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Abstract:
Inertial confinement fusion experiments on

large laser facilities such as the LMJ in Bordeaux or
the NIF in the United States, involve the propaga-
tion of lasers through large plasmas (several mil-
limeters). A large number of instabilities called
wave coupling are likely to appear, and scatter the
light in a different direction from the incident elec-
tromagnetic wave. In particular, Raman and Bril-
louin backscattering, as well as energy exchange be-
tween laser beams result from these wave couplings.
Techniques called optical smoothing are used in
large facilities to try to reduce these phenomena.
The beams, once smoothed, are composed of many
micrometric hot spots called speckles. During these
experiments, the beams, focused around a target,
are going to cross each other. The coupling of
two coherent electromagnetic waves in a non-linear
medium (the plasma), can induce an energy ex-
change between the two beams. The crossing of
the lasers creates an interference grating, where the
ponderomotive force expels the electrons. The ions
follow the electrons due to the electrostatic spring
force, generating a density modulation, or acous-
tic wave, which diffracts the electromagnetic waves
from one beam to the other. This exchange, called
Cross-beam Energy Transfer (CBET) takes place
if the lasers have slightly different frequencies, or
if the latter are equal but the plasma is moving in
the direction of the acoustic wave. We have shown
that, although these two situations are often con-
sidered equivalent in hydrodynamic models, they
are in fact different. This is due to the fact that
the exchange is commonly calculated by consider-
ing the laser beams as plane waves, i.e. neglecting
the laser smoothing. In order to demonstrate this
non-equivalence, we first studied an academic situ-
ation, considering the crossing of two laser beams
each constituted of 4 Gaussian speckles. Different

simulations have been performed with a particle-in-
cell kinetic code, solving the Vlasov and Maxwell
equations. The simulations showed that when the
interaction is induced by a moving plasma, plane
wave models are able to predict the exchange be-
tween the Gaussian beams. By contrast, when
the exchange is induced by different laser frequen-
cies, plane wave models overestimate the energy
transfer. Moreover, we were able to distinguish
two different configurations for the case where the
laser frequencies are different. In the first case,
the acoustic waves from different speckle crossings
are in phase, and a constructive interference re-
sults from their interaction. In the other case, the
waves are out of phase resulting in a destructive
interference. It has been shown that although the
exchange is greater in the in-phase case, the ex-
change remains lower than in the plasma flow case.
The phase shift is therefore not the only source
of difference between the two situations in which
CBET appears. These results were obtained by
considering a weakly Landau-damped plasma, i.e.
a situation where the acoustic wave propagates and
may encounter several speckle crossings before be-
ing damped. In a second step, a more realistic mod-
eling of the smoothed beams has been adopted.
For this purpose, the fields of a smoothed laser
beam have been computed in an exact way, allow-
ing to perform more accurate simulations and to
build a model taking into account the real structure
of the speckles. The previous results concerning
the non-equivalence between the plasma flow and
wavelength shift cases have been confirmed, even
in the case of a strongly Landau-damped plasma.
We were then able to show that the resonance con-
ditions allowing the energy transfer to take place
are also affected by the laser smoothing. In par-
ticular, the resonance width is broadened by the
spatial smoothing.
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Résumé:

Les expériences de fusion par confinement iner-
tiel sur les grandes installations laser, telles que le
LMJ à Bordeaux ou le NIF aux États-Unis, né-
cessitent la propagation des lasers à travers des
plasmas de grandes tailles (plusieurs millimètres).
Un grand nombre d’instabilités dites de couplages
d’ondes peuvent apparaître, et diffusent la lumière
dans une direction différente de l’onde électromag-
nétique incidente. En particulier, les diffusions
arrières Raman et Brillouin, ainsi que l’échange
d’énergie entre faisceaux laser en résultent. Des
techniques dites de lissage optique sont utilisées
pour tenter de réduire ces phénomènes. Les fais-
ceaux, une fois lissés, sont constitués de nombreux
points chauds micrométriques nommés speckles.
Lors de ces expériences, les faisceaux, focalisés au-
tour d’une cible, vont être amenés à se croiser.
Le couplage de deux ondes électromagnétiques co-
hérentes dans un milieu non-linéaire (le plasma),
peut induire un échange d’énergie entre les fais-
ceaux. Le croisement des lasers crée un réseau
d’interférences, où la force pondéromotrice expulse
les électrons. Les ions suivent les électrons à cause
de la force de rappel électrostatique. Cela crée
une modulation de densité, ou onde acoustique,
qui diffracte les ondes électromagnétiques d’un fais-
ceau vers l’autre. Cet échange, nommé Cross-
beam Energy Transfer (CBET) a lieu si les lasers
ont des fréquences différentes, ou si ces dernières
sont égales mais que le plasma est en mouvement
dans la direction de l’onde acoustique. Nous avons
montré que, bien que ces deux situations soient
souvent considérées comme équivalentes dans les
modèles hydrodynamiques, elles sont en réalité dif-
férentes. Ceci est dû au fait que l’échange est com-
munément calculé en considérant les faisceaux laser
comme des ondes planes, c’est-à-dire en négligeant
le lissage laser. Afin de démontrer cette non-
équivalence, nous avons, dans un premier temps,

étudié une situation académique, en considérant le
croisement de deux faisceaux lasers constitués cha-
cun de 4 speckles Gaussiens. Différentes simula-
tions ont été effectuées grâce à un code cinétique
"particle-in-cell", résolvant les équations de Vlasov
et de Maxwell. Les simulations ont montré que
lorsque l’interaction est induite par un plasma en
mouvement, les modèles du type onde plane sont
en mesure de prédire l’échange entre les faisceaux
Gaussiens. Au contraire, lorsque l’échange est in-
duit par des fréquences laser différentes, ces mod-
èles surestiment le transfert d’énergie. Nous avons
aussi mis en évidence deux configurations distinctes
dans le cas où les fréquences laser sont différentes.
Dans la première situation, les ondes acoustiques
issues de différents croisements de speckles sont en
phase, et une interférence constructive résulte de
leur interaction. Dans l’autre situation, les on-
des sont déphasées ce qui donne une interférence
destructive. Nous avons montré que, bien que
l’échange soit plus important dans la situation en
phase, il demeure inférieur au cas flot de plasma.
Le déphasage n’est donc pas la seule cause de la dif-
férence entre une interaction avec ou sans flot. Nos
résultats ont été obtenus en considérant un plasma
faiblement amorti, où l’onde acoustique se propage
et peut rencontrer plusieurs croisements de speck-
les avant que son amplitude n’ait significativement
décru. Dans un second temps, nous avons considéré
une situation plus proche de celle d’un croisement
de faisceaux lissés. Nous avons calculé exactement
le champ d’un faisceau laser lissé, ce qui a per-
mis d’effectuer des simulations plus précises et de
construire un modèle tenant compte de la struc-
ture réelle des speckles. Les résultats précédents
ont été confirmés, même dans le cas d’un plasma
fortement amorti. Nous avons également pu mon-
trer que les conditions de résonance permettant au
transfert d’énergie d’avoir lieu sont elles aussi af-
fectées par le lissage laser. En particulier, le lissage
spatial augmente la largeur de résonance.
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Nomenclature

ϵ0 Vacuum permittivity

ωpe =
√

e2ne
ϵ0me

Plasma pulsation

ωpi =
√

Z2e2ni
ϵ0mi

Plasma ionic pulsation

cs Acoustic velocity

e Elementary charge

f Focal distance

f# f number

kB Boltzmann constant

me Electronic mass

mi Ionic mass

ne Electronic density

ni Ion density

Te Electronic temperature

Ti Ionic temperature

vd Plasma drift velocity

vTe =
√

kBTe

me
Electronic thermal velocity
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vTi =
√

kBTi
mi

Ionic thermal velocity

ϕ Phase of an Ion Acoustic Wave

φ Phase of a Phase Plate element

S(r, t) Varying phase of a field

⟨Q⟩x Mean value over x of the quantity Q

Q Fourier transform of the quantity Q

Q̃ Envelope of the quantity Q

Qdriven Asymptotic value of the quantity Q
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Acronyms

CBET Cross-Beam Energy Transfer

CPP Continuous Phase Plate

DT Deuterium-Tritium

EMW Electromagnetic Wave

EPW Electron Plasma Wave

FT Fourier Transform

IAW Ion Acoustic Wave

ICF Inertial Confinement Fusion

KPP Kinoform Phase Plate

LMJ Laser Méga Joule

LPI Laser Plasma Interaction

NIF National Ignition Fusion

PIC Particle In Cell

PS Polarization Smoothing

RPP Random Phase Plate

SBS Stimulated Brillouin Scattering
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SC Speckle Crossing

SRS Stimulated Raman Scattering

SSD Smoothing by Spectral Dispersion
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1.1 Context: The ubiquity of Cross-Beam Energy

Transfer in Inertial Confinement Fusion

The fusion reaction between Deuterium-Tritium (DT) nuclei has the highest cross-section at low

energies, with a peak around 60−70 keV. It releases an important amount of energy by emitting

a helium nucleus and a neutron by the following reaction: D + T −→ 4He + n+ 17, 59MeV,

illustrated in Fig. 1.1. In the center of mass reference frame, the neutron gets 80% of the

Figure 1.1: Deuterium-Tritium fusion reaction. From [60].

energy and the 4He leaves the reaction with 20% because of its higher mass.

Inertial Confinement Fusion (ICF) [80, 59] aims at initiating a thermonuclear fusion wave by

compressing a deuterium-tritium hollow sphere with many laser beams. A dense millimeter-size

shell is filled with DT fuel, in its solid phase on the inner walls and in its gaseous phase inside as

shown in Fig. 1.2. Obtaining a high compression of the shell allows to initiate a thermonuclear

combustion. To this purpose, two schemes have been proposed, known as direct and indirect

drive.

In the direct drive approach, beams directly irradiate the target. The illumination must

be uniform in order to obtain a homogeneous and thus efficient compression of the target.

Achieving a great uniformity requires both a large number of beams and a great control of

the beams propagation. Figure 1.3 is a schematic representation of direct drive. In a realistic

facility as National Ignition Fusion (NIF) or Laser Méga Joule (LMJ), a hundred of laser beams

will be focused on the target. Here, only a few are represented by colored or dashed rectangles,

to illustrate the effort of symmetry of the irradiation.

In the indirect drive approach, the shell is placed in a centimeter-size cylindrical gold cavity
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Figure 1.2: Cross section of an ICF target.

called hohlraum, filled with a gas in order to reduce the gold plasma expansion towards the tar-

get. Figure 1.4 illustrates the target geometry with some of the hundred of beams focused inside

the hohlraum. The laser beams enter the cavity and irradiate the inner wall of the hohlraum.

The gold plasma absorbs the UV light and homogeneously re-emits an important energy fraction

through X-emissions which compress the DT shell. The homogeneous illumination is obtained

at the cost of a reduced efficiency due to the laser-to-X conversion.

In both configurations, the interaction between the lasers and the plasma leads to a plethora

of phenomena. Among them, Brillouin/Raman scatterings and two plasmon decay are well-

known wave mixing processes, resulting in undesired energy losses and hot electrons production

whose mitigation is of prime importance for achieving ignition. Cross-Beam Energy Transfer

(CBET) is another class of wave coupling leading to an energy exchange between the laser

pulses. This 0 order phenomenon occurs at each crossing. In a direct-drive configuration,

illustrated in Fig. 1.3, an incoming beam, represented in red, can lose energy to a refracted

beam, represented in blue. This particular two-beam configuration applies to all the crossings

around the target leading to potentially high energy losses. In the indirect-drive scheme Fig.

1.4, the CBET between beams entering the cavity (example of Beam0 and Beam1), can lead

to a power drive imbalance. Furthermore, an incident beam can also cross a reflected beam

(Beam0 and Beam1’), hence leading to energy losses. This energy exchange is ubiquitous in

both direct and indirect drive schemes and leads to an energy exchange from a few percent

to the total laser depletion [45, 77]. The homogeneity of compression is therefore strongly
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Figure 1.3: Direct Drive scheme of ICF

affected which may prevent ignition if not accounted for. Given the different gases and plasma

velocities around the target, getting out of resonance to suppress CBET is very challenging.

Furthermore, direct measurements of CBET are not yet known to exist in ICF experiments.

The only measurable related data is the implosion symmetry [71, 47, 33]. In the indirect

drive configuration, the symmetry is deduced from the x-ray self-emission measured through a

diagnostic window in the hohlraum side [82]. In direct drive, the symmetry is deduced from the

transmitted light through a large-aperture window on the target chamber [42].
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Figure 1.4: Indirect Drive scheme of ICF

Figure 1.5: Examples of crossing zones in both direct and indirect drive schemes

1.2 Cross-Beam Energy Transfer description

The CBET phenomenon is now described. The red and blue crossing beams in Fig. 1.6 are

the same as represented in Fig. 1.5 to show the link with ICF but it can actually represent

any CBET configuration of two crossing beams. Moreover, the laser beam structure is actually

not a plane wave as represented in the figure above. The beam is constituted of numerous hot

spots called speckles. A way to exert a control on the speckles structure, locus of numerous

instabilities, is described in Section 2.3. The crossing of two laser beams thus results in the

crossing of numerous speckles. Consequently, the energy exchange occurs at each of these

crossings. The interdependence between these exchanges is the purpose of Chapter 5. For

now, only the energy exchange between two speckles is described. The green rectangle of Fig.

1.6 shows a "zoom" of the crossing zone to exhibit the speckles structure. The coherence of the

laser beams induces an interference pattern in the crossing region, shown as a scheme in Fig.

1.5 and in the case of a simulation in Fig. 1.6 (lower left). The bright interference fringes of
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Figure 1.6: Scheme of the CBET happening between two speckles issued from two
crossing beams (left) intensity (right) density. Coordinates x and y are expressed in
c ω−1

L where ωL is the frequency of a laser beam.

the simulation (lower left in Fig. 1.6) correspond to the strong field areas. The ponderomotive

force, which for electrons writes

Fp = − e2

4meω2
∇E2 , (1.1)

expels the electrons off the strong field regions corresponding to the bright fringes. The pon-

deromotive force can also be written for ions, but as me ≪ mi, its effect is much smaller.

Electrons are then followed by ions due to the electrostatic spring force, and a density mod-

ulation appears as represented in the simulation (lower right in Fig. 1.6). CBET occurs in

two situations. When the frequencies of the beams (and therefore the speckles) are slightly

different, the interference pattern moves at the velocity (ω0 − ω1)/|k0 − k1| in the stationary

plasma reference frame, where k0,1 is the wave vector of the beam 0, 1 and ω0,1 the frequency

of the beam 0,1. The other situation is when the plasma drifts at the velocity vd. When the

resonance condition,

ω0 − ω1 − (k0 − k1) · vd = |k0 − k1|cs , (1.2)

is reached, an Ion Acoustic Wave (IAW) is formed most effectively, diffracting one beam on
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the other. The exchange is carried from high to low frequencies in the plasma reference frame.

In the wavelength shift case, the interference grating is moving but the crossing envelope

remains motionless in the stationary plasma referential. In the plasma flow case, both the

crossing envelope and the interference grating are moving at vd in the drifting plasma referential.

Investigating the intrinsic difference between these two cases is discussed in Chapter 6.

1.3 Cross-Beam Energy Transfer applications

Although uncontrolled CBET can be an obstacle to ignition achievement, it can have very

positive effects in ICF when the wavelength shift is tunable. It can further be used as a tool

with applications to optical devices.

1.3.1 Relation to Inertial Confinement Fusion

In both ICF schemes, the laser reaching the target / gas-filled hohlraum creates a plasma. The

latter inexorably expands, with sub to supersonic plasma flows. The CBET occurring when

the drift velocity matches the sound speed, vd = cs, therefore generates an inhomogeneous

compression. While it is not possible to avoid the plasma flow, the laser wavelength can be

shifted so as to get away from the resonance, that is to say, ω0−ω1−(k0−k1)·vd ̸= |k0−k1|cs.
Thus, it is possible to diminish or suppress the CBET by applying a wavelength shift. A

wavelength separation option of several Å has been implemented on the NIF between the inner

and the outer cones (called "two-color") [71] that respectively reach the equator and the pole.

Insufficient to suppress the CBET everywhere, this option is used to balance the available energy

between the inner and outer cones. The wavelength shift between the beams has been increased

until observing a symmetric compression as shown in Fig. 1.7.
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Figure 1.7: From [71] (Left) Image of the capsule for three wavelength separations
between the inner and outer beams: 1.5, 2.3, and 3.9 Å (Right): Pole-waist asym-
metry for the corresponding three shots as measured in the experiments (diamonds),
and as calculated in pre-shot (upper line) and post-shot (lower line) simulations.

The recent achievement of a burning plasma state at NIF [120] has been made by using

wavelength detuning. Previous simulations and experiments were made to calibrate the ∆λ,

and showed a symmetrical implosion when a significant fraction of the outer beam power was

transferred to the inner cones [48].

Even though most CBET studies are related to ICF, it is also interesting to point out the other

applications.

1.3.2 Relation to optics

In any application that requires a high laser power, the energy exchange between two laser

beams can be used to increase the maximum power. Indeed, if the source is not powerfull

enough, it is possible to cross beams in a way that satisfies the resonance condition to increase

the maximum power of one of the beam. Numerous studies [53, 57, 92] focused on the so-called

Brillouin amplification of laser pulses to develop high-intensity laser beams. This amplification
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is also possible via Raman scattering, by a similar process.

Moreover, solid optics currently used in many laser experiments suffer from a small damage

threshold. Laser-induced damage has been an issue since the beginning of laser applications,

and has become an important research subject. The high fluence exposure (> 1 J/cm2 ) may

trigger a plethora of damages such as craters, digs, bulk bubbles, bulk filamentation, melting, or

change in surface coloration [4]. Some solutions exist to increase the damage threshold of solid

optics as for example the silica film [109] that can increase the maximum fluence on mirrors to

≃ 70 J/cm2. However, fundamental limits such as ionization of the material will always prevent

the damage threshold to be raised significantly beyond these numbers.

To avoid this limit, plasma photonics has been identified as a promising candidate to replace

solid-state optical elements. Indeed, plasma photonics allows to shape the refractive index sus-

tained by the free electrons. Recent studies at Lawrence Livermore National Laboratory have

given encouraging results. Two fundamental types of optics have been proposed: i) ponderomo-

tive structures, where the ponderomotive force of overlapping lasers imprints a refractive index

modulation in the pre-formed plasma; and ii) localized ionization structures, where beams over-

lap in gas and ionize only the regions of constructive interference (i.e., the ”bright” fringes)

while the dark fringes remain in a state of neutral gas. For example, a new concept of plasma

transmission grating [22] may divide by more than 500 times the size of the final chirped pulse

amplification optics, and a plasma wave plate can change a laser’s polarization state [68, 112].

The framework of the manuscript being set, we will now introduce in the following chapter

the basic notions required for a smoother reading of the thesis work.
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The term "plasma" was introduced by Irving Langmuir in 1928 [54]. If it can be defined in

first approximation as an ionized gas, its properties are fundamentally different. In particular,

interactions in gases are mainly binary (three-body interactions being singular), in contrast, they

are collective in a plasma. There, collisional effects are essentially governed by small impact

factor (or small deflection angle) collisions between the particles in a Debye sphere. Ideally

described by classical molecular dynamics, such a large particle system can be approximated by

the electron-ion Vlasov-Landau equations coupled with the Maxwell equations. The Particle In

Cell (PIC) code is a Monte-Carlo method to solve this system and commonly used to describe all

the laser/plasma instabilities. In a first section, the kinetic description of a plasma and the link

with PIC codes is shown. Then, some laser-plasma common phenomena and instabilities are

presented. In a third section, the smoothing techniques, useful to control the aforementioned

instabilities are described. Finally, a state of the art is presented, from the first wave-mixing

experiment to the current research.

2.1 Plasma descriptions

A full description of the kinetic hierarchy is out of the scope of the present thesis and can be

found in Refs [46, 78]. We will briefly present the kinetic plasma description and the relation

with the particle-in-cell codes as used in this study.

2.1.1 Vlasov-Landau equation

When, in a plasma, the collisional effects are negligible, particles may interact only collectively.

Such system may be described by the Vlasov equation, also called collisionless Boltzmann

equation:

∂tfα(r,v, t) + v ·∇rfα +
qα
mα

(
E + v ∧B

)
·∇vfα = 0 . (2.1)

Here, fα is the α-species continuous distribution that depends on position r, velocity v and

time t. Vlasov equation allows to study the collective motions of a plasma, i.e. the action

on each charged particle of the average electric and magnetic fields (E and B) created by

the others, neglecting the inter-particle correlations. This equation, non-linear due to the term

∇vfα
(
E + v ∧B

)
, describes the particle density conservation in phase space.
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A correction due to the collisions has been introduced by Landau, and writes:

∂tfα(r,v, t) + v ·∇rfα +
qα
mα

(
E + v ∧B

)
·∇vfα = C[fα, fα′ ] , (2.2)

where C[fα, fα′ ] is a complicated integral operator [46]. This integral describes small-angle

scattering. Indeed, large-angle deflections are not due to binary scattering but rather by a

succession of these small-angle scattering. These collisions are calculated inside the Debye

sphere, the Coulomb potential being exponentially decreasing beyond.

Plasma modeling with a Particle-In-Cell code

Contrary to what PIC suggests, such a code is not to be mistaken with classical molecular

dynamics. The PIC code is a method to solve the Vlasov-Landau equation (2.2). To that

end, the exact one-particle distribution function or measure, fα, is approximated by the Dirac

measure in momentum space, fα,D:

fα,D(t, r,p) =
N∑
p=1

wp S(r − rp(t))δ(p− pp(t)) , (2.3)

where the sum runs over N macroparticles. wp, rp, pp and S are the weight, the position

and the momentum and the shape-function of a macroparticle. Convergence is reached in the

limit limN→∞ fα,D = fα [55]. The PIC code also resolves the Maxwell equations from the

macroparticles current and density. The steps for the dynamics of macroparticles in a PIC code,

illustrated in Fig. 2.1, are the following:

• Density and current are calculated by projection of the macroparticles on the nodes

• It allows to calculate the E and B fields with the Maxwell equations, using finite differ-

ence method

• The fields on the nodes are interpolated at the macroparticle positions so as to apply the

Lorentz force

• The macroparticles are "pushed" and the process starts again with the new macroparti-

cles’ position.
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Figure 2.1: Schematic representation of the PIC loop steps
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2.1.2 Plasma fluid description

The plasma fluid theory consists in integrating the distribution function over velocity space

in order to obtain macroscopic quantities as the density, averaged fluid velocity or averaged

kinetic energy of the particles. Various approaches exist among which, the multi-fluid and the

single-fluid theories. Multi-fluid models are either used when the charge separation has an im-

portant contribution in the plasma dynamics, or when the collisionality becomes weak. Yet, a

single-fluid approach proves sufficient for a large range of applications, including most of ICF

plasmas.

The fluid equations are found by calculating the so-called Vlasov’s moments. The zero-

order moment is obtained by integrating the Vlasov equation, the first moment by integrating

the Vlasov equation multiplied by the momentum mv, the second-order moment by integrating

the Vlasov equation multiplied by the energy mv2/2 and so on.

Let us first define the fluid quantities: the density,

n(r, t) =

∫
R3

f(r,v, t)d3v , (2.4)

the mean velocity,

u(r, t) =
1

n(r, t)

∫
R3

vf(r,v, t)d3v , (2.5)

and the pressure tensor,

P = m

∫
R3

(v − u)⊗ (v − u)f(r,v, t)d3v , (2.6)

where ⊗ is the tensorial product. As r and v are independent and the Lorentz force is a

divergence-free vector field (∇v · (E + v ∧B) = 0), the Vlasov equation (2.1) can be written

∂tf(r,v, t) +∇r · (vf) +∇v ·
[ q
m
(E + v ∧B)f

]
= 0 . (2.7)

The first moment of Vlasov equation consists in integrating Eq. (2.7) along v. With the

definitions of Eq. (2.4) and (2.5) the integration leads to the particles conservation equation:

∂tn+∇ · nu = 0 , (2.8)
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known as the continuity equation. The first-order moment is found by multiplying Eq. (2.7)

by mv and then integrating along v, leading to

m∂tnu+m∇ · n(u)2 = −∇r · p+ qn
[
E + u ∧B

]
, (2.9)

Using Eq. (2.8), the equation becomes the momentum conservation equation

mn∂tu+mn(u ·∇u) = −∇r · p+ qn
[
E + u ∧B

]
. (2.10)

Each moment of the Vlasov equation is coupled to the higher order moment. A closure can be

obtained using equation of states and slightly out-of-equilibrium models. For instance, a fluid

dynamics restricted to the density and momentum conservation equations will require a closure

on the pressure tensor, as done for the IAW in the first part of Section 4.2.

2.2 Laser-Plasma Interactions

This short description of some fundamental Laser Plasma Interaction (LPI) phenomena is in-

tended to provide the background in which CBET takes place as well as to explain the need for

laser smoothing. Figure 2.5 summarizes all the mentioned instabilities and locates the regions

in the holrhaum where they are expected to appear.

2.2.1 Bragg scattering

Bragg scattering occurs when light interacts with a density grating. If the reflected lights from

each density modulation are in phase with each other, their interaction results in an intense

reflection of the incident beam.
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Figure 2.2: Illustration of the Bragg condition

The resonance relation (known as Bragg condition) writes

λbeam = 2λgrating sin θ . (2.11)

In this thesis framework, this situation is found when the IAW is formed in the Speckle Crossing

(SC) area and leads to a density modulation with the wavelength λgrating. Bragg scattering

involves the partial or total reflection of a beam on a pre-existent density modulation which

can therefore be seen as a particular case of Brillouin scattering, implying the same resonance

conditions. CBET is in turn a particular case of Bragg scattering as the grating is formed

by two incident beams including the diffracted beam itself. The Bragg scattering scheme

represented in Fig. 2.2 can also represent the density modulation showed in Fig. 1.6 (lower

right). Likewise, the Bragg condition can be expressed with the CBET geometry of Fig. 1.6

(lower left): k = k0 − k1 ≃ 2k0 sin θ. Then, writing k0 = 2π/λbeam and k = 2π/λgrating

allows to find Eq. (2.11). At a microscopic scale, the incident wave is scattered by electrons.

For this reason, the wave equations will be written with Ne in the following chapters.

2.2.2 Self-focusing

Light self-focusing results from the action of a laser beam on the plasma. The beam pon-

deromotive force pushes the electrons away, thus modifying the refractive index which in turn
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modifies the beam propagation, whence the name of "self"-focusing. The modification of the

refractive index by the laser beam depends on the beam intensity and is non-uniform. When the

density is larger at the center than at the periphery, a convergent lens is formed. Conversely,

when the density is larger at the periphery, it creates a divergent lens. Self-focusing occurs

when the beam power P exceeds a critical power Pcr where [70]

Pcr ≃
1.86

π

n2
c

ne
ckBTeλ

2
L

√
1− ne/nc , (2.12)

where λL is the laser wavelength, ne the electronic density, nc the critical density, Te the

electronic temperature. This critical power corresponds to the equilibrium between diffraction

and self-focusing: when the two effects compensate, the beam propagates with a constant

diameter, which is called self-trapping [11]. However, the relevance of the latter situation, not

observed experimentally, is questionable in a non-ideal plasma.

P < Pcr : diffraction ,

P = Pcr : self-trapping ,

P > Pcr : self-focusing .

2.2.3 Filamentation

Modulational instabilities together with self-focusing lead to a splitting of the beam into fila-

ments. Filamentation [87, 3, 6] is an instability where an incident Electromagnetic Wave (EMW)

wave (ω0,k0) breaks into Stokes and anti-Stokes scattered EMWs and a nearly stationary ion

density modulation (ω,k). The beam usually breaks because of wavefront perturbations in N

filaments when P > N Pcr where Pcr is defined in Eq. (2.12). As ω is small in front of all the

other pulsations, it is often considered that ω = 0.
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Figure 2.3: Propagation of a laser beam in a non-linear medium (here: the plasma)
a) with a focusing non-linearity and b) with a de-focusing non-linearity of the re-
fractive index; c) with the mechanism of nonlinear self-focusing compensated by the
divergence caused by diffraction, generating self-trapping. From [110]

Figure 2.4: Perturbed wavefront scattering into two filaments. From [5]

In theory, filamentation should not occur for an unperturbed wavefront. In ICF experiments,

the beam passes through a certain number of optics producing aberrations in the laser wavefront.

Filamentation then appears systematically and strongly harms the experiments. Figure 2.5

(down, left) shows one example of filamentation geometry and a location where it can appear

in ICF.

2.2.4 Raman and Brillouin scattering

Although not involving the same waves, there are similarities between these two phenomena.

When a laser beam illuminates a non-linear medium, a scattered light with a different frequency
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can be observed. Components shifted to lower/higher frequencies are called Stokes/anti-Stokes

components.

Raman scattering

Stimulated Raman Scattering (SRS) is a decay instability where an incident EMW wave (ω0,k0)

breaks into a scattered EMW (ω1,k1) wave and an Electron Plasma Wave (EPW) (ωp,kp)

wave. The resonance conditions write

ω0 = ω1 + ωp , (2.13)

k0 = k1 + kp . (2.14)

The dispersion equation of the EMW

ω2
1 = ω2

pe + k21c
2 , (2.15)

and of the EPW

ω2
p = ω2

pe + 3k2pv
2
Te

, (2.16)

implies that ω0 ≥ 2ωpe and therefore ne,0/nc ≤ 1/4. Figure 2.5 (down, right) shows one

example of backward Raman scattering geometry and a location where it can appear in ICF.

Brillouin scattering

Stimulated Brillouin Scattering (SBS) is a decay instability where an incident EMW wave

(ω0,k0) breaks into a scattered EMW (ω1,k1) wave and an IAW (ω,k) wave. The resonance

conditions write

ω0 = ω1 + ω , (2.17)

k0 = k1 + k , (2.18)

with ω and k verifying the IAW dispersion equation in the limit k2λ2
D ≪ 1

ω = kcs . (2.19)
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Figure 2.5: Illustration of the instabilities that take place in the Holrhaum. Dark
rectangles exhibit the ubiquitous instabilities: (up left) Stimulated Brillouin Back-
Scattering (up right) Cross Beam Energy Transfer (down right) Stimulated Raman
Back-Scattering and dashed gray rectangle shows filamentation, which can appear,
or not at different locations.

Figure 2.5 (up, left) shows one example of backward Brillouin scattering geometry and

a location where it can appear in ICF. Forward scattering (k0 and k1 collinear and in the
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same direction) and side scattering (different orientations of the vectors) also exist. However,

backward geometry is more easily characterized experimentally. Moreover, CBET can be seen

as a particular case of SBS. In this regard, Figure 2.5 (up, right) represents CBET but also

Brillouin side scattering.

2.3 Laser smoothing techniques

In ICF experiments, a laser beam goes through a large number of optics. The laser beam

phase is highly modified during the propagation in the amplifying chain, leading to the presence

of strong inhomogeneities. The aforementioned instabilities develop in these inhomogeneities,

severely damaging the implosion. Optical smoothing is meant to reduce these inhomogeneities

by breaking the spatial and temporal coherence of the laser. Reducing the characteristic laser

lengths and times allows to stay under the critical point of instabilities development. To this

end, the beam is fragmented into many hot spots called speckles. Optical smoothing was

developed to avoid self-focusing and the subsequent filamentation as described in Section 2.2.3,

nevertheless the threshold of other instabilities, such as SBS or SRS described in Section 2.2.4,

are often reached.

2.3.1 Random Phase Plate

Random Phase Mask was first used for improving the recording of Fourier transform holograms

[7]. In parallel, different techniques [100, 63, 58] were developed to improve the homogeneity of

the compression in ICF. The combination between the random phase technique and the search

for homogeneity resulted in the so-called Random Phase Shifter [40, 41], precursor of RPP.

The spatial coherence break is obtained by inserting a RPP on the beams path, as illustrated in

Fig. 2.6. The simplest phase plate configuration is the following: half of the elements induces

a phase shift of φ = π whereas the other half keeps the phase unchanged. This configuration

is schematized in Fig. 2.7. Note that a similar class of RPP can be used but with the phase φ

randomly distributed between 0 and 2π.
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Figure 2.6: Laser beam path through RPP and lens until the focal spot.

The field at focal spot after the lens and this phase plate can be considered as a sum of

random phase wavelets. The intensity pattern is thus constituted of the interferences between

the wavelets, resulting in the hot spot (speckle) structure. The field writes

E(x+, r⊥, t) =
E(x−, r⊥, t)

(N + 1)2

∑
k=(0,k⊥y ,k⊥z )

eik·r⊥+iφ(k) , (2.20)

where x+/− designates the x position just after/before the phase plate, k⊥y/z = 2kmaxny/z/(N+

1) with kmax = k0D/2f , ny/z ∈ J−N/2, N/2K and r⊥ is the position vector in the plane

orthogonal to the field propagation direction, also corresponding to the phase plate plane.
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Figure 2.7: 2D RPP scheme

Figure 2.8 shows the shape of a transversal and a longitudinal cross section of a RPP

smoothed laser beam, plotted with the calculation in Chapter 3, made with the RPP presented

above.
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Figure 2.8: Transverse (up) and longitudinal (down) cross section of a smoothed
laser beam

In the LMJ experimental conditions, speckles are a few microns wide and about a hundred

microns long. However, RPP is actually not the spatial smoothing technique used in ICF

facilities. A first improvement was made with the so-called Kinoform Phase Plate (KPP)

[21], consisting in a multilevel phase plate. At LMJ, OMEGA and NIF, Continuous Phase

Plate (CPP) is used [75, 62]. The principle is similar to RPP, but the phase modulation is

continuous instead of being composed of regular geometrical phase plates. A typical CPP is

shown in Fig. 2.9. However, RPP will still be the phase plate studied in this manuscript since

it is the most convenient to model.
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Figure 2.9: Example of the surface profile of a typical continuous phase plate, from
the NIF user guide [43]. The colormap indicates the thickness variation of the phase
plate inducing the phase shift.

Spatial smoothing also absorbs shot-to-shot aberrations (see Fig. 2.6), since the phase

differences due to these aberrations are lost by the random phase of the plate. The formed

speckles remain, however, stationary, potentially allowing the instabilities to develop after their

characteristic time. Thus, the spatial smoothing sometimes needs to be completed by a temporal

smoothing.

2.3.2 Smoothing by Spectral Dispersion

To break the temporal coherence, a sinusoidal phase modulator is inserted on the beam path

to add a phase βm sin(ωmt) to the incident laser wave, with a modulation frequency ωm and a

modulation depth βm. The resulting laser spectrum is thus broadened. Then the laser light in

the near field is slightly dispersed so that each spectral component creates its own independent

speckle pattern. This process is called Smoothing by Spectral Dispersion (SSD), and together
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with the RPP, the electric field at focal spot is modified as follows [102]:

E(x, r⊥, t) =
E0

(N + 1)2
eik0x−iω0t

∑
k=(0,k⊥y ,k⊥z )

e
iβm sin

{
ωm[t+TrfT/L(k)]

}
+ik·r⊥+iφ(k)

. (2.21)

Here TrfT/L(k) is the SSD phase shift which may vary depending on the techniques used. On

NIF, the phase shift imposed is along one transverse direction (fT (k) = ky/km, 1D transverse

SSD). On the LMJ the phase shift is radial (fL(k) = k2/k2m, longitudinal SSD). On Omega,

two successive 1D transverse SSD are imposed along y and z: 2D SSD. Each spectral compo-

nent creates its own independent speckles pattern that will lower the contrast by adding to the

others. The coherence time of the speckles will be of the order of the inverse of the spectral

width ∆ω = 2βmωm.

The SSD is presented above to set the context but will not be studied in this manuscript.

In contrast, the RPP formulation will be used.

2.4 State of the art

The numerous phenomena and the smoothing methods presented above are closely related to

CBET. The foundations have now been laid, and allow a detailed overview of the state of the

art, from the precursors of CBET studies to the current research areas.

2.4.1 Origin of Cross-Beam Energy Transfer

The aim of this section is not to make an exhaustive list of studies that have led to our current

knowledge of CBET, nor to make a strict historical chronology, but to give an overview of how

understanding of LPI has developed and made CBET become a proper subject of study. Note

that the term CBET was only introduced in 2012 [30] but we will use it anachronistically.

Light scattering as a plasma probe

Interests in the study of the scattering of electromagnetic radiation in a plasma appeared

because of the possibility it offers to study the internal structure and dynamics of the plasma.

Indeed, light scattering is closely linked to the generation of electronic plasma waves. It was

however difficult to observe this so-called Thomson scattering of light by electrons because the
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cross section of the process is very small. Ruby optical masers [96, 38, 52] permit an increased

beam power (105W ) [36] allowing to observe the scattered light despite the small cross section.

As a matter of fact, the scattered maser light is polarized whereas the self-luminosity of the

plasma is not, or only slightly. Development of maser/laser and techniques such as light-off-

light scattering [88] has improved the counting rate of the scattering but the cross section

remains small. To overcome this obstacle, an approach called optical mixing has been found.

A theoretical work [49] first predicted the possibility of making a density probe with three laser

beams. This work suggests to excite longitudinal electron plasma oscillations with two crossing

beams and to send a third laser on this wave as a probe. The tuning of the beams frequency

allows to satisfy the EPW resonance condition and to enhance the cross section size. The first

experiment [104] measured the increasing probe beam intensity when the crossing lasers are

tuned in the plasma resonance. Knowing the frequency difference, it is possible to accurately

estimate the plasma density. In the first instance, optical mixing was only used as a diagnostic

tool. Afterwards, it received interest as a source of controlled EPW [74], opening the way to

other applications such as electron acceleration [108, 12], plasma heating [95, 14], and also

plasma-wave physics what we now call LPI.

Beginning of laser-fusion concerns: Ionic Acoustic Waves generation

In most studies about EPW generated by wave mixing, ions have been considered as an immobile

background, but experiments have shown the excitation of IAW by a similar mechanism [105].

Calculations taking into account the ion dynamics showed that under specific conditions it is

easier to stimulate IAW than EPW and that the growth rate of the IAW can exceed the collisional

damping [101]. The production of IAW and the energy transfer from high to low frequency

has been seen as an opportunity to produce efficient laser frequency converter [97]. The first

experiment of IAW generated by laser optical mixing [86] confirmed the prediction of optical

mixing theory. In particular, it has been shown that for power < 25 kW the density fluctuation

only depends on the product of the beams field and not on their respective value. For bigger

power, a non-linear saturation mechanism identified as ion heating was found. Although it

can be used as a frequency converter tool, this energy transfer has also been identified as an

obstacle for fusion experiments. The laser-produced plasma in laser fusion experiments may

expand at the ion acoustic velocity. Because of the reflection of the pump beam on the target,

a resonance condition between the resulting beat wave and an IAW appears, enhancing the

scattered wave [2]. Later, a theory of an ion wave created directly by the beams crossing [90]

emerged and showed that the rate of energy exchange is stronger in the case of this stimulated
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IAW than in the case of preexisting ion acoustic fluctuation levels. Afterwards, CBET from

frequency mismatched laser beams in a stationary plasma has been observed [44].

Beginning of laser-fusion concerns: mitigation of Cross-Beam Energy

Transfer

Solutions were soon proposed [50] and studied [24, 31, 73] to diminish the growth rate of Bril-

louin scattering, such as using a finite bandwidth and a random phase modulation, forerunners

of our actual temporal and spatial smoothing.

Analytical description of CBET evolved in conjunction with the development of smoothing

techniques in order to best adapt them. A one-dimensional and steady-state calculation of the

transferred power has thus emphasized the effects of the beams frequency mismatch as well as

the inhomogeneity and modulation of the plasma [51]. Then, a two-dimensional analysis of the

transient response of the power exchanged has been studied [66] and showed that the exchange

oscillates in time and is usually smaller in the steady-state regime. All these studies were made

by supposing monochromatic Gaussian beams, and the theory was only made for the asymptotic

regime. It resulted in a monotonic transfer of power from one beam (high frequency) to another

(low frequency). The first study with multi-chromatic beams [65] showed a periodic oscillatory

exchange between the two beams: the higher frequency components of one beam giving to

the lower components of the other beam, even in steady-state regime. The first experiment

[115] and simulation [13] demonstrating the energy exchange in a flowing plasma confirmed the

need for frequency tuning in the fusion experiments. In the late 20th century, the underlying

physics and the conditions under which CBET appears are clear. The subsequent concerns are

to improve its modeling and try to control it in order to perform the fusion experiments.

2.4.2 Current research

Motivations

Once CBET has been identified as a threat for ignition, two research paths have been explored

simultaneously. How to reduce CBET, but also how inherent physical phenomena can saturate

the exchange. It has been found that localized pump depletion and non-linear phenomena

induce a saturation of the IAW [45]. In particular, ion trapping reduces the Landau-damping

rate, increasing the IAW amplitude, but can also induce a saturation by shifting the IAW
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frequency [116]. These saturation mechanisms however still allow a certain amount of energy

exchange, making it necessary to find a way to mitigate CBET. While undesired CBET has been

found to alter the implosion symmetry, it can also be used as a tool to improve it by imposing

wavelength shift between beams. Wavelength detuning simulations including RPP, SSD and

Polarization Smoothing (PS) have shown a great improvement in the implosion symmetry [67].

A proper understanding and modeling of CBET is therefore needed not only for its mitigation,

but also for its use as a powerful tool.

Lacks in Cross-Beam Energy Transfer modeling

Models using the averaged field intensity have a tendency to overestimate the energy exchange

measured in experimental campaigns, and a saturation mechanism must usually be invoked in

order to match the experiments [59, 71, 47]. Ion trapping, stochastic heating [67, 118, 35], and

velocity perturbations of the plasma flow [76, 64, 51] have been identified as potential saturation

mechanisms of CBET. Moreover, dedicated theoretical studies on smoothed laser beams have

demonstrated that the competition of CBET with processes such as self-focusing and beam

bending [89, 37] is able to affect the overall energy exchange. Finally, recent theoretical and

numerical studies have shown that CBET is effectively diminished by imposing a frequency laser

bandwidth exceeding the IAW frequency [98, 99]. Even though CBET is not yet fully understood

and well-modeled, the previous studies have allowed a great control of the implosion symmetry

of the recent NIF experiment [121], as pointed out in Section 1.3.1.

Thesis prospects

Hydrodynamic simulations results tend to overestimate CBET compared to experimental re-

sults. The motivation is to understand this discrepancy. The following work aims at showing

that even without invoking any nonlinear saturation mechanism, the predictions of linear models

can be improved by accounting for the inter-dependencies of SCs, as recently argued in Refs.

[85, 84].

In the following, we study CBET in the linear perturbation approach.

The novelty of this manuscript lies in:

• The field calculation with a RPP in Section 3.2.

• The improvement of the model of Section 4.3.2 with the addition of the time component.
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• In the Chapters 5 and 6, a linear theory has been developed and extensive PIC simulations

have been performed. The comparison between the analytical and numerical results shows

a good agreement for a large range of parameters.
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Chapter 3
Beam propagation without coupling and

speckles modeling
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This chapter first presents the basic laser beam propagation theory that will be the starting

point of Chapter 4. Then, the expression of the laser beam field passing through a RPP is

computed and will be used in the model and the simulations exposed in Chapter 6. Finally, the

calculation of the transversal and longitudinal autocorrelation functions are made to reveal the

speckles’ geometric shape. From now, the following normalizations

t = ωLt
′ , (3.1)

ω = ω′/ωL , (3.2)

x = kLx
′ , (3.3)

k = k′/kL , (3.4)

ne =
n′
e

nc
, (3.5)

v =
v′

c
, (3.6)

mi =
m′

i

m′
e

, (3.7)

E =
eE′

meωLc
, (3.8)

B =
eB′

meωL
, (3.9)

A =
eA′

mec
, (3.10)

V =
eV ′

mec2
, (3.11)

a0 = 0.855
√

I1018 Wcm−2 λ2
µm , (3.12)

are applied respectively for time, frequency, space, wave vector, density, velocity, mass and

the fields. ωL and kL are the frequency and the wave number in vacuum for a 1µm laser

wavelength. This normalisation allows to simplify the equations while keeping ω explicit for

the readability. n′
e is the electronic density, nc = meε0ω

2
L/e

2 the critical density, m′
i,e the

ionic/electronic mass, E′ the electric field, B′ the magnetic field, A′ the vector potential and

V ′ the electrostatic potential. a0 is the potential vector normalized to m′
ec/e, for a linearly

polarized laser pulse, with I1018 Wcm−2 the laser intensity in units of 1018Wcm−2 and λµm the

laser wavelength in µm.
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3.1 Description of the beam propagation

3.1.1 General description

The light propagation in the classical limit is described by the electric and magnetic fields

variations, related to each other by Maxwell equations. The choice has been made to derive

the equations with the potential vector A in order to use the conservation of the canonical

momentum. The potential vector A is related to the magnetic and electric field by B = ∇∧A

and E = −∇V − ∂tA. The normalized Maxwell-Ampere equation with the potential vector

thus leads to

∇ ∧B = ∇(∇ ·A)−∆A , (3.13)

= j + ∂tE . (3.14)

Considering that ve ≫ vi, we can write j = −neve

=⇒ neve + ∂2
tA+∇(∇ ·A+ ∂tV )−∆A = 0 . (3.15)

In Lorentz gauge: ∇ ·A+ ∂tV = 0 it remains

∆A− ∂2
tA = neve . (3.16)

The complete classical description of light propagation is achieved with the electron momentum

conservation equation:

∂tve + (ve∇)ve = −E − ve ∧B . (3.17)

In the perturbation limit, this equation is linearized around ve = 0 + δve, leading to:

∂tδve = ∂tA . (3.18)

Note that we assumed a purely transverse field (∇V = 0). Thus

δve(r(t), t) = A(r(t), t) + C , (3.19)
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which expresses the conservation of the transverse canonical momentum. As v(t = 0) = 0 (so

C=0), Eq. (3.16) rewrites

∆A− ∂2
tA = neA . (3.20)

53



Figure 3.1: Scheme of the different approximations for A leading to the different
propagation equations.
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This equation allows to study the propagation of A including the field diffraction and

refraction. Different approximations on the wave propagation, summarized in Fig. 3.1, can be

made using ansatz on the form of the function A(r, t).

Helmholtz equation

The first one consists in considering A(r, t) = A(r)e−iω0t where A(r) can be fastly varying

in space and ω0 is the normalized (to ωL) laser frequency. In this case, Eq (3.20) leads to the

Helhmoltz equation,

∆A+ ω2
0A = neA . (3.21)

This equation allows to study the rapidly varying field and is still adapted near the critical

density, as it can describe the evanescent wave. Nevertheless, the numerical cost of such a

description is high as the laser wavelength (∼ µm) must be resolved.

Envelope equation

Another case, known as the envelope approximation, assumes the field of the form A(r, t) =

Ã(r, t)eiS(r,t) where Ã(r, t) is the slowly varying envelope and S(r, t) the rapidly varying phase

(∂r,tÃ/Ã ≪ ∂r,tS/S). Using this closure in equation (3.20), and separating orders, leads to

the following set of equation:

Order 0: − (∇S)2 + (δtS)
2 = ne , (3.22)

Order 1 + 2: 2i∇Ã ·∇S − 2i∂tÃ∂tS +∆⊥Ã− iÃ∂2
t S + iÃ∆S = 0 . (3.23)

Equation (3.22) describes the phase variation in relation to the refraction due to the density ne.

Equation (3.23) is the transport equation including the diffraction term ∆⊥Ã. The notation

∆⊥ means that the Laplace operator is applied in the perpendicular plane to ∇S.

Envelope equation without diffraction

A method consists in neglecting the envelope diffraction and Eq. (3.23) becomes a simple

transport equation

2i∇Ã ·∇S − 2i∂tÃ∂tS − iÃ∂2
t S + iÃ∆S = 0 . (3.24)
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This equation, here without the absorption, coupled with the Eikonal equation (3.22) are at

the origin of the ray-tracing algorithms in most of hydrodynamic codes. This method neglects

the beam diffraction but takes into account the phase variation when the light travels through

density gradients.

Paraxial equation

Another class of equation can be obtained, assuming the light remains nearly parallel to an

axis. Taking S = k0 · x− ω0t, Eq. (3.22) leads to the dispersion equation

k20 − ω2
0 + ne = 0 . (3.25)

Eq. (3.23) leads to the well-known paraxial equation:

2ik0∂xÃ+ 2iω0∂tÃ+∆⊥Ã = 0 . (3.26)

In the stationary regime (∂tÃ = 0), the latter becomes

2ik0∂xÃ+∆⊥Ã = 0 , (3.27)

which is the starting point of the usual Gaussian beam propagation calculation.

3.1.2 Gaussian beam propagation

We consider a beam propagating along the x direction. ∆⊥ is therefore ∂2
y + ∂2

z in 3D and ∂2
y

in 2D. The Gaussian beam at focal spot writes

Ã = A0e
− z2+y2

w2
0 , (3.28)

where w0 is the beam waist, xr =
πw2

0
λ0

is the Rayleigh length, and A0 the amplitude at the

beam center. The following notations are used w(x) = w0

√
1 + x2

x2
r
, R(x) = x+ x2

r
x .

Figure. 3.2 illustrates the Gaussian beam geometry with the characteristic lengths. The 2D

calculation is presented for the sake of simplicity. Besides, the 3D expression can be deduced
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Figure 3.2: Gaussian beam characteristic lengths scheme

from the 2D expression of the field. Fourier Transform (FT) and FT−1 respectively design the

y Fourier Transform and the inverse Fourier Transform. The FT of the paraxial equation leads

to an ordinary differential equation

FT(2ik0∂xÃ+ ∂2
yÃ) = 2ik0∂xĀ− k2yĀ = 0 , (3.29)

with the solution

Ā = Ā(x = 0)e
−

ik2yx

2k0 , (3.30)

where

Ā(x = 0) = FT(A0e
− y2

w2
0 ) = A0

√
πw0e

−
−w2

0k
2
y

4 . (3.31)
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Then, the field at any position stems from the inverse FT of Eq. (3.30),

FT−1(Ā) = Ã =
A0w0√
w2
0 +

2ix
k0

e−y2/(w2
0+2ix/k0) ,

=
A0√

1 + ix/xr
e
−y2(w2

0−
2ix
k0

)/(w4
0+4x2/k20) ,

= A0
w0

w(x)

√
1− ix/xr e

− y2

w2
0(1+

4x2

k20w
4
0

)
+ 2ixy2

w2
0k0(w

2
0+

4x2

k20w
2
0

)

,

= A0
w0

w(x)
e−

1
2
ln (1−ix/xr)e

ik0y
2

2R(x) e
− y2

w(x)2 ,

= A0
w0

w(x)
e
− 1

2
ln (

w(x)
w0

ei arctan x/xr )
e

ik0y
2

2R(x) e
− y2

w(x)2 ,

= A0

√
w0

w(x)
e−i 1

2
arctanx/xre

ik0y
2

2R(x) e
− y2

w(x)2 . (3.32)

The deduced 3D expression writes

Ã = A0
w0

w(x)
e−i arctan x

xr e
ik0(z

2+y2)
2R(x) e

− (z2+y2)

w(x)2 , (3.33)

where ik0(z2+y2)
2R(x) represents the focusing or defocusing phase depending on its sign and arctan x

xr

is the phase change around the focus called the Gouy phase.

3.2 Field calculation with a Random Phase Plate

As presented in Section 2.3, laser beams in ICF are spatially and temporally smoothed. In

this thesis, temporal smoothing is not considered and the spatial smoothing technique used

is RPP. To extend the study further than in the previous works, the exact field of a beam

passing through a RPP needs to be calculated to make realistic simulations. The RPP field

out of the focal spot is usually computed from the field at focal spot, with the Fresnel integral.

However, this method only allows to know the field in a direction perpendicular to the optical

axis. The field can be computed everywhere, but requires the 2D inverse FT calculation of

the field at focal spot, involving a significant numerical cost. The calculation presented in

this section allows to know the exact analytical expression of the field everywhere. Moreover,

the field at focal spot of two crossing beams with an angle is also required to calculate the
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theoretical wave propagation. The calculation of one single beam field passing through a RPP

is presented following the same method as in the Gaussian beam case. We will consider a laser

beam centered in y=0, propagating along the x direction, passing through a one dimensional

RPP. As described in 2.3, the RPP is subdivided in N elements whose phase φn is randomly

distributed between 0 and 2π. In the following, f designates the focal distance. The calculation

is first made with the electric field instead of the potential vector. Indeed, E is more often

found in the literature to describe the RPP field and it will be easier to compare our results to

the well-known formulations.

3.2.1 General case out of the focal spot

For a laser propagating along the x-axis, the 2D electric field at the phase plate writes:

Ẽ(x = 0, y) = Ele
− ik0y

2

2f H(y −D/2)H(D/2− y)
∑
n

eiφnH(y − an)H(an+1 − y) , (3.34)

= Ele
− ik0y

2

2f

∑
n

eiφnH(y − an)H(an+1 − y) . (3.35)

We note an = nd where d is the size of one phase plate element, n ∈ J−N/2, N/2K, and where

(N +1)d = D is the size of the phase plate. The phase plate is located after the lens, whence

the focusing phase e
− ik0y

2

2f . The amplitude of the field at the lens is El.

The propagation equation writes

2ik0∂xẼ + ∂2
yẼ = 0 . (3.36)

Following a similar procedure as for the Gaussian beam case, the field in the Fourier space

writes:

Ē = TF(Ẽ(x = 0))e
−

ik2yx

2k0 . (3.37)

The solution of Ẽ(x, y) is calculated in the real space by applying the inverse Fourier

transform of e−
ik2yx

2k0 , noting * the convolution product. The calculation is performed for a field
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located at x < f :

Ẽ = Ẽ(x = 0) ∗
(
e−iπ/4

√
k0
2πx

e
ik0y

2

2x
)
,

= Ele
−iπ/4

√
k0
2πx

∑
n

eiφn

∫ +∞

−∞
H(h− an)H(an+1 − h)e

−ik0h
2

2f e
ik0
2x

(y−h)2dh ,

= Ele
−iπ/4

√
k0
2πx

∑
n

eiφn

∫ an+1

an

e
−ik0h

2

2f e
ik0
2x

(y2−2yh+h2)dh ,

introducing K(x)2 =
k0
2x

− k0
2f

,

Ẽ = Ele
−iπ/4

√
k0
2πx

∑
n

eiφne
ik0y

2

2x

∫ an+1

an

eih
2K(x)2− ik0yh

x dh , (3.38)

= Ele
−iπ/4

√
k0
2πx

∑
n

eiφne
ik0y

2

2x

∫ an+1

an

e
iK(x)2

(
h2− k0yh

xK(x)2

)
dh , (3.39)

= Ele
−iπ/4

√
k0
2πx

∑
n

eiφne
ik0y

2

2x e
−ik20y

2

4x2K(x)2

∫ an+1

an

e
iK(x)2

(
h− k0y

2xK(x)2

)2
dh , (3.40)

= Ele
−iπ/4

√
k0
2πx

∑
n

eiφne
ik0y

2

2x

(
1− k0

2xK(x)2

) ∫ an+1

an

e
−
[
e−i π4 K(x)

(
h− k0y

2xK(x)2

)]2
dh . (3.41)

With u = e−
iπ
4 K(x)(t− k0y

2xK(x)2
), the Fresnel integral can be calculated:

Ẽ = El

√
k0

2πxK(x)2

∑
n

eiφne
− ik0y

2

2(f−x)

∫ e−i π4 K(x)(an+1− k0y

2xK(x)2
)

e−i π4 K(x)(an− k0y

2xK(x)2
)

e−u2
du ,

and the field writes:
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Ẽ =
El

2

√
f

f − x
e
− ik0y

2

2(f−x)

∑
n

eiφn

×
(
erf

[
e−

iπ
4 K(x) · (an+1 −

yf

f − x
)
]
− erf

[
e−

iπ
4 K(x) · (an − yf

f − x
)
])

. (3.42)

Equation (3.42) gives the exact RPP field at any (x, y) point. In the next chapter (see

Chapter 6), this formulation makes it possible to specify any RPP field as initial condition for

the PIC calculations.

3.2.2 Approximate Random Phase Plate field near the focal

spot

The calculation of the wave propagation is based on the field of two crossing beams at the

focal spot. It is therefore necessary to know the expression of one beam field in x = f where

f is the focal length. Nevertheless, equation (3.42) is not defined in x = f . The approximate

analytical value of the RPP field around the focal spot can however be found by applying a

Taylor expansion of the field around x = f . We start from Eq. (3.42): and to express the

Taylor expansion, we introduce

Eerf = erf
[
e−

iπ
4 K(x) · (an+1 −

yf

f − x
)
]
− erf

[
e−

iπ
4 K(x) · (an − yf

f − x
)
]
, (3.43)

and

fx =
f

f − x
. (3.44)

Eerf then recasts as

Eerf = erf
[
e−

iπ
4 K(x) · (an+1 − yfx)

]
− erf

[
e−

iπ
4 K(x) · (an − yfx)

]
= erf

[
e−

iπ
4

√
k0
2x

· (an+1
1√
fx

− y
√

fx)
]
− erf

[
e−

iπ
4

√
k0
2x

· (an
1√
fx

− y
√
fx)

]
. (3.45)

As 1/
√

(f − x) → ∞, the expression of the function erf(z) behaves as [1]

erfc(z) = 1− erf(z) ∼
z→∞

e−z2

√
πz

. (3.46)
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Equation (3.45) becomes

Eerf =
−1√
π

[
eiK(x)2(an+1−yfx)2

e−iπ/4K(x)(an+1 − yfx)
− eiK(x)2(an−yfx)2

e−iπ/4K(x)(an − yfx)

]
,

=
−1√
π

eiK(x)2(an+1−yfx)2

e−iπ/4K(x)(an+1 − yfx)

(
1−eiK(x)2(a2n−2anyfx+y2f2

x−(a2n+2and+d2)+2(an+d)yfx−y2f2
x)×(an+1 − yfx)

(an − yfx)

)
,

(3.47)

where
(an+1 − yfx)

(an − yfx)
≃ 1 , (3.48)

which leads to

Eerf =
−1√
π

eiK(x)2(an+1−yfx)2

e−iπ/4K(x)(an+1 − yfx)

(
1− e−iK(x)2(2and+d2−2dyfx)

)
,

= − 1√
π

eiK(x)2(an+1−yfx)2

e−iπ/4K(x)(an+1 − yfx)
e−iK(x)2(and+d2/2−dyfx)

(
2i sin[K(x)2(and+d2/2−dyfx)]

)
,

≃ 2√
π
de−iπ/4K(x)e

iK(x)2
(
a2n+2dan+d2−2yfx(an+d)+y2f2

x−and−d2/2+dyfx

)
sinc

(k0dy
2f

+ ϵ
)
,

(3.49)

where ϵ = K(x)2(and+ d2/2) ≪ k0dy
2f can be neglected. We used K(x)2dyfx ≃ k0dy

2f when f

is close to x. Thus,

Eerf ≃ 2√
π
de−iπ/4K(x)e

iK(x)2
(
(an+d/2)2+d2/4−dyfx−2yfxan+y2f2

x

)
sinc

k0dy

2f
,

=⇒ Ẽ ≃ Ele
−iπ/4

√
k0d2

2πf
sinc

k0dy

2f
e

ik0y
2

2x
−i

k0dy
2f

N/2∑
n=−N/2

eiφneiK(x)2((an+d/2)2−2anyfx) ,

≃ Ele
−iπ/4

√
k0d2

2πf
sinc

k0dy

2f
e

ik0y
2

2x

N/2∑
n=−N/2

eiφne
i
k0
2f

(
f−x
x

d2(n+1/2)2−2y(n+1/2)
d
)
.

(3.50)
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At this point, 1/2 can be neglected compared to n and the expression becomes

Ẽ ≃ Ele
−iπ/4

√
k0d2

2πf
sinc

k0dy

2f
e

ik0y
2

2f

N/2∑
n=−N/2

eiφne
ik0
2

(
d2n2(f−x)

f2
−2ynd/f)

. (3.51)

Introducing the variable x̂ = x− f to center the calculation at the focal spot,

Ẽ ≃ Ele
−iπ/4

√
k0d2

2πf
sinc

k0dy

2f
e

ik0y
2

2f

N/2∑
n=−N/2

eiφne
ik0
2

(− d2n2x̂
f2

−2ynd/f)
. (3.52)

Adding the beam propagation ei(k0x̂−iω0t)

E ≃ e−iω0tEle
−iπ/4

√
k0d2

2πf
sinc

k0dy

2f
e

ik0y
2

2f

N/2∑
n=−N/2

eiφne
ik0(x̂− d2n2x̂

2f2
−ynd/f)

, (3.53)

and noting

θn =
nd

f
≡ nD

(N + 1)f
(3.54)

as shown in Fig. 3.4,

E ≃ e−iω0tEle
−iπ/4

√
k0d2

2πf
sinc

k0dy

2f
e

ik0y
2

2f

N/2∑
n=−N/2

eiφneik0((1−θ2n/2)x̂+yθn) . (3.55)

Then, to second order in θn ≪ 1, it is convenient to write,

E ≃ e−iω0tEle
−iπ/4

√
k0d2

2πf
sinc

k0dy

2f
e

ik0y
2

2f

N/2∑
n=−N/2

eiφneik0x̂ cos θn+ik0y sin θn . (3.56)

The different phase-shifted beamlets in the sum are focused at the same location, and

their interferences lead to the speckle pattern, in the focal spot envelope. The focal spot

shape is described by the sinc k0dy
2f . This will result in an Airy disk which will be visible in

our simulations in Chapter 6. To avoid this dispersion and in order to obtain a homogeneous

focal spot, common phase plates are built so as to focus the energy in a limited envelope, as
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a hypergaussian, out of the scope of the analytical calculations presented here. Turning our

attention close to the beam center (y ≪ 1),

E ≃ Ele
−iπ/4

√
k0D2

2πf

1

N + 1
e−iω0t

N/2∑
n=−N/2

eiφneik0 cos θnx̂+ik0 sin θny . (3.57)

This expression is equivalent to a beam constructed by the addition of slightly tilted plane waves

around the mean k0 [93], with random phases, leading to a finite speckle size. Equation (3.57)

allows to calculate the field of each beam at the focal spot, from which it will be possible to

deduce the crossing field.

Introducing the f number, f# = f/D, the perpendicular component of the wave number

of each plane wave is

k⊥n =
k0n

(N + 1)f#
, (3.58)

with the maximum value, written here for N + 1 ≃ N ≫ 1,

kmax =
k0D

2f
≡ k0

2f#
, (3.59)

In the limit θk⊥ ≪ 1, cos θk⊥ ≃ 1 and sin θk⊥ ≃ θk⊥ and Eq. (3.57) becomes the well

known formula [94]:

E = E0e
ik0x̂−iω0t 1

N + 1

kmax∑
k⊥=−kmax

eiφk⊥eik
⊥y , (3.60)

where we introduced E0 = Ele
−iπ/4

√
k0D2/2πf . Figure 3.3 (from Ref. [94]) exhibits the

speckles intensity statistic. The dashed curve is the statistic in the Gaussian limit, the plain

curve is the statistic of intense hot spots, and the intensity histogram is plotted by finding the

local maxima of E2 (E being defined in Eq. (3.60), and in Eq. (1) and (5) in Ref. [94]) in

many realizations of E. For N ≫ 1, Fig. 3.3 shows that Eq. (3.60) is found to reproduce the

speckles intensity statistic.

Moreover, from now the vector potential A is used instead of E. This comes from our choice

to derive the beam propagation equations as well as the forthcoming wave mixing equations with

the potential vector, in order to have the conservation of the transverse canonical momentum.
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Figure 3.3: Numerically determined histogram of hot spot intensities as derived
in [94], deduced from the probability distribution of Eq. (3.60). About 3000 hot
spots in about 100 realizations of the phase ensemble were sampled to construct the
histogram.

Equation (3.57) therefore becomes

A = ae−iω0t 1

N + 1

N/2∑
n=−N/2

eiφneik0 cos θnx̂+ik0 sin θny , (3.61)

and Eq. (3.60) becomes

A = aeik0x̂−iω0t 1

N + 1

kmax∑
k⊥=−kmax

eiφk⊥eik
⊥y , (3.62)

with a = E0/(−iω0). For a beam propagating in any direction r, this expression can be

generalized in

A = aeik0·r−iω0t 1

N + 1

kmax∑
k⊥=−kmax

eiφk⊥eik
⊥·r . (3.63)
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Both expressions will be used in Chapter 6 to resolve the wave equation. However, Eq.

(3.61) sums up different kx = k0 cos θnx components whereas Eq. (3.63) only adds up plane

waves with equal kx = k0 components. Even though the random phase shift between the

beamlets is taken into account, Eq. (3.63) leads to infinite longitudinal speckles. This amounts

to neglecting the diffraction of the beamlets near focus. In the following, we will refer to this

situation as the case without diffraction. Conversely, we will refer to the field of Eq. (3.61)

as the case with diffraction. To illustrate the difference between the speckles shape with and

Figure 3.4: Scheme of the phase plate and the focal geometry

without diffraction, Fig. 3.5 exhibits the beam intensity for N=6, 40 or 100. For the case N=6,

the y axis is 6× 2πNf# long which corresponds to six patterns. In this way, the periodicity is

visible. As the beam dimension is infinite, the same pattern is reproduced. For the case N=40

and N=100, only one pattern is plotted to allow a clear distinction of the speckles. Theses

figures allow to see the number of speckles evolving with the phase plate number, as well as the

shape of the speckles. Without diffraction, speckles are straight and infinite, although they have

finite and different sizes in the case with diffraction. For the CBET calculation, the exchange

depends on the crossing zone sizes which is mainly determined by the transverse speckle’s size.
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Unless the beams are nearly parallel, the size of the crossing zone does not depend on the

longitudinal speckle’s size so the diffraction can be neglected. This statement will be proven in

Section 6.1. However, it does have an important impact when the instability grows along the

speckle’s direction, as for forward SBS.

3.3 Speckles characteristics

The speckles, plotted in Fig. 3.5, have specific sizes that can be estimated with the spatial

autocorrelation function of the E-field. While the calculation of the transverse size can be

made with or without considering diffraction, the calculation of the longitudinal size is made

accounting for the diffraction. Indeed, only the expression with diffraction allows to obtain

a finite longitudinal speckle size. For a better readability, the calculation is made with the

simplified equation on A, considering Eq. (3.63) to calculate the transverse size and Eq. (3.61)

for the longitudinal size.

3.3.1 Calculation of the transverse speckles size

Let us introduce the random normalized variable GN defined by

GN =

∑N/2
n=−N/2 gne

iφn

[
∑N/2

n=−N/2 |gn|2]1/2
, (3.64)

where

gn = aek0x−iω0t 1

N + 1
eik

⊥y , (3.65)

and we recall that k⊥ = k0n/(N + 1)f# so the sum can be expressed either on n or on k⊥.

For a large number of elements, N −→ ∞, the random variable GN converges to the normal

law, of mean value E [GN ] = 0 and variance E [|GN |2] = 1 (where E [X] is the expectation

value of X.). The autocorrelation Γ function writes

Γ(y, y′) = E [
(
G(y)×G⋆(y′)

)
] . (3.66)
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Without diffraction With diffraction

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Intensity maps of a RPP beam focal spot normalized to the averaged
intensity (left) without diffraction (right) with diffraction, (up) N = 6, five patterns
are plotted, (middle) N = 40, one pattern is plotted, (down) N=100, one pattern is
plotted. The periodicity corresponds to L = 2πNf# where f# = 8.
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Introducing

I = ⟨|A|2⟩ , (3.67)

=

N/2∑
n=−N/2

|gn|2 , (3.68)

=
a2

N + 1
, (3.69)

the autocorrelation function recasts as

Γ(y, y′) =
1

I1/2
1

I ′1/2

N/2∑
n=−N/2

N/2∑
n′=−N/2

gn(y)g
⋆
n′(y′)E [ei(φn−φn′)] . (3.70)

Developing the expression and noting that E [ei(φn−φn′ )] = δn−n′ where δ is the Kronecker

delta,

Γ(y, y′) =
1

N + 1

N/2∑
n=−N/2

N/2∑
n′=−N/2

δn−n′e
−i

k0d
f

[yn−y′n′]
, (3.71)

=
1

N + 1

N/2∑
n=−N/2

e
−i

k0nd
f

[y−y′]
. (3.72)

For a large number of elements (N → ∞), the sum converges to an integral and the autocor-

relation function becomes

Γ(y, y′) = sinc
Nk0d

2f
(y − y′) = sinc

k0
2f#

(y − y′) . (3.73)

This result reveals the sinus cardinal shape of the speckle. The radius of the speckle is

defined as the first zero of Γ(y, y′) and leads to ρsp = f#λ0 [32], with λ0 = 2π/k0, which also

corresponds to the waist at 2/π of the maximum. In Fig. 3.5 with f# = 8, the speckle width

is 2πf# ≃ 50.
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3.3.2 Calculation of the longitudinal speckles size

Here the same method is applied for the calculation of the autocorrelation function Γ(x, x′)

and starting from Eq. (3.61). Here,

gn = ae−iω0t 1

N + 1
eik0 cos θnx+ik0 sin θny . (3.74)

I is still equal to a2/(N + 1)2. The autocorrelation function

Γ(x, x′) = E [
(
G(x)×G⋆(x′)

)
] , (3.75)

leads to

Γ(x, x′) =
1

N + 1

N/2∑
n=−N/2

N/2∑
n′=−N/2

δn,n′eik0
[
cos θnx−cos θn′x′+sin θny−sin θn′y

]
, (3.76)

=
1

N + 1

N/2∑
n=−N/2

e−ik0 cos θn(x′−x) . (3.77)

Considering θn << 1 we can use the first order Taylor expansion cos θn ≃ 1− θ2n/2 and obtain

Γ(x, x′) = e−ik0(x′−x) 1

N + 1

N/2∑
n=−N/2

eik0
θ2n
2
(x′−x) . (3.78)

For a large number of elements (N → ∞), the previous sum converges to an integral, and after

some algebra becomes

Γ(x, x′) =
√
πeiπ/4

√
2f2

#

k0(x′ − x)
e−ik0(x′−x)erf

[
e−iπ/4 1

2

√
k0(x′ − x)

2f2
#

]
. (3.79)

This expression does not cancel out. The longitudinal correlation length is therefore defined

as the the half-width of |Γ(x, x′)|, leading to a correlation length of ∼ 10f2
#λ0 which is similar

to the value found in Refs. [32, 10]. For f# = 8, the speckle length is ≃ 4000. This value also

coincides with the Fig. 3.5 (bottom right, for large N).
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In this chapter, the equations of the beam propagation after a phase plate have been

established. The expression of the fields found here will be used, together with the wave mixing

equations of Chapter 4, to derive the wave equation and the energy exchange produced by two

RPP beams in Chapter 6.

71



Chapter 4
Cross-Beam Energy Transfer equations
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This chapter presents the usual calculations of CBET which will be used as starting point for

Chapter 5. First, the well-known Landau damping value in the linear kinetic regime is recalled

in Section 4.1.1 in order to be added as a phenomenological correction in the wave mixing

calculation in Section 4.2. Then, the different wave propagation equations are presented. As

an illustration, this system, describing the energy exchange, is solved in the case of two Gaussian

beams in Section 4.3.

4.1 Wave damping

This section is in SI to allow an easier comparison with the literature.

4.1.1 Landau Damping

The Landau Damping denotes the non-collisional damping of electrostatic waves in a plasma.

When a particle velocity is close to the phase velocity of a wave, an energy exchange occurs

between the particle and the wave. If the particles whose initial velocity is slightly smaller than

the wave phase velocity, the particles are globally accelerated with the wave energy. Conversely,

if the particles whose velocity is higher than the wave phase velocity, the particles are globally

decelerated and loses energy. In the case of a Maxwellian particle velocity distribution, there

is more particles with a smaller velocity than particles with a higher velocity that interact with

the wave, as shown in Fig. 4.1.
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Figure 4.1: Division of the distribution function between a resonant and a non-
resonant (main) part. From [81]

The latter is therefore damped. The damping can be derived from the linearized Vlasov

(Eq. (2.1)) and Poisson equations, writing fα(r,v, t) = fα,0(v) + f1α,(r,v, t). At first order

and choosing E along the y direction, these equations become

∂tf1 + v∂yf1 +
q

m
E · ∂vf0 = 0 , (4.1)

and

∂yE =
e

ϵ0
(ni,1 − ne,1) , (4.2)

which corresponds to Gauss law. This system can be resolved as an initial value problem as

described in [46]. The response to an initial perturbation is composed of normal modes given

by the dispersion equation:

ε(ω, k) = 1 +
∑
α

χα(ω, k) = 0 . (4.3)

where the susceptibility for the species α is:

χα(k, ω) =
q2α

mαϵ0k2

∫
d3v

∇vfα,0
ω/k − v

, (4.4)
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where the integration contour lies above the pole ω/k = v.

Considering Maxwellian distribution functions for fα,0 as initial conditions

fα,0(v) =
nα,0√
2πvthα

e−v2/2v2thα . (4.5)

where vthα is the thermal velocity of the species α, we obtain

χα(ω, k) = −
ω2
pα

2k2v2thα
Z ′

(
ω√

2kvthα

)
, (4.6)

where Z is the Fried and Conte’s plasma dispersion function [28], ωpe =
√

e2ne/meε0 is the

electron plasma frequency and ωpi =
√
Z2e2ni/miε0 is the ion plasma frequency. Resolving the

real part of Eq. (4.3) allows to find the IAW and EPW dispersion relations. Under appropriate

limits, the latter coincide with the fluid theory (Eqs. (2.16) and (2.19)). The damping effect

cannot be caught by a fluid theory.

A solution to the dispersion relation Eq. (4.3) can be numerically found by plotting the

value of vφ = Re{ω/k} and ν/k = Im{ω/k} for which the real and the imaginary part of ε

is zero [29, 117] under the approximation k2v2the/ω
2
pe ≪ |Z ′(ω/kvthe)| ∼ 2. Multiple solutions

correspond to both Im{ε} = 0 and Re{ε} = 0, each one of these solutions corresponds to an

eigenmode of acoustic wave propagation. The one to be considered here is the least damped

(purple arrow), as shown in Fig. 4.2.
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Figure 4.2: Plot of the solutions of Im{ϵ} = 0 and Re{ϵ} = 0 in the limit
k2v2the/ω

2
pe ≪ 1

versus vφ/cs and ν/kcs. The purple arrow shows the solution considered. Here, a

CH plasma is considered, with Ti = 1 keV and Te = 2 keV and cs is the acoustic

velocity calculated with the mean A (=6.5) and Z(=3.5).

For a weak damping, we can write ω = kvφ + iν where ν ≪ ω. A Taylor expansion of ε

thus gives

ε(kvφ + iν, k) ≃ ε(kvφ, k) + iν∂ωε(kvφ, k) = 0 , (4.7)

where

∂ωχα(kvφ, k) = −
ω2
pα

23/2k3v3thα
Z ′′

(
vφ√
2vthα

)
. (4.8)

Finally, considering k2v2the/ω
2
pe ≪ 1,

ν = k × Im


∑

αi

ω2
pi

v2thαi

Z ′(
vφ√
2vthi

) +
ω2
pe

v2the
Z ′(

vφ√
2vthe

)∑
αi

ω2
pi√

2v3thαi

Z ′′(
vφ√
2vthi

) +
ω2
pe√

2v3the
Z ′′(

vφ√
2vthe

)

 , (4.9)

where αi denotes the ion species. For a single ion species, this formula gives satisfying

results compared to the numerical resolution of (4.6). Nevertheless, the value of vφ is not
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straightforward for multi species ions, and this expression yields erroneous values when calcu-

lating cs with the ion mean values of Z and A. For a single species ion and ZTe/Ti ≫ 1, an

analytical solution is found with vφ = cs

ν

kcs
=

√
π

8

[ωpi

ωpe
+

c3s
v3thi

e−c2s/2v
2
thi

]
, (4.10)

where

cs =

√
ZkBTe + 3Ti

mi
. (4.11)

4.1.2 Additional collisional damping

Albeit weak, the collisional damping of ion acoustic waves depends both on e-i and i-i collision

rate [9, 23, 8] and can be comparable or even higher than the Landau damping rate for a high

Z plasma such as gold. The electron-ion mean-free path is defined as (in S.I. units)

λe,i =
3k2BT

2
e (4πε0)

2

4
√
2πneZe4 ln Λ

, (4.12)

where ln Λ = lnλD/p0 is called the Coulomb logarithm and the impact factor p0 corresponds

to a π/2 diffusion of an electron by an ion. The ion-ion mean free path is

λi,i =
3k2BT

2
i (4πε0)

2

4
√
πniZ4e4 ln Λ

. (4.13)

Estimation of the IAW damping rates including both Landau and collisional damping can be

deduced from Fig. 4.3. After the calculation of λe,i and λi,i with Eq. (4.12) and (4.13), we can

evaluate the damping rate by finding the corresponding kλe,i and kλi,i values on both figures.

The simulations of the left curves (electron-ion) are made with the code SPRING which solves

Fokker-Planck and cold-ion fluid equations. The damping rate γ account for both Landau and

electron-ion collisional damping (γ = γLandau+ei). Note that the parameter β is a scaling factor

chosen so that most curves are merged for the weak damping. The right panel shows analytical

fluid calculations of the ion-ion damping (plain curves) compared to Fokker-Planck simulations

(points). The damping rate γ corresponds to the sum of the Landau and the ion-ion collisional

damping (γ = γLandau + γii). In Chapters 5 and 6, the maximum collisional damping rate is
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Figure 4.3: (left) normalised damping rate accounting for electron-ion collision from
[23], β is a scaling factor (β = 0.24, 0.68, 0.2, and 1 for Z = 1, 8, 64, and ∞
respectively.) The dashed curve is the fluid result and the solid curves represent
simulations with Z = 1 (a), 8 (b), 64 (c), ∞ (d). (right) normalised damping
rate accounting for ion-ion collision from [9] The six solid curves are analytically
calculated for the temperature ratios ZTe/Ti of 4, 8, 16, 48, 64, 80 (top to bottom).
For comparison, the points are the numerical results of Ref. [91] for the ratios 4, 8
and 16, and of Ref. [111] for the ratios 48, 64 and 80.

estimated by taking the greater value between γei and γii. For high Z plasmas such as gold, the

electron-ion collisional damping rate is comparable to the Landau damping rate, and the ion-ion

collisional damping rate remains negligible. For moderate Z such as CH or Carbon plasmas,

collisions become negligible. This will be verified in Chapter 6.

4.2 Wave mixing

In this section, we go back to PIC normalized expressions.

4.2.1 Ponderomotive force for two crossing laser beams

The expression of the ponderomotive force is

Fp =
1

2
⟨∂y Re

{
ÃeiS(r,t)

}2
⟩T , (4.14)
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where T = 2π/ω0 is a laser period and S(r, t) = ik · r − iωt. Writing

Re
{
ÃeiS(r,t)

}
=

1

2
(ÃeiS(r,t) + Ã⋆e−iS(r,t)) , (4.15)

the calculation of the ponderomotive force for A = A0 +A1 leads to

Fp =
1

2
⟨∂y

(
Re

{
Ã0e

iS0(r,t)
}
+Re

{
Ã1e

iS1(r,t)
})2⟩T ,

=
1

8
⟨∂y

(
Ã0e

iS0(r,t) + Ã0
⋆
e−iS0(r,t) + Ã1e

iS1(r,t) + Ã1
⋆
e−iS1(r,t)

)2⟩T ,

=
1

8
⟨∂y

(
Ã2

0e
2iS0(r,t) + Ã2

1e
2iS1(r,t) + Ã⋆2

0 e−2iS0(r,t) + Ã⋆2
1 e−2iS1(r,t)

+ 2
[
Ã0Ã1e

iS0(r,t)+iS1(r,t) + Ã⋆
0Ã

⋆
1e

−iS0(r,t)−iS1(r,t) + Ã0Ã
⋆
1e

iS0(r,t)−iS1(r,t)

+ Ã⋆
0Ã1e

−iS0(r,t)+iS1(r,t) + Ã0Ã
⋆
0 + Ã1Ã

⋆
1

])
⟩T . (4.16)

Where S0(r, t) = k0 · r − iω0t, S1(r, t) = k1 · r − iω1t and S(r, t) = S0(r, t) − S1(r, t).

Terms with phases equal to ±2S0(r, t), ±2S1(r, t), ±(S0(r, t) + S1(r, t)) oscillate at ≃ 2ω0

and their average value over T is therefore zero. Other terms being slowly variable over T, their

average value is equal to their value at time t. It remains

Fp =
1

4
∂y
(
Ã0Ã0

⋆
+ Ã1Ã1

⋆
+ Ã0Ã1

⋆
eiS(r,t) + Ã0

⋆
Ã1e

−iS(r,t)
)
. (4.17)

In the following, we neglect ∂yÃ0Ã0
⋆
, ∂yÃ1Ã1

⋆
and ∂yÃ0Ã1

⋆
in front of ∂yS(r, t), keeping

only the beating terms,

Fp =
1

4
∂y
(
Ã0Ã1

⋆
eiS(r,t) + c.c.

)
=⇒ ∂yFp = −k2

4

(
Ã0Ã1

⋆
eiS(r,t) + c.c.

)
. (4.18)

4.2.2 Damped acoustic wave equation

We introduce the notation δNR
e,i to denote the value of δNe,i in the real space, and to contrast

with its imaginary value used for the calculations of Section 4.3. Starting from Eq. (2.8) for a
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wave propagating along y, we use the expansions

ni = ni,0 + δNR
i , (4.19)

vi = vd + δvi . (4.20)

To alleviate the algebra, a stationary plasma with vd = 0 is considered, and the perturbed

continuity equation is obtained

∂tδN
R
i + ni,0∂yδvi = 0 . (4.21)

Then, writing the normalized motion equation for electrons and ion

mi∂tδvi = ZE − ∂yPi

ni,0
, (4.22)

∂tve = −E − ∂yPe

ne,0
+ Fp , (4.23)

and considering ne = Zni and and neglecting the electrons inertia,

mi∂tδvi = −∂yPi

ni,0
− Z

∂yPe

ne,0
+ ZFp. (4.24)

In the adiabatic limit for ions (Pi = 3niTi) and isothermal for electrons (Pe = neTe)

∂tδvi = −c2s
∂yδN

R
i

ni,0
+

ZFp

mi
, (4.25)

where cs =
√
(ZTe + 3Ti)/mi is the ion acoustic velocity. Differentiating Eq. (4.25) with

respect to y and using Eq. (4.21), ∂yFp appears in the equations and we can use Eq. (4.18)

which yields:

∂2
t δN

R
i − c2s∂

2
yδN

R
i = −Zni,0|k|2

4mi

(
Ã0Ã1

⋆
eiS(r,t) + c.c.

)
. (4.26)

Then, the damping is added as a phenomenological correction, where ν is evaluated as explained

in 4.1.1 and the damped IAW is obtained
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[∂2
t + 2ν∂t − c2s∂

2
y ]δN

R
e = −Zne,0|k|2

4mi
Ã0Ã

⋆
1e

ik·r−iωt + c.c. , (4.27)

As the diffusion of photons is due to electrons, the choice has been made to recast the equation

with δNe = ZδNi instead of δNi. Noting δNe =
1
2δÑee

ik·r−iωt the (imaginary) component of

δNR
e with the phase ik · r− iωt allows to identify terms with the same phase, and Eq. (4.27)

becomes (in the imaginary space)

[∂2
t + 2ν∂t − c2s∂

2
y ]δNe = −Zne,0|k|2

2mi
Ã0Ã

⋆
1e

ik·r−iωt. , (4.28)

4.2.3 Laser envelopes coupling equation

Now that the damped wave equation is set, we establish the envelopes coupling equations,

required for the energy exchange calculation in the two following Chapters 5 and 6. The

starting point has been explained in 3.1.1 and consists in resolving Maxwell equation with a

slowly varying envelope field. Thus, starting from Eq. (3.20)

∆A− ∂2
tA = neA ,

and noting the vector potentials of the laser fields as: A ≈ 1
2

∑1
j=0 Ãje

ikj ·r−iωjt + c.c., Eq.

(3.20) becomes

neA =
1∑

j=0

eikj ·r−iωjt(∆Ãj−Ãjk
2
j +2ikj ·∇Ãj+ω2

j Ãj+2iωj∂tÃj−∂2
t Ãj)+c.c. , (4.29)

neglecting the second order terms, considering the slow varying envelope approximation, the

stationary regime, ne = ne,0+
1
2(δÑee

ik·r−iωt+δÑ⋆
e e

−ik·r−iωt) where δÑ⋆
e denotes the complex

conjugate of δÑe, and the dispersion equation (ω2
i − k2i ) = ne0 it remains:

[δÑee
ik·r−iωt + δÑ⋆

e e
−ik·r−iωt](Ã0e

i(k0·r−ω0t) + Ã1e
i(k1·r−ω1t) + c.c.) =

4i(k0 ·∇Ã0e
i(k0·r−ω0t) + k1 ·∇Ã1e

i(k1·r−ω1t)) + c.c. . (4.30)
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After the identification of the terms with the same phase, the coupling equations on the laser

envelopes Ãi, finally write:

4ik0 ·∇Ã0 = δÑe Ã1 , (4.31)

4ik1 ·∇Ã1 = δÑ⋆
e Ã0 . (4.32)

4.3 Cross-Beam Energy Transfer between two Gaus-

sian Beams

The simplest CBET configuration is the crossing of two plane waves. These plane waves can be

either considered as idealized laser beams or as two isolated speckles. To calculate the energy

exchange in this configuration, we first recall the model, presented in [18], of two Gaussian

beams crossing each other in a homogeneous plasma with a half-angle θ. The polarisation of

the lasers is perpendicular to the crossing plane.

4.3.1 Wave propagation

Compared to Ref. [18], we consider a plasma with a drift velocity vd where vd = vd · ŷ is < 0

as vd is chosen in a direction opposed to k. This way, the exchange goes in the same direction

whether considering vd = 0, ω > 0 or ω = 0, vd < 0. Equation (4.28) with a plasma flow

writes

[(∂t + vd∂y)
2 + 2ν(∂t + vd∂y)− c2s∂

2
y ]δNe = −Zne,0|k|2

2mi
Ã0.Ã1

⋆
eik.y−iωt , (4.33)

where we remind that δNe is a complex. This equation can either be found by following the

perturbative procedure around vi = vd+δvi as explained in Sec. 4.2.2 or by applying a Galilean

transform of Eq. (4.27) from the plasma reference frame to the lab frame. Assuming the beam

waist is large compared to the characteristic Landau damping distance, [∇a0,1/a0,1]
−1 ≫ cs/ν,

where Ã0Ã1
⋆
= a0a

⋆
1. In the limit where Ã0.Ã1

⋆
is constant, equation (4.33) can be solved

in Fourier space. Then, by returning to the real space, we can deduce an expression of δNe.
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Let us apply the FT of Eq. (4.33) f =
∫ +∞
−∞ f(y)e−ikydy, assuming a simple r.h.s of the form:

a0a
⋆
1 = βeiky−iωt.

[
(∂t + ikvd)

2 + 2ν(∂t + ikvd) + k
2
c2s
]
δN e = βπe−iωtδ(k − k) . (4.34)

δN e = 0 and ∂tδN e = 0 being the initial conditions at t = 0, the solution is:

δN e =
βπδ(k − k)

−(ω − kvd)2 − 2iν(ω − kvd) + c2sk
2

×
(
e−iωt +

iω + λ(k)−

λ(k)+ − λ(k)−
eλ(k)+t − iω + λ(k)+

λ(k)+ − λ(k)−
eλ(k)−t

)
, (4.35)

where

λ±(k) = −ν − ikvd ± i
√
c2sk

2 − ν2 . (4.36)

The inverse FT gives δNe = βf(y, t, k, ω) with

f(y, t, k, ω) =
eiky

−(ω − kvd)2 − 2iν(ω − kvd) + c2sk
2

×
(
e−iωt +

iω + λ−
λ+ − λ−

eλ+t − iω + λ+

λ+ − λ−
eλ−t

)
. (4.37)

We obtain:

δNe(y, x, z, t) ≈ −Zne,0|k|2

2mi
f(y, t, k, ω)a0.a

⋆
1 . (4.38)

The IAW is the sum of three waves corresponding to the three terms in the rightmost

parenthesis of Eq. (4.37), one driven wave (∝ eiky−iωt) and two damped waves, moving in

opposite directions, whose amplitudes vary according to the proximity to the resonance. When

the asymptotic regime is reached, only the driven wave remains (eλ(k)±t −−−→
t→∞

0) and writes:
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δNdriven
e = 2αf̃(k, ω)eiky−iωt , (4.39)

where

f̃(k, ω) =
1

c2sk
2 − (ω − kvd)2 − 2iν(ω − kvd)

, (4.40)

where f̃(k, ω) is the driven acoustic wave envelope and

α = −Zne,0|k|2

4mi
a0.a

⋆
1 . (4.41)

This asymptotic solution is used in most of linear models.

4.3.2 Exchange calculation

Introducing the intensities I0,1 = |a0,1|2, αI(t) =
Zne,0|k|2

2mi
Im[f(t)], and the change of variables

Y0 = cos θy+ sin θx and Y1 = − cos θy+ sin θx where θ is the half-angle between the beams,

the wave coupling equations (4.31) and (4.32) simplify to

∂Y1I0 = −αI(t)I0I1 , (4.42)

∂Y0I1 = αI(t)I0I1 . (4.43)

The resolution of the system [61] leads to

I0 = f0
e[−P 0

0 ]

e[P
0
1 ] + e[−P 0

0 ] − 1
, (4.44)

I1 = f1
e[P

0
1 ]

e[P
0
1 ] + e[−P 0

0 ] − 1
, (4.45)

where

P 0
0 =

αI(t)

sin 2θ

∫ Y0

−∞
f0dY

′
0 , (4.46)

P 0
1 =

αI(t)

sin 2θ

∫ Y1

−∞
f1dY

′
1 , (4.47)
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f0,1 are the initial conditions,

f0,1 = I00,1e
−

Y 2
0,1+x2

w2
0,1 , (4.48)

and w0,1 is the waist of the beam 0,1. Thus, the exchange direction is determined by the

sign of Im[f(t)]. With θf (t) the phase shift between the IAW and the grating, it comes

Im[f(t)] ∝ sin θf (t). From this it can be deduced that a negative phase shift leads to a trans-

fer of energy from high to low frequencies and vice versa.

The IAW propagation and the energy exchange for two plane waves has been established.

The same resolution method will be used for more complex situations in Chapter 5 and in

Chapter 6.
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Chapter 5
Effect of the phase-shift between

successive speckle crossings
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Laser beams used in ICF experiments are spatially smoothed with phase plates, described

in Section 2.3. Their resulting intensity pattern is composed of a multitude of speckles. Thus,

two crossing beams are equivalent to numerous crossing speckles and CBET occurs at each

of these crossings. In this chapter, we focus on the exchange due to the wavelength shift

between the beams and we consider a stationnary plasma. If the grating velocity is equal

to the ion acoustic velocity cs, the density modulation induced by the ponderomotive force

propagates, leading to an IAW moving in the grating direction. In a weakly Landau-damped

plasma, the IAW created at a crossing can reach another crossing without being damped, thus

affecting the exchange. It is therefore required to distinguish cases where the gratings are

in-phase, and out-of-phase. The latter case, more realistic according to the randomness of

speckles distribution, induces a significant drop down of the exchange rate compared to the

in-phase case. However, in most hydrodynamic models, this speckle structure is not taken into

account and may explain the difficulties to reproduce the experimental results. The lacks in

CBET modeling had been identified in Section 2.4.2, and reproducing the experimental results

is often achieved by artificially saturating the density perturbation [47, 39]. This chapter aims

at demonstrating that neglecting the inhomogeneities in the laser intensity would usually lead

to an overestimate of the energy exchange. This chapter is organized as follows. Section 5.1

presents a CBET linear model including a random phase shift between the speckles. Section

5.2 presents 2D PIC simulations of CBET occurring between eight speckles in a weakly-damped

plasma. The phase between the speckles has been varied so as to observe the destructive ion

acoustic wave interference on the energy exchange.

5.1 Cross-Beam Energy Transfer model

In the first physical situation, we investigate the field at focal spot resulting from the crossing

of two smoothed laser beams is modeled by a sinusoidal envelop. Doing so, we impose equal

size and amplitude for each crossing envelope. Even though a realistic model is introduced in

the next chapter, this simplified model allows to control more laser parameters and therefore

explore the speckles structure influence. Typically, this model allows to choose the phase shift

between two successive SCs which is the purpose of the section.
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5.1.1 Wave propagation

In the laboratory referential, the crossing envelope is defined as Ã0Ã
⋆
1 =

a0a⋆1
2 (cos kspy+1). In

this chapter, the focus is on the difference between the wavelength shift case with and without

phase shift so vd = 0. It is still left in the equations for the consistency of notations in the

manuscript. The maximum amplitude is 1 and the crossings are represented by successive

sinusoidal envelopes as shown in Fig. 5.1 (a). The wave equation, defined in Eq. (4.33), in

this case writes

[(∂t + vd∂y)
2 + 2ν(∂t + vd∂y)− c2s∂

2
y ]δNe = α(cos kspy + 1)ei(ky−ωt) , (5.1)

where we recall α from Eq. (4.41): α = −Zne,0|k|2
4mi

a0.a
⋆
1. The sinusoidal envelope implies that

all the gratings are following each other, they are therefore in phase. As a consequence, the

IAW created in one crossing will interact without phase shift with the IAW created in the next

crossing. In a realistic situation, the distance between crossings may vary depending on the

phase plate elements as well as the grating phase. It is very unlikely that two IAWs interact

in phase. The phase shift between IAW and the resulting destructing interference is one of

the speckles structure element that can modify the exchange. To take the phase shift into

consideration, a sinusoidal phase change Φ(y) along the y direction is introduced. Thereby, the

r.h.s. term of Eq. (4.33) is multiplied by

Φ(y) = eiπ sinβy =
∑
n∈Z

Jn(π)e
inβy , (5.2)

where Jn is the Bessel function of the first kind,

Jn(π) =
∑
p∈N

(−1)p

(n+ p)!p!

(
π

2

)2p+n

. (5.3)

Ã0Ã
⋆
1 thus becomes Ã0Ã

⋆
1 =

a0a⋆1
2 (cos kspy + 1)Φ(y). By varying the parameter β between

0 and ksp/12, ϕ = π sinβy varies from 0 to π/2 in one period λsp. Note that with realistic

smoothed laser beams, the maximum phase shift between two SCs can reach π. Yet, owing to

the continuous phase change approximation of Eq. (5.2), the maximum phase shift was fixed

to π/2 to avoid a significant phase change along one SC. As a result, our model will probably
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underestimate the phase shift effect on CBET.

Figure 5.1: Crossing section geometry at Lx/2. (top) At t=0 the laser pattern
(plain line) creates a density modulation (dotted line) with its corresponding phase
ϕ. Each colour represent one SC. (bottom) Example of the wave from the red pattern
(partially damped after its propagation) reaching the blue one at t = λsp/cs. The
magenta dashed line is the resulting amplitude of the waves interaction. The phase-
shift case is represented (left) and the final amplitude results from the partially
destructive interference of the waves. In the in-phase case (right), the interference
is constructive and the final wave amplitude is bigger.

To illustrate our model, Fig. 5.1 (top) represents four crossings and therefore four IAWs

which are going to interfer with the next crossing. We recall that the phase ϕi = π sinβy is

continuously varying, but the variation is small enough to consider that the phase is the same

in one SC. Then, Fig. 5.1 (bottom) illustrates the interaction when the IAW has reached the

next crossing area. The wave issued from the red pattern is represented after a propagating
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distance of λsp, when reaching the blue pattern. Its amplitude is smaller due to its damping

after the propagation. The interaction between both waves is destructive when considering a

phase shift between the wave, and constructive when considering no phase shift.

Writing the wave equation 5.1 with the phase shift term leads to

[
(∂t + vd∂y)

2 + 2ν(∂t + vd∂y)− c2s∂
2
y

]
δNe = α(cos kspy + 1)ei(ky−ωt)

∑
n∈Z

Jn(π)e
inβy . (5.4)

By linearity of Eq. (4.34), any linear combination, at the r.h.s., of the form β1e
ik1y−iω1t +

β2e
ik2y−iω2t, is also solution, with δNe = β1f(y, t, k1, ω1) + β2f(y, t, k2, ω2). Applying a

decomposition of 1
2(cos kspy + 1)eiky−iωt into three terms:

δNe = α
∑
n∈Z

Jn(π)×
[
f(k + nβ) +

f(k + ksp + nβ)

2
+

f(k − ksp + nβ)

2

]
, (5.5)

where the dependencies on y, t and ω have not been written to simplify the notation, and f has

been defined in Eq. (4.37). The solution of Eq. (5.5) is found using the decomposition into

an infinite set of waves. At long times, the remaining wave results from the beating between

the many driven waves,

δNdriven
e = αeiky−iωt

∑
n∈Z

Jn(π)e
inβy

×
[
f̃(k + nβ) +

1

2
f̃(k + ksp + nβ)eikspy +

1

2
f̃(k − ksp + nβ)e−ikspy

]
,

(5.6)

where f̃ is defined in eq. (4.40) and the wave envelope,

δÑdriven
e = δNdriven

e e−(iky−iωt) , (5.7)

is

90



δÑdriven
e = α

∑
n∈Z

Jn(π)e
inβy

[
f̃(k+nβ)+

1

2
f̃(k+ksp+nβ)eikspy+

1

2
f̃(k−ksp+nβ)e−ikspy

]
.

(5.8)

At resonance ω = kcs,

δÑdriven
e = α

∑
n∈Z

Jn(π)e
inβy ×

[ 1

−2iνkcs + 2c2sknβ + c2sn
2β2

+
eikspy

2× (−2iνkcs + 2kc2s(nβ + ksp) + c2s(nβ + ksp)2)

+
e−ikspy

2× (−2iνkcs + 2kc2s(nβ − ksp) + c2s(nβ − ksp)2)

]
, (5.9)

The resonance between the IAW and the crossing envelope induces a beating between k and

ksp preventing the resonance of ω/k with cs. Hence, the bracket term in Eq. (5.9) is smaller

than f̃ at resonance (= 1/2iνkcs) that is to say smaller than the plane wave case. The effect

of the phase shift between the speckles further decreases the IAW amplitude compared to the

plane wave case.

5.1.2 Exchange calculation

The role of the beating waves on the energy exchange can be analysed perturbatively. The

wave coupling described by the system of Eqs. (4.31)-(4.32), can be simplified by introducing

Ã0 = Ã0
0 + δÃ0 and Ã1 = Ã0

1 + δÃ1 and rewrites, to leading order in δÃ0/1,

4ik0 ·∇δÃ0 = δÑe Ã
0
1 , (5.10)

4ik1 ·∇δÃ1 = δÑ⋆
e Ã

0
0 . (5.11)

Introducing I0,1 = |Ã0,1|2 and δI0,1 = Ã0,1δÃ
⋆
0,1 + c.c. , the previous set of equations recasts

as:

k0∇δI0 =
1

2
Im

[
δÑeÃ

0
1Ã

0⋆
0

]
, (5.12)
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In the asymptotic limit (t → ∞), only the driven waves remain and δÑdriven
e = δNdriven

e e−ik·r+iωt

leads to:

k0∇δI0 = γI00I
0
1 =

1

2
Im

[
δÑdriven

e Ã0
1Ã

0⋆
0

]
. (5.13)

As k0 · ∇ = k0 cos θ∂x + k0 sin θ∂y and δI0 only depends on y it comes

k0 sin θ

∫
dyδI0dy =

1

2

∫
Im

[
δÑdriven

e Ã0
1Ã

0⋆
0

]
. (5.14)

The calculation of Eq. (5.14) over a length L = Nλsp leads to:

k0 sin θ

∫ Nλsp/2

−Nλsp/2
dyδI0dy = Im

{
αa⋆0a1

2

∫ Nλsp/2

−Nλsp/2
dy

∑
n∈Z

Jn(π)e
inβy

(
1+

1

2
eikspy−1

2
e−ikspy

)
×
[
f̃(k + nβ) +

1

2
f̃(k + ksp + nβ)eikspy +

1

2
f̃(k − ksp + nβ)e−ikspy

]}
, (5.15)

where N is chosen large enough to compute an exchange including numerous different phase

shifts. The product between the terms into brackets and the terms into parenthesis is reduced

to only three terms, and it remains:

k0 sin θδI0 = Im

{
αa⋆0a1

2

∑
n∈Z

Jn(π)

∫ Nλsp/2

−Nλsp/2
dy

[
f̃(k + nβ) +

1

4
f̃(k + ksp + nβ) +

1

4
f̃(k − ksp + nβ)

]}
,

= Im

{
αa⋆0a1Nλsp

2

∑
n∈Z

Jn(π)×
[
f̃(k + nβ) +

1

4
f̃(k + ksp + nβ) +

1

4
f̃(k − ksp + nβ)

]}
,

(5.16)

which describes the exchange over the distance Nλsp. The normalized exchange after a char-

acteristic propagation length of λsp/ sin θ (corresponding to one SC) writes:

δI0
I0

=
λspα1

k0 sin θ
Im

{∑
n∈Z

Jn(π)×
[
f̃(k + nβ) +

1

4
f̃(k + ksp + nβ) +

1

4
f̃(k − ksp + nβ)

]}
,

(5.17)

where we defined

α1 = −Zne,0k
2

4m̃i
a1a

⋆
1 . (5.18)

The solution can also be written
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δI0 =
λsp

k0 sin θ
⟨γI00I01 ⟩y,ϕ , (5.19)

where ⟨ ⟩y,ϕ is the mean value along y (and along β for the phase shift case. The in-phase

case corresponds to ϕ = 0 so β = 0.) This equation describes the energy exchange between

the two beams in the perturbation limit. The phase change effect on the energy exchange can

be explored by comparing the value of δI0/I0 for different phase shifts. The dependence of

δI0/I0 on the Landau damping rate is shown in Fig. 5.2 (top). The model does not account

for the laser depletion, thus explaining the unrealistic values δI0/I0 > 1. First, the plane wave

case (black solid line) corresponds to the higher energy gain. Then, the intensity gain has been

calculated at resonance with or without phase shifts, in a stationary plasma. The latter has

also been estimated by performing an average over 200 phase shifts between two successive

SCs, ranging from 0 to π/2, generated with β ranging from 0 to ksp/12 (red dashed line).

The purpose of this averaging is to estimate the exchange rate for a weakly Landau-damped

wave that can cross several SCs and thus see a few different phase shifts. When all SCs are

in-phase (orange solid line), the energy exchange in the weakly-damped regime is reduced by

30% compared to the plane wave case. Due to the constructive interferences of the IAWs, the

in-phase case is an upper bound of the energy exchange compared to the out-phase cases. In

the worst scenario (limited to ∆ϕ = π/2 in our model), the intensity gain is reduced by a factor

∼ 6 compared to the in-phase case, and the maximum of the exchange value is not located

at the smallest damping value. Because the phase shift diminishes the amplitude of the IAW

owing to the destructive interference, a long damping distance (ν ≪ 1) reduces the exchange

compared to the ideal plane wave case [85]. The averaged phase shift case (red dashed line),

demonstrates a reduction by 65 % of the CBET. In the limit of large damping rates (here

ν > 0.1 kcs for ksp = 0.3k), the effect of the phase shift between SCs becomes negligible.

Indeed, in a strongly-damped regime, the IAWs are driven by the interference pattern located

at one SC. The asymptotic amplitude is thus roughly linked to the local field, averaged over a

damping distance. In a spectral point of view, the IAWs are not resonantly driven according to

Eq. (5.9). Yet, this asymptotic limit also depends on the ratio between the damping distance

and the interspeckle one, ν/kspcs. Figure 5.2 (bottom) shows the ratio between the averaged

phase shift case and the in-phase case at resonance (corresponding respectively to the red

dashed line and the solid dark orange line of the (top) pannel), at asymptotic time, versus the

distance between SC, for three different species. When ksp ≪ k, the envelope is infinite so no

phase-shit effect exists. For a larger value of ksp (or smaller speckles), the SC are closer so the
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Figure 5.2: (top)log-log plots of δI0/I0 for the plane wave, the in-phase and phase
shifted speckles cases versus the ratio between the speckle length and the Landau
damping length, at resonance ω = kcs. The out-of-phase case, δI0/I0 for ∆ϕ, is a
double averaging along y and for a phase varying from 0 to π/2 in one period λsp.
The latter average was performed along β generated with β ranging from 0 to ksp/12.
The parameters are ksp = 0.3 k with ν varying between 0.0041ω and 0.2ω. (bottom)
Ratio of δI0/I0 between the wavelength shift case with averaged phase shift and the
wavelength shift case without phase shift versus ksp/k. The plasma Z=10 A=160
corresponds to the plasma parameters of this section. The carbon (C) and plastic
(CH) plasma parameters are similar to those of the PIC simulations described in
the next section.

IAWs undergo more phase-shits. This effect is even more important as the damping is weak

because the number of crossed SC increases. In conclusion, Fig. 5.2 shows that the difference
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between the cases with and without phase shift depends on both the damping distance and the

inter-speckles distance.

5.2 Cross-Beam Energy Transfer simulations

5.2.1 Parameters

In this section we present Calder PIC simulations [56], on simple physics configurations, in order

to illustrate the influence of the speckle phase differences on the resulting energy exchange.

Furthermore, these linear models neglect ion trapping and heating due to collisions.

Numerical parameters

The box size is Lx × Ly = 8000× 3200 c2 ω−2
L , with a mesh size of 0.44 × 0.44 c2 ω−2

L , so as

to be close to the Debye length. Cells are filled by 20 macro-ions and 20 macro-electrons. The

time step is 0.3ω−1
L . Boundary conditions are reflective for the plasma and absorbing for the

fields. A 4th-order alternating interpolation scheme [103] has been used together with a high

mode current filtering.

Plasma parameters

The simulations are performed in a homogeneous and non collisional plasma. The electron

density is equal to 0.04nc where nc is the critical density. The other plasma parameters have

been chosen so as to obtain a long Landau-damping distance, covering several SCs. For the

Landau damping rate, the expression

ν =
√
π|k|c4s

[
e−c2smi/2Ti

(2Ti/mi)3/2
+

mi

Z(2Te)3/2

]
, (5.20)

can be used for a single ion species, as explained in 4.1.1. With cs =
√

(ZTe + 3Ti)/mi, this

expression shows that a weakly-damped IAW is characterized by cs/vTi ≫ 1, corresponding to

ZTe ≫ Ti . This typical situation corresponds to a gold plasma in ICF condition where the

ionization state is Z⋆ ≈ 50, A = 197, Te ∼ 4−5 keV and Ti ∼ 1−2 keV [114, 71] although other

hohlraum materials have been studied [83, 25, 72]. Alas, the numerical heating which varies as

95



Z2, imposes us to use a smaller Z. The plasma is composed of ion with A = 160, Z = 10, and

ion and electron temperatures of Ti = 1 keV and Te = 4 keV, respectively. Moreover, 3 filters

have been applied to smooth the current deposited by the macro-particles [113] to completely

eliminate the heating. The damping characteristic distance is cs/ν = 646 c ω−1
L (∼100 µm for

a wavelength of 1µm), a value much larger than the typical distance between the SCs. Landau

damping distances estimates based on the electronic and ionic temperatures from different

studies [79, 119] provide values between 225 c ω−1
L and 500 c ω−1

L . It is worth pointing out

that collisions have been neglected to avoid the plasma heating by the laser light that would

otherwise shift the resonance condition during the simulation. Due to the small resonance

width, this effect would affect the energy exchange during the simulations by changing the

resonance condition. In Section 4.1.2, we saw that collisional damping can be comparable or

even higher than the Landau damping for high Z plasma such as gold, but becomes marginal

for low Z plasma as the one chosen in this chapter. Moreover, the damping distance covers

several SCs and does not significantly affect the role of the speckle phase in modifying the

energy exchange rate.

Laser parameters

Four Gaussian beams intersect four other Gaussian beams at an angle of 20◦. This configuration

mimics 4 speckles of a beam crossing 4 speckles of another beam. All beams are linearly

polarized, with their electric fields lying in the (x-y) simulation plane. The laser pulses propagate

from the left to the right. The temporal evolution is a ramp of 1000ω−1
L followed by a plateau

until the end of the simulation. The focal spots of the eight speckles are located in the middle

of the simulation box and their intensity is I = 8.8 × 1013 Wcm−2 (a0 = 0.008) with equal

beam waists at 1/e of w = 70 c ω−1
L (11µm for λ = 1µm) at FWHM. All speckles are equally

spaced by ∆y = 150 c ω−1
L . In the following, the group of 4 speckles is referred to as the beam.

The field of each Gaussian speckle is defined in a theta-shifted plane with respect to y at focal

spot. The field in the theta-shifted plane corresponds to the 2D Gaussian beam at focal spot

as described in Eq. 3.32, with a phase shift term eiϕ

Esp = E0

√
w0

w(x)
e−i 1

2
arctanx/xre

ik0y
2

2R(x) e
− y2

w(x)2 eiϕ . (5.21)

We recall that w0 is the beam waist, xr =
πw2

0
λ0

is the Rayleigh length, and E0 the amplitude at

the beam center. The following notations are used w(x) = w0

√
1 + x2

x2
r
, R(x) = x+ x2

r
x . The
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Figure 5.3: Intensity profile normalized to 2.74 × 1018/λ2
µm W cm−2 at time 3.4 ×

105 ω−1
L for the wavelength shift case with phase shift.

frequency shift is chosen so as to match the resonance condition ω = kcs = 1.81 × 10−4 ωL,

the lower beams having the lowest frequency (= 1 − 1.81 × 10−4) . For the phase shift case,

the phases are (bottum up) ϕ = 0, 0.4, 4.5, 0.2 for the upper beams (y > 0) and 1, 0.1, 0.9,

5 for the lower ones (y < 0) and ϕ = 0 for all beams for the in-phase case.
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Figure 5.4: Difference between the power per unit length of the red-shifted and the
blue-shifted beam normalized to the initial power versus time. Wavelength shift case
without phase shift in orange solid line, with phase shift in red dashed line. The
plane wave case, in dark solid line, is in fact the plasma flow case. The equivalence
between those cases is demonstrated in Chapter 6.

5.2.2 Simulations results

Figure 5.3 is an intensity map showing the configuration of the simulations. Speckles enter

the simulation box through the left side with the same energy, and escape through the right

side. The Exchange occurs at each of the sixteen SC and the energy gain of the red-shifted

beam, escaping through the upper right boundary, is discernible. To quantitatively compare the

power exchange rate between cases with and without phase-shift, the exchanged powers per

unit length are plotted in Fig. 5.4. All curves represent the power per unit length of the four

escaping red-shifted speckles minus the power of the four blue-shifted speckles, normalized to

the initial power per unit length. The power of the red-shifted / blue shifted beam has been

obtained by integrating the Poynting vector at xmax over the upper (y > 0) / lower (y < 0)

half of the simulation box shown in Fig. 5.3. Black line represents the plane wave case where

the exchange reaches ∼ 70%. The orange line represents the in-phase SC case and the red

dotted line the phase shifted SC case.

Both simulations exhibit the same tendency at early times. At late times, the in-phase

case leads to more energy exchange (55%) than the out-of-phase case (35%). Note that the

oscillations persist due to the long transient (the asymptotic regime is not reached at t =
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(a) (b)

(c)

Figure 5.5: (y-t) density map for the in-phase (a) and out-of-phase (b) cases. (c)
Envelope amplitude corresponding to the framed areas in panels (a) and (b).

3.4× 105ω−1
L ). The temporal difference between the two cases is attributed to the destructive

interferences of the IAWs propagating from one SC to another. This effect is evidenced, shown

by the (y-t) map of the ion density at the middle of the simulation (x = 1750 cω−1
L ), presented

in Fig. 5.5 (a) and (b). The different temporal behaviors of the power exchange start as soon

as the IAW generated at one SC has reached another crossing, confirming that both situations

are equivalent before IAWs interfere and phase effects occur. Since the speckles centers are

spaced by ∆y = 150 cω−1
L , the rising front of the IAW, generated roughly at 1/e of the speckle

maximum intensity, reaches the next SC in a time of ∼ 80 cω−1
L /cs = 1.5 × 105 ω−1

L . This
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value is consistent with Fig. 5.4 where the difference between in-phase and out-of-phase cases

appears at t > 1.5× 105 ω−1
L (80 ps). To further illustrate the evolution of the ion grating due

to the IAWs propagation, Fig. 5.5 (c) shows the amplitude of an IAW following its trajectory

at the sound speed [ne(y − cst, t, t0 = 0, y0 = 100)]. In the in-phase case (∆ϕ = 0), the IAW

envelope reaches higher values owing to the constructive interference compared to the out-of-

phase case. These IAWs interferences may explain the overestimate of the energy exchange by

plane wave models.

To conclude, we have investigated the exchange between two laser beams with different

frequencies in the lab frame, by means of kinetic simulations and a linear model. The random

phase shift between the interference gratings, situated at each crossing speckles, is an important

factor of energy exchange inhibition. Indeed, the driven IAWs issued from each crossing speckles,

can interfere destructively, thereby reducing the light scattering by the ion gratings. This

effect is particularly efficient in weakly damped plasmas where the IAWs can travel through

many speckles. In strong Landau damped plasma, such as plastic CH, an inhibition of CBET

persists, with values around 10 to 30 % compared to the plane wave limit. When the damping

distance is comparable with the speckle transverse size, the ponderomotive force producing the

moving grating in the plasma reference frame is averaged over the speckle, thereby reducing

the amplitude of the driven IAW. These findings are supported by a linear model that describes

the IAW response due to out-of-phase speckles, derived in a homogeneous plasmas and valid

from weak to highly Landau-damped plasmas. Additionally, a substantial modification of the

IAW could question the validity of plane wave-based non-linear models, regarding RPP beams.

These results can partly explain why the experimental exchange is often over-estimated in the

indirect-drive approach, when using different laser frequencies.
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Chapter 6
Difference between a plasma flow and a

wavelength shift
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In virtue of the resonance condition, two laser beams with a matching frequency shift,

crossing in a stationary plasma should lead to the same amount of energy exchange, as two

laser beams without frequency shift, crossing in a sonic plasma. Most CBET models [107, 67,

16, 15, 61, 106, 27, 17] assume this equivalence as they are built from a nearly plane wave

assumption. This chapter aims at demonstrating that this assertion is false due to the speckle

structure of the laser intensity profile. Within the plane wave approximation, equal frequency

laser beams crossing in a sonic plasma (k̂ · vd = −cs) exchange the same amount of energy as

two laser beams with frequency difference ω0 − ω1 = |k0 − k1|cs, in a plasma with no flow.

Nevertheless, there is an inherent difference between these two configurations. In the reference

frame of a moving plasma, the envelope of two crossing speckles, together with the interference

grating, are moving at vd. In a stationary plasma, the wavelength shift leads to an interference

grating moving at ω/|k| whereas the SC envelope remains motionless. For infinite laser envelope

or when the Landau damping distance is small compared to the speckle waist, both situations

become equivalent. Yet, in most ICF plasmas, these two systems are distinct because the IAWs

are not stimulated by the same potential well. In the present chapter, we demonstrate that the

speckle structure questions the relevance of the plane wave approximation in the wavelength

shift case, and can explain the disagreement between models and experimental results involving

low to high Z materials, before accounting for ion trapping [69, 118, 35] or beam deflection and

self-focusing [89]. The speckle structure may reduce CBET by about 30% in strongly damped

CH plasmas, and up to 50-70% in high Z silicon ablators [34] or in the gold bubble in low gas

filled hohlraum [47].

In Section 6.1, we present a linear model to estimate the plasma parameters for which

the speckle structure cannot be neglected, supported by subsequent simulations. Then, 2D

Calder [56] PIC simulations describing the exchange between two beams, each composed of

four speckles in a weakly damped plasma are shown in Section 6.2. Finally, 6.3 presents Smilei

simulations with a realistic RPP configuration. For both section 6.2 and 6.3, we consider

situations with and without plasma flow, and when CBET is at, or out of, resonance.
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6.1 Cross-Beam Energy Transfer Random Phase Plate

model

6.1.1 Calculation with speckles of infinite length

Wave propagation

In the laboratory reference frame (where we recall that vd < 0, as explained in 4.3.1), the wave

is stimulated by the field resulting from the beating between the two crossing beams along y

according to

[(∂t − vd∂y)
2 + 2ν(∂t − vd∂y)− c2s∂

2
y ]δNe = −Zne,0|k|2

2mi
A0A

⋆
1 , (6.1)

where the laser fields A0 and A⋆
1 can be calculated considering the problem geometry shown in

Figure. 6.1. We recall Eq. (3.63), written hereafter for N + 1 ≃ N ≫ 1:

A = aeik0·r−iωt 1

N

kmax∑
k⊥=−kmax

eiφk⊥eik
⊥·r . (6.2)

Here, the calculation is centered at focal spot considering the focal plane is located at x = 0.

Then, applying a rotation of ±θ for each beam

A0 =
a0
N

∑
k⊥1

e−iω0teix(k01 cos θ−k⊥1 sin θ)eiy(k01 sin θ+k⊥1 cos θ)eiφ1(k⊥1 ) ,

A1 =
a1
N

∑
k⊥2

e−iω1teix(k02 cos θ+k⊥2 sin θ)eiy(−k02 sin θ+k⊥2 cos θ)eiφ2(k⊥2 ) . (6.3)
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Figure 6.1: RPP wave vector scheme

The ponderomotive beat wave thus writes

A0A
⋆
1 =

1

N2
(a0

∑
k⊥1

e−iω0teix(k01 cos θ−k⊥1 sin θ)eiy(k01 sin θ+k⊥1 cos θ)eiφ1(k⊥1 ))

× (a1
∑
k⊥2

e−iω1teix(k02 cos θ+k⊥2 sin θ)eiy(−k02 sin θ+k⊥2 cos θ)eiφ2(k⊥2 ))⋆ ,

= eix cos θ(k01−k02)eiy sin θ(k01+k02)e−iω0t+iω1ta0a
⋆
1

N2

∑
k⊥1

∑
k⊥2

e−ix sin θ(k⊥1 +k⊥2 )eiy(cos θ(k
⊥
1 −k⊥2 ))ei(φ1(k⊥1 )−φ2(k⊥2 )) .

(6.4)

From this expression, with ω = ω0 − ω1 and k = (k01 + k02) sin θ ≃ 2k0 sin θ, the envelope of

the beat wave, Ã0Ã
⋆
1 = A0A

⋆
1e

−iky+iωt, can be deduced

Ã0Ã
⋆
1 = eix cos θ(k01−k02)a0a

⋆
1

N2

∑
k⊥1

∑
k⊥2

e−ix sin θ(k⊥1 +k⊥2 )eiy(cos θ(k
⊥
1 −k⊥2 ))ei(φ1(k⊥1 )−φ2(k⊥2 )) .

(6.5)
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The wave propagation in the laboratory reference frame recasts

[(∂t − vd∂y)
2 + 2ν(∂t − vd∂y)− c2s∂

2
y ]δNe

= 2αeiky−iωteix cos θ(k01−k02) 1

N2

∑
k⊥1

∑
k⊥2

e−ix sin θ(k⊥1 +k⊥2 )eiy(cos θ(k
⊥
1 −k⊥2 ))ei(φ1(k⊥1 )−φ2(k⊥2 )) ,

(6.6)

where α is defined in Eq. (4.41). This equation is resolved applying a spatial FT along the

y axis, defined as f =
∫
f(y)e−ikydy. Equation (6.6), thus becomes an ordinary differential

equation:

[∂2
t + (2ν − 2ikvd)∂t − 2iνvdk − (v2d − c2s)k

2
]δN e =

2αe−iωt 1

N2
eix cos θ(k01−k02)

∑
k⊥1

∑
k⊥2

e−ix sin θ(k⊥1 +k⊥2 )δ(k−k−cos θ(k⊥1 −k⊥2 ))e
i(φ1(k⊥1 )−φ2(k⊥2 )) ,

(6.7)

with the particular solution:

δNe
PS

=
2α

N2
e−iωteix cos θ(k01−k02)

×
∑
k⊥1

∑
k⊥2

e−ix sin θ(k⊥1 +k⊥2 )ei(φ1(k⊥1 )−φ2(k⊥2 )) δ(k − k − cos θ(k⊥1 − k⊥2 ))

−(ω + kvd)2 − 2iν(ω + kvd) + c2sk
2 . (6.8)

Taking N e|t=0
= 0 and ∂tδN e|t=0

= 0 as initial conditions, it comes

δNe =
2α

N2
e−iωteix cos θ(k01−k02)

∑
k⊥1

∑
k⊥2

e−ix sin θ(k⊥1 +k⊥2 )ei(φ1(k⊥1 )−φ2(k⊥2 ))δ(k−k−cos θ(k⊥1 −k⊥2 ))f(k) ,

(6.9)

where we recall Eq. (4.37)

f(K) =
1

−(ω +Kvd)2 − 2iν(ω +Kvd) + c2sK
2

×
(
1 +

iω + λ(K)−
λ(K)+ − λ(K)−

eλ(K)+t−iωt +
iω + λ(K)+

λ(K)+ − λ(K)−
eλ(K)−t−iωt

)
, (6.10)
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and

λ±(K) = −ν + iKvd∥ ± i
√
c2sK

2 − ν2 . (6.11)

Applying the inverse FT, we obtain the acoustic wave:

δNe =
2α

N2
ei(ky−ωt)eix cos θ(k01−k02)

×
∑
k⊥1

∑
k⊥2

eiy cos θ(k
⊥
1 −k⊥2 )e−ix sin θ(k⊥1 +k⊥2 )ei(φ1(k⊥1 )−φ2(k⊥2 ))f(k + cos θ(k⊥1 − k⊥2 )) .

(6.12)

Let δNdriven
e be the asymptotic solution when t −→ ∞ , in which case eλ(k)±t −→ 0 and

δÑdriven
e = δNdriven

e e−(iky−iωt) is the wave envelope,

δÑdriven
e =

2α

N2
eix cos θ(k01−k02)

×
∑
k⊥1

∑
k⊥2

eiy cos θ(k
⊥
1 −k⊥2 )e−ix sin θ(k⊥1 +k⊥2 )ei(φ1(k⊥1 )−φ2(k⊥2 )) f̃(k + cos θ(k⊥1 − k⊥2 )) ,

(6.13)

where we recall Eq. (4.40)

f̃(K) =
1

−(ω +Kvd)2 − 2iν(ω +Kvd) + c2sK
2
. (6.14)
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Energy exchange

The wave coupling is analyzed perturbatively as in Chapter 5 and leads to Eq. (5.13):

k01∇ · δI0 ≃ k0∂rδI0 =
1

2
Im

{
δÑdriven

e Ã0
1Ã

0⋆
0

}
,

= Im

{
αa⋆0a1
N4

∑
k⊥1

∑
k⊥2

∑
k⊥3

∑
k⊥4

e−ix sin θ(k⊥1 +k⊥2 −k⊥3 −k⊥4 )eiy cos θ(k
⊥
1 −k⊥2 −k⊥3 +k⊥4 )

× ei(φ1(k⊥1 )−φ2(k⊥2 )−φ1(k⊥3 )+φ2(k⊥4 ))f̃(k + (k⊥1 − k⊥2 ) cos θ)

}
. (6.15)

To resolve this equation, coordinates are changed using x = x0 + r cos θ and y = y0 + r sin θ .

Coordinates x0 = 0 and y0 are chosen so as to be on a speckle (i.e. intensity maximum of

I0+I1, without considering the grating). When y0 is not chosen conveniently, the characteristic

may be on the area between two speckles. In this case, the intensity variation observed is not

relevant and the deduced δI0 can be considered as a noise compared to CBET.

k0∂rδI0 =

Im

{
αa⋆0a1
N4

∑
k⊥1

∑
k⊥2

∑
k⊥3

∑
k⊥4

e−ir cos θ sin θ(k⊥1 +k⊥2 −k⊥3 −k⊥4 )ei cos θ(r sin θ+y0)(k⊥1 −k⊥2 −k⊥3 +k⊥4 )

× ei(φ1(k⊥1 )−φ2(k⊥2 )−φ1(k⊥3 )+φ2(k⊥4 ))f̃(k + (k⊥1 − k⊥2 ) cos θ)

}
,

=⇒ δI0 =
αa⋆0a1
k0N4

× Im

{ ∑
k⊥1 ,k⊥2 ,k⊥3 ,k⊥4

ei(φ1(k⊥1 )−φ2(k⊥2 )−φ1(k⊥3 )+φ2(k⊥4 ))eiy0 cos θ(k
⊥
1 −k⊥2 −k⊥3 +k⊥4 )

× f̃(k + (k⊥1 − k⊥2 ) cos θ)

∫ R/2

−R/2
e2ir cos θ sin θ(−k⊥2 +k⊥4 )dr

}
(6.16)

The integration over the width L of the beam corresponds to r varying from −L/2 sin 2θ to
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Figure 6.2: crossing zone geometry

L/2 sin 2θ according to fig. 6.2:

δI0 =
αa⋆0a1
k0N4

× Im

{ ∑
k⊥1 ,k⊥2 ,k⊥3 ,k⊥4

ei(φ1(k⊥1 )−φ2(k⊥2 )−φ1(k⊥3 )+φ2(k⊥4 ))eiy0 cos θ(k
⊥
1 −k⊥2 −k⊥3 +k⊥4 )

× f̃(k + (k⊥1 − k⊥2 ) cos θ)

∫ L/2 sin 2θ

−L/2 sin 2θ
e2ir cos θ sin θ(−k⊥2 +k⊥4 )dr

}
,

=
αa⋆0a1
k0N4

× Im

{ ∑
k⊥1 ,k⊥2 ,k⊥3 ,k⊥4

ei(φ1(k⊥1 )−φ2(k⊥2 )−φ1(k⊥3 )+φ2(k⊥4 ))eiy0 cos θ(k
⊥
1 −k⊥2 −k⊥3 +k⊥4 )

× f̃(k + (k⊥1 − k⊥2 ) cos θ) sinc
[L
2
(−k⊥2 + k⊥4 )

] L

sin 2θ

}
, (6.17)

=⇒ δI0
I0

=
α1L

k0N2 sin 2θ
× Im

{ ∑
k⊥1 ,k⊥2 ,k⊥3 ,k⊥4

ei(φ1(k⊥1 )−φ2(k⊥2 )−φ1(k⊥3 )+φ2(k⊥4 ))

×eiy0 cos θ(k
⊥
1 −k⊥2 −k⊥3 +k⊥4 ) × f̃(k + (k⊥1 − k⊥2 ) cos θ) sinc

L

2
(−k⊥2 + k⊥4 )

}
, (6.18)

where α1 = −Zne,0k2

4m̃i

a1a⋆1
N = −Zne,0k2

4m̃i
I1.
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(a)

(b) y0 = 0 (c) y0 = 81

(d) y0 = 110 (e) y0 = 191

Figure 6.3: (a) Speckles intensity envelope (I0 + I1). The dashed lines represent
the characteristics issued from different y0 represented by red cross and used to
calculate the exchange in the other panels. (b)-(f) Exchange versus the distance
from the resonance for five different characteristics, for the wavelength shift case
and N=6.

To illustrate the importance of the initial condition, Fig. 6.3 shows the intensity exchange

versus the resonance for different y0. When the latter is located on a speckle of the red-
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shifted beam, the energy exchange is only positive. When y0 lies in an intensity minimum,

the amplitude of the exchange is almost ten times smaller, with sometimes anti-stokes energy

exchange. The exchange rate along the speckle remains low and these curves do not seem

to allow a realistic quantitative estimation of the exchange. We introduce the average of the

energy exchange issued from the crossing of two RPP beams by performing an average over

φ. This definition is equivalent to having many realisations of CBET between RPP beams

with different phase plates. As the exchange in the regions without speckles is negligible, the

main contribution in this average comes from the SC. As φ1(k
⊥
1 ) is correlated to φ1(k

⊥
3 ), and

φ2(k
⊥
2 ) to φ2(k

⊥
4 ), Eq. (6.18) reduces to

⟨δI0⟩φ
I0

=
α1L

k0N2 sin 2θ
Im

{ ∑
k⊥1 ,k⊥2 ,k⊥3 ,k⊥4

δ(k⊥1 − k⊥3 )δ(k
⊥
2 − k⊥4 )e

iy0 cos θ(k⊥1 −k⊥2 −k⊥3 +k⊥4 )

× f̃(k + (k⊥1 − k⊥2 ) cos θ) sinc
L

2
(−k⊥2 + k⊥4 )

}
, (6.19)

=⇒ ⟨δI0⟩φ
I0

=
α1L

k0N2 sin 2θ
× Im

 ∑
k⊥1 ,k⊥2

f̃(k + (k⊥1 − k⊥2 ) cos θ)

 , (6.20)

where δ is the Kronecker delta. The exchange mainly depends on the crossing zone size,

which changes with the crossing angle. Except for very small (1/f ≃ 0.5◦) or very large

(180 − 1/f ≃ 179.5◦) angles, the speckles Rayleigh length exceeds the size of the crossing

zone. Moreover, the speckles have a high probability to intersect in 2D so diffraction should

not affect the exchange. The calculation is made bellow to verify this assumption.
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6.1.2 Calculation with finite length speckles

Wave propagation

The finite length of the speckles stems from diffraction and is described by formula Eq. (3.61),

written here with the sum over n :

A = ae−iω0t 1

N

N/2∑
n=−N/2

eik0 cos θnx+ik0 sin θnyeiφn . (6.21)

As in the previous section, the calculation is centered at focal spot considering x ≃ 0, and the

calculation of the IAW response and CBET is similar. First, applying a rotation of +θ to A0

and −θ to A1 allows to express the beating wave term as:

A0 =
a0
N

e−iω1t

N/2∑
n1=−N/2

eik0[cos (θ+θn1)x+sin(θ+θn1)y]eiφ1(n1) ,

A1 =
a1
N

e−iω2t

N/2∑
n2=−N/2

eik0[cos (−θ+θn2)x+sin (−θ+θn2)y]eiφ2(n2) ,

=⇒ A0A
⋆
1 =

a0a
⋆
1

N2
e−iωt

N/2∑
n1=−N/2

N/2∑
n2=−N/2

eik0x[cos (θ+θn1)−cos (−θ+θn2)]

× eik0y[sin (θ+θn1)−sin (−θ+θn2)]eiφ1(n1)−iφ2(n2) . (6.22)

All phase plate elements are here statistically independent, including between the two beams

so that the following average will be applied,

⟨eiφu1 (n1)−iφu2(n2)⟩ = δ(u1 − u2)δ(n1 − n2) . (6.23)
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The resolution of the wave equation,

[
(∂t + vd∂y)

2 + 2ν(∂t + vd∂y)− c2s∂
2
y

]
δNe =

2α

N2
e−iωt

∑
n1,n2

eik0x[cos (θ+θn1)−cos (−θ+θn2)]eik0y[sin (θ+θn1)−sin (−θ+θn2)]eiφ1(n1)−iφ2(n2) ,

(6.24)

is similar to the previous section and leads to

δNe =
2α

N2
e−iωt

∑
n1,n2

eik0x[cos (θ+θn1)−cos (−θ+θn2)]eik0y[sin (θ+θn1)−sin (−θ+θn2)]

× eiφ1(n1)−iφ2(n2)f(k0 sin (θ + θn1)− k0 sin (−θ + θn2)) . (6.25)

For long times, the remaining driven solution is

δNdriven
e =

2α

N2
e−iωt

∑
n1,n2

eik0x[cos (θ+θn1)−cos (−θ+θn2)]eik0y[sin (θ+θn1)−sin (−θ+θn2)]

× eiφ1(n1)−iφ2(n2)f̃(k0 sin (θ + θn1)− k0 sin (−θ + θn2)) . (6.26)

Energy exchange

Starting from Eq. (5.12), we obtain

k0 · ∇δI0
I0

= Im

{
α1

N2

∑
n1,n2,n3,n4

eik0xΘnxeik0yΘnyf(k0 sin (θ + θn1)− k0 sin (−θ + θn2))

× ei[φ1(n1)−φ2(n2)−φ1(n3)+φ2(n4)]

}
, (6.27)
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where

Θnx = cos (θ + θn1)− cos (−θ + θn2) − cos (θ + θn3) + cos (−θ + θn4) ,

Θny = sin (θ + θn1)− sin (−θ + θn2) − sin (θ + θn3) + sin (−θ + θn4) . (6.28)

The resolution, similar to the previous section, gives

δI0
I0

=
α1L

k0N2 sin 2θ
Im

{ ∑
n1,n2,n3,n4

eik0y0Θnyf(k0 sin (θ + θn1)− k0 sin (−θ + θn2))

× ei[φ1(n1)−φ2(n2)−φ1(n3)+φ2(n4)] × sinc (k0 cos θΘnx + k0 sin θΘny)

}
. (6.29)

The average value over φ is

⟨δI0⟩φ
I0

=
α1L

k0N2 sin 2θ
Im

{∑
n1,n2

f(k0 sin (θ + θn1)− k0 sin (−θ + θn2))

}
. (6.30)

6.1.3 Comparison between a plane wave, a plasma flow, and

a wavelength shift case

We recall Eq. (6.13) :

δNdriven
e =

2α

N2
ei(ky−ωt)eix cos θ(k01−k02)

×
∑
k⊥1

∑
k⊥2

eiy cos θ(k
⊥
1 −k⊥2 )e−ix sin θ(k⊥1 +k⊥2 )ei(φ1(k⊥1 )−φ2(k⊥2 )) f̃(k + cos θ(k⊥1 − k⊥2 )) ,
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where f̃(K) at resonance and in the plasma flow case (ω = 0 , vd = −cs) is

f̃(K) =
1

2iνKcs
, (6.31)

=
1

2iνcsk(1 +
1
k cos θ(k

⊥
1 − k⊥2 ))

, (6.32)

≃ 1

2iνcsk
. (6.33)

Thus, the driven wave can be expressed as:

δNdriven
e =

1

iνcsk

α

N2
eikyeix cos θ(k01−k02)

×
∑
k⊥1

∑
k⊥2

eiy cos θ·(k
⊥
1 −k⊥2 )e−ix sin θ(k⊥1 +k⊥2 )ei(φ1(k⊥1 )−φ2(k⊥2 )) ,

=
α

iνcsk
eikx−iωt Ã0Ã

⋆
1

I0
, (6.34)

which corresponds to the plane wave solution Eq. (4.38) at resonance multiplied by the normal-

ized crossing envelope amplitude Ã0Ã
⋆
1/I0. This result shows that the amplitude of the wave

only depends on the local beating wave as for a plane wave situation. Indeed, when ω = 0, the

interference pattern is stationary with respect to the beam envelope (or speckles). There is no

travelling wave, so no interference between waves issued from different crossings. In the same

way, this equivalence can be demonstrated in the case with diffraction. Recalling Eq. (6.26)

δNdriven
e =

2α

N2
e−iωt

∑
n1,n2

eik0x[cos (θ+θn1)−cos (−θ+θn2)]eik0y[sin (θ+θn1)−sin (−θ+θn2)]

× eiφ1(n1)−iφ2(n2)f̃(k0 sin (θ + θn1)− k0 sin (−θ + θn2)) , (6.35)

where f̃(k0 sin (θ + θn1)− k0 sin (−θ + θn2)) at resonance and in the plasma flow case is

f̃(k0 sin (θ + θn1)− k0 sin (−θ + θn2)) =
1

2iνcsk0(sin(θ + θn1)− sin (−θ + θn2))
. (6.36)
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When the angle between the beams is larger than the RPP aperture (θ ≫ θmax = k0/2f#),

the previous expression becomes

f̃(k0 sin (θ + θn1)− k0 sin (−θ + θn2)) ≃
1

2iνcs2k0 sin θ
, (6.37)

=
1

2iνkcs
. (6.38)

The equivalence between the plasma flow and the plane wave case has been theoretically

demonstrated in the case with speckles of finite length. In the following, we will now refer

to the plasma flow case as the plane wave case.

In the wavelength shift case at resonance (ω = kcs, vd = 0),

f̃(k + cos θ(k⊥1 − k⊥2 )) =
1

−2iνω + cos2 θ(k⊥1 − k⊥2 )
2c2s

. (6.39)

In this case, the resonance between the IAWs and the crossing envelopes induces a beating

between k and the different k⊥ contributions preventing the resonance of ω/k with cs. This

effect leads to a smaller wave amplitude. In the same way for the case with diffraction,

f̃(k0 sin (θ + θn1)−k0 sin (−θ + θn2)) =
1

−ω2 − 2iνω +
(
sin (θ + θn1)− sin (−θ + θn2)

)2
k20c

2
s

,

=
1

−ω2 − 2iνω +
(
sin θ(cos θn1 + cos θn2) + cos θ(sin θn1 − sin θn2)

)2
k20c

2
s

. (6.40)

Considering the RPP aperture is smal (θmax = k0/2f# ≪ 1),

f̃(k0 sin (θ + θn1)−k0 sin (−θ + θn2)) =
1

−ω2 − 2iνω + 2 sin2 θk20c
2
s + cos2 θ(sin θn1 − sin θn2)

2k20c
2
s

,

=
1

−2iνω + cos2 θ(sin θn1 − sin θn2)
2k20c

2
s

. (6.41)

As in the case without diffraction, the resonance between the IAWs and the crossing envelopes

leads to a smaller wave amplitude.
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Effect of the damping rate on the energy exchange

Fig. 6.4 (top) exhibits the ratio between the wavelength shift case and the plane wave case

versus the Landau damping rate. The energy exchange is calculated at resonance, in the

asymptotic regime, for different numbers of phase plate elements.

Figure 6.4: (top) Semi-log plots of the resonant ⟨δI0⟩φ calculated with Eq. (6.20)
in the wavelength shift case (ω = kcs) normalized to the plasma flow case (vd = cs)
against the damping rate, for a crossing angle of 24◦. (bottom) Same ratio, in
a linear scale, against the crossing half-angle (varying from 12◦ to 78◦) and the
damping rate, for N=6.
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The laser amplitudes are a0 = 0.004, the half-angle of the (top) panel is 12◦, the plasma

density is 0.04, Ti varies from 0.5 to 1 keV and Te from 2 to 3 keV. These parameters will match

the ones chosen in the simulation of Section 6.3. The laser amplitudes, angles, and the plasma

density and temperatures match those of the simulations. The damping is varied to illustrate

the different interaction regimes. The order of magnitude of this parameter is indicated for a

few plasmas relevant to ICF such as the gold bubble in indirect drive configuration, the CH

with NIF parameters, the CH in reduced scale facilities such as Omega, carbon, helium and

the higher Z ablators silicon and beryllium [26, 34]. The range of the damping rates includes

the effect of electron-ion and ion-ion collisions, as explained in Section 4.1.2. For Au (Si),

the plasma collisionality may increase the damping rate up to ∼ 0.05 (∼ 0.03) depending on

the cone angle and local plasma parameters. The damping rate was also calculated for CH4,

and the value is found to be identical as for CH, regardless of the parameters, so it is not

written on 6.4 (top). In the weakly-damped regime, for gold, carbon or silicon plasmas, a

decrease of more than 80% of the exchange is observed for the wavelength shift case compared

to the plane wave case. Because the damping distance is greater than the distance between

the crossed speckles, the driven wave with a frequency shift is substantially reduced due to

destructive interferences as demonstrated in Chapter 5. For intermediate damping rates, as

for beryllium plasmas, the difference persists. For strong damping rates, as for He and CH

plasmas, a difference of ≈ 25% (indirect drive) and 50% (direct drive) remains. Even though

the damping prevents IAWs from interacting, the damping distance is comparable to the speckle

size, so the driven IAW still differs from the plane wave case. Even for very large damping rates

(> 0.2), all considered situations are not equivalent, hence demonstrating the invalidity of the

plane wave approximation. Figure 6.4 also exhibits the ratio between the wavelength shift case

and the plane wave case versus the crossing half-angle. The energy exchange is calculated at

resonance, in the asymptotic regime, for six phase plate elements. θ is varied between 12◦ and

90 − 12◦. We recall that k = 2k0 sin θ. This dependence on θ implies that for a constant

value of ν/kcs, both k and ν are varying with θ. The ratio gets closer to one, i.e. cases get

comparable, as the angle is increased. Indeed, the damping rate, ∝ sin θ, increases with the

angle. For this reason, discrepancy between cases fades away when θ is increased. As argued

in Section 6.1.1, an angle close to 0 or 180 will lead to a great increase of the crossing zone

and therefore of the exchange.

117



Spectrum of the resonance condition

(a) Carbon, N=6 (b) Carbon, N=40

(c) CH, N=6 (d) CH, N=40

Figure 6.5: Amplitude of ⟨δI0/I0⟩φ over a distance of 2π6f#/ sin 2θ versus the de-
viation to resonance for plasma flow case (red curves) and wavelength shift cases
(cyan curves) with diffraction (dotted lines) and without (plain lines) for the carbon
and the CH, for 6 or 40 elements of the phase plate.

Figure 6.5 illustrates the dependence of ⟨δI0/I0⟩φ on (ω/k−vd)/cs that is to say the deviation

from the resonance. ⟨δI0/I0⟩φ represents δI0/I0 averaged over φ and calculated over a distance

of 2π6f#/ sin 2θ. As the model neglects the beam depletion, the amount of exchanged power

is proportional to the distance along which the exchange is computed. As a result, the exchange

for a beam passing through a N=40 elements RPP exhibits almost seven times more exchange

than a N=6 elements RPP. To properly compare different cases, the exchange is computed

along the same distance regardless the RPP elements number. The latter is fixed to L =

2π6f#/ sin 2θ, corresponding to the beam length of the forthcoming simulations. The cases

represented are the plasma flow (red) and the wavelength shift (cyan), for Carbon (a), (b)

and CH (c), (d). Calculations are performed for 6 elements of the phase plate (a), (c), and

40 elements (b), (d). The amplitudes of the normalized wavelength shift case at resonance
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are the same as in Fig. 6.4. Yet, for the wavelength shift case, N-1 peaks are found out of

resonance. Those peaks are located at ω/(k±k⊥) = cs for the case without diffraction, and at

ω/k0(sin (θ + θn1)− sin (−θ + θn2)) = cs. These resonances are due to the beating between

the IAW induced by the grating and the IAWs induced by the speckles envelope. For realistic

phase plate number RPP beams, the randomness of the speckles position involves a wide range

of wave vectors, and results in a broadening of the resonance bandwidth, instead of additional

peaks. This explains why the peaks are discernible in the N=6 case and not in the N=40

case. For the CH case, because the IAWs are damped before reaching an other SC, there is no

resonance with the envelope. For this reason, Fig. 6.5 (c) does not exhibit peaks as Fig 6.5 (a).

Finally, no difference is discernible between the cases with and without diffraction because of the

unchanged crossing zone size, as predicted in Section 6.1.1. Diffraction is therefore negligible

for 2D RPP CBET studies when considering angles θ ≫ 1/f# and θ ≪ π/2 − 1/f#. In 3D,

the probability for an infinite longitudinal speckle to cross an other speckle is still very high and

close to 1. For a finite size, it is less evident. Discrepancy between these cases is expected in

3D, the case with diffraction includes less crossing zone and therefore less exchange.

6.2 Cross-Beam Energy Transfer simulations: Aca-

demic configuration

Most parameters are the same as in 5.2.1. The configuration is shown in Fig. 6.6. The

simulations setup consists in two beams, each composed of four equally spaced speckles, crossing

each other. Compared to real spatially smoothed beams addressed in the following part, this

simplified configuration allows to compare the results with the plane wave case while having a

perfect knowledge of the amplitudes and the phase shifts between the waves. Figure 6.7 plots

the normalized profile of the laser intensity, and of the electron density perturbation δNe/ne0,

along y. In a stationary plasma with a wavelength shift [Fig. 6.7(a)], the propagating IAWs

are clearly visible and have time to reach the next crossing regions due to the small damping

rate. When there is a plasma flow, but no frequency shift, the IAWs are stationary in the lab

frame, as shown in Fig. 6.7(b). The amplitude of the density perturbation is weaker when

the plasma is stationary, because the propagating wave does not have the time to locally grow.

Moreover, the phase shift between waves created in the vicinity of different crossing regions may

decrease the total IAW amplitude, exacerbating the disparities with the plasma flow case. From
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Figure 6.6: Intensity profile normalized to 2.74 × 1018/λ2
µm W cm−2 at time 3.4 ×

105 ω−1
L for the plasma flow case.

these different IAW amplitudes, we anticipate a substantial difference in the energy exchange.

We checked this numerically by performing several simulations, with or without plasma flow,

and with various phase shifts between the SCs. Because the waves are weakly damped, we

could not reach the asymptotic regime in our simulations. Hence, our results are only for the

transient regime. Figure 6.8 (a) compares the gain/loss of linear power of the upper/lower

escaping beams for different laser and plasma parameters. The red diamonds correspond to

the temporal plane wave model inspired from [18] and presented in 4.3 and show a satisfactory

correspondence with the plasma flow case. At resonance, the exchange in energy is 20% larger

when there is a plasma flow case (dotted line) than when there is a wavelength shift case

(dashed-dotted line). This difference is further increased beyond 100% by adding a phase shift

between the SCs (dashed line). It is worth pointing out that the upper beam is significantly

depleted in the plasma flow case, thereby limiting the inner beam power growth. For smaller

intensities, the disparities between the three cases would be even more pronounced. Despite this

intrinsic difference in the IAW growth shown in Fig. 6.7, the energy exchange due to a plasma
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(a) (b)

Figure 6.7: Percentage of electronic wave perturbation (cyan) and normalized laser
intensity (red) as a function of y and averaged from x = 1600 to x = 1800 c ω−1

L in
the laboratory frame at t = 2.71× 105 ω−1

L for the wavelength shift case (a), and for
the plasma flow case (b).

flow can be cancelled out by adding a frequency shift (ω/k = cs and vd = cs) as illustrated

by the black curve in Fig. 6.8 (a). Indeed, out of resonance the IAW amplitude is very small.

To study the resonance bandwidth, the exchanged power is plotted in Fig. 6.8 (b) for one

out-of-resonance plasma flow case, and three values of ω/k for the wavelength shift case. For

a flow velocity, vd = 0.905 cs, the transient exchange oscillates around zero, before vanishing

at long times, in a similar way as in Fig. 2a of Ref. [18]. As explained previously by the linear

model, the solution behaves like in the plane wave case, for which the resonance bandwidth of

the weakly-damped plasma is thin. By contrast, the exchange persists in the wavelength shift

case. The different values of ω/kcs (0.88, 0.905 and 0.93) are chosen so as to explore the

resonance bandwidth. The comparable amount of power exchange in the three cases suggests

a larger resonance bandwidth than in the plasma flow case. This peculiar tendency has been

explained with our model in Section 6.1.3: in the wavelength shift case, the IAW propagates

and can be resonant with the SC envelope, broadening the resonance spectrum.

121



(a) (b)

Figure 6.8: Difference between the linear power of the upper and the lower beam
versus time. Panel (a), at resonance for the plasma flow case in red (dotted line), the
wavelength shift case in cyan, with (dashed lines) and without (dashed-dotted line)
phase shift, and out of resonance in black (plane line) ; Panel (b), out of resonance
for the plasma flow case (plane red line) and for the wavelength shift case for three
values of ω/k corresponding to three different near-resonance conditions in cyan,
blue and black.

6.3 Cross-Beam Energy Transfer simulations: Re-

alistic Random Phase Plate configuration

6.3.1 Parameters

Smilei PIC simulations [19] of CBET with realistic RPP beams have been performed to confirm

the relevance of our previous results, and to further investigate the strongly damped regime.

Normalizations are the same as in 5.2.1 and the configuration is shown in Fig. 6.10.

Numerical parameters

The box size is Lx × Ly = 2412 × 1206 c2 ω−2
L , with cells size of 0.7 × 0.7 c2 ω−2

L . Cells are

filled by 20 ions of each species and 20 electrons. One simulation is performed with a single

species (Carbon, Z=6) and the other one with two species (CH). The time step is 0.45ω−1
L .

For the wavelength shift case, boundary conditions are reflective for the plasma, and absorbing

(Silver-Muller) for the fields. For the plasma flow case, xmin and xmax boundary conditions

are reflective for the plasma and absorbing (Silver-Muller) for the fields, and ymin and ymax
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boundary conditions are periodic for both the plasma and the fields.

Plasma parameters

The simulations are performed in a homogeneous and non collisional plasma as justified in

5.2.1, and the plasma is fully ionized. Two different plasmas are considered: carbon (C) for the

weakly-Landau damped case and a plastic ablator (CH) for the strongly-Landau damped case.

For these species, the fluid limit incorrectly approximates the value of the IAW velocity as well as

the damping. Thus the calculation is made by graphically resolving the sound kinetic dispersion

relation as explained in Section 4.1.1 and we obtain a damping distance of 141 c ω−1
L for the C

and 28 c ω−1
L for the CH [117] respectively corresponding to damping times of 1.2×105 ω−1

L and

2.4×104 ω−1
L . The electron and ions temperatures are Te = 2 keV and Ti = 1 keV, respectively.

The electron density is fixed to ne = 0.04nc.

Laser parameters

Two RPP beams are crossing at an angle of 24◦. The initial condition for each beam is the

exact solution of the field of a paraxial beam passing through a spherical lens and a random

phase plate composed of small elements adding a phase shift of 0 or π. As explained in Section

6.42, the field set as initial condition can be deduced from the 2D inverse FT of the field at

focal spot, but the numerical cost of such a calculation at each timestep is too high. Knowing

the exact field everywhere allows to give the analytical expressions of two RPP beams with an

angle as initial conditions. The calculation is shown in Chapter 3 and leads to

E =
El

2

√
f

f − x
e

iky2

2(f−x)

∑
n

eiφn×
(
erf

[
e−

iπ
4 K(x)·(an+1−

yf

f − x
)
]
−erf

[
e−

iπ
4 K(x)·(an−

yf

f − x
)
])
,

(6.42)

valid for x < f . an = nd where d is the size of one phase plate element, n ∈ [−N/2, N/2]

where Nd = D is the size of the phase plate, and K(x)2 = k
2x −

k
2f where f is the focal length.

The field given as xmin boundary initial condition is Etot = E0+E1 where E0,1 are the field of

a beam as described in eq (6.42) with an angle θ0 = θ , θ1 = −θ. The laser field is normalized

in order to later choose the laser intensity so the pre-factor of Eq. (6.42) does not play a role

in our simulations. However, as the beams field is enveloped, all the energy is contained in the

simulation box and this normalization does not change the speckles intensity distribution. The

laser pulses propagate from the left to the right. The temporal evolution is a ramp of 2000ω−1
L
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followed by a plateau until the end of the simulation. The focal spots of the RPP beams

are located in the middle of the simulation box and their intensity is I = 8.8 × 1013 Wcm−2

corresponding to a = 0.004 or I = 2.2 × 1013 Wcm−2 corresponding to a = 0.002, for the

study of the resonance spectrum. The simulations are made with N = 6 and f# = 8 which

corresponds to a beam waist of w = 48λL where λL = 1µm.

The frequency shift is chosen so as to match the resonance condition ω = kcs = 4.535×
10−4 ωL the lower beam having the lowest frequency (= 1 − 4.535 × 10−4) for the CH and

ω = kcs = 4.79× 10−4 ωL for the C.

6.3.2 Simulations results

In this section, the difference of power exchange between plasma flow and wavelength shift

cases is investigated assuming RPP beams in both weakly and strongly Landau-damped plasmas.

Unlike in 6.2, distinction is not made between the in-phase and out-of-phase cases as this realistic

phase plate does not permit to control the phase of the gratings. Due to the randomness of the

speckles generation, the phase-shift is inherently included between the different gratings. As in

Chapter 5, the exchange is calculated with the difference between the power of the red-shifted

/ blue shifted, obtained by integrating the Poynting vector at xmax over the upper (y > 0) /

lower (y < 0) half of the simulation box shown in Fig. 6.10.

At resonance

First of all, the power exchanged of a RPP plasma flow case is compared to a nearly plane wave

case in order to confirm the equivalence between those cases, already theoretically demonstrated

in 6.1.3. The plane wave case corresponds to a simulation of the exchange between two Gaussian

beams having the same a0 and same linear power as the RPP beams. The simulation is also

performed with a plasma at a velocity vd along y.
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Figure 6.9: Difference between the power per unit length of the red-shifted and
the blue-shifted beams escaping the simulation box normalized to the initial power
versus time, for a = 0.004. The Gaussian beam simulation is represented in dark
solid line, and the RPP case in red dotted line. Both cases include a plasma flow vd.

In Fig. 6.9, the red dotted curve corresponds to the RPP case as represented in Fig. 6.10

and the plain dark curve corresponds to the plane wave case. The almost merged curves strongly

support our theoretical deductions.
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Figure 6.10: Intensity profile normalized to 2.74×1018/λ2
µm W cm−2 at time 105 ω−1

L ,
for a = 0.004, for the carbon plasma flow case, with a number of phase plate elements
of N = 6.

This being clarified, the RPP configuration of the simulation is now shown. The intensity

profile for the carbon plasma flow case is plotted on fig. 6.10. The exchange is clearly discernible,

the blue-shifted beam seeming to be almost depleted. Some speckles with very low intensities

are also discernible, due to the airy disk coming from the sinus cardinal form of the focal spot.

Figure 6.11 exhibits the amount of exchanged power between the upper right and the lower right

beam versus time for both carbon and CH plasmas. At t = 5× 104ω−1
L , the exchanged power

observed in the wavelength shift case is reduced by 45% compared to the flow case in the carbon

plasma, and by 30% in the CH plasma. This confirms the validity of the model even for strongly

Landau-damped plasmas. For the CH, the damping distance is comparable with the speckle

size (cs/νλsp ∼ 0.5), and the amplitude of the driven IAW stems from the ponderomotive

force averaged over half the CS. It is worth noting that the simulations correspond to the case

kmax = 0.15 k, i.e the NIF/LMJ condition.
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Figure 6.11: Difference between the power per unit length of the upper right and
the lower right beam normalized to the initial power versus time at resonance for a
= 0.004. Plasma flow cases and wavelength shift cases correspond to the plane lines
and the dotted lines, respectively. Weakly Landau-damped cases (Carbon) are in
cyan, and strongly Landau-damped cases (CH) are in red.

Out of resonance

The comparison between the plasma flow and the wavelength shift cases out of resonance,

theoretically studied in Section 6.1.3 and numerically in the academic situation of 6.2, is now

explored for carbon and CH plasmas in the case of RPP beams. Figure 6.12 exhibits the

exchanged power versus time for the carbon plasma flow and wavelength shift cases out of

resonance at ω = 0.85 kcs. As predicted by the model, the exchange for the wavelength shift

case becomes stronger than the plasma flow case, unlike in the resonance case. The same

resonance condition and an even more amplified resonance mismatch (ω = 0.70 kcs) have been

applied in the CH plasma. The discrepancy between cases is smaller for CH, and was not visible

yet for ω = 0.85 kcs. In Section 6.1.3, we saw that the resonance bandwidths are larger in

CH. For this reason, we had to go further from resonance to see the tendency reversing. These

simulations have been performed until seeing the expected tendency, but they have not reached

the asymptotic regime. Having this general tendency confirmed by our RPP simulations, it is

now interesting to explore the resonance bandwidth shape. The model predicts a thin resonance

bandwidth in the carbon plasma in the plane wave case, and a wide bandwidth for the other

cases. Several simulations in both carbon and CH plasmas, have been performed to explore
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Figure 6.12: Difference between the power per unit length of the upper right and
the lower right beam normalized to the initial power versus time out of resonance
for a = 0.004. Plasma flow cases and wavelength shift cases correspond to the plane
lines and the dotted lines, respectively. Weakly Landau-damped cases (Carbon) are
in cyan, and strongly Landau-damped cases (CH) are in in red.

the resonance bandwidth. The beam intensity has been divided by a factor 4 so as to avoid

the beam depletion that would otherwise bound the final beam power at resonance. Since

the exchange rate is proportional to the laser intensity, we also expect a factor 4 between the

power exchange of the previous simulations and these ones. Figure 6.13 shows the value of the

normalized exchanged power at asymptotic time in the carbon and CH plasmas for different

deviations from resonance. The values on the right side ((ω/k − vd)/cs = 1) correspond to

the case at resonance. The exchange is not the same because the initial power is reduced,

but the ratio between the plasma flow and the wavelength shift cases are the same as in Fig.

6.11. A clear and noteworthy qualitative accordance is still found between the model and the

simulations. As expected from the model in Fig. 6.5 and the first simulations out of resonance

in Fig. 6.12, the wavelength shift case becomes predominant after a certain deviation from

resonance. The resonance bandwidth is also thinner in the Carbon and plasma flow cases.

Although we performed many simulations for the Carbon wavelength shift case to explore the

resonance bandwidth, the supernumerary peaks of Fig. 6.5 (a) are not discernible. The number

of RPP N=6 is the same, but the model only accounts for six SCs while the exchanged power in

the simulation results from all the SCs in the crossing zone. Figure 6.10 shows ≃ 10 intense SCs

and a few less intense, explaining the flattening of the resonance curve. However, a significant
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Figure 6.13: Scatter plots of the normalized exchanged power for a = 0.002 versus
the deviation to resonance, for the Carbon (cyan) the CH (red), for the plasma flow
case (solid lines with crosses) and the wavelength shift case (dotted lines with stars).

gap is found between the maxima of the resonance curves of the model in Fig. 6.5 and the

simulation in Fig. 6.13. The model strongly over-estimates the exchange, even without laser

depletion. In Sections 4.1.1 and 4.1.2, we have shown that theoretically, Landau damping is

the prevailing damping process and that the effect of collisions can be neglected in both C and

CH. To confirm this assumption, simulations taking collisions into account were performed.

Figure 6.14 exhibits the power exchanged for the Carbon, plasma flow and wavelength shift at

resonance, with and without collisions. The choice of the species as well as the resonance was

made to study the effect of collisions in the case where they are the more susceptible to affect

the exchange. As they do not seem to have an effect in this worst case, we can anticipate that

they also have no effect for species with a bigger Landau-damping distance and further from

resonance. These simulations therefore confirm the relevance of neglecting collisions in all the

previous simulations.

To conclude, these results can partially explain why the experiments often differ from the models

and simulations in indirect-drive approach. Furthermore, owing to the frequency shift induced

by a moving plasma [20], this effect probably holds true in the direct-drive approach. Alas, most

CBET measurements are indirectly made by measuring the symmetry of implosion, which is

subsequently reproduced in the simulation by artificially saturating the density perturbation [39,

47]. This lack of direct experimental measurements complicates any quantitative comparison
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Figure 6.14: Difference between the power per unit length of the upper right and the
lower right beam normalized to the initial power versus time at resonance for a =
0.002 and a Carbon plasma. Plane wave case is in solid red line without collisions,
dotted magenta line with collisions, and wavelength shift case in solid cyan line
without collisions, dashed blue line with collision.

with our models/simulations.

Only 2D cases were studied, but multiplicity as well as proximity of the speckles suggest that

many SC are found in a beam section, meaning the observed exchange difference also exists

in 3D. SC are however expected to be fewer, which will result in a reduced effect of the

interferences in the case of weakly-damped plasmas. However, the discrepancy from the plane

wave model still remains in strongly damped-plasmas. There, the diffraction effect is negligible

and 3D PIC simulations would lead to roughly the same conclusions.
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Conclusion and perspectives

The main innovations of this work are

• The theoretical and numerical demonstration of the difference between the CBET due

to the wavelength shift of the laser beams and CBET due to a plasma flow

• The use of a realistic RPP field to establish a linear exchange model.

We have investigated the CBET between many speckles, by means of kinetic PIC simulations

and a linear model.

The IAW produced by a flowing plasma is found to be stationary. Since the interference grating

is also stationary in the laboratory referential, the IAW remains in the location where it was

created and is therefore stimulated by the same potential. For this reason, the plasma flow

case can be assimilated to a plane wave case.

When the laser beams have different frequencies in the lab frame, the random phase shift

between the interference gratings, situated at each crossing speckles, is an important factor of

energy exchange inhibition. Indeed, the driven IAWs issued from each crossing speckles, can

interfere destructively, thereby reducing the light scattering by the ion gratings. This effect

is particularly efficient in weakly damped plasmas where the IAWs can travel through many

speckles.

In strong Landau damped plasma, such as plastic CH, an inhibition of CBET persists, with values

around 30 % compared to the plane wave limit. When the damping distance is comparable with

the speckle transverse size, the ponderomotive force producing the moving grating in the plasma

reference frame is averaged over the speckle, thereby reducing the amplitude of the driven IAW.

This demonstrates that the difference between the plasma flow and the wavelength shift case

is not only due to the phase-shift effect.
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All the aforementioned phenomena were first found using academic simulations in which the

laser beams were constituted of four Gaussian speckles. These findings were explained with a

simplified model using a sinusoidal envelope for the beat wave ponderomotive force. These toy

models allowed us to precisely control every parameter and to identify the phase shift effect as

well as the IAW dynamics. Then, these results were confirmed in a more realistic case. The

linear model has been improved considering the exact expression of the envelope of a beam

having undergone a RPP. Likewise, PIC simulations were performed with the RPP field, known

everywhere.

These results can partly explain why the experimental exchange is often over-estimated in the

simulations in the indirect-drive approach, when using different laser frequencies. The speckles

structure of the beam being inherently present, its effect is prior to any non-linear mechanism

usually invoked as CBET saturation. Moreover, as the cross section between the beams/speckles

becomes larger for crossing angles close to 0 or π, the plane wave approximation becomes even

further away from reality. It is therefore even more important in these cases to account for the

speckle structure and to use a RPP model.

Most perspectives of this work stem for the RPP modelisation. First, the presented 2D

model can easily be extended in 3D. Then, as temporal smoothing involves plane waves, no

particular difficulty is foreseen in including SSD in the model. These prospects are achievable in

both a linear model and PIC simulations, and can also be enlarged in hydrodynamic simulations.
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Appendix A
Simulations specifications

This appendix aims to summarize the simulations parameters such as the inputs and the details

on how to plot the figures, so that the reader has a better understanding and has enough

information to reproduce the results.

A.1 PIC simulations with CALDER

A.1.1 Parameters

We first recall the input parameters described in the Sections 5.2.1 and 6.2

Numerical parameters

• Box size: Lx × Ly = 8000× 3200 c2 ω−2
L

• Mesh size: 0.44 × 0.44 c2 ω−2
L

• Timestep: 0.3ω−1
L

• Cells are filled by 20 macro-ions and 20 macro-electrons

• Boundary conditions: reflective for the plasma and absorbing for the fields for the wave-

length shift case. Periodic for the plasma and absorbing for the fields for the plasma flow

case.
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• High mode current filtering

• 4th-order alternating interpolation scheme

Plasma parameters

• Homogeneous and non collisional plasma

• Electron density: 0.04nc

• Ion species: A = 160, Z = 10

• Ti: 1 keV

• Te: 4 keV

• Plasma flow velocity at resonance (for the plasma flow case): 5.35× 10−4c

• Application of 3 filters to smooth the current deposited by the macro-particles

Laser parameters

• Four Gaussian beams intersect four other Gaussian beams

• Crossing angle: 20◦ (beam 0 : θ0 = 10◦, beam 1 : θ1 = −10◦)

• Polarization: linear (electric fields lying in the (x-y) simulation plane)

• The laser pulses propagate from the left to the right

• Temporal evolution: ramp of 1000ω−1
L followed by a plateau until the end of the simu-

lation

• The focal spots of the eight speckles are located in the middle of the simulation box

• Intensity: I = 8.8× 1013 Wcm−2 (a0 = 0.008)

• (equal) beam waists at 1/e: w = 70 c ω−1
L (11µm for λ = 1µm) at FWHM

• Distance between speckles: ∆y = 150 c ω−1
L

• Frequency shift at resonance (for the wavelenght shift case): ω = kcs = 1.81×10−4 ωL,

the lower beams having the lowest frequency (= 1− 1.81× 10−4)
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• Field of a speckle ≡ field of a Gaussian beam at focal spot: E = E0

√
w0
w(x)e

−i 1
2
arctanx/xre

ik0y
2

2R(x) e
− y2

w(x)2 eiϕ

given in a θ-shifted plane with respect to y in the middle of the simulation box.

• Phase: (bottum up) ϕ = 0, 0.4, 4.5, 0.2 for the upper beams (y > 0) and 1, 0.1, 0.9,

5 for the lower ones (y < 0) for the phase shift case, all phase are equal to for the in

phase case

A.1.2 Results and figures plotting details

• Intensity map (Fig. 5.3 and 6.6): The output of the Bz field is made each 4000 timestep,

and is averaged over a laser period (20 timesteps). The intensity map is the plot of the

averaged field B2
z .

• Exchanged power vs time (Fig. 5.4 and 6.8): ∆P/P0 is the power per unit length of

the four escaping red-shifted speckles (Gaussian beams) minus the power of the four

blue-shifted speckles, normalized to the initial power per unit length. The power of the

red-shifted / blue shifted beam has been obtained by integrating the Poynting vector

(i.e. B2
z ) at xmax over the upper (y > 0) / lower (y < 0) half of the simulation box.

The values of each output are plot, that is to say each 4000 timesteps.

• (y-t) density map (Fig. 5.5 (a) and (b)): The density perturbation for one timestep

correspond to the averaged value of the density over x and over 200 cω−1
L and is plotted

as a function of y. The averaging over x on a distance smaller than the crossing length

allows a better resolution. The simulations output ar every 4000 timesteps.

• Envelope amplitude vs time (Fig. 5.5 (c)): To obtain the two curves, the value of ne is

found by reporting the values of ne along the direction y0 + cst.

• Electronic wave perturbation and normalized laser intensity vs y (Fig. 6.7): As for the (y-

t) density map, the density perturbation is averaged over x to obtain a better resolution.

The laser intensity is the value in the middle of the simulation.
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A.2 PIC simulations with SMILEI

A.2.1 Parameters

We firt recall the input parameters described in the Section 6.3.1

• Box size: Lx × Ly = 2412× 1206 c2 ω−2
L

• Mesh size: 0.7× 0.7 c2 ω−2
L

• Timestep: 0.45ω−1
L

• Cells are filled by 20 macro-ions of each species and 20 macro-electrons

• Boundary conditions: reflective for the plasma and absorbing for the fields for the wave-

length shift case. xmin and xmax boundary conditions are reflective for the plasma

and absorbing (Silver-Muller) for the fields, and ymin and ymax boundary conditions are

periodic for both the plasma and the fields for the plasma flow case.

• No current filtering

Plasma parameters

• Homogeneous and non collisional plasma (+ one test simulation with a collisional plasma)

• Electron density: 0.04nc

• Ion species: Carbon (C) and plastic (CH) both fully ionized

• Ti: 1 keV

• Te: 2 keV

• Plasma flow velocity at resonance (for the plasma flow case): 1.1176 × 10−3c for the

Carbon (must be very precise because of the fine resonance peak) and 1.1113 × 10−3c

for the CH.

• Application of 3 filters to smooth the current deposited by the macro-particles
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Laser parameters

• Two RPP beams crossing each other

• Phase plate elements number: 6

• Crossing angle: 24◦ (beam 0 : θ0 = 12◦, beam 1 : 1 = −12◦)

• RPP field given as xmin boundary condition: Etot = E0 + E1 where

E0,1 =
El
2

√
f

f−x0,1
e

iky20,1
2(f−x0,1)

∑
n e

iφn

×
(
erf

[
e−

iπ
4 K(x0,1) · (an+1 − y0,1f

f−x0,1
)
]
− erf

[
e−

iπ
4 K(x0,1) · (an − y0,1f

f−x0,1
)
])

x0,1 and y0,1 being the coordinates of the beam shifted with an angle of θ0,1 in the

simulation box referential. an = nd, d is the size of one phase plate element, n ∈
[−N/2, N/2], Nd = D is the size of the phase plate, K(x)2 = k

2x − k
2f , f is the focal

length.

• The laser pulses propagate from the left to the right

• Temporal evolution: ramp of 2000ω−1
L followed by a plateau until the end of the simu-

lation

• Intensity: I = 8.8× 1013 W cm−2 (a = 0.004) or I = 2.2× 1013 W cm−2 (a = 0.002)

• The focal spots of the RPP beams are located in the middle of the simulation box

• f number: 8

• Beam waist: w = 48µm

• Frequency shift at resonance (for the wavelenght shift case): ω = kcs = 4.535×10−4 ωL

the lower beam having the lowest frequency (= 1 − 4.535 × 10−4) for the CH and

ω = kcs = 4.79× 10−4 ωL for the C.

A.2.2 Results and figures plotting details

• Intensity map (Fig. 6.10): The output of the Bz field is made each 5000 timestep, and

is averaged over a laser period (14 timesteps). The intensity map is the plot of the

averaged field B2
z .
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• Exchanged power vs time (Fig. 6.9, 6.11, 6.12 and 6.14): ∆P/P0 is the power per unit

length of the red-shifted beam minus the power of the blue-shifted beam, normalized

to the initial power per unit length. The power of the red-shifted / blue shifted beam

has been obtained by integrating the Poynting vector (i.e. B2
z ) at xmax over the upper

(y > 0) / lower (y < 0) half of the simulation box. The values of each output are plot,

that is to say each 5000 timesteps.

• Exchanged power vs deviation to resonance (Fig. 6.13): The value of ∆P/P0 is obtained

as previously but only one point per species per value of deviation from the resonance is

plotted, at asymptotic time (tasymp ≃ 2.3× 104 for the CH and tasymp ≃ 1.3× 105 for

the Carbon.
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Appendix B
Numerical heating

Simulation codes are built under a certain number of approximations affecting the accuracy

of the phenomena numerically reproduced. In particular, our first simulations were affected

by a strong numerical heating. As a matter of fact, most of PIC simulations are performed

during a short physical time (ps) although the simulations here can last for hundreds of ps.

Several strategies have been implemented in order to reduce the numerical heating. To make

some tests with a small numerical cost, a first step was to compare the heating of the CBET

simulation with the heating of a small window without laser. The black curves of fig. B.1 show

that this reduced configuration reproduces well the numerical heating. All the following tests

have been made in this reduced windows.Then, the size of the mesh has been reduced for all

the simulations. According to fig. B.1, diminishing the size of the mesh strongly affects the

numerical heating: the slope is divided by 2 for Te and by 3 for Ti. Finally, successive filters

have been applied to smooth the current deposited by the macro-particles [113]. N filters have

been applied with N = 0, 1 or 3. The filter is binomial then compensatory with N the number

of passes. Applying the N=3 current filter almost kills the heating. The configuration with the

small meshes and N=3 have been used for all the CALDER simulations.
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(a)

(b)

Figure B.1: Percentage of numerical heating as a function of time. (a) For the ions
(b) For the electrons. The plain black lines are the first simulations of CBET without
current filter, with the parameters of 5.2.1. The black dashed lines are simulations
without laser, in a reduced window. All the other curves correspond to this reduced
window. The cyan curve is with a smaller mesh without current filter. The dashed
red curve is with a current filter without a smaller mesh. The dotted/dashed curve
is with the smaller mesh and one current filters, the dotted curve with three current
filter.
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Appendix C
Résumé en français

Lors des expériences de fusion par confinement inertiel sur les grandes installations laser telles

que le LMJ à Bordeaux ou le NIF aux États-Unis, les lasers sont amenés à se propager à travers

des plasmas de grandes tailles (plusieurs millimètres). Un grand nombre d’instabilités dites de

couplages d’ondes peuvent apparaître, et diffusent la lumière dans une direction différente de

l’onde électromagnétique incidente. En particulier, les diffusions arrières Raman et Brillouin,

ainsi que l’échange d’énergie entre faisceaux laser en résultent. Des techniques dites de lissage

laser sont utilisées dans les grandes installations pour tenter de réduire ces phénomènes. Les

faisceaux, une fois lissés, sont constitués de nombreux points chauds micrométriques nommés

speckles. La Figure C.1 montre l’aspect d’un faisceau lissé.
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Figure C.1: Coupe transverse (haut) et longitudinale (bas) d’un faisceau laser lissé.

Lors de ces expériences, les faisceaux, focalisés autour d’une cible, vont être amenés à se

croiser. La Figure C.2 montre deux exemples de zones où les lasers sont amenés à se croiser.

En réalité, pour une expérience comprenant des centaines de faisceaux lasers, ces zones de

croisement sont très nombreuses.
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Figure C.2: Exemple de zone de croisement en configuration directe (gauche) et
indirecte (droite)

Le couplage de deux ondes électromagnétiques cohérentes dans un milieu non-linéaire (le

plasma), peut induire un échange d’énergie entre les faisceaux. Le croisement des lasers crée un

réseau d’interférences (cf Fig. C.2), où la force pondéromotrice expulse les électrons. Les ions

subissent la force de rappel électrostatique et suivent les éléctrons. Cela génère une modulation

de densité, ou onde acoustique, qui diffracte les ondes électromagnétiques d’un faisceau vers

l’autre, comme on peut le voir sur la Figure C.3.

Figure C.3: Carte d’intensité de deux faisceaux laser lissés se croisant dans un
plasma.

Cet échange, nommé Cross-beam Energy Transfer (CBET), a lieu si les lasers ont des

fréquences différentes, ou si ces dernières sont égales mais que le plasma est en mouvement

143



dans la direction de l’onde acoustique. Nous avons montré que, bien que ces deux situations

soient souvent considérées comme équivalentes dans les modèles hydrodynamiques, elles sont

en réalité différentes. Ceci est dû au fait que l’échange est communément calculé en considérant

les faisceaux laser comme des ondes planes, c’est-à-dire en négligeant le lissage laser.

Afin de démontrer cette non-équivalence, nous avons, dans un premier temps, étudié une

situation académique, en considérant le croisement de deux faisceaux lasers constitués chacun

de 4 speckles Gaussiens, comme nous pouvons le voir en Fig. C.4.

Figure C.4: Carte d’intensité de deux faisceaux laser constitués de quatre speckles
Gaussiens se croisant dans un plasma.

Différentes simulations ont été effectuées grâce à un code cinétique "particle-in-cell", ré-

solvant les équations de Vlasov et de Maxwell. Les simulations ont montré que lorsque l’échange

d’énergie est induit par un plasma en mouvement, les modèles du type onde plane sont en mesure

de prédire l’échange entre les faisceaux Gaussiens. Au contraire, lorsque l’échange est induit

par des fréquences laser différentes, les modèles onde plane surestiment le transfert d’énergie.

Ce modèle a également permit de distinguer deux configurations différentes pour le cas où les

fréquences laser sont différentes. Dans le premier cas, les ondes acoustiques issues de différents
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croisements de speckles sont en phase, et une interférence constructive résulte de leur interac-

tion. Dans l’autre cas, les ondes sont déphasées résultant en une interférence destructive. Il a

été montré que bien que l’échange soit plus important dans le cas en phase, l’échange demeure

inférieur au cas flot de plasma. Le déphasage n’est donc pas la seule source de différence entre

les deux situations. Ces résultats sont résumés en Fig. C.5. Ces résultats ont été obtenus en

considérant un plasma faiblement amorti, où l’onde acoustique se propage et peut rencontrer

plusieurs croisements de speckles avant d’être amortie.

Figure C.5: Difference entre la puissance par unité de longueur d’un faisceau sortant
par la moitié haute et de la moitié basse de la boite normalisé à la puissance initiale
d’un faisceau, en fonction du temps.

Dans un second temps, une modélisation plus réaliste des faisceaux lissés à été adoptée.

Pour cela, le champ d’un faisceau laser lissé à été calculé de façon exacte, permettant d’effectuer

des simulations plus précises et de construire un modèle tenant compte de la structure réelle

des speckles, telle qu’en Fig. C.3. Les résultats précédents ont été confirmés, même dans le

cas d’un plasma fortement amorti. Nous avons également pu montrer que les conditions de

résonance permettant au transfert d’énergie d’avoir lieu sont elles aussi affectées par le lissage

laser. En particulier, la largeur de résonance du cas où les fréquences laser sont différentes est

élargie par le lissage spatial, comme le montre la Figure C.6.
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Figure C.6: Nuage de points représentant l’échange d’énergie entre deux faisceaux
lissés en fonction de l’écart à la résonnance, pour un plasma de Carbone en cyan,
de plastique (CH) en rouge, pour le cas avec un flot de plasma (croix reliées par
un trait plein) et pour le cas avec décalage de fréquence (étoiles reliées par un trait
pointillés).
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