT models to assess the probability of failure and the reliability sensitivities are presented in Figure 3.13. In the force boundary condition case, four variables are significant:

• the force intensity,

• the crack propagation parameter,

• the crack size,

• the width geometric parameter.

In the displacement driven case, the width is not significant whereas the Young modulus has influence. For both cases, the force or the displacement intensities are significant and the other significant variables are the ones that impact directly the Stress Intensity Factor (SIF) computation.

To complete the comparison, both FORM probabilities of failure are reported in Table 3.5. P f is lower for the displacement case and higher for the force formulation. We can explain this difference by the fact that, following the crack propagation principle, in the displacement formulation, the stress applied on the front of the crack is relaxed at each increment of the crack contrary to the force driven case where the stress stays constant. The SIF in the displacement case is less important than in the force driven case. Therefore, M FAD is higher and the probability of failure is lower. To conclude, the force driven case appears more conservative and independent of material properties limiting the need of precision for corresponding statistical data. Table 3.5: Influence of the displacement and force formulations on the reliability of the cracked beam.

Loading formulation

Conclusion

This chapter presents a DT sensitivity analysis for a simple but representative test case. We propose to compare mechanical sensibilities (concerning M FAD ) with reliability ones obtained using FORM. Nevertheless, due the qualitative information of the performance function when M FAD ≤ 0, the classical gradient-based algorithm used in FORM failed to determine the MPFP due to a phenomenon of saturation of the performance function. We use an efficient SBO algorithm to determine key information required by FORM with a limited number of simulations. A complete sensibility analysis has been performed yielding significant variables such as the defect size, the crack propagation parameters, and the loading. Therefore, a particular consideration must be given to the modeling of these random variables.

FORM with SBO is able to provide a value of the DT reliability. Nevertheless, FORM relies on a strong hypothesis of linearity and vicinity of the LS and does not provide criteria to check the validity of this assumption. However, thanks to the FORM outputs such as P f and the associated sensitivities, FORM assisted by a surrogate may be employed in a preliminary phase to identify significant variables and the level of reliability, but it has to be completed by a reliability method providing a level of confidence about the accuracy of P f . 
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Chapter 4 Adaptive Regression and Classification using SUBset simulation (ARC-Sub) methodology

Introduction

The Damage Tolerance (DT) reliability analysis for space engine components described in Section 2.2 leads to consider the Failure Assessment Diagram (FAD) margin M FAD as performance function. The targeted probabilities and the restitution time of DT models, detailed in Section 2.2.2, limit the interest of methods such as Monte Carlo Simulation (MCS) or Subset Simulation (SS), because the expected number of model evaluations is very large to obtain an admissible level of confidence (10 9 evaluations for P f ≈ 10 -7 ). As explained in Section 2.2.4, M FAD gives either quantitative, if M FAD > 0, or qualitative, when M FAD ≤ 0, information. The Chapter 3 shows that this specificity limits the use of gradient based optimization algorithms to determine the Most Probable Failure Point (MPFP) for methods such as First Order Reliability Method (FORM) and Second Order Reliability Method (SORM) which, moreover, do not provide an indicator of accuracy. This chapter presents the original ARC-Sub methodology tailored to assess the reliability for DT while highly decreasing the number of model evaluations. It is based on the association of the low probability dedicated SS (S.-K. [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] 

Hybridization of regression and classification surrogates

In the space engine context, high level of confidence in the mechanical strength of components is expected. Therefore, the DT reliability problem 2.2.6 leads to target low probabilities of failure (P f < 10 -6 ). Without any prior, SS, detailed in Section 2.4.4, appears as the most adapted method by a subsequence of SS steps, working as an optimizer moving population towards the failure regions (Figure 4.2).

As shown in the SS flowcharts Figure 2.19, most of the computational effort is taken by the n SS DT model evaluations y SS = H(u SS ) which makes SS still prohibitive for "real-life" DT simulations (≈ 9 × 10, 000 DT model evaluations to estimate a 10 -9 probability with a ≈ 10% confidence level). Consequently, the idea is to replace the DT model evaluations by surrogate predictions y SS = H(u SS ) ≈ ỹSS = H(u SS ) (Figure 4.3). The intermediate subset probabilities in (2.40) are evaluated as

pi = P ( H(y SS ) ≤ qth (i) ). (4.1)
The assumption is that a relatively low number of DT model evaluations is sufficient to train a surrogate based on an appropriate DoE.

Regarding the quantitative (M FAD > 0) and qualitative (M FAD ≤ 0) nature of DT simulation results, we consider two kinds of surrogates: • Regression surrogates such as Kriging allow identifying failure regions via associated enrichment strategies, guided towards the zones of interest around the LS. Nevertheless, these approaches are not able to deal with qualitative information when, in the DT case, only the negative sign of M FAD is available (Section 2.2.4) in the failure region.

• Classification surrogate approaches are able to treat qualitative information because only the state of the component, safe or failed, is required to build a separator. As the quantitative information of the output is not taken into account, these methods may have some difficulties to identify the failure region if they are not determined by the initial DoE. The idea of the proposed approach is to combine the regression, efficient to find the failure regions, with the classification allowing to take into account the qualitative information M FAD ≤ 0. By the principle of the SS, and because the targeted probability is low (< 10 -6 ), the first subset step must deal with a safe component characterized by the quantitative value M FAD > 0. Therefore, in this case, due to their ability to explore, regression surrogates are employed to estimate the intermediate thresholds. Then, at the last subset, when qualitative information CHAPTER 4. ARC-SUB METHODOLOGY may be determined on a ranked sample with a regression surrogate model for quantitative (M FAD > 0) values of H(u).

Initialization

(i) SS ) ≤ q (i) th ) = 0.1 q (i) th ≤ 0? s = i and q (s) th = 0 p s = P (H(u (s) SS ) ≤ 0) End: P f = P f × p s p i = P (H(u (i) SS ) ≤ q (i) th ) and P f = P f × p i i = i + 1 Generate an in- termediate SS population u (i) SS

Kriging regression surrogate

The proposed ARC-Sub approach aims to be modular with respect to the employed surrogates. Possible regression surrogates are Radial Basis Function (RBF), Polynomial Chaos (PC), Support Vector Regression (SVR), Response Surface Model (RSM). We choose the Kriging for its appealing properties in the reliability context. Indeed, the Kriging may be presented as a Gaussian Process (GP) defined by • its mean µ Hkrig which is employed in the evaluation of intermediate probabilities pi and the associated qth (i) to assess the probability of failure pi = P µ Hkrig (u) ≤ qth (i) , (4.4)

• its variance σ 2 Hkrig (u) allowing to estimate the error of prediction which is used as confidence bounds of the LS [START_REF] Dubourg | Adaptive surrogate models for reliability analysis and reliability-based design optimization[END_REF] and criterion to enrich the DoE for improving the accuracy of the threshold and the associated LS identification.

Note that, without nugget effect [START_REF] Forrester | Design and analysis of" Noisy" computer experiments[END_REF], Kriging interpolates the experiments. In the context of the reliability assessment for a deterministic function (non-noisy), it allows to ensure that the DoE is well classified.

Enrichment of the Design of Experiments (DoE)

To improve the accuracy of the surrogate in the zone of interest located around the intermediate LS, DoE has to be enriched by adaptive strategies. We propose to combine the k-means clustering with Adaptive Kriging (AK) [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF].

k-means clustering

The initial DoE u DOE of ARC-Sub is obtained by Latinized Centroidal Voronoï Tesselation (LCVT). k-means clustering centers of u ≤ q k SS th . Note that the k-centers may be selected and evaluated in parallel.

Adaptive Kriging

Despite the k-means enrichment of the DoE, the Kriging may lack of accuracy in the zone of interest around the intermediate LS characterized by the associated threshold q k SS th , which must be updated. To improve the surrogate, the AK enrichment strategy is employed at each ARC-Sub step. The point that minimizes the AK learning function Stopping criteria for AK As proposed by [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF], the classical AK criterion stops the DoE enrichment when min L AK (u) ≥ 2. This condition ensures a 97.7% confidence level in the prediction of the sign of the outputs.

u AK = min L AK (u) = min µ Hkrig (u) -q th σ Hkrig (u) , ( 4 
In the context of SS, as underlined by [START_REF] Tong | A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling[END_REF], this criterion implies important conservativeness for the first SS because a high level of accuracy is not expected at these steps (J. [START_REF] Bourinet | Rare-event probability estimation with adaptive support vector regression surrogates[END_REF]. The goal is to quickly identify the intermediate threshold and the associated LS only to generate the new subset sample. SS working similarly as an optimization method, the intermediate steps serve as a guide towards the failure regions. A high level of accuracy for the LS description is only required for the last subset step giving the value of the probability of failure.

To avoid the conservatism implied by the AK stopping criteria, 

Regression algorithm

The regression phase starts at the first step of SS, when a random sample u

(1) SS of size n

(1)

SS is generated. Based on this sample, n DOE centers u DOE are identified by clustering and M FAD (u DOE ) is assessed to evaluate the initial DoE. Considering that the DoE is mainly composed of M FAD (u DOE ) > 0, a Kriging surrogate Hkrig is trained to identify the first subset threshold qth

(1) such that p 1 = 0.1. An AK refinement strategy accurately determines the intermediate LS and the associated threshold until satisfying stopping criteria. Note, that during the enrichment strategy, the regression/classification transition criteria, detailed in Section 4.4, are checked. The first subset achieved, the u 

≤ qth

(k SS ) are identified and evaluated with the DT model. Note, that k DOE is adjusted by the user and it is set, by default, to 2 × d. Then, an AK enrichment strategy is used to improve the DoE and to assess the intermediate threshold qth

(k SS ) and LS. When the AK stopping criteria are attained, k SS is incremented. This step is repeated until transition criteria are satisfied to move to the classification phase as explained in Section 4.5. The purpose of the regression phase is merely to find the failure regions. Therefore, a high accuracy of the intermediate LS is not expected, however the algorithm is supposed to find the path to all failure domains.

The regression phase of ARC-Sub is detailed in Figure 4.7:

1. Randomly generate an initial subset sample u • If no, enrich the DoE using a strategy such as AK [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF] in order to improve the accuracy of the Kriging LS.

Then, go to step 3.

8. If transition criteria detailed in Section 4.4 are satisfied, go to the classification phase (Section 4.5).

9. Else, compute the provisional estimators based on the subset sample obtained using the regression surrogate.

10. k SS is incremented for the new subset step. p i ×n

(1)

SS individuals are extracted from the sample u

(1) SS to define a germ sample. A new sample is generated by Markov-Chain Monte Carlo (MCMC) using the modified Metropolis Hastings algorithm (S.-K. [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF].

11. The DoE is enriched adding new points selected using the k-means clustering technique.

12. Then, the algorithm returns to step 3.

Transition between regression and classification

One of the main points of ARC-Sub is to determine when the transition between regression and classification happens. The last step SS happens when

q (s) th ≤ 0 (4.7)
which is as the SS transition criterion. Nevertheless, q 

Classification based exploitation phase

Due to the Linear Elastic Fracture Mechanics (LEFM) hypothesis, the DT model does not provide quantitative information for failed experiments. An alternative way to identify the limit state is to use Support Vector Machine (SVM) classification, based solely on the sign of the performance function. After satisfying the transition test, the ARC-Sub method switches to the classification phase. This step is based on the last s th step of SS considering the final intermediate threshold

q (s)
th equal to zero. The aim of the last SS is to determine p m = P (H (u) ≤ 0) . (4.9)

As for the previous step, ARC-Sub replaces the time consuming performance function assessment H(u) by surrogate evaluation H(u) to obtain pm = P ( H (u) ≤ 0) . (4.10) At this step, there is an important chance to deal with M FAD ≤ 0 which implies to consider the qualitative and rather than quantitative information.

SVM surrogate

As described in Section 2.5.3, considering both classes M FAD > 0 and M FAD ≤ 0, the SVM allows to build a separator based solely on the sign of the performance function HSVM =

n i=1 γ i c i K u (i) , u + b (4.11)
where b is a SVM parameter, K is the kernel function, γ i are the Lagrange multipliers and c i = sign(H(u (i) ) is the class of the experiment. The SVM surrogate predicts only the sign which is sufficient to build the last indicator function of ARC-Sub.

Enrichment strategy by misclassification tournament

At this stage, the DoE contains both classes, M FAD ≤ 0 and M FAD > 0 . The SVM separator defines the limit state, but it can suffer from a lack of accuracy around the zone of interest. Enrichment strategies for SVM are developed, principally based on the distance from the DoE. A multi-objective approach proposed in this section couples two criteria: a distance-based criterion and the probability of misclassification.

To improve the accuracy of the boundary, [START_REF] Basudhar | Adaptive explicit decision functions for probabilistic design and optimization using support vector machines[END_REF] propose the Max-Min criterion based on the distance from the DOE coupled with a constraint on the distance from the SVM separator. New experiment is selected by solving the following constrained optimization problem

u MM = arg max u min i=1...N u -u DOE s.t. HSVM (u) = 0. (4.12)
This exploration approach is efficient enough to globally describe the limit state but it does not account for the proximity to the center of the standard space. 

Conclusion

The specificity of DT problem leads to propose a dedicated methodology for assessing low probability of failure using a hybrid surrogate to treat both the mixed qualitative and quantitative outputs. The approach is based on SS to estimate rare event by a subsequence of intermediate probabilities. To limit the number of potentially time consuming DT model evaluations, and to deal with the mixed information, a combination of regression Kriging and classification SVM surrogates is proposed along with transition criteria. Adaptive enrichment of the DoE is used to ensure an accurate estimation of the probability of failure. The regression phase couples k-means clustering strategy followed by a AK one. A misclassification tournament enrichment is proposed to improve the SVM separator in the classification phase. In the next Chapter 5, the ARC-Sub methodology (Figure 4.11), is applied to several test cases.

In the scope of this thesis, the ARC-Sub method was implemented in the industrial-level Cenaero software Minamo along with classical MCS, FORM, SS reliability methods.

Chapter 5

Applications of ARC-Sub

Introduction

The Damage Tolerance (DT) reliability assessment in aerospace context presents two difficulties (Section 2.2): low probability of failure and a mixed qualitative (M FAD ≤ 0) and quantitative (M FAD > 0) values of the performance function. The main contribution of this thesis, the Adaptive Regression and Classification using Subset Simulation (ARC-Sub) methodology, presented in Chapter 4 is built to estimate low probability, coupling regression and classification surrogate with Subset Simulation (SS). This chapter aims at testing the efficiency of this method to compute the probability of failure, limiting the number of model evaluations due to the possible use of high fidelity methods like the eXtended Finite Element Method (XFEM). The test cases are increasingly complexified starting from analytical, quantitative benchmarks, through DT beam and surface crack reference examples, to conclude with the industrial-level XFEM model of the TEG blade support.

Analytical test cases

Parabolic test case

The first test case is the parabolic one (Der Kiureghian and Dakessian, 1998) defined by the performance function

G (X 1 , X 2 ) = c 0 -X 2 -c 1 (X 1 -c 2 ) 2
(5.1) with the random variables X i ∼ N (0, 1), i = 1, 2 and constant parameters c 0 = 5, c 1 = 0.2 and c 2 = 0. It is characterized by the presence of two MPFPs and by a probability of failure P f ≈ 10 -5 requiring, with Monte Carlo Simulation (MCS), 97 10 7 model evaluations to obtain 10% confidence level for estimator of P f . ARC-Sub requires 5 steps and 71 model evaluations to assess the probability of failure. Figure 5.1 shows nearly no difference between the SVM and the true LSs on the predicted population (grey points). In Table 5.1, ARC-Sub is compared with SS. The probabilities of failure are close and the number of simulations is reduced by two order of magnitude because, for SS, the subset populations are evaluated using the performance function, while, for ARC-Sub, these are predicted by the surrogate. ARC-Sub is then compared with the SVM-based reliability Subsets by Support-vector Margin Algorithm for Reliability esTimation (2SMART) (Section 2.6.5) dedicated to low probability assessment. Both methods are based on subset principle to converge step by step until the failure regions. However, there is a difference in terms of numbers of model evaluations, which is divided by one order of magnitude by ARC-Sub. It is explained by the fact that 2SMART builds a SVM classifier at each step using an enrichment strategy of the DoE based on a fixed number of model evaluations without test of quality, and some simulations can be discarded because they don't impact the classifier. On the other hand, ARC-Sub uses a Kriging regression surrogate combined with a Adaptive Kriging (AK) enrichment strategy and an associated stopping criterion when the prediction is satisfying. 2.25 × 10 -3 2SMART (J. [START_REF] Bourinet | Assessing small failure probabilities by combined subset simulation and support vector machines[END_REF] 1.03 × 10 3 2.22 × 10 -3 AK [START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF] 96 2.23 × 10 -3 ARC-Sub 132 2.36 × 10 -3

Through crack case

The tensile beam with a through crack is presented in Figure 5.3. To ease the 2c visualization, 2 random variables are considered:

• the crack size follows a uniform law,

• the loads intensity is defined by a Gaussian.

The model is solved using the NASGRO tool. Results are presented in 1.53 × 10 -9 (9%) 2SMART J. Bourinet, Deheeger, et al., 2011 (×10) 3089 1.54 × 10 -9 ARC-Sub (×10 runs)

103.8 1.55 × 10 -9 (9%) 

Surface crack case

APPLICATIONS OF ARC-SUB

To demonstrate its ability to solve a problem with a higher number of random variables, a beam with a surface crack subjected to traction (Figure 5.4) solved by the NASGRO tool is defined considering 9 random parameters listed in Table 5.4. As for other DT test cases, the probability of failure assessed by ARC-Sub is also compared with SS and 2SMART in Table 5.5. The three methods provide Table 5.5: Results of the surface crack in a tension beam considering nine random variables.

Method

Evaluations p f SS (10000/step) (×10) 81978 1.19 × 10 -7 (11%) 2SMART J. Bourinet, Deheeger, et al., 2011 (×10) 4808 1.21 × 10 -7 ARC-Sub (×10 runs) 479.6 1.40 × 10 -7 (11%)

nearly the same probability of failure of 1.18 × 10 -7 . As for the first DT test case, the ARC-Sub method saves s respectively one and three orders of magnitude concerning the number of simulations compared to 2SMART and SS. Even if the target probability is higher than in the first DT example, the ARC-Sub requires more damage tolerance evaluations, due to the higher dimension of the problem complexifying the regression surrogate. Despite this point, ARC-Sub is still able to assess the probability of failure while reducing the number of damage tolerance model evaluations with respect to other methods. 

TEG blade support

After showing the efficiency to reduce the number of model evaluations for academical examples and damage tolerance beam test cases, the ARC-Sub is applied on a space engine component. The TEG blade support has been already studied in the framework of reliability for fatigue assessment in the project DEFFI [START_REF] Ferlin | DEFFI project for a new concept of fatigue design in the aerospace domain[END_REF] and APPROFI [START_REF] Echard | Reliability assessment of an aerospace component subjected to fatigue loadings: APPRoFi project[END_REF] allowing to benefit from collected statistical data. In this thesis, the reliability analysis is extended to DT application. 

Material variability

The TEG blade support is made of nickel alloy which keeps efficient properties for different levels of temperature. The associated material properties which influence this DT application are divided into two groups:

• mechanical properties of the material: the Young modulus E, the 0.2% yield stress σp0.2 , the ultimate stress σm , the fracture toughness K IC

• crack propagation parameters which depend of the material and the propagation law.

Even if sensitivity analysis performed in Chapter 3 shows their limited influence, the four mechanical material parameters E, σp0.2 σm and K IC are considered as random variables as statistical data are available. For E, σp0.2 σm , statistical samples are available, but their sizes are low (< 10), resulting in inaccurate classical statistical inferences (Section 2.3.1). As the expert judgment is accessible concerning the covariance ratio of these properties, Bayesian inference (Section 2.3.2) is applied to determine the distribution laws. The a priori Probability Density Functions (PDFs) used in this case are normal distributions centered on the targeted standard deviation given by the expert CHAPTER 5. APPLICATIONS OF ARC-SUB judgment. As for the fracture toughness K IC , statistical data are not directly accessible we propose to extrapolate the data obtained from an available sample of nickel alloy, knowing the mean value of the fracture toughness for both nickel alloys. Because the size of the sample is low, Bayesian inference is used and the extrapolation is performed. Note that even if it is used to define the FAD criterion K r , Chapter 3 shows a limited impact of fracture toughness on the reliability outputs.

As underlined in Chapter 3, the crack propagation law variability has a significant impact on the DT reliability of the space engine component. There exist several models introducing uncertainty in this phenomenom such as PREFFAS [START_REF] Mattrand | Random load sequences and stochastic crack growth based on measured load data[END_REF]. For the TEG blade support, we consider the Paris law because unsufficient data is available for more complex laws. The variability is concentrated in the Paris parameters C and m which drive the speed of the crack growth. As shown in J. [START_REF] Bourinet | FORM sensitivities to correlation: application to fatigue crack propagation based on Virkler data[END_REF], the correlation between both parameters is high and can limit the reliability assessment (Chapter 2). To work with independent variables, J. [START_REF] Bourinet | FORM sensitivities to correlation: application to fatigue crack propagation based on Virkler data[END_REF] propose to replace the parameter C by

log C = log C + Ê [log C|m] (5.3) with Ê [log C|m] = E [log C] + cov [m, log C] Var [m] (m -Em) (5.4)
using C and m samples.

The input random variables of the reliability analysis are m and log C . They follow normal distribution with a covariance ratio based on the Virkler data [START_REF] Virkler | The statistical nature of fatigue crack propagation[END_REF].

Loading variability

The TEG blade support is subjected to two kinds of loading, respectively from the temperature variation between the TEG manifold and the nozzle, and from the nozzle ovalization implied by the buffeting phenomenon which is the impact of the launchers turbulences on the Vulcain engine. The level of displacement due to the thermal load is negligible with respect to the ovalization. As shown in Figure 5.7, the boundary conditions are:

• both upper faces with the z-axis normal fixed,

• a cyclic displacement parallel to the z-axis applied for both lower faces with the z-axis normal. Data samples of the ovalization displacement of the component are available for 9 flights from the DEFFI [START_REF] Ferlin | DEFFI project for a new concept of fatigue design in the aerospace domain[END_REF] and the APPROFI [START_REF] Echard | Reliability assessment of an aerospace component subjected to fatigue loadings: APPRoFi project[END_REF] projects. These two projects propose strategies to model the random load. In this thesis, we choose to focus on the proposition of the APPROFI project because it requires only one random variable to define the stochastic load according to the following methodology (Figure 5.8):

1. For each flight, a Rainflow-counting is assessed to extract the load amplitudes. The flight load is considered as centered. Therefore, the means are set to 0.

2. A histogram of amplitude intensities for each sample is built.

3. Using exponential distribution, the CDF associated with each histogram is determined.

4. Starting from these CDFs, the mean trajectory and the 95% confidence bound are assessed to provide µ FDR and σ FDR . 5. It is then possible to express the CDFs as

y = µ FDR + cv FDR σ FDR (5.5)
where cv FDR is the variation ratio obtained for each sample.

6. New CDFs of the amplitudes are built setting cv FDR as a random variable which follows a normal distribution fitted using the 9 values extracted for each sample.

7. Based on the new CDFs, Rainflow loading is defined as an input to the DT model.

Note that possible use of Weibull distribution to fit the CDFs needs more random variables which increases the complexity of the problem.

Defect variability

The defect is subjected to two kinds of uncertainties related to the location and the shape.

The location of the defect depends on the manufacturing process. The TEG blade support is obtained by forging which, according to the expert judgment, does not generate preferential defect location. The probability is uniform on the whole component. The current DT methodology makes the conservative hypothesis to locate the crack at the maximum of principal stresses. In our application, because it is difficult for computational reasons (redefinition of the FAD post treatment, equal probability on the whole part) to define the probability as uniform on the component, we propose to consider the location probability as uniform along the internal cylindrical segment where the principal stresses are high as illustrated in Figure 5.9. In this application, the geometry of the defect is a semi elliptical surface crack driven by a radius and ratio between long and short radii parameters. As explained in Chapter 3, the presence of defect is checked using Non Destructive Testing (NDT) which leads to consider a limit of detection. Moreover, statistical data are unavailable for defect lower than this bound. Therefore, we choose to characterize the defect size by the non-informative uniform law bounded by the limit of detection.

Computational model definition

The XFEM model is computed with Cenaero in-house software Morfeo (MOR-FEO, 2018). It requires a mesh of the model (Figure 5.10) defined using Gmsh [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. Note that the mesh is refined in region of interest where we need to extract Stress Intensity Factor (SIF) and principal stresses to determine the stress in the remaining ligament. The mesh contains ≈ 1800000 elements and ≈ 400000 nodes. A dedicated subroutine performs the FAD post-treatment to provide M FAD integrating the notion of complex spectral 

Results

First Order Reliability Method (FORM) with Surrogate-Based Optimization (SBO) and ARC-Sub are applied on the TEG Blade support considering 9 random variables. Table 5.6 reports the reliability results. The required time for one DT analysis (> 3, 5 h) makes the use of simulation-based methods such as MCS or SS because they required more than several thousands of evaluations. For FORM, 258 model evaluations are performed with SBO to get an approximate probability close to 10 -9 , whereas 513 simulations are required by ARC-Sub which is stopped when P f ≤ 10 -9 , which is upper bounds limit of the space design rules. The TEG blade support appears as safe considering the DT failure modes.

The difference between both methods is explained by the use of uniform distributions which probably increase the non linearity of the LS due to the iso-5.5. RESULTS probabilistic transformation to standard space, based on the Gaussian distribution whose probability is concentrated around the mean with a asymptotic decreasing to zero (without attaining it). It does not seem adapted to the uniform distribution which has an equal probability on the interval and which is truncated implying a zero probability outside the boundaries. This leads to a highly non lin- to the standard U space (b) for the cases X 1 ∼ N and X 1 ∼ U (continue red line) or X 1 ∼ N (dashed blue line). The linear LS becomes non-linear in U for the first case.

ear transformation (Figure 5.11) impacting the shape of the LS as it is illustrated in Figure 5.12. Moreover, the standard space is unbounded whereas the uniform distribution is truncated. If the failure is far from the origin of the standard space, the repercussion in the physical space can loose sense because the boundary can not be crossed. This discussion underlines the necessity to improve the collection of data to avoid the use of uniform distribution, generally chosen when no information is available. most significant variables. This variable contributes substantially to the shape of the LS which can explain the difference of results between ARC-Sub and FORM.

Conclusion

The use of ARC-Sub on the different test cases shows its ability to assess the probability of failure, limiting the number of evaluations. ARC-Sub proves its efficiency on the low probabilities for DT applications, reducing the number of simulations by several orders of magnitude comparing with existing methods. Finally, the methods developed in this thesis, FORM with SBO and ARC-Sub, are applied on the industrial TEG blade support test case, solved using XFEM, to show the safety of this component w.r.t. the DT failure mode.

ARC-Sub shows its applicability on different test cases and its efficiency to limit the number of model evaluations comparing with reliability existing methods. On the high fidelity test case, FORM with SBO requires less simulations than ARC-Sub. Nevertheless, the strong hypothesis of linear LS implied by FORM does not ensure the quality of the results, whereas ARC-Sub is able to identify non-linear LS to give an estimator of the probability of failure. In addition to provide reliability sensitivities, FORM with SBO has the advantage to give an approximation of P f in a small number of model calls. Nevertheless, the hypothesis of FORM must be checked using another reliability method. On the other hand, ARC-Sub determines the probability of failure with an acceptable number of simulations without making hypothesis concerning the shape of the LS.

Conclusions and perspectives

Nowadays, the margin safety factor strategy is commonly used to ensure the safety when dealing with uncertainties. Nevertheless, the addition of margins appears as too conservative leading to over-sizing. In comparison, the reliability approaches provide conservatism indicators such as the probability of failure based on a representative modelisation of the uncertainties. The integration of these reliability techniques to handle uncertainties to optimize the design of mechanical parts (robust optimization and Reliability Based Design Optimization (RBDO)) appears as one the most important challenges for the next decades. The recent arrival on the scene of new competitors in the space launchers market makes essential considerable weight and, consequently, cost savings to support competitiveness for ArianeGroup. This thesis contributes to the uncertainty handling for the Damage Tolerance (DT) justification of space engine components. Beyond the commonly used conservative deterministic worst case approach, this work proposes the development and the application of a complete reliability methodology. The starting point is the collection of data, which is made harder due to the low rate of flights. It has been followed by the identification of the input stochastic models and the reliability evaluations with the constraint of time restitution compatible with industrial context supposing CPU consuming model.

Classical reliability methods based on the simulations such as Monte Carlo Simulation (MCS) or Subset Simulation (SS) are able to determine low probability in case of analytical performance functions. However, their use is limited for finite elements models. It is related to the combination of the important number of evaluations to obtain accurate estimators and simulation time. Considering the reliability problem as a classification one, our contribution suggests to build a surrogate of the Limit State (LS) to reduce the number of simulations. The existing surrogate reliability methods developed in the recent years used to make a choice between regression and classification surrogates. This thesis proposes the Adaptive Regression and Classification using Subset Simulation (ARC-Sub) method which combines both, Kriging regression, which also provides a variance of the prediction, and Support Vector Machine (SVM) classification, to treat the mixed quantitative and qualitative output information of the DT model. To limit the number of experiments, the Design of Experiments (DoE) is generated using existing and new adaptive strategy based on the probability of misclassification.

ARC-Sub has been tested on academical examples and rapidly evaluated DT test cases. It shows its ability to determine low probabilities of failure limiting the number of model evaluations and to detect multiple disjoint failure regions for models which return a quantitative/qualitative information for, respectively, safe and failed experiments. Like most of the surrogate reliability methods, ARC-Sub requires a direction of descent towards the failure domain. It implies difficulty to solve highly non-linear non continuous reliability problems (J.-M. [START_REF] Bourinet | Reliability analysis and optimal design under uncertainty -Focus on adaptive surrogate-based approaches[END_REF]. Moreover, the dimension of the test cases is limited to ∼ 10 due to the use of Kriging surrogate for the regression. This thesis proposes to perform reliability sensitivity analysis extracted from the First Order Reliability Method (FORM) outputs obtained by Surrogate-Based Optimization (SBO) replacing the gradient based optimization. Even if it provides important information such as the sensitivities, FORM with SBO is based on the linearity hypothesis of the LS which can not be proved in this application due to the use of different distribution laws. Both FORM with SBO, and ARC-Sub have been applied on the eXtended Finite Element Method (XFEM) industrial test case of blade support proving the conservatism of the design by assessing a very low probability of failure (< 10 -9 ). In few simulations, FORM with SBO provides reliability sensitivities and an approximation of the probability of failure which has to be verified due to the linear LS hypothesis. Requiring more model evaluations than FORM with SBO, but still acceptable in the industrial context, ARC-Sub deals with non-linear LS using SVM classifier to estimate the "true" probability of failure. To conclude, FORM with SBO appears as interesting to perform preliminary study of ARC-Sub which can assess more precisely the DT probability of failure.

The prospects offered by this research are multiple. As suggested, ARC-Sub is not adapted for anisotropic high dimensional case (different variations for each dimension) which shows limitations when the number of variables exceeds 10 ( [START_REF] Morio | A survey of rare event simulation methods for static input-output models[END_REF]. It is mainly caused by the use of Kriging regression based on a covariance function of the distance, whereas the SVM classifier is less impacted. As ARC-Sub is modular, it can be improved replacing the Kriging regression surrogate by one more adapted for high dimension, such as Kriging Partial Least Square (KPLS) [START_REF] Bouhlel | Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction[END_REF] or High Dimensional Model Representation (HDMR) [START_REF] Cai | An enhanced RBF-HDMR integrated with an adaptive sampling method for approximating high dimensional problems in engineering design[END_REF] methods.

The main, and new reliability methods proposed in this thesis has been capitalised in the optimization platform Minamo (C ++ language) developed by Cenaero to offer new prospects of exploitation. ARC-Sub has been developed in order to be versatile and independent from the failure modes considered in the space engine context, allowing extensions to other fields of application dealing with low probabilities. Indeed, the modularity of the method allows to modify the performance function which could be, e.g., associated to the plastification failure mode. Moreover, due to the hybridization of regression or classification, ARC-Sub seems well adapted, when the failure is characterized by computational crash because it can treat qualitative information for failed experiments.
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 11 Figure 1.1: Space engines developed by ArianeGroup (ArianeGroup, 2018) liquid propulsion department for Ariane 5 since 1995 and Ariane 6 which first flight is expected in 2020.

  Figure 1.2: General methodology to assess the damage tolerance reliability for space engine components.
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 1 Figure 1.2, two steps are distinguished:

  Figure 2.1: Three main fracture modes.

Figure 2

 2 Figure 2.4: XFEM. The purple line is the crack and the circles are nodes of the level-set region. The square and circle ones are respectively submitted to the discontinuity and LEFM enrichment functions located by the green dashed circle.

  Figure 2.8: Flowchart of the method of moments.
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 2 Figure 2.10: Flowchart of the Bayesian inference method.
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 2 Figure 2.11: Difference between the outputs Y PDF f Y (the continue blue curve) and f Y |X i (the dashed red curve) illustrates the disparity between the Sobol indices comparing the variances σ f Y with σ f Y |X i and the Borgonovo ones based on the difference (grey area) between both densities.

  Figure2.17: Flowchart of the IS method.
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 2 Figure 2.19: Flowchart of SS.
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 2 Figure 2.21: Modified Metropolis-Hastings principle. Starting from a seed individual (white circle), a new candidate is generated according to uniform distribution (the black dashed dotted square). There are three possibilities. The acception/rejection test of the chain fails, the seed individual is included in the new population.The new candidate (red polygone) is evaluated and if its M FAD is higher than q th (green area), it is rejeted and is replaced by the seed in the new population. The new candidate (blue star) is evaluated and if its M FAD is lower than q th (green area) it is included in the new population.
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 2 Figure 2.22: Kriging surrogate of M FAD according to the defect size parameter.The blue points are evaluated. The "true" M FAD is the dashed blue curve and the Kriging prediction mean is the continuous red line. Grey area represents the 95% confidence bounds of the Kriging prediction. Note that the regression seems accurate in the zone A (M FAD > 0) but there is discrepancy in the zone B (M FAD < 0) due to the horizontal segment below M FAD = 0 (dashed dotted black line).
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 22 Figure 2.23: Principle of the linear SVM.
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 2 Figure 2.25: Soft SVM margin illustration in the linear case.
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 2 Figure 2.26: Population selection.
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 2 Figure 2.29: Sampling selection.

  Figure 3.1: Scheme of the beam in traction test case.

  Figure3.2: Dispersion of the the crack length evolution according to the number of cycles extracted from the Virkler experimental data[START_REF] Virkler | The statistical nature of fatigue crack propagation[END_REF].
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 3 Figure 3.3: M FAD evolution in the standard space U.
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 3 Figure 3.4: 3D view of the M FAD evolution in the standard space U. The LS is the dashed dotted white line.

  Figure 3.5: Flowcharts of SBO-based FORM algorithm.

FocusedFigure 3

 3 Figure 3.6: Histogram of the mechanical sensitivities for the beam in traction test case. The light and dark red bars show respectively the first order and total Sobol indices. The dashed bars are Borgonovo ones.
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 3 Figure 3.7: Pie chart of the importance factors extracted from the FORM analysis for the beam in traction test case.

  Figure 3.8: Histogram of the elasticities on the reliability index β extracted from the FORM analysis for the beam in traction test case.

  a ∼ log N (0.3 mm; 1 mm).

  a ∼ log N (0.3 mm; 0.3 mm).

  a ∼ log N (0.3 mm; 0.1 mm).

  a ∼ log N (0.25 mm; 0.14 mm). a ∼ log N (0.25 mm; 0.14 mm) -0.25mm ∈ [0.0; 0.5].
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 39 Figure 3.9: Figures show the the defect size distribution laws tested to compare the probabilities of failure. The red line indicates the reference distribution a ∼ U0 mm; 0.5 mm and the test ones follows the dashed lines.
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 3 Figure 3.10: Force intensity distribution laws F . The reference is the dashed curve F ∼ N 20 kN; 2.5 kN and the test one is in red F ∼ U15670 kN; 8660 kN.
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 3 Figure 3.11: Distributions of Paris law exponent parameter m. The reference is the dashed curve m ∼ N (3; 0.3) and the test one is the continue green line m ∼ log N (3; 0.3).

  Reliability index β Probability of failure P f Force 4

  Figure 3.13: Histogram comparing the elasticities of the reliability index β from the displacement (red bars) and force (dashed bars) formulations extracted from the FORM analysis for the XFEM beam test case.
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  Figure 4.1: General idea of Adaptive Regression and Classification using Subset Simulation (ARC-Sub) method detailed in this Chapter.
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 4 Figure 4.2: SS is applied on the DT test case proposed in Section 5.3.1 The subset population size is set to 10 4 . The probability of failure of 1.53×10 -9 is obtained by ≈ 102000 DT model evaluations presented. Note, that the same accuracy requires 10 11 evaluations with MCS.
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 43 Figure 4.3: Flowchart of SS with surrogate.

  as illustrated in Figure4.5. The size of the initial doe is relative to the dimension d and the complexity of the performance function. It must explore the input space, and enrichment strategy are then used to intensify the search within the zone of interest.
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 45 Figure 4.5: Illustration on the DT text case detailed in Section 5.3.1 of the initial DoE obtained by identifying clustering centers (blue triangles) of the subset population u (1) SS (grey points).

  Figure 4.6: Illustration of the enrichment of the current DoE (black squares) for a new ARC-Sub step. The subset population is given by the grey points. The new experiments (blue triangles) are identified by clustering of the population which is predicted below the intermediate thresholds (dark grey points).

  is extracted to generate the new subset population u (k SS ) SS , with k SS = 2. Based on the Hkrig , a new threshold qth (k SS ) is determined and k DOE clustering centers in the population u (k SS ) SS |ỹ (k SS ) SS

  Figure 4.7: Flowchart of the regression phase of ARC-Sub.

  badly computed by the regression trained on a DoE containing failure experiments which values are not representative. A second criterion prevents a worse evaluation of the threshold due to failed experiments. The classification phase starts when k transition failure experiments are evaluated n DOE k I Hu (k SS ) DOE ≤0 < k transition (4.8) where I Hu (k SS ) DOE ≤0 is the indicator function. Arbitrarily, in the following, k transition is set to d, the dimension of the reliability problem.

Figure 4

 4 Figure 4.8: Illustration of the ARC-Sub regression steps applied on the DT test case proposed in Section 5.3.1. The blue triangles are the DT evaluation when M FAD > 0, whereas the red point shows ones when M FAD ≤ 0. Grey point represents the subset population evaluated using the surrogate. Note, that the differences of grey nuances show points which cross the intermediate threshold q (j) th .
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 4 ARC-SUB METHODOLOGY 4. Final estimator P f is computed with the updated SVM separator and the population u the flowchart of the classification phase of the ARC-Sub algorithm and the Figure 4.10 shows graphical results of the last ARC-Sub step on the DT test case detailed in Section 5.3.1.
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 4 Figure 4.10: Illustration of the last step of ARC-Sub on the DT test case proposed in Section 5.3.1. Grey points represent the SS populations, blue and red points are respectively the DT model evaluated individuals with M FAD > 0 and M FAD ≤ 0. The red and black lines are respectively the SVM, and the "true" LS.
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 5 Figure 5.2: Illustration of the four branches test case. Each plot shows ARC-Sub steps. Grey points are subset populations predicted using surrogate while blue triangles and red points are respectively safe and failed experiments of the DoE. Black and red curves are respectively true LS and final SVM separator.

Figure 5 . 3 :

 53 Figure 5.3: Scheme of the through crack case.

  Figure 5.4: Beam with a surface crack subjected to traction.
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 55 Figure 5.5: Illustration of the Vulcain engine.

  Figure 5.7: Scheme of the TEG blade support with its boundary conditions. The dashed area is fixed and the dark blue area follows a displacement in the z direction.
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 58 Figure 5.8: Illustration of APPROFI[START_REF] Echard | Reliability assessment of an aerospace component subjected to fatigue loadings: APPRoFi project[END_REF] random loading process. (a) The 9 studied flights . (b) Rainflow counting performed for each flight to define the histograms of amplitudes. (c) Cumulative distribution Functions (CDFs) are fitted (grey line). The blue line represents the mean trajectory and the red ones are the 95% confidence bounds. A new CDF can be generated using only one random variable from previous curves to obtain a new histogram of Rainflow counting.
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 59 Figure 5.9: Principal stresses in the TEG blade support subjected to ovalization of the nozzle.
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 5 Figure 5.10: Mesh of the TEG blade support obtained with Gmsh (Geuzaine and Remacle, 2009).
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 5 Figure5.11: Illustation of the mapping of linear LS from the physical X space (a) to the standard U space (b) for the cases X 1 ∼ N and X 1 ∼ U (continue red line) or X 1 ∼ N (dashed blue line). The linear LS becomes non-linear in U for the first case.
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 55 Figure 5.13 shows the importance factors extracted from the FORM analysis. It shows that the defect size, which follows a uniform distribution, is one of the

  

  

  

  

Stage I: Threshold Stage II: Paris propagation Stage III: Fracture
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	Figure 2.5: Schematic illustration of the crack growth rate dc dN as a function of ∆K.
	• In the stage II, the crack propagation is predictable because the growth rate
	is stable. It is generally described by the Paris's law:	
	dc dN	= C∆K m .	(2.8)
	• The stage III is the final stage of the crack propagation. The growth rate
	accelerates and the crack becomes unstable leading to fracture. At this stage,
	K is bounded by the fracture toughness material property K IC .	
	During this stage, the crack grows quickly before attaining a stable growth
	rate.		

  Flowchart the MCS method. which is the distance in the standard space between the origin and the Most Probable Failure Point (MPFP) of the failure domain closest to the origin called P * defined by the coordinates u * . It is determined by solving the optimization problem u
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  ; Der Kiureghian, H.-Z.[START_REF] Der Kiureghian | Second-order reliability approximations[END_REF], a quadratic approximation around the MPFP based on Hessian and curvature evaluations is used, requiring however additional model evaluations. Note that, because the standard space is based on normal distributions, a difference between the true and the FORM/SORM LS outside a close region around the MPFP, does not have a significant impact on the quality of the FORM/SORM results.
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		Figure 2.15: Flowchart of FORM.	
	Some limitations of these approaches coming from an underlying hypothesis

of uniqueness of the MPFP are tackled by multi-FORM/SORM methods (Der Kiureghian and Dakessian

  is given. It is a Gaussian Process (GP) regression method Hkrig ∼ GP µ Hkrig , σ Hkrig (2.48)

  described in Section 2.6.4. The speed of this technique depends on the size of the population but it is generally instantaneous. The new experiment is chosen within the population, without requiring additional prediction. Nevertheless, it can suffer from lack of information, especially when only binary information is considered as it is the case for the SVM surrogate. Note, that the random selection determines the new experiment in the candidate population.

	DoE u DOE , y DOE	Surrogate
	Candidate population	Define the criterion
	Criteria assessment
	on the population
	u new	

  couples a well adapted SS method with the SVM classification surrogate which can deal with a non-continuous model. The methodology is improved by an enrichment strategy divided in three phases: localization, stabilisation and convergence. Note that the number of enrichment model evaluations is defined by a fixed value which can be tuned by the user. This method has similar capabilities as SS to assess very low probabilities requiring few thousand model evaluations to ensure a good accuracy.

The size of the DoE is quite important (> 1000) due to the employment of SVM classification at each subset step. The surrogate is trained without taking care of the DoE outputs values. A lot of simulations are "burned" to clearly identify intermediate LSs.

Table 3 .

 3 1 presents the random variables with their associated distributions for the guideline test case.

	Variable	Distribution
	W	U19.9 mm; 20.1 mm
	H	U299.9 mm; 300.1 mm
	t	U9.9 mm; 10.1 mm
	E	N (185000 MPa; 10%)
	σp0.2	N (600 MPa; 1%)
	σm	N (750 MPa; 1%)
	K 1C	N (2000 MPa; 1%)
	m	N (3 MPa; 10%)
	F	N (25 kN; 10%)
	a	U0 mm; 0.5 mm

Table 3 .

 3 1: Table of the random variables distributions for the analytical case.

Table 3 .

 3 4: Table of the probability of failure according to different crack propagation parameter distributions tested for the analytical case.

  [START_REF] Tong | A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling[END_REF] proposes a criterion adapted to the intermediate subset steps. This criterion, also based on the AK learning function, aims to ensure that only few candidates can have a probability of misclassification higher than 2.5%. Considering an AK probability p AK = Φ(-2) = 0.977 and a stopping probability p stop ∈ [p AK ; 1], the AK enrichment strategy stops when more than AK (u)) > p stop . It means that n SS -n stop individuals can have L AK (u) lower than the "classical" AK reference value 2. Indeed, due to the size n SS , their impact on the intermediate threshold and the associated LS may be considered as limited.

	n stop =	n SS p AK p stop	(4.6)
	individuals of the subset sample have a classification probability Φ (-L	

Table 5 .

 5 1: Results of the parabolic test case.

	Method

Table 5 .

 5 2: Results of the four branches test case.

	Method

  Table 5.3.To get similar probability of failure, the classical SS and 2SMART need respectively 104889 and 3089 damage tolerance evaluations. ARC-Sub reduces the number of model calls by, respectively, ≈ 1000 and ≈ 20. The performances of ARC-Sub and 2SMART are explained by the fact that, unlike SS, damage tolerance model is replaced by a surrogate which clearly reduces the number of model calls. Moreover, ARC-Sub is more efficient than 2SMART to identify the failure regions due to the use of regression surrogate when it is possible instead of classification one which allows to use efficient enrichment techniques to quickly browse the safe region.
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	Table 5.3: Results of the through crack in a tension beam case considering two
	random variables.	
	Method	Evaluations p f
	SS (10000/step) (×10)	104889

Table 5

 5 

		.4: Properties of input random variables for a beam with a surface crack
	subjected to traction with 9 random variables	
	Variable Distribution Type Mean	Standard deviation
	c	Uniform	0.6 mm	0.29 mm
	a/c	Normal	1.0	0.0001
	e	Normal	50.0 mm	5.0 mm
	W	Uniform	120 mm	11.55 mm
	t	Uniform	15 mm	0.058 mm
	E	Normal	207 GPa	2.07 GPa
	σp0.2 K IC	Normal Normal	861 MPa 2432 MPa √ mm 243 MPa 8.61 MPa √ mm
	S 0	Normal	150 MPa	15 MPa

Table 5 .

 5 6: Reliability results for the TEG blade support case study.

	Method	Evaluations p f
	FORM with SBO 258	1.06 × 10 -9
	ARC-Sub	513	< ×10 -9

Remerciements

CHAPTER 2. DAMAGE TOLERANCE RELIABILITY REVIEW

Adaptive Kriging (AK) reliability methods

The AK-MCS methodology (Figure 2.30) associates the Kriging, the AK learning function and the MCS reliability methods. The idea is to replace the model evaluations in MCS by Kriging predictions obtained using an improved DoE with the population selection based on the AK learning function. The efficiency of the Adaptive Kriging Monte Carlo Simulation (AK-MCS) conducts several extensions of this approach to other reliability methods keeping M FAD ≤ 0 is present, the idea is to switch to a classification surrogate to identify the LS. Moreover, an adaptive strategy of the DoE has been developed. The main concept of the methodology named ARC-Sub is illustrated by the flowchart in 

Initialization

Regression based exploration phase

For the first subset steps, the goal is to assess the intermediate probability 

The generalized Max-Min, introduced by Lacaze (Lacaze and Missoum, 2014), multiplies the objective (4.12) by the joint density function φ

Both optimizations are solved by a local optimizer using the Chebychev norm (Lacaze and Missoum, 2014).

Using the Probabilistic Support Vector Machine (PSVM) formulation, it is possible to define the probability of misclassification P mc (u). [START_REF] Basudhar | Constrained efficient global optimization with support vector machines[END_REF] include this notion in order to select a new experiment which has a high probability to be misclassified.

In this thesis, it is proposed to combine both Max-Min criteria interpreted either as an exploration phase for the classical Max-Min or exploitation phase for the generalized one. The idea is to solve both optimization problems simultaneously and then select the new experiment which has the highest probability of misclassification. The next evaluated experiment is

This approach proposes a compromise between exploration and exploitation, based on the probability of misclassification which must be reduced.

Stopping criteria

At the last step of ARC-Sub, the DoE is defined to build a SVM separator as close as possible to the "true" LS. The dedicated enrichment strategy of the DoE proposed above finishes when the improvement of the SVM LS is satisfying. Among existing stopping criteria detailed in Section 2.6.3, the ARC-Sub one is related to the sign change of the last subset population u between two enrichment iterations. The value of the stopping criterion

is exponentially smoothed to avoid a premature convergence, and then compared to a reference value giving the count of individuals in the subset sample allowed to change sign.

Classification algorithm

Due to the considered hypotheses, such as LEFM ones, the DT model does not provide quantitative information for failed experiments. An alternative way to identify the limit state is to use SVM classification, based solely on the sign of the performance function. At the classification stage:

CLASSIFICATION PHASE
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• the DoE contains at least one failed experiment,

• the subset population u (s) SS is the last population generated at the regression phase.

The goal is to determine the final LS with a high accuracy. The DoE is improved to fit the best SVM separator. Indeed, the value of Pf is strongly dependent of the last subset probability pm which is assessed when stopping convergence criteria are satisfied.

Regression step k SS = s

Enrich the DOE by clustering

(1) Train SVM surrogate gSVM

(2) Evaluate SVM on u The classification phase is organized as follows:

1. Train a SVM separator HSVM on the DoE.

2. An adaptive strategy tailored for classification is applied to accurately describe the LS.

3. If convergence criteria are not satisfied repeat the previous step.

CHAPTER 4. ARC-SUB METHODOLOGY

Initialization

Generate initial subset population u

Build and evaluate a DOE 

Four branches test case

The four branches test case [START_REF] Waarts | Structural reliability using finite element methods: an appraisal of directional adaptive response surface sampling (DARS)[END_REF], is generally used to benchmark surrogate based reliability methods considering the performance function

with random variables X i ∼ N (0, 1), i = 1, 2 and constant parameter c 0 = 7. The difficulty of this test case comes from the presence of four MPFPs and requests the ability of the method to identify sparse failure domains.

ARC-Sub demonstrates its efficiency to detect the four failure domains requiring 131 simulations. However, even it outperforms MCS, SS and 2SMART (Table 5.2), it needs more performance function calls than AK-MCS to determine the probability of failure. This is due to the probability of failure ≈ 10 -3 which advantages an MCS based method because it does not require subset step as it is the case for ARC-Sub. ARC-Sub seems more adapted for low probability assessment (< 10 -6 ) while AK-MCS is limited requiring > 10 8 Kriging predictions, to ensure a 10% level of confidence. Moreover, the AK reliability methods are not adapted for the mixed qualitative/quantitative information specific to the DT application.

Note, that, ARC-Sub is based on the SS principle which requires to identify the directions of the failure region during the first quantile estimation of the threshold on the subset population. The four branches function is smooth enough and not highly non-linear to allow the detection of the four disjoint failure regions in the first subset step, which may not be the case of a highly non linear function.

Damage Tolerance beam test case

ARC-Sub has showed above its ability to solve efficiently academical test cases. This method is custom-built for the DT applications taking into account the specifity of the qualitative and quantitative information extracted from DT model assessment. In this section, the ARC-Sub method is applied on DT beam test cases. is performed on a representative (not the true) geometry of the TEG blade support.

For confidentiality reasons, only normalized inputs are provided.

Geometric variability

Geometric parameters of the TEG blade support are characterized by a value associated with manufacturing tolerance bounds. Despite uncertainties about these parameters, due to the specificity of Failure Assessment Diagram (FAD) posttreatment, the re-meshing imposed by variation of geometry weakly perturbs the outputs due the small ratio (< 0.04) between manufacturing tolerances and geometric values. We suppose the impact of these variations as negligible in comparison with other, more significant random inputs.