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Résumé: L’estimation non invasive de la mi-
crostructure du cerveau, composée d’un très grand
nombre de neurites, de somas et de cellules gliales,
est essentielle pour la neuro-imagerie. L’IRM de
diffusion (IRMd) est une technique prometteuse
pour sonder les propriétés microstructurelles du
cerveau en dessous de la résolution spatiale des
scanners IRM. En raison de la complexité struc-
turelle du tissu cérébral et du mécanisme complexe
de l’IRM de diffusion, l’estimation de la microstruc-
ture in vivo est un défi. Les méthodes existantes
utilisent généralement des géométries simplifiées,
en particulier des sphères et des bâtons, pour mod-
éliser les structures neuronales et obtenir des ex-
pressions analytiques des signaux intracellulaires.
La validité des hypothèses faites par ces méth-
odes reste indéterminée. Cette thèse vise à faciliter
l’estimation de la microstructure cérébrale par sim-
ulation en remplaçant les géométries simplifiées par
des modèles réalistes de géométrie des neurones
et les expressions analytiques des signaux intra-
cellulaires par des simulations d’IRM de diffusion.
Combinées à des modèles géométriques de neu-
rones précis, les simulations numériques d’IRMd
peuvent donner des signaux intracellulaires précis
et incorporer de manière transparente les effets ré-
sultant, par exemple, de l’ondulation des neurites
ou de l’échange d’eau entre le soma et les neurites.

Malgré ces avantages, les simulations d’IRMd
n’ont pas été largement adoptées en raison des
difficultés à construire des modèles géométriques
réalistes, du coût de calcul élevé des simulations
d’IRMd et de la difficulté à approximer les map-
pings implicites entre les signaux d’IRMd et les
propriétés de la microstructure. Cette thèse aborde
les problèmes mentionnés ci-dessus en apportant
quatre contributions.

Premièrement, nous développons un généra-
teur de maillage de neurones open-source de haute
performance et mettons à la disposition du pub-
lic plus d’un millier de maillages cellulaires réal-
istes. Le générateur de maillage de neurones,
swc2mesh, peut convertir automatiquement et de

manière robuste des données précieuses de traçage
de neurones (neuron tracing) en maillages de neu-
rones réalistes. Nous avons soigneusement conçu
le générateur pour maintenir un bon équilibre en-
tre la qualité et la taille du maillage. Une base
de données de maillage de neurones, NeuronSet,
qui contient 1213 maillages cellulaires prêts pour
la simulation et leurs mesures neuroanatomiques,
a été construite à l’aide du générateur de maillage.

Deuxièmement, nous avons augmenté
l’efficacité de calcul de la méthode de formalisme
matriciel numérique en accélérant l’algorithme
d’eigendecomposition et en exploitant le calcul
GPU. La vitesse a été multipliée par dix. Avec
une précision similaire, le formalisme matriciel
numérique optimisé est 20 fois plus rapide que la
méthode FEM et 65 fois plus rapide qu’une méth-
ode Monte-Carlo basée sur le GPU. En effectuant
des simulations sur des maillages de neurones réal-
istes, nous avons étudié l’effet de l’échange d’eau
entre les somas et les neurites, ainsi que la relation
entre la taille du soma et les signaux.

Nous avons ensuite mis en œuvre une nouvelle
méthode de simulation qui fournit une représen-
tation de type Fourier des signaux IRMd. Cette
méthode a été dérivée théoriquement et mise en
œuvre numériquement. Nous avons validé la con-
vergence de la méthode et montré que le com-
portement de l’erreur est conforme à notre analyse
de l’erreur.

Enfin, nous proposons un cadre fondé sur la
simulation pour une modélisation géométrique pré-
cise de l’imagerie de la microstructure du cerveau.
En exploitant les puissantes capacités de modélisa-
tion et de calcul, nous avons construit une base de
données synthétique contenant les signaux IRMd
et les paramètres de microstructure de 1,4 million
de voxels cérébraux artificiels. Nous avons montré
que cette base de données permet d’approximer
les mappings sous-jacents des signaux d’IRMd aux
fractions de volume et de surface en utilisant des
réseaux de neurones artificiels.
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Abstract: Non-invasively estimating brain mi-
crostructure that consists of a very large num-
ber of neurites, somas, and glial cells is essential
for future neuroimaging. Diffusion MRI (dMRI) is
a promising technique to probe brain microstruc-
tural properties below the spatial resolution of MRI
scanners. Due to the structural complexity of brain
tissue and the intricate diffusion MRI mechanism,
in vivo microstructure estimation is challenging.
Existing methods typically use simplified geome-
tries, particularly spheres, and sticks, to model
neuronal structures and to obtain analytical expres-
sions of intracellular signals. The validity of the as-
sumptions made by these methods remains unde-
termined. This thesis aims to facilitate simulation-
driven brain microstructure estimation by replacing
simplified geometries with realistic neuron geom-
etry models and the analytical intracellular signal
expressions with diffusion MRI simulations. Com-
bined with accurate neuron geometry models, nu-
merical dMRI simulations can give accurate intra-
cellular signals and seamlessly incorporate effects
arising from, for instance, neurite undulation or
water exchange between soma and neurites.

Despite these advantages, dMRI simulations
have not been widely adopted due to the difficulties
in constructing realistic numerical phantoms, the
high computational cost of dMRI simulations, and
the difficulty in approximating the implicit map-
pings between dMRI signals and microstructure
properties. This thesis addresses the above prob-
lems by making four contributions.

First, we develop a high-performance open-
source neuron mesh generator and make publicly
available over a thousand realistic cellular meshes.
The neuron mesh generator, swc2mesh, can au-
tomatically and robustly convert valuable neuron
tracing data into realistic neuron meshes. We

have carefully designed the generator to maintain
a good balance between mesh quality and size. A
neuron mesh database, NeuronSet, which contains
1213 simulation-ready cell meshes and their neu-
roanatomical measurements, was built using the
mesh generator. These meshes served as the basis
for further research.

Second, we increased the computational effi-
ciency of the numerical matrix formalism method
by accelerating the eigendecomposition algorithm
and exploiting GPU computing. The speed was
increased tenfold. With similar accuracy, the op-
timized numerical matrix formalism is 20 times
faster than the FEM method and 65 times faster
than a GPU-based Monte Carlo method. By per-
forming simulations on realistic neuron meshes, we
investigated the effect of water exchange between
somas and neurites, and the relationship between
soma size and signals.

We then implemented a new simulation
method that provides a Fourier-like representation
of the dMRI signals. This method was derived the-
oretically and implemented numerically. We vali-
dated the convergence of the method and showed
that the error behavior is consistent with our error
analysis.

Finally, we propose a simulation-driven super-
vised learning framework to estimate brain mi-
crostructure using diffusion MRI. By exploiting the
powerful modeling and computational capabilities
that are mentioned above, we have built a syn-
thetic database containing the dMRI signals and
microstructure parameters of 1.4 million artificial
brain voxels. We have shown that this database
can help approximate the underlying mappings of
the dMRI signals to volume and surface fractions
using artificial neural networks.





Abstract

Non-invasively estimating brainmicrostructure that consists of a very large num-ber of neurites, somas, and glial cells is essential for future neuroimaging. Dif-fusion MRI (dMRI) is a promising technique to probe brain microstructural prop-erties below the spatial resolution of MRI scanners. Due to the structural com-plexity of brain tissue and the intricate diffusion MRI mechanism, in vivo mi-crostructure estimation is challenging. Existing methods typically use simplifiedgeometries, particularly spheres, and sticks, to model neuronal structures andto obtain analytical expressions of intracellular signals. The validity of the as-sumptions made by these methods remains undetermined. This thesis aims tofacilitate simulation-driven brain microstructure estimation by replacing simpli-fied geometries with realistic neuron geometry models and the analytical intra-cellular signal expressions with diffusion MRI simulations. Combined with accu-rate neuron geometrymodels, numerical dMRI simulations can give accurate in-tracellular signals and seamlessly incorporate effects arising from, for instance,neurite undulation or water exchange between soma and neurites.
Despite these advantages, dMRI simulations have not been widely adopteddue to the difficulties in constructing realistic numerical phantoms, the highcomputational cost of dMRI simulations, and the difficulty in approximating theimplicit mappings between dMRI signals and microstructure properties. Thisthesis addresses the above problems by making four contributions.
First, we develop a high-performance open-source neuron mesh generatorand make publicly available over a thousand realistic cellular meshes. The neu-ron mesh generator, swc2mesh, can automatically and robustly convert valu-able neuron tracing data into realistic neuron meshes. We have carefully de-signed the generator tomaintain a good balance betweenmesh quality and size.A neuronmesh database, NeuronSet, which contains 1213 simulation-ready cellmeshes and their neuroanatomical measurements, was built using the meshgenerator. These meshes served as the basis for further research.
Second, we increased the computational efficiency of the numerical matrixformalism method by accelerating the eigendecomposition algorithm and ex-ploiting GPU computing. The speed was increased tenfold. With similar ac-
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curacy, the optimized numerical matrix formalism is 20 times faster than theFEM method and 65 times faster than a GPU-based Monte Carlo method. Byperforming simulations on realistic neuron meshes, we investigated the effectof water exchange between somas and neurites, and the relationship betweensoma size and signals.We then implemented a new simulation method that provides a Fourier-likerepresentation of the dMRI signals. This method was derived theoretically andimplemented numerically. We validated the convergence of the method andshowed that the error behavior is consistent with our error analysis.Finally, we propose a simulation-driven supervised learning framework toestimate brain microstructure using diffusion MRI. By exploiting the powerfulmodeling and computational capabilities that are mentioned above, we havebuilt a synthetic database containing the dMRI signals and microstructure pa-rameters of 1.4 million artificial brain voxels. We have shown that this databasecan help approximate the underlying mappings of the dMRI signals to volumeand surface fractions using artificial neural networks.In summary, this thesis proposes a novel approach to estimating brain mi-crostructure using realistic neuron geometric models and dMRI simulations.We developed a high-performance neuron mesh generator, optimized the nu-merical matrix formalism method to speed up the simulations, and proposeda method to approximate the implicit mapping between dMRI signals and mi-crostructural properties using artificial neural networks. We hope that thesecontributions will bring the significance of geometric modeling and simulationto the attention of the community and lead to the design of more advanced mi-crostructure imaging methods to explore the mysteries of the human brain.
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Résumé

L’estimation non invasive de la microstructure du cerveau, composée d’un trèsgrand nombre de neurites, de somas et de cellules gliales, est essentielle pourla neuro-imagerie. L’IRM de diffusion (IRMd) est une technique prometteusepour sonder les propriétés microstructurelles du cerveau en dessous de la ré-solution spatiale des scanners IRM. En raison de la complexité structurelle dutissu cérébral et du mécanisme complexe de l’IRM de diffusion, l’estimation dela microstructure in vivo est un défi. Les méthodes existantes utilisent générale-ment des géométries simplifiées, en particulier des sphères et des bâtons, pourmodéliser les structures neuronales et obtenir des expressions analytiques dessignaux intracellulaires. La validité des hypothèses faites par ces méthodesreste indéterminée. Cette thèse vise à faciliter l’estimation de la microstructurecérébrale par simulation en remplaçant les géométries simplifiées par desmod-èles réalistes de géométrie des neurones et les expressions analytiques des sig-naux intracellulaires par des simulations d’IRM de diffusion. Combinées à desmodèles géométriques de neurones précis, les simulations numériques d’IRMdpeuvent donner des signaux intracellulaires précis et incorporer de manièretransparente les effets résultant, par exemple, de l’ondulation des neurites oude l’échange d’eau entre le soma et les neurites.
Malgré ces avantages, les simulations d’IRMd n’ont pas été largement adop-tées en raison des difficultés à construire des modèles géométriques réalistes,du coût de calcul élevé des simulations d’IRMd et de la difficulté à approximer lesmappings implicites entre les signaux d’IRMd et les propriétés de la microstruc-ture. Cette thèse aborde les problèmesmentionnés ci-dessus en apportant qua-tre contributions.
Premièrement, nous développons un générateur de maillage de neuronesopen-source de haute performance et mettons à la disposition du public plusd’un millier de maillages cellulaires réalistes. Le générateur de maillage de neu-rones, swc2mesh, peut convertir automatiquement et de manière robuste desdonnées précieuses de traçage de neurones (neuron tracing) en maillages deneurones réalistes. Nous avons soigneusement conçu le générateur pour main-tenir un bon équilibre entre la qualité et la taille du maillage. Une base de don-
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nées de maillage de neurones, NeuronSet, qui contient 1213 maillages cellu-laires prêts pour la simulation et leurs mesures neuroanatomiques, a été con-struite à l’aide du générateur de maillage. Ces maillages ont servi de base auxrecherches ultérieures.Deuxièmement, nous avons augmenté l’efficacité de calcul de laméthode de formalisme matriciel numérique en accélérant l’algorithmed’eigendecomposition et en exploitant le calcul GPU. La vitesse a été multipliéepar dix. Avec une précision similaire, le formalisme matriciel numérique opti-misé est 20 fois plus rapide que la méthode FEM et 65 fois plus rapide qu’uneméthode Monte-Carlo basée sur le GPU. En effectuant des simulations sur desmaillages de neurones réalistes, nous avons étudié l’effet de l’échange d’eauentre les somas et les neurites, ainsi que la relation entre la taille du soma etles signaux.Nous avons ensuite mis en œuvre une nouvelle méthode de simulation quifournit une représentation de type Fourier des signaux IRMd. Cette méthodea été dérivée théoriquement et mise en œuvre numériquement. Nous avonsvalidé la convergence de laméthode etmontré que le comportement de l’erreurest conforme à notre analyse de l’erreur.Enfin, nous proposons un cadre fondé sur la simulation pour une modéli-sation géométrique précise de l’imagerie de la microstructure du cerveau. Enexploitant les puissantes capacités de modélisation et de calcul, nous avonsconstruit une base de données synthétique contenant les signaux IRMd et lesparamètres de microstructure de 1,4 million de voxels cérébraux artificiels.Nous avons montré que cette base de données permet d’approximer les map-pings sous-jacents des signaux d’IRMd aux fractions de volume et de surface enutilisant des réseaux de neurones artificiels.En résumé, cette thèse propose une approche novatrice pour l’estimation delamicrostructure cérébrale en utilisant desmodèles géométriques de neuronesréalistes et des simulations d’IRMd. Nous avons développé un générateur demaillage de neurones open-source de haute performance, optimisé la méthodedu formalismematriciel numérique pour accélérer les simulations, proposé uneméthode pour approximer le mapping implicite entre les signaux IRMd et lespropriétés microstructurelles en utilisant des réseaux de neurones artificiels.
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Chapter 1

Introduction

1.1 Introductin to human brain

The brain is the most important and complex human organ. It controls mosthuman activities, including body movement, vision, memory, emotion, reason-ing, and decision-making. The human brain consists of three major parts: thebrainstem, cerebellum, and cerebrum, as shown in fig. 1.1(a) [1]. The brain-stem connects the cerebrum with the spinal cord and controls vital functionslike breathing, heart rate, and sleep. The cerebellum lies at the posterior of thebrain, regulating body movement. The cerebrum is the largest part of the hu-man brain, which supports most brain functions. It is divided into left and righthemispheres. The cerebrum’s outer layer, also known as the cerebral cortex, isfolded to increase the brain’s surface area. The ridges are called gyri, and thegrooves are called sulci. Large sulci are often called fissures. For example, thelongitudinal fissure is the groove that splits the two cerebral hemispheres, asillustrated in fig. 1.1(b).
Each cerebral hemisphere can be further divided into four lobes, i.e., thefrontal, parietal, occipital, and temporal lobes. Although most brain functionsrequire the synergy of many different regions across the entire brain, it is stilltrue that each lobe is primarily responsible for certain functions. For example,the frontal lobes control high-level cognitive functions such as attention, mem-ory, and language [2]. It also contains the primary motor cortex located in theprecentral gyrus (marked in fig. 1.1(b)), which is responsible for voluntary move-ments [3]. The central sulcus separates the frontal lobes and the parietal lobes.The postcentral gyrus in the parietal lobe is next to the central sulcus. It con-tains the primary somatosensory cortex responsible for processing sensory in-puts, such as touch, temperature, body position, and pain [4]. The lists of brainfunctions are not exhaustive. The study of the functions of brain regions is still
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a research priority.
(a)

(b) (c)

Figure 1.1: Different views of the human brain. (a) The lateral view of the brain. Thecerebrum, the cerebellum, and the brainstem are indicated by the cyan, violet, andbrown regions, respectively. (b) The dorsal view of the brain. Three cerebral lobes canbe seen in this view. The cerebrum is divided into two hemispheres by the longitudinalfissure. (c) The inferior view of the brain. The temporal lobe and the two hemispheresof the cerebellum are visible. Pons and medulla are two major parts of the brainstem.Images from the book of Casey Henley [1], distributed under the CC BY-NC-SA 4.0 Inter-national license.
The functional units of the brain are cells. The two main types of cells inthe brain are neurons and glial cells (glia) [5]. A neuron consists of two com-partments: a cell body, also known as a soma, and neuronal processes calledneurites, as shown in fig. 1.2. The brain functions rely on the exchange of in-formation between neurons through neurites. There are two types of neurites:
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dendrites and axons. Dendrites project from the cell body and receive informa-tion from other neurons. An axon, or nerve fiber, is a thin projection extendingfrom a soma. The function of the axon is to transmit information to other cells.A single neuron may contact 30,000-60,000 cells, and the axon length rangesfrom < 1 mm to 1 m [6]. Neurons are supported by glial cells. The oligoden-drocytes, a class of glial cells, can wrap around the axon to form the insulatingmyelin sheath that facilitates the propagation of electrical signals [7].

soma

neurites

Figure 1.2: A microscopic image of a human neuron from the Allen Institute Cell Typesdatabase [8]. The neuron is stained by biocytin. Most visible neurites are dendrites.Axons are less visible because of their small radii. In the database, the neuron ID is643582610, and its donor is H17.06.013.
The human brain consists of 86 billion neurons and a similar amount of glialcells [9]. The extracellular fluid bathing the cells and spinal cord is called cere-brospinal fluid (CSF) [10]. Neurons, glial cells, and extracellular fluid are themaincomponents of brain tissue. According to the composition, brain tissue can bedivided into white and gray matter (WM and GM). Figure 1.3 illustrates the brainregions where the two types of tissues are located. White matter regions arebrighter than gray matter because it has a high density of myelinated axons.The lipid-rich myelin sheath renders the nerve fibers white [11, p. 129]. Graymatter regions mainly comprise somas and dendrites. Different gray matter re-gions are connected by axons passing through white matter.To visually demonstrate their differences, we present the microscopic im-ages of gray and white matter tissue in fig. 1.4. The 3D geometrical models ofsome selected cellular components are plotted to show the tissue microstruc-ture. The images and geometrical models are shared by a state-of-the-art brain
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Figure 1.3: An illustration of gray matter and white matter regions. Image from thebook of Casey Henley [1], distributed under the CC BY-NC-SA 4.0 International license.

histology study1 [12], which cut a stained human brain sample with a volumeof 1 mm3 into more than 5000 slices. An electron microscope then digitalizeseach slice. The 3D geometrical models of somas, neurites, and glial cells are con-structed based on the electron microscopic image stack. The gray matter imagein fig. 1.4(a) contains somas and numerous dendrites. The white matter imagein fig. 1.4(c) is composed of a large number of myelinated axons. For clarity, weonly show the 3D geometrical models of the colorized cellular components infig. 1.4(b) and fig. 1.4(d). Even with just a few cellular components, it is clear thatthe cellular organization in the brain is very complex. Neurons and glial cells areintertwined, with neurites pointing in all directions and the extracellular fluid fill-ing the entire space, making up the intricate microstructure of the human brain.Knowledge about the brain microstructure can help understand brain func-tions and neurological disorders. For example, finding the connectivities be-tween different gray matter areas allows us to understand how different brainregions work together. Moreover, numerous neurological disorders are linkedto changes in brain microstructure. Multiple sclerosis, for instance, is caused bydamage to the myelin sheath of axons [13]. The progressive loss of structureor function of neurons causes Alzheimer’s disease, frontotemporal dementia,Parkinson’s disease, etc. [14]. Other diseases, such as strokes and brain tumors,also alter the brain microstructure [15, 16]. Therefore, measuring parametersthat quantify brain microstructure is helpful in the diagnosis and treatment ofneurological disorders.Histological methods based on microscopic imaging can give precise mi-crostructural measurements. However, they are invasive and costly. For exam-ple, in the brain histology study mentioned above [12], the electron microscopicimages of the 1mm3 brain tissue occupy 1,400 terabytes. In addition, the brain
1https://h01-release.storage.googleapis.com/explore.html
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(a) (b)

(c) (d)

5 µm

5 µm 5 µm

15 µm

Figure 1.4: Microscopic images and 3D geometrical models of gray matter and whitematter tissue. The histological measurements are shared by the work of Shapson-Coeet al. [12]. (a) a microscopic image of gray matter tissue. It contains somas, dendrites,and unmyelinated axons. (b) the 3D geometrical models of the colorized cellular com-partments in (a). The gray plane represents the cross-section where (a) is located. (c)a microscopic image of white matter tissue. It mainly contains myelinated axons. (d)the 3D geometrical models of the colorized cellular compartments in (c). The gray planerepresents the cross-section where (c) is located.

tissue integrity is completely destroyed. These methods can only be performedpost-mortem.
Diffusionmagnetic resonance imaging (diffusionMRI, dMRI) is away to probethe diffusive motion of water protons by applying magnetic field gradient tobrain tissue [17–19]. Like conventional MRI, dMRI yields a series of grayscalemaps representing “virtual” brain slices, as shown in fig. 1.5. Each pixel in thegrayscale maps corresponds to a signal from a brain voxel (a cubic region in thehuman brain). The typical size of a brain voxel is 1mm3. Because themovementof water protons is restricted by, for example, cell membranes [20], brain voxels
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with varying microstructures generate different signals [11, 21], thus formingthe contrast in the grayscale maps. A simplified and qualitative explanation forthe dMRI contrast is that, in a grayscale map, pixels are brighter (darker) in ar-eas with strong (weak) restrictions on water diffusion. Diffusion MRI settings,such as the intensity of the magnetic field gradient and the diffusion time td,also affect the contrast of the grayscale maps. We will explain the dMRI set-tings in sections 1.2.2 and 3.1.1. Due to the sensitivity to structures below thespatial resolution of MRI scanners, dMRI is a compelling method to probe brainmicrostructure properties non-invasively.
weak gradient strong gradient

short
td

long
td

strong
restriction
(bright)

weak
restriction
(dark)

Figure 1.5: Six dMRI grayscale maps. In general, pixels are brighter (darker) in areaswith strong (weak) restrictions on water diffusion. Diffusion MRI settings, such as theintensity of themagnetic field gradient and the diffusion time td, also affect the contrastof the grayscale maps. The MGH CDMD dataset [22] provides the experimental data.
The above explanation about diffusion MRI is simplified. The following sec-tion will give a more comprehensive theory about the dMRI signal formationmechanism. One can design methods for probing brain microstructure basedon the understanding of magnetic resonance physics. Section 1.3 presents sev-eral existingmethods for brain imagingwith dMRI. Finally, we describe the thesis
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organization in section 1.4 to give an overview of the proposed framework forbrain microstructure imaging.

1.2 Introduction to diffusion MRI
Diffusion MRI allows us to encode the diffusive motion of water protons intothe dMRI signals. This technique relies on the phenomena of nuclear magneticresonance (NMR) and diffusion. We will describe the two phenomena to obtainthe Bloch-Torrey equation (BT equation) that governs the formation of dMRIsignals. Conventional methods for solving the BT equation are listed in sec-tion 1.2.2.

1.2.1 Nuclear magnetic resonance
Matter is made of atoms whose nuclei have magnetism and spin. Spin (de-noted by a quantum operator S) is the intrinsic angular momentum of atomicnuclei. For a nucleus, the nuclear magnetic moment µ is related to its spin by[23, p. 25]

µ = γS, (1.1)
where γ is the gyromagnetic ratio of the nucleus. For example, the gyromag-netic ratio of hydrogen nucleus, proton (ignore the rare isotopes), is γ =
0.26752 rad/(µs ·mT ).The nuclear magnetic moment interacts with magnetic field. NMR allows usto manipulate the nuclear spins and magnetic moment by externally appliedmagnetic fields. Generating magnetic fields is one of the main functions of MRIscanners. NMR involves three magnetic fields: a static field denoted by B0,a time-varying field called radiofrequency pulse (RF pulse), and an inhomoge-neous magnetic field generating a magnetic field gradient denoted byG. Next,we describe the role of the threemagnetic fields in NMR. Throughout this thesis,we only study the water proton (a spin-1/2 nucleus) due to its abundance in thehuman body.
Static magnetic fieldB0

The field B0 is homogeneous and static, applied by an MRI scanner to a sam-ple during the entire experiment. Powerful scanners for human imaging cangenerate a field of about 10 Tesla. We set a coordinate system by aligning thez-direction (longitudinal direction) with the direction of B0. In the transverseplane, the two axes (x- and y-axis) are fixed in the plane. We call the fixed coor-dinate system the laboratory frame (lab frame), as shown in fig. 1.6(a). In the lab
7



frame, we haveB0 = B0ez with B0 the strength of the static magnetic field and
ez the unit vector in the z-direction.

sample

B0

z

x
y

z′

x′
y′

ω

(a) lab frame (b) rotating frame

Figure 1.6: Two types of coordinate systems. (a) a laboratory frame. The scanner rep-resented by the cylinder applies a static magnetic field B0 to the sample (cuboid). Thelaboratory frame is fixed based on the magnetic field. (b) a rotating frame. The coordi-nate system rotates around its z-axis with an angular frequency of ω.
The static field plays two roles:
1. it disturbs the orientation distribution of proton spins to make them havea statistical preference to point along the direction ofB0 [24];
2. it makes the proton spins precess aroundB0 [23].
The precession of the spins aroundB0 is called Larmor precession. The an-gular frequency of the precession is

ω0 = γB0. (1.2)
For example, the precession frequency of a proton in a 10 Tesla magnetic fieldis 425 MHz.We do not aim to provide a quantum explanation for NMR, we refer to thebook of Malcolm Levitt [23] for that. The behavior of proton spins is inherentlyprobabilistic. Thanks to the spin density operator governing the quantum stateof an astronomically large number of spins, we can obtain a magnetization vec-tor

m = mxex +myey +mzez (1.3)
that describes the net magnetic moment (net spin polarization) of the spins [23,25], as illustrated in fig. 1.7.
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xy

m

Figure 1.7: Illustration of amagnetization vectorm that describes the netmagneticmo-ment of a large number of spins. The static magnetic fieldB0 in the z-direction perturbsthe distribution of the spin orientation, forming a net magnetic moment described bythe magnetization vectorm parallel toB0.
The magnetization vectorm is classical. Under a magnetic fieldB, it followsa differential equation [25, p. 35]:

dm

dt
= γm×B, (1.4)

where × is the cross product of two vectors. When B = B0, the solution ofeq. (1.4) describes the Larmor precession of the magnetization vector m [25].From now on, we employ the magnetization vector to describe NMR.
RF pulse

The RF pulse is a short-duration magnetic fieldB1 rotating around the z-axis inthe x-y plane at the Larmor frequency ω0. For protons whose gyromagnetic ratiois positive, the RF pulse rotates clockwise, namely,
B1(t) = B1 cos(ω0t)ex −B1 sin(ω0t)ey (1.5)

where B1 is a constant representing the strength of the RF pulse.The evolution of m is described by eq. (1.4) with B = B0 +B1. In addition,the initial condition is m(0) = m0ez with m0 the initial magnetization. In thiscase, the solution of eq. (1.4) is [25, p. 36]
m(t) = m0 [sin(ω1t) sin(ω0t)ex + sin(ω1t) cos(ω0t)ey + cos(ω1t)ez] , (1.6)
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with ω1 = γB1.Let us introduce a rotating coordinate system (rotating frame, see fig. 1.6(b))spinning around the z-axis with an angular frequency of ω0. The three unit vec-tors in the axes of the rotating frame are
e′
x = cos(ω0t)ex − sin(ω0t)ey,

e′
y = sin(ω0t)ex + cos(ω0t)ey, (1.7)

e′
z = ez.

In the rotating frame, the field B1 is always aligned with e′
x and the magnetiza-tion vector eq. (1.6) is

m(t) = m0

[
sin(ω1t)e

′
y + cos(ω1t)e

′
z

]
, (1.8)

which is a clockwise precession around the x-axis of the rotating frame (e′
x) withan angular frequency of ω1, as shown in fig. 1.8. The rotating frame makes theinterpretation easier. We will use it in subsequent chapters.

z′

x′

y′B1

m

ω1t

Figure 1.8: The precession of the magnetization vector around the RF pulse B1 in therotating frame. The angular frequency of the precession is ω1 = γB1.
The primary role of the RF pulse is to rotate the magnetization vector bya certain angle around B1. The angle, ω1t = γB1t, can be controlled by thestrength and duration of the RF pulse. Common angles are 90◦ and 180◦. A 90◦RF pulse flips a magnetization vector aligned withB0 to the transverse plane. Itis the coherent precession of a group of magnetization vectors that induces acurrent above the noise level in the receiving antenna and is solely responsiblefor generating theMRI signal. It is worth noting that the RF pulse delivers energyto the sample, thus having a heating effect [11, p. 16].RF pulses usually have a brief duration. Without the energy supply, the mag-netization vector will fall back to its thermal equilibrium state, which means it
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will realign with B0. The restoration of the thermal equilibrium state involvestwo relaxation mechanisms: longitudinal and transverse relaxation. The longi-tudinal relaxation means that the component mz of the magnetization vectorreturns exponentially to its initial value (m0). This relaxation is caused by theenergy loss from excited spins to their external environment [26]. We also referto the longitudinal relaxation as T1-relaxation because it is characterized by arelaxation time denoted by T1.
Transverse relaxation concerns the exponential decay of transverse mag-netization. The spin-spin interaction that destroys spin phase coherence is asource of transverse relaxation [27]. Transverse relaxation, also known as T2-relaxation, is characterized by T2 relaxation time. For brain tissue, T1 is on theorder of 1 second, and T2 is about 100 milliseconds [11, p. 12]. The T1 and T2relaxation times of human tissue can be obtained using NMR. They are valuablebiomarkers for structural MRI [28].
One important application of RF pulses is the spin echo proposed by ErwinHahn [17]. In the ideal case, all proton spins in the static magnetic field processwith the same Larmor frequency. However, in actual experiments, the mag-netic field is inhomogeneous, i.e., the magnetic field strength varies from placeto place. Therefore, the position of a spin determines its precession frequency,which broadens the spectrum of Larmor frequencies. The inhomogeneity orig-inates from instrumental imperfections, susceptibility effects, chemical shifts,etc. [23, 25]. The broadening of spectrum destroys the coherent precession of

m at different spatial regions, resulting in a fast decay of the signals. The spinecho method can recover a strong echo signal despite magnetic field inhomo-geneity.
The spin echo relies on a 180◦ RF pulse following the 90◦ RF pulse that flipsthe longitudinal magnetization vector to the transverse plane. Figure 1.9 illus-trates the principle of spin echo. After the 90◦ RF pulse, magnetization vectorsfrom different points in space precess at different frequencies due to the fieldinhomogeneity. The spreading of themagnetization vectors is called dephasing.The 180◦ RF pulse reverses the orientation of magnetization vectors, forming aspin echo at the echo time TE.
Figure 1.10 shows an experimental spin echo signal [29, p. 91]. The receivedsignal can be treated as an amplitude-modulated signal whose carrier wave os-cillates at Larmor frequency.
The refocusing of the magnetization vectors is not perfect if the spins movein an inhomogeneousmagnetic field. Themotivation of diffusionMRI is to lever-age the dephasing due to the spin movements in a controlled inhomogeneousmagnetic field.
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Figure 1.9: Illustration of the principle of spin echo. The magnetization vectors fromdifferent spatial regions are plotted in the transverse plane of the rotating frame. Theangles between vectors demonstrate the phase differences between them. For clarity,we ignore the relaxation effects. The refocusing of magnetization vectors at time TE iscalled spin echo.
90◦ 180◦

t

echo

TE

Figure 1.10: Experimental echo signal. The figure is adapted based on the image of thebook of A.E. Derome [29, p. 91].

Magnetic field gradient

By adding a magnetic field gradientG to the static magnetic field, we purposelycreate an inhomogeneous magnetic field
B(x) = (B0 +G · x) ez, (1.9)

wherex represents a point in space andG = Gxex+Gyey+Gzez. Due to Gauss’slaw for magnetism (∇·B = 0), we haveGz = 0, which means the gradient mustlie in the transverse plane. We can tilt themagnetic field slightly at a certain angleto obtain a gradient pointing in the z-direction. The tilt angle is small because
B0/∥G∥ is larger than the voxel size [30]. For human imaging, amodern scannercan generate a magnetic field gradient up to 300 mT/m. Figure 1.11 shows thegradients parallel and perpendicular to the static magnetic field.
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(a) G = Gzez (b) G = Gxex

Figure 1.11: Magnetic field gradients parallel and perpendicular to the z-direction. (a)a gradient in the z-direction. The density of the magnetic field lines indicates the fieldstrength. The tilt angles are exaggerated. (b) a gradient in the x-direction.

Magnetic field gradient has threemain functions: (1) slice selection, (2) imageencoding, (3) diffusion encoding [11, p. 13]. We describe the first two functionsin this section. The last function will be presented in section 1.2.2.
Slice selection occurs by simultaneously applying a magnetic field gradientwith a 90◦ RF pulse for a short period. The magnetic field is inhomogeneousdue to the additional magnetic field gradient. Therefore, the Larmor frequencychanges along the direction of the gradient. When a 90◦ RF pulse is applied,only themagnetization vectors in a certain perpendicular slice are flipped ninetydegrees to generate MRI signals. Figure 1.12 demonstrates the slice selection.We notice that themagnetization vectors near the selected slice are also rotatedby a certain angle, giving a certain thickness to the selected slice. In practice, theRF pulses and the gradients havemore complex timeprofiles than the rectanglesshown in fig. 1.12 to improve the spatial selectivity. The technical details are outof the scope of this thesis.
After the slice selection, magnetization vectors at different regions evolvedifferently due to the heterogeneous micro-environment experienced by spins.For example, the T2 relaxation time varies across brain voxels, resulting in anon-uniform distribution of transverse magnetization. The spatial distributionof magnetization can produce an image of the selected slice. Applying magneticfield gradient pulses in the transverse plane can help obtain this image.
Let us focus on the selected slice and study the distribution of trans-verse magnetization density in the rotating frame. The magnetic gradient is

G(t) = Gx(t)ex + Gy(t)ey. We denote Mx(x, t) (My(x, t)) the x-component (y-component) of the magnetization density at point x in the slice. Measuring MRIsignals using different magnetic field gradients allows us to obtain the initial dis-
13
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Figure 1.12: Illustration of slice selection by amagnetic field gradient and a 90◦ RF pulse.The cuboid represents a sample. The gradient produces a linear distribution of Larmorfrequencies in the z-direction. The 90◦ RF pulse with a frequency ω selects a slice inwhich magnetization vectors precess with the same frequency ω.
tributionMx(x, 0) andMy(x, 0).Substituting eq. (1.9) into eq. (1.4) and including the T2 relaxation, we obtainthe Bloch equation [27] governingMx(x, t) andMy(x, t):

∂Mx

∂t
= (ω0 + γG · x)My −

Mx

T2
, (1.10)

∂My

∂t
= − (ω0 + γG · x)Mx −

My

T2
. (1.11)

Let M ′
x(x, t) and M ′

y(x, t) denote the x- and y-component of the transversemagnetization in the rotating frame. In addition, we define a complex-valuedfunctionM ′ to represent the transverse magnetization
M ′ ≡M ′

x − ıM ′
y, (1.12)

with ı the imaginary unit.By reformulating eqs. (1.10) and (1.11) in the rotating frame, we obtain thefollowing equation
∂M ′(x, t)

∂t
= −ıγG(t) · xM ′(x, t)− M ′(x, t)

T2(x)
, (1.13)

with an initial magnetization density distribution f(x) being
f(x) ≡M ′(x, 0) =Mx(x, 0)− ıMy(x, 0). (1.14)

The target is to find the unknown initial density distribution f(x) using MRI sig-nals.
14



We turn on the magnetic field gradient in a certain direction for a short du-ration. Suppose the gradient direction is ug, the gradient intensity is a constant
g, and the duration is η. The MRI signal at time η is

s =

∫
M ′(x, η)dx, (1.15)

which represents the total transverse magnetization in the selected slice.The solution of eq. (1.13) at the time η is [31]
M ′(x, η) = f(x)e−η/T2(x)e−ıγx·

∫ η
0 G(t)dt

= f(x)e−η/T2(x)e−ıgγηug ·x. (1.16)
Let us introduce a new variable k = gγηug/2π. The MRI signal is a function ofthe new variable

s(k) =

∫
f(x)e−η/T2(x)e−2πık·xdx. (1.17)

If the gradient duration is short, the T2 relaxation term is negligible. In thiscase, an MRI signal is a point in the Fourier spectrum of the unknown magne-tization density distribution f(x). One can sample the spectrum by taking thegradient in various directions in the transverse plane. An inverse Fourier trans-formof the sampled spectrumgives themagnetization density distribution f(x).If T2 relaxation is not negligible, the inverse Fourier transform yields the mag-netization density distribution attenuated by T2 relaxation.In practice, gradient sequences, such as echo planar imaging (EPI) pulsesequences and spiral pulse sequences, are proposed to improve the imagingquantity and speed up the acquisition [11, p. 17].
1.2.2 Diffusion and Bloch-Torrey equation

In the description presented in the above section, the effect of spin diffusionis largely ignored. This is acceptable if the magnetic field gradient is weak, sothe dephasing caused by spin diffusion is negligible. Diffusion MRI purposelyemploys a time-varying magnetic field gradient to make spins in motion out ofphase. The dephasing reflects the spins’ displacement in amedium. This sectionintroduces the Bloch-Torrey equation, a formal description of diffusion MRI.
Diffusion

When two solutions of different concentrations are mixed, the solution con-centration will gradually converge even without stirring. This transport phe-nomenon without bulk motion is called diffusion. In fluids, diffusion is causedby disordered collisions between an enormous number of particles. Due to the
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randomness of collisions, the movement of a particle is a stochastic process de-scribed by Brownian motion [32].From a continuum point of view, the randomness is averaged out, leaving adeterministic description of a continuous function. Let us take solution mixingas an example. Suppose the solution concentration is a function c, which is inho-mogeneous in a domain Ω. The concentration difference generates a diffusiveflux J described by Fick’s first law
J = −D0∇c(x, t), x ∈ Ω, (1.18)

where D0 is the diffusion coefficient of the solvent molecule. In addition, wehave the conservation law
∂c(x, t)

∂t
+∇ · J = 0, x ∈ Ω. (1.19)

Combining the two equations, we get the diffusion equation that describes theevolution of concentration
∂c(x, t)

∂t
= D0∇2c, x ∈ Ω. (1.20)

Diffusion MRI detects the random motion of spins in an inhomogeneousmagnetic field. The magnetization precession, the T2 relaxation, and the dif-fusion give rise to the Bloch-Torrey equation governing diffusion MRI.
Bloch-Torrey equation

The introduction of a diffusion term to the Bloch equation eq. (1.13) is proposedby H.C. Torrey [33]. For clarity, we drop the superscript of the complex-valuedtransversemagnetization eq. (1.12) and refer to it asmagnetization. We concen-trate on the water proton diffusion inside a domain Ω, e.g., a neuron.By taking diffusion into account, the complex-valued magnetization M inthe rotating frame is governed by the Bloch-Torrey partial differential equation(Bloch-Torrey equation, BT equation) [33]:
∂

∂t
M(x, t) =

(
D0∇2 − ıγx ·G(t)− 1

T2

)
M(x, t), x ∈ Ω, (1.21)

with D0 the diffusion coefficient. The self-diffusion coefficient of watermolecules at 37 ◦C is 3× 10−3 µm2/µs [34].Inside the domain, the diffusion of water protons is restricted by, for in-stance, cellular membranes. The motion restriction is reflected by a boundarycondition
D0∇M(x, t) · n(x) = κM(x, t), x ∈ ∂Ω, (1.22)
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where ∂Ω denotes the boundary of Ω, n(x) is the unit outward pointing nor-mal vector of the point x in the boundary, and κ is the permeability or surfacerelaxivity of the boundary.The magnetic field gradient is typically turned on after the 90◦ RF pulse. Weset the time origin at the time when themagnetic field gradient starts. The initialcondition is
M(x, 0) = ρ, x ∈ Ω, (1.23)

where ρ is the initial magnetization density, which is assumed to be homoge-neous.Diffusion is an attenuation mechanism that we aim to leverage to reveal mi-crostructure properties below the scanner resolution. We achieve this by apply-ing a time-varyingmagnetic field gradient between the slice selection and imageencoding. Figure 1.13 illustrates a simplified version of a dMRI experiment set-ting. First, we perform the slice selection using a 90◦ RF pulse and a magneticfield gradient in the z-direction. Second, spin diffusion is encoded using mag-netic field gradients. The gradient time profile (between 0 and δ+∆) presentedin fig. 1.13 is called the pulsed-gradient spin echo (PGSE) sequence. A constantmagnetic field gradient is turned on for a duration of δ. Then at time ∆, thegradient is turned back on for the same duration. A 180◦ RF pulse is applied be-tween them to generate a spin echo. Finally, we perform image encoding usingmagnetic field gradients in the transverse plane. The dMRI signal is measuredat echo time TE. Similar to eq. (1.15), the dMRI signal is
s =

∫

Ω

M(x, TE)dx. (1.24)
The BT equation does not have a simple solution, especially when the shapeof the domain Ω is irregular. To simulate the dMRI signals, we need numericalmethods. The following section presents some conventional simulation meth-ods. It is worth noting that the structural properties we wish to probe contributeto the dMRI signal through boundary conditions. Consequently, the geometricalmodeling of the domain Ω is essential for dMRI simulation.The diffusion MRI signal generally depends on the gradientG and the echotime TE. If the domain is an open space where water protons can diffuse freelyin all directions, the dMRI signal has a simple form [35]

s = s0 e
−D0b, (1.25)

where s0 is the signal without the diffusion-encoding gradient and b called b-value is a diffusion-weighting factor. The signal s0 mainly reflects the effect ofT2 relaxation. Using the PGSE sequence presented in fig. 1.13, the b-value is
b = γ2g2δ2 (∆− δ/3) , (1.26)
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where g = ∥G(0)∥ is the intensity of the magnetic field gradient.
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Figure 1.13: Illustration of the RF pulses andmagnetic field gradients for a dMRI experi-ment. The slice selection is performed with a 90◦ RF pulse and a magnetic field gradientin the z-direction. Then, we turn on the PGSE sequence to encode spin diffusion. A 180◦RF pulse is turned on between the diffusion-encoding pulses to generate a spin echo.Finally, we perform image encoding using magnetic field gradients in the transverseplane.

Numerical methods

The predominant numerical methods to solve the BT equation include theMonte-Carlo method [36–42], the finite difference method [43], the finite ele-ment method (FEM) [44–46], and the matrix formalism (MF) method [47–50].Numericalmethods to solve the Bloch-Torrey equationwith arbitrary tempo-ral profiles have been proposed in [43, 45, 46, 51]. The computational domainis discretized either by a Cartesian grid [43, 51, 52] or by finite elements [45, 46,53–55]. The unstructured mesh of a finite element discretization appeared tobe better than a Cartesian grid in both geometry description and signal approx-imation [45]. For time discretization, both explicit and implicit ODE solvers havebeen used. The efficiency of diffusion MRI simulations is also improved by ei-ther a high-performance FEM computing framework [56, 57] for large-scale sim-ulations on supercomputers or a discretization on manifolds for thin-layer andthin-tube media [58]. Finite elements diffusion MRI simulations can be seam-lessly integrated with cloud computing resources [59]. AMATLAB Toolbox called
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SpinDoctor [44] is a diffusionMRI simulation framework based on solving the BTequation using finite elements and an adaptive time-stepping method.The Matrix formalism methods [47, 48], which decompose the solution ofthe BT equation onto Laplacian eigenbases, provide an exciting perspective tothe diffusion MRI signal. A numerical matrix formalism method that is adaptedto irregular geometries is provided by the SpinDoctor toolbox [49, 50]. In thisthesis, all FEM and MF simulations are performed with the SpinDoctor toolbox.Monte-Carlo methods use random walkers to mimic the diffusion processin a geometrical configuration. The implementations of Monte-Carlo methodinclude [36–42, 60, 61]. Some GPU-based Monte-Carlo simulators are also avail-able [62, 63]. Software packages using this approach include
1. Camino Diffusion MRI Toolkit [64], developed at UCL;
2. disimpy [65], a GPU-based Monte-Carlo simulator, developed at UCL;
3. Diffusion Microscopist Simulator, [37] developed at Neurospin, CEA;
4. A CUDA-based Monte-Carlo simulator [62].

1.3 Diffusion MRI for brain imaging
In this section, we introduce several brain imaging methods using dMRI sig-nals. The simplest method is to present the raw image whose contrast is givenby signal intensity, as shown in fig. 1.5. However, the signal intensity resultsfrom a combination of diffusion and other effects like relaxation. Therefore, in-terpreting the raw image could be difficult [66].Numerous dMRI methods are designed to obtain more specific informationfrom voxelwise signals. Most rely on modeling the dMRI signals from a brainvoxel to gain sensitivity to the underlying brain microstructure. This section de-scribes four common methods for dMRI brain imaging.

Apparent diffusion coefficient

We can assume a simple expression for the dMRI signal
s(b)/s0 = e−Deb. (1.27)

The effective diffusion coefficientDe, also known as the apparent diffusion coef-ficient (ADC), can be computed using two signals fromabrain voxel. The quantity
s(b) denotes a signal obtained with a magnetic field gradient whose diffusion-weighting factor is b. The second quantity s0 is the signal measured without the
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diffusion-encoding gradient. We refer to the fraction s(b)/s0 as the normalizedsignal or signal attenuation. The ADC can be empirically estimated by
De =

− ln (s(b2)/s(b1))

b2 − b1
, (1.28)

where s(b2) and s(b1) are the dMRI signals obtained with the b2 and b1 b-values,respectively [67].We can perform the above computation voxel by voxel to obtain a brainmapwhose contrast is given by voxelwise ADCs. However, the simple signal formulaeq. (1.27) is accurate only if water protons can diffuse freely [67]. The condition isgenerally not true due to the structural complexity of brain tissue. Nonetheless,eq. (1.27) is a satisfactory approximation to the dMRI signals when the Gaussianphase approximation (GPA) is applicable [68, 69]. The GPA depends on a pertur-bative method to expand the logarithm of the normalized signal at low b-values(cumulant expansion) [70]. One can obtain eq. (1.27) by keeping the first termof the cumulant expansion (when the higher-order terms are negligible).ADC maps have been commonly used in clinical practice, such as the detec-tion of cerebral ischemia [71] and monitoring tumor progress [72, 73].
Diffusion tensor imaging

A major application of diffusion MRI is tractography. For brain tissue with orga-nized fiber structure, such as white matter, the dMRI signal is anisotropic [20],which means the signal depends on the direction of the magnetic field gradient.The diffusion anisotropy is better handled using diffusion tensor imaging (DTI)[74]. The signal expression used in DTI is
s(b,ug)/s0 = e−uT

g Dugb. (1.29)
whereD is the diffusion tensor represented by a 3×3 symmetricmatrix,ug is themagnetic field gradient direction (a unit vector), and the superscript T denotestranspose. The product uT

g Dug represents the apparent diffusion coefficient indirection ug. Because D is symmetric, it has six independent numbers. Esti-mating a diffusion tensor requires ADCs measured in at least six non-collineardirections.Diffusion tensors can reveal the orientation of the underlying fiber structure.We achieve this by performing an eigendecomposition of the diffusion tensor.Because D is a real symmetric matrix, eigendecomposition is always feasible.We denote the three eigenvalues by λ1, λ2 and λ3. The corresponding eigenvec-tors are v1, v2 and v3. The direction of the eigenvector with the largest eigen-values indicates the major fiber direction in a voxel [75].
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The eigenvalues allow for the definition of useful biomarkers. The trace ofthe diffusion tensor is related to the mean diffusivity (λ)
λ =

1

3
tr(D) =

λ1 + λ2 + λ3
3

. (1.30)
Fractional anisotropy (FA) and relative anisotropy (RA) are two biomarkers toquantify diffusion anisotropy. They are defined as [11, p. 95]

FA =

√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

√
λ21 + λ22 + λ23

, (1.31)

RA =

√
1

3

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

λ
. (1.32)

For clinical practice, an increase in mean diffusivity indicates diseases suchas necrosis [76]. Fractional anisotropy is useful for assessing the maturation ofinfants’ cerebral white matter fiber [77] and reading ability [78]. Besides, DTIis suitable for detecting diseases due to white matter abnormalities, such asmultiple sclerosis [79] and Alzheimer’s disease [80].
Biophysical modeling - Standard Model

The twomethodsmentioned above do not make assumptions about the under-lying tissuemicrostructure. To improve sensitivity to brain microstructure prop-erties, biophysical models of diffusion MRI have become more and more pop-ular. The basic idea of biophysical modeling is “compartmentalization”, whichmeans the essential components (compartment) of a brain voxel are studiedseparately to get a signal expression for each compartment. The dMRI signalfrom a voxel is a weighted sum of the compartmental signals.We first describe a class of methods referred to as the “Standard Model” ofdiffusion in neuronal tissue [69]. This model assumes that a brain voxel hasthree compartments: intra-neurite, extra-neurite, and CSF.A collection of long cylindersmodels the intra-neurite compartment. The ori-entation of a cylinder is represented by a unit vector n, and a fiber orientation
distribution function (ODF) characterizes the orientation distribution of the cylin-ders. The ODF is denoted by P (n), which is normalized to one (∫ P (n)dn = 1).For diffusion properties, a cylinder is characterized by a longitudinal diffusion co-
efficient denoted by D∥cyl. The transverse diffusion inside a cylinder is assumedto be negligible. The signal from a cylinder is [69]

scyl = s0 e
−bD

∥cyl(g·n)2 , (1.33)
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with g the direction of magnetic field gradients.The diffusion in an extra-neurite space around a cylinder is characterized
by longitudinal and transverse diffusion coefficients denoted by D∥ext and D⊥ext,respectively. The signal from the extra-neurite space is [69]

sext = s0 e
−bD⊥ext−b(D

∥ext−D⊥ext)(g·n)2 , (1.34)
Water molecules are assumed to diffuse freely inside the last compartment,CSF, which gives rise to the CSF signal

scsf = s0 e
−bDcsf , (1.35)

with Dcsf the diffusion coefficient in CSF.Equations (1.33) to (1.35) are the signal expressions describing the diffusioninside and around a cylinder. They give a kernel function [69]
K(b, g · n) = fcylscyl + (1− fcyl − fcsf)sext + fcsfscsf (1.36)
= s0

[
fcyle−bD

∥cyl(g·n)2 + (1− fcyl − fcsf)e−bD⊥ext−b(D
∥ext−D⊥ext)(g·n)2 + fcsfe−bDcsf

]
,

where fcyl and fcsf are the signal fractions of the intra-neurite and CSF com-partments. It is worth noting that all compartments are assumed to be non-exchanging with this formulation.Finally, the signal from a brain voxel is
s(b, g) =

∫
P (n)K(b, g · n)dn. (1.37)

Equation (1.37) is a forward model with an explicit expression to describethe signal formation mechanism in a brain voxel. One can fit eq. (1.37) to mea-
sured signals to estimatemodel parameters, such as fcyl, fext, andD∥cyl. However,parameter estimation is not trivial. We refer to the review paper [69] for moredetails about the parameter estimation. This model and its variants are used toquantify neurite density and dispersion for gray and white matter in the litera-ture [81–84].
Biophysical modeling - SANDI

The above method assumes the contribution of cell bodies (neurons and glialcells) is integrated into the extra-neurite compartment. However, some studiessuggest that this assumption is not valid in the gray matter at high b-values [85–87]. Here, we describe the soma and neurite density imaging (SANDI) model [88],which incorporates the soma size and density into biophysical models.
22



Unlike the Standard Model, SANDI focuses on the direction-averaged sig-
nal. We denote the direction of magnetic field gradients as ug. The direction-averaged signal is

s ≡
∫

∥ug∥=1

sdug. (1.38)
SANDI assumes a brain voxel has three compartments: intra-neurite, intra-soma, and extracellular space (ECS). The signal from the intra-neurite compart-ment follows the Standard Model (eq. (1.33)). By taking the directional average,the intra-neurite signal is [88, 89]

sin = s0

√
π

4bDin erf
(√

bDin
)
. (1.39)

SANDI represents a soma as a sphere, and a group of somas is assumed tobe represented by an “average” sphere. Using PGSE sequences, the intra-somasignal is [88]
sis = s0 e

−D′isb. (1.40)
where D′is is a function of δ,∆, the soma radius ris and the intra-soma diffusioncoefficient Dis. The explicit form of D′is is [90, 91]
D′is =

2

Dsδ2(∆− δ
3
)
× (1.41)

∞∑

m=1

α−4
m

α2
mr

2
s − 2

(
2δ − 2 + e−α2

mDs(∆−δ) + e−α2
mDs(∆+δ) − e−α2

mDsδ − e−α2
mDs∆

α2
mDs

)

where αm is the m-th root of (αrs)−1J 3
2
(αrs) = J 5

2
(αrs), with Jn the Bessel func-tions of the first kind.The ECS is assumed to be a free diffusion space, which gives

secs = s0 e
−Decsb, (1.42)

with Decs the water diffusion coefficient in ECS.Finally, a weighted sum of compartmental signals gives the direction-averaged signal from a brain voxel
s =(1− fin − fecs)sis + finsin + fecssecs

s0

[
(1− fin − fecs)e−D′isb + fecse−Decsb + fin

√
π

4bDin erf
(√

bDin
)]

. (1.43)
Similar to the StandardModel, one can fit themeasured signals to the explicitsignal expression eq. (1.43) to get themodel parameters. In the original paper of
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SANDI [88], the intra-soma diffusion coefficient is fixed to 3× 10−3 µm2/µs anda random forest regression is used to estimate the remaining five parameters:
fin, Din, fecs, Decs, and rs. The estimation of the five SANDI parameters requiresat least five independent measurements with non-zero b-values [92]. An open-source convex optimization package, AMICO [93], provides a routine for fittingthe SANDI model to experimental data.
Summary

The above methods have a similar pattern. The first step involves proposinga forward model to explain the signal from a brain voxel. In the cases above,the forward models are the explicit signal expressions eqs. (1.27), (1.29), (1.37)and (1.43). The second step requires “inverting” the forward model to estimatethe model parameters, which serve as the biomarkers of brain microstructure.The explicit signal expressions require various assumptions. However, theseassumptions may not be valid. For example, the cumulant expansion and theGPA can fail with a weak magnetic field gradient whose intensity is lower than
20 mT/m [30, p. 246]. In addition, the validity regimes of several signal expres-sions depend on microstructure length scales [91]. A brain voxel may exhibitmultiple length scales (e.g., various soma radii) so that different validity regimesmay co-exist or emerge progressively [94], making model validation difficult.Besides, the complex brain microstructure shown in fig. 1.4 contrasts sharplywith the simple biophysical models. Subtle effects, e.g., neurite undulation andsoma-neurite water exchange, are not included.To overcome some drawbacks of the existing methods, we aim to replacesimple geometric models with realistic neuron models and explicit signal ex-pressions with diffusion MRI simulations. Indeed, the Bloch-Torrey equationprovides a “gold-standard” forward model allowing us to simulate trustworthyintracellular signals using realistic neuron geometrical models. Figure 1.14 com-pares the new model proposed in this thesis and the two biophysical models.

1.4 Thesis organization
The ultimate goal of this thesis is to facilitate brainmicrostructure imaging bydirectly using diffusion MRI simulations. There are three main challenges. First,we need precise geometrical modeling for neurons and glial cells. Existing neu-ron modeling tools [95–97] are mainly for visualization purposes. The quality ofthe model is not good enough for simulation. Besides, we need a large numberof neuron models to achieve simulation-driven brain microstructure imaging.Therefore, the modeling tool needs to be automatic and robust. To our knowl-
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Figure 1.14: Illustration of the two biophysical models and the new model proposedin this thesis. We aim to replace simple geometries with realistic neuron models andexplicit signal expressions with dMRI simulations.

edge, no such tool is available to the public. Second, the existing dMRI simula-tion tools are not efficient enough to perform simulations on a large number ofrealistic neuron models. Third, inverting the gold-standard forward model (BTequation) is non-trivial. Unlike the four methods mentioned in section 1.3, thesimulated signal does not have an explicit formula with specific model param-eters. The relationships between the microstructure properties and the simu-lated signals are implicit, non-parametric, and possibly high-dimensional. There-fore, solving the inverse problem is challenging.
This thesis will present the solution to the three challenges in the followingchapters. In chapter 2, we developed a high-performance open-source neuronmesh generator and made over one thousand realistic cellular meshes publiclyavailable. Chapter 3 describes two numerical simulation methods: the finite el-ement method and the numerical matrix formalism method. We increased thecomputational efficiency of the numerical matrix formalism method by a factorof ten. In chapter 4, a new simulationmethod that provides a Fourier-type repre-sentation of the dMRI signals is described and implemented numerically. Chap-
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ter 5 presents the proposed simulation-driven supervised learning frameworkfor dMRI brain microstructure imaging. We conclude the thesis in chapter 6.
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Chapter 2

Realistic Neuron Modeling

Diffusion MRI simulations and numerical phantoms can help deepen the un-derstanding of the relationship between the cellular structure and the diffu-sion MRI signal. They play a significant role in the formulation and validationof appropriate models in order to answer relevant biological questions. Numer-ical phantoms are less costly and more flexible than physical phantoms [98].Some recent works that use numerical simulations of the diffusion MRI signalas a part of model validation include [85, 87, 88, 99]. Simulations can help de-velop, test, and optimize MRI pulse sequences by modeling the response tonovel pulse sequences with various tissue features [100–103]. In fact, given therecent availability of vastly more advanced computational resources, simulationframeworks have increasingly been used as standard computational tools fortissue parameter estimation [61, 104].Despite these advantages, dMRI simulations of realistic brain tissues arestill limited due to the lack of available and sophisticated numerical phantoms.Constructing numerical phantoms is challenging. Few open-source phantom-generating toolboxes or pre-generated numerical phantoms are available to thepublic. The work presented in this chapter aims to change this situation by pro-viding the dMRI community with two sets of neuronmeshes suitable for numeri-cal simulation and an open-source neuronmesh generator. Throughout the the-sis, we refer to a collection of vertices, edges, and faces that defines the shapeof an object as a polygonmesh or simply amesh. Figure 2.1 illustrates a triangu-lated surface mesh and a tetrahedral volume mesh. Realistic neuron modelingaims to represent the shape of neurons using polygon meshes on which dMRIsimulations can be performed.Section 2.1 gives a general introduction to neuron tracing, which is the mostcommon way to record neuron morphology in neuroscience. In section 2.2, thedifficulties of generating neuron meshes suitable for diffusion MRI simulationsare explained. In section 2.3, we present Neuron Module, an open-source dMRI
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(a) (b)

Figure 2.1: Illustration of a triangulated surface mesh (a) and a tetrahedral volumemesh (b). Half of the meshes are made transparent to show the inside. A triangulatedsurface mesh is composed of a set of triangles defining the hull of an object. The spaceenclosed by the hull is empty. A volume mesh consists of a set of tetrahedra to modelthe shape of an object.

simulation package containing 65 pre-generated neuronmeshes, as our first at-tempt to model realistic neuronmorphology using triangulated surface meshesand tetrahedral volume meshes.However, the mesh generation pipeline used in Neuron Module was limitedbecause it requires commercial software and significant manual operations. Toovercome the drawback, we developed an open-source neuronmesh generatorcalled swc2mesh. We explain the implementation of swc2mesh and showcasefour main functionalities in section 2.4. We show that swc2mesh is automatic,robust, versatile, and user-friendly. The neuron mesh generator allows us tobuild a large-scale neuronmesh dataset, NeuronSet, that contains 1163 realisticneuron meshes and 50 glial meshes.We recall that the ultimate goal of the thesis is to facilitate simulation-drivenbrain microstructure estimation. Realistic neuron modeling, as the first contri-bution of this thesis, lays a solid foundation for achieving this goal.

2.1 Introduction to neuron tracing
Neuron tracing or neuron reconstruction is a fundamental technique usedin neuroscience to record neuronal morphology based on neuron microscopicimages. Nowadays, neuron tracing has become fully digital and increasingly au-
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tomated [105]. Specialized software [96, 97, 106] can semi-automatically traceneuron microscopic images to obtain 3D neuronal reconstructions [107], whichare typically encoded into a tabular format called SWC1 [108, 109].
(a) SWC format (b) neuron skeleton (c) rounded cone
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Figure 2.2: (a) an illustrative example of an SWC file. The example is only for illustrationpurposes. It does not originate from any real neurons. From left to right, the columnsrepresent node index, type of neuronal compartment, x, y, z coordinates, radius, andparent node index, respectively. For example, the second node represents a sectionof apical dendrite (type 4) located at [0, 0, 8] with a radius of 2 µm. It connects to itsparent (the first node). If the parent index is -1, the current node is the root. (b) a visualrepresentation of the neuron skeleton defined by the SWC file in (a). The red ⊗ symbolrepresents a soma node, and neurite nodes are denoted by red+. The blue lines whoselengths are l1, ..., l4 sketch the neuron skeleton. The dashed lines illustrate the neuronmorphology in 3D. (c) the rounded cone that can be used to connect two consecutivenodes.
An example of an SWC file is presented in fig. 2.2(a), including compartmenttypes, spatial coordinates, radius, and connectivities of each node. Each row ofthe table defines a soma or neurite node. The first column is the node index.The second column represents the type of neuronal compartment. For instance,soma, axon, and apical dendrite are encoded by 1, 2, and 4, respectively. The fol-lowing three columns are the node’s coordinates. The next column is the noderadius, whose interpretation depends on the type of neuronal compartment.For a neurite node, the value is the neurite radius at the node position. If thenode represents a spherical soma2, the sixth column is the sphere radius. The

1SWC stands for the initials of the last names of E.W. Stockley, H.V. Wheal, and H.M. Cole, whodeveloped a system for generating morphometric reconstructions of neurons [108].2Not all somas are represented as spheres. Soma format representation varies acrossdatabases. A summary of soma format representation can be found in https://neuromorpho.
org/SomaFormat.html.
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last column records the parent node index to which the current node is con-nected. More details about the SWC format can be found in the work of Cannonet al. [109]. Note that the term “neuron” often includes glial cells when it comesto neuron tracing. For the sake of simplicity, we keep this convention. More-over, we refer to a digital neuronal reconstruction stored in SWC format as a“neuron skeleton” because the set of nodes defines the “skeleton” of a neuron(see fig. 2.2(b)).
Thanks to the collective effort of the neuroscience community, there are sev-eral single-neuron skeleton databases accessible to the public. The most exten-sive database is NeuroMorpho.Org [110], which contains around 230,000 neu-rons of over 40 species contributed bymore than 800 laboratories worldwide. Inaddition to neuron skeletons, NeuroMorpho.Org provides neurons’ morphome-tric measurements and associatedmetadata. Databases like NeuroMorpho.Orgare employed to study synaptic integration, signal transmission, network con-nectivity, and circuit dynamics. Computational simulation is a promising appli-cation of neuron skeletons [107]. However, most mesh-based simulation meth-ods require neuron models as tetrahedral volume or triangular surface meshesinstead of neuron skeletons.
One can build a 3D neuronmodel based on an SWC file by connecting nodeswith cylinders or rounded cones (see fig. 2.2(c)). Numerous software packagesoffer such functionality for visualization purposes [95–97]. Imperfections suchas intersection, separate subcompartments, and broken surfaces are generallyignored as long as these defects do not significantly alter the morphology ofneurons for visualization. However, building simulation-ready meshes is muchmore difficult. Next, we discuss the challenges of building simulation-ready neu-ronal meshes.

2.2 Challenges of neuron mesh construction

This chapter aims to model realistic neurons by triangulated surface andtetrahedral volume meshes. We concentrate on the surface mesh generationbecause there are well-established tools, such as Tetgen [111], Gmsh [112], andCGAL [113], that can automatically tetrahedralize surfacemeshes. In addition toreconstructing neuronmorphology, themeshes should be suitable for diffusionMRI simulations.
A simulation-ready surface mesh should be a 2-manifold mesh withoutboundary edges, also known as watertight surface mesh [114]. More concretely,a set of triangles, i.e., a triangle soup, must form one closed surface so that theinside volume is well-defined. The defects that destroy the watertightness of a
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surface mesh include T-vertex, non-manifold vertex, intersection, non-manifoldedge, and hole, as illustrated in fig. 2.3 [114].
(a) T-vertex (b) non-manifold vertex (c) intersection

(d) non-manifold edge (e) hole

Figure 2.3: Five common defects that destroy the watertightness of a triangular surfacemesh: (a) a T-vertex marked by a red dot. (b) a non-manifold vertex marked by a reddot. (c) the intersection of faces. (d) a non-manifold edge marked by a solid red line. (e)a hole marked by the red pentagon.
Building a watertight neuron surface mesh is highly challenging due to thecomplexity of neuron structure. For example, intersections inevitably exist inareas where the bifurcations occur. Those defects can be eliminated throughseveral published tools [98, 115]. We also proposed a pipeline [116] that uti-lizes commercial software from the ANSA-BETA CEA system [117] to remove themesh defects manually. The pipeline with commercial software is presented insection 2.3.However, the meshing tools mentioned above [98, 115, 116] require man-ual operations through graphical interfaces to obtain a watertight neuronmesh.Themanual labor could be immense if hundreds of neuronmeshes are needed.The number ofmanual operationsmust be reduced tomake the large-scale neu-ronmesh generation practical. Moreover, the number of faces (triangles) shouldbe small3. Otherwise, dMRI simulations would be slow. Finally, the triangular el-

3Typically, the number of triangles (vertices) should be less than 300,000 (150,000) for dMRIsimulations to end within a few hours.
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ements should not be too elongated to minimize numerical error [118]. Thequality of a triangular element can be quantified by the aspect ratio ς defined astwo times the ratio of inradius and circumradius. Figure 2.4 shows the decreaseof aspect ratio as triangles become elongated. Aspect ratios range from 0 (asegment) to 1 (an equilateral triangle). The triangle quality, which is a key factoraffecting simulation accuracy, has been widely ignored in previous studies.
ς = 1 ς = 3/4 ς = 1/2 ς = 1/4

high-quality low-quality

Figure 2.4: Decrease of aspect ratio as triangles become elongated.
In summary, there are four requirements for neuron surface mesh genera-tion:
1. meshes must be watertight;
2. the mesh generation should be robust and almost automatic, requiringminimal manual operations;
3. the number of triangles should be small to reduce computational cost;
4. the triangular elements should be high-quality to minimize numerical er-rors.
All four requirements should be simultaneously satisfied, which is nontrivialdue to the structural complexity of neurons. Specifically, neuron structure ismultiscale. The neurite radius is about 1 µm, while the total neurite length canbe more than 1 mm. These multiscale 3D structures typically require a largenumber of triangles. However, as mentioned above, one must make a trade-offwith the number of triangles for computational efficiency.In addition, there is another tradeoff between the number and the qualityof triangles. Because neurites are typically cylindrical, triangles tend to be elon-gated in the axial direction as one reduces the number of triangles by simplifyinga neuron mesh. We must balance triangle quantity, mesh quality, and compu-tational efficiency. All the above difficulties add up, making automatic neuronmesh generation extremely hard. The remainder of this chapter is devoted toaddressing these difficulties.
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2.3 Neuron Module
Our first attempt to overcome the difficulties mentioned in the previous sec-tion involves exploiting available software. We constructed 65 realistic water-tight neuron meshes using three open-source packages and commercial soft-ware. These meshes and the program related to dMRI simulations are inte-grated into the SpinDoctor toolbox [44] as an independent block called NeuronModule [116].The mesh generation starts with the neuron skeletons stored in the archive

Allman [119] in NeuroMorpho.Org. We convert the neuron skeletons to surfacedescriptions using two packages: swc2vtk [95] and vtk2stl [120]. These surfacedescriptions are problematic because they containmany intersections andprox-imities (see fig. 2.5, left). We used commercial software from ANSA-BETA CEASystems [117] tomanually correct and improve the quality of the neuron surfacemeshes (in STL format) and produced new surface triangulations (see fig. 2.5,right) that are watertight. The new surface meshes are passed into the softwareGmsh [112] to obtain the tetrahedral volume meshes.

Figure 2.5: Left: a surface description of a pyramidal neuron, 02a_pyramidal2aFI, con-taining many intersections and other mesh defects. Right: a watertight surface meshwith mesh defects being fixed.
Figure 2.6 summarizes the pipeline that converts neuron skeletons to thetetrahedral volume meshes in the MSH format that the users of the NeuronModule will take as the input geometrical description to perform diffusion MRIsimulations. One can stop at the third step if only surface meshes are required.In Neuron Module, we provide both surface and volume meshes.To facilitate further study, we broke the neurons into disjoint geometricalcomponents: the soma and the dendrite branches. We manually rotated the
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vtk2stl
package
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Figure 2.6: Neuron mesh generation pipeline used in Neuron Module. Neuron skele-tons are converted to surface meshes (in STL format) by using swc2vtk [95] and vtk2stl[120]. Then ANSA was used to generate watertight surface meshes (in NAS format). Fi-nally, the NAS files were converted to tetrahedral volumemeshes in the MSH format bythe software Gmsh [112].

tetrahedral volumemesh of a neuron so that it lies as much as possible in the x-y plane. In this orientation, we cut the tetrahedral volumemesh into sub-meshesof the soma and the dendrite branches. As an illustration, we show in fig. 2.7 thespindle neuron, 03a_spindle2aFI4, split into sub-meshes of the soma and the twodendrite branches.

+ =

Figure 2.7: The tetrahedral volume mesh of the spindle neuron 03a_spindle2aFI is splitinto three disconnected geometrical components: the somaand twodendrite branches.
In theNeuronModule, we have a group of 36 pyramidal neurons and a groupof 29 spindle neurons found in the anterior frontal insula (aFI) and the anteriorcingulate cortex (ACC) of the neocortex of the human brain. These neurons con-stitute, respectively, the most common and the largest neuron types in the hu-

4NeuroMorpho.Org ID of 03a_spindle2aFI is NMO_01078.
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man brain [121, 122]. They share some morphological similarities, such as hav-ing a single soma and dendrites branching on opposite sides. We list the meta-data and some measurements of the 65 neurons in the appendix section A.2.Figure 2.8 presents several selected neuron meshes.
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Figure 2.8: Six realistic neuron meshes in the Neuron Module.
Requiring extensive manual operations is the main drawback of the abovepipeline (fig. 2.6). We repair non-watertight neuronmeshesmanually using com-mercial software. Splitting soma and neurites also requires manual annotationof the location of soma and neurites. Even though neuron meshes need to beconstructed only once, the significant amount of manual operations dramati-cally limits the number of meshes the pipeline can build. In the next section,we present an automatic neuron mesh generator that needs minimal manualoperations and can satisfy the four requirements discussed in section 2.2.

2.4 swc2mesh: an automatic mesh generator
The mesh generation pipeline used in Neuron Module started with a non-watertight surface description and produced a simulation-ready neuron meshby manually removing the mesh defects. This is not a good strategy because
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the quality of the initial mesh largely influences the performance of subsequentsteps. The initial mesh can be arbitrarily “bad” and never be fixed to be wa-tertight. This section adopts a new strategy: we first build a watertight surfacemesh with a large number of triangles and then gradually simplify the mesh toreduce themesh size. This new strategy can robustly generate simulation-readyneuron surface meshes.
2.4.1 Mesh generation pipeline

Figure 2.9 illustrates the new mesh generation pipeline. We have imple-mented it in a python package called swc2mesh5, which will be released as anopen-source project.

(a) (b) (c) (d) (e) (f)

Poisson
reconstruction

Isotropic
remeshing Simplification Tetgen

Point set
generation

Figure 2.9: Mesh generation pipeline. (a) the neuron skeleton defined by the SWC file infig. 2.2(a). (b) the point set densely covers the neuron’s surface. Each point is associatedwith an appropriate out-pointing normal vector (not shown in the figure). (c) the water-tight dense surface mesh built by the screened Poisson surface reconstruction method[123, 124]. (d) the isotropic mesh obtained by remeshing the dense mesh (c). Mosttriangles of the isotropic mesh have aspect ratios close to one (almost equilateral). (e)the final surface mesh obtained by simplifying the mesh (d) using an algorithm basedon quadric error metrics proposed by Garland et al. [125]. (f) the tetrahedral volumemesh generated by Tetgen [111]. Part of the volume mesh is cut out to show the inter-nal tetrahedra.
As the name swc2mesh suggests, it converts neuron skeletons in SWC formatto meshes. To satisfy the four requirements discussed in section 2.2, we lever-age three well-established computer graphics algorithms: the screened Pois-son surface reconstruction method [123, 124], an isotropic explicit remeshingmethod [126–128], and a surface simplification algorithm using quadric errormetrics [125].

5https://github.com/fachra/swc2mesh
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The screened Poisson surface reconstruction method (or Poisson method)[123, 124] takes an oriented point set as input to produce a watertight trian-gulated surface mesh. Any member in the point set contains two vectors: onevector being the coordinate of a point on the desired surface and the other be-ing the outward-pointing (from inside to outside) normal vector. The Poissonmethod treats the oriented point set as a vector fieldV and aims to find an indi-cator function χwhose gradient isV, i.e.,∇χ = V. The indicator function can beobtained by solving a Poisson equation (∇·∇χ = ∇V). The desired surface canbe reconstructed by extracting an appropriate isosurface of χ. As long as the in-put point set densely covers a closed surface and each point has an appropriatenormal vector, the Poisson method can ensure that the reconstructed surfacemesh is watertight.
Thanks to the Poissonmethod, our task is reduced to creating oriented pointsets covering neuron surfaces. We implemented a routine in swc2mesh to createoriented point sets using the Python programing language [129]. The basic ideaof point set creation is connecting the nodes defined in SWC files by roundedcones (see fig. 2.2(c)). Tens of millions of points are sampled on the surfacesof cones. The samplings follow the Fibonacci lattice pattern [130] to achieve auniform distribution.
Point set manipulation is easy because there are no connectivities betweenpoints. We can easily remove the points inside the neuron and carefully com-pute the normal vectors in bifurcation areas to prevent intersection. Once weobtain an oriented point set that densely covers the neuron surface, the Poissonmethod can produce awatertight surfacemesh. The drawback is that the outputmesh typically has more than one million triangles, which is excessively densefor diffusionMRI simulations. Besides, the surfacemeshmay contain numerouselongated triangles.
An isotropic explicit remeshing method [126–128] is then applied to thedense mesh. The remeshing method can reduce the number of triangles andimprove their quality by repeatedly applying edge flip, collapse, relax and re-fine operations to regularize the size and aspect ratio of triangulated surfacemeshes. High-quality triangles are nearly equilateral, with aspect ratios close toone. On average, neuron meshes are composed of hundreds of thousands ofhigh-quality triangles after this step.
Further mesh simplification is required to reduce the number of trianglesand make subsequent dMRI simulations efficient. We employ a simplificationmethod proposed by Garland et al. [125] implemented in PyMeshLab [127].The algorithm adopts an edge-collapse strategy based on quadric error met-rics. It allows us to aggressively simplify soma and thick neurites while keepingthin neurites almost unchanged. Moreover, we gradually apply the simplifica-
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tion algorithm to meshes until they can no longer be watertight or the numberof low-quality (“bad”) triangles whose aspect ratios are inferior to 1/3 exceeds20% of the total face number. The above two numbers are determined empiri-cally. The simplification algorithm can commonly reduce the triangle number toabout 100,000.It is worth stressing that the pipeline (from fig. 2.9(a) to fig. 2.9(e)) imple-mented in swc2mesh is fully automatic. However, due to the complexity ofthe neuron morphology, around 10% neuron surface meshes still need manualpost-cleaning after the simplification.Once a watertight mesh is created, Monte-Carlo dMRI simulations can di-rectly run on it. Tetgen [111] can robustly convert watertight surface meshes tovolume meshes based on constrained Delaunay tetrahedralization.
2.4.2 Implementation of swc2mesh

We implemented swc2mesh using the Python programing language [129] andPyMeshLab package [127]. Algorithm 1 is a pseudo code summarizing the mainsteps of swc2mesh.The input is an SWC file defining the morphology of a neuron. We developeda parser (swc_parser) to extract the nodes stored in the SWC file. Based on thesenodes, we build an oriented point set that densely covers the neuron surface.The remaining steps follow the pipeline explained in section 2.4.1. It is worthnoting that we iteratively simplify the surface mesh until it can no longer bewatertight or the “bad” triangle ratio is greater than 0.2. The last step helpsmaintain the balance between the quantity and the quality of triangular faces.Here, we briefly present the core functions used in swc2mesh. By changingthe input parameters, these functions can perform a variety of functionalities.In the next section, we demonstrate four essential functionalities of swc2mesh.

38



Algorithm 1: Implementation of swc2mesh
Data: swcfile (an SWC file)
Result: surfmesh (a surface mesh in the format of PLY, STL, OBJ, etc.)
beginnodes = swc_parser(swcfile)

# build an oriented point setpointset = point_set_builder(nodes)
# construct a watertight surface meshsmesh = Poisson_surface_constructor(pointset)smesh = isotropic_remeshing(smesh)surfmesh = deepcopy(smesh)
# iteratively simplify the surface mesh
while (bad_triangle_ratio(smesh)<0.2) and is_watertight(smesh) dosurfmesh = deepcopy(smesh)

# surface simplification using quadric error metricssmesh = QEM_simplify(smesh)
end
if not is_watertight(surfmesh) thenWarning("Mesh is not watertight.")
end

return surfmesh
end

2.4.3 Functionalities of swc2mesh
This section showcases four main functionalities of swc2mesh and how toachieve them using Python. We sort them in the order of complexity:
1. reconstructing a complete neuron mesh with simplification routine beingactivated;
2. changing the shape of soma;
3. building a mesh for a particular cellular compartment;
4. building an incomplete neuron mesh with several selected cellular com-partments.
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First, using three lines of code, swc2mesh can automatically build and savea neuron surface mesh based on an input SWC file. Listing 2.1 demonstrates asimple use case for constructing a single neuron mesh with the simplificationroutine being activated. It is worth noting that our package provides integratedfunctions to the users. Only the input andoutput files and appropriately selectedsettings are required from the users.The saved surface mesh is in the Polygon file format (PLY). Other formats,such as STL, OBJ, OFF, are also supported. We refer to the documentation6 ofPyMeshLab [127] for an exhaustive list of supported formats.
1 from swc2mesh import Swc2mesh
2 mesh = Swc2mesh("neuron_skeleton.swc")
3 mesh.build("neuron.ply", simplification=True)

Listing 2.1: A code snippet for generating a neuron surface mesh. The input is an SWCfile named "neuron_skeleton.swc". The generated neuron surfacemesh is saved in a filenamed "neuron.ply". The mesh generator automatically determines the mesh formataccording to the file extension. In this case, the mesh format is PLY.
In fig. 2.10, a representative neuron surface mesh overlaps the original mi-croscopic image of the neuron to demonstrate the realisticity of the recon-structed neuron mesh. The Allen Institute for Brain Science [8] provides themicroscopic image of the neuron7. It is found that the triangulated surfacemesh digitally reproduces the neuron morphology with extreme precision. Forvisualization purposes, different colors are assigned to each neuronal com-partment. The choice of color follows the convention adopted by NeuroMor-pho.Org8. When coupling the neuron meshes with advanced numerical simu-lators, we could expect different physical properties, e.g., permeability, to beassigned to the sub-regions.Second, swc2mesh supports four shapes of somas: sphere, ellipsoid, cylinder,and customized contour. Soma format representation varies across databasesand has more than four types of shapes. A summary of soma format repre-sentation can be found in the frequently asked questions (FAQs) in NeuroMor-pho.Org9. The first three shapes, known as single contours, account for 80 per-cent of the neuron skeletons archived inNeuroMorpho.Org. We give an examplefor each shape in fig. 2.11. A somawhose shape is customized contour is definedas a group of stacked cylinders. The convex hull of the group of cylinders forms

6https://pymeshlab.readthedocs.io/en/latest/io_format_list.html#
save-mesh-parameters7http://celltypes.brain-map.org/mouse/experiment/morphology/5456128288Please check the FAQ in NeuroMorpho.Org: How are different parts of the cells color codedin visualization?9Please check the FAQ in NeuroMorpho.Org: How is the soma format represented in thestandardized (CNG.swc) files?
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(a) (b) (c)

(d)

Figure 2.10: Overlapping of a real human neuronmesh with its original microscopic im-age. (a) the neuron’s microscopic image. In the Allen Institute Cell Types database [8],the neuron ID is 545612828, and its donor is H16.03.010. The neuron ID in NeuroMor-pho.Org is NMO_102562. (b) the neuron surface mesh overlapped on the microscopicimage. The red neurites are apical dendrites, the purplish blue neurites are basal den-drites, and the bright blue part is the soma. Themesh digitally reproduces themorphol-ogy of the real neuron. (c) the end of a neurite. The neuron mesh perfectly reproducesthe finest neurite structure. (d) some neurites around the soma. Note that the neuronsurface is triangulated.

the customized contour. The three examples of single contours in fig. 2.11 cor-respond to a pyramidal neuron, 07b_pyramidal14aACC10, in the archive Allmanin NeuroMorpho.Org. The example of customized contour corresponds to a ratcell11 in the archive Spruston.With swc2mesh, changing the soma shape is easy. Users can specify the key-word argument soma_shape to control the soma shape (see listing 2.2).
1 from swc2mesh import Swc2mesh
2 # the keyword argument some_shape has four options:
3 # "sphere" (default), "ellipsoid", "cylinder", and "contour"
4 mesh = Swc2mesh("neuron_skeleton.swc", soma_shape="contour")
5 mesh.build("neuron_with_customized_soma.obj", simplification=

True)

Listing 2.2: A code snippet for generating a neuron whose soma is defined by acustomized contour. The neuron mesh is saved in OBJ format.
10The NeuroMorpho.Org ID of 07b_pyramidal14aACC is NMO_01066.11The rat cell is ri05 whose NeuroMorpho.Org ID is NMO_00885
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sphere ellipsoid cylinder customized contour

Figure 2.11: Four types of soma shapes supported by swc2mesh.

Third, swc2mesh can build a mesh for a particular cellular compartment. Forexample, users can construct a mesh for a single dendritic arborization. Line7 of listing 2.3 presents the way to build meshes of apical dendrites. It is alsopossible to separately build a group of meshes for all cellular compartments bysetting the keyword argument compartment to "all" (see line 10 of listing 2.3).In fig. 2.12, we demonstrate a neuron mesh as a whole and its cellular compart-mental meshes. We note that splitting compartments requires manual opera-tions in Neuron Module, while it is fully automatic using swc2mesh.
1 from swc2mesh import Swc2mesh
2 mesh = Swc2mesh("neuron_skeleton.swc", soma_shape=’ellipsoid ’)
3
4 # other compartments include: "undefined", "soma", "axon",
5 # "basal_dendrite", "apical_dendrite", "custom",
6 # "unspecified_neurites", "glia_processes"
7 mesh.build("apical_dendrites.stl", simplification=True ,

compartment="apical_dendrite")
8
9 # build a group of meshes for all cellular compartments
10 mesh.build("cell_compartments.stl", simplification=True ,

compartment="all")

Listing 2.3: A code snippet for generating cellular compartmental meshes. All meshesare saved in STL format.
The fourth functionality is that swc2mesh allows us to subtract cellular com-partments from a neuron or construct an incomplete neuron using several se-lected compartments. Listing 2.4 demonstrates two examples. The syntax "cell-apical_dendrite" indicates the subtraction of apical dendrites from the wholeneuron. Similarly, the syntax "soma+apical_dendrite" indicates that we build anincomplete neuron mesh using only soma and apical dendrites. The two exam-
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Figure 2.12: (a) a neuron mesh as a whole. All cellular compartments are connected.
(b) the meshes of cellular compartments automatically generated by swc2mesh. Eachcompartment has an individual surface mesh. They are disconnected.

ples are illustrated in fig. 2.13, respectively.
1 from swc2mesh import Swc2mesh
2 mesh = Swc2mesh("neuron_skeleton.swc", soma_shape=’ellipsoid ’)
3
4 # subtract apical dendrites from the neuron
5 mesh.build("incomplete_neuron_1.ply", simplification=True ,

compartment="cell -apical_dendrite")
6
7 # build an incomplete neuron using soma and apical dendrites
8 mesh.build("incomplete_neuron_2.ply", simplification=True ,

compartment="soma+apical_dendrite")

Listing 2.4: A code snippet for generating incomplete neuron meshes.
Wedemonstrate the excellentmodeling capabilities of swc2mesh through theabove use cases. We believe the neuron mesh generator can facilitate diffusionMRI simulations and thus help understand the formation of intracellular signalsand develop methods for microstructure imaging. Next, we present the firstapplication of swc2mesh, which is building a large-scale neuron mesh dataset.

2.5 NeuronSet: a large-scale neuron mesh dataset
With the neuron mesh generator, we can build a large-scale neuron meshdataset by converting neuron skeletons stored in NeuroMorpho.Org tomeshes.We refer to the neuron mesh dataset as “NeuronSet”, which contains 1213 real-
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Figure 2.13: (a) an incomplete neuron mesh constructed by subtracting an apical den-drite from the neuron. The mesh corresponds to "incomplete_neuron_1.ply" in list-ing 2.4. (b) an incomplete neuron mesh built with only soma and an apical dendrite.The mesh corresponds to "incomplete_neuron_2.ply" in listing 2.4.

istic human cellular meshes, including 1163 neurons and 50 glia12. Each neuronmesh corresponds to a real human neuron or glial cell. These cells were inde-pendently traced by 11 laboratories, stored in 11 archives, and reported on 22papers [8, 119, 131–150]. Table 2.1 lists the number of neurons in each archiveincluded in NeuronSet.
Table 2.1: The number of cells in each archive included in NeuronSet.

Archive Number of cells
in NeuronSet

Total number of
cells in archive Cell types Age classes References

Allen Cell Types 161 264 neurons adult [8, 134, 137]
Allman 65 65 neurons adult [119]
DeFelipe 126 126 neurons adult [133, 138]
Falcone 50 50 glia adult, infant [136, 139]

Hrvoj-Mihic_Semendeferi 85 85 neurons adult [135]
Jacobs 505 2649 neurons neonatal, adult, old [132, 140–146]
Lewis 142 142 neurons adult [131]
Linaro 14 14 neurons not reported [147]
Segev 6 6 neurons adult [148]

Semendeferi_Muotri 45 45 neurons adult [149]
Vuksic 14 14 neurons infant [150]

Each archive has a different protocol for neuron tracing. Key differences be-tween archives are related to the soma format and the integrity of axons. Tounify these archives, we make the following choices.
12NeuronSet is publicly available at https://github.com/fachra/NeuronSet.
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First, soma shapes are fixed to be spherical in NeuronSet because most so-mas are initially saved as spheres in NeuroMorpho.Org. For example, neuronsin archives Allen Cell Types, Hrvoj-Mihic_Semendeferi, Defelipe, and Falcone havespherical somas.
Second, long axons are not modeled by the cellular meshes. Of the elevenarchives, only the Allen Cell Types provides incomplete axons. Indeed, axonal ar-borization is highly complex and variable. Some axons can extend as long as 1m [6]. The diameter of unmyelinated axons in the mammalian brain varies be-tween 0.08 and 0.4 µm [151, 152]. Axons of hippocampal CA3 pyramidal cellshave around 150 bifurcation points with a total axonal length of 150-300 mm[153–155]. Moreover, a single cell may contact 30,000-60,000 neurons throughaxon [6]. The digital reconstruction of realistic axonal arborization is still chal-lenging for neuron tracing, not to mention generating surface meshes. For dif-fusion MRI application, long axons are believed to have a small impact on themeasured intracellular diffusion [88, 156]. We, therefore, do not include axonsin modeling.
In the following sections, we first display several representative cellularmeshes in the dataset. Then some statistics about mesh quality and mesh sizeare given. Finally, we conduct neuroanatomical measurements on the cellularmeshes.

2.5.1 Mesh visualization and statistics
We demonstrate our realistic neuron models by comparing a reconstructedneuron mesh with its original microscopic image in fig. 2.10. Here, we presentoneneuronmesh for each archive in fig. 2.14. Glial cells in the archive Falcone aretiny compared to the neurons. For clarity, we show them separately in fig. 2.15.
In addition to being realistic, all neuron surface meshes are watertight andsimulation-ready. The mesh quality, a commonly disregarded factor affectingthe simulation precision, has been considered. We refer to a triangle as low-quality or “bad” if its aspect ratio is inferior to 1/3. For each triangulated sur-face mesh, we evaluate the mesh quality using the proportion of bad triangles,i.e., the number of bad triangles divided by the total number of triangles. Fig-ure 2.16(a) is the histogram of the bad triangle proportion for all meshes in Neu-ronSet. Seventy-five percent of neuron meshes have a bad triangle proportionbelow 0.2, meaning that most meshes generated by swc2mesh have good qual-ity.
While maintaining the mesh quality, we reduce the mesh size as much aspossible using the simplification routine described in section 2.4. Figure 2.16(b)and fig. 2.16(c) are the histograms of the number of triangles and vertices. Themaximum number of triangles (vertices) is 300,000 (150,000).
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Figure 2.14: Visualization of one representative neuron surface mesh for each archive.The NeuroMorpho.Org IDs and the archive names are annotated around the neurons.

Besides, cellular meshes in NeuronSet correspond to human cells extractedfrom a wide range of brain regions. Figure 2.17 shows the regional distributionof the cells included in NeuronSet.
2.5.2 Neuroanatomical measurements

The neuronmeshes and skeletons enable themeasurements of various neu-roanatomical parameters. L-measure13 is widely used to measure neuron mor-phology based on skeletons [157]. However, L-measure cannot accurately mea-sure neurite area and volume because it treats neurite segments as cylinders.For example, the neurite area given by L-measure is the sum of the lateral areaof many cylinders. This simplified treatment omits the spatial variation of neu-
13http://cng.gmu.edu:8080/Lm/
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Figure 2.15: Visualization of three glial meshes in the archive falcone. The NeuroMor-pho.Org IDs and the archive name are annotated around the cells.
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Figure 2.16: Distribution of cellular mesh quality and size in NeuronSet. (a) histogramof bad triangle proportion. 75% meshes have a bad triangle proportion below 0.2. (b)histogram of triangle numbers of meshes. The maximum number is 300,000. (c) his-togram of vertex numbers of meshes. The maximum number is 150,000.

rite radius and the complex structure in bifurcation regions. We remedy thedefect by measuring the surface and volume on neuron meshes. We can getover 30 neuroanatomical parameters of biophysical interest based on neuronmeshes and skeletons. In this section, we present how tomeasure the area, vol-ume, soma radius, and neurite length using the example given in fig. 2.2. Thedefinitions of other neuroanatomical parameters are listed in the appendix sec-
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Figure 2.17: Cell distribution in brain regions. (a) distribution in neocortex layers. (b)distribution in brain lobes. (c) distribution in Brodmann areas.

tion A.1.
The soma radius rsoma is recorded in SWC files (typically in the sixth column ofthe first row). Stems are the branches attached to a soma. We denote by Nstemsthe number of stems. The sum of the distances between nodes subtracted by

Nstems × rsoma is the total neurite length Lneurite. For example, fig. 2.2(b) has onestem (Nstems = 1) and the total neurite length is∑4
i=1 li −Nstems × rsoma.With a watertight neuron surface mesh, the area Aneuron and volume Vneuroncan be efficiently computed [158]. Besides, the soma area is Asoma ≃ 4πr2 andvolume is Vsoma ≃ 4

3
πr3. It is straightforward that the area of neurites isAneurite =

Aneuron − Asoma and volume is Vneurite = Vneuron − Vsoma.These direct measurements give rise to some secondary neuroanatomicalparameters. For example, the neuronal neurite area (volume) fraction can bedefined as Aneurite/Aneuron (Vneurite/Vneuron).Finally, we show the distributions of these neuroanatomical parameters in
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fig. 2.18. The distributions are consistent with a large-scale study of brain cellmorphometry also conducted on NeuroMorpho.Org [159].
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Figure 2.18: Distribution of some neuroanatomical parameters for the mesh database.

2.6 Summary
Sophisticated numerical phantoms, the indispensable elements required bydiffusion MRI simulations, have been lacking in the community. Hence, somenumerical simulations are limited to spherical and cylindrical geometries whosephantoms are easy to build. For the same reason, dMRI simulations are still
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treated as just a basic tool to validate some simplified biophysical models. Eventhough diffusion MRI simulations based on the BT equation or Brownian mo-tion are more accurate than biophysical models, the lack of realistic numericalphantoms substantially restricts the widespread use of simulation methods. Asthe first contribution of this thesis, we provide a large number of realistic cel-lular meshes and a high-performance open-source neuron mesh generator tothe community. We emphasize that these neuron meshes are compatible withMonte Carlo and finite element simulation methods.Our first attempt is Neuron Module which includes 65 realistic neuronmeshes. They are enough for gaining insights into diffusion MRI physics. In thenext chapter, we will demonstrate several usages of the NeuronModule by con-ducting numerical simulations on the meshes. Nonetheless, Neuron Module isinsufficient.The main drawback of the mesh generation pipeline used in the NeuronModule is the low automation level. We implemented an open-source neuronmesh generator, swc2mesh, using three well-established computer graphics al-gorithms to overcome the drawback. As the name suggests, swc2mesh convertsneuron skeletons to simulation-readymeshes. Additionally, we have shown that
swc2mesh is automatic, robust, versatile, and easy to use. Finally, webuilt a large-scale neuron mesh dataset, NeuronSet, as the first application of the mesh gen-erator. Meshes in NeuronSet are of good quality and appropriate size, and theyplay an essential role in the new microstructure imaging method proposed inchapter 5.We cite two previous works in [98, 160] that describe new algorithms for gen-erating relevant tissue and cell geometries for diffusion MRI simulations. Thesetwo works are similar in spirit to ours, namely, the common idea is to providesynthetic but realistic cell/tissue geometries.Regarding the synthetic tissue/cell mesh generation problem, the work in[160] is more about the brain white matter. The work closer to ours is [98],which is about creating 3-dimensional neuron meshes based on neuron skele-tons. That paper contained detailed information about generating artificial neu-ron skeletons, which do not correspond to actual neurons but are analogousto realistic neuron skeletons obtained by tracing real neurons. In addition, theyused the software Blender14 and a Blender add-on "SWC Mesh"15 to generateneuron surface meshes. The salient points of our work, contrasted with [98],are the following:

1. swc2mesh aims to convert neuron skeletons in SWC format to meshes.Generating artificial neuron skeletons is not our objective. We note that
14https://www.blender.org/15https://github.com/mcellteam/swc_mesher
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realistic neuron skeletons from NeuroMorpho.Org and artificial neuronskeletons in SWC format are all acceptable inputs of swc2mesh.
2. swc2mesh is robust, automatic, versatile, and user-friendly. Unlike Blender,

swc2mesh does not require manipulation in a graphical interface, makinglarge-scale mesh generation possible.
3. The entire mesh generation pipeline, including the mesh simplificationroutine, is already open source.
4. We provide the simulation-ready realistic neuron meshes in publicly avail-able repositories.
However, we have not entirely solved the problem regarding numericalphantom generation. The final goal is to build brain voxel phantoms. For that,we need to densely pack the neurons so that ECS has a reasonable volume frac-tion and neurons must not intersect. The neuron packing is still an open ques-tion that is probably more challenging than neuron mesh generation, especiallyconsidering that thewidth of ECS canbe as narrowas 30nm [161, 162]. Nonethe-less, swc2mesh is a substantial advance toward brain voxel phantom generation.Even though we cannot wrap various neurons with an ECS compartment yet, itis possible to cover a single neuron mesh with a thin envelope to achieve ECSmodeling with reasonable volume fractions. Figure A.1 and fig. A.2 in section A.3give an example of a neuron wrapped by an ECS whose volume fraction is 31%.Another major challenge that prevents us from reaching the ultimate goal ofthis thesis is the low efficiency of dMRI simulators. For example, our work [116]shows that a FEM simulator needs around 10 seconds to compute a single dMRIsignal using a realistic neuron mesh. To leverage data-driven methods, hun-dreds of dMRI signals are needed for each neuron. It requires several monthsto finish the simulations on all neurons in NeuronSet, which is impractical. Thenext chapter presents two simulation approaches: the finite-element methodand the numerical matrix formalism method. Numerical matrix formalism pro-posed by Li et al. [49, 50] is a method that implements classic matrix formalism[47, 48] on FE discretization. Integrating matrix formalism with a finite elementmethod brings significant potential for improving computing efficiency. The sec-ond contribution of this thesis, the improvement of dMRI simulation efficiency,will be presented in the next chapter.
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Chapter 3

Solving Bloch-Torrey Equation with
Finite Element Discretization

One main objective of diffusion MRI is to non-invasively probe the brain mi-crostructure by encoding the motion of water protons with externally appliedmagnetic field gradient [18, 163]. This is highly challenging due to the structuralcomplexity of brain tissue and the intricate diffusion MRI mechanism. Existingmethods that estimate brain microstructure properties mostly rely on explicitforward models relating the dMRI signals with some microstructure properties.These forward models often require various assumptions and simplified geo-metrical representations of brain tissue, which are not always valid. A gold-standard forward model for describing the dMRI signal formation mechanismis the Bloch-Torrey partial differential equation (BT equation).The BT equation describes the time evolution of magnetization carried byspin-bearing particles inside a medium under the influence of diffusion, exter-nally applied magnetic field gradient, relaxation, and boundary restriction. Themathematical formulation of BT equation will be presented in section 3.1.Solving the BT equation is an effective way to simulate dMRI signals frombrain tissue. The previous chapter geometrically modeled the most importantcomponents of brain tissue, i.e., neurons and glia. This chapter concerns simu-lating dMRI signals from them.The predominant numerical methods of solving the BT equation include thefinite element method (FEM) [44–46], the Matrix Formalism (MF) method [47–49], and the Monte-Carlo method [36–42]. The FEMs have demonstrated theirpotential, including in high-performance computing settings [44, 49, 56, 57] andin manifolds settings for thin-layer and thin-tube geometries [58]. The MatrixFormalismmethod [47, 48], which decomposes theBT equation onto a Laplacianeigenbasis, provides a compact matrix formulation of dMRI signals.Monte-Carlo methods numerically simulate the motion of random walkers
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in a geometrical configuration. Software packages of Monte-Carlo methods in-clude Camino [64], DIFSIM [38], and disimpy [65].
Section 3.2 introduces a finite element method and a matrix formalismmethod implemented in the SpinDoctor toolbox [44]. Contrary to classic MF,which is limited to simple geometries, SpinDoctor’s MF implementation relieson finite element (FE) discretization of the computational domain. The combina-tion of MF with FE discretization enables MF simulation on complex geometries.We refer to SpinDoctor’sMF implementation as numericalmatrix formalism (nu-merical MF).
The main shortcoming of existing simulation methods is the high computa-tional cost. Current methods may take several months to run dMRI simulationson every neuron mesh in NeuronSet. We succeeded in improving the compu-tational efficiency of the numerical MF by a factor of ten. Compared with othersimulation methods, the new numerical MF is 20 times faster than SpinDoctor’sFEM implementation and 65 times faster than disimpy [65]. With the newnumer-icalMF,wefinished the simulations on 1213neuronmeshes in a fewweeks1. Theoptimization of the numerical MF is the second contribution of this thesis thatwill be presented in section 3.3.
To illustrate some potential uses of dMRI simulations, in section 3.4, we shownumerical examples of the simulated diffusion MRI signals in multiple diffusiondirections fromwhole neurons as well as from the soma and dendrite branches.The segmentation of neuron meshes, shown in fig. 2.7, allows us to study thewater exchange inside a neuron and the power-law scaling pattern of dendritesignals. Furthermore, by performing dMRI simulations on the 65 neurons inNeuron Module, we show that six markers defined on the simulated dMRI sig-nals can be related to the soma size. The preliminary studies in section 3.4 in-spire us to develop a simulation-based brain microstructure imaging methodthat will be presented in chapter 5.

3.1 Bloch-Torrey equation
This section explains the theoretical framework of diffusion MRI simulation.We specify the geometrical configuration, the formulation of BT equations, andthe diffusion-encoding sequences.
Suppose one would like to simulate dMRI signals due to water protons in-side a medium. A domain Ω = ∪N

i=1Ωi describes the medium that comprises
1We did not record in detail the time used for the simulation alone. However, in just threeweeks, we completed the generation of the 1213 neuron meshes, the code development for anautomated simulation pipeline, and the computation of dMRI signals for every neuron mesh.
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N non-overlapping compartments. Ωi denotes the i-th compartment which isa connected subset of Rn (n is 2 or 3), and ∂Ωi its boundary. The interface be-tween two compartments is denoted by Γij = Γji = Ωi ∩ Ωj for i ̸= j, and
Γij = ∅ if i = j. The outer boundary of the whole medium is ∂Ω and of the
i-th compartment is Γi = ∂Ωi ∩ ∂Ω. Figure 3.1 illustrates a 2-dimensional ex-ample of the geometrical configuration. Throughout this chapter, a domain Ωrepresents a 3-dimensional artificial brain voxel of N − 1 intracellular compart-ments (ICCs) wrapped by an extracellular space (ECS), and the boundaries andinterfaces model cellular membranes.Typical numerical descriptions of the geometrical configuration are polygonmeshes. For example, the neuron meshes constructed in chapter 2 serve as theintracellular compartments in numerical simulations.

Ω3

Ω4

Γ34

Ω1

Ω2

Γ12

Γ24

Γ3

Γ4

Ω =
⋃4

i=1 Ωi , ∂Ω = Γ3 ∪ Γ4

Figure 3.1: A 2-dimensional example of a rectangular domainΩ composed of four com-partments. Ω1 is the disk surrounded by the ring Ω2. The pentagon Ω3 is the third com-partment. The last compartmentΩ4 is the remaining area in the rounded rectangle. Thesmall circle Γ12 is the interface betweenΩ1 andΩ2. The big circle Γ24 is the interface be-tween Ω2 and Ω4. The rightmost edge of the pentagon, Γ3, is the outer boundary of thethird compartment, and the other edges Γ34 are the interface between Ω3 and Ω4. Γ4 isthe outer boundary of the fourth compartment. Γ1,Γ2,Γ13,Γ14, and Γ23 are empty sets.

3.1.1 General form of BT equation
In diffusion MRI, a time-varying magnetic field gradient is applied to encodethe diffusivemotion of water protons. Denoting the effective diffusion-encodingmagnetic field gradient byG(t), the complex transverse water proton magneti-zation in the rotating frame satisfies the Bloch-Torrey partial differential equa-tion (BT equation) [33]:
∂

∂t
Mi(x, t) =

(
∇ ·Di∇− ıγx ·G(t)− 1

Ti

)
Mi(x, t), x ∈ Ωi, t ∈ [0, TE], (3.1)
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where Di and Ti are respectively the self-diffusion coefficient and transverserelaxation time of water protons in the compartment Ωi (i ∈ {1, ..., N}), γ =
0.26752 rad/(µs · mT ) is the gyromagnetic ratio of the water proton [164], TEis the echo time, and ı is the imaginary unit. Magnetization, the density of pro-ton transverse magnetic moment, is a complex-valued function of position xand time t. Mi denotes the magnetization in Ωi. The externally applied mag-netic field gradient G(t) encodes the water protons’ displacements by makingthe magnetization out of phase.The initial magnetization is assumed to be equilibrial in the brain voxel:

Mi(x, 0) = ρ, x ∈ Ωi, i ∈ {1, ..., N}, (3.2)
where ρ is the initial magnetization constant.The outer boundaries are subject to surface relaxation [165, 166], which givesthe boundary conditions:

Di∇Mi(x, t) · ni(x) = κiMi(x, t), x ∈ Γi, i ∈ {1, ..., N}, (3.3)
where ni is the unit outward pointing normal vector of ∂Ωi, and κi is the surfacerelaxivity of Γi. Finally, we account for the permeability and guarantee the fluxcontinuity across the interfaces through the interface conditions [50, 167]:

Di∇Mi(x, t) · ni(x) = κij(Mj(x, t)−Mi(x, t)), x ∈ Γij, (3.4)
Di∇Mi(x, t) · ni(x) = −Dj∇Mj(x, t) · nj(x), x ∈ Γij, (3.5)

where i, j belong to {1, ..., N}, and κij characterizes the permeability of the in-terface Γij with respect to water. Due to the flux continuity eq. (3.5), we have
κij = κji. Compartments are coupled by the interface conditions.The order of magnitude of some physical quantities is: the cell membranepermeability to water protons is around 5 × 10−6 µm/µs [167–169]; the trans-verse relaxation time of water protons in brain tissue is in the order of 100 ms[170]; the self-diffusion coefficient of water protons at 37 ◦C is 3× 10−3 µm2/µs[34].The magnetic field gradientG is a 3D vector function whose intensity g(t) =
∥G(t)∥ and directionug(t) = G(t)/g(t) can varywith time. The vector functionGis often referred to as diffusion-encoding sequence, gradient sequence, or justsequence. It is indispensable in encoding the water proton diffusion that is re-stricted or hindered by the boundaries or interfaces into the magnetizationM .The aggregate magnetization in the entire domain Ω at time TE yields a mea-surable quantity, a dMRI signal. MRI scanners can vary the intensity, direction,and time profile of the diffusion-encoding sequence to obtain a series of dMRIsignals. One main objective of diffusion MRI is to infer the geometrical proper-ties of the compartments delimited by their boundaries (cell membranes) using
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a set of dMRI signals. To achieve this objective, the gradient sequence design iscrucial.Three common types of diffusion-encoding sequences include the pulsed-gradient spin echo (PGSE) sequences [18], the double pulsed-gradient spin echo(d-PGSE) sequences [171, 172], the oscillating gradient spin echo sequences oftype sine (sin-OGSE) and cosine (cos-OGSE) [173, 174]. Their magnetic field gra-dientsG are the product of the gradient intensity g, the gradient direction ug(t)and a time profile f(t). In other word,G(t) = g · f(t)ug(t).Figure 3.2 presents the time profiles of these sequences. The parametersthat define these sequences are the following,
1. PGSE: the pulse duration δ, the inter-pulse duration∆, the gradient inten-sity g, and the direction of the magnetic field gradient ug. The time profileof PGSE is

f1(t) =





1, 0 ≤ t ≤ δ,

−1, ∆ ≤ t ≤ ∆+ δ,

0, otherwise;
(3.6)

2. d-PGSE: the pulse durations δ1 and δ2, the inter-pulse durations∆1 and∆2,the mixing time tm, the gradient intensities g1 = g and g2 = αg, and thedirections of the magnetic field gradient ug1 and ug2 . The time profile ofd-PGSE is

f2(t) =





1, 0 ≤ t ≤ δ1,

−1, ∆1 ≤ t ≤ ∆1 + δ1,

−α, ∆1 + tm ≤ t ≤ ∆1 + δ2 + tm,

α, ∆1 +∆2 + tm ≤ t ≤ ∆1 +∆2 + δ2 + tm,

0, otherwise;
(3.7)

3. OGSE: the oscillating pulse duration δ, the period of an oscillation τ , theinter-pulse duration ∆, the gradient intensity g, and the direction of themagnetic field gradient ug. The time profile of sin-OGSE and cos-OGSE are

f3(t) =





sin
(
2πt
τ

)
, 0 ≤ t ≤ δ,

− sin
(

2π(t−∆)
τ

)
, ∆ ≤ t ≤ ∆+ δ,

0, otherwise;
(3.8)

and
f4(t) =





cos
(
2πt
τ

)
, 0 ≤ t ≤ δ,

− cos
(

2π(t−∆)
τ

)
, ∆ ≤ t ≤ ∆+ δ,

0, otherwise.
(3.9)
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Figure 3.2: Effective time profiles of some commonly used diffusion-encoding se-quences. The effect of refocusing 180◦ RF pulses is taken into account. (a) Pulsed-Gradient Spin Echo (PGSE) sequence. (b) double Pulsed-Gradient Spin Echo (d-PGSE)sequence. (c) Oscillating Gradient Spin Echo sequence of type sine (sin-OGSE). (d) Os-cillating Gradient Spin Echo sequence of type cosine (cos-OGSE).

The most commonly used sequence type is PGSE, proposed by Stejskal andTanner [18]. It has a wide range of applications in oncology [175], tractogra-phy [176], ischemic stroke identification [177], etc. The d-PGSE sequences aregood at preserving the diffusion-diffraction patterns that are shown to be closelyrelated to microstructural information [172, 178]. The OGSE sequences are be-lieved to have short diffusion times, allowing us tomeasure finer structures. Thisthesis mainly focuses on dMRI using PGSE sequences.
Equations (3.1) to (3.5) govern the time evolution ofmagnetization in all com-partments. Oncewe obtained themagnetization by solving the BT equationwitha given gradient sequence, the dMRI signal s from the voxel Ωmeasured at TE
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is the spatial integration of the magnetization:
s =

N∑

i=1

∫

x∈Ωi

Mi(x, TE)dx. (3.10)
In practice, the dMRI signal is normalized by the signal in the absence of gradientsequence, i.e.,G = 0, to get the signal attenuation

E =
s

s0
, (3.11)

where s0 denotes the signal without magnetic field gradient. The normalizationmainly leaves the attenuation due to diffusion and eliminates other effects suchas transverse relaxation [11, p. 6]. The dMRI signal s and the signal attenuation
E generally depend on the entire magnetic field gradient G. With one of thecommon sequences shown in fig. 3.2, s andE are functions of the correspondingsequence parameters listed above. For example, the signal attenuation of PGSEis a function of δ,∆, g and ug. In the literature, the first three parameters areusually replaced by two quantities: diffusion time td and bvalue (or simply b).Diffusion time is proposed to quantify the duration of water proton diffusionencoded by the magnetic field gradient. However, various diffusion time defi-nitions exist in the literature for PGSE sequence, such as ∆ − δ/3 [179], ∆ [11,180], and∆+ δ [181]. These definitions converge to∆ in the limit of δ

∆
→ 0, butit is still not clear whether the notion of diffusion time is well-defined for longpulses (i.e., δ ∼ ∆) [182]. We adopt the widely used definition td = ∆− δ/3 andonly take it as a rough estimation of the diffusion time.For PGSE sequence, the bvalue is defined as

b = γ2g2
∫ TE

0

(∫ t

0

f1(s)ds

)2

dt = γ2g2δ2(∆− δ/3). (3.12)
The reason for this definition is that in free diffusion or the case when the Gaus-sian phase assumption (GPA) is applicable, the signal attenuation is or can beapproximated by e−De·b whereDe is an effective diffusion coefficient, also knownas ADC. The ADC can be approximated using signal attenuation:

De(g,ug, δ,∆) =
−ln (E(g,ug, δ,∆))

b
. (3.13)

For isotropic free diffusion, the ADC is a constant that coincides with theself-diffusion coefficient. This phenomenon enables one to measure the self-diffusion coefficient of liquid molecules using diffusion MRI [34, 183]. For unre-stricted diffusion in an anisotropic medium, such as a polymer solution, charac-terized by a diffusion tensorD, the ADC depends only on the gradient direction
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andDe(ug) = uT
g Dug. Measuring ADCs in at least six noncollinear directions al-lows for diffusion tensor imaging [74]. For restricted diffusion, one canmeasurethe ADC when the Gaussian phase approximation is applicable so that the ADCis physically meaningful [68]. ADC is a useful clinical marker for distinguishinglow and high diffusivity regions. For example, the decrease of the ADCmay indi-cate ischemic stroke [184]. However, the apparent diffusion coefficient is oftenmisused in the literature. We refer to Grebenkov’s work [68] for clarification.

We stress that the Bloch-Torrey equation system (eqs. (3.1) to (3.5)) and thesignal computation (eqs. (3.10) and (3.11)) do not depend on the definitions ofdiffusion time, bvalue, and ADC.
3.1.2 A simplified form of BT equation

The general form of BT equation provides a complete description of the at-tenuation mechanisms related to dMRI. Although numerically solving the gen-eral form is already feasible, the computation is time-consuming and resource-intensive. We refer to the papers of Nguyen et al. [185] and Agdestein et al.[50] for the approaches to solve the general form of BT equation. This sectionintroduces two assumptions for simplifying the BT equation.
First, the boundaries and interfaces are assumed to be impermeable, i.e.,

κi = 0 and κij = 0 for i, j ∈ {1, ..., N}, meaning that we ignore the effect oftranscytolemmal water exchange. For human brain tissue, the cell membranepermeability is around 5 × 10−6 µm/µs, which corresponds to an intracellularwater residence time of ∼ 600 ms and an extracellular water residence time of
∼ 120 ms [169, 186, 187]. The impermeability assumption is reasonable whenthe diffusion time is significantly less than the water residence time. Based onthe extracellular water residence time, Yang et al. conservatively estimate thediffusion time should be of∼ 12 ms or less for the valid application of imperme-ability assumption to MR studies [187]. Palombo et al. extend the limit to 20 msfor diffusion MRI application [88]. Jelescu et al. estimate the inter-compartmentwater exchange time to be 15− 60 ms in the rat cortex and hippocampus basedon the NEXI model [188]. Our experiments on clinical dMRI data presented inchapter 5 suggest that the water exchange effect is minor when the diffusiontime is ∼ 46ms.

Second, we assume the transverse relaxation is homogeneous in all com-partments within a brain voxel, i.e., Ti = T for i ∈ {1, ..., N} where T is thetransverse relaxation time constant measured by, for example, Hahn echoes[17]. We stress that T can vary across brain voxels.
The first assumption decouples the magnetization in different compart-ments givingN independent BT equations. In addition, we introduce a new vari-able φ representing the magnetization unattenuated by relaxation and rescaled
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by initial magnetization. The new variable φ is defined as
Mi(x, t) = ρe−

t
T φi(x, t), x ∈ Ωi, t ∈ [0, TE], (3.14)

where φi is the restriction of φ to Ωi. Equation (3.14) is similar to Torrey’s treat-ment [33]. We refer to the new variable φ as nonrelaxed magnetization. The BTequation that governs φi is
∂

∂t
φi(x, t) = (Di∇ · ∇ − ıγx ·G(t))φi(x, t), x ∈ Ωi, t ∈ [0, TE], (3.15)

φi(x, 0) = 1, x ∈ Ωi, (3.16)
Di∇φi(x, t) · ni(x) = 0, x ∈ ∂Ωi, t ∈ [0, TE], (3.17)

where i is an integer ranging from 1 to N .Equation (3.15) is a simplified form of the BT equation that we obtained bymaking the two assumptions. The numerical methods that will be presented insection 3.2 and chapter 4 focus on solving the simplified form.Let us reformulate the signal attenuation E with φ. We denote by φ(x, t; g =
0) the nonrelaxed magnetization in the absence of magnetic field gradient and
Vi the volume of the compartment Ωi. According to the divergence theorem, weobtain2

Vi =

∫

Ωi

φi(x, TE; g = 0)dx. (3.18)
Dividing sby s0 cancels the initialmagnetization and the homogeneous trans-verse relaxation. Let Ei denote the signal attenuation of the i-th compartment,and we have

Ei =

∫
Ωi
ρe−

TE
T φi(x, TE)dx∫

Ωi
ρe−

TE
T φi(x, TE; g = 0)dx

=

∫
Ωi
φi(x, TE)dx

Vi
. (3.19)

Finally, the signal attenuation of a voxel is
E =

∑∫
Ωi
ρe−

TE
T φi(x, TE)dx

∑
ρe−

TE
T Vi

=

∑
ViEi∑
Vi

=
∑

f v
i Ei, (3.20)

where f v
i = Vi/

∑
Vj is the volume fraction of Ωi.Given the two assumptions, eq. (3.20) reveals that the voxel signal attenua-tion is the volume fraction weighted sum of the compartmental signal attenua-tions. Since compartments are decoupled, we can focus on solving eqs. (3.15)to (3.17) for a single compartment Ωi. The following section presents two meth-ods for solving the simplified BT equation.

2The derivation of eq. (3.18) is in section B.1.
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3.2 Numerical methods with FE discretization
This section introduces two well-established numerical methods, i.e., finiteelementmethod (FEM) and numerical matrix formalism (numerical MF), for solv-ing the BT equation based on finite element discretization. We will describe themain steps of each method and give the parameters that control the simulationprecision. However, the goal is not to provide a comprehensive manual for themethods. We refer to several works related to the SpinDoctor toolbox [44, 45,49, 50] for more details about these two methods.

3.2.1 Finite element method
The finite element method is a conventional method for numerically solvingdifferential equations. It relies on discretization in space to subdivide a large sys-tem into smaller and simpler parts. Typically, one performs spatial discretizationthrough segmentation (1D), triangulation (2D), or tetrahedralization (3D) of com-putational domains, as we did in chapter 2. The discretization is usually achievedby meshing tools such as Tetgen [111], CGAL [113], and Gmsh [112].
As explained in the previous section, we focus on solving eqs. (3.15) to (3.17)for a single compartment Ωi, i ∈ {1, ..., N}. Suppose the compartment Ωi is dis-cretized into a tetrahedral volume mesh consisting of K vertices {vk}k∈{1,...,K}.We adopt a FE space that is spanned by a set of continuous piecewise linearfunctions {ηk}k∈{1,...,K} (called P1 elements in FEM literature). The mesh verticesare also called FE nodes.
To give an intuition about how P1 elements are defined, we first provide anexample of one-dimensional P1 elements in fig. 3.3. Suppose a line is discretizedinto four segments delineated by five vertices {v1, ..., v5}. The P1 elements de-fined on the line are the set of piecewise linear functions {h1, ..., h5} shown infig. 3.3. Each P1 element corresponds to a vertex and is defined based on theposition of the vertex. For example, the function h3 has a value of 1 at the vertex

v3 and 0 at other vertices. Together with the fact that h3 is a piecewise linearfunction, it is completely determined. Other functions are defined in the sameway.
The P1 elements defined on the tetrahedral volume mesh of Ωi are the ex-tension of h’s to three dimensions. For example, the value of ηk is one at vk and0 at other vertices. Since ηk is piecewise linear, it is non-zero on the tetrahedrathat touch vk. The set of P1 elements forms a basis of the FE space defined onthe mesh of Ωi. We call it a FE basis. Three properties of the FE basis functionsare the following:
1. the value of ηk(vl) is 1 if k = l, 0 otherwise;
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Figure 3.3: Example of one-dimensional P1 elements defined on a line discretized intofour segments.
2. the value of ηk(x) is non-zero if and only if x is inside a tetrahedron with

vk as a vertex;
3. the product ηkηl (k, l ∈ {1, ..., K}) is non-zero (not a zero-valued constantfunction) if and only if vk and vl are the vertices of the same tetrahedron.
FEM searches for a solution in the FE space. To achieve this, we need theweak form of the BT equation. Letting u be a test function, the weak form is

d

dt

∫

Ωi

φi(x, t)u(x)dx = −Di

∫

Ωi

∇φi(x, t)∇u(x)dx−ıγ
∫

Ωi

x·G(t)φi(x, t)u(x)dx.

(3.21)An approximate solution of the equation system (eqs. (3.15) to (3.17)) issought for in the form
φi(x, t) =

K∑

k=1

ξk(t)ηk(x) = ξ(t)TH(x), (3.22)
where H(x) = [η1(x), ..., ηK(x)]

T is the vector of finite element basis func-tions, {ξk}k∈{1,...,K} are complex-valued time-dependent coefficients, and ξ(t) =
[ξ1(t), ..., ξK(t)]

T . The k-th coefficient coincides with the value of φi at vertex vk,i.e., φi(vk, t) = ξk(t). We note that the superscript notation T only denotes trans-
pose instead of the complex conjugate transpose denoted by †.We choose K test functions which are u = ηk, k ∈ {1, ..., K}. Substitutingeq. (3.22) into eq. (3.21), we obtain an ODE in the time interval t ∈ [0, TE] thatgoverns the vector function ξ(t)

M
dξ(t)

dt
= − (DiS + ıγJ(t)) ξ(t), (3.23)
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with M , S, and J(t) three real-valued matrices of size K × K. The matrix ele-ments are
[M ]mk =

∫

Ωi

ηm(x)ηk(x)dx, (3.24)
[S]mk =

∫

Ωi

∇ηm(x) · ∇ηk(x)dx, (3.25)
[J(t)]mk =

∫

Ωi

x ·G(t)ηm(x)ηk(x)dx, (3.26)
with m, k ∈ {1, ..., K}. The gradient directions of the three common types ofsequences do not vary with time (G(t) = g · f(t)ug). In these cases, the matrix
J(t) is a product of a time-independent matrix J ′, the gradient intensity g, andthe time profile f(t), i.e., J(t) = f(t)gJ ′. The elements of J ′ are

[J ′]mk = ug ·
∫

Ωi

xηm(x)ηk(x)dx, m, k ∈ {1, ..., K}. (3.27)
AsJ ′ is time-independent, we do not need to compute it at every time stepwhensolving eq. (3.23).The initial condition related to eq. (3.23) is

ξ(0) = 1 = [1, ..., 1]T , (3.28)
which is a consequence of the fact φi(vk, 0) = 1 = ξk(0) for k ∈ {1, ..., K}.Given the tetrahedral volume mesh of Ωi and the P1 elements, the matrixelements can be computed numerically. In the SpinDoctor toolbox, the matrixconstruction is performed with a vectorized routine proposed by Rahman andValdman [189].The matrices S and M are called stiffness and mass matrices, respectively,in the FEM literature. The matrix M is positive-definite and S is positive semi-definite [190]. Due to the three properties of the P1 elements mentioned above,all three matrices are sparse and symmetric.The particularity of eq. (3.23) is that it has amassmatrix on the left-hand side,making it a linearly implicit ODE. SpinDoctor calls MATLAB built-in ODE solverswith adaptive time-stepping to solve the ODE eq. (3.23) and obtain ξ(t) for t ∈
[0, TE]. The default ODE solver is ode15s [191]. Putting ξ(t) into eq. (3.22), weget the time evolution of φ. The signal attenuation from the compartment Ωican be computed with φ(x, TE) (see eq. (3.19)).Finally, we list the simulation parameters of SpinDoctor’s FEM implementa-tion, which control the precision of FEM simulation. They are the following:
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1. A discretization parameter H controls the maximum volume of the tetra-hedra. The software Tetgen [111] is called in SpinDoctor to tetrahedral-ize surface meshes or refine volume meshes. If one sets H to h µm3, themaximum volume of tetrahedra will be h µm3. If one setsH to−1, the de-fault discretization routine3 of Tetgen is triggered. Tetgen uses an adaptivemethod to discretize the volume and add new points to improve the meshquality [111]. Figure 3.5 shows a comparison of meshes with different spa-tial discretization;
2. A parameter rtol controls the relative residual tolerance of the solution atall points of the mesh at each time step. Roughly speaking, it controls thenumber of correct digits in all elements of ξ(t);
3. A parameter atol controls the absolute residual tolerance at all points ofthe FE mesh at each time step. This tolerance is a threshold below whichthe value of the solution becomes unimportant.

3.2.2 Numerical matrix formalism
Matrix formalism (MF) [47, 48] is a spectral method for solving BT equationswith a computational domain Ω. It represents the time evolution of magneti-zation in an explicit matrix form by projecting BT equations to the Laplacianeigenbasis of the given domain. The method’s main advantage is that once theLaplacian eigenbasis for a given computational domain is obtained, further com-putations with various dMRI settings aremuch faster [47]. The calculation of theLaplacian eigenbasis, also known as eigendecomposition, for a given computa-tional domain only needs to be performed once. However, the explicit Laplacianeigenbases are only known for some simple geometries, e.g., rectangles, cubes,disks, and spheres. It is nontrivial to find the Laplacian eigenbasis for an arbi-trary computational domain.
Li et al. [49, 50] proposed amethod to numerically compute Laplacian eigen-bases based on finite element discretization of computational domains. Thismethod not only retains the advantage mentioned above but also brings thegenerality of FEM. We refer to this method as numerical matrix formalism (nu-merical MF).
We will introduce the numerical MF in two steps: the first gives the represen-tation of the BT equationwith Laplacian eigenbases, and the second explains thenumerical computation of the eigenbases based on finite element discretization.

3https://wias-berlin.de/software/tetgen/1.5/doc/manual/manual005.html#cmd-q
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Matrix formalism representation

Consider the eigenvalue problem for the Laplace operator∇·∇ in the compart-ment Ωi (i ∈ {1, ..., N}) with zero Neumann boundary condition:
−∇ · ∇ψ(x) = λψ(x), x ∈ Ωi, (3.29)

∇ψ(x) · ni(x) = 0, x ∈ ∂Ωi, (3.30)
where λ is an eigenvalue of the Laplace operator andψ the corresponding eigen-functions. Soma basic facts of the eigenstates are [192, 193]:

1. The spectrum is discrete.
2. All eigenvalues are real and nonnegative.
3. All eigenfunctions can be chosen to be real-valued and form a completeorthonormal basis in the function space L2(Ωi).

Let {(λj, ψj)}j∈N∗ be a set of solutions of eqs. (3.29) and (3.30). We sort the eigen-values in non-decreasing order:
0 = λ1 < λ2 ≤ λ3 ≤ . . .

Since Ωi is a connected domain subject to the zero Neumann boundary condi-tion, λ1 is zero and ψ1 is a constant function [193]. In addition, we choose theeigenfunctions to be real-valued and form a complete orthonormal basis. Fornumerical purposes, we only keep the J smallest eigenvalues.We decompose the nonrelaxed magnetization φi to the truncated Laplacianeigenbasis {ψj}j∈{1,...,J} to get
φi(x, t) ≃

J∑

j=1

cj(t)ψj(x) = C(t)TΨ(x), x ∈ Ωi, t ∈ [0, TE], (3.31)
where {cj}j∈{1,...,J} are complex-valued time-dependent coefficients, C(t) =
[c1(t), ..., cJ(t)]

T is the projection of the magnetization to the Laplacian eigen-basisΨ(x) = [ψ1(x), ..., ψJ(x)]
T .The magnetization projection satisfies an ordinary differential equation [49,50]

d

dt
C(t) = − (DiΛ+ ıγA(t))C(t), t ∈ [0, TE]. (3.32)

The matrixΛ comprises the eigenvalues in its diagonal, i.e.,Λ = diag(λ1, ..., λJ).
A(t) is a J × J matrix that depends on the magnetic field gradient G(t). Theelements inA(t) are defined as

[A(t)]mk =

∫

Ωi

x ·G(t)ψm(x)ψk(x)dx, (m, k) ∈ {1, ..., J}2. (3.33)
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For the three common types of sequences, the matrix A(t) is a product of atime-independent matrix A′, the gradient intensity g, and the time profile f(t),i.e.,A(t) = f(t)gA′. The elements ofA′ are
[A′]mk = ug ·

∫

Ωi

xψm(x)ψk(x)dx, m, k ∈ {1, ..., J}. (3.34)
The initial condition related to eq. (3.32) is

C(0) =

∫

Ωi

Ψ(x)dx = [
√
Vi, 0, ..., 0]

T . (3.35)
In general, Λ and A(t) do not commute, so one cannot integrate eq. (3.32)unlessG is a piecewise constant function. For PGSE sequences which are piece-wise constant functions, solving eq. (3.32) does not require discretization in time.The magnetization projection at time TE is

C(TE) = e−(DiΛ−ıγgA′)δe−DiΛ(∆−δ)e−(DiΛ+ıγgA′)δC(0). (3.36)
From right to left, we explain the meaning of each term of eq. (3.36):

• C(0) is the initial value of the magnetization projection;
• e−(DiΛ+ıγgA′)δ describes the joint effect of diffusion (DiΛ) and gradient de-phasing (ıγgA′) of the first pulse whose duration is δ;
• e−DiΛ(∆−δ) represents the diffusion effect on the magnetization projectionduring the time interval [δ,∆];
• e−(DiΛ−ıγgA′)δ is the joint effect of diffusion and gradient dephasing of thesecond pulse;
• C(TE) is the final value of the magnetization projection at the echo time
TE.

Equation (3.36) reflects the theoretical advantages ofmatrix formalism. First,each attenuation mechanism is represented by a matrix in the explicit expres-sion. Second, the physical parameters, such as diffusivity and gradient intensity,which characterize the strength of the underlying attenuationmechanism, serveas scaling coefficients in front of the correspondingmatrices [47]. Third, the jointeffect of different mechanisms is formulated as the matrix addition. Fourth, theeffect of attenuation mechanisms on the magnetization projection is properlytranslated into the action of a matrix exponential to C.
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Similarly, the value ofC at time TE with d-PGSE sequences is a time-orderedexponential:
C(TE) = e−(DiΛ+ıγg2A′)δ2e−DiΛ(∆2−δ2)e−(DiΛ−ıγg2A′)δ2e−DiΛ(tm−δ1)

e−(DiΛ−ıγg1A′)δe−DiΛ(∆1−δ1)e−(DiΛ+ıγg1A′)δ1C(0). (3.37)
To solve eq. (3.32) with arbitrary gradient sequences, we can approximate

G(t)with piecewise constant functions [47]. We can also computeC(TE) usingconventional ODE solvers. PuttingC(TE) into eq. (3.31), we find φi(x, TE), thusthe solution of eq. (3.15) as well as the signal attenuation Ei (eq. (3.19)).
Characteristic length and time scales

Laplacian eigenstates can be associated with characteristic length and timescales. On a line segment of length R (represented by an interval [0, R]), the
j-th eigenvalue λj is π2(j − 1)2/R2, and the corresponding eigenfunction is
cos(

√
λjx), x ∈ [0, R]. The half wavelength of the j-th (j > 1) eigenfunction

is π/√λj . In analogy with the 1D case, we define the characteristic length scale
ℓ for a Laplacian eigenvalue λ as [49, 50]

ℓ(λ) =

{
+∞, λ = 0,
π√
λ
, λ > 0.

(3.38)
The time scale τ(λ) sets a “lifetime” for the eigenstate associated with λ [48],

τ(λ) =

{
+∞, λ = 0,
1

Diλ
, λ > 0.

(3.39)
Indeed, a derivation of eq. (3.36) is that an eigenstate’s contribution to the signalis proportional to e−(∆−δ)/τ ∼ e−td/τ . If the diffusion time td is much greater than
τ(λ), the corresponding eigenstate vanishes. Comparing τ with the diffusiontime td helps decide the number of eigenvalues to keep. Finally, ℓ and τ arerelated by

ℓ2 = π2Diτ. (3.40)
Eigenfunctions on FE bases

The above matrix formalism of the magnetization depends on the known Lapla-cian eigenstates. For complex geometries, it is nearly impossible to find theiranalytical eigenfunctions. We now present the way, proposed by Li et al. [49,50], to compute the eigenstates for complex geometries numerically. The idea isto discretize the complex geometries and calculate the eigenstates on FE bases.
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Suppose the compartment Ωi is discretized into a tetrahedral volume meshconsisting ofK finite element nodes. Same as section 3.2.1, we adopt a FE spacethat is spanned by a set of continuous piecewise linear functions {ηk}k∈{1,...,K}.We recall that the set of P1 elements is known for a given tetrahedral volumemesh.To solve the eigenvalue problem (eqs. (3.29) and (3.30)) in the FE space, weproject the eigenfunction ψ to the FE basis
ψ(x) =

K∑

k=1

pkηk(x) = pTH(x), (3.41)
with p = [p1, ..., pK ]

T andH(x) = [η1(x), ..., ηK(x)]
T .The projection allows for the conversion from a continuous Laplace operatoreigenvalue problem to a generalized matrix eigenvalue problem

Sp = λMp (3.42)
where S is the stiff matrix (eq. (3.25)) andM is the mass matrix (eq. (3.24)).The generalized matrix eigenvalue problem eq. (3.42) yields K pairs ofeigenvalue and eigenvector {(λk,pk)}k∈{1,...,K}. Putting the eigenvectors intoeq. (3.41), we find the Laplacian eigenfunctions in the FE space.We recall that M is positive-definite and S is positive semi-definite [190].These matrix properties ensure that all eigenvalues are real and nonnegative,and all eigenvectors can be chosen to be real-valued and M -orthonormal (i.e.,
pT
mMpk = 0 if m ̸= k, 1 if m = k, for m, k ∈ {1, ..., K}) [194]. The properties ofthe eigenvalues and eigenvectors guarantee that items 2 and 3 in section 3.2.2hold.It is worth stressing that, with the zero Neumann boundary conditions(eq. (3.30)), the Laplacian eigenstates depend only on geometrical configura-tion. We can understand this from the definition of eigenstates. Equations (3.29)and (3.30) do not involve diffsion coefficient andmagnetic field gradient. We canalso see this from eq. (3.42) in which the mass and stiff matrices rely only on theP1 elements defined in a volume mesh.Therefore, for a tetrahedral volume mesh, the eigendecomposition onlyneeds to be performed once. When the eigenstates are known, one can freelychange the diffusion coefficient and the magnetic field gradient (sequence, di-rection, and intensity) to compute dMRI signals with much less computationalexpense than other methods. This is the main computational advantage of nu-merical MF.The simulation parameters that control the precision of numerical MF arethe following:
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1. A discretization parameter H controls the maximum volume of the tetra-hedra. As with the finite element method, the software Tetgen [111] iscalled to tetrahedralize surface meshes or refine volume meshes. If onesets H to h µm3, the maximum volume of tetrahedra will be h µm3. If onesetsH to−1, the default discretization routine4 of Tetgen is triggered. Tet-gen uses an adaptive method to discretize the volume and add new pointsto improve the mesh quality [111].
2. A parameter controls the truncation of the Laplacian spectrum. The pa-rameter can be the number of retained eigenstates neigs, the minimumlength scale ℓmin, or the minimum time scale τmin.
3. (Not for piecewise constant magnetic field gradient) A time step dt or twotolerances rtol and atol that control the precision for solving the ODEeq. (3.32) numerically.
Solving generalized matrix eigenvalue problems eq. (3.42) is difficult andtime-consuming [47]. The matrix exponential and multiplication required ineqs. (3.36) and (3.37) can also become expensive if the number of simulationsis very large. To perform simulations with neurons in NeuronSet, the previousimplementation of numerical MF in SpinDoctor is not efficient enough. The nextsection focuses on optimizing the numerical matrix formalism by adopting anappropriate eigendecomposition algorithm and GPU computation. The opti-mization leads to a tenfold improvement in computational efficiency, which isthe second contribution of this thesis.

3.3 Optimizing numerical matrix formalism
Simulating a dMRI signal on a realistic neuron mesh can take several sec-onds or even minutes [116]. We aim to simulate hundreds of dMRI signals fromeach neuron mesh in NeuronSet. The total computational demand is a sub-stantial challenge for most existing approaches. To meet such a huge demand,we leverage the numerical matrix formalism implemented in the SpinDoctortoolbox [44, 49, 50]. Nonetheless, the previous implementation is still not fastenough. The numerical matrix formalism has two time-consuming operations:matrix eigendecomposition required in eq. (3.42) and matrix multiplication re-quired in eqs. (3.36) and (3.37). We aim to speed them up.

3.3.1 Method optimization
4https://wias-berlin.de/software/tetgen/1.5/doc/manual/manual005.html#cmd-q
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A shift-and-invert transformation helps accelerate the eigendecomposition[195]. After the transformation, we obtain a standard eigenvalue problem
(S − ωM )−1Mp = νp where ν =

1

λ− ω
, (3.43)

which is equivalent to eq. (3.42). We then employ the krylov-Shur algorithm [196]to solve eq. (3.43) instead of eq. (3.42). This method allows us to obtain only afew eigenvalues close to ω without computing the whole spectrum. We needeigenvalues close to zero, so we set ω = −10−8. Letting ω be slightly smallerthan the target value is a trick to avoid the singularity of ν [195].Regarding the matrix exponential and matrix-vector product required in thecomputation of the magnetization projection (eqs. (3.36) and (3.37)), the previ-ous implementation of numerical MF in SpinDoctor uses Matlab built-in func-tions, expm [197, 198] and mtimes, that execute on CPUs. These basic algebraicoperations can be accelerated using GPU computation.Additionally, the computation ofC(t)mainly involves the product of amatrixexponential with a vector, i.e., y = eA·x. For this particular operation, Al-Mohy etal. [199] propose an efficient method to compute the resulting vector y withoutexplicitly evaluating thematrix exponential eA. It relies on a scaling and squaringmethod [200] and truncated Taylor series to approximate the final result. AMat-lab implementation of this method is called expmv5. We further speed up expmvbymaking it compatible with GPUmatrices. Since themethod avoids the explicitcomputation of matrix exponential, it is also memory-efficient. Saving memoryis advantageous when computing large matrices, as memory is usually scarceon GPUs. The computation of C(t) has been accelerated by the GPU-version of
expmv.
3.3.2 Performance improvement

We made the above optimization to the numerical MF implemented in theSpinDoctor toolbox. To compare the computational efficiency before and afterthe optimization, we conduct the eigendecomposition for three spheres to findthe smallest 1000 eigenvalues using the eigs function [195, 196] implementedin Matlab R2021b. The computation is performed on a computer with 20 phys-ical cores (2 Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz), 256GB RAM, runningCentOS Stream release 8.Table 3.1 lists the computation times before and after the optimization. Theoptimization achieved a twenty-fold speedup. Moreover, the speedup does notdegrade the computational accuracy. We get the same eigenvalues and eigen-vectors. A typical neuron mesh has around 80,000 FE nodes and needs about
5https://github.com/higham/expmv
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3,000 eigenvalues. After the optimization, the eigendecomposition for each neu-ron takes less than 10 minutes.
Table 3.1: Computation times of eigendecomposition for three spheres. The optimiza-tion achieved a twenty-fold speedup.

sphere radius 5 µm 10 µm 20 µm

number of FE nodes 5222 18981 80191before optimization 51.48 s 665.49 s 12944.36 safter optimization 10.93 s 47.86 s 431.97 sspeedup 4.71 13.90 29.97

Another time-consuming step is calculating the magnetization projection
C(t). The previous implementation utilizes Matlab’s built-in function expm run-ning on CPUs (“CPU+expm”). We replace expm with the function expmv [199]andmodify expmv to make it compatible with GPUmatrices (“GPU+expmv”). Wecompare the computational efficiency of the two implementations by conduct-ing simulations on ten neuronmeshes. The numbers of FE nodes of themeshesrange from 30,000 to 150,000. For each cell, we compute the magnetizationprojection using PGSE sequences with 2 diffusion times, 50 gradient intensitiesranging from 0.5 to 1000mT/m, and 10 gradient directions.We utilize two computing platforms for computational efficiency comparison

1. Platform 1: a computer with 64 physical cores (AMD EPYC 7742 64-CoreProcessor), 512GB RAM, running CentOS Stream release 8;
2. Platform2: a computerwith 20 physical cores (Intel(R) Xeon(R) Silver 4214RCPU @ 2.40GHz), 384GB RAM, one Nvidia A40 48G graphics card, usingCUDA 11.7, running CentOS Stream release 8.
We run the previous implementation “CPU+expm” on Platform 1. Simula-tions with “GPU+expmv” are performed on Platform 2. Figure 3.4 shows theoverall computation time for evaluating eq. (3.36) for each neuron mesh as afunction of its FE node number. The combination of the expmv and the GPUcomputation brings a ten-fold speedup. Additionally, the new implementationdoes not reduce the computational accuracy either.Next, we compare the optimized numerical MF with other simulation meth-ods.

3.3.3 Simulation efficiency comparison
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Figure 3.4: Overall computation time for evaluating eq. (3.36) with two diffusion times(8/19 and 8/49 ms), fifty gradient intensities ranging from 0.5 to 1000 mT/m, and tengradient directions. The x-axis represents the number of FE nodes. The y-axis in thelogarithmic scale shows the computation times. The blue line with circular markers cor-responds to the previous implementation that runs Matlab’s built-in function expm onCPUs. The orange dashed line with dot markers corresponds to the new implementa-tion with the GPU-version of expmv function. The combination of the expmv and theGPU computation brings a ten-fold speedup.

This chapter presented two types of dMRI simulations to solve the BT equa-tion. One can also compute dMRI signals using Monte-Carlo methods to simu-late the Brownianmotion of randomwalkers. Since each randomwalker is inde-pendent of the others, Monte-Carlomethods are particularly suitable for parallelcomputing. On the contrary, it is hard to speed up FEM using GPUs due to theserial nature of FEM. The implementation of FEM in SpinDoctor utilizesmultipro-cessing to achieve parallel computation. FEM,MF, andMonte-Carlomethods arethe three main approaches to dMRI simulations.The debate about the computational efficiency of these three methods hasalways existed in the community. FEM suffers from low efficiency when themesh size becomes huge. Matrix formalism is believed to be fast but was limitedto simple shapes due to the difficulty of computing the Laplacian eigenbasis forarbitrary geometries. In addition, Monte-Carlomethods are constrained by theirslow convergence rate (1/√Nwalkers withNwalkers the number of random walkers)[30]. The optimized numerical MF in this thesis is promising to end the debate.This section compares the execution times of the threemethods by conduct-
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ing dMRI simulations on a neuron mesh. The ID of the neuron is NMO_85632.It is in the archive Semendeferi_Muotri of NeuronSet. We compute the dMRI sig-nals using PGSE sequences with δ/∆ = 8/49 ms and 100 gradient intensitieslinearly spaced between 3 and 300 mT/m. The gradient direction is fixed to bethe x-direction, i.e., [1, 0, 0]T . The diffusivity is 3× 10−3 µm2/µs.We choose the following numerical implementation for each method:
1. FEM: the SpinDoctor implementation running on Platform 1withmultipro-cessing computation being activated;
2. NumericalMF: the optimizedGPU version implemented in SpinDoctor run-ning on Platform 2;
3. Monte-Carlo method: disimpy [65], a GPU-based Monte-Carlo simulator,running on Platform 2.

The simulation parameters of the Monte-Carlo method that control the simu-lation precision are the number of random walkers Nwalkers and the number oftime steps Nt.To quantify the simulation accuracy, we compute reference signals using FEMby refining the discretization in space and time. The simulation parameters forthe reference signals are H = 0.5 µm3, rtol = 10−6, atol = 10−8. A comparisonbetween a coarse and a refined mesh is shown in fig. 3.5.We denote the reference signals by sref and the simulated signals as s. Therelative error ε is defined as
ε =

∣∣∣∣
s− sref
sref

∣∣∣∣× 100%. (3.44)
For a fair comparison, we choose the simulation parameters so that the maxi-mum relative errors of the three methods are around 2%. The simulation pa-rameters for FEM are H = −1, rtol = 10−4, atol = 10−6, for numerical MF are
H = −1, ℓmin = 1.5µm, and for theMonte-Carlomethod areNwalkers = 105, Nt =
5×104. Figure 3.6 shows the relative errors of the threemethods with the abovesettings. It can be seen that all three methods have comparable accuracy.With similar precision, we can measure the computation times. The execu-tion of the three methods can be divided into two steps: preparation and signalcomputation. The preparation step of FEM involves the computation of FE ma-trices (e.g., eqs. (3.24) to (3.26)). We treat the eigendecomposition (eq. (3.42))as part of the preparation step for numerical MF. The preparation step of nu-merical MF also includes the computation of FE matrices. For the Monte-Carlomethod, the preparation step includes calculating the initial positions of randomwalkers.
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5 µm

(a) H = −1

5 µm

(b) H = 0.5 µm3

Figure 3.5: Comparison between a coarse and a refined mesh. The two meshes corre-spond to the selected neuron in this section. The ID of the neuron is NMO_85632. It is inthe archive Semendeferi_Muotri of NeuronSet. Half of the meshes are made transparentto show the interior tetrahedra. (a) a coarse volume mesh generated by Tetgen with
H = −1. It has 79992 vertices. (b) a refined volume mesh generated withH = 0.5 µm3.It has 163905 vertices.

The signal computation of FEM is the step in solving the ODE eq. (3.23).For the numerical MF, this step involves evaluating eq. (3.36). The Monte-Carlomethod computes dMRI signals by simulating the Brownian motion of randomwalkers whose initial positions are set in the preparation step. We refer to theexecution times of signal computation as computation times.
We list the execution times of the three methods in table 3.2. The numericalMF is much more efficient than the other two methods. Thanks to the optimiza-tion made in section 3.3, the eigendecomposition required in the preparationstep of numerical MF takes 219 seconds, which is seven times faster than theMonte-Carlo method. We reiterate that the eigendecomposition only needs tobe done once for a given geometrical configuration. Most importantly, the opti-mized numerical MF is highly advantageous in computing signals. For comput-ing 100 dMRI signals, it is 20 times faster than FEM and 65 times faster than theMonte-Carlo method.

3.4 Numerical experiments
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Figure 3.6: The relative errors (in percent) of three simulationmethods (FEM, numericalMF, and a Monte-Carlo method) with respect to the gradient intensity. The maximumrelative errors are about 2%. We perform the simulations on the neuron whose ID isNMO_85632 using PGSE sequences with δ/∆ = 8/49 ms and 100 gradient intensitieslinearly spaced between 3 and 300mT/m. The gradient direction is fixed to be [1, 0, 0]T .The diffusivity is 3× 10−3 µm2/µs. The relative errors are defined as |s− sref |/|sref | ×
100%. We compute the reference signals using FEM by refining the discretization inspace and time. Then we perform simulations using the three methods on the coarsemesh shown in fig. 3.5(a). The simulation parameters for FEM are H = −1, rtol =
10−4, atol = 10−6, for numerical MF are H = −1, ℓmin = 1.5 µm, and for the Monte-Carlo method are Nwalkers = 105, Nt = 5 × 104. All three methods converge to thereference solution.
Table 3.2: Execution times of three common dMRI simulation methods. The FEM isrunning on the CPU platform (Platform 1). The numerical MF and Monte-Carlo methodis running on the GPU platform (Platform 2).

Methods Max. relative error (%) Preparation times (s) Computation times (s)
FEM 1.73 0.7 281.9

Numerical MF 1.69 219.9 13.5Monte-Carlo method 2.36 1474.4 902.6

In the previous sections, we introduced the BT equation and presented twoways to solve the BT equation numerically. In particular, we optimized the nu-merical MF implemented in the SpinDoctor, making it the fastest dMRI simula-tor. Together with polygon meshes, the numerical simulations allow us to study
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dMRI signals on various geometrical configurations with different gradient se-quences. We leverage realistic neuron meshes and dMRI simulators to studythe water exchange inside a neuron and the power-law scaling. Finally, a statis-tical analysis shows that we can relate the soma sizes with six markers that canbe computed from dMRI signals.
3.4.1 Diffusion directions distributed in two dimensions

Wegenerated 90 directions uniformly distributed on the unit semi-circle lyingin the x − y plane (plotting 180 directions on the unit circle because simulatedsignals are antipodally symmetric) and computed the diffusionMRI signals usingFEM in these 180 directions for three sequences:
• PGSE (δ/∆ = 2.5/5ms);
• PGSE (δ/∆ = 10/43ms);
• PGSE (δ/∆ = 10/433ms).

The simulation parameters areH = 0.5 µm3, rtol = 10−3, atol = 10−5. With thischoice, we verified that the signal is within 1% of the reference solution for allgeometries (the whole neuron, the soma, and the two dendrites branches) forthe three gradient sequences simulated.The results for the spindle neuron 03b_spindle4aACC in the Neuron Moduleare shown in fig. 3.7. We plot the signal attenuation in the 180 directions inthe x − y plane. The simulated geometries are superimposed on the plots forvisualization.It can be seen that the dendrite branch diffusion signal shape is more like anellipse at b = 1000µs/µm2, whereas at b = 4000µs/µm2 the shape is non-convex.The signal shape of the soma is like an ellipse except for b = 4000 µs/µm2 at thetwo shorter diffusion times. At the two shorter diffusion times, the soma signalmagnitude at b = 4000 µs/µm2 is much reduced with respect to the magnitudeat b = 1000 µs/µm2, in contrast to the dendrite branches, where the differencein the signalmagnitude between the two b-values is not nearly as significant. Forthe soma, at the long diffusion time, there is not a large reduction in the signalmagnitude between b = 1000 µs/µm2 and b = 4000 µs/µm2.By visual inspection, at the lower b-value, the signal in the whole neuron isclose to the volume-weighted sumof the signals from the three cell components(the soma, the upper dendrite branch, and the lower dendrite branch). A quan-titative study is conducted in the next section.
3.4.2 Exchange between soma and dendrites
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Figure 3.7: The signal attenuation in 180 directions lying on the x − y plane, uni-formly distributed on the unit circle. The distance from each data point to the originrepresents the magnitude of the signal attenuation. The simulation parameters are
rtol = 10−3, atol = 10−5, H = 0.5 µm3. The diffusion coefficient is 2 × 10−3 µm2/µs.
(a) the whole neuron (19425 vertices). (b) the dendrite1 (10825 vertices). (c) the soma(5842 vertices). (d) the dendrite2 (6444 vertices).

Here we compute the volume-weighted composite signal of the 3 cellularparts
Ecomposite =

VsomaEsoma + Vdendrite1Edendrite1 + Vdendrite2Edendrite2

Vneuron
(3.45)

78



and compare it to the signal attenuation of the whole neuron in the differentgradient directions. In fig. 3.8, we see that the signal difference between the twois larger at longer diffusion times and higher b-values. The error also presentsa gradient-direction dependence. According to fig. 3.7(a) and fig. 3.8, we cansee that the error is larger in the direction parallel to the longitudinal axis of theneuron than in the direction perpendicular to the longitudinal axis. It is apparentthat the exchange effect depends not only on diffusion times but also on thebvalues. The exchange effect is not negligible, especially for long diffusion timesand high bvalues.

Figure 3.8: (a) The absolute error between volume-weighted composite signal andwhole neuron signal. (b) The relative error between volume-weighted composite sig-nal and whole neuron signal. Ninety gradient directions uniformly placed on the unitsemi-circle in the x− y plane were simulated. The gradient direction angle is given withrespect to the x-axis. The position of the neuron can be seen in fig. 3.7(a).
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3.4.3 Power-law scaling
In the work of Veraart et al. [85], it was shown that signal attenuations oftubular structures such as axons exhibit a certain high b-value behavior, namely,the direction-averaged signal, E, is linear in 1√

b
at high b-values:

E ≡
∫

∥ug∥=1

Edug ∼ c0 + c1
1√
b
, (3.46)

with c0 the y-intercept and c1 the slope of the linear function. The linear relation-ship eq. (3.46) is often referred to as the power-law scaling of direction-averagedsignals. Because the dendrites of neurons also have a tubular structure, we testwhether the direction-averaged signal E of dendrite branches also exhibits thepower-law scaling. We computed E for the whole neuron as well as its two den-drite branches, averaging over 120 gradient directions uniformly distributed inthe unit sphere. The results are shown in fig. 3.9. We see clearly the linear re-lationship between E and 1√
b
in the dendrite branches for b-values in the range

2500 µs/µm2 ≤ b ≤ 20000 µs/µm2. In contrast, in the whole neuron, due to thepresence of the soma, such a linear relationship is not exhibited. By simulatingfor bothD0 = 2× 10−3 µm2/µs andD0 = 1× 10−3 µm2/µs we see that the fittedslope c1 is close to 1√
D0
.

3.4.4 Markers of the soma size
As we have shown in fig. 3.9, the linear relationship between E and 1√

b
, i.e.,

the power-law scaling of direction-averaged signals [85], doesn’t hold due to thepresence of the soma and the exchange effects between the soma and the den-drites. The breakdown of the power-law scaling is also observed in [86, 88, 99].By leveraging the collection of the realistic neuron meshes in Neuron Module,we statistically show that the deviation from the power-law scaling allows us todefine several markers for revealing the soma size.To do this, we conducted the following simulations that are slightly differentfrom the constant (δ,∆) experiments in [85, 86, 88] and shown in fig. 3.9. Thesignals are numerically computed using numerical MF. In the following, we heldthe gradient intensity constant, g = 37 mT/m, and varied δ to obtain a widerange of b-values, all thewhile choosing∆ = δ (PGSE sequence). The simulationswere conducted in 64 gradient directions, and the signals were averaged overthese directions. This was performed for the full set of 65 neuron meshes in theNeuron Module.In fig. 3.10, we show an example of the simulated signal curve and the power-law approximation for the neuron 03a_spindle2aFI. From the direction-averagedsimulated signals, we find the inflection point (blue dot) of the signal curve (black
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Figure 3.9: The direction-averaged signal for the neuron 03b_spindle4aACC. The Eis averaged over 120 diffusion directions, uniformly distributed in the unit sphere.The simulation parameters are rtol = 10−3, atol = 10−5, Htetgen = 0.5 µm3. Thediffusion-encoding sequence is PGSE (δ/∆ = 10/43 ms). The b-values are b =
{60000, 40000, 20000, 12000, 10000, 8000, 7000, 6000, 4000, 2500} µs/µm2. (a) D0 = 1 ×
10−3 µm2/µs. (b)D0 = 2× 10−3 µm2/µs.

curve). We fit the power-law approximation (straight blue dashed line) aroundthe inflection point. The power-law region is the range where the relative errorbetween the simulated signal curve and the power-law fit is less than 2% (widthof the yellow region), and the approximation error is estimated by the area be-tween the signal curve and the power-law fit to the left of the inflection point(the green area).In order to characterize the influence of soma on the power-law approxima-tion, we chose the following six candidate markers:
• x0: the x-coordinate of the inflection point;
• y0: the y-coordinate of the inflection point;
• c0: the y-intercept of the power-law fit;
• c1: the slope of the power-law fit;
• E : the power-law approximation error;
• w: the width of the power-law region.
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Figure 3.10: The direction-averaged signal curve for the neuron 03a_spindle2aFI. Thesignals are computed using the numerical MF within the SpinDoctor Toolbox. The Ewas averaged over 64 diffusion directions, uniformly distributed in the unit sphere. Theb-values are greater than 278 µs/µm2 and the diffusivity isD0 = 2× 10−3 µm2/µs. Thegradient intensity is constant, g = 37 mT/m, and δ was varied to obtain a wide rangeof b-values, all the while choosing ∆ = δ (PGSE sequences). The blue dot indicates theinflection point of the simulated signal curve. The power-law fit is performed aroundthe inflection point. The power-law region is the width of the range where the relativeerror between the simulated signal and the power-law approximation is less than 2%.The area between the simulated curve and the power-law fit to the left of the inflectionpoint represents the approximation error of the power-law fit.

A statistical study of the above 6 candidatemarkers on the collection of the 65neurons in the Neuron Module was performed. Since the undersampling when
1√
b
approaches 0 could produce a significant numerical error, we only kept the

neurons whose x0 are greater than 0.016mm · s−1/2. In total, 28 spindle neuronsand 21 pyramidal neurons were retained.
We first plot the candidate markers with respect to the soma volume vsomain fig. 3.11. Each data point in the figure corresponds to a neuron (for a total of49). It can be seen that x0, c0, c1, E , and w exhibit an exponential relationshipwith the soma volume. The fitted equations allow us to infer the soma volume
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by measuring the markers. We also see that y0 is not a biomarker for the somavolume. Similarly, we show the scatter plot of the candidate markers with re-spect to the soma volume fraction fsoma in fig. 3.12. In this case, the x0, c1, and ware not markers of the soma volume fraction. The candidate markers y0, c0, and
E seem capable of indicating the lower bound for the soma volume fraction.

Figure 3.11: The scatter plots of the logarithm of soma volume with respect to the sixmarkers. Each blue dot represents the data from one of the 49 neurons (28 spindleneurons and 21 pyramidal neurons) retained for this study. (a) the x-coordinate of theinflection point x0. (b) the y-coordinate of the inflection point y0. (c) the y-intercept ofthe power-law fit c0. (d) the slope of the power-law fit c1. (e) the power-law approxima-tion error E . (f) the width of the power-law region w.

3.5 Summary
This chapter concerns three subjects: (1) presenting the Bloch-Torrey equa-tion and the numerical methods to solve it; (2) optimizing the numerical matrixformalism; (3) demonstrating the benefits of diffusionMRI simulation of realisticneurons.First, we introduced a general form of the Bloch-Torrey equation. By assum-ing that compartment interfaces are impermeable and the transverse relaxation
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Figure 3.12: The scatter plots of the logarithm of soma volume fraction with respect tothe six markers.

is homogeneous, we obtained a simplified form of the BT equation concerningthreemain attenuationmechanisms: diffusion, gradient dephasing, and bound-ary restriction. Then, we presented two numerical methods, i.e., finite elementmethod and numerical matrix formalism, for solving the BT equation. The nu-merical MF, combining the advantages of classical MF and FEM, is of great nu-merical interest.
Second, we optimized the computational efficiency of the numerical MF byadopting an appropriate eigendecomposition algorithm and leveraging GPUcomputation. The numerical MF after optimization is ten times more efficientthan the previous version (see fig. 3.4). The optimizedmethod is then comparedwith FEM and a GPU-acceleratedMonte-Carlomethod. The efficiency advantageof the optimized numerical MF is significant. With comparable accuracy, the nu-merical MF is 20 times faster than FEM and 65 times faster than theMonte-Carlomethod (see table 3.2). Furthermore, the optimized numerical MF can computehundreds of dMRI signals from a neuron mesh in a few minutes, making large-scale dMRI simulations practical. The optimization of the numerical matrix for-malism is the second contribution of this thesis.
Finally, we performed dMRI simulations on the realistic neuron meshes con-structed in chapter 2. Using segmented neuron meshes in Neuron Module, we
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showed that the water exchange effect is not negligible, especially at long dif-fusion times or high bvalues. In addition, we demonstrated that the power-lawscaling holds despite the structural deviation of the dendrites from cylinders.However, the power-law scaling pattern of the intracellular signals is modifiedby the presence of the soma. Leveraging the deviation of intracellular signalsfrom the power-law scaling, we defined six measurable markers that can be sta-tistically related to the soma size. The results of these numerical experimentsconfirm the possibility of adopting a simulation-driven approach for brain mi-crostructure imaging.The ultimate goal of this thesis is to facilitate simulation-driven brain mi-crostructure estimation. This chapter contributed to this goal by providing ultra-fast numerical matrix formalism. Besides, the statistical analysis conductedin section 3.4.4 suggests the existence of underlying mappings between dMRIsignals and the microstructure properties of interest. This inspires us to em-ploymachine learning techniques to approximate the underlyingmappings. Wepresent the simulation-based brain microstructure imaging using artificial neu-ral networks in chapter 5.As a spectral method, the numerical matrix formalism has demonstrated itstheoretical and numerical advantages in this chapter. The Laplacian eigenbasesadopted in numerical MF are geometry-specific. We wonder if it is possible todecompose the diffusion MRI signal on a Fourier-type basis. Contrary to theLaplacian eigenbasis, the Fourier basis functions do not depend on the geo-metrical configuration. This independence could allow for comparing variousgeometries and provide a new spectral perspective. The next chapter presentsa new numerical method for solving the BT equation, which relies on potentialtheory and the decomposition of dMRI signals on a Fourier-type basis.
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Chapter 4

Solving Bloch-Torrey Equation with
Potential Theory

Existing simulation frameworks use the finite element methods or the MatrixFormalism method to solve the BT equation. As the third contribution of thisthesis, we proposed a new method based on the efficient evaluation of layerpotentials. In this chapter, the mathematical framework and the numerical im-plementation of the new method are described. We demonstrate the conver-gence of ourmethod via numerical experiments and analyze the errors linked tovariousmodel and simulation parameters. Since ourmethodprovides a Fourier-type representation of the diffusion MRI signal, it can potentially facilitate newphysical and biological signal interpretations in the future. This chapter ismainlybased on the work in [201].

4.1 Introduction
We propose a new method based on potential theory from classical mathe-matics that provides a Fourier-type representation of the diffusion MRI signal.The main challenge of this method involves the fundamental solution of the dif-fusion equation, also known as the heat kernel, which has a singularity in time.In theory, infinite Fouriermodes are required to represent the heat kernel due tothe singularity, while only finite Fourier modes are accessible for practical com-putation. This practical limitationmay lead to the Gibbs phenomenon that coulddegrade the approximation accuracy [202]. In order to overcome this challenge,we follow the path of several previous works [203–206] focusing on the eval-uation of heat potentials. In particular, in [203], the authors proposed severalfundamental ideas, such as (1) splitting the heat potential into a local in time partand a history part in order to overcome the singularity of the heat kernel; (2) ap-
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proximating the local in time part by asymptotics; (3) leveraging the exponentialdecay of the history part to represent it using a few Fourier modes. These ideasare crucial to the Fourier-type representation of the diffusionMRI signal derivedin this chapter.Despite the intrinsic similarity between thermal conduction and diffusionprocess, in the literature, there have not been previous works about the rep-resentation of the diffusion MRI signal via potential theory, and certainly not byusing a Fourier basis for layer potentials. As the first work addressing this sub-ject, we restrict ourselves to the 2D setting with impermeable interfaces. Wealso restrict ourselves to simplified conditions on the diffusion-encoding gradi-ent. Specifically, we derive our method under the narrow pulse assumption,where the diffusion-encoding pulse duration is very short compared to the de-lay between the pulses. These two assumptions allow us to apply the theorydeveloped for the diffusion kernel to the diffusion MRI application.We call our method the Fourier Potential Method (FPM). The main steps ofour method are:
1. transforming the BT equation to the diffusion equation using the narrowpulse assumption on the diffusion-encoding sequence;
2. formulating the solution of the diffusion equation using the single layerpotential;
3. approximating the singular part of the single layer potential using anasymptotic expansion and solving the integral equation;
4. storing the non-singular part of the single layer potential using the Fouriercoefficients, leveraging the fast decay in the Fourier spectrum;
5. computing the diffusion MRI signal using the above representation.
The chapter is organized as follows. Section 4.2 introduces the mathemati-cal framework of FPM. Section 4.3 describes the Fourier Potential Method anderror analysis. Section 4.4 contains numerical results, including convergence inthe various simulation parameters. Section 4.5 contains conclusion and futureperspectives. In the appendix, chapter C shows a flowchart and a streamlineddescription of the numerical implementation.

4.2 Mathematical framework
Weaim to simulate the diffusionMRI signal due to spins inside biological cellsand assume that the spin exchange across cell membranes is negligible under
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the simulation conditions. The impermeability assumption allows us to focus onsolving the BT equation on a connected domain. Let Ω be the 2D computationaldomain, and let Γ = ∂Ω be the domain boundary.
4.2.1 Bloch-Torrey equation

We recall the simplified form of the BT equation:
∂

∂t
φ(x, t) = −ıγgf1(t)ug · xφ(x, t) +D0∇ · ∇φ(x, t), x ∈ Ω, (4.1)

D0∇φ(x, t) · n = 0, x ∈ ∂Ω, (4.2)
φ(x, 0) = ρ, x ∈ Ω, (4.3)

where D0 is the intrinsic diffusion coefficient in the domain Ω and ρ = 1 theinitial magnetization.We adopt the PGSE sequences [18] in this chapter. The PGSE time profile
f1 is shown in fig. 3.2(a). If the rectangular pulses are narrow, i.e., δ ≪ ∆, theBT equation can be transformed into the diffusion equation. This assumption iscalled the narrow pulse approximation [18].The diffusion MRI signal is measured at echo time TE for PGSE. The signalattenuation E is the integral of φ(x, TE) divided by the area of Ω:

E =
1

|Ω|

∫

x∈Ω
φ(x, TE) dx. (4.4)

4.2.2 Narrow pulse approximation
We restrict ourselves to simplified conditions on the diffusion-encoding gra-dient. Specifically, we derive our method under the narrow pulse assumption,where the pulse duration is very short compared to the inter-pulse duration [18],i.e., δ ≪ ∆. This assumption enables us to ignoremolecular diffusion during thepulses of PGSE.Let us consider spins initially located at x. After the first pulse of PGSE, thecomplex phase of these spins is e−ıδγg·x. This means the complex magnetizationat t = δ due to a uniform initial distribution ρ can be written as:

φ(x, δ) ≈ ρ e−ıδγg·x, x ∈ Ω. (4.5)
Because the magnetic field gradient is turned off after the first pulse, i.e.,

g = 0, the magnetization between pulses satisfies the diffusion equation:
∂

∂t
φ(x, t) = D0∇ · ∇φ(x, t), x ∈ Ω, t ∈ [δ,∆], (4.6)
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subject to the zero Neumann boundary condition:
D0∇φ(x0, t) · n = 0, x0 ∈ ∂Ω, t ∈ [δ,∆], (4.7)

where n is the unit outward pointing normal vector at x0, and initial conditionat t = δ is:
φ(x, δ) = ρ e−ıδγg·x, x ∈ Ω. (4.8)

During the second pulse, at the point x, the additional accumulated complexphase is eıδγg·x, so the magnetization at the position x and time TE is:
φ(x, TE) ≈ φ(x,∆)eıδγg·x, x ∈ Ω. (4.9)

We emphasize again that we used the assumption δ ≪ ∆. The echo-time TE isusually some time after the end of the second pulse (i.e., TE ≥ ∆+ δ).The signal attenuationE is proportional to the totalmagnetizationmeasuredat the echo time:
E =

1

|Ω|

∫

x∈Ω
φ(x,∆)eıδγg·x dx. (4.10)

4.3 Method
Ourmethod aims to solve eqs. (4.6) to (4.8) based on potential theory, which,in the meantime, provides a Fourier-type representation of the diffusion MRIsignal. We derive our new method below. In the appendix, chapter C showsa flowchart and a streamlined description of the numerical implementation ofFPM.

4.3.1 Solution of the diffusion equation and the diffusion MRI
signal

Before we solve the diffusion equation using potential theory, we transformthe initial and boundary conditions. We transform the diffusion equation ineqs. (4.6) to (4.8) such that it is subject to zero initial conditions and complex-valued non-zero Neumann boundary conditions. Define
ω(x, t) ≡ φ(x, t+ δ)− ρe−4π2D0∥q∥2te−2πıq·x, x ∈ Ω, t ∈ [0,∆− δ], (4.11)

where q = δγg/2π. We will work on the quantity ω(x, t) defined in eq. (4.11),which satisfies the diffusion equation:
∂

∂t
ω(x, t) = D0∇ · ∇ω(x, t), x ∈ Ω, t ∈ [0,∆− δ], (4.12)
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subject to non-homogeneous Neumann boundary conditions:
D0∇ω(x0, t) · n = D0N (x0, t,q) x0 ∈ ∂Ω, t ∈ [0,∆− δ], (4.13)

and zero initial conditions:
ω(x, 0) = 0, x ∈ Ω. (4.14)

The Neumann forcing term is complex-valued, periodic in space in the direction
q, and decays exponentially in time:

N (x0, t,q) ≡ 2πρq · n
(
ıe−2πıq·x0

)
e−4π2D0∥q∥2t. (4.15)

The signal attenuation E can be reformulated in terms of ω:
E = ρe−4π2D0∥q∥2(∆−δ) +

1

|Ω|

∫

x∈Ω
ω(x,∆− δ)e2πıq·xdx. (4.16)

In the above, the first term is explicit, and the second termneeds to be computednumerically. We define a time-dependent integral whose value at t = ∆−δ givesthe second term:
ω(q, t) ≡

∫

x∈Ω
ω(x, t)e2πıq·xdx, t ∈ [0,∆− δ]. (4.17)

The function ω can be expanded by the Green’s second identity:
ω(q, t) =

−1

4π2D0∥q∥2
(∫

Ω

D0∇ · ∇ω(x, t)e2πıq·xdx+B

)
,

B =

∫

∂Ω

2πıD0q · nω(x, t)e2πıq·xdsx −
∫

∂Ω

D0∇ω(x, t) · ne2πıq·xdsx.
(4.18)

Using the diffusion equation and the nonhomogeneous Neumann boundaryconditions, we get an ordinary differential equation for ω:
d

dt
ω(q, t) = −4π2D0∥q∥2ω(q, t)− 2πıD0

∫

∂Ω

q · nω(x, t)e2πıq·xdsx, (4.19)
which has an analytical solution:

ω(q, t) = −D0

∫

∂Ω

∫ t

0

2πıq · ne−4π2D0∥q∥2(t−τ)ω(x, τ)e2πıq·xdτdsx,

= D0ρ
−1

∫

∂Ω

∫ t

0

N ∗(x, t− τ,q)ω(x, τ)dτdsx.

(4.20)
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The asterisk symbol ∗ denotes the complex conjugation. It can be proved thateq. (4.20) satisfies a recursive relationship in time:
ω(q, t) = e−4π2D0∥q∥2∆tω(q, t−∆t) +D0ρ

−1

∫

∂Ω

∫ t

t−∆t

N ∗(x, t− τ,q)ω(x, τ)dτdsx.

(4.21)
Equation (4.17) and eq. (4.20) are mathematically equivalent for evaluating thediffusion MRI signal (at t = ∆ − δ). It can be seen that, while eq. (4.17) requiresthe value of ω on the entire domain Ω, eq. (4.20) only needs the value of ω onthe boundary, which is more computationally efficient. The recursion in timeabove also increases computational efficiency. We will use the method of layerpotentials to get the boundary values of ω in the next section.
4.3.2 The single layer potential representation

The PDE in eqs. (4.12) to (4.14) hasNeumannboundary conditions, zero initialconditions, and zero forcing term, allowing us to represent the solution ω(x, t)as a single layer potential, with a density function µ defined on ∂Ω [206]. In otherwords, ω(x, t) = S[µ](x, t). The definition of the single layer potential is
ω(x, t) = S[µ](x, t) ≡

∫ t

0

∫

∂Ω

D0G(x− y, t− τ)µ(y, τ)dsydτ, (4.22)
where G(x, t) is the fundamental solution of the 2D diffusion equation in a box
[−L1/2, L1/2] × [−L2/2, L2/2], with periodic boundary conditions. The funda-mental solution G(x, t) has two equivalent representations [203]:

GGauss(x, t) = (4πD0t)
−1
∑

z∈Z2

e
− ∥x−z⊙L∥2

4D0t , (4.23)

GFourier(x, t) =
1

L1L2

∑

ν=z⊘L
z∈Z2

e−4π2D0∥ν∥2te2πıν·x, (4.24)

where ⊙ and ⊘ are Hadamard product and Hadamard division, respectively,and L = [L1, L2]
T . For the convenience of notation, in the following, we set

L1 = L2 = L and note by ∆ν = 1
L
. In this way, we rewrite eq. (4.24) as

GFourier(x, t) =
∑

ν=z⊘L
z∈Z2

e−4π2D0∥ν∥2te2πıν·x∆ν2 (4.25)

in order to recall its relationship with the Fourier transform. The imposition ofperiodic boundary conditions on the faces of the box allows us to use the dis-crete Fourier series.
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The density function µ is chosen to be a causal function and is determinedby imposing the Neumann boundary conditions on the geometry boundary ∂Ω[205]:
lim

x→x0∈∂Ω
∇S[µ](x, t) · n = N (x0, t,q), x0 ∈ ∂Ω, t ∈ [0,∆− δ]. (4.26)

Using the jump property of the trace of the double layer potential, the integralequation to be solved for µ is then the following:
1

2
µ(x0, t) +K[µ](x0, t) = N (x0, t,q), x0 ∈ ∂Ω, t ∈ [0,∆− δ], (4.27)

with
K[µ](x0, t) ≡

∫ t

0

∫

∂Ω

D0
∂G

∂nx0

(x0 − y, t− τ)µ(y, τ)dsydτ (4.28)
being the principal value integral on the boundary. Solving the integral equationeq. (4.27) for µ plays a pivotal role in our method. We present the detailed stepsin the next sections.
4.3.3 Splitting the single layer potential into local and history

parts
The single layer potential S[µ] is split into a history part, Slong[µ], and a local intime part, Sshort[µ]. Since the local in time part Sshort[µ] contains the singularityof the fundamental solution G, we approximate it by asymptotic formulas. Theasymptotic trace formulas are only accurate in an interval near the singularity,so we limit their use to the interval [t − η, t], with η being a small quantity to bedetermined later. In other words,

S[µ](x, t) = Sshort[µ](x, t) + Slong[µ](x, t), (4.29)
with

Sshort[µ](x, t) ≡
∫ t

t−η

∫

∂Ω

D0GGauss(x− y, t− τ)µ(y, τ)dsydτ, (4.30)
Slong[µ](x, t) ≡

∫ t−η

0

∫

∂Ω

D0GFourier(x− y, t− τ)µ(y, τ)dsydτ. (4.31)
Similarly, we decomposeK[µ] into 2 parts:

K[µ](x0, t) = Kshort[µ](x0, t) +Klong[µ](x0, t), (4.32)
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with
Kshort[µ](x0, t) ≡

∫ t

t−η

∫

∂Ω

D0
∂GGauss

∂nx0

(x0 − y, t− τ)µ(y, τ)dsydτ, (4.33)
Klong[µ](x0, t) ≡

∫ t−η

0

∫

∂Ω

D0
∂GFourier

∂nx0

(x0 − y, t− τ)µ(y, τ)dsydτ. (4.34)
Next, we compute or approximate the above history and local parts.
Asymptotic trace formulas for the local part

Based on the expressions derived by Greengard and Strain [203], the asymptotictrace formulas in two dimensions for the local parts, when t > η, are:

Sshort[µ](x0, t) =

√
D0η

π
µ(x0, t) +O(η3/2), t > η (4.35)

and
Kshort[µ](x0, t) = −

√
D0η

2
√
π
ξ(x0)µ(x0, t) +O(η3/2), t > η, (4.36)

where ξ(x0) is the curvature at the point x0 ∈ ∂Ω. The boundary ∂Ω, whichmodels the cell membrane, is a closed 2D plane curve. We assume it is twicedifferentiable. Let ψ(α) = (x(α), y(α)) be a parametric representation of ∂Ω.We choose a general parameter α such that ψ(α) is oriented counterclockwise.The curvature at the point x0 = ψ(α0) is defined as

ξ(x0) =
x′y′′ − y′x′′

(x′2 + y′2)3/2

∣∣∣∣∣
α=α0

, (4.37)

where primes refer to derivatives with respect to α.
We also need to initialize values for t ≤ η. It has been derived in [206] thatthe expressions are:

Sshort[µ](x0, t) =

√
D0t

π
µ(x0, t) +O(t3/2), t ≤ η, (4.38)

and
Kshort[µ](x0, t) = −

√
D0t

2
√
π
ξ(x0)µ(x0, t) +O(t3/2), t ≤ η. (4.39)
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Fourier representation of history part

For the smooth part of the single layer potential, a Fourier representation forthe Dirichlet trace is proposed in [203]:
Slong[µ](x0, t) = D0

∑

ν=z⊘L
z∈Z2

f̂(ν, t)e2πıν·x0∆ν2, (4.40)

and the Neumann trace is
Klong[µ](x0, t) = D0

∑

ν=z⊘L
z∈Z2

2πıν · nf̂(ν, t)e2πıν·x0∆ν2, (4.41)

where the Fourier coefficients are
f̂(ν, t) =

∫ t−η

0

∫

∂Ω

e−4π2D0∥ν∥2(t−τ)µ(y, τ)e−2πıν·ydsydτ. (4.42)
To avoid history-dependent time integration, we use the following recur-rence formula for the Fourier coefficients
f̂(ν, t) = e−4π2D0∥ν∥2∆tf̂(ν, t−∆t)+

∫ t−η

t−η−∆t

∫

∂Ω

e−4π2D0∥ν∥2(t−τ)µ(y, τ)e−2πıν·ydsydτ, (4.43)
so only local-in-time integrals are computed at each time step.The above formulas hold when t > η. For t ≤ η, we initialize Slong[µ],Klong[µ],and f̂ to be 0.
4.3.4 Computation of the single layer density

Based on the decomposition of the single layer potential and the approxima-tion of the history and the local parts detailed previously, we can compute thedensity function µ.For t ≤ η, substituting eq. (4.39) into eq. (4.27) and solving the integral equa-tion, we can get the approximation to the density
µ(x0, t) =

2N (x0, t,q)

1−
√

D0t
π
ξ(x0)

+O(t3/2), x0 ∈ ∂Ω, t ≤ η. (4.44)

For t ∈ (η,∆− δ], the integral equation eq. (4.27) can be rewritten as
1

2
µ(x0, t) +Kshort[µ](x0, t) = β(x0, t), (4.45)
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where the right-hand side is
β(x0, t) ≡ −Klong[µ](x0, t) +N (x0, t,q). (4.46)

We write the solution of the above integral equation as
µ(x0, t) = 2 (I + 2Kshort)

−1 [β] (x0, t), x0 ∈ ∂Ω, t ∈ (η,∆− δ], (4.47)
and expand the operator (I + 2Kshort)

−1 (corresponding to Kshort being a con-traction) as
µ(x0, t) = 2

(
I − 2Kshort + 4K2

short + · · ·+ (−2)nKn
short + . . .

)
[β] (x0, t). (4.48)

We approximateKn
short[β] using eq. (4.36) and we get

Kn
short[β](x0, t) =

1

(−2)n

(
D0η

π

)n/2

ξn(x0)β(x0, t) +O(η3/2). (4.49)
Then, we keep all terms of the operator expansion to obtain

µ(x0, t) = 2
(
β(x0, t)− 2Kshort[β](x0, t) + 4K2

short[β](x0, t) + . . .
)

= 2β(x0, t)

(
1 + (

D0η

π
)
1
2 ξ(x0) +

D0η

π
ξ2(x0) + . . .

)
+O(η3/2)

= 2β(x0, t)/

(
1−

√
D0η

π
ξ(x0)

)
+O(η3/2).

(4.50)

4.3.5 Computation of the single layer potential
Once the density µ is obtained, we compute the single layer potential S[µ] inthe following way.When t ≤ η, the expression for the single layer potential is

S[µ](x0, t) = Sshort[µ](x0, t)

=

√
D0t

π

4πıρq · ne−4π2D0∥q∥2te−2πıq·x0

1−
√

D0t
π
ξ(x0)

+O(t3/2), x0 ∈ ∂Ω, t ∈ [0, η].

(4.51)
For t ∈ (η, ∆−δ], the single layer potential has both a local part and a historypart. The local part is
Sshort[µ](x0, t) =

√
D0η

π
µ(x0, t) +O(η3/2), x0 ∈ ∂Ω, t ∈ (η, ∆− δ]. (4.52)
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As for the history part Slong[µ], it can be approximated by the truncatedFourier series:

Slong[µ](x0, t) = D0

νmax∑

ν=−νmax

f̂(ν, t)e2πıν·x0∆ν2+E(νmax), x0 ∈ ∂Ω, t ∈ (η, ∆−δ].

(4.53)In the above, we denote the error term due to truncating the infinite Fourierseries up to νmax by E(νmax). We do not have an analytical expression for E(νmax),but we will show later in the numerical results that it decays exponentially in
νmax.

The addition ofSshort[µ] andSlong[µ] gives the single layer potentialS[µ]whichis the solution of eq. (4.12) on the boundary:
S[µ](x0, t) = Sshort[µ](x0, t) + Slong[µ](x0, t), x0 ∈ ∂Ω, t ∈ [0, ∆− δ]. (4.54)

At the current iteration step, the Fourier coefficients f̂ that are still unknownwill be computed using the density function µ from the previous iterations, asexplained in the following.

Computation of the Fourier coefficients of the history part

For t ≤ η, f̂ is set to zero, as well as Klong[µ]. For t ∈ (η, 2η], f̂ are computedusing the density µ from the previous iterations:
f̂(ν, t) =e−4π2D0∥ν∥2∆tf̂(ν, t−∆t)+

∫

∂Ω

∫ t−η

t−η−∆t

e−4π2D0∥ν∥2(t−τ)e−2πıν·yµ(y, τ)dτdsy
︸ ︷︷ ︸

f̂temp1(ν,t)

, ν ∈ [−νmax, νmax]
2,

(4.55)
with

f̂temp1(ν, t) =

∫

∂Ω

4πıq·ne−2πı(q+ν)·y
∫ t−η

t−η−∆t

e−4π2D0[∥ν∥2(t−τ)+∥q∥2τ]

1−
√

D0τ
π
ξ(y)

dτ

︸ ︷︷ ︸
p

dsy. (4.56)
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We apply the trapezoidal rule to the time integration p to obtain

p =





− 2πe−4π2D0∥q∥2t
D0ξ2(y)

[
ξ(y)

√
D0

π

(√
t− η −√

t− η −∆t
)
+

ln

(
1−ξ(y)

√
D0
π

(t−η)

1−ξ(y)
√

D0
π

(t−η−∆t)

)]
, ∥ν∥ = ∥q∥;

e−4π2D0[∥q∥2(t−η)+∥ν∥2η]

[
1+e4π

2D0(∥q∥2−∥ν∥2)∆t(4π2D0(∥q∥2−∥ν∥2)∆t−1)

∆t(4π2D0(∥q∥2−∥ν∥2))2
(
1−ξ(y)

√
D0
π

(t−η−∆t)

)+
e4π

2D0(∥q∥2−∥ν∥2)∆t−4π2D0(∥q∥2−∥ν∥2)∆t−1

∆t(4π2D0(∥q∥2−∥ν∥2))2
(
1−ξ(y)

√
D0
π

(t−η)

)
]
, ∥ν∥ ≠ ∥q∥.

(4.57)Once we compute the time integration p, the integration over the boundary
∂Ω can be approximated by discretization in arc length.Remaining on t ∈ (η, 2η], next we compute the long time partKlong[µ] via theFourier series

Klong[µ](x0, t) = D0

νmax∑

ν=−νmax

2πıν · nf̂(ν, t)e2πıν·x0∆ν2 + E(νmax). (4.58)

With a slight abuse of notation, we use the same notation E(νmax) as in eq. (4.53)for the error due to truncating the Fourier series at νmax.Finally, the density function µ for (the current time) t ∈ (η, 2η] is computedas:
µ(x0, t) =

2 [N (x0, t)−Klong[µ](x0, t)]

1−
√

D0η
π
ξ(x0)

+O(η3/2). (4.59)

On the rest of the time interval, t ∈ (2η, ∆− δ], f̂ still uses the density µ fromprevious iterations, but the formulas are different:
f̂(ν, t) = e−4π2D0∥ν∥2∆tf̂(ν, t−∆t)+

∫

∂Ω

∫ t−η

t−η−∆t

e−4π2D0∥ν∥2(t−τ)e−2πıν·yµ(y, τ)dτdsy
︸ ︷︷ ︸

f̂temp2(ν,t)

, ν ∈ [−νmax, νmax]
2.

(4.60)
In the above, the Fourier coefficients f̂(ν, t −∆t) at the previous time step are
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known, and the expression of µ(x0, τ) for τ ∈ (η,∆− δ − η] is
µ(x0, τ) = 2

(
1−

√
D0η

π
ξ(x0)

)−1

[N (x0, τ)−Klong[µ](x0, τ)] , x0 ∈ ∂Ω.

(4.61)The integration on the right-hand side of eq. (4.60) is noted as f̂temp2(ν, t) inwhich we substitute the expression of µ above. We split f̂temp2 into two partsand gather the terms that are independent of time
f̂temp2(ν, t) =

∫

∂Ω

2

(
1−

√
D0η

π
ξ(y)

)−1

e−2πıν·y×

(
2πıq · ne−2πıq·y

∫ t−η

t−η−∆t

e−4π2D0(∥q∥2τ+∥ν∥2(t−τ))dτ

︸ ︷︷ ︸
h1

−

∫ t−η

t−η−∆t

Klong[µ](y, τ)e
−4π2D0∥ν∥2(t−τ)dτ

︸ ︷︷ ︸
h2

)
dsy. (4.62)

The time integration h1 in the first part has an analytical expression
h1 =




∆t · e−4π2D0∥ν∥2t ∥q∥ = ∥ν∥

e−4π2D0[∥q∥2(t−η)+∥ν∥2η] e
4π2D0(∥q∥2−∥ν∥2)∆t − 1

4π2D0(∥q∥2 − ∥ν∥2) ∥q∥ ≠ ∥ν∥
(4.63)

The time integration h2 in the second part has to be calculated numerically.We apply the trapezoidal rule toKlong[µ](y, τ) and we get

h2 =





∆t
2
[Klong[µ](y, t− η) +Klong[µ](y, t− η −∆t)] ∥ν∥ = 0

[
1−e−4π2D0∥ν∥2∆t(4π2D0∥ν∥2∆t+1)

(4π2D0∥ν∥2)2∆t
Klong[µ](y, t− η −∆t) +

e−4π2D0∥ν∥2∆t+4π2D0∥ν∥2∆t−1
(4π2D0∥ν∥2)2∆t

Klong[µ](y, t− η)
]
e−4π2D0∥ν∥2η ∥ν∥ ≠ 0

(4.64)The values of Klong[µ] at time t − η − ∆t and t − η have been computedin previous steps, thus the expressions for h1 and h2 can be computed in thecurrent time step. Then we discretize in the arc length over the boundary toobtain f̂temp2 as well as f̂ .Staying on t ∈ (2η, ∆− δ], it is straightforward to recover the long time part
Klong[µ] at time t by applying the inverse discrete Fourier transform

Klong[µ](x0, t) = D0

νmax∑

ν=−νmax

2πıν · nf̂(ν, t)e2πıν·x0∆ν2 + E(νmax). (4.65)
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Again, with a slight abuse of notation, we use the same notation E(νmax) as ineq. (4.53) for the error due to truncating the Fourier series at νmax. Finally, thedensity function µ at the current time t is
µ(x0, t) =

2 [N (x0, t)−Klong[µ](x0, t)]

1−
√

D0η
π
ξ(x0)

+O(η3/2), (4.66)

which will be used for future iterations.
4.3.6 Computation of the diffusion MRI signal

After obtaining the single layer potential, the following procedure producesthe diffusion MRI signal attenuation.The signal attenuation E has the representation
E = ρe−4π2D0∥q∥2(∆−δ) +

1

|Ω|ω(q,∆− δ). (4.67)
The quantity ω will be computed using the recursive relationship below (rewrit-ten from eq. (4.21)):

ω(q, t) = e−4π2D0∥q∥2∆tω(q, t−∆t)

−D0

∫

∂Ω

2πıq · ne2πıq·y
u︷ ︸︸ ︷∫ t

t−∆t

e−4π2D0∥q∥2(t−τ)ω(y, τ)dτ dsy.

(4.68)

By applying the trapezoidal rule to the time integration u, we then get theexpression

u =





∆t
2
[ω(y, t−∆t) + ω(y, t)] ∥q∥ = 0

1−e−4π2D0∥q∥2∆t(4π2D0∥q∥2∆t+1)
(4π2D0∥q∥2)2∆t

ω(y, t−∆t)

+ e−4π2D0∥q∥2∆t+4π2D0∥q∥2∆t−1
(4π2D0∥q∥2)2∆t

ω(y, t) ∥q∥ ≠ 0

(4.69)

The variable ω is the single layer potential S[µ]
ω(x0, t) = S[µ](x0, t) = Sshort[µ](x0, t) + Slong[µ](x0, t). (4.70)

The short time part has an asymptotic expression
Sshort[µ](x0, t) = 2

√
D0η

π

N (x0, t)−Klong[µ](x0, t)

1−
√

D0η
π
ξ(x0)

+O(η3/2) (4.71)
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with
N (x0, t) = 2πıρq · ne−4π2D0∥q∥2te−2πıq·x0 , (4.72)

and
Klong[µ](x0, t) = D0

νmax∑

ν=−νmax

2πıν · nf̂(ν, t)e2πıν·x0∆ν2 + E(νmax). (4.73)
The long time part is approximated by a Fourier series

Slong[µ](x0, t) = D0

νmax∑

ν=−νmax

f̂(ν, t)e2πıν·x0∆ν2 + E(νmax). (4.74)
Finally, a boundary discretization allows the numerical computation of ω.

4.4 Numerical results
In this section, we study the convergence of the Fourier Potential method.Thematrix formalismmethod [47, 48] is capable of computing analytical signalsfor simple geometries, such as circles and spheres, using analytical expressionsfor the Laplace eigendecomposition, so we use the MF signals as the referencesignals. We note the diffusion MRI signal simulated by our method as s and theanalytical signal given by the MF as sref .The geometry on which we will conduct the convergence study is a circle ofradius r (ϕ = 2r, ξ = 1/r), where ϕ is the size of the geometry and ξ is thecurvature. The default values for the physical parameters are below:
• r = {1, 2, 4} µm, ξ = {1, 0.5, 0.25} µm−1

• D0 = 2× 10−3 µm2/µs

• δ = 10−3 µs, ∆ = 5, 000 µs

• ug = [1, 0]T

• b = {1000, 4000} µs/µm2, or equivalently {1, 4}ms/µm2

We will study the dependence of the relative error (not in percent), definedby
ε =

∣∣∣∣
s− sref
sref

∣∣∣∣ , (4.75)
on the discretization parameters: spatial step ∆x, the time step ∆t, the maxi-mum frequency νmax, the spectral step∆ν, and the single layer local time interval
η. As the convergence studies for various algorithm parameters are conducted,the default values for the fixed parameters are listed below:
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• η = 1 µs

• νmax = 10 µm−1, ∆ν = 0.05 µm−1

• ∆x = 0.005 µm, ∆t = 0.5 µs

4.4.1 The narrow pulse assumption error
One important point to discuss here, before showing the convergence stud-ies, is the choice of the duration of the diffusion-encoding gradient pulse, δ.We need that δ ≪ ∆ to satisfy the narrow pulse assumption. In fig. 4.1, weshow the error due to the narrow pulse assumption for a range of δ values.At b = 1000 µs/µm2, the narrow pulse approximation error is around 10−2 at

δ = 102 µs for all three circle radii.

10−4 10−3 10−2 10−1 100 101 102

δ [µs]

10−5

10−4

10−3

10−2

ε

b = 1 ms/µm2, r = 4 µm

b = 1 ms/µm2, r = 2 µm

b = 1 ms/µm2, r = 1 µm

b = 4 ms/µm2, r = 1 µm

Figure 4.1: Influence of δ on the relative error. All discretization parameters are set tobe the default. The sampled δ’s are {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10,100} µs (from left to right).
The validity of the narrow pulse assumption also depends on the separationbetween the two pulses∆. The narrow pulse assumption requires a small ratioof δ and ∆. In fig. 4.2, we show the influence of this ratio on the relative error.For large ∆ such as 20ms, the relative error is less than 5% with δ being 2ms.Despite the fact that a relative error of a few percent is perfectly acceptablefor diffusion MRI applications, for the sake of the numerical convergence study
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δ/∆× 100%

10−2

10−1

ε

∆ = 100 ms

∆ = 50 ms

∆ = 20 ms

∆ = 5 ms

Figure 4.2: Influence of δ/∆ on the relative error. All discretization parameters are setto be the default. The geometry is a circle of radius 1 µm and the b-value is 4 ms/µm2.The sampled ratios δ/∆ are {0.1%, 0.5%, 1%, 2.5%, 5%, 7.5%, 10%} (from left to right).

that follows, we have chosen much lower thresholds for the narrow pulse ap-proximation error and picked an exceedingly small value of δ = 10−3 µs, whichis not achievable with current MRI scanners. This choice is because we wantedthe error from the narrow pulse assumption to be significantly smaller than thediscretization errors of the numerical method as we refined the method param-eters. In this way, the plateauing of the errors towards the narrow pulse approx-imation error occurs later in the refinement process so that we can verify if theerror behavior follows the error analysis presented in section 4.3. We note thatat our choice of δ = 10−3 µs, the narrow pulse approximation errors shown infig. 4.1 range from 10−6 (b = 1000 µs/µm2, r = 4 µm) to 10−4 (higher b-values).These valueswill form the “floor" values for our convergence curves, to be shownnext.
4.4.2 Duration of the local in time part of the single layer po-

tential, η
First, we study the duration η of the local in time part of the single layer po-tential. The error term O(η3/2) originates from the asymptotic trace formulaseq. (4.35) and eq. (4.36). In fig. 4.3 the curves show a clear convergence order
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of 3/2 in η. In addition, the circle radius (curvature) and the b-value affect theerrors: the errors are bigger for larger b-value and higher curvature.We observe that minimum errors occur at η = 1 µs. The values of the min-imum errors coincide with the size of the narrow pulse approximation errorsshown in fig. 4.1. At the smaller value of η = 0.5 µs, the errors increased. Thereason is that there is a tradeoff between two sources of error, one linked to
O(η3/2) and one to E(νmax). With a smaller η, the long time part Slong[µ] suf-fers more from the singularity of the heat kernel, thereby increasing the error
E(νmax). After we decrease η beyond a certain point, E(νmax) becomes the bot-tleneck for the accuracy, which will be studied next.

100 101 102 103

η [µs]

10−5

10−4

10−3

10−2

10−1

100

ε

b = 1 ms/µm2, r = 4 µm

b = 1 ms/µm2, r = 2 µm

b = 1 ms/µm2, r = 1 µm

b = 4 ms/µm2, r = 1 µm

ε = 10−4.701 × η1.502

Figure 4.3: Convergence curves regarding η. All discretization parameters except for ηare set to be the default. The sampled η’s are {0.5, 1, 2.5, 5, 12.5, 25, 50, 75, 100, 125,250, 375, 500, 625, 750, 875, 1000} µs (from left to right). The slopes of the curves arearound 3/2.

4.4.3 Maximum frequency
Themain feature of ourmethod is that the history part of the single layer po-tential Slong[µ] has a spectral representation. The spectrum of the fundamentalsolution G decreases exponentially with respect to the frequency ν. As a result,the Fourier coefficients f̂ are also subject to the exponential decay:

f̂(ν, t) = O(e−4π2D0η∥ν∥2). (4.76)
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In order to numerically compute the spectrum of Slong[µ], we truncated it at νmaxand omitted all higher frequency components. The truncation gives rise to anerror caused by the omitted Fourier modes, which we have denoted as E(νmax).Even though we do not have an analytical expression for E(νmax), consideringthe exponential decay of the Fourier coefficients, we could expect a rapid de-crease in the truncation error.We present the convergence curves in fig. 4.4. We note that the x-axis islinear, and the y-axis is logarithmic. Empirically, we observe that the error canbe fitted by c1e−c2νmax , where c1 is a constant, and c2 = 1.17. As expected, for thelargest νmax, (νmax > 9 µm−1), the curves approach the errors due to the narrowpulse approximation.
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Figure 4.4: Convergence curves regarding νmax. All discretization parameters exceptfor νmax are set to be the default. The sampled νmax’s are {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12} µm−1 (from left to right).

4.4.4 Spatial discretization
Our method contains several boundary integrations. The geometries weused are circles, and we chose to have a piecewise linear approximation of ∂Ω.This means the discretized geometries are regular polygons. Let us call the dis-cretized segment length of the boundary ∆x. On the other hand, the referencesolution (MF) computes the Laplace eigenfunctions of exact circles.
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Figure 4.5 illustrates the convergence curves in ∆x. At the larger range of
∆x, we observe exponential convergence in 1

∆x
, due to the exponential conver-gence of the trapezoidal rule for periodic functions (the integrand over a closedboundary being a periodic function). At the smaller range of∆x, we observe theplateauing towards the narrow pulse approximation errors.In the middle range of ∆x, we observe a convergence of O(∆x2), due to theapproximation of the exact circle geometry by regular polygons. To better visu-alize the convergence pattern, we plot the approximation error for the area of anexact circle by regular polygons. The area error e is defined as the normalizeddifference between the circle area and the area of a regular n-sided inscribedpolygon An

e =
πr2 −An

πr2
∼ ∆x2

6r2
=

(ξ∆x)2

6
. (4.77)

This explains the convergence order of ∆x2. Moreover, eq. (4.77) also indicatesthe influence of curvature. High curvature geometries endure greater area er-rors, thus, larger simulation errors.
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Figure 4.5: Convergence curves regarding ∆x. All discretization parameters except for
∆x are set to be the default. The sampled∆x’s are {0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25,0.3, 0.35, 0.4, 0.45, 0.5} µm (from left to right).

4.4.5 Temporal discretization
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Let the time step be∆t. We apply the trapezoidal rule to every time integra-tion in our implementation, for instance, eqs. (4.55), (4.64) and (4.69). Theoret-ically, the trapezoidal integration error is O(∆t2) [207]. However, the local-in-time region size, η, which is an integer multiple of∆t, contributes an error fromthe asymptotic formula, as shown in fig. 4.3. This asymptotic formula error nu-merically dominates theO(∆t2) error from the trapezoidal integration. Thus, wedo not show a plot of the trapezoidal rule convergence.
4.4.6 Spectral discretization

The spectral resolution ∆ν is closely related to the size of the periodic boxenclosing the geometry. Let the side length of the box be L. According to theNyquist–Shannon sampling theorem, we should have
1

∆ν
= L. (4.78)

The inverse relationship manifests itself in eqs. (4.23) and (4.24) as well. A nec-essary restriction on the box is that it must contain the entire domain Ω, in ourcase, the domain being a circle, we get
1

∆ν
= L ≥ ϕ, (4.79)

where we defined ϕ as twice the radius. In fig. 4.6, it is shown that the relativeerrors are greater than 100% when the box is smaller than the domain ( 1
∆ν

<
ϕ). As soon as the box contains the geometry, the errors reduce to the plateauvalues of the narrow approximation errors. Clearly, all simulations must satisfythe spectral discretization condition eq. (4.79).
4.4.7 Influence of q-vector

Now we study the influence of the b-value/q-vector on the relative errors.We fix the diffusion time δ and ∆, so the b-value is equivalent to the square ofthe magnitude of the q-vector. We chose to plot the relative error versus themagnitude of the q-vector because we explicitly formulated our method usingq-vectors rather than b-values. The results are given in fig. 4.7. We note thatthe x-axis is logarithmic, and the y-axis is linear. The experiment results showthat once the magnitude of the q-vector is large enough, the error increaseslogarithmically with the norm of q-vectors. For small q-vectors, the errors arewithin the range of the error floor (10−4 − 10−6) imposed by the narrow pulseapproximation. For larger q, the logarithmic dependence of the error on ∥q∥requires further study to explain. We do not at this time have an explication forit.
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Figure 4.6: Convergence curves regarding ∆ν. Relative errors which are greater than100 (2dB) are omitted for a better visualization. All discretization parameters except for
∆ν are set to be the default. The sampled∆ν ’s are {0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,0.35, 0.4, 0.45, 0.5, 0.75, 1, 2, 3, 4, 5} µm−1 (from left to right).

4.4.8 Extension to complex geometries
In the previous sections, we used circles to study the convergence of ourmethod. The Matrix Formalism method can compute the analytical solution oncircles, which allows us to show the convergence behavior of the Fourier Poten-tial Method.Our method can simulate diffusion MRI signals onmore complex 2D geome-tries. Here we present FPM simulation results on two realistic axons. The mi-croscopy image (fig. 4.8) and the axon sections are obtained using the Axon-DeepSeg segmentation framework [208]. With these irregular shapes, analyti-cal solutions are not accessible, so we computed the reference signals by finiteelement simulations using the SpinDoctor toolbox [44]. We show, in fig. 4.9, thedMRI signals in 40 directions as well as the relative errors. Our method agreeswith the finite element reference signals. For the middle b-value (4000 µs/µm2),the relative error is less than 5%. One should note that the magnetization of thetwo adjacent axons is computed simultaneously by sharing the same Fourier ba-sis. This feature is different from the matrix formalism method, which requiresgeometry-dependent bases.

108



10−13× 10−24× 10−2 6× 10−2 2× 10−1

q [µm−1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ε
×10−4

r = 4 µm

ε = 10−5 · (0.95 ln q + 2.44)

r = 2 µm

ε = 10−5 · (2.24 ln q + 5.85)

r = 1 µm

ε = 10−5 · (10.37 ln q + 29.94)

Figure 4.7: Influence of q on the relative error. All discretization parameters are setto be the default. The sampled q’s are {0.0225, 0.0318, 0.0450, 0.0551, 0.0637, 0.0712,0.1007, 0.1424, 0.1743, 0.2013, 0.2251} µm−1 and the corresponding b-values are {100,200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000, 10,000} µs/µm2 (from left to right).

Figure 4.8: The microscopy image of axons from AxonDeepSeg. Two adjacent axonsare selected.
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Figure 4.9: Comparison of FPM with FEM. (a) the normalized signals simulated by FPMand FEM. The gray areas illustrate the shapes of the two adjacent axons. The physicalparameters are: D0 = 2 × 10−3 µm2/µs, δ = 2 ms, ∆ = 100 ms. The discretizationparameters of the FPM are: η = 50 µs, νmax = 2 µm−1,∆ν = 0.05 µm−1,∆x = 0.01 µm,and ∆t = 50 µs. The signals are simulated in 40 directions evenly distributed on a unitcircle. (b) the relative errors in percent.
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4.5 Summary

In this chapter, we derived a new representation of the diffusion MRI signalby solving the BT equation using potential theory. The decomposition of thesingle layer potential into singular and smooth parts allows the numerically ef-ficient storage of the smooth part on a Fourier basis. Time integrals in the formof certain exponentials allow us to use time recursion to avoid history depen-dence. We numerically validated the convergence of our method and showedthe error behavior in several simulation parameters.
One of the main features of our method is the availability of the spectrum ofthe smooth part of the magnetization field. The projection to the Fourier basisfunctions provides a unified spectrum space for different geometries. Since ourmethod provides a Fourier-like representation of the diffusion MRI signal, thiscan potentially facilitate new physical and biological signal interpretation in thefuture.
A mixed basis approach developed by Nordin et al. [209, 210] resembles ourmethod. They utilize a set of basis functions that consists of the Fourier func-tions and the surface functions (dipole potentials) to capture the most relevantpart of the low-frequency spectrum of the Laplace operator in a confined geom-etry [209, 210]. In the mixed basis approach, the role of the Fourier functionsis to mimic the free diffusion behavior. The influence of the boundaries is cap-tured by the surface functions. However, in our method, the free diffusion partis represented by the first exponential term in eq. (4.16). The Fourier functionsare used to capture the history part of the influence of the boundaries. Conse-quently, the spectrum spaces of the two methods are different. In addition, themixed basis approach is more general in the sense that it doesn’t require thenarrow pulse assumption.
Our method is currently of theoretical interest only. It only solves two-dimensional problems and it is computationally intensive. As the first work ad-dressing this subject, we restricted ourselves to the 2D diffusionMRI setting withimpermeable interfaces. To extend FPM to 3 dimensions, the main changes tobe made are the asymptotic trace formulas for the local part, i.e., eq. (4.35) -eq. (4.39), in particular, the curvature for 1D curves will need to be generalizedto analogous quantities on 2D surfaces. The generalization of the curvature andthe derivation of the asymptotic trace formulas are the major difficulties for theextension to three dimensions. As a consequence, the solution of the integralequation (eq. (4.50)) will have a new formulation in 3D. Another change involvesspatial integration on 2D surfaces instead of on 1D curves, the former beingmore numerically complicated than the latter.
We also restrict ourselves to simplified conditions on the diffusion-encoding
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gradient and permeability. Specifically, we derive our method under the nar-row pulse assumption and impermeability assumption. The question of how toremove these assumptions remains to be studied.

112



Chapter 5

Simulation-Based Brain
Microstructure Imaging

This chapter presents the fourth contribution of this thesis, a framework fortraining supervised learning models on synthetic data to estimate brain mi-crostructure using diffusion MRI non-invasively. The framework relies on theNeuronSet we built in chapter 2 and the numerical matrix formalism optimizedin section 3.3. Over 1,000 neuron meshes converted from digital neuronal re-constructions archived inNeuroMorpho.Org allow us tomeasure neuroanatom-ical parameters and simulate intracellular dMRI signals by solving the Bloch-Torrey partial differential equation. Moreover, we randomly combine neuronmeshes with extracellular compartments to obtain a synthetic dataset compris-ing both the dMRI signals and more than 40 microstructure parameters of over1.4 million artificial brain voxels. Unlike existing biophysical models, our ap-proach achieves higher modeling accuracy while requiring fewer assumptions.The synthetic dataset is valuable for validating biophysical models and approx-imating the mappings from dMRI signals to microstructure parameters. Wedemonstrate exemplary multilayer perceptrons (MLPs) trained on the syntheticdataset for volume and area fraction estimation. They perform satisfactorily insynthetic test sets and give promising in vivo parameter maps using the MGHCDMD dataset. Most importantly, the in vivo volume fraction estimation de-pends less on the diffusion time, which is one of the desired properties of quan-titative microstructure imaging.
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5.1 Introduction

Brain microstructure imaging often relies on “inverting” a forward model de-scribing the dMRI signal generation mechanism, as explained in section 1.3.Therefore, the accuracy of the forward model is of essential importance. Thepredominant forward models, i.e., biophysical models, typically subdivide abrain voxel into compartments described by simplified geometries such as cylin-derswith zero radii (sticks) [81, 211] and spheres (balls) [88]. Togetherwith someadditional assumptions, such as the Gaussian phase assumption (GPA), a bio-physical model allows deriving an analytical signal expression as a function ofthe model parameters related to several microstructure parameters [69].
One often fits the signal expression to experimental data to estimate themodel parameters. However, the indeterminacy inherent in some biophysicalmodels makes the parameter estimation unstable [212]. Moreover, an accuratefit does not necessarily justify the underlying biophysical model, and the esti-mated model parameters might be biophysically meaningless [68, 94]. Subtleeffects like neurite undulation are excluded from biophysical models becauseof mathematical complications [81, 88, 188]. In addition to the error brought bythe simplified geometric models, the validity of some assumptions, such as GPA,remains undetermined [68, 99]. Besides, the validity regimes of several signalexpressions depend on the length scales of underlying microstructure [91]. Avoxel may exhibit multiple length scales (e.g., various soma radii) so that differ-ent validity regimes may co-exist or emerge progressively [94], making compre-hensive model validation difficult.
To address the above shortcomings and achieve a more accurate forwardmodel, we aim to replace the simplified geometrieswith realistic neuronmeshesand the analytical intracellular signal expressionswith diffusionMRI simulations.The numerical dMRI simulation methods, including both algorithms based onsolving the Bloch-Torrey partial differential equation (BT equation) [43–46, 51,52, 58] andMonte-Carlo methods [36–38, 60, 62–65], are gold-standard forwardmodels for describing the formation of dMRI signals [33]. With realistic neuronmeshes, numerical simulation can seamlessly incorporate effects arising from,for instance, neurite undulation or water exchange between soma and neurites.
The proposed framework relies on an ultra-fast dMRI simulator, a neuronmesh dataset, and machine learning (ML) techniques to estimate brain mi-crostructure properties by leveraging dMRI simulation as the forward model.The simulations are conducted on neuron meshes to get the intracellular dMRIsignals which allow the approximation of the signal attenuations from arti-ficial brain voxels whose microstructure properties are computed from neu-roanatomical parameters measured on neuron meshes. Artificial brain voxels’
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signal attenuations and microstructure parameters form a synthetic dataset fortraining ML models. Figure 5.1 shows an overview of the framework.

1. Efficient dMRI
simulator

2. Realistic
neuron meshes

3. Signal simulation
and

feature extraction

4. Measurement of
microstructure

5. Model training

Figure 5.1: Overview of the simulation-driven supervised learning framework. Theultra-fast dMRI simulator and a large set of realistic neuron meshes are two corner-stones of the framework. The simulations are conducted on neuron meshes to getthe intracellular dMRI signals which allow the approximation of the signal attenuationsfrom artificial brain voxels whose microstructure parameters are computed from neu-roanatomical measurements. Artificial brain voxels’ signal attenuations andmicrostruc-ture parameters form a synthetic dataset. Finally, we train machine learning models onthe dataset.
To “invert” the gold-standard forward model, we leverage machine learningtechniques. The adoption of ML models in dMRI dates back to the last century[213] and has seen a recent resurgence [104, 214–217]. Artificial neural net-works are believed to be superior in function approximation [218–220], espe-cially in high dimensions [221, 222]. This chapter leveragesMLPs to approximatethe underlying mappings from signals to microstructure parameters.Specifically, we first generate a synthetic dataset containing both the dMRIsignals and more than 40 microstructure parameters of over 1.4 million artifi-cial brain voxels. Figure 5.2 summarizes the data-generating process and pro-vides more details about the blocks 3-5 of fig. 5.1. The dMRI signals and themicrostructure parameters of an artificial brain voxel form an entry in the syn-thetic dataset.MLPs are trained in the dataset in a supervisedway. We demonstrate severalexemplary MLPs for volume and area fraction estimation in synthetic test setsand theMGH CDMD dataset [22]. Finally, theMLPs are compared with the state-of-the-art impermeable biophysical model, SANDI [88].
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Figure 5.2: Summary of the synthetic dataset generation and model training based onthe simplified brain voxel model. The intracellular signal is the volume-weighted signalof numerous randomly picked neurons. The ECS is modeled as a free diffusion space.Our synthetic dataset consists of the dMRI signals and microstructure parameters of1.4 million artificial brain voxels. Features like direction-averaged signals are computedfrom the dMRI signals to predict some microstructure parameters. Finally, we train anMLP to fit the mapping from the features to the parameters of interest. The picture ofthe MLP is for illustration purposes only. The actual structure is different from the oneshown in the figure.
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5.2 Experimental data
Before we dive into the synthetic dataset generation, let us introduce the ex-perimental data used in this chapter. MGH CDMD [22] is an open-access diffu-sion MRI dataset providing processed in vivo human brain scans for 26 healthysubjects, seven of which are scanned twice. The diffusion MRI data were ac-quired on the 3T Connectome MRI scanner (Magnetom CONNECTOM, SiemensHealthineers), and a 64-channel phased array head coil [223] was used for sig-nal reception. Themaximum slew rate is 62.5 mT/m/ms. The diffusion encodingsequence is PGSE (see fig. 3.2(a) and eq. (3.6)), whose parameters are:
• the pulse duration δ = 8ms, two inter-pulse durations ∆ = 19, 49ms;
• eight non-zero gradient intensities (31, 68, 105, 142, 179, 216, 253, 290
mT/m) corresponding to eight b-values (72, 346, 825, 1509, 2400, 3491,4789, 6292 µs/µm2) at the short diffusion time δ/∆ = 8/19 ms, and eightb-values (204, 981, 2340, 4279, 6800, 9902, 13,584, 17,848 µs/µm2) at thelong diffusion time δ/∆ = 8/49ms;

• one interspersed image without diffusion-encoding gradient (g = 0) forevery 16 diffusion-weighted images;
• 32 diffusion encoding directions uniformly distributed on a sphere for b <
2400 µs/µm2 and 64 uniform directions for b ≥ 2400 µs/µm2.

Other imaging parameters are as follows: the echo time TE = 77 ms, repeti-tion time TR = 3800 ms, field of view (FOV) = 216 × 216 mm, slice thickness =
2 mm, voxel size = 2 × 2 × 2 mm3. The diffusion MRI data were processed tocorrect gradient nonlinearity, eddy currents, and susceptibility-induced distor-tions. The estimated median signal-to-noise ratio (SNR) is 21 [22, 224]. MGHCDMD provides the real part of dMRI signals for some subjects. In this chapter,we only use the signal magnitude. More details about the data acquisition andprocessing can be found in the work of Tian et al. [22].

5.3 Synthetic dataset generation
This section aims to construct a dataset comprising simulated dMRI signalsand microstructure parameters of artificial brain voxels. In practice, a gray mat-ter brain voxel of 1mm3 is a medium comprising tens of thousands of cell bod-ies, millions of neurites, blood vessels, extracellular space, etc. [12]. We makevarious simplifications to brain voxels tomodel such complex tissue. First, we ig-nore compartments like blood vessels because cells and ECS occupymost of the

117



volume. Second, we model the ECS compartment by an isotropic free diffusionspace. Ideally, we could wrap the neuron meshes with another mesh to modelECS. However, neurons are tightly intertwined in real brain tissue. Building ageometric model for ECS requires densely packing a large number of neuronsin a tiny cube to achieve a reasonable ECS volume fraction (∼ 20%) [162]. Be-sides, these neurons cannot intersect with each other. Neuron packing is stillan open problem that we have not solved. As a compromise, we keep the freediffusion model for the ECS compartment. Third, we take the averaged signalsfrom hundreds of neurons to represent the intracellular signals of a brain voxel.
In addition, we keep the two assumptions made by the simplified form ofBT equation in section 3.1.2. They are (1) cell membranes are assumed to beimpermeable; (2) the transverse relaxation is assumed to be homogeneous in abrain voxel so that the signal normalization (eq. (3.11)) can cancel the effect oftransverse relaxation.
Briefly, our artificial brain voxel consists of numerous impermeable neuronsand an ECS. Due to the difficulty regarding neuron packing, we do not build ac-tual ECS meshes. The ECS is modeled as a free diffusion space parameterizedby its volume fraction fecs.This section describes the steps to generate the synthetic dataset illustratedin fig. 5.2(b). In section 5.3.1, we present the dMRI protocol and the simula-tion parameters. We use the optimized numerical MF to perform dMRI simu-lations on individual neuron meshes in NeuronSet. All simulations were com-pleted within three weeks. According to the efficiency comparison made in sec-tions 3.3.2 and 3.3.3, it would take 30 weeks if we adopt another simulationmethods, such as finite element methods, Monte-Carlo methods, or the numer-ical MF without the optimization made in this thesis.
In section 5.3.2, we explain how to compute voxelwise signal attenuationsbased on the simplified brain voxelmodel presented above. Furthermore, somemicrostructural properties of artificial brain voxels can be computed from themeasurements on neuron meshes. In this way, each artificial brain voxel is re-lated to a set of simulated signals and a group of microstructure parameters. Byrandomly combining neurons in NeuronSet and adding ECS compartments, wegot 1.4 million artificial brain voxels whose signals and microstructure parame-ters form the synthetic dataset.

5.3.1 Simulating signals from individual neurons
We start with the simulation on individual neuron meshes using a similardMRI protocol as MGH CDMD:
• PGSE sequences with δ/∆ = 8/19 or 8/49ms;

118



• 64 non-zero gradient intensities linearly space between 0 (not included)and 290mT/m;
• 32 diffusion encoding directions uniformly distributed on a hemisphere(equivalent to 64 directions on a sphere because simulated signals are an-tipodally symmetric).

The diffusivity inside neuron is fixed to be 3 × 10−3 µm2/µs, the water self-diffusion coefficient at 37 ◦C [34]. We chose it because cytoplasm consists of80 - 97 % water [225] [11, p. 128]. Macromolecules and organelles can indeedhinder the diffusion of water molecules. However, given the high proportion ofwater, we do not think the reduction is significant.The simulations are performed by the well-optimized numerical MF that re-quires two simulation parameters,H and τmin, as explained in section 3.2.2. Theparameter H controls the fineness of neuron meshes, and τmin determines thenumber of retained eigenvalues. We choose H = −1 and τmin = 76 µs for thenumericalMF used in this chapter. Tetgen uses an adaptivemethod to discretizethe volume and add new points to improve the mesh quality when H is set to
−1 [111]. Theminimum characteristic time scale of 76 µsmeans that we keep alleigenvalues less than 4.39 µm−2 whose characteristic length scales are greaterthan 1.5 µm. Next, we validate the choice of H and τmin.
Validation of simulation parameters

To validate the choice aboutH = −1 and τmin = 76 µs, we compare the numeri-cal matrix formalism with a FEM simulator implemented in SpinDoctor [44]. TheFEM simulations with refined discretization in space and time give the referencesolutions. The simulation parameters of the FEM simulator are H = 0.5 µm3,
rtol = 10−5, atol = 10−7. We refine the neuron meshes by setting H to 0.5 µm3.A comparison between H = −1 and H = 0.5 µm2 is given in fig. 5.3.As for diffusion MRI protocol, we fix the gradient intensity to the maximumvalue used in MGH CDMD (290 mT/m) because a strong gradient often sufferslarge numerical errors [50, 116]. Nine gradient directions are evenly distributedin a semicircle and parameterized by an angle χ.We denote by SMF and SFEM the signals simulated by the numerical matrixformalism and the finite element method, respectively. Figure 5.3(c) gives therelative errors in percent (|SMF−SFEM|/|SFEM|×100%) at nine directions for threerandomly picked cells1. The relative errors are below 4%, which indicates a sat-isfactory simulation accuracy with the chosen simulation parameters.

1The IDs of the three cells in NeuroMorpho.Org are NMO_01042, NMO_85592, andNMO_85632.
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Figure 5.3: Simulation accuracy of the numerical matrix formalism with H = −1 and
τmin = 76 µs. (a) a tetrahedral mesh for the numerical matrix formalism. The defaultdiscretization routine of Tetgen generates the tetrahedra. Some parts of the mesh aremade transparent to show the internal meshing. (b) the refined tetrahedral mesh forthe FEM simulator. The maximum volume of tetrahedra is 0.5 µm3. Some parts of themesh are made transparent to show the mesh refinement. (c) the relative errors of thenumerical matrix formalism for three randomly picked cells with two diffusion times.The gradient intensity is fixed to 290 mT/m. In NeuroMorpho.Org, the IDs of the threecells are NMO_01042 (cell1), NMO_85592 (cell2), and NMO_85632 (cell3). The meshesin (a) and (b) correspond to cell2. WhenH = −1, the numbers of FE nodes of the threecells are 32294, 48551, and 79992, respectively. WhenH = 0.5 µm3, the numbers of FEnodes are 109660, 80940, and 163905, respectively. The FEM simulations are conductedon the refinedmeshes to give the reference solution SFEM. The relative errors in percentare |SMF − SFEM|/|SFEM| × 100%.

5.3.2 Computing signals from artificial brain voxels
Once the signals from every neuronmesh in NeuronSet are obtained, we cancompute the signal attenuation from artificial brain voxels by adding intra- andextracellular signals. Suppose an artificial brain voxel containsM neurons andan ECS compartment whose volume fraction is fecs. According to eq. (3.20), thesignal attenuation arising from the brain voxel can be computed by

Ev(g,ug, δ,∆) = (1− fecs)×
∑M

i=1 Vi · Ei∑M
i=1 Vi

+ fecs × e−Decsb, (5.1)
where the subscription i indicates the i-th neuron, Vi is the neuronal volumemeasured on the i-th neuron mesh, Ei is the signal attenuation of the i-th neu-ron, and the diffusivity is Decs = 3 × 10−3 µm2/µs. The choice of Decs will bediscussed in section 5.7.4. The signal attenuation from an artificial brain voxel
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is denoted by Ev. Since we employ PGSE sequences, Ev is a function of g, ug, δ,and ∆.We randomly pickM neurons from the mesh database to diversify the brainvoxel compositions. The number M ranges from 1 to 500. Each combinationof M cells is then aggregated with ten different ECSs whose volume fractionsfollow a Gaussian distributionN (µ = 0.5, σ2 = 0.252). The Gaussian distributionis chosen to have a wide distribution without giving toomuch weight to extremecases (fecs close to 0 or 1). The combination of cells and ECS produces signalattenuations from 1.4 million distinct artificial brain voxels.
5.3.3 Brain voxel microstructure parameters

Section 2.5.2 provides over 30 neuroanatomical parameters measured onneuron meshes, which allow us to compute the microstructure parameters ofan artificial brain voxel consisting of M neuron meshes and an ECS compart-ment whose volume fraction is fecs. Some important brain voxel microstructureparameters are
1. soma volume fraction: fsoma = (1− fecs)

∑M
m=1 V

msoma∑M
m=1 V

mneuron
,

2. neurite volume fraction: fneurite = (1− fecs)
∑M

m=1 V
mneurite∑M

m=1 V
mneuron

,

3. soma area fraction: asoma =
∑M

m=1A
msoma∑M

m=1A
mneuron

,

4. neurite area fraction: aneurite =
∑M

m=1A
mneurite∑M

m=1A
mneuron

,

5. average soma radius: rsoma =
∑M

m=1 r
msoma

M
,

6. volume weighted average soma radius: rvwsoma =
∑M

m=1 V
msomarmsoma∑M

m=1 V
msoma

,
where the superscript indicated the m-th neuron. The list is not exhaustive. Thedefinitions of over 40 brain voxel microstructure parameters are listed in sec-tion D.1. We emphasize that not all microstructure parameters can be probedby diffusion MRI. Whether we can estimate a parameter mainly depends on thedynamics of MR physics.This study focuses on estimating volume and area fractions. Figure 5.4presents the distribution of the volume and area fractions in the synthetic
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dataset. We denote the three volume fractions of an artificial brain voxel by
Lvol = [fsoma, fneurite, fecs]T , and the area fractions by Larea = [asoma, aneurite]T .Note that all fractions are positive and the sum of elements of Lvol or Larea isone.
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Figure 5.4: The distribution of volume and area fractions in the synthetic dataset. (a) thevolume fraction distribution of soma, neurites, and ECS. The ECS volume fraction followsa Gaussian distributionN (µ = 0.5, σ2 = 0.252). The soma and neurite volume fractionsare computed based on realistic neuron meshes. (b) the area fraction distribution ofsoma and neurites.
The signal attenuations and the microstructure parameters from 1.4 millionartificial brain voxels form the synthetic dataset. The numerical experimentsconducted in section 3.4 hint at the possibility of mappings from signals to mi-crostructure parameters. The next section concerns training machine learningmodels to approximate the mappings that are implicitly contained in the syn-thetic dataset.

5.4 Model training
This section describes the steps for training machine learning models withthe synthetic dataset. We follow the standard training process described in thebook of Goodfellow et al. [226]. The main steps are
1. preprocessing the raw data to build derived values (features) for subse-quent training steps;
2. setting up the training configuration, including the type of ML model, the
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training set Ttrain, the test set Ttest, the loss function, the optimization algo-rithm, etc.
3. determining the hyperparameters using the training set Ttrain;
4. training ML models with the chosen hyperparameters on the training set

Ttrain;
5. evaluating the performance of trained models on the test set Ttest.

5.4.1 Data preprocessing
Each artificial brain voxel has 4096 signals simulated with 2 diffusion times,64 gradient intensities, and 32 gradient directions. They are the raw data storedin the synthetic dataset. The goal of the data preprocessing is to build derivedvalues, also referred to as features in the ML community, intended to be infor-mative and low dimensional, facilitating subsequent learning steps. Featuresare the inputs of a machine learning model.

First type of features: direction-averaged signals

In this study, the first step of data preprocessing involves reducing the dimen-sionality of the raw data. We average the simulated signal attenuations over allmeasured directions to get the direction-averaged signal
E

v
(g, δ,∆) =

1

Ndir
Ndir∑

i=1

Ev(g,ui
g, δ,∆), (5.2)

where Ndir is the number of gradient directions and ui
g is the i-th gradient di-rection for a given gradient intensity g. Averaging over directions is a commonpractice to reduce the data dimensionality in the dMRI literature [227]. It is alsohelpful in denoising the experimental data. However, the averaging removes allthe orientation-dependent information. We can not estimate, for example, theorientation of white matter tracts using direction-averaged signals.The direction-averaged signals are the first type of features we will use. Wedenote the direction-averaged signals from a brain voxel at the short diffusiontime (δ/∆ = 8/19 ms) by Fsig19, and the long diffusion time (δ/∆ = 8/49 ms) by

Fsig49. They are n-dimensional vectors
Fsig19 =

[
E

v
(g1, 8, 19), ..., E

v
(gn, 8, 19)

]T ∈ [0, 1]n, (5.3)
Fsig49 =

[
E

v
(g1, 8, 49), ..., E

v
(gn, 8, 49)

]T ∈ [0, 1]n, (5.4)
where the number of signals n will be determined in section 5.4.3.
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Second type of features: five markers

Incorporating domain-specific knowledge helps obtain more concise features.The statistical study presented in section 3.4.4 shows that the inflection pointof a signal curve helps define six markers useful for the soma size estimation.This chapter adopts the same idea and uses five markers as the second set offeatures. Compared to the six markers defined in section 3.4.4, we keep thefirst four markers, i.e., x0, y0, c0, and c1, that are relatively easy to obtain usingsimulated signals. We replace the last two markers with the apparent diffusioncoefficient De defined in eq. (3.13).The five markers are the second type of features used in this chapter. Wedenote the markers obtained using direction-averaged signals at the short dif-fusion time by Fmk19, and markers at the long diffusion time by Fmk49. They arefive-dimensional vectors
Fmk19 =

[
x190 , y

19
0 , c

19
0 , c

19
1 , D

19
e

]T ∈ R5, (5.5)
Fmk49 =

[
x490 , y

49
0 , c

49
0 , c

49
1 , D

49
e

]T ∈ R5. (5.6)
The superscripts 19 and 49 indicate the diffusion times.To summarize, we adopt two types of features in this chapter. One includesthe direction-averaged signals, and another is composed of the fivemarkers de-rived from signals. By incorporating domain-specific knowledge, one can alsoderive other features from the signals to improve the sensitivity to certain mi-crostructure parameters.
5.4.2 Training configuration

Machine learning, especially deep learning, has developed rapidly in the lastdecade with the help of the increase in computing power. Neural networks arebelieved to be superior in function approximation [218–220], especially in highdimensions [221, 222]. In this chapter, we choosemultilayer perceptrons (MLPs)[228, 229] to infer the microstructure parameters of interest.The datasets for training MLPs are subsets derived from the syntheticdataset. We denote a training dataset by T = {(Xi,Yi), i ∈ {1, ..., Nvoxel}}where
Nvoxel (= 1.4million) is the number of the artificial brain voxels. We refer to a tuple
(X,Y ) as a data point. The input of an MLP is denoted byX . The ground-truthoutput, also known as the label in ML community, is denoted by Y . The eightcombinations of input and output studied in this chapter are

1. Case 1: X = Fsig19, Y = Lvol;
2. Case 2: X = Fsig49, Y = Lvol;
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3. Case 3: X = Fmk19, Y = Lvol;
4. Case 4: X = Fmk49, Y = Lvol;
5. Case 5: X = Fsig19, Y = Larea;
6. Case 6: X = Fsig49, Y = Larea;
7. Case 7: X = Fmk19, Y = Larea;
8. Case 8: X = Fmk49, Y = Larea.

To improve the robustness of MLPs to noise, we add Racian noise to thedirection-averaged signals used in items 1, 2, 5 and 6. We keep the same SNRas the MGH CDMD database (S0/σR = 21), where σR is the Rician scaling param-eter. We recall that all elements in Y are positive and the sum is one, which isan additional constraint that should be accounted for when training.We randomly select one million data points from T to form the training set
Ttrain; the rest (over 450,000 data points) makes up the test set Ttest which isseparated and not used for model training. The only role of the test set is toassess the generalization of a trained MLP [226].An MLP is a nonlinear function h parameterized by its weights θ [226]. Themodel training is to find optimal weights θ∗ that minimize the distance betweenthe MLP’s output and the ground truth (known as the label in the ML literature)

θ∗ = argmin
θ

1

#Ttrain
#Ttrain∑

i=1

∥Yi − h(Xi;θ)∥22. (5.7)
Here, we use the mean squared error (MSE) as the loss function. The minimiza-tion is possible if an underlying function ζ mapping X to Y exists. Once theoptimization converged, the trained MLP could be a good approximation of theunderlying function, i.e., h(·;θ∗) ≃ ζ in the sense ofminimizing L2 distance in thetraining set. Nonetheless, such an underlying function may not exist, and con-vergence is not guaranteed. The generalization of the trained MLP to unseendata also needs to be assessed.The function ζ varies with the choices of X and Y , and the MR physics de-termines its existence. Even if ζ exists, we must be careful about the activationfunction, initial weights, and the optimization algorithm to reach the conver-gence [230].We employ the Gaussian error linear unit (GELU) [231], a ReLU-like (RectifiedLinear Unit) activation function that incorporates the properties of stochasticregularizers such as dropout [232]. The weights θ are initialized using Kaim-ing initialization [233] because we employ ReLU-like activation functions. The
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optimization is performed with a variant of the Adam optimizer that has a long-term memory of past gradients to enhance the convergence [234, 235]. Theinitial learning rate is 0.01, the batch size is 10,000, and the maximum numberof epochs is 500.The architecture of an artificial neural network can also significantly affect itsperformance. Finding a suitable artificial neural network architecture for brainmicrostructure estimation is a subject worth investigating in the future. In thischapter, we concentrate on four-layer MLPs. To guarantee the outputs are allpositive and sum to unity, we append a softmax function [236] to the outputlayer. The implementation and training of MLPs are performed with PyTorch[237].Finally, we assess the performance of a trained MLP in the held-out test set
Ttest. We use the L1-norm to evaluate the test loss

ltest = 1

dim(Y )#Ttest
#Ttest∑

i=1

∥Yi − h(Xi;θ
∗)∥1, (Xi,Yi) ∈ Ttest. (5.8)

The test loss estimates the mean absolute error between the ground truth andthe predicted values in the test set.
5.4.3 Hyperparameter tuning

Four-layer MLPs have several hyperparameters, namely, the size of the inputlayer n, the first hidden layer n1, the second hidden layer n2, and the output layer
n3. To determine the hyperparameters, we split out 20% of the training set Ttrainas the validation set T ′v . The remaining eighty percent constitute a new trainingset T ′train. We train MLPs on T ′train and compute the validation error using L1-losson T ′v . The validation errors help determine the hyperparameters. We focus onthe following hyperparameters for the eight cases listed in section 5.4.2

1. Case 1 and Case 2: (n, n1, n2, n3) = (16, 16, 8, 3), (16, 32, 16, 3), (32, 32, 16, 3),
(32, 64, 32, 3), (64, 64, 32, 3), or (64, 128, 64, 3);

2. Case 5 and Case 6: (n, n1, n2, n3) = (16, 16, 8, 2), (16, 32, 16, 2), (32, 32, 16, 2),
(32, 64, 32, 2), (64, 64, 32, 2), or (64, 128, 64, 2);

3. Case 3 and Case 4: (n, n1, n2, n3) = (5, 10, 5, 3), (5, 10, 10, 3), (5, 20, 10, 3),
(5, 20, 20, 3), (5, 30, 15, 3), or (5, 30, 30, 3);

4. Case 7 and Case 8: (n, n1, n2, n3) = (5, 10, 5, 2), (5, 10, 10, 2), (5, 20, 10, 2),
(5, 20, 20, 2), (5, 30, 15, 2), or (5, 30, 30, 2);

It is worth noting that, for cases 1, 2, 5, and 6, the size of the input layer n equalsthe number of direction-averaged signals (see eqs. (5.3) and (5.4)).
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In total, we trained forty-eight MLPs (six sets of hyperparameters for eachcase). Figure 5.5 demonstrates the final validation errors of the forty-eightMLPs.It can be seen that a more complex network structure usually has a lower vali-dation error. Hence, the selected hyperparameters for the above four items are
(64, 128, 64, 3), (64, 128, 64, 2), (5, 30, 30, 3), and (5, 30, 30, 2), respectively.
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Figure 5.5: The validation errors for tuning hyperparameters. A blue circle correspondsto an MLP for the short diffusion time. An orange square is for the long diffusion time.The labels of the x-axis are the hyperparameters. The selected hyperparameters are inbold. (a) the validation errors of twelveMLPs whose hyperparameters are shown on thex-axis. The MLPs predict the volume fractions using the direction-averaged signals. (b)the validation errors of MLPs for predicting volume fractions using the five markers. (c)the validation errors of MLPs for predicting area fractions using the direction-averagedsignals. (d) the validation errors ofMLPs for area fraction estimation using the fivemark-ers.
Finally, we trainMLPs with the chosen hyperparameters on the original train-
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ing set Ttrain. In the next section, we assess the final performance of each trainedMLP in the held-out test set Ttest.
5.4.4 Validation on test set

We use the L1-loss to quantify the test loss (see eq. (5.8)). For clarity, we as-sign each trained MLP a name and list the network structures, the input, theoutput, the final test losses, and theR2 scores in table 5.1. The average test lossis about 0.01, while the volume or area fraction is of the order of 0.1. The R2

scores for volume fraction estimation are around 0.9, and about 0.6 for areafraction estimation. Note that four MLPs, mlp_sig_vol_19, mlp_sig_vol_49,
mlp_sig_area_19, and mlp_sig_area_49, are tested under a noise conditionsimilar toMGHCDMD (SNR = 21). The remainingMLPs, which take the fivemark-ers as input, are assessed on noise-free test sets.

MLP name MLP structure diffusion time
δ/∆ [ms] input output test loss R2 scores

mlp_sig_vol_19 64, 128, 64, 3 8/19 64 signals fsoma/fneurite/fecs 0.0223 0.94/0.95/0.98
mlp_sig_vol_49 64, 128, 64, 3 8/49 64 signals fsoma/fneurite/fecs 0.0187 0.95/0.94/0.99
mlp_mk_vol_19 5, 30, 30, 3 8/19 5 markers fsoma/fneurite/fecs 0.0171 0.95/0.94/0.99
mlp_mk_vol_49 5, 30, 30, 3 8/49 5 markers fsoma/fneurite/fecs 0.0218 0.93/0.90/0.99

mlp_sig_area_19 64, 128, 64, 2 8/19 64 signals asoma/aneurite 0.0157 0.66
mlp_sig_area_49 64, 128, 64, 2 8/49 64 signals asoma/aneurite 0.0174 0.62
mlp_mk_area_19 5, 30, 30, 2 8/19 5 markers asoma/aneurite 0.0153 0.66
mlp_mk_area_49 5, 30, 30, 2 8/49 5 markers asoma/aneurite 0.0196 0.51
Table 5.1: Summary of the eight MLPs with hyperparameters determined in sec-tion 5.4.3. The structure of an MLP is represented by four numbers n, n1, n2, n3, i.e.,the input layer size n, the first hidden layer size n1, the second hidden layer size n2,and the output layer size n3. The inputs of the MLPs are either the direction-averagedsignals at 64 gradient intensities or the five markers. The outputs are volume orarea fractions. Four MLPs, mlp_sig_vol_19, mlp_sig_vol_49, mlp_sig_area_19, and
mlp_sig_area_49, are tested under the noise condition similar to MGH CDMD (SNR =21). The rest of the MLPs, which take the five markers as input, are assessed on noise-free test sets. We list the final test losses of MLPs (using the held-out test set). Thethree R2 scores of the first four MLPs are for soma, neurite, and ECS, respectively. Forexample, the R2 scores of soma, neurite, and ECS volume fraction estimation using
mlp_sig_vol_19 are 0.94, 0.95, and 0.98, respectively. Because the sum of soma andneurite area fractions is unity, the soma area fraction estimation has the sameR2 scoreas neurite.

To further demonstrate the performance of each MLP, we plot the abso-lute and relative error distribution in the held-out test set, which contains over450,000 data points. We denote the ground-truth fraction by fgt, which, for in-stance, could be a soma volume fraction or neurite area fraction. The predicted
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value is denoted by fpred. We define the absolute error as the difference betweenthe prediction and the ground-truth value fpred − fgt, and the relative error as
(fpred − fgt)/fgt × 100%. We do not take the absolute value, so a negative errorcorresponds to underestimation.Figure 5.6 summarizes the distributions of the absolute errors for the eightMLPs using box plots. Section D.2 explains the box plot definition. The MLPs’estimations have median absolute errors close to zero. Over fifty percent of theabsolute errors for volume fraction estimation are below 0.025. The MLPs forarea fraction estimation have similar performance. Most of the absolute errorsare below 0.025.
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Figure 5.6: The box plots summarizing the distributions of the absolute errors. Thecenter line of a box indicates themedian. A box’s lower and upper sides (hinges) denotethe first and third quartiles. The range between the two hinges is the interquartile range,which contains 50% of data points. The whiskers extend to the range of 1.5 times theinterquartile range. Outliers are ignored for clarity. (a) the absolute error distributionsfor area fraction estimation. (b) the absolute error distributions for volume fractionestimation.

Similarly, fig. 5.7 demonstrates the distributions of the relative errors. Themedian relative errors are close to zero, meaning the predictions do not suffersignificant bias in the synthetic test set. Over fifty percent of the relative errorsfor volume fraction estimation are below 10%. The soma area fraction estima-tion has a much larger relative error than the neurite area fraction estimation.This is because the average soma area fraction is ∼ 0.1, whereas the averageneurite area fraction is ∼ 0.9 (see fig. 5.4(c)). Because soma and neurite havesimilar absolute errors, a nine times difference in the relative error is reason-able. Nevertheless, most relative errors for soma area fraction estimation arebelow 20%.The performance of the eight MLPs shows that they can predict the desired
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Figure 5.7: The box plots summarizing the distributions of the relative errors. A boxplot denotes the median, interquartile range, and 1.5 times the interquartile range bythe center line, hinges, and whiskers. Outliers are ignored for clarity. (a) the relativeerror distributions for area fraction estimation. (b) the relative error distributions forvolume fraction estimation.

microstructure parameters with acceptable errors. Next, we apply the eightMLPs to the MGH CDMD dataset to get in vivo parameter maps.

5.5 In vivo microstructure parameter estimation
In this section, we apply the MLPs trained in the previous section to the ex-perimental data in the MGH CDMD dataset to infer volume and area fractions.

5.5.1 Signal interpolation
Real-world dMRI signals are acquired atmuch fewer gradient intensities thansimulation. For example, the dMRI signals in the MGH CDMD dataset are sam-pled with only eight gradient intensities. However, we train MLPs with thedirection-averaged signals at 64 fixed gradient intensities or the five markerswhose computation requires signals at numerous gradient intensities. We needto interpolate the experimental data to get 64 signals or compute the five mark-ers based on eight experimental direction-averaged signals.Practitioners can choose gradient intensities within a fixed range for an MRIscanner. Suppose we have one measurement near zero gradient intensity, onenear the maximum gradient, and several acquisitions in between. With thesemeasurements, it is possible to interpolate the direction-averaged signals withinthe fixed range.We demonstrate the way of interpolation using signals from MGH CDMD.
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Let’s focus on the dMRI signals from a brain voxel with a fixed sequence, e.g.,PGSE sequence with δ/∆ = 8/19 ms. Some preprocessing steps before the in-terpolation include signal normalization (eq. (3.20)) and directional averaging(eq. (5.2)) to get the direction-averaged signal E. To perform interpolation, weexpress E as a function of β = 1/
√
b. In increasing order, we denote the eightbvalues by b1, ..., b8. So b1 is the smallest non-zero bvalue. The corresponding

β ’s are β1, ..., β8. Since we took the directional averaging and fixed the gradientsequence time profile, b or β can now fully characterize E.We adopt the fourth-order B-spline interpolation implemented in Scipy [238].A vanilla cubic spline suffers a large fluctuation (see fig. 5.8). To moderate thefluctuation, we adopt the Gaussian phase assumption when bvalues are smallerthan b1. The GPA allows us to approximate E by eDe·b = eDe/β2 for b ≤ b1. Fur-thermore, the GPA provides two boundary conditions which are the continuityof the first and second derivatives at β1:
E

′
(β1) = 2De · e−De/β2

1/β3
1 , (5.9)

E
′′
(β1) =

(
4D2

e − 6Deβ
2
1

)
e−De/β2

1/β6
1 , (5.10)

where the primes indicate derivative with respect to β.At the high bvalue end (small β), we adopt the “natural” boundary condition[239]
E

′′
(β8) = 0. (5.11)

The boundary conditions helpmoderate the fluctuation of the interpolation andallow us to sample g’s or bvalueswithin themaximumgradient intensity and findthe inflection point. Figure 5.8 demonstrates the measured and interpolatedsignals and the tangent line passing through the estimated inflection point. Itis worth noting that one should not extrapolate the direction-averaged signalsbeyond the maximum gradient intensity.
Validation of the interpolation method

The interpolation inevitably brings in errors. We assess the interpolation errorusing data from theMGHCDMDdataset. The direction-averaged signals at eightgradient intensities from a brain voxel are split into two subsets. The first setcontains signals atN1 (4 ≤ N1 < 8) gradient intensities, including the lowest andthe highest gradients. The second set includes the rest N2 signals.Following the interpolation method described above, we obtain the fourth-order B-spline polynomial using the first set. We then predict the signals storedin the second set using the polynomial. Themeasured and predicted signals aredenoted by Em and Ep, respectively. The interpolation error is assessed by therelative error (Ep − Em)/Em × 100%.
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Figure 5.8: Fourth-order B-spline interpolation of direction-averaged signals. Red cir-cles represent the direction-averaged signals at eight non-zero bvalues measured froma white matter voxel of the first subject (sub_001) in MGH CDMD. The voxel index is (19,25, 73). A vanilla cubic spline interpolation represented by the dotted black line suffersa large fluctuation. By incorporating the three boundary conditions annotated in theboxes, the fourth-order B-spline method interpolates the eight measured signals givingthe solid blue line. The rightmost root of the second derivative of the interpolated sig-nals gives the inflection point shown as the green cross. The dashed orange line is thetangent line passing through the inflection point.

We adopt two splitting strategies:
1. the first set contains four direction-averaged signals whose gradient inten-sities are 31, 105, 179, and 290 mT/m; the second set includes four signalsat 68, 142, 216, and 253 mT/m; i.e., N1 = 4 and N2 = 4;
2. the first set contains six direction-averaged signals whose gradient inten-sities are 31, 68, 105, 179, 253, and 290 mT/m; the second set includessignals at 142 and 216 mT/m; i.e., N1 = 6 and N2 = 2;

The relative errors are computed for all brain voxels at the N2 gradient intensi-ties. For example, the first subject in MGH CDMD has 142,201 brain voxels. Wecan obtain 142, 201 × 4 relative errors using the first splitting strategy. The boxplots in fig. 5.9 summarize the distribution of the relative errors for the first four
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subjects in MGH CDMD. We refer to the first strategy as “4/4” and the second as“6/2”.
We notice that the first strategy can adequately interpolate the direction-averaged signals when δ/∆ = 8/19 ms. However, the interpolation with foursignals becomes biased for the long diffusion time. Using more measured sig-nals can help reduce interpolation errors. The second strategy is satisfactory inboth cases. More than 50% predicted signals have a relative error inferior to5%. Almost all relative errors are below 15%. We believe the second strategy isadequate for signal interpolation. We actually interpolate with eight direction-averaged signals. We can expect the actual interpolation error is even lower.
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Figure 5.9: Theboxplots summarizing the distribution of the interpolation errors for thefirst four subjects in MGH CDMD. A box plot presents the median, interquartile range,and 1.5 times the interquartile range by the center line, hinges, and whiskers. Outliersare ignored for clarity. The interpolation error is assessed by the relative error (Ep −
Em)/Em× 100%. We refer to the first splitting strategy as “4/4” and the second as “6/2”.It turns out that the second strategy is satisfactory for signal interpolation. More than50% predicted signals have a relative error inferior to 5%. Almost all relative errors arebelow 15%.

5.5.2 In vivo parameter maps
We now apply the trained MLPs to the MGH CDMD dataset. Specifically, theeight direction-averaged signals from a brain voxel are interpolated to get fea-tures, namely the 64 signals (Fsig19 or Fsig49) or the five markers (Fmk19 or Fmk49).We obtain a parametermap by applying anMLP to every brain voxel of a subject.
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Parameter maps during training

During the model training, the test error of an MLP decreases, meaning thatthe performance improves on the synthetic test set. However, the MLP maynot generalize well on experimental data. We plot several parameter maps ofneurite volume fraction in different training stages in fig. 5.10 to show that theperformance also improves on experimental measurements. As the test errordecreases, the contrast of, for example, the cerebellar white matter becomesmore pronounced. Besides, the test loss becomes stable after 400 epochs. Asmentioned in section 5.4, we stop the training at 500 epochs.
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Figure 5.10: The estimation improvement on the test set and the experimental data asthe test loss decreases. We plot the test losses during the training of mlp_sig_vol_19.The MLP at five distinct training stages is picked to infer the neurite volume fraction onexperimental data. Orange crosses mark the selected epochs in the error curve. Wepresent the evolution of a parameter map for the first subject (sub_001) in MGH CDMD.As the test error decreases, more details appear.

In vivo parameter maps

We obtain in vivo parameter maps by applying the trained MLPs to every brainvoxel of a subject. The second subject in MGH CDMD (sub_002) serves as anexemple. The parameter maps of two additional subjects are reported in sec-tions D.6 and D.7. Figure 5.11(a) to fig. 5.11(d) show the volume fraction estima-tion by applying the first four MLPs in table 5.1 to the scanned data of sub_002.We also append the SANDI’s parameter maps to fig. 5.11. We shall explain thecomparison with SANDI in section 5.6.In addition to the volume fraction maps, the area fraction maps are shownin fig. 5.12. Because the sum of soma and neurite area fractions is unity, we onlypresent the parameter maps for soma.
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Figure 5.11: The comparison of volume and signal fractions. The first column is forsoma volume fraction fsoma or soma signal fraction f ′soma ((e1) and (f1)), the secondfor neurite, and the third for ECS. Three rows, (a), (c), and (e), are for the short dif-fusion time (δ/∆ = 8/19 ms). The remaining rows are for the long diffusion time(δ/∆ = 8/49 ms). The first four rows, (a) (b), (c), and (d), are obtained by respectivelyapplying mlp_sig_vol_19, mlp_sig_vol_49, mlp_mk_vol_19, and mlp_mk_vol_49, to theexperimental data from sub_002. The last two rows, (e) and (f), show the signal fractionsobtained by fitting the SANDI model to the direction-averaged signals from sub_002.

5.6 Comparison with SANDI

The state-of-the-art impermeable biophysical model for soma and neuritedensity imaging, SANDI [88], has similar assumptions to our brain voxel model.We both assume that the soma and neurite membranes are impermeable, so-mas are spherical, and ECS is a free diffusion space. The differences inmodeling
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Figure 5.12: The maps of soma area fraction. The first column is for the short dif-fusion time (δ/∆ = 8/19 ms). The second column is for the long diffusion time(δ/∆ = 8/49 ms). The four subplots, (a) (b), (c), and (d), are obtained by respectivelyapplying mlp_sig_area_19, mlp_sig_area_49, mlp_mk_area_19, and mlp_mk_area_49,to the experimental data from sub_002. Note that the color limits of (b) are differentfrom others.
are:

1. SANDI considers the neurites as a set of randomly oriented sticks (longcylinders with zero radii), whereas our neurites have realistic radii andlength, faithful undulation, and real dispersion;
2. SANDI utilizes disconnected soma and neurites because the water ex-change between them is believed to be negligible when td ≤ 20 ms. Incontrast, our neurites are connected to the soma, forming a continuousspace.
3. Our model assumes the transverse relaxation (T2) is homogeneous in allcompartments within a brain voxel so that the signal normalization cancancel the transverse relaxation effect (see eqs. (3.11) and (3.20)), whereasSANDI considers the T2 values of the intra- and extra-cellular compart-ments within a brain voxel are different.

Due to the impermeability assumption and item 2, the validity regime of SANDIis td ≤ 20ms. So the short diffusion time δ/∆ = 8/19ms is in the regime, whilethe long diffusion time is not.The significant difference is in the dMRI signal generation. The direction-averaged signal of SANDI has an explicit expression [88]
ESANDI = f ′somae−D′

sb + f ′neurite
√

π

4bDin erf
(√

bDin
)
+ f ′ecse−Decsb, (5.12)
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where Din is the longitudinal apparent diffusion coefficient in the sticks; Decs isthe apparent diffusion coefficient in ECS; f ′soma, f ′neurite, and f ′ecs are the signalfractions for soma, neurite, and ECS, respectively. The soma term e−D′
sb is de-rived, under the GPA, by Murday and Cotts on a spherical liquid particle withradius being rs and liquid self-diffusion coefficient being Ds [90]. The quantity

D′
s, a function of δ, ∆, rs, and Ds, has an explicit formulation (eq. (1.41)). Werefer to the soma term as the “MC equation” following the terminology adoptedby Balinov et al. [91]. For eq. (5.12) to hold, it is necessary to add at least threeadditional assumptions:
1. the Gaussian phase assumption and the MC equation hold under the ex-perimental condition;
2. the signal from a spherical “apparent” soma can approximate the volume-weighted average signal from a group of somas;
3. the stick power-law scaling, which is the neurite signal term√

π
4bDin erf(

√
bDin), is valid.

With these assumptions, the direction-averaged signal of SANDI (ESANDI) isan explicit function whose variables are δ, ∆, b, f ′soma, f ′neurite, f ′ecs, rs, Ds, Din,and Decs. Among them, δ, ∆, and b are known experimental parameters, Ds isfixed to be 3×10−3 µm2/µs [88]. The remaining six variables are the microstruc-ture parameters to be estimated. Similar to the volume fractions, the sum ofthe three signal fractions is one. Although the signal fractions often character-ize soma and neurite density, they differ from the volume fractions due to thecompartmental difference in the T2 values.SANDI estimates the six parameters of biophysical interest by fittingeq. (5.12) to the direction-averaged signals. We adopt the open-source AMICOframework2 to perform the fitting [93]. In contrast to our method, the SANDImodel has an analytical signal expression, which allows one to recompute thedirection-averaged signals by substituting SANDI’s estimations into the signalformula eq. (5.12).Since our neuronmodels aremore realistic than SANDI’s and the signal simu-lation requires fewer biophysical assumptions, it is worth comparing SANDI withthe MLPs trained in our framework.
5.6.1 Fitting SANDI to simulated signals

We start with fitting the SANDI model to the simulated signals from artificialbrain voxels. The direction-averaged signals in the test set without noise injec-tion serve as the simulated signals. They are linearly sampled at 64 gradient
2https://github.com/daducci/AMICO/wiki/Fitting-the-SANDI-model
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intensities from 0 to 290 mT/m and free of transverse relaxation, myelin water,and CSF contamination, which is an ideal condition for fitting the SANDI model.Since the relaxation effects are not included, the signal fractions should be thevolume fractions in this ideal case.
AMICO’s optimization needs to predetermine some parameter distributions,namely the ranges of rs, Din, and Decs. We use the ranges suggested in [88]and guarantee dense samplings. The training data distributions are 50 values of

Din linearly spaced in the range [0.1, 3]× 10−3 µm2/µs; 50 values of Decs linearlyspaced in [0.1, 3] × 10−3 µm2/µs; 50 values of rs linearly spaced in [1, 12] µm. Inaddition, the L1 and L2 regularization terms are 0 and 0.005, respectively.
To demonstrate that the SANDI model has been properly fitted to the sim-ulated signals, we substitute the estimated parameters into SANDI’s signal ex-pression (eq. (5.12)) to recompute the direction-averaged signals. We call themthe recomputed signals. We randomly pick several artificial brain voxels andcompare the simulated and recomputed signals. Figure 5.13 shows the signalcomparison for the short diffusion time (δ/∆ = 8/19 ms). We stress that the y-axes of fig. 5.13 are in logarithmic scale, which magnifies the signal differences.Sections D.3 and D.4 includes the signal comparison for the long diffusion timeand linear-scale plots where the differences are almost invisible. Because thedifferences between the two groups of signals are minimal, we think the signalfitting is satisfactory.
We then assess whether the estimated signal fractions are related to the vol-ume fractions. As mentioned above, the signal fractions should equal the vol-ume fractions because the simulated signals are free of noise and relaxation.We annotate the SANDI’s estimations and the ground-truth values in the upperright corner of each subplot of fig. 5.13. Even though the SANDI model fits thesimulated signals well, some estimated parameters are not correctly related tothe ground truth.
We plot the absolute and relative errors of SANDI’s signal fraction estimationin fig. 5.14 to better demonstrate the discrepancy. The errors of MLPs’ volumefraction estimation are shown in fig. 5.6(b) and fig. 5.7(b).
In addition to the errors, at the short diffusion time, the R2 scores for soma,neurite, and ECS signal fraction estimations are -2.88, 0.89, and -0.54, respec-tively. They are -1.74, 0.87, and -0.18 at the long diffusion time. It is worthstressing that SANDI correctly predicts the neurite fraction at the two diffusiontimes. However, the soma and ECS fraction estimations do not correlate withground-truth values.
We need to note that the fitting of the SANDI model and the parameter dis-tributions required by AMICO affect the final performance of SANDI. We onlyreport the best results that we got using the AMICO framework. A better fit-
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Figure 5.13: The comparison between the simulated (blue dashed line) and recomputedsignals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-nals are obtained by substituting SANDI’s estimations into eq. (5.12). The diffusion timeis δ/∆ = 8/19 ms. The first subplot represents the meaning of the six numbers anno-tated in the upper right corner of each subplot. The numbers in the first row are theestimated soma, neurite, and ECS signal fractions. The numbers below are the ground-truth volume fractions.

ting method and a more realistic data distribution could help SANDI yield betterresults.
5.6.2 Fitting SANDI to experimental signals

Next, we fit the SANDI model to the experimental signals in MGH CDMD.The parameter distributions are 10 values of Din linearly spaced in [0.1, 3] ×
10−3 µm2/µs; 10 values ofDecs linearly spaced in [0.1, 3]×10−3 µm2/µs; 10 valuesof rs linearly spaced in [1, 12] µm; L1 and L2 regularization terms are 0 and 0.005,respectively. For comparison withMLPs, we present the signal fractionmaps forthe second subject sub_002 in the last two rows of fig. 5.11.We reduce the number of samples to 10 in each range because the SANDI fit-ting with 50 samples yields unreasonable parametermaps. There are significantgaps between the measured and recomputed signals. We show the parametermaps obtained using the previous distribution with 50 samples in section D.5.
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Figure 5.14: The box plots summarizing the distributions of SANDI’s absolute and rela-tive errors on the synthetic test set. A box plot denotes the median, interquartile range,and 1.5 times the interquartile range by the center line, hinges, and whiskers. Outliersare ignored, and the relative errors are capped at±100% for clarity. For the short diffu-sion time, the R2 scores of soma, neurite, and ECS signal fraction estimations are -2.88,0.89, and -0.54, respectively. They are -1.74, 0.87, and -0.18 for the long diffusion time.
(a) the absolute error distributions for SANDI’s signal fraction estimation. (b) the rela-tive error distributions for SANDI’s signal fraction estimation.

We emphasize that the SANDI model is supposed to be invalid at the longdiffusion time (δ/∆ = 8/49 ms) because the cellular membrane permeabilityand the water exchange between soma and neurites may cause considerableeffects. However, SANDI still gives reasonable estimations for the neurite signalfractions at the long diffusion time because the neurite maps are similar at thetwo diffusion times. We quantitatively study the dependence on diffusion timein the next section.
5.6.3 Independence of diffusion time

We present the voxelwise joint distributions for estimated soma and neu-rite volume fractions in fig. 5.15. All brain white and gray matter voxels of
sub_002 are included. We also plot the distribution for SANDI’s estimation forcomparison. The soma volume fractions estimated by mlp_sig_vol_19 and
mlp_sig_vol_49 lie roughly in the identity line. The neurite volume fractionsare mostly independent of diffusion time. Even though SANDI is believed to beinapplicable to a diffusion time greater than 20 ms, the neurite signal fractionestimations are consistent at the two diffusion times.The above results persist in other subjects. We present the joint distributionsof two additional subjects in sections D.6 and D.7.
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Figure 5.15: The voxelwise joint distribution of estimated fractions at two diffusiontimes. All brain white and gray matter voxels of sub_002 are included. The x- and y-axesrepresent the estimated fractions at δ/∆ = 8/19 ms and δ/∆ = 8/49 ms, respectively.The black lines are the identity lines. (a) the distribution of the soma volume fractionsestimated by mlp_sig_vol_19 and mlp_sig_vol_49. (b) the distribution of the neuritevolume fractions estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (c) the distribu-tion of the soma signal fractions estimated by the SANDI model at the two diffusiontimes. (d) the distribution of the neurite signal fractions estimated by the SANDI modelat the two diffusion times.
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5.7 Discussion

This chapter proposes a novel framework that employs realistic neuronmod-eling and diffusion MRI simulation to replace simplified biophysical models andanalytical intracellular signal expressions. Effects arising from, for instance, neu-rite undulation or water exchange between soma and neurites, which are hardto include in biophysical models, are seamlessly incorporated into our simu-lations. Consequently, our framework can achieve higher geometric model-ing accuracy while requiring fewer biophysical assumptions. Moreover, the mi-crostructure parameters do not need to be explicitly expressed in the signal,allowing us to explore new contrasts, such as area fractions.
The proposed framework has two cornerstones. The first one is the realisticneuronmeshes in NeuronSet that we generated using swc2mesh. These neuronmeshes allow us both to obtain neuroanatomical parameters and to simulateintracellular signals.
The second cornerstone is the numerical matrix formalism implemented inthe SpinDoctor toolbox [44, 47]. In section 3.3, we achieved a ten-fold speedupby optimizing the eigendecomposition algorithm and leveraging the GPU com-putation. Now it takes three weeks instead of thirty weeks to complete all sim-ulations on 1213 neurons in NeuronSet. The simulation accuracy has been vali-dated in section 5.3.1.
Nonetheless, neuron meshes are merely the building blocks of an artificialbrain voxel. To construct a voxel phantom, we need to densely pack the neuronsso that ECS has a reasonable volume fraction and neurons must not intersecteach other. The neuron packing is still a highly challenging open question. Wecircumvented this problem by modeling the ECS as a free diffusion space andassuming impermeable cell membranes. This enables us to compute the signalsfrom a voxel without explicitly constructing the numerical phantom. However,the simplified ECS model and impermeability assumption introduce errors thatare the major limitations of our method.
These two cornerstones bring advanced modeling capabilities allowing usto build a synthetic dataset for supervised learning. Figure 5.2 summarizes thegeneration of the dataset consisting of 1.4 million artificial brain voxels and thesubsequent model training. Each voxel corresponds to thousands of directionaldMRI signals and over forty microstructure parameters. The dataset containsrich information that helps investigate the relationships between dMRI signalsand microstructure. Besides, the dataset is also a good reference for validatingbiophysical models.
In addition to the size, the dataset quality can significantly affect the final
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performance of ML models3, especially for supervised learning. We maintainthe quality of neuron meshes and the simulation accuracy to ensure the dMRIsignals and the ground-truth microstructure parameters are accurate. More-over, the training data distribution should be relevant to the distribution we en-counter in real-world applications [226, 240]. This requirement has also beenrecognized by the diffusion MRI community [241]. Palombo et al. [159] providesome reference distributions for neuron modeling based on over 3500 neuronskeletons fromNeuroMorpho.Org, amongwhich over 1000 are human cells. Be-cause we also used the cells stored in NeuroMorpho.Org, our neuron meshesnaturally follow all reference distributions.To adapt the trained MLPs to various experimental acquisition settings, weproposed an interpolation method by imposing three boundary conditions onfourth-order B-spline interpolators. As long as enoughmeasurements are given,the interpolation method can effectively mitigate the fluctuation caused byvanilla splines and give satisfactory approximations to the measured signals.One can freely sample signals within maximum gradient intensity or computesignal features using the proposed interpolation method.Next, we focus on approximating the mappings from the dMRI signals tothe volume or area fractions using MLPs. Our preliminary work suggests thatsuch mappings exist and may be high-dimensional [116]. The MLP hyperpa-rameters are determined on validation sets. Two types of features are studied:the direction-averaged signals and the five markers. We note the most salientpoints of the trained MLPs here:
1. it is possible to predict the volume or area fractions by solely feedingdirection-averaged signals to MLPs;
2. the five markers form a set of concise features that can effectively predictthe volume and area fractions;
3. the dependence of the volume fraction estimation on diffusion time ismin-imal while using the MGH CDMD dataset;
4. it is possible to investigate new microstructure parameters, such as areafractions, using the proposed framework.

We discuss them in the following sections.
5.7.1 Synthetic data experiments

We conducted a comprehensive performance evaluation of the eight MLPson synthetic test sets by reporting the test losses (L1-norm), R2 scores, and the
3Garbage in, garbage out.
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absolute and relative errors in section 5.4.4. The average L1-loss between pre-dictions and ground truth for the volume fraction estimation is around 0.01, asshown in table 5.1. The absolute errors of more than fifty percent of predictionsare less than 0.025, and most relative errors are inferior to 10% (see fig. 5.6(b)and fig. 5.7(b)). Among the three compartments, ECS volume fraction estima-tion is better than that of soma and neurite. Most importantly, MLPs’ volumefraction predictions are almost unbiased, and theirR2 scores for the three com-partments are greater than 0.9 (see table 5.1). For area fraction estimation, the
R2 scores of the four corresponding MLPs are around 0.6. The soma area frac-tion estimation suffers large relative errors (see fig. 5.7(a)). Nonetheless, thepredictions are still unbiased. These results indicate that the MLPs are goodestimators in the synthetic dataset.

However, we cannot correlate SANDI’s estimations to the ground-truth somaand ECS volume fractions. Admittedly, the model fitting is crucial for SANDI. Webelieve the fitting in section 5.6.1 is good enough for two reasons. First, the sig-nals recomputed by the SANDI’s signal expression eq. (5.12) can explain well theoriginal simulated signals (see fig. 5.13). Second, the fitting correctly predicts theground-truth neurite volume fraction with relatively small errors (see fig. 5.14).We reiterate that the signal fractions should equal the volume fractions in thesynthetic test set because the simulated signals are free of transverse relaxation.
Figure 5.13 and fig. 5.14 show that significant errors occur in SANDI’s estima-tion of soma and ECS signal fractions. This is not surprising because the somaterm f ′somae−D′

sb in eq. (5.12) has the same form as the ECS term f ′ecse−Decsb, caus-ing an indeterminacy problem. We recall thatD′
s (eq. (1.41)) is a function of δ,∆,soma radius ris, and the intra-soma diffusion coefficient Dis. Therefore, basedon the sum of the two exponentials (f ′

1e
−D1b + f ′

2e
−D2b), there is no way to tellwhich exponential belongs to soma andwhich belongs to ECS by solely changingthe bvalue. The MLPs’ performance in test sets suggests they do not suffer fromsuch a problem. However, we stress that the performance of SANDI depends onthe model fitting and the parameter distributions. A better fitting method and amore realistic data distribution could help SANDI yield better results.

5.7.2 In vivo parameter maps
We obtained the parameter maps by applying the MLPs to every brain voxelof a subject in MGH CDMD. Figure 5.10 demonstrates the evolution of a param-eter map during the model training. The improvement in estimation ability in-dicates the generalization of the MLPs to both the synthetic test set and theexperimental data.
Figure 5.11 presents the estimated volume fractions. There are no signifi-cant differences between the two types of features. However, rows (c) and (d)
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obtained using the five markers are noisier than (a) and (b). This is because thecomputation of the fivemarkers, which requires the derivatives of the direction-averaged signals, is sensitive to noise. In addition, theMLPs, mlp_mk_vol_19 and
mlp_mk_vol_49, that take the five markers as input are trained with noiselessdata. So they are not robust to noise.

In fig. 5.11, themaps of fsoma correctly highlight the graymatter and the cere-bral nuclei. In contrast, the maps of fneurite are prominent in the white matter,especially theWM tracts located at the corpus callosum, the corona radiata, andthe brain stem. The neurite volume fraction ismostly in line with SANDI’s neuritesignal fraction, except for the fact that f ′neurite is slightly higher than fneurite.The average fecs values are 0.12 in the cerebrum, which is inferior to the typi-cal ECS volume fraction (0.2) obtained using the real-time iontophoresis method[162]. The underestimation may be because the simplified ECS model is invalidin GM and WM. Indeed, the estimated width of the ECS ranges from 10 nm to64 nm [161], and the ECS tortuosity is about 1.6 [162]. The water diffusion insuch a complex medium could significantly differ from the free diffusion. TheECS modeling is the main limitation of the proposed method.
The soma area fraction is a new contrast obtained using the proposed frame-work. The maps of asoma can also properly highlight the gray matter and thecerebral nuclei. The two MLPs that take the 64 signals as input produce cleanerparameter maps. However, the area fraction estimation is inconsistent at thetwo diffusion times. For example, fig. 5.12(b) has higher fraction estimations ingray matter than fig. 5.12(a). The moderate performance is also reflected by thelow R2 scores in the test set. But the area fraction maps are satisfactory as aproof of concept to demonstrate the potential of the proposed framework forinvestigating new microstructure parameters.
The above results qualitatively demonstrate that theMLPs trained in the pro-posed framework can yield encouraging estimations. We further validate theparameter maps by investigating the consistency across diffusion times.

5.7.3 Independence of diffusion time
Due to the lack of real-world ground truth (for example, the actual soma vol-ume fractions in some brain voxels of a subject), validating parameter mapsremains largely qualitative. Given this limitation, the community has begun toseek consistency across acquisition parameters, sequences, and scanners [242–244], instead of qualitative visual assessment. In our case, we focus on the de-pendence of the volume fractions on diffusion times. Indeed, microstructureimaging aims to infer the objective tissue properties based on dMRI signals. Wewant the estimated tissue properties to be independent of how they are mea-sured.
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Figure 5.11 demonstrates that the parameter maps given by the MLPs aremostly consistent between the short and long diffusion times. For a more quan-titative comparison, we plot the voxelwise joint distribution of the estimatedsoma and neurite volume fractions at the two diffusion times in fig. 5.15. If theestimation is consistent, the scatter points should lie around the identity line. Itturns out that the estimated fneurite is mainly invariant to the change of diffusiontime. The soma volume fraction fsoma locates fairly near the identity line with arelatively broad variance. We stress that the cell membrane permeability maynot be ignored when td ≥ 20ms [187]. Nonetheless, the MLPs can still give con-sistent and reasonable estimations at the long diffusion time, suggesting thatthe effect of cell membrane water exchange on volume fraction estimation isstill minor when td ∼ 46ms.
Interestingly, the SANDImodel can also give consistent neurite signal fractionestimations even though it is believed to be inapplicable when td ≥ 20 ms. Theconsistent results agree with the good performance of SANDI in the synthetictest set for neurite signal fraction estimation (see fig. 5.14). In addition, the dis-tributions of fneurite and f ′neurite are quite similar (see fig. 5.15(b) and fig. 5.15(d)).
Recently, evidence from experiments and simulations shows that the stickpower-law scaling is valid in WM and GM [85, 86, 99, 227]. In gray matter,however, the aggregation of neurites and somas modifies the concavity of thedirection-averaged signals. Even though the stick power-law scaling is not ap-parent in the GM [99], the direction-averaged intra-neurite signals still followthe power-law scaling, as demonstrated in our previous work [116]. The con-sistency of the neurite signal fraction estimation at two diffusion times furthersupports the stick power-law scaling.
The advantage of the proposed supervised learning framework manifestsitself by giving consistent estimations at two diffusion times for both neurite andsoma volume fractions. It took years for the community to reach a consensusabout the stick power-law scaling, while it only took hundreds of epochs for anMLP to give a similar neurite fraction estimation.

5.7.4 Limitations
The proposed method is primarily limited by the geometric modeling capa-bility, especially by themodeling of the ECS. The ECS is a complexmediumwhosetortuosity is about 1.6 [162]. The thickness of the ECS ranges from 10 nm to 64nm [161], and the ECS volume fraction is about 20% [162]. Geometrically model-ing such a complex medium is highly challenging. To circumvent this, we used asimplified brain voxelmodel by assuming that cell membranes are impermeableand the ECS is a free diffusion space. In addition, we chose a very high diffusioncoefficient in the ECS because the ECS includes CSF in our model. To guarantee
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that the trained MLPs give reasonable ECS volume fraction estimation in, for ex-ample, the ventricles, we chose the high diffusion coefficient, as did [81, 245].Instead of keepingDecs fixed, a better way could be to drawDecs from a distribu-tion. However, since the free diffusion space may not be able to model ECS, thebest solution is to achieve the geometric modeling of ECS. Some work on thisissue has yielded exciting results. For example, Lee et al. [246, 247] achieve thegeometric modeling of myelin sheaths in a corpus callosum sample of a mousebrain. Their method requires 3D electron microscopy images of the sample andthe semi-automatic segmentation of the images. With this method, the shapeand position of axons are well preserved, which could help us to construct amore realistic model for the ECS. However, the method does not currently workautomatically, thus limiting its widespread use.
Another factor affecting the realism of the brain voxel model is the numberand type of neurons in a brain voxel. According to a recent brain histology study[12], a gray matter brain voxel of∼ 1mm3 comprises 57,216 cells and hundredsof millions of neurites. We are unable to model tens of thousands of neuronsgeometrically. Moreover, in the human brain, there are similar numbers of neu-rons and glial cells [248]. Including more glial cells in the neuron mesh datasetwould allow for a more realistic distribution of cell types.
The average thickness of the human cerebral cortex is about 2.5 mm [249].A brain voxel of 1mm3 can span multiple layers of the cerebral cortex, thus con-taining a variety of neurons. In order to simulate the composition of real brainvoxels as well as possible, we randomly combined the neurons in NeuronSetregardless of the brain region where the neuron was originally located. The pri-mary motivation for the random combination is to diversify the shape of theneurons in artificial brain voxels. In addition, we put hundreds of neurons in anartificial brain voxel to simulate the massive signal-averaging effect (eq. (3.20))in real brain voxels. However, this could create unrealistic combinations of neu-rons. A future improvement is to combine neurons from the same brain region(see the regional distribution of cells in NeuronSet in fig. 2.17). This requiresmore neurons in each brain region.
Furthermore, we can better optimize several hyperparameters of the pro-posed method. They include the distribution of the ECS volume fraction, thenumber of direction-averaged signals, and the maximum number of neurons inan artificial brain voxel. We chose them through a limited number of trials inthis study. A grid search could help find better hyperparameters.
Unlike biophysical models that could apply to a range of diffusion times, theMLPs are trained for a particular time profile only. If one wants to employ anew diffusion time, the dMRI simulations must be rerun on all neurons. Thesimulations could be highly time-consuming if one adopts a simulation method
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other than the numerical matrix formalism. Because the eigendecompositionhas already been obtained, the time overhead of computing new signals by thenumerical matrix formalism is reduced but still considerable.
5.7.5 Future perspectives

The proposed framework can readily help in many aspects of diffusion MRI.First, the synthetic dataset can be used to validate biophysical models. Second,we have over forty rotationally-invariant microstructure parameters. This pa-per focuses only on five. It is worth investigating other parameters, for exam-ple, the average soma radius. Third, the direction-averaged signals obtainedwith several acquisition protocols (e.g., various diffusion times or different se-quences) can be fed into anMLP together to achieve joint estimation. This couldhelp reduce indeterminacy. The MLP training is the same for diffusion-encodingsequences other than PGSE. However, some biophysical models’ signal expres-sions are derived only for PGSE sequences. If one adopts another type of se-quence, it is necessary to derive and validate new signal expressions. The deriva-tion of analytical signal expressions is not trivial at all.
Four extensions to the framework are foreseeable. First of all, we could re-move the impermeability assumption. Agdestein et al. [50] have extended thenumerical matrix formalism to include permeable compartments. We can solvethe complete BT equation system, eqs. (3.1) to (3.5), with permeablemembranesusing numerical matrix formalism. Note that the computational optimizationmade in this thesis also applies to the permeable case. The main challenge isthe ECS mesh generation. We have been able to wrap a neuron mesh with athin envelope to achieve ECS modeling with reasonable volume fractions. Anexample can be found in section A.3. However, dense neuron packing is stillinevitable to get a brain voxel phantom. Some recent advances in computergraphics provide promising approaches to this problem. The basic idea is to al-low some flexibility in the neurons and squeeze them into a cube. Second, wecould remove the assumption about homogeneous transverse relaxation andemploy different compartmental T2 values. The simulation with transverse re-laxation is straightforward because T2 relaxation just introduces some expo-nential multipliers to the computation, as shown by eq. (3.14). Third, we cangenerate more cellular meshes based on myriad neuron tracing data stored inNeuroMorpho.Org. Finally, the neuron meshes also contain orientation infor-mation. Estimating orientation-dependent microstructure using the syntheticdataset can also be expected.

5.8 Summary
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Weproposed anovel framework leveraging a highly-efficient simulator,mod-ern computer graphics algorithms, and supervised learning methods to inferthe brain microstructure in vivo using diffusion MRI. The fundamental tools ofthe framework have been made publicly available. We demonstrated that theframework helps to approximate the underlying mappings from diffusion MRIsignals to severalmicrostructure parameters. As proof of concept, we presentedhow to estimate volume and area fractions using the direction-averaged signalsor the five signal markers via training MLPs on a synthetic dataset generated bythe framework. Qualitatively, theMLPs gave promising parametric maps. Quan-titatively, the estimated volume fractions depended less on the diffusion timethan a state-of-the-art method. Although the obtained parameter maps still re-quire further validation, we believe the proposed framework can substantiallyhelp achieve quantitative microstructure imaging and promote broader adop-tion of diffusion MRI simulation.
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Chapter 6

Conclusion

The ultimate goal of this thesis is to facilitate simulation-driven brainmicrostruc-ture imagingwith diffusionMRI.Wemade notable contributions to neuronmod-eling and diffusionMRI simulation to achieve this goal. The simulation-driven su-pervised learning framework presented in chapter 5 is a promising prototype.This chapter presents a summary of the results and future perspectives.We developed an open-source neuron mesh generator, swc2mesh, that canautomatically and robustly convert valuable neuron tracing data to realistic neu-ron meshes. We have carefully designed the generator to maintain a good bal-ance between the mesh quality and size. A neuron mesh dataset, NeuronSet,which contains 1213 simulation-ready cellular meshes and their neuroanatom-ical measurements, has been built using the mesh generator. The number ofmeshes in itself demonstrates the capability of the neuron mesh generator.We believe the NeuronSet is beneficial for diffusion MRI simulation and forother neuroscience research like neuroanatomy. A foreseeable application of
swc2mesh is to study the contributions of individual neuronal components todiffusion MRI signals because the neuronmesh generator provides an easy wayto construct meshes for individual neuronal components like a single dendrite.Furthermore, it is possible to edit the tabular neuron tracing data (SWC files) toprecisely modify the neuron shape. This allows us to study, for example, theeffect of decreased neurite radii or lengths on dMRI signals.Diffusion MRI simulation is another piece of the puzzle. We adopted the nu-merical FE-based matrix formalism method. Integrating matrix formalism witha finite element method (FEM) brings significant advantages in terms of com-putational efficiency. We further optimized the numerical MF by speeding upthe eigendecomposition algorithm and leveraging GPU computation. A ten-fold speedup is achieved. Calculations that previously took an hour now takeonly six minutes. In addition, with similar precision, the optimized numericalmatrix formalism is 20 times faster than FEM and 65 times faster than a GPU-
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based Monte-Carlo method. By performing simulations on the realistic neuronmeshes, we have investigated the effect of soma-neurite water exchange, theneurite power-law scaling, and the relationship between soma size and signals.The combination of the neuron mesh generator and the ultra-fast numericalmatrix formalism provides powerful modeling and computational capabilities.We believe these capabilities can bring more insight into diffusion MRI.
The Fourier potential method is a new method based on the potential the-ory that provides a Fourier-type representation of the diffusion MRI signal. Thismethod has been derived theoretically and implemented numerically. We val-idated the convergence of the method and showed that the error behavior isin line with our error analysis. However, the method is currently of theoreticalinterest only. Future work is required to generalize the method to 3D and gobeyond the narrow pulse assumption.
Finally, we proposed a simulation-driven framework with high geometricalmodeling accuracy for brain microstructure imaging. By harnessing the afore-mentioned powerful modeling and computational capabilities, we constructeda synthetic dataset that contains the dMRI signals and microstructure param-eters of 1.4 million artificial brain voxels. We demonstrated that the datasethelps approximate the underlying mappings from dMRI signals to volume andarea fractions. Unlike existing methods, our method does not require the mi-crostructure parameters to be explicitly included in a signal expression. There-fore, one can freely investigate any parameters that can bemeasured on neuronmeshes. However, determining whichmicrostructure parameters can be appro-priately estimated requires profound physical insight.
We presented eight exemplary MLPs trained on the synthetic dataset for es-timating volume and area fractions. In the synthetic test set, the MLPs havelower estimation errors than the SANDI model. In the experimental dataset, theMLPs and SANDI give similar results for neurite fraction estimation. By com-paring the estimations at two diffusion times, we showed that the MLPs’ esti-mations depend less on the diffusion time. Although further validation is defi-nitely required, we believe the proposed framework is a satisfactory prototypefor simulation-driven brain microstructure imaging.
The main limitation of this method concerns the ECS modeling. Neurons aretightly intertwined in real brain tissue. Building a geometrical model for ECS re-quires densely packing a large number of neurons in a tiny cube to achieve areasonable ECS volume fraction. Besides, these neurons cannot intersect witheach other. We have not solved this highly challenging geometrical modelingproblem yet. Consequently, we still assume the ECS is a free diffusion space,which could introduce biases. Some recent advances in computer graphics pro-vide promising approaches to this problem. These approaches based on linear
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elasticity theory can perfectly prevent the intersection. Therefore, we can allowsome flexibility in the neurons and squeeze them into a cube. However, this re-quires further work. If we obtain the geometrical models for ECS, the extensionof the proposed method to include permeable membranes is foreseeable.To conclude, this thesis contributed to neuron modeling, diffusion MRI sim-ulation, and brain microstructure imaging. We hope that these contributionswill bring the significance of geometric modeling and simulation to the atten-tion of the community and lead to the design of more advanced microstructureimaging methods to explore the mysteries of the human brain.
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Appendix A

Supplementary Material to
Chapter 2

This appendix contains three sections. Section A.1 provides an exhaustive list ofneuroanatomical parameters that could be relevant to dMRI. Section A.2 givesthe complete list of all neuron meshes in Neuron Module. Some neuroanatom-ical measurements of neurons in Neuron Module are also included. Section A.3shows an example of a neuron wrapped by an ECS compartment. To guaranteea realistic volume fraction of ECS (∼ 20%), the mesh of ECS must be extremelynarrow, as shown in fig. A.2.

A.1 List of neuroanatomical parameters
In this section, we list various neuroanatomical measurements from a singleneuron. We first present some primitive parameters that can be directly mea-sured from neuron skeletons or meshes:
1. neuron volume, Vneuron;
2. neuron area, Aneuron;
3. soma radius, rsoma;
4. total neurite length measured by L-measure, Llmneurite;
5. number of stems, Nstems;
6. maximum stem Euclidean distance, Dmax,euc;
7. maximum stem path distance, Dmax,path;
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8. average stem Euclidean distance, Deuc;
9. average stem path distance, Dpath.
We then list some secondary neuroanatomical parameters that be calculatedfrom the above parameters:

10. soma volume, Vsoma = 4
3
πr3soma;

11. soma area, Asoma = 4πr2soma;
12. neurite volume, Vneurite = Vneuron − Vsoma;
13. neurite area, Aneurite = Aneuron − Asoma;
14. total neurite length, Lneurite = Llmneurite −Nstems × rsoma;
15. average neurite radius (based on neurite volume): rvneurite =

√
Vneurite
πLneurite ;

16. average neurite radius (based on neurite area): raneurite = Aneurite
2πLneurite ;

17. neuron volume-area ratio, Vneuron/Aneuron;
18. neurite volume-area ratio, Vneurite/Aneurite;
19. soma volume-area ratio, Vsoma/Asoma = rsoma/3;
20. neuronal soma volume fraction, Vsoma/Vneuron;
21. neuronal soma area fraction, Asoma/Aneuron;
22. neuronal neurite volume fraction, Vneurite/Vneuron;
23. neuronal neurite area fraction, Aneurite/Aneuron;
24. average stem length, Lstem = Lneurite/Nstem;
25. neurite irregularity, rvneurite − raneurite

rvneurite + raneurite
(= 0, if neurites are cylindrical);

26. total stem Euclidean distance, Deuc = Deuc ×Nstems;
27. total stem path distance, Dpath = Dpath ×Nstems;
28. maximum contraction, Dmax,euc/Dmax,path;
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29. average contraction, Deuc/Dpath;
30. ratio between soma and neuron volume-area ratios, Vsoma/Asoma

Vneuron/Aneuron ;

31. ratio between neurite and neuron volume-area ratios, Vneurite/Aneurite
Vneuron/Aneuron ;

32. ratio between soma and neurite volume-area ratios, Vsoma/Asoma
Vneurite/Aneurite .

The list is not exhaustive. We refer to the L-measure website (http://cng.
gmu.edu:8080/Lm/help/index.htm) for the definitions of over 40 neuroanatom-ical parameters. However, those parameters not listed here might be less rele-vant to diffusion MRI.

A.2 List of neurons in Neuron Module
Table A.1 lists the names, IDs, and othermetadata of the group of 36 pyrami-dal neurons and the group of 29 spindle neurons in Neuron Module. Table A.2shows the neuron mesh sizes and some neuroanatomical measurements forthe neurons. The neuron models and the measurement data are from [110]and [119].

Table A.1: Metadata of the 65 neurons in Neuron Module.
Index Cell name Cell ID Brain region Cell type1 02a_pyramidal2aFI NMO_01042 fronto-insula pyramidal2 02b_pyramidal1aACC NMO_01043 anterior cingulate pyramidal3 02b_pyramidal1aFI NMO_01044 fronto-insula pyramidal4 03a_pyramidal9aFI NMO_01045 fronto-insula pyramidal5 03a_spindle2aFI NMO_01078 fronto-insula von economo6 03a_spindle6aFI NMO_01079 fronto-insula von economo7 03b_pyramidal2aACC NMO_01046 anterior cingulate pyramidal8 03b_pyramidal3aACC NMO_01047 anterior cingulate pyramidal9 03b_pyramidal3aFI NMO_01048 fronto-insula pyramidal10 03b_pyramidal4aFI NMO_01049 fronto-insula pyramidal11 03b_pyramidal9aFI NMO_01050 fronto-insula pyramidal12 03b_spindle4aACC NMO_01080 anterior cingulate von economo13 03b_spindle5aACC NMO_01081 anterior cingulate von economo14 03b_spindle6aACC NMO_01082 anterior cingulate von economo
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Table A.1 continued from previous page
Index Cell name Cell ID Brain region Cell type15 03b_spindle7aACC NMO_01083 anterior cingulate von economo16 04a_pyramidal4aACC NMO_01051 anterior cingulate pyramidal17 04a_pyramidal5aACC NMO_01052 anterior cingulate pyramidal18 04b_pyramidal5aFI NMO_01053 fronto-insula pyramidal19 04b_pyramidal6aACC NMO_01054 anterior cingulate pyramidal20 04b_pyramidal6aFI NMO_01055 fronto-insula pyramidal21 04b_pyramidal7aACC NMO_01056 anterior cingulate pyramidal22 04b_spindle3aFI NMO_01084 fronto-insula von economo23 05a_pyramidal10aACC NMO_01057 anterior cingulate pyramidal24 05a_pyramidal8aACC NMO_01058 anterior cingulate pyramidal25 05b_pyramidal7aFI NMO_01059 fronto-insula pyramidal26 05b_pyramidal8aFI NMO_01060 fronto-insula pyramidal27 05b_pyramidal9aACC NMO_01061 anterior cingulate pyramidal28 05b_spindle5aFI NMO_01085 fronto-insula von economo29 06a_pyramidal11aACC NMO_01062 anterior cingulate pyramidal30 06b_pyramidal10aFI NMO_01063 fronto-insula pyramidal31 06b_pyramidal12aACC NMO_01064 anterior cingulate pyramidal32 06b_spindle8aACC NMO_01086 anterior cingulate von economo33 07a_pyramidal13aACC NMO_01065 anterior cingulate pyramidal34 07b_pyramidal14aACC NMO_01066 anterior cingulate pyramidal35 07b_spindle9aACC NMO_01087 anterior cingulate von economo36 08a_spindle13aACC NMO_01088 anterior cingulate von economo37 08o_pyramidal11aFI NMO_01067 fronto-insula pyramidal38 09o_spindle7aFI NMO_01089 fronto-insula von economo39 09o_spindle8aFI NMO_01090 fronto-insula von economo40 10a_pyramidal15aACC NMO_01068 anterior cingulate pyramidal41 10a_spindle18aACC NMO_01091 anterior cingulate von economo42 11a_pyramidal16aACC NMO_01069 anterior cingulate pyramidal43 11o_pyramidal12aFI NMO_01070 fronto-insula pyramidal44 12a_spindle19aACC NMO_01092 anterior cingulate von economo45 12o_spindle9aFI NMO_01093 fronto-insula von economo46 13o_spindle10aFI NMO_01094 fronto-insula von economo47 15o_spindle12aFI NMO_01095 fronto-insula von economo48 16o_spindle13aFI NMO_01096 fronto-insula von economo49 17o_pyramidal13aFI NMO_01071 fronto-insula pyramidal50 18o_pyramidal14aFI NMO_01072 fronto-insula pyramidal51 19o_spindle14aFI NMO_01097 fronto-insula von economo
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Table A.1 continued from previous page
Index Cell name Cell ID Brain region Cell type52 20o_pyramidal15aFI NMO_01073 fronto-insula pyramidal53 21o_spindle15aFI NMO_01098 fronto-insula von economo54 22o_pyramidal16aFI NMO_01074 fronto-insula pyramidal55 23o_spindle16aFI NMO_01099 fronto-insula von economo56 24o_pyramidal17aFI NMO_01075 fronto-insula pyramidal57 25o_pyramidal18aFI NMO_01076 fronto-insula pyramidal58 25o_spindle17aFI NMO_01100 fronto-insula von economo59 26o_spindle18aFI NMO_01101 fronto-insula von economo60 27o_spindle19aFI NMO_01102 fronto-insula von economo61 28o_spindle20aFI NMO_01103 fronto-insula von economo62 28o_spindle21aFI NMO_01104 fronto-insula von economo63 29o_spindle22aFI NMO_01105 fronto-insula von economo64 30o_spindle23aFI NMO_01106 fronto-insula von economo65 31o_pyramidal19aFI NMO_01077 fronto-insula pyramidal

Table A.2: Mesh size and neuroanatomical measurements for all neurons in NeuronModule.
Index # vertices Mean neurite

diameter [µm]
Length
[µm]

Soma vol.
[µm3]

Neuron vol.
[µm3]1 119156 1.27 404.85 19701.05 25639.612 45216 1.58 363.08 9065.56 11579.713 105384 1.62 381.56 22475.52 29804.964 81530 2.15 532.30 22557.27 30189.285 38202 1.74 387.16 13406.27 17684.236 44000 1.66 501.47 33458.19 37812.727 28183 1.48 189.29 2977.21 4487.448 27607 1.14 188.45 6005.06 6891.049 151362 1.84 496.35 32510.62 46154.0810 96177 1.33 414.70 35253.85 39324.8711 66162 1.92 430.06 15263.14 20532.5712 17370 1.43 336.33 3098.39 4070.1913 26345 1.49 221.52 11925.78 13242.5314 26792 1.33 398.36 4027.74 6058.6715 21618 1.18 369.51 4982.41 6076.5216 150897 1.52 705.96 5684.55 13637.3317 89256 1.86 410.59 15010.43 24648.35
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Table A.2 continued from previous page
Index # vertices avg. neurite

diameter [µm]
Height
[µm]

Soma vol.
[µm3]

Neuron vol.
[µm3]18 95784 1.78 480.13 10312.87 17184.2619 87195 1.41 465.88 3129.97 7497.1220 90482 1.56 310.21 14718.05 21708.2121 622553 1.3 610.42 17060.60 28552.4922 51265 2.71 391.14 22569.99 28404.1323 201506 1.74 281.20 16604.06 21826.4124 139975 1.29 430.37 24709.77 29778.7925 208203 2.18 281.02 25720.11 32731.0526 124350 1.66 361.45 32527.06 44679.4627 366659 1.56 650.60 23948.05 40014.5428 22457 2.35 381.88 15383.08 18190.6329 319574 1.46 437.60 17222.02 29995.0230 106808 1.92 365.18 43127.81 52179.5331 277718 1.52 324.94 17181.33 24931.3232 15163 1.92 342.21 18237.49 19462.9233 155854 1.37 325.73 6254.53 8738.0134 309789 1.67 350.40 16053.07 22772.9635 54952 1.75 437.87 21344.83 27307.4836 46293 1.74 814.45 9911.07 14113.3237 419651 1.91 421.68 11512.38 24326.9438 38992 2.90 472.87 22052.10 27905.8939 60755 2.05 376.73 11923.76 15189.3240 56184 1.40 341.48 8522.11 10960.8441 25797 1.57 457.90 5895.17 7219.2842 222732 1.27 486.31 8807.01 12263.8443 380293 1.91 369.34 70786.62 79516.9244 31841 2.05 431.22 12178.08 15618.6745 29320 3.41 305.31 29983.79 36678.1846 43081 2.69 516.92 39866.55 46022.1547 101548 3.60 604.57 53192.65 79170.4348 18266 2.17 364.66 17467.88 18888.1349 326989 1.89 340.77 11004.30 21167.1950 338453 1.74 288.41 69851.56 78999.2051 25786 2.18 232.21 10507.15 12905.4352 247116 1.82 383.18 22344.32 27667.1953 28822 2.36 286.33 17567.69 29466.53
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Table A.2 continued from previous page
Index # vertices avg. neurite

diameter [µm]
Height
[µm]

Soma vol.
[µm3]

Neuron vol.
[µm3]54 389878 1.94 585.35 18776.05 29441.4355 30073 1.67 420.05 10429.13 13482.9356 245058 2.04 371.99 40986.40 47377.0957 71209 1.80 364.05 18587.13 23572.1558 52919 1.79 358.70 7897.44 13563.2659 36239 2.27 442.65 52911.93 56084.4460 50807 1.73 275.08 20640.14 25423.9661 56036 3.00 520.69 35442.59 51267.0762 17581 2.62 298.57 35579.06 37783.3163 18414 3.52 402.84 62928.22 83279.1264 26357 3.05 322.56 24006.79 28303.5565 619390 2.26 303.55 65950.80 86376.72

A.3 A neuron mesh wrapped by a thin ECS
We present an example of a neuron1 wrapped in a thin envelope to achieveECS modeling (see fig. A.1 and fig. A.2). The ECS volume fraction is 0.31.

Figure A.1: A neuron wrapped in an ECS. The neuron is represented by a solid whitemesh inside a transparent pink envelope, the ECS, whose volume fraction is 0.31.

1NeuroMorpho.Org ID of the neuron is NMO_01078.
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Figure A.2: Zoomed-in of the above neuron. A solid white mesh represents the neuron.The red envelope represents the ECS. Half of the ECS is removed to show the neuroninside.
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Appendix B

Supplementary Material to
Chapter 3

B.1 Proof of eq. (3.18)
We give the proof of eq. (3.18). When the gradient intensity is zero, the BTequation degenerates to the diffusion equation:

∂

∂t
φi(x, t) = Di∇ · ∇φi(x, t), x ∈ Ωi, t ∈ [0, TE], (B.1)
φi(x, 0) = 1, x ∈ Ωi, (B.2)

Di∇φi(x, t) · ni(x) = 0, x ∈ ∂Ωi, t ∈ [0, TE]. (B.3)
We integrate eq. (B.1) over the domain Ωi to get

d

dt

∫

Ωi

φi(x, t)dx =

∫

Ωi

Di∇ · ∇φi(x, t)dx. (B.4)
The divergence theoremallows us to compute the right-hand side of eq. (B.4):

∫

Ωi

Di∇ · ∇φi(x, t)dx =

∫

∂Ωi

Di∇φi(x, t) · ni(x)dsx = 0. (B.5)
So the integral ∫

Ωi
φi(x, t)dx is a constant. Finally, we have

∫

Ωi

φi(x, TE; g = 0)dx =

∫

Ωi

φi(x, 0)dx =

∫

Ωi

1dx = Vi. (B.6)
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B.2 Monte-Carlo simulation
In section 3.3.3, we utilize a GPU-accelerated Monte-Carlo method imple-mented in the disimpy [65] package. Two simulation parameters control theprecision of the Monte-Carlo method: the number of random walkers Nwalkersand the number of time steps Nt.To compare the simulation efficiency of FEM, numerical MF, and the Monte-Carlomethod, we need to tune the simulation parameters so that themaximumrelative error of each method is close to 2%. For the Monte-Carlo method, wereach a 2% relative error by gradually increasingNwalkers andNt. Table B.1 showssix combinations of parameters. In section 3.3.3, we report the execution timesof the fourth row because the maximum relative error is the closest to 2%.

Table B.1: Execution times and maximum relative errors of Monte-Carlo simulationswith disimpy.
Nwalkers Nt Max. relative error (%) Preparation times (s) Computation times (s)
103 103 68.1 1483.99 15.79
105 103 4.01 1468.33 25.44
105 104 4.32 1475.76 198.1
105 5× 104 2.36 1474.41 902.55
105 8× 104 3.99 1497.92 1414.77

5× 105 5× 104 0.99 1531.33 1852.63

B.3 Additional neuron simulations
We show some simulation results on other neuron meshes in our collection.In fig. B.1, we compare the diffusion MRI signals due to two different dendritebranches, one from 04b_spindle3aFI and one from 03b_spindle7aACC. The firstbranch has a single main trunk, whereas the second branch divides into twomain trunks. We see at the higher b-value b = 4000 µs/µm2, at the longestdiffusion time, the signal shape is more elongated (perpendicular to the maintrunk direction) for the first dendrite branch than the second.
In fig. B.2, we show 3-dimensional simulation results of the spindle neuron

03a_spindle2aFI. We plot in fig. B.2 the signal attenuations in 720 directions uni-formly distributed in the unit sphere for b = 1000 µs/µm2 and b = 4000 µs/µm2.We see that the shape of the signal attenuations in these 720 directions is ellip-soid at the lower b-value, and the shapebecomesmore complicated at the larger
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Figure B.1: The signal attenuations in 180 directions lying on the x− y plane, uniformlydistributed on a unit circle. The distance from each data point to the origin repre-sents the magnitude of the signal attenuation. The simulation parameters are rtol =
10−3, atol = 10−5, Htetgen = 0.5 µm3. The diffusion coefficient is 2 × 10−3 µm2/µs.(a) one dendrite branch of 04b_spindle3aFI (volume mesh has 29854 vertices). (b) onedendrite branch of 03b_spindle7aACC (volume mesh has 10145 vertices).

b-value. At b = 4000 µs/µm2, there is more signal attenuation at the shorter dif-fusion time than at the higher diffusion time.

167



Figure B.2: The signal attenuations for the neuron 03a_spindle2aFI in 720 directionsuniformly distributed on a unit sphere. The color and the distance to the origin ofeach data point represent the magnitude of the signal attenuation. The simulationparameters are rtol = 10−3, atol = 10−5, Htetgen = 0.5 µm3. The diffusion coeffi-cient is 2 × 10−3 µm2/µs. (a) PGSE (δ/∆ = 10/13 ms), b = 1000 µs/µm2. (b) PGSE(δ/∆ = 10/73 ms), b = 1000 µs/µm2. (c) PGSE (δ/∆ = 10/13 ms), b = 4000 µs/µm2. (d)PGSE (δ/∆ = 10/73 ms), b = 4000 µs/µm2. The number of FE nodes for the neuron is
49833.
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Appendix C

Numerical Implementation of FPM

C.1 Overview
Figure C.1 is a flowchart describing the Fourier Potential Method (FPM). Thedomain of definition of µ (and the intermediate variable Klong[µ]) is on the

boundary, x0 ∈ Γ =
⋃J

j=1 ∂Ωj . The domain of definition of f̂ is in the Fourier
domain, ν ∈ [−νmax, νmax]

2.
µ

f̂Klong[µ]

µ

f̂

1

2

3
Input

parameters

Slong[µ]

Sshort[µ]

dMRI signal
S[µ]

Figure C.1: Flowchart describing the workflow of the Fourier potential method.
The input parameters of our method include numerical descriptions of cellu-lar membranes, diffusion MRI protocols, and simulation settings. All necessaryinputs are listed in table C.1. The second block in fig. C.1 depicts the main pro-cedure for solving eq. (4.27). Specifically, the loop in the second block containsthree steps:
1. compute the Fourier coefficients f̂ at time t:

f̂(ν, t) = e−4π2D0∥ν∥2∆tf̂(ν, t−∆t)+
∫ t−η

t−η−∆t

∫

Γ

e−4π2D0∥ν∥2(t−τ)µ(y, τ)e−2πıν·ydsydτ. (C.1)
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2. compute the long time partKlong[µ] at time t:
Klong[µ](x0, t) = D0

∑

ν

2πıν · nf̂(ν, t)e2πıν·x0dν2. (C.2)

3. compute the density µ at time t:

µ(x0, t) =
2
(
2πıρq · ne−4π2D0∥q∥2te−2πıq·x −Klong[µ](x0, t)

)

1−
√

D0η
π
ξ(x0)

. (C.3)

We iterate the loop over all time steps until the density µ and the Fouriercoefficients f̂ are solved for the interval [0,∆−δ]. Then we can compute Sshort[µ]and Slong[µ] whose sum is the single layer potential. Finally, the diffusion MRIsignal is obtained by integrating the single layer potential. The details of eachblock and a streamlined description of the numerical implementation are shownin the following sections.

C.2 Input parameters
Our method is numerically implemented in PyTorch [237]. The programneeds input parameters describing cell membranes, diffusion MRI protocols,and simulation settings. Table C.1 lists the input parameters and their corre-sponding numerical counterparts.To describe cellularmembranes, we approximate themusing numerous seg-ments. Figure C.2 shows an example of approximating two irregular shapes bytwo polygons. The spatial discretization of cellular membranes allows us to per-form numerical integration on the boundaries.As a notation convention, we denote by [a : i : b] an equispaced array startingat a, ending at b (included), and using i as the increment between elements. Forexample, [0 : 1 : 5] is equivalent to {0, 1, 2, 3, 4, 5}.
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Table C.1: Input parameters of FPM and their numerical counterparts.
Parameters Explanation Numericalcounterparts

Cellularmembranes⋃J
j=1 ∂Ωj

{xi}i∈{1,...,N} [µm]
Cellular membranes/boundariesare discretized into N segments.

xi is the center of the i-th segment. an array of size 2×N

{∆li}i∈{1,...,N} [µm] ∆li is the length of the i-th segment. an array of size 1×N

{ni}i∈{1,...,N}
ni is the out-pointingnormal vector at the point xi. an array of size 2×N

{ξi}i∈{1,...,N} [µm−1]
ξi is the curvature of theboundaries at the point xi. an array of size 1×N

∑J
j=1 |Ωj| [µm2] Total area of cells a numeric variable

Diffusion MRIprotocols

D0 [µm
2/µs]

Intrinsic diffusion coefficientin the neuron compartments a numeric variable
ρ Initial magnetization 1

∆ [µs] Inter-pulse duration a numeric variable
δ [µs] Pulse duration a numeric variable

γ[rad · µs−1mT−1] Gyromagnetic ratio a numeric variable
g [mT/m] Magnetic field gradient a 2D vector
q [µm−1] q = δγg/2π a 2D vector

Simulationsettings
∆t [µs] Time step a numeric variable
η [µs]

Duration of the short time partof layer potentials a numeric variable
∆ν [µm−1] Frequency step a numeric variable
νmax [µm

−1]
Maximum frequencyin the truncated spectrum a numeric variable

x1

x2

x3

x4

n1

n2

n3

n4

x5

x6
x7 x8

x9

x10

x11x12

Figure C.2: An example of a computational domain consisting of two irregular shapes(light green curves) approximated by two polygons (black segments). For visualizationpurposes, the spatial discretization is coarse.
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C.3 Iteration of µ, f̂ andKlong[µ]

Before the computation, we prepare Neumann data based on the boundaryconditions. The complex-valued Neumann data is defined as
N (x0, t) = 2πıρq · nx0e

−4π2D0∥q∥2te−2πıq·x0 , t ∈ [0,∆− δ]. (C.4)

Algorithm 2 is the pseudo-code for the numerical computation of Neumanndata, which can be turned into a one-liner using array programming providedby Matlab, Numpy, or GPU programming languages.

Algorithm 2: Neumann data
Data: D0, q, {xi}, {ni}, T = [0 : ∆t : ∆− δ]
Result: an array NeuData of size #{xi} ×#T
begin"""Numerical implementation of eq. (C.4)."""

forall (xi, tm) ∈ {xi} × T do # can be parallelized
NeuData(xi, tm) = 2πıρq · nie

−4π2D0∥q∥2tme−2πıq·xi

end
end

The time interval t ∈ [0, η]

We directly use the asymptotic expressions for the layer potentials to initial-ize µ. The Fourier coefficients f̂ andKlong[µ] are initialized to zero:

µ(x0, t) =
2N (x0, t)

1−
√

D0t
π
ξ(x0)

, (C.5)
f̂(ν, t) = 0, (C.6)

Klong[µ](x0, t) = 0. (C.7)

Algorithm 3 shows the calculation of the density function µ(x0.t) when t isinferior to η.
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Algorithm 3: Computation of the density µ for t ∈ [0, η]

Data: D0, NeuData, {xi}, {ξi}, T1 = [0 : ∆t : η]
Result: an arraymu of size #{xi} ×#T
Initialization: All elements inmu are set to be 0.
begin"""Numerical implementation of eq. (C.5)."""

forall (xi, tm) ∈ {xi} × T1 do # can be parallelized
mu(xi, tm) = 2NeuData(xi, tm)/(1−

√
D0tm

π
ξ(xi))

end
end

The time interval t ∈ [η +∆t, 2η]

We compute f̂ using the known analytical form of µ in [0, η] from eq. (C.5),and updateKlong[µ] and µ:

f̂(ν, t) = e−4π2D0∥ν∥2∆tf̂(ν, t−∆t) + f̂temp1(ν, t), (C.8)
Klong[µ](x0, t) = D0

νmax∑

ν=−νmax

2πıν · nf̂(ν, t)e2πıν·x0∆ν2, (C.9)

µ(x0, t) = 2

(
1−

√
D0η

π
ξ(x0)

)−1

[N (x0, t)−Klong[µ](x0, t)] . (C.10)

The Fourier update term f̂temp1 is

f̂temp1(ν, t) =

∫

Γ

∫ t−η

t−η−∆t

e−4π2D0∥ν∥2(t−τ)e−2πıν·yµ(y, τ)dτdsy

=

∫

Γ

4πıρq · ne−2πı(q+ν)·y p dsy (C.11)
p =

∫ t−η

t−η−∆t

e−4π2D0[∥ν∥2(t−τ)+∥q∥2τ]

(
1−

√
D0τ

π
ξ(y)

)−1

dτ (C.12)
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where the time integration follows the trapezoidal rule:

p =





− 2πe−4π2D0∥q∥2t
D0ξ2(y)

[
ξ(y)

√
D0

π

(√
t− η −√

t− η −∆t
)
+

ln

(
1−ξ(y)

√
D0
π

(t−η)

1−ξ(y)
√

D0
π

(t−η−∆t)

)]
, ∥ν∥ = ∥q∥;

e−4π2D0[∥q∥2(t−η)+∥ν∥2η]

[
1+e4π

2D0(∥q∥2−∥ν∥2)∆t(4π2D0(∥q∥2−∥ν∥2)∆t−1)

∆t(4π2D0(∥q∥2−∥ν∥2))2
(
1−ξ(y)

√
D0
π

(t−η−∆t)

)+
e4π

2D0(∥q∥2−∥ν∥2)∆t−4π2D0(∥q∥2−∥ν∥2)∆t−1

∆t(4π2D0(∥q∥2−∥ν∥2))2
(
1−ξ(y)

√
D0
π

(t−η)

)
]
, ∥ν∥ ≠ ∥q∥.

(C.13)The evaluation of the two intermediate quantities, f̂temp1 and p, are shown inalgorithms 4 and 5, respectively. Algorithm 6 shows the numerical implementa-tion corresponding to the computation of eqs. (C.8) to (C.10) for the time interval
t ∈ [η +∆t, 2η].
Algorithm 4: Definition of fhat_temp1.
Function fhat_temp1(ν , t, {xi}, {∆li}, {ni}, {ξi}, D0, q, η, ∆t):"""Numerical implementation of eq. (C.11)."""

result = 0
# spatial integration
forall i ∈ [1 : 1 : #{xi}] do # can be parallelized

res_p = p(ν, t,q, ξi, η,∆t,D0)

result = result+ 4πıρq · nie
−2πı(ν+q)·xi res_p ∆li

end
return result
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Algorithm 5: Definition of p.
Function p(ν , t, q, ξ, η, ∆t, D0):"""Numerical implementation of eq. (C.13)."""

if ∥ν∥ = ∥q∥ then

result = −2πe−4π2D0∥q∥2t

D0ξ2

[
ξ
√

D0

π

(√
t− η −√

t− η −∆t
)
+

ln




1− ξ
√

D0

π
(t− η)

1− ξ
√

D0

π
(t− η −∆t)



]

else

p1 =
1 + e4π

2D0(∥q∥2−∥ν∥2)∆t(4π2D0(∥q∥2 − ∥ν∥2)∆t− 1)

∆t(4π2D0(∥q∥2 − ∥ν∥2))2
(
1− ξ

√
D0

π
(t− η −∆t)

)

p2 =
e4π

2D0(∥q∥2−∥ν∥2)∆t − 4π2D0(∥q∥2 − ∥ν∥2)∆t− 1

∆t(4π2D0(∥q∥2 − ∥ν∥2))2
(
1− ξ

√
D0

π
(t− η)

)

result = e−4π2D0[∥q∥2(t−η)+∥ν∥2η](p1 + p2)
end

return result
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Algorithm 6: Computation of f̂ ,Klong[µ], and µ for t ∈ [η +∆t, 2η]

Data: NeuData, D0, η, q, ∆t, ∆ν, {xi}, {∆li}, {ni}, {ξi},
V = [−νmax : ∆ν : νmax], T2 = [η +∆t : ∆t : 2η]

Result: two arraysmu and K_long whose sizes are #{xi} ×#T , and anarray fhat of size #V ×#V ×#T
Initialization: All elements in K_long and fhat are set to be 0.
begin"""Numerical computation of eqs. (C.8) to (C.10)."""

foreach tm ∈ T2 do
# compute Fourier coefficient at time tm
forall ν ∈ V2 do # can be parallelized

temp = fhat_temp1(ν, tm, {xi}, {∆li}, {ni}, {ξi}, D0,q, η,∆t)

fhat(ν, tm) = e−4π2D0∥ν∥2∆t · fhat(ν, tm −∆t) + temp
end

forall i ∈ [1 : 1 : #{xi}] do # can be parallelized
# Inverse Discrete Fourier Transform (IDFT)
K_long(xi, tm) = D0

∑
ν∈V2 2πıν · ni fhat(ν, tm) e

2πıν·xi∆ν2

mu(xi, tm) =

2 [NeuData(xi, tm)−K_long(xi, tm)] /

(
1−

√
D0η
π
ξi

)

end
end

end
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The time interval t ∈ [2η +∆t,∆− δ]

In this interval, we iterate between f̂ and µ (through the intermediate quanity
Klong[µ]). The required values to compute f̂ at t are the density µ at t− η and at
t− η −∆t which are obtained in previous steps:

f̂(ν, t) = e−4π2D0∥ν∥2∆tf̂(ν, t−∆t) + f̂temp2(ν, t), (C.14)
Klong[µ](x0, t) = D0

νmax∑

ν=−νmax

2πıν · nf̂(ν, t)e2πıν·x0∆ν2, (C.15)

µ(x0, t) = 2

(
1−

√
D0η

π
ξ(x0)

)−1

[N (x0, t)−Klong[µ](x0, τ)] . (C.16)
The Fourier update term f̂temp2(ν, t) is:

f̂temp2(ν, t) =

∫

Γ

2

(
1−

√
D0η

π
ξ(y)

)−1

e−2πıν·y (2πıρq · ne−2πıq·yh1 − h2
)
dsy,

(C.17)where the time integration h1 in the first part has an analytical expression
h1 =

∫ t−η

t−η−∆t

e−4π2D0(∥q∥2τ+∥ν∥2(t−τ))dτ

=

{
∆t · e−4π2D0∥ν∥2t ∥q∥ = ∥ν∥
e−4π2D0[∥q∥2(t−η)+∥ν∥2η] e4π2D0(∥q∥2−∥ν∥2)∆t−1

4π2D0(∥q∥2−∥ν∥2) ∥q∥ ≠ ∥ν∥

(C.18)

and the time integration h2 is done via the trapezoidal rule
h2 =

∫ t−η

t−η−∆t

Klong[µ](y, τ)e
−4π2D0∥ν∥2(t−τ)dτ

=





∆t
2
[Klong[µ](y, t− η) +Klong[µ](y, t− η −∆t)] ∥ν∥ = 0

[
1−e−4π2D0∥ν∥2∆t(4π2D0∥ν∥2∆t+1)

(4π2D0∥ν∥2)2∆t
Klong[µ](y, t− η −∆t) +

e−4π2D0∥ν∥2∆t+4π2D0∥ν∥2∆t−1
(4π2D0∥ν∥2)2∆t

Klong[µ](y, t− η)
]
e−4π2D0∥ν∥2η ∥ν∥ ≠ 0

(C.19)
The evaluation of the three intermediate quantities, f̂temp2, h1 and h2, areshown in algorithms 7 to 9. Algorithm 10 shows the numerical implementationcorresponding to the computation of eqs. (C.14) to (C.16).
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Algorithm 7: Definition of fhat_temp2.
Function fhat_temp2(ν , t, {xi}, {∆li}, {ni}, {ξi}, D0, q, η, ∆t,K_long):"""Numerical implementation of eq. (C.17)."""

result = 0
forall i ∈ [1 : 1 : #{xi}] do # can be parallelized

res_h1 = 2πıρq · ni e
−2πıq·xi · h1(ν, t, D0,q, η,∆t)

res_h2 = h2(ν, D0, η,∆t,K_long(xi, t− η −∆t), K_long(xi, t− η))

result = result+2

(
1−

√
D0η
π
ξi

)−1

e−2πıν·xi (res_h1− res_h2) ·∆li
end

return result

Algorithm 8: Definition of h1.
Function h1(ν , t, D0, q, η, ∆t):"""Numerical implementation of eq. (C.18)."""

if ∥ν∥ = ∥q∥ then
result = ∆t · e−4π2D0∥ν∥2t

else

result =
e−4π2D0[∥q∥2(t−η−∆t)+∥ν∥2(η+∆t)] − e−4π2D0[∥q∥2(t−η)+∥ν∥2η]

4π2D0(∥q∥2 − ∥ν∥2)
end

return result

Algorithm 9: Definition of h2.
Function h2(ν , D0, η, ∆t,K1,K2):"""Numerical implementation of eq. (C.19)."""

if ∥ν∥ = 0 then
result = ∆t

2
(K1 +K2)

else
weight1 =[
1− e−4π2D0∥ν∥2∆t(4π2D0∥ν∥2∆t+ 1)

]
/ [(4π2D0∥ν∥2)2∆t]

weight2 =
[
e−4π2D0∥ν∥2∆t + 4π2D0∥ν∥2∆t− 1

]
/ [(4π2D0∥ν∥2)2∆t]

result = (weight1 ·K1 + weight2 ·K2)e−4π2D0∥ν∥2η

end
return result
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Algorithm 10: Computation of f̂ ,Klong[µ], and µ for t ∈ [2η+∆t, ∆− δ]

Data: NeuData, D0, η, ∆t, ∆ν, q, {xi}, {∆li}, {ni}, {ξi},
V = [−νmax : ∆ν : νmax], T3 = [2η +∆t : ∆t : ∆− δ]

Result: two arraysmu and K_long whose sizes are #{xi} ×#T and anarray fhat of size #V ×#V ×#T
begin"""Numerical computation of eqs. (C.14) to (C.16)."""

foreach tm ∈ T3 do
# compute Fourier coefficient at time tm
forall ν ∈ V2 do # can be parallelized

temp =
fhat_temp2(ν, tm, {xi}, {∆li}, {ni}, {ξi}, D0,q, η,∆t,K_long)
fhat(ν, tm) = e−4π2D0∥ν∥2∆t · fhat(ν, tm −∆t) + temp

end

forall i ∈ [1 : 1 : #{xi}] do # can be parallelized
# Inverse Discrete Fourier Transform (IDFT)
K_long(xi, tm) = D0

∑
ν∈V2(2πıν · ni)fhat(ν, tm)e

2πıν·xi∆ν2

mu(xi, tm) =

2 [NeuData(xi, tm)−K_long(xi, tm)] /

(
1−

√
D0η
π
ξi

)

end
end

end
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C.4 Computation of the diffusion MRI signal
Finally, the signal attenuation E is

E = ρe−4π2D0∥q∥2(∆−δ) +
1∑J

j=1 |Ωj|
ω(q,∆− δ), (C.20)

where ω(x0, t) = Sshort[µ](x0, t) + Slong[µ](x0, t), defined using µ and f̂ :
Sshort[µ](x0, t) =

√
D0t

π
µ(x0, t), t ∈ [0, η], (C.21)

Sshort[µ](x0, t) =

√
D0η

π
µ(x0, t), t ∈ [η +∆t, ∆− δ], (C.22)

Slong[µ](x0, t) = D0

νmax∑

ν=−νmax

f̂(ν, t)e2πıν·x0∆ν2, t ∈ [0, ∆− δ]. (C.23)
Then ω is obtained by iteration from ω:

ω(q, t) = e−4π2D0∥q∥2∆tω(q, t−∆t)−D0 ωtemp(q, t), (C.24)
where

ωtemp(q, t) =

∫

Γ

2πıq · ne2πıq·y u dsy, (C.25)
u =

∫ t

t−∆t

e−4π2D0∥q∥2(t−τ)ω(y, τ)dτ. (C.26)
By applying the trapezoidal rule to the time integration, we get

u =





∆t
2
[ω(y, t−∆t) + ω(y, t)] ∥q∥ = 0

1−e−4π2D0∥q∥2∆t(4π2D0∥q∥2∆t+1)
(4π2D0∥q∥2)2∆t

ω(y, t−∆t)

+ e−4π2D0∥q∥2∆t+4π2D0∥q∥2∆t−1
(4π2D0∥q∥2)2∆t

ω(y, t) ∥q∥ ≠ 0

(C.27)

We obtain the diffusion MRI signal (eq. (C.20)) by solving eqs. (C.21) to (C.27).Their numerical implementations are shown in algorithms 11 to 14.
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Algorithm 11: Definition of omega_bar_temp.
Function omega_bar_temp(t, {xi}, {∆li}, {ni}, D0, q, ∆t, S_single):"""Numerical implementation of eq. (C.25)."""

result = 0# spatial integration
forall i ∈ [1 : 1 : #{xi}] do # can be parallelized

res_u = u(D0,q,∆t, S_single(xi, t−∆t), S_single(xi, t))
result = result+ 2πıq · nie

2πıq·xi res_u ∆li
end

return result

Algorithm 12: Definition of u.
Function u(D0, q, ∆t, s1, s2):"""Numerical implementation of eq. (C.27)."""

if ∥q∥ = 0 then

result =
∆t

2
[s1 + s2]

else
weight1 = [1− e−4π2D0∥q∥2∆t(4π2D0∥q∥2∆t+ 1)]/[(4π2D0∥q∥2)2∆t]
weight2 = [e−4π2D0∥q∥2∆t + 4π2D0∥q∥2∆t− 1]/[(4π2D0∥q∥2)2∆t]
result = weight1 · s1 + weight2 · s2

end
return result
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Algorithm 13: Computation of the single layer potential S[µ].
Data: mu, fhat, D0, η, {xi}, V = [−νmax : ∆ν : νmax], T = [0 : ∆t : ∆− δ]
Result: an array S_single of size #{xi} ×#T
begin"""Numerical computation of eqs. (C.21) to (C.23)."""

forall tm ∈ T do
forall i ∈ [1 : 1 : #{xi}] do # can be parallelized

# compute S_short
if tm ≤ η then

S_short(xi, tm) =

√
D0tm
π

mu(xi, tm)

else

S_short(xi, tm) =

√
D0η

π
mu(xi, tm)

end
# compute S_long
S_long(xi, tm) = D0

∑
ν∈V2 fhat(ν, tm)e

2πıν·xi∆ν2

# S_single = S_short + S_long
S_single(xi, tm) = S_short(xi, tm) + S_long(xi, tm)

end
end

end

Algorithm 14: Computation of the diffusion MRI signal.
Data: area, S_single, {xi}, {∆li}, {ni}, D0, q, ∆t, T = [0 : ∆t : ∆− δ]
Result: a number E
begin"""Numerical computation of eq. (C.20)."""

foreach tm ∈ T do
if tm = 0 then

omega_bar(tm) = 0
else

z = omega_bar_temp(tm, {xi}, {∆li}, {ni}, D0,q,∆t, S_single)
omega_bar(tm) = e−4π2D0∥q∥2∆tomega_bar(tm −∆t)−D0 · z

end
end
E = ρe−4π2D0∥q∥2(∆−δ) + omega_bar(∆− δ)/area

end
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Appendix D

Supplementary Material to
Chapter 5

D.1 Microstructure parameters
We compute the microstructure parameters for an artificial brain voxelbased on the neuroanatomical parameters defined in section A.1. Suppose avoxel consists of M neuron meshes and an ECS compartment whose volumefraction is fecs. We utilize the superscript m to indicate the m-th neuron. Somemicrostructure parameters are
1. total neuron volume, V allneuron =

∑M
m=1 V

mneuron;
2. total neurite volume, V allneurite =

∑M
m=1 V

mneurite;
3. total soma volume, V allsoma =

∑M
m=1 V

msoma;
4. brain voxel volume, Vvoxel = V allneuron/(1− fecs);
5. ECS volume, Vecs = fecsVvoxel;
6. soma volume fraction, fsoma = V allsoma/Vvoxel;
7. neurite volume fraction, fneurite = V allneurite/Vvoxel;
8. total neuron area, Aallneuron =

∑M
m=1A

mneuron;
9. total neurite area, Aallneurite =

∑M
m=1A

mneurite;
10. total soma area, Aallsoma =

∑M
m=1A

msoma;
11. soma area fraction, asoma = Aallsoma/Aallneuron;
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12. neurite area fraction, aneurite = Aallneurite/Aallneuron;
13. neuron volume-area ratio, V allneuron/Aallneuron;
14. neurite volume-area ratio, V allneurite/Aallneurite;
15. soma volume-area ratio, V allsoma/Aallsoma;
16. total neurite length, Lallneurite =

∑M
m=1 L

mneurite;
17. average neurite length, Lall

neurite = Lallneurite/M ;
18. average neuron volume, V all

neuron = V allneuron/M ;
19. average neurite volume, V all

neurite = V allneurite/M ;
20. average soma volume, V all

soma = V allsoma/M ;
21. average neuron area, Aall

neuron = Aallneuron/M ;
22. average neurite area, Aall

neurite = Aallneurite/M ;
23. average soma area, Aall

soma = Aallsoma/M ;
24. total number of stems, Nall

stems =
∑M

m=1N
mstems;

25. average number of stems, Nall
stems = Nall

stems/M ;
26. average stem length, Lstem = Lallneurite/Nall

stems;
27. average neurite radius (based on total neurite volume), rvneurite =√

V allneurite
πLallneurite

;

28. average neurite radius (based on total neurite area), raneurite = Aallneurite
2πLallneurite

;
29. neurite irregularity, rvneurite − raneurite

rvneurite + raneurite
;

30. average soma radius (first order average), r(1)soma =
∑M

m=1 r
msoma

M
;

31. average soma radius (second order), r(2)soma =
√
A
all
soma
4π

=

√∑M
m=1(r

msoma)2
M

;
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32. average soma radius (third order), r(3)soma = 3

√
V

all
soma

4π/3
=

3

√∑M
m=1(r

msoma)3
M

;

33. average soma radius (kth order), r(k)soma =
k

√∑M
m=1(r

msoma)k
M

;

34. volume weighted average soma radius, rvwsoma =

∑M
m=1 V

msomarmsoma∑M
m=1 V

msoma
=

(r
(4)soma)4

(r
(3)soma)3

;

35. other possible mean soma radius, r(ab,cd)soma =
c−d

√
(r

(a)soma)c
(r

(b)soma)d
with appropriate

integers a, b, c, d;
36. total stem Euclidean distance, Dalleuc =

∑M
m=1D

meuc;
37. total stem path distance, Dallpath =

∑M
m=1D

mpath;
38. average stem Euclidean distance, Dall

euc = Dalleuc/M ;
39. average stem path distance, Dall

path = Dallpath/M ;
40. contraction, Dalleuc/Dallpath;

41. ratio between soma and neuron volume-area ratios, V allsoma/Aallsoma
V allneuron/Aallneuron

;

42. ratio between neurite and neuron volume-area ratios, V allneurite/Aallneurite
V allneuron/Aallneuron

;

43. ratio between soma and neurite volume-area ratios, V allsoma/Aallsoma
V allneurite/Aallneurite

.
We can also compute othermicrostructure parameters like the number of bifur-cations, the angle between two bifurcation points, fractal dimension, partitionasymmetry, etc., using measurements from L-measure.
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D.2 Box plot
A box plot is a method for graphically representing data distribution by theirquartiles. The three important percentiles are:
• Median (Q2 or 50th percentile): the median value in the dataset;
• First quartile (Q1 or 25th percentile): the median of the left half of thedataset;
• Third quartiles (Q3 or 75th percentile): the median of the left half of thedataset.

In fig. D.1, the box’s left and right sides (hinges) denote Q1 and Q3. Q2 is repre-sented by the bar in the middle of the box. The range between the two hingesis called the interquartile range, which contains the middle 50% of the dataset.The whiskers extend to the range of 1.5 times the interquartile range, as illus-trated in fig. D.1. All other data points outside the boundary of the whiskers aretreated as outliers. The box and whiskers represent 99.3% of the data points fora normal distribution.

Figure D.1: An illustration of a box plot for a normal dis-tribution N (0, σ2). By Jhguch at en.wikipedia, CC BY-SA 2.5,https://commons.wikimedia.org/w/index.php?curid=14524285
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D.3 Signal comparison between SANDI and simula-
tion at 19 ms

We present the comparison between the simulated signals and the signalsrecomputed by the SANDI model in logarithmic (fig. D.2) and linear (fig. D.3)scales. The diffusion time is δ/∆ = 8/19ms.
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Figure D.2: The comparison between the simulated (blue dashed line) and recomputedsignals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-nals are obtained by substituting SANDI’s estimations into eq. (37) in the paper. Thediffusion time is δ/∆ = 8/19 ms. The first subplot represents the meaning of the sixnumbers annotated in the upper right corner of each subplot. The numbers in the firstrow are soma, neurite, and ECS signal fractions. The numbers below are the ground-truth volume fractions. The y-axes are in logarithmic scales.
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Figure D.3: The comparison between the simulated (blue dashed line) and recomputedsignals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-nals are obtained by substituting SANDI’s estimations into eq. (37) in the paper. Thediffusion time is δ/∆ = 8/19 ms. The first subplot represents the meaning of the sixnumbers annotated in the upper right corner of each subplot. The numbers in the firstrow are soma, neurite, and ECS signal fractions. The numbers below are the ground-truth volume fractions. The y-axes are in linear scales.
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D.4 Signal comparison between SANDI and simula-
tion at 49 ms

We present the comparison between the simulated signals and the signalsrecomputed by the SANDI model in logarithmic (fig. D.4) and linear (fig. D.5)scales. The diffusion time is δ/∆ = 8/49ms.
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Figure D.4: The comparison between the simulated (blue dashed line) and recomputedsignals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-nals are obtained by substituting SANDI’s estimations into eq. (37) in the paper. Thediffusion time is δ/∆ = 8/49 ms. The first subplot represents the meaning of the sixnumbers annotated in the upper right corner of each subplot. The numbers in the firstrow are soma, neurite, and ECS signal fractions. The numbers below are the ground-truth volume fractions. The y-axes are in logarithmic scales.
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Figure D.5: The comparison between the simulated (blue dashed line) and recomputedsignals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-nals are obtained by substituting SANDI’s estimations into eq. (37) in the paper. Thediffusion time is δ/∆ = 8/49 ms. The first subplot represents the meaning of the sixnumbers annotated in the upper right corner of each subplot. The numbers in the firstrow are soma, neurite, and ECS signal fractions. The numbers below are the ground-truth volume fractions. The y-axes are in linear scales.
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D.5 SANDI’s parametermaps for sub_002with dense
parameter sampling

We present SANDI’s parameter maps of estimated signal fractions for
sub_002 in MGH CDMD (fig. D.6). The parameter distributions for fitting SANDIto experimental signals are: 50 values of Din linearly spaced in [0.1, 3] ×
10−3 µm2/µs; 50 values of Decs linearly spaced in [0.1, 3] × 10−3 µm2/µs; 50 val-ues of rs linearly spaced in [1, 12] µm; L1 and L2 regularization terms are 0 and
5× 10−3, respectively.

(a1)

(b1)
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f ′soma f ′neurite f ′ecs
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Figure D.6: The parameter maps of signal fractions. The first column is for soma sig-nal fraction f ′soma, the second for neurite, and the third for ECS. The first row is for theshort diffusion time (δ/∆ = 8/19 ms). The second row is for the long diffusion time(δ/∆ = 8/49ms). The parameter maps show the signal fractions obtained by fitting theSANDI model to the direction-averaged signals from sub_002. The parameter distribu-tions for fitting SANDI to experimental signals are: 50 values of Din linearly spaced in
[0.1, 3]×10−3 µm2/µs; 50 values ofDecs linearly spaced in [0.1, 3]×10−3 µm2/µs; 50 val-ues of rs linearly spaced in [1, 12] µm; L1 and L2 regularization terms are 0 and 5×10−3,respectively.
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D.6 Parameter maps and joint distributions for
sub_011

We present the parameter maps of volume and signal fractions for sub_011in MGH CDMD (fig. D.7) and the joint distributions at the two diffusion times(fig. D.8).
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Figure D.7: The comparison of volume and signal fractions. The first column is for somavolume fraction fsoma or soma signal fraction f ′soma, the second for neurite, and the thirdfor ECS. Three rows, (a), (c), and (e), are for the short diffusion time (δ/∆ = 8/19ms). Theremaining rows are for the long diffusion time (δ/∆ = 8/49ms). The first four rows, (a)(b), (c), and (d), are obtained by respectively applying mlp_sig_vol_19, mlp_sig_vol_49,
mlp_mk_vol_19, and mlp_mk_vol_49, to the experimental data from sub_011. The lasttwo rows, (e) and (f), show the signal fractions obtained by fitting the SANDImodel to thedirection-averaged signals from sub_011. The parameter distributions for fitting SANDIto experimental signals are: 10 values ofDin linearly spaced in [0.1, 3]×10−3 µm2/µs; 10values of Decs linearly spaced in [0.1, 3] × 10−3 µm2/µs; 10 values of rs linearly spacedin [1, 12] µm; L1 and L2 regularization terms are 0 and 5× 10−3, respectively.
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FigureD.8: The voxelwise joint distribution of estimated fractions at twodiffusion times.All brain white and gray matter voxels of sub_011 are included. The x- and y-axes rep-resent the estimated fractions at δ/∆ = 8/19 ms and δ/∆ = 8/49 ms, respectively.The black lines are the identity lines. (a) the distribution of the soma volume fractionsestimated by mlp_sig_vol_19 and mlp_sig_vol_49. (b) the distribution of the neuritevolume fractions estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (c) the distribu-tion of the soma signal fractions estimated by the SANDI model at the two diffusiontimes. (d) the distribution of the neurite signal fractions estimated by the SANDI modelat the two diffusion times.
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D.7 Parameter maps and joint distributions for
sub_023

We present the parameter maps of volume and signal fractions for sub_023in MGH CDMD (fig. D.9) and the joint distributions at the two diffusion times(fig. D.10).
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Figure D.9: The comparison of volume and signal fractions. The first column is for somavolume fraction fsoma or soma signal fraction f ′soma, the second for neurite, and the thirdfor ECS. Three rows, (a), (c), and (e), are for the short diffusion time (δ/∆ = 8/19ms). Theremaining rows are for the long diffusion time (δ/∆ = 8/49ms). The first four rows, (a)(b), (c), and (d), are obtained by respectively applying mlp_sig_vol_19, mlp_sig_vol_49,
mlp_mk_vol_19, and mlp_mk_vol_49, to the experimental data from sub_023. The lasttwo rows, (e) and (f), show the signal fractions obtained by fitting the SANDImodel to thedirection-averaged signals from sub_023. The parameter distributions for fitting SANDIto experimental signals are: 10 values ofDin linearly spaced in [0.1, 3]×10−3 µm2/µs; 10values of Decs linearly spaced in [0.1, 3] × 10−3 µm2/µs; 10 values of rs linearly spacedin [1, 12] µm; L1 and L2 regularization terms are 0 and 5× 10−3, respectively.
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Figure D.10: The voxelwise joint distribution of estimated fractions at two diffusiontimes. All brain white and gray matter voxels of sub_023 are included. The x- and y-axesrepresent the estimated fractions at δ/∆ = 8/19 ms and δ/∆ = 8/49 ms, respectively.The black lines are the identity lines. (a) the distribution of the soma volume fractionsestimated by mlp_sig_vol_19 and mlp_sig_vol_49. (b) the distribution of the neuritevolume fractions estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (c) the distribu-tion of the soma signal fractions estimated by the SANDI model at the two diffusiontimes. (d) the distribution of the neurite signal fractions estimated by the SANDI modelat the two diffusion times.
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