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Abstract : This thesis aims to make a contribution
to the study of a somehow large class of partially
hyperbolic diffeomorphisms denoted as discretized
Anosov flows.

This class is shown to comprise whole connec-
ted components of partially hyperbolic diffeomor-
phisms with one dimensional center in any dimen-
sion.

Several general properties of discretized Ano-
sov flows are proven. These properties include dy-
namical coherence, uniqueness of invariant folia-
tions, plaque expansivity and unique integrability
of the center bundle. In particular, this permits to

Dynamical systems, partial hyperbolicity, Anosov flows, global stability, center foliation,

establish the equivalence with other similar notion
appearing on the literature.

A characterization of discretized Anosov flows
is given under some general circumstances : the
class is shown to coincide with the partially hy-
perbolic diffeomorphisms that individually fix each
leaf of a one-dimensional center foliation.

Regarding further dynamical properties, a re-
sult on uniqueness of attractor is shown.

Several of this results are also seen to happen
for the related class of partially hyperbolic diffeo-
morphisms admitting a uniformly compact center
foliation.

Titre : Contributions & I'étude des flots d'Anosov discrétisés
Mots clés : Systémes dynamiques, hyperbolicité partielle, flots d"Anosov, stabilité globale, feuilletage

central, attracteurs

Résumé : Cette thése a pour but de contri-
buer a I'étude d'une classe assez large de difféo-
morphismes partiellement hyperboliques dénom-
més flots d’Anosov discrétisés.

On montre que, en toute dimension, cette
classe est constituée de composantes connexes en-
tieres de I’ensemble des diffeomorphismes partiel-
lement hyperboliques avec fibré central unidimen-
sionnel.

Plusieurs propriétés générales des flots d'Ano-
sov discrétisés sont prouvées. Ces propriétés com-
prennent la cohérence dynamique, |'unicité des
feuilletages invariantes, la expansivité par plaques
et I'intégrablité unique du fibré central. En par-
ticulier, cela permet d'établir I'équivalence avec

d’autres notions similaires apparaissant dans la lit-
térature.

Une caractérisation des flots d’Anosov discré-
tisés est donnée dans certaines circonstances gé-
nérales : on montre que la classe coincide avec les
difféeomorphismes partiellement hyperboliques qui
fixent individuellement chacune des feuilles d’un
feuilletage central unidimensionnel.

En ce qui concerne d'autres propriétés dyna-
miques, on montre un résultat sur 'unicité de I'at-
tracteur.

Une bonne partie de ces résultats s’appliquent
également a la classe des difféeomorphismes par-
tiellement hyperboliques admettant un feuilletage
central uniformément compact.
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Resumen : Esta tesis tiene como objetivo realizar
un aporte al estudio de una clase relativamente
amplia de difeomorfismos parcialmente hiperbéli-
cos denomidados flujos de Anosov discretizados.

Se demuestra que esta clase comprende com-
ponentes conexas enteras de difeomorfirmos par-
cialmente hiperbélicos con central unidimensional
en cualquier dimensién ambiente.

Varias propiedades generales de los flujos de
Anosov discretizados son demostradas. Entre el-
las coherencia dindmica, unicidad de foliaciones in-
variantes, expansividad por placas e integrabilidad
anica del fibrado central. En particular, esto per-
mite establecer la equivalencia con otras nociones

similares que aparecen en la literatura.

Una caracterizacién de los flujos de Anosov dis-
cretizados es obtenida bajo ciertas condiciones ge-
nerales : se muestra que la clase de flujos de Ano-
sov disretizados coincide con la de los parcialmente
hiperbdlicos que dejan invariante cada hoja de una
foliacién central unidimensional.

En cuanto a otras propiedades dinamicas, un
resultado sobre unicidad de atractores es demo-
strado.

Varios de estos resultados son obtenidos igual-
mente para la clase de difeomorfismos parcial-
mente hiperbélicos que admiten una foliacién cen-
tral uniformemente compacta.
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Chapter 1

Introduction and
presentation of results

1.1 Introduction (English)

1.1.1 Differentiable dynamics, hyperbolicity and partial hy-
perbolicity

The classical theory of dynamical systems deals with the asymptotic behavior
of systems that evolve in time with respect to a prescribed deterministic rule
governing its evolution.

In the case of differentiable dynamics, this rule is typically given by a
diffeomorphism f : M — M in the case of a discrete dynamical system, or
by an ordinary differential equation X = F(X) defining a flow X; : M — M
in the case of a continuous dynamical system.

A paradigmatic example of these systems presenting a global form of
rich and chaotic behavior is given by Anosov systems (also called globally
uniformly hyperbolic systems). The study of this type of systems traces back
at least to the pioneering work of D.V. Anosov and S. Smale (see [A67] and
[S67]).

Roughly speaking, a diffecomorphism f : M — M is called an Anosov
diffeomorphism if the tangent bundle admits an f-invariant decomposition
TM = E®*@® E" such that vectors in £° and E* are uniformly contracted by
forward and backward iterates of f, respectively.

A flow without singularities X; : M — M is called an Anosov flow if it
preserves an invariant decomposition TM = E°* @& E°@® E" such that vectors
in £* and E" are uniformly contracted by forward and backward iterates of
X, respectively, and the bundle E€ is the direction tangent to the flow X;.

A natural extension of uniformly hyperbolic systems is given by the notion



of partial hyperbolicity.

Definition. A diffeomorphism f : M — M on a closed Riemannian mani-
fold M is called partially hyperbolic if there exists a D f-invariant continuous
decomposition of the tangent bundle T'M into three non-trivial subbundles

TM = E°®E°®FE"

such that vectors in E® and E" are uniformly contracted by forward and
backward iterates of f, respectively, and vectors in E¢ experience an inter-
mediate behavior. See Chapter 2 for a precise definition.

The definition of partially hyperbolic diffeomorphisms traces back at least
to [BP74] and [HPST77]. It is worth mentioning that many other definitions
of partial hyperbolicity exist. Typically, all of these notions involve some
kind of invariant decomposition of the tangent space (of the whole manifold
or an invariant part of it) into subbundles satisfying some sort of dominated
behavior. Plus, in most of the cases, with at least one of the subbundles being
uniformly expanded or contracted. See for example [CP15] as a reference.

As it is also the case for Anosov systems, partial hyperbolicity is a C*
open property that can be checked in finite iterates (as a consequence of the
cone criterion, for instance). Moreover, it appears naturally in the study
of robust dynamical properties. That is, properties that remain unchanged
by small perturbations of the system. This is the case in at least two rev-
elant scenarios: robust transitivity and stable ergodicity. See for example
[BPSWO01], [CHHU18] and [HP18].

Partially hyperbolic diffeomorphisms constitute a rich class of dynamical
systems with enough rigidity so that a certain ‘classification’ goal may be
sought:

Problem. Develop a framework for classifying (at least in dimension 3) par-
tially hyperbolic diffeomorphisms. Determine which dynamical properties can
occur for these systems and identify which ones of them are robust. Fxplore
the interaction between partially hyperbolic diffeomorphisms and the geome-
try and topology of the underlying manifold, in particular determining which
manifolds and isotopy classes admit partially hyperbolic systems.

One way to approach this problem is to study the invariant structures
preserved by these kind of maps such as the invariant foliations that nat-
urally arise on them. One can expect to obtain topological or dynamical
consequences from the behavior of these invariant structures, and viceversa.

In dimension 3, the classification problem has been particularly pursued.
The classical examples of partially hyperbolic diffeomorphisms in dimension
3 are:



e Deformations of Anosov diffeomorphisms.
o Partially hyperbolic skew-products.

e Perturbations of time one maps of Anosov flows.

Briefly, the first class consists of partially hyperbolic diffeomorphisms
homotopic to an Anosov map. The second one, of partially hyperbolic diffeo-
morphisms such that E°¢ integrates to an invariant foliation W¢ by compact
leaves that induces a fiber bundle structure in M (see Section 1.1.6). And
the third one, diffeomorphisms that are sufficiently close to the time 1 map
of an Anosov flow.

Despite having been conjectured to account for every partially hyperbolic
system in dimension 3 (see Pujal’s conjecture in [BWO05]), the list of classical
examples have been recently joined by new types of examples that challenge
the classification enterprise. In [HHU16] the first non-dynamically coherent
examples where built. Later in [BPP16], [BGP16] and [BGHP17] new striking
examples emerged. See also [BFP20).

In higher dimension, one way to approach the study is to restrict to the
case where dim(E¢) = 1. Under this assumption the above list of classical
examples is essentially the same (one should only add the possibility of taking
product with an Anosov diffeomorphism).

The class of discretized Anosov flows is conceived as a natural extension
of the third type of classical examples. The main goal of this thesis is to
establish several general properties for this class of systems in any dimension.

1.1.2 Discretized Anosov flows

We denote by PH(M) the set of partially hyperbolic diffeomorphism in M
and by PH.—;(M) the ones such that dim(E°¢) = 1.

Definition 1.1.1. We say that f € PH._1(M) is a discretized Anosov flow
if there exist an orientable foliation W¢ whose leaves are C' submanifolds
tangent to F° and a continuous function 7 : M — R such that

for every x € M, where ¢f : M — M denotes a unit speed flow whose orbits
are the leaves of W¢.

The prototypical example of a discretized Anosov flow is the time 1 map
of an Anosov flow and all its sufficiently small C'-perturbations. The latter
is a consequence of [HPS77] and will be revisited in this text.



The term discretized Anosov flow was coined in [BFFP19] and derives
from the fact that the flow ¢f needs to be a topological Anosov flow (see Def-
inition 3.7.1). Hence f can be thought of as a discretization of the topological
Anosov flow ¢f.

Discretized Anosov flows have been profusely studied in the litterature,
though not always under the same name. For example, in [BD96] the first
examples of robustly transitive diffeomorphisms isotopic to the identity were
obtained. These examples are constructed arbitrary close to the time 1 map
on any Anosov flow. In particular, they are discretized Anosov flows.

Regarding stable ergodicity, in [GPS94] it was shown that time 1 maps of
geodesic flows in closed surfaces of constant negative curvature are C? stably
ergodic. These were the first non-Anosov examples of stably ergodic diffeo-
morphis constructed in the litterature. Again, these examples are discretized
Anosov flows (as well as their perturbations).

In [BWO05] discretized Anosov flows and partially hyperbolic skew-products
were shown to be quite ubiquitous among (dynamically coherent) partially
hyperbolic diffeomorphisms in dimension 3. This led to the consolidation of
the classical examples in dimension 3.

More recently, in [BFFP19] discretized Anosov where shown to account
for every dynamically coherent homotopic to the identity partially hyper-
bolic diffeomorphism of many 3-manifolds. And in [FP22] (see also [FP21])
that in most 3-manifolds discretized Anosov flows are accessible and ergodic
whenever they preserve a volume form.

Other recent dynamical results involving discretized Anosov flows are
[AVW15]’s rigidity results, [BFT20] regarding measures of maximal entropy,
[DWX21] and [BG21] on centralizers rigidity for partially hyperbolic diffeo-
morphisms, and the ‘invariant principle’ shown in [CP22].

One feature that has proven to be quite useful in the treatment of partially
hyperbolic diffeomorphisms is the presence of invariant foliations tangent to
the invariant subbundles. In [HPS77] it was shown that the bundles £E* and
E* uniquely integrate to f-invariant foliations W*® and WY, respectively.

In contrast, the bundles E*@FE° and E*@FE° may or may not be integrable.
Whenever they integrate to f-invariant foliations (W and W<, respectively)
the map f is called dynamically coherent. If this is the case then W¢ := W
W (the foliation given by the connected components of the intersection of
Wes leaves and W leaves) gives rise to an f-invariant foliation tangent to
the center bundle E°.

Recall that the non-wandering set Q(f) of f is the set of points z in
M such that for every neighborhood U of x there exists N > 0 such that
NO)YNU # &.

On our first theorem we state some general properties satisfied by every
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discretized Anosov flow:

Theorem. Let f be a discretized Anosov flow. Let ¢f and W¢ denote the
flow and center foliation appearing in the definition of f, respectively. Then:

1. (Topological Anosov flow). The flow ¢f is a topological Anosov flow
(see Definition 3.7.1).

2. (Dynamical coherence). The map f is dynamically coherent, admitting
a center-stable foliation W and a center-unstable foliation W such
that W€ = W ~ W,

3. (Uniqueness of cs and cu foliations). The foliations W and W are
the only f-invariant foliations tangent to E*@® E° and E°® E"Y, respec-
tively.

4. (Completeness of leaves). The leaves of W and W satisfy that

Wcs(x) = UyEWC(m) Ws(y) and Wcu(x) = UyeWC(x) Wu(y) fOT’ every
reM.

5. (Topology of leaves) The leaves of W and W are homeomorphic to
either planes or cylinders (see definitions in Section 3.7). The former
contain no compact center leaves while the latter contain exactly one.

It is worth pointing out that in dimension 3 the above theorem was mostly
known. Indeed, once (2) is proven then (1), (4) and (5) follow from [BWO05,
Theorem 2|. In addition, once (1) is proven then (2) has already appeared in
[BEP20, Proposition G.2] and (3) follows from [BFFP19] (see [BG21, Lemma
1.1]). Our goal is to synthesize the theory in dimension 3 and to generalize
it to higher dimensions where lesser has been stated.

In [BFFP19], [BFP20], [BG21] and [GM22] a map f € PH.—1(M) is
called a ‘discretized Anosov flow’ if it satisfies that there exist a topological
Anosov flow ¢y : M — M and a continuous function 7 : M — R such that
f(z) = @r(z)(z) for every z in M.

In [BFT20] a diffeomorphism f € PH._;(M) is called ‘flow-type’ if it
satisfies Definition 1.1.1 and in addition is dynamically coherent and admits
at least one compact leaf of W€,

Similar yet not a priori identical notions where also studied in [BWO05],
[BG09] and [BG10].

The question regarding the relationship between these notions arised nat-
urally. The above theorem (add also Proposition 3.7.3 item (4) stated in
Section 3.7) shows that all these definitions are equivalent and refer to the
same class of partially hyperbolic systems:

11



Corollary. The definition of discretized Anosov flow given in [BFFP19],
[BFP20], [BG21] and [GM22], and the definition of flow-type partially hy-
perbolic diffeomorphism in [BFT20], are all equivalent to Definition 1.1.1.

Moreover, the class of partially hyperbolic diffeomorphisms studied in
[BW05, Theorem 2.], [BG09] and [BG10] are also discretized Anosov flows
as in Definition 1.1.1.

1.1.3 Global stability

The next result shows that discretized Anosov flows constitute a somehow
large class of partially hyperbolic diffeomorphisms with one-dimensional cen-
ter:

Theorem. The set of discretized Anosov flows is a C* open and closed subset
of PH.—1(M).

In other words, the class of discretized Anosov flows comprises whole
connected components of PH._;(M).

Recall that two pairs of partially hyperbolic diffeomorphisms and invari-
ant center foliations (f, W;i) and (g, Wy) are said to be leaf-conjugate if there
exists a homeomorphism h : M — M taking leaves of Wff to leaves of Wy
and such that ho f(W) = go h(W) for every leaf W € W. Leaf-conjugacy
gives sense to a classification framework for (dynamically coherent) partially
hyperbolic diffeomorphism modulo its center behavior (two systems being
considered equivalent whenever they are leaf-conjugate).

The proof of the above theorem shows also that leaf-conjugacy is pre-
served along connected components of discretized Anosov flows:

Corollary. Two discretized Anosov flows in the same C' connected compo-
nent of PH.—1(M) are leaf-conjugate.

It is worth mentioning the background context for the above statements.
A classical result from [HPS77] gives conditions for the stability of normally
hyperbolic foliations (that is, foliations that are tangent to a center bundle):

Theorem (Hirsch-Pugh-Shub). Suppose f € PH(M) admits an f-invariant
center foliation W?c If (f, W‘Ji) is plaque expansive then there exists a C!
neighborhood U(f) of f so that every g € U(f) admits a g-invariant center
foliation W such that (f, ch) and (g, Wg) are leaf-conjugate.

A pair (f, W€) is called plaque expansive (or d-plaque expansive) if there
exists 0 > 0 so that every pair of sequences (x,)nez and (yn)nez satisfying
that z,11 € W§(f(2n)), Ynt1 € WS(f(yn)) and d(zp,yn) < 0 for every n e Z
must also satisfy yo € W5, (x0). This condition is shown in [HPS77] to be

loc
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satisfied whenever W€ is a C'! foliation or f acts by isometries on W€ (as it
is the case for the time 1 map of an Anosov flow).

To show the C' openness and closeness of discretized Anosov flows a
certain ‘uniform version’ of the above stability theorem is needed:

Theorem. Suppose fo € PH._1(M). For every § > 0 there exists a C!
neighborhood U(fo) of fo such that, if some f € U(fy) admits a center folia-
tion W$ so that (f, W;) is 0-plaque expansive, then every g € U(fo) admits
a g-invariant center foliation Wy such that (f, W;) and (g, W) are leaf-
conjugate.

The key ‘uniform’ part in the above theorem is that the size of U(fp) is
fixed beforehand. Then if (f,), is a sequence in PH._; (M) converging to fy
it is enough to show that a pair (f N’W%\r) is d-plaque expansive for some
fn € U(fo) to induce a center foliation W;O for fp, which in addition satisfies
that (fo, W},) is leaf-conjugate to (fy, W5, ) (and in fact leaf-conjugate to a
pair (f, W}) for every f € U(fo)).

A similar uniform stability theorem was originally noted in [BFP20] in
a different but related context (for C! leaf-immersions and branching folia-
tions). In [BFP20] the C! open and closeness of the class of collapsed Anosov
flows in dimension 3 is shown. The C! openess and closeness of discretized
Anosov flows in dimension 3 essentially follows from [BFP20] once the equiv-
alence between the definitions of discretized Anosov flow given in [BFP20)]
and Definition 1.1.1 has been shown (see Chapter 5 for more details).

The fact that leaf-conjugacy persists among connected components of
discretized Anosov flows can be seen as a ‘global stability’ result where a
plaque expansive system (f, W¢) induces leaf-conjugacy among its whole C'!
partially hyperbolic connected component.

This has also been shown to be true in [FPS14] whenever f is a hy-
perbolic linear automorphism of the torus T™ (seen as a partially hyper-
bolic diffeomorphism), and generalized in [Pil9] for linear Anosov automor-
phisms on nilmanifolds. Moreover, we show (see Section 1.1.6 below) that
this phenomenon also happens for partially hyperbolic skew-products with
one-dimensional center.

It is natural to ask whether this is true in general:

Question. Suppose f € PH(M) admits an f-invariant center foliation W€
such that (f, W) is plaque expansive. Does every g in the C* partially hy-
perbolic connected component of f admits a g-invariant center foliation Wy
such that (g, Wg) is plaque ezpansive and leaf-conjugate to (f, W€)?

Since discretized Anosov flows constitute entire connected components of
PH.—1(M) many other natural questions arise. One may ask which are the
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properties that are preserved in whole connected components and which ones
are not. Which connected components contain the time 1 map of an Anosov
flow, how different are the ones that do not, etc.

As mentioned above, one such property that is preserved among con-
nected components of discretized Anosov flows is leaf-conjugacy. Another
one is the unique integrability of the center bundle. That is, the property
that modulo reparametrizations there exists a unique local C' curve tangent
to E¢ through every point of M (see Section 5.4 for more details on this
definition):

Proposition. Suppose f is a discretized Anosov flow such that EJ? s uniquely
integrable. Then Ej is uniquely integrable for every g in the same Cl con-
nected component of PH.—1(M) as f.

In particular, every discretized Anosov flow in the same connected com-
ponent of the time 1 map of an Anosov flow has a uniquely integrable center
bundle.

In Example 5.4.3 an example of a discretized Anosov flow f such that E€
is not uniquely integrable is given. This is obtained by a simple modification
of a construction given in [HHU16] that leads to a 2-torus tangent to E*@® E°
entirely made of points of non-unique integrability for E¢. The center flow
©§ on this example is orbit equivalent to the suspension of a linear Anosov
diffeomorphism A : T2 — T2 on the 2-torus, yet by the proposition above
the map f is not in the same connected component as the time 1 map of the
suspension of A. One concludes the following.

Corollary. There exists C' connected components of discretized Anosov flows
that do not contain the time 1 map of an Anosov flow.

Still, these connected components seem a priori very particular. The
following question emerge naturally.

Question. Suppose f is a discretized Anosov flow. Does any of the following
conditions: 1) f is transitive, ii) E% is uniquely integrable or iii) ©f is not
orbit equivalent to a suspension flow; implies that f lies in the same connected
component of PH.—1(M) than the time 1 map of an Anosov flow?

1.1.4 Center fixing characterization

A characterization of discretized Anosov flows, which also serves as an alter-
native definition for the class, is the following;:

Proposition. Suppose f € PH._1(M). The following are equivalent:

(i) The map f is a discretized Anosov flow.
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(ii) There exists a center foliation W¢ and a constant L > 0 such that
f(x) e WS (x) for every x e M.

It is natural to ask whether the bounded displacement hypothesis in (ii)
is needed. That is, whether discretized Anosov flows can be characterized as
the class of partially hyperbolic diffeomorphisms individually fixing each leaf
of a one-dimensional center foliation:

Question. Suppose f € PH._1(M) admits a center foliation W¢ such that
fOW) =W for every leaf W € WE. Is [ a discretized Anosov flow?

A positive answer to this question is given whenever f is transitive and

dynamically coherent:

Theorem. Suppose f € PH._1(M) is a transitive dynamically coherent map
such that f(W) = W for every leaf W in the center foliation W¢ = W AW,
Then f is a discretized Anosov flow.

In fact, the above theorem is true if one replaces the hypohtesis ‘f tran-
sitive’ with the more general ‘W€ transitive’. See Chapter 6 for more details.

1.1.5 Uniqueness of attractor

The results presented in this section are the product of a joint work with N.
Guelman (see [GM22]).

Exploring further on the dynamical properties of discretized Anosov flows
we focus our attention on the problem of finiteness and uniqueness of quasi-
attractors and quasi-repellers.

Given a map f: M — M one denotes by R(f) € M the chain recurrent
set of f. That is, the union of all points x € M such that there exists a
non-trivial e-pseudo orbit from z to = for every ¢ > 0. It coincides with
the complement of all points contained in a wandering region of the form
U\f(U) for some open set U such that f(U) < U. One considers R(f)
divided in equivalent classes, called chain recurrence classes. These classes

are given by the relation z ~ y if and only if for every € > 0 there exist a
non-trivial e-pseudo orbit from z to y, and from y to x.

A quasi-attractor is a chain recurrence class A for which there exists a base
of neighborhoods {U;}; (i.e. A< U; and A = (), U;) such that f(U;) < U; for
every i¢. Every homeomorphism in a compact metric space admits at least
one quasi-attractor. See [CP15] for a reference.

Since quasi-attractors are pairwise disjoint compact sets saturated by
Wt-leaves, each one of them contains at least one minimal set for the fo-

liation W¥. We call a minimal set of W* a minimal unstable laminations.
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Thus, uniqueness (resp. finiteness) of minimal unstable laminations implies
uniqueness (resp. finiteness) of quasi-attractors.

Finiteness of minimal unstable laminations is shown in [CPS17] for a
C'-open and dense subset of partially hyperbolic diffeomorphisms with one-
dimensional center. Here we aim to a more global (non-perturbative) study
involving uniqueness/finiteness results for whole classes of examples.

Discretized Anosov flows with arbitrary number of attractors and repellers
can be constructed by perturbing the time 1 map of an Anosov diffeomor-
phism’s suspension ¢; : M — M. As M fibers over the circle and (; preserves
fibers one can perturb ¢ so that it becomes Morse-Smale or even a dynam-
ics with infinitely many quasi-attractors in the base (see Example 7.2.1 for
details).

Recall that two flows are said to be orbit equivalent whenever there exists
a homeomorphism taking orbits of one into orbits of the other and preserving
its orientation. We obtain:

Theorem. Let f be a discretized Anosov flow and let ©f be the center flow
of f. Suppose f is transitive and not orbit equivalent to a suspension. Then
f has a unique minimal unstable lamination.

Corollary. Any f as in the previous theorem has at most one quasi-attractor.

It is worth pointing out that we look at minimal unstable laminations
and quasi-attractors but the results have obvious analogous statements for
minimal stable laminations and quasi-repellers.

Note that the above statements apply to every f € PH._1(M) in the
same connected component of PH._; (M) than the time 1 map of a transitive
Anosov flow s : M — M that is not orbit equivalent to a suspension flow.
This includes, for example, the time 1 map of any geodesic flow in the unitary
tangent bundle of a closed surface of negative curvature.

The non-wandering set of the topological Anosov flow ¢f obtained as the
center flow of a discretized Anosov flow admits the same type of spectral
decomposition

Q) =A1u...uAN

into basic pieces {A;}1<i<n as is the case for classical Anosov flows. See
Lemma 7.4.2.

In case ¢f is not transitive the problem of uniqueness and finiteness re-
duces to study the behavior of ¢f in restriction to its attracting basic pieces.
We obtain:

Theorem. Let f be a discretized Anosov flow. Suppose A is an attracting
basic piece of the center flow ¢f. If ©§|n : A = A is not orbit equivalent to a
suspension then A contains a unique minimal unstable lamination of f.
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Corollary. Let f be a discretized Anosov flow. Suppose that all the attracting
basic pieces A1, ..., N of ¢f satisfy that ©f|p, : Ai = A; is not orbit equiv-
alent to a suspension. Then f has exactly k minimal unstable laminations
(and exactly k quasi-attractors). Moreover, each one of them is contained in
one of the attracting basic pieces A1, ..., Ag.

In addition to the above statements concerning discretized Anosov flows, a
result on uniqueness of attractors is also shown for certain partially hyperbolic
skew-products. See Theorem 7.1.5.

1.1.6 Partially hyperbolic skew-products, uniformly compact
center foliations and quasi-isometrically center action

The center foliation of a partially hyperbolic diffeomorphism is said to be
uniformly compact if its leaves are compact and their volume is uniformly
bounded in M. In particular, this includes partially hyperbolic skew-products
(also called fibered partially hyperbolic diffeomorphism) where the center fo-
liation induces a fiber bundle structure on M:

Definition 1.1.2. We say that f € PH(M) is a partially hyperbolic skew-
product if there exists a continuous fiber bundle 7 : M — B whose fibers
are C! compact submanifold tangent to E¢ forming an f-invariant center
foliation W¢.

An analogous statement to the C! openess and closeness of discretized
Anosov flows is satisfied for this class of systems:

Theorem. The set of diffeomorphisms in PH.—1(M) admitting an invari-
ant uniformly compact center foliation form a C' open and closed subset of

PH,_1(M).

Again, the above theorem shows that the diffeomorphisms in PH._; (M)
admitting an invariant uniformly compact center foliation comprise whole
connected components of PH.—1(M). Moreover, two maps in the same con-
nected component need also be leaf-conjugate (see Corollary 5.1.4).

A key property for discretized Anosov flows turns out to be that bounded
segments inside W¢leaves do not get arbitrarily long for past or future it-
erates of f. This property sets an essential bridge between the class of dis-
cretized Anosov flows and that of partially hyperbolic systems admitting a
uniformly compact center foliation.

Definition 1.1.3. Suppose f € PH(M) admits an f-invariant center foliation
We. We say that f acts quasi-isometrically on W¢ if there exist constants
[, L > 0 such that

T Wi(z)) € Wi (f*(2))
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for every z in M and n € Z.

It is immediate to check that the above property is satisfied by every
discretized Anosov flow as well as by systems admitting a uniformly compact
center foliation (see Remark 3.4.2 and Remark 3.4.3). We obtain that some
properties shown for discretized Anosov flows extend to systems acting quasi-

isometrically on a center foliation:

Theorem. Suppose f € PH._1(M) acts quasi-isometrically on an f-invariant
center foliation W°. Then the following properties hold:

1. (Dynamical coherence). The map f is dynamically coherent. Moreover,
it admits a center-stable foliation W and a center-unstable foliation

W such that W° = W ~ W,

2. (Uniqueness of foliations). The foliations W and W are the only
f-invariant foliations tangent to E* @ E¢ and E°® E“, respectively.

3. (Completeness of leaves). The leaves of W and W satisfy that

Wcs(x) = UyEWC(x) Ws(y) and Wcu(x) = UyEWC(I) Wu(y) Jor every
xe M.

Item (1) of the above theorem was shown in [BB16, Theorem 1] for sys-
tems admitting a uniformly compact center (and for any center dimension).
Nevertheless, the proof given in this text is independent.

Item (2) shows that W€ is the only f-invariant center foliation where f
acts quasi-isometrically. For uniformly compact center foliations this gives
a partial answer to [BB16, Question 8.4.] (the general question is for any
center dimension).

An analogous result on unique integrablity of the center bundle is also
satisfied in this context:

Proposition. Suppose f € PH._1(M) admits a uniformly compact center
foliation such that E° is uniquely integrable. Then every systems in the same
C' connected component of f in PH._1(M) has a uniquely integrable center
bundle.

In particular, the above proposition shows that if f = A xId: N x ST —
N x 8! is the product of an Anosov diffecomorphism A : N — N and the
identity map on the circe Id : ST — 8!, then the center bundle is uniquely

integrable for every system in the same C' connected component as f in
PH.—1(N x S1).
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1.2 Introduction (Francais)

1.2.1 Dynamique différentiable, hyperbolicité et hyperbol-
icité partielle

La théorie classique des systemes dynamiques étudie le comportement asymp-
totique de systemes évoluant dans le temps par rapport a une regle déterministe
prescrite qui gouverne leur évolution.

Dans le cas de dynamiques différentiables, cette regle est typiquement
donnée par un difféomorphisme f : M — M dans le cas d'un systéme
dynamique discret, ou par une équation différentielle ordinaire X = F(X)
définissant un flot X; : M — M dans le cas d’un systeme dynamique continu.

Un exemple paradigmatique de ces systémes présentant une comporte-
ment global riche et chaotique est donné par les systemes de Anosov (également
appelés systémes globalement uniformement hyperboliques). L’étude de ce
type de systeémes remonte au moins aux travaux pionniers de D.V. Anosov
et S. Smale (voir [A67] et [S67]).

En termes succincts, un difféomorphisme f : M — M est appelé difféomor-
phisme d’Anosov si le fibré tangente admet une décomposition f-invariante
TM = E3@® E", telle que les vecteurs dans E° et E" sont uniformément
contractés par les itérations futures et passées de f, respectivement.

Un flot X; : M — M sans singularité est appelé flot d’Anosov s’il préserve
une décomposition invariante par la différentielle du flot TM = E°*@E‘DE",
telle que les vecteurs dans E® et E* sont uniformément contractés par des
itérés positifs et négatifs de X, respectivement, et le fibré E°¢ est la direction
tangente au flot X;.

Une extension naturelle des systéemes uniformément hyperboliques est
donnée par la notion d’hyperbolicité partielle.

Definition. Un difféomorphisme f: M — M sur une variété Riemannienne
fermée M est appelé partiellement hyperbolique s’il existe une décomposition
continue et invariante par D f du fibré tangente T'M en trois sous-fibrés non
triviaux

TM = E°®E°@®FE"

telles que les vecteurs dans E° et E* sont uniformément contractés par
les itérations futures et passées de f, respectivement, et les vecteurs dans
FE° subissent un comportement intermédiaire. Voir le chapitre 2 pour une
définition précise.

La définition des difféomorphismes partiellement hyperboliques remonte
au moins a [BP74] et [HPS77]. Il est bon de mentionner qu’il existe de nom-
breuses autres définitions de I’ hyperbolicité partielle. Typiquement, toutes ces
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notions impliquent une certaine décomposition invariante de I’espace tangent
(de la variété entiere ou d’une partie invariante de celle-ci) en sous-fibrés sat-
isfaisant une forme de domination. De plus, dans la plupart des cas, on
demande qu’au moins un des sous-fibrés soit uniformément dilatée ou con-
tractée. Voir par exemple [CP15] comme référence.

Tout comme dans le cas des systemes d’Anosov, 'hyperbolicité partielle
est une propriété C'' ouverte qui peut étre vérifiée en un nombre fini d’itérations
(comme conséquence du critére de champs de cones, par exemple). De plus,
elle apparait naturellement dans ’étude des propriétés dynamiques robustes,
autrement dit, des propriétés qui restent inchangées face a de petites pertur-
bations du systeme. Cela est le cas dans au moins deux scénarios significatifs
. la transitivité robuste et 'ergodicité stable. Voir, par exemple, [BPSWO01],
[CHHU18] et [HP18].

Les difféomorphismes partiellement hyperboliques constituent une classe
riche de systemes dynamiques avec une rigidité suffisante pour qu'un certain
type de ‘classification’ puisse étre attendu :

Probléme. Développer un contexte de classification (au moins en dimen-
sion 3) pour les difféomorphismes partiellement hyperboliques. Déterminer
quelles propriétés dynamiques peuvent étre données pour ces systemes et iden-
tifier ceux qui sont robustes. Fxplorer l’interaction entre les difféomorphismes
partiellement hyperboliques et la géométrie et la topologie de la variété sous-
jacente, en particulier déterminer quelles variétés et classes d’isotopie ad-
mettent des systémes partiellement hyperboliques.

Une fagon d’aborder ce probleme est d’étudier les structures invariantes
préservées par de telles applications, telles que les feuilletages invariants qui
y apparaissent naturellement. On peut espérer obtenir des conséquences
topologiques ou dynamiques du comportement de ces structures invariantes,
et vice versa.

En dimension 3, le probleme de la classification a été particulierement
étudié. Les exemples classiques de difféomorphismes partiellement hyper-
boliques en dimension 3 sont :

e Las deformations des difféomorphismes d’Anosov.
e Les produits fibrés partiellement hyperboliques.

e Las perturbations du temp 1 d’un flot d’Anosov.

Succinctement, la premiere classe comprend les difféomorphismes par-
tiellement hyperboliques homotopes a un difféfomorphisme d’Anosov, la sec-
onde les difféomorphismes partiellement hyperboliques tels que E° s’integre
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en un feuilletage invariant W¢ par feuilles compactes qui induit une structure
de fibré sur M (voir la Section 1.1.6), et la troisieme, les difféomorphismes
suffisamment proches du temps 1 d’un flot d’Anosov.

Bien que la liste précédente ait été conjecturée comme couvrant tous
les systemes partiellement hyperboliques de dimension 3 (voir la conjecture
de Pujals dans [BWO05]), la liste des exemples classiques a récemment été
complété par de nouveaux types d’exemples qui défient leur tentatives de
classification. Dans [HHU16], les premiers exemples non-dynamiquement
cohérents ont été construits. Plus tard, dans [BPP16], [BGP16] et [BGHP17],
de nouveaux exemples surprenants sont apparus. Voir également [BFP20).

En dimension supérieure, une facon d’aborder 1’étude est de se limiter
au cas ou dim(FE¢) = 1. Sous cette hypothese, la liste d’exemples classiques
mentionnée auparavant est essentiellement la méme (il suffit d’ajouter la
possibilité de réaliser un produit avec un difféomorphisme d’Anosov).

La classe des flots d’Anosov discrétisés est congue comme une extension
naturelle du troisieme type d’exemples classiques. L’objectif principal de
cette these est d’établir plusieurs propriétés générales pour cette classe de
systemes en toute dimension.

1.2.2 Flots d’Anosov discrétisés

On désignera par PH(M) l'ensemble des difféomorphismes partiellement hy-
perboliques sur M et par PH._;(M) ceux tels que dim(E°) = 1.

Definition 1.2.1. On dit que f € PH._1(M) est un flot d’Anosov discrétisé
s’il existe un feuilletage orientable W¢ dont les feuilles sont des sous-variétés

C' de M tangentes & E°, et une fonction continue 7 : M — R~ telle que

f(z) = 90?(:;:) (2)

pour chaque x € M, ou ¢f : M — M désigne un flot de vitesse unitaire dont
les orbites sont les feuilles de W¢.

L’exemple prototypique d’un flot d’Anosov discrétisé est le temps 1 d’un
flot d’Anosov et toutes ses perturbations C'! suffisamment petites. Ce dernier
point est une conséquence de [HPS77] et sera revu dans ce texte.

Le terme flot d’Anosov discrétisé a été introduit dans [BFFP19] et découle
du fait que le flot f est nécessairement un flot d’Anosov topologique (voir la
Définition 3.7.1). Autrement dit, f peut étre considéré comme une discrétisation
du flot d’Anosov topologique ¢f.

Les flots d’Anosov discrétisés ont été largement étudiés dans la littérature,
mais pas toujours sous le méme nom. Un de ces cas est celui de [BD96] on
les premiers exemples de difféomorphismes robustement transitifs isotopiques
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a l'identité ont été produits. Ces exemples sont construits arbitrairement
proches du temps 1 de tout flot d’Anosov. En particulier, ce sont des flots
d’Anosov discrétisés.

En ce qui concerne l'ergodicité stable, il est démontré dans dans [GPS94]
que les temps 1 de flots géodésiques sur des surfaces fermées de courbure
négative constante sont C? stablement ergodiques. Ceux-ci ont été les pre-
miers exemples de difféomorphismes stablement ergodiques non-Anosov con-
struits dans la littérature. Encore une fois, ces exemples sont des flots
d’Anosov discrétisés (ainsi que leurs perturbations).

Dans [BWO05], il a été montré que les flots d’Anosov discrétisés et les
produits fibrés partiellement hyperboliques sont assez abondants parmi les
difféomorphismes partiellement hyperboliques (dynamiquement cohérents)
en dimension 3. Cela a conduit & la consolidation des exemples classiques en
dimension 3.

Plus récemment, il a été montré dans [BFFP19] que les flots d’Anosov
discrétisés représentent tous les difféomorphismes partiellement hyperboliques
dynamiquement cohérents dans de nombreuses 3-variétés. Et dans [FP22]
(voir aussi [FP21]) que dans la plupart des 3-variétés les flots d’Anosov
discrétisés sont accessibles et ceux qui préservent une forme de volume sont
ergodiques.

D’autres résultats dynamiques récents concernant des flots d’Anosov dis-
crétisés sont les résultats de rigidité de [AVW15], [BFT20] sur les mesures
d’entropie maximale, [DWX21] et [BG21] relatifs a la rigidité des centralisa-
teurs, et le ‘principe d’invariance’ démontré dans [CP22].

Une caractéristique qui s’est avérée tres utile dans I’étude des difféomor-
phismes partiellement hyperboliques est la présence de feuilletages invariants
tangents aux sous-fibrés invariants. Dans [HPS77], il a été montré que les fi-
brations E* et E* sont uniquement intégrables a des feuilletages f-invariantes
W? et W, respectivement.

Par contraste, les fibrés E*@E€ et E*@E° peuvent ou non étre intégrables.
Lorsqu’ils s’integrent en des feuilletages f-invariants (notés W et W re-
spectivement), le difféomorphisme f est qualifié de dynamiquement cohérent.
Lorsque c’est le cas, alors le feuilletage W¢ := W ~ W (formé par les
composantes connexes de I'intersection des feuilles de W et de W) donne
lieu a un feuilletage f-invariant tangent au fibré central E°.

Rappelons que [’ensemble non errant Q(f) de f est 'ensemble des points
x dans M tels que pour tout voisinage U de zx il existe N > 0 tel que
N NU # @.

Dans ce premier théoreme, on établit quelques propriétés générales satis-
faites par tout flot d’Anosov discrétisé :
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Théoreme. Soit f un flot d’Anosov discrétisé. Soit ¢f et W° le flot et
le feuilletage central apparaissant dans la définition de f, respectivement.
Alors :

1. (Flot d’Anosov topologique). Le flot ¢ est un flot d’Anosov topologique
(voir la Définition 3.7.1).

2. (Cohérence dynamique). La fonction f est dynamiquement cohérente,
admettant un feuilletage centre stable W et un feuilletage centre in-

stable W tels que W¢ = W ~ W,

3. (Unicité des feuilletages cs et cu). Les feuilletages W et W sont
les uniques feuilletages f-invariants tangents o E° @ E° et E° @ E",
respectivement.

4. (Complétude des feuilles). Les feuilles de W et W satisfont W (z) =
UyEWC(x) W2(y) et W (x) = Uyewc(x) WH(y) pour tout x € M.

5. (Topologie des feuilles) Les feuilles de W et W sont homéomorphes
a des plans ou des cylindres. Les premiers ne contiennent aucune feuille
centrale compacte, alors que les deuxiemes en contiennent exactement
une.

Il est bon de noter qu’en dimension 3, le théoreme ci-dessus était en
grande partie connu. En effet, une fois que (2) est prouvé, alors (1), (4)
et (5) découlent de [BWO05, Theorem 2]. D’autre part, une fois que (1) est
prouvé, alors (2) est déja apparu dans [BFP20, Proposition G.2] et (3) découle
de [BFFP19] (voir [BG21, Lemma 1.1]). Notre objectif a été de synthétiser
la théorie en dimension 3 et de la généraliser aux dimensions supérieures ou
moins de résultats avaient été établis dans la littérature.

[BEFP19], [BFP20], [BG21] et [GM22] appellent ‘flot d’Anosov discrétisé’
toute difféomorphisme f € PH._1(M) telle qu’il existe un flot d’Anosov
topologique ¢y : M — M et une fonction continue 7 : M — R-g tels que
f(x) = ¢r(z)(z) pour tout z € M.

Dans [BFT20], un difféomorphisme f € PH._;(M) est appelé ‘diffeo-
morphisme de type flot’ s’il satisfaite la Définition 1.2.1 et s’il est aussi dy-
namiquement cohérent et admet au moins une feuille compacte dans We¢.

Des notions similaires mais a priori non identiques ont également été
étudiées dans [BWO05], [BG09] et [BG10].

Le probleme de la relation entre ces notions s’est posé naturellement.
Avec le théoreme précédent (et aussi la Proposition 3.7.3 item (4) énoncé
dans la Section 3.7) on obtient que toutes ces définitions sont équivalentes et
se réferent a la méme classe de systemes partiellement hyperboliques :
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Corollaire. La définition de flot d’Anosov discrétisé qui se trouve dans
[BFFP19], [BFP20], [BG21] et [GM22], et la définition de difféeomorphisme
partiellement hyperbolique de type flot dans [BFT20], sont équivalentes a la
définition 1.1.1.

De plus, la classe des difféomorphismes partiellement hyperboliques étudiés
dans [BWO05, Théoréme 2.], [BG09] et [BG10] sont également des flots d’Anosov
discrétisés comme dans la définition 1.1.1.

1.2.3 Stabilité globale

Le résultat suivant montre que les flots d’Anosov discrétisés constituent,
d’une certaine maniere, une large classe de difféomorphismes partiellement
hyperboliques a centre unidimensionnel :

Théoréme. L’ensemble des flots d’Anosov discrétisés est un sous-ensemble
C' ouvert et fermé de PHe—1(M).

Autrement dit, la classe des flots d’Anosov discrétisés constitue des com-
posantes connexes entieres de PH._; ().

Deux difféomorphismes partiellement hyperboliques et feuilletages cen-
traux invariants respectifs (f, W?) et (g, W) sont dits conjugués par feuilles
s’il existe un homéomorphisme h : M — M qui envoie les feuilles de W;
sur les feuilles de Wy de telle sorte que ho f(W) = g o h(W) pour chaque
feuille W e W$. La conjugaison par les feuilles donne sens & une fagon
de classer les difféomorphismes partiellement hyperboliques (dynamiquement
cohérents) modulo le comportement central : deux systémes sont considérés
comme équivalents s’ils sont conjugués par les feuilles.

La preuve du théoreme précédent montre également que la conjugaison
par feuilles est préservée le long des composantes connexes des flots d’Anosov
discrétisés :

Corollaire. Deux flots d’Anosov discrétisés dans la méme composante con-
neve C' de PH._1(M) sont conjugués par feuilles.

Il vaut la peine de mentionner le contexte dans lequel s’inscrivent les
énoncés précédents.

Un résultat classique de [HPS77] donne des conditions pour la stabilité des
feuilletages normalement hyperboliques (c’est-a-dire des feuilletages qui sont
tangents au fibré central d’un difféomorphisme partiellement hyperbolique) :
Théoréme (Hirsch-Pugh-Shub). Supposons que f € PH(M) admet un feuil-
letage central f-invariant W‘Ji Si la paire (f, W;) est expansive par plaques,
alors il existe W(f) un voisinage C' de f qui satisfait que chaque g € U(f)
admet une feuilletage central g-invariant Wy tel que (f, W;) et (g, Wg) sont
conjugués par feuilles.
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Une paire (f, W) est appelé expansive par plaques (ou d-expansive par
plaques) s’il existe § > 0 tel que toute paire de séquences (Tp)mathbbz €t
(Yn)mathevz satisfaisant zn.11 € W5(f(2n)), yn+1 € W(f(yn)) et d(zn,yn) <6
pour chaque n € Z satisfait également que yo € Wy, .(x9). [HPS77] montre
que cette condition est satisfaite chaque fois que W€ est une feuilletage C*
ou lorsque f est une isométrie entre chaque feuille W de W€ et son image
f(W) (ceci est le cas pour le temps 1 d’un flot d’Anosov, par exemple).

Afin de prouver la propriété C' ouverte et fermée des flots d’Anosov
discrétisés, on se sert d’une certaine ‘version uniforme’ du théoreme de sta-

bilité précédent :

Théoreme. Supposons que fo € PH.—1(M). Pour chaque 6 > 0 il existe un
C! woisinage U(fy) de fo tel que, si un certain f € U(fo) admet un feuilletage
central W tel que (f, W?) est d-expansive par plaques, alors chaque g € U( fo)
admet un feuilletage central g-invariante Wy telle que (f, W?) et (g, Wy) sont
conjugués par feuilles.

La partie ‘uniforme’ du théoreme précédent porte sur la taille de U(fp),
fixée a I'avance. Par conséquence, si (fy,), est une suite dans PH.—1(M) con-
vergeant vers fo, il suffit de montrer qu'une paire (fn, W$, ) est d-expansive
par plaques pour un certain fy € U(fy) pour induire un feuilletage central

%, pour fo, qui satisfait ensuite que (fo, cho) est conjuguée par feuilles a
(fn:WG,) (et en effet conjuguée par feuilles a une paire (f, W}) pour tout
feUfo)).

Un théoreme de stabilité uniforme similaire a été observé originellement
dans [BFP20] dans un contexte différent mais voisin (pour les immersions
C! par feuilles et pour les feuilletages branchés). [BFP20] en déduit qu'une
classe de difféomorphismes appelé des flots d’Anosov effondrés a la propriété
d’étre C' ouverte et fermée. La propriété C' ouverte et fermée des flots
d’Anosov discrétisés en dimension 3 est essentiellement déduite de [BFP20]
(voir le Chapitre 5 pour plus de détails).

Le fait que la conjugaison par feuilles persiste parmi les composantes con-
nexes des flots d’Anosov discrétisés peut étre considéré comme un résultat
de ‘stabilité globale’ ot une paire expansive par plaques (f, W°) induit con-
jugaison par feuilles dans toute sa composante connexe C'' de systémes par-
tiellement hyperboliques.

Ce phénomene a également été observé dans [FPS14] pour tout automor-
phisme linéaire hyperbolique f sur le tore T"™ (vu comme un difféomorphisme
partiellement hyperbolique), et a été généralisé dans [Pil9] pour des automor-
phismes linéaires hyperboliques dans des nilvariétés. De plus, il est montré
dans ce texte (voir Section 1.1.6) que ce comportement se produit également
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pour les produits fibrés partiellement hyperboliques avec une centrale unidi-
mensionnelle.
Il est naturel de se demander si cela est vrai en général :

Question. Supposons que f € PH(M) admet un feuilletage central f-invariant
We tel que (f, W) est expansive par plaques. FEst-ce que chaque g dans
la méme composante conneze des diffeomorphismes C' partiellement hyper-
bolique que f admet un feuilletage central g-invariant Wy tel que (9, W;) est
expansive par plaques et conjugué par feuilles a (f, W) ¢

Puisque les flots d’Anosov discrétisés constituent des composantes con-
nexes entieres de PH.—1(M), plusieurs autres questions naturelles peuvent
étre posées. On peut se demander quelles propriétés sont préservées dans la
totalité de la composante connexe et lesquelles ne le sont pas. Quelles com-
posantes connexes contiennent le temps 1 d’un flot d’Anosov, quelles sont les
différences entre celles qui ne le contiennent pas, etc.

Comme mentionné antérieurement, une des propriétés qui est conservée
a travers les composantes connexes des flots d’Anosov discrétisés est la con-
jugaison par feuilles. Une autre est 'intégrabilité unique du fibré central,
c’est a dire la propriété selon laquelle, a reparamétrisation pres, il existe une
unique courbe C! locale tangente & E° passant par chaque point de M (voir
la Section 1.1.6 pour plus de détails sur cette définition) :

Proposition. Soit f un flot d’Anosov discrétisé tel que EJ% est uniquement
intégrable. Alors By est uniquement intégrable pour tout g dans la méme ct
composante connexe de PH._1(M) que f.

En particulier, tout flot d’Anosov discrétisé dans la méme composante
connexe que le temps 1 d'un flot d’Anosov a un fibré central uniquement
intégrable.

Dans I’Exemple 5.4.3, on donne un exemple d’un flot d’Anosov discrétisé
f tel que E€ n’est pas uniquement intégrable. Ceci est obtenu a partir d’une
simple modification d’une construction donnée dans [HHU16] conduisant a
un 2-tore tangent a E° @ E° entierement composé de points d’intégrabilité
non-unique pour E°. Le flot central ¢f dans cet exemple est orbitalement
équivalent & la suspension d’un difféomorphisme linéaire d’Anosov A : T? —
T2 sur le 2-tore, cependant par la proposition ci-dessus la fonction f n’est
pas dans la méme composante connexe que le temps 1 de la suspension de
A. On obtient la conclusion suivante.

Corollaire. Il existe des composantes connexes de flots d’Anosov discrétisés
qui ne contiennent pas le temps 1 d’un flot d’Anosov.

Ces composantes connexes semblent encore tres particulieres. La question
suivante se pose naturellement.
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Question. Si l'une des conditions suivantes est remplie : (i) f est transitif,
(it) E est uniquement intégrable ou (iii) of n'est pas orbitalement équivalent
a un flot de suspension ; alors est-ce-que f se trouve dans la méme com-
posante connexe de PH._1(M) que le temps 1 d’un flot d’Anosov ?

1.2.4 Feuilles centrales fixes

Une caractérisation des flots d’Anosov discrétisés, qui sert également de
définition alternative pour la classe, est la suivante :

Proposition. Soit f € PH._1(M). Ces affirmations sont équivalentes :
(i) Le difféomorphisme f est un flot d’Anosov discrétisé.

(ii) Il existe un feuilletage central W€ et une constante L > 0 tels que
f(z) € WS (x) pour tout x € M.

Il est naturel de se demander si ’hypothese de déplacement limité dans
(ii) est nécessaire. Plus précisément, on cherche a savoir si les flots d’Anosov
discrétisés peuvent étre caractérisés comme la classe des difféomorphismes
partiellement hyperboliques qui fixent individuellement chaque feuille d’un

feuilletage central unidimensionnel :

Question. Supposons que f dans PH._1(M) admet un feuilletage central
We tel que f(W) = W pour chaque feuille W dansW€. FEst-ce que f est un
flot d’Anosov discrétisé ?

Une réponse affirmative a cette question est obtenue lorsque f est transitif

et dynamiquement cohérent :

Théoreme. Soit f € PH._1(M) transitif et dynamiquement cohérent tel que
fW) =W pour chaque feuille W du feuilletage central W€ = W ~ W,
Alors f est un flot d’Anosov discrétisé.

En fait, le théoreme précédent est vrai si on remplace I’hypothese f
transitif’ par la plus générale “W¢ transitif’. Pour plus de détails, voir le
Chapitre 6.

1.2.5 Unicité de l'attracteur

Les résultats présentés dans cette section sont le produit d’un travail en
collaboration avec N. Guelman (voir [GM22]).

En s’intéressant a d’autres propriétés dynamiques des flots d’Anosov
discrétisés, on examine le probleme de la finitude et de I'unicité des quasi-
attracteurs et quasi-répulseurs.
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Etant donné une application f : M — M, on désigne par R(f) c M
I’ensemble récurrent par chaines de f, c’est-a-dire, ’ensemble des points x
de M tels qu’il existe une e-pseudo orbite non triviale de = a x pour tout
€ > 0. Cet ensemble coincide avec le complément des points qui appartiennent
A une certain région piégeante de la forme U\ f(U) pour un ouvert U tel que
f(U) c U. On considére R(f) divisé en classes d’équivalence appelées classes
de récurrence de chaine. Ces classes sont données par la relation x ~ y si et
seulement si pour chaque ¢ > 0 il existe une e-pseudo orbite non triviale de
x a ¥y, et une autre de y a x.

Un quasi-attracteur est une classe de récurrence par chaines A pour laque-
lle il existe une base de voisinages {U;}; (c’est-a-dire que A c U; et A = (), U;)
telle que m c U; pour chaque i. Tout homéomorphisme sur un espace
métrique compact admet au moins un quasi-attracteur. Voir [CP15] pour
une référence.

Puisque les quasi-attracteurs sont des ensembles compacts disjoints deux
a deux saturés par des feuilles de W*, chacun d’eux contient au moins un
ensemble minimal pour le feuilletage W*. Une union compacte de feuilles
de W%, minimal pour l'inclusion, est appelée lamination instable minimale.
Ainsi, l'unicité (resp. la finitude) des laminations instables minimales im-
plique I'unicité (resp. la finitude) des quasi-attracteurs.

La finitude des laminations instables minimales est obtenue dans [CPS17]
pour un sous-ensemble Cl-ouvert et dense des difféomorphismes partielle-
ment hyperboliques de fibré central unidimensionnel. Ici, on se propose
de poursuivre une étude plus globale (non-perturbative) comprenant des
résultats d’unicité/finitude pour des classes entieres d’exemples.

Les flots d’Anosov discrétisés avec un nombre arbitraire d’attracteurs et
de répulseurs peuvent étre construits en perturbant le temps 1 de la suspen-
sion ¢; : M — M d’un difféomorphisme d’Anosov. Puisque M fibre sur le
cercle et que @1 préserve les fibres, il est possible de perturber ¢; pour qu’il
préserve toujours les fibres mais devienne Morse-Smale ou qu’il possede une
infinité de quasi-attracteurs pour la dynamique dans la base (voir I'Exemple
7.2.1 pour les détails).

Rappelons que deux flots sont dits orbitalement équivalents s’il existe
un homéomorphisme qui envoie les orbites de I'un en orbites de 'autre en
préservant leur orientation. On obtient le résultat suivant :

Théoreme. Soit f un flot d’Anosov discrétisé et soit pf le flot central de f.
Supposons que p§ soit transitif et non orbitalement équivalent a une suspen-
sion. Alors f a une unique lamination instable minimale.

Corollaire. es difféomorphismes comme dans le théoréme précédent ont au
plus un quasi-attracteur.
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Il convient de noter que les énoncés ci-dessus sont formulés pour des lami-
nations minimales instables et des quasi-attracteurs mais que, naturellement,
les mémes énoncés ont des analogues pour des laminations minimales stables
et des quasi-répulseurs.

Il est & noter que les résultats précédents s’appliquent & tout f € PH.—1(M)
dans la méme composante connexe de PH.—1(M) que le temps 1 d’'un flot
d’Anosov transitif ¢; : M — M qui n’est pas orbitalement équivalent a un flot
de suspension. Cela inclut, par exemple, tout temps 1 d’un flot géodésique
sur le fibré tangente unitaire d’une surface fermée a courbure négative.

L’ensemble non errant du flot d’Anosov topologique ¢f obtenu comme le
flot central d’un flot d’Anosov discrétisé admet le méme type de décomposition

spectrale
Q) =A1u...uAN

en piéces basiques {A;}1<i<n que les flots d’ Anosov classiques. Voir le Lemme
7.4.2.

Dans le cas ol ¢f n’est pas transitif, le probleme d’unicité et de finitude
se réduit a I’étude du comportement de ¢f en restriction a ses pieces basiques
de type attracteurs. On obtient :

Théoréme. Soit f un flot d’Anosov discrétisé. Supposons que A est une
piece basique de type attracteur du flot central ©f. Si o§|x n’est pas orbitale-
ment équivalent a une suspension alors A contient une unique lamination
instable minimale pour f.

Corollaire. Soit f un flot d’Anosov discrétisé. Supposons que toutes les
piéces basiques attracteur Ay, ..., Ap de ¢f satisfont que p§|a, n'est pas
orbitalement équivalent a une suspension. Alors f a exactement k lamina-
tions instables minimales (et exactement k quasi-attracteurs). De plus, cha-
cune des laminations instables minimales est contenue dans ['une des pieces
basiques de type attracteur A1, ..., Ag.

Il est bon de mentionner enfin que, en plus des résultats ci-dessus pour
les flots d’Anosov discrétisés, des conclusions similaires d’unicité de quasi-
attracteur sont obtenues pour certains produits fibrés partiellement hyper-
boliques. Voir le Théoreme 7.1.5.

1.2.6 Produits fibrés partiellement hyperboliques, feuilletages
centraux uniformément compacts et action quasi-isomé-
trique dans le central

Le feuilletage central d’un difféomorphisme partiellement hyperbolique est
dit uniformément compact si ses feuilles sont compactes et si le volume de
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chaque feuille est uniformément borné dans M. En particulier, ceci est le cas
du feuilletage central des produits fibrés partiellement hyperboliques induisant
une structure fibrée dans M :

Definition 1.2.2. On dit que f € PH(M) est un produit fibré partiellement
hyperbolique s’il existe un espace fibré continu 7 : M — B dont les fibres sont
des sous-variétés compactes C! tangentes a4 E¢ qui forment un feuilletage
central W€ invariant par f.

Un résultat analogue a la propriété C! ouverte et fermée des flots d’ Anosov
discrétisés est valable pour cette classe de systemes :

Théoréme. L’ensemble des difféeomorphismes dans PHe—1(M) qui admet-
tent un feuilletage central invariant uniformément compact est un sous-ensem-
ble C' ouvert et fermé de PHo—1(M).

A nouveau, le théoréme précédent montre que les applications dans PH._1 (M)
qui admettent un feuilletage central invariant uniformément compact con-
stituent des composantes connexes entieres de PH._1(M). De plus, deux
applications dans la méme composante connexe sont conjuguées par feuilles
(voir Corollaire 5.1.4).

Une propriété clé des flots d’Anosov discrétisés s’avere étre que les seg-
ments bornés dans les feuilles de W€ ne deviennent pas arbitrairement longs
par les itérations passées ou futures de f. Cette propriété établit un pont
essentiel entre la classe des flots d’Anosov discrétisés et celle des systemes
partiellement hyperboliques admettant un feuilletage central uniformément
compact.

Definition 1.2.3. Supposons que f dans PH(M) admet un feuilletage cen-
tral f-invariant W¢. On dit que f agit quasi-isométriqguement sur W€ g’il
existe des constantes [, L > 0 telles que

fTWi (@) « Wi (f*(2))

pour chaque z € M et ne Z.

Il est immédiat de constater que la propriété précédente est satisfaite
pour tout flot d’Anosov discrétisé, ainsi que pour tout systeme admettant un
feuilletage central uniformément compact (voir Remarque 3.4.2 et Remarque
3.4.3). On obtient que certaines propriétés démontrées pour les flots d’ Anosov
discrétisés s’étendent automatiquement aux systemes agissant de maniere
quasi-isométrique sur un feuilletage central :

Théoréme. Supposons que f € PH.—1(M) agit de maniére quasi-isométrique
sur le feuilletage central f-invariant W€. Les propriétés suivantes sont alors
satisfaites :
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1. (Cohérence dynamique). Le difféomorphisme f est dynamiquement
cohérent. De plus, il admet un feuilletage centre stable W< et un feuil-
letage centre instable W tels que W¢ = W ~ W,

2. (Unicité des feuilletages). Les feuilletages W et W sont les uniques
feuilletages f-invariants tangents a E°*@E° et E°@E", respectivement.

3. (Complétude des feuilles). Les feuilles de W et W satisfont W (z) =
Uyewez) W) et W (z) = U, ewe(ry W (y) pour chaque z € M.

Il est bon de mentionner que le point (1) du théoreme ci-dessus a été
prouvé dans [BB16, Theorem 1] pour les systémes admettant un feuilletage
central uniformément compact (et pour toute dimension centrale). Cepen-
dant, la preuve donnée dans ce texte est indépendante.

Le point (2) montre que W€ est le seul feuilletage central f-invariant
ou f agit de maniere quasi-isométrique. Pour des feuilletages centraux uni-
formément compacts, cela donne une réponse partielle a la question [BB16,
Question 8.4.] (la question générale est posée pour toute dimension centrale).

Un résultat analogue sur I'intégrabilité unique du fibré central est également
valable dans ce contexte :

Proposition. Supposons que f dans PH._1(M) admet un feuilletage central
uniformément compact tel que E° est uniquement intégrable. Alors, chaque
application dans la méme composante connexe C* de f dans PH._1(M) a un
fibré central uniquement intégrable.

Notamment, la proposition précédente montre que si f = A x Id : N x
Sl — N x 81 est le produit d’un difféomorphisme d’Anosov A : N — N et
de la fonction d’identité sur le cercle Id : S* — S, alors le fibré central est
uniquement intégrable pour chaque application dans la méme C'! composante
connexe que f dans PH._1(N x S1).

1.3 Introduccién (Espanol)

1.3.1 Dinamica diferenciable, hiperbolicidad e hiperbolicidad
parcial

La teoria cldsica de sistemas dindmicos estudia el comportamiento asintético
de sistemas que evolucionan en el tiempo con respecto a una regla determin-
ista prescrita que gobierna su evolucién.

En el caso de dindmicas diferenciables, esta regla viene dada tipicamente
por un difeomorfismo f : M — M en el caso de un sistema dindmico discreto,
o por una ecuacién diferencial ordinaria X = F(X) que define un flujo X; :
M — M en el caso de un sistema dindmico continuo.
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Un ejemplo paradigmético de estos sistemas que presentan una forma
global de comportamiento rica y cadtica viene dado por los sistemas de
Anosov (también llamados sistemas hiperbdlicos globalmente uniformes). El
estudio de este tipo de sistemas se remonta al menos a los trabajos pioneros
de D.V. Anosov y S. Smale (véase [A67] y [S67]).

A grandes rasgos, un difeomorfismo f : M — M se denomina difeo-
morfismo de Anosov si el fibrado tangente admite una descomposicién f-
invariante TM = E° @ E“, de forma tal que los vectores en E° y E" son
uniformemente contraidos por iterados futuros y pasados de f, respectiva-
mente.

Un flujo sin singularidades X; : M — M se denomina flujo de Anosov
si preserva una descomposicién invariante por el diferencial del flujo TM =
E°® E°P EY, de forma tal que los vectores en E° y E" son uniformemente
contraidos por iterados positivos y negativos de Xy, respectivamente, y el
fibrado E° es la direccién tangente al flujo Xj.

Una extensién natural de los sistemas uniformemente hiperbdlicos esta
dada por la nocién de hiperbolicidad parcial.

Definiciéon. Un difeomorfismo f : M — M en una variedad Riemanniana
cerrada M se denomina parcialmente hiperbdlico si existe una descomposicién
continua y Df invariante del fibrado tangente TM en tres subfibrados no

triviales

TM = E°®E°®FE"

de forma tal que los vectores en E® y E" son contraidos uniformemente
por iterados futuros y pasados de f, respectivamente, y los vectores en E°
experimentan un comportamiento intermedio. Ver el capitulo 2 para una
definicién precisa.

La definicién de difeomorfismo parcialmente hiperbdlico se remonta al
menos a [BP74] y [HPS77]. Vale la pena mencionar que existen muchas otras
definiciones de hiperbolicidad parcial. Tipicamente, todas estas nociones im-
plican algin tipo de descomposicién invariante del espacio tangente (de toda
la variedad o de una parte invariante de ella) en subfibrados que satisfacen
algun tipo de dominacion. Ademds, en la mayoria de los casos, con al menos
uno de los subfibrados uniformemente expandido o contraido. Véase por
ejemplo [CP15] como referencia.

Al igual que en el caso de sistemas de Anosov, la hiperbolicidad par-
cial es una propiedad abierta C' que puede comprobarse en finitos iterados
(como consecuencia del criterio de conos, por ejemplo). Ademds, aparece
de forma natural en el estudio de propiedades dindamicas robustas. Es decir,
propiedades que permanecen inalteradas ante pequenas perturbaciones del
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sistema. Este es el caso en al menos dos escenarios relevantes: transitivi-
dad robusta y ergodicidad estable. Ver, por ejemplo, [BPSWO01], [CHHU18] y
[HP18].

Los difeomorfismos parcialmente hiperbdlicos constituyen una rica clase
de sistemas dindmicos con suficiente rigidez para que un cierto tipo de ‘clasi-
ficaciéon’ pueda ser esperado:

Problema. Desarrollar un contexto de clasificacion (al menos en dimension

3) para los difeomorfismos parcialmente hiperbdlicos. Determinar qué propiedades
dindmicas pueden darse para estos sistemas e identificar cudles de ellas son
robustas. Explorar la interaccion entre los difeomorfismos parcialmente hiperbdlicos
y la geometria y topologia de la variedad subyacente, en particular deter-
minar qué variedades y clases de isotopia admiten sistemas parcialmente
hiperbdlicos.

Una manera de abordar este problema es estudiar las estructuras invari-
antes preservadas por este tipo de mapas, como las foliaciones invariantes
que aparecen naturalmente en ellos. Uno podria esperar obtener consecuen-
cias topolégicas o dinamicas del comportamiento de estas estructuras invari-
antes, y viceversa.

En dimensién 3, el problema de clasificaciéon ha sido particularmente
tratado. Los ejemplos clédsicos de difeomorfismos parcialmente hiperbdlicos

en dimension 3 son:

e Deformaciones de difeomorfismos de Anosov
e Productos fibrados parcialmente hiperbolicos

e Perturbaciones del tiempo 1 de un flujo de Anosov

Brevemente, la primera clase consiste en difeomorfismos parcialmente
hiperbélicos homotdpicos a un mapa de Anosov. La segunda, difeomorfismos
parcialmente hiperbdlicos tales que E° integra a una foliacion invariante W¢
por hojas compactas que induce una estructura de fibrado en M (ver Seccién
1.1.6). Y la tercera, difeomorfismos suficientemente préximos al tiempo 1 de
un flujo de Anosov.

A pesar de haberse conjeturado que la lista anterior cubria todos los sis-
temas parcialmente hiperbdélicos de dimension 3 (ver la conjetura de Pujals en
[BWO05]), a la lista de ejemplos clésicos se le han unido recientemente nuevos
tipos de ejemplos que desaffan la tentativa de clasificacién. En [HHU16] se
construyeron los primeros ejemplos no dindmicamente coherentes. Més tarde,
en [BPP16], [BGP16] y [BGHP17] nuevos ejemplos sorprendentes emergieron.
Ver también [BFP20].
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En dimensién mayor, una forma de abordar el estudio es restringirse al
caso en que dim(E¢) = 1. Bajo este supuesto la lista anterior de ejemplos
clésicos es esencialmente la misma (sélo hay que anadir la posibilidad de
tomar producto con un difeomorfismo de Anosov).

La clase de flujos de Anosov discretizados es concebida como una ex-
tension natural del tercer tipo de ejemplos clasicos. El objetivo principal
de esta tesis es establecer diversas propiedades generales para esta clase de
sistemas en cualquier dimension.

1.3.2 Flujos de Anosov discretizados

Denotamos por PH(M) al conjunto de difeomorfismos parcialmente hiperbdlicos
en M y por PH._1(M) a aquellos tales que dim(FE°) = 1.

Definicién 1.3.1. Decimos que f € PH._1(M) es un flujo de Anosov dis-
cretizado si existe una foliacién orientable W¢ cuyas hojas son C! subvar-
iedades de M tangentes a F¢, y una funcién continua 7 : M — R.( tal
que

para cada x € M, donde ¢f : M — M denota un flujo de velocidad unitaria
cuyas orbitas son las hojas de W¢.

El ejemplo prototipico de un flujo de Anosov discretizado es el tiempo 1 de
un flujo de Anosov y todas sus perturbaciones C! suficientemente pequefias.
Esto ultimo es una consecuencia de [HPS77] y serd revisado en este texto.

El término “flujo de Anosov discretizado” fue acunado en [BFFP19] y
se deriva del hecho de que el flujo ¢f es necesariamente un flujo de Anosov
topolégico (ver la Definicién 3.7.1). Es decir, f puede considerarse como una
discretizacién del flujo de Anosov topoldgico ¢f.

Los flujos de Anosov discretizados han sido profusamente estudiados en
la literatura, aunque no siempre bajo el mismo nombre. Un ejemplo de ello es
[BD96] donde se obtuvieron los primeros ejemplos de difeomorfismos robus-
tamente transitivos isotopicos a la identidad. Estos ejemplos se construyen
arbitrariamente cerca del tiempo 1 de cualquier flujo de Anosov. En partic-
ular, son flujos de Anosov discretizados.

En cuanto a la ergodicidad estable, en [GPS94] se demostré que los
tiempo 1 de flujos geodésicos en superficies cerradas de curvatura negativa
constante son C? establemente ergédicos. Estos fueron los primeros ejemplos
no Anosov de difeomorfismoos establemente ergddicos construidos en la liter-
atura. También en este caso estos ejemplos son flujos de Anosov discretizados
(asi como sus perturbados).
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En [BWO05] se demostré que los flujos de Anosov discretizados y los pro-
ductos fibrados parcialmente hiperbdlicos son particularmente ubicuos entre
los difeomorfismos parcialmente hiperbélicos (dindmicamente coherentes) en
dimensién 3. Esto condujo a la consolidacién de los ejemplos clésicos en
dimension 3.

Maés recientemente, en [BFFP19] se demostré que los flujos de Anosov
discretizados representan todos lo difeomorfismos parcialmente hiperbdlicos
dindmicamente coherentes en numerosas 3-variedades. Y en [FP22] (ver
también [FP21]) que en la mayoria de las 3-variedades los flujos de Anosov
discretizados son accesibles y ergddicos siempre que preserven una forma de
volumen.

Otros resultados dindmicos recientes que involucran flujos de Anosov dis-
cretizados son los resultados de rigidez obtenidos en [AVW15], [BET20] sobre
medicalssidas de entropia maximal, [DWX21] y [BG21] respecto a rigidez de
centralizadores, y el ‘principio de invarianza’ obtenido en [CP22].

Una caracteristica que ha demostrado ser muy 1til en el estudio de difeo-
morfismos parcialmente hiperbdlicos es la presencia de foliaciones invariantes
tangentes a los subfibrados invariantes. En [HPS77] se demostr6 que los fi-
brados E° y E* son unicamente integrables a foliaciones f-invariantes W?* y
WY, respectivamente.

En contraste, los fibrados E°@ E¢y E°@® E° pueden o no ser integrables.
Siempre que integran en foliaciones f-invariantes (W y W< respectiva-
mente) el mapa f se denomina dindmicamente coherente. Si este es el caso
entonces W¢ := W n W (la foliacién dada por las componentes conexas
de la interseccién de las hojas de W y W) da lugar a una foliacién f-
invariante tangente al fibrado central E°.

Recordemos que el conjunto no errante () de f es el conjunto de puntos
x en M tal que para cada entorno U de z existe N > 0 tal que fN(U)nU # &.

En nuestro primer teorema establecemos algunas propiedades generales
satisfechas por todo flujo de Anosov discretizado:

Teorema. Sea f un flujo de Anosov discretizado. Sean ¢f y W¢ el flujo
y la foliacion central que aparecen en la definicion de f, respectivamente.
Entonces:

1. (Flujo de Anosov topoldgico). El flujo ©f es un flujo de Anosov topoldgico
(ver Definicion 3.7.1).

2. (Coherencia dinamica). El mapa f es dinamicamente coherente, admi-
tiendo una foliacion centro estable W y una foliacion centro inestable
W tales que W = W n W,
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3. (Unicidad de las foliaciones cs y cu). Las foliaciones W y W son
las unicas foliaciones f-invariantes tangentes a E° @ E¢ y B¢ @ EY,
respectivamente.

4. (Completitud de las hojas). Las hojas de W y W cumplen que

W () = Uyewe(z) W) y W) = Uyewemy W*(y) para todo z €
M.

5. (Topologia de las hojas) Las hojas de W y W son homeomorfas a
planos o cilindros. Las primeras no contienen hojas centrales compactas
mientras que las sequndas contienen exactamente una.

Cabe senalar que en dimensién 3 el teorema anterior era conocido en su
mayor parte. En efecto, una vez demostrado (2) entonces (1), (4) y (5) se
deducen de [BW05, Teorema 2]. Por otro lado, una vez que (1) es demostrado
entonces (2) ya ha aparecido en [BFP20, Proposicién G.2] y (3) se sigue de
[BFFP19] (ver [BG21, Lemma 1.1]). Nuestro objetivo ha sido sintetizar la
teoria en dimension 3 y generalizarla a dimensiones superiores donde menos
resultados habian sido establecidos en la literatura.

En [BFFP19], [BFP20], [BG21] y [GM22] se denomina ‘flujo de Anosov
discretizado’ a todo mapa f € PH._1(M) tal que existe un flujo de Anosov
topolégico ¢y : M — M y una funcién continua 7 : M — R tales que
f(z) = ¢r(z)(z) para toda x en M.

En [BFT20] un difeomorfismo f € PH.—1(M) se denomina ‘tipo flujo’ si
satisface la Definicion 1.3.1 y ademaés es dinamicamente coherente y admite
al menos una hoja compacta de W¢.

Nociones similares pero no a priori idénticas fueron estudiadas también
en [BWO05], [BG09] y [BG10].

El problema respecto a la relacién entre estas nociones se planteaba de
forma natural. Con el teorema anterior (anadir también la Proposicién 3.7.3
item (4) enunciada en la Seccién 3.7) se obtiene que todas estas defini-
ciones son equivalentes y refieren a la misma clase de sistemas parcialmente
hiperbdlicos:

Corolario. La definicion de flujo discretizado de Anosov dada en [BFFP19)],
[BFP20], [BG21] y [GM22], y la definicion de difeomorfismo parcialmente
hiperbélico de tipo flujo en [BFT20], son equivalentes a la Definicion 1.1.1.

Ademds, la clase de difeomorfismos parcialmente hiperbolicos estudiados
en [BWO05, Teorema 2.], [BG09] y [BG10] son también flujos discretizados
de Anosov como en la Definicion 1.1.1.
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1.3.3 Estabilidad global

El siguiente resultado muestra que los flujos de Anosov discretizados con-
stituyen, en cierto forma, una clase amplia de difeomorfismos parcialmente
hiperbdlicos con central unidimensional:

Teorema. FEl conjunto de flujos de Anosov discretizados es un subconjunto
C!l abierto y cerrado de PH.—1(M).

En otras palabras, la clase de flujos de Anosov discretizados constituye
componentes conexas enteras de PH._;(M).

Dos difeomorfismos parcialmente hiperbdlicos y respectivas foliaciones
centrales invariantes (f, W?) y (9, Wg) se denominan conjugados por hojas
si existe un homeomorfismo h : M — M que lleva hojas de W? en hojas de
Wy de forma tal que ho f(W) = goh(W) para cada hoja W € W; La conju-
gacién por hojas da sentido una manera de clasificar los difeomorfismos par-
cialmente hiperbdlicos (dindmicamente coherentes) médulo comportamiento
central: dos sistemas se consideran equivalentes si son conjugados por hojas.

La demostracién del teorema anterior muestra ademdés que la conjugacién
por hojas es preservada a lo largo de las componentes conexas de flujos de
Anosov discretizados:

Corolario. Dos flujos de Anosov discretizados en la misma componente
conera C' de PH._1(M) son conjugados por hojas.

Vale la pena mencionar el contexto de fondo para los enunciados men-
cionados anteriormente.

Un resultado cldsico de [HPS77] da condiciones para la estabilidad de
foliaciones normalmente hiperbdlicas (es decir, foliaciones que son tangentes
al fibrado central de un difeomorfismo parcialmente hiperbdlico):

Teorema (Hirsch-Pugh-Shub). Supongamos que f € PH(M) admite una
foliacion central f-invariante W; Si el par (f, W‘]’}) es expansivo por placas
entonces existe U(f) un entorno C' de f que satisface que todo g € U(f)
admite una foliacion central g-invariante Wy tal que (f, W‘}) y (9, W) son
conjugados por hojas.

Un par (f, W) se denomina ezpansivo por placas (o d-expansivo por pla-
cas) si existe & > 0 tal que todo par de sucesione (Zp)nez ¥ (Yn)nez que
satisfacen xn,11 € W§(f(2n)), Yn+1 € WS(f(yn)) ¥ d(xpn,yn) < d para cada
n € Z también satisface que yo € Wi .(z0). En [HPS77] se demuestra que
esta condicién se cumple siempre que W sea una foliacién C' o en caso que
f sea una isometria entre cada hoja W de W€ y su imagen f(W) (este es el

caso para el tiempo 1 de un flujo de Anosov, por ejemplo).
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Para demostrar la propiedad C'! abierta y cerrada de los flujos de Anosov
discretizados de Anosov se necesita una cierta ‘versién uniforme’ del teorema
de estabilidad anterior:

Teorema. Supongamos fo € PH.—1(M). Para cada § > 0 existe un C en-
torno U( fo) de fo tal que, si algin f € U(fo) admite una foliacion central W
tal que (f, W‘Ji) es 0-expansivo por placas, entonces cada g € U( fo) admite una
foliacion central g-invariante W tal que (f,W$) y (g9, Wg) son conjugados
por hojas.

La parte ‘uniforme’ clave en el teorema anterior es que el tamano de U( fo)
estd fijado de antemano. Entonces si (fy), es una sucesiéon en PH._;(M)
convergente a fp basta con demostrar que un par (fy, W‘ch) es d-expansivo
por placas para algtin fy € U(fy) para inducir una foliacién central W;O para
fo, que ademas satisface que (fo, W%O) es conjugado por hojas a (fnx ,W;N)
(y de hecho conjugado por hojas a un par (f, W?) para toda f € U(foy))-

Un teorema de estabilidad uniforme similar fue observado originalmente
en [BFP20] en un contexto diferente pero relacionado (para C! inmersiones
por hojas y foliaciones ramificadas). En [BFP20] se muestra la propiedad
C' abierta y cerrada de la clase de flujos de Anosov colapsados en dimensién
3. La propiedad C'! abierta y cerrada de los flujos de Anosov discretizados
en dimensién 3 se deduce esencialmente de [BFP20] (ver el Capitulo 5 para
més detalles).

El hecho de que la conjugacién por hojas persista dentro de las compo-
nentes conexas de flujos de Anosov discretizados puede verse como un resul-
tado de ‘estabilidad global’ donde un sistema expansivo por placas (f, W¢)
induce conjugacién por hojas en toda su C! componente conexa de parcial-
mente hiperbdlicos.

Este fenémeno también ha sido observado en [FPS14] para todo auto-
morfismo lineal hiperbdlico f en toro T" (visto como un difeomorfismo par-
cialmente hiperboélico), y ha sido generalizado en [Pil9] para automorfismos
lineales de hiperbdlicos en nilvariedad. Méas ain, se demuestra en este texto
(ver Seccién 1.1.6) que este comportamiento también ocurre para productos
fibrados parcialmente hiperbdlicos con central unidimensional.

Es natural preguntarse si esto es cierto en general:

Pregunta. Supongamos que f € PH(M) admite una foliacion central f-
invariante W€ tal que (f, W) es expansivo por placas. ;Cada g en la misma
C! componente conexa de parcialmente hiperbélicos que f admite una fo-
liacion central g-invariante Wy tal que (g,Wg) es expansivo por placas vy
conjugado por hojas a (f, W) ?

Puesto que los flujos de Anosov discretizados constituyen componentes
conexas enteras de PH.—; (M) muchas otras preguntas naturales pueden ser
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planteadas. Uno puede preguntarse cudles son las propiedades que se conser-
van en componentes conexas enteras y cuales no. Qué componentes conexas
contienen el tiempo 1 de un flujo de Anosov, qué diferencias hay entre las
que no lo contienen, etc.

Como fue mencionado anteriormente, una de las propiedades que es con-
servada a lo largo de las componentes conexas de los flujos de Anosov dis-
cretizados es la conjugacion por hojas. Otra de ellas es la integrabilidad tinica
del fibrado central. Es decir, la propiedad de que médulo reparametrizaciones
existe una tnica curva local C! tangente a E¢ por cada punto de M (ver la
Seccién 1.1.6 para més detalles sobre esta definicién):

Proposicion. Sea f un flujo de Anosov discretizado tal que ES es unicamente
integrable. Entonces Eg es dnicamente integrable para toda g en la misma
componente conera C1 de PH.—1(M) que f.

En particular, todo flujo de Anosov discretizado en la misma componente
conexa que el tiempo 1 de un flujo de Anosov tiene fibrado central tinicamente
integrable.

En el Ejemplo 5.4.3 se da un ejemplo de un flujo de Anosov discretizado f
tal que E° no es inicamente integrable. Esto se obtiene a partir de una modi-
ficacién simple de una construccién dada en [HHU16] que conduce a un 2-toro
tangente a F° @ E° enteramente compuesto por puntos de integrabilidad no
unica para E°. El flujo central ¢f en este ejemplo es orbitalmente equivalente
a la suspensién de un difeomorfismo lineal de Anosov A : T2 — T2 en el 2-
toro, sin embargo por la proposicién anterior el mapa f no esta en la misma
componente conexa que el tiempo 1 de la suspensién de A. Se concluye lo
siguiente.

Corollary. FExisten componentes conexas de flujos de Anosov discretizados
que no contienen el tiempo 1 de un flujo de Anosov.

Con todo, estas componentes conexas parecen ain muy particulares. La
siguiente pregunta surge de forma natural.

Pregunta. Sea f un flujo de Anosov discretizado. ;Alguna de las siguientes
condiciones: i) f es transitivo, it) ES es unicamente integrable o iit) ¢f no
es orbitalmente equivalente a un flujo suspension; implica que f se encuentra
en la misma componente conexa de PH._1(M) que el tiempo 1 de un flujo
de Anosov?

1.3.4 Caracertizacion por hojas centrales fijas

Una caracterizacién de los flujos de Anosov discretizados, que también sirve
como definicién alternativa para la clase, es la siguiente:
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Proposicién. Sea f € PH._1(M). Los siguientes afirmaciones son equiva-
lentes:

(i) El mapa f es un flujo de Anosov discretizado.

(ii) Existe una foliacion central W€ y una constante L > 0 tales que f(x) €
W (x) para todo x € M.

Es natural preguntarse si la hipdtesis de desplazamiento acotado en (ii)
es necesaria. Es decir, si los flujos de Anosov discretizados pueden carac-
terizarse como la clase de difeomorfismos parcialmente hiperbélicos que fijan
individualmente cada hoja de una foliacién central unidimensional:

Pregunta. Supongamos que f en PH._1(M) admite una foliacion central
We tal que f(W) = W para cada hoja W € WE. ;Es f un flujo de Anosov
discretizado?

Una respuesta afirmativa a esta pregunta se obtiene siempre que f sea
transitivo y dindAmicamente coherente:

Teorema. Sea f € PH.—1(M) transitivo y dindmicamente coherente tal que
fW) = W para cada hoja W en la foliacion central W¢ = W n W,

Entonces f es un flujo de Anosov discretizado.

De hecho, el teorema anterior es cierto si se sustituye la hipotesis ‘f
transitivo’ por la méas general ‘W¢ transitiva’. Para mdés detalles, ver el
Capitulo 6.

1.3.5 Unicidad de atractores

Los resultados presentados en esta secciéon son el producto de un trabajo en
colaboracién con N. Guelman (ver [GM22]).

Profundizando en las propiedades dinamicas de los flujos de Anosov dis-
cretizados, centramos nuestra atencién en el problema de la finitud y unicidad
de cuasi-atractores y cuasi-repulsores.

Dado un mapa f : M — M se denota por R(f) € M al conjunto recur-
rente por cadenas de f. Es decir, la unién de todos los puntos = en M tal
que existe una e-pseudo Orbita no trivial de x a z para todo ¢ > 0. Este
conjunto coincide con el complemento de los puntos que pertenecen a alguna
region atrapante de la forma U\ f(U) para cierto abierto U tal que f(U) c U.
Se considera R(f) dividido en clases de equivalencia denominadas clases de
recurrencia por cadenas. Estas clases vienen dadas por la relacion ¢ ~ y si'y
sélo si para cada € > 0 existe una e-pseudo orbita no trivial de x a y, y otra
de y a x.
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Un cuasi-atractor es una clase de recurrencia por cadenas A para la que
existe una base de entornos {U;}; (es decir, A < U; y A = (), U;) tal que
f(U;) < U; para cada i. Todo homeomorfismo en un espacio métrico com-
pacto admite al menos un cuasi-atractor. Ver [CP15] para una referencia.

Dado que los cuasi-atractores son conjuntos compactos disjuntos dos a
dos y saturados por hojas de W*, cada uno de ellos contiene al menos un
conjunto minimal para la foliacion 'W*. Llamamos a un conjunto minimal
para W" de laminacion inestable minimal. Asi, la unicidad (resp. finitud)
de las laminaciones inestables minimales implica la unicidad (resp. finitud)
de los cuasi-atractores.

Finitud de laminaciones inestables minimales se obtiene en [CPS17] para
un subconjunto C'-abierto y denso de los difeomorfismos parcialmente hiperbélicos
de central unidimensional. Aqui pretendemos un estudio més global (no per-
turbativo) que implique resultados de unicidad/finitud para clases enteras de
ejemplos.

Flujos de Anosov discretizados con un ntmero arbitrario de atractores
y repulsores pueden construirse perturbando el tiempo 1 de la suspensién
vt : M — M de un difeomorfismo de Anosov. Puesto que M fibra sobre
el circulo y ¢ preserva las fibras es posible perturbar ¢; de modo que ain
lleve fibras en fibras pero que se convierta en Morse-Smale o incluso en una
dindmica con infinitos cuasi-atractores en la base (ver el Ejemplo 7.2.1 para
més detalles).

Recordar que dos flujos se dicen orbitalmente equivalentes si existe un
homeomorfismo que lleva érbitas de uno en orbitas del otro preservando su
orientacion. Se obtiene el siguiente resultado:

Teorema. Sea f un flujo de Anosov discretizado y sea ¢f el flujo central
de f. Supongamos que ©§ es transitivo y no orbitalmente equivalente a una
suspension. Entonces f tiene una unica laminacion minimal inestable.

Corolario. Todo f como en el teorema anterior tiene a lo sumo un cuasi-
atractor.

Vale la pena senalar que los enunciados anteriores estan formulados para
laminaciones minimales inestables y cuasi-atractores pero que, naturalmente,
los mismos tienen enunciados analogos para laminaciones minimales estables
y cuasi-repulsores.

Notar que los resultados anteriores aplica para todo f € PH.—1(M) en
la misma componente conexa de PH.—;(M) que el tiempo 1 de un flujo de
Anosov transitivo ¢, : M — M que no sea orbitalmente equivalente a un flujo
suspension. Esto incluye, por ejemplo, todo tiempo 1 de un flujo geodésico en
el fibrado tangente unitario de una superficie cerrada de curvatura negativa.
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El conjunto no errante del flujo de Anosov topolégico ¢f obtenido como
flujo central de un flujo de Anosov discretizado admite el mismo tipo de
descomposicion espectral

Q((pg)ZAlU...UAN

en piezas basicas {A;}1<i<n como es el caso para flujos de Anosov cldsicos.
Ver el Lema 7.4.2.

En el caso de que ¢f no sea transitivo el problema de unicidad y finitud se
reduce a estudiar el comportamiento de ¢f en restriccién a sus piezas basicas
atractoras. Obtenemos:

Teorema. Sea f un flujo de Anosov discretizado. Supongamos que A es
una pieza bdsica atractora del flujo central ©f. Si @§|ln : A — A no es
orbitalmente equivalente a una suspension entonces A contiene una unica
laminacion minimal inestable para f.

Corolario. Sea f un flujo de Anosov discretizado. Supongamos que to-
das las piezas bdsicas atractoras A1, ..., Ay de ¢f satisfacen que pf|a, :
A; = A; no es orbitalmente equivalente a una suspension. Entonces f tiene
exactamente k laminaciones minimales inestables (y exactamente k cuasi-
atractores). Ademds, cada una de las laminaciones minimales inestables estd
contenida en una de las piezas bdsicas atractoras Ay, ..., Ag.

Vale la pena mencionar por ultimo que, ademas de los enunciados men-
cionados anteriormente para flujos de Anosov discretizados, resultados sim-
ilares de unicidad de cuasi-atractores son obtenidos para ciertos productos
fibrados parcialmente hiperbolicos. Ver Teorema 7.1.5.

1.3.6 Productos fibrados parcialmente hiperbdlicos, foliaciones
centrales uniformemente compactas y accién cuasi-isométrica
en la central

La foliacién central de un difeomorfismo parcialmente hiperbédlico se denom-
ina uniformemente compacta si sus hojas son compactas y el volumen de cada
hoja estd uniformemente acotado en M. En particular, este es el caso para
la foliacion central de los productos fibrados parcialmente hiperbolicos donde

la misma induce una estructura de fibrado en M:

Definicién 1.3.2. Decimos que f € PH(M) es un producto fibrado parcial-
mente hiperbdolico si existe un fibrado continuo 7 : M — B cuyas fibras son
C' subvariedades compactas tangentes a E¢ que forman una foliacién central
f-invariante W¢.
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Un resultado andlogo a la propiedad C! abierta y cerrada de los flujos de
Anosov discretizados se cumple para esta clase de sistemas:

Teorema. El conjunto de difeomorfismos en PH._1(M) que admiten una
foliacion central invariante uniformemente compacta es un subconjunto C!
abierto y cerrado de PHq—1(M).

Nuevamente, el teorema anterior muestra que los mapas en PH._;(M)
que admiten una foliacién central invariante uniformemente compacta con-
stituyen componentes conexas enteras de PH._;(M). Por otra parte, dos
mapas en la misma componente conexa también son conjugados por hojas
(ver Corolario 5.1.4).

Una propiedad clave para los flujos de Anosov discretizados resulta ser que
los segmentos acotados dentro de hojas de W€ no se hacen arbitrariamente
largos para iterados pasados o futuros de f. KEsta propiedad establece un
puente esencial entre la clase de flujos de Anosov discretizados y la de sistemas
parcialmente hiperbdlicos que admiten una foliacién central uniformemente
compacta.

Definicién 1.3.3. Supongamos que f en PH(M) admite una foliacién cen-
tral f-invariante W¢. Decimos que f actia cuasi-isométricamente en W€ si
existen constantes [, L. > 0 tales que

frWi(z)) € WL(f"(2))
para cada z en M y ne Z.

Es inmediato comprobar que la propiedad anterior es satisfecha por todo
flujo de Anosov discretizado, asi como por todo sistema que admiten una
foliacién central uniformemente compacta (ver Observacién 3.4.2 y Obser-
vacion 3.4.3). Obtenemos que algunas propiedades mostradas para flujos de
Anosov discretizados se extienden autométicamente a sistemas que actiian
cuasi-isométricamente sobre una foliacién central:

Teorema. Supongamos que f € PH._1(M) actia cuasi-isométricamente en
la foliacion central f-invariante WC. FEntonces se cumplen las siguientes
propiedades:

1. (Coherencia dindmica). El mapa f es dindmicamente coherente. Ademds,
admite una foliacion centro estable W y una foliacion centro inestable
W tales que W = W ~ W,

2. (Unicidad de las foliaciones). Las foliaciones W y W son las inicas
foliaciones f-invariantes tangentes a E° @ E¢ y E°@® E", respectiva-
mente.
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3. (Completitud de las hojas). Las hojas de W y W cumplen que

W () = Uyewe(z) W) y W) = Uyewemy W) para todo x €
M.

Vale la pena mencionar que el punto (1) del teorema anterior fue de-
mostrado en [BB16, Theorem 1] para sistemas que admiten un central uni-
formemente compacto (y para cualquier dimensién central). Sin embargo, la
prueba dada en este texto es independiente.

El punto (2) muestra que W€ es la unica foliacién central f-invariante
donde f actia cuasi-isométricamente. Para foliaciones centrales uniforme-
mente compactas esto da una respuesta parcial a la pregunta [BB16, Question
8.4.] (la pregunta general es para cualquier dimensién central).

Un resultado andlogo sobre integrabilidad tinica del fibrado central también
se cumple en este contexto:

Proposicién. Supongamos que f € PH.—1(M) admite una foliacién central
uniformemente compacta tal que E°¢ es inicamente integrable. Entonces cada
sistema en la misma C1 componente coneza de f en PH.—1(M) tiene fibrado
central unicamente integrable.

En particular, la proposiciéon anterior muestra que si f = A x Id : N x
St — N x 8! es el producto de un difeomorfismo de Anosov A : N — N
y el mapa identidad en el circulo Id : S — S!, entonces el fibrado central

es Unicamente integrable para cada sistema en la misma componente conexa
C! que f en PH.—1(N x S1).

44



Chapter 2

Preliminaries

Partially hyperbolic diffeomorphisms. A C'-diffeomorphism f : M —
M in a closed Riemannian manifold M is called partially hyperbolic if it
preserves a continuous splitting TM = E°@® E°@® E¥, with non-trivial stable
bundle E® and unstable bundle E", such that for some positive integer £ > 0
it satisfies

IDfrv] < 5lv’l,  IDfr " < 5)v"]  and
|Dfev’ < |ID e < ID frvt]

for every x € M and unit vectors v7 € E?(z) for o € {s,c,u}. Modulo
changing the constant ¢ > 0, the property of being partially hyperbolic is
independent of the Riemannian metric in M.

Invariant manifolds. If f is a partially hyperbolic diffeomorphism it is
known since [HPS77] that the bundles E® and E* uniquely integrate to f-
invariant foliations. We denote these foliations as W* and WY, respectively.
It is a well-known fact that the leaves of W and W* are homeomorphic to
RIM(E®) and RIE"), respectively.

The bundles E*@FE° and E“@E" may or may not be integrable. Whenever
they integrate to f-invariant foliations (W and W, respectively) we say
that f is dynamically coherent. If this is the case then W¢ = W ~ W ig
an f-invariant foliation whose leaves are tangent to E°.

Notations. Whenever a foliation W7 tangent to E? is well defined for
o € {s,c,u,cs,cu} we will denote by W§(z) the ball of radius § > 0 and
center z inside the leaf W7 (x) with respect to the intrinsic metric induced
by the Riemannian metric in M. In this context, if A is any subset of M
we will denote by W7 (A) the saturation of A by W7-leaves, that is, the set
Uyea W2 (y). We will also denote by W§(A) the set | ), 4 W5 (y).

For every o € {s,c,u,cs,cu} an invariant foliation W has, by definition,
C' leaves that are tangent to the continuous bundle E°. From this type
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of regularity it is immediate to check the following property that we will
implicitly use several times along the text: For every R > 0 and € > 0 there
exists § > 0 such that if d(z,y) < ¢ then dg(W%(x), W%(y)) < €, where dy
denotes the Hausdorff distance among subsets of M.

Invariant cone fields. We say that C is a continuous cone field in the
Riemannian manifold M if there exists a continuous splitting TM = E@® F
such that for every x € M the cone C(x) < T, M is given by C(z) = {v =
vg+vp € T, M : |vg|E = |vr|F} for some continuous norms |- |z and |- | ¢
in E and F, respectively (not necessarily the ones induced by the underlying
Riemannian metric). In this context we say that € has dimension dim(E).
We define the interior of the cone by intC(z) = {v = vg +vp € T, M :
lvellg > |vr|lr} v {0} for every z € M.

We say that C is f-invariant if for some N > 0 one has DfVC(x) <
int @(fV(x)) for every x € M. If this is the case, we say that € is uniformly
expanded by f if | fV(v)| > |v| for every v € €\{0}.

If f: M — M is a partially hyperbolic diffeomorphism one can check
that there exists C* and C° continuous cone fields of dimension dim(E")
and dim(E), respectively, that are f-invariant and such that E" is uni-
formly expanded by f and E“(z) = (),5o Df"(C*(f "(x)) and E(x) =
Mpso Df™(CU(f () for every a € M. Analogously for f!-invariant cone
fields C* and C*°.

In fact, the cone criterion gives us a kind of reciprocal of the above: A
C' diffeomorphism f : M — M is partially hyperbolic whenever there exists
an f-invariant cone field C* uniformly expanded by f and a f~!-invariant
cone field C* uniformly expanded by f~!. As a consequence, it is immediate
to check that PH(M) is C! open in Diff'(M). See for example [CP15].

Continuous flows. We say that a map ¢ : M x R — M is a continuous
flow if it is continuous and satisfies that x — ¢(x,t) is a homeomorphism
for every t € R and p(z,t +t') = p(¢(x,t),t') for every x € M and ¢,t' € R.
As is usual, we denote a continuous flow as above by ¢; : M — M and the
point ¢(x,t) by ¢(x) for every x € M and ¢ € R.

Anosov flows and topological Anosov flows. A C! flow ¢; : M — M
(that is, such that (z,t) — o (z) is a C! map) is called an Anosov flow if
there exists a continuous Dy -invariant splitting TM = E° @ E° @ E* such
that E°¢ is the bundle generated by %h:o and such that for some t3 # 0
the map f = ¢y, is a partially hyperbolic diffeomorphism with respect to the
decomposition TM = E*@E‘@FE“. If ; is an Anosov flow it is immediate to
check that g = ¢4, is a partially hyperbolic diffeomorphism for every ¢; # 0.

The definition of topological Anosov flow that will be treated in this text
is given in Definition 3.7.1.
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Stable saturation of center curves. The following will be used several
times along the text.

Lemma 2.0.1. Suppose f € PH._1(M). There exists § > 0 such that for
every C' arc n < M tangent to E° with length(n) < & the set Wi(n) is a C!
submanifold tangent to E°* @ E°.

A proof of the above lemma can be found in [BBI04, Proposition 3.4.] (it
is stated for absolute partially hyperbolic diffeomorphism but the proof does
not use this fact). See also [HPS77, Theorem 6.1] and [BB16, Remark 4.7.].

Quasi-attractors and minimal unstable laminations. We say that
A < M is a minimal unstable lamination if it is a minimal set of the foliation
W, That is, if it is a W*-saturated compact set such that W¢(x) = A for
every ¢ € A. Minimal unstable laminations are minimal, with respect to
the inclusion, among non-empty compact W"-saturated sets. Note that in
this definition of minimal unstable lamination we are not asking for it to be
f-invariant.

Given € > 0, a e-pseudo orbit for f is a sequence (zp)nez such that
d(xpi1, f(zn)) < € for every n. The chain recurrent set of f, denoted by
R(f) € M, is the union of all points x € M such that there exists a non-trivial
e-pseudo orbit from x to x for every € > 0. It coincides with the complement
of all points contained in a wandering region of the form U\f(U) for some
open set U such that f(U) c U.

One considers R(f) divided in equivalent classes, called chain recurrence
classes, given by the relation x ~ y if and only if there exists a non-trivial
e-pseudo orbit from x to y and another from y to = for every ¢ > 0.

A quasi-attractor is a chain recurrence class A for which there exists
a basis of neighborhoods {U;}; (ie. A < U; and A = (), U;) such that
m c U; for every i. Quasi-attractors always exists for homeomorphisms
in compact metric spaces. A good reference for the notions of chain recurrence
classes and quasi-attractors is [CP15].
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Chapter 3

Discretized Anosov flows

3.1 Introduction

In this chapter we prove several general properties of discretized Anosov flows
and establish the equivalence with other a priori different notions appearing
in the literature. In particular, we cover the statements given in Section 1.1.2
of the introduction.

3.2 Definition and first properties

Definition 3.2.1. We say that f € PH._1(M) is a discretized Anosov flow if
there exist a continuous flow ¢f : M — M, with %|t=0 a continuous vector
field without singularities, and a continuous function 7 : M — R satisfying

for every x € M.

Note that Definition 3.2.1 is slightly more general than the one given in
the introduction since it does not ask for ¢f to generate a center foliation or to
be parametrized by arc-length. The former is derived as a consequence in the
next proposition while the latter can always be achieved by reparametrizing
the flow ¢f as seen in Remark 3.2.3.

Moreover, in contrast with the definition given in [BFFP19], we do not
ask for ¢f to be a topological Anosov flow (see Definition 3.7.1). This is
derived as a consequence in Proposition 3.7.2.

Proposition 3.2.2. If f is a discretized Anosov flow then:
(i) The vector field %h:o generates the bundle E€ and the flow lines of

©f form a center foliation W¢ whose leaves are fized by f.
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(ii) The function T has no zero and is C' restricted to each leaf of WE.

Proof. Let F be the one-dimensional bundle generated by % lt=0. In order to
show (i) let us see that F' = E°. This has essentially been done for dim(M) =
3 in [BFFP19, Proposition G.2.] and the arguments are equally valid in any
dimension. We will briefly reproduce them for the sake of completeness.

We claim first that it is enough to show that F' is never contained in
E? nor E". Indeed, if F(z) is not contained in E*(z) nor E“(x) for every
x € M then the angle formed by F' and E? is bounded away from zero by a
positive constant independent of the point in M. As a consequence, for every
x € M the subspace Df"(F(f ™(x))) gets arbitrarily close to E“(z) as n
tends to +00. As F'is D f-invariant (see justification below) we deduce that
F(x) needs to be contained in E(x). Arguing analogously for backwards
iterates using the never-zero angle between F' and E" one obtains that F(z)
has to be contained in E(x) for every x in M. We conclude that F' coincides
everywhere with E¢ = E n E.

The bundle F' needs to be D f-invariant as every small piece of (¢-orbit
through a point 2 € M is sent by f to a C! curve that is a reparametrization
of a small piece of ¢f-orbit through f(z). Thus F'(f(z)) that is generated by
%h:()(f(l‘)) coincides with DfF(f(x)) that is generated by a’;‘fg lt=o(x).

It remains to see now that F' is never contained in E° nor E*. Without

loss of generality suppose by contradiction that F'(z) is contained in E*(x)
for some z. Note that F(f "(x)) is then contained in E*(f "(x)) for every
n = 0.

Let C¥ be a continuous f-invariant unstable cone field such that D fNe* <
int C* for some N > 0 and (),5, Df™(C*(f~"y)) = E"(y) for every y € M
(see the preliminaries for more details). Since for every n > 0 a piece of
pf-orbit containing f~"(z) is tangent to C" we obtain in the limit with n
that at least a piece 1 of f-orbit containing z is contained in W*(x).

As 7 : M — R is continuous it has some positive upper bound so there
exists L > 0 such that every forward iterate of 1 has length less than L.
This contradicts the fact that f expands uniformly the length of any C! arc
tangent to E*. This end the proof of F(z) = E°(z) for every x € M.

It follows that the flow lines of ¢f are tangent to E¢ and consequently
they form a center foliation W¢ whose leaves are fixed by f. Property (i) is
settled.

Since f is C! and preserves the bundle E¢ it is immediate to check that
the function 7 needs to be C! restricted to each leaf of W¢. In order to end
(ii) it remains to show that 7 has no zeros. For this we will use a similar
argument as in [BG09, Lema 1.2.] or [BFP20, Proposition 5.14.].

Let us suppose by contradiction that 7(x) = 0 for some z € M and
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consider U a small ¢f flow box neighborhood of . By the continuity of f
there exists € > 0 such that Bs.(z) € U and f(Ba(x)) c U.

We claim that € can be considered small enough so that y and f(y) need
to lie in the same ¢f-plaque of U for every y € Bc(x). Indeed, let [ > 0 be a
constant smaller than the distance between B(z) and M\U and let C' > 0
be a constant larger than H%h:o(y)ﬂ for every y € M. By the continuity of
7 we can consider e small enough so that 7(y)C < [ for every y € Be(z). It
follows that the center arc [y, f(y)]. from y to f(y) along ¢f needs to have
length less that [ for every y € B.(z). Hence, |y, f(y)]. needs to be contained
in U for every y € B.(z) and this proves the claim.

As f contracts distances inside W*-leaves for large enough forward iterates
there exists § > 0 such that Wi(x) and f"(Wj(z)) for every n > 0 are
contained in B¢(x). Moreover, for every y € Wi(z)\{z} the sequence f"(y)
tends to x. This contradicts the fact that by the previous claim every point
in {f™(y)}n>0 must lie in the same @§-plaque of U than y (which is at positive
distance from x). O

Note that because of (ii) in the previous proposition one can always as-
sume that 7 is positive (modulo inverting the time of ¢f if needed).

The next remark shows that Definition 3.2.1 can be seen as independent
of reparametrizations of the flow ¢f. In particular, one can always assume
that ¢f has been parametrized by arc-length.

Remark 3.2.3. Suppose f is a discretized Anosov flow such that f(z) =
cpi(x)(x) for every x € M as in Definition 3.2.1. Let o : M — R be a
continuous function. If ¢; is the reparametrization of ¢f generated by the
continuous vector field a%h:o then there exists 7 : M — M continuous
such that f(z) = @z (v) for every z € M.

Proof. Let W¢ be the foliation by flow lines of ¢f. As %h:o(x) # 0 for
every € M then a%h:o is a continuous vector field without singularities
restricted to each leaf of W€, It follows that it uniquely integrates inside each
leaf of the one-dimensional foliation W¢. The flow ¢; : M — M obtained in
this way has the same flow lines as ¢f.

Moreover, there exists 7 : M x R — R continuous such that ¢f(z) =
Gr(z,p)(z) for every € M and t € R. Then 7(z) = r(z,7(z)) satisfies that

f(z) = @%(r)(x) [
As a consequence of Proposition 3.2.2 and Remark 3.2.3 one obtains:

Corollary 3.2.4. Definition 1.1.1 and Definition 3.2.1 are equivalent.
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3.3 Fixed center foliation and bounded displace-
ment along center

As pointed out in Proposition 3.2.2, an immediate consequence of Definition
3.2.1 is that discretized Anosov flows fix the leaves of a one dimensional center
foliation W¢. In Chapter 6 we will see that this is enough for charecterizing
discretized Anosov flows under some general circumstances.

For the moment, we can show that center firing property charaterizes
discretized Anosov flows provided a uniformly bounded displacement along
center leaves is satisfied. We point out that item (ii) in the following propo-
sition can be seen as an alternative definition for discretized Anosov flows.

Proposition 3.3.1. Suppose f € PH._1(M). The following are equivalent:
(i) The map f is a discretized Anosov flow.

(ii) There exists a center foliation W€ and a constant L > 0 such that
f(x) e WS (x) for every x e M.

Proof. Suppose f is a discretized Anosov flow. Let ¢f be the flow appearing
in the definition of f such that f(x) = wﬁ(m)(x) for every x € M. Proposition
3.2.2 shows that f fixes the leaves of the center foliation W¢ given by the
flow lines of ¢f. If T' > 0 denotes an upper bound for 7 and C' > 0 an upper
bound for y — H%h:o(y)H it follows that f(x) € W (z) for every x in M.
Thus (i) implies (ii).

Let us see that (ii) implies (i). Suppose that there exists L > 0 such
that f(x) e W (x) for every x € M. In particular, f(W) = W for every leaf
W e We.

Note first that, by transverse hyperbolicity, every compact leaf of W¢
of length less than 2L can not be accumulated by compact leaves of W¢ of
length less that 2L. Then the number of compact leaves of length less than
2L needs to be finite.

Let U € M denote the union of leaves of W€ with length larger or equal to
2L. For every x € U let |z, f(z)]. denote the center segment in W¢ (x) joining
x with f(z). It is immediate to check that [z, f(x)]. varies continuously in
the Hausdorff topology for every z in U.

Essentially the same argument used to show (ii) in Proposition 3.2.2 shows
that f has no fixed points in U: If z is a fixed point of f consider U,(x) c U a
small foliation box neighborhood of W€ containing = such that W (y) nUc(z)
has only one connected component for every y € Uc(xz). For § > 0 small
enough, if y € Wi(x)\{z} then f"(y) € Uc(z) for every n > 0 and lim,, f"(y) =
z. However, f"(y) € WS (f"(y)) and f*(y) € U. implies that f"(y) must
lie in the center plaque WS (y) n Uc(x) for every n > 0. This gives us a
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contradiction with lim,, f*(y) = = and ends the proof that f has no fixed
points in U.

As f has no fixed points in U then for every 2 € U we can define X(z)
to be the unit vector in E¢(x) pointing inwards to the segment [z, f(x)].. As
[z, f(x)]. varies continuously with x in U it follows that X¢ is a continuous
vector field in U.

Let ¢, : U — U be the flow whose orbits are the leaves of W¢ in U
and such that %hzo is equal to X€¢ Let us define 7(z) to be the length
of [z, f(z)]. for every x in U. Clearly f(z) = 7 ) (x) for every x € U. It
remains to see that X¢, ¢f and 7, which are a priori defined only in U, extend
well to M. That is, that they extend well to the union of compact center
leaves of length less than 2L.

Let » be a compact center leaf of length less than 2L. For every x €
n consider V, a small W¢box neighborhood containing x so that if V, n
Vy # & then WC|VIUVy is orientable. We can suppose that for every x
the neighborhood V. is small enough so that it is disjoint from every other
compact center leaf of length less than 2L.

Consider V' be the neighborhood of n that is the union of the elements of
{Vi}zen- It follows that W[y is orientable since any orientation given to 7
can be extended to an orientation on each V, and this orientations coincide in
VeV whenever V, "V, # ¢J. Then, as the set UnV is connected, it follows
that the orientation induced by X ¢ in W¢|;; can be extended to W¢|y~y. Now
that the a priori orientation issue has been ruled out, it follows immediately
that X¢ and ¢f extend continuously to 7.

It remains to extend 7 continuously to n so that f(x) = O () (x) for
every x € 1. To this end, for every = in n let us denote by [z, f(z)]. the
center segment from x to f(x) such that X°(z) points inwards in [z, f(x)]..
Note that it may be the case that if z,, — = with (x,), < U then [z, f(zn)].
‘turns around’ 7 many times so that [z, f(z,)]. accumulates in the Hausdorff
topology to 7 instead of [z, f(x)].

However, since W€ is a continuous foliation tangent to a continuous sub-
bundle there exists € > 0 such that if d(y, z) < € then ¢f(y) is in Ve(,) for
every t € [0, L] and x € 7. It follows that the ‘number of turns’ (measured, for
example, as the number of connected component of [z, f(zn)]. N V; minus
1) needs to be constant for z,, close enough to z. As this integer number
varies continuously with x in 7 it has to be a constant N independent of the
point . Hence by defining 7 in n as

7(x) = length[z, f(z)]. + N lengthn

it follows that 7 extends continuously to 7.
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By doing the above for every center leaf 7 of length less than 2L it follows
that 7 is well defined and continuous in M, and that

f(z) = 905(;,;) ()

is satisfied for every = € M. This settles (i7) implies (7). O

3.4 Dynamical coherence and quasi-isometrical ac-
tion on the center foliation

A key property for discretized Anosov flows turns out to be that segments
inside W¢ do not get arbitrarily long for past and future iterates of f. We
will use this fact to show that every discretized Anosov flow is dynamically
coherent.

It is worth noting that this property sets an essential bridge between the
class of discretized Anosov flows and that of partially hyperbolic systems
admitting a uniformly compact center foliation.

The following definition is valid for any center dimension.

Definition 3.4.1. A partially hyperbolic diffeomorphism f admitting an f-
invariant center foliation W€ is said to act quasi-isometrically on W€ if there
exist constants [, L > 0 such that

frWi(z)) € WL(f"(2))
for every z in M and n € Z.
The following is immediate to check.

Remark 3.4.2. Every discretized Anosov flow acts quasi-isometrically on the
center foliation W€ given by the flow lines of the flow ¢f as in Definition 3.2.1.
Indeed, since f(z) = gpi(x) (x) for every x € M then f acts quasi-isometrically

on W€ with constants [ = min H%h:oH. min 7 and L = max H%h:oH. maxT.

Remark 3.4.3. Every partially hyperbolic diffeomorphism admitting an in-
variant uniformly compact center foliation W€ acts quasi-isometrically on W€,
Indeed, it is enough to show that under these circumstances the diameter of
every center leaf is bounded and then set L > 0 larger than this bound.

To show that the diameter of every leaf of W¢ is bounded one can argue
as follows. Let d,e > 0 be such that for every x € M the set W§(x) has
volume less than e. Suppose by contradiction that there exist center leaves
with arbitrarily large diameter. It follows that for every N > 0 one can
find N points in the same center leaf such that any two points are separated
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more than 29. Then the volume of the center leaf containing these points is
larger that Ne. This contradicts the fact that center leaves have a uniformly
bounded volume.

By Remark 3.4.2 the next proposition shows that discretized Anosov flows
and partially hyperbolic skew-products are dynamically coherent. Moreover,
it shows that the stable and unstable saturations of center leaves are complete
subsets of W and W€ leaves, respectively.

Proposition 3.4.4 (Dynamical coherence). Suppose f € PH.—1(M) acts
quasi-isometrically on a center foliation W¢. Then f is dynamically coherent,
admitting center-stable foliation W and center-unstable foliation W such
that W = W n W, Moreover, W(x) = W5 (W(x)) and W (z) =
WHE(WE(x)) for every z € M.

Proposition 3.4.4 will be derived from the following lemma that may be
of independent interest.

Lemma 3.4.5. Suppose f € PH._p(M) for some D > 0 admits an invariant
center foliation W¢. Let y be a point in W*(x) for some x € M and suppose
n < W(y) is a C* curve through y such that {length(f"n)}n=0 is bounded.
Then n is contained in W*(W€(x)).

Proof. Let x € M, y € W¥(z) and 7 : [0,1] — W°(y) be a C! curve with
n(0) = y. Suppose that {length(f"n)},=0} is bounded by some constant
L>0.

Let § > 0 be as in Lemma 2.0.1 so that W5(W%(z)) is a C' submanifold
tangent to £° @ E¢ for every z € M. Recall that the bundles F°, E¢ and E“
vary continuously in M. By taking é small enough we can ensure that for
every z and 2’ in M such that d(z,2') < % the sets W§(2') and W5(W5(z))
intersect, and that this intersection takes place in a unique point.

We claim that there exists a constant ¢’ > 0 such that if d(z,2’) < ¢’
and v : [0,1] > W¢(2’) is a curve of length at most L with v(0) = 2’ then
there exists a continuous curve H*"y : [0,1] — W¢(z) such that W§(y(t)) n
Wi (H*"v(t)) # & for every t € [0,1] and H*"y(0) € W§(z). Note that if
this claim is true then H®“~v is a particular choice of continuation by center
holonomy of v along W¢(z) that is uniquely determined by the properties
WY (y(t) n W(H*"~y(t)) # & for every t € [0, 1] and H*"v(0) € W§(2).

Let us prove the claim. As W€ is a foliation tangent to a continuous
bundle we can consider & > 0 so that whenever z and 2’ are points in M
satisfying d(z,2') < ¢’ and v : [0,1] > W(2') is a curve of length at most
L with (0) = 2/, then there exists a continuous curve H~ : [0,1] — W¢(z)
with Hy(0) = z and d(y(¢), Hy(t)) < g for every t € [0, 1].
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The curve H7 is an auxiliary curve used to define H®“y. Indeed, we
can consider P*(t) as the intersection point of W§((t)) and W35(WSs(H~(t)))
for every t € [0,1]. Then H®“7y(t) can be defined as the unique point in
WS§(H~(t)) such that P“(t) is contained in W§(H*"~(t)). This proves the
claim.

Let N > 0 be such that d(f™(z), f"(y)) < ¢ for every n = N. For
simplicity, let vy denote the curve f¥ on. Then H*“(f™ o) is well defined
for every n = 0. Moreover, as f preserves W®, W¢ and W"-leaves, the special
choice of H*" gives us the following invariance: the curve H*"“( o) coincides
with the curve f" o H%"y for every n = 0.

In particular, f"(P“(t)) lies in W§(f™ o v(t)) for every ¢t € [0,1] and
n = 0. Iterating n times backwards yields that P“(t) lies in Wg(l Joynre sOr®)
for some constants £ € Z* and C' > 0 given by the partial hyperbolicity of f.

It follows that P¥(t) = v(t) for every t € [0,1]. That is, fVon is contained
in W¥(We(fN(z)). Then 7 is contained in W*(W¢(x)). O

Proof of Proposition 3.4.4. Suppose f € PH.—1(M) acts quasi-isometrically
on a center foliation W¢.

Given x € M and y € W¥(W¢(z)) let us see first that W°(y) is contained
in W¥(W¢(x)). Indeed, as f acts quasi-isometrically on W¢ for every [ > 0
there exists L > 0 such every f-iterate of Wi(y) is bounded in length by L.
By Lemma 3.4.5 it follows that Wi (y) € W*(W¢(x)). Since this happens for
every | > 0 it follows that W¢(y) c W*(W¢(x)).

By Lemma 2.0.1 for every & € M the set W*(W¢(z)) is a C! injectively
immersed submanifold tangent to E* @ E€. As W*(W¢(x)) is saturated by
W? and W€ leaves it follows that its intrinsic metric is complete and that, if
y € WH(We(2)), then WH(WE(y)) = W(WF ().

Then {W3(W¢(x))}.ens defines a partition of M whose elements are the
leaves of an f-invariant foliation tangent to £°@® E° and subfoliated by leaves
of W® and W¢. Thus a center-stable invariant foliation W whose leaves are
complete (meaning that W (z) = W$(W¢(x)) for every z € M). The same
arguments show that the sets {W"(W¢(z))},en define an invariant center-
unstable foliation with complete leaves. O

Note that acting quasi-isometrically on a center foliation is preserved
under finite lifts and finite powers. One can build other examples of quasi-
isometrically center actions as follows:

Example 3.4.6. Let ¢, : M — M be an Anosov flow, 7 : N — M be a finite
cover of M and ¢y : N — N be the lift of ¢, to N. Note that ¢; is also an
Anosov flow in N. One can define f : N — N as the composition of the time
1 map of ¢, with a non-trivial deck transformation of order k > 1. It follows
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that f is a partially hyperbolic diffeomorphism acting quasi-isometrically on
the center (in fact, isometrically) that is not a discretized Anosov flow or
a partially hyperbolic skew-product, but such that the power g = f* is a
discretized Anosov flow.

A construction from [BPP16] gives an example of a system f € PH.—1(M?3)
acting quasi-isometrically on an f-invariant center foliation W€ such that f*
is not a discretized Anosov for every k # 0 nor W€ is uniformly compact.
This is done via a h-transversality surgery over the time 1 map of a non-
transitive Anosov flow. One can easily check from its construction that this
example is not transitive.

One more type of examples of partially hyperbolic diffeomorphisms acting
quasi-isometrically on a center foliation can be constructed by taking the
product f x A: M x N — M x N of a discretized Anosov flow f: M — M
and an Anosov map A: N — N.

In view of the above known examples of quasi-isometrically center actions

we may ask the following:

Question 3.4.7. Suppose f € PH._1(M) acts quasi-isometrically on a center
foliation We. If W€ is transitive (i.e. has a dense leaf) then does there exists
ke Z" such that f* is a discretized Anosov flow?

Remark 3.4.8 (Relation with the notion of ‘neutral center’). In [Z17] and
[BZ20] the notions of partially hyperbolic diffeomorphisms that are neu-
tral along center and topologically neutral along center were introduced. In
[BZ20] a positive answer to Question 3.4.7 in dimension 3 is obtained for
these class of systems.

A partially hyperbolic diffeomorphism f is called neutral along center if
there exists C' > 1 satisfying 1/C' < [|Df"|gey)|| < C for any x € M and
n € Z. And is called topologically neutral along center if for any € > 0 there
exists 6 > 0 so that any C'! center curve o of length bounded by § has all its
images f"(o),n € Z, bounded in length by e. One easily checks that if f is
neutral, then it is topologically neutral.

By [RHRHUO07, Corollary 7.6] topologically neutral systems admit a cen-
ter foliation and it is immediate that the they act quasi-isometrically on
it. However, acting quasi-isometrically on a center foliation is strictly more
general. It is easy to see that being topologically neutral along center for-
bids the existence of a hyperbolic periodic point. In particular, every dis-
cretized Anosov flow with a hyperbolic periodic point is an example of a
quasi-isometrically action on W€ that is not topologically neutral along cen-
ter. This includes Examples 7.2.1 and 7.2.2.
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3.5 Uniqueness of cs and cu foliations

The goal of this section is to show uniqueness of invariant center-stable and
center-unstable foliation for discretized Anosov flows, and more generally for
partially hyperbolic systems acting quasi-isometrically on a one-dimensional
center foliation:

Proposition 3.5.1. Suppose f € PH.—1(M) acts quasi-isometrically on an
f-invariant center foliation 'W€¢. Let W and W be the foliations given
by Proposition 3.4.4. Then W and W are the only f-invariant foliations
tangent to E°* @ E° and E°@® EY, respectively.

We will rely on the following lemma.

Lemma 3.5.2. Suppose f € PH(M) admits an f-invariant center-stable
foliation W. If n is a C' curve that is not contained in a leaf of W then

lim,,, 4 o length(f™ o n) = oo.

Proof. Let § > 0 be a constant as in Lemma 2.0.1. As the invariant bundles
vary continuously in M we can suppose that ¢ is small enough so that at scale
0 the invariant bundles are nearly constant (more precisely, one can consider
for example a constant § = 6(f) > 0 and a metric in M as in Lemma 4.2.1).
In particular, 6 > 0 is such that for every 0 < ¢ < 4, if z,y € M satisfy
d(z,y) < ¢', then W35 (x) and W (y) intersect and the intersection point is
unique for every (o,0’) € {(cs,u), (cu, s)}.

Suppose 7 is a C! curve that is not contained in a leaf of W®. Let us
see that that lim, .4 length(f™ on) = oo. Note that it is enough to show
this for length(n) < /4 since otherwise one can divide 7 is finite pieces of
length less than §/4 and argue from there. Then, suppose from now on that
length(n) < 6/4.

Let x be a point in 7. For every y € Wg/4(x) let D®(y) be the intersection
of W§*(y) with Wi( 574(@). It follows that D := Uyewg/4(z) D%(y) is an
open subset of M that is subfoliated by u-plaques and cs-plaques. The latter
being the plaques {Dcs(y)}yewg/4(x). Analogously f"(D) is subfoliated by
u-plaques and the cs-plaques {f" Dcs(y)}yewg/4(x) for every n > 0.

Note that, since length(n) < §/4 then 7 is contained in D. Informally,
forwards iterates of f will separate indefinitely the cs-plaques of D. If n is
not contained in a unique cs-plaque this will force the length of 7 to increase
indefinitely.

We will work with the intrinsic metric in D and in its forward iterates
{f"D},=0. Given D(y) and D®(y’) two different cs-plaques in D let us
denote d,(D%(y),D?(y’)) the infimum length among all unstable arcs inside
u-plaques of D joining D®(y) and D®(y’). Analogously for every f™D.
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Note that, as backwards iterates of f contract distances uniformly inside
Wt-leaves, then for every pair of disjoint cs-plaques D(y) and D*(y’) in D
there exists N > 0 such that d,(f" D%(y), /" D*(y’)) > 2§ for every n > N.

Moreover, we claim that if for some n > 0 one has that the distance
du(f"D%(y), f*D(y')) is greater that 6 and WY (f" D(y) is contained in
/™D then in the intrinsic metric of f™D every point of D®(y) is at distance
greater than §/2 from every other point in f” D(y’). Indeed, by contradic-
tion, if z € f"D*(y) and 2’ € f"D*(y’) are at distance less than §/2 and
WY(f"D*(y)) < f"D then W§(z) intersects W§*(2’) and this intersection
point needs to be a point in f” D®(y’) since W§(z) is contained in f™ D (y’).
It follows that d,(f™" D%(y), f*D*(y')) < 6 and we get to a contradiction.
This proves the claim.

Finally, given any constant L > 0, let K > 0 be an integer larger than
L/26. As 7 is not contained in W (z) then there exist K different cs-plaques
in D intersecting 7. Let us denote them as D®(y1), ..., D(yk). There
exists N > 0 such that d,(f" D*(y;), f*D(y;)) > 26 for every n > N and
i # .

Moreover, for every 1 < i < K there exist ¢; such that W¢ (D“(y;))
is contained in D. By taking N larger, if needed, one can ensure that
W (f" D%(y;)) is contained in f"D for every n > N.

It follows that length(f™ on) > L for every n > N since f™ on must
contain at least K disjoint subsegments of length at least §/2, each one of
them corresponding to an intersection of f™ o n with f"D%(y;) for every
1<i< K. O

Remark 3.5.3. From Lemma 3.5.2 one can easily justify that every f €
PH(M) admitting an f-invariant center-stable foliation W satisfies that
the leaves of W are saturated by leaves of W?.

Indeed, for every € M and y € W*(x) one can join x and y by a C* curve
n contained in W*(z). Since 1 gets contracted uniformly by forward iterates
of f it follows that n must be contained in W (z). Then W*(x) c W (x).

Proof of Proposition 3.5.1. Suppose f € PH._1(M) acts quasi-isometrically
on an f-invariant center foliation W¢. By Proposition 3.4.4 there exist f-
invariant foliations W and W whose leaves are characterized as W (z) =
WH(We(z)) and W (z) = W*(W¢(z)) for every x € M.

Suppose W{® is an f-invariant center-stable foliation. As f acts quasi-
isometrically in W€ then by Lemma 3.5.2 the leaf W¢(y) needs to be contained
in Wi*(z) for every z € M and y € W{*(z). Moreover, as pointed out in
Remark 3.5.3 the leaf W*(y) must also be contained in W¢*(x) for every
y € W*(z). It follows that W (x) = W*(W¢(x)) needs to be a subset of
W$*(x) for every z € M.
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For the intrinsic leaf metric induced by the Riemannian metric in M each
leaf of W and W{* is a complete metric space. This imply that the boundary
of W (x) in W{*(x) needs to be empty. We conclude that W (z) = W{*(x)
for every x € M.

Analogously for f-invariant center-unstable foliations. O

3.6 Center flow and flow center foliation

Suppose f is a discretized Anosov flow of the form f(x) = O ) (z) as in
Definition 3.2.1. By Proposition 3.2.2 the flow lines of ¢f : M — M form a
center foliation W¢ whose leaves are fixed by f.

By Remark 3.4.2, Proposition 3.4.4 and Proposition 3.5.1 we can deduce
the following characterization of W¢.

Remark 3.6.1. The foliation W€ is:

e The only foliation tangent to E¢ that is the intersection of f-invariant
foliations W and W,

e The only f-invariant foliation tangent to E¢ such that f acts quasi-
isometrically on it.

Moreover, if f is of the form f(x) = cp(z)(a:) for every x € M as in
Definition 3.2.1, for some other flow ¢§ : M — M and continuous function
p: M — R, then ¢f needs to be a reparametrization of ¢f. That is:

Remark 3.6.2. The flow ¢f : M — M is, modulo reparametrizations, the
only flow satisfying Definition 3.2.1.

In light of the above remarks, we will designate from now on ‘W€ as the
flow center foliation of f. And the flow ¢f : M — M as the center flow of f.

In view of Remark 3.2.3, if not otherwise stated we may implicitly assume
from now on that the center flow ¢f : M — M is parametrized by arc-length.

It would be interesting to know if, in general, the flow center foliation of
a discretized Anosov is the only f-invariant center foliation. Or at least if it
is the only center foliation whose leaves are individually fixed by f. We do
not have a general proof for either of this statements.

3.7 Topological Anosov flows

Definition 3.7.1. We say that a flow ¢; : M — M is a topological Anosov
flow if it is a continuous flow, with %h:o a continuous vector field without
singularities, such that it preserves two topologically transverse continuous
foliations F*¢ and FW* satisfying the following;:
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(i) The foliation F** n F** is the foliation given by the orbits of ;.

(ii) Given z in M and y € F*5(x) (resp. y € F*¥%(x)) there exists an
increasing continuous reparametrization h : R — R satisfying that
d(@i(), pn(y(y)) = 0 as t — 400 (resp. ¢ — —c0).

(iii) There exists € > 0 such that for every z € M and y € F**(z) (resp.
y € F¥%(x)), with y not in the same orbit as x, and for every increasing
continuous reparametrization A : R — R with h(0) = 0, there exists
t <0 (resp. t > 0) such that d(pi(), pue)(y)) > €

It is worth noting that Definition 3.7.1 is a priori more restrictive than
other definitions of topological Anosov flows appearing in the literature since
we are asking for %hzo to be a continuous vector field.

It has been a long standing problem to determine whether in general every
topological Anosov flow is orbit equivalent to an Anosov flow. Just recently
in [Sh21] every transitive topological Anosov flow in dimension 3 (for a more
general definition of topological Anosov flow that covers Definition 3.2.1) has
been shown to be orbit equivalent to a smooth Anosov flow.

The following is the main goal of this section.

Proposition 3.7.2. Let f be a discretized Anosov flow and ¢f be the center
flow of f. Then ¢f : M — M s a topological Anosov flow.

Proof. The map f is of the form f(x) = @j(x)(x) for some 7 : M — R
continuous. By Proposition 3.2.2 the function 7 has constant sign. Without
loss of generality we can assume that 7 is positive, otherwise we can argue
analogously using f~! instead of f.

The flow ¢f is a continuous flow with % |t—0 a continuous vector field. By
Proposition 3.4.4 the map f is dynamically coherent with center-stable folia-
tion W and center-unstable foliation W such that W¢ = W ~n W is the
flow center foliation of f. Hence property (i) in the definition of topological
Anosov flow is immediately satisfied for F¥* = W and F¥* = W,

Let us see property (ii). Suppose z and y are points in M such that
y belongs to W (z). By Proposition 3.4.4 the leaf W (z) coincides with
W3 (W¢(z)). Then y belongs to W*(z) for some z € W¢(x).

Let us assume first that z = . Consider 7, : R — M the continuous
curve in W¢(y) such that ~,(0) = y and v, (t) € W¥(p§(x)) for every t. The
curve vy, is the transport by center holonomy of y along stable transversals
with respect to the f-orbit of x.

The key property to note is that v, (7(z)) = f(y) for every y € W¥(z). In
fact, more generally, if y' = 7,(t) for some ¢ € R then one has that

Fy) =y (r(#f(2)))- (3.7.1)
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This property follows immediately from the continuity of 7 and local product
structure of the foliations W¢ and W? restricted to W (x). For more details,
one can see Section 3.9 for a precise characterization of discretized Anosov
flows in terms of center holonomy.

Let R > 0 denote a constant such that v,(t) € W§(¢f(x)) for every t €
[0, 7(x)]. This constant exists since the stable distance ds(7y,(t), ¢f(x)) varies
continuously with ¢. Then, as f contracts distances uniformly inside stable
leaves, it follows from (3.7.1) that lim;— 1o d(7y(t), pf(x)) = 0. Defining
hy : R — R as the increasing reparametrization such that gpfly(t)(y) = (1)
for every ¢t we obtain (ii) for the case z = x.

If z is different from = consider some ¢y > 0 and h : (—o0,ty] — R con-
tinuous and increasing so that h(0) = 0 and ¢/ = npfl(to)(y) lies in W*(z')
for 2’ = ¢f (x). Defining as above h, : R — R so that cpzy/(t)(y') =
©§(a’) for every t, then the function h can be extended to h : R — R by
the formula h(t) = h(to) + hy(t — to) for every t > to. It follows that
limg 4o d(§(x), Phit) (y)) = 0 as above.

In the case y lies in W (x) one argues analogously for ¢f-past iterations.
This settles property (ii).

Finally, let us see property (iii). As the bundles E¢ and E" vary con-
tinuously there exists a small constant € > 0 such that for every z and 2’
satisfying 2z’ € WS (z) it follows that W§ (z") and WY (z) intersect and that
this intersection point is unique.

Let x and y be points in M such that y € W (x). Suppose that h :
R — R is an increasing continuous reparametrization with h(0) = 0 such
that d(cpf(a:),goz(t) (y)) < € for every t = 0. Let 3 denote the intersection

¢.(4) and Wi, () and let 7, (t) = W5.(05 (1)) A W (()) for every
t = 0. The curve 7, is no other than the transport by center holonomy of
y' along unstable transversals with respect to the ¢f-orbit of z. In analogy
with (3.7.1) is follows that f(y') = vy (7(x)), so f(y') lies in WY (f(x)).
Inductively, f"(y') lies in WY (f"(z)) for every n > 0. Iterating n times
backwards and taking limit with n we conclude that 3’ needs to coincide
with 2. Then y lies in W§ () and, in particular, lies in the @f-orbit of z.

In the case z and y are points such that y € WS(z) one can argue anal-
ogously for past iterates of f and ¢f. Property (iii) is settled. O

Let us end this section with a statement showing that some classical prop-
erties of Anosov flows are satisfied (by means of the same type of arguments)
by the topological Anosov flows arising as center foliations of discretized
Anosov flows. Some of these properties will be needed later in the text. For
the sake of completeness we will sketch their proofs.

We say that a leaf of a foliation of dimension d > 0 is a plane if it is
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homeomorphic to R?, and that it is a cylinder if it is homeomorphic to a
fiber bundle over the circle whose fibers are homeomorphic to R*~!. We say
that two foliations W and W’ have global product structure if W(x) and W'(y)
intersect for every pair x and y, and this intersection is a unique point.

Proposition 3.7.3. Suppose f is a discretized Anosov flow. Let ¢f : M —
M and W€ be the center flow and flow center foliation of f, respectively. Let
W and W denote the center-stable and center-unstable foliations such that
WE = W ~ W, Then:

1. Every leaf of W and W is a plane or a cylinder.

2. If a leaf W(x) is a plane then W¢ and W? restricted to W (x) have
global product structure. Analogously for W -leaves.

3. If a leaf W (x) is a cylinder then W restricted to W(x) contains a
unique compact leaf L and the omega limit set under ¢f of every point
y in W(z) is L. Analogously for W-leaves and alpha limit sets.

4. There exists at least one compact leaf of WE.

Proof. Let x be a point in M. For every y € W*(x) we can define v, : R — M
as the continuous curve in W¢(y) such that v, (0) = y and ~,(t) € W*(¢f(x))
for every t. The curve 7, is a transport by center holonomy of y with respect
to the ¢f-orbit of x. As in the previous proposition, note the key property:
Yy(7(2)) = f(y) for every y € W3 ().

If = is a periodic point for ¢f of period t; > 0 let us denote H(y) € W*(z)
to the point 7,(t;) for every y € W*(z). For some N > 0 large enough
HYN : W5(x) — W*(x) is a contraction with x the unique fixed point. In this
case W is a cylinder and it is immediate to check that the ¢f-omega limit
of every point in W(z) is the orbit of x.

If  is not periodic for ¢f but some point y in W#(z) is periodic then
we can argue as above and conclude that W (z) is a cylinder and that the
pf-omega limit of every point in W (x) is the orbit of y.

If none of the points in W#(x) is periodic for ¢f then for every y € W*(z)
the point 7,(t) lies in W*(x) if and only if ¢ = 0, otherwise a contraction
HYN : W3(x) — W?3(z) as above can be constructed and some @§-periodic
point in W*(x) should be found. It follows that [, eys(,) 7y () = W (¢f(z))
for every t and, since W (x) = W*(W¢(x)) by Proposition 3.4.4, then W (x)
is a plane and W¢ and W? have a global product structure inside W (x).

Properties (1), (2) and (3) are settled. Let us see that ¢f must have at
least one periodic orbit and this will settle the last property.

For some z in M let z be a point in the ¢f-omega limit of z. Consider D
a small C! disc transverse to W¢ and containing z in its interior. Let D be
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such that the leaves of W and W intersect D in C' discs. For every 2’ € D
let w®(2') and w"(z") denote the connected components of W(z') n D and
We(2') n D containing 2, respectively.

Let D' < D be such that if 2/, 2" € D’ then w*(z') n w*(2") # & and
w' (") nw*(2") # . For every 2’ € D' let w(2') denote the point in w®(2)
such that w*(2") nw?(z) = 7%(2').

Let t, > 0 be a time such that ¢f (z) lies in D’ close to z and let T, > t,
be a large enough time so that ¢f, () lies also in D', is close to z and the
Poincaré return map P from w®(¢f (z)) to D" is well defined. Then 7" o P
needs to be a contraction if T}, is large enough. Let 2’ denote the fixed point
of this contraction. It follows that P(z') lies in w"(z") so there exists some
positive time ¢,/ close to T — ¢, such that ¢f  (2') lies in W*(2"). By (3) it
follows that W (2') has to be a cylinder leaf and, as a consequence, it has
to contain a periodic orbit for ¢f. O

3.8 Equivalence with other definitions

Discretized Anosov flows have been richly studied in the literature, though
not always under this name. Without trying to be exhaustive, it is worth
establishing that many of these classes studied before are in fact discretized
Anosov flows as in Definition 3.2.1. This is one of the primary goals of this
chapter.

In [BFFP19], [BFP20], [BG21] and [GM22] a map f € PH.—;(M) was
called a ‘discretized Anosov flow’ if it satisfied the following: there exist a
topological Anosov flow ¢; : M — M and a continuous function 7 : M — R~
such that f(z) = ¢, (x) for every z in M.

As a direct consequence of Proposition 3.7.2 and Proposition 3.2.2 item
(ii) we obtain:

Corollary 3.8.1. The definition of discretized Anosov flow given in [BFP20),
[BFFP19], [BG21] and [GM22] is equivalent with Definition 3.2.1.

It is worth noting the following two other classes of systems studied before
that are also discretized Anosov flows.

Remark 3.8.2. Partially hyperbolic diffeomorphisms on 3-manifolds were
investigated in the seminal article [BWO05]. The statement of [BWO05, The-
orem 2. items 1. and 2.] can be paraphrased as the following criterion for
detecting discretized Anosov flows (in particular, using Proposition 3.3.1 to
conclude):

Suppose f € PH._1(M?3) is transitive and dynamically coherent with in-
variant foliations W, W and W¢ = W ~ W, Then f" is a discretized
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Anosov flow for some n > 0 if and only if there exists a periodic compact leaf

s
loc

n € W€ and every center leaf through W; (n) is also periodic by f.

Remark 3.8.3. In [BG09] and [BG10] diffeomorphisms in PH.—; (M) that
are Axiom A and admit a center foliation tangent to an Anosov vector field
X¢ were studied. In [BG09] it is shown that these systems can be written
as f(z) = X;f(x)(m) for some 7 : M — R* continuous. It follows that, in
particular, they are all discretized Anosov flows.

Finally, we can establish the equivalence with the notion of flow-type par-
tially hyperbolic diffemorphism. In [BFT20] a diffeomorphism f € PH._; (M)
is called flow-type if it is dynamically coherent with orientable center foliation
WE = W n W admitting a compact leaf and such that f can be written
as f(z) = P (@) (x) for every x € M, where ¢f is a flow of unit positive speed
along the leaves of W€ and 7 : M — R~ is some continuous function.

As a consequence of what we have seen so far we get the following:

Corollary 3.8.4. The definition of flow-type partially hyperbolic diffeomor-
phism as given in [BFT20] is equivalent with Definition 3.2.1 of a discretized
Anosov flow.

Proof. It is immediate to check that every flow-type partially hyperbolic
diffemorphism is a discretized Anosov flow as in Definition 3.2.1.
Conversely, suppose f is a discretized Anosov flow and let ¢f and W¢
denote the center flow and flow center foliation of f, respectively. Propo-
sition 3.4.4 shows that every discretized Anosov is dynamically coherent
with center-stable foliation W and center-unstable foliation W such that
WE = W ~ W, Moreover, modulo reparametrization and inverting the
time of ¢, Proposition 3.2.2 and Remark 3.2.3 show that f can be writ-
ten down as f(x) = O ) (x) where ¢f is parametrized by arc-length and
7 : M — R is continuous and positive. Finally, Proposition 3.7.3 shows
that W¢ has a compact leaf. One concludes that f is a flow-type partially
hyperbolic diffeomorphism. O

3.9 Characterization in terms of center holonomy

Let us end this chapter by pointing out a characterization of discretized
Anosov flows in terms of center holonomy maps.
Recall the definition of a holonomy map for a foliation:

Remark 3.9.1 (Holonomy map along a curve). Suppose W is a foliation
with C! leaves tangent to a continuous subbundle in the compact Riemannian
manifold M. The construction that follows is standard to check.
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Suppose x in M, y in W(z) and v : [0,1] — W(z) a C! curve such that
7(0) = x and ¥(1) = y. Suppose D, and D, are C! discs transverse to W,
containing x and y, respectively. Let § > 0 be a constant such that every
ball in M of radius 24 is contained in a foliation box neighborhood of W.

Every small enough C! disc D! < D, containing x has the property
that for every z € D!, there exists a C! curve 7, : [0,1] — W(z) such that
7:(0) = 2z, (1) € Dy and d(y(t),v-(t)) < ¢ for every t € [0,1]. Moreover,
the point ~,(1) in D, is independent of the choice of such a ~,. In particular,
there exists a well defined holonomy map along ~

H:D,— D,

given by H(z) = 7,(1) for every z € D.
Furthermore, one can chose the curves ~, so that z +— ~, varies continu-
ously in the C! topology as z varies continuously in D?.

The following characterizes discretized Anosov flows in terms of center
holonomy:

Proposition 3.9.2. Suppose f € PH.—1(M). The following are equivalent:
(i) The map f is a discretized Anosov flow.

(ii) The bundle E° integrates to an f-invariant foliation W¢ such that for
every x € M there exist:

o A curve 7y : [0,1] > W¢(z) with v(0) = = and v(1) = f(x),
o A C' disc D transverse to W¢ with x € D such that the W holon-
omy map H along v is well defined from D to f(D) and satisfies

for every y € D.

Proof. Suppose that f is a discretized Anosov flow. By Definition 3.2.1,
Proposition 3.2.2 and Remark 3.2.3 the map f can be written down as f(z) =
Lpﬁ(gﬁ)(:c), where 7 : M — R~ is continuous and ¢ : M — M is a unit speed
flow whose flow lines coincide with the leaves of the flow center foliation W¢

of f.
Given x € M let v :[0,1] — W¢(z) be the reparametrization of the piece
of ¢f orbit from x to f(x) so that H%H = % for every t € [0,1]. Let D, be

a C! disc containing = and transverse to W¢. Then f(D,) contains f(z) and
is also a C! disc transverse to We.
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Let § > 0 be a constant such that every ball of radius 24 is contained in a
foliation box neighborhood of W°. As in Remark 3.9.1, let D!, < D, be such
that 2 € D!, and the holonomy map along ~y

H : D} — f(Ds)

is well defined.

For every z € D/, let 7, : [0,1] — W€ denote the piece of ¢§ orbit from z

to f(z) reparametrized so that Ha(gg)t | = % for every t € [0, 1].

We can assume that D/ is small enough so that d(v,(t),v(t)) < ¢ for
every z € D! and t € [0,1]. Tt follows that f(z) = 7.(1) for every z € D..
This shows that (i) implies (ii).

Conversely, suppose that (ii) is satisfied. In particular, f individually
fixes each leaf of W°. Given x € M let v and D be as in (ii). Let us see that
locally in a neighborhood of x the condition f(w) € W¢ (w) is satisfied for
some L > 0.

Let 6 > 0 be such that every ball of radius 20 is contained in a foliation box
neighborhood of W¢. As in Remark 3.9.1 let D’ = D be a C' disc containing
x so that its closure is a subset of D and such that for every y € D' a C!
holonomy curve v, : [0,1] — W¢(y) with the following properties is well
defined: ~,(0) =y, v, (1) = f(y) and d(y(t),vy(t)) < 6 for every t € [0, 1].

Moreover, the curves 7, can be considered so that y +— ~, varies contin-
uously with y. Then y — length(y,) varies continuously and as consequence
there exists K > 0 a constant larger than sup,¢ s length(y,).

Let U be a foliation box neighborhood of W€ obtained as Uzef(D,) We (2)
for some small e; > 0. Let e > 0 be such that f(W¢,(y)) is a subset of
We, (f(y)) for every y € D’ and let U’ be the neighborhood | J ey WE, (y). It
follows that f(w) lies in W

K+e1+e
Let us rename U’ as U, and K + €1 + €9 as L, to highlight the dependence

(w) for every w e U'.

on the point x. We conclude that for every z € M there exists a neighbor-
hood U, and a constant L, so that f(w) € W (y) for every w € U,. By
taking a finite subcover {Uy,}ier of the cover {Uy}iens of M it follows that
f(w) € WS (w) for every w € M and L = maxger Ly,. Then (i) follows as a
consequence of Proposition 3.3.1. ]
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Chapter 4

Continuation of normally
hyperbolic foliations revisited

4.1 Introduction

In this chapter we revisit the stability of normally hyperbolic foliations of
[HPS77] (see also [PSW12]). The main goal is to show Theorem 4.2.3 which
guarantees that, in a certain sense, the continuation of a normally hyperbolic
foliation can be carried out along sets of uniform size in PH.—;(M). The im-
mediate antecedent for this result is [BFP20, Theorem 4.1] (see also [BFP20,
Section 4.1] and [BFP20, Appendix B]).

Everything in this chapter is independent from the previous one.

4.2 Statements

From now on throughout this chapter let M be a closed (compact and without
boundary) Riemannian manifold.

Suppose C! and @2 are continuous cone fields in M of complementary
dimension. Given constants €,§ > 0 we will say that the metric in M and
the cone fields (C!, C?) are e-nearly euclidean at scale ¢ if for every x € M
the exponential map exp, : TuM — M restricted to Bs(0) < T, M is a
diffeomorphism onto its image Bs(z) € M satisfying that, if one identifies
T, M isometrically with the euclidean space R™ by a linear map A : T, M —
R™, then

[ A(expjvy)| — 1] <€

and
| £ (A(exp} v;),A(exp; vi,)) — g‘ <em

for every y,y' € Bs(x), every unit vector v, in Ty M and every unit vectors
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v; e Cl(y) and vg, € C2(y'); where in this context, if y = exp,(z) and
v e T,M, then exp} v denotes the vector in T,(T,M) ~ T, M that is sent to
v by the differential of exp, at z.

Informally, for € > 0 small the property of being e-nearly euclidean at
scale d indicates that in restriction to balls of radius é the metric is close to
being euclidean and the cone fields are fairly narrow, almost constant and

almost pairwise orthogonal.

Lemma 4.2.1. Suppose fo € PH._p(M) for some D > 0. There exists a
Riemannian metric in M, a constant 6(fo) > 0 and for every 6 with 0 < § <

5(fo) a Ct-neighborhood Us(fo) < PHe—p (M) of fo such that:

(P1) There exists a constant k > 1 such that max{||Df.|, |Df; |} < & for
every x € M and every f € Us(fo).

(P2) There exists a constant 0 < XA < 1 such that |Df|gs)| < A and
HDf_1|Eu(w)H < \ for every x € M and every f € Us(fo).

(P3) There exist continuous cone fields C%, €, C* and C* on M such that
for every f € Us(fo) and x € M:

1. The dimension of €7 is equal to dim(E?) and the bundle EF(x) is

contained in C°(x) for every x € M and o € {s, cs, u, cu}.

2. The cones C° and C® are f~'-invariant and satisfy E?(CE) =
MNn=o0 Df"€C%n y for every x € M and o € {s,cs}.

3. The cones C* and € are f-invariant and satisfy that E(z) =
(Mn=0 D "€ ..,y for every x € M and o € {u, cu}.

(P4) The metric and the cone fields (C°,C") and (C°,€") are -=-nearly
euclidean at scale 200.

(P5) The C° distance do(f,g) is smaller than ﬁ(l FAFXN )7 and
smaller than %(/\_1 — 1) for every f,g € Us(fo).

Proof. Let us start by considering U a C' open neighborhood of fy contained
in PH._p(M). If U is small enough then property (P1) is automatically
satisfied for some constant x > 1.

By [Gou07] there exists a constant 0 < A < 1 and an adapted metric g;
in M such that fy satisfies |D fo|gs@)| < A and HDfO_1|Eu(:D)H < A for every
xe M.

Let go be the metric that makes the subbundles E;O, EJ‘iO and E?O pairwise
orthogonal and coincides with g; in restriction to each of them. Note that
since the invariant bundles of fy vary a priori only continuously with respect
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to the point in M we can not guarantee that g; has better regularity than
continuous. Nevertheless, if we consider g a €* metric close enough to gz we
can ensure that | D fo|gs(z)| < A and HDf(]71|Eu(x)H < A is still satisfied for
every x € M and that the pairwise angles between the subbundles E7 , E}cc0
and EY lie in (7/2 — m/64,7/2 + 7/64).

Since the invariant bundles vary continuously in the C! topology we can
shrink U, if necessary, so that (P2) is satisfied for every f € U with respect
to the same constant A and such that the pairwise angles between the sub-
bundles E}, E§ and EY also lie in (7/2 — m/64,7/2 + 7/64) for every f € U.

In order to obtain (P3) and (P4) let €°, €*, C* and C** be invariant
cone fields, given by the partial hyperbolicity of fy, satisfying that E?O (z) =
MNn=0 Dfo_qj(‘f‘;g(x) for every x € M and o € {s,cs}, and that Ef (z) =
Mn=0 ng@;{o_n(x) for every x € M and o € {u, cu}.

Let us define €5 = Dfy ™ é;év @ Ci=D fy él}fO_N - -
and C7° = Df, N é;‘g\, (@) for N > 0 large enough so that the angle between
every vector of €7 and EY (z) is less than /64, for every x € M and every

LG = Df ey
0

o € {s,u,cs,cu}.
By shrinking U even more in the C' topology, if necessary, one obtains
that (1), (2) and (3) of property (P3) need to be fulfilled by every f € U.
Moreover, it is not difficult to check that for every x € M there exists
d; > 0 such that for every z € Bs_(x) the exponential map exp, : T,.M — M
restricted to Bs,(0) < T, M is a diffeomorphism onto its image Bj_(z) € M
and, if one identifies isometrically T, M with euclidean R™ by a linear map

A:T,M — R", then
1
1Aexpt vl — 1] < 1o

and
T

16
for every y,y’ € Bs,(z), every unit vector v, in T, M and every unit vectors
vy € € and ’UZ,/ € GZ,, for every pair (o,0") € {(s, cu), (¢cs, u)}.

By taking a finite subcover {Bs, (zi)}1<i<k of M it follows that d(fo) =
% min{dy, }1<i<k guarantees that property (P4) is satisfied by every f e U
for & = 6(f0)

Given 0 < 0 < 4(fo), properties (P1),..., (P4) are still fulfilled for every
f e U. It is enough now to shrink U in the C° topology even more, if

£ (Alexp? o), Alepl o)) — 3] <

necessary, to a neighborhood Us(fy) so that property (P5) is satisfied for
every f, g€ Us(fo)- O

Remark 4.2.2. It is worth pointing out that, according to the order in which
each property of Lemma 4.2.1 was proven, it follows that modulo shrinking

69



d(fo) one can consider the metric in M and the cone fields C*, €%, C* and
C so that (C%,C°") and (€, C") are ¢’-nearly euclidean at scale ¢’ for any
prescribed € = €(\, k) > 0 and §'(\, k) > 0 depending on the constants x
and \ of property (P1) and (P2), respectively. This will be used in Section
5.2 where a narrower version of property (P4) is needed.

Suppose F is a continuous subbundle of TM. If N is a connected man-
ifold of dimension dim(FE) we say that n : N — M is a complete C! im-
mersion tangent to E if 1 is a (not necessarily injective) C' map such that
Dn(T,N) = E(n(x)) for every z € N and such that the pull-back metric in
N is complete. Moreover, if L € M denotes the image of  we say that L is
a complete C* immersed submanifold tangent to E.

Theorem 4.2.3. (Uniform continuation of normally hyperbolic foliations).
Suppose fo € PHo_1(M). Consider a metric in M and a constant 6(fo) > 0
as in Lemma 4.2.1. Then for every § with 0 < § < 6(fo) a C' neighborhood
Us(fo) as in Lemma 4.2.1 satisfies the following properties.

For every pair f and g in Us(fo), if W€ is an f-invariant center foliation,
then there exists

e A map h: M — M continuous, surjective and d-close to identity,

o A homeomorphism p: M — M so that for every leaf L € W¢, one has
that p(L) = L and the map p|, : L — L is a C* diffeomorphism that is
d-close to the identity on L,

such that

1. For every leaf L € W¢ the set h(L) is a complete C' immersed subman-
ifold tangent to Ej. Furthermore, the map h|r, : L — M is C' with re-
spect to the inner differentiable structure of L, the derivative D(]’L|L)|Ejg
varies continuously in M and satisfies D(h|L).(E§(z)) = Ej(h(z)) and
3 < \|D(h|L)¢|E;(I)H < 2 for every x € L.

2. The equation hopo f(x) = go h(x) is satisfied for every x € M. In
particular, ho f(L) = go h(L) for every L € W°.

From the proof of Theorem 4.2.3 we will also derive the following.

Theorem 4.2.4 (Uniform continuation of complete C'! center immersions).
Suppose fo € PHe—1(M). Consider a metric in M and a constant §(fy) > 0
as in Lemma 4.2.1. Then for every & with 0 < & < §(fo) a C' neighborhood
Us(fo) as in Lemma 4.2.1 satisfies the following properties.
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If f and g are maps in Us(fo) then for every n : R — M a complete
C' immersion tangent to EJ% there exists a sequence {7y, : R — M},ez of
complete C immersions tangent to E7 such that

d(f" e m(t), m(t)) < (4.2.1)

and

Yni1 98 a reparametrization of g o v, (4.2.2)

for everyte R andne Z.

Moreover, if {7, : R — M},cz is another sequence of complete C* immer-
sions tangent to E satisfying (4.2.1) and (4.2.2), then vy, is a reparametriza-
tion of vy, for everyne Z.

4.3 Plaque expansivity and leaf-conjugacies

It is worth noting in this section some consequences of Theorem 4.2.3 before
getting into its proof.

Remark 4.3.1. (Leaf-conjugacy) Note that if i is injective then A(W€¢) is a
g-invariant center foliation and A is a homeomorphism taking leaves of W¢
into leaves of g such that

ho f(L)=goh(L)

for every L in W¢. That is, (f, W?) and (g, W) are leaf-conjugate.

As detailed in Lemma 4.3.3 below, a sufficient condition for h to be in-
jective is given by the following property. Note that by metric in M we will
always mean a Riemannian metric in M.

Definition 4.3.2. Suppose f € PH(M) admits an f-invariant center foliation
We. Assume that a metric in M has been fixed. We say that (f, W¢) is -
plaque expansive if every pair of §-pseudo orbits (z,,), and (y,), satisfying

o 41 € W§(f(xy)) for every ne Z

® Yni1 € WS(f(yn)) for every ne Z,

o d(zp,yn) < 26 for every ne Z,
also satisfy yo € Ws(z0).

Lemma 4.3.3. In the context of Theorem 4.2.3, if f € Us(fo) is d-plaque
expansive then h is a homeomorphism and (f, W) and (g, h(W°)) are leaf-
conjugate.
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Proof. Suppose h(zg) = h(yp) = zo for some xg,yo € M. The orbit of zy by
g defines two §-pseudo orbits for f with ‘jumps’ in W¢plaques as follows.

Since hopo f = goh then x1 = p(f(x0)) and y1 = p(f(yo)), and inductively
Tne1 = p(f(xyn)) and yn+1 = p(f(yn)) for every n € Z, satisty

9" (20) = Mzn) = h(yn)

for every n € Z.

As h and p are d-close to the identity, the sequences (x,)nez and (yp)nez
satisfy xn1 € W§(f(2n)); Yns1 € W§(f(yn)) and d(zpn,yn) < 20.

If f is 6-plaque expansive the above implies that yy belongs to W¢s(xo).
By (1) in Theorem 4.2.3 and property (P4) in Lemma 4.2.1 the image by h
of W5s(xo) is a C* arc tangent to ES and h restricted to W§s(zo) is a C!
diffeomorphism over its image. As yo belongs to W§s(xo) and h(xo) = h(yo)
it follows that x¢ = yo.

This proves the global injectivity of h. By Remark 4.3.1 one concludes
that (f, W$) and (g, h(W¢)) are leaf-conjugate. O

It is important to note that, in contrast with the usual definition of
plaque-expansivity (as given in the introduction and below), the notion of
d-plaque expansivity is sensible to the metric one chooses for M.

Note also that, for 6 > 0 small, if (f, W¢) is J-plaque expansive with
respect to some metric, then (f, W¢) is §’-plaque expansive with respect to
the same metric for every 0 < ¢’ < 4.

Recall that (f, W€) is called plaque expansive if for some metric and some
0 > 0 every pair of sequences (Z,)nez and (yn)nez satisfying that z,; €
WS(f(xn)), Ynt1 € WS(f(yn)) and d(xn,yn) < ¢ for every n € Z must also
satisfy yo € Wi, .(z0). Note that here WY, (x) should be understood as W¢(x)

for some small € > 0 independent of x € M.
It is immediate to check that:

Remark 4.3.4. If (f, W°) is d-plaque expansive with respect to some metric
then (f, W€) is plaque expansive.

Proof. Tt is enough to consider 0 < ¢’ < § so that W§(z) < Wy, (z) for every

loc

x € M. Then (f, W) being §’-plaque expansive automatically implies that
(f, W¢) is plaque expansive. O

Conversely, the following is also satisfied.

Lemma 4.3.5. Suppose (f, W¢) is a plaque expansive system in M. Given
a metric in M there exists 6 > 0 such that (f, W°) is 6-plaque expansive with
respect to that metric.
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Proof. Suppose (f, W€) is plaque expansive. Then for some metric in M
and some small € > 0 there exists § > 0 such that every pair of sequences
(Zn)nez and (Yn)nez satistying xni1 € WE(f(2n)), ynt1 € WE(f(yn)) and
d(xpn, yn) < 0 for every n € Z must also satisfy yo € W¢(zg). Note that § > 0
can be considered as small as wanted so that the previous property remains
to be true. At first, let § be smaller than e.

Suppose we consider another metric in M and let us denote by d’ the
distance induced by this new metric (in contrast with d for the first one). As
M is a compact manifold there exists C' > 1 such that &d'(z,y) < d(z,y) <
Cd'(x,y) for every x,y € M.

Let d. and d.. denote the distances inside center leaves with respect to
d and d’, respectively. Note that we can consider C' so that it also satisfies
%d’c(x, y) < dco(z,y) < Cd.(z,y) for every z and y in the same center leaf.

Finally, suppose § smaller, if needed, so that for every 0 < & < C0 if
d.(z,y) < Cd and d'(z,y) < ¢’ then d.(z,y) < (3/2)d".

Under this conditions it is immediate to check that f needs to be %—
plaque expansive with respect to the new metric. Indeed, let (z,,)nez and
(Yn)nez be such that d.(x,41, f(xn)) < 0/C, d.(yn+1, f(yn)) < 6/C and
d' (zn,yn) < 20/C for every n € Z. Tt follows that d¢(xpi1, f(zn)) < 0,
de(Yn+1, f(yn)) < ¢ and d(zp,yn) < 20 for every n € Z. Then yp lies in
We¢(xo). Since We(zg) is a subset of W§(zg) then de(xo,y0) < 0. Which
in turns implies d.(zo,y0) < Cd. As d'(x0,y0) < 26/C then from the last
constraint imposed to ¢ it follows that d.(zo,y0) < 30/C. O

Note that from the proof of the previous lemma one can also deduce the
following.

Lemma 4.3.6. Consider two distinct metrics in M. Given d > 0 there exists
C > 0 such that, if (f, W) is Cd-plaque expansive with respect to the first
metric, then (f, W°) is d-plaque expansive with respect to the second one.

Recall that in the introduction a simplified version of Theorem 4.2.3 was
stated:

Theorem 4.3.7. Suppose fo € PH.o1(M). There is a constant § > 0 and
a C' neighborhood U(fo) of fo such that, if some f € U(fo) admits a center
foliation WS so that (f, W;) is d-plaque expansive, then every g € U(fo)
admits a g-invariant center foliation Wg such that (f, W$) and (g, Wg) are
leaf-conjugate.

As a corollary of the discussion above one obtains:

Corollary 4.3.8. Theorem 4.3.7 follows from Theorem 4.2.35.
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Proof. The statement of Theorem 4.3.7 presupposes a metric in M. In par-
allel, let us consider §(fy) > 0 and the metric in M as in Lemma 4.2.1.

Let C' > 0 be as in Lemma 4.3.6 so that, if (f, W) is §( fo) C-plaque expan-
sive with respect to the first metric, then (f, W) is §(fo)-plaque expansive
with respect to the second one. It is enough to consider now § := §(fy)C and
U := Ussy)(fo). The rest follows by Theorem 4.2.3. O

We recover also the classical stability statement for normally hyperbolic
foliations (see [HPS77, Theorem 7.1]):

Corollary 4.3.9. Suppose (f, W) is a plaque expansive system in PH._1(M).
There exists a neighborhood U < PH.—1(M) of f such that every g € U ad-
mits a g-invariant center foliation Wy such that (9, W;) is plaque expansive
and leaf conjugate to (f, W€).

Proof. Let (f, W) be a plaque expansive system in PH._1(M). For f = f
consider the metric in M and the constant §(f) > 0 given by Lemma 4.2.1.

By Lemma 4.3.5 there exists 6 > 0 such that (f, W¢) is §-plaque expansive
(with respect to the metric we have just fixed). We can suppose that ¢ is
smaller than §(f).

Let 8’ > 0 be such that 30’ < 6. Let Ug (f) be the C* neighborhood of f
given by Lemma 4.2.1 (for f = fp). If g is a system in Uy (f) then by Lemma
4.3.3 the map h given by Theorem 4.2.3 is a homeomorphism and (f, W¢)
and (g, h(W¢)) are leaf conjugate. Let W9 denote h{W°¢).

Always with respect to the metric in M given by Lemma 4.3.5 sup-
pose that (2,)nez and (y),)nez are ¢’ pseudo-orbits for g so that ], €
W57 (g(x),))s Yy € W57 (9(yn)) and d(a,,y),) < 26" for every n € Z. Let us
see that y must lie in Wy ().

/

Consider z,, = h™(z}) and y, = h~1(y},) for every n € Z. Let p be

the map given by Theorem 4.2.3. As po f(z,) = h™ o g(z!,) and p is &
close to the identity it follows that h~1 o g(2,) lies in WS, (f(x,)). Moreover,
as 1/2 < |Dh|ge| < 2 and 2/, € W5 (g(z},)) then h™' o g(x}) lies in
W35 (ny1). It follows that

Zny1 € Wig (f(2n))

for every n € Z. Analogously for (yn)nez.
Moreover, as d(h~(z!), ") < ¢ and d(h=(y}),y,) < & because h is

n/rn n

d’-close to the identity, then d(x,, ! ) < 26" implies
d(wn, yn) < 40’

for every n e Z.
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As 30" < 0 and 40" < 26 it follows from the §-plaque expansivity of (f, W)
that yo needs to lie in W55(x0). Then zj needs to lie in W¢;(x() because of
1/2 < |Dh|ge| < 2. Since d(xy,y,) < 20" and because at scale 205(f) the
center bundles are almost constant (property (P4) in Lemma 4.2.1) it follows
that y( needs to lie in Wg3 ().

This shows that (g, W*9) is §’-plaque expansive. Then (g, W9) is plaque
expansive. ]

Remark 4.3.10. Note that from the proof of the previous corollary the
following statement can also be deduced: If (f, W¢) in PH._1(M) is plaque
expansive and a metric as in Lemma 4.2.1 (for fy = f) has been fixed, then
the C! neighborhood U < PH._1(M) of f given by Corollary 4.3.9 can be
chosen so that there exists ¢’ > 0 such that (g, Wg) is ¢’-plaque expansive for
every g € U (with respect to the metric that has been fixed).

Remark 4.3.11. Suppose fop € PH._1(M) is the limit of a sequence f,, in
PH.—1(M) such that (fp, W;n) is plaque expansive for some invariant center
manifold W . Consider a metric in M, a constant § (fo) > 0 and, for every
0 < <6(fo), a neighborhood Us(fy) as in Lemma 4.2.1.

As ( fn,W‘]in) is ¢’-plaque expansive for every small enough ¢ > 0 we
can consider ¢, > 0 the largest constant such that ( fn,W‘]in) is §’-plaque
expansive for every ¢’ € (0, d,).

A key point worth noting is that, a priori, we can not rule out that
for every 0 < 6 < 6(fp) and f, € Us(fo) the constant &, may be smaller
than 4. Thus a priori we can not conclude that fy has to admit a center
foliation and that there exists a leaf-conjugacy with some (f,,, W?n) To show
the C'' openness and closeness of discretized Anosov flows and of partially
hyperbolic skew-products with one-dimensional center (Theorem 5.1.1 and
Theorem 5.1.3 in the next chapter) an extra argument will be needed.

4.4 Stability of unique integrability for plaque ex-
pansive systems

It is also worth noting the following consequences of Theorem 4.2.3 and The-
orem 4.2.4.

Lemma 4.4.1. In the context of Theorem 4.2.3 and Theorem 4.2.4 suppose
0 <6 <d(fo) and f,g € Us(fo). If EY$ is uniquely integrable then for every
C' curve v tangent to EY there exists L € W$ such that v < h(L).

Proof. Suppose v : (0,1) — M is a C! curve tangent to Eg. By a little
abuse of notation we denote both the curve and its image by v. By Peano’s
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existence theorem we can extend -, if needed, and redefine its domain so that
v : R — M is a complete C' immersion tangent to Ej. Let us see that v
needs to be contained in h(L) for some leaf L € W°.

By Theorem 4.2.4 (with the names of f and g, and the etas and gammas,
interchanged) there exists a sequence 7,, : R — M of complete C'! immersions
tangent to E% such that 1,41 is a reparametrization of fon, for every ne Z
and

d(g" ov(t),m(t)) <0 (4.4.1)

for every t e R and n € Z.

Since E]Cc is uniquely integrable the key observation to note is that each
nn needs to be the C' parametrization of a leaf of W¢ (as these are the only
C! curves tangent to E;i) If L denote the leaf of W‘Ji whose parametrization
is ngp : R — M, let us see that v must be contained in the continuation h(L)
of L.

On the one hand, as 7,1 is a reparametrization of f o7, then (4.4.1)
implies that ¢" o+ can be reparametrized to a C! curve =, satisfying that

d(f" o no(t), m(t)) <6

for every t € R and n € Z. It is immediate to check that, in addition, the
curve v, 41 is a reparametrization of g o vy, for every n € Z.

On the other hand, since h o f*(L) = g™ o h(L) for every n € Z and
h is d-close to the identity the curves 7, := h o, satisfy that 7], is a
reparametrization of g o, for every n € Z and

d(f" o mo(t), v (t)) < 9

for every t e R and n € Z.

By the uniqueness part of Theorem 4.2.4 (for f and g not interchanged)
it follows that « is a reparametrization of homng. In particular, v is contained
in k(L) for L € W$ the image of n.

O

As an immediate consequence of Lemma 4.4.1 one gets the following.

Corollary 4.4.2. In the context of Theorem 4.2.3, if h is a homeomorphism
and Eji is uniquely integrable then E7 is uniquely integrable.

Proof. If h is a homeomorphism then h(W?) is a center foliation for g. If
is a O curve tangent to E7 then by Lemma 4.4.1 it has to be contained in
a leaf of h(W;) We conclude that through every point of M there exists a
unique C! curve tangent to E7, modulo reparametrizations. O
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As a consequence of the previous corollary one can show the following
proposition.

Proposition 4.4.3. Let (f, W) be a plaque expansive system in PH._1(M).
There exists a C* neighborhood W < PH._1(M) of f such that, if E; s
uniquely integrable for some g € U, then Eg, 18 uniquely integrable for every
!/

g elu.

Proof. Suppose (f, W€) is a plaque expansive system in PH._; (M). Consider
0(f) > 0 and a metric in M as in Lemma 4.2.1 for fo = f.

Consider U < PH.—1(M) a C' neighborhood of f and &' > 0 given by
Corollary 4.3.9 and Remark 4.3.10 so that every g € U is §’-plaque expansive.

We can suppose without loss of generality that &' < §(f). Consider
Us (f) © PHe—1(M) the C! neighborhood of f given by Lemma 4.2.1 with
respect to the metric already fixed. Consider W = Uy (f) nU. Let us see that
if U contains a systems with uniquely integrable center bundle then every
system in U has this property.

Suppose Ej is uniquely integrable for some g € U and let Wy denote the
corresponding center foliation for g. As W < Uy (f) then for ¢’ € W we can
consider h : M — M given by Theorem 4.2.3 so that h(L) is a complete
C' immersion tangent to B¢, for every L € W. Since (g, Wg) is ¢’-plaque
expansive then h needs to be a homeomorphism (Lemma 4.3.3). By Corollary
4.4.2 we conclude that Eg, has to be uniquely integrable. O

4.5 Proof of Theorem 4.2.3

From now on throughout this subsection let us fix a metric in M, a C' open
set Us(fo) and a pair of partially hyperbolic diffeomorphisms f, g € Us(fo) as
in the hypothesis of Theorem 4.2.3. Let €7 denote the invariant cone fields
given by Lemma 4.2.1 for every o € {s,u,cs,cu}. Note that f and g satisfy
properties (P1),..., (P5) from Lemma 4.2.1. We will refer to properties
(P1),..., (P5) implicitly referring to the ones from Lemma 4.2.1.

Informally, for every leaf L of W® we will consider U(L) an ‘unfolded’
0-wide tubular neighborhood of L (see next subsection for the formal con-
struction) and a manifold V(L) which is the disjoint union of the manifolds
U(f™(L)) for every integer n. As f and g are C° close enough we will be
able to ‘lift’ the map g to V(L) in a neighborhood of | J,, f"L, sending points
of each connected component U(f™L) to the ‘next’ connected component
U(f"*1L). By ‘transverse hyperbolicity’ and the constraints imposed by
Lemma 4.2.1 there will exists a non empty set L' in U(L) whose points are
exactly those ones whose g orbit remains in V(L) for every backwards and
forwards iterate. We will call L’ the continuation of L.
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The set of points in U(L) whose whole g backwards orbit remains in V(L)
will be obtained as the limit set in n of the ‘cu-strips” W§(f~"L) iterated n
times forwards by g. As W§(f~"L) is tangent to the cu-cone and g contracts
uniformly this cone for positive iterates then the limit set would be a C*
submanifold tangent to Eg @ E. The same argument shows that the points
whose g forwards orbit is well defined in V(L) is a C! strip tangent Ef @ E¢.
Hence L', the intersection of both sets, would be tangent to E;.

Once the continuation of every center leaf has been constructed it will
remain to define the maps h and p that coherently identify each leaf L with
it continuation L’ so that the identity ho po f = g o h holds.

Part 1: Good cover of every center leaf

For every leaf L of W€ let us consider the set which is the disjoint union of the
balls { B5(2)}zer.- Namely |, e {(y, ) : y € Bs(x)}. On this set let us identify
two points (y,z) and (y',2') if and only if y = ¢ and 2’ € Lys(x). (Recall
the notation L,(z) for the points in the leaf L at intrinsic distance less than
r from x). We denote by U(L) the space obtained after this identification.

The space U(L) has a natural differential structure and a projection
m : U(L) — M, defined explicitly by n(y,z) = x, which is a local dif-
feomorphism at any point. Moreover, U(L) can be given the structure of
abstract Riemannian manifold by taking pull-back of the structure in M by
the restrictions of 7 to the sets Bs(x).

As informally stated before, let V(L) be the manifold which is the disjoint
union of the manifolds U(f™(L)) for every integer n. Note that in the case L
is fixed by f then V(L) has only one connected component. Otherwise V(L)
has countable connected components, namely {U(f"L)}nez. Note also that
the projection 7 : V(L) — M is well defined as it is well defined on each
connected component.

For every e < ¢ let us denote by Uc(L) the subset of U(L) given by the
points at distance less than € from L. That is, Uc(L) = | J,c; Be(z) < U(L).
Accordingly let V(L) be the subset of V(L) whose connected components
ate {U(f"L)}nez.

Recall that the C° distance do(f,g) is smaller than %2 by property (P5).
Recall also that by property (P1) there exists a constant x > 1 satisfying
that max{||Dg', |, |Dg'; |} < & for every ¢’ € Us. Let us fix from now on

0
61:%'

Claim 4.5.1. For every leaf L of W€ the maps f and g lift to maps

fr9: Vs (L) = V(L)
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such that the connected component Us, (f"L) is sent by f and by g inside
Us(f"*1L), and is sent by f~! and g~* inside Us(f"'L), for everyn e Z.

Proof. First of all, note that f lifts directly to | J,,., f"L < Vs, (L).

For y € Us,(f"L) let = be a point in f"L < Uy, (f™L) such that d(z,y) <
d1. Let us denote ¥y = 7(y) and ' = w(x). Since y' € By, (2') then
d(f(y), f(z")) < kd1. Moreover, as f and g are g—close by property (P5)
then d(f(y'), 9(v')) < 6/2. We conclude that f(y') and g(y') lie Bs(f(2')) as
6 + 5/2 <.

As 7 is bijective from Bs(f(z')) to Bs(f(x)) then f(y) and g(y) can be
lifted to Bs(f(x)) to points f(y') and g(y'), respectively. In this way, it is
easy to check that f and g are well defined C'! maps from Vs, (L) — V(L). O

The proof of the theorem is going to show that h(L), the continuation
of L, will be the projection by 7 of set of points in Uy, (L) whose g orbit in
V(L) is well defined for every future and past iterate (see Remark 4.5.5).

Notations. We will denote by E? and E?Y the f-invariant and g-invariant
bundles in M, respectively, for every o € {s,c,u,cs,cu}. Analogously for
the f and g-invariant foliations W and W?9. Note that we can lift these
bundles and leaves to V(L). Let us denote these lifted bundles as E? and
Eo9, and the lifted foliations as W7 and W79, respectively. Note that they
are (locally) invariant wherever f and g are well defined. The same for the
f and g-invariant cone-fields € lifting to cone-fields €7.

Part 2: Graph transform for cu-strips

Let us fix from now on the constant d9 > 0 such that dy = %1 = %.

For every leaf L of W¢ and every e < d5 let us define US“(L) in U(L) as
US(L) = W9 (W (L)).

Note that the unstable plaques are considered with respect to f and the
stable plaques with respect to g. This is not essential but will make some
arguments simpler.

Recall that by Lemma 2.0.1 the sets Wg(L) are C'! submanifolds tangent
to E“. These sets are what we call cu-strips. As the g stable local manifolds
W29(z) are transverse to W¥(L) for every & € WY(L) it is easy to check that
U*(L) is an open subset of U(L).

Note that U“(L) is a subset of Us(L) since every point in U*(L) can
be joined to a point in L by a concatenation of an g-stable and an f-unstable
arc of lengths less than e. Moreover, by property (P4) it follows that U/, (L)
is contained in UZ“(L).
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Let us define V*(L) as the subset of Vj, (L) which is the union of the
sets US*(f™L) for every integer n. And let us define

- [ W5, (f L)

nez

the projection along local stable g-plaques.

Let d3 > 0 be the constant 3 = j—i. Recall that the C? distance do(f, g)
is smaller than % by (P5). By the same arguments as in Claim 4.5.1, the
image by g of Uss, (f"L) is a subset of Uy, (f""L) for every n € Z. Since
Ugt(f"*1L) is contained in Uspsy(f™L) then:

Remark 4.5.2. The map g from Vg*(L) to Vi*(L) is well defined.

Let us consider the set of continuous functions

(L) = {& : | Wg,(f"L) = Vi2*(L) such that 7° o & = id}.

nezZ

Note that if V(L) has many connected components then £ € II°*(L) is given
by functions €|Wg3(fnL) t W, (f"L) - Ug(f"L) for each n € Z.

Given two méps &, ¢ in TI°(L) we can define a distance between them

d(&,€') = sup ds(§(2), §'(2))

where dy denotes the distance inside the plaque W;f () and the supremum
is taken over all z in ez W§,(f"L).

The zero-section is the function &% in II®(L) defined by £°(z) = z for
every x. For every £ in II°“(L) we denote by graph(§) the set which is the
image of £. For simplicity, let us denote from now on by ¢ the C° distance

dO(f7 g) .
Claim 4.5.3 (Graph transform).

1. The image by g of graph(£%) induces a new map g&° in (L) such
that graph(g€®) < g graph(€°) and d(£°, g¢0) < 26'.

2. Moreover, for every & in II(L) such that d(£°,€) < d3 the image by
g of graph(§) induces a new map g§ in (L) such that graph(g§) <
ggraph(€) and d(€°, g€) < 28" + Ad(€°,€).

3. Finally, for every &, & in TI°(L) with d(&,£%) < 03 and d(¢',£°) < &3
we have d(g€, g¢') < Ad(&,£').

Proof. Let us start by looking at the image by g of the zero section £°. Recall
that graph(¢°) is the union in n € Z of the C* submanifolds Wgs( f"L). Let

80



n be any fixed integer. Let us see that the image by 7% o g of ng(f"L)
covers ng (f"*'L), and that 5o g restricted to ng (f™L) is injective. As a
consequence the map ¢g&° at any point y € W};‘s (f"*1L) will be unambiguously
defined as the unique point in the image by g of W};‘S( f™L) whose projection
by m° is y. It will be clear from the construction that g¢°(y) defined in this
way will vary continuously with y.

Note that by property (P2) the set Wg—lag(anL) is contained in the
image by f of ng (f™L). Thus for every y € WK_I(SB (f"1L) there exists 3/
in ng (f"L) such that ) =uy. i

As W§ (f"L) is a C' submanifold tangent to the cone field C* it follows
that its image by ¢ is also a C'!' submanifold tangent to e, By property
(P4) it follows that 7° o g has to be injective restricted to 17\73‘3 (f™L).

Since f(y') and g(y') are at distance less than ¢’ = dy(f, g) then again by
property (P4) it follows that Wg’&g, (9(y")) and W%‘,(y) intersect. In particular
7% 0 g(y') and y need to be at distance less than 24’ for the intrinsic metric
of WEQ( f"L). We conclude that m* o g o f~! is a well defined continuous
and injective function from Wi{,l(gs(f”HL) to Wgz (f"T1L) that is 26’-close
to the identity.

For every y € ng(f"*lL) the ball of radius 104’ in \7\73‘2 (f"*1L) is con-
tained in WY_,; (f"L) by property (P5). By a standard topology argument
using that w80 go f is 28’-close to the identity we obtain that y needs to be in
the image of this ball. So the image by ws0g of ng (f™L) covers W};‘3 (f"*iL)
as we wanted to prove. This settles (1).

In order to see (2) suppose & is not the zero section but d(¢°,¢) < ds.
For simplicity let d denote d(£9,¢). For every w in \7\775”5 (f™L) the point &(w)
lies in W59 (w) so g o £(w) needs to lie in WJ(g(w)). Moreover, as seen
before, the point g(w) lies in Wy (7° o g(w)). Tt follows that g o {(w) lies in
W30 © glu).

As the image of 7° o g o ¢ coincides with that of 7% o g it follows that
graph go¢ defines a function g¢ in I1°*(L) such that d(£Y, g&) < 26" +Ad(€9,€).
This proves (2).

Finally, (3) follows immediately from the previous arguments. O

Notations. Let us denote g(g€®) by ¢2¢° and, inductively, g(g"¢") by gn*t1¢0
for every n > 0.

From (1) and (2) of the previous claim it follows that d(£°,g¢%) < 26,
then d(£9, g%¢%) < 28" + A28" = 28'(1 + \), and inductively

d(g(),gn{()) < 2(5/(1 —+ )\ + ...+ )\n—l)

for every n > 0. Note that ¢g"¢® € TI®%(L) is well defined for every n > 0 since
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8 =do(f,g) satisfies 6'(1 + A +...) < 64% < 03/2 by property (P5).
Moreover, by (3) of the previous claim it follows from d(£°,g¢%) < 26’
that d(g&, g?¢%) < 26'\, and inductively

d(gn§079n+1€0) < 26/An

for every n > 0.
Hence we obtain a well defined limit function {* € II°*(L) given by

€°(x) := lim g"¢*(x)

for every @ € |J,ez W (f"L). Clearly £* satisfies d(¢°,£%) < 20'(1 + A +
.. ) < 53/2

Moreover, note that g¢* = £% since the image by g of ¢"¢%(z) coincides
with ¢"*1&9%(n o f(z)) and the image by g of lim,, ¢g"¢%(x) coincides with
lim,, g"*1&%(7% o f(x)). In particular

graph g§™ < g(graph{™).

As g ! expands g-stable arcs uniformly then the points in graph((®) are
precisely the points in Vs, (L) whose g backwards orbit is well defined for
every past iterate in Vj,(L).

Claim 4.5.4. The set graph £® is a C'-submanifold tangent to Egu

Proof. We will make a local argument near every x in L. Let us consider
the local exponential map exp, : B§* x Bf < T, M — M where B§" and B}
denote the balls of center z and radius ¢ in E(x) and E*(x), respectively.

Let E° and € denote the pull-back by exp, of the bundle Eg“ and the
cone field C*.

Let S, c B§" x B§ denote the preimage by exp, of graph g"€0 for every
n > 0. Since graph "¢ is a C! submanifold tangent to the cone field Dg" @
then by property (P4) there exists € > 0 small enough so that the sets
{z} x B§(0) intersects .S,, and this intersection point is a unique point for
every z € B2,

This defines C'! functions

Yy B — Bj

for every n > 0 given by 9, (2) := ({2} x B§) n Sy.

For every z € B it is immediate to check that the limit 1 (2) =
lim, ¢, (2) exists and defines a function 1 : B — Bj. Moreover, by
property (P3)(3) the sequence D(1,,).(E(x)) needs to converge uniformly
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to E%(1hy(2)) for z € BOY.

We obtain that 1 is of class C' and that D1y (E®(z)) is equal to
Eg“(woo (2)) for every z € BS* by the following standard fact from multivari-
able calculus that is a consequence of Arzela-Ascoli’s theorem:

If oy : U c R — R% s a sequence of C' maps defined in an
open subset U < R™ such that:

e The limit Yo (x) := limy, Yy, () exists for every x € U.

o The limit A(x) := lim,, Dy, given by the rule (A(x))i; =
limy, (Dt )i; exists for every x € U, wvaries continuously
with @ and sup,er; [ Dot — A(2)] = 0.

Then g : U € R — R 4s a C' map and Dyt (x) = A(z) for
every x € U.

This proves that graph £% is a C''-submanifold tangent to E;“.

Part 3: Construction of h and p

For every leaf L of W¢ we have constructed a limit map £* in I1¢*(L) such
that d(£°,£%) < d3/2. As this limit map corresponds to a limit graph for cu-
strips let us rename it as £€£. And let us also rename by £2, the zero-section
.

Analogously as before one can define neighborhoods U §;‘( f"L) for every
n € Z, amap 7", a family of maps II1°°(L) and a limit map &% for cs-strips
satisfying analogous properties than the cu ones (interchanging the roles of
g and g~ 1).

Following Claim 4.5.4 we obtain that the intersection

graph(&es) N graph(&eu)

defines a C! manifold in V(L) that is g-invariant and tangent to Eg. Let us
denote by L' the connected component of this intersection that lies in U(L),
and in general let us denote by (f™L)" the one that lies in U(f"L).

Remark 4.5.5. Note that from the properties of {2 and &%, (see, in partic-
ular, the discussion before Claim 4.5.4) the points in L’ are characterized as
the points in V(L) for which its g-orbit is well defined for every future and
past iterate.

The projection 7(L') in M is going to be h(L), the continuation of L.
Let us see how we can construct h : M — M and p : M — M so that the
properties detailed in the statement of the theorem are verified.
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For every L in W€ let us start by defining a map hy from L to L' in U(L).
For every x € L we define hy(z) € L' by

hi(z) := &5 o 0 £2,(2).

In other words, hi(x) is the unique point in L' satisfying that ng (x) and
Wg‘;g (h1(x)) intersect. As L' is tangent to E%Y then Wg?(L') is tangent to
E9 by Lemma 2.0.1. This justifies why the intersection of Wi 9(L') with
W5(z) is a unique point.

It is immediate that hy is continuous. Moreover, by property (P4) it is
easy to check that for every z,y € L:

dr(xz,y) = 03 implies 03/2 < dp/(hi(x),h1(y)) < 203 (4.5.1)

In particular, hy continuous and (4.5.1) imply that h; from L to L’ is also
surjective.

Let us see now what happens when we iterate by g. Since g graph(&.s) <
graph(&.s) and g ! graph(&.,) < graph(&.,) it follows that

gL' = (fL)".

Given z in L the point h;(z) lies in L’ and the point f(z) lies in fL. Then
gohi(z) and hy o f(x) both lie in gL' = (fL)". We want to justify that the
distance between g o hi(x) and hy o f(z) inside (fL)" needs to be small.

Indeed, note first that d(f(z),g(x)) < ¢’ (recall that &’ denotes dy(f, g))-
Then, on the one hand h; o f(x) is given as the unique point in (fL)" such
that Wgsg(f(x)) and Wgég(hl o f(x)) intersect. On the other hand, hi(z) is
given as the unique point in L' such that Wi (z) and W7 (hi(x)) intersect,
and then by the g-invariance of the foliations W%9 and W9 one obtains
that Wgég(g(x)) intersects Wg‘;g(g o hi(z)). That is, g o hi() is given as the
unique point (unique by the same reasons a before) such that Wy (g(z)) and
W5:9(g o hi(x)) intersect.

By property (P4) one can derive the following two properties. If two
points z and w satisfy d(z, w) < ¢ then W;;)g(z) and ng (w) are at Hausdorff
distance less than 375’. And if two points w and z lie in (fL)" at distance not
smaller than 20’ then ngg (z) and W?f (w) are Hausdorfl' distance greater
than 37‘5,

By applying the two properties above together with the properties that
d(f(z),g(z)) < 5~', that Wg;’(f(a:)) has no trivial intersection with Wg‘ég(hl o
f(z)) and that W§?(g(x)) has no trivial intersection with Wg(g o hi(x)) ,
one obtains that

gohi(z) € (fL)og (M1 o f(2)) (4.5.2)
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for every z € L.

A priori hy from L to L' may not be injective. However, by a ‘regulating’
process we can rely on h; to construct the desired C' diffeomorphism h from
LtoL. Lety:R — L and« : R — L' be parametrizations by arc-length
and let ¥; : R — R denote the map

Uy(t) = v lohio ~(t).

We can assume that L and L' are parametrized with the same orientation,
that is, such that lim;, o ¥1(t) = +o0. Note that by (4.5.1) it follows that

%3 < ‘Ifl(t + (53) — \Ifl(t) < 203

for every t € R. If we define ¥ : R — R as

1 t+673
U(t) = — Uy(s)ds
3 %

it follows that the derivative D W(t) exists everywhere, varies continuously
with ¢ and satisfies 3 < D ¥(t) < 2. Defining h as

hz) =7 oVory Hz)

for every # € L we conclude that h|;, : L — L' is a C' diffeomorphism
satisfying

1

3 < |Dh(v9)] < 2

for every unit vector v¢ in E-.
Moreover by (4.5.1) it follows that

h(z) € Ly, (h1 ()

for every « € L. Since g o hi(x) lies in (fL)}5(h1 o f(z)) by (4.5.2) and
20" + 203 < 6 then
goh(x) e (fL)5(ho f(x))

for every z € L.
If we define p: L — L as

p(zr)=h"togoho f7(z)

it follows that p is a C! diffeomorphism that is d-close to the identity and
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satisfies
hopo f(x) =goh(x)

for every z € L.

It remains to ‘descend’ h and p to M. By a little abuse of notation let
us denote by h and p the maps in M given by mrohon ' and mropon !,
respectively.

All the properties claimed for A and p are immediately satisfied except
maybe for the ones contained in the following two claims which may require

further justification.

Claim 4.5.6. The map h : M — M is continuous, surjective and §-close to
the identity.

Proof. Tt is easy to check that h is d-close to the identity: Since ng (x)
and Wg?(hi(x)) intersect for every x it follows that hy is 293 close to the
identity. Since h(x) lies in Los,(h1(x)) we conclude that h is 463 < § close to
the identity in M.

The remaining of the proof is devoted to show that h is continuous. The
surjectivity of h is a direct consequence of h continuous and J-close to the
identity.

Note first that A1 also descends naturally to hy : M — M and that if hy
is continuous in M then h will also be continuous as the regulating process
has to preserve continuity. So we will show the continuity of h;.

The map h; has been defined by means of maps £2, 7" and £, depending
on the ‘unfolded’ tubular neighborhoods U(L) for each leaf L € W€¢. These
neighborhoods are a priori disjoint for different leaves of W°. We need to
somehow merge them in M to be able to compare them.

For every x € M let L(x) denote the leaf of W¢ through x. Let us define
the map £, , : Wi, (Lo, (z)) © M — M as the map such that ££|W"gg(L53(z)) in
Us,'(L(x)) is a lift of it. Analogously we define the map &7, : Wy, (Ls;(2)) —
M for every x € M.

Let my : Bs,jo(w) — W3, (Lsy(w)) be such that 7y(z) is the intersection
of Wi9(2) with W5 (Ls,(2)) for every z € Bs,po(x). Again, 7r“|363/2(m) in
Usy'(L(x)) is a lift of w3

For every x € M we have

h(e) = £ 0 Ty 0 €25 4().

Let us see that if 2, — x then

n
fgg,:pn © W;n © ggz,xn (.In) - 52@ o 7'('}; © fgj,x(ﬂ?)
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It will be enough to show that:

1. If z, & z and y,, > y then 7 (y,) 5 T4(y).

2. If z, © z and z, > z with z, € Wi, (W5, (,,)) and z € W§ (W§, (),

then £2 . (zn) = €% ,(2). Analogous property hold for cs maps.

Let us see first why (1) and (2) are enough for proving h; continuous.
Indeed, if 2, - = in M then by (2) for z,, = z, and = = z it follows that
Eonn (Tn) LN $on(®). Then 73 o€ () converges with n to w0 &Z ()
by (1). And again by (2) for e¢s maps with 2, = 7y o &% . (z,) and 2 =
Ty © &on.n(2) We conclude that €5 oy o &0 (z,) converges with n to
€2, oo s (a).

The proof of (1) is immediate by the regularity of the foliations W*¢ and
wes,

The remaining is devoted to showing (2). Informally, the key property
we will use is that, by the regularity of W¢, for every R > 0 and p > 0 the
sets Lr(z) and Lg(zy) are at Hausdorff distance less than p for every large
enough n. This will enable us to ‘lift’ to U(L(x)) long pieces of the leaf L(x,,)
and to ‘see’ in U(L(x)) the first iterates of the cu graph transform for L(x,,).

Suppose from now on z, — = and z, — z with z, € Wi, (W5, (x,,)) and
z € Wi (Wg, (z)). Given € > 0 let us see that d(£7, ;. (2n), &0 4(2)) < € for
every n large enough. The proof for cs maps is analogous.

Let us assume without loss of generality that € < d3/2. Recall the inclu-
sions Uy, a(L(y)) < U3 (L(y) < Uzt (L(y) © Usy(L(y)) for every y e M.

For every n large enough the point x,, lies in Bs, /2(37) c M so we can lift
it to By, a(w) < Us,jo(L(x)). For simplicity, let us call these lifts of x,, with
the same name, x,,.

For every y € M recall that Wgs(L(y)) denotes the cu-strip in U§"(L(y)).
For every R > 0 let Wj, (Lr(y)) denote the ‘truncated’ cu-strip that is the set
U.e La(y) Wi, (2). By the regularity of the foliations W and W* the following
is immediate to check:

Remark 4.5.7. Suppose R > 0 and p > 0. For every x,, close enough to
x the projection to M of the truncated cu-strip W};‘g(LR(xn)) can be lifted
to be a subset of Ujs. (L(z)) that is at Hausdorff distance less than y from
W4, (Lr(x)) and such that x;, lifts close to z in Usg: (L(z)).

Recall that for every y € M the map £, in II°*(L(y)) is defined as a limit
of the maps ¢gF¢d, for €2, the zero-section in II°(L(y)). Let us denote the
zero section as ggu,y and the maps ¢*¢0 as §fu’y to highlight the dependence
on the point y.
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Recall that by Claim 4.5.3 it follows that
d(gh, €2 ) <28 (AF £ AR )

for every k > 0. Hence for every pu > 0 there exists K > 0 independent of y
such that

ek, . €5,) <u

for every k > K.
Let Ky > 0 be such that

20" (Ao o Ao+ Ly < /6. (4.5.3)

For every w € M and z € Wg‘g) (L(w)) let 2! denote the point in the
cu-strip of f~1L(z) such that g(z~!) = &}, ,,(2). Analogously, let 2% be the
point in the cu-strip of f~¥L(w) such that g*(z7*) = §fu’w(z). From the
construction of ¢ it follows that z~*~! is contained in ng,( F~Hw™*)) for
8" = do(f,g). That is, (27%)4=0 is a backwards 24’-pseudo orbit for f with
jumps in local cu-plaques.

Recall that the maximal expansion possible for df ! is given by a constant
k > 1. It follows that, independently of w, for every K > 0 there exists a
constant R(K) > 0 (in terms of x and ¢’) such that z=¥ lies in the truncated
cu-strip \7\73”3 (LR(K)(ftk(w))) for every k € {0,..., K}. This is satisfied for
every w € M and z € Wy (L(w)).

Let N > 0 be such that, by Remark 4.5.7 for Ry = R(Kp) and po =
93/100, the truncated cu-strip Wg3 (Lg,(f~%(xn))) can be projected to M and
then lifted to Usj (L(f —k(x))) so that it gets at Hausdorff distance less than
o from WgS(LRO(f_k(:I:))) for every k € {0,..., Ko} and every n > N. For
simplicity, let us call these projection-lifts to Ugg. (L(f —k(x))) of the truncated
cu-strips WgB(LRO (f~*(x,))) with the same name ng (Lr,(f%(zn))).

It follows that the maps £, can also be lifted to Ugg. (L(z)) for every
n = N. The domains of such maps being contained in the truncated cu-strips
W§3(LRO (z1))- Analogously, the maps §en,z, can be lifted to Usg, (L(x)) with
domain contained in W§ (Lr,(25)). Again, for simplicity let us call these
lifted maps with the same names £, , and &7 , .

We have to show that d(£7, ;. (2n), €02 (2)) < € is satisfied in Ugg! (L(x))
for every n = N.

Note that, modulo taking N larger, for every n > N the set Wg’gg (zn)
intersects Wy (L(z)) and that this intersection point is unique. Let us call it
W,

As z, & z then w, - z. Since §en,z 18 continuous in WES(L(x)) it
follows that d( © (z),{’&'j’x(wn)) < €/2 for every n = N, by taking N larger

cu,x
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if needed. It remains to show that d(¢% . (zn),&% .(wn)) < €/2 for every
n>=N.

The points z,* are well defined points in 25, ( f*L(x)) satisfying that
g (2, %) = €k, ., (zn) for every k € {0,...,Ko}. The points w,* are well
defined points in fg(f*kL(ac)) satisfying that g% (w,*) = €&, . (wy) for every
ke {0,...,Ko}. The key point to note is that the above implies

w,* e Wi (2,%) (4.5.4)
for every k€ {0,..., Ko} and n > N. This is because, as w,, lies in Wg;g(zn),
then §fu7xn (zn) and §fu7x(wn) lie in the same W*9-plaque of Us§, (L(x)). Then

sU

2,1 and w, 1, which are two points in 253(f*1L(x)) satisfying that g(z, ')
and g(w,') are in the same W9 plaque of Us¢ (L(x)), need to lie in the
same W?%9 plaque too. Inductively, 2, k and w,, k¥ need to lie in the same
Ws9-plaque of 55 (f ~kL(x)). As all of these W59-plaques have diameter
less than 403 then (4.5.4) follows.

For k = Ko in (4.5.4) it follows that w;° lies in W3 (z;%0). Then
g% (2,7 K0) lies in WiiiggAKo (9%°(2;,%0)). Recall that g0 (z,%0) = &80, (zy)
and gfo(w;K0) = ¢Ko (w,). Using (4.5.3) and the fact that 26’ < 483 by

- Scu,x

property (P5) it follows that

A0, (), €80, (wn)) < €/6

for every n = N.
Again by (4.5.3) it follows that

A0, (2), 60 L(wn)) < €/6 and  d(EL,, (2n), €% 1. (2n)) < €/6

for every n > N .
By triangular inequality (two times) we conclude that

d(ggzj/,,x (Z’fl)7 ggz,z (U}n)) < 6/2

for every n = N.
This shows that h is continuous and ends the proof of the claim. O

Claim 4.5.8. The map p: M — M is a homeomorphism.

Proof. Recall that we have already seen that p(L) = L and p| : L — L
is injective and d-close to the identity for every leaf L € W¢ And that
hopo f =goh is satisfied.

It remains to show that p is continuous as p continuous, injective and §
close to the identity implies p homeomorphism.
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Suppose z, - x in M. Let us see that po f(z,) - po f(z). As f is
continuous this implies p continuous.

As z, = x then go h(x,) - g o h(z) by the continuity of h and g. Since
hopo f=goh it follows that hopo f(x,) has limit ho po f(z).

As z, -5 z and po f(z,) lies in W§(f(z,)) for every n it follows that
every accumulation point of the sequence p o f(x,) must lie in W§(p o f(z)).
Because of § < |Dh|ge| < 2 the map h is injective restricted to W§(po f(z)).
Hence the only way that ho po f(x,) has limit ho po f(x) is that po f(xy,)
converges to p o f(x). This shows the continuity of p and ends the proof of
the claim and of Theorem 4.2.3. U

4.6 Proof of Theorem 4.2.4: Continuation of com-
plete C'! center immersions

Suppose n : R — M is a complete C'! immersion tangent to E% as in the
hypothesis of Theorem 4.2.4. As in the proof of Theorem 4.2.3 one can
construct an abstract manifold U(n), informally an ‘unfolded neighborhood’
of 7, given as the disjoint union of the sets {Bs(n(t))}wer with the points in
Bs(n(t)) and Bs(n(s)) identified if and only if the piece of n-orbit from 7(t) to
n(s) has length less than 40. Then in U(n) there exists a natural projection
7 : U(n) = M which is a local diffeomorphism at any point and U(n) can be
given the structure of abstract Riemannian manifold by taking pull-back of
the structure in M by the restrictions of w : U(n) — M to the sets Bs(n(t))
for t e R.

Analogously as for Theorem 4.2.3 one can construct a manifold V(n)
whose connected components are U(f™ on) for every n € Z, so that g can
be ‘lifted’ to V(n) (sending points from one connected component U(f™ o n)
to the next one U(f"*! on) for every n € Z) so that the graph transform
method (Lemma 4.5.3) can be performed in V(7).

One obtains the existence of a sequence 7, : R — M of complete C!
immersions tangent to Ej satisfying (4.2.1) and (4.2.2) of Theorem 4.2.4 by
exactly the same arguments already seen for the continuation of W¢-leaves
in the proof of Theorem 4.2.3.

For the uniqueness part of Theorem 4.2.3, modulo reparametrizations,
note that by the same arguments showing that the continuation h(L) of a
center leaf L is characterized as the only points in U(L) for which its g orbit
is well defined for every backwards and forwards iterate (see Remark 4.5.5) it
follows that the image of every lift of 7o to U(n) coincides with the points in
U(n) whose g-orbit is well defined in V'(n) for every backwards and forwards
iterate (in particular, there exits a unique lift).
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Then if 7/, : R — M is another sequence of complete C'' immersions
tangent to Ej satisfying (4.2.1) and (4.2.2) one deduces that the lift of v
to U(n) has to have the same image as the lift of 7y. It follows that v is a
reparametrization of yg and, by (4.2.2), that 4/, is a reparametrization of ~,

for every n e Z.
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Chapter 5

Global stability

5.1 Introduction

Recall that PH._1 (M) denotes the set of partially hyperbolic diffeomorphisms
with one-dimensional center in the closed manifold M. The set PH._; (M)
is an open subset of Diff' (M) for the C! topology.

The main goal of this chapter is to show that discretized Anosov flows
constitute a C! open and closed class of diffeomorphisms in PH.—1(M). As
a consequence, it also follows that leaf-conjugacy is preserved among whole
connected components of discretized Anosov flows.

Theorem 5.1.1. The set of discretized Anosov flows is a C* open and closed
subset of PH._1(M).

Corollary 5.1.2. Two discretized Anosov flows in the same C' connected
component of PH._1(M) are leaf-conjugate.

Recall that an f-invariant center foliation W€ is called uniformly compact
if every leaf of W€ is compact and the leaf volume function x — vol(W¢(z))
is bounded in M. Analogous statements are shown to happen for these type
of systems:

Theorem 5.1.3. The set of diffeomorphisms in PH._1 (M) admitting an in-
variant uniformly compact center foliation form a C' open and closed subset

of PH._1(M).

Corollary 5.1.4. Suppose f € PH._1(M) admits an invariant uniformly
compact center foliation WS and g € PH._1(M) lies in the same Ct con-
nected component of PH.—1(M) as f. Then g admits an invariant uniformly
compact center foliation Wy such that (f, W$) and (g, Wg) are leaf-conjugate.

The main example of a uniformly compact center foliation is given by
the center foliation W€ of a partially hyperbolic skew-product. In this case
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the leaves of W€ are the fibers of a fiber bundle structure in M and the leaf-
volume function is, in fact, continuous. It follows immediately from Corollary
5.1.4 that partially hyperbolic skew-products with one-dimensional center
constitute a C! open and closed class in PH.—1(M).

Finally, in the last section of this chapter we show that unique integrabil-
ity of the center bundle is also preserved among whole connected components
of discretized Anosov flows and of partially hyperbolic diffeomorphisms ad-
mitting a uniformly compact center foliation.

By constructing an example of a discretized Anosov flow with non-uniquely
integrable center bundle (see Example 5.4.3) it follows that there exists C!
connected components of discretized Anosov flows that do not contain the
time 1 map of an Anosov flow.

5.2 Global stability of discretized Anosov flows

As shown below, Theorem 5.1.1 and Corollary 5.1.2 are immediate conse-
quences of the following.

Proposition 5.2.1. For every fo € PH.—1(M) there exists a C*-neighborhood
W of fo such that, if f € W is a discretized Anosov flow, then every g € U is
also a discretized Anosov flow.

Moreover, if ch and Wy denote the flow center foliations of f and g,
respectively, then (f, W;) is plaque expansive and (f, W‘J’}) and (g, Wg) are
leaf-conjugate.

Let us first mention how Theorem 5.1.1 follows from Proposition 5.2.1.

Proof of Theorem 5.1.1 assuming Proposition 5.2.1. Suppose fy is a discretized
Anosov flow. By Proposition 5.1.1 there exists a neighborhood U of fy such
that every element of U is a discretized Anosov flow. This proves the open
property.

Suppose now that (f,) is a sequence of discretized Anosov flows converg-
ing to fo € PH.—1(M). Let U be as in Proposition 5.2.1. For some large N
the map fn lies in U and, as a consequence, fy is also a discretized Anosov
flow. This proves the closed property. ]

Let us see now how Corollary 5.1.2 is also immediate from Proposition
5.2.1.

Proof of Corollary 5.1.2 assuming Proposition 5.2.1. Suppose f and ¢ are
discretized Anosov flows in the same C! connected component of PH.—1(M).
Let W‘J’} and W denote their flow center foliations, respectively.
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Let {ft}ie[o1) be a path in PH._;(M) joining fo = f with f; = g. For
every fi let U(f;) be a C! neighborhood as in Proposition 5.2.1. By taking a
finite cover of {fi}se[0,1] Dy open sets U(f¢) one can argue inductively to show
that (f, W$) and (g, Wg) are leaf-conjugate. O

The rest of the section is devoted to prove Proposition 5.2.1. We will
crucially use Theorem 4.2.3 and Lemma 4.3.3 from Chapter 4. And we will
assume familiarity with the terminology used in Section 4.3.

5.2.1 TUniform plaque expansivity for discretized Anosov flows

The notion of J-plaque expansivity was introduced in Definition 4.3.2. For
every neighborhood Us(fy) as in Lemma 4.2.1 we will consider a subset of
Us(fo) satisfying a stronger version of property (P4). This will allow us to
show in Proposition 5.2.4 that any discretized Anosov on this new neighbor-
hood has to be J-plaque expansive.

As discussed in Remark 4.2.2, the next lemma can be derived from the
proof of Lemma 4.2.1.

Lemma 5.2.2. In the setting of Lemma 4.2.1, one can furthermore require
that the following reinforcement of property (P4) is satisfied:

(P4’) The metric and the cone fields (C*,C") and (C°*,C") are (;&B)-nearly

euclidean at scale k200.

It is immediate to check the following consequence from (P4’).

Lemma 5.2.3. Suppose fo € PH.—1(M). Consider a metric in M, a constant
0 < A <1 and a C*-neighborhood Us(fo) = PHee1(M) of fo as in Lemma
5.2.2. Then for every

- map f € Us(fo),
- pair of points x € M and z' € Wi(z) with ds(z,2") = 106,

- pair of C' curves n and 1’ of length less than 206, tangent to €% A G
with x € n and ' € 17/,

it follows that
d(n,n') > A(10),

where d(n,n') denotes the infimum distance between points in n and 1.

The following is the goal of this subsection.
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Proposition 5.2.4 (Uniform plaque expansivity for discretized Anosov flows).
Suppose fo € PH.—1(M). Consider a metric in M and a C' neighborhood
Us(fo) € PH.—1(M) of fo as in Lemma 5.2.2. If f is a discretized Anosov
flow in Us(fo) and W€ is the flow center foliation of f then (f, W) is d-plaque
expansive.

Proof of Proposition 5.2.4. By Definition 3.2.1, Proposition 3.2.2 and Re-
mark 3.2.3 the map f can be written down as f(z) = P2 (x) for 7: M —
R~ continuous and ¢f : M — M a unit speed flow whose flow lines are the
flow center foliation W€ of f.

The following is a key claim showing that, even taking into account pos-
sible ‘backwards jumps’, every d-pseudo orbit ‘advances forward’ in the di-
rection of the flow. Roughly speaking this allows us to bring into play the
expansivity of the topological Anosov flow ¢f to obtain expansivity for pairs
of §-pseudo orbits belonging to different center leaves.

Claim 5.2.5. The function 7 is always larger than 104.

Proof. Suppose by contradiction that 7(x) < 100 for some x € M.

For every y € Wi,5(z) let v, : [0,1] — W°(y) be the constant speed
reparametrization of the piece of p§-orbit from y to f(y). Note that by the
continuity of 7 the length of v, varies continuously with y.

By property (P4’) the image of 7, needs to be a segment from W{, ()
to Wi,s(f(x)), contained in Bogs(x) and whose length does not surpass 124.
In particular, the image of v, is contained in W§,5(y) for every y € Wi, s(x).

Let us fix yo in Wi, () such that dy(z,y0) = 100. It follows that -, is
a curve joining yo to f(yo), where d(f(x), f(y0)) < ds(f(2), f(yo)) < A(10).

By Lemma 5.2.3 the sets W5 s(x) and W 5(y0) must be at distance
greater than A\100. However, we have just shown that f(z) € W§5(x) and
f(yo) € W5y5(yo) are at distance less than A106. This gives us a contradiction
and proves Claim 5.2.5. See Figure 5.1 for a schematic idea of the argument
used.

Recall that by Proposition 3.4.4 the discretized Anosov flow f is dynam-
ically coherent with center-stable foliation W and center-unstable foliation
W such that W€ = W n W, As stated in the next claim, dynamical co-
herence let us obtain §-plaque expansivity by checking 24-plaque expansivity
inside W and W leaves.

Claim 5.2.6. Suppose the following statement is true: For every (xn)n=0
and (Yn)n=o0 forward 25-pseudo orbits such that xn.1 € W5s(f(2n)), Ynt1 €
WSs(f(yn)) and y, € W (xy) for every n = 0, then yo € Wgs(xo).
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i f(yo)

105 ~ 10 < A109

Figure 5.1: At small scale the bundles E?, o € {s,c,u}, are nearly parallel
and pairwise disjoint for every f near fy. Hence 7 must be greater than
104 to be able to ‘see’ the contraction of rate A € (0,1). As a consequence,
if &' < 109 then every pair of ¢’-pseudo orbits for f advance in the same
direction as the center flow and therefore should eventually separate because
of the expansivity of the center flow.

Suppose that is also true the analogous statement for backwards 26-pseudo
orbits inside W leaves. Then (f, W°) is d-plaque expansive.

Proof. Let (x,)n, and (yn), be a pair of d-pseudo orbits satisfying z,1 €
WS(f(xn)), Yn+1 € W§(f(yn)) and d(zy, yn) < 20 for every n e Z. Let us see
that yo € W5s(z0).

All along the proof of the claim we will implicitly use that, by property
(P4’), at scale k204 the invariant bundles are nearly pairwise orthogonal. It
will be clear on each case that what is stated follows directly from property
(P4’). And we will implicitly use that by dynamical coherence cs (resp cu)
discs are subfoliated by ¢ and s (resp w) discs and that c¢s and cu discs
intersect in ¢ discs.

As d(xp,yn) < 20 one can consider y;, the intersection of W§;(y,) with

Moreover, y;, € W§¥(xy,) implies f(y,,) € Ws(f(x,)) and y;, € Wis(yn)
implies f(y;,) € W245(f(yn)). It follows that f(y;,) is the intersection point
Of W2 () with WES, (/).

The point z,,+1 lies in W§(f(zy)) € W%s(f(2,)) and the point y;,  is
given by the intersection of W5;(yn41) with W (zp41) © Ws(f (). We
obtain that f(y;,) and y/,,; are both contained in W4s(f(z,)). And both
contained in W2, ,(W§(f(yn)) since yn+1 € W5(f(yn)). It follows that f(y},)
and ), 1, which lie in the intersection of W5 4s(WS(f(yn)) € W(f(yo)) and
We4s(f(2n)), are in the same local center manifold. Since yy,41 € WS(f(yn))
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it follows that ;€ WSs(f(y5,))-

Then (y},)n>0 is a forward 20-pseudo orbit with jumps in center plaques,
as well as (xp)n>0, and they satisfy y;, € WS§(x,) for every n > 0. By the
assumption of the statement it follows that y; lies Wgs(xo). Which in turns
imply yo € Wiis(zo) as yj € Wes(yo)-

By defining analogously (y),<o a backward 2-pseudo orbit as the in-
tersection of WEs(y,) with Wg3(x,,) for every n < 0 we conclude that yq lies
WS s(x0). It follows that yo = yf = o, and then that yo lies in W§;(zo). As
we are at scale kK200 then d(xo,yo) < 20 and yo € W§s(xo) imply that yq lies
in W¢s(zo). This proves Claim 5.2.6.

Suppose (xn)n=0 and (y,)n=0 are two forward 20-pseudo orbits such that
Tne1 € Wis(f(xn)), Yns1 € Wis(f(yn)) and y, € Wi (xy,) for every n > 0.
Let us see that yo needs to lie in Wgs(xp). It will be clear that in a simi-
lar fashion one can show the analogous statement for backwards 246-pseudo
orbits if yo is a point in W¢3(zo). By Claim 5.2.6 this will end the proof of
Proposition 5.2.4.

Suppose by contradiction that 1o does not belong to Wgs(xo). As y, €
W3 (z,) we can consider x;, € Wes(xy,) such that y, € Wis(z;,) for every
n = 0. It follows that y,, # ], for every n > 0.

Note that yo € W¥s(x) implies that dy,(f"(yo), f~"(z()) tends to 0 with
n. Since {f~"(yo)}n=0 are points in W¢(yp) and {f"(z()}n>0 are points in
We(xg) it follows that We(xg) and W€(yg) can not be both compact leaves. As
the conditions for (z,,)n>0 and (y,)n>0 are symmetric let us assume without
loss of generality that W¢(xg) is not compact.

For every pair of different points z,2" € W¢(xg) let [z, 2']. and [z, 2').
denote the closed and half-open center segments from z to 2’ inside W¢(x),
respectively.

Let K, be the sequence such that a7, lies in [f5"(zy), J‘"K"Jrl(:vo))C for
every n = 0. By Claim 5.2.5 it follows that K, — +o0.

For every n the point z/, is a point in [f&»(xg), f&»*1(2¢)].. Hence

n

follows that f~%7(y,) lies in WﬁKng’é(f*K"(x' ). And as y, # x, then

n

f~5n(y,) is not contained in [zg, f(x0)].. It follows that

fEn(2]) is a point in [zg, f(z0)]c. Moreover, since y, lies in W¥;(z7,) it

I8 (yn) € Wik 55 ([0, f(0)]e)\[wo, f (z0)]e (5.2.1)

for every n.

As ) is a constant in (0, 1) the sequence A=575§ tends to 0 with n. And
since W¢(yg) contains y,, for every n and is an invariant leaf by f it follows
that f~%7(y,) is a sequence contained in W¢(y). Hence if the following claim
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is true one gets a contradiction with (5.2.1), ending the proof of Proposition
5.2.4.

Claim 5.2.7. There exists € > 0 such that W*([zo, f(x0)]c)\[x0, f(z0)]c is
disjoint from W€(yo).

Proof. Note that a priori one can not rule out that W¢(z¢) and W¢(y) may
be the same leaf. That is why we will show that W¢(yp) is disjoint from
WE([zo, f(z0)]c)\|zo, f(z0)]c and not simply disjoint from W ([xo, f(xo)]c)-

Recall from Proposition 3.7.3 the topological description of the center-
unstable leaves of a discretized Anosov flow in terms of planes leaves, cylinder
leaves, etc.

If W () is a plane leaf the claim follows straightforwardly from Propo-
sition 3.7.3 since in that case the foliations W* and W¢ need to have a global
product structure inside W (x).

If W (x0) is a cylinder leaf then Proposition 3.7.3 shows that the alpha-
limit of yo by the center flow ¢f coincides with the unique compact leaf L
of W¢ contained in W (xzy). Moreover, as W¢(zp) is not compact, then
L # W¢(xp).

In case W¢(yp) coincides with L it is enough to consider € > 0 smaller
than the Hausdorff distance between the compact and disjoints sets W€(yo)
and [xo, f(0)]e-

In case W¢(yp) does not coincide with L then W¢(yg) is not compact and
it is immediate to check that the omega-limit of yg in the intrinsic metric
of W (xy) needs to be empty. This follows from the fact that for every
R > 0 the point f"(yo) can not be contained in W%(L) for arbitrarily large
n > 0. Indeed, if f™(yo) lies in W% (L) for arbitrarily large n > 0 then
yo = f~" o f™(yo), which is not contained in L, would be at arbitrarily small
distance from the compact leaf L getting to a contradiction.

It follows that for some T' > 0 the set W(yo)\W5.(xo) is at positive
distance from the compact set [xg, f(x0)]. in the intrinsic metric of W ().
Say d > 0.

If W%(yo) is disjoint from [z, f(zo)]. it is enough to consider d > € >
0 so that e is smaller than the Hausdorff distance between W.(yo) and
[3707 f(:UO)]c

If W5.(yo) is not disjoint from [z, f(zo)]. then for some x1, 29 € W(xq)
satisfying [z, f(x0)]c © (21,22). the center segment [z1,z3]. needs to be
contained in W%.(yo) since the endpoints of W.(yo) are far from [z, f(xo)]e-
It is enough to consider in this case d > € > 0 so that € is smaller than the
Hausdorff distance between W%.(zo)\(z1, z2). and [z, f(z0o)]c.

This proves Claim 5.2.7 and ends the proof of Proposition 5.2.4.
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5.2.2 Proof of Proposition 5.2.1

Suppose fo € PH.—1(M). Consider a metric in M, a constant §(fy) > 0 and,
for some 0 < & < §(fo), a C! neighborhood Us(fo) = PHe—1(M) of fy as in
Lemma 5.2.2.

Suppose f and g are maps in Us(fy) such that f is a discretized Anosov
flow. Let us see that g needs to be also a discretized Anosov flow.

Suppose f is of the form f(z) = O a) (z) and let W¢ denote the flow
center foliation whose leaves are the flow lines of ¢f.

Let h: M — M and p: M — M be as in Theorem 4.2.3. By Proposition
5.2.4 the system (f, W¢) is d-plaque expansive (in particular it is plaque
expansive, see Remark 4.3.4). By Remark 4.3.1 and Lemma 4.3.3 it follows
that h is a homeomorphism and that h(W¢) = W{ is a g-center foliation such
that (f, W¢) and (g, W) are leaf conjugate. In particular, g(W') = W' for
every leaf W' e W¢.

By Proposition 3.3.1 there exists L > 0 such that f(z) € W¢ (x) for every
x € M. By Theorem 4.2.3 the maps h and p satisfy 1 < \|Dh|E;H < 2 and
hopo f = goh. Moreover, p(W) =W and p is a d-close to the identity map
inside W for every leaf W € W¢. Then g(x) € We a(L+6)

By denoting L' = 2(L + §) we obtain that g individually fixes each leaf
of the center foliation Wy satisfying

(x) for every z € M.

g(x) € Wy 1(2)

for every x € M. By Proposition 3.3.1 we conclude that g is a discretized
Anosov flow. Moreover, it is immediate to check from the proof of Proposition
3.3.1 that Wg needs to be the flow center foliation of g. This ends the proof
of Proposition 5.2.1.

5.3 Global stability of uniformly compact center
foliations

By means of the same type of arguments already used in Section 5.2 for
the case of discretized Anosov flows, Theorem 5.1.3 and Corollary 5.1.4 are
proven once we show the following.

Proposition 5.3.1. Suppose fo € PH._1(M). There exists a C*-neighborhood
U < PH.—1(M) of fo such that, if f € U admits a uniformly compact center
foliation, then every g € U also admits a uniformly compact center foliation.

Moreover, if W? and Wy denote the uniformly compact center foliations
of f and g, respectively, then (f,W$) and (g, Wg) are leaf-conjugate.
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Proof. Suppose fo € PH._1(M). Consider a metric in M, a constant §(fy) >
0 and a C! neighborhood Us,(fo) © PH.—1(M) of f as in Lemma 5.2.2.

Suppose there exists f in Us,(fo) admitting a uniformly compact center
foliation W? Let us see that every g € Us,(fo) admits a uniformly compact
center foliation Wy such that (f, W$) and (g, W) are leaf-conjugate. By
Lemma 4.3.3 it is enough to show that (f, W) is § plaque-expansive as in
Definition 4.3.2.

By Proposition 3.4.4 (see also [BB16, Theorem 1]) the map f is dy-
namically coherent admitting f-invariant foliations W and W such that
WE = W n W,

Note that, as it was shown in Claim 5.2.6 during the proof of Proposition
5.2.4, in order to show that (f, W¢) is d-plaque expansive it is enough to
show that the following property is satisfied (together with its analogous
version for backwards orbits and cs-leaves): if (z,)n=0 and (y,)n=0 are two
forward 26-pseudo orbits such that x,.1 € WSs5(f(x,)), yns1 € W5s5(f(yn))
and y,, € Wi (z,,) for every n > 0, then yo € Wg;(zo).

Suppose by contradiction that in the context above the point 3y does not
belong to W¢s(zo). Again, as in the proof of Proposition 5.2.4 the fact that
yn lies in W3 (z,,) allows us to consider z;, € WEs(x,,) such that v, € Wi (],)

for every n > 0. As yo ¢ Wgs(xo) it follows that y,, # z;, for every n > 0.

/
n

By defining w,, = f~"(z}) and z, = f~"(y,) we obtain that w, and
zn, are points contained in W¢(xo) and W€(yo), respectively, satisfying that
limy, 4 oo d(wp, 2,,) = 0. By considering wq, an accumulation point of (wy, )n=0
and U(wq) a small We-foliation box neighborhood of wy, we obtain that there
exists a subsequence (zy, )r=>0 tending to we such that each z,, corresponds
to a different center plaque in U(we). As (2zp,) € W(yo) and We(yo) is
compact we get to a contradiction since W€¢(yg) cannot contain infinitely

many disjoint plaques of U{wy). O

Let us end this section with a small parenthesis. Whether there exists f
in PH(M) admitting a compact center foliation with non uniformly bounded
volume of leaves is still unknown. Partial non-existence results have been
given in [C15], [G12] and [DMM20] (not exclusively for the one-dimensional
center scenario).

Assuming one-dimensional center it is worth noting that the second part
of the proof of Proposition 5.3.1 only uses that W¢ is compact and that f
is dynamically coherent. Moreover, by Theorem 4.2.3 (1), whenever h is a
homeomorphism the volume of a compact center leaf L and its continuation
h(L) differ at most by a constant factor depending only on the C' neigh-
borhood Usf,y(fo). Thus the following statement follows from the proof of
Proposition 5.3.1.
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Proposition 5.3.2. Suppose f € PH._1(M) is a dynamically coherent sys-
tem admitting f-invariant foliations W and W such that W¢ = W€ n W
18 a non-uniformly compact center foliation.

There exists a C' neighborhood U < PH.—1(M) of f satisfying that every
g € U admits a non-uniformly compact center foliation W such that (f, W¢)
and (g, Wg) are leaf-conjugate.

Proposition 5.3.2 could potentially be useful for bringing into play pertur-
bative techniques to the existence problem of non-uniformly compact center
foliations with one-dimensional center.

5.4 Unique integrability of the center bundle

Given f € PH._1(M) it follows from Peano’s existence theorem that through
every point of M there exists at least one local C! curve tangent to E°.

We say that E€ is uniquely integrable if through every point of M there
exists a unique C! local curve tangent to E° modulo reparametrizations.
That is, if for every n: (=8,0) — M and 7 : (—¢,€) — M a pair of C! curves
tangent to E° with n(0) = v(0) there exists ¢’ > 0 such that n(—¢,4’) is a
subset of v(—¢, €).

It turns out that unique integrability of the center bundle persists along
whole connected components of discretized Anosov flows and of systems ad-
mitting a uniformly compact center foliation (at least for one-dimensional
center):

Proposition 5.4.1. Suppose f € PH._1(M) is a discretized Anosov flow
or admits a uniformly compact center foliation. If E¢ is uniquely integrable
then every every diffeomorphism in the same C' connected component of f
in PHe—1(M) has a uniquely integrable center bundle.

Proof. Suppose {fi}ief0,1] © PHe=1(M) is a C'! path of partially hyperbolic
diffeomorphisms joining fo = f with f; = g.

Suppose first that fj is a discretized Anosov flow such that E% is uniquely
integrable. Let us see that E]Cc1 is also uniquely integrable.

By Theorem 5.1.1 every f; is a discretized Anosov flow. By Proposition
5.2.1, if W9, denotes the flow center foliation f; then (ft,W;t) is plaque
expansive. By Proposition 4.4.3 there exists a C! neighborhood U(f;) <
PH._1(M) of f; such that, if U(f;) contains a system with uniquely integrable
center bundle, then every system in U(f;) has a uniquely integrable center
bundle. As ES is uniquely integrable, the above implies that E% is also
uniquely integrable.
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In case fj is a system admitting a uniformly compact center foliation the
argument is analogous using Theorem 5.1.3 and Proposition 5.3.1 in the place
of Theorem 5.1.1 and Proposition 5.2.1. O

Corollary 5.4.2. Every discretized Anosov flow in the same C' connected
component of PH.—1(M) as the time 1 map of an Anosov flow has a uniquely
integrable center bundle.

Proof. Let ¢ : M — M be an Anosov flow. We can approximate %|t=0
by a C® vector field X so that, if X; denotes the flow generated by X,
then f := ¢1 and g := X; are C'-close (in particular, such that they are
in the same C! partially hyperbolic connected component). Since g is a
discretized Anosov flow with uniquely integrable center bundle (because X
is C™) it follows that f and every systems in the C' connected component
of PH._1(M) containing f has a uniquely integrable center bundle. O

In [HHU16] two types of partially hyperbolic diffeomorphisms in T are
built. Ones which are non-dynamically coherent and ones which are dynam-
ically coherent but such that E¢ is not uniquely integrable. The following
sketches how a discretized Anosov flow with non-uniquely integrable cen-
ter bundle can be obtained as a simple modification of the second type of
examples.

Example 5.4.3 (Example of a discretized Anosov flow with non-uniquely
integrable center bundle). We will start by giving a brief description a dy-
namically coherent example from [HHU16]. For more details see [HHU16]
itself.

The aforementioned partially hyperbolic diffeomorphism f : T3 — T3 can
be considered homotopic to A x Id, where T? is identified with T? x S* and
A : T? — T2 is a linear hyperbolic automorphism with eigenvalues 0 < A < 1
and 1/A.

Denote by E?% the contracting eigenspace of A and by e, a unit vector in
E%. And identify St with R/2Z. Then the map f can be taken to be of the
form

f(x,0) = (Ax 4+ v(0)es, U (6))

for suitable v : S — R and ¥ : S — S! such that v is positive in (—1,0) c
S1 and negative in (0,1) < S', and ¥ is a Morse-Smale map with —1 and 0
as only fixed points that in addition satisfy U'(0) < A <1 < ¥'(—-1) < 1/A.

The sets T2 x {—1} and T2 x {0} are two invariant tori that are fixed by
f, with f acting as A on each of them. The torus T2 x {0} is a cu-torus (it
is saturated by W¢ and W¥-leaves) and the torus T2 x {—1} is a repelling
su-torus (it is saturated by W* and W"-leaves).
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The construction given by [HHU16] shows the following. The map f ad-
mits an f-invariant foliation by circles W¢. Each of these circles is homotopic
to a horizontal circle and intersects in a unique point each torus T2 x 6 for
every § € S'. Thus f is a partially hyperbolic skew-product where W¢ is a
foliation by circles that gives to M a structure of fiber bundle.

Moreover, it can be seen that the bundle E° is uniquely integrable outside
of the cu-torus T2 x {0}. However, remarkably, through each point of T2 x {0}
there exists more than one local C! curve tangent to £°. Namely, through
each point y of T2 x {0} one can consider the center arc corresponding to the
leaf W€¢(y), but also all the center arcs that are a concatenation of a piece of
arc of W€, a center arc through y contained in the cu torus T2 x {0} and a
third piece of W€ arc. See Figure 5.2.

Figure 5.2:

The simple modification of the example proceeds as follows. Let F' :
T2 x R — T2 x R be the lift of f such that F(z,—1) = (Az,—1) for every
x € T2. It is immediate to check that F' commutes with the elements of the
group T' = {(,0) — (A"2,0 + 2n)}nez. Indeed, if v : T2 x R — T2 x R
denotes the generator of T' given by v(x,0) = (Az,0 + 2), then it is enough
to show that F oy = yo F in restriction to T? x {—1}. One the one hand
one has F o ~y(z,—1) = F(Ax,0 + 2) = (A%z,0 + 2 since F' commutes with
(2,0) — (z,0 +2).

As a consequence, F' descends to a partially hyperbolic diffeomorphism
g:N — Nin N = (T? x R)/T.

Let We denote the lift of W€ to T2 xR and Wy the descended one to N. It
follows that W{ is a g-invariant center foliation for g. Since F (We(z, —1)) =
WC(Ax, —1) for every x € T? the leaves of Wg are individually fixed by g
(that is, g(W) = W for every W € W¢).

Moreover, for every z € N the point g(z) lies in W{ ; (z) for L > 0 any
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constant larger than the maximum length of a leaf in W¢. By Proposition
3.3.1 it follows that ¢ is a discretized Anosov flow.

Finally, the property of non-unique integrability of the center bundle is
preserved along the cu—torus that is the projection of T2 x {0} to N since
this is a local property that is preserved by lifts and quotients. Hence EY is
not uniquely integrable.

From Corollary 5.4.2 it is immediate to conclude the following.

Corollary 5.4.4. The C' connected component of PH.—1(M) containing the
discretized Anosov flow given by Example 5.4.3 does not contain the time 1
map of an Anosov flow.

The conclusion is that unique integrability versus non-unique integrabil-
ity of the center bundle provides a way for distinguishing between different
connected components of discretized Anosov flows and of partially hyperbolic
systems in general. The following questions arise naturally.

Question 5.4.5. Is it possible to connect (via a C*-path of discretized Anosov
flows) every discretized Anosov flow with uniquely integrable center bundle to
the time 1 map of an Anosov flow? Are there examples of discretized Anosov
flows with a non uniquely integrable center bundle which are transitive or
such that the center flow is not orbit equivalent to a suspension flow?

More generally, one may ask whether there exist examples of C'-connected
components of partially hyperbolic diffeomorphisms containing both systems
with uniquely integrable and non-uniquely integrable center bundle.

One can put the above into an even more general framework. For every
f € PH._1(M) one can consider all the C! curves tangent to the center
bundle E%. This gives rise to a kind of branched center foliation in M. One
may ask whether the structure of this normally hyperbolic branched foliation
is preserved:

Question 5.4.6. Suppose f,g € PH._1(M) lie in the same C' connected
component of PH._1(M). Does there exist a homeomorphism h : M — M
such that for every C* curve n : (0,1) — M tangent to E;i the curve homn :
(0,1) — M s (or can be reparametrized to be) a C' curve tangent to Eg?

It is worth noting [BFP20, Question 2.] for a similar question in the
context of collapsed Anosov flow and [HPS77, Section 7.] for other related
questions.
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Chapter 6

Center fixing characterization

6.1 Introduction

The following question motivates this chapter. It is worth noting [G12, Ques-
tion 1.3.] where a similar question has been posed.

Question 6.1.1. Suppose f € PH.—1(M) admits a center foliation W€ such
that f(W) =W for every leaf W € WE. Is f a discretized Anosov flow?

We will give a positive answer to Question 6.1.1 in two cases: 1) whenever
W€ has a dense leaf and f is dynamically coherent and 2) whenever f is
transitive and dim(M) = 3.

Recall that a partially hyperbolic diffeomorphism f is dynamically coher-
ent if there exists f-invariant foliations W and W tangent to E° @ E°
and E¢@® E", respectively. We say that f is a dynamically coherent center
fizing map if the center foliation W¢ = W ~ W (given by the connected
components of the intersection between W-leaves and W"-leaves) satisfies
that f(W) = W for every leaf W € W°. Note that by Proposition 3.4.4 every
discretized Anosov flow is a dynamically coherent center fixing map.

We say that W€ is transitive if it has a dense leaf. The following is the
main goal of this chapter.

Theorem 6.1.2. Suppose f € PH.—1(M) is a dynamically coherent center
fixing map such that WC is transitive. Then [ is a discretized Anosov flow.

Because of the center fixing property one can replace the hypothesis ‘W€
transitive’ by ¢ f transitive’ in the above theorem. See Remark 6.7.5.

Furthermore, in dimension 3 we can show that the dynamical coherent
hypothesis is not needed provided f is transitive. For this, we will give a
dynamical coherence criterion for maps that are center fixing or admit a
compact center foliation in dimension 3 (Proposition 6.8.1 below).
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The aforementioned criterion combined with [DMM20] (also [G12]), [B13]
and Theorem 6.1.2 (or [BWO05]) allows us to give a statement characterizing
both discretized Anosov flows and partially hyperbolic skew-products in di-
mension 3:

Theorem 6.1.3. Suppose f € PH.—1(M?3) is transitive and admits an f-

mwvariant center foliation W€,
1. If f(W) =W for every W € W€ then f is a discretized Anosov flow.

2. If W is compact for every W € W€ then, modulo double cover, f is a
partially hyperbolic skew-product.

The proof of Theorem 6.1.2 will take place up until Section 6.7. The proof
of Theorem 6.1.3 is left to Section 6.8.

6.2 Outline of the proof of Theorem 6.1.2

Let us see in this section an outline of the proof of Theorem 6.1.2. It is worth
pointing out that an starting point for this proof is an unpublished strategy
proposed by A. Gogolev and R. Potrie.

One begins by defining p : M — Ry the center displacement function
that measures the distance from x to f(z) inside W¢(z) for every z in M.
By Proposition 3.3.1 it is enough to show that p is bounded in M. This will
be the goal for the remaining of the proof.

In some sense, the demonstration progresses then by showing an increas-
ingly number of properties that every discretized Anosov flow must satisfy.
Until one reaches no other possibility than f being a discretized Anosov flow.

Since it is enough to show the theorem in the case that W€ is orientable
(Lemma 6.3.3), one can define the center flow ¢f : M — M as one of the
two flows by arc-length whose orbits are the leaves of W¢.

By showing that p is a lower semicontinuous function (Proposition 6.3.7)
one obtains that there exists a residual subset Y — M that is saturated
by leaves of W¢ and such that every point on it is a continuity point for p
(Proposition 6.3.11). This marks the end of Section 6.3.

In Section 6.4 one shows first that there is no self-recurrence of the center
foliation inside leaves of W and W (Proposition 6.4.4). Then this is
used to obtain the key property that the center flow ¢f is an expansive flow
(Proposition 6.4.7). And it allows us to show that the function f has no fixed
points in non-compact leaves of W¢ (Proposition 6.4.8).

Modulo inverting the time of ¢f, a connection argument in Y gives that
f(z) and ¢§(z) must lie in the same connected component of W¢(x)\z for
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every x € Y. That is, forward iterates of f and ¢f move points in the same
direction inside W¢ leaves (Lemma 6.4.10).

Combined with classical arguments from expansive systems, the above al-
lows us to construct local stable and unstable sets for ¢f of uniform size inside
stable and unstable leaves of f, respectively, at any point of M (Proposition
6.5.2). This is the main goal of Section 6.5.

In Section 6.6 the local stable and unstable sets of ¢f are used to show
that p must be continuous at every point z such that W¢(z) is not compact
(Proposition 6.6.1 via the key Lemma 6.6.7).

The remaining of the proof, developed in Section 6.7, is devoted to show
that the continuity of p in the union of non-compact leaves of W¢ (whose
complement is a countable union of compact leaves of W¢ by Lemma 6.3.1)
implies that p is bounded in M. As was already mentioned, one then con-
cludes from this that f must be a discretized Anosov flow as a consequence
of Proposition 3.3.1.

6.3 Center flow and the center displacement func-
tion

This section initiates the proof of Theorem 6.1.2 which will take place up to
Section 6.7.

Let us suppose from now on that f € PH.—;(M) admits f-invariant foli-
ations W and W such that W¢ = W n W satisfies that f(IW) = W for
every W e W¢€. Let us suppose also that W¢ has a dense leaf. The goal is to
show that f must be a discretized Anosov flow.

There are two types of leaves of W¢. The compact ones, that we will call
circles, and the non compact ones, that we will call lines. As shown in the
next lemma, most of the leaves of W€ are lines.

Lemma 6.3.1. For every L > 0 the number of circle leaves of W° whose
length is less than L is finite. In particular, the set {W € W : W is compact}

has at most countably many elements.

Proof. The proof of this lemma is immediate by transverse hyperbolicity in
a neighborhood of each compact center leaf of W¢ (every such leaf is an
f-invariant compact submanifold that is normally hyperbolic).

Suppose by contradiction that for some Ly > 0 there exists an infinite
number {W¢(z,,)}n=0 of distinct circle leaves of W whose length is less than
L.

Modulo subsequence one can suppose that the sequence (x,), has limit
x € M and that the sequence of lengths (length Wc(mn))n converges to some
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constant L; > 0. It follows that W¢(z) is compact and that length(W¢(z)) <
L.

Let € > 0 be a small constant so that Wi(y) n Wi(z) = & for every
Y,z € We(z) such that y # z. And small enough so that W¥(y) n W¥(z) =
& for every y,z € WE(W€(z)) such that y # 2. Let x > 0 be such that
max{||Df.|,||Df, ||} < forevery x € M. Let U := W_, (W5_, (W¢(x))).

Note that f(U) < U and that f~1(U) < U. Since f contracts indefinitely
stable and unstable discs for forwards and backwards iterates, respectively,
it follows that We(z) = (g fX(U).

For every n large enough the leaf W¢(x,,) is contained in U. It follows from
FOWe(z,,)) = W(zp,) that We(x,) & ez fX(U). That is, W(x,,) = W(x)
for every n large enough. This gives us a contradiction. O

The next two lemmas will allow us to reduce the problem to the case
where W€ is orientable and f preserves the orientation of its leaves. Recall
that f is being supposed to be a dynamically coherent center fixing map.
Then:

Lemma 6.3.2. If f™ is a discretized Anosov flow for some n > 1 then f is
a discretized Anosov flow.

Proof. Suppose that f" is a discretized Anosov flow for some n > 1.

Note first that, by Proposition 3.2.2 item (i), if W is a leaf of W¢ that is
not compact then f” has no fixed points in W. As a consequence, f has no
fixed points in W either. In particular, f preserves the orientation of W.

By Proposition 3.3.1 there exists L > 0 such that f"(z) € WS (x) for every
x € M. Note that, if W¢(z) is not compact, then the fact that f preserves the
orientation of W¢(x) implies that f(x) lies in the center interval [z, f™(z)]
joining « with f™(z). In particular, f(z) € WS (x) for every x € M such that
W¢(x) is compact.

By Lemma 6.3.1 there are at most countably many compact leaves of
We. Given z in a compact leaf W of W¢ one can consider a sequence x,
converging to x so that W¢(z,,) is not compact for every n. As f(z,) belongs
to WS (z,,) for every n and the sequence f(z,) tends to f(x) one obtains that
f(x) must lie in Wg ().

We have shown that f(z) € W (z) for every « € M. By Proposition 3.3.1
we conclude that f is a discretized Anosov flow. O

The above lemma has the following immediate consequence:

Lemma 6.3.3. To show that f is a discretized Anosov flow we can assume
that the foliation W€ is orientable and that f preserves the orientation of
We-leaves.
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Proof. Consider a double cover M of M so that We lifts to an orientable foli-
ation We. Let f: M — M be alift of f. A priori f may not individually fix
every leaf of we. However, f2 does. Moreover, f4 preserves the orientations
of these leaves.

Let ¢ := f* and suppose that ¢ is a discretized Anosov flow. It follows
from Proposition 3.3.1 that there exists L > 0 so that g(z) lies in W (&) for
every # € M. Then f*(z) lies in W¢ (z) for every = € M. Tt follows that f* is
a discretized Anosov flow. By Lemma 6.3.2, f itself is a discretized Anosov
flow. This concludes the proof. O

By Lemma 6.3.3 we can assume, and we will do so from now on, that the
foliation W€ is orientable and that f preserves the orientation of W¢ leaves.
In particular, this allows us to consider the following:

Definition 6.3.4 (Center flow). Let ¢f : M — M be a flow by arc-length
whose orbits are the leaves of 'W¢.

We will also work with the following function:

Definition 6.3.5 (Center displacement function). Let us define p : M — R
to be

p(x) = de(z, f(x))

for every x € M.

Remark 6.3.6. It is immediate from Proposition 3.3.1 that if p is bounded
then f is a discretized Anosov flow.

Recall that a real valued function F' in M is called lower semicontinuous
if for every sequence z,, converging to z one has that liminf,, F(z,) > F(z).

Proposition 6.3.7. The function p is lower semicontinuous.

Proof. Suppose (z,,) is a sequence converging to x. In case liminf,, p(z,) =
+00 then there is nothing to proof. Otherwise, one can consider a subsequence
so that the limit inferior is in fact a limit. By a slight abuse of notation let
us denote this subsequence also (x,).

For every n let 7, : [0,1] — W¢(x,,) denote a C! curve parametrized by
arc-length so that length(v,) = p(x,). The sequence v, (0) accumulates in a
unitary vector v, in E°(z). Up to taking a subsequence (in case —uv, is also
an accumulation point), let us suppose that +,(0) converges to v,.

Let 7 : [0,1] — W¢(z) denote the C' curve parametrized by arc-length so
that %(0) = v.. It follows that -, converges with n to v in the C! topology.
In particular, length(~,) converges to length(~).
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Since v, (1) converges with n to (1) and v,(1) = f(x,) for every n it
follows that (1) = f(z). As v is a C! curve in W¢(z) joining z to f(z) it
follows that p(z) < length(v). Since length(~,) = p(x,) converges with n to
length(+) we obtain that p(x) < lim, p(z,,) as desired. O

Remark 6.3.8. It is worth noting that we can not expect to show that, in
general, p has to be continuous at every point of M. For example, if f is
the time 1 map of an Anosov flow ¢, : M — M that is parametrized by
arc-length, then p will only be continuous in the complement of the set of
periodic orbits of period smaller than 2.

Definition 6.3.9. Let us denote by X < M the set of continuity points of
p in M. Namely

X ={x e M| pis continuous at z}.

Let us denote by Y © X the set of continuity points x such that W¢(x)
is a line. Namely
Y ={xe X | Wx) is a line}.

Remark 6.3.10. By the semicontinuity of p it follows from classical ar-
guments (see for example Lemma 7.3.3) that X is a residual subset of M
(meaning that it is a countable intersection of open and dense subsets of M).

Recall that a topological space is locally path connected if every point has
a local basis made of path connected open sets.

Proposition 6.3.11. The set Y is residual in M, saturated by leaves of W€
and locally path connected.

Proof. By Lemma 6.3.1 the set {W € W¢ : W is compact} has countably
many elements. Moreover, each of these elements is a nowhere dense subset of
M. Since X is residual in M it follows that ¥ = X\ ( Uy eye W)
is also residual in M.

Let us see now that Y is saturated by leaves of W¢. Fix § > 0. The goal
will be to see that W§(x) is a subset of Y for every x € Y.

Let x € Y. The leaf W¢(z) is a line. Let [z, f(z)]. denote the segment
joining x with f(z) inside W¢(z). Let U be an open W¢-tubular neighborhood
of [z, f(z)].. More precisely, U is the image of a certain homeomorphism over
its image W : RI™M)~1 « R — M such that ¥(p x R) is contained in a leaf
of We for every p € RE™(M)~1 and [z, f(z)]. < ¥(0 x R).

The open tubular neighborhood U can be considered ‘long and thin’

,W is compact

enough, and a ball B, (z) < U for some €, > 0 considered small enough,
so that for every y € B, (z) one has that
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(i) W;(x)JrQé(y) is contained in a center plaque of U,

(i) f(WSs(y)) is contained in a center plaque of U and

(iii) p(y) — pla)] < 6.

We claim first that every point in B, (z) is a continuity point of p. Indeed,
for every y € B, (z) it follows from (iii) that the set WZ(y) +5(y) is a subset

of W¢
plx

U, and f(y) lies in Wz(y)+5(y) by definition of p, so y and f(y) must lie in

)+25(y). By (i) the set WZ(I)JF%(y) is contained in a center plaque of

the same center plaque of U.

For every y € B, (z) let |y, f(y)]. be the center segment in U joining y
with f(y). Since W/C)(y)+(5(y) c U it follows that p(y) = length|y, f(y)]. for
every y € B (7).

Given a sequence (y,) in B, (x) converging to y € B (x), the center
plaque of U containing y,, approaches the one containing y. Since f(y,,) tends
to f(y) it follows that [yn, f(yn)]e converges to [y, f(y)]. in the Hausdorff
topology. Then p(y,) converges to p(y). This proves the claim.

Suppose now that z is a point in W§(x) and (z,) is a sequence converging
to z. Let (x,) be a sequence converging to = so that z, belongs to W§(x,,)
for every n. For every n large enough the point z,, lies in B, (), so x,, and
f(zy,) lie in the same center plaque of U as it was seen above.

Modulo dropping the first iterates of the sequence suppose without loss
of generality that xz,, lies in B, (x) for every n. Then by (i) and (ii) one has
that W§(z,,) < U and f(WS(xy)) < U for every n.

Since [xn, f(zn)]c is contained in a center plaque of U it follows that
WS(xn) U [2n, f(xn)]c v f(WS(2,)) is a center segment that is also contained
in the same center plaque of U. Since z, lies W§(z,) and f(z,) lies in
J(W§(z,)) one obtains that z, and f(z,) also lie in the same center plaque
of U for every n.

Let [zn, f(2n)]c denote the center segment in U joining z, with f(z,) for
every n. Since z, lies in B, (z) we have shown above that Woa)+ s(xn) is
contained in a center plaque of U. So z, € W§(x,) implies that Wg(zn)(zn)
is contained in the same center plaque of U. This shows that p(z,) is equal
to the length of [z, f(zn)]. for every n.

As above, the sequence [z, f(2n)]c needs to converge to [z, f(2)]. in the
Hausdorff topology. One obtains that p(z,) converges to p(z). That is, z is
a continuity point of p.

We have shown that for every x € Y the set W§(x) is a subset of Y for
some uniform § > 0. We conclude that Y is saturated by leaves of W¢.

Locally, the set Y is an open subset of M minus, at most, countably many
center plaques corresponding to circle leaves of W€, It is immediate from this
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that Y is locally path connected.
O

6.4 Expansivity of the center flow and u-recurrent
points

6.4.1 There are no s or u-recurrent points

The goal of this subsection is to show that a certain ‘bad’ type of points,
denoted as s and u-recurrent points, can not occur.
Let us start by pointing out the following lemmas.

Lemma 6.4.1. There are at most finitely many line leaves of W€ having
fized points. Moreover, in every such a leaf the fized points lie in a bounded
interval of the leaf.

Proof. Given x € M let U, be a small W€ foliation box neighborhood of z.
By transverse hyperbolicity (see for example Lemma 6.3.1 for more details)
the set U, contains at most one center plaque I, such that f(I,) n I, # .
Consider a finite subcover {Uy,,...,Uy,} of M. Every fixed point of f must
liein I, v ... U I, . This proves the lemma. ]

Lemma 6.4.2. Two distinct circle leaves of W€ can not intersect the same
leaf of W*. And every circle leaf of W¢ intersects every leaf of W? in at most

one point.

Proof. Suppose by contradiction that two distinct circle leaves W, W' € 'W¢
intersect the same leaf of W?* in points x € W and y € W’. By iterating
forwards one obtains that d(f™(z), f"(y)) tends to zero. By the center fixing
property f™(z) and f"(y) are points in W and W', respectively, for every
n. This contradicts the fact that the disjoint compact sets W and W' are at
positive distance from each other.

Given a circle leaf W € W€ there exists 0 > 0 such that |, o,y Wi(x)\{z}
is disjoint from W, otherwise W would not be compact. If one supposes,
by contradiction, that W intersects the same leaf of W* in two different
points x and y then d(f™(z), f"(y)) will be smaller than ¢ for some large
enough n > 0. Since f™(x) and f"(y) are points in W this contradicts that
Wi (f™(x))\{f"(x)} is disjoint from W. O

Notation. From now on, given z € M and y € W¢(z) such that W¢(x) is a
line let (z,y). denote the open center segment from z to y inside W¢(x). In
case W¢(x) is a circle let (z,y). denote the center segment joining x and vy,

and containing ¢f(x) for every small enough positive ¢.
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Moreover, in case W¢(zx) is a line let (x, —o0). and (x,+0). denote the
connected component of W¢(x)\x containing negative and positive f-iterates
of x, respectively.

Analogously let us define the closed [z, y]. and half-open [z, y). and (z, y].
center segments.

Definition 6.4.3. We say that a point x in M is a s-recurrent point if for
some € > 0 there exists a sequence (yy,) so that y, € W¢(z) n (W:(x)\{z}) for
every n and (y,) converges to x. Analogously we define u-recurrent points.

It follows immediately from the definition of s and u-recurrent points that
circle leaves of W¢ do not contain any of them. Let us see that line leaves of
W€ do not contain them either.

Proposition 6.4.4. There are no s or u-recurrent points in M.

Proof. Let us see that there are no u-recurrent points in M. To show that
there are no s-recurrent points the reasoning is analogous.

Suppose by contradiction that x is a u-recurrent point. There exists € > 0
and y, € We(z) n (W2(2)\{z}) such that g, > z.

As W¢(x) is a line it follows that y, — o in W(z), meaning that for
every R > 0 the points y, do not lie in W% (x) for every n large enough.
Modulo subsequence, suppose without loss of generality that g, tends to +o0
in W¢(x). It will be clear from the proof that if y,, tends to —oo the arguments
are analogous.

By Lemma 6.4.1 there exists p € W¢(x) the ‘last’ fixed point of f in W¢(z)
(if any fixed point exists) so that (p, +0). has no fixed points. In case W¢(z)
has no fixed points of f let p = —o0. Note that being a wu-recurrent point
is clearly a W¢-saturated property. We can assume then, without loss of
generality, that = lies in (p, +0),.

Note that the half-open center segment [z, f(z)). is a fundamental domain
for f restricted to (p,+0).. So there exists z,, € [z, f(x)). and k,, € Z such
that y, = f* (x,) for every n. Note that either k, — —o0 or k, — +00 as n
tends to +oco.

Consider W¥([f~!(z), f%(x)]c) for some § > 0 small so that W¥(w) n
Wi (w') = & for every w,w' € [f~1(z), f2(z)]. such that w # w'. For §' > 0
small enough let H® : WY, (x) — Wi (f(x)) be a center holonomy map so
that [z, H°(2)]. is a center segment in W¥ (|, f(z)].) for every z € WY, (x).
Note that ¢’ > 0 can be considered small enough so that f([z, H(z)].) lies
in We([f(z), f2(x)]e) and f1([z, H%(2)]c) lies in We([f (), z].) for every
z € W§(x). And small enough so that for every z € W§,(x) the center
segment I, from WY(f~1(z)) to W¥(f(z)) containing z and contained in
WE(Lf (), f2(z)]e) is well defined. Let U be the set Uzewg,(a;) I,. Note that
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U is a foliation box neighborhood for the foliations W¢ and W* restricted to
W (x).

In U consider 7" : U — WY}, (x) the projection along centers so that
w(1,) = z for every z € W§,(x). And for every n let HS : W§,(x) — W§(xy)
be such that Hy(2) is the intersection of I, with W§(x,,) for every z € W§, ().

Let 6" > 0 be such that WY, (z) is contained in U for every z in the
segment [f~(z), f?(x)].. In particular, for every n the inverse map (HS)™!
is well defined from WY, (x,) to Wy, (z).

Consider N large enough so that yy lies in W§,(x). And so that f Ikl
contracts distances enough so that W§, (w) is sent inside Wy, /2( f1ENT(w)) for
every w € M.

In case kny > 0 the map (H]C\,)*1 o f~FN is a continuous map that sends
WY (z) strictly inside itself. In case ky < 0 then f*¥ o Hf, is a continuous
map that sends WY, () strictly inside itself. Covering both scenarios at the
same time, let zg denote the fixed point of this map. In the first case f~*N (z)
lies in I, and in the second case f*N(zg) lies in I,,. In both cases f2(zg) and
f~%(20) do not lie in I,,. This implies that W¢(zp) must be compact because
flwe(zo) 1 WE(20) — W€(20) is an orientation preserving homeomorphism and
in case W°(zg) is a line the fact that f?(z9) and f=2(zp) do not lie in I,
would imply that f"(zp) does not lie in I, either for every |n| > 2.

Consider now 61 > 0 so that W§, ([f~1(z), f?(x)].) is disjoint from W (zp).
One can replicate the argument above to obtain z; in Wg,l (x), for some §7] > 0,
so that W¢(z1) is compact.

As W¢(zp) and W¢(z1) are two distinct compact leaves of W€ that intersect
the same W"-leaf we get to a contradiction with Lemma 6.4.2. O

6.4.2 The center flow is expansive

The goal of this subsection is to show that ¢f : M — M is an expansive flow.

Definition 6.4.5. Given a non-singular flow ¢; : X — X in a metric space X
and a constant € > 0 the flow ¢, is said to be e-expansive if for every z,y € X
and h : R — R an increasing homeomorphism with h(0) = 0 satisfying

d(¢e(7), dr(y(y)) <€ VteR

one has that y lies in a piece n of the ¢-orbit of z satisfying n < B(x).

Remark 6.4.6. Let us fix from now on ¢y > 0 a small constant so that
at scale 10eg one has local product structure and almost constant invariant
bundles. To be more precise, one can fix a metric in M and consider ¢y to
be equal to §(fy) as given by Lemma 4.2.1.
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In particular, €y and the metric in M are such that if d(z,y) = € for
some 0 < € < e then W3 () intersect W4, (y), and this intersection point is
unique, for every (o,0’) € {(s, cu), (cs,u)}.

Recall that ¢f : M — M denotes a unit speed flow whose orbits are the
leaves of W¢.

Proposition 6.4.7. The flow ¢f is €g-expansive.

Proof. We claim first that, by dynamical coherence, it is enough to show that
©§ is 2ep-expansive in restriction to W and W leaves for their intrinsic
topology.

Let us show the claim. Assume that ¢f is 2ep-expansive in restriction to
W and W¢ leaves and suppose that = and y are two points in M such that
there exists h : R — R an increasing homeomorphism satisfying h(0) = 0 and
d(¢e(), Py (y)) < €o for every t € R. Tt follows that Wi (dp)(y)) must
intersect W5? (¢¢()) for every t € R, and this intersection point is unique.

Let yes := W, (y) n W3 (z). It follows that there exists an increas-
ing homeomorphisms h.s : R — R satisfying that h.s(0) = 0 and that
des(0t(), Oy 1)(Ves)) < 2¢€o for every t € R, where d.s denotes the in-
trinsic distance in W leaves and where ¢y, (;)(Yes) is the intersection of
Wi, (dn()(y)) and W5 (¢¢(x)) for every t € R.

Since ¢f is 2ep-expansive inside W leaves it follows that y.s must lie in
a local piece of ¢f-orbit of . Analogously, using that ¢f is 2ep-expansive
inside W leaves it follows that the point ye, := W5, (y) n W5 () lies also
in a local piece of pf-orbit of . As a consequence of both facts, y itself must
lie in a local piece of pf-orbit of x. This shows the claim.

Let us see that ¢f is 2ep-expansive inside W leaves. For W leaves the
reasoning is analogous. Consider z € M, y € W®(z) and h : R — R an
increasing homeomorphism such that £(0) = 0 and de, (¢5(x), Phit) (y)) < 2e
for every t € R. Let y, denote the intersection of W{_ (y) with W§_ (z). There
exists h, : R — R an increasing homeomorphism satisfying that h,(0) = 0
and ¢}, (yu) equal to the intersection of Wﬁeo(goi(t) (y)) with Wi (vf(z))
for every t € R. If we show that y, = = then we show that y lies in a local
piece of the ¢f-orbit of z.

For simplicity in the notation, let us rename y = y,, and h = h,. Suppose
by contradiction that = # y. As a consequence, the point gpr(t) (y) lies in

4 (5(0)\g5(a) for every ¢ e R.

Let N > 0 be such that f~V contracts distances inside W* leaves. For
every n = N there exists ¢, € R so that ¢f (z) = f"(x). One obtains that
Zp = f‘”(gpfl(tn)(y)) is a sequence in W¢(y) n WY, (z)\z converging to z.
Analogously, there exists t), € R so that f"(y) = gofb(t,n)(y) for every n = N
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U

and then w, := f‘”((pg,n (7)) is a sequence in W¢(x) n W _ (y)\y converging
to y.

Let 6, > 0 be such that W§ (zy,) is a subset of W{, (x)\z for every n > N.
Consider a compact center segment [y, z,]. in W¢(y) joining y with z,. For
each n, by taking wy, close enough to y one can construct a center segment
[wWh, , wy,]e close enough to [y, 2] so that wy, lies in Wi (2y,).

Since z, converges to x then w! converges to z as well. Moreover, w,
lies in We(z) n Wi, (x) for every n and is different from x since Wy (25,) is
disjoint from {x}. One obtains that x is a u-recurrent point. By Proposition
6.4.4 this gives us a contradiction.

O

6.4.3 No fixed points in lines of W¢

Another consequence of the non-existence of s and u-recurrent points is the
following statement (which is the only goal of this subsection).

Proposition 6.4.8. If x is a fized point of f then W¢(x) is compact.

Proof. Suppose by contradiction that x is a fixed point in a leaf € € W€ that
is not compact. Recall that (x,+0). denotes the connected component of
We(x)\{z} containing positive iterates of x by ¢f. By Lemma 6.4.1 we can
suppose, without loss of generality, that (x,+0). has no fixed points of f.

Since f preserves the orientations of W¢ leaves it follows that (z, +o0), is
invariant by f. As a consequence, either for every y € (x, +0),. the sequence
f™(y) tends to = as n tends to +oo or for every y € (x, +0). it tends to z
as n tends to —oo0. Suppose without loss of generality the later, otherwise
the argument is analogous with W*(€) in the place of W*(C) and f~! in the
place of f.

The proof now continuous with a series of claims.

Claim 1. The leaf W¥(z) intersects C only in x.

Proof. Suppose by contradiction that y is a point in (W*(x)\{z}) n €. Since
f contracts distances indefinitely on W* leaves and z is fixed by f it follows
that the sequence f~"(y) tends to x inside W*(z) as n tends to +oo. By
the center fixing property f~"(y) lies in € for every n. One obtains that z is
a u-recurrent point and this contradicts Proposition 6.4.4. This proves the
first claim.

Claim 2. The interval [y, f(y)]. is not contained in 'W*(C) for every y €
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Proof. Suppose by contradiction that [y, f(y)]. is contained in W*(C) for
some y € W*(z)\z. Let v :[0,1] — [y, f(y)]c be a homeomorphism over its
image such that v(0) = y and (1) = f(y). One can consider p*~v : [0,1] — C
the unique continuous curve such that p“y(0) = x and ~(t) € W*(p“~(t))
for every t € [0,1]. The curve p"y can be seen as a projection by unstable
holonomy of v to C.

On the one hand, it is immediate to check that p“~y from [0, 1] to C is a
local homeomorphism. Thus a homeomorphism over its image since C is a
line. In particular, p“+(1) needs to be different from x. On the other hand, y
lies in W¥(z) and, as x is fixed by f, the point f(y) lies also in W*(z). As a
consequence, p“y(1) lies in W*(z) n € and by the previous claim this implies
that p“y(1) = x. Since also p"y(0) = x one gets to a contradiction with the
injectivity of p“~. This shows the second claim.

It follows from the previous claim that for every y € W*(z)\z the supre-
mum t, := sup{t | 5(y) € W*(C) Vs € [0,¢)} is finite. Indeed, if W(y) is
compact or W¢(y) is a line such that ¢{(y) and f(y) lie in the same con-
nected component of W¢(y)\y the existence of ¢, finite follows directly from
[y, f(y)]c not contained in W*(€). In the case that W€¢(y) is a line such
that ¢§(y) and f(y) lie in different connected components of W¢(y)\y the
existence of ¢, finite follows directly from the fact that [f~!(y),y]., which is
equal to f 1 (([y, f(y)]c), is not contained in W*(€) because [y, f(y)]. is not
contained in W*(€) and W*(C) is f-invariant.

Let 0., W“(C) denote the boundary of W*(C) as a subset of W(C).
It follows that ¢f (y) lies in 0e, W"(C) for every y € W*(z)\z. Let p° :
We(z)\{z} — 0, W*(C) denote the map p°(y) := ¢f (y). Note that, since
WH(C) is saturated by W* leaves, then d., W*(C) is the union of W* leaves.

Fix from now on yo € W*(z)\{z} and z¢ := p°(yo). We will see in the
following claim that p® needs to be a homeomorphism from the connected
component of W*(x)\{z} containing yo to the leaf W*(zy).

If this third claim is true and dim(E%) > 2 we get to an immediate
contradiction since W¥(x)\{z} is homeomorphic to RI™E“N\ {0} and W*(z)
homeomorphic to R¥™(Z*) - And if this third claim is true and dim(E") = 1
a contradiction arrives as follows: Note that p®o f(y) = f o p°(y) for every
y € We(z)\{z}. As a consequence, W¥(xq) is invariant by f? since the
connected component of W¥(z)\{z} containing yo is invariant by f2. Since
f~2 induces a contraction on W¥(x) it follows that W¥(z¢) has a fixed point
p € W¥(zg) for f2. As a consequence, ¢ := (p¢)~!(p) is a fixed point of f?
in W*(z)\{z}. We get to a contradiction since z and g would be two fixed
points of f2 in the same leaf of W,

It remains to show the following claim.
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Claim 3. The map p® is a homeomorphism from the connected component
of W*(z)\{x} containing yo to the leaf W*(xy).

Proof. Let us see first that p© is injective. Indeed, suppose by contradiction
that there exists y,y’ € W¥(z)\{z} such that p°(y) = p°(y) and y # 3. Sup-
pose without loss of generality that y' € (y, +o0)c. Let vy, : [0,1] = (y,v')e
be a homeomorphism over its image such that -, ,/(0) = y and v, /(1) = /.
As above, one can consider p“y, s : [0,1] — € the continuous curve such
that p"vyy (0) = = and v, (t) € W*(pyy,y (1)) for every t € [0,1]. The curve
P"Vy,y 18 a local homeomorphism, thus a homemomorphism over its image.
But p“vy,,(0) = p“vy, (1) by the first claim. This gives us a contradiction
and shows that p® is injective.

The continuity of p¢ and (p¢) ! is immediate from the regularity of W€,
Moreover, for every y € W*(z)\{x} there exists ¢ > 0 such that p(W¥(y))
is sent by p° to a neighborhood of p°(y) in W¥(y). As a consequence the
connected component of W*(z)\{z} containing yo has it image by p° inside
WH(xg).

It remains to show that p¢ is surjective over W¢(zp). Let v : [0,1] —
[z0, y0]c be a homeomorphism over its image such that v(0) = z¢ and v(1) =
yo. As before, one can consider p“~y : [0,1] — € the continuous curve such
that p“y(0) = x and v(t) € W¥(py(t)) for every t € [0,1]. The curve p*y is a
local homeomorphism. In particular the image of p“y lies in [z, +00),.

Suppose 1 € W¥(xo). Let us see that x7 is in the image of p°. The
center segment (yo, o). is a subset of W%(€). By unstable holonomy inside
W"(C) one can see that there exists z; in Wi (z1) such that (z1,21). is
contained in W*(€). And such that for some z € (zp,y0). one has that
W (z) N (z1,21)c # . Let w denote a point in this intersection. It follows
from the previous paragraph that W*(w) n [z, +0). # &J. Let w’ be a point
on this intersection.

Let U be a small foliation box of the foliation W€ restricted to W (z)
such that x lies in U and U < W¥*(C). Recall that for every y € [z, +0).
the sequence f~"(y) tends to x as n tends to +o0. Then, for N > 0 large
enough f~V(w') lies in U. And since f~! contracts distances in W* leaves
and w € W%(w') then N can be considered large enough so that f=~(w')
also lies in U.

Let w” € WY (z) be such that [w”, f~(w’)]. is a center segment in a
plaque of U. It follows that (w”, f~ (w)].u[f =N (W), f~N(x1)). is a center
segment contained in W*(C) joining w” with f~"(z1). Namely, the center
segment (w”, f~N(x1))e. That is, f~(x1) lies in the image of p°. It follows
from p®o f = f o p° that x; itself is in the image of p°. This shows that
p¢ is surjective over W¥(zg). This ends the proof of the third claim and of
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Proposition 6.4.8.

6.4.4 Coherent behavior of f and ¢ in Y

Informally, this subsection shows in Lemma 6.4.10 that, modulo inverting the
time of ¢f, forwards interates of f and ¢f displace points of ¥ in the same
direction along the leaves of W€,

Remark 6.4.9. Note that, since W has a dense leaf then ¢f : M — M is a
transitive flow. It follows by classical arguments ' that there exists a residual
subset of points in M whose backwards and forwards orbit by ¢f is dense in
M.

Since the intersection of two residual sets in M is non empty and the
subset Y < M is residual by Proposition 6.3.11 then there exists a point in
Y whose backwards and forwards orbit by ¢ is dense in M.

Suppose zp € Y. It follows from Proposition 6.4.8 that f(xg) lies in one
of the two connected components of W¢(xo)\zg. Modulo inverting the time
of ¢f : M — M let us suppose from now on that ¢§(xo) and f(zo) lie in the
same connected component of W¢(xg)\zo.

Recall that by Proposition 6.3.11 the set ¥ < M is a residual, W¢-
saturated and locally path connected subset of M. The transitive hypothesis
on W€ combined with Proposition 6.3.11 allows us to make connection argu-
ment to obtain the following.

Lemma 6.4.10. For every x € Y the points f(x) and ¢§(x) lie in the same
connected component of W¢(z)\z.

Proof. Let x be any point in Y. Since Y contains a dense leaf L of W€ it
follows that we can join x with zg by a curve v < Y. Indeed, such a curve
~ can be constructed as the concantenation of a local curve v; < Y joining
x with a point y € L, a curve 2 contained in L joining y with another point
z € L, and a local curve y3 — Y joining x¢ with z.

By Proposition 6.4.8 the function p has no zero in 7. Since p|y : v — R is
continuous and p(zg) > 0 it follows that p(z) > 0. That is, f(z) and 1 (x)
lie in the same connected component of W¢(z)\{z}.

O

'Indeed, given a countable base of M by open sets {U,}nso it follows from the transi-
tivity of ¢f that Vi, = (J,<o #¢(Un) is open and dense for every n = 0. Then ﬂnZO Vnisa
residual subset of M whose points have a forwards dense ¢§-orbit.
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6.5 Uniform size of stable and unstable sets of ¢y

The goal of this section is to show Proposition 6.5.2 (stated below) relating
local stable and unstable leaves of f with local stable and unstable sets of

lors

Definition 6.5.1. Given € > 0 and x € M let us consider Sc(x) the forwards
e-stable set of x for the flow ¢f, that is, the set of points y € M such that
there exists a homeomorphism h : [0, +00) — [0, +o0) satisfying

(i (x), o5 (1) <€
for every t > 0. Analogously we define U(z) the backwards e-stable set of x.

Proposition 6.5.2 (Uniform size of stable and unstable sets). For every
€ > 0 there exists 6 > 0 such that for every x € M one has Wi(x) < Sc(x)
and W§(x) < Ue(x).

The proof of Proposition 6.5.2 is done in incremental stages of generality.
First, Lemma 6.5.3 for points in Y and a point-dependent §. Second, Lemma,
6.5.6 for points in Y and uniform ¢ along backwards or forwards orbits of ¢f.
Finally, Proposition 6.5.2 for any point in M and uniform § via passing to
the limit.

Lemma 6.5.3. Suppose x € Y. For every € > there exists 6 > 0 such that
Wi(x) < Se(x) and Wi(x) < Ue(x).

Proof. Suppose € > 0. Let us see that there exists 6 > 0 such that W§(z) <
Se(x). To show that there exists 0 > 0 so that W§(z) is contained in Uc(x
one argues analogously.

Let ¢’ > 0 be such that for every z and 2’ in the center segment [z, f(z)].
joining = with f(x) one has that W5,(z) n W5, (2') = & if z # 2/. Let us
consider ¢’ > 0 small enough so that f"(W3(z)) is contained in W#(f"(2))
for every z € [z, f(z)]. and n > 0.

Since x is a point in Y then p is continuous in x. One can consider 6 > 0
small enough so that for every y € W5(x) one has that [y, f(y)]. is a subset of
W3, ([, £(2)]e) Then [f"(y), F+1(5)]. s a subset of W([f"(x), f**(2)].)
for every n > 0.

Given y € Wi(zx) one can consider hg from Iy := [0, p(z)] < R to R an
increasing homeomorphism over its image such that ho(0) = 0 and ¢y, (y)
lies in W?(§(x)) for every t € Iy. Then one can consider h; from I[; :=
[p(z), p(x) + p(f(x))] < R to R so that ho(p(x)) = hi(p(z)) and Cha(t) (y) lies
in W?(¢¢(x)) for every t € I;. And inductively, for every n > 0, a function
hy, defined in I, := [p(z) + ... + p(f" " H(x)),p(x) + ... + p(f*(x))] so that
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h, 1 and h, take the same value in p(x) + ... + p(f"~!(x)) and such that
cpfln(t)(y) lies in W(py(x)) for every t € I,.

By Proposition 6.4.8 it follows that [0,+00) = (J,5¢In. Since h, and
hpn+1 coincide in I, n I4q for every n = 0 it follows that A : [0,+00) —
[0, +00) defined as h(x) = h,(x) for every x € I,, is a well defined homeomor-
phism over its image. Moreover, by Proposition 6.4.8 and Lemma 6.4.10 the
image of ¢t gpfb(t)(y), namely [y, f(¥)]e U [f (), f2(y)]c U ..., needs to be
equal to [y, +).. This shows that h is surjective, thus a homeomorphism.

One concludes that d(§(z), Pht) (y)) < e foreveryt >0, forh: |0, +0) —
[0, 4+00) the homeomorphism constructed above. That is, y lies in S¢(z). O

The next one is a technical lemma that will be used in this section. For
simplicity, from now on whenever we refer to the stable distance ds(z,y)
between two points x,y € M we will implicitly mean that both points lie in
the same leaf of W?®. Recall the constant ¢y > 0 from Remark 6.4.6.

Lemma 6.5.4. Let € > 0 be a constant such that € < ¢g and I < R be an
interval containing 0. Suppose that (x,) and (y,) are two sequences in M
such that there exist increasing and continuous maps hy : I — R satisfying
that h,(0) = 0 and ds(@§ (), Phan(®) (yn)) < € for every t € I.

If 2y, & x and y, —> y then there exists h : I — R increasing and
continuous such that h(0) = 0 and ds(gof(a;),gafl(t) (y)) < € for every t € 1.
Moreover, such a map h: I — R is unique and is given by h(t) = lim, h,(t)
for every t e I.

Proof. Note that, by taking ¢ = 0, one gets that z,, lies in W*(y,) and
ds(zn,yn) < € for every n. As a consequence, y lies in W¥(x) and ds(z,y) < €.

Let us suppose first that I = [a, b] for some a,b € R such that a < 0 < b.
Let T denote the supremum of the points s € [0, b] such that there exists
hs : ]0,s] — R increasing and continuous satisfying that hg(0) = 0 and
ds(pf(x), Pha(t) (y)) < 2e for every t € [0, s].

Note that, since ds(z,y) < €, then Tt > 0. Moreover, note that if
s € [0,T7) then the increasing and continuous map hs as above is unique.
And that if s € [0,77) and s < s’ then hy coincides with hg in [0, s].

We claim that T needs to be a maximum. Indeed, one can define h :
[0,77] — R increasing and continuous as h(t) = h(t) for every t € [0,T)
and every s € [0,71) so that ¢t < s, and define h(T") as lim; h(t) for t €
[0,77). Then if (s,) is a sequence in [0, T") converging to T one has that
(65, (2), 64, 0,y (9)) < ¢ for every n implics that dy(#5.. (2), 5 1) (1) <
€.

Moreover, note that if we show that ds(¢f(x), ¢ () < € for every t €
[0,7*] then T* = b. This is because, if % < b and d,(¢5. (z), Phir+) (W) <
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€, then one can extend h to an interval strictly larger that [0, 7], and still
contained in I, so that ds(¢f(z), Pha(t) (y)) < 2¢ for every t on this interval,
contradicting that T is a maximum.

Note that the continuity of ¢f implies that lim,, ¢§(x,) = ¢f(x) for every
t € [0,71]. We claim that lim,, 50 (yn) = P (y) and ds(¢§(x), Phit) () <
e for every t € [0,T7].

Indeed, let us start by fixing ¢ € [0, €] [0, 7*]. The sequence ¢}, (t)(yn)
lies in Bae,(x) for every n large enough. Let w be an accumulation point
of this sequence. It follows from ds(gof(xn),cpzn(t) (yn)) < € < ¢ for every
n that ds(pf(z), w) < €. Moreover, since t € [0, €p] then gofln(t)(yn) lies
in W5 (yn). And since the sequence (y,) converges to y then W5_ (yn)
converges to W5_ (y) in the Hausdorff topology. One obtains that w lies in
the intersection of W5_ (y) and W5_ (¢f(x)).

Since at scale 10¢q this intersection can only happen in one point (recall
the definition of €y in Remark 6.4.6) it follows that w is unique, independently
of the subsequence. That is, lim, ¢f ( t)(yn) = w. Moreover, since @} ) (y) lies
in the intersection of W35_ (y) and W3_ (f(z)) it follows that w = Chit) (y).
This shows that limy, ¢} (yn) = G (y) and ds(apf(x),goz(t) (y)) < ¢ for
every t € [0, €g].

One argues analogously to show that for every ¢ € [eg, 2¢0] N [0, 7] one
has that lim,, gpzn(t)(yn) = SOICz(t)(y) and ds(pf(z), Chit (y)) < €. Inductively
one obtains that this happens for every ¢ € [0,7]. This shows the claim.

Analogously, via auxiliary T~ € [a,0] and showing that 7~ = a one
can extend h to h : [a,b] — R increasing and continuous satisfying that
limy, (P;n(t) (yn) = 90(}1(1&) () and ds(pf(z), 902(1&) (y)) < e for every t € [a,b].

By construction, such a h : I — R is unique and it follows from the limit
lim,, @Zn(t) (yn) = SDZ(t) (y) and the continuity of ¢f that lim,, h,(t) = h(t) for
every t € [a,b]. This shows the lemma for I closed and bounded.

In case I < R is another type of interval it is enough to write I as
the increasing union of closed bounded intervals I;. For such I there ex-
ists h®) : I — R increasing and continuous such that A%*)(0) = 0 and
ds(ps(z), gp]";(k)(t)(y)) < ¢ for every t € Iy. Since h*)(t) = lim,, h,(t) for every
t € I, then h : I — R is well defined by h(t) := lim,, h,,(t) and satisfies that
ds(ps(z), @Z(k)(t)(y)) < e forevery t e I. O

The next one is a classical argument from expansive systems, though
adapted to our context for simplicity. Recall that, by Proposition 6.4.7, the
flow f is eg-expansive.

Lemma 6.5.5. There is no pair of sequences (x,) and (y,) in M such that:

1. The point yy, lies in Wy (xy) for some sequence dy, 0.
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2. There exist homeomorphisms hy, : [0, +00) — [0, +00) such that gpzn(t)(yn)
lies in W*(¢§(xy,)) and

ds (@i (@n), .. 1) (Un)) < €0 (6.5.1)
for every t € [0, +00).

3. There exists 6 > 0 and t,, € [0, 400) such that

ds(¢t, (Tn), Ph 1) (Un)) =0 (6.5.2)

for every n.
Analogously for w in the place of s and (—0,0] in the place of [0, +00).

Proof. Suppose by contradiction that such a pair of sequences exists. Up to
taking a subsequence suppose that the sequence z, := ¢f (x,) converges to
a point zg and that the sequence w,, := wzn(tn)(yn) converges to a point we.

Since w, € W3(z,) and ds(zy,w,) = § for every n it follows that wy €
W5(ze) and ds(2ze0, W) = 0. In particular, wy, is different from zo, and does
not lie in W¢, (200). To get to a contradiction, let us see that the of-orbit of
Zeo and we, do not €p-separate, contradicting the expansivity of ¢f.

For every n let g, : [—tn, +0) — R be the increasing and continuous
map given by g, (t) = hy(t + t,) — hn(t,) for every t € [—t,, +0). We claim
that gogn(t)(wn) lies in W*¥(¢§(2p)) and that ds(gof(zn),apgn(t)(wn)) < ¢ for
every t € [—ty,+00). Indeed, note that hy(t,) is the time it takes y, to get
to wy, by the flow ¢f. It follows that, for every ¢t € [—t,, +00), one has that
‘Pgn(t)(wn) = SO]Cln(tHn) © Qpihn(tn)(w") = @in(tthn)(yn)‘ Since ‘P§+t"($n) =
©§(z,) then ds(gpf(zn),gogn(t)(wn)) < ¢ for every t € [—t,, +0) by (6.5.1).
This proves the claim.

Since §,, — 0 it follows that ¢, tends to +00. Let T > 0. There exists
N such that ¢, > T for every n > N. Let H, : [-T,4w) — R, for every
n = N, be the increasing and continuous map given by the restriction of g,
to [—T', +00).

By Lemma 6.5.4 for I = |-T,4c0) it follows that there exists hp :
[-7, +o0) — R increasing and continuous such that h(0) = 0 and such that
ds(p(200), Chr(t) (we)) < € for every t € [T, +o0).

Moreover, Lemma 6.5.4 tells us that hr(t) is equal to lim,, H,,(t) for every
t € [T, +o0). This shows that if one performs the above construction for
another 7" > 0 such that 7" > T then the map hy coincides with hr in
[-T,00). As a consequence, there exists a well defined increasing and con-
tinuous map h : R — R (given by h(t) = hp(t) for every T' > 0 such that
t = —T) such that h(0) = 0 and such that ds(Lpf(zoo),goZ(t)(woo)) < ¢ for
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every t € R. This contradicts that the flow ¢f is eg-expansive by Proposition
6.4.7.
O

Using the previous lemmas one can show the following.

Lemma 6.5.6. Suppose x € Y. For every € > 0 there exists § > 0 such that
Wi(pe(z)) < Se(pe(x)) for every t <0 and Wi (pi(z)) < Uc(pi(z)) for every
t=0.

Proof. Suppose € > 0. Given x € Y, let us see that there exists § > 0 such
that W5 (f(x)) is contained in Sc(pf(x)) for every t < 0. To show that there
exists 0 > 0 so that W§ (¢f(x)) is contained in Uc(pf(x)) for every ¢t > 0 one
can argue analogously.

Suppose by contradiction that there exists §,, > 0 converging to 0 with
n and T, > 0 so that the point @, := ¢° . (v) satisfies that W} () is not
contained in S.(z,). Let z, € Ws, (z5,) be such that z, is not in Sc(x,).
Without loss of generality, let us assume that € < €.

Since z € Y it follows from Lemma 6.5.3 that there exists d, > 0 such
that W3 (z)  Se(x). Let § > 0 be a constant such that § < .

For every n let v, < Wj (z) be an arc (embedding of [0,1]) joining
Tn with z,. Let us fix for the points in -, the following order: two points
w,w’ € 7, satisfy that w <,, w’ if and only if w lies in the subsegment of ~,
joining x,, with w’'.

By the continuity of the flow ¢f, every w € =, close enough to xz,, sat-
isfies the following property (called property (P) from now on): There ex-
ists hy @ [0,7,] — R increasing and continuous such that h,,(0) = 0 and
ds(pf(zn), cpzw(t)(w)) < 0 for every t € [0,T,].

We claim that property (P) is a closed property in 7,. Indeed, suppose
that (wg) is a sequence in ~, converging to w € +, and that every point
in wy, satisfies property (P). Then by Lemma 6.5.4 (applied to the pair of
sequences in k which are the constant sequence x,, and the sequence (wy)) it
follows that there exists hy, : [0,7,,] — R increasing and continuous so that
w satisfies property (P). This proves the claim.

Moreover, given w € 7, that satisfies property (P), one has that in par-
ticular ds (47, (n), gozw(Tn)(w)) < 0. Then from § < §, and Wj (z) < Sc(z)
it follows that h,, : [0,7},] — R can be extended to hy, : [0, +00) — R so that
ds (0§ (zn), cpflw(t)(w)) < e for every t € [0, 4+00).

Let y,, € v, be the maximum (with respect to the fixed order in ~,) of
the w’ in 7y, such that every w in the subsegment of v, joining x, with w’
satisfies property (P). Note that y, is a maximum since property (P) is close
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in v,. Moreover, note that since z, is not in S¢(x,,) then by the remark made
in the last paragraph it follows that y, # z,.

Finally, note that, again by the continuity of the flow ¢f, if w € ~,
satisfies property (P) and ds(tpf(xn),cp;w(t)(w)) is strictly less than ¢ for
every t € [0,T},] then every w' in a neighborhood of w in ~,, satisifies property
(P). As a consequence, it follows from y, being a maximum that for some
tn € [0,T,] one has that ds(of (), @Zn(tn)(yn)) = 4.

We have found two sequences (x,,) and (y;,) as in the hypothesis of Lemma
6.5.5. This gives us a contradiction.

O

Proof of Proposition 6.5.2. Suppose € > 0. Let T be a point in Y such that
its backwards and forwards orbit by ¢f is dense in M (as pointed out in
Remark 6.4.9 the transitivity of ¢f guarantees this).

By Lemma 6.5.6 there exists 6 > 0 such that W5(y) < Sc(y) for every y in
the ¢f-backwards orbit of z and Wy (y) < Uc(y) for every y in the ¢f-forwards
orbit of z.

Let x be a point in M. Let us see that W5(z) < Sc(x). To show that
Wy (x) < Uc(x) the reasoning is analogous.

Since the backwards orbit by ¢f of Z is dense in M there exists ¢, —» —o0
so that y,, := ¢y, () converges to z. Let 2’ be a point in W§(z). There exists
Yy, € Wi (yn) converging to a'.

As Wi (yp) is a subset of Sc(yy) then for every y;, there exists a homeo-
morphism A, : [0,400) — [0, +o0) such that

ds (5 (Yn)s O, 1) (W) < €

for every t € [0, +0).
By Lemma 6.5.4 for I := [0, +00) the functions h,, converge pointwise to
an increasing and continuous map h : [0, +00) — R satisfying that

ds(5(), P (@) < €

for every ¢ € [0, +00). That is, 2’ lies in S¢(x). This shows that W§(z) < Sc(x)
as wanted. 0

Remark 6.5.7. It is worth mentioning that the proofs of Lemma 6.4.10 and
Proposition 6.5.2 are the key points where the transitivity of W€ is used.

6.6 Continuity of p in lines of W¢

The goal of this section is to show the following.

125



Proposition 6.6.1. The function p is continuous at every x in M such that
We(x) is a line.

We will use the next definitions on this section.

Definition 6.6.2. We say that x is a s-continuity point of p if there exists
d > 0 such that p restricted to W¥(z) is continuous. Analogously we define
a u-continuity point of p.

Definition 6.6.3 (Center holonomy maps). Suppose x € M such that W¢(x)
is a line. Suppose v : [0,1] — [z, f(z)]. is a homeomorphism such that
7(0) = z and (1) = f(x). The following is standard from foliation theory:
For every § > 0 small enough the center holonomy map between s-transversals

HS 5 Wix) = W (f(2))

is well defined as H¢

$,2,0

M is the unique continuous curve such that v,(0) = y and ~,(t) € W*(~(t))

(y) := vy(1) for every y € Wi(x), where v, : [0,1] —

for every t € [0, 1]. Moreover, the map H¢ , 5 does not depend on the choice
of the homeomorphism v : [0, 1] — [z, f(z)]..

Analogously one defines H, | 5 : Wi(z) > W*(f(z)) the center holonomy
map between u-transversals.

Remark 6.6.4. Note that in the above definition the dynamical coherence
hypothesis is crucially used.

Remark 6.6.5. It is immediate to check that if W¢(z) is a line for some
x € M then x is a s-continuity point of p if and only if H, ; is equal to the
restriction of f to W5(x) for some § > 0. Analogously, = is a u-continuity
point of p if and only if H;! 5 coincides with f in Wj(z) for some ¢ > 0.

Dynamical coherence allows us to get the following.

Lemma 6.6.6. Suppose x € M such that W¢(x) is a line. If x is a s and
u-continuity point of p then p is continuous at x.

Proof. Let v:[0,1] = W¢(x) be a homeomorphism from [0, 1] to the center
segment [z, f(x)]. so that v(0) = z and (1) = f(x). Since z is a s and
u-continuity point of p there exists § > 0 such that H;x’(;(y) = f(y) and
Hy | 5(z) = f(2) for every y € Wi(z) and 2z € Wi(z). That is, for every
y € Wi(x) there exists v, : [0,1] — W¢(y) satisfying v,(0) = y and ~;(t) €
W?3(y(t)) for every t € [0,1]. Analogously, for every z € W§(x) there exists
v¢ 1 [0,1] —> We(y) satisfying v%(0) = z and ~¥(t) € W*(~(t)) for every
te0,1].
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Recall ¢g > 0 the small constant fixed in Remark 6.4.6. One can consider
d > 0 small enough so that for every y € Wi(x) and z € W§(x) one has
Yy (1) € W (7(t)) and v¢(t) € We, (y(t)) for every t € [0,1].

Suppose () is a sequence converging to = and let §,, denote the distance
d(x,x,) for every n. Suppose, modulo subsequence, that ¢, is smaller than
6/2 for every n. Let x;, be the point of intersection of W55 (x) and W3 (z5).
And zj; the point of intersection of W55 (z) and W55 (z5).

For simplicity in the notation, for every n let v, and v~ denote the curves
Va; and vgu, respectively. It follows that Wiy (7;,(¢)) intersects Wg5 (v, (t))
for every t € [0,1]. Moreover, by dynamical coherence, one can construct a
homeomorphism over its image 7, : [0,1] — W¢(x,,) such that 7,(0) = =z,
and 7, (t) lies in the intersection of Wgg (v, (t)) and W33 (75 (t)) for every
te[0,1].

Again, by dynamical coherence, it follows from f(z?) = v3(1) and f(z¥) =
¥, (1) that f(zy) lies in the intersection of Wij (v, (1)) and Wg5 (v,(1)). One
can chose v, so that, in addition to the properties from the last paragraph,
it satisfies that v, (1) = f(x,).

S

Since the sequences (z;,

) and (z) converge to x it is immediate that ~;
and v* converge in the C° topology to 7. As a consequence, since 4, tends
to 0, then 7, converges in the C° topology to v as well.

The maps v, : [0,1] = W(z,,) form a sequence of homeomorphisms over
its image joining z, with f(z,) and converging C° to . One obtains that
lim,, length(~,) = length(y). Since p(z) = length(v), then liminf, p(x,) <
p(x). By Proposition 6.3.7 one has the converse inequality. It follows that
lim,, p(xy,) = p(z). This shows that z is a continuity point of p.

O]

The following is a key lemma relating stable and unstable sets of ¢§ with
s and wu-continuity points.

Lemma 6.6.7. Suppose x € M such that W¢(z) is a line. If for every e > 0
there exists § > 0 such that Wi(x) < Sc(x) then x is a s-continuity point of
p. Analogously, if for every e > 0 there exists § > 0 such that W§(x) < Ue(x)
then x is a u-continuity point of p.

Proof. Suppose that for every e > 0 there exists é. > 0 such that Wj (z) <
Se(x). Let us see that x needs to be a s-continuity point of p. The symmetric
statement for unstable local leaves of f and backwards stable sets of ¢f follows
by analogous reasons.

Let § > 0 be such that Hg, 5 : Wi(z) — W*(f(z)) is well defined. Then
H{ 5t Wi(z) — W?(f(2)) is also well defined for every 0 < ¢’ < é. By
Remark 6.6.5 it is enough to show that HS, 5= f|W§,(r) for some &' > 0.

s
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Consider a sequence €, > 0, n > 1, converging to 0 and let &, > 0 be
such that Wj (r) < S, (x) for every n. Without loss of generality suppose
6 is smaller than § for every n. Then H{ ; : Wj (z) —» W?(f(x)) is well
defined. Suppose also that €, is, for every n, smaller than the constant ¢y > 0
fixed in Remark 6.4.6.

Suppose by contradiction that f restricted to Wj (z) is different from
HS, 5 for every n. Let y, € Wi (x) be such that H 5 (yn) # f(yn).

Recall that a leaf W of W* can intersect at most one compact leaf of
W€, and that this intersection can happen in at most one point. Since the
sequence y, lies in Wi(x) it follows that W(y,) is compact for at most one
of the y,. Modulo subsequence, we can suppose that W¢(y,) is a line for
every n.

Since y,, lies in S, (x) for every n one can consider a homeomorphism
H, : [0,+w) — [0,400) such that d(gpf(x),go%n(t)(yn)) < e, for every t €
[0,4+00). The points ¢f(x) and (1) (yn) may not be in a same leaf of
'W#. However by dynamical coherence they lie in the same leaf of W and
des(@f(x), (1) (yn)) < 2¢, for every t € [0, 4+00).

It follows that one can consider for every n the well-defined homeomor-
phism h, : [0,400) — [0,+00) satisfying that gozn(t)(yn) is equal to the
intersection of Wi, (¢f(r)) and Wg, (gp%n(t) (yn)) for every t € [0, +00). In
particular, ¢f (yn) lies in W*(¢f(x)) and ds(gpf(m),cpin(t) (yn)) < 4e, for
every t € [0, +00).

Note that from the above construction one obtains that H;r’(;n(yn) is
equal to (pfln(p(m))(yn) for every n. Consider t,, > 0 such that cpzn(tn)(yn) =
f(yn). The fact that HS 5 (y,) is different from f(y,) translates to the fact
that ¢, is larger than p(z) for every n.

Since W¢(z) is a line it follows that ¢f (z) is different from f(x) for
every n. Since ¢f (x) is a point in W¢ () and the sequence (¢,) converges
to 0 it follows that f(z) that the points ¢f (z) converge to f(z) with n.
That is, f(z) is accumulated by points lying in We(z) n (WS, (f())\f(z)).
Since W¢(x) = W°(f(x)) one obtains that f(x) is a s-recurrent point. This
contradicts Proposition 6.4.4. O

We are now able to show Proposition 6.6.1.

Proof of Proposition 6.6.1. Suppose x € M such that W¢(z) is a line. By
Proposition 6.5.2 it follows that for every ¢ > 0 there exists § > 0 such that
W;(x) < Se(x) and W§(z) < Uc(z). By Lemma 6.6.7 one obtains that z is a
s and u-continuity point of p. By Lemma 6.6.6 the function p is continuous
at z. O
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6.7 The function p is bounded in M

This section ends the proof of Theorem 6.1.2. Up until now we have shown
that the function p is continuous at every x in M such that W¢(z) is a line.
We will see in this section how to show from this that p is bounded in M.

Given € € W€ a circle leaf it follows from Lemma 6.4.2 that W¢(y) is a
line for every y in W#(C)\C. In particular, the center segment [y, f(y)]. is
well defined for every y € W*(C)\C and by Proposition 6.6.1 the function p
is continuous in restriction to W*(C)\C.

Recall that the stable saturation W*(C) of € is contained in the center-
stable leaf W(C) but that a priori W*(C) may be a proper subset of W(C)

(the completeness problem).

Lemma 6.7.1. Suppose C € W€ is a circle leaf. For every y € W3(C)\C one
has that [y, f(y)]. is contained in W*(C).

Proof. Since p is continuous in restriction to W#(€)\C one has that for every
y € W*(C)\C the compact center segment [y, f(y)]. varies continuously with
y in the Hausdorff topology.

Let A denote the set of points y € W*(C)\C such that [y, f(y)]. is con-
tained in W#(C)\C. Let B denote its complement in W*(€)\C so that W*(C)\C
is equal to the disjoint union A U B. The goal is to show that B is empty.

Let 0.sW*(C) € W(€) denote the boundary of W*(€) in W*(C€). Since
W#(C) is saturated by leaves of W* the set 0., W*(C) is a union of leaves of W*.
It follows that y € W*(@)\C is in B if and only if [y, f(y)]c N des W3(C) # .

Since y — [y, f(y)]. varies continuously with y in W#(C)\C it is immediate
to check that both A and B are open subsets of W*(C)\€ (for this, note that
if y € B then [y, f(y)]. is transverse to W*(f(y)) at f(y)).

As W3(C)\C is the union of the disjoint open sets A and B it follows
that A and B comprise whole connected components of W*(C)\C. Note that
if dim(E®) > 2 then W*(C)\C has only one connected component and if
dim(E?®) = 1 it may have two. We will cover both scenarios simultaneously.

Suppose by contradiction that B is not empty. For every y € B the
center segment [y, f(y)]. intersects d.sW*(C). Since W*(C) is f-invariant it
follows that =1 o [y, f(y)]c = [f~(y), y]. also intersects d.sW*(€). One can
then consider y™ and y~ the ‘first time’ that W(y) leaves W*(€) in both
directions. That is, y~ and y™ are the only points in W¢(y) N 0.sW*(C) such
that there exists a center segment (y~,y ™). contained in W*(€) and satisfying
y € (y ,y")e. In other words, (y—,y"). is the connected component of
We(y) n W3(€) containing y.

It is immediate to check (by transversality again) that the functions y —
y* and y — y~ are continuous from B to d.sW*(€). Moreover, if z is a point
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in 0.sW?*(C) that is in the image of y — y™, then every 2z’ € W*(z) need to be
also in the image of y — y™. This is because, by stable holonomy, one can
transport (y,y ™). to a center segment in W#(€) such that one of its endpoints
is 2.

Moreover, for every y € B it is immediate to check that there exists € > 0
such that w™ lies in W#(y™) for every w € W (y). That is, the function that
assigns to every y € B the stable leaf W*(y ™) is locally constant. Combined
with the information from the previous paragraph one obtains that the image
by y — yT of B is exactly one or two leaves of W*, whether B has one or
two connected components, respectively.

Let V be one of the leaves of W* in the image of y + y™. Since B is
f-invariant and has at most two connected components then V is invariant
by f2. It follows that f? induces a contraction in V. As a consequence f2
has a fixed point in V' and this fixed point is unique. Let yg € B be such that
yg is the fixed point of f? in V.

On the one hand, since W*(C) and 0.;sW*(C) are f-invariant then the
image of [y ,yd e by f? is a center segment whose interior lies in W*(€) and
its end-points lie in 0.sW*(€). Since yg is fixed by f2 it follows that [y, yg ]e
is invariant by f2.

On the other hand, [y, ,yq |c contains the point yo which is a point in
W3 (z0) for some zo € C. By iterating forwards by f2 one obtains that the
orbit of yo needs to get arbitrarily close to €. Since [yg , yg | is f?-invariant
this contradicts the fact that [y, yar ] and € are disjoint compact sets that
are at a positive distance from each other. This shows that the set B needs
to be empty and ends the proof of the lemma. O

Lemma 6.7.2. Suppose C € W€ is a circle leaf. There exists 6 > 0 such that
p restricted to W3(C) is bounded.

Proof. The set W*(C)\C has one or two connected components. Without
loss of generality let us suppose that is has one. Otherwise, one should only
repeat the argument below separately on each connected component.

Suppose y in W#(C)\C. By Lemma 6.4.2 the leaf W*(y) intersects C in a
unique point. Let us call it p®y.

Let 7y, : [0,1] — W¢(y) be the C! curve of constant speed such that
7y(0) = y and v,(1) = f(y). By Lemma 6.7.1 the center segment [y, f(y)]. is
contained in W#(€). It follows that there exists p®y, : [0,1] — C the (unique)
continuous curve such that p*v,(0) = p*y and ~,(t) € W*(p®~,(t)) for every
te[0,1].

By Proposition 6.6.1 the function p is continuous in retriction to W#(€)\C.
That is, 7, varies continuously with y € W¥(€)\C in the C! topology. At the
same time, if y' varies continuously in W*(p®y)\p°y one has that f(y') varies
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continuously in W*(f(p*y))\f(p°y). One obtains that p*y, needs to be a
reparametrization of p*y, for every y' in W*(y).

Given z in € and y € W3 (x)\x let 7, : [0,1] — C be the constant speed
reparametrization of p®y,. From the above paragraph one has that the defi-
nition of v, is independent of the point y one chooses in W#(z)\z.

It is now immediate to check that z — +, varies continuosly in the C*
topology as z varies in W*(€). Since this implies that z — length(y.) varies
continuously with z € W*(C) it follows that p is continuous in a neighborhood
of € in W*(C).

[

Proposition 6.7.3. For every circle leaf C € W there exists a neighborhood
U of € such that ply : U — R is bounded.

Proof. Let € € W€ be a circle leaf. It follows from Lemma 6.7.2 that there
exists § > 0 and L > 0 such that p restricted to W5(€) is bounded by L.

From the regularity of W¢ one can define an unstable holonomy along
center transversals as follows: There exists 67, > 0 such that, if y is a point in
M and z a point in W, (y), then for every curve v : [0, 1] — W¢(y) such that
~v(0) = y and lengthy < L there exists a unique curve p*y : [0, 1] — W¢(z)
given by p"v(0) = z and p“~(t) € W*(~(t)) for every t € [0, 1], and this curve
satisfies that length p“~ < 2L.

Let us see that p is bounded by 2L in U = Wy, (W3(C))). Since U is a
neighborhood of € this will show the proposition.

Given z in U there exists € € and y € Wi(z) such that z € Wy (y).
Let us suppose first that for every w in W§, (y) the center leaf W¢(w) is not
compact. We can join then y with z by a curve n : [0, 1] — WZ;LL (y) satisfying
that 7(0) =y, n(1) = z and W¢(n(s)) is a line for every s € [0, 1].

By Proposition 6.6.1 one has that p is continuous at every point in the
image of 1. Let v : [0,1] — W¢(y) be a homeomorphism from [0, 1] to
[y, f(y)]c such that v(0) = y and (1) = f(y). Since p is continuous in the
image of 1) it follows that for every s € [0, 1] there exists v, : [0, 1] = W¢(n(s))
joining n(s) = 7s(0) and f(n(s)) = vs(1), and satisfying that vop = ~ and
vs(t) € W¥(y(t)) for every t € [0,1]. In particular, f(z) = 71(1).

One has that lengthy < L since p is bounded by L in W§(C). Then by
the election of §y, it follows that lengthy; < 2L. Since 7 is a curve in W¢(z)
joining z = 71(0) with f(z) = 71(1) one obtains that p(z) < 2L.

In case Wy, (y) intersects a compact leaf of W one can argue as follows.
By Lemma 6.3.1 all but countably many y’ € Wj(z) satisfy that Wy, (y') does
not intersect a compact leaf of W°. One can consider then (y,) a sequence
in Wi(z) converging to y such that for every w € Wy (yn) the center leaf
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W¢(w) is not compact. And consider 2z, € Wy (yn), for every n, so that the
sequence (z,) converges to z.

By the arguments above one has that p(z,) < 2L for every n. By the
semicontinuity of p (see Proposition 6.3.7) it follows that p(z) < 2L. O

As pointed out in Remark 6.3.6, the following ends the proof of Theorem
6.1.2 as a consequence of Proposition 3.3.1.

Corollary 6.7.4. The function p is bounded in M

Proof. Suppose z € M. If We(z) is a line then by Proposition 6.6.1 the
function p is continuous at x. In particular, it is bounded in a neighborhood
of z. If W¢(z) is a circle, then by Proposition 6.7.3 the function p is bounded
on a neighborhood of W¢(z). By compactness of M one obtains that p is
bounded in M.

O

By now, it is worth also pointing out the following.

Remark 6.7.5. Note that if f is a center fixing map and «x is a point whose
f-orbit is dense in M then W¢(x) is also dense in M. Thus the hypothesis
‘W€ transitive’ in Theorem 6.1.2 can be replaced by  f transitive’.

6.8 Compact center foliations and center fixing in
dimension 3

The goal of this section is to show Theorem 6.1.3 stated in the introduction
of this chapter.

By Theorem 6.1.2 it is enough show dynamical coherence (Proposition
6.8.1 below) in order to show Theorem 6.1.3 item (1). Alternatively, it is
worth mentioning that once dynamical coherence is shown one can also use
[BWO05, Theorem 2] (see Remark 3.8.2). Indeed, by Lemma 6.8.3 there exists
at least one compact leaf v of W (in fact, the union of such leaves is dense
in M). Moreover, for every x € Wj (y) the leaf W¢(z) is fixed by f (in
particular, periodic). By [BW05, Theorem 2] (see Remark 3.8.2) one obtains
that f™ is a discretized Anosov flow for some n > 0. Then by Lemma 6.3.2
the map f is itself a discretized Anosov flow.

To show Theorem 6.1.3 item (2) one argues as follows. Once dynamical
coherence is proved it follows from [DMM20] (also [G12] in case E° is uniquely
integrable) that the center foliation W€ is uniformly compact. Then by [B13]
one concludes that, modulo double cover, (f, W) is a partially hyperbolic
skew product. Alternatively, one could try to use [BW05, Theorem 1].
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Recall that the non-wandering set of f, denoted by Q(f), is the set of
all z in M such that for every neighborhood U of x there exists k& > 0
satisfying f*(U) n U # . It is immediate to check that if f is transitive
then Q(f) = M.

In conclusion, the above discussion justifies that Theorem 6.1.3 is proven
once the following proposition has been shown.

Proposition 6.8.1. Suppose f € PH.—1(M?3) with Q(f) = M? admits an
mwvariant center foliation W€ satisfying one of the following conditions:

1. f(W) =W for every W € We.
2. W is compact for every W € W€.

Then f is dynamically coherent with invariant foliations W and W such
that W¢ = W ~ W,

The proof of Proposition 6.8.1 occupies the rest of this section and is done
in the next two lemmas.

Lemma 6.8.2. Suppose f € PH.—1(M?3) admits an f-invariant center fo-
liation W¢. Suppose that the set {W e W¢ | W compact and f"(W) =
W for some n # 0} is dense in M. Then f is dynamically coherent and
admits f-invariant foliations W and W such that W¢ = W ~ W,

Proof. We first claim that it is enough to show that there exists § > 0 so
that for every x and y in M, if y € W§(z) then W§(y) € W55;(WSs(z)). And
if y € W¥(z) then WS(y) < Whs(Wss(x)).

Indeed, suppose such a ¢§ exists. For every x € M one can define W (z)
as the set of all points in M that can be joined to x by a finite concatenation
of W# and W€ arcs. In this way {W(x) : x € M} defines a partition of M.
On each element of this partition one can consider the distance d(y,z) :=
inf, length(y) where v varies among all finite concatenations of W* and W¢
arcs joining y to z.

By shrinking ¢, if necessary, one can ensure by Lemma 2.0.1 that the set
Wss(Wss(2)) is a C1 submanifold tangent to E* @ E€ for every x € M. As
W5(y) is contained in Wi5(W5s(x)) for every y € Wi(x) it follows that for
some €,€¢ > 0 independent of z the ball B.(x) < W (z) with respect to
d is an open subset of the C! submanifold W5;(WSs(z)) that contains the
ball Be(z) € W55(W5s(x)) with respect to the inner metric in W35(W$s(z))
induced by the Riemannian metric of M.

In this way one obtains that each element of W is a C! submanifold
tangent to E° @ E°, saturated by W* and W€ leaves and whose inner metric
is complete. Hence W is an f-invariant center-stable foliation. Analogously
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one constructs W an f-invariant center-unstable foliation. The property
WE = W ~n W follows immediately. This proves the claim.

It remains to show that there exists § > 0 such that for every x,y € M
with y € W§(z) then W§(y) < W55(W5s(x)). For cu discs the arguments are
analogous.

The key point to note is that two distinct leaves of W€ that are compact
and periodic can not intersect the same leaf of W®. Indeed, suppose by
contradiction that two such leaves W, W' € W¢ contain points x € W and
y € W' that belong to the same leaf of W*. One can consider N > 0, a
multiple of the periods of W and W', so that f(W) = W and fN(W') = W',
On the one hand, d(ka(x), ka(y)) tends to 0 as k — +00 because x and
y belong to the same stable leaf. On the other hand, f*V(z) lies in W and
fEN(y) in W' so for every k > 0 the distance between both points can not be
smaller than the positive distance between the disjoint compact sets W and
W’. This gives us a contradiction.

Consider from now on a metric in M and § > 0 small enough so that the
bundles E*, E¢ and E* are almost constant and pairwise orthogonal at scale
6. For a precise construction of such a metric and constant see for example
Lemma 4.2.1. And consider ¢ > 0 small enough so that by Lemma 2.0.1 the
set W4 (WSs(x)) is a C! submanifold tangent to E°@® E for every x € M.
In particular, let us consider the above so that for every =,y € M such that
d(z,y) < 30 the set Wis(y) intersects Wi;(W¢s(x)) and this intersection
point is unique.

For every y such that d(z,y) < 39 let 73(y) denote the intersection of
Wis(y) with Wis(W4s(x)). It is immediate to check that 7°(y) varies contin-
uously with y. For every x € M let D(x) denote Wis(W$,(x)). By Lemma
2.0.1 it is a C! disc tangent to E°@E" for every x € M. The set D(z)\W5s(x)
has two connected components. Let us denote them by D¥(z) and D~ (x).

Suppose by contradiction that there exists xzg,yo € M such that gy lies
in Wi(zo) and W§(yo) is not contained in W5s;(W$5(x0)). Then there exists
29 € W§(yo) such that 7°(zp) is not in W§s(xo). Suppose without loss of
generality that 7%(2g) lies in DT (z). See Figure 6.1.

On the one hand, there exists ¢ > 0 small so that 7°(Bc(20)) is entirely
contained in D (xp). On the other hand, since 7°(yp) = xo one can consider
Y1 as close as wanted to yo so that 7°(y;) lies in D™ (x¢) and W§(y1) intersects
Be(20). In particular, for such a y; there exists an arc v < W§(y1) joining y;
with a point z; € Be(20).

As {W e W¢ | W compact and f™*(W) = W for some n # 0} is dense in
M we can approximate v and W¢s(xo) by center arcs contained in compact
periodic leaves of W€,

By construction 7°(vy) is an arc in D(zg) joining a point in D (xy) with
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W3s(Wss(0))

Figure 6.1:

a point in D~ (xg). In particular, 7°(y) intersects W§s(xp). One can then
approximate v by an arc 4 contained in a periodic compact leaf of W¢ so
that the 7%(y') continues to satisfy the same property, namely that 7°(v)
intersects Ws(zo) and has each of its endpoints in a different connected
component of D(xg)\W$s(zo).

By approximating W;(xo) close enough by a center arc 7 contained in a
periodic compact leaf of W€ one obtains that 7°(v") and 7°(n) must intersect.
This gives us a contraction with the aforementioned fact that one can not
join two different compact periodic leaves of W€ by an arc contained in a leaf
of W¢. O

The criterion above combined with the following lemma ends the proof
of Proposition 6.8.1.

Lemma 6.8.3. In the setting of Proposition 6.8.1 the set {W e W¢ |
W is compact and f"(W) =W for some n # 0} is dense in M.

Proof. Note first that the set of fixed points of f2, denoted by Fix(f?) c M,
has empty interior in M. This follows immediately from the fact that, if x is
a fixed point of f2, then every y in Wi (z)\{z} can not be a fixed point of
f? because its forward f2-orbit must tend to .

As a consequence of Fix(f?) having empty interior in M it is enough to
show that {WW € W¢ | W compact and f*(W) = W for some n # 0} is dense
in M\ Fix(f?).

Suppose from now on that g is a point in M\ Fix(f?). Let us see that
for every € > 0 small enough there exists x € Be(xg) and k£ > 0 such that
fWe(z)) U f2(WS(x)) is disjoint from W¢(x) and f*(z) € W(x). This
immediately implies that W¢(x) needs to be compact and periodic (see next
paragraph) and shows that xzy can be approximated by periodic compact
leaves of 'W¢.
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Indeed, in case every leaf of W€ is compact then W¢(zx) is automatically
compact and periodic and there is no more to say. In case f(W) = W
for every leaf W € W€ let us suppose by contradiction that W¢(z) is not
compact. Then f : W¢(z) — W¢(z) is a homeomorphism of the line. In
case this homeomorphism preserves the orientation of W¢(z) then f(W¢(x))
disjoint from W¢(x) impedes f*(z) from lying in W¢(zx) for some k& > 0 and
gives us a contradiction. In case the homeomorphism inverts the orientation
of W¢(x) then f(W¢(x)) disjoint from W¢(x) implies that W¢(z) is disjoint
from the unique fixed point of f in W¢(z). Let us denote by p this fixed
point. Since f¥(z) lies in W¢(z) it follows that k needs to be even because
odd iterates of x and x itself must lie in different connected component of
We(x)\{p}. The fact that f2: W(z) — We(z) preserves the orientation of
We(x) and f2(WS(x)) is disjoint from W¢(z) prevents f¥(z) from lying in
WE(z) for some k > 0 even and gives us a contradiction.

Let € > 0 be small enough so that f(Bac(xg)) and f?(Bac(z0)) are disjoint
from Bsc(zp). And small enough so that at scale e the bundles are almost
constant and the distances inside the invariant manifolds W7, o € {s, ¢, u}
are nearly the same as in the manifold. For a precise construction see for
example the scale and metric considered in property (P4) of Lemma 4.2.1.

Inside B(zo) let U be a W¢-foliation box neighborhood containing xg
that is obtained as U := W§(D) for § > 0 some small constant and D some
C' disc transverse to W¢ and nearly tangent to E* @ E*. In particular, let
d > 0 be such that 6/2 is smaller than the constant given by Lemma 2.0.1.

Let us consider 0 < ¢’ < ¢ and 0 < ¢’ < € such that 10¢’ < ¢’ and such
that for every y € Bo (o) the set W5, (W4, (y)) is contained in U.

We claim that for every y € Be(xo) the set W5, (W4, (y)) intersects every
center plaque of U in at most one point. This is a consequence of Lemma
2.0.1. Indeed, suppose that w, w’ € W5,(W¥,(y)) are points in the same center
plaque of U. Then w' € W§(w). Let z,2 € WY, (y) be such that w € W5, (2)
and w’' € W5, (2'). As w’ € W§,(w) then both z and 2’ lie in W§,(W§,(w)).
As W5, (W§, (w)) is C! and tangent to E* @ E° it follows that W3, (W$, (w))
intersects WY, (y) in at most one point. That is, z = 2z’. Then w = w’. This
proves the claim.

Let n¢: U — D denote the projection along center plaques. It is imme-
diate to check that 7¢ needs to be continuous. The previous paragraph then
implies that 7¢ from W$,(W¥,(y)) to D is a homeomorphism onto its image
for every y € Be(xp).

Since z¢ € Q(f) there exists k > 0 such that f*(B(20)) n Be(z0) # &.
Moreover, such a k can be considered arbitrarly large. Let us fix such a &
large enough so that Wiy, (f(z)) < fH(W%(z)) and f*(W5,(2)) < Wg,/z(f(x))
for every xz € M.
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Let us fix from now on y a point in By (xg) so that f*(y) € Bu (). Tt fol-
lows that there exists a sub arc ' in Wy, (y) such that Ik (vy) = Ws (f*(y)).

Then f*(Wj3, (7)) is a subset of Wg,/Q(Wgé,(fk(y)). Consider R c D the
closure of the image by 7 of W5, (v,)). It follows that R is a topological disc
in D. Its boundary can be viewed as a rectangle. Two of its opposite sides,
[’y and T'y, correspond to the projection by 7¢ of the two s-arcs W5, /2(3/1) and
Ws, 1 (y2) for y1,y2 each one of the two endpoints of v, in W*(y). The other
two sides, I'1 and I's, correspond to the projection by 7¢ of the two segments
formed by the endpoints of W, (y') as y' varies in .

It follows that h = 7€o f* o (7¢)~! is a well defined continuous map from
R to D. We claim that it is enough to show that h has a fixed point. Indeed,
if p denotes a fixed point for A then o := (7€)~ !(p) satisfies that f*(0) and o
are in the same center plaque of U. Since f(W¢(x)) u f2(W<(z)) is disjoint
from W¢(z), because f(Bac(w0)) U f2(Bac(x0)) is disjoint from Bac(zg), one
obtains that W¢(0) needs to be compact and periodic as discussed before.

The existence of a fixed point for h follows by a classic Lefschetz’s index
argument. Let I denote the boundary of R. The closed curve I' is the union
I'y U...uTy of the sides of R as explained above. Since f*(Wj3, (7)) is
a subset of Wg,ﬂ(W%,(fk(y)) and d(y, f*(y)) < ¢ for 10 < &' it follows
that h sends the rectangle R to a new rectangle h(R) that ‘crosses’” R so
that I'; and I's do not intersect h(R) and h(I'2) and h(I'4) lie in two different
connected components of R\h(R) that are adjacent to I'y and I'y, respectively
(see Figure 6.2 and Figure 6.3). This is enough for finding a fixed point for
h. For the sake of completeness we will reproduce this classical argument for
finding a fixed point under these hypothesis.

PR ()

; Yy o
n ARy

Figure 6.2:

Let t = I'(t) be an homeomorphism from the circle S* to I'. We can
consider a nullhomotopy {I'(®)} sef0,1] of I' inside R as follows. Let us identify
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I's

h(T'3)
h(T4) Iy Ty h(T'2)
h(I'y) h(R)
r i
Figure 6.3:

R homeomorphically with [0,1] x [0,1]. Then let T'®©) be equal to T and let
I'(®), varying continuously with s € [0,1], be such that the image of I'®) is
the boundary of the square [0,1 — s] x [0,1 — s].

Suppose by contradiction that A has no fixed points in R. Let us identify
D with the euclidean plane R?. The no fixed points assumption implies that
the continuous family of maps p, : S* — S! given by

_ h(I¥@) —re)()
ps(t) = ILTE(8) — T (#)]]

is well defined for every s € [0, 1].

On the one hand, from the way the sides I'y, ..., I'y are mapped by h it
is an immediate computation to check that pg : S' — S! has index different
from 0. On the other hand, if yy denote the point that is the image of I'Y),
then h(yp) # yo and one can consider a small ball B containing yo so that
h(B) n B = . This immediately implies that for every s close enough to 0
(so that I'®) = B) the map p, : S — S! must have index 0. As the index of
a continuous familiy of maps from S' to S! is an invariant of the family one
gets to a contradiction. Hence h must have a fixed point on R. 0
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Chapter 7

Uniqueness of attractor

7.1 Introduction

This chapter deepens on the study of the dynamics of discretized Anosov
flows. In particular, on the problem of uniqueness or finiteness of quasi-
attractors and quasi-repellers.

Recall that quasi-attractors are pairwise disjoint compact sets saturated
by Wt-leaves. It follows that each one of them contains at least one minimal
set for the foliation W*. We call a minimal set for W* a minimal unstable
lamination. Thus, uniqueness (resp. finiteness) of minimal unstable lamina-
tions implies uniqueness (resp. finiteness) of quasi-attractors.

In [CPS17] finiteness of minimal unstable laminations was shown to hap-
pen for a C'-open and dense subset of partially hyperbolic diffeomorphisms
with one-dimensional center. In this chapter we aim to a more global (non-
perturbative) study involving uniqueness and finiteness results for whole
classes of examples.

It is worth pointing out that we focus on minimal unstable laminations
and quasi-attractors but the results have obvious analogous statements for
minimal stable laminations and quasi-repellers.

7.1.1 Uniqueness of attractor for discretized transitive Anosov
flows

Discretized Anosov flows with arbitrary number of attractors and repellers
can be obtained by perturbing the time 1 map of an Anosov diffeomorphism’s
suspension ¢y : M — M. Indeed, as M fibers over the circle and (1 preserves
fibers one can perturb ¢; so that it becomes Morse-Smale or even a dynam-
ics with infinitely many quasi-attractors in the base (see Example 7.2.1 for
details).
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In [BG10] examples of Axiom A discretized Anosov flows with a proper
attractor and a proper repeller have been built as a discretization of any
transitive Anosov flow ¢, : M — M provided that dim(M) = 3.

Recall that two flows are said to be orbit equivalent whenever there exists
a homeomorphism taking orbits of one into orbits of the other and preserving
its orientation. We obtain:

Theorem 7.1.1. Let f be a discretized Anosov flow and let ©f be the center
flow of f. Suppose pf is transitive and not orbit equivalent to a suspension.
Then f has a unique minimal unstable lamination.

Corollary 7.1.2. Any f as in Theorem 7.1.1 has at most one quasi-attractor.

Theorem 7.1.1 is already known from [HU19] for discretized Anosov flows
in a C'l-neighborhood of the time 1 map of a transitive Anosov flow that is
not orbit equivalent to a suspension.

We point out that the proof given here relies on a different approach.
The main inspiration for it comes from [BG09] where it was shown that
every discretized Anosov flow that is Axiom A and satisfies the hypothesis of
Theorem 7.1.1 admits a unique attractor. By generalizing the arguments in
[BGO9] (see also [G02]) we are able to remove the ‘Axiom A’ hypothesis and
to obtain not only uniqueness of quasi-attractor but also of minimal unstable
lamination.

In the case when f is chain-transitive the statement of Corollary 7.1.2
gives us no new information but uniqueness of minimal unstable lamination
may give. It implies, for example, that the supports of all u-Gibbs measures
have non-trivial intersection since the support of any such a measure is a W¥-
saturated compact set. In [HU19, Theorem 1.2] more precise consequences
are obtained.

7.1.2 Finiteness of attractors for discretized non-transitive
Anosov flows

Recall that the center flow ¢f : M — M of a discretized Anosov flow f
is a topological Anosov flow (see Proposition 3.7.2). Most of the classical
properties of Anosov flows are valid also in the context of topological Anosov
flows (see for example [Ba05] and the references therein).

In particular, if the center flow ¢f is not transitive then the non-wandering
set of ¢f admits a decomposition Q(p;) = Aju...UAk in disjoint basic pieces
{A:i}1<i<k that are compact, @f-invariant and such that ¢f|a, : Ay — A; is
transitive. Moreover, some of them, Aq,..., Ay, are attracting basic pieces
such that its whole basin F¥$(A1) u ... U F¥3(Ag) is an open and dense
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subset of M. For the sake of completeness we detail these facts in Lemma
7.4.2.

In case the center flow ¢f is not transitive the problem of uniqueness
or finiteness of attractors reduces to the study of the behavior of ¢f on its
attracting basic pieces.

For instance, the time 1 map of the Franks-Williams’s non-transitive
Anosov flow [FW80] can be perturbed to obtain arbitrary number of quasi-
attractors (see Example 7.2.2). The unique attractor A in this example satis-
fies that ¢f|s : A — A is orbit equivalent to a suspension so one can essentially
perform, in a neighborhood of A, the same type of perturbation mentioned
above for the time 1 map of an Anosov’s suspension.

On the other hand, the arguments for obtaining Theorem 7.1.1 are also
valid in restriction to any non-suspension basic attracting piece. We obtain:

Theorem 7.1.3. Let f be a discretized Anosov flow and A be an attracting
basic piece of its center flow ¢f. If p§|a : A — A is not orbit equivalent to a
suspension then A contains a unique minimal unstable lamination of f.

Corollary 7.1.4. Let f be a discretized Anosov flow. Suppose that all the
attracting basic pieces A1, ..., N, of ¢§ satisfy that ¢§|a, : Ay — A; is not
orbit equivalent to a suspension. Then f has exactly k minimal unstable
laminations (and ezactly k quasi-attractors). Moreover, each one of them is
contained in one of the attracting basic pieces Ay, ..., Ag.

Discretized non-transitive Anosov flows in the hypothesis of Corollary
7.1.4 can be constructed using the techniques from [FW80] (see also [BBY17]).
We briefly sketch their construction in Example 7.2.3.

7.1.3 Uniqueness of attractor for partially hyperbolic skew-
products

Recall that f : M — M is a partially hyperbolic skew-product if it admits an
f-invariant center foliation W¢ such that M is a fiber bundle with M /W¢ as
base and the leaves of W€ as fibers. If dim(E°) = 1, we say that (M, W¢) is
the trivial bundle if W¢ is topologically equivalent to the foliation {-} x S*
in M/W¢ x S. We say that (M, W¢) is a virtually trivial bundle if it is
the trivial bundle modulo finite cover. In [BWO05] one can find examples of
non-trivial skew-products that are virtually trivial and not virtually trivial.

The proof of Theorem 5.1.1 will follow from the more general statements
of Proposition 7.3.1 and Proposition 7.3.3 (see Section 7.3.1). As a conse-
quence of these propositions we recover also the uniqueness of minimal unsta-
ble lamination result of [HP14] when the bundle is non-trivial in dimension
3 and we extend it to any dimension:
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Theorem 7.1.5. Suppose f € PH._1(M) is a partially hyperbolic skew-
product such that the induced dynamics in the space of center leaves, F :
M/W¢ — M /W€, is transitive. If (M, W€) is not a virtually trivial bundle
then f admits a unique minimal unstable lamination and a unique quasi-
attractor.

In fact, Theorem 7.1.5 is still valid if we exchange the hypothesis ‘skew-
product’ for “W¢ uniformly compact’. We will precise this in Section 7.3.1.

In dimension 3, examples of partially hyperbolic skew-products with a
proper attractor and a proper repeller such that W€ is given by the fibers of
a non-trivial bundle over M /W¢ = T? are constructed in [Sh14].

One more time, it is worth noting the marked correspondence between
skew-products and discretized Anosov flows. In this case, concerning the
uniqueness and existence results. The trivial bundle case, the uniqueness
of minimal unstable lamination result of [HP14] for 3-nilmanifolds that are
not T3 (extended in Theorem 7.1.5) and the examples of [Sh14] mirror the
suspension case, Theorem 7.1.1 and the examples of [BG10], respectively.

Notice that the hypothesis ‘F' : M /W¢ — M /W€ transitive’ in Theorem
7.1.5 is somehow natural since in this setting F' is a topological Anosov homeo-
morphism that preserves two topologically transverse contracting/expanding
continuous foliations W[y, npe and W[y pe. A potential Theorem B,
in analogy with Theorem 7.1.3, would involve dealing with attracting basic
pieces of a non-transitive F.

7.1.4 Uniqueness and finiteness of attractors for the classical
examples in dimension 3 and beyond

As was already mentioned, the ‘classical examples’ (in the sense of Pujals’s
conjecture and [BW05]) of partially hyperbolic diffeomophisms in dimension
3 are skew-products, deformations of Anosov diffeomorphisms (those that
are homotopic to Anosov in T3) and discretized Anosov flows.

For deformations of Anosov diffeomorphisms uniqueness of minimal stable
and unstable lamination is proved in [Pol3]|. Existence of a proper quasi-
attractor is unknown (see [Pol3, Question 2]).

Theorem 7.1.1 and Theorem 7.1.3 complete, in a certain sense, the unique-
ness and finiteness problem for the classical examples in dimension 3 modulo
the structure of W¢. In particular, the existence of infinetely many minimal
unstable laminations is always associated with a region (the whole manifold
or some proper attracting region) where W¢ ‘looks like’ a suspension flow.

Recall that, beyond the classical examples, the first non-dynamically co-
herent examples were obtained in [HHU16]. These examples detected the
existence of a periodic torus tangent to £° @ E€ or E° @ E" as a possible
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obstruction for dynamically coherence. Notice that such a torus is necessar-
ily an attractor or a repeller. In [HP19] it was shown that examples with
this type of tori have periodic regions homeomorphic to T2 x (0,1) in the
complement of these tori. In these regions E° integrates to f-invariant ‘in-
terval fibers’ transverse to T2 x {-} and the dynamics is of the type ‘Anosov
times identity’. So, essentially, the existence of minimal unstable lamina-
tions or quasi-attractors for this type of examples is similar to the trivial
skew-product and suspension’s of Anosov map scenarios.

More recently, the realm of classical examples has been enlarged with new
challenging examples (as [BPP16], [BGP16] and [BGHP17]). It is natural to
ask if results of uniqueness or finiteness of minimal unstable laminations and
quasi-attractors are also valid for whole classes of these new examples.

7.2 Examples

In this section we briefly outline some examples. We give in Example 7.2.1
and Example 7.2.2 the construction of discretized Anosov flows with arbitrary
number of quasi-attractors, even infinitely many. The center flow ¢f on these
examples is orbit equivalent to a suspension flow in the whole manifold or
in restriction to an attracting basic piece of ¢f. Then in Example 7.2.3 we
show an example of an Anosov flow in the hypothesis of Corollary 7.1.4.

We say that a flow ¢; : X — X is a suspension flow if there exists a
homeomorphism ¢ : Y — Y such that the flow ¢, is the projection of the
flow in Y x R generated by the vector field % = (0,1) into the quotient
X =Y xR/ given by (y,t+ 1) ~ (g(y), 1).

Notice that for a suspension flow the space X has the structure of a bundle
over the circle S! with fibers that are homeomorphic to Y. Moreover, the
flow ¢, takes fibers to fibers and the time 1 map ¢; : X — X leaves invariant
each fiber (it projects as the identity on the base) and acts on each of them
as the map g.

Example 7.2.1 (Perturbing the time 1 map of an Anosov’s suspension). Let
us consider ¢; : M — M to be the suspension of an Anosov diffeomorphism
g: N — N.

We can perturb the time 1 map of ¢4 in order to get a partially hyperbolic
map f that still preserves fibers but acts like a Morse-Smale in the base.
Indeed, taking coordinates = = (y, t), we can consider f explicitly as f(y,t) =
Oryt)(y, ) with 7(y,t) = 1+ asin(27kt) for any a € (0,1). In this case, f
has k proper attractors and k proper repellers.

Further, for a suitable 1-periodic map h : R — (—1,1), the discretiza-
tion 7(y,t) = 1 + h(t) can produce infinite number of quasi-attractors and
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quasi-repellers. It is sufficient for A to have infinite zeros (countably or un-
countably), each of them accumulated by positive and negative values.

In analogy with the above example one can perform the following one:

Example 7.2.2. (Perturbing the time 1 map of the Franks-Williams’s exam-
ple) Consider ¢; : M — M the Franks-Williams’s example of a non-transitive
Anosov flow ([FW80]). Let A be the unique basic attracting piece for ;.

In this particular flow one has that ¢ip : A — A is conjugate to the
suspension of a derived from Anosov map g : T? — T? restricted to its
unique attractor Y < T2. In particular, the time 1 map ¢1|s leaves invariant
the fibers of this bundle structure acting on each of them as gly : ¥ — Y.
Notice that each fiber is already a minimal unstable lamination for ¢;.

Moreover, as the construction of ¢, involves performing a surgery far from
the suspension of gly : Y — Y, in fact, there exists a neighborhood V' of Y
with g(V) € V such that ¢, is conjugate to the suspension of gly : V — V
in a neighborhood U of A.

So we can perturb 1 in a smaller bundle neighborhood U’ < U of A to
obtain a discretization f(z) = @ (;)(z) that acts with arbitrary number of
quasi-attractors in the base and leaves unchanged the dynamics of 1 outside
U. This can be done as in the previous example by taking 7(y,t) = 1 + h(t)
for a suitable 1-periodic diffeomorphism A : R — R in the neighborhood U’
and glueing it with the constant 7 = 1 outside U.

This construction produces an arbitrary number of quasi-attractors for
f, each one of them homeomorphic to Y. On the fibered neighborhood U’ of
A the map f acts as h in the base S! and as g on the fibers near A.

Let us finish this section with a brief sketch on how to construct an Anosov
flow in the hypothesis of Corollary 7.1.4:

Example 7.2.3. Let S be a negatively curved hyperbolic closed surface. Let
@i : TYS — TS be the geodesic flow on the unitary tangent bundle of S.

Consider a and S two simple, closed, oriented and disjoint geodesics in
S. Let us see them as periodic orbits a, 3 : [0,1] — T'S of the flow ¢;.

It is a standard procedure to make a DA-type perturbation of the vector
field %h:g in a neighborhood of « in order to transform « into a repelling
periodic orbit for a new flow v : T'S — T'S such that %h:g and %h:o
coincide outside a small neighborhood of «.

By considering then T a small toroidal neighborhood of « such that
1y points inward into T'S\T along the boundary 0T we obtain that the
maximal invariant set of |z s\7 is a connected attracting hyperbolic set
A = T'S\T. By cutting out T from TS and gluing back adequatly another
copy of ¥t g\p With the inverse orientation one can obtain a non-transitive
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Anosov flow with A as its unique attracting basic piece (see the techniques
in [FW80] and [BBY17] for all the details).

We claim now that | is not orbit equivalent to a suspension. Suppose
by contradiction that it is. Then we can consider p : A — S! such that
lim¢ 400 po@i(x) = 400 and limy,_o po@,(x) = —c0 for every z € A,
where t — p o @,(7) : R — R is any lift of t — po ¢ (z) : R — St

We can extend p to a small open @;-forward invariant neighborhood U of
A such that limy_, 4o p 0@, (x) = +00 continues to be valid for every x € U
(see the proof of Theorem 7.1.3 for details on how to construct such an U). By
considering an adapted metric such that ¢, contracts distances inside strong
stable leaves for all future iterates we can take U of the form J, ., Wi(z) for
some § > (0. In particular, ¢; points inwards to U in every point of oU.

We can extend p continuously to T'S\T by setting p(y) = p(ey, (y)) for
every y € T'S\(T u U) where t, is the unique non-negative time such that
e, (y) € 0U.

Now, 3 :[0,1] — A is freely homotopic to its inverse ! : [0,1] — A in
T'S by the homotopy 8, with s € [0, 1] that for each ¢ takes 3(t) and rotates
it clockwise sm. As [ coincides with £ in the base S, we can consider T'
sufficiently close to a so that this homotopy takes place inside 7' S\T. This
homotopy gives an homotopy between the curve ¢ — po/\B(t) : R — R that
lifts t > poB(t) : R — S! and the curve t — p/gﬁ:l(t) : R — R that lifts ¢ —
poB~Y(t) : R — S'. This is an imposible homotopy since limy_, ;o ;:B(t) =
+o0 and limy_, | o p’oF:1 (t) = —oo. We get to a contradiction and the claim
is proved.

7.3 Uniqueness of attractor for discretized Anosov
flows such that ¢f is transitive

7.3.1 Proof of Theorem 7.1.1 and Theorem 7.1.5 assuming
Proposition 7.3.1 and Proposition 7.3.3

Theorem 7.1.1 and Theorem 7.1.5 will be a consequence of the following more
general statements. Together, the following two propositions can be seen as
an obstruction to the existence of more that one minimal unstable lamination
(or more than one attracting region) for certain partially hyperbolic systems
with one-dimensional center.

Recall that f acts quasi-isometrically on W€ if there exist some constants
[, L > 0 such that

[ (Wi(z)) € WL(f"(2)) (7.3.1)

for every x in M and n € Z. We say that f acts quasi-isometrically in the
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future on W€ if (7.3.1) is verified for every n = 0. And quasi-isometrically in

the past on W€ if it is satisfied for every n < 0.

Proposition 7.3.1. Suppose f € PH.—1(M) is dynamically coherent admit-
ting f-invariant foliations W and W. Suppose that W is minimal and
that f acts quasi-isometrically in the future on W€ := W€ ~ W,
Then there exists L > 0 such that every minimal unstable lamination
A c M satisfies that
WS () nA#

for every x € M. In particular, A intersects every leaf of W€.

Remark 7.3.2. In Proposition 7.3.1 the hypothesis ‘W minimal’ can be
replaced by ‘f chain-transitive’ or ‘f volume preserving’ since the latter ones
imply the former one (see for example [BWO05, Lemma 1.1]).

We say that a one-dimensional center manifold W¢ admits a global section
if there exists a codimension one closed submanifold N < M transverse to
the leaves of W® such that W (z) n N # & for every x € M and some
constant L > 0.

Proposition 7.3.3. Suppose f € PH.—1(M) is dynamically coherent. Sup-
pose that the foliation W€ is orientable and that there exists L > 0 such that
WS (x) nA # & for every minimal unstable lamination A.

If M has more than one minimal unstable lamination then W€ admits a

global section.

Remark 7.3.4. Notice that Proposition 7.3.3 does not include the hypothe-
sis ‘f acts quasi-isometrically on W€, In fact, it is derived as a consequence
along the proof (see Lemma 5.3.).

Proof of Theorem 7.1.1 assuming Propositions 7.3.1 and 7.3.3. Suppose f is
a discretized Anosov flow such that its center flow ¢f : M — M is transitive
and not orbit equivalent to a suspension.

From Proposition 3.4.4 we know that f is dynamically coherent admitting
f-invariant foliations W and W such that W¢ = W ~ W is the flow
center foliation of f (whose leaves are the orbits of ¢f). Moreover, f acts
quasi-isometrically on W¢ (see Remark 3.4.2). And the leaves of W and
W are the weak-stable and weak-unstable leaves of the topological Anosov
flow ¢f, respectively (see Proposition 3.7.2).

Since ¢f is transitive we claim that W and W are minimal foliations.
Indeed, suppose by contradiction that there exists A ¢ M a compact proper
subset of M that is saturated by leaves of W*. Let N > 0 be such that f~
contracts distances from the first iterate on leaves of W* and let L' > 0 be
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such that fV(x) € WS, (z) for every € M. Let €,6 > 0 small be such that
Wi (A") contains WG, (x) for every x € W3(A*). And such that M\W¢(A)
has non-empty interior.

Let x be a point whose ¢§-forward orbit o*(z) is dense in M. Without
loss of generality we can suppose that x lies in W5(A*) since W5(A*) has
non-empty interior. And that f(x) and ¢{(z) lie in the same connected
component of W¢(z)\{z} (otherwise, one just reverses the time of ¢f).

For every y,z € W¢(x) let |y, z]. denote the center segment in W¢(z)
joining y and 2. It follows that the forwards orbit o™ (z) of z is equal
to Upsolf* (2), fFEFDN(2)]e.  Since [f5N(x), fE+DN(z)], is a subset of
WS, (fEN (z)) for every k > 0 one obtains from the election of § and e that
ot(x) is contained in W#(A°). This contradicts that ot (z) is dense in M
since W#(A*) was chosen so that M\'W?(A*) has non-empty interior.

Analogously in the case of a compact proper subset of M that is saturated
by leaves of W, This proves the claim.

Combining Proposition 7.3.1 and Proposition 7.3.3 one obtains that f can
not admit more than one minimal unstable lamination, otherwise ¢ would
have a global section, and as a consequence it would be orbit equivalent to a
suspension flow. O

Recall that a one-dimensional center manifold W€ is uniformly compact if
every leaf of W¢ is compact and the leaf length function = — length(W¢(z))
is bounded in M. In case f is a skew-product, it is immediate that W€ is
uniformly compact (in fact, the leaf length function is continuous in M). We
will prove Theorem 7.1.5 in its more general version for the case when W€ is
an f-invariant uniformly compact foliation.

Proof of Theorem 7.1.5 assuming Propositions 7.3.1 and 7.3.3. Let f: M —
M be a partially hyperbolic diffeomorphism with dim(FE¢) = 1 admitting an
f-invariant uniformly compact center foliation W such that the induced dy-
namics in the space of center leaves, F' : M /W — M /W€ is transitive.
Suppose that M admits more that one minimal unstable lamination. We are
going to see that under this hypothesis (M, W) has to be a virtually trivial
bundle.

From [BB16, Theorem 1] the map f is dynamically coherent admitting
center-stable and center-unstable foliations W and ‘W€, respectively, such
that W¢ = W "W, As F': M /W¢ — M /W€ is transitive the foliation W
has to be minimal, otherwise a proper minimal set for W would project to
M /W€ into a proper repeller for F'.

Furthermore, as the length of center leaves is bounded, then f automat-
ically acts quasi-isometrically on W¢ as pointed out in Remark 3.4.3.
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Suppose first that W€ is orientable. By combining Propositions 7.3.1 and
7.3.3 we obtain that W admits a global section.

Let us denote the global section of W¢ as N < M. Let a : N — N denote
the first return map of W¢ to N, modulo fixing an orientation for W¢.

For every x € N let k(xz) € ZT be the smallest positive integer such that
@) (z) = z. As z — length(W<(z)) is bounded in M there exists some
constant k € Z* such that k(z) < k for every z. By taking K = k! we obtain
that o€ = id.

Let us consider a metric in M such that every center segment [z, a(x)].
is of length % and let ¢¢ : M — M denote the flow by arc-length whose
flow lines are the leaves of W¢. Then the map p : N x S' — M given by
(z,0) — ¢4(x) is a K : 1 covering map sending circles of the form {-} x S!
to leaves of the foliation W¢. We conclude that (M, W¢) is a virtually trivial
bundle.

In the case W€ is not orientable we can argue as above after taking an ori-
entable double cover for W¢. Indeed, we can lift f, W¢ and all the minimal un-
stable laminations to an orientable double cover M. The quasi-isometrically
action of f on W€ remains valid on the lifted dynamics.

We claim that the minimality of W also remains valid on the lift. Indeed,
if we suppose that the lift of W is not minimal then there exist Z and 7’ lifts

of a point « € M such that Wes(z) and W¢(Z') are minimal proper subsets
of M. Then M coincides with the disjoint union Wes(z) U Wes(#') and we
get to a contradiction. This proves the claim.

We obtain that the lifted dynamics verifies Proposition 7.3.1 and Proposi-
tion 7.3.3. Then, as argued above, M and the lift of W€ form a virtually trivial
bundle. We conclude that (M, W¢) is also a virtually trivial bundle. O

7.3.2 Proof of Proposition 7.3.1

Let f: M — M be as in the hypothesis of Proposition 7.3.1.

Recall that for every r > 0 and x € M we denote by W5 (W¢(x)) the
set UyeWg (@) Wi (y). As a consequence of f acting quasi-isometrically in the
future on W€ it was shown in Proposition 3.4.4 that | ., W;(Wi(z)) =
Wes(z) for every x in M (the proposition is stated for quasi-isometrically
action in the past and future but the proof of this fact only uses that f acts
quasi-isometrically in the future).

Lemma 7.3.5. There exists R > 0 such that Wi(Wq(x)) n W(y) # & for
every x and y in M.

Proof. By contradiction, suppose there exist R, — o and sequences {zn}n
and {yn}n in M such that W3, (W% (2n)) 0 W(yn) = & for every n. Then,
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as we are dealing with leaves of foliations tangent to continuous bundles, by
taking accumulation points z and y of the sequences {z,}, and {y,}, we
obtain that W (z) n W*(y) = . This contradicts that W (z) is dense in
M. O

As f acts quasi-isometrically in the future on W€ there exists L > 0 such
that f"(W%(x)) is contained in W (f"(z)) for every n > 0 and x € M.
Proposition 7.3.1 is a direct consequence of the following lemma.

Lemma 7.3.6. For every x and y in M we have that WS (x) n W¥(y) # .

Proof. Let us fix x and y arbitrary points in M. For every n = 0 we have
that Wi(W%(f7"(2))) n W*(f"(y)) # &. Then, as f contracts distances
uniformly to the future inside stable leaves, there exists r, —» 0 such that the
image of WEL(W%(f~"(x))) by f" is contained in W; (W¢(x)). We obtain
that W (W¢ (z)) nW*(y) # & for every n > 0 and then WS () n W¥(y) #
. O

7.3.3 First part of the proof of Proposition 7.3.3: The sets
(A, A'). and (A", A),

From now on let f: M — M and L > 0 be as in the hypothesis of Proposi-
tion 7.3.3 and suppose that there exist A and A’ different minimal unstable
laminations in M. We will see that under this hypothesis W¢ has to admit a
global section.

The goal of this subsection is to show that the sets (A, A"). and (A’, A).
defined below are disjoint open subsets of M that ‘separate’ the disjoint and
closed subsets [A]. and [A']. (see Proposition 7.3.12).

Let us fix from now on an orientation for W¢ and denote ¢ : M xR — M
a non-singular flow that parameterizes the leaves of W¢.

Notation. For z and y in the same center leaf we will say that = < y if
y = ¢§(x) for some ¢ > 0. If this is the case, let (x,y). and [z, y]. denote the
open and closed center segments from z to y.

Let us define the sets:

[A]C = U{[-Tay]c HEORS A,y €4, [$,y]c nA = ®}7
(A, A)e = @, p)e:ve A ye A (z,y).n (AU A) = &}

Notice that the center segments in the definition of [A]. may be singletons.
We define analogously the sets [A’]. and (A4’, A).. By an abuse of notation,
we will consider this sets both as subsets of M and as an abstract collection
center segments.

The following remark is a direct consequence from the definitions.
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Remark 7.3.7. The manifold M is equal to the disjoint union [A].u(A4, A') v
[A"]. U (A A).

Let us first point out that:
Lemma 7.3.8. The map f acts quasi-isometrically on W€,

Proof. Let d > 0 be the distance between the disjoint minimal unstable
laminations A and A’.

We claim that, as every center segment of length 2L > 0 intersects every
minimal unstable lamination, then f"(W¢(z)) can not have length larger
than 2L for any x € M and n € Z.

By contradiction, if the length of f*(W¢(x))) is larger that 2L for some = €
M and n € Z then f"(W(x)) intersects both minimal unstable laminations
f"(A) and f"(A’). Then W5(x) has to intersect both A and A’. This gives
us a contradiction and the claim is proved. We obtain that f is acts quasi-
isometrically on W¢ with constants d,2L > 0. O

As a consequence of the previous lemma it follows from Proposition 3.4.4
that for every z € M the center unstable leaf W (x) is equal to W*(W¢(x)),
the unstable saturation of the center leaf W¢(x). Moreover, we will be able
to make ‘long’ transports by unstable holonomy of any center segment as
stated in the in Lemma 7.3.9 below.

We say that a curve 2% : [0,1] — M is an unstable curve if it is a C*
curve tangent to the bundle E“. In the setting of the following lemma we
say that {[z"(t),y"(t)]c}e[o,1] is the transport by unstable holonomy of the
center segment [x,y|. along the unstable curve z".

Lemma 7.3.9. Let [z,y]. be a center segment in M and z* : [0,1] - M
be an unstable curve such that x*(0) = x. Then there exist a unique unsta-
ble curve y* : [0,1] — M and unique center segments [x"(t),y*(t)]. vary-
ing continuously with t € [0, 1] in the Hausdorff topology and satisfying that

[2(0), y*(0)]c =[x, y]c-

Proof. As f acts quasi-isometrically on W€ there exists R > 0 such that the
length of f~"([z,y].) is less than R for every n > 0.

By dynamical coherence the leaves of W are subfoliated by leaves of
W€ and W* having local product structure. Then, as W€ is tangent to a
continuous bundle, there exist small constants €,6 > 0 such that for every
center segment [2',y']. of length less than R and every point z” € W§ (')
there exists a unique center segment [2”,y"]. with y” € W¥(y’) such that
[z"”,y"]c is contained in an unstable e-neighborhood of [2/,3']. of the form
Ueper 7. We(2). In other words, the transport by unstable holonomy for
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center segments of length at most R is well defined along any unstable curve
of a certain small length ¢ > 0.

Since f contracts unstable distances in the past, then f~"0(z"%) will have
length less that ¢ for some ng = 0. Then the transport by unstable holonomy
of [f~"(z), f " (y)]. along f~"0(z") is well defined and, iterating it ng to
the future, the transport by unstable holonomy of [z, y]. along x* is also well
defined. O

For every x € A let us define S(z) to be the ‘first point’ of A’ in W¢(x)
in the direction of the flow ¢°. That is, S(x) is such that (z,S(z)). is a
center segment in [A]. U (A, A').. Let us define ls(z) as the length of the arc

[z, S(x)]ec.

Lemma 7.3.10. The function lg : A — R is lower semicontinuous and
continuous in a residual subset of A.

Proof. Since lg is bounded from above by the constant 2L > 0 then, for every
sequence {z,}, < A that converges to a point = in A, any accumulation
point y of S(x,) lies in W¢(z). Since A’ is closed, y is a point in A’. Then
[z, S(z)]. has to be contained in [z,y]. for any such an accumulation point
y. This implies that lg(x) < liminf, lg(z,) and we obtain that lg is lower
semicontinuous.
It is a well-known result that semicontinuous functions are continuous in
a residual set. For the sake of completeness we outline the proof of this fact
for lg: Consider the sets Fy,, = {xr € A : 3z, > zs.t. liminf, lg(z,) =
ls(z) + L} for every m in Z*. The set of continuity points of lg coincides
with A\ J,,, Fim. It is direct to prove that each F}, is a closed nowhere dense
subset of A. Then A\ J,, Fi is a residual set in A by Baire category theorem.
O

For a continuity point z of lg every sequence {z,}, < A converging to
x verifies that the center segments [z, S(zy)]. converges in the Hausdorff
topology to [z, S(x)].. For a discontinuity point this is not the case, however,
we will see in the following lemma that the failure of continuity is not that
dramatic. To show this, we will crucially use that the behavior of S near a
continuity point can be extended by unstable holonomy to any point of A
thanks to Lemma 7.3.9.

Lemma 7.3.11. Let {z,}, < A be a sequence converging to a point x €
A. Up to taking a subsequence, suppose that {S(xy)}n converges to a point
y € A'. Then y lies in We(z), the center segments [xy, S(xn)]e converge in
the Hausdorff topology to [z,y]. and [S(x),y]. is a center segment (possibly
degenerate to a point) contained in [A']..
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Proof. We claim first that the lemma is true for every x € A in a neighborhood
of a continuity point of Ig.

Indeed, let z € A be a continuity point of lg and consider Ug(;) a small
neighborhood of S(z) at a positive distance from A. We can suppose that
Us(z) is a foliation box of W€, that is, that Ug(,) is the image of a homeo-
morphism h : D x [0,1] - U, 5(z) such that D is a compact disc of dimension
dim(M) — 1 and h({z} x [0,1]) is a center segment for every x € D. Let us
denote by D; the disc h(D x {1}).

Since z is a continuity point of lg we can consider § > 0 such that for every
z € A n Bs(z) we have that S(z) lies in the interior of Ug(;). In particular,
the center segment [z, S(x)]. does not cross the disc D;.

If {xp}, < A is a sequence converging to a point z € A n Bs(z), then any
accumulation point y of {S(zn)}, has to lie in Ug(,y. Up to a subsequence,
let us assume that S(z,) = y. Then, as each [z, S(xy)]. does not intersect
Dy, the segments [z, S(z,)]. need to converge in the Hausdorff topology to
[, y]c and the whole segment [S(x),y]. has to be contained Ug,) (see Figure
7.1). As S(z) and y are in A" and Ug.) is disjoint from A we conclude that
[S(x),y]c is a center segment in [A’].. This proves the first claim.

S(x) v |

5(2)

Us(z)

Figure 7.1:

Let us see now that the lemma is true for every point in £ € A. We will use
as an auxiliary construction a continuity point z for [g and the neighborhoods
Bs(z) and Ug.y as in the previous claim.

Let {#,}n, < A be a sequence converging to the point & € A. Suppose,
up to taking a subsequence, that S(Z,) converges to a point y. As A is
W¥-minimal and z € A we can consider x € W*(z) n Bs(z) and z* : [0,1] —
M an unstable arc such that z%(0) = = and z*%(1) = . We can consider
also unstable arcs {z} : [0,1] — M},, converging uniformly to z* such that
z2(0) = x,, lies in W¥(&y,) n Bs(z) and z¥(1) = Z,.

Let us denote y, = S(x,) for every n. Notice that y, € Ug(,) since
xn € Bs(z). As the sequence x,, converges to x then by the first claim, up
to taking a subsequence, [Z,,yn]. converges in the Hausdorff topology to a
center segment [z, y]. such that [S(x),y]. is in [4']..

Consider now {[z*(t), y"“(t)]c}e[0,1] the transport by unstable holonomy
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Figure 7.2:

of |z,y]. along z" such that [z"(0),y"(0)]. = [z,y]c (see Lemma 7.3.9).
Consider also {[z};(t), y5,(t)]c}ie[o,1) the transport by unstable holonomy of
[2z2(0), y2(0)]c = [Tn, Yn]c along zft for every n. Notice that, as S(zn) = yn
and A and A’ are W¥-invariant, then S(z%(t)) = y“(t) for every ¢t € [0, 1].

The foliations W¢ and W* have C'! leaves tangent to continuous subbun-
dles of M. So as z converges uniformly to z* we have that [z%(t), y“(t)]. has
to converge in the Hausdorff topology to [z%(t), y*(t)]. for every t € [0,1]. In
particular, the sequence [z1(1),yr(1)]c = [Zn, S(Zn)]. needs to converge to
[2%(1),y*(1)]e. As2%(1) = 2 and S(&,) > § we obtain that [z*(1), y*(1)]. =
[Z,7]c. Then the sequence |Z,, S(Zy,)]. converges to [z, J]c.

Finally, from the first claim, [S(x),y]|. = [S(z*(0)),y"(0)]. is a center
segment in [A’].. This property is preserved by unstable holonomy since A
and A" are W¥-saturated so [S(x"(t)), y"(t)]. is a center segment in [A']. for
every t € [0,1]. We conclude that [S(z“(1)),y"(1)]. = [S(Z), y]. needs to
be a center segment in [A']. (see Figure 7.2) and this ends the proof of the
lemma. O

We are now able to prove:

Proposition 7.3.12. The sets (A, A"). and (A’, A). are disjoint open subsets
of M. The sets [A]. and [A"]. are disjoint closed subsets of M.

Proof. The sets (A, A). and (A’, A). are disjoint by definition. For proving
that (A’, A). is open let us see that its complement, [A] U (A, A"). U [A]., is
closed. The proof of (A, A’). open is analogous.

Let {vp}n be a sequence in [A]. U (A, A"). U [A']. converging to a point v.
The sequence {vy, },, lies infinitely many times in [A]. u (A4, A"). or (A, A"). U
[A'].. Suppose without loss of generality that it is the former. So, up to a
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subsequence, there exist x,, € A and y,, = S(z,) € A’ such that v, lies in the
center segment [y, yn]. for every n.

Then by Lemma 7.3.11, up to taking a converging subsequence such that
T, — x and Un SLN y, the sequence [z,,yn]. converges in the Hausdorff
topology to the center segment [z,y]. and [S(z), y]. is in [A]..

Then [z,y]. = [z, S(x)].u[S(x), y]. is a center segment in [A]u (A4, A").u
[A"]c. As the limit point v needs to lie in [x,y]. this proves that [A] U
(A, A" U [A]c is closed.

The sets [A]. and [A']. are disjoint by definition. Let us see that [A]. is
closed. The proof of [A’]. closed is analogous.

Let {wy}, be a sequence in [A]. converging to a point w. Suppose that
each w,, is contained in a segment [z, z,]. in [A]. and consider y, = S(x,,)
for every n. Then by Lemma 7.3.11, up to taking a converging subsequence
such that z, — z and UYn SLN y, the sequence [Z,yn]. converges in the
Hausdorff topology to the center segment [z,y]. such that [S(z),y]. is in
[A]..

Up to taking another subsequence if necessary the sequence {z,}, ¢ A
converges to a point z € A contained in [z,y].. The sequence [z, z,]. con-
verges in the Hausdorff topology to [z, z]. so the point w needs to lies in |z, z].
as it is the limit of points wy, in (@, 2n].. Moreover, since [S(z),y].NA = &,
then [z, z]. needs to be contained in [z, S(x)].. We deduce that [z, z]. is a

center segment in [A]. containing w. This proves that [A].is closed in M. O
Let us end this subsection with a small parenthesis:

Remark 7.3.13. Let us compare with the examples in [BG10] of Axiom A
discretized Anosov flows having a proper attractor A and a proper repeller
A’ such that W€ is not topologically conjugate to a suspension.

In these examples, A and A’ are minimal unstable and stable laminations,
respectively, and Proposition 7.3.1 is verified: there exist L > 0 such that
W9 (z) intersects A and A’ for every z € M.

If one is tempted to imitate the present proof with A and A’ in the place
of A and A’, it fails at the following point: By considering analogously the
sets (A, A"). and (A’,A). of center segments from A to A’ and from A’ to
A, respectively, the property that is not verified is that (A, A’). and (A, A).
are open. Indeed, there exist segments in (A, A’). accumulated by segments
from (A’, A)., and vice versa. The basin of A or A’ does not decomposes in
two connected components, rather A and A’ are geometrically intertwined in
such a fashion that its basins have a unique connected component.
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7.3.4 Second part of the proof of Proposition 7.3.3: Construc-
tion of a global section

We can conclude from the previous subsection that M decomposes as the
disjoint union

M= [A]c U (4, Al)c v [Al]c Y (Ala A)es
where (A4, A’). and (A’, A). are open subsets of M, and [A]. and [A]. are
closed subsets of M. From Proposition 7.3.1 there exists L > 0 such that
Wi (z) n A # & and WS (x) n A" # F for every © € M. Let us see in this

subsection that this is sufficient for showing that W¢ has to admit a global

section.
Consider § : M — [0, 1] continuous such that §~1(0) = [A]. and §71(1) =
[A].. Define next p: M — S! such that

p(r) = {

Remark 7.3.14. The function p : M — S is well-defined and continuous.

O(x) (mod 1) if xe[Alcu (A4, A).u[4].

1
f 20(z) (mod 1) if z e [A]. U (A, A). U [A]

Proof. If x is a point belonging both to [A]. U (A, A"). u [A]. and [A]. U
(A7) A). U [A]. then x € [A]. = 071(0) or z € [A']. = 6~1(1). In both cases,
$0(z) and 1 — 16(x) take the same value (mod 1). We obtain that p is well
defined.

Since p is a continuous function restricted to each closed subset [A4]. U
(A, ANe U [A]e and [A']. U (A, A). U [A]. (they are closed as they are the
complement of (A’, A), and (A4, A’)., respectively), and since the union of
both closed subsets is M, then p is continuous. O

Recall that ¢¢ : M xR — M denotes a flow whose flow lines are the leaves

of We. Let us assume that ¢¢ is parametrized by arclength. Let p : M — M

be the universal cover of M and ¢¢ : M x R — M be the lift of ¢¢ to M.

Consider j: M — R to be a lift of p : M — S?, that is, such that moj = pop.

As A and A’ intersect every center segment of length 2L > 0 then for
every T in M:

po ¢, AL) — po ¢°(&,0) > 1. (7.3.2)

Notice that for a given x in M the difference considered in (7.3.2) is inde-
pendent of the lift & of z. Informally, it measures how much ‘winds around’
S! the image by p of the center segment [z, z + 4L]..

Now an argument of Schwartzman (see [Sc57] and [BG09]) allows us to
conclude the proof of Proposition 7.3.3. We reproduce it for the sake of
completeness.
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Proposition 7.3.15. Let M be a smooth manifold and ¢ : M xR — M be a
flow tangent to a continuous vector field X4 in M and satisfying (7.5.2) for
a certain continuous function p : M — S' and some constant L > 0. Then
¢ admits a smooth global section.

Proof. Let p : M — M be the universal cover of M. Consider Xy a smooth
vector field C¥-close to Xgand p: M — S a smooth map Cclose to
p: M — St Let ¢ : M — M be the lift to M of the flow ¢ : M — M
tangent to Xy and /i : M — R be such that # o i = pop. Then, if Xy and
p are close enough to Xy and p, respectively, we still have

fro(z,4L) — fio P(x,0) > 1,

for every x € M.
Let us consider now the smooth map X : M — R given by
1 4L

:EO

() [ o (Z, t)dt.

We claim that A projects to a map A : M — S'. Indeed, if # and 7 are two
points in M such that 2 = p(#) = p(§) then there exists an integer n such
that /i(§) = fi(Z) +n. Furthermore, n satisfies that fiot)(,t) = jiot) (&, t)+n
for every t. This implies that A(§) = A(Z) + n. We deduce that

AMx) := A(&) (mod 1)

is well defined independently of the lift Z. This proves the claim.
Moreover, for any Z in M we have:

%)\ o D@ )i = ﬁ(g o0& AL) — fio $(#,0)) > ﬁ S0, (1.3.3)
This proves that A : M — S! is a submersion such that the orbits of ¢ are
transverse to the fibers. We obtain that N = A~1(0) is a submanifold of M
that is a global section for the flow .

Moreover, since (7.3.3) gives us a positive lower bound (which only de-
pends on the a priori constant L > 0) for the angle between the vector field
Xy and the fibers of A : M — S1 then we can consider Xy to be CP-close
enough to Xy so that ¢ : M — M is also transverse to the fibers and N is a
global section for ¢. O
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7.4 Finiteness of attractors for certain discretized
Anosov flows such that ¢f is not transitive

Given a discretized Anosov flow f with center flow ¢f : M — M we have
shown in Proposition 3.7.2 that ¢f : M — M is a topological Anosov flow
(see Definition 3.7.1). In fact, an a priori stronger property than the ones
stated in Definition 3.7.1 is satisfied by ¢f : M — M:

Remark 7.4.1. It is immediate from the proof of Proposition 3.7.2 that
the following ‘uniform’ form of contraction and expansion is satisfied by the
center flow ¢f : M — M of a discretized Anosov:

There exists constants € > 0, C' > 0 and X € (0, 1) satisfying that for every
x € M and y € Wi(z) there exists a homeomorphism hy, : [0, +00) — [0, +00)
such that ¢}, ) (y) lies in W*(p$(z)) and

A5 (@), 5, 1y (1)) < CMdy(a, )

for every t = 0.
Analogously for u in the place of s and backwards orbits of ¢f.

Using the property stated in the above remark and the local product
structure given by the weak-stable and weak-unstable foliations of ¢f (which
coincides with center stable W and center-unstable W of f) one can show
that ¢f needs to satisfy the shadowing property and that the spectral decom-
position stated in the following lemma is satisfied by means of the same type
of arguments used for classical Anosov flows. See for example [FH19] as a
reference.

Recall that the non-wandering set of a flow ¢, : M — M is the set
Q(py) := {x € M | for every neighborhood U of = and T > 0 there exists
t>Tst. p(U)nU# I}

Lemma 7.4.2. The topological Anosov flow ¢§ : M — M obtained as the
center flow of a discretized Anosov flow [ satisfies that the non-wandering
set Q(f) admits a decomposition

Q) =A1u...u AN,

where {A;}1<i<y are compact, disjoint and ¢f-invariant subsets of M such
that ©f|a, : Ai = A; is transitive for every 1 <1 < N.

Moreover, some of them, A1, ..., A, are attracting basic pieces satisfying
that their joint basin of attraction F**(A;) u ... U F(Ag) is an open and
dense subset of M and that F(A;) = A; for every 1 < i < k.

We are now able to show Theorem 7.1.3:
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Adapting the proof of Theorem 7.1.1 to show Theorem 7.1.53. Let f be a dis-
cretized Anosov flow such that its center flow ¢f : M — M is not transitive.

Let A be an attracting basic piece of ¢f. Since the flow ¢f|p : A — A is
transitive one obtains that W (z) n A is dense in A for every x in A, otherwise
Wes(z) n A would be a proper repeller for ¢f|s. So W |, is minimal in A. As
f acts quasi-isometrically on W¢ then Proposition 7.3.1 adapts identically and
we get that there exists L > 0 such that every minimal unstable lamination
A in A verifies that W (z) n A # & for every x € A.

Suppose now that there exist two different minimal unstable laminations
A and A" in A. We want to show that ¢f|s needs to be orbit equivalent to a
suspension. This will conclude the proof of Theorem 7.1.3.

We can analogously define the sets [A]., (A, A")., [A]c and (A’, A). as in
the proof of Proposition 7.3.3. The proof that (A, A"). and (A4’, A). are open
and that [A]. and [A’]. are closed in A works analogously. This allows us to
define a continuous function p : A — S! such that

P o Pur(x) — popo(z)| > 1, (7.4.1)

where t — pfo\cp/f(:n) :R — R is any lift of ¢ — p o pf(z) for every x € A.

We can extend now p to a small open ¢f-forward invariant neighborhood
U of A is the following way: We can cover A by Bs, (71) U ... U Bs,(x;) such
that x; € A and |p(z) — p(x;)| < 1/10 for every z € A n Bs,(x;). By Tietze
extension theorem we can extend ,0|Aﬁ351_ (@) t0 pi : Bs, (%) — S1 such that
we still have |p;(x) — p(z;)| < 1/10 for every = € Bs,(z;). Then by taking
a partition of unity {7 : Bs,(x;) — [0, 1]}; subordinated to {Bs,(x;)}; the
functions {p;}; can be interpolated in order to obtain an extension of p to
Bs,(z1) U ... U Bs,(z;). Finally, we can take V' < Bj (1) U ... U Bs,(z;)
such that ¢f(V) € Bs (z1) U ... U Bs,(z;) for every t > 0 and then define
U = Uz et (V).

This construction of U gives us that (7.4.1) continues to be valid for every
x € U. The argument of Schwartzman also works well restricted to U: by
taking smooth approximations p and X, of p and %0 , respectively, we
can define the/f_lgc/tion AU — Stas Az) = & Sé poy(z)dt (mod 1) and
obtain that %)\ o Yy(z)|i=0 > {r > 0 for every z € U. Then A~1(0) gives us a
global forward section for ¢f|y. This global forward section gives us a global

section for ¢f|x. O

Proof of Corollary 7.1.4. Let f be a discretized Anosov flow such that its
center flow ¢f is not transitive. Let Ay, ..., A be the attracting basic pieces
of ¢f and suppose that ¢f is not orbit equivalent to a suspension restricted
to any of these pieces.
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Recall that W (A1) u ... u W (Ag) is an open and dense W*-saturated
subset of M. As f acts quasi-isometrically on W¢ then W (z) = W*(W¢(x))
for every x in M by Proposition 3.4.4. As each A; is W¢-saturated, then
W (A1) U ... U WS (Ay) coincides with W9 (A1) u ... U W3 (Ay).

We claim that there exists R > 0 such that

Wh(z) N (Wh(A1D) U ... U Wi(Ag)) # &

for every z in M. Indeed, let V}",..., V" be a finite collection of W* -foliation
boxes such that | J; V;* = M. For every 1 < i < j there exist R; > 0 such
that W (A1) ... U W5 (Ag) intersects every W¥-plaque in V;*. The claim
follows from taking R = max{R, ..., R;}.

As a consequence of the previous claim we obtain that

Wi(z) A (A u...UA) # S

for every  in M. Indeed, as W*(f~"(z)) intesercts (W5 (A1) u...uW5(Ag))
for every n > 0 then W*(z) = f"(W"(f "(z))) is at distance 0 from A; U
... U Ag. We deduce that every minimal unstable lamination for f intersects
A1 [ Ak

Moreover, as each attracting basic piece is compact and W"-saturated,
then every minimal unstable lamination of f has to be contained in one of
the attracting basic pieces.

Finally, by Theorem 7.1.3, each attracting basic piece A; contains a unique
minimal unstable lamination. We conclude that f admits exactly & minimal
unstable laminations and that each one of them is contained in one of the
attracting basic pieces Aj, ..., Ay of ¢f. ]
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