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Résumé: L'estimation non invasive de la mi-
crostructure du cerveau, composée d'un trés grand
nombre de neurites, de somas et de cellules gliales,
est essentielle pour la neuro-imagerie. L'IRM de
diffusion (IRMd) est une technique prometteuse
pour sonder les propriétés microstructurelles du
cerveau en dessous de la résolution spatiale des
scanners IRM. En raison de la complexité struc-
turelle du tissu cérébral et du mécanisme complexe
de I'RM de diffusion, I'estimation de la microstruc-
ture in vivo est un défi. Les méthodes existantes
utilisent généralement des géométries simplifiées,
en particulier des sphéres et des batons, pour mod-
éliser les structures neuronales et obtenir des ex-
pressions analytiques des signaux intracellulaires.
La validité des hypothéses faites par ces méth-
odes reste indéterminée. Cette thése vise a faciliter
I'estimation de la microstructure cérébrale par sim-
ulation en remplacant les géométries simplifiées par
des modéles réalistes de géométrie des neurones
et les expressions analytiques des signaux intra-
cellulaires par des simulations d'IRM de diffusion.
Combinées & des modéles géométriques de neu-
rones précis, les simulations numériques d'IRMd
peuvent donner des signaux intracellulaires précis
et incorporer de maniére transparente les effets ré-
sultant, par exemple, de I'ondulation des neurites
ou de I'échange d'eau entre le soma et les neurites.

Malgré ces avantages, les simulations d'IRMd
n'ont pas été largement adoptées en raison des
difficultés a construire des modéles géométriques
réalistes, du colit de calcul élevé des simulations
d'IRMd et de la difficulté a approximer les map-
pings implicites entre les signaux d'IRMd et les
propriétés de la microstructure. Cette thése aborde
les problémes mentionnés ci-dessus en apportant
quatre contributions.

Premiérement, nous développons un généra-
teur de maillage de neurones open-source de haute
performance et mettons a la disposition du pub-
lic plus d'un millier de maillages cellulaires réal-
istes. Le générateur de maillage de neurones,
swc2mesh, peut convertir automatiquement et de

maniére robuste des données précieuses de tracage
de neurones (neuron tracing) en maillages de neu-
rones réalistes. Nous avons soigneusement congu
le générateur pour maintenir un bon équilibre en-
tre la qualité et la taille du maillage. Une base
de données de maillage de neurones, NeuronSet,
qui contient 1213 maillages cellulaires préts pour
la simulation et leurs mesures neuroanatomiques,
a été construite a I'aide du générateur de maillage.

Deuxiémement,  nous avons augmenté
I'efficacité de calcul de la méthode de formalisme
matriciel numérique en accélérant ['algorithme
d'eigendecomposition et en exploitant le calcul
GPU. La vitesse a été multipliée par dix. Avec
une précision similaire, le formalisme matriciel
numérique optimisé est 20 fois plus rapide que la
méthode FEM et 65 fois plus rapide qu'une méth-
ode Monte-Carlo basée sur le GPU. En effectuant
des simulations sur des maillages de neurones réal-
istes, nous avons étudié |'effet de I'échange d’eau
entre les somas et les neurites, ainsi que la relation
entre la taille du soma et les signaux.

Nous avons ensuite mis en ceuvre une nouvelle
méthode de simulation qui fournit une représen-
tation de type Fourier des signaux IRMd. Cette
méthode a été dérivée théoriquement et mise en
ceuvre numériquement. Nous avons validé la con-
vergence de la méthode et montré que le com-
portement de |'erreur est conforme a notre analyse
de I'erreur.

Enfin, nous proposons un cadre fondé sur la
simulation pour une modélisation géométrique pré-
cise de I'imagerie de la microstructure du cerveau.
En exploitant les puissantes capacités de modélisa-
tion et de calcul, nous avons construit une base de
données synthétique contenant les signaux IRMd
et les paramétres de microstructure de 1,4 million
de voxels cérébraux artificiels. Nous avons montré
que cette base de données permet d'approximer
les mappings sous-jacents des signaux d'IRMd aux
fractions de volume et de surface en utilisant des
réseaux de neurones artificiels.
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Abstract: Non-invasively estimating brain mi-
crostructure that consists of a very large num-
ber of neurites, somas, and glial cells is essential
for future neuroimaging. Diffusion MRI (dMRI) is
a promising technique to probe brain microstruc-
tural properties below the spatial resolution of MRI
scanners. Due to the structural complexity of brain
tissue and the intricate diffusion MRI mechanism,
in vivo microstructure estimation is challenging.
Existing methods typically use simplified geome-
tries, particularly spheres, and sticks, to model
neuronal structures and to obtain analytical expres-
sions of intracellular signals. The validity of the as-
sumptions made by these methods remains unde-
termined. This thesis aims to facilitate simulation-
driven brain microstructure estimation by replacing
simplified geometries with realistic neuron geom-
etry models and the analytical intracellular signal
expressions with diffusion MRI simulations. Com-
bined with accurate neuron geometry models, nu-
merical dMRI simulations can give accurate intra-
cellular signals and seamlessly incorporate effects
arising from, for instance, neurite undulation or
water exchange between soma and neurites.

Despite these advantages, dMRI simulations
have not been widely adopted due to the difficulties
in constructing realistic numerical phantoms, the
high computational cost of dMRI simulations, and
the difficulty in approximating the implicit map-
pings between dMRI signals and microstructure
properties. This thesis addresses the above prob-
lems by making four contributions.

First, we develop a high-performance open-
source neuron mesh generator and make publicly
available over a thousand realistic cellular meshes.
The neuron mesh generator, swc2mesh, can au-
tomatically and robustly convert valuable neuron
tracing data into realistic neuron meshes. We

have carefully designed the generator to maintain
a good balance between mesh quality and size. A
neuron mesh database, NeuronSet, which contains
1213 simulation-ready cell meshes and their neu-
roanatomical measurements, was built using the
mesh generator. These meshes served as the basis
for further research.

Second, we increased the computational effi-
ciency of the numerical matrix formalism method
by accelerating the eigendecomposition algorithm
and exploiting GPU computing. The speed was
increased tenfold. With similar accuracy, the op-
timized numerical matrix formalism is 20 times
faster than the FEM method and 65 times faster
than a GPU-based Monte Carlo method. By per-
forming simulations on realistic neuron meshes, we
investigated the effect of water exchange between
somas and neurites, and the relationship between
soma size and signals.

We then implemented a new simulation
method that provides a Fourier-like representation
of the dMRI signals. This method was derived the-
oretically and implemented numerically. We vali-
dated the convergence of the method and showed
that the error behavior is consistent with our error
analysis.

Finally, we propose a simulation-driven super-
vised learning framework to estimate brain mi-
crostructure using diffusion MRI. By exploiting the
powerful modeling and computational capabilities
that are mentioned above, we have built a syn-
thetic database containing the dMRI signals and
microstructure parameters of 1.4 million artificial
brain voxels. We have shown that this database
can help approximate the underlying mappings of
the dMRI signals to volume and surface fractions
using artificial neural networks.







Abstract

Non-invasively estimating brain microstructure that consists of a very large num-
ber of neurites, somas, and glial cells is essential for future neuroimaging. Dif-
fusion MRI (dMRI) is a promising technique to probe brain microstructural prop-
erties below the spatial resolution of MRI scanners. Due to the structural com-
plexity of brain tissue and the intricate diffusion MRI mechanism, in vivo mi-
crostructure estimation is challenging. Existing methods typically use simplified
geometries, particularly spheres, and sticks, to model neuronal structures and
to obtain analytical expressions of intracellular signals. The validity of the as-
sumptions made by these methods remains undetermined. This thesis aims to
facilitate simulation-driven brain microstructure estimation by replacing simpli-
fied geometries with realistic neuron geometry models and the analytical intra-
cellular signal expressions with diffusion MRI simulations. Combined with accu-
rate neuron geometry models, numerical dMRI simulations can give accurate in-
tracellular signals and seamlessly incorporate effects arising from, for instance,
neurite undulation or water exchange between soma and neurites.

Despite these advantages, dMRI simulations have not been widely adopted
due to the difficulties in constructing realistic numerical phantoms, the high
computational cost of dMRI simulations, and the difficulty in approximating the
implicit mappings between dMRI signals and microstructure properties. This
thesis addresses the above problems by making four contributions.

First, we develop a high-performance open-source neuron mesh generator
and make publicly available over a thousand realistic cellular meshes. The neu-
ron mesh generator, swc2mesh, can automatically and robustly convert valu-
able neuron tracing data into realistic neuron meshes. We have carefully de-
signed the generator to maintain a good balance between mesh quality and size.
A neuron mesh database, NeuronSet, which contains 1213 simulation-ready cell
meshes and their neuroanatomical measurements, was built using the mesh
generator. These meshes served as the basis for further research.

Second, we increased the computational efficiency of the numerical matrix
formalism method by accelerating the eigendecomposition algorithm and ex-
ploiting GPU computing. The speed was increased tenfold. With similar ac-



curacy, the optimized numerical matrix formalism is 20 times faster than the
FEM method and 65 times faster than a GPU-based Monte Carlo method. By
performing simulations on realistic neuron meshes, we investigated the effect
of water exchange between somas and neurites, and the relationship between
soma size and signals.

We then implemented a new simulation method that provides a Fourier-like
representation of the dMRI signals. This method was derived theoretically and
implemented numerically. We validated the convergence of the method and
showed that the error behavior is consistent with our error analysis.

Finally, we propose a simulation-driven supervised learning framework to
estimate brain microstructure using diffusion MRI. By exploiting the powerful
modeling and computational capabilities that are mentioned above, we have
built a synthetic database containing the dMRI signals and microstructure pa-
rameters of 1.4 million artificial brain voxels. We have shown that this database
can help approximate the underlying mappings of the dMRI signals to volume
and surface fractions using artificial neural networks.

In summary, this thesis proposes a novel approach to estimating brain mi-
crostructure using realistic neuron geometric models and dMRI simulations.
We developed a high-performance neuron mesh generator, optimized the nu-
merical matrix formalism method to speed up the simulations, and proposed
a method to approximate the implicit mapping between dMRI signals and mi-
crostructural properties using artificial neural networks. We hope that these
contributions will bring the significance of geometric modeling and simulation
to the attention of the community and lead to the design of more advanced mi-
crostructure imaging methods to explore the mysteries of the human brain.



Résumé

L'estimation non invasive de la microstructure du cerveau, composée d'un trés
grand nombre de neurites, de somas et de cellules gliales, est essentielle pour
la neuro-imagerie. L'IRM de diffusion (IRMd) est une technique prometteuse
pour sonder les propriétés microstructurelles du cerveau en dessous de la ré-
solution spatiale des scanners IRM. En raison de la complexité structurelle du
tissu cérébral et du mécanisme complexe de I''lRM de diffusion, I'estimation de
la microstructure in vivo est un défi. Les méthodes existantes utilisent générale-
ment des géométries simplifiées, en particulier des sphéres et des batons, pour
modeéliser les structures neuronales et obtenir des expressions analytiques des
signaux intracellulaires. La validité des hypotheses faites par ces méthodes
reste indéterminée. Cette these vise a faciliter I'estimation de la microstructure
cérébrale par simulation en remplagant les gé¢ométries simplifiées par des mod-
éles réalistes de géométrie des neurones et les expressions analytiques des sig-
naux intracellulaires par des simulations d'IRM de diffusion. Combinées a des
modeles géométriques de neurones précis, les simulations numériques d'IRMd
peuvent donner des signaux intracellulaires précis et incorporer de maniére
transparente les effets résultant, par exemple, de 'ondulation des neurites ou
de I'échange d’eau entre le soma et les neurites.

Malgré ces avantages, les simulations d'IRMd n'ont pas été largement adop-
tées en raison des difficultés a construire des modeles géométriques réalistes,
du colt de calcul élevé des simulations d'IRMd et de la difficulté a approximer les
mappings implicites entre les signaux d'IRMd et les propriétés de la microstruc-
ture. Cette these aborde les problemes mentionnés ci-dessus en apportant qua-
tre contributions.

Premierement, nous développons un générateur de maillage de neurones
open-source de haute performance et mettons a la disposition du public plus
d’'un millier de maillages cellulaires réalistes. Le générateur de maillage de neu-
rones, swc2mesh, peut convertir automatiquement et de maniére robuste des
données précieuses de tracage de neurones (neuron tracing) en maillages de
neurones réalistes. Nous avons soigneusement concu le générateur pour main-
tenir un bon équilibre entre la qualité et la taille du maillage. Une base de don-



nées de maillage de neurones, NeuronSet, qui contient 1213 maillages cellu-
laires préts pour la simulation et leurs mesures neuroanatomiques, a été con-
struite a 'aide du générateur de maillage. Ces maillages ont servi de base aux
recherches ultérieures.

Deuxiemement, nous avons augmenté [lefficacité de calcul de la
méthode de formalisme matriciel numérique en accélérant lalgorithme
d’eigendecomposition et en exploitant le calcul GPU. La vitesse a été multipliée
par dix. Avec une précision similaire, le formalisme matriciel numérique opti-
misé est 20 fois plus rapide que la méthode FEM et 65 fois plus rapide qu'une
méthode Monte-Carlo basée sur le GPU. En effectuant des simulations sur des
maillages de neurones réalistes, nous avons étudié l'effet de I'échange d'eau
entre les somas et les neurites, ainsi que la relation entre la taille du soma et
les signaux.

Nous avons ensuite mis en ceuvre une nouvelle méthode de simulation qui
fournit une représentation de type Fourier des signaux IRMd. Cette méthode
a été dérivée théoriquement et mise en ceuvre numériquement. Nous avons
validé la convergence de la méthode et montré que le comportement de l'erreur
est conforme a notre analyse de l'erreur.

Enfin, nous proposons un cadre fondé sur la simulation pour une modéli-
sation géométrique précise de l'imagerie de la microstructure du cerveau. En
exploitant les puissantes capacités de modélisation et de calcul, nous avons
construit une base de données synthétique contenant les signaux IRMd et les
paramétres de microstructure de 1,4 million de voxels cérébraux artificiels.
Nous avons montré que cette base de données permet d’approximer les map-
pings sous-jacents des signaux d'IRMd aux fractions de volume et de surface en
utilisant des réseaux de neurones artificiels.

En résumé, cette these propose une approche novatrice pour l'estimation de
la microstructure cérébrale en utilisant des modeles géométriques de neurones
réalistes et des simulations d'IRMd. Nous avons développé un générateur de
maillage de neurones open-source de haute performance, optimisé la méthode
du formalisme matriciel numérique pour accélérer les simulations, proposé une
méthode pour approximer le mapping implicite entre les signaux IRMd et les
propriétés microstructurelles en utilisant des réseaux de neurones artificiels.
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MR Magnetic resonance
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MSE Mean squared error
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PLY Polygon file format
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Chapter 1

Introduction

1.1 Introductin to human brain

The brain is the most important and complex human organ. It controls most
human activities, including body movement, vision, memory, emotion, reason-
ing, and decision-making. The human brain consists of three major parts: the
brainstem, cerebellum, and cerebrum, as shown in [1]. The brain-
stem connects the cerebrum with the spinal cord and controls vital functions
like breathing, heart rate, and sleep. The cerebellum lies at the posterior of the
brain, regulating body movement. The cerebrum is the largest part of the hu-
man brain, which supports most brain functions. It is divided into left and right
hemispheres. The cerebrum'’s outer layer, also known as the cerebral cortex, is
folded to increase the brain’s surface area. The ridges are called gyri, and the
grooves are called sulci. Large sulci are often called fissures. For example, the
longitudinal fissure is the groove that splits the two cerebral hemispheres, as
illustrated in

Each cerebral hemisphere can be further divided into four lobes, i.e., the
frontal, parietal, occipital, and temporal lobes. Although most brain functions
require the synergy of many different regions across the entire brain, it is still
true that each lobe is primarily responsible for certain functions. For example,
the frontal lobes control high-level cognitive functions such as attention, mem-
ory, and language [2]. It also contains the primary motor cortex located in the
precentral gyrus (marked in ), which is responsible for voluntary move-
ments [3]. The central sulcus separates the frontal lobes and the parietal lobes.
The postcentral gyrus in the parietal lobe is next to the central sulcus. It con-
tains the primary somatosensory cortex responsible for processing sensory in-
puts, such as touch, temperature, body position, and pain [4]. The lists of brain
functions are not exhaustive. The study of the functions of brain regions is still
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a research priority.

(a) | Cerebrum |

<«—— Spinal cord

Left cerebral Right cerebral ( Longitudinal fissure
c)

(b) hemisphere hemisphere l

Frontal lobe
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<«—— Frontal lobe
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Primary motor cortex \
Postcentral gyrus /

Primary somatosensory
cortex
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<«—Temporal lobe
Pons —————->

<«—— Parietal lobe
Medulla —ae————>

<«—— Occipital lobe

Spinal cord ———> <«— Cerebellum

Longitudinal fissure

Figure 1.1: Different views of the human brain. (a) The lateral view of the brain. The
cerebrum, the cerebellum, and the brainstem are indicated by the cyan, violet, and
brown regions, respectively. (b) The dorsal view of the brain. Three cerebral lobes can
be seen in this view. The cerebrum is divided into two hemispheres by the longitudinal
fissure. (c) The inferior view of the brain. The temporal lobe and the two hemispheres
of the cerebellum are visible. Pons and medulla are two major parts of the brainstem.
Images from the book of Casey Henley [1], distributed under the CC BY-NC-SA 4.0 Inter-
national license.

The functional units of the brain are cells. The two main types of cells in
the brain are neurons and glial cells (glia) [5]. A neuron consists of two com-
partments: a cell body, also known as a soma, and neuronal processes called
neurites, as shown in fig. 1.2. The brain functions rely on the exchange of in-
formation between neurons through neurites. There are two types of neurites:
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dendrites and axons. Dendrites project from the cell body and receive informa-
tion from other neurons. An axon, or nerve fiber, is a thin projection extending
from a soma. The function of the axon is to transmit information to other cells.
A single neuron may contact 30,000-60,000 cells, and the axon length ranges
from < 1 mm to 1 m [6]. Neurons are supported by glial cells. The oligoden-
drocytes, a class of glial cells, can wrap around the axon to form the insulating
myelin sheath that facilitates the propagation of electrical signals [7].

soma

neurites

Figure 1.2: A microscopic image of a human neuron from the Allen Institute Cell Types
database [8]. The neuron is stained by biocytin. Most visible neurites are dendrites.
Axons are less visible because of their small radii. In the database, the neuron ID is
643582610, and its donor is H17.06.013.

The human brain consists of 86 billion neurons and a similar amount of glial
cells [9]. The extracellular fluid bathing the cells and spinal cord is called cere-
brospinal fluid (CSF) [10]. Neurons, glial cells, and extracellular fluid are the main
components of brain tissue. According to the composition, brain tissue can be
divided into white and gray matter (WM and GM). Figure 1.3 illustrates the brain
regions where the two types of tissues are located. White matter regions are
brighter than gray matter because it has a high density of myelinated axons.
The lipid-rich myelin sheath renders the nerve fibers white [11, p. 129]. Gray
matter regions mainly comprise somas and dendrites. Different gray matter re-
gions are connected by axons passing through white matter.

To visually demonstrate their differences, we present the microscopic im-
ages of gray and white matter tissue in fig. 1.4. The 3D geometrical models of
some selected cellular components are plotted to show the tissue microstruc-
ture. The images and geometrical models are shared by a state-of-the-art brain
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Figure 1.3: An illustration of gray matter and white matter regions. Image from the
book of Casey Henley [1], distributed under the CC BY-NC-SA 4.0 International license.

histology study' [12], which cut a stained human brain sample with a volume
of 1 mm? into more than 5000 slices. An electron microscope then digitalizes
each slice. The 3D geometrical models of somas, neurites, and glial cells are con-
structed based on the electron microscopic image stack. The gray matter image
in fig. 1.4(a) contains somas and numerous dendrites. The white matter image
in fig. 1.4(c) is composed of a large number of myelinated axons. For clarity, we
only show the 3D geometrical models of the colorized cellular components in
fig. 1.4(b)and fig. 1.4(d). Even with just a few cellular components, it is clear that
the cellular organization in the brain is very complex. Neurons and glial cells are
intertwined, with neurites pointing in all directions and the extracellular fluid fill-
ing the entire space, making up the intricate microstructure of the human brain.

Knowledge about the brain microstructure can help understand brain func-
tions and neurological disorders. For example, finding the connectivities be-
tween different gray matter areas allows us to understand how different brain
regions work together. Moreover, numerous neurological disorders are linked
to changes in brain microstructure. Multiple sclerosis, for instance, is caused by
damage to the myelin sheath of axons [13]. The progressive loss of structure
or function of neurons causes Alzheimer’s disease, frontotemporal dementia,
Parkinson’s disease, etc. [14]. Other diseases, such as strokes and brain tumors,
also alter the brain microstructure [15, 16]. Therefore, measuring parameters
that quantify brain microstructure is helpful in the diagnosis and treatment of
neurological disorders.

Histological methods based on microscopic imaging can give precise mi-
crostructural measurements. However, they are invasive and costly. For exam-
ple, in the brain histology study mentioned above [12], the electron microscopic
images of the 1 m/m? brain tissue occupy 1,400 terabytes. In addition, the brain

"Thttps://h01-release.storage.googleapis.com/explore.html
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Figure 1.4: Microscopic images and 3D geometrical models of gray matter and white
matter tissue. The histological measurements are shared by the work of Shapson-Coe
et al. [12]. (a) a microscopic image of gray matter tissue. It contains somas, dendrites,
and unmyelinated axons. (b) the 3D geometrical models of the colorized cellular com-
partments in (a). The gray plane represents the cross-section where (a) is located. (c)
a microscopic image of white matter tissue. It mainly contains myelinated axons. (d)
the 3D geometrical models of the colorized cellular compartments in (c). The gray plane
represents the cross-section where (c) is located.

tissue integrity is completely destroyed. These methods can only be performed
post-mortem.

Diffusion magnetic resonance imaging (diffusion MRI, dMRI) is a way to probe
the diffusive motion of water protons by applying magnetic field gradient to
brain tissue [17-19]. Like conventional MRI, dMRI yields a series of grayscale
maps representing “virtual” brain slices, as shown in fig. 1.5. Each pixel in the
grayscale maps corresponds to a signal from a brain voxel (a cubic region in the
human brain). The typical size of a brain voxel is 1 mm3. Because the movement
of water protons is restricted by, for example, cell membranes [20], brain voxels
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with varying microstructures generate different signals [11, 21], thus forming
the contrast in the grayscale maps. A simplified and qualitative explanation for
the dMRI contrast is that, in a grayscale map, pixels are brighter (darker) in ar-
eas with strong (weak) restrictions on water diffusion. Diffusion MRI settings,
such as the intensity of the magnetic field gradient and the diffusion time ¢,
also affect the contrast of the grayscale maps. We will explain the dMRI set-
tings in sections 1.2.2 and 3.1.7. Due to the sensitivity to structures below the
spatial resolution of MRI scanners, dMRI is a compelling method to probe brain
microstructure properties non-invasively.

weak gradient —— = strong gradient

3e+02
strong
. . 2.2e+02
restriction
bright
(bright) i short
ta
weak
restriction
(dark)
2.2e+02
long
1.5e+02 ¢
d

75

Figure 1.5: Six dMRI grayscale maps. In general, pixels are brighter (darker) in areas
with strong (weak) restrictions on water diffusion. Diffusion MRI settings, such as the
intensity of the magnetic field gradient and the diffusion time ¢4, also affect the contrast
of the grayscale maps. The MGH CDMD dataset [22] provides the experimental data.

The above explanation about diffusion MRI is simplified. The following sec-
tion will give a more comprehensive theory about the dMRI signal formation
mechanism. One can design methods for probing brain microstructure based
on the understanding of magnetic resonance physics. Section 1.3 presents sev-
eral existing methods for brain imaging with dMRI. Finally, we describe the thesis
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organization in to give an overview of the proposed framework for
brain microstructure imaging.

1.2 Introduction to diffusion MRI

Diffusion MRI allows us to encode the diffusive motion of water protons into
the dMRI signals. This technique relies on the phenomena of nuclear magnetic
resonance (NMR) and diffusion. We will describe the two phenomena to obtain
the Bloch-Torrey equation (BT equation) that governs the formation of dMRI
signals. Conventional methods for solving the BT equation are listed in

1.2.1 Nuclear magnetic resonance

Matter is made of atoms whose nuclei have magnetism and spin. Spin (de-
noted by a quantum operator S) is the intrinsic angular momentum of atomic
nuclei. For a nucleus, the nuclear magnetic moment p is related to its spin by
[23, p. 25]

n="S, (1.1)

where ~ is the gyromagnetic ratio of the nucleus. For example, the gyromag-
netic ratio of hydrogen nucleus, proton (ignore the rare isotopes), is v =
0.26752 rad/(ps - mT).

The nuclear magnetic moment interacts with magnetic field. NMR allows us
to manipulate the nuclear spins and magnetic moment by externally applied
magnetic fields. Generating magnetic fields is one of the main functions of MRI
scanners. NMR involves three magnetic fields: a static field denoted by B,
a time-varying field called radiofrequency pulse (RF pulse), and an inhomoge-
neous magnetic field generating a magnetic field gradient denoted by G. Next,
we describe the role of the three magnetic fields in NMR. Throughout this thesis,
we only study the water proton (a spin-1/2 nucleus) due to its abundance in the
human body.

Static magnetic field B,

The field By is homogeneous and static, applied by an MRI scanner to a sam-
ple during the entire experiment. Powerful scanners for human imaging can
generate a field of about 10 Tesla. We set a coordinate system by aligning the
z-direction (longitudinal direction) with the direction of B,. In the transverse
plane, the two axes (x- and y-axis) are fixed in the plane. We call the fixed coor-
dinate system the laboratory frame (lab frame), as shown in . Inthelab
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frame, we have By = Bye, with B, the strength of the static magnetic field and
e, the unit vector in the z-direction.

(a) lab frame (b) rotating frame

Yy y

\ B()

|
|
!
|
I

w
, : [~
/ \/ N
Figure 1.6: Two types of coordinate systems. (a) a laboratory frame. The scanner rep-
resented by the cylinder applies a static magnetic field B, to the sample (cuboid). The

laboratory frame is fixed based on the magnetic field. (b) a rotating frame. The coordi-
nate system rotates around its z-axis with an angular frequency of w.

The static field plays two roles:

1. it disturbs the orientation distribution of proton spins to make them have
a statistical preference to point along the direction of B [24];

2. it makes the proton spins precess around B, [23].

The precession of the spins around By, is called Larmor precession. The an-
gular frequency of the precession is

wo = v By. (1.2)

For example, the precession frequency of a proton in a 10 Tesla magnetic field
is 425 MHz.

We do not aim to provide a quantum explanation for NMR, we refer to the
book of Malcolm Levitt [23] for that. The behavior of proton spins is inherently
probabilistic. Thanks to the spin density operator governing the quantum state
of an astronomically large number of spins, we can obtain a magnetization vec-
tor

m = mge, +mye, +m.e, (1.3)

that describes the net magnetic moment (net spin polarization) of the spins [23,
25], as illustrated in



Figure 1.7: lllustration of a magnetization vector m that describes the net magnetic mo-
ment of a large number of spins. The static magnetic field By in the z-direction perturbs
the distribution of the spin orientation, forming a net magnetic moment described by
the magnetization vector m parallel to By.

The magnetization vector m is classical. Under a magnetic field B, it follows
a differential equation [25, p. 35]:

— =ym X B, (1.4)

where X is the cross product of two vectors. When B = B, the solution of
eq. (1.4) describes the Larmor precession of the magnetization vector m [25].
From now on, we employ the magnetization vector to describe NMR.

RF pulse

The RF pulse is a short-duration magnetic field B; rotating around the z-axis in
the x-y plane at the Larmor frequency wy. For protons whose gyromagnetic ratio
is positive, the RF pulse rotates clockwise, namely,

B, (t) = B cos(wot)e, — By sin(wot)e, (1.5)

where B is a constant representing the strength of the RF pulse.

The evolution of m is described by eq. (1.4) with B = B, + B;. In addition,
the initial condition is m(0) = mge, with m, the initial magnetization. In this
case, the solution of eq. (1.4) is [25, p. 36]

m(t) = my [sin(w:t) sin(wot)e, + sin(wit) cos(wot)e, + cos(wit)e,], (1.6)
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with w1 = ”}/Bl

Let us introduce a rotating coordinate system (rotating frame, see fig. 1.6(b))
spinning around the z-axis with an angular frequency of wy. The three unit vec-
tors in the axes of the rotating frame are

e, = cos(wot)e, — sin(wot)e,,
e, = sin(wot)e, + cos(wot)e,, (1.7)
e =e,.

In the rotating frame, the field B; is always aligned with €/, and the magnetiza-
tion vector eq. (1.6) is

m(t) = mg [sin(wit)e], + cos(wit)el] (1.8)

which is a clockwise precession around the x-axis of the rotating frame (e’,) with
an angular frequency of wy, as shown in fig. 1.8. The rotating frame makes the
interpretation easier. We will use it in subsequent chapters.

Z/

Figure 1.8: The precession of the magnetization vector around the RF pulse B; in the
rotating frame. The angular frequency of the precession is w; = vBj.

The primary role of the RF pulse is to rotate the magnetization vector by
a certain angle around B;. The angle, wyt = vBit, can be controlled by the
strength and duration of the RF pulse. Common angles are 90° and 180°. A 90°
RF pulse flips a magnetization vector aligned with By, to the transverse plane. It
is the coherent precession of a group of magnetization vectors that induces a
current above the noise level in the receiving antenna and is solely responsible
for generating the MRI signal. It is worth noting that the RF pulse delivers energy
to the sample, thus having a heating effect [11, p. 16].

RF pulses usually have a brief duration. Without the energy supply, the mag-
netization vector will fall back to its thermal equilibrium state, which means it
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will realign with B,. The restoration of the thermal equilibrium state involves
two relaxation mechanisms: longitudinal and transverse relaxation. The longi-
tudinal relaxation means that the component m_ of the magnetization vector
returns exponentially to its initial value (mg). This relaxation is caused by the
energy loss from excited spins to their external environment [26]. We also refer
to the longitudinal relaxation as T1-relaxation because it is characterized by a
relaxation time denoted by T1.

Transverse relaxation concerns the exponential decay of transverse mag-
netization. The spin-spin interaction that destroys spin phase coherence is a
source of transverse relaxation [27]. Transverse relaxation, also known as T2-
relaxation, is characterized by T2 relaxation time. For brain tissue, T1 is on the
order of 1 second, and T2 is about 100 milliseconds [11, p. 12]. The T1 and T2
relaxation times of human tissue can be obtained using NMR. They are valuable
biomarkers for structural MRI [28].

One important application of RF pulses is the spin echo proposed by Erwin
Hahn [17]. In the ideal case, all proton spins in the static magnetic field process
with the same Larmor frequency. However, in actual experiments, the mag-
netic field is inhomogeneous, i.e., the magnetic field strength varies from place
to place. Therefore, the position of a spin determines its precession frequency,
which broadens the spectrum of Larmor frequencies. The inhomogeneity orig-
inates from instrumental imperfections, susceptibility effects, chemical shifts,
etc. [23, 25]. The broadening of spectrum destroys the coherent precession of
m at different spatial regions, resulting in a fast decay of the signals. The spin
echo method can recover a strong echo signal despite magnetic field inhomo-
geneity.

The spin echo relies on a 180° RF pulse following the 90° RF pulse that flips
the longitudinal magnetization vector to the transverse plane. illus-
trates the principle of spin echo. After the 90° RF pulse, magnetization vectors
from different points in space precess at different frequencies due to the field
inhomogeneity. The spreading of the magnetization vectors is called dephasing.
The 180° RF pulse reverses the orientation of magnetization vectors, forming a
spin echo at the echo time T'E.

shows an experimental spin echo signal [29, p. 91]. The received
signal can be treated as an amplitude-modulated signal whose carrier wave os-
cillates at Larmor frequency.

The refocusing of the magnetization vectors is not perfect if the spins move
in an inhomogeneous magnetic field. The motivation of diffusion MRl is to lever-
age the dephasing due to the spin movements in a controlled inhomogeneous
magnetic field.
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Figure 1.9: lllustration of the principle of spin echo. The magnetization vectors from
different spatial regions are plotted in the transverse plane of the rotating frame. The
angles between vectors demonstrate the phase differences between them. For clarity,
we ignore the relaxation effects. The refocusing of magnetization vectors at time T'E is
called spin echo.

90° 180°

Figure 1.10: Experimental echo signal. The figure is adapted based on the image of the
book of A.E. Derome [29, p. 91].

Magnetic field gradient

By adding a magnetic field gradient G to the static magnetic field, we purposely
create an inhomogeneous magnetic field

B(z)=(By+ G- x)e,, (1.9)

where x represents a pointinspaceand G = G,e,+G,e,+G.e.. Dueto Gauss's
law for magnetism (V - B = 0), we have G, = 0, which means the gradient must
liein the transverse plane. We can tilt the magnetic field slightly at a certain angle
to obtain a gradient pointing in the z-direction. The tilt angle is small because
By/||G]| is larger than the voxel size [30]. For human imaging, a modern scanner
can generate a magnetic field gradient up to 300 m7'/m. Figure 1.171 shows the
gradients parallel and perpendicular to the static magnetic field.
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Figure 1.11: Magnetic field gradients parallel and perpendicular to the z-direction. (a)
a gradient in the z-direction. The density of the magnetic field lines indicates the field
strength. The tilt angles are exaggerated. (b) a gradient in the x-direction.

Magnetic field gradient has three main functions: (1) slice selection, (2) image
encoding, (3) diffusion encoding [11, p. 13]. We describe the first two functions
in this section. The last function will be presented in section 1.2.2.

Slice selection occurs by simultaneously applying a magnetic field gradient
with a 90° RF pulse for a short period. The magnetic field is inhomogeneous
due to the additional magnetic field gradient. Therefore, the Larmor frequency
changes along the direction of the gradient. When a 90° RF pulse is applied,
only the magnetization vectors in a certain perpendicular slice are flipped ninety
degrees to generate MRI signals. Figure 1.12 demonstrates the slice selection.
We notice that the magnetization vectors near the selected slice are also rotated
by a certain angle, giving a certain thickness to the selected slice. In practice, the
RF pulses and the gradients have more complex time profiles than the rectangles
shown in fig. 1.12 to improve the spatial selectivity. The technical details are out
of the scope of this thesis.

After the slice selection, magnetization vectors at different regions evolve
differently due to the heterogeneous micro-environment experienced by spins.
For example, the T2 relaxation time varies across brain voxels, resulting in a
non-uniform distribution of transverse magnetization. The spatial distribution
of magnetization can produce an image of the selected slice. Applying magnetic
field gradient pulses in the transverse plane can help obtain this image.

Let us focus on the selected slice and study the distribution of trans-
verse magnetization density in the rotating frame. The magnetic gradient is
G(t) = G.(t)e, + Gy(t)e,. We denote M,(x,t) (M,(x,t)) the x-component (y-
component) of the magnetization density at point « in the slice. Measuring MRI
signals using different magnetic field gradients allows us to obtain the initial dis-
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Figure 1.12: lllustration of slice selection by a magnetic field gradient and a 90° RF pulse.
The cuboid represents a sample. The gradient produces a linear distribution of Larmor
frequencies in the z-direction. The 90° RF pulse with a frequency w selects a slice in
which magnetization vectors precess with the same frequency w.

tribution M, (x,0) and M, (x, 0).
Substituting eq. (1.9) into eq. (1.4) and including the T2 relaxation, we obtain
the Bloch equation [27] governing M, (x,t) and M, (x,t):

oM, M.

oM, M,
5t = = (w0 +9G @) M, — 2 (1.11)

Let M, (x,t) and M, (x,t) denote the x- and y-component of the transverse
magnetization in the rotating frame. In addition, we define a complex-valued
function M’ to represent the transverse magnetization

M’EM;—ZM;, (1.12)

with ¢ the imaginary unit.
By reformulating eqs. (1.10) and (1.11) in the rotating frame, we obtain the
following equation

M (z, 1)
ot

_ : M'(, 1)

with an initial magnetization density distribution f(x) being
flx) = M'(x,0) = M,(x,0) — 1M, (x,0). (1.14)

The target is to find the unknown initial density distribution f(x) using MRI sig-
nals.
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We turn on the magnetic field gradient in a certain direction for a short du-
ration. Suppose the gradient direction is u,, the gradient intensity is a constant
g, and the duration is . The MRI signal at time n is

s = /M’(m,n)da:, (1.15)

which represents the total transverse magnetization in the selected slice.
The solution of at the time nis [31]

M'(x,n) = f(m)e—n/TQ(w)e—wac‘fg’ G(t)dt
= f(x)e MA@ Mg, (1.16)

Let us introduce a new variable k = gynu,/2w. The MRI signal is a function of
the new variable

S(k) — / f(w)efn/TQ(m)ef%rzk:-mdw. (1.17)

If the gradient duration is short, the T2 relaxation term is negligible. In this
case, an MRI signal is a point in the Fourier spectrum of the unknown magne-
tization density distribution f(x). One can sample the spectrum by taking the
gradient in various directions in the transverse plane. An inverse Fourier trans-
form of the sampled spectrum gives the magnetization density distribution f(x).
If T2 relaxation is not negligible, the inverse Fourier transform yields the mag-
netization density distribution attenuated by T2 relaxation.

In practice, gradient sequences, such as echo planar imaging (EPI) pulse
sequences and spiral pulse sequences, are proposed to improve the imaging
quantity and speed up the acquisition [11, p. 17].

1.2.2 Diffusion and Bloch-Torrey equation

In the description presented in the above section, the effect of spin diffusion
is largely ignored. This is acceptable if the magnetic field gradient is weak, so
the dephasing caused by spin diffusion is negligible. Diffusion MRI purposely
employs a time-varying magnetic field gradient to make spins in motion out of
phase. The dephasing reflects the spins’ displacement in a medium. This section
introduces the Bloch-Torrey equation, a formal description of diffusion MRI.

Diffusion

When two solutions of different concentrations are mixed, the solution con-
centration will gradually converge even without stirring. This transport phe-
nomenon without bulk motion is called diffusion. In fluids, diffusion is caused
by disordered collisions between an enormous number of particles. Due to the
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randomness of collisions, the movement of a particle is a stochastic process de-
scribed by Brownian motion [32].

From a continuum point of view, the randomness is averaged out, leaving a
deterministic description of a continuous function. Let us take solution mixing
as an example. Suppose the solution concentration is a function ¢, which is inho-
mogeneous in a domain 2. The concentration difference generates a diffusive
flux J described by Fick’s first law

J = —DyVe(z,t), x€Q, (1.18)

where D, is the diffusion coefficient of the solvent molecule. In addition, we
have the conservation law

Oc(x,t)
ot
Combining the two equations, we get the diffusion equation that describes the
evolution of concentration
Oc(x,t)
ot
Diffusion MRI detects the random motion of spins in an inhomogeneous

magnetic field. The magnetization precession, the T2 relaxation, and the dif-
fusion give rise to the Bloch-Torrey equation governing diffusion MRI.

+V-J=0, ze (1.19)

= DoV, €. (1.20)

Bloch-Torrey equation

The introduction of a diffusion term to the Bloch equation eq. (1.13) is proposed
by H.C. Torrey [33]. For clarity, we drop the superscript of the complex-valued
transverse magnetization eq. (1.12) and refer to it as magnetization. We concen-
trate on the water proton diffusion inside a domain 2, e.g., a neuron.

By taking diffusion into account, the complex-valued magnetization M in
the rotating frame is governed by the Bloch-Torrey partial differential equation
(Bloch-Torrey equation, BT equation) [33]:

0

—M(z,t) = <D0V2 -z - G(t) —

1
ot )M@J%weﬂ, (1.21)

T2
with D, the diffusion coefficient. The self-diffusion coefficient of water
molecules at 37 °C'is 3 x 1072 um?/us [34].

Inside the domain, the diffusion of water protons is restricted by, for in-
stance, cellular membranes. The motion restriction is reflected by a boundary
condition

DyVM(z,t) -n(x) =rcM(z,t), x € 09, (1.22)
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where 02 denotes the boundary of 2, n(x) is the unit outward pointing nor-
mal vector of the point « in the boundary, and « is the permeability or surface
relaxivity of the boundary.

The magnetic field gradient is typically turned on after the 90° RF pulse. We
set the time origin at the time when the magnetic field gradient starts. The initial
condition is

M(z,0) = p, x € Q, (1.23)

where p is the initial magnetization density, which is assumed to be homoge-
neous.

Diffusion is an attenuation mechanism that we aim to leverage to reveal mi-
crostructure properties below the scanner resolution. We achieve this by apply-
ing a time-varying magnetic field gradient between the slice selection and image
encoding. illustrates a simplified version of a dMRI experiment set-
ting. First, we perform the slice selection using a 90° RF pulse and a magnetic
field gradient in the z-direction. Second, spin diffusion is encoded using mag-
netic field gradients. The gradient time profile (between 0 and § + A) presented
in is called the pulsed-gradient spin echo (PGSE) sequence. A constant
magnetic field gradient is turned on for a duration of §. Then at time A, the
gradient is turned back on for the same duration. A 180° RF pulse is applied be-
tween them to generate a spin echo. Finally, we perform image encoding using
magnetic field gradients in the transverse plane. The dMRI signal is measured
at echo time T'E. Similar to , the dMRI signal is

s:/M(w,TE)d:c. (1.24)
Q

The BT equation does not have a simple solution, especially when the shape
of the domain €2 is irregular. To simulate the dMRI signals, we need numerical
methods. The following section presents some conventional simulation meth-
ods. Itis worth noting that the structural properties we wish to probe contribute
to the dMRI signal through boundary conditions. Consequently, the geometrical
modeling of the domain (2 is essential for dMRI simulation.

The diffusion MRI signal generally depends on the gradient G and the echo
time T E. If the domain is an open space where water protons can diffuse freely
in all directions, the dMRI signal has a simple form [35]

s = sge Dot (1.25)

Y

where sq is the signal without the diffusion-encoding gradient and b called b-
value is a diffusion-weighting factor. The signal s, mainly reflects the effect of
T2 relaxation. Using the PGSE sequence presented in , the b-value is

b=7g%0" (A —6/3), (1.26)

17



where g = ||G(0)|| is the intensity of the magnetic field gradient.

180°
%O
RF pulse ﬂ
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selection encoding encoding

Figure 1.13: lllustration of the RF pulses and magnetic field gradients for a dMRI experi-
ment. The slice selection is performed with a 90° RF pulse and a magnetic field gradient
in the z-direction. Then, we turn on the PGSE sequence to encode spin diffusion. A 180°
RF pulse is turned on between the diffusion-encoding pulses to generate a spin echo.
Finally, we perform image encoding using magnetic field gradients in the transverse
plane.

Numerical methods

The predominant numerical methods to solve the BT equation include the
Monte-Carlo method [36-42], the finite difference method [43], the finite ele-
ment method (FEM) [44-46], and the matrix formalism (MF) method [47-50].
Numerical methods to solve the Bloch-Torrey equation with arbitrary tempo-
ral profiles have been proposed in [43, 45, 46, 51]. The computational domain
is discretized either by a Cartesian grid [43, 51, 52] or by finite elements [45, 46,
53-55]. The unstructured mesh of a finite element discretization appeared to
be better than a Cartesian grid in both geometry description and signal approx-
imation [45]. For time discretization, both explicit and implicit ODE solvers have
been used. The efficiency of diffusion MRI simulations is also improved by ei-
ther a high-performance FEM computing framework [56, 57] for large-scale sim-
ulations on supercomputers or a discretization on manifolds for thin-layer and
thin-tube media [58]. Finite elements diffusion MRI simulations can be seam-
lessly integrated with cloud computing resources [59]. A MATLAB Toolbox called
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SpinDoctor [44] is a diffusion MRI simulation framework based on solving the BT
equation using finite elements and an adaptive time-stepping method.

The Matrix formalism methods [47, 48], which decompose the solution of
the BT equation onto Laplacian eigenbases, provide an exciting perspective to
the diffusion MRI signal. A numerical matrix formalism method that is adapted
to irregular geometries is provided by the SpinDoctor toolbox [49, 50]. In this
thesis, all FEM and MF simulations are performed with the SpinDoctor toolbox.

Monte-Carlo methods use random walkers to mimic the diffusion process
in a geometrical configuration. The implementations of Monte-Carlo method
include [36-42, 60, 61]. Some GPU-based Monte-Carlo simulators are also avail-
able [62, 63]. Software packages using this approach include

1. Camino Diffusion MRI Toolkit [64], developed at UCL;

2. disimpy [65], a GPU-based Monte-Carlo simulator, developed at UCL;
3. Diffusion Microscopist Simulator, [37] developed at Neurospin, CEA;
4. A CUDA-based Monte-Carlo simulator [62].

1.3 Diffusion MRI for brain imaging

In this section, we introduce several brain imaging methods using dMRI sig-
nals. The simplest method is to present the raw image whose contrast is given
by signal intensity, as shown in . However, the signal intensity results
from a combination of diffusion and other effects like relaxation. Therefore, in-
terpreting the raw image could be difficult [66].

Numerous dMRI methods are designed to obtain more specific information
from voxelwise signals. Most rely on modeling the dMRI signals from a brain
voxel to gain sensitivity to the underlying brain microstructure. This section de-
scribes four common methods for dMRI brain imaging.

Apparent diffusion coefficient

We can assume a simple expression for the dMRI signal
s(b)/sog = e Peb. (1.27)

The effective diffusion coefficient D,, also known as the apparent diffusion coef-
ficient (ADC), can be computed using two signals from a brain voxel. The quantity
s(b) denotes a signal obtained with a magnetic field gradient whose diffusion-
weighting factor is b. The second quantity s, is the signal measured without the
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diffusion-encoding gradient. We refer to the fraction s(b)/sy as the normalized
signal or signal attenuation. The ADC can be empirically estimated by

—In(s(b2)/5(b1))

De: s
by — by

(1.28)

where s(by) and s(b,) are the dMRI signals obtained with the b, and b; b-values,
respectively [67].

We can perform the above computation voxel by voxel to obtain a brain map
whose contrast is given by voxelwise ADCs. However, the simple signal formula
eq.(1.27)is accurate only if water protons can diffuse freely [67]. The conditionis
generally not true due to the structural complexity of brain tissue. Nonetheless,
eq. (1.27)is a satisfactory approximation to the dMRI signals when the Gaussian
phase approximation (GPA) is applicable [68, 69]. The GPA depends on a pertur-
bative method to expand the logarithm of the normalized signal at low b-values
(cumulant expansion) [70]. One can obtain eq. (1.27) by keeping the first term
of the cumulant expansion (when the higher-order terms are negligible).

ADC maps have been commonly used in clinical practice, such as the detec-
tion of cerebral ischemia [71] and monitoring tumor progress [72, 73].

Diffusion tensor imaging

A major application of diffusion MRI is tractography. For brain tissue with orga-
nized fiber structure, such as white matter, the dMRI signal is anisotropic [20],
which means the signal depends on the direction of the magnetic field gradient.
The diffusion anisotropy is better handled using diffusion tensor imaging (DTI)
[74]. The signal expression used in DTl is

s(b,ug)/so = e s Duab, (1.29)

where D is the diffusion tensor represented by a 3 x 3 symmetric matrix, u, is the
magnetic field gradient direction (a unit vector), and the superscript 7 denotes
transpose. The product ] Du, represents the apparent diffusion coefficient in
direction u,. Because D is symmetric, it has six independent numbers. Esti-
mating a diffusion tensor requires ADCs measured in at least six non-collinear
directions.

Diffusion tensors can reveal the orientation of the underlying fiber structure.
We achieve this by performing an eigendecomposition of the diffusion tensor.
Because D is a real symmetric matrix, eigendecomposition is always feasible.
We denote the three eigenvalues by A\, A\; and A;. The corresponding eigenvec-
tors are vy, v, and vs. The direction of the eigenvector with the largest eigen-
values indicates the major fiber direction in a voxel [75].
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The eigenvalues allow for the definition of useful biomarkers. The trace of
the diffusion tensor is related to the mean diffusivity ()
- 1
A= —tr(D) = Mt Ay (1.30)
3 3
Fractional anisotropy (F'A) and relative anisotropy (RA) are two biomarkers to
quantify diffusion anisotropy. They are defined as [11, p. 95]

FA= \[\/Al A+ (e A), (1.31)

A2+A2+A2

. \/;/(A1 SN2 4 (- N2+ (g — N .

A

For clinical practice, an increase in mean diffusivity indicates diseases such
as necrosis [76]. Fractional anisotropy is useful for assessing the maturation of
infants’ cerebral white matter fiber [77] and reading ability [78]. Besides, DTI
is suitable for detecting diseases due to white matter abnormalities, such as
multiple sclerosis [79] and Alzheimer’s disease [80].

Biophysical modeling - Standard Model

The two methods mentioned above do not make assumptions about the under-
lying tissue microstructure. To improve sensitivity to brain microstructure prop-
erties, biophysical models of diffusion MRI have become more and more pop-
ular. The basic idea of biophysical modeling is “compartmentalization”, which
means the essential components (compartment) of a brain voxel are studied
separately to get a signal expression for each compartment. The dMRI signal
from a voxel is a weighted sum of the compartmental signals.

We first describe a class of methods referred to as the “Standard Model” of
diffusion in neuronal tissue [69]. This model assumes that a brain voxel has
three compartments: intra-neurite, extra-neurite, and CSF.

A collection of long cylinders models the intra-neurite compartment. The ori-
entation of a cylinder is represented by a unit vector n, and a fiber orientation
distribution function (ODF) characterizes the orientation distribution of the cylin-
ders. The ODF is denoted by P(n), which is normalized to one ([ P(n)dn = 1).
For diffusion properties, a cylinder is characterized by a longitudinal diffusion co-
efficient denoted by DH The transverse diffusion inside a cylinder is assumed
to be negligible. The S|gnal from a cylinder is [69]

I
Seyt = sp € PPan@™ (1.33)
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with g the direction of magnetic field gradients.

The diffusion in an extra-neurite space around a cylinder is characterized
by longitudinal and transverse diffusion coefficients denoted by Dgxt and DZ,,
respectively. The signal from the extra-neurite space is [69]

RN s NN L )2
Sext = Sp € bDgy—b(Dexi—Dext) (g°m) , (134)

Water molecules are assumed to diffuse freely inside the last compartment,
CSF, which gives rise to the CSF signal

Sest = S € P (1.35)

with D the diffusion coefficient in CSF.
Equations (1.33) to (1.35) are the signal expressions describing the diffusion
inside and around a cylinder. They give a kernel function [69]

,C(ba g n) = fcylscyl + (1 - fcyl - fcsf)sext + JfestScst (1.36)

_oD! (g-m)2 oo I 2 B
= S |:ny|6 chy|(g ) + (1 _ fcyl _ fcsf)e bDext b(Dext Dext)(g ) + fCSfe chsf] ,

where f. and fr are the signal fractions of the intra-neurite and CSF com-
partments. It is worth noting that all compartments are assumed to be non-
exchanging with this formulation.

Finally, the signal from a brain voxel is

s(b,g) = /P(n)lC(b,g -m)dn. (1.37)

Equation (1.37) is a forward model with an explicit expression to describe
the signal formation mechanism in a brain voxel. One can fit eq. (1.37) to mea-
sured signals to estimate model parameters, such as f, fex, and D!yl. However,
parameter estimation is not trivial. We refer to the review paper [69] for more
details about the parameter estimation. This model and its variants are used to
quantify neurite density and dispersion for gray and white matter in the litera-

ture [81-84].

Biophysical modeling - SANDI

The above method assumes the contribution of cell bodies (neurons and glial
cells) is integrated into the extra-neurite compartment. However, some studies
suggest that this assumption is not valid in the gray matter at high b-values [85-
87]. Here, we describe the soma and neurite density imaging (SANDI) model [88],
which incorporates the soma size and density into biophysical models.
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Unlike the Standard Model, SANDI focuses on the direction-averaged sig-
nal. We denote the direction of magnetic field gradients as u,. The direction-

averaged signal is
§E/ sdug. (1.38)
flugl|=1

SANDI assumes a brain voxel has three compartments: intra-neurite, intra-
soma, and extracellular space (ECS). The signal from the intra-neurite compart-
ment follows the Standard Model (eq. (1.33)). By taking the directional average,
the intra-neurite signal is [88, 89]

Fin = Soy /45)_ erf (\/me) . (1.39)

SANDI represents a soma as a sphere, and a group of somas is assumed to
be represented by an “average” sphere. Using PGSE sequences, the intra-soma
signal is [88]

Sic = 80 e Disb. (1.40)

where Dj, is a function of 9, A, the soma radius s and the intra-soma diffusion
coefficient Djs. The explicit form of Dj, is [90, 91]

Dl = x (1.41)

9 4 o= Ds(A=8) 4 o~ Ds(A+d) _ p—a?, Db _ e—aanSA)

i @
_Tm (95—
mza2 rz —2 < a2 Dy

where o, is the m-th root of (Ozrs)_lJ%(ars) = Jg(cws), with J,, the Bessel func-
tions of the first kind.
The ECS is assumed to be a free diffusion space, which gives

Secs = So e—Decsb’ (1.42)

with D the water diffusion coefficient in ECS.
Finally, a weighted sum of compartmental signals gives the direction-
averaged signal from a brain voxel

s :(1 - fin - fecs)gis + fingin + fecsgecs

0 | (1= fin = fochem P+ a4 o [Tt (VOD)| 1.3

Similar to the Standard Model, one can fit the measured signals to the explicit
signal expression eq. (1.43) to get the model parameters. In the original paper of
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SANDI [88], the intra-soma diffusion coefficient is fixed to 3 x 1073 um?/us and
a random forest regression is used to estimate the remaining five parameters:
finr Dins fecs: Decs, @and . The estimation of the five SANDI parameters requires
at least five independent measurements with non-zero b-values [92]. An open-
source convex optimization package, AMICO [93], provides a routine for fitting
the SANDI model to experimental data.

Summary

The above methods have a similar pattern. The first step involves proposing
a forward model to explain the signal from a brain voxel. In the cases above,
the forward models are the explicit signal expressions , ,

and . The second step requires “inverting” the forward model to estimate
the model parameters, which serve as the biomarkers of brain microstructure.

The explicit signal expressions require various assumptions. However, these
assumptions may not be valid. For example, the cumulant expansion and the
GPA can fail with a weak magnetic field gradient whose intensity is lower than
20 mT'/m [30, p. 246]. In addition, the validity regimes of several signal expres-
sions depend on microstructure length scales [91]. A brain voxel may exhibit
multiple length scales (e.g., various soma radii) so that different validity regimes
may co-exist or emerge progressively [94], making model validation difficult.
Besides, the complex brain microstructure shown in contrasts sharply
with the simple biophysical models. Subtle effects, e.g., neurite undulation and
soma-neurite water exchange, are not included.

To overcome some drawbacks of the existing methods, we aim to replace
simple geometric models with realistic neuron models and explicit signal ex-
pressions with diffusion MRI simulations. Indeed, the Bloch-Torrey equation
provides a “gold-standard” forward model allowing us to simulate trustworthy
intracellular signals using realistic neuron geometrical models. com-
pares the new model proposed in this thesis and the two biophysical models.

1.4 Thesis organization

The ultimate goal of this thesis is to facilitate brain microstructure imaging by
directly using diffusion MRI simulations. There are three main challenges. First,
we need precise geometrical modeling for neurons and glial cells. Existing neu-
ron modeling tools [95-97] are mainly for visualization purposes. The quality of
the model is not good enough for simulation. Besides, we need a large number
of neuron models to achieve simulation-driven brain microstructure imaging.
Therefore, the modeling tool needs to be automatic and robust. To our knowl-
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Figure 1.14: lllustration of the two biophysical models and the new model proposed
in this thesis. We aim to replace simple geometries with realistic neuron models and
explicit signal expressions with dMRI simulations.

edge, no such tool is available to the public. Second, the existing dMRI simula-
tion tools are not efficient enough to perform simulations on a large number of
realistic neuron models. Third, inverting the gold-standard forward model (BT
equation) is non-trivial. Unlike the four methods mentioned in section 1.3, the
simulated signal does not have an explicit formula with specific model param-
eters. The relationships between the microstructure properties and the simu-
lated signals are implicit, non-parametric, and possibly high-dimensional. There-
fore, solving the inverse problem is challenging.

This thesis will present the solution to the three challenges in the following
chapters. In chapter 2, we developed a high-performance open-source neuron
mesh generator and made over one thousand realistic cellular meshes publicly
available. Chapter 3 describes two numerical simulation methods: the finite el-
ement method and the numerical matrix formalism method. We increased the
computational efficiency of the numerical matrix formalism method by a factor
of ten. In chapter 4, a new simulation method that provides a Fourier-type repre-
sentation of the dMRI signals is described and implemented numerically. Chap-
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ter 5 presents the proposed simulation-driven supervised learning framework
for dMRI brain microstructure imaging. We conclude the thesis in chapter 6.
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Chapter 2

Realistic Neuron Modeling

Diffusion MRI simulations and numerical phantoms can help deepen the un-
derstanding of the relationship between the cellular structure and the diffu-
sion MRI signal. They play a significant role in the formulation and validation
of appropriate models in order to answer relevant biological questions. Numer-
ical phantoms are less costly and more flexible than physical phantoms [98].
Some recent works that use numerical simulations of the diffusion MRI signal
as a part of model validation include [85, 87, 88, 99]. Simulations can help de-
velop, test, and optimize MRI pulse sequences by modeling the response to
novel pulse sequences with various tissue features [100-103]. In fact, given the
recent availability of vastly more advanced computational resources, simulation
frameworks have increasingly been used as standard computational tools for
tissue parameter estimation [67, 104].

Despite these advantages, dMRI simulations of realistic brain tissues are
still limited due to the lack of available and sophisticated numerical phantoms.
Constructing numerical phantoms is challenging. Few open-source phantom-
generating toolboxes or pre-generated numerical phantoms are available to the
public. The work presented in this chapter aims to change this situation by pro-
viding the dMRI community with two sets of neuron meshes suitable for numeri-
cal simulation and an open-source neuron mesh generator. Throughout the the-
sis, we refer to a collection of vertices, edges, and faces that defines the shape
of an object as a polygon mesh or simply a mesh. illustrates a triangu-
lated surface mesh and a tetrahedral volume mesh. Realistic neuron modeling
aims to represent the shape of neurons using polygon meshes on which dMRI
simulations can be performed.

gives a general introduction to neuron tracing, which is the most
common way to record neuron morphology in neuroscience. In , the
difficulties of generating neuron meshes suitable for diffusion MRI simulations
are explained. In , we present Neuron Module, an open-source dMRI
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Figure 2.1: lllustration of a triangulated surface mesh (a) and a tetrahedral volume
mesh (b). Half of the meshes are made transparent to show the inside. A triangulated
surface mesh is composed of a set of triangles defining the hull of an object. The space
enclosed by the hull is empty. A volume mesh consists of a set of tetrahedra to model
the shape of an object.

simulation package containing 65 pre-generated neuron meshes, as our first at-
tempt to model realistic neuron morphology using triangulated surface meshes
and tetrahedral volume meshes.

However, the mesh generation pipeline used in Neuron Module was limited
because it requires commercial software and significant manual operations. To
overcome the drawback, we developed an open-source neuron mesh generator
called swc2mesh. We explain the implementation of swc2mesh and showcase
four main functionalities in section 2.4. We show that swc2mesh is automatic,
robust, versatile, and user-friendly. The neuron mesh generator allows us to
build a large-scale neuron mesh dataset, NeuronSet, that contains 1163 realistic
neuron meshes and 50 glial meshes.

We recall that the ultimate goal of the thesis is to facilitate simulation-driven
brain microstructure estimation. Realistic neuron modeling, as the first contri-
bution of this thesis, lays a solid foundation for achieving this goal.

2.1 Introduction to neuron tracing
Neuron tracing or neuron reconstruction is a fundamental technique used

in neuroscience to record neuronal morphology based on neuron microscopic
images. Nowadays, neuron tracing has become fully digital and increasingly au-
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tomated [105]. Specialized software [96, 97, 106] can semi-automatically trace
neuron microscopic images to obtain 3D neuronal reconstructions [107], which
are typically encoded into a tabular format called SWC' [108, 109].

(a) SWC format (b) neuron sk;eleton (c) rounded cone
index type x y z r parent r3 _?””iLT5

1 1 00 0 5 -l ' /1y B

2 4 0O 0 8 2 1 .

3 4 5310 1 2

4 4 3529 2 2

5 4 6 3 121 4 A (P '

Figure 2.2: (a) an illustrative example of an SWC file. The example is only for illustration
purposes. It does not originate from any real neurons. From left to right, the columns
represent node index, type of neuronal compartment, x, y, z coordinates, radius, and
parent node index, respectively. For example, the second node represents a section
of apical dendrite (type 4) located at [0, 0, 8] with a radius of 2 um. It connects to its
parent (the first node). If the parent index is -1, the current node is the root. (b) a visual
representation of the neuron skeleton defined by the SWC file in (a). The red ® symbol
represents a soma node, and neurite nodes are denoted by red +. The blue lines whose
lengths are [y, ..., l4 sketch the neuron skeleton. The dashed lines illustrate the neuron
morphology in 3D. (c) the rounded cone that can be used to connect two consecutive
nodes.

An example of an SWCfile is presented in fig. 2.2(a), including compartment
types, spatial coordinates, radius, and connectivities of each node. Each row of
the table defines a soma or neurite node. The first column is the node index.
The second column represents the type of neuronal compartment. For instance,
soma, axon, and apical dendrite are encoded by 1, 2, and 4, respectively. The fol-
lowing three columns are the node’s coordinates. The next column is the node
radius, whose interpretation depends on the type of neuronal compartment.
For a neurite node, the value is the neurite radius at the node position. If the
node represents a spherical soma?, the sixth column is the sphere radius. The

'SWC stands for the initials of the last names of E.W. Stockley, H.V. Wheal, and H.M. Cole, who
developed a system for generating morphometric reconstructions of neurons [108].

2Not all somas are represented as spheres. Soma format representation varies across
databases. A summary of soma format representation can be found in https://neuromorpho.
org/SomaFormat.html.
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last column records the parent node index to which the current node is con-
nected. More details about the SWC format can be found in the work of Cannon
et al. [109]. Note that the term “neuron” often includes glial cells when it comes
to neuron tracing. For the sake of simplicity, we keep this convention. More-
over, we refer to a digital neuronal reconstruction stored in SWC format as a
“neuron skeleton” because the set of nodes defines the “skeleton” of a neuron
(see ).

Thanks to the collective effort of the neuroscience community, there are sev-
eral single-neuron skeleton databases accessible to the public. The most exten-
sive database is NeuroMorpho.Org [110], which contains around 230,000 neu-
rons of over 40 species contributed by more than 800 laboratories worldwide. In
addition to neuron skeletons, NeuroMorpho.Org provides neurons' morphome-
tric measurements and associated metadata. Databases like NeuroMorpho.Org
are employed to study synaptic integration, signal transmission, network con-
nectivity, and circuit dynamics. Computational simulation is a promising appli-
cation of neuron skeletons [107]. However, most mesh-based simulation meth-
ods require neuron models as tetrahedral volume or triangular surface meshes
instead of neuron skeletons.

One can build a 3D neuron model based on an SWC file by connecting nodes
with cylinders or rounded cones (see ). Numerous software packages
offer such functionality for visualization purposes [95-97]. Imperfections such
as intersection, separate subcompartments, and broken surfaces are generally
ignored as long as these defects do not significantly alter the morphology of
neurons for visualization. However, building simulation-ready meshes is much
more difficult. Next, we discuss the challenges of building simulation-ready neu-
ronal meshes.

2.2 Challenges of neuron mesh construction

This chapter aims to model realistic neurons by triangulated surface and
tetrahedral volume meshes. We concentrate on the surface mesh generation
because there are well-established tools, such as Tetgen [111], Gmsh [112], and
CGAL [113], that can automatically tetrahedralize surface meshes. In addition to
reconstructing neuron morphology, the meshes should be suitable for diffusion
MRI simulations.

A simulation-ready surface mesh should be a 2-manifold mesh without
boundary edges, also known as watertight surface mesh [114]. More concretely,
a set of triangles, i.e., a triangle soup, must form one closed surface so that the
inside volume is well-defined. The defects that destroy the watertightness of a
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surface mesh include T-vertex, non-manifold vertex, intersection, non-manifold
edge, and hole, as illustrated in fig. 2.3 [114].

(a) T-vertex (b) non-manifold vertex (¢) intersection

P
N :

-

(d) non-manifold edge (e) hole

Figure 2.3: Five common defects that destroy the watertightness of a triangular surface
mesh: (a) a T-vertex marked by a red dot. (b) a non-manifold vertex marked by a red
dot. (c) the intersection of faces. (d) a non-manifold edge marked by a solid red line. (e)
a hole marked by the red pentagon.

Building a watertight neuron surface mesh is highly challenging due to the
complexity of neuron structure. For example, intersections inevitably exist in
areas where the bifurcations occur. Those defects can be eliminated through
several published tools [98, 115]. We also proposed a pipeline [116] that uti-
lizes commercial software from the ANSA-BETA CEA system [117] to remove the
mesh defects manually. The pipeline with commercial software is presented in
section 2.3.

However, the meshing tools mentioned above [98, 115, 116] require man-
ual operations through graphical interfaces to obtain a watertight neuron mesh.
The manual labor could be immense if hundreds of neuron meshes are needed.
The number of manual operations must be reduced to make the large-scale neu-
ron mesh generation practical. Moreover, the number of faces (triangles) should
be small®. Otherwise, dMRI simulations would be slow. Finally, the triangular el-

3Typically, the number of triangles (vertices) should be less than 300,000 (150,000) for dMRI
simulations to end within a few hours.
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ements should not be too elongated to minimize numerical error [118]. The
quality of a triangular element can be quantified by the aspect ratio ¢ defined as
two times the ratio of inradius and circumradius. Figure 2.4 shows the decrease
of aspect ratio as triangles become elongated. Aspect ratios range from 0 (a
segment) to 1 (an equilateral triangle). The triangle quality, which is a key factor
affecting simulation accuracy, has been widely ignored in previous studies.

= ¢=13/4 ¢=1/2 ¢=1/4
high-quality low-quality

Figure 2.4: Decrease of aspect ratio as triangles become elongated.

In summary, there are four requirements for neuron surface mesh genera-
tion:

1. meshes must be watertight;

2. the mesh generation should be robust and almost automatic, requiring
minimal manual operations;

3. the number of triangles should be small to reduce computational cost;

4. the triangular elements should be high-quality to minimize numerical er-
rors.

All four requirements should be simultaneously satisfied, which is nontrivial
due to the structural complexity of neurons. Specifically, neuron structure is
multiscale. The neurite radius is about 1 um, while the total neurite length can
be more than 1 mm. These multiscale 3D structures typically require a large
number of triangles. However, as mentioned above, one must make a trade-off
with the number of triangles for computational efficiency.

In addition, there is another tradeoff between the number and the quality
of triangles. Because neurites are typically cylindrical, triangles tend to be elon-
gated in the axial direction as one reduces the number of triangles by simplifying
a neuron mesh. We must balance triangle quantity, mesh quality, and compu-
tational efficiency. All the above difficulties add up, making automatic neuron
mesh generation extremely hard. The remainder of this chapter is devoted to
addressing these difficulties.
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2.3 Neuron Module

Our first attempt to overcome the difficulties mentioned in the previous sec-
tion involves exploiting available software. We constructed 65 realistic water-
tight neuron meshes using three open-source packages and commercial soft-
ware. These meshes and the program related to dMRI simulations are inte-
grated into the SpinDoctor toolbox [44] as an independent block called Neuron
Module [116].

The mesh generation starts with the neuron skeletons stored in the archive
Allman [119] in NeuroMorpho.Org. We convert the neuron skeletons to surface
descriptions using two packages: swc2vtk [95] and vtk2st/ [120]. These surface
descriptions are problematic because they contain many intersections and prox-
imities (see fig. 2.5, left). We used commercial software from ANSA-BETA CEA
Systems [117] to manually correct and improve the quality of the neuron surface
meshes (in STL format) and produced new surface triangulations (see fig. 2.5,
right) that are watertight. The new surface meshes are passed into the software
Gmsh [112] to obtain the tetrahedral volume meshes.

/ >~ Y n =0 5]

Figure 2.5: Left: a surface description of a pyramidal neuron, 02a_pyramidal2afFl, con-
taining many intersections and other mesh defects. Right: a watertight surface mesh
with mesh defects being fixed.

Figure 2.6 summarizes the pipeline that converts neuron skeletons to the
tetrahedral volume meshes in the MSH format that the users of the Neuron
Module will take as the input geometrical description to perform diffusion MRI
simulations. One can stop at the third step if only surface meshes are required.
In Neuron Module, we provide both surface and volume meshes.

To facilitate further study, we broke the neurons into disjoint geometrical
components: the soma and the dendrite branches. We manually rotated the
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Figure 2.6: Neuron mesh generation pipeline used in Neuron Module. Neuron skele-
tons are converted to surface meshes (in STL format) by using swc2vtk [95] and vtk2st/
[120]. Then ANSA was used to generate watertight surface meshes (in NAS format). Fi-
nally, the NAS files were converted to tetrahedral volume meshes in the MSH format by
the software Gmsh [112].

tetrahedral volume mesh of a neuron so that it lies as much as possible in the x-
y plane. In this orientation, we cut the tetrahedral volume mesh into sub-meshes
of the soma and the dendrite branches. As an illustration, we show in fig. 2.7 the
spindle neuron, 03a_spindle2aFI", split into sub-meshes of the soma and the two
dendrite branches.
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Figure 2.7: The tetrahedral volume mesh of the spindle neuron 03a_spindle2aFl is split
into three disconnected geometrical components: the soma and two dendrite branches.

In the Neuron Module, we have a group of 36 pyramidal neurons and a group
of 29 spindle neurons found in the anterior frontal insula (aFl) and the anterior
cingulate cortex (ACC) of the neocortex of the human brain. These neurons con-
stitute, respectively, the most common and the largest neuron types in the hu-

“NeuroMorpho.Org ID of 03a_spindle2aFl is NMO_01078.
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man brain [121, 122]. They share some morphological similarities, such as hav-
ing a single soma and dendrites branching on opposite sides. We list the meta-
data and some measurements of the 65 neurons in the appendix section A.2.
Figure 2.8 presents several selected neuron meshes.

02a_pyramidal2aFI

LAegarpuids-eg

TARTRpPrwRIAd-qZ0

03a_spindle6aFI

100 pum 03a_pyramidal9aFT

Figure 2.8: Six realistic neuron meshes in the Neuron Module.

Requiring extensive manual operations is the main drawback of the above
pipeline (fig. 2.6). We repair non-watertight neuron meshes manually using com-
mercial software. Splitting soma and neurites also requires manual annotation
of the location of soma and neurites. Even though neuron meshes need to be
constructed only once, the significant amount of manual operations dramati-
cally limits the number of meshes the pipeline can build. In the next section,
we present an automatic neuron mesh generator that needs minimal manual
operations and can satisfy the four requirements discussed in section 2.2.

2.4 swc2mesh: an automatic mesh generator
The mesh generation pipeline used in Neuron Module started with a non-

watertight surface description and produced a simulation-ready neuron mesh
by manually removing the mesh defects. This is not a good strategy because
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the quality of the initial mesh largely influences the performance of subsequent
steps. The initial mesh can be arbitrarily “bad” and never be fixed to be wa-
tertight. This section adopts a new strategy: we first build a watertight surface
mesh with a large number of triangles and then gradually simplify the mesh to
reduce the mesh size. This new strategy can robustly generate simulation-ready
neuron surface meshes.

2.4.1 Mesh generation pipeline

Figure 2.9 illustrates the new mesh generation pipeline. We have imple-
mented it in a python package called swc2mesh”, which will be released as an
open-source project.

- Point set
. generation

Isotropic
remeshing

Poisson
reconstruction

Figure 2.9: Mesh generation pipeline. (a) the neuron skeleton defined by the SWC file in
fig. 2.2(a). (b) the point set densely covers the neuron’s surface. Each point is associated
with an appropriate out-pointing normal vector (not shown in the figure). (c) the water-
tight dense surface mesh built by the screened Poisson surface reconstruction method
[123, 124]. (d) the isotropic mesh obtained by remeshing the dense mesh (c). Most
triangles of the isotropic mesh have aspect ratios close to one (almost equilateral). (e)
the final surface mesh obtained by simplifying the mesh (d) using an algorithm based
on quadric error metrics proposed by Garland et al. [125]. (f) the tetrahedral volume
mesh generated by Tetgen [111]. Part of the volume mesh is cut out to show the inter-
nal tetrahedra.

As the name swc2mesh suggests, it converts neuron skeletons in SWC format
to meshes. To satisfy the four requirements discussed in section 2.2, we lever-
age three well-established computer graphics algorithms: the screened Pois-
son surface reconstruction method [123, 124], an isotropic explicit remeshing
method [126-128], and a surface simplification algorithm using quadric error
metrics [125].

>https://github.com/fachra/swc2mesh
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The screened Poisson surface reconstruction method (or Poisson method)
[123, 124] takes an oriented point set as input to produce a watertight trian-
gulated surface mesh. Any member in the point set contains two vectors: one
vector being the coordinate of a point on the desired surface and the other be-
ing the outward-pointing (from inside to outside) normal vector. The Poisson
method treats the oriented point set as a vector field V and aims to find an indi-
cator function y whose gradientis V, i.e.,, Vx = V. The indicator function can be
obtained by solving a Poisson equation (V - Vx = VV). The desired surface can
be reconstructed by extracting an appropriate isosurface of x. As long as the in-
put point set densely covers a closed surface and each point has an appropriate
normal vector, the Poisson method can ensure that the reconstructed surface
mesh is watertight.

Thanks to the Poisson method, our task is reduced to creating oriented point
sets covering neuron surfaces. We implemented a routine in swc2mesh to create
oriented point sets using the Python programing language [129]. The basic idea
of point set creation is connecting the nodes defined in SWC files by rounded
cones (see ). Tens of millions of points are sampled on the surfaces
of cones. The samplings follow the Fibonacci lattice pattern [130] to achieve a
uniform distribution.

Point set manipulation is easy because there are no connectivities between
points. We can easily remove the points inside the neuron and carefully com-
pute the normal vectors in bifurcation areas to prevent intersection. Once we
obtain an oriented point set that densely covers the neuron surface, the Poisson
method can produce a watertight surface mesh. The drawback is that the output
mesh typically has more than one million triangles, which is excessively dense
for diffusion MRI simulations. Besides, the surface mesh may contain numerous
elongated triangles.

An isotropic explicit remeshing method [126-128] is then applied to the
dense mesh. The remeshing method can reduce the number of triangles and
improve their quality by repeatedly applying edge flip, collapse, relax and re-
fine operations to regularize the size and aspect ratio of triangulated surface
meshes. High-quality triangles are nearly equilateral, with aspect ratios close to
one. On average, neuron meshes are composed of hundreds of thousands of
high-quality triangles after this step.

Further mesh simplification is required to reduce the number of triangles
and make subsequent dMRI simulations efficient. We employ a simplification
method proposed by Garland et al. [125] implemented in PyMeshLab [127].
The algorithm adopts an edge-collapse strategy based on quadric error met-
rics. It allows us to aggressively simplify soma and thick neurites while keeping
thin neurites almost unchanged. Moreover, we gradually apply the simplifica-
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tion algorithm to meshes until they can no longer be watertight or the number
of low-quality (“bad”) triangles whose aspect ratios are inferior to 1/3 exceeds
20% of the total face number. The above two numbers are determined empiri-
cally. The simplification algorithm can commonly reduce the triangle number to
about 100,000.

It is worth stressing that the pipeline (from to ) imple-
mented in swc2mesh is fully automatic. However, due to the complexity of
the neuron morphology, around 10% neuron surface meshes still need manual
post-cleaning after the simplification.

Once a watertight mesh is created, Monte-Carlo dMRI simulations can di-
rectly run on it. Tetgen [111] can robustly convert watertight surface meshes to
volume meshes based on constrained Delaunay tetrahedralization.

2.4.2 Implementation of swc2mesh

We implemented swc2mesh using the Python programing language [129] and
PyMeshLab package [127]. is @ pseudo code summarizing the main
steps of swc2mesh.

The input is an SWC file defining the morphology of a neuron. We developed
a parser (swc_parser) to extract the nodes stored in the SWC file. Based on these
nodes, we build an oriented point set that densely covers the neuron surface.
The remaining steps follow the pipeline explained in . It is worth
noting that we iteratively simplify the surface mesh until it can no longer be
watertight or the “bad” triangle ratio is greater than 0.2. The last step helps
maintain the balance between the quantity and the quality of triangular faces.

Here, we briefly present the core functions used in swc2mesh. By changing
the input parameters, these functions can perform a variety of functionalities.
In the next section, we demonstrate four essential functionalities of swcZ2mesh.
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Algorithm 1: Implementation of swc2mesh

Data: swcfile (an SWC file)
Result: surfmesh (a surface mesh in the format of PLY, STL, OB}, etc.)
begin

nodes = swc_parser(swcfile)

# build an oriented point set
pointset = point_set_builder(nodes)

# construct a watertight surface mesh

smesh = Poisson_surface_constructor(pointset)
smesh = isotropic_remeshing(smesh)
surfmesh = deepcopy(smesh)

# iteratively simplify the surface mesh

while (bad_triangle_ratio(smesh)<0.2) and is_watertight(smesh) do
surfmesh = deepcopy(smesh)
# surface simplification using quadric error metrics
smesh = QEM_simplify(smesh)

end

if not is_watertight(surfmesh) then

| Warning("Mesh is not watertight.")
end

return surfmesh

end

2.4.3 Functionalities of swc2mesh

This section showcases four main functionalities of swc2Zmesh and how to

achieve them using Python. We sort them in the order of complexity:

1.

reconstructing a complete neuron mesh with simplification routine being

activated;
changing the shape of soma;

building a mesh for a particular cellular compartment;

building an incomplete neuron mesh with several selected cellular com-

partments.
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First, using three lines of code, swc2mesh can automatically build and save
a neuron surface mesh based on an input SWC file. Listing 2.1 demonstrates a
simple use case for constructing a single neuron mesh with the simplification
routine being activated. It is worth noting that our package provides integrated
functions to the users. Only the input and output files and appropriately selected
settings are required from the users.

The saved surface mesh is in the Polygon file format (PLY). Other formats,
such as STL, OBJ, OFF, are also supported. We refer to the documentation® of
PyMeshLab [127] for an exhaustive list of supported formats.

from swc2mesh import Swc2mesh

mesh = Swc2mesh("neuron_skeleton.swc")

mesh.build ("neuron.ply", simplification=True)
Listing 2.1: A code snippet for generating a neuron surface mesh. The input is an SWC
file named "neuron_skeleton.swc". The generated neuron surface mesh is saved in a file
named "neuron.ply". The mesh generator automatically determines the mesh format
according to the file extension. In this case, the mesh format is PLY.

In fig. 2.10, a representative neuron surface mesh overlaps the original mi-
croscopic image of the neuron to demonstrate the realisticity of the recon-
structed neuron mesh. The Allen Institute for Brain Science [8] provides the
microscopic image of the neuron’. It is found that the triangulated surface
mesh digitally reproduces the neuron morphology with extreme precision. For
visualization purposes, different colors are assigned to each neuronal com-
partment. The choice of color follows the convention adopted by NeuroMor-
pho.Org®. When coupling the neuron meshes with advanced numerical simu-
lators, we could expect different physical properties, e.g., permeability, to be
assigned to the sub-regions.

Second, swc2mesh supports four shapes of somas: sphere, ellipsoid, cylinder,
and customized contour. Soma format representation varies across databases
and has more than four types of shapes. A summary of soma format repre-
sentation can be found in the frequently asked questions (FAQs) in NeuroMor-
pho.Org”. The first three shapes, known as single contours, account for 80 per-
cent of the neuron skeletons archived in NeuroMorpho.Org. We give an example
foreach shapeinfig. 2.11. Asomawhose shape is customized contour is defined
as a group of stacked cylinders. The convex hull of the group of cylinders forms

®https://pymeshlab.readthedocs.io/en/latest/io_format_list.html#
save-mesh-parameters

"http://celltypes.brain-map.org/mouse/experiment/morphology/545612828

8Please check the FAQ in NeuroMorpho.Org: How are different parts of the cells color coded
in visualization?

Please check the FAQ in NeuroMorpho.Org: How is the soma format represented in the
standardized (CNG.swc) files?
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Figure 2.10: Overlapping of a real human neuron mesh with its original microscopic im-
age. (a) the neuron’s microscopic image. In the Allen Institute Cell Types database [8],
the neuron ID is 545612828, and its donor is H16.03.010. The neuron ID in NeuroMor-
pho.Org is NMO_102562. (b) the neuron surface mesh overlapped on the microscopic
image. The red neurites are apical dendrites, the purplish blue neurites are basal den-
drites, and the bright blue part is the soma. The mesh digitally reproduces the morphol-
ogy of the real neuron. (c) the end of a neurite. The neuron mesh perfectly reproduces
the finest neurite structure. (d) some neurites around the soma. Note that the neuron
surface is triangulated.

the customized contour. The three examples of single contours in fig. 2.11 cor-
respond to a pyramidal neuron, 07b_pyramidal14aACC', in the archive Allman
in NeuroMorpho.Org. The example of customized contour corresponds to a rat
cell'" in the archive Spruston.

With swc2mesh, changing the soma shape is easy. Users can specify the key-
word argument soma_shape to control the soma shape (see listing 2.2).

from swc2mesh import Swc2mesh

# the keyword argument some_shape has four options:

# "sphere" (default), "ellipsoid", "cylinder", and "contour"
mesh = Swc2mesh ("neuron_skeleton.swc", soma_shape="contour")
mesh.build ("neuron_with_customized_soma.obj", simplification=
True)

Listing 2.2: A code snippet for generating a neuron whose soma is defined by a
customized contour. The neuron mesh is saved in OBJ format.

9The NeuroMorpho.Org ID of 07b_pyramidal14aACC is NMO_01066.
"The rat cell is ri05 whose NeuroMorpho.Org ID is NMO_00885
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Figure 2.11: Four types of soma shapes supported by swc2mesh.

Third, swc2mesh can build a mesh for a particular cellular compartment. For
example, users can construct a mesh for a single dendritic arborization. Line
7 of listing 2.3 presents the way to build meshes of apical dendrites. It is also
possible to separately build a group of meshes for all cellular compartments by
setting the keyword argument compartment to "all" (see line 10 of listing 2.3).
In fig. 2.12, we demonstrate a neuron mesh as a whole and its cellular compart-
mental meshes. We note that splitting compartments requires manual opera-
tions in Neuron Module, while it is fully automatic using swc2mesh.

from swc2mesh import Swc2mesh

mesh = Swc2mesh("neuron_skeleton.swc", soma_shape=’ellipsoid’)
# other compartments include: "undefined", "soma", "axon",

# "basal_dendrite", "apical_dendrite", "custom",

# "unspecified_neurites", "glia_processes"
mesh.build("apical_dendrites.stl", simplification=True,

compartment="apical_dendrite")

# build a group of meshes for all cellular compartments
mesh.build("cell_compartments.stl", simplification=True,
compartment="all")
Listing 2.3: A code snippet for generating cellular compartmental meshes. All meshes
are saved in STL format.

The fourth functionality is that swc2mesh allows us to subtract cellular com-
partments from a neuron or construct an incomplete neuron using several se-
lected compartments. Listing 2.4 demonstrates two examples. The syntax "cell-
apical_dendrite" indicates the subtraction of apical dendrites from the whole
neuron. Similarly, the syntax "soma+apical_dendrite" indicates that we build an
incomplete neuron mesh using only soma and apical dendrites. The two exam-
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Figure 2.12: (a) a neuron mesh as a whole. All cellular compartments are connected.
(b) the meshes of cellular compartments automatically generated by swc2mesh. Each
compartment has an individual surface mesh. They are disconnected.

ples are illustrated in fig. 2.13, respectively.

from swc2mesh import Swc2mesh
mesh = Swc2mesh ("neuron_skeleton.swc", soma_shape=’ellipsoid’)

# subtract apical dendrites from the neuron
mesh.build("incomplete_neuron_1.ply", simplification=True,
compartment="cell -apical_dendrite")

# build an incomplete neuron using soma and apical dendrites
mesh.build("incomplete_neuron_2.ply", simplification=True,
compartment="soma+apical_dendrite")

Listing 2.4: A code snippet for generating incomplete neuron meshes.

We demonstrate the excellent modeling capabilities of swc2mesh through the
above use cases. We believe the neuron mesh generator can facilitate diffusion
MRI simulations and thus help understand the formation of intracellular signals
and develop methods for microstructure imaging. Next, we present the first
application of swc2mesh, which is building a large-scale neuron mesh dataset.

2.5 NeuronSet: a large-scale neuron mesh dataset
With the neuron mesh generator, we can build a large-scale neuron mesh
dataset by converting neuron skeletons stored in NeuroMorpho.Org to meshes.

We refer to the neuron mesh dataset as “NeuronSet”, which contains 1213 real-
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Figure 2.13: (a) an incomplete neuron mesh constructed by subtracting an apical den-
drite from the neuron. The mesh corresponds to "incomplete_neuron_1.ply" in list-
ing 2.4. (b) an incomplete neuron mesh built with only soma and an apical dendrite.
The mesh corresponds to "incomplete_neuron_2.ply" in listing 2.4.

istic human cellular meshes, including 1163 neurons and 50 glia'?. Each neuron
mesh corresponds to a real human neuron or glial cell. These cells were inde-
pendently traced by 11 laboratories, stored in 11 archives, and reported on 22
papers [8, 119, 131-150]. Table 2.1 lists the number of neurons in each archive
included in NeuronSet.

Table 2.1: The number of cells in each archive included in NeuronSet.

Number of cells Total number of

Archive in NeuronSet cells in archive Cell types Age classes References
Allen Cell Types 161 264 neurons adult [8, 134, 137]
Allman 65 65 neurons adult [119]
Defelipe 126 126 neurons adult [133, 138]
Falcone 50 50 glia adult, infant [136, 139]
Hrvoj-Mihic_Semendeferi 85 85 neurons adult [135]
Jacobs 505 2649 neurons neonatal, adult, old [132, 140-146]
Lewis 142 142 neurons adult [131]
Linaro 14 14 neurons not reported [147]
Segev 6 6 neurons adult [148]
Semendeferi_Muotri 45 45 neurons adult [149]
Vuksic 14 14 neurons infant [150]

Each archive has a different protocol for neuron tracing. Key differences be-
tween archives are related to the soma format and the integrity of axons. To
unify these archives, we make the following choices.

12NeuronSet is publicly available at https://github.com/fachra/NeuronSet.
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First, soma shapes are fixed to be spherical in NeuronSet because most so-
mas are initially saved as spheres in NeuroMorpho.Org. For example, neurons
in archives Allen Cell Types, Hrvoj-Mihic_Semendeferi, Defelipe, and Falcone have
spherical somas.

Second, long axons are not modeled by the cellular meshes. Of the eleven
archives, only the Allen Cell Types provides incomplete axons. Indeed, axonal ar-
borization is highly complex and variable. Some axons can extend as long as 1
m [6]. The diameter of unmyelinated axons in the mammalian brain varies be-
tween 0.08 and 0.4 um [151, 152]. Axons of hippocampal CA3 pyramidal cells
have around 150 bifurcation points with a total axonal length of 150-300 mm
[153-155]. Moreover, a single cell may contact 30,000-60,000 neurons through
axon [6]. The digital reconstruction of realistic axonal arborization is still chal-
lenging for neuron tracing, not to mention generating surface meshes. For dif-
fusion MRI application, long axons are believed to have a small impact on the
measured intracellular diffusion [88, 156]. We, therefore, do not include axons
in modeling.

In the following sections, we first display several representative cellular
meshes in the dataset. Then some statistics about mesh quality and mesh size
are given. Finally, we conduct neuroanatomical measurements on the cellular
meshes.

2.5.1 Mesh visualization and statistics

We demonstrate our realistic neuron models by comparing a reconstructed
neuron mesh with its original microscopic image in fig. 2.10. Here, we present
one neuron mesh for each archivein fig. 2.14. Glial cells in the archive Falcone are
tiny compared to the neurons. For clarity, we show them separately in fig. 2.15.

In addition to being realistic, all neuron surface meshes are watertight and
simulation-ready. The mesh quality, a commonly disregarded factor affecting
the simulation precision, has been considered. We refer to a triangle as low-
quality or “bad” if its aspect ratio is inferior to 1/3. For each triangulated sur-
face mesh, we evaluate the mesh quality using the proportion of bad triangles,
i.e., the number of bad triangles divided by the total number of triangles. Fig-
ure 2.16(a)is the histogram of the bad triangle proportion for all meshes in Neu-
ronSet. Seventy-five percent of neuron meshes have a bad triangle proportion
below 0.2, meaning that most meshes generated by swcZ2mesh have good qual-
ity.

While maintaining the mesh quality, we reduce the mesh size as much as
possible using the simplification routine described in section 2.4. Figure 2.16(b)
and fig. 2.16(c) are the histograms of the number of triangles and vertices. The
maximum number of triangles (vertices) is 300,000 (150,000).
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Figure 2.14: Visualization of one representative neuron surface mesh for each archive.
The NeuroMorpho.Org IDs and the archive names are annotated around the neurons.

Besides, cellular meshes in NeuronSet correspond to human cells extracted
from a wide range of brain regions. Figure 2.17 shows the regional distribution
of the cells included in NeuronSet.

2.5.2 Neuroanatomical measurements

The neuron meshes and skeletons enable the measurements of various neu-
roanatomical parameters. L-measure'” is widely used to measure neuron mor-
phology based on skeletons [157]. However, L-measure cannot accurately mea-
sure neurite area and volume because it treats neurite segments as cylinders.
For example, the neurite area given by L-measure is the sum of the lateral area
of many cylinders. This simplified treatment omits the spatial variation of neu-

3http://cng. gmu.edu:8080/Lm/
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Figure 2.15: Visualization of three glial meshes in the archive falcone. The NeuroMor-
pho.Org IDs and the archive name are annotated around the cells.

(a) bad triangle proportion (b) number of triangles (¢) number of vertices

. 150 150
& 200
<
z 125 125
E
g 190 100 100
o
N
T - .
S 100 ® "
o
o
> 50 50
=
= 50
8 25 25

0 0 0

00 02 04 06 08 10 0 100000 200000 300000 0 50000 100000 150000

Figure 2.16: Distribution of cellular mesh quality and size in NeuronSet. (a) histogram
of bad triangle proportion. 75% meshes have a bad triangle proportion below 0.2. (b)
histogram of triangle numbers of meshes. The maximum number is 300,000. (c) his-
togram of vertex numbers of meshes. The maximum number is 150,000.

rite radius and the complex structure in bifurcation regions. We remedy the
defect by measuring the surface and volume on neuron meshes. We can get
over 30 neuroanatomical parameters of biophysical interest based on neuron
meshes and skeletons. In this section, we present how to measure the area, vol-
ume, soma radius, and neurite length using the example given in fig. 2.2. The
definitions of other neuroanatomical parameters are listed in the appendix sec-
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Figure 2.17: Cell distribution in brain regions. (a) distribution in neocortex layers. (b)
distribution in brain lobes. (c) distribution in Brodmann areas.

tion A.1.

The soma radius rsoma is recorded in SWC files (typically in the sixth column of
the first row). Stems are the branches attached to a soma. We denote by Nstems
the number of stems. The sum of the distances between nodes subtracted by
Nstems X Tsoma 1S the total neurite length Lpeurite. FOr example, fig. 2.2(b) has one
stem (Nstems = 1) and the total neurite length is Zle l; — Nstems X T'soma-

With a watertight neuron surface mesh, the area Aneuron and volume Vieuron
can be efficiently computed [158]. Besides, the soma area is Asoma ~ 47r? and
volume is Vioma =~ 37rr3 Itis straightforward that the area of neurites is Aneurite =
Aneuron - Asoma and VOIume IS Vneunte - Vneuron - Vsoma-

These direct measurements give rise to some secondary neuroanatomical
parameters. For example, the neuronal neurite area (volume) fraction can be
deﬁned as Aneurite/Aneuron (%eurite/‘/neuron)-

Finally, we show the distributions of these neuroanatomical parameters in
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fig. 2.18. The distributions are consistent with a large-scale study of brain cell
morphometry also conducted on NeuroMorpho.Org [159].
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Figure 2.18: Distribution of some neuroanatomical parameters for the mesh database.

2.6 Summary

Sophisticated numerical phantoms, the indispensable elements required by
diffusion MRI simulations, have been lacking in the community. Hence, some
numerical simulations are limited to spherical and cylindrical geometries whose
phantoms are easy to build. For the same reason, dMRI simulations are still
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treated as just a basic tool to validate some simplified biophysical models. Even
though diffusion MRI simulations based on the BT equation or Brownian mo-
tion are more accurate than biophysical models, the lack of realistic numerical
phantoms substantially restricts the widespread use of simulation methods. As
the first contribution of this thesis, we provide a large number of realistic cel-
lular meshes and a high-performance open-source neuron mesh generator to
the community. We emphasize that these neuron meshes are compatible with
Monte Carlo and finite element simulation methods.

Our first attempt is Neuron Module which includes 65 realistic neuron
meshes. They are enough for gaining insights into diffusion MRI physics. In the
next chapter, we will demonstrate several usages of the Neuron Module by con-
ducting numerical simulations on the meshes. Nonetheless, Neuron Module is
insufficient.

The main drawback of the mesh generation pipeline used in the Neuron
Module is the low automation level. We implemented an open-source neuron
mesh generator, swc2mesh, using three well-established computer graphics al-
gorithms to overcome the drawback. As the name suggests, swc2mesh converts
neuron skeletons to simulation-ready meshes. Additionally, we have shown that
swc2mesh is automatic, robust, versatile, and easy to use. Finally, we built a large-
scale neuron mesh dataset, NeuronSet, as the first application of the mesh gen-
erator. Meshes in NeuronSet are of good quality and appropriate size, and they
play an essential role in the new microstructure imaging method proposed in

We cite two previous works in [98, 160] that describe new algorithms for gen-
erating relevant tissue and cell geometries for diffusion MRI simulations. These
two works are similar in spirit to ours, namely, the common idea is to provide
synthetic but realistic cell/tissue geometries.

Regarding the synthetic tissue/cell mesh generation problem, the work in
[160] is more about the brain white matter. The work closer to ours is [98],
which is about creating 3-dimensional neuron meshes based on neuron skele-
tons. That paper contained detailed information about generating artificial neu-
ron skeletons, which do not correspond to actual neurons but are analogous
to realistic neuron skeletons obtained by tracing real neurons. In addition, they
used the software Blender'” and a Blender add-on "SWC Mesh"'> to generate
neuron surface meshes. The salient points of our work, contrasted with [98],
are the following:

1. swc2mesh aims to convert neuron skeletons in SWC format to meshes.
Generating artificial neuron skeletons is not our objective. We note that

"“https://www.blender.org/
Shttps://github.com/mcellteam/swc_mesher
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realistic neuron skeletons from NeuroMorpho.Org and artificial neuron
skeletons in SWC format are all acceptable inputs of swc2mesh.

2. swc2mesh is robust, automatic, versatile, and user-friendly. Unlike Blender,
swc2mesh does not require manipulation in a graphical interface, making
large-scale mesh generation possible.

3. The entire mesh generation pipeline, including the mesh simplification
routine, is already open source.

4. We provide the simulation-ready realistic neuron meshes in publicly avail-
able repositories.

However, we have not entirely solved the problem regarding numerical
phantom generation. The final goal is to build brain voxel phantoms. For that,
we need to densely pack the neurons so that ECS has a reasonable volume frac-
tion and neurons must not intersect. The neuron packing is still an open ques-
tion that is probably more challenging than neuron mesh generation, especially
considering that the width of ECS can be as narrow as 30 nm [161, 162]. Nonethe-
less, swc2mesh is a substantial advance toward brain voxel phantom generation.
Even though we cannot wrap various neurons with an ECS compartment yet, it
is possible to cover a single neuron mesh with a thin envelope to achieve ECS
modeling with reasonable volume fractions. Figure A.1T and fig. A.2 in section A.3
give an example of a neuron wrapped by an ECS whose volume fraction is 31%.

Another major challenge that prevents us from reaching the ultimate goal of
this thesis is the low efficiency of dMRI simulators. For example, our work [116]
shows that a FEM simulator needs around 10 seconds to compute a single dMRI
signal using a realistic neuron mesh. To leverage data-driven methods, hun-
dreds of dMRI signals are needed for each neuron. It requires several months
to finish the simulations on all neurons in NeuronSet, which is impractical. The
next chapter presents two simulation approaches: the finite-element method
and the numerical matrix formalism method. Numerical matrix formalism pro-
posed by Li et al. [49, 50] is a method that implements classic matrix formalism
[47, 48] on FE discretization. Integrating matrix formalism with a finite element
method brings significant potential for improving computing efficiency. The sec-
ond contribution of this thesis, the improvement of dMRI simulation efficiency,
will be presented in the next chapter.
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Chapter 3

Solving Bloch-Torrey Equation with
Finite Element Discretization

One main objective of diffusion MRI is to non-invasively probe the brain mi-
crostructure by encoding the motion of water protons with externally applied
magnetic field gradient [18, 163]. This is highly challenging due to the structural
complexity of brain tissue and the intricate diffusion MRI mechanism. Existing
methods that estimate brain microstructure properties mostly rely on explicit
forward models relating the dMRI signals with some microstructure properties.
These forward models often require various assumptions and simplified geo-
metrical representations of brain tissue, which are not always valid. A gold-
standard forward model for describing the dMRI signal formation mechanism
is the Bloch-Torrey partial differential equation (BT equation).

The BT equation describes the time evolution of magnetization carried by
spin-bearing particles inside a medium under the influence of diffusion, exter-
nally applied magnetic field gradient, relaxation, and boundary restriction. The
mathematical formulation of BT equation will be presented in

Solving the BT equation is an effective way to simulate dMRI S|gnals from
brain tissue. The previous chapter geometrically modeled the most important
components of brain tissue, i.e., neurons and glia. This chapter concerns simu-
lating dMRI signals from them.

The predominant numerical methods of solving the BT equation include the
finite element method (FEM) [44-46], the Matrix Formalism (MF) method [47-
49], and the Monte-Carlo method [36-42]. The FEMs have demonstrated their
potential, including in high-performance computing settings [44, 49, 56, 57] and
in manifolds settings for thin-layer and thin-tube geometries [58]. The Matrix
Formalism method [47, 48], which decomposes the BT equation onto a Laplacian
eigenbasis, provides a compact matrix formulation of dMRI signals.

Monte-Carlo methods numerically simulate the motion of random walkers
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in a geometrical configuration. Software packages of Monte-Carlo methods in-
clude Camino [64], DIFSIM [38], and disimpy [65].

introduces a finite element method and a matrix formalism
method implemented in the SpinDoctor toolbox [44]. Contrary to classic MF,
which is limited to simple geometries, SpinDoctor's MF implementation relies
on finite element (FE) discretization of the computational domain. The combina-
tion of MF with FE discretization enables MF simulation on complex geometries.
We refer to SpinDoctor's MF implementation as numerical matrix formalism (nu-
merical MF).

The main shortcoming of existing simulation methods is the high computa-
tional cost. Current methods may take several months to run dMRI simulations
on every neuron mesh in NeuronSet. We succeeded in improving the compu-
tational efficiency of the numerical MF by a factor of ten. Compared with other
simulation methods, the new numerical MF is 20 times faster than SpinDoctor’s
FEM implementation and 65 times faster than disimpy [65]. With the new numer-
ical MF, we finished the simulations on 1213 neuron meshes in a few weeks'. The
optimization of the numerical MF is the second contribution of this thesis that
will be presented in .

To illustrate some potential uses of dMRI simulations, in , we show
numerical examples of the simulated diffusion MRI signals in multiple diffusion
directions from whole neurons as well as from the soma and dendrite branches.
The segmentation of neuron meshes, shown in , allows us to study the
water exchange inside a neuron and the power-law scaling pattern of dendrite
signals. Furthermore, by performing dMRI simulations on the 65 neurons in
Neuron Module, we show that six markers defined on the simulated dMRI sig-
nals can be related to the soma size. The preliminary studies in in-
spire us to develop a simulation-based brain microstructure imaging method
that will be presented in

3.1 Bloch-Torrey equation

This section explains the theoretical framework of diffusion MRI simulation.
We specify the geometrical configuration, the formulation of BT equations, and
the diffusion-encoding sequences.

Suppose one would like to simulate dMRI signals due to water protons in-
side a medium. A domain Q = UY ,Q; describes the medium that comprises

"We did not record in detail the time used for the simulation alone. However, in just three
weeks, we completed the generation of the 1213 neuron meshes, the code development for an
automated simulation pipeline, and the computation of dMRI signals for every neuron mesh.
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N non-overlapping compartments. 2; denotes the i-th compartment which is
a connected subset of R™ (n is 2 or 3), and 0¢); its boundary. The interface be-
tween two compartments is denoted by I';; = I';; = Q;, N Q, fori # 7, and
I'; = 0ifi = j. The outer boundary of the whole medium is 02 and of the
i-th compartment is I'; = 0€2; N 0N). Figure 3.1 illustrates a 2-dimensional ex-
ample of the geometrical configuration. Throughout this chapter, a domain €2
represents a 3-dimensional artificial brain voxel of N — 1 intracellular compart-
ments (ICCs) wrapped by an extracellular space (ECS), and the boundaries and
interfaces model cellular membranes.

Typical numerical descriptions of the geometrical configuration are polygon
meshes. For example, the neuron meshes constructed in chapter 2 serve as the
intracellular compartments in numerical simulations.

r

Q=U_,Q, 00=T3UT,

Figure 3.1: A 2-dimensional example of a rectangular domain €2 composed of four com-
partments. €2, is the disk surrounded by the ring Q2. The pentagon 23 is the third com-
partment. The last compartment )4 is the remaining area in the rounded rectangle. The
small circle T'y5 is the interface between Q1 and Q. The big circle T'y4 is the interface be-
tween Qs and Q4. The rightmost edge of the pentagon, I's, is the outer boundary of the
third compartment, and the other edges I's4 are the interface between 23 and Q4. T'y is
the outer boundary of the fourth compartment. I';, 'y, '3, '14, and I'23 are empty sets.

3.1.1 General form of BT equation

In diffusion MRI, a time-varying magnetic field gradient is applied to encode
the diffusive motion of water protons. Denoting the effective diffusion-encoding
magnetic field gradient by G(t), the complex transverse water proton magneti-
zation in the rotating frame satisfies the Bloch-Torrey partial differential equa-
tion (BT equation) [33]:

1
%Mi(w,t) = (V - DV —wyx - G(t) — T) M;(z,t), ¢ € Q;, t € [0,TE], (3.1)
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where D; and T; are respectively the self-diffusion coefficient and transverse
relaxation time of water protons in the compartment Q; (i € {1,...,N}), v =
0.26752 rad/(pus - mT) is the gyromagnetic ratio of the water proton [164], TE
is the echo time, and 2 is the imaginary unit. Magnetization, the density of pro-
ton transverse magnetic moment, is a complex-valued function of position x
and time t. M; denotes the magnetization in €2;. The externally applied mag-
netic field gradient G(¢) encodes the water protons’ displacements by making
the magnetization out of phase.
The initial magnetization is assumed to be equilibrial in the brain voxel:

M;(x,0)=p, x € Q;, i € {1,..., N}, (3.2)

where p is the initial magnetization constant.
The outer boundaries are subject to surface relaxation [165, 166], which gives
the boundary conditions:

D,V M;(x,t) nix) =k M(x,t), €y, i €{l,...N}, (3.3)

where n; is the unit outward pointing normal vector of 9€2;, and k; is the surface
relaxivity of I';. Finally, we account for the permeability and guarantee the flux
continuity across the interfaces through the interface conditions [50, 1671]:

DZVMZ(Q’J, t) . nz(w) = liij(Mj(iL', t) — Mz(m,t)), T € Fij7 (34)
DZVMl(w,t) : nz(w) = —DJVMJ(.’B,t) : nj(w), b S Fij, (35)

where i, j belong to {1, ..., N}, and x;; characterizes the permeability of the in-
terface I';; with respect to water. Due to the flux continuity eq. (3.5), we have
kij = kj;. Compartments are coupled by the interface conditions.

The order of magnitude of some physical quantities is: the cell membrane
permeability to water protons is around 5 x 1075 um/us [167-169]; the trans-
verse relaxation time of water protons in brain tissue is in the order of 100 ms
[170]; the self-diffusion coefficient of water protons at 37 °C'is 3 x 1072 um?/us
[34].

The magnetic field gradient G is a 3D vector function whose intensity g(t) =
|G(t)|| and direction u,(t) = G(t)/g(t) can vary with time. The vector function G
is often referred to as diffusion-encoding sequence, gradient sequence, or just
sequence. It is indispensable in encoding the water proton diffusion that is re-
stricted or hindered by the boundaries or interfaces into the magnetization M.
The aggregate magnetization in the entire domain €2 at time TE yields a mea-
surable quantity, a dMRI signal. MRI scanners can vary the intensity, direction,
and time profile of the diffusion-encoding sequence to obtain a series of dMRI
signals. One main objective of diffusion MRI is to infer the geometrical proper-
ties of the compartments delimited by their boundaries (cell membranes) using
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a set of dMRI signals. To achieve this objective, the gradient sequence design is
crucial.

Three common types of diffusion-encoding sequences include the pulsed-
gradient spin echo (PGSE) sequences [18], the double pulsed-gradient spin echo
(d-PGSE) sequences [171, 172], the oscillating gradient spin echo sequences of
type sine (sin-OGSE) and cosine (cos-OGSE) [173, 174]. Their magnetic field gra-
dients G are the product of the gradient intensity g, the gradient direction w,(t)
and a time profile f(¢). In other word, G(t) = g - f(t)u,(t).

Figure 3.2 presents the time profiles of these sequences. The parameters
that define these sequences are the following,

1. PGSE: the pulse duration 4, the inter-pulse duration A, the gradient inten-
sity g, and the direction of the magnetic field gradient u,. The time profile
of PGSE is

1, 0<t<y,
hHt)=q-1, A<t<A+S, (3.6)
0, otherwise;
2. d-PGSE: the pulse durations §; and d,, the inter-pulse durations A; and A,,

the mixing time t,,, the gradient intensities g; = ¢g and ¢g» = ag, and the
directions of the magnetic field gradient u,, and ug,,. The time profile of

d-PGSE is
(1, o0<t<d,
-1, A <t< A+,
fo(t) = ¢ —a, Ar+t, <t <A+ 6+ by, (3.7)
Q, A+ Ay +t, <t <A1+ Ay + 0o+ t,,
0, otherwise;

\

3. OGSE: the oscillating pulse duration ¢, the period of an oscillation 7, the
inter-pulse duration A, the gradient intensity g, and the direction of the
magnetic field gradient u,. The time profile of sin-OGSE and cos-OGSE are

(sin (222), 0<t<5,
f(t) = { —sin (M) A<t<A+9, (3.8)
\0, otherwise;
and
cos(@), 0<t<y,
falt) = { —cos (M) A<t<A+s (3.9)
L0, otherwise.
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Figure 3.2: Effective time profiles of some commonly used diffusion-encoding se-
quences. The effect of refocusing 180° RF pulses is taken into account. (a) Pulsed-
Gradient Spin Echo (PGSE) sequence. (b) double Pulsed-Gradient Spin Echo (d-PGSE)
sequence. (c) Oscillating Gradient Spin Echo sequence of type sine (sin-OGSE). (d) Os-
cillating Gradient Spin Echo sequence of type cosine (cos-OGSE).

The most commonly used sequence type is PGSE, proposed by Stejskal and
Tanner [18]. It has a wide range of applications in oncology [175], tractogra-
phy [176], ischemic stroke identification [177], etc. The d-PGSE sequences are
good at preserving the diffusion-diffraction patterns that are shown to be closely
related to microstructural information [172, 178]. The OGSE sequences are be-
lieved to have short diffusion times, allowing us to measure finer structures. This
thesis mainly focuses on dMRI using PGSE sequences.

Equations (3.1) to (3.5) govern the time evolution of magnetization in all com-
partments. Once we obtained the magnetization by solving the BT equation with
a given gradient sequence, the dMRI signal s from the voxel () measured at TE
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is the spatial integration of the magnetization:

N
s = Z/GQ M;(x, TE)dzx. (3.10)
i=1 Y EE

In practice, the dMRI signal is normalized by the signal in the absence of gradient
sequence, i.e., G = 0, to get the signal attenuation

E=2 (3.11)
50

where sy denotes the signal without magnetic field gradient. The normalization
mainly leaves the attenuation due to diffusion and eliminates other effects such
as transverse relaxation [11, p. 6]. The dMRI signal s and the signal attenuation
E generally depend on the entire magnetic field gradient G. With one of the
common sequences shownin fig. 3.2, sand E are functions of the corresponding
sequence parameters listed above. For example, the signal attenuation of PGSE
is a function of 9, A, g and u,,. In the literature, the first three parameters are
usually replaced by two quantities: diffusion time ¢, and bvalue (or simply b).

Diffusion time is proposed to quantify the duration of water proton diffusion
encoded by the magnetic field gradient. However, various diffusion time defi-
nitions exist in the literature for PGSE sequence, such as A — §/3[179], A [11,
180], and A + 6 [181]. These definitions converge to A in the limit of % — 0, but
it is still not clear whether the notion of diffusion time is well-defined for long
pulses (i.e., 6 ~ A)[182]. We adopt the widely used definition t; = A — ¢/3 and
only take it as a rough estimation of the diffusion time.

For PGSE sequence, the bvalue is defined as

TE t 2
b= 7292/ (/ f1(5>d5) dt = 72 g*5*(A - §/3). (3.12)
0 0

The reason for this definition is that in free diffusion or the case when the Gaus-
sian phase assumption (GPA) is applicable, the signal attenuation is or can be
approximated by e~P<* where D, is an effective diffusion coefficient, also known
as ADC. The ADC can be approximated using signal attenuation:
Du(g. .6, A) = = (E(g’bug’ 528)). (3.13)
For isotropic free diffusion, the ADC is a constant that coincides with the
self-diffusion coefficient. This phenomenon enables one to measure the self-
diffusion coefficient of liquid molecules using diffusion MRI [34, 183]. For unre-
stricted diffusion in an anisotropic medium, such as a polymer solution, charac-
terized by a diffusion tensor D, the ADC depends only on the gradient direction
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and D, (u,) = u] Du,. Measuring ADCs in at least six noncollinear directions al-
lows for diffusion tensor imaging [74]. For restricted diffusion, one can measure
the ADC when the Gaussian phase approximation is applicable so that the ADC
is physically meaningful [68]. ADC is a useful clinical marker for distinguishing
low and high diffusivity regions. For example, the decrease of the ADC may indi-
cate ischemic stroke [184]. However, the apparent diffusion coefficient is often
misused in the literature. We refer to Grebenkov's work [68] for clarification.

We stress that the Bloch-Torrey equation system (egs. (3.1) to (3.5)) and the
signal computation (egs. (3.10) and (3.11)) do not depend on the definitions of
diffusion time, bvalue, and ADC.

3.1.2 Asimplified form of BT equation

The general form of BT equation provides a complete description of the at-
tenuation mechanisms related to dMRI. Although numerically solving the gen-
eral form is already feasible, the computation is time-consuming and resource-
intensive. We refer to the papers of Nguyen et al. [185] and Agdestein et al.
[50] for the approaches to solve the general form of BT equation. This section
introduces two assumptions for simplifying the BT equation.

First, the boundaries and interfaces are assumed to be impermeable, i.e.,
ki = 0and k;; = 0fori,j € {1,..., N}, meaning that we ignore the effect of
transcytolemmal water exchange. For human brain tissue, the cell membrane
permeability is around 5 x 107% ym/us, which corresponds to an intracellular
water residence time of ~ 600 ms and an extracellular water residence time of
~ 120 ms [169, 186, 187]. The impermeability assumption is reasonable when
the diffusion time is significantly less than the water residence time. Based on
the extracellular water residence time, Yang et al. conservatively estimate the
diffusion time should be of ~ 12 ms or less for the valid application of imperme-
ability assumption to MR studies [187]. Palombo et al. extend the limit to 20 ms
for diffusion MRI application [88]. Jelescu et al. estimate the inter-compartment
water exchange time to be 15 — 60 ms in the rat cortex and hippocampus based
on the NEXI model [188]. Our experiments on clinical dMRI data presented in
chapter 5 suggest that the water exchange effect is minor when the diffusion
time is ~ 46 ms.

Second, we assume the transverse relaxation is homogeneous in all com-
partments within a brain voxel, i.e,, T; = T fori € {1,..., N} where T is the
transverse relaxation time constant measured by, for example, Hahn echoes
[17]. We stress that 7" can vary across brain voxels.

The first assumption decouples the magnetization in different compart-
ments giving N independent BT equations. In addition, we introduce a new vari-
able p representing the magnetization unattenuated by relaxation and rescaled
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by initial magnetization. The new variable ¢ is defined as
Mi(z,t) = pe T;(x,t), © € Qi, t € [0, TE], (3.14)

where ¢; is the restriction of ¢ to ;. Equation (3.14) is similar to Torrey’s treat-
ment [33]. We refer to the new variable ¢ as nonrelaxed magnetization. The BT
equation that governs y; is

%(pi(w,t) =(D;V -V —wyx - G(t))pi(x,t), xeQ, tel0,TE], (3.15)

wi(x,0) =1, r e, (3.16)
DN yg;(x,t) - n;(x) =0, x e i, tel0, TE], (3.17)

where i is an integer ranging from 1 to N.

Equation (3.15) is a simplified form of the BT equation that we obtained by
making the two assumptions. The numerical methods that will be presented in
section 3.2 and chapter 4 focus on solving the simplified form.

Let us reformulate the signal attenuation £ with ¢. We denote by p(x,t; g =
0) the nonrelaxed magnetization in the absence of magnetic field gradient and
V; the volume of the compartment ;. According to the divergence theorem, we
obtain’

V= / oi(x, TE; g = 0)dz. (3.18)
Q;

Dividing s by sy cancels the initial magnetization and the homogeneous trans-
verse relaxation. Let E; denote the signal attenuation of the i-th compartment,
and we have

. Ja, pe~ T ¢;(x, TE)dx o, pi(x, TE)dx (3.19)
o Jo, pe~ T pi(x, TE; g = 0)dx Vi ' '
Finally, the signal attenuation of a voxel is
> Jo, pe” T pi(@, TE)dz S VE,
B === =17 = sz. =Y [, (3.20)

where f¥ =V;/ > V; is the volume fraction of ;.

Given the two assumptions, eq. (3.20) reveals that the voxel signal attenua-
tion is the volume fraction weighted sum of the compartmental signal attenua-
tions. Since compartments are decoupled, we can focus on solving eqgs. (3.15)
to (3.17) for a single compartment €2;. The following section presents two meth-
ods for solving the simplified BT equation.

2The derivation of eq. (3.18) is in section B.1.
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3.2 Numerical methods with FE discretization

This section introduces two well-established numerical methods, i.e., finite
element method (FEM) and numerical matrix formalism (numerical MF), for solv-
ing the BT equation based on finite element discretization. We will describe the
main steps of each method and give the parameters that control the simulation
precision. However, the goal is not to provide a comprehensive manual for the
methods. We refer to several works related to the SpinDoctor toolbox [44, 45,
49, 50] for more details about these two methods.

3.2.1 Finite element method

The finite element method is a conventional method for numerically solving
differential equations. It relies on discretization in space to subdivide a large sys-
tem into smaller and simpler parts. Typically, one performs spatial discretization
through segmentation (1D), triangulation (2D), or tetrahedralization (3D) of com-

putational domains, as we did in . The discretization is usually achieved
by meshing tools such as Tetgen [111], CGAL [113], and Gmsh [112].
As explained in the previous section, we focus on solving to

for a single compartment €2;, i € {1, ..., N}. Suppose the compartment ; is dis-
cretized into a tetrahedral volume mesh consisting of K vertices {vk}ke{17,__,K}.
We adopt a FE space that is spanned by a set of continuous piecewise linear
functions {nx }req1,... ky (called P1 elements in FEM literature). The mesh vertices
are also called FE nodes.

To give an intuition about how P1 elements are defined, we first provide an
example of one-dimensional P1 elementsin . Suppose alineis discretized
into four segments delineated by five vertices {vy,...,v5}. The P1 elements de-
fined on the line are the set of piecewise linear functions {hy, ..., h5} shown in

. Each P1 element corresponds to a vertex and is defined based on the
position of the vertex. For example, the function h3 has a value of 1 at the vertex
vz and 0 at other vertices. Together with the fact that hs is a piecewise linear
function, it is completely determined. Other functions are defined in the same
way.

The P1 elements defined on the tetrahedral volume mesh of €; are the ex-
tension of h's to three dimensions. For example, the value of 7 is one at v;, and
0 at other vertices. Since 7y, is piecewise linear, it is non-zero on the tetrahedra
that touch wv;. The set of P1 elements forms a basis of the FE space defined on
the mesh of ;. We call it a FE basis. Three properties of the FE basis functions
are the following:

1. the value of n(v;) is 1 if k = [, 0 otherwise;
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Figure 3.3: Example of one-dimensional P1 elements defined on a line discretized into
four segments.

2. the value of n(x) is non-zero if and only if x is inside a tetrahedron with
vy, as a vertex;

3. the product nn; (k,1 € {1,..., K}) is non-zero (not a zero-valued constant
function) if and only if v, and v, are the vertices of the same tetrahedron.

FEM searches for a solution in the FE space. To achieve this, we need the
weak form of the BT equation. Letting u be a test function, the weak form is

L @ u(x)de = —D, /Q Veile, ) Vu(@)do—n /Q @Gt Hu(z)de.

dt Jo,
(3.21)
An approximate solution of the equation system (eqgs. (3.15) to (3.17)) is
sought for in the form

7

K
pi(at) =Y G(t)m(z) = £(t) H(z), (3.22)
k=1
where H(x) = [ni(x),...,nx(x)]T is the vector of finite element basis func-
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[E1(1), ..., £k ()], The k-th coefficient coincides with the value of ¢; at vertex v,
i.e., pi(vg, t) = & (). We note that the superscript notation 7 only denotes trans-
pose instead of the complex conjugate transpose denoted by .

We choose K test functions which are u = n, k € {1,..., K}. Substituting
eq. (3.22) into eq. (3.21), we obtain an ODE in the time interval ¢ € [0, TE] that
governs the vector function &(t)

d(t)

M=2 = —(DiS + 0 (1) &(1). (3.23)
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with M, S, and J(t) three real-valued matrices of size K x K. The matrix ele-
ments are

M= [ mul@in(e)da, 329
[STmk = /Q Vim(x) - Vi(x)de, (3.25)
[J ()] mr = /Q x - G(t)n,(x)ne(x)de, (3.26)

k3

with m, k& € {1,..., K}. The gradient directions of the three common types of
sequences do not vary with time (G(t) = g - f(t)u,). In these cases, the matrix
J(t) is a product of a time-independent matrix J’, the gradient intensity g, and
the time profile f(¢), i.e., J(t) = f(t)gJ’. The elements of J’ are

(T |k = uy - / TN ()i ()d, m,k € {1,..., K}. (3.27)

i

As J'is time-independent, we do not need to compute it at every time step when
solving eq. (3.23).
The initial condition related to eq. (3.23) is

£0)=1=1[1,..,1)7, (3.28)

which is a consequence of the fact y;(vg, 0) = 1 = & (0) for k € {1, ..., K'}.

Given the tetrahedral volume mesh of ); and the P1 elements, the matrix
elements can be computed numerically. In the SpinDoctor toolbox, the matrix
construction is performed with a vectorized routine proposed by Rahman and
Valdman [189].

The matrices S and M are called stiffness and mass matrices, respectively,
in the FEM literature. The matrix M is positive-definite and S is positive semi-
definite [190]. Due to the three properties of the P1 elements mentioned above,
all three matrices are sparse and symmetric.

The particularity of eq. (3.23) is that it has a mass matrix on the left-hand side,
making it a linearly implicit ODE. SpinDoctor calls MATLAB built-in ODE solvers
with adaptive time-stepping to solve the ODE eq. (3.23) and obtain &(¢) for ¢ €
[0, TE]. The default ODE solver is ode75s [191]. Putting £(¢) into eq. (3.22), we
get the time evolution of ¢. The signal attenuation from the compartment §;
can be computed with ¢(x, TE) (see eq. (3.19)).

Finally, we list the simulation parameters of SpinDoctor’'s FEM implementa-
tion, which control the precision of FEM simulation. They are the following:
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1. A discretization parameter H controls the maximum volume of the tetra-
hedra. The software Tetgen [111] is called in SpinDoctor to tetrahedral-
ize surface meshes or refine volume meshes. If one sets H to h um?, the
maximum volume of tetrahedra will be h um3. If one sets H to —1, the de-
fault discretization routine” of Tetgen is triggered. Tetgen uses an adaptive
method to discretize the volume and add new points to improve the mesh
quality [111]. shows a comparison of meshes with different spa-
tial discretization;

2. A parameter rtol controls the relative residual tolerance of the solution at
all points of the mesh at each time step. Roughly speaking, it controls the
number of correct digits in all elements of £(¢);

3. A parameter atol controls the absolute residual tolerance at all points of
the FE mesh at each time step. This tolerance is a threshold below which
the value of the solution becomes unimportant.

3.2.2 Numerical matrix formalism

Matrix formalism (MF) [47, 48] is a spectral method for solving BT equations
with a computational domain €. It represents the time evolution of magneti-
zation in an explicit matrix form by projecting BT equations to the Laplacian
eigenbasis of the given domain. The method’s main advantage is that once the
Laplacian eigenbasis for a given computational domain is obtained, further com-
putations with various dMRI settings are much faster [47]. The calculation of the
Laplacian eigenbasis, also known as eigendecomposition, for a given computa-
tional domain only needs to be performed once. However, the explicit Laplacian
eigenbases are only known for some simple geometries, e.g., rectangles, cubes,
disks, and spheres. It is nontrivial to find the Laplacian eigenbasis for an arbi-
trary computational domain.

Li et al. [49, 50] proposed a method to numerically compute Laplacian eigen-
bases based on finite element discretization of computational domains. This
method not only retains the advantage mentioned above but also brings the
generality of FEM. We refer to this method as numerical matrix formalism (nu-
merical MF).

We will introduce the numerical MF in two steps: the first gives the represen-
tation of the BT equation with Laplacian eigenbases, and the second explains the
numerical computation of the eigenbases based on finite element discretization.

3https://wias-berlin.de/software/tetgen/1.5/doc/manual/manual005.html#cmd-q
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Matrix formalism representation

Consider the eigenvalue problem for the Laplace operator V-V in the compart-
ment Q; (i € {1, ..., N}) with zero Neumann boundary condition:

V- V() = Mb(z), z €, (3.29)
Viy(x) - n;(x) =0, x € 00, (3.30)

where \is an eigenvalue of the Laplace operator and v the corresponding eigen-
functions. Soma basic facts of the eigenstates are [192, 193]:

1. The spectrum is discrete.
2. All eigenvalues are real and nonnegative.

3. All eigenfunctions can be chosen to be real-valued and form a complete
orthonormal basis in the function space L,(£2;).

Let {(\;, ;) };en- be asetof solutions of eqs. (3.29) and (3.30). We sort the eigen-
values in non-decreasing order:

D= <A< A3

Since (); is a connected domain subject to the zero Neumann boundary condi-
tion, \; is zero and ¢ is a constant function [193]. In addition, we choose the
eigenfunctions to be real-valued and form a complete orthonormal basis. For
numerical purposes, we only keep the J smallest eigenvalues.

We decompose the nonrelaxed magnetization ¢; to the truncated Laplacian

eigenbasis {¥;}cq,....sy to get
J
pi(x,t) =Y cij(t)(x) = C(t)"¥(x), & €, t €[0,TE] (3.31)

where {c;}jeq,..,53 are complex-valued time-dependent coefficients, C(t) =
[ci(t), ..., c;(t)]T is the projection of the magnetization to the Laplacian eigen-
basis ¥(x) = [¢1(x), ..., ¥ (x)]T.

The magnetization projection satisfies an ordinary differential equation [49,

50]

%C(t) = —(D;,A +17A(t))C(t), t € [0,TE]. (3.32)
The matrix A comprises the eigenvalues in its diagonal, i.e., A = diag(\, ..., Aj).
A(t) is a J x J matrix that depends on the magnetic field gradient G(¢). The

elements in A(t) are defined as

LA = /Q - G(t)m(@)n(@)de, (m k) € {1,..., T} (3.33)

i
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For the three common types of sequences, the matrix A(t) is a product of a
time-independent matrix A’, the gradient intensity g, and the time profile f(¢),
i.e, A(t) = f(t)gA’. The elements of A’ are

(A = uy - / T () (x)dx, m, k€ {1,...,J}. (3.34)
Q;
The initial condition related to eq. (3.32) is
C(0) = / ¥ (z)dx = [/V;,0,...,0]". (3.35)
Q;

In general, A and A(t) do not commute, so one cannot integrate eq. (3.32)
unless G is a piecewise constant function. For PGSE sequences which are piece-
wise constant functions, solving eq. (3.32) does not require discretization in time.
The magnetization projection at time T'E is

C(TE) _ 6—(D¢A—1’ygA’)56—DiA(A—6)e—(DiA-H'ygA')éc(O)‘ (336)
From right to left, we explain the meaning of each term of eq. (3.36):
« C(0) is the initial value of the magnetization projection;

o ¢ (Pid1194°)% describes the joint effect of diffusion (D;A) and gradient de-
phasing (1ygA’) of the first pulse whose duration is ¢;

« ¢~ DirMA=9) represents the diffusion effect on the magnetization projection
during the time interval [0, AJ;

« e~ (PiA=1947) s the joint effect of diffusion and gradient dephasing of the
second pulse;

C(TE) is the final value of the magnetization projection at the echo time
TE.

Equation (3.36) reflects the theoretical advantages of matrix formalism. First,
each attenuation mechanism is represented by a matrix in the explicit expres-
sion. Second, the physical parameters, such as diffusivity and gradient intensity,
which characterize the strength of the underlying attenuation mechanism, serve
as scaling coefficients in front of the corresponding matrices [47]. Third, the joint
effect of different mechanisms is formulated as the matrix addition. Fourth, the
effect of attenuation mechanisms on the magnetization projection is properly
translated into the action of a matrix exponential to C.
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Similarly, the value of C at time T'E with d-PGSE sequences is a time-ordered
exponential:

C(TE) = e~ (Dib+17g2 A")o2 ,—DiA(A2=02) ,—(DiA—1792A")d2 , —DiA(tm—01)

e*(DiAfl’yglA/)(sefDiA(Al751)67(DiA+Z’yg1A/)51 C(O) . (3.37)

To solve eq. (3.32) with arbitrary gradient sequences, we can approximate
G (t) with piecewise constant functions [47]. We can also compute C(TE) using
conventional ODE solvers. Putting C(T'E) into eq. (3.31), we find p;(z, TE), thus
the solution of eq. (3.15) as well as the signal attenuation E; (eq. (3.19)).

Characteristic length and time scales

Laplacian eigenstates can be associated with characteristic length and time
scales. On a line segment of length R (represented by an interval [0, R]), the
j-th eigenvalue \; is 72(j — 1)?/R?, and the corresponding eigenfunction is
cos(y/Ajz), x € [0, R]. The half wavelength of the j-th (j > 1) eigenfunction
is 7/+/A;. In analogy with the 1D case, we define the characteristic length scale
¢ for a Laplacian eigenvalue X as [49, 50]

A=0

() =4 ’ (3.38)
= A>0
vy :

The time scale 7(\) sets a “lifetime” for the eigenstate associated with \ [48],

A\ =
T(A) = {+loo’ 0 (3.39)
B A>0.

Indeed, a derivation of eq. (3.36) is that an eigenstate’s contribution to the signal
is proportional to e~ (A=9/7 ~ ¢~%/7_|f the diffusion time ¢, is much greater than
7(A), the corresponding eigenstate vanishes. Comparing 7 with the diffusion
time t; helps decide the number of eigenvalues to keep. Finally, ¢ and 7 are
related by

? = 7Dy (3.40)

Eigenfunctions on FE bases

The above matrix formalism of the magnetization depends on the known Lapla-
cian eigenstates. For complex geometries, it is nearly impossible to find their
analytical eigenfunctions. We now present the way, proposed by Li et al. [49,
50], to compute the eigenstates for complex geometries numerically. The idea is
to discretize the complex geometries and calculate the eigenstates on FE bases.
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Suppose the compartment §2; is discretized into a tetrahedral volume mesh
consisting of K finite element nodes. Same as section 3.2.1, we adopt a FE space
We recall that the set of P1 elements is known for a given tetrahedral volume
mesh.

To solve the eigenvalue problem (egs. (3.29) and (3.30)) in the FE space, we
project the eigenfunction ¢ to the FE basis

Y(x) =Y pumk(x) = p" H(z), (3.41)

with b= [pla "'7pK]T and H(CB) = [771(37)7 "'777K(m)]T‘
The projection allows for the conversion from a continuous Laplace operator
eigenvalue problem to a generalized matrix eigenvalue problem

Sp = AMp (3.42)

where S is the stiff matrix (eq. (3.25)) and M is the mass matrix (eq. (3.24)).

The generalized matrix eigenvalue problem eq. (3.42) yields K pairs of
eigenvalue and eigenvector {(Ax, pr)}reqi,. k3. Putting the eigenvectors into
eq. (3.41), we find the Laplacian eigenfunctions in the FE space.

We recall that M is positive-definite and S is positive semi-definite [190].
These matrix properties ensure that all eigenvalues are real and nonnegative,
and all eigenvectors can be chosen to be real-valued and M-orthonormal (i.e.,
pL Mp, =0ifm # k, 1ifm =k, form, k € {1,..., K}) [194]. The properties of
the eigenvalues and eigenvectors guarantee that items 2 and 3 in section 3.2.2
hold.

It is worth stressing that, with the zero Neumann boundary conditions
(eq. (3.30)), the Laplacian eigenstates depend only on geometrical configura-
tion. We can understand this from the definition of eigenstates. Equations (3.29)
and (3.30) do not involve diffsion coefficient and magnetic field gradient. We can
also see this from eq. (3.42) in which the mass and stiff matrices rely only on the
P1 elements defined in a volume mesh.

Therefore, for a tetrahedral volume mesh, the eigendecomposition only
needs to be performed once. When the eigenstates are known, one can freely
change the diffusion coefficient and the magnetic field gradient (sequence, di-
rection, and intensity) to compute dMRI signals with much less computational
expense than other methods. This is the main computational advantage of nu-
merical MF.

The simulation parameters that control the precision of numerical MF are
the following:
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1. A discretization parameter H controls the maximum volume of the tetra-
hedra. As with the finite element method, the software Tetgen [111] is
called to tetrahedralize surface meshes or refine volume meshes. If one
sets H to h um3, the maximum volume of tetrahedra will be h um?. If one
sets H to —1, the default discretization routine” of Tetgen is triggered. Tet-
gen uses an adaptive method to discretize the volume and add new points
to improve the mesh quality [111].

2. A parameter controls the truncation of the Laplacian spectrum. The pa-
rameter can be the number of retained eigenstates n.;,, the minimum
length scale ¢,,;,, or the minimum time scale 7,,;,,.

3. (Not for piecewise constant magnetic field gradient) A time step dt or two
tolerances rtol and atol that control the precision for solving the ODE
numerically.

Solving generalized matrix eigenvalue problems is difficult and
time-consuming [47]. The matrix exponential and multiplication required in
and can also become expensive if the number of simulations
is very large. To perform simulations with neurons in NeuronSet, the previous
implementation of numerical MF in SpinDoctor is not efficient enough. The next
section focuses on optimizing the numerical matrix formalism by adopting an
appropriate eigendecomposition algorithm and GPU computation. The opti-
mization leads to a tenfold improvement in computational efficiency, which is
the second contribution of this thesis.

3.3 Optimizing numerical matrix formalism

Simulating a dMRI signal on a realistic neuron mesh can take several sec-
onds or even minutes [116]. We aim to simulate hundreds of dMRI signals from
each neuron mesh in NeuronSet. The total computational demand is a sub-
stantial challenge for most existing approaches. To meet such a huge demand,
we leverage the numerical matrix formalism implemented in the SpinDoctor
toolbox [44, 49, 50]. Nonetheless, the previous implementation is still not fast
enough. The numerical matrix formalism has two time-consuming operations:
matrix eigendecomposition required in and matrix multiplication re-
quired in and . We aim to speed them up.

3.3.1 Method optimization

“https://wias-berlin.de/software/tetgen/1.5/doc/manual/manual005.html#cmd-q
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A shift-and-invert transformation helps accelerate the eigendecomposition
[195]. After the transformation, we obtain a standard eigenvalue problem

(8§ —wM)'Mp = vpwherev = (3.43)

A—w’
which is equivalentto eq. (3.42). We then employ the krylov-Shur algorithm [196]
to solve eq. (3.43) instead of eq. (3.42). This method allows us to obtain only a
few eigenvalues close to w without computing the whole spectrum. We need
eigenvalues close to zero, so we set w = —1078. Letting w be slightly smaller
than the target value is a trick to avoid the singularity of v [195].

Regarding the matrix exponential and matrix-vector product required in the
computation of the magnetization projection (egs. (3.36) and (3.37)), the previ-
ous implementation of numerical MF in SpinDoctor uses Matlab built-in func-
tions, exom [197, 198] and mtimes, that execute on CPUs. These basic algebraic
operations can be accelerated using GPU computation.

Additionally, the computation of C(¢) mainly involves the product of a matrix
exponential with a vector, i.e., y = e*-x. For this particular operation, Al-Mohy et
al. [199] propose an efficient method to compute the resulting vector y without
explicitly evaluating the matrix exponential e“. It relies on a scaling and squaring
method [200] and truncated Taylor series to approximate the final result. A Mat-
lab implementation of this method is called exomv°. We further speed up expmv
by making it compatible with GPU matrices. Since the method avoids the explicit
computation of matrix exponential, it is also memory-efficient. Saving memory
is advantageous when computing large matrices, as memory is usually scarce
on GPUs. The computation of C(t) has been accelerated by the GPU-version of
expmv.

3.3.2 Performance improvement

We made the above optimization to the numerical MF implemented in the
SpinDoctor toolbox. To compare the computational efficiency before and after
the optimization, we conduct the eigendecomposition for three spheres to find
the smallest 1000 eigenvalues using the eigs function [195, 196] implemented
in Matlab R2021b. The computation is performed on a computer with 20 phys-
ical cores (2 Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz), 256GB RAM, running
CentOS Stream release 8.

Table 3.1 lists the computation times before and after the optimization. The
optimization achieved a twenty-fold speedup. Moreover, the speedup does not
degrade the computational accuracy. We get the same eigenvalues and eigen-
vectors. A typical neuron mesh has around 80,000 FE nodes and needs about

>https://github.com/higham/expmv
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3,000 eigenvalues. After the optimization, the eigendecomposition for each neu-
ron takes less than 10 minutes.

Table 3.1: Computation times of eigendecomposition for three spheres. The optimiza-
tion achieved a twenty-fold speedup.

sphere radius 5 pum 10 pm 20 um

number of FE nodes = 5222 18981 80191
before optimization 51.48s 665.49s 12944365
after optimization  10.93s 47.86s  431.97s

speedup 4.71 13.90 29.97

Another time-consuming step is calculating the magnetization projection
C(t). The previous implementation utilizes Matlab’s built-in function expm run-
ning on CPUs (“CPU+expm”). We replace expm with the function expmv [199]
and modify expmv to make it compatible with GPU matrices (“GPU+expmv”). We
compare the computational efficiency of the two implementations by conduct-
ing simulations on ten neuron meshes. The numbers of FE nodes of the meshes
range from 30,000 to 150,000. For each cell, we compute the magnetization
projection using PGSE sequences with 2 diffusion times, 50 gradient intensities
ranging from 0.5 to 1000 mT"/m, and 10 gradient directions.

We utilize two computing platforms for computational efficiency comparison

1. Platform 1: a computer with 64 physical cores (AMD EPYC 7742 64-Core
Processor), 512GB RAM, running CentOS Stream release 8;

2. Platform 2: a computer with 20 physical cores (Intel(R) Xeon(R) Silver 4214R
CPU @ 2.40GHz), 384GB RAM, one Nvidia A40 48G graphics card, using
CUDA 11.7, running CentOS Stream release 8.

We run the previous implementation “CPU+expm” on . Simula-
tions with “GPU+expmv"” are performed on . shows the
overall computation time for evaluating for each neuron mesh as a

function of its FE node number. The combination of the expmv and the GPU
computation brings a ten-fold speedup. Additionally, the new implementation
does not reduce the computational accuracy either.

Next, we compare the optimized numerical MF with other simulation meth-
ods.

3.3.3 Simulation efficiency comparison
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Figure 3.4: Overall computation time for evaluating eq. (3.36) with two diffusion times
(8/19 and 8/49 ms), fifty gradient intensities ranging from 0.5 to 1000 m7'/m, and ten
gradient directions. The x-axis represents the number of FE nodes. The y-axis in the
logarithmic scale shows the computation times. The blue line with circular markers cor-
responds to the previous implementation that runs Matlab’s built-in function expm on
CPUs. The orange dashed line with dot markers corresponds to the new implementa-
tion with the GPU-version of expmv function. The combination of the exomv and the
GPU computation brings a ten-fold speedup.

This chapter presented two types of dMRI simulations to solve the BT equa-
tion. One can also compute dMRI signals using Monte-Carlo methods to simu-
late the Brownian motion of random walkers. Since each random walker is inde-
pendent of the others, Monte-Carlo methods are particularly suitable for parallel
computing. On the contrary, it is hard to speed up FEM using GPUs due to the
serial nature of FEM. The implementation of FEM in SpinDoctor utilizes multipro-
cessing to achieve parallel computation. FEM, MF, and Monte-Carlo methods are
the three main approaches to dMRI simulations.

The debate about the computational efficiency of these three methods has
always existed in the community. FEM suffers from low efficiency when the
mesh size becomes huge. Matrix formalism is believed to be fast but was limited
to simple shapes due to the difficulty of computing the Laplacian eigenbasis for
arbitrary geometries. In addition, Monte-Carlo methods are constrained by their
slow convergence rate (1/v/Nyalkers With Nyaikers the number of random walkers)
[30]. The optimized numerical MF in this thesis is promising to end the debate.

This section compares the execution times of the three methods by conduct-
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ing dMRI simulations on a neuron mesh. The ID of the neuron is NMO_85632.
It is in the archive Semendeferi_ Muotri of NeuronSet. We compute the dMRI sig-
nals using PGSE sequences with 6/A = 8/49 ms and 100 gradient intensities
linearly spaced between 3 and 300 m7'/m. The gradient direction is fixed to be
the x-direction, i.e., [1,0,0]”. The diffusivity is 3 x 1073 um?/pus.

We choose the following numerical implementation for each method:

1. FEM: the SpinDoctor implementation running on Platform 1 with multipro-
cessing computation being activated;

2. Numerical MF: the optimized GPU version implemented in SpinDoctor run-
ning on Platform 2;

3. Monte-Carlo method: disimpy [65], a GPU-based Monte-Carlo simulator,
running on Platform 2.

The simulation parameters of the Monte-Carlo method that control the simu-
lation precision are the number of random walkers Nyakers and the number of
time steps M.

To quantify the simulation accuracy, we compute reference signals using FEM
by refining the discretization in space and time. The simulation parameters for
the reference signals are H = 0.5 um3, rtol = 1075, atol = 10~%. A comparison
between a coarse and a refined mesh is shown in fig. 3.5.

We denote the reference signals by s.s and the simulated signals as s. The
relative error ¢ is defined as

S — Spef

€= x 100%. (3.44)

Sref

For a fair comparison, we choose the simulation parameters so that the maxi-
mum relative errors of the three methods are around 2%. The simulation pa-
rameters for FEM are H = —1, rtol = 107%, atol = 10~°, for numerical MF are
H = —1, {,,;,, = 1.5 um, and for the Monte-Carlo method are Nyaikers = 10°, N; =
5 x 10%. Figure 3.6 shows the relative errors of the three methods with the above
settings. It can be seen that all three methods have comparable accuracy.

With similar precision, we can measure the computation times. The execu-
tion of the three methods can be divided into two steps: preparation and signal
computation. The preparation step of FEM involves the computation of FE ma-
trices (e.g., eqs. (3.24) to (3.26)). We treat the eigendecomposition (eq. (3.42))
as part of the preparation step for numerical MF. The preparation step of nu-
merical MF also includes the computation of FE matrices. For the Monte-Carlo
method, the preparation step includes calculating the initial positions of random
walkers.
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Figure 3.5: Comparison between a coarse and a refined mesh. The two meshes corre-
spond to the selected neuron in this section. The ID of the neuron is NMO_85632. Itis in
the archive Semendeferi Muotri of NeuronSet. Half of the meshes are made transparent
to show the interior tetrahedra. (a) a coarse volume mesh generated by Tetgen with
H = —1. It has 79992 vertices. (b) a refined volume mesh generated with H = 0.5 um?.
It has 163905 vertices.

The signal computation of FEM is the step in solving the ODE eq. (3.23).
For the numerical MF, this step involves evaluating eq. (3.36). The Monte-Carlo
method computes dMRI signals by simulating the Brownian motion of random
walkers whose initial positions are set in the preparation step. We refer to the
execution times of signal computation as computation times.

We list the execution times of the three methods in table 3.2. The numerical
MF is much more efficient than the other two methods. Thanks to the optimiza-
tion made in section 3.3, the eigendecomposition required in the preparation
step of numerical MF takes 219 seconds, which is seven times faster than the
Monte-Carlo method. We reiterate that the eigendecomposition only needs to
be done once for a given geometrical configuration. Most importantly, the opti-
mized numerical MF is highly advantageous in computing signals. For comput-
ing 100 dMRI signals, it is 20 times faster than FEM and 65 times faster than the
Monte-Carlo method.

3.4 Numerical experiments
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Figure 3.6: The relative errors (in percent) of three simulation methods (FEM, numerical
MF, and a Monte-Carlo method) with respect to the gradient intensity. The maximum
relative errors are about 2%. We perform the simulations on the neuron whose ID is
NMO_85632 using PGSE sequences with §/A = 8/49 ms and 100 gradient intensities
linearly spaced between 3 and 300 mT'/m. The gradient direction is fixed to be [1, 0, 0]T.
The diffusivity is 3 x 1073 um?/us. The relative errors are defined as |s — syef|/|sref| X
100%. We compute the reference signals using FEM by refining the discretization in
space and time. Then we perform simulations using the three methods on the coarse
mesh shown in fig. 3.5(a). The simulation parameters for FEM are H = —1, rtol =
1074, atol = 1075, for numerical MF are H = —1, /,,;, = 1.5 um, and for the Monte-
Carlo method are Nyawers = 10°, Ny = 5 x 10%. All three methods converge to the
reference solution.

Table 3.2: Execution times of three common dMRI simulation methods. The FEM is
running on the CPU platform (Platform 1). The numerical MF and Monte-Carlo method
is running on the GPU platform (Platform 2).

Methods Max. relative error (%) Preparation times(s) Computation times (s)
FEM 1.73 0.7 281.9
Numerical MF 1.69 219.9 13.5
Monte-Carlo method 2.36 1474.4 902.6

In the previous sections, we introduced the BT equation and presented two
ways to solve the BT equation numerically. In particular, we optimized the nu-
merical MF implemented in the SpinDoctor, making it the fastest dMRI simula-
tor. Together with polygon meshes, the numerical simulations allow us to study
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dMRI signals on various geometrical configurations with different gradient se-
qguences. We leverage realistic neuron meshes and dMRI simulators to study
the water exchange inside a neuron and the power-law scaling. Finally, a statis-
tical analysis shows that we can relate the soma sizes with six markers that can
be computed from dMRI signals.

3.4.1 Diffusion directions distributed in two dimensions

We generated 90 directions uniformly distributed on the unit semi-circle lying
in the x — y plane (plotting 180 directions on the unit circle because simulated
signals are antipodally symmetric) and computed the diffusion MRI signals using
FEM in these 180 directions for three sequences:

« PGSE (§/A = 2.5/5 ms);
« PGSE (§/A = 10/43 ms);
» PGSE (§/A = 10/433 ms).

The simulation parameters are H = 0.5 um?, rtol = 1073, atol = 1075, With this
choice, we verified that the signal is within 1% of the reference solution for all
geometries (the whole neuron, the soma, and the two dendrites branches) for
the three gradient sequences simulated.

The results for the spindle neuron 03b_spindle4aACC in the Neuron Module
are shown in . We plot the signal attenuation in the 180 directions in
the x — y plane. The simulated geometries are superimposed on the plots for
visualization.

It can be seen that the dendrite branch diffusion signal shape is more like an
ellipse atb = 1000 pus/um?, whereas at b = 4000 us/um? the shape is non-convex.
The signal shape of the soma is like an ellipse except for b = 4000 us/um? at the
two shorter diffusion times. At the two shorter diffusion times, the soma signal
magnitude at b = 4000 us/um? is much reduced with respect to the magnitude
at b = 1000 us/pm?, in contrast to the dendrite branches, where the difference
in the signal magnitude between the two b-values is not nearly as significant. For
the soma, at the long diffusion time, there is not a large reduction in the signal
magnitude between b = 1000 us/um? and b = 4000 us/pum?.

By visual inspection, at the lower b-value, the signal in the whole neuron is
close to the volume-weighted sum of the signals from the three cell components
(the soma, the upper dendrite branch, and the lower dendrite branch). A quan-
titative study is conducted in the next section.

3.4.2 Exchange between soma and dendrites

77



0.8

0.6

0.4r

Geometry
-— = §=2.5A=5,b=1000

0,A = 43,b = 4000
10, A = 433,b = 1000
10, A = 433, = 4000

02f

y-direction
o

0.2+
0.4k
-0.6
-0.8

-1 L L L L L L L L L )
-1 -0.8 -06 -04 -02 0 02 04 06 08 1
x-direction

0.8
0.6

0.4r

0

y-direction

0.4t
-0.6 -
-0.8 |

-1 L L L L L L L L L
-1 -0.8 -06 -04 -0.2 0 0.2 04 06 0.8
x-direction

0.2 |

-0.2

-~

— e = =

-

y-direction

y-direction

0.8
0.6
0.4r

0.2F

0.2}
0.4}
0.6}

-0.8

-1 L L L L 1 L L L L )
-1 -08 -06 -04-02 0 02 04 06 08 1

0.8

0.6

0.4r

0.2 |

0

-0.2

0.4

-0.6 |

-0.8

-1

x-direction

(d)

-1 -08 -06 -04-02 0 02 04 06 08 1

x-direction

Figure 3.7: The signal attenuation in 180 directions lying on the x — y plane, uni-
formly distributed on the unit circle. The distance from each data point to the origin
represents the magnitude of the signal attenuation. The simulation parameters are
rtol = 1073, atol = 107>, H = 0.5 um?. The diffusion coefficient is 2 x 1073 um?/pus.
(a) the whole neuron (19425 vertices). (b) the dendrite1 (10825 vertices). (c) the soma
(5842 vertices). (d) the dendrite2 (6444 vertices).

Here we compute the volume-weighted composite signal of the 3 cellular
parts

‘/somaEsoma + VdendritelEdendritel + ‘/dendriteQEdendriteQ (3 45)

Ecomposite =
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and compare it to the signal attenuation of the whole neuron in the different
gradient directions. In fig. 3.8, we see that the signal difference between the two
is larger at longer diffusion times and higher b-values. The error also presents
a gradient-direction dependence. According to fig. 3.7(a) and fig. 3.8, we can
see that the erroris larger in the direction parallel to the longitudinal axis of the
neuron thanin the direction perpendicular to the longitudinal axis. Itis apparent
that the exchange effect depends not only on diffusion times but also on the
bvalues. The exchange effect is not negligible, especially for long diffusion times
and high bvalues.

a b
0.16 r r r ‘( ) - . r 25 - r : ‘( ) :
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Figure 3.8: (a) The absolute error between volume-weighted composite signal and
whole neuron signal. (b) The relative error between volume-weighted composite sig-
nal and whole neuron signal. Ninety gradient directions uniformly placed on the unit
semi-circle in the x — y plane were simulated. The gradient direction angle is given with
respect to the z-axis. The position of the neuron can be seenin fig. 3.7(a).
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3.4.3 Power-law scaling

In the work of Veraart et al. [85], it was shown that signal attenuations of
tubular structures such as axons exhibit a certain high b-value behavior, namely,
1

the direction-averaged signal, E, is linear in 75 at high b-values:

_ 1
F = / FEdug ~ cy+ c1——, (3.46)
fugl=t Vb

with ¢ the y-intercept and ¢, the slope of the linear function. The linear relation-
ship eq. (3.46) is often referred to as the power-law scaling of direction-averaged
signals. Because the dendrites of neurons also have a tubular structure, we test
whether the direction-averaged signal £ of dendrite branches also exhibits the
power-law scaling. We computed E for the whole neuron as well as its two den-
drite branches, averaging over 120 gradient directions uniformly distributed in
the unit sphere. The results are shown in fig. 3.9. We see clearly the linear re-
lationship between E and \/LB in the dendrite branches for b-values in the range

2500 ps/pm? < b < 20000 ps/pum?. In contrast, in the whole neuron, due to the
presence of the soma, such a linear relationship is not exhibited. By simulating
for both Dy = 2 x 1073 um?/us and Dy = 1 x 1072 um?/us we see that the fitted
slope ¢, is close to \/%0.

3.4.4 Markers of the soma size

As we have shown in fig. 3.9, the linear relationship between E and \/LE ie.,
the power-law scaling of direction-averaged signals [85], doesn’t hold due to the
presence of the soma and the exchange effects between the soma and the den-
drites. The breakdown of the power-law scaling is also observed in [86, 88, 99].
By leveraging the collection of the realistic neuron meshes in Neuron Module,
we statistically show that the deviation from the power-law scaling allows us to
define several markers for revealing the soma size.

To do this, we conducted the following simulations that are slightly different
from the constant (9,A) experiments in [85, 86, 88] and shown in fig. 3.9. The
signals are numerically computed using numerical MF. In the following, we held
the gradient intensity constant, ¢ = 37 mT'/m, and varied § to obtain a wide
range of b-values, all the while choosing A = § (PGSE sequence). The simulations
were conducted in 64 gradient directions, and the signals were averaged over
these directions. This was performed for the full set of 65 neuron meshes in the
Neuron Module.

Infig.3.10, we show an example of the simulated signal curve and the power-
law approximation for the neuron 03a_spindle2aFi. From the direction-averaged
simulated signals, we find the inflection point (blue dot) of the signal curve (black
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Figure 3.9: The direction-averaged signal for the neuron 03b_spindle4aACC. The E
is averaged over 120 diffusion directions, uniformly distributed in the unit sphere.
The simulation parameters are rtol = 1073, atol = 107°, Htetgen = 0.5 um3. The
diffusion-encoding sequence is PGSE (/A = 10/43 ms). The b-values are b =
{60000, 40000, 20000, 12000, 10000, 8000, 7000, 6000, 4000, 2500} us/um?. (@) Dy = 1 x
1073 um?/ps. (b) Do = 2 x 1073 um?/us.

curve). We fit the power-law approximation (straight blue dashed line) around
the inflection point. The power-law region is the range where the relative error
between the simulated signal curve and the power-law fit is less than 2% (width
of the yellow region), and the approximation error is estimated by the area be-
tween the signal curve and the power-law fit to the left of the inflection point
(the green area).

In order to characterize the influence of soma on the power-law approxima-
tion, we chose the following six candidate markers:

* z¢: the x-coordinate of the inflection point;
* 70: the y-coordinate of the inflection point;
* ¢o: the y-intercept of the power-law fit;

* ¢1: the slope of the power-law fit;

+ &£: the power-law approximation error;

+ w: the width of the power-law region.
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Figure 3.10: The direction-averaged signal curve for the neuron 03a_spindle2aFi. The
signals are computed using the numerical MF within the SpinDoctor Toolbox. The E
was averaged over 64 diffusion directions, uniformly distributed in the unit sphere. The
b-values are greater than 278 us/pum? and the diffusivity is Dy = 2 x 1073 um?/us. The
gradient intensity is constant, g = 37 mT'/m, and § was varied to obtain a wide range
of b-values, all the while choosing A = ¢ (PGSE sequences). The blue dot indicates the
inflection point of the simulated signal curve. The power-law fit is performed around
the inflection point. The power-law region is the width of the range where the relative
error between the simulated signal and the power-law approximation is less than 2%.
The area between the simulated curve and the power-law fit to the left of the inflection
point represents the approximation error of the power-law fit.

A statistical study of the above 6 candidate markers on the collection of the 65
neurons in the Neuron Module was performed. Since the undersampling when
\/il; approaches 0 could produce a significant numerical error, we only kept the
neurons whose x, are greater than 0.016 mm - s~'/2. In total, 28 spindle neurons
and 21 pyramidal neurons were retained.

We first plot the candidate markers with respect to the soma volume v g4
in fig. 3.11. Each data point in the figure corresponds to a neuron (for a total of
49). It can be seen that z, ¢y, ¢1, £, and w exhibit an exponential relationship
with the soma volume. The fitted equations allow us to infer the soma volume
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by measuring the markers. We also see that y, is not a biomarker for the soma
volume. Similarly, we show the scatter plot of the candidate markers with re-
spect to the soma volume fraction f,,, in fig. 3.12. In this case, the xq, ¢;, and w
are not markers of the soma volume fraction. The candidate markers yy, ¢, and
& seem capable of indicating the lower bound for the soma volume fraction.
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Figure 3.11: The scatter plots of the logarithm of soma volume with respect to the six
markers. Each blue dot represents the data from one of the 49 neurons (28 spindle
neurons and 21 pyramidal neurons) retained for this study. (a) the x-coordinate of the
inflection point z¢. (b) the y-coordinate of the inflection point yo. (€) the y-intercept of
the power-law fit ¢y. (d) the slope of the power-law fit ¢;. (e) the power-law approxima-
tion error £. (f) the width of the power-law region w.

3.5 Summary

This chapter concerns three subjects: (1) presenting the Bloch-Torrey equa-
tion and the numerical methods to solve it; (2) optimizing the numerical matrix
formalism; (3) demonstrating the benefits of diffusion MRI simulation of realistic
neurons.

First, we introduced a general form of the Bloch-Torrey equation. By assum-
ing that compartment interfaces are impermeable and the transverse relaxation
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Figure 3.12: The scatter plots of the logarithm of soma volume fraction with respect to
the six markers.

is homogeneous, we obtained a simplified form of the BT equation concerning
three main attenuation mechanisms: diffusion, gradient dephasing, and bound-
ary restriction. Then, we presented two numerical methods, i.e., finite element
method and numerical matrix formalism, for solving the BT equation. The nu-
merical MF, combining the advantages of classical MF and FEM, is of great nu-
merical interest.

Second, we optimized the computational efficiency of the numerical MF by
adopting an appropriate eigendecomposition algorithm and leveraging GPU
computation. The numerical MF after optimization is ten times more efficient
than the previous version (see fig. 3.4). The optimized method is then compared
with FEM and a GPU-accelerated Monte-Carlo method. The efficiency advantage
of the optimized numerical MF is significant. With comparable accuracy, the nu-
merical MF is 20 times faster than FEM and 65 times faster than the Monte-Carlo
method (see table 3.2). Furthermore, the optimized numerical MF can compute
hundreds of dMRI signals from a neuron mesh in a few minutes, making large-
scale dMRI simulations practical. The optimization of the numerical matrix for-
malism is the second contribution of this thesis.

Finally, we performed dMRI simulations on the realistic neuron meshes con-
structed in chapter 2. Using segmented neuron meshes in Neuron Module, we
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showed that the water exchange effect is not negligible, especially at long dif-
fusion times or high bvalues. In addition, we demonstrated that the power-law
scaling holds despite the structural deviation of the dendrites from cylinders.
However, the power-law scaling pattern of the intracellular signals is modified
by the presence of the soma. Leveraging the deviation of intracellular signals
from the power-law scaling, we defined six measurable markers that can be sta-
tistically related to the soma size. The results of these numerical experiments
confirm the possibility of adopting a simulation-driven approach for brain mi-
crostructure imaging.

The ultimate goal of this thesis is to facilitate simulation-driven brain mi-
crostructure estimation. This chapter contributed to this goal by providing ultra-
fast numerical matrix formalism. Besides, the statistical analysis conducted
in suggests the existence of underlying mappings between dMRI
signals and the microstructure properties of interest. This inspires us to em-
ploy machine learning techniques to approximate the underlying mappings. We
present the simulation-based brain microstructure imaging using artificial neu-
ral networks in

As a spectral method, the numerical matrix formalism has demonstrated its
theoretical and numerical advantages in this chapter. The Laplacian eigenbases
adopted in numerical MF are geometry-specific. We wonder if it is possible to
decompose the diffusion MRI signal on a Fourier-type basis. Contrary to the
Laplacian eigenbasis, the Fourier basis functions do not depend on the geo-
metrical configuration. This independence could allow for comparing various
geometries and provide a new spectral perspective. The next chapter presents
a new numerical method for solving the BT equation, which relies on potential
theory and the decomposition of dMRI signals on a Fourier-type basis.
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Chapter 4

Solving Bloch-Torrey Equation with
Potential Theory

Existing simulation frameworks use the finite element methods or the Matrix
Formalism method to solve the BT equation. As the third contribution of this
thesis, we proposed a new method based on the efficient evaluation of layer
potentials. In this chapter, the mathematical framework and the numerical im-
plementation of the new method are described. We demonstrate the conver-
gence of our method via numerical experiments and analyze the errors linked to
various model and simulation parameters. Since our method provides a Fourier-
type representation of the diffusion MRI signal, it can potentially facilitate new
physical and biological signal interpretations in the future. This chapter is mainly
based on the work in [201].

4.1 Introduction

We propose a new method based on potential theory from classical mathe-
matics that provides a Fourier-type representation of the diffusion MRI signal.
The main challenge of this method involves the fundamental solution of the dif-
fusion equation, also known as the heat kernel, which has a singularity in time.
In theory, infinite Fourier modes are required to represent the heat kernel due to
the singularity, while only finite Fourier modes are accessible for practical com-
putation. This practical limitation may lead to the Gibbs phenomenon that could
degrade the approximation accuracy [202]. In order to overcome this challenge,
we follow the path of several previous works [203-206] focusing on the eval-
uation of heat potentials. In particular, in [203], the authors proposed several
fundamental ideas, such as (1) splitting the heat potential into a local in time part
and a history partin order to overcome the singularity of the heat kernel; (2) ap-
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proximating the local in time part by asymptotics; (3) leveraging the exponential
decay of the history part to represent it using a few Fourier modes. These ideas
are crucial to the Fourier-type representation of the diffusion MRI signal derived
in this chapter.

Despite the intrinsic similarity between thermal conduction and diffusion
process, in the literature, there have not been previous works about the rep-
resentation of the diffusion MRI signal via potential theory, and certainly not by
using a Fourier basis for layer potentials. As the first work addressing this sub-
ject, we restrict ourselves to the 2D setting with impermeable interfaces. We
also restrict ourselves to simplified conditions on the diffusion-encoding gradi-
ent. Specifically, we derive our method under the narrow pulse assumption,
where the diffusion-encoding pulse duration is very short compared to the de-
lay between the pulses. These two assumptions allow us to apply the theory
developed for the diffusion kernel to the diffusion MRI application.

We call our method the Fourier Potential Method (FPM). The main steps of
our method are:

1. transforming the BT equation to the diffusion equation using the narrow
pulse assumption on the diffusion-encoding sequence;

2. formulating the solution of the diffusion equation using the single layer
potential;

3. approximating the singular part of the single layer potential using an
asymptotic expansion and solving the integral equation;

4. storing the non-singular part of the single layer potential using the Fourier
coefficients, leveraging the fast decay in the Fourier spectrum;

5. computing the diffusion MRI signal using the above representation.

The chapter is organized as follows. introduces the mathemati-
cal framework of FPM. describes the Fourier Potential Method and
error analysis. contains numerical results, including convergence in
the various simulation parameters. contains conclusion and future
perspectives. In the appendix, shows a flowchart and a streamlined
description of the numerical implementation.

4.2 Mathematical framework

We aim to simulate the diffusion MRI signal due to spins inside biological cells
and assume that the spin exchange across cell membranes is negligible under
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the simulation conditions. The impermeability assumption allows us to focus on
solving the BT equation on a connected domain. Let €2 be the 2D computational
domain, and let I' = 912 be the domain boundary.

4.2.1 Bloch-Torrey equation
We recall the simplified form of the BT equation:

0
Ew(w,t) = —ygfilt)uy - x o(x,t) + DoV - Vo(x,t), xeQ, (4.1)
DoVy(x,t)-n =0, x €0, (4.2)
¢(x,0) = p, r e, (4.3

where Dy is the intrinsic diffusion coefficient in the domain €2 and p = 1 the
initial magnetization.

We adopt the PGSE sequences [18] in this chapter. The PGSE time profile
f1is shown in . If the rectangular pulses are narrow, i.e., § < A, the
BT equation can be transformed into the diffusion equation. This assumption is
called the narrow pulse approximation [18].

The diffusion MRI signal is measured at echo time T'E for PGSE. The signal
attenuation FE is the integral of p(x, TE) divided by the area of Q:

1
E = —/ o(x, TE) d. (4.4)
|Q| e

4.2.2 Narrow pulse approximation

We restrict ourselves to simplified conditions on the diffusion-encoding gra-
dient. Specifically, we derive our method under the narrow pulse assumption,
where the pulse duration is very short compared to the inter-pulse duration [18],
i.e., 0 < A. This assumption enables us to ignore molecular diffusion during the
pulses of PGSE.

Let us consider spins initially located at «. After the first pulse of PGSE, the
complex phase of these spins is e 979, This means the complex magnetization
at t = 0 due to a uniform initial distribution p can be written as:

o(x,0) ~ pe 9T g, (4.5)

Because the magnetic field gradient is turned off after the first pulse, i.e.,
g = 0, the magnetization between pulses satisfies the diffusion equation:

%gp(w,t) = DyV - -Voy(x,t), xeQ,teldAl] (4.6)
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subject to the zero Neumann boundary condition:
DoVp(xo,t) -m =0, x€ It e[ A] (4.7)

where n is the unit outward pointing normal vector at xy, and initial condition
att =4 is:
o(x,0) =pe 9% Q. (4.8)

During the second pulse, at the point x, the additional accumulated complex
phase is €79'®, so the magnetization at the position  and time TE is:

o(x, TE) ~ p(x, N)e®9% 2 c Q. (4.9)

We emphasize again that we used the assumption § < A. The echo-time TE is
usually some time after the end of the second pulse (i.e., TE > A + ).

The signal attenuation E is proportional to the total magnetization measured
at the echo time:

1
E=— / o(x, A)e9® da. (4.10)
|Q‘ e

4.3 Method

Our method aims to solve eqs. (4.6) to (4.8) based on potential theory, which,
in the meantime, provides a Fourier-type representation of the diffusion MRI
signal. We derive our new method below. In the appendix, chapter C shows
a flowchart and a streamlined description of the numerical implementation of
FPM.

4.3.1 Solution of the diffusion equation and the diffusion MRI
signal

Before we solve the diffusion equation using potential theory, we transform

the initial and boundary conditions. We transform the diffusion equation in

eqs. (4.6) to (4.8) such that it is subject to zero initial conditions and complex-
valued non-zero Neumann boundary conditions. Define

w(wm,t) = (@, t 4 8) — pe ™ PolldlPte=2maz o c Ot c[0,A—6], (411)

where q = dyg/2m. We will work on the quantity w(x,t) defined in eq. (4.11),
which satisfies the diffusion equation:

aw(w,t) = DoV -Vw(x,t), xec,te0,A—-7, (4.12)
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subject to non-homogeneous Neumann boundary conditions:
DoVw(xg,t) - = DoN (o, t,q) a9 € 0N, t € [0, A — 0], (4.13)
and zero initial conditions:
w(x,0) =0, xe€. (4.14)

The Neumann forcing term is complex-valued, periodic in space in the direction
q, and decays exponentially in time:

N(zo.t,q) =2mpq - n (e ™90) e~4m* Dollall*t (4.15)

The signal attenuation E can be reformulated in terms of w:
1
E = pe~tm Pollal*(a-0) 1. Tl / w(x, A — 8™ . (4.16)
Q

Inthe above, the first term is explicit, and the second term needs to be computed
numerically. We define a time-dependent integral whose value att = A —§ gives
the second term:

w(q,t) = / Qw(w,t)e%‘q'mdw,t €[0,A 4. (4.17)
xe

The function @ can be expanded by the Green'’s second identity:

w(q,t) = ( / DoV - Vuw(z, t)e*™ 3% dz + B>

B = / 2miDoq - nw(x, t)e*™ % ds, — DoVw(z,t) - ne’™¥%ds,,
Gl) Ge)

2 2

Using the diffusion equation and the nonhomogeneous Neumann boundary
conditions, we get an ordinary differential equation for @:

d
%w(q,t):—47r2D0Hq||2w(q,t)—2ng / q-nw(x,t)e’™ds,,  (4.19)
o0

which has an analytical solution:
t 2 2
w(q,t) = —DO/ / 2mq - ne 4" Dollall ('5—7)(10(337 T>62mq-md7_dsx7
oI (4.20)
= Dopl/ / N*(x,t — 7,q)w(x, 7)dTds,.
80 Jo
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The asterisk symbol % denotes the complex conjugation. It can be proved that
eq. (4.20) satisfies a recursive relationship in time:

¢
,U) =e 0 w(q,t — AL) + Dop~ T, t—7,q)w(x, 7)dTdSs,.
@(q 472D ||qH2At A D 1 N* drd
o9 Ji—At
(4.21)

Equation (4.17) and eq. (4.20) are mathematically equivalent for evaluating the
diffusion MRI signal (att = A — ¢). It can be seen that, while eq. (4.17) requires
the value of w on the entire domain 2, eq. (4.20) only needs the value of w on
the boundary, which is more computationally efficient. The recursion in time
above also increases computational efficiency. We will use the method of layer
potentials to get the boundary values of w in the next section.

4.3.2 The single layer potential representation

ThePDEinegs.(4.12)to(4.14) has Neumann boundary conditions, zero initial
conditions, and zero forcing term, allowing us to represent the solution w(x, t)
as a single layer potential, with a density function ;. defined on 02 [206]. In other
words, w(x,t) = S[u](x, t). The definition of the single layer potential is

t
w(x, t) = S[p)(x,t) = /0 ., DyG(x —y,t — 7)u(y, 7)ds,dr, (4.22)

where G(x,t) is the fundamental solution of the 2D diffusion equation in a box
[—L1/2,L1/2] x [—Ly/2, Ly/2], with periodic boundary conditions. The funda-
mental solution G(x, t) has two equivalent representations [203]:

_ lx—zoL|? z@LH2

Gauss (X, 1) = (4mDot) ™" Y " e ot (4.23)
zE7>2
1 2 2
G urier th _ 6—47r Dol|v|| t627rzu-x7 (424)
" ( ) L1L2 I/—ZZ®L
zEZ?

where ® and @ are Hadamard product and Hadamard division, respectively,

and L = [L,, Ly)T. For the convenience of notation, in the following, we set
L, = Ly = L and note by Av = +. In this way, we rewrite eq. (4.24) as
G Fourier (X, 1) = Z e DollvlPt 2mwx 2 (4.25)
v=zQL
z€7?

in order to recall its relationship with the Fourier transform. The imposition of
periodic boundary conditions on the faces of the box allows us to use the dis-
crete Fourier series.
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The density function p is chosen to be a causal function and is determined
by imposing the Neumann boundary conditions on the geometry boundary 052
[205]:

lim  VS[ul(x,t) - n=N(xy,t,q), x€dNtel0,A—7] (4.26)

r—xo€eOf)

Using the jump property of the trace of the double layer potential, the integral
equation to be solved for y is then the following:

1
§/L<w07t) +K[/J’](w07t) :N("'Bmtaq)? Ty € 8Q7t € [O7A_6]7 (427)
with
! oG
K[p](xo,t) = Dy (ko —y,t — 7)u(y, 7)dsydr (4.28)
0 Joo  ONg,

being the principal value integral on the boundary. Solving the integral equation
eq. (4.27) for u plays a pivotal role in our method. We present the detailed steps
in the next sections.

4.3.3 Splitting the single layer potential into local and history
parts

The single layer potential S|y is splitinto a history part, Sj,,4[], and a local in
time part, Ssnore|pt]. Since the local in time part Sgpor¢[1t] contains the singularity
of the fundamental solution GG, we approximate it by asymptotic formulas. The
asymptotic trace formulas are only accurate in an interval near the singularity,
so we limit their use to the interval [t — 7, t], with ) being a small quantity to be
determined later. In other words,

S[M] (X7 t) = Sshort [:U’] (X7 t) + Slong [,LL] (Xv t)7 (429)
with
t
Sshort[1t](x, 1) = / DG Gauss(x — y,t — 7)pu(y, 7)ds,dr, (4.30)
t— oN
tﬁn
Slong [,LL] (X7 t) = / DOGFourier(X - Y, t— T)M(y, T)dsydT. (431)
0 o0

Similarly, we decompose K[u] into 2 parts:
K[/JJ] (CU(), t) = Kshort [M] (IB(), t) + Klong [,U/] (580, t)? (432)
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with

aG auSS
Kopore[11] (20, 1) = / / 8G xo—y,t — 7)u(y, 7)ds,dr, (4.33)
t n a0 Ny,
aC;Four‘ier
Kionglpt) (2o, t) = DOO—( 0— Y, t — 7))y, T)dsydr.  (4.34)
0 oN 0

Next, we compute or approximate the above history and local parts.

Asymptotic trace formulas for the local part

Based on the expressions derived by Greengard and Strain [203], the asymptotic
trace formulas in two dimensions for the local parts, when ¢ > 7, are:

Don

Ssnort ) (@0, t) = | = =p(@o, t) + O(*?),t > n (4.35)
and
VD ‘
Konarel )0, 1) = =5 26 (@o)u(ao, () + OGP2), 6 >0, (436)

where {(x() is the curvature at the point z, € 0f2. The boundary 052, which
models the cell membrane, is a closed 2D plane curve. We assume it is twice
differentiable. Let ¢¥(a) = (z(«a),y(a)) be a parametric representation of 0f2.
We choose a general parameter « such that ¢(«) is oriented counterclockwise.
The curvature at the point &y = ¥(ayp) is defined as

x'y’ _ y’x”
§(@o) = ——=5

($/2 + y’2)3/2 ’ (4.37)

a=ag

where primes refer to derivatives with respect to a.

We also need to initialize values for t < n. It has been derived in [206] that
the expressions are:

Dqt
Sshort[,u](wm t) = TOM(CBO’ t) =+ O<t3/2)7t < 7, (438)
and
\/D
Kahora[p) (o, t) = == fO (o) (o, t) + O(t*?),t < . (4.39)
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Fourier representation of history part

For the smooth part of the single layer potential, a Fourier representation for
the Dirichlet trace is proposed in [203]:

Sionglt) (0, 1) = Dy Y f(w, )™ ™AL, (4.40)

v=zQL
zc€Z?

and the Neumann trace is

Kiong[p] (20, t) = Dy Z omw - nf (v, t)e?™ A2, (4.41)

v=zQL
zEZ?

where the Fourier coefficients are

) t=n
fvt) = / / 6_4”2D0””H2(t_7)u(y,7)6_27””'ydsyd7'. (4.42)
0 )

To avoid history-dependent time integration, we use the following recur-
rence formula for the Fourier coefficients

flw,t) = et PoWIPA £y ¢ — Ab)+

t—n
/ / 6_4772D0H”H2(t_7)u(y,T)e_Qm"'ydsydT, (4.43)
t—n—At JQ

so only local-in-time integrals are computed at each time step.
The above formulas hold when ¢ > 7. For t < n, we initialize Siong[1t], Kiongl1t],

and f to be 0.

4.3.4 Computation of the single layer density

Based on the decomposition of the single layer potential and the approxima-
tion of the history and the local parts detailed previously, we can compute the
density function p.

For t < n, substituting eq. (4.39) into eq. (4.27) and solving the integral equa-
tion, we can get the approximation to the density

2N(w07 ta q)

1— /2ot ()

+O(?), xeed, t<n  (444)

:U’(w()? t) -

For ¢ € (n, A — ], the integral equation eq. (4.27) can be rewritten as

1
§ﬂ($07 t) + Kshort [ﬂ] (CB(), t) = 5("1307 t)a (445)
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where the right-hand side is
B(xo,t) = —Kiong|1t] (o, t) + N (2o, t, q). (4.46)
We write the solution of the above integral equation as
(o, t) = 2(I + 2K ghore) " [8] (0, 1), @0 € 00t € (9, A — 0], (4.47)

and expand the operator (I + 2Kshm)_1 (corresponding to K.+ being a con-
traction) as

(@0, t) = 2 (I — 2K oy + 4K+ -+ (=2)" K+ .. ) [B] (o, ). (4.48)

We approximate K7,

short

(8] using eq. (4.36) and we get

1 (Don\"”? ‘
Kordfl(en0) = iz (20) € enilant) OGP, @49)
Then, we keep all terms of the operator expansion to obtain

/,L(CBO, t) =2 (/B<m07t) - 2K8hort[6](w0v t) + 4K52hort[5](w07t) + .. )

= 28(0.t) (14 (P elan) + 20 n) 4. ) + O(r)

(4.50)
= 2f(x0, 1)/ (1 - ?f(%)) +0(n*?).

4.3.5 Computation of the single layer potential

Once the density x is obtained, we compute the single layer potential S| in
the following way.
When t < 5, the expression for the single layer potential is

S[l(xo,t) = Senort (1] (0, 1)

Dot 4 . me—4m%Dollal|*t ,—2mq-ao
— e ‘ LO(?),  xg € 00t € 0,1,
T - %f(wo)

(4.51)

Fort € (n, A—/J], the single layer potential has both a local part and a history
part. The local part is

D
Sunore |l (0, t) = Ton,u(a:g,t) FOWP?), xo€dNte (n, A—d]. (452)
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As for the history part Si,n,[p], it can be approximated by the truncated
Fourier series:

Siongltt) (o, ) = Do Y f(, )™ AV +E (Vnaa), Ty € DL € (n, A—].

V=—Vmaz

(4.53)
In the above, we denote the error term due to truncating the infinite Fourier
series up to Vs bY € (Vima: ). We do not have an analytical expression for € (Viaz ),
but we will show later in the numerical results that it decays exponentially in
Vmaa:-
The addition of Sgpere[t] and Siong (1] gives the single layer potential Su] which
is the solution of eq. (4.12) on the boundary:

Slpl(xo,t) = Sshore[1] (X0, t) + Siongltt] (0, 1), a0 € 002, t € [0, A —0]. (4.54)

At the current iteration step, the Fourier coefficients f that are still unknown
will be computed using the density function p from the previous iterations, as
explained in the following.

Computation of the Fourier coefficients of the history part

Fort < m, fis set to zero, as well as Kionglp]. Fort € (n, 2n), f are computed
using the density p from the previous iterations:

flv ) =e i mDoIEA oy ¢ — At)+

t—n
412 Do llvl|? (t— —2mw- 2
/ / e 7 ollv[I*( T)@ 4 ylu(y,T)deSy, vV c [_Vmamaymax] )
00 Jt—n—At

~~
ftempl (V:t)

(4.55)
with

t=n  ,—4m2Do[llv|2(t-)+|al*r]
47mq_n€—27rz(q+l/)-y / dr dSy. (456)
oAt ] — [ BTe(y)

N J/
-

p

Fumn () = [

o
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We apply the trapezoidal rule to the time integration p to obtain

_ax2Dg [l 2t
- g ey (T V)

ln ( 1-¢(y) %(t—n) ) ||V” _ Hq”
1)/ 22 (t—n-a0) ) | ’

=47 Do[llal*(t=m)+v|?n] | et Polal®=IvIDAt 42 Do (a2 —|v|?)AL-1) |
At(zwDo(uq||2—||uu2>>2(1—s<y> DO(t—n—At))

™

2 2 2
e 2o R A DolalP AT | )| £ ||q.

| Atz Dolalz=v12)2 (1-6)y 2 1-n))
(4.57)

Once we compute the time integration p, the integration over the boundary
0f) can be approximated by discretization in arc length.

Remaining ont € (n, 2], next we compute the long time part Kj,,,[x| via the
Fourier series

Kiong[pt](20,t) = Dy Z omw - nf (v, 1)e”™ ™ AV? + E(Viaz)- (4.58)

V=—Vmaxzx

With a slight abuse of notation, we use the same notation £(v,,,.,) as in eq. (4.53)
for the error due to truncating the Fourier series at v;,,4,.
Finally, the density function p for (the current time) t € (n, 27| is computed

as.
2 [N(CCO, t) - Klong[,u](wm t)]

1- @f(mo)

+ O(n*/?). (4.59)

N(m07 t) =

On the rest of the time interval, t € (2n, A—¢], f still uses the density ; from
previous iterations, but the formulas are different:

flw,t) = et mDoIEA (o ¢ — At)+

t—n
— 412 Dol |12 (t— —2mw- 2
/ / e 4T ollv[I*( T)e 4 y,u(y,T)deSy, vV c [_Vmaxaymaw] :
00 Jt—n—At

-~

fteme (V:t)

(4.60)

In the above, the Fourier coefficients f(v,t — At) at the previous time step are
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known, and the expression of y(xq, 7) forT € (n,A —§ — n is

-1
D
p(xo, 7) =2 (1 — Tonzf(wo)> N (xo, 7) — Kionglpt] (o, 7)], X0 € 0.
) (4.61)
The integration on the right-hand side of eq. (4.60) is noted as fiemp2(v, 1) in
which we substitute the expression of i above. We split fi.,,,2 into two parts
and gather the terms that are independent of time

D
() e
QO m

t—

n

_ . A2 2 204

(2miq - me 2mqy/ o~ 472 Do(lal2r w2 (t-7)) g _
t—m—At

N J/
-~

h1

tin 2 2
/ Kiong 1] (y, 7)™ Pl =) g7) ds,,. (4.62)
t

—n—At

ftemm(l/, t) :/

0

-~

ha
The time integration h, in the first part has an analytical expression
At - e Dol lall = v
472D 2 |lv|I?)At
o472 Do llal> (t=n)+{lvI|?n] € ol DA — 1 lall # ||| (4.63)
42 Do([lall* — [lv[?)

The time integration h, in the second part has to be calculated numerically.
We apply the trapezoidal rule to Kj,,,[¢](y, 7) and we get

(B [ Kiong 1] (4.t — 1) + Kionglpdl (y, t — 1 — At)] lv] =0

hy =

>
)
I

1—e— 47 DollvI*At (472 Dy ||w||2At+1
(47r2D()H(l/||2)22|7|5 I )Klong[:u](yat i/ At) +

674772D HVH2At 472 Dol lI2At—1 42 vl2
0(4ﬂ2D0WV||2)2()A”t ” L Klong[:u] (yat - 77) € 4 DOH H K ”VH 7& O
(4.64)

The values of Kjy,,lu| at time ¢t —n — At and ¢t — n have been computed
in previous steps, thus the expressions for h; and hy can be computed in the
current time step. Then we discretize in the arc length over the boundary to
obtain fiemps as well as f.

Stayingont € (2n, A — ¢}, itis straightforward to recover the long time part
Kiongl1] at time ¢ by applying the inverse discrete Fourier transform

\

Kionglt) (o, t) = Dy > 2mw -nf(u, )™ ™AV + E(Vinaa).  (4.65)

V=—Vmazx

99



Again, with a slight abuse of notation, we use the same notation £(v,4,) as in
eq. (4.53) for the error due to truncating the Fourier series at v,,,.. Finally, the
density function u at the current time ¢ is

2N (o, t) — Kiong[pt] (o, t)]

1— /222 ()

(o, t) = +0(n3/?), (4.66)

which will be used for future iterations.

4.3.6 Computation of the diffusion MRI signal

After obtaining the single layer potential, the following procedure produces
the diffusion MRI signal attenuation.
The signal attenuation E has the representation

B = pe—t=Dollal?a-5) 1

The quantity @ will be computed using the recursive relationship below (rewrit-
ten from eq. (4.21)):

©(q,t) = e~ Pl (g, ¢ — At)

— ~ (4.68)
—Do/ 2mq-n62’”q'y/ 674”2D°”q”2(t77)w(y,T)desy.
a0 t—At

By applying the trapezoidal rule to the time integration u, we then get the
expression

S lwly.t =AY +w(y,t)] lall =0
u = 176—41F2D0”q”2At(47r2D I ||2At+1) (469)
(Dol PAL Wiyt — At)
e—4m2Dollall?At g2 2A4_
T DolalP ALy 1) ] # 0
The variable w is the single layer potential S[u]
w(xo,t) = S[p](x0,t) = Sshort[11] (X0, ) + Stongl1] (X0, 1) (4.70)
The short time part has an asymptotic expression
Don N (g, t) — Ko, 1 f
Suoall (o, 1) = 20 A0 = Ronspl@0sl) ey (a7

m 1 - @5(%)
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with
N (g, t) = 2mipq - ne 4™ PollalPt—2mazo. (4.72)

and
Vmax

Kionglt) (o, t) = Dy Y 2mw - nf(v, )™ ™AV + £ (Vyaa)- (4.73)

V=—Vmazx

The long time part is approximated by a Fourier series

Vmazx

Siongltt) (o, t) = Do Y f(, )T AV + £ (Upnaa)- (4.74)

V=—Vmax

Finally, a boundary discretization allows the numerical computation of @.

4.4 Numerical results

In this section, we study the convergence of the Fourier Potential method.
The matrix formalism method [47, 48] is capable of computing analytical signals
for simple geometries, such as circles and spheres, using analytical expressions
for the Laplace eigendecomposition, so we use the MF signals as the reference
signals. We note the diffusion MRI signal simulated by our method as s and the
analytical signal given by the MF as s,.;.

The geometry on which we will conduct the convergence study is a circle of
radius r (¢ = 2r,& = 1/r), where ¢ is the size of the geometry and ¢ is the
curvature. The default values for the physical parameters are below:

o r={1,2,4} pm, € = {1,0.5,0.25} pm~"

* Dy =2x 1073 um?/pus

« § =102 pus, A = 5,000 us

* ug = [1,0]"

« b= {1000,4000} us/um?, or equivalently {1,4} ms/um?

We will study the dependence of the relative error (not in percent), defined
by

S — Spef

€= (4.75)

Sref
on the discretization parameters: spatial step Az, the time step At, the maxi-
mum frequency v,,.., the spectral step Av, and the single layer local time interval
7. As the convergence studies for various algorithm parameters are conducted,
the default values for the fixed parameters are listed below:
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*n=1us
* Vpaz = 10 pm ™Y, Av = 0.05 pum !
* Az = 0.005 um, At = 0.5 us

4.4.1 The narrow pulse assumption error

One important point to discuss here, before showing the convergence stud-
ies, is the choice of the duration of the diffusion-encoding gradient pulse, ¢.
We need that § < A to satisfy the narrow pulse assumption. In fig. 4.1, we
show the error due to the narrow pulse assumption for a range of ¢ values.
At b = 1000 ps/pum?, the narrow pulse approximation error is around 1072 at
d = 10% us for all three circle radii.

O b=1ms/um? r=4pum
1024 b=1ms/um? r=2pum é;
10 b=1ms/um? r=1pum X
X  b=4ms/um? r=1pm X
_ @)
10795
i X o <
X <
W ]
x X €]
10-4% X X X Qo
o <
o o oo ©
1075'E O
] <
- T ““‘O T ‘Q‘? R | R | A | T T
1074 1073 1072 107! 10° 10! 10?
6 [ps]

Figure 4.1: Influence of § on the relative error. All discretization parameters are set to
be the default. The sampled §'s are {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10,
100} ps (from left to right).

The validity of the narrow pulse assumption also depends on the separation
between the two pulses A. The narrow pulse assumption requires a small ratio
of § and A. In fig. 4.2, we show the influence of this ratio on the relative error.
For large A such as 20 ms, the relative error is less than 5% with § being 2 ms.

Despite the fact that a relative error of a few percent is perfectly acceptable
for diffusion MRI applications, for the sake of the numerical convergence study
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Figure 4.2: Influence of 6/A on the relative error. All discretization parameters are set
to be the default. The geometry is a circle of radius 1 um and the b-value is 4 ms/um?.
The sampled ratios §/A are {0.1%, 0.5%, 1%, 2.5%, 5%, 7.5%, 10%} (from left to right).

that follows, we have chosen much lower thresholds for the narrow pulse ap-
proximation error and picked an exceedingly small value of § = 1072 us, which
is not achievable with current MRI scanners. This choice is because we wanted
the error from the narrow pulse assumption to be significantly smaller than the
discretization errors of the numerical method as we refined the method param-
eters. In this way, the plateauing of the errors towards the narrow pulse approx-
imation error occurs later in the refinement process so that we can verify if the
error behavior follows the error analysis presented in section 4.3. We note that
at our choice of § = 1073 us, the narrow pulse approximation errors shown in
fig. 4.1 range from 1076 (b = 1000 ps/um?, r = 4 uwm) to 10~* (higher b-values).
These values will form the “floor" values for our convergence curves, to be shown
next.

4.4.2 Duration of the local in time part of the single layer po-
tential, n

First, we study the duration n of the local in time part of the single layer po-
tential. The error term O(n*?) originates from the asymptotic trace formulas
eq. (4.35) and eq. (4.36). In fig. 4.3 the curves show a clear convergence order
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of 3/2 in n. In addition, the circle radius (curvature) and the b-value affect the
errors: the errors are bigger for larger b-value and higher curvature.

We observe that minimum errors occur at n = 1 us. The values of the min-
imum errors coincide with the size of the narrow pulse approximation errors
shown in fig. 4.1. At the smaller value of = 0.5 us, the errors increased. The
reason is that there is a tradeoff between two sources of error, one linked to
O(n*/?) and one to &(Vmq,). With a smaller 5, the long time part Sy, [p] suf-
fers more from the singularity of the heat kernel, thereby increasing the error
E (Vmaz ). After we decrease n beyond a certain point, £(v,..) becomes the bot-
tleneck for the accuracy, which will be studied next.

10%4 OO
i O b=1ms/um? r=4um X )(X/é&;é(
N b=1ms/um? r=2um x)( -
10 10 b=1ms/um® r=1pum X ,6
X Q-
1 X b=4ms/um? r=1pm o~ 6)‘>
ol ___ _ 10=4.T701 |, 1502 X /O/
10 e=10 X1 y //@, 8<><>
] .o o
W 1074 X g 5o
] X ol NI
3 -0 v
—47 R "
R SR - &
o’ <
10774
® &
7 T ‘A ‘o‘ A | T T A | T T T
100 10! 102 10°
1 [ps]

Figure 4.3: Convergence curves regarding n. All discretization parameters except for n
are set to be the default. The sampled #'s are {0.5, 1, 2.5, 5, 12.5, 25, 50, 75, 100, 125,
250, 375, 500, 625, 750, 875, 1000} us (from left to right). The slopes of the curves are
around 3/2.

4.4.3 Maximum frequency

The main feature of our method is that the history part of the single layer po-
tential Sj,n4[1t] has a spectral representation. The spectrum of the fundamental
solution G decreases exponentially with respect to the frequency v. As a result,
the Fourier coefficients f are also subject to the exponential decay:

fw,t) = O(e=*m* Ponllvly, (4.76)
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In order to numerically compute the spectrum of S,,,, 2], we truncated it at v,
and omitted all higher frequency components. The truncation gives rise to an
error caused by the omitted Fourier modes, which we have denoted as &€ (Vaz)-
Even though we do not have an analytical expression for £(v,,..), considering
the exponential decay of the Fourier coefficients, we could expect a rapid de-
crease in the truncation error.

We present the convergence curves in fig. 4.4, We note that the x-axis is
linear, and the y-axis is logarithmic. Empirically, we observe that the error can
be fitted by ¢;e~ ™=, where ¢, is a constant, and ¢, = 1.17. As expected, for the
largest Vpae: (Umae > 9 pm 1), the curves approach the errors due to the narrow
pulse approximation.

<>éx O b=1ms/um? r=4pum
1071_ \O\\ X b=1 TTLS/MTTLQ7 r=2 nm
© \b\ x O b=1ms/pm? r=1pum
—24 0 \\0 X b=4 ms/,um27 r=1 pnm
10 o S X m—— g = o 11TV —0.80
& >
S oln
10734 On_ x
W o b\\ y
10745 <o O X % x % %
B,
5 ? O O o o
107" >
o RO RPN
A
T I i ; YN ;
2 4 6 8 10 12

Vmazx [,Um_ 1]

Figure 4.4: Convergence curves regarding v,q.. All discretization parameters except
for vmq. are set to be the default. The sampled v,,,4,'s are {0.1,0.5,1, 2,3, 4,5,6,7, 8,9,
10, 11, 12} pm~! (from left to right).

4.4.4 Spatial discretization

Our method contains several boundary integrations. The geometries we
used are circles, and we chose to have a piecewise linear approximation of 0.
This means the discretized geometries are regular polygons. Let us call the dis-
cretized segment length of the boundary Az. On the other hand, the reference
solution (MF) computes the Laplace eigenfunctions of exact circles.
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Figure 4.5 illustrates the convergence curves in Az. At the larger range of
Az, we observe exponential convergence in Lz due to the exponential conver-
gence of the trapezoidal rule for periodic functions (the integrand over a closed
boundary being a periodic function). At the smaller range of Az, we observe the
plateauing towards the narrow pulse approximation errors.

In the middle range of Az, we observe a convergence of O(Axz?), due to the
approximation of the exact circle geometry by regular polygons. To better visu-
alize the convergence pattern, we plot the approximation error for the area of an
exact circle by regular polygons. The area error ¢ is defined as the normalized
difference between the circle area and the area of a regular n-sided inscribed
polygon A,

ot — A, Az?  (EAx)?

Tz Tez T 6

This explains the convergence order of Az2 Moreover, eq. (4.77) also indicates

the influence of curvature. High curvature geometries endure greater area er-
rors, thus, larger simulation errors.

(4.77)
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Figure 4.5: Convergence curves regarding Ax. All discretization parameters except for
Az are set to be the default. The sampled Az's are {0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25,

0.3, 0.35, 0.4, 0.45, 0.5} um (from left to right).

4.4.5 Temporal discretization
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Let the time step be At. We apply the trapezoidal rule to every time integra-
tion in our implementation, for instance, , and . Theoret-
ically, the trapezoidal integration error is O(At?) [207]. However, the local-in-
time region size, n, which is an integer multiple of At¢, contributes an error from
the asymptotic formula, as shown in . This asymptotic formula error nu-
merically dominates the O(At?) error from the trapezoidal integration. Thus, we
do not show a plot of the trapezoidal rule convergence.

4.4.6 Spectral discretization

The spectral resolution Av is closely related to the size of the periodic box
enclosing the geometry. Let the side length of the box be L. According to the
Nyquist-Shannon sampling theorem, we should have

1
— =1, 4.78
A (4.78)
The inverse relationship manifests itself in and as well. A nec-

essary restriction on the box is that it must contain the entire domain €, in our
case, the domain being a circle, we get

1
— L > 4.79
AV — qb? ( )
where we defined ¢ as twice the radius. In , it is shown that the relative

errors are greater than 100% when the box is smaller than the domain (ﬁ <
¢). As soon as the box contains the geometry, the errors reduce to the plateau
values of the narrow approximation errors. Clearly, all simulations must satisfy
the spectral discretization condition

4.4.7 Influence of q-vector

Now we study the influence of the b-value/g-vector on the relative errors.
We fix the diffusion time § and A, so the b-value is equivalent to the square of
the magnitude of the g-vector. We chose to plot the relative error versus the
magnitude of the g-vector because we explicitly formulated our method using
g-vectors rather than b-values. The results are given in . We note that
the x-axis is logarithmic, and the y-axis is linear. The experiment results show
that once the magnitude of the ¢-vector is large enough, the error increases
logarithmically with the norm of g-vectors. For small g-vectors, the errors are
within the range of the error floor (10~* — 10~°) imposed by the narrow pulse
approximation. For larger ¢, the logarithmic dependence of the error on ||q||
requires further study to explain. We do not at this time have an explication for
it.
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Figure 4.6: Convergence curves regarding Av. Relative errors which are greater than
100 (2dB) are omitted for a better visualization. All discretization parameters except for
Av are set to be the default. The sampled Av's are {0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35,0.4,0.45, 0.5, 0.75, 1, 2, 3, 4, 5} um ™! (from left to right).

4.4.8 Extension to complex geometries

In the previous sections, we used circles to study the convergence of our
method. The Matrix Formalism method can compute the analytical solution on
circles, which allows us to show the convergence behavior of the Fourier Poten-
tial Method.

Our method can simulate diffusion MRI signals on more complex 2D geome-
tries. Here we present FPM simulation results on two realistic axons. The mi-
croscopy image (fig. 4.8) and the axon sections are obtained using the Axon-
DeepSeg segmentation framework [208]. With these irregular shapes, analyti-
cal solutions are not accessible, so we computed the reference signals by finite
element simulations using the SpinDoctor toolbox [44]. We show, in fig. 4.9, the
dMRI signals in 40 directions as well as the relative errors. Our method agrees
with the finite element reference signals. For the middle b-value (4000 ps/um?),
the relative error is less than 5%. One should note that the magnetization of the
two adjacent axons is computed simultaneously by sharing the same Fourier ba-
sis. This feature is different from the matrix formalism method, which requires
geometry-dependent bases.
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Figure 4.7: Influence of ¢ on the relative error. All discretization parameters are set
to be the default. The sampled ¢'s are {0.0225, 0.0318, 0.0450, 0.0551, 0.0637, 0.0712,
0.1007, 0.1424, 0.1743, 0.2013, 0.2251} um~"' and the corresponding b-values are {100,
200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000, 10,000} us/um? (from left to right).

Figure 4.8: The microscopy image of axons from AxonDeepSeg. Two adjacent axons

are selected.
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Figure 4.9: Comparison of FPM with FEM. (a) the normalized signals simulated by FPM
and FEM. The gray areas illustrate the shapes of the two adjacent axons. The physical
parameters are: Dy = 2 x 1073 um?/us, § = 2 ms, A = 100 ms. The discretization
parameters of the FPM are: np = 50 s, Vmaz = 2 pm ™1, Av = 0.05 um ="', Az = 0.01 pum,
and At = 50 us. The signals are simulated in 40 directions evenly distributed on a unit
circle. (b) the relative errors in percent.
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4.5 Summary

In this chapter, we derived a new representation of the diffusion MRI signal
by solving the BT equation using potential theory. The decomposition of the
single layer potential into singular and smooth parts allows the numerically ef-
ficient storage of the smooth part on a Fourier basis. Time integrals in the form
of certain exponentials allow us to use time recursion to avoid history depen-
dence. We numerically validated the convergence of our method and showed
the error behavior in several simulation parameters.

One of the main features of our method is the availability of the spectrum of
the smooth part of the magnetization field. The projection to the Fourier basis
functions provides a unified spectrum space for different geometries. Since our
method provides a Fourier-like representation of the diffusion MRI signal, this
can potentially facilitate new physical and biological signal interpretation in the
future.

A mixed basis approach developed by Nordin et al. [209, 210] resembles our
method. They utilize a set of basis functions that consists of the Fourier func-
tions and the surface functions (dipole potentials) to capture the most relevant
part of the low-frequency spectrum of the Laplace operator in a confined geom-
etry [209, 210]. In the mixed basis approach, the role of the Fourier functions
is to mimic the free diffusion behavior. The influence of the boundaries is cap-
tured by the surface functions. However, in our method, the free diffusion part
is represented by the first exponential term in . The Fourier functions
are used to capture the history part of the influence of the boundaries. Conse-
quently, the spectrum spaces of the two methods are different. In addition, the
mixed basis approach is more general in the sense that it doesn't require the
narrow pulse assumption.

Our method is currently of theoretical interest only. It only solves two-
dimensional problems and it is computationally intensive. As the first work ad-
dressing this subject, we restricted ourselves to the 2D diffusion MRI setting with
impermeable interfaces. To extend FPM to 3 dimensions, the main changes to
be made are the asymptotic trace formulas for the local part, i.e., -

, in particular, the curvature for 1D curves will need to be generalized
to analogous quantities on 2D surfaces. The generalization of the curvature and
the derivation of the asymptotic trace formulas are the major difficulties for the
extension to three dimensions. As a consequence, the solution of the integral
equation ( ) will have a new formulation in 3D. Another change involves
spatial integration on 2D surfaces instead of on 1D curves, the former being
more numerically complicated than the latter.

We also restrict ourselves to simplified conditions on the diffusion-encoding
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gradient and permeability. Specifically, we derive our method under the nar-
row pulse assumption and impermeability assumption. The question of how to
remove these assumptions remains to be studied.
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Chapter 5

Simulation-Based Brain
Microstructure Imaging

This chapter presents the fourth contribution of this thesis, a framework for
training supervised learning models on synthetic data to estimate brain mi-
crostructure using diffusion MRI non-invasively. The framework relies on the
NeuronSet we built in and the numerical matrix formalism optimized
in . Over 1,000 neuron meshes converted from digital neuronal re-
constructions archived in NeuroMorpho.Org allow us to measure neuroanatom-
ical parameters and simulate intracellular dMRI signals by solving the Bloch-
Torrey partial differential equation. Moreover, we randomly combine neuron
meshes with extracellular compartments to obtain a synthetic dataset compris-
ing both the dMRI signals and more than 40 microstructure parameters of over
1.4 million artificial brain voxels. Unlike existing biophysical models, our ap-
proach achieves higher modeling accuracy while requiring fewer assumptions.
The synthetic dataset is valuable for validating biophysical models and approx-
imating the mappings from dMRI signals to microstructure parameters. We
demonstrate exemplary multilayer perceptrons (MLPs) trained on the synthetic
dataset for volume and area fraction estimation. They perform satisfactorily in
synthetic test sets and give promising in vivo parameter maps using the MGH
CDMD dataset. Most importantly, the in vivo volume fraction estimation de-
pends less on the diffusion time, which is one of the desired properties of quan-
titative microstructure imaging.
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5.1 Introduction

Brain microstructure imaging often relies on “inverting” a forward model de-
scribing the dMRI signal generation mechanism, as explained in section 1.3.
Therefore, the accuracy of the forward model is of essential importance. The
predominant forward models, i.e., biophysical models, typically subdivide a
brain voxel into compartments described by simplified geometries such as cylin-
ders with zero radii (sticks) [81, 211] and spheres (balls) [88]. Together with some
additional assumptions, such as the Gaussian phase assumption (GPA), a bio-
physical model allows deriving an analytical signal expression as a function of
the model parameters related to several microstructure parameters [69].

One often fits the signal expression to experimental data to estimate the
model parameters. However, the indeterminacy inherent in some biophysical
models makes the parameter estimation unstable [212]. Moreover, an accurate
fit does not necessarily justify the underlying biophysical model, and the esti-
mated model parameters might be biophysically meaningless [68, 94]. Subtle
effects like neurite undulation are excluded from biophysical models because
of mathematical complications [81, 88, 188]. In addition to the error brought by
the simplified geometric models, the validity of some assumptions, such as GPA,
remains undetermined [68, 99]. Besides, the validity regimes of several signal
expressions depend on the length scales of underlying microstructure [91]. A
voxel may exhibit multiple length scales (e.g., various soma radii) so that differ-
ent validity regimes may co-exist or emerge progressively [94], making compre-
hensive model validation difficult.

To address the above shortcomings and achieve a more accurate forward
model, we aim to replace the simplified geometries with realistic neuron meshes
and the analytical intracellular signal expressions with diffusion MRI simulations.
The numerical dMRI simulation methods, including both algorithms based on
solving the Bloch-Torrey partial differential equation (BT equation) [43-46, 51,
52, 58] and Monte-Carlo methods [36-38, 60, 62-65], are gold-standard forward
models for describing the formation of dMRI signals [33]. With realistic neuron
meshes, numerical simulation can seamlessly incorporate effects arising from,
for instance, neurite undulation or water exchange between soma and neurites.

The proposed framework relies on an ultra-fast dMRI simulator, a neuron
mesh dataset, and machine learning (ML) techniques to estimate brain mi-
crostructure properties by leveraging dMRI simulation as the forward model.
The simulations are conducted on neuron meshes to get the intracellular dMRI
signals which allow the approximation of the signal attenuations from arti-
ficial brain voxels whose microstructure properties are computed from neu-
roanatomical parameters measured on neuron meshes. Artificial brain voxels’
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signal attenuations and microstructure parameters form a synthetic dataset for
training ML models. Figure 5.1 shows an overview of the framework.

1. Efficient dMRI 3. Signal simulation
simulator and W
feature extraction
5. Model training
2. Realistic 4. Measurement of A
neuron meshes microstructure

Figure 5.1: Overview of the simulation-driven supervised learning framework. The
ultra-fast dMRI simulator and a large set of realistic neuron meshes are two corner-
stones of the framework. The simulations are conducted on neuron meshes to get
the intracellular dMRI signals which allow the approximation of the signal attenuations
from artificial brain voxels whose microstructure parameters are computed from neu-
roanatomical measurements. Artificial brain voxels’ signal attenuations and microstruc-
ture parameters form a synthetic dataset. Finally, we train machine learning models on
the dataset.

To “invert” the gold-standard forward model, we leverage machine learning
techniques. The adoption of ML models in dMRI dates back to the last century
[213] and has seen a recent resurgence [104, 214-217]. Artificial neural net-
works are believed to be superior in function approximation [218-220], espe-
cially in high dimensions [221, 222]. This chapter leverages MLPs to approximate
the underlying mappings from signals to microstructure parameters.

Specifically, we first generate a synthetic dataset containing both the dMRI
signals and more than 40 microstructure parameters of over 1.4 million artifi-
cial brain voxels. Figure 5.2 summarizes the data-generating process and pro-
vides more details about the blocks 3-5 of fig. 5.1. The dMRI signals and the
microstructure parameters of an artificial brain voxel form an entry in the syn-
thetic dataset.

MLPs are trained in the dataset in a supervised way. We demonstrate several
exemplary MLPs for volume and area fraction estimation in synthetic test sets
and the MGH CDMD dataset [22]. Finally, the MLPs are compared with the state-
of-the-art impermeable biophysical model, SANDI [88].
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Figure 5.2: Summary of the synthetic dataset generation and model training based on
the simplified brain voxel model. The intracellular signal is the volume-weighted signal
of numerous randomly picked neurons. The ECS is modeled as a free diffusion space.
Our synthetic dataset consists of the dMRI signals and microstructure parameters of
1.4 million artificial brain voxels. Features like direction-averaged signals are computed
from the dMRI signals to predict some microstructure parameters. Finally, we train an
MLP to fit the mapping from the features to the parameters of interest. The picture of
the MLP is for illustration purposes only. The actual structure is different from the one
shown in the figure.
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5.2 Experimental data

Before we dive into the synthetic dataset generation, let us introduce the ex-
perimental data used in this chapter. MGH CDMD [22] is an open-access diffu-
sion MRI dataset providing processed in vivo human brain scans for 26 healthy
subjects, seven of which are scanned twice. The diffusion MRI data were ac-
quired on the 3T Connectome MRI scanner (Magnetom CONNECTOM, Siemens
Healthineers), and a 64-channel phased array head coil [223] was used for sig-
nal reception. The maximum slew rate is 62.5 mT/m/ms. The diffusion encoding
sequence is PGSE (see and ), whose parameters are:

* the pulse duration § = 8 ms, two inter-pulse durations A = 19, 49 ms;

+ eight non-zero gradient intensities (31, 68, 105, 142, 179, 216, 253, 290
mT'/m) corresponding to eight b-values (72, 346, 825, 1509, 2400, 3491,
4789, 6292 s/ um?) at the short diffusion time /A = 8/19 ms, and eight
b-values (204, 981, 2340, 4279, 6800, 9902, 13,584, 17,848 us/um?) at the
long diffusion time § /A = 8/49 ms;

+ one interspersed image without diffusion-encoding gradient (¢ = 0) for
every 16 diffusion-weighted images;

+ 32 diffusion encoding directions uniformly distributed on a sphere for b <
2400 ps/pum? and 64 uniform directions for b > 2400 ps/um?.

Other imaging parameters are as follows: the echo time TE = 77 ms, repeti-
tion time T'R = 3800 ms, field of view (FOV) = 216 x 216 mm, slice thickness =
2 mm, voxel size = 2 x 2 x 2 mm?. The diffusion MRI data were processed to
correct gradient nonlinearity, eddy currents, and susceptibility-induced distor-
tions. The estimated median signal-to-noise ratio (SNR) is 21 [22, 224]. MGH
CDMD provides the real part of dMRI signals for some subjects. In this chapter,
we only use the signal magnitude. More details about the data acquisition and
processing can be found in the work of Tian et al. [22].

5.3 Synthetic dataset generation

This section aims to construct a dataset comprising simulated dMRI signals
and microstructure parameters of artificial brain voxels. In practice, a gray mat-
ter brain voxel of 1 mm? is a medium comprising tens of thousands of cell bod-
ies, millions of neurites, blood vessels, extracellular space, etc. [12]. We make
various simplifications to brain voxels to model such complex tissue. First, we ig-
nore compartments like blood vessels because cells and ECS occupy most of the
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volume. Second, we model the ECS compartment by an isotropic free diffusion
space. Ideally, we could wrap the neuron meshes with another mesh to model
ECS. However, neurons are tightly intertwined in real brain tissue. Building a
geometric model for ECS requires densely packing a large number of neurons
in a tiny cube to achieve a reasonable ECS volume fraction (~ 20%) [162]. Be-
sides, these neurons cannot intersect with each other. Neuron packing is still
an open problem that we have not solved. As a compromise, we keep the free
diffusion model for the ECS compartment. Third, we take the averaged signals
from hundreds of neurons to represent the intracellular signals of a brain voxel.

In addition, we keep the two assumptions made by the simplified form of
BT equation in . They are (1) cell membranes are assumed to be
impermeable; (2) the transverse relaxation is assumed to be homogeneous in a
brain voxel so that the signal normalization ( ) can cancel the effect of
transverse relaxation.

Briefly, our artificial brain voxel consists of numerous impermeable neurons
and an ECS. Due to the difficulty regarding neuron packing, we do not build ac-
tual ECS meshes. The ECS is modeled as a free diffusion space parameterized
by its volume fraction fecs.

This section describes the steps to generate the synthetic dataset illustrated
in . In , we present the dMRI protocol and the simula-
tion parameters. We use the optimized numerical MF to perform dMRI simu-
lations on individual neuron meshes in NeuronSet. All simulations were com-
pleted within three weeks. According to the efficiency comparison made in

and , it would take 30 weeks if we adopt another simulation
methods, such as finite element methods, Monte-Carlo methods, or the numer-
ical MF without the optimization made in this thesis.

In , we explain how to compute voxelwise signal attenuations
based on the simplified brain voxel model presented above. Furthermore, some
microstructural properties of artificial brain voxels can be computed from the
measurements on neuron meshes. In this way, each artificial brain voxel is re-
lated to a set of simulated signals and a group of microstructure parameters. By
randomly combining neurons in NeuronSet and adding ECS compartments, we
got 1.4 million artificial brain voxels whose signals and microstructure parame-
ters form the synthetic dataset.

5.3.1 Simulating signals from individual neurons

We start with the simulation on individual neuron meshes using a similar
dMRI protocol as MGH CDMD:

*+ PGSE sequences with §/A = 8/19 or 8/49 ms;
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* 64 non-zero gradient intensities linearly space between 0 (not included)
and 290 mT'/m;

+ 32 diffusion encoding directions uniformly distributed on a hemisphere
(equivalent to 64 directions on a sphere because simulated signals are an-
tipodally symmetric).

The diffusivity inside neuron is fixed to be 3 x 1073 um?/us, the water self-
diffusion coefficient at 37 °C' [34]. We chose it because cytoplasm consists of
80 - 97 % water [225] [11, p. 128]. Macromolecules and organelles can indeed
hinder the diffusion of water molecules. However, given the high proportion of
water, we do not think the reduction is significant.

The simulations are performed by the well-optimized numerical MF that re-
quires two simulation parameters, H and 7,,,;,,, as explained in section 3.2.2. The
parameter H controls the fineness of neuron meshes, and 7,,,;,, determines the
number of retained eigenvalues. We choose H = —1 and 7,,,;,, = 76 us for the
numerical MF used in this chapter. Tetgen uses an adaptive method to discretize
the volume and add new points to improve the mesh quality when H is set to
—1[111]. The minimum characteristic time scale of 76 ;s means that we keep all
eigenvalues less than 4.39 um~2 whose characteristic length scales are greater
than 1.5 um. Next, we validate the choice of H and 7,,;,,.

Validation of simulation parameters

To validate the choice about H = —1 and 7,,;, = 76 us, we compare the numeri-
cal matrix formalism with a FEM simulator implemented in SpinDoctor [44]. The
FEM simulations with refined discretization in space and time give the reference
solutions. The simulation parameters of the FEM simulator are H = 0.5 um?,
rtol = 107°, atol = 10~". We refine the neuron meshes by setting H to 0.5 um?.
A comparison between H = —1 and H = 0.5 um? is given in fig. 5.3.

As for diffusion MRI protocol, we fix the gradient intensity to the maximum
value used in MGH CDMD (290 m1'/m) because a strong gradient often suffers
large numerical errors [50, 116]. Nine gradient directions are evenly distributed
in a semicircle and parameterized by an angle y.

We denote by Syr and Sgem the signals simulated by the numerical matrix
formalism and the finite element method, respectively. Figure 5.3(c) gives the
relative errors in percent (|Swr — Srem|/|Srem| X 100%) at nine directions for three
randomly picked cells'. The relative errors are below 4%, which indicates a sat-
isfactory simulation accuracy with the chosen simulation parameters.

'"The IDs of the three cells in NeuroMorpho.Org are NMO_01042, NMO_85592, and
NMO_85632.
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https://neuromorpho.org/neuron_info.jsp?neuron_name=02a_pyramidal2aFI
https://neuromorpho.org/neuron_info.jsp?neuron_name=Green4_1-10-13_sec2_Neuron3
https://neuromorpho.org/neuron_info.jsp?neuron_name=Purple4-9-18-12_sec2_Neuron1
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Figure 5.3: Simulation accuracy of the numerical matrix formalism with H = —1 and

Tmin = 76 ps. (@) a tetrahedral mesh for the numerical matrix formalism. The default
discretization routine of Tetgen generates the tetrahedra. Some parts of the mesh are
made transparent to show the internal meshing. (b) the refined tetrahedral mesh for
the FEM simulator. The maximum volume of tetrahedra is 0.5 um?>. Some parts of the
mesh are made transparent to show the mesh refinement. (c) the relative errors of the
numerical matrix formalism for three randomly picked cells with two diffusion times.
The gradient intensity is fixed to 290 m7'/m. In NeuroMorpho.Org, the IDs of the three
cells are NMO_01042 (cell1), NMO_85592 (cell2), and NMO_85632 (cell3). The meshes
in (a) and (b) correspond to cell2. When H = —1, the numbers of FE nodes of the three
cells are 32294, 48551, and 79992, respectively. When H = 0.5 um?, the numbers of FE
nodes are 109660, 80940, and 163905, respectively. The FEM simulations are conducted
on the refined meshes to give the reference solution Sggp. The relative errors in percent
are |S|\/||: — SFE|\/||/|S|:E|\/|| x 100%.

5.3.2 Computing signals from artificial brain voxels

Once the signals from every neuron mesh in NeuronSet are obtained, we can
compute the signal attenuation from artificial brain voxels by adding intra- and
extracellular signals. Suppose an artificial brain voxel contains M neurons and
an ECS compartment whose volume fraction is fes. According to eq. (3.20), the
signal attenuation arising from the brain voxel can be computed by

M
1 Vi B _
Ev(g,ug,(s, A) - (1 - fecs) X ZFI— + fecs xXe Decsb7 (5-1)

SV

where the subscription ¢ indicates the i-th neuron, V; is the neuronal volume
measured on the i-th neuron mesh, E; is the signal attenuation of the i-th neu-
ron, and the diffusivity is Decs = 3 x 1072 um?/us. The choice of Decs will be
discussed in section 5.7.4. The signal attenuation from an artificial brain voxel
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is denoted by E". Since we employ PGSE sequences, £ is a function of g, ug, 9,
and A.

We randomly pick M neurons from the mesh database to diversify the brain
voxel compositions. The number M ranges from 1 to 500. Each combination
of M cells is then aggregated with ten different ECSs whose volume fractions
follow a Gaussian distribution A/(z = 0.5, 02 = 0.25%). The Gaussian distribution
is chosen to have a wide distribution without giving too much weight to extreme
cases (fecs close to 0 or 1). The combination of cells and ECS produces signal
attenuations from 1.4 million distinct artificial brain voxels.

5.3.3 Brain voxel microstructure parameters

Section 2.5.2 provides over 30 neuroanatomical parameters measured on
neuron meshes, which allow us to compute the microstructure parameters of
an artificial brain voxel consisting of M neuron meshes and an ECS compart-
ment whose volume fraction is fe.s. Some important brain voxel microstructure
parameters are

M m
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2 om=1 Vea
soma

m=1

I

where the superscript indicated the m-th neuron. The list is not exhaustive. The
definitions of over 40 brain voxel microstructure parameters are listed in sec-
tion D.1. We emphasize that not all microstructure parameters can be probed
by diffusion MRI. Whether we can estimate a parameter mainly depends on the
dynamics of MR physics.

This study focuses on estimating volume and area fractions. Figure 5.4
presents the distribution of the volume and area fractions in the synthetic
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dataset. We denote the three volume fractions of an artificial brain voxel by
L, = [fsomaa Jneurites fecs]T: and the area fractions by Ljres = [asomaaaneurite]T-
Note that all fractions are positive and the sum of elements of Lo Or Ly, iS
one.

3 sosz 12.5 somz?
neurite neurite
ECS
. 10.0
=2
© 7.5
)
~ X 5.0
2.5
0 = 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
volume fraction area fraction

Figure 5.4: The distribution of volume and area fractions in the synthetic dataset. (a) the
volume fraction distribution of soma, neurites, and ECS. The ECS volume fraction follows
a Gaussian distribution A'(u = 0.5, 02 = 0.25%). The soma and neurite volume fractions
are computed based on realistic neuron meshes. (b) the area fraction distribution of
soma and neurites.

The signal attenuations and the microstructure parameters from 1.4 million
artificial brain voxels form the synthetic dataset. The numerical experiments
conducted in section 3.4 hint at the possibility of mappings from signals to mi-
crostructure parameters. The next section concerns training machine learning
models to approximate the mappings that are implicitly contained in the syn-
thetic dataset.

5.4 Model training

This section describes the steps for training machine learning models with
the synthetic dataset. We follow the standard training process described in the
book of Goodfellow et al. [226]. The main steps are

1. preprocessing the raw data to build derived values (features) for subse-
qguent training steps;

2. setting up the training configuration, including the type of ML model, the
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training set Ti.ain, the test set Tiest, the loss function, the optimization algo-
rithm, etc.

3. determining the hyperparameters using the training set Tain;

4. training ML models with the chosen hyperparameters on the training set
Tirains

5. evaluating the performance of trained models on the test set Tees:.

5.4.1 Data preprocessing

Each artificial brain voxel has 4096 signals simulated with 2 diffusion times,
64 gradient intensities, and 32 gradient directions. They are the raw data stored
in the synthetic dataset. The goal of the data preprocessing is to build derived
values, also referred to as features in the ML community, intended to be infor-
mative and low dimensional, facilitating subsequent learning steps. Features
are the inputs of a machine learning model.

First type of features: direction-averaged signals

In this study, the first step of data preprocessing involves reducing the dimen-
sionality of the raw data. We average the simulated signal attenuations over all
measured directions to get the direction-averaged signal

Nair
> E'(g,ul,8,A), (5.2)

=1

where Ny is the number of gradient directions and 'u,; is the i-th gradient di-
rection for a given gradient intensity g. Averaging over directions is a common
practice to reduce the data dimensionality in the dMRI literature [227]. It is also
helpful in denoising the experimental data. However, the averaging removes all
the orientation-dependent information. We can not estimate, for example, the
orientation of white matter tracts using direction-averaged signals.

The direction-averaged signals are the first type of features we will use. We
denote the direction-averaged signals from a brain voxel at the short diffusion
time (6/A = 8/19 ms) by Fig19, and the long diffusion time (0/A = 8/49 ms) by
Fiigss. They are n-dimensional vectors

v — T

Figio = [E(1,8,19), ..., E (9,,8,19)] € [0,1]", (5.3)
v — T

Figao = [E(91,8,49), ..., E (9,,8,49)] € [0,1]", (5.4)

where the number of signals n will be determined in
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Second type of features: five markers

Incorporating domain-specific knowledge helps obtain more concise features.
The statistical study presented in section 3.4.4 shows that the inflection point
of a signal curve helps define six markers useful for the soma size estimation.
This chapter adopts the same idea and uses five markers as the second set of
features. Compared to the six markers defined in section 3.4.4, we keep the
first four markers, i.e., xo, yo, co, and ¢y, that are relatively easy to obtain using
simulated signals. We replace the last two markers with the apparent diffusion
coefficient D, defined in eq. (3.13).

The five markers are the second type of features used in this chapter. We
denote the markers obtained using direction-averaged signals at the short dif-
fusion time by Fi9, and markers at the long diffusion time by Fi 9. They are
five-dimensional vectors

T
Friag = [20", %0 ¢’y 1 D:°] € R, (5.5)

T
Fryao = [xégv y397 ngv 011197 Dég} S R®. (5.6)

The superscripts 2 and #° indicate the diffusion times.

To summarize, we adopt two types of features in this chapter. One includes
the direction-averaged signals, and another is composed of the five markers de-
rived from signals. By incorporating domain-specific knowledge, one can also
derive other features from the signals to improve the sensitivity to certain mi-
crostructure parameters.

5.4.2 Training configuration

Machine learning, especially deep learning, has developed rapidly in the last
decade with the help of the increase in computing power. Neural networks are
believed to be superior in function approximation [218-220], especially in high
dimensions [221, 222]. In this chapter, we choose multilayer perceptrons (MLPs)
[228, 229] to infer the microstructure parameters of interest.

The datasets for training MLPs are subsets derived from the synthetic
dataset. We denote a training datasetby 7 = {(X,,Y;),i € {1, ..., Nyoxel } } Where
Nyoxel (= 1.4 million) is the number of the artificial brain voxels. We refer to a tuple
(X,Y) as a data point. The input of an MLP is denoted by X. The ground-truth
output, also known as the /abel in ML community, is denoted by Y. The eight
combinations of input and output studied in this chapter are

1. Case 1: X = Fyg19, Y = Lyg;

2. Case2: X = Fsig49r Y = Lvol;
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Case3: X = Fo, Y = Ly;

W

Case 4: X = Fo, Y = Lyo;

Case 5: X = Fig19, Y = Lirea;
Case 6: X = Figao, Y = Lirea;
Case7: X = Fy19, Y = Lygea;

O N o W

Case 8: X - ka49, Y - Larea.

To improve the robustness of MLPs to noise, we add Racian noise to the
direction-averaged signals used in items 1, 2, 5 and 6. We keep the same SNR
as the MGH CDMD database (Sy/or = 21), where oy is the Rician scaling param-
eter. We recall that all elements in Y are positive and the sum is one, which is
an additional constraint that should be accounted for when training.

We randomly select one million data points from 7 to form the training set
Twain; the rest (over 450,000 data points) makes up the test set Tist Which is
separated and not used for model training. The only role of the test set is to
assess the generalization of a trained MLP [226].

An MLP is a nonlinear function h parameterized by its weights 8 [226]. The
model training is to find optimal weights 8* that minimize the distance between
the MLP's output and the ground truth (known as the label in the ML literature)

#ﬁrain
1Y; — h(X; 0)]l5. (5.7)

6" = arg min

7] #,ﬁrain Zz:;

Here, we use the mean squared error (MSE) as the loss function. The minimiza-
tion is possible if an underlying function ¢ mapping X to Y exists. Once the
optimization converged, the trained MLP could be a good approximation of the
underlying function, i.e., h(+; 8*) ~ { in the sense of minimizing L2 distance in the
training set. Nonetheless, such an underlying function may not exist, and con-
vergence is not guaranteed. The generalization of the trained MLP to unseen
data also needs to be assessed.

The function ¢ varies with the choices of X and Y, and the MR physics de-
termines its existence. Even if { exists, we must be careful about the activation
function, initial weights, and the optimization algorithm to reach the conver-
gence [230].

We employ the Gaussian error linear unit (GELU) [231], a ReLU-like (Rectified
Linear Unit) activation function that incorporates the properties of stochastic
regularizers such as dropout [232]. The weights @ are initialized using Kaim-
ing initialization [233] because we employ ReLU-like activation functions. The
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optimization is performed with a variant of the Adam optimizer that has a long-
term memory of past gradients to enhance the convergence [234, 235]. The
initial learning rate is 0.01, the batch size is 10,000, and the maximum number
of epochs is 500.

The architecture of an artificial neural network can also significantly affect its
performance. Finding a suitable artificial neural network architecture for brain
microstructure estimation is a subject worth investigating in the future. In this
chapter, we concentrate on four-layer MLPs. To guarantee the outputs are all
positive and sum to unity, we append a softmax function [236] to the output
layer. The implementation and training of MLPs are performed with PyTorch
[237].

Finally, we assess the performance of a trained MLP in the held-out test set
Trest- We use the L1-norm to evaluate the test loss

TeS
1 # Trest

ltest = ——77— Y, — h(X;;07)|1, (X5,Y;) € Teest- 5.8
test = e (V) o ; | ( M, ( ) € Trest (5.8)

The test loss estimates the mean absolute error between the ground truth and
the predicted values in the test set.

5.4.3 Hyperparameter tuning

Four-layer MLPs have several hyperparameters, namely, the size of the input
layer n, the first hidden layer ny, the second hidden layer n,, and the output layer
n3. To determine the hyperparameters, we split out 20% of the training set T ain
as the validation set 7. The remaining eighty percent constitute a new training
set 7r.in- We train MLPs on 7/,,, and compute the validation error using L1-loss

on 7,/. The validation errors help determine the hyperparameters. We focus on
the following hyperparameters for the eight cases listed in section 5.4.2

1. Case 1 and Case 2: (n,n1, ns, n3) = (16, 16,8, 3), (16,32, 16, 3), (32, 32, 16, 3),
(32,64,32,3), (64,64,32,3), or (64,128, 64, 3);

2. Case5and Case 6: (n,ny,ns,n3) = (16,16,8,2), (16,32, 16,2), (32,32, 16,2),
(32,64,32,2), (64,64,32,2), or (64,128, 64, 2);

3. Case 3 and Case 4: (n,ny,n9,n3) = (5,10,5,3), (5, 10,10, 3), (5,20, 10, 3),
(5,20, 20,3), (5,30, 15,3), or (5,30, 30,3);

4. Case 7 and Case 8: (n,nq,n2,n3) = (5,10,5,2), (5,10, 10,2), (5,20, 10,2),
(5,20,20,2), (5,30, 15,2), or (5,30, 30,2);

It is worth noting that, for cases 1, 2, 5, and 6, the size of the input layer n equals
the number of direction-averaged signals (see eqs. (5.3) and (5.4)).
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In total, we trained forty-eight MLPs (six sets of hyperparameters for each
case). Figure 5.5 demonstrates the final validation errors of the forty-eight MLPs.
It can be seen that a more complex network structure usually has a lower vali-
dation error. Hence, the selected hyperparameters for the above four items are
(64,128, 64,3), (64, 128,64, 2), (5, 30,30, 3), and (5, 30, 30, 2), respectively.

(a) direction-averaged signals — volume fractions (b) 5 markers — volume fractions
o O  §/A=8/19 ms O §/A=8/19 ms
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Figure 5.5: The validation errors for tuning hyperparameters. A blue circle corresponds
to an MLP for the short diffusion time. An orange square is for the long diffusion time.
The labels of the x-axis are the hyperparameters. The selected hyperparameters are in
bold. (a) the validation errors of twelve MLPs whose hyperparameters are shown on the
x-axis. The MLPs predict the volume fractions using the direction-averaged signals. (b)
the validation errors of MLPs for predicting volume fractions using the five markers. (c)
the validation errors of MLPs for predicting area fractions using the direction-averaged
signals. (d) the validation errors of MLPs for area fraction estimation using the five mark-
ers.

Finally, we train MLPs with the chosen hyperparameters on the original train-
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ing set Tiain. IN the next section, we assess the final performance of each trained
MLP in the held-out test set Tiest.

5.4.4 Validation on test set

We use the L1-loss to quantify the test loss (see eq. (5.8)). For clarity, we as-
sign each trained MLP a name and list the network structures, the input, the
output, the final test losses, and the R? scores in table 5.1. The average test loss
is about 0.01, while the volume or area fraction is of the order of 0.1. The R?
scores for volume fraction estimation are around 0.9, and about 0.6 for area
fraction estimation. Note that four MLPs, mlp_sig_vol_19, mlp_sig_vol_49,
mlp_sig_area_19, and mlp_sig_area_49, are tested under a noise condition
similar to MGH CDMD (SNR = 21). The remaining MLPs, which take the five mark-
ers as input, are assessed on noise-free test sets.

diffusion time

MLP name MLP structure 5/A [ms] input output test loss R? scores
mlp_sig vol_19 64, 128,64, 3 8/19 64 signals  fsoma/ freurite/ fees  0.0223  0.94/0.95/0.98
mlp_sig_vol_49 64, 128,64, 3 8/49 64 signals  fsoma/ freurite/ fees  0.0187  0.95/0.94/0.99
mlp_mk_vol_19 5,30, 30,3 8/19 5markers  fsoma/ freurite/ fees  0.0171  0.95/0.94/0.99
mlp_mk_vol_49 5,30, 30,3 8/49 5markers  fsoma/ freurite/ fees  0.0218  0.93/0.90/0.99

mlp_sig_area_19 64, 128, 64,2 8/19 64 signals Qsomal Gneurite 0.0157 0.66
mlp_sig_area_49 64,128, 64,2 8/49 64 signals Qsomal Gneurite 0.0174 0.62
mlp_mk_area_19 5,30, 30,2 8/19 5 markers Asomal Gnevurite 0.0153 0.66
mlp_mk_area_49 5,30, 30,2 8/49 5 markers Asomal Aneurite 0.0196 0.51

Table 5.1: Summary of the eight MLPs with hyperparameters determined in sec-
tion 5.4.3. The structure of an MLP is represented by four numbers n,ny,ne,ns, i.e.,
the input layer size n, the first hidden layer size n,, the second hidden layer size ns,
and the output layer size n3. The inputs of the MLPs are either the direction-averaged
signals at 64 gradient intensities or the five markers. The outputs are volume or
area fractions. Four MLPs, mlp_sig_vol_19, mlp_sig_vol_49, mlp_sig_area_19, and
mlp_sig_area_49, are tested under the noise condition similar to MGH CDMD (SNR =
21). The rest of the MLPs, which take the five markers as input, are assessed on noise-
free test sets. We list the final test losses of MLPs (using the held-out test set). The
three R? scores of the first four MLPs are for soma, neurite, and ECS, respectively. For
example, the R? scores of soma, neurite, and ECS volume fraction estimation using
mlp_sig_vol_19 are 0.94, 0.95, and 0.98, respectively. Because the sum of soma and
neurite area fractions is unity, the soma area fraction estimation has the same R? score
as neurite.

To further demonstrate the performance of each MLP, we plot the abso-
lute and relative error distribution in the held-out test set, which contains over
450,000 data points. We denote the ground-truth fraction by fg, which, for in-
stance, could be a soma volume fraction or neurite area fraction. The predicted
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value is denoted by foreq. We define the absolute error as the difference between
the prediction and the ground-truth value fyeq — for, and the relative error as
(fored — fat)/ far X 100%. We do not take the absolute value, so a negative error
corresponds to underestimation.

Figure 5.6 summarizes the distributions of the absolute errors for the eight
MLPs using box plots. Section D.2 explains the box plot definition. The MLPs'
estimations have median absolute errors close to zero. Over fifty percent of the
absolute errors for volume fraction estimation are below 0.025. The MLPs for
area fraction estimation have similar performance. Most of the absolute errors
are below 0.025.

(a) area fraction estimation (b) volume fraction estimation
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0.050 T - T -
0.050
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Figure 5.6: The box plots summarizing the distributions of the absolute errors. The
center line of a box indicates the median. A box’s lower and upper sides (hinges) denote
the first and third quartiles. The range between the two hinges is the interquartile range,
which contains 50% of data points. The whiskers extend to the range of 1.5 times the
interquartile range. Outliers are ignored for clarity. (a) the absolute error distributions
for area fraction estimation. (b) the absolute error distributions for volume fraction
estimation.

Similarly, fig. 5.7 demonstrates the distributions of the relative errors. The
median relative errors are close to zero, meaning the predictions do not suffer
significant bias in the synthetic test set. Over fifty percent of the relative errors
for volume fraction estimation are below 10%. The soma area fraction estima-
tion has a much larger relative error than the neurite area fraction estimation.
This is because the average soma area fraction is ~ 0.1, whereas the average
neurite area fraction is ~ 0.9 (see fig. 5.4(c)). Because soma and neurite have
similar absolute errors, a nine times difference in the relative error is reason-
able. Nevertheless, most relative errors for soma area fraction estimation are
below 20%.

The performance of the eight MLPs shows that they can predict the desired
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(a) area fraction estimation

(b) volume fraction estimation
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Figure 5.7: The box plots summarizing the distributions of the relative errors. A box
plot denotes the median, interquartile range, and 1.5 times the interquartile range by
the center line, hinges, and whiskers. Outliers are ignored for clarity. (a) the relative
error distributions for area fraction estimation. (b) the relative error distributions for
volume fraction estimation.

microstructure parameters with acceptable errors. Next, we apply the eight
MLPs to the MGH CDMD dataset to get in vivo parameter maps.

5.5 In vivo microstructure parameter estimation

In this section, we apply the MLPs trained in the previous section to the ex-
perimental data in the MGH CDMD dataset to infer volume and area fractions.

5.5.1 Signal interpolation

Real-world dMRI signals are acquired at much fewer gradient intensities than
simulation. For example, the dMRI signals in the MGH CDMD dataset are sam-
pled with only eight gradient intensities. However, we train MLPs with the
direction-averaged signals at 64 fixed gradient intensities or the five markers
whose computation requires signals at numerous gradient intensities. We need
to interpolate the experimental data to get 64 signals or compute the five mark-
ers based on eight experimental direction-averaged signals.

Practitioners can choose gradient intensities within a fixed range for an MRI
scanner. Suppose we have one measurement near zero gradient intensity, one
near the maximum gradient, and several acquisitions in between. With these
measurements, itis possible to interpolate the direction-averaged signals within
the fixed range.

We demonstrate the way of interpolation using signals from MGH CDMD.
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Let's focus on the dMRI signals from a brain voxel with a fixed sequence, e.g.,
PGSE sequence with /A = 8/19 ms. Some preprocessing steps before the in-
terpolation include signal normalization (eq. (3.20)) and directional averaging
(eq. (5.2)) to get the direction-averaged signal E. To perform interpolation, we
express E as a function of § = 1/+/b. In increasing order, we denote the eight
bvalues by by, ..., bs. So b; is the smallest non-zero bvalue. The corresponding
f's are A4, ..., Bs. Since we took the directional averaging and fixed the gradient
sequence time profile, b or 4 can now fully characterize E.

We adoptthe fourth-order B-spline interpolation implemented in Scipy [238].
A vanilla cubic spline suffers a large fluctuation (see fig. 5.8). To moderate the
fluctuation, we adopt the Gaussian phase assumption when bvalues are smaller
than b,. The GPA allows us to approximate E by ¢P=? = ¢P</5* for b < b;. Fur-
thermore, the GPA provides two boundary conditions which are the continuity
of the first and second derivatives at f;:

E' () = 2D, - e P</% )83, (5.9)
E"(8) = (4D> — 6D,82) e P</5% ) 3, (5.10)

where the primes indicate derivative with respect to 5.
At the high bvalue end (small 3), we adopt the “natural” boundary condition
[239]
E'(8s) = 0. (5.11)

The boundary conditions help moderate the fluctuation of the interpolation and
allow us to sample ¢'s or bvalues within the maximum gradient intensity and find
the inflection point. Figure 5.8 demonstrates the measured and interpolated
signals and the tangent line passing through the estimated inflection point. It
is worth noting that one should not extrapolate the direction-averaged signals
beyond the maximum gradient intensity.

Validation of the interpolation method

The interpolation inevitably brings in errors. We assess the interpolation error
using data from the MGH CDMD dataset. The direction-averaged signals at eight
gradient intensities from a brain voxel are split into two subsets. The first set
contains signals at V; (4 < N; < 8) gradient intensities, including the lowest and
the highest gradients. The second set includes the rest N, signals.

Following the interpolation method described above, we obtain the fourth-
order B-spline polynomial using the first set. We then predict the signals stored
in the second set using the polynomial. The measured and predicted signals are
denoted by E, and E,, respectively. The interpolation error is assessed by the
relative error (Ep — Em)/Em x 100%.
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Figure 5.8: Fourth-order B-spline interpolation of direction-averaged signals. Red cir-
cles represent the direction-averaged signals at eight non-zero bvalues measured from
a white matter voxel of the first subject (sub_001) in MGH CDMD. The voxel index is (19,
25, 73). Avanilla cubic spline interpolation represented by the dotted black line suffers
a large fluctuation. By incorporating the three boundary conditions annotated in the
boxes, the fourth-order B-spline method interpolates the eight measured signals giving
the solid blue line. The rightmost root of the second derivative of the interpolated sig-
nals gives the inflection point shown as the green cross. The dashed orange line is the
tangent line passing through the inflection point.

We adopt two splitting strategies:

1. the first set contains four direction-averaged signals whose gradient inten-
sities are 31, 105, 179, and 290 mT/m; the second set includes four signals
at 68, 142, 216, and 253 mT/m; i.e., Ny = 4 and N, = 4;

2. the first set contains six direction-averaged signals whose gradient inten-
sities are 31, 68, 105, 179, 253, and 290 mT/m; the second set includes
signals at 142 and 216 mT/m; i.e., Ny = 6 and N, = 2;

The relative errors are computed for all brain voxels at the N, gradient intensi-
ties. For example, the first subject in MGH CDMD has 142,201 brain voxels. We
can obtain 142,201 x 4 relative errors using the first splitting strategy. The box
plotsin fig. 5.9 summarize the distribution of the relative errors for the first four
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subjects in MGH CDMD. We refer to the first strategy as “4/4” and the second as
ll6/2ll.

We notice that the first strategy can adequately interpolate the direction-
averaged signals when 6/A = 8/19 ms. However, the interpolation with four
signals becomes biased for the long diffusion time. Using more measured sig-
nals can help reduce interpolation errors. The second strategy is satisfactory in
both cases. More than 50% predicted signals have a relative error inferior to
5%. Almost all relative errors are below 15%. We believe the second strategy is
adequate for signal interpolation. We actually interpolate with eight direction-
averaged signals. We can expect the actual interpolation error is even lower.

(a) /A =8/19 ms (b) 0/A =8/49 ms
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Figure 5.9: The box plots summarizing the distribution of the interpolation errors for the
first four subjects in MGH CDMD. A box plot presents the median, interquartile range,
and 1.5 times the interquartile range by the center line, hinges, and whiskers. Outliers
are ignored for clarity. The interpolation error is assessed by the relative error (Ep —
Em)/Em x 100%. We refer to the first splitting strategy as “4/4"” and the second as “6/2".
It turns out that the second strategy is satisfactory for signal interpolation. More than
50% predicted signals have a relative error inferior to 5%. Almost all relative errors are
below 15%.

5.5.2 In vivo parameter maps

We now apply the trained MLPs to the MGH CDMD dataset. Specifically, the
eight direction-averaged signals from a brain voxel are interpolated to get fea-
tures, namely the 64 signals (Fsjgi9 Or Fiigao) OF the five markers (Fikig OF Finyao).
We obtain a parameter map by applying an MLP to every brain voxel of a subject.
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Parameter maps during training

During the model training, the test error of an MLP decreases, meaning that
the performance improves on the synthetic test set. However, the MLP may
not generalize well on experimental data. We plot several parameter maps of
neurite volume fraction in different training stages in fig. 5.10 to show that the
performance also improves on experimental measurements. As the test error
decreases, the contrast of, for example, the cerebellar white matter becomes
more pronounced. Besides, the test loss becomes stable after 400 epochs. As
mentioned in section 5.4, we stop the training at 500 epochs.
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Figure 5.10: The estimation improvement on the test set and the experimental data as
the test loss decreases. We plot the test losses during the training of mlp_sig_vol_19.
The MLP at five distinct training stages is picked to infer the neurite volume fraction on
experimental data. Orange crosses mark the selected epochs in the error curve. We
present the evolution of a parameter map for the first subject (sub_001) in MGH CDMD.
As the test error decreases, more details appear.

In vivo parameter maps

We obtain in vivo parameter maps by applying the trained MLPs to every brain
voxel of a subject. The second subject in MGH CDMD (sub_002) serves as an
exemple. The parameter maps of two additional subjects are reported in sec-
tions D.6and D.7. Figure 5.11(a) to fig. 5.11(d) show the volume fraction estima-
tion by applying the first four MLPs in table 5.1 to the scanned data of sub_002.
We also append the SANDI's parameter maps to fig. 5.11. We shall explain the
comparison with SANDI in section 5.6.

In addition to the volume fraction maps, the area fraction maps are shown
in fig. 5.12. Because the sum of soma and neurite area fractions is unity, we only
present the parameter maps for soma.
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Figure 5.11: The comparison of volume and signal fractions. The first column is for
soma volume fraction fsoma Or soma signal fraction f/,.,, ((e1) and (f1)), the second
for neurite, and the third for ECS. Three rows, (a), (c), and (e), are for the short dif-
fusion time (0/A = 8/19 ms). The remaining rows are for the long diffusion time
(0/A = 8/49 ms). The first four rows, (a) (b), (c), and (d), are obtained by respectively
applyingmlp_sig_vol_19, mlp_sig_vol_49, mlp_mk_vol_19, and mlp_mk_vol_49, to the
experimental data from sub_002. The last two rows, (e) and (f), show the signal fractions
obtained by fitting the SANDI model to the direction-averaged signals from sub_002.

5.6 Comparison with SANDI

The state-of-the-art impermeable biophysical model for soma and neurite
density imaging, SANDI [88], has similar assumptions to our brain voxel model.
We both assume that the soma and neurite membranes are impermeable, so-
mas are spherical, and ECS is a free diffusion space. The differences in modeling
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Figure 5.12: The maps of soma area fraction. The first column is for the short dif-
fusion time (6/A = 8/19 ms). The second column is for the long diffusion time
(6/A = 8/49 ms). The four subplots, (a) (b), (c), and (d), are obtained by respectively
applying mlp_sig_area_19, mlp_sig_area_49, mlp_mk_area_19, and mlp_mk_area_49,
to the experimental data from sub_002. Note that the color limits of (b) are different
from others.

are:

1. SANDI considers the neurites as a set of randomly oriented sticks (long
cylinders with zero radii), whereas our neurites have realistic radii and
length, faithful undulation, and real dispersion;

2. SANDI utilizes disconnected soma and neurites because the water ex-
change between them is believed to be negligible when t; < 20 ms. In
contrast, our neurites are connected to the soma, forming a continuous
space.

3. Our model assumes the transverse relaxation (T2) is homogeneous in all
compartments within a brain voxel so that the signal normalization can
cancel the transverse relaxation effect (see and ), whereas
SANDI considers the T2 values of the intra- and extra-cellular compart-
ments within a brain voxel are different.

Due to the impermeability assumption and , the validity regime of SANDI
is tq < 20 ms. So the short diffusion time §/A = 8/19 ms is in the regime, while
the long diffusion time is not.

The significant difference is in the dMRI signal generation. The direction-
averaged signal of SANDI has an explicit expression [88]

— . [ _
ESAND| = fs/omae Db + frlweurite %Terf <\/ bDin> + fécse DeCSb> (5-1 2)
in
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where D;, is the longitudinal apparent diffusion coefficient in the sticks; Decs is
the apparent diffusion coefficient in ECS; fl s fheuriter @Nd fics are the signal
fractions for soma, neurite, and ECS, respectively. The soma term e+ is de-
rived, under the GPA, by Murday and Cotts on a spherical liquid particle with
radius being r, and liquid self-diffusion coefficient being D, [90]. The quantity
D., a function of §, A, rs, and Dy, has an explicit formulation ( ). We
refer to the soma term as the “MC equation” following the terminology adopted
by Balinov et al. [91]. For to hold, it is necessary to add at least three
additional assumptions:

1. the Gaussian phase assumption and the MC equation hold under the ex-
perimental condition;

2. the signal from a spherical “apparent” soma can approximate the volume-
weighted average signal from a group of somas;

3. the stick power-law scaling, which is the neurite signal term

\/ moerf(V0Din), is valid.

With these assumptions, the direction-averaged signal of SANDI (Esanpl) IS
an explicit function whose variables are §, A, b, fliomar [reuriter focs: Tse Dsi Din,
and De.s. Among them, 4, A, and b are known experimental parameters, D, is
fixed to be 3 x 1072 um?/us [88]. The remaining six variables are the microstruc-
ture parameters to be estimated. Similar to the volume fractions, the sum of
the three signal fractions is one. Although the signal fractions often character-
ize soma and neurite density, they differ from the volume fractions due to the
compartmental difference in the T2 values.

SANDI estimates the six parameters of biophysical interest by fitting

to the direction-averaged signals. We adopt the open-source AMICO
framework” to perform the fitting [93]. In contrast to our method, the SANDI
model has an analytical signal expression, which allows one to recompute the
direction-averaged signals by substituting SANDI's estimations into the signal
formula .

Since our neuron models are more realistic than SANDI's and the signal simu-
lation requires fewer biophysical assumptions, it is worth comparing SANDI with
the MLPs trained in our framework.

5.6.1 Fitting SANDI to simulated signals

We start with fitting the SANDI model to the simulated signals from artificial
brain voxels. The direction-averaged signals in the test set without noise injec-
tion serve as the simulated signals. They are linearly sampled at 64 gradient

Zhttps://github.com/daducci/AMICO/wiki/Fitting-the-SANDI-model

137


https://github.com/daducci/AMICO/wiki/Fitting-the-SANDI-model

intensities from 0 to 290 mT/m and free of transverse relaxation, myelin water,
and CSF contamination, which is an ideal condition for fitting the SANDI model.
Since the relaxation effects are not included, the signal fractions should be the
volume fractions in this ideal case.

AMICO's optimization needs to predetermine some parameter distributions,
namely the ranges of r,, Di,, and Des. We use the ranges suggested in [88]
and guarantee dense samplings. The training data distributions are 50 values of
Di, linearly spaced in the range [0.1, 3] x 1073 um?/us; 50 values of Decs linearly
spaced in [0.1,3] x 107 um?/us; 50 values of r, linearly spaced in [1,12] um. In
addition, the L1 and L2 regularization terms are 0 and 0.005, respectively.

To demonstrate that the SANDI model has been properly fitted to the sim-
ulated signals, we substitute the estimated parameters into SANDI’s signal ex-
pression (eq. (5.12)) to recompute the direction-averaged signals. We call them
the recomputed signals. We randomly pick several artificial brain voxels and
compare the simulated and recomputed signals. Figure 5.13 shows the signal
comparison for the short diffusion time (§/A = 8/19 ms). We stress that the y-
axes of fig. 5.13 are in logarithmic scale, which magnifies the signal differences.
Sections D.3 and D.4 includes the signal comparison for the long diffusion time
and linear-scale plots where the differences are almost invisible. Because the
differences between the two groups of signals are minimal, we think the signal
fitting is satisfactory.

We then assess whether the estimated signal fractions are related to the vol-
ume fractions. As mentioned above, the signal fractions should equal the vol-
ume fractions because the simulated signals are free of noise and relaxation.
We annotate the SANDI's estimations and the ground-truth values in the upper
right corner of each subplot of fig. 5.13. Even though the SANDI model fits the
simulated signals well, some estimated parameters are not correctly related to
the ground truth.

We plot the absolute and relative errors of SANDI's signal fraction estimation
in fig. 5.14 to better demonstrate the discrepancy. The errors of MLPs' volume
fraction estimation are shown in fig. 5.6(b) and fig. 5.7(b).

In addition to the errors, at the short diffusion time, the R? scores for soma,
neurite, and ECS signal fraction estimations are -2.88, 0.89, and -0.54, respec-
tively. They are -1.74, 0.87, and -0.18 at the long diffusion time. It is worth
stressing that SANDI correctly predicts the neurite fraction at the two diffusion
times. However, the soma and ECS fraction estimations do not correlate with
ground-truth values.

We need to note that the fitting of the SANDI model and the parameter dis-
tributions required by AMICO affect the final performance of SANDI. We only
report the best results that we got using the AMICO framework. A better fit-
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Figure 5.13: The comparison between the simulated (blue dashed line) and recomputed
signals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-
nals are obtained by substituting SANDI's estimations into eq. (5.12). The diffusion time
is d/A = 8/19 ms. The first subplot represents the meaning of the six numbers anno-
tated in the upper right corner of each subplot. The numbers in the first row are the
estimated soma, neurite, and ECS signal fractions. The numbers below are the ground-

truth volume fractions.

ting method and a more realistic data distribution could help SANDI yield better

results.

5.6.2 Fitting SANDI to experimental signals

Next, we fit the SANDI model to the experimental signals in MGH CDMD.
The parameter distributions are 10 values of D, linearly spaced in [0.1, 3] X
1073 wm?/us; 10 values of Dec linearly spaced in [0.1, 3] x 1073 um?/us; 10 values
of rs linearly spaced in [1, 12] wm; L1 and L2 regularization terms are 0 and 0.005,
respectively. For comparison with MLPs, we present the signal fraction maps for

the second subject sub_002 in the last two rows of fig. 5.11.

We reduce the number of samples to 10 in each range because the SANDI fit-
ting with 50 samples yields unreasonable parameter maps. There are significant
gaps between the measured and recomputed signals. We show the parameter
maps obtained using the previous distribution with 50 samples in section D.5.
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Figure 5.14: The box plots summarizing the distributions of SANDI's absolute and rela-
tive errors on the synthetic test set. A box plot denotes the median, interquartile range,
and 1.5 times the interquartile range by the center line, hinges, and whiskers. Outliers
are ignored, and the relative errors are capped at +100% for clarity. For the short diffu-
sion time, the R2 scores of soma, neurite, and ECS signal fraction estimations are -2.88,
0.89, and -0.54, respectively. They are -1.74, 0.87, and -0.18 for the long diffusion time.
(a) the absolute error distributions for SANDI's signal fraction estimation. (b) the rela-
tive error distributions for SANDI's signal fraction estimation.

We emphasize that the SANDI model is supposed to be invalid at the long
diffusion time (§/A = 8/49 ms) because the cellular membrane permeability
and the water exchange between soma and neurites may cause considerable
effects. However, SANDI still gives reasonable estimations for the neurite signal
fractions at the long diffusion time because the neurite maps are similar at the
two diffusion times. We quantitatively study the dependence on diffusion time
in the next section.

5.6.3 Independence of diffusion time

We present the voxelwise joint distributions for estimated soma and neu-
rite volume fractions in fig. 5.15. All brain white and gray matter voxels of
sub_002 are included. We also plot the distribution for SANDI's estimation for
comparison. The soma volume fractions estimated by mlp_sig_vol_19 and
mlp_sig_vol_49 lie roughly in the identity line. The neurite volume fractions
are mostly independent of diffusion time. Even though SANDI is believed to be
inapplicable to a diffusion time greater than 20 ms, the neurite signal fraction
estimations are consistent at the two diffusion times.

The above results persistin other subjects. We present the joint distributions
of two additional subjects in sections D.6 and D.7.
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Figure 5.15: The voxelwise joint distribution of estimated fractions at two diffusion
times. All brain white and gray matter voxels of sub_002 are included. The x- and y-axes
represent the estimated fractions at 6/A = 8/19 ms and §/A = 8/49 ms, respectively.
The black lines are the identity lines. (a) the distribution of the soma volume fractions
estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (b) the distribution of the neurite
volume fractions estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (c) the distribu-
tion of the soma signal fractions estimated by the SANDI model at the two diffusion
times. (d) the distribution of the neurite signal fractions estimated by the SANDI model
at the two diffusion times.
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5.7 Discussion

This chapter proposes a novel framework that employs realistic neuron mod-
eling and diffusion MRI simulation to replace simplified biophysical models and
analytical intracellular signal expressions. Effects arising from, for instance, neu-
rite undulation or water exchange between soma and neurites, which are hard
to include in biophysical models, are seamlessly incorporated into our simu-
lations. Consequently, our framework can achieve higher geometric model-
ing accuracy while requiring fewer biophysical assumptions. Moreover, the mi-
crostructure parameters do not need to be explicitly expressed in the signal,
allowing us to explore new contrasts, such as area fractions.

The proposed framework has two cornerstones. The first one is the realistic
neuron meshes in NeuronSet that we generated using swc2mesh. These neuron
meshes allow us both to obtain neuroanatomical parameters and to simulate
intracellular signals.

The second cornerstone is the numerical matrix formalism implemented in
the SpinDoctor toolbox [44, 47]. In , we achieved a ten-fold speedup
by optimizing the eigendecomposition algorithm and leveraging the GPU com-
putation. Now it takes three weeks instead of thirty weeks to complete all sim-
ulations on 1213 neurons in NeuronSet. The simulation accuracy has been vali-
dated in

Nonetheless, neuron meshes are merely the building blocks of an artificial
brain voxel. To construct a voxel phantom, we need to densely pack the neurons
so that ECS has a reasonable volume fraction and neurons must not intersect
each other. The neuron packing is still a highly challenging open question. We
circumvented this problem by modeling the ECS as a free diffusion space and
assuming impermeable cell membranes. This enables us to compute the signals
from a voxel without explicitly constructing the numerical phantom. However,
the simplified ECS model and impermeability assumption introduce errors that
are the major limitations of our method.

These two cornerstones bring advanced modeling capabilities allowing us
to build a synthetic dataset for supervised learning. summarizes the
generation of the dataset consisting of 1.4 million artificial brain voxels and the
subsequent model training. Each voxel corresponds to thousands of directional
dMRI signals and over forty microstructure parameters. The dataset contains
rich information that helps investigate the relationships between dMRI signals
and microstructure. Besides, the dataset is also a good reference for validating
biophysical models.

In addition to the size, the dataset quality can significantly affect the final

142



performance of ML models®, especially for supervised learning. We maintain
the quality of neuron meshes and the simulation accuracy to ensure the dMRI
signals and the ground-truth microstructure parameters are accurate. More-
over, the training data distribution should be relevant to the distribution we en-
counter in real-world applications [226, 240]. This requirement has also been
recognized by the diffusion MRl community [241]. Palombo et al. [159] provide
some reference distributions for neuron modeling based on over 3500 neuron
skeletons from NeuroMorpho.Org, among which over 1000 are human cells. Be-
cause we also used the cells stored in NeuroMorpho.Org, our neuron meshes
naturally follow all reference distributions.

To adapt the trained MLPs to various experimental acquisition settings, we
proposed an interpolation method by imposing three boundary conditions on
fourth-order B-spline interpolators. As long as enough measurements are given,
the interpolation method can effectively mitigate the fluctuation caused by
vanilla splines and give satisfactory approximations to the measured signals.
One can freely sample signals within maximum gradient intensity or compute
signal features using the proposed interpolation method.

Next, we focus on approximating the mappings from the dMRI signals to
the volume or area fractions using MLPs. Our preliminary work suggests that
such mappings exist and may be high-dimensional [116]. The MLP hyperpa-
rameters are determined on validation sets. Two types of features are studied:
the direction-averaged signals and the five markers. We note the most salient
points of the trained MLPs here:

1. it is possible to predict the volume or area fractions by solely feeding
direction-averaged signals to MLPs;

2. the five markers form a set of concise features that can effectively predict
the volume and area fractions;

3. the dependence of the volume fraction estimation on diffusion time is min-
imal while using the MGH CDMD dataset;

4. it is possible to investigate new microstructure parameters, such as area
fractions, using the proposed framework.

We discuss them in the following sections.

5.7.1 Synthetic data experiments

We conducted a comprehensive performance evaluation of the eight MLPs
on synthetic test sets by reporting the test losses (L1-norm), k2 scores, and the

3Garbage in, garbage out.
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absolute and relative errors in section 5.4.4. The average L1-loss between pre-
dictions and ground truth for the volume fraction estimation is around 0.01, as
shown in table 5.1. The absolute errors of more than fifty percent of predictions
are less than 0.025, and most relative errors are inferior to 10% (see fig. 5.6(b)
and fig. 5.7(b)). Among the three compartments, ECS volume fraction estima-
tion is better than that of soma and neurite. Most importantly, MLPs’ volume
fraction predictions are almost unbiased, and their R? scores for the three com-
partments are greater than 0.9 (see table 5.1). For area fraction estimation, the
R? scores of the four corresponding MLPs are around 0.6. The soma area frac-
tion estimation suffers large relative errors (see fig. 5.7(a)). Nonetheless, the
predictions are still unbiased. These results indicate that the MLPs are good
estimators in the synthetic dataset.

However, we cannot correlate SANDI's estimations to the ground-truth soma
and ECS volume fractions. Admittedly, the model fitting is crucial for SANDI. We
believe the fitting in section 5.6.1 is good enough for two reasons. First, the sig-
nals recomputed by the SANDI's signal expression eq. (5.12) can explain well the
original simulated signals (see fig. 5.13). Second, the fitting correctly predicts the
ground-truth neurite volume fraction with relatively small errors (see fig. 5.14).
We reiterate that the signal fractions should equal the volume fractions in the
synthetic test set because the simulated signals are free of transverse relaxation.

Figure 5.13 and fig. 5.14 show that significant errors occur in SANDI's estima-
tion of soma and ECS signal fractions. This is not surprising because the soma
term fl....e~P:ineq. (5.12) has the same form as the ECS term f. e "e?, caus-
ing an indeterminacy problem. We recall that D, (eq. (1.41))is a function of §, A,
soma radius ris, and the intra-soma diffusion coefficient D;;. Therefore, based
on the sum of the two exponentials (fje=P1* + fe~P2), there is no way to tell
which exponential belongs to soma and which belongs to ECS by solely changing
the bvalue. The MLPs' performance in test sets suggests they do not suffer from
such a problem. However, we stress that the performance of SANDI depends on
the model fitting and the parameter distributions. A better fitting method and a
more realistic data distribution could help SANDI yield better results.

5.7.2 In vivo parameter maps

We obtained the parameter maps by applying the MLPs to every brain voxel
of a subject in MGH CDMD. Figure 5.10 demonstrates the evolution of a param-
eter map during the model training. The improvement in estimation ability in-
dicates the generalization of the MLPs to both the synthetic test set and the
experimental data.

Figure 5.11 presents the estimated volume fractions. There are no signifi-
cant differences between the two types of features. However, rows (c) and (d)
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obtained using the five markers are noisier than (a) and (b). This is because the
computation of the five markers, which requires the derivatives of the direction-
averaged signals, is sensitive to noise. In addition, the MLPs, m1p_mk_vol_19 and
mlp_mk_vol_49, that take the five markers as input are trained with noiseless
data. So they are not robust to noise.

In , the maps of f;oma cOrrectly highlight the gray matter and the cere-
bral nuclei. In contrast, the maps of freurite @are prominent in the white matter,
especially the WM tracts located at the corpus callosum, the corona radiata, and
the brain stem. The neurite volume fraction is mostly in line with SANDI's neurite
signal fraction, except for the fact that f/. i IS slightly higher than foeurite-

The average fecs values are 0.12 in the cerebrum, which is inferior to the typi-
cal ECS volume fraction (0.2) obtained using the real-time iontophoresis method
[162]. The underestimation may be because the simplified ECS model is invalid
in GM and WM. Indeed, the estimated width of the ECS ranges from 10 nm to
64 nm [161], and the ECS tortuosity is about 1.6 [162]. The water diffusion in
such a complex medium could significantly differ from the free diffusion. The
ECS modeling is the main limitation of the proposed method.

The soma area fraction is a new contrast obtained using the proposed frame-
work. The maps of asoma Can also properly highlight the gray matter and the
cerebral nuclei. The two MLPs that take the 64 signals as input produce cleaner
parameter maps. However, the area fraction estimation is inconsistent at the
two diffusion times. For example, has higher fraction estimations in
gray matter than . The moderate performance is also reflected by the
low R? scores in the test set. But the area fraction maps are satisfactory as a
proof of concept to demonstrate the potential of the proposed framework for
investigating new microstructure parameters.

The above results qualitatively demonstrate that the MLPs trained in the pro-
posed framework can yield encouraging estimations. We further validate the
parameter maps by investigating the consistency across diffusion times.

5.7.3 Independence of diffusion time

Due to the lack of real-world ground truth (for example, the actual soma vol-
ume fractions in some brain voxels of a subject), validating parameter maps
remains largely qualitative. Given this limitation, the community has begun to
seek consistency across acquisition parameters, sequences, and scanners [242-
244], instead of qualitative visual assessment. In our case, we focus on the de-
pendence of the volume fractions on diffusion times. Indeed, microstructure
imaging aims to infer the objective tissue properties based on dMRI signals. We
want the estimated tissue properties to be independent of how they are mea-
sured.
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Figure 5.11 demonstrates that the parameter maps given by the MLPs are
mostly consistent between the short and long diffusion times. For a more quan-
titative comparison, we plot the voxelwise joint distribution of the estimated
soma and neurite volume fractions at the two diffusion times in fig. 5.15. If the
estimation is consistent, the scatter points should lie around the identity line. It
turns out that the estimated fpeurite IS Mainly invariant to the change of diffusion
time. The soma volume fraction f;oma lOcates fairly near the identity line with a
relatively broad variance. We stress that the cell membrane permeability may
not be ignored when ¢, > 20 ms [187]. Nonetheless, the MLPs can still give con-
sistent and reasonable estimations at the long diffusion time, suggesting that
the effect of cell membrane water exchange on volume fraction estimation is
still minor when t; ~ 46 ms.

Interestingly, the SANDI model can also give consistent neurite signal fraction
estimations even though it is believed to be inapplicable when t; > 20 ms. The
consistent results agree with the good performance of SANDI in the synthetic
test set for neurite signal fraction estimation (see fig. 5.14). In addition, the dis-
tributions of freurite aNd flourite @re quite similar (see fig. 5.15(b) and fig. 5.15(d)).

Recently, evidence from experiments and simulations shows that the stick
power-law scaling is valid in WM and GM [85, 86, 99, 227]. In gray matter,
however, the aggregation of neurites and somas modifies the concavity of the
direction-averaged signals. Even though the stick power-law scaling is not ap-
parent in the GM [99], the direction-averaged intra-neurite signals still follow
the power-law scaling, as demonstrated in our previous work [116]. The con-
sistency of the neurite signal fraction estimation at two diffusion times further
supports the stick power-law scaling.

The advantage of the proposed supervised learning framework manifests
itself by giving consistent estimations at two diffusion times for both neurite and
soma volume fractions. It took years for the community to reach a consensus
about the stick power-law scaling, while it only took hundreds of epochs for an
MLP to give a similar neurite fraction estimation.

5.7.4 Limitations

The proposed method is primarily limited by the geometric modeling capa-
bility, especially by the modeling of the ECS. The ECS is a complex medium whose
tortuosity is about 1.6 [162]. The thickness of the ECS ranges from 10 nm to 64
nm [161], and the ECS volume fraction is about 20% [162]. Geometrically model-
ing such a complex medium is highly challenging. To circumvent this, we used a
simplified brain voxel model by assuming that cell membranes are impermeable
and the ECS is a free diffusion space. In addition, we chose a very high diffusion
coefficient in the ECS because the ECS includes CSF in our model. To guarantee
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that the trained MLPs give reasonable ECS volume fraction estimation in, for ex-
ample, the ventricles, we chose the high diffusion coefficient, as did [81, 245].
Instead of keeping De fixed, a better way could be to draw Decs from a distribu-
tion. However, since the free diffusion space may not be able to model ECS, the
best solution is to achieve the geometric modeling of ECS. Some work on this
issue has yielded exciting results. For example, Lee et al. [246, 247] achieve the
geometric modeling of myelin sheaths in a corpus callosum sample of a mouse
brain. Their method requires 3D electron microscopy images of the sample and
the semi-automatic segmentation of the images. With this method, the shape
and position of axons are well preserved, which could help us to construct a
more realistic model for the ECS. However, the method does not currently work
automatically, thus limiting its widespread use.

Another factor affecting the realism of the brain voxel model is the number
and type of neurons in a brain voxel. According to a recent brain histology study
[12], a gray matter brain voxel of ~ 1 mm?3 comprises 57,216 cells and hundreds
of millions of neurites. We are unable to model tens of thousands of neurons
geometrically. Moreover, in the human brain, there are similar numbers of neu-
rons and glial cells [248]. Including more glial cells in the neuron mesh dataset
would allow for a more realistic distribution of cell types.

The average thickness of the human cerebral cortex is about 2.5 mm [249].
A brain voxel of 1 mm? can span multiple layers of the cerebral cortex, thus con-
taining a variety of neurons. In order to simulate the composition of real brain
voxels as well as possible, we randomly combined the neurons in NeuronSet
regardless of the brain region where the neuron was originally located. The pri-
mary motivation for the random combination is to diversify the shape of the
neurons in artificial brain voxels. In addition, we put hundreds of neurons in an
artificial brain voxel to simulate the massive signal-averaging effect ( )
in real brain voxels. However, this could create unrealistic combinations of neu-
rons. A future improvement is to combine neurons from the same brain region
(see the regional distribution of cells in NeuronSet in ). This requires
more neurons in each brain region.

Furthermore, we can better optimize several hyperparameters of the pro-
posed method. They include the distribution of the ECS volume fraction, the
number of direction-averaged signals, and the maximum number of neurons in
an artificial brain voxel. We chose them through a limited number of trials in
this study. A grid search could help find better hyperparameters.

Unlike biophysical models that could apply to a range of diffusion times, the
MLPs are trained for a particular time profile only. If one wants to employ a
new diffusion time, the dMRI simulations must be rerun on all neurons. The
simulations could be highly time-consuming if one adopts a simulation method
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other than the numerical matrix formalism. Because the eigendecomposition
has already been obtained, the time overhead of computing new signals by the
numerical matrix formalism is reduced but still considerable.

5.7.5 Future perspectives

The proposed framework can readily help in many aspects of diffusion MRI.
First, the synthetic dataset can be used to validate biophysical models. Second,
we have over forty rotationally-invariant microstructure parameters. This pa-
per focuses only on five. It is worth investigating other parameters, for exam-
ple, the average soma radius. Third, the direction-averaged signals obtained
with several acquisition protocols (e.g., various diffusion times or different se-
guences) can be fed into an MLP together to achieve joint estimation. This could
help reduce indeterminacy. The MLP training is the same for diffusion-encoding
sequences other than PGSE. However, some biophysical models’ signal expres-
sions are derived only for PGSE sequences. If one adopts another type of se-
guence, itis necessary to derive and validate new signal expressions. The deriva-
tion of analytical signal expressions is not trivial at all.

Four extensions to the framework are foreseeable. First of all, we could re-
move the impermeability assumption. Agdestein et al. [50] have extended the
numerical matrix formalism to include permeable compartments. We can solve
the complete BT equation system, to , with permeable membranes
using numerical matrix formalism. Note that the computational optimization
made in this thesis also applies to the permeable case. The main challenge is
the ECS mesh generation. We have been able to wrap a neuron mesh with a
thin envelope to achieve ECS modeling with reasonable volume fractions. An
example can be found in . However, dense neuron packing is still
inevitable to get a brain voxel phantom. Some recent advances in computer
graphics provide promising approaches to this problem. The basic idea is to al-
low some flexibility in the neurons and squeeze them into a cube. Second, we
could remove the assumption about homogeneous transverse relaxation and
employ different compartmental T2 values. The simulation with transverse re-
laxation is straightforward because T2 relaxation just introduces some expo-
nential multipliers to the computation, as shown by . Third, we can
generate more cellular meshes based on myriad neuron tracing data stored in
NeuroMorpho.Org. Finally, the neuron meshes also contain orientation infor-
mation. Estimating orientation-dependent microstructure using the synthetic
dataset can also be expected.

5.8 Summary
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We proposed a novel framework leveraging a highly-efficient simulator, mod-
ern computer graphics algorithms, and supervised learning methods to infer
the brain microstructure in vivo using diffusion MRI. The fundamental tools of
the framework have been made publicly available. We demonstrated that the
framework helps to approximate the underlying mappings from diffusion MRI
signals to several microstructure parameters. As proof of concept, we presented
how to estimate volume and area fractions using the direction-averaged signals
or the five signal markers via training MLPs on a synthetic dataset generated by
the framework. Qualitatively, the MLPs gave promising parametric maps. Quan-
titatively, the estimated volume fractions depended less on the diffusion time
than a state-of-the-art method. Although the obtained parameter maps still re-
quire further validation, we believe the proposed framework can substantially
help achieve quantitative microstructure imaging and promote broader adop-
tion of diffusion MRI simulation.
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Chapter 6

Conclusion

The ultimate goal of this thesis is to facilitate simulation-driven brain microstruc-
ture imaging with diffusion MRI. We made notable contributions to neuron mod-
eling and diffusion MRI simulation to achieve this goal. The simulation-driven su-
pervised learning framework presented in is a promising prototype.
This chapter presents a summary of the results and future perspectives.

We developed an open-source neuron mesh generator, swc2mesh, that can
automatically and robustly convert valuable neuron tracing data to realistic neu-
ron meshes. We have carefully designed the generator to maintain a good bal-
ance between the mesh quality and size. A neuron mesh dataset, NeuronSet,
which contains 1213 simulation-ready cellular meshes and their neuroanatom-
ical measurements, has been built using the mesh generator. The number of
meshes in itself demonstrates the capability of the neuron mesh generator.
We believe the NeuronSet is beneficial for diffusion MRI simulation and for
other neuroscience research like neuroanatomy. A foreseeable application of
swc2mesh is to study the contributions of individual neuronal components to
diffusion MRI signals because the neuron mesh generator provides an easy way
to construct meshes for individual neuronal components like a single dendrite.
Furthermore, it is possible to edit the tabular neuron tracing data (SWC files) to
precisely modify the neuron shape. This allows us to study, for example, the
effect of decreased neurite radii or lengths on dMRI signals.

Diffusion MRI simulation is another piece of the puzzle. We adopted the nu-
merical FE-based matrix formalism method. Integrating matrix formalism with
a finite element method (FEM) brings significant advantages in terms of com-
putational efficiency. We further optimized the numerical MF by speeding up
the eigendecomposition algorithm and leveraging GPU computation. A ten-
fold speedup is achieved. Calculations that previously took an hour now take
only six minutes. In addition, with similar precision, the optimized numerical
matrix formalism is 20 times faster than FEM and 65 times faster than a GPU-
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based Monte-Carlo method. By performing simulations on the realistic neuron
meshes, we have investigated the effect of soma-neurite water exchange, the
neurite power-law scaling, and the relationship between soma size and signals.
The combination of the neuron mesh generator and the ultra-fast numerical
matrix formalism provides powerful modeling and computational capabilities.
We believe these capabilities can bring more insight into diffusion MRI.

The Fourier potential method is a new method based on the potential the-
ory that provides a Fourier-type representation of the diffusion MRI signal. This
method has been derived theoretically and implemented numerically. We val-
idated the convergence of the method and showed that the error behavior is
in line with our error analysis. However, the method is currently of theoretical
interest only. Future work is required to generalize the method to 3D and go
beyond the narrow pulse assumption.

Finally, we proposed a simulation-driven framework with high geometrical
modeling accuracy for brain microstructure imaging. By harnessing the afore-
mentioned powerful modeling and computational capabilities, we constructed
a synthetic dataset that contains the dMRI signals and microstructure param-
eters of 1.4 million artificial brain voxels. We demonstrated that the dataset
helps approximate the underlying mappings from dMRI signals to volume and
area fractions. Unlike existing methods, our method does not require the mi-
crostructure parameters to be explicitly included in a signal expression. There-
fore, one can freely investigate any parameters that can be measured on neuron
meshes. However, determining which microstructure parameters can be appro-
priately estimated requires profound physical insight.

We presented eight exemplary MLPs trained on the synthetic dataset for es-
timating volume and area fractions. In the synthetic test set, the MLPs have
lower estimation errors than the SANDI model. In the experimental dataset, the
MLPs and SANDI give similar results for neurite fraction estimation. By com-
paring the estimations at two diffusion times, we showed that the MLPs’ esti-
mations depend less on the diffusion time. Although further validation is defi-
nitely required, we believe the proposed framework is a satisfactory prototype
for simulation-driven brain microstructure imaging.

The main limitation of this method concerns the ECS modeling. Neurons are
tightly intertwined in real brain tissue. Building a geometrical model for ECS re-
quires densely packing a large number of neurons in a tiny cube to achieve a
reasonable ECS volume fraction. Besides, these neurons cannot intersect with
each other. We have not solved this highly challenging geometrical modeling
problem yet. Consequently, we still assume the ECS is a free diffusion space,
which could introduce biases. Some recent advances in computer graphics pro-
vide promising approaches to this problem. These approaches based on linear
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elasticity theory can perfectly prevent the intersection. Therefore, we can allow
some flexibility in the neurons and squeeze them into a cube. However, this re-
quires further work. If we obtain the geometrical models for ECS, the extension
of the proposed method to include permeable membranes is foreseeable.

To conclude, this thesis contributed to neuron modeling, diffusion MRI sim-
ulation, and brain microstructure imaging. We hope that these contributions
will bring the significance of geometric modeling and simulation to the atten-
tion of the community and lead to the design of more advanced microstructure
imaging methods to explore the mysteries of the human brain.
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Appendix A

Supplementary Material to
Chapter 2

This appendix contains three sections. provides an exhaustive list of
neuroanatomical parameters that could be relevant to dMRI. gives
the complete list of all neuron meshes in Neuron Module. Some neuroanatom-
ical measurements of neurons in Neuron Module are also included.

shows an example of a neuron wrapped by an ECS compartment. To guarantee
a realistic volume fraction of ECS (~ 20%), the mesh of ECS must be extremely
narrow, as shown in

A.1 List of neuroanatomical parameters

In this section, we list various neuroanatomical measurements from a single
neuron. We first present some primitive parameters that can be directly mea-
sured from neuron skeletons or meshes:

1. neuron volume, Vieuron:
2. neuron area, Aneuron,

soma radius, rsoma;

> W

i Im .
total neurite length measured by L-measure, LT s
5. number of stems, Nstems;
6. maximum stem Euclidean distance, Dmaxeuc;

7. maximum stem path distance, Dmax,path;
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8. average stem Euclidean distance, Deyc;
9. average stem path distance, 5path.

We then list some secondary neuroanatomical parameters that be calculated
from the above parameters:

10. soma volume, Vioma = %ﬂ-r?oma;

11. soma area, Asoma = 4772 mas
12. neurite volume, Vieurite = Vheuron — Vsomas

13. neurite area, Aneurite = Aneuron — Asomas

14. total neurite length, Lneurite = L™ 1ive — Nstems X Tsomas
. . . Vneurit
15. average neurite radius (based on neurite volume): 7 rie = / ———
T Lineurite
16 it di b d it R . Aneurite .
. average neurite radius (based on neurite area): rioyie = 5

21 Lneurite

17. neuron volume-area ratio, Vieuron/Aneuron;

18. neurite volume-area ratio, Vieurite/Aneurite;

19. soma volume-area ratio, Vsoma/Asoma = Tsoma/3;
20. neuronal soma volume fraction, Vioma/Vheuron:
21. neuronal soma area fraction, Asoma/Aneuron;

22. neuronal neurite volume fraction, Vyeurite/ Vieuron:
23. neuronal neurite area fraction, Aneurite/Aneuron;
24. average stem length, Lsem = Lneurite/Nstem;

v pa
neurite neurite

oo LT
25. neurite irregularity, — o
neurite + Tneurite

(=0, if neurites are cylindrical);

26. total stem Euclidean distance, Deyc = Deuc X Nsterns,

27. total stem path distance, Dpath = Dpath X Nstems:

28. maximum contraction, Dmax,euc/Dmax,path;
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29. average contraction, Deuc/Dpath;

30. ratio between soma and neuron volume-area ratios,

31. ratio between neurite and neuron volume-area ratios,

32. ratio between soma and neurite volume-area ratios,

Vsoma /Asoma .

neuron /Aneuron

I

Vneurite/Aneurite .

’
Vneuron /Aneuron

‘/;oma /Asoma

Vneurite /Aneurite

The list is not exhaustive. We refer to the L-measure website (http://cng.
gmu.edu:8080/Lm/help/index.htm) for the definitions of over 40 neuroanatom-
ical parameters. However, those parameters not listed here might be less rele-
vant to diffusion MRI.

A.2 List of neurons in Neuron Module

Table A.1 lists the names, IDs, and other metadata of the group of 36 pyrami-
dal neurons and the group of 29 spindle neurons in Neuron Module. Table A.2
shows the neuron mesh sizes and some neuroanatomical measurements for
the neurons. The neuron models and the measurement data are from [110]

and [119].
Table A.1: Metadata of the 65 neurons in Neuron Module.

Index Cell name Cell ID Brain region Cell type
1 02a_pyramidal2aFl NMO_01042 fronto-insula pyramidal
2 02b_pyramidal1aACC | NMO_01043 | anterior cingulate pyramidal
3 02b_pyramidal1aFl NMO_01044 fronto-insula pyramidal
4 03a_pyramidal9aFl NMO_01045 fronto-insula pyramidal
5 03a_spindle2aFI NMO_01078 fronto-insula von economo
6 03a_spindle6aFl NMO_01079 fronto-insula von economo
7 03b_pyramidal2aACC | NMO_01046 | anterior cingulate pyramidal
8 03b_pyramidal3aACC | NMO_01047 | anterior cingulate pyramidal
9 03b_pyramidal3aFl NMO_01048 fronto-insula pyramidal
10 03b_pyramidal4aFl NMO_01049 fronto-insula pyramidal
11 03b_pyramidal9aFI NMO_01050 fronto-insula pyramidal
12 03b_spindle4aACC NMO_01080 | anterior cingulate | von economo
13 03b_spindle5aACC NMO_01081 | anterior cingulate | von economo
14 03b_spindle6aACC NMO_01082 | anterior cingulate | von economo
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Table A.1 continued from previous page

Index Cell name Cell ID Brain region Cell type
15 03b_spindle7aACC NMO_01083 | anterior cingulate | von economo
16 04a_pyramidal4aACC | NMO_01051 | anterior cingulate pyramidal
17 04a_pyramidal5aACC | NMO_01052 | anterior cingulate pyramidal
18 04b_pyramidal5aFl NMO_01053 fronto-insula pyramidal
19 04b_pyramidal6aACC | NMO_01054 | anterior cingulate pyramidal
20 04b_pyramidal6aFl NMO_01055 fronto-insula pyramidal
21 04b_pyramidal7aACC | NMO_01056 | anterior cingulate pyramidal
22 04b_spindle3aFI NMO_01084 fronto-insula von economo
23 05a_pyramidal10aACC | NMO_01057 | anterior cingulate pyramidal
24 05a_pyramidal8aACC | NMO_01058 | anterior cingulate pyramidal
25 05b_pyramidal7aFl NMO_01059 fronto-insula pyramidal
26 05b_pyramidal8aFl NMO_01060 fronto-insula pyramidal
27 05b_pyramidal9aACC | NMO_01061 | anterior cingulate pyramidal
28 05b_spindle5aFI NMO_01085 fronto-insula von economo
29 06a_pyramidal11aACC | NMO_01062 | anterior cingulate pyramidal
30 06b_pyramidal10aFl | NMO_01063 fronto-insula pyramidal
31 06b_pyramidal12aACC | NMO_01064 | anterior cingulate | pyramidal
32 06b_spindle8aACC NMO_01086 | anterior cingulate | von economo
33 | 07a_pyramidal13aACC | NMO_01065 | anterior cingulate | pyramidal
34 | 07b_pyramidal14aACC | NMO_01066 | anterior cingulate pyramidal
35 07b_spindle9aACC NMO_01087 | anterior cingulate | von economo
36 08a_spindle13aACC NMO_01088 | anterior cingulate | von economo
37 08o_pyramidal11aFl | NMO_01067 fronto-insula pyramidal
38 090_spindle7aFl NMO_01089 fronto-insula von economo
39 090_spindle8aFl NMO_01090 fronto-insula von economo
40 10a_pyramidal15aACC | NMO_01068 | anterior cingulate pyramidal
41 10a_spindle18aACC NMO_01091 | anterior cingulate | von economo
42 11a_pyramidal16aACC | NMO_01069 | anterior cingulate pyramidal
43 110_pyramidal12aFl | NMO_01070 fronto-insula pyramidal
44 12a_spindle19aACC NMO_01092 | anterior cingulate | von economo
45 120_spindle9aFI NMO_01093 fronto-insula von economo
46 130_spindle10aFl NMO_01094 fronto-insula von economo
47 150_spindle12aFl NMO_01095 fronto-insula von economo
48 160_spindle13aFl NMO_01096 fronto-insula von economo
49 170_pyramidal13aFl | NMO_01071 fronto-insula pyramidal
50 180_pyramidal14aFl | NMO_01072 fronto-insula pyramidal
51 190_spindle14aFl NMO_01097 fronto-insula von economo
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Table A.1 continued from previous page

Index Cell name Cell ID Brain region Cell type
52 200_pyramidal15aFl | NMO_01073 fronto-insula pyramidal
53 210_spindle15aFl NMO_01098 fronto-insula von economo
54 220_pyramidal16aFl | NMO_01074 fronto-insula pyramidal
55 230_spindle16aFI NMO_01099 fronto-insula von economo
56 240_pyramidal17aFl NMO_01075 fronto-insula pyramidal
57 250_pyramidal18aFl | NMO_01076 fronto-insula pyramidal
58 250_spindle17aFl NMO_01100 fronto-insula von economo
59 260_spindle18aFl NMO_01101 fronto-insula von economo
60 270_spindle19aFl NMO_01102 fronto-insula von economo
61 280_spindle20aFI NMO_01103 fronto-insula von economo
62 280_spindle21aFlI NMO_01104 fronto-insula von economo
63 290_spindle22aFI NMO_01105 fronto-insula von economo
64 300_spindle23aFl NMO_01106 fronto-insula von economo
65 31o_pyramidal19aFl | NMO_01077 fronto-insula pyramidal

Table A.2: Mesh size and neuroanatomical measurements for all neurons in Neuron

Module.
Index | # vertices Mean neurite | Length | Soma vol. | Neuron vol.
diameter [m] | [um] [um?] [um?]
1 119156 1.27 404.85 | 19701.05 25639.61
2 45216 1.58 363.08 | 9065.56 11579.71
3 105384 1.62 381.56 | 22475.52 29804.96
4 81530 2.15 532.30 | 22557.27 30189.28
5 38202 1.74 387.16 | 13406.27 17684.23
6 44000 1.66 501.47 | 33458.19 37812.72
7 28183 1.48 189.29 | 2977.21 4487.44
8 27607 1.14 188.45 | 6005.06 6891.04
9 151362 1.84 496.35 | 32510.62 46154.08
10 96177 1.33 414.70 | 35253.85 39324.87
11 66162 1.92 430.06 | 15263.14 20532.57
12 17370 1.43 336.33 3098.39 4070.19
13 26345 1.49 221.52 | 11925.78 13242.53
14 26792 1.33 398.36 | 4027.74 6058.67
15 21618 1.18 369.51 | 4982.41 6076.52
16 150897 1.52 705.96 | 5684.55 13637.33
17 89256 1.86 410.59 | 15010.43 24648.35
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Table A.2 continued from previous page

Index | # vertices | 2V& neurite | Height | Soma vol. | Neuron vol.
diameter [im] | [um] [pm’] [pm?]

18 95784 1.78 480.13 | 10312.87 17184.26
19 87195 1.41 465.88 | 3129.97 7497.12

20 90482 1.56 310.21 | 14718.05 21708.21
21 622553 1.3 610.42 | 17060.60 28552.49
22 51265 2.71 391.14 | 22569.99 28404.13
23 201506 1.74 281.20 | 16604.06 21826.41
24 139975 1.29 430.37 | 24709.77 29778.79
25 208203 2.18 281.02 | 25720.11 32731.05
26 124350 1.66 361.45 | 32527.06 44679.46
27 366659 1.56 650.60 | 23948.05 40014.54
28 22457 2.35 381.88 | 15383.08 18190.63
29 319574 1.46 437.60 | 17222.02 29995.02
30 106808 1.92 365.18 | 43127.81 52179.53
31 277718 1.52 32494 | 17181.33 24931.32
32 15163 1.92 342.21 | 18237.49 19462.92
33 155854 1.37 325.73 | 6254.53 8738.01

34 309789 1.67 350.40 | 16053.07 22772.96
35 54952 1.75 437.87 | 21344.83 27307.48
36 46293 1.74 814.45 | 9911.07 14113.32
37 419651 1.91 421.68 | 11512.38 24326.94
38 38992 2.90 472.87 | 22052.10 27905.89
39 60755 2.05 376.73 | 11923.76 15189.32
40 56184 1.40 341.48 | 8522.11 10960.84
41 25797 1.57 45790 | 5895.17 7219.28

42 222732 1.27 486.31 8807.01 12263.84
43 380293 1.91 369.34 | 70786.62 79516.92
44 31841 2.05 431.22 | 12178.08 15618.67
45 29320 3.41 305.31 | 29983.79 36678.18
46 43081 2.69 516.92 | 39866.55 46022.15
47 101548 3.60 604.57 | 53192.65 79170.43
48 18266 2.17 364.66 | 17467.88 18888.13
49 326989 1.89 340.77 | 11004.30 21167.19
50 338453 1.74 288.41 | 69851.56 78999.20
51 25786 2.18 232.21 | 10507.15 12905.43
52 247116 1.82 383.18 | 22344.32 27667.19
53 28822 2.36 286.33 | 17567.69 29466.53
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Table A.2 continued from previous page

Index | # vertices | 2V& neurite | Height | Soma vol. | Neuron vol.
diameter [im] | [um] [pm’] [pm’]
54 389878 1.94 585.35 | 18776.05 29441.43
55 30073 1.67 420.05 | 10429.13 13482.93
56 245058 2.04 371.99 | 40986.40 47377.09
57 71209 1.80 364.05 | 18587.13 23572.15
58 52919 1.79 358.70 | 7897.44 13563.26
59 36239 2.27 442.65 | 52911.93 56084.44
60 50807 1.73 275.08 | 20640.14 25423.96
61 56036 3.00 520.69 | 35442.59 51267.07
62 17581 2.62 298.57 | 35579.06 37783.31
63 18414 3.52 402.84 | 62928.22 83279.12
64 26357 3.05 322.56 | 24006.79 28303.55
65 619390 2.26 303.55 | 65950.80 86376.72

A.3 A neuron mesh wrapped by a thin ECS

We present an example of a neuron' wrapped in a thin envelope to achieve

ECS modeling (see fig. A.1 and fig. A.2). The ECS volume fraction is 0.31.

Figure A.1: A neuron wrapped in an ECS. The neuron is represented by a solid white

50 um

mesh inside a transparent pink envelope, the ECS, whose volume fraction is 0.31.

"NeuroMorpho.Org ID of the neuron is NMO_01078.

163



https://neuromorpho.org/neuron_info.jsp?neuron_name=03a_spindle2aFI

N/
SN\

V4

Figure A.2: Zoomed-in of the above neuron. A solid white mesh represents the neuron.

The red envelope represents the ECS. Half of the ECS is removed to show the neuron
inside.
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Appendix B

Supplementary Material to
Chapter 3

B.1 Proof of

We give the proof of . When the gradient intensity is zero, the BT
equation degenerates to the diffusion equation:
0
(,01<33,0) = 17 S Qi7 (BZ)
DNV y;(x,t) -n;(x) =0, x ey, tel0, TE]. (B.3)
We integrate over the domain §2; to get
d
— | gi(x, t)de = / D,V -Vp;(x,t)dx. (B.4)
dt Q; Q;

The divergence theorem allows us to compute the right-hand side of
/ D,V -Vo;(x, t)de = D;Vy;(x,t) - n;(x)ds, = 0. (B.5)
Q %

So the integral fQ wi(zx, t)dx is a constant. Finally, we have

/ vi(x, TE; g = 0)dx = / i(x,0)dx = / ldx = V. (B.6)

Q;
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B.2 Monte-Carlo simulation

In , we utilize a GPU-accelerated Monte-Carlo method imple-
mented in the disimpy [65] package. Two simulation parameters control the
precision of the Monte-Carlo method: the number of random walkers Nyakers
and the number of time steps V.

To compare the simulation efficiency of FEM, numerical MF, and the Monte-
Carlo method, we need to tune the simulation parameters so that the maximum
relative error of each method is close to 2%. For the Monte-Carlo method, we
reach a 2% relative error by gradually increasing Nyaikers and M. shows
six combinations of parameters. In , we report the execution times
of the fourth row because the maximum relative error is the closest to 2%.

Table B.1: Execution times and maximum relative errors of Monte-Carlo simulations
with disimpy.

Nuwalkers Ny Max. relative error (%) Preparation times(s) Computation times (s)
103 103 68.1 1483.99 15.79
10° 103 4.01 1468.33 25.44
10° 10% 4.32 1475.76 198.1
109 5 x 104 2.36 1474.41 902.55
10° 8 x 10* 3.99 1497.92 1414.77
5x10° 5 x 10% 0.99 1531.33 1852.63

B.3 Additional neuron simulations

We show some simulation results on other neuron meshes in our collection.
In , we compare the diffusion MRI signals due to two different dendrite
branches, one from 04b_spindle3aFl and one from 03b_spindle7aACC. The first
branch has a single main trunk, whereas the second branch divides into two
main trunks. We see at the higher b-value b = 4000 us/um?, at the longest
diffusion time, the signal shape is more elongated (perpendicular to the main
trunk direction) for the first dendrite branch than the second.

In , we show 3-dimensional simulation results of the spindle neuron
03a_spindle2aFl. We plot in the signal attenuations in 720 directions uni-
formly distributed in the unit sphere for b = 1000 pus/pum? and b = 4000 us/pm?.
We see that the shape of the signal attenuations in these 720 directions is ellip-
soid atthe lower b-value, and the shape becomes more complicated at the larger
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Figure B.1: The signal attenuations in 180 directions lying on the = — y plane, uniformly
distributed on a unit circle. The distance from each data point to the origin repre-
sents the magnitude of the signal attenuation. The simulation parameters are rtol =
1073, atol = 1072, Htetgen = 0.5 um?. The diffusion coefficient is 2 x 1073 um?/us.
(a) one dendrite branch of 04b_spindle3aFl (volume mesh has 29854 vertices). (b) one
dendrite branch of 03b_spindle7aACC (volume mesh has 10145 vertices).

b-value. At b = 4000 us/um?, there is more signal attenuation at the shorter dif-
fusion time than at the higher diffusion time.
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Figure B.2: The signal attenuations for the neuron 03a_spindle2aFl in 720 directions
uniformly distributed on a unit sphere. The color and the distance to the origin of
each data point represent the magnitude of the signal attenuation. The simulation
parameters are rtol = 1073, atol = 1075, Htetgen = 0.5 um?. The diffusion coeffi-
cientis 2 x 1073 um?/us. (@) PGSE (§/A = 10/13 ms), b = 1000 pus/um?. (b) PGSE
(6/A = 10/73 ms), b = 1000 ps/pm?2. (€) PGSE (5/A = 10/13 ms), b = 4000 s /pum?. (d)
PGSE (§/A = 10/73 ms), b = 4000 pus/um?. The number of FE nodes for the neuron is
49833.
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Appendix C

Numerical Implementation of FPM

C.1 Overview
is a flowchart describing the Fourier Potential Method (FPM). The
domain of definition of x (and the intermediate variable Klong[u]) is on the

boundary, zy € I' = U /_, 09;. The domain of definition of f is in the Fourier
domain, v € [— umm,ymm]Q.

short[1]
Input .
dMRI signal
paramctem
]

Figure C.1: Flowchart describing the workflow of the Fourier potential method.

The input parameters of our method include numerical descriptions of cellu-
lar membranes, diffusion MRI protocols, and simulation settings. All necessary
inputs are listed in . The second block in depicts the main pro-
cedure for solving . Specifically, the loop in the second block contains
three steps:

1. compute the Fourier coefficients f at time ¢:
f(l/,t) _ e—47r2DoHu||2Atf< — At)+

/ /8—47r2D0l/||2(t—7')yl(y77_)6—27rzu~ydsyd7_. (C»])
t—n—At
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2. compute the long time part Kj,,,,[¢] at time ¢:

Kiongltt) (o, t) = Do Y _ 2mw - mf (v, )e>™ ™0 dv?, (C.2)

3. compute the density p at time ¢:

9 <2mpq - me—Am2Dolla|?t g ~2maz _ Kiong|11) (o, t))

p(xo, t) = (C.3)

1 - @f(%)

We iterate the loop over all time steps until the density ¢ and the Fourier
coefficients f are solved for the interval [0, A —¢]. Then we can compute Sspor (1]
and Sjon,[1] Whose sum is the single layer potential. Finally, the diffusion MRI
signal is obtained by integrating the single layer potential. The details of each
block and a streamlined description of the numerical implementation are shown
in the following sections.

C.2 Input parameters

Our method is numerically implemented in PyTorch [237]. The program
needs input parameters describing cell membranes, diffusion MRI protocols,
and simulation settings. Table C.1 lists the input parameters and their corre-
sponding numerical counterparts.

To describe cellular membranes, we approximate them using numerous seg-
ments. Figure C.2 shows an example of approximating two irregular shapes by
two polygons. The spatial discretization of cellular membranes allows us to per-
form numerical integration on the boundaries.

As a notation convention, we denote by [a : i : b] an equispaced array starting
at a, ending at b (included), and using i as the increment between elements. For
example, [0 : 1 : 5] is equivalent to {0, 1,2,3,4,5}.
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Table C.1: Input parameters of FPM and their numerical counterparts.

Parameters

Explanation

Numerical
counterparts

Cellular membranes/boundaries
are discretized into N segments.

an array of size 2 x N

Cellular x; is the center of the i-th segment.
mer;wbranes {Ali}ieq1,.. vy [wm] | Al;is the length of the i-th segment. | an array of size 1 x N
g p n; is the out-pointin .
Ui 0 {nidicq,.m normal vector at Ft)he poi§1t X;. an array of size 2 x N
(6t D] | o aries at the point. | 31218y of size 1< N
Zle 1] [um?] Total area of cells a numeric variable
9 Intrinsic diffusion coefficient . .
Dq [um?/us) . a numeric variable
in the neuron compartments
p Initial magnetization 1
Diffusion MRI A [ps] Inter-pulse duration a numeric variable
protocols 0 [us] Pulse duration a numeric variable
ylrad - ps~ImT 1] Gyromagnetic ratio a numeric variable
g [mT/m] Magnetic field gradient a 2D vector
q [pm™] q=6yg/2r a 2D vector
At (18] Time step a numeric variable
Simulation Duration of the short time part . .
. 7 [us] . a numeric variable
settings of layer potentials
Av [um™1] Frequency step a numeric variable

Vmaz [Nmil}

Maximum frequency
in the truncated spectrum

a numeric variable

ni

Figure C.2: An example of a computational domain consisting of two irregular shapes
(light green curves) approximated by two polygons (black segments). For visualization
purposes, the spatial discretization is coarse.
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C.3 Iteration of 1, fand Kiongl1t]

Before the computation, we prepare Neumann data based on the boundary
conditions. The complex-valued Neumann data is defined as

N (g, t) = 2mipq - mgge ™ DollalPte=2mamo 4 1o A — ). (C.4)

is the pseudo-code for the numerical computation of Neumann
data, which can be turned into a one-liner using array programming provided
by Matlab, Numpy, or GPU programming languages.

Algorithm 2: Neumann data
Data: Dy, q, {x;}, {n;}, T =[0: At : A — ]
Result: an array NeuData of size #{x;} x #T
begin
"""Numerical implementation of .
forall (x;,t,,) € {x;} x T do # can be parallelized
| NeuData(x;, t,,) = 2mipq - e 4™ Pollall*tm o —2ma-z;
end
end

The time interval ¢ € [0, 7]

We directly use the asymptotic expressions for the layer potentials to initial-
ize pu. The Fourier coefficients f and Kj,,,[p] are initialized to zero:

u(ao t) = — N @0D (C.5)

1— \/Bote ()
flv,t) =0, (C.6)
Klong[ﬂ] Lo, t) =0 (C.7)

shows the calculation of the density function pu(xq.t) when t is
inferior to .
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Algorithm 3: Computation of the density u for ¢t € [0, 7]

Data: Dy, NeuData, {x;}, {&,}, Ti = [0: At : 7]
Result: an array mu of size #{x;} x #T
Initialization: All elements in mu are set to be 0.
begin
"""Numerical implementation of eq. (C.5).
forall (x;,t,,) € {x;} x T: do  # can be parallelized

mu(w;, t,) = 2NeuData(z;, t,,) /(1 — /222 ()
end
end

mnmn

The time interval ¢ € [ + At, 21)]

We compute f using the known analytical form of z in [0, 7] from eq. (C.5),

and update Kj,,,[p] and g

f(l/,t) _ 6747r2Do||VH2AtJE(V’t _ At) + ftempl(yyt);
Kionglp)(@o, 1) = Dy Y 2mw - nf(v,t)e’™ ™AL,

V=—Vmaz

Don

p(xo,t) =2 <1 - —§($0)> N (xo,t) — Kiongl1t] (@0, t)] -

™

The Fourier update term ftempl is

o t—n
ftempl(yat) = // 674#21)0”1/“2(t77)672ﬂ-zu'yu<y, T)deSy
' Jt—m—At

= /47rzpq . ne—2rlatr)y D dsy
r

-1
t—n D

p:/ =47 Do[ w17 (t=7)+ | *] (1_ ;Tg(y)> dr
t

—n—At
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where the time integration follows the trapezoidal rule:

re—4m2Dgllal®t /
_%[é‘('g) %(\/t_n_\/t_n_At)—i_
ln ( 1-¢(y) %(t—n) ) ||I/|| _ Hq”
1-6(y)y/ 20 (t—n-ar) ) | ’

=47 Do[llal*(t=m)+v|?n] | et Polal®=IvIDAt 4r2 Do (a2 —|v|?)AL-1) |
At(zwDo(uq||2—||uu2>>2(1—s<y> 20 (t—n-At)

2 2 2
T ot S A Dol ALy £ ||q].

| Atz Dolalz= w122 (1-6wy 2 1-n))
(C.13)

The evaluation of the two intermediate quantities, ftempl and p, are shown in
algorithms 4 and 5, respectively. Algorithm 6 shows the numerical implementa-
tion corresponding to the computation of egs. (C.8) to (C.10) for the time interval

t € [n+ At,2n).

Algorithm 4: Definition of fhat_temp1.
Function fhat_templ (v, ¢, {x;}, {AL}, {n;}, {&} Do, q n, At):

"""Numerical implementation of eq. (C.11)."""
result = 0
# spatial integration
foralli € [1:1: #{x,}| do # can be parallelized

res_p =p(v,t,q,&,n,At, Dy)

result = result + 4mipq - n;e 2" HD® res p Al
end
return result
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Algorithm 5: Definition of p.

Functionp(v, t, q, & n, At, Dy):
"""Numerical implementation of eq. (C.13)."™"
if |v[| = ||al| then

2re—47"Dollal*t

result = — D [5\/7 (Vi=n—+Vt—n—At1) +
I 1_5\/D0(t_77) ]
5\/J —n—At)
else

1+ et DollalP = Iw124 (472 D (llg1? — w]?) At — 1)

At(am2Do([lall? = ]2)? (1= &/ 22— - At))
A Do(llal®=1vIAt _ 472 Do (|lql|? = [Jv||?) At — 1

P s Dlal — 1)y (1-&y/20-n)

result = e~ 4™ DollalPE=n)+I®n] ;1 | 40)
end
return result

pl=
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Algorithm 6: Computation of f, Kjo,[u), and pfor ¢ € [ + At, 2]

Data: NeuData, Dy, 1, q, At, Av, {x;}, {AL}, {n;}, {&}
V = [Vmaz : AV Upaz|, To = [0+ At At 2 27
Result: two arrays mu and K_long whose sizes are #{x;} x #7T, and an
array fhat of size #V x #V x #T
Initialization: All elements in K_long and fhat are set to be 0.
begin
"""Numerical computation of to

foreach t,, € 7, do
# compute Fourier coefficient at time t,,,

forallv € V2 do # can be parallelized
temp = fhat_templ(v,t,, {x;:}, {AL}, {n:},{&}, Do, q, n, At)
fhat(v,ty,) = e 4@ DollWIPAL L fhat(v t,, — At) + temp

end

mnmn

forall i € [1:1: #{x;}| do # can be parallelized
# Inverse Discrete Fourier Transform (IDFT)

K_long(@;, tn) = Do Y., ey 2w - ny; fhat(v,t,,) €™ @i Av?

mu(x;, ty) =

2 [NeuData(x;, t,) — K_long(x;, )] / (1 - %fz’)

end
end
end
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The time interval ¢ € 2+ At, A — ]

In this interval, we iterate between fanqu (through the intermediate quanity
Kjong[1]). The required values to compute f at ¢ are the density p att — 7 and at
t —n — At which are obtained in previous steps:

Fw,t) = e DI IPA E (4 AL+ frompe (0, 1), (C.14)

Kiongp)(®o,t) = Do Y 2mw - nf(v, )™ ™ AV, (C.15)

V=—Vmax

u(wo,w:z(l— ?5(@) N (@0, 1) = Kiong 1 (@0, 7)]. (C.16)

The Fourier update term fyems (v, t) is:

—1
D
: (1 - _o%<y>) S (S me T ) doy
n

(C.17)
where the time integration hy in the first part has an analytical expression

Fremp2 (v, 1) = /

r

t—n
B = / - Do(llalPr+v]2(-7) g -
t

—n—At
C.18
At - et Dol fal =) ©1®
— Y 4D 2(t—n)+||v||2n] e4n2Dollal?—lv?) At _
e 4 o[llall?(t—n)+lv1?n] 47r27:)0((1||q||2—|\uu2) 1 lall # [|lv|]
and the time integration h, is done via the trapezoidal rule
t—7] 2 2
hy = / Kzong[ﬂ](y,7)6_47r Dollv|*(¢=7) 1+
t—n—At
(
5 Kiong 1) (Y, 1 = 1) + Kiongl1(y, t — 1 — At)] [v]f =0

e 1_8747r2D0HuH2At 471'2D 2At+1
(47r2DoH(u||2>22|,I:V” ! Kiongl11] (y,t — 1 — At) +

e—4m2Dolv|2At L g2 DO ILII2AL—1 d4n? e
0(471‘2D0J">‘V”2)20A”t ” ¢ Klong[ﬂ] (y7t - 7]) € 4 DOH H K ||V|| % 0
(C.19)

\

The evaluation of the three intermediate quantities, ftemPQ, h, and hs, are
shown in algorithms 7 to 9. Algorithm 10 shows the numerical implementation
corresponding to the computation of eqgs. (C.14) to (C.16).
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Algorithm 7: Definition of fhat_temp2.

Function fhat_temp2 (v, ¢, {x;}, {Al}, {nz} {&}, Do, q n, At, K_long):
"""Numerical implementation of
result =0
forall i € [1:1: #{x;}] do # can be parallelized
res_hl = 2mpq - n; e 279% . hi(v,t, Dy, q, 7, At)
res_h2 = h2(v, Do, n, At, K_long(x;,t —n — At), K_long(x;,t —n))

-1
result = result+2 (1 - @fl) e 2™ i (res_hl — res_h2)- Al;

end
return result

Algorithm 8: Definition of hi.

Function hi(v, t, Do, q, n, At):
"""Numerical implementation of
if |v[| = [lqf| then

| result = At - e~ 4 Dollvl*t

else
o~ 4m2Do[lall? (t=n—At)Hlw | (n+A8)] _ ,—4n*Do[lall?(t=n)+|v*n]
result =
Am2Do((lall* — |[v|]*)
end

return result

Algorithm 9: Definition of h2.

Function h2(v, Dy, n, At, K1, K2):
"""Numerical implementation of
if |v|| = 0 then
| result = §H(K1+ K2)
else
wetghtl =
[1 _ 6—4,r2DoHVH2At(4ﬂ_2DO“V”zAt + 1)] / (472 Dy ||v||2)2 At

weight? = (e~ PP 4 4m2 Dy |w|PAt = 1] / [(472Dolv |2 At]

result = (weightl - K1+ weight2 - K2)e~4 Pollvl*n
end
return result
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Algorithm 10: Computation of f, Kjon,[1], and pfort € [2n+ At, A— 0]

Data: NeuData, Dy, n, At, Av, q, {x;}, {AlL}, {n;}, {&}
V = [~Vimaz : AV : Upaa, Ts = 20+ At - At 1 A = 9]
Result: two arrays mu and K_long whose sizes are #{x;} x #7 and an
array fhat of size #V x #V x #T

begin
"""Numerical computation of egs. (C.14) to (C.16).
foreach t,, € 75 do
# compute Fourier coefficient at time t,,
forallv € V2do # can be parallelized

temp =

fhat_temp2(v, t,, {x:}, {AL}, {n;},{&}, Do, a,n, At, K_long)

fhat(v, ty,) = e 4@ DollI*AL L fhat(v t,, — At) + temp

end

forall i € [1:1:#{x;}| do # can be parallelized
# Inverse Discrete Fourier Transform (IDFT)

K_long (s, t) = Do X ey (20 - 125) FRat(w, )37 % Av?

mu(x;, ty) =

2 [NeuData(x;, t,) — K_long(x;, t,)] / (1 — @fi)

end
end
end
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C.4 Computation of the diffusion MRI signal
Finally, the signal attenuation E'is

1
E = pe—4ﬂ2Dollqll2(A—6) + ————w(q, A =),
=119

where w(xo,t) = Sshort[1t] (X0, t) + Siong ] (20, t), defined using 1 and f

Dyt
Sshort[ﬂ'](mmt) = TOM(mOa t)7 te [Oa 77]7
- Dyn
Sshort[ﬂ](mm t) - T,u(a:[), t), t e [77 + At, A — (5],

Slong[[l,](ilfo,t) = DO Z f'(y’t)e%ru/moAV?’ te [O, A — 5]

V=—Vmazx

Then @ is obtained by iteration from w:
w(q7 t) = 6_47r2D0HqH2Atw(q7t - At) - DO wtemp(qa t)7

where
wtemp(q; t) = / 27]'Zq . n€27T’LCl'y U dsy,
I

t
v / e~ Dol (") (g 1)l
t—At

By applying the trapezoidal rule to the time integration, we get

5wy, t — At) + w(y, )] lall =0
U = § 147 Dollal>At (472 Dyl gl|2At+1)
R
e~ 47" Dollall"At 4472 D At—1
S ey 1)l #0

(C.20)

(C.217)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

We obtain the diffusion MRI signal (eq. (C.20)) by solving eqs. (C.21) to (C.27).

Their numerical implementations are shown in algorithms 11 to 14.
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Algorithm 11: Definition of omega_bar_temp.

Function omega_bar_temp (¢, {x;}, {Al}, {nl} Dy, q, At, S_single):

"""Numerical implementation of .

result =0

# spatial integration

foralli € [1:1: #{x;}| do # can be parallelized
res_u = u(Dy, q, At, S_single(x;,t — At), S_single(xz;,t))
result = result + 2miq - n;e?™4% res_u Al;

end

return result

Algorithm 12: Definition of u.

Function u(D,, q, At, sy, s2):
"""Numerical implementation of
if ||| = 0 then

mnmn

result = 715[31 + $o]

else

weightl = [1 — e~ 47 Dollal*At (472 D || q|[2At + 1)]/[(472 Dy || q]|?)2At]
weight2 = [e~ 47 Pollal’At 472 Dol q|[2At — 1]/[(472 Dol q]|?)2At]
result = weightl - s1 + weight2 - so

end

return result
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Algorithm 13: Computation of the single layer potential S[u].

Data: mu, fhat, Dy, n, {xi}, V = [~ Vinaz : AV : Upaa|, T = [0 At : A — 6]
Result: an array S_single of size #{x;} x #T
begin

"""Numerical computation of to
forall¢,, € T do

foralli € [1:1: #{x,}|do # can be parallelized
# compute S_short

mnmn

if t,, <nthen
S_short(x;, t,,) = Dot mu(x;, ty)
else "
S_short(x;, t,,) = \/Emu(mi,tm)
end "

# compute S_long

S_lOTLg(ZI}i, tm) = DO Zyer fhat(y, tm)e%rzu-a:iAVQ
#S_single = S_short + S_long

S—Single<mi7 tm> = S_ShOTt(CBZ‘, tm) + S_long(q;i7 tm>
end

end

end

Algorithm 14: Computation of the diffusion MRI signal.

Data: area, S_single, {x;}, {AL;}, {n;}, Do, q, At, T =1[0: At : A — ]
Result: a number E

begin

"""Numerical computation of

foreacht¢,, € T do

if ¢, = 0 then
| omega_bar(t,,) =0
else
z = omega_bar_temp(t,,, {x;}, {AlL}, {n:}, Do, q, At, S_single)
omega_bar(t,,) = e~ 4= Polal’ A omeqa_bar(t, — At) — Dy - 2
end
end
E = pe~tmPolldl*(A=0) 4 omega_bar(A — 6)/area

end
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Appendix D

Supplementary Material to
Chapter 5

D.1 Microstructure parameters

We compute the microstructure parameters for an artificial brain voxel
based on the neuroanatomical parameters defined in . Suppose a
voxel consists of M neuron meshes and an ECS compartment whose volume
fraction is fecs. We utilize the superscript m to indicate the m-th neuron. Some
microstructure parameters are

M

1. total neuron volume, V2l = =>""_ vm o
2. total neurite volume, V2! . =M ym
3. total soma volume, V2 =Sy

4, brain voxel volume, Vioxel = V2 /(1 — fecs):

Ul

ECS volume, Vecs = fecs Vooxel;
6. soma volume fraction, fsoma = V2 . /Vioxet;

: ; I .
7. neurite volume fraction, freurite = Vieurite/ Vooxels

all _\M .
8. total neuron area, Afeuron = 2 me1 Aneuron:
i all _\M .
9. total neurite area, A2 e = 2 m—1 Aneurites
all _ M .
10. total soma area, A2 . = > -1 Avomar

11. soma area fraction, asoma = A2, /A2!

neuron’
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12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.
27.

28.

29.

30.

31.

i i — pall all .
neurite area fraction, aneurite = Aleurite/Adeuron:

neuron volume-area ratio, V& /A3l

neurite volume-area ratio, V2 . /A3l

i all all .
soma volume-area ratio, V3../A% nas

i all _\M .

total neurite length, L3¢ e = D —1 Lieuriter
. —all

average neurite length, L eyie = L2X ice/M;

—all
average neuron volume, Vo, = V& ./M;

. —all
average neurite volume, Vo e = V.2 e/ M;

—all
average soma volume, V.. = Val _/M;

—all
average neuron area, A yon = A2 on/M;

all
neurite

i A __ Aall .
average neurite area, A = A2 urite/M;

—all
average soma area, Asoma = Aigma/M;

total number of stems, N3 =S nm

all

average number of stems, N, . = N2 /M,
average stem length, Lgem = L3 ../N2

average neurite radius (based on total neurite volume), 7

all
Vneurite .
al !
Taneurite
Aall )
average neurite radius (based on total neurite area), oy e = -t
27TLneurite
Teurite — Teuri
neurite irregularity, _Ze“”te _;‘e“”te;
rneurite + Tneurite

M m
() _ 2m=1"Soma.

average soma radius (first order average), Tsoma

v .
neurite

average soma radius (second order), 7¢
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aII
(3) soma \/Zm 1 soma .
1

32. average soma radius (third order), Tiohha =
4#/3

33. average soma radius (kth order), Fglf,)ma =

C/Znﬂle (Tsnéma)k .
M I

Vm m
34. volume weighted average soma radius, 7 = Y Visina!Some =

soma ZM %
m
=1 Ysoma

m=1

(Tioma)*

Tsoma

(Fa)?

(a)
35. other possible mean soma radius, plabed) _emd (7_0?;’)—'“‘3)

soma

with appropriate

integers a, b, c, d;
36. total stem Euclidean distance, D3!. = Z D&

37. total stem path distance, D3, = >>"" D

. . —all
38. average stem Euclidean distance, D, = D2! /M;

39. average stem path distance, Dy, = Dah /M;

path

40. contraction, D3l./D3u.;

aII / all
soma Asoma .

all / all
Vneuron Aneuron

aII e/Aall

neurlt neurite .
Vall /Aall !
neuron neuron

aII /Aall

soma soma

Va”urlte/Aa”

neurite

41. ratio between soma and neuron volume-area ratios,

42. ratio between neurite and neuron volume-area ratios,

43. ratio between soma and neurite volume-area ratios,

We can also compute other microstructure parameters like the number of bifur-
cations, the angle between two bifurcation points, fractal dimension, partition
asymmetry, etc., using measurements from L-measure.
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D.2 Box plot

A box plot is a method for graphically representing data distribution by their
quartiles. The three important percentiles are:

* Median (Q; or 50th percentile): the median value in the dataset;

* First quartile (@, or 25th percentile): the median of the left half of the
dataset;

* Third quartiles (Q3 or 75th percentile): the median of the left half of the
dataset.

In fig. D.1, the box’s left and right sides (hinges) denote @); and Q3. Qs is repre-
sented by the bar in the middle of the box. The range between the two hinges
is called the interquartile range, which contains the middle 50% of the dataset.
The whiskers extend to the range of 1.5 times the interquartile range, as illus-
trated in fig. D.1. All other data points outside the boundary of the whiskers are
treated as outliers. The box and whiskers represent 99.3% of the data points for
a normal distribution.

| IQR
Q1 Q3
Q1 -1.5xIQR Q3 +1.5xIQR
Median
40 -30 -20 —ioi 0o lo 20 30 40
—2.6980 —-0.67450 0.67450 2.6980

24.65%  50%  24.65%

-4o —3|o —|20 -lo Oc lo 20 30 40
Figure D.1: An illustration of a box plot for a normal dis-
tribution  N(0,0?). By Jhguch at en.wikipedia, CC BY-SA 2.5,

https://commons.wikimedia.org/w/index.php?curid=14524285
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D.3 Signal comparison between SANDI and simula-
tion at 19 ms

We present the comparison between the simulated signals and the signals
recomputed by the SANDI model in logarithmic (fig. D.2) and linear (fig. D.3)
scales. The diffusion time is §/A = 8/19 ms.
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Figure D.2: The comparison between the simulated (blue dashed line) and recomputed
signals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-
nals are obtained by substituting SANDI’s estimations into eq. (37) in the paper. The
diffusion time is /A = 8/19 ms. The first subplot represents the meaning of the six
numbers annotated in the upper right corner of each subplot. The numbers in the first
row are soma, neurite, and ECS signal fractions. The numbers below are the ground-
truth volume fractions. The y-axes are in logarithmic scales.
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Figure D.3: The comparison between the simulated (blue dashed line) and recomputed
signals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-
nals are obtained by substituting SANDI's estimations into eq. (37) in the paper. The
diffusion time is §/A = 8/19 ms. The first subplot represents the meaning of the six
numbers annotated in the upper right corner of each subplot. The numbers in the first
row are soma, neurite, and ECS signal fractions. The numbers below are the ground-
truth volume fractions. The y-axes are in linear scales.
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D.4 Signal comparison between SANDI and simula-
tion at 49 ms

We present the comparison between the simulated signals and the signals
recomputed by the SANDI model in logarithmic (fig. D.4) and linear (fig. D.5)
scales. The diffusion time is §/A = 8/49 ms.
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Figure D.4: The comparison between the simulated (blue dashed line) and recomputed
signals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-
nals are obtained by substituting SANDI’s estimations into eq. (37) in the paper. The
diffusion time is /A = 8/49 ms. The first subplot represents the meaning of the six
numbers annotated in the upper right corner of each subplot. The numbers in the first
row are soma, neurite, and ECS signal fractions. The numbers below are the ground-
truth volume fractions. The y-axes are in logarithmic scales.
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Figure D.5: The comparison between the simulated (blue dashed line) and recomputed
signals (solid line) of eight randomly picked artificial brain voxels. The recomputed sig-
nals are obtained by substituting SANDI's estimations into eq. (37) in the paper. The
diffusion time is §/A = 8/49 ms. The first subplot represents the meaning of the six
numbers annotated in the upper right corner of each subplot. The numbers in the first
row are soma, neurite, and ECS signal fractions. The numbers below are the ground-
truth volume fractions. The y-axes are in linear scales.
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D.5 SANDI's parameter maps for sub_002 with dense
parameter sampling

We present SANDI's parameter maps of estimated signal fractions for
sub_002 in MGH CDMD ( ). The parameter distributions for fitting SANDI
to experimental signals are: 50 values of D, linearly spaced in [0.1,3] x
1073 um?/us; 50 values of Dec linearly spaced in [0.1, 3] x 1072 um?/us; 50 val-
ues of r, linearly spaced in [1,12] um; L1 and L2 regularization terms are 0 and
5 x 1073, respectively.

!/ / f/
soma neurite ecs

Figure D.6: The parameter maps of signal fractions. The first column is for soma sig-
nal fraction f{,, the second for neurite, and the third for ECS. The first row is for the
short diffusion time (§/A = 8/19 ms). The second row is for the long diffusion time
(0/A = 8/49 ms). The parameter maps show the signal fractions obtained by fitting the
SANDI model to the direction-averaged signals from sub_002. The parameter distribu-
tions for fitting SANDI to experimental signals are: 50 values of Dj, linearly spaced in
[0.1,3] x 1073 um?/us; 50 values of Decs linearly spaced in [0.1, 3] x 102 um?/us; 50 val-
ues of r, linearly spaced in [1,12] um; L1 and L2 regularization terms are 0 and 5 x 1073,
respectively.
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19 ms

A =

D.6 Parameter maps and joint distributions for

sub_011
We present the parameter maps of volume and signal fractions for sub_011
in MGH CDMD ( ) and the joint distributions at the two diffusion times
( ).
fsoma fn(éurii,e fms

! !

Figure D.7: The comparison of volume and signal fractions. The first column is for soma
volume fraction fsoma Or soma signal fraction fI, ., the second for neurite, and the third
for ECS. Three rows, (a), (c), and (e), are for the short diffusion time (§/A = 8/19 ms). The
remaining rows are for the long diffusion time (§/A = 8/49 ms). The first four rows, (a)
(b), (c), and (d), are obtained by respectively applying mlp_sig_vol_19,mlp_sig_vol_49,
mlp_mk_vol_19, and mlp_mk_vol_49, to the experimental data from sub_011. The last
two rows, (e) and (f), show the signal fractions obtained by fitting the SANDI model to the
direction-averaged signals from sub_011. The parameter distributions for fitting SANDI
to experimental signals are: 10 values of Dy, linearly spaced in [0.1, 3] x 1073 um?/us; 10
values of Decs linearly spaced in [0.1,3] x 1073 um?/us; 10 values of r, linearly spaced
in [1,12] wm; L1 and L2 regularization terms are 0 and 5 x 1073, respectively.
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Figure D.8: The voxelwise joint distribution of estimated fractions at two diffusion times.
All brain white and gray matter voxels of sub_011 are included. The x- and y-axes rep-
resent the estimated fractions at §/A = 8/19 ms and 6/A = 8/49 ms, respectively.
The black lines are the identity lines. (a) the distribution of the soma volume fractions
estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (b) the distribution of the neurite
volume fractions estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (c) the distribu-
tion of the soma signal fractions estimated by the SANDI model at the two diffusion
times. (d) the distribution of the neurite signal fractions estimated by the SANDI model
at the two diffusion times.
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19 ms

A =

D.7 Parameter maps and joint distributions for

sub_023
We present the parameter maps of volume and signal fractions for sub_023
in MGH CDMD ( ) and the joint distributions at the two diffusion times
( ).
fsoma fn(éurii,e , focs

/

Figure D.9: The comparison of volume and signal fractions. The first column is for soma
volume fraction fsoma Or soma signal fraction fI, ., the second for neurite, and the third
for ECS. Three rows, (a), (c), and (e), are for the short diffusion time (§/A = 8/19 ms). The
remaining rows are for the long diffusion time (§/A = 8/49 ms). The first four rows, (a)
(b), (c), and (d), are obtained by respectively applying mlp_sig_vol_19,mlp_sig_vol_49,
mlp_mk_vol_19, and mlp_mk_vol_49, to the experimental data from sub_023. The last
two rows, (e) and (f), show the signal fractions obtained by fitting the SANDI model to the
direction-averaged signals from sub_023. The parameter distributions for fitting SANDI
to experimental signals are: 10 values of Dy, linearly spaced in [0.1, 3] x 1073 um?/us; 10
values of Decs linearly spaced in [0.1,3] x 1073 um?/us; 10 values of r, linearly spaced
in [1,12] wm; L1 and L2 regularization terms are 0 and 5 x 1073, respectively.
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Figure D.10: The voxelwise joint distribution of estimated fractions at two diffusion
times. All brain white and gray matter voxels of sub_023 are included. The x- and y-axes
represent the estimated fractions at 6/A = 8/19 ms and §/A = 8/49 ms, respectively.
The black lines are the identity lines. (a) the distribution of the soma volume fractions
estimated by mlp_sig _vol_19 and mlp_sig_vol_49. (b) the distribution of the neurite
volume fractions estimated by mlp_sig_vol_19 and mlp_sig_vol_49. (c) the distribu-
tion of the soma signal fractions estimated by the SANDI model at the two diffusion
times. (d) the distribution of the neurite signal fractions estimated by the SANDI model
at the two diffusion times.
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